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Abstract 

 

This dissertation seeks to provide an understanding of how different evolutionary forces 

can affect the DNA polymorphism patterns. I use a combination of individual-based 

simulations and analytical to examine polymorphism patterns during divergence with 

gene flow, hybridization and territory expansion. In the first chapter, I show how during 

divergence with gene flow the appearance and maintenance of “Genomic Islands of 

Divergence” can be explained using standard population genetics terminology, thus 

removing some of the confusion recently introduced in that literature. In the second 

chapter I derive the expressions for the distribution of coalescent times and pairwise 

differences in a hybridization model with migration and show how those equations can be 

used to estimate model parameters. Finally, in third chapter, I consider the “Serial 

Founder” (SF) model. Previous work has shown that the SF model without migration can 

produce a pairwise Fst [fixation index] and heterozygosity patterns consistent to ones 

reported for human populations. Previous simulation results also suggest that including 

migration does not cause substantial departures from a model with no migration, but the 

lack of analytical result limits the ability to precisely describe the effects of migration on 

Fst and heterozygosity. I fill this void by showing analytically that a SF model with a 

historical migration can produce qualitatively different Fst and heterozygosity patterns 

from a model without migration, but not for parameters describing humans. 

 



 
vi 

Table of Contents 

 

Introduction ......................................................................................................................... 1 

Chapter 1 On genomic islands of divergence ..................................................................... 3 

Abstract ........................................................................................................................... 4 

Introduction ..................................................................................................................... 4 

Results ............................................................................................................................. 9 

Genetic barriers to gene flow and gene flow factor .................................................... 9 

Neutral divergence and Fst . ....................................................................................... 9 

Gene flow factor. ...................................................................................................... 10 

Expected Fst. .............................................................................................................. 13 

Variation in Fst. ......................................................................................................... 14 

Dynamics of the size of GIDs. .................................................................................. 15 

Divergence in weakly selected loci........................................................................... 16 

Discussion ..................................................................................................................... 17 

Is it really “hitchhiking”? .......................................................................................... 18 

“Divergence hitchhiking” vs. “multilocus migration/selection balance”. ................ 19 

Effects of the population size and migration rate on Fst . ......................................... 19 



 
vii 

“Divergence hitchhiking” vs. “genome hitchhiking”. .............................................. 20 

References ..................................................................................................................... 24 

Appendix ....................................................................................................................... 33 

Individual-based simulations .................................................................................... 34 

Defining DIG size ..................................................................................................... 35 

Chapter 2 Distribution of coalescent times and number of pairwise differences in models 

of hybridization ................................................................................................................. 43 

Abstract ......................................................................................................................... 44 

Introduction ................................................................................................................... 44 

Model ............................................................................................................................ 47 

Modelling assumptions ............................................................................................. 47 

General model ........................................................................................................... 47 

Distribution of coalescent times, expected coalescent time and the distribution of 

pairwise differences .................................................................................................. 49 

Model with symmetric migration.............................................................................. 53 

Discussion ..................................................................................................................... 58 

Distribution of pairwise differences .......................................................................... 60 

Parameter estimation ................................................................................................. 62 



 
viii 

Conclusion ................................................................................................................ 65 

References ..................................................................................................................... 66 

Appendix ....................................................................................................................... 72 

Calculating expected values and their functions ....................................................... 78 

The expression for elements of 
Qte : ......................................................................... 80 

Chapter 3  Serial Founder Model with historical migration ............................................. 82 

Abstract ......................................................................................................................... 83 

Introduction ................................................................................................................... 83 

Model ............................................................................................................................ 85 

No migration ............................................................................................................. 85 

Historical migration .................................................................................................. 90 

Discussion ..................................................................................................................... 97 

Distribution of coalescent times ................................................................................ 97 

Expected coalescent times ........................................................................................ 98 

Heterozygosity .......................................................................................................... 99 

Pairwise Fst .............................................................................................................. 101 

Conclusion .............................................................................................................. 102 



 
ix 

References ................................................................................................................... 104 

Appendix ..................................................................................................................... 107 

Terms on the right hand side of equations 3.24 and 3.25 ....................................... 112 

Conclusion ...................................................................................................................... 114 

Vita .................................................................................................................................. 117 

 

  

 

 
 

 



 
x 

List of Figures 

 

Figure 1-1. Fst values for loci across the chromosome with one locus under selection. 

Black line: analytical predictions, grey dots: mean values from simulation results. N 

= 4000. The absolute value of position represents the recombinational distance from 

the center of the chromosome. .................................................................................. 36 

Figure 1-2. Fst values for loci across the chromosome with two loci under selection. Black 

line: analytical predictions, grey dots: mean values from simulation results. N = 

4000. The absolute value of position represents the recombinational distance from 

the center of the chromosome. .................................................................................. 37 

Figure 1-3. Fst values for loci across the chromosome with three loci under selection. 

Black line: analytical predictions, grey dots: mean values from simulation results. N 

= 4000. The absolute value of position represents the recombinational distance from 

the cente .................................................................................................................... 38 

Figure 1-4. Standard error of Fst with two loci under selection. ....................................... 39 

Figure 1-5. Dynamics of the mean GID size for different initial conditions and 

parameters. Secondary contact (dashed line). Population split (solid line). N = 4000 

(black) N = 2000 grey. Each time unit represents 1000 generations. ....................... 40 

Figure 1-6. Distribution of the GID size for different migration rates m and selection 

coefficients s. One (light grey), two (intermediate grey), or three (black) loci under 



 
xi 

selection of the same total strength. N = 4000. Histograms were constructed from 

50 samples, each taken 100,000 generations after the start of a simulation. ............ 41 

Figure 1-7. Effects of a major selected locus on divergence of minor loci. Shown are Fst 

values at minor loci at different distances r from a single major locus (which is at 

position r =0). Different symbols correspond to: only major locus is under selection 

(+), all loci are under selection (o), and only minor loci are under selection (*). The 

selection strength at major and minor loci is sM and sm respectively. N = 1000, m = 

0.01............................................................................................................................ 42 

Figure 2-1. A general model considered in this paper. Ancestral population of size 2Na 

haploid individuals splits T1 generations ago in two populations which differ in 

sizes. Two populations evolve in isolation until Ta generations ago when they start 

sharing migrants with different migration rates m1,2 and m2,1. At T1, migration stops 

and a hybrid population is formed. ........................................................................... 72 

Figure 2-2 Sampling both parent populations is necessary to distinguish migration and 

population growth before hybridization. Both events can produce the same 

distribution of pairwise distributions for all pairs of genes involving hybrid 

population, as shown in this example. On the other hand, ( )jP
S T  and ( )P

dS T  do not 

depend on p and are thus different. Parameters: model with no migration (black): 

1 2 1 21, 0.75, 1.5ac c b b      , model with migration(grey): 1M  , same in both 

models: 1 2 1 210, 3, 5, 1, 2, 0.5a d d p         . ............................................ 73 



 
xii 

Figure 2-3 Even when all three populations are available distinguishing between 

migration and population change might be hard since both effects can result in 

similar distribution of pairwise differences. Parameters: No migration (black) model: 

1 2 1 2 1 20.5, 0.5, 1.5, 1.5, 1.1, 1.25, 1.4ab b c c          ,  migration model 

(grey),: 1 21, 2, 1a M      , same in both models:

1 210, 3.0, 0.5, 5, 5, 5ha p d d d       . ............................................................. 74 

Figure 2-4 Marginal log likelihood functions. Model parameters 

1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1, 0.1a ha d d d p M             .Migration rate 

cannot be estimated precisely because the distribution of pairwise differences does 

not change much with changing M for this set of parameters. ................................. 75 

Figure 2-5. Effect of changing migration on the distribution of pairwise differences. For 

this parameter set, changing migration does not affect the distribution of coalescent 

times much. Model parameters 0.1M   (full line), 0.5M   (dashed line), 1M   

(grey line).Other parameters: 

1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1a ha d d d p            . ................................ 76 

Figure 2-6.Effect of changing admixture coefficient on the distribution of pairwise 

differences. Changing the admixture coefficient changes the distribution of pairwise 

differences. Model parameters 
1 0.1p   (full line), 

1 0.3p   (dashed line), 
1 0.5p   

(grey line). Distribution of pairwise differences does not depend on p  when genes 



 
xiii 

are sampled from parent populations which causes the three lines to overlap. 

Other parameters: 1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1a ha d d d M            . . 77 

Figure 3-1 Serial founder model with migration when there are 6 extant populations See 

text for model description. ...................................................................................... 107 

Figure 3-2 Distribution of coalescent times in a model with historical migration (black) is 

different compared to the model with no migration (grey). X axis: scaled time. Top: 

one gene is sampled from population 2 and the other from population , 4,6,8k k  . 

Bottom: one gene sampled from population 6 and the other from population 8 . 

Model parameters: 0.5b  , 1M  , 0.5b  , 1M  , 8 populations. ..................... 108 

Figure 3-3 Distribution of coalescent times in a model with historical migration (black) 

and a model with no migration (grey). X axis: scaled time. Genes sampled from 

population 2 (top) and 6 (bottom).Model parameters: 0.5b  , 1M  , 0.5b  , 

1M  , 8 populations. ............................................................................................. 109 

Figure 3-4 In a migration model, heterozgosity can decrease or increase in distant 

populations depending on parameters. X axis: distance from the first observable 

population, corresponds to population number in (DeGiorgio et al 2011). Model 

parameters 0.025b  , 100M  (grey lines), 0M   (black lines), 0.0001bt  , 

0.025b  , (top) 0.00095M  , (bottom) 0.01M  . ............................................. 110 

Figure 3-5  Pairwise stF in models with (grey) and without (black) migration when j = 2. 

stF  is a function of expected coalescent times, therefore it can decrease in distant 



 
xiv 

populations in the model with migration. X axis: distance from the first 

observable population, corresponds to population number in (DeGiorgio et al 2011). 

Parameters 0.025b  , 100M  (grey lines), 0M   (black lines), 0.0001bt  , 

0.025b  , (top) 0.00095M  , (bottom) 0.01M  . ............................................. 111 



 
1 

Introduction 

 

Genomes of all species are shaped by different evolutionary forces, such as 

mutation, recombination, population structure, random genetic drift and natural selection. 

Mathematical models and individual-based simulations provide a powerful and an 

invaluable tool to both guide our intuition as well as supplement and interpret empirical 

research. In this thesis I seek to understand and describe the connection between 

evolutionary forces and polymorphism patterns it produces across genomes.  

First chapter deals with controversies regarding the existence of genetically 

diverged genomic regions, called “genomic islands of divergence”(GIDs). Multiple 

researchers have recently made claims regarding when, where and how GIDs appear and 

are maintained in the genome. We show that many GIDs features can be explained by 

previous theoretical work on barriers to the gene flow thus clarifying the role of natural 

selection, population size and recombination in creating and maintaining GIDs. Apart 

from that, we also point out to some unanswered questions regarding GIDs. 

In the second chapter we use coalescent theory to study DNA polymorphism 

patterns produced by hybridization. During hybridization, individuals from two 

populations form a third, hybrid population. Detecting when hybridization happened, as 

well as estimating admixture coefficient is important for understanding genetic variation, 

as well as for conservation efforts. Our main result is the derivation of a closed-form 

analytical result for the distribution of coalescent times and pairwise differences in a 
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hybridization model that allows for the migration prior hybridization. Those results can 

be used as a foundation for developing methods for estimating hybridization time and 

admixture coefficients from genome scans. 

