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Abstract

This dissertation describes the development, implementation, and initial performance testing

of the Broad-Area Search Bayesian Processor (BASBP). The BASBP is a novel FORTAN

code designed to combine the data from aerial radiation detection platforms with available

geo-spatial data using Bayesian techniques to provide updated parameter estimates of the

problem space. By employing empirical fits to the Monte Carlo photon flux estimates

generated using MCNP6, the core BASBP model accounts for the increasing significance of

photon scattering and absorption events with source-detector range. The BASBP employs

Bayesian signal processing methods to estimate both the spatially varying background and

the most likely signal contribution from radioactive sources of interest. In demonstrating

the capabilities of the BASBP, it is shown that the coupling of Bayesian signal processing

methods with radiation transport physics affords the opportunity to effectively treat the

spatially varying background signal, improve the range at which detection, localization, and

identification decisions are made; provide real-time recommendations on sensor employment;

provide the framework for fusing data from multiple sensors and data from disparate sensor

types (true multi-source data fusion); and, enhance the nuclear detection capabilities of first

responder or national security organizations.
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1 | Introduction

For the better part of a decade, the United States government has identified the lack of a

broad-area search capability as a critical gap in the nation’s ability to counter the spread and/

or use of nuclear and radiological weapons. The research described examines two essential

questions: (1) can Bayesian signal processing methods significantly increase the range at

which radioactive source detection, localization, and identification decisions are made?; and,

(2) can Bayesian methods provide a framework for fusing technical data with disparate data

sources and data types in order to increase situational understanding of the search space?

While the former serves as the focal task from a nuclear engineering perspective, the latter

offers the potential to substantially change current opinions of how localized detector data

nests within the larger operational context. Two fundamental principles serve to justify the

pursuit of an alternative approach to the broad-area search problem: the importance and

persistence of the operational need; and, the technical challenges confronting the current

suite of state-of-the-art technologies that employ traditional approaches to the problem.

1.1 Justification

While detailed requirements tend to be tightly controlled, several senior-level references

within the Department of Defense illuminate the importance of the required broad-area

search capability. The 2006 Quadrennial Defense Review (QDR) Report stated that

"preventing state or non-state actors from acquiring or using [Weapons of Mass Destruction]

highlights the need for...capabilities to detect fissile materials such as nuclear devices at

stand-off ranges" [1]. The QDR of 2010 addressed the stand-off detection capability shortfall

in more specific terms by directing the Defense Department to "accelerate the development of

standoff radiological/nuclear detection capabilities" [2]. The "DoD will improve its ability to

detect radiological and nuclear material and weapons at a distance. Developing and fielding

these sensors will make possible more effective wide area surveillance in the maritime and
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air approaches to the United States, and will help address the challenge of locating and

securing nuclear weapons and materials during overseas contingencies" [2]. Concurrent with

the department’s work on the 2010 QDR, a report by the Government Accountability Office

highlights the fact that the combatant commanders (the most senior admirals and four-star

generals in the armed services) identified stand-off detection as one of the key shortfalls in

the Joint Staff’s 2009 Combating WMD Strategic Global Assessment [3].

In terms of desired capabilities, the U.S. Army’s Training and Doctrine Command∗ has

articulated the Army’s goals with respect to multi-sensor data fusion in The United States

Army Concept Capability Plan for Combating Weapons of Mass Destruction for the Future

Modular Force, 2015–2024 [4]:

[H]olistically the Army must possess the capability to gain [situational un-

derstanding] by fusing such things as human intelligence, signal intelligence,

and document exploitation with traditional technical sensor inputs. . . Sensors

will include layers of [joint, interagency, intergovernmental, and multinational]

assets; point and standoff sensors; and static, mobile and remotely emplaced

sensors; as well as intelligence feeds. Mobile sensors include Soldiers and sensors

mounted on a variety of platforms including Soldiers, manned platforms, and

unmanned ground and aerial platforms. Disparate (non-CBRN† specific) sensors

will compose another layer. Their purpose is to provide additional indicators to

increase the level of confidence in detections by other sensors or to cue CBRN

sensors and other disparate sensors to focus their search area.

The broad-area search capability gap is not unique to the Department of Defense. In

July of 2012, the acting director of the Domestic Nuclear Detection Organization (DNDO)

within the Department of Homeland Security made the following statement to the U.S. House

Committee on Science, Space and Technology: "While DNDO’s work to develop, evaluate,
∗The U.S. Training and Doctrine Command is charged with the responsibility for educating and training

the Army’s Soldiers, civilians and leaders; supporting unit training; and designing, building and integrating
a versatile mix of capabilities, formations, and equipment to strengthen the U.S. Army.
†CBRN is the military acronym for Chemical Biological Radiological Nuclear
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and deploy systems supports the ongoing enhancement of the [Global Nuclear Detection

Architecture], significant technical challenges remain. These challenges include:...[e]nhanced

wide area search capabilities in a variety of scenarios to include urban and highly cluttered

environments" [5].

Strategic statements and the Army’s conceptualization of desired future capabilities

do not highlight the fact that at this very moment, elements across the U.S. government

are prepared to conduct a broad-area search for radioactive material. Despite the fact

that the operational employment of current state-of-the-art technologies utilize a localized

approach, elements within the U.S. Departments of Defense, Energy, Homeland Security,

and Justice have no choice but to respond to potential threats with the equipment at hand.

The operations of the U.S. Army’s Nuclear Disablement Teams during Operation IRAQI

FREEDOM serve as one example in which operational units have had no choice to but to

employ radiation detection systems without a broad-area search capability [6].

1.2 Literature Review

Bayesian signal processing methods have a well-established presence in the fields of radar

and sonar tracking, and are increasingly employed in problems related to robotic sensor

guidance, wireless signal mapping, and image processing/object tracking. To date, little

effort has been made to utilize Bayesian signal processing methods in the field of radioactive

source detection. A canvassing of published research reveals a small body of published work

related to this effort.

1.2.1 Radiation Portal Monitoring Applications

Researchers at the Lawrence Livermore National Laboratory (LLNL) successfully demon-

strated a Bayesian processor applied to the case of a stationary portal monitoring system.

Using a photon-by-photon discriminator, J.V. Candy’s team demonstrated the ability to

detect radioisotopes of interest in the presence of constant, uncharacterized background
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sources. While their latest published work (2011) describes the inclusion of a Compton-

scattering discriminator which accounts for scattering events occurring within the detection

system, Candy’s team has not addressed radiation transport phenomena which occur between

the source and detector. Given the context of their work and the physical dimensions of the

problem-space considered, inclusion of radiation transport phenomena taking place between

the source and detector could serve as a means to address the presence of shielding materials

within the problem geometry [7]. Following the methods developed by LLNL, Chinese

researchers at the China Academy of Engineering Physics revalidated the Bayesian approach

in 2013 [8].

Also in an effort to tackle the stationary portal monitoring system from a probabilistic

approach, a team of researchers at the Pacific Northwest National Laboratory (PNNL)

published their work in 2011 which focused on coupling adjoint radiation transport

considerations and detector response data within Bayesian framework in order to infer the

presence of radioactive materials within containerized cargo [9]. As with the work performed

by LLNL, the PNNL team did not consider the case of an unknown or spatially varying

background or extend the utility of their approach to mobile applications.

1.2.2 Operational Local Search Applications

In a series of papers culminating in 2010, researchers at the Defense Science and Technology

Organization (DSTO) and the University of Melbourne in Australia demonstrated their

Bayesian approach to the operational local search for radioactive sources. Employing a

Bayesian particle filtering method, the DSTO team demonstrated the ability to localize

a radioactive source within the search area as well as guide the employment of detectors

during the search. The mathematical model presented by DSTO only accounted only for the

spherical divergence of the photon signal and assumed a known and constant background

(9 orders of magnitude below the strength of the radiation source employed) [10]. While

demonstrative of the Bayesian concept, the DSTO model is ill-suited for the broad-area

search environment.
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1.3 Research Objectives

As previously introduced, this research seeks to advance the state of the art of radiation

detection. Specifically, the operational utility of Bayesian signal processing methods in the

context of the broad-area search for radioactive sources is examined. Central to this research

is the question of whether or not Bayesian methods offer the means to extend the range at

which detection and localization decisions are made. The central problem is deconstructed

into the following tasks:

1. Characterize the broad-area search problem. This task defines the central parameters

that impact the broad-area search for radioactive sources.

2. Investigate the photon signatures of radioactive sources of interest. Developing a means

to detect radioactive sources from a distance requires an understanding of the signals

such a system is expected to find. Second, the practical limits to the distance travelled

by photons of interest must be identified.

3. Identify problems with applying current approaches at extended ranges. This task

centers on the root question of whether or not an alternative approach is needed.

4. Develop a Bayesian signal processing model that overcomes the identified weaknesses

of traditional detection models.

5. Develop a Bayesian processor that integrates the functions required to detect and

localize radioactive sources at extended ranges. The Bayesian processor developed in

this step will also provide the backbone for the future development of a real-time,

sensor guidance module and provide the framework for fusing information streaming

from radiation detectors with disparate data sources.

6. Demonstrate the Bayesian processor. Given radiation survey data collected in the field,

this task tests the performance of the Bayesian processor.
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Figure 1.1: Assessing the impact of technology on operations.

With the goal of providing an operationally viable tool capable of generating real-

time detection, localization, and guidance information, the BASBP leverages the parallel

processing capabilities of modern laptop computers by implementing the algorithms in

modern FORTRAN and using multi-threaded processes to significantly increase execution

speeds.

The anticipated contributions of this research to the operational search community

fall into four categories (as depicted in Figure 1.1): function, operations, utility, and

infrastructure. In terms of function, irrespective of the radiation detector type or platform,

this research focuses on fundamentally altering the analytical processes used to interpret

radiation detector data. The combination of Bayesian signal processing methods and

radiation transport physics offers the means to increase the range at which source detection

and localization decisions are made. Operationally, the employment of a Bayesian approach

to the broad-area search problem fundamentally alters current methods. First and foremost,

an increase in the range of detection and localization has the immediate effect of reducing

the resources required to search a given area. Second, real-time data analysis and sensor

guidance allows the operational team to maximize the allocation of resources. And third,

the anticipated Bayesian processor will provide the means for real-time data fusion, unlike

conventional radiation survey analysis which is habitually incompatible with the data and
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analytical products from disparate sources. In terms of utility, the direct application to

radiation detection systems are clear. However, approaches developed in the course of

this research to deal with variable background noise and low-SNR environments may have

applications in other technical fields as well. The employment of a Bayesian processor will

not significantly effect the infrastructure required by operational search teams.

1.4 Dissertation Outline

This dissertation is organized into chapters that group the contents by function. Chapter

1 serves as the introductory chapter and provides the background and motivation behind

this research. Chapter 2 provides an operational perspective of the broad-area search

problem that includes the characteristics of the problem, dimensionality and parameters of

interest. To shed further light on the nature of the operational search problem, a discussion

of the photon signatures associated with materials of concern is presented. Issues facing

conventional detection systems when confronted with the broad-area search challenge are

introduced. The mathematical framework required for development of the Bayesian signal

processor is presented in Chapter 3. This includes a description of the Bayesian approach

to signal processing and the theoretical framework for one of the most common Bayesian

methods, the particle filter. Chapter 4 contains the detailed development of the following

primary processes used by the BASBP: selection of the prior distributions; estimating of the

local background signal; the detection decision; updating the posterior distribution; data

fusion. Anticipating the continuation of this research, Chapter 4 concludes with a proposed a

way ahead regarding the implementation of a sensor guidance component. Chapter 5 presents

the results of testing the BASBP given background data collected from aerial platforms

injected with source signal based on MCNP modeling. Finally, the conclusions drawn

from this research are presented in chapter 6, along with recommendations for continued

examination of the Bayesian approach to the broad-area search problem.
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2 | Scoping the Broad-Area Search Problem

2.1 Introduction

The objective of the broad-area search∗ mission is the detection, localization, and when

possible, the identification of sources of radiation that pose a threat to the public. Detection

refers to the binary decision of whether or not a source exists within range of the detection

system. The term localization refers to the subsequent geolocation of the radiation source.

While detection and localization must occur before recovery operations can begin and the

radiation source moved to its final disposition location, some radiological search platforms

perform both steps in tandem. However linear the approach may appear, wide-ranging

uncertainties cloud the characteristics that define the broad-area search problem.

This chapter begins with the characteristics of the broad-area search problem space.

With an understanding of the scope of the problem and the primary interest in detecting

and localizing gamma sources at the maximum range possible, the photon signatures of

interest are identified along with the associated practical limits to the ranges at which they

propagate in air. Following the discussion of photon signatures and ranges, a brief overview

of the challenges of employing current detection systems in the context of broad-area search

operations is provided. An outline of the critical assumptions imposed on the broad-area

search problem concludes this chapter.

2.2 Characteristics of the Broad-Area Search Problem

The broad-area search problem begins with the recognition that a radiation source poses a

potential threat to the public. The level of detail in the information triggering the broad-

area search ranges from general to very specific. Factors suggestive of a potential radiological
∗As applied to search for radiological sources, the ill-defined term broad-area search generates significant

discussion. In general terms, the lower bound of the dimensions of broad-area search problems exceeds
hundreds of square meters.
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problem may include: the reported loss or theft of sources by licensed users; patients seeking

treatment for radiation-induced sicknesses at medical facilities; data collected from fielded

detection systems; and, information suggestive of a nuclear/radiological terrorist threat.

Characteristics that define the the broad-area search problem include:

• the nature of the radiation source (material form, isotope, and activity);

• the circumstances triggering the search (loss or theft of rad source, terrorist threat);

• the packaging/shielding materials surrounding the source;

• the mobility of the source;

• the presence of spatially & temporally varying background radiation;

• the amount of time elapsed since the loss or theft of the source;

• the size of the search area;

• the geo-spatial environments contained within the search area.

• the range at which available search platforms detect radiation; and,

• the number of search platforms available.

Of these, the four most significant challenges facing current mobile detection systems are:

the presence of packaging/shielding materials, time-distance relationships impacting the size

of the search area, the variable background radiation, and detection ranges. While nearly all

plausible scenarios involve some form of packaging and shielding materials, this study focuses

on the limits of detection in the un-shielded case. The argument for doing so is three-fold.

