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ABSTRACT 
 

Eastern North America is unparalleled throughout the temperate world in terms of 
freshwater fish biodiversity. A monophyletic group of approximately 250 cyprinid fishes, 
known as the open posterior myodome (OPM) clade, dominates the fish species richness 
in the freshwater ecosystems of this region. In this dissertation, I explore the influence of 
eco-evolutionary divergence along a benthic/pelagic habitat axis on the generation of this 
hyper-diverse group of fishes. My three chapters work synergistically to address the 
question: Did a historical shift from benthic to pelagic habitats by OPM cyprinids 
represent the invasion of an open adaptive zone and result in the simultaneous bursts of 
phylogenetic and ecological diversification that signify an adaptive radiation? In Chapter 
I, I perform the first gene tree/species tree analysis on OPM species to reconcile 
discordance between previous phylogenetic hypotheses as it relates to inferring the 
history of benthic and pelagic habitat transitions in the group. I then construct the most 
thoroughly sampled OPM phylogenies to date in Chapter II. Using these large-scale 
phylogenies and habitat-use data, I conducted ancestral state reconstructions to trace the 
history of benthic to pelagic habitat use during the history of the clade. I then performed 
lineage through time and diversification rate analyses that suggested that a period of 
accelerated lineage diversification followed the initial shift from benthic to pelagic 
habitats in the OPM radiation. In Chapter III, I recovered a significant evolutionary 
relationship between jaw protrusion angle (JPA) and preferred foraging height in the 
water column between 15 co-occurring OPM taxa. I also recovered evidence for a burst 
of morphological disparification in a number of individual muscoskeletal characters that 
are evolutionary correlated with JPA after the major benthic to pelagic shift inferred in 
Chapter II. Overall, the results from this dissertation suggest that an early shift from 
benthic to pelagic habitats in OPM cyprinids represented the invasion of an open adaptive 
zone and was followed by a period of rapid phylogenetic and eco-morphological 
evolution as species diverged to exploit vertically segregated sub-zones throughout the 
water column. Taken together, these results are likely the most robust evidence for an 
adaptive radiation to date. 
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INTRODUCTION 
 

Freshwater fishes often diversify along a benthic (bottom) to pelagic (mid-water) 
habitat axis and experience shifts in functional morphology associated with these two 
habitat types (Robinson and Wilson, 1994; Willacker et al., 2010). Robinson and Wilson 
(1994), citing evidence from across a wide range of fish phylogenetic diversity, argue for 
a predictable pattern of evolution into preexisting benthic and pelagic “niches” within 
lacustrine environments. Often, this morphological divergence is considered evidence for 
the process of ecological speciation (Schluter, 2000). However, these studies have mainly 
addressed this pattern in relatively depauparate, lentic systems at high latitudes (e.g., 
Bodalay, 1979; Skúlason et al., 1989; Schluter and McPhail, 1992; Schluter, 1993; 
Robinson et al., 1996; Svanbäck and Eklöv, 2003). Further, the goal of most of these 
studies was to identify intraspecific divergence into two “niches” within competitor poor 
communities (Robinson and Wilson, 1994). It remains unclear if this predictable pattern 
of microevolutionary divergence between benthic and pelagic forms plays a significant 
macroevolutionary role in the diversification and community assembly of species-rich 
freshwater fish clades inhabiting more ecologically complex, lotic freshwater 
environments. 

Cyprinid fishes from eastern North America provide an attractive study system 
for pursuing questions regarding freshwater fish evolution along a benthic/pelagic habitat 
axis in lotic environments. With approximately 250 species native to this region, 
cyprinids comprise a significant portion the species diversity within the most diverse 
assemblages of temperate freshwater fishes in the world. Previous phylogenetic analyses 
suggest that the vast majority of these 250 species represent a monophyletic group united 
by the osteological synapomorphy known as the open posterior myodome (OPM) 
(Mayden, 1989; Simons et al., 2003; Bufalino and Mayden, 2010; Houston et al., 2010; 
Hollingsworth et al., 2013). OPM cyprinids have diversified extensively along a 
benthic/pelagic axis and form complex communities consisting of up to 15 sympatric taxa 
within many river systems in the southeastern U.S. (Etnier and Starnes, 1993; Boschung 
and Mayden, 2004; Page and Burr, 2011). Coexistence in these diverse assemblages is 
facilitated by the partitioning of the water column into vertically segregated microhabitats 
from the benthos to the surface (Mendelson, 1975; Baker and Ross, 1981; Gorman, 
1988a,b) 

This dissertation researches the diversification of OPM cyprinids along a 
benthic/pelagic habitat axis. I constructed the most thoroughly sampled phylogenetic 
hypotheses for the clade to date and combined them with data on habitat-use and trophic 
morphology to address the question: Did a major benthic to pelagic shift early in the 
history of the group represent the invasion of a novel adaptive zone that was followed by 
a period of rapid phylogenetic and eco-morphological diversification suggestive of an 
adaptive radiation? The results from this dissertation should elucidate the role of 
macroevolution along a benthic/pelagic habitat axis in the generation of North America’s 
most speciose, endemic clade of freshwater fishes. 
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A version of this chapter was published by Phillip R. Hollingsworth Jr. and C. 
Darrin Hulsey. PRH conceived the study, conducted the analyses, and wrote the 
manuscript. CDH helped to prepare the manuscript: 
  

Hollingsworth Jr., P.R., Hulsey, C.D., 2011. Reconciling gene trees of eastern 
North American minnows. Molecular Phylogenetics and Evolution 61, 149-156. 
 

Abstract 
 
  Most eastern North American cyprinid fishes belong to a clade known as the 
“open posterior myodome” (OPM) minnows, but phylogenetic relationships within this 
clade have been difficult to ascertain.  Previous attempts to resolve relationships among 
the generally benthic “chubs” and the more pelagic “shiners”, that constitute the majority 
of OPM minnows, have led to highly discordant phylogenetic hypotheses.  To further 
examine relationships among the OPM minnows, we utilized both a concatenated 
Bayesian approach and a coalescent-based species tree method to analyze data from six 
protein coding nuclear loci (Enc1, Ptr, Ryr3, Sh3px3, Tbr1, and Zic1), as well as the 
mitochondrial locus (Cytb).  We focused our analyses on the chub-like genus 
Phenacobius, a group that has drifted topologically between other benthic chubs and the 
more pelagic shiners, and also included exemplar taxa from 11 other OPM lineages.  
Individual gene trees were highly discordant regarding relationships within Phenacobius 
and across the OPM clade.  The concatenated Bayesian analysis and coalescent-based 
species tree reconstruction recovered slightly different phylogenetic topologies.  
Additionally, the posterior support values for clades using the coalescent-based approach 
were consistently lower than the concatenated analysis.  However, Phenacobius was 
resolved as monophyletic and as the sister lineage to Erimystax regardless of the 
combined data approach taken.  Furthermore, Phenacobius + Erimystax was recovered as 
more closely related to the shiners we examined than to other chubs.  Relationships 
within Phenacobius varied depending on the combined phylogenetic method utilized. 
Our results highlight the importance of multi-locus, coalescent-based approaches for 
resolving the phylogeny of diverse clades like the eastern North American OPM 
minnows. 
 

Introduction 
 

Fishes in the family Cyprinidae dominate the freshwater habitats of North 
America (NA) with over 300 species distributed from Canada south to the Neovolcanic 
Plateau in southern Mexico (Burr and Mayden, 1992). The eastern half of NA contains a 
particularly high number of cyprinid lineages, and the vast majority comprise a single 
clade united by the morphological synapomorphy of an open posterior myodome (OPM) 
(Mayden, 1989; Simons and Mayden, 1997; Simons et al., 2003; Mayden et al., 2006; 
Bufalino and Mayden, 2010). It has been hypothesized based on osteological characters 
that there are two major monophyletic groups within the hyperdiverse OPM clade: 1) the 
generally benthic “chubs” and 2) the more pelagic “shiners” (Mayden, 1989). However, 
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in subsequent phylogenetic studies, relationships among constituent chub and shiner 
lineages have varied considerably (Coburn and Cavender, 1992; Simons and Mayden, 
1997; Simons et al., 2003; Mayden et al., 2006; Bufalino and Mayden, 2010; Hulsey and 
Hollingsworth, 2011). In order to clarify the relationships among major lineages of 
minnows in eastern NA, we analyzed sequence data of six nuclear DNA (nDNA) loci and 
one mitochondrial DNA (mtDNA) locus using exemplars of recognized genera within the 
OPM clade. We also included complete taxon sampling of species in the genus 
Phenacobius in order to examine relationships within this genus as well as the 
relationship of Phenacobius to other OPM genera. Phenacobius was placed in the chub 
clade by Mayden (1989) and Coburn and Cavender (1992) based on osteology, but recent 
molecular phylogenies suggest it may be more closely related to the shiner OPM 
minnows (Simons et al., 2003; Mayden et al., 2006; Bufalino and Mayden, 2010; Hulsey 
and Hollingsworth, 2011). Therefore, determining the phylogenetic position of this genus 
of five species poses an interesting problem and focal point for this multi-locus 
phylogenetic analysis of OPM minnow relationships. 

Phylogenetic trees reconstructed from individual loci do not necessarily reflect the 
species tree of a given clade because discordance among gene trees may be common, 
especially in clades characterized by large population sizes and short intervals between 
diversification events (Degnan and Rosenberg, 2009). Such discordance among gene 
trees and the desire to infer the best species tree for a group challenges our prior 
understanding of how phylogenetic relationships should be examined (Maddison, 1997; 
Maddison and Knowles, 2006; Degnan and Rosenberg, 2006, 2009).  For instance, 
simulations show that simply adding more data to a concatenated matrix can lead to 
faulty inferences concerning the true species tree when incomplete lineage sorting, or 
deep coalescence, causes discordance between phylogenetic markers (Kubatko and 
Degnan, 2007). To account for this shortcoming, methods have been developed that take 
phylogenetic information from multiple loci and model their evolution under multi-
species coalescent theory in an attempt to account for incomplete lineage sorting 
(Edwards et al., 2007; Kubatko et al., 2009; Liu et al., 2009; Heled and Drummond, 
2010). These methods are now being implemented across a broad range of vertebrate 
groups, but have largely focused on closely related species (White et al., 2009; Carstens 
and Dewey, 2010; McCormack et al., 2011). Incomplete lineage sorting of gene trees 
could also be a problem deeper in the phylogenetic history of a clade of organisms, 
especially if the timeframe for gene coalescence is greater than the period during which 
groups became genetically isolated. As previous analyses of OPM minnow relationships 
have had difficulties resolving relationships not only among recently diverged groups but 
also among genera deep in the clade, variability in gene coalescence may be problematic 
to phylogenetic inference at several levels in this group. 

To evaluate if the stochasticity of coalescence poses a problem for estimating the 
phylogeny among closely related OPM minnow species, groups such as Phenacobius 
would be interesting to examine within a gene tree/species tree phylogenetic framework. 
All five named Phenacobius species are morphologically diagnosable and generally 
allopatrically distributed, leaving little question of species monophyly (Etnier and 
Starnes, 1993; Jenkins and Burkhead, 1994). This lack of sympatry among members of 
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Phenacobius should also lead to relatively little hybridization among these five species 
which is a potentially complicating source of incongruence among gene trees that is not 
accounted for in most current gene tree/species tree methods (Degnan and Rosenberg, 
2009). Additionally, all previous analyses of OPM phylogeny included Phenacobius and 
the placement of this group has varied substantially (Mayden, 1989; Coburn and 
Cavender, 1992; Simons and Mayden, 1997; Simons et al., 2003; Mayden et al., 2006; 
Bufalino and Mayden, 2010; Hulsey and Hollingsworth, 2011). Finally, Dimmick and 
Burr (1999) conducted a study of the phylogenetic relationships among the five species 
of Phenacobius based on a combination of morphological, allozyme, and DNA sequence 
data which provides a hypothesis with which to compare the results from the molecular 
phylogenetic approaches taken in this study. 

Most previous studies of OPM phylogenetics have relied heavily on 
mitochondrial and nuclear intron sequence data (Simons and Mayden, 1997; Simons et 
al., 2003; Mayden et al., 2006). Only recently has sequence data from protein coding 
nuclear loci been utilized in phylogenetic analyses of NA minnows (Bufalino and 
Mayden, 2010; Schonhuth and Mayden, 2010; Hulsey and Hollingsworth, 2011). 
Therefore, a major goal of this study was to generate sequence data for six putatively 
single copy, protein-coding nuclear loci to serve as phylogenetic markers within NA 
minnows.  In this study, we combine sampling among most OPM genera with complete 
taxon sampling within the genus Phenacobius in order to contrast results from a 
coalescent-based species tree phylogenetic approach with a concatenated Bayesian 
analysis of protein-coding nDNA at various levels of phylogenetic relationships. 

We used a recently developed multi-species coalescent-based phylogenetic 
strategy implemented through *BEAST (Heled and Drummond 2010) to examine the 
relationships among 16 species of OPM minnows, and to compare to results from a 
concatenated Bayesian analysis. We utilized sequences from seven loci to address a 
number of questions concerning these relationships. First, we asked what the 
phylogenetic relationships among exemplars of several of the most diverse OPM genera 
are. Then, we asked how the genus Phenacobius is related phylogenetically to the other 
OPM minnow genera analyzed in this study. Finally, we examined the phylogenetic 
relationships among the five species of Phenacobius. For each of the above questions, we 
compared the results between the concatenated Bayesian analysis and the species tree 
approach implemented in *BEAST (Heled and Drummond, 2010).    
 