In the final chapter, we study genomic patterns produced due to range expansion. We 

consider a “serial founder model” (SF) model in which a new population is formed by 

small number of migrants from adjacent one. SF model has been used to explain a 

general linear decrease in heterozygosity and increase in pairwise stF  as we sample 

populations farther from Africa. I expand a basic SF model to include historical migration 

and show that a model with historical migration can produce an increase in 

heterozygosity and decrease in stF  when basic SF model cannot. However, I also show 

that for parameters used to describe human conquest of the world, the model with 

migration produces very similar patterns as the model without migration, thus providing a 

theoretical justification to previous observation that migration might not affect the 

general patterns observed in the data. 
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Chapter 1 

On genomic islands of divergence 
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Abstract 

It is well established that divergent ecological selection in the presence of gene flow can 

result in the appearance of genomic islands of divergence (GIDs). Here, we illuminate the 

link between earlier and more recent work on GIDs. We use analytical approximation and 

individual-based simulations to show that the expected profiles of GIDs are well 

predicted by the standard population genetics theory.  GIDs can be formed quickly and 

are stable in time rather than transient, but their features are subject to significant 

stochasticity. Our results suggest that that the presence of GIDs simplifies further 

divergence in weakly selected loci. We show that when one is using STF  scans to 

compare GIDs in different species, larger GIDs do not necessarily imply stronger 

divergent selection. 

Introduction  

Lineages can diverge in spite of continuous gene flow if selection is strong 

enough and favors alternative alleles in different parts of the population’s range (Allender 

et al., 2003, Schluter, 2009, Chapman et al., 2013, Gavrilets, 2004, Coyne and Orr, 2004, 

Price, 2007). When diverging lineages hybridize, gene introgression is less likely to occur 

near the loci subject to spatially variable selection. This causes heterogeneity in 

divergence levels across the genomes (Andolfatto, 2001, Nielsen, 2005, Storz, 2005, 

Turner et al., 2005, Harr, 2006, Hohenlohe et al., 2010, Ellegren et al., 2012, Martin et 

al., 2013).  
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To describe this heterogeneity, Turner et al. (2005) coined the metaphor 

“genomic islands of speciation” (also referred to as “genomic islands of divergence”) in 

which highly diverged genomic regions stand above the regions of low divergence, like 

islands in a sea. Genomic islands of divergence (GIDs) have since received a great deal 

of attention and were recently declared a “metaphoric foundation on which the study of 

genomic architecture is currently based” (Nosil and Feder, 2012). 

The presence of GIDs has been interpreted as evidence of local adaptation and/or 

ongoing ecological speciation (Via and West, 2008, Feder and Nosil, 2010). GIDs can be 

used to delimit locally adapted populations and potentially be used to improve 

conservation efforts for commercially important and exploited species (Bradbury et al., 

2013). The size and the distribution of GIDs might help us understand the underlying 

genomic architecture (i.e., number and distribution of selected genes) of speciating 

populations (Nosil and Feder, 2012, Seehausen et al., 2014). For example, some 

theoretical work (Gavrilets et al., 2007, Gavrilets and Vose, 2007) argues that speciation 

happens the easiest if the number of loci controlling selected traits is small. However, 

empirical data suggest that the number and distribution of GIDs vary greatly during early 

stages of speciation (Turner et al., 2005, Via and West, 2008, Wood et al., 2008, 

Hohenlohe et al., 2010, Michel et al., 2010, Martin et al., 2013, Wang et al., 2014). GIDs 

have been argued to be a place where additional selected loci can diverge more easily 

resulting in clustering of selected genes in the genome (Via and West, 2008, Feder and 

Nosil, 2010). This however has been disputed recently on the basis of the results of 

simulations studies (Feder et al., 2012b, Yeaman, 2013). 
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Several verbal models have been proposed to explain how GIDs form and evolve 

during speciation (Wu, 2001, Via and West, 2008, Via, 2009, Feder et al., 2012a). In 

Wu’s seminal paper (2001) on the genic view of speciation, a four-stage speciation model 

is introduced. Wu starts by recognizing two classes of loci: “speciation genes” (i.e., the 

loci that directly affect differential adaptation) and “marker genes” (i.e., all other loci 

such as allozymes, microsatellites, mitochondrial DNA, etc). During the first stage, gene 

flow across the genome is mostly unrestricted, with some reduction being limited to 

marker genes tightly linked to speciation genes of strong effect. Wu assumes that the 

number of loci causing reproductive isolation grows over time as new alleles arise by 

mutation. This decreases the gene flow (and increases divergence) at marker genes close 

to selected loci while the genome remains more “porous” at marker loci that are far from 

speciation genes (stage II). Eventually, the gene flow between two populations becomes 

very small (stage III) and then stops altogether (stage IV), at which point speciation is 

complete. 

Several years after the publication of Wu (2001), Via (2009) proposed a two-stage 

model of ecological speciation with gene flow. During the first stage, the loci under 

strong selection diverge quickly. When this happens, the probability that a migrant 

survives in a new environment, mates with a resident, and produces a hybrid offspring 

decreases. 

This causes an increase in the size of a “hitchhiking region” and enables loci of 

smaller effects to diverge among populations. In Via’s model, a “hitchhiking region” is a 

part of the genome in which gene flow is substantially reduced due to the presence of 
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selected genes. At the end of the first stage, gene flow is mostly ceased, and the two 

populations evolve as if they are allopatric. During the second stage, additional 

postzygotic incompatibilities, such as Dobzhansky-Muller genetic incompatibilities 

(Dobzhansky, 1937, Muller, 1942, Gavrilets, 2004, Coyne and Orr, 2004) may 

accumulate in the genome. Similar to Wu (2001), Via (2009) predicts a “genetic mosaic 

of speciation”, i.e. that some genomic regions will be more diverged than others. Via 

(2009) built on the “divergence hitchhiking” (DH) mechanism proposed in Via and West 

(2008). According to “divergence hitchhiking”, the loci under divergent selection reduce 

successful interbreeding between subpopulations. Also reduced is the opportunity for 

recombination between chromosomes from different populations with the reduction being 

stronger for loci that are closer to selected loci. The “effective” recombination rate 

around loci under divergent selection is smaller than the rate based on physical distance 

and, in words of Via and West (2008), the populations become “protected from interrace 

recombination around loci under divergent selection during early speciation”. 

More recently, Feder et al. (2012a) proposed another four-phase model of 

speciation with gene flow. During the first phase, genetic divergence is mostly limited to 

loci experiencing direct selection. In the second phase, loci tightly linked to selected loci 

diverge due to a reduction in gene flow. In this model, divergence at linked loci is due to 

DH, which the authors define as “a process in which divergent selection on a locus can 

reduce the effective migration rate for physically linked gene regions and increase 

divergence in the surrounding region”. During the third phase, multiple loci in the 

genome have diverged and effective migration rate is reduced across the whole genome. 
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At this point, genome-wide divergence is mostly due to “genome hitchhiking” (GH) 

which the authors define as the “process in which divergent selection reduces the average 

effective migration rate globally across the genome fostering increased divergence 

genome-wide” (Feder et al., 2012a). Finally, in the fourth phase, the genomes of the two 

species are highly diverged and introgression is greatly reduced. 

While one can welcome new metaphors such as GIDs, “porous genome”, and 

“genetic mosaic of speciation” because they help us train our intuition about speciation 

process, new terminology can also introduce a lot of confusion into the field especially if 

the connection with earlier approaches is not clearly explained. For example, a number of 

recent publications treat divergence hitchhiking and genome hitchhiking as two processes 

whose relative importance needs to be studied (Feder et al., 2012b,a, Flaxman et al., 

2013, Kronforst et al., 2013, Nosil and Feder, 2013). 

These “hitchhiking” processes are also sometimes presented as something 

different from standard population-genetic descriptions of genetic divergence in the 

presence of gene flow (Via, 2012). As we show below, despite using a different 

vocabulary, all these verbal models actually describe the same process known from 

earlier studies by Barton, Bengtsson, and others (Barton, 1979b,a, Barton and Hewitt, 

1983, Spirito et al., 1983a, Barton and Hewitt, 1985, Bengtsson, 1985, Barton and 

Bengtsson, 1986, Spirito, 1987, 1989, Barton and Bengtsson, 1986, Gavrilets, 1997, 

Gavrilets and Cruzan, 1998) as the evolution of genetic barriers to gene flow. The main 

insight from this earlier work, which we illustrate in the next section, is that selection on 
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some loci can serve as a barrier to gene flow at neutral loci, linked or not, to the loci 

under selection. 

Our primary goal here is to illuminate the link between earlier and more recent 

work on GIDs and clarify their role in genetic divergence. We show that one can explain 

how GIDs evolve using well-established population genetics vocabulary of selection, 

migration, recombination, population size, and initial conditions. To that end, we use a 

combination of analytical approximations and individual-based simulations. 

 

Results 

Genetic barriers to gene flow and gene flow factor 

 

We will illustrate the general approach using a simple model of a sexual diploid 

population with discrete nonoverlapping generations inhabiting two demes connected by 

migration. Each deme has effective size N. We focus on diallelic loci subject to 

symmetric mutation at rate . We assume adult migration (the probability that an 

individual moves from a deme where he was born) at rate m happening before 

mating which is random within the deme. 

Neutral divergence and Fst .  

If there is no selection, the population will reach a state of stochastic balance between 

mutation, migration, and random genetic drift in which individuals sampled from 
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different demes will, on average, be more different genetically than those sampled 

from the same deme. This effect can be described quantitatively by a coefficient Fst , 

defined as the correlation between gametes chosen randomly within demes relative to that 

between gametes chosen randomly from the whole population (Wright, 1969, p.294). For 

a diallelic locus, this is equivalent to an intraclass correlation coefficient: Fst = 

b

 ̅ ̅, where b

2
 is the variance in allele frequency among demes and  ̅ is the 

mean allele frequency across the demes (Fu et al., 2003). In the model under 

consideration, the expected value of Fst is: 

    
 

     (   )
 

(1.1) 

(Cockerham and Weir, 1987). This equilibrium is achieved very rapidly with a 

characteristic half-time being on the order of 1 / (2m+1/(2N) +  (Crow and Aoki, 

1984). 

Gene flow factor.  

Assume that the two demes are subject to spatially heterogeneous viability selection and 

have diverged in some selected loci. Now neutral alleles brought by immigrants will have 

a reduced probability of being incorporated in a local deme because initially they will 

typically be associated with locally deleterious selected alleles. 

There are several ways to characterize this effect quantitatively (Barton, 1979b,a, Barton 

and Hewitt, 1983, Petry, 1983, Spirito et al., 1983b, Kobayashi et al., 2008, Fusco and 
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Uyenoyama, 2011b). The most intuitive is arguably Bengtsson’s (1985) “gene flow 

factor” defined as the probability g that a neutral allele brought by immigrants is 

incorporated in a local genetic background. Assume first that viability is controlled by a 

single diallelic locus with alleles A and a. Let allele A be advantageous in the focal deme 

and allele a in the other deme. If migration rate m is small, then most local genotypes will 

be homozygotes AA while most immigrants will be homozygotes aa. Assume that fitness 

of heterozygotes relative to that of the locally adaptive homozygotes is v < 1. Consider a 

diallelic neutral locus which can be linked or unlinked to the selected locus with the 

probability of recombination between the two loci being r (0 < r < 0.5). Then the gene 

flow factor is Error! Bookmark not defined. 

  
  

   (   )
 

(1.2a) 

(Bengtsson, 1985). Note that  decreases as v becomes small (i.e. selection against 

heterozygotes increases) or r becomes small (i.e., the neutral locus gets more tightly 

linked to the selected locus). If the loci are unlinked (r = 1/2), the above expression 

reduces to 

  
 

   
 

(1.2b) 

Therefore  can be very small even for an unlinked neutral locus provided selection is 

strong enough (i.e. v is small). 
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Genetic barriers to gene flow and gene flow factors were investigated in a 

number of different models including those with multiple selected genes, other fitness 

components such as fertility and mating success, and an unequal sex ratio (Barton and 

Hewitt, 1983, Barton and Bengtsson, 1986, Gavrilets, 1997, Gavrilets and Cruzan, 1998, 

Kobayashi et al., 2008, Kobayashi and Telschow, 2011, Fusco and Uyenoyama, 

2011b,a). For example, assume that there are a number of unlinked loci interacting 

multiplicatively so that the fitness of the F1 hybrid between the locally advantageous 

genotype and an immigrant is    ∏ (    )  where    is the selection strength for locus 

i. Then the gene flow factor for a neutral locus unlinked to any selected locus is 

  ∏
(    )

(    )
   

 
 

(1.2c) 

where the approximation assumes that each individual    value is small 

(Bengtsson, 1985). Note that what matters here is the overall strength of selection against 

heterozygotes/hybrids characterized by parameter v rather than the strength of selection 

on each individual locus   . Note also that    is the fitness of the least fit genotype (i.e. 

the homozygote with locally deleterious alleles at all loci). 

