
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2014

Stability, Erosion, and Morphology Considerations
for Sustainable Slope Design
Isaac Andres Jeldes Halty
University of Tennessee - Knoxville, ijeldes@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Jeldes Halty, Isaac Andres, "Stability, Erosion, and Morphology Considerations for Sustainable Slope Design. " PhD diss., University of
Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/2702

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Isaac Andres Jeldes Halty entitled "Stability, Erosion,
and Morphology Considerations for Sustainable Slope Design." I have examined the final electronic copy
of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Civil Engineering.

Eric C. Drumm, Major Professor

We have read this dissertation and recommend its acceptance:

Daniel Yoder, Richard Bennett, John Schwartz, Dayakar Penumadu

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



Stability, Erosion, and Morphology Considerations for Sustainable Slope 

Design 

 

 

 

 

 

 

 

A Dissertation Presented for the  

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

Isaac Andres Jeldes Halty 

May 2014 
 

 

  



ii 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2014 by Isaac A. Jeldes Halty 

All rights reserved. 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my wife Daniela and my parents, whom I love more than anything. 

  



iv 

 

Acknowledgements 

 

I would like to express my endless gratitude to my professor, Dr. Eric Drumm, for his enthusiastic 

supervision, guidance, support, and infinite patience during this Ph.D. research. In him, I have not 

only found a mentor, but also a good friend. I thank Dr. Daniel Yoder for his guidance and 

insightful thoughts in topics related to concave slopes and erosion. I extend my sincere gratitude 

to Dr. Richard Bennett for his valuable comments on the last chapter and for being an example of 

life and professionalism. I thank Dr. John Schwartz for his support during the first years of my 

Ph.D. journey and for his comments on the first two chapters of this manuscript. Finally, I would 

like to express my gratitude to Dr. Dayakar Penumadu, whose early observations were very 

beneficial for the overall scope of this work. 

 

My gratitude to my parents Miguel and Lia, and my brothers Luis and Carlos for their continuous 

encouragement through these years. Special thanks to Dan and Rosalie, for becoming part of our 

family, and letting us be part of theirs. Thanks to my friends Hans, Rima, Miguel, Danielle, Justin, 

Michaela, Fernando, and Emily for making this journey much more fun!  

 

Finally, my deepest gratitude to my dear wife Daniela. Her love and support during these years 

made this dreamed accomplishment a concrete reality. 

  



v 

 

Abstract 

 

The construction of more natural and sustainable earth slopes requires the consideration of erosion 

and runoff characteristics as an integral part of the design. These effects not only result in high 

costs for removal of sediment, but also a profound damage to the ecosystem. In this dissertation, 

innovative techniques are developed such that more natural appearing slopes can be designed to 

minimize sediment delivery, while meeting mechanical equilibrium requirements. This was 

accomplished by: a) examining the fundamental failure modes of slopes built with minimum 

compaction (FRA) to enhance quick establishment of forest, b) investigating the geomechanical 

and erosion stability of concave slopes, and c) developing design equations for a new type of 

inclined-face retaining structure, the Piling Framed Retaining Wall (PFRW), which in the limit is 

a confined slope. The analysis of several potential failures via Limit Equilibrium (LEM) and Finite 

Element (FEM) suggested that the governing failure of FRA slopes is shallow and well represented 

by infinite slope conditions, and laboratory and field data suggests that seasonal increase of 

stability due to matric suction is possible, while instability may occur under local seismicity. The 

investigation of the mechanical and erosion stability of concave slopes began with a mathematical 

definition of critical concave slopes at limiting equilibrium. Based on this, a mechanism to design 

concave slopes for a selected Factor of Safety (FS) was proposed. Results indicated that concave 

slopes can yield 15-40% less sediment than planar slopes of equal FS, and the stability is not 

compromised by errors in the construction. Concave slopes satisfying mechanical equilibrium are 

not necessarily in erosion equilibrium as observed in many natural landscapes. It was shown that 

when these two equilibrium conditions are met, the slopes become sustainable and a set of 

equations describing sustainable concave slopes was proposed. Finally, rational design equations 



vi 

 

for the innovative PFRW were developed based on numerous FEM analyses for different soil and 

geometry conditions. The equations provided a good prediction of the soil stresses measured on a 

PFRW built in Knoxville, TN. 
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Preface 

 

This dissertation comprises the assembly of six manuscripts, which at the present time, are at 

different stages of review and publication in various peer review journals. Each chapter 

corresponds to a unique article, where methods, results, conclusions, references and in some cases 

appendices are individually addressed. The first five chapters (articles) deal with geo-

environmental slope stability issues, where the main objective is to investigate, and finally provide, 

mechanisms for more natural and sustainable design of earth slopes. This research was partially 

funded by the Office of Surface Mining Reclamation and Enforcement, and was motivated from 

the growing need for environmental-friendly techniques for landform construction and sustainable 

land management. In these first five chapters efforts have been made to include surficial water 

erosion as a key variable in the slope design, and attempts have been made to integrate water 

erosion and slope stability, which are traditionally treated as separated sciences. Through these 

chapters, the reader will find topics ranging from theoretical development of equations to 

illustrative design examples, with the overall goal of providing practical tools that engineers can 

use in design. The last article, on the other hand, addresses a different stability topic related to an 

innovative retaining wall system comprising an inclined wall face, which in a practical sense can 

be seen as a confined slope. This research was funded by the Tennessee Department of 

Transportation, with the objective of creating a rational design methodology for this new type of 

wall, eliminating the need to conduct extensive numerical analyses for each wall to be constructed. 
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Chapter 1.  Introduction 
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Dissertation Overview 

The present dissertation is a collection of six manuscripts, each a single chapter, at different stages 

of review and publication in various peer review journals. The original contributions of this work 

are mostly centered on topics related to the broad area of slope stability, with efforts to integrate 

the traditionally separate areas of mechanical slope stability and surficial rain-driven water erosion. 

