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ABSTRACT

A mathematical model describing the drying process in a
hygroscopic porous medium with two disparate length scales
is formulated. The mathematical model is used to identify
the important dimensionless parameters appearing in the
problem; and, a parametric study is performed to determine
the effects of varying these parameters on the drying process.
Of particular interest in this study is to apply the model
to the drying of large, round hay bales. Therefore a discussion
of how the results of the parametric study impact on the
efficient use of a hay drier is also presented.

The results from the parametric study indicate that the
drying times of a porous medium may be decreased by increasing
the Reynold's number, increasing the inlet air radius of the
drier, decreasing the overall aspect ratio of the porous
structure, and decreasing the Kossovich number. In addition,
it is shown that the velocity distribution through the porous
medium plays a significant role on the drying behavior. It
was concluded the the greatest potential for improving the
drying time for hay bales was to decrease the aspect ratio

of the bale.
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1. INTRODUCTION

.1. The Importance Dryin

The drying of porous media is a problem with a diverse
range of applications. From simple tasks in the home to
complex industrial processes, drying is involved in both the
production and use of a large number of products. Drying
laundry in the home, freeze drying foodstuffs, and drying
paper and agricultural products are but a few examples of
these applications.

The consumption of energy required for drying tasks is
enormous. An estimated 10% of the total fuel consumed in the
U.S.S.R. (Lebedev and Ginzburg, 1971) and 7% of the industrial
energy demand in the United Kingdom (Keey, 1980) can be
attributed to drying. This large energy consumption together
with an ever-increasing variety of applications has resulted

in a need for fundamental research in this area.

a ica dels
Many analytical models of drying have been proposed. As
will be seen in the following chapter, however, each of these
models is typically applicable over only a narrow range of

drying conditions. To efficiently design and operate any



drier, an analytical model must be formulated that is general
enough to be applicable throughout the drying regimes of
interest, while being simple enough to be readily solved.

In formulating such a theory, the physical makeup of the
medium to be dried becomes important as it affects the
mechanisms by which drying occurs. In many drying problems,
disparate physical scales may be identified in which the modes
of heat and mass transfer differ. Examples in which such
situations arise may be found in the drying of agricultural
products. One such example is the drying of large round hay
bales.

A hay bale is a porous structure, which is composed of
individual hay stalks, each of which is also a porous
structure, but on a much smaller scale. Normally, it is the
hay stalks themselves that actually contain the moisture to
be removed. That is, no liquid exists in between the closely
packed hay stalks throughout the bale. Thus, two disparate
length scales, one characterizing the overall bale structure
and the other the individual hay stalks, emerge in this problem
with different physical processes occurring on each scale.
In this work, the analytical method of Krischer (1963)
describing the drying of a hygroscopic porous solid has been
modified and expanded to model the drying processes that occur
in a porous medium with two distinct length scales.

The present method takes into account the two length scales

discussed above. In addition, a more general form of the



equations governing the phase change processes than that
formulated by Krischer (and modified by Berger and Pei, 1973)
is presented here. This more general form allows the
diffusional coefficients to vary with both moisture content
and temperature, as has been observed to be true. In the
formulation of the model presented in this work, an attempt
was made to preserve the generalities of the model. That is,
the model should be valid for any hygroscopic porous media.
The model may be applied to the limiting case of a single
element, or "stalk", which corresponds to one physical length
scale. Or, the model may be applied to a structure composed
of many elements where there are two disparate length scales

with coupled heat and mass transfer.

Process

A brief description of the physical processes involved
during the drying of a porous medium is presented here to
provide the reader with a basic understanding of these
phenomena and to introduce the common terminology used in the
field of drying.

Several mechanisms have been proposed for the transport
of moisture in a porous body. Fortes and Okos(1980) have
identified seven such mechanisms that are discussed in the
literature as: (1) liquid diffusion, (2) vapor diffusion, (3)

capillary movement, (4) 1liquid and/or vapor flow due to



pressure differences, (5) effusion (Knudsen) flow, (6) liquid
movement due to gravitational effects, and (7) surface
diffusion.

Liquid diffusion was the basis of the first theories
proposed for drying (Lewis, 1921 and Sherwood,
1929a,1929b,1930, and 1931). Several authors (see Caelgske
and Hougen, 1937 and Chen, 1987) have noted, however, that
the term liquid diffusion is "constrained and sometimes
misleading." A diffusional process occurs on the molecular
level (for example, the mixing of gases), but the flow of
liquid through a porous medium is not such a mixing process.
Liquid movement does not result from the mixing of liquid in
the porous solid with the vapor in the porous solid, but
rather is the result of complicated phenomena involving the
surface tension of the liquid, as well as the properties of
the solid structure and vapor. (It should be noted that
concentration gradients of a liquid mixture may indeed exist
in a porous solid. This would cause "true" liquid diffusion
to occur.)

The second mechanism identified is vapor diffusion. Vapor
diffusion may occur as a result of a vapor pressure gradient
within the porous solid. This mechanism has been used in the
formulation of several theories limited to describing the
latter stages of drying (King, 1968 and Harmathy, 1969).

Capillary movement of a 1liquid is driven by surface tension

forces. Thus, capillary movement of liquid can play an



important role in the overall transfer of moisture in regions
of the porous solid where continuous paths of liquid exist.
This mode of moisture transfer has also been used either alone
or in combination with other mechanisms to provide the basis
for several drying theories (Van Arsdel, 1947, Philip and
DeVries, 1957).

The fourth mechanism identified is the movement of liquid
and/or vapor via a pressure gradient. This mechanism is
important in situations in which a large pressure gradient
induced across a porous solid "forces" the liquid and vapor
to flow. This mechanism, as well as the fifth and sixth, are
allowed for in some of the more "sophisticated" theories
(Whitaker, 1966, 1967, 1969, 1971, 1973, 1977a, 1977b, 1986a,
1986b, 1986c and Chen and Pei, 1989).

The fifth mechanism proposed, effusion, or Knudsen, flow
is important only under rarefied conditions and will not be
considered further in this dissertation.

Liquid movement due to gravitational effects is the sixth
mechanism identified for moisture transfer. This mechanism
is usually not important in porous bodies, however, due to
the large surface tension effects that overcome the tendency
of the liquid to move due to gravitational forces. The
relative importance of gravitational forces to surface tension
forces is indicated by the value of the Bond number. The

Bond number is a dimensionless parameter defined as,



plig

Bo = .
ag.

Thus, if the Bond number is much less than one, surface tension
forces dominate over gravitational forces. Most studies
performed have implicitly assumed low Bond numbers and have
ignored gravitational effects (see Fortes and Okos, 1980).
The seventh mechanism identified as a source of moisture
transfer by Fortes and Okos is surface diffusion. They noted
that at the time their paper was written (1980) no existing
theories had accounted for this mechanism. This author has
also not found any mention of this mechanism in other sources;

and, it will not be considered in this work.

Descripti ical Dryi ocess

A drying process often involves placing a moist porous
body into a "controlled" environment. To illustrate the
physical processes involved during drying, the case of a
moist, porous semi-infinite slab with air of controlled
humidity, temperature, and pressure on either side is
discussed. The drying process for this case is graphically
presented in Figure 1.1.

Provided the initial moisture content of the slab is high
enough to saturate the surface, a so-called "constant rate
phase" of drying is initially observed. 1In this phase, the
liquid evaporation is essentially constant and equal to that
from a free liquid surface. As drying continues, a critical

point is reached where the water cannot be conducted to the
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Figure 1.1. Movement Of Moisture During Drying.

surface fast enough to keep the surface moist. At this point,
dry patches begin to emerge on the surface of the slab. The
drying rate then decreases marking the so-called "first
falling rate" period of drying. This period continues until
the wet patches disappear from the surface. The time at which
all the wet patches disappear marks the start of the "second
falling rate" phase of drying. A drying front forms, and
begins to retreat into the solid structure. Thus, two regions
may be identified within the solid structure: (1) the wet
region and (2) the "sorption" region.

In the wet region, there are still continuous paths of
liquid present. The principal mechanism of moisture movement

in this region is the capillary forces acting on the liquid.



In the sorption region, however, these continuous paths of
free liquid do not exist. Moisture transfer in this region
occurs primarily as a result of vapor diffusion (water vapor
diffuses from regions of "high" to "low" vapor pressures) and
the movement of "bound" liquid, controlled by the processes
described below. Water contained in the solid is termed free
water if the vapor pressure exerted is equal to that of
saturated 1liquid at the same temperature. Any water contained
in the solid where the vapor pressure is less than that at
saturated conditions is termed bound water. This bound water
may be thought of, for example, as water contained in very
fine capillaries or water contained in plant cells. Free
water, on the other hand, may exist as water contained between
the cells or held in the larger voids of the solid.

The characteristics of the solid to be dried have an
important effect on the drying behavior. Materials may
generally be —classified as either hygroscopic, or
non-hygroscopic, depending on their ability to "bind" water.
As drying begins (with a high initial moisture content), the
vapor pressure in the air over the solid is equal to the
pressure of saturated liquid at the same temperature. As
drying progresses, a point is reached where the vapor pressure
begins to decrease due to the presence of the porous solid.
Materials containing a significant moisture content at this

point are termed hygroscopic.



A relationship between the relative humidity of the air
and the moisture content of the solid at a specified
temperature is provided by the sorption isotherm. This curve
is determined experimentally for any given material. The
moisture content corresponding to a relative humidity of 100%
on this curve is thus the dividing point where the solid
contains free water or only bound water. This moisture content
is referred to as the maximum sorptional moisture content.
At any moisture content above the maximum sorptional moisture
content, the solid contains free water. If the moisture content
is below this value, however, only bound water exists in the
solid structure.

As can be seen, modeling a specific drying process requires
a knowledge of the different drying regimes encountered, the
principal modes of mass transport that occur as well as the
type of porous structure to be dried. Once these have been
identified, a mathematical model of the drying process may

be formulated.

otivati e sen search
The specific application chosen for the present
investigation involves the drying of large round hay bales.
Hay is used primarily as feed for animals. It is therefore
desirable to obtain the highest quality hay possible; that
is, to obtain the hay with the highest possible nutritional
value. As will be discussed, one way to maintain the feed

quality is to use a drier to dry the hay. One factor that



affects the drying of hay is the method in which it is handled.
For economic reasons, it has been found beneficial to bundle
hay in as large a package as possible. Unfortunately, this
practice has several disadvantages.

One disadvantage is the dilemma faced as to the best time
to bale the hay to preserve quality. If the hay is baled at
too high a moisture content, the larger package results in
increased drying time which may allow mold growth to begin
before drying is completed (Bledsoe, 1988). It is currently
common practice to allow hay to dry to a moisture content
safe for storage in the swath prior to baling. This practice,
however, causes excessive losses. When hay is allowed to dry
to a moisture content below 18% wet basis (Wet basis refers
to the ratio of mass of water to the mass of water plus the
mass of dry matter and will be abbreviated as w.b.) in the
swath, the nutrient rich leaves of the hay become brittle and
fall off the stem during subsequent handling, a condition
referred to as '"leaf shatter." Prolonged exposure to sunlight
also bleaches nutrients from leaves and stems. Thus, the hay
should not be baled at too low a moisture content either.
It has been found that it is best to bale the hay at a moisture
content of approximately 35% (w.b.).

This relatively high initial moisture content presents
another problem associated with increased microbial heat
generation. This heat generation takes place as

microorganisms, which feed on the hay, convert starch to sugar
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in an exothermic reaction (Miller, 1947). As a result,
excessive temperatures may be reached within the bale. These
high temperatures can actually cause spontaneous combustion
in the hay and so represent a safety hazard to farmers. Even
when temperatures do not reach the combustion point, they may
cause a "binding" of the proteins in the hay. Since proteins
in the bound form are largely indigestible by feed animals,
the feed quality of the hay is reduced. In any case, excessive
temperatures must be avoided.

One method employed to counter these problems is to use
a drier which both speeds up the drying process and helps to
minimize microbial heating. To efficiently implement this
approach, an analytical model of the drying process must be
developed. Solutions of this model will provide the
understanding necessary to improve upon current design
criteria for the drying process.

The motivation for the proposed work, then, is based on
the need for an accurate analytical model of the drying of
large round hay bales. This model should provide the
information necessary to minimize hay loss by providing a

rational basis for hay drier design.
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2. LITERATURE REVIEW

2.1. General Analytical Models Of Drvina Processes

Many studies of drying of porous media have been performed.
These studies vary considerably in their generality and
practicality. An assessment of these studies is presented
below.

A number of 1literature surveys, Lebedev and Ginzburg
(1971), Keey (1980), Fortes and Okos (1980), Bruin and Luyben
(1980) , Mujumdar (1984), Fulford (1969), Filkova (1984), Sharp
(1982), Bakker-Arkema (1984), and Parry (1985), summarize
advances in the drying field. A particularly good review paper
is the one presented by Fortes and Okos (1980). In this paper,
the theoretical bases of several drying theories are examined
and compared. The limitations of these theories as they apply
to the drying of foodstuffs are also discussed. The review
by Bruin and Luyben (1980) is also worthy of note. It contains
over 300 citations to the literature on the drying of food
materials.

Historically, the development of an analytical approach
to the drying problem began with Lewis (1921). Lewis
hypothesized that drying of a porous solid consisted of two
distinct processes: the first was movement of the moisture
from the interior of the solid to the surface by liquid
diffusion, and the second was evaporation of the moisture

from the surface to the surrounding environment. Sherwood

12



(1929a,1929b,1930,1931) developed these hypotheses in a
series of papers utilizing the one-dimensional diffusion
equation.

McCready and McCabe (1933) improved on the diffusion
approach by assuming that moisture movement was the result
of the diffusion of free water (i.e. bound water movement was
not considered) and also a result of vapor diffusion through
the solid structure. They assumed that the vapor was in
equilibrium with the solid and used the sorption isotherm as
a constitutive relation.

At about this time, it was noted by several authors that
capillary effects could be important in drying processes.
One such author was Richards(1931), who described the flow
through unsaturated porous media in terms of capillary
movement of the liquid, and experimentally determined values
of capillary potential, conductivity, and capacity for various
solids. The capillary potential (introduced by
Buckingham(1907) 1is the pressure difference across the
air-water interface. It thus represents a driving force for
the unsaturated capillary flow of the liquid through a porous
medium which may be expressed as

Jz=—KHV11), (2.1)
where:

J,=the liquid mass flux due to capillary flow,

K y =the capillary conductivity,
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and,
Y =the capillary potential.

The capillary capacity is the rate of change of the moisture
content with respect to the capillary potential.

Caeglske and Hougen(1937) claimed that capillary action
was not only important, but in fact was the dominant mechanism
in drying. They conducted experiments with sand and obtained
good agreement with an analytical approach based on the
capillary movement of water. This approach utilized
experimentally determined values for capillary pressure (or
potential) as a function of saturation.

Hougen, McCauley, and Marshal(1940) made an extensive
study of the applicability of the diffusion equations to
drying of porous solids. Experimental results for several
materials were compared to results obtained from both
diffusion and capillary models. For most materials examined
(the exception being wood), the diffusion model did not follow
the observed trends of the experimental data. The results of
this study indicate that the assumption that moisture transfer
occurs only by liquid diffusion in all stages of drying is
not physically realistic. Thus, the theories of Lewis,
Sherwood, etc. which assume that moisture transfer occurs
solely by liquid diffusion are not accurate and are incomplete.
The same argument may be made for any theory based on a single
mechanism since there is no doubt that mass transfer may occur

in a given application by more than one mechanism. It has
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been pointed out by Hougen et. al. that for many materials,
during the latter stages of drying, the diffusion equation
may be applicable provided one uses a variable diffusivity.

Van Arsdel(1947), in an attempt to numerically model the
drying process in the falling rate phase for vegetables, made
use of the diffusion equation, and allowed for variable
diffusivity. The predicted drying rate curves showed similar
trends to experimental studies of previous investigators.
Some physical justification for this approach lies in the
fact that for isothermal conditions, the mass flux for

capillary liquid flow may be expressed as
Jy=-p,KyVu’, (2.2)
where:
K y =capillary conductivity,
ps =solid density,
and,

u’ =moisture content (mass water/mass solid).

Philip and DeVries(1957) formulated a model which
considered moisture movement as a combination of movement of
vapor by diffusion and movement of liquid by capillary action.
Both terms were expressed as functions of the temperature and
moisture content gradients, so that a diffusion equation
resulted. DeVries(1958) then generalized this approach
somewhat by considering separately the changes in moisture

content of the liquid and vapor phases. In developing this
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theory, Philip and DeVries have made use of relations which
assume liquid continuity within the pores and capillaries.
As drying proceeds to the latter stages, this would obviously
not be valid and so represents a major limitation to their
theory.

Whitaker (1966, 1967, 1969, 1970, 1971, 1977a, 1977b,
1986a, 1986b, 1986c, 1986d) has extensively developed a
volume-averaged approach to simultaneous mass, momentum, and
energy transfer in porous media. This approach is fundamental
in that Whitaker starts with the basic conservation equations
and proceeds to average these equations over a representative
finite volume (containing solid, liquid, and vapor). These
equations are then used (along with constitutive relations)
to solve the drying problem. One drawback to this method is
that some of the terms obtained in the analysis are difficult
to determine experimentally. Whitaker himself states that
"what does appear overwhelmingly difficult at this point is
the comparison between theory and experiment." He has
suggested that some of these terms might be simplified for
specific cases to enable independent verification. This
author knows of no studies in which this has been done,
although some numerical solutions have been performed in which
simplifying assumptions (in addition to those made by

Whitaker) have been employed (see Nasrallah and Perre, 1988).
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Dyer and Sunderland(1968) obtained a closed form analytical
solution to a drying problem in which a material is dried
from one side. The solution essentially uses a
quasi-stationary approximation which is common to solutions
of melting-freezing problems. Both drying and
melting-freezing problems may involve a front with different
phases of a material on either side (in drying there is a
liquid-vapor interface; in melting-freezing problems there
is a liquid-solid interface). Basically, the method includes
the assumption that the sensible heat is small compared to
the latent heat. In their analysis, all heat and mass transfer
were assumed to be one-dimensional, internal convection was
neglected, and the porous region being dried was assumed to
consist of a bundle of straight parrallel capillary tubes.
This approach is obviously highly idealized and of limited
applicability.

King (1968) and Harmathy(1969) developed models of the
drying process using the concept of sorption isotherms. As
mentioned previously, a sorption isotherm is a curve showing
the equilibrium moisture content versus the relative humidity
at constant temperature. Both authors assume that moisture
movement takes place as a result of vapor diffusion only, and
so they neglect movement of bound liquid. Their model is
thus limited to the second falling rate stage of drying for

cases where bound liquid movement is not significant.

17



Chen and Johnson(1969), Hussain, Chen, and Clayton(1970)
and Hussain et al. (1970, 1972) presented analyses based on
the method of Luikov (1964, 1965, 1966) to model the drying
process 1in various agricultural products. Luikov uses
relations from irreversible thermodynamics to express vapor
and liquid fluxes in terms of temperature and concentration
gradients. This approach is similar to that of Philip and
DeVries (1957), although both works were performed
independently. In his theory, Luikov introduces the moisture
transfer potential, € which is defined to be a function of

moisture content and temperature such that

de—aedM+aedT 2.3
oM oT 7 (2.3)

This term was intended to account for the mass transfer from
one body to another in the presence of an adverse concentration
gradient; that is, for mass transfer from a region of lower
to a region higher concentration. This method has been
criticized (Chen and Pei, 1988) because it lumps together a
number of effects and thus tends to mask the actual physical
processes involved.