Gene flow factor and Fst . A gene flow factor  less than one implies that the 

neutral locus effectively experiences a reduced migration at rate me = m . If selection is 

sufficiently strong (i.e., v is small),  will be small and the effective migration rate me can 

be very small even for neutral genes unlinked to the selected locus. In a sense, divergence 

in selected loci acts as a barrier to neutral gene flow (Barton, 1979b). Charlesworth et al. 
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(1997) used Bengtsson’s result to approximate Fst in the presence of a genetic barrier to 

gene flow by substituting m for me in equation (1.1): 

    
 

     (    )
 

(1.3) 

Since  decreases with proximity to the selected locus, Fst at neutral loci close to the 

selected locus will be, on average, greater than that of more distant loci, and a “genomic 

island of divergence” will emerge. Via, Nosil, Feder, and their co-authors used 

Charlesworth et al. (1997) results to build their respective arguments.  

 

Expected Fst.  

As equations (1.1-1.3) show, the characteristics of GIDs depend on selection strength, 

migration, mutation rates as well as the population size. The results are qualitatively the 

same when multiple loci are under divergent selection, but the equations are more 

complicated (see the Appendix 1.1). To check the performance of analytical 

approximations, we computed Fst using individual-based simulations of the two-deme 

model with one, two, and three selected loci. We used multiplicative selection, keeping 

the fitness of the least fit genotype (i.e. the homozygous individual with locally 

deleterious alleles at every locus) the same regardless of the number of selected loci (see 
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the Appendix 1.1). By choosing such fitness scaling, we kept the range of fitness 

values independent of the number of selected loci. The fit between the analytical 

prediction and simulation results was generally good (Figures 1–3) with the fit being the 

best for intermediate selection strength. For weak selection (s = 0.1), analytical results 

overestimated the simulation results for neutral loci very close to selected locus. For very 

strong selection (s = 0.9) analytical results underestimate the level of divergence. A likely 

reason for this discrepancy is the violation of the assumption that local individuals are 

homozygous for advantageous alleles. 

 

Variation in Fst.  

Analytical methods predict the expected values of Fst . Whenever one measures Fst from 

empirical data, one expects stochastic deviations from the expectations. To study the 

variation in Fst , we computed its standard deviation numerically. Figure 1-4 shows that 

variation in Fst at each site is considerable and closely mimics the expectation of Fst . That 

is, the variation in Fst is highest at the neutral loci close to the selected loci and lowest at 

the loci from these selected loci. This means that while neutral loci close to the selected 

loci will on average have higher Fst values, we expect some to have low Fst. The reason 

for high variance at those loci is the inability of migration to homogenize the population 

due to a strong reduction of the effective migration rate me. If selection is strong enough, 

neutral loci close to selected loci evolve independently in two populations, and the 

dynamics of allele frequencies are influenced by drift and mutation, and not by migration. 

Via and West (2008) observed that in pea aphids some neutral markers situated close to 
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selected loci had low Fst values and suggested that this effect was due to ancestral 

polymorphisms. Our results offer different interpretation of their observation. 

Dynamics of the size of GIDs.  

Formation of GIDs takes time. To study how GIDs change in time, we used two different 

initial conditions: “the population split” (PS) and “the secondary contact” (SC). In the PS 

simulations, for the first 20,000 generations migration between two demes is unrestricted 

(m = 0.5) and both demes experience selection favoring the same alleles. 20,000 

generations are enough for the population to reach a state of stochastic equilibrium 

between mutation, selection, and drift. At generation 20,000, migration is decreased to a 

specific rate m and selection in one deme changes to favor alternative alleles. In the SC 

simulations, initially there are two isolated populations (m = 0), with selection favoring 

different alleles in different demes. At generation 20,000, migration is increased to a 

specific rate m. For both the PS and the SC simulations, we consider up to three selected 

genes placed uniformly across the chromosome, keeping the total strength of selection 

the same (see above). We defined the GID size as the length of a chromosome region(s) 

that has Fst five or more times larger than that occurring in simulations with no selection 

(see the Appendix 1.1). In our simulations, the GID size often reaches a stochastic 

equilibrium in a couple of 

thousand generations (Figure 1-5). When selection is strong, in small populations, GID 

size reaches a steady state more slowly during the PS scenario than in the SC scenario, 

but in large populations the differences in the time to reach an equilibrium are minimal. 

As expected, the GID size increases with increasing strength of selection and decreasing 
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migration rate. The size of GIDs increases with the number of loci (Figure 1-6). This 

happens because more neutral markers are close to selected loci when more loci are under 

selection. 

 

Divergence in weakly selected loci.  

It has been suggested that new selected alleles can establish more easily if they are close 

to a selected locus that has already diverged. That is, GIDs can serve as a place where the 

new loci experiencing divergent selection accumulate (Smadja et al., 2008, Via and West, 

2008, Feder and Nosil, 2010). 

To test this idea, we performed additional simulations. We modeled a single locus under 

strong divergent selection (with selection coefficient sM) and eight loci under weak 

divergent selection (with selection coefficient sm). The major locus was in the middle of 

the chromosome and the minor loci were uniformly spaced across the chromosome. 

Initial conditions were similar to the ”population split“ scenario. Mutation rate was set to 

μ =10−4 and deme sizes N =1000. We compared Fst in three different cases: 1) both the 

minor and major loci are under selection (sM >0, sm >0), 2) only the minor loci are under 

selection (sM = 0, sm > 0), and 3) only the major locus is under selection (sM > 0, sm = 0). 

If the presence of a major locus is important for divergence at minor loci, Fst at minor loci 

in the first case should be significantly larger than in the other two cases. In our 

simulations, the minor loci diverged only when the major locus was under selection 

(Figure I.7). When divergence occurred, allele frequencies at minor loci reached an 
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equilibrium value within 10,000 generations from the onset of divergent selection. As 

expected, the Fst value at minor loci increases with increasing the strength of selection 

on the major locus and minor loci, and decreasing the recombinational distance from the 

major locus. For example, when sM =0.9 and sm =0.01, Fst at minor loci at distance 

      was 0.55, compared to approximately 0.1 for neutral loci at the same distance. In 

contrast, Fst stays close to zero when the major locus was not under selection. In this 

case, a minor locus would be considered an Fst outlier in genome scans when the major 

locus is under selection, but not in other cases. These results demonstrate that under some 

conditions major loci can indeed affect the divergence at nearby minor loci. However, if 

selection is very week and/or the major and minor loci are distant enough (e.g. the top 

row in Figure 1-7), it will be hard to distinguish minor selected loci from neutral ones on 

the basis of Fst. We simulated only one population size. Increasing the population size 

should lead to population divergence even at very weakly selected loci (provided the 

migration rate is small enough). 

Discussion 

When populations are subject to divergent selection and gene flow, comparing 

genomes of individuals from different demes might reveal GIDs. Here, we have shown 

that features of GIDs can be explained using standard methods of population genetics and 

a well-established terminology, and does not require invoking new mechanisms, such as 

divergence hitchhiking (DH) or genome hitchhiking (GH). Below we comment on a 

number of additional related issues. 
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Is it really “hitchhiking”?  

In population genetics the term hitchhiking was originally introduced to describe 

the effects of the substitution of a favorable mutation on linked loci (Smith and Haigh, 

1974). This term typically implies 1) an important role of the physical linkage of genes, 

and 2) temporary/short-lived effects. For a reduction in the effective migration rate and 

an increase in Fst described above to occur whether or not the genes are physically linked 

is of secondary importance (compare eq. 2a and 2b). The predicted increase in Fst values 

is not transient but stable in time and represents a feature of the resulting migration-

selection-mutation-drift equilibrium. Although some authors used the term hitchhiking 

more generally (e.g. to describe the “indirect effects of selection at one or more loci on 

the rest of the genome” (Barton, 2000) ) in the case considered here this would not be 

justified. While initial hitchhiking of neural genes linked to selected loci might help the 

formation of GIDs, GIDs are also formed because of new mutations occurring after the 

onset of divergence (Figure I.5). In fact, the long term maintenance of GIDs occurs not 

because some neutral alleles quickly hitch a ride to high frequencies but on the contrary 

because neutral alleles carried by immigrants get bumped off of the ride by selection. 

Therefore the term “hitchhiking” is not really appropriate here. When one observes GIDs 

in genome scans, it is hardly possible to know whether they are due to initially 

segregating alleles hitchhiking to high frequencies or new mutations not able to overcome 

the genetic barrier. 
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“Divergence hitchhiking” vs. “multilocus migration/selection balance”. 

 In a recent review, Via (2012) argued that DH and multilocus migration/selection 

balance represent “alternative visions of genomic divergence during speciation-with-

gene-flow.” We think this dichotomy is misleading. “Divergence hitchhiking” as a 

process of the formation of GIDs is a component of a multilocus migration-selection-

mutation-drift balance. Via et al. (2012) and Via (2012) claimed that MM/SB is a 

mechanism which produces multiple small GIDs across the genome, while DH produces 

large GIDs. Our results show that contrary to these expectations, the GID size is the 

largest when the population has reached a migration-selection-mutation-drift balance 

(solid lines, Figure I.5). This happens due to new mutations accumulating after the onset 

of divergent selection. These mutations were not considered by Via. 

Effects of the population size and migration rate on Fst .  

One of the reasons stimulating Feder and Nosil (2010) to introduce the new term 

“genome hitchhiking” was the results of their large-scale numerical simulations that 

suggested that divergence hitchhiking cannot work in large populations subject to high 

migration. The effects of the deme size N and migration rate m on Fst can be easily 

evaluated from equation (1.3). Indeed increasing N and m will dramatically decrease Fst . 

However this equation also shows that these effects can be largely offset by decreasing 

the gene flow factor g which can be accomplished by increasing selection against 

hybrids. 
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“Divergence hitchhiking” vs. “genome hitchhiking”.  

Feder et al. (2012a) define GH as the “process in which divergent selection 

reduces the average effective migration rate globally across the genome fostering 

increased divergence genome-wise” (glossary, p324). Quantifying the contributions of 

DH and GH has been presented as the next important step in the field of research on 

divergence-with-gene flow Feder et al. (2012a). That is because those authors view DH 

and GH as acting during different stages of speciation. A similar sentiment is seen in a 

more recent review by Seehausen et al. (2014) who, when discussing GIDs say “The size 

of these regions would gradually increase through the process of divergence hitchhiking, 

and the effective migration rate would eventually decrease globally across the genome, 

which gives rise to genome-wide divergence (that is, genomic hitchhiking)”. 

 Equation (2a) shows that gene flow factor g can be significantly reduced if either 

the neutral locus is very close to the selected locus (i.e., r is small) or selection against 

hybrids is very strong (i.e., v is small). The difference between DH and GH is that 

physical linkage of genes is necessary in the former but is irrelevant in the latter 

(provided selection is very strong). As should be clear from our previous discussion , any 

effects of linkage on GIDs are quantitative and not qualitative. Therefore treating DH and 

DG as different mechanisms of divergence acting during different stages of speciation is 

not justified. The real evolutionary mechanisms underlying the formation of GIDs are 

selection and linkage. 

Feder and Nosil (2010) observed significant differences between the behavior of 

one-locus models of DH in which Fst was observed to increase only at short distances 
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from the selected locus and multi-locus models of GH in which gene flow was 

decreased across the whole genome. However, as realized already by Bengtsson (1985), 

“an increase in the number of factors building the genetic barrier does not - by itself - 

particularly influence the gene flow factor...” (p.36). The real reason for the differences 

between models studied by Feder and Nosil (2010) were vast differences in the strength 

of selection assumed in their models of DH and GH. Feder and Nosil (2010) used 

multiplicative selection (as assumed in eq. 2c), fixed the strength of selection si per locus, 

and then studied the effects of increasing the number of loci L. For example, in their 

approach a single selected locus model of DH with a 50% reduction of the fitness v of 

hybrids (v = 1−s with s = 0.5) would be compared with a 10-locus model of GH with 

1000-fold reduction (v = (1−s)
L
 = 1/210 with s = 0.5 and L = 10) of hybrid fitness. 