Methods 
 
DNA sequence generation 
 
 Specimens sequenced in this study were collected in the field using a seine net. 
Locality information and museum accession numbers are given in the attachments (File 
1.1). Specimens of all five species in the OPM genus Phenacobius were included, as well 
as representative taxa from eleven eastern NA OPM genera. These eleven taxa included 
species designated by Mayden (1989) as chubs (Campostoma oligolepis, Erimystax 
dissimilis, Exoglossum laurae, and Nocomis effusus), as well as taxa designated by 
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Mayden (1989) as shiners (Cyprinella callistia, Luxilus coccogenis, Lythrurus fasciolaris, 
and Notropis leuciodus). We also included the species Pimephales notatus and Hybopsis 
amblops that were hypothesized by Mayden (1989) to fall outside of the chub and shiner 
clades, but that have been recovered as nested within the shiner clade in subsequent 
phylogenetic analyses (Coburn and Cavender, 1992; Simons et al., 2003; Mayden et al., 
2006; Bufalino and Mayden, 2010; Hulsey and Hollingsworth, 2011). Rhinichthys 
cataractae was also included. Morphological phylogenies (Mayden, 1989; Coburn and 
Cavender, 1992) did not include Rhinichthys spp. in the OPM clade. However, more 
recent molecular phylogenies have included Rhinichthys as an early diverging lineage 
within the OPM radiation and closely related to other chub genera (Simons et al., 2003; 
Mayden et al., 2006; Bufalino and Mayden, 2010; Hulsey and Hollingsworth, 2011). 
Overall, the taxa included here span the phylogenetic breadth of previously proposed 
hypotheses of OPM relationships. Individual specimens were anesthetized in MS-222 
prior to removal of a pectoral fin for a tissue sample. Tissue samples were stored in 1.5 
mL tubes in 95% EtOH and placed in an -80° C freezer for long-term storage. DNA 
extraction was performed using a Qiagen DNeasy kit (Qiagen Sciences, MD, USA).  
 PCR amplification was carried out using an Eppendorf DNA thermocycler. The 
sequences for all primer sets used in this study are given in the attachments (File 1.2).  
The mitochondrial cytochrome b (Cytb) gene was amplified using primers from Schmidt 
and Gold (1993) for all species except Phenacobius mirabilis, P. teretulus, and P. 
uranops. Cytb was amplified for these three species using the primer set MinCytb F2 and 
MinCytb R1.  The six nuclear loci examined included: ectodermal-neural cortex 1 
(Enc1), hypothetical protein LOC 564097 (Ptr), novel protein similar to vertebrate 
ryanodine receptor 3 (Ryr3), protein similar to SH3 and PX domain containing 3 gene 
(Sh3px3), T-box brain 1 (Tbr1), and zic family member 1 (Zic1). All six nuclear genes 
were sequenced using primers from Li et al. (2007). PCR conditions consisted of an 
initial denaturation phase at 94° C (2 min) followed by 35 cycles of 94° C (1 min), 54° C 
(1 min), and 72° C (1 min). A final elongation phase of 72° C (4 min) was performed 
after the cycles in order to ensure complete elongation of amplified products. 
 DNA sequencing was performed at the University of Washington’s High 
Throughput Genomics Unit utilizing the same primers used during PCR. Sequence files 
were contiged using Sequencher 4.8 (Gene Codes, Ann Arbor, MI, USA) and 
heterozygous sites in the nuclear loci were coded as ambiguous using the IUPAC codes 
for heterozygous sites. In addition to the newly generated sequences generated in this 
study, sequence data for Cytb and Enc1 from Hulsey and Hollingsworth (2011) was 
downloaded from GenBank for several species of NA cyprinids for use in phylogenetic 
analyses. Sequence data for all loci examined were downloaded from GenBank for the 
Asian species Danio rerio which was used as an outgroup in all phylogenetic analyses. 
Additionally, the non-OPM NA minnow Semotilus atromaculatus was included as an 
outgroup to the OPM minnows. Due to difficulties in PCR amplification, the Cytb 
sequence data for Semotilus atromaculatus was also downloaded from GenBank 
(Dowling et al., 2002). GenBank accession numbers for all sequence data are given in the 
attachments (File 1.3). Sequences were aligned using Clustal X (Thompson et al., 1997). 
Codon sites were defined using MacClade 4.0 (Maddison and Maddison, 2000). 
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Gene tree reconstruction 
 

 We first inferred the gene tree for each individual locus in order to compare the 
topologies among the individual genes. Because of the number of informative sites in the 
mitochondrial gene, each codon position for Cytb was assigned a separate model of 
molecular evolution. The nuclear loci were not partitioned into individual codon sites 
because the low variability in their first and second codon positions provided little 
information to estimate parameters for a separate model of molecular evolution. The first 
codon position of Zic1 was monomorphic across the North American species analyzed in 
this study and was therefore excluded in the phylogenetic analyses. The best model of 
molecular evolution for each locus was chosen using MrModelTest2 (Nylander, 2004).  
MrModelTest2 starts with a neighbor-joining tree for each partition and then calculates 
likelihood scores for each of the 24 substitution models that can be implemented in 
MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003).  The best substitution model for each 
genetic partition was then chosen based on the model with the lowest AIC score, which 
penalizes models consisting of more free parameters.  Models chosen for each locus are 
presented along with the length in base pairs of the sequences examined at each locus 
(Table 1.1). All tables and figures are given in the Appendix at the end of this 
dissertation.  

Model parameters were then designated in MrBayes 3.1.2 (Ronquist and 
Huelsenbeck, 2003) in order to approximate the maximum likelihood tree for each locus. 
For the Cytb analyses, the command prset ratepr=variable was used to allow for rate 
variation between codon positions. The gamma shape distribution, proportion of invariant 
sites, state frequencies, and relative rates of substitution were estimated separately for the 
three codon positions of Cytb using the unlink command in MrBayes 3.1.2 (Ronquist and 
Huelsenbeck, 2003). Individual MCMC analyses of each locus consisted of two 
independent runs of four chains and were run for 1,000,000 generations with trees and 
parameter estimates sampled every 100 generations. The default heating temperature of 
0.1 was used in these analyses.  Each MCMC analysis was run three separate times. 

Convergence in the MrBayes analyses was assessed by analyzing the split 
frequencies between the two simultaneous but independent MCMC runs using the 
“compare” and “cumulative” plots in the program AWTY (Nylander et al., 2008).  The 
program Tracer (Drummond and Rambaut, 2007) was also used to assess convergence by 
monitoring likelihood and ESS, or effective sample size, values through the course of 
each MCMC run. The ESS is a proxy for the amount of mixing of Markov chains and 
represents the number of independent draws from the posterior distribution. High ESS 
values (> 200) signify sufficient mixing of Markov chains, and consequently, low 
amounts of autocorrelation between parameter estimates from one generation to the next 
during the course of the MCMC run. Based on all convergence diagnostics, each run had 
converged by 50,000 generations and the first 100,000 generations for each MCMC 
search were discarded as the burn-in. Then, the remaining post burn-in trees were used to 
construct a 50% majority rule consensus tree for each individual locus using the sumt 
command. Posterior probability values were averaged across the three independent 
MCMC runs for each locus. 
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Multi-locus species tree reconstructions 
 

 Two methods were utilized in order to reconstruct the species trees from the 
combination of the individual loci. For both analyses, we first concatenated the data into 
a matrix containing 5393 characters. For the concatenated analysis, we used MrBayes 
3.1.2 (Ronquist and Huelsenbeck, 2003) to generate a concatenated phylogeny using all 7 
loci. In this analysis, we specified 9 partitions corresponding to the three codon positions 
of Cytb and the six unpartitioned nuclear loci (minus Zic1 first position sites). The same 
models of molecular evolution that were applied in individual gene tree reconstructions 
were assigned to the nine partitions (Table 1.1). The ratepr=variable command was 
applied in order to allow for rate variation across partitions, and the gamma shape 
distribution, proportion of invariant sites, state frequencies, and relative rates of 
substitution were unlinked across partitions. Each concatenated MrBayes run consisted of 
two separate runs of four chains for 10,000,000 generations with a sampling of trees and 
parameter values every 1,000 generations, and heating temperature of 0.1.  Convergence 
was assessed both in AWTY (Nylander, 2008) and using scale reduction factors reported 
from MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). Tracer (Drummond and 
Rambaut, 2007) was also used to graphically depict likelihood and ESS values over the 
course of the runs. Because all runs appeared to have converged by 500,000 generations, 
the first 1,000,000 runs were subsequently discarded as the burn-in period. We ran three 
independent MCMC searches for this dataset and averaged the posterior probability 
values for the nodes across the three replicates to produce our consensus concatenated 
phylogeny.  
 The program *BEAST (Heled and Drummond, 2010) was also used to estimate a 
species tree from the individual loci. First, the partitioned alignment of 5393 characters 
from the concatenated analysis was imported into the program BEAUti v1.5.4 
(Drummond and Rambaut, 2007). We then unlinked substitution models, clock models, 
and trees across each partition, with the exception of Cytb in which the trees were linked 
between the three codon positions. The same substitution models used in the 
concatenated analysis were assigned to each partition (Table 1.1). A relaxed molecular 
clock for each partition was estimated relative to Enc1 with all rate estimates drawn from 
an uncorrelated lognormal distribution. The ploidy level of the Cytb partition was 
designated as “mitochondrial” and all nuclear loci were designated “autosomal nuclear”. 
Each *BEAST (Heled and Drummond, 2010) search consisted of 1.0 X 108 generations, 
sampling trees every 1000 generations and used the default priors from BEAUti v1.5.4 
(Drummond and Rambaut, 2007). We ran five replicate species tree searches using 
*BEAST (Heled and Drummond, 2010). Convergence was assessed after importing the 
log file from each run into Tracer (Drummond and Rambaut, 2007) and then monitoring 
likelihood and ESS values through the course of the run. To ensure the burn-in was 
sufficient and to allow our computer to efficiently run the program, the first 9.0 X 107 
generations were discarded from each run and then the post burn-in trees and parameter 
estimates were combined from the five independent runs to produce a majority-rule 
consensus tree using LogCombiner (Drummond and Rambaut, 2007). 
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Results 
 

Patterns of sequence variation and individual gene trees 
  

Maximum uncorrected sequence divergence between North American species 
utilized in this study and the two species displaying the divergence are provided for each 
partition (Table 1.1). The most variable partition was Cytb third codon position (52.5%) 
and the least was Tbr1 (2.0%). The divergence reported for the Zic1 locus (Table 3) does 
not include first position codon sites, as this nucleotide position was invariable. The non-
OPM creek chub, Semotilus atromaculatus, was one of the species involved in the 
maximum observed sequence divergence in six of the nine partitions with the exception 
of the Cytb second position, Sh3px3, and Zic1 (Table 1.1).  

The Bayesian 50% majority-rule consensus tree for each individual locus is 
depicted (Figure 1.1). Relationships among the included genera of OPM minnows varied 
between individual gene trees. The non-OPM taxon Semotilus atromaculatus was 
resolved as falling outside of, or within a polytomy that was sister to, all other NA 
lineages sampled in five of the seven individual gene trees. In the Sh3px3 gene tree, 
Semotilus atromaculatus was recovered as sister to Nocomis effusus with low posterior 
support (56%). In the Ptr phylogeny, Semotilus atromaculatus and Nocomis effusus were 
recovered as more closely related to Erimystax + Phenacobius spp. than to other NA 
lineages sampled. This relationship received moderate posterior support (81%) in this 
gene tree. 

The remaining chub lineages, Campostoma oligolepis, Exoglossum laurae, and 
Rhinichthys cataractae, were resolved as diverging early in the majority of the individual 
gene trees (4 of 7) along with Nocomis effusus (Figure 1.1). However, relationships 
between these taxa and the remainder of the OPM taxa included in this study varied 
considerably, often receiving low posterior support, depending on the individual gene 
tree.  For example, Exoglossum laurae is strongly supported (91% posterior) as diverging 
after Nocomis effusus, but before the remainder of the OPM minnows in the Cytb gene 
tree.  However, in the Enc1 gene tree Exoglossum laurae and Rhinichthys cataractae are 
moderately supported as sister taxa (85% posterior).  Relationships between the shiner 
taxa included in this study were also variable. Only two sets of relationships between 
shiner taxa were resolved in more than one individual gene tree. The sister relationship 
between Pimephales notatus and Cyprinella callistia was recovered with 100% and 89% 
posterior support in the Ryr3 and Enc1 gene trees respectively. Luxilus coccogenis and 
Notropis leuciodus were also recovered as each other’s closest relative with 93% and 
65% posterior support in the Zic1 and Cytb gene trees respectively (Figure 1.1). 

Erimystax dissimilis was recovered as sister to Phenacobius spp. with high 
posterior support (>90%) in all individual gene trees except for the generally poorly 
resolved Tbr1 gene tree (Figure 1.1). This clade of Erimystax + Phenacobius was 
recovered as closely aligned with the NA shiners (Cyprinella callistia, Hybopsis 
amblops, Lythrurus fasciolaris, Luxilus coccogenis, and Notropis leuciodus) in four of 
the seven individual gene trees with substantial posterior Bayesian support (>95%). 
Relationships between Erimystax + Phenacobius and the other OPM lineages sampled 
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were poorly resolved in the Ptr and Tbr1 gene trees. However, in the Enc1 gene tree 
Erimystax + Phenacobius was recovered in 53% of post burn-in trees as sister to a 
moderately supported clade (88% posterior) of all remaining OPM minnows (Figure 1.1). 

Phenacobius was significantly supported as monophyletic in 6 of 7 gene trees 
(Figure 1.1). However, there was little agreement among the gene trees concerning the 
phylogenetic relationships within Phenacobius, and many, but not all, of these 
relationships received low posterior support values. The most consistently resolved node 
within Phenacobius was a sister relationship between P. uranops and P. crassilabrum. 
This relationship was recovered in 87%, 97%, and 100% of the post burn-in Ryr3, 
Seh3px3, and Cytb gene trees, respectively. Relationships between the three other 
members of Phenacobius varied considerably across gene trees. Phenacobius catostomus 
and P. mirabilis were recovered as sister lineages with moderate posterior support, 70% 
and 79%, in the Cytb and Ryr3 gene trees (Figure 1.1). The two species P. teretulus and 
P. catostomus were recovered as sister species in the Sh3px3 and Zic1 gene trees with 
86% and 99% posterior probability values respectively. 
 
Multi-locus species trees 
 

In the concatenated analysis, Semotilus atromaculatus was recovered as the 
outgroup to a strongly supported (100% posterior) clade consisting of the remaining NA 
lineages sampled (Figure 1.2A). All but four nodes in the concatenated topology received 
significant posterior support of > 95%. These remaining ambiguous nodes subtended the 
following sets of taxa: 1) Phenacobius mirabilis and P. uranops (54%), 2) P. catostomus 
and P. teretulus (82%), 3) Hybopsis amblops and Rhinichthys cataractae (89%), and 4) 
Exoglossum laurae and Rhinichthys cataractae (88%). The chub genera were recovered 
at the base of the concatenated OPM phylogeny with Nocomis effusus strongly supported 
(100% posterior) as the earliest diverging lineage of the OPM minnows analyzed. This 
divergence was followed by divergence of other chub genera, first Campostoma and then 
a clade of Exoglossum + Rhinichthys, with moderate to strong posterior support (88-
100%) (Figure 1.2A). Within the shiners, Lythrurus fasciolaris was recovered as the 
earliest diverging lineage. Hybopsis amblops and Luxilus coccogenis formed a strongly 
supported clade, while Notropis leuciodus was recovered as sister to a clade of 
Pimephales notatus + Cyprinella callistia. All relationships within the shiners received 
high (98-100%) Bayesian posterior support in the concatenated analysis (Figure 1.2A). 

