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Abstract

This dissertation represents the descriptive and analytical breakdown of two new fluid

dynamics solutions for vortex motion. Both solutions model the bidirectional vortex within

a conical geometry. The first explored solution satisfies a simple Beltramian characteristic,

where the Lamb vector is identically zero. The second solution is of the generalized

Beltramian type, which fulfills the condition that the curl of the Lamb vector is equal

to zero. The two Beltramian solutions describe the axisymmetric, double helical motion

often found in industrial cyclone separators. Other applications include cone-shaped,

vortex-driven combustion chambers and the swirling flow through conical devices. Both

solutions are derived from first principles and Euler’s equations of motion which showcase

the stream function-vorticity relation and ultimately transforms into the Bragg-Hawthorne

formulation. The Bragg-Hawthorne equation allows for various implementations of the

Bernoulli and swirl functions. The angular momentum equation includes the source term

for the Beltramian solution. On the other hand, the Bernoulli relation drives the generalized

Beltramian model. Appropriate boundary conditions and assumptions reduce the governing

partial differential equation to an ordinary differential equation which is then solved by

a separation of variables approach. Resulting velocity, vorticity, and pressure variables

are discussed and graphed. The tangential and axial velocities are compared to two

experimental and numerical cyclone separator cases. Other features of the conical flow field

such as the conical swirl number and dual mantle locations are also explored. The inviscid,

incompressible, and rotational models ultimately lay the framework for complementary

solutions derived from the Bragg-Hawthorne equation or similar formulations.
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Chapter 1

Introduction and Background

This dissertation investigates the bidirectional flow of the cyclone within a conical

geometry. The analysis stems from the Journal of Fluid Mechanics article entitled, “Flow

in Industrial Cyclones,” written by M. I. G. Bloor and D. B. Ingham (BI) in 1987. The

investigation reconstructs the Bloor and Ingham problem, corrects apparent errors, and

extends the study to obtain additional results which has lead to several new solutions. The

reconstructed Bloor and Ingham solution proves to be an exact Beltramian solution, while

the original Bloor and Ingham investigation relies on a small-angle approximation. The

presented Beltramian model in Chapters 2 and 3 derives a very straightforward solution

and results. Likewise, a similar solution emerges from the governing equation of several

inviscid flow models, usually called the Bragg-Hawthorne or Long-Squire equation. The

second solution presented in Chapters 4 and 5 is of the generalized Beltramian (GB) type,

which is a more universal constraint of Beltramian flows producing a wider class of possible

models. The GB solution, similar to the Beltramian solution reconstruction, re-derives a

conference paper entitled, ”The Flow in Conical Cyclones,” written by J. Q. Bloor and J.

Abrahamson in 1999. Again, the reconstruction provides an exact generalized Beltramian

model with an unambiguous solution and results.

Chapter 1 administers an introduction to necessary topics and background information.

Since the models conferred in the dissertation emerge from strict analytical techniques, a

1



case is made for the pros and cons of theoretical methods in contrast to experimental and

CFD/numerical efforts. The governing fluid equations of motion are then presented with

brief discussion on related analytical solutions. Next, a section over vorticity, vortices, and

rotational flow is explored since the GB and Beltramian models are swirling flows that

rely heavily on rotation and prescribed vorticity. An investigation on various, yet related,

topics follow in the adjoining sections. The myriad of topics include the vorticity transport

equation, GB, Beltramian and Trkalian flows, the Beltrami-Gromeka-Lamb equation, and

the Lamb vector. Directly on the heels of these topics, the development, background,

and relevance of the Bragg-Hawthorne equation (BHE) is visited. Chapters 2 and 3

derive the Beltramian solution and present and discuss the results, respectively. Chapter 2

begins with the BHE in spherical coordinates. The following sections contain geometry,

boundary conditions (BC), and discussion of inlet conditions. The inlet conditions set

up the representation of the Bernoulli and swirl functions in the BHE. Next, the method

of separation of variables solves the PDE and reduced ODE from the BHE. Finally

in Chapter 2, the stream function materializes where the important flow characteristics,

velocities, vorticity, pressure, and swirl number engender. Chapter 3 opens with a detailed

discussion of the mantle and its historical nature followed by results of the mantle and

streamlines from the Beltramian model. Next, the outcome of the graphs of the velocities

is reviewed along with validation and comparison to experimental and numerical data

by Hsieh and Rajamani (1988) and Monredon et al. (1992). Chapters 4 and 5 follow

similar outlines to Chapters 2 and 3 except for the GB model. The GB model consists

of a Gegenbauer equation so the Gegenbauer and related Lengendre and hypergeometric

functions and background are examined briefly. Lastly, Chapter 6 reviews the dissertation

in an abridged manner, succinctly citing theory, method, results, and future/recommended

work.
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1.1 Approaches to Fluid Dynamics Modeling

Analytical fluid dynamics attempts to solve the fluid dynamics equations using general

applied mathematics. Many techniques and studies date back several decades and even

centuries (Stokes 1842; Helmholtz 1858; Meissel 1873; Lamb 1877; Thomson (Kelvin)

1880; Berker 1936; Batchelor 1951; Truesdell 1954; Wang 1991). Many mathematically

intense fluid dynamics studies occurred early on since computational capabilities were

either nonexistent or inaccessible for the times. Even in the middle 20th century, analytical

equations proved far more valuable than time consuming numerical calculations. However,

as technology has progressed into the 21st century, computational power has become

very robust for highly complex fluid dynamics flow situations. While computational

methods have become more popular and widespread, analytical solutions provide the

invaluable third pillar in the checks and balances system of theoretical, experimental, and

computational fluid dynamics.

1.2 Fluid Motion - Incompressible Flow

The canonical governing equations consist of classes separating various types of flows into

categories such as incompressible, inviscid, compressible, viscous, rotational, irrotational,

etc. Additional types of flows and equations include the boundary layer equations, the

vorticity transport equation, complex lamellar flow, potential flow, etc. Furthermore,

various equation names are given to these equations and flows such as Navier-Stokes, Eu-

ler, Gromeka-Lamb, Crocco-Vazsonyi, Navier-Stokes-Fourier, Bragg-Hawthorne, Oseen,

Helmholtz, Beltrami, Trkalian, etc.

Incompressible flow provides simplified cases of the fluid dynamics equations to be

solved. Compressible flow allows more complex flows to be calculated where density

changes are significant. Incompressible flow assumptions reduce the number of unknowns

dramatically giving researchers and engineers quick, yet relatively reliable results. The

primary ubiquitous equation for incompressible flow is known as the divergence field, or
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continuity equation. All solutions presented in this dissertation assume incompressible flow

conditions.

1.2.1 Viscous Incompressible Flows & the Navier-Stokes Equations

While the generalized Beltramian and Beltramian models presented in this dissertation are

inviscid solutions, it remains important to understand how the inviscid Euler equations are a

subgroup of the Navier-Stokes equations (NSE). Important relations, which, unfortunately,

cannot be discussed in detail for this dissertation, exist between Euler solutions and the

more refined exact Navier-Stokes solutions. According to Donaldson (1957), some of the

earliest work in fluid dynamics involving the study of viscosity and viscous forces dates

back to a period of scientific enlightenment in the 17th century, when Mariotte published

a study in 1686 regarding the motion of water and its forces. Soon after in 1687, Newton

published his study on the what is now known as plane Couette flow where he determined

a definition for shear stress, τ = µ (du/dy). A 150 year drought passed before any progress

was made in the field of theoretical fluid dynamics. In 1822, a French mathematician and

engineer, Claude-Louie Navier, recited his findings and proposed a set of general equations

for viscous motions of a fluid before the Acad’emie des Sciences. Navier attempted

to postulate a reigning problem: incorporating frictional effects into the fluid dynamics

equations developed by Euler and others (Zeytounian 2006).

In 1991, Wang writes a profound summary for the Annual Review of Fluid Mechanics

on some of the exact solutions of the NSE. Chang-Yi Wang contributes to the fluid

dynamics community with several articles on solutions he has formed in the past, including

a class of exact solutions of the NSE (1966), a review of the exact solutions to the unsteady

NSE (1989), and a review of the exact solutions of the NSE of the generalized Beltrami

form (1990). Wang (1991) defines the NSE as a set of nonlinear partial differential

equations (PDE) that govern fluid mechanics. In general, no universal solution exists for

the NSE. Only a few exact solutions prevail. Wang, a proponent of analytical solutions,

touts the importance of exact solutions of the NSE. Wang lists two points as:
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1. The known exact solutions define the fundamentals of fluid dynamics and allow for

a deeper insight to the NSE and flow phenomena.

2. Exact solutions provide a measuring stick for validating numerical, asymptotic, and

empirical results, which are all approximate solutions. Even though the endlessly

increasing computer power yields solutions for the NSE, only the exact solutions

gauge the numerical accuracy.

Wang (1966, 1989, 1991) denotes exact solutions of the NSE as those which satisfy the

conservation of mass and momentum. In vector form, the continuity and constant property

(density, viscosity) NSE appear as

∇ · u = 0

∂u
∂t

+ (u · ∇) u = F −
1
ρ
∇p + ν∇2u (1.2.1)

or

Du
Dt

= F −
1
ρ
∇p + ν∇2u (1.2.2)

where u (x, t) is the velocity vector as a function of space x and time t, p (x, t) is the pressure,

and ρ and µ remain constant and are the density and dynamic viscosity, respectively. Since

the density and dynamic viscosity remain constant, the kinematic viscosity, a combination

of density and dynamic viscosity, also remains constant where ν = µ/ρ.

The steady form of the NSE for momentum is

(u · ∇) u = F −
1
ρ
∇p + ν∇2u (1.2.3)

the no gravity form of the NSE for momentum is

∂u
∂t

+ (u · ∇) u = −
1
ρ
∇p + ν∇2u (1.2.4)
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and the steady with no gravity form of the NSE for momentum is

(u · ∇) u = −
1
ρ
∇p + ν∇2u (1.2.5)

While the curl of the momentum equation eliminates the pressure term (see Sec-

tion 1.3.2), the kinematic viscosity, ν, (or nondimensionally, the Reynolds number, Re),

remains an important parameter (Richardson and Cornish 1977; Wang 1989, 1991; Kee

et al. 2003). Thus, Wang (1989, 1991) gives the bearing of an exact solution as one

that satisfies Eq. (1.2.1) and Eq. (1.2.28) and is valid for all velocity and viscosity

values. All closed form solutions satisfy the requirements and are clear exact solutions.

However, direct numerical solutions of the PDEs remain as approximations, regardless of

accuracy, because the routine requires that an initial value for ν be given. In contrast, a

similarity solution combines ν into a parameter which yield universal graphs of the flow

characteristics, giving similarity solutions the title of, in accordance with Wang (1989,

1991), an exact solution. Wang (1991) does not consider, although some may dispute,

infinite series solutions extracted from expansions or separation of variables (SOV) as exact

solutions since, as the name implies, the solutions sum to infinity. Potential flow solutions,

obviously, do not count towards exact solutions either since they are degenerate cases of

the NSEs (Wang 1989). However, potential flows (and other constrained flows) satisfy the

NSE constraints exactly. Wang (1989) also does not review other approximations of the

NSEs such as the solutions of the boundary layer equations or Stokes’ equations.

Exact solutions to the NSE bridge a century or so and grace a variety of journal

publications. Usually, exact solutions narrow down the fluid problem to specific cases

which, according to Wang (1991), limits cross-referencing. Thus, difficulty arises for fluid

dynamics researchers to realize whether a solution has been solved and published already

similar to the dual nature of early math and fluid dynamics discoveries. Wang divulges

an example of multiple publications of an exact solution. Wang notes that the solution for

oblique stagnation flow on a plate was published three times by different researchers over

a period of 27 years. However, in today’s internet-based world culture and society, it has
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become ten times easier to find relevant material to research topics. On the other hand, this

produces ten times as much material to digest. Advances have been made to unprecedented

capability to access information, and in turn allows many researchers to contribute to this

vast vat of knowledge. Thus, the problem of cross-referencing remains the same as in the

year of Wang’s publication, 1991, and in the early days of fluid dynamics evolution.

Only a few publications review the solutions to the NSE at the time of Wang’s article,

1991. For a complete review of exact solutions of the NSE, Wang (1991) recommends

Berker (1963) which is based on an earlier publication of Berker (1936) and a publication

by Dryden et al. (1932). Other sources cited by Wang (1991) only refer to a partial set

or class of NSE according to topic such as Schlitching’s classic Boundary Layer Theory

editions 1979 and 2000. Additional references published after Wang (1991) include Drazin

and Riley (2006) and their book entitled The Navier-Stokes Equation: A Classification of

Flows and Exact Solutions published by Cambridge University Press.

Classification of exact solutions of the NSE describe a myriad of flows types. Wang

begins his 1966 article with three types:

1. “Those which show certain invariances along a direction in space.”

2. “Those which possess certain properties such that a set of ordinary differential

equations can be obtained from the original partial differential equations.”

3. “Those whose nonlinear terms are not identically zero individually but as a whole

they cancel each other out.”

Type (1) flows contain parallel flows where the nonlinear terms vanish identically (Wang

1966). Couette and Poiseuille flows (steady flow between planes Drazin and Riley 2006,

unsteady motion of infinite plates, etc. Type (2) classes contain two-dimensional and

axisymmetric stagnation-point flows and similarity solutions such as flow near an infinite

rotating disk, round jets, etc. Usually, according to Wang (1966), Type (2) yields a set of

nonlinear ordinary equations which, known at that time (other techniques may be viable

since Wang’s paper dates back to 1966), need numerical integration.
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1.2.1.1 General NSE in Cartesian Coordinates

From Drazin and Riley (2006), a general Cartesian coordinate expansion into three

components of the NSE yields

Continuity:

∂ux

∂x
+
∂uy
∂y

+
∂uz

∂z
= 0 (1.2.6)

x-direction:

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= −

1
ρ

∂p
∂x

+ X + ν∇2ux (1.2.7)

y-direction:

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

= −
1
ρ

∂p
∂y

+ Y + ν∇2uy (1.2.8)

z-direction:

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= −

1
ρ

∂p
∂z

+ Z + ν∇2uz (1.2.9)

where the Laplacian in Cartesian coordinates, ∇2, is equal to

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 (1.2.10)

The Laplace operator has also been called the Laplace-Beltrami operator (Kimura and

Okamoto 1987).

1.2.1.2 General NSE in Cylindrical Polar Coordinates

From Drazin and Riley (2006), a general cylindrical polar coordinate expansion into three

components of the NSE yields:

Continuity:
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1
r
∂ (rur)
∂r

+
1
r
∂uθ
∂θ

+
∂uz

∂z
= 0 (1.2.11)

Cylindrical Polar Radial:

∂ur

∂t
+ ur

∂ur

∂r
+

uθ
r
∂ur

∂θ
+ uz

∂ur

∂z
−

u2
θ

r

= −
1
ρ

∂p
∂r

+ Fr + ν

(
∇2ur −

ur

r2 −
2
r2

∂uθ
∂θ

)
(1.2.12)

Azimuthal:

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r
∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ

r

= −
1
ρr
∂p
∂θ

+ Fuθ + ν

(
∇2ur +

2
r2

∂ur

∂θ
−

uθ
r2

)
(1.2.13)

Axial:

∂uz

∂t
+ ur

∂uz

∂r
+

uθ
r
∂uz

∂θ
+ uz

∂uz

∂z
= −

1
ρ

∂p
∂z

+ Fz + ν∇2uz (1.2.14)

where the Laplacian in cylindrical polar coordinates, ∇2, is equal to

∇2 f =
1
r
∂

∂r

(
r
∂ f
∂r

)
+

1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 (1.2.15)

or

∇2 f =
∂2 f
∂r2 +

1
r
∂ f
∂r

+
1
r2

∂2 f
∂θ2 +

∂2 f
∂z2 (1.2.16)
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1.2.1.3 General NSE in Spherical Polar Coordinates

From Drazin and Riley (2006), a general spherical polar coordinate expansion into three

components of the NSE yields:

Continuity:

1
R2

∂

∂R

(
R2uR

)
+

1
R sin φ

∂

∂φ

(
uφ sin φ

)
+

1
R sin φ

∂uθ
∂θ

= 0 (1.2.17)

Spherical Polar Radial:

∂uR

∂t
+ uR

∂uR

∂R
+

uθ
R
∂uR

∂φ
+

uθ
R sin φ

∂uR

∂θ
−

u2
φ + u2

θ

R

= −
1
ρ

∂p
∂R

+ FR + ν

(
∇2uR −

2uR

R2 −
2
R2

∂uφ
∂φ

−
2uθ cos θ

R2 −
2

R2 sin φ
∂uθ
∂θ

)
(1.2.18)

Zenith:

ur
∂uθ
∂r

+
uθ
r
∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ

r
= −

1
ρr
∂p
∂θ

(1.2.19)

Azimuthal:

ur
∂uz

∂r
+

uθ
r
∂uz

∂θ
+ uz

∂uz

∂z
= −

1
ρ

∂p
∂z

(1.2.20)

where the Laplacian in spherical polar coordinates, ∇2, is equal to

∇2 f =
1
R2

∂

∂R

(
R2 ∂ f
∂R

)
+

1
R2 sin φ

∂

∂φ

(
sin φ

∂ f
∂φ

)
+

1
R2 sin2 φ

∂2 f
∂θ2 (1.2.21)

or

∇2 f =
∂2 f
∂R2 +

2
R
∂ f
∂R

+
1
R2

∂2 f
∂φ2 +

cot φ
R2

∂ f
∂φ

+
1

R2 sin2 φ

∂2 f
∂θ2 (1.2.22)
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1.2.2 Inviscid, Incompressible Flows & the Euler Equations

The basis for this dissertation also assumes inviscid flow properties. Again, similar

to incompressible flow, compared to compressible flow, inviscid models versus viscous

models reduce the complexity of equations to solve analytically. However, with more

elementary solutions, some real physics predictions are lost such as the no-slip condition.

Although, some areas of practical fluid flow mimic inviscid conditions. These areas are

usually away from boundaries where friction is negligible. Just like numerical tools and

caveats, as long as the user is aware of pitfalls and strengths, very useful information can

be obtained in an effective manner.

The inviscid, incompressible flow equations are sometimes referred to as Euler’s

momentum equations. The full viscous momentum equations in vector form appear as

(Kee et al. 2003; Drazin and Riley 2006)

1
ρ

Dρ
Dt

+ ∇ · u = 0 (1.2.23)

ρ
Du
Dt

= F − ∇p − µ∇ × (∇ × u) + (κ + 2µ)∇ (∇ · u) (1.2.24)

or

1
ρ

(
∂ρ

∂t
+ u · ∇ρ

)
+ ∇ · u = 0 (1.2.25)

ρ

(
∂u
∂t

+ (u · ∇) u
)

= F − ∇p − µ∇ × (∇ × u) + (κ + 2µ)∇ (∇ · u) (1.2.26)

where the material (also called convective) derivative equals (Drazin and Riley 2006)

D
Dt

=
∂

∂t
+ u · ∇ (1.2.27)

For incompressible, inviscid flow, we have
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∇ · u = 0 (1.2.28)

µ = 0 (1.2.29)

which reduces the equations to

Du
Dt

= F −
1
ρ
∇p (1.2.30)

or

∂u
∂t

+ (u · ∇) u = F −
1
ρ
∇p (1.2.31)

The momentum set without gravity effects, unsteady effects, and both, respectively, is as

follows

∂u
∂t

+ (u · ∇) u = −
1
ρ
∇p (1.2.32)

(u · ∇) u = F −
1
ρ
∇p (1.2.33)

(u · ∇) u = −
1
ρ
∇p (1.2.34)

where the divergence of the velocity field in the continuity equation, Eq. (1.2.28), is known

as a solenoidal field (Wang 1991). Equation 1.2.34 is the fundamental basis for this

dissertation.

1.3 Vorticity, Vortices, and Rotational Flow

According to Alkemade (1993) and his survey of vorticity and vortices, the mathematical

and physical basis for rotating flows, only emerged in the second half of the 18th and first
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half of the 19th century. The emergence of vorticity became a well established branch of

fluid dynamics and mechanics when the German scientist, Herman L. F. von Helmholtz

(1858; 1867) published his treatise on vortex motion. While the study of the motion

of fluids dates back to the ancient Greeks, the theory behind fluid motion only becomes

a serious science when Newton publishes his Principia in the 17th century. After his

publication, the area of fluid dynamics and mechanics surged as scientist intricately and

intensely study the physical and mathematical aspects of fluid motion.

Before Helmholtz (1858), Thomson (Kelvin) (1880), or Newton, the ancient Greeks

often discussed fluid motion, vortices, and laws of their world (Alkemade 1993). For

Anaxagoras’ (499-428 BC) theory of an expanding universe, the vortex represented a base

phenomena in his model (Vatistas 2008). Democritus (460-370 BC) utilized vortices for

his hypothesis of a world of atoms (Alkemade 1993; Vatistas 2008). Diogenes Laertius

records Democritus philosophy as

“All things come into being by necessity, the cause of the coming into being of

all things being the vortex, which he [Democritus] calls necessity.”

Alkemade (1993) mentions that Democritus is more associated with theorizing about matter

and atoms; nevertheless, his philosophy about the vortex remains ambiguous. However,

Democritus may have been on to something according to present day theoretical and

astrophysics theories and hypothesis.

Vorticity and vortices are two separate, yet connected concepts, wherein confusion

can emerge deciphering between the two definitions. Therefore, this introductory section

attempts to explain the two entities together, yet at the same time do so independently, since

vorticity and vortices are generally connected even with having two different meanings. In

Guyon et al. (2001), the authors depict vorticity as the tool that enables us to characterize

the local rotation within a fluid. Vorticity usually appears minutely throughout the flow

field but greatly influences the flow pattern as defined by Wu et al. (2006). However, a

counterpart to vorticity, the vortex, as Lugt (1996) specifies, does not have a single written-

in-stone definition like the clear mathematical interpretation of vorticity. Simply, Lugt
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(1996) calls a vortex the rotating motion of a multitude of material particles around a

common center. In other words, vortices comprise of a fluid spinning around a point or axis

and physically exist as smoke rings, cyclones, turbulent eddies and more. Accordingly,

vorticity and vortices are further explored, while also simultaneously revealing their

purpose within the study of fluid motion.

Additional investigation into vorticity and vortices uncovers additional information to

assist in clarification and importance to fluid dynamics. Wu et al. (2006) describe a vortex

as a special form of fluid motion with an origin in the rotation of fluid elements. Wu et al.

(2006) disseminate further and portray vorticity as delineating the rotationality of the fluid.

Panton (2005) divides the two by stating that the vorticity is a local property of the flow

field and that a vortex is a rotating fluid structure.

Since the vortex appears as an important flow structure throughout fluid dynamics and

the physical world, scientists and engineers want to know how a vortex behaves. Thus,

modeling the vortical entities through fluid dynamics and laws of mathematics is important

in order to reveal velocity, pressure, and even temperature fields. In fluid dynamics, the

velocities of fluids play a necessary role in determining flow characteristics and aid in the

understanding fluid motions. Thus, the velocity field of a fluid u(x, t) directs the actions

of the flow as denoted by Saffman (1992). In Cartesian summation notation vorticity

emanates as ω(x, t) = ωi = εi jk

(
∂uk/∂x j

)
, as seen in Saffman (1992), Green (1995),

and Panton (2005). Therefore, as Green emphasizes, the mathematical definition of the

vorticity vector is proportional to the rate of rotation of a small fluid element about its

own axes. In other words, vorticity is directly connected to velocities and the change in

velocity. Understanding vorticity gives fluid dynamicists another useful tool in evaluating

fluid phenomena. Vorticity provides an additional eye into fluid dynamics problems.

Mathematically, the vorticity is defined as the curl of the velocity, expressed as

ω = ∇ × u (1.3.1)
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Many real world flows cannot be accurately described by flow potentials because most

flows contain rotational components. Alkemade (1993) even states that for flows that are

nearly irrotational the small amount of rotationality may be important to the flow behavior.

Even though the direct mathematical concept of vorticity was not explicitly present in 18th

century research, the writers hinted at the roationality in flows by showing that the vector

field, ∇ × u, was not equal to zero, ω , 0. Both D’Alembert and Euler touted many

scientific discoveries of fluid mechanics in the 18th century including the infamous theory

of the D’Alembert-Euler vorticity equation written as

Dω
Dt

= (ω · ∇) u − ω (∇ · u) (1.3.2)

Fundamentally, vorticity of a fluid originates due to the fluid shear deformation. A

fluid element rotates and deforms due to differences in velocities acting upon the element

as stated in pedagogical fluid dynamics books by Munson et al. (2002), White (2003),

and Panton (2005). A difference in velocity vector speeds arises in viscous flows due to

the internal fluid friction or in inviscid flows due to geometrical path changes, various

injection points, etc. More specifically, the velocity gradients determine whether rotation

and vorticity occur in fluid motion. Recall the vector calculus definition of vorticity as the

curl of the velocity vector. In Cartesian coordinates, d = d(x, y, z); u = u(u, v, w), the

vorticity vector equals

ω = ∇ × u =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ex ey ez

∂

∂x
∂

∂y

∂

∂z
u v w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.3.3)

ω =

(
∂w

∂y
−
∂v

∂z

)
ex +

(
∂u
∂z
−
∂w

∂x

)
ey +

(
∂v

∂x
−
∂u
∂y

)
ez (1.3.4)

ωx =

(
∂w

∂y
−
∂v

∂z

)
(1.3.5)

15



ωy =

(
∂u
∂z
−
∂w

∂x

)
(1.3.6)

ωz =

(
∂v

∂x
−
∂u
∂y

)
(1.3.7)

where, upon inspection, it is apparent that the velocity gradients determine the vorticity of

the fluid.

Munson et al. (2002) and White (2003) break down the natural process using a square

fluid element to assist in demonstrating angular deformation and fluid rotation. The

fluid element rotates clockwise with an angular velocity of ωOB if ∂u/∂y is positive and

counterclockwise with an angular velocity ofωOA if ∂v/∂x is positive. Notice, however, that

the rotation will only be rigid (solid body rotation, ωOB = −ωOA) when ∂u/∂y = −∂v/∂x

else, angular deformation occurs.

Vorticity or rotation may not always be apparent in fluid flow, especially when explicit

vortices do not visually appear. However, rotational effects often occur in many situations.

One mechanism of high vorticity generation engenders from the no-slip condition at

boundaries such as solid walls. The laminar flow of a fluid in a pipe demonstrates

several fundamental aspects of rotation and vorticity. A uniform velocity profile transforms

(develops) over the distance of the pipe, eventually into a parabolic profile.

Important works in the 18th century also occurred due to the explosion and influ-

ence of institutions such as the École Polytechnique in Paris France where other fluid

dynamics leaders, Laplace (1749-1827) and Poisson (1781-1840), developed techniques,

the physique mathématique, to model various physical fluid motions. The simplification of

mathematical equations, such as Laplace’s algebraic approaches, to describe fluid phenom-

ena were important as the solutions became more workable. However, much mathematical

thought and effort were still required to understand the physical-mathematical connections

such as Fourier’s (1768-1830) improvement in models of heat theory utilizing rational

mechanics. The first, according to Alkemade (1993), to utilize the symbolic notation for

vorticity and its components were Cauchy (1789-1857) and Lagrange (1736-1813).
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Green (1995) points out that the vorticity has the dimension of 1/s, a frequency.

This frequency characteristic implies a rotation thus confirming vorticity’s relation to the

rotation of a fluid element. The vorticity field by definition is solenoidal due to the

mathematics of vector calculus which demonstrates that the divergence of the curl of a

vector is equal to zero, ∇ · (∇ × x) = 0. Thus as confirmed by Donnelly (1991) and Green

(1995), the divergence of the vorticity vector is zero, ∇ · ω = 0, which is analogous to the

velocity of an incompressible flow, ∇ · u = 0, Eq. (1.2.28), also a solenoidal field (Wang

1991). The vorticity vector can be expressed in cylindrical polar coordinates as

ω = ∇ × u =
1
r

∣∣∣∣∣∣∣∣∣∣∣∣∣
er reθ ez

∂

∂r
∂

∂θ

∂

∂z
ur ruθ uz

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.3.8)

ω =
1
r

[
∂uz

∂θ
−
∂

∂z
(uθr)

]
er +

(
∂ur

∂z
−
∂uz

∂r

)
eθ +

1
r

[
∂

∂r
(uθr) −

∂ur

∂θ

]
ez (1.3.9)

ωr =
1
r

[
∂uz

∂θ
−
∂

∂z
(uθr)

]
=

1
r
∂uz

∂θ
−
∂uθ
∂z

(1.3.10)

ωθ =
∂ur

∂z
−
∂uz

∂r
(1.3.11)

ωz =
1
r

[
∂

∂r
(uθr) −

∂ur

∂θ

]
=
∂uθ
∂r

+
uθ
r
−

1
r
∂ur

∂θ
(1.3.12)

In spherical polar coordinates, the vorticity expansion is (see page 128 in Karamcheti 1966)

ω = ∇ × u =
1

R2 sin φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
eR Reφ R sin φeθ
∂

∂R
∂

∂φ

∂

∂θ

uR Ruφ R sin φuθ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.3.13)
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ω =
1

R2 sin φ

(
∂R sin φuθ

∂φ
−
∂Ruφ
∂θ

)
eR

−
1

R sin φ

(
∂R sin φuθ

∂R
−
∂uR

∂θ

)
eφ

+
1
R

(
∂Ruφ
∂R
−
∂uR

∂φ

)
eθ (1.3.14)

ωR =
1

R2 sin φ

(
∂R sin φuθ

∂φ
−
∂uφ
∂θ

)
=

1
R2 sin φ

[
∂

∂φ
(uθR sin φ) −

∂uφ
∂θ

]
=

1
R
∂uθ
∂φ

+
uθ cot φ

R
−

1
R2 sin φ

∂uφ
∂θ

(1.3.15)

ωφ =
1

R sin φ

(
∂uR

∂θ
−
∂R sin φuθ

∂R

)
=

1
R sin φ

[
∂uR

∂θ
−

∂

∂R
(uθR sin φ)

]
=

1
R sin φ

∂uR

∂θ
−
∂uθ
∂R
−

uθ
R

(1.3.16)

ωθ =
1
R

(
∂Ruφ
∂R
−
∂uR

∂φ

)
=

1
R

[
∂

∂R

(
uφR

)
−
∂uR

∂φ

]
=
∂uφ
∂R

+
uφ
R
−
∂uR

∂φ
(1.3.17)

As mentioned earlier, the vortex occurs naturally throughout the universe and dominates

a myriad of fluid phenomena. Vortices appear at a range of scales from the atomic super-

fluid helium structures (Koplik and Levine 1993; Vatistas 2008), to the meso-scale bathtub

vortex (Vatistas 2008), tornados (Rotunno 1979; Gupta et al. 1984; Vatistas 2008), tidal

whirlpools (Gupta et al. 1984; Vatistas 2008), tropical cyclones, and atmospheric dynamics

on Earth and other planets (Morton 1966), to finally, the infinitesimal large spiral galaxies

and black holes in the universe (Vatistas 2008).
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Turbulent flows materialize in most fluid situations, which are governed by eddies of

swirling fluid. The vortex, as stated by Vatistas (2008), contains the best method, which

occurs naturally in the world and utilized in technology, to effectively transport mass,

momentum, and energy. Gupta et al. (1984) disseminate that swirling flows occur in vortex

amplifiers and reactors, cyclone separators, Ranque-Hilsch tubes, agriculture spraying

machines, heat exchangers, jet pumps, and the motions of frisbees and boomerangs.

