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Abstract

To cope with the increasing quantity, capacity and energy consumption of transmission

and routing equipment in the Internet, energy efficiency of communication networks has

attracted more and more attention from researchers around the world. In this dissertation,

we proposed three methodologies to achieve energy efficiency on networking devices: the

NP-complete problems and heuristics, the compressed data structures, and the combination

of the first two methods.

We first consider the problem of achieving energy efficiency in Data Center Networks

(DCN). We generalize the energy efficient networking problem in data centers as optimal

flow assignment problems, which is NP-complete, and then propose a heuristic called

CARPO, a correlation-aware power optimization algorithm, that dynamically consolidate

traffic flows onto a small set of links and switches in a DCN and then shut down unused

network devices for power savings.

We then achieve energy efficiency on Internet routers by using the compressive data

structures. A novel data structure called the Probabilistic Bloom Filter (PBF), which

extends the classical bloom filter into the probabilistic direction, so that it can effectively

identify heavy hitters with a small memory foot print to reduce energy consumption of

network measurement.

To achieve energy efficiency on Wireless Sensor Networks (WSN), we developed

one data collection protocol called EDAL, which stands for Energy-efficient Delay-aware

Lifetime-balancing data collection. Based on the Open Vehicle Routing problem, EDAL

v



exploits the topology requirements of Compressive Sensing (CS), then implement CS to

save more energy on sensor nodes.
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Chapter 1

Introduction

Due to the increasing numbers of Internet users and higher bandwidth services, the Internet

traffic keeps on increasing in recent years. As a result of that, the quantity, capacity and

energy consumption of transmission and routing equipment is also grown to handle these

traffics. Raghavan and Ma (2011) estimated that the annually Internet power consumption

is between 170 and 370 GW. More specifically, Gupta and Singh (2003) break down the

Internet power consumption based on networking device type, and found that 26.4% in total

power goes to Internet hubs, 52.9% goes to LAN switches, 2.5% goes to WAN switches,

and 18.2% goes to routers. The huge amount of Internet energy leads to tremendous cost,

and also postpones the spreading of Internet deployment in the places, where electricity is

a rare resource.

More specifically, in recent years, high energy consumption has become one of the

most important concerns for large-scale data centers that are rapidly increasing the number

of hosted servers. For example, in a 2007 report to the US Congress, the Agency (2007)

estimated that the annual data center energy consumption in the US will grow to over

100 billion kWh at a cost of $7.4 billion by 2011. As a result, minimizing the energy

consumption of data centers has recently attracted a lot of research efforts. However,

current research focuses mostly on computer servers to lower their power consumption,

while only few studies have tried to address data center networks (DCNs), which can
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account for 10% to 20% of the total energy consumption of a data center Greenberg et al.

(2008); Heller et al. (2010). The percentage of network energy can even increase to 50%

in future data centers, where servers become more energy-proportional to their workloads

Abts et al. (2010).

On the other hand, in wireless sensor networks (WSNs), where limited energy,

computation and transmission resources are equipped in sensor nodes, energy efficiency

is critical for network lifetime. Prolonging WSN lifetime leads to the less network

maintenance and device replacement cost. Especially for those network deployed in the

wild field, where is hard for human to access, frequent node energy depletion would be an

unpleasant experience.

In the third aspect, the Internet routers, which consume 18.2% of total internet power,

is also a nonnegligible part.

Based on all above, developing power efficient algorithms on networking systems is

a very important topic. Although a lot of works has been done in this area, there is still

a space for us to work on. In that case, in my dissertation, we plan to achieve energy

efficiency on networking systems through the following three methodologies:

• NP-complete problems and heuristics: the networking energy efficiency problems

are usually produced as NP-complete problem, such as spanning tree problem,

routing problems, flow problems, and so on. The most prominent characteristic

of NP-complete problem is that there are no fast solutions, especially for large

scale networks. In that case, the approximation solutions (find an almost optimal

solution, instead of searching for an optimal solution), and heuristics (algorithms

works reasonably well) are widely used. In our research, we generalize the energy

efficiency networking problem in data centers as optimal flow assignment problems,

which is NP-complete, and propose a heuristic called CARPO, a correlation-aware

power optimization algorithm, that dynamically consolidates traffic flows onto a

small set of links and switches.
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• Compressed data structures : in compressed data structures, their operations are

roughly as fast or accurate as conventional data structures for the same problem,

but their data sizes are substantially smaller. In that case, implementing compressed

data structures on networking systems can achieve energy efficiency on two aspects:

on network traffics, compressed data structures can reduce the transmission traffic

volume, which decreases the packet transmission power; on the other hand, on

networking devices, compressed data structures enables smaller memory usages,

which saves energy on memory banks. In our research, we implement the

Probabilistic Bloom Filter (PBF) on network routers to detect heavy hitter flows with

a small memory size.

• Combination of the above two : by carefully design the routing problem in

networks, we can develop routes that are more suitable for the further implementation

of compressed data structures. As a result of that, two rounds of energy efficiency

can be achieved. In our research, we construct routes by solving the open vehicle

routing problem to connect as many nodes as possible to the same route, while

guarantee the packet delay requirements. The result routes provides a better platform

for implementing compressive sensing to reduce transmitted packet number, and also

achieve better energy efficiency.
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Chapter 2

Previous Works

There are a lot works have been done for saving power on data center networks, wireless

sensor networks and network routers with NP complete algorithms and compressed data

structures.

2.1 NP-complete and heuristics

2.1.1 Optimal Flow Assignment Problem

Putting network devices to sleep Gupta and Singh (2003); Gupta et al. (2004); Anantha-

narayanan and Katz (2008) is the most common method for saving power on Internet.

However, none of these studies put their proposed scheme into the data center application

context, which have special traffic characteristics. The oversubscription of a multi-tiered

DCN leads to short idle periods Abts et al. (2010) of the network, which results in a high

transitional power consumption on the network device with periodic sleeping.

In that case, optimal flow assignment, which consolidates traffic flows to a subset of

network nodes that consume the minimal power, is the important means for achieving

energy-proportional DCNs. The researchers of the ElasticTree project Heller et al. (2010)

proposed to consolidate traffic flows in a DCN onto a small set of links and switches

such that unused network equipment could be turned off for power saving. Although their
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consolidation approach was developed based on a real datacenter traces, they assume that

the traffic rate of each data flow is approximately a constant. This is not entirely true in the

current production datacenters. The second approach for energy-proportional DCN is to

adapt the link rate according to the workload of each traffic flow Nedevschi et al. (2008);

Abts et al. (2010); Gunaratne et al. (2008). One problem of solely using link rate adaptation

is that the power saving gain is relatively small since a large amount of power is consumed

by components such as fans and switch fabrics.

2.1.2 Open Vehicle Routing Problem

The vehicle routing problem (VRP) Eksioglu et al. (2009) is a well-known NP-hard

problem in operational research. VRP finds routes between a depot and customers with

given demands so that the transportation cost is minimized with the involvement of the

minimum number of vehicles, while satisfying capacity constraints. With additional

constraints, VRP can be further extended to solve different problems, where one of the

most important is the vehicle routing problem with time windows (VRPTW) Braysy

and Gendreau (2005). This problem happens frequently in the distribution of goods and

services, where an unlimited number of identical vehicles with predefined capacity serve

a set of customers with demands of different time intervals (time windows). VRPTW

tries to minimize the total transportation cost through the minimum number of vehicles,

without violating any timing constraints in delivering goods. If vehicles are not required

to return back to the depot, and if the time windows are replaced by deadlines, VRPTW

can be further extended to the open vehicle routing problem with time deadlines (OVRP-

TD) Ozyurt et al. (2006).

As an NP-hard problem, OVRP-TD has inspired many heuristics. Ozyurt et al. (2006)

proposed the nearest insertion method, where the farthest node is chosen first to be

connected with a route. Then, repeatedly, each selected node chooses the nearest neighbor

that has not been assigned a route so far, and connects itself to this neighbor. This procedure

repeats until all customers are connected by routes. Solomon (1987) developed the push
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forward insertion heuristic (PFIH), which repeatedly selects the customer with the lowest

additional insertion cost as the next node, until all customers are routed. Once initial routes

have been found, various algorithms Du and He (2012); Cheng and Wang (2009); Chiang

and Russell (1996); Ozyurt et al. (2006) are developed to generate near optimal solutions

based on simulated annealing Skiscim and Golden (1983), tabu search Tan et al. (2001), or

genetic programming Holland (1992).

2.2 Compressed data structures

2.2.1 Compressive Sensing

Compressive sensing (CS) is a technique through which data are compressed during their

transmission to a given destination, by exploiting the fact that most sensors may not always

have valid data to report when they sample the environment Caione et al. (2012); Wu

(2009); Cao et al. (2011); Luo et al. (2009); Zheng et al. (2012); Ling and Tian (2010);

Zhu and Wang (2010); Zheng et al. (2011). It works as follows. Consider the case that

there are N nodes generating N segments of data. Such data are K-sparse, meaning only

K of them are non-zero. We can compress these N pieces of data into M pieces through a

linear transformation to reduce the number of packets.

Because CS promises improved energy efficiency and lifetime balancing properties Cao

et al. (2011), data gathering protocols have been proposed to exploit CS for better

performance. Xiang et al. (2011) proposed a new data aggregation technique derived

from CS to minimize the total energy consumption through joint routing and compressed

aggregation. Mehrjoo et al. (2010) employed CS and particle swarm optimization

algorithms to build up data aggregation trees and decrease communication rate. These

two methods require all nodes to contribute sensing data during the data collection phase.

On the other hand, Wang et al. (2010) proposed random routing methods based on different

network topologies to collect data from a subset of nodes.
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2.2.2 Bloom Filter

The Bloom Filter (BF), which is proposed by Burton H. Bloom in 1970 Bloom (1970), is

a space efficient randomized data structure that answers the question about if an element is

already in a set. The space efficiency is achieved at the cost of false positives (an element

is claimed to be part of a set when it is not). The accuracy of a Bloom Filter depends on

the filter size m, the number of used hash functions k, and the number of inserted elements

n. There are two basic operations: insert, and query. In the insert operation, the k hash

functions will hash each element into k bits in m, and set the corresponding bits to 1s. In

the query operation, it will check if all k hashed bits for the target element are 1s, and report

positive if they are. The false negatives (an element is claimed to not be part of a set when

it is) never happens.

After the original BF was proposed, a large number of variants followed. We refer

to two surveys Broder and Mitzenmacher (2003); Tarkoma et al. (2012) for detailed

description. Among them, the most relevant to this work is the Counting Bloom Filter

(CBF), as proposed by Fan et al. (2000), which hasm counters along withm bits. This way,

CBF can support not only deletion operations, but also frequency queries. However, CBFs

are known for their significantly increased memory overhead. Another work, proposed

by Shen and Zhang (2008), developed the idea of Decaying Bloom Filter (DBF), which

extended the CBF to support the removal of stale elements when new elements are inserted.

In our work, we present extensions of PBF for counting and decaying as well.

In recent years, the BF has been widely used in the context of network measurement.

Estan and Varghese (2002a) applied CBFs to traffic measurement problems inside routers.

The approach was based on the simple idea that if the counter for a flow increases beyond

a threshold, it should be considered as a frequent flow. Zhao et al. (2006) used the BF to

find local icebergs (items whose frequency is larger than a given threshold) in a distributed

manner, and then estimated global icebergs in a central server. Finally, Liu et al. (2012)

proposed the Reversible MultiLayer Hashed Counting Bloom Filter(RML-HCBF), whose

hash functions select a set of consecutive bits from the original strings as hash values, so
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that it may find elephant flows (large and continuous flow) using the counter values and

thresholds.
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Chapter 3

CARPO: Correlation-Aware Power

Optimization in Data Center Networks

3.1 Abstract

Power optimization has become a key challenge in the design of large-scale enterprise

data centers. Existing research efforts focus mainly on computer servers to lower their

power consumption, while only few studies have tried to address data center networks

(DCNs), which can account for 20% of the total power consumption of a data center. In

this chapter, we propose CARPO, a correlation-aware power optimization algorithm that

dynamically consolidates traffic flows onto a small set of links and switches in a DCN and

then shuts down unused network devices for power savings. In sharp contrast to existing

work, CARPO is designed based on a key observation from the analysis of real DCN traces

that the bandwidth demands of different flows do not peak at exactly the same time. As a

result, if the correlations among flows are considered in consolidation, more power savings

can be achieved. CARPO also integrates traffic consolidation with link rate adaptation for

maximized power savings. Furthermore, CARPO generalizes previous work to present an

analytical framework that theoretically estimates how much power can be saved for a given

DCN topology and workloads. We implement CARPO on a hardware testbed composed of
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10 virtual switches configured with a production 48-port OpenFlow switch and 8 servers.

Our empirical results with Yahoo! DCN traces demonstrate that CARPO can save up to

60% of network power for a DCN, while having only negligible delay increases. CARPO

also outperforms two state-of-the-art baselines by having approximately 10% and 20%

more power savings, respectively. Our simulation results with a trace file of 10 data centers

composed of 5,415 servers also show the power efficiency of CARPO in large-scale data

centers.

3.2 Introduction

In recent years, high energy consumption has become one of the most important concerns

for large-scale data centers that are rapidly increasing the number of hosted servers. For

example, in a 2007 report to the US Congress Agency (2007), the Environmental Protection

Agency (EPA) estimated that the annual data center energy consumption in the US will

grow to over 100 billion kWh at a cost of $7.4 billion by 2011. As a result, minimizing the

energy consumption of data centers has recently attracted a lot of research efforts. However,

current research focuses mostly on computer servers to lower their power consumption,

while only few studies have tried to address data center networks (DCNs), which can

account for 10% to 20% of the total energy consumption of a data center Greenberg

et al. (2008); Heller et al. (2010). The percentage of network energy can even increase

to 50% in future data centers, where servers become more energy-proportional to their

workloads Abts et al. (2010). Similar to servers, the networks in data centers are commonly

provisioned for the worst-case workloads that rarely occur. As a result, the capacity of a

DCN is usually far from being fully utilized. Therefore, significant power∗ saving can be

achieved by making DCNs more energy-proportional to their workloads as well.

It is well known that the power consumption of a network is mostly independent of its

workload, mainly because devices, such as switch chips and fans, consume a significant

∗Similar to related work Heller et al. (2010); Mahadevan et al. (2009b), we use power and energy
interchangeably in this paper, because data center networks are typically required to be always-on. Also,
we do not address heat density or electricity costs in this paper.
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amount of power even at low loads Heller et al. (2010); Mahadevan et al. (2009b). There

are some existing energy-efficient designs for traditional local and wide area networks. For

example, some studies have proposed to put network devices, such as switches and routers,

into sleep during periods of very low traffic activities Gupta et al. (2004); Nedevschi et al.

(2008). While this approach works effectively for traditional networks, it is less applicable

to today’s typical multi-tiered DCNs, because their high degrees of oversubscription can

lead to much shorter idle periods Abts et al. (2010). As a result, putting network devices

into sleep in a DCN may cause packets to be buffered or rerouted around the deactivated

switches and links. Buffering packets in a DCN for the purpose of energy savings may

cause packets to be dropped or backpressure depending on the adopted flow control

mechanism Abts et al. (2010). Route changing may lead to considerable overheads for

coordination.

To achieve energy-proportional DCNs, two recent studies proposed energy-efficient

approaches that are more amenable to DCNs. First, in their work called ElasticTree, Heller

et al. Heller et al. (2010) studied real traces from a production data center and demonstrated

that traffic flows in a DCN can be consolidated onto a small set of links and switches, which

are sufficient to serve the bandwidth demands most of time. Second, Abts et al. Abts

et al. (2010) proposed a link rate adaptation approach that dynamically estimates the future

bandwidth needs of each link and then reconfigures its data rate to achieve power savings.

While traffic consolidation has been demonstrated to be a highly effective way to

achieve energy proportionality in DCNs by shutting down unused network devices, existing

work consolidates traffic flows in a greedy way and assumes that the bandwidth demand

of each data flow can be approximated as a constant during the consolidate process. This

is in contrast to the fact that the bandwidth demand of a traffic flow can vary over time.

The variations can be significant because the consolidation period normally cannot be very

short due to overhead consideration Verma et al. (2009). Therefore, existing work has

to use either estimated maximum or average demands to perform consolidation, which

can result in either unnecessarily high power consumption or undesired link capacity

violations, respectively. A key observation based on the analysis of real DCN traces is
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that the bandwidth demands of different flows usually do not peak at exactly the same

time. As a result, if the correlations among flows are considered in consolidation, more

power savings can be achieved. Another important observation is that the 90-percentile

bandwidth demands are usually half or less of the maximum demands. Therefore, if

we could avoid consolidating traffic flows that are positively correlated (i.e., peak at the

same time) based on 90-percentile demands instead of maximum demands, we may further

improve the energy efficiency of traffic consolidation. A recent study Verma et al. (2009)

has demonstrated the effectiveness of considering workload correlations in virtual machine

consolidation for servers. However, to our best knowledge, no existing work has applied

correlation analysis in traffic consolidation in DCNs.

In this paper, we propose CARPO, a correlation-aware power optimization algorithm

that consolidates traffic flows based on correlation analysis among flows in a DCN. Another

important feature of CARPO is to integrate traffic consolidation with link rate adaptation

for maximized power savings. The integration is formulated as an optimal flow assignment

problem, which is known to be NP-Complete. The optimal consolidation solution and data

rate of each link in the DCN are computed using a linear programming tool. To reduce the

computation complexity, we then propose a heuristic algorithm to find a consolidation and

rate configuration solution with acceptable overheads. Furthermore, CARPO generalizes

previous work to present an analytical framework that theoretically estimates how much

power can be saved by ElasticTree or CARPO for a given DCN topology and workloads.

As a result, a DCN administrator can use CAPRO to compare the power savings of different

topologies and choose one that can provide the desired trade-offs between power and

performance.

Specifically, the contributions of this paper are as follows:

• By analyzing the correlation of the traffic flows in real DCN traces from Yahoo!

production data centers, we observe that the correlation analysis can be used in traffic

consolidation to achieve more power savings.
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• We integrate the two energy-saving approaches amenable to DCNs, traffic consol-

idation and link rate adaptation, for maximized power savings. The integration is

formulated as an optimal flow assignment problem. We then propose a heuristic

algorithm to find a consolidation and rate configuration solution with acceptable

overheads.

• We generalize previous work and CARPO to present an analytical framework that

theoretically estimates how much power can be saved by ElasticTree or CARPO for

a given DCN topology and workloads.

• We implement CARPO on a hardware testbed composed of 10 virtual switches

configured with a production 48-port OpenFlow switch and 8 servers. Our empirical

results with Yahoo! DCP traces demonstrate that CARPO can save up to 60% of

network power for a DCN, while having only negligible delay increases. CARPO

also outperforms two state-of-the-art baselines by having approximately 10% and

20% more power savings, respectively.

• We also develop a simulation platform based on OPNET OPNET Technologies

(2010) to evaluate CARPO. Our results with another trace file of 10 data centers

composed of 5,415 servers also show the power efficiency of CARPO in large-scale

data centers.

The rest of this paper is organized as follows. Section 3.3 reviews the related work.

Section 3.4 formulates the integration of traffic consolidation and link rate adaptation.

Section 3.5 analyzes the correlations of traffic flows in the Yahoo! DCN traces and

presents the CARPO framework and the proposed correlation-aware algorithm. Section 3.6

introduces the implementation of our hardware testbed and the evaluation results. Section

3.7 presents the simulation results in large-scale data centers. Section 3.9 concludes the

paper.
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3.3 Related Work

There have been several studies on the power saving of network equipment. Gupta et

al. Gupta and Singh (2003) began to explore the possibility of putting network devices

into sleep, such as switch and router, when the traffic activities are low to save the

network device power. They also proposed an abstract sleep model in Gupta et al. (2004),

which is used to calculate the power savings by putting the network devices into sleep.

Ananthanarayanan et al. Ananthanarayanan and Katz (2008) uses a time prediction window

to predict the packet coming time such that the network device can be shut down when

there is no packets coming. However, none of these studies put their proposed scheme

into the data center application context, which have special traffic characteristics. The

oversubscription of a multi-tiered DCN leads to short idle periods Abts et al. (2010) of

the network, which results in a high transitional power consumption on the network device

with periodic sleeping. In contrast to all the previous projects, we study the network power

saving within the data center network, in which our switches do not wake up frequently

with the change of network workloads.

DCN research has recently received a lot of attention. For example, novel DCN

architectures have been proposed in Guo et al. (2008); Al-Fares et al. (2008); Guo et al.

(2009), but those projects do not address power consumption. Two recent studies have

proposed different approaches to achieve energy-proportional DCNs. The first approach

is traffic consolidation proposed in ElasticTree Heller et al. (2010). The researchers of

the ElasticTree project proposed to consolidate traffic flows in a DCN onto a small set of

links and switches such that unused network equipment can be turned off for power saving.

Although their consolidation approach is developed based on a real datacenter traces, they

assume that the traffic rate of each data flow is approximately a constant. This is not

entirely true in the current production datacenters. In contrast to the consolidation methods

in the ElasticTree, we analyze the statistical characteristics of datacenter traffics first based

on the real datacenter traces. The statistical analysis provides a guide to us for the traffic
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consolidation, leading to a better energy saving solution. The second approach for energy-

proportional DCN is to adapt the link rate according to the workload of each traffic flow

Nedevschi et al. (2008); Abts et al. (2010); Gunaratne et al. (2008). One problem of solely

using link rate adaptation is that the power saving gain is relatively small since a large

amount of power is consumed by components such as fans and switch fabrics. In this

paper, we propose to integrate link rate adaptation onto the traffic consolidation, such that

more power saving gain can be achieved.

3.4 Problem Formulation

In this section, we first analyze the power characteristics of network switches. Based on

the analysis, we formulate the integration of traffic consolidation and link rate adaptation

as a constrained optimization problem.

3.4.1 Characteristics of Network Switch

A general purpose network switch is commonly composed of chassis, switching fabric,

line-cards and ports. Switch chassis includes cooling equipment, such as fans, which

consumes fixed amount of power. The switching table is maintained by the switching fabric

while the line-card maintains buffers all the incoming and outgoing packets. Ports contain

the networking circuitry consumes. According to the measurements from Mahadevan et al.

(2009a), the idle power consumption of a 48-port edge LAN Switch ranges from 76W to

150W. Around 40 more Watts is to be added if the switch is working under maximum

capacity. These measurements clearly indicate that the each switch port only consumes

1-2 Watts, while the switch chassis, fabric and line-cards consume most of the power.

Therefore, compared with strategies that only fine tune the transmission rate of each port,

more significant power savings can be achieved if unnecessary switches can be turned off.

On the other hand, Benson et al. studied the data center link utilization characteristics

in Benson et al. (2009) for real production data center and found that the link utilization of
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Table 3.1: Power Consumption of PRONTO 3240 Switch with Different Port Speed.