Krischer (1963) proposed a model that allows for the
movement of liquid via capillary flow and the movement of
vapor by diffusion. Krischer assumed that all the diffusion
coefficients are constant and that the sorption isotherm is

a linear function of temperature. He also assumed that the
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void volume, |/, is independent of moisture content. This
approach allowed Krischer to obtain a general solution to a
drying problem for a case with simplified boundary conditions.

Berger and Pei (1973) extended Krischer's work by proposing
that the Clausius-Clapyron equation replace the sorption
isotherm relation when the moisture content is greater than
the maximum sorptional value. They also employed boundary
conditions deduced from mass and energy flux balances rather
than the simplified conditions assumed by Krischer. Berger
(1973) solved the resulting equations numerically and
correctly predicted the start of the first falling rate phase
for beds of glass beads. As drying proceeded, however, the
model failed to correctly predict the drying rate, although
the overall trends in behavior seem to be correct. Berger
and Pei, as well as Krischer, used the assumption of constant
diffusion coefficients. A more physically realistic approach
might be to allow the diffusion coefficients to vary with
both moisture content and temperature. The movement of bound
moisture may also be important and should therefore be included
in any model.

Chen (1987) and Chen and Pei (1988) have presented a method
in which the movement of liquid by capillary effects, vapor
movement by diffusion, and bound liquid movement are all

included. The diffusional coefficients are allowed to vary
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with both moisture content and temperature and the concept
of bound liquid conductivity is introduced. The bound liquid

flux is given by
J, = -p,D,Vu", (2.4)
where:

D, = the bound liquid conductivity.

The method is analogous to the use of two zone models in
melting-freezing problems and utilizes a front tracking
numerical scheme to solve the governing equations. Capillary
movement is considered to be the dominant mechanism in the
"wet" region of the porous medium (the region where free water
exists) and a combination of vapor diffusion and bound liquid
movement are assumed to predominate in the "sorption" region
(the region where only vapor and bound liquid exist). This
method was applied to the drying of wool, brick, and corn.
The drying curve, the temperature and the moisture
distributions were accurately predicted for all three of these
materials. The drawback to this procedure is the front
tracking scheme itself. Such schemes are generally
complicated to implement and also are expensive in terms of

computer time.

2.2. Studies Of Hay Drving
Since the application chosen for the present investigation
involves the drying of hay, some studies specifically aimed

at this problem will be discussed.
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Bagnall, Miller, and Scott (1970) performed a combined
numerical and experimental study of the drying of alfalfa
stems. Their mathematical model consists of the simple
diffusion equation with constant diffusion coefficients. They
noted, however, that the diffusivity in the radial direction
varies due to the different diffusivity of the cuticular layer
(A thin, waxy layer surrounding the stem) and the diffusivity
of the "other tissue." Bagnall et al. combined the cuticular
diffusivity with the convection coefficient to obtain an
"effective convection coefficient" for use in the boundary
condition. This procedure does not take into account the
transient nature of the problem and appears to be physically
incorrect. The results obtained in their study, however,
show that the axial diffusivity was on the order of 1072
(m2/hr), the radial diffusivity of the plant tissue was 1076
(m2/hr), and the radial diffusivity of the cuticular layer
was 10”2 (m2/hr). Since the cuticular diffusivity is four
orders of magnitude smaller than the axial diffusivity, the
moisture flow in the radial direction should be very small
compared to that in the axial direction. Thus, the effect
of incorrectly combining terms in the radial direction may
also be small, and the results presented may be acceptable.

Ohm et al. (1971) studied heat and mass transfer in a
ventilated hay stack. In this drying system, referred to as
"barn-drying", a central vertical duct blows air radially

through a hay stack. The bulk density, the porosity, and
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other properties of the stack are assumed to vary with height.
A method of predicting these variables as a function of height
was proposed and a simplified procedure for obtaining a mass
and enerqgy balance was used to model the problem. The results
show that the drying rate decreases significantly from the
top to the bottom of the hay stack. It was therefore proposed
to improve the drying rate by employing a conical duct to
regulate the air flow through the stack.

Hill, Ross, and Barfield (1977) performed experiments to
determine sorption isotherms for alfalfa hay and used these
results to obtain a correlation for the time required to dry
hay in the field. The sorption isotherm was obtained from
experiments in which samples of alfalfa hay were exposed to
air of controlled humidity and temperature. The temperature
range studied was between 20 and 35°C.

Rotz and Chen (1985) studied the field drying of alfalfa
hay and formulated an empirical correlation of the drying
rate as a function of the environmental variables. A total
of 13,000 sets of data over an eight year period were obtained
during this study. The empirical model based on these data
incorporates such factors as solar insolation, swath density,
soil moisture content, humidity and air temperature. The
drying rate for hay in the swath was determined to be most

sensitive to solar insolation.
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Bledsoe et al. (1985) studied a forced air drying system
for large round hay bales. The drier studied consists of a
barn equipped with an air duct system built into the floor.
The bales are positioned over the duct outlets and solar
heated air is then forced through the bales using fans. Caps
were placed on the bales to prevent air flow out the tops of
the bales. This procedure has been observed to improve the
air flow characteristics of a bale and results in faster
drying time. A "least drying streamtube" (a region where the
moisture content has not reached an acceptable level) was
seen to form along the centerline of the bale as well as
radially outward in the upper portion of the bale (for capped
bales). These authors emphasize the need for improved air
flow distribution throughout the bale to help eliminate this
problem. As currently operated the drier requires 2-4 days
to dry bales with an initial moisture content of 35-45% (w.b.)
and dry matter densities in the range of 64-128 kg/m3 (4-8
lbm/ft3). Bales with densities greater than 64 kg/m3 could
not be dried quickly enough to prevent mold growth. The bales
must have a moisture content less than 18% w.b. to be considered
"dry". Thus, the study of Bledsoe et al. (1985) indicates
that a more accurate model of the hay drying process is needed
to improve the drying capability and efficiency of such

systens.
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2.3. Numerical Methods

Many different numerical techniques exist for solving sets
of partial differential equations. The most commonly used
methods fall into two broad categories: (1) finite difference
methods and (2) finite element methods.

The finite difference methods are generally considered
the easiest to apply (at least in cases where the geometry
is "regular"; that is, in cases where physical surfaces of
interest coincide with constant coordinate planes). Although
many different solution schemes exist, the basic idea behind
the various finite difference schemes is the same. The
differential equation(s) to be solved is discretized. This
discretization process results in a set of algebraic equations
which are then solved simultaneously to obtain an approximate
solution. The popularity of these methods results from the
ease of the discretization process and from the widely
available and easy to use solution algorithms for algebraic
systems of equations.

Jaluria and Torrance (1986) have identified and described
three basic methods for discretizing differential equations:
(1) Direct Approximation, (2) Taylor Series, and (3) Finite
Volume approaches.

In the Direct Approximation approach, the derivatives are
simply replaced by difference ratios. For example,

ﬂz‘bm_‘bi
ox Ax
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These ratios are then substituted into the equations to obtain
the algebraic system of equations to be solved.

In the Taylor Series method, derivatives are expressed
in terms of a Taylor Series expansion. The truncation error
resulting from the discretization process may thus be easily
estimated.

The Finite Volume (or Control Volume) approach is
particularly well-suited for the discretization of
conservation laws (conservation of mass, for example). In
this approach, which has been described in detail by Patankar
(1980) , one starts with the integral conservation statement.
The domain is divided into many nonoverlapping control volumes
and the integration is performed over each control volume.
The solution variable is approximated in piece-wise form
between grid points, thus allowing the integrals to be
evaluated. The resulting equations have the advantage that
the physical quantities are conserved over each control volume
(and, therefore, globally over the entire domain). Thus, a
coarse grid solution may be used in debugging a code. Once
the code is working properly, a more refined grid may be used
to obtain a more accurate solution.

The finite element method has been used for a number of
years in structural mechanics and has been more recently
applied to heat transfer and fluid mechanics problems as well.
Baker (1983) has described the method as it applies to fluid

mechanics and heat transfer in some detail. The main advantage
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of the finite element method is that it may be applied to
irregularly shaped geometries quite readily. The main
disadvantage is that it is generally much harder to implement
(see Jaluria and Torrance). The finite element method consists
of subdividing a region in space into many smaller regions
(which can be triangular, quadrilateral, etc. in shape). The
differential equation is assumed to apply over each element
and an interpolation function is then chosen. This function
represents the assumed functional form the solution will have
throughout each element. Using the interpolation function,
the finite element equations governing each element are
obtained. These are then "assembled" into a global matrix
for all the elements. The system of equations is then solved
to obtain an approximate solution.

The specific application being investigated in this
dissertation concerns the drying of cylindrically shaped hay
bales. These bales may in turn be assumed to consist of
cylindrically shaped hay stalks. The geometry involved is
thus "regular" if a cylindrical coordinate system is employed.
Therefore, a finite difference method may be used, and the
additional complexity involved in the finite element
formulation may be avoided. Since the finite volume approach
allows the conservation relations to hold for each element
and is also quite easy to formulate, this method has been

chosen to formulate the numerical model in this dissertation.
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2.4, Selection Of The Techniques To Be Employed In The
Present Work

The papers reviewed concerning hay drying have indicated
a need for an accurate model of the hay drying problem. Many
authors have employed empirical correlations in an attempt
to predict the drying times; however, these methods are
extremely limited in applicability. Thus, the need exists
for a method capable of accurately modeling the drying process.
The model should be straightforward to implement and should
be readily verified by experiment.

Several approaches to modeling the drying process have
been tried; however, all are limited either in accuracy, range
of applicability, or ease of implementation.

The diffusion theories of drying have been shown to be
physically unrealistic and are very 1limited in scope.
Similarly, any of the methods which assume that mass transfer
occurs as a result of a single mechanism are limited due to
the fact that other mechanisms of moisture movement exist and
can make significant contributions to the overall drying.

Some of the theories proposed (such as those of McCready
and McCabe (1933), Philip and DeVries (1957), and Krischer
(1963)) involve some combination of mechanisms. However,
these theories also have several shortcomings. Some assume
that the coefficients involved in the governing equations are
constant although these coefficients have been found to be

functions of both moisture content and temperature. Others,
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while allowing for variable coefficients, make assumptions
which limit the applicability of their theories (such as
Philip and DeVries (1957) whose assumptions imply continuous
'liquid paths, which is valid only in the constant and first
falling rate phases of drying). At the same time, most of
these theories ignore the possibility of bound 1liquid
movement. Chen and Pei (1989) have formulated a theory which
answers most of the objections raised previously. However,
this method requires a front tracking numerical scheme which
is both difficult to implement and costly in terms of computer
time. Whitaker has rather extensively developed a quite
general approach in which the governing conservation equations
are volume averaged over a representative control volume.
The major drawback to this method is that many of the terms
appearing in the equations are difficult to determine
experimentally. Thus, the theory is difficult to apply to
practical situations.

One approach to the problems cited above is to modify an
existing theory to address some of these objections. This
was done by Berger and Pei (1973) in an attempt to generalize
Krischer's (1963) theory. They succeeded in modeling the
constant rate phase and in predicting the onset of the first
falling rate phase of drying. Berger and Pei did not, however,
allow for variable diffusion coefficients or for bound liquid
movement. In addition, the numerical method used would not

converge for realistic values of the convection coefficients.
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Thus, their model does not correctly predict the drying rate
during the falling rate phases. This method is very
attractive, however, due to its simplicity and ease of
(numerical) solution. Furthermore, as will be seen, it may
be easily modified to incorporate the variable diffusion
coefficients and to allow for movement of bound liquid. Once
these modifications are made, this theory is applicable to

a wide range of drying problems. Therefore, the approach

adopted for the present work was to modify the model of Berger

and Pei to include the effects of variable diffusion

coefficients and to allow for the movement of bound liquid.

The present method also allows for the solution of problems

in which the drying medium has at least two characteristic

length scales appear.
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3. THE ANALYTICAL MODEL

3.1. Physical Description Of The Problem

The problem under investigation involves the drying of a
large round hay bale, which may be idealized as a porous
medium that is comprised of porous elements containing the
liquid to be removed. Thus, an essential feature of the
present work is that it is concerned with a medium that has
two disparate length scales. Specifically, it is desired to
examine the case where drying is accomplished by forcing a
heated stream of air through the global porous structure as
shown schematically in Figure 3.1. The drying performed in
this manner involves a simultaneous heat and mass transfer
process coupled between the "inner" and "outer" porous
structures. As stated previously, this type of configuration
occurs in the drying of certain agricultural products; among
them, the drying of hay. To fix ideas, the model will be
developed with this application in mind.

Since there are two disparate length scales involved, it
is convenient to define two regions, or domains, in the
problem. The "inner domain" is defined to consist of the
individual (cylindrical) solid elements making up the global
porous structure and everything contained in these elements.
The inner domain, then, is a porous structure containing a
solid matrix, liquid water, water vapor, and air. Hay stalks
have a "waxy" coating around the circumference which is very

resistant to mass transfer. Thus, it is here assumed that
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Figure 3.1. Schematic Of The Drying Problem To Be
Modelled.

the inner domain processes may be treated as one-dimensional.
The "outer domain" is considered to be everything external
to the inner domain and internal to the global porous
structure. The outer domain is thus comprised of only water
vapor and air. The global porous structure thus includes the
outer domain along with many (typically 1.7 x 10%) inner
domain elements which are assumed to be randomly oriented
throughout the global structure. The global porous structure
and the inner domain elements are assumed to be right circular
cylinders. 1In addition, there is assumed to be no angular
variation of properties (or processes) within the global

structure (i.e. the problem may be considered axisymmetric).
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The drying process to be modelled proceeds as follows.
A (heated) stream of relatively dry air is forced into the
outer domain from an inlet located at the bottom of the global
structure. As this stream of air flows through the outer
domain, it convects heat to the inner domain elements. Some
of this energy is used to vaporize the liquid water. The
water vapor then diffuses through the inner domain and is
then convected away at the boundary between the inner and
outer domains by the air flowing through the outer domain.

The drying rate may be either convection limited (by the
outer domain) or diffusion limited (by the inner domain)
depending on the geometry and boundary conditions of the
specific porous medium that is being dried. It should be
noted, however, that the limiting mechanism may be different
in different regions of the porous structure. Near the air
inlet, the drying rate may be diffusion limited due to the
relatively dry high-velocity air passing through this section
of the structure. However, in the upper portion of the porous
structure where the air velocity is quite low, the limiting
process may be convection. Thus, a scheme that takes into
account only one rate-limiting mechanism would probably not
accurately portray the drying process, at least over a wide
range of conditions.

Based on this physical description of the problem, a
mathematical model of the drying process will be developed

in the following sections. An attempt was made to keep the
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mathematical formulation as general as possible, however,
some assumptions were made for the specific application of
interest here; namely, the drying of hay bales. All
assumptions will be stated during the model development and
then summarized and discussed in greater detail at the end
of the chapter. Since the physical processes occurring are

different in the two domains, each domain will be considered

separately.
Derjvatio h overnin uations he Inner
Domain

2.1. Conservation O ass

As was stated previously, Krischer's model will be modified
to compute the heat and mass transfer occurring in the inner
domain. The previous modifications of Berger and Pei will
also be incorporated into the present model. Thus, the current
formulation is actually a modification of the method presented
by Berger and Pei.

It is assumed that the dominant modes of mass transfer
(for the inner domain) include capillary conduction of liquid,
diffusion of water vapor, and movement of bound 1liquid.
Additionally, it is assumed that the different phases (solid,
liquid, and vapor) of the inner domain are in thermodynamic
equilibrium and that the inner domain is an isotropic,
homogeneous, porous medium.

Under these assumptions, Miller and Miller (1955) have

shown that the capillary liquid flux may be written as

33



J, = -p.D;Vu (3.1)
The capillary conductivity, D, is (in general) a function

of moisture content and temperature and will, therefore, not
be regarded as constant.

Chen and Pei (1989) have shown that the bound 1liquid
movement may also be expressed in terms of a moisture content

gradient. The bound liquid flux takes the form,
Jy = -p,D;Vu’ (3.2)
The bound liquid conductivity, D, is also a function of

moisture content and temperature. Implicit in their
development is the assumption that temperature gradients are
negligible. Thus, it is here assumed that no significant
temperature gradients exist within the inner domain. This
assumption does not rule out the possibility of heat transfer
by convection from the outer domain to the inner domain or
by conduction through the inner domain.

Note that the application of equations 3.1 and 3.2 is
limited to specific drying regimes. Capillary conduction
will occur only in regions where continuous streams of free
liquid are present. Similarly, bound water movement will be
significant only in regions where no free water exists (see
Chen and Pei, 1989). Since it is desirable to avoid a front

tracking scheme, a method of incorporating these two modes
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of moisture transfer into the model must be devised. The
dependance of both terms on the moisture content gradient

suggests formulating a liquid movement term of the form
J, = -p,D;Vu". (3.3)
where the liquid conductivity, D) is assumed to be a function

of moisture content and temperature and must be determined
from experimental data. This is somewhat of a moot point in
the present application since the initial moisture content
of the hay is such that all the liquid is bound from the
start. However, in problems involving higher initial moisture
contents, it should be possible to obtain a relation for
D;(u,Tver the entire ranges of moisture content of interest.

The vapor diffusive flux may be written as

D€, .
J, = ——=VP.. (3.4)
RT;
Noting that
* * pS x
P

and again assuming that temperature gradients are negligible

results in

x * ps * P: * * ps * *
J, = -D,Je ~——u |V ;| = -D,le ——u |Vp, (3.6)
P: RT, P

With the mass flux terms identified, a mass balance over a

differential element (Note: The term "differential element"

in this work does not refer to an arbitrarily small volume.
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The volume must be large enough so that quantities such as
porosity retain their meaning. See Bear, 1972) shown in

Figure 3.2 gives:

[Mass Flow} _ [Mass Flow} . [Rate of Change} (3.7)
Rate In Rate Out Of Mass Stored '

oJ; . oJy s o(p.u’)
JL+‘]U = JL+_#dzi + Ju+ tdzi + __.__dz
0z 0z

; ; at! 12
+ a [( x ps ‘) ‘Jd * (3 8)
- €E ——UuU iv Zi .
ot Py P
or,
oJ oJ, ou’ 0 « Ps o)
- f - * = pg » + _t E _p_u \)piu]‘ (3'9)
azt 62; at ot DL

Substitution of equations 3.3 and 3.6 into equation 3.9 and

assuming that the porosity is not a function of time (rigid

solid) yields

) ou' ) N L\op; ou’
- * _psDL * - P _‘Du(e ~&u ) ‘:’ = Py rall
0z, o0z, 0z, p; 0z, ot

or,

3 Lou' J oops L \oph P \ou
* p:DL * + Du € ——u * = ps l—_ * +
2z] ER p, Joz; p, ) ot

op’
(e'—‘iu') pi”. (3.11)
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. L »|
[ Z
Axial Center Line
Figure 3.2. Mass Balance And Nomenclature For A

Differential Element Of The Inner Domain.

3.2.2. Conservation Of Enerqgy

To develop an expression for energy conservation, a
differential element is again considered. Energy transfer may
take place as a result of convection heat transfer, evaporation
of liquid, and heat conduction (radiation heat transfer is
assumed to be negligible).