As noted before, swirling motion imparts a vortex or a spiral-type of flow giving an

azimuthal or tangential component of velocity. To generate such swirling flows many

types of techniques exist including swirl vanes, axial-tangential entry, or strictly tangential

entry into a chamber. Other types of swirl generation encases vortex shedding which is

produced by solid-fluid friction interactions. During vortex shedding an internal fluid

friction (viscous flows) emerges as fluid passes around an object if conditions are right

(usually depicted by the Reynolds number which relates the fluid viscosity (ν), speed (U),

and a geometric parameter such as pipe diameter or sphere diameter (d), displayed as

Re = U d/ν). The production of vortices flowing past a solid occurs in situations such

as backward facing steps (which are found in many combustion chamber systems), semi-

trucks, airplane wings, and the von Kármán vortex street engendered by cylinders in cross

flow and even island which is shown from satellite photographs in the cloud formations

(Gupta et al. 1984; Spalart 1998). In reactive flows, the vortex or swirling motion appears

as combustion enhancements such as mixing and stability (Lilley 1977; Bucher et al. 2003).

Swirling flows assist gasoline and diesel engines, gas turbines, industrial furnaces, utility

boilers, and many other mechanical apparatuses that utilize heat. Thus, vortex structures

compose an important part of physical interactions throughout the world.

1.3.1 The Beltrami-Gromeka-Lamb Equation

This section covers discussion of a transformation of the NSEs which brings vorticity to

the forefront as an important flow variable, explicitly linked to the velocity and stream

function. Following Kee et al. (2003), we begin with the full NSEs from Eq. (1.2.26)
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ρ

(
∂u
∂t

+ (u · ∇) u
)

= F − ∇p − µ∇ × (∇ × u) + (κ + 2µ)∇ (∇ · u)

Next, a vector identity is applied and the resulting equations is known as the Gromeka-

Lamb equation, named in honor of Ippolit Stepanovich Gromeka and Horace Lamb for their

contributions (Lamb 1877, 1879, 1975) to the fluid dynamics community (Truesdell 1954).

The Gromeka-Lamb equation can also be attributed to Eugenio Beltrami (Gostintsev et al.

1971; Lakhtakia 1994; Alekseenko et al. 2007) and Beltrami’s work (Beltrami 1889). The

vector momentum equation transforms to its Beltrami-Gromeka-Lamb equivalent (Granger

1995; Kiselev et al. 1999; Alekseenko et al. 2007; Luniev 2009) by utilizing Lamb’s vector

identity

(u · ∇)u = 1
2∇u2 − u × ω (1.3.18)

Thus, 1.2.30 and 1.2.3 become the inviscid and viscous Beltrami-Gromeka-Lamb equation

∇

(
p
ρ

+
u2

2

)
− u × ω = 0 (1.3.19)

∇

(
p
ρ

+
u2

2

)
− u × ω = ν∇2u (1.3.20)

This equation in turn morphs after combining terms into

∇H − u × ω = 0 (1.3.21)

or using the vector identity −u × ω = ω × u the momentum equation becomes

∇H + ω × u = 0 (1.3.22)

or

∇H = u × ω (1.3.23)
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1.3.2 The Vorticity Transport Equation and Beltramian Flows

According to Wang (1990, 1991), the NSEs can be written in terms of the vorticity by

taking the curl to get

∂ω

∂t
+ ν (∇ × ∇ × ω) + ∇ × (ω × u) = 0 (1.3.24)

for the momentum and

∇ · u = 0

for continuity. For steady-state cases (Wang 1991), Equation 1.3.24 becomes

∇ × (ω × u) = −ν (∇ × ∇ × ω) (1.3.25)

For parallel and concentric flows, the nonlinear convection terms of Eq. (1.3.25) become

zero. Beltrami flows, also called screw fields (Wang 1991) or helical flows Wu et al. (2006);

Alekseenko et al. (2007), satisfy

u × ω = 0 (1.3.26)

The generalized Beltrami flows encompass a larger range of solutions by relaxing the

limitations to

∇ × u × ω = 0 (1.3.27)

A Trkalian field meets the requirement of

ω = cu (1.3.28)

where c is a constant. The complex lamellar classification of flows are grouped by the

relation
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ω · u = 0 (1.3.29)

For more on Beltrami and related flows the reader is referred to Truesdell (1954), Vasil’ev

(Vasilyev) (1958), Wang (1990), Wang (1991), Lakhtakia (1994), Sposito (1997), Wu et al.

(2006), Alekseenko et al. (2007), and Truesdell and Rajagopal (2009).

1.3.3 The Lamb Vector

Equation 1.3.23 is the steady, inviscid, incompressible, and negligible body force form

of the Beltrami-Gromeka-Lamb equation also known as Crocco’s equation (Crocco 1937)

without the entropy term (Granger 1995; Cooper and Peake 2001; Batchelor 2000) or the

Crocco-Vazsony equation (Warsi 1999) which can be reduced further by implementing the

Lamb vector (Lugt 1996; Sposito 1997; Hamman et al. 2008), ` = −u × (∇ × u) = −u ×ω,

(also called the swirl vector, see Scofield and Huq 2010) to get

∇H + ` = 0 (1.3.30)

or

∇H = −` (1.3.31)

For axisymmetric inviscid Beltrami flows in SPC the EOM become

∂

∂R

(
uRR2 sin φ

)
+
∂

∂φ

(
uφR sin φ

)
= 0 (continuity) (1.3.32)

uR
∂uR

∂R
+

uφ
R
∂uR

∂φ
= −

1
ρ

∂p
∂R

(radial) (1.3.33)

uR
∂uφ
∂R

+
uφ
R
∂uφ
∂φ

+
uRuφ

R
−

u2
θ cot φ

R
= −

1
ρR

∂p
∂φ

(latitudinal) (1.3.34)

22



uR
∂uθ
∂R

+
uφ
R
∂uθ
∂φ

+
uRuθ

R
+

uφuθ
R

cot φ = 0 (azimuthal) (1.3.35)

with vorticity being expressible by

ω =
1

R2 sin φ
∂

∂φ
(uθR sin φ) eR−

1
R sin φ

∂

∂R
(uθR sin φ) eφ+

1
R

[
∂

∂R

(
Ruφ

)
−
∂uR

∂φ

]
eθ (1.3.36)

and the Lamb vector as

` =

{
uφ
R

[
∂uR

∂φ
−

∂

∂R

(
uφR

)]
−

uθ
R sin φ

∂

∂R
(uθR sin φ)

}
eR

+

{
uR

R

[
∂

∂R

(
uφR

)
−
∂uR

∂φ

]
−

uθ
R sin φ

∂

∂φ
(uθR sin φ)

}
eφ

+

[
uφ

R2 sin φ
∂

∂φ
(uθR sin φ) +

uR

R sin φ
∂

∂R
(uθR sin φ)

]
eθ (1.3.37)

The vorticity components become

ωR =
1

R2 sin φ
∂

∂φ
(uθR sin φ) =

1
R
∂uθ
∂φ

+
uθ cot φ

R
(1.3.38)

ωφ = −
1

R sin φ
∂

∂R
(uθR sin φ) = −

1
R
∂

∂R
(uθR) = −

∂uθ
∂R
−

uθ
R

(1.3.39)

ωθ =
1
R

[
∂

∂R

(
Ruφ

)
−
∂uR

∂φ

]
=
∂uφ
∂R

+
uφ
R
−

1
R
∂uR

∂φ
(1.3.40)

and likewise, the Lamb vector components transform into

`R = uφ
∂uR

∂φ
− uφ

∂uφ
∂R
− uθ

∂uθ
∂R
−

u2
φ + u2

θ

R
(1.3.41)

`φ = uR
∂uφ
∂R
− uR

∂uR

∂φ
−

uθ
R
∂uθ
∂φ

+
uRuφ

R
−

u2
θ cot φ

R
(1.3.42)
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`θ = uR
∂uθ
∂R

+
uφ
R
∂uθ
∂φ

+
uRuθ

R
+ uφuθ

cot φ
R

(1.3.43)

where the axisymmetric Lamb vector before expansion is

`R =
uφ
R

[
∂uR

∂φ
−

∂

∂R

(
uφR

)]
−

uθ
R sin φ

∂

∂R
(uθR sin φ) (1.3.44)

`φ =
uR

R

[
∂

∂R

(
uφR

)
−
∂uR

∂φ

]
−

uθ
R sin φ

∂

∂φ
(uθR sin φ) (1.3.45)

`θ =
uR

R sin φ
∂

∂R
(uθR sin φ) +

uφ
R2 sin φ

∂

∂φ
(uθR sin φ) (1.3.46)

Cylindrical polar coordinates for axisymmetric flows produces

1
r
∂ (rur)
∂r

+
∂uz

∂z
= 0 (continuity) (1.3.47)

ur
∂ur

∂r
+ uz

∂ur

∂z
−

u2
θ

r
= −

1
ρ

∂p
∂r

(radial) (1.3.48)

ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uruθ

r
= 0 (azimuthal) (1.3.49)

ur
∂uz

∂r
+ uz

∂uz

∂z
= −

1
ρ

∂p
∂z

(axial) (1.3.50)

ω = −
1
r

(
∂ruθ
∂z

)
er −

(
∂uz

∂r
−
∂ur

∂z

)
eθ +

1
r

(
∂ruθ
∂r

)
ez (1.3.51)

ωr = −
1
r

[
∂

∂z
(uθr)

]
= −

∂uθ
∂z

(1.3.52)

ωθ =
∂ur

∂z
−
∂uz

∂r
(1.3.53)
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ωz =
1
r

[
∂

∂r
(uθr)

]
=
∂uθ
∂r

+
uθ
r

(1.3.54)

` =

{
uz

(
∂ur

∂z
−
∂uz

∂r

)
−

uθ
r

[
∂

∂r
(uθr)

]}
er

+

{[
∂

∂z
(uθr)

]
+

ur

r

[
∂

∂r
(uθr)

]}
eθ

+

{
ur

(
∂uz

∂r
−
∂ur

∂z

)
−

uθ
r

[
∂

∂z
(uθr)

]}
ez (1.3.55)

`r = uz

(
∂ur

∂z
−
∂uz

∂r

)
−

uθ
r

[
∂

∂r
(uθr)

]
(1.3.56)

`θ =
uz

r

[
∂

∂z
(uθr)

]
+

ur

r

[
∂

∂r
(uθr)

]
(1.3.57)

`z = ur

(
∂uz

∂r
−
∂ur

∂z

)
−

uθ
r

[
∂

∂z
(uθr)

]
(1.3.58)

Expansion gives

` =

(
uz
∂ur

∂z
− uz

∂uz

∂r
− uθ

∂uθ
∂r

+
u2
θ

r

)
er

+

(
ur
∂uθ
∂r

+
uruθ

r
+ uz

∂uθ
∂z

)
eθ

+

(
ur
∂uz

∂r
− uθ

∂uθ
∂z
− ur

∂ur

∂z

)
ez (1.3.59)

`r = uz
∂ur

∂z
− uz

∂uz

∂r
− uθ

∂uθ
∂r

+
u2
θ

r
(1.3.60)

`θ = ur
∂uθ
∂r

+
uruθ

r
+ uz

∂uθ
∂z

(1.3.61)
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`z = ur
∂uz

∂r
− uθ

∂uθ
∂z
− ur

∂ur

∂z
(1.3.62)

1.4 Introduction to the Bragg-Hawthorne Equation

The Bragg-Hawthorne, Long-Squire or Squire-Long equation appears as a non-linear ellip-

tical partial differential equation in terms of the stream function under steady axisymmetric

flow conditions, spherical polar coordinates, as noted by Saffman (1992), Susan-Resiga

et al (2005b; 2005a; 2006), and Cervantes and Gustavsson (2007). The origin of the

equation is generally credited to S. L. Bragg and W. R. Hawthorne (Saffman 1992) in

their paper in the Journal of Aerospace Science entitled “Some Exact Solutions of the

Flow through Annular Cascade Actuator Discs” which appeared in 1950. However, the

equation also appears separately in R. R. Long’s paper titled “Steady Motion around a

Symmetrical Obstacle Moving along the Axis of a Rotating Liquid,” which was published

June of 1953 in the Journal of Meteorology and in H. B. Squire’s “Rotating Fluids” article

found in Surveys in Mechanics edited by Batchelor and Davies in 1956. Thus, the equation

is commonly referred to the Bragg-Hawthorne equation (Horlock 1978; Saffman 1992),

Long-Squire equation, or Squire-Long equation (Saffman 1992; Rusak 1996, 1998; Rusak

et al. 1998). Thus, as a side note, the equation throughout this thesis is referred to as the

Bragg-Hawthorne equation abbreviated BHE.

However, the BHE has actually appeared and been derived before these authors’

scientific articles. As noted by many (Gol’dshtik and Shtern 1990; Gol’dshtik and Hussain

1998; Shtern and Hussain 1999; Shtern et al. 2000; Susan-Resiga et al. 2005b,a, 2006)

one of the earliest discovered publications to formulate the BHE dates back to Meissel in

the year 1873 in his paper entitled “Uber den Ausfluss der Wasser aus Gefässen in zwei

besonderen Fällen nach Eintritt des Beharrungszustandes” or roughly translated as “Two

Special Cases of the Steady State Flow of Water from Vessels.” Meissel derives the BHE

in cylindrical coordinates, and in his terminology it appears as
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ϕ(u)ϕ′(u) +
∂2u
∂x2 +

∂2u
∂r2 −

1
r
∂u
∂r

= r2 f ′(u) (1.4.1)

In the scientific community, especially in the past when the world was less connected

than it is today, it is often the case that equations and analyses were published more than

once without either author or authors aware of the others’ work Lakhtakia (1994). Just

very recently, the author stumbled across another name for the exact equation which has

been termed the BHE! In the 20th century the had been unofficially split into what most

would consider a West and East division. The Americas had close ties with Europe due

to previous colonization which can be grouped as the West while the East compromised

of areas such as Russian, China, Japan, India, etc. Thus, only recently has the “barrier”

come down, especially in the “Information Age” of the internet and now “social media.”

Many “lost” papers and schools of thought are surfacing. Notably, in the fluid dynamics

community and from a Western point of view, Russian texts are emerging with exceptional

and surprising results. Thus, we have what many Russian and Russian influenced schools

of thought call the English or Western version of the BHE, the Gromeka-Beltrami equation

Gledzer and Makarov (1990).

Even so, looking even further back to 1842, one of the most infamous forefathers

of fluid dynamics, George Gabriel Stokes derives an equation describing the steady,

incompressible symmetrical motion about an axes where the motion exist in planes

passing through the axis. In other words, Stokes describes what is now simple called

axisymmetrical motion. The equation arises in the form of Stokes notation as

1
r2

(
∂2U
∂z2 +

∂2U
∂r2 −

1
r
∂U
∂r

)
= ψ(U) (1.4.2)

Not long after Meissel publishes his paper, Lamb (1877) in turn publishes his own paper,

“On the Conditions for Steady Motion of a Fluid,” in which he formulates the same

equation as Stokes and Meissel for axisymmetric flow to be

∂2ψ

∂r2 −
1
r
∂ψ

∂r
+
∂2ψ

∂z2 = r2F(ψ) (1.4.3)
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However, before the axisymmetric case, Lamb defines the two-dimensional case surfaces

as

∂2ψ

∂x2 +
∂2ψ

∂y2 = F(ψ) (1.4.4)

which he refers to Stokes as well. Stokes presents the equation as

∂2U
∂x2 +

∂2U
∂y2 = χ(U) (1.4.5)

The two-dimensional equation sheds further light on the BHE as it shows the

dependency of the equation of the Laplacian and Stokesian of the stream function equal to

some global function. The Laplace and Stokes operator of the stream function are discussed

further in upcoming sections. Lamb (1879) also displays the same equations in his original

book, A Treatise on the Mathematical Theory of the Motion of Fluids, and later revised

editions entitled Hydrodynamics (1975) with a slightly different notation as

∂2ψ

∂x2 +
∂2ψ

∂y2 = f (ψ) (1.4.6)

∂2ψ

∂$2 −
1
$

∂ψ

∂$
+
∂2ψ

∂x2 = $2 f (ψ) (1.4.7)

Interestingly, Lamb (1975) also transforms the two-dimensional case into cylindrical polar

coordinates which appears as

∂2ψ

∂$2 +
1
$

∂ψ

∂$
+
∂2ψ

∂θ2 = f (ψ) (1.4.8)

and explicitly cites the global function as an example to be f (ψ) = −k2ψ, which transforms

into the Helmholtz equation

∂2ψ

∂$2 +
1
$

∂ψ

∂$
+
∂2ψ

∂θ2 + k2ψ = 0 (1.4.9)
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It is additionally noted that Lamb discusses the vorticity and its relation to the stream

function displayed as

−

(
∂2ψ

∂$2 −
1
$

∂ψ

∂$
+
∂2ψ

∂x2

)
1
$

= ω (1.4.10)

and

−

(
∂2ψ

∂r2 −
1
r
∂ψ

∂r
+
∂2ψ

∂z2

)
1
r

= ω (1.4.11)

which has importance and relevance that becomes more apparent in following sections.

Thus, several possible forms of the stream function equations materialize which are later

discussed with their involvement in the BHE.

It is interesting that in 1884 Hicks studied the motions of a steady hollow vortex and

corresponding vibrations in which he solved the irrotational equation of motion. The stream

function equation turns out to be

∂2ψ

∂z2 +
∂2ψ

∂ρ2 −
1
ρ

∂ψ

∂ρ
= 0 (1.4.12)

However, Hicks solves the irrotational equation by transformation of the variables into a

complex set. The author of this dissertation points out this occurrence because the question

that needs to be asked is “how is all of this related?”

The next visible occurrence appears in a paper by Hicks (1885) when he studies the

motions of vortex rings. Since the analysis is rotational, the BHE originates in the form of

the angular rotation, ω, in the terms of

∂2ψ

∂z2 +
∂2ψ

∂ρ2 −
1
ρ

∂ψ

∂ρ
= 2ωρ (1.4.13)

The angular rotation is related to the vorticity, γ, by 2ω = γ and 2ω/ρ = f (ψ).

∂2ψ

∂z2 +
∂2ψ

∂ρ2 −
1
ρ

∂ψ

∂ρ
= ρ2 f (ψ) (1.4.14)
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Hicks then limits the case of study to constant vorticity where f (ψ) = A. This is the first

time the BHE is solved for a specific flow as the previous articles only formulated the

equation of motion. Thus, the equation reduces to a very solvable case of

∂2ψ

∂z2 +
∂2ψ

∂ρ2 −
1
ρ

∂ψ

∂ρ
= ρ2A (1.4.15)

where the equation can be solved for a homogeneous separable solution and a particular

solution.

In 1894 Hill produces his famous paper on a spherical vortex. He too utilizes the stream

function equation or as it was called then, the current function. In Hill’s case the form of

the BHE emerges as

∂2ψ

∂z2 +
∂2ψ

∂r2 −
1
r
∂ψ

∂r
= r2

(
8k
a2 +

2k
c2

)
(1.4.16)

where f (ψ) =
(
8k/a2 + 2k/c2

)
and k, c, and a.

Another utilization of the BHE comes from the deemed Taylor-Culick (TC) flow. The

TC flow cites back to G. I. Taylor’s 1956 paper entitled “Fluid Flow in Regions Bounded

by Porous Surfaces” which appears in the Proceedings of the Royal Society of London, A

and F. E. Culick’s 1966 article named “Rotational Axisymmetric Mean Flow and Damping

of Acoustic Waves in a Solid Propellant Rocket” and logged in the AIAA Journal. The

TC flow models incompressible, inviscid, rotational flow of injection (sometimes called

blowing in the literature) or suction at the walls of a 2D Cartesian channel (or a parallel

plate configuration) and the quasi-3D case, an axisymmetric tube. Additional modeling

cases include an injection “headwall,” where the traditional TC flow remains inert.
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1.5 The Formulation of the BHE in a Conical

Geometry Utilizing Spherical Polar Coordinates

The formulation of the BHE can be done in one of two ways. Since this studied is intricately

linked to that of Bloor and Ingham (1987), the first method follows the formulation by Bloor

and Ingham (1987). First, the formulation begins with the Beltrami-Gromeka-Lamb vector

form of the momentum equation

∇

(
p
ρ

+
u2

2

)
− u × ω = ∇H + ` = 0 (1.5.1)

Bloor and Ingham (1987) assume that the momentum is conserved along a streamline so

that

∇

(
p
ρ

+
u2

2

)
· ds − u × ω · ds = ∇H · ds + ` · ds = 0 (1.5.2)

d
(

p
ρ

+
u2

2

)
− u × ω · ds = dH + ` · ds = 0 (1.5.3)

Integrated, the first term produces the Bernoulli equation

p
ρ

+
u2

2
= H (ψ) (1.5.4)

The second term produces a vector parallel to the streamline for both irrotational ω =

∇ × u = 0 and rotational flows

u × ω · ds = u × (∇ × u) · ds = ` · ds = 0 (1.5.5)

Examining the tangential component only the scalar equation emerges as

1
R sin φ

∂

∂θ

(
p
ρ

+
1
2

u2
)

+ `θ = 0 (1.5.6)

where
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∇

(
p
ρ

+
1
2

u2
)

=

[
∂

∂R
eR +

1
R
∂

∂φ
eφ +

1
R sin φ

∂

∂θ
eθ

] (
p
ρ

+
1
2

u2
)

(1.5.7)

Axisymmetric conditions enforce
∂

∂θ
= 0 so only the Lamb vector component remains (see

Wu et al. (2006) pg. 256 for vorticity transport components)

`θ = 0 (1.5.8)

Expanding the Lamb component gives

`θ =
uR

R sin φ
∂

∂R
(uθR sin φ) +

uφ
R2 sin φ

∂

∂φ
(uθR sin φ) = 0 (1.5.9)

which then simplifies to

uR
∂

∂R
(uθR sin φ) +

uφ
R

∂

∂φ
(uθR sin φ) = 0 (1.5.10)

Next, arranging the equation into the form of

(
uR

∂

∂R
+

uφ
R

∂

∂φ

)
(uθR sin φ) = 0 (1.5.11)

This allows the equation to be condensed into what is known as the material derivative

D
Dt

=
∂

∂t
+ uR

∂

∂R
+

uφ
R

∂

∂φ
(1.5.12)

The problem formulates steady conditions so that

∂

∂t
= 0 (1.5.13)

and

D
Dt

= uR
∂

∂R
+

uφ
R

∂

∂φ
(1.5.14)
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After integration, the product consists of the swirl momentum as a function along the

streamline

uθR sin φ = B (ψ) (1.5.15)

Rearranging yields a formulation for the swirl velocity

uθ =
B (ψ)

R sin φ
(1.5.16)

Next, the tangential momentum is substituted into the spherical radial vorticity equation to

obtain

ωR =
1

R2 sin φ
∂B
∂φ

(1.5.17)

The circulation function can be split in the partial derivative since it is a function of the

stream function, ψ, to produce

ωR =
1

R2 sin φ
∂ψ

∂φ

dB
dψ

(1.5.18)

Next, the momentum equation in the zenith angle direction, φ, is examined

1
R
∂

∂φ

(
p
ρ

+
1
2

u2
)

+ `φ = 0 (1.5.19)

1
R
∂H
∂φ

+ uRωθ − uθωR = 0 (1.5.20)

where the Bernoulli function derivative can be separated as well similar to the circulation

function to yield

1
R
∂ψ

∂φ

dH
dψ

+ uRωθ − uθωR = 0 (1.5.21)
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Recalling and substituting ωR, from Eq. (1.5.18), uθ from Eq. (1.5.16), and uR from the

velocity-stream function relation, Eq. (1.5.23), into Eq. (1.5.21) results in

1
R
∂ψ

∂φ

dH
dψ

+
1

R2 sin φ
∂ψ

∂φ
ωθ −

B (ψ)
R sin φ

(
1

R2 sin φ
∂ψ

∂φ

dB
dψ

)
= 0 (1.5.22)

where the velocity-stream function relation is

uR =
1

R2 sin φ
∂ψ

∂φ
; uφ = −

1
R sin φ

∂ψ

∂R
(1.5.23)

Eliminating
1
R

and
∂ψ

∂φ
reduces Eq. (1.5.22)

dH
dψ

+
1

R sin φ
ωθ −

B (ψ)
R sin φ

(
1

R sin φ
dB
dψ

)
= 0 (1.5.24)

Rearranging gives a form of the tangential vorticity as

ωθ

R sin φ
=

B (ψ)
R2 sin2 φ

dB
dψ
−

dH
dψ

(1.5.25)

One of the last steps before revealing the BHE is to substitute Eq. (1.3.40) into Eq. (1.5.25)

to produce

1
R2 sin φ

[
∂

∂R

(
Ruφ

)
−
∂uR

∂φ

]
=

B (ψ)
R2 sin2 φ

dB
dψ
−

dH
dψ

(1.5.26)

Next, the velocity-stream function relation is utilized again to collect the equation into a

form of the stream function only as

1
R2 sin φ

[
∂

∂R

(
−

1
sin φ

∂ψ

∂R

)
−
∂

∂φ

(
1

R2 sin φ
∂ψ

∂φ

)]
=

B (ψ)
R2 sin2 φ

dB
dψ
−

dH
dψ

(1.5.27)

Divide through by
1

R2 sin φ

∂

∂R

(
−

1
sin φ

∂ψ

∂R

)
−
∂

∂φ

(
1

R2 sin φ
∂ψ

∂φ

)
=

B (ψ)
sin φ

dB
dψ
− R2 sin φ

dH
dψ

(1.5.28)
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Finally, divide through by −
1

sin φ
and bring the

1
R2 out of the φ partial derivative to obtain

the final form of the BHE in spherical coordinates as

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= R2 sin2 φ

dH
dψ
− B

dB
dψ

(1.5.29)

1.6 Cyclone Separators

The motion in the conical BDV closely models the fluid dynamics within cyclone

separators. The cyclone separator has been around for over two hundred years. An

important device for the processing industry for separating solids from gases, liquids from

gases, and solids from liquids, the first issued patent for a cyclone device occurred in

1885 by the United States to John M. Finch of the Knickerbocker Company according

to Hoffmann and Stein (2008). Finch’s invention takes advantage of the centripetal force

acting on dust particles in a moving air stream. As noted by Hoffmann and Stein, Finch’s

outside the box thinking goes against the grain during that time as most thought the best

method to separate dust from air was to leave the air stagnate and let gravity separate

the gas-solid mixture. For a 10-micron dust particle diameter to become quiescence at a

distance of 1 meter in a medium of air takes about 5 1/2 minutes. Finch’s device consisted

of a cylindrical chamber where “dust-laden” air was injected tangentially to impart angular

momentum. The dust collects into a thin layer on the casing of the chamber where a

strategically placed slot diverts the dust layer into another chamber. The air outside the

dust layer continues through the device exiting much cleaner.

Advancing into and through the early 1900’s, the cyclone separator evolved into models

similar to more modern designs. Most of today’s cyclone separators consist of a cylinder

fitted to a cone where the cylinder is located above the cone. In 1905 O. M. Morse develops

a dust collector for flour mills in order to abate deadly explosions from fine particulates.

Hoffmann and Stein (2008) mention cyclone separator benefits which accelerated design

improvements through the 1920’s. Some of these benefits include that cyclone separators

are easy and cheap to construct, compact, and contain little to no moving parts.
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Figure 1.1: General dimensions of a cylindrical-conical cyclone separator.

Modern cyclone separators generally consist of a tangential inlet attached to a

cylindrical chamber. The cylindrical chamber is contiguous to a conical chamber, which

lies below the cylindrical section. Two outlets, one at the top and one at the bottom, allow

particles to be separated according to density by the swirling motion generated by the

cyclone separator. Figure 1.1 and Table 1.1 display a schematic and labels dimensions of a

generic cyclone separator.
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Table 1.1: Labels for general cylinder-cone cyclone separator

Label Dimension

a Conical maximum radius

and cylindrical radius

bz axial velocity

mantle radius

uz (r = bax, z = bz cot βz ) = 0

bR spherical radial velocity

mantle radius

uR (r = bsr, z = bR cot βR ) = 0

Ai Area of inlet

(circular or rectangular;

ri, l × w)

α Angle of cone

βz Angle of mantle

(axial velocity)

uz (φ = βz ) = 0

βR Angle of mantle

(spherical radial velocity)

uR (φ = βR ) = 0

L Length of cone

(to apex)

Lcon Length of cone

(to underflow radius)

Lcyl Length of cylinder

Lv f Length of vortex finder

(inside cyclone chamber)

Lh Length of cyclone

(from chamber top

to underflow radius)

Lbot Length from conical underflow

radius to cone apex

rv f Radius of vortex finder

ru f Radius of conical underflow
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Chapter 2

The Beltramian Conical Bidirectional

Vortex (BDV): Analysis

2.1 Introduction

For a bidirectional flow in a conical geometry, an approach similar to Bloor and Ingham

(1987) prescribes that the Bernoulli function remains constant w.r.t. the stream function,

H (ψ) = h (ψ) = constant; dH/dψ = n (ψ) = 0, and that the swirl or circulation function

(angular momentum) varies w.r.t. the stream function, B = s (ψ) ; dB/dψ = q (ψ).

The governing equation for the Beltramian model of the BDV in a cone is the inviscid,

incompressible BHE in spherical coordinates derived in Section 1.5 from Eq. (1.5.29)

shown as

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= R2 sin2 φ

dH
dψ
− B

dB
dψ

(2.1.1)

2.2 Coordinate System & Geometry

The nomenclature of the spherical polar coordinate system (see Figure 2.1) lists as

corresponding to the radial, latitudinal (colatitutde) or zenith direction, and tangential
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(a) (b)

Figure 2.1: Diagrams of geometry and inlet conditions.

or azimuth directions. The dimensions of the structure dictate that the cone contains a

divergence half-angle α with a length of L measured from the apex of the cone to its

top. Table 2.1 displays the calculated length per conical half-angle for every five degrees

beginning at α = 5◦. The maximum radius occurs the axial location of L and is denoted as

a while the exit radius is b, at the same axial height. The length of the cone and maximum

radius are linked by the divergence angle alpha, tanα = a/L.

2.3 Boundary Conditions

Due to the axisymmetric conditions enforced in the tangential direction, two boundary

layers emerge for the conical geometry. The first ensures that the stream function, ψ (R, φ),

at the centerline equals zero while the second applies the same condition at the sidewall,

φ = α.
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Table 2.1: Length of cone per α with a = 1.

α L = a cotα α L = a cotα

5◦ 11.43 50◦ 0.893

10◦ 5.67 55◦ 0.700

15◦ 3.73 60◦ 0.577

20◦ 2.75 65◦ 0.466

25◦ 2.14 70◦ 0.364

30◦ 1.73 75◦ 0.268

35◦ 1.43 80◦ 0.176

40◦ 1.19 85◦ 0.088

45◦ 1.00 90◦ 0.000

ψ (R, 0) = 0 (2.3.1)

ψ (R, α) = 0 (2.3.2)

The volumetric flow rate into the side of the cone equals the average tangential velocity,

U, times the inlet area (see Figure 2.1a).

Qi = uθ (Ri, φi) = UAi (2.3.3)

At the same location (Ri, φi), the spherical radius and latitudinal angle can be expressed as

φi = α = tan−1 (a/L) ; Ri =
√

L2 + a2 (2.3.4)

Only the incoming tangential flow creates the mass addition into the outer annular cone

region of the outer vortex. The axial velocity is created instantaneously as the fluid enters

the cyclone since it is assumed in an actual cyclone a cylindrical portion generally attaches

to the top of the cone and the velocity at this point has an axial component. The next
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section, Section 2.4, reveals the relation between the tangential, U, and axial, W, boundary

velocity components and the importance of that relation.