PRONTO 3240 Port Speed (Mbps)
Switch None Active 10 100 1000

Power (W) 67.7 70.7 80.2 111.5

the aggregation layer links is only close to 8% during 95% of the time, while the average

link utilizations of the edge layer links and the core layer links are approximately 20%

and 40%, respectively. and the link utilization of links is approximately 40%. The low

link utilization provides us a large space to consolidate traffic flows from different links,

such that a smaller number of links and switches are required to provide services to all the

existing traffic workloads.

To verify the power consumption characteristics on the switch, we measure the power

consumption on a PRONTO 3240 OpenFlow enabled switch with 48 10/100/1000Mbps

Ethernet ports. We tune the port speed to different values (inactive/10/100/1000Mbps) at

different round of measurement and measure the total switch power consumption. The

measurement results are listed in Table 3.1. We see that the switch itself with no active

ports consumes more than half of the total power when all the ports are set to the maximum

speed. Power consumption only varies about 10-20 Watts between each level of port speed.

Note that the measured value is the power consumed when there is no workload on the

switch. According to Mahadevan et al. (2009a), 100% utilization only increases the power

consumption by about 5%.

3.4.2 Optimal Consolidation and Rate Configuration

We now formulate the flow consolidation problem as an optimal flow assignment problem.

The final goal is to assign traffic flows into the network such that the traffic constraints

are satisfied and optimal power is achieved. This problem is a NP-complete problem for

integer flows. The overall idea of our design is to select the minimum subset of network

devices, which can provide enough capacity for all traffic in the network.

We first define the following notations:
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• Pswitch: the power of one switch, including power consumed by both chassis and

port;

• Pchassis: the power consumed by switch chassis;

• Pportd: the dynamic power of each port, which is proportional to the link utilization;

• Pportf : the dynamic power of ports in full link capacity;

• tr: the data rate on the link that connects to the port, where trin represents the data

rate of traffic sent to the port, and trout denotes the data rate of traffic send from the

port; and

• lc: the maximum link capacity.

Assume we have n switches, each switch has p ports, and the consolidation period is T , the

problem can be formulated as follows:

min
T∑
t=0

N∑
i=0

Pswitchit (3.1)

Pswitch = Pchassis + Pportd (3.2)

where

Pportd = Pportf ×
∑

(trin + trout)

lc
(3.3)

under the following constraints:

• For each time point, the link capacity is not exceeded

tri ≤ lci. (3.4)

• For each switch, the number of packets that are received equals to the number of

packets that are sent out
p∑
i=0

trini =

p∑
i=0

trouti . (3.5)
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• When a port or a switch is off, it consumes zero power.

• When all ports of a switch are off, the switch is off.

• All traffic flows are assigned to paths in the network.

To mathematically implement the formal model, we use MathProg mathematical

programming language and solve it using GLPK (GNU Linear Programming Kit) math-

ematical programming software. The formal model is translated into a mixed-integer

programming (MIP) model for mathematical programming purpose. The decision of usage

for each link is defined as a binary variable. If a link is used, the corresponding binary

variable is 1, otherwise it is 0. Status of each switch is also represented by a binary variable,

where 1 indicates the switch is turned on while 0 means it is turned off. Constraints are

described in details in previous formal model description. Optimization goal is to minimize

total power consumption over the network of switches connected by links.

While the optimal solution can give us a theoretical upper bound for power savings, it

cannot be used in practice because 1) it assumes perfect knowledge of future bandwidth

demands of the traffic flows by reading the information from the DCN traces, and 2) its

computation complexity is too high.

3.5 Design of CARPO

Due to the lack of perfect knowledge about the bandwidth demands of the traffic flows in

a DCN in practice, we now propose CARPO to estimate the correlations among different

flows in traffic consolidation. In this paper, we assume a centralized power manager, which

allocates path for each traffic flow, adapts the link rate for each port, and turns off unused

switches and ports. In very large DCNs, CARPO can be extended to work in a distributed

way, which is our future work.
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3.5.1 Traffic Correlation Analysis

To justify the design methodology of CARPO in later sections, we now present our analysis

on traffic traces from real production data centers of Yahoo! Yahoo! (2008). The traffic

traces in our analysis contain network flows between end users and Yahoo servers. The

end users are located outside the DCN, while the Yahoo servers are located in one of the

Yahoo data centers. There are 5 Yahoo data centers located in Dallas (DAX), Washington

DC (DCP), Palo Alto (PAO), Hong Kong (HK) and United Kingdom (UKL). Each entry

in the trace files contains the timestamp, source IP address, destination IP address, source

port, destination port, protocol, number of packets and number of bytes transferred from

the source to destination. The trace data is collected by three boarder routers and contains

both the request (inbound) traffic flows and response (outbound) traffic flows.

In this paper, we focus the analysis on the response (outbound) traffic flows sent from

data centers. The outbound traffic flows can be identified from the port number used

at the source IP as presented in Yahoo! (2008). We assume that response packet sent

by a tier-1 server is fetched from a corresponding database server in the DCN. In that

case, the response traffic flows can be converted to traffic flows between end server and

database server within DCN. With virtualization technology, each physical server usually

accommodates several virtual machines. In the traffic trace in our analysis, there are more

than 2 million server IPs in each data center. To make the size of data center reasonable,

we group the traffic traces of IPs with same prefix together to represent the real traffic on

a physical server. The prefix length we use to group IP addresses is 8 bits, which leads

to around 100 servers in each data center. We further manually screen out the aggregated

workload that is atypical for the data center network.

Figure 3.1 shows a traffic flows example of 4 grouped flow workload from the final

70 grouped IPs in the DCP data center within one day. We see that although traffic flows

are constantly changing, they do not always peak together. Some of the workload show

strong correlation such as workload with IP prefix 58 and 108, while others show negative
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Figure 3.1: Average workload for 4 grouped IPs from Yahoo! data centers within 1 day.
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Figure 3.2: CDF distributions of pair-wise correlation coefficient in 5 Yahoo! data centers.

correlation, such as workload with IP prefix 113 and 108, where their traffic flows show

opposite increasing and decreasing trend.

To quantify the correlation relationship of each flow pair, we calculate the Pearson

Correlation Coefficient between each flow by

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

(3.6)

where x and y are two flows. We sample each traffic flow every one second to calculate the

correlation coefficient.
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Figure 3.4: CDF of the 90-percentile of the normalized data rate with 70 flows.

The CDF distribution of all the pair-wise correlation coefficients in Yahoo! data center

is shown in Figure 3.2. We see that more than 80% of the traffic flows are loosely correlated

or even negatively correlated together with a correlation value of less than 0.3. This

distribution leads to the follows:

Observation 1: traffic flows within a data center are usually loosely correlated

together, and so usually do not peak at the same time.

Next we study the statistical properties of traffic flows in data centers. Figure 3.3 shows

CDF distribution of the normalized data rate of each traffic flow from the 4 flows in Figure

3.1. The data rate is normalized to each flow’s own maximum data rate. From Figure 3.3
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we see that two out of the four flows has a 90-percentile normalized data rate less than 50%

of their own maximum data rates, while 90-percentile value for the other two flows are

also less than 80% of their own maximum. We also plot out the CDF of all the 70 flows’

90-percentile normalized data rates in Figure 3.4. We see that more than half of flows have

a 90-percentile data rate less than half of their own peak value. Based on these statistical

data, we conclude that

Observation 2: the 90-percentile of the link utilization for most flows are less than

50% of their own maximum, which suggests that if traffic flow consolidation is based on

the off-peak values for link utilization, more power savings can be achieved.

Based on the previous two observations, we design CARPO, a correlation aware

power optimization scheme for the DCN. In general, CARPO periodically calculates the

correlations between flows and consolidates traffic flows based on the 90-percentile of each

traffic flow’s peak demand, such that only a small set of network is needed to hold all the

traffic flows while the rest of the network can be shut down for saving power. A more detail

design methodology is presented in later sections.

We further explore the stability of the correlation values and the statistical property of

traffic flows to demonstrate that the correlation analysis based on history data can be applied

to traffic consolidation in the next period. To study the stability of correlation values, we

plot the standard deviation of correlation coefficients of 8 flow pairs in Figure 3.5 without

loss of generosity. We see that the standard deviations of each flow pair are all less than

0.15, which indicates the correlation values are stable over time. Figure 3.6 shows the 90-

percentile link utilization value of one example flow during the first 4 hours of the trace.

We see that the 90-percentile value shows high variation, which is not ideal for predict the

future link utilization. However, we calculate the moving average of 90-percentile value

with a window of 60 minutes. We see that the moving average 90-percentile value can

track the real 90-percentile value well and smooth the variation. Thus, for the workload

with high varying 90-percentile workload, we use the moving average 90-percentile value

to aggregate traffic flows. Note that both the correlation and the 90-percentile value are

re-calculated every 10 minutes with one sample point per second.
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Figure 3.5: Standard deviation of correlation coefficients between 8 grouped IP flows. Half
of the values are removed because of the symmetry.

3.5.2 CARPO Framework

The key novelty of CARPO is the adoption of correlation analysis for improved traffic

consolidation. In general, as shown in Figure 3.7, CARPO takes three steps, Correlation

Analysis, Traffic Consolidation and Link Rate Adaptation to perform the power optimiza-

tion for DCN. In the first step, CARPO takes the historic network data as input and analyzes

the correlation relationship between different traffic flows using the method introduced

in Section 3.5.1. In the second step, CARPO consolidates the traffics under the link

capacity constraint based on the correlation coefficients from the previous analysis. After

the consolidation, unused switches and ports are turned off for power saving. In the last

step, CARPO adapts the data rate of each active link to the demand of the consolidated

traffic flows on that link, such that more power savings can be reached for the DCN.

Figure 3.8 presents a simple example to illustrate how CARPO works. In this example,

there are four traffic flows: f1 : s1 → s5, f2 : s2 → s6, f3 : s3 → s7 and f4 : s4 →
s8. The correlation value between each flow pair is listed in Table 3.2. The normalized
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Fig. 7: The proposed CARPO framework.

savings can be achieved.

Based on the previous two observations, we design CARPO,

a correlation aware power optimization scheme for the DCN.

In general, CARPO periodically calculates the correlations

between flows and consolidates traffic flows based on the 90-

percentile of each traffic flow’s peak demand, such that only a

small set of network is needed to hold all the traffic flows while

the rest of the network can be shut down for saving power. A

more detail design methodology is presented in later sections.

We further explore the stability of the correlation values and

the statistical property of traffic flows to demonstrate that the

correlation analysis based on history data can be applied to

traffic consolidation in the next period. To study the stability

of correlation values, we plot the the standard deviation of

correlation coefficients of 8 flow pairs in Figure 5 without

loss of generosity. We see that the standard deviation of each

flow pair are all less than 0.15, which indicates the correlation

values are stable over time. Figure 6 shows the 90-percentile

link utilization value of one example flow during the first 4

hours of the trace. We see that the 90-percentile value shows

high variation, which is not ideal for predict the future link

utilization. However, we calculate the moving average of 90-

percentile value with a window of 60 minutes. We see that

the moving average 90-percentile value can track the real 90-

percentile value well and smooth the variation. Thus, for the

workload with high varying 90-percentile workload, we use

the moving average 90-percentile value to aggregate traffic

TABLE II: Correlation values for flow pairs in Figure 8.

Flow Pairs f1,f2 f1,f3 f1,f4 f2,f3 f2,f4 f3,f4
Correlation -1 -1 1 -1 -1 -1

flows. Note that both the correlation and the 90-percentile

value are re-calculated every 10 minutes with one sample point

per second.

B. CARPO Framework

The key novelty of CARPO is the adoption of correlation

analysis for improved traffic consolidation. In general, as

shown in Figure 7, CARPO takes three steps, Correlation

Analysis, Traffic Consolidation and Link Rate Adaptation

to perform the power optimization for DCN. In the first

step, CARPO takes the historic network data as input and

analyzes the correlation relationship between different traffic

flows using the method introduced in Section IV-A. In the

second step, CARPO consolidates the traffics under the link

capacity constraint based on the correlation coefficients from

the previous analysis. After the consolidation, unused switches

and ports are turned off for power saving. In the last step,

CARPO adapts the data rate of each active link to the demand

of the consolidated traffic flows on that link, such that more

power savings can be reached for the DCN.

Figure 8 presents a simple example to illustrate how

CARPO works. In this example, there are four traffic flows:

f1 : s1 → s5, f2 : s2 → s6, f3 : s3 → s7 and f4 : s4 → s8.
The correlation value between each flow pair is listed in Table

II. The normalized 90-percentile capacity demand of each flow

Figure 3.7: The proposed CARPO framework.

90-percentile capacity demand of each flow is labeled on the flow’s source machine in

Figure 3.8(a). Figure 3.8(a) shows an initial flow placement setting of the network. Figure

3.8(b) is the flow placement result after we apply CARPO on the initial flow setting. More

specifically, flow f1 and f2 are aggregated together since they have low correlation (-1) and

their aggregated 90-percentile data rate does not violate the link capacity. Flow f3 cannot

be aggregated with f1 and f2 because the aggregated 90-percentile data rate violates the

capacity constraint of link between switch a1 and c1. Although the total bandwidth demand

of flow f1, f2, and f4 does not violate the capacity constraint, f4 should not be aggregated

to f1 and f2 neither because it has a high correlation (+1) with f1, which means f1 and f4

is going to peak together, resulting in high probability of link capacity violation. Finally,
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Fig. 8: Flow placement example by CARPO. Sub-figure (a)

shows the initial flow assignment. Sub-figure (b) shows the ag-

gregated flow assignment after applying CARPO. si is server
ID. fi is flow ID. ei, ai, ci are IDs of edge, aggregation
and core switches, respectively. Different line color-pattern

combinations are different flow assignments. The 90-percentile

utilization values are labeled for the four flows.

is labeled on the flow’s source machine in Figure 8(a). Figure

8(a) shows an initial flow placement setting of the network.

Figure 8(b) is the flow placement result after we apply CARPO

on the initial flow setting. More specifically, flow f1 and f2
are aggregated together since they have low correlation (-1)

and their aggregated 90-percentile data rate does not violate

the link capacity. Flow f3 cannot be aggregated with f1 and

f2 because the aggregated 90-percentile data rate violates

the capacity constraint of link between switch a1 and c1.
Although the total bandwidth demand of flow f1, f2, and
f4 does not violate the capacity constraint, f4 should not

be aggregated to f1 and f2 neither because it has a high

correlation (+1) with f1, which means f1 and f4 is going

to peak together, resulting in high probability of link capacity

violation. Finally, since f3 and f4 have negative correlation

and their aggregated 90-percentile data rate does not violate

the capacity constraint, they should be aggregated together.

After replacing and aggregating all the flows, switch a1 and

a4 can be turned off to save power, since they do not serve

any workload.

C. Correlation-aware Consolidation Algorithm

The most important component of CARPO is a correlation-

aware heuristic algorithm that dynamically consolidates traffic

flows. We assume that the link in our DCN is duplex with same

capacity for upstream and downstream flow. The algorithm

we designed is based on greedy-bin packing algorithm, where

we greedily assign as most traffic flows as possible to a

single path. The pseudo code of our algorithm is presented

in Algorithm 1. The algorithm takes the flow list F , the
link list l, link capacity c, path link list PATHL for each

available path, and the correlation threshold Cor th as input.

Note that PATHL is a path list, where each entry is the link

of each path. The path list is ordered in the order from left

to right based on the network topology. In Algorithm 1, Line

1-2 initializes the correlation value (Cor) between all flow

pairs, and the data rate (rate) of each flow. Line 3-16 assigns
each flow to a path. More specifically, Line 6 calculates if the

adding the current flow fi violates the available link capacity

of the chosen path j. Line 7 checks if the correlation between
flow fi and the flows existing on the chosen path j meets the
correlation requirements. If both of these two requirements

are satisfied, the flow is assigned to the chosen path and the

available link capacity of each link along the path is updated

(Line 8-10). Note that the available link capacity is updated by

the true 90-percentile link utilization value of the aggregated

traffic after the new flow is assigned in each step. Program

terminates when all the flows are assigned.

The complexity of the algorithm is determined by the num-

ber of switches in the network and the number of flows that the

network need to serve. Assume the network has V switches

and serves n traffic flows, the worst case number of paths that a

flow can take is at the order of O(V 2) when the core switches
and the aggregation switches are fully connected. Therefore,

the complexity of the algorithm is O(nV 2);

Algorithm 1 Correlation-aware Traffic Consolidation

Input: Flow list F = ∪{fi} with n flows, correlation thresh-

old Corth, link list l, link capacity c and link list PATHL
for each available path.

Output: Final path of each flow PATHF
1: Cor[n][n] = CORRELATION(F );
2: rate[n] = Ninety Percentile(F );
3: while F 6= NULL do
4: for j = 1 to m do

5: for ∀fi that can take path j do
6: if c[k]− rate[i] ≥ 0 ∀l[k] ⊂ PATHL[j] then
7: if Cor[i][i′] ≤ Corth ∀fi′ ⊂ PATHF [j] then
8: PATHF [j] = PATHF [j] ∪ {fi};
9: F = F − {fi};
10: c[k] = UPDATE(PATHL[j], rate[i])

(∀l[k] ⊂ PATHL[j]);
11: end if

12: end if

13: end for

14: end for

15: end while

16: return PATHF

D. Link Rate Adaptation

We have seen that correlation-aware traffic consolidation

provides us an efficient way to save DCN power. The al-

gorithm we designed is essentially based on the pin-packing

algorithm. As a result, links may not be fully utilized after

flows are consolidated. We further propose to adapt the data
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Fig. 9: Hardware testbed with 10 virtual switches (VSs)

configured from a production 48-port OpenFlow switch and

8 servers. The VSs are numbered in the same as in Figure 5.

Figure 3.8: Flow placement example by CARPO. Sub-figure (a) shows the initial flow
assignment. Sub-figure (b) shows the aggregated flow assignment after applying CARPO.
si is server ID. fi is flow ID. ei, ai, ci are IDs of edge, aggregation and core switches,
respectively. Different line color-pattern combinations are different flow assignments. The
90-percentile utilization values are labeled for the four flows.

Table 3.2: Correlation values for flow pairs in Figure 3.8.

Flow Pairs f1,f2 f1,f3 f1,f4 f2,f3 f2,f4 f3,f4
Correlation -1 -1 1 -1 -1 -1

since f3 and f4 have negative correlation and their aggregated 90-percentile data rate does

not violate the capacity constraint, they should be aggregated together. After replacing and

aggregating all the flows, switch a1 and a4 can be turned off to save power, since they do

not serve any workload.

3.5.3 Correlation-aware Consolidation Algorithm

The most important component of CARPO is a correlation-aware heuristic algorithm that

dynamically consolidates traffic flows. We assume that the link in our DCN is duplex with

same capacity for upstream and downstream flow. The algorithm we designed is based on

greedy-bin packing algorithm, where we greedily assign as most traffic flows as possible to

a single path. The pseudo code of our algorithm is presented in Algorithm 1. The algorithm
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Algorithm 1 Correlation-aware Traffic Consolidation

Require: Flow list F = ∪{fi} with n flows, correlation threshold Corth, link list l, link
capacity c and link list PATHL for each available path.

Ensure: Final path of each flow PATHF
1: Cor[n][n] = CORRELATION(F );
2: rate[n] = Ninety Percentile(F );
3: while F 6= NULL do
4: for j = 1 to m do
5: for ∀fi that can take path j do
6: if c[k]− rate[i] ≥ 0 ∀l[k] ⊂ PATHL[j] then
7: if Cor[i][i′] ≤ Corth ∀fi′ ⊂ PATHF [j] then
8: PATHF [j] = PATHF [j] ∪ {fi};
9: F = F − {fi};

10: c[k] = UPDATE(PATHL[j], rate[i]) (∀l[k] ⊂ PATHL[j]);
11: end if
12: end if
13: end for
14: end for
15: end whilereturn PATHF

takes the flow list F , the link list l, link capacity c, path link list PATHL for each available

path, and the correlation threshold Corth as input. Note that PATHL is a path list, where

each entry is the link of each path. The path list is ordered in the order from left to right

based on the network topology. In Algorithm 1, Line 1-2 initializes the correlation value

(Cor) between all flow pairs, and the data rate (rate) of each flow. Line 3-15 assigns each

flow to a path. More specifically, Line 6 calculates if the adding the current flow fi violates

the available link capacity of the chosen path j. Line 7 checks if the correlation between

flow fi and the flows existing on the chosen path j meets the correlation requirements. If

both of these two requirements are satisfied, the flow is assigned to the chosen path and

the available link capacity of each link along the path is updated (Line 8-10). Note that

the available link capacity is updated by the true 90-percentile link utilization value of the

aggregated traffic after the new flow is assigned in each step. Program terminates when all

the flows are assigned.

The complexity of the algorithm is determined by the number of switches in the network

and the number of flows that the network need to serve. Assume the network has V switches
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and serves n traffic flows, the worst case number of paths that a flow can take is at the

order of O(V 2) when the core switches and the aggregation switches are fully connected.

Therefore, the complexity of the algorithm is O(nV 2);

3.5.4 Link Rate Adaptation

We have seen that correlation-aware traffic consolidation provides us an efficient way to

save DCN power. The algorithm we designed is essentially based on the bin-packing

algorithm. As a result, links may not be fully utilized after flows are consolidated. We

further propose to adapt the data rate of each link to the consolidated traffic data rate, such

that the waste of link power consumption can be reduced, leading to more overall power

savings. The switches commonly used by DCNs is manufactured with a large range of

tunable link rate, as studied in Abts et al. (2010). After each step of the consolidation, the

link rate is adapted according to the combined flow data rate for each link. In our project,

we assume the switch is a commodity switch with link rates available at 10Mbps, 100Mbps

and 1000Mbps, as shown in Table 3.1 in Section 3.4.1.

3.6 Hardware Evaluation

In this section, we first introduce the hardware testbed used for our hardware evaluation.

We then present the hardware evaluation results based on the Yahoo! trace data.

3.6.1 Hardware Testbed and Baselines
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Fig. 8: Flow placement example by CARPO. Sub-figure (a)

shows the initial flow assignment. Sub-figure (b) shows the ag-

gregated flow assignment after applying CARPO. si is server
ID. fi is flow ID. ei, ai, ci are IDs of edge, aggregation
and core switches, respectively. Different line color-pattern

combinations are different flow assignments. The 90-percentile

utilization values are labeled for the four flows.

is labeled on the flow’s source machine in Figure 8(a). Figure

8(a) shows an initial flow placement setting of the network.

Figure 8(b) is the flow placement result after we apply CARPO

on the initial flow setting. More specifically, flow f1 and f2
are aggregated together since they have low correlation (-1)

and their aggregated 90-percentile data rate does not violate

the link capacity. Flow f3 cannot be aggregated with f1 and

f2 because the aggregated 90-percentile data rate violates

the capacity constraint of link between switch a1 and c1.
Although the total bandwidth demand of flow f1, f2, and
f4 does not violate the capacity constraint, f4 should not

be aggregated to f1 and f2 neither because it has a high

correlation (+1) with f1, which means f1 and f4 is going

to peak together, resulting in high probability of link capacity

violation. Finally, since f3 and f4 have negative correlation

and their aggregated 90-percentile data rate does not violate

the capacity constraint, they should be aggregated together.