First, the combination of potential shielding/packaging materials exists as a near-infinite

set of scenario-dependent possibilities. Second, should the shielding material prevent any

passive radiation signature from escaping the configuration, no amount of technology gains

in the field of passive radiation detection will suffice. And third, an increase in the range of

the detection of unshielded photons implies a corresponding increase in the range at which

detection systems can detect photons scattered by shielding materials.

To illustrate the challenge of time-distance relationships, Figure 2.1 depicts the geometric

growth of the search area following the notional theft of a radiation source from the University

of Tennessee campus in Knoxville. Assuming that the perpetrators flee the scene by vehicle,
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Figure 2.1: Time-based growth of potential search area following notional theft from
UT campus.

analysis of the surrounding road system using data from the U.S. Census Bureau [11] and

ArcGIS R© software suggests that after 60 minutes, the search area grows to approximately

13,000 km2. To search an area of this size without specific information and while equipped

with short-ranged detection instruments is a futile proposition.

The development of solutions to the broad-area search problem requires first an

understanding of the materials most likely to pose a threat. Second, when confronted with

the proverbial challenge of finding a needle in a haystack using passive techniques, one must

know the signatures emanating from the materials of interest. The third key element required

to scope the broad area search problem is knowledge of the extent to which the signatures

propagate and are available for detection. The sections that follow examine photon sources,

their signatures, and their corresponding ranges in air.

2.3 Identifying Photon Signatures of Interest

The emission of radiation by an atom following radioactive decay serves as an identifying

feature unique to each isotopic species and is characterized by the emission type, energy and
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frequency. Radioactive materials of concern (MOC) fall into one of two general categories:

conventional radiation sources that could be used in a radiological dissemination/dispersal

or exposure device (RDD or RED); and, Special Nuclear Material (SNM) suitable for use in

nuclear fuel or other components. Out of the more than 3,300 known radioactive isotopes,

only a relatively few have commercial or industrial uses or are required for nuclear weapons.

The examination of photon signatures begins by drawing attention to those isotopes most

commonly used in commercial, industrial, or weapons applications. Further refinement of the

list of candidate MOC is made possible by analyzing information from the IAEA regarding

those isotopes most commonly reported in radioactive source incidents.

2.3.1 Identifying Material of Concern

Radioactive sources have a broad range of applications – from relatively weak Am-241

sources found in common smoke detectors to extremely intense industrial sources used

in industrial sterilization machines. Table A.1 in Appendix A lists the common uses of

conventional radiation sources, the activity levels typical of the method of use, and the

IAEA’s hazard category. While SNM categorically contains a broad range of mixtures of

isotopes, the investigation herein focuses on the relative extremes: depleted uranium (DU),

highly-enriched uranium (90% U-235 content), and weapons-grade plutonium (>90% Pu-

239 content). The sources that pose the greatest threat to life (IAEA categories 1–3) have

applications in industrial radiography, nuclear medicine, and in radioisotope thermoelectric

generators. In 2005, the IAEA summarized the radiological source incidents reported by

member states for inclusion in the Illicit Trafficking Database (ITDB). Figure 2.2 depicts

the relative frequency of sources of radiation involved in the reported incidents [12].

Combining the IAEA Category 1–3 sources with the historical perspective suggested by

the IAEA’s 2005 Illicit Trafficking Database summary, the following gamma-emitting sources

of radiation serve as the focus of attention:

• Conventional sources: Co-60, Se-75, Cs-137, Ir-192, Ra-226, and Pu-238.

• Special Nuclear Materials: DU, HEU, HEU (with trace U-232), and WGPu.
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Figure 2.2: Incidents involving radiation sources 1993-2005 as recorded in the IAEA’s
Illicit Trafficking Database.

2.3.2 Photon Signatures of MOC

Based on the data provided by the National Nuclear Data Center [13], over 1,900 photons

are associated with the radioactive decay of MOC, considering both gamma- and x-rays and

accounting for competing decay chains. Analysis of the data indicates that the bulk of the

photon signatures for MOC resides in the 0.1–0.8 MeV range. Only a select few materials of

interest have photon signatures in the 1.0–3.0 MeV range (i.e.: Co-60, HEU contaminated

with trace amounts of U-232, and DU). Table A.2 lists the five most prominent photons

with an initial energy of 0.1 MeV or greater emitted by each of the conventional sources

of radiation. Figure 2.3 depicts the spectrum of photons emitted by conventional sources

against the backdrop of the mean free path (MFP, the average distance traveled before

interacting with a material) of the photons in air.

While identifying a unique isotopic species from the spectrum of photons emitted is a

straightforward process, uncertainties in identifying the photon signatures associated with

SNM arise due to variable production methods, purity levels, and uncertainties associated

with the amount of time elapsed since production. As an example of differing signatures

based on production methods, consider the case in which uranium is reprocessed following
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Figure 2.3: Photon intensity and mean free path in air as functions of photon energy
for isotopes of concern.

irradiation in a nuclear reactor. Normal reactor operations produce trace quantities of

U-232 evident in the post-irradiation fuel elements. If the fuel is reprocessed to recover

the remaining uranium and then further enriched, the U-232 will preferentially follow the

lower-mass U-235. Indicative of the signatures associated with generic forms of SNM, Table

A.3 lists the five most prominent photons with an initial energy of 0.1 MeV or greater

emitted by each SNM-type considered, where the SNM has been aged 5 years. Figure 2.3

depicts the estimated spectra emitted by each type of SNM. The complexity of the spectra

stems from the variety of photons emitted by the decay chains associated with each parent.

While uncertainties abound regarding the expected intensity of each decay chain, the ratios

between key photon intensities may suggest the presence of SNM when a spectrum collected

is particularly cluttered.

While the Tables A.2 and A.3 provide the primary signatures associated with MOC, the

following observations generalize their characteristics:

• The photon intensity and relative frequency for emanations from convention MOC are

well known;
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• The photon signatures from SNM sources are unique to the production method and

materials used. However, the relative occurrence of isotopic signatures can suggest an

increased likelihood of SNM.

• With few exceptions, the photon energies of interest are below 0.8 MeV. Exceptions

include emissions from: Co-60, Tl-208 (daughter product in the decay chain of HEU

contaminated with U-232), and Pa-234 (daughter product in the decay chain of DU);

2.4 Identifying the Physical Limits of Photon Ranges

Advances in nuclear detection technologies tend to focus on improvements in energy

resolution and detection efficiencies—efforts largely aimed at enhancing the sensitivity and

precision of detection systems. However, the broad-area search for radioactive sources must

come to terms with the physical limit to the range at which photon signatures exist in

detectable quantities. While the optimization of a detection system (as defined by parameters

that characterize a detection system describe the system’s ability to convert a known photon

flux into the electronic impulse signals recorded) clearly enhances system performance,

system optimization does not address the fundamental question of photon range.

The Monte Carlo Neutral Particle transport code (MCNP6.1, [14]) readily produces

estimates of the range of photons in air. As a simple test case, consider a notional Cs-

137 point source surrounded by spherical volumes of air. By requiring that MCNP tally the

photons as they pass thru each surface, MCNP estimates the flux by dividing the photon

tally at a surface by the surface area. Figure 2.4a depicts a generic representation of an

MCNP tallying surface. Of note, the generic flux tally in MCNP is independent of the

photons’ direction of travel as they cross the tally surface. Figure 2.4b shows the resulting

estimated energy distribution of the photon flux from a Cs-137 source at ranges extending

from 1m – 1,000m.

By running 1E9 Monte Carlo particles in the simulation, except for the extremely low

energy bins of the 500 m and 1,000 m runs, the variance of the estimated flux is less than

2%. The first important conclusion drawn from Figure 2.4b is that while an argument can
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(a) Depiction of tally surface used by
MCNP flux estimations.

(b) Estimated photon flux vs Energy for
Cs-137 in air.

Figure 2.4: MCNP photon flux estimation.

be made that photons from a Cs-137 source can reach 1 km in range with some probability

greater than zero, the practical limit to the range of Cs-137 photons most likely exists within

the range between 200 m and 500 m. This observation is based on the fact that the variance

of the flux estimates decreases up to the point where the source-detector range exceeds 200

m (see Figure A.2).† The second important conclusion suggested by the data is that as the

source-detector distance increases (photon range), the contribution of photons below the full

energy peak to the total flux reaching the surface of a detector also increases and eventually

surpasses the contribution made by photons in the full energy peak. Figure 2.5 shows that

the cross-over point (scattered photons make up the majority share of the total flux) occurs

at approximately 50 m for photons originating from Cs-137. Cast in terms of the MOC

signatures, this means that the greater the source-detector distance, the less the photon

signature at that distance resembles the discrete energy lines with which they were born.

†No claim is made regarding the ability of detection systems employing Bayesian signal processing methods
to detect photon emanating from Cs-137 at a distance of 200m or more. The point highlighted here is the
fact that the population of photons from Cs-137 begins to exponentially decay at approximately 200 m —
significantly reducing the probability of detection at ranges beyond 200 m.
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Figure 2.5: Photon flux ratio (below / within FEP) as a function of source-detector
range.

2.5 Challenges Applying Conventional Detection Systems in a Broad-Area

Search Role

The introduction at the beginning of this chapter listed the characteristics of the broad-area

search problem. This section focuses on the challenges confronting conventional detection

systems when employed in a broad-area search role. Conventional radiation detection

systems typically fall into one of four categories: gross-counting systems, spectroscopic

systems, gross-counting imaging systems, and spectroscopic imaging systems [15]. The

general characteristics of each type of detection system include:

• Gross-counting systems: The most basic of all radiation detection systems, gross-

counting systems simply record the number of interaction events that occur within

the detector’s sensitive volume as a result of incident radiation. The only parameters

available for detection and localization decisions are the gross counts and the count

rate (gross counts divided by the measurement time). Such systems require a prior
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measurement or estimate of the background radiation to make a detection decision

and attribute any portion of the measured counts to a potential source of interest.

• Spectroscopic systems: Unlike gross-counting systems, spectroscopic detection

systems record tallies of the radiation-induced events in discrete energy bins. Therefore,

these systems are able to provide a spectral distribution of the events recorded over

the measurement period. Spectroscopic detection systems can provide an estimate of

the number of sources present as long as the sources have distinct emissions.

• Gross-counting imaging systems: In gross-counting imaging detection systems,

a recorded event includes spatial and/or angular information with respect to the

detection system’s sensitive volume. This information can be used to estimate the

number and spatial distribution of sources in the detector’s field of view.

• Spectroscopic imaging systems: Similarly, spectroscopic imaging systems record

the spatial and spectral history of the events registered. These systems can estimate

the number, spatial distribution, intensity, and types of sources within the detector’s

field of view.

With these general properties in mind, the challenges with employing traditional detection

systems in a broad-area search role fall into three categories: the manner in which they

treat the background signal in order to reach a detection decision; the physical model

used to localize potential radiation sources; and, the operational method of detection and

localization. Each of these topics is covered in greater detail in the following sections.

2.5.1 Limitations Imposed by Treatment of the Background

When confronted with a detection decision, systems must decide whether or not the measured

signal contains some portion attributable to a source other than the local background. Given

that the magnitude and spectral content of the background signal varies both temporally

and spatially, conventional detection systems typically require either a prior measurement or

a fairly accurate estimate of the background in order to decide if the current measurement

indicates the presence of a source of interest. In recent years, research and technology
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(a) 4π detector scene. (b) Imaging detector scene.

Figure 2.6: Comparison of notional detector scenes.

demonstrations have significantly advanced the application of imaging detection systems

in the area of nuclear and radiological search problems. [16]–[22]. Due to their ability to

systematically remove the background signal from the observed signal, imaging systems

typically outperform non-imaging systems when challenged with point sources at extended

ranges.

Figure 2.6 (adapted from K. Vetter’s guide to imaging systems [20]) compares the notional

scene observed by a 4π detector to that of a generic imaging detector. As depicted in 2.6b,

imaging detectors can significantly reduce the background contribution to the measured

signals. However, the benefits of reducing the background signal diminish as the source-

detector distance increases. As previously shown in Figure 2.5, the down-scattered flux

from sources of interest make up an increasing share of the total flux at ranges beyond

50m. With the increased importance of the scattered flux component in mind, the following

systemic properties reduce the effectiveness of imaging detection systems in broad-area search

operations:

• The shielding that limits the scene to the detector’s FOV also prevents scattered source

photons from reaching the detector;

• Use of a coded mask prevents as much as 50% of the incident flux from reaching the

detector;

• Some imaging techniques filter the response signal according to regions of interest

centered on the full-energy peak(s) of sources of interest; and,
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• The deconvolution methods used to remove the background signal interpret much of

the scattered source signal as background.

2.5.2 Use of Ill-suited Localization Models

The process of estimating the geo-spatial location of a radiological source based on the

data collected by radiation detectors requires a physical model that relates the observed

measurements to a point or points in space. The Boltzman transport equation (BTE), given

in generic form by Equation 2.1, offers the most complete representation of the physical

phenomena that occur between source particles streaming from their point of origin and the

measurements recorded by a detector [23], [24].

1

c

∂Ψ(~r, ~Ω, E, t)

∂t
+ ~Ω · ∇Ψ(~r, ~Ω, E, t)+σt(~r, E, t)Ψ(~r, ~Ω, E, t) = q(~r, ~Ω, E, t) (2.1)

where Ψ(~r, ~Ω, E, t) is the position-, direction-, energy-, and time-dependent angular flux of

particles, σt is the location-, energy-, and time-dependent total interaction cross-section,

q(~r, ~Ω, E, t) represents the location-, direction, energy, and time-dependent production of

particles, and v is the speed of light. The first term in Equation 2.1 clearly represents

the time rate of change in the angular flux. The spatial divergence of the angular flux is

represented by the second term. The total interaction cross-section in the third term carries

the information required to estimate particle losses due to collisions. Particle production,

represented in the final term, q, consists of the sum of all external particle sources and the

particles generated by the interaction of radiation with matter.