Phenacobius was strongly supported (100% posterior) as monophyletic and 
Erimystax dissimilis was strongly supported as sister to Phenacobius spp. (100% 
posterior) in the concatenated phylogeny (Figure 1.2A). The clade containing both 
Erimystax + Phenacobius received 100% posterior support as being sister to the shiners 
included in this analysis. Within Phenacobius, a weakly supported (54% posterior) clade 
of P. mirabilis and P. uranops + P. crassilabrum was recovered as sister to P. catostomus 
+ P. teretulus (Figure 1.2A).  
 The topology estimated by *BEAST (Heled and Drummond, 2010) is very similar 
to the concatenated topology (Figure 1.2B). However, posterior support values were 
noticeably lower in this coalescent-based phylogenetic reconstruction. Therefore, all 
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support values including those below 50% on the *BEAST topology are presented as 
maximum clade credibility scores in order to compare with results from the concatenated 
topology. Using the *BEAST (Heled and Drummond, 2010) species tree approach, the 
chubs are recovered as diverging first from the remaining OPM lineages followed by 
divergence of Erimystax + Phenacobius from the shiner clade (Figure 1.2B). However, 
the species tree analysis differed from the concatenated analysis in specific relationships 
both among the chubs and shiners (Figure 1.2). Nocomis effusus was again recovered as 
the earliest diverging OPM lineage, albeit with low posterior support (51%). However, 
Campostoma oligolepis was strongly supported (94% posterior) as sister to the 
Exoglossum + Rhinichthys clade contrary to the concatenated analysis. Within the 
shiners, Lythrurus fasciolaris was recovered as sister to Notropis leuciodus with low 
posterior support (37%). Among the shiners, only the Pimephales notatus + Cyprinella 
callistia clade resolved in the concatenated analysis was again recovered with high 
posterior support (91%) by the *BEAST (Heled and Drummond, 2010) species tree 
analysis (Figure 1.2B). 

Erimystax dissimilis was strongly supported (100% posterior) as sister to a 
strongly supported (100% posterior) monophyletic Phenacobius in the coalescent-based 
species tree (Figure 1.2B). This clade was recovered in 100% of post burn-in species 
trees as more closely related to the shiner taxa utilized. However, within Phenacobius, a 
different set of relationships was resolved by *BEAST (Heled and Drummond, 2010) 
than those recovered in the concatenated analysis (Figure 1.2). Although the two species 
P. uranops and P. crassilabrum were again recovered as sister lineages, this clade was 
recovered as sister to a clade of P. catostomus + P. teretulus in 46% of the post burn-in 
species trees, with P. mirabilis resolved as the earliest diverging member of Phenacobius 
(Figure 1.2B).  
  

Discussion 
 
The individual gene trees of eastern NA OPM minnows were highly discordant. 

The two species tree approaches also produced phylogenetic hypotheses that differed 
topologically in several areas. Additionally, our concatenated phylogeny recovered much 
higher posterior support values as compared to those obtained from the coalescent-based 
species tree strategy. Despite incongruence between the two multi-locus approaches, both 
methods of reconstructing the species tree provided a generally concordant backbone 
topology. Both phylogenies indicated that OPM shiners are monophyletic and nested 
within the OPM clade, making chubs a paraphyletic group. Both species trees also 
resolved Phenacobius + Erimystax as more closely related to the shiner taxa than to the 
chub taxa that we analyzed. The topologies of the two multi-locus trees are likely to have 
been strongly influenced by the phylogenetic signal within the Cytb locus due to its 
greater variability relative to the nuclear loci at this phylogenetic level.  In the future, it 
will be interesting to see if sequencing many more nuclear genes provides a topology that 
is consistently divergent from that of Cytb. We will also be able to determine if these 
nuclear genes converge on a singular set of relationships for regions of the OPM minnow 
phylogeny that are currently difficult to resolve.  
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One area of discordance between the two multi-locus analyses involved 
relationships among the chub genera. For example, relationships among the early 
diverging chub lineages were strongly supported in the concatenated species tree, with 
Nocomis recovered as the earliest diverging OPM taxa. In the coalescent species tree, this 
sister relationship between Nocomis and the remainder of the OPM minnows was not 
well supported. Additionally, Campostoma was recovered as the next chub lineage to 
diverge after Nocomis from the remaining OPM lineages in the concatenated analysis. 
However, in the coalescent approach Campostoma is supported as sister to a clade of 
Exoglossum + Rhinichthys. These sets of relationships among chub lineages differed 
from all previous, large-scale molecular phylogenies of OPM minnows (Simons et al., 
2003; Mayden et al., 2006; Bufalino and Mayden, 2010; Hulsey and Hollingsworth, 
2011), in which Nocomis and Campostoma were hypothesized to be sister lineages. 
Interestingly, the sister group relationship between Exoglossum and Rhinichthys that was 
supported by both of our species tree analyses was also recovered by Simons et al. 
(2003). Mayden et al. (2006) and Hulsey and Hollingsworth (2011) did not include 
Exoglossum species in their analyses, but this relationship was not recovered in the 
phylogeny presented by Bufalino and Mayden (2010). 

Relationships and posterior support values also differed substantially between our 
two multi-locus approaches within the shiner clade. The concatenated analysis produced 
a fully resolved, and well-supported, topology of shiner genera relationships. However, 
the coalescent-based species tree generally provided little support for shiner intergeneric 
relationships. The only significantly supported node within the shiner clade that we 
recovered using both species tree strategies was the sister relationship between 
Pimephales and Cyprinella. Hulsey and Hollingsworth (2011) presented a topology 
containing Pimephales nested within an unsupported, yet monophyletic Cyprinella. 
However, this relationship was not recovered by any of the other aforementioned studies 
of OPM molecular phylogenies (Simons et al., 2003; Mayden et al., 2006; Bufalino and 
Mayden, 2010).  

The lower posterior probability values on the coalescent-based species tree can be 
partially explained by the more parameter-rich phylogenetic model implemented by this 
strategy. The increased number of parameters in the coalescent model results from taking 
into consideration the discordance between individual gene trees. Coalescent methods 
must also estimate parameters affecting coalescent processes such as ancestral population 
sizes (Heled and Drummond, 2010). Concatenation of data ignores this discordance 
between gene trees, estimates less parameters, and can lead to inflated posterior support 
values (Kubatko and Degnan, 2007). The discordance we recovered between our 
individual gene trees suggest that accounting for the coalescent process is likely 
warranted when examining relationships among OPM genera and at multiple other levels 
of phylogenetic inference. 

Despite incongruence and variable support between our two multi-locus 
phylogenetic approaches in several areas of the phylogeny, both analyses recovered the 
strongly supported, sister relationship between Phenacobius + Erimystax and the shiner 
clade.  This relationship is consistent with other recent molecular phylogenies produced 
for this group of fishes (Simons et al., 2003; Mayden et al., 2006; Bufalino and Mayden, 
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2010; Hulsey and Hollingsworth, 2011). However, earlier morphological and molecular 
phylogenies proposed that Erimystax and Phenacobius were more closely related to the 
remaining chub OPM lineages sampled in this study (Mayden, 1989; Coburn and 
Cavendar, 1992; Simons and Mayden, 1997). Erimystax and Phenacobius are benthic 
taxa and generally chub-like in appearance. As such, our species tree analyses suggest 
that chub-like morphology and its association with benthic habitats were common early 
in the history of the eastern NA OPM clade and persisted at least until the divergence of 
Phenacobius + Erimystax from the remaining eastern OPM minnows. Interestingly, the 
number of species in these early diverging chub lineages is relatively low in comparison 
to extant shiner diversity. The pelagic shiners likely arose from ancestral benthic forms 
and subsequently diversified to generate a substantial portion of contemporary OPM 
diversity. Evolution along a benthic/limnetic habitat continuum has been demonstrated to 
be a common axis of diversification between closely related species in several lacustrine 
fish groups (Hatfield and Schluter, 1999; Barluenga et al., 2006; Bertrand et al. 2008). 
This study suggests that this benthic/limnetic axis of diversification could also be an 
important macroevolutionary force in generating species diversity across broader 
phylogenetic scales within lotic environments such as the streams of eastern NA.  
 There was little agreement between gene trees and species trees in resolving the 
phylogenetic relationships within Phenacobius. However, both of our multi-locus 
phylogenetic analyses resolved different relationships than those posited by Dimmick and 
Burr (1999). Their analysis based on morphological and genetic data recovered 
Phenacobius mirabilis as the earliest diverging lineage within Phenacobius, followed in 
order of divergence by P. teretulus, then by P. catostomus, and finally by a clade of P. 
uranops + P. crassilabrum. Both our concatenated and species-tree analyses also 
supported the sister species relationship between P. uranops and P. crassilabrum, the two 
species with abutting allopatric ranges in the upper Tennessee River system. However, 
contrary to the hypothesis of Dimmick and Burr (1999), the species P. teretulus and P. 
catostomus were weakly supported as each other’s closest relative in both of our species 
tree approaches. Furthermore, our concatenated analysis recovered a weakly supported 
sister relationship between P. mirabilis and the clade of P. crassilabrum + P. uranops. A 
lack of phylogenetically informative variation within Phenacobius at the nDNA loci 
utilized could partially explain the incongruence between gene trees and uncertainty in 
our species trees. 

Several of the same regions of the phylogeny that we had trouble resolving in this 
study (relationships between chubs lineages and within the shiners and Phenacobius) 
have differed topologically in previous molecular phylogenetic studies of OPM 
relationships (Simons et al., 2003; Mayden et al., 2006; Bufalino and Mayden, 2010; 
Hulsey and Hollingsworth, 2011). Furthermore, these regions have consistently been 
recovered as areas with particularly short branch lengths between diverging lineages 
(Simons et al., 2003; Mayden et al., 2006; Bufalino and Mayden, 2010; Hulsey and 
Hollingsworth, 2011). These are regions of the phylogeny that have likely experienced 
large amounts of incomplete lineage sorting of slowly evolving genetic markers due to 
short time frames between diversification events. Future studies of OPM minnow 
phylogenetics should aim at generating sequence data from faster evolving nuclear loci, 
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and employ coalescent-based species tree methods, in order to tease apart relationships in 
these problematic regions of the OPM phylogeny. 

With the increasing availability of genomic data from across the tree of life, the 
ability to analyze DNA sequence data for multiple loci will no longer be limiting to 
phylogenetics. A transition from single locus to multi-locus, coalescent-based 
phylogenetics is well underway (Maddison and Knowles, 2006; Edwards et al., 2007; 
Degnan and Rosenberg, 2009; Kubatko et al., 2009; Liu et al., 2009; Heled and 
Drummond, 2010; Hulsey et al., 2011). Only by gathering data from independent genetic 
regions across the genomes of organisms, may we gain a better understanding of the 
phylogenetic relationships recorded in each locus. Individual gene phylogenies may then 
be analyzed separately under coalescent-based methods in order to approximate the 
distribution of species trees suggested by individual locus data. Future studies of 
phylogenetics of the hyper-diverse North American OPM minnows should give less 
weight to phylogenetic hypotheses based on single genetic partitions and concatenated 
multi-locus matrices and place more emphasis on producing phylogenies that explicitly 
model the coalescent process. 
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Abstract 
 
Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in 

freshwater fishes inhabiting lentic environments. In this study, we examined the influence 
of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and 
nDNA phylogenies for eastern North America’s most species-rich freshwater fish clade, 
the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to 
identify the earliest benthic to pelagic transition in this group and generated fossil-
calibrated estimates of when this shift occurred. This transition could have represented 
evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated 
lineage accumulation after this historical habitat shift. Ancestral state reconstructions 
inferred a similar and concordant region of our mtDNA and nDNA based gene trees as 
representing the shift from benthic to pelagic habitats in the OPM clade. Two 
independent tests conducted on each gene tree suggested an increased diversification rate 
after this inferred habitat transition. Furthermore, lineage through time analyses indicated 
rapid early cladogenesis in the clade arising after the benthic to pelagic shift. A burst of 
diversification followed the earliest benthic to pelagic transition during the radiation of 
OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has 
likely influenced the generation of biodiversity across disparate freshwater ecosystems. 

Introduction 
 

Freshwater fish are frequently thought to diversify along a benthic (bottom) to 
pelagic (mid-water) habitat axis (Robinson and Wilson, 1994; Willacker et al., 2010; 
Hulsey et al., 2013). However, the generality of this pattern has largely been inferred 
from fishes that inhabit lentic, or lake-like, environments, such as sticklebacks, perch, 
arctic charr, and cichlids (Robinson and Wilson, 1994; Willacker et al., 2010; Hulsey et 
al., 2013; Skúlason et al., 1989; Schluter, 1993; Svanbäck and Eklöv, 2003; Meyer, 
1990). Furthermore, most of these studies have examined microevolutionary processes of 
interspecific divergence. It remains unclear if benthic/pelagic divergence has commonly 
influenced macroevolutionary patterns within large clades of fishes inhabiting 
ecologically complex lotic, or riverine, systems. 

Cyprinid fishes have radiated extensively within flowing water environments 
across eastern North America to exploit both benthic and pelagic habitats. Therefore, this 
group should provide an ideal study system to test whether the benthic to pelagic habitat 
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axis drives macroevolution in a species-rich group of fishes. Previous phylogenetic 
analyses have generated a general framework for understanding relationships among 
these fishes and have shown that most (>95%) of the cyprinid species inhabiting eastern 
North America form a strongly supported clade (Mayden, 1989; Simons et al., 2003; 
Bufalino and Mayden, 2010; Houston et al., 2010; Hollingsworth and Hulsey, 2011). 
This clade is united by the osteological character of a small opening at the base of the 
skull known as the open posterior myodome (OPM). Previous studies have also generally 
agreed that a small clade of seven species, with two distributed in eastern North America 
(Clinostomus elongatus and C. funduloides) and five endemic to western North America 
(Iotichthys phlegethontis, Mylocheilus caurinus, Pogonichthys macrolepidotus, 
Richardsonius balteatus, and R. egregius) form the sister group to a much larger group of 
species that is primarily confined to eastern North America (Simons et al., 2003; Bufalino 
and Mayden, 2010; Houston et al., 2010). Within this eastern radiation a strongly 
supported clade of around 200 predominantly pelagic species that display terminal 
mouths and feed generally from the mid-water is consistently recovered as arising 
following the initial divergence of several depauperate and strictly benthic lineages that 
display inferior mouths and often posses maxillary barbels (Simons et al., 2003; Bufalino 
and Mayden, 2010; Houston et al., 2010). However, phylogenetic ambiguity remains in 
the branching order of these early benthic lineages, and the phylogenetic affinities of 
many species that are thought to lie within the predominately pelagic clade have not been 
resolved (Mayden, 1989; Simons et al., 2003; Bufalino and Mayden, 2010; Houston et 
al., 2010; Hollingsworth and Hulsey, 2011). Therefore, a much more exhaustively 
sampled phylogeny combined with data on benthic/pelagic habitat use should facilitate a 
more robust phylogenetic examination of whether this ecological axis has influenced 
diversification within OPM cyprinids. 

Habitat divergence clearly promotes coexistence in many lotic systems. For 
instance, OPM cyprinids often form complex communities consisting of up to 15 species 
that partition the water column into vertically stratified foraging zones (Page and Burr, 
2011; Baker and Ross, 1981; Gorman, 1988a,b). Furthermore, small, insectivorous or 
omnivorous fishes from other groups are relatively rare in the pelagic zone of rivers and 
streams in eastern North America (Page and Burr, 2011). Therefore, the first transition 
from a benthic to pelagic habitat in OPM cyprinids likely represented the invasion of a 
sparsely occupied adaptive zone that could have resulted in a period of accelerated 
diversification (Simpson, 1953; Schluter, 2000; Losos, 2010; Hulsey and Hollingsworth, 
2011). Given the apparent influence of the benthic/pelagic axis on community structure, 
mapping this habitat divergence onto the OPM phylogeny could highlight its role in 
generating species diversity. 