After replacing and aggregating all the flows, switch a1 and

a4 can be turned off to save power, since they do not serve

any workload.

C. Correlation-aware Consolidation Algorithm

The most important component of CARPO is a correlation-

aware heuristic algorithm that dynamically consolidates traffic

flows. We assume that the link in our DCN is duplex with same

capacity for upstream and downstream flow. The algorithm

we designed is based on greedy-bin packing algorithm, where

we greedily assign as most traffic flows as possible to a

single path. The pseudo code of our algorithm is presented

in Algorithm 1. The algorithm takes the flow list F , the
link list l, link capacity c, path link list PATHL for each

available path, and the correlation threshold Cor th as input.

Note that PATHL is a path list, where each entry is the link

of each path. The path list is ordered in the order from left

to right based on the network topology. In Algorithm 1, Line

1-2 initializes the correlation value (Cor) between all flow

pairs, and the data rate (rate) of each flow. Line 3-16 assigns
each flow to a path. More specifically, Line 6 calculates if the

adding the current flow fi violates the available link capacity

of the chosen path j. Line 7 checks if the correlation between
flow fi and the flows existing on the chosen path j meets the
correlation requirements. If both of these two requirements

are satisfied, the flow is assigned to the chosen path and the

available link capacity of each link along the path is updated

(Line 8-10). Note that the available link capacity is updated by

the true 90-percentile link utilization value of the aggregated

traffic after the new flow is assigned in each step. Program

terminates when all the flows are assigned.

The complexity of the algorithm is determined by the num-

ber of switches in the network and the number of flows that the

network need to serve. Assume the network has V switches

and serves n traffic flows, the worst case number of paths that a

flow can take is at the order of O(V 2) when the core switches
and the aggregation switches are fully connected. Therefore,

the complexity of the algorithm is O(nV 2);

Algorithm 1 Correlation-aware Traffic Consolidation

Input: Flow list F = ∪{fi} with n flows, correlation thresh-

old Corth, link list l, link capacity c and link list PATHL
for each available path.

Output: Final path of each flow PATHF
1: Cor[n][n] = CORRELATION(F );
2: rate[n] = Ninety Percentile(F );
3: while F 6= NULL do
4: for j = 1 to m do

5: for ∀fi that can take path j do
6: if c[k]− rate[i] ≥ 0 ∀l[k] ⊂ PATHL[j] then
7: if Cor[i][i′] ≤ Corth ∀fi′ ⊂ PATHF [j] then
8: PATHF [j] = PATHF [j] ∪ {fi};
9: F = F − {fi};
10: c[k] = UPDATE(PATHL[j], rate[i])

(∀l[k] ⊂ PATHL[j]);
11: end if

12: end if

13: end for

14: end for

15: end while

16: return PATHF

D. Link Rate Adaptation

We have seen that correlation-aware traffic consolidation

provides us an efficient way to save DCN power. The al-

gorithm we designed is essentially based on the pin-packing

algorithm. As a result, links may not be fully utilized after

flows are consolidated. We further propose to adapt the data
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Fig. 9: Hardware testbed with 10 virtual switches (VSs)

configured from a production 48-port OpenFlow switch and

8 servers. The VSs are numbered in the same as in Figure 5.

Figure 3.9: Hardware testbed with 10 virtual switches (VSs) configured from a production
48-port OpenFlow switch and 8 servers. The VSs are numbered in the same as in Figure 5.
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We build our hardware testbed with 8 servers serving 4 flows, a Pronto 3240 OpenFlow

enabled switch, and a desktop as the flow manager. The topology of the network in the

testbed is the same as shown in Figure 3.8. Each server is equipped with two AMD

Athlon(tm) 64 X2 Dual Core processors with 4G. To form the 10 switches in our testbed,

we divide the Pronto switch into 10 virtual switches, each with 4 ports as shown in Figure

3.9. A desktop is connected to the Pronto switch via a RJ45 to DB9 console cable, serving

as a centralized manager. The centralized manager calculates the new flow assignments

every 10 minutes and sends the new paths configuration to the switch. The switch then

updates the internal flow table and directs each flow accordingly.

To evaluate the performance of our CARPO strategy, we compare our results with the

results using the following baseline schemes:

• First baseline in our evaluation is ElasticTree Heller et al. (2010). ElasticTree

assumes that all traffic flows are constant bit rate traffic in one flow assignment

period. Similar to our algorithm, it consolidates the traffic flow with first-fit greedy

bin-packing algorithm from the leftmost path in the network.

• GoogleP Abts et al. (2010) is the second baseline. GoogleP predicts the future

bandwidth demand of each link, and then tunes each port rate to the lowest level

that can meet the demand.

Besides the above two baselines, we also present the evaluation results of CARPO-

C, the flow consolidation approach only considering the correlation without the link

rate adaptation. All the evaluation results from different power saving schemes are

compared with the performance of the Optimal solution we derived from the mixed integer

programing approach presented in Section 3.4.

3.6.2 Experiment Results

The 4 traffic flows in the experiment are the ones in Figure 3.1. Each flow is served by one

pair of servers, leading to 8 servers in total. Sources of the four flows are located at the left

half of the topology as shown Figure 3.8, while the other half are served as destinations.
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The performance metrics we evaluate in the section are the power consumption on the

switch and the power saving that each power management scheme can achieve. According

to the CARPO framework, the flow configuration in the DCN needs to be updated every

10 minutes and the unused switches and ports should be shut down. However, since our

testbed is established on a single physical switch, divided into 10 virtual switches, virtual

switches cannot be shut down separately. Therefore, to calculate the power consumption of

the testbed, we measure the power consumption of the physical switch with no ports turned

on, which is 66.7 W, leading to 6.67W for each virtual switch. We also measure the power

consumption of a single active port at different speeds, which are 1W at 1 Gbps, 0.3 W at

100 Mbps and 0.15 W at 10 Mbps. By having these measurements, we can calculate the

power consumption of CARPO for any network configuration by

P = 6.67 ·Ns +
∑
i

(Pi ·Ni) (3.7)

where Ns is number of active virtual switches, Pi is the single active port power at

speed i and Ni is the corresponding number of active port at that speed. To calculate the

power consumption of CARPO-C and ElasticTree, we only need to change the second item

in Equation 3.7 to 1 ·Np, where Np number of active ports, assuming all ports can provide

the maximum 1Gbps throughput. For GoogleP, the power consumption is 66.7 + 1 · Np

since no virtual switch can be turned off at any time.

The power consumption of the entire workload is shown in Figure 3.10. We see

that GoogleP consumes the most power since it only adapts the link rate to running

workload and saves power from the port. The majority of the power is consumed by

the switches, where GoogleP is not capable of saving power. ElasticTree has a higher

power consumption, compared with CARPO and CARPO-C, since it only uses a sample

from the last period as a constant bit rate for the next consolidation period. Different from

ElasticTree, CARPO-C considers the correlation and 90-percentile value of the workload

when consolidating traffic, leading to a lower power consumption. CARPO has the lowest
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Figure 3.10: Power consumption of the testbed running the workload in Figure 3.1.

power consumption and the closest performance to the Optimal power consumption with

the flow assignment solution from the mixed integer programming algorithm.
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Figure 3.11: Power savings on the testbed running the workload in Figure 3.1.

Figure 3.11 shows the average power savings over time for different power management

solution, compared with the power consumption with no power management for the

network. We see that on average CARPO-C has a higher power saving than ElasticTree and

GoogleP by 8.5% and 25.9%, respectively. Integrated with link rate adaptation, CARPO

performs better than CARPO-C with only flow consolidation based on correlation. CARPO

outperforms the two baslines by 12.4% and 30%, respectively.
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3.7 Simulation Evaluation

In this section, we present the evaluation result from simulations with different network

setup, including a network with the 70 grouped IP flows from Yahoo! DCP data center

and a large-scale network with workload converted from a server utilization trace of

10 data centers with 5,415 servers. All the simulation are conducted with the OPNET

OPNET Technologies (2010) network simulator.

3.7.1 Experimental Setup

…

Figure 3.12: Example (pod-10 fat tree) of network topology for simulations.

In all of our experiment, we the fat tree structure to construct the network. A pod-k fat tree

structure is composed of k core switches, k2

2
aggregation switches and k2

2
edge switches.

Figure 3.12 shows an example of a pod-10 fat tree structure, which can hold 250 end hosts

at most. If each flow needs to use a pair of dedicated servers, pod-10 structure can hold

125 traffic flows.

For simulations running Yahoo! DCP data center workloads with 70 grouped IP flows,

we use the pod-10 fat tree structure to construct the network. For the large-scale simulation

with 5,415 servers, we use pod-28 fat tree network structure. The baselines used in

simulations are the same as those in hardware evaluations.
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3.7.2 Simulation Results for Yahoo! DCP Data Center Workload
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Figure 3.13: Average power savings in simulations running Yahoo! DCP data center
workload.

Figure 3.13 shows the power savings from the simulations running the 70 grouped IP data

flows from Yahoo! DCP Data Center. We see that CARPO has the highest power saving

among all the power management scheme. More specifically, CARPO has 12.3% and

21.1% more power savings than ElasticTree and GoogleP, respectively. Compared with

CARPO-C without link rate adaptation, CARPO shows 2.6% more power savings.
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Figure 3.14: Average packet delay in simulations running Yahoo! DCP data center
workload.
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The average packet delay is presented in Figure 3.14. Compared with ElasticTree,

power management by CARPO only incurs around 15µs more delay to each packet on

average, which is acceptable considering the amount of more power savings. The little

more delay of CARPO comes from the variations in correlation and 90-percentile workload

value, which could lead to a little more violations to the link capacity.

3.7.3 Simulation results in Large-Scale DCNs

In this set of simulation experiment, we use a different network workload derived from a

much larger data center utilization trace. The trace we use in this experiment comes from

a data center server CPU utilization trace Wang et al. (2009), which consists of the CPU

utilization 5,415 servers for 7 days. The granularity of the trace is 15 minutes per sample

point.

To make use of this CPU utilization trace for our network simulation, we need to

convert it to the network flow trace. We achieve this conversion by using a model for

the relationship between CPU utilization and the data transfer speed on the server over the

network. The model is established from real measurement on a small web service testbed

with two servers. One server works as the client, which sends the request to the other

server providing web service. The web service is an emulation from a real web service

following the specification given in SPEC (2009). When the web server gets a request, it

replies a message. The message size is picked from 1KB, 10KB, 100KB and 1MB, with the

probability 35%, 50%, 14% and 1% as specified in SPEC (2009). We gradually increase

the number of requests per second sent from the client and collect the CPU utilization of

the web server with different replied file size. We found that the request number per second

has an approximately linear correlation with the CPU utilization on our testbed. Therefore,

we use a linear function to approximate this relationship as

R = 2124.76× CU − 116.25 (3.8)
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where R denotes request number, and CU represents CPU utilization. By Equation 3.8, we

can compute the request number given any CPU utilization in the trace and then estimate

the data rate of each flow between.

To accommodate the 5,415 servers, we use a fat tree structure with pod-28, which

consists of 392 aggregation switches, 392 edge switches and 28 core switches. Each edge

switch is connected to at most 14 servers. A destination server is randomly picked for a

source server.
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Figure 3.15: Average network power consumption in large scale DCN.
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Figure 3.15 shows the power savings that each power management scheme can achieve.

CARPO shows the best power savings among all the four different strategies. More
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specifically, CARPO outperforms CARPOL, ElasticTree and GoogleP by saving 3.6%

12.4% and 24.4% more power, respectively. Note that the power savings for all the four

schemes are quite stable over different days. This is because the data center workload has

small variation among different days. Figure 3.16 shows the average packet delay for each

of the four schemes. We see that CARPO only has an increase of packet delay by less

than 20µs compared with ElasticTree and by around 70µs compared with GoogleP, which

is significantly smaller than the 1ms, the typical round-trip-time in data center Vasudevan

et al. (2009). All the data in this experiment demonstrate that CARPO can effectively save

more power on a large-scale network, with only very low increase in the packet delay.

3.7.4 Performance with Different Numbers of Sample Points in Cor-

relation Calculation

In the design of CARPO, we calculate the correlation between each flow pair every time

when we run the consolidation algorithm. This is a computational overhead that needs to

be addressed. The time complexity of calculating all the correlation coefficients with n

flows and m sample points for each flow is O(mn2). Since the number of flow is fixed for

each data center network, the overhead can be decreased if using less sample points for the

calculation.
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Figure 3.17: Performance impact of different number of sample points in correlation
analysis.

35



Figure 3.17 shows the power saving performance of CARPO with different numbers

of sample points used to calculate the correlation coefficients in each step. We see that with

more sample points used, more power savings can be reached. This is because more sample

points gives the algorithm a better resolution of the workload, leading to a low correlation

coefficient between two flows. With a smaller correlation, more flows can be aggregated

onto a single path. If using a smaller number of sample points for the calculation, the

variation of the workload is smoothed out, which leads to a larger correlation, thus less

flows to be aggregated together. However, as shown in Figure 3.17, with more sample

points, the average packet delay will increase. It is because the more flow aggregated onto

a single path, the higher possibility of capacity violation to occur.

3.8 Discussion

As shown in the previous section, the percentage of power we can save from ElasticTree

by using our algorithm fits into a parabolic curve. The curve for the different topologies

are different; therefore, we propose a power saving estimation model for both ElasticTree

and CARPO. This model tells how much power those two algorithms will consume when

compared to the network without power saving algorithms implemented, by taking the

traffic data rates, correlation coefficients, and topology type as inputs.

3.8.1 Model for ElasticTree

We first propose a model for ElasticTree. This model takes the sample traffic data rates for

all traffic and network topology description as inputs, and prints out the value of the power

of ElasticTree over the power of the network that implements no power saving algorithms.

Currently, this model only works for symmetric topologies, such as fat tree with pods

and 2N topology. The model takes traffic data rates as inputs, and for each part of the

topology, decides how many upper layer switches are needed by only taking the cross layer

traffic workload into consideration. However, to decide how many upper layer switches are
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necessary is found by simply computing the value of the sum of the cross layer traffic over

the link capacity. However, this may lead to the split of traffic flows, which is bad for TCP

traffics. To compensate, we use the following formula

P = Pc ×Nc + Pa ×Na + Pe ×Ne (3.9)

Nc = max
j
{max{

∑
Tj,i
L

,
∑
j

Oj,i}} (3.10)

Na =
∑
p

Np (3.11)

Np = max
i
{max{

∑
Ti,s
L

,
∑
j

Oi,s}} (3.12)

Ca,b = (1, tra,b > 0.5

0, tra,b < 0.5.)
(3.13)

where P is the power of the network, Pc is the power of one core switch, Pa is the power

of one aggregation switch, Pe is the power of one edge switch, Nc is the number of core

switches, Na is the number of aggregation switches, Ne is the number of edge switches,

Np is the number of aggregation switches in each symmetric subpart, Tj,i is the data rate of

traffics sent from node i to node j, and Cj,i indicates how much traffic goes from node i to

node j with a data rate larger than 0.5, and L is the link capacity.

3.8.2 Model for CARPO

We further extend the former model to take the correlation coefficients between the traffic

as the third input and estimate how much power our algorithm needs to consume.

As our algorithm updates the aggregated traffic data rate according to the correlation

between the traffic, we add a preprocess procedure on top of the model for ElasticTree,

which curves the traffic data rates according to the correlation coefficients of all the traffic
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that might be consolidated onto the same switch. Currently, we use the following formula

Trk = Trk ×
1 +

∑
corl,m
Numc

2
(3.14)

whereDrk is the data rate of kth traffic, corl,m is the correlation coefficient between traffic l

and m, and Numc is the number of traffic that might be consolidated onto the same switch.

3.8.3 Power Estimation Model Evaluation

To evaluate how accurate this model is, we run the model on the 10 random traces

introduced in former section on four different topologies, fat tree with 12 pods, fat tree

with 16 pods, fat tree with 20 pods, and fat tree with 24 pods.

The estimated number of switches generated by our model for fat tree with 12 pods is

shown in Figure 3.18.
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Figure 3.18: Compare Result with Estimation and Simulation.

We can see that, although the model cannot always find out the number of switches

exactly as the simulation result, but the different is no more than 4%
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3.9 Conclusion

In this paper, we have presented CARPO, a correlation-aware power optimization algo-

rithm that dynamically consolidates traffic flows onto a small set of links and switches in

a DCN and then shuts down unused network devices for power savings. In sharp contrast

to existing work, CARPO is designed based on a key observation from the analysis of real

Yahoo! DCN traces that the bandwidth demands of different flows do not peak at exactly

the same time. As a result, if the correlations among flows are considered in consolidation,

more power savings can be achieved. CARPO also integrates traffic consolidation with link

rate adaptation for maximized power savings. Furthermore, CARPO generalizes previous

work to present an analytical framework that theoretically estimates how much power can

be saved for a given DCN topology and workloads. We implement CARPO on a hardware

testbed composed of 10 virtual switches configured with a production 48-port OpenFlow

switch and 8 servers. Our empirical results with Yahoo! DCN traces demonstrate that

CARPO can save up to 60% of network power for a DCN, while having only negligible

delay increases. CARPO also outperforms two state-of-the-art baselines, ElasticTree Heller

et al. (2010) and GoogleP Abts et al. (2010), by having approximately 10% and 20% more

power savings, respectively. Our simulation results with a trace file of 10 data centers

composed of 5,415 servers also show the power efficiency of CARPO in large-scale data

centers.
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Chapter 4

Identifying Frequent Flows in Large

Traffic Sets through Probabilistic Bloom

Filters

4.1 Abstract

In many network applications, accurate traffic measurement is crucial for bandwidth

management and detecting security threats such as DoS (Denial of Service) attacks. In

such cases, traffic is usually modeled as a collection of flows, which are identified based on

certain features such as IP address pairs. One central problem is to identify those “heavy

hitter” flows, which account for a large percentage of total traffic, e.g., at least 0.1% of the

link capacity. However, the challenge for this goal is that keeping an individual counter for

each flow is too slow, costly, and non-scalable. In this chapter, we describe a novel data

structure called the Probabilistic Bloom Filter (PBF), which extends the classical bloom

filter into the probabilistic direction, so that it can effectively identify heavy hitters. We

analyze the performance, tradeoffs, and capacity of this data structure, as well as developing

two extensions to improve its accuracy and flexibility. We use real network traces collected

on a web query server and a backbone router to test the performance of the PBF, and
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demonstrate that this method can accurately keep track of all objects’ frequencies, including

those frequent websites and flows, so that heavy hitters can be identified with constant time

computational complexity and low memory overhead.

4.2 Introduction

In managing today’s complex Internet backbones, accurate traffic monitoring and mea-

surement is crucial for many applications, including short-term purposes such as security

needs (e.g., detecting traffic hot-spots, intrusions, and cyber-attacks) and long-term traffic

engineering purposes (e.g., rerouting common traffic, expanding the capacity for frequently

chosen links) Sarrar et al. (2012); Li et al. (2012); Estan and Varghese (2002b). One

central problem in such applications is to identify heavy hitters, i.e., those most frequent

flows, by keeping track of flow frequencies based on real-time traffic. Given that the

number flows between commercial end host pairs can be extremely large Sarrar et al.

(2012); Estan et al. (2006), however, keeping a counter for each flow usually requires more

memory than available on limited hardware resources, such as routers. Existing methods

of commercial solutions have addressed this problem through sampling and counting, such

as NetFlow Cisco (2010), where one of N packets is sampled and counted. However, such

methods can only sample a small portion of the entire traffic, leading to inaccurate results

and over- or under-estimates.

Given such challenges, in this paper, we address the problem on how to efficiently

construct estimates for the frequencies of all traffic flows so that heavy hitters can be

identified. To this end, we aim to build an approximate histogram of all traffic flows with

limited memory space, so that we can easily identify whether a flow is “heavy” when it is

encountered in the ongoing traffic. The key assumption in our approach is that, for traffic

management purposes, approximate knowledge on flows’ frequency is already sufficient

to identify heavy flows, as long as the frequency estimates can provide reliable upper and

lower bounds associated with their most likely values. On the other hand, for some flows,
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if we need to obtain their accurate frequencies, we can add a few extra counters to serve

such needs separately.

Our work in this paper is enabled by extending a compact, hashing-based data structure

called the bloom filter. A Bloom Filter (BF) is a data structure that is designed to answer a

query on whether an element exists in a set. Its basic idea is to hash an element to k different

locations in a bit array, and sets these locations to all 1s when inserting this element to the

set. Being a randomized method, it allows for false positives, but the space savings often

outweigh its drawbacks. BFs were originally introduced for database applications, but

recently they have received great attention also in the networking area (see Broder and

Mitzenmacher (2003); Tarkoma et al. (2012) as two surveys).

Based on the bloom filter, we investigate how to store frequency estimations, rather

than set memberships, in a similar manner. Note that previous work has addressed the

“accurate” version of this problem by proposing counting bloom filters (CBF) Fan et al.

(2000); Broder and Mitzenmacher (2003); Tarkoma et al. (2012), where the bit vector is

replaced by a counter vector. The cost is that the CBF design usually consumes memory

space that is one order of magnitude higher than the original BF. In this paper, as we are

concerned with the constrained memory of devices such as routers, our extension is still

based on bit vectors rather than counter vectors. Specifically, we present a probabilistic

version of the bloom filter and its operations, so that we can provide estimates of flow

frequencies using a small amount of memory, based on which we can provide reliable

identification of heavy hitter flows. Formally, we define the problem as follows: given a

multi-set S, we would like to identify those items that appear for more than f times. Note

that items may be provided in a stream, as is the case of traffic flows, where IP addresses

in headers are used to denote flows.

The central idea of our design, by extending the classical bloom filter, is it performs

probabilistic counting operations. Therefore, we call this new data structure as the

Probabilistic Bloom Filter (PBF). The key difference is that whenever an item is inserted,

instead of flipping the hash locations from 0 to 1, we flip them with a pre-set probability

of p. Such a paradigm shift does not need any extra memory space compared to the
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standard bloom filter. Therefore, it is still highly compact and feasible to implement

on memory-constrained devices. We then model the performance of the PBF rigorously

through probabilistic analysis, and we outline our major contributions as follows:

• We present the Probabilistic Bloom Filter, which allows non-deterministic queries

on item existence and frequency in data sets. We provide the PBF’s APIs and

demonstrate how they can be used by applications.

• We quantitatively study the performance of the PBF through analytical approaches,

where we derive closed form results regarding its capacity, parameter selection, and

query performance.

• We extend the PBF into two variants: a counting PBF (C-PBF) and a time-decaying

PBF (T-PBF), for additional application needs..

• We evaluate the performance of the PBF with realistic Internet traffic datasets col-

lected from a backbone router for one hour of time to demonstrate its effectiveness.

We emphasize that our approach is fundamentally probabilistic and approximate. In

fact, it may not be able to always return accurate estimations, and may, if poorly designed,

fail to identify heavy hitters in three ways: it can miss some large flows, it can wrongly

insert some small flows to the report, or it may give an inaccurate estimate of some

large flows. We call these three types of errors: false negatives, false positives, and

counting errors. We demonstrate that there exits intricate tradeoffs between performance

and overhead: the higher the requirement of accuracy, the more memory overhead the

design will incur in practice. Our work also quantifies such tradeoffs through theoretical

analysis.