In this vein, chapters 2 and 3 addresses stability issues related to a new reclamation technique for 

rapid reforestation and reduction of soil loss, while chapters 4, 5 and 6 focus on understanding the 

role of the topography of concave contours--similar to those existing in nature--on the mechanical 

and erosion stability of slopes. Through these first five chapters, topics ranging from theoretical 

development of equations to illustrative design examples are offered with the overall goal of 

providing mechanisms for the design of more natural and sustainable earth slopes. The last chapter 

(chapter 7), on the other hand, addresses a different stability topic related to an innovative retaining 

wall system comprising an inclined face, which in a practical sense can be seen as a confined slope. 

In this section, equations to predict earth pressures and overturning moments are developed to 

support the creation of a rational design methodology, eliminating the need to conduct extensive 

numerical analyses for each wall to be constructed. 

 

Selected fundamental frameworks for mechanic and erosion soil modeling 

In soil mechanics, numerous constitutive laws defining failure have been proposed such that 

strength and deformation characteristics of soils can be modeled for engineering purposes. For 

frictional materials like soils, the Mohr-Coulomb (M-C) yield criterion arises as the “best known” 

fundamental law (Smith and Griffiths 2004) and it has been the most widely used model for soil 

shear strength prediction (Griffiths and Lane 1999, Salgado 2008). This constitutive model does 
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not consider the effects of intermediate principal stresses (Desai and Siriwardane 1984), and as a 

result, it takes the form of an irregular hexagonal cone in the principal stress space, whose 

mathematical representation in terms of principal stresses is (Potts and Zdravković 1999): 

    1 3 1 3

1 1
sin cos

2 2
f c          (1.1) 

where f is the failure function, 1 and 3 are the major and minor principal stresses,   is the 

internal friction angle, and c is the soil cohesion. From Eq. (1.1) it can be seen that the M-C model 

captures the behavior dependency on the mean normal stress that frictional materials such as soils 

exhibit, and it is based only on two laboratory determined parameters:  and c . Its simplicity and 

reliability makes the M-C constitutive model a suitable framework to study the mechanical 

behavior of earth slopes, and it has been used throughout the entire manuscript. A special emphasis 

on slopes with soils at critical equilibrium is given in chapters 4, 5 and 6, which is the fundamental 

assumption in the development of mechanically stable concave slopes (Jeldes et al. 2013) In this 

special case, the soil body is taken into a limiting state (or at the verge of flowing plastically) by 

making the function 0f  . In other words, the largest difference between the shear stresses and 

the shear strength must satisfy the following mathematical relationship (Sokolovskiĭ 1960): 

   1 3 1 3max  sin(2 ) sin ( 2 ) 0H             (1.2) 

Where   is the angle between the direction of the normal to the plane and the major principal 

direction, and H  is the tensile strength of the soil. The implications and limitations of the use of 

this constitutive framework are discussed throughout the manuscript when needed, always 

attempting to maintain a practical perspective in the discussion. 
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The Revised Universal Soil Loss Equation RUSLE2 (USDA-ARS 2008) is one of the most widely 

used erosion equations and is known for its effectiveness and simplicity in accounting for the 

critical effects controlling erosion (Tiwari et al. 2000). RUSLE2 relies on concrete empirical soil 

loss data to model the important processes involving soil erosion:  

 A R K LS C P      (1.3) 

where the predicted soil loss A is directly proportional to: the rainfall erosivity R quantifying the 

rainfall’s erosive potential; the soil erodibility K defining the soil’s susceptibility to that erosivity; 

the topographic factor LS representing slope length and steepness effects; the surface cover factor 

C; and the conservation practices factor P. Its simplicity and accuracy in predicting erosion make 

RUSLE2 an ideal and reliable framework for soil loss investigations involving more complex 

(non-planar) slope topographies, and it was used here to investigate the effects of mechanically 

stable concave profiles on soil loss (chapter 5) and also to investigate the morphology of slopes in 

erosion equilibrium (chapter 6). The limitations of RUSLE2 in the context of this work were 

identified and discussed, and the assumptions made to overcome these limitations were properly 

justified throughout these two chapters. 

 

The Low Compaction Grading Technique on steep slopes (chapters 2 and 3) 

Mine reclamation activities have traditionally incorporated compaction procedures to augment the 

strength of the reclaimed material and ensure stability of the restored slopes (Hoomehr et al. 2013, 

Jeldes et al. 2013, Jeldes et al. 2010). However, while compaction is important for strength and 

erosion resistance, it has negative impacts on tree survival and hampers reforestation efforts. The 

quick establishment of forest and ground cover is an important consideration for long-term erosion 

control, since vegetation absorbs raindrop impact, reduces flow energy by reducing runoff 
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velocity, increases soil infiltration, and increases soil resistance. A reclamation method that 

employs minimally compacted spoils to enhance native forest growth known as the Forest 

Reclamation Approach (FRA) is currently being promoted by the US Office of Surface Mining. 