Hypotheses addressing the ecological mechanisms that have influenced historical 
patterns of diversification can now be examined using robustly sampled molecular 
phylogenies and applying methods that examine phylogenetic tree shape (Glor, 2010). 
Acceleration in diversification rate is often thought to result from rapid divergence 
following invasion of open adaptive zones in groups ranging from vertebrates to 
prokaryotes (Harmon et al., 2008; Rabosky and Lovette, 2008; Dumont et al., 2012; 
Fordyce, 2010; Morlon et al., 2012). Yet within freshwater fishes, several tests for 
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ecologically associated bursts of diversification have failed to reject a constant rate of 
cladogenesis (Day et al., 2008; Hulsey et al., 2010; Day et al., 2013). However, OPM 
cyprinids could have experienced an exceptional period of lineage diversification 
following their initial transition from benthic to pelagic habitats. 

In this study, we generated the most thoroughly sampled, species-level 
phylogenetic hypotheses for OPM cyprinids using DNA sequence data from both a 
mitochondrial and nuclear marker. We then used ancestral state reconstruction and fossil-
calibrated divergence time estimates to infer the history of benthic/pelagic habitat use 
across our phylogenetic reconstructions. Using several independent methods, we 
addressed the question: Was the first major evolutionary shift from benthic to pelagic 
habitats in eastern North America followed by a period of accelerated lineage 
diversification in OPM cyprinids? 

Methods 
 
Phylogenetic and divergence time analyses 
 

We used a combination of FishBase (2000) and Page and Burr (2011) to generate 
a list of the currently recognized species of OPM cyprinids. Using DNA sequences 
downloaded from GenBank combined with new sequence data, we constructed manually 
aligned matrices for the mitochondrial Cytb and nuclear Rag1 loci. To obtain new 
sequence data, we first used DNAeasy Tissue Extraction Kits (Qiagen, Valencia, CA) to 
extract genomic DNA from tissue samples. Cytb was amplified using primers from 
Schmidt and Gold (1993). Rag1 was amplified using primers from Lopez et al. (2004). 
DNA sequencing was performed at the University of Washington’s High Throughput 
Genomics Unit using the PCR primers and an internal primer to sequence Rag1, IF4: 5’-
TGAGAAGGCAGTGAGGTTTT-3’. We created contiguous sequence files from 
directional sequence reads using Sequencher 4.8 (Gene Codes, Ann Arbor, MI, USA) and 
coded heterozygous sites in the Rag1 alignment as ambiguous. The Cytb alignment (1060 
-1140 bp) included data for 223 of the 238 (94%) extant OPM taxa. The Rag1 alignment 
(1440 - 1518 bp) included data for 187 of the 238 (79%) extant OPM taxa. Our sampling 
includes taxa from throughout the geographic range of the clade with no obvious 
sampling bias between benthic and pelagic taxa and is given in the attachments (File 2.1). 
We deposited all new sequence data on GenBank [GenBank: KC763652-KC763776] 
(File 2.1). This includes 47 novel Cytb sequences and 78 novel Rag1 sequences.  

We estimated the phylogenies and divergence times for each of our two loci 
separately utilizing BEAST v1.7.1 (Drummond et al., 2012). We first defined codon 
positions in our two alignments using MacClade v4.07 (Maddison and Maddison, 2000) 
and then assigned the best model based on AIC scores calculated by jModelTest v0.1 
(Posada, 2008) to each gene’s codon sites in BEAUti v1.7.1 (Drummond et al., 2012). 
Substitution rate, rate heterogeneity, and base frequency parameters were treated as 
unlinked across partitions. We used a birth-death speciation prior for our tree models. 
The OPM clade containing Mylocheilus caurinus, Pogonichthys macrolepidotus, 
Clinostomus funduloides, Clinostomus elongatus, Iotichthys phlegethontis, Richardsonius 
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balteatus, and Richardsonius egregious was included as the outgroup to the eastern OPM 
radiation in our phylogenetic analyses (Simons et al., 2003; Bufalino and Mayden, 2010; 
Houston et al., 2010). We conducted a single heuristic likelihood tree search on each 
gene alignment using RAxML v7.0.4 (Stamatakis et al., 2005) to generate starting trees 
for our MCMC runs. We also concatenated the two alignments and ran a phylogenetic 
analysis on this combined matrix using the same models specified in the individual gene 
analyses. 

To estimate divergence times within the OPM radiation, we used an uncorrelated 
lognormal molecular clock model to temporally calibrate our two gene trees and 
concatenated phylogeny. Based on previous results (Simons et al., 2003; Bufalino and 
Mayden, 2010; Houston et al., 2010), we constrained the monophyly of Mylocheilus 
caurinus and Pogonichthys macrolepidotus and then defined a fossil-calibrated prior 
distribution on the age of their MRCA. The fossil species Mylocheilus whitei was used to 
infer a minimum age estimate for this split. This fossil is a pharyngeal arch with a short 
anterior limb and thick internal ridges displaying small canals and pores, as well as 
molariform dentition, which are characters that are diagnostic for Mylocheilus (Smith and 
Cossel, 2002). The fossil was recovered from a geological layer representing the 
Clarendonian/Hemphillian boundary at approximately 9 million years ago (mya) (Smith 
and Cossel, 2002). We therefore specified a lognormal prior for the MRCA of 
Mylocheilus caurinus and Pogonichthys macrolepidotus with a mean and standard 
deviation of 1 mya and offset by 9 mya. The root node ages of our trees were constrained 
using a uniform prior with an upper bound of 75 mya based on recent MRCA age 
estimates of Cyprinidae (Near et al., 2012). Our MCMC chains were run for 2.0 X 107 

generations, with trees and parameter estimates logged every 1.0 X 104 generations. We 
then ran each MCMC search five times using the CIPRES Science Gateway (Miller et al., 
2010). The first 10% of each run was discarded as the burn-in. Subsequently, we 
examined ESS values in TRACER v1.5 (Rambaut and Drummond, 2007) over the 
remainder of the run to ensure convergence of parameter estimates. We combined log and 
tree files using LogCombiner v1.7.1 and Tree Annotator v1.7.1 (Drummond et al., 2012) 
to calculate the maximum clade credibility (MCC) tree for each locus and the 
concatenated analysis. All trees are deposited in TreeBASE 
(http://purl.org/phylo/treebase/phylows/study/TB2:S15034). 

 
Habitat designations and ancestral state reconstruction 

 
To estimate the most likely ancestral node representing the first benthic to pelagic 

shift of OPM cyprinids in eastern North America, we first designated extant taxa as 
benthic (0) or pelagic (1) based on a combination of morphological and ecological 
characteristics (File 2.1). Taxa coded as benthic display some combination of the 
following characteristics: 1) mouth is located ventrally 2) possess barbels 3) exhibit a 
spiraled gut 4) build benthic nests and 5) feed primarily on benthic food items. We coded 
taxa that do not display any of these traits as pelagic. We then used Pagel’s (1994) single-
rate Markov model of binary character evolution and assumed equal transition 
probabilities to reconstruct benthic/pelagic ancestral states using the package ape v3.0 
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(Paradis et al., 2004) in R (R development core team, 2013). We considered the most 
ancestral node inferred to have a greater than 50% probability of being pelagic to 
represent the initial benthic to pelagic transition in our phylogenies. This method of 
habitat coding and ancestral state reconstruction provided a conservative approach for 
inferring the phylogenetic placement of the benthic/pelagic shift on our gene trees. All 
taxa that could possibly be benthic were coded as such. Furthermore, all taxa diverging 
before the ‘transition node’ are unambiguously benthic. Therefore, any possible 
alternative codings would include more pelagic taxa in the focal clade and would result in 
the same nodes in our gene trees being recovered as the ‘transition node’. 
 
Diversification rate analyses 
 

We employed two strategies to test for a period of accelerated diversification 
following the first benthic to pelagic transition in the OPM radiation of eastern North 
America. First, we used the entire Cytb gene tree and conducted the relative cladogenesis 
(RC) test (Purvis et al., 1995) to identify significantly diverse subclades using the R 
package geiger v1.0 (Harmon et al., 2008). Using a homogeneous model of cladogenesis, 
this test examines the number of lineages alive just before a node and the number of 
lineages descending from the node and calculates the probability that the node has as 
many descendants as it has empirically (Purvis et al., 1995; Harmon et al., 2008). We also 
used the parametric rates comparison (PRC) test of Shah et al. (2013) implemented in the 
R package iteRates v3.0. This method iterates across all subtrees within the phylogeny 
that contain at least 6 edges, fits distributions to the vector of branch lengths within each 
subtree, and compares the likelihood that the vector of branch lengths from each subtree 
is best modeled as being drawn from the same, or different, distribution as the remainder 
of the tree. We fit an exponential distribution to our vector of branching times in the PRC 
analysis. Both of these methods, RC and PRC, assume complete taxon sampling [Purvis 
et al., 1995; Shah et al., 2013). Therefore, we only conducted these tests on the more 
robustly sampled Cytb MCC gene tree. Both taxonomic inflation and using a single 
individual per species can bias these types of analyses because of obscured patterns of 
cladogenesis at the tips of the gene tree (Rabosky and Lovette, 2008; Isaac et al., 2004). 
Therefore, we truncated the most recent five million years from the Cytb tree before 
conducting these tests using the treeTrim function in iteRates v3.0. 

We next focused on the predominately pelagic clade subtending the ‘transition 
node’, which we refer to as the ‘focal clade’. We used several independent analyses to 
test for an early period of rapid cladogenesis in this clade using a combination of the R 
packages geiger v1.0 (Harmon et al., 2008) and laser v2.2 (Rabosky, 2006). We first 
used Pybus and Harvey’s (2000) constant rates test on our two focal clade phylogenies. 
This test is frequently called the γ test based on its test statistic, γ, which is distributed as a 
standard normal variable under a pure-birth process (Pybus and Harvey, 2000). Values of 
γ < -1.645 are considered significant deviations from pure-birth with diversification 
events clustered towards the base of a tree. 

However, our phylogenies only included 91% (Cytb) and 74% (Rag1) of the 
recognized species diversity in the focal clade and incomplete taxon sampling will bias 
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our calculations of γ because incomplete lineage sampling prunes tips from the tree, 
thereby inflating the branch lengths in the recent past (Pybus and Harvey, 2000). To 
correct for this bias, we employed Pybus and Harvey's (2000) Monte Carlo constant rates 
test (MCCR test), where the critical value for rejecting a constant rate (at α = 0.05) is 
calculated by examining the distribution of γ for simulated trees that include incomplete 
taxon sampling. Our null distribution of γ was calculated from 1 million simulated pure-
birth trees of 192 taxa, or the number of described species that belong to the genera 
comprising the focal clade. Our simulated trees were corrected for the number of taxa 
missing in our reconstructed Cytb and Rag1 phylogenies by randomly pruning 18 and 50 
taxa from each simulated tree, respectively. All phylogenetic simulations used a 
modification of the birthdeath.tree function in geiger v1.0 to ensure that the trees had the 
desired statistical properties [see (Fordyce, 2010) for details]. Additionally, we calculated 
the 'tree deviation' statistic (Fordyce, 2010), which can have greater power to detect 
accelerated diversification early in the history of a tree by examining if lineages have 
accumulated at a greater rate than predicted by a null distribution. The null distribution 
for the 'tree deviation' was calculated from 1 million simulated pure-birth trees with 
incomplete taxon sampling. We also generated a lineage through time plot (LTT) for our 
focal clade based on the more thoroughly sampled Cytb MCC gene tree to compare to a 
distribution of 10,000 simulated pure-birth LTT plots. 

We then used a likelihood-based approach to test for a deviation from a constant-
rate pattern of diversification in the focal clade. We fit two constant-rate models (pure-
birth, birth-death) and three variable-rate models (density dependent logistic, density 
dependent exponential, and Yule 2-rate) to the vector of branching times from the two 
focal clade phylogenies. To determine the best-fit model for our data and to account for 
incomplete taxon sampling, we used the method proposed by Rabosky [56]. This method 
compares the observed ∆AIC between the best-fit constant-rate model and the best-fit 
variable-rate model of a focal tree to the 0.95 quantile of a null distribution of ∆AIC 
values calculated from 1 million simulated pure-birth phylogenies with incomplete 
lineage sampling. The constant rates test (Pybus and Harvey, 2000), tree deviation 
(Fordyce, 2010), and model fitting approach of Rabosky (2006) were applied to the MCC 
gene trees for Cytb and Rag1, and also across all post burn-in trees from the BEAST 
analysis. 

Results 
 
Phylogenetic reconstruction  
 

Phylogenetic analysis of the cytochrome b (Cytb) and recombination activating 
gene 1 exon 3 (Rag1) loci provided substantial resolution of relationships among 
members of the OPM radiation. These maximum clade credibility trees (MCC) from 
these analyses are given in the attachments (File 2.2). Both MCC gene trees and the MCC 
concatenated analysis included moderately to well-supported clades (>90% posterior 
probability (pp)) containing the benthic genera Campostoma, Exoglossum, Nocomis, and 
Rhinichthys as the earliest diverging OPM lineages in eastern North America (Figure 2.1 
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and File 2.2). Both gene trees recovered the remaining eastern benthic genera Dionda, 
Erimystax, Macrhybopsis, Phenacobius, and Platygobio as diverging before the 
diversification of the strongly supported (100% pp) focal clade (see Methods) that is 
dominated by pelagic species and accounts for approximately 80% of extant OPM 
diversity. This general topology was strongly supported in the concatenated analysis as 
well (Figure 2.1). Some phylogenetic relationships within the predominately pelagic focal 
clade were variable between our two gene trees and the concatenated analysis, with many 
clades receiving varying levels of posterior support. For instance, we consistently 
recovered poorly resolved nodes and short internode branch lengths at the base of the 
focal clade. 

 
Ancestral state reconstruction and divergence time estimates 
 

Ancestral state reconstruction points to a similar node in both of our gene trees as 
representing the initial shift from benthic to pelagic habitat utilization in the eastern OPM 
radiation (Figure 2.2 and File 2.2). In the more thoroughly sampled Cytb gene tree, this 
shift is inferred to have occurred along a branch leading to the most recent common 
ancestor (MRCA) of a strongly supported focal clade. We considered the node 
representing this MRCA as the transition node and conducted our tests for variation in 
diversification rate and an excess of early lineages after the habitat shift with respect to 
this node. In the Rag1 gene tree, we recovered that the shift occurred at a slightly more 
ancestral node. This node was subtended by a clade containing the same set of genera as 
the Cytb focal clade plus its sister group Macrhybopsis spp. + Platygobio gracilis. 
However, this node received poor support (62% pp) in the Rag1 gene tree. Furthermore, 
the subsequent node in the Rag1 tree that was subtended by the same set of genera as the 
Cytb focal clade was strongly supported (100% pp) and had a higher likelihood of being 
pelagic. Preliminary analyses suggested that using this node as opposed to its poorly 
supported ancestral node had little impact on our calculation of diversification rate and 
tree shape statistics. Therefore, we considered this to be the transition node for the Rag1 
topology as well. We estimated the age of the transition nodes to be 33 mya (95% highest 
posterior density: 16-47 mya) based on Cytb (Figure 2.3), 27 mya (95% highest posterior 
density: 16-61 mya) based on Rag1. 