While our evaluations are based on network-related datasets such as web query logs

and traffic traces, the methods in this paper should be general enough to be applied to many

application domains. For example, counting the number of events based on their types

in large-scale datasets is a widely used building block for data analysis in computational
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sciences. The recent discovery of the Higgs boson using the LHC ATLAS collaboration

(2012); CMS Collaboration (2012), for example, draws conclusions based on statistical

analysis for collected particle collision events. Properly configured versions of PBFs can

be applied for such purposes when TB scale of streaming data need to be analyzed in nearly

real time under computational and memory constraints.

The remainder of this paper is organized as follows: We survey related work in

Section 4.3. The problem formulation and design are described in Section 4.4. The

extensions of the PBF are presented in Section 4.5, and the performance evaluation is given

in Section 4.7. We provide conclusions in Section 4.8.

4.3 Related Work

In this section, we describe the related work in three parts: first the original Bloom Filter

design, then its variants, and finally, recent progress on traffic flow sampling and counting

in Internet routers.

The bloom filter, which is proposed by Burton H. Bloom in 1970 Bloom (1970), is a

space efficient randomized data structure that answers the question on whether an element

is in a set. There are two basic operations: insert and query. Its space efficiency is achieved

at the cost of false positives (an element is claimed to be inside a set when it is not). The

accuracy of a bloom filter depends on the filter size m, the number of hash functions k, and

the number of inserted elements n. The false negatives (an element is reported as not in

a set when it is) never happens. Although originally conceived for database applications,

the bloom filter recently has also received great attention in the networking area Broder

and Mitzenmacher (2003); Tarkoma et al. (2012); Chen et al. (2013); Rottenstreich and

Keslassy (2012); Donnet et al. (2012); Moreira et al. (2012); Chen et al. (2012); Sarela

et al. (2011); Debnath et al. (2011).

In its initial design, the BF did not address the issues of element duplicates, as it

only considers simple sets. No matter how many times an item appears in a set, it is

counted only once in the constructed BF. Counting Bloom Filters (CBFs) Fan et al. (2000);
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Broder and Mitzenmacher (2003); Tarkoma et al. (2012) have been designed to address

this issue. They are based on the same idea as BFs, but they adopted fixed size counters

(also called bins) instead of single bits in its vector design. When an item is inserted, the

corresponding counters are increased, hence, duplicate information is maintained rather

than lost. However, CBFs are different from our approach in that they are fundamentally

deterministic, as they keep accurate counts of the number of duplicates for an item.

Therefore, CBFs require memory overhead that is usually an order of magnitude higher

than common BFs, which makes them less scalable to a large number of flows. Another

related work to ours, proposed by Shen et al. Shen and Zhang (2008); Dautrich and

Ravishankar (2013), developed the idea of the Decaying Bloom Filter, which extended

the Counting Bloom Filter to support the removal of stale elements when new elements are

inserted. However, our design does not use as much memory as the decaying bloom filter

for processing the same amount of data. Finally, Kumar et al. Kumar et al. (2006) proposed

the Space-Code Bloom Filter (SCBF) (later extended to a multi-resolution version called

the MRSCBF), which used a filter made up of a fixed number of groups of hash functions.

During the insertion operation, one group of hash functions was randomly chosen for the

element. For query, the number of groups containing the element was counted to estimate

the frequency. However, as only open formulas were provided, the estimation of frequency

was done by looking up a pre-computed table, which was very computationally intensive to

be built. Such efforts differ in our work in that we present closed-form results on modeling

the performance of the proposed data structures. In our evaluation, we compare with both

the CBF and the MRSCBF as they are the state-of-the-art baselines.

In recent years, the bloom filter has been widely used in the context of network

measurement Sarrar et al. (2012). Estan et al. Estan and Varghese (2002a) applied Counting

Bloom Filters to traffic measurement problems inside routers. The approach was based on

the simple idea that if the counter for a flow increases beyond a threshold, it should be

considered as a frequent flow. Zhao et al. Zhao et al. (2006) used the Bloom Filter to find

local icebergs (items whose frequency is larger than a given threshold) in a distributed

manner, and then estimated global icebergs in a central server. Finally, Liu et al. Liu
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et al. (2012) proposed the Reversible MultiLayer Hashed Counting Bloom Filter(RML-

HCBF), whose hash functions select a set of consecutive bits from the original strings as

hash values, so that it may find elephant flows (large and continuous flow) using the counter

values and thresholds. In contrast, the PBF we propose is based on approximate counting

methods rather than accurate ones, thus saving on the memory overhead and processing

speed.

4.4 Probabilistic Bloom Filter

In this section, we describe the design of the probabilistic bloom filter (PBF). We first

present its programming interfaces, followed by the operations between multiple PBFs,

and finally, an analysis of its properties, capacity, and performance.

4.4.1 Programming Interfaces

Algorithm 2 The PBF Insert Algorithm
1: procedure INSERT(x) . Insert operation
2: for j = 1→ k do
3: i← hj(x)
4: randomi ← Uniform(0, 1)
5: if randomi < p then
6: Bi ← 1
7: end if
8: end for
9: end procedure

The PBF provides two programming APIs, an insert operation and a frequency query

operation, as illustrated in Algorithm 2 and Algorithm 3. For the insert operation, the

primary change compared to a conventional bloom filter is that it uses a new parameter p

to decide whether to flip a bit from 0 to 1, when new items are inserted. Note that as an

optimization, we do not need to read the bit’s value before we set it to 1, thereby reducing

the number of memory accesses for the insert operation. For the frequency query algorithm,
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Algorithm 3 The PBF Frequency Query Algorithm
1: procedure FREQUENCY(x) . Frequency test operation counter ← 0
2: for j = 1→ k do
3: i← hj(x)
4: if Bi == 1 then
5: counter + +
6: end if
7: end for
8: f ← estimation(counter)
9: return f

10: end procedure

it adds up the number of 1s in the k bits as determined by the hashing functions, and uses

statistical inference methods to obtain an approximate frequency of the data item in the

data set. We will describe the details of this estimation operation in Section 4.4.3.

4.4.2 Properties of the PBF Operations

There are several operations for multiple PBFs, including the union and halving of PBFs,

which are facilitated by the bit-vector nature of PBFs. Given two multi-sets S1 and S2,

suppose that they are represented by two PBFs, B1 and B2. We can calculate the PBF

that represents the union set S = S1 ∪ S2 by taking the OR of their PBFs: B = B1 ∨ B2

assuming that the bit vector length m and the hash functions are identical. The merged

filter B represents the aggregate frequency of an item belonging to S1 or S2 as belonging

to the set S.

The second operation is halving. If the PBF size m is divisible by 2, halving allows us

to store the original multiset in a shorter bit vector. This can be achieved by bitwise ORing

the first and second halves of the original PBF’s bit vector together. To insert or query

the new PBF, the range of the hashing functions also needs to be updated by applying the

mod(m/2) operation to their outputs.
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Table 4.1: Symbols Used in Analysis

f The frequency threshold of heavy-hitter items
k The number of hashing functions
m The length of the bit-vector
n The total number of flows or items in a dataset
p The probability for setting a bit to 1
y The expected number of 1s in the bit-vector
ŷ The observed number of 1s in the bit-vector
θ The probability that a bit has been set to 1

4.4.3 Performance Modeling of PBFs

Because the PBF introduces one additional parameter p, it has different properties

compared to the original BF. In this section, we model the performance of the PBF by

studying the relationship between the frequency of items and the number of bits that are

flipped in the bit vector. Table 4.1 shows the notations we use in the following analysis.

We first consider what happens if there is just one item. We assume that this item

has hashed positions that are distributed uniformly, as is true for the hashing functions

we choose in our implementation. The probability that it flips a particular bit is p/m.

Therefore, for a given bit, the probability that it is not set to 1 is given by

1− p

m
. (4.1)

With the PBF, there are actually k hashing functions for inserting any item. Hence, the

probability that none of them will set a specific bit to 1 is given by

(1− p

m
)k. (4.2)

After inserting n items into the bloom filter, the probability that a given bit is still zero

is going to be

P (n, 0) = (1− p

m
)kn. (4.3)
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Thus, the probability of a bit being set to 1 is

P (n, 1) = 1− (1− p

m
)kn. (4.4)

The expected number of 1s of these k bits, denoted as g(p,m, n, k), is therefore

g(p,m, n, k) = (1− (1− p

m
)kn) ∗ k ≈ (1− e− kpn

m ) ∗ k. (4.5)

Note that this approximation for the expected value is true only when p/m is sufficiently

small. This constraint is generally true because our picked m is usually large, and p is

usually much smaller than 1. Observe that P (n, 1) exists for every bit regardless of what

items are inserted. Therefore, this value corresponds to a type of “background noise”,

which means that some bits will be set due to other items being inserted. Notice that when

m increases, the background noise will decrease. If n increases, the noise increases. To

obtain the frequency estimation of items, we have to take this noise into account.

Next, for a certain item that appears f times, it will invoke the insert API f times.

Therefore, the probability for any bit of k bits mapped by hash functions to still be zero is

P (f, 0) = (1− p)f ≈ e−pf , and (4.6)

the probability of this bit to be 1 is

P (f, 1) = 1− (1− p)f ≈ 1− e−pf . (4.7)

Again, we assume that p � 1, which is true for our selection of p values. Clearly,

whether a bit is set to 1 is determined by two factors: the probability that it is set to 1 by

an item’s insert operation as illustrated by P (f, 1), and the probability of the background

noise as illustrated by P (n−f, 1) (in Eq. 4.4). These two factors are generally independent

of each other. Therefore, the probability for an element to remain 0 as (since neither
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background noise or repeated items has set it to 1) is given by

P (n− f, 0)× P (f, 0) ≈ e−
pk(n−f)

m × e−pf . (4.8)

Next, as each bit can be considered as a Bernoulli experiment, its “success” probability

θ can be considered as the event that a bit has been set as 1. Here we denote that

θ = 1− P (n− f, 0)× P (f, 0) (4.9)

Therefore, denote the total number of 1s as Y , we have that

Y |θ ∼ Bin(k, θ). (4.10)

Therefore, we know that E(Y |θ) = kθ and V (Y |θ) = kθ(1 − θ). If we denote the

expected number of bits that are set to 1 in the k mapped bits for an element in the PBF as

y, we therefore have

y = (1− P (n− f, 0)× P (f, 0))× k =

k(1− e− pk(n−f)
m × e−pf ).

(4.11)

Based on the observation results for the proportion of bits that have been set, we can

denote its value as ŷ, and define θ̂ = ŷ/k. We can use θ̂ as an unbiased estimator of θ, and

since θ is derived based on the frequency f , we can then estimate f as follows (by solving

the Equation 4.11 for f )

f =
knp+m ln

[
1− ŷ

k

]
(k −m)p

. (4.12)

Next, we calculate the confidence interval for f , by approximating it using a normal

distribution based on the central limit theorem. This is also the so-called Wald Method,

whose formula for confidence interval is given by

θ̂ ± z 1
2
α

√
1

n
θ̂
(

1− θ̂
)

(4.13)
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where θ̂ is the proportion of successes, and z 1
2
α is the critical z value with a tail area of 1

2
α

of the standard normal curve. Based on this formula, we can derive the lower and upper

bounds for f as shown below:

fmin =

knp+m ln

[
k−ŷ
k

+

√
(1− k−ŷ

k )(k−ŷ)
k2

z 1
2
α

]
(k −m)p

(4.14)

fmax =

knp+m ln

[
k−ŷ
k
−
√

(1− k−ŷ
k )(k−ŷ)
k2

z 1
2
α

]
(k −m)p

(4.15)

As an illustrative example, suppose we want to filter data traffic with 100K flows,

where frequent flows are defined as those with a frequency to be at least one percent of

the total, i.e., 1K flows. We pick a bloom filter size of m = 2M bits (1M = 106), and

let k = 1000. We select p as 0.0006 (we will explain this later in parameter selection). In

this case, the frequent flow is expected to have 467 bits in 1000 bits set as 1. Conversely,

if indeed 467 bits are set, the estimated number of flows is 999, with a 95% confidence

interval as [905, 1098]. On the other hand, if somehow the value of µ − 2σ = 435 bits are

set, the estimated flows is 902, with a 95% confidence interval as [813, 995]∗.

4.4.4 Selection of Parameters for PBFs

One critical challenge in using the PBF for analyzing data sets is that it needs to set several

parameters properly, such asm, k, and p. Choosing such parameters improperly will reduce

its capabilities and increase errors. Further, due to the probabilistic nature of the PBF, its

parameters need to be set differently compared to conventional bloom filters. Therefore, in

this section, we study how to set the parameters for the PBF, and define the concept of its

capacity.

∗Note that this interval does not contain 1000 as it is a 95% confidence interval. One may want to use
the 99% confidence interval to capture a larger range. In this case, the 99% interval gives the bound as
[797, 1013].
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Figure 4.1: Relation between p and the estimation bounds.
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Figure 4.2: Relation between k and the estimation bounds.

Problem Formulation: Given a known number of items n and the threshold for

frequent flows f , how do we choose m, k, and p properly? Similarly, given m, k, and

p, how do we estimate the PBF’s capacity to handle large n and f?

To answer this question, we first find the constraints for m, k, and p, and try to optimize

the model performance by minimizingm and k, which correspond to the memory overhead

(m) and computational overhead (k).

The first constraint for choosing the right parameters is to limit the background noise

as shown in Equation 4.5. As m increases, the background noise will decrease, assuming a
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Figure 4.3: Relation between p and θ.

fixed k. Therefore, to keep the noise below a certain threshold ε, we require:

g(p,m, n, k)/k ≤ ε, (4.16)

so that

m ≥ −knp
log(1− ε) . (4.17)

Note that we assume that ε is chosen as an appropriately low threshold, e.g., 0.1.

The second constraint concerns the estimation accuracy as shown in Equation 4.12. To

ensure the estimation accuracy, the observed value of ŷ should not be too small or too large

compared to k. Since Equation 4.11 gives the expected value of y, we require that the ratio

between y and k should lie between ε and 1− ε, therefore,

ε ≤ k(1− e− pk(n−f)
m × e−pf )
k

≤ 1− ε. (4.18)

Based on this result, we can then obtain the estimation range of f , which is denoted

by the lowest possible f value and the highest possible f value that can be accurately
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estimated, as a function of k, m, and p as

flowerbound =
knp+ log(1− ε)m

(k −m)p
, (4.19)

fupperbound =
knp+ log(ε)m

(k −m)p
, (4.20)

also, observe that the real value of f should be located within this estimation range, we

have that

flowerbound ≤ f ≤ fupperbound. (4.21)

This formula therefore gives the third constraint. To illustrate the meanings of these

constraints, especially on how they affect the choices of p, we consider the following way

to illustrate possible choices of parameter values. To minimize m, we simply set m as the

lower bound, using Equation 4.17, i.e., m = −knp
log(1−ε) . Then we can establish the following

constraints for p as

− log(1− ε)
n

≤ p ≤ (n− f) log(1− ε)− n log(ε)

nf
. (4.22)

On the other hand, the value of k can be chosen based on two considerations. First,

if k is too large, it will incur too much computational overhead. Second, the value of k

will affect the confidence interval calculated in Equations 4.14 and 4.15. The reason is that

different values of k will lead to different lower and upper bounds, and their difference will

be varying. To illustrate this, assume that we have chosen p as the upper bound, and m as

the lower bound, and we set ε = 0.1, we can calculate the ratio between the confidence

interval of f to the estimated f as follows

Ratio =
fmax − fmin

f
. (4.23)
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Assuming f ≤ εn, meaning that the frequency under estimation is not too large

compared to the total number of items, n, we can find that

Ratio ≈ 0.46 ln

(
0.1 + 0.59

√
1

k

)
− 0.46 ln

(
0.1 − 0.59

√
1

k

)
. (4.24)

We can verify that under this setting, this ratio decreases monotonically with k

increases. In particular, if we let Ratio ≤ 1/2, we can find that k ≥ 141. Therefore,

we suggest k must be chosen not lower than 150 to ensure good performance. Note that

this value of k only incurs moderate overhead in terms of computation. Recent research

on fast string hashing algorithms Kaser and Lemire (2012) has demonstrated optimized

hashing functions can achieve a hashing throughput of a fraction of a CPU cycle per byte.

Therefore, we can use a k value of larger than 1000 on multi-core workstations without

having performance bottlenecks, as hashing a 100 byte string (e.g., a packet header) 1000

times only takes less than 0.1ms.

So far, we have outlined the way we should select parameters. To summarize, the

procedure is as follows:

Algorithm 4 The PBF Parameter Selection Algorithm
1: procedure SELECT(n,f ) . n and f as known
2: Calculate the bounds for p, and use its upper bound if possible (Equation 4.22)
3: Select a modest value for k (assuming k ≥ 150)
4: Calculate the lower bound for m (Equation 4.17)
5: return p, k, and m
6: end procedure

Note that we generally require p to be chosen as its upper bound for the reason that a

larger p will increase the accuracy of estimation, as long as this p value does not go beyond

its upper bound. We now use a numerical example to illustrate possible choices for p, k,

and m. Assume that n = 100K and f = 1000. If ε = 0.1, according to Equation 4.22, we

have 1.05× 10−6 ≤ p ≤ 0.0022. We now evaluate the effects of p. By keeping m bounded

according to Equation 4.17 and k = 2000 (k can also take any other constant value), we

change the value of p and study its effects on the confidence interval. The results are shown
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in Figure 4.1. As illustrated, a larger p indeed leads to better confidence intervals, as long

as the value of p does not go over its upper bound. In fact, the narrowest confidence interval

in Figure 4.1 is precisely when p = 0.0022. After p goes over this upper bound (specified

by Equation 4.22), the confidence interval becomes larger again. The underlying reason for

this interesting phenomenon is that when p is too large, it will over-saturates the bit vector

too early, hence impairing the performance of estimations.

Next we investigate the effects of m. Suppose that we have chosen a moderate value of

p for general cases, where p is chosen as 0.0006. We hope to see how k can affect changes

in confidence intervals, by changing k from 200 to 8000. As shown in Figure 4.2, a larger

k will lead to better confidence intervals, at the cost of more computational overhead.

Finally, we illustrate the effects of p on θ, which is the percentage of the 1s in the k

bits after all flows are inserted. Figure 4.3 shows the results. Observe that as long as p is

chosen according to Equation 4.22, θ will be bounded by [ε, 1− ε], which is expected. On

the other hand, if p is larger than the upper bound, θ will be over-saturated; if p is lower

than the lower bound, θ will be under-saturated.

4.4.5 The Maximum Estimative Frequency

Once the PBF parameters are chosen, given properly chosen p, k, and m, one critical

problem is its estimation errors. Given that our goal of this paper is to identify heavy-

hitters, we are most concerned about the errors that are caused by over-saturation of bit

vectors, i.e., when the frequency of the flow is too high. Motivated by this observation, we

next define the concept of “Maximum Estimative Frequency (MEF)”, which is defined as

follows:

Maximum Estimative Frequency (MEF): Given a set of PBF parameters, what is the

maximum value of f that it can still estimate accurately, where the k bit vector is at most

saturated for 1− ε?
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To derive MPF, we use Equation 4.20, and replacemwith the result from Equation 4.17.

Therefore, the maximum value that f can reach is given by

fMEF =
n(log(1− ε)− log(ε))

np+ log(1− ε) . (4.25)

In reality, for specific PBF settings, the value of p is only a single value. Hence, if we

set p as a constant, for a large n, we then have

lim
n→+∞

fmpf =
log(1− ε)− log(ε)

p
. (4.26)

Hence, this approximation can be used to estimate the real MEF that a PBF setting can

handle. If ε = 0.1, the capacity is roughly 2.2/p. For example, if p = 0.001, this PBF

can count up to cardinality of around 2, 200. For all items with a frequency above this

threshold, the PBF can still report that they are at least 2, 200, but their real value is not

reported due to bit vector saturations.

4.5 Extensions of the PBF

In this section, we describe two extensions of the PBF for potential applications: a counting

PBF (C-PBF) and a time-decaying PBF (T-PBF).

4.5.1 C-PBF: Counting PBF Design

In this section, we introduce the C-PBF, a counting variant of the PBF that extends its

capability with more memory usage. The idea of the C-PBF is simple: it replaces each

bit in the PBF with a w-bit counter. Whenever an item is inserted, instead of deciding on

whether flipping one bit from 0 to 1, it will determine with a probability of p whether to

increase this w-bit counter. Formally, this updated algorithm is shown in Algorithm 5.

We can now derive the performance of the C-PBF. Observe that for each counter, it

may be updated by two sources: the background noise caused by other items and the
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Algorithm 5 C-PBF Insert Algorithm
1: procedure INSERT(x) . Insert operation
2: for j = 1→ k do
3: i← hj(x)
4: Counteri ← B[i]
5: randomi ← Uniform(0, 1)
6: if randomi < p then
7: Counteri = Counteri + 1
8: end if
9: end for

10: end procedure

insertion operations of the frequent flows. Therefore, if we denote these two sources with

two random variables X1 and X2, we have

X1 ∼ Bin(k(n− f), p/m), (4.27)

X2 ∼ Bin(f, p), (4.28)

where X = X1 +X2. In this scenario, we can use the Poisson distribution to approximate

these two distributions, so that the sum of the distributions will remain Poisson. In that

case, the size of counter is bounded as maxmi=1 log2(Xi). Based on this result, considering

that we observe a total of k counters (assuming k hashing functions), we can denote their

values as xi, where i ∈ [1, k]. We can then use the average of these observations on xi to

estimate the MLE of f as

f̂ =
knp−mx̂
(k −m)p

, where x̂ =
∑n

i=1
xi/n. (4.29)

4.5.2 Selection of Parameters for C-PBF

Although C-PBF uses counters for predicting the element frequencies, it is still critical to

choose proper ranges for m, k, and p to increase prediction capabilities and reduce errors.

The problem we need to solve is formulated as follows: given a known number of items
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and the threshold for frequent flows f , how do we choose m, k, and p properly? The same

as what we discussed in PBF, to answer this question, we also need to find the constraints

for m, k, and p to optimize the system performance by minimizing m and k to achieve

minimal memory overhead (m) and computational overhead (k).