The FRA method specifies the use of low compaction energy in the top 1.2 m to 1.5 m of the 

contour, which may be in conflict with general considerations for mechanical stability of steep 

slopes. In chapters 2 and 3, the stability of steep FRA slopes (steeper than 20 degrees) was 

investigated on three reclaimed coal mining sites in the Appalachian region of East Tennessee. 

These two chapters seek to answer the following research questions: a) what are the governing 

failure modes of steep reclaimed FRA slopes?, b) what are the key soil properties for proper FRA 

design?, c) considering that FRA comprises a plane of discontinuity parallel to the surface, are 

steep FRA slopes infinite slope candidates?, d) what are the implications of unsaturated mine spoils 

on the soil strength and how periodic changes in environmental conditions affect the stability of 

steep FRA slopes?, and e) what is the seismic response of these steep FRA slopes?. 

 

In chapter 2, the geotechnical properties of low compacted spoils with a large number of oversize 

particles were investigated. Through the analysis of several potential modes of failure via Limit 

Equilibrium (LEM) and Finite Element Method (FEM) analyses, a rational method to design and 

evaluate the stability of steep FRA slopes is suggested. In chapter 3, a set of theoretical equations 

were developed to investigate the implications of unsaturated soils and seismicity on the stability 

of steep FRA slopes. These equations, coupled with field and laboratory analyses, demonstrated 

the seasonal variation of stability due to matric suction, while seismic analyses illustrated the 

conditions under which instability might occur. The likely field conditions would suggest that the 

FRA has no negative impact on slope stability, and the benefits of faster forest establishment in 
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terms of reduced erosion and sediment delivery make the FRA very attractive for future 

reclamation work. 

 

The mechanical and erosional stability of concave slopes (chapters 4, 5 and 6) 

Under the FRA concept, the quick establishment of ground cover and forest is important to reduce 

the high initial erosion and sediment delivery on reclaimed and constructed slopes. The efforts in 

chapters 4, 5 and 6 were then directed to understand the role of topography on erosion rates and 

to investigate the role of non-planar contour shapes--similar to those existing in nature--on the 

mechanical and erosion stability of slopes. While constructed slopes are traditionally designed to 

be planar in cross section, in nature curvilinear slopes with concave shapes are naturally formed 

as a result of evolutionary processes leading towards a state of erosion and sediment transport 

equilibrium. The superiority of concave slopes in terms of mechanical stability and erosion 

resistance can be explained by the conceptual model developed by Schor and Gray (2007). 

Assuming that a planar slope of height H and angle   can be discretized into a series of horizontal 

layers with equal thickness (Fig. 1.1), where the strength properties (internal friction angle   and 

cohesion c ) and unit weight ( ) remain constant for the entire slope, the mechanical stability of 

each layer will be dependent upon the particular stress-strength state and the angle on inclination 

of each layer. With the acceleration of gravity acting vertically downwards, the vertical stresses at 

each point within the soil mass increases proportional to the depth. To bring each layer into the 

same degree of equilibrium or Factor of Safety (FS), the inclination of each layer must be adjusted; 

steeper slopes will be allowed in the upper layers where less overburden mass exists, while gentler 

slopes will be necessary in the lower layers. The result of this process is a concave profile, which  
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Fig. 1.1. Illustration of the superior mechanical and erosion resistances of concave slopes [adapted 

from Schor and Gray (2007)]. 
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provides a more uniform equilibrium state for the entire slope. On the other hand, surficial water 

erosion increases with slope length and slope angle. In a planar slope, water tractive forces will 

monotonically increase downslope, with higher energy in the lowest part of the contour. By 

gradually decreasing the steepness of each layer in the direction of the water flow, the increased 

erosion due to the increased slope length will be partially counteracted by the decreased erosion 

due to decreasing slope steepness, ultimately resulting in a concave slope with a minimized 

uniform erosion rate along the profile. 

 

Realizing that not all concave shapes will be mechanically stable, it is desirable to have a 

description of concave slopes that provide mechanical stability for given set of soil properties. In 

these chapters answers for the following research questions are sought: a) what is the critical 

concave profile for mechanical stability considerations as defined by the Mohr-Coulomb 

constitutive model?, b) how can concave slopes be described such that they provide a desired 

degree of stability (or FS) for given soil properties?, c) how effective are these mechanically 

optimized concave slopes in reducing sediment delivery?, d) how does the accuracy of 

construction affects the mechanical stability of concave slopes?, e) what is the equilibrium concave 

profile for erosion considerations?, f) how do erosion equilibrium concave slopes compare with 

critical concave slopes defined for mechanical stability?, and g) can slopes be constructed to 

achieve both mechanical and erosional stability? 

 

In chapter 4, an approximate analytical solution that defines the geometry of critical concave 

slopes (FS ≈ 1) for frictional soils with self-weight (  > 0, c  > 0,   > 0) was developed, based 

on the slip line field method of Sokolovskiĭ (1960). The fundamentals behind Sokolovskiĭ’s theory 
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were revisited, and the physical and mathematical derivations preceding the approximate solution 

are presented in detail. The approximate solution was validated using LEM and FEM analyses. 