2.4 Inlet Conditions

The boundary condition at the cyclone inlet establishes a tangential flow which simultane-

ously develops an axial component and begins a descent towards the bottom of the cone.

Physically, an axial velocity exist at this location in a true cyclone separator since in most

cases a cylindrical portion connects above the conical portion. However, if for theoretical

purposes the cylindrical portion does not exist, the axial velocity is either injected at this

point similar to endwall injection conditions by Akiki and Majdalani (2010); Akiki (2011);

Akiki and Majdalani (2012) or, as stated above, an axial velocity component is assumed

to also exist at this location as a boundary condition for this analysis. An average axial

velocity of W enters between the inner and outer radius, b ≥ r ≥ a, where b defines the

outlet radius at the top of the cone. In this case the inlet axial velocity takes the uniform

profile (see Figure 2.1b)

uz (Ri, φi = α) = uz (ri, zi) = uz (a, L) = −W (2.4.1)

The axisymmetric stream function relations in cylindrical polar coordinates and velocity

components are

ur = −
1
r
∂ψ

∂z
; uz =

1
r
∂ψ

∂r
(2.4.2)

Likewise, the stream function-velocity relation for spherical polar coordinates from

Eq. (1.5.23) is

uR =
1

R2 sin φ
∂ψ

∂φ
; uφ = −

1
R sin φ

∂ψ

∂R

To find the stream function at the inlet we can set
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uz = −W =
1
r
∂ψ

∂r
(2.4.3)

Next, we separate variables

−Wrdr = dψ (2.4.4)

then integrate

−

∫
Wrdr =

∫
dψ (2.4.5)

which leaves us with

− 1
2Wr2 = ψ + ψ0 (2.4.6)

To find the constant the BC ψ (R, α) = ψ (a, L) = 0

ψ0 = −1
2Wa2 (2.4.7)

ψ = 1
2W

(
a2 − r2

)
(2.4.8)

which coincides with a stream function in spherical coordinates of the type

ψ = 1
2W

(
a2 − R2 sin2 φ

)
(2.4.9)

and the derivative w.r.t. (R sin φ)

dψ
d (R sin φ)

= −WR sin φ (2.4.10)

The tangential velocity injection at the inlet described by

uθ = (Ri, φi = α) = uθ = (ri, zi) = uθ = (a, L) = U (2.4.11)
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The volumetric flow rate relates to the stream function for axisymmetric flow by the

integration over a surface of the velocity in the normal direction or in this case a line

element in the r-direction which in this case turns out to be the axial velocity (hence, the

stream function) difference between two points. For reference, see Happel and Brenner

(1983) page 98, Bojarevičs et al. (1989) page 31, Graebel (2007) pages 8 and 9, Hoffmann

and Stein (2008) page 73, and Pozrikidis (2011) on page 157.

Qi =

∫
S

u · n dS = 2π
∫ b

a
u · nr dr = 2π

∫ b

a
uzr dr (2.4.12)

Qi = 2π
∫ b

a
dψ = 2π

[
ψ(a) − ψ(b)

]
= πW

(
a2 − b2

)
(2.4.13)

Thus, the tangential and axial velocities relate by

(2.4.14)

which then produces

W =
UAi

π
(
a2 − b2) (2.4.15)

where the term Ai is an arbitrary inlet area. Equation 2.4.15 later becomes a swirl parameter

(see Section 2.10).

2.5 Relations for the Bernoulli & Circulation

Functions

In order to determine the values of B (ψ) and H (ψ), the inlet conditions are again examined.

Previously, it was shown that the circulation function is simply the angular momentum of

the incoming fluid. Since the tangential velocity at the inlet is equal to the average velocity,

the circulation function becomes
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Figure 2.2: Inlet axial velocity.

B (ψ) = UR sin φ (2.5.1)

where B is defined as remaining constant along a streamline. Also, the tangential velocity

profile exists as a uniform injection at the inlet between b ≥ r ≥ a. Next, the equation is

differentiated w.r.t. R sin φ to find that

dB
d (R sin φ)

= U (2.5.2)

Thus, combining both the circulation function and its derivative divided by Eq. (2.4.10) we

obtain

B
dB
dψ

=
UR sin φ
−WR sin φ

U = −
U2

W
= constant (2.5.3)

As is shown later, this relation permits the tangential velocity to vary with the stream

function throughout the cone. As with the case of Bloor and Ingham (1987), the entry

cylindrical polar radial velocity is chosen so that the Bernoulli function remains a constant

while its derivative is zero so that

H = 1
2

[
u2

r (Ri, φi) + U2 + W2
]

+ p0/ρ = constant or
dH
dψ

= 0 (2.5.4)
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Finally, inserting the values for 2.5.3 and 2.5.4 into the BHE to obtain

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
=

U2

W
(2.5.5)

2.6 Stream Function Solution

The solution of the stream variables starts with a semi-separation of variables approach.

The first separation function, by inspection, comes out to be F (R) = R2 so that the stream

function now represents

ψ (R, φ) = R2G (φ) (2.6.1)

Now, substitution of Eq. (2.6.1) into the BHE (Eq. (2.5.5)) produces the equation

2G + sin φ
d

dφ

(
1

sin φ
dG
dφ

)
=

U2

W
(2.6.2)

or expanded

G′′ −
cos φ
sin φ

G′ + 2G =
U2

W
(2.6.3)

and

G′′ − cot φG′ + 2G =
U2

W
(2.6.4)

This ODE is of second order and non-homogeneous so two complementary solutions to

the homogeneous equation are needed along with the particular solution to satisfy the non-

homogeneity. The first solution to satisfy the homogeneous equation is

G1 = K1 sin2 φ (2.6.5)
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and can be checked through inspection by simply inserting sin2 φ into either Eq. (2.6.2) or

Eq. (2.6.4). As an Ansatz, the second solution is sought of the form

G2 = K2 g (φ) sin2 φ (2.6.6)

which is deduced from the first solution when it is known for an ODE with variable

coefficients. Now this form may be substituted into either Eq. (2.6.2) or Eq. (2.6.4) to

arrive at

g =

∫
1

sin3 φ
dφ =

∫
csc3 φ dφ (2.6.7)

In order to solve for g, the integral may be solved by the method of integration by parts.

First, we designate our variables as

dv = csc2 φ dφ (2.6.8)

u = csc φ (2.6.9)

v = − cot φ (2.6.10)

du = − csc φ cot φ dφ (2.6.11)

The formula for integration by parts is

uv −
∫

vdu (2.6.12)

Substituting in the correct values gives

− csc φ cot φ −
∫

csc φ cot2 φ dφ (2.6.13)
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Using the trigonometric identity cot2 φ = csc2 φ − 1 transforms the relation to

− csc φ cot φ −
∫

csc φ
(
csc2 φ − 1

)
dφ (2.6.14)

Multiplying through we obtain

− csc φ cot φ −
∫

csc3 φ − csc φ dφ (2.6.15)

Separating the RHS integrals produces

− csc φ cot φ −
∫

csc3 φ dφ +

∫
csc φ dφ (2.6.16)

Recall that this whole relation is equal to
∫

csc3 φdφ which yields

∫
csc3 φdφ = − csc φ cot φ −

∫
csc3 φ dφ +

∫
csc φ dφ (2.6.17)

At first this seems counter-intuitive and does not seem to help. However, if the integrals of

csc3 φ are collected, then the equation becomes clearer as where to go next. So collecting

the csc3 φ integrals to the LHS, we obtain

2
∫

csc3 φdφ = − csc φ cot φ +

∫
csc φ dφ (2.6.18)

Then we can divide by two and evaluate the left hand side which gives us

∫
csc3 φ dφ =

1
2

[
− csc φ cot φ +

∫
csc φ dφ

]
(2.6.19)

g (φ) =
1
2

[
− csc φ cot φ − ln | csc φ + cot φ|

]
(2.6.20)

or

g (φ) = −
1
2

[
csc φ cot φ + ln | csc φ + cot φ|

]
(2.6.21)
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Thus, integration by parts yields

g (φ) = −
1
2

[
csc φ cot φ − ln | csc φ − cot φ|

]
(2.6.22)

Therefore the second complementary equation becomes

G2 = K2

[
cos φ −

(
sin2 φ

)
ln Φ

]
(2.6.23)

where a −1/2 is absorbed into the constant, K2, and where

Φ = tan
φ

2
(2.6.24)

The tangent of the half-angle can be shown as

tan
φ

2
=

sin φ
1 + cos φ

=
1 − cos φ

sin φ
(2.6.25)

To verify the tangent half-angle and a few logarithmic and trigonometric relations, the

definition for the tangent half-angle is plugged back into the logarithm. Through the

properties of the logarithm and trigonometry, it can be shown that

− ln
(
tan

φ

2

)
= − ln

(
sin φ

1 + cos φ

)
= ln

(
1 + cos φ

sin φ

)
= ln

(
1

sin φ
+

cos φ
sin φ

)
= ln (csc φ + cot φ) (2.6.26)

Finally, the tangent half-angle can be expressed in the relation of

ln
(
tan

φ

2

)
= ln

(
1 − cos φ

sin φ

)
= ln (csc φ − cot φ) (2.6.27)

which finally brings us to the relation

ln (csc φ − cot φ) = − ln (csc φ + cot φ) (2.6.28)
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and

tan
φ

2
= csc φ − cot φ = Φ (2.6.29)

Thus, the full complementary part for G is

Gc = K1 sin2 φ + K2

[
cos φ −

(
sin2 φ

)
ln Φ

]
(2.6.30)

Next, the particular solution is going to be of the form of a constant, Gp = K3, since

the non-homogeneous function is a constant (see . Therefore, by substituting Gp and its

derivatives into either Eq. (2.6.2) or Eq. (2.6.4) the particular solution is revealed as

Gp =
U2

2W
(2.6.31)

Now by combining the complementary and particular forms, the solution for G is of the

form

G =
U2

2W
+ K1 sin2 φ + K2

[
cos φ −

(
sin2 φ

)
ln Φ

]
(2.6.32)

In order to solve for the constants of Eq. (2.6.32) the boundary conditions are needed.

Thus, corresponding to 2.3.1 and 2.3.1 the boundary conditions become

G (0) = 0 (2.6.33)

G (α) = 0 (2.6.34)

Substituting in the BC at the centerline produces

0 =
U2

2W
+ K1 sin2(0) + K2

[
cos(0) − sin2(0) ln(0)

]
(2.6.35)

which reduces to
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0 =
U2

2W
+ K2 (2.6.36)

and finally yields

K2 = −
U2

2W
(2.6.37)

Substituting in the BC at the wall gives

0 =
U2

2W
+ K1 sin2 α −

U2

2W

[
cosα −

(
sin2 α

)
lnA

]
(2.6.38)

Rearranging the constant to one side of the equation

K1 sin2 α = −
U2

2W
+

U2

2W

[
cosα −

(
sin2 α

)
lnA

]
(2.6.39)

Condensing the RHS of the equation

K1 sin2 α = −
U2

2W

[
1 − cosα +

(
sin2 α

)
lnA

]
(2.6.40)

Finally, results in the constant, K1, after dividing both sides

K1 = −
U2

2W
csc2 α

[
1 − cosα +

(
sin2 α

)
lnA

]
(2.6.41)

Next, applying 2.6.33 and 2.6.34 the constants emerge as

K1 = −
U2

2W

[
csc2 α + lnA− cscα cotα

]
= −

U2

2W
[A cscα + lnA] (2.6.42)

where

A = tan
α

2
= cscα − cotα (2.6.43)

To simplify the equation even further, a constant is brought in where
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λ = −
2W
U2 K1 =

[
csc2 α + lnA− cscα cotα

]
= [A cscα + lnA] (2.6.44)

Now the solution for G is complete

G =
U2

2W
−

U2

2W
λ sin2 φ −

U2

2W

[
cos φ −

(
sin2 φ

)
ln Φ

]
(2.6.45)

Bringing everything in the equation under the the velocity ratio constant (with a recovered

negative sign) yields

G =
U2

2W

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.6.46)

The recovered sign enforces that the constant on the RHS of the BHE is to be negative for

this solution. The equation can also be expressed with the sin squared term upfront

G =
U2 sin2 φ

2W

(
λ − ln Φ + csc φ cot φ − csc2 φ

)
(2.6.47)

Now a co-secant term can be factored out for the last term

G =
U2 sin2 φ

2W
[
λ − ln Φ + csc φ (cot φ − csc φ)

]
(2.6.48)

Factoring out a negative term as well produces

G =
U2 sin2 φ

2W
[
λ − ln Φ − csc φ (csc φ − cot φ)

]
(2.6.49)

Which eventually results in the compact equation of

G =
U2 sin2 φ

2W
(λ − ln Φ − Φ csc φ) (2.6.50)

Finally, the stream function takes its form as

ψ =
U2R2

2W

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.6.51)
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or

ψ =
U2R2 sin2 φ

2W
(λ − ln Φ − Φ csc φ) (2.6.52)

2.7 Spherical Radial and Zenith Velocities

Now the spherical radial and latitudinal velocities come about from the Stokes stream

function-velocity relation (Eq. (1.5.23))

uR =
1

R2 sin φ
∂ψ

∂φ

uφ = −
1

R sin φ
∂ψ

∂R

Utilizing Eq. (1.5.23), the derivatives of the stream function w.r.t. the spherical radius and

latitudinal angle are sought. Beginning with the derivative w.r.t. the zenith angle

∂ψ

∂φ
=

∂

∂φ

{
U2R2

2W

[
(λ − ln Φ) sin2 φ + cos φ − 1

]}
(2.7.1)

First, the constant is brought to the outside of the derivative

U2R2

2W
∂

∂φ

{[
(λ − ln Φ) sin2 φ + cos φ − 1

]}
(2.7.2)

Next, the first term is separated and evaluated first

∂

∂φ

[
(λ − ln Φ) sin2 φ

]
(2.7.3)

The derivative is separated even further by applying the chain rule

∂

∂φ

[
(λ − ln Φ) sin2 φ

]
= (λ − ln Φ)

∂

∂φ

(
sin2 φ

)
+ sin2 φ

∂

∂φ
(λ − ln Φ) (2.7.4)
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The first term in the previous equation is considered first

(λ − ln Φ)
∂

∂φ

(
sin2 φ

)
= 2 (λ − ln Φ) sin φ cos φ (2.7.5)

Then the second term

sin2 φ
∂

∂φ
(λ − ln Φ) (2.7.6)

First, the tangent half-angle is expanded

−
∂

∂φ
(ln Φ) = −

∂

∂φ

[
ln

(
tan

φ

2

)]
(2.7.7)

The general derivative rule for the logarithm is

−
d
dx

(ln u) = −
u′

u
(2.7.8)

The general derivative rule for the tangent is

d
dx

(tan v) = v′ sec2 v (2.7.9)

where u = tan φ/2 and v = φ/2.

d
dx

(
tan

φ

2

)
=

1
2

sec2 φ

2
(2.7.10)

Reclaiming the negative sign

−
d
dx

(ln Φ) = −

1
2

sec2 φ

2

tan
φ

2

(2.7.11)

Next, a simplification can begin by transforming the tangent into sines and cosines
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= −

1
2

cos
φ

2

cos2 φ

2
sin

φ

2

(2.7.12)

Canceling out cosine terms is the next step

= −

1
2

cos
φ

2
sin

φ

2

(2.7.13)

Recalling a trigonometric relation

cos u sin v =
1
2

[sin (u + v) − sin (u − v)] (2.7.14)

The equation now reduces to

−

1
2

1
2

sin φ
= − csc φ (2.7.15)

So now the derivative is shown to be

∂

∂φ
(λ − ln Φ) = − csc φ (2.7.16)

Multiplying the sine term back in gives

sin2 φ
∂

∂φ
(λ − ln Φ) = − sin φ (2.7.17)

Combining both terms from 2.7.5 and 2.7.17 yields

∂

∂φ

[
(λ − ln Φ) sin2 φ

]
= 2 (λ − ln Φ) sin φ cos φ − sin φ (2.7.18)

Now taking the derivatives of the cosine and constant term provides
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U2R2

2W
∂

∂φ

{[
(λ − ln Φ) sin2 φ + cos φ − 1

]}
=

U2R2

2W
[
2 (λ − ln Φ) sin φ cos φ − sin φ − sin φ

]
(2.7.19)

Finally, the analysis of the derivative w.r.t. phi leaves

∂ψ

∂φ
=

U2R2

W
[
(λ − ln Φ) sin φ cos φ − sin φ

]
(2.7.20)

or

∂ψ

∂φ
=

U2R2 sin φ
W

[
(λ − ln Φ) cos φ − 1

]
(2.7.21)

The derivative in the spherical radial direction is a simple power term which gives

∂ψ

∂R
=

U2R sin2 φ

W
(λ − ln Φ − Φ csc φ) (2.7.22)

Thus, completing the stream function-velocity relation engenders the spherical radial

and zenith velocities as

uR =
U2

W
[
(λ − ln Φ) cos φ − 1

]
(2.7.23)

uφ = −
2ψ

R2 sin φ
= −

U2 sin φ
W

(λ − ln Φ − Φ csc φ) (2.7.24)

or

uφ =
U2

W
[
(λ − ln Φ) sin φ − Φ

]
(2.7.25)
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2.8 Tangential Velocity: Slip Permitting

The tangential velocity evolves from the swirl function relation and can be shown to equal

uθ,slip =
Ua

R sin φ

√
1 +

2
Wa2

[
U2R2 sin2 φ

2W
(λ − ln Φ − Φ csc φ)

]
(2.8.1)

Eliminating some terms simplifies to

uθ,slip =
Ua

R sin φ

√
1 +

U2R2 sin2 φ

W2a2
(λ − ln Φ − Φ csc φ) (2.8.2)

and combining simplifies even further to

uθ,slip =
Ua

R sin φ

√
1 +

(
UR sin φ

Wa

)2

(λ − ln Φ − Φ csc φ) (2.8.3)

2.9 Tangential Velocity: No Slip

A second condition may be implied in order to obtain a slightly different result. Now the

equation for the tangential velocity appears as

uθ,no slip =
U

R sin φ

√(
UR sin φ

W

)2

(λ − ln Φ − Φ csc φ) (2.9.1)

Finally, bringing out some terms from under the square root reduces the equation to

uθ,no slip =
U2

W

√
λ − ln Φ − Φ csc φ (2.9.2)

2.10 Conical BDV Inlet Swirl and Geometric Parameters

In order to simplify and reduce the stream function and velocity equations even further, a

parameter is introduced which relates the average tangential inlet velocity to the average
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axial inlet velocity also known as a swirl parameter (Greitzer et al. 2004). Retrieving

Eq. (2.4.15) which relates the incoming volumetric flow rate establishes a relation of

W =
UAi

π
(
a2 − b2) =

UAi

πa2
(
1 − X2

β

) (2.10.1)

where Xβ = β̂ = b/a. Now upon examination of the original BDV in a cylindrical geometry

study by Vyas and Majdalani (2003a; 2006) the this swirl parameter is

S =
πab
Ai

=
πXβa2

Ai
=
πXβ

Qi
= πXβσ (2.10.2)

where σ = Q−1
i and is the modified swirl number. The swirl parameter, S , has been based

upon a definition by Hoekstra et al and Derksen (1999) and Van den Akker (2000). Thus,

following parameters are deduced

W =
U

πσc

(
1 − X2

β

) =
U
πσc

(2.10.3)

W2 =
U2

π2σ2
(
1 − X2

β

)2 =
U2

π2σ2
c

(2.10.4)

where a type of modified swirl parameter is of the geometric type appears as

σc =
a2 − b2

Ai
=

a2
(
1 − X2

β

)
Ai

=
L2

Ai

(
tan2 α − tan2 β

)
(2.10.5)

σc = σ
(
1 − X2

β

)
(2.10.6)

were β is the angle of the mantle throughout the cone, Xβ = b/a is the ratio of the mantle

location to maximum radius, and σ = a2/Ai is the modified swirl parameter of a cylindrical

BV as designated by Vyas et al (Vyas et al. 2003a; Vyas and Majdalani 2006). The mantle

angle of the conical cyclone terminates at the axial location L and radial location b. The
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modified swirl number also turns out to be defined by the tangential velocity and axial

velocity ratio

σc =
U
πW

(2.10.7)

verifying that σc is a swirl parameter. In terms of the swirl number, S = πab/Ai, of a

cyclone separator the simplified modified swirl parameter for the conical cyclone becomes

σc = 0.45S
(
1 − X2

β

)
(2.10.8)

if the theoretical location of Xβ ≈ 0.707 from Vyas and Majdalani (2006) is used for the

cylindrical modified swirl parameter to get σ ≈ 0.45S . The theoretical location of Xβ for

the conical swirl parameter is discussed in Section 3.1.2.

Thus, substituting in the swirl parameter reduces equations of the stream function and

velocities due to elimination of the axial velocity, W, to

ψ = 1
2πσcUR2

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.10.9)

or

ψ = 1
2πσcUR2 sin2 φ (λ − ln Φ − Φ csc φ) (2.10.10)

uR = πσcU
[
(λ − ln Φ) cos φ − 1

]
(2.10.11)

uφ = −πσcU
[
(λ − ln Φ) sin φ − Φ

]
(2.10.12)

uθ,slip =
Ua

R sin φ

√
1 +

(
πσcR sin φ

a

)2

(λ − ln Φ − Φ csc φ) (2.10.13)
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uθ,no slip = Uπσc

√
λ − ln Φ − Φ csc φ (2.10.14)

Another geometric parameter from Vyas et al (2003a; 2006) appears as well in this conical

solution. The parameter from Vyas and Majdalani relates the modified swirl number, the

constant pi, and the chamber aspect ratio shown as

κ =
1

2πσl
(2.10.15)

A similar parameter materializes for this conical solution as

κc = πσc =
U
W

(2.10.16)

Relating the geometric inflow parameters gives

κ =
1 − X2

β

2πσcl
=

1 − X2
β

2κcl
(2.10.17)

Since this model is solved with a different methodology and geometry, the aspect ratio, l,

does not explicitly appear in the conical geometric parameter but is automatically satisfied

through the coupled ratio based upon the half-angle α since l = tan−1 α. The stream

function and velocities now become

ψ = 1
2κcUR2

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.10.18)

or

ψ = 1
2κcUR2 sin2 φ (λ − ln Φ − Φ csc φ) (2.10.19)

uR = κcU
[
(λ − ln Φ) cos φ − 1

]
(2.10.20)
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uφ = −κcU
[
(λ − ln Φ) sin φ − Φ

]
(2.10.21)

uθ,slip =
Ua

R sin φ

√
1 +

(
κcR sin φ

a

)2

(λ − ln Φ − Φ csc φ) (2.10.22)

uθ,no slip = Uκc

√
λ − ln Φ − Φ csc φ (2.10.23)

2.11 Nondimensional Variables and Equations

Next, a simplification to elucidate the equations further comes about from prescribing

nondimensional variables. For the sake of typesetting, the overbar, which generally

denotes a dimensional variable, was purposely left out in this chapter beforehand. The

normalization here follows previous studies such as those by Vyas and Majdalani (2006),

Majdalani and Rienstra (2007), Majdalani and Saad (2007), Majdalani (2012)

R =
R̄
a

; ψ =
ψ̄

Ua2 ; uR =
ūR

U
; uφ =

ūφ
U

; uθ =
ūθ
U

(2.11.1)

The stream function reduces to

ψ = 1
2κcR2

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.11.2)

or

ψ = 1
2κcR2 sin2 φ (λ − ln Φ − Φ csc φ) (2.11.3)

The velocities transition to

uR = κc
[
(λ − ln Φ) cos φ − 1

]
(2.11.4)
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uφ = −κc
[
(λ − ln Φ) sin φ − Φ

]
(2.11.5)

uθ,slip =
1

R sin φ

√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ) (2.11.6)

uθ,no slip = κc

√
λ − ln Φ − Φ csc φ (2.11.7)

Where the angular momentum function appears as

Bslip =

√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ) (2.11.8)

Bno slip = κcR sin φ
√
λ − ln Φ − Φ csc φ (2.11.9)

2.12 An Alternate Approach: Normalizing Upfront

An alternate approach may be considered in order to arrive at the same equations. This

approach normalizes and applies the conical swirl number upfront. This also confirms

the differences between this solution and the one posed by Bloor and Ingham (1987) (see

Section 2.18 for more detail). This produces

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= −κc (2.12.1)

Thus where applicable, the equation within the derivation turns out to be opposite in sign

since it is absorbed with the conical swirl number. First the swirl is normalized as

B =
B̄

Ua
(2.12.2)

Then the swirl term in the BHE becomes
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BdB =
κcR sin φ
R sin φ

= κc (2.12.3)

Thus, transforming the non-homogeneous ODE into

G′′ −
cos φ
sin φ

G′ + 2G = −κc (2.12.4)

with a particular solution of

Gp = −1
2κc (2.12.5)

The general homogeneous solution is now

G = K1 sin2 φ + K2

[
cos φ −

(
sin2 φ

)
ln Φ

]
− 1

2κc (2.12.6)

Applying the BCs and solving for the constants produces

K2 = 1
2κc (2.12.7)

K1 = 1
2κc csc2 α

[
1 − cosα +

(
sin2 α

)
lnA

]
(2.12.8)

K1 = 1
2κc

(
csc2 α + lnA− cscα cotα

)
= 1

2κc (A cscα + lnA) (2.12.9)

λ = 2K1κ
−1
c = csc2 α + lnA− cscα cotα = A cscα + lnA (2.12.10)

Finally, the full solution to the ODE appears as

G = 1
2κc

[
(λ − ln Φ) sin2 φ + cos φ − 1

]
(2.12.11)

G = 1
2κc sin2 φ (λ − ln Φ − Φ csc φ) (2.12.12)
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2.13 Cylindrical Polar Velocities Conversion

Since many cyclone separator studies investigate and present the axial velocity, uz, and

cylindrical polar radial velocity, ur, at this point a conversion from the spherical polar

velocities (uR, uφ, uθ) to the cylindrical polar velocities, (ur, uθ, uz), is presented (where the

tangential velocities in both cases remains the same as uθ). A simple conversion is provided

as


ur = uR sin φ + uφ cos φ

uz = uR cos φ − uφ sin φ
(2.13.1)

The first term in the cylindrical radial velocity is examined as

uR sin φ = κc sin φ
[
(λ − ln Φ) cos φ − 1

]
(2.13.2)

While the second term in the cylindrical radial velocity is presented as

uφ cos φ = −κc cos φ
[
(λ − ln Φ) sin φ − Φ

]
(2.13.3)

Some terms cancel simplifying the equation as

ur = −κc (sin φ − Φ cos φ) (2.13.4)

Expanding the Φ-term elucidates how to simplify the equation further.

ur = −κc
[
sin φ − cos φ (csc φ − cot φ)

]
(2.13.5)

Multiplying in terms yields

ur = −κc

(
sin φ − cot + cos2 φ csc φ

)
(2.13.6)

Next, the cosine squared is converted to one minus sine squared
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ur = −κc

(
sin φ − cot φ +

(
1 − sin2 φ

)
csc φ

)
(2.13.7)

Canceling out some of the terms produces

ur = −κc (csc φ − cot φ) (2.13.8)

Which then gives the straightforward equation of

ur = −κcΦ (2.13.9)

Next, the axial velocity terms are multiplied through

uR cos φ = κc

[
(λ − ln Φ) cos2 φ − cos φ

]
(2.13.10)

− uφ sin φ = κc

[
(λ − ln Φ) sin2 φ − Φ sin φ

]
(2.13.11)

Reducing the cosine and sine squared terms contracts the equation to

uz = κc (λ − ln Φ − Φ sin φ − cos φ) (2.13.12)

Again, expanding the Φ-term administers further abridgment to

uz = κc
[
λ − ln Φ − sin φ (csc φ − cot φ) − cos φ

]
(2.13.13)

Factoring in the sine term gives

uz = κc (λ − ln Φ + cos φ − 1 − cos φ) (2.13.14)

Which finally shortens the axial velocity equation to

uz = κc (λ − ln Φ − 1) (2.13.15)
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Thus, after the cylindrical polar velocity conversion, the equations for the stream function

and all velocities in spherical polar coordinates materialize as

ψ = 1
2κcR2 sin2 φ (λ − ln Φ − Φ csc φ) (2.13.16)

uR = κc
[
(λ − ln Φ) cos φ − 1

]
(2.13.17)

uφ = −κc
[
(λ − ln Φ) sin φ − Φ

]
(2.13.18)

uθ,slip =
1

R sin φ

√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ) (2.13.19)

uθ,no slip = κc

√
λ − ln Φ − Φ csc φ (2.13.20)

ur = −κcΦ (2.13.21)

uz = κc (λ − ln Φ − 1) (2.13.22)

or condensed into

ψ = 1
2κcR2 sin2 φ (Φ1 − Φ2) (2.13.23)

uR = κc (Φ1 cos φ − 1) (2.13.24)

uφ = −κc (Φ1 sin φ − Φ) (2.13.25)

uθ,slip =
1

R sin φ

√
1 + (κcR sin φ)2 (Φ1 − Φ2) (2.13.26)

uθ,no slip =
√

Φ1 − Φ2 (2.13.27)

ur = −κcΦ (2.13.28)

uz = κc (Φ1 − 1) (2.13.29)

where Φ1 = λ − ln Φ and Φ2 = Φ csc φ.