The conductive term may be thought of as being composed
of contributions from two sources. The first arises from the
conduction of heat through an inner domain element (hereafter
referred to as "local" conduction heat transfer) and, the
second from the conduction through the global porous structure
(hereafter referred to as "global" conduction heat transfer).
The global conduction term results from the physical contact
of many inner domain elements. The problem of how to handle

this global contribution is greatly complicated by the fact
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that the points of contact with other elements are not known.
Even if this geometry could be specified for every element,
the mathematical treatment of such a problem would be so
complex that it would not be feasible.

A simplified treatment of this phenomenon is formulated
here by considering a succession of porous media. In one
limit, the global porous structure may be thought of as
containing only a single inner domain element. In this case,
there is no global, or element-to-element, conduction. If
a second element is added so that there are two elements in
contact (at least at one point), then global conduction occurs
due to any temperature difference between the two elements.
For a control volume surrounding only the first element,
global conduction appears to be an energy source (sink) at
the point(s) of contact. As more elements are added, these
energy sources (sinks) become distributed more closely along
the length of the first element. 1In the limiting case, the
enerqgy sources (sinks) are distributed along the entire length
of the element. Provided that the amount of heat conducted
to an element from the neighboring elements is approximately
constant, the global conduction term may be treated as an
evenly distributed energy source along the entire length of
the element.

For many porous media, there are indeed a large number
of elements in a small volume and thus there will be many

contact points. It is assumed, then, that the global
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conduction term may be adequately modelled as an energy source

(sink) of constant strength distributed along the entire

length of the element. This approximation is admittedly
simplistic and is employed only to include one possible
treatment of the conductive load. In the present application,
it is anticipated that the convective contribution to total
heat transfer to an element will dominate. In other
applications in which conduction dominates, a more detailed
assessment of this term may be required.

An energy balance on a differential element (Figure 3.3)

in the inner domain gives:

Rate At Which Rate At Which Rate Of Change
Energy Enters = Energy Leaves |+| Of Energy Stored |. (3.12)
The Element The Element In The Element

The energy balance may also be written as

Rate At Which Rate At Which
Energy Enters The Element + Energy Is Conducted +
From The "Source” Term Into The Element
Rate At Which Rate At Which
Energy Is Convected + Latent Heat Is =
| To (From) The Element Used In The Element
Rate At Which Rate Of Change
Energy Is Conducted + Of Energy Stored (3.13)
| Out Of The Element In The Element
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-
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Figure 3.3. Energy Balance On A Differential Element Of
The Inner Domain.

or,
P * aT: » . 4 * . -
g, "Adz, - KSA() : + h(T,-T)HP'dz, - m,,L,Adz, =
3T, 9 T, . oT; .
~KA—-—| K, A— |dz; + p,C,—dz,. (3.14)
()Zt 82; (321 ot

To obtain an expression for m,, a mass balance on the vapor

phase in the element is performed. This yields

[Rate At Which Liquid Mass Flow Rate Of
Is Evaporated In + Vapor Into The =
The Element Element
[ Mass Flow Rate Of Rate Of Change Of The
Vapor Out Of + Mass Of Vapor Stored , (3.19)
The Element In The Element
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x* * * $ * a ;U * * ps * ap:u
m, Adz, - DUA(6~8—uj p‘ = {-DUA(E———U> "
P: 0%

a * * s * a :u * a * s * * *
. DUA(E —gﬂlj p‘}dzi} + p (e —e—u)pw}Adzp (3.16)
azi pL aZl at pl_

or,

a * * S * a ;U a * pS * *
mev = - * Du(e _g_u ) pt + -_'li(e - —u )piv}' (3.17)
0Z; P 0%, ot ()]
Substituting equation 3.17 into 3.14 yields
P' a H 3 ps 3 ap:v a ( : ps ‘) '}}
Y + h Ta_Ti L+ l-v — . —— . I € ——Uu v
7 ¢ )7 {azi{D (E pf‘)asz at{ o )’

2 2T o7
+ — KS_L = Cs__..l. 3.18
azi ax) Pt or (5.18)

Assuming K, is constant, and rewriting equation 3.18 gives

oT; 22T L, [ o] o[ . ps J\opi, o[ ( . ps')
BT A * + . Du € ——u . - . € ——u Ip,
ot 2z;° p.C:loz; k P, 0z; ot P.

s

h, P’ .
—= (T, -T) +
osCsﬁ( 10

0.
p.C,

(3.19)

The boundary conditions for equations 3.11 and 3.19 are
obtained by performing flux balances on the boundaries of the
inner domain. Assuming that z=0 is a plane of symmetry,

allows one to write

.3
p.D; u. 0, (3.20)
2z,
* s * a 'u
D:(e —p—u) P _ o, (3.21)
P 0Z;

and,
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s = 0. (3.22)
0z,
A mass balance at z=L gives
tau‘ * * s * a :U x
psDI. * * DU(E _p_u' ) pt = hm(pva_piu)' (323)
02y PL 0%;

An energy balance at z=L results in

* *

oT, Lou .
Ks x LupsDL—T = hc(Ta_Ti)' (324)
02, oz,
The initial conditions are
u = u, 0<z,<1L, (3.25)
Pu=Pho  O0S2,SL, (3.26)
and,
T =T, 0<z,<L. (3.27)

Equations 3.11 and 3.19 form a system of two equations in the
three unknowns, u',p,.T.: Therefore, another relation is
needed to mathematically complete the model. Berger and Pei
have noted that the liquid content and partial vapor pressure
(and, hence, vapor density) are independent for moisture
contents greater than the maximum sorptional moisture content
(Uns) For this reason, two different equations of state will
be needed depending on the moisture content of the inner

domain.
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For moisture contents above u,, Berger and Pei (1973)

proposed using the Clausius-Clapyron equation, which is given
by

[ t
a+—+cInT,

Po = RIT;Q( ‘ ) (3.28)

For moisture contents below u,, the sorptional isotherm

provides the necessary relation. This curve must be determined

experimentally and may be written as

*

P, P
P P

= fu'.T)). (3.29)

The coupling relation may thus be written as

*

piu

*

pofu T ' <u_, (3.30a)

it

or,

b t
1 a*—+clnT, .
,e[ K } uSu,,. (3.300)
RT;

*
piu

Thus, the two governing equations (3.11 and 3.19), the
equation of state (equation 3.30), the boundary conditions
(equations 3.20 - 3.24), and the initial conditions (equations
3.25 - 3.27) provide the complete mathematical statement of
the coupled heat and mass transfer problem for the inner
domain. Examination of these equations reveals that the heat
and mass transfer processes in the inner domain are coupled
to those in the outer domain as they must be. Thus, the
solution of the governing equations for the inner domain

requires the simultaneous solution of the governing equations
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for the outer domain. It should also be emphasized that the
diffusion coefficients, D and D, are not assumed constants,
but are allowed to vary with both the moisture content and
temperature. These functions are dependent upon the specific
porous media being considered and should be determined from

experimental data.

N imensi i i e Gov
Equations, Boundary Conditions, and Initial Conditions For

The Inner Domain

Identification of the nondimensional parameters that
affect the solution field in the inner domain may be achieved
by non-dimensionalizing the governing equations, the boundary
conditions, and the initial conditions. Thus, the following

nondimensional variables are defined for the inner domain:

z; Nondimensional Spatial
= T = . 3.31
“ L Coordinate ( )
o, = D?‘DEQ _ Piv ™ Pue _ IvondnnensiQnal Vapor , (3.32)
Pve™ Pu Ap, Density
u'-u, u'-u, ' i '
u o= LU _ Nondimensional Mmsture' (3.33)
u,-u, Au Content
a,t’ Nondimensional
{ = = , 3.3
I Time (3.34)
T.-T; T.-T; Nondi i 1
T, = == Lo ¢ _ Nondimensiona ' (3.35)
T .-T, AT Temperature
q,”"L® Nondimensional Source
q; = 7 ° , (3.36)
K AT Term
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D; Nondimensional Liquid (3.37)

D, = — = o )
: D:, Conductivity

D, = v o Nondnnensnopa} Vapor ’ (3.38)

D, Conductivity
El__ptul
— e - . Y -

e - 0, _ Nonduneq&onal . (3.39)

Au Porosity

Rewriting equation 3.11 for conservation of mass in terms of

these nondimensional variables gives

2 ps au» ps apiu ps pue+Apupiv aLL
—| Lu,| — |D,— ~+ -—u |D = L AL puthad
azg[ uL(Apv) Loz, Luv(e pLu) ”azi} (Apu)( P, ot

$ aiu
+ (e—%—u) St' (3.40)
L

Similarly, rewriting the equations for conservation of energy

(3.19) and the equation of state in nondimensional form gives

3 i aZ i A v a s a iv v¢+A vF v 3 a
3T, _ T, Ko( p) Lu, Dv(e—p—ujL G p.p )(D_)_zg
at aziz ps azr’ pL azi Apv pL at
P, \op, ,(P'L)
- T + — -1;) - , 3.41
(e Lu) at} Bi| — (T.-T) q, ( )
and,
P, = F(u.T) for uzug, (3.42a)
or,
a'+*c1n(7,‘ATT‘)
- ! [ ) for u>u_,,  (3.42b)

Po = AP R(T.-ATTDS

where:

Pus FCU T{)=Poe

3.43
Ap. ( )

f(uT) =

45



Rewriting the boundary conditions in terms of the

nondimensional variables gives

ou 0 t =0 3.44
azi - a Zz;=0, ( , )
apiu
= 0 at z,=0, (3.45)
0%,
3T,
= 0 at z,=0 (3.46)
0z,
aul | 2 tuyn, 2t v (Luyp| e~ 1P|
Ap, oz, TT py Jezy
Bi (PyePy) at z,=1, (3.47)
and,
oT, ou )
— + Ko(lu)D,— = Bi, (T.,-T)) at (z,=1). (3.48)
3z, 0z,

Finally, rewriting the initial conditions in terms of the

nondimensional variables yields

P, = 1 for 0<xz,<1, (3.49)

u = 1 for 0<z,<1, (3.50)
and,

T, = 1 for 0<z,<1. (3.51)

The dimensionless parameters appearing above are defined

as follows:

D, . o

Lu, = aL = Luikov Number For Liquid, (3.92)
D, .

Lu, = o = Luikov Number for Vapor, (3.93)
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- = i , 3.5
Ko C.oT Kossovich Number ( 4)
. h.L .
Bi = Z = Biot Number, (3.55)
$
. hnl e .
Bi, = a = Modified Mass Transfer Biot Number. (3.96)

These parameters, as well as those appearing in the outer
domain, will be summarized and the physical significance of
each discussed in the section below entitled "Summary of
Analytical Model." Note that some of the parameters identified
above depend on quantities (such as Re..P’ which appear in
the outer domain equations. Therefore, some of these

parameters are not independent parameters in this problem.

Once the dimensionless form of the outer domain equations has
been obtained, this facet of the analysis will be discussed

in more detail.

.3 ivation O overni tions e

ain

A homogeneous porous medium is one in which the properties
of the medium do not vary with position (Bear 1972). An
isotropic porous medium, however, is a medium in which the
properties do not exhibit directional dependence. As stated
previously, the global porous structure is assumed to be
composed of randomly oriented inner domain elements. The
distribution of these elements (and, hence, of the porosity

and permeability) may vary with position. Thus, the global
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porous structure is (in general) nonhomogeneous. Since the
inner domain elements are randomly distributed, there is no
directional dependence and the global structure may be
considered isotropic. In addition, the solid structure is
assumed to be rigid so that the porosity will not vary with
time.

Water is removed from the inner domain in the vapor phase
which is then convected to the outer domain. Thus, the outer
domain is composed of dry air and water vapor. For a typical
case considered in the present work, the liquid removal occurs
over a period of days so that the rate of change of the mass
of water vapor in the outer domain is extremely small. Since
the volumetric flow rate of water vapor is small compared to
the flow rate of air ("typically" this ratio is approximately
1.5 x 10-3 ), it is assumed that the forced air flow through
the outer domain will not be significantly affected. It is
also assumed that natural convection effects and mass
diffusion effects are negligible. With these assumptions the
mathematical model may be formulated as described below.

In obtaining an expression for the conservation of mass
within the outer domain, the flows of dry air and water vapor
will be considered separately. Equations for the conservation
of air and water vapor are obtained by considering a mass
balance through a differential element as shown in Figure

3.4. For dry air, conservation of mass may be written as
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Figure 3.4.

Global Porous
Structure
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Rate 0Of Mass (Energy>
Flowing Into Element

Mass And Energy Balances On A Differential
Element Of
The Outer Domain.
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1 o .
. L] r
ror (

V) +

(V) = 0. (3.57)

*

Note that since the mass transfer and natural convection
effects have been assumed negligible, the velocity field may
be considered steady in time.

Since the density of water vapor directly influences the
mass transfer from the inner domain, conservation of mass
must be applied to the water vapor separately to determine
its density distribution. Again, considering a differential
element, the equation of conservation of mass may be written

as

*

.op, ]
+

; c—(r'e’
ot r or ( P

1

* a %x * *
Vr) + 5‘—;(‘)”6 Vz) = Smass (358)
2

where S, ...is the volumetric mass source that represents the

transfer of water vapor from the inner domain to the outer

domain. This mass source may be expressed as

hm :v— : N A;
S, = (p PN . (3.59)
Vv

Substitution of the above relation into equation 3.57 gives

* * 0 * x x h’m ;v_ : N A:
VIt —(eTp VL) = (i 0N A: (3.60)
4 |

lap: * *
€ st (r e
ot ror ( P
Implicit in this equation is the assumption that the water
vapor and dry air are "well mixed"; that is, both the water

vapor and dry air have the same velocity at any point in the

outer domain.
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For a porous medium, Newton's Second Law may be replaced
by Darcy's Law (Bear, 1972, Scheidegger, 1960). Darcy's Law
is based on the experimental observation that the pressure
drop across a porous medium is proportional to the velocity
(at low Re) . At higher Re,, inertial effects become important
and the pressure drop becomes proportional to the velocity
squared. The so-called Forscheimer term is then added to
Darcy's Law to describe this flow regime. Several authors
have presented experimental and theoretical discussions of
Darcy's Law when inertial effects are taken into account
(Nield and Joseph, 1985, Joseph, Nields, and Papanicolaou,
1982, Beavers and Sparrow, 1969, Bachmat, 1967, and Irmay,
1958). Based on the discussion of Nields and Joseph (1985),

Darcy's Law with inertial effects included may be written as

oP" M

_ e A A 7 72 (3.61)
or X
and,
oP" . . .
- - By v (3.62)
0%

Equations 3.57, 3.61, and 3.62 form a system of three equations
in the three unknowns V;,V, and P’. Thus, the velocity and
pressure fields may be determined separately from the solution
of the vapor density and temperature fields.

The energy equation is found by considering an energy
balance on a differential element as shown in Figure 3.4.

The energy equation may be written as
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Rate At Which Rate At Which
Energy Enters Element + Energy Is Convected +

From "“Source”™ Terms Into The Element

Rate At Which ] [ Rate At Which
Energy Is Conducted + Energy Is Convected +

| Into The Element | | Out Of The Element
Rate At Which ] [ Rate Of Change

Energy Is Conducted + Of Energy Stored . (3.63)

| Out Of The Element | | In The Element

or,

do . 0T
qa'”[(r+dr)2—r2]zrdz + [(pae V.T) - K,e EF}rdez

+

[ V. T —K'aT} +d Z—Zde—[ VT
(pe V,T) aEg[(r r) r]?— (pe V,T)

+

3 . 0T 0 0T
—(p,e V,T)dr - K e —-—| K,e —dr | |(r+dr)dbdz
or or or ar

DT (0 0T .
37 3z\ Ka€ 37 )dzl(r+dr)

+

a€

- a -
[((p,€ VZT)+5;(pae V.,T)dz - K

,..adB 0 . 5 ,.d0
- r )]? + a—t(paC,ae H(r+dr)‘-r ]E—dz. (3.64)

Equation 3.64 may be rewritten as

a - - l a - - - - a - = *
ato(pacpae T ) + Fara(e panar VrT ) + azs(e panaVzT )
1 0o ... oT’ 0 .. oT"
DL T L T L e e
ror or ¢z oz

P

The volumetric source term, g, °; includes the energy

transferred by convection to the inner domain as well as any

heat sources that may be present.
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Assuming that no significant energy sources are present
in the outer domain and that the fluid properties may be
considered constant allows one to rewrite the energy equation

in the form

OT° 1 0 s e e_e ) . e a, o Y
€ — + —=(erV.T) + (eV,T) = ——|er —
ot r-or oz r-or or

a

3 ( ,aT') h AT -TIN,,
+
“oz"° € 2z" PaCoaVev

(3.66)
The appearance of the convective source terms in equations
3.60 and 3.66 couples the equations of conservation of mass
and energy for the inner and outer domains.
In order to identify the important dimensionless
parameters in the outer domain, the governing equations may

be nondimensionalized. Define the following nondimensional

variables for the outer domain

a t‘ . .
) - s _ Dunen§1onless ‘ (3.67)
L? Time
i i Radial
r o= r _ Dnnen§1onless' adia ’ (3.68)
R Spatial Coordinate
z” Dimensionless Axial
- 2 = , 3.6
o H Spatial Coordinate ( ?)
PJx, Dimensionless
P - —2 = ) (3'70)
Rp.Vix Pressure
T T.-T" _ T.,-T' _ Dimensionless ’ (3.71)
T.-T, AT Temperature
Vo= _ Dunensnonle§s Radial ’ (3.72)
V in Velocity
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* . . .
V. Dimensionless Axial

V. = X = , 3.73
i V ix Velocity ( )
Py~ Pve _ Dlmen510nl§ss Vapor ' (3.74)

v Puo = Pye Density

O‘JK_, i Dimensionless Coefficient

b = In The Forscheimer , (3.73)
Pa Term
« = X Dlmensmr_ﬂ'ess ‘ (3.76)
X, Permeability

Rewriting the governing equations (3.57, 3.58, 3.61, 3.62,

and 3.66) in terms of these nondimensional variables yields

(%{);—a—a;(e'rl/,) © V) -0, (3.77)
_g_’; _ RLK% « b7V (3.78)
_g_z’i _ RL% A (3.79)
U RexPrZ—j%r—[L;M%)’l_;—r(e'purVr) E puvz)} -
Bzm(KZA;/iI‘:D)S—( V0L, (3.80)
and,

0T a, L L|(H\10o0 . , .
_ Dl I BE —(e'V =
€ 3 + Re‘Prast:H[(R)rér(erV'T) + Z(e ,T)}

ST R - )]

a, Ks K’rAsNID)LZ
| — | — || ——=— |=—(T,-T). 3.81
Bl(as)(Ka)(L Vv K’r( =) ( )
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Equations 3.80 and 3.81 may be simplified by noting that

NID

2AL

Substitution of this relation into 3.80 and 3.81 gives

AN a, L L (i{)la . 0 .
€ + Re Pr——— [ g;(epvrv,) + 5;(epvvz) =

ot a J__H

NURE
Blm(T) > (PP,

a, L L

.oT H\lo . o .
€ — + Re Pr— {( ) —(e rV, T) + —(¢€ VXT)}
or oz

3t a J_H
GGTTE et - 2] -
(2B

Rewriting the boundary conditions in terms

nondimensional variables gives

oV,
= 0 at r=0,

or
oT
— =0 at r=0,
or
2]

Pv = 0 at r=0,
er
o(rv,

( ) = 0 at r=1,

or
oT
— =0 at r=1,
or
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(3.82)

(3.83)

(3.84)

the

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)



= 0 at r=1,

T =0 at z=0 and O<r<Ry,

= 0 at z=0 and R,<r<l,

p, = O at z=0 and O0<r<R,,

Opy
apz =0 at z=0 and Ry<r<i,
Vv, =1 at z=0 and O0<r <Ry,

Vv, = 0 at z=0 and R,<r<l,

vV, = 0 at z=1,

oT
— =0 at z=1
0z

and,
opy
P = 0 at =z=1.
0z

(3.90)

(3.91a)

(3.91b)

(3.92a)

(3.92b)

(3.93a)
(3.93b)

(3.94)

(3.95)

(3.96)

Similarly, when the initial conditions are rewritten in terms

of the nondimensional variables, there results

p, = 1 at t=0 for O0=<r<1 and 0sz<]1,

and,

T =1 at t=0 for 0<r<1 and 0<z<1,
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3.4. Summary Of The Analytical Model

The development presented in the previous sections
resulted in a set of eight governing equations
(3.40,3.41,3.42,3.77,3.78,3.79,3.83, and 3.84) in the eight
unkowns

Vry Vz' P' pu‘ T‘ u‘ pi.u‘ TI'.'

along with an appropriate set of initial conditions (equations
3.49,3.50,3.51,3.97, and 3.98) and boundary conditions
(equations 3.44-3.48, and 3.85-3.96).
It has been mentioned that equations 3.77, 3.78, and 3.79 in
the three unknowns V,,V, and P are uncoupled from the rest
of the problem. The problem, then, may be subdivided into
two smaller problems: one for the determination of the velocity
field, and another for the solution of the "drying problem."
Solving for the velocity field requires the solution of
three equations: 1) the continuity equation, 2) Darcy's law
in the radial direction, and 3) Darcy's law in the axial

direction. These equations may be written

H\10 . 0 .
(E),—_ﬁ(e I‘Vr) + é—i(E V,) = 0, (3.77)
OP 1V, -
- = — 4 V., 3.78
or Re, x L ( )
and,
SLLAN I & Sl (3.79)
o0z Re, x = '

respectively, in the three unknowns
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V.., V,, and P.