Following the initial benthic to pelagic shift early in the history of the OPM 
radiation, ancestral state reconstruction recovered several instances of the re-evolution of 
benthicity within the pelagic focal clade (Figure 2.2). Examples of lineages that have re-
evolved benthic specialization from within this pelagic clade include the barbeled genus 
Hybopsis and a sister species pair of barbeled Cyprinella, C. labrosa and C. zanema. 
Based on the more thoroughly sampled Cytb MCC topology we recovered approximately 
6 transitions back to benthic habitat use during the history of the clade. After these 
transitions back to benthicity, transitions back to pelagic habitats were very rare (Figure 
2.2). 
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Diversification rate analyses  
 

Our strategies used to examine topological imbalance and variation in 
diversification rate across the entire OPM phylogeny supported the hypothesis that there 
was accelerated diversification following the initial benthic to pelagic transition in the 
OPM radiation. The relative cladogenesis (RC) test identified 15 nodes associated with 
significantly diverse subclades in our Cytb MCC gene tree (Figure 2.2A). These nodes 
included two that are immediately ancestral to the transition node at the base of the focal 
clade, the transition node itself, and 12 consecutive descendent nodes. The parametric 
rates comparison (PRC) analysis marginally supported a model with a higher 
diversification rate in the predominately pelagic focal clade relative to the remainder of 
the Cytb gene tree (p = 0.06) (Figure 2.3A). We also found that three nodes immediately 
following the transition node represented clades that were significantly more likely to be 
modeled as having a greater diversification rate relative to the remainder of the tree at α = 
0.1. 

Likewise, our examinations of deviations from a constant rate of cladogenesis as 
compared to randomly generated pure-birth topologies also supported the hypothesis that 
there was a burst of diversification coincident with the initial shift to a pelagic habit. The 
γ statistic was significant for our focal clade in both the Cytb and Rag1 MCC gene trees 
(Table 2.1) indicating an excess of early lineages in this clade. The Cytb LTT plot for the 
focal clade lay largely outside the 95% confidence intervals for nearly the entire history 
of 10,000 simulated pure-birth trees (Figure 2.3B). The Monte Carlo constant rates 
(MCCR) analyses indicated a strong deviation from a pure-birth process based on Cytb 
and the MCCR analyses marginally supported this deviation in the Rag1 gene tree (Table 
2.1). Tree deviation scores were also significant on our two gene trees, again indicating 
an excess of early lineages in our focal clade (Table 2.1). Finally, variable-rate models 
provided a significantly better fit than constant-rate models to the observed vectors of 
branching times within the predominately pelagic focal clade (Table 2.1). We obtained 
similar results when we applied these test to the 9005 post burn-in trees (Figure 2.4). 
 

Discussion 
 

The initial evolutionary transition from benthic to pelagic habitats by OPM 
cyprinid fishes likely had a significant impact on the diversification of this hyper-diverse 
clade of fishes. Our two phylogenetic hypotheses, coupled with ancestral state 
reconstructions and divergence time estimates, indicated that benthic forms dominated 
the early history of the eastern OPM radiation. This group then gave rise to a 
predominately pelagic clade that began diversifying around 30 mya and contains ~80% of 
extant OPM species. Our tests for increased diversification rate all highlighted the 
particular region in the phylogeny where the initial benthic to pelagic habitat shift is 
inferred to have occurred. With our thoroughly sampled phylogenies, we were also able 
to reject a pattern of constant-rate cladogenesis in favor of models that are consistent with 
a period of accelerated diversification after this habitat shift. As such, this initial benthic 
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to pelagic transition by OPM cyprinids likely represented evolution into an open adaptive 
zone that resulted in a period of rapid lineage accumulation (Simpson, 1953; Schluter, 
2000; Losos, 2010). 

In the area of the phylogeny immediately following this inferred benthic to 
pelagic transition, we were not able to confidently resolve relationships among lineages. 
This region has often been unresolved in other studies of OPM evolution (Mayden, 1989; 
Simons et al., 2003; Bufalino and Mayden, 2010; Houston et al., 2010; Hollingsworth 
and Hulsey, 2011). The explosive diversification in this region of the tree likely has 
contributed to this phylogenetic ambiguity (Hollingsworth and Hulsey, 2011). Future 
phylogenetic studies based on large, multi-locus datasets that utilize a species tree 
framework could potentially help to resolve these problematic areas of the OPM 
phylogeny (Hollingsworth and Hulsey, 2011). However, determining the exact branching 
order of lineages whose divergence is coincident with major ecological shifts and periods 
of rapid diversification might be generally difficult. 

The major shift from benthic to pelagic habitats in OPM cyprinids should not be 
considered in isolation from the other freshwater fish diversity in eastern North America. 
The diversification in the predominately pelagic focal clade that began around 30 mya 
coincides with the estimated age of the darter (Percidae: Etheostomatinae) radiation 
(Near et al., 2011). Darters are another endemic North American freshwater group of 
around 250 benthic fishes that often co-occur with OPM species (Page and Burr, 2011; 
Near et al., 2011). Cyprinids and darters together dominate the abundance and species 
diversity in most eastern North America fish assemblages (Page and Burr, 2011). With 
the exception of a few omnivorous species, OPM cyprinids and darters are both primarily 
insectivorous and compete for similarly sized prey (Knight et al., 2008). Therefore, darter 
diversification might have further reduced eco-evolutionary opportunities within benthic 
habitats and influenced the shift of the OPM lineage into the relatively competitor-free 
pelagic zone. A macroevolutionary interaction between these two lineages could have 
contributed to the observed pelagic burst of OPM diversity. 

Interspecific competition, however, might not have been the only mechanism 
driving the rapid diversification of pelagic OPM cyprinids. For instance, there is also an 
increase in the presence of male nuptial coloration and sexual dichromatism in the more 
visually dependent pelagic OPM species relative to their benthic relatives that rely more 
extensively on chemical cues during foraging (Page and Burr, 2011). Given this, an 
increase in visually mediated sexual selection could have also played a role in the 
diversification of the pelagic OPM cyprinids (Barraclough et al., 1995; Kazancıoğlu et 
al., 2009). Additionally, an interaction between ecological opportunity and sexual 
selection might have driven the increased rate of lineage accumulation that followed the 
first benthic to pelagic transition in this group (Wagner et al., 2012). 

Evolution along the benthic/pelagic habitat axis appears to have played a critical 
role in generating the impressive species numbers of OPM cyprinids inhabiting the lotic 
systems of eastern North America. Future studies of other freshwater fish groups that 
combine ecological data with more thoroughly sampled phylogenies and examinations of 
temporal shifts in diversification could provide additional evidence that divergence along 
this axis has repeatedly influenced fish macroevolution. Our results indicate that the 
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influence of this habitat axis is clearly not restricted to lentic environments (Robinson 
and Wilson, 1994; Willacker et al., 2010; Hulsey et al., 2013; Skúlason et al., 1989; 
Schluter, 1993; Svanbäck and Eklöv, 2003; Meyer, 1990). Instead, the benthic/pelagic 
axis of diversification appears to be a ubiquitous generator of biodiversity across 
disparate freshwater ecosystems. 
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Abstract 
 

The theory of adaptive radiation predicts simultaneous bursts of cladogenesis and 
phenotypic evolution driven by differential exploitation of a set of resources. Previous 
studies have rarely recovered evidence for both. Furthermore, these studies generally fail 
to test for an association between phenotypic variation and resource partitioning. 
Building on the results of previous work that suggest a period of rapid diversification 
followed a major benthic to pelagic transition in open posterior myodome (OPM) 
cyprinid fishes, we use a multi-faceted approach to further test for evidence of an 
adaptive radiation along this ecological axis in this diverse clade. We recover a strong 
relationship between variation in an eco-morphological trait, jaw protrusion angle (JPA), 
and vertically segregated foraging zones within a complex OPM assemblage. We then 
identify a number of individual morphological traits comprising the cyprinid jaw 
apparatus that are highly correlated with JPA. Model fitting analyses of morphological 
rate variation suggest that a number of these traits experienced periods of rapid 
diversification following the benthic to pelagic shift in the OPM clade. Therefore, this 
ecological axis likely provided the setting for an adaptive radiation of freshwater fishes 
that diversified in trophic morphology to variably exploit habitat space throughout the 
water column.  
 

Introduction 
 

Ecological opportunity can fuel adaptive radiations and result in simultaneous 
periods of accelerated lineage diversification and explosive phenotypic evolution 
(Simpson, 1944, 1953; Schluter, 2000; Yoder et al., 2010; Losos, 2010). One potential 
source of ecological opportunity is entrance into an open adaptive zone (Simpson, 1944, 
1953). There are a number of studies that suggest that phylogenetic bursts of 
diversification have followed the evolution of a clade into a novel adaptive zone (e.g., 
Harmon et al., 2008a; Fordyce, 2010). However, despite the apparent prevalence of early 
periods of exceptional lineage diversification across disparate clades, there appear to be 
few examples of coincident burst of phenotypic evolution that are expected under the 
model of adaptive radiation (Simpson, 1944, 1953; Harmon et al., 2010). Furthermore, 
previous studies have generally failed to explicitly link phenotypic traits with resource 
partitioning  and to provide convincing evidence for periods of rapid evolution in those 
traits that are coincident with rapid lineage diversification (Dumont et al., 2012).  

An earlier study on the evolutionary ecology of the North American endemic, 
open posterior myodome (OPM) cyprinid fishes presented evidence for a burst in lineage 
diversification after a major shift from benthic to pelagic habitats early in the history of 
this clade (Hollingsworth et al., 2013). Although divergence along a benthic/pelagic axis 
seems to be ubiquitous in lentic fishes (Robinson and Wilson, 1994; Schluter, 2000; 
Willacker et al., 2010; Hulsey et al., 2013), it remains to be tested whether this habitat 
gradient could drive adaptive radiations in diverse clades of lotic, freshwater fishes. For 
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instance, for a lineage of historically benthic fishes, the water column could serve as a 
novel, third dimension of habitat space that is capable of being further subdivided into 
vertically segregated foraging zones (DeVries, 1988; DeVries et al., 2012). However, it is 
not clear what phenotypic variation might allow for this resource partitioning and, 
therefore, be expected to have experienced a burst of evolution following the pelagic shift 
if this ecological transition triggered an adaptive radiation of OPM cyprinids.  

One possible trait is jaw protrusion angle (JPA). Teleost fishes have evolved the 
ability to protrude their oral jaws during feeding at least three independent times, 
including within Cypriniformes (Westneat, 2004). Jaw protrusion, in turn, has been 
suggested to be a key innovation facilitating the ecological and phylogenetic 
diversification of disparate fish lineages (Schaffer and Rosen, 1961; Lauder, 1982; Ferry-
Graham and Lauder, 2001; Konstantinidis and Harris, 2011). A commonly held, though 
largely untested, assumption regarding fish ecomorphology is that JPA influences a fish’s 
ability to exploit food items in different parts of the water column (Alexander, 1966, 
1967; Gatz, 1979). However, quantification of JPA and comparative analyses of teleost 
JPA evolution have received surprisingly little attention in the literature (Cochran-
Biederman and Winemiller, 2010). Therefore, the morphological, mechanical, and 
behavioral factors influencing the evolution of this complex ecomorphological trait and 
its relationship to habitat partitioning in diverse fish assemblages remain uncertain.  

This is particularly true for cypriniform fishes that display a unique mechanism of 
jaw protrusion that is quite divergent from that of well-studied perciform fishes in two 
main ways (Alexander, 1966, 1967; Motta, 1984; Hulsey et al., 2010). First, jaw 
protrusion is driven in Cypriniformes through the mechanics of a novel, cranial 
ossification known as the kinethmoid (Hernandez et al., 2007). The kinethmoid attaches 
via ligaments to the palantine, maxilla, premaxilla, and neurocranium, and rotates 90-180 
degrees dorsoventrally during protrusion of the premaxilla  (Alexander, 1966; Ballintijn 
et al., 1972; Hernandez et al., 2007; Staab et al., 2012). Secondly, in perciforms all three 
major divisions of the adductor mandibulae (AM) muscle complex function only to close 
the jaws or during respiration (Osse, 1969). In cypriniforms, conversely, the AM complex 
is directly involved in jaw protrusion as the adduction of the maxilla by AM1 enhances 
the dorsoventral flipping of the kinethmoid that results in ventrally-directed protrusion of 
the premaxilla (Ballintijn et al., 1972; Hernandez et al., 2007). However, the muscle 
activity patterns operating during cypriniform jaw protrusion are complex and debated 
(Alexander, 1966; Ballintijn et al., 1972; Motta, 1984), and their effect on JPA is also 
unclear. 

Despite the assertion by some authors that this mechanism of jaw protrusion is 
constrained towards higher values of JPA (Ballintjin et al., 1972), or more ventrally-
directed jaw protrusion, OPM species are characterized by a large degree of interspecific 
variation in this trait. Species range from those that have inferior mouths that protrude 
towards the substrate and suggest benthic feeding to species with more terminal jaws that 
might be expected to feed higher in the water column (Page and Burr, 2011). 
Furthermore, previous studies on community assembly provide evidence that 
interspecific partitioning of vertically stratified foraging zones is a possible mechanism 
that promotes cyprinid co-occurrence in exceptionally diverse freshwater fish 
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assemblages across eastern North America (Mendelson, 1975; Baker and Ross, 1981; 
Gorman, 1988a,b). However, it has never been directly tested whether JPA and preferred 
foraging height in the water column are evolutionarily correlated. In the first part of this 
study, we perform the first explicit test of this relationship among 15 OPM species that 
inhabit the Little River, Blount Co., TN. If variation in JPA has evolved to more 
efficiently exploit vertical subdivisions of the water column, then recovering evidence of 
a burst of JPA diversification after the pelagic shift would suggest this trait played a key 
role in allowing this clade to adaptively radiate along this three-dimensional, ecological 
axis.  

