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ABSTRACT 

A mathematical model describing the drying process in a 

hygroscopic porous medium with two disparate l ength scales 

is formulated . The mathematical model is used to ident i fy 

the important dimens ionl ess parameters appearing in the 

probl em; and , a parametric study is performed to determine 

the e ffects of varying these parameters on the drying process . 

Of particular interest in this study is to apply the model 

to the drying o f  l arge , round hay bal es . There fore a discus s ion 

of how the results of the parametri c  study impact on the 

effic ient use of a hay drier is a l so presented . 

The results from the parametric study indicate that the 

drying t imes o f  a porous medium may be decreased by increas ing 

the Reynold ' s  number , increasing the inlet a i r  radius o f  the 

drier , decreasing the overa l l  aspect rat io o f  the porous 

structure , and decreasing the Kossovich number . I n  addition , 

it i s  shown that the velocity di stributi on through the porous 

medium plays a s igni f icant rol e  on the drying behavior . It 

was concluded the the greatest potential for improving the 

drying t ime for hay bales was to decrease the aspect rat io 

o f  the bal e . 

i i i  
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1 .  INTRODUCTION 

1 . 1 .  The Importance Of Drying 

The drying o f  porous media i s  a prob l em with a diverse 

range o f  app l i cations . From s imple tasks in the horne to 

comp l ex industrial processes , drying is involved in both the 

product ion and use of a large number of products . Drying 

laundry in the horne , freez e  drying foodstu f fs , and drying 

paper and agricultural products are but a few examples o f  

these appl ications . 

The consumption o f  energy required for drying tasks is 

enormous . An est imated 1 0% o f  the total fuel consumed in the 

U . S . S . R .  ( Lebedev and Ginzburg , 1 9 7 1 )  and 7% of the industrial 

energy demand in the United Kingdom ( Keey , 1 9 8 0 )  can be 

attributed to drying . This l arge energy consumption together 

with an ever- increas ing variety of appl ications has resulted 

in a need for fundamental research in this area . 

1.2. Analytical Models Of Drying 

Many analytical models o f  drying have been proposed . As 

will be seen in the following chapter , however , each of these 

model s  is typically appl icable over only a narrow range o f  

drying conditions . T o  e fficiently des ign and operate any 
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drier , an analytical model must be formul ated that i s  general 

enough to be applicable throughout the drying regimes o f  

interest , whi l e  be ing s impl e  enough to be readi l y  solved . 

In formulating such a theory , the phys i cal makeup o f  the 

medium to be dried becomes important as it a f fects the 

mechani sms by whi ch drying occurs . In many drying problems , 

disparate phys i cal scales may be ident i f i ed in whi ch the modes 

of heat and mass trans fer d i f fer . Examples in which such 

s ituations arise may be found in the drying o f  agricultural 

products . One such example i s  the drying o f  l arge round hay 

bales . 

A hay bale i s  a porous structure , wh i ch i s  composed o f  

individual hay stalks , each o f  whi ch i s  a l so a porous 

structure , but on a much sma l l er scal e . Norma l ly , it i s  the 

hay stalks themselves that actual ly conta in the mo i sture to 

be removed . That i s ,  no l iquid exists in between the closely 

packed hay stalks throughout the bale . Thus , two d isparate 

l ength scales , one characteri z ing the overal l  bale structure 

and the other the individual hay stalks , emerge in th i s  problem 

with d i f ferent phys ical processes occurring on each scale . 

In thi s  work , the analyt ical method o f  Kri s cher ( 1 9 6 3 ) 

describing the drying o f  a hygroscopi c  porous s o l i d  has been 

modi f ied and expanded to model the drying processes that occur 

in a porous medium with two d istinct l ength scales . 

The present method takes into account the two l ength scales 

discus sed above . In addit i on , a more general form of the 
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equat ions governing the phase change processes than that 

formul ated by Krischer ( and modi fied by Berger and Pei , 1 9 7 3 )  

i s  presented here . This more general form al lows the 

d i f fusional coe ff icients to vary with both moisture content 

and temperature , as has been observed to be true . In the 

formulation of the model presented in thi s  work , an attempt 

was made to preserve the general ities o f  the model . That i s ,  

the model should be val id for any hygroscop ic porous media . 

The model may be appl ied to the l imit ing case o f  a s ingle 

element , or " stalk" , which corresponds to one phys ical length 

scale . Or , the model may be appl ied to a structure composed 

o f  many el ements where there are two disparate length scales 

with coupl ed heat and mass trans fer . 

1.3. A Review Of Postulated Mechanisms For A Drying 

Process 

A bri e f  descript ion o f  the physical processes involved 

during the drying of a porous medium is presented here to 

provide the reader with a basic understanding of these 

phenomena and to introduce the common terminol ogy used in the 

f ield of drying . 

Several mechanisms have been proposed for the transport 

o f  moi sture in a porous body . Fortes and Okos ( 19 8 0 )  have 

identi fied seven such mechanisms that are discussed in the 

l iterature as : ( 1 )  l i quid d i f fus ion , ( 2 )  vapor d i f fus ion , ( 3 )  

capi l lary movement , ( 4 )  l iquid andjor vapor f l ow due to 
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pressure d i f ferences , ( 5 )  e f fus ion ( Knudsen ) f l ow ,  ( 6 )  l iqu id 

movement due to gravitational e f fects , and ( 7 )  surface 

d i f fusion . 

Liquid d i f fus ion was the bas is o f  the f irst theories 

proposed for drying ( Lewis , 1 9 2 1  and Sherwood , 

1 9 2 9 a , 1 9 2 9b , 1 9 3 0 ,  and 1 9 3 1 ) . Several authors ( see Caelgske 

and Hougen , 1 9 3 7  and Chen , 1 9 8 7 )  have noted , however , that 

the term l iquid diffus ion is " constra ined and somet imes 

mislead ing . "  A diffusional process occurs on the molecular 

l evel ( for exampl e ,  the mixing o f  gases ) , but the flow o f  

l iquid through a porous medium is not such a mixing proces s .  

Liquid movement does not result from the mixing o f  l iqu id in 

the porous sol id with the vapor in the porous sol id , but 

rather is the result of complicated phenomena involving the 

surface tension o f  the l i quid , as wel l  as the propert ies of 

the sol id structure and vapor . ( It should be noted that 

concentration gradients of a l iquid mixture may indeed exist 

in a porous sol id . This would cause " true "  l iquid d i f fusion 

to occur . ) 

The second mechanism identi f ied is vapor d i f fusion . Vapor 

di ffusion may occur as a result of a vapor pressure gradient 

with in the porous sol id . Thi s  mechanism has been used in the 

formulation o f  several theories l imited to describing the 

l atter stages o f  drying ( King , 1 9 6 8  and Harmathy , 1 9 6 9 ) . 

Cap i l l ary movement o f  a l iquid is driven by surface tens ion 

forces .  Thus , capill ary movement o f  l iquid can play an 
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important role in the overal l  trans fer o f  moi sture in regions 

of the porous sol id where continuous paths of l iquid exist . 

This mode o f  moi sture trans fer has also been used either a l one 

or in comb ination with other mechanisms to provide the bas is 

for several drying theories ( Van Arsdel , 1 9 4 7 , Phi l ip and 

DeVries , 1 9 57 ) . 

The fourth mechanism ident i f ied is the movement o f  l iquid 

and/or vapor via a pressure gradient . Thi s  mechanism is 

important in s ituat ions in which a large pressure gradient 

induced across a porous solid " forces " the l iqu id and vapor 

to flow .  This mechanism ,  as wel l  as the fi fth and s ixth , are 

allowed for in some of the more " sophist icated " theories 

(Whitaker , 1 9 6 6 , 1 9 6 7 , 1 9 6 9 , 1 9 7 1 ,  1 9 7 3 , 1 9 7 7 a ,  1 9 7 7b, 1 9 8 6 a , 

1 9 8 6b ,  1 9 8 6c and Chen and Pe i ,  1 9 8 9 ) . 

The f i fth mechanism proposed , e ffusion , or Knudsen , flow 

is important only under rarefied condit i ons and will not be 

considered further in thi s  dissertation . 

Liquid movement due to gravitational e ffects is the sixth 

mechanism identi f ied for moi sture trans fer . Thi s  mechanism 

is usua l ly not important in porous bodies , however ,  due to 

the large surface tension e ffects that overcome the tendency 

o f  the l iquid to move due to gravitational forces . The 

relative importance o f  gravitat ional forces to surface tens ion 

forces is indicated by the value o f  the Bond number . The 

Bond number is a dimensionless parameter defined as , 
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B o  

Thus , i f  the Bond number is much l ess than one , surface tens ion 

forces dominate over gravitat ional forces . Most studies 

performed have impl icitly assumed low Bond numbers and have 

ignored gravitational e ffects ( see Fortes and Okos , 1 9 8 0 ) . 

The seventh mechanism ident i f ied as a source o f  moisture 

trans fer by Fortes and Okos is surface d i f fusion . They noted 

that at the t ime the ir paper was written ( 1 9 8 0 )  no existing 

theories had accounted for this mechanism .  Thi s  author has 

also not found any ment ion of this mechanism in other sources ; 

and , it wi l l  not be considered in this work . 

1.4. Descripti on Of A Typical Drying Process 

A drying process often involves plac ing a mo ist porous 

body into a " controlled" environment . To i l lustrate the 

physical processes involved during drying , the case o f  a 

moist , porous semi-infinite slab with a i r  o f  control led 

humidity , temperature , and pressure on either side is 

discussed . The drying process for thi s  case i s  graphically 

presented in F igure 1 . 1 .  

Provided the initial moisture content o f  the s l ab is high 

enough to saturate the surface , a so-cal led " constant rate 

phase " of drying is init ially observed . In thi s  phase , the 

l iquid evaporation is essentially constant and equal to that 

from a free l iquid surface . As drying continues , a critical 

point is reached where the water cannot be conducted to the 
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Figure 1 . 1 .  Movement O f  Moisture During Drying . 

surface fast enough to keep the surface mo ist . At this point , 

dry patches begin to emerge on the surface o f  the slab . The 

drying rate then decreases marking the so-ca l l ed " first 

fall ing rate " period of drying . This peri od cont inues unt i l  

the wet patches disappear from the surface . The t ime at wh ich 

all  the wet patches disappear marks the start of the " second 

fall ing rate "  phase o f  drying . A drying front forms , and 

begins to retreat into the sol id structure . Thus , two regions 

may be ident i f ied within the sol id structure : ( 1 )  the wet 

region and ( 2 )  the " sorption" region . 

In the wet region , there are sti l l  continuous paths o f  

l iquid present . The principal mechanism o f  moisture movement 

in this region is the cap i l lary forces acting on the l iquid . 

7 



In the sorpti on region , however , these cont inuous paths o f  

free l iquid do not exist . Moisture trans fer in this region 

occurs primarily as a result o f  vapor d i f fus ion (water vapor 

d i f fuses from regions of "high" to " low" vapor pressure s )  and 

the movement of " bound" l iquid , control led by the processes 

described below .  Water contained in the sol id i s  termed free 

water if the vapor pressure exerted is equal to that o f  

saturated l iquid a t  the same temperature . Any water contained 

in the sol id where the vapor pressure is less than that at 

saturated condit ions is termed bound water . This bound water 

may be thought o f , for exampl e ,  as water conta ined in very 

f ine cap i l l aries or water conta ined in pl ant cel l s . Free 

water , on the other hand , may exist as water conta ined between 

the cel l s  or held in the larger voids o f  the sol id . 

The characteristics o f  the solid to be dried have an 

important e ffect on the drying behavior . Material s may 

genera l ly be clas s i f ied as e ither hygroscop ic , or 

non-hygroscopic , depending on the ir ab i l ity to " bind" water . 

As drying begins (with a high initial moi sture content ) , the 

vapor pressure in the air over the sol id is equal to the 

pressure o f  saturated l iquid at the same temperature . As 

drying progresses , a point i s  reached where the vapor pres sure 

begins to decrease due to the presence o f  the porous sol id . 

Materials containing a s igni ficant moi sture content at this 

point are termed hygroscopic . 
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A relationship between the rel ative humidity o f  the air 

and the moisture content o f  the sol id at a spec i fied 

temperature is provided by the sorption i sotherm . Th is curve 

is determined experimentally for any g iven material . The 

moisture content corresponding to a relat ive humidity o f  1 0 0% 

on this curve i s  thus the dividing point where the sol id 

contains free water or only bound water . Th is moisture content 

i s  referred to as the maximum sorpt ional moisture content . 

At any mo isture content above the maximum sorpti onal mo isture 

content , the sol id contains free water . I f  the moi sture content 

i s  below this value , however , only bound water exists in the 

solid structure . 

As can be seen , model ing a speci fic drying process requires 

a knowledge o f  the d i fferent drying regimes encountered , the 

principal modes o f  mass transport that occur as wel l  as the 

type o f  porous structure to be dried . Once these have been 

ident i fied ,  a mathematical model of the drying process may 

be formulated . 

1.5. Motivation For The Present Research 

The specific appl ication chosen for the present 

investigation involves the drying of large round hay bales . 

Hay i s  used primarily as feed for anima l s . I t  is there fore 

des irable to obtain the highest qual ity hay poss ible ; that 

i s ,  to obtain the hay with the highest poss ibl e  nutritional 

value . As will  be discussed , one way to maintain the feed 

qual ity is to use a drier to dry the hay . One factor that 
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a f fects the drying of hay is the method in wh ich it is handled . 

For economic reasons , it has been found beneficial to bundle 

hay in as l arge a package as possible . Unfortunately , th is 

practice has several disadvantages . 

One disadvantage i s  the d i l emma faced as to the best t ime 

to bale the hay to preserve qual ity . I f  the hay is baled at 

too high a moi sture content , the larger package results in 

increased drying time which may al low mol d  growth to begin 

be fore drying is compl eted ( Bledsoe , 1 9 8 8 ) . I t  is currently 

common practice to a l l ow hay to dry to a moi sture content 

safe for storage in the swath prior to bal ing . Thi s  pract ice , 

however , causes excess ive losses . When hay i s  a l l owed to dry 

to a moi sture content below 18% wet bas i s  ( Wet basis re fers 

to the ratio o f  mass o f  water to the mass o f  water plus the 

mass o f  dry matter and will  be abbreviated as w . b . ) in the 

swath , the nutrient rich leaves o f  the hay become brittle and 

fall o f f  the stem during subsequent handl ing ,  a condit ion 

re ferred to as 1 1  leaf shatter . 1 1  Prolonged exposure to sunl ight 

also bl eaches nutrients from l eaves and stems . Thus , the hay 

should not be baled at too l ow a moisture content e ither . 

It has been found that it is best to bale the hay at a moisture 

content of approximately 3 5% ( w . b . ) .  

Thi s  rel atively high initial moisture content presents 

another problem associated with increased microbial heat 

generation . This heat generation takes pl ace as 

microorganisms , which feed on the hay , convert starch to sugar 
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in an exothermic reaction (Miller,  1 9 4 7 ) . As a resul t ,  

excess ive temperatures may b e  reached within the bale . These 

high temperatures can actual ly cause spontaneous combust ion 

in the hay and so represent a safety haz ard to farmers . Even 

when temperatures do not reach the combustion point , they may 

cause a " b inding" of the proteins in the hay . S ince prote ins 

in the bound form are l argely indigestible by feed animal s ,  

the feed qua l ity o f  the hay is reduced . In any case , exces sive 

temperatures must be avoided . 

One method employed to counter these probl ems is to use 

a drier which both speeds up the drying process and helps to 

minim i z e  microbial heating . To efficiently implement this 

approach , an analytical model of the drying process must be 

developed . Solutions of this model wil l provide the 

understanding necessary to improve upon current des ign 

criteria for the drying process . 

The mot ivation for the proposed work , then , is based on 

the need for an accurate analytical model of the drying of 

large round hay bales . This model should provide the 

information necessary to minimize hay loss by provid ing a 

rati onal basis for hay drier des ign . 
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2 .  LITERATURE REVIEW 

2.1.  General Analytical Models Of Drying Processes 

Many studies of drying of porous media have been performed . 

These studies vary considerably in the ir general ity and 

pract ical ity . An assessment o f  these studies is presented 

below .  

A number o f  l iterature surveys , Lebedev and Ginzburg 

( 1 9 7 1 ) , Keey ( 1 9 8 0 ) , Fortes and Okos ( 1 9 8 0 ) , Bruin and Luyben 

( 1 9 8 0 ) , Muj umdar ( 19 8 4 ) , Ful ford ( 19 69 ) , Filkova ( 1 9 8 4 ) , Sharp 

( 19 8 2 ) , Bakker-Arkema ( 1 9 8 4 )  , and Parry ( 1 9 8 5 )  , summar i z e  

advances in the drying field . A particul arly good review paper 

is the one presented by Fortes and Okos ( 19 8 0 ) . In this paper , 

the theoret ical bases o f  several drying theories are examined 

and compared . The l imitat ions of these theories as they apply 

to the drying of foodstuffs are also discussed . The review 

by Bruin and Luyben ( 1 9 8 0 )  is  also worthy o f  note . I t  conta ins 

over 3 0 0  c itations to the l iterature on the drying of food 

material s . 

H i storical l y ,  the development o f  an analytical approach 

to the drying problem began with Lewis ( 1 9 2 1 ) . Lewis 

hypothes i z ed that drying o f  a porous sol id consi sted o f  two 

dist inct processes : the f i rst was movement o f  the mo isture 

from the interior of the sol id to the surface by l iquid 

di f fusion , and the second was evaporati on o f  the mo isture 

from the surface to the surrounding environment . Sherwood 
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( 1 9 2 9 a , 1 9 2 9b , 1 9 3 0 , 19 3 1 )  devel oped these hypotheses in a 

series o f  papers uti l i z ing the one-dimens ional d i f fus ion 

equation . 

McCready and McCabe ( 1 9 3 3 )  improved on the d i f fusion 

approach by assuming that mo isture movement was the result 

of the d i f fusion o f  free water ( i . e .  bound water movement was 

not cons idered ) and also a result of vapor d i f fusion through 

the sol id structure . They assumed that the vapor was in 

equil ibrium with the solid and used the sorption isotherm as 

a const itut ive relat ion . 

At about this time , it was noted by several authors that 

capill ary e f fects could be important in drying processes . 

One such author was Richards ( 19 3 1 ) , who described the f l ow 

through unsaturated porous media in terms o f  capi l l ary 

movement o f  the l iquid , and experimentally determined values 

of cap i l lary potential , conduct ivity , and capacity for various 

sol ids . The cap i l lary potential ( introduced by 

Buckingham ( 1 9 0 7 ) is the pressure d i f ference across the 

a ir-water interface . It thus represents a driving force for 

the unsaturated cap i l l ary flow of the l iquid through a porous 

medium which may be expressed as 

(2. l )  

where : 

J1-the l iquid mass flux due to cap i l l ary f l ow ,  

K H • the cap i l lary conduct ivity , 
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and , 

1.lJ -the cap i l lary potential . 

The cap i l l ary capacity is the rate of change o f  the moi sture 

content with respect to the cap i l l ary potential . 

Caeglske and Hougen ( 19 3 7 )  claimed that cap i l l ary action 

was not only important , but in fact was the dominant mechan ism 

in drying . They conducted experiments with sand and obtained 

good agreement with 

cap i l l ary movement 

an analytical approach based on the 

o f  water . This approach ut i l i z ed 

experimentally determined values for cap i l l ary pressure ( or 

potential ) as a function o f  saturation . 

Hougen , McCauley , and Marshal ( 19 4 0 )  made an extensive 

study o f  the appl icabil ity of the d i f fus i on equations to 

drying o f  porous sol ids . Experimental results for several 

materia l s  were compared to results obta ined from both 

d i f fus ion and capillary model s .  For most materials examined 

( the exception being wood ) , the di f fusion model did not fol l ow 

the observed trends o f  the experimental data . The results o f  

this study indicate that the assumption that moisture transfer 

occurs only by l iquid d i f fusion in a l l  stages of drying is 

not phys ically real istic . Thus , the theories of Lewis , 

Sherwood , etc . which assume that moisture trans fer occurs 

solely by l iquid diffusion are not accurate and are incompl ete . 

The same argument may be made for any theory based on a s ingle 

mechanism s ince there is no doubt that mass trans fer may occur 

in a g iven appl ication by more than one mechanism .  It has 
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been pointed out by Hougen et . a l . that for many materials , 

during the l atter stages o f  drying , the d i f fusion equat ion 

may be app l i cable provided one uses a variable d i f fusivity . 

Van Arsdel ( 19 4 7 ) , in an attempt to numerically model the 

drying process in the fal l ing rate phase for vegetables ,  made 

use of the d i f fusion equation , and a l l owed for variable 

d i f fusivity . The predicted drying rate curves showed simil ar 

trends to experimental studies o f  previous invest igators . 

Some physical j usti fication for this approach l ies in the 

fact that for isothermal conditions , the mass flux for 

cap i l l ary l iquid flow may be expressed as 

(2.2 ) 

where : 

K H- cap i l lary conductivity , 

Ps-sol id density , 

and , 

u·-mo isture content (mass waterjmass sol id ) . 

Phi l ip and DeVries ( 1 9 5 7 ) formul ated a model which 

considered moisture movement as a comb inat ion o f  movement o f  

vapor b y  d i f fusi on and movement o f  l iquid b y  cap i l lary act ion . 

Both terms were expressed as functions o f  the temperature and 

moisture content gradients , so that a d i f fusion equation 

resu lted . DeVries ( 1 9 5 8 ) then general ized this approach 

somewhat by considering separately the changes in moisture 

content o f  the l iquid and vapor phases . In devel oping this 
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theory , Phi l ip and DeVries have made use o f  relations wh ich 

assume l iquid continuity within the pores and cap i l laries . 

As drying proceeds to the l atter stages , this would obviously 

not be valid and so represents a maj or l imitation to the ir 

theory . 

Whitaker ( 1 9 6 6 ,  1 9 6 7 , 1 9 6 9 , 19 7 0 ,  1 9 7 1 ,  1 9 7 7 a , 1 9 7 7b , 

1 9 8 6a ,  1 9 8 6b ,  1 9 8 6c , 1 9 8 6d )  has extensively devel oped a 

volume-averaged approach to simultaneous mass , momentum , and 

energy transfer in porous media . This approach is fundamental 

in that Whitaker starts with the basic conservation equat ions 

and proceeds to average these equations over a representat ive 

f inite volume ( conta ining sol id , l iqui d ,  and vapor ) . These 

equations are then used ( al ong with constitut ive relations ) 

to solve the drying problem .  One drawback to this method is 

that some o f  the terms obta ined in the analysis are d i f f icult 

to determine experimentally . Whitaker himsel f  states that 

"what does appear overwhelmingly d i ff icult at this po int is 

the comparison between theory and experiment . "  He has 

suggested that some o f  these terms might be simp l i fied for 

speci fic cases to enable independent veri f ication . This 

author knows of no studies in which this has been done , 

although some numerical solutions have been performed in which 

simpl i fying assumpti ons ( in addition to those made by 

Whitaker)  have been employed ( see Nasral l ah and Perre , 1 9 8 8 ) . 
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Dyer and Sunderland ( 1 9 6 8 ) obta ined a closed form analyt ical 

solution to a drying problem in which a material is dried 

from one side . The solut ion essenti a l l y  uses a 

quasi -stationary approximat ion which is common to solutions 

o f  melting-freez ing problems . Both drying and 

melt ing- free z ing problems may involve a front with d i fferent 

phases o f  a material on either side ( in drying there is a 

l iquid-vapor interface ; in mel ting- freez ing probl ems there 

is a l iquid-sol id interface ) .  Basically , the method includes 

the assumption that the sensible heat is smal l  compared to 

the latent heat . In their analysis , all  heat and mass transfer 

were assumed to be one-dimensional , interna l convection was 

negl ected , and the porous region being dried was assumed to 

consist o f  a bundle o f  stra ight parra l l e l  cap i l l ary tubes . 

