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Abstract

Barrier coverage is a critical issue in wireless sensor networks (WSNs) for security

applications, which aims to detect intruders attempting to penetrate protected

areas. However, it is difficult to achieve desired barrier coverage after initial random

deployment of sensors because their locations cannot be controlled or predicted. In

this dissertation, we explore how to leverage the mobility capacity of mobile sensors

to improve the quality of barrier coverage.

We first study the 1-barrier coverage formation problem in heterogeneous sensor

networks and explore how to efficiently use different types of mobile sensors to form a

barrier with pre-deployed different types of stationary sensors. We introduce a novel

directional barrier graph model and prove that the minimum cost of mobile sensors

required to form a barrier with stationary sensors is the length of the shortest path

from the source node to the destination node on the graph. In addition, we formulate

the problem of minimizing the cost of moving mobile sensors to fill in the gaps on

the shortest path as a minimum cost bipartite assignment problem and solve it in

polynomial time using the Hungarian algorithm.

We further study the k-barrier coverage formation problem in sensor networks.

We introduce a novel weighted barrier graph model and prove that determining the

minimum number of mobile sensors required to form k-barrier coverage is related with

but not equal to finding k vertex-disjoint paths with the minimum total length on the

WBG. With this observation, we propose an optimal algorithm and a faster greedy
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algorithm to find the minimum number of mobile sensors required to form k-barrier

coverage.

Finally, we study the barrier coverage formation problem when sensors have

location errors. We derive the minimum number of mobile sensors needed to fill in a

gap with a guarantee when location errors exist and propose a progressive method for

mobile sensor deployment. Furthermore, we propose a fault tolerant weighted barrier

graph to find the minimum number of mobile sensors needed to form barrier coverage

with a guarantee.

Both analytical and experimental studies demonstrated the effectiveness of our

proposed algorithms.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless

communications, computing and sensor technology have enabled the rapid devel-

opment of low-cost, small-size sensor nodes that integrate sensing, data processing

and wireless communication (Akyildiz et al., 2002; Yick et al., 2008). Each sensor

node has the ability of sensing the environment, processing the sensing data and

sending the results out via its wireless channel. As shown in Figure 1.1, wireless

sensor networks (WSNs) are composed of a large number of sensors nodes which are

densely deployed in the region of interest (ROI). WSNs are able to take environment

measurements, perform data processing and route data to users, and also receive and

execute commands from the users, which greatly changes the intersection manner

between physical world and human beings. WSNs have been considered as one of the

21 most influential technologies at the 21th century (Coy and Gross, 1999) and one

of the 10 emerging technologies that will change the world (Roush, 2003).

Compared to traditional wired networks (e.g., Internet), WSNs have a lot of

unique features. First, sensor nodes are embodied with lots of sensors, such as

GPS, temperature, light, pressure, magnetic, acoustic and camera, which are able to
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Sink node

Sensor node

ROI
User

Figure 1.1: A typical architecture of WSNs.

monitor a wide variety of ambient conditions. This is also the fundamental difference

between WSNs and other networks since the latter ones do not have the sensing ability.

Second, sensor nodes communicate via wireless and often self-organize after being

deployed in an ad hoc fashion. Therefore, WSNs are very flexible to be deployed and

can be deployed at remote and dangerous terrains to fulfill specific tasks. Also, sensor

nodes are usually densely deployed at the ROI, so they can collaborate with each other

to fulfill tasks that are difficult to complete by individual sensor nodes. What’s more,

WSNs are data-centric, which is totally different from IP-based Internet.

The aforementioned unique features ensure a wide range of applications for sensor

networks including military applications, environment motoring, homeland security

and so on. We summarize some applications of WSNs in the following (Akyildiz et al.,

2002; Yick et al., 2008).

• Environment monitoring: It is one of the primary applications of WSNs where

hundreds of sensors nodes are deployed to monitor the environment for a

specific task such as volcano condition monitoring, precision agriculture, forest

fire detection, air and water pollution. Sensor nodes continuously sample the

environment and report data to the base station.

• Military applications: WSNs play a very important role in military applications.

For remote battlefield and other dangerous terrains, it is dangerous for soldiers

2



to reach and stay there for too long time. Instead, WSNs can be deployed to

watch out activities of enemies. Once an event happens, for example, intruders

enter the protected area, WSNs can localize them and guide us to capture them.

• Homeland security: WSNs can also be used for homeland security. Instead of

building walls on the border among countries, WSNs can be deployed to form

virtual barriers that could actively detect any intruder crossing the border.

The unique features of WSNs and its wide applications have attracted extensive

attentions from military and academic. In the early 1990s, DARPA first started

the research on WSNs, and founded many projects such as SmartDust (Kahn et al.,

1999), WINS (Pottie and Kaiser, 2000) and SensIT (Kumar and Shepherd, 2001).

Meanwhile, WSNs also received attentions from the academic. Many groups such as

CENS at UCLA, CITRIS at UCB and Harvard sensor network lab were founded and

have greatly contributed the development of WSNs. It is not unreasonable to expect

that the world will be covered with WSNs with access to them via the Internet (Lee

et al., 2007).

Although the new technology is exciting and promising, it is challenging to design

protocols and build systems for applications of using WSNs, which is because of the

following reasons:

• Resource limited: Sensor nodes are usually power limited as well as computation

capacities and memory limited. Consequently, energy efficiency and lightweight

computation become very important factors for protocols design.

• Wireless communication: Sensor nodes can communicate and collaborate

through wireless communication. However, the channel bandwidth is limited

and the data transmission rate is low. Additionally, wireless communication is

easy to be affected by wireless interference, attacks and environment conditions.

Consequently, resource utilization and security are very important factors for

protocols design.

3



• Dynamic topology. Sensor nodes are prone to failures due to lack of power,

physical damage and environment interference. Therefore, the topology of a

sensor network may changes very frequency. Consequently, robustness and fault

tolerance should be considered for protocols design.

1.2 Intruder Detection with Barrier Coverage

Intruder detection is one of the most important problems of WSNs, the purpose

of which is to detect any intruder that attempts to penetrate the ROI. In reality,

lots of security applications need to detect intruders, such as border protection,

critical infrastructure protection, and dangerous substance monitoring. In WSNs,

area coverage (Cardei and Wu, 2004) and barrier coverage (Kumar et al., 2005) are

proposed to realize the purpose of intruder detection.

Figure 1.2: Area coverage.

Figure 1.2 shows an example of area coverage. Given a two-dimensional ROI, the

sensor network provides area coverage for the ROI if and only if every point in the

ROI is covered by at least one sensor∗. Here a point is covered by a sensor means that

the point is within the sensing region of the sensor. Accordingly, the sensor network

provides k-area coverage for the ROI if and only if every point in the ROI is covered

by at least k distinct sensors. Area coverage is the earliest coverage model proposed

∗Without confusion, we use “sensor node” or “sensor” interchangeably in this dissertation.
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in WSNs, which is able to monitor the events happening in the whole ROI and of

course can detect the presence of intruders.

Crossing path

a

Figure 1.3: Barrier coverage.

Figure 1.3 shows an example of barrier coverage. Given a two-dimensional ROI,

the sensor network provides barrier coverage if and only any intruder can be detected

by at least one sensor no matter how it penetrates the ROI. As shown in Figure

1.3, the sensing regions of gray sensors form a virtual barrier denoted by a red line

spanning from the left boundary to the right boundary of the ROI. We can observe

that no matter how an intruder penetrates the ROI, it will be detected by at least

one sensor. Therefore, the sensor network provides barrier coverage for the ROI.

Different from area coverage, barrier coverage does not care what event happens

in the ROI but instead whether there are intruders penetrating the ROI. Barrier

coverage does not even require most parts of the ROI to be covered by sensors, which

significantly reduces the cost of sensor deployment. Therefore, barrier coverage in

WSNs is an ideal solution for the purpose of intruder detection of security applications.

Please refer to Cardei and Wu (2004); Huang and Tseng (2005); Wang and Xiao

(2006); Ghosh and Das (2008); Wang (2011) for more information about different

coverage problems.
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1.2.1 Preliminaries of Barrier Coverage

Barrier coverage in WSNs was firstly defined by Kumar et al. (2005) where the sensors

form a barrier for the intruders. The major goal of barrier coverage is to detect

intruders as they cross a border or as they penetrate a protected area. Depending on

the application scenarios, the ROI can be an open belt region (e.g., border) or closed

belt region (e.g., airport). In this paper, we mainly focus on barrier coverage for an

open belt region.

a

L

H

congruent 
crossing path

crossing 
path

left 
boundary

right 
boundary

lower boundary

upper boundary

b

Figure 1.4: An illustration of belt region and crossing paths

As shown in Figure 1.4, the ROI is a two-dimensional rectangular belt region with

length of L and width of H. A crossing path is any path that crosses the width

of the region completely. A congruent crossing path is special crossing path that

is congruent to the width of the belt. The path a and path b shown in Figure 1.4

demonstrate a random crossing path and a congruent crossing path, respectively. A

path is said to be k-covered if it intersects with the sensing regions of at least k

distinct sensors.

k-barrier coverage: A sensor network provides k-barrier coverage for the ROI

(or the ROI is said to be k-barrier covered with a sensor network) if all crossing paths

through the region are k-covered.

Two types of barrier coverage: weak barrier coverage and strong barrier

coverage , were introduced in Kumar et al. (2005). Weak barrier coverage requires
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the union of sensors form a virtual barrier in the horizontal direction from the left

boundary to the right boundary, so that every intruder moving along congruent

crossing paths can be detected. Figure 1.5 shows an example of weak barrier coverage.

We can see that sensors in gray color form a virtual horizontal barrier spanning

the whole range of the ROI. However, weak barrier coverage cannot guarantee the

detection of intruders following any crossing path (e.g., path a in Figure 1.5). In

contrast, strong barrier coverage requires that sensors form a virtual barrier spanning

the whole range of the ROI so that any intruder can be detected no matter what

crossing path it takes. An example of strong barrier coverage is shown in Figure 1.3.

Congruent Crossing path

a

Figure 1.5: Weak barrier coverage

1.2.2 Applications and Challenges

The unique purpose of barrier coverage ensures its wide usage for various security

applications. In the following, we summarize several typical applications that barrier

coverage can be used for.

• Border protection: Border protection is the most important issue for a country.

Lots of efforts and money have been spent on it by the department of

homeland security to prevent intruders (e.g., terrorists, drug dealers and illegal

immigrants) from other countries. The traditional way is to build physical

7



walls on the border, which is very expensive because of the long distance of

the border but not effective as the physical walls cannot detect intruders even

they are crossing. Instead, sensor networks can be deployed on the border that

actively detect any intruder that attempts to cross the border. Once an intruder

crosses a barrier formed by sensors, sensors can detect the intruder and report

the result to the department of homeland security.

• Critical infrastructures protection: Security is very important for critical infras-

tructures, such as military base and nuclear power plant, since unauthorized

intruders may steal secret and destroy these infrastructures. To efficiently and

actively detect unauthorized intruders, sensor networks can be deployed at the

outside of the protected regions.

• Dangerous substance monitoring: Sensor networks can also be deployed at the

outside of dangerous and poisonous factories to monitor the leakage of dangerous

substance such as nuclear and poisonous gas. A barrier surrounding the factory

is formed by sensors. Once any sensor on the barrier detect the leakage of

dangerous substance, it sends an alarm to the security department, and then

corresponding measures can be taken to save people.

While the technique is promising, there are a lot of challenging issues to provide

barrier coverage for security applications.

First, a barrier might not be formed after initial deployment of sensor networks.

Due to budget limit and lots of ROIs are dangerous or hard to reach, random

deployment of sensors (e.g., dropped by aircraft) is commonly used, which makes

the locations of sensors random and unpredictable. Therefore, it is difficult to form a

barrier after initial deployment of sensor networks. Consequently, the first challenging

issue is how to determine whether a ROI is barrier covered or not. If the ROI is not

barrier covered, what measure can be taken to form a barrier?

Second, to fulfill the application requirements, different types of sensors (e.g.,

camera, radar and ground sensor are deployed in SBInet project (Archibold, 2007))
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are deployed to form a barrier to detect intruders. Different types of sensors have

different costs, communication and computation capabilities. Due to the budget limit,

we cannot use all the types of sensors as much as we want. Therefore, a challenging

issue is to design deployment methods that achieve application requirements of barrier

coverage by using different types of sensors within the budget limit.

What’s more, barrier coverage is highly affected by the location errors of sensors.

As we mentioned, sensors are usually randomly deployed in the ROI, which makes the

true locations of sensors unpredictable. It is cost-expensive to equip GPS receivers on

each sensor considering the fact of large-scale sensor networks. To reduce the cost for

localization, a commonly used solution is equipping GPS receivers on a small portion

of sensors which are called beacons, and estimating other sensors’ locations using the

beacons’ location information. A lot of localization algorithms have been proposed

to estimate the location of sensors, including the range-based and the range-free

localization algorithms. However, none of them can provide the accurate locations

and therefore inevitably has location errors. When location error of sensors exist, it

is difficult to say whether two sensors overlap or not. Therefore, the first question is

what’s the effect of location errors on barrier coverage? How to guarantee the sensor

network provide barrier coverage when location errors exist?

1.3 State-of-the-art

Barrier coverage in WSNs has attracted extensive attentions and a lot of protocols

have been proposed in recent years.

The concept of barrier coverage first appeared in Gage (1992) in the context of

robotic sensing. Kumar et al. (2005) firstly defined the notion of k-barrier coverage

for WSNs and proposed an efficient algorithm to determine whether a belt region is

k-barrier covered or not. They also introduced two notions of probabilistic barrier

coverage - weak barrier coverage and strong barrier coverage, and derived critical

conditions for weak k-barrier coverage in randomly deployed sensor networks. Kumar

9



et al. (2007) further proposed a centralized, optimal sleep-wakeup algorithm to

prolong the lifetime of barrier coverage. Chen et al. (2007) introduced the notion

of local barrier coverage and devised localized sleep-wakeup algorithms that provide

near-optimal solutions. Liu et al. (2008) devised an efficient distributed algorithm

to construct multiple disjoint barriers for strong barrier coverage in a randomly

deployed sensor network on a long irregular strip region. Saipulla et al. (2009)

studied the barrier coverage of the line-based deployment rather than the Poisson

distribution model, and a tight lower-bound for the existence of barrier coverage was

established. Li et al. (2012) proposed an energy efficient scheduling algorithm for

barrier coverage with probabilistic sensing model. Li et al. (2011) studied the weak

k-barrier coverage and derived a lower bound for the probability of weak k-barrier

coverage with and without considering the border effect, respectively. Beyond line-

based sensor deployment, He et al. (2013) designed curve-based sensor deployment

algorithms for barrier coverage.

Recently, barrier coverage in directional sensor networks has gradually received

more and more attention. Zhang et al. (2009) studied the strong barrier coverage

problem for rotationally directional sensors. A novel full-view coverage model was

introduced in Wang and Cao (2011b) for camera sensor networks. A full-view coverage

verification method was proposed and an estimate of deployment density to achieve

full-view coverage for the whole monitored area was given. With the full-view coverage

model, Wang and Cao (2011a) further proposed a novel method to select camera

sensors from an arbitrary deployment to form a camera barrier. The minimum camera

barrier coverage problem was studied in camera sensor networks (Ma et al., 2012). Tao

et al. (2012) investigated the problem of finding appropriate orientations of directional

sensors such that they can provide strong barrier coverage.

With the development of mobile sensors, sensor mobility is exploited to improve

barrier coverage. Shen et al. (2008) studied the energy efficient relocation problem for

barrier coverage with mobile sensors. A centralized barrier algorithm was proposed to

compute the relocated positions for all sensors to form a barrier. Keung et al. (2010)
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focused on providing k-barrier coverage against moving intruders. They demonstrated

that the problem is similar to classical kinetic theory of gas molecules in physics, and

derived the inherent relationship between barrier coverage and a set of crucial system

parameters including sensor density, sensor and intruder density. Ban et al. (2010)

studied the problem on how to relocate mobile sensors to construct k grid barriers with

minimum energy consumption. They gave an integer linear programming model and

devised an approximation algorithm AHGB to construct one grid barrier. Saipulla

et al. (2010a) exploited sensor mobility to improve barrier coverage. They proposed

a greedy algorithm to find barrier gaps and adopted maximum flow algorithm to

relocate mobile sensors to fill the gaps. They also studied how to improve barrier

coverage using mobile sensors with limited mobility in Saipulla et al. (2010b).

1.4 Motivations and Contributions

Barrier coverage is a critical issue in WSNs for security applications, which cannot

be guaranteed after initial random deployment of sensors, especially for sensors with

limited sensing angles (e.g., cameras). Although lots of work have been done on

barrier coverage, however, most of them mainly focus on critical condition analysis

and barrier construction for stationary sensors, little effort has been made to explore

how to efficiently use mobile sensors to form barrier coverage with stationary sensors.

In addition, existing studies on barrier coverage only focus on homogeneous sensor

network, little effort has been put on barrier coverage with heterogenous sensor

networks which is more practical and useful in real-world applications. Moreover,

to the best of our knowledge, none of existing work explores the effects of location

errors of sensors on barrier coverage and how to guarantee the formation of barrier

coverage when location errors exist.

In this dissertation, we study the 1-barrier coverage formation problem in

heterogeneous sensor networks and explore how to efficiently use different types of

mobile sensors to form a barrier with pre-existing stationary sensors. To the best
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of our knowledge, we are the first to study barrier coverage formation problem in

heterogeneous sensor networks. In specific, we introduce the notion of directional

barrier graph to model barrier coverage formation problem. We prove that the

minimum cost of mobile sensors required to form a barrier with stationary sensors

is the length of the shortest path from the source node to the destination node on

the directional barrier graph. We then formulate the problem of minimizing the cost

of moving mobile sensors to fill in the gaps on the shortest path as a minimum cost

bipartite assignment problem and solve it in polynomial time using the Hungarian

algorithm.

We further study the k-barrier coverage formation problem in WSNs. To the best

of our knowledge, we are the first to study k-barrier coverage formation problem in

WSNs. We introduce a novel weighted barrier graph to model the barrier coverage

formation problem and prove that the minimum number of mobile sensors required

to form k-barrier coverage with stationary sensors is related with but not equal to

finding k vertex-disjoint paths with the minimum total length on the weighted barrier

graph. Based on this observation, we propose an efficient optimal algorithm as well

as a greedy algorithm to find the minimum number of mobile sensors needed to form

k-barrier coverage. Meanwhile, we also propose an efficient optimal algorithm as well

as a greedy algorithm to find the maximum number of barriers that can be formed

given pre-deployed stationary sensors and available mobile sensors.