In the context of the broad-area search problem, one generally seeks the relationship

between the flux incident upon the surface of a detector (which directly relates to the

detector’s response) and the fixed, point sources of radiation. Assuming that the physical

system is in steady-state and the material properties of the system do not evolve with time,

one can readily drop the the first term and remove the time dependence of the remaining

terms of the BTE. While fairly simple in form, in most practical situations, solutions to the

BTE do not exist in closed form as the production and loss terms are tightly coupled by the
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angular flux. Additionally, solving the BTE requires detailed knowledge of the distribution

of materials and sources of radiation (as well as the physical properties of both) throughout

the problem space. Consequently, approximations to the BTE are generally required — most

often through Monte Carlo or finite element methods.

Due to time constraints and the range at which detection decisions are made, localization

models typically apply what is known as the 1/r2 approximation. Simply put, this

approximation ignores the interaction of radiation with matter and relates the observed

flux I at location xd to the source intensity I0 at location xs and inverse of the square

of the source-detector distance, r(xd,xs), as expressed in Equation 2.2. Physically, this

approximation represents only the spherical divergence of the radiation as it propagates

outward from a point source.

I(xd) ∝
I0(xs)

4πr2(xd,xs)
(2.2)

Similar to the issues raised regarding the methods used in conventional detection systems to

grapple with the background signal, recall the conclusion drawn from basic MCNP modeling

that photon interaction mechanisms dominate the BTE at extended source-detector ranges.

Therefore, as shown in Figure 2.5, the 1/r2 approximation fails to adequately predict the

expected photon intensity at extended ranges. Connecting concerns with the background

treatment, this proposition can be cast in terms of the signal-to-noise ratio (SNR). SNR

values serve as a quantifiable metric of the threshold for detection decisions. From the

fundamentals of counting statistics, the SNR for a generic counting system (given a long-lived

source and time-invariant background) is given by: SNR = S/
√
T +B, where S represents

the counts due to the source of interest, T is the sum of the source and background counts,

and B is the number of counts due to the background alone [25].

Consider the case of a 1 mCi Cs-137 point source, an ideal detector with an area of 100

cm2 conducting measurements a a variety of known locations, and the background flux is

fixed at 1 γ
cm2·s . Figure 2.7 depicts the estimated flux and SNR values generated from MCNP

modeling as compared to the values obtained using the 1/r2 approximation. Based on the

data represented, the following conclusions may be drawn:
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(a) Ratio of flux estimates. (b) Estimated SNR values.

Figure 2.7: Comparison of MCNP and 1/r2 estimates of photon flux and SNR values.

• The importance of photon scattering events increases until the absorption of photons

dominates the transport process (at approximately 150 m for Cs-137 photons);

• At ranges beyond 200 m, the 1/r2 approximation over-estimates the photon flux; and,

• Under-estimation of the SNR value at extended ranges may lead to false conclusions

regarding the availability of a potential source signal.

2.5.3 Use of an Un-informed Operational Search Pattern

The final observation made regarding the application of conventional detection systems

in broad-area search scenarios deals with the operational manner in which these systems

are employed. In short, operational approaches to the broad-area search for radioactive

sources has not significantly changed in decades. While scientific advances have greatly

expanded the range of technologies available via man-portable and ground-, sea-, and

air-based platforms, the broad-area search remains largely tethered to the gridded survey

approach. The comparison of the aerial survey methods used during an exercise of European

emergency response teams conducted in 2001 (Barents Rescue 2001 LIVEX) to those used by

the Department of Energy’s Remote Sensing Laboratory (RSL) Aerial Measuring Systems

(AMS) finds that both consist of the following common elements [26], [27]:
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(a) Down & back pattern. (b) Repeated loop pattern.

Figure 2.8: Examples of aerial gridded-search flight patterns.

• Objective altitude: 50-100 m

• Grid spacing: 100-200 m

• Ground speed: 100-200 km/h

• Detection system: Spectroscopic (non-imaging)

• Integration (sampling) time: 1 s

• Data processing: count rate and spectral data is available in real-time; contextual

analysis requires post-processing

Given the common traits, operational employment of aerial detection platforms is executed

in the form of overflying the search area using a gridded search pattern. Figure 2.8 depicts

examples of commonly used patterns. Factors impacting flight pattern selection include: the

time available and crew, aircraft, and detection system performance. While both patterns

shown provide coverage of the notional search area using the same number of turns, the

repeated loop pattern shown in Figure 2.8b highlights the impact complicated flight patterns

can have in terms of the distance traveled/time spent outside of the search area.

While real-time sensor guidance is not feasible for fixed-wing detection platforms such as

the Swedish Shrike Commander (mounted with a downward-looking 16,800 cm3 NaI detector

and an upward-looking 4,200 cm3 NaI detector) [27], the benefits of real-time sensor guidance

are clear.

22



2.6 Critical Assumptions

This chapter concludes with the critical assumptions imposed on the broad-area search

problem. Given the general characteristics of the problem and associated wide-ranging

uncertainties, the objective here is to refine the problem space such that the development

of the Broad-Area Search Bayesian Processor follows with a sense of clarity. Table 2.1 lists

critical assumptions, grouped according to the primary parameter impacted. While the

validity of some of the assumptions is self-evident (such as placing bounds on the spatial

domain), some assumptions are made solely out of convenience in order to provide a focus for

this research (such as narrowing the scope to gamma-emitting sources). Further discussion of

the critical assumptions occurs where they apply to the development of a specific component

of the BASBP.

Table 2.1: BASBP Critical Assumptions

Number Topic / Assumption

1.0 Radiation Source
1.1 The source is a γ-emitting point source.
1.2 The source is stationary (vxs , vys , vzs = 0).
1.3 The source is unshielded.
1.4 The estimated source strength, As, is bounded (As ∈ [Amin,Amax]).
1.5 The source is restricted to the surface of the ground (zs = local elevation).

2.0 Search Space
2.1 The spatial limits are restricted to [xmin, xmax] and [ymin, ymax].
2.2 The search begins in a location clear of potential sources of interest.

2.3 The duration of the search, ∆t, is much shorter than the half-lives of sources
of interest (∆t� λs).

2.4 The minimum set of geo-spatial data exists.
2.5 The background radiation varies with land-use category.

3.0 Detection Platform
3.1 The characteristic parameters, Ddet, are known.

3.2 Systematic noise in the measurements from the detection platforms is
much smaller than the variations due random decay and transport processes.
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3 | Bayesian Signal Processing Framework

The operational, broad-area search mission relies on the ability to detect the presence of

a radioactive source (or multiple sources), localize the source(s) in space, and if possible

identify or classify the source(s) based on measurements collected by radiation detection

systems. The broad-area search problem begins as a classic Bayesian inference problem: what

inferences can be made about the physical state of a system that is not directly observable

using measurement data provided by mobile radiation detection platforms? This chapter

begins with a brief introduction to Bayesian methods of inference and a brief explanation of

the Monte Carlo technique of particle filtering to approximate a distribution. The heart of

this chapter focuses on the development the Bayesian model used by the Broad-Area Search

Bayesian Processor (BASBP) and provides the mathematical framework for the estimates of

the unknown state-space parameters.

3.1 Introduction to Bayesian Methods

A large body of work spanning 250 years documents the development of Bayesian methods

and statistical decision theory. Most modern texts (such as those by Candy, Ghosh, and

Robert [28]–[30]) on Bayesian methods begin with an introductory explanation of what

makes Bayesian methods different from classical statistical approaches to data. The ability

to infer information about the probability distribution from which a collection observations of

random events occur serves a critical purpose in the field of statistical theory. Armed with an

inferred probability distribution, one can either analyze past events and describe parameters

of interest or one can offer some prediction regarding the parameters of future events as

well as describe the uncertainties associated with the parameters in either case. However,

the Bayesian’s decision-oriented, interpretive view of the underlying distribution differs from

the classical statistician’s explanatory view. Whereas the Bayesian seeks an objective basis

for choosing between competing hypothesis, the classical statistician explains the data in
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terms of the underlying probability distribution. Well known examples of Bayesian methods

include risk-reward scenarios such as gambling and investing in financial markets, electronic

signal processing, target tracking, and wireless navigation.

Bayes’ Rule serves the foundation of all Bayesian statistical methods. According to

Bayes’ Rule, the inference of properties regarding a set of unobserved random variables, Xt =

{x(0), · · · , x(t)}, based on a collection of data, Yt = {y(0), · · · , y(t)}, requires two essential

components. Firstly, the likelihood π(Yt|Xt) that links the observed data (or evidence) to

the unobserved variable. Secondly, the probability distribution that describes the observer’s

beliefs regarding the distribution of Xt before the data is collected, π(Xt), known as the

prior distribution. Equation 3.1 expresses Bayes’ Rule as:

π(Xt|Yt) =
π(Yt|Xt) · π(Xt)∫

X
π(X ′t)π(Yt|X ′t)dX ′

=
π(Yt|Xt) · π(Xt)

π(Yt)
(3.1)

where π(Xt|Yt) is the joint posterior distribution, and the integration of the product of the

likelihood and prior distributions over all possible values of X in the denominator yields

probability distribution of the evidence. Under the conditions that the unobserved set

of random variables, Xt is Markov (past, current, and future values of the sequence are

independent) and the data at time t, y(t), are conditionally independent of the past values

of the unobserved variables, Bayes’ rule can be expressed in sequential form as: [28], [29]

π(Xt|Yt) =
π(y(t)|x(t)) · π(x(t)|x(t− 1))

π(y(t)|Yt−1)
· π(Xt−1|Yt−1) (3.2)

From a computational perspective, the importance of Equation 3.2 stems from the fact

that there is no need to carry the complete evolution of the data, likelihood and prior

distributions. Only the current data and probability densities from the previous iteration

in the sequence are required to calculate the posterior distribution. Unless the distributions

are known exactly and the analytical solutions to the required integrations are available in

closed form, the marginal posterior distribution (also known as the filtering distribution)
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given in Equation 3.3 offers a more tractable solution:

π(xt|Yt) =
π(y(t)|x(t)) · π(x(t)|Yt−1)

π(y(t)|Yt−1)
(3.3)

Once the posterior distribution is known, a variety of Bayesian estimators can be

calculated. The conditional mean (also known as the minimum mean-square error, MMSE)

and the maximum a posteriori (MAP) estimator are the two most widely used estimators of

the parameters of interest. The estimate of the conditional mean, x̂MMSE, is calculated by

integrating the product of the dynamic variable and the posterior distribution as given in

Equation 3.4:

x̂MMSE = E[x(t)|Yt] =

∫
X

x(t)π(x(t)|Yt)dx (3.4)

The MAP estimator, x̂MAP, is simply the most likely value of the dynamic variable given the

posterior distribution:

x̂MAP = argmax
x(t)

π(x(t)|Yt) (3.5)

Along with the parameter estimators, estimates of the conditional variance can be computed,

denoted as Rx|y, to express the uncertainty in the conditional mean using Equation 3.6 :

Rx|y = E[(x(t)− E[x(t)|Yt])2|Yt]

=

∫
X

(x(t)− E[x(t)|Yt])2π(x(t)|Yt)dx
(3.6)

Due to the interest in developing a Bayesian model that represents a complex and dynamic

state of a system (not simply a statistical analysis of collected data), the next topic of

focus is the general formulation of the Bayesian approach to state-space. From the previous

discussion, and knowing that inferences made about the unobserved state of a system (state-

space) using indirect observations (measurement space), requires a model that links the two
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Figure 3.1: Evolution of the state- and measurement-spaces in time.

spaces. In its most basic form, Equation 3.7 provides the framework:

xti = F(xti−1
, uti−1

, ωti−1
) [State-space model]

yti = G(xti , bti , νti) [Measurement-space model]
(3.7)

where the F (·) and G(·) represent the state and measurement transition functions,

respectively. The functions ut and bt represent known inputs to their respective transition

functions. Process and measurement noise is reflected in the terms ωt and νt. From J.V.

Candy, it follows that both of the conditional probability distributions are completely

specified by the functions F (·) and G(·) when combined with their respective noise

distributions (π(ω) and π(ν)).

F(xti−1
, uti−1

, ωti−1
)⇒ π(xti |xti−1

) ⇔ F(xti |xti−1
)

G(xti , bti , νti)⇒ π(yti|xti) ⇔ G(yti |xti)
(3.8)

where F(xti |xti−1
) is the state transition probability and G(yti |xti) is the conditional

likelihood distribution. Figure 3.1 depicts the propagation of the state- and measurement-

spaces in time.
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3.2 Development of the Bayesian Model

Beginning the development of the BASBP model by defining the essential parameters, let

the vector xs represent the following characteristics of a radioactive source, s, of interest:

the source’s location in cartesian coordinates (xs(t), ys(t), zs(t) in meters), the source’s

velocity components in cartesian coordinates (vxs(t), vys(t), and vzs(t) in meters per second),

the strength of the source (As(t), in curies), the source’s decay constant (λs, in seconds).

As previously declared in section 2.6 sources of interest are assumed to be stationary and

have half-lives much greater than the duration of the operational search. Based on these

assumptions, the velocity components and the explicit time dependence of the state model

can be dropped. Knowing that the data will be collected at discrete time intervals, let

the index, k, maintain the sequence in time. The simplified vector, xsk, of essential source

parameters at time tk is expressed as:

xsk = [xs, ys, zs,As, λs]>, (3.9)

where s is the source number (s ∈ [1, . . . , S]), and > denotes the matrix transpose. The

source parameter vectors for all the sources defining the state of the system can be collected

into a stacked vector of S sources such that:

XS
k = [x>1 , . . . ,x

>
S ]> (3.10)

Let the vector yk represent the collection of measurements taken by radiation detection

systems at time tk within the operational search area. The minimum essential data

collected by search platforms includes the following parameters: measurement duration (τk,

in seconds), measurement location in cartesian coordinates (zxk , zyk , and zzk , in meters),

and either counts recorded per energy bin (yk(E)) or gross counts recorded (yk), system

dependent. Detection platforms may also include any number of other telemetry devices

that collect information regarding the measurement environment at time τk and location zk.
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Examples include visual, thermal, and hyper-spectral imaging sensors; as well as ambient

temperature and humidity sensors.