This approach is obviously highly ideal i z ed and o f  l imited 

appl icab i l ity .  

King ( 19 6 8 }  and Harmathy ( 19 6 9 )  developed models o f  the 

drying process using the concept of sorption isotherms . As 

mentioned previously , a sorpti on isotherm is a curve showing 

the equil ibrium moisture content versus the rel at ive humidity 

at constant temperature . Both authors assume that moisture 

movement takes pl ace as a result o f  vapor d i f fusion only , and 

so they negl ect movement o f  bound l iqu id . The i r  mode l is 

thus l imited to the second fal l ing rate stage o f  drying for 

cases where bound l i quid movement is not signi f i cant . 
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Chen and Johnson { 1 9 6 9 ) , Hussain , Chen , and Clayton ( 19 7 0 )  

and Hussain et al . ( 19 7 0 , 1 9 7 2 ) presented analyses based on 

the method of Luikov { 19 6 4 , 1 9 6 5 , 19 6 6 )  to model the drying 

process in various agricultural products . Luikov uses 

relations from irrevers ible thermodynamics to express vapor 

and l iquid fluxes in terms of temperature and concentrat ion 

gradients . This approach is s imilar to that o f  Phi l ip and 

DeVries { 19 57 )  1 although both works were performed 

independently . In his theory , Luikov introduces the moisture 

trans fer potential , e which is defined to be a funct ion o f  

moi sture content and temperature such that 

Cl e tle 
de= ClMdM + ClT dT. (2. 3 )  

This term was intended to account for the mass trans fer from 

one body to another in the presence o f  an adverse concentrat ion 

gradient; that is , for mass trans fer from a region o f  l ower 

to a region higher concentrati on . This method has been 

criticized ( Chen and Pei , 1 9 8 8 )  because it lumps together a 

number o f  e ffects and thus tends to mask the actual phys ical 

processes involved . 

Krischer ( 19 6 3 )  proposed a model that a l l ows for the 

movement o f  l iquid via capi l l ary flow and the movement o f  

vapor b y  d i f fus ion . Krischer assumed that a l l  the d i f fusion 

coefficients are constant and that the sorpt ion i sotherm is 

a l inear function of temperature . He also assumed that the 
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void volume , vd is independent o f  moisture content . This 

approach a l l owed Krischer to obtain a general solution to a 

drying probl em for a case with simpl i fied boundary conditions . 

Berger and Pei ( 19 7 3 )  extended Krischer ' s work by proposing 

that the Clausius-Clapyron equation replace the sorpt ion 

isotherm rel ation when the moisture content is greater than 

the maximum sorptional value . They also employed boundary 

conditions deduced from mass and energy flux bal ances rather 

than the simp l i f ied conditions assumed by Krischer .  Berger 

( 19 7 3 ) solved the resulting equat ions numerical ly and 

correctly predicted the start of the first fall ing rate phase 

for beds o f  gl ass beads . As drying proceeded , however ,  the 

model failed to correctly predict the drying rate , although 

the overal l  trends in behavior seem to be correct . Berger 

and Pe i ,  as wel l  as Krischer ,  used the assumpt ion of constant 

d i f fusi on coefficients . A more physically real istic approach 

might be to a l l ow the d i f fusion coe f ficients to vary with 

both moisture content and temperature . The movement o f  bound 

moisture may also be important and should therefore be included 

in any model . 

Chen ( 19 8 7 ) and Chen and Pe i ( 19 8 8 ) have presented a method 

in which the movement o f  l iquid by cap i l l ary e ffects , vapor 

movement by d i f fusion , and bound l iquid movement are a l l  

included . The d i f fusional coeffic ients are a l l owed to vary 
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with both mo isture content and temperature and the concept 

of bound l iquid conduct ivity is introduced . The bound l iquid 

flux is given by 

(2. 4 )  

where : 

D0 • the bound l iquid conductivity . 

The method is analogous to the use o f  two z one models in 

melting- free z ing problems and util i z es a front tracking 

numerical scheme to solve the govern ing equations . Cap i l l ary 

movement is considered to be the dominant mechanism in the 

"wet " region of the porous medium ( the region where free water 

exists ) and a comb ination of vapor d i f fusion and bound l iquid 

movement are assumed to predominate in the "sorpt ion" region 

( the region where only vapor and bound l iquid exist ) . Th is 

method was applied to the drying of wool , brick , and corn . 

The drying curve , the temperature and the mo isture 

distributions were accurately predicted for a l l  three of these 

materials . The drawback to this procedure is the front 

tracking scheme itsel f .  Such schemes are general ly 

comp l i cated to implement and also are expensive in terms o f  

computer t ime . 

2.2. Studies Of Hay Drying 

S ince the application chosen for the present investigation 

involves the drying of hay , some studies speci f ically a imed 

at this problem will be d iscussed . 
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Bagna l l , Mi l ler , and S cott ( 19 7 0 )  performed a combined 

numerical and experimental study of the drying of a l fa l fa 

stems . Their mathematical model cons ists o f  the s imple 

diffusion equation with constant di ffus ion coe f f i cients . They 

noted , however , that the d i f fus ivity in the radial direct ion 

varies due to the d i fferent d i f fus ivity o f  the cut icular l ayer 

(A thin , waxy l ayer surrounding the stem ) and the d i f fu s ivity 

of the " other t issue . "  Bagnall et al . comb ined the cut i cul ar 

d i f fusivity with the convection coefficient to obtain an 

" e ffect ive convect ion coe f f ic ient" for use in the boundary 

condit ion . This procedure does not take into account the 

transi ent nature of the problem and appears to be phys ical ly 

incorrect . The results obtained in their study , however , 

show that the axial d i f fusivity was on the order o f  1 o -5 

(m2jhr ) , the radial d i f fus ivity o f  the pl ant tissue was 1 0 - 6  

(m2jhr) , and the radial d i f fusivity o f  the cut icular layer 

was 1 0 - 9  (m2jhr ) . s ince the cuticular d i f fusivity is four 

orders of magnitude smal ler than the axial d i f fusivity , the 

moisture f l ow in the radial direction should be very sma l l  

compared to that i n  the axial direction . Thus , the e ffect 

of incorrectly combining terms in the radial d irection may 

also be smal l ,  and the results presented may be acceptable . 

Ohm et al . ( 19 7 1 )  studied heat and mass trans fer in a 

venti l ated hay stack . In this drying system , re ferred to as 

"barn-drying " , a centra l vertical duct blows air radi a l ly 

through a hay stack . The bulk dens ity , the poros ity , and 
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other properties o f  the stack are assumed to vary with he ight . 

A method o f  predicting these variables as a function o f  he ight 

was proposed and a simpl i f ied procedure for obta ining a mass 

and energy balance was used to model the problem .  The results 

show that the drying rate decreases s igni ficantly from the 

top to the bottom of the hay stack . It was there fore proposed 

to improve the drying rate by employing a conical duct to 

regulate the a i r  flow through the stack . 

H i l l , Ross , and Barfield ( 19 7 7 ) performed experiments to 

determine s orpt ion isotherms for a l fa l fa hay and used these 

results to obtain a correlation for the t ime requ ired to dry 

hay in the f ield . The sorption isotherm was obta ined from 

experiments in which samples o f  al fal fa hay were exposed to 

a ir o f  control led humidity and temperature . The temperature 

range studied was between 2 0  and 3 5•c .  

Rotz and Chen ( 19 8 5 )  studied the field drying o f  al fal fa 

hay and formul ated an empirical correlat ion of the drying 

rate as a function o f  the environmental variables . A total 

of 1 3 , 0 0 0  s ets of data over an e ight year period were obta ined 

during thi s  study . The empirical model based on these data 

incorporates such factors as solar insolation , swath density , 

soil moisture content , humidity and a ir temperature . The 

drying rate for hay in the swath was determined to be most 

sens itive to solar insolation . 
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Bl edsoe et al . ( 1 9 8 5 )  studied a forced a i r  drying system 

for l arge round hay bales . The drier studied cons ists o f  a 

barn equipped with an air duct system bui l t  into the fl oor . 

The bales are pos itioned over the duct outlets and solar 

heated air is then forced through the bales us ing fans . Caps 

were placed on the bales to prevent a i r  f l ow out the tops o f  

the bales . This procedure has been observed to improve the 

air f l ow characteristics o f  a bale and results in faster 

drying t ime . A " least drying streamtube "  ( a  region where the 

moisture content has not reached an acceptabl e  l evel ) was 

seen to form al ong the centerl ine o f  the bale as wel l  as 

radially outward in the upper portion of the bale ( for capped 

bales ) . These authors emphas i z e  the need for improved a i r  

flow di stribution throughout the b a l e  t o  help e l iminate th is 

problem .  As currently operated the drier requires 2-4 days 

to dry bales with an initial moisture content of 3 5 - 4 5 % ( w . b . ) 

and dry matter dens ities in the range o f  6 4 - 1 2 8  kgjm3 ( 4 - 8  

lbm/ ft3 ) .  Bales with dens ities greater than 6 4  kgjm3 could 

not be dried quickly enough to prevent mold growth . The bales 

must have a moi sture content l ess than 18% w.  b .  to be cons idered 

" dry " . Thus , the study of Bledsoe et al . ( 1 9 8 5 )  ind icates 

that a more accurate model of the hay drying process is needed 

to improve the drying capabil ity and effic iency of such 

systems . 
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2.3 . Numerical Methods 

Many d i fferent numerical techniques exist for solving sets 

of partial d i f ferential equations . The most commonly used 

methods fall  into two broad categories: ( 1 ) f in ite difference 

methods and ( 2 )  f inite element methods . 

The f inite difference methods are general ly considered 

the easiest to apply ( at least in cases where the geometry 

is " regular'' ; that is , in cases where physical surfaces o f  

interest coinc ide with constant coordinate p l anes ) . Al though 

many d i f ferent solution schemes exist , the basic idea behind 

the various f inite difference schemes is the same . The 

d i f ferent ial equation ( s )  to be solved is discret i z ed .  This 

discreti z ation process results in a set of algebra ic equati ons 

which are then solved simultaneously to obta in an approximate 

solution . The popularity o f  these methods results from the 

ease of the discreti z at ion process and from the widely 

ava i l able and easy to use solution algorithms for algebra ic 

systems o f  equations . 

Jaluria and Torrance ( 19 8 6 )  have ident i f i ed and described 

three basic methods for discreti z ing d i f ferential equat ions: 

( 1 )  Direct Approximation , ( 2 )  Tayl or Series , and ( 3 )  Finite 

Volume approaches . 

I n  the Direct Approximation approach , the derivatives are 

simply repl aced by d i fference ratios . For example , 
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These rat ios are then substituted into the equations to obtain 

the algebrai c  system o f  equati ons to be solved . 

In the Taylor Series method , derivatives are expressed 

in terms o f  a Taylor Series expans ion . The truncat ion error 

resulting from the d iscreti z ation process may thus be easily 

est imated . 

The Finite Volume ( or Control Volume ) approach is 

particularly wel l-suited for the di scret i z ation of 

conservat ion l aws ( conservat ion of mass , for example ) .  In 

thi s  approach , which has been described in deta i l  by Patankar 

( 1 9 8 0 ) , one starts with the integral conservation statement . 

The doma in i s  divided into many nonoverl apping control volumes 

and the integrat ion is performed over each control volume . 

The solution variable is approximated in p iece-wise form 

between grid points , thus a l l owing the integrals to be 

evaluated . The result ing equat ions have the advantage that 

the physical quantities are conserved over each control volume 

( and , therefore , globa l ly over the ent ire doma in ) . Thus , a 

coarse grid solution may be used in debugging a code . Once 

the code is working properly , a more refined grid may be used 

to obtain a more accurate solution . 

The f inite element method has been used for a number o f  

years in structural mechanics and h a s  been more recently 

appl ied to heat trans fer and fluid mechanics problems as wel l . 

Baker ( 19 8 3 ) has described the method as it appl ies to fluid 

mechanics and heat trans fer in some deta i l . The ma in advantage 
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o f  the f inite element method is that it may be appl ied to 

irregularly shaped geometries quite readily . The ma in 

disadvantage is that it is general ly much harder to implement 

( see Jaluria and Torrance ) . The finite element method consists 

of subdividing a region in space into many smal ler regions 

(which can be triangular , quadril ateral , etc . in shape ) . The 

dif ferent ial equation i s  assumed to apply over each element 

and an interpol at ion funct ion is then chosen . This funct ion 

represents the assumed funct ional form the solut ion will  have 

throughout each element . Us ing the interpolation funct ion , 

the f inite element equations governing each element are 

obta ined . These are then " assembled" into a global matrix 

for a l l  the elements . The system o f  equati ons i s  then solved 

to obtain an approximate soluti on . 

The spec i fi c  application be ing investigated in this 

dissertation concerns the drying of cyl indrically shaped hay 

bales . These bales may in turn be assumed to cons ist o f  

cyl indrica l l y  shaped hay stalks . The geometry involved is 

thus " regular" i f  a cyl indrical coordinate system is employed . 

There fore , a f inite d i fference method may be used , and the 

additional compl exity involved in the f in ite element 

formulation may be avoided . S ince the f inite volume approach 

a l l ows the conservation relations to hold for each el ement 

and i s  also quite easy to formulate , this method has been 

chosen to formulate the numerical model in thi s  dissertation . 
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2 . 4. Selection Of The Techniques To Be Employed In The 

Present Work 

The papers reviewed concerning hay drying have indicated 

a need for an accurate model o f  the hay drying problem . Many 

authors have empl oyed empirical correlations in an attempt 

to predict the drying t imes ; however , these methods are 

extremely l imited in appl icab i l ity . Thus , the need exists 

for a method capable o f  accurately model ing the drying process . 

The model should be stra ightforward to implement and should 

be readily veri f ied by experiment . 

S everal approaches to model ing the drying process have 

been tried ; however ,  all  are l imited either in accuracy , range 

of appl icabi l ity , or ease o f  impl ementati on . 

The di f fusion theories o f  drying have been shown to be 

physically unreal istic and are very l imited in scope . 

S imil arly , any o f  the methods which assume that mass transfer 

occurs as a result of a single mechanism are l imited due to 

the fact that other mechanisms of moisture movement exist and 

can make signi f icant contributions to the overal l  drying . 

Some o f  the theories proposed ( such as those o f  McCready 

and McCabe ( 19 3 3 } , Ph i l ip and DeVries ( 19 5 7 ) , and Krischer 

( 19 6 3 } ) involve some combination of mechanisms . However , 

these theories also have several shortcomings . S ome assume 

that the coefficients involved in the governing equations are 

constant although these coefficients have been found to be 

functions of both moisture content and temperature . Others , 

2 7  



whi l e  a l l owing for variable coe f ficients , make assumptions 

whi ch l imit the appl icab i l ity o f  the ir theori es (such as 

Phi l ip and DeVries ( 19 5 7 ) whose assumptions imply cont inuous 

l iquid paths , which is val id only in the constant and first 

fall ing rate phases of drying ) . At the same t ime , most o f  

these theories ignore the possibi l ity o f  bound l iquid 

movement . Chen and Pei ( 1 9 8 9 )  have formulated a theory which 

answers most o f  the obj ections ra ised previously .  However , 

this method requires a front tracking numerical scheme which 

is both d i f f icult to impl ement and costly in terms of computer 

t ime . Whitaker has rather extensively developed a quite 

general approach in which the governing conservation equations 

are volume averaged over a representat ive control volume . 

The maj or drawback to this method is that many o f  the terms 

appearing in the equations are d i f f icult to determine 

experimental ly .  Thus , the theory is d i f ficult to apply to 

practical situat ions . 

One approach to the probl ems c ited above is to modi fy an 

existing theory to address some of these obj ect ions . This 

was done by Berger and Pei { 19 7 3 )  in an attempt to genera l i z e 

Krischer ' s  { 19 6 3 ) theory . They succeeded in model ing the 

constant rate phase and in predict ing the onset o f  the first 

fal l ing rate phase o f  drying . Berger and Pei did not , however ,  

a l l ow for variable d i f fusion coe f ficients o r  for bound l iquid 

movement . In addition , the numerical method used would not 

converge for real istic values of the convecti on coe f f icients . 
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Thus , thei r  model does not correctly pred ict the drying rate 

during the fall ing rate phases . This method is very 

attractive , however , due to its s impl icity and ease o f  

( numerical ) solut ion . Furthermore , as w i l l  be seen , it may 

be easily modi fied to incorporate the variab l e  d i f fusion 

coefficients and to a l l ow for movement o f  bound l iquid . Once 

these mod i fi cations are made , this theory is appl icable to 

a wide range of drying problems . Therefore , the approach 

adopted for the present work was to mod i fy the model o f  Berger 

and Pei to include the e ffects of variable d i f fusion 

coefficients and to a l l ow for the movement o f  bound l iquid . 

The present method also a l l ows for the solut ion of problems 

in wh ich the drying med ium has at least two characteristic 

l ength scales appear . 
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3 .  THE ANALYTI CAL MODEL 

3 . 1 . Physica l Description O f  The Problem 

The problem under investigat ion involves the drying o f  a 

large round hay bal e , which may be idea l i z ed as a porous 

medium that is comprised o f  porous elements containing the 

l iquid to be removed . Thus , an essential feature o f  the 

present work is that it is concerned with a medium that has 

two disparate l ength scales . Spec i fically , it is desired to 

examine the case where drying is accompl ished by forc ing a 

heated stream o f  air through the global porous structure as 

shown schematically in Figure 3 . 1 . The drying performed in 

this manner involves a simultaneous heat and mass transfer 

process coupled between the " inner" and " outer" porous 

structures . As stated previously , this type o f  conf iguration 

occurs in the drying o f  certain agricultural products ; among 

them , the drying of hay . To fix ideas , the model w i l l  be 

developed with this application in mind . 

S ince there are two disparate length scales involved , it 

is conven ient to def ine two regions , or domains , in the 

problem . The " inner domain" is defined to consist o f  the 

individual ( cyl indrical )  sol id elements making up the global 

porous structure and everything contained in these el ements . 

The inner domain , then , is a porous structure containing a 

sol id matrix , l iquid water , water vapor , and a i r . Hay stalks 

have a "waxy" coating around the circumference which is very 

resistant to mass transfer . Thus , it is here assumed that 
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Figure 3 . 1 . Schematic Of The Drying Probl em To Be 
Model led . 

the inner domain processes may be treated as one-dimensional .  

The " outer doma in" is considered to be everything externa l 

to the inner domain and internal to the global porous 

structure . The outer doma in is thus comprised o f  only water 

vapor and a ir .  The global porous structure thus includes the 

outer domain along with many ( typically 1 .  7 x 1 0 6 ) inner 

domain elements which are assumed to be randomly oriented 

throughout the global structure . The global porous structure 

and the inner domain elements are assumed to be right circular 

cyl inders . I n  addition , there is assumed to be no angular 

variation o f  properties ( or processes) within the global 

structure ( i . e . the probl em may be considered axisymmetric ) . 
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The drying process to be model l ed proceeds as fol lows . 

A ( heated) stream o f  relatively dry a ir is forced into the 

outer doma in from an inlet located at the bottom of the gl obal 

structure . As this stream o f  air fl ows through the outer 

doma in , it convects heat to the inner doma in elements . S ome 

of this energy i s  used to vapori z e  the l iquid water . The 

water vapor then di f fuses through the inner doma in and is 

then convected away at the boundary between the inner and 

outer doma ins by the air f l owing through the outer doma in . 

The drying rate may be either convection l imited ( by the 

outer domain)  or diffusion l imited ( by the inner domain)  

depending on the geometry and boundary condit ions o f  the 

speci f ic porous medium that is be ing dried . It should be 

noted , however , that the l imiting mechanism may be dif ferent 

in d i fferent regions o f  the porous structure . Near the air 

inlet , the drying rate may be diffusion l imited due to the 

rel at ively dry high-velocity a i r  pass ing through this sect ion 

o f  the structure . However , in the upper portion o f  the porous 

structure where the a i r  velocity is quite l ow ,  the l imit ing 

process may be convection . Thus , a scheme that takes into 

account only one rate-l imit ing mechani sm would probably not 

accurately portray the drying process , at l east over a wide 

range of conditions . 

Based on this physical description o f  the probl em , a 

mathematical model o f  the drying process wil l be devel oped 

in the fol l owing sect ions . An attempt was made to keep the 
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mathemat ical formulation as general as possibl e ,  however ,  

some assumpt ions were made for the spec i f i c  app l i cation o f  

interest here ; namely , the drying o f  hay bales . All 

assumptions will  be stated during the model development and 

then summarized and discussed in greater detai l  at the end 

of the chapter .  S ince the phys ical processes occurring are 

d i fferent in the two doma ins , each domain w i l l  be cons idered 

separately . 

3 .2. Derivation Of The Governing Equations For The Inner 

Doma in 

3.2 . 1 . Conservation Of Mass 

As was stated previously , Krischer ' s model wil l be mod i f i ed 

to compute the heat and mass trans fer occurring in the inner 

domain . The previous mod i f ications o f  Berger and Pei will  

also be incorporated into the present model . Thus , the current 

formulation is actually a modification o f  the method presented 

by Berger and Pei . 

I t  is assumed that the dominant modes o f  mass trans fer 

( for the inner doma in) include cap i l l ary conduct ion of l i qu id , 

d i f fusion o f  water vapor , and movement o f  bound l iqu id . 

Additional l y ,  it is assumed that the d i fferent phases ( sol id , 

l iquid , and vapor)  o f  the inner doma in are in thermodynamic 

equil ibrium and that the inner doma in is an i sotropic , 

homogeneous , porous medium . 

Under these assumpti ons , Mil l er and Mi l l er ( 1 9 5 5 )  have 

shown that the capi l lary l iqu id flux may be written as 
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( 3 .  1 )  

The cap i l l ary conductivity , D: is ( in general )  a function 

o f  mo isture content and temperature and wil l , there fore , not 

be regarded as constant . 

Chen and Pei ( 1 9 8 9 )  have shown that the bound l iquid 

movement may also be expressed in terms of a moisture content 

gradient . The bound l iquid flux takes the form , 

( 3 .  2)  

The bound l iquid conductivity , D� is also a funct ion o f  

moisture content and temperature . Impl icit in the ir 

devel opment is the assumpt ion that temperature gradients are 

negl igible . Thus , it is here assumed that no sign i f i cant 

temperature gradients exist within the inner doma in . This 

assumption does not rul e  out the possibi l ity of heat transfer 

by convection from the outer doma in to the inner doma in or 

by conduction through the inner domain . 

Note that the application o f  equations 3 . 1 and 3 . 2 is 

l imited to spec i fic drying regimes . Cap i l lary conduct ion 

will  occur only in regions where cont inuous streams o f  free 

l iquid are present . S imilarly , bound water movement w i l l  be 

sign i f icant only in regions where no free water exists (see 

Chen and Pei , 1 9 8 9 ) . S ince it is desirabl e  to avoid a front 

tracking scheme , a method of incorporat ing these two modes 
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o f  moisture trans fer into the model must be devised .  The 

dependance o f  both terms on the moisture content gradient 

suggests formulat ing a l iquid movement term o f  the form 

( 3 . 3 )  

where the l iquid conductivity , D� i s  assumed to be a funct ion 

of moi sture content and temperature and must be determined 

from experimental data . This i s  somewhat o f  a moot point in 

the present app l i cation s ince the initial moisture content 

of the hay is such that a l l  the l iquid is bound from the 

start . However ,  in problems involving higher initial mo isture 

contents , it should be possible to obtain a relation for 

D � (  u .  T )over the entire ranges of moi sture content of interest . 