The total velocity for the spherical polar velocities in spherical polar coordinates can

now be written as
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u = κc (Φ1 cos φ − 1) eR − κc (Φ1 sin φ − Φ) eφ +

(
1
r

√
1 + 2κcψ

)
eθ (slip) (2.13.30)

u = κc (Φ1 cos φ − 1) eR − κc (Φ1 sin φ − Φ) eφ +

(
1
r

√
2κcψ

)
eθ (no slip) (2.13.31)

Next, the velocity magnitude can be calculated from the velocity components as

|u| =
√

u2
R + u2

φ + u2
θ (2.13.32)

A symbolic mathematical software such as Mathematica can be used to render the result of

the velocity magnitude. To check Mathematica, a mathematical derivation can be found in

Appendix B. The outcome for the velocity magnitude ends up being

|u| =
1

R sin φ

√
1 + (κcR sin φ)2

[
(λ − ln Φ)2

− (λ − ln Φ) + Φ csc φ
]

(2.13.33)

and in a condensed form of

|u| =
1

R sin φ

√
1 + (κcR sin φ)2

(
Φ2

1 − Φ1 + Φ csc φ
)

(2.13.34)

2.14 Cylindrical Polar Coordinates Conversion

Since cylindrical polar coordinates (CPC) are much easier to visualize than spherical polar

coordinates (SPC), a transformation from SPC to CPC is undertaken by the following

relations:
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R =
√

r2 + z2 = r
√

1 + ζ2 = rZ1 (2.14.1)

R2 = r2 + z2 = r2
(
1 + ζ2

)
= r2Z2

1 (2.14.2)

R sin φ = r (2.14.3)

R cos φ = z (2.14.4)

sin φ =
r

√
r2 + z2

=
1√

1 + ζ2
= Z2 (2.14.5)

sin2 φ =
r2

r2 + z2 =
1

1 + ζ2 = Z2
2 (2.14.6)

cos φ =
z

√
r2 + z2

=
ζ√

1 + ζ2
= ζZ2 (2.14.7)

cos2 φ =
z2

r2 + z2 =
ζ2

1 + ζ2 = ζ2Z2
2 (2.14.8)

tan φ =
r
z

=
1
ζ

= η (2.14.9)

tan2 φ =
r2

z2 =
1
ζ2 = η2 (2.14.10)

csc φ =

√
r2 + z2

r
=

√
1 + ζ2 = Z1 (2.14.11)

csc2 φ =
r2 + z2

r2 = 1 + ζ2 = Z2
1 (2.14.12)

sec φ =

√
r2 + z2

z
=

√
1 + ζ2

ζ
= ηZ1 (2.14.13)

sec2 φ =
r2 + z2

z2 = 1 + ζ−2 = 1 + η2 (2.14.14)

cot φ =
z
r

= ζ (2.14.15)

cot2 φ =
z2

r2 = ζ2 (2.14.16)

Φ = csc φ − cot φ =
√

1 + ζ2 − ζ = Z (2.14.17)
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ζ = z/r (2.14.18)

η = r/z (2.14.19)

Thus, the stream function becomes

ψ =
1
2
κcr2

[
λ − ln

( √
1 + ζ2 − ζ

)
−

( √
1 + ζ2 − ζ

) ( √
1 + ζ2

)]
(2.14.20)

or with the last term factored

ψ =
1
2
κcr2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.21)

The velocities result in a transformation of

uR = κc

{[
λ − ln

( √
1 + ζ2 − ζ

)] (
ζ/

√
1 + ζ2

)
− 1

}
(2.14.22)

uφ = −κc

{[
λ − ln

( √
1 + ζ2 − ζ

)]
/
( √

1 + ζ2
)
−

√
1 + ζ2 + ζ

}
(2.14.23)

uθ =
1
r

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.24)

ur = κc

(
ζ −

√
1 + ζ2

)
= −κc

( √
1 + ζ2 − ζ

)
(2.14.25)

uz = κc

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
(2.14.26)

The stream function and velocities can be condensed into the following forms

ψ =
1
2
κcr2

(
Z3 + ζZ1 −Z

2
1

)
(2.14.27)
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ψ =
1
2
κcr2 (Z3 + ζZ− 1) (2.14.28)

ψ =
1
2
κcr2 (λ − lnZ−ZZ1) (2.14.29)

ψ =
1
2
κcr2 (Z3 −Z4) (2.14.30)

whereZ3 = λ − lnZ andZ4 = ZZ1

uR = κc
[
(λ − lnZ) ζZ2 − 1

]
(2.14.31)

uR = κc [(λ − lnZ)Z5 − 1] (2.14.32)

uR = κc (Z3Z5 − 1) (2.14.33)

uR = κc (Z6 − 1) (2.14.34)

whereZ5 = ζZ2 andZ6 = Z3Z5.

uφ = −κc
[
(λ − lnZ)Z2 −Z1 + ζ

]
(2.14.35)

uφ = −κc (Z3Z2 −Z) (2.14.36)

uφ = −κc (Z7 −Z) (2.14.37)

whereZ7 = ζZ2Z3.
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uθ,slip =
1
r

√
1 + (rκc)2 (λ − lnZ + ζZ− 1) (2.14.38)

uθ,slip =
1
r

√
1 + (rκc)2

(
λ − lnZ + ζZ1 −Z

2
1

)
(2.14.39)

uθ,slip =
1
r

√
1 + (rκc)2 (λ − lnZ−ZZ1) (2.14.40)

uθ,slip =
1
r

√
1 + (rκc)2 (Z3 −Z4) (2.14.41)

ur = −κcZ (2.14.42)

uz = κc (Z3 − 1) (2.14.43)

Thus, the stream function and velocities group as

ψ =
1
2
κcr2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.44)

uR = κc

{
ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

}
(2.14.45)

uφ = −κc

{(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

}
(2.14.46)

uθ,slip =
1
r

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.47)

uθ,no slip = κc

√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1 (2.14.48)

ur = κc

(
ζ −

√
1 + ζ2

)
= −κc

( √
1 + ζ2 − ζ

)
(2.14.49)

uz = κc

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
(2.14.50)

or in an alternate form provided by Mathematica
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ψ =
1
2
κcr2

[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.51)

uR = κc

{
ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

}
(2.14.52)

uφ = −κc

{(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

}
(2.14.53)

uθ,slip =
1
r

√
1 + (κcr)2

[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.54)

uθ,no slip = κc

√
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1 (2.14.55)

ur = κc

(
ζ −

√
1 + ζ2

)
= −κc

( √
1 + ζ2 − ζ

)
(2.14.56)

uz = κc

[
λ + sinh−1 (ζ) − 1

]
(2.14.57)

or in a more condensed form as

ψ =
1
2
κcr2 (Z3 −Z4) (2.14.58)

uR = κc (Z6 − 1) (2.14.59)

uφ = −κc (Z7 −Z) (2.14.60)

uθ,slip =
1
r

√
1 + (rκc)2 (Z3 −Z4) (2.14.61)

uθ,no slip = κc

√
Z3 −Z4 (2.14.62)

ur = −κcZ (2.14.63)

uz = κc (Z3 − 1) (2.14.64)

where − ln
( √

1 + ζ2 − ζ
)

= sinh−1 (ζ).

u = −κcZer +

(
1
r

√
1 + 2κcψ

)
eθ + κc (Z3 − 1) ez (2.14.65)

The velocity magnitude can be calculated

|u| =
√

u2
r + u2

θ + u2
z (2.14.66)
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|u| =
1
r

√
1 + (κcr)2

{
1 − ζZ + λ2 − λ + sinh−1 (ζ)

[
2λ − 1 + sinh−1 (ζ)

]}
(2.14.67)

or

|u| =
1
r

√
1 + (κcr)2 {

1 − ζZ + λ2 − λ − lnZ [2λ − 1 − lnZ]
}

(2.14.68)

The angular momentum in CPC becomes

Bslip =

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(2.14.69)

Bno slip = κcr
√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1 (2.14.70)

Bslip =

√
1 + (rκc)2 (Z3 −Z4) (2.14.71)

Bno slip = κcr
√
Z3 −Z4 (2.14.72)

2.15 Alternate Solution and Swirl Number

If we begin with the BHE and set the RHS to a simple unknown constant

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= −C (2.15.1)

We arrive at the same form of stream function and velocities

ψ = 1
2CR2 sin2 φ

(
λ − ln Φ + csc φ cot φ − csc2 φ

)
(2.15.2)

uR = C
[
(λ − ln Φ) cos φ − 1

]
(2.15.3)

uφ = C
[
(ln Φ − λ) sin φ + Φ

]
(2.15.4)
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uθ =
1

R sin φ

√
1 + (CR sin φ)2 (λ − ln Φ − Φ csc φ) (2.15.5)

ur = −CΦ (2.15.6)

uz = C (λ − ln Φ − 1) (2.15.7)

ψ = 1
2Cr2

(
λ − ln Z − Z

√
1 + ζ2

)
(2.15.8)

uR = C
[(
ζ/

√
1 + ζ2

)
(λ − lnZ) − 1

]
(2.15.9)

uφ = −C
[
(λ − lnZ) /

√
1 + ζ2 −Z

]
(2.15.10)

uθ =
1
r

√
1 + (rC)2

(
λ − lnZ−Z

√
1 + ζ2

)
(2.15.11)

ur = −CZ (2.15.12)

uz = C (λ − lnZ− 1) (2.15.13)

In order to get the final constant a method from Vyas and Majdalani may be used which

examines the incoming and outgoing flow rates.

Qi = 2π
∫ b

0
uzrdr = UAi (2.15.14)

which produces
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UAi = πCr2
(
λ +

√
1 + ζ2 − lnZ− 1

)
(2.15.15)

UAi = πCb2

λ +

√
1 +

L2

b2 − ln


√

1 +
L2

b2 −
L
b

 − 1

 (2.15.16)

Partial normalization gives

UAi = πCa2X2
β

λ +

√
1 +

l2

X2
β

− ln


√

1 +
l2

X2
β

−
l

Xβ

 − 1

 (2.15.17)

C =
UAi

πa2X2
β

[
λ +

√
1 + cot2 β − ln

( √
1 + cot2 β − cot β

)
− 1

] (2.15.18)

The velocity U transfers to the stream function equation, which drops out due to

normalization. The constant now becomes

C =
{
πσX2

β

[
λ + csc β − ln (csc β − cot β) − 1

]}−1
(2.15.19)

C =
1
πςc

(2.15.20)

C = κc (2.15.21)
where

ςc = σX2
β

(
λ + csc β − ln Φβ − 1

)
(2.15.22)

The stream function and velocities in SPC now become
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ψ = 1
2κcR2 sin2 φ (λ − ln Φ − Φ csc φ) (2.15.23)

uR = κc
[
(λ − ln Φ) cos φ − 1

]
(2.15.24)

uφ = −κc
[
(ln Φ − λ) sin φ + Φ

]
(2.15.25)

uθ,slip =
1

R sin φ

√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ) (2.15.26)

uθ,no slip = κc

√
λ − ln Φ − Φ csc φ (2.15.27)

ur = −κcΦ (2.15.28)

uz = κc (λ − ln Φ − 1) (2.15.29)

While the stream function and velocities in CPC emerge as

ψ = 1
2κcr2 (Z3 −Z4) (2.15.30)

uR = κc (Z6 − 1) (2.15.31)

uφ = −κc (Z7 −Z) (2.15.32)

uθ,slip =
1
r

√
1 + (rκc)2 (Z3 −Z4) (2.15.33)

uθ,no slip = κc

√
Z3 −Z4 (2.15.34)

ur = −κcZ (2.15.35)

uz = κc (Z3 − 1) (2.15.36)

This alternate swirl number allows for different theoretical calculations to be made in order

to compare experimental and numerical data.

2.16 Vorticity

The vorticity is calculated from the previous equations in Section 1.3.3. Since the tangential

velocity is required for several of the vorticity component equation calculations, two sets
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of vorticity components are needed. One each for the slip and no slip cases. The vorticity

components in SPC arise as

ωR =
κ2

c (Φ1 cos φ − 1)√
1 + (κcR sin φ)2 (Φ1 − Φ2)

(2.16.1)

ωφ = −
κ2

c (Φ1 sin φ − Φ)√
1 + (κcR sin φ)2 (Φ1 − Φ2)

(2.16.2)

ωθ =
κc

R sin φ
(slip) (2.16.3)

ωr = −
κ2

cΦ√
1 + (κcR sin φ)2 (Φ1 − Φ2)

(2.16.4)

ωz =
κ2

c (Φ1 − 1)√
1 + (κcR sin φ)2 (Φ1 − Φ2)

(2.16.5)

ωR =
κc (Φ1 cos φ − 1)
√

Φ1 − Φ2
(2.16.6)

ωφ = −
κc (Φ1 sin φ − Φ)
√

Φ1 − Φ2
(2.16.7)

ωθ =
κc

R sin φ
(no slip) (2.16.8)

ωr = −
κcΦ

√
Φ1 − Φ2

(2.16.9)

ωz =
κc (Φ1 − 1)
√

Φ1 − Φ2
(2.16.10)

In CPC, the vorticity components are written as
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ωR =
κ2

c (Z6 − 1)√
1 + (rκc)2 (Z3 −Z4)

(2.16.11)

ωφ = −
κ2

c (Z7 −Z)√
1 + (rκc)2 (Z3 −Z4)

(2.16.12)

ωθ =
κc

r
(slip) (2.16.13)

ωr = −
κ2

cZ√
1 + (rκc)2 (Z3 −Z4)

(2.16.14)

ωz =
κ2

c (Z3 − 1)√
1 + (rκc)2 (Z3 −Z4)

(2.16.15)

ωR =
κc (Z6 − 1)
√
Z3 −Z4

(2.16.16)

ωφ = −
κc (Z7 −Z)
√
Z3 −Z4

(2.16.17)

ωθ =
κc

r
(no slip) (2.16.18)

ωr = −
κcZ

√
Z3 −Z4

(2.16.19)

ωz =
κc (Z3 − 1)
√
Z3 −Z4

(2.16.20)

After examination, a relation between the velocity and vorticity components is recognized.

The components of velocity and vorticity amalgamate into the following properties for both

slip and no slip tangential velocities:
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ωR =
κc

r
uR

uθ
=

κc

R sin φ
uR

uθ
= ωθ

uR

uθ
= uR

ωθ

uθ
(2.16.21)

ωφ =
κc

r
uφ
uθ

=
κc

R sin φ
uφ
uθ

= ωθ

uφ
uθ

= uφ
ωθ

uθ
(2.16.22)

ωr =
κc

r
ur

uθ
=

κc

R sin φ
ur

uθ
= ωθ

ur

uθ
= ur

ωθ

uθ
(2.16.23)

ωz =
κc

r
uz

uθ
=

κc

R sin φ
uz

uθ
= ωθ

uz

uθ
= uz

ωθ

uθ
(2.16.24)

The ratio of the vorticity components to the corresponding velocity are shown to be equal.

The vorticity-velocity ratio also reduces to a simple relation between the swirl parameter

and swirl function.

ωR

uR
=
ωφ

uφ
=
ωθ

uθ
=
ωr

ur
=
ωz

uz
(2.16.25)

ω j

u j
=

κc

uθr
=

κc

uθR sin φ
=

κc

B (ψ)
(2.16.26)

ωR = κc
uR

B (ψ)
=

κc

B (ψ)
uR (2.16.27)

ωφ = κc
uφ

B (ψ)
=

κc

B (ψ)
uφ (2.16.28)

ωr = κc
ur

B (ψ)
=

κc

B (ψ)
ur (2.16.29)

ωz = κc
uz

B (ψ)
=

κc

B (ψ)
uz (2.16.30)

ω j =
κc

B (ψ)
u j (2.16.31)

The vorticity vector emerges as

ω =
κc

R sin φ
uR

uθ
eR +

κc

R sin φ
uφ
uθ

eφ +
κc

R sin φ
eθ (2.16.32)
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ω =
κc

r
ur

uθ
er +

κc

r
eθ +

κc

r
uz

uθ
ez (2.16.33)

The ratio between the vorticity vector and velocity vector differs by an eigenvalue. Thus,

the flow field type is confirmed to be of the Beltramian or helical flow type (Wu et al. 2006).

The vorticity-velocity vector ratio appears as

ω =
κc

B(ψ)
u (2.16.34)

The vorticity magnitude in SPC calculates as

|ω| =
κc

R sin φ

√
1 +

[
κc

B(ψ)

]2 [(
λ − 2 − log Φ

) (
λ − log Φ

)
+ 2Φ csc Φ

]
(2.16.35)

or in condensed forms

|ω| =
κc

R sin φ

√
1 +

[
κc

B(ψ)

]2 [
Φ2

1 − 2 (Φ2 − Φ1)
]

(2.16.36)

The vorticity magnitude in CPC becomes as

|ω| =
κc

r

√
1 +

[
κc

B(ψ)

]2 [
Z2

3 − 2 (Z4 −Z3)
]

(2.16.37)

2.17 Pressure

From the equations in Section 1.3.3, the pressure differentials are calculated (see Ap-

pendix D for more detailed mathematics).
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∂p
∂R

=
κ2

c

R
{
(λ − ln Φ) + Φ cot φ − (λ − ln Φ)2

+
[
(λ − ln Φ) cos φ − 1

]2
− 1

}
(2.17.1)

∂p
∂φ

=
1

R2 sin2 φ

{
cot φ + (κcR sin φ)2

[
(λ − ln Φ) csc φ − Φ csc2 φ

]}
(2.17.2)

∂p
∂r

=

r

√
1 +

z2

r2 + κ2
c

z2r

√
1 +

z2

r2 − z3

r4

√
1 +

z2

r2

+

zr2

λ − ln


√

1 +
z2

r2 −
z
r

 − 1




r4

√
1 +

z2

r2

(2.17.3)

∂p
∂z

= κ2
c


z2 − zr

√
1 +

z2

r2 − r2

λ − ln


√

1 +
z2

r2 −
z
r

 − 1


r3

√
1 +

z2

r2


(2.17.4)

∂p
∂R

=
κ2

c

R

[
Φ1 + Φ cot φ − Φ2

1 + (Φ1 cos φ − 1)2
− 1

]
(2.17.5)

∂p
∂φ

=
1

R2 sin2 φ

[
cot φ + (κcR sin φ)2 (Φ1 csc φ − Φ2 csc φ)

]
(2.17.6)

∂p
∂r

=
Z2

r3 + κ2
c
Z2

r

[
ζ2Z1 − ζ

3 + ζZ2 (Z3 − 1)
]

(2.17.7)

∂p
∂z

= κ2
c
Z2

r

(
ζ2 − ζZ1 −Z3 + 1

)
(2.17.8)

Taking the normalized p0 as our baseline at the inlet of the cone where (r, z) = (1, cotα),

Eq. (2.17.3) and Eq. (2.17.4) may be partially integrated to yield, ∆p (α) = p (α) − p0 (α),

where p0 may be correlated to the cone geometry according to Table 2.2. One deduces
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p(r, z) = −
1

2r2 +
1
2
κ2

c

[(
ζ + ζ3

)
/
√

1 + ζ2 − ζ2 − ln2
Z− (2λ − 1) ln (Z + 2ζ)

]
(2.17.9)

Table 2.2: Pressure constant p0 versus α with σc = 1.

α p0 α p0

5◦ 50.32 50◦ 3.48

10◦ 31.15 55◦ 2.53

15◦ 22.04 60◦ 1.73

20◦ 16.49 65◦ 1.07

25◦ 12.68 70◦ 0.522

30◦ 9.88 75◦ 0.091

35◦ 7.73 80◦ 0.226

40◦ 6.02 85◦ -0.429

45◦ 4.63 90◦ -0.500

Likewise, the same procedure concludes that the no slip tangential velocity pressure terms

appear as

p(r, z)no slip =
1
2
κ2

c

[(
ζ + ζ3

)
/
√

1 + ζ2 − ζ2 − ln2
Z− (2λ − 1) ln (Z + 2ζ)

]
(2.17.10)

2.18 Reconstruction of Bloor and Ingham’s

Analysis (1987)

The basis of this dissertation is inspired by two original analyses for the fluid dynamic

flow of a BDV in a conical geometry, one by Bloor and Ingham (1987) and the other by

Zhao and Abrahamson (1999). The findings of this dissertation improve the solutions of

Bloor and Ingham (1987) and Zhao and Abrahamson (1999) by demonstrating concise and
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straightforward analysis which advances the understanding of the fluid dynamics regarding

BHE flows and expands the family of solutions by Majdalani et al (Saad et al. 2006; Vyas

and Majdalani 2006; Maicke and Majdalani 2008b; Majdalani 2012) and others (Hill 1894;

Hicks 1899; Fraenkel 1956; Yih 1959; O’Brien 1961; Moffatt 1969; Gostintsev et al. 1971;

Duda and Vrentas 1972; Yarmitskii 1992). Thus, distinguishing between previous studies

and the current one is imperative.

Again, the formulation and method to obtain the full solution for the stream function

remain similar. However, it is at this juncture that an obvious difference appears between

the solution of presented in Section 2.11 and the solution by Bloor and Ingham (1987).

Within the publication by Bloor and Ingham (1987), the stream function solution appears

as

ψ = σBIR2
{[
λBI − ln

(
1
2

tan φ
)]

sin2 φ + cos φ − 1
}

(2.18.1)

The discrepancy manifests as the difference between tan (φ/2) and (1/2) tan φ. At

first glance, this looks like it could simply be a typographical error. However, the typo

propagates throughout the paper from this point forward. The typo also appears in the

constant, λBI = ln
[(

1
2

)
tanα

]
sin2
− cscα cotα, where the discrepancy is between tan (α/2)

and (1/2) tanα. This is even more confusing as what exactly happened at this point in the

analysis by Bloor and Ingham (1987). Another possibility (and most probable) arises in an

approximation where for small angles it is assumed that tan (φ/2) ≈ φ/2. Back substitution

allows for φ ≈ tan φ and thus tan (φ/2) ≈ (1/2) tan φ. A residual between the two stream

functions is calculated as

1
2
πσc

(
2 cos φ − sec2 φ − 3

)
= −πσc (2.18.2)

Next Bloor and Ingham (1987) determine the constant, σBI by assuming that ψ = ψ f =

1 at the vortex finder of the cyclone at the coordinates R = R f and φ = φ f . The reason

for this approximation is because W is not known beforehand. Bloor and Ingham (1987)

give the approximation of φ f ≈
1
5α claiming that this is typical the location in practice (no
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reference is given to back this up). The equation of the vortex finder streamline given by

Bloor and Ingham (1987) appears as

1 = σBIR2
f

{
K1 sin2 φ f − sin2 φ f

[
ln

(
1
2 tan φ f

)]
+ cos φ f − 1

}
(2.18.3)

Several typos appear within the vortex finder equation in the investigation by Bloor

and Ingham (1987). One is the possible misplaced 1/2 of unknown origin within the

logarithmic-tan function, and another involves the placement of the constant K1. In the

previous equation by Bloor and Ingham (1987), the general stream function, the constant

σBI appears outside the braces as in the vortex finder stream function equation. However,

the typographical differences consist of the comparison of the general stream function

where K1/σBI = λ appears inside the braces and the vortex finder streamline whereas

only σBI appears inside of the braces and only on one term. Thus, the equation in correct

form is

1 = σBIR2
f

{
λBI sin2 φ f − sin2 φ f

[
ln

(
1
2 tan φ f

)]
+ cos φ f − 1

}
(2.18.4)

Bloor and Ingham (1987) go on to derive the velocities as

ūθ/U = uθ =
1

R sin φ

√
1 −

Q2σBIψ

(πaU)2 (2.18.5)

uR = 2 cos φ − 2σBI

[
cos φ ln

(
1
2 tan φ

)]
(2.18.6)

uφ =
2ψ

sin 2φ
(2.18.7)

In order to verify the analysis by Bloor and Ingham (1987), an attempt is made to reproduce

the results in the next chapter. However, the looming possible typos mentioned earlier put

the velocities in question. The tangential velocity is noted as the velocity most in question

since there exist a negative sign under the square root. Again, a simple negative sign and
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orientation of the axis could be the answer to clear the confusion. However, Bloor and

Ingham (1987) leave out much detail in their analysis making verification difficult.
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Chapter 3

The Beltramian Conical Bidirectional

Vortex (BDV): Results and Discussion

3.1 Mantle Location & Streamlines

3.1.1 Mantle Location Background & History

The mantle location denotes the locus in the swirling flow field where there exists a

changeover in direction in the downward-upward velocities. Mantle identifications occur

in devices and setups such as the cylindrical BDV (Batterson et al. 2007; Majdalani 2007;

Maicke and Majdalani 2008a; Saad and Majdalani 2008; Akiki and Majdalani 2010),

cyclone separators Bhattacharyya (1980a), swirling nozzle flow (Binnie and Teare 1956),

and swirling pipe flow (Nuttall 1953; Gore and Ranz 1964; Escudier et al. 1980). According

to Bradley and Pulling (1959) (see also Bradley 1965) one of the earliest mentions of the

term “mantle” dates back to Binnie and Teare (1956). The flow reversal and cylindrical

mantle experienced by Binnie and Teare (1956) and Bradley and Pulling (1959) relates

closely to vortex breakdown for swirling flow in a diverging tube (Leibovich 1978) and

cylindrical tube (Bottaro et al. 1991). Recirculating zones in swirling free jets (Gore and

Ranz 1964) and general swirling pipe flows (Nissan and Bresan 1961; King et al. 1969;

Lavan et al. 1969; Escudier et al. 1980; Vakili et al. 1996) also experience flow reversals
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(all discussed later). Discrepancy and similarity between the mantle description by Binnie

and Teare (1956) and Bradley and Pulling (1959) and cyclone separators location of zero

vertical velocity (Bradley 1965; Bhattacharyya 1980a) are also reviewed.

First, the study of an experiment on the swirling flow in a circular tube and unexpected

axial flow reversal is revisited. In 1953 Nuttall wrote a brief article in Nature entitled

“Axial Flow in a Vortex.” Nuttall (1953) reported how an unexpected flow reversal

appeared around the long axis of the pipe for some cases of swirl and discharge rates. The

experimental apparatus consisted of 2 and 7/8 inch inside diameter of Perspex pipe. The

pipe was mounted vertically topped by a cylindrical tank. Swirl was induced through a ring

of guide vanes. Discharge rates were governed by a throttle at the end of the 56 inch long

tube and inflow into the tank to retain a constant free surface level. The throttling devices

utilized ranged from a circular orifice, a divergent cone which ended attached to a flat plate

with an orifice, an annular orifice, and more. The intent for the experiment generated an

average axial velocity of 1.5 m/s and Re = 3 × 104. Nuttall (1953) did not record any

velocity measurements. Nuttall, instead, injected dye to highlight the fluid trajectories.

Nuttall (1953) made the following observations about the flow structure for various flow

conditions utilizing the dye injection for visualization. Low swirl produced lower than

maximum axial velocity at the center of the pipe as demonstrated in Nuttall (1953) by

curve a. An increase in swirl caused the axial velocity to become negative around the

centerline of the tube as shown in curve b. Finally, for even higher swirl rates the axial

velocity profile transformed into a positive direction near the centerline while a positive

region existed in an annular fashion between the centerline and pipe wall, curve c. The

annular region noted by Nuttall (1953) is a possible first, if not, very early indication of an

annular mantle region similar to the observations of Binnie and Teare (1956) and Bradley

and Pulling (1959). Some notes made by Nuttall (1953) included that only the annular and

circular exit orifices (no details given) reproduced curve c while the transfer from b and c

took place with the circular orifice at lower swirl rates. Nuttall (1953) concluded that

86



“So far no satisfactory explanation of this phenomenon has been found. It

seems to be related to the reverse flow at the centre of a Ranque-Hilsch vortex

tube, although no thermal effects are present in this case.”

Binnie (1957) later labeled curves, a, b, and c, as “Regime I”, “Regime II”, and “Regime

III,” respectively. The experimental method of a rotating portion of the pipe utilized by

Binnie (1957) differed from the tangential feed injection of Nuttall (1953).

The Ranque-Hilsch vortex tube explains the flow reversal much more naturally since an

upper exit port exists which allows for the gas or liquid that does not exit at the bottom to

reverse direction and emerge from the top outlet. The Ranque-Hilsch tube is a form of the

BDV as seen in cyclone separators (Barth 1956; Bloor and Ingham 1973a; Boysan et al.

1982; Bloor and Ingham 1983; Bhattacharyya 1985; Dabir and Petty 1986; Brayshaw 1990;

Castro et al. 1996; Chiné and Concha 2000; Bergström and Vomhoff 2007) and the BDV

rocket engines (Majdalani 2007, 2009; Saad 2010; Akiki 2011; Maicke 2012). However,

for the case of “unidirectional” vortex flow through a tube or nozzle, the flow reversal

stumped early researchers as to why the axial velocity sometimes became negative in

direction to the outlet. Additional studies have also examined and experienced flow reversal

for unidirectional swirling pipe flow including those by Binnie (1957), Nissan and Bresan

(1961), King et al. (1969), Bottaro et al. (1991). Flow reversal also occurred for studies

with unidirectional swirling flows in diverging and/or converging pipes or nozzles (Binnie

and Teare 1956; Binnie et al. 1957; Gore and Ranz 1964; So 1967; Chow 1969). Vortex

breakdown also plays a large role related to swirling flows and recirculation zones (flow

reversal) (see Harvey (1962), Sarpkaya (1971), Syred et al. (1975), Faler and Leibovich

(1977), Faler and Leibovich (1978), Brücker and Althaus (1992), Delery (1994), Brücker

(2002)). The key to flow reversal in the axial velocity profile depends upon swirl rates

(Nissan and Bresan 1961; Lavan et al. 1969).

Next the experiment and observations (especially flow reversal and mantle recordings)

by Binnie and Teare are discussed swirling flow of water in a pressure nozzle and “open

trumpet.” In 1956, Binnie and Teare publish a paper over the hydrodynamic examination

87



of a pressure nozzle by Binnie and Teare (1956) which is motivated by the relation to

the applications of swirl atomizers (see Taylor 1950; Binnie and Harris 1950; Som and

Mukherjee 1980b,a). Swirl atomizers find relevance in dispersing oil in furnaces and

combustion chambers of gas turbines. One occurrence of swirl atomizers is the generation

within the liquid medium of a gaseous core which engenders from atmospheric or exit

boundary conditions (usually air).

Binnie and Teare (1956) undertake the hydraulic investigation at the Engineering

Laboratory in Cambridge, England. The objective aims to effectively measure the pressure

and velocity distributions with a converging nozzle as water exits under pressurized

conditions. A second experiment analyzed the flow field under gravity as it flows from

a reservoir into a vertical pipe with an open trumpet entrance. Since the nozzle was large

in scale compared to typical swirl atomizers, Binnie and Teare (1956) were able to utilize

devices to examine the flow field. For the pressurized nozzle flow, water entered the nozzle

from a cylindrical tank 4 feet in diameter and 4 feet 6 inches high. The nozzle connected to

the bottom of the center of the tank. Binnie and Teare (1956) introduced water into the tank

in one of two ways. The first consisted of a swirl-free feed of water which was introduced

into the the top-center of the tank from a vertical pipe. As the water entered the tank a

horizontal baffle plate redirected the water away from the middle of the tank. The second

method for water to be supplied to the tank included two horizontal pipes symmetrically

attached tangentially near the top of the reservoir. The amalgamation of the tangential pipes

and baffle plate allowed Binnie and Teare (1956) to control a range of swirl and pressure

parameters for the experiment. A bleed system was devised in order to increase the flow

through the reservoir and, in turn, increase the upper limit of swirl produced at the inlet of

the nozzle. The bleed system was made by securing a brass volute chamber in between the

nozzle and bottom of the cylindrical chamber.

Binnie and Teare (1956) noted that,

“In the course of the experiments it was discovered that a boundary layer of

forced vortex motion existed on the free surface at the core, and that when
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the swirl was sufficiently great compared with the supply pressure, the axial

component of velocity was reversed in the upper part of the nozzle.”

Figures from Binnie and Teare (1956) show both flow properties experienced. One

photo in particular reveals a highly helical flow structure near the air core as highlighted

by the dye injection. The inked helical filament winds tightly around the core with a

nearly constant pitch and remains visible for a distinct distance with little diffusion into

the surround flow structure. Binnie and Teare (1956) note that the naked eye distinguished

a longer, more visible helical filament than the photograph shows. The definition of

the helical filament implies that there exists solid-body rotation (SBR) near the air core

boundary, a departure from inviscid theory. If the tangential velocity experienced rates

which varied inversely with the radius, the high shear stresses would have disintegrated the

dye particles more quickly.

Binnie and Teare (1956) expounded that in order to achieve flow reversal the device

required full bleed, strong swirl, and steady pressure heads less than 7 feet. The flow

reversal recessed as the head increased. Binnie and Teare (1956) comment that

“...the largest zone of reverse flow that was seen when the supply was kept

constant constant and the interior of the nozzle was fully explored; under other

conditions the zones did not extend so far down the nozzle and their outer

diameters were less.”