The boundary conditions for the velocity equations are

oV,
0 at r=0, (3.89)
or
o(rV,)
0 at r=1, (3.88)
or
Vv, =1 at z=0 and O<Sr<Ry. (3.93a)
V, = 0 at z=0 and R,<r<l, (3.93b)
and,
V, = 0 at z=1. (3.94)

The solution of the "drying problem" requires the solution
of equations 3.40, 3.41, 3.42, 3.83, and 3.84. As noted
earlier, however, not all the parameters appearing in these
equations are independent parameters. Bi and Bip depend on
other parameters appearing in the problem as well as on the

local velocity. It may be shown (see Appendix A) that

- A e, K, . .
Bi = — — : A.9
fl(As. LK€ .Re‘,Pr,IVI) (A4.9)
and,
a, A K, Jx, _
Bi = —e L s r * . A.16
i fz(as'As’Ks’ 7€ .Luu.ReK,Pr,IVl‘J ( )

Also, the groups P'L/Aand A,/Amay be expressed as

P L 4nDlL 41
= — 3.99
y Y D ( )

and,
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A, 2[4nDL + nD?] 8L
= = = — + 2, 3.100
A nD? D ( )

respectively. Substitution of these relations into equations

3.41, 3.83, and 3.84 yields,
aTi azTi A v 0 H 0 iy
—_— = - Ko i Lu,— X, e—g—u s
ot oz? P, 0z, p, /oz,
(pue+Apupiu)(&)a._u _ (e_&u)apiu>
Ap, P/ ot P ot

K,
L(L Jx,

D' LK,

. — 4L
€ ,Rex,Pr,|V|)(z;)(Ta—7}) - g, (3.101)

LOP, a, L L (H)la . o . }
€ ot t Re, ra { rar(Ep”rV') v az(Ep" 2

l..
)( 25)(pw—pu>, (3.102)

. — 8L
€ ,Lu,,Re ,Pr,|V| 2;+2

m
Q»IQV
+
]
©
x
~
~
TN
Q|QQ
~
TN
<7~
S
N
|~
N~
—
VealEEN
|

)1:1 rv. T EL v, T
- + =
STV, TY ¢ (VT

@) ) - eE)] -

f(é\/? Ke et ke, pr, :V|)(§—L—+2)“"E D(1.-T). (3.103)

D 2

Thus, the mathematical model for the "drying problem" consists
of five equations: 1) conservation of mass in the inner domain,
2) conservation of energy in the inner domain, 3) the inner
domain equation of state, 4) conservation of mass in the outer
domain, and 5) conservation of energy in the outer domain.

These equations are given by
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( pue+Apupiv)au ( ps )apiu
1-——— |~ + |e-—u ,
p; ot

Y (3.40)

()Ti azT; AD,, 0 ps apix/
- = > — Ko Lu,—| K,| €-—u
ot 02} P, 0Z; p

(pue+ Apupiu)(

§

"O
S
Xl

(o)
Ap, Py p, J ot
L%, K, . ., (4L)
= — — T,-T) - q,, 3.101
fl(Dl L 'ste lRex»Pr»lvlj D ( a l) q ( )
Py = f(u.T) uu,,, (3.42a)
1 [a‘(—r-—_—%m‘cln(T,-ATT‘)]
o o > , 3.42b
Po = Ao R(T,-ATT)® "> Uns ( )
.op, s L L (H)la . 3 . }
+ R 2 Z| === V.) + — 14 =
€ ot e“PraS Kr}{[ R rar(E p.rV:) az(e PV )

a, L Jx, K, . " (BL )(1-6')

Za L VP —+2 , - , 3.102
fz(as'D' 7 ,K?,Luv,e ,Rex,Pr,|V|) 5 5 P,-p,). ( )
T a, N/ L N(L\[(H\1 & . > . .
5+ rer ) ER e  Sern] -

e E) ) - (2]

—_ — — | T — _— +

a, \w2 )|\&) ror\® "5r €

oz

iz
L yx, Ko . — 8L (1-€7)
— 2\ —(T,- 3.103
fl(D: L »KS’E'RQK\PF!IVI)(D‘*’ ) 2 ( i T) ( )
respectively, in the five unknowns

u, p, P, T, and T,.

The boundary and initial conditions are given by:
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ou

2z,

apiu
0%,

oT,

0z,

N

0 at z,=0,

0 at z,=0,

0 at z,=0,

s

p au ps apiu _
pv)(Lu”)Dlazi + (Luu)Du(e plujaziJ =

Bi,(Pys=Pu) at z;,=1,

i

0z

i

oT

or

0
+ Ko(LuL)DL[% = Bi (T,~-T, at (z,=1),

at r=0,

0 at r=0,

0 at r=1,

0 at r=1,

at z=0 and O<r<Ry.

0 at z=0 and R,<r=sl,

at z=0 and O0=r<Ry,,

at z=0 and Ry<r<l,

0 at z=1,
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(3.44)

(3.45)

(3.46)

(3.47)

(3.29)

(3.86)

(3.87)

(3.89)

(3.90)

(3.91a)

(3.91b)

(3.92a)

(3.92b)

(3.995)



S 0 at z=1, (3.96)

p, = 1 for 0<z,<1, (3.49)

u = 1 for 0<z,<1, (3.50)

T, = 1 for 0<z,<1, (3.51)

p, = 1 at i=0 for 0<r<l1 and 0<z<1, (3.97)
and,

T =1 at t=0 for 0<r<1l and 0=<z<I1. (3.98)

Examination of the nondimensional equations shows that
there are 15 dimensionless parameters appearing in the

problem,

o
Q

)

H Jx, 0w 0o P L
L' L Ap, p, Ap, D

H
Ry, Ko, Lu,, Lu, % Re,, Pr.

Each dimensionless parameter holds some ©physical
significance in the mathematical model. The dimensionless
terms and their physical interpretations are presented in

Table 3.1.
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Table 3.1.

Summary Of The Dimensionles§ Parameters And
Their Physical Interpretations

Ratio of the thermal conductivity of
air to that of the solid

Ratio of the thermal diffusivity of
air to that of the solid

Ratio of the height of the outer
domain to the (half) length of an
inner domain element

Ratio of the length scale in the
outer domain to the (half) length of
an inner domain element

Ratio of equilibrium vapor density
to a characteristic change in vapor
density

Ratio of the solid density to the
density of liquid water

Ratio of the solid density to a
characteristic change in vapor
density

Ratio of (half) length to diameter
of an inner domain element

Ratio of the height to the radius of
the outer domain structure

~
D
s

)
>4
-

Ratio of thermal energy used for
evaporation to sensible energy
stored in the solid

3

ir

Q

Ratio of the rate of capillary
transfer of liquid water to
diffusion of heat in the inner
domain

Lu,

S

<}

Ratio of the rate of diffusion of
water vapor to diffusion of heat in
the inner domain

Re,

<
Zz
7

<

Ratio of inertial forces to viscous
forces

R<

Ratio of the diffusivity of momentum
to the diffusivity of thermal energy

>|g

Ratio of air inlet radius to the
radius of the outer domain
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is

ssi ss j Whic Analvtical

Model Is Based

In the formulation of the present mathematical model,

several assumptions were made. The assumptions for the inner

domain include:

1.

The porous solid is isotropic and homogeneous and
contains liquid water, water vapor, and air.

The inner domain elements are assumed to be randomly
oriented throughout the overall region comprising
the outer domain.

Moisture movement may occur as a result of capillary
transfer of liquid, diffusion of water vapor, and
movement of bound liquid.

The inner domain phases (solid, liquid, and vapor)
are in thermodynamic equilibrium.

Temperature gradients are negligible in the inner
domain.

The solid structure is rigid so that the porosity
does not vary with time as the drying process takes

place.

Additional assumptions for the outer domain include:

7.

The overall structure of the outer domain is
isotropic, but may be nonhomogeneous.
The porosity does not vary with time.

No liquid is present in the outer domain.
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10. The addition of mass (as water vapor) to the outer
domain does not significantly affect the velocity
distribution in the outer domain.

11. Natural convection is negligible.

Assumption number one concerns the physical structure of
the porous medium in the inner domain. For the present
application, the inner domain represents a single hay stalk.
Examination of the interior of a hay stalk under a magnifying
glass reveals that the material is distributed rather
uniformly throughout. Thus, the assumption that the medium
is homogeneous should be reasonable for the present case.
Additionally, it has been assumed that the liquid held within
the inner domain may be treated as pure water. The energy
required to vaporize the 1liquid in the hay stalks has
reportedly been measured and is within approximately 15% of
the heat of vaporization of pure water (Bledsoe, 1989). Thus,
treating the liquid as pure water should not result in a large
error for the present case.

Assumption two concerns the physical makeup of the global
porous structure. Again, examination of a hay bale reveals
that the hay stalks are randomly oriented throughout the bale.
(Note: There is a tangential pattern that appears in a hay
bale as a result of baling. As the hay is picked up from the
wind row, it is "wrapped" around the outside of the bale.

However, the hay stalks themselves do appear to be randomly
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oriented within each layer. Furthermore, no change in the
flow has been observed to occur at the interface of these
layers. Thus, the assumption that the stalks are randomly
oriented throughout the entire outer domain has been made.)

As was discussed in Section 1, several different mechanisms
of mass transport have been identified. Of these, vapor
diffusion, capillary movement of liquid, and movement of bound
liquid have been assumed to predominate. The pressure gradient
along the outside (from end to end) of an inner domain element
is negligible (a typical pressure drop across the entire bale
structure is around 0.1 psi). Thus, the liquid and vapor flow
induced by an external pressure gradient is very small. Since
the flow is not rarefied, effusion (Knudsen) flow may also
be dismissed as negligible for the present case. Surface
diffusion has not been included in any studies known to the
author. However, this mode of mass transfer will be negligible
except in the very last stages of drying where the liquid
content is very low. Therefore, this term will also be
neglected. Thus, the only modes of moisture movement that
have been included in the present model are capillary movement
of liquid, diffusion of water vapor, and movement of bound
liquid.

Assumption number four involves the presumption that
thermodynamic equilibrium exists between the phases of the

inner domain. The typical drying process occurs over a period
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of days and the temperature changes occur gradually during
this time. Thus, it is expected that the inner domain phases
are close to being in equilibrium with each other.

The temperature gradients in the inner domain have been
assumed negligible. The typical element in the inner domain
is approximately one to two inches in length. Thus, the air
temperature in the outer domain will not change significantly
over such a short length. Since convective heat transfer
between the domains is assumed to be the primary mode of heat
transfer in the present work, the temperature gradient along
a stalk should also be small.

Assumption number six regards the shrinkage of the solid
structure. It has been observed that the shrinkage of hay
during the drying process is small. The porosity, therefore,
will not change significantly due to shrinkage and may be
assumed constant over time.

Since the outer domain structure has been assumed to
consist of randomly oriented inner domain elements, it will
be isotropic. Current baling practice, however, often results
in an uneven distribution of hay inside a hay bale. Thus,
the dry matter density varies considerably with position in
the bale (Bledsoe, Shoulders, and Hitch, 1986). Therefore,
the porosity is a function of position so that the bale is

actually a nonhomogeneous porous structure.
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As has been mentioned, the typical drying process occurs
over a period of days. Thus, the addition of mass to the
outer domain (as water vapor) occurs very slowly. For the
typical case under consideration, the initial moisture content
is approximately 35% (w.b.) and the final moisture content
is approximately 18% (w.b.). The initial weight of a bale is
on the order of 8900 (N) (2000 1lbf). Thus, approximately 210
(kg) (470 1lbm) of moisture is removed over a three day period.
The average mass transfer rate is thus approximately 8.2 x
10"4 (kg/s) which is small compared to the mass of air flowing
through the bale structure (the ratio of water vapor to air
mass flow rates is approximately 1.5 x 10~3). Therefore, it
is assumed that this slow addition of mass will not
significantly affect the velocity distribution in the outer
domain.

A typical Reynolds number (Re) for the flow in the outer
domain is approximately 10 and the typical Graschof number
(Gr) is approximately 3.5. The relative importance of natural
convection to forced convection is given by a function
involving Gr/Re"” (Gebhart et al., 1988). When the value of
this parameter is close to zero, forced convection dominates.
When the value of this parameter is very 1large, natural
convection is of primary importance. The value of the exponent
n depends on such quantities as geometry, boundary conditions,

and fluid properties. However, there is a large difference
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between the Reynolds number and the Graschof number; and, it
is therefore expected that natural convective effects will

be small.

69



4. THE NUMERICAL INVESTIGATION

4.1. The Need For A Numerical Solution

The mathematical model formulated in Section 3 cannot be
solved in closed analytical form; therefore, a numerical
solution of the set of coupled partial differential equations
subject to the stated initial and boundary conditions is
required. It was decided to use the finite volume approach
(Patankar, 1980) due to the simplicity of formulation and
ease of solution of the resulting equations. This approach
also guarantees satisfaction of all conservation relations
and can be solved on extremely coarse grids during the
development phase of the numerical study.

As mentioned previously, it is possible to obtain the
velocity and pressure fields independently of the other
solution variables. Thus, two different numerical schemes
will be derived below: one for the velocity and pressure field
solution and the other for the solution to all other unknown

variables appearing in the problem.

4.2, Determination Of The Velocity And Pressure Fields
The equations to be solved are:

H\lo . o .,

— |- + = 3.77

(R)m(e rv.) o+ 5o(EV) =0, (3.77)
oP 1 -

— — = ) n7

Py Rexv, + b|V|V, (3.78)

and,
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oP 1 —
—a_z_ - Re‘cvz + bIVle> (3'79)

The finite volume approach requires that the calculation
domain be divided into nonoverlapping control volumes. The
size of these control volumes may be uniform, or nonuniform,
as desired. Nonuniform control volume spacing allows more
flexibility in the code as a closer spacing may be used in
areas where large gradients of the solution variables are
expected. The present numerical scheme will thus be derived
for the case of variable grid spacing.

Any finite difference scheme (finite volume approach
included) involves solving the solution variables at discrete
locations, or "grid points." The placement of the grid points
within the control volumes for the finite volume approach
must therefore be specified. Patankar has discussed two
possible approaches which he designates as "practice A" and
"practice B." Practice A consists of locating the control
volume faces half-way between the grid points, while practice
B involves locating the grid points at the center of each
control volume. Figures 4.1 and 4.2 illustrate the differences
between the two approaches. Patankar has noted that practice
B has several advantages and so this practice will be used
throughout the present derivation.

The notation used throughout the present derivation (and
used by Patankar) is also illustrated in Figures 4.1 and 4.2.

The subscript P is used to designate a particular grid point
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IS

grid points (Practice 3a).

AT Tt T rT T T T T T T T

Grid points located at the center of the

control volumes (Practice B).

Control volume faces located half-way between

Figure 4.1.

)

Figure 4.2.
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while the subscripts E,W,N, and S denote the east, west,
north, and south neighboring points, respectively. Quantities
evaluated at the east, west, north, and south control volume
faces are designated with subscripts e,w,n, and s
respectively.

One other aspect concerning the grid should be mentioned.
In problems involving convective terms, a staggered grid is
employed for the velocity components to avoid the possibility
of obtaining an unrealistic pressure field. The velocity
grid points are thus located at the control volume faces,
while all other grid points are located at the center of each
control volume (Patankar, 1980).

Once the grid is specified, the governing equations are
integrated over a single time interval and an individual

control volume. Integration of equation 3.77 gives

ft«Aefn Q(H 190 .
t . ‘j; E);;(FE V,)rdrdzdt

t+at r ] a .
+ f ff—(e V., )dzrdrdt = 0, (4.1)
t s waZ

or,

.

_(roeavre - rwe;vrw)(zn_zs)

2 _ .2
+ (E;Vzn - E:st)(re2rw) = 0 (42)
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It was desired to have the option of solving for the velocity
field by running a transient solution to steady state.
Including the temporal terms, equations 3.78 and 3.79 may be

written as

1 \xov, P 1V, —
- =L - —~ + bV |V .
(RQ,LPF)(;' at ar [RQK\/—]E l l r:}u (4 3)
and,
1 \Wwov OP 1V, =
" = - - = + bIVIV, | 4.4
(Rexl’r)e‘ Y, 02 [Rexﬁc v J (4.4)

The usual form of the conservation expression for a variable

dmay be written as
0 —
5:(PO) * V-(pVO) = V(TV9) + S. (4.5)

Equations 4.3 and 4.4 may be considered to be in this standard
form if the terms enclosed in the square brackets are assumed
to be part of the source terms. (Note: The pressure term is
customarily not included in the source term.) Thus, equations

4.3 and 4.4 may be written as

oV, d
ReiPr(ig)jﬁ— ) "3? roo (4.6
and,
oV, 9
e O A (47)
where:
1 V. —
S, = _[Re‘ﬁ + bll/ll/,} (4.8)
and,



1 V, —
= - — + b|V|V, | .
S, [RQKJQ IV ,] (4.9)
The source term may be linearized as described by Patankar
to get

0S5~

S =5+ 5

(0-¢67), (4.10)

where the prime indicates the previous iteration wvalues.