Chapter 5 builds on the previous chapter to provide a practical design approach such that 

geotechnical engineers will consider non-planar shapes, which provide a more natural appearance 

in addition to offering improved erosion resistance. This was accomplished by creating a 

mechanism to design slopes for a given FS, and suggesting a method for both long-term and short-

term stability investigations for concave slopes. The difference in soil loss (erosion) between 

planar and concave slopes satisfying the same degree of mechanical stability was also investigated, 

along with analyses to determine how sensitive concave slopes are to construction inaccuracies. 

An illustrative example was provided to demonstrate the design process and the benefits of 

meeting mass stability requirements while at the same time reducing surficial erosion and yielding 

a more natural looking slope. 

 

While mechanically stable, the proposed concave slopes in chapters 4 and 5 may not be in 

equilibrium from a water erosion perspective. Evidence exists that natural fluvial systems, seeking 

erosion and sediment transport equilibrium, may adjust the geometry in order to achieve a concave 

steady-state form that will be somewhat unchanged over time. In chapter 6, the concept of steady-

state landforms was explored and a conceptual model of changes in slope morphology toward a 

concave erosion equilibrium shape was described. Based on the assumptions inherent to the 

RUSLE2 erosion model, concave profiles in water erosion equilibrium were identified and 

described, and an approach was proposed to discern between long-term mechanically stable and 

unstable erosion equilibrium shapes for any given combination of soil stresses and strength. A 

definition of the approximate limiting erosion rate at which equilibrium erosion shapes become 
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mechanically stable and thus “sustainable” is explored, and a mathematical expression to obtain 

this limiting erosion rate is offered as a function of the Mohr-Coulomb parameters. 

 

The Piling Framed Concrete Retaining Wall (chapter 7) 

This last chapter addresses a different stability topic related to an innovative retaining wall system 

called The Piling Framed Retaining Wall (PFRW). This wall system comprises an inclined wall 

face, which in a practical sense can be seen as a confined slope problem. The PFRW is ideal for 

applications where limited right-of-way (ROW) is available, or where adjacent structures and 

underground utilities limit the use of tie-back anchor systems. Since the soil pressures acting on 

the inclined wall face of this new system are not fully understood, a rational design method for 

this wall has not been developed. This chapter seeks answers to the following questions: a) what 

is the magnitude and distribution of the earth pressures on the face of the PFRW according to the 

associated mode of deformation?, b) how these earth pressures differ from theoretical predictions?, 

and c) how the earth pressures and overturning moments of PFRW’s vary with respect to changes 

in wall geometry and soil properties?. 

 

In this chapter, the soil pressures on the PFRW for various wall face inclinations, wall heights, and 

backfill slopes are investigated via FEM analyses, and results compared with theoretical 

expressions available in the literature. Simplified equations are developed from the FEM analyses 

to facilitate the design and stability calculations of PFRWs without the need to create geometric-

specific finite element models. In addition, an approximate design approach based on the well-

known Coulomb earth pressure theory is demonstrated. The earth pressures predicted by the design 
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equations and the approximate design approach were compared with field measured soil stresses 

on a PFRW built in Knoxville, TN. 
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Abstract 

Since the Surface Mining and Control Reclamation Act of 1977, U.S. coal mining companies have 

been required by law to restore the approximate ground contours that existed prior to mining. To 

ensure mass stability and limit erosion, the reclaimed materials have traditionally been placed with 

significant compaction energy. The Forest Reclamation Approach (FRA) is a relatively new 

approach that has been successfully used to facilitate the fast establishment of native healthy 

forests. The FRA method specifies the use of low compaction energy in the top 1.2 m to 1.5 m of 

the contour, which may be in conflict with general considerations for mechanical slope stability. 

Although successful for reforestation, the stability of FRA slopes has not been fully investigated 

and a rational stability method has not been identified. Further, a mechanics-based analysis is 

limited due to the significant amount of oversize particles which makes the sampling and 

measurement of soil strength properties difficult. To investigate the stability of steep FRA slopes 

(steeper than 20 degrees), three reclaimed coal mining sites in the Appalachian region of East 

Tennessee were investigated. The stability was evaluated by several methods to identify the 

predominant failure modes. The infinite slope method, coupled with the estimation of the shear 

strength from field observations, was shown to provide a rational mean to evaluate the stability of 
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FRA slopes. The analysis results suggest that the low compaction of the surface materials may not 

compromise the long-term stability for the sites and material properties investigated.  

 

Introduction 

A reclamation method that employs minimally compacted spoils to enhance native forest growth, 

known as the Forest Reclamation Approach (FRA) is currently being promoted by the US Office 

of Surface Mining (OSM) (Angel et al. 2007, Sweigard et al. 2007). Since the Surface Mining and 

Control Reclamation Act of 1977 (SMCRA), coal companies in the U.S.A. have been required by 

law to restore the land to its pre-mined contours (USDoI 1977). Reclamation activities have 

traditionally incorporated compaction procedures to augment the strength of the reclaimed material 

and ensure stability of the restored slopes. However, while compaction is important for strength 

and erosion resistance, it diminishes soil porosity which restricts root penetration and reduces 

water infiltration with negative impacts on tree survival and grass reestablishment (Angel et al. 