Similar to PBF, limiting the amount of background noise is the first constraint for

choosing the right parameters. For a fixed k, the background noise will decrease, while

m increases. In that case, to keep the background noise below a certain threshold ε′, we

need:
Bin(kn, p/m)

2s
< ε′ (4.30)

so that

m >
knp

2sε′
(4.31)

On the other hand, as the memory is limited in networking devices, the size of the C-

PBF is bounded by the memory size ms and the counter size s. For a fixed counter size s,

the size of m should be bounded as:

knp

2sε′
< m ≤ ms

s
(4.32)

Secondly, we concern the prediction accuracy. To ensure the prediction accuracy, we

observe that the counter value should not under saturate or over saturate the counter. Based

on the expected counter value, we require that its ratio with maximum counter value should

lie between ε′ and 1− ε′, such that

ε′ ≤ kn p
m

+ fp

2s
≤ 1− ε′ (4.33)

Assume that ε′ is chosen as an appropriately low threshold, e.g., 0.1. With the second

constraint, we can obtain the prediction range of f as a function of k, m, and p as:

flowerbound =
knp−m2sε′

(k −m)p
(4.34)
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fupperbound =
knp−m2s(1− ε′)

(k −m)p
(4.35)

and we assume that the real value of f should be located within this prediction range, such

that

flowerbound ≤ f ≤ fupperbound (4.36)

In that case, when we minimize m and set up m > knp
2sε′

, we can establish the constraints

for p as:
2sε′

n
< p ≤ f2sε′ + n2s − 2n2sε′

fn
(4.37)

On the other hand, the value of k needs to be carefully selected. If k is too large, it would

incur too much computation overhead, and also the background noise would be large, as

the probability of different elements mapping to the same filter bucket would be large.

However, if k is too small, the deviation of counter value would be large. Now, assume that

p = f2sε′+n2s−2n2sε′
fn

, m = knp
2sε′

, and ε′ = 0.1, then the ratio between the confidence interval

of f to the predicted f is

Ratio =
fmax − fmin

f
(4.38)

Assume f ≤ nε′, the counter value is in Poisson Distribution with λ, where the E(X) =

V ar(X) = λ, then

Xmax = (λ+ 1)(1− 1

9(λ+ 1)
+

1.96

3
√
λ+ 1

)3 (4.39)

Xmin = λ(1− 1

9λ
− 1.96

3
√
λ

)3 (4.40)

then

fmax =
2sε′ ∗ n−Xmaxn

2sε′ − nf2sε′+n2s−2n2sε′
fn

(4.41)

fmin =
2sε′ ∗ n−Xminn

2sε′ − nf2sε′+n2s−2n2sε′
fn

(4.42)
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In that case

Ratio =
Xmin −Xmax

2sε′ −X (4.43)

As

λ = fp+
k(n− f)p

m
= 2s(1− ε′) (4.44)

Then

Ratio = −1.25(
0.9(1− 0.123457

2s
− 0.688674

2
s
2

)32s

2s
−

(1 + 0.9 ∗ 2s)(1 + 0.653333√
1+0.9∗2s −

0.123457
1.11111+2s

)3

2s
) (4.45)

Observe from the above formulas, the Ratio is not related to k values. In that case, we

choose k = m
n

ln 2, which is the same as what has been done in the classical BF.

4.5.3 T-PBF: Time-decaying PBF Design

Algorithm 6 T-PBF Decaying Algorithm
1: procedure DECAY(x) . Decay operation
2: for Every T seconds do
3: for j = 1→ k do
4: i← hj(x)
5: if thenB[i] == 1
6: randomi ← Uniform(0, 1)
7: if randomi < q then
8: B[i]← 0
9: end if

10: end if
11: end for
12: end for
13: end procedure

In this section, we introduce the second variant, the T-PBF, a time-decaying variant of

the PBF that allows it to forget those frequent items that appeared in the distant past. The

idea of the T-PBF is to introduce a new operation, decaying, which flips bits from 1 to 0
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with a probability q over each time epoch T . This can be considered as an approximation

for the delete operation. Formally, this updated algorithm is shown in Algorithm 6.

We now demonstrate the long term behavior of the T-PBF. For simplicity, we consider

operations in epochs, and the decaying operation only occurs at the end of each epoch.

Observe that for each bit, for each epoch, it may either start with bit 1 or 0. If it starts

with 1, it may be flipped to 0 at the end of the epoch with a probability of q. However,

if it starts with 0, it may be flipped to 1 first with a probability shown in Equation 4.11,

and then flipped back to 0 with a probability of q. Therefore, we can use a discrete time

Markov chain to describe these operations. In particular, because the transitions exhibit

different probabilities at the beginning and the end of each epoch, we can model it with a

time-inhomogeneous chain with a seasonal variation. In this case, we have that the seasonal

period d = 2, and the transition probability as the following (assuming n ≥ 0, while 2n

and 2n+ 1 stand for the index of epochs)

P (2n) =


0 1

0 1− α α

1 0 1

, P (2n+ 1) =


0 1

0 1 0

1 β 1− β

,
where we have:

α = 1− e− pk(n−f)
m × e−pf , and (4.46)

β = q. (4.47)

To analyze this seasonal chain, we can add a supplementary variable to create a

homogeneous chain. The new chain contains four states: A(0, a), B(0, b), C(1, a), D(1, b).

The new transition matrix is shown below, followed by the corresponding Markov chain

illustration.
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P (n) =



A B C D

A 0 1− α α 0

B 1 0 0 0

C 0 0 0 1

D 0 β 1− β 0



Sastart
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Sc
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1-α

α

1

1

β

1-β

Figure 4.4: The Markov Transition for the T-PBF

This Markov chain has four communicating classes, A, B, C, and D. They are

all recurrent classes, as well. In the long term, this chain has the following stationary

distribution:

P (s) =



β
2α+2β

for s ≡ A,

β
2α+2β

for s ≡ B,

α
2α+2β

for s ≡ C,

α
2α+2β

for s ≡ D.

As expected, the results show that in the long term, if a flow is no longer available, f

will decrease to 0, and its α will quickly converge to 1−e− pkn
m , which is smaller. Therefore,
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in the long run, most bits will be reset to 0 (as demonstrated by the increased probability

of states A and B in Figure 4.4. This validates the design of the time-decaying nature of

the T-PBF. On the other hand, if a flow re-appears with a large f , its transition will mostly

stay in states C and D, which means that more bits will be set due to the flow existence.

Note that the epoch of the T-PBF can also be dynamic: as the PBF will lose the ability of

prediction when all k bits are set to 1s, when a large percentage of k bits for any element

are set to 1, the decaying process can be triggered.

4.5.4 Selection of Parameters for T-PBF

To performance accurate frequency estimations with T-PBF, it is critical to choose proper

values for parameters, such as m, k, p, and q. As T-PBF extends PBF by introducing one

additional parameter q, and the decaying operations are only triggered at the end of each

period, we can use the same algorithms to choose the values of m, k, and p, based on what

discussed in Section 4.4.4. As a result of that, in the following part, we will discuss how to

choose the value for q.

For an element, at the end of the first epoch, the probability of a bit is still 1 is

θ
′

1 = θ1 ∗ (1− q) (4.48)

where theta is as defined in Equation 4.9.

Then at the end of the second epoch, the probability of a bit is 1 would be a joint effect

of the first two epoch, therefore

θ
′

2 = (θ2 + θ
′

1 − θ2 ∗ θ
′

1) ∗ (1− q) (4.49)

Finally, at the end of the epth epoch, the probability of a bit is 1 would be

θ
′

ep = (θep +

ep−1∑
i=1

θ
′

i − θep
ep−1∏
i=1

θ
′

i) ∗ (1− q) (4.50)
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as in long term, θep
∏ep−1

i=1 θ
′
i → 0, we can have the estimative probability as

θ
′

ep ≈
ep∑
i=1

θi(1− q)ep−i (4.51)

To guarantee the prediction accuracy, we need to prevent the over saturation of the k

bits for any element, therefore,

∀
ep∑
i=1

yi(1− q)ep−i ≤ k(1− ε) (4.52)

where ep is the number of pasted epochs, ε is a threshold with a small value, and yi is the

number of bits set to 1s with the insertion of an element in the ith epoch. As a result of

above requirements, we can rewrite this equation as

max

ep∑
i=1

y
′

i(1− q)ep−i ≤ k(1− ε) (4.53)

where y′i is the number of 1 getting from the most frequent element. By setting y′i = ymax =

maxepi=1 maxtj=1 yij , which is the maximum number of 1s set by the element with the largest

frequency in all epochs, where t is the number of elements in each epoch, then

ep∑
i=1

ymax(1− q)ep−i ≤ k(1− ε) (4.54)

hence

ymax
1− (1− q)ep

q
≤ k(1− ε) (4.55)

then

(1− e− pk(n−fmax)
m e−pfmax)

1− (1− q)ep
q

≤ 1− ε (4.56)

in that case, for a long run, where (1− q)ep → 0, then

1− e− pk(n−fmax)
m e−pfmax

1− ε ≤ q ≤ 1 (4.57)
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Figure 4.5: Relation between p and estimation bounds.

To validate the chosen range of p, k, m, and q, we will show the effect of fixing any

three parameters and changing the rest one. Assume that n = 1M , ep = 30, and a certain

element happens f = 1k in each period. Based on the upper mentioned formulas, we get

4.5 ∗ 10−8 ≤ p ≤ 3.39 ∗ 10−4, k ≥ 150, m ≥ 1.2 ∗ 107, and 0.285 ≤ q ≤ 1. We now

evaluate the effects of p, by keepingm = 1.2∗107, k = 4000, and q = 0.3, at the end of the

30th period. As shown in Figure 4.5, if p is too small, the confidence range is unbounded.

On the other hand, if p is too large, the T-PBF will be saturated and loose its estimation

ability before the end of the 30th period. Secondly, we evaluate the effect of k, by fixing

m = 1.2 ∗ 107, p = 3.2 ∗ 10−4, and q = 0.3. As shown in Figure 4.6, the larger the k, the

smaller the confidence interval. Thirdly, the effect of m is evaluated by fixing k = 4000,

p = 3.2 ∗ 10−4, and q = 0.3. As shown in Figure 4.7, a m smaller than the lower bound

would lead to a bad estimation accuracy. Finally, we evaluate the effect of q, by fixing

m = 1.2 ∗ 107, k = 4000, and p = 3.2 ∗ 10−4. As shown in Figure 4.8, if q is smaller than

its lower bound, the T-PBF would be saturated and loose its estimation ability before the

end of the 30th period. On the other hand, if q is very large, the insertions of the element

in the past periods take little effect on the estimated frequency of the current period.
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Upper Bound

Lower Bound

2 ´ 107 4 ´ 107 6 ´ 107 8 ´ 107 1 ´ 108
8000

9000

10 000

11 000

12 000

13 000

14 000

15 000

Value of m

E
st

im
at

io
n

Figure 4.7: Relation between m and estimation bounds.
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Figure 4.8: Relation between q and estimation bounds.

4.6 Parameter Selection Algorithms are Nash Equilibri-

ums

As discussed in the previous sections, the estimation accuracy of the PBF and T-PBF would

be bad, if we choose any other parameters following the predefined rules, and choose

the rest one parameter disobey the rules. In that case, if we treat the rules of choosing

parameters as the equilibrium strategies in a non-cooperative game, then we can claim that:

Theorem 4.1. The parameter selection algorithms for PBF is a Nash Equilibriums Robert

(1992).

Proof. For selecting parameters of PBF, we can define a normal form game as a triple

(N, (Si)i∈N , (ci)i∈N), where

• N is the set of players, and n = 3;

• Si is the set of strategies of player i. Each player can choose to follow or not follow

a specific rule of choosing a parameter, where S1 = {FollowP,NFollowP}, S2 =

{FollowK,NFollowK}, and S3 = {FollowM,NFollowM};

• S = S1 × S2 × S3 is the set of states;
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Table 4.2: Cost for player 1.

(FK,FM) (NFK,FM) (FK,NM) (NK,NM)
FP C(p,k,m) C(p,k’,m) C(p,k,m’) C(p,k’,m’)
NFP C(p’,k,m) C(p’,k’,m) C(p’,k,m’) C(p’,k’,m’)

Table 4.3: Cost for player 2.

(FP,FM) (NFP,FM) (FP,NFM) (NFP,NFM)
FK C(p,k,m) C(p’,k,m) C(p,k,m’) C(p’,k,m’)
NFK C(p,k’,m) C(p’,k’,m) C(p,k’,m’) C(p’,k’,m’)

• a state is s = (s1, ..., sn) ∈ S;

• ci : S → < is the cost function of player i ∈ N . In state s player i has a cost of ci(s).

The cost is defined as the difference between the upper and lower estimation bounds,

which represents the estimation accuracy.

In general, the cost value is computed as

C(p, k,m) = fmax − fmin =
m(ln ε− ln(1− ε))

(k −m)p
(4.58)

Based on the Nash Theorem Robert (1992), which claimed that every finite normal

form game has a mixed Nash equilibrium, the PBF parameter selection game has a mixed

Nash equilibrium. In that case, in the following part, we will show that the state as shown

in the PBF parameter selection algorithm is the Nash equilibrium for the game.

As described in the game, each player has two strategies as follow or not follow the

rule of choosing a specific parameter. For player 1, the cost for the game is as shown in

Table 4.2. where FP is the abbreviation of FollowP , and NFP represents NFollowP .

Other abbreviations follow the same format. Following the same method, the cost for player

2 and player 3 are as shown in Table 4.3 and Table 4.4.

Now, we will find the best response strategy of the all three players. As mentioned in

the previous section, − log(1−ε)
n

≤ p ≤ (n−f) log(1−ε)−n log(ε)
nf

, k ≥ 150, and m ≥ −knp
log(1−ε) ,

then p′ < − log(1−ε)
n

or p′ > (n−f) log(1−ε)−n log(ε)
nf

, k < 150, and m < −knp
log(1−ε) . Let us start
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Table 4.4: Cost for player 3.

(FP,FK) (NFP,FK) (FP,NFK) (NFP,NFK)
FM C(p,k,m) C(p’,k,m) C(p,k’,m) C(p’,k’,m)
NFM C(p,k,m’) C(p’,k,m’) C(p,k’,m’) C(p’,k’,m’)

from player 1, whose costs for choosing different strategies are as follows:

C1(FP ) = C(p, k,m) + C(p, k′,m) + C(p, k,m′) (4.59)

+C(p, k′,m′) (4.60)

C1(NFP ) = C(p′, k,m) + C(p′, k′,m) + C(p′, k,m′) (4.61)

+C(p′, k′,m′) (4.62)

When the k bits mapped by an element is saturated, we define the difference between

upper and lower bounds of the estimated frequency as ∞, as the PBF cannot do the

estimation computation anymore. In that case, if we choose p′ > (n−f) log(1−ε)−n log(ε)
nf

,

then the C1(NFP ) = ∞, where the C1(NFP ) > C1(FP ). On the other hand, when

p′ < − log(1−ε)
n

, it is obviously that C1(NFP ) > C1(FP ), as the cost is monotonically

increasing with the decreasing of p. Hence, the best response strategy for player 1 is

FollowP .

Following the same procedure, the costs for player 2 under different strategies are:

C1(FK) = C(p, k,m) + C(p′, k,m) + C(p, k,m′) (4.63)

+C(p′, k,m′) (4.64)

C1(NFK) = C(p, k′,m) + C(p′, k′,m) + C(p, k′,m′) (4.65)

+C(p′, k′,m′) (4.66)
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As the cost is monotically increasing with the decreasing of k value, and k > k′, then

C1(FK) < C1(NFK). In that case, the best response strategy for player 2 is FollowK.

Now let us have a look at player 3, whose costs under different strategies are as follows:

C1(FM) = C(p, k,m) + C(p′, k,m) + C(p, k′,m) (4.67)

+C(p′, k′,m) (4.68)

C1(NFM) = C(p, k,m′) + C(p′, k,m′) + C(p, k′,m′) (4.69)

+C(p′, k′,m′) (4.70)

As the cost function can be rewritten as C(p, k,m) = ln ε−ln(1−ε)
kp
m
−p

, whose value increases

with the decrease of m, on the other hand m > m′, then C1(NFM) > C1(FM). In that

case, the best response strategy is FollowM for player 3.

In that case, {FollowP, FollowK,FollowM} is a Nash equilibrium for the game. In

another word, the parameter selection algorithm of PBF is a Nash equilibrium.

On another hand, we can also claim that

Theorem 4.2. The parameter selection algorithms for T-PBF is a Nash Equilibri-

ums Robert (1992).

Proof. Floowing the same procedure of the upper proof, we first set up a normal form game

for the parameter selection game of T-PBF as a triple (N, (Si)i∈N , (ci)i∈N), where

• N is the set of players, and n = 4;

• Si is the set of strategies of player i. Each player can choose to follow or not

follow a specific rule of choosing a parameter, where S1 = {FollowP,NFollowP},
S2 = {FollowK,NFollowK}, S3 = {FollowM,NFollowM}, and S4 =

{FollowQ,NFollowQ};

• S = S1 × S2 × S3 is the set of states;
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• a state is s = (s1, ..., sn) ∈ S;

• ci : S → < is the cost function of player i ∈ N , which is defined as the difference

between the upper and lower estimation bounds.

The cost can be computed as:

C(p, k,m, q) = fmax − fmin = (4.71)

m ln

[
k−ŷ
k
− 1.96

√
(1− k−ŷ

k )(k−ŷ)
k2

]
(k −m)p

− (4.72)

m ln

[
k−ŷ
k

+ 1.96

√
(1− k−ŷ

k )(k−ŷ)
k2

]
(k −m)p

(4.73)

where

ŷ = (1− e− pk(n−fmax)
m e−pfmax)

1− (1− q)ep
q

(4.74)

We have proved previously, that the best response strategies for the first three players

are FollowP , FollowK, and FollowM separately. In the following part, we will show

that the best response strategy for player 4 is FollowQ.

In general, the costs of player 4 under different strategies are as follows:

C1(FQ) = C(p, k,m, q) + C(p′, k,m, q) + C(p, k′,m, q) (4.75)

+C(p, k,m′, q) + C(p′, k′,m, q) + C(p′, k,m′, q) (4.76)

+C(p, k′,m′, q) + C(p′, k′,m′, q) (4.77)

C1(NFQ) = C(p, k,m, q′) + C(p′, k,m, q′) + C(p, k′,m, q′) (4.78)

+C(p, k,m′, q′) + C(p′, k′,m, q′) + C(p′, k,m′, q′) (4.79)

+C(p, k′,m′, q′) + C(p′, k′,m′, q′) (4.80)
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As we discussed in Section 4.5.4, if q is smaller than the lower bound of the computed

range, the T-PBF will be saturated and lose its estimation ability in a long run. As

mentioned above, 1−e−
pk(n−fmax)

m e−pfmax

1−ε ≤ q ≤ 1, then q′ < 1−e−
pk(n−fmax)

m e−pfmax

1−ε . In

that case, choosing q′ will saturated the bloom filter. As a result of that, the best response

strategy for player 4 is FollowQ.

To sum up, {FollowP, FollowK,FollowM,FollowQ} is a Nash equilibrium for the

game. In another word, the parameter selection algorithm of T-PBF is a Nash equilibrium.

4.7 Evaluation

In this section, we evaluate the performance of the PBF and its extensions, the C-PBF and

the T-PBF, using one web query dataset and one real Internet traffic dataset. We compare

the performance of our proposed algorithms with the following three baselines, in terms of

estimation accuracy and memory usage:

• Counting Bloom Filter (CBF) Fan et al. (2000): as a well-known extension of the

Bloom Filter, CBF uses counters to replace bits in each filter bucket. If the frequency

of an element grows large, CBF requires allocation of larger memory space to hold

all counters.

• Multi-Resolution Space-Code Bloom Filter (MRSCBF) Kumar et al. (2006): the sec-

ond extension, MRSCBF, employs multiple filters operating at different resolutions,

where the frequency estimation is performed by looking up this number in a pre-

computed lookup table.

• Random Sampled Netflow (RSN) Cisco (2010): RSN processes only one randomly

selected packet out of n sequential packets, and then estimate the frequency for each

sampled element based on its individual counter.

We emphasize that our approach is fundamentally probabilistic and approximate.

Therefore, it may not be able to always return accurate estimations, and may fail to identify
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Figure 4.9: The daily pattern for the web query dataset AOL (2006).

heavy hitters in three ways: it may give inaccurate estimates, it may wrongly insert some

small flows to the report, and it may miss some large flows. We call these three types of

errors: estimation errors, false positives, and false negatives. We define these metrics as

following:

• Estimation error ratio: this metric is defined as the difference, in percentage, between

the estimated frequency and the real frequency.

• False positive ratio: the false positive ratio is defined as the percentage of falsely

reported heavy-hitters, whose frequency are actually below f , among all flows whose

frequency are lower than f .

• False negative ratio: the false negative ratio is defined as the percentage of falsely

un-reported flows, whose frequency are actually above f , among all flows whose

frequency are above f .

4.7.1 Dataset A: Web Query Log Analysis

Our first evaluation dataset is a public web query dataset AOL (2006), where web query

logs, with 20M web queries, are collected from 650K users over a period of three months.

Each web query contains the user ID, searching keyword(s), a timestamp, and the web link
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Figure 4.10: Estimations of frequency results of the PBF.

that this user picks. The daily workload pattern is plotted in Figure 4.9, which shows a

seven-day repeating pattern on the number of queries per day. In the following, we will use

the PBF and the C-PBF to detect popular websites and key words, and use T-PBF to show

the trend of the daily query number for the website www.google.com.

Note that due to the limited size of the dataset, this task can be easily finished with any

conventional method. However, our goal is to demonstrate that our proposed methods can

achieve a better memory usage while introducing only limited errors. The limited size of

this dataset allows us to evaluate the performance of our proposed methods easily.

Detecting Popular Websites

The dataset includes a total of 378, 087 websites selected by users, where around 0.45% of

them have a frequency above 100. We define the popular websites as those that appear for

more than 100 times.

To detect popular websites, we first feed the dataset to a PBF with k = 150,

p = 0.001, and m = 6M , where the parameters are selected based on the method in

Section 4.4.4. Note that the total memory use is only 0.75MB (6M bits). Figure 4.10

compares the estimated frequency and the real frequency of the first 500 popular websites.

Observe that the estimations are matching real frequencies closely, with an average

estimation error computed using the formula festimated−freal
freal

as 4.7%. The primary source
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Figure 4.11: Estimations of frequency results of the C-PBF.

of inaccuracies comes from the randomness when flipping a bit from 0 to 1. Also note

that Figure 4.10 shows the upper and lower bounds of f estimations, which have much

larger errors compared to the estimated value of f (the estimate of f is calculated based on

Equation 4.12).

We also test the same dataset with the C-PBF, and the performance is comparable.

Specifically, for C-PBF, we set up k = 50, p = 0.03, m = 0.6M . The counter size of

C-PBF is set to 10 bits, so that the total memory overhead is the same as PBF. The average

estimation error of C-PBF is 4.9%, as shown in Figure 4.11. With this setting of C-PBF, the

maximum frequency that can be estimated is 34, 105, according to Equation 4.29, which is

sufficient for this dataset.