However, Binnie and Teare (1956) additionally explain that further experiments confirmed

that device setup does not always determine flow reversal conditions. Binnie and Teare

(1956) described in their own words how different apparatus arrangements produced flow

reversal as

“At first it was found impossible to obtain reverse flow without the bleed in

operations, but the reservoir was connected to a pump giving five times the

normal maximum supply pressure, and a very strong vortex was obtained with

full bleed. After the supply and bleed had been cut off, the head fell to 6 feet
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and the swirl was sufficiently powerful for reverse for to appear. It persisted

even when the level in the reservoir fell below the baffle plate, the uncovering

which was accompanied by a change in the wave pattern on the core. Under

some conditions the existence of inward radial motion within the reservoir

was detected. A large injection of permanganate solution into the zone of

reverse flow was carried up into the reservoir, whence it reappeared moving

uniformly downwards in the forced vortex region close to the core; and after

the last injected fluid had vanished upwards, the colour near the core gradually

decreased in intensity but was still visible 20s later. ”

Next, curious of the unusual and unexpected axial flow reversal, Binnie and Teare

(1956) expanded the experiment to consist of an open circular tank where water could

flow out of a central vertical pipe under the influence of gravity (generally called an open

trumpet; see Binnie and Hookings 1948). The reasoning behind the additional apparatus by

Binnie and Teare (1956) was due to the more perceptible flow properties near the core. The

water tank for the open trumpet measured 5 feet in diameter and 3 feet tall. Four tangential

inlets fed water into the reservoir where the swirling water exited through a 1 inch vertical

pipe. A conical Perspex trumpet measuring 8.4 inches high and 5.9 inches in maximum

width attached to the opening of the vertical pipe. An annular area around the pipe at the

bottom of the experimental chamber let water escape which crafted the boundary layer

bleed system for the open trumpet experiment.

Again, the axial reversion occurred within the tank. Figures, as described by Binnie and

Teare (1956), capture the flow reversal and the mantle. Binnie and Teare (1956) mentioned

that the same flow reversal has been recorded by Nuttall (1953) for swirling water flow

in a pipe under certain circumstances (previously discussed). Binnie and Teare (1956)

remarked that reverse flow even occurred under weak swirl conditions for the open trumpet

setup. For low swirl conditions, the “feebile” vortices were seen when there was no bleed

and with a throttled outlet pipe, which restricted the throat of the open trumpet to dictate
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the flow dynamics. A “free outlet” allowed for increased vortex strength where reverse

flow consistently appeared indubitably.

However, another mysterious phenomena occurred in which Binnie and Teare (1956)

described the motion as

“The two effects, mentioned above, were seen again; and, in addition, it was

found that the slow downward movement in the tank outside the forced vortex

was sometimes concentrated into thin cylindrical mantles round the core.”

Within these regions of observation by Binnie and Teare (1956), permanganate,

introduced into the flow for visualization, gradually transversed downwards and formed

a marked cylinder form. Binnie and Teare (1956), hence, called the cylindrical image a

“mantle.” Binnie and Teare (1956) commented their observations on the mantle as,

“The cylinder faded very slowly and usually remained visible for several

minutes. With a feeble vortex the edge of the mantle was indistinct, but at large

swirls not only was the edge sharply defined but several mantles at different

radii were formed.”

Furthermore, Binnie and Teare (1956) cited that the mantles were “remarkably stable” and

formed to the wave shapes mimicking the sinuous pattern of the air core. In one case, once

the mantle appeared, Binnie and Teare (1956) ramped up the bleed causing the swirl to

increase which resulted in a denser and larger mantle diameter.

Finally, the results of a dye visualization experiment with a hydrocyclone by Bradley

and Pulling (1959) (also see the book by Bradley (1965) entitled Hydrocyclones for details

on the experiment and much more) are discussed, especially flow reversal and mantle

observations. The experiment consisted of transparent Perspex cyclones of 3 inch and

11/2 inch diameters. Existing pressure taps allowed for a methylene blue concoction to

be injected through the walls of the cyclone apparatus. The experiment also recorded

dye injection from the inlet feed. Bradley and Pulling (1959) designed the cyclone to

be versatile with swappable feed, overflow, underflow, cone, and cylinder sections. The
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overall flow feed remained at 30 liters per minute unless noted by Bradley and Pulling

(1959).

One photo by Bradley and Pulling (1959) demonstrates the outer downward flow from

dye injection in the feed. The dye fills most of the outer spiral but has not reached the inner

upward spiral. A second photo highlights clearing of ink from outer flow as fresh feed

displaces the previously injected dye. Some of the solution travels to the inner flow which

elevates to the overflow at the top of the cyclone. An annular clear region also appear in

photos by Bradley and Pulling (1959) where little to no inward radial flow exist leaving a

dye free zone. Bradley and Pulling (1959) note that the annulus remains visible for 5 to 10

seconds after appearance. In contrast, another photo shows the stationary layer highlighted

by the dye. Additionally, Bradley and Pulling (1959) demonstrate direct injection of dye

penetrating the mantle zone, which remains very stable. At this point Bradley and Pulling

(1959) call the annular “stationary layer” the “mantle,” first attributed to Binnie and Teare

(1956).

At this point, the author discusses in more detail the mantle and flow reversal regions for

swirling pipe, nozzle, and fully BDV flow in order relieve any confusion. Binnie and Teare

(1956) and Bradley and Pulling (1959) coined the term mantle which describes an annular

cylindrical region with little or no crossflow in swirling flows. However, for clarity, the

mantle and reverse flow regions vary a bit with different geometries. As has been discussed

and demonstrated by many, (Nuttall 1953; Binnie 1957; Nissan and Bresan 1961; Gore and

Ranz 1964; Escudier et al. 1980; Vakili et al. 1996; Mattner et al. 2002), for unidirectional

(at least initially) swirling pipe flow several possibilities exist. At low swirl, Regime I

dictates uniform and unidirectional swirling pipe flow. As the swirl increases, Regime II

sees a reverse flow region where part of the axial flow reverses direction to the normal flow,

usually occurring near the centerline. Finally, at certain swirl and flow parameters Regime

III appears which profiles a second axial reversal so that the velocity near the centerline

and wall reverts to a “positive” value while the annular region in between is in the opposite

or “negative” direction. For “unidirectional” swirling cylindrical pipe and nozzle flows, the

annular region in Regime III usually does not extend through the entire length of the device.
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Instead the reversal zone is an “eddy” type flow which occupies a small section of the length

of the pipe or nozzle (see Binnie and Teare (1956)). The eddy type flow can also be seen

in the fully BDV flow as demonstrated by the results from Bradley and Pulling (1959). By

a “fully BDV flow,” the author is referring to such devices as the cyclone separator, BDV

propulsion chamber, and the reverse vortex chamber by Mateveev et al (Matveev 2006) at

Applied Plasma Technologies. An ideal fully BDV flow sees full flow reversal through the

entire length of the device. Bradley and Pulling (1959) also confirm full flow reversal in

their experiments. In one photo, Bradley and Pulling (1959) capture dye injection near the

bottom of the outer vortex. The dye then diffuses into the reversed inner vortex, heading

towards to top of the hydrocyclone. Another photo displays a direct dye injection into the

inner vortex where a dark region of dye swirls upwards. Similarly in Majdalani (2012),

streamline plots display how the outer and inner vortex reside in the entire chamber. The

full length inner and outer vortices also enforces flow reversal throughout the cylinder. The

streamlines convey an outer downward movement until the bottom wall restricts downward

motion and forces the fluid back upwards into the middle of the chamber where it eventually

exits at the outlet located at the top of the chamber. The same motion occurs in conical

cyclones (setup similar to the cylinder BDV) which will be confirmed in Section 3.1.2.

An actual cyclone separator usually contains an additional outlet at the bottom of the

chamber. Thus, the outlet at the top of the chambers seems to promote the full BDV flow.

Majdalani et al recently discuss the mantle location regarding BDV research (see (Vyas and

Majdalani 2006; Majdalani 2007; Maicke and Majdalani 2008a; Saad and Majdalani 2008;

Batterson et al. 2007; Akiki and Majdalani 2010, 2012; Maicke and Majdalani 2012a,b)).

For the theoretical cases cited, the mantle pinpoints the locus of zero vertical velocity

(LZVV), otherwise the location of axial velocity flow reversal. Again, for the Beltramian

conical BDV, the mantle location acts in the same way as the cylindrical BDV, as shown in

Section 3.1.2. The mantle in the cylindrical BDV by Majdalani et al extends to the bottom

of the chamber forming a full double vortex. The closest image to this experimentally is in

the open trumpet gravity driven hydraulic flow by Binnie and Teare (1956). Thus, a fully

reversed flow, in order to see a fully developed annular mantle cylinder, does not always
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require an “upper” outlet. Additionally, unidirectional vortices usually traverse longer

lengths than a “forced” double vortex like the BDV chamber flow models of Majdalani et al.

In turn, the unidirectional vortices undergo possible stability conditions which eventually

evolve into vortex breakdown. Vortex breakdowns also produce recirculation zones which

is a possible candidate for observations by Binnie and Teare (1956) and other researchers.

The recirculation zones Binnie and Teare (1956) and others have discovered could also

be related to flow separation such as forward and backward step configurations Thus, a

wide range of geometry and flow conditions gives a wide range of results which makes

swirling flow so enticing to analyze by researchers, regardless of the complexity of possible

outcomes.

However, “secondary” flows can develop for actual cyclone separator devices, which

seems to promote and eddy “mantle” flow and a conical “mantle” of LZVV. For the case of

Bradley and Pulling (1959), the dye injections only highlighted a small cylindrical mantle

region in the upper portion of the cyclone (which is very similar to Binnie and Teare (1956)

swirling nozzle flow and thus Bradley and Pulling (1959) utilize the term mantle). Thus,

from the findings by Bradley and Pulling (1959), the initial mantle zone only consisted of

an eddy region. Diagrams in Bradley and Pulling (1959) show a completely circular eddy

which occupies the upper portion of the hydrocyclone. The upper portion of the apparatus

includes the cylindrical “cap” and part of the uppermost conical section. The eddy or

mantle remains in a annular cylinder even as the lower part of the mantle extends into the

conical section of the hydrocyclone. Other schematics in Bradley and Pulling (1959) and

Bradley (1965) clearly illustrate the “short circuit” phenomena where part of the immediate

inlet flow seeps around the vortex finder and exits before cycling through the cyclone. The

defined eddy regions could be influenced by the usual vortex finder, which extends into a

portion of the cylindrical section of the cyclone separator. The meridional recirculation

zone near the vortex finder is similar to those found for flow separation from sudden

expansions (or constrictions) and swirl burners. Theoretical models for BDV flows do not

account for possible secondary flows such as corner eddies. However, some researchers do

attempt to model recirculation zones (Yih 1959; Duda and Vrentas 1972).
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Remarkably, certain flow conditions engender the formation of more than one mantle

layer in swirling vortex flows, creating multiple mantles. Bradley and Pulling (1959)

created multiple mantles in their hydrocyclone experiment. Multiple mantles were present

for both the 9 degree and 20 degree conical section angles. However, according to Bradley

and Pulling (1959), the multiple mantles appeared less intense in the 9 degree section

compared to the distinct double mantle formation in the 20 degree conical section. Thus,

multiple eddy circulations zones occupy the upper part of the hydrocyclone. Even before

Bradley and Pulling (1959), evidence of multiple mantles came from comments made by

Binnie and Teare (1956) suggesting multiple mantles forming during the open trumpet

water experiment. Documentation of the evidence of multiple mantles emerged from

hybrid vortex rocket tests by ORBITEC which exhibit concentric grooves etched in the

solid fuel grain in a photo taken after a firing test Vyas et al. (2003c). The grooves

are believed to be the result from several vortex flow reversals. Theoretical models

also corroborate the existence of multiple mantles including the multi-cellular model of

Sullivan (1959), Donaldson and Sullivan (1960), Kuo (1966), Bellamy-Knights (1970),

Bellamy-Knights (1971), Kendall (1978), Vyas et al. (2003c), and Batterson and Majdalani

(2010a). Other studies confirm multi-celled vortices such as meteorological studies by

Ward (1972) and Mitsuta et al. (1987), a theoretical and numerical thesis investigation over

the Donaldson-Sullivan vortex by Mickel (2000), an experiment of hydraulic swirling flow

through a pipe by Vakili et al. (1996), and an experimental flow visualization of rotating

fluid by Huang et al. (2008). Streamline plots by Vyas et al. (2003c) for the cylindrical

complex lamellar BDV show flows with two, three, and four vortex cells, respectively.

Even though the mantle remains in cylindrical form and penetrates into the conical

section (according to Bradley and Pulling 1959 from resulting photos), Bradley and Pulling

(1959) and Bradley (1965) assume at some point that the mantle does eventually conform

to a conical geometry to mimic the cone-shaped walls. Bradley and Pulling (1959) and

Bradley (1965) denote that the turnover from a cylindrical geometric surface to a conical

surface occurs at an axial location where the conical radius becomes 70% of the cylindrical

(or maximum) diameter of the apparatus. Bradley and Pulling (1959) and Bradley (1965)
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also determine the location of the annular mantle resides at the radial distance from the

centerline of approximately 43% of the maximum diameter. In addition, an illustration

by Bradley and Pulling (1959) names the cone-shaped limit as the “conical classification

surface.” Bradley (1965) also terms the conical classification surface as the “locus of zero

vertical velocity” or “LZVV” (probably the first mention of the term, the LZVV, in the

literature). Essentially, it will be shown that the mantle in the theoretical analysis of the

Beltramian conical BDV is also at an angle originating from the apex similar to the cone

wall.

Thus, figures by Bradley and Pulling (1959) and Kelsall (1952) appear to fuel confusion

and discrepancy as to what the mantle consist of (cylindrical and/or conical) and where the

mantle is located (all cylindrical and/or conical). The culprit to the foggy understanding

of the mantle remains with conflicting evidence. A diagram by Bhattacharyya (1980a) of

the flowfield of a hydrocyclone also conceives that the LZVV remains cylindrical and very

close to the core throughout the entirety of the device. However, while the drawing by

Bhattacharyya (1980a) may conflict with the drawing and analysis by Bradley and Pulling

(1959), the photo by Bradley and Pulling (1959) shows similar flow physics, where it

seems that the inner vortex is a thin cylindrical column as it is separated from the outer

vortex. Others, such as Rietema (1961), Dietz (1981), Pericleous and Rhodes (1986), and

Pericleous (1987), also depict the LZVV as cylindrical and very close to the core. On the

contrary, many more, such as Kelsall (1952), Mikhaylov and Romenskiy (1974), Pervov

(1974), Mothes and Löffler (1985), Luo et al. (1989), Zhou and Soo (1990), Griffiths and

Boysan (1996), Peng et al. (2002), Derksen (2003) portray a zone of zero axial velocity as

following a conical shape similar to the angled wall.

3.1.2 Mantle Location & Streamlines for the Beltramian BDV Conical

Solution

The mantle location arises from the angle where either the spherical radial or axial velocity

goes to zero. That is, the locations where only crossflow velocities, the colatitudinal and
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radial velocities, exist. Two mantle locations appear in the conical geometry as a function

of the colatitudinal angle φ. One mantle angle, βR, corresponds to the location where the

spherical radial velocity, uR, equals zero and the other matches with the angle, βz, where

the axial velocity, uz, goes to zero. The equations for the mantles engender from when the

uR and uz are equated to zero and the angles are solved as the roots of the characteristic

equation.

[
λ − ln (tan βR/2)

]
cos βR − 1 = 0 (3.1.1)

λ − ln (tan βz/2) − 1 = 0 (3.1.2)

Tables 3.1–3.3 display information about each mantle location per half-angle of the

conical wall. Table 3.1 lists the mantle angles for both βR and βz, the percentage of the

mantle angles per the divergence half-angle, and the differences between the mantles in

degrees and percentage. A few distinguishing items emerge from the data in Table 3.1.

First, the percentage of βR of the chamber wall angle remains close to constant at 60%

over an α range of 5◦ − 85◦ while βz varies from 60% to almost 95% of α over its range.

The difference between βR and βz begins with very minute values of 0.01◦ and 0% for

α = 5◦ but grows to a difference of about 29◦ and 35% for α = 85◦. The mantle differences

become evident with Figure 3.1 and Figure 3.2. However, for small divergence half-angles

(the conventional range for most practical cyclone separators seems to be < 10◦), both

mantle angle percentages remain near 60%. Second, the importance for divulging both

mantles arises from experimental and CFD studies of BV conical cyclones measuring uz

and not uR, thus the LZVV term. The conical mantle in the spherical radial velocity gives

a more natural “angle” since the spherical radial velocity equals zero along the direction

of βR while the axial velocity equals zero at its own mantle angle “pointing” in vertically

downward” direction.

The second table, Table 3.2, displays the radial distance from the vertical axis of the

inflection point of the spherical radial velocity mantle, βR, for four axial ratios of z/L in

97



quarter lengths. Table 3.3 shows the same information as Table 3.2, except for the axial

velocity mantle, βz. Both Tables 3.2 and 3.3 also cover the range of divergence half-angles,

α, from 5◦−85◦. Interestingly, the radial distance percentage ratio of the mantle in reference

to the conical wall exhibits the opposite characteristics when comparing to the angle ratio

percentages. The radial distance ratio percentage for bR varies from 60.6% for α = 5◦ to

10.7% for α = 85◦. In contrast, radial distance ratio percentage for bz only varies from

60.6% for α = 5◦ to 52.0% for α = 85◦.

Finally, Figure 3.3 plots the stream lines for the Beltramian conical BDV and the small

half-angle approximation of Bloor and Ingham (1987). Note that the approximation by

Bloor and Ingham (1987) does not capture the flow field of higher divergence half-angles.

3.2 Velocities

Figure 3.4 displays the spherical coordinate velocities of the spherical radial, uR, and

zenith, uφ, components. Figure 3.4a plots the spherical radial component in cylindrical

polar coordinates for a divergence half-angle of α = 45◦ and a modified conical swirl

number of σc = 1 over four axial locations (z/L = 1.00, 0.75, 0.50, and 0.25) at

quarter section lengths of the cone. Figure 3.4a plots the spherical radial component in

cylindrical polar coordinates for an axial location of z/L = 1.00 and a modified conical

swirl number of σc = 1 over divergence half-angles of α = 15◦, 30◦, 45◦, 60◦, and 75◦.

Similarly, Figure 3.4c plots the spherical radial component in spherical polar coordinates

for a modified conical swirl number of σc = 1 over divergence half-angles of α = 15◦,

30◦, 45◦, 60◦, and 75◦. Note from 2.13.17 and 2.13.18 that the spherical polar radial

velocity and zenith velocity are both independent of the coordinate R and dependent only

on the zenith angle variable, φ. For both a variation in four axial locations and a variation

over five divergence half-angles, the spherical radial velocity component exhibits similarity

everywhere, even in SPC. The general curve for the spherical radial velocity component

begins at the highest axial magnitude in the downward direction and lowers in a somewhat

linear fashion until the velocity reaches zero at the mantle inflection point of approximately
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Table 3.1: Mantle angle location dependence on conical half-angle.

Conical Mantle Mantle Mantle Mantle Difference Difference
Half- Angle Position Angle Position (◦) (%)

Angle, α βR βR/α (%) βz βz/α (%) |βR − βz| |βR − βz|

5◦ 3.03◦ 60.7 3.04◦ 60.7 0.01◦ 0.0

10◦ 6.06◦ 60.6 6.10◦ 61.0 0.04◦ 0.4

15◦ 9.09◦ 60.6 9.21◦ 61.4 0.13◦ 0.8

20◦ 12.12◦ 60.6 12.40◦ 62.0 0.28◦ 1.4

25◦ 15.15◦ 60.6 15.70◦ 62.8 0.55◦ 2.2

30◦ 18.16◦ 60.5 19.14◦ 63.8 0.98◦ 3.3

35◦ 21.18◦ 60.5 22.73◦ 64.9 1.55◦ 4.4

40◦ 24.18◦ 60.5 26.54◦ 66.4 2.39◦ 5.9

45◦ 27.18◦ 60.4 30.62◦ 68.0 3.44◦ 7.6

50◦ 30.17◦ 60.3 35.00◦ 70.0 4.83◦ 9.7

55◦ 33.15◦ 60.3 39.76◦ 72.3 6.61◦ 12.0

60◦ 36.12◦ 60.2 44.95◦ 74.9 8.83◦ 14.7

65◦ 39.07◦ 60.1 50.66◦ 77.9 11.59◦ 17.8

70◦ 42.01◦ 60.0 56.98◦ 81.4 14.97◦ 21.4

75◦ 44.93◦ 59.9 66.99◦ 85.3 22.06◦ 25.4

80◦ 47.83◦ 59.8 71.79◦ 89.7 24.15◦ 29.9

85◦ 50.71◦ 59.7 80.44◦ 94.6 29.73◦ 34.9
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Table 3.2: Mantle radius location bR dependence on conical half-angle with a = 1.

Conical Mantle Mantle Mantle Mantle Mantle
Half- Radius Radius Radius Radius Radius
Angle lz = 0.25 lz = 0.50 lz = 0.75 lz = 1.00 %

α bR bR bR bR bR/rlz

5◦ 0.151 0.302 0.454 0.606 60.6

10◦ 0.151 0.301 0.452 0.602 60.2

15◦ 0.149 0.299 0.448 0.597 59.7

20◦ 0.148 0.295 0.443 0.590 59.0

25◦ 0.145 0.290 0.435 0.580 58.0

30◦ 0.142 0.284 0.426 0.568 56.8

35◦ 0.138 0.277 0.415 0.553 55.3

40◦ 0.134 0.268 0.401 0.535 53.5

45◦ 0.128 0.257 0.385 0.514 51.4

50◦ 0.122 0.244 0.366 0.488 48.8

55◦ 0.114 0.229 0.343 0.457 45.7

60◦ 0.105 0.211 0.316 0.421 42.1

65◦ 0.095 0.189 0.284 0.379 37.9

70◦ 0.082 0.164 0.246 0.328 32.8

75◦ 0.067 0.134 0.200 0.267 26.7

80◦ 0.049 0.097 0.146 0.195 19.5

85◦ 0.027 0.053 0.080 0.107 10.7
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Table 3.3: Mantle radius location bz dependence on conical half-angle with a = 1.

Conical Mantle Mantle Mantle Mantle Mantle
Half- Radius Radius Radius Radius Radius
Angle lz = 0.25 lz = 0.50 lz = 0.75 lz = 1.00 %

α bz bz bz bz bz/rlz

5◦ 0.151 0.303 0.455 0.606 60.6

10◦ 0.151 0.303 0.454 0.606 60.6

15◦ 0.151 0.303 0.454 0.605 60.5

20◦ 0.151 0.302 0.453 0.604 60.4

25◦ 0.151 0.301 0.452 0.603 60.3

30◦ 0.150 0.300 0.451 0.601 60.1

35◦ 0.150 0.299 0.449 0.598 59.8

40◦ 0.149 0.298 0.447 0.595 59.5

45◦ 0.148 0.296 0.444 0.592 59.2

50◦ 0.147 0.294 0.441 0.588 58.8

55◦ 0.146 0.291 0.437 0.582 58.2

60◦ 0.144 0.288 0.432 0.576 57.6

65◦ 0.142 0.284 0.427 0.569 56.9

70◦ 0.140 0.280 0.420 0.560 56.0

75◦ 0.137 0.275 0.412 0.549 54.9

80◦ 0.134 0.268 0.402 0.534 53.4

85◦ 0.130 0.260 0.390 0.520 52.0
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Figure 3.1: Streamlines of the Beltramian model for σc = 1 with the spherical radial
velocity mantle, βR, as (−−−) and the axial velocity mantle, βz, as (− ·−). Plot (a) displays
the divergence half-angle of α = 15◦ with values of βR = 9.09◦, βz = 9.21◦ and at the axial
location of z/L = 1, br = 0.597 and bz = 0.605. Plot (b) displays the divergence half-angle
of α = 30◦ with values of βR = 18.16◦, βz = 19.14◦ and at the axial location of z/L = 1,
br = 0.568 and bz = 0.601. Plot (c) displays the divergence half-angle of α = 45◦ with
values of βR = 27.18◦, βz = 30.62◦ and at the axial location of z/L = 1, br = 0.514 and
bz = 0.592.
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Figure 3.2: Streamlines of the Beltramian model for σc = 1 with the spherical radial
velocity mantle, βR, as (−−−) and the axial velocity mantle, βz, as (− ·−). Plot (a) displays
the divergence half-angle of α = 60◦ with values of βR = 36.12◦, βz = 44.95◦ and at the
axial location of z/L = 1, br = 0.421 and bz = 0.576. Plot (b) displays the divergence
half-angle of α = 75◦ with values of βR = 44.93◦, βz = 66.99◦ and at the axial location of
z/L = 1, br = 0.267 and bz = 0.549.
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Figure 3.3: Streamlines of the Beltramian model, (——), as they compare with the small
angle approximation model of Bloor and Ingham (1987), (− − −) for σc = 1. Plots are for
the divergence half-angles of (a) α = 30◦, (b) 45◦, (c) 60◦, and (d) 75◦, respectively.
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60% of the chamber half-angle. The spherical radial velocity then curves drastically

upwards in an inverse fashion as the radius approaches zero. Since the Beltramian model

assumes an inviscid flow, the spherical radial velocity goes to infinity at r = 0. A viscous

model similar to previous studies is expected to overcome the infinite spherical radial

velocity at the core (Vyas et al. 2003b). An analysis of the sidewall viscous corrections

is needed as well (Batterson and Majdalani 2010b).

Figure 3.4d portrays the zenith velocity graph counterpart as Figure 3.4a while

Figure 3.4e mimics Figure 3.4b and Figure 3.4f mimics Figure 3.4c. Again, similarity

is seen amongst the curves of each figure. For Figure 3.4d, the curves exhibit an

asymmetric parabola. The negative magnitude indicates an inward direction. As the

velocity component traverses the chamber radius at a set axial location, the magnitude

increases from zero until it reaches a plateau. After reaching the maximum, the zenith

velocity magnitude curves back, decreasing in magnitude, until the velocity reaches zero

again at the centerline. Another curve characteristic for the zenith velocity in Figure 3.4d

reveals that the maximum magnitude at each axial location remains the same for the given

divergence half-angle.

Next, the radial, tangential, and axial velocities are plotted against experimental and

numerical data. The experiments and numerical calculations derive from papers by Hsieh

and Rajamani (1988) and Monredon et al. (1992). Both the data and cyclone separator

configurations by Hsieh and Rajamani (1988) and Monredon et al. (1992) influenced the

choices of the two studies. Another factor in choosing the articles by Hsieh and Rajamani

(1988) and Monredon et al. (1992) is due to the fact that the experiments came from the

same group at the University of Utah. Many cyclone separator articles in the literature

do not provide very clear data relating to the velocities, especially in the conical section

(Hoekstra et al. 1999). Most analyses focus on separation efficiency while the general fluid

dynamics of the flow field goes uninvestigated (Leith and Licht 1972; Leith and Mehta

1973; Kessler and Leith 1991; Xiang et al. 2001; Peng et al. 2004). Some of the CS

compositions make comparing the Beltramian model to corresponding data difficult (see
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Figure 3.4: Graphs of the (a)-(c) spherical radial velocity, uR, and (d)-(f) zenith velocity, uφ, for σc = 1. Plots (a) and (d) consist
of a divergence half-angle of α = 45◦ at four axial locations of z/L = 1 (——), 0.75 (− − −), 0.5 (− · −), and 0.25 (· · · ·). Figures
(b) and (e) plot the velocities at an axial location of z/L = 1 (——) for five divergence half-angles of α = 75◦ (——), 60◦ (− − −),
45◦ (− · −), 30◦ (· · · ·), and 15◦ (· · −) while (c) and (f) graph over the same angles as (b) and (e) except over the variable φ instead
of r. Note that (b) and (e) do not contain an “axial” location (the variable R in this case) since the velocities are dependent on φ
only when in SPC.
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Kelsall 1952 and Knowles et al. 1973). Other theoretical models do exist (Bhattacharyya

1980a; Concha 2007). However, it is not in the scope of this dissertation to review them

all. Thus, in the future, a survey is in need as well as generic CFD and numerical testing of

a simple cone geometry in order to elucidate the findings here even more.

Two figures provide comparison of data to show similar characteristics between the

Beltramian model and experimental and numerical tests. The experimental test in Hsieh

and Rajamani (1988) utilized a single-channel 35 mW He-Ne laser Doppler velocimeter

(LDV) system to gauge the velocity in the flow field. The hydrocyclone consisted of

glass encased by a water jacket in order to reduce optical refraction. Table 3.4 provides

the dimensions of the hydrocyclone for the experiment. The difference between the

hydrocyclone experiments by Hsieh and Rajamani (1988) and Monredon et al. (1992) is

that Monredon et al. (1992) studied the flow for various inlet and outlet conditions.

Figure 3.5 shows the cylindrical radial velocity, ur, for the Beltramian model and the

experimental measurements and numerical calculations of Hsieh and Rajamani (1988).

Actually, Hsieh and Rajamani (1988) reported that the velcocity in the radial direction

could not be calculated. Hence, Hsieh and Rajamani (1988) were forced to use the

continuity equation to compute the radial velocity from the measured tangtial and axial

velocities. Nonetheless, the Beltramian model and the method by Hsieh and Rajamani

(1988) are both linear in nature. The negative magnitudes indicates an inward motion

towards the center of the cyclone. The highest velocities are near the wall and linearly

dissipate to zero as the radius goes to zero. However, in order to match magnitudes the

Beltramian model was scaled down by approximately 90.5%. A viscous analysis may

be needed in the future to model the boundary layer at the sidewall. The viscous model

requires the velocity to go to zero in order to satisfy no slip and overcome the inviscid

model limitations.

Figure 3.6 plots the tangential and axial velocities for the Beltramian model and the

experimental measurements and numerical calculations of Hsieh and Rajamani (1988) and

Monredon et al. (1992). Figure 3.6a shows the tangential velocity at an axial position

of z = 167.67 from Hsieh and Rajamani (1988). The Beltramian model is graphed for
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Table 3.4: Dimensions of hydrocyclone in the experiment by Hsieh and Rajamani (1988).

Label Description Value and Dimension
a Conical maximum radius 37.5 mm

and cylindrical radius
bz axial velocity 0.602 × 37.5mm =

mantle radius 22.725 mm
uz (r = bax, z = bz cot βz ) = 0 (Theoretical)

bR spherical radial velocity 0.602 × 37.5mm =

mantle radius 22.575 mm
uR (r = bsr, z = bR cot βR ) = 0 (Theoretical)

Ai Area of inlet π × (11.5mm)2 =

(circular or rectangular; 415.475mm2

ri, l × w)
α Half-angle of cone 10◦

βz Angle of mantle 6.06◦

(axial velocity) (Theoretical)
uz (φ = βz ) = 0

βR Angle of mantle 6.10◦

(spherical radial velocity) (Theoretical)
uR (φ = βR ) = 0

L Length of cone 5.67 × 37.5 mm =

(to apex) 212.625 mm
Lcon Length of cone 255 mm - 75 mm =

(to underflow radius) 180 mm
Lcyl Length of cylinder 75 mm
Lv f Length of vortex finder 50 mm

(inside cyclone chamber)
Lh Length of cyclone 255 mm

(from chamber top
to underflow radius)

Lbot Length from conical underflow 212.67 mm - 180 mm
radius to cone apex 32.67 mm

Ltot Length from chamber 212.67 mm + 75 mm
top to cone apex 287.67 mm

rv f Radius of vortex finder 11.5 mm
ru f Radius of conical underflow 5.5 mm
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Figure 3.5: The theoretical Beltramian model (——) plotted against experimental (•) and
numerical (�) results by Hsieh and Rajamani (1988) at an axial location of z = 167.67.