Finally, we study the barrier coverage formation problem when sensors have

location errors. To the best of our knowledge, we are the first to study this problem.

We study the barrier coverage problem when sensors have location errors and deploy

mobile sensors to improve barrier coverage if the network is not barrier covered after

initial deployment. We analyze the relationship between the true distance and the

measured distance of two stationary sensors and derive the minimum number of

mobile sensors needed to connect them with a guarantee when location errors exist.

Furthermore, we propose a fault tolerant weighted barrier graph, based on which we
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prove that the minimum number of mobile sensors needed to form barrier coverage

with a guarantee is the length of the shortest path on the graph.

1.5 Dissertation Organization

The dissertation is organized as follows: In Chapter 2, we explore how to efficiently

form 1-barrier coverage using mobile sensors with stationary sensors in heterogeneous

sensor networks. Chapter 3 further studies the k-barrier coverage formation problem

in sensor networks. In chapter 4, we analyze the effect of location errors of sensors

on barrier coverage and propose a fault tolerant barrier coverage algorithm to form a

barrier with a guarantee using the minimum number of sensors. Finally, we conclude

this dissertation with a summary of work and directions for future work in Chapter

5.

13



Chapter 2

Cost-Effective 1-barrier Coverage

Formation in Sensor Networks

In this chapter, we study the 1-barrier coverage formation problem in heterogeneous

sensor networks and explore how to efficiently use different types of mobile sensors

with different costs and sensing models to form a barrier with pre-deployed different

types of stationary sensors. In specific, we introduce the notion of directional barrier

graph to model barrier coverage formation problem, and prove that the minimum

cost of mobile sensors required to form a barrier with stationary sensors is the length

of the shortest path from the source node to the destination node on the directional

barrier graph. We then formulate the problem of minimizing the cost of moving mobile

sensors to fill in the gaps on the shortest path as a minimum cost bipartite assignment

problem and solve it in polynomial time using the Hungarian algorithm. Finally, we

demonstrate the effectiveness of the proposed algorithms using simulations, where

we show that the proposed solutions work for both weak barrier coverage and strong

barrier coverage problems in heterogeneous sensor networks.
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2.1 Introduction

Wireless sensor networks (WSNs) have been widely used as an effective surveillance

tool for security applications, such as battlefield surveillance, border protection, and

airport intruder detection. To detect intruders who penetrate the regions of interest

(ROI), we need to deploy a set of sensor nodes that can provide coverage of the

ROI, a problem that is often referred to as barrier coverage (Kumar et al., 2005),

where sensors form a barrier to prevent intruders from crossing the ROI. When

only stationary sensors are used, however, after the initial random deployment, it

is possible that sensors could not form a barrier due to gaps in their coverage,

which would allow intruders to cross the ROI without being detected. In fact, it

is difficult if possible at all to improve barrier coverage for sensor networks consisting

of only stationary sensors. Fortunately, with recent technical advances, practical

mobile sensors (e.g., Robomote (Dantu et al., 2005), Packbot (Somasundara and

Ramamoorthy, 2007)) have been developed, which provides us a way to improve

barrier coverage performance after sensor networks have been deployed.

An intruder detection system could consist of only one type of sensors where

all sensors have the same sensing range and angle. This kind of sensor network

is often refereed as homogeneous sensor network. Cameras probably are the most

widely used sensors for security applications. For example, the FREEDOM system

(Ramirez, 2006), deployed on the border between Mexico and United States, uses

cameras to detect illegal intruders. However, in reality, it is more general that a

system consists of different types of sensors where they have different sensing ranges,

sensing angles and costs. This kind of sensor network is often refereed as heterogeneous

sensor network. For example, The SBInet project (Archibold, 2007) supported by US

government uses cameras, radars and ground sensors to construct a virtual fence to

detect illegal intruders (e.g., drug dealers and illegal immigrants). In this chapter,

we mainly focus on the more general heterogenous sensor network and consider the

homogeneous sensor network as a special case of the heterogeneous sensor network.
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1 2

a

Figure 2.1: Illustration of forming a strong barrier with the help of mobile sensors.
Mobile sensors 1 and 2 fill in the gaps between stationary sensors and form a strong
barrier for the ROI.

A lot of work has been done on barrier coverage. However, most of existing

work mainly focus on critical condition analysis for stationary sensors (Kumar et al.,

2005; Chen et al., 2007; Liu et al., 2008; Saipulla et al., 2009), little effort has been

made to explore how to efficiently use mobile sensors to form barrier coverage with

stationary sensors. In addition, none of existing work explores barrier coverage in

heterogenous sensor network. To the best of our knowledge, we are the first to study

how to efficiently form barrier coverage using mobile sensors in heterogeneous sensor

network. In particular, we consider a two-phase deployment: in the first phase, after

stationary sensors are deployed, their barrier gaps are identified and the cost of mobile

sensors needed can be calculated; in the second phase, mobile sensors are deployed

and move to desired locations to fill in these gaps to form a barrier. Figure 2.1 shows

an example of forming a strong barrier using mobile sensors. Mobile sensors 1 and 2

fill in the gaps between stationary sensors and form a strong barrier with pre-existing

stationary sensors for the ROI.

There are lots of challenging issues for the barrier coverage formation problem

in heterogeneous sensor networks. First, it is challenging to determine whether two

sensors overlap with each other or not and calculate the distance between sensors

due to the fact that different types of sensors have different sensing ranges, sensing

angles and facing directions. Second, since sensors are randomly deployed, it is
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challenging to determine whether the sensors already form a barrier or not after

initial deployment. Third, the manufacturing costs of mobile sensors are usually

much higher than that of stationary sensors (Dantu et al., 2005), which motivates us

to minimize the cost of mobile sensors needed to form a barrier. Since there are too

many ways of deploying different types of mobile sensors to fill in different gaps in the

network, it is therefore challenging to find the optimal solution of using mobile sensors

to form barrier coverage with the deployed stationary sensors while minimizing the

total cost of mobile sensors. Finally, mobile sensors should move to expected locations

to fill in the gaps between stationary sensors. However, sensor movement costs a lot

of energy and mobile sensors are often power limited. Therefore, another challenging

issue is how to schedule and move mobile sensors to the expected locations so that

the total moving cost is minimized.

To solve these challenging issues, we introduce the directional barrier graph model

and propose the directional barrier coverage algorithm to find the minimum cost of

mobile sensors needed to form a barrier. The main contributions of this chapter are

summarized as follows:

• To the best of our knowledge, we are the first to study the barrier coverage

formation problem using mobile sensors in heterogeneous sensor networks.

• We introduce the directional barrier graph model and prove that determining

the minimum cost mobile sensors required to form a barrier is equivalent to

finding the shortest path from the source node (left boundary) to the destination

node (right boundary) on the directional barrier graph.

• We propose an efficient greedy movement algorithm to efficiently schedule

mobile sensors to different gaps while minimizing the total moving cost. In

addition, for homogeneous sensor network, we propose a position based optimal

movement algorithm that formulates the movement algorithm as a minimum

cost bipartite assignment problem, and solve it in polynomial time using the

Hungarian algorithm.
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• We conduct extensive simulations to evaluate the performance of the proposed

algorithms and experimental results validate their effectiveness.

The remainder of this chapter is organized as follows. We present the network

model and the sensing model in Section 2.2. The barrier coverage formation

problem in heterogeneous sensor networks is formulated in Section 2.3. We analyze

the minimum cost mobile sensor problem (MCMS) and the minimum cost barrier

formation problem (MCBF) in Section 2.4 and Section 2.5, respectively. Extensive

performance evaluation of our algorithm is presented in Section 2.6. Finally, we

conclude this chapter in Section 2.7.

2.2 System Model

In this section, we present the system model including the network model and the

sensing model for sensors.

We assume that the ROI is a two-dimensional rectangular belt area and different

types of stationary sensors are randomly deployed in the belt region. After the

minimum cost of mobile sensors needed is calculated, the required types of mobile

sensors are deployed further to form a barrier with pre-existing stationary sensors.

We assume there are k types of sensors and different types of sensors have different

sensing ranges, sensing angles and costs. However, the same type of sensors have the

same sensing range, sensing angle and cost but may have different facing directions. In

general, the sensing region of omni-directional sensors is characterized by a 0-1 disk

model which however cannot represent directional sensors (e.g., cameras, acoustic

sensors and radars). In this chapter, we adopt a more general model to characterize

the sensing region of different types of sensors. As shown in Figure 2.2(a), the sensing

region of a sensor is characterized by a sector. Let T (j) = (r(j), α(j), c(j)) denote

the sensing model and cost of type j sensors, where r(j) is the sensing range, α(j)

is half of the sensing angles, c(j) is the cost of type j sensors. Let si denote the
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sensor i and suppose it is a jth type sensor, then it can be represented by a 5-tuple

< xi, yi, r(j), α(j), βi >, where li = (xi, yi) is the two-dimensional location of the

sensor i, r(j) is its sensing range and α(j) is half of its sensing angle, and βi is the

facing direction of sensor i. We assume that βi is uniformly distributed in [0, 2π),

e.g., βi ∼ U(0, 2π). Note that omni-directional sensing model is a special case of

directional sensing model when 2α = 2π.

αα β i

li=(xi,yi) x

r

(a)

li=(xi,yi) x

p(x,y)

(b)

Figure 2.2: (a) The sector sensing model for directional sensors; (b) A point p is
covered by the sensor si.

Definition 1. A two-dimensional point p = (x, y) is said to be covered by a directional

sensor si =< xi, yi, r(j), α(j), βi > if and only if the following two conditions are

satisfied.

• (x− xi)2 + (y − yi)2 ≤ r(j)2,

• ang(
−→
lip) ∈ [βi − α(j), βi + α(j)], where ang(·) denotes the angle of (·).

The largest coverage range of the jth type sensors, denoted by lr(j), is the longest

line in its sensing sector, which is either the sensing radius or the longest chord of the

sector. Therefore, we have

lr(j) =

max(r(j), 2r sinα(j)) for 0 ≤ α(j) < π
2
,

2r(j) for π
2
≤ α(j) ≤ π.
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a

Figure 2.3: An example of weak barrier coverage formed by sensors in gray color.
A weak barrier can detect intruders following congruent crossing paths, however, can
not guarantee the detection of intruders following any crossing path (e.g., path a).

2.3 Problem Formulation

In this section, we formally describe the barrier coverage formation problem in

heterogeneous sensor networks.

As shown in Figure 2.3, the belt region is generally a long and thin strip with length

of L and width of H. A crossing path is a path that crosses the complete width of

the area from the lower boundary to the upper boundary(e.g., path a). A congruent

crossing path (e.g., dashed lines) is a special crossing path that is orthogonal to the

upper and lower boundaries. An intruder may attempt to penetrate the area along

any crossing path.

Two types of barrier coverage: weak barrier coverage and strong barrier coverage,

were introduced in (Kumar et al., 2005). Weak barrier coverage requires that the

union of sensors form a barrier in the horizontal direction from the left boundary

to the right boundary, called a weak barrier, so that every intruder moving along

congruent crossing paths can be detected. As shown in Figure 2.3, sensors in gray

color form a weak barrier to guarantee the detection of intruders along any congruent

crossing path. However, weak barrier coverage can not guarantee the detection of

intruders following random crossing paths (e.g., path a). In contrast, strong barrier

coverage requires that the union of sensors forms a barrier from the left boundary to
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the right boundary, called a strong barrier, so that every intruder can be detected no

matter what crossing path it takes. An example of strong barrier coverage is shown

in Figure 2.1. In this chapter, we address the barrier coverage formation problem for

both weak and strong barrier coverage.

By leveraging the mobility feature of mobile sensors, we propose to use mobile

sensors to fill in gaps between pre-deployed stationary sensors to form a weak/strong

barrier. There are different types of sensors with different sensing ranges, sensing

angles and costs. The cost of mobile sensors needed depends on the network topology

of stationary sensors and also how many mobile sensors of each types are needed.

The first problem we want to solve is to minimize the cost of mobile sensors needed

to form barrier coverage, which is called the minimum cost mobile sensor problem

(MCMS). Let M(j) denote the required number of the jth type mobile sensors. The

MCMS problem is formulated as follows:

Minimize
k∑
j=1

c(j)M(j)

subject to Stationary and mobile sensors form a barrier.

M(j) ≥ 0 & M(j) ∈ Z, ∀j = 1, 2, · · · , k.

When the minimum cost is zero, no mobile sensors are needed and therefore

the ROI is barrier covered after initial deployment of stationary sensors, otherwise

the ROI is not barrier covered. Thus, whether a network is barrier covered or not

after initial deployment of stationary sensors can be easily answered once the MCMS

problem is solved.

After the required number for each type of mobile sensors are known, we then

can deploy mobile sensors as needed to the network. In order to form a barrier,

mobile nodes should move to different gaps, which also consumes a lot of energy. In

general,the energy consumed by mobile sensors is proportional to the moving distance.

In order to prolong the lifetime of mobile sensors, the total moving distance should

be minimized. Therefore, we need to study the problem of scheduling mobile sensors
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to fill in different gaps while minimizing the total moving distance, which is called the

minimum cost barrier formation problem (MCBF). Let Ḡ = (g1, g2, · · · , gς) denotes

the set of gaps needed to be filled in that uses the minimum cost of mobile sensors to

form a barrier. Let τ =
∑k

j=1M(j) denote the required number of mobile sensors to

form a barrier, and M = (m1,m2, · · · ,mτ ) denote the set of deployed mobile sensors.

Suppose the original location of a mobile sensor mi is (xi, yi) and its target location

is (x̄i, ȳi). The objective is to schedule mobile sensors to fill in different gaps while

minimizing the total moving distance. Therefore, the MCBF problem is formulated

as follows:

Minimize
τ∑
i=1

√
(xi − x̄i)2 + (yi − ȳi)2

subject to gi is filled,∀i = 1, 2, · · · , ς.

It is worth noting that the set of target locations are unknown a prior, which

makes the MCBF problem difficult to solve. In the following sections, we present the

formulation and analysis of the MCMS problem and the MCBF problem.

2.4 Minimum Cost Mobile Sensor (MCMS) Prob-

lem

In this section, we present the formulation and analysis of the MCMS problem. We

first describe how to group sensors into clusters and then introduce the directional

barrier graph model for the barrier coverage formation problem. With the graph

model, we prove that the minimum cost of mobile sensors needed to form a barrier is

the length of the shortest path from the source node to the destination node on the

graph.
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2.4.1 Cluster Formation

The fundamental problem for weak barrier coverage is to decide whether two sensors

overlap in the horizontal direction or not. Let xLi and xRi denote the left and the right

coverage boundary of sensor si in the horizontal direction, which can be obtained by

geometric calculation. We can claim that two sensors si and sj are directly weakly

connected if they overlap in the horizontal direction, that is, xLi ≤ xLj ≤ xRi or

xLj ≤ xLi ≤ xRj . Based on this claim, two sensors si and sk are said to be weakly

connected through sensor sj if si and sk are not directly weakly connected but both

of them are directly weakly connected to sj.

Definition 2. A weak cluster is the union of a set of sensors where each sensor is

weakly connected with the rest of sensors in the set either directly or through other

sensors.

As shown in Figure 2.4(a), sensor c is directly weakly connected with sensor b and

sensor d. Although sensor b and sensor d are not directly weakly connected, they are

weakly connected through sensor c. Similarly, sensor e is weakly connected to sensors

a, b, c and d. We can see that all these sensors form one weak cluster, doted by wc1.

We have the following Lemma.

Lemma 2.0.1. Given a belt region with length L, a weak barrier is formed if there

exists a weak cluster whose coverage region in the horizontal direction is [0, L].

Similar to the definition for weak barrier coverage, we can claim that two sensors

si and sj are directly strongly connected if they overlap with each other. Two sensors

si and sk are said to be strongly connected through sensor sj if si and sk are not

directly strongly connected but both of them are directly strongly connected to sj.

Definition 3. A strong cluster is the union of a set of sensors where each sensor is

strongly connected with the rest of sensors in the set either directly or through other

sensors.
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Figure 2.4: Illustration of weak/strong clusters

As shown in Figure 2.4(b), sensor f are directly strongly connected with sensor

e and sensor g. Although sensor e and sensor g are not directly strongly connected,

they are strongly connected through sensor f . Therefore, according to the Definition

3, the network has 8 strong clusters after initial sensor deployment.

Lemma 2.0.2. A strong barrier is formed if there exists a strong cluster overlapping

with both the left boundary and the right boundary of the belt region.

The problem to decide whether two sensors overlap with each other is easy to

answer for omni-directional sensors of disk sensing model. However, it is much harder

for directional sensors with sector sensing model due to their different facing directions

and limited angle of views. For example, we can claim that two omni-directional

sensors with sensing range of r overlap with each other if the Euclidean distance

between their centers is smaller than or equal to 2r. However, two directional sensors

might not overlap even when they are very close to each other, e.g., two cameras can
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be side by side but looking at opposite directions. Therefore, using only distance

information would not work for directional sensors. Note that the sensing region of a

directional sensor is bounded by two line segments and an arc. We have the following

Lemma.

Lemma 2.0.3. Directional sensors si and sj overlap with each other if and only if

there exists at least one intersection between the two line segments and the arc of si

and the two line segments and the arc of sj.

Proof. ⇒. If there exists an intersection between the two line segments and the arc

of si and the two line segments and the arc of sj, there must exist one point covered

by both si and sj. Then si and sj overlap with each other.

⇐. If si and sj overlap with each other, there exists at least one point covered by

both si and sj. Since the point is bounded by the two line segments and the arc of

each sensor, there must exist at least one intersection between the two line segments

and the arc of si and that of sj.

Based on Lemma 2.0.3, the problem of deciding whether si and sj overlap or not

can be simplified to check whether there exist intersections between the line segments

of si and the line segments of sj, the line segments of si (sj) and the arc of sj (si),

and the arc of si and the arc of sj.

2.4.2 Directional Barrier Graph (DBG)

Due to random deployment and directional sensing features, the sensor network may

not be able to provide barrier coverage for the ROI, especially for strong barrier

coverage. The usage of mobile sensors can potentially fill in coverage holes and help

form barrier coverage. The objective of the MCMS problem is to minimize the cost of

mobile sensors needed. In this section, we introduce a novel graph model, directional

barrier graph (DBG), to formulate the barrier coverage formation problem and solve

the MCMS problem.
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According to Lemma 2.0.1 and Lemma 2.0.2, forming a weak/strong barrier

actually is equal to forming a weak/strong cluster. Denote the set of clusters by

C = {c1, c2, · · · , cπ}. Depending on the application requirement, this could be either

a set of weak clusters or strong clusters. In the DBG, we consider each cluster as a

vertex, and denote the left and right boundary of the belt region by virtual vertices

s and t, respectively. s is called the source node and t is called the destination node.