2007, Sweigard et al. 2007). FRA employs a low compaction effort in the uppermost 1.2 m to 1.5 

m. The low-compaction grading technique has proven to be successful in encouraging tree growth, 

and demonstrates the potential for establishing healthy native forests on reclaimed mine lands 

(Angel et al. 2007, Barton et al. 2007). However, with the exception of Torbert and Burger (1994), 

most of these demonstrations were conducted on relatively flat lying terrain where stability issues 

were negligible. The stability of steep FRA slopes, defined as steeper than 20 degrees by the 

USDoI (2009), and the possible modes of failure have not been investigated and a rational stability 

analysis method has not been suggested. 
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Slope stability analysis requires the knowledge of soil properties in terms of density and strength; 

characteristics not easily determined for reclaimed mine spoil due to the significant amount of 

oversize material (> 0.3 m). The in situ density of soils consisting of large rock particles can be 

difficult to measure, which makes it difficult to quantify and awkward to provide proper 

construction quality control. Sweigard et al. (2007) have suggested correlations between dry bulk 

density and shovel penetration; though practical for reforestation efforts they are not appropriate 

for the evaluation of slope stability. Furthermore, because of the difficulties associated with 

sampling and testing due to the oversize particles, the shear strength properties are not typically 

measured in laboratory or field tests. For mine reclamation projects, the design is typically 

completed well in advance of mining activities and usually based on experience using assumed or 

traditional regional soil properties (Bell et al. 1989). Naturally, there is uncertainty associated with 

this practice, especially if low compaction is employed on steep reclaimed slopes. For example, in 

Kentucky the majority of slope failures in abandoned mine lands have occurred via translational 

and rotational failure mechanisms through the loose material placed prior to the SMCRA 

(Iannacchione and Vallejo 1995). The lack of proper compaction is a known cause of failure in 

constructed slopes, with the stability becoming worse under intense rainstorms (Chen et al. 2004). 

The failure of Sau Mau Ping slopes in Hong Kong is one dramatic example of the danger associated 

with poorly compacted slopes and lack of proper engineering design (Abramson 1996, Hong Kong 

Geotechnical Engineering Office 2007). 

 

The objectives of this paper are to 1) characterize the geotechnical properties of low compacted 

spoils on steep slopes constructed according to the FRA, and 2) investigate the likely failure 

mechanisms associated to steep slopes reclaimed using the FRA. This is accomplished using three 
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reclaimed field sites at which the material characteristics are evaluated, and the results will be used 

to suggest a practical method to estimate the shear strength and evaluate the stability of slopes 

constructed using the low compaction grading technique. 

 

Methods 

Location of field sites 

To investigate the potential effects on stability resulting from the implementation of the low 

compaction grading technique, three steep FRA slopes were studied. The three sites, referred to 

here by the name of the initial coal operator (Premium, National and Mountainside), are located in 

northeastern Tennessee, with Premium located in Anderson County, National in Campbell County 

and Mountainside located in Claiborne County (Fig. 2.1). Each of the mine operators played an 

instrumental role in the development of the study sites. Each site was divided into four different 

plots which while not discussed here, were instrumented in order to concurrently investigate the 

runoff hydrology and sediment yield on the FRA slopes (Hoomehr et al. 2013). Fig. 2.2 shows the 

National site during construction of the study plots. 

 

Site construction and reclamation process 

At each of the three sites in this study, the construction procedure followed the contour haulback 

method (Sweigard and Kumar 2010), where a ramp is constructed on the contour bench and spoil 

is hauled up the ramp and dumped over the edge. The sequence of the construction process can be 

divided into four major steps (Sweigard et al. 2007) depicted schematically in Fig. 2.3: a) 

placement and compaction of the materials for the primary backfill core using traditional practices, 
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Fig. 2.1. Location of field sites in northeastern Tennessee, referred to as Premium, National, and 

Mountainside. 

 

 

Fig. 2.2. National site after the FRA reclamation process and during the construction of the study 

plots. 
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Fig. 2.3. Depiction of the reclamation process according to FRA. 
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b) dumping of the soil that will constitute the loose surface layer (1.2 m-1.5 m thick), c) grading 

of the loose soil layer with the lightest equipment available using the fewest passes possible, and 

d) reforestation. The three research sites presented a very rough soil surface after the final grading, 

which is consistent with the FRA recommendations for successful reforestation (Sweigard et al. 

2007). However, because the final layer at all three sites often included boulder-sized material, 

significant depressions and large rocks were left on the surface of the slope which is a deviation 

of Sweigard’s recommendations for an ideal finished surface.  

 

Geotechnical characterization 

The investigation proceeded with the characterization of the research sites and the analysis of their 

mechanical stability. The field characterization of the mine spoil included: a) determination of the 

site geometry; b) particle size analysis, index tests, and classification of the materials; c) 

determination of unit weight; and d) estimation of the Mohr-Coulomb (M-C) shear strength 

parameters. 