The vector Dd defines characteristics of the detection platforms servicing the operational

search, where d = [1, . . . , dmax]. Essential parameters of interest include: the detector’s

efficiency, εd; the area of the detector faces (A1d and A2d , in centimeters2) normal and

perpendicular to the ground plane, respectively; and, the number and width of the energy

bins used in the detector’s output.

With the collection of essential parameters complete, the general form of the Bayesian

state-space evolution model presented in Equation 3.7is revisited. Recalling that the

radiation sources of interest are stationary, no physical processes alter the state parameters

from one time interval to the next. Let the measurement function G be defined as a function

of the following variables: the state-space, XS
k , the measurement location, zk, and the

electronic measurement noise in detection system d, νdk .

XS
k = XS

k−1 [State model] (3.11a)

yk = G(XS
k , zk, νdk) [Measurement model] (3.11b)

The corresponding conditional distributions are given by Equation 3.12 as:

F(XS
k |XS

k−1) = 1 (3.12a)

G(yk|XS
k ) ∝ π(yk|XS

k ) = P
(
yk|Ψk(X

S
k , zk)

)
(3.12b)

where Ψk(X
S
k , zk) is the expected radiation count at location zk. For brevity, the index k

is dropped from the state-variable and denote it simply as XS. Expected radiation count,

Ψk(XS, zk), can be expand to account for the separate contributions from background sources

and sources of interest, as well as the characteristic detector parameters and the measurement

duration. The complete expression for the expected measurement is given by Equation 3.13:

Ψk(XS, zk) =

(
BG(zk)A1d +

S∑
s=1

φ∗s(xs, zk)A
∗
d(xs, zk)

)
· εd · τk (3.13)
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where BG(zk) is the expected photon flux at zk, φ∗s(xs, zk) is the expected photon flux at zk

from the radiation source xs, and A∗d(xs, zk) is the corrected area of a detector at zk exposed

to a radiation source located at xs. Equation 3.14 defines the areal correction in terms of

the angle θ between the ground-facing, outward normal vector and the vector that points

from the detector to the source.

A∗d(xs, zk) = A1d cos (θ(xs, zk)) + A2d sin (θ(xs, zk)) (3.14)

This completes the essential elements of the Bayesian model used by the BASBP. The next

section outlines Bayesian estimation procedures using the method of particle filtering.

3.3 Bayesian Estimation using Particle Filters

While a large variety of Bayesian signal filtering methods exist, the focus here is on the

foundations of the Bayesian particle filtering methods used by the BASBP.∗ The bootstrap

particle filter serves as a logical choice because the closed form of the measurement function,

G, in Equation 3.11b does not exist. The only known connection between the measurement

space and the state space is the conditional probability, G(yk|XS), given in Equation 3.12b.

The Bayesian particle filter is a sequential Monte Carlo method of estimating the posterior

distribution through sampling. In essence, discrete, random samples (called particles) are

used to represent the continuous distribution of the unobserved state-space. Additionally,

probability masses assigned to each particle represent the likelihood of the particle as the

distribution evolves. Figure 3.2 depicts an example of a random set of 20 particles drawn

from a given probability distribution.

As will be shown, the particles continuously evolve due to the recursive sampling from the

updated transition distribution. Figure 3.4 depicts an example of the iterative propagation

of the posterior distribution. Note that also shown is the track of the maximum a posteriori

(MAP) estimate of the distribution (developed in the next section).
∗Appendix B provides the basis for the Monte Carlo approximation of complex integrals. Here, only

the essential components are reiterated in order to develop the mechanics needed for implementation in the
BASBP.
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Figure 3.2: Sampling from the posterior distribution.

Figure 3.3: Particle propagation.

The generic particle filtering process begins by drawing N particles, xi(0), from the

prior distribution and assigning a uniform weight,wi(0), to each particle. A new batch of

particles, xi(t), is sampled from the state transition probability, F(x(t)|xi(t − 1)), dictated

by the state transition function F(·). Based on the foundation developed in Appendix B, it

has been shown [28] that the weight given in Equation B.8 can be expanded in sequential

31



form, given in Equation 3.15 as:

wt = wt−1 ·
π(Yt|Xt) · π(Xt)

πq(Xt|Yt)
= wt−1 ·

G(yt|xi(t)) · F(x(t)|xi(t− 1))

πq(xi(t)|xi(t− 1), y(t))
(3.15)

where πq denotes the importance distribution. The particle weights receive an updated

weight based on Equation 3.15 are then normalized. Given the updated particle weights the

new estimate of the posterior distribution is obtained using Equation B.13 (repeated here

for clarity):

π̂(xt|Yt) ≈
N∑
i=1

wi(t)δ(x(t)− xi(t)). (3.16)

Table 3.1 outlines the algorithm for the generic Bayesian particle filter in concise form.

While the general process is not complex, it should be noted that Bayesian particle filters

suffer from the problem of degeneracy. That is, the variance of the importance weights, πq,

tends to increase with each iteration due to the sampling process. By preferentially selecting

particles with higher weights, the algorithm degenerates to a single weight after a relatively

few iterations [28]. One method of combating degeneracy is thru judicious selection of the

the importance prior. The BASBP employs a form of the bootstrap particle filter [31] that

uses the transition prior for the importance distribution as expressed in Equation 3.17:

πq(xi(t)|xi(t− 1), y(t))→ F(x(t)|x(t− 1)) = 1 (3.17)

where the definition of the transition distribution from the state-space model given

in Equation 3.12a has been applied. The impact of selecting the transition prior as

the importance distribution is two-fold: sampling the posterior distribution requires no

additional computation; and, calculating the updated particle weights is greatly simplified.

Using the transition prior reduces the weight update process:

wt = wt−1 · G(yt|xi(t)) (3.18)

While use of the transition prior simplifies the particle filtering process, note that it does

not alleviate the problem of degeneracy.
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Table 3.1: Algorithm for the Generalized Particle Filter

Method Process

Initialization
Draw: xi(0)→ π(x(0)), wi(0) = 1/N, (i = 1, . . . , N) [sample]

Importance Sampling
Draw: xi(t) ∼ F(x(t)|xi(t− 1)) [state transition]

State-Space Transition
F(x(t)|xi(t− 1))⇐ F (x(t− 1), u(t− 1), ωi(t− 1))
ωi(t− 1) ∼ π(ωi(t)) [transition]

Measurement Likelihood
G(y(t)|xi(t))⇐ G(x(t), u(t), ν(t)); νi ∼ π(ν(t)) [likelihood]

Weight Update
wi(t) = wi(t− 1) · G(y(t)|xi(t))·F(x(t)|xi(t−1))

πq(xi(t)|xi(t−1),y(t))
[weights]

Weight Normalization
wi(t) = wi(t)/

∑N
i=1 wi(t) [weight normalization]

Posterior Update
π̂(x(t)|Yt) ≈

∑N
i=1 wi(t)(x(t)− xi(t)) [posterior distribution]
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A second technique often employed in particle filtering methods to combat particle

degeneracy is known as resampling. Simply stated, the particle population is rejected and a

new sample is drawn from the posterior distribution if the effective sample size falls below a

designated threshold. It has been shown that the effective size of a population of particles

can be characterized by the coefficient of variation [28]. The estimated effective sample size,

N̂eff, is given in Equation 3.19 as:

N̂eff :=
1∑N

i=1 w
2
i (t)

(3.19)

Figure 3.4 depicts the process of resampling (the relative particle weights are denoted

by their size). At the completion of the first iteration through the particle filter (the top

row of particles in the graphic), the particles are evenly distributed in state-space, but

their relative weights are proportional to the posterior distribution. Resampling from the

importance sampling distribution discards particles with relatively low weights and replicates

more particles from the higher-mass sections of the distribution. As the particles move

through several cycles, their distribution converges on the unknown target distribution.

Figure 3.4: Notional depiction of the particle resampling method.
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The third Bayesian technique used in the BASBP to prevent particle degeneracy is called

roughening. In this method, artificial noise (or "jitter") is added to the particles via a random

sample from the Normal distribution as given in Equation 3.20 [31], [32]:

x∗i (t) = xi(t) + ηi(t) (3.20)

where x∗i (t) denotes the roughened particle, and ηi(t) ∼ N (0, Jk). Jk is a diagonal covariance

matrix of size (nx×nx, where nx is the dimension size of x). The elements of Jk are specified

as: σ2
j = (κMn N

−1/nx)2. Here κ is a fixed, positive tuning parameter. Mn is maximum

spread of the particle population in the n-th dimension, as given by:

Mn = max
i,j
|x(n)
i − x

(n)
j | (3.21)

Scaling the standard deviation of the added noise by the inverse of the nx-th root has the

effect of normalizing the noise to the spacing on an equivalent rectangular grid of N points.

Because the noise added to each particle stems from a continuous distribution, the process of

roughening the particles has a similar effect to the more mathematically intensive procedure

known as regularization [28], [33]. Namely, the roughening of particles keeps the processor

from collapsing the distribution around a single point.

Roughening and regularization also has an impact on the sample size, Np, required to

adequately reflect the state-space. From the state-space model, the particles are stationary.

This means that under sampling in the initial distribution can lead to erroneous posterior

distributions if a radiation source exists in a region left void by the initial draw. Assuming

the worst-case scenario, consider the case in which a uniform distribution is assigned to

the spatial priors. If the search space covers 100 km2, then 1E6 particles are required to

represent the initial spatial domain as a uniform grid with a 10m grid-spacing. In addition

to the spatial resolution, the BASBP requires: 6 stratifications to represent the possible

number of sources; 10 stratifications to provide sufficient resolution of the source activity;

and, another 10 stratifications to represent the 10 different potential sources of interest.
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Without roughening, the problem posed would require 6.0E+9 particles. Use of roughening

and regularization techniques provides the means for particles to drift into otherwise void

regions and reduces the computational burden imposed by requiring enormous sample sizes.

Here, the generic particle filter algorithm is updated by incorporating the selection of

the transition distribution for importance sampling and the use of resampling. As before,

the bootstrap process begins by drawing N particles, xi(0), from the prior distribution

and assigning a uniform weight,wi(0), to each particle. A new batch of particles, xi(t),

is sampled from the state transition probability, F(x(t)|xi(t − 1)), dictated by the state

transition function F(·). The particle weights receive their updated weight based on the

product of their previous weight and the measurement likelihood. Following the weight

updating step, the weights are normalized. After calculating the effective sample size, N̂eff,

if the estimated effective size of the population exceeds a specified threshold, the algorithm

proceeds as before. Otherwise, the particles are rejected and a new population is drawn by

resampling from the importance distribution before proceeding with the posterior update.

Table 3.2 outlines the generic bootstrap algorithm in mathematical form.

It is clear that the bootstrap particle filter offers a relatively simple way of approaching

analytically intractable problems. In the next section, the Bayesian estimation of parameters

introduced previously is revisited in order to further outline the Monte Carlo-based approach

using particle filters.
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Table 3.2: Algorithm for the General Bootstrap Particle Filter

Method Process

Initialization
Draw: xi(0)→ π(x(0)), wi(0) = 1/N, (i = 1, . . . , N) [sample]

Importance Sampling
Draw: xi(t) ∼ F(x(t)|xi(t− 1))⇐ F (x(t− 1), u(t− 1), ωi(t− 1))
ωi(t− 1) ∼ π(ωi(t)) [state transition]

Weight Update
wi(t) = wi(t− 1) · G(y(t)|xi(t))⇐ G(x(t), u(t), ν(t); νi ∼ π(ν(t)) [weights]

Weight Normalization
wi(t) = wi(t)/

∑N
i=1wi(t) [weight normalization]

Resampling Decision
N̂eff = 1/

∑N
i=1 w

2
i (t); N̂eff ≤ Nthreshold → Resample [effective samples]

Resampling
x̂i(t)⇒ xi(t) [resample]

Roughening
x̂i(t)⇒ xi(t) + ηi(t) [roughening]

Posterior Update
π̂(x(t)|Yt) ≈

∑N
i=1wi(t)(x(t)− xi(t)) [posterior distribution]
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3.4 Obtaining Parameter Estimates from Particle Filters

Briefly returning to the Bayesian parameter estimation, this section defines the methods

for calculating the required parameter estimates based on the BASBP’s use of Monte Carlo

particle filtering methods. As previously described, particle filtering methods provide a

means to approximate problematic integrations. This process begins with the output of

the posterior update process. That is, the current set of Monte Carlo particles and their

associated weights, [xi, wi]
N
i=1 are known as well as the estimate of the posterior distribution,

π̂(X(t)|Yt), as given by:

π̂(Xt|Yt) ≈
N∑
i=1

wi(t)δ(Xt − xi(t)). (3.22)

The MMSE parameter estimate, x̂MMSE, from Equation 3.4 is estimated by applying

the Monte Carlo principles outlined in Appendix B combined with the current estimate of

posterior distribution, π̂(Xt|Yt):

x̂MMSE = Eπ̂[x(t)|Yt] =

∫
X

x(t)π̂(Xt|Yt)dx

=

∫
X

x(t)π̂(Xt|Yt)dx

=

∫
X

Np∑
i=1

xi(t)wi(t)δ(x(t)− xi(t)) =

Np∑
i=1

wi(t)xi(t)

(3.23)

The MAP estimator only requires the simple replacement of the posterior distribution

with the current estimate of the posterior, π̂(Xt|Yt):

x̂MAP = argmax
x(t)

π(X(t)|Yt)

≈ argmax
xi(t)

π̂(x(t)|Yt)
(3.24)
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Where the estimation of the variance of the conditional, Rx|y, is given by:

Rx|y = E
[
(x(t)− E[x(t)|Yt])2|Yt

]
=

∫
X

(x(t)− E[x(t)|Yt])2 π(Xt|Yt)dx
(3.25)

using Monte Carlo-based importance sampling, the conditional variance can be estimated

by sampling from the posterior distribution and employing the estimate of the conditional

mean, x̂MMSE, in Equation 3.26:

R̂x|y =

∫
X

(x(t)− E[x(t)|Yt])2π̂(x(t)|Yt)dx

=

Np∑
i=1

wi(t)δ(x(t)− xi(t))(x(t)− x̂MMSE)2

=

Np∑
i=1

wi(t)(xi(t)− x̂MMSE)2

(3.26)

To conclude the discussion of the basic Bayesian principles and the particle filtering

process, note that two central factors are expected to affect implementation of these methods

in the Bayesian processor:

• The selection of the prior distributions embedded in π(x);

• The splitting of the measured signal into the components of Ψk(XS, zk); and

• The execution of the detection decision inherent in the measurement likelihood

function, G;

With these issue items at the fore, the next chapter outlines of the development of the

BASBP.
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4 | Development of the Bayesian Processor

This chapter develops the Broad-Area Search Bayesian Processor (BASBP) based on the

foundation of Bayesian methods and radiation detection principles established in Chapter 3.