The following is a formal definition of the DBG.

Definition 4. A directional barrier graph of a sensor network is represented

by G = (V,E,W ). V is the set of vertices corresponding to the left boundary (s),

clusters (C) and the right boundary (t), that is, V = {v1, v2, · · · , vπ+2} = {s∪C ∪ t}.

E = {e(vi, vj)} is the set of edges between any pair of vertices. W : E → R is the set

of weights of each edge, where the weight w(vi, vj) of edge e(vi, vj) is the minimum

cost of mobile sensors needed to connect vi and vj.

Figure 4.4(a) shows the DBG for weak barrier coverage, which is constructed

based on weak clusters shown in Figure 2.4(a). Figure 4.4(b) shows the DBG of strong

barrier coverage, which is constructed based on strong clusters shown in Figure 2.4(b).

The weight of each edge is the minimum cost of mobile sensors needed to fill in the

gap. We will describe how to calculate weights later in detail. Let T (1) = (18, π/3, 9),

T (2) = (30, π/6, 8), and T (3) = (18, π, 15), the values of the weights are shown in the

figure. Note that w(s, sc1) = 0 because sc1 overlaps with the left boundary. With the

DBG, we can have the following theorems. It is worth noting that all the conclusions

work for both weak and strong barrier coverage.

Theorem 2.1. The minimum cost of mobile sensors needed to form a barrier with

pre-deployed stationary sensors is exactly the length of the shortest path from s to t

on the directional barrier graph G.

Proof. According to the definition of directional barrier graph G, if we want to form

a barrier, we only need to choose a path from s to t, and put exactly the required
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Figure 2.5: Directional barrier graph representation for: (a) weak barrier coverage
of Figure 2.4(a); (b) strong barrier coverage of Figure 2.4(b).

cost of mobile sensors needed on each edge of the path. That is, for a chosen path,

the cost of mobile sensors required to form a barrier is equal to the sum of weights of

all edges on the path, which is the length of the path. Therefore, the minimum cost

of mobile sensors needed to form a barrier is the length of the shortest path from s

to t on graph G.

Theorem 2.2. A region is barrier covered after initial random deployment if and

only if the length of the shortest path from s to t on the directional barrier graph is 0.

Proof. ⇒. If the length of the shortest path from s to t on the directional barrier

graph is 0, there exists at least one cluster that overlaps with both the left boundary

and the right boundary of the belt region. Therefore, the region is barrier covered.
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⇐. If the region is barrier covered, there exists one cluster that overlaps with

both the left boundary and the right boundary of the belt region. Then weights are 0

from s to the cluster and from the cluster to t. Therefore, there exist one path from

s to t with a length of 0, which is the shortest path.

Theorem 2.3. The minimum cost of mobile sensors required to form a barrier for

a given belt region is upper bounded by w(s, t). For homogeneous sensor network,

w(s, t) = cdL
lr
e where c and lr are the cost and the largest coverage range of a mobile

sensor.

Proof. The edge e(s, t) means to deploy mobile sensors directly from the left boundary

to the right boundary of the belt region. The path containing only the edge e(s, t)

could either be the shortest or not. If it is not the shortest path, according to Theorem

2.1, the minimum cost of mobile sensors required is smaller than w(s, t); otherwise,

the minimum number of mobile sensors required is equal to w(s, t). Therefore, the

minimum number of mobile sensors required to form a barrier is always upper bounded

by w(s, t).

As for homogeneous sensor network, all the mobile sensors have the same sensing

range and cost. The optimal way of connecting the left and right boundary is to deploy

mobile sensors continuously in a horizontal straight line. Therefore, the minimum

number of mobile sensors required to connect the left and right boundary directly is

dL
lr
e. Therefore, w(s, t) = cdL

lr
e. Hence, the minimum cost of mobile sensors needed

to form a barrier in homogeneous sensor network is upper bounded by cdL
lr
e

Theorem 2.1 proves that the minimum cost of mobile sensors required to form a

barrier is exactly the length of the shortest path from s to t on graph G, which can

be found by the classical Dijkstra’s algorithm (Cormen et al., 2009). The shortest

path shown in Figure 4.4(a) for weak barrier coverage is s→ wc1 → t, the length of

which is 0 + 0 = 0. Therefore, the region is already weak barrier covered after initial

deployment, and no mobile sensor is needed to form a weak barrier. As for strong

barrier coverage, the shortest path shown in Figure 4.4(b) is s→ sc1 → sc3 → sc6 →
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t, the length of which is 0 + 8 + 8 + 0 = 16. That is, the region is not strong barrier

covered after initial deployment, and at least 16$ mobile sensors are needed to form

a strong barrier. There are two gaps on the shortest path: sc1 → sc3, and sc3 → sc6,

which requires 8$, and 8$ mobile sensors, respectively.

2.4.3 Directional Barrier Coverage Algorithm

According to the analysis on the directional barrier graph, we propose a directional

barrier coverage algorithm to find the minimum cost of mobile sensors needed to form

a weak/strong barrier. The algorithm is formally presented in Algorithm 1.

Algorithm 1 Directional Barrier Coverage Algorithm (DBC)

Require: S = {s1, s2, · · · , sn}, L and H
Ensure: The minimum cost of mobile sensors needed

1: group sensors into weak/strong clusters
2: calculate the distance between any two clusters
3: calculate the minimum cost of mobile sensors required to connect any two clusters

4: construct the directional barrier graph G
5: find the shortest path sp(G,s,t) using Dijkstra’s algorithm
6: if the length of sp(G,s,t) equals 0 then
7: ROI is already barrier covered
8: else
9: ROI is not barrier covered and the minimum cost needed is the length of

sp(G,s,t)
10: end if

After sensors are deployed, they report their types, locations and facing directions

to the server. The server first groups sensors into weak or strong clusters depending on

the application requirement of weak or strong barrier coverage. It then calculates the

minimum cost of mobile sensors required to connect any two clusters and constructs

the directional barrier graph G. The shortest path can be found using the classical

Dijkstra’s algorithm, the length of which is the minimum cost of mobile nodes needed

to form a weak/strong barrier.
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Note that we still need to efficiently group sensors into weak/strong clusters and

calculate the minimum cost of mobile sensors needed to connect any two clusters. In

the following, we first describe the algorithms to group sensors into weak and strong

clusters, respectively, and then present algorithms to find the minimum cost of mobile

sensors to connect any two clusters.

Clusters Formation

We first describe how to group sensors into weak clusters when applications require

weak barrier coverage, and then describe how to group sensors into strong clusters

when applications require strong barrier coverage.

Based on Definition 2, sensors in a cluster are weakly connected either directly or

through other sensors. Therefore, the basic idea of our algorithm to form weak clusters

is described as follows. First, we calculate the coverage region of each sensor in the

horizonal direction; second, we sort all the sensor in the increasing order according

to their left coverage boundary; third, check each sensor one by one in the sorted

set, put one sensor into a weak cluster if the sensor overlaps with the weak cluster in

the horizontal direction and then update the right coverage boundary of the cluster,

otherwise, initialize a new weak cluster. The third step repeats until the last sensor

in the sorted set is checked. Finally, each sensor must belong to one and only one

cluster. Let Cw = {wc1, wc2, · · · } denote the set of weak clusters. The pseudocode of

the algorithm is presented in Algorithm 2.

Given n stationary sensors, the running time of the sorting operation in step 5 is

O(n lg n). The running time of the comparison process from step 7 to the end is O(n).

Therefore, the running time of the weak cluster formation algorithm is O(n lg n).

We then describe the strong cluster formation algorithm that group sensors into

strong clusters. We claim that each sensor belonging to a cluster as assigned sensor,

otherwise unassigned sensor. The basic idea of the algorithm is described as follows:

First, initialize a new cluster with an unassigned sensor; second, for each newly

added sensor sj in the cluster, check all the unassigned sensors and put all sensors
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Algorithm 2 Weak Cluster Formation

Require: S = {s1, s2, · · · , sn}
Ensure: Cw = {wc1, wc2, · · · }

1: Cw ← ∅
2: for i = 1 to n do
3: calculate xLi and xRi for sensor si
4: end for
5: sort S according to xLi in the increasing order
6: initialize a queue Q, Q← S, and k ← 0
7: while Q! = ∅ do
8: k ← k + 1
9: sj ← Q.pullF irst

10: wck ← {sj}, wcLk ← xLj , and wcRk ← xRj
11: for each sensor sp in Q do
12: if xLp ≤ wcRk then
13: pop(sp)
14: wck ← wck ∪ {sp}, and wcRk ← max(wcRk , x

R
p )

15: else
16: break
17: end if
18: end for
19: Cw ← Cw ∪ {wck}
20: end while

overlapping with sj into the cluster. We call the checking process in the second step as

the neighbor finding process. Repeat the neighbor finding process until no sensor can

be added into the cluster, then go to the first step. Finally, the algorithm terminates

when no sensor is left.

The pseudocode of the strong cluster formation algorithm is presented in

Algorithm 3. Let Cs = {sc1, sc2, · · · } denote the set of strong clusters. The algorithm

perform neighbor finding process for each node and at each process at most n nodes

should be checked. Therefore, the running time of the strong cluster formation

algorithm in the worst case is O(n2).
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Algorithm 3 Strong Cluster Formation

Require: S = {s1, s2, · · · , sN}
Ensure: Cs = {sc1, sc2, · · · }.

1: SC ← ∅, k ← 1
2: initialize a queue Q, Q← S
3: while Q! = ∅ do
4: sck ← Q.pullF irst
5: while new sensors are added into sck do
6: for each new added sensor sj of sck do
7: for each sensor sp ∈ Q do
8: if sj and sp are strongly connected then
9: pop(sp)

10: sck ← sck ∪ {sp}
11: end if
12: end for
13: end for
14: end while
15: Cs ← Cs ∪ {sck}
16: k ← k + 1
17: end while

Weight Calculation

In this section, we describe how to calculate the weight of each edge on the DBG,

which is the minimum cost of mobile nodes needed to connect any pair of clusters.

Suppose the distance between two clusters is d̃. If we want to form a weak barrier,

d̃ denotes the weak distance between the two clusters. If we want to form a strong

barrier, d̃ denotes the strong distance between the two clusters. Recall that the largest

coverage range and cost of type j sensor are denoted by lr(j) and c(j), respectively.

Let n(j) denote the required number of the jth type mobile nodes. Then the problem

of minimizing the cost of mobile nodes needed to connect the two clusters is formulated

as follows:
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Minimize
k∑
j=1

c(j)n(j)

subject to
k∑
j=1

lr(j)n(j) ≥ d̃.

n(j) ≥ 0 & n(j) ∈ Z.

The objective is to minimize the total cost of mobile nodes needed while the first

constraint condition restricts that mobile nodes should fill in the gap. The formulated

problem is an Integer Linear Programming (ILP) problem. Although the ILP problem

is well known as NP-Hard, we can use Branch and Bound algorithm to efficiently to

solve it. The weights shown in Figure 4.4 are calculated by solving the ILP problem

for each edge using the Branch and Bound algorithm.

It is worth noting that calculating the weight of each edge is much easier for

homogeneous sensor network where the same type of mobile sensors with the same

sensing range and cost are used to fill in gaps.

Homogeneous Sensor Network: Since mobile sensors have the same sensing range

and cost, minimizing the cost of mobile nodes needed means minimizing the number

of mobile nodes needed. Let lr and c denote the largest coverage range and the cost of

this type of mobile sensors. The minimum number of mobile nodes needed is therefore

nm(vi, vj) =

d
dw(vi,vj)

lr
e weak barrier covreage

dds(vi,vj)
lr
e strong barrier coverage

(2.1)

where dw(vi, vj) denote the weak distance between two vertices vi and vj for weak

barrier coverage, and ds(vi, vj) denote the strong distance between two vertices vi and

vj for strong barrier coverage. The weight of the edge w(vi, vj) is therefore cnm(vi, vj).

For weak distance dw(vi, vj), when none of vi and vj is a boundary, dw(vi, vj) =

vLj −vRi given the assumption that vLj > vRi . While if vi is a boundary, dw(vi, vj) = 0 if

vj intersects the boundary; otherwise, dw(vi, vj) = vLj if vi is the left boundary s and
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dw(vi, vj) = L− vRj if vi is the right boundary t. When vi is the left boundary s and

vj is the right boundary t, dw(vi, vj) = L. xLi and xRi is the left coverage boundary

and the right coverage boundary of vi in the horizontal direction.

For strong distance ds(vi, vj), when none of vi and vj is a boundary, ds(vi, vj) =

min(d(pi, pj)) where pi and pj are points on vi and vj, respectively, and d(pi, pj) is

the Euclidean distance between pi and pj. When any of vi and vj is a boundary,

ds(vi, vj) = dw(vi, vj).

2.5 Minimum Cost Barrier Formation (MCBF)

Problem

By using the DBC algorithm, we can obtain the minimum cost of mobile nodes needed

to form a barrier. We then deploy the required number of each type of mobile sensor

to the network. Since mobile sensors are also randomly deployed, they should move

to fill in the gaps on the shortest path to form a barrier. The objective of the MCBF

problem is to minimize the total moving distance of mobile sensors to form a barrier.

s1 s2
m1

m2

(a)

s1 s2
m1

m2

(b)

s1 s2
m1

m2

(c)

s1 s2

m1

m2

(d)

Figure 2.6: Illustration of the complexity of deploying mobile sensors to fill in a gap
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It is worth noting that the formulated MCBF problem is difficult to solve. The first

reason is that there are too many ways for mobile sensors to fill in a gap. As shown

in Figure 2.6, all these four deployments can successfully connect s1 and s2. Actually

there are numerous ways of deployment and it is impossible to decide which one is the

optimal deployment. Second, even we know which position should be deployed with

a mobile sensor, it is challenging to schedule which sensor to which position while the

total moving distance is minimized. To the best of our knowledge, there is no optimal

solution to the MCBF problem. To solve this problem, we propose a greedy movement

algorithm that assigns mobile sensors one by one to fill in gaps for heterogeneous

sensor networks. As for homogeneous sensor networks, since mobile nodes have the

same sensing range, the order of assignment does not matter. Therefore, we propose

a position based optimal movement algorithm to schedule mobile sensors. In the

following, we first present the greedy movement algorithm and then describe the

position based optimal movement algorithm.

2.5.1 Greedy Movement Algorithm

Since weak barrier coverage is a special case of strong barrier coverage, we use the

latter as an example to explain how the greedy movement algorithm works. Suppose

e(va, vb) is an edge on the shortest path of the directional barrier graph. The gap

between va and vb, denoted by g(va, vb), should be filled in by mobile sensors. Let pa

and pb be the closet pair of points on va and vb, respectively, so the strong distance

ds(va, vb) = d(pa, pb). If the line segment papb is covered by mobile sensors, the gap

will be filled in. Note that there are too many ways to deploy mobile sensors to fill

in a gap. Our deployment provides one of the easier ways to calculate the target

locations.

The basic idea of the greedy movement algorithm is to greedily move the required

type of mobile sensor that is closet to the gap to the line segment papb until it is

fully covered. In order to measure the distance from a sensor to the gap, at each
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time a target location is given for the required type of sensors. For the line segment

papb, the starting target location is pa. Once a mobile sensor move to papb, the target

location will be updated to the leftmost point on papb that has not been covered

yet. Hence, we can calculate the distance between required types of sensors and the

current target location and find the closet one to move. The algorithm is formally

presented in Algorithm 4.

Algorithm 4 Greedy Movement Algorithm

1: for each gap on the shortest path do
2: move the required type of sensor that is closet to the gap to its line segment

until it is fully covered
3: end for

2.5.2 Position based Optimal Movement Algorithm

Although the greedy movement algorithm also works for homogenous sensor networks,

since sensors have the same sensing range and angel, we propose a more efficient

position based optimal movement algorithm that reduces the total moving distance.

We divide the problem into two subproblems. First, we calculate the target locations

for mobile sensors to fill in gaps in some kind of deployment. Second, we optimally

schedule mobile sensors to the calculated target locations with the minimum total

moving distance. In the following, we will describe how to solve these two subproblems

to yield a suboptimal solution to the MCBF problem for homogeneous sensor

networks.

For two strong clusters va and vb, the closest pair of points are pa = (xa, ya) on va

and pb = (xb, yb) on pb. Thus, the minimum distance between va and vb is

ds(va, vb) = d(pa, pb) =
√

(xb − xa)2 + (yb − ya)2

Then the minimum number of mobile sensors to fill in the gap is n(va, vb) =

dd(pa,pb)
lr
e. We distribute mobile sensors evenly with the longest line of the sensing
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Figure 2.7: Illustration of different deployment methods for: (a) lr = r when 2α < π;
(b) lr = 2r sinα when 2α < π; (c) lr = 2r when 2α ≥ π.

sector along the line segment papb. Therefore, the interval between two mobile sensors

is dv = d(pa,pb)
n(va,vb)

. As mentioned in Section ??, the longest line could either be the radius

or the longest chord when 0 ≤ 2α < π, or 2r when π ≤ 2α ≤ 2π. Corresponding to

these three cases, we have three deployment strategies, as shown in Figure 2.7.

Let ϕ denote the direction of −−→papb. Let h denote the height from the center to

the longest chord of a sector. Suppose the target locations are ti = (txi , t
y
i , t

o
i ) for

i = 1, 2, · · · , w(sc1, sc2), where txi and tyi are the x-coordinate and y-coordinate of the

target location ti, and toi is the facing direction of the mobile sensor on ti.

As show in Figure 2.7(a), when lr = r and the sensing angle 2α < π, mobile

sensors are evenly deployed with the radius along the facing direction on the line

segment. Therefore, the target locations are calculated as follows:
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txi = xa + (i− 1)dv cosϕ

tyi = ya + (i− 1)dv sinϕ

toi = ϕ

As show in Figure 2.7(b), when lr = 2r sinα and the sensing angle 2α < π, mobile

sensors are evenly deployed with the longest chord on the line segment. The target

locations are calculated as follows:

txi = xa + (i− 1)dv cosϕ+ l̄ cos(ϕ+ λ)

tyi = ya + (i− 1)dv sinϕ+ l̄ sin(ϕ+ λ)

toi = (ϕ+ 3π/2) mod 2π

where l̄ =
√
h2 + (dv/2)2, λ = arctan(2h/dv).