The vapor d i f fus ive flux may be written as 

J u  ( 3 .  4 )  

Noting that 

( • P s  • ) 
E - -u 

P L  ( 3 . 5 )  

and again a ssuming that temperature gradi ents are negl igible 

results in 

• ( • P s • )  ( P : ) - D E - -u V -- = u P L  RT� 
D • ( • P s • ) n • - E - - u  v p .  u p L w ( 3 . 6 )  

With the mass flux terms ident i fied ,  a mass balance over a 

d i fferential e lement ( Note : The term " d i f ferent ial element " 

in this work does not refer to an arb itrari ly smal l  volume . 
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The volume must be large enough so that quantit ies such as 

porosity reta in their meaning . See Bear , 1 9 7 2 )  shown in 

Figure 3 . 2  g ives : 

or , 

[ M a s s  F l o w ] = [ M a s s  F l o w ] + 
R a t e  I n  R a t e  O u t  

[ R a t e  O f  C h a n g e ] 
O f  M a s s  S t o r e d  

+ J + - dz . + ( () j u 
• ) u :> • 
l 

+ 

u Z i 

() [ (  • P s • ) • J • � E - p L U p iu d z i 

() [ (  • P s · ) • J - E - - u  p . 
() t * 

P L w 

( 3 .  7 )  

( 3 .  8 )  

( 3 .  9 )  

Subst itut ion o f  equat ions 3 . 3  and 3 . 6  into equation 3 . 9  and 

assuming that the porosity is not a funct ion of time ( rigid 

sol id)  yields 

o r ,  

() [ 
• ( • P s • ) () P �u ] () U * - - D  E - - u -- = p - + 

iJ z �  u P L iJ z �  s iJ t *  

() [ ( • 
P s • ) • ] � E - p L U p iu , ( 3 . l 0 ) 

D • ( • 
P s • ) () P �u ] ( P �u ) () U * E - - u -- = p I - - -- + u P L iJ z �  s P L iJ t *  
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F igure 3 . 2 .  Mass Bal ance And Nomencl ature For A 
D i fferent ial Element O f  The Inner Domain . 

3 . 2 . 2 .  Conservat ion O f  Energy 

To develop an expression for energy conservation , a 

di f ferential element is aga in considered . Energy transfer may 

take place as a result o f  convection heat transfer , evaporation 

of l iquid , and heat conduction ( radiation heat transfer is 

assumed to be negl igibl e ) . 

The conductive term may be thought o f  as be ing composed 

of contributions from two sources . The first arises from the 

conduction o f  heat through an inner domain el ement ( hereafter 

referred to as " loca l "  conduction heat transfer) and , the 

second from the conduction through the global porous structure 

( hereafter referred to as "globa l "  conduct i on heat transfer) . 

The global conduction term results from the physical contact 

of many inner doma in elements . The probl em o f  how to handle 

this global contribution is greatly comp l i cated by the fact 
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that the points o f  contact with other elements are not known . 

Even i f  thi s  geometry could be speci fied for every element , 

the mathematical treatment o f  such a probl em would be so 

complex that it would not be feasibl e . 

A s impl i f ied treatment o f  this phenomenon i s  formul ated 

here by cons idering a succession o f  porous media . In one 

l imit , the global porous structure may be thought o f  as 

conta ining only a singl e  inner doma in element . In this case , 

there is no global , or element-to-element , conduct ion . I f  

a second element i s  added s o  that there are two elements in 

contact ( at l east at one point ) , then global conduct ion occurs 

due to any temperature d i fference between the two el ements . 

For a control volume surrounding only the f irst el ement , 

global conduction appears to be an energy source ( s ink ) at 

the point ( s )  o f  contact . As more elements are added , these 

energy sources ( s inks ) become distributed more closely al ong 

the l ength of the first element . In the l imiting case , the 

energy sources ( s inks ) are distributed along the entire l ength 

of the element . Provided that the amount o f  heat conducted 

to an element from the neighboring elements is approximately 

constant , the global conduction term may be treated as an 

evenly distributed energy source along the enti re length o f  

the element . 

For many porous media , there are indeed a l arge number 

o f  elements in a sma l l  volume and thus there w i l l  be many 

contact points . I t  is assumed , then , that the gl obal 
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conduct ion term may be adequately model l ed as an energy source 

(sink) of constant strength distributed al ong the entire 

l ength o f  the el ement . Th is approximat ion is admittedly 

simpl istic and is empl oyed only to include one possible 

treatment o f  the conductive l oad . I n  the present appl ication , 

it is anticipated that the convective contribution to total 

heat transfer to an element will dominate . In other 

appl ications in which conduction dominates , a more deta il ed 

assessment of this term may be required . 

An energy bal ance on a dif ferential element ( Figure 3 . 3 ) 

in the inner domain gives : 

[R a t e  A t  W h i c h ] 
E n e r g y  E n t e r s  = 

T h e  E l e m e n t  

[R a t e  A t  W h i c h ] [ R a t e  O f  C h a n g e  ] 
E n e r g y  L e a v e s + O f  E n e r g y  S t o r e d  . 

T h e  E l e m e n t  I n  T h e  E l e m e n t  

The energy balance may also be written as 

[ R a t e  A t  W h i c h ] 
En e r g y  E n t e r s  T h e  E l e m e n t  + 

[ R a t e  A t  W h i ch ] 
E n e r g y  I s  C o n d u c t e d  + 

F r o m  T h e  · s o u r ce ·  T e r m  I n t o  T h e  E l e m e n t 

[ R a t e  A t  W h i c h  ] 
E n e r g y  I s  Co n v e c t e d  + 

T o  ( F r o m )  T h e  E l e m e n t 

[ R a t e  A t  W h i ch ] 
E n er g y  I s  C o n d u ct e d  + 

O u t  O f  T h e  E l em e n t  

[ R a t e  O f  C h a n g e  ] 
O f  E n e r g y  S t o r e d  

I n  T h e  E l e m e n t  
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Figure 3 . 3 .  Energy Bal ance On A Di f ferential Element O f  
The Inner Domain . 

o r ,  

+ ( 3 . 1 4 ) 

To obtain an expression for � ew a mass bal ance on the vapor 

phase in the el ement is performed . This yields 

[R a t e  A t  W h i c h  L i q u i d ] 
I s  E v a p o r a t e d  I n  + 

[M a s s  F l o w  R a t e  O f ] 
V a p o r  I n t o  T h e  

E l e m e n t  T h e  E l e m e n t  

[M a s s  F l ow R a t e  O f ] 
V a p o r  O u t  O f  + 
T h e  E l e m e n t  

[R a t e  O f  C h a n g e  O f  T h e ] 
M a s s  O f  V a p o r  S t o r e d  

I n  T h e  E l e m e n t  

4 0  
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o r ,  

() [( • P s  • ) • ] • + yt' E - p L U 
p 

iu A d Z i , 

- () [ D * ( * 
p s * ) () p �" ] - - - E - - u -- + 

a z :  " P L  a z : () [ (  • P s  • ) • ] yt* E - p L U 
p 

iu . 

Substituting equation 3 . 17 into 3 . 14 yields 

( 3 . 1 6 ) 

( 3 . 1 7 )  

(3 . 1 8 )  

Assuming K 5 i s  constant , and rewrit ing equat ion 3 . 18 gives 

a T � 
() f  

+ 

-- -- D E - - u -L u { () [ • ( • P s •) () P �u 
J PsC s () z �  u P L () z � 

h P ' _c - ( T  - T � ) + 
Ps C s A a t ( 3 . 1 9 ) 

The boundary conditions for equations 3 .  1 1  and 3 .  1 9  are 

obta ined by performing flux balances on the boundaries o f  the 

inner domain . Assuming that z=O i s  a plane o f  symmetry , 

a l l ows one to write 

and , 

D • ( • 
p s • ) () p 

;" E - - u  --" P L  a z :  

4 1  

( 3 . 2 0 )  
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A mass balance at z=L gives 

D • ( • 
p s • ) a p �u E - - u  --

u P L  a z � 

An energy bal ance at z=L results in 

The initial condit ions are 

and , 

. u = u 0 

• • P iu = P iuO 

T .  = T �o 

3 . 2 . 3 .  Equation Of State 

( 3 . 2 2 )  

( 3 . 2 3 )  

( 3 . 2 4 )  

( 3 . 25 )  

( 3 . 2 6 )  

( 3 . 2 7 )  

Equat ions 3 . 1 1 and 3 . 1 9 form a system o f  two equations i n  the 

three unknowns , u * • p �u • T ;  Therefore , another rel ation is 

needed to mathematical ly complete the model . Berger and Pe i 

have noted that the l iquid content and partial vapor pressure 

( and , hence , vapor dens ity ) are independent for mo isture 

contents greater than the maximum sorptional mo isture content 

( u �s ) For this reason , two d i fferent equations o f  state wi l l  

b e  needed depending o n  the moisture content o f  the inner 

domain . 
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For mo i sture contents above u rn "  Berger and Pe i ( 1 9 7 3 ) 

proposed us ing the Claus ius-Clapyron equation , which is given 

by 

( 3 . 2 8 )  

For moisture contents below Urn " the sorptional isotherm 

provides the necessary rel ation . This curve must be determined 

experimentally and may be written as 

p ·  p :u u = = 
P :s 

. p us 
( 3 . 2 9 )  

The coupl ing relation may thus be written as 

• < u - u rns ' ( 3 . 3 0 a ) 

or , 

u . > u rns .  ( 3 . 3 0 b ) 

Thus , the two governing equations ( 3 . 1 1 and 3 . 1 9 ) , the 

equation o f  state ( equati on 3 . 3 0 ) , the boundary conditions 

( equat ions 3 . 2 0 - 3 . 2 4 ) , and the initial condit ions ( equat ions 

3 . 2 5 - 3 . 2 7 )  provide the complete mathematical statement o f  

the coupled heat and mass trans fer problem f o r  the inner 

domain . Examinat ion o f  these equations reveal s  that the heat 

and mass trans fer processes in the inner doma in are coupled 

to those in the outer domain as they must be . Thus , the 

solut i on o f  the governing equati ons for the inner doma in 

requires the s imultaneous solution of the governing equat ions 
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for the outer doma in . I t  should also be emphasi z ed that the 

d i f fusion coe f fic ients , D � and n :  are not assumed constants , 

but are a l l owed to vary with both the moisture content and 

temperature . These funct ions are dependent upon the spec i fic 

porous media being considered and should be determined from 

experimental data . 

3 . 2 . 4 .  Nondimens iona l ization Of The Governing 

Eguations . Boundary Cond itions . and Initial Cond it ions For 

The Inner Domain 

Ident i fication of the nondimens ional parameters that 

a f fect the solution field in the inner doma in may be achieved 

by non-dimensiona l i z ing the governing equat ions , the boundary 

conditions , and the initial conditions . Thus , the fol l owing 

nondimens ional variables are defined for the inner doma in : 

z .  -
� L 

p �u - p :Q 
P iu - . . 

u "' 

t .. 

T t .. 

q s "' 

p UQ - p UO 

• • u - U e 

u : - u : 

a s t • 
L 2 

y • - T * e ! 

T * - y * e o 

q s  - - ,  L z 
K s 6 T  

N o n d i m e n s i o n a l S p a t i a l  

C o or d i n a t e  

p �u - p :Q N o n d i m e n s i  o n a l = = 
� P u  De n s i t y 

• • 

V a p o r  

u - U e N o n d i m e n s i o n a l  M o i s t u r e  

� u Con t e n t 

N on d i m e n s i on a l  

T i m e  

T * - T � e � 

� T  
N o n d i m e n s i o n a l  

T e m p e r a t u r e  

N o n d i m e n s i o n a l  S o u r c e  

T e r m  
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( 3 . 3 1 )  

( 3 . 3 2 )  

( 3 . 3 3 )  

( 3 . 34 )  

( 3 . 3 5 )  

( 3 . 3 6 )  



D L 
D � N o n d i m e n s i o n a l  L i q u i d  &l 
D �r C o n d u c t i v i t y  

( 3 . 3 7 )  

D* N on d i m e n s i o n a l V a p or D u u -
D :r Co n d u c t i v i t y  

( 3 . 3 8 )  

• P ,  • E - - u • N o n d i m e n s i o n a l ·  P L  e E -
6 u  P o r o s i t y  

( 3 . 3 9 )  

Rewrit ing equat ion 3 . 1 1 for conservat ion o f  mas s  i n  terms o f  

these nond imens i onal variables gives 

( P �· ) a P '" 
+ E - - u -- . 

p L a t  

( �) ( 1 _ p "� + t:. p " p  ' " ) a u  
t:. p " P L  a t  

( 3 . 40 ) 

S imi l arly , rewrit ing the equat ions for conservation o f  energy 

( 3 . 19 )  and the equation o f  state in nondimens ional form gives 

( P ,  ) a P 1v } E - - u -p L a t  

and , 

o r ,  

where : 

( P '  L )  
+ Bi  A ( T a - T ; ) - q , ,  

f - ( u , T ) f or u -::; u ms , 

f ' ( u ,  T )  
P us f ( U 

• • T � ) - P ue 
6 p u 
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( 3 . 4 1 ) 

( 3 . 4 2 a )  

( 3 . 4 2 b )  

( 3 . 4 3 )  



Rewriting the boundary conditions in terms o f  the 

nondimens i onal variables gives 

and , 

+ 

= 0 

0 a t  z i = O , 

0 

( P s ) 0 P iu 
J 

( L u  ) D  E: - - u -u u P L  o z i 

( 3 . 4 4 )  

( 3 . 4 5 )  

( 3 . 4 6 )  

( 3 . 4 7 )  

( 3 . 4 8 )  

Fina l ly , rewriting the initial conditions i n  terms o f  the 

nondimens ional variables yields 

and , 

P iu l 

u = l 

( 3 . 4 9 )  

( 3 . 5 0 )  

( 3 . 5 1 )  

The dimens ionless parameters appearing above are def ined 

as follows : 

Lu L 
D Lr -
a s 

L u i k o v  N u m b e r  F o r  L i q u i d , ( 3 . 5 2 )  

Lu u 
D ur -
a s 

L u i k o v  N u m b e r  f o r  V a p o r , ( 3 . 5 3 )  
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K o 
L v f1 U  

K o s s o v i c h  N u m b e r , ( 3 . 5 4 )  - --
C s /1 T 

B i  
h c L  

B i o t N u m b e r , ( 3 .  5 5 )  -
K s 

Bi m 
h m L 

M od i f i e d M a s s  T r a n sf e r  B i o t  N u m b e r . ( 3 . 56 )  -
a s 

These parameters ,  as wel l  a s  those appearing in the outer 

domain , w i l l  be summari z ed and the phys ical s ign i ficance o f  

each di scussed in the section below entitled " Summary o f  

Analytical Model . "  Note that some o f  the parameters ident i fi ed 

above depend on quant ities ( such as R e � . P ry which appear in 

the outer doma in equations . There fore , some o f  these 

parameters are not independent parameters in thi s  problem .  

Once the dimensionless form o f  the outer doma in equations has 

been obtained , this facet o f  the analys i s  w i l l  be discussed 

in more deta i l . 

3 . 3 . Derivation O f  The Governing Equat ions For The Outer 

Doma in 

A homogeneous porous medium i s  one in whi ch the propert ies 

o f  the medium do not vary with pos ition ( Bear 1 9 7 2 ) . An 

isotrop i c  porous medium , however ,  i s  a medium in which the 

propert ies do not exhibit directional dependence . As stated 

previously , the global porous structure is a ssumed to be 

composed of randomly oriented inner doma in e l ements . The 

distribution o f  these elements ( and , hence , o f  the poros ity 

and permeabi l ity ) may vary with position . Thus , the gl obal 
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porous structure i s  ( in genera l )  nonhomogeneous . S ince the 

inner domain elements are randomly distributed , there is no 

d irect ional dependence and the gl obal structure may be 

cons idered isotropic . In addition , the sol id structure i s  

a ssumed t o  b e  rigid so that the poros ity w i l l  not vary with 

t ime . 

Water i s  removed from the inner doma in in the vapor phase 

which i s  then convected to the outer domain . Thus , the outer 

doma in i s  composed of dry air and water vapor . For a typ ical 

case considered in the present work , the l iquid removal occurs 

over a period of days so that the rate of change of the mass 

o f  water vapor in the outer doma in is extremely sma l l . S ince 

the volumetric flow rate of water vapor is sma l l  compared to 

the f l ow rate of air ( " typical ly" thi s  rat io is approximately 

1 . 5  x l o - 3 ) , it i s  assumed that the forced a ir f l ow through 

the outer doma in wi l l  not be s ignificantly a f fected . It i s  

also assumed that natural convecti on e f fects and mass 

d i f fusion e f fects are negl igible . With these as sumptions the 

mathematical model may be formul ated as described below . 

In obta ining an express ion for the conservation o f  mass 

within the outer doma in , the flows of dry air and water vapor 

will  be cons idered separately . Equations for the conservation 

o f  air and water vapor are obta ined by cons idering a mass 

balance through a d i fferential element a s  shown in Figure 

3 . 4 .  For dry a i r , conservat ion o f  mas s  may be written a s  
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F igure 3 . 4 .  

r + d r 

G l o b e d  P o r o u s  
S t r u c t u r e  

R o. t e  O f'  M o. s s  
( E n e r g y )  F l o w i n g 

O u t  O f'  E l e r� e n -t  

1 

z + d z  

z 

R o. t e  O f  M o. s s  ( E n e r g y )  
F l o w i n g  I n t o  E l e r� e n t  

Mas s  And Energy Bal ances On A D i f ferential 
Element O f  
The Outer Doma in . 
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1 0 • • • 0 • • - - ( r  E V r )  + -. ( E V :z )  r · o r · o :z  0 .  ( 3 .  57 ) 

Note that s ince the mass trans fer and natura l convect ion 

e f fects have been assumed negl igible , the vel ocity field may 

be cons idered steady in t ime . 

S ince the dens ity o f  water vapor directly influences the 

mass trans fer from the inner doma in , conservat ion o f  mass 

must be appl ied to the water vapor separately to determine 

its dens ity distribution . Aga in , cons idering a d i f ferent ial 

el ement , the equation o f  conservation o f  mass may be written 

as 

S ma s s  ( 3 . 5 8 )  

where S m a s s  is the volumetric mass source that represents the 

trans fer o f  water vapor from the inner doma in to the outer 

domain . Thi s  mass source may be expressed a s  

S m a s s  = 
h m ( P �v - P :  ) N lD A ; 

v c v  
( 3 .  5 9 ) 

Subst itut ion o f  the above rel ation into equation 3 . 5 7 gives 

( 3 . 6 0 )  

Impl icit i n  thi s  equation i s  the assumption that the water 

vapor and dry a ir are "we l l  mixed" ; that i s , both the water 

vapor and dry air have the same velocity at any point in the 

outer doma in . 

5 0  



For a porous medium , Newton ' s  Second Law may be replaced 

by Darcy ' s  Law ( Bear , 1 9 7 2 , S cheidegger , 1 9 6 0 ) . Darcy ' s  Law 

i s  based on the experimental observation that the pressure 

drop acro s s  a porous medium is proporti onal to the velocity 

( at l ow R e .J . At higher R e '"�  inertial e ffects become important 

and the pressure drop becomes proport ional to the vel oc ity 

squared . The so-ca l l ed Forsche imer term i s  then added to 

Darcy ' s  Law to describe th i s  f l ow regime . S everal authors 

have presented experimental and theoret ical di scussions o f  

Darcy ' s  Law when inertial e ffects are taken into account 

( Nield and Joseph , 1 9 8 5 , Joseph , Nields , and Papanicol aou , 

1 9 8 2 , Beavers and Sparrow , 1 9 6 9 , Bachmat , 1 9 6 7 , and I rmay , 

1 9 5 8 ) . Based on the di scussion o f  Nields and Joseph ( 19 8 5 ) , 

Darcy ' s  Law with inertial 

() p * - -
o r  . 

and , 

0 p *  - -
o z • 

e ffects 

--'::_ v . 
• r 'K. 

i:_v · • z 'K. 

+ 

+ 

included may be written as 

b * /? I  v ; .  ( 3 . 6 1 )  

b * /? I v : .  ( 3 .  6 2 )  

Equations 3 . 57 ,  3 . 6 1 ,  and 3 . 6 2 form a system o f  three equat ions 

in the three unknowns v ; .  V � and p*. Thus , the velocity and 

pres sure f ields may be determined separately from the solution 

o f  the vapor dens ity and temperature f ields . 

The energy equat ion i s  found by cons idering an energy 

bal ance on a d i f ferential element a s  shown in F igure 3 . 4 .  

The energy equation may be written a s  
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l R a t e  A t  W h i c h  ] 
E n e r g y  E n t e r s  E l e m e n t  + 

F r o m  « So u r c e «  T e r m s  

l R a t e  A t  W h i c h  ] 
E n e r g y  I s  C o n v e c t e d  + 

I n t o T h e  E l e m e n t  

l R a t e  A t  W h i ch ] 
E n e r g y  I s  C o n d u c t e d  + 

I n t o  T h e  E l e m e n t  

l R a t e  A t  W h i c h  ] 
E n e r g y  I s  C o n v e c t e d  + 
O u t  O f  T h e  E l e m e n t  

[ R a t e  A t  W h i c h  ] 
E n er g y  I s  C o n d u c t e d  

O u t  O f  T h e  E l e m en t 

[ R a t e  O f  C h a n g e  ] 
+ O f  E n e r g y  S t o r e d  . 

I n  T h e  E l e m e n t  

or , 

+ 

( 3 . 6 3 )  

• a • . a r  a ( . a r ) 2 + [ ( p E V T ) + - ( p E V T ) dz - K E - - - K E - dz [ ( r + dr )  a z a z a z a a z a z a a :z  

( 3 . 6 4 )  

Equation 3 . 64 may be rewritten as 

a • • 1 a • • • • -. (P aCpaE T )  + ----;-. (E P aC p ar  V, T )  + o t  r o r 
1 a ( • • a r · ) 

= -- E r K - + 
,- · a ,- · 

a 
a ,- ·  

The volumetric source term , q a  

(3 . 65 )  

includes the energy 

trans ferred by convection to the inner doma in a s  wel l  as any 

heat sources that may be present . 
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Assuming that no s igni ficant energy sources are present 

in the outer domain and that the fluid propert ies may be 

considered constant a l l ows one to rewrite the energy equat ion 

in the form 

. o r · 1 o • . . . o . . . a a o ( . .  or · ) E + -- ( E r V T ) + - (E  V T ) = - -- E r -o t • r · o r · r o z ·  % r · o r · o r · 

( 3 . 66 )  

The appearance of the convective source terms i n  equations 

3 . 6 0 and 3 . 6 6 couples the equations of conservat ion of mass 

and energy for the inner and outer doma ins . 