In the second part of this study we attempt to identify individual muscoskeletal 
components of the cyprinid oral jaw apparatus that are evolutionarily correlated with JPA 
to serve as proxies for JPA in further analyses. We then use a model fitting approach to 
evaluate the support for a period of exceptionally rapid diversification in these correlates 
of JPA immediately following the pelagic shift. This approach has two advantages. First, 
given the relative ambiguity regarding how the mechanism of cypriniform jaw protrusion 
operates (Alexander, 1966; Ballintijn et al., 1972; Motta, 1984), this could serve to 
identify characters whose evolution is involved in changing the angle of this protrusion. 
Secondly, these muscoskeletal measurements can be obtained from cleared and stained 
specimens, allowing for increased taxon sampling over JPA measurements that have to 
be obtained from live specimens. We identified six traits that might be expected to show 
significant correlations with JPA based on our limited knowledge of the mechanistic 
underpinnings of cypriniform jaw protrusion. These characters are AM1 mass, AM2 
mass, AM3 mass, lower jaw length, ascending process (AP) of the premaxilla length, and 
kinethmoid length (Ballintijn et al., 1972; Hernandez et al., 2007; Hulsey et al., 2010; 
Staab et al., 2012). 

 To address the hypothesis that OPM cyprinids adaptively radiated after invading 
the previously unoccupied pelagic zone by vertically partitioning that new habitat space, 
we conducted three complimentary analyses. We first examined the association between 
JPA and preferred foraging height in the water column among a diverse community of 
OPM cyprinids. We then tested for a significant evolutionary correlation between a 
number of individual muscoskeletal traits and JPA in attempt to identify characters whose 
evolution explains variation in JPA. Finally, we assess the fit of alternative models of the 
rates of morphological evolution in these proxies for JPA before and after the major 
benthic to pelagic transition in the OPM clade (Hollingsworth et al., 2013). This study 
represents one of the most robust investigations of an adaptive radiation to be conducted 
(Dumont et al., 2012) and the results should elucidate the influence of the frequently cited 
benthic/pelagic axis of diversification on the macroevolution of a speciose clade of lotic, 
freshwater fishes. 
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Methods 
 

Foraging height in the water column and JPA 
 

In order to test for a significant evolutionary relationship between JPA and 
preferred foraging height in the water column, we quantified these two variables for 15 
OPM species that co-occur in the Little River in Blount Co., TN. Snorkeling surveys 
were conducted to quantify habitat use at 6 sites along the Little River and we sampled 
each site 1-6 times. These surveys consisted of first identifying a riffle, run, pool complex 
approximately 25 m long and 5-10 m wide to serve as the sampling area. The sampling 
area was approached from the downstream side and transects were snorkeled back and 
forth across the area, advancing upstream, and identifying individual fishes for 
quantification of foraging height. Once an individual was identified to species, it was 
observed until it moved to inspect or ingest a potential food item from the benthos or 
drifting downstream. Its position in the water column was then recorded as an integer (1, 
2, 3, or 4) on a dive slate. Individuals foraging directly from or within approximately 5 
cm of the bottom were given a score of 1. The rest of the water column was visually 
divided into thirds. Individuals foraging in the bottom third of the water column were 
scored as 2, the middle third as 3, and the top third to the surface as 4. We only scored 
adult individuals that could be unambiguously identified to species. We attempted to 
avoid auto-correlation among schooling individuals by randomly identifying and scoring 
one individual per school. Snorkeling sessions lasted from approximately 30 minutes to 1 
hour. We scored foraging height for 5-50 individuals per species (Table 3.1).  

We quantified JPA for the same 15 species for which we gathered foraging height 
data. Individual fishes were captured using a standard seine net. An individual was then 
anesthetized using the common fish anesthetic MS-222 and positioned on a piece of 
waterproof graph paper with the eye centered on an intersection of grid lines and the 
caudal fin centered on the same horizontal line (Figure 3.1A). Next, pulling down the 
mandible with a pair of jeweler’s forceps resulted in protrusion of the premaxilla and a 
mark was made using a 0.5 mm mechanical pencil at the tip of the maximally protruded 
premaxilla (Figures 3.1A,B). A line was then drawn using a straight edge from the grid 
intersection centering the eye to this mark. The angle between this line and the horizontal 
was measured as JPA (Figure 3.1B). We measured JPA on 7-30 individuals per species 
(Table 3.1). 

We employed phylogenetically independent contrasts (PICs) (Felsenstein, 1985), 
calculated using the package ape v.3.0 (Paradis et al., 2004) in R (R Development Core 
Team, 2013), in order to test for a phylogenetically corrected relationship between JPA 
and foraging height across this community. We utilized the maximum clade credibility 
(MCC) cytochrome b (Cytb) and recombination activating gene 1 exon 3 (Rag1) 
phylogenies from Hollingsworth et al. (2013) and pruned these trees down to these 15 
Little River OPM species in order to calculate PICs. We then tested for a correlation that 
was forced through the origin between the PICs of mean JPA and median foraging height 
score on each of our two MCC phylogenies (Garland et al., 1992). We also tested this 
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correlation over 900 subsampled trees from the posterior distributions of Cytb and Rag1 
trees resulting from the Bayesian phylogenetic analyses in Hollingsworth et al. (2013). 
 
Identifying functional morphological correlates of JPA  

 
We next tested for a relationship between six morphological characters 

comprising the cyprinid jaw apparatus and JPA in order to identify functional, 
morphological proxies explaining evolutionary variation in JPA. We expanded our JPA 
dataset to include data for 40 OPM taxa. Sample sizes for this expanded JPA dataset 
consisted of 3-30 individuals per species. Specimens from the University of Tennessee 
Etnier Ichthyology Collection (UTEIC) were then utilized to measure the masses of the 
three individual AM muscles and the lengths of three osteological characters (lower jaw, 
AP, and kinethmoid) for the same 40 species included in the expanded JPA dataset. We 
dissected AMs and measured osteological characters on three individuals per species. The 
three individual AM muscles were dissected from an individual and placed in 1.5 mL 
tubes in 70% ethanol (Figure 3.1C). Before weighing each muscle it was removed from 
the tube and patted on a paper towel two times on each side to remove excess ethanol. 
The mass of each muscle was measured to the nearest 0.01 mg using a digital balance.  

After dissection of the AM muscles, we cleared and stained the three specimens 
per species for quantification of osteological characters (Dingerkus and Uhler, 1977). 
Individual specimens were first worked from being saturated with 70% ethanol to 100% 
water. We then soaked individual specimens in a Trypsin bath until partially digested and 
stained them with a solution of 0.1 mg of Alizarin red stain per 100 mL potassium 
hydroxide. Specimens were placed in 1% potassium hydroxide for final clearing. Cleared 
and stained specimens are accessioned into the UTEIC.  

We measured the lengths of our three osteological characters to the nearest 0.1 
mm using an Olympus dissecting scope with an ocular micrometer (Figure 3.1D). Lower 
jaw length was measured from the quadrate/articular joint to the tip of the mandible. We 
then protruded an individual’s premaxilla with a pair of forceps and measured the length 
of the AP from a lateral view and the length of the kinethmoid from a dorsal view. The 
standard length of each specimen was also obtained to use for size correction.  

We applied the following transformations to our morphological data prior to 
conducting comparative analyses. As mass scales with the third power of length, we 
calculated the cube root of each of the three AM masses. The cube rooted AM masses, 3 
osteological measurements, and standard lengths were then log10-transformed. Using 
these transformed values, we size corrected the six morphological traits by standard 
length using the phyl.resid function in the phytools v.0.3-72 package (Revell, 2009; 
Revell, 2012) in R along with the Cytb and Rag1 MCC phylogenies from Hollingsworth 
et al. (2013) pruned down to include the 40 species being analyzed. JPA was 
untransformed and not size-corrected. We utilized PICs to test for coevolution between 
JPA and each these six characters. PICs were calculated using ape v.3.0 (Paradis et al., 
2004) and the pruned Cytb and Rag1 MCC phylogenies that were used during size-
correction. We then tested for a correlation that was forced through the origin between 
the various sets of PICs (Garland et al., 1992). We also conducted these analyses over 
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900 subsampled Cytb and Rag1 trees from the posterior distributions of Bayesian 
searches in Hollingsworth et al. (2013). The size-corrections using phyl.resid (Revell, 
2009; Revell, 2012) were conducted on each of the individual 900 trees prior to 
calculating PICs for that tree. 
 
Modeling rates of morphological evolution in correlates of JPA  
 
 In order to assess the support for a burst of morphological evolution in characters 
correlated with JPA after the OPM invasion of the pelagic zone, we first expanded our 
dataset to include the three AM masses and three osteological measurements for 141 
OPM taxa. This included 23 species diverging before, and 118 diverging after, the 
benthic to pelagic transition (Hollingsworth et al., 2013). We pruned the Cytb MCC and 
post-burn in phylogenies from Hollingsworth et al. (2013) to match the species in this 
expanded morphological dataset. Our expanded dataset for Rag1 included 16 less species 
in the clade arising after the pelagic shift. Morphological measurements were then 
transformed and size corrected as in the previous section of the Methods (see above).  

If the OPM clade adaptively radiated by evolving variation in JPA that allowed 
them to partition the water column then we would expect to see both a faster rate of 
evolution after the pelagic shift in our correlates of JPA, as well as, a slow down in these 
rates through time after the shift as pelagic niches were filled (Simpson, 1944, 1953). 
Recovering the signature of a decrease in the rate of morphological evolution following 
the invasion of the pelagos, however, could result from a decline in this rate that actually 
began at the root of the OPM phylogeny and continued through the ecological transition. 
This might be misinterpreted as a slow down in trophic diversification resulting from the 
filling of niches in the novel, pelagic adaptive zone (i.e., adaptive radiation). Therefore, 
we first compared the fit of 1-Rate Brownian motion (BM) models of character evolution 
for our six traits across the entire OPM clade to a 2-Rate model with a different rate after 
the benthic to pelagic shift. We used the package OUwie v.1.40 (Beaulieu and O’Meara, 
2014) and performed these analyses on both the Cytb and Rag1 MCC phylogenies, as 
well as, across 100 randomly subsampled trees from our distribution of 900 post-burn in 
trees. 

After gauging the support for an increased rate of trait evolution in the clade 
arising after the pelagic transition, we then used a separate model fitting analysis to 
assess support for a slow down in this rate through time within this clade. We compared 
the fit of an ‘Early Burst’ (EB) (Blomberg et al., 2003; Harmon et al., 2010) model to a 
BM model of character evolution in this clade for each of our six morphological traits. 
The EB model is simply a modified version of the BM model that contains an additional 
parameter, α, which characterizes the exponential rate of increase (positive values) or 
decrease (negative values) through time of the BM rate parameter (Blomberg et al., 2003; 
Harmon et al., 2010). Under a BM model α = 0. We conducted this model fit comparison 
across the Cytb and Rag1 MCC phylogenies and our two sets of 100 subsampled post-
burn in trees. We ran 1000 iterations of each maximum likelihood search for each model 
to ensure they did not get stuck at local optima. Model fit between the BM and EB 
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models was compared using AICc values calculated by geiger v.1.99-3.1 (Harmon et al., 
2008b).  

Finally, we performed a novel analysis in order to examine the effect of the 
magnitude of the α estimate on the exponential rate of change in the evolution of a trait 
following the pelagic transition. We performed this analysis on the four traits displaying 
the strongest evidence for a correlation with JPA (AM1 mass, AM2 mass, lower jaw 
length, and kinethmoid length) (see Results) using the more thoroughly sampled Cytb 
MCC phylogeny. These four traits also received the most support for undergoing an early 
burst of evolution denoted by negative estimates of α on the Cytb MCC tree (see 
Results). A negative α estimate suggests a decrease in the rate of character evolution 
towards the present, but the magnitude of this difference in rate relative to the base of the 
clade is not readily apparent by examining the estimate of α alone. In order to account for 
the effect of model uncertainty on parameter estimation of α, we first calculated the 
model average estimate of α for our four traits (Burnham and Anderson, 2002). Using the 
EB model and the model average parameter estimate of α for a given character, we then 
transformed the branching times of the Cytb MCC phylogeny using the transform.phylo 
function in geiger v.1.99-3.1 (Harmon et al., 2008b). We standardized the untransformed 
and transformed branching times by dividing by the tree height for each set in order to set 
the overall tree height equal to 1. Finally, we examined plots of the transformed 
branching times relative to the untransformed branching times as a function of distance 
from the root. This allowed us to calculate how much slower the character was evolving 
through time relative to immediately following the pelagic transition given a negative 
model average estimate of α.  

 
Results 

 
JPA and foraging height in the water column 
  

The 15 species of OPM cyprinids co-occurring in the Little River displayed 
significant variation in both JPA and preferred foraging height in the water column 
(Table 3.1 and Figure 3.2). Species such as Lythrurus lirus, Notropis telescopus, and 
Luxilus coccogenis were consistently observed foraging close to the water’s surface. 
These taxa had some of the lowest values for JPA. Conversely, we observed species such 
as Phenacobius uranops, Campostoma oligolepis, and Hybopsis amblops consistently 
foraging from, or close to, the substrate. These species are at the high end of the range of 
JPA values. Along with the species inhabiting the extremes of the habitat space, there 
were species such as Cyprinella spiloptera, Cyprinella galactura, and Luxilus 
chrysocephalus that preferred the middle sections of the water column on average and 
tended to display intermediate JPA values. The correlation between PICs of mean JPA 
and median foraging height score for a species was strongly negative and highly 
significant based on both MCC phylogenies, as well as, the distribution of post-burn in 
trees (Table 3.2). 
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Functional morphological correlates of JPA  
  

AM1 mass, lower jaw length, and kinethmoid length were consistently recovered 
as being significantly correlated with JPA after phylogenetic correction based on both 
Cytb and Rag1 (Table 3.2). AM1 displayed a strong positive correlation with JPA across 
analyses, while lower jaw length and kinethmoid length displayed strong negative 
correlations across analyses. AM2 mass and AM3 mass received varying degrees of 
support for a correlation with JPA depending on the locus and analysis (Table 3.2). 
Overall, a correlation between AP length and JPA received the least amount of support. 
 
Rates of morphological evolution in correlates of JPA  
  

Our 1-Rate versus 2-Rate BM model fitting analyses supported a change in the 
rate of evolution after the transition to pelagic habitats and foraging modes in a number 
of the morphological traits examined (Table 3.3). The 2-Rate BM model fit significantly 
better to the evolution of AM1 mass across both MCC phylogenies, with ΔAICc scores of 
10.80 (Cytb) and 7.89 (Rag1) relative to a 1-Rate model. Furthermore, the MCC relative 
rate estimates suggest that the greatest increase in the rate of evolution after the benthic to 
pelagic shift occurred in AM1 mass. This rate was estimated to be 3.80 times faster after 
the shift than before based on the Cytb MCC tree and 3.28 times faster based on the Rag1 
MCC phylogeny. Similarly, kinethmoid length received strong support as evolving 3.12 
times faster after the habitat shift based on the Cytb MCC tree. The 2-Rate BM model 
also provided the better fit to the evolution of lower jaw length on both MCC 
phylogenies. However, the relative rate of lower jaw length evolution was estimated to be 
slower after the benthic to pelagic transition based on both MCC trees. The results of this 
analysis varied between the two MCC phylogenies for the remaining three characters 
(Table 3.3).  
 Model fitting of 1-Rate versus 2-Rate BM models across our post-burn in 
distributions of trees displayed several of notable patterns. With the exception of AM3 
mass and lower jaw length, the remaining four characters were best modeled as having a 
separate and faster rate of evolution after the pelagic shift across a large majority of the 
Cytb post-burn in phylogenies (Table 3.3). Furthermore, although lower jaw length 
received strong support for a 2-Rate model with a slower rate after the ecological 
transition using the MCC trees, 76% of the post-burn in Cytb phylogenies were best-fit 
by a 1-Rate model for this trait (Table 3.3). Conversely, 91% of the post-burn in Rag1 
trees also supported a 2-Rate model with a slower rate of lower jaw length evolution 
before the pelagic shift. Otherwise, the Rag1 post-burn in results were largely variable 
depending on the trait. However, of the six morphological characters, AM1 mass was 
most consistently best-fit by a model with a separate and higher rate of evolution after the 
habitat transition across the Rag1 post-burn in distribution (Table 3.3).  