Finally, as shown in Figure 2.7(c), when lr = 2r and 2α ≥ π, mobile sensors

are evenly deployed with the diameter on the line segment. Therefore, the target

locations are calculated as follows:

txi = xa + (i− 0.5)dv cosϕ

tyi = ya + (i− 0.5)dv sinϕ

toi = (ϕ+ π/2) mod 2π

Suppose the number of mobile sensors required corresponding to the minimum

cost is γ. Then there are γ target locations for γ mobile sensors to move to. Denote

the set of target locations by T = {t1, t2, · · · , tγ}. In order to form a barrier, γ mobile

sensors are deployed. Let δij denote a decision variable, where δij = 1 if mobile sensor
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mi is assigned to target location tj, δij = 0 otherwise. dij is the distance for mobile

sensor mi to move to target location tj. Then the MCBF problem can be formulated

as how to assign γ mobile sensors to γ target locations while minimizing the total

moving distance.

Minimize

γ∑
i=1

γ∑
j=1

dijδij

subject to
∑
i

δij = 1, ∀j = 1, 2, · · · , γ

∑
j

δij ≤ 1,∀i = 1, 2, · · · , γ

δij = 0 or 1, i = 1, 2, · · · , γ; j = 1, 2, · · · , γ

The objective function is to minimize the total moving distance. The first

constraint restricts that any target location must be assigned with one and only

one mobile sensor. The second constraint restricts that each mobile sensor can be

assigned to at most one target location.

Provided with a set of target locations and a set of mobile sensors, the formulated

problem indeed is a minimum cost bipartite assignment problem. The Hungarian

algorithm (Kuhn, 1955; Lawler, 1976) provides the optimal solution to this problem

and its complexity is proved to be O(µ2τ). Note that Ban et al. (2010) studied a

similar problem and also used the Hungarian algorithm to solve it. Please refer to

(Kuhn, 1955; Lawler, 1976) for the details of the Hungarian algorithm.

2.6 Performance Evaluation

In this section, we conduct simulations to evaluate the performance of the proposed

algorithms. The ROI is a belt region of length L = 1000m and width H = 100m.

Stationary sensors are randomly deployed in the belt region. After the minimum cost

of mobile nodes is calculated, mobile sensors are then randomly deployed to form a

barrier. The evaluation mainly focuses on the following performance metrics:
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• The cost of mobile nodes needed to form a barrier.

• The total moving distance for mobile sensors to form a barrier.

• The total cost of sensors including the cost of stationary and mobile sensors.

• The probability that the sensor network is already barrier covered after

initial random deployment, which is calculated by the ratio of the number

of experiments that sensor network is barrier covered to the total number of

experiments performed.

Evaluation of these performance metrics is conducted on different parameters,

such as the length of the ROI (L), the number of stationary sensors (n), sensing range

(r) and sensing angle (2α). For all the simulation results presented in this chapter,

each data point is an average of 100 experiments. Both weak barrier coverage and

strong barrier coverage are evaluated. We first present the evaluation results for

homogeneous sensor networks and then for heterogenous sensor networks.

2.6.1 Evaluation for Homogeneous Sensor Network

The cost of mobile nodes needed

Figure 2.8 shows the effects of different parameters on the cost of mobile nodes needed.

The default setting of parameters are L = 1000m, n = 200, r = 20m and 2α = π/3.

Let cs and cm denote the cost of a stationary sensor and a mobile sensor, respectively.

We assume cs = 10$ and cm = 50$. As shown in Figure 2.8, the blue line with

markers of circles represents the cost of mobile nodes needed to form a weak barrier;

the red line with markers of stars represents the cost of mobile nodes needed to form

a strong barrier; and the black dashed line with markers of squares represent the

upper bound of cost of mobile nodes needed to form a weak/strong barrier, which is

calculated from Theorem 2.3.

First we can observe that, no matter how the parameters change, the cost of

forming a weak barrier is always smaller than that of forming a strong barrier, and
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Figure 2.8: The effects of different parameters on the cost of mobile sensors needed
to form a barrier. Default setting of parameters are L = 1000m, n = 200, r = 20m
and 2α = π/3.

both of them are smaller than the upper bound of the cost. From Figure 2.8(a),

we can observe that the cost of mobile sensors needed increases as the length of

the ROI increase. This is because increasing the length increases the number of

gaps and their sizes, which requires more number/cost of mobile sensors to form a

barrier. As shown in Figure 2.8(b), the cost of mobile sensors needed decreases as

the number of stationary sensors increase, which is because more stationary sensors

reduces the number of gaps and their sizes. Note that the upper bound of cost does

not change in this case. As shown in Figure 2.8(c) and (d), the cost of mobile sensors
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needed decreases when the sensing range or the sensing angle increases. The reason is

that larger sensing range or sensing angle increases the probability of forming larger

clusters, which then results in fewer gaps and smaller sizes of gaps on the shortest

path. Note that the upper bound of cost does not change when the 2α ≤ π/3, which

is because the longest coverage range is always r when 2α ≤ π/3 and then increases

as 2α increases.
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Figure 2.9: The effects of different parameters on the total moving distance of
mobile sensors.
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Figure 2.9 shows the effects of different parameters on the total moving distance.

We compare the performance of the greedy movement algorithm and the position

based optimal movement algorithm. As shown in Figure 2.9, the real lines are drawn

from the position based optimal movement algorithm, and the dashed lines are drawn

from the greedy movement algorithm. We can see that in all cases the total moving

distance by using the position based optimal movement algorithm is always smaller

than that by using the greedy movement algorithm. Meanwhile, the total moving

distance needed to form a strong barrier is always larger than that to form a weak

barrier. The first reason is that, as shown in Figure 2.8, forming a weak barrier

requires less mobile sensors. The second reason is that mobile sensors only need to

move in the horizontal direction in order to form a weak barrier.

From Figure 2.9(a), we can observe that the total moving distance increases when

the length of the ROI increases, which is mainly because more mobile nodes are

needed for larger length of the ROI. When the ROI is fixed, increasing the number

of stationary sensors, sensing range or sensing angle could decrease the total moving

distance, since increasing any of them can increase the probability of forming larger

clusters, which then results in fewer gaps and smaller sizes of gaps on the shortest

path.

The total cost

The total cost needed to form a barrier is the sum of the cost of deployed stationary

sensors and the cost of mobile sensors needed. We still assume cs = 10$ for each

stationary sensor, and compare the total cost when cm/cs = 5 and cm/cs = 20.

Figure 2.10 shows the effects of different parameters on the total cost. The solid

and dashed red lines with markers of stars represent the total cost to form a strong

barrier when cm/cs = 20 and cm/cs = 5, respectively. The solid and dashed blue

lines with markers of circles represent the total cost to form a weak barrier when

cm/cs = 20 and cm/cs = 5, respectively. We can see that the total cost to form
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Figure 2.10: The effects of different parameters on the total cost.

a strong is larger than that to form a weak barrier, and also the total cost when

cm/cs = 20 is obviously larger than cm/cs = 5.

From Figure 2.10(a), we can observe that the total cost increases when the length

of the ROI increases, which is mainly because more mobile nodes are needed for

larger length of the ROI. When the ROI is fixed, as shown in Figure 2.10(c) and

(d), increasing the sensing range or sensing angle decreases the total cost since less

mobile nodes are needed. It is worth noting that, as shown in Figure 2.10(b), the

total cost does not always increase or decrease when the number of stationary sensors

increases. Take the total cost to form a weak barrier when cm/cs = 20 as an example.
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The total cost reaches the minimum when the number of stationary sensors reaches

200. Since cm/cs = 20, the cost of one mobile sensor equals that of 20 stationary

sensors. When the number of stationary sensors is small, a lot of mobile sensors are

needed, and therefore the cost of mobile sensors dominates the total cost. Hence, the

total cost decreases as the needed cost of mobile sensors decreases when the number of

stationary sensors increases from 50 to 200. When the number of stationary sensors is

larger than 200, the required number/cost of mobile sensors does not change too much.

At this time, the total cost increases as the deployed number of stationary sensors

increases. Therefore, we can conclude that, given an ROI, the deployed number of

stationary sensors to be deployed highly depends on cm/cs.

Probability of barrier coverage

Figure 2.11 shows the effects of different parameters on the probability of barrier

covered after initial random deployment. We can that it is always easier to form a

weak barrier than to form a strong barrier. The probability decreases when the length

of the ROI increases. When the region is fixed, the probability increases when the

number of stationary sensors, the sensing range, or the sensing angle increase.

2.6.2 Evaluation for Heterogeneous Sensor Networks

In this subsection, we evaluate the performance of proposed algorithm for heteroge-

neous sensor networks. We consider three types of sensors where their sensing regions

are denoted by T (1) = (10, π, 10$), T (2) = (25, π/6, 12$) and T (3) = (22, π/4, 15$).

We assume cm/cs = 5 for each type of sensors. Evaluation is conducted on the length

of the ROI and the number of stationary sensors.

Performance vs. the length of the ROI

Figure 2.12 shows the performance results when the length of the ROI changes. As

shown in Figure 2.12(a)-(d), these four performance metrics for heterogenous sensor
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Figure 2.11: The effects of different parameters on the probability of barrier covered
after initial random deployment.

networks show similar trend as that for homogeneous sensor networks. As the length

of the ROI increases, the cost of mobile sensors needed, the total moving distance,

and the total cost are all increasing, but the probability of barrier covered after initial

random deployment is decreasing.

Figure 2.12(e) and (f) show the comparison of cost using only one type of mobile

sensors and using multiple types of mobile sensors. Each dashed line represent the

cost using only one type of mobile sensors, and the real line represent the cost using

all the three types of mobile sensors. Figure 2.12(e) and (f) show the costs needed to
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Figure 2.12: Performance results vs. the length of the ROI

47



form a weak barrier and a strong barrier, respectively. We can see that a combination

of sensors can reduce the cost needed to form a weak/strong barrier compared only

one type of sensors, which motivates the deployment of multiple types of sensors from

the cost efficiency perspective.

Performance vs. the number of stationary sensors

Figure 2.13 shows the performance results when the number of stationary sensors

changes. As shown in Figure 2.12(a)-(d), these four performance metrics for

heterogenous sensor networks show similar trend as that for homogeneous sensor

networks. As the number of stationary sensors increases, the cost of mobile sensors

needed and the total moving distance are decreasing, but the probability of barrier

covered after initial random deployment is increasing. The variation of the total cost

of sensors depends on the value of cm/cs.

Figure 2.13(e) and (f) show the comparison of cost using only one type of mobile

sensors and using multiple types of mobile sensors. Each dashed line represent the

cost using only one type of mobile sensors, and the real line represent the cost using

all the three types of mobile sensors. Figure 2.13(e) and (f) show the costs needed

to form a weak barrier and a strong barrier, respectively. We can observe the similar

trend as that in Figure 2.12 that a combination of sensors can reduce the cost needed

to form a weak/strong barrier compared only one type of sensors, which shows the

advantage of using multiple types of sensors.

2.7 Summary

In this chapter, we studied the barrier coverage formation problem for heterogenous

sensor networks and explored how to efficiently form a barrier by using mobile sensors

to fill in the gaps between stationary sensors. We introduced the directional barrier

graph model, and proved that the minimum cost of mobile sensors required to form a

barrier is the length of the shortest path from the source node to the destination
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Figure 2.13: Performance results vs. the number of stationary sensors
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node on the graph. To efficiently assign mobile sensors to different gaps while

minimizing the total moving distance, we proposed a greedy movement algorithm

for heterogenous sensor network, and also a position based optimal movement

algorithm for homogeneous sensor network which formulated the MCBF problem

as the minimum cost bipartite assignment problem and solved it using the Hungarian

algorithm. Extensive evaluation results on both homogeneous and heterogeneous

sensor networks validate the effectiveness of our proposed algorithms.
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Chapter 3

Cost-Effective k-barrier Coverage

Formation in Sensor Networks

In this chapter, we further study how to efficiently use mobile sensors to form k-

barrier coverage in hybrid sensor networks. In particular, two problems are studied

under two scenarios. First, when only the stationary sensors have been deployed,

what is the minimum number of mobile sensors required to form k-barrier coverage?

Second, when both the stationary and mobile sensors have been pre-deployed, what

is the maximum number of barriers that could be formed? To solve these problems,

we introduce a novel concept of weighted barrier graph (WBG) and prove that

determining the minimum number of mobile sensors required to form k-barrier

coverage is related with but not equal to finding k vertex-disjoint paths with the

minimum total length on the WBG. With this observation, we propose an optimal

solution and a greedy solution for each of the two problems. Both analytical and

experimental studies demonstrate the effectiveness of the proposed algorithms.
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3.1 Introduction

k-barrier coverage was first introduced in (Kumar et al., 2005). A sensor network

provides k-barrier coverage for a ROI if all crossing paths through the region is k-

covered and a crossing path is said to be k-covered if it can be covered by at least

k distinct sensors. Kumar et al. (2005) proved that a network provides k-barrier

coverage iff there exists k sensor-disjoint barriers in the ROI. The term of sensor-

disjoint barriers means that none of any two barriers have sensors in common.

k(k ≥ 1)-barrier coverage is needed due to the following reasons. First, binary

sensing model is ideal for sensors. However, in practice, false alarms and detection

failures happens frequently for intruder detection. Consequently, multiple barriers

are needed to increase the intruder detection probability. Second, sensors are prone

to failures due to lack of power, physical damage and environment interference.

Providing multiple barriers could significant increase the fault tolerance capacity of

the sensor network. Finally, if the number of barriers formed is larger than the

required number of barriers, we can apply sleep-wakeup protocols to prolong the

network lifetime.

In order to form k-barrier coverage for the ROI, mobile sensors should move to

fill in gaps between stationary sensors. Compared with 1-barrier coverage formation,

k-barrier coverage formation is more challenging because stationary sensors need to

contribute to distinct barriers. Due to the expensive cost of mobile sensors, we should

use as few mobile sensors as possible to form k barriers. In particular, we focus on

the following problems:

1. Min-Num-Mobile(k) problem : Given a ROI and a deployed sensor network

with only stationary sensors, does the network provides k-barrier coverage for

the ROI? If not, what is the minimum number of mobile sensors required to

form k-barrier coverage with the pre-deployed stationary sensors?
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2. Max-Num-Barrier problem : Given a ROI and a deployed sensor network

with both stationary and mobile sensors, what is the maximum number of

barriers that could be formed?

In this chapter, we systematically address the Min-Num-Mobile(k) problem and

the Max-Num-Barrier problem, and the main contributions are summarized as follows:

• To the best of our knowledge, we are the first to study how to efficiently use

mobile sensors to form k-barrier coverage with pre-deployed stationary sensors.

• We introduce a weighted barrier graph model for barrier coverage formation

problem. We prove that determining the minimum number of mobile sensors

required to form k-barrier coverage is related with finding k vertex(sensor)-

disjoint ∗ paths with the minimum total length on the weighted barrier graph.

We also prove that the ROI is k-barrier covered after initial deployment if and

only if there exists k vertex-disjoint paths with length of 0 on the weighted

barrier graph.

• We propose an efficient optimal solution and an efficient greedy solution for the

Min-Num-Mobile(k) problem. We also propose an efficient optimal solution and

an efficient greedy solution for the Max-Num-Barrier problem.

• We conduct extensive simulations to evaluate the performance of the proposed

algorithms. Experimental results validate the effectiveness of our algorithms.

The remainder of this chapter is organized as follows. The system model is

presented in Section 3.2. We introduce the weighted barrier graph and present

theoretical analysis of the barrier coverage problem for directional sensor networks in

Section 3.3. We present the optimal solution and the greedy solution for the Min-

Num-Mobile(k) problem in Section 3.4. We present the optimal solution and the

∗Without confusion, we interchangeably use vertex-disjoint and sensor-disjoint throughout this
chapter.
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greedy solution for the Max-Num-Barrier problem in Section 3.5. The performance

evaluation of our algorithms is presented in Section 3.6. Finally, we conclude this

chapter in Section 3.7.

3.2 System Model and Preliminaries

We assume that the ROI is a two-dimensional rectangular belt area with the length

of L and the width of H. For the Min-Num-Mobile(k) problem, n stationary sensors

are randomly deployed in the belt region. For the Max-Num-Barrier problem, n

stationary sensors and τ mobile sensors are randomly deployed in the belt region. We

assume that they are the same type of sensors except that mobile sensors have the

ability to move. Let S = {s1, s2, · · · , sn} denote the set of stationary sensors where

si denote the directional sensor i.

We still adopt the more general sector model shown in Figure 2.2 instead of 0-1

disk model for sensors’ sensing model. The sensor si can be represented by a 5-tuple

<xi, yi, r, α, βi>, where li = (xi, yi) is the two-dimensional location of the center of

sensor i, r is the sensing range and α is half of the sensing angle of a sensor. We assume

that each sensor has the identical sensing range and sensing angle. According to the

ground truth data in (Guvensan and Yavuz, 2011), the sensing angle of directional

sensors, 2α, is usually less than π. βi is the orientation or the facing direction of sensor

i. We assume that βi is uniformly distributed in [0, 2π), e.g., βi ∼ U(0, 2π). Note

that the omni-directional sensing model is a special case of the directional sensing

model when 2α = 2π.

The largest coverage range of a directional sensor, denoted by lr, is the length of

the longest line in its sensing sector. Since the longest line is either the sensing radius

or the longest chord of the sector, we have

lr =

max{r, 2r sinα} 0 ≤ α < π
2
,

2r π
2
≤ α ≤ π.

(3.1)
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Table 3.1 summarizes the notations used in the paper.

Table 3.1: Summary of notations

Symbol Description
L the length of the belt region
H the width of the belt region
n the number of stationary sensors deployed
τ the number of mobile sensors deployed for the Max-Num-Barrier problem
si the ith stationary sensor
li li = (xi, yi) the location of si
r the sensing range
α half of the sensing angle
βi the facing direction of si
lr the largest coverage range of each sensor
G the weighted barrier graph G = (V,E,W )
P ∗
q the set of q vertex-disjoint paths with the minimum total length on G

P k
q the k-auxiliary set of P ∗

q , which is composed of P ∗
q and k−q direct paths

P̂k the optimal set of k sensor-disjoint barriers to the Min-Num-Mobile(k)
problem

Nm the minimum number of mobile sensors required for the Min-Num-
Mobile(k) problem

Nb the maximum number of barriers for the Max-Num-Barrier problem

3.3 Problem Formulation and Analysis

In this section, we introduce a novel graph model, weighted barrier graph, for the

barrier coverage formation problem, and present theoretical analysis to find the

minimum number of mobile sensors needed to form k-barrier coverage based on the

weighted barrier graph.