Therefore the comparisons of DH and GH performed by Feder and Nosil (2010) are not 

appropriate because they confound variation in number of selected loci with variation in 

the strength of selection. 

A couple of other comments are in order. When interpreting results from different 

empirical studies one needs to be aware that larger GIDs do not necessarily imply 

stronger selection or reduced gene flow even if the same method for detecting GIDs is 

used in all studies. Because Fst depends inversely on the population size (see eq. 1.1), so 

does the cutoff value for identifying Fst outliers. Therefore, all else being equal, larger 

portions of the genome will have Fst above the cutoff in large populations compared to 

small ones. Figure 1-5 illustrates this effect. Large GIDs can also be a consequence of 

spatial subdivision, rather than the effects of selection. This can happen because the 
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genomic patterns of neutral variation depend on spatial subdivision. For example, Fst 

outliers have often been found in river organisms, but a recent simulation study showed 

that tools used for analyzing genomic data to detect Fst outliers have high false positive 

rate when population is spatially subdivided in river-like environments (Bierne et al., 

2013, Fourcade et al., 2013). The reason is that in river-like environments, the variance of 

Fst is inflated compared to island models, due to strong correlation in co-ancestry between 

sampled individuals. Using a model that takes into account population subdivision to 

infer departure of Fst from neutrality can help to alleviate this problem. 

Lastly, the existence of GIDs is not a condition for ongoing speciation as often 

mentioned in the literature. For example, polyploid speciation (Ramsey and Schemske, 

1998) can produce different species with genomes that are not diverged, while a 

secondary contact after prolonged isolation can create diverged populations belonging to 

the same species. A number of conditions must be satisfied for local adaptation and 

genetic divergence to actually lead to speciation (Coyne and Orr, 2004, Gavrilets, 

2004,Wolf et al., 2010, Butlin, 2012, Smajda and Butlin, 2011). Gavrilets (2004, Chap.4-

5) explicitly studied how the gene flow factor affects the expected time to speciation in 

several models.  

Many issues related to genomic patterns during population divergence and 

speciation remain open (Seehausen et al., 2014). We will just point to two issues of major 

interest. First, we still do not have an analytical theory describing the transient dynamics 

of GIDs even in simple models such as ones considered in this paper. In our individual-

based simulations, the time span for GIDs to reach an equilibrium is on the order of 
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population size. However, lowering the mutation rate is expected to increase the time 

required for the size of GIDs to reach an equilibrium. Second, we do not have a full 

understanding of the effects of GIDs on non-neutral divergence. Recently, Yeaman and 

Otto (2011) found an expression for the ”probability of establishment” in a two-deme 

population, i.e., the probability that a mutant allele reaches a high frequency in a deme 

where it is favored. Their results were used by Feder et al. (2012b) to study the 

probability of establishment of new selected mutations linked to already diverged 

selected genes. They concluded that the selection coefficient of a new mutation is a more 

important predictor of the establishment of a new allele rather than its proximity to an 

already diverged locus. However, the “establishment” of an allele in a deme does not 

necessarily mean divergence between the demes. With recurrent mutation and weak 

selection, a locus in the two-deme model can be polymorphic in both populations (and 

thus “established”), but not diverged. Our numerical results show that divergence at 

minor loci can be substantial and rapid if they are close enough to an already diverged 

locus under strong enough selection. Having a better understanding of dynamics of GIDs 

and an expression for a critical migration rate at which populations diverge would be a 

valuable addition to the field. 
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Appendix 

Calculating the gene flow factor Bengtsson’s method for calculating the gene flow factor 

  is described in the appendix of his paper. His method requires one to specify viabilities 

of genotypes with no more than one “foreign” allele per locus. For example, in the case 

of two selected diallelic loci, the four relevant genotypes are AB/AB; aB/AB; Ab/AB and 

ab/AB where we assume that “local” and “foreign” alleles are given by the upper-case 

and lower-case letters, respectively. Let viabilities of these four genotypes be 1; 1-a; 1-b, 

and 1-s, respectively. Assume that the order of the loci on the chromosome is MAB, 

where M represents the neutral locus. Let r1 be the recombinational distance between M 

and A locus, and r2 be the distance between loci A and B. Then the gene flow factor is 

 
2

1 2 2 1 2 2
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2 1 1 2

( 1) [(1 )(1 ) 1] [(1 )(1 ) 1][ (1 )(1 ) 1]
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 

          
 

(1.4) 

Assume that the order of the loci on the chromosome is AMB. Let r1 be the distance 

between A and M and r2 be the distance between M and B. Then  

 1 2
1 2

2 1 1 2

1 (1 )(1 )(1 )(1 )
(1 ) .

[1 (1 )(1 )][1 (1 )(1 )][1 (1 )(1 )(1 )(1 )]
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r r a b
s r r

r a r b r a r s


    
 

          
 

(1.5) 

With three loci under selection, there are 8 relevant genetic backgrounds and four 

different positions a marker locus can occupy with respect to selected loci (MABC, 
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AMBC, ABMC, ABCM). The analytical expressions for  are cumbersome, so we do 

not present them here.  

 

Individual-based simulations 

We consider a population of diploid individuals with discrete non-overlapping 

generations subdivided in two demes of equal size N. Each individual has two 

chromosomes with 1024 diallelic loci, of which some are under selection and some are 

neutral. Mutation rate per locus is m and is equal to 10
-5

 unless stated otherwise. Each 

generation begins with offspring production by random mating of their parents. Parents 

are chosen randomly within a deme. Each mating pair produces a random number of 

offspring chosen from a Poisson distribution with mean B = 4, which means that on 

average the offspring population is twice as large as the parent population. Offspring 

migrate to the other deme with probability m. After migration, the number of offspring in 

each deme is reduced to N by viability selection. Viability selection in each deme was 

implemented by drawing N individuals (without replacement) from the deme’s offspring 

population. The probability that an individual i with fitness wi is picked during draw j is 

1

/
OPN j

i k

k

w w




  , where NOP is the size of offspring population in deme. 
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Defining DIG size 

To compute the size of GIDs, we first split the chromosome into 128 bins, each 

containing eight neighboring loci and then calculate the mean Fst value for each bin. If the 

mean Fst value of a bin is larger than a predefined cut-off (we chose 5 times the mean Fst 

under neutrality), we say that the bin is part of the GID. To obtain Fst under neutrality, we 

ran simulations under the same parameters as above but with selection coefficients set to 

zero. The mean GID size was measured as the sum of lengths of all bins that were part of 

the GID. We performed summation because we are interested in cumulative effects of 

selected loci on the amount of divergence across the genome. Since we fix the total 

strength of selection in simulations, as the number of loci increases, each individual locus 

experiences weaker selection and the region of elevated Fst around each selected locus is 

smaller (compare Figures 1-1, 1-2 and 1-3). Splitting the chromosome in bins containing 

multiple loci and calculating the average divergence index of a region is a common 

practice in empirical work studying patterns of divergence (Turner et al., 2005, 

Hohenlohe et al., 2010, Roesti et al., 2012a,b), but see Via (2009), Via et al. (2012). 

While empirical studies use more sophisticated statistical methods to determine whether 

bins have an elevated Fst , the number of loci in our simulation is relatively small (1024), 

and we believe that the simple method we use is good enough to show how the GID size 

behaves without complicating the analysis.  
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Figure 1-1. Fst values for loci across the chromosome with one locus under selection. 

Black line: analytical predictions, grey dots: mean values from simulation results. N = 

4000. The absolute value of position represents the recombinational distance from the 

center of the chromosome. 
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Figure 1-2. Fst values for loci across the chromosome with two loci under selection. 

Black line: analytical predictions, grey dots: mean values from simulation results. N = 

4000. The absolute value of position represents the recombinational distance from the 

center of the chromosome. 
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Figure 1-3. Fst values for loci across the chromosome with three loci under selection. 

Black line: analytical predictions, grey dots: mean values from simulation results. N = 

4000. The absolute value of position represents the recombinational distance from the 

cente 
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Figure 1-4. Standard error of Fst with two loci under selection. 
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Figure 1-5. Dynamics of the mean GID size for different initial conditions and 

parameters. Secondary contact (dashed line). Population split (solid line). N = 4000 

(black) N = 2000 grey. Each time unit represents 1000 generations. 
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Figure 1-6. Distribution of the GID size for different migration rates m and selection 

coefficients s. One (light grey), two (intermediate grey), or three (black) loci under 

selection of the same total strength. N = 4000. Histograms were constructed from 50 

samples, each taken 100,000 generations after the start of a simulation. 
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Figure 1-7. Effects of a major selected locus on divergence of minor loci. Shown are Fst 

values at minor loci at different distances r from a single major locus (which is at 

position r =0). Different symbols correspond to: only major locus is under selection (+), 

all loci are under selection (o), and only minor loci are under selection (*). The selection 

strength at major and minor loci is sM and sm respectively. N = 1000, m = 0.01. 
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Chapter 2 

Distribution of coalescent times and number of pairwise differences in models of 

hybridization 
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Abstract 

We study the coalescent process of two genes in a hybridization model that 

includes population size change and ancestral migration. We obtain the analytical results 

for the distribution of coalescent times and pairwise differences under infinite site model 

and symmetrical migration rates and link these results to previously studied “Isolation 

with initial migration” model. Lastly, we show how to infer model parameters from 

whole genome scans using our results. 

Introduction 

Hybridization is an important source of diversity and can arise as a result of 

numerous mechanisms including environmental change, introduction of new competitors 

or predators, secondary contact, or reduced selection at low population densities (Hudson 

et al., 2013, Ward and Blum, 2012, Taylor et al., 2006, Ropiquet and Hassanin, 2006, 

Seehausen, 2004, Dowling and Secor, 1997). Hybridization increases biological diversity 

by creating genetic variation, novel traits and new species, and this newly derived 

diversity can have important ecological and evolutionary consequences (Stebbins, 1959, 

Mallet, 1995, Arnold, 1997, Vollmer and Palumbi, 2002, Rieseberg et al., 2003, 

Seehausen, 2004, Dittrich-Reed and Fitzpatrick, 2014). 

In sunflowers, ancient hybrids between H.annuus and H.petiolaris species 

perform well in novel environments which are not readily available to parent species 

(Lexer et al., 2003). Novel coloration patterns on the wings of Heliconius heurippa, a 

butterfly species believed to be a hybrid of H. cydno and H. melpomene, serve as 



 
45 

important anti-predatory and mate recognition signals (Mavarez et al., 2006, Brower, 

2011). Many adaptive radiations appear in regions of secondary contact and admixture 

between previously allopatric lineages, providing further evidence for the potential 

importance of hybridization in generating diversity (Arnold et al., 2012). In humans, 

studying population admixture is important to help us to describe our history (Lipson et 

al., 2013, Novembre and Ramachandran, 2011, Lohmueller et al., 2010), but also to 

identify genes linked to diseases (Patterson et al., 2004, Shriner et al., 2011). 

However, despite widespread interest in hybridization and population admixture, 

reconstructing the history of hybrid/admixed populations is still a major challenge. 

Hybridization can be detected from DNA data via several methods such as comparing 

distribution patterns of mitochondrial and/or nuclear haplotypes across multiple 

populations, using phylogenetic methods, and fitting data to explicit population models 

(Barton and Hewitt, 1985, Arnold, 1993, Bertorelle and Excoffier, 1998, Chikhi et al., 

2001, Anderson and Thompson, 2002, Wang, 2003, Wilson and Rannala, 2003, Manel et 

al., 2005, DiCandia and Routman, 2007, Hubisz et al., 2009, Alexander et al., 2009). The 

genome-wide distribution of single nucleotide polymorphisms (SNP) may also provide us 

with a means to decipher the history of hybrid populations, however fitting the SNP 

distribution to a particular demographics model can be challenging and is often 

performed by means of computations methods, which can be time-consuming and 

imprecise. 