The primary functions of the processor include: process knowledge of the broad-area search

problem and establish the source parameter prior distributions; receive and process radiation

detection system data; estimate the local background radiation; determine whether or not

the observed measurement includes a source signal; estimate the posterior distribution of

the source parameters; provide updated estimates of the source parameters of interest; and

provide updated guidance to the sensor platforms. With these core tasks in mind, Figure

4.1 depicts the flow of information within the BASBP and serves as the roadmap followed

in the development of the processor in this chapter.

Figure 4.1: Flowchart of BASBP processes.
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4.1 Selection of Priors for the Source Particle Filter

The primary source parameters of interest include the number of radioactive sources in the

search space and their location, intensity, and type. The selection of priors revolves entirely

around knowledge of the broad-area search problem (including how the problem originated)

and the environmental factors influencing the search space. Prior knowledge informs the

beliefs regarding the distribution of the parameters of interest. Where prior beliefs offer little

information regarding the distribution of a parameter, the uninformative uniform distribution

must be chosen. In most cases, however, the ability to leverage knowledge of the problem

and environment to construct credible parameter distributions will prevent having to default

to the uniform distribution. Examples of the types of information useful in the construction

of BASBP priors include:

• Information related to the events triggering the broad-area search problem:

– cause for the search (sensors triggered; lost, missing, or stolen sources; or,

radiation sickness reported by the general population);

– source number, type, and intensity; and,

– knowledge of potential suspects, their motivations, and intentions.

• Geo-spatial data concerning the search space:

– census and demographic data;

– topography data;

– visual, thermal, or hyper-spectral imagery;

– radiological survey data; and,

– weather data

In the implementation of the bootstrap particle filter used to estimate the source parameters

in the BASBP, the state-space is represented by N Monte Carlo particles, X ∈ RN×5×rmax .

Each particle represents a number of sources, r, where r ∈ [0, rmax], and r is drawn from the

prior distribution πr. The values of the number of sources represented by each particle is

stored in a vector, r (where r ∈ RN). Recall that each source contains the 5 parameters of
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Table 4.1: Initial Particle Sampling Algorithm

Line Process

1 : Subroutine Draw Particles (N, [Xn
0 , rn0 ,wn

0 ]Nn=1)

2 : Do i = 1, N

3 : Sample ri ∼ πr
4 : Do j = 1,max(1, ri)

5 : Sample xi,j0 ∼ πxy

6 : Sample Ai,j0 ∼ πA

7 : Sample λi,j0 ∼ πλ
8 : End Do
9 : End Do
10 : Set [wn

0 = 1/N ]Nn=1

11 : End Subroutine Draw Particles

interest as defined in Section 3.2, where xs = [xs, ys, zs,As, λs]. Table 4.1 lists the general

process used to generate the initial set of source particles. The next few subsections describe

how the priors are selected for each of the four sampling procedures.

4.1.1 Priors for the Distribution of the Expected Number of Sources

If no information exists to define the relative likelihoods across the range of possible source

numbers, r, then the logical choice for the prior, πr is the Uniform distribution, where

r ∼ U(0, rmax). Ristic (et al) suggest using the linearly decreasing, discrete function given

by Equation 4.1 to define πr [10]. Figure 4.2 depicts the distribution of πr as a function of

the number of sources.

π(r) =
rmax − r + 1∑rmax

r=0 r + 1
(4.1)

Clearly, this distribution places more emphasis on the lower range of possible sources as

opposed to the upper range. Reducing the sampling weights of less likely components of πr

conserves Monte Carlo particles and reduces computation time.
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Figure 4.2: Example probability distribution of the number of sources.

4.1.2 Priors for the Distribution of Sources in the Spatial Domain

The spatial distributions of the unknown source parameters xs, ys, and zs are constrained

by the critical assumptions listed in Table 2.1. Due to the assumption that radioactive

sources are confined to the surface of the ground, the focus here is on estimating how the

sources are distributed in the x-, and y-dimensions (easting and northing), πx, πy. Once a

particles coordinates have been chosen, the elevation of the particle is set to ground level

at that location.∗ At the time of initiation of the broad-area search problem, selection

of the Uniform distribution, U(min,max), offers a rapidly implementable choice for each

dimension. However, the use of a non-informative prior should be reserved for cases in

which no information exists to refine the spatial bounds of the problem.

A broad range of information may be available to law enforcement and government

entities capable of narrowing the dimensions of the broad-area search space. However, the

discussion herein focuses on demonstrating the development of priors for the distribution

of spatial source parameters based solely on the analysis of geographic data sets typically

available to the public. Common datasets include: standard maps, land-use data from

satellite scans, elevation data, and imagery data. As a generic example, likelihood values
∗Alternatively, when radar telemetry is available, the elevation of each particle can be set to zero and the

measurement elevation can be set to the detector’s height above ground.
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Figure 4.3: Aggregation of spatial data to create spatial weighting distribution.

assigned to the pixels in a land-cover scene can signify beliefs that a source is more likely to

be found in an urban environment vice wetlands or a body of water. Similarly, circumstances

may allow for the exclusion of steep terrain as identified by analyzing surface elevation data.

After assigning likelihood values to the pixels in a geo-spatially coded scene, normalizing

the values results in a relative weighting map suitable for sampling the pixels, πxy. Figure

4.3 depicts the aggregation of geo-spatial data to develop a spatial importance sampling

distribution. The spatial sampling resolution, however, depends on the resolution of the

geo-spatial data used to generate the pixel weighting map.† Within each pixel, it is assumed

that the spatial distribution is uniform and random samples are drawn for the easting and

northing coordinate.

Note that in order to facilitate computations using SI units, portions of the National

Geospatial-Intelligence Agency’s publicly available source code for the geographic translator,

GEOTRANS [34], were translated into FORTAN to rapidly translate locations given in units

of decimal degrees to meters using the Universal Transverse Mercator (UTM) format. The

incorporation of a highly accurate, stand-alone translation service provides the BASBP the

ability to rapidly translate coordinates (in either direction), either as a single coordinate

conversion or in bulk.
†Typical, publicly available, geo-spatial data sets based on satellite sensors have resolutions on the order

of 1 arc second, or approximately 25 meters.

44



(a) Sampling in linear space. (b) Sampling in log-space.

Figure 4.4: Results of random source activity sampling using the Uniform distribution.

4.1.3 Priors for the Source Strength

Radiation source strength, As, is typically measured in terms of source activity – the mean

number of decays occurring per second. As with previous priors, if little information exists

regarding the distribution of the source strength, then one must default to the Uniform

distribution, πA ∼ U(Amin,Amax). If the difference between the lower and upper bounds of

the source strength is greater than a decade, however, Equation 4.2 must be used in order

to draw random samples from πA uniformly.

Ai = 10

[
log(Amin)+χi·log(Amax

Amin
)
]

(4.2)

where χi is a random variate drawn ∼ U(0, 1). Figure 4.4 depicts the results after drawing

10,000 samples using Equation 4.2 and A ∈ [0.001, 10.000] in curies. As shown in Figure

4.4a, improper sampling occurs if samples are drawn linearly from an exponential range

of activities. On the other hand, when reason exists to believe that the source strength

falls within a narrow range, a much tighter distribution (like the Gamma distribution, with

appropriate shape and scale parameters) may be more appropriate.
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(a) Probability distribution. (b) Cumulative probability distribution.

Figure 4.5: Sampling from the source type probability distribution, πλ.

4.1.4 Priors for the Source Type Distribution

The selection of the source type distribution, πλ, revolves around the information available

regarding the events that triggered the broad-area search. The Uniform distribution

represents the case where the analysis of available information fails to narrow the list of

possible source types. For uniformly likely source types, the probability of sampling any

one source is equal to 1/Nλ, where Nλ is the number of possible source types. However,

information may exclude or significantly reduce the likelihood of finding specific source types.

The discrete distribution for πλ is constructed by weighting each source type according to the

beliefs in the relative likelihood of occurrence and then normalizing the weight distribution.

Recalling the data from the IAEA’s ITDB depicted in Figure 2.2, a discrete likelihood

distribution can be generated by applying the additional assumption that SNM sources are

100-times less likely than conventional radiation sources. Figure 4.5a depicts the resulting

source-type distribution. Figure 4.5b the sampling from πλ using an inverse transformation

by a uniformly drawn sample in the interval [0, 1], denoted as χi, from the cumulative

distribution function of πλ and mapping it to the corresponding discrete source type.

Having established the framework for estimating the priors for the source parameters and

drawing the initial samples, the next section proceeds with the development of the BASBP
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framework by focusing attention on the process by which the local background parameters

are estimated.

4.2 Background Estimation

4.2.1 Priors for the Local Background

It is well known fact that three distinct sources of background gamma radiation exist:

cosmic sources; reactions in the atmosphere with cosmic radiation; and terrestrial, naturally

occurring radioactive materials (NORM). Terrestrial background radiation varies spatially

due to variations in geology, terrain, and the construction materials used in man-made

objects. Altitude and distance from the surface of the earth also impact the magnitude

and energy distribution of the gamma radiation attributable to background sources. The

magnitude and spectral content of the local background radiation varies temporally as

well. Neglecting the obvious change in local background environments due to man-made

construction or demolition projects, the most significant time-based variations in background

radiation stem from changes in the solar radiation due to the earth’s rotation and the

weather. [35]

Assuming that one can estimate the magnitude of the background radiation signal due

to NORM based on a previous measurement, one can also apply a correction factor to adjust

both the cosmic radiation and the temporal effects of the local weather.

The BASBP assumes that variations in the background radiation due to NORM are

consistent with spatial variations in the land-cover categories. In the BASBP, two operational

approaches to estimating the prior distribution, πBG, of the local background flux based on

geo-spatial land-cover data are considered:

• Use of training data. Time and terrain permitting, develop a training database of

background measurements based on similar terrain types to those found within the

search space.
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Figure 4.6: Geometry influencing scene-size selection.

• Use of correlation matrix. Develop a correlation matrix that describes the gradient

when moving between terrain types.

The scene size and content serve as the critical factors impacting the ability to base

the background estimate off of terrain type. The size of the scene is defined based on the

height of the detector above the surface of the ground as the width of the scene in land-cover

pixels. The primary scene consists of those land-cover pixels nearest the detector while the

secondary scene consists of those pixels on the margins of the detector’s field of view. Figure

4.6 depicts the relationship between the detector and the scene selection on the ground plane.

Based on the 16 land-cover categories used in the land-cover products available from the U.S.

Army Geospatial Center [36], let the vector Ξj as defined in Equation 4.3 to represent the

land-cover scene within the detector’s FOV at zk:

Ξj = [Pξ1 , · · · , Pξ16 , Sξ1 , · · · , Sξ16 ] (4.3)

where j corresponds to the index of the row in Ξ that matches the land-cover scene at zk,

[Pξi ]
16
i=1 is a vector consisting of the number of pixels in the primary scene of each land-

cover type, ξi (ξi ∈ [0, 1, . . . , 15]), and [Sξi ]
16
i=1 contains the corresponding information for the

secondary scene.
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4.2.2 Development of the Bootstrap Particle Filter for the Background Estimates

In addition to the estimate of the posterior distribution, the BASBP utilizes a bootstrap

particle filter to estimate the background flux, B̂Gj, predicted for the land-cover scene Ξj

at the detector location, zk. The background estimation problem can be stated as: given a

set of noisy gamma-ray measurements, {BGk
obs}, and a set of prior parameters, {BG0, w0},

determine the best estimates of the background flux, B̂G, and the standard error of the

background flux estimate, B̂GRMSE. Equation 4.4 establishes the relationship between the

State-space and Measurement-space needed for the particle filter.

BGm = BGm−1 + wm−1 [State-space]

BGm
obs = C · BGm + νm [Measurement-space]

C = εdetAdetτ

(4.4)

where m is the m-th observation of the land-cover scene Ξj, wm−1 is the process noise (due

to radioactive decay and radiation transport processes) associated with the background flux

(wm−1 ∼ N (0,BGm−1)), νm is the systematic measurement noise (νm ∼ N (0, σ2
ν)), and C

is a scaling factor based on detector properties (efficiency and area) and the measurement

time, τ .