The EB model provided a slightly better fit to the rate of evolution of AM1 mass, 
AM2 mass, and lower jaw length after the invasion of pelagic habitats based on the Cytb 
MCC tree, while BM fit slightly better for the remaining three characters (Table 3.4). 
Notably, however, the maximum likelihood EB model for all six traits included a 
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negative α  estimate based on this phylogeny. Furthermore, the α  estimate was lowest for 
the four characters (AM1 mass, AM2 mass, lower jaw length, and kinethmoid length) 
that were most significantly correlated with JPA (Tables 3.3 and 3.4). With the exception 
of lower jaw length, the remaining six characters were almost always better fit by a BM 
model across the post-burn in distribution of Cytb trees. However, the range of ΔAICc 
between EB and BM models was generally small, and the estimates of α  were 
consistently negative for the best-fit EB model for the four aforementioned strongest 
correlates of JPA (Table 3.4). AM1 mass and lower jaw length received a small amount 
support for an EB model with a negative α  as the best-fit model across the Rag1 
phylogenies (Table 3.4). Otherwise, BM was generally favored on the less thoroughly 
sampled Rag1 dataset.  

Our final analyses allowed us to graphically illustrate the relationship between a 
given negative α  estimate for a trait and the relative decrease in the rate of evolution of 
that trait through time in the clade arising after OPM cyprinids shifted to pelagic habitats 
and foraging modes. The model average estimates of α  for the maximum likelihood EB 
model of trait evolution based on the Cytb MCC tree were -0.06 for AM1 and AM2 mass, 
-0.03 for lower jaw length, and -0.01 for kinethmoid length. Our plots, which are based 
on tree transformations using these model average α  estimates, display the relative 
exponential decline in the rate of evolution of these four characters towards the present in 
the pelagic clade (Figures 3.1 and 3.3). These plots, coupled with results from model 
fitting analyses on the Cytb MCC tree, suggest that AM1 and AM2 mass are evolving 
approximately 3 times slower towards the present relative to the period immediately 
following the OPM transition into pelagic habitats (Figures 3.3A,B). Lower jaw length is 
estimated to be evolving just under 2 times slower towards the present in this clade 
(Figure 3.3C). The low model average estimate of α  for kinethmoid length is due in part 
to this being the only one of these four traits whose evolution across the Cytb MCC tree 
was slightly better modeled by a BM process. This is reflected in the kinethmoid plot as a 
minimal decrease in its rate of evolution towards the present  (Figure 3.3D). 

 
Discussion 

 
The theory of adaptive radiation predicts rapid and simultaneous generation of 

species diversity and phenotypic variation as organisms evolve traits that allow for 
exploitation of different niches (Simpson, 1944, 1953; Schluter, 2000). In an earlier study 
on the evolutionary ecology of OPM minnows (Hollingsworth et al., 2013), we 
demonstrated a burst of phylogenetic diversification after this clade underwent a major 
shift from benthic habitats to an open pelagic adaptive zone. This benthic to pelagic axis 
is often cited to drive microevolutionary divergence in lentic fishes (Robinson and 
Wilson, 1994; Schluter, 2000; Willacker et al., 2010; Hulsey et al., 2013). The results 
from this study, however, provide further evidence that this ecological axis can also 
influence macroevolutionary patterns and even drive adaptive radiations in more diverse 
clades of lotic fishes.  

We conducted the first explicit tests of a relationship between JPA and relative 
foraging height in the water column in one of the most species rich OPM cyprinid 



46 
 

communities in North America (Etnier and Starnes, 1993). We found a strong negative 
correlation between this eco-morphological trait and resource partitioning in the form of 
vertically segregated foraging zones from the benthos to the water’s surface. Species with 
high JPA consistently foraged from or near the benthos, those with intermediate JPA 
values foraged in the middle sections of the water column, and those with terminal jaws 
and low JPA specialized on feeding at or near the water’s surface. Interestingly, a small 
number of lineages diverging after the benthic to pelagic shift, such as Hybopsis amblops 
in this community, have returned to feeding predominately from the benthos and can be 
inferred to have revolved high JPA (Figure 3.1 and Table 3.1) (Hollingsworth et al., 
2013). As such, variation in JPA likely facilitates the coexistence of cyprinid fishes in 
diverse lotic communities by allowing for variable exploitation of the three-dimensional 
habitat space. Therefore, we should also expect JPA to have experienced a period of 
explosive diversification coincident with the shift into pelagic habitats if OPM cyprinids 
have indeed adaptively radiated along a benthic/pelagic habitat axis.  

Although the evolution of jaw protrusion and JPA are clearly important eco-
morphological traits that drive the diversification of fishes (Schaffer and Rosen, 1961; 
Lauder, 1982; Ferry-Graham and Lauder, 2001; Konstantinidis and Harris, 2011), the 
contribution of individual muscoskeletal structures operating during cypriniform jaw 
protrusion and how they influence JPA are uncertain (Alexander, 1966; Ballintijn et al., 
1972; Motta, 1984). In this study we identify a number of traits that are strongly 
evolutionarily correlated with JPA, including; AM1 mass, AM2 mass, lower jaw length, 
and kinethmoid length. The strong positive correlation between AM1 mass and JPA 
corroborates past hypotheses that the adduction of the maxilla by AM1 enhances 
ventrally directed jaw protrusion, or higher values of JPA, in cypriniform fishes 
(Ballintijn et al., 1972; Hernandez et al., 2007). AM2, conversely, is rarely active during 
cypriniform jaw movement (Ballintijn et al., 1972), and the strong relationship between 
the mass of this muscle and JPA is more difficult to explain. However, Hulsey and 
Hollingsworth (2011) recovered evidence for correlated evolution between AM1 and 
AM2 mass, and given their common developmental origin (Hatta et al., 1990; Hernandez 
et al., 2005), it is possible this is due to auto-correlation between these two muscles that 
lacks a functional explanation. AM3 is known to function as the main lower jaw adductor 
(Ballintijn et al., 1972) and showed no significant correlation with JPA. This result was 
somewhat surprising but could be due to a functional trade-off between force modified 
and speed modified mechanisms of lower jaw closing (Wainwright et al., 2004; Collar et 
al., 2008). 

Lower jaw length displayed the strongest correlation with JPA over all the 
characters analyzed in this study. This relationship is qualitatively obvious and is likely 
due to the general configuration of the mechanism of cyprinid jaw protrusion. Due to the 
dorsoventral flipping of the kinethmoid pushing the premaxilla in a more subterminal 
direction (Alexander, 1966; Ballintijn et al., 1972; Hernandez et al., 2007; Staab et al., 
2012), benthic species with higher JPA have more overhanging snouts. This leads to a 
spatiostructural trade-off between JPA and lower jaw length. Species with more terminal 
mouths and lower JPA can have longer lower jaws. The kinethmoid was also strongly 
correlated with JPA. This relationship suggests a longer kinethmoid might be able to 
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rotate relatively further dorsoventrally during jaw protrusion, ultimately pushing the 
premaxilla in a more subterminal direction. The length of the AP was only marginally 
significantly correlated with JPA. The length of the AP of the premaxilla has been shown 
to be correlated with the distance of jaw protrusion in cichlid fishes (Hulsey et al., 2010), 
and although we did not quantify protrusion distance, species with higher JPA have 
qualitatively greater protrusion distance. This could explain this marginal correlation, but 
would need to be verified by quantifying protrusion distance across these cyprinid 
species. 

Our model fitting analyses revealed a number of patterns of variation in the rates 
of morphological evolution before and after the pelagic transition that are consistent with 
an adaptive radiation in OPM cyprinids mediated by diversification of JPA. The two 
traits that displayed the strongest correlations to JPA, AM1 mass and lower jaw length, 
displayed the most consistent results across model fitting analyses. From a functional 
standpoint, the high correlation between AM1 mass and JPA recovered in this study and 
the role of this muscle in driving benthicly directed jaw protrusion in cyprinids (Ballintjin 
et al., 1972), together suggest that the evolution this muscle may have the most direct 
impact on divergence in JPA. AM1 was best modeled as evolving faster (higher relative 
BM rate) after the transition into pelagic habitats and also experiencing a slowing of this 
rate (best fit by EB model) towards the present. This is consistent with the expectations of 
phenotypic evolution of relevant traits during an adaptive radiation (Simpson, 1944, 
1953). Lower jaw length on the other hand received very strong support for having a 
slower rate of evolution before the benthic to pelagic transition, but also received the 
most support for a slow down in this rate after the habitat shift. This pattern could be 
attributable to two causes. The estimated slower rate before the pelagic shift could be 
accurate and the EB model is providing the better fit to lower jaw length evolution after 
the shift because the rate has continued to slow throughout the OPM phylogeny.  If, 
however, lower jaw length evolution experienced a dramatic slow down in rate after the 
pelagic shift and towards the present, then our fitting of 1-Rate versus 2-Rate BM models 
to the evolution of this trait could be misleading. For instance, the evolution of lower jaw 
length after the benthic to pelagic transition was best fit by an EB model with a relatively 
large negative estimate of α  based on the Cytb MCC and post-burn in phylogenies 
(Table 3.4). A rapid decline in the rate of evolution in this trait through time could result 
in very slow rates at the tips. When fitting a BM model to the evolution of lower jaw 
length over this portion of the OPM phylogeny, this dramatic slow down could result in a 
lower average BM rate estimate and give the false appearance of a slower rate of 
evolution in this clade. This issue could be addressed by the development of methods that 
simultaneously fit BM and EB models to different segments of a phylogeny under 
consideration. 

The remaining four morphological correlates of JPA were much less consistently 
best fit by the same models across loci and analyses. Furthermore, in the BM versus EB 
model fitting analyses we seemed to lack the power necessary to reject BM in many cases 
(Slater and Pennell, in press). We saw evidence for this in our results in two ways. First, 
the less thoroughly sampled Rag1 dataset, which contained 16 less species from the clade 
arising after the pelagic shift, was nearly always better fit by a BM model after the habitat 



48 
 

transition relative to the Cytb dataset. Therefore, we also conducted a pilot analysis with 
a Cytb dataset missing the same 16 OPM taxa. Using this less-inclusive Cytb dataset 
resulted in a notable loss of support for the EB model of trait evolution after the habitat 
shift relative to the more complete Cytb dataset used in this study. There are 
approximately 190 species that comprise the clade arising after the pelagic shift 
(Hollingsworth et al., 2013). As such, these results illustrate that a mere 8% decrease in 
taxon sampling has a large affect on the power to reject a BM model in favor of an EB 
model in this clade. Another factor that can bias these analyses away from detecting an 
early burst of morphological evolution is convergence towards the tips (Slater and 
Pennell, in press). Quantifying convergence and accounting for it in such analyses, 
however, warrants further research. 
 In this study, we demonstrate a solid link between an eco-morphological trait, 
JPA, and resource partitioning in the form of vertically stratified foraging zones within a 
diverse assemblage of OPM cyprinid fishes. We then present evidence for a historical 
burst of diversification in JPA after this clade shifted from benthic habitats and foraging 
modes into a previously unoccupied, and further subdivisible, pelagic zone. Along with 
results from Hollingsworth et al. (2013), which suggest that a period of rapid 
cladogenesis followed this ecological transition, our findings provide strong support for 
an adaptive radiation of cyprinids along a three-dimensional benthic to pelagic axis. 
Taken together, we feel as though this set of studies represents one of the most robust 
tests for an adaptive radiation yet to be conducted and highlights the role of this 
ecological axis as a ubiquitous generator of biodiversity. 
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CONCLUSION 
 
 This dissertation explored the evolutionary ecology of North America’s most 
diverse clade of endemic freshwater fishes, OPM cyprinids, as they have diversified 
along a benthic/pelagic habitat axis. This ecological axis is often cited to drive 
microevolutionary divergence in lentic fishes, but its influence on the macroevolution of 
diverse clades of lotic fishes has until now remained unclear. In Chapter I, I used state of 
the art phylogenetic methods to resolve long-standing discordance between phylogenetic 
hypotheses for this group of fishes. The strongly supported general topology recovered in 
Chapter I suggests that benthic forms dominated the early history of this clade and then a 
major habitat shift up into the pelagic zone took place. In Chapter II, I recovered 
evidence for a burst of lineage diversification following this ecological shift and 
hypothesized that the benthic to pelagic transition represented the invasion of a novel 
adaptive zone. Based on the theory of adaptive radiation, which predicts rapid and 
simultaneous lineage and phenotypic divergence in a clade upon the entrance of an open 
adaptive zone, I designed studies in Chapter III to combine with the results from Chapter 
II and robustly test for signature of an adaptive radiation in OPM cyprinids. I demonstrate 
a strong evolutionary relationship between an important eco-morphological trait, JPA, 
and vertical microhabitat partitioning in a diverse OPM assemblage. I then find 
substantial evidence for a burst of morphological evolution in a number of individual 
muscoskeletal trophic characters that are significantly correlated with JPA after the 
benthic to pelagic shift. Taken together, the results from this dissertation strongly suggest 
that the shift into pelagic habitats allowed this clade to explosively radiate as lineages 
evolved variation in trophic morphology to exploit vertically segregated habitats within a 
previously unoccupied pelagic zone. Therefore, the influence of this habitat axis is clearly 
not only responsible for driving microevolutionary divergence in lentic fishes, but instead 
appears to be a ubiquitous generator of biodiversity across disparate freshwater fishes and 
ecosystems. Furthermore, this dissertation likely provides the most thorough tests of, and 
evidence for, an adaptive radiation to date.  
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Table 1.1. Genetic partition information. The length in base pairs (bp) of each partition 
analyzed in Chapter I is given. Zic1 does not include first position codon sites. Models 
chosen by MrModelTest2 for each partition (Nylander, 2004) are abbreviated: GTR 
(general time reversible), HKY (Hasegawa, Kishino, and Yano), K80 (Kimura 80), SYM 
(symmetrical model), I (proportion of invariant sites), G (gamma distributed substitution 
rates). Maximum uncorrected sequence divergence is given for each partition, as well as 
the North American species displaying this divergence. Abbreviated taxa names are 
detailed in the legend to Figure 1.1. 
 