In order to identi fy the important dimensionless 

parameters in the outer doma in , the governing equations may 

be nond imensional ized . De fine the fol l owing nondimens ional 

variables for the outer doma in 

(l s t . D i m e n s i o n l e s s  t "' = 
L 2  T i m e  

( 3 . 6 7 )  

• 
D i m e n s i o n l e s s  R a d i a l  r 

r "" 
R S p a t i a l  C o o r d i n a t e  

( 3 . 6 8 )  

. 
D i m e n s i o n l e s s  A x i a l z z -

H S p a t i a l  C o o r d i n a t e  
( 3 . 6 9 )  

p p * -fKr D i m e n s i o n l e s s  -
R P a V fN P r e s s u r e  

( 3 .  7 0 )  

T e - T * T - T * 
D i m e n s i o n l es s  

T 
e -

T e - T a !1 T T e m p e r a t ur e  
( 3 . 7 1 )  

v · D i m e n s i o n l e s s  R a d i a l 
v r 

r -
V m V e l o c i t y  

( 3 .  7 2 )  
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v z -

P � .. 
b -

1( -

v · z Di m e n s i o n l e s s  A x i a l 

V IN V e l oc i t y  

• 
P � - P v e  D i m e n s i o n l e s s  V ap o r  

P �a - P �e D e n s i t y  

b * �  
P a  

• 1( 

D i m e n s i o n l es s  C o e f f i c i e n t  

I n  T h e  F o r s c h e i m e r  

D i m e n s i o n l es s  

P e r m e a b i l i t y  

T e r m  

( 3 .  7 3 )  

( 3 . 7 4 )  

( 3 . 7 5 )  

( 3 . 7 6 )  

Rewriting the governing equations ( 3 . 57 ,  3 . 5 8 ,  3 . 6 1 ,  3 . 6 2 ,  

and 3 . 6 6 )  in terms o f  these nondimens ional variables yields 

. o p �  E - + o t  

and , 

( H ) 1 o • - - - ( E  r V ) R r o r  r + 

o P  1 V r --
o r  R e -.:  'K 

o P  1 v z  - -
o z R e -.:  'K 

0 • 
o z ( E  V z ) 

+ b l v l v r •  

+ b l v l v z 

0 , 

. o T  a a L L [ ( H ) 1 o • o • J E :. t  + R e P r - -- - - - - ( E  r V T )  + - ( E  V T )  == 
u -.: a s .{Z; H R r o r  r o z z 

5 4  

( 3 .  7 7 )  

( 3 .  7 8 )  

( 3 .  7 9 ) 

( 3 . 8 0 )  

( 3 . 8 1 ) 



Equati ons 3 . 8 0 and 3 . 8 1 may be s impl i f ied by not ing that 

N JD = 

Substitution o f  this relation into 3 . 8 0 and 3 . 8 1 g ives 

and , 

<X a L L [ ( H ) l o • o • J R e Pr---- - - - ( E p rV ) + - ( E p V ) 
" a � H  R r o r u r o z u z 

s \f 'K r 

. o T a a L L [ ( H ) I a • a • J E � t  + R e " Pr---- - - - ( E r V  T )  + - ( E V z T )  
v a s ,fZ; H R r a r  ' a z  

( 3 . 82 )  

( 3 .  8 3 )  

( 3 . 8 4 )  

Rewriting the boundary condit ions i n  terms o f  the 

nondimensional variables gives 

o T  
o r  

o ( r V r ) 
o r  

o T 
o r  

0 a t  r = O , 

0 a t  r = O , 

0 a t r = O , 

0 a t  r = I . 

0 a t  r = I .  
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Cl p u  0 - = Cl r  

T = 0 

il T 
d Z 0 

P u 0 

Cl p u  0 -
tl z  

v z  l 

v z  0 

v z  0 

iJ T 
d Z  0 

and , 

Cl p u  0 - = tl z  

a t 

at 

a t 

a t 

a t 

a t 

at 

a t 

at 

a t 

r = l .  

z = O a n d 

z = O  a n d 

z = O  a n d 

z = O  a n d 

z = O  and 

z = O  a n d 

z = l .  

z = l .  

z = l . 

O :S r :S R m ,  

R IN < r :S l ,  

0 :S r :S R IN , 

R IN < r :S l , 

0 :S r :S R IN , 

R m < r :S l ,  

S imilarl y ,  when the initial conditions are rewritten 

of the nondimens ional variabl es , there results 

p u = I 

and , 

T I a t t = O  f o r  O :S r :S I a n d O :S .z :S I .  

5 6  

( 3 .  9 0 ) 

( 3 . 9 l a )  

( 3 . 9 l b ) 

( 3 . 9 2 a )  

( 3 .  92 b )  

( 3 . 93 a )  

( 3 .  93 b )  

( 3 . 9 4 ) 

( 3 .  95 ) 

( 3 . 9 6 ) 

in terms 

( 3 . 9 7 )  

( 3 .  9 8 ) 



3 . 4 .  Summary O f  The Analyt ical Model 

The devel opment presented in the previous sections 

resulted in a set o f  e ight governing equat ions 

( 3 . 4 0 , 3 . 4 1 , 3 . 4 2 , 3 . 7 7 , 3 . 7 8 , 3 . 7 9 , 3 . 8 3 ,  and 3 . 8 4 )  in the e ight 

unkowns 

V r ' V z ' p ' p u ' T ' U ' p iu ' T i ' 

along with an appropriate set o f  initial condit ions ( equations 

3 . 4 9 , 3 . 5 0 , 3 . 5 1 , 3 . 9 7 ,  and 3 . 9 8 )  and boundary condit ions 

( equat ions 3 . 4 4 - 3 . 4 8 ,  and 3 . 8 5 - 3 . 9 6 ) . 

It has been mentioned that equations 3 . 7 7 ,  3 . 7 8 ,  and 3 . 7 9 in 

the three unknowns V r ,  V Zl and P are uncoupl ed from the rest 

of the problem .  The problem , then , may b e  subdivided into 

two sma l l er problems : one for the determination of the veloc ity 

field , and another for the solution of the "drying problem . "  

S olving for the veloc ity field requ ires the solution o f  

three equations : 1 )  the cont inuity equat ion , 2 )  Darcy ' s  law 

in the radial direct ion , and 3 )  Darcy ' s  l aw in the axial 

direction . 

and , 

These equations may 

( H ) I a • 
- - - ( E r V ) R r o r  r + 

o P  l v r -- --
o r R e .:  'K 

o P  l v z -- --
o z  R e .:  'K 

be written 

a • 

a z ( E  V z ) 

+ b l v l v r , 

+ b l i/ l v z · 

respect ively , in the three unknowns 
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( 3 .  7 8 ) 
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The boundary conditions for the velocity equat ions are 

d V r 0 a t r = 0 , ( 3 . 85 )  --
Cl r  

Cl ( r V r )  0 at r = l .  ( 3 .  8 8 ) Cl r  

v z l at .z = O  and O � r � R m ,  ( 3 . 93 a )  

v z 0 at .z = O a n d R m < r �  1 , ( 3 .  9 3 b )  

and , 

at .z = l . ( 3 . 9 4 ) 

The solution o f  the " drying problem" requires the solution 

of equat ions 3 . 4 0 ,  3 . 4 1 ,  3 . 4 2 ,  3 . 8 3 , and 3 . 8 4 .  As noted 

earl ier , however , not a l l  the parameters appearing in these 

equations are independent parameters . Bi and Bim depend on 

other parameters appearing in the probl em as wel l  as on the 

local vel oc ity . It may be shown ( see Append ix A) that 

and , 

Also , the groups P '  L l  A and A J  A may be expressed as 

and , 

P ' L  4 n D L  4 L  = = 

5 8  

( A .  9 ) 

( A . l 6 ) 

( 3 .  99 ) 



8 L  
+ 2 

D 
, ( 3 . 1 00 ) 

respect ively . Subst itut ion of these rel at i ons into equat ions 

3 . 4 1 ,  3 . 8 3 ,  and 3 . 8 4 yields , 

( P s ) d P iu } - E - - u - + p L 0 t 

, o p " a a L L [ ( H ) 1 o . o • J E - + R e Pr -
;;::

- - - - ( E p r V ) + � ., ( E  p .. V z )  o t  "' a H R r o r  " 
' 

u .... " 
s 'K. r 

and , 

( 3 . 1 0 1 )  

( 3 .  1 0 2 ) 

E . 0
0� + R e " P r ( :: ) (k) ( � ) [ ( � ) � o

0
r ( E " r V , T ) 0 • J + - ( E v T ) o z  z 

( :: ) ( :  2 )  [ ( � ) 2 � 0
°r ( E • r � � )  

( 3 . 1 0 3 ) 

Thus , the mathematical model for the "drying probl em" cons ists 

of f ive equat ions : 1 )  conservat ion of mass in the inner doma in , 

2 )  conservation o f  energy in the inner domain , 3 )  the inner 

doma in equation of state , 4 )  conservat ion of mass in the outer 

domain , and 5 )  conservation of energy in the outer domain . 

These equat ions are given by 
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q s '  

f ' ( u , T )  

U > U rns ' 

, Cl p " a a L L [ ( H ) 1 Cl • Cl • J E - + R e  Pr---- - -- ( E p rV ) + - ( E p V ) = 
Cl t  lC a � H R r Cl r  " r Cl z " z s \f 'K r 

( a a  L � K a  • _. ) ( 8 L ) ( 1 - E ' ) f 2 a;,  D , -L-, J<;, L u " , E , R e �<: ,  P r , I V I D + 2 
2 

( P '" - P " ) . 
and , 

respect ively , in the f ive unknowns 

u , p '" , p " , T , a n  d T i . 

The boundary and initial conditions are given by : 

6 0  

( 3 . 4 0 )  

( 3 . 1 0 1 )  

( 3 . 4 2 a )  

( 3 . 4 2 b )  

( 3 .  1 0 2 )  

( 3 .  1 0 3 )  



0 a t z , = O , 

0 

o T , = 0 o z , a t z , = O , 

[ ( P s ) 0 U ( P s ) 0 P iu J 6 u - ( Lu u ) D L -;--
. 

+ ( Lu  ) D  E - -u -6p "  u Z ,  " " P L  O Z ;  

o T 
o r  0 a t  

o p " 0 a t -
o r  

o T 
o r  0 a t  

o p " 0 a t -
o r  

T = 0 at 

o T 
o z  0 at 

P u 0 a t  

o p "  0 at -
o z  

o T 
o z  0 at 

r = 0 ,  

r = 0 ,  

r = 1 ,  

r = 1 ,  

z = O  and 

z = O  a n d 

z = O  a n d 

z = O  an d 

z = 1 '  

O � r � R m .  

R IN < r � 1 ,  

0 � r � R IN , 

R rN < r � 1 ,  

6 1  

at ( z , = 1 ) , 

( 3 . 4 4 ) 

( 3 . 4 5 ) 

( 3 . 4 6 ) 

( 3 . 4 7 ) 

( 3 . 29 )  

( 3 . 8 6 ) 

( 3 .  87 ) 

( 3 . 8 9 ) 

( 3 . 90 ) 

( 3 . 9 1 a ) 

( 3 . 9 1 b )  

( 3 . 92 a )  

( 3 .  92 b )  

( 3 .  9 5 ) 



o p u  0 a t z = l , -
o z  ( 3 . 96 )  

P iu l f o r O :S z i :S l . ( 3 . 4 9 )  

u = l f o r O :S z ; :S l . ( 3 . 50 )  

T ; l f o r O :S z ; :S l .  ( 3 . 5 1 )  

P u l a t t = 0 f o r O :S r :S l a n d O :S z :S l ,  ( 3 . 97 )  

and , 

T = l a t t = 0 f o r O :S r :S l a n d O :S z :S l .  ( 3 .  9 8 ) 

Examinat ion o f  the nondimensional equat ions shows that 

there are 15 dimens ionl ess parameters appearing in the 

prob l em ,  

H 
L ' 

Fr 
L 

R m , K o ,  Lu L ,  L u u , H 
R ' 

P s  
P L  

L 
D '  

P r . 

Each dimens ionless parameter holds some phys ical 

s igni ficance in the mathematical model . The dimens ionl ess 

terms and the ir physical interpretations are presented in 

Table 3 . 1 . 
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Table 3 .  1 .  Summary Of The Dimens ionless Parameters And 
The i r  Physical Interpretations 

K a  - - - Rat i o  o f  the thermal conductivity of -
a i r  to that of the sol id K ,  

<I a - - - Rat i o  o f  the thermal d i f fusiv ity of - a i r  to that of the sol id <I ,  
H Rat i o  o f  the height of the outer - - - - doma in to the ( ha l f )  l ength o f  a n  L 

inner doma in e l ement 

fKr Rati o  o f  the length s c a l e  in the -- - - - outer doma in to the ( ha l f )  l ength of L an inner domain e l ement 

Rati o  o f  equ i l ibr ium vapor dens ity 

p • •  - - - to a characteristic change in vapor - density t. p .  

p $ - - - Rat i o  o f  the sol id dens ity to the 
dens ity o f  l iquid water p L 

Rat i o  of the sol id dens ity to a 

P ,  - - - characteristic change in vapor 

t. p .  dens ity 

L - - - Rat io o f  (hal f )  l ength to d i ameter -
o f  D an inner doma in e l ement 

Rat i o  o f  the height to the radius of 

H - - - the outer domain structure -
R 

K o  L , tl u  Rat i o  o f  thermal energy used for -- evaporat i on to sensible energy C , tl T  
stored in the sol id 

Lu L D lr Rati o  o f  the rate of cap i l l ary - trans fer o f  l iquid water t o  a .  
d i f fu s i on of heat in the inner 
doma in 

Lu . D vr Rat io o f  the rate of d i f fusion o f  - water vapor to d i f fusion o f  heat in 
<I ,  the inner doma in 

R e ,  V IN ;;:, Rat i o  o f  inertial forces to v i scous --- forces v 
Pr v Rat i o  o f  the d i f fus ivity o f  momentum -

to the d i f fu s ivity of thermal energy 
<I a 

R I N r JN Rat i o  o f  a i r  inlet radius to the - radius o f  the outer doma i n  R 
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3 . 5 . Discussion Of The Assumptions On Wh ich The Ana lytical 

Model Is Based 

I n  the formulation o f  the present mathematical model , 

several as sumptions were made . The assumptions for the inner 

domain include : 

1 .  The porous sol id i s  isotropic and homogeneous and 

contains l iquid water , water vapor , and a ir .  

2 .  The inner doma in elements are assumed to be randomly 

oriented throughout the overal l  region compris ing 

the outer domain . 

3 .  Moi sture movement may occur as a result o f  cap i l lary 

trans fer o f  l iquid , d i f fusion o f  water vapor , and 

movement of bound l iquid . 

4 .  The inner doma in phases ( so l id , l iqu id , and vapor) 

are in thermodynamic equil ibrium . 

5 .  Temperature gradients are negl igible in the inner 

domain . 

6 .  The sol id structure i s  rigid so that the poros i ty 

does not vary with t ime as the drying process takes 

pl ace . 

Addit ional assumptions for the outer doma in include : 

7 .  The overal l  structure of the outer doma in is 

i sotrop ic , but may be nonhomogeneous .  

8 .  The poros ity does not vary with t ime . 

9 .  No l i quid is present in the outer doma in . 
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1 0 . The addition o f  mass ( as water vapor ) to the outer 

doma in does not s igni ficantly a f fect the vel ocity 

distribut ion in the outer doma in . 

1 1 . Natural convection i s  negl igible . 

Assumption number one concerns the phys ical structure o f  

the porous medium i n  the inner doma in . For the present 

appl ication , the inner doma in represents a s ingle hay stalk . 

Examination o f  the interior o f  a hay stalk under a magn i fying 

glass reveal s  that the material is di stributed rather 

uni formly throughout . Thus , the assumpt ion that the med ium 

is homogeneous should be reasonable for the present case . 

Addit iona l ly , it has been assumed that the l iquid held with in 

the inner doma in may be treated as pure water . The energy 

required to vapori z e  the l iqu id in the hay stalks has 

reportedly been measured and is within approximately 1 5 %  o f  

the heat o f  vaporization o f  pure water ( Bl edsoe , 1 9 8 9 ) . Thus , 

treating the l iquid as pure water should not result in a large 

error for the present case . 

Assumpt ion two concerns the physical makeup o f  the global 

porous structure . Again , examinat ion o f  a hay ba l e  reveals 

that the hay stalks are randomly oriented throughout the bal e . 

( Note : There i s  a tangential pattern that appears in a hay 

bale as a result o f  bal ing . As the hay is p i cked up from the 

wind row , it i s  "wrapped" around the outs ide o f  the bal e . 

However ,  the hay stalks themselves do appear to be randomly 
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oriented within each l ayer . Furthermore , no change in the 

flow has been observed to occur at the interface of these 

l ayers . Thus , the assumpt ion that the stalks are randomly 

oriented throughout the entire outer doma in has been made . ) 

As was discussed in S ection 1 ,  several d i fferent mechani sms 

of mass transport have been ident i f ied . O f  thes e ,  vapor 

d i f fusion , cap i l l ary movement of l iquid , and movement of bound 

l iquid have been assumed to predominate . The pressure gradient 

along the outs ide ( from end to end ) of an inner doma in el ement 

is negl igib l e  ( a  typical pres sure drop across the entire bale 

structure i s  around 0 . 1  ps i ) . Thus , the l iquid and vapor flow 

induced by an external pressure gradient i s  very sma l l . S ince 

the f l ow is not rare f ied , e f fus ion ( Knudsen ) flow may also 

be dismissed as negl igible for the present case . Surface 

d i f fusion has not been included in any studies known to the 

author . However , this mode of mass trans fer w i l l  be negl igib l e  

except in the very l ast stages o f  drying where the l iquid 

content i s  very low .  There fore , this term w i l l  also be 

negl ected . Thus , the only modes of moisture movement that 

have been included in the present model are cap i l l ary movement 

o f  l iquid , d i f fus ion o f  water vapor , and movement of bound 

l iquid . 

Assumption number four involves the presumpt ion that 

thermodynamic equ i l ibrium exists between the phases of the 

inner domain . The typical drying process occurs over a period 
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o f  days and the temperature changes occur gradual ly during 

this time . Thus , it is expected that the inner doma in phases 

are c l ose to be ing in equil ibrium with each other . 

The temperature gradients in the inner doma in have been 

assumed negl igibl e .  The typical element in the inner doma in 

is approximately one to two inches in l ength . Thus , the a i r  

temperature in the outer doma in will  not change s igni f icantly 

over such a short l ength . S ince convect ive heat transfer 

between the doma ins is assumed to be the primary mode o f  heat 

trans fer in the present work , the temperature gradient a l ong 

a stalk should also be smal l .  

Assumption number s ix regards the shrinkage o f  the sol id 

structure . I t  has been observed that the shrinkage o f  hay 

during the drying process is smal l .  The poros ity , there fore , 

will  not change s igni ficantly due to shrinkage and may be 

assumed constant over t ime . 

S ince the outer doma in structure has been assumed to 

cons ist of randomly oriented inner doma in elements , it will  

be isotropic . Current bal ing pract ice , however ,  o ften results 

in an uneven distribution of hay ins ide a hay bal e . Thus , 

the dry matter dens ity varies cons iderably with pos ition in 

the bale ( Bl edsoe , Shoulders , and Hitch , 1 9 8 6 ) . Therefore , 

the porosity i s  a funct ion o f  position so that the bale is 

actually a nonhomogeneous porous structure . 
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As has been mentioned , the typical drying process occurs 

over a period of days . Thus , the addit ion o f  mass to the 

outer doma in ( as water vapor ) occurs very s l owly . For the 

typical case under cons ideration , the init ial moi sture content 

is approximately 3 5 %  (w . b . ) and the f inal moi sture content 

is approximately 1 8 %  (w . b . ) .  The initial we ight o f  a bale is 

on the order o f  8 9 0 0  (N)  ( 2 0 0 0  lb f ) . Thus , approximately 2 1 0 

( kg )  ( 4 7 0 lbm)  o f  moi sture is removed over a three day period . 

The average mass trans fer rate is thus approximately 8 . 2  x 

1 o- 4  ( kg/ s )  which is small compared to the mass o f  a i r  flowing 

through the bale structure ( the rat io o f  water vapor to a ir 

mass flow rates is approximately 1 . 5  x 1 0- 3 ) .  

i s  assumed that this slow addition o f  

There fore , it 

mass will  not 

s igni f icantly a ffect the velocity distribution in the outer 

domain . 

A typical Reynolds number ( Re )  for the f l ow in the outer 

doma in is approximately 10 and the typical Grascho f number 

( Gr )  i s  approximately 3 . 5 .  The relative importance of natural 

convect ion to forced convection is given by a function 

involving G r / R e � (Gebhart et al . ,  1 9 8 8 ) . When the value o f  

this parameter is close t o  z ero , forced convection dominates .  

When the value o f  this parameter i s  very l arge , natura l 

convection is o f  primary importance . The value o f  the exponent 

n depends on such quanti ties as geometry , boundary conditi ons , 

and fluid properties . However , there is a l arge d i fference 
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between the Reynolds number and the Graschof number ; and , it 

is there fore expected that natural convective e ffects will  

be sma l l . 
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4 .  THE NUMERI CAL INVESTIGATION 

4 . 1 . The Need For A Numerical Solution 

The mathematical model formul ated in Section 3 cannot be 

solved in c losed analyt ical form ; there fore , a numerical 

solution o f  the set of coupled part ial d i f ferent ial equat ions 

subj ect to the stated init ial and boundary conditions is 

required . I t  was decided to use the f inite volume approach 

( Patankar , 1 9 8 0 }  due to the s impl icity o f  formul ation and 

ease of solution of the result ing equations . Th is approach 

also guarantees satis fact ion of all  conservat ion rel ations 

and can be solved on extremely coarse grids during the 

devel opment phase of the numerical study . 

As ment ioned previously ,  it is pos s ible to obtain the 

velocity and pressure f ields independently of the other 

solution variables . Thus , two d i fferent numerical schemes 

will be derived below :  one for the velocity and pressure field 

solution and the other for the solution to a l l  other unknown 

variables appearing in the problem . 

4 . 2. Determination Of The Velocity And Pressure Fields 

The equations to be solved are : 

and , 

o P  
o r  

7 0  

0 ,  ( 3 .  7 7 ) 

( 3 .  7 8 ) 



o P  
o z  

= l -R V z + 
e "'  

( 3 . 7 9 )  

The f inite volume approach requires that the calculation 

domain be divided into nonoverlapping control volumes . The 

s i z e  of these control volumes may be uni form ,  or nonuni form ,  

a s  des ired . Nonuni form control volume spacing a l l ows more 

flexibil ity in the code as a closer spac ing may be used in 

areas where large gradients o f  the solution variables are 

expected . The present numerical scheme w i l l  thus be derived 

for the case o f  variable grid spac ing . 

Any finite difference scheme ( f inite volume approach 

included ) involves solving the solution variables at di screte 

locati ons , or " grid points . "  The placement o f  the grid po ints 

within the control volumes for the finite volume approach 

must therefore be spec i fied . Patankar has d iscussed two 

pos s ible approaches which he des ignates as " practice A" and 

" pract ice B . " Practice A cons ists o f  l ocat ing the control 

volume faces hal f-way between the grid po ints , whi l e  practice 

B involves locating the grid po ints at the center of each 

control volume . Figures 4 .  1 and 4 .  2 il lustrate the d i f ferences 

between the two approaches .  Patankar has noted that pract ice 

B has several advantages and so th is pract ice w i l l  be used 

throughout the present derivation . 

The notation used throughout the present derivat ion ( and 

used by Patankar)  is also i l lustrated in Figures 4 . 1  and 4 . 2 .  

The subscript P is used to designate a particular grid point 
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Figure 4 . 1 . 
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Figure 4 . 2 .  Grid points l ocated at the center o f  the 
control volumes ( Practice B) . 
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whi l e  the subscripts E ,  W ,  N ,  and S denote the east , west , 

north , and south neighboring points , respect ively . Quant i ties 

evaluated at the east , west , north , and south control volume 

faces are des ignated with subscripts e , w , n ,  and s 

respectively . 

One other aspect concerning the grid should be ment ioned . 

In problems involving convective terms , a staggered grid i s  

employed f o r  the velocity components to avoid the possibil ity 

of obta ining an unreal i stic pressure field . The veloc ity 

grid points are thus l ocated at the control volume faces , 

whi l e  a l l  other grid po ints are located at the center o f  each 

control volume ( Patankar , 1 9 8 0 ) . 

Once the grid is speci fied ,  the govern ing equations are 

integrated over a s ingl e  t ime interval and an individua l 

control volume . Integration o f  equation 3 . 7 7 g ives 

f t• tl t f �J Q ( H ) 1 0 t s w R "i o r ( r E · V r ) r dr dz dt  

+ 0 ,  

or , 

0 .  
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It was des i red to have the option o f  solving for the veloc ity 

field by running a transient solution to steady state . 