U = 7.98 m/s for scaling purposes. Likewise, Figure 3.6b shows the tangential velocity

at an axial position of z = 181.67 from Monredon et al. (1992). Again, the Beltramian

model must be scaled to match, similarly to the tangential and axial velocities, (where in

Figure 3.6b U = 6.26 m/s). The scaling corrections could be a result of the limitations of

the inviscid Beltramian model. However, the characteristics of the curves match reasonably

well away from the core and sidewall where inviscid conditions are usually expected for

theory. In the same manner, Figure 3.6c and Figure 3.6d show the axial velocity curves

measured and calculated from Hsieh and Rajamani (1988) and Monredon et al. (1992),

respectively. The Beltramian models displayed in Figure 3.6c and Figure 3.6d are depicted

for the modified conical swirl numbers of σc = 0.2 and σc = 0.305, respectively.

3.3 Vorticity & Pressure

Figure 3.7 represents the graphs depicting characteristics of the pressure and vorticity of

the Beltramian BDV cone solution. The pressure drop for σc = 1 at four axial locations

of z/L = 1, 0.75, 0.5, and 0.25 appears in Figure 3.7a. The nature of the pressure change

follows the leading order term of −1
2r−2 which is congruent with the BDV solutions in a

cylinder (Vyas and Majdalani 2006; Majdalani 2012). The singularity near the core can

be aligned with a viscous study. Figure 3.7b demonstrate the attributes of the vorticity

of the Beltramian model and plots the curves at four axial locations of z/L = 1, 0.75,
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Figure 3.6: The theoretical Beltramian model (——) and free vortex (1/r) model (− −
−) plotted against experimental (•) and numerical (�) results by (a) and (c) Hsieh and
Rajamani (1988) at an axial location of z = 167.67 and (b) and (d) Monredon et al. (1992)
at an axial location of z = 181.67. The tangential velocity, uθ, scales with (a) U = 7.98
m/s and (b) U = 6.26 m/s while the axial velocity, uz, scales with (c) σc = 0.2 and (e)
σc = 0.305.
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Figure 3.7: The (a) pressure difference and (b) vorticity magnitude for σc = 1 and
divergence angle α = 45◦ at four axial locations of z/L = 1 (——), 0.75 (− − −), 0.5
(− · −), and 0.25 (· · · ·).

0.5, and 0.25 for σc = 1 of the vorticity magnitude. The magnitude remains fairly

constant until the radius reaches about 50% of the chamber width per axial location.

As the radius approaches zero the vorticity magnitude rapidly increases towards infinity.

Again, a boundary layer investigation should resolve the core singularities. Note that the

highest vorticity magnitudes occur near the centerline and wall where viscous effects are

responsible for high vorticity regions Marshall (2001).
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Chapter 4

The Generalized Beltramian Conical

Bidirectional Vortex (BDV)

4.1 Introduction

This chapter examines the solution of the BDV in a conical geometry which is of the

generalized Beltramian type Wu et al. (2006). Again, the generalized Beltramian solution

(from Eq. (1.3.27)) satisfies the relation

∇ × u × ω = 0

The generalized Beltramian conditions (recall Eq. (1.3.26)) are more relaxed than the

traditional Beltramian constrictions of

u × ω = 0

As seen from the relations, the Beltramian solution is a subclass of the generalized

Beltramian (GB) class. The GB solution, similar to the Bletramian solution, re-examines

a previous study. An investigation by Zhao and Abrahamson (1999) attempt to model the

flow in a hydrocylone complementary to Bloor and Ingham (1987). However, the article
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by Zhao and Abrahamson (1999), akin to Bloor and Ingham (1987), presents an unclear

analysis and leaves room for improvement. The main difference between the Bletramian

solution and generalized Beltramian solution is that the terms in the BHE for the Bernoulli

equation and angular momentum equation are switched. That is, the Bernoulli term in

the BHE for the generalized Beltramian formulation remains constant while the angular

momentum combination equals zero. Recall, that the opposite occurred for the Beltramian

investigation in Chapters 2 and 3.

4.2 Boundary Conditions

Along the same lines of the Beltramian solution, the boundary conditions enforce a stream

function equal to zero, ψ = 0 along the two main boundaries of the cone, the centerline and

outer wall. This translates into

ψ (R, φ = 0) = 0 (4.2.1)

ψ (R, φ = α) = 0 (4.2.2)

Additionally, the conditions at the inlet provide information regarding the behavior of

the incoming fluid. Previously, for the Beltramian solution, the inlet conditions assume that

there is a simultaneous axial inflow described by a uniform axial injection as demonstrated

by the value of the stream function at the inlet

uz (Ri, φi = α) = uz (ri, zi) = uz (a, L) = −W

ψ = 1
2W

(
a2 − R2 sin2 φ

)
and a tangential velocity injection at the inlet described by
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uθ = (Ri, φi = α) = uθ = (ri, zi) = uθ = (a, L) = U

where the average tangential velocity is U and the average axial velocity is W. Additionally

in the Beltramian analysis, the tangential and axial velocities are related by the volumetric

flow rate formulated as

Qi = Wπ
(
a2 − b2

)
= UAi

W =
UAi

π
(
a2 − b2)

Also, interestingly Zhao and Abrahamson (1999) note that the inlet stream function can be

written as

ψ = 1
2W

(a2 −
B
U

)2 (4.2.3)

In their notation, they have substituted r = B/uθ transforming the variable at the inlet.

However, for the generalized Beltramian study, the axial velocity profile adopts a half-

parabola shape in the radial direction according to Zhao and Abrahamson (1999) so that

uz = C2r2 + C0 (4.2.4)

where a full parabola equals uz = C2r2 + C1r + C0, so in 4.2.4 C1 = 0 (see Figure 4.1).

The use of cylindrical polar coordinates here to describe the inlet conditions is valid since

usually in real world conditions a cylinder sits on top of the cone in a conical cyclone

separator. It also logically makes sense to use these coordinates instead of spherical polar

coordinates because they are mathematically easily interchangeable and it is visually easier

to picture cylindrical polar coordinates as is seen later in the physically velocity profile

graphs and such. For instance, the axial velocity can be displayed in spherical coordinates,

but at that instance at the inlet it is cemented to the axial location of the height of the cone,
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Figure 4.1: The generalized Beltramian analysis inlet axial velocity profile as a half-
parabola shape.

L, and it theoretically only possess variations in the radial direction. The same also applies

to other axial locations as the velocity is held at the location and varied radially.

Two locations are needed to resolve the constants in the inlet axial velocity. The inner

and outer boundaries

uz (r = b, z = L) = −W (4.2.5)

uz (r = a, z = L) = 0 (4.2.6)

which produces

uz = C2b2 + C0 = −W (4.2.7)

uz = C2a2 + C0 = 0 (4.2.8)

Applying the first BC from Eq. (4.2.7) gives C0 as

C0 = −W −C2b2 (4.2.9)
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which gives

uz = C2r2 −W −C2b2 (4.2.10)

uz = C2

(
r2 − b2

)
−W (4.2.11)

Now utlizing the second BC in Eq. (4.2.8), the equation becomes

C2a2 −W −C2b2 = 0 (4.2.12)

C2a2 −C2b2 = W (4.2.13)

C2

(
a2 − b2

)
= W (4.2.14)

C2 =
W

a2 − b2 (4.2.15)

Backwards substitution produces the final form of C0 as

C0 = −W −
Wb2

a2 − b2 = −
Wa2

a2 − b2 (4.2.16)

uz =
W(

a2 − b2) (
r2 − b2

)
−W (4.2.17)

which rearranged delivers the axial velocity as

uz =
W(

a2 − b2) (
r2 − b2 − a2 + b2

)
(4.2.18)

reducing further to
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uz =
W(

a2 − b2) (
r2 − a2

)
(4.2.19)

or

uz = W
r2 − a2

a2 − b2 (4.2.20)

The stream function at the inlet can now be evaluated which comes out to be

ψ =

∫
uzrdr =

∫
W

r2 − a2

a2 − b2 rdr (4.2.21)

ψ =
W

(
r4 − 2a2r2

)
4
(
a2 − b2) + ψ0 (4.2.22)

The constant ψ0 can be determined by ensuring that the BC for the stream function is zero

at the wall, ψ (r = a) = 0, so that we get

0 =
W

(
a4 − 2a2a2

)
4
(
a2 − b2) + ψ0 (4.2.23)

ψ0 =
Wa4

4
(
a2 − b2) (4.2.24)

ψ =
W

(
r4 − 2a2r2 + a4

)
4
(
a2 − b2) (4.2.25)

4.3 Bernoulli and Swirl Functions for the BHE

The BHE equation in spherical polar coordinates appears as

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= R2 sin2 φ

dH
dψ
− B

dB
dψ
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Similar to Zhao and Abrahamson (1999, 2003), the right-hand side (RHS) of the BHE

can be expressed as a polynomial in terms of the stream function, ψ. The BHE becomes

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= R2 sin2 φ

(
a0 + a1ψ + a2ψ

2 + . . .
)

+ b0 + b1ψ + b2ψ
2 + . . .

(4.3.1)

Summation constricts the functions on the RHS to

dH
dψ

=

i∑
n=0

aiψ
i; B

dB
dψ

=

i∑
n=0

aiψ
i (4.3.2)

The argument is made, according to Zhao and Abrahamson (1999) (also mentioned in

Bloor and Ingham 1987), that the stream function can be made to be less than one so that

the higher order terms can be neglected. Therefore, the only terms that remain in the stream

function polynomial are the leading order constants and reduce the BHE to

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= a0R2 sin2 φ + b0 (4.3.3)

Notice that the equation containing only the second constant is the same as the one solved

by Bloor and Ingham (1987) and Barber and Majdalani (2009) (see Chapters 2 and 3)

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= b0 =

U
W

This equation assumes that the Bernoulli function is constant along a streamline, thus

eliminating the first term, and a variable swirl function. However, for this chapter a new

solution is examined which only contains the first constant in the BHE which modifies the

equation to

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= a0R2 sin2 φ (4.3.4)
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where a0 is to be determined by new inlet flow assumptions. The inlet conditions enforce

constant angular momentum and a variable head as shown by

H (ψ) =
1
2

u2 +
p
ρ
≈ H0ψ + H1 (4.3.5)

B (ψ) = uθR sin φ = constant (4.3.6)

dH
dψ

= constant = a0 (4.3.7)

−B
dB
dψ

= 0 = b0 (4.3.8)

In order to determine the value of the constant a0, an approach similar to the steps of

Zhao and Abrahamson (1999) is presented. The equation of motion for steady, inviscid

flow in the cylindrical polar radial direction is presented so that it is unambiguous how the

Bernoulli function appears. Using cylindrical polar coordinates at this juncture is for the

same reasons as stated earlier.

ur
∂ur

∂r
u2
θ

r
−

uθ
r

+ uz
∂ur

∂z
= −

1
ρ

∂p
∂r

(4.3.9)

At the inlet, an assumption that the cylindrical polar radial velocity equals zero, ur (a, L) =

0, shortens the equation of motion in the cylindrical polar radial direction to

ρ
u2
θ

r
=
∂p
∂r

(4.3.10)

Replacing the definition of the tangential velocity with the swirl function divided by the

cylindrical polar radius transforms the equation into

ρ
B2

r3 =
∂p
∂r

(4.3.11)

A definition for the pressure emerges after separating and integrating
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p = −
ρB2

2r2 + C3 (4.3.12)

The Bernoulli function in cylindrical polar coordinates is

H = 1
2

(
u2

r + u2
θ + u2

z

)
+ p/ρ (4.3.13)

At the inlet the Bernoulli function truncates to

H =
1
2

(
B
r

2

+ u2
z

)
+

p
ρ

(4.3.14)

Subsituting in the pressure from Eq. (4.3.12) gives

H =
1
2

(
B
r

2

+ u2
z

)
−

B2

2r2 + C3 (4.3.15)

where the density, ρ, is a constant and absorbed into C3. Thus, the Bernoulli function finally

comes about after simplification to be

H = 1
2u2

z + C3 (4.3.16)

The next step bringing the Bernoulli function closer to a function of the stream function

begins with now substituting in the axial velocity arriving at

H = 1
2

(
C2r2 + C0

)2
+ C3 (4.3.17)

The constants are left for the time being in order for clarity. Expanding the square in the

parenthesis delivers

H = 1
2

(
C2

2r4 + 2C2C0r2 + C2
0

)
+ C3 (4.3.18)

The stream function at the inlet is examined in order for a comparison to the Bernoulli

function
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ψ =

∫
uzrdr =

∫ (
C2r3 + C0r

)
dr (4.3.19)

Integrating, the stream function appears as

ψ =
C2

4
r4 +

C0

2
r2 + C4 (4.3.20)

The stream function and Bernoulli function resemble each other so that

H
2C2

=
C2r4

4
+

C0

2
r2 +

C2
0 + C3

2C2
(4.3.21)

and thus

H
2C2
−

C2
0 + C3

2C2
=

C2

4
r4 +

C0

2
r2 (4.3.22)

Now the relation between the Bernoulli and stream functions is elucidated to get

ψ =
H

2C2
(4.3.23)

where −
C2

0 + C3

2C2
= C4. Finally, taking the derivative and rearranging gives

dH
dψ

= 2C2 = a0 (4.3.24)

This relation can also be verified if the derivative of Eq. 4.3.18 is taken wrt r

dH
dr

= 2C2
2r3 + 2C2C0r (4.3.25)

and by taking the derivative of the stream function of Eq. 4.3.20 wrt to r as well

dψ
dr

= C2r3 + C0r (4.3.26)

Next, dH/dψ emerges if Eq. 4.3.25 is divided by Eq. 4.3.26

121



dH
dr
dψ
dr

=
dH
dψ

=
2C2

2r3 + 2C2C0r
C2r3 + C0r

(4.3.27)

The equation simplifies by separating 2C2 from the numerator

dH
dψ

=
2C2

(
C2r3 + C0r

)
C2r3 + C0r

(4.3.28)

which reduces to the same in Eq. 4.3.24

dH
dψ

= 2C2

Next, the stream function at the inlet appears from integration and substitution. First,

the Bernoulli function and stream function are separated

dH = 2C2dψ (4.3.29)

is integrated to show that

∫
dH = 2C2

∫
dψ =⇒ H = 2C2ψ + ψ0 (4.3.30)

Substituting in the Bernoulli function at the inlet transforms the stream function equation

into a relation with the axial velocity

1
2

(
C2

2r4 + 2C2C0r2 + C0
2

)
+ C3 = 2C2ψ + ψ0 (4.3.31)

which simplifies further to

1
4

(
C2r4 + 2C0r2 +

C2
0

C2

)
= ψ (4.3.32)

where
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C3 = ψ0 (4.3.33)

Substituting in the values for C2 and C0 from 4.2.15 and 4.2.16 recovers Eq. (4.2.25) as

ψ =
W

4
(
a2 − b2) (

r4 − 2a2r2 + a4
)

(4.3.34)

The same equation for the stream function can also be derived by utilizing Eq. 4.3.20 and

the boundary condition ψ (r = a, z = L) = 0

ψ = 0 =
C2

4
a4 +

C0

2
a2 + C4 (4.3.35)

which produces the constant C4 as

C4 = −
C2

4
a4 −

C0

2
a2 (4.3.36)

and the stream function becomes

ψ =
C2

4
r4 +

C0

2
r2 −

C2

4
a4 −

C0

2
a2 (4.3.37)

ψ =
C2

4

(
r4 − a4

)
+

C0

2

(
r2 − a2

)
(4.3.38)

Substituting the constants C2 and C0 gives

ψ =
W

4
(
a2 − b2) (

r4 − a4
)
−

Wa2

2
(
a2 − b2) (

r2 − a2
)

(4.3.39)

which simplifies to

ψ =
W

4
(
a2 − b2) (

r4 − a4 − 2a2r2 + 2a4
)

(4.3.40)

and finally recovers Eq. (4.2.25)
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ψ =
W

4
(
a2 − b2) (

r4 − 2a2r2 + a4
)

4.4 Equation Reduction

The BHE to be solved now obtains the format of

∂2ψ

∂R2 +
sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= 2C2R2 sin2 φ =

2W(
a2 − b2)R2 sin2 φ (4.4.1)

The first step to breakdown the PDE into a more manageable ODE is applying the

assumption that the solution is separable in the co-latitudinal angle and spherical polar

radius and is, thus, of the form ψ (R, φ) = F (R) G (φ). Upon inspection it is demonstrated

that the spherical polar radial function F is F (R) = R4 so that the stream function becomes

ψ (R, φ) = R4G (φ). Substituting into the BHE retrieves

12R2G + R2 sin φ
d

dφ

(
1

sin φ
G′

)
=

2W(
a2 − b2)R2 sin2 φ (4.4.2)

The spherical polar radius drops out of the PDE and simplifies the governing equation into

an ODE in the colatitudinal angle variable

12G + sin φ
d

dφ

(
1

sin φ
G′

)
=

2W(
a2 − b2) sin2 φ (4.4.3)

The equation reduces further by expanding and combining terms to result in the following

forms of the ODE

12G + G′′ + sin φG′ (− csc φ cot φ) =
2W(

a2 − b2) sin2 φ (4.4.4)

12G + G′′ −G′ cot φ =
2W(

a2 − b2) sin2 φ (4.4.5)
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G′′ −G′ cot φ + 12G =
2W(

a2 − b2) sin2 φ (4.4.6)

4.5 Separation of Variables - the Homogeneous Solution

and the Gegenbauer Equation

The complimentary function is first pursued in revealing the general solution. Therefore,

the ODE is expressed in its homogeneous form as

12G + sin φ
d

dφ

(
1

sin φ
G′

)
= 0 (4.5.1)

G′′ −G′ cot φ + 12G = 0 (4.5.2)

Thus, this equation can be transformed by using the substitution x = cos φ which can

be confirmed by a myriad of mathematical texts(O’Neil 1995; Wylie and Barrett 1995;

Kreyszig 1999; Zill 2000; Zill and Cullen 2000; Riley et al. 2002; Polyanin and Zaitsev

2003; Arfken and Weber 2005).

d
dφ

=
d
dx

dx
dφ

= − sin φ
d
dx

(4.5.3)

12Gx − sin2 φ
d
dx

(
−G′x

)
= 0 (4.5.4)

(
1 − x2

)
G′′x + 12Gx = 0 (4.5.5)

Expanding Eq. (4.5.5) produces the following form (Bojarevičs et al. 1989; Dassios and

Vafeas 2006; Dassios 2008; Dassios and Vafeas 2008)

(
1 − x2

)
G′′x + n (n − 1) Gx = 0; n = 4 (4.5.6)
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A more general form also known as the ultraspherical differential equation (Weisstein 2003)

is called the Gegenbauer’s differential equation (Happel and Brenner 1983; Bojarevičs et al.

1989; Weisstein 2003) where Eq. (4.5.6) is a special case of

(
1 − x2

)
G′′x − 2 (2µ + 1) xG′x + ν (ν + 2µ) Gx = 0; µ = −1

2 , ν = 4 (4.5.7)

The differential equation is named for a 19th century Austrian mathematician, Leopold

Bernhard Gegenbauer, who worked immensely with the polynomials that are solutions of

the ODE. The solutions to Eq. (4.5.7) emerge as

Gx =
(
x2 − 1

)(1−2µ)/4 [
C5P1/2−µ

−1/2+µ−ν
(x) + C6Q1/2−µ

−1/2+µ−ν
(x)

]
(4.5.8)

Gx =
(
x2 − 1

)1/2 [
C5P1

3 (x) + C6Q1
3 (x)

]
(4.5.9)

where Pm
n (x) and Qm

n (x) are the associated Legendre functions of the first and second kind

of order µ which are named in honor of French mathematician Adrien Marie Legendre

for his work in this area. When m = 0 the associated Legendre differential equations and

polynomials are equal to the more commonly known regular Legendre differential equation

and polynomials. The Gegenbauer differential equation derives from the hyperspherical

differential equation

(
1 − x2

)
G′′x − 2 (2µ + 1) xG′x + (ν − µ) (ν + µ + 1) Gx = 0 (4.5.10)

which has a solution of the form

Gx =
(
x2 − 1

)−µ/2 [
C7Pµ

ν (x) + C8Qµ
ν (x)

]
(4.5.11)

which in turn recovers the differential equation and the solution found in Eq. (4.5.6) and

Eq. (4.5.9), respectively, with µ = −1 and ν = 3. The equation is recovered even though
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µ = −1 since P−m
n (x) = Pm

n (x). The associated Legendre polynomial relates to the Legendre

polynomial by


Pµ
ν (x) =

(
1 − x2

)|µ|/2 d|µ|

dx|µ|
Pν (x)

Qµ
ν (x) =

(
1 − x2

)|µ|/2 d|µ|

dx|µ|
Qν (x)

(4.5.12)

Now the complimentary equation evolves into

Gx =
(
x2 − 1

)1/2
[(

1 − x2
)1/2

C7
d
dx

P3 (x) +
(
1 − x2

)1/2
C8

d
dx

Q3 (x)
]

(4.5.13)

since m = 1 from Eq. (4.5.9). Further simplification reduces the equation to

Gx = −
(
1 − x2

) [
C7

d
dx

P3 (x) + C8
d
dx

Q3 (x)
]

(4.5.14)

Gx =
(
1 − x2

) [
C7P′3 (x) + C8Q′3 (x)

]
(4.5.15)

Note that the negative sign resulting from Eq. (4.5.13) has been absorbed into the constants

C7 and C8. The relation of the derivative of a Legendre function relates the equations in

terms of regular Legendre function of the first and second kind

(
1 − x2

)
P′ν (x) = νPν−1 (x) − νxPν (x) (4.5.16)

(
1 − x2

)
Q′ν (x) = νQν−1 (x) − νxPν (x) (4.5.17)

Implementing the derivative transform, the general solution converts to

Gx = 3C7 [xP3 (x) − P2 (x)] + 3C8 [xQ3 (x) − Q2 (x)] (4.5.18)
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However, when n ≥ 2, then the solution to Eq. (4.5.6) is expressed as

Gx = C9J
− 1/2

n (x) + C10H
− 1/2

n (x) (4.5.19)

or

Gx = C9Jn (x) + C10Hn (x) (4.5.20)

where Jµn (x) and Hµ
n (x) are sometimes called the ultraspherical or Gegenbauer function-

s/polynomials of the first and second kind. Note that the superscript -1⁄2 has been omitted

in Eq. (4.5.20) for aesthetics and inherently is implied on the Gegenbauer functions. The

omitted superscript constitutes the degree of the function while n represents the order. Also,

note that function/polynomial are interchangeable when n is an integer.

The families of orthogonal polynomials, Jacobi, Gegenbauer, Chebyshev, Legendre,

Laguerre, and Hermite, are also known as the classical orthogonal polynomials. The

classes of polynomials remain different yet closely linked. The relation between Legendre

and Gegenbauer is anticipated since Legendre’s equation commonly Laplace’s partial

differential equation and the similarity between the Laplace and Stokes operators. The

Legendre differential equation is a special case of the Gegenbauer differential equation

since when µ = 1/2 in Eq. (4.5.9) the Legendre differential equation is recovered and the

Gegenbauer polynomials translate directly to Legendre polynomials as J
− 1/2

n (x) = Pn (x)

and when n is an positive integer and when n ≥ 2 for in Eq. (4.5.6). However, when µ

is an integer in Eq. (4.5.8) then the solutions remain Gegenbauer polynomials and cannot

be reduced to Legendre polynomials. Thus, the Legendre functions are special cases of

Gegenbauer functions.

Both the Legendre functions/polynomial and Gegenbauer functions/polynomial derive

from Jacobi functions/polynomial family. The Gegenbauer special case is true for Jacobi

polynomials when α = β = ν = −1 and thus P(α,β)
n (x) = Jn (x). Likewise, when

α = β = 0 the Legendre polynomial special case is demonstrated from the Jacobi

polynomial. Gegenbauer functions are commonly experienced in fluid dynamics or
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electrodynamics involving axisymmetric flows such as Stokes/creeping flow, droplet and

bubble fluid dynamics, astrophysics, and bio-fluid dynamics (Happel and Brenner 1983;

Bojarevičs et al. 1989; Dassios and Vafeas 2006; Dassios 2008; Dassios and Vafeas 2008).

The common linkage is the use of spherical polar coordinates and the need to transform the

variable by employing x = cos φ.

The solution from after inserting the corresponding n constant Eq. (4.5.20) becomes

Gx = C9J4 (x) + C10H4 (x) (4.5.21)

The Gegenbauer functions can be transformed directly into Legendre functions as given by

(
1 − x2

) d
dx

Pn−1 (x) = n (n − 1)Jn (x) (4.5.22)

(
1 − x2

) d
dx

Qn−1 (x) = n (n − 1)Hn (x) (4.5.23)

or

Jn (x) =
Pn−2 (x) − Pn (x)

2n − 1
(4.5.24)

Hn (x) =
Qn−2 (x) − Qn (x)

2n − 1
(4.5.25)

The solution converts to

Gx = C9
1

12

(
1 − x2

) d
dx

P3 (x) + C10
1

12

(
1 − x2

) d
dx

Q3 (x) (4.5.26)

Gx = C9

(
1 − x2

) d
dx

P3 (x) + C10

(
1 − x2

) d
dx

Q3 (x) (4.5.27)

Recalling Eq. (4.5.16) and Eq. (4.5.17), the solution is modified
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Gx = 3C9 [P2 (x) − xP3 (x)] + 3C10 [Q2 (x) − xQ3 (x)] (4.5.28)

Thus, recovering the general solution previously found where C9 = −C7 and C10 = −C8.

The same result appears using the other Gegenbauer-Legendre relation in Eq. (4.5.24) and

Eq. (4.5.25) which validates that the solution is correct. The expanded Legendre functions

are

P2 (x) =
1
2

(
3x2 − 1

)
(4.5.29)

P3 (x) =
1
2

(
5x3 − 3x

)
(4.5.30)

Q2 (x) =
1
4

(
3x2 − 1

)
ln

(
1 + x
1 − x

)
−

3
2

x (4.5.31)

Q3 (x) =
1
4

(
5x3 − 3x

)
ln

(
1 + x
1 − x

)
−

5
2

x2 +
3
2

(4.5.32)

Looking more closely at Eq. (4.5.31) and Eq. (4.5.32) ensures that C8 is zero in Eq. (4.5.18)

C8 = 0 (4.5.33)

because the properties of the Legendre functions of the second kind, Qi (x) demonstrate

that both equations, Q2 (x) and Q3 (x), blow up as x→ 1 or as φ→ 0.

Thus, substituting (and recovering a negative sign) the Legendre expanded polynomials

into the solution of Eq. (4.5.18) produces

Gx = −3C7

[
1
2

x
(
5x3 − 3x

)
−

1
2

(
3x2 − 1

)]
(4.5.34)

Multiplying through provides a better view of the final complementary solution
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Gx = −C7

(
15
2

x4 −
9
2

x2 −
9
2

x2 +
3
2

)
(4.5.35)

The homogeneous solution equation abridges when combing like terms to

Gx = C7

(
9x2 −

15
2

x4 −
3
2

)
(4.5.36)

The equation finally converts back to the original variable by substitution of x = cos φ

producing the complementary function of

Gc = C7

(
9 cos2 φ −

15
2

cos4 φ −
3
2

)
(4.5.37)

4.6 Particular Solution

The solution corresponding to the nonhomogeneity of the ODE is needed before the last

step of applying the boundary conditions. The particular solution is solved by standard

ODE methods. The solution consists of powers of cosine and the nonhomogeneous term

contains the square of sine. Therefore, upon inspection the next logical solution contains

the particular form of

Gp = Cp sin2 φ (4.6.1)

The first and second derivatives of Gp are executed, back substituted, and then condensed.

First, perform the derivative operation on Eq. (4.6.1) twice to obtain

G′p = 2Cp sin φ cos φ (4.6.2)

G′′p = −2Cp sin2 φ + 2Cp cos2 φ (4.6.3)

Next, substitute Eq. (4.6.1), Eq. (4.6.2), and Eq. (4.6.3) into Eq. (4.5.2)
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− 2Cp sin2 φ + 2Cp cos2 φ − cot φ
(
2Cp sin φ cos φ

)
+ 12Cp sin2 φ = 2C0 sin2 φ (4.6.4)

The constant develops straightforwardly as

Cp = C0/5 (4.6.5)

Thus, the exact form for the particular solution which satisfies the nonhomogeneity is

Gp =
W

5
(
a2 − b2) sin2 φ (4.6.6)

4.7 General Solution of the ODE and PDE

Therefore, the general solution satisfying the function G (φ) matures to the linear superpo-

sition of the complimentary and particular solutions, G (φ) = Gc + Gp

G = C7

(
9 cos2 φ −

15
2

cos4 φ −
3
2

)
+

W
5
(
a2 − b2) sin2 φ (4.7.1)

The stream function comes to fruition as

ψ = R4
[
C7

(
9 cos2 φ −

15
2

cos4 φ −
3
2

)
+

W
5
(
a2 − b2) sin2 φ

]
(4.7.2)

by exercising the relation of ψ (R, φ) = F (R) G (φ) = R4G (φ).