In the implementation of the BASBP, measurement noise is neglected due to the

assumption that BGm−1 � σ2
ν . The detection decision function (see Section 4.3) determines

that portion of the observed signal, yk, attributable to the local background, BGm
obs. Further,

let the concatenated vector B̂Gj store the key background particle filter variables, as defined

by Equation 4.5:

B̂Gj = [BG,w, B̂G, B̂GRMSE] (4.5)

where BGj is the set of NBG Monte Carlo particles representing the estimated average

background flux for scene Ξj, w is the vector of particle weights, B̂G is latest background

estimate, and B̂GRMSE is the standard deviation of the estimate. Table 4.2 outlines the

procedures used to implement the background estimator.
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Table 4.2: Algorithm for Background Estimate Particle Filter

Line Process

1 : Subroutine Background Particle Filter (B̂G
m−1

j ,BGk
obs)

2 : Update weights: wmi = wm−1
i · P(BGk

obs|BGi,
√
BGi)

3 : Normalize weights: wmi = wmi /
∑NBG

i=1 wmi
4 : Calculate Neff = 1/

∑NBG
i=1 (wmi )2

5 : If Neff ≤ Nthreshold then
6 : [BGm,wm] = Resample [BGm,wm].
7 : End If
8 : Update estimates: B̂G, B̂GRMSE

9 : End Subroutine Background Particle Filter

4.3 The Detection Decision

The radiation detection decision facing the BASBP is cast in terms of two competing

hypotheses. The null hypothesis addresses the state in which no source signal exists and

the observed measurement stems solely from the local background signal and measurement

noise. The alternative hypothesis addresses the state in which the measured signal is the

sum of the background and source signal arriving at the detector at the same time, combined

with measurement noise. Equation 4.6 expresses the two hypotheses in mathematical form:

H0 : yk(zk) = R
(
BG(zk)

)
+ ν(k) [No-source present]

H1 : yk(zk) = R
(
BG(zk), S̄ (zk)

)
+ ν(k) [Source present]

(4.6)

whereR
(
BG(zk)

)
underH0 is a realization of a random sample from the Poisson distribution

with a mean count rate of BG located at zk, and ν(k) is the zero-mean, Gaussian

measurement noise (ν ∼ N (0, σ2
ν)). Under H1, R depends upon both the BG(zk) and

the contribution at zk due to the presence of a radiation source, also drawn from the Poisson

distribution, with a mean count rate of S̄ (zk). Because BG varies with measurement location,

a sequential hypothesis test similar to the one employed by Candy (et al) to drive the alarm
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decision for a stationary portal monitoring system cannot be employed [7]. Instead, the

BASBP uses the following likelihood ratio statistic: [29]

Λ =

sup
θ∈Θ1

f(x|θ)

f(x|θ0)
(4.7)

where f(x|θ) is the likelihood function for the random variable x with parameter θ, θ0 is the

value of theta under the null hypothesis, and Θ1 is the set of all values of θ for which the

alternate hypothesis is true. Expressing Equation 4.7 in terms of the detection decision:

Λ[yk] =
sup P(R,H1)

P(R,H0)
=

argmax
i∈[1,...,B̂G(zk)]

[
P
(

(yk − i|B̂G(zk)
)
· P(i|i)

]
P
(

(yk|B̂G(zk)
)
· P(0|1)

(4.8)

where under H1, all combinations of background and source contributions capable of giving

rise to the observed measurement are considered. Of note, the Poisson probability P(0|1)

is used in the denominator to estimate the probability of not having a source signal present

as opposed using P(0|0). The rationale is straight forward: using P(0|0) = 1, the decision

function will always choose the null hypothesis. Using P(0|1) when P(0|1) = P(1|1), negates

only the detection decision when the source contribution is identically equal to 1 — which

is well below the decision threshold.

The threshold for deciding betweenH0 andH1 is established according to the probabilities

of committing errors of the first and second kinds. An error of the first kind occurs when the

null hypothesis is rejected when in fact true (false positive, FP). An error of the second kind

occurs when the null hypothesis is accepted when false (false negative, FN). It is common

practice to characterize radiation detection systems with their associated receiver-operating

curves (also known as ROC curves) which depict the interaction between the probabilities of

a FP and FN alarm occurring (PFP and PFN , respectively) based on an established decision

threshold. Based on the detection threshold established for the radiation detection system

and corresponding PFP and PFN values, the threshold for the BASBP detection decision is
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Table 4.3: Detection Decision Algorithm

Line Process

1 : Function Detection Decision (yk, B̂Gk,PFP,PFN)

2 : If yk > B̂Gk then
3 : Set Tdet = 1−PFN

PFP
and N = yk − B̂Gk.

4 : Let [BGi
est = yk − i, Sigiest = i]Ni=0.

5 : Let P0 = P(BG0
est|B̂Gk) · P(0|1).

6 : Let [Pi = P(BGi
est|B̂Gk) · P(Sigiest|Siest)]Ni=1.

7 : Let Λk = argmax
i∈[1,...,B̂G(zk)]

Pi/P0.

8 : If Λk ≥ Tdet then let BGest(zk) = BGi
est, Sigest(zk) = Sigiest

9 : Else let BGest(zk) = yk, Sigest(zk) = 0 End If.
10 : End If
11 : End Function Detection Decision

calculated as:

Tdet =
1− PFN

PFP
(4.9)

where the numerator is also known as the power of detectingH1. Given the decision threshold

Tdet, the null hypothesis is rejected (no source signal is present) only when the decision

function Λ exceeds the specified threshold, as expressed in Equation 4.10:

Λk ≥ T Accept H1

Λk < T Accept H0

(4.10)

If the Λk decision function points towards accepting H0, then the current measurement value

yk is assigned to the background estimate for the measurement location, BGest(zk), and the

estimate of the source signal, Sigest(zk), is set to zero. Otherwise, the background estimate is

assigned the value of yk− i and the source signal is set to the value of i, both from Equation

4.8. Table 4.3 lists the algorithm for implementing the detection decision function in the

BASBP. With the local background and source signal estimations in hand, development of

the BASBP proceeds with the estimation of the updated posterior distribution.
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4.4 The Posterior Distribution Update

The process of updating the posterior distribution serves as the workhorse of Bayesian

particle filtering methods. While the concept of updating the posterior distribution from

the general bootstrap particle filter algorithm given in Section 3.3 is straight forward, the

nature of the broad-area search problem dictates a unique approach to implementing the

processes involved. In particular, the BASBP employs the following unique features: the use

of a subset of particles to process through the update routine; the use of a library of photon

distributions developed from MCNP modeling to estimate the measurement likelihood; and,

the implementation of multi-threaded processing techniques to significantly decrease the

computation time required for batch processes. Table 4.4, located at the end of this section,

outlines the algorithm of the primary processes used to update the posterior distribution by

the BASBP.

The posterior update process begins by selecting the subset of particles from the main

sample population – this is feature is unique to the BASBP. Unlike the Bayesian particle

filtering methods applied a local search operations [10], [37]–[41], the majority of the particles

representing the state-space in the BASBP are located in regions a significant distance from

any single measurement location. As a result, a cut-off range, Rcut, can be selected beyond

which the probability of recording a measurement with no portion of the signal attributable

to the sources represented by a particle is equal to 1 (P(x = 0|λ = 0) = 1). Therefore, there

is no need to process these particles through the update routine. Additionally, if a source

signal exists, the Poisson distribution will assign a weight of 0 to all particles representing

the state in which no source exists (P(x = 1|λ = 0) = 0).

Based onRcut, those particles within range of the detector are assigned to the subsetX∗k−1,

with the corresponding weight and source number vectors, w∗k−1 and r∗k−1, respectively. It is

likely that the particle density in the vicinity of a measurement location will be quite sparse.

As long as the subset is not empty, the total weight of the subset is recorded and the subset

is resampled to obtain a new population, X∗∗k−1, of fixed sample size (arbitrarily choosen as
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Figure 4.7: Representation of the subset extraction process.

10,000 particles). To avoid degeneracy, the new sample population is roughend . Figure 4.7

graphically depicts the process of generating the X∗∗k−1 population.

The process of updating the particle weights in line 7 of Table 4.4 contains the following

essential components (note that the BASBP executes this sequence in batches of particles

according to the number of sources they represent):

1. Determine the source-detector distance for all of the particles representing s possible

sources, X∗∗,sk .

2. Estimate the total photon flux from the particle’s constituent sources based on an

empirical fit generated from MCNP models.

3. Calculate the angle between the ground plane and the vector pointing from the source

to the detector.

4. Adjust the total photon flux based on Equation 3.13.

5. Estimate the expected counts, φ∗(x∗∗,s, zk), using the detector parameters.

6. Calculate the measurement likelihood for each particle using: P(ysrck |φ∗S).

7. Update the particle weights based on Equation 3.18: wt = wt−1 · G(yt|xi(t)).
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Figure 4.8: Representation of the subset re-insertion process.

8. Normalize the weights, X∗∗,sk

9. Resample & roughen X∗∗,sk

Once the sequence has looped through the range of possible sources numbers, the entireX∗∗,sk

population is once again resampled. However, only enough samples are drawn to return the

population to the size of the original subset, X∗k−1. Prior to re-inserting the subset back

into the main particle distribution as Xk, the weight factor recorded when the particles

were originally extracted from Xk−1 is applied. This process ensures that extraction and

re-insertion process does not skew the global population. Figure 4.8 depicts the process of

returning the particle subset to the main population.

Once the posterior update process is complete, parameter estimates proceed as developed

in Section 3.4. Additional products, such as a spatial distribution map, can be generated by

tallying particle weights on a gridded mesh.
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Table 4.4: Posterior Update Algorithm

Line Process

1 : Subroutine Posterior Update ([Xn
k−1, rnk−1,w

n
k−1]Nn=1, yk, B̂Gk, τk)

2 : Find subset of particles, X∗k−1, within 200m of yk.
3 : For all Xn

k−1 3 X∗k−1: If yk > 0,wn
k−1 = 0.

4 : Find weight fraction of subset X∗k−1: fw∗ =
∑N1

n wn
k−1.

5 : Create subset of size N2. [X∗∗k−1, r∗∗k ,w
∗∗
k−1] = Resample [X∗k−1, r∗k,w

∗
k−1]

6 : Do s = 0, smax
7 : w∗∗,sk = w∗∗,sk−1 · p(yk|B̂Gk,X

∗∗,s
k−1)

8 : Normalize w∗∗,sk .
8 : Resample[X∗∗,sk ,w∗∗,sk ].
9 : Roughen[X∗∗,sk ] in space.
10 : End Do
11 : Create subset of size N1: X∗k = Resample[X∗∗k , r∗∗k ,w∗∗k ]
12 : Normalize w∗∗k to fw∗ .
13 : Move X∗k into Xk, r∗k into rk, and w∗k into wk.
14 : End Subroutine Posterior Update
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Figure 4.9: Probability estimation from subjective likelihood assessments.

4.5 Geo-spatial Data Fusion

Within the last decade, an entire industry has emerged centered around geo-spatial data

mining, analysis and fusion in an effort to cope with exponential increases in the volume of

electronic data available in the government, commercial industry, and private sectors. While

the focus herein is on the development and utility of the BASBP, the fact is worth highlighting

that operating in probability space with respect to interpreting the data streaming from

radiation detection platforms offers a clean framework within which one can fuse detector

information with data from disparate sources.

The argument here is that any information which suggests the likelihood of any of the

unknown parameters of interest (source location, intensity, and source type) can be formed

into a probability distribution and used to filter particles. The justification is two-fold.

First, it is common practice within the law enforcement and intelligence communities to

assign a subjective assessment of the probability (or likelihood) associated with analytical

conclusions based on intelligence data. While the intelligence community is loathe to do

so, Figure 4.9 depicts the mapping of the the probabilistic language used in assessments to

likelihood values [42].

The second argument for conducting data fusion in probability space is based on the

simple fact that probability provides a common frame of reference between different data

types. Analytical methods applied to the geo-tagged data from disparate sensors and sensor
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(a) Generic example of an spatial likeli-
hood filter.

(b) Example of passing uniformly drawn
particles through a spatial filter.

Figure 4.10: Depiction of the use of geo-spatial data as a particle filter.

types can yield spatial probability distributions. It is not proposed that the BASBP conduct

the analysis of any data other than that streaming from radiation detectors. Rather, the

observation made here is that a logical point of injecting a filter based on outside data exists

after the BASBP has completed the posterior updating process.

Figure 4.10a depicts a generic example of a notional analytical product based on some

form of geo-spatial data that represents the spatial likelihood distribution associated with the

theft of a radiation source. Applying the same technique used to development the spatial

prior distribution used by the BASBP, each pixel in a spatial filter image is tagged with

its associated likelihood. Figure 4.10b shows the results after passing 10 million particles

(drawn uniformly in space) thru the spatial filter (the high number of particles is used only

demonstrate the fidelity of the process).

In practice, the only requirements placed on the geo-spatial filter are: the pixel likelihoods

must be normalized to 1; and, the filtering image must at least cover the spatial domain

occupied by BASBP particles. Implementation of the data fusion process in the BASBP

takes the form of an additional resampling, normalization, and roughening sequence.
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4.6 Providing Sensor Guidance

Bayesian optimization of available resources occurs when the updated posterior distribution

is coupled with a sensor guidance routine capable of suggesting the location for the next

iteration of measurements that has the highest payoff. With robotics and unmanned aerial

vehicles fairly common place in modern times, a large body of work documents the research

devoted to the topic of sensor management and guidance. Because sensor guidance plays an

important role in the employment of remotely operated systems, the outline here focuses on

an approach that employs the knowledge gained from Bayesian methods. In the continuation

of this research, a proposed way ahead leverages the procedures outlined by Ristic (et al)

to provide sensor guidance to the radiation detection platforms executing the broad-area

search [10].

Use of the Rényi divergence between the the current posterior distribution and projected

posterior distributions provides the means to construct an appropriate reward function.

Maximization of the reward function selects the optimum sensor location for the next

measurement. Ristic (et al) approximate the expected reward according to Equation 4.11:

E
[
R(udk,P(Xk))

]
≈ 1

α− 1

Y ∗2∑
y=Y ∗1

γ1(ydk+1|udk) ln
[
γα(ydk+1|udk)
γ1(ydk+1|udk)α

]
(4.11)

where udk is the control vector containing the coordinates of a proposed location for detector

d, P(Xk) represents the current posterior distribution of particles, α is a fixed constant that

controls the emphasis placed on the tails of the distributions, ydk+1 the predicted value of a

future measurement, y (where y ∈ {Y ∗1 , . . . , Y ∗2 }, and the function γα(ydk+1|udk) is given by:

γα(y|udk) = 1/N
N∑
n=1

π(y|Xk)
α (4.12)

where π(y|Xk) is posterior distribution evaluated at y. In theory, the set of proposed

measurement locations is continuous and the range of projected measurement values is

infinite. To simplify the process and increase the speed of execution, a finite set can be
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defined, udk, to contain the four cardinal positions located 50m from the current measurement.

Further, the set of predicted values can be restricted by setting Y ∗1 = ymin and Y ∗2 = ymax

and to include two additional sample points at 1/3 and 2/3 of the range. The functionality

of such an approach remains to be seen.

60



5 | Simulated BASBP Performance

The bulk of this research, centered exclusively around the development of the BASBP, focuses

on implementing the Bayesian methods in the FORTRAN programming language and data

manipulation. In the absence of an aerial detection system collecting against a known

source, the demonstration of aspects of the BASBP’s performance relies on the collection

and processing of real-world geo-spatial, the production of priors, the processing of radiation

survey data as reported by others, and an examination of how the BASBP handles the

information.