Including the temporal terms , equations 3 . 7 8 and 3 . 7 9 may be 

written as 

( 4 . 3 )  

and , 

( 4 . 4 )  

The usual form o f  the conservati on express ion for a variable 

¢ may be written as 

0 
- ( p q, ) + V · ( p Vq, ) = V · ( r V q, ) + s . o t ( 4 .  5 )  

Equations 4 .  3 and 4 .  4 may be cons idered t o  be i n  this standard 

form i f  the terms enclosed in the square brackets are assumed 

to be part o f  the source terms . ( Note : The pres sure term is 

customarily not included in the source term . ) Thus , equat ions 

4 . 3  and 4 . 4  may be written as 

and , 

where : 

and , 

- - - + [ l V r 

R e .._ j;_  

7 4  

o P + S r o r  

o P + s z o z  

( 4 . 6 )  

( 4 .  7 )  

( 4 .  8 )  



( 4 .  9 )  

The source term may b e  l ineari z ed a s  described by Patankar 

to get 

o s -s = S ' + aT ( � - � - ) .  ( 4 . 1 0 ) 

where the prime indicates the previous iteration values . 

Thus , 

S , = � [ ( R�J�- + b ( V , ' + V , ')" ' v , · J 

- - - + r z V - V , 
[ ( 

1 ) ( 1 ) b ( 2 V 2 ' + V 2 ' ) ] 
R e .._ ..{K ( V � ' + V � ' ) I / 2 ( r r ) . 

This may be rewritten as 

( 4 . 1 1 ) 

( 4 . 1 2 )  

It was des ired that the code should run for s ituat ions in 

which the Forscheimer term was not appl icable ( i . e .  b = 0 ) . 

S ince i7 i s  init i a l ly z ero , the source term as formul ated above 

becomes z ero , which results in no numerical change in the 

velocity field with time . This s ituat ion i s  avoided by 

s l ightly modi fying the source term as shown above to the form 

( 4 . 1 3 )  

S imil arly , the source term S z i s  mod i f ied to give 

( 4 . 1 4 ) 
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Note that upon convergence , V r
, = V r and V z

, = V z and the correct 

source terms are obta ined . Equat ions 4 . 6  and 4 . 7  may now be 

written as 

I (fX ) o V r o P + ( 5 c r  
+ 5 p r V r ) ( 4 . I 5 ) R e .._ Pr E

. o t o r  

and , 

I (fX ) o V z o P + ( 5 c z  
+ 5 p z  V z ) ( 4 . I 6 )  R e .._ Pr E

. o t o z 

where : 

b V 3 ,  v , 
5 c r  

r r ( 4 . I 7 )  + 
fX R e .._ ' [ v � - + v ; - ] 1 1 2 

5 p r - [ [,C�e , 
b ( 2 V � - + V i ' ) ] ( 4 . I 8 ) + 
[ v � - + v ; - ] 1 / 2 . 

b V 3 - v , 
5 c z  

z z ( 4 . I 9 )  + 
fX R e .._ ' [ V � ' + V ; ' ] 1 t2 

and , 

( 4 . 2 0 )  

Integrat ion o f  equation 4 . 1 5 over a control volume and a t ime 

interva l  gives 

( 4 . 2 I ) 

S olving for the velocity gives 
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where : 

A r e 

and , 

V r s = 
I 

S imilarly , it 

and , 

where : 

A rw 

V r s " 

A zn 

v zs • 

V r Q 

fK: 
R e .: P r E : � t  

( s " • + 

( 1 ) [ P P - P E J  + 
A , Q r E - r P 

- 5 pr , 

� • ) ( I ) • V r e - · R e .: P r E e � t  A r e 

V r s . 

is easily shown that 

V r w 
= 

V zn 

v zs 

JK: 
R e .: P r  E : � t  

( s " • + 

fK: 
R e .: P r  E : � t  

( s ,. , + 

( 1 ) [ P v - P p ] V r s • + 
A ,w r p - r v "' 

( 1 ) [ P P - PN ] v zs ' + 
A zn Z N - Z p . 

( 1 ) [ P 3 - P p ] V zs � • + 
A z s Z p - Z s 
- 5 pr ., • 

fK. v • ) (-1 ) * r w  • 
R e .: Pr E w � t  A rw 

- 5 pz. •  

]Y:; v • ) (-l ) * zn • 
R e .: P r E " � t  A zn 

7 7  

( 4 . 2 2 ) 

( 4 . 23 )  

( 4 . 24 )  

( 4 . 25 )  

( 4 . 2 6 )  

( 4 . 2 7 ) 

( 4 . 28 )  

( 4 . 29 )  

( 4 . 30 )  

( 4 . 3 1 )  



and , 

v zs = (s cz + 
r r 

fKs 0 ) ( l ) ----.-v zs -
A

- . 
R e .: P r E s � t  zs 

( 4 . 32 )  

( 4 . 33 ) 

The express ions for the velocities ( equations 4 . 2 2 ,  4 . 2 5 ,  

4 . 2 6 ,  4 . 2 7 )  may be substituted into equation 4 . 2  giving 

+ E - + V  - E - + { · [ l ( P P - PN ) J · [  l ( P 3 - P p ) n A zn Z N - Z p 
zs • s A zs Z p - Z s 

This equat ion may be rearranged to give 

where : 

a w 

and , 

7 8  

= 0 .  ( 4 . 3 4 ) 

( 4 . 35 )  

( 4 . 36 )  

( 4 .  3 7 )  

( 4 . 38 )  

( 4 . 39 )  

( 4 . 4 0 )  



( 4 . 4 1 )  

A means o f  correcting the veloc ity field so that the result ing 

velocit ies come closer and closer to sat i s fying the cont inu ity 

equati on ( 4 . 2 )  must be obtained . This procedure is outl ined 

in great deta i l  by Patankar ( 1 9 8 0 ) . 

term ( P } may be obtained by solving 

A pressure correction 

where : 

· ( r � - r � ) v - ] E n. 2 zn. • ( 4 . 4 3 ) 

and , the coe f ficients a l' ,  a ., ,  a v .  a N , and a sare g iven by equations 

4 . 3 6 4 . 4 0 .  

correction term 

subst itution in 

and , 

The resulting soluti on for 

( P ) is then used to correct 

the fol l owing equat ions . 

V r • 

V r w 

v zn.  

v % S = 

(-1 ) [ p l l' = p i E J A , . r E r ,  

7 9  

+ V r •
'

' 

+ v ' zs . 

the pressure 

velocities by 

( 4 . 4 4 ) 

( 4 .  4 5 ) 

( 4 .  4 6 )  

( 4 . 47 )  



The equations formul ated above provide the means for 

determining the solution f ields . The S IMPLER algorithm 

( Patankar , 1 9 8 0 )  was used and proceeds as fol l ows : 

1 .  An initial veloc ity f ield ( V r and V J i s  guessed . 

( V r and V z were both init ially set equal to z ero . ) 

2 .  Us ing equations 4 . 2 4 , 4 . 2 9 ,  4 . 3 1 ,  and 4 . 3 3 ,  the 

psuedo-velocities ( v r s , • v r s .., •  v zs . • v zs ) are calculated . 

3 .  The coeffic ients ( a , ,  a E ,  a v .  a N ,  a �  in the pressure 

equat ion ( 4 . 3 5 )  are evaluated and a pressure field 

i s  solved for . 

4 .  Us ing this pressure field , the momentum equat ions 

( 4 . 2 2 ,  4 . 2 5 ,  4 . 2 6 ,  and 4 . 2 7 )  are solved for the 

velocity components ( V r ' and V z 1 · 

5 .  These velocities are substituted into the cont inu ity 

equat ion ( 4 . 2 ,  page 7 3 ) . I f  this veloc ity field is 

not correct , equation ( 4 . 2 )  w i l l  not be sat i s fi ed 

and an apparent "mass source" w i l l  arise . This mass 

source ( from equati on 4 . 4 3 )  is then used to obta in 

a pressure correction term ,  P t  from equation 4 . 4 2 .  

6 .  The pressure correction term i s  then used to correct 

the velocities according to the rel ations given in 

4 . 4 4  - 4 . 4 7 . 

7 .  I f  convergence is not obta ined , the algorithm 

returns to step 2 .  

8 0  



4 . 3 .  The Drying Problem 

Once the veloc ity field has been determined , the set o f  

coupled equat i ons describing the drying process may b e  solved . 

The drying problem is described by two sets o f  equations : one 

set for the outer domain , and a second set for the inner 

doma in . Each set o f  equations requires a separate solution 

algorithm ,  both of which w i l l  be di scussed individually . 

4 . 3 . 1 . Governing Equations For The Outer Doma in 

In the outer domain , the problem consists o f  determining 

the temperature and vapor dens ity fields . The equat ions to 

be solved are the equat ion governing the conservati on of mass 

given by : 

B i  ( 8 L  + 
m D 

) ( 1 - E ' )  2 2 ( p iu - P u ) ( 3 . 1 02 )  

and , the equat ion governing the conservat ion o f  energy given 

by : 

• 6 T E - + o t 
<I a  L L [ ( H ) 1 6 • R e Pr ---- - --( E r V  T )  + " a r::- H R r o r r s 'l/ lC r 

8 1  

( 3 . 1 03 )  



(Note : For c l arity , Bi and Biro will be used throughout the 

fol l owing derivation of the numerical scheme instead of us ing 

functional notat ion . It should be kept in mind that these 

are not independent parameters for the problem . ) 

S ince the computational grid has al ready been estab l i shed 

during the soluti on of the vel ocity and pressure f ields , the 

f irst step is to integrate the governing equat ions over a 

control volume . Integration o f  equat ion 3 . 1 0 2  g ives 

( 4 . 48 )  

Next , expressions for the interface vapor dens ities are 

needed . Let 

( 4 . 49 )  

F w ( 4 . 50 )  

F n ( 4 . 5 1 )  

and , 

( 4 . 52 )  

From the integrated continuity equation for dry a i r  ( equation 

4 . 2 ,  page 7 3 )  

8 2  



Thus , 

0 .  

Letting 

and , 

and subtracting equation 4 . 5 4 from equat ion 4 . 4 8 g ives 

where : 

and , 

( J n - F n P uP ) - ( J s - F s P uP ) = S 

J e  

J n  

F e P  ue • 

F w P uw • 

F n P un • 

J s 
= F s P us · 

Fol l owing Patankar ( 19 8 0 ) , l et 

and , 

J e - F e P  uf 

J w - F w P uf 

J n - F n P  uf 
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( 4 . 53 ) 

( 4 . 54 )  

( 4 . 5 5 ) 

( 4 . 56 )  

( 4 .  5 7 ) 

( 4 . 58 )  

( 4 . 59 )  

( 4 . 60 )  

( 4 . 6 1 )  

( 4 . 62 )  

( 4 .  63 ) 

( 4 . 6 4 ) 

( 4 .  6 5 ) 



where : 

( 4 . 66 )  

( 4 . 67 )  

1 - F R , O I ,  ( 4 . 68 )  

and , 

( 4 . 6 9 )  

(Note : a , b i s  a quantity which is equal to e ither a or b 

depending on which is the l arger number . ) Substitut ion o f  

equations 4 . 6 2 - 4 . 6 5 into 4 . 5 7 yields 

s .  ( 4 . 70 )  

Rearranging equat ion 4 . 5 8 gives 

( 4 . 7 1 )  

The di scret i z ed form o f  the energy equation 3 . 1 0 3  i s  obtained 

by integrating over a control volume . Thi s  yields 

r w E : V r w T w ) ( Z R - Z s ) + ( k ) ( � ) ( R e � p r ) ( :: ) ( E : V zR T R 

8 4  



Thi s  equation may be rewritten by l etting 

and , 

D = Q 
a a L 2 r e E : ( :z n - Z s ) 
a s R 2 ( r E - r , )  

a a L 2 r w E � ( :z n - :Z s ) 
a s R 2 ( r , - r ...., ) 

( 4 . 72 )  

( 4 . 73 )  

( 4 . 7 4 ) 

( 4 . 7 5 ) 

( 4 . 76 )  

( 4 . 77 )  

Subst itut ion o f  the above relations ( equations 4 . 7 3 - 4 . 7 8 ) , 

together with equations 4 .  4 9  - 4 .  5 2 , into equation 4 .  7 2  yields 

a � ( T , - T � )  + [ F e T e - D e ( T E - T , ) ] - [ F wT w - D w ( T , - T ...., ) ] 
+ [ F n T n - D n ( T N - T f ) ] - [ F s T s - D s ( T , - T s ) ] = S r . 

Now define 

J e  

and , 

8 5  

( 4 . 7 9 )  

( 4 . 80 )  

( 4 . 8 1 )  

( 4 . 82 )  



J s  = F s T s - D s ( T , - T s ) .  

Thi s  a l l ows equation 4 . 7 9 to be rewritten as 

a � ( T , - Tn + ( J e - F e T , )  - ( J w - F u J , )  + ( J ,_ - F ,_T , )  

Aga in fol l owing Patankar ( 19 8 0 ) , let 

and , 

where : 

and , 

a E ( T , - T E ) ,  

a .. AT .., - T , ) .  

a N (T , - T N ) ,  

D Q A ( / �: 1 ) + � - F Q , O i . 

D w A ( I �: I ) + 

� F w . O ! . 

D ,_ A ( / �: 1 ) + 1 - F ,_ , O i , 

A ( P ) = l o . ( l - O . I P ) 5 I . 

( 4 . 8 3 ) 

( 4 . 8 4 )  

( 4 .  8 5 ) 

( 4 . 8 6 )  

( 4 . 87 )  

( 4 . 8 8 )  

( 4 . 89 )  

( 4 . 9 0 ) 

( 4 . 9 1 )  

( 4 . 9 2 ) 

( 4 . 93 )  

These derivat ions have empl oyed express i ons from the power-law 

scheme , whi ch is recommended by Patankar for determining the 

inter face variables . 

The nond imens ional source term may be written as 
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where : 

and , 

= 
- S rc 

� · 

S T = S Tc  + S T p T P 

The energy equation may now be expressed as 

or , 

[ a �  + 

+ 

a -s 

a T + a T + a � T �  + N N S S , , 5 rc J . 

( 4 . 9 4 ) 

( 4 . 95 )  

( 4 . 96 )  

( 4 . 97 )  

( 4 . 98 )  

Appl icat ion o f  equat ions 4 . 7 1 and 4 . 9 8 over the ent ire 

grid results in a set o f  algebra ic equations whi ch may be 

solved iteratively to obta in the temperature and vapor dens ity 

solution f ields . Iteration i s  necessary s ince the equat ions 

are coupled to the inner doma in equations . S ince the inner 

and outer doma in solutions must be obtained s imultaneously , 

the equati ons for the inner doma in will  be derived before a 

discussion o f  the solution algorithm i s  presented . 

4 . 3 . 2 .  Governing Equati ons For The I nner Domain 

The inner domain cons i sts o f  a single e l ement o f  the 

overal l  porous structure . Thus , it i s  a phys ically dist inct 
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structure and another grid i s  required . The procedure 

previously discussed for estab l i shing the grid was aga in used 

for the inner domain and so w i l l  not be di scussed further .  

The equations to be solved are the equat ion for 

conservation of mass , 

( P s ) 0 P iv E - - u -- , p L 0 t 

the equat ion for conservat ion o f  energy , 

and the equat ion of state , 

f ' ( u , T )  

P iv = 

( 3 . 40 ) 

u � u rns ' ( 3 . 4 2 a )  

u > u rns . ( 3 . 4 2 b )  

For s impl ic ity , equations ( 3 . 4 0 )  and ( 3 . 1 0 1 )  will  be written 

in terms of " local " Luikov numbers . Thus , these equat ions 

become 

- Lu - -o [  ( p ,. ) o u 
O Z ;  zL flp v  O Z ;  

and , 

( P s  ) o p iv J + Lu ,v E - - u -
P L  O Z ;  

( P s ) C! p tv + E - -u -
P L  o t  

8 8  
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o T t o 2 T , ( 6 p u ) { o [ ( P s ) o P tu 
J 

- = -- - K o -- -- L u  E - - u -- + 
0 t 0 Z f p s 0 Z i zu p L 0 Z i 

where : 

and , 

D� 

D * Lu = _u 
zu 

(l s 

( 4 . 1 0 1 ) 

( 4 . 1 02 )  

Recal l  that the unknown quant ities to b e  solved for are 

p tv . T ; and u. Equat ions 4 .  9 9  and 4 . 1 0 0  provide two equations 

which w i l l  be discreti z ed and used in an iterative procedure 

to f ind the inner doma in solution . The thi rd equat ion is 

obta ined from equation 3 . 4 2 ; however , the equat ion o f  state 

is norma l ly provided in terms of an algebra ic function and 

so does not need to be discret i zed . S ince p t• 4 and T,  a l l  

appear in the two equations t o  b e  discret i z ed ,  any two o f  

these variables may b e  p icked as the " solution" variables . 

After some trial and error , it was dec ided to solve for the 

variables p t v  and T1 from the di scret i z ed equat ions . During 

the iterat ive procedure , values of these variables are used 

to obta in u from the equation of state ( equation 3 . 4 2 ) . 

Numerical stabil ity was enhanced by rewrit ing the temporal 

derivat ives of u in terms of the two solution variables . This 

a l l owed more " current " values o f  the solut ion variables to 

be used in p lace of "older'' (previous iteration)  values o f  
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u in the discreti z ed equations , and resulted in a more accurate 

determination of the temporal derivat ive of u at each 

iteration . This procedure was necessary due to the shape o f  

the sorpti on i sotherm relation . A detai l ed di scuss ion o f  the 

sorption isotherm is presented in Section 5 . 1 . Substituting 

the relation , 

o u 
o t 

into ( 4 . 9 9 )  and ( 4 . 1 0 0 )  yields 

o [ ( P s ) o u - Lu  -- -- + o z i zL L1p u o z i 
( P s ) 0 P iu 

J 
Lu  E - -u --"" p L 0 z i 

o u o T i - 1 -0 T i P ov 0 t 

( !!__:__ ) ( 1 _ P ue + L1 P u P iu ) ( � 
I T 

0 P iu + 
0 U 0 T i ) 

A 0 � t � T , 1 P bt + 
Ll P u P L P iu u u , 

( P s ) 0 P iu E - -u --P L 0 t 

and , 

+ 

( 4 . 1 03 ) 

( 4 . 1 04 )  

( 4 . 1 05 )  

I t  wil l be assumed at this point that the derivat ives o f  

u with respect to density and temperature may both be 

determined exactly from analytical expressions for given 

values of the dens ity and temperature . I f  this is not true , 

approx imate expressions for these derivat ives may be empl oyed . 
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Integration o f  equat ion 4 . 1 0 4  over a s ingl e  t ime interval 

and individual control volume yields 

( 4 . 1 06 )  

Rearranging terms gives 

[ ( P s ) L u zus J + E - -u + 
p L s .Z f _ .Z S p iuS [ ( e..:_ ) ( P L - P ue _ ? ) ( !_!!_ ) ( Z " - Z s ) + 

P 6 p p wf 0 P · 6 t L u w 

+ 

+ [ P s LU zL" ( u N - U t ) 
P L ( z N - z , ) 

( � ) ( P L - P uQ _ 0 ) ( !..!:__ ) T it - T f, ( _ ) J P /::, p p uP 0 T /::, t Z " z s , 
L u ! 

Equation 4 . 1 0 7  may be rewritten a s  

where : 

9 1  

P s LU zLs ( u , - u s )  
P L ( z N - z , ) 

( 4 . 1 07 )  

( 4 . 1 08 )  

( 4 . 1 09 )  



s = 

( 4 . 1 1 0 )  

[ ( � ) ( p L - p ue _ � ) ( � ) + ( E - � U 0 ) J ( Z n - Z 
s 
) , ( 4 , 1 1 1 ) P !1p P wt o p .  p ' !1 t L u w L 

[ P s LU zrn ( u N - u P ) _ P s LU zrs ( u , - u s )  
P r ( z N - z , )  P r ( z , - z s )  

+ ( p s ) ( p L - p ug _ o ) ( � ) T tP - T �P ( Z _ z ) J P L � P u p wP 0 T i � t n s ' ( 4 . 1 1 2 )  

and , 

b = a �  p �' + S . ( 4 . 1 1 3 ) 

Integration o f  the inner doma in energy equat ion over a s ingle 

t ime interva l  and control volume gives 

+ 

= T iN - T t! _ K ( !1 P u )  { L ( _ � ) P uN - P u! 
0 U zun E n U n z N - z , P s  P L z N - z ,  

( 4 . 1 1 4 )  

Lett ing 

0 [ P ue + /1 P u P �u! ( 0 U ) 
J 
( Z n - Z s ) a ,  = l + ( K o ) P L  o T t � t , 

1 

l 
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( 4 . 1 1 6 )  
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s ,  

and , 

b = 

� ( � 
+ 

o ) ( �) P iuP - P �uP ( .z _ .z ) J + 
P !:::.. p P iuP 0 p . !:::.. t n s 

L u !U 

s + c 

a l l ows equation 4 . 1 1 4  to be rewritten as 

[ a � + a N + a s - S , ] T 1, = a N T IN + a s T 13 + b . 

( 4 . 1 1 8 )  

( 4 . 1 1 9 )  

( 4 . 1 20 ) 

( 4 . 1 2 1 ) 

( Note : Treating the energy used for l iquid vaporization as 

an energy " source" has some disadvantages associated with it . 

These disadvantages are di scussed in Appendix B . ) 

4 . 3 . 3 . S olution Algorithms For The Inner And Outer 

Domains 

App l i cation of equat ions ( 4 . 1 0 8 ) and ( 4 . 12 1 )  over the 

enti re inner domain grid results in a second set of algebra ic 

equations which must be solved in an iterative manne r ,  as are 

the outer doma in equati ons . Each outer doma in control volume 

contains a ( speci fied) number o f  inner doma in elements . The 

vapor dens ity and temperature of the a ir f l owing through the 

outer doma in directly influence the amount o f  mass and energy 

trans ferred from (to)  the inner domain . There fore , the inner 
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doma in equat ions must be solved at each grid po int in the 

outer doma in . s ince the correct vapor dens ity and temperature 

of the a i r  in the outer doma in are not known in advance at 

the " current " t ime , the mass transfer pred icted from the inner 

doma in equat ions may not be correct . Thus , the solution 

proceeds in an iterative manner ; the " correct" solution be ing 

obta ined when the predicted mass and energy trans ferred from 

the inner doma in result in no s igni f icant change in conditions 

( from the previous iteration )  in the a i r  in the outer doma in . 

The ful l  solut i on algorithm i s  shown schemat ically in Figures 

4 . 3 and 4 . 4 .  

The solution algorithm proceeds as fol l ows . 

1 .  Al l variables are initial i z ed so that the boundary 

and initial conditions ( equations 3 . 4 4 - 3 . 5 1 ,  3 . 8 6 ,  

3 . 8 7 , 3 . 8 9 - 3 . 9 2 , and 3 . 9 5 - 3 . 9 8 on pages 6 1  and 6 2 )  

are satis fied . 

2 .  The equations govern ing conservat ion o f  mass 

( equation 4 . 1 0 8 ) and conservation of energy 

( equat ion 4 . 12 1 )  for the inner doma in e l ements are 

solved at each outer doma in grid point . This 

determines the amount o f  mass and energy trans ferred 

from an inner doma in element in each outer doma in 

control volume . Thus , this determines the moi sture 

content of each inner doma in element . 
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(start) 
- ; � I Initia l i z e  Variables j l ---- -- ----

· No 
--:-----_ 

Doma1n Temp:--__ Yts 
onverged? ________ _ --�--� 

------ --·�--- - -.. _ '{t.S 

-1?_��:�-'----. 
r----__ __ _ i_Nc __ _ ___ ____ _ _ 

Obtain Solution For Innerj 
Domain At Each Grid Point 

( Figure 4 . 4 ) 

' Calcul ate Densi ty4� 

Coe fficients 

S olve For " New" 
Dens ity Field 

Obtain Temp . Coefficients �--

Solve For "New" 
Temp . Field 

Increment T ime 
Output Solution 

(Stop )·�--------------

F igure 4 . 3 .  Outer Doma in S olution Algorithm . 
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(start) 

Input Variables 

Compute Ti Coe f f ic ients 

\ 
Solve For Ti 
Recompute u 

Yt. � 

Obtain Dens ity Coefficients 

Solve For "New" Dens ity ] 
Recompute u 

Calculute Source Terms j 
For outer Doma in 

( Return ) 

F igure 4 . 4 .  Inner Doma in S olution Algorithm . 
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3 .  The equation governing conservation o f  mass for 

the water vapor in the outer doma in ( equation 4 .  7 1 ,  

page 8 4 )  i s  then solved to determine the " new" 

vapor dens ity distribution . 