The distribution of pairwise differences is a useful summary statistic which, in 

principle, can also be used to reconstruct a population’s history (Wakeley, 2008,Wakeley 
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et al., 2012, Huff et al., 2011, Wang and Hey, 2010, Wilkinson-Herbots, 2012). While 

the distribution of pairwise differences considers only two individuals and thus ignores 

available data, in some cases it is possible to obtain closed form analytical solutions 

which can then be used as a rapid means of estimating model parameters when only a few 

genome-wide scans are available. Apart from that, analytical solutions provide a deeper 

insight into how population history shapes DNA polymorphism patterns. 

Here, we use coalescent theory to obtain solutions for the distribution of pairwise 

differences in a hybridization (or population admixture) models with complex histories, 

such as population size change and migration. Coalescent models are a subset of 

population genetics models that examine DNA polymorphism patterns by tracing the 

ancestry of the sample as they coalesce back in time until the most common recent 

ancestor is found (Takahata, 1995, Wakeley, 1996, Rannala, 1997, Excoffier, 2004, 

Wakeley, 2008). For a general hybridization model, we create a set of equations from 

which the distribution of pairwise differences can be obtained by numerical methods. We 

derive the closed form analytical solutions in the case of symmetrical migration rates. 

We use those results to gain insight about the importance of sampling genes from 

hybrid population and to explain the limits of parameter estimation using genome-wide 

distribution of pairwise differences. 
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Model 

Modelling assumptions 

We describe a coalescent process for two genes in a general hybridization model. 

We assume that genealogies of two genes can be described in terms of Kingman’s or 

structured coalescent (Kingman 1982a,b, Notohara, 1990). By gene we mean a 

selectively neutral sequence of non-recombining DNA which mutates according to 

infinite site mutation model (Watterson, 1975). 

General model 

In the general model, a population splits T2 generations ago into two populations 

P1 and P2 which we call “parent” populations because they will give rise to hybrid 

population. Parent populations exchange migrants at rates 1,2m  and 2,1m  until Ta 

generations ago, after which migration stops. T1 generations ago a third, hybrid (H), 

population is formed by an admixture of two parent populations. To keep model general, 

we also allow all existing populations to change sizes at T1, Ta and T2 (Figure 2-1). 

We rescale model parameters by 2N and we define 1 = 2NT1, a = 2NTa, and 2 = 

2NT2. Let p1 be the probability that an ancestral lineage of one gene was in population P1 

at 1. Then p2 = 1 − p1 is the probability that an ancestral lineage is in the other parent 

population. In natural systems p1 can depend on numerous factors, but we treat it as a 

parameter that can be between 0 and 1 without going into details about mechanisms that 

define its value. 
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There are six ways to sample two genes from three populations when order in 

which genes are picked does not matter. In deriving the distribution of coalescent times 

for each of those cases, we will encounter three different situations: lineages in the same 

isolated population, lineages in different isolated populations and lineages in 

population(s) that are exchanging migrants. 

When lineages are in the same isolated population, distribution of coalescent time 

is exponentially distributed with mean proportional to population size. When two 

lineages are in different populations, they cannot coalesce. 

We use the formalism of structured coalescent to derive the distribution of 

coalescent times when lineages are in population(s) exchanging migrants (Notohara, 

1990). When population size goes to infinity and the product of population size and 

migration rate converges to constant, after scaling by population size, the coalescent 

process can be described as a continuous Markov process with rate matrix Q . For two 

genes and two populations of sizes 12Nx  and 22Nx  exchanging migrants with backward 

migration rates 1,2m  (migration from 12Nx   to 22Nx  ) and 2,1m  (migration from 22Nx   to 

12Nx ), Q has five states: two lineages in the first population, one lineage in each 

population, two lineages in the second population and two lineages coalesced in first and 

second population respectively. Matrix Q is then given by: 
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(2.1) 

Where , ,4i j i jM Nm , , 1, 2i j  , i j  is scaled migration size. We obtain the probability 

of being in state j after some time t given it started in state i  using standard continuous 

Markov chain methods by calculating matrix exponent of Q,

1 2 1,2 2,1

0

( , , , , ) ( ) / !Qt k

k

A x x M M t e Qt k




  .  

Distribution of coalescent times, expected coalescent time and the distribution of 

pairwise differences 

 First case we consider is when two genes are sampled from the same extant 

population jP . Before a  lineages are in the same isolated population jP , that changed 

size at 1 . Coalescent time follows exponential distribution with mean jd  prior to 1  and, 

given that lineages did not coalesce ( probability 1( / )jexp d ), jc  between 1  and a . 

Assuming no coalescent happened, at a two lineages will both in population of size jb

,which is a population exchanging migrants. Since lineages can coalesce only if they are 

in the same population, only entries of 
Qte corresponding to those cases will be used to 

describe coalescent between a  and 2 . Lastly, if coalescent did not happen by 2 , 
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lineages will find themselves in the same (isolated) population and will coalesce with 

rate a. 

Therefore, the probability density function (p.d.f) of coalescent times in 

hybridization model can be written as a combination of different stages, with coalescent 

in each stage described by appropriate exponentially distributed random variables 

multiplied by the probability of coalescence not happening prior to the stage: 
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 (2.2) 

Where 1 1s   and 2 3s   if 1j   and 1 3s  , 2 1s   if 2j  .  

Similarly, when two genes are sampled from different extant parent population, 

coalescent is possible only after a , at which time two lineages are in different 

populations exchanging migrants. The p.d.f. of coalescent times is:   
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(2.3) 

 When one gene is sampled from an extant population jP  and the other from the hybrid 

population H , with probability 1 jp  ancestral lineages will be in different populations 

between 1  and a . The coalescent process is then the same as when two genes are 

sampled from different extant parent populations. With probability jp , ancestral lineages 

will be in the same population, and the distribution of coalescent times will be given by

P Hj
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(2.4) 

The distribution of coalescent times in when one gene is sampled from population jP , 

and the other from H  can be written as:    

 (1 )P H P H Pj j
ds

j j TT T
f p f p f     
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(2.5) 

 Lastly, for two genes are sampled from hybrid population, we can write: 
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Terms on the right side correspond to cases when after 1  two ancestral lineages are in 1P ,

2P  and in different populations. Expressions for 
1
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replacing jd  in equation (2.2) with hd . When two lineages are in different populations 

between a  and 1 , coalescent is not possible. Therefore, term for H
dT

f  is: 
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(2.7) 

 The expected coalescent time of a random variable T  with p.d.f Tf  is: 

 
0

[ ] ( )TE T t f t dt


    

(2.8) 

Since under infinite site model each mutation produces one new pairwise difference and 

mutations accumulate over time independently across lineages according to Poisson 

process, the probability of k  pairwise differences is a function of the distribution of 
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coalescent time, and for a random coalescent time variable T  with p.d.f ( )Tf t , the 

distribution of pairwise differences is given by the integral:  
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(2.9) 

 Unfortunately, there is no simple expression for this expression in our general 

hybridization model, but it can be evaluated numerically using many readily available 

computer programs. However, we can obtain exact analytical solution when migration is 

symmetrical. 

 

Model with symmetric migration  

 To derive closed-form results, we assume that migration between the two  

populations is symmetric and equal to m . To keep the population sizes constant during 

migration time, we also assume that parent populations' sizes are the same ( 1 2b bb  ). 

For simplicity, we set b = 1, but as long as the population sizes are the same, we can 

easily obtain equivalent values for b different than 1 if we rescale time by 2Nb.   

 We found the expressions for relevant entries of 
Qte  “general model” section (see 

appendix), but instead of using them directly, we rewrite them in a way similar to 

(Wilkinson-Herobots, 2012). We then obtain:  
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(2.10a) 
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 From equation (2.2) and (2.10a-c), we obtain the probability density function (p.d.f.) of 

coalescent times for two genes sampled from extant parent population j: 
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In appendix, we show that the expected value of jP

sT is: 
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Similarly, we show in appendix that the probability of observing k  pairwise differences 

is: 
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and 4N  is the scaled mutation rate. Equations (2.14) and (2.15) are explained in 

Appendix.  

The expressions above are equivalent to the two-population “Isolation with initial 

migration” (IIM) model of (Wilkinson-Herbots, 2012) with population size change during 

isolation time. 

When two genes are sampled from different extant parent populations, P
dT

f from equation 

(2.3) is given by: 
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 This case is when two genes are sampled from different populations in IMM model, so 

the expected value of 
P

dT  is given by equation (25) in (Wilkinson-Herbots, 2012): 
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The probability of observing k  pairwise differences is then: 
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When one gene is sampled from hybrid population and the other from extant parent 

population HPj
sT

f  (equation 2.4) is given by: 
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From equation (2.5) we derive the expression for the expected value of jHP
T in a similar 

way as equation (2.12) as: 
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The probability of observing k  pairwise differences is then: 

 

1

2

2

2
( )/

2 1 0 2 2

1

2
( )

0 2 2 2 2

1

2
( )

1 2 2 2 2 2

1

( ) ( ( , ) ( (1/ , ) ( , )

( ( , ) (1/ , )))

(1 )( ( ( (1/ , ) ( , ) (1/ , ))))a

j a j

r a

r

HP c

j j r r a j a

r

r r

r

j r r a r

r

P S k p F c e A F F c

A e F a F

p A F e F a F

 

  

  

   

  

    

 



 



 



   

 

   







  

(2.21) 



 
58 

Lastly, when two genes are sampled from the hybrid population the distribution of 

coalescent times is given by equation (2.7), and H
dT

f is given by: 

1

21 2

1

2
( )

0 2

1

2
( )/ ( )

0 2

1

( )/

1

1

/d

/d

(1/ ) 0

0

( )

h

h r a
H

ah

d

r

t

r r aT

r

t

t

r

c

h

a

a

r

d e t

t

f A e t

e t

e

Ae







 

   





 



 

 



 

 









  


 


 



 












 

(2.22) 

The expressions for [ ]HE T  and ( )HS T  are: 
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Discussion 

 Wang and Hey (2010) used the distribution of pairwise differences from a large number 

of genes of D.melanogaster and D.simulans to estimate parameters of the “Isolation with 

Migration” model (Hey and Nielsen, 2004). They inferred nonzero migration from 
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D.simulans to D.melanogaster, showing the usefulness of a “few individuals but many 

loci” approach. Hobolth et al. (2011) have shown how to compute the distribution of 

coalescent times of two genes in “Isolation with Migration” model using properties of 

continuous time Markov chain (also see (Notohara, 1990) and chapter 4 in (Wakeley, 

2008) for using the same approach on different migration models). Wilkinson-Herbots 

(2012) has found the distribution of coalescent times and pairwise differences in 

“Isolation with Initial Migration” (IIM) model with symmetric migration. In IIM model, 

after the initial split, two populations share migrants for some time, but eventually stop 

and evolve in isolation.  

Compared to models describing population divergence, there are fewer analogous 

analytical results for hybridization models. Bertorelle and Excoffier (1998) developed 

statistics based on mean coalescent times to estimate admixture coefficient in a 

hybridization model with no migration and equal population sizes. A more general 

hybridization model which allows change of parent population sizes and migration after 

hybridization was considered in (Wang, 2003), but focus of that paper was developing a 

numerical method for parameter estimation. 

 In this paper we considered a hybridization model with complex parent population 

history using the approach equivalent to that described in Hobolth et al. (2011). In the 

case of symmetric migration rate, we found the closed form expressions for the 

distribution of coalescent times and pairwise differences when two genes are sampled 

from each of 6 different population combinations. 
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Distribution of pairwise differences 

 The distributions of coalescent times in the hybridization model can for the most  

part be expressed in terms of modified IIM divergence model (Wilkinson-Herobots, 

2012). 

 When two genes are sampled from extant parent populations, expressions we  

obtained are equivalent to ones in “Isolation with initial migration” (IIM) (Wilkinson-

Herbots, 2012) if populations change sizes during period of isolation. Therefore the 

distribution of coalescent times jP

sT  and 
P

dT  can be continuous or discontinuous, and the 

distribution of pairwise differences can be unimodal or multimodal, depending on 

parameters (Wilkinson-Herbots, 2012). 