Next, we compare the performance of PBF/C-PBF with the baselines. The first baseline

is CBF, where we set it up with the most suitable parameters. We choose to set the counter

size to be 16 bits to accommodate the most frequent flows. Compared to the PBF, the

CBF consumes 16 times of the memory as the PBF and C-PBF under similar settings. The

advantages of CBF lie in that it does not provide approximate answers, as demonstrated

by the Figure 4.12, where no confidence intervals are plotted. The second baseline is

MRSCBF, where we set it up with l = 32, r = 5, and mi = kinl
ln 2

, where k = {3, 4, 6, 6, 6}
as mentioned in Kumar et al. (2006). As shown in Figure 4.13, the average estimation error

of MRSCBF is 10.1%, which is twice of the error of PBF and C-PBF. On the other hand,
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Figure 4.12: Estimations of frequency results of the CBF.
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Figure 4.13: Estimations of frequency results of the MRSCBF.
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Figure 4.14: Estimations of frequency results of the RSN.
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Figure 4.15: Detect popular key word with the PBF for the web query dataset.

besides a long and offline pre-computation phase to get the look up table, the MRSCBF

takes
∑5

i=1mi = 436, 371, 391 bits memory space, which is 72.7 times of the memory as

the PBF and C-PBF. The only advantage of MRSCBF is that once the lookup table is built,

it only takes a few CPU cycles to estimate the frequency. In PBF, however, a constant k

hashing functions need to be calculated. The third baseline is RSN, where we randomly

sample one packet out of ten packets. As a result of the low sample rate, RSN only takes

11, 063, 808 bits memory space, which is 1.8 times of the memory as the PBF and C-PBF.

According to Figure 4.14, the average estimation error of RSN is 11.3%. The major sources

of error are the randomness of sampling, and frequency estimation based on the sample

counters and the predefined sample rate. Better estimation error can be achieved, at the

cost of taking more memory space.

Detecting Popular Key Word

In this dataset, there are 580, 392 different key words used for searching websites, where

around 1.69% of them have a frequency above 100. We define the popular key words as

those that appear for more than 100 times.

To detect popular key words, we first feed the dataset to a PBF with k = 150,

p = 0.0005, and m = 8M , where the parameters are selected based on the method

in Section 4.4.4. Note that the total memory use is only 1MB (8M bits). Figure 4.15
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Figure 4.16: Detect popular key word with the C-PBF for the web query dataset.

compares the estimated frequency and the real frequency of the first 500 popular key

words. In general, the estimations are matching real frequencies closely, with an average

estimation error as 4.9%, where the primary source of inaccuracies is the randomness when

flipping a bit from 0 to 1.

On the other hand, we also test the same dataset with the C-PBF, and get a comparable

performance. For C-PBF, we set up k = 50, p = 0.02, m = 0.8M . The counter size of C-

PBF is set to 10 bits, such that the total memory overhead is the same as PBF. The average

estimation error of C-PBF is 3.5%, as shown in Figure 4.16. As the maximum frequency

that can be estimated is 34, 105, according to Equation 4.29, there is no missing point in

the figure.

Next, we compare the performance of PBF/C-PBF with the baselines. Compare to the

first baseline CBF, which is set up with the most suitable parameters. We choose to set the

counter size to be 18 bits to accommodate the most frequent flows. Compared to the PBF,

the CBF consumes 18 times of the memory as the PBF and C-PBF under similar settings,

as demonstrated by the Figure 4.17. For the second baseline MRSCBF, we also set up

l = 32, r = 5, and mi = kinl
ln 2

, where k = {3, 4, 6, 6, 6}. As shown in Figure 4.18, the

average estimation error of MRSCBF is 9.7%, which is twice of the error of PBF and C-

PBF. On the other hand, besides a long and offline pre-computation phase, the MRSCBF

takes
∑5

i=1mi = 669, 862, 928 bits memory space, which is 83.7 times of the memory as
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Figure 4.17: Detect popular key word with the CBF for the web query dataset.
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Figure 4.18: Detect popular key word with the MRSCBF for the web query dataset.
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Figure 4.19: Detect popular key word with the RSN for the web query dataset.
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Figure 4.20: Daily frequency trend estimation.

the PBF and C-PBF. The only advantage of MRSCBF is that once the lookup table is built,

it only takes a few CPU cycles to estimate the frequency, which is smaller compare to a

constant k hashing functions need to be calculated in PBF. For the third baseline RSN,

we also choose the sample rate as 0.1. As a result of that, RSN takes 18, 487, 258 bits of

memory space, which is 2.3 times of the memory as the PBF and C-PBF. On the other hand,

as shown in Figure 4.19, the average estimation error of RSN is 14.2%, which is around

three times of the error of PBF and C-PBF.

Frequency Trend of a Popular Website

For the long-term detection, we can use T-PBF to reveal the trend of frequency of a popular

website. Here we choose Google as our observing target. For the T-PBF, we set up k = 150,

p = 0.001, m = 6M , and q = 0.8. We trigger the decay operation every time we finish

processing one day’s data. As shown in Figure 4.20, in general, T-PBF can estimate the

frequency trend of the Google website well. On the other hand, when sudden changes

occur, T-PBF cannot adapt fast enough due to the existence of previous epochs’ data, which

take time to fully decay in the filter.
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Figure 4.21: Dataset traffic pattern, generated based on CAIDA (2013)
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Figure 4.22: Dataset flow frequency, generated based on CAIDA (2013)

4.7.2 Dataset B: Network Measurement Dataset Analysis

In our second case study, we use PBF to analyze heavy-hitters from Internet traffic traces.

Our evaluation dataset contains passive traffic traces from CAIDA’s equinix-chicago and

equinix-sanjose monitors on high-speed Internet backbone links CAIDA (2013). The

dataset spans one hour of activity. First, we analyze the general traffic pattern of the trace,

by counting the total number of packets collected in each minute. The traffic patterns are

shown in Figure 4.21. In the following, we will use the PBF and the C-PBF to detect the

heavy hitter flows, and use the T-PBF to detect the long-term trends of flow frequencies.
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To differentiate between flows, we use pairs of source and destination IP addresses as

the key for each flow. We next count the frequency of each flow in the whole dataset, where

the results are shown in Figure 4.22. Observe that most of the flows have a frequency

of only once or twice, but a small number of flows exist with a large frequency. In our

following experiments, we define a threshold of 1, 000 for those heavy hitters. These

flows account for 0.12% of the total 96, 854, 555 flows, where the maximum frequency

is 32, 404, 064.

Detecting Heavy Hitter Flows

First, we evaluate the estimation accuracy of the PBF. We focus on the data traces of the

first 5 minutes when we apply PBF and C-PBF in this study. Later we use T-PBF to handle

the entire hour of data. The reason is that networked devices such as routers will most likely

process datasets in a streaming manner, exactly as what T-PBF does, instead of processing

the entire dataset in one operation.
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Figure 4.23: Comparison between the real frequency and the estimated frequency with the
PBF.

For the first 5 minutes, there are 187, 116, 831 packets, which belong to 15, 454, 076

different flows. The number of flows with a frequency larger than 1, 000 is 13, 569. As

there are limited resource on networking devices, we set p = 0.00005, k = 4, 000, and

m = 800M bits, according to the method in Section 4.4.4. The comparison between the
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Figure 4.24: Comparison between the real frequency and the estimated frequency with the
C-PBF.

real frequency and the estimated frequency of the first 500 frequent flows (sorted by time)

are shown in Figure 4.23. Observe that the estimated frequency and the real frequency

are almost perfect matching each other. The only exceptions are those cases when the

PBF loses its estimation ability as it’s k hash bits are saturated with 1s, leading it to miss

certain data points. However, we argue that such missing points have no effects on the

identification of heavy hitters, as these missing points correspond to heavy flows with a

high certainty.

Next, we use the same first 5 minute data to evaluate the estimation accuracy of the

C-PBF. To fit the C-PBF into networking devices, we set up the size of the counter to

be 10 bits, so that m = 80M , k = 400, and p = 0.0015. As shown in Figure 4.24,

the C-PBF can estimate the frequency of flows equally accurately compared to PBF. On

average, the estimated frequency is 3.83% larger than the real frequency, caused by the

inherent approximate nature of C-PBF counting designs. This accuracy is comparable to

the original PBF design.

Next, we compare with the baselines including the CBF, the MRSCBF, and the RSN.

For the CBF method, we set k = 4000 and m = 800M . As shown in Figure 4.25, the

estimated frequencies are also close to the real frequencies, with an average error as 3.76%.

However, to prevent counter overflows, we have to set each counter to occupy 22 bits, which
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Figure 4.25: Comparison between the real frequency and the estimated frequency with the
CBF.
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Figure 4.26: Comparison between the real frequency and the estimated frequency with the
MRSCBF.
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Figure 4.27: Comparison between the real frequency and the estimated frequency with the
RSN.

means that in terms of memory overhead, the CBF takes 22 times of the memory compared

to PBF and C-PBF to deliver accurate counting performance. For the second baseline

MRSCBF method, we set l = 32, r = 6, and k = {3, 4, 6, 6, 6, 6} to accommodate the

most frequent flows. To reduce the computation time of the look-up table, we set the

maximum estimated frequency as 10, 000, which has no effects on detecting heavy hitter

flows. This is why the estimated frequency is never larger than 10, 000 in the Figure 4.26.

Excluding the flows with frequencies more than 10, 000, the average estimation error of

MRSCBF is 9.3%, which is more than twice of the error of PBF and C-PBF. On the other

hand, it needs
∑6

i=1mi = 22, 117, 154, 656 bits of memory to hold this MRSCBF, which

means that the MRSCBF takes 27.6 times of the memory compared to PBF and C-PBF

to estimate flow frequencies. For the RSN method, we set sample rate as 0.1. We can

observe from Figure 4.27 that the average estimation error is 4.61%. On the other hand,

RSN takes 1, 304, 986, 970 bits of memory space for this large dataset, which is 1.63 times

of the memory compared to PBF and C-PBF.

Long-term Heavy Flow Detection with T-PBF

We next investigate the performance of long-term flow detection with the T-PBF on the

whole dataset. For the T-PBF, we set p = 0.00005, k = 4000, m = 800M , and q = 0.3.
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Figure 4.28: Comparison of the real heavy hitter ratio and the detected heavy hitter ratio
of the T-PBF.

The decay operation is triggered after processing one minute’s traffic data. We calculated

the detected heavy hitter ratio (the number of detected heavy flows over the total number

of flows), the false positive ratio, and the false negative ratio for each period. For both the

false positive ratio and the false negative ratio, the threshold on frequency is set as 1000.

As shown in Figure 4.28, the detected heavy hitter ratio on average is 6.48% larger than the

real heavy hitter ratio. The source of this inaccuracy comes from the accumulation of flow

frequencies in the previous periods. In general, the T-PBF works as expected, as we can

observe that it triggers small estimation errors and low memory overhead.

Effects of Parameter Selections

We next perform experiments to evaluate the effects of k on estimation errors, the false

positive ratio, and the false negative ratio. With a given k, the computational overhead

and query delay is constant. In the experiments, we choose p to be 0.00005 and 0.0001,

respectively, and change k from 200 to 2000 with a step size 50. The value of m is

computed from Equation 4.17 with different k and p values. As shown in Figure 4.29,

the estimation error decreases with the increasing k values. This observation is consistent

with our theoretical evaluation shown in Figure 4.2.
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Figure 4.29: The average error rate of the PBF with p = 0.0001, and different k and m
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Figure 4.30: The false positive ratio of the PBF.
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Figure 4.31: The false negative ratio of the PBF.
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Figure 4.32: The memory overhead of the PBF with different k values.

On the other hand, as shown in Figure 4.30, the maximum false positive ratio is

0.000009, which is acceptably small. The false negative ratio shown in Figure 4.31 has

a maximum value of 0.03, which is also acceptably small. Note that the false negative ratio

is larger than the false positive ratio, because the number of heavy hitter flows is much

smaller than the number of non-heavy-hitter flows. We also observe that by increasing k,

the false positive and false negative ratios are decreasing. Finally, with the increasing of

k and p, the needed memory size is increasing as shown in Figure 4.32. This explains

the tradeoff between the error rates and the memory overhead: a larger memory overhead

typically leads to a better performance.

4.8 Conclusion

In this paper, we develop the probabilistic bloom filter (PBF), which extends conventional

bloom filters to perform probabilistic counting operations. We provide the PBF’s APIs

to demonstrate how they can be used by applications, and quantitatively investigate the

performance of the PBF through analytical approaches. The derived closed form results

answer our questions regarding the capacity, accuracy, and parameter selection of the PBF.

Finally, we also extend the PBF into two variants: a counting PBF (C-PBF) and a time-

decaying PBF (T-PBF), for additional application needs. Our evaluation results based
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on two realistic datasets show that this design outperforms the existing, state-of-the-art

approaches.

To the best of our knowledge, our work in this paper is the first probabilistic bloom

filter that is designed to count large volume of data with adjustable capacity and accuracy.

We hope our work can stimulate future work in this direction, and provide a basis for

investigations towards better methods based on probabilistic counting and bloom filters.
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Chapter 5

EDAL: an Energy-efficient,

Delay-aware, and Lifetime-balancing

Data Collection Protocol for

Heterogeneous Wireless Sensor

Networks

5.1 Abstract

Our work in this paper stems from our insight that, recent research efforts on open vehicle

routing (OVR) problems, an active area in operations research, are based on similar

assumptions and constraints compared to sensor networks. Therefore, it may be feasible

that we could adapt these techniques in such a way that they will provide valuable solutions

to certain tricky problems in the WSN domain. To demonstrate that this approach is

feasible, we develop one data collection protocol called EDAL, which stands for Energy-

efficient Delay-aware Lifetime-balancing data collection. The algorithm design of EDAL
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leverages one result from OVR to prove that the problem formulation is inherently NP-

hard. Therefore, we proposed both a centralized heuristic to reduce its computational

overhead, and a distributed heuristic to make the algorithm scalable for large scale network

operations. We also develop EDAL to be closely integrated with compressive sensing, an

emerging technique that promises considerable reduction in total traffic cost for collecting

sensor readings under loose delay bounds. Finally, we systematically evaluate EDAL to

compare its performance to related protocols in both simulations and a hardware testbed.

5.2 Introduction

In recent years, wireless sensor networks (WSNs) have emerged as a new category of

networking systems with limited computing, communication, and storage resources. A

WSN consists of nodes deployed to sense physical or environmental conditions for a

wide range of applications, such as environment monitoring Tolle et al. (2005), scientific

observation Werner-Allen et al. (2006), emergency detection Li and Liu (2009), field

surveillance Vicaire et al. (2009), and structure monitoring Xu et al. (2004). In these

applications, prolonging the lifetime of WSN and guaranteeing packet delivery delays are

critical for achieving acceptable quality of service.

Many sensing applications share in common that their source nodes deliver packets to

sink nodes via multiple hops, leading to the problem on how to find routes that enable

all packets to be delivered in required time frames, while simultaneously taking into

account factors such as energy efficiency and load balancing. Many previous research

efforts have tried to achieve trade-offs in terms of delay, energy cost, and load balancing

for such data collection tasks Liu et al. (2010); Yang Wengi (2011). Our key motivation

for this work stems from the insight that, recent research efforts on open vehicle routing

(OVR) problems are usually based on similar assumptions and constraints compared to

sensor networks Eksioglu et al. (2009); Braysy and Gendreau (2005); Ozyurt et al. (2006).

Specifically, in OVR research on goods transportation, the objective is to spread the goods

to customers in finite time with the minimal amount of transportation cost. One may
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wonder, naturally, if we treat packet delays as delivery time of goods, and energy cost

as delivery cost of goods, it may be possible to exploit research results in one domain to

stimulate the other.

Motivated by this observation, our work in this paper develops EDAL, an Energy-

efficient Delay-Aware Lifetime-balancing data collection protocol. Specifically, EDAL

is formulated by treating energy cost in transmitting packets in WSNs in a similar way

as delivery cost of goods in OVR, and by treating packet latencies similar to delivery

deadlines. We then prove that the problem addressed by EDAL is NP-hard. To reduce

its computational overhead, we introduce both a centralized meta-heuristic based on tabu

search Tan et al. (2001), and a distributed heuristic based on ant colony gossiping, to obtain

approximate solutions. Our algorithm designs also take into account load balancing of

individual nodes to maximize the system lifetime. Finally, we integrate our algorithm with

compressive sensing, which helps reduce the amount of traffic generated in the network.

We evaluate both approaches using large-scale simulations with NS-3 NS-3 (2011) as well

as a small-scale hardware testbed, and present the evaluation results.

As an extension to our conference paper Yao et al. (2013), which only considered

the case of homogeneous sensor network deployments, as reflected by its evaluation that

focused on delay and energy efficiency, in this article, we systematically address the very

different research challenges of heterogeneous sensor networks to significantly strengthen

our design. More specifically, our major contributions in this journal paper are as follows:

• We extend the data collection protocol called EDAL Yao et al. (2013), which employs

the techniques developed for OVR in operations research to find the minimum cost

routes to deliver packets within their deadlines, to a more comprehensive and general

version in the context of heterogeneous networks. The problem formulation is proven

to be NP-hard.

• We modified the algorithm design for both the Tabu Search in our centralized

heuristic and the status gossiping component in the distributed heuristic to not
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only make them suitable for heterogeneous sensor networks, but also improve their

performance and stability in actual deployments.

• We consider the challenge brought by sparse event detection, and add a systematic

set of experiments for understanding and evaluating the compressive sensing recon-

struction errors under different compression rate, data sparsity, and the number of

source nodes.

• Besides the simulations in a sensor network with heterogeneous nodes, we also

evaluate the performance of the proposed protocols on the IRIS sensor nodes to

demonstrate its advantages.

The remainder of the paper is organized as follows. Section 5.3 includes the background

about open vehicle routing problem, compressive sensing, and other related works.

Section 5.4 describes the details about the centralized heuristic and the distributed heuristic.

The simulation results on NS-3 NS-3 (2011) as well as comparisons with baseline protocols

are presented in section 5.5. Section 5.6 shows the comparative results on a small scale

hardware testbed. Finally, Section 5.7 concludes the paper.

5.3 Background

In this section, we describe the background knowledge on both the vehicle routing problems

and compressive sensing.

5.3.1 Vehicle Routing Problems

The vehicle routing problem (VRP) Eksioglu et al. (2009) is a well-known NP-hard

problem in operational research. VRP finds routes between a depot and customers with

given demands so that the transportation cost is minimized with the involvement of

the minimal number of vehicles, while satisfying capacity constraints. With additional

constraints, VRP can be further extended to solve different problems, where one of the
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most important is the vehicle routing problem with time windows (VRPTW) Braysy

and Gendreau (2005). This problem occurs frequently in the distribution of goods and

services, where an unlimited number of identical vehicles with predefined capacity serve

a set of customers with demands of different time intervals (time windows). VRPTW

tries to minimize the total transportation cost through the minimum number of vehicles,

without violating any timing constraints in delivering goods. If vehicles are not required

to return back to the depot, and if the time windows are replaced by deadlines, VRPTW

can be further extended to the open vehicle routing problem with time deadlines (OVRP-

TD) Ozyurt et al. (2006).

As an NP-hard problem, OVRP-TD has inspired many heuristics. Ozyurt et al. Ozyurt

et al. (2006) proposed the nearest insertion method, where the farthest node is chosen first

to be connected with a route. Then, repeatedly, each selected node chooses the nearest

neighbor that has not been assigned a route so far, and connects itself to this neighbor.

This procedure repeats until all customers are connected by routes. Solomon Solomon

(1987) developed the push forward insertion heuristic (PFIH), which repeatedly selects the

customer with the lowest additional insertion cost as the next node, until all customers are

connected. Once initial routes have been found, various algorithms Du and He (2012);

Cheng and Wang (2009); Chiang and Russell (1996); Ozyurt et al. (2006) are developed to

generate near optimal solutions based on simulated annealing Skiscim and Golden (1983),

tabu search Tan et al. (2001), or genetic programming Holland (1992).

5.3.2 Compressive Sensing

Once routes have been found using EDAL, we further refine the data collection efficiency

through an emerging technique called compressive sensing (CS). CS is a technique through

which data is compressed during their transmission to a given destination, by exploiting

the fact that most sensors may not always have valid data to report when they sample the

environment Caione et al. (2012); Wu (2009); Cao et al. (2011); Luo et al. (2009); Zheng
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et al. (2012); Ling and Tian (2010); Zhu and Wang (2010); Zheng et al. (2011), especially

for nodes deployed in stable environments with rare and infrequent events to be detected.

CS works as follows. Consider the case that there are N nodes generating N segments

of data. Such data is K-sparse, meaning only K of them are non-zero. We can compress

these N pieces of data into M pieces through a linear transformation, such as Equation 5.1,

to reduce the number of packets, where K < M � N . Formally we have:

y = Φx (5.1)

where y is a M × 1 column vector, Φ is a M × N matrix, and x is a N × 1 column

vector. As M � N , recovering x from y is an ill-posed problem. However, as long

as M ≥ K logN , x can be accurately reconstructed with very high probability through

l1 − norm minimization Donoho and Tsaig (2006).

Because CS promises improved energy efficiency and lifetime balancing properties Cao

et al. (2011), data gathering protocols have been proposed to exploit CS for better

performance. Xiang et al. Xiang et al. (2011) proposed a new data aggregation technique

derived from CS to minimize the total energy consumption through joint routing and

compressed aggregation. Mehrjoo et al. Mehrjoo et al. (2010) employed compressive

sensing and particle swarm optimization algorithms to build up data aggregation trees and

decrease communication rate. These two methods are different from EDAL in that they

require all nodes to contribute sensing data during the data collection phase. On the other

hand, Wang et al. Wang et al. (2010) proposed random routing methods based on different

network topologies to collect data from a subset of nodes, which is a similar application

scenario as EDAL. However, EDAL achieves better energy efficiency because it optimizes

the number of constructed routes such that the total number of packets is decreased. We

further compare the performance of EDAL with that reported in Wang et al. (2010) in the

evaluation section to show that a better gain in energy efficiency is achieved because it

exploits the topological requirements of compressive sensing.
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5.4 EDAL Algorithm Design

In this section, we propose the EDAL algorithm. First, we describe the problem model, and

how we can convert existing approaches in OVR research to sensor networks. Next, given

that this problem is NP-complete, we develop both centralized and distributed heuristics

for obtaining approximate solutions.

5.4.1 Problem Model

Our formulation of the problem follows a similar approach with those in the literature. We

assume that there are N heterogeneous sensor nodes deployed, which are modeled by a

connectivity graph of G = (V,E), where E represents wireless links between nodes. For

different types of nodes, the radio bandwidth and transmission power are different. All

links are assumed to be directional, and each is associated with a metric q representing its

link quality. To perform sensing tasks, there are M nodes selected as sources. All packets

must be sent to the sink within the required deadline, where different types of nodes have

their own deadline requirements. The objective function of the delivery tasks is that all

packets need to be delivered with the minimum total cost. The lifetime of a node is defined

as the time for it to deplete its energy. A list of these definitions is shown in the Table 5.1.