Thus,
S, = - LAY, bV, +V )V, "
r RQK \/; r z r

1)1 b(2VZ V) ‘
Re. \ ) © veapayz VeV (4.11)

This may be rewritten as

| ( 1 ) _1__ b(2VE +VZi)
S, = b[V§'+V§']l/2 B Re, JT( * [V§'+V§'J“2 V.. (4.12)

It was desired that the code should run for situations in

which the Forscheimer term was not applicable (i.e. b = 0).
Since Vis initially zero, the source term as formulated above
becomes zero, which results in no numerical change in the
velocity field with time. This situation is avoided by
slightly modifying the source term as shown above to the form

. . v, 2 vevieviol o
r [Vg,+vg,]l/2 \/-TCRQK \/;Ret [VE,+V§,]1/2 re :

Similarly, the source term S,is modified to give

s bV L Ve 2 +b(Vf'+2V§') y (4.14)
z [V$,+V§,]l/2 \/TCRQK \/?RQ‘ [VE"*‘VE,’]HZ z° :
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Note that upon convergence,

source terms are obtained.

written as

1 (Jx
Re Pr\ ¢’
and,
1 (Vx
Re Pr\ ¢*
where:
SCY
S,
S
and,
S

Dz

oV,
ot

oV,
ot

by 3-

[Visviy’”

JERQx

bV 3-

[vivig”

{&iex

(See + S,V

prV r

(S S,V

V,’
fERe;
b(2VE +V27)
[V2’+ Vz.]l/Z

+

V.,

JxRe, '

b(VZ +2V27)
[V2-+ Vg,]I/Z

)

cz + pz z)

|

|

V,"=V,and V, =V ,and the correct

Equations 4.6 and 4.7 may now be

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Integration of equation 4.15 over a control volume and a time

interval gives

1 \[K'_a VFQ_VgQ
RQKPT' E;

2_ 2 -
+ SCre(rgzrw)(zn—zs) + SpraVre(rezrw)(zn‘zs)-

At

(’E;ri)(zk—za -

2 2

Solving for the velocity gives
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where:
P Jx.
re Re,Pre,At
and,

Vrs, = (Scr'

- (]
Aro Fre~—Tp ‘

Pr,

Re‘PFEZAt re Are

Similarly, it is easily shown that

Vi =

Vi =
and,

VZS =
where:

( 1 j—PV-PPT * Vrs'
Ary )| Tp—Tw | ¢

( 1 >—PP—PNﬁ .V
Azn _ZN_ZP_ zsn:

( 1 )[Ps—Pr} + ste’
Ay Zp~RZs

T o A, Spx,
Re .Pre, At '
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VK’S
Ay = —————— - S,
Re, Pre At ¢

VX, 1
Ve =[S, + ———v°, ( j (4.33)
‘ ‘ Re,Pre.At Azs

The expressions for the velocities (equations 4.22, 4.25,

(4.32)

and,

4.26, 4.27) may be substituted into equation 4.2 giving

- P *P - P _P
Io€, 1 : 2 * Vrs T TyEy 1 - : + Vrs (zn_zs)
A\ Ts—T, ) Aro\Tr~Ty ¢
) ] ) - e
\ ¢ Azn ZNTZp Fia s Azs Zp— X5 e 2

= 0. (4.34)
This equation may be rearranged to give
a,P, = az;P; + ay P, + ayPy + asPs + b (4.35)
where:
re€(z,-z,
a; = [————g—-———z], (4.36)
Are(reg-r;)
-rwe;(zn_zs)
a = , 4.37
v _Am(rp—rv)} (4.97)
[ oen(ri-rd)
- , 4.38
o ,2Am(z~—z9)] (4.98)
e(ri-ri
a, = ( ) , (4.39)
2Azs(z}’_zs)
a, = Qp + Q, + Ay + ag, (4.40)
and,
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b = [rwe:,(zn_zs)vrsw - FEE:(ZR_ZS)VFS,

. 2_ 2 . 2_r2
es(r"’ r"’)v,s -en(re vly (4.41)
2 : 2 ~

A means of correcting the velocity field so that the resulting

velocities come closer and closer to satisfying the continuity
equation (4.2) must be obtained. This procedure is outlined
in great detail by Patankar (1980). A pressure correction
term (P) may be obtained by solving

a,Pi, = az;Px + ayPw + ayP,y + asPys + b, (4.42)

2 2
* . x . * re_rw .
bl = [rwew(zn_zs)vrw - reee(zn_zs)vre + Es( 2 )st

2_,2
_ g;(rezrw)Vﬂ;}, (4.43)

and, the coefficients a,,a;,a,,ay,and asare given by equations

4.36 - 4.40. The resulting solution for the pressure
correction term (P) is then used to correct velocities by

substitution in the following equations.

_ 1 ’_PIP—PIE .
Vie = (AJ_T*F—;—J + Vi (4.44)
1 "Piw-P.s ]
er = ( ) 1w 12 + er,’ (4’45)
Arw L T~ Tw |
L Y[ Pir—Pin |
= T .46
Vzn (Azn)_ Zy—Zp | + Vv xn (4 4 )
and,
1 Pis-P
V, = ( ){ i “’} VL, (4.47)
Azs Zp~ X5



The equations formulated above provide the means for

determining the solution fields. The SIMPLER algorithm

(Patankar, 1980) was used and proceeds as follows:

1.

An initial velocity field (VV,and 1V) 1is guessed.

(V,.,and V ,were both initially set equal to zero.)
Using equations 4.24, 4.29, 4.31, and 4.33, the

psuedo-velocities (V. .V, . V., . V:) are calculated.

The coefficients (a,,a;,ay,ay.a9 1in the pressure

equation (4.35) are evaluated and a pressure field
is solved for.

Using this pressure field, the momentum equations
(4.22, 4.25, 4.26, and 4.27) are solved for the
velocity components (V, and V,).

These velocities are substituted into the continuity
equation (4.2, page 73). If this velocity field is
not correct, equation (4.2) will not be satisfied
and an apparent "mass source" will arise. This mass
source (from equation 4.43) is then used to obtain
a pressure correction term, P, from equation 4.42.
The pressure correction term is then used to correct
the velocities according to the relations given in
4.44 - 4.47.

If convergence 1is not obtained, the algorithm

returns to step 2.
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. 1 . b1

Once the velocity field has been determined, the set of
coupled equations describing the drying process may be solved.
The drying problem is described by two sets of equations: one
set for the outer domain, and a second set for the inner
domain. Each set of equations requires a separate solution
algorithm, both of which will be discussed individually.

5 .  ons a1

In the outer domain, the problem consists of determining
the temperature and vapor density fields. The equations to
be solved are the equation governing the conservation of mass

given by:

0Py a, L L (Hjl 2 . J .
Re Pr2-—_Z|[2 |22 1% s 1% =
€ ot + ey s\/——:Hli R rar(e p,r r) + 3 (e Py z)

81 1-¢’
B:m(—D— . 2)§-2L)(pw-pu) (3.102)

and, the equation governing the conservation of energy given

by:

0T a, L L|(H\1o . d .
i el B E Bl 1% . =
€ 31 + RQ‘PFGSRH[(R)I'&F(E rvV,.T) + az(e VZT)J

w5 (&) i)« 5<%
—| = —| ——|ler—| + —| e — +
a . \H R) ror or oz oz

Bi—°(8L + 2)“—6 Yot -1y, (3.103)
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(Note: For clarity, Bi and Bip will be used throughout the
following derivation of the numerical scheme instead of using
functional notation. It should be kept in mind that these
are not independent parameters for the problem.)

Since the computational grid has already been established
during the solution of the velocity and pressure fields, the
first step is to integrate the governing equations over a

control volume. Integration of equation 3.102 gives

s(pv}’_pzi’) rg—r aa L (L H *
E}, Al (Z z$)+ReKPr (I_S_ \/?r EJ[E(EET'QDUQVM

* rz'—rz
- Ewrwpuwvrw)(zn‘zs) + (E;pun[/zn_ezpusl/zs)( 62 w)} =

Bim(%+2)(l_2€”)( PP up)(

D )(z z5). (4.48)

Next, expressions for the interface vapor densities are

needed. Let

~
fl

aa
Re, Pr r.e.V..(z,-z,). (4.49)

[ \/_Ree

F, = Re/Pr “J_R ELV ru(Z,-2,), (4.50)
a, r2_r2
F, = Re/P ——e.V, | —2], 4.5
2 e Pr— J—_}{e ( 5 ) ( 1)
and,
a, L L . rz—rzj
F, = Re/P eV, | ——|. 4.52

From the integrated continuity equation for dry air (equation
4.2, page 73)
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F, - F, + F, - F, = 0. (4.
Thus,
Fop, - Fupyp v Fopyp - Fep, = 0. (4
Letting
at = P[Ff;ri)(zz;fk) (4
and,

S

. (8L (1-€3) . (ri-r? B
Blm(? + Z)T(piu_pul’)( > )(Zn Zs) (4

and subtracting equation 4.54 from equation 4.48 gives

a;(puP—pZP) + (Je_FﬂpvP) - (Jw_pruw)

(Jo=Fabuw) - (Je-Fepy) = S (4.
where:
Je = FePue (4.
Jyv = FuPu (4.
Jo = FabPu (4.
and,
J, = Fpy- (4.

Following Patankar (1980), let

Jo = Fepwp = ap(p, ~ Pu) (4

Jo = Fubwr = ay(Py — Py (4.

Jo = Fabyp = ay(@, - Pud (4.
and,

Jo 7 Fpy = Gs(Pys ~ Pyp) (4.

83

S3)

.04)

55)

.56)

57)

58)
59)

60)

61)

.62)

63)

64)

63)



where:

a; = |-F..0], (4.66)

a, = |F..0], (4.67)

ay = |-F..0l (4.68)
and,

as = |F.. 0] (4.69)
(Note:

a,b is a quantity which is equal to either a or b
depending on which is the larger number.) Substitution of

equations 4.62 - 4.65 into 4.57 yields
ar(Pp=Py) + ap(pyp=p) = au(P=P,) + ay(p,=Puy)
- as(pys=Py) = S, (4.70)
Rearranging equation 4.58 gives
[a; + az + a, + ay + aslp, = *

aEpuE

anvV +

ayp,y * asp,s *+ lazp, + Sl (4.71)
The discretized form of the energy equation 3.103 is obtained

by integrating over a control volume. This yields

T,-T5(r2-r2 L
€, AT > (z,-z2,) + J?: (R)(ke Fr) (r. el/mTe -
erTw)(Zn_ (\/:)( )(RQ Pr)(as)(e VznT -
R rf—rf, _ a l_ z .TE_T.P N
EsstTs)( 2 ) (a_) ﬁ f: ) (rqec re-r,

TP_T OTN_TP tT}’—TS rf"rf’
rwew——~——— (z,-2,) + |€,—— - €, -
I‘ _rw ZN_ZP Zp“Zs 2
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a.(8L \(1-€) rﬁ—rﬁ) B
BIPQ_S(F 2) > (T, TP)( 5 (z,-%,). (4.72)

This equation may be rewritten by letting

a,Ll?r.e,(z,- ;)
D, = , (4.73)
askz(rb‘_ri’)

aalzrwe;(zn_zs)
D, = , (4.74)
askz(rp_rv)

a,l?e,(ri-r)
D, = > , (4.75)
a,2H (zy—2z5)

aaLZEZ(rf“ri)
D, = > , (4.76)
a,2H (z,-%25)

@ - E;(rf‘ri)(_zzjz_s)‘ (4.77)
2 At
and,
1- * 2_pr2
S; = —(Bi,»)(%)(% + 2)( 26’)(1;7",)(”Zr“’)(zn—zs).(4,78)

Substitution of the above relations (equations 4.73 - 4.78),
together with equations 4.49 - 4.52, into equation 4.72 yields
ar(T,=T3) + [FT . D(Te=T,)] - [F,Ty=D(T,-Ty)]

+ [FnTra_Dn(TN_TP)] - [FsTs_Ds(TP_T.S‘)] = Sr. (479)

Now define

Je = FQTG—DQ(TE_TP)' (480)
Jw = FwTw-Dw(TP_TV)' (481)
Jo. = F,T,-D.(Ty-T,), (4.82)

and,
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Jo = F,T,-D(T;-Ts).

This allows equation 4.79 to be rewritten as

ay(T,-T3) + (J~F,.Tp) = (J,~F,Tp) + (J.=F,.T))

- (J,-F,T;) = Sr.
Again following Patankar (1980), let
Je=F. T, = az(T,-Tyg),
Jo—F,T, = a,(T,-T,),

Jo=F,T, = ay(T,-Ty),

and,
Js FsTP = aS(TS_TP)
where:
F.
aE = DQA(I_ ) + "_FQ’OH'
Fy
a, = DwA( b‘— ) + Ile,Oﬂ,
F.
aN = DRA( B—— ) + I_FR‘OH'
F,
a; = DSA(l__ ) + IFSOH
and,

APY = lo, (1-0.1P)%].

(4.

(4.

(4.
(4.

(4.

(4.

(4.

(4.
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These derivations have employed expressions from the power-law

scheme, which is recommended by Patankar for determining the

interface variables.

The nondimensional source term may be written as
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ST = STC + STpTP (494)

where:
2 _n2
S, = Bi,(%é + 2)(1—E;)Tt(r°2rw)(zn-zs) (4.95)
and,
_STC
Sy, = T, (4.96)

The energy equation may now be expressed as

ap(T,-T3) + ag(T,-Tg) + au(T,-T,;) + ay(T,-Ty)

+ Q(Ts-T,) = S¢ * S¢,7T,, (4.97)
or,
[a; + a; + ay, * ay + as - S;0T, = [a;T; + a,Ty
+ ayTy + asTg + a3;T; + S;]. (4.98)

Application of equations 4.71 and 4.98 over the entire
grid results in a set of algebraic equations which may be
solved iteratively to obtain the temperature and vapor density
solution fields. Iteration is necessary since the equations
are coupled to the inner domain equations. Since the inner
and outer domain solutions must be obtained simultaneously,
the equations for the inner domain will be derived before a
discussion of the solution algorithm is presented.

o) i ions ai
The inner domain consists of a single element of the

overall porous structure. Thus, it is a physically distinct
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structure and another grid is required. The procedure
previously discussed for establishing the grid was again used
for the inner domain and so will not be discussed further.

The equations to be solved are the equation for

conservation of mass,

0 ps au ps apiu =
azil:LUL(Apu)Kla—; ! Luu(e pLU)KUaZ':I )

ps pue+Apupiu ou ps apiu
LA LEL Eag -2 , 3.40
(Apuj( p; )at (E pzuj ot ( )

the equation for conservation of energy,

oT, 02T, Ap, 0 Ps \9Pu
- = > — Ko Lu,-—| K,| €e-—u |—
ot 0 P 0% Py /9%y

(pue+ApupiU) ps au pS apw (4L)
T Ap,  \p,Jot \" p, ) ot I\ — ~T) - 3.101
Ap, (‘h)@t (E p[_u) ot } + Bi D (T, i) q.( )

and the equation of state,

Py f(u,T) usu,,, (3.42a)

]
1 [“‘(r;:775'chﬂf.—ATT‘ﬂ
P =

Su... (3.42
AP R(T,-ATT )" U>tps.  (3.420)

For simplicity, equations (3.40) and (3.101) will be written

in terms of "local" Luikov numbers. Thus, these equations
become
0 ps au- ps 6010 ps pve+Apvpiu au
—| Lu,,| —|— + Lu,|e-——u = l-— =
0z, Ap,/)oz,; p, )9Oz Ap, P, ot
3
. (E_Eu) Pu (4.99)
P, ol
and,
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oT 9°T, Ap,\/[ 0o s 9P
— - - Ko| =2 Lu,,|e-2u || &
ot oz? P, 0z, p, /oz;

ue+A v iy Y s 0 iv ;
TN A
v L

where:
(4.101)

and,

|cn

Lu,, = (4.102)

A

Recall that the unknown quantities to be solved for are
Pw.land w Equations 4.99 and 4.100 provide two equations
which will be discretized and used in an iterative procedure
to find the inner domain solution. The third equation is
obtained from equation 3.42; however, the equation of state
is normally provided in terms of an algebraic function and
so does not need to be discretized. Since p, Yy and T, all
appear in the two equations to be discretized, any two of
these variables may be picked as the "solution" variables.
After some trial and error, it was decided to solve for the
variables p,and T, from the discretized equations. During
the iterative procedure, values of these variables are used
to obtain u from the equation of state (equation 3.42).

Numerical stability was enhanced by rewriting the temporal
derivatives of uin terms of the two solution variables. This
allowed more "current" values of the solution variables to

be used in place of "older" (previous iteration) values of
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u in the discretized equations, and resulted in a more accurate
determination of the temporal derivative of u at each
iteration. This procedure was necessary due to the shape of
the sorption isotherm relation. A detailed discussion of the
sorption isotherm is presented in Section 5.1. Substituting

the relation,

ou ou  opy ou oT,

— = 4.
ot apwlﬂ ot aTiI"w ot (4.103)

into (4.99) and (4.100) yields

a ps au ps apiu
—| Lu,, + Lu,|e-——u|— | =
02, Ap, P, /9%,
Ps Pue* AP,Py [ U 9Py ou 0T,
1 - ]T + — |, — +
LA\pu pL apiu at aTl g at

(e-p—u) 37 (4.104)
L

(pue Ap ptu apw + au l 2_7_‘1 _ E”B‘S‘u apiu
 Ap, apw 7 ot 0T, * Jt P, ot
41
+ Bi( )(T -T) - q,. (4.105)

It will be assumed at this point that the derivatives of
u with respect to density and temperature may both be
determined exactly from analytical expressions for given
values of the density and temperature. If this is not true,

approximate expressions for these derivatives may be employed.
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Integration of equation 4.104 over a single time interval

and individual control volume yields

P Uy~ Up Ps Up-Us
Lu - L
l:(Apv)( ZLR)ZN“ZP (Apv)( uz“)zr‘zs:l
[Luzm(e_&un)pim_pm _ Luzw(e_&us)piur_piusjl _
P Zy~Zp P Zp~Zs

( P )(l_pve+Apvp?uP)|:( ou )pmf’"pfup + ( ou )Tap_ fp](z'i”zs)
Apv pL apw At aTt At

ps o piuP—‘pLovP
+ le-=ul | —"(z,-z,). 4.106
(6 pLuP) Ar (R z4) (4.106)

Rearranging terms gives

{ (gi)(oz—oue_ . )(au )(zn-zs) P C IS
pL Apu pi” apiu At DL ? At
[(e p$u ) LuzUR ]_‘_[ ( psu ) LuzllS }} [:(6 pS ) LuZ'UTZ }
T U, €-— s iy = - —u v
| Zy~—2Zp P Zp~Zs Pue Py “JxZyZp P
pS l‘uZUS $ - ve au z’z~z$
P JZp~Zs P Ap, VAN Y At

€=Uy iwP
] At p(zy—2;) p(zy—2,)

ps pL_pue o aU. TiP_ fp
' (9_;)( Ap, _p”)(ﬁ) At (zn=z.) | (4.107)

Equation 4.107 may be rewritten as

( P, ) (zn-zs)J — {pslum(un—u,) P Lug, (ur-us)

[aj+ay+aslp, = Qyp,y + Asp,s * b (4.108)
where:
a € P Lt 4.109)
= |e-—u . .
¥ Py “/Zy—2Zp (
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Lu’ZUS
Qs = (e—gius)—————— (4.110)

P Zp-Zs'
0 P Pz~ Py 0 (auj ( P a)}(zn_zs)
a, = — -p, — | + €E-—u —,(4.111
d |:(pz>( Ap, pM) 9Py Py d At ( )
S = [psl-uzl.n(uz\«'_u?) _ psLUst(Up‘Us)

p(zy—2p) p(zp-25)

Ps\(Pz7Pw 5ujT“,_ °,
p: P -2z,) |, 4.112
(pz)( Ap, p‘"’)(aTi AL (R %) (4.112)

and,
b = app), + S. (4.113)

Integration of the inner domain energy equation over a single

time interval and control volume gives

Ti _T? Ti _Ti A v / wN~ P
I CIT A Ko( ’ )\Lum(en—e—‘unjp——” o
At ZNTZp Ps P ZNTZp

[ P, )om-pws (ps)(pmApuo‘i’ur}H ou )om-o?uf
- Luzus ES"“—US VR o
P; Zp~Zs P Ap, 2P At

ou Tip=Th Y
+ (aTi) Al }(Zn‘zs)} + Bz,(z;)(Ta—YQP)(zn~z$)

- Qs(zn_zs)' (4114)
Letting
o _ pue+Apup§uf au) (zn_zs)
a, [1 + (Ko) o (aT‘ } NI (4.115)
a = l (4.116)
N ZN"Zp, '
as = : (4.117)
s ZP—Z.S" '
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- wp P ; Piuwn — P,
Sc = {KO( pv)[Lu’zus(es_‘bu’s)M - Luznn(en_p_su'n> wn T P e
Ps Pe ZpTZs P, Zy—Zp

Pof Poe (M)pw-pi’w .(41)
- e L Bi,| —= -2 )T
L(Apu+pLuP) piu At (zn zs) * lP D (zn Zs) a

- g, (z,-2,) }, (4.118)
41
SP = —Bif(-E—)(ZR.—ZS)’ (4-119)
and,
b = S, + asT). (4.120)

allows equation 4.114 to be rewritten as
[as+ay+as-S,;1T, = ayTyu + asT,s + b. (4.121)
(Note: Treating the energy used for liquid vaporization as

an energy "source" has some disadvantages associated with it.