Definition 5. A weighted barrier graph G = (V,E,W ) of a sensor network

is constructed as follows. The set V consists of vertices corresponding to the left

boundary (s), all the stationary sensors (S) and the right boundary (t) of the belt

region, that is, V = {v1, v2, · · · , vn+2} = {s ∪ S ∪ t}. E = {e(vi, vj)} is the set of

edges between any pair of vertices. W : E → R is the set of weights of each edge,
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where the weight w(vi, vj) of edge e(vi, vj) is the minimum number of mobile sensors

needed to connect vi and vj.

To calculate the minimum number of mobile sensors needed to connect vertices

vi and vj, the distance between two vertices must be calculated first. Therefore, we

further give the following definitions.

Definition 6. Let dw(vi, vj) denote the weak distance between vertices vi and vj.

dw(vi, vj) = 0 if vi and vj overlap in the horizontal direction; otherwise, dw(vi, vj) =

xLj − xRi given the assumption that xLj > xRi , where xLj is the left coverage boundary

of vj and xRi is the right coverage boundary of vi in the horizontal direction.

Definition 7. Let ds(vi, vj) denote the strong distance between vertices vi and vj.

ds(vi, vj) = 0 if vi and vj overlap; otherwise, ds(vi, vj) = min{d(pi, pj)} where pi and

pj are points on vi and vj, respectively, and d(pi, pj) is the Euclidean distance between

pi and pj.

The minimum number of mobile sensors needed to connect vertices vi and vj is,

therefore, calculated as follows:

w(vi, vj) =


ddw(vi, vj)

lr
e, weak barrier coverage,

dds(vi, vj)
lr

e, strong barrier coverage.

where lr is the largest coverage distance of a sensor. Note that weak distance dw(vi, vj)

and strong distance ds(vi, vj) are used for weighted barrier graph of weak barrier

coverage and weighted barrier graph of strong barrier coverage, respectively.

Figure 4.4(b) and 4.4(c) demonstrate the weighted barrier graph of weak barrier

coverage and weighted barrier graph of strong barrier coverage for the sensor network

shown in Figure 4.4(a). Any pair of vertices is connected by an edge except s and

t. The weight of edge (s, a) is 0 because sensor a intersects with the left boundary.
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Figure 3.1: (a) The deployed sensor network; (b) weighted barrier graph for weak
barrier coverage; (c) weighted barrier coverage for strong barrier coverage.
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The two weighted barrier graphs have the same set of vertices and edges. The only

difference between them is the set of weights. For example, w(b, f) = 1 for weak

barrier coverage while w(b, f) = 2 for strong barrier coverage, which means that 1

and 2 mobile sensors can connect sensors b and f for weak and strong barrier coverage,

respectively.

3.3.1 Theoretical Analysis

In the following, we present theoretical analysis of the barrier coverage formation

problem based on the WBG. Note that all the conclusions work for both weak and

strong barrier coverage.

Lemma 3.0.1. Any path from s to t on the weighted barrier graph is a barrier

composed of pre-existing stationary sensors and virtual mobile sensors. The length of

the path is the minimum number of mobile sensors required to form the barrier.

Proof. According to the definition of weighted barrier graph, if we choose a path from

s to t, and put exactly the number of mobile sensors on each edge of path, then the

stationary sensors on the path are connected by mobile sensors, therefore, a barrier

is formed. The minimum number of mobile sensors required to form the barrier is

equivalent to the sum of weights of all edges on the path, which is the length of the

path.

To better explain Lemma 3.0.1, take the path s→ a→ b→ c→ d→ t in Figure

4.4(b) for example. The path length is 6, which means 6 mobile sensors are required

to form the barrier along the path. There are three gaps on the path: b→ c, c→ d,

and d→ t, which requires 4, 1 and 1 mobile sensors to fill them, respectively.

Recall that we want to use the minimum number of mobile sensors to form k

sensor-disjoint barriers with stationary sensors. Based on the definition of weighted

barrier graph, we have the following theorem.
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Theorem 3.1. If each of the k barriers to be formed must contain at least one

stationary sensor, determining the minimum number of mobile sensors required to

form k-barrier coverage with pre-existing stationary sensors is equivalent to finding k

vertex-disjoint paths on the weighted barrier graph with the minimum total length.

Proof. Based on Lemma 3.0.1, each barrier containing at least one stationary sensor

must be a path from s to t on the WBG. Therefore, finding k sensor-disjoint barriers

is equivalent to finding k vertex-disjoint paths on the WBG. Since we want to use the

minimum number of mobile sensors to form k sensor-disjoint barriers, we should find

the set of k vertex-disjoint paths on the WBG that has the minimum total length.

Corollary 3.1.1. The sensor network provides k-barrier coverage for the ROI after

initial deployment iff there exist at least k vertex-disjoint paths with length of 0 on the

WBG.

Proof. A path with length 0 on the WBG means the stationary sensors on the path

can form a barrier after initial deployment. When no mobile sensors is needed,

finding k-barrier coverage is equivalent to finding k vertex-disjoint paths on the WBG.

Therefore, a region is k-barrier covered after initial deployment is equivalent to the

existence of k vertex-disjoint paths with length of 0 on the WBG.

Besides all the paths from s to t on the WBG, there is a kind of special paths

using only mobile sensors to form barriers. That is, s and t are directly connected

by using only mobile sensors. For this kind of barriers, the optimal way of using

the minimum number of mobile sensors, obviously, is to deploy them continuously

along the horizontal direction. We call this kind of barrier as direct barrier and the

corresponding path (s, t) as direct path. Given the length of belt region is L, the

minimum number of mobile sensors needed to form a direct barrier is dL
lr
e. We can

observe that a direct barrier is always sensor-disjoint from other paths on the WBG,

and different direct barriers are always sensor-disjoint from each other. With this

observation, we have the following lemma.
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Lemma 3.1.1. Given a belt region with length L, the minimum number of mobile

sensors required for each barrier in the optimal set to the Min-Num-Mobile(k) problem

is upper bounded by dL
lr
e.

Proof. Suppose P̂k is the optimal set of k sensor-disjoint barriers with the minimum

number of mobile sensors needed to form k-barrier coverage. If any barrier in P̂k

needs more mobile sensors than a direct barrier, we can always replace it with a

direct barrier for less number of mobile sensors needed. Therefore, the previous P̂k is

not the optimal set, which contradicts to our assumption. Hence, no barrier in the

optimal set needs more than dL
lr
e mobile sensors.

Direct barriers are also needed when the vertex-disjoint paths found on the

WBG are not enough. Suppose the application requires 5-barrier coverage, but the

maximum number of vertex-disjoint paths found on the WBG is 3, then we can add

two direct barriers to reach 5-barrier coverage.

Suppose there exist k vertex-disjoint paths on the WBG, and P ∗
k denote the set

of k vertex-disjoint paths with the minimum total length on the WBG. Note that P ∗
k

may not the optimal set to the Min-Num-Mobile(k) problem that has the minimum

total length after considering direct paths, even no path in P ∗
k is longer than dL

lr
e.

We will present the algorithm to find the optimal set in Section 3.4.

3.4 The Min-Num-mobile(k) problem

In this section, we present an efficient optimal algorithm and a greedy algorithm to

solve the Min-Num-Mobile(k) problem.

Before introducing our optimal algorithm, we first introduce the vertex-disjoint

path algorithm (Bhandari, 1998) which can find a set of vertex-disjoint paths with

the minimum total length, P ∗
q , on a graph.

Given P ∗
i , the vertex-disjoint path algorithm performs the following steps to find

P ∗
i+1.
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Step 1: Graph transformation. Transform the graph G into a new graph

NG based on P ∗
i by using the following procedures. First, replace the edges of the

disjoint paths in P ∗
i by arcs directed towards the source, and make the length of the

arcs negative; Second, split each vertex (except for endpoint vertices) on the disjoint

paths into two co-located subvertices joined by an arc of length zero. Direct the arc

of length zero towards the source. Replace each external edge connected to a vertex

on the shortest paths by its two arcs of the same length, where one arc is directed to

the first subvertex and the other one is directed from the second subvertex.

Step 2: Shortest path finder. Find the shortest path np on the new graph

NG using the modified Dijkstra algorithmBhandari (1998).

Step 3: Path update. Update P ∗
i and np to get P ∗

i+1: transform to the original

graph G and erase any edge of this shortest path interlacing with the previous set of

vertex-disjoint paths P ∗
i . Find the new set of vertex-disjoint paths P ∗

i+1 after removing

the interlacing edges.

The initialization of the algorithm is P ∗
1 which is the shortest path on the

graph. Once P ∗
1 is obtained, we can perform these steps iteratively to find P ∗

2 ,

P ∗
3 and so on. Note that for i < j, P ∗

i may not be a subset of P ∗
j . Take

Figure 4.4(c) as an example, P ∗
2 = {{s, a, b, c, d, t}, {s, e, f, g, h, t}}, and P ∗

3 =

{{s, a, b, c, d, t}, {s, e, t}, {s, f, g, h, t}}. More details of the algorithm can be found

in (Bhandari, 1998).

3.4.1 Optimal Algorithm

Let P̂k denote the optimal set of k sensor-disjoint barriers requiring the minimum

number of mobile sensors, and Nm = |P̂k| denote the minimum number of mobile

sensors needed. Note that | · | denotes the total length of paths in ·. We first define

the k-auxiliary set to help us find the optimal set P̂k.

Definition 8. k-auxiliary set: P k
q is called the k-auxiliary set of P ∗

q (0 ≤ q ≤ k),

which is composed of P ∗
q and k − q direct barriers (s, t).
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We leverage the vertex-disjoint path algorithm to help the design of our optimal

algorithm. The basic idea is to first find all the sets of vertex-disjoint paths with the

minimum total length on the WBG, and then extend each set P ∗
q (0 ≤ q ≤ η) to

its k-auxiliary set P k
q , where η = min(k, ζ) and ζ is the maximum number of vertex-

disjoint paths on the WBG. The optimal set P̂k is the k-auxiliary set that has the

minimum total length among all k-auxiliary sets.

Algorithm 5 Min-Num-Mobile(k)-Optimal algorithm

Require: Weighted barrier graph G, L, k and lr
Ensure: P̂k and Nm

1: Let P ∗
0 ← ∅ and P k0 denote a set of k direct barriers

2: P ∗
1 ← Dijkstra(G)

3: η ← 1
4: while η < k do
5: NG← graph-transform(G,P ∗

η )
6: if there exist paths from s to t on NG then
7: np← modified-Dijkstra(NG)
8: η ← η + 1
9: P ∗

η ← path-update(P ∗
η−1, np)

10: else
11: break
12: end if
13: end while
14: P̂k ← P kη , and Nm ← |P ∗

η |+ (k − η)dLlr e
15: for q = 0 to η − 1 do
16: if |P ∗

q |+ (k − q)dLlr e < Nm then

17: P̂k ← P kq , and Nm ← |P ∗
q |+ (k − q)dLlr e

18: end if
19: end for

Algorithm 5 describes the details of the optimal algorithm where Step 2 finds the

first shortest path on the WBG, i.e., P ∗
1 , Step 4 through 11 perform the vertex-disjoint

path algorithm iteratively to find all P ∗
q for 1 < q ≤ η, and Step 13 through 15 find the

k-auxiliary set with the minimum total length among all k-auxiliary sets and claim

it as the optimal set.
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Theorem 3.2. The optimal set of k sensor-disjoint barriers requiring the minimum

number of mobile sensors, P̂k, is the k-auxiliary set with the minimum total length

among all k-auxiliary sets.

Proof. We first prove that P̂k must be a k-auxiliary set P k
q composed of P ∗

q (q ∈ [0, η])

and k−q direct barriers, where η = min(k, ζ) and ζ is the maximum number of vertex-

disjoint paths on the WBG.

Each barrier either contains at least one stationary sensor or no stationary sensor.

Therefore, each barrier in P̂k is either a path on the WBG or a direct barrier.

Suppose no barrier in P̂k is a direct barrier, then all barriers in P̂k are paths on

the WBG. We know that P ∗
k is the set of k vertex-disjoint paths with the minimum

total length on the WBG. Therefore, P̂k = P ∗
k , which is composed of P ∗

k and k−k = 0

direct barriers.

When P̂k contains direct barriers, suppose there are k − q (0 ≤ q ≤ η) direct

barriers in P̂k. We prove that the rest q sensor-disjoint barriers in the optimal set

must be P ∗
q . We prove it by contradiction. Suppose the rest q sensor-disjoint barriers

(vertex-disjoint paths) in P̂k is not P ∗
q , we can always use P ∗

q to replace these q

sensor-disjoint barriers to get a new set of k sensor-disjoint barriers with smaller

total length, which means that P̂k is not the optimal set. This contradicts to our

assumption. Therefore, the rest q sensor-disjoint barriers in P̂k must be P ∗
q .

Therefore, the optimal set of k sensor-disjoint barriers must be composed of P ∗
q

(q ∈ [0, η]) and k − q direct barriers, which is a k-auxiliary set. The total length of a

k-auxiliary set is |P ∗
q | + (k − q)dL

lr
e. Since q ranges from 0 to η, the k-auxiliary set

with the minimum total length is the optimal set of k sensor-disjoint barriers and the

minimum number of mobile sensors needed is:

Nm = min{|P ∗
q |+ (k − q)dL

lr
e}ηq=0

The optimality of Algorithm 5 is proved.
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Theorem 3.3. Given a sensor network with n stationary sensors, the optimal

algorithm can solve the Min-Num-mobile(k) problem in O(kn2).

Proof. The number of vertices on the WBG is n+ 2, which is on the order of n. The

number of edges on the graph is n(n−1)/2−1, which is on the order of n2. The vertex-

disjoint path algorithm consists of graph transformation, modified Dijkstra algorithm

and path update. The running time of graph transformation and path update is O(n)

and the running time of the modified Dijkstra algorithm is O(n log n+n2). Thus, the

running time of the vertex-disjoint path algorithm is O(n2). Since the vertex-disjoint

path algorithm is performed at most k times, the optimal algorithm can solve the

Min-Num-Mobile(k) problem in O(kn2).

3.4.2 Greedy Algorithm

The vertex-disjoint path algorithm involves a lot of operations, such as graph

transformation (node-split and node-merge), which are complicated especially for

large-scale networks. In this section, we propose a greedy algorithm which is faster

than the optimal algorithm.

The basic idea of the greedy algorithm is to repeatedly find the shortest path

on the WBG until k paths are found or the latest found path is longer than dL
lr
e or

no path can be found. If, in the end, the number of found paths is smaller than k,

additional direct barriers are added to form the k barriers. The procedures of the

greedy algorithm are described as follows:

1. Initialize P̂k as an empty set.

2. If there exist paths from s to t on the WBG, find the shortest path using

Dijkstra’s algorithm; otherwise, go to 5).

3. If the found shortest path is longer than dL
lr
e, discard the path, go to 5);

otherwise, go to 4).
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4. Add the path into P̂k. If the path is the k-th found path, stop; otherwise,

remove all the vertices (except s and t) on the found path from the WBG, go

to 2).

5. Suppose the number of paths in P̂k is q, add k − q direct barriers into P̂k.

The pseudocode of the greedy algorithm is presented in Algorithm 6.

Algorithm 6 Min-Num-Mobile(k)-Greedy algorithm

Require: Weighted barrier graph G, L, k and lr
Ensure: P̂k and Nm

1: P̂k ← ∅, q ← 0
2: while q < k do
3: if there exist paths from s to t on G then
4: p← Dijkstra(G)
5: if |p| ≤ dLlr e then
6: P̂k ← P̂k ∪ p
7: q ← q + 1
8: update G by removing all the vertices (except s and t) on p
9: else

10: break;
11: end if
12: end if
13: end while
14: Nm ← |P̂k|
15: if q < k then
16: P̂k ← P̂k ∪ {(s, t), · · · , (s, t)}︸ ︷︷ ︸

k−q

, and Nm ← |P̂k|

17: end if

Theorem 3.4. Given a sensor network with n stationary sensors, the greedy

algorithm can solve the Min-Num-Mobile(k) problem in O(kn2).

Proof. We have shown that the number of vertices and edges on the WBG are on the

order of n and n2, respectively. Therefore, the running time of Dijkstra’s algorithm

is O(n2). Since the greedy algorithm runs Dijkstra’s algorithm at most k rounds, the

greedy algorithm can solve the Min-Num-Mobile(k) problem in O(kn2).
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Although the running times of the optimal algorithm and the greedy algorithm

are both O(kn2) in the worst case, the greedy algorithm is usually much faster than

the optimal algorithm, especially for large scale networks, since it does not need to

perform graph transformation and path update. We will show the comparison of

computation time between two algorithms in the performance evaluation section.

3.5 The Max-Num-Barrier problem

Once the minimum number of mobile sensors required to form k-barrier coverage

is solved, the Max-Num-Barrier problem can be solved accordingly. Notice that

the Max-Num-Barrier problem is studied under a different scenario where both the

stationary and mobile sensors have been pre-deployed.

Given an ROI and a deployed hybrid sensor network with n stationary and τ

mobile sensors, the maximum number of barriers that could be formed, denoted by

Nb, is k if the minimum number of mobile sensors required to form k-barrier coverage

is less than or equal to τ , but the minimum number of mobile sensors required to form

(k+ 1)-barrier coverage is larger than τ . Therefore, the optimal solution to the Max-

Num-Barrier problem is based on the optimal solution to the Min-Num-Mobile(k)

problem. In the following, we propose an optimal algorithm as well as a faster greedy

algorithm to solve the Max-Num-Barrier problem.

3.5.1 Optimal Algorithm

The optimal algorithm is described as follows:

1. Perform Algorithm 5 (the Min-Num-Mobile(k)-Optimal Algorithm) with k

increasing until |P̂k+1| > τ .

2. The maximal number of barriers is k.

According to Theorem 3.2, the set of Nb barriers is composed of a set of vertex-

disjoint paths P ∗
q on the WBG and direct barriers. Therefore, we have
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Nb = q + b(τ − |P ∗
q |)/d

L

lr
ec (3.3)

Theorem 3.5. The maximum number of barriers Nb is lower bounded by bτ/dL
lr
ec

and upper bounded by n+ bτ/dL
lr
ec.

Proof. When all barriers are direct barriers, the maximum number of barriers reaches

its lower bound bτ/dL
lr
ec. In Eq. 3.3, Nb = q + b(τ − |P ∗

q |)/dLlr ec. For a WBG, q ≤ n

because the maximum number of vertex-disjoint paths on it cannot be larger than

the number of stationary sensors n. When q reaches n, and the total length |P ∗
n | is

0, the maximum number of barriers reaches its upper bound n+ bτ/dL
lr
ec.