 When one gene is sampled from a hybrid population and the other from an  

extant parent population j  the resulting distributions are a weighted average of two 

cases: 1) ancestral lineages in the same population and 2) ancestral lineages in different 

populations at a time preceding hybridization (after 1 ). Weights are jp  and 1 jp  

respectively. The first case is mathematically equivalent to sampling two genes from 

extant parent population of size hd  prior to 1 . The second case is equivalent to sampling 

two genes from different extent parent populations. Therefore, the shape of the 

distribution of pairwise differences also depends on jp . 
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 The coalescent process of two genes sampled from a hybrid population  

consists of three cases, two of which (each occurs with probability
2

jp ) can be described 

in terms of a modified IIM model. In the third case, which occurs with probability 1 22p p , 

ancestral lineages are in different populations just after 1 . This case is specific for 

hybridization model. Similarly as in the case when one gene is sampled from extant 

parent and the other from hybrid population, the shape of the distribution of pairwise 

differences of two genes sampled from hybrid population can vary depending on the 

admixture parameter.  

 Migration and change in population size can have the same effect on the distribution of 

pairwise differences. To show that, we consider two special cases, one in which two 

parent populations are of constant sizes and exchange migrants continuously until 

hybridization 1 2 1 2 1c 1, )(c ab b        and the other in which parent populations 

changes size but do not exchange migrants ( 0)M  . For some parameter sets, both 

models produce the same distribution of pairwise differences when one or both genes are 

sampled from hybrid population (Figure 2-2). This result is of particular interest because 

it shows that when one parent population cannot be sampled (because it went extinct for 

example), we can’t uniquely distinguish between change in parent population size and 

migration based on the distribution of pairwise differences alone. Even with all 

populations available, it may be difficult to distinguish between population size change 

and migration as different parameter combination can result in same distributions of 

pairwise differences (Figure 2-3). 
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 More work is needed to explore conditions when migration and the change in 

population size result in the same or very similar distributions of pairwise differences. 

However, since calculating likelihoods can be done reasonably fast, a person interested in 

data analysis could fit multiple different models and perform model comparison (for 

example likelihood-ratio test when possible or AICc (Hurvich and Tsail, 1989) ) to test 

how well the model fits the data. 

 

Parameter estimation 

 To understand how the distribution of pairwise differences relates particular model 

parameters, and test whether model parameters can be estimated, we used the ms 

program (Hudson, 2002) to simulate 5000 pairs of genes sampled from each possible pair 

of extant populations assuming infinite site mutation model. The resulting six sets of 

5000 numbers were used to calculate likelihood function. For simplicity, we assumed that 

all population sizes are the same, migration is continuous between 1  and a  and that   

is known. For each of 5 parameters in this simplified model, we considered 10 or more 

different values to calculate the likelihood of observed data. Given that the pair of genes 

is sampled from populations i  and j  (where i  and j  can be 1P , 2P  and H ) the number 

of pairwise differences (Data) given model parameters is just ( , ( | )i jP Data parameters ) 

using equations (2.13), (2.18), (2.21) and (2.24). Since all pairs of genes are independent, 

the likelihood of all the number of pairwise differences for all gene pairs is a product of 
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likelihoods of each gene pair (Takahata et al. 1995). To calculate the marginal 

likelihood of a particular model parameter, we integrate out other model parameters.   

Depending on the parameters, we could estimate some parameters better than others. 

Figure 2-4 shows the case when migration rate was estimated poorly compared to other 

parameters. That is because the distribution of pairwise differences for that particular 

parameter set does not depend as strong on migration rate as on other parameters 

(compare Figure 2-5 to Figure 2-6). When polymorphism is low (which happens for 

small  , small population sizes, high migration, recent hybridization or parent population 

split) different parameter combinations will produce same distribution of pairwise 

differences resulting in flat posterior distribution. 

The main focus of this paper was describing a coalescent process in a hybridization 

model and understanding how it connects to other models. The parameter estimation 

approach illustrated here, while encouraging, might not be applicable for some empirical 

studies for several reasons. First, we are assuming no recombination between genes. It 

might be hard to find enough appropriate genes if chromosome is small or if 

recombination rates across the chromosomes are unequal. A possible way to mitigate this 

problem is to use short DNA segments separated by longer stretches and to avoid genes 

in parts of genome with low recombination (recombinational coldspots or inversions for 

example). Wang and Hey (2010) used 500 bp long DNA segments separated by at least 

2000 bp for their analysis of Drosophila species. To calculate the likelihood of data, we 

are assuming that genes are independent. This means that different genes need to be used 

for building a distribution of pairwise differences for each of 6 different population pairs, 
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causing a problem with using this method on small genomes. Parameter estimation 

method presented here relies on comparing two genes. Expanding model to consider 

more than two sequences is possible, but obtaining analytical result is harder. Also, the 

number of ways to sample genes from different populations is larger. For example, with 3 

genes there are 9 different ways to choose genes from 3 populations. Given that genes 

cannot be reused in different population pairs, it is unclear how to sample genes most 

efficiently. In this paper we are assuming infinite site mutation model, but different 

mutation models can be included. For example, under Jukes-Cantor mutation model, the 

probability that a nucleotide is the same after time t is
4 /31/ 4 (3 / 4) te , so we can use the 

same approach as the one outlined in appendix to derive the probability of homozygosity 

under this mutation model.  We were able to obtain analytical results for a model with 

symmetric migration. For asymmetrical migration, we need to rely on numerical methods 

to find the expressions for the exponent of Q matrix. A model with symmetrical 

migration already has 11 parameters (6 population sizes, 3 times, migration rate, 

admixture coefficient and scaled mutation rate) and we did not explore how well all 

parameters can be estimated. However, based on the results of a simplified model, we 

would not be surprised if multiple different parameter combinations might result in 

equally good fit to data. With asymmetrical migration and population sizes, the number 

of parameters will increase. Future work will focus on developing ways to deal with 

asymmetrical migration, different population sizes and other issues we mentioned. 
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Conclusion 

We described the coalescent process for the sample of two genes in a hybridization model 

which allows for the complex population histories. We obtained analytical results for the 

distribution of coalescent times and pairwise differences under infinite site model in the 

case of symmetrical migration rate and equal population sizes. We have shown how this 

model relates to previously studied “Isolation with initial migration” models. Lastly, we 

have shown that at least in some cases model parameters can be inferred from data, 

however more work is needed to better understand when accurate parameter estimation is 

possible.  
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Appendix 

 

Figure 2-1. A general model considered in this paper. Ancestral population of size 2Na 

haploid individuals splits T1 generations ago in two populations which differ in sizes. 

Two populations evolve in isolation until Ta generations ago when they start sharing 

migrants with different migration rates m1,2 and m2,1. At T1, migration stops and a hybrid 

population is formed. 
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Figure 2-2 Sampling both parent populations is necessary to distinguish migration and 

population growth before hybridization. Both events can produce the same distribution of 

pairwise distributions for all pairs of genes involving hybrid population, as shown in this 

example. On the other hand, ( )jP
S T  and ( )P

dS T  do not depend on p and are thus 

different. Parameters: model with no migration (black): 1 2 1 21, 0.75, 1.5ac c b b      , 

model with migration(grey): 1M  , same in both models: 

1 2 1 210, 3, 5, 1, 2, 0.5a d d p         . 
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Figure 2-3 Even when all three populations are available distinguishing between 

migration and population change might be hard since both effects can result in similar 

distribution of pairwise differences. Parameters: No migration (black) model: 

1 2 1 2 1 20.5, 0.5, 1.5, 1.5, 1.1, 1.25, 1.4ab b c c          ,  migration model (grey),: 

1 21, 2, 1a M      , same in both models: 1 210, 3.0, 0.5, 5, 5, 5ha p d d d      

. 
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Figure 2-4 Marginal log likelihood functions. Model parameters 

1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1, 0.1a ha d d d p M             .Migration rate 

cannot be estimated precisely because the distribution of pairwise differences does not 

change much with changing M for this set of parameters. 
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Figure 2-5. Effect of changing migration on the distribution of pairwise differences. For 

this parameter set, changing migration does not affect the distribution of coalescent times 

much. Model parameters 0.1M   (full line), 0.5M   (dashed line), 1M   (grey 

line).Other parameters: 1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1a ha d d d p            . 
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Figure 2-6.Effect of changing admixture coefficient on the distribution of pairwise 

differences. Changing the admixture coefficient changes the distribution of pairwise 

differences. Model parameters 
1 0.1p   (full line), 

1 0.3p   (dashed line), 
1 0.5p   (grey 

line). Distribution of pairwise differences does not depend on p  when genes are sampled 

from parent populations which causes the three lines to overlap. Other parameters: 

1 2 1 25, 0.4, 1.1, 3, 3, 3, 3, 0.1a ha d d d M            . 
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 Calculating expected values and their functions 

 Consider a case when two genes are sampled from parental population jP .Then 

coalescent process is same as in IMM model of (Wilkinson-Herobots, 2012) with 

population change during time of isolation. Let T be a random variable denoting the 

coalescent time of two lineages. T can be written as a mixture of exponentially distributed 

random variables, jX , jW ,
rY  and Z with means jd , jc ,1/ r  and a  respectively, and we 

can write: 

 
2

0

1

j

r

P

s r T

r

fT A f


   

(A2.1) 

Where:  
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(A2.2) 

Any function g of rT  is then: 

 
1 1 1

1 1 2

{ } 1 { , } 1

{ , , } 2

( ) ( ) [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )]
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a a
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I g Z g Y
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        

  
  

(A2.3) 

where AI  is an indicator variable that has value 1 if the event A  occurred and 0 if it did 

not. Since jX , jW ,
rY  and Z  are exponentially distributed and independent for the 

expectation of rT  is: 
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(A2.4) 

We used the memoryless property of exponential random variable to obtain the last 

equality. Lastly, to obtain the expected value of a function of jP

sT we use the relation: 

2

0

1

[ ( )] [ ( )]jP

s r r

r

E g T A E g T


  

(A2.5) 

We can obtain the expressions for the probability of observing l pairwise differences for 

two genes by setting function ( ) ( ) / !x l

lg x e x l   in the equations (A2.4) and then using 

the equation (A2.5). Then, for an exponentially distributed random variable X with mean

a we have: 

1

1( ) [ ( )] ( ) / (1 )l l

lF a E g X a a      

(A2.6) 

where 4N  . This result also follows from Watterson, (1975) who has shown that the 

distribution of pairwise differences in panmictic population of size 2N is geometric with 

mean 1/ (1 ) . The probability of observing l  pairwise differences during time X   

is: 
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(A2.7) 

Equation (A2.7) has been derived in (Wilkinson-Herbots, 2012). By applying equations 

(A2.6) and (A2.7) to (A2.5) we obtain equation (2.13).   

 Expected values and the distribution of pairwise differences for other 5  

population pairs can be obtained in a similar way. 

 

The expression for elements of 
Qte : 

When migration is symmetric and population sizes are the same, matrix Q is: 
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(A2.8) 

 Then, the elements of matrix exponent 
Qte (equations 2.10a-e) are: 
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Chapter 3  

Serial Founder Model with historical migration 
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Abstract 

Recently, DeGiorgio et al.(2011) have obtained a closed form expression for the 

distribution of coalescent times and several related statistics for “serial founder model” 

(SF model). Their model does not include migration and analytical results concerning 

migration in SF models are lacking. Here we study the effects of historical migration in 

SF models. We derive a closed form expression for the distribution of coalescent times 

and the distribution of pairwise differences under infinite site mutation models. We find 

that coalescent times for two genes sampled from the same population are longer when 

migration is incorporated into the model. Longer coalescent times cause slower decay of 

heterozygosity in a migration model. Heterozygosity can even increase with distance 

from the source population. Additionally, the pairwise stF  can decrease with distance 

from the oldest population. 

 

Introduction 

The “serial founder model” (SF) is a nonequilibrium population models used to 

describe the spread of humans from Africa across the world (Ramachandran et al., 2005). 