Based on these notations, for each link lij ∈ E and each route k, we define xijk as

xijk =

1, if route k contains link lij

0, otherwise
(5.2)

Next we initialize cij for links with appropriate values. If the link quality is poor, then

the link cost should be proportionally higher. On the other hand, to meet our goal of lifetime

balancing, it is appropriate to assign a higher weight to those links connecting nodes with

less remaining energy, so that they will be less frequently selected by the algorithm during

execution. Finally, those nodes that consume more energy for transmitting packets are less
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Table 5.1: Notations of EDAL

N Total number of nodes
M Total number of source nodes
E Total number of links
K Total number of routes
L Maximum level of node energy
Emax,s Total energy of node in type s
Ts The transmission power of node in type s
tpi The node type of node i
pki The ith node on path k
Pkp The pth packet transmitting on path k
ptkp The packet type of the pth packet

transmitting on path k
lij The link connecting node i and j
qij The link quality of the link lij
cij The weight of the link lij
tij The time for transmitting a packet over lij
ei The current remaining energy of node i
li The current energy level of node i
dr The delay requirement of packet in type r
t The processing time on node i

likely to be selected. Based on this intuition, we develop the following formula to assign

cij with proper values:

cij =
L−min li, lj
qij × qji

× Ttpi × tij (5.3)

where:

li =

⌈
L× ei

Emax,tpi

⌉
(5.4)

where Equation 5.4 defines a step equation for computing the remaining energy level of

node i. The ceiling value is computed to differentiate between complete energy depletion

and near-complete energy depletion. Together, Equations 5.3 and 5.4 ensure that those

nodes with less remaining energy, poor communication links, or more transition energy

will have a lower chance of being selected as forwarders.
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We now formulate our optimization objective, i.e., delivering all packets to the

destination under the constraint that no packet deadline is violated, as follows:

min
∑
k∈K

∑
i∈N

∑
j∈N

cijxijk s.t., (5.5)

∑
j∈N

x0jk = 1, ∀k ∈ K, (5.6)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0, ∀h ∈ (N − {pk1}),∀k ∈ K, (5.7)

∑
i∈pk,j∈pk

t+
tij
qij

< ∀p∈Pk
dptkp , ∀k ∈ K. (5.8)

where the objective function 5.5 minimizes the total communication cost (if two approaches

lead to the same cost, the one with lower number of participation nodes should be chosen),

and the constraints 5.6, 5.7, and 5.8 ensure that 1) all routes must end at the sink; 2) the

number of routes joining into a node should be the same as the number of routes leaving

from it, unless the node is the first or the last of a route; and 3) the time for the packets

being transmitted on the routes should not violate packet delay requirements.

5.4.2 Complexity Analysis

In this section, we prove that the aforementioned formulation is NP-hard.

Theorem 5.4.1. The problem of finding the minimum cost routes to deliver packets within

their deadlines, as defined in the previous section, is NP-hard.

Proof. To prove this fact, we need to select a known NP-hard problem, and show that in

polynomial steps, it can be reduced to our problem. The particular NP-hard problem we

select is the open vehicle routing problem with time deadlines (OVRP-TD) Ozyurt et al.

(2006), which is a variant of vehicle routing problem with time windows (VRPTW) Braysy

and Gendreau (2005). This problem aims to find the least cost routes from one point to a
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set of scattered points, and has been proven as NP-hard. Formally, this problem is defined

as follows: given a graph G = (V,E) with n + 1 vertices V and a set of edges E. Let

V contain 1 depot node and n customer nodes that need to be served within specified time

windows. Each edge inE has a nonnegative weight, dij , and a travel time, trij . Specifically,

trij includes the service time on node i, which we denote as tsi, and the transportation time

from node i to node j, which we denote as tlij . The objective is to minimize the total travel

cost with the smallest number of routes.

We now show that OVRP-TD can be reduced to our problem within polynomial steps.

The graph G in OVRP-TD can be easily transformed to a corresponding sensor network

topology by representing vertices with sensor nodes. The depot corresponds to the sink

node, and the customers correspond to the source nodes. The cost of the edges, dij , is a

little tricky to handle. Specifically, we need to solve equation 5.3 by adjusting the values of

li, lj , or the link quality q properly. On the other hand, however, the link quality q is actually

determined since it is related to the transmission time from i to j. That is, given tlij as a

known parameter in the OVRP-TD formulation, we can obtain the appropriate value of q by

enforcing that tij/qij (in WSN formulation) = tlij (in OVRP-TD formulation). Recall that

tij is the minimum transmission time of a packet over link lij . When links are unreliable,

multiple transmissions are needed to ensure reliable delivery. Because each transmission

is independent, the expected number of transmission rounds is 1/qij . Therefore, the total

transmission time is tij/qij . Since tij is a fixed parameter depending on the radio hardware

and bandwidth, we can decide appropriate qij for each link from tlij . After that, we are

able to obtain the appropriate li(j) values according to equation 5.3.

The remaining formulation is straightforward. The nonnegative transportation cost of

each edge in E represents the cost of path connecting two source nodes with the edge. The

path cost is computed based on the minimum remaining energy of the adjacent nodes. The

time window for each customer is (ts, td), where ts is the start time of the window, and td

is the end of the time window. If we set ts = pi, and td = pi + d, where pi is the start time

of the ith period, and d is the packet delay constraint, then the time window in OVRP-TD

is transformed to delay bounds in the WSN domain. In this way, we have transformed
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OVRP-TD to a special case of EDAL problem formulation in polynomial time. Given that

OVRP-TD is NP-hard, the problem defined by EDAL must also be NP-hard.

Algorithm 7 Heuristic Algorithm based on Revised Push Forward Insertion
Input: Topology graph G, the source node set S, the deadline set D, the remaining time

of packets RT , and the sink node t
Output: A set of routes R with the minimum cost

1: Set candidate list L = ∅ and R = ∅
2: Calculate the minimum path cost of all source nodes si ∈ S to the sink t using the

Dijkstra’s algorithm
3: Put all nodes in the source set S into the candidate list L
4: Find the node snew that has the maximum path cost to the sink from L, and assign the

global variable sm = snew
5: while L 6= ∅ do
6: Remove the node snew from L
7: Assign the remaining time of packet generated by snew based on the packet type

and D, and append the value into RT
8: for all node si ∈ L do
9: Compute the incremental delay dincr = DELAY(snew, si) + DELAY(si, t)

10: Compute the insertion cost as PATHCOST(snew, si) + PATHCOST(si, t)
11: If the insertion cost is the lowest, and the delay dincr ≤ min∀RTi∈RT RTi, pick

si as snew
12: for all remaining time RTi ∈ RT do
13: RTi = RTi − DELAY(snew, si)
14: end for
15: end for
16: if No candidate snew is found then
17: Put the currently found route into R
18: Start a new route construction procedure
19: Clear RT
20: end if
21: end while
22: Return R as the output

5.4.3 Centralized Heuristics

Given that we have proven the problem of data collection with deadline constraints as

NP-hard, we now present heuristic solutions to reduce its computational overhead. In this
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section, we propose a centralized meta-heuristic that employs tabu search Tan et al. (2001)

to find approximate solutions. We assume thatM nodes have been selected as sources at the

beginning of each data collection period. The heuristic algorithm consists of two phases:

route construction, which finds an initial feasible route solution, and route optimization,

which improves the initial results using the tabu-search optimization technique.

In the route construction phase of this algorithm, we present a heuristic algorithm based

on the revised push forward insertion (RPFIH) method, as shown in Algorithm 7. The

original push forward insertion algorithm was proposed by Solomon (1987), and we modify

it to fit the needs of wireless sensor network. At the beginning of RPFIH, for each node,

the minimum cost path to the sink is found. RPFIH then finds the node that has the largest

path cost to the sink, and incrementally selects candidate nodes with the lowest additional

insertion cost. For each candidate node, RPFIH also checks its feasibility by making sure

that the overall delay requirement is met. If no candidate node can guarantee the delay,

RPFIH initializes a new route with the node that has the largest path cost to the sink in the

remaining sources, and repeats this process until all sources are connected with the sink.

Finally, RPFIH generates a set of found routes as the final output.

We now analyze the time complexity of RPFIH. As the Dijkstra’s algorithm is used, it

takes O(E logN) time to find a minimum weight path between two nodes. In RPFIH,

a maximum number of (M−1)×M
2

paths between source nodes need to be computed.

Therefore, the overall time complexity is O(M2E logN).
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Figure 5.1: The worst case and optimal solution of RPFIH.

102



Next, we demonstrate the following result concerning the approximation ratio of

RPFIH.

Theorem 5.4.2. RPFIH is a polynominal-time 2-approximation algorithm for the VRPTW.

Proof. We have already shown that RPFIH is a polynominal-time algorithm with time

complexity as O(M2E logN). Let R∗ denote the optimal routes for the given set of source

nodes, and R denote the routes generated by RPFIH. When the delay bound is very tight,

each source node must follow the minimum cost shortest path toward the destination. In

that case, we can expect that approximately R∗ ≈ R, and C(R∗) ≈ C(R), where C

represents the total cost of the routes.

On the other hand, if the delay bound is very loose, VRPTW is equivalent to VRP.

Furthermore, if the vehicle capacity is not restricted, the lower bound on the cost of an

optimal route is the weight of the minimum spanning tree T Cormen et al. (2001) of source

nodes, where C(T ) ≤ C(R∗). On the other hand, in the worst case, we can observe that R

becomes a pre-order tree walking of T, while the insertion cost of nodes are ordered in the

pre-order tree walking sequence, as shown in Figure 5.1. Since a full walk W will travel

through every edge of T exactly twice, we know that C(W ) = 2C(T ) ≤ 2C(R∗). As R is

a route that is equal toW where the last link is deleted, we haveC(R) ≤ C(W ) ≤ 2C(R∗).

Hence, RPIFH is a 2-approximation algorithm.

Algorithm 8 The Centralized Heuristic Algorithm in EDAL
Input: The list of routes R from RPFI
Output: A list of optimized routes OR

1: Initialize Tabu move BF M -BF with zeroes and candidate list CL = {R}
2: while Total number of steps is less than M : do
3: Perform λ-interchange LSD based intensification on each route in CL
4: if A better route is found: then
5: Record the partial solution into R
6: else
7: Perform λ-interchange LSD based diversification on each route in CL
8: end if
9: end while

10: Output the best solution found so far in R
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While RPFI generates a list of routes, they are by no means optimal in the sense of

the overall cost and delay. We next optimize the initial solution using tabu search. Tabu

search is a popular memory-based search strategy for guiding search beyond locally optimal

points. To reduce the memory usage for keeping records of found routes in large networks,

we replace the Tabu move list in the original design with Tabu move BF. Specifically, tabu

search keeps the following data structures:

• Tabu move BF M -BF : this is a BF with fixed size to keep the recent moves, so that

problems such as repetition and cycling can be avoided.

• Candidate list CL: this is another list that stores the best solutions found so far by

the search process, ranked by their total route cost.

• Maximum number of iterations M : this is a parameter defined to guarantee the

termination of iterations.

In our tabu search implementation, we adopt the λ-interchange local search descent

(LSD) method, which uses a systematic insertion and swapping of nodes between routes to

produce mutations of the current solution. Up to λ nodes can be exchanged. For example,

if λ = 2, a total of eight interchange operations are possible, including (0, 1), (1, 0), (1, 1),

(0, 2), (2, 0), (1, 2), (2, 1) and (2, 2), where (i, j) means to choose i nodes in route r1 and

swap it with j nodes in route r2, while r1 and r2 may not necessarily be different. The tabu

search exploits LSD in two steps: intensification and diversification. In intensification, the

algorithm implements the 2-interchange LSD procedure on each route individually to find

the best potential order of nodes. The diversification step enables the algorithm to search

out of the local optimum by making random 2-interchange operations between routes so

that better routes that are combinations of the original ones can be found. The detailed

steps of this algorithm are shown in Algorithm 8.
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5.4.4 Distributed Heuristics

One problem with the centralized heuristic algorithm we have developed in EDAL is that

it requires information to be collected from each node to a centralized one. In distributed

sensor networks, this step will typically incur additional overhead. Therefore, it is usually

desirable to distribute the algorithm computation into individual nodes. In this section,

we develop a distributed heuristics algorithm for EDAL, where at the beginning of each

period, each source node independently chooses the most energy-efficient route to forward

packets.

Our developed algorithm is based on the ant colony optimization Chen et al. (2006) and

geographic forwarding. It consists of two phases: status gossiping and route construction.

In the status gossiping phase, each source node sends forward ants spreading its current

status, including its remaining energy level, toward its neighbor source nodes within H

hops. Meanwhile, the status data of nearby nodes is collected by each source node

with the received backward ants. During the gossip phase, the ants are forwarded with

a modified geographic forwarding routing protocol, which chooses the node with the

maximum remaining energy while making geographical progress towards the destination as

the next hop. Once a node collects status information of all its nearby sources, it enters the

route construction phase, and runs RPFIH distributedly based on collected nearby neighbor

status, and the estimation of node status outside the immediate neighborhood. The overall

algorithm is shown in Algorithm 9.

More specifically, the algorithm works as follows. At the beginning of each period, each

source node predicts which nearby nodes to be the source nodes, based on the given random

seed for each nearby node. Then the node generates forward ants (an ant is represented as

one or more packets) targeting at each of its nearby source nodes. The role of the forward

ant is that it explores the path and collects information along the travel, and the role of the

backward ant is that it travels back to the source node and informs their pass-by nodes to

update their knowledge with the collected information.
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Algorithm 9 The Ant Colony Based Gossiping Algorithm
Input: Topology graph G, the source node s, the nearby source node set Ss
Output: s spread its status to nearby neighbors, and collects status of nearby neighbors

1: for all si ∈ Ss do
2: s generates a forward ant to si, where the ant holds a tuple as <
source, destination, intermediatenode >, where intermediatenode is a tuple <
ID, role, energylevel >

3: end for
4: if Node n /∈ Ss receive the forward ant a then
5: n generates an intermediate node tuple in, and saves in into the payload of a
6: n forward a with the modified geographic forwarding routing protocol
7: end if
8: if Two forward ants from source nodes si and sj meet at node n /∈ S then
9: Ants exchange information

10: n generates backward ants towards si and sj
11: else if Node n ∈ Ss then
12: n generates backward ants towards s
13: else
14: n picks snew ∈ Sn, where DISTANCE(snew, s) > DISTANCE(n, s)
15: Repeat the process, until a source node is found
16: end if
17: if A backward ant travels to a node n then
18: n updates neighbor status with backward ant payload
19: end if
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When a relay node gets a forward ant, it selects the neighbor node with the most

remaining energy to make progress to the destination as the next hop, and sends the ant

out. The forward ant collects the information of the status and remaining energy level of

each encountered node along the path. The backward ant is released under one of three

cases: first, the forward ant meets another ant sent from other source nodes, where they

exchange information with each other immediately; second, the initial target of the ant has

been reached, and it is found to be a source node; third, the initial target is reached, but it is

not a source node. Instead, a newly picked one along the path is. In each of these cases, the

backward ant will be sent along the traveled path of the forward ant, and each node along

the path will be updated with the collected information carried by the backward ant. With

ant colony gossip, one advantage is that we can now reduce the information collected by

nodes by making the collected status more relevant. The computation complexity of ant-

colony based gossip is at most 4H2 in the worst case, where H is the maximum number of

hops in the gossip range.

At the end of gossip phase, each source node s collects a list of source nodes, S, and the

cost of e edges Ws. Each node in S can be inserted into the route in the route construction

phase. For Ws, it contains the costs of e edges traveled by all ants sent or received by node

s.

The route construction phase is based on the RPFIH introduced in previous section.

For each source node, it triggers the RPFIH if no other nearby source node with a longer

distance to the sink is detected in the ant colony gossip phase. As all nodes start with a

fixed amount of energy according to the node type, the source node can accurately estimate

the status of nearby nodes. In that case, the minimal weight path from a source node to a

nearby source node can be calculated with the currently held information. The tricky part

is how to find the minimal weight path to the sink, so that the source can examine if the

newly formed route violates the delay constraint. We solve this problem by letting each

source node first compute the minimal weight path to each of the nodes on the border of

its gossip range that make geographical progress toward the sink, and estimate the weight

of the path from that node to the sink, so that it can choose the one with minimal total path
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Algorithm 10 The Distributed Heuristic for EDAL
Input: Topology graph G, the source node s, the neighbor source node set S, the deadline

set D, the remaining time of packets RT , and the sink node t
Output: Constructed routes with si ∈ S with the minimum insertion cost such that D is

not violated
1: Run the ant-colony based gossip to collect neighborhood status
2: Estimate the minimum path cost of s and all si ∈ S to the sink t using the Dijkstra’s

algorithm
3: Put all nodes in the source set S into the candidate list L
4: if ∀DISTANCE(s, t) > DISTANCE(si, t) then
5: goto 14
6: end if
7: if Route construction packet rc is received then
8: Extract partially constructed route pr from rc, and the minimum remaining time of

packets dm of pr
9: if s is already assigned a route then

10: Send a packet to inform the previous source node, and terminate
11: end if
12: Remove n ∈ pr from S, and goto 14
13: end if
14: for all Node si ∈ L do
15: Compute the incremental total delay dincr = DELAY(s, si) + DELAY(si, t)
16: Compute the insertion cost as PATHCOST(s, si) + PATHCOST(si, t)
17: If the insertion cost is the lowest, and the delay dincr ≤ dm, append si to pr
18: Update the remaining time of each packet i as ri = ri − DELAY(s, si)
19: Send a construction packet to si with payload pr and dm = min ri
20: end for
21: if No candidate si is found then
22: Choose t as the next node, and send construction packet to t
23: Send construction packets with empty route to each si ∈ S
24: end if
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weight. Assume that there is a path p, which takes n hops from node s to the sink, in the

gossip phase, node s knows the edge weight of the first k hops as c, then the cost of the

whole path is computed as:

Cs =
∑

1<w<k

cw + (n− k) ∗
∑

w∈Wi
Wiw

e
(5.9)

That is, by using the number of hops and the average cost per link, the source can

estimate the whole path cost from itself to the sink. The overall distributed algorithm is

shown in Algorithm 10. Note that here, a source node i will be triggered to select the next

target node by either receiving a route construction packet or being selected as the farthest

node to sink. The algorithm terminates after all source nodes are included into their own

route. In the route construction phase, only the neighborhood status information is taken

into consideration to find the minimum cost path between nearby source nodes. Therefore,

the computation complexity for Dijkstra’s algorithm is reduced to O(H2 logH2). Overall,

the total complexity of the distributed heuristic is O(H2) + O(H2 logH2), which is

O(H2 logH2), where H is the size of gossip range in the number of hops.

5.5 Simulation based Evaluation

In this section, we present the performance evaluation results on a large network topology

with a simulation platform. To evaluate EDAL, we implement both the centralized heuristic

(C-EDAL) and the distributed heuristic (D-EDAL) described in Section 5.4, and compare

their performance in terms of network lifetime, selected nodes, and packet delay, with and

without the integration of compressive sensing, to two selected baselines. The network

lifetime is defined as the time for critical nodes to deplete their energy in the network. The

details are shown in the following parts of this section.
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5.5.1 Experimental Settings

In order to understand the network performance of EDAL under different delay require-

ments, we simulate our design in NS-3 NS-3 (2011). In the simulation, a uniform network

topology with 256 sensor nodes is chosen as the simulation environment. On average, each

node has at least four adjacent neighbors to communicate with. To accurately reflect true

radio properties, we adopt unreliable links in our simulations. The link quality of all links

is set to be 0.9 for our comparison purposes. While we acknowledge that more complicated

radio communication patterns can be used, adopting this relatively simple radio model is

already sufficient to demonstrate the performance differences between our approach and

alternative baselines. The sink node is placed outside the grid and between the middle

two columns. We assume that a data collection task has been deployed, which is executed

periodically with a period length of 2 minutes. At the beginning of each period, a random

collection of nodes are selected as sources. Once they have sensing data to report, either

C-EDAL or D-EDAL is triggered to generate new routes based on the current selection of

source nodes. In D-EDAL, we set the gossip range to be 3 hops.

We compare the performance of C-EDAL and D-EDAL with the following two routing

baselines:

• Minimum spanning tree (MST) routing: this is a widely used, conventional routing

algorithm of WSNs, where a minimum spanning tree is constructed for collecting

data to the sink.

• Location-aware random routing (LRR) Wang et al. (2010): this algorithm works in a

similar way to EDAL in the sense that it also focuses on collecting data from a subset

of sources. It also integrates a level of randomness in its design, which makes the

comparison particularly interesting since EDAL exploits AI based search to introduce

similar randomness.
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As the goal of EDAL is to connect all source nodes with minimum total cost under the

constraint that it aims to achieve a balance between packet delay requirements and lifetime

balancing, we compare EDAL with baselines on the following metrics:

• Network lifetime: this metric is computed as the ratio of network lifetime of different

algorithms to the network lifetime of MST, which is taken as the standard unit.

• Average selected node number: it is collected as the number of nodes used to form

routes under different delay bounds.

• Average energy consumption: it is measured as the average energy consumption of

the whole network in each period.

• Node remaining energy: this metric is generated as the percentage of remaining

energy from the full battery on each node.

• Packet delays: it is the time consumed for transmitting the packet from the source to

the destination.

The energy-efficiency performance is well evaluated with the first three metrics, while

the lifetime-balancing and delay-aware performances are clearly indicated with the cor-

responding fourth and fifth metrics separately. We also integrate compressive sensing

with EDAL to achieve a better gain in energy efficiency, by exploiting the topological

requirements of compressive sensing.

5.5.2 Algorithm Overhead

In this section, we first evaluate the average time consumed to finish one round of algorithm

computation to show the scalability and practicability of our algorithm.

We first discuss the scalability of the centralized heuristic, based on computational time

overhead vs. network size, as shown in Figure 5.2. This analysis provides a sense of

feasibility for implementing the centralized heuristic in a real sensor network. Observe

that, although centralized heuristic provides better performance, it is infeasible to run the
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Figure 5.2: Computational time overhead of the centralized heuristic under different
network sizes

centralized heuristic for large topologies with more than 400 nodes, as the computation

takes longer than the communication period.

We also measured the average time used by each source node for building the routes

in a distributed way, based on time overhead vs. gossip range, as shown in Figure 5.3.

The computation overhead of the distributed heuristic on each node is tightly correlated

with the gossip range, while the algorithm completion time is tightly correlated with the

network size. In such case, we collected the time for finishing algorithm computation on

each node with different gossip ranges on a uniform network of 256 nodes. Apparently,

the larger the gossip range is, the more network status needs to be collected. However, this

also leads to longer time to finish computation, which, in fact, will be too long for gossip

ranges larger than 5. In this section, we choose the gossip range as 3.

Secondly, we compare the memory usage of using original Tabu search and our

modified Tabu search algorithm, which replace the Tabu move list to Tabu move Bloom

Filter. After implementing our modified Tabu search algorithm, the memory usage of the

centralized heuristic is reduced by 24.9%. This is because Bloom Filter is more space

efficient than lists. On the other hand, the memory usage of the distributed heuristic is

reduced by 17.1%. The memory saving on centralized heuristic is larger than the distributed
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Figure 5.3: Computational time overhead of the distributed heuristic with different gossip
ranges in a network with 256 nodes
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Figure 5.4: The average power distribution of each node for the centralized algorithm.

heuristic is because the number of possible routes found by each node in the distributed

algorithm is small in nature, such that there is no large space of memory to be saved.