 

Geometry 

The geometric characteristics of the research sites were determined via a series of TrimbleTM total 

station topographical surveys. The purpose of these surveys was not only to obtain a more accurate 

estimation of the slope angles, but also to gather data to geo-reference the instrumented sites 

allowing an investigation of the spatial variation of material properties. 
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Particle size analyses, index tests, and classification of reclaimed materials 

Four soil samples of 0.02 m3 each were randomly taken across the slope at each site for particle 

size analyses, index tests and classification. All samples were collected from a depth of at least 30 

cm below the slope surface to a) avoid samples with fewer fines due to erosion armoring and b) 

avoid surficial soils affected by changes in fabric due to weathering. Particle size analysis (grain 

size distribution and hydrometer) and Atterberg limits tests were conducted in general accordance 

to ASTM D422-07 and ASTM D4318–10 respectively, and classification of the materials in 

general accordance to the Unified Soil Classification System (USCS), ASTM D2487-10. Visual 

inspection suggested that the materials may contain a large amount of agglomerated fines in the 

form of large particles, and therefore, traditional dry particle size analysis would indicate a larger 

amount of coarse material than really exists. This issue was investigated at all three sites by 

allowing soil samples to soak in water for 14 days. Very few aggregated fines were found at the 

Premium and National soils, but significant aggregated fines at Mountainside. For this reason, a 

wet preparation of the Mountainside samples was conducted in general accordance to ASTM 

D2217-04 before conducting the particle size analysis and index tests. The amount of oversize 

material (> 0.3 m) was estimated on a surface basis. This was accomplished by dividing the plot 

into multiple squares of 1 m side length; a photograph of each square was used to estimate the 

percentage of oversize particles per surface area. 

 

Unit weight 

An extensive data collection of the unit weight of the loose surface layer at each of the three sites 

was conducted using a Troxler 3411-B Nuclear Density Gage (NDG), in general accordance to the 

ASTM D6938-10. The measurements were obtained shortly after each slope was constructed. 
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During the data collection, periodic calibration of the NDG device was conducted at the beginning 

and middle of each work day, employing the calibration block provided by the manufacturer. A 

randomized systematic sampling technique (Sweigard et al. 2007) was used at one plot per site to 

reduce data tendency or bias in the measurements. The plot was divided into multiple squares of  

3 m side length, where single measurements of bulk dry unit weight (
d ), wet unit weight (

T ) 

and moisture content ( w ) were taken at random locations inside the squares (Fig. 2.4). The soil 

surface was cautiously carved to obtain a planar surface before placing the nuclear gauge device, 

avoiding air interchange between the gauge base and the soil surface. Then, a hole perpendicular 

to the slope surface was driven inside each sub-area and the source rod inserted to obtain the 

readings at 300 mm (which is the maximum length of the source rod of the Nuclear Density 

Gauge). From previous observations of the materials it was concluded that the amount of 

hydrocarbons present at each site was very small and unlikely to affect the NDG readings. 

 

Shear strength parameters 

Slope stability analysis for long-term conditions assumes that positive excess pore water pressure 

dissipates during the construction or loading period, and thus, requires the estimation of the drained 

or effective shear strength parameters. The shear strength of soil is typically described using the 

Mohr-Coulomb (M-C) yield or failure criterion: 

 

 tann nc     (2.1) 
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Fig. 2.4. Randomized systematic sampling technique; a) area of interest subdivided into small sub-

areas (Sweigard et al. 2007c), where small circles represent the random measurement locations; b) 

application of this technique for NDG measurements at the National site. 

  



25 

 

where 
n  and 

n  are the normal and shear stresses acting on the failure plane within the soil body, 

and   and c  are the internal friction angle and cohesion. Outside of mine reclamation, the shear 

strength material properties   and c  are often measured in laboratory or obtained through 

correlations with in situ tests. However, due to the large particles present in mine spoils, traditional 

tests are very difficult to conduct. The current practice in mine reclamation is usually based on 

experience or assumed values of   and c . As discussed earlier, the FRA technique consists on 

having a 1.2 to 1.5 m of loose soil at the uppermost part of the contour, above a well compacted 

and stable core. Thus, this low density/low strength zone should be evaluated for stability. Since 

the angle of repose is the “steepest stable slope for loose packed granular material and represents 

the angle of internal friction at its loosest state” (Holtz and Kovacs 1981), it is suggested as a good 

representation of the internal friction angle of loose soil layer in a FRA slope. The use of observed 

angles of repose offers the additional advantage that the overall strength of the mass, including the 

contribution of the oversize particles, is captured. Angles of repose were obtained by observing 

the placement of spoils piles, and measuring the angle at which they hold in place. Because these 

tests were conducted during reclamation activities, the angle was measured via photographs of the 

fresh piles using a hand held level, for safety reasons. The level helped to ensure that the picture 

was taken parallel to the horizon. With a photo editing software the angles of the piles were 

measured (Fig. 2.5). Regarding the strength properties of the stronger core material, stability 

analysis will later show that the most critical condition for stability is insensitive to the selected 

strength values of the core.  
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Fig. 2.5. Typical field determination of the angle of repose at National Site (White et al. 2009). 

Camera placed on a level and photo taken of material in loose state. Note the large number of 

oversize (> 0.3 m) particles in the reclaimed material. 
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On the other hand, short-term stability analyses (undrained soil conditions) are often conducted to 

characterize the behavior of the soil during and immediately after construction, where the loading 

occurs much faster than the rate of dissipation of positive excess pore water pressure. However, it 

is assumed that the coarse mine spoil material will not develop significant excess positive pore 

water pressure under typical loadings (Duncan and Wright 2005); thus, a drained response is 

expected. This assumption is supported by the grain size distribution of the materials and relatively 

high void ratios obtained for each site which are reported in the results section. Furthermore, short-

term stability is not considered to be important in the reclamation of mine slopes, since any short-

term failure would have minimum consequences and would be repaired during construction or 

routine maintenance. 