5.1 Performance of the BASBP Detection Decision Function

Because the detection decision serves as the foundation of all of the subsequent core BASBP

processes, a simulated test of the algorithm was performed using the expected signal from a

notional, 4 mCi Cs-137 point source and aerial survey data collected by the Aerial Measuring

Systems-Remote Sensing Laboratory RSX-3 system collected over the Presidio, CA [26], [43].

The following elements characterize the radiological survey mission:

• Location: Presidio, CA

• Sources: None

• Platform: RSL Bell-412 helicopter

• Detector: 12 NaI(Tl) detectors assembled into 4 pods.

• Flight plan: standard grid pattern flown at altitudes between 50 m and 150 m and a

ground speed of roughly 70 knots.

Figure 5.1 depicts the total counts (background and when combined with the injected

signal), the injected counts, and the detection decision as a function of measurement number.

While the bottom plot in Figure 5.1a clearly shows the spike in the detection decision, Figure

5.1b depicts a close-up view of the data in the vicinity of the declared detection event.

61



Figure 5.2 depicts the flight path used in the aerial survey. The measurement locations

for which no source is declared are depicted in blue and the locations where a detection event

is declared are depicted in green. The notional 4 mCi Cs-137 source is depicted by the red

asterisk, located approximately at the center mass of the search area. This graphic further

depicts the variability of the terrain according to land-use category – clearly evident are the

false-positives declared when significant changes in the terrain occur.

To compare the detection decision function used by the BASBP to a more conventional

approach of estimating of the background, consider the case where a 20-point rolling estimate

is used and the threshold for detection is set at 3-σ. The top graph in Figure 5.3 depicts

the estimated signal (measured signal with the injected 4 mCi Cs-137 signal) in blue and

the 20-point rolling average in red as functions of measurement number. To correlate the

measurements to spatial locations, measurement number 1 occurs where the flight path

enters Figure 5.2 from the right. Evident in Figure 5.3 are the turns executed over water

(where the minimums counts occur) as well as the turns executed over land (prominent

v-notches). The bottom graph depicts the frequency of detection calls based on the 3-σ

threshold. Clearly, although the method correctly triggers a detection event at measurement

1216 as the BASBP, numerous false alarms are declared due to spatial deviations in the

background.

Exploring the possibility of using a more restrictive rolling-average estimate of the

background, Figure 5.4 depicts the case in which a 5-point estimate is used for varying

detection decision thresholds (3-, 10-, 17-, and 24-σ, from top to bottom). While setting

a higher threshold on the detection decision reduces the number of false positives, extreme

thresholds also have the effect of increasing the likelihood of a false negatives. It is clear that

setting a higher detection decision threshold is not an effective means to compensate for the

lack of knowledge regarding the variability of the background.
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(a) Full range of the data.

(b) Close-up view of data in the region of the detection decision.

Figure 5.1: Testing of the BASBP Decision Function.
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Figure 5.2: Flight path and notional detection decision using injected source (4 mCi
Cs-137).

Figure 5.3: Conventional analysis of the Presidio data and corresponding detection
decisions using 20-point rolling average and 3-σ threshold.
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Figure 5.4: Detection decisions using 3-, 10-, 17-, and 24-σ and a rolling 5-point average
for the background estimate.

65



5.2 Initial Evaluation of the BASBP

The evaluation of the initial BASBP performance uses the data collected by the Multi-

sensor Aerial Radiation Survey (MARS) system in June of 2012 [44]. Figures presented in

Appendix C depicted the elevation data, land-use data, and satellite imagery of the test

site. From the technical report published by the Pacific Northwest National Laboratory, the

following elements characterize the challenge presented to the MARS system (mounted on a

helicopter):

• Location: Desert Rock Airport, NV (near the Nevada National Security Site)

• Sources: Cs-137 (25.3 mCi), Co-60 (4.13 mCi), Ba-133 (7.05 mCi), and

Am-241 (18.86 mCi)

• Platform: RSL Bell-412 helicopter

• Detector: 14 HPGe crystals mounted in a single cryostat (for more details

on the MARS system see [45])

• Flight plan: multiple passes at altitudes of 50, 100, 150, 200, 300, and 500 feet at 70

knots ground speed.

Figure 5.5 depicts the comparison between the total counts collected above 100 keV

during passes at approximately 10 m and 100 m. Note that the measurement numbers are

not assigned according to platform position, but the alignment is readily apparent. For

clarity, the total counts are depicted with a line whereas the data clearly stems from a

discrete set of measurement points. The complex nature of the detection system precluded

the use of the complete data set as it is possible that photons scattered by the detection

system are recorded in multiple crystals as single events. In order to run this data set thru

the BASBP, one would need to know the detector response function in greater detail in order

to map the total counts recorded to the number of incident photons. In lieu of using the data

points clearly attributable to the radiation sources, Figure 5.6 demonstrates the BASBP by

showing the initial particle population, the results after stripping the source data from the

set, and finally, a trial run attempting to use the data as is.
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Figure 5.5: Representative data collected by the MARS system, June 2012.

As depicted in (Figure 5.6a), the initial particle populations clearly represents the

probability distribution generated from the land-use categories depicted in Figure C.3.

Running the BASBP without the data points attributable to the point sources included, the

BASBP strips particles from area overflown by the detection platform (void in the center

of the scene, Figure 5.6b). In the case of attempting to run the full data set through the

BASBP with the source data points intact, an undermined error in data processing currently

terminates execution just after the system detects the maximum Ba-133 peak. However, note

that a particle cluster appears just off the airfield when this occurs (Figure 5.6c). It is possible

that the problem in the code is attempting to maintain particles capable of generating the

estimated source signal.
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(a) Intial particle population.

(b) Trial with no source data points.

(c) Trial with source data points.

Figure 5.6: Examples of the spatial distribution of BASBP particle populations.
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6 | Conclusions and Future Work

Faced with the proverbial challenge of finding a needle in a haystack, the application of

Bayesian signal processing methods to the broad-area search problem shows great promise.

While much work remains, the following key attributes are demonstrated in the BASBP:

the ability to leverage radiation transport physics; the ability to ingest geo-spatial data to

create both functional priors and conduct data fusion; the ability to rapidly process a large

particle population size; and, the ability to discriminate between a potential threat source

and a location varying background signal with a significantly lower false-positive rate.

Lacking an aerial detection platform, no claim is made as to the range at which detection

distances are expected to increase by employing the BASBP. The inclusion of radiation

transport physics in the broad-area search model, while the BASBP processes detector data

in real time, is a significant accomplishment. While neither Bayesian methods nor the process

of building libraries using MCNP are new concepts, this is the first demonstration of the

process of combining both methods in the context of a broad-area search algorithm.

In terms of Bayesian particle filtering methods, two components are absolutely critical:

construction of the priors and sampling methods employed. This research demonstrated

the ability of the BASBP core program to transform geo-spatial data into accurate and

meaningful priors. Despite the volume of data ingested, efficient BASBP processes rapidly

transform geo-spatial datasets into probability distributions. When geo-spatial data is

applied to the back end of the BASBP process (following the posterior update), prospects

exist for data fusion to serve as an additional particle filtering method. Additionally, the

ability to operate in probability-space affords tremendous opportunities to combine disparate

types of information and provides the framework for true, all-source data fusion.

While not highlighted elsewhere, optimization of the BASBP core processes by leveraging

multi-core processes significantly increases the applicability of the program to the broad-area

search problem. Employing particle filtering techniques across a spatial domain that greatly
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exceeds the extend of the signals measured requires large particle populations. Benchmarking

a non-optimized BASBP posterior update routine against the same routine written to exploit

parallel processing shows a reduction in processing time of nearly 2 orders of magnitude.

Although this research was constrained to aerial data sets made available by others, the

detection decision serves as the central function every detection system must perform. The

BASBP’s ability to provide a detection decision when given a location varying background

serves as one of its primary features.

The continued development of this research should follow three main tracks. First, the

continued development and refinement of the core BASBP processes will significantly improve

the code. Much work remains to be done on the back end of the processes to ease the

burden of post-processing and bring the BASBP closer to an operational system. While a

proposed way forward exists regarding the sensor guidance routine, more research is required

to select the most appropriate method for determining future measurement locations based

on Bayesian risk-reward analysis.

The second primary track along which this research should advance is the development

of a low-cost, unmanned, aerial detection platform. While the initial process of designing

an aerial system to couple with the BASBP system via RF communications has started,

much work remains. As currently envisioned, the BASBP will operate from a ground control

station to provide situational awareness and sensor guidance recommendations to platform

controller. However, the primary challenge during the design phase will be finding the

optimal balance of between flight time, system performance, the means to link the BASBP

to a live data stream.

Broad-area modeling is the third thrust area this research should initiate. The 1D

modeling performed to build an initial library for the BASBP supports the conclusion that

the broad-area search requires a model that includes radiation transport physics. However, it

remains to be seen whether or not efficient estimated flux libraries libraries can be generated

from higher fidelity radiation transport models of the problem space.
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Appendix A | Radiation Source Data

This appendix contains basic information regarding radiation sources. Section A.1 provides

a list of commonly used sources of radiation, typical applications, activity ranges, and the

IAEA threat category. In Section A.2, we provide tables containing basic data supporting

the photon signatures associated with nuclear MOC (both conventional sources and SNM).

In the case of the SNM sources listed, we estimate the activity levels by aging the composite

material by five years and running Monte Carlo estimations of the fraction of the photons

born within 1SQ of material that escape without colliding. The graphical depictions of the

complete expected spectra from SNM are provided in Section A.3.

A.1 Common Sources of Radiation

Table A.1: Common Uses of Conventional Sources of Radiation

Isotope Use
Activity [Ci] Max IAEA
Min Max Category∗

Am-241

Industrial gauges 1.20E-02 6.00E-01 4
Nuclear medicine 2.70E-02 2.70E-01 4

Industrial static reduction 3.00E-02 1.10E-01 4
Lightning arrestors 1.30E-03 1.30E-02 5
Smoke detectors 1.00E-06 1.00E-06 5

Cd-109
Nuclear medicine 2.00E-02 2.00E-02 4
Analytic chemistry 3.00E-02 1.50E-01 5

Cf-252
Industrial gauges 3.00E-05 3.70E-02 3
Nuclear medicine 8.30E-02 8.30E-02 4

Cm-244 Industrial gauges 2.00E-01 1.00E+00 4
Co-57 Analytic chemistry 5.00E-03 4.00E-02 5

Continued on next page . . .

∗The IAEA defines radioactive source categories 1–3 as extremely dangerous, very dangerous, and
dangerous to humans, respectively. Category 4 and 5 radiological sources as those that are unlikely and
very unlikely to be dangerous to humans, respectively. [46]
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Table A.1 - Continued

Isotope Use
Activity [Ci] Max IAEA
Min Max Category

Co-60

Industrial sterilization 5.00E+03 1.50E+07 1
Medical sterilization 1.50E+03 3.00E+03 1
Nuclear medicine 5.00E+00 1.50E+04 1

Industrial radiography 1.10E+01 2.00E+02 2
Industrial gauges 5.00E-03 2.60E+00 3

Cs-137

Industrial sterilization 5.00E+03 5.00E+06 1
Medical sterilization 1.00E+03 1.20E+04 1
Nuclear medicine 1.00E-02 1.50E+03 1
Industrial gauges 1.00E-03 4.00E+01 3

Eu-152 Lightning arrestors 1.00E-03 3.00E-02 5
Fe-55 Analytic chemistry 3.00E-03 1.40E-01 5
Gd-153 Nuclear medicine 2.00E-02 1.50E+00 4

H-3
Analytic chemistry 5.00E-02 3.00E-01 5
Lightning arrestors 2.00E-01 2.00E-01 5

I-125 Nuclear medicine 4.00E-02 4.00E-02 4
I-131 Nuclear medicine 1.00E-01 2.00E-01 4

Ir-192
Industrial radiography 5.00E+00 2.00E+02 2

Nuclear medicine 2.00E-02 1.20E+01 2
Kr-85 Industrial gauges 5.00E-02 1.00E+00 4
Ni-63 Analytic chemistry 5.00E-03 2.00E-02 5
P-32 Nuclear medicine 6.00E-02 6.00E-01 5

Pm-147 Industrial gauges 2.00E-03 5.00E-02 4
Po-210 Industrial static reduction 3.00E-02 1.10E-01 4
Pu-238 RTGs 2.80E+01 2.80E+02 1

Ra-226
Industrial gauges 2.00E-03 4.00E-03 4
Nuclear medicine 5.00E-03 5.00E-02 4
Lightning arrestors 7.00E-06 8.00E-05 5

Se-75 Industrial radiography 8.00E+01 8.00E+01 2

Sr-90
RTGs 9.00E+03 6.80E+05 1

Industrial gauges 1.00E-02 2.00E-01 4
Nuclear medicine 2.00E-02 4.00E-02 5

Tm-170 Industrial radiography 2.00E+01 2.00E+02 2
Yb-169 Industrial radiography 2.50E+00 1.00E+01 2
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A.2 Photon Signatures Associated with Materials of Concern

Table A.2: Primary Photon Signatures (above 0.1 MeV) from Conventional Sources

Source Decay Mode
Activity Energy Intensity Mean Free Path [m]
[Ci/gm] [MeV] [#/gm-s] in Air in Al in Pb

Co-60 β- (100%) 1.1316E+03

1.3325 4.186E+13 159.1 0.070 0.0156

1.1732 4.181E+13 149.2 0.065 0.0142

0.8261 3.182E+09 125.7 0.055 0.0103

0.3471 3.140E+09 86.8 0.038 0.0029

2.1586 5.024E+08 205.1 0.089 0.0195

Se-75 ε (100%) 1.4549E+04

0.2647 3.171E+14 78.4 0.034 0.0017

0.1360 3.138E+14 62.6 0.026 0.0003

0.2795 1.345E+14 78.0 0.035 0.0019

0.1211 9.259E+13 60.4 0.024 0.0003

0.4007 6.174E+13 91.8 0.040 0.0038

Cs-137 β- (100%) 8.6811E+01
0.6617 2.733E+12 113.6 0.050 0.0079

0.2835 1.863E+07 80.4 0.035 0.0019

Ir-192
β- (95.24%)