Theorem 3.6. For a deployed sensor network with n stationary sensors and τ mobile

sensors, the optimal algorithm can solve the Max-Num-Barrier problem in O(n3).

Proof. The basis of the optimal algorithm is the Min-Num-Mobile(k)-Optimal

Algorithm, the running time of which is O(kn2) for k barriers. According to Theorem

3.5, in the worst case, the maximum number of barriers could be n + bτ/dL
lr
ec. The

running time of the Min-Num-Mobile(k)-Optimal Algorithm is O(n3 +n2bτ/dL
lr
ec) for

n + bτ/dL
lr
ec barriers. Since bτ/dL

lr
ec is a constant, the optimal algorithm can solve

the Max-Num-Barrier problem in O(n3).

3.5.2 Greedy Algorithm

We also propose a faster greedy algorithm for the Max-Num-Barrier problem. The

basic idea is to repeatedly find the shortest path on the WBG until the deployed

number of mobile sensors is reached or no path can be found or the latest found

path is longer than dL
lr
e. In the end, if some mobile sensors are left, we use them to

construct direct barriers. The greedy algorithm is described as follows:

1. Initialize q with 0, and Pq as an empty set.

2. If there exist paths from s to t on the WBG, find the shortest path p using

Dijkstra’s algorithm; otherwise, go to 5).
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3. If the found shortest path is longer than dL
lr
e, discard the path, go to 5);

otherwise, go to 4).

4. If |Pq|+ |p| < τ , remove all the vertices (except for s and t) on the path p from

the WBG, put p into Pq and increase q by 1, go to 2). If |Pq|+ |p| = τ , k = q+1,

stop; otherwise, k = q, stop.

5. The maximum number of barriers is q + b(τ − |Pq|)/dLlr ec.

The pseudocode of the greedy algorithm is presented in Algorithm 7.

Algorithm 7 Max-Num-Barrier-Greedy algorithm

Require: Weighted barrier graph G, L, lr and τ
Ensure: Nb

1: q ← 0 and Pq ← ∅
2: while true do
3: if there exist paths from s to t on G then
4: p← Dijkstra(G)
5: if |p| ≤ dLlr e then
6: if |Pq|+ |p| ≤ τ then
7: q ← q + 1
8: Pq ← Pq−1 ∪ p
9: update G by removing all the edges incident to the vertices (except s and t)

on p
10: else
11: if |Pq|+ |p| = τ then
12: Nb ← q + 1, break.
13: else
14: Nb ← q, break.
15: end if
16: end if
17: else
18: Nb ← q + b(τ − |Pq|)/dLlr ec, break.
19: end if
20: else
21: Nb ← q + b(τ − |Pq|)/dLlr ec, break.
22: end if
23: end while

Theorem 3.7. The maximum number of barriers found by the greedy algorithm is

lower bounded by bτ/dL
lr
ec and upper bounded by n+ bτ/dL

lr
ec.
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Proof. The proof is similar to that of Theorem 3.5.

Theorem 3.8. For a deployed sensor network with n stationary sensors and τ mobile

sensors, the greedy algorithm can solve the Max-Num-Barrier problem in O(n3).

Proof. The running time of Dijkstra’s algorithm is O(n2). In the worst case, the

greedy algorithm would perform Dijkstra’s algorithm n+ bτ/dL
lr
ec times. Therefore,

the running time for the greedy algorithm is O(n3 + n2bτ/dL
lr
ec). Since bτ/dL

lr
ec is a

constant, the greedy algorithm can solve the Max-Num-barrier problem in O(n3).

3.6 Performance Evaluation

In this section, we conduct simulations using Matlab to evaluate the performance of

our proposed algorithms.

3.6.1 Performance Evaluation on the Min-Num-Mobile(k)

Problem

The ROI is a belt region of length L = 500m and width H = 100m. Initially,

stationary sensors are uniformly deployed in the belt region. After the minimum

number of mobile sensors is calculated, mobile sensors are deployed uniformly in

the belt region and then assigned to different target locations using the Hungarian

algorithm to form k-barrier coverage.

The evaluation mainly focuses on four performance metrics:

• The minimum number of mobile sensors required to form k-barrier coverage

• The total moving distance for mobile sensors to form k-barrier coverage

• The average moving distance for mobile sensors to form k-barrier coverage

• The number of direct barriers needed in k barriers
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Figure 3.2: Performance evaluation on different number of barriers (k), and fixed
n = 100, r = 20 and α = π/4

Evaluation of these performance metrics is conducted on different parameters,

such as the number of barriers, the number of stationary sensors, the sensing range

and the sensing angle (or field of view). For all the simulation results presented in

this chapter, each data point is an average of 100 experiments. Both weak and strong

barrier coverage are studied.
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Effects of the Number of Barriers

We first evaluate the performance of the algorithms on the number of barriers. Figure

3.2 shows the performance results. The number of mobile sensors required to form

k-barrier coverage increases as k increases for all the algorithms, as shown in Figure

3.2(a). The optimal algorithms always use less number of mobile sensors to realize

k weak/strong barrier coverage than the greedy algorithms. When k ≤ 3, the two

algorithms give the same result. Therefore, when smaller number of barriers is needed

to be formed, greedy algorithms are more suitable because they are faster than the

optimal algorithms. We can also observe that forming strong barrier coverage always

requires more number of mobile sensors than forming weak barrier coverage.

The total moving distance, shown in Figure 3.2(b), increases as k increases because

more mobile sensors are needed to fill in more gaps when k becomes larger. The total

moving distance for strong barrier coverage is always longer than that for weak barrier

coverage. This is due to two reasons. First, forming strong barrier coverage requires

more number of mobile sensors than forming weak barrier coverage. Second, mobile

sensors only need to move in the horizontal direction for weak barrier coverage while

they need to move in two dimension for strong barrier coverage. Although the total

moving distance is increasing, the average moving distance for mobile sensors, as

shown in Figure 3.2(c), decreases when k becomes larger. This is because that less

number of mobile sensors is required for smaller number of barrier coverage, which

results in less number of mobile sensors deployed. Then mobile sensors are much

more dense for larger number of barrier coverage. Therefore, each mobile sensor

under larger k moves less on average to reach a target location as compared to the

mobile sensor under smaller k.

As shown in Figure 3.2(d), no direct barriers are needed when k ≤ 5, and then the

number of direct barriers increases linearly as k increases. This is because stationary

sensors can work with mobile sensors to construct barriers when k is small. When
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Figure 3.3: Performance evaluation on different number of stationary sensors (n),
and fixed k = 5, r = 20 and α = π/4

most of stationary sensors are used, if we want to form more barriers, the direct

barrier is obviously the best choice.

Effects of the Number of Stationary Sensors

We then evaluate the effects of the number of stationary sensors on the performance

metrics. Figure 3.3 shows the performance results. Given a fixed number of barriers

needed to form, the number of mobile sensors required decreases when the number

of stationary sensors increases. This is because that, when the number of stationary
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sensors is larger, more stationary sensors can be used to form barriers, which reduces

the number of mobile sensors needed. The optimal algorithms always require less

number of mobile sensors than that of the greedy algorithms. Achieving strong

barrier coverage requires more number of mobile sensors than achieving weak barrier

coverage.

The total moving distance, as shown in Figure 3.3(b), decreases as the number

of stationary sensors increases. This is because that less number of mobile sensors is

required to form barriers when the number of stationary sensors is larger. The total

moving distance for strong barrier coverage is always larger than that of weak barrier

coverage. Figure 3.3(c) shows that the average moving distance of mobile sensors

increases as the number of stationary sensors increases. As shown in Figure 3.3(d),

when the number of stationary sensors is small, direct barriers might be needed to

achieve the specified number of barriers.

Effects of the Sensing Range

We also evaluate the performance on different sensing range of sensors. Figure 3.4

shows the performance results. The number of mobile sensors required decreases

when the sensing range increases. The reason is that, larger sensing range results in

smaller gaps between sensors and less number of mobile sensors to fill in the gaps.

The optimal algorithm always requires less number of mobile sensors than the greedy

algorithm. Achieving strong barrier coverage requires more number of mobile sensors

than achieving weak barrier coverage.

The total moving distance, as shown in Figure 3.4(b), decreases as the sensing

range increases. This is because that less number of mobile sensors is required to

form barriers when the sensing range is larger. The total moving distance for strong

barrier coverage is always larger than that of weak barrier coverage. Figure 3.4(c)

shows that the average moving distance of mobile sensors increases as the sensing

range increases. As shown in Figure 3.4(d), when the sensing range is small, before

reaching the specified number of barriers, most of stationary sensors have been used
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Figure 3.4: Performance evaluation on different sensing range (r), and fixed k = 5,
n = 100 and α = π/4

for constructing barriers, therefore, direct barriers might be needed to achieve the

specified number of barriers.

Effects of the Sensing Angle

Finally, we evaluate the performance of the proposed algorithms on different sensing

angle of sensors. Figure 3.5 shows the performance results. The number of mobile

sensors required decreases when the sensing angle increases. The reason is that, larger

sensing angle results in smaller gaps between sensors and less number of mobile sensors
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Figure 3.5: Performance evaluation on different sensing angle (2α), and fixed k = 5,
n = 100 and r = 20

to fill the gaps. The optimal algorithms always require less number of mobile sensors

than that of the greedy algorithms. Achieving strong barrier coverage requires more

number of mobile sensors than achieving weak barrier coverage.

The total moving distance, as shown in Figure 3.5(b), decreases as the sensing

angle increases. This is because that less number of mobile sensors is required to

form barriers when the sensing angle is larger. The total moving distance for strong

barrier coverage is always larger than that of weak strong barrier coverage. Figure

3.5(c) shows that the average moving distance of mobile sensors increases as the
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sensing angle increases. As shown in Figure 3.3(d), when the sensing angle is small,

before reaching the specified number of barriers, most of stationary sensors have been

used for constructing barriers, therefore, direct barriers might be needed to achieve

the specified number of barriers.
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Figure 3.6: Performance evaluation on: (a) different number of stationary sensors,
fixed τ = 50, r = 20m and α = π/4; (b) different number of mobile sensors, fixed
n = 100, r = 20m and α = π/4; (c) different sensing range, fixed n = 100, τ = 50
and α = π/4; (d) different sensing angle, fixed n = 100, τ = 50 and r = 20m
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3.6.2 Performance Evaluation on the Max-Num-Barrier Prob-

lem

In this section, we evaluate the performance of the proposed algorithms for the Max-

Num-Barrier problem.

The ROI is a belt region of length L = 500m and width H = 100m. Initially, both

n stationary sensors and τ mobile sensors are uniformly deployed in the ROI. After

the maximum number of barriers and the set of barriers are found, mobile sensors can

move to target locations to form multiple barriers. The maximum number of barriers

is the performance metric of the evaluation. The evaluation is conducted on different

parameters including the number of stationary sensors, the number of mobile sensors,

the sensing range and the sensing angle.

Figure 3.6 shows the performance evaluation results. We can observe that the

increasing of any one of the four factors could result in the increasing of the maximum

number of barriers. The proposed optimal algorithms always perform better than the

greedy algorithms. However, the difference between them is not very obvious. For

example, the maximum number of barriers for greedy and optimal algorithm are

almost the same in Figure 3.6(b). We also observe that the maximum number of

weak barriers is always larger than that of strong barriers, given the same network

deployment. That is, it is much easier to form weak barriers than to form strong

barriers.

3.6.3 Computation Time Comparison

Figure 3.7 demonstrate the comparison of computation time between the optimal

algorithm and the greedy algorithm. The algorithms run on Thinkpad T420 with

CPU of 2.80GHz and 4GB RAM. We can see that the computation time of optimal

algorithms increases significantly with the increase of the number of barriers or the

number of mobile sensors deployed. The computation time of greedy algorithm,

however, does not increase significantly. Therefore, although two algorithms for the
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Figure 3.7: Computation time comparison between the optimal and greedy
algorithm for: (a) Min-Num-Mobile(k) problem; (b) Max-Num-Barrier problem with
fixed n = 100, r = 20 and α = π/4.

same problem have the same running time in the worst case, the greedy algorithm is

usually faster and more scalable to large-scale networks as compared to the optimal

algorithm.

3.7 Summary

In this chapter, we studied the k-barrier coverage formation problem in sensor

networks. We introduced a novel weighted barrier graph (WBG) model for the barrier

coverage formation problem, and proved that determining the minimum number of

mobile sensors required to form k-barrier coverage is related with but not equal to

finding k vertex-disjoint paths with the minimum total length on the WBG. With

this observation, we proposed an optimal algorithm and a faster greedy algorithm

to find the minimum number of mobile sensors required to form k-barrier coverage

with pre-deployed stationary sensors. We also proposed an optimal algorithm and a

faster greedy algorithm to determine the maximum number of barriers when both

the stationary and mobile sensors have been pre-deployed. Both analytical and

experimental studies demonstrated the effectiveness of our proposed algorithms.
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Chapter 4

Fault Tolerant Barrier Coverage

for Sensor Networks

Barrier coverage is highly related with locations of sensors. Existing work on barrier

coverage mainly assume that sensors have accurate location information, however,

little work explores the effects of location errors on barrier coverage. In this chapter,

we study the barrier coverage problem when sensors have location errors and deploy

mobile sensors to improve barrier coverage if the network is not barrier covered after

initial deployment. We analyze the relationship between the true distance and the

measured distance of two stationary sensors and derive the minimum number of

mobile sensors needed to connect them with a guarantee when sensors location errors

exist. Furthermore, we propose a fault tolerant weighted barrier graph, based on

which we prove that the minimum number of mobile sensors needed to form barrier

coverage with a guarantee is the length of the shortest path on the graph. Simulation

results validate the correctness of our analysis.
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4.1 Introduction

Deterministic and random deployment are the two most popular ways of deploying

sensors to the ROIs. For the ROIs with friendly environment, deterministic

deployment can be used to deploy sensors to the exact locations as we expect.

However, in general, the ROIs are in harsh environment and difficult for human being

to reach, which makes random deployment (e.g., dropped by aircraft) the only way

to deploy sensors. When only stationary sensors are used, after the initial random

deployment, it is highly possible that sensors could not form a barrier due to the

gaps in their coverage, which would allow intruders to cross the ROIs without being

detected. Therefore, it is necessary to deploy more sensors to form a barrier. In

fact, it is difficult if possible at all to improve barrier coverage for sensor networks

consisting of only stationary sensors. Fortunately, with recent technological advances,

practical mobile sensors (e.g., Robomote (Dantu et al., 2005), Packbot (Somasundara

and Ramamoorthy, 2007)) have been developed, which provides us a way to improve

barrier coverage performance after sensor networks have been deployed.

Location information of sensors serves the basis of lots of applications, such as

navigation and target tracking. However, it is cost-expensive to equip GPS receivers

on each node. Therefore, the location information of sensors are unknown when

they are randomly deployed. To obtain the location information of each node, a

lot of localization algorithms have been proposed including the range-based (e.g.,

TOA (Hofmann-Wellenhof et al., 1993), TDOA (Pirzadeh, 1999) and RSSI (Bahl and

Padmanabhan, 2000)) and the range-free (e.g., DV-HOP (Niculescu and Nath, 2003)

and APIT (He et al., 2003)) localization algorithms. However, none of them can

provide the accurate locations and therefore inevitably has location errors.

The existence of location errors can significantly affect the quality of barrier

coverage provided by sensor networks. In reality, we can only know the measured

locations instead of true locations of sensors. As shown in Figure 4.1(a), although

node a and node b actually overlap with each other, due to the location errors, we
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a b

True location Measured location

(a) overlap → no overlap

a

b

True location Measured location

(b) no overlap → overlap

Figure 4.1: The effects of location errors. According to the measured locations, (a):
two overlapping sensors are considered as no overlapping; (b): two no overlapping
sensors are considered as overlapping

think they do not overlap and need to deploy more mobile sensors between them to

prevent intruder from crossing without being detected, which increases the cost of

deployment. In contrast, as shown in Figure 4.1(b), based on the measured locations,

we think node a and node b overlap with each other and all intruders crossing the line

segment ab can be detected. However, since they actually do not overlap, intruders

can cross the line segment ab without being detected. Therefore, location errors

cannot only increase the cost of node deployment but also increase the miss rate of

intruders.

A lot of work has been done on barrier coverage, however, little considers the

effects of location errors of sensors. In this chapter, we study the barrier coverage

problem when sensors have location errors.

First, how can we know whether the network provide barrier coverage or not

after initial random deployment when sensors have location errors? The problem is

challenging because the true locations of sensors are unknown. Even the network

with measured locations provide barrier coverage for the ROI, it does not mean the

network really can. Therefore, it is necessary to find an efficient way to decide whether

the network provides barrier coverage or not with a guarantee. When the ROI is not

barrier covered, mobile sensors can be deployed to form barrier coverage. However,
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the manufacturing cost of mobile sensors are usually more expensive than stationary

sensors, which demands the usage of as few mobile sensors as possible. Therefore,

the second problem is to find the minimum number of mobile sensors needed to form

barrier coverage when sensors have location errors. To solve this problem, we need

to first find the minimum number of mobile sensors needed to connect two stationary

sensors with a guarantee when sensors have location errors, which is challenging

because the number of mobile sensors calculated from the measured locations may

not be enough in reality. Moreover, there are too many ways of deploying mobile

sensors to form barrier coverage and how to find the optimal way using the minimum

number of mobile sensors is also challenging.

In this chapter, we systematically address these problems and the main contribu-

tions are summarized as follows:

• To the best of our knowledge, our work is the first to explore the effects of

location errors on barrier coverage.

• We theoretically analyze the relationship between the true distance and the

measured distance of two stationary sensors, and derive the minimum number

of mobile sensors needed to connect two stationary sensors with a guarantee

when sensors have location errors.

• We propose a fault tolerant weighted barrier graph to model the barrier coverage

formation problem, based on which we prove that the minimum number of

mobile sensors needed to form barrier coverage with a guarantee is the length

of the shortest path on the graph.