Third, we evaluate the percentage of energy consumed on each node for different

operations. The operations include packet transmission, packet reception, flash access,

algorithm computation, and compressive sensing. As shown in Figure 5.4, for each node

in the centralized algorithm, on average, the packet transmission takes 42.38% of the

total energy, packet reception takes 40.27%, flash access takes 12.48%, and compressive

sensing takes 4.87%. There is no energy consumed for algorithm computation, as the

algorithm is computed on the central station. On the other hand, for distributed algorithm,
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Figure 5.5: The average power distribution of each node for the distributed algorithm.

as shown in Figure 5.5, in the total energy consumption for each node on average, packet

transmission takes 29.75%, packet reception takes 28.35%, flash access takes 8.78%,

algorithm computation 28.62%, and compressive sensing takes 4.5%.

5.5.3 Experiment Results for Network with Homogeneous Nodes

EDAL without CS

To evaluate the energy efficiency and lifetime balancing effects of EDAL, we first run a

set of experiments with EDAL under different delay requirements. The delay bounds of

packets are set to be 45 ms, 67.5 ms, 90 ms, 112.5 ms, 135 ms, 157.5 ms, 180 ms, and

202.5 ms separately for each run of experiments. As the chosen baselines do not take delay

requirements into consideration, their results do not have big variations on network lifetime

and energy consumption under different delay bounds.

As one goal of EDAL is to connect source nodes with the minimal number of relay

nodes, we collect the number of nodes used to form routes under different delay bounds,

as shown in Figure 5.6. Observe that the average number of nodes used by MST and LRR

remains almost the same. For MST, this is because the routing tree is fixed, and the source

nodes are randomly selected with a constant probability. For LRR, this is because the routes

are randomly constructed based on predefined rules; therefore, the ending result does not

have considerable fluctuations. For C-EDAL and D-EDAL algorithms, on the other hand,

the number of participating nodes decreases with the increased delay constraints. This
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Figure 5.6: The average node number used in each period by different algorithms with
different delay requirements

is because as the delay requirement is relaxed, more source nodes can be added into the

same route, a feature that is made possible by the tabu search and ant-colony algorithms

adopted by EDAL. As a result of that, fewer and fewer nodes are selected due to the triangle

inequality (eg. there are two source nodes A, and B. The routes for A or B send packet to

the sink node individually takes more nodes than the route for A send packet to B then B

send packets to the sink node, in most cases), where relay nodes can serve more source

nodes simultaneously.

To evaluate the energy efficiency performance of our design, we measure the average

energy consumption of the whole network in each period, as shown in Figure 5.7. We can

observe that C-EDAL and D-EDAL consume less energy on average compared to the two

baselines. This is because on average they are using fewer nodes to transmit packets in

each period.

As the average number of nodes used by MST stays constant under different delay

bounds, the network lifetime of MST remains the same as well. As a result, we take the

network lifetime of MST as the standard unit, and for each routing algorithm, we compute

the ratio of its network lifetime to the standard MST network lifetime. The larger this ratio,

the longer the lifetime is. As shown in Figure 5.8, the network lifetimes under C-EDAL

and D-EDAL are increasing considerably with the delay bounds, while the network lifetime
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Figure 5.7: The average energy consumption of the network running different routing
algorithms
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Figure 5.9: The CDF of delay of packets generated in the whole network duration from
different routing algorithms

of LRR remains almost constant. This is expected, because as the delay requirements are

relaxed, less number of nodes is selected for routing as shown in Figure 5.6. In that case,

the total energy consumption also decreases accordingly. In general, compared to MST,

C-EDAL increases the overall system lifetime by up to 59.4%, and D-EDAL increases

the overall lifetime by up to 54.8%. On the other hand, compared to LRR, C-EDAL

increases the lifetime by up to 15.4%, and D-EDAL increases the lifetime by up to 12.1%.

The lifetime gains of EDAL over LRR are not very large because in LRR, preliminary

optimization has already been applied to filter out those inefficient routes. On the other

hand, EDAL takes the delay bound into consideration, so that it is likely to choose the

shortest paths especially when the delay bound is tight. That is why the network lifetime is

comparably shorter with tighter delay bounds.

To show that EDAL also meets delay constraints, we set the delay bound of data

collection tasks to be 90 ms, and measure the overall packet delay for C-EDAL, D-EDAL

and the two baselines. As shown in Figure 5.9, the packet delay of MST is the shortest, as

the packets take the fewest number of hops to the sink along the routing tree. However, as

LRR does not take delay as a constraint when generating random routes, 6.4% of packets

violate their delay requirements, and sometimes, the actual delay could be considerably

higher. On the other hand, only 0.3% of packets violate delay constraints in C-EDAL
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Figure 5.10: The average energy consumption of the network with CS while running
different routing algorithms.
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Figure 5.11: The network lifetime with CS implemented on different routing algorithms.

because of the unreliable links. D-EDAL performs a little worse than C-EDAL, having

0.5% of packets violating the delay constraints because of its limited gossiping ranges.

EDAL with CS

Our implementation of EDAL also integrates compressive sensing since this will provide

us with better energy efficiency and lifetime balancing. In compressive sensing, sparse data

is compressed into a small number of packets. Therefore, we are not only interested in the

new energy efficiency of EDAL, but also the reconstruction rate of data.
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First, assume that the sparsity of data is known ahead, we evaluate the network lifetime

of EDAL and two baselines while changing the packet delay constraints. To measure the

energy efficiency performance of EDAL with CS, we also measure the average energy

consumption of the whole network in each period. Compare Figure 5.10 and Figure 5.7, we

can observe that EDAL with CS consumes less energy during each period than pure EDAL

with loose delay bounds. This is because CS enables the network to transmit fewer packets.

Figure 5.11 shows the network lifetime of C-EDAL with CS, D-EDAL with CS, MST, and

LRR with CS. The lifetime of MST is still used as the standard unit. In general, the network

lifetime increases with more relaxed packet delay constraints. In fact, compared to MST,

the network lifetime is increased by up to 129.1% for C-EDAL with CS, and up to 56.5%

for D-EDAL with CS. This is because EDAL takes into account the number of routes,

which it aims to minimize during its optimization process. On the other hand, when the

network delay increases, more source nodes can be added into the same path, which results

in a further decrease of the number of routes. As a result, the overall relay nodes involved

decrease in number, so does the number of packets transmitted by the shared nodes. In

contrast, the lifetime for LRR with CS is decreased by 47.1% on average compared to

MST. This is because each source node tries to independently generate a random path

towards the sink in LRR, causing the nodes near the sink to be shared by many routes. This

phenomenon causes such nodes to transmit more packets in total than LRR without CS,

which also explains why the lifetime of EDAL with CS is shorter in tight delay bounds

compared to EDAL without CS implemented.

To measure the load balancing feature of EDAL, we fix the delay bound to be 180 ms,

and collect the CDF of remaining energy on each node at the end of the simulation. As

shown in Figure 5.12, as enabled by the load balancing performance of CS, we can observe

that the curves of EDAL are less steep compared to the curves of the two baselines, meaning

that it achieves a better load balancing result. Also, in this figure, EDAL has less remaining

energy because it executes the routing tasks for more periods.

Finally, we consider the case where the sparsity of data is unknown in advance. To

achieve the most power-efficient compression ratio, and to achieve low reconstruction
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Figure 5.12: The CDF of remaining energy of each node while running different routing
algorithms
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Figure 5.13: The network lifetime with CS implemented on different routing algorithms
with delay constraint as 135 ms
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Figure 5.14: The reconstruction error under different compression rate, data sparsity, and
source node number.

errors, we implement a centralized feedback system to adjust the compression ratio for

the next period based on the current reconstruction error for all the packets collected in

the ongoing period. We define the compression ratio as M
′

M
, where M ′ is the number of

packets collected with compressive sensing, and M is the number of packets that can be

used to represent the original data. It is straightforward to understand that the lower the

compression ratio is, the fewer the number of packets needs to be transmitted. Therefore,

more power can be saved, as shown in Figure 5.13. To make the system work properly, we

compute and plot the relationship between reconstruction error and compression ratio, data

sparsity, and source node number as shown in Figure 5.14, where the reconstruction error is

computed as the average of 100 runs of reconstruction rounds. We predict the data sparsity

in next period based on the current reconstruction error and the number of source nodes,
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Figure 5.15: The average node number used in each period by different algorithms in the
heterogeneous network

so that we can then choose the best compression ratio based on the predicted results. We

observe from Figure 5.14 that the compression ratio with acceptable reconstruction error

decreases with the decrease of data sparsity and increase of source node number.

5.5.4 Experiment Results for Network with Heterogeneous Nodes

As described in section 5.4, EDAL is designed for heterogeneous networks with heteroge-

neous nodes and different types of packets. We assume that heterogeneous nodes consume

different amount of energy for packet transmissions, and different types of packets have

heterogeneous delay bounds. To measure the performance of such networks, we present

simulation results on three types of sensor nodes and five types of packets.

EDAL without CS

We first investigate EDAL performance without compressive sensing. We set the average

delay bounds of packets to be 67.5 ms, 90 ms, 112.5 ms, 135 ms, 157.5 ms, 180 ms, 202.5

ms, and 225 ms separately for each run of experiments. In each experiment, the number of

different types of packets are evenly distributed, and the corresponding delay bounds are

set to be a− 20, a− 10, a, a+ 10, and a+ 20 ms, where a is the average delay bound.
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Figure 5.16: The network lifetime while running different routing algorithms in the
heterogeneous network

Similar to the earlier experiments, in this section, we first compare the number of nodes

used to form routes under different delay bounds, as shown in Figure 5.15. As there is no

modification to MST and LRR, the average number of nodes used by these two algorithms

is still almost constant, for the same reason explained in the previous section. For C-

EDAL and D-EDAL algorithms, as a result of triangle inequality discussed previously, the

number of participating nodes is decreasing with the increased delay constraints. However,

compared with Figure 5.6, more nodes are used to construct routes for the same average

delay bound, as in such heterogeneous networks, the algorithm needs to serve tighter

minimum delay requirements. In that case, each route will consist of fewer source nodes.

Secondly, we compare the network lifetime. Similar to the previous section, we take

the network lifetime of MST as the standard unit. For each routing algorithm, we compute

the ratio of its network lifetime to the standard MST network lifetime as the average

number of nodes used by MST stays constant under different delay bounds. As shown

in Figure 5.16, similar to the trend of Figure 5.8, the network lifetimes under C-EDAL and

D-EDAL are increasing considerably with the delay bounds for the same reason described

in previous section. More specifically, compared to MST, C-EDAL increases the overall

system lifetime by up to 60%, and D-EDAL increases the overall lifetime by up to 52%.

On the other hand, compared to LRR, C-EDAL increases the lifetime by up to 13.79%, and
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Figure 5.17: The average energy consumption of the heterogeneous network while running
different routing algorithms.

D-EDAL increases the lifetime by up to 8.1%. However, as the minimum delay bound of

the heterogeneous network is tighter compared to the homogeneous network, for the same

average delay bound, the lifetime of the heterogeneous network is shorter.

Thirdly, the average energy consumption for each period of the whole network

is measured to explicitly show the energy efficiency performance of our design in

heterogeneous network. As shown in Figure 5.17, as fewer nodes are used to transmit

packets in each period, C-EDAL and D-EDAL consumes less energy on average compared

to the two baselines. However, compared to Figure 5.7, more energy is consumed for

serving a tighter minimum delay requirement.

Finally, we set the average delay bound of the heterogeneous network to be 90 ms, and

measure the overall packet delay for C-EDAL, D-EDAL and the two baselines. As shown

in Figure 5.18, almost all packets of EDAL meet their deadline requirements.

EDAL with CS

In this section, we will compare EDAL with the two baselines, under the condition that the

data sparsity is known ahead and the compressive sensing is integrated.

We first evaluate the network lifetime, while the average packet delay constraints are

set to different values. The network lifetime of C-EDAL with CS, D-EDAL with CS, MST,
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Figure 5.18: The CDF of delay of packets generated in the heterogeneous network from
different routing algorithms.
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Figure 5.19: The lifetime of the heterogeneous network with CS implemented on different
routing algorithms
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Figure 5.20: The average energy consumption of the heterogeneous network with CS while
running different routing algorithms.

and LRR with CS are shown in Figure 5.19. The lifetime of MST is used as the standard

unit. Similar to the results shown in Figure 5.16, the network lifetime increases with more

relaxed packet delay constraints. As compressive sensing enables fewer number of packets

to be transmitted, the lifetime of EDAL with CS is generally longer than the lifetime of

EDAL without CS. On the other hand, compared to MST, as EDAL considers generating

the minimal number of routes as one of its primary optimization goals, the network lifetime

increases by up to 124% for C-EDAL with CS, and up to 51% for D-EDAL with CS.

Finally, also observe that the lifetime for LRR with CS is decreased by 50.5% on average

compared to MST, and the lifetime of LRR with CS is shorter compared to LRR without

CS, which is consistent with our results in the previous section.

Secondly, the average energy consumption of the whole network in each period is

measured to show the energy efficiency performance of EDAL. Compare Figure 5.20 and

Figure 5.17, we can observe that EDAL with CS consumes less energy for each period than

EDAL only, as CS enables the network to transmit fewer number of packets.

Finally, we measure the load balancing feature of EDAL, by fixing the delay bound to

be 180 ms, and collecting the CDF of remaining energy on each node at the end of the

simulation. As shown in Figure 5.21, the curves of EDAL are smoother than the curves
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Figure 5.21: The CDF of remaining energy of each node while running different routing
algorithms in the heterogeneous network

of the two baselines, as EDAL performs better on load balancing than baselines. The less

remaining energy in EDAL is because it runs for more periods.

5.5.5 EDAL Application for Sparse Event Detection

As EDAL tries to select the minimal number of extra nodes, we can use it in sparse event

detection to provide improved system lifetime. In such scenarios, we suppose that K of S

total events are randomly generated to be measured in each time period, where K � S. To

detect such events, we deploy a sensor network of N nodes so that each node can detect the

event with a probability as Pr. Assume there are M sensors that are located in the vicinity

of the events, where K < M � S, and the remaining sensor nodes are put into sleep

state. The received signals of sensors are the mix of signals from simultaneously happening

events and the thermal noise. The event signals can be reconstructed from sensor readings

of no fewer than required number of sensor nodes.

When EDAL collects data on those M events, it selects the minimum number of extra

nodes. In that case, if the relay nodes are employed to sense the events besides the source

nodes, under the same Pr, fewer nodes are selected compared to other routing algorithms.

Assume the total number of selected nodes is n, if n is larger than m, where m is the lower

bound of nodes to provide acceptably accurate estimation ofX , Pr can be decreased to save
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power by selecting fewer than n nodes. To achieve this, we build up a feedback system in

C-EDAL to choose the most power efficient Pr based on the signal reconstruction error.

If the signal sparsity is known ahead, C-EDAL adjusts Pr simply based on the total nodes

used to form the data collection routes. However, in most scenarios, the data sparsity is

unknown. Luckily, as shown in Table 5.2, which is a subset of average mapping between

Pr and different data sparsity of 100 runs in our simulation network, there is an obvious

trend that the reconstruction error increases with the increase of data sparsity under the

same Pr, and decreases with the increase of Pr under the same data sparsity. In that case,

we can estimate the data sparsity based on the given Pr and reconstruction error, and then

choose the minimum Pr that can provide acceptable reconstruction accuracy for the next

period.

Table 5.2: Reconstruction error with different node selection probabilities and event
sparsity for N = 256, S = 256 .

Pr 5 10 15 20 25 30
10% 0.057 0.215 0.374 0.461 0.571 0.614
15% 2.9E-3 9.8E-3 0.149 0.219 0.317 0.399
20% 1.7E-3 6.6E-3 0.042 0.063 0.165 0.218
25% 2.9E-4 5.4E-3 0.013 0.023 0.061 0.113
30% 2.4E-6 2.1E-3 2.9E-3 3.1E-3 0.026 0.038
35% 5.2E-7 3.9E-5 5.5E-4 2.4E-3 7.1E-3 0.012

5.6 Hardware Evaluation

In this section, we show experimental results for running both the centralized heuristic (C-

EDAL) and the distributed heuristic (D-EDAL) described in Section 5.4, on a small scale

hardware testbed. We compare their performance in terms of network lifetime, energy

consumption, and packet delay, with and without the integration of compressive sensing,

to two selected baselines. The details are shown in the following parts.
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5.6.1 Experimental Settings

Figure 5.22: Hardware testbed topology.

The hardware testbed consists of 26 IRIS MEMSIC (2012) motes, and a DELL

Precision workstation as the central controller. Each IRIS mote is equipped with Atmel

ATmega1281 microcontroller, Atmel AT86RF23 radio, and 512K flash space. We deploy

the 25 motes in a uniform network topology on a wood board with size 2.3m×2.3m, and

use the extra mote as the sink node, as shown in Figure 5.22. To deal with the short

mote distances, we set IRIS mote to use the smallest communication power to reduce

communication range and interference between motes. The sink node is connected to the

DELL workstation, which performs two tasks: first, it collects the traffic information from

the sink mote; second, it runs C-DEAL periodically and send result routes to sink mote.

The workstation and the sink mote communicate through serial port.

In this hardware testbed, the communication links are not reliable. We collect

the number of packets transmitted ntr, and the number of packets received nr during
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experiments between each pair of adjacent nodes, and compute link quality as nr

ntr
. The

routing tree of MST algorithm is constructed with link cost computed as ntr

nr
.

5.6.2 Hardware Experiment Results
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Figure 5.23: The network lifetime while running different routing algorithms in the small
scale testbed network
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Figure 5.24: The average energy consumption while running different routing algorithms
in the small scale testbed network

To evaluate the energy efficiency and lifetime balancing effects of EDAL, we first run a

set of experiments with EDAL running alone under fixed delay requirements as 250 ms. In

these experiments, similar to what we did in simulations, we take the network lifetime of
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MST as the standard unit. For each routing algorithm, we compute the ratio of its network

lifetime to the standard MST network lifetime. As shown in Figure 5.23, compared to

MST, C-EDAL increases the overall system lifetime by 42.8%, and D-EDAL increases the

overall lifetime by up to 34.8%. On the other hand, if we enable CS, these values are

increased to 81.9% and 44.9%. Finally, we observe that LRR increases the lifetime by up

to 32.9%. However, if CS is enabled, LRR decreases the lifetime by 3.1%.

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

R
em

ai
ni

ng
 E

ne
rg

y 
(p

er
ce

nt
ile

)

CDF

C-EDAL
C-EDAL with CS

D-EDAL
D-EDAL with CS

MST
LRR

LRR with CS

Figure 5.25: The CDF of remaining energy of each node while running different routing
algorithms in the small scale testbed network
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Next, to evaluate the energy efficiency of our design, we measure the average energy

consumption of the whole network in each period, as shown in Figure 5.24. Consistent with

the simulation results, C-EDAL and D-EDAL consume less energy on average compared to

two baselines. This is because on average, they are using fewer nodes to transmit packets

in each period. As shown in Figure 5.25, enabled by the load balancing performance of

CS, we can observe that the curves of EDAL are smoother than the curves of the two

baselines. This shows that EDAL performs better on load balancing than baselines. Finally,

to demonstrate that EDAL also meets delay constraints, we measure the overall packet

delay for C-EDAL, D-EDAL and the two baselines. As shown in Figure 5.26, we can

observe that only less than 0.3% of packets violate their delay bound.

5.7 Conclusion

In this paper, we propose EDAL, an Energy-efficient Delay-Aware Lifetime-balancing

protocol for data collection in wireless sensor networks, which is inspired by recent

techniques developed for open vehicle routing problems with time deadlines (OVRP-TD) in

operational research. The goal of EDAL is to generate routes that connect all source nodes

with minimal total path cost, under the constraints of packet delay requirements and load

balancing needs. The lifetime of the deployed sensor network is also balanced by assigning

weights to links based on the remaining power level of individual nodes. We prove that the

problem formulated by EDAL is NP-hard, therefore, we develop a centralized heuristic to

reduce its computational complexity. Furthermore, a distributed heuristic is also developed

to further decrease computation overhead for large scale network operations. Based on both

simulation and hardware testbed evaluation results, we observe that compared to baseline

protocols, EDAL achieves a significant increase on network lifetime without violating the

packet delay constraints. Finally, we demonstrate that by integrating compressive sensing

with EDAL, additional lifetime gains can be achieved.
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Chapter 6

Conclusions

Developing power efficient algorithms on networking systems is a very important topic.

In this dissertation, we concentrate on achieving energy efficiency on networking systems,

such as DCN, WSN and Internet Routers, through three methodologies.

My first work is based on the first method, NP-complete problems and heuristics. The

goal of this work is to produce an energy efficient routing protocol for DCNs. Through

analyzing the real DCN traces, we found that as long as we avoid consolidating traffic

flows that were positively correlated based on 90-percentile demands instead of maximum

demands, we could further improve the energy efficiency of traffic consolidation. As

a result of that we propose CARPO, a correlation-aware power optimization algorithm

that consolidated traffic flows based on the correlation analysis among flows in a DCN,

and integrated the traffic consolidation with link rate adaptation for maximized power

savings. The integration was formulated as an optimal flow assignment problem, which

was known to be NP-Complete. The optimal consolidation solution and data rate of each

link in the DCN were computed using a linear programming approach. To reduce the

computation complexity, we then proposed a heuristic algorithm to find a consolidation

and rate configuration solution with acceptable overheads.

The second method, compressed data structures, is implemented in our second work

to save energy consumption on Internet routers. The problem of the second work is
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formulated in network measurement, where we addressed the problem on how to quickly

identify those heavy-hitters with limited memory space on Internet routers. As many

applications could benefit from approximate identifications and measurements of those

large flows, we presented a probabilistic version of the Bloom Filter (BF) and its operations,

called Probabilistic Bloom Filter (PBF), such that we could identify large flows using a

small amount of states. In that case, we could reduce the memory usage to achieve energy

efficiency.

The third work mentioned above adopts the third method, which is the combination

of the first two methods. In this work, we find that recent research efforts on open

vehicle routing (OVR) problems are usually based on similar assumptions and constraints

compared to wireless sensor networks. Motivated by this observation, we developed

EDAL, an Energy-efficient Delay-Aware Lifetime-balancing data collection protocol. As

EDAL addressed an NP-hard problem, we introduced both a centralized meta-heuristic

based on the tabu search method, and a distributed heuristic based on ant colony gossiping,

to obtain approximate solutions and reduce its computational overhead. Finally, we

integrated our algorithm with Compressive Sensing (CS), which helped reduce the amount

of traffic generated in the network to save more energy.

Motivated by my current and past research efforts, my future work will expand to

the more general domain of energy efficiency related research on networking systems

and mobile, ubiquitous systems. Current related works are focusing on designing better

network architecture, management algorithms, and performance optimizations for such

systems, and among them, energy efficiency is a critical concern that relates to all layers

of system and protocol designs. Such a need motivates the development of algorithms

to address energy efficiency on different aspects of ubiquitous networks, such as network

routing, information sharing, memory usage, CPU utility, among others.
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