 

Static long-term slope stability analyses 

The analyses of the mechanical stability focused on long-term analyses of the primary failure 

modes that are likely to be experienced by FRA slopes: a) shallow or local failure modes within 

the loose surface layer and b) global or deep rotational failure modes of the overall soil mass. Limit 

Equilibrium Methods (LEM) and the Finite Element Method (FEM) were employed in the analyses 

assuming 2-D plain strain conditions. LEM analyses were computed using Slide 6.0 (Rocscience 

Inc. 2011) with 10,000 critical surfaces analyzed. The FEM analyses were computed using Phase2 

(Rocscience Inc. 2011) employing an elastic perfectly plastic stress-strain behavior and the M-C 

yield criterion with a non-associated flow rule (zero dilatancy angle) to avoid over-prediction of 

dilation and failure load for purely frictional materials (Griffiths and Lane 1999). Since the 

estimation of the factor of safety (FS) has been shown to be not significantly affected by the value 

of  the elastic constants E (Young’s modulus) and   (Poisson’s ratio) used in the FEM solution 
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(Cheng et al. 2007, Griffiths and Lane 1999), nominal values of E = 105 kPa and   = 0.3 were 

assumed here for the surface and core materials. The model was created with 6-noded triangular 

elements, with a maximum of 500 iterations solved by Gaussian elimination. Because the geometry 

and material properties from all sites are reasonably similar, those from Mountainside (  = 28˚ 

from the horizontal and H = 21 m height) will be used here to explore the various failure modes. 

These values are representative of all three sites and many steep slopes in the southern Appalachian 

coal fields. The thickness of the low-strength layer ( z ) was assumed to be 1.5 m. 

 

Shallow stability within the low strength surface layer 

A shallow failure mode was investigated by assuming that the core was significantly stronger than 

the surface layer. The methods used were: a) LEM restricting the analyses to the shallow surface 

layer via the non-circular Janbu’s method and a search block feature, b) FEM and the shear strength 

reduction method (Cheng et al. 2007, Griffiths and Lane 1999), and c) the infinite slope equation 

for cohesionless soils without seepage ( FS tan / tan  ) and seepage ( FS 0.5 tan / tan  ). The 

infinite slope equation idealizes the surface as an infinite plane with the failure mechanism running 

parallel to the surface (Skempton and Delory 1957) and it is appropriate when the ratio of depth to 

length of the sliding surface is small. The geometry of the reclaimed mine slopes constructed 

according to the FRA is ideally suited for investigation by the infinite slope method.  

 

Deep rotational stability of the overall soil mass 

Because the strength of the compacted core was not known, the deep rotational failure mode was 

investigated by performing a series of analyses where the strength of the loose surface material 
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was held constant ( =38˚, c = 0) while the internal friction angle of the core was increased. The 

analyses started with a homogeneous slope with the properties of the weak, loose surface layer 

analyzed via LEM (the circular Simplified Bishop’s method) and FEM. Then, the shear strength 

of the core was increased such that the ratio tan / tancore loose   was equal to 1.1, 1.2, 1.3, and 1.4   

( core  is the friction angle of the core material and loose  is the friction angle of the loose surface 

layer). 

 

Results and Discussion 

Geotechnical characterization of research sites 

Geometry 

The geometric information of the three sites obtained from the topographical survey is summarized 

in Table 2.1. Preliminary information of the slopes angles via a Suunto PM-5/360PC mechanical 

inclinometer reported angles between 26 and 30 degrees at Premium site, 20 and 22 degrees at 

National site, and 28 and 29 degrees at Mountainside site (White et al. 2009). These angles, 

collected shortly after the end of the reclamation process, coincide with the topographic 

information gathered 15 months later, and suggest no changes in the slope morphology and no 

slope failures during the study period. 

 

Particle size analysis, index tests, and classification of reclaimed materials 

Results from the soil analyses are reported in Table 2.2. The grain size distribution was conducted 

on material smaller than 51 mm (2 in. sieve), while Atterberg limits were determined on material 

smaller than 0.42 mm (No. 40 sieve). According to the USCS, for all the research sites the material  
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Table 2.1 Average slope length, width and inclination angle for the four plots at the Premium, 

National and Mountainside sites 

Site 

Average 

slope 

angle, β 

(degrees) 

Average 

slope 

length 

(m) 

Average slope 

width  

(m) 

Top Bottom 

Premium 28 32.2 28.1 25.0 

National 20 48.4 22.4 25.4 

Mountainside 28 45.4 23.6 23.1 

 

 

 

 

Table 2.2 Mean values of Liquid Limit, Plastic Index, soil texture and soil classification (USCS) 

Sites 

Gravel 

particles 

51 mm – 

4.75 mm 

(%) 

Sand 

Particles 

4.75 mm - 

0.075 mm 

 (%) 

Fines 

< 0.075 mm 

 (%) 

Clay 

particles  

< 2 μm   

(%) 

Liquid 

Limit  

(LL) 

Plastic 

Index  

(PI) 

Soil 

classification 

(USCS) 

Premium 59 28 13 6 29 13 GC to GP-GC 

National 52 28 20 10 27 14 GC 

Mountainside 37 22 41 19 32 15 GC 
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classify as clayey gravel (GC) with the exception of one plot at the Premium site that classifies as 

poorly graded clayey gravel (GP-GC) due to slightly less material finer than the number 200 sieve. 