4 .  I f  the difference between iterat ions at any point 

in the outer doma in i s  " s igni ficant " ( i . e .  vapor 

density values have not converged ) ,  return to step 

2 . 

5 .  A " new" temperature field is found by solving the 

equat ion for conservation o f  energy in the outer 

doma in (equation 4 . 9 8 ,  page 8 7 ) . 

6 .  I f  the differnce between iterations at any po int 

in the outer doma in is " s igni ficant " ( i . e .  

temperature values have not converged ) , return to 

step 2 .  

7 .  The t ime step is incremented and steps 2 - 6 are 

repeated unt il steady state cond itions are 

obta ined . 

As d iscussed above , the equations governing the conservation 

o f  mass ( 4 . 1 0 8 , page 9 1 )  and energy ( 4 . 1 2 1 ,  page 9 3 )  in the 

inner doma in are solved at each outer doma in grid point . The 

soluti on a lgorithm for these equations i s  shown in Figure 

4 . 4 .  The a lgorithm proceeds as follows . 
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1 .  Val ues of variables ( P v ,  T, P �v ,  T f , and U 0 ) are 

passed from the main program . " Current " values of 

the inner domain vapor dens ity , temperature , and 

mo i sture content ( P i r  T, and u )  are set equal to 

the values at the previ ous t ime step . 

2 .  The equations governing the conservat ion o f  energy 

in the inner doma in ( 4 . 1 2 1 )  i s  solved to obta in 

the " new" ( current iteration )  T i values . 

3 .  " New" moi sture content ( u )  values are calculated 

from the sorpt ion isotherm rel ation ( equation 3 .  4 2 , 

page 6 0 ) . 

4 .  I f  the d i fference between iterati ons in the 

temperature ( Ti ) at any l ocat ion i s  " s igni f icant " , 

return to step 2 .  

5 .  The equation governing conservation o f  mass ( 4 .  1 0 8 , 

page 9 1 )  is  solved for the " new" inner doma in vapor 

dens ity , P iv •  
6 .  "New" mo isture content values are computed from 

the sorption isotherm relation ( equation 3 .  4 2 , page 

6 0 )  . 

7 .  I f  the d i f ference between iterat ions for the inner 

doma in vapor dens ity ( p iv ) at any grid point in the 

inner doma in is " s igni f icant" , return to step 4 .  
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8 .  I f  any " s igni fi cant " d i f ference between the 

moisture content values obta ined during the 

temperature field iterations and the vapor dens ity 

field iterations is noted , return to step 2 .  

9 .  Return to the main program . 
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5 .  PARAMETRIC STUDY 

In order to efficiently operate a drier , it is important 

to have an understanding of the a f fect of changing the 

pertinent dimens ionless parameters in the problem . In this 

section , the important dimens i onl ess parameters and a " base 

case " , typical of the drying o f  hay bales , are ident i f ied . 

The drying process for the base case is examined somewhat in 

deta i l  to provide an understanding of the drying process in 

hay bales . Then , the important dimensionless parameters are 

varied systematica l ly to determine the ir impact on the drying 

process . 

Once the e ffect o f  varying the important parameters is 

known , several conclus ions are made relat ing to the drying 

process . A di scussion o f  how these conclusions may influence 

drier operation is a l so presented . 

5 . 1 .  Identi fication And Di scuss ion Of Important 

Dimens ionless Parameters In The Analytical Model 

A review o f  the mathematical model reveal s  that there are 

15 dimens ionless parameters appearing in the problem .  To 

determine the rel ative influence of these terms , a parametric 

study was performed . Not a l l  the parameters , however ,  may 

be contro l l ed in a pract ical s ituation . Typical l y ,  one may 

alter the drying process by varying one or more o f  the fol l owing 

phys ical variables : 1 )  the inlet a i r  temperature , 2 )  the 
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relative humidity o f  the inlet a i r ,  3 )  the inlet a i r  veloc ity , 

4 )  the d imens ions o f  the overal l  porous structure , and 5 )  the 

dimens ions of an inner domain e lement . 

Examination o f  Table 3 . 1  ( page 6 3 ) reveal s  that one , or 

more , of these factors may be changed by altering any of the 

fol l owing parameters 

K o ,  
H 
fi ·  

H 
L '  R IN ' 

L 
a n d  D ' 

All o f  the parameters in this set , however , are not easily 

varied , or can only be varied over very narrow ranges . For 

example , the ratio o f  the equ i l ibrium vapor dens ity to the 

characteristic change in vapor dens ity ( P u l � p . ) is typically 

o f  order one . Phys ically , this rat io must always be greater 

than or equal to zero . Pract ically , however ,  it would be 

virtually impos s ible to l ower the equ i l ibrium vapor density 

to z ero . I n  addition , the vapor dens ity i s  a l so phys ically 

l imited in value by the fact that the relat ive humidity of 

the a ir may not exceed 1 0 0 % . The change in vapor dens ity 

must also be large enough to a l l ow the porous medium to dry 

the required amount ( typically from 3 5 % to 1 8 %  w . b . ) .  A 

typical range o f  values for thi s  parameter is from 

approximately 0 . 5  to 2 . 7 .  Thus , it i s  not practical to vary 

thi s  parameter in order to control the drying process . 

The porous structure itsel f i s  normal ly o f  fixed 

compos ition ( i . e .  the porous sol id to be dried may not be 

repl aced by another solid) . Thus , the rati o  o f  the solid 
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dens ity to the characteristic change in vapor density , p J L'. p u , 

may a l so not be varied in a practical s ituat ion to control 

the drying process ( a  range of 2 . 5  x 1 04 to 1 2 . 4  x 1 04 is 

typical ) .  In addition , neither the he ight o f  the porous 

structure nor the length of an inner domain element may be 

varied by a great amount ( for the hay bale app l i cation be ing 

investigated) due to practical l imitati ons o f  balers and the 

physical dimensions of typical hay stalks . The range o f  

permeab i l ities for a hay b a l e  i s  also constra ined . The bale 

must be porous enough to blow a i r  through , yet must be sol id 

enough to withstand the rigors of handl ing . Thus , the values 

of H I  L ( ranging from approximately 2 2 5  to 5 4 0 )  and J;:; I L 
( ranging from approximately 0 . 02 to 0 . 04 )  are a l so l imited 

by pract ical cons iderations . 

Based on the above discussion , it was dec ided to examine 

the e ffect of varying 

K o ,  R e "' ,  
H L 
R. ,  D '  a n d  R. m  

on the velocity distribut ion and the drying process . It 

should be noted that the geometric parameters relating to the 

outer doma in ( H I  R. and R I N  ) appear in both the equat ions 

determining the veloc ity f ield and those governing the drying 

processes . Thus , even though these terms may not be varied 

over a l arge range of values ( approximately 0 . 7 5 to 2 . 0  for 

H I  R and 0 .  2 to 0 .  8 for R I N ) , they may have a significant 
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impact on the drying process due to thei r  influence on the 

veloc ity field . 

The inner doma in aspect rati o  ( L/ D )  also may not vary 

over a wide range for the present app l i cation ( a  range o f  

e ffective L/D values o f  0 .  7 - 2 .  1 is cons idered "pract ical " )  . 

However ,  s ince this i s  the only geometric parameter relat ing 

to the inner doma in ,  it was desired to examine the e ffect o f  

varying thi s  parameter . A di scussion relat ing to the values 

chosen for this parameter is presented in Appendix C .  

I n  pract ice , the Kossovich number ( K o = L u t:. u i C 5 6 T ) may be 

varied by either control l ing t:. u or 6. T. This may be accompl ished 

by varying the relative humidity andjor temperature of the 

inlet a i r  stream . 

The Reynolds number ( R e  = V JN [i(; l v  ) may be varied by 

changing either the inlet a i r  vel ocity or the permeab il ity 

o f  the porous structure . For any given hay bal e , the 

permeab i l ity is fixed . Thus , in practice the Reynolds number 

is varied by changing the inlet air velocity . 

The terms H I  R ,  L l  D and R 1 N are geometric parameters . 

These terms may be varied by varying the appropriate geometric 

quant ities . 

The parameteric study was thus conducted by varying each 

o f  the f ive parameters ( K o ,  R e " ,  H I R , L I D , a n d R m ) 

separately whi l e  maintaining the rest o f  the parameters at 
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the constant values l isted in Table 5 . 1 .  The ranges o f  va lues 

o f  the f ive variable parameters l isted above are presented 

in Table 5 . 2 .  

The bal ing o f  large round hay bales typica l l y  occurs in 

a manner that produces regions of varying poros ity within the 

bal e . For thi s  reason , it was also des i red to examine a case 

where the porosity varies spatially throughout the hay bale . 

Thus , another case was run for a " typical " poros ity 

distribution within the hay bale ( Bledsoe , 1 9 8 9 ) . 

5 . 2 .  Determinati on Of Physical Quantities Appearing In The 

Mathematical Model 

As has been mentioned , the sorption isotherm relation is 

a l so very important in the drying o f  any hygroscopic porous 

sol id . For this study , the sorption isotherm o f  a l fal fa hay 

obtained from the data o f  Hi l l , Ross , and Barfield ( 19 7 7 ) was 

employed . Thi s  data i s  reproduced in Figure 5 .  1 .  The resu lting 

relations are given by a function o f  the form 

( S . l ) 

where c 1 , c 2 ,  and c 3 are constants determined from a l east square 

fit of the experimental data for three d i f ferent intervals 

o f  rel at ive humidity ( i . e .  the experimental curve was divided 

into three approximately l inear regions and a l east square 

f it was performed for each region ) . The deta i l s  o f  these 

rel at i ons are presented in Appendix D, however ,  some comments 

regarding the numerical solution are in order at this po int . 
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Table 5 . 1 .  Values O f  The Dimens ionless Parameters 
Held Constant For The Entire Parametric 
study . 

Dimens ionless Value 
Parameter 

K a 1 . 0  -
K s 

a a 4 5 0  -
a s 

H 3 . 5 9 X 1 02 -
L 

Fr 2 . 9 5 X 1 o - 2  
--
L 

P ue 1 .  6 5  --
.6. p u 

P s 0 . 5 3 5  -
P L  

P s  9 . 5 9 X 1 0 4 --
.6. p u 

Lu L 5 . 4 6 X 1 o - 5  

Lu v 5 . 8 0 X 1 0 2 

P r  0 . 7 2 
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Table 5 . 2 .  Ranges O f  Values For The Dimensionless 
Parameters In the Parametric Study . 

Parameter Base Case Range Of Values 

K o  
R e ""  

H -
R 

R I N 

L -
D 

0.80 

0.60 

c 0.40 
Q) +' c 0 0 
Q) � 0.20 +' . �  
0 L 

Value 

1 1 0  

9 . 4  

1 . 6  

0 . 4  

1 . 4  

1 - 20 (C) 
3 - 30 (C) 

1 2 3 4-

2 - 25 (C) 
4 - 35 (C) 

1 0  - 4 0 0  

4 . 7  - 1 8 . 8  

0 . 7 5 - 2 . 0  

0 . 2  - 0 . 8  

0 . 7  - 2 . 1  

0. 00 +-----.--.,-----.------,,.---.-----,--...---,--.--, 0.0 0.2 0.4- 0.6 0.8 1 .0 
Relative H u mid ity 

F igure 5 .  1 .  Sorpti on I sortherm For Al fal fa Hay 
( Reproduced From Hil l , Ross and Barfield , 
1 9 7 7 ) . 
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There was cons iderabl e  d i f ficulty in obtaining convergence 

of the numerical model during the prel iminary stages of th is 

proj ect . Berger ( 1 9 7 3 ) , in model l ing a s ingl e inner doma in 

element , a l so had this d i f ficulty . He was never abl e  to obta in 

convergence for real istic values of the convection 

coeffic ients ( h and hm) ·  The d i f f iculty apparently l ies in 

the fact that the inner doma in vapor dens ity , temperature , 

and mo i sture content ( p t v , T i , and u )  a l l  appear in the inner 

doma in equations . Values for any two o f  the three variables 

( for the present study , the vapor dens ity and temperature 

were chosen ) are determined from the governing equat ions and 

the third (moi sture content in the present study ) is obta ined 

by substitution of these two variables into the sorpt ion 

i sotherm rel ation . Thus , values o f  the th ird variable " l ag " 

beh ind during the iterative solution process s ince previous 

iteration values of the other variables are used in the 

sorpt ion isotherm relation . The sorpt i on isotherm is 

typically very steep for condit ions occuring at the start o f  

most drying processes . The " l ag" o f  information i s  thus 

critical and l eads to convergence problems . 

To provide more current information during the solut ion 

process , equation 4 . 1 0 3  (page 9 0 )  was used to express the 

temporal derivat ive of moisture content in terms of inner 

doma in vapor dens ity and temperature . The deta i l s  o f  the 
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numerical formulation have a lready been presented and w i l l  

not b e  discussed further except t o  say that thi s  procedure 

averted the convergence problems described above . 

Another aspect o f  the model that should be menti oned is 

the determination o f  the convection coe f ficients in the 

mathematical model . A correlation ( Bird , Stewart , and 

Lightfoot , 1 9 6 0 )  for heat trans fer in packed beds was used 

to determine the convect ive heat transfer coe f f i c ient between 

the sol id and the air . This correlation is presented in 

Append ix A and may be written as 

where : 

and , 

j H - C h i l t on - C o l b u r n  F a c t o r  

a 1 ,  C 1 • c o n s ta n ts , 

a - P a r t i c l e  S u r f a c e  A r e a  

P e r  B e d  V o l u m e 

h . ( Pr ) 2 ! 3  p a C pa V 

E m p i r i ca l  C o e f f i c i e n t  W h i ch D e p e n d s  
w -

O n  P a r t i c l e  S h a p e  ( . 9 1  f o r  c y l i n d e r s ) 

Pr • P r a n d t l N u m b er = 
v 
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The Chi lton-Colburn anal ogy for heat and mass trans fer was 

then used to obtain a value for the mass trans fer coe f f icient 

( Bird , Stewart , and Light foot , 1 9 6 0 ) . The deta i l s  of these 

correl ations are also provided in Appendix A .  

Values o f  the porosity for both the inner and outer doma ins 

were a l so required . The measurements o f  Ohm , Vogtl ander , and 

Kessen ( 1 9 7 1 }  concerning the dens ity o f  hay were used to 

determine the poros ity of an inner doma in el ement . Their 

measurements indicated that the solid dens ity o f  al fal fa hay 

is 1 5 0 0  ( kgjm3 ) ,  whi l e  the bulk dens ity is approximately 5 3 5  

( kgjm3 ) .  The poros ity is there fore given by 

• 1 P b  0 . 64 .  ( 5 .  2 )  E i P s  

The outer domain porosity was obta ined us ing a 

representat ive dry matter dens ity measurement ( Bl edsoe and 

Hitch , 1 9 8 9 }  together with the bulk dens ity of an inner doma in 

element given above ( note : the dry matter dens ity represents 

the mass of sol id hay matter in a given volume of the hay 

bal e ) . The outer doma in porosity is there fore given by 

• E 1 _ P dm • 
P b  ( 5 . 3 )  

A dry matter dens ity o f  approximately 1 1 2  ( kgjm3 ) was 

ascerta ined to be representative o f  a " typical " hay bal e . 

The porosity for the base case in the parametric study ( and 

a l l  other cases unless otherwise stated ) is given by equati on 

5 . 2  as 0 . 7 9 . 
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The permeabi l ity and the coefficient o f  the Forsche imer 

term were both calculated from a rel ation determined 

experimentally by Bledsoe and Hitch ( 19 8 9 ) . These relat ions 

are discussed in Appendix E .  The permeabi l ity i s  given by 

• 1( ( E . l ) 

With a uni form dry matter dens ity o f  1 1 2  ( kgjm3 ) ,  the 

permeab i l ity is 1 . 0  x 1 o -8 (m2 ) .  

The relationship describing the coeffic ient o f  the 

Forsche imer term may be written in the form 

b . = l 0 7 . 6 e
0

.
0343 p "" (��) ( £ . 2 ) 

With a dry matter dens ity o f  1 1 2  ( kgjm3 ) ,  the coe f f icient o f  

the Forscheimer term is given b y  the above rel at ion as 4 6 . 6  

( kgjm4 ) . 

Fina l ly , values o f  the d i f fusion coefficients , D : and D � 

were a l so estimated . It was observed that the solut ion field 

was not sens itive to values o f  D � for the range o f  parameters 

studied due both to the magnitude of the mo isture content 

gradient and the magnitude of the l iqu id conductivity . Chen 

and Pei ( 19 8 9 )  have shown that the bound l iquid conduct ivity 

may be expressed as 

( 5 . 4 )  

where : 

D Lo • C o n s t a n t , 

1 1 0  



u : - E q u i l i b r i u m  m o i s t u r e  c o n t e n t , 

U ms - M a x i m  u rn  s o r p t i o n a l  m o i s tu r e  c o n t e n t ,  

and , 

E a  • A c t i v a t i o n  e n e r g y  o f  l i q u i d . 

Representative values for the constant Dz0 Were presented 

by Chen and Pe i ( 19 8 9 )  for wool ( 0 . 0 6 2 ) , brick ( 0 . 0 9 8 ) , and 

corn ( 0 . 0 0 0 1 ) . An intermediate value o f  1 . 0  x 1 0 - 3  (m2j s )  was 

used in the present study as no data was ava i l able for a l fa l fa 

hay ; however , as stated above , the solut ion field was not 

sensitive to this value . The activat ion energy , E a  is the 

energy necessary to vapori z e  the bound water . The value o f  

the heat o f  vaporization for pure water was used in the present 

study . 

The vapor d i f fusion coe f f ic ient , n :  was determined from 

the data o f  Fair and Lerner ( 19 5 6 )  for the d i f fusion of water 

vapor through air . The d i fference between the initial and 

equ i l ibrium temperatures was sma l l  ( 5 ° C )  for the cases 

examined . Thus , a constant value of 2 . 8  x 1 0- 5  (m2j s )  was 

used for D� in all cases . S ince a constant value o f  D �  was 

used , D u was equal to one for a l l  cases . 

5 . 3 .  D iscussion Of The " Base Case" For The Parametric 

Study 

Before performing a comparison o f  the various cases in 

the parametric study , it is instructive to begin by examining 
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the drying process for the base case . The values used for 

all parameters for the base case are l i sted in Table 5 . 1 , 

page 1 0 5 , and Table 5 . 2 ,  page 1 0 6 . A grid refinement study 

was performed to determine an acceptabl e  mesh s i z e  as wel l  

a s  a sui table t ime step . The results o f  thi s  exercise resulted 

in us ing a 1 6  by 1 6  mesh s i z e  for the outer doma in , a 1 0  by 

1 mesh s i z e  for the inner doma in , and a t ime step o f  

approximately 7 . 5  ( 3 0  minutes ) .  The solution o f  a " typica l "  

case requ ired approximately 3 hours o f  CPU t ime on the 

Univers ity o f  Tennessee VAX Cluster.  

The total mo i sture content for the overal l  porous structure 

is def ined as 

l 
V O D 

f u d V 
V o o  

( S .  S )  

This moi sture content represents the average mo i sture content 

for an entire bale based on the total amount o f  l iquid present . 

The drying front is de f ined to be the region in wh ich the 

moi sture content varies between 0 . 0 5 and 0 . 9 5 .  Thus , the 

drying front is defined as the t ime-varying region in space 

where most of the drying occurs . 

Figure 5 . 2  shows a plot o f  total mo isture content as a 

function o f  t ime . This f igure shows that the moisture content 

o f  a bale decreases very rapidly at the start o f  the drying 

process and then decreases more s l owly as drying cont inues . 

At a nondimensional t ime o f  approximately 2 3 2 0  ( 6 . 5  days ) , 

the drying process i s  completed and equ i l ibrium is reached . 
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u b  

Figure 5 . 2 .  

1 .0 

O.B 

0.6 

0.4 

0.2 

0.0 0 1 000 2000 3000 4-000 
t 

Variation O f  Total Moisture Content In A 
Bal e  With Time For The Base Case . 

S ome insight into the shape o f  this drying curve may be 

obta ined by examining Figure 5 .  3 .  This f igure shows a comb ined 

plot o f  the streaml ines for the flow through a bale and the 

velocity pro f i l e  along the boundary of the bal e . As expected , 

the velocity profile shows that most o f  the inlet a i r  stream 

exits through the bottom port ion of the outer surface o f  the 

bal e . Thus , the lower region o f  the bale i s  exposed to a 

relatively large flow rate o f  hot dry a i r  and tends to dry 

qui ckly . The upper portion o f  the structure , however ,  is 

exposed to a smal ler volume o f  a i r  per unit t ime and there fore 

dries at a s l ower rate . The result i s  that the bale dries 

" quickly" at the start of the drying process when the bottom 

portion o f  the bale i s  being dried . However , as the drying 

proceeds , the moisture content in the l ower region of the 
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bale approaches z ero and the processes occuring in the upper 

portion of the bale begin to dominate . Thus , the overal l  

drying rate for the bale decreases with increas ing time . 

1 .0 -.-------------,-, 

0.8 

0 .6  

z 
0.4 

0.2 

0.0 -t--'-r'--t--'-r'-.-.-...--.-,--.---1f----.'---. 0.0 0.2 0.4 0.6 0.8 1 .0 
R 0.0 v 0.2 

Figure 5 . 3 .  Air Flow Distribution I n  The Bal e  For 
The Base Case . 

This trend i s  also evident in F igures 5 .  4 and 5 .  5 .  Figure 

5 . 4  shows the progress ion of the " drying front " through the 

bal e with t ime . At the start o f  the drying process , the front 

is very thick , as shown in Figure 5 . 4 a .  Aga in , this is due 

to the fact that a relat ively large quantity o f  hot dry a i r  

i s  f l owing past the inner doma in elements in this region o f  

the bal e . Thus , both the potential for mass trans fer and the 
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Figure 5 . 4 .  Drying Front Location Shown With Lines O f  
Constant Moisture Content F o r  The Base 
Case At D i fferent Times . 
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Figure 5 . 5 .  I sotherms Shown Within The Bal e  For The 
Base Case At 
D i fferent Times . 
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velocity ( which enhances convection) are greater in this area 

than they are in the uppermost regions of the bal e . As drying 

proceeds , the " dry " s ide of the front moves rap idly ( due to 

the high potential for mass trans fer and the high air 

vel ocity ) . The "wet " s ide moves more s l owl y ,  however , s ince 

it is moving into a region in the bale where the a i r  veloc ity 

is l ower . The result is that the drying front tends to become 

th inner with t ime , and the drying process proceeds more s l owly 

as shown in Figure 5 . 4 .  

Another aspect o f  the drying process i s  i l lustrated in 

Figure 5 . 5 .  As the air flows through the bal e , it trans fers 

thermal energy to the inner doma in elements , wh ich causes 

mass trans fer to occur . Thus , the air stream becomes cooler 

( recal l  that as the dimens ional temperature decreases the 

nondimens i onal temperature increases ) and p icks up more and 

more mo i sture as it flows through the outer domain . I f  the 

a i r  stream picks up enough moisture ( and coo l s  suffic iently ) , 

the vapor dens ity in the a i r  stream approaches that o f  the 

inner doma in elements ( or approaches the saturation dens ity ) . 