These disadvantages are discussed in Appendix B.)

4.3.3. Solution Algorithms For The Inner And Outer
Domains

Application of equations (4.108) and (4.121) over the
entire inner domain grid results in a second set of algebraic
equations which must be solved in an iterative manner, as are
the outer domain equations. Each outer domain control volume
contains a (specified) number of inner domain elements. The
vapor density and temperature of the air flowing through the
outer domain directly influence the amount of mass and energy

transferred from (to) the inner domain. Therefore, the inner
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domain equations must be solved at each grid point in the
outer domain. Since the correct vapor density and temperature
of the air in the outer domain are not known in advance at
the "current" time, the mass transfer predicted from the inner
domain equations may not be correct. Thus, the solution
proceeds in an iterative manner; the "correct" solution being
obtained when the predicted mass and energy transferred from
the inner domain result in no significant change in conditions
(from the previous iteration) in the air in the outer domain.
The full solution algorithm is shown schematically in Figures
4.3 and 4.4.
The solution algorithm proceeds as follows.
1. All variables are initialized so that the boundary
and initial conditions (equations 3.44-3.51, 3.86,
3.87, 3.89-3.92, and 3.95-3.98 on pages 61 and 62)
are satisfied.
2. The equations governing conservation of mass
(equation 4.108) and conservation of energy
(equation 4.121) for the inner domain elements are
solved at each outer domain grid point. This
determines the amount of mass and energy transferred
from an inner domain element in each outer domain
control volume. Thus, this determines the moisture

content of each inner domain element.
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Figure 4.3. Outer Domain Solution Algorithm.
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Figure 4.4. Inner Domain Solution Algorithm.
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3. The equation governing conservation of mass for
the water vapor in the outer domain (equation 4.71,
page 84) is then solved to determine the "new"
vapor density distribution.

4. If the difference between iterations at any point
in the outer domain is "significant" (i.e. vapor
density values have not converged), return to step
2.

5. A "new" temperature field is found by solving the
equation for conservation of energy in the outer
domain (equation 4.98, page 87).

6. If the differnce between iterations at any point
in the outer domain 1is ‘"significant" (i.e.
temperature values have not converged), return to
step 2.

7. The time step is incremented and steps 2 - 6 are
repeated until steady state <conditions are

obtained.

As discussed above, the equations governing the conservation
of mass (4.108, page 91) and energy (4.121, page 93) in the
inner domain are solved at each outer domain grid point. The
solution algorithm for these equations is shown in Figure

4.4. The algorithm proceeds as follows.
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Values of variables (p,, 7, pi, T¢, and u’°) are

passed from the main program. "Current" values of
the inner domain vapor density, temperature, and
moisture content (p,, 7, and u ) are set equal to
the values at the previous time step.

The equations governing the conservation of enerqgy
in the inner domain (4.121) is solved to obtain
the "new" (current iteration) T, values.

"New" moisture content (u) values are calculated
from the sorption isotherm relation (equation 3.42,
page 60).

If the difference between iterations in the
temperature (7;) at any location is "significant",
return to step 2.

The equation governing conservation of mass (4.108,
page 91) is solved for the "new" inner domain vapor
density, P -

"New" moisture content values are computed from
the sorption isotherm relation (equation 3.42, page
60) .

If the difference between iterations for the inner
domain vapor density (p, ) at any grid point in the

inner domain is "significant", return to step 4.
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If any "significant" difference between the
moisture content values obtained during the
temperature field iterations and the vapor density
field iterations is noted, return to step 2.

Return to the main program.
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5. PARAMETRIC STUDY

In order to efficiently operate a drier, it is important
to have an understanding of the affect of changing the
pertinent dimensionless parameters in the problem. In this
section, the important dimensionless parameters and a "base
case", typical of the drying of hay bales, are identified.
The drying process for the base case is examined somewhat in
detail to provide an understanding of the drying process in
hay bales. Then, the important dimensionless parameters are
varied systematically to determine their impact on the drying
process.

Once the effect of varying the important parameters is
known, several conclusions are made relating to the drying
process. A discussion of how these conclusions may influence
drier operation is also presented.

entifi i d Discussj mporta

ensj ss

A review of the mathematical model reveals that there are
15 dimensionless parameters appearing in the problem. To
determine the relative influence of these terms, a parametric
study was performed. Not all the parameters, however, may
be controlled in a practical situation. Typically, one may
alter the drying process by varying one or more of the following

physical variables: 1) the inlet air temperature, 2) the
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relative humidity of the inlet air, 3) the inlet air velocity,
4) the dimensions of the overall porous structure, and 5) the
dimensions of an inner domain element.

Examination of Table 3.1 (page 63) reveals that one, or
more, of these factors may be changed by altering any of the

following parameters

Ko, and

pUQ pS H
. , Re,. —
Ap, Ap, R

Ho oo % L
r e D’

All of the parameters in this set, however, are not easily
varied, or can only be varied over very narrow ranges. For
example, the ratio of the equilibrium vapor density to the
characteristic change in vapor density (p./Ap,) is typically
of order one. Physically, this ratio must always be greater
than or equal to zero. Practically, however, it would be
virtually impossible to lower the equilibrium vapor density
to zero. 1In addition, the vapor density is also physically
limited in value by the fact that the relative humidity of
the air may not exceed 100%. The change in vapor density
must also be large enough to allow the porous medium to dry
the required amount (typically from 35% to 18% w.b.). A
typical range of values for this parameter is from
approximately 0.5 to 2.7. Thus, it is not practical to vary
this parameter in order to control the drying process.

The porous structure itself is normally of fixed
composition (i.e. the porous solid to be dried may not be

replaced by another solid). Thus, the ratio of the solid
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density to the characteristic change in vapor density, p,/Ap, ,
may also not be varied in a practical situation to control
the drying process (a range of 2.5 x 104 to 12.4 x 104 is
typical). In addition, neither the height of the porous
structure nor the length of an inner domain element may be
varied by a great amount (for the hay bale application being
investigated) due to practical limitations of balers and the
physical dimensions of typical hay stalks. The range of
permeabilities for a hay bale is also constrained. The bale
must be porous enough to blow air through, yet must be solid
enough to withstand the rigors of handling. Thus, the values
of H/L (ranging from approximately 225 to 540) and \HC/L
(ranging from approximately 0.02 to 0.04) are also limited
by practical considerations.

Based on the above discussion, it was decided to examine

the effect of varying

H

L
K » R 1] ’ —-'
0 € = D

and Ry

on the velocity distribution and the drying process. It
should be noted that the geometric parameters relating to the
outer domain (H/R and R,y) appear in both the equations
determining the velocity field and those governing the drying
processes. Thus, even though these terms may not be varied
over a large range of values (approximately 0.75 to 2.0 for

H/R and 0.2 to 0.8 for R;y), they may have a significant
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impact on the drying process due to their influence on the
velocity field.

The inner domain aspect ratio (L/D) also may not vary
over a wide range for the present application (a range of
effective L/D values of 0.7 - 2.1 is considered "practical").
However, since this is the only geometric parameter relating
to the inner domain, it was desired to examine the effect of
varying this parameter. A discussion relating to the values

chosen for this parameter is presented in Appendix C.

In practice, the Kossovich number (Ko=L,Au/C,AT) may be

varied by either controlling Auor A7 This may be accomplished
by varying the relative humidity and/or temperature of the
inlet air streanm.

The Reynolds number (Re=LGNJ§:/v) may be varied by
changing either the inlet air velocity or the permeability
of the porous structure. For any given hay bale, the
permeability is fixed. Thus, in practice the Reynolds number
is varied by changing the inlet air velocity.

The terms H/R, L/D and R,y are geometric parameters.
These terms may be varied by varying the appropriate geometric
quantities.

The parameteric study was thus conducted by varying each
of the five parameters (Ko, Re., H/R, L/D, and Ry)

separately while maintaining the rest of the parameters at
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the constant values listed in Table 5.1. The ranges of values
of the five variable parameters listed above are presented
in Table 5.2.

The baling of large round hay bales typically occurs in
a manner that produces regions of varying porosity within the
bale. For this reason, it was also desired to examine a case
where the porosity varies spatially throughout the hay bale.
Thus, another case was run for a "typical" porosity

distribution within the hay bale (Bledsoe, 1989).

t j i si itie a
Mathematical Model

As has been mentioned, the sorption isotherm relation is
also very important in the drying of any hygroscopic porous
solid. For this study, the sorption isotherm of alfalfa hay
obtained from the data of Hill, Ross, and Barfield (1977) was
employed. This data is reproduced in Figure 5.1. The resulting

relations are given by a function of the form
ut = ¢, b+ ¢, T, + c, (5.1)
where c,.c,,and c;are constants determined from a least square

fit of the experimental data for three different intervals
of relative humidity (i.e. the experimental curve was divided
into three approximately linear regions and a least square
fit was performed for each region). The details of these
relations are presented in Appendix D, however, some comments

regarding the numerical solution are in order at this point.
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Table 5.1. Values Of The Dimensionless Parameters
Held Constant For The Entire Parametric

Study.
Dimensionless Value
Parameter

Ka 1.0

K,

A, 450

aS

H 3.59 x 102
L

. 2.95 x 1072
L

D e 1.65
Ap,

P, 0.535

P

0. 9.59 x 104
Ap,
Lu, 5.46 x 107>
Lu, 5.80 x 102
Pr 0.72
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Table 5.2. Ranges Of Values For The Dimensionless
Parameters In the Parametric Study.

Parameter Base Case Range Of Values
Value
Ko 110 10 - 400
Re, 9.4 4.7 - 18.8
H 1.6 0.75 - 2.0
R
Ry 0.4 0.2 - 0.8
L 1.4 0.7 - 2.1
D
0.80 -
. 080- 1-20¢() 2-25()
g 3-30© 4~ 3@
N
o
=
= 040 -
2
C
O
O
O
é 0.20 -
n
= 1
O
2
= 3
4
0.00 T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Relative Humidity

Figure 5.1. Sorption Isortherm For Alfalfa Hay
(Reproduced From Hill, Ross and Barfield,

1977) .
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There was considerable difficulty in obtaining convergence
of the numerical model during the preliminary stages of this
project. Berger (1973), in modelling a single inner domain
element, also had this difficulty. He was never able to obtain
convergence for realistic values of the convection
coefficients (h and hp). The difficulty apparently lies in
the fact that the inner domain vapor density, temperature,
and moisture content (p,,, 7,, and w) all appear in the inner
domain equations. Values for any two of the three variables
(for the present study, the vapor density and temperature
were chosen) are determined from the governing equations and
the third (moisture content in the present study) is obtained
by substitution of these two variables into the sorption
isotherm relation. Thus, values of the third variable "lag"
behind during the iterative solution process since previous
iteration values of the other variables are used in the
sorption isotherm relation. The sorption isotherm is
typically very steep for conditions occuring at the start of
most drying processes. The "lag" of information is thus
critical and leads to convergence problems.

To provide more current information during the solution
process, equation 4.103 (page 90) was used to express the
temporal derivative of moisture content in terms of inner

domain vapor density and temperature. The details of the
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numerical formulation have already been presented and will
not be discussed further except to say that this procedure
averted the convergence problems described above.

Another aspect of the model that should be mentioned is
the determination of the convection coefficients in the
mathematical model. A correlation (Bird, Stewart, and
Lightfoot, 1960) for heat transfer in packed beds was used
to determine the convective heat transfer coefficient between
the solid and the air. This correlation is presented in

Appendix A and may be written as

Ju = Ci(Re" ) (A.1)
where:
, . h 2/3
jy = Chilton-Colburn Factor = ———(Pr) ,
anaV
a,,C,=constants,
, PV’
Re ="Modified”™ Reynolds Number = ,
ap,y
Particle Surface Area
Per Bed Volume
Empirical Coefficient Which Depends
On Particle Shape (.91 for cylinders) '
and,

Pr = Prandtl Number = al

a
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The Chilton-Colburn analogy for heat and mass transfer was
then used to obtain a value for the mass transfer coefficient
(Bird, Stewart, and Lightfoot, 1960). The details of these
correlations are also provided in Appendix A.

Values of the porosity for both the inner and outer domains
were also required. The measurements of Ohm, Vogtlander, and
Kossen (1971) concerning the density of hay were used to
determine the porosity of an inner domain element. Their
measurements indicated that the solid density of alfalfa hay
is 1500 (kg/m3), while the bulk density is approximately 535

(kg/m3). The porosity is therefore given by

€ = 1 - — = 0.64. (5.2)

s

The outer domain porosity was obtained wusing a
representative dry matter density measurement (Bledsoe and
Hitch, 1989) together with the bulk density of an inner domain
element given above (note: the dry matter density represents

the mass of solid hay matter in a given volume of the hay

bale). The outer domain porosity is therefore given by
e = 1-em (5.3)
Py

A dry matter density of approximately 112 (kg/m3) was
ascertained to be representative of a "typical" hay bale.
The porosity for the base case in the parametric study (and
all other cases unless otherwise stated) is given by equation

5.2 as 0.79.
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The permeability and the coefficient of the Forscheimer
term were both calculated from a relation determined
experimentally by Bledsoe and Hitch (1989). These relations

are discussed in Appendix E. The permeability is given by

*

' = 1.02x107%p 2" (m%) (E.1)
With a uniform dry matter density of 112 (kg/m3), the
permeability is 1.0 x 10-8 (m2).

The relationship describing the coefficient of the

Forscheimer term may be written in the form

) . k
b* = 107.60° %0 (m—%) (F.2)

With a dry matter density of 112 (kg/m3), the coefficient of
the Forscheimer term is given by the above relation as 46.6
(kg/m4) .

Finally, values of the diffusion coefficients, D,and D)

were also estimated. It was observed that the solution field
was not sensitive to values of D;for the range of parameters
studied due both to the magnitude of the moisture content
gradient and the magnitude of the liquid conductivity. Chen
and Pei (1989) have shown that the bound liquid conductivity

may be expressed as

* * 3
. u - u, -F,
Dl = DLo( * :) exp( i) (5.4)

where:

D,, = Constant,
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u, = Equilibrium moisture content,

U, = Maximum sorptional moisture content,

and,

F, = Activation energy of liquid.
Representative values for the constant D, ,were presented

by Chen and Pei (1989) for wool (0.062), brick (0.098), and
corn (0.0001). An intermediate value of 1.0 x 10-3 (m2/s) was
used in the present study as no data was available for alfalfa
hay; however, as stated above, the solution field was not
sensitive to this value. The activation energy, E, is the
energy necessary to vaporize the bound water. The value of
the heat of vaporization for pure water was used in the present

study.

The vapor diffusion coefficient, D, was determined from

the data of Fair and Lerner (1956) for the diffusion of water
vapor through air. The difference between the initial and
equilibrium temperatures was small (5 °C) for the cases
examined. Thus, a constant value of 2.8 x 1075 (mz/s) was
used for D, in all cases. Since a constant value of D,was

used, D,was equal to one for all cases.

Study

Before performing a comparison of the various cases in

the parametric study, it is instructive to begin by examining
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the drying process for the base case. The values used for
all parameters for the base case are listed in Table 5.1,
page 105, and Table 5.2, page 106. A grid refinement study
was performed to determine an acceptable mesh size as well
as a suitable time step. The results of this exercise resulted
in using a 16 by 16 mesh size for the outer domain, a 10 by
1 mesh size for the inner domain, and a time step of
approximately 7.5 (30 minutes). The solution of a "typical"
case required approximately 3 hours of CPU time on the
University of Tennessee VAX Cluster.

The total moisture content for the overall porous structure
is defined as

v, = fudv. (5.5)
|4

|4 oD 0o

This moisture content represents the average moisture content
for an entire bale based on the total amount of liquid present.
The drying front is defined to be the region in which the
moisture content varies between 0.05 and 0.95. Thus, the
drying front is defined as the time-varying region in space
where most of the drying occurs.

Figure 5.2 shows a plot of total moisture content as a
function of time. This figure shows that the moisture content
of a bale decreases very rapidly at the start of the drying
process and then decreases more slowly as drying continues.
At a nondimensional time of approximately 2320 (6.5 days),

the drying process is completed and equilibrium is reached.
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Figure 5.2. Variation Of Total Moisture Content In A
Bale With Time For The Base Case.

Some insight into the shape of this drying curve may be
obtained by examining Figure 5.3. This figure shows a combined
plot of the streamlines for the flow through a bale and the
velocity profile along the boundary of the bale. As expected,
the velocity profile shows that most of the inlet air stream
exits through the bottom portion of the outer surface of the
bale. Thus, the lower region of the bale is exposed to a
relatively large flow rate of hot dry air and tends to dry
quickly. The upper portion of the structure, however, is
exposed to a smaller volume of air per unit time and therefore
dries at a slower rate. The result is that the bale dries
"quickly" at the start of the drying process when the bottom
portion of the bale is being dried. However, as the drying

proceeds, the moisture content in the lower region of the
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bale approaches zero and the processes occuring in the upper
portion of the bale begin to dominate. Thus, the overall

drying rate for the bale decreases with increasing time.

0.8 -

0.6 -

0.4 -

0.2

Figure 5.3. Air Flow Distribution In The Bale For
The Base Case.

This trend is also evident in Figures 5.4 and 5.5. Figure
5.4 shows the progression of the "drying front" through the
bale with time. At the start of the drying process, the front
is very thick, as shown in Figure 5.4a. Again, this is due
to the fact that a relatively large quantity of hot dry air
is flowing past the inner domain elements in this region of

the bale. Thus, both the potential for mass transfer and the
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velocity (which enhances convection) are greater in this area
than they are in the uppermost regions of the bale. As drying
proceeds, the "dry" side of the front moves rapidly (due to
the high potential for mass transfer and the high air
velocity). The "wet" side moves more slowly, however, since
it is moving into a region in the bale where the air velocity
is lower. The result is that the drying front tends to become
thinner with time, and the drying process proceeds more slowly
as shown in Figure 5.4.