ε (4.76%)
9.2132E+03

0.3165 2.690E+14 83.7 0.036 0.0024

0.4681 1.553E+14 97.8 0.043 0.0049

0.3085 9.643E+13 82.9 0.036 0.0023

0.2960 9.321E+13 81.6 0.035 0.0021

0.6044 2.668E+13 109.1 0.048 0.0071

Ra-226 α (100%) 9.8857E-01

0.1862 1.331E+09 69.3 0.029 0.0007

0.2623 1.829E+06 78.2 0.038 0.0016

0.6007 1.792E+05 108.7 0.048 0.0071

0.4146 1.097E+05 93.1 0.041 0.0040

0.4494 6.950E+04 96.2 0.042 0.0046

Pu-238 α (100%) 1.7124E+01

0.1527 5.886E+06 65.0 0.027 0.0005

0.1113 1.394E+05 58.8 0.023 0.0002

0.7664 1.394E+05 121.4 0.053 0.0094

0.1104 7.350E+04 58.6 0.023 0.0002

0.1144 5.398E+04 59.3 0.023 0.0002
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Table A.3: Primary SNM Photon Signatures (above 0.1 MeV) from 1x Significant
Quantity of Material

SNM Type
Isotope

Decay Energy Intensity Mean Free Path [m]
[Ci/gm] Mode(s) [MeV] [#/s] Air Al Pb SNM

HEU

(0.0989)

U-235 α (100%) 0.1857 8.9006E+07 69.3 0.029 0.0007 0.0003
U-235 α (100%) 0.1438 1.2765E+07 63.7 0.026 0.0004 0.0002
U-235 α (100%) 0.2053 8.7025E+06 71.6 0.032 0.0009 0.0004
U-235 α (100%) 0.1633 6.8452E+06 66.4 0.028 0.0005 0.0002
U-235 α (100%) 0.1092 2.3496E+06 58.4 0.023 0.0002 0.0003

HEU

(w/ 232U)

(0.1358)

U-235 α (100%) 0.1857 8.9006E+07 69.3 0.029 0.0007 0.0003
Tl-208 β- (100%) 2.6145 6.2716E+07 227.2 0.098 0.0202 0.0114
Tl-208 β- (100%) 0.5832 3.0883E+07 107.4 0.047 0.0068 0.0034
U-235 α (100%) 0.1438 1.2765E+07 63.7 0.026 0.0004 0.0002
U-235 α (100%) 0.2053 8.7025E+06 71.6 0.031 0.0009 0.0004

DU

(0.0170)

Pa-234m β- (99.848%) 1.0010 8.5771E+05 62.5 0.026 0.0003 0.0002
Pa-234m β- (99.848%) 0.7664 2.8180E+05 56.3 0.021 0.0001 0.0003
U-235 α (100%) 0.1857 1.9779E+05 69.3 0.029 0.0007 0.0003

Pa-234m β- (99.848%) 0.7428 9.2986E+04 56.3 0.021 0.0001 0.0002
Th-234 β- (100%) 0.1128 5.7121E+04 51.1 0.017 0.0003 0.0001

WGPu

(1625.8)

Pu-239 α (100%) 0.1293 6.3039E+07 61.6 0.025 0.0003 0.0001
Pu-239 α (100%) 0.4137 4.8612E+07 91.0 0.041 0.0040 0.0018
Pu-239 α (100%) 0.3751 4.7542E+07 89.4 0.039 0.0034 0.0015
Pu-240 α (100%) 0.1042 2.3809E+07 57.6 0.022 0.0002 0.0003
Pu-239 α (100%) 0.1113 2.0913E+07 58.8 0.023 0.0002 0.0003
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A.3 SNM Photon Signatures

(a) Depleted uranium. (b) HEU.

(c) HEU with trace U-232. (d) Weapons-grade Plutonium.

Figure A.1: Estimated Photon Spectra from 1SQ SNM, aged 5 years.
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A.4 Photon Flux Data

Figure A.2: Percent uncertainty in the MCNP-generated flux estimations as a function
of energy (Cs-137 photons in air).
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Appendix B | Principles of the Monte Carlo

Approximation of Integrals

This appendix outlines the well established foundations of the Monte Carlo approach to

approximating the integration of complex functions [28], [47]–[49]. Not intended as a

complete guide to Monte Carlo techniques, the focus here is on the processes, key criteria

for implementation, and the principles applied in the development of the BASBP.

B.1 Foundation of Monte Carlo Approximations

As with most statistical endeavors, one most often seeks to characterize a random process

by some quantifiable measure(s) or parameters of interest. As examples, the the expected

value or mean value (also known as the first moment) and variance are the two most common

measures cited to describe a statistical distribution or parameter of interest. The description

of Monte Carlo methods for approximating complex integrations begins with the case in

which the underlying probability distribution is a function of a single variable. As given by

Equation B.2, the deterministic methods for calculating the mean and variance of a function,

f(X), with a probability density, π(X) are:

I(f(X)) = EX [f(X)] =

∫
f(X)π(X)dX (B.1a)

RII = E
[
(f(X)− E[I(f(X))])2] (B.1b)

However, where analytical integration fails, the Monte Carlo approximation begins with

importance sampling by drawing N independent and identically distributed (i.i.d.) samples,

{Xi}Ni=1, from the target distribution, π(X). The empirical estimate of the target distribution
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is given by:

π(X) ≈ π̂N(X) =
1

N

N∑
i=1

δ(X −Xi) (B.2)

where the subscript N denotes the Monte Carlo approximation. Substituting the empirical

distribution, π̂N(X), for the target distribution, π(X), in Equation B.1a, the Monte Carlo

approximation, IN(f(X)) of the first moment is given by:

IN(f(X)) =
1

N

∫ N∑
i=1

(f(X)− δ(X −Xi)dX =
1

N

N∑
i=1

f(Xi)
a.s−−−→

N→∞
I(f(X)) (B.3)

where the diraq delta function serves as a filtering function for f(X). Similarly, for the

variance of the Monte Carlo estimate, RIN IN , we have:

RIN IN =
1

N

∫ N∑
i=1

[f(X)− IN(f(X))]2δ(X −Xi)dX

=
1

N

N∑
i=1

[f(Xi)− IN(f(X))]2
a.s−−−→

N→∞
RII

(B.4)

Key properties of the Monte Carlo estimate, IN(f(X)), include:

• IN(f(X)) is an unbiased estimator of I(f(X));

• IN(f(X)) converges (almost surely) to I(f(X)) by the strong Law of Large Numbers;

• The variance of IN(f(X)) is bounded (RIN IN <∞);

• Unlike deterministic methods, MC sampling focuses the estimate on the high proba-

bility regions of f(X).

B.2 Importance Sampling Methods

Monte Carlo estimation methods all rely on some form of sampling process by which random

samples are drawn from the target distribution. While the mechanics of the basic method

as described in Section B.1 is straight forward, difficulties can arise when attempting to
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sample the target distribution directly. The method of importance sampling overcomes the

problems associated with directly sampling by approximating the target distribution, f(x),

with a sampling distribution, q(x). Ideally, q(x) approximates f(x) as closely as possible. At

a minimum, the support of q(x) must be greater than or equal to the support of f(x). That

is, the samples drawn from q must at least cover the region corresponding to samples drawn

from f . To approximate the integral of f(x), we integrate the ratio of the target distribution

to the sampling distribution, multiplied by the sampling distribution, as given in Equation

B.5:

I =

∫
X

f(x)dx =

∫
X

f(x)

q(x)
q(x)dx (B.5)

Use of a sampling distribution also requires that q(x) possesses the following additional

properties [47]:

• q(x) ≥ 0 for all x ∈ R; and,

•
∫∞
−∞ q(x)dx = 1.

With these characteristics in mind, the following processes outline the use of importance

sampling to estimate statistical measures of a posterior distribution (as used in the BASBP).

The estimate of the posterior mean (using importance sampling) is given by:

f̂t := E[f(Xt)] =

∫
X

f(Xt)

[
π(Xt|Yt)
q(Xt|Yt)

]
q(Xt|Yt)dXt (B.6)

Applying Bayes rule to the posterior distribution, the weight function, wt, is defined as the

ratio between the posterior distribution and the sampling distribution:

wt =
π(Xt|Yt)
q(Xt|Yt)

=
π(Yt|Xt) · π(Xt)

π(Yt) · q(Xt|Yt)
(B.7)

To overcome the problem of using Equation B.7 (which requires direct knowledge of the

normalizing constant, π(Yt), a proportional weight function according to Equation B.8 can

be defined as:

wt ∝
π(Xt|Yt)
q(Xt|Yt)

=
π(Yt|Xt) · π(Xt)

q(Xt|Yt)
(B.8)

87



where the normalizing constant has been omitted. Returning to the estimate of the posterior

mean given in Equation B.6,

f̂t =
1

π(Yt)

∫
X

f(Xt)

[
π(Xt|Yt)
q(Xt|Yt)

]
q(Xt|Yt)dXt

=
1

π(Yt)

∫
X

wtf(Xt)q(Xt|Yt)dXt

(B.9)

Using the definition of wt from Equation B.8,

f̂t =
Eq[wtf(Xt)]

π(Yt)
=

Eq[wtf(Xt)]∫
wt · q(Xt|Yt)dX

=
Eq[wtf(Xt)]

Eq[wt]

(B.10)

Returning to the concept of Monte Carlo approximations of integrals, assume thatN particles

are drawn from the sampling distribution, q(Xt|Yt), as in Equation B.2:

q̂(Xt|Yt) ≈
1

N

N∑
i=1

δ(Xt −X i
t) (B.11)

Applying the normalized form of the weighting function, wt, to Equation B.10, the estimate

of the conditional mean of f(Xt) is given by:

f̂t =
Eq[wtf(Xt)]

Eq[wt]

≈
1
N

∫
X

∑N
i=1 wtf(Xt)δ(Xt −X i

t)dX
1
N

∫
X

∑N
i=1 wtδ(Xt −X i

t)dX

≈
N∑
i=1

witf(X i
t)

(B.12)

Similarly, the optimal estimate of the posterior distribution using importance sampling is

given by Equation B.13

π̂(Xt|Yt) ≈
N∑
i=1

witδ(Xt −X i
t). (B.13)

This concludes the general description of Monte Carlo methods of approximating complex

functions of integrals.
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Appendix C | Geo-spatial Data Covering

MARS Test Site

Figure C.1: Satellite imagery of the MARS test site.

(Data obtained from the U.S. Army’s Army Geospatial Center digital library [36].)
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Figure C.2: Depiction of the elevation at the MARS test site.

(Data obtained from the U.S. Army’s Army Geospatial Center digital library [36].)
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Figure C.3: Depiction of the Geo-Rover land use categories at the MARS test site.

(Data obtained from the U.S. Army’s Army Geospatial Center digital library [36].)

91



Vita

Samuel Willmon graduated from the United States Military Academy at West Point,

New York in 1994 with a Bachelor of Science degree in Physics and was commissioned a

Second Lieutenant of Infantry. Following graduation, Samuel served in a variety of Infantry

assignments in Germany and Korea before being accepted into the graduate program at the

Air Force Institute of Technology at Wright-Patterson Air Force Base, Ohio in 2001. After

graduating with a Master of Science degree in Nuclear Engineering in 2003, Samuel’s became

one of the U.S. Army’s small number of nuclear and counter-proliferation officers. Samuel

has had a variety of assignments, both in the United States as well as while deployed to Iraq

and Afghanistan, advising senior commanders and their staff on nuclear and proliferation-

related issues. Following graduation from the University of Tennessee, Samuel will continue

his active duty service.

92


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2014

	A Bayesian Approach to Broad-Area Nuclear and Radiological Search Operations
	Samuel James Willmon
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	1 Introduction
	1.1 Justification
	1.2 Literature Review
	1.2.1 Radiation Portal Monitoring Applications
	1.2.2 Operational Local Search Applications

	1.3 Research Objectives
	1.4 Dissertation Outline

	2 Scoping the Broad-Area Search Problem
	2.1 Introduction
	2.2 Characteristics of the Broad-Area Search Problem
	2.3 Identifying Photon Signatures of Interest
	2.3.1 Identifying Material of Concern
	2.3.2 Photon Signatures of MOC

	2.4 Identifying the Physical Limits of Photon Ranges
	2.5 Challenges Applying Conventional Detection Systems in a Broad-Area Search Role
	2.5.1 Limitations Imposed by Treatment of the Background
	2.5.2 Use of Ill-suited Localization Models
	2.5.3 Use of an Un-informed Operational Search Pattern

	2.6 Critical Assumptions

	3 Bayesian Signal Processing Framework
	3.1 Introduction to Bayesian Methods
	3.2 Development of the Bayesian Model
	3.3 Bayesian Estimation using Particle Filters
	3.4 Obtaining Parameter Estimates from Particle Filters

	4 Development of the Bayesian Processor
	4.1 Selection of Priors for the Source Particle Filter
	4.1.1 Priors for the Distribution of the Expected Number of Sources
	4.1.2 Priors for the Distribution of Sources in the Spatial Domain
	4.1.3 Priors for the Source Strength
	4.1.4 Priors for the Source Type Distribution

	4.2 Background Estimation
	4.2.1 Priors for the Local Background
	4.2.2 Development of the Bootstrap Particle Filter for the Background Estimates

	4.3 The Detection Decision
	4.4 The Posterior Distribution Update
	4.5 Geo-spatial Data Fusion
	4.6 Providing Sensor Guidance

	5 Simulated BASBP Performance
	5.1 Performance of the BASBP Detection Decision Function
	5.2 Initial Evaluation of the BASBP

	6 Conclusions and Future Work
	Bibliography
	Appendices
	Appendix A Radiation Source Data
	A.1 Common Sources of Radiation
	A.2 Photon Signatures Associated with Materials of Concern
	A.3 SNM Photon Signatures
	A.4 Photon Flux Data

	Appendix B Principles of the Monte Carlo Approximation of Integrals
	B.1 Foundation of Monte Carlo Approximations
	B.2 Importance Sampling Methods

	Appendix C Geo-spatial Data Covering MARS Test Site
	Vita