4.8 The Boundary Conditions and the Stream Function

Solution

The natural progression moves to administer the appropriate boundary conditions in order

to solve for the constant, C7. The boundary condition at the centerline, ψ (R, 0) = 0 or
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G (0) = 0 (4.8.1)

for the colatitudinal function, has been used previously to eliminate the Legendre function

of the second kind, Q (x). Therefore, the boundary conditions at the wall, ψ (R, α) = 0 or

G (α) = 0 (4.8.2)

is used to find the constant, C7, which appears as

G (α) = 0 = C7

(
9 cos2 α −

15
2

cos4 α −
3
2

)
+

W
5
(
a2 − b2) sin2 α (4.8.3)

C7

(
9 cos2 φ −

15
2

cos4 φ −
3
2

)
= −

W
5
(
a2 − b2) sin2 α (4.8.4)

C7 =
W

(
sin2 α

)
5
(
a2 − b2) ( 15

2 cos4 φ − 9 cos2 φ + 3
2

) (4.8.5)

C7 =
2W

(
sin2 α

)
5
(
a2 − b2) (15 cos4 α − 18 cos2 α + 3

) (4.8.6)

C7 =
2W

5
(
a2 − b2)λ (4.8.7)

where

λ =
sin2 α(

15 cos4 α − 18 cos2 α + 3
) (4.8.8)

So the colatitudinal and stream functions become

G =
2W

5
(
a2 − b2)λ (

15
2

cos4 φ − 9 cos2 φ +
3
2

)
−

W
5
(
a2 − b2) sin2 φ (4.8.9)
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ψ = R4
[

2W
5
(
a2 − b2)λ (

15
2

cos4 φ − 9 cos2 φ +
3
2

)
−

W
5
(
a2 − b2) sin2 φ

]
(4.8.10)

and simplified

G =
W

5
(
a2 − b2) [

λ
(
15 cos4 φ − 18 cos2 φ + 3

)
− sin2 φ

]
(4.8.11)

ψ =
W

5
(
a2 − b2)R4

[
λ
(
15 cos4 φ − 18 cos2 φ + 3

)
− sin2 φ

]
(4.8.12)

4.9 Dimensional Velocities

Again, once the stream function is at hand, the spherical polar radial and co-latitudinal

velocities egress from the velocity-stream function relation

uR =
1

R2 sin φ
∂ψ

∂φ

uφ = −
1

R sin φ
∂ψ

∂R

The derivatives become,

∂ψ

∂φ
=

W
5
(
a2 − b2)R4

[
λ
(
−60 cos3 φ sin φ + 36 cos φ sin φ

)
− 2 sin φ cos φ

]
(4.9.1)

∂ψ

∂φ
=

W sin φ
5
(
a2 − b2)R4

[
λ
(
36 cos φ − 60 cos3 φ

)
− 2 cos φ

]
(4.9.2)

∂ψ

∂R
=

4W
5
(
a2 − b2)R3

[
λ
(
15 cos4 φ − 9 cos2 φ + 3

)
− sin2 φ

]
(4.9.3)

134



and the complementary velocities amend as

uR =
2W

5
(
a2 − b2)R2

[
λ
(
18 cos φ − 30 cos3 φ

)
− cos φ

]
(4.9.4)

uφ = −
4W

5
(
a2 − b2)R2

[
λ csc φ

(
15 cos4 φ − 18 cos2 φ + 3

)
− sin φ

]
(4.9.5)

The tangential velocity remains the same as the assumption at the beginning of the

investigation which requires

uθ =
B

R sin φ
(4.9.6)

The swirl function is based upon the set inlet conditions

B = uθR sin φ = Ua (4.9.7)

and

uθ =
Ua

R sin φ
(4.9.8)

4.10 Conical Modified Swirl Number

Before proceeding into the normalization of the solution equations, a conical modified swirl

number is introduced for better resolution. Utilizing Eq. (4.2.25) the inlet stream function

emerges

ψa = 0 (4.10.1)

ψb =
W

4
(
a2 − b2) (

b4 − 2a2b2 + a4
)

(4.10.2)

where the stream function simplifies to

135



ψb =
W

(
a2 − b2

)2

4
(
a2 − b2) =

W
4

(
a2 − b2

)
(4.10.3)

for the boundary conditions of

ψ (r = a, z = L) (4.10.4)

ψ (r = b, z = L) (4.10.5)

The volumetric inlet flow rate derives from Eq. (2.4.13) in Chapter 2

Qi = 2π
∫ a

b
dψ = 2π (ψa − ψb) (4.10.6)

Thus, the volumetric flow rate at the inlet surfaces into the form of

Qi =
π

2
W

(
a2 − b2

)
(4.10.7)

In a similar form as Eq. (2.4.14) in Chapter 2, the volumetric flow rate relates the average

tangential and axial inlet velocities by

Qi =
π

2
W

(
a2 − b2

)
= UAi (4.10.8)

Thus, the average axial and tangential velocities associate as

W =
2UAi

π
(
a2 − b2) (4.10.9)

Next, a modified conical swirl number condenses the ratio further as

σc =
a2 − b2

Ai
(4.10.10)

and the corresponding average axial velocity relation is written as

W =
2U
πσc

(4.10.11)
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Thus, the corresponding stream function and velocities are

ψ =
2U

5
(
a2 − b2) πσc

R4
[
λ
(
15 cos4 φ − 18 cos2 φ + 3

)
− sin2 φ

]
(4.10.12)

uR =
2U

5
(
a2 − b2) πσc

R2
[
λ
(
18 cos φ − 30 cos3 φ

)
− cos φ

]
(4.10.13)

uφ = −
4U

5
(
a2 − b2) πσc

R2
[
λ csc φ

(
15 cos4 φ − 18 cos2 φ + 3

)
− sin φ

]
(4.10.14)

4.11 Nondimensionalization

Following the same normalization from Chapter 2, the variables reform to

R =
R̄
a

; ψ =
ψ̄

Ua2 ; uR =
ūR

U
; uφ =

ūφ
U

; uθ =
ūθ
U

(4.11.1)

In turn, the stream function and velocities materialize as

ψ = 2
5κcR4 sin4 φ

[
λ
(
15 − 12 csc2 φ

)
− csc2 φ

]
(4.11.2)

uR = 4
5κcR2 sin2 φ

[
λ cos φ

(
30 − 12 csc2 φ

)
− csc2 φ cos φ

]
(4.11.3)

uφ = −8
5κcR2 sin2 φ

[
λ (15 sin φ − 12 csc φ) − csc φ

]
(4.11.4)

where

κc =
1(

1 − β̂2
)
πσc

=
σ

πσ2
c

(4.11.5)

4.12 Cylindrical Polar Velocities & Coordinates

Conversions

Visually, spherical polar coordinates are difficult to interpret. Therefore, a conversion

from spherical polar coordinates to cylindrical polar coordinates as done previously in

Section 2.14 is undertaken in order to illuminate the equations. First, the velocities are
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converted from spherical polar velocities to cylindrical polar counterparts by exercising

Eq. (2.13.1) in Section 2.13. The cylindrical polar radial and axial velocities appear as

ur = 2
5R2κc

[
(1 + 12λ) sin 2φ

]
(4.12.1)

uz = 2
5R2κc

[
(1 − 18λ) cos 2φ − 3 − 6λ

]
(4.12.2)

The stream function and velocities in CPC become

ψ = 2
5κcr4

[
λ
(
15 − 12Z2

1

)
−Z2

1

]
(4.12.3)

uR = 4
5κcr2ζZ2

[
λ
(
30 − 12Z2

1

)
−Z2

1

]
(4.12.4)

uφ = −8
5κcr2 [λ (15Z2 − 12Z1) −Z1] (4.12.5)

uθ =
1
r

(4.12.6)

ur = 2
5rzκc (1 + 12λ) (4.12.7)

uz = 2
5κc

[
(6λ − 2) r2 − (1 + 12λ) z2

]
(4.12.8)

4.13 Vorticity & Pressure

In the same vein as Sections 2.16 and 2.17 in Chapter 2, the vorticity components and

pressure can be derived for the generalized Beltramian solution. Tables 4.1–4.4 showcase

the Beltramian and generalized Beltramian solutions in parallel.
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Table 4.1: Generalized Beltramian and Beltramian cases compared.

Variable Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

ψi (R, φ, θ)
W

(
R4 sin4 φ − 2a2R2 sin2 φ + a4

)
4
(
a2 − b2) 1

2W
(
a2 − R2 sin2 φ

)
ψi (r, θ, z)

W
(
r4 − 2a2r2 + a4

)
4
(
a2 − b2) 1

2W
(
a2 − r2

)
dH
dψ

2W
(a2 − b2)

0

B
dB
dψ

0 −
U2

W

F(R) G(φ) R4G(φ) R2G(φ)

ψ (R, φ, θ) 2
5κcR4 sin4 φ

[
λ
(
15 − 12 csc2 φ

)
− csc2 φ

]
1
2κcR2 sin2 φ

(
λ − ln Φ + csc φ cot φ − csc2 φ

)
ψ (r, θ, z) 2

5κcr4
[
λ
(
15 − 12Z2

1

)
−Z2

1

]
1
2κcr2

(
λ − lnZ−Z

√
1 + ζ2

)
λ csc2 α

(
15 cos4 α − 18 cos2 α + 3

)−1
Φα cscα + ln Φα

κc

[(
1 − β̂2

)
πσc

]−1
πσc
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Table 4.2: Generalized Beltramian and Beltramian cases velocity comparison.

Variable Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

uR (R, φ, θ) 4
5κcR2

[
λ
(
18 cos φ − 30 cos3 φ

)
− cos φ

]
κc

[
(λ − ln Φ) cos φ − 1

]
uR (r, θ, z) 4

5κcr2ζZ2

[
λ
(
30 − 12Z2

1

)
−Z2

1

]
κc

[
ζ (λ − lnZ) (1 + ζ2)−1/2 − 1

]
uφ (R, φ, θ) −8

5κcR2
[
λ
(
15 sin3 φ − 12 sin φ

)
− sin φ

]
κc

[
(ln Φ − λ) sin φ + Φ

]
uφ (r, θ, z) −8

5κcr2 [λ (15Z2 − 12Z1) −Z1] −κc

[
(λ − lnZ) (1 + ζ2)−1/2 −Z

]
uθ (R, φ, θ)

1
R sin φ

1
R sin φ

[
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]1/2

uθ (r, θ, z)
1
r

1
r

[
1 + (rκc)2

(
λ − lnZ−Z

√
1 + ζ2

)]1/2

ur (R, φ, θ) 2
5R2κc

[
(1 + 12λ) sin 2φ

]
−κcΦ

ur (r, θ, z) 2
5rzκc (1 + 12λ) −κcZ

uz (R, φ, θ) 2
5R2κc

[
(1 − 18λ) cos 2φ − 3 − 6λ

]
κc (λ − ln Φ − 1)

uz (r, θ, z) 2
5κc

[
(6λ − 2) r2 − (1 + 12λ) z2

]
κc (λ − lnZ− 1)
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Table 4.3: Generalized Beltramian and Beltramian cases vorticity comparison.

Variable Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

ωR (R, φ, θ) 0 κc
uR

B

ωR (r, θ, z) 0 κc
uR

B

ωφ (R, φ, θ) 0 κc
uφ
B

ωφ (r, θ, z) 0 κc
uφ
B

ωθ (R, φ, θ) 4κcR sin φ κc
uθ
B

ωθ (r, θ, z) 4κcr κc
uθ
B

ωr (R, φ, θ) 0 κc
ur

B

ωr (r, θ, z) 0 κc
ur

B

ωz (R, φ, θ) 0 κc
uz

B

ωz (r, θ, z) 0 κc
uz

B
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Table 4.4: Generalized Beltramian and Beltramian cases pressure comparison.

Variable Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

∂p
∂r

1
r3 + 32

25κ
2
cr3

(
36λ2 − 9λ − 1

) Z2

r3 +
κ2

cZ2

r

[
ζ2Z1 − ζ

3 + ζZ2 (λ − lnZ− 1)
]

∂p
∂z

−32
25κ

2
cz3 (1 + 12λ)

κ2
cZ2

r

(
ζ2 − ζZ1 − λ + lnZ + 1

)
p (r, z) −

1
2r2 −

8
25
κ2

cτ −
1

2r2 +
1
2
κ2

cτ

τ (r, z)
(
36λ2 − 9λ − 1

)
r4 +

(
144λ2 + 24λ + 1

)
z4

(
ζ + ζ3

)
Z2 − ζ

2 − ln2
Z− (2λ − 1) ln (Z + 2ζ)
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Chapter 5

The Generalized Beltramian Conical

Bidirectional Vortex (BDV): Results and

Discussion

5.1 Mantle Location & Streamlines

The generalized Beltramian (GB) mantle formulation appears exactly as the Beltramian

case, except the equations are different to the respective solutions. Again, the BG analysis

engenders two mantle locations, one each for the spherical radial velocity and axial

velocity. The velocity equations are solved for the roots and appear as

λ
(
18 cos φ − 30 cos3 φ

)
− cos φ = 0 (5.1.1)

(1 − 18λ) cos 2φ − 3 − 6λ = 0 (5.1.2)

Tables 5.1–5.3 display the characteristics of the GB solution and the comparison to the

values for the original Beltramian solution. Tables 5.1 and 5.2 provide information on

the constant lambda, λ, the angle of the spherical radial velocity mantle, βR, the ratio in
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Table 5.1: Comparison of mantle inclinations versus conical divergence angle.

Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

α λ βR βz λ βR βz

5◦ -0.084 3.5◦ 3.5◦ -2.63 3.0◦ 3.0◦

10◦ -0.087 7.1◦ 7.1◦ -1.92 6.1◦ 6.1◦

15◦ -0.091 10.5◦ 10.7◦ -1.52 9.1◦ 9.2◦

20◦ -0.098 13.1◦ 14.4◦ -1.22 12.1◦ 12.6◦

25◦ -0.107 17.4◦ 18.2◦ -0.982 15.2◦ 15.7◦

30◦ -0.121 20.7◦ 22.2◦ -0.781 18.2◦ 19.1◦

35◦ -0.142 23.9◦ 26.3◦ -0.605 21.2◦ 22.7◦

40◦ -0.172 27.0◦ 30.7◦ -0.445 24.2◦ 26.5◦

45◦ -0.222 30.0◦ 35.3◦ -0.296 27.2◦ 30.6◦

percentage of the spherical radial velocity mantle to the divergence half-angle, βR/α, the

angle of the axial velocity mantle, βz, and the ratio in percentage of the axial velocity mantle

to the divergence half-angle, βz/α. Table 5.3 shows the ratio of the mantle radius at the top

of the cone, (a = 1, z/L = 1), for both the spherical radial velocity mantle and the axial

velocity mantle, XβR , and Xβz , respectively. Additionally, Table 5.3 compares the difference

between the spherical radial velocity mantle and the axial velocity mantle in degrees and

percentage for both the GB and Beltramian solution.

Examining Tables 5.1–5.3 reveal the characteristics about the GB solution and the

differences between the behavior of the GB model compared to the Beltramian model.

One characteristic for both solutions shows that the differences between the spherical

radial velocity mantle and axial velocity mantle begin at or near zero and remain small

for low divergence half-angles. When the divergence half-angle reaches 45◦, there only

exist a difference of approximately 5◦ and 3◦ for the GB model and Beltramian model,

respectively. In both cases, the axial velocity mantle becomes larger than the spherical

radial velocity mantle. A second characteristic involves the ratio in percentage of the
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Table 5.2: Comparison of mantle inclination ratios versus conical divergence angle.

Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

α λ βR/α (%) βz/α (%) λ βR/α (%) βz/α (%)

5◦ -0.084 70.7 70.7 -2.63 60.7 60.6

10◦ -0.087 70.5 71.1 -1.92 60.6 61.0

15◦ -0.091 70.3 71.5 -1.52 60.6 61.4

20◦ -0.098 70.0 72.2 -1.22 60.6 62.0

25◦ -0.107 69.6 73.0 -0.982 60.6 62.8

30◦ -0.121 69.0 74.0 -0.781 60.5 63.8

35◦ -0.142 68.4 75.3 -0.605 60.5 64.9

40◦ -0.172 67.6 76.7 -0.445 60.5 66.4

45◦ -0.222 66.7 78.4 -0.296 60.4 68.0

Table 5.3: Mantle inclination versus conical divergence angle.

Generalized Beltramian (∇ × u × ω = 0) Beltramian (u × ω = 0)

α XβR Xβz |βR − βz| (%) |βR − βz|
◦ XβR Xβz |βR − βz| (%) |βR − βz|

◦

5◦ 0.706 0.707 0.0 0◦ 0.606 0.606 0.1 0.0◦

10◦ 0.702 0.707 0.6 0◦ 0.602 0.606 0.4 0.0◦

15◦ 0.694 0.707 1.2 0.2◦ 0.597 0.605 0.8 0.1◦

20◦ 0.685 0.707 2.2 1.3◦ 0.590 0.604 1.4 0.5◦

25◦ 0.672 0.707 3.4 0.8◦ 0.580 0.603 2.2 0.5◦

30◦ 0.655 0.707 5.0 1.5◦ 0.568 0.601 3.3 0.9◦

35◦ 0.634 0.707 6.9 2.4◦ 0.553 0.598 4.4 1.5◦

40◦ 0.608 0.707 9.1 3.7◦ 0.535 0.595 5.9 2.3◦

45◦ 0.577 0.707 11.7 5.3◦ 0.514 0.592 7.6 3.4◦
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Figure 5.1: The constant, λ, which derives from the divergence half-angle wall BC, as it
varies with divergence half-angle, α. Here the present model (——) is compared to the
Beltramian model (− − −).

spherical radial velocity mantle to the divergence half-angle. The ratio in percentage

of the spherical radial velocity mantle to the divergence half-angle begins at 70.7%

for a divergence half-angle of 5◦ and slowly reduces to 66.7% as the divergence half-

angle increases to 45◦. The 70.7% remarkably pinpoints the same theoretical mantle

location as the complex lamellar type BDV in a cylinder (Vyas et al. 2003a; Vyas and

Majdalani 2006). The spherical radial velocity for the Beltramian solution exhibits a

similar behavior as it remains close to 60.7% as the divergence half-angle increases. A

third characteristic illustrates that while the spherical radial velocity mantle decreases for

the ratio in percentage of the spherical radial velocity mantle to the divergence half-angle,

the axial velocity mantle increases. However, the radial distance of the spherical radial

velocity mantle at z/L = 1 decreases with successive increases in divergence half-angles

while the axial velocity mantle radial distance remains exactly the same at 0.707 of the

maximum radius when a = 1. Finally, graphs for the model comparisons of the constant,

λ, and both mantles are shown in Figure 5.1 and Figure 5.2, respectively.

Figure 5.3 plots the streamlines for both the GB model and the Beltramian model.

Solid lines plot the streamline paths for the GB model in the r − z plane while dashed

lines trace the Beltramian model. Figures 5.3a–5.3c show the conical BDV at divergence

half-angles of α = 15◦, 30◦, and 45◦, respectively. The spherical velocity mantle angles

appear on Figure 5.3 where the larger angle denotes the GB solution and the smaller angle
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Figure 5.2: The mantle delineation angles, β, vs. the divergence half-angle, α. Here the
present GB models for βR (——) and βz (− · −) compared to the Beltramian models βR

(− − −) and βz (· · · ), respectively.

the Beltramian solution. Both Figure 5.3a and Figure 5.3b show a deeper convection

of streamlines for the uppermost curve for the GB solution compared to the Beltramian

solution. However, the following lower curves display the opposite effect with a deeper

convection by the Beltramian solution over the GB solution. Figure 5.3a presents the same

effects except that the second streamline curves remain about even at the deepest maximum

for both solutions. The deeper convection for the Beltramian solution in the lower portion

of the cyclones and vice versa for the GB solution can be contributed to the mantle shift

predicted by the models.

5.2 Velocities

Figure 5.4 depicts the spherical radial, uR, zenith, uφ, axial, uz, and cylindrical radial

velocities, ur, for a divergence half-angle of α = 45◦, κc = 1, and four axial locations

of z/L = 0.25, 0.5, 0.75, and 1. A general characteristic of all the velocities corroborates

the streamlines in Figure 5.3. In the higher axial locations, the magnitudes of the velocities

of the GB model are greater than those of the Beltramian model. However, the opposite

effect occurs at the lowest axial locations. The spherical radial velocity and axial velocity

contain very similar curves for the GB model, as well as the Beltramian. However, the GB

model includes a R2 term in SPC for both the spherical radial velocity and axial velocity
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Figure 5.3: Flow streamlines for σc = 1 and cone half-angles of α = (a) 15◦, (b) 30◦, and
(c) 45◦. Here the present model (——) is compared to the Beltramian model (− − −).
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Figure 5.4: The (a) spherical radial velocity, uR, (b) zenith velocity, uφ, (c) axial velocity,
uz, and (d) cylindrical radial velocities, ur, at four axial locations z/L = 0.25, 0.50, 0.75,
and 1 for α = 45◦. Here the present model (——) is compared to the Beltramian model
(− − −).

while the Beltramian model only depends upon the zenith angle, φ, for both the spherical

radial velocity and axial velocity (see Table 4.2). The influence of the R2 term causes the

the spherical radial velocity and axial velocity to remain finite as the radius approaches the

core, a much more favorable quality for an inviscid model. The zenith velocity preserves a

parabolic form for the GB model while the radial velocity preserves a linear form. Both the

zenith velocity and the radial velocity of the GB model indicate an inward flow, the same

as the Beltramian case.

Figure 5.5 plots the GB solution tangential velocity and axial velocity against the

Beltramian model and experimental and numerical data from Hsieh and Rajamani (1988)

and Monredon et al. (1992). Unfortunately, the tangential velocity from the GB solution

does not add any information since the tangential velocity takes the form of a free vortex.

The axial velocity provides promising results since the velocity remains finite at the

centerline and matches relatively well in the less viscous regions away from the axis and
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Figure 5.5: Present theoretical velocity (——) and the Beltramian model (−−−) compared
to experimental (•) and numerical (�) data by (a) and (c) Hsieh and Rajamani (1988), and
(b) and (d) Monredon et al. (1992).

wall. The axial velocity data from Hsieh and Rajamani (1988) and Monredon et al. (1992)

shows a sharp rise near the centerline. However, an air core is present in the hydrocyclone

analysis conducted by Hsieh and Rajamani (1988) and Monredon et al. (1992) which

restricts the data collection capabilities. Likewise, the axial velocity profile could also

be useful for other BCs or flow conditions. Thus, the data gathered from the GB and

Beltramian solutions provide two additional models for vortex flows.

5.3 Vorticity & Pressure

Lastly, Figure 5.6 exhibits the pressure difference and vorticity magnitude plots for the GB

model in contrast to the Beltramian model for four axial locations of z/L = 0.25, 0.5, 0.75,

and 1, κc = 1, and a divergence half-angle of α = 30◦. Figure 5.6a results in a pressure

drop for the GB model similar to Beltramian model. Again, the dominating term, 1
2r−2,

defines the slope of the curve. Figure 5.6b shows the graph of the vorticity magnitude. The
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Figure 5.6: Distribution of (a) pressure and (b) vorticity magnitude at four axial locations
z/L = 0.25, 0.5, 0.75, and 1 for α = 30◦. Here the present model (——) is compared to the
Beltramian model (− − −).

vorticity magnitude for the GB model remains highest near the conical wall and linearly

decreases to zero as the radius decreases to zero. The vorticity magnitude varies linearly in

r since the GB model only contains one vorticity component, the tangential vorticity.
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Chapter 6

Conclusions

The analysis of this dissertation engenders two new solutions, one of the generalized

Beltramian (GB) type [∇ × u × ω = 0] and the other of the Beltramian type [u × ω = 0].

The solutions presented here provide clear and exact derivations and results, specifically,

two additional models are introduced to classify bidirectional vortex flows for a conical

geometry. The GB and Beltramian solutions mimic the physical flow field of a cyclone

separator or conical combustion chamber. Both solutions engender from the Bragg-

Hawthorne equation with appropriate boundary conditions which provide the double helix

motion within a cone. Values are obtained for the stream functions, velocities, pressure

distributions, and vorticity. Additional properties, such as the dual mantle locations and

conical swirl parameters, are also found which determine important characteristics of the

models and effects on flow fields.

The Beltramian solution is based upon inviscid, incompressible assumptions resulting

in the Bragg-Hawthorne equation (BHE). A vorticity distribution formulation conditional

to a uniform inlet axial velocity allows for the swirl velocity to vary axially rather than

the traditional free vortex model. The BHE is then solved utilizing a straightforward

separation of variables technique with proper boundary condition to bring forth the stream

function solution. Once the stream function is at hand, the spherical polar velocities and

cylindrical polar velocities are obtained in both spherical polar coordinates and cylindrical
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polar coordinates. Following the velocity derivations, the pressure distribution and vorticity

are found from fluid dynamics principles. A modified conical swirl number relates the axial

and tangential inlet velocities and provides a controlling parameter to vary the flow field

characteristics. Two mantle locations are verified by setting the spherical radial velocity

and axial velocity equal to zero. Streamlines and velocities are produced for a range of

conical divergent half-angles. The tangential and axial velocities are then compared to two

hydrocyclone experimental and numerical cases with favorable agreement.

A similar approach is taken for the GB model. However, a half-parabolic axial

profile at the inlet is imposed instead of the Beltramian uniform profile assumption.

The vorticity distribution for the GB model is based upon the Bernoulli equation as

opposed to the Beltramian model and the angular momentum condition. The resulting

separation of variables produces an ordinary differential equation of the Gegenbauer type,

a generalization of the Legendre type. Resulting flow properties such as the stream

function, velocities, pressure, and vorticity are then derived and compared to the Beltramian

counterparts. Most importantly, the spherical polar and axial velocities of the GB type

model do not exhibit the singular behavior at the centerline, unlike the Beltramian solution.

Viscous models are suggested for future studies in order to model friction effects near the

centerline and conical walls.

Swirling flow and vortices make up many fluid phenomena including meteorological

events (tornadoes, hurricanes, dust devils, fire whirls, weather systems), astronomical

events (spiral galaxies, star and planet magnetic fields, black holes), combustion events

(swirl injectors, combustors, furnaces), and power production (gas turbines, solar vortex

towers, hydroelectric turbines, propulsion systems). On a mesoscale, swirling pipe and

convergent or divergent nozzle flow encompass copious flow conditions and devices,

including heat transfer enhancement, combustion mixing enhancement and lengthened en-

trainment, particle separation and entrainment, contactless suction, and electro-/magneto-

hydrodynamics, for example. Thus, the developed models contribute to an understanding

of the swirling flow and vortex dynamics scientific communities in a general sense.
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This dissertation addresses several important fluid dynamic and related fundamentals.

However, the area of vortex dynamics encompass a myriad of topics that should be

investigated. These topics include the Bragg-Hawthorne or Squire-Long (also Beltrami-

Gromeka) equation, Beltrami and related flows and conditions, and mathematical fluid

aspects. Work is recommended to develop generalized solutions and explore their

symmetry and topology. It is further desirable to address variational Hamiltonian principles

in order to develop a generalized, perhaps unified theory of numerous vortex and swirl

related phenomena. Most importantly, the dissertation has laid the groundwork for a myriad

of other investigations including, viscous solutions, compressible solutions, and solutions

for other geometries and boundary conditions.

154



Bibliography

155



Abrahamson, J., Martin, C. G., and Wong, K. K. (1978). The physical mechanisms of dust

collection in a cyclone. Transactions of the Institution of Chemical Engineers - Chemical

Engineering Research and Design, 56a:168–177.

Akiki, G. (2011). On the bidirectional vortex engine flowfield with arbitrary endwall

injection. PhD thesis, University of Tennessee. 41, 87

Akiki, G. and Majdalani, J. (2010). On the bidirectional vortex with arbitrary endwall

velocity. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA

Paper No. 2010-6652. 41, 85, 93

Akiki, G. and Majdalani, J. (2012). New framework for modeling the bidirectional vortex

engine flowfield with arbitrary injection. In 50th AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition. AIAA Paper No. 2012-

0138. 41, 93
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167



Knowles, S. R., Woods, D. R., and Feuerstein, I. A. (1973). The velocity distribution

within a hydrocyclone operating without an air core. The Canadian Journal of Chemical

Engineering, 51(3):263–271. 107

Koplik, J. and Levine, H. (1993). Vortex reconnection in superfluid helium. Physical

Review Letters, 71(9):1375–1378. 18

Kreyszig, E. (1999). Advanced Engineering Mathematics. John Wiley & Sons, Inc., New

York, 8 edition. 125

Kundu, P. K., Cohen, I. M., and Dowling, D. R. (2012). Fluid Mechanics. Academic Press,

Waltham, MA, 5th edition.

Kuo, H. L. (1966). On the dynamics of convective atmospheric vortices. Journal of the

Atmospheric Sciences, 23(1):25–42. 95

Lai, W. (1961). Three studies in fluid mechanics. Phd, University of Michigan.

Lai, W. (1964). Flow of an inviscid fluid past a sphere in a pipe. Journal of Fluid

Mechanics, 18(04):587–594.

Lakhtakia, A. (1994). Viktor Trkal, Beltrami fields, and Trkalian flows. Czechoslovak

Journal of Physics, 44(2):89–96. 20, 22, 27

Lamb, H. (1877). On the conditions for steady motion of a fluid. Proceedings of the London

Mathematical Society, 1(1):91. 3, 20, 27

Lamb, H. (1879). A Treatise on the Mathematical Theory of the Motion of Fluids.

Cambridge University Press, Cambridge, UK, 1st edition. 20, 28

Lamb, H. (1975). Hydrodynamics. Cambridge University Press, Cambridge, UK, 6th

edition. 20, 28

Lavan, Z., Nielsen, H., and Fejer, A. A. (1969). Separation and flow reversal in swirling

flows in circular Dducts. Physics of Fluids, 12(9):1747–1757. 85, 87

168



Leibovich, S. (1978). The structure of vortex breakdown. Annual Review of Fluid

Mechanics, 10:221–246. 85

Leith, D. and Licht, W. (1972). The collection eEfficiency of cyclone type particle

collectors - a new theoretical approach. In AIChE Symposium Series, volume 68, pages

196–206. 105

Leith, D. and Mehta, D. (1973). Cyclone performance and design. Atmospheric

Environment, 7(5):527–549. 105

Lilley, D. G. (1977). Swirl flows in combustion: a review. AIAA Journal, 15(8):1063–1078.

19

Long, R. R. (1953). Steady motion around a symmetrical obstacle moving along the axis

of a rotating liquid. Journal of Meteorology, 10(3):197–203. 26

Lugt, H. J. (1996). Introduction to Vortex Theory. Vortex Flow Press, Potomac, MD. 13,

22

Luniev, V. V. (2009). Real Gas Flows with High Velocities. CRC Press, Boca Raton, FL.

20

Luo, Q., Deng, C., Xu, J., Yu, L., and Xiong, G. (1989). Comparison of the performance

of water-sealed and commercial hydrocyclones. International Journal of Mineral

Processing, 25(3):297–310. 96

Maicke, B. A. (2006). Compressible flow in slab rocket motors. Thesis, University of

Tennessee.

Maicke, B. A. (2012). On compressible gaseous motions in swirl dominated combustors.

PhD, University of Tennessee. 87

Maicke, B. A. and Majdalani, J. (2008a). On the compressible bidirectional vortex. In

44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA Paper No.

2008-4834. 85, 93

169



Maicke, B. A. and Majdalani, J. (2008b). On the rotational compressible Taylor flow in

injection-driven porous chambers. Journal of Fluid Mechanics, 603:391–411. 82

Maicke, B. A. and Majdalani, J. (2012a). On the compressible bidirectional vortex. part

1: a Bragg-Hawthorne stream function formulation. In 50th AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition. AIAA Paper No.

2012-1103. 93

Maicke, B. A. and Majdalani, J. (2012b). On the compressible bidirectional vortex. part

2: a Beltramian flowfield approximation. In 50th AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition. AIAA Paper No. 2012-

1104. 93

Majdalani, J. (2007). Vortex Injection Hybrid Rockets. In Chiaverini, M. J. and Kuo,

K., editors, Fundamentals of Hybrid Rocket Combustion and Propulsion, volume 218 of

Progress in Astronautics and Aeronautics, chapter 6, pages 247–276. AIAA (American

Institute of Aeronautics and Astronautics), Reston, Virginia. 85, 87, 93

Majdalani, J. (2009). Exact Eulerian solutions of the cylindrical bidirectional vortex.

In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA. AIAA

Paper No. 2009-5307. 87

Majdalani, J. (2012). Helical solutions of the bidirectional vortex in a cylindrical cyclone:

Beltramian and Trkalian motions. Fluid Dynamics Research, 44(6):065506. 60, 82, 93,

109

Majdalani, J. and Rienstra, S. (2007). On the bidirectional vortex and other similarity

solutions in spherical coordinates. Zeitschrift für Angewandte Mathematik und Physik

(ZAMP), 58(2):289–308. 60

Majdalani, J. and Saad, T. (2007). The Taylor-Culick profile with arbitrary headwall

injection. Physics of Fluids, 19(9):93601 (1–10). 60

170
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on Mechanics Special Issue, Proceedings 2nd IAHR International Meeting of the

Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems

- Workshop on Vortex. 26

Susan-Resiga, R. F., Ciocan, G. D., Anton, I., and Avellan, F. (2006). Analysis of the

swirling flow downstream a Francis turbine runner. Transactions of the ASME Journal

of Fluids Engineering, 128(1):177–189. 26

Susan-Resiga, R. F., Milos, T., Alexandru, B., Muntean, S., and Bernad, S. (2005b).