Another aspect of the drying process is illustrated in
Figure 5.5. As the air flows through the bale, it transfers
thermal energy to the inner domain elements, which causes
mass transfer to occur. Thus, the air stream becomes cooler
(recall that as the dimensional temperature decreases the
nondimensional temperature increases) and picks up more and
more moisture as it flows through the outer domain. If the
air stream picks up enough moisture (and cools sufficiently),
the vapor density in the air stream approaches that of the
inner domain elements (or approaches the saturation density).
Thus, less and less mass transfer occurs, such that the air
stream loses less energy to the inner domain. The result is
that the temperature decreases through the drying front and
then stays essentially constant in the wet region of the bale.

Further insight into the drying process may be gained
from examination of Figure 5.6. This figure shows the

time-varying moisture content, u, at axial locations of 0,
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0.54, and 1.0 at a radial location of 0.74. The moisture
content at the bottom of the bale (z=0) decreases very quickly
at the start of the drying process and reaches equilibrium
at a dimensionless time of approximately 194 (1.1 days). At
a point approximately half way up the length of the bale (at
z = 0.54), the drying process is displaced in time and
equilibrium conditions are reached at a dimensionless time

of approximately 540 (1.5 days).

Radial Location
r = 0.74

Figure 5.6. Variation Of The Moisture Content At Three
Different Axial Locations And A Radial
Location Of r=0.74 For The Base Case.

This delay is explained by once again considering the
streamline and velocity distributions in the bale. As shown
in Figure 5.3, the drying inlet air travels a shorter distance
at a greater velocity near the bottom of the bale. Thus, the

tendency is to dry faster in this lower region. At an axial
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location of 0.54, the flow path followed by the air is longer
and the velocity of the air is lower. Thus, the air picks
up a greater amount of moisture, which results in a higher
vapor density and less potential for mass transfer. Hence,
the drying is somewhat delayed in the upper regions of the
bale. At the top of the bale (z=1), the flow path is longer
still, and the air picks up so much moisture that the local
mass transfer rates in this region of the bale is quite low
for dimensionless times less than 1160 (3.2 days). As the
moisture content approaches zero in the lower regions of the
bale, the air does not pick up as much moisture. The drying
process then begins in the top region of the bale, and
equilibrium is reached at a time of approximately 2610 (7.3

days) .

in ss

A comparison of the drying processes at different Reynolds
numbers is presented in Figure 5.7. As expected, an increase
in the Reynolds number results in a decrease in the overall
drying time for the global structure.

For the base case (Re = 9.4), equilibrium is reached at
a nondimensional time of approximately 2320 (6.5 days).
Doubling the Reynolds number to 18.8 results in a drying time
of approximately 970 (2.7 days). This represents a reduction
in drying time of approximately 58%. Halving the Reynolds

number to a value of 4.7, however, results in a marked increase
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Figure 5.7. Variation Of The Total Moisture Content Of
A Bale With Time For Different Reynolds
Numbers.

in the drying time. The numerical solution was stopped at
a time of approximately 3680 (10.2 days); at which time the
bale still has a moisture content of approximately 0.06. By
contrast, the base case reaches this same moisture content
at a time of approximately 1450 (4.0 days) and the higher
Reynolds number case at approximately 580 (1.6 days). Thus,
the drying time is a strong function of the Reynolds number.

The nondimensional velocity distributions for these two
cases are the same as that of the base case since no parameters
affecting the nondimensional velocity were changed. The

streamlines and the velocity profile along the vertical side
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of the bale are thus identical to that shown in Figure 5.3
(p.114). The convection coefficients, h and hy, however, are
both functions of the Reynolds number. As the Reynolds number
increases, both of the convection coefficients also increase.
Thus, at a higher Reynolds number, heat is convected to and
mass 1is convected away from the inner domain elements more
readily. This results in a faster moving drying front and
lower drying times. This trend is illustrated in Figures 5.8
and 5.9. As shown in these figures, the drying processes for
Reynolds numbers of 4.7 and 18.5 proceed in the same manner
as that of the base case; that is, the front is initially
rather thick and then becomes thinner with increasing time.
As has been noted, the difference between these two cases
lies in the speed with which the "front" moves through the
bale. Figures 5.8c and 5.9c show the drying front locations
at a time of 750 (approximately 2 days) for Reynolds numbers
of 4.7 and 18.8, respectively. For a Reynolds number of 4.7,
approximately half the bale is "dry", while the front almost
passes completely through the strucuture for the case with
a Reynolds number of 18.8. From Figures 5.8 and 5.9, one
notices that at earlier times the drying occurs over a greater
volume at higher Reynolds numbers. Again, this is due to the
larger convective coefficients and volumetric flowrate of air

in the outer domain at higher Reynolds numbers.
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One interesting difference between the drying processes
at different Reynolds numbers may be seen by examining the
temperature profiles for these cases, which are shown in
Figures 5.10 and 5.11. For the lowest Reynolds number case
of 4.7, the temperature decreases through the drying front
and then increases again in the wet region. This may be
explained by noting that the air is cooled in the drying front
below the intial temperature of the solid structure. Once
the air stream passes through the drying front, it no longer
experiences this cooling. In fact, just the opposite occurs.
The solid structure which is then warmer than the air streanm,
gives up energy to the flowing air. This results in a warming
of the air stream. As the flow path of the air stream beyond
the region where drying occurs increases, this effect becomes
more pronounced. Since the front does not progress as far
into the porous structure at lower Reynolds numbers, the path
length taken from the wet side of the drying front to the
structure boundary is longer. Thus, a warming trend is
exhibited at a Reynolds number of 4.7. The drying front
extends almost all the way through the global structure for
the higher Reynolds number of 18.8. Thus, no region exists
in which the air stream is reheated at this higher Reynolds

number.
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(a) Dimensionless Time = 75 (b) Dimensionless Time = 375
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Figure 5.10. Isotherm Distribution For A Reynolds
Number Of 4.7 At Different Dimensionless
Times.
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5. he ects Vv i he Overall Aspect Rati
he 0 i ocess

The next parameter to be investigated was the aspect ratio,
H/R, of the bale. A change in this ratio has a direct influence
on the velocity distribution in the outer domain. This effect
is shown in Figures 5.12 and 5.13 for aspect ratios of 2.0
and 0.75, respectively.

For an aspect ratio of 2.0, the resistance to flow in the
axial direction is large compared to that in the radial
direction. The result is that most of the incoming flow of
air exits from the bottom half of the bale. A dramatic
difference is seen for H/R equal to 0.75. Here the axial
resistance to flow is smaller than the radial resistance to
flow. The result is a virtually uniform radial velocity
profile over the entire height of the outside surface of the
bale. Hence, inner domain elements throughout the bale are
exposed to higher air flow velocities which results in
increased heat and mass transfer. Thus, enhancement of the
drying process by decreasing the aspect ratio, H/R, of the
bale is to be expected.

This trend is seen Figure 5.14, which shows the total
moisture content of a bale versus time for the range of aspect
ratios examined in this study. Decreasing the aspect ratio
from 1.6 (base case) to 0.75 results in an approximate decrease

of 66% in the drying time. Increasing the aspect ratio to
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Figure 5.12.

Figure 5.13.
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a value of 2.0 results in a significant increase in the drying
time. Again, the numerical solution was stopped before
equilibrium conditions were obtained. At a time of 3680
(approximately 10.2 days), the moisture content was about
0.02. This same moisture content is obtained at a time of
approximately 1940 (5.4 days) for the base case (H/R = 1.6)
and a time of approximately 620 (1.7 days) for an aspect ratio
of 0.75.

Figures 5.15 and 5.16 show the effects of varying the
aspect ratio on the moisture content distribution within the
bale structure. For an aspect ratio of 0.75, the drying front
occupies approximately one-half of the volume of the bale at
a time of 75 (5 hours). At this same time, the drying fronts
in bales with aspect ratios of 1.6 and 2.0 occupy much smaller
portions of the total volumes of these bales. At a time of
750 (2.1 days), drying is almost completed for an aspect ratio
of 0.75, while a significant portion of a bale is still drying
at this time for an aspect ratio of 2.0.

The temperature profiles are shown in Figures 5.17 and
5.18. One sees that for the fastest drying case (H/R = 0.75),
the temperature decreases along the flow path throughout the
entire bale. As was the case for the drying processes at

different Reynolds numbers, however, the slowest drying case
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(a) Dimensionless Time = 75 (b) Dimensionless Time = 375
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Figure 5.16. Drying Front Locations Shown With Lines Of
Constant Moisture Content For An Aspect
Ratio Of 0.75 At Different Dimensionless
Times.
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(H/R = 2.0) exhibits a region of increasing temperature. The
temperature reaches a minimum value, which is slightly greater

than 1.4, and then the air warms again to approximately 1.3.

cts i adius Wid

ryin ocess

The third parameter to be varied was the dimensionless
air inlet radius (Ryy). Since the Reynolds number is kept
constant, increasing the nondimensional inlet radius results
in an increased volume of air flowing through the bale, while
decreasing the inlet radius decreases the volumetric flow
rate of air. Thus, a decrease in drying time is expected as
the air inlet radius is increased. Figure 5.19 reveals that
this is indeed the case. Doubling the inlet radius, Ry,
from 0.4 to 0.8 results in a decrease of approximately 65%
in the drying time from the base case. A case with an inlet
radius of 0.2 was also examined. This case required
considerable computational time and was terminated at a
nondimensional time of 2710 (7.6 days). At this time, the
total moisture content of the bale is approximately 0.213.
The same moisture content is reached at a nondimensional time
of approximately 715 (2.0 days) for the base case and 252
(0.7 days) for an inlet radius of 0.8. Thus, a considerable
increase in the drying time is observed when the air inlet

radius is decreased.
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Figure 5.19. Variation Of The Total Moisture Content Of
A Bale With Time For Different Air Inlet
Radii.

Some physical insight into these results may be gained
from examination of Figures 5.20 and 5.21. (Note that there
is a difference in the velocity scales between these two
figures.) These figures show the streamlines for the air
flow through the bale and the radial velocity profile along
the outer boundary of the bale. It may be seen that the
velocities are much greater throughout the outer domain in
the bale for the larger air inlet radius. 1In addition, it

is easily seen that the air travels a shorter path to reach
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Figure 5.20.

Figure 5.21.
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the exit through much of the bale. Thus, increasing the inlet
size (at constant Re) not only increases the amount of air
flow (and, hence, the local air velocities), but also shortens
the length of the flow path through the lower regions of the
bale. Both of these factors enhance the drying of the bale
and result in decreased drying times.

This effect is also evident in Figqures 5.22 and 5.23,
which show the moisture content profiles at different times
for the flows with dimensionless air inlet radii of 0.8 and
0.2, respectively. Comparison of the moisture content
distributions at a dimensionless time of 75 (5 hours) reveals
that the drying front for Ryy equal to 0.8 is very thick
compared to that for 0.2. This indicates that drying occurs
thoughout a much larger volume in the former case. Again,
this is due to the increased amount of air flowing through
the outer domain for an air inlet radius of 0.8.

In both cases mentioned above, the drying front becomes
thinner as it passes through the solid. This narrowing of
the drying zone, however, is much less pronounced, however,
for an air inlet radius of 0.2. This is due to the fact that
drying occurs over a relatively small volume at the start of
the drying process because of the lower velocities and
convective coefficients for this case. Thus, the front is
initially much thinner and the decrease in the thickness of

the drying zone is therefore less pronounced.
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(a) Dimensionless Time = 75 (b) Dimensionless Time = 375

(c) Dimensionless Time = 750

Figure 5.22. Drying Front Locations Shown With Lines Of
Constant Moisture Content For An Air Inlet
Radius Of 0.8 At Different Dimensionless

Times.
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Figure 5.23. Drying Front Locations Shown With Lines
Of Constant Moisture Content For An Air
Inlet Radius Of 0.2 At Different

Dimensionless Times.
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Marked differences between the isotherm distributions for
the flows with dimensionless air inlet radii of 0.8 and 0.2
may also be observed. Figures 5.24 and 5.25 show the isotherm
distributions for these cases at three dimensionless times.
Figure 5.24 reveals that the air temperature decreases as the
air flows through the bale for an inlet radius of 0.8. This

occurs in some, but not all, regions of the bale for an air

inlet radius of 0.2. As shown in Figure 5.25a, for an air
inlet radius of 0.2 there is a region in the bale where the
air stream temperature increases. This effect is greater for
this case than for any other examined; therefore, these results
will be discussed in greater detail below. Figure 5.26 shows

the axial temperature at a fixed radial location (r = 0.96)

and time (t 75). Two regions may be identified in this
figure.

In region 1, the air stream temperature is approximately
constant. 1In region 2, the air stream is heated (i.e. the
nondimensional temperature decreases). The change in moisture
content across this region is very small. The moisture content
is approximately 0.99 at the bottom of the bale (z=0) and
approximately 1.0 at the top of the bale (z=1). The occurrence
of two physically-distinct regions in this flow may be
explained by considering the latent heat effects.

As stated previously, the latent heating of liquid in the

inner domain acts to cool the air stream. When the air stream
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cools, there is also some sensible heating which tends to
increase the (dimensional) air temperature since the solid
is intially at a higher temperature than the air streanm.
Thus, there are two competing effects which act to change the
air temperature: 1) the latent heating of the liquid which
tends to decrease the (dimensional) air temperature and 2)
the sensible heating which tends to increase this temperature.
In region 1, the latent heating dominates the sensible heating
and the air temperature remains approximately constant. As

the moisture content approaches unity, however, the amount
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of latent heating decreases and the sensible heating begins
to dominate. Thus, in region 2, the air stream is warmed

slightly.

5.7. The Effect e Y . ] ich Numl - ]
Drying Process

Another parameter varied was the Kossovich number. This
term represents the ratio of the latent heat necessary for
vaporizing the liquid to the sensible heat required to warm
the so0lid structure. Figure 5.27 shows the variation of the
total moisture content of the bale with time for the range
of Kossovich numbers examined. This figure shows that
decreasing the Kossovich number decreases the total drying
time. For a Kossovich number of 10, the drying time is
approximately 1100 (3.1 days); which is a 53% decrease from
the base case time of 2320 (6.5 days). Equilibrium conditions
were not obtained for a Kossovich number of 400; however, a
significant increase in drying time may be observed for this
case in Figure 5.27. At a time of approximately 3740 (10.4
days), the moisture content for a Kossovich number of 400 is
approximately 0.06. This same moisture content is reached
at times of approximately 1500 (4.2 days) for a Kossovich
number of 110 (base case) and 690 (1.9 days) for a Kossovich
number of 10.

This trend may be explained from energy considerations.
The Kossovich number appears in the inner domain energy

equation (3.101, p. 59) as a coefficient of the latent energy
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Numbers.
term. Thus, lower values of the Kossovich number result in
a smaller decrease of the inner domain temperature. The
higher inner domain temperatures result in higher temperatures
for the air stream flowing through the outer domain. Thus,
the air may hold more moisture before it becomes saturated
and drying may take place over a larger region in the bale.
This is shown in Figures 5.28,5.29,5.30, and 5.31 which depict
the drying front and isotherm distributions throughout the
bale for Kossovich numbers of 10 and 400.
Early in the drying process (at about 5 hours), the drying
front extends most of the way through the bale for the lowest

Kossovich number case of 10. For a Kossovich number of 400,
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the drying front does not penetrate as far into the bale at
a given time. The isotherm distributions are also quite
different for Kossovich numbers of 10 and 400. For a Kossovich
number of 10, the nondimensional temperature does not rise
above one. This indicates that the air does not cool below
the initial temperature in this flow. Again, this is due to
the fact that the inner domain temperatures are greater
resulting in higher air temperatures in the outer domain.
For higher Kossovich numbers, the inner domain becomes cooler
which results in a greater cooling of the air stream in the
outer domain. At a dimensionless time of 75 (5 hours), the
nondimensional temperature of the air stream rises to a maximum
value of approximately 2.0 (hence the dimensional temperature
reaches a minimum of approximately 15 °C) for a Kossovich
number of 400.

It may also be noticed that for a Kossovich number of
400, a region of increasing temperature exists. This occurs
because as the air cools and picks up moisture, the relative
humidity increases. Thus, the potential for mass transfer
is lowered and mass transfer may even cease to occur. This
effect is more pronounced at higher Kossovich numbers where

the cooling of the air stream is greater.

si ist
Tl Sut . T} . :
The last case examined is one in which the structure of

the bale in the outer domain has a nonuniform distribution
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of solid matter which results in a nonuniform porosity. A
"typical" variation of dry matter density in a hay bale is
shown in Figure 5.32 (Bledsoe, 1989). There is a "low"
density core (region 1) surrounded by a "high" density region
(region 3) sandwiched between two "intermediate" density
regions (regions 2 and 4). Each region is assumed to have
a constant dry matter density and, hence, a constant porosity.

This type of distribution results from the way the hay is

baled.
Regams 1 — 04 (/%
Region 2 - 112 (kg/m®)
Region 3 — 160 (kg/m”
Region 4 = 112 (kg/m”)
z
O o 2 a1 Sy
R ao v 02
Figure 5.32. Streamlines And The Velocity Distribution

On The Outer Surface For The Air Flow
Through A Bale With A Typical Dry Matter
Density Distribution.

Figure 5.32 also shows the streamlines for the flow through
the bale and the radial velocity profile along the outer
boundary of the bale. This figure reveals that the lower
resistance to flow in the core allows much of the air to flow

around the high density material in region 3 and exit through
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the uppermost portion of the outer surface of the bale. Thus,
the velocity distribution along the outer boundary shows a
decrease in the exit velocity in region 3 compared to that
in regions 2 and 4. Thus, there is less air flowing, but
more liquid to be removed in region 3 than in the other regions
of the bale. Consequently, it is anticipated that this region
will be the slowest region to dry.

Examination of Figures 5.33 and 5.34 reveals that this
is indeed the case. Early in the drying process (at t=75,
which corresponds to 5 hours), the front is relatively thick.
However, the location and shape of the drying front are
dramatically influenced by the nonuniform distribution of dry
matter in the bale. Instead of extending across the entire
radius of the bale as it did for the uniform porosity
distribution, the front tends to curve around the high density
material in region 3. Significant amounts of air, however,
flow through regions 1 and 4 which causes the drying front
to migrate through these regions. As the air flows through
the high porosity material in region 1, it picks up a
considerable amount of moisture. This results in a reduced
rate of mass transfer in region 2. Thus, the front does not
penetrate far into region 2 early in the drying process. The
amount of air flowing through region 3 is lower than that
flowing through regions 1,2, and 4 which results in the

tendency of the drying front to curve around this region.
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As shown in Figures 5.33b, 5.33c, 5.34b, and 5.34c, when
the drying process progresses, the front passes completely
through regions 1 and 4, and less moisture is picked up by
the air flowing through these regions. This results in
increased drying in both regions 2 and 3. However, the drying
process progresses faster in region 2 than in region 3 due
to the greater amount of air flowing in this region. Thus,
region 2 dries faster than region 3. At a dimensionless time
of approximately 750 (2.1 days), the drying front is located
entirely in region 3, and all other regions have reached
equilibrium conditions.

The drying process for this case is also portrayed in
Figure 5.35. This shows the variation of the total moisture
content of the bale with time. As in the uniform porosity
cases, drying occurs at a higher rate at the start of the
drying process and then decreases with increasing time. The
bale is "dry" at a time of approximately 1360 (3.8 days).
Again, the decreasing rate of the drying process is due to
the fact that the drying front progresses into regions with

lower air velocities as time increases.