In this model, a small number of individuals from an initial (source) population move to a 

new geographic region and form a second population that grows to carrying capacity. A 

group of individuals from this second population then moves to a new geographic region 
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forming a third population. This process is repeated until n populations are formed. 

Each new population passes through a genetic bottleneck during its formation. 

Several variations of SF and related territory expansion models have been studied 

extensively using simulations (Ramachandran et al., 2005, Deshpande et al., 2009, 

DeGiorgio et al., 2009, Hunley et al., 2009) and analytical approaches (Austerlitz et al., 

1997, Liu et al., 2006, Excoffier and Ray, 2008, Slatkin and Excoffier, 2012, Nullmeier 

and Hallatschek, 2013). 

Recently, DeGiorgio et al. (2011) have studied a SF model and found closed-form 

expressions for the distribution of coalescent times, expected coalescent time, expected 

heterozygosity and pairwise stF . SF model of DeGiorgio et al. (2011) produced linear 

decay in heterozygosity with respect to geographical distance from the source population 

and increase in stF  between distant populations. With some exceptions, patterns 

produced by their model are consistent with patterns observed in human data. 

 However, this model by DeGiorgio et al. (2011) is limited by its lack of 

continued migration between populations. Although simulation results suggest that small 

to moderate migration does not affect the patterns produced by SF model (DeGiorgio et 

al., 2009), analytical results concerning migration in SF models are lacking. Here, we 

seek to understand how migration affects patterns of heterozygosity and pairwise Fst in 

SF model. To that end, we incorporate historical migration in the SF model of 

(DeGiorgio et al., 2009) and calculate the distribution of pairwise differences. Since gene 

identity and heterozygosity are special cases when the number of differences between 
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two genes is equal to zero or non-zero respectively, we also expand SF model with no 

migration by finding an expression for the distribution of pairwise differences (mismatch 

distribution). 

 

Model 

Our main goal is to derive the distribution of coalescent times and pairwise 

differences in the serial founder model with historical migration (figure 3.1) and compare 

it to a model with no migration. To make comparison easier, we also consider a serial 

founder model with no migration to obtain simpler expressions than those in (DeGiorgio 

et al, 2011). Through the paper, we assume that genealogies of two genes can be 

described in terms of Kingman’s or structured coalescent (Kingman 1982a,b, Notohara, 

1990). By gene we mean a selectively neutral sequence of non-recombining DNA which 

mutates according to infinite site mutation model (Watterson, 1975).  

 

No migration 

In this model all migration rates are equal to zero. We scale model parameters by 

population size 2N. One time unit now corresponds to 2N generations and 1 2 2, ,..., na a a  

correspond to relative population sizes (figure 3.1). There are n populations in a model, 

each of which changes size once. However, it is more convenient to think of a model as 

consisting of 2n populations of constant size because then a population j has size ja . 
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Furthermore, every odd-numbered population k cannot be sampled and it exists only 

between k  and 1k  .  

From remaining n even-numbered populations, a pair of genes can be sampled in 

( 1) / 2n n   different ways if sampling order does not matter. To fully describe the 

coalescent we only need to distinguish two different ways in which genes can be 

sampled. Two genes can be sampled from the same population and or from different 

populations. Then, the coalescent process for a pair of genes in serial founder model with 

no migration can be modeled as a modification of “complete isolation” model of 

(Takahata, 1995), where the modification is population size change after the period of 

isolation.  

Wilkinson-Herbots (2012) has shown how to use indicator variable to obtain the 

expression from which the distribution of coalescent times and pairwise differences can 

be easily calculated in complex models. Following that method, we write a random 

variable jjT  denoting the coalescent time of two genes sampled from the population j , as 

a combination of j  random exponentially distributed variables with means

1 2 1, , ,...,j j ja a a a  . That follows because ancestral lineages of two genes sampled from 

population j can coalesce in each population preceding population j. We can write jjT  as: 
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(3.1) 

We use indicator variable AI , to obtain the expression for any function g of jjT . Let AI

have a value 1 if the event happened and 0 if the event did not happen. Then, given 

equation (3.1) we can write: 
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(3.2) 

Using the fact that variables are independent and that exponentially distributed random 

variable has a memoryless property, we obtain the expectation of ( )jjg T  as: 
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(3.3) 

From the equation above we can get the expression for the expected coalescent time for 

two genes from the same population: 
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(3.4) 

[ ]jjE T  can therefore be written as the expectation under complete isolation model (first 

two terms on the right side of equation (3.4)) and the summation term that represents the 

effect of repeated bottlenecks. 

When two genes are sampled from different populations, say population j  and ,k j k , 

we can represent the coalescent time jkT  as a series of j  exponentially distributed 

random variables similarly as we did for jjT . We obtain: 
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(3.5) 

 

The expected coalescent time for two genes sampled from different populations, [ ]jkE T , 

j k , is then: 

 
1( )/

1
2

[ ] ( )

j

m mm
m l

j a

j jjk l l
l

E T a a a e
 


 









      

(3.6) 



 
89 

[ ]jkE T  can also be written in terms of “complete isolation” model and a bottleneck 

term. [ ]jkE T  does not depend on population k , because the two lineages can coalesce 

only when in the same population, which happens at and after j  for all k 's.  

 Next, we derive the distribution of pairwise differences in the serial founder model 

assuming an infinite site mutation model (Watterson, 1975). In infinite site mutation 

model, the appearance of new mutations follows Poisson distribution with mean  , and 

each mutation produces a new polymorphism. We define the function 

( ) ( ) / !x l

lg x e x l  . For an exponentially distributed random variable iX  with mean ia

we have: 

1( , , ) [ ( )] ( ) / (1 )l l

i l i i iA a l E g X a a       

(3.7) 

where 4N  . We also find that the probability of having l  pairwise differences during 

time i iX   is: 

 
1

0

( )
( , , , ) [ ( )] (1/ ) / !

(1 )

i l l
mi

i l i l

m

j

mi

j ji

e a
B a l t E g X a m

a

 
  

 


   


   

(3.8) 

Equation (3.7) follows from Watterson, (1975) who has shown that the distribution of 

pairwise differences in panmictic population of size 2N is geometric with mean 1/ (1 )

, while equation (3.8) can be found in (Wilkinson-Herbots, 2012).  
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We can now write the equation for the probability that two genes sampled from 

population j  are different in l  sites ( )jjP S l from equation (3.3) as: 

 

1

1

1 11
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1
/

1 1 1
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  








  



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







  

(3.9) 

Similarly, from (3.5) we obtain the following equation: 

 
1

1 1 1
2

( )/

[ ( )] ( ) ( , , , )

( ( , , , ) ( , , , ))

jkl

j

m mm
m k

jjk

j

k k k k
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j

a

E g T P S l B a l t

B a l t B a l t e
 



 
 


  





   





 

(3.10) 

 

Historical migration  

Migration can be incorporated in serial founder model in different ways. The simplest 

and analytically tractable way to introduce migration is by considering a historical 

migration model (figure 3.1). In this model, populations j  and 2j  share migrants 

between 2j   and 1j  . This model might roughly correspond to case in which the loss of 

contact with old population results in the formation of a new population. 
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For simplicity, we assume that all non-bottleneck populations are of the same sizes 2N 

and all bottleneck populations of size 2 , 1Nb b  .  

 Before describing the distribution of coalescent times in this model with migration, we 

need to derive certain results concerning coalescent with migration. Notohara (1990) 

described the coalescent process for a sample of genes from populations exchanging 

migrants as a continuous Markov process with rate matrix Q  (also see chapter 4 in 

Wakeley (2008)). 

In our case matrix Q  has 5 states: two lineages in the first population, one lineage in each 

population, two lineages in the second population and one lineage in first or second 

population after coalescent. When population sizes are equal to 2N and migration is 

symmetrical and equal to m , Q  is: 

 

1 0 1 0

/ 2 / 2 0 0

0 1 0 1

0 0 0 / 2 / 2

0 0 0 / 2 / 2

M M

M M M

Q M

M M

M M

  
 


 
   
 

 
  

 

(3.11)  

where 4M Nm . 

By calculating a matrix exponent of Q , 
0

( ) / !Qt k

k

e Qt k




 , we obtain the probability of 

system being in state j  after time t  given it started in state i . The relevant entries of 
Qte  

can be written as (Juric, unpublished results, also see Wilkinson-Herbots(2012) ): 
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2

( 1)

1,1 0

1

1
( )

2
rtQt M t

r r

r

e A e e
   



    

(3.12a) 
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1,2 1

1
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r

e A e
 


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(3.12b) 
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1

1
( )

2
rtQt M t

r r

r

e A e e
   


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(3.12c) 

 2,1 2,3 1,2

1

2

Qt Qt Qte e e    

(3.12d) 

 2 1

2,2 01 1 02 2

t tQte A e A e
   

    

(3.12e) 

where: 1

1/ 2

2

M D


 
 , 2

1/ 2

2

M D


 
 , 24 1D M   and 2

01

2 1

1
A



 





,  

1
02

2 1

1
A



 





, 2

11

2 1

A


 



 and 1

12

2 1

A


 





.  
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Consider two genes sampled from population j . Up to 2j   both lineages are in the 

population j and because the population size is 2N, they coalesce with rate 1. If lineages 

do not coalesce, they enter first migration-bottleneck block. A migration-bottleneck block 

is a time period in which two adjacent populations share migrants followed by a time 

period during which one of the populations is experiencing bottleneck. Looking forward 

in time, migration-bottleneck block is a bottleneck period during founding of a new 

population followed by migration from adjacent population after a new population grew 

in size. 

When two lineages enter the first migration-bottleneck block, migration can move 

lineages between populations j  and 2j   from time 2j   to 1j  . Assuming no 

coalescent, three mutually exclusive outcomes are possible at 1j  . 1) both lineages stay 

in population j , 2) both lineages move to population 2j  between 2j   to 1j  , and are 

now in the bottleneck population 1j   3) one lineage is in the population 1j   while the 

other stays in j . If both lineages enter the bottleneck population they coalesce with rate 

b. If lineages remain in the population j, they coalesce with rate 1. If lineages are in the 

different populations, coalescent is not possible until the exit from migration-bottleneck 

block at time j .  

 We can write the distribution of coalescent times until the end of the first migration-

bottleneck block as: 
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(3.13) 

where 1 2M j j      is the duration of migration period.  

The probability that coalescent did not happen by the time the first migration-bottleneck 

block ended is: 

 2 /

1 1,1 1,3 1,2( )j b bM M MbQ Q Q
X e e e e e e

      
     

(3.14) 

where 
1b j j      is the duration of bottleneck period.  

In the time between j  and 2  there will be another ( / 2 1j  ) migration-bottleneck 

blocks. Unlike the first block, in each of the following blocks lineages enter a bottleneck 

population unless they move during migration period. The probability of no coalescent 

during one of the remaining ( / 2 1)j   migration-bottleneck blocks is:  

 
/

1,1 1,3 1,2
b bM M MbQ Q Q

Y e e e e e
    

    

(3.15)  

We can write the distribution of coalescent times between j  and 2  as: 
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(3.16) 

where 0,2,4,6,8,10... 4l j  . 

Lastly, there is one last bottleneck between 2  and 1 : 
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(3.17) 

 

 The first migration-bottleneck block is also different from the others when two  

genes are sampled from populations j  and k , j k . Two lineages enter the first 

migration-bottleneck block from different populations, while all subsequent from the 

same population. Therefore, M
jkT

f  up until the end of first migration-bottleneck block can 

be written as:  
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(3.18) 

The probability of no coalescent till j is: 



 
96 

 
/ /

2 2,1 2,3 2,2
b bM M Ma bQ Q Q

X e e e e e
    

     

(3.19) 

After j , coalescent is the same as when two genes are sampled from the same 

population, and is described by equations (3.15) and (3. 16) and replacing 1X  with 2X .  

  

In a way similar to the one for model with no migration, we obtain a general expression 

for an expectation of a function g  of coalescent times when two genes are sampled from 

the same population as:  
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 (3.20) 

where 0,2,4,6,8,10... 4l j  . Expected coalescent times and the probability of l  

pairwise differences can be obtain by replacing terms on the right side with appropriate 

expressions listed in appendix . 