The remainder of this chapter is organized as follows. We present the system

model in Section 4.2. We study the barrier coverage problem when only stationary

sensors have location errors in Section 4.3 and the barrier coverage problem when both

stationary and mobile sensors have location errors in Section 4.4. The performance

evaluation of our work is presented in Section 4.5. Finally, we conclude this chapter

in Section 4.6.
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4.2 System Model

We assume that the ROI is a two-dimensional rectangular belt area and n stationary

sensors are randomly deployed in the ROI. The belt region with the length of L and

the width of H is generally a long and thin strip. A crossing path is a path that crosses

the complete width of the area (e.g. path a in Figure 2.1). A congruent crossing path

is a special crossing path that is orthogonal to the upper and lower boundaries of the

belt region (e.g., dashed lines in Figure 2.1). An intruder may attempt to penetrate

the area along any crossing path.

We assume that stationary and mobile sensors have the same type of sensors, but

mobile sensors have the ability to move. We adopt the most commonly used disk

model for the sensing ability of sensors, and assume that all sensors have the same

sensing range, denoted by rs. That is, when an intruder is within the distance of rs

of a sensor node, the sensor node can detect the intruder; otherwise, the sensor node

cannot detect the intruder. Let si = (xi, yi, rs) denote the sensor node i whose true

location is li = (xi, yi). Each node can obtain its location by using suitable localization

algorithms, which is called the measured location, denoted by l̃i = (x̃i, ỹi) for si. Thus,

d(li, l̃i) is called the location error for si, where d(·) represents the Euclidean distance.

We assume that the location error is upper bounded by δ where δ < rs.

The notations used throughout this chapter are summarized in Table 4.1.

4.3 Barrier Coverage When Stationary Sensors

have Location Errors

In this section, we consider that only stationary sensors have location errors. We

assume that mobile sensors are equipped with GPS receivers, so that they can

accurately know their locations without errors. For this case, we first analyze the

effects of location errors on the minimum number of mobile sensors needed to connect

a pair of stationary sensors, and then propose a progressive method that uses exactly
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Table 4.1: Summary of notations

Symbol Description

L the length of the belt region

H the width of the belt region

n the number of deployed stationary sensors

rs the sensing range of each sensor node

δ the upper bound of location errors and δ < rs
si the ith stationary sensor node

li li = (xi, yi) the true location of si
l̃i l̃i = (x̃i, ỹi) the measured location of si
Ri Location region of si

d(li, lj) the true distance between si and sj
d(l̃i, l̃j) the measured distance between si and sj
N(si, sj) the true minimum number of mobile sensors needed to connect si and sj
Nu
s (si, sj) the upper bound of N(si, sj) when only stationary sensors have location

errors

N l
s(si, sj) the lower bound of N(si, sj) when only stationary sensors have location

errors

Nu
sm(si, sj) the upper bound of N(si, sj) when both stationary and mobile sensors

have location errors

N l
sm(si, sj) the upper bound of N(si, sj) when both stationary and mobile sensors

have location errors

the upper bound of the true minimum number of mobile sensors needed to connect

a pair of stationary sensors with a guarantee. Finally, we model the barrier coverage

problem as a fault tolerant weighted barrier graph and prove that the minimum

number of mobile sensors needed to form barrier coverage with a guarantee is the

length of the shortest path on the graph.

4.3.1 Minimum Number of Mobile Sensors Needed to Con-

nect Two Stationary Sensors

The basis of barrier coverage is to decide whether two sensors overlap or not and how

many mobile sensors are needed when they do not overlap. The problem is easy to

answer if each node knows its true location. For example, given two sensors si and sj

and their true locations li and lj, they overlap with each other if d(li, lj) ≤ 2rs. When
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d(li, lj) > 2rs, s1 and s2 do not overlap with each other and the minimum number of

mobile sensors needed to connect them, denoted by N(si, sj), is dd(li,lj)−2rs
2rs

e.

si1 si2 sj2

δ δ 

sj1

Location region of si Location region of sj

Figure 4.2: The location region of a sensor node given its measured location

However, each node does not know its true location but instead the measured

location. Suppose the measured locations for si and sj are l̃i and l̃j, respectively.

As shown in Figure 4.2, given a measured location, the true location is within the

shaded circle centered at the measured location with the radius of δ, where δ is the

upper bound of location errors. We call the shaded circle centered at l̃i as the location

region of si, denoted by Ri. Given the measured location l̃i, we know that the true

location of si is in the location region Ri. Therefore,

max(0, d(l̃i, l̃j)− 2δ) ≤ d(li, lj) ≤ d(l̃i, l̃j) + 2δ (4.1)

Lemma 4.0.1. Given two stationary sensors si and sj and their measured locations

l̃i and l̃j, si and sj overlap with each other with a guarantee when d(l̃i, l̃j) + 2δ ≤ 2rs.

Proof. According to Equation (4.1), when d(l̃i, l̃j) + 2δ ≤ 2rs, the true distance

d(li, lj) ≤ 2rs, so si and sj overlap with each with a guarantee.

Lemma 4.0.2. Given two stationary sensors si and sj and their measured locations

l̃i and l̃j, the minimum number of mobile sensors needed to guarantee the connection

of si and sj is dd(l̃i,l̃j)+2δ

2rs
e − 1.

Proof. Recall that N(si, sj) = dd(li,lj)−2rs
2rs

e denotes the true minimum number of

mobile sensors needed to connect si and sj. According to Equation (4.1), we have
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max(0, dd(l̃i, l̃j)− 2δ

2rs
e − 1) ≤ N(si, sj) ≤ d

d(l̃i, l̃j) + 2δ

2rs
e − 1

In order to guarantee the connection of si and sj, at least dd(l̃i,l̃j)+2δ

2rs
e − 1 mobile

sensors are needed.

Let Nu
s (si, sj) and N l

s(si, sj) denote the upper and lower bound of N(si, sj),

respectively. That is, Nu
s (si, sj) = dd(l̃i,l̃j)+2δ

2rs
e−1 and N l

s(si, sj) = max(0, dd(l̃i,l̃j)−2δ

2rs
e−

1). Thus, 4Ns(si, sj) = Nu
s (si, sj) − N l

s(si, sj) represents the influence of location

error on the minimum number of mobile sensors needed. When 4Ns(si, sj) = 0,

N(si, sj) = Nu
s (si, sj) = N l

s(si, sj) and therefore the location error would not affect

the minimum number of mobile sensors needed to connect si and sj.

Theorem 4.1. Given two stationary sensors si and sj and their measured locations

l̃i and l̃j, the location error does not affect the minimum number of mobile sensors

needed to connect si and sj when d(l̃i, l̃j) + 2δ ≤ 2rs or dd(l̃i,l̃j)−2δ

2rs
e = dd(l̃i,l̃j)+2δ

2rs
e ≥ 2.

Proof. When Nu
s (si, sj) = N l

s(si, sj) = 0, dd(l̃i,l̃j)+2δ

2rs
e − 1 should be 0. Therefore,

d(l̃i, l̃j) + 2δ ≤ 2rs is required.

When Nu
s (si, sj) = dd(l̃i,l̃j)+2δ

2rs
e−1 = N l

s(si, sj) = dd(l̃i,l̃j)−2δ

2rs
e−1 > 0, dd(l̃i,l̃j)−2δ

2rs
e =

dd(l̃i,l̃j)+2δ

2rs
e = k is required where k is an integer and k ≥ 2.

Therefore, when any one of them is satisfied, the location error does not affect the

minimum number of mobile sensors needed to connect si and sj.

Theorem 4.2. Given a sensor network where only stationary sensors have location

errors upper bounded by δ < rs, at most 2 more mobile sensors are needed to connect

any pair of stationary sensors compared to the true minimum number of mobile

sensors needed. That is, 4Ns(si, sj) ≤ 2 for any pair of si and sj when δ < rs.

Proof. 4Ns(si, sj) represents the influence of location error on the minimum number

of mobile sensors needed. We prove the theorem from the following cases.

Case 1: When d(l̃i, l̃j) + 2δ ≤ 2rs, according to Lemma 4.0.1, 4Ns(si, sj) = 0.
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Case 2: When d(l̃i, l̃j)+2δ > 2rs and d(l̃i, l̃j)−2δ ≤ 2rs, N
u
s (si, sj) = dd(l̃i,l̃j)+2δ

2rs
e−1

and N l
s(si, sj) = 0. Therefore 4Ns(si, sj) = dd(l̃i,l̃j)+2δ

2rs
e − 1. Since d(l̃i, l̃j) + 2δ > 2rs,

dd(l̃i,l̃j)+2δ

2rs
e ≥ 2. Since d(l̃i, l̃j) − 2δ ≤ 2rs, d(l̃i, l̃j) + 2δ ≤ 2rs + 4δ < 6rs and then

dd(l̃i,l̃j)+2δ

2rs
e ≤ 3. Therefore, 1 ≤ 4Ns(si, sj) ≤ 2.

Case 3: When d(l̃i, l̃j) + 2δ > 2rs and d(l̃i, l̃j)− 2δ > 2rs, we have

4Ns(si, sj) = dd(l̃i, l̃j) + 2δ

2rs
e − dd(l̃i, l̃j)− 2δ

2rs
e

< dd(l̃i, l̃j) + 2rs
2rs

e − dd(l̃i, l̃j)− 2rs
2rs

e = 2

In all cases, 4Ns(si, sj) ≤ 2 which means that at most 2 more mobile sensors are

needed compared to N(si, sj) when only stationary sensors have location errors.

4.3.2 Progressive Mobile Node Deployment

For any two known true locations of si and sj within Ri and Rj respectively, Nu
s (si, sj)

is enough to connect them with a guarantee. However, the difficulty is that the true

locations are unknown in reality, so deploying Nu
s (si, sj) mobile sensors derived from

the largest distance of two known true locations may not be able to connect si and

sj with a guarantee. To solve this problem, we propose a progressive method to use

as few mobile sensors as possible to connect two stationary sensors with a guarantee.

The basic idea of the progressive method is to deploy mobile sensors progressively

from the left stationary node to the right stationary node. Given two stationary

sensors si and sj and their measured locations l̃i and l̃j, the progressive method is

described as follows:

• Step 1: Deploy a mobile node on the line segment l̃il̃j to make it overlap with

all sensors located within the location region of si and the distance between the

mobile node and l̃i maximized.
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• Step 2: Check whether the new deployed mobile node overlap with all sensors

located within the location region of sj or not. If yes, stop; otherwise, go to

step 3.

• Step 3: Deploy a new mobile node on the line segment l̃il̃j that is 2rs away from

the previously deployed mobile node, go to step 2.

Suppose the first deployed mobile node is denoted by mk and its expected location

is lk = (xk, yk). According to Step 1, we have

Maximize d(l̃i, lk) =
√

(x̃i − xk)2 + (ỹi − yk)2

subject to
√

(x̃i − xi)2 + (ỹi − yi)2 ≤ δ√
(xi − xk)2 + (yi − yk)2 ≤ 2rs

(yk − ỹi)(x̃j − xk) = (ỹj − yk)(xk − x̃i)

The objective is to maximize the distance between the l̃i and lk. The first

constraint indicates that the location error between the true and measured location

is no larger than δ, and the second constraint indicates that mk should overlap with

si no matter where the true location of si is, and finally the third one restricts mk on

the line segment l̃il̃j.

Expected location for mobile sensor nodeMeasured location

si1 si2 sj1 sj2
δ 2rs-δ rs rs 

mk

δ δ 
lk

rs 

Ri Rj

rs 

rs 

Figure 4.3: An illustration of the progressive method. The blue solid circle with
radius of rs denotes the sensing region of si located at si1. The blue dashed circles
with radius of rs denote the sensing regions of mobile sensors.

As shown in Figure 4.3, si1 and si2 are the two intersections of line l̃il̃j and the

location region of si, Ri. According to geometry, for any point p on line segment l̃il̃j,
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the largest distance from the point p to any point within Ri is the distance from the

point p to the point si1. In other words, if the mobile node at point lk overlaps with

a node at point si1, it overlaps all the sensors located within Ri. As mk moves along

l̃il̃j, both d(si1, lk) and d(l̃i, lk) increase accordingly. When d(l̃i, lk) = 2rs − δ, mk

cannot move further since any further movement would not guarantee the overlap of

mk and si. Therefore, the maximum of d(l̃i, lk) is 2rs− δ. When more mobile sensors

are required, they will be added one by one with the interval of 2rs until a mobile

node overlaps with all sensors located within Rj.

Theorem 4.3. The progressive method is an optimal way that connects si and sj

with a guarantee by using dd(l̃i,l̃j)+2δ

2rs
e − 1 mobile sensors.

Proof. We first prove that the progressive method uses dd(l̃i,l̃j)+2δ

2rs
e− 1 mobile sensors

to guarantee the connection of si and sj, and then prove that it is optimal.

When d(l̃i, l̃j) + 2δ ≤ 2rs, no mobile node is needed. When d(l̃i, l̃j) + 2δ > 2rs,

mobile sensors should be deployed. In the progressive method, for the first mobile

node mk, d(l̃i, lk) = 2rs − δ and therefore d(si1, lk) = 2rs. Thus, we deploy the first

mobile node 2rs away from si1 on l̃il̃j, and then deploy other mobile sensors one by

one with the interval of 2rs until the distance between a mobile node and sj2 is not

larger than 2rs. Therefore, the number of mobile sensors needed in the progressive

method is dd(l̃i,l̃j)+2δ

2rs
e − 1.

In Lemma 4.0.2, we proved that at least dd(l̃i,l̃j)+2δ

2rs
e− 1 mobile sensors are needed

to connect si and sj with a guarantee. Since the progressive method uses exactly

dd(l̃i,l̃j)+2δ

2rs
e − 1 mobile sensors, it is an optimal way of deploying mobile sensors.

4.3.3 Minimum Number of Mobile Sensors Needed to Form

Barrier Coverage

Mobile sensors can be deployed between stationary sensors to fill in gaps to form a

barrier. However, there are too many ways to deploy mobile sensors and how to find
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the optimal way using the minimum number of mobile sensors is challenging. In this

subsection, we will model the barrier coverage formation problem with location errors

as a fault tolerant weighted barrier graph and use it to find the minimum number of

mobile sensors needed to form barrier coverage with a guarantee.

Definition 9. A Fault tolerant weighted barrier graph G = (V,E,W ) of a

sensor network is constructed as follows. The set V consists of vertices corresponding

to the left boundary (s), all the stationary sensors (S) and the right boundary (t) of

the belt region, that is, V = {v1, v2, · · · , vn+2} = {s∪S∪ t}. E = {e(vi, vj)} is the set

of edges between any pair of vertices. W : E → R is the set of weights of each edge,

where the weight w(vi, vj) of edge e(vi, vj) is the minimum number of mobile sensors

needed to guarantee the connection of vi and vj.

According to Theorem 4.3, in order to guarantee the connection of si and

sj, dd(l̃i,l̃j)+2δ

2rs
e − 1 mobile sensors should be deployed and therefore w(si, sj) =

dd(l̃i,l̃j)+2δ

2rs
e−1. For a node sj, the maximum distance between it and the left boundary

s is x̃j + δ, where x̃j is x-coordinate of the measured location of sj. In order to

guarantee the connection of them, w(s, sj) = d x̃j+δ−rs
2rs

e mobile sensors are needed.

Also, the maximum distance between sj and the right boundary t is L − (x̃j − δ).

In order to guarantee the connection of them, w(t, sj) = dL−(x̃j−δ+rs)
2rs

e mobile sensors

are needed. We can also deploy mobile sensors directly from the left boundary to the

right boundary, and the minimum number of mobile sensors needed to connect s and

t is w(s, t) = d L
2rs
e. In summary, we have

w(vi, vj) =



dd(l̃i,l̃j)+2δ

2rs
e − 1 if vi = si and vj = sj

d x̃j+δ−rs
2rs

e if vi = s and vj = sj

dL−(x̃j−δ+rs)
2rs

e if vi = t and vj = sj

d L
2rs
e if vi = s and vj = t

(4.2)

Figure 4.4 shows a deployed sensor network and its corresponding fault tolerant

weighted barrier graph. s and t are the virtual vertices corresponding to the left and
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(b) Fault tolerant weighted barrier graph

Figure 4.4: Sensor network and its corresponding fault tolerant weighted barrier
graph when only stationary sensors have location errors (rs = 10m and δ = 1m)

right boundary of the belt region. The weight of each edge is the minimum number

of mobile sensors needed to guarantee the connection of the pair of vertices.

Theorem 4.4. The minimum number of mobile sensors needed to form a barrier with

a guarantee with stationary sensors is exactly the length of the shortest path from s

to t on the fault tolerant weighted barrier graph G and upper bounded by d L
2rs
e.

Proof. According to the definition of the fault tolerant weighted barrier graph G, if

we want to form a barrier, we only need to choose a path from s to t, and put exactly

the number of mobile sensors needed on each edge of the path. That is, for a chosen
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path, the number of mobile sensors required to form a barrier with a guarantee is

equal to the sum of weights of all edges on the path, which is the length of the path.

Therefore, the minimum number of mobile sensors required to form a barrier with a

guarantee is the length of the shortest path from s to t on graph G.

The path containing only the edge e(s, t) could either be the shortest or not. If it

is not the shortest path, the minimum number of mobile sensors required is smaller

than w(s, t); otherwise, the minimum number of mobile sensors required is equal to

w(s, t). Therefore, the minimum number of mobile sensors required to form a barrier

with a guarantee is always upper bounded by w(s, t) = d L
2rs
e.

Theorem 4.5. The ROI is guaranteed to be barrier covered after initial deployment

of sensors if the length of the shortest path from s to t on the fault tolerant weighted

barrier graph G equals zero.

Proof. ⇒. If the length of the shortest path from s to t on G equals zero, the

shortest path is a barrier that does not need any mobile node. Therefore, the ROI is

guaranteed to be barrier covered.

⇐. If the ROI is barrier covered with a guarantee by the sensor network, there

exists a barrier (path) on the graph G and no mobile sensor node is needed between

any two adjacent vertices on the path. Therefore, the length of the shortest path

from s to t on G equals zero.

According to Theorem 4.4, we can use the classical Dijkstra’s algorithm (Cormen

et al., 2009) to find the minimum number of mobile sensors needed to form barrier

coverage with a guarantee and check whether the ROI is guaranteed to be barrier

covered or not after initial deployment. As shown in Figure 4.4, the shortest path is

s→ a→ b→ c→ d→ t, the length of which is 0 + 0 + 1 + 0 + 1 = 2. Therefore, the

ROI is not guaranteed to be barrier covered after initial random deployment and 2

mobile sensors are needed to deploy between b and c, and d and the right boundary

to guarantee the formation of barrier coverage.
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4.4 Barrier Coverage When both Stationary and

Mobile Sensors have Location Errors

In this section, we consider that not only stationary sensors but also mobile sensors

have location errors. The location error of mobile node is also assumed to be upper

bounded by δ < rs.