Thus , less and less mass trans fer occurs , such that the a ir 

stream l oses less energy to the inner domain . The result is 

that the temperature decreases through the drying front and 

then stays essentially constant in the wet region o f  the bal e . 

Further ins ight into the drying process may be ga ined 

from examination of Figure 5 .  6 .  Thi s  figure shows the 

t ime-varying moisture content , u ,  at axial l ocations o f  0 ,  
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0 . 5 4 ,  and 1 . 0  at a radial l ocation o f  0 . 7 4 .  The moisture 

content at the bottom of the bal e  ( z=O ) decreases very qu ickly 

at the start of the drying process and reaches equil ibrium 

at a dimens ionless t ime of approximately 1 9 4  ( 1 . 1 days ) . At 

a point approximately hal f  way up the length o f  the bale ( at 

z = 0 .  5 4 ) , the drying process is displ aced in time and 

equ i l ibrium conditions are reached at a dimens ionless t ime 

o f  approximately 5 4 0  ( 1 . 5  days ) . 

Figure 5 . 6 .  
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Thi s  delay is explained by once again considering the 

streaml ine and veloc ity di stributions in the bal e . As shown 

in Figure 5 .  3 ,  the drying inlet a i r  travel s  a shorter distance 

at a greater veloc ity near the bottom of the bal e . Thus , the 

tendency is to dry faster in this l ower regi on . At an axial 
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l ocation o f  0 . 5 4 ,  the flow path fol l owed by the a ir is l onger 

and the velocity of the air is l ower . Thus , the air picks 

up a greater amount of moisture , which results in a higher 

vapor dens ity and less potential for mass trans fer . Hence , 

the drying is somewhat delayed in the upper regions o f  the 

bal e . At the top of the bale ( z= 1 ) , the f l ow path is l onger 

sti l l , and the a ir p icks up so much moisture that the l ocal 

mass trans fer rates in this region o f  the bal e  i s  quite l ow 

for dimensionless times l ess than 1 1 6 0  ( 3 . 2  days ) . As the 

moisture content approaches z ero in the l ower regions o f  the 

bale , the a i r  does not p ick up as much mo isture . The drying 

process then begins in the top region o f  the bal e , and 

equ i l ibrium is reached at a t ime o f  approximately 2 6 1 0  ( 7 . 3  

days)  . 

5 . 4 . The E f fects O f  Varying The Reynolds Number On The 

Drying Proces s 

A compari son o f  the drying processes at d i f ferent Reynolds 

numbers is presented in Figure 5 .  7 .  As expect ed , an increase 

in the Reynolds number results in a decrease in the overal l  

drying t ime for the global structure . 

For the base case ( Re = 9 . 4 ) , equ i l ibrium i s  reached at 

a nondimens i onal time of approximately 2 3 2 0  ( 6 . 5  days ) . 

Doubl ing the Reynolds number to 1 8 . 8  results in a drying t ime 

o f  approximately 9 7 0  ( 2 . 7  days ) . This represents a reduction 

in drying t ime o f  approximately 5 8 % . Halving the Reynolds 

number to a value of 4 .  7 ,  however , results in a marked increase 
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Figure 5 . 7 .  
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in the drying t ime . The numerical solution was stopped at 

a t ime of approximately 3 6 8 0  ( 1 0 . 2  days ) ; at which time the 

bale sti l l  has a moisture content of approximately 0 . 0 6 .  By 

contrast , the base case reaches this same moi sture content 

at a t ime o f  approximately 1 4 5 0  ( 4 . 0  days ) and the higher 

Reynolds number case at approximately 5 8 0  ( 1 . 6  days ) . Thus , 

the drying t ime i s  a strong funct i on o f  the Reynolds number . 

The nondimens ional vel ocity distributi ons for these two 

cases are the same as that o f  the base case s ince no parameters 

a f fecting the nondimens i onal velocity were changed . The 

streaml ines and the velocity pro f i le al ong the vert ical s ide 
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of the bale are thus identical to that shown in Figure 5 . 3  

( p .  1 1 4 ) . The convection coe f f icients , h and hm , however ,  are 

both functions of the Reynolds number . As the Reynolds number 

increases , both o f  the convection coefficients a l so increase . 

Thus , at a higher Reynolds number , heat i s  convected to and 

mass is convected away from the inner doma in elements more 

readily . This results in a faster moving drying front and 

l ower drying t imes . Th is trend i s  i l lustrated in Figures 5 . 8  

and 5 . 9 .  As shown in these f igures , the drying processes for 

Reynolds numbers of 4 . 7  and 1 8 . 5  proceed in the same manner 

as that of the base case ; that is , the front is init i a l ly 

rather thick and then becomes thinner with increas ing t ime . 

As has been noted , the d i f ference between these two cases 

l ies in the speed with which the " front " moves through the 

bal e . Figures 5 . 8 c and 5 . 9 c show the drying front locat ions 

at a t ime of 7 5 0  ( approximately 2 days ) for Reynolds numbers 

of 4 . 7  and 1 8 . 8 ,  respectively . For a Reynolds number o f  4 . 7 ,  

approximately hal f  the bale is " dry" , whi l e  the front almost 

passes completely through the strucuture for the case with 

a Reynolds number o f  1 8 . 8 .  From F igures 5 . 8  and 5 . 9 ,  one 

not ices that at earl ier t imes the drying occurs over a greater 

volume at higher Reynolds numbers . Agai n ,  thi s  is due to the 

l arger convective coefficients and volumetric f lowrate o f  a i r  

in the outer doma in a t  higher Reynolds numbers . 
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One interesting d i fference between the drying processes 

at d i fferent Reynolds numbers may be seen by examining the 

temperature profiles for these cases , which are shown in 

Figures 5 . 1 0 and 5 . 1 1 .  For the l owest Reynolds number case 

o f  4 . 7 ,  the temperature decreases through the drying front 

and then increases aga in in the wet region . Thi s  may be 

exp l a ined by noting that the air is cool ed in the drying front 

bel ow the intial temperature o f  the sol id structure . Once 

the a i r  stream passes through the drying front , it no l onger 

experiences thi s  cool ing . In fact , j ust the oppos ite occurs . 

The solid structure which is then warmer than the a ir stream , 

gives up energy to the f l owing a i r . Thi s  results in a warming 

of the a i r  stream . As the f l ow path o f  the a i r  stream beyond 

the region where drying occurs increases , this e f fect becomes 

more pronounced . S ince the front does not progress as far 

into the porous structure at l ower Reynolds numbers , the path 

length taken from the wet s ide of the drying front to the 

structure boundary is l onger . Thus , a warming trend is 

exhibited at a Reynolds number o f  4 .  7 .  The drying front 

extends almost a l l  the way through the global structure for 

the higher Reynolds number of 1 8 . 8 .  Thus , no region exists 

in whi ch the air stream i s  reheated at this higher Reynolds 

number . 
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5 . 5 .  The E f fects Of Varying The Overal l Aspect Ratio Of 

The Bale On The Drying Process 

The next parameter to be invest igated was the aspect ratio , 

H/R , o f  the bale . A change in this rati o  has a d irect influence 

on the velocity distribution in the outer domain . This e ffect 

is shown in Figures 5 . 1 2 and 5 . 1 3 for aspect ratios of 2 . 0  

and 0 . 7 5 ,  respectively . 

For an aspect ratio o f  2 . 0 ,  the res i stance to f l ow in the 

axial direction is large compared to that in the rad ial 

direction . The result i s  that most o f  the incoming flow o f  

a i r  exits from the bottom hal f o f  the bal e . A dramat ic 

d i f ference i s  seen for H/R equal to 0 . 7 5 .  Here the axial 

resistance to f l ow i s  sma l l er than the radial res i stance to 

flow .  The result i s  a virtua l ly uni form radial vel ocity 

pro f i l e  over the entire height o f  the outs ide surface o f  the 

bale . Hence , inner doma in elements throughout the bale are 

exposed to h igher a i r  flow velocities which results in 

increased heat and mass trans fer . Thus , enhancement o f  the 

drying process by decreas ing the aspect ratio , H/R ,  of the 

bale is to be expected . 

This trend i s  seen F igure 5 . 1 4 ,  whi ch shows the total 

moisture content of a bale versus t ime for the range o f  aspect 

ratios examined in thi s  study . Decreas ing the aspect rat io 

from 1 .  6 ( base case )  to 0 .  75 results in an approximate decrease 

of 6 6 %  in the drying t ime . Increasing the aspect ratio to 
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a value o f  2 .  0 results in a s igni ficant increase in the drying 

time . Aga in , the numerical solut ion was stopped be fore 

equ i l ibrium conditions were obta ined . At a t ime of 3 6 8 0  

( approximately 1 0 . 2  days ) , the mo isture content was about 

0 . 0 2 .  Thi s  same moisture content is obta ined at a t ime o f  

approximately 1 9 4 0  ( 5 . 4  days ) for the b a s e  c a s e  ( H/R = 1 . 6 ) 

and a t ime o f  approximately 6 2  0 ( 1 .  7 day s )  for an aspect ratio 

o f  0 . 7 5 .  

Figures 5 . 1 5 and 5 . 1 6 show the e f fects o f  varying the 

aspect ratio on the mo isture content distribut ion with in the 

bale structure . For an aspect ratio o f  0 .  7 5 , the drying front 

occupies approximately one-ha l f  o f  the volume o f  the bale at 

a t ime of 7 5  ( 5  hours ) . At this same t ime , the drying fronts 

in bales with aspect ratios of 1 .  6 and 2 .  0 occupy much smal ler 

portions o f  the total volumes of these bales . At a t ime o f  

7 5 0  ( 2  . 1  days ) , drying is almost completed f o r  an aspect rat io 

o f  0 .  7 5 ,  whi l e  a s igni ficant portion o f  a bale i s  st ill  dry ing 

at this t ime for an aspect rati o  of 2 . 0 .  

The temperature pro f i l es are shown in Figures 5 . 1 7 and 

5 .  1 8 . One sees that for the fastest drying case ( H/R = 0 .  7 5 )  , 

the temperature decreases a l ong the f l ow path throughout the 

entire bale . As was the case for the drying processes at 

d i f ferent Reynolds numbers , however , the s l owest drying case 
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( H/R = 2 . 0 ) exhib its a region o f  increas ing temperature . The 

temperature reaches a minimum value , whi ch is s l ightly greater 

than 1 . 4 ,  and then the a i r  warms again to approximately 1 . 3 .  

5 . 6 .  The E ffects Of Varying The Inlet Radius Width On The 

Drying Process 

The third parameter to be varied was the dimens ionl ess 

air inlet radius (RrN ) . S ince the Reynolds number i s  kept. 

constant , increas ing the nond imens ional inlet radius results 

in an increased volume of air flowing through the bale , wh ile 

decreasing the inlet radius decreases the volumetric flow 

rate o f  a i r . Thus , a decrease in drying t ime is expected as 

the a ir inlet radius is increased . Figure 5 . 1 9 reveal s  that 

th is is indeed the case . Doubl ing the inlet radius , RrN ' 

from 0 . 4  to 0 . 8  results in a decrease o f  approximately 6 5 %  

i n  the drying t ime from the base case . A case with an inlet 

radius of 0 .  2 was also examined . Thi s  case requ ired 

cons iderable computat ional t ime and was terminated at a 

nond imensional t ime of 2 7 1 0 ( 7 . 6  days ) . At th is time , the 

total moi sture content o f  the bale i s  approximately 0 . 2 1 3 . 

The same moi sture content is reached at a nondimens ional t ime 

of approximately 7 1 5  ( 2 . 0  days ) for the base case and 2 5 2  

( 0 . 7  days ) for a n  inlet radius o f  0 . 8 .  Thus , a cons iderabl e  

increase in the drying t ime i s  observed when the air inlet 

radius is decreased . 
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S ome physical insight into these results may be ga ined 

from examinati on of Figures 5 . 2 0 and 5 . 2 1 .  ( Note that there 

is a d i fference in the veloc ity scales between these two 

figures . )  These figures show the streaml ines for the air 

flow through the bale and the radial vel ocity pro f i l e  a l ong 

the outer boundary o f  the bale . It may be seen that the 

velocities are much greater throughout the outer doma in in 

the bale for the larger air inlet rad ius . I n  addit ion , it 

is easily seen that the air travel s  a shorter path to reach 
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the exit through much o f  the bale . Thus , increas ing the inlet 

s i z e  ( at constant Re ) not only increases the amount of air 

flow ( and , hence , the local a i r  vel ocities ) , but a l so shortens 

the l ength o f  the flow path through the l ower regions of the 

ba le . Both o f  these factors enhance the drying o f  the bale 

and result in decreased drying t imes . 

Thi s  e f fect is also evident in Figures 5 . 2 2 and 5 . 2 3 ,  

wh ich show the moisture content profiles at d i f ferent t imes 

for the f l ows with dimens ionl ess air inlet rad i i  o f  0 . 8  and 

0 .  2 ,  respectively . Comparison o f  the mo isture content 

distribut ions at a dimensionless t ime o f  7 5  ( 5  hours ) reveals 

that the drying front for RrN equal to 0 . 8  i s  very thick 

compared to that for 0 . 2 .  This indicates that drying occurs 

thoughout a much larger volume in the former case . Aga in , 

this is due to the increased amount o f  a i r  f l owing through 

the outer doma in for an a i r  inlet radius o f  0 . 8 .  

In both cases mentioned above , the drying front becomes 

thinner as it passes through the sol id . This narrowing o f  

the drying z one , however ,  is much less pronounced , however ,  

for an a i r  inlet radius o f  0 . 2 .  This i s  due to the fact that 

drying occurs over a relatively smal l  volume at the start o f  

the drying process because o f  the l ower velocities and 

convective coe f f icients for thi s  case . Thus , the front i s  

init i a l ly much thinner and the decrease in the thickness o f  

the drying z one i s  there fore less pronounced . 
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Marked d i fferences between the isotherm distribut ions for 

the f l ows with dimens ionless a i r  inlet rad i i  of 0 . 8  and 0 . 2  

may a l so be observed . Figures 5 .  2 4  and 5 .  2 5  show the isotherm 

distributions for these cases at three dimens ionless t imes . 

Figure 5 . 2 4 reveals that the air temperature decreases as the 

a i r  f l ows through the bale for an inlet radius o f  0 . 8 .  This 

occurs in some , but not a l l , regions o f  the bale for an a ir 

inlet radius o f  0 . 2 .  As shown in Figure 5 . 2 5 a , for an a i r  

inlet radius o f  0 . 2  there is a region in the b a l e  where the 

air stream temperature increases . This e ffect is greater for 

thi s  case than for any other examined ; there fore , these results 

will be di scussed in greater deta i l  below . Figure 5 . 2 6 shows 

the axial temperature at a f ixed radial l ocat ion ( r  = 0 . 9 6 )  

and t ime ( t  = 7 5 ) . 

figure . 

Two regions may be ident i f ied in this 

In region 1 ,  the air stream temperature i s  approximately 

constant . In region 2 ,  the a i r  stream is heated ( i . e .  the 

nondimensional temperature decreases ) . The change in mo isture 

content across this region is very smal l .  The mo isture content 

is approximately 0 . 9 9 at the bottom o f  the bal e ( z= O )  and 

approximately 1 .  0 at the top o f  the bale ( z=1 ) . The occurrence 

of two phys ical ly-dist inct regions in thi s  f l ow may be 

exp l a ined by cons idering the l atent heat e ffects . 

As stated previous ly , the l atent heat ing o f  l iqu id in the 

inner domain acts to cool the a i r  stream . When the a i r  stream 
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cool s ,  there i s  also some sensible heating wh ich tends to 

increase the ( dimensional ) air temperature s ince the solid 

is int i a l ly at a higher temperature than the a i r  stream . 

Thus , there are two competing e ffects whi ch act to change the 

a i r  temperature : 1 )  the l atent heating o f  the l iquid which 

tends to decrease the ( d imens ional ) a i r  temperature and 2 )  

the sens ible heat ing which tends to increase thi s  temperature . 

In region 1 ,  the l atent heating dominates the sens ible heat ing 

and the a ir temperature rema ins approximatel y  constant . As 

the moisture content approaches unity , however , the amount 
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o f  l atent heat ing decreases and the sens ibl e  heating begins 

to dominate . 

s l ightly . 

Thus , in region 2 ,  the a ir stream is warmed 

5 . 7 .  The Effects Of Varying The Kossoyich Number On The 

Drying Process 

Another parameter varied was the Kossovich number . Th is 

term represents the ratio o f  the latent heat neces sary for 

vapori z ing the l iquid to the sens ibl e heat required to warm 

the solid structure . Figure 5 . 2 7 shows the variation of the 

total moisture content of the bale with t ime for the range 

of Kossovich numbers examined . This f i gure shows that 

decreas ing the Kossovich number decreases the total drying 

time . For a Kossovich number o f  1 0 , the drying t ime is 

approximately 1 1 0 0  ( 3 . 1  days ) ; which is a 5 3 %  decrease from 

the base case t ime o f  2 3 2 0  ( 6 . 5  days ) . Equ i l ibrium conditions 

were not obtained for a Kossovich number of 4 0 0 ; however ,  a 

signi ficant increase in drying t ime may be observed for this 

case in Figure 5 . 2 7 .  At a t ime o f  approximately 3 7 4 0  ( 1 0 . 4  

days ) , the moi sture content for a Kossovich number o f  4 0 0  i s  

approximately 0 . 0 6 .  Thi s  same mo isture content i s  reached 

at t imes o f  approximately 1 5 0 0  ( 4 . 2  days ) for a Kossovich 

number o f  1 1 0  ( base case)  and 6 9 0  ( 1 . 9  days ) for a Kossovich 

number o f  1 0 . 

This trend may be explained from energy cons iderat ions . 

The Kossovich number appears in the inner doma in energy 

equation ( 3 . 1 0 1 , p .  5 9 ) as a coe fficient o f  the l atent energy 
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term . Thus , l ower values o f  the Kossovich number result in 

a smal ler decrease o f  the inner doma in temperature . The 

higher inner domain temperatures result in higher temperatures 

for the air stream f l owing through the outer doma in . Thus , 

the a i r  may hold more mo isture before it becomes saturated 

and drying may take place over a larger region in the bal e . 

This i s  shown in F igures 5 . 2 8 , 5 . 2 9 , 5 . 3 0 ,  and 5 . 3 1 which depict 

the drying front and isotherm di stributi ons throughout the 

bale for Kossovich numbers of 10 and 4 0 0 . 

Early in the drying process ( at about 5 hours ) , the drying 

front extends most o f  the way through the bale for the l owest 

Kossovich number case of 1 0 . For a Kossovich number of 4 0 0 , 
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the drying front does not penetrate as far into the bale at 

a g iven t ime . The isotherm di stributi ons are also qu ite 

dif ferent for Kossovich numbers of 10  and 4 0 0 . For a Kos sovich 

number o f  1 0 , the nondimens ional temperature does not rise 

above one . This indicates that the a i r  does not cool below 

the initial temperature in this f l ow .  Again , thi s  is due to 

the fact that the inner domain temperatures are greater 

result ing in higher a i r  temperatures in the outer domain . 

For higher Kossovich numbers , the inner doma in becomes cooler 

which results in a greater cool ing o f  the air stream in the 

outer doma in . At a dimens ionless time o f  7 5  ( 5  hours ) , the 

nondimens ional temperature of the air stream rises to a maximum 

value o f  approximately 2 .  0 ( hence the dimens iona l temperature 

reaches a minimum of approximately 15 o c ) for a Kossov ich 

number of 4 0 0 . 

It may also be noticed that for a Kossov ich number o f  

4 0 0 ,  a region o f  increas ing temperature exists . Th is occurs 

because as the a i r  cool s and picks up mo isture , the rel ative 

humid ity increases . Thus , the potent ial for mass transfer 

is l owered and mass trans fer may even cease to occur . Thi s  

e f fect i s  more pronounced a t  higher Kossovich numbers where 

the cool ing of the a i r  stream is greater . 

5 . 8 .  The Ef fect Of A Nonuni form Poros ity Distribution In 

The Outer Domain On The Drying Process 

The l ast case examined i s  one in which the structure o f  

the b a l e  in the outer domain has a nonuni form di stribut ion 
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o f  sol id matter which results in a nonuni form poros ity . A 

" typica l "  variation o f  dry matter dens ity in a hay ba l e  is 

shown in F igure 5 . 3 2 ( Bledsoe , 1 9 8 9 ) . There is a " l ow" 

dens ity core ( region 1 )  surrounded by a "high" dens ity region 

( region 3 )  sandwiched between two " intermediate" dens ity 

regions ( regions 2 and 4 ) . Each region i s  assumed to have 

a constant dry matter dens ity and , hence , a constant porosity . 

Thi s  type o f  di stribut ion results from the way the hay is 

baled . 

Figure 5 . 3 2 .  
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Figure 5 .  3 2  also shows the streaml ines for the f l ow through 

the bale and the radial velocity pro f i l e  a l ong the outer 

boundary of the bal e . This f igure reveals that the l ower 

res istance to f l ow in the core a l l ows much o f  the a ir to f l ow 

around the high dens ity material in region 3 and exit through 
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the uppermost portion o f  the outer surface o f  the bale . Thus , 

the vel ocity di stributi on a long the outer boundary shows a 

decrease in the exit veloc ity in region 3 compared to that 

in regions 2 and 4 .  Thus , there is less a i r  f l owing , but 

more l iquid to be removed in region 3 than in the other regions 

of the bal e . Consequently , it is anticipated that this reg ion 

wi l l  be the s l owest region to dry . 

Examinat ion o f  Figures 5 . 3 3 and 5 . 3 4 reveal s  that this 

is indeed the case . Early in the drying process ( at t=7 5 ,  

whi ch corresponds to 5 hours ) , the front is relat ively thick . 

However , the l ocation and shape of the drying front are 

dramatically influenced by the nonuni form distribut ion of dry 

matter in the bal e .  Instead o f  extending across the entire 

radius o f  the bale as it did for the uni form poros ity 

di stribut ion , the front tends to curve around the high dens ity 

material in region 3 .  S igni ficant amounts o f  a i r ,  however , 

flow through regions 1 and 4 which causes the drying front 

to migrate through these regions . As the a i r  fl ows through 

the h igh poros ity material in region 1 ,  it picks up a 

cons iderable amount o f  moisture . This results in a reduced 

rate of mass transfer in region 2 .  Thus , the front does not 

penetrate far into region 2 early in the drying process . The 

amount o f  a i r  f l owing through reg ion 3 i s  l ower than that 

flowing through regions 1 ,  2 ,  and 4 which results in the 

tendency o f  the drying front to curve around thi s  region . 
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As shown in Figures 5 . 3 3b ,  5 . 3 3 c ,  5 . 3 4 b ,  and 5 . 3 4 c , when 

the drying process progresses , the front passes completely 

through regions 1 and 4 ,  and l ess moi sture i s  picked up by 

the a ir f l owing through these regions . Thi s  results in 

increased drying in both regions 2 and 3 .  However , the drying 

process progresses faster in region 2 than in region 3 due 

to the greater amount o f  air f l owing in thi s  region . Thus , 

region 2 dries faster than region 3 .  At a dimens ionless t ime 

o f  approximately 7 5 0  ( 2 . 1  days ) , the drying front is l ocated 

ent irely in region 3 ,  and a l l  other regions have reached 

equ i l ibrium cond itions . 

The drying process for thi s  case is also portrayed in 

Figure 5 . 3 5 .  This shows the variation o f  the total moi sture 

content of the bale with t ime . As in the uni form poros ity 

cases , drying occurs at a higher rate at the start of the 

drying process and then decreases with increas ing t ime . The 

bal e  i s  " dry " at a t ime o f  approximately 1 3  6 0  ( 3 .  8 day s )  . 