Similarly, when two genes are sampled from different populations we obtain:  

 

/2

2 2 1 2 1 2 1 1 2
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(3.21) 
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Discussion 

Distribution of coalescent times 

Probability density function of coalescent times in the model with historical migration 

can have more complex shape compared to model with no migration (figure 3.2). In the 

example on figure 3.2, the density of coalescent times when one gene is sampled from the 

oldest population and other from a different population, (
2,
M

kT
f ) increases monotonically 

between T = 4 and 5 in a model with migration. In a model without migration, there are 

no time periods between which the density of coalescent times increases monotonically. 

The explanation of this difference between models with and without migration is 

following. When migration started at T = 4, lineages were in different populations. 

Lineages need to be in the same population to coalesce, the probability of which 

increases with time. In a model with no migration, coalescent between is described by 

Kingman’s coalescent, which means that the density of coalescent times is follows 

exponential distribution, therefore it is decreasing with time.  We also note that with the 

exception of first migration period, during each subsequent migration-bottleneck block, 

two lineages will initially be in the same population, and the migration will move them 

apart, thus decreasing the probability of coalescent. That is the reason why only during 

first migration period 
,

M
j kT

f  grows continuously.  

 Migration can mitigate the effect of bottleneck in two ways. Lineages can be in non-

bottleneck population during bottleneck time, in which case they will coalesce with 

slower rate. Lineages can also be in different populations during the bottleneck time in 
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which case they cannot coalesce.  Both ways have the effect of decreasing probability 

of coalescent during bottlenecks. This effect is better seen when comparing 
,

M
j jT

f  for two 

models (figure 3.3) when migration moved lineages between different population so 

much that 
2,2
MT

f  and 
6,6
MT

f  look almost undistinguishable.  

 

Expected coalescent times 

In the model with no migration, differences in population sizes, duration and the number 

of bottlenecks affect the expected coalescent times. Large population size increases 

coalescent time while bottlenecks decrease it. When genes are sampled from populations 

distant to the source population (population 2), their ancestral lineages will have more 

opportunities to experience bottlenecks causing shorter coalescent times compared to 

when two lineages are sampled from populations close to the source population.  

With only two different population sizes (bottleneck and post-bottleneck sizes of sizes 2a  

and 1a  respectively), as is in simulations of  DeGiorgio et al., (2011), equation (3.4) tells 

us that the expected coalescent time of two genes sampled from younger population will 

always be shorter than when genes are sampled from older population due to the effects 

of multiple bottlenecks. 

 In the model with historical migration, the expected coalescent time of two genes 

sampled from distant population will be larger than in model with no migration. That 

happens because migration can split lineages to different populations thus delaying 
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coalesce. This effect can be so strong that for some model parameters, genes sampled 

from distant populations will have larger expected coalescent times than genes from 

source population. For example, when the duration of bottleneck is 0.1b  , duration of 

migration period is 0.5M  , migration rate 1M   and the bottleneck population size 

0.1b  , 2,2[ ] 0.85ME T   and  4,4[ ] 0.92ME T  .  

On the other hand, the expected coalescent time of two genes sampled from different 

populations in migration model is shorter than in model with no migration. That can 

easily be seen since with migration two lineages can coalesce after 2j  , while when 

0M  , coalescent is possible only after j .  

 

Heterozygosity 

By setting l  to the zero in equations (3.6) we obtain the expressions for gene identity  

( jjJ ) in model with no migration.  
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(3.22) 
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Heterozygosity is calculated as one minus gene identity. With only two different 

population sizes (bottleneck and post-bottleneck sizes of sizes 2a  and 1a  respectively), 

second and third terms on the right side of equation (3.22) are positive, since 

2 11/ (1 ) 1/ (1 )a a    . By comparing equation (3.22) to (3.5) we can see that gene 

identity decreases with increasing expected coalescent time. Therefore, all conclusions 

about expected coalescent times translate to heterozygosity. Namely, distant populations 

will have lower heterozygosity compared to ones close to the source. Whether the 

heterozygosity decrease is linear depends on the population sizes and times and duration 

of bottlenecks.  

If bottlenecks happened long time ago, such that the first term in equation (3.22) 

dominates, heterozygosity will entirely be defined by the scaled mutation rate ( 4N 

). Then for all populations / (1 )H    , which is the same as in unstructured population 

(Watterson, 1975, also see figure 9E in DeGiorgio et al. 2011).  

In a model with migration, heterozygosity can decrease or increase with the distance from 

the source population depending on the relative strength of migration and bottlenecks 

effects (figure 3.5). For the top plot on figure (3.5), we used the parameters as in 

DeGiorgio et al. (2011), while for the bottom plot we extended the time between 

bottlenecks from 19 generations to 200 generations (corresponding to changing M  from 

0.00095 to 0.01) . When the timing between bottlenecks is short, heterozygosity patterns 

are similar in both models. However, when migration lasts longer, distant populations are 

more diverse than ones close to the source. 
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Pairwise Fst 

 Understanding how [ ]jjE T  and [ ]jkE T  compare between models allow us to understand 

spatial patterns of pairwise STF . Pairwise STF  between populations j  and k  is defined as 

(Slatkin, 1991, DeGiorgio et al., 2011): 

 
[ ] 0.5( [ ] [ ])

[ ] 0.5( [ ] [ ])

jk jj kk

ST

jk jj kk

E T E T E T
F

E T E T E T

 


 
  

(3.23) 

In a model with no migration and two different population sizes stF  increases when j  is 

kept constant and k increases (figure 3.5). That is because [ ]kkE T  decreases while all other 

terms in equation (3.23) remain the same. The result is the decrease of stF  with distance 

from population j. When j  increases, stF  decreases because j  decreases faster than the 

bottleneck term increases in equation (3.4) causing stF  between a pair of distant 

populations to be smaller than between populations closer to the source.  

Since stF  is a function of expected coalescent times, it is not surprising that in a model 

with migration it can increase or decrease with distance from the source population 

(figure 3.5). Again, this is because with migration [ ]kkE T  can be larger than [ ]jjE T . 
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Conclusion 

We have examined the effects of historical migration on serial founder model. We 

derived the expressions for the distribution of coalescent times and pairwise differences, 

as well as the expression for the expected coalescent times. We used those expressions to 

understand the effects of migration on patterns of heterozygosity and stF .  

Migration can offset the effects of repeated bottlenecks by increasing coalescent times for 

two genes sampled from the same population and decreasing coalescent time for two 

genes sampled from different populations. Longer coalescent times of genes sampled 

from the same populations causes slower heterozygosity decay in a migration model. In 

fact, heterozygosity can increase with distance from the source population. Another 

consequence of altered coalescent times in migration model is the smaller pairwise stF

compared to the model with no migration. In a model with migration stF can decrease 

with distance from the source population. However, increasing heterozygosity or 

decreasing stF  are not a unique signature of historical migration in serial founder model 

because they can be obtained in a model with no migration when the distant populations’ 

sizes are bigger than population sizes closer to the source population.  

Model with no migration has been used to describe human spread around the globe 

(DeGiorgio et al., 2011). For parameters considered by those researchers, introducing 

historical migration produces qualitatively same results (top of figures 3.4 and 3.5) even 

when migration is high, suggesting that it might be hard if not impossible to detect 

historical migration as humans conquered the world based on patterns of heterozygosity 
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and pairwise stF . In theory, it might be possible to use equations (3.9, 3.10, 3.20, 

3.21) to calculate the likelihood of pairwise differences based on whole genome scans 

under different models and compare different models. However, given the large number 

of parameters, we are bit skeptical about the results of such analysis. 
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Appendix 

 

 

Figure 3-1 Serial founder model with migration when there are 6 extant populations See 

text for model description. 
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Figure 3-2 Distribution of coalescent times in a model with historical migration (black) 

is different compared to the model with no migration (grey). X axis: scaled time. Top: 

one gene is sampled from population 2 and the other from population , 4,6,8k k  . 

Bottom: one gene sampled from population 6 and the other from population 8 . Model 

parameters: 0.5b  , 1M  , 0.5b  , 1M  , 8 populations. 
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Figure 3-3 Distribution of coalescent times in a model with historical migration (black) 

and a model with no migration (grey). X axis: scaled time. Genes sampled from 

population 2 (top) and 6 (bottom).Model parameters: 0.5b  , 1M  , 0.5b  , 1M  , 8 

populations. 
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Figure 3-4 In a migration model, heterozgosity can decrease or increase in distant 

populations depending on parameters. X axis: distance from the first observable 

population, corresponds to population number in (DeGiorgio et al 2011). Model 

parameters 0.025b  , 100M  (grey lines), 0M   (black lines), 0.0001bt  , 0.025b 

, (top) 0.00095M  , (bottom) 0.01M  . 
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Figure 3-5  Pairwise stF in models with (grey) and without (black) migration when j = 2. 

stF  is a function of expected coalescent times, therefore it can decrease in distant 

populations in the model with migration. X axis: distance from the first observable 

population, corresponds to population number in (DeGiorgio et al 2011). Parameters 

0.025b  , 100M  (grey lines), 0M   (black lines), 0.0001bt  , 0.025b  , (top) 

0.00095M  , (bottom) 0.01M  . 
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Terms on the right hand side of equations 3.24 and 3.25 

 

To obtain the expected value, terms on the right side are: 
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To obtain the expression for the probability of observing l  pairwise differences, terms on 

the right side are: 
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where function B is given by equation (3.8). 
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Conclusion 

 

In my dissertation I considered how different evolutionary processes and population 

histories can produce various DNA polymorphism patterns, and how we can use these 

patterns to learn about populations’ histories.   

In the first chapter I clarify numerous recent claims about the evolution of “Genomic 

Islands of Divergence”. I show that the main features of GIDs, such as its shape, are 

approximated well by analytical results found in the literature dealing with barriers to 

gene flow. I also show that different “hitchhiking” mechanisms are not needed to 

describe how GIDs appear and are maintained over time. I dispute claims about the 

transience of GIDs by showing that GIDs themselves do not change over time, and I 

clarify the effects of population size, migration, recombination, the strength of selection 

and initial conditions on GID size. Lastly, I show that weakly selected alleles can rapidly 

diverge if they are within a GID (close enough to strongly selected gene). Overall, this 

chapter is an important contribution to the study of speciation since the GID metaphor is 

widely used in the speciation literature and there is substantial confusion regarding the 

vocabulary accompanying it.  Relating GIDs to standard and well-established vocabulary 

will facilitate future communication between biologists.  

The main result of the second chapter is the derivation of the expression for the 

distribution of pairwise differences in a hybridization model with migration. I describe 

how the distribution of pairwise differences depends on model parameters and show that 
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it can be, in part, described using already known results of the recently studied 

“Isolation with Initial Period of Migration” model. The most important contribution of 

this chapter is the ability to use this result to construct the likelihood function which can 

be used to infer model parameters from whole genome sequences. Inferring parameters 

using analytical equations rather than extensive simulations is faster and provides “exact” 

results. However, this approach for parameter estimation is limited to the comparison of 

two sequences. We also find situations in which a model with no migration, but in which 

populations change sizes over time cannot be distinguished from a model with migration. 

This is an unsettling result and future work is needed to fully understand under which 

parameter combinations two models result in the same distributions of pairwise 

differences. One possible solution to this problem might be to present all different equally 

likely models and let the researcher decide which one is more plausible based on other 

evidence (archeological findings, or historical records for example). 

In the third chapter I found that historical migration during human colonization of the 

world does not qualitatively affect the patterns of pairwise Fst and heterozygosity decay. 

This is because the effects of bottlenecks are stronger than the effects of migration. This 

result is in agreement with previous research, but was based on exact analytical results 

rather than simulations. This allows for quick detection of parameter combinations under 

which the historical migration model produces qualitatively different results from a 

model without migration. This is an interesting result since it shows that historical 

migration can cause seemingly counterintuitive results such as a decrease of pairwise Fst 

with distance. One concern with the historical migration model is that it is too simple and 
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unrealistic to describe migration during human colonization of the world. Different 

migration schemes can be considered using the same approach I used to study historical 

migration. 
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