Mathematical and numerical models for axisymmetric swirling flows for turbomachinery

applications. In Scientific Bulletin of the Politehnica University of Timişoara
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Appendix A

Lamb Vector Expansion

This appendix contains detailed mathematical formulation regarding the expansion of the

Lamb vector in cylindrical polar and spherical polar coordinates. The expansion of the

Lamb vector in cylindrical coordinates is

` = −u × (∇ × u) =
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Expansion gives
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The expansion of the Lamb vector in spherical coordinates is
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Expansion combines the Lamb vector components to

`R =
uθ

R sin φ
∂uR

∂θ
− uθ

∂uθ
∂R
−

u2
θ

R
− uφ

∂uφ
∂R
−

u2
φ

R
+ uφ

∂uR

∂φ
(A.21)

`φ = uR
∂uφ
∂R

+
uRuφ

R
− uR

∂uR

∂φ
−

uθ
R
∂uθ
∂φ
−

u2
θ cot φ

R
+

uθ
R2 sin φ

∂uφ
∂θ

(A.22)

`θ =
uφ
R
∂uθ
∂φ

+ uφuθ
cot φ

R
−

uφ
R2 sin φ

∂uφ
∂θ
−

uR

R sin φ
∂uR

∂θ
+ uR

∂uθ
∂R

+
uRuθ

R
(A.23)

Rearranging organizes the components into
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Appendix B

Velocity Magnitude Mathematics for

Beltramian Cone Solution

This appendix contains detailed mathematical formulation regarding the velocities for the

Beltramian solution.

u2
R = κ2

c
[
(λ − ln Φ) cos φ − 1

]2
= κ2

c
[
(λ − ln Φ) cos φ − 1

] [
(λ − ln Φ) cos φ − 1

]
(B.1)

u2
R = κ2

c

[
(λ − ln Φ)2 cos2 φ − 2 (λ − ln Φ) cos φ + 1

]
(B.2)

u2
φ = κ2

c
[
(λ − ln Φ) sin φ − Φ

]2
= κ2

c
[
(λ − ln Φ) sin φ − Φ

] [
(λ − ln Φ) sin φ − Φ

]
(B.3)

u2
φ = κ2

c

[
(λ − ln Φ)2 sin2 φ − 2 (λ − ln Φ) Φ sin φ + Φ2

]
(B.4)

u2
φ = κ2

c

[
(λ − ln Φ)2 sin2 φ − 2 (λ − ln Φ) (csc φ − cot φ) sin φ + Φ2

]
(B.5)
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u2
φ = κ2

c

[
(λ − ln Φ)2 sin2 φ − 2 (λ − ln Φ) (1 − cos φ) + Φ2

]
(B.6)

u2
θ =

1
R2 sin2 φ

[
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
(B.7)

u2
θ =

1
R2 sin2 φ

+ κ2
c (λ − ln Φ − Φ csc φ) (B.8)

cos2 u =
1 + cos 2u

2
(B.9)

sec2
(
φ

2

)
=

2
1 + cos φ

=
2

1 + cos φ
1 − cos φ
1 − cos φ

=
2 (1 − cos φ)
1 − cos2 φ

(B.10)

sec2
(
φ

2

)
=

2 (1 − cos φ)
sin2 φ

=
2

sin2 φ
−

2 cos φ
sin2 φ

= 2
(
csc2 φ − cot φ csc φ

)
(B.11)

sec2
(
φ

2

)
= 2Φ csc φ (B.12)

sec2 u = 1 + tan2 u (B.13)

sec2
(
φ

2

)
= 1 + tan2

(
φ

2

)
= 1 + Φ2 (B.14)

1 + Φ2 = 2Φ csc φ (B.15)
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u2
R + u2

φ + u2
θ =

κ2
c

[
(λ − ln Φ)2 cos2 φ − 2 (λ − ln Φ) cos φ + 1

]
+ κ2

c

[
(λ − ln Φ)2 sin2 φ − 2 (λ − ln Φ) (1 − cos φ) + Φ2

]
+

1
R2 sin2 φ

+ κ2
c (λ − ln Φ − Φ csc φ) (B.16)

u2
R + u2

φ + u2
θ =

1
R2 sin2 φ

+ κ2
c

[
(λ − ln Φ)2

− (λ − ln Φ) + Φ csc φ
]

(B.17)

|u| =

√
1

R2 sin2 φ
+ κ2

c

[
(λ − ln Φ)2

− (λ − ln Φ) + Φ csc φ
]

(B.18)
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Appendix C

Vorticity Mathematics for Beltramian

Cone Solution

This appendix contains detailed mathematical formulation regarding the vorticity for the

Beltramian solution.

ωR =
1

R2 sin φ
∂

∂φ
(uθR sin φ)

uθR sin φ =

√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ) (C.1)

∂

∂φ
(uθR sin φ) =

∂

∂φ

[√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
(C.2)

∂

∂φ

(
u

1
2

)
= 1

2u−
1
2 du (C.3)

du =
∂

∂φ

[
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
(C.4)
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∂

∂φ

[
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
= 2κ2

cR2 sin φ cos φ (λ − ln Φ − Φ csc φ)

− (κcR sin φ)2
[

d
dφ

(− ln Φ − Φ csc φ)
]

(C.5)

d
dφ

(− ln Φ) = − csc φ

d
dφ

(Φ) =
d

dφ
(csc φ − cot φ) = − csc φ cot φ + csc2 φ = Φ csc φ (C.6)

d
dφ

(−Φ csc φ) = − (csc φ − cot φ) csc2 φ − Φ (− csc φ cot φ) (C.7)

d
dφ

(−Φ csc φ) = − (csc φ − cot φ) csc2 φ + (csc φ − cot φ) csc φ cot φ (C.8)

d
dφ

(−Φ csc φ) = − csc3 φ + csc2 φ cot φ + csc2 φ cot φ − csc φ cot2 φ (C.9)

d
dφ

(−Φ csc φ) = − csc3 φ + 2 csc2 φ cot φ − csc φ cot2 φ (C.10)

d
dφ

(− ln Φ − Φ csc φ) = − csc φ − csc3 φ + 2 csc2 φ cot φ − csc φ cot2 φ (C.11)

du = (κcR sin φ)2 [
2 (λ − ln Φ) cot φ − 2Φ csc φ cot φ − csc φ

− csc3 φ + 2 csc2 φ cot φ − csc φ cot2 φ
]

(C.12)
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du = (κcR sin φ)2 [
2 (λ − ln Φ) cot φ − 2 (csc φ − cot φ) csc φ cot φ

− csc φ − csc3 φ + 2 csc2 φ cot φ − csc φ cot2 φ
]

(C.13)

du = (κcR sin φ)2
[
2 (λ − ln Φ) cot φ − 2 csc2 φ cot φ + 2 csc φ cot2

− csc φ − csc3 φ + 2 csc2 φ cot φ − csc φ cot2 φ
]

(C.14)

du = (κcR sin φ)2
[
2 (λ − ln Φ) cot φ + csc φ cot2 − csc φ − csc3 φ

]
(C.15)

du = (κcR sin φ)2
[
2 (λ − ln Φ) cot φ + csc φ

(
cot2 − csc2 φ − 1

)]
(C.16)

du = (κcR sin φ)2
[
2 (λ − ln Φ) cot φ + csc φ

(
csc2 φ − 1 − csc2 φ − 1

)]
(C.17)

du = 2 (κcR sin φ)2 [
(λ − ln Φ) cot φ − csc φ

]
(C.18)

ωR =
κ2

c
[
(λ − ln Φ) cos φ − 1

]√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.19)

ωR =
κcuR√

1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)
(C.20)

ωR =
κc

R sin φ
uR

uθ
(C.21)
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ωR =

κ2
c

{
ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

}
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.22)

ωR =

κ2
c

{
ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

}
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.23)

ωR =
κ2

c
[
ζZ2 (λ − lnZ) − 1

]√
1 + (rκc)2 (λ − lnZ−ZZ1)

(C.24)

ωφ = −
1

R sin φ
∂

∂R
(uθR sin φ)

ωφ = −
1

R sin φ
∂

∂R

[√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
(C.25)

∂

∂φ

(
u

1
2

)
= 1

2u−
1
2 du

du = −2R (κc sin φ)2 (λ − ln Φ − Φ csc φ) (C.26)

ωφ = −
κ2

c
[
(λ − ln Φ) sin φ − Φ

]√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.27)

ωφ =
κcuφ√

1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)
(C.28)

ωφ =
κc

R sin φ
uφ
uθ

(C.29)

ωφ = −

κ2
c

{(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

}
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.30)
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ωφ = −

κ2
c

{(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

}
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.31)

ωφ = −
κ2

c [Z2 (λ − lnZ) −Z]√
1 + (rκc)2 (λ − lnZ−ZZ1)

(C.32)

ωθ =
1
R

[
∂

∂R

(
Ruφ

)
−
∂uR

∂φ

]

∂

∂R

(
Ruφ

)
= −κc

[
(λ − ln Φ) sin φ − Φ

]
(C.33)

∂uR

∂φ
= −κc

[
(λ − ln Φ) sin φ + cot φ

]
(C.34)

ωθ =
κc

R
(Φ + cot φ) (C.35)

ωθ =
κc

R
(csc φ − cot φ + cot φ) (C.36)

ωθ =
κc

R sin φ
(C.37)

ωθ =
κc

r
(C.38)

ωR = ωθ

uR

uθ
(C.39)

ωR = uR
ωθ

uθ
(C.40)
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ωφ = ωθ

uφ
uθ

(C.41)

ωφ = uφ
ωθ

uθ
(C.42)

ωr = −
∂uθ
∂z

ωr = −
∂

∂z

{
1
r

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]}
(C.43)

ωr = −
1
r
∂

∂z

{√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]}
(C.44)

∂

∂z

(
u

1
2

)
= 1

2u−
1
2 du

du =
∂

∂z

{
(κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]}
(C.45)

du = (κcr)2 ∂

∂z

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
(C.46)

∂

∂z

[
− ln

( √
1 + ζ2 − ζ

)]
= −

u′

u
(C.47)

u′ =
∂

∂z

( √
1 + ζ2 − ζ

)
(C.48)
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∂

∂z


√

1 +
z2

r2

 =
1
2

u−1/2du (C.49)

du =
∂

∂z

(
z2

r2

)
= 2

z
r2 (C.50)

∂

∂z


√

1 +
z2

r2

 =
1
2

(
1 +

z2

r2

)−1/2

2
z
r2 =

z
r2√

1 +
z2

r2

(C.51)

u′ =
∂

∂z

( √
1 + ζ2 − ζ

)
=

z
r2√

1 +
z2

r2

−
1
r

(C.52)

∂

∂z

[
− ln

( √
1 + ζ2 − ζ

)]
= −

u′

u
= −

z
r2√

1 +
z2

r2

−
1
r

√
1 +

z2

r2 −
z
r

(C.53)

∂

∂z

[
− ln

( √
1 + ζ2 − ζ

)]
= −

u′

u
=

−z + r

√
1 +

z2

r2

r2

√
1 +

z2

r2


√

1 +
z2

r2 −
z
r


(C.54)

∂

∂z

[
− ln

( √
1 + ζ2 − ζ

)]
= −

u′

u
=

−z + r

√
1 +

z2

r2

r

√
1 +

z2

r2

r
√

1 +
z2

r2 − z


(C.55)

∂

∂z

[
− ln

( √
1 + ζ2 − ζ

)]
= −

u′

u
=

1

r

√
1 +

z2

r2

(C.56)

∂

∂z

(
ζ
√

1 + ζ2
)

=
∂

∂z

z
r

√
1 +

z2

r2

 (C.57)
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∂

∂z

z
r

√
1 +

z2

r2

 =
z
r

z
r2√

1 +
z2

r2

+
1
r

√
1 +

z2

r2 =
z2

r3

√
1 +

z2

r2

+
1
r

√
1 +

z2

r2 (C.58)

du = (κcr)2 ∂

∂z

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]

= (κcr)2


1

r

√
1 +

z2

r2

+
z2

r3

√
1 +

z2

r2

+
1
r

√
1 +

z2

r2 − 2
z
r2

 (C.59)

du = (κcr)2


r2 + z2 + r2

(
1 +

z2

r2

)
− 2zr

√
1 +

z2

r2

r3

√
1 +

z2

r2

 (C.60)

du = (κcr)2


r2 + z2 + r2 + z2 − 2zr

√
1 +

z2

r2

r3

√
1 +

z2

r2

 (C.61)

du = (κcr)2


2r2 + 2z2 − 2zr

√
1 +

z2

r2

r3

√
1 +

z2

r2

 (C.62)

ωr = −
1
r
∂

∂z

{√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]}

= −
1
2r

(κcr)2


2r2 + 2z2 − 2zr

√
1 +

z2

r2

r3

√
1 +

z2

r2

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.63)
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ωr = −

κ2
c

r2 + z2 − zr

√
1 +

z2

r2


r2

√
1 +

z2

r2

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.64)

ωr = −
κ2

c

(
1 + ζ2 − ζ

√
1 + ζ2

)
√

1 + ζ2
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.65)

ωr = −
κ2

c

(
1 + ζ2

)−1/2 (
1 + ζ2 − ζ

√
1 + ζ2

)
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.66)

ωr = −
κ2

c

(
1 + ζ2

)−1/2 (
1 + ζ2 − ζ

√
1 + ζ2

)
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.67)

ωr = −
κ2

cZZ1Z2√
1 + (κcr)2 (λ − lnZ−ZZ1)

(C.68)

ωr = −

κ2
c

 √
1 + ζ2

√
1 + ζ2 − ζ

√
1 + ζ2√

1 + ζ2

√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.69)

ωr = −
κ2

c

( √
1 + ζ2 − ζ

)
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.70)

ωr =
κc

r
ur

uθ
(C.71)

ωr = −
κ2

cΦ√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.72)
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ωr = ωθ

ur

uθ
(C.73)

ωr = ur
ωθ

uθ
(C.74)

ωz =
1
r

[
∂

∂r
(uθr)

]
(C.75)

∂

∂r

(
u

1
2

)
= 1

2u−
1
2 du

du =
∂

∂r

{
(κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]}
(C.76)

du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
+ (κcr)2 ∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2

 (C.77)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 = −
u′

u
(C.78)

u =

√
1 +

z2

r2 −
z
r

(C.79)

∂

∂r

√
1 +

z2

r2 =
∂

∂r

(
u

1
2

)
= 1

2u−
1
2 du (C.80)

du =
1
2

(
1 +

z2

r2

)−1/2 (
−2

z2

r3

)
(C.81)
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du =

(
1 +

z2

r2

)−1/2 (
−

z2

r3

)
(C.82)

∂

∂r

(
−

z
r

)
=

z
r2 (C.83)

u′ = −
z2

r3

√
1 +

z2

r2

+
z
r2 (C.84)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 = −
u′

u
=

z2

r3

√
1 +

z2

r2

−
z
r2

√
1 +

z2

r2 −
z
r

(C.85)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 = −
u′

u
=

z2 − zr

√
1 +

z2

r2

r3

√
1 +

z2

r2


√

1 +
z2

r2 −
z
r


(C.86)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 = −
u′

u
=

z2 − zr

√
1 +

z2

r2

r2

√
1 +

z2

r2

r
√

1 +
z2

r2 − z


(C.87)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 = −
u′

u
= −

z

r2

√
1 +

z2

r2

(C.88)

∂

∂r

z
r

√
1 +

z2

r2

 = −
z
r2

√
1 +

z2

r2 −
z3

r4

√
1 +

z2

r2

(C.89)

∂

∂r

(
−

z2

r2

)
=

2z2

r3 (C.90)
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∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


= −

z

r2

√
1 +

z2

r2

−
z
r2

√
1 +

z2

r2 −
z3

r4

√
1 +

z2

r2

+
2z2

r3 (C.91)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


=

−zr2 − zr2

(
1 +

z2

r2

)
− z3 + 2z2r

√
1 +

z2

r2

r4

√
1 +

z2

r2

(C.92)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


=

−zr2 − zr2 − z3 − z3 + 2z2r

√
1 +

z2

r2

r4

√
1 +

z2

r2

(C.93)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


=

−2
(
zr2 + z3

)
+ 2z2r

√
1 +

z2

r2

r4

√
1 +

z2

r2

(C.94)
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∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


=

−2zr2

(
1 +

z2

r2

)
+ 2z2r

√
1 +

z2

r2

r4

√
1 +

z2

r2

(C.95)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2


=

−2zr2

√
1 +

z2

r2

√
1 +

z2

r2 + 2z2r

√
1 +

z2

r2

r3r

√
1 +

z2

r2

(C.96)

∂

∂r

− ln


√

1 +
z2

r2 −
z
r

 +
z
r

√
1 +

z2

r2 −
z2

r2

 = −
2
r3

zr

√
1 +

z2

r2 − z2

 (C.97)

du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
− (κcr)2

 2
r3

zr

√
1 +

z2

r2 − z2

 (C.98)

du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
−

(
κ2

cr
)  2

r2

zr

√
1 +

z2

r2 − z2

 (C.99)
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du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
−

(
2κ2

cr
) z

r

√
1 +

z2

r2 −
z2

r2

 (C.100)

du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

]
−

(
2κ2

cr
) (
ζ
√

1 + ζ2 − ζ2
)

(C.101)

du =
(
2κ2

cr
) [
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
(C.102)

ωz =
κ2

c

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.103)

ωz =
κc

r
uz

uθ
(C.104)

ωz =
κ2

c (λ − ln Φ − 1)√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.105)

ωz = ωθ

uz

uθ
(C.106)

ωz = uz
ωθ

uθ
(C.107)

ωz =
κ2

c

[
λ + sinh−1 (ζ) − 1

]
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.108)
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ωR =
κ2

c
[
(λ − ln Φ) cos φ − 1

]√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.109)

ωφ = −
κ2

c
[
(λ − ln Φ) sin φ − Φ

]√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.110)

ωθ =
κc

R sin φ
(slip) (C.111)

ωr = −
κ2

cΦ√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.112)

ωz =
κ2

c (λ − ln Φ − 1)√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.113)

ωR =
κc

[
(λ − ln Φ) cos φ − 1

]√
λ − ln Φ − Φ csc φ

(C.114)

ωφ = −
κc

[
(λ − ln Φ) sin φ − Φ

]√
λ − ln Φ − Φ csc φ

(C.115)

ωθ =
κc

R sin φ
(no slip) (C.116)

ωr = −
κcΦ√

λ − ln Φ − Φ csc φ
(C.117)

ωz =
κc (λ − ln Φ − 1)√
λ − ln Φ − Φ csc φ

(C.118)
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ωR =

κ2
c

{
ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

}
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.119)

ωφ = −

κ2
c

{(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

}
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.120)

ωθ =
κc

r
(slip) (C.121)

ωr = −
κ2

c

( √
1 + ζ2 − ζ

)
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.122)

ωz =
κ2

c

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
√

1 + (κcr)2
[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.123)

ωR =

κc

{
ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

}
√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

(C.124)

ωφ = −

κc

{(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

}
√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

(C.125)

ωθ =
κc

r
(no slip) (C.126)

ωr = −
κc

( √
1 + ζ2 − ζ

)
√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

(C.127)

ωz =
κc

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
√
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

(C.128)
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ωR =

κ2
c

{
ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

}
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.129)

ωφ = −

κ2
c

{(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

}
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.130)

ωθ =
κc

r
(slip) (C.131)

ωr = −
κ2

c

( √
1 + ζ2 − ζ

)
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.132)

ωz =
κ2

c

[
λ + sinh−1 (ζ) − 1

]
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.133)

ωR =

κc

{
ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

}
√
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

(C.134)

ωφ = −

κc

{(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

}
√
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

(C.135)

ωθ =
κc

r
(no slip) (C.136)

ωr = −
κc

( √
1 + ζ2 − ζ

)
√

1 + (κcr)2
[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.137)

ωz =
κc

[
λ + sinh−1 (ζ) − 1

]
√
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

(C.138)
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ω j

u j
=

κc

uθr
=

κc

uθR sin φ
=

κc

B (ψ)
(C.139)

ω j

u j
=

κc√
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

(C.140)

ω j

u j
=

κc√
1 + (κcr)2

[
λ − ln

( √
1 + ζ2 − ζ

)
+ ζ

√
1 + ζ2 − ζ2 − 1

] (C.141)

ω j

u j
=

κc√
1 + (κcr)2

[
λ + sinh−1 (ζ) + ζ

√
1 + ζ2 − ζ2 − 1

] (C.142)



ωR =
κ2

c

B (ψ)
[
(λ − ln Φ) cos φ − 1

]
ωφ = −

κ2
c

B (ψ)
[
(λ − ln Φ) sin φ − Φ

]
ωr = −

κ2
c

B (ψ)
Φ

ωz =
κ2

c

B (ψ)
(λ − ln Φ − 1)

(C.143)



ωR = κ2
c

[
(λ − ln Φ) cos φ − 1

B (ψ)

]
ωφ = −κ2

c

[
(λ − ln Φ) sin φ − Φ

B (ψ)

]
ωr = −κ2

c

[
Φ

B (ψ)

]
ωz = κ2

c

[
(λ − ln Φ − 1)

B (ψ)

]
(C.144)
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ωR =
κ2

c

B (ψ)

{
ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

}
ωφ = −

κ2
c

B (ψ)

{(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

}
ωr = −

κ2
c

B (ψ)

( √
1 + ζ2 − ζ

)
ωz =

κ2
c

B (ψ)

[
λ − ln

( √
1 + ζ2 − ζ

)
− 1

]
(C.145)



ωR = κ2
c

ζ
(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
− 1

B (ψ)


ωφ = −κ2

c


(
1 + ζ2

)−1/2 [
λ − ln

( √
1 + ζ2 − ζ

)]
−

√
1 + ζ2 + ζ

B (ψ)


ωr = −κ2

c


√

1 + ζ2 − ζ

B (ψ)


ωz = κ2

c

λ − ln
( √

1 + ζ2 − ζ
)
− 1

B (ψ)



(C.146)



ωR =
κ2

c

B (ψ)

{
ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

}
ωφ = −

κ2
c

B (ψ)

{(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

}
ωr = −

κ2
c

B (ψ)

( √
1 + ζ2 − ζ

)
ωz =

κ2
c

B (ψ)

[
λ + sinh−1 (ζ) − 1

]
(C.147)
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ωR = κ2
c

ζ
(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
− 1

B (ψ)


ωφ = −κ2

c


(
1 + ζ2

)−1/2 [
λ + sinh−1 (ζ)

]
−

√
1 + ζ2 + ζ

B (ψ)


ωr = −κ2

c


√

1 + ζ2 − ζ

B (ψ)


ωz = κ2

c

{
λ + sinh−1 (ζ) − 1

B (ψ)

}

(C.148)
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Appendix D

Pressure Mathematics for Beltramian

Cone Solution

This appendix contains detailed mathematical formulation regarding the pressure for the

Beltramian solution.



uR
∂uR

∂R
+

uφ
R
∂uR

∂φ
= −

1
ρ

∂p
∂R

uR
∂uφ
∂R

+
uφ
R
∂uφ
∂φ

+
uRuφ

R
−

u2
θ cot φ

R
= −

1
ρR

∂p
∂φ

ur
∂ur

∂r
+ uz

∂ur

∂z
−

u2
θ

r
= −

1
ρ

∂p
∂r

ur
∂uz

∂r
+ uz

∂uz

∂z
= −

1
ρ

∂p
∂z

(D.1)

1
ρ

∂p
∂R

= −uR
∂uR

∂R
−

uφ
R
∂uR

∂φ
(D.2)

p =
p̄

ρU2 (D.3)

∂p
∂R

= −uR
∂uR

∂R
−

uφ
R
∂uR

∂φ
(D.4)
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∂p
∂R

= −
uφ
R
∂uR

∂φ
(D.5)

∂uR

∂φ
= κc

∂

∂φ

[
(λ − ln Φ) cos φ − 1

]
(D.6)

from Equations (2.7.7–2.7.15)

∂

∂φ
(− ln Φ) = − csc φ

∂uR

∂φ
= −κc

[
(λ − ln Φ) sin φ + cot φ

]
(D.7)

uφ
∂uR

∂φ
= κ2

c
[
(λ − ln Φ) sin φ + cot φ

] [
(λ − ln Φ) sin φ − Φ

]
(D.8)

uφ
∂uR

∂φ
= κ2

c

[
(λ − ln Φ)2 sin2 φ + (λ − ln Φ) cos φ

−Φ (λ − ln Φ) sin φ − Φ cot φ
]

(D.9)

−
uφ
R
∂uR

∂φ
= −

κ2
c

R

[
(λ − ln Φ)2 sin2 φ + (λ − ln Φ) cos φ

−Φ (λ − ln Φ) sin φ − Φ cot φ
]

(D.10)

∂p
∂R

=
κ2

c

R
[
Φ (λ − ln Φ) sin φ + Φ cot φ

− (λ − ln Φ)2 sin2 φ − (λ − ln Φ) cos φ
]

(D.11)
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∂p
∂R

=
κ2

c

R
[
(λ − ln Φ) + Φ cot φ

− (λ − ln Φ)2 sin2 φ − 2 (λ − ln Φ) cos φ
]

(D.12)

∂p
∂R

=
κ2

c

R
[
(λ − ln Φ) + Φ cot φ − (λ − ln Φ)2

(
1 − cos2 φ

)
−2 (λ − ln Φ) cos φ

]
(D.13)

∂p
∂R

=
κ2

c

R
[
(λ − ln Φ) + Φ cot φ − (λ − ln Φ)2

+ (λ − ln Φ)2 cos2 φ − 2 (λ − ln Φ) cos φ
]

(D.14)

[
(λ − ln Φ) cos φ − 1

]2
= (λ − ln Φ)2 cos2 φ − 2 (λ − ln Φ) cos φ + 1 (D.15)

∂p
∂R

=
κ2

c

R
{
(λ − ln Φ) + Φ cot φ − (λ − ln Φ)2

+
[
(λ − ln Φ) cos φ − 1

]2
− 1

}
(D.16)

− [(λ − ln Φ) − 1]2 = − (λ − ln Φ)2 + 2 (λ − ln Φ) − 1 (D.17)
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∂p
∂R

=
κ2

c

R
{ [

(λ − ln Φ) cos φ − 1
]2

+ Φ cot φ

− (λ − ln Φ) − [(λ − ln Φ) − 1]2
}

(D.18)

∂p
∂φ

= −uφ
∂uφ
∂φ
− uRuφ + u2

θ cot φ (D.19)

∂uφ
∂φ

= −κc
∂

∂φ

[
(λ − ln Φ) sin φ − Φ

]
(D.20)

from Equation Eq. (C.6)

∂uφ
∂φ

= −κc
[
(λ − ln Φ) cos φ − Φ csc φ − 1

]
(D.21)

uφ
∂uφ
∂φ

= κ2
c
[
(λ − ln Φ) cos φ − Φ csc φ − 1

] [
(λ − ln Φ) sin φ − Φ

]
(D.22)

uφ
∂uφ
∂φ

= κ2
c

[
(λ − ln Φ)2 sin φ cos φ − Φ (λ − ln Φ) cos φ

− (λ − ln Φ) sin φ + Φ − Φ (λ − ln Φ) + Φ2 csc φ
]

(D.23)

−uφ
∂uφ
∂φ

= −κ2
c

[
(λ − ln Φ)2 sin φ cos φ − Φ (λ − ln Φ) cos φ

− (λ − ln Φ) sin φ + Φ − Φ (λ − ln Φ) + Φ2 csc φ
]

(D.24)

uφuR = −κ2
c
[
(λ − ln Φ) cos φ − 1

] [
(λ − ln Φ) sin φ − Φ

]
(D.25)
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uφuR = −κ2
c

[
(λ − ln Φ)2 sin φ cos φ

−Φ (λ − ln Φ) cos φ − (λ − ln Φ) sin φ + Φ
]

(D.26)

−uφuR = κ2
c

[
(λ − ln Φ)2 sin φ cos φ

−Φ (λ − ln Φ) cos φ − (λ − ln Φ) sin φ + Φ
]

(D.27)

−uφuR − uφ
∂uφ
∂φ

= κ2
c

[
(λ − ln Φ)2 sin φ cos φ

−Φ (λ − ln Φ) cos φ − (λ − ln Φ) sin φ + Φ
]

− κ2
c

[
(λ − ln Φ)2 sin φ cos φ − Φ (λ − ln Φ) cos φ

− (λ − ln Φ) sin φ + Φ − Φ (λ − ln Φ) + Φ2 csc φ
]

(D.28)

− uφuR − uφ
∂uφ
∂φ

= κ2
c

[
Φ (λ − ln Φ) − Φ2 csc φ

]
(D.29)

u2
θ =

1
R2 sin2 φ

[
1 + (κcR sin φ)2 (λ − ln Φ − Φ csc φ)

]
(D.30)

u2
θ cot φ =

cot φ
R2 sin2 φ

+ κ2
c cot φ (λ − ln Φ − Φ csc φ) (D.31)

u2
θ cot φ − uφuR − uφ

∂uφ
∂φ

=
cot φ

R2 sin2 φ
+ κ2

c

[
Φ (λ − ln Φ) − Φ2 csc φ

+ (λ − ln Φ) cot φ − Φ csc φ cot φ
]

(D.32)
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∂p
∂φ

=
1

R2 sin2 φ

{
cot φ + (κcR sin φ)2

[
Φ (λ − ln Φ) − Φ2 csc φ

+ (λ − ln Φ) cot φ − Φ csc φ cot φ
]}

(D.33)

∂p
∂φ

=
1

R2 sin2 φ
{cot φ + (κcR sin φ)2 [

(csc φ − cot φ) (λ − ln Φ)

−Φ csc φ (csc φ − cot φ) + (λ − ln Φ) cot φ − Φ csc φ cot φ
]}

(D.34)

∂p
∂φ

=
1

R2 sin2 φ

{
cot φ + (κcR sin φ)2

[
(λ − ln Φ) csc φ − Φ csc2 φ

]}
(D.35)

∂p
∂r

= −ur
∂ur

∂r
− uz

∂ur

∂z
+

u2
θ

r
(D.36)

∂ur

∂r
= −κc

∂

∂r


√

1 +
z2

r2 −
z
r

 (D.37)

from Equations (C.79–C.84)

∂

∂r


√

1 +
z2

r2 −
z
r

 = −
z2

r3

√
1 +

z2

r2

+
z
r2 (D.38)

ur
∂ur

∂r
= κ2

c

−
z2

r3

√
1 +

z2

r2

+
z
r2



√

1 +
z2

r2 −
z
r

 (D.39)
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−
z2

r3

√
1 +

z2

r2

+
z
r2



√

1 +
z2

r2 −
z
r



= −
z2

r3 +
z3

r4

√
1 +

z2

r2

+

z

√
1 +

z2

r2

r2 −
z2

r3 (D.40)

− 2
z2

r3 +
z3

r4

√
1 +

z2

r2

+

z

√
1 +

z2

r2

r2 =

−2z2r

√
1 +

z2

r2 + z3 + zr2

(
1 +

z2

r2

)
r4

√
1 +

z2

r2

(D.41)

− ur
∂ur

∂r
= −κ2

c


−2z2r

√
1 +

z2

r2 + z3 + zr2

(
1 +

z2

r2

)
r4

√
1 +

z2

r2

 (D.42)

− ur
∂ur

∂r
= − (κcr)2


−2

z2

r

√
1 +

z2

r2 +
z3

r2 + z
(
1 +

z2

r2

)
r4

√
1 +

z2

r2

 (D.43)

− ur
∂ur

∂r
= (κcr)2


2

z2

r

√
1 +

z2

r2 −
z3

r2 − z
(
1 +

z2

r2

)
r4

√
1 +

z2

r2

 (D.44)

∂ur

∂z
= −κc

∂

∂z


√

1 +
z2

r2 −
z
r

 (D.45)

from Equation Eq. (C.52)
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∂

∂z


√

1 +
z2

r2 −
z
r

 =

z
r2√

1 +
z2

r2

−
1
r

(D.46)

z
r2√

1 +
z2

r2

−
1
r

=

z − r

√
1 +

z2

r2

r2

√
1 +

z2

r2
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