Expected locationMeasured location

si1 si2 sj1 sj2
δ δ δ δ 

lk

(a) The mobile node does not have error

Expected locationMeasured location

si1 si2 sj1 sj2
δ δ δ δ 

lk

True location

T

(b) The mobile node has error

Figure 4.5: The effect of location error for mobile sensors

The barrier coverage problem is more complicated when mobile sensors also have

location errors. This is because although the measured location of a mobile node

shows to be the expected location, due to the location error, the true location of the

node may not be the expected location. As shown in Figure 4.5(a), when the mobile

node mk does not have location error, it can move to the expected location lk and

connect si and sj with a guarantee. However, when the node has a location error,
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as shown in Figure 4.5(b), although the measured location is lk, the true location

is actually at point T (denoted by the blue square) which cannot guarantee the

connection of si and sj.

Lemma 4.5.1. Given two stationary sensors si and sj and their measured locations

l̃i and l̃j, the minimum number of mobile sensors needed to guarantee the connection

of si and sj is d d(l̃i,l̃j)
2rs−2δ

e − 1 when both stationary and mobile sensors have location

errors.

Proof. Since both the stationary and mobile sensors have location errors upper

bounded by δ < rs, according to Lemma 4.0.1, two sensors (either be stationary

or mobile sensors) overlap with each other with a guarantee only if their measured

distance is no larger than 2rs − 2δ. Therefore, the distance between two expected

locations of two mobile sensors should not be larger than 2rs − 2δ, otherwise they

may not overlap with each other. Thus, in order to use as few mobile sensors as

possible, the expected locations should be on the line segment l̃il̃j with an interval of

2rs− 2δ. Therefore, the minimum number of mobile sensors needed to guarantee the

connection of si and sj is d d(l̃i,l̃j)
2rs−2δ

e − 1 when both stationary and mobile sensors have

location errors.

Recall that N(si, sj) is the true minimum number of mobile sensors needed to

connect si and sj. Let Nu
sm(si, sj) and N l

sm(si, sj) denote the upper and lower bound

of N(si, sj) when both stationary and mobile sensors have location errors. According

to Lemma 4.5.1, Nu
sm(si, sj) = d d(l̃i,l̃j)

2rs−2δ
e − 1. According to Equation (4.1), the lower

bound is N l
sm(si, sj) = max(0, dd(l̃i,l̃j)−2δ

2rs
e − 1). Thus, 4Nsm(si, sj) = Nu

sm(si, sj) −

N l
sm(si, sj) represents the influence on N(si, sj) when both stationary and mobile

sensors have location errors. When 4Nsm(si, sj) = 0, the location error does not

affect the minimum number of mobile sensors needed.

Theorem 4.6. Considering a sensor network where both stationary and mobile sen-

sors have location errors upper bounded by δ < rs, at most max(d 4δ
2rs−2δ

e, d δd(l̃i,l̃j)+2δrs−2δ2

rs(2rs−2δ)
e)
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more mobile sensors are needed to connect si and sj compared to the true minimum

number of mobile sensors needed. That is, 4Nsm(si, sj) ≤ max(d 4δ
2rs−2δ

e, d δd(l̃i,l̃j)+2δrs−2δ2

rs(2rs−2δ)
e).

Proof. When d(l̃i, l̃j)−2δ ≤ 2rs,4Nsm(si, sj) = d d(l̃i,l̃j)
2rs−2δ

e−1 ≤ d2rs+2δ
2rs−2δ

e−1 = d 4δ
2rs−2δ

e.

When d(l̃i, l̃j)−2δ > 2rs,4Nsm(si, sj) = d d(l̃i,l̃j)
2rs−2δ

e−dd(l̃i,l̃j)−2δ

2rs
e ≤ d δd(l̃i,l̃j)+2δrs−2δ2

rs(2rs−2δ)
e.

Therefore, at most max(d 4δ
2rs−2δ

e, d δd(l̃i,l̃j)+2δrs−2δ2

rs(2rs−2δ)
e) more mobile sensors are

needed when both stationary and mobile sensors have location errors compared to

the true minimum number of mobile sensors needed to connect any pair of stationary

sensors with a guarantee.

According to Theorem 4.2, at most 2 more mobile sensors are needed when

only stationary sensors have location errors. However, according to Theorem 4.6,

4Nsm(si, sj) is related with the measured distance and δ when both stationary and

mobile sensors have location errors. As δ or the measured distance increases, more

mobile sensors will be needed. Therefore, the existence of location error for mobile

sensors could significantly influence the minimum number of mobile sensors needed

to form barrier coverage.

In order to find the minimum number of mobile sensors needed to form barrier

coverage with a guarantee, we can also build a corresponding fault tolerant barrier

graph for the sensor network. Similar to the graph in Section 4.3.3, the left and right

boundary are considered as virtual vertices s and t, respectively. Each stationary

node is modeled as a vertex. There is an edge between any pair of vertices and a

weight is assigned for each edge which represents the minimum number of mobile

sensors needed to connect any pair of vertices with a guarantee.

95



f g

h

t

d

cb

a

s

e

0 1 3
4

1 2
3
4

0

2
3

1
2

3

4

5

2
2

1 1 2 3

4

0

3 2

1

1

2

3 2 2 0 1

1
2

3

5

0
2

4

1

3

1

6

Figure 4.6: The fault tolerant weighted barrier graph corresponding to Figure 4.4(a)
when both stationary and mobile sensors have location errors

Since mobile sensors also have location errors, the weight of each edge is not the

same as that in Equation (4.2). Similar to the derivation for Equation (4.2), we have

w(vi, vj) =



d d(l̃i,l̃j)
2rs−2δ

e − 1 if vi = si and vj = sj

d x̃j−(rs−δ)
2rs−2δ

e if vi = s and vj = sj

dL−x̃j−(rs−δ)
2rs−2δ

e if vi = t and vj = sj

d L
2rs−2δ

e if vi = s and vj = t

(4.3)

Theorem 4.7. The minimum number of mobile sensors needed to form a barrier

with a guarantee with stationary sensors when both stationary and mobile sensors

have location errors is upper bounded by d L
2rs−2δ

e.

Proof. The proof is omitted because it is similar to the proof of Theorem 4.4.

Figure 4.6 shows the fault tolerant weighted barrier graph when both stationary

and mobile sensors have location errors. Note that the only difference between this

figure and Figure 4.4(b) is the weight of each edge representing the minimum number

of mobile sensors needed to connect any pair of vertices with a guarantee. As shown

in Figure 4.6, the shortest path is s → a → b → d → t, the length of which is
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0 + 0 + 2 + 1 = 3. Therefore, the ROI is not guaranteed to be barrier covered

after initial random deployment and 3 mobile sensors are needed to guarantee the

formation of barrier coverage.

4.5 Performance Evaluation

In this section, we conduct simulations to evaluate the effects of location errors on

barrier coverage. The ROI is a belt region of length L = 1000m and width W = 100m.

Initially, stationary sensors are randomly deployed in the ROI. After the minimum

number of mobile sensors is calculated, mobile sensors are deployed to form barrier

coverage. The evaluation mainly focuses on three metrics: the minimum number of

mobile sensors needed to form barrier coverage, the total cost needed to form barrier

coverage, and the influence of location error on the minimum number of mobile sensors

to connect any pair of stationary sensors.

We evaluate the number of stationary sensors, the sensing range and δ for these

metrics. For all the simulation results in Figure 4.7 and 4.8, each data point is an

average of 100 experiments. For all the simulation results in Figure 4.9, each data

point is the maximum value of 100 experiments.

4.5.1 Minimum Number of Mobile Sensors Needed

Figure 4.7 shows the effects of different parameters on the minimum number of mobile

sensors needed to form barrier coverage with a guarantee. As shown in Figure 4.7(a)

and (b), we can see that the minimum number of mobile sensors needed decreases as

the number or the sensing range of sensors increases. This is because more number

of stationary sensors deployed or larger sensing range can reduce the number of gaps

between stationary sensors as well as the sizes of gaps. From Figure 4.7(c), we

also observe that the minimum number of mobile sensors needed increases when

the location error increases. This is because larger location error results in larger
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(c) n = 300 and rs = 15m

Figure 4.7: The effects of different parameters on the minimum number of mobile
sensors needed. “No error” means that sensors do not have location error, “S-error”
means that only stationary sensors have location error, and “SM-error” means that
both stationary and mobile sensors have location error

instability of a location and therefore requires more mobile sensors. We can also

observe that the required number of mobile sensors when both stationary and mobile

sensors have location errors is usually larger than that when only stationary node

have location errors.
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4.5.2 Total Cost Needed

The total cost needed to form a barrier is the sum of the cost of deployed stationary

sensors and the cost of mobile sensors needed. Let cs and cm denote the cost of a

stationary node and a mobile node, respectively. For simplicity, we assume cs = 10$

for a stationary node.
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Figure 4.8: The effects of different parameters on the total cost to form a barrier

As shown in Figure 4.8(a), when mobile sensors are not very expensive (e.g.,

cm/cs = 5), the total cost mainly depends on the number of deployed stationary

sensors. Therefore, the total cost increases as the number of deployed stationary
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sensors increase when cm/cs = 5. However, when mobile sensors are much more

expensive than stationary sensors (e.g., cm/cs = 20), the number of mobile sensors

needed can significantly affect the total cost needed. For example, the total cost for

n = 50 is much larger than that for n = 200 because the former one needs much more

mobile sensors to form a barrier. For the simulated belt region, the total cost reaches

the minimum when 200 stationary sensors are deployed. Therefore, we can conclude

that, given an ROI, the number of stationary sensors to be deployed highly depends

on cm/cs.

We can see from Figure 4.8(b) that the total cost needed decreases when the

sensing range of sensors increases, which is because the number of mobile sensors

needed decreases. As shown in Figure 4.8(c), the total cost needed increases when

the location error increases, which is because more mobile sensors are needed for a

larger location error.

4.5.3 4Ns(si, sj) and 4Nsm(si, sj)

4Ns(si, sj) and 4Nsm(si, sj) represents the influence of location errors on the

minimum number of mobile sensors needed when only stationary sensors have location

errors and when both stationary and mobile sensors have location errors, respectively.

Figure 4.9 shows the effects of different parameters on 4Ns(si, sj) and 4Nsm(si, sj)

and also their theoretical upper bound. First we can observe that the maximum of

4Ns(si, sj) when only stationary sensors have location errors is always no larger than

2, which validates the correctness of Theorem 4.2. We then observe that the maximum

of4Nsm(si, sj) when both stationary and mobile sensors have location errors is always

no larger than its theoretical upper bound, which validates the correctness of Theorem

4.6.

As shown in Figure 4.9(a), the maximum of 4Nsm(si, sj) does not change when

the number of stationary sensors increases. This is because the largest distance of

two stationary sensors is almost always the length of the area. Figure 4.9(b) shows
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Figure 4.9: The influence of location errors on the minimum number of mobile
sensors needed

that the maximum of 4Nsm(si, sj) decreases when the sensing range increases, which

implies that the influence of location error is smaller for larger sensing range. Figure

4.9(c) shows that the maximum4Nsm(si, sj) increases as the location error increases,

which implies that the influence of location error is more and more serious when the

location error become larger and larger.
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4.6 Summary

In this chapter, we studied the barrier coverage problem when sensors have location

errors. When only stationary sensors have location errors, we proved that at

most 2 more mobile sensors are needed compared to the true minimum number of

sensors needed to connect any pair of stationary sensors with a guarantee. When

both stationary and mobile sensors have location errors, the difference between the

minimum number of mobile sensors needed and the true minimum number of mobile

sensors needed is related with the length of the belt region and the location error.

We proposed a progressive method that uses exactly the same minimum number

of mobile sensors derived in theory to connect any pair of sensors with a guarantee.

Furthermore, we proposed a fault tolerant weighted barrier graph and proved that the

minimum number of mobile sensors needed to form barrier coverage with a guarantee

is the length of the shortest path on the graph. Extensive simulation results validated

the correctness of our analysis.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this dissertation, we explored how to efficiently use mobile sensors to form k-barrier

coverage with pre-deployed stationary sensors. The primary goal of barrier coverage

is to detect intruders as they cross a border or penetrate protected areas, which makes

it a critical issue for a lot of security applications, such as border protection, critical

infrastructures protection and dangerous substance monitoring. Although lots of work

have been done on barrier coverage, most of them mainly focus on critical condition

analysis and barrier construction for stationary sensors and little effort has been made

to explore how to improve barrier coverage after initial deployment. In addition,

existing studies on barrier coverage only focus on homogeneous sensor network, little

effort has been put on barrier coverage with heterogenous sensor networks which is

more practical and useful in real-world applications. Moreover, to the best of our

knowledge, none of existing work explores the effects of location errors of sensors on

barrier coverage and how to guarantee the formation of barrier coverage when location

errors exist.

In order to address these problems, we first presented a cost-effective 1-barrier

coverage formation algorithm in heterogeneous sensor networks where sensor networks
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consist of different types of mobile sensors with different sensing ranges and costs.

To the best of our knowledge, we are the first to study barrier coverage formation

problem in heterogeneous sensor networks. We introduced the directional barrier

graph model, and proved that the minimum cost of mobile sensors required to form a

barrier is the length of the shortest path from the source node to the destination

node on the graph. To efficiently assign mobile sensors to different gaps while

minimizing the total moving distance, we proposed a greedy movement algorithm

for heterogenous sensor network, and also a position based optimal movement

algorithm for homogeneous sensor network which formulated the MCBF problem

as the minimum cost bipartite assignment problem and solved it using the Hungarian

algorithm. Extensive evaluation results on both homogeneous and heterogeneous

sensor networks validate the effectiveness of our proposed algorithms.

Secondly, we studied the k-barrier coverage formation problem in hybrid sensor

networks. To the best of our knowledge, we are the first to study how to efficiently

use mobile sensors to form k-barrier coverage with pre-deployed stationary sensors.

We introduced a novel weighted barrier graph (WBG) model for the barrier coverage

formation problem, and proved that determining the minimum number of mobile

sensors required to form k-barrier coverage is related with but not equal to finding

k vertex-disjoint paths with the minimum total length on the WBG. With this

observation, we proposed an optimal algorithm and a faster greedy algorithm to

find the minimum number of mobile sensors required to form k-barrier coverage

with pre-deployed stationary sensors. We also proposed an optimal algorithm and

a faster greedy algorithm to determine the maximum number of barriers when both

the stationary and mobile sensors have been pre-deployed. Both analytical and

experimental studies demonstrated the effectiveness of our proposed algorithms.

Finally, we studied the barrier coverage formation problem when sensors have

location errors. To the best of our knowledge, we are the first to explore the effects

of location errors on barrier coverage and how to guarantee the formation of barrier

coverage in this case. We analyzed the relationship between the true distance and
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the measured distance of two stationary sensors and proved that at most 2 more

mobile sensors are needed compared to the true minimum number of sensors needed

to connect any pair of stationary sensors with a guarantee when only stationary

sensors have location errors. When both stationary and mobile sensors have location

errors, the difference between the minimum number of mobile sensors needed and the

true minimum number of mobile sensors needed is related with the length of the belt

region and the location errors. We proposed a progressive method that uses exactly

the same minimum number of mobile sensors derived in theory to connect any pair of

sensors with a guarantee. Furthermore, we proposed a fault tolerant weighted barrier

graph and proved that the minimum number of mobile sensors needed to form barrier

coverage with a guarantee is the length of the shortest path on the graph. Extensive

simulation results validated the correctness of our analysis.

5.2 Directions for Future Research

Although barrier coverage has been well studied in the last decade, there is still a long

way to go before it can be used into real systems. In my future work, I would like

to focus on applying barrier coverage into real systems. First, I will consider a more

realistic sensing model instead of commonly used boolean sensing model. Second,

I will consider the rotational capacity of sensors and explore how it affects barrier

coverage.

5.2.1 Probabilistic Barrier Coverage

Boolean sensing model might be the most widely used sensor coverage model in the

literature due to its simplicity for analysis. In boolean sensing model, an intruder

is 100% detected by a sensor if the intruder is within the sensors’ sensing region,

otherwise, cannot be detected by the sensor. This model, however, may not be able

to reflect the true sensing characteristic of a sensor. Some researchers argue that the
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sensing quality of a sensor reduces with the increase of the distance away from the

sensor (Megerian et al., 2002; Veltri et al., 2003) and therefore the intruder may not

be 100% detected even it is within the sensors’ sensing region. A probabilistic sensing

model were proposed to describe this characteristic (Zou and Chakrabarty, 2004).

f(d) =


1 if d ≤ rs − ru

e−α(d−(rs−ru))β if rs − ru < d ≤ rs

0 if d > rs.

where d is the distance between the intruder and the sensor, f(d) is the detection

probability for the intruder, rs is the sensing range, ru is the uncertain range, and

α and β are constants. We can see that the probability of detecting an intruder

decreases when the distance between the intruder and the sensor increases.

The probabilistic sensing model is more realistic than the boolean sensing model,

but it also introduces more uncertainty of intruder detection. Given a deployed sensor

network with lots of sensor nodes, a challenging issue is how to schedule sensors so

that a barrier with the required detection probability can be found? In case the

network cannot provide the required detection probability of barrier coverage, what’s

the minimum cost of mobile sensors needed to realize the objective? Probabilistic

barrier coverage has not received too much attention in the last decade and I would

like to solve these two aforementioned problems.

5.2.2 Barrier Coverage with Rotational Sensors

In our dissertation, we assume that stationary sensors cannot rotate their sensing

regions once they are deployed. In this case, two sensors may not overlap with each

other even when are very close to each other (e.g., facing opposite directions), and

mobile sensors are needed to fill in this hole. However, this would be not be an issue

if sensors can rotate themselves so that they face each other and fill in the hole.

Therefore, the rotation capacity of sensors could help improve the quality of barrier
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coverage after initial deployment even sensors cannot move and may reduce the cost

of mobile sensors needed to form k-barrier coverage.

Some researchers have used rotational sensors to improve the quality of area

coverage and point coverage. However, little work has been done on barrier coverage.

In fact, there are a lot of challenging issues to rotational sensors to improve barrier

coverage. First, when sensors rotate themselves to fill in a hole, new holes may

be produced and the quality of barrier coverage may be worse than no rotation.

Therefore, it is challenging to determine which sensor should be rotated. Second,

sensors are power limited and we need to balance the energy consumption of rotation

for each sensor so that the network life can be maximized. Therefore, it is challenging

to determine how much degree for each sensor to rotate to form k-barrier coverage

while maximizing the network lifetime. As part of my future work, I would like to

solve these challenging problems.
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