Partition Length (bp) Maximum sequence divergence Model 
Cytb 1st 380 11.9% Satr - Pcat SYM + I + G 
Cytb 2nd 380 1.6% Neff - Pmir HKY 
Cytb 3rd 380 52.5% Satr - Pmir GTR + I + G 

Enc1 810 3.8% Satr - Edis HKY + G 
Ptr 699 2.6% Satr - Pcra GTR + G 

Ryr3 822 3.2% Satr - Pnot/Pcat/Pmir/Pura HKY + I 
Sh3px3 705 4.3% Pcat - Nleu K80 + G 

Tbr1 645 2.0% Satr - Elau HKY + I 
Zic1 572 3.3% Coli - Edis HKY + I 
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Table 2.1. Tests for an early burst of diversification in the pelagic clade. These 
results represent the analyses carried out on the Cytb and Rag1 MCC gene trees. The 
“best model” indicates the best-fit model of cladogenesis chosen for this clade based on 
AIC scores. (MCCR = Monte Carlo constant rates test, TD = tree deviation test, DDL = 
density dependent logistic, Y2R = Yule 2-rate) 
 

Locus γ MCCR p-value TD p-value ∆AIC p-value best model 
Cytb -7.59 < 0.001 < 0.001 < 0.001 DDL 
Rag1 -2.55 < 0.058 0.005 0.024 Y2R 
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Table 3.1. Preferred foraging height and JPA across the Little River OPM 
assemblage. The median of foraging height scores and mean JPA ± SE for 15 OPM 
cyprinid species that co-occur in Little River, Blount Co., TN are given. (n) = sample size 
in numbers of individuals. 
 

Species Median Height (n) Mean JPA ± SE (n) 
Lythrurus lirus 4 (24) 7.50 ± 0.38 (8) 
Notropis telescopus 3.5 (50) 10.30 ± 0.32 (23) 
Luxilus coccogenis 3 (50) 9.83 ± 0.35 (23) 
Notropis micropteryx  3 (50) 13.64 ± 0.39 (25) 
Notropis photogenis 3 (25) 8.30 ± 0.28 (20) 
Cyprinella spiloptera 3 (13) 12.14 ± 0.34 (7) 
Luxilus chrysocephalus 2 (50) 9.64 ± 0.31 (25) 
Cyprinella galactura 2 (50) 15.35 ± 0.70 (23) 
Notropis leuciodus 2 (50) 13.19 ± 0.40 (21) 
Notropis volucellus 2 (50) 19.46 ± 0.46 (13) 
Erimystax insignis 2 (5) 24.63 ± 0.67 (19) 
Nocomis micropogon 1 (50) 20.00 ± 0.47 (10) 
Hybopsis amblops 1 (50) 31.20 ± 0.39 (25) 
Campostoma oligolepis 1 (50) 27.33 ± 0.29 (30) 
Phenacobius uranops 1 (36) 36.40 ± 0.40 (10) 
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Table 3.2. Correlation coefficients, r, of PICs between JPA and habitat use and JPA 
and individual morphological characters. MCC r is from the Cytb and Rag1 MCC 
phylogenies. Median900 r is the median correlation coefficient calculated across our 900 
subsampled trees and (95% CR) gives the 95% central range of this distribution. The 
associated p values for MCC r and median900 r are given below each. Habitat represents 
the preferred foraging height in the water column (see Table 1). AM1, AM2, and AM3 
are the three AM muscle masses. LJ is the length of the lower jaw. AP is the length of 
ascending process of the premaxilla. Kin represents the length of the kinethmoid. 
 

  MCC r median900 r (95% CR)   MCC r median900 r (95% CR) 

Cytb   Rag1   

Habitat -0.72 -0.73 (-0.76, -0.69) Habitat -0.80 -0.80 (-0.85, -0.75) 

 p < 0.005 p < 0.005  p < 0.005 p < 0.005 

AM1 0.61 0.63 (0.60, 0.66) AM1 0.38 0.47 (0.15, 0.58) 

 p < 0.005 p < 0.005  p = 0.014 p < 0.005 

AM2 0.49 0.50 (0.47, 0.53) AM2 0.26 0.34 (0.10, 0.44) 

 p < 0.005 p < 0.005  p = 0.101 p = 0.030 

AM3 -0.24 -0.27 (-0.33, -0.22) AM3 -0.37 -0.37 (-0.44, -0.30) 

 p = 0.131 p = 0.088  p  = 0.017 p  = 0.017 

LJ -0.68 -0.69 (-0.71, -0.65) LJ -0.72 -0.69 (-0.73, -0.64) 

 p < 0.005 p < 0.005  p < 0.005 p < 0.005 

AP 0.30 0.33 (0.28, 0.37) AP 0.10 0.20 (-0.03, 0.33) 

 p = 0.057 p = 0.035  p = 0.534 p = 0.210 

Kin 0.65 0.63 (0.60, 0.67) Kin 0.56 0.56 (0.48, 0.63) 

  p < 0.005 p < 0.005   p < 0.005 p < 0.005 
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Table 3.3. Comparison of 2-Rate versus 1-Rate Brownian motion models of trait 
evolution before and after the pelagic transition. MCC best model signifies the best 
model fit to the two MCC phylogenies and the ΔAICc for the alternative model is given 
in parentheses. MCC relative rate is the ratio of the estimated rate parameter for the clade 
arising after the pelagic shift divided by the estimated rate before the habitat transition. 
The range of difference in AICc values for the 2-Rate AICc minus the 1-Rate AICc is 
given. The “% 2-Rate favored” column denotes the percentage of 100 subsampled post-
burn in phylogenies for which the 2-Rate model had the lower AICc score. The “% 
higher rate after shift” column contains the percentages of post-burn in trees where the 
best-fit 2-Rate BM model included a faster rate estimate for that character after the 
benthic to pelagic transition. AM1, AM2, and AM3 represent the mass of the three AM 
muscles. LJ denotes lower jaw length. AP is the length of the ascending process of the 
premaxilla. Kin represents the length of the kinethmoid. 
 

  MCC MCC Range ΔAICc  % 2-Rate Range % higher rate 

  best model 
(ΔAICc) 

relative 
rate  2-Rate - 1-Rate  favored relative rate  after shift  

Cytb       
AM1 2-Rate (10.80) 3.80 -51.03:2.01 97% 0.01:28.22 67% 
AM2 2-Rate (8.90) 3.52 -45.21:1.63 92% 0.02:21.69 67% 
AM3 1-Rate (2.39) 0.88 -9.56:7.81 15% 0.41:3.58 70% 
LJ 2-Rate (2.82) 0.47 -3.40:2.49 34% 0.10:1.59 17% 
AP 1-Rate (0.38) 1.53 -29.03:0.91 96% 4.52E-3:9.98 67% 
Kin 2-Rate (7.53) 3.12 -49.40:1.66 94% 2.76E-3:26.13 67% 
Rag1       
AM1 2-Rate (7.89) 3.28 -13.40:2.09 44% 0.06:4.77 86% 
AM2 1-Rate (0.40) 1.54 -19.60:2.10 18% 0.03:2.77 71% 
AM3 1-Rate (1.54) 1.30 -12.23:2.17 25% 0.11:1.99 28% 
LJ 2-Rate (14.05) 0.31 -46.89:2.10 91% 0.14:1.00 0% 
AP 2-Rate (3.03) 2.22 -13.15:2.10 30% 0.07:4.42 69% 
Kin 1-Rate (2.05) 0.91 -2.32:2.16 7% 0.53:1.94 53% 
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Table 3.4. Comparison of ‘Early Burst’ versus Brownian motion models of trait 
evolution after the pelagic transition. The MCC best model is the model with the 
lowest AICc score for the Cytb and Rag1 MCC trees. The ΔAICc for the alternative 
model is given in parentheses. MCC α denotes the estimate of the rate-change parameter 
for the best-fit ‘Early Burst’ (EB) model for the MCC phylogenies. The range of 
difference in AICc for the best-fit EB model minus the best-fit Brownian motion (BM) 
model across our 100 subsampled post-burn in trees is given. The range of α estimates 
for the best-fit EB model to each of these 100 trees is also given. The “%EB as best 
model” column is the percentage of post-burn in trees for which the EB model received 
the lower AICc value. The “% negative α estimate” column contains the percentage of 
post-burn in phylogenies where the best-fit EB model included a negative α estimate. 
AM1, AM2, and AM3 represent the mass of the three AM muscles. LJ denotes lower jaw 
length. AP is the length of the ascending process of the premaxilla. Kin represents the 
length of the kinethmoid. 
 

  MCC MCC Range % EB as  Range % negative  

  Best Model 
(ΔAICc) α   EB-BM AICc  best model α  α   

Cytb       
AM1 EB (1.74) -0.09 -2.23:2.14 16% -0.15:0.03 89% 
AM2 EB (1.53) -0.08 -1.65:2.14 10% -0.16:0.09 73% 
AM3 BM (1.75) -0.03 -0.34:2.14 1% -0.10:0.10 20% 
LJ EB (0.73) -0.06 -9.94:1.92 91% -0.28:-0.02 100% 
AP BM (2.11) -0.01 0.56:2.14 0% -0.07:0.17 6% 
Kin BM (1.45) -0.04 -0.13:2.14 1% -0.10:0.03 85% 
Rag1       
AM1 EB (0.38) -0.10 -3.66:2.17 6% -0.12:0.22 79% 
AM2 BM (2.17) -1.00E-6 -5.35:2.17 30% -0.03:0.27 2% 
AM3 BM (2.17) -1.00E-6 -5.99:1.75 50% 0.03:0.29 0% 
LJ BM (1.97) -0.02 -0.44:2.17 2% -0.08:0.04 65% 
AP BM (2.17) -1.00E-6 -3.95:2.17 19% -3.00E-3:0.25 2% 
Kin BM (2.17) -1.00E-6 -2.97:2.17 13% -0.02:0.12 13% 
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Figure 1.1. Individual gene trees. The 50% majority rule consensus gene trees obtained 
using MrBayes are presented for the individual loci: A) Cytb B) Enc1 C) Zic1 D) Ryr3 E) 
Sh3px3 F) Ptr G) Tbr1. Values at nodes are Bayesian posterior support values given in 
percentages. Asterisks represent 100% posterior support. Taxon names have been 
abbreviated to save space. Campostoma oligolepis (Camoli), Cyprinella callistia 
(Cypcls), Erimystax dissimilis (Eridis), Exoglossum laurae (Exolau), Hybopsis amblops 
(Hybamb), Luxilus coccogenis (Luxcoc), Lythrurus fasciolaris (Lytfas), Nocomis effusus 
(Noceff), Notropis leuciodus (Notleu), Phenacobius catostomus (Phecat), P. crassilabrum 
(Phecra), P. mirabilis (Phemir), P. teretulus (Pheter), P. uranops (Pheura), Pimephales 
notatus (Pimnot), Rhinichthys cataractae (Rhicat), Semotilus atromaculatus (Sematr). 
Danio rerio was used to root the phylogenies and this branch was subsequently removed 
from each gene tree for presentation in this figure. 
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Figure 1.2. Multi-locus phylogenies. A) The 50% majority rule consensus phylogeny is 
presented from the concatenated Mr. Bayes analysis. B) The maximum clade credibility 
phylogeny is presented from the *BEAST species tree analysis. Values at nodes are 
posteriors given in percentages. Asterisks indicate 100% of post burn-in trees contained 
the clade. “Chub” and “shiner” designations are based on the morphological phylogenetic 
hypothesis of Mayden (1989). Danio rerio was used to root the phylogenies and this 
branch was subsequently removed from each species tree for presentation in this figure. 
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Figure 2.1. Concatenated Cytb + Rag1 phylogeny. A), B), and C) correspond to the 
panels on the smaller version of the complete tree presented to the right. Maximum clade 
credibility (MCC) phylogeny of OPM cyprinids based on the Cytb + Rag1 analysis. 
Numbers at nodes represent posterior probability values (pp). Asterisks denote 100% pp. 
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Figure 2.1. continued 
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Figure 2.1. continued  
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Figure 2.2. Ancestral state reconstructions. A) Benthic/pelagic ancestral state 
reconstruction on the Cytb MCC gene tree. B) Benthic/pelagic ancestral state 
reconstruction on the Rag1 MCC gene tree. The ‘transition node’ indicated by the black 
arrows represents the first phylogenetically well-supported benthic to pelagic habitat 
shift. The asterisks in A) denote nodes that were recovered as significantly diverse based 
on the RC test. 
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Figure 2.3. Diversification rate analyses for the focal clade. A) The Cytb MCC 
chronogram. The node labeled ‘habitat shift’ corresponds to the ‘transition node’ in 
(Figure 2.2A). Stars identify subclades that were significant in the PRC analysis at α = 
0.1. Phenacobius mirabilis, a benthic OPM species, is pictured. B) LTT plot for the Cytb 
MCC gene tree after the transition node. Black dots indicate the actual number of 
lineages in our reconstructed tree. The stars correspond to the starred nodes in (Figure 
2.3A). The solid black line denotes the mean, and dotted lines the 95% confidence 
intervals, from 10,000 simulated pure-birth phylogenies. The y-axis is on the log scale. 
Luxilus coccogenis, a pelagic OPM species, is pictured. 
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Figure 2.4. Simulated lineage accumulation and ΔAIC values. Density plots for 
lineage accumulation statistics and ΔAIC values from 1 million simulated pure-birth 
phylogenies with taxon sampling (black) and 9005 post burn-in trees (red) for Cytb A), 
B), and C), and Rag1 D), E), and F). Hatched red line indicates values for MCC tree. 
  

Cytb Rag1
A

B

C

D

E

F



70 
 

 
 
Figure 3.1. Mean JPA and phylogenetic relationships based on Rag1 across the 
Little River OPM community. The black branches are lineages diverging before the 
benthic to pelagic shift, and grey branches denote those diverging after. A small number 
of lineages in the predominately pelagic clade, such as Hybopsis amblops from this 
assemblage, have high JPA values as they have returned to foraging benthicly (Table 
3.1). The mean JPA is given for each species above a box illustrating this angle. 
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Figure 3.2. Morphological measurements utilized in Chapter III. A) A specimen of 
Nocomis micropogon displaying the positioning of the fish prior to taking the JPA 
measurement. B) A diagram of the JPA measurement. The black dot marks the tip of the 
maximally protruded premaxilla for an individual being measured. C) The position of the 
three adductor mandibula (AM) muscles. AM1 attaches via a thin ligament to the maxilla 
and functions during cyprinid jaw protrusion. AM2 attaches to the posterior edge of the 
dentary. AM3 attaches medially on the dentary. D) The three osteological measurements 
taken. AP denotes the ascending process of the premaxilla. 
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Figure 3.3. Relative evolutionary rate decrease after the pelagic shift and towards 
the present for four morphological correlates of JPA. A) AM1 mass B) AM2 mass C) 
lower jaw length D) kinethmoid length. These plots are based on transformations of the 
Cytb MCC phylogeny using model average estimates of α for each trait (see Chapter III 
Methods). The “Root” denotes the most recent common ancestor of the clade arising after 
the benthic to pelagic transition. 
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