Aga in , the decreasing rate o f  the drying process is due to 

the fact that the drying front progresses into regions with 

lower a i r  vel ocities as t ime increases . 

5 . 9 .  The Effects Of Varying The Characteristic Aspect 

Ratio Of An I nner Domain Element On The Drying Process 

The next parameter to be varied was the inner doma in aspect 

rati o  ( L/ D ) . This rati o  was approximately 1 . 4  for the base 

case and was varied between 0 . 7  and 2 . 1  (A discussion o f  the 
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range o f  values chosen for this parameter i s  presented in 

Appendix C) . For this range o f  values , however , no s igni ficant 

change in the solution field i s  observed ; that i s , a change 

of less than 1% over the range o f  values examined is observed . 

5 . 10 .  Summary O f  Conclus ions 

S everal general conclus ions may be drawn from the results 

o f  the parametric study . These are : 

1 .  An increase in the Reynolds number results in a 

decrease in the overal l  drying t ime of the bal e . 
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2 .  An increase in the dimensionless inlet radius 

results in a decrease in drying t ime o f  the ba l e . 

3 .  An increase in the aspect rat io o f  the bale ( H/R) 

results in an increase in drying t ime . 

4 .  An increase in the Kossovich number ( Ko )  results in 

an increase in the drying t ime of the b al e .  

5 .  Variation o f  the inner domain aspect rat io ( L/ D )  

over a " practica l "  range o f  0 .  7 - 2 . 1  has a negl igible 

e ffect on the drying process in the bal e . 

6 .  The speci fic veloc ity distribut ion o f  the a i r  

f l owing through the outer doma in p l ays a s ign i ficant 

role in determining the drying behavior o f  the bal e . 

7 .  The physics o f  the drying process are such that the 

drying rate is initially "high" , but decreases with 

t ime . 

5 . 1 1 .  Impl i cations Of The Results For The Practical 

Operation Of Driers 

Each o f  the above conclusions has a direct impact on the 

efficient uti l i z ation o f  a drier . Thus , the relat ionship o f  

the results t o  drier operation wil l b e  discussed . 

Assuming the drier is empl oyed to dry a medium o f  fixed 

compos ition ( material ,  poros ity , permeab i l ity , etc . ) ,  a 

Reynolds number variation i s  obta ined in practice by varying 

the a ir inlet vel ocity . To obtain such increases in inlet 

air velocity , fans of d i fferent s i z e  are needed . Obviously , 
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economic cons iderations must be taken into account when 

choos ing a fan ; however ,  the parametric study suggests us ing 

the l argest capacity fan that the des igner can a f ford . 

It was also noted above that increas ing the air inlet 

radius results in lower drying t imes . However , an increased 

air inlet s i z e  results in decreased a i r  inlet vel ocity and , 

hence , a decrease in the Reynolds number for a f ixed volumetric 

flowrate of a i r . Thus , there i s  a tradeo f f  between these two 

effect s ; and , it is expected that the select ion o f  an 11 opt ima l 11 

comb inat ion o f  Reynolds number and a i r  inlet s i z e  should 

minim i z e  the necessary drying t ime for a given appl ication . 

Pos s ibly the greatest potential for ach iev ing reduced 

drying t imes l ies in a variat ion of the global aspect rat io 

( H/R) o f  the bal e . Decreas ing this ratio may result in a 

signi f icant reduction in drying time . A reduction o f  th is 

rat io has other benefits as wel l . As was seen , reducing th is 

ratio also results in a more uni form f l ow of air through the 

bal e . Thi s  results in reduced 11 overdrying11 o f  material near 

the air inlet , which can be beneficial . 

A decrease in the Kossovich number ( Ko )  for a f ixed material 

may be obtained by either o f  two methods . F irst , the d i f ference 

between the intial and equ i l ibrium moi sture contents may be 

decreased . The Kossovich number may a l so be decreased by 

increas ing the d i fference between the initial and equil ibrium 

a i r  temperatures .  It was noted above that the init ial moisture 

content of a hay bal e  is usua l ly not below 3 5 %  ( w . b . ) .  In 
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addition , the f inal moisture content o f  the " dried" hay must 

be below 1 8 %  ( w .  b . ) . Thus , the d i fference in mo isture content 

is constrained ; and , perhaps the easiest way to vary the 

Kossov ich number is to vary the inlet temperature o f  the a i r . 

Thus , the inlet a i r  stream should be heated as much as possible 

above the initial temperature o f  the hay bale . O f  course , 

th is i s  also constra ined in the present app l i cat ion due to 

the "b inding" of proteins that occurs in hay at high 

temperatures .  

The importance o f  the velocity distribution wa s 

demonstrated in the nonuni form poros ity case . The drying 

front tends to migrate around the high dens ity region o f  the 

hay bal e , where the air velocity is relatively l ow .  To improve 

the drying for this case , it would be necessary to increase 

the air f l ow through any high dens ity regions of the bal e . 

Again , decreasing the overal l  aspect rati o  ( H/R) o f  the bale 

is probably the most " practica l "  approach to improving the 

air f l ow through the high dens ity regi ons . 

One further point regarding drier operation should be 

noted . In the drying o f  hay , the temperature and humid ity 

of the inlet a ir are typically such that the equil ibrium 

mo i sture content o f  the bale is below that needed for safe 

storage ( 1 8 %  w . b . ) .  Thus , the drying process i s  terminated 

before equil ibrium conditions are reached ; that i s , when the 

safe storage conditions are reached . There fore , the 

characteristics o f  the drying curve are important . It is 
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des ireable to have a l l  o f  the drying take pl ace during the 

"high drying rate" period that occurs early in the drying 

process . The drying rate generally decreases as equil ibrium 

is approached . Thus , the equ i l ibrium condition o f  the air 

should be such that the equil ibrium moisture content i s  as 

l ow as poss ible .  This may be accompl ished by increasing the 

a ir inlet temperature andjor decreas ing the relative humidity 

o f  the inlet a i r . Increas ing the a i r  temperature has the 

benefit of l owering the Kossovich number ( Ko ) , although the 

result ing change in moisture content tends to counteract this 

tendency . Dehumidif ication o f  the inlet a ir i s  a technically 

attractive option in regions where ambient a i r  is typ ically 

at a "high " relative humidity , but this may not be economica l ly 

viabl e .  
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APPENDIX A 

DETERMINATION OF THE FUNCTIONAL DEPENDENCIES OF 
THE BIOT NUMBERS ON THE OTHER 

NONDIMENS IONAL PARAMETERS 

In the development of the mathemat ical model ( S ection 3 ,  

page 3 0 ) , the nondimens ional parameters Bi and Bim , wh ich are 

the heat and mass trans fer Biot numbers , appear in the 

governing equat ions . As will  be shown , these parameters may 

be rewritten in terms o f  the other dimensionless parameters 

that appear in the model formulat ion . There fore , they are 

not independent parameters . 

The heat transfer coe f f icient may be obta ined from an 

empirical correlation presented by Bird , Stewart , and 

Lightfoot ( 19 6 0 )  describing heat transfer in packed beds . 

This correlation may be written as 

where : 

j H • C h i l t o n - C o l b u r n  F a � t o r  

a ! '  c l - c o n s ta n t s ,  

· M o d i f i ed ·  R e y n o l d s  N u m b e r  

R e ' • F o r  T h e  F l o w  T h r o u g h  

P a c k e d  B e d s  

h --- · ( P r ) 2 / 3  
P a  C pa I V  I 

a - P a r t i c l e  S u r f a ce  A r ea P e r  U n i t  V o l u m e  

O f  T h e  P a c k e d  B e d  

E m p i r i c a l  C o e f f i c i e n t  W h i c h D e p en d s  
w -

O n  P a r t i c l e  S h a p e  ( = . 9 1 f o r  c y l i n d e r s )  
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and , 

v •  • A i r  V e l o c i t y  T h r o u g h  T h e  

P a c k e d  B e d  

P a - D e n s i t y  O f  T h e A i r , 

11 ,  • D y n a m i c  V i s c os i t y  O f  T h e  A i r ,  

P r  • P r a n d t l N u m b e r  = v 

Substitut ing the de fintions o f  j H and R e '  presented above 

into equat ion A . l yields 

h --.. ( P r ) 2 ; 3  
P a C p a  I V  I 

Not ing that , 

and , 

where , 

and , 

N ID -

A • s 

a = 

R e "  
V JN['K; 

v 

( �s ) (  l ;;• ) .  

N u m b e r  O f  S t a l k s  I n  T h e  

O u t e r  Do m a i n  

S u r f a c e  A r e a  O f  A S t a l k ,  

V o D • O u te r  D o m a i n  V o l u m e ,  

A - C r o s s  S e c t i on a l A r e a O f  A S t a l k , 

L • H a l f - Len g t h  O f  S t a l k ,  
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E . - P o r o s i t y  O f  T h e  O u t e r  D o m a i n  

a l l ows equation A . 2  to be rewritten as 

h _. (Pr ) 2 1 3 
P a C pa V IN I V I 

c '  ( v  '";;) 
" ' ( :. ) " ' (};:,) " ' 

( l :E . ) a ' C � I )
a
' w .  ( A  . 5 ) 

The Biot number may be obta ined from equation A . 5 by writ ing 

( A .  6 )  

o r ,  

( A . 7 )  

This may be s impl i fied to obtain 

(_2 
)
a ' _.

1
! • a , } 1 • C I V . - E ( A  . 8 ) 

Thus , the functional dependence o f  the Biot number is given 

by 

Bi  
( A L K a  • 

---
) f 1 A'  r-::- ' K ' E , R e .: , Pr . I V I  . s 'J 'K r s 

171  
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Al l o f  the d imens ionl ess parameters appearing in the function 

above are independent parameters in the present mathemat ical 

formulation o f  the problem .  The convective mass transfer 

coe f ficient may be obtained by Chi lton-Colburn anal ogy ( Bird , 

Stewart , and Lightfoot , 1 9 6 0 }  with the heat trans fer 

coe f f i cient . This gives 

where : 

and , 

C h i l t o n - C o l b u r n  F a c t o r  For  

M a s s  T r a n s f e r  

Ma • M o l e c u l a r  W e i g h t  O f  A i r , 

M u • M o l e c u l a r  W ei g h t  O f  W a te r  V a p o r . 

( A . l O ) 

Substitut ing the de f intions o f  j H and j M presented above into 

equation A . 1 0 yields 

or , 

( B i ) ( K . 
) p,- 2 1 3 = ( h m L ) a s M a Sc 2 1 3 

P a C pa a s M u 

Equation A . 1 2 may be rewritten in the form 

Bi  = _u s - B i  ( M  ) ( K ) ( p,- ) 2 1 3 
m M a p a C pa a s S c . 

( A . l l ) 

( A . l 2 ) 

( A . l 3 )  

Assuming that the coefficient o f  d i f fusion for water vapor 

through a i r  is the same in both the inner doma in and outer 

doma in , the S chmidt number may be expressed as 

1 7 2  



( A . l 4 ) 

Subst itut ing equation A . 14  into equation A . 1 3 and s impl i fying 

yields 

( A . l 5 ) 

Thus , the funct ional dependence of the mass trans fer B iot 

number is given by 

( aa A K a L • 
-+ � 

/ 2  -. A ' K '  c- · E . Lu u . R e K , P r . I V I . a s s s 'J K , 
( A . l 6 ) 

The dimens ionl ess parameters appearing in the function f2 

above are a l l  independent parameters appearing in the 

mathematical model . 

The funct ional dependencies derived above depend on the 

val idity o f  the correlation given by equation A . 1 .  S everal 

authors ( Chen and Pe i , 1 9 8 9 , Van Brakel and Heertj es , 1 9 7 8 , 

and Suzuki and Maeda , 1 9 6 8 ) have noted that for mo isture 

contents high enough to produce a part i a l ly wetted surface 

of the porous sol id , there is not good agreement for convection 

coe f ficients obta ined from experiment and values obtained 

from relations such as that given by equat ion A . 1 .  For the 

present appl icat ion , the drying process starts in the 

so-cal led sorption region . Thus , the surface moi sture content 

is l ow and the funct ional dependencies displ ayed in equat ions 

A .  9 and A . l 6  should be val id . In app l i cations involving 

higher surface moisture contents , the functional dependencies 
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would have to be altered to take the influence o f  surface 

moisture content into account . For the purposes o f  the present 

work , however ,  the relationships given by equations A . 9 and 

A . 1 6 should suffice . 
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APPENDIX B 

COMMENTS ON THE NUMERICAL TREATMENT OF THE 
LATENT HEAT TERM IN THE ENERGY EQUATION 

FOR THE INNER DOMAIN 

In S ect ion 4 ( page 7 0 ) , the numerical solution algorithm 

is di scussed in some deta i l . The f inite volume procedure is 

formul ated by starting with a " general " conservation equation 

o f  the form given by equation 4 . 5  (page 7 4 ) . Any terms not 

f itt ing thi s  " standard " conservat ion form are treated by 

lumping them into the source term . Thi s  approach has some 

important consequences that should be d iscussed . 

A source ( or ,  s ink ) term in the energy equat ion may cause 

the temperature to increase ( o r ,  decreas e )  such that the 

temporal der ivative of temperature derivative o f  temperature 

does not approach z ero a fter " l ong " times . That is , there 

may not be a steady-state solut ion when a source ( s ink )  is 

present . In the formulation o f  the inner doma in numerical 

algorithm , the energy required for evaporation of the l iquid 

is included in the source term . 

As drying progresses , this energy source ( or ,  s ink) term 

should decrease in strength and approach z ero when drying 

reaches completion s ince the moisture content approaches z ero 

( or equ i l ibrium conditions ) .  However , the value o f  the 

moisture content is determined from the values o f  temperature 

and vapor dens ity using the s orption isotherm rel ation . The 

values o f  these variables may be such that during the iterat ive 

process the moisture content obta ined is less than z ero ( i . e .  
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drier than equ i l ibrium conditions ) .  S ince the mo isture 

content decreases , the temporal derivative of the moi sture 

content is negative ( as it is throughout the drying process ) ,  

and hence , the l atent energy term is nonz ero . Thi s  results 

in a nonz ero source term which continues to drive a change 

in temperature . Thus , the solution does not converge to the 

equ i l ibrium state which results in a physically unreal i stic 

solution . 

A remedy for this problem is obta ined by not ing that once 

the mo isture content has reached zero , the l atent heat term 

should be z ero ; that is , once the sol id i s  " dry" , no further 

energy is used for evaporation . Thus , i f  a negative value 

of the moi sture content is obta ined during the iterat ive 

process ,  it is set to z ero and the iterat ion is continued . 

The overal l  energy bal ance rema ins correct because the l atent 

energy term can only be l arge enough to account for the 

evaporation o f  the l iquid present ( since the mo i sture content 

is not a l l owed to take on negative values ) . Thus , the source 

term includes only that energy necessary to dry the sol id and 

a phy s i c a l l y  re a l i s t i c  solution is a s sured . 
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APPENDIX C 

RATIONALE FOR SELECTING A CHARACTERISTIC 
VALUE AND RANGE OF VARIATION OF 

THE INNER DOMAIN AS PECT RATIO 

The inner doma in aspect rat io ( L/D)  appears as a parameter 

in the inner doma in equations governing the drying processes 

( equations 3 . 1 0 1 , 3 . 1 0 2 , and 3 . 1 0 3  on page 5 9 ) . A typical 

criticism of a mathematical model of a complex physical process 

such as drying is that the values o f  a l l  o f  the parameters 

in the model , such as the aspect ratio , are not wel l  known . 

A hay bale i s  made up o f  many hay stalks whi ch vary in l ength 

and diameter . I n  addition , many o f  the stalks are spl it down 

their l ength or are crushed so that there i s  not a s ingl e L/ D 

rati o  for a l l  o f  the stalks . 

Thus , for the purposes o f  the present model , a 

characteristic value o f  the L/D rat io must be chosen so that 

the drying t ime for a given volume of material matches 

experimental data . 

To accompl ish this task , an experiment was performed in 

whi ch hay was placed in a 6 inch diameter tube and dried by 

blowing a i r  through the tube ( Bl edsoe and Hitch , 1 9 8 9 ) . A 

dynamic measurement o f  the mass of the hay and water was 

obtained by hanging the tube from a l oad cel l . Figure C . 1 

shows a comparison o f  the moisture content versus time for 

the experimental case and an L/D rat io of 1 . 4  ( the base case 

values presented in Table 5 . 1 and Table 5 . 2  on pages 1 0 5  and 

1 0 6  were used for all  of the other parameters ) .  I t  i s  seen 
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that the drying time predicted by the numerical solut ion 

matches very closely with experiment for this L/D ratio . 

ub 
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Comparison O f  the Experimental Drying 
Curve To The Numerical S oluti on For A One 
Dimensional Case (Hay Dried In A Tube ) . 

A compari son o f  this L/D value to values obtained from 

actual hay stalk samples was also obtained . Approximately 

2 0 0 samples o f  hay stalks ( unbroken lengths )  were obtained 

and the ir aspect ratios measured . The aspect rat ios ranged 

from approximately 1 . 7  to 6 7 . 5  with an average value o f  1 8 . 8 .  

Thus , the value of 1 . 4  used in the model i s  l ower than the 

measured values of actual stalks . The agreement obtained 

with thi s  l ow value may be explained by cons idering several 

factors . 
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First , and probably most important , examination o f  many 

hay stalks revealed that the spl its in the stalks were 

typically rather severe ; that is , the stalks were spl it over 

sign i f icant portions of thei r  overal l  l engths ( roughly 

estimated as approximately 2 0 % of the unbroken lengths ) .  

S ince the l iquid water in these spl it regions is exposed 

directly to the air flowing through the outer doma in ( i . e .  

the water vapor does not have to di ffuse through a l ength L)  , 

these spl it l engths would have a s igni f i cantly l ower 

res istance to mass trans fer (which is prec isely why they are 

broken in this manner during the condit ioning process ) and 

would thus tend to cons iderably l ower the value obta ined for 

an e ffect ive length used in the numerical mode l . 

Second , there is also leafy matter present in the bales , 

which also has a cons iderably l ower res i stance to mass trans fer 

than the stalks . This l ower res istance results from the fact 

that the leaves have considerably greater surface area per 

unit volume than do the stalks . This would a l s o  tend to l ower 

the e ffect ive value of L/ D that yields good agreement between 

the numerical model and experiment . 

F inally , it should be noted that no data i s  ava i l abl e  for 

the thermal properties of hay . Thus , the thermal di ffu s ivi ty 

and thermal conductivity o f  al fal fa hay are both unknown . 

Changing the values o f  the dimens ionless parameters which 
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contain these properties may influence the value o f  the inner 

doma in aspect ratio which results in the best match with 

experimental data . 

One addit ional point should be made regarding the 

comparison between experimental and numerical values which 

is presented here . This comparison does not represent a 

val idation o f  the mathematical model s ince the L/ D ratio was 

varied to achieve a match with the experimental data . 

Add itional experiments should be performed to check the 

val idity o f  the present numerical model . 

The range o f  values o f  L/D ( 0 .  7 - 2 . 1 ) used in the parametric 

study was obta ined by considering a 50% change in L/D from 

the base case value ( 1 . 4 )  to be a pract ical l imit ( Bledsoe , 

1 9 8 9 ) . However ,  it should be noted that this f igure is merely 

an estimate of the actual length to diameter rat ios that can 

be obtained in practice . As was discussed above , the l ength 

to diameter ratio , L/D ,  which appears i n  the present model 

represents an effective length to diameter ratio . S everal 

factors such as the severity of spl itting and crushing of the 

hay sta lks during handling influence the e ffective value o f  

L/D obtained from the numerical model . I f  the factors wh ich 

infl uence the value o f  the effective rati o  have the same 

relative importance at d i f ferent values o f  the actual L/D 

ratios , a 5 0 %  change in the effective ratio w i l l  correspond 

to a 5 0 %  change in the actual ratio . However ,  it i s  more 

probabl e  that factors such as spl itting , crush ing , etc . may 
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vary with L/D .  For example , as the hay stalks are cut shorter 

and shorter to decrease L/D ,  a greater percentage of sta l ks 

may be spl it or crushed during handl ing . Thus , a decrease 

of , say , 5 0 %  of the actual L/D may result in a greater than 

5 0 %  change in the effective L/D .  S ince the influence of these 

e f fects is not known , no attempt to compensate for such e ffects 

was made in this study . 
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APPENDIX D 

NUMERICAL TREATMENT OF THE SORPTION 
ISOTHERM RELATION 

The sorption isotherm is an emp irically determined 

rel ation between relative humidity and moisture content at 

a specif ied temperature . Hil l , Ross , and Barfield present 

graphical data for the sorption i sotherm for al fal fa hay in 

the temperature range from 2 0  - 3 5  o c  • An expression o f  the 

form 

l - 4> = - c r • u • �n.  e ' , ( D . l )  

was used to correlate the data . There are l arge d i f ferences , 

however , between the values predicted by the ir corre l at ion 

and the experimental data . 

To minim i z e  this type o f  error in the present work , a 

least squares f it was performed on the data presented by H i l l  

e t  a l . For s implic ity , it was decided to approximate each 

isotherm by a series o f  l inear segments . Thus , a l east squares 

fit was performed on the experimental data for each l inear 

segment , which is represented by a function of the form 

( D . 2 ) 

where c 1 , c 2 , and c 3 are " constants " whi ch depend on the 

rel at ive humidity interval in which a point l ies . A minimum 

o f  1 0  data points for each isotherm was obta ined from the 

experimental curves . The curves were broken into three 

intervals corresponding to 
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and , 

0 . 3 � 4> � 0 . 6 

0 . 6 < 4> � 0 . 7 5 

0 . 75 < � � 1 . 0  

( R e g i o n  l ) ,  

( R e g i o n 2 ) .  

( R egion 3 ) .  

(Note : This range o f  relative humidity should cover the range 

of relat ive humidity encountered in " practica l " drying 

s ituations . )  The results o f  this procedure are presented in 

Table D . 1 and a comparison between the experimental points 

and the fit used is presnted in Figure D . 1 .  

Table D . l .  Least Squares Fit Coe f ficients For The 
Sorpt ion I sotherm Of Al fal fa Hay . 

Region c l  C z ( � ) c 3 

1 0 . 2 6 9 1- 0 . 0 0 4 3 2  0 . 1 1 6  

( 0 . 3 � � � 0 . 6 ) 

2 0 . 8 3 9  1- 0 . 0 0 4 3 2  - 0 . 2 2 7  

( 0 . 6 < � � 0 . 7 5 )  

3 2 . 0 8 1- 0 . 0 0 4 3 2  - 1 . 1 6  

( 0 . 7 5 < � �  l . O )  
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APPENDI X  E 

DETERMINATION OF PERMEABILITY OF A HAY BALE 
AND THE COEFFICIENT OF THE FORSCHEIMER 

TERM IN DARCY 1 S LAW 

Values o f  the permeabil ity , x · , and the coe f f icient o f  

the Forscheimer term , b * , were determined from experimental 

correlations obtained by Bledsoe and H itch ( 1 9 8 9 )  . Both terms 

above were correlated as functions o f  dry matter dens ity 

within the hay bale , and were assumed to be independent o f  

mo isture content . 

The permeabi l ity was found to be represented by 

• 
1( ( E .  1 )  

where the dry matter dens ity has units o f  ( kgjm3 ) .  

The coefficient o f  the Forsche imer term was found to be 

represented by 

( £ . 2 ) 

Both these express ions were found to be val id for a range 

of dry matter dens ities o f  approximately 3 2 . 0  to 1 6 0 . 2  ( kg/m3 ) .  

The functi onal forms o f  these variables were obta ined by 

simpl e  curve f its to experimental data and thus the funct ions 

shown above are not necessarily indicative of theoretically 

expected functional forms . 
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