5.9. The Effects Of Varyving The Characteristic Aspect
Ratio Of An Inner Domain Element On The Dryving Process

The next parameter to be varied was the inner domain aspect
ratio (L/D). This ratio was approximately 1.4 for the base

case and was varied between 0.7 and 2.1 (A discussion of the
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range of values chosen for this parameter is presented in
Appendix C). For this range of values, however, no significant
change in the solution field is observed; that is, a change

of less than 1% over the range of values examined is observed.

5.10. Summary QOf Conclusions
Several general conclusions may be drawn from the results
of the parametric study. These are:

1. An increase in the Reynolds number results in a

decrease in the overall drying time of the bale.
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2. An increase in the dimensionless inlet radius
results in a decrease in drying time of the bale.

3. An increase in the aspect ratio of the bale (H/R)
results in an increase in drying time.

4. An increase in the Kossovich number (Ko) results in
an increase in the drying time of the bale.

5. Variation of the inner domain aspect ratio (L/D)
over a "practical" range of 0.7 - 2.1 has a negligible
effect on the drying process in the bale.

6. The specific velocity distribution of the air
flowing through the outer domain plays a significant
role in determining the drying behavior of the bale.

7. The physics of the drying process are such that the
drying rate is initially "high", but decreases with

time.

5.11. Implicati e T} 11 he tical
; £ ¢ Dri

Each of the above conclusions has a direct impact on the
efficient utilization of a drier. Thus, the relationship of
the results to drier operation will be discussed.

Assuming the drier is employed to dry a medium of fixed
composition (material, porosity, permeability, etc.), a
Reynolds number variation is obtained in practice by varying
the air inlet velocity. To obtain such increases in inlet

air velocity, fans of different size are needed. Obviously,
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economic considerations must be taken into account when
choosing a fan; however, the parametric study suggests using
the largest capacity fan that the designer can afford.

It was also noted above that increasing the air inlet
radius results in lower drying times. However, an increased
air inlet size results in decreased air inlet velocity and,
hence, a decrease in the Reynolds number for a fixed volumetric
flowrate of air. Thus, there is a tradeoff between these two
effects; and, it is expected that the selection of an "optimal"
combination of Reynolds number and air inlet size should
minimize the necessary drying time for a given application.

Possibly the greatest potential for achieving reduced
drying times lies in a variation of the global aspect ratio
(H/R) of the bale. Decreasing this ratio may result in a
significant reduction in drying time. A reduction of this
ratio has other benefits as well. As was seen, reducing this
ratio also results in a more uniform flow of air through the
bale. This results in reduced "overdrying" of material near
the air inlet, which can be beneficial.

A decrease in the Kossovich number (Ko) for a fixed material
may be obtained by either of two methods. First, the difference
between the intial and equilibrium moisture contents may be
decreased. The Kossovich number may also be decreased by

increasing the difference between the initial and equilibrium

air temperatures. It was noted above that the initial moisture

content of a hay bale is usually not below 35% (w.b.). In

159



addition, the final moisture content of the "dried" hay must
be below 18% (w.b.). Thus, the difference in moisture content
is constrained; and, perhaps the easiest way to vary the
Kossovich number is to vary the inlet temperature of the air.
Thus, the inlet air stream should be heated as much as possible
above the initial temperature of the hay bale. Of course,
this is also constrained in the present application due to
the "binding" of proteins that occurs in hay at high
temperatures.

The importance of the velocity distribution was
demonstrated in the nonuniform porosity case. The drying
front tends to migrate around the high density region of the
hay bale, where the air velocity is relatively low. To improve
the drying for this case, it would be necessary to increase
the air flow through any high density regions of the bale.
Again, decreasing the overall aspect ratio (H/R) of the bale
is probably the most "practical" approach to improving the
air flow through the high density regions.

One further point regarding drier operation should be
noted. 1In the drying of hay, the temperature and humidity
of the inlet air are typically such that the equilibrium
moisture content of the bale is below that needed for safe
storage (18% w.b.). Thus, the drying process is terminated
before equilibrium conditions are reached; that is, when the
safe storage conditions are reached. Therefore, the

characteristics of the drying curve are important. It is
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desireable to have all of the drying take place during the
"high drying rate" period that occurs early in the drying
process. The drying rate generally decreases as equilibrium
is approached. Thus, the equilibrium condition of the air
should be such that the equilibrium moisture content is as
low as possible. This may be accomplished by increasing the
air inlet temperature and/or decreasing the relative humidity
of the inlet air. Increasing the air temperature has the
benefit of lowering the Kossovich number (Ko), although the
resulting change in moisture content tends to counteract this
tendency. Dehumidification of the inlet air is a technically
attractive option in regions where ambient air is typically
at a "high" relative humidity, but this may not be economically

viable.
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APPENDIX A
DETERMINATION OF THE FUNCTIONAL DEPENDENCIES OF
THE BIOT NUMBERS ON THE OTHER
NONDIMENSIONAL PARAMETERS

In the development of the mathematical model (Section 3,
page 30), the nondimensional parameters Bi and Bip, which are
the heat and mass transfer Biot numbers, appear in the
governing equations. As will be shown, these parameters may
be rewritten in terms of the other dimensionless parameters
that appear in the model formulation. Therefore, they are
not independent parameters.

The heat transfer coefficient may be obtained from an
empirical correlation presented by Bird, Stewart, and
Lightfoot (1960) describing heat transfer in packed beds.

This correlation may be written as
jw = Ci(ReD™y (4.1)
where:

h
jy = Chilton-Colburn Factor = ————(Pr)*"° |

PaCpalV |
a,,C,=constants,

“Modified® Reynolds Number
Re = For The Flow Through =
Packed Beds

P IV
ap;y ’

q - Particle Surface Area Per Unit Volume
Of The Packed Bed '

Empirical Coefficient Which Depends
On Particle Shape (=.91 for cylinders)
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voa Air Velocity Through The
Packed Bed '

p, = Density Of The Air,
H, = Dynamic Viscosity Of The Air,

and,

Pr = Prandtl Number = gi.

a
Substituting the defintions of jy and Re”~ presented above

into equation A.1l yields

h A7 Y
——————(Pr)*? = Cl(p ) V. (A.2)
PaCoslV | ap;v
Noting that,
|4 X,
re, - Vmle (A.3)
v
and,
N[DAS (As)(l—e‘)
= = —_ , A. 4
¢ Von 4 )\ 21 (4.4)
where,
Number Of Stalks In The
NID O . 1]
uter Domain
A, = Surface Area Of A Stalk,
Vop = Outer Domain Volume,
A = Cross Sectional Area Of A Stalk,
L = Half-Length Of Stalk,
and,
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*

€ = Porosity Of The Outer Domain

allows equation A.2 to be rewritten as

h 2/3 (Vm }Kr‘)al( 4 )a.( l )au
(Pr) = C ik
PoCraV V| : v A, Jx,

2 a, Il—/“l g
(1-5'] (T) v (45

The Biot number may be obtained from equation A.5 by writing

= enf[waearol )] (£)( )12 e ||
W'V ““'sz”} 16
e EEEENEE e
(14 ““‘Pr%} | 17

This may be simplified to obtain

| AN LNk, )
Bi = C 2 — (+a)) 1/3 (I-ap)
: ’{(As) (\/}-) (K )(R ey) (Pr)y " (w)

( 2 ) |1a,>
o) (v . (A.8)

the functional dependence of the Biot number is given

Thus,

by

_ A Kq —
Bl = (A \‘/—r K )RexoPrill/l) . (A-g)
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All of the dimensionless parameters appearing in the function
above are independent parameters in the present mathematical
formulation of the problem. The convective mass transfer
coefficient may be obtained by Chilton-Colburn analogy (Bird,
Stewart, and Lightfoot, 1960) with the heat transfer

coefficient. This gives

Ju = Ju (A.10)
where:
. Chilton-Colburn Factor For h.M, 2/3
Ju = = —=——(S¢)
Mass Transfer V1" M,
M, = Molecular Weight Of Air,
and,

M, = Molecular Weight Of Water Vapor.

Substituting the defintions of jy and jm presented above into

equation A.10 yields

——h—Prz“’ = MSCZ/a (A.11)
panall_/nl MUV' ‘ l
or,
(B'( K. )Prz“’ = (h”‘L)asM"SCZ/a (A.12)
l) paCPG as Mv ' '

Equation A.12 may be rewritten in the form

o
lm - Ma pacpuas SC i, ( .

Assuming that the coefficient of diffusion for water vapor

through air is the same in both the inner domain and outer

domain, the Schmidt number may be expressed as
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se - &= (@) - (&)
c = = - \oha) - & au (A.14)

Substituting equation A.14 into equation A.13 and simplifying

yields

. - M, K, a, > -2/3 2/3 p;
Bi, = (MGJ(E:](Ej) (Lu,) (PrY“""Bi . (A.15)

Thus, the functional dependence of the mass transfer Biot

number is given by

Bém = fz(

The dimensionless parameters appearing in the function £,

Q

« A Ko —£—-e' Lu, Re, Pr.|V| (A.16)
VAVK, e e et ' '

r

Q

above are all independent parameters appearing in the
mathematical model.

The functional dependencies derived above depend on the
validity of the correlation given by equation A.1l. Several
authors (Chen and Pei, 1989, Van Brakel and Heertjes, 1978,
and Suzuki and Maeda, 1968) have noted that for moisture
contents high enough to produce a partially wetted surface
of the porous solid, there is not good agreement for convection
coefficients obtained from experiment and values obtained
from relations such as that given by equation A.1. For the
present application, the drying process starts in the
so-called sorption region. Thus, the surface moisture content
is low and the functional dependencies displayed in equations
A.9 and A.16 should be valid. In applications involving

higher surface moisture contents, the functional dependencies
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would have to be altered to take the influence of surface
moisture content into account. For the purposes of the present
work, however, the relationships given by equations A.9 and

A.16 should suffice.
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APPENDIX B
COMMENTS ON THE NUMERICAL TREATMENT OF THE
LATENT HEAT TERM IN THE ENERGY EQUATION
FOR THE INNER DOMAIN

In Section 4 (page 70), the numerical solution algorithm
is discussed in some detail. The finite volume procedure is
formulated by starting with a "general" conservation equation
of the form given by equation 4.5 (page 74). Any terms not
fitting this "standard" conservation form are treated by
lumping them into the source term. This approach has some
important consequences that should be discussed.

A source (or, sink) term in the energy equation may cause
the temperature to increase (or, decrease) such that the
temporal derivative of temperature derivative of temperature
does not approach zero after "long" times. That is, there
may not be a steady-state solution when a source (sink) is
present. In the formulation of the inner domain numerical
algorithm, the energy required for evaporation of the liquid
is included in the source term.

As drying progresses, this energy source (or, sink) term
should decrease in strength and approach zero when drying
reaches completion since the moisture content approaches zero
(or equilibrium conditions). However, the value of the
moisture content is determined from the values of temperature
and vapor density using the sorption isotherm relation. The
values of these variables may be such that during the iterative

process the moisture content obtained is less than zero (i.e.
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drier than equilibrium conditions). Since the moisture
content decreases, the temporal derivative of the moisture
content is negative (as it is throughout the drying process),
and hence, the latent energy term is nonzero. This results
in a nonzero source term which continues to drive a change
in temperature. Thus, the solution does not converge to the
equilibrium state which results in a physically unrealistic
solution.

A remedy for this problem is obtained by noting that once
the moisture content has reached zero, the latent heat term
should be zero; that is, once the solid is "dry", no further
energy is used for evaporation. Thus, if a negative value
of the moisture content is obtained during the iterative
process, it is set to zero and the iteration is continued.
The overall energy balance remains correct because the latent
energy term can only be large enough to account for the
evaporation of the liquid present (since the moisture content
is not allowed to take on negative values). Thus, the source
term includes only that energy necessary to dry the solid and

a physically realistic solution is assured.
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APPENDIX C
RATIONALE FOR SELECTING A CHARACTERISTIC
VALUE AND RANGE OF VARIATION OF
THE INNER DOMAIN ASPECT RATIO

The inner domain aspect ratio (L/D) appears as a parameter
in the inner domain equations governing the drying processes
(equations 3.101,3.102, and 3.103 on page 59). A typical
criticism of a mathematical model of a complex physical process
such as drying is that the values of all of the parameters
in the model, such as the aspect ratio, are not well known.
A hay bale is made up of many hay stalks which vary in length
and diameter. In addition, many of the stalks are split down
their length or are crushed so that there is not a single L/D
ratio for all of the stalks.

Thus, for the purposes of the present model, a
characteristic value of the L/D ratio must be chosen so that
the drying time for a given volume of material matches
experimental data.

To accomplish this task, an experiment was performed in
which hay was placed in a 6 inch diameter tube and dried by
blowing air through the tube (Bledsoe and Hitch, 1989). A
dynamic measurement of the mass of the hay and water was
obtained by hanging the tube from a load cell. Figure C.1
shows a comparison of the moisture content versus time for
the experimental case and an L/D ratio of 1.4 (the base case
values presented in Table 5.1 and Table 5.2 on pages 105 and

106 were used for all of the other parameters). It is seen
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that the drying time predicted by the numerical solution

matches very closely with experiment for this L/D ratio.

0.80

Up 0.60

0.40

Numerical Solution (L/D = 1.4)
ooooo Experiment

0.20 -
7 o]
Ooo
~C%0g
0.00 T T T T T T ™7 T T T T ToToTT™)
0 50 100 150 200 250 300 350 400
t
Figure C.1. Comparison Of the Experimental Drying

Curve To The Numerical Solution For A One
Dimensional Case (Hay Dried In A Tube).

A comparison of this L/D value to values obtained from
actual hay stalk samples was also obtained. Approximately
200 samples of hay stalks (unbroken lengths) were obtained
and their aspect ratios measured. The aspect ratios ranged
from approximately 1.7 to 67.5 with an average value of 18.8.
Thus, the value of 1.4 used in the model is lower than the
measured values of actual stalks. The agreement obtained
with this low value may be explained by considering several

factors.
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First, and probably most important, examination of many
hay stalks revealed that the splits in the stalks were
typically rather severe; that is, the stalks were split over
significant portions of their overall 1lengths (roughly
estimated as approximately 20% of the unbroken lengths).
Since the liquid water in these split regions is exposed
directly to the air flowing through the outer domain (i.e.
the water vapor does not have to diffuse through a length L),
these split 1lengths would have a significantly lower
resistance to mass transfer (which is precisely why they are
broken in this manner during the conditioning process) and
would thus tend to considerably lower the value obtained for
an effective length used in the numerical model.

Second, there is also leafy matter present in the bales,
which also has a considerably lower resistance to mass transfer
than the stalks. This lower resistance results from the fact
that the leaves have considerably greater surface area per
unit volume than do the stalks. This would also tend to lower
the effective value of L/D that yields good agreement between
the numerical model and experiment.

Finally, it should be noted that no data is available for
the thermal properties of hay. Thus, the thermal diffusivity
and thermal conductivity of alfalfa hay are both unknown.

Changing the values of the dimensionless parameters which
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contain these properties may influence the value of the inner
domain aspect ratio which results in the best match with
experimental data.

One additional point should be made regarding the
comparison between experimental and numerical values which
is presented here. This comparison does not represent a
validation of the mathematical model since the L/D ratio was
varied to achieve a match with the experimental data.

Additional experiments should be performed to check the

validity of the present numerical model.

The range of values of L/D (0.7 = 2.1) used in the parametric
study was obtained by considering a 50% change in L/D from
the base case value (1.4) to be a practical limit (Bledsoe,
1989). However, it should be noted that this figure is merely
an estimate of the actual length to diameter ratios that can
be obtained in practice. As was discussed above, the length
to diameter ratio, L/D, which appears in the present model
represents an effective length to diameter ratio. Several
factors such as the severity of splitting and crushing of the
hay stalks during handling influence the effective value of
L/D obtained from the numerical model. If the factors which
influence the value of the effective ratio have the same
relative importance at different values of the actual L/D
ratios, a 50% change in the effective ratio will correspond
to a 50% change in the actual ratio. However, it is more

probable that factors such as splitting, crushing, etc. may
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vary with L/D. For example, as the hay stalks are cut shorter
and shorter to decrease L/D, a greater percentage of stalks
may be split or crushed during handling. Thus, a decrease
of, say, 50% of the actual L/D may result in a greater than
50% change in the effective L/D. Since the influence of these
effects is not known, no attempt to compensate for such effects

was made in this study.
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APPENDIX D
NUMERICAL TREATMENT OF THE SORPTION
ISOTHERM RELATION

The sorption isotherm 1is an empirically determined
relation between relative humidity and moisture content at
a specified temperature. Hill, Ross, and Barfield present
graphical data for the sorption isotherm for alfalfa hay in
the temperature range from 20 - 35 °C . An expression of the
form

~cTiu'™

1-¢6 = e ' (D.1)
was used to correlate the data. There are large differences,
however, between the values predicted by their correlation
and the experimental data.

To minimize this type of error in the present work, a
least squares fit was performed on the data presented by Hill
et al. For simplicity, it was decided to approximate each
isotherm by a series of linear segments. Thus, a least squares
fit was performed on the experimental data for each linear
segment, which is represented by a function of the form

.

ut = c,b + c,T; + ¢, (D.2)
where c¢,, c¢,, and c; are "constants" which depend on the

relative humidity interval in which a point lies. A minimum
of 10 data points for each isotherm was obtained from the
experimental curves. The curves were broken into three

intervals corresponding to
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0.3<¢<0.6 (Regionl),
0.6<¢6<0.75 (Region?),

and,

0.75<¢<1.0 (Region3)

(Note: This range of relative humidity should cover the range

of relative humidity encountered in "practical" drying

situations.) The results of this procedure are presented in
Table D.1 and a comparison between the experimental points

and the fit used is presnted in Figure D.1.

Least Squares Fit Coefficients For The

Table D.1.
Sorption Isotherm Of Alfalfa Hay.
Region C, c (1) Cs
2 \c

1 0.269 [-0.00432 | 0.116
(0.3£¢<0.6)

2 0.839 [F0.00432 | -0.227
(0.6<$<0.75)

3 2.08 —0.00432 | -1.16
(0.75<¢<1.0)
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Figure D.1l. Comparison Of Fit For The Sorption
Isotherm Of Alfalfa Hay With The
Experimental Data Of Hill, Ross, And
Barfield (1977).
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APPENDIX E
DETERMINATION OF PERMEABILITY OF A HAY BALE

AND THE COEFFICIENT OF THE FORSCHEIMER
TERM IN DARCY'S LAW

Values of the permeability, x°, and the coefficient of

the Forscheimer term, b’ , were determined from experimental
correlations obtained by Bledéoe and Hitch (1989). Both terms
above were correlated as functions of dry matter density
within the hay bale, and were assumed to be independent of
moisture content.

The permeability was found to be represented by

*

k' = 1.02x107%p;2 (m?%) (E.1)

where the dry matter density has units of (kg/m3).
The coefficient of the Forscheimer term was found to be

represented by

. 0343, { K@
b = 107.6¢ ¢ (;{;). (£.2)

Both these expressions were found to be valid for a range
of dry matter densities of approximately 32.0 to 160.2 (kg/m3).
The functional forms of these variables were obtained by
simple curve fits to experimental data and thus the functions
shown above are not necessarily indicative of theoretically

expected functional forms.
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