Regarding oversize particles, it was estimated that material larger than 300 mm occupies 0 to 25% 

of 1 m2 at Premium site, 0 to 10% of 1 m2 at National site, and 5 to 40% of 1 m2 at Mountainside 

site. 

 

Unit weight 

Results of the unit weight measurements were as follows: the maximum and minimum measured 

d  were 18.8 and 13.0 kN/m3 at Premium site, 21.4 and 14.6 kN/m3 at National site, and 22.8 and 

14.9 kN/m3 at Mountainside site. Complementary results from statistical analyses are presented in 

Table 2.3. Field measures of density at a similar mine site in Kentucky (Sweigard et al. 2011) 

indicated similar variations as those found at Premium and National. The largest standard 

deviations (S.D.) were observed at Mountainside, which is consistent with the largest range of unit 

weights, and the largest amount of fines and observed number of oversize particles. At all sites, 

the spatial variation of unit weight reflects the large range of particle sizes in these reclaimed 

materials. A single unit weight measurement has a limited ability to represent the state of body 

forces acting on the complete FRA slope, and thus, mean unit weights with the probable upper and 

lower bounds (confidence and tolerance intervals) are desired for the mine material 

characterization. While confidence intervals (C.I.) provide an upper and lower bound of the true 

mean found at the constructed sites, tolerance intervals (T.I.) provide information of the probable 

future range of unit weights that each site will have on average. In any case, as discussed later, the 

determination of the unit weight for static long-term conditions may be of minor concern, but 

necessary for static unsaturated and seismic stability analyses. 
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Table 2.3 Means, standard deviations, 95% confidence intervals (C.I.), and 90% tolerance 

intervals (T.I) (80% coverage) for wet and dry unit weights for Premium, National and 

Mountainside sites 

    95% C.I. for the Mean 90%/0.8 T.I. for the Mean 

Sites 
Unit 

Weight 
Mean 
kN/m3 

S.D. 
kN/m3 

Lower,  

kN/m3 
Upper, 

 kN/m3 
Lower, 

kN/m3 
Upper, 

kN/m3 

Premium 
Dry 16.2 1.3 15.8 16.5 14.2 18.1 

Wet 18.5 1.3 18.2 18.8 16.6 20.4 

National 
Dry 18.5 1.0 18.3 18.7 17.2 19.9 

Wet 20.3 1.0 20.1 20.5 18.9 21.7 

Mountainside 
Dry 18.6 2.2 18.1 19.1 15.5 21.7 

Wet 20.4 2.2 19.9 20.9 17.2 23.6 
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Water and sand cone replacement tests were previously conducted to determine bulk unit weights 

at random locations on the four plots at each site (White et al. 2009). A comparison of the results 

indicates that the NDG device gives on average about 25% higher average unit weights than 

replacement methods at Premium site, 14% at National site and 21% at Mountainside. Since both 

replacement methods involved the removal of small samples, they did not take into account the 

effects of large rock fragments that are randomly embedded in the loose surface soil layer. On the 

other hand, the NDG calculates unit weights based on the velocity travel of gamma rays between 

the source and the detector, and any denser material that appears on the travel path will be counted 

in the measurement. In this regard, the collection of a sufficient amount of NDG readings will 

better represent the wide range of in-place density and provides a more representative average unit 

weight for stress analyses. Replacement methods may be preferable for the calculation of void 

ratio and soil porosity due to better representation of the soil matrix. The average void ratio of the 

loose surface layer calculated via replacement methods was 1.0 at Premium, 0.6 at National and 

0.7 at Mountainside. The largest void ratio was calculated for the soils found at Premium, which 

is consistent with the lowest NDG unit weight measured. Overall, relatively large void ratios were 

obtained for all three sites, which is consistent with the FRA requirements for healthy tree growth. 

 

Shear strength parameters 

The angle of repose of the looser soil layer was found to range between 37 and 39 degrees at 

Premium and Mountainside, and between 36 and 38 degrees at National site. Zero cohesion is 

usually employed for long-term analysis on coarse granular soils (Holtz and Kovacs 1981, Lambe 

and Whitman 1969) and normally consolidated fine soils (Skempton 1964), and would be 

appropriate for reclaimed materials receiving minimum compaction effort. While even a small 
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amount of compaction will increase the density and strength of the soil, the angle of repose is a 

conservative estimate of the friction angle. Similar values of   and c  for loose spoils in the 

Appalachian region were reported by Sweigard et al. (2011), while similar values for reclaimed 

spoils outside the Appalachian were found in the literature (Gutierrez et al. 2008, Kasmer and 

Ulusay 2006, Stormont and Farfan 2005, Sweigard et al. 2011, Ulusay et al. 1995) as summarized 

in Table 2.4. 

 

Static long-term slope stability analyses 

Shallow stability within the low strength surface layer 

Results from the limit equilibrium, finite element, and infinite slope analyses are summarized in 

Table 2.5. From a practical perspective, all the analyses yielded very similar FS’s (approximately 

1.47), implying that the shear strength along the most critical slip surface is about 47% greater 

than that required to maintain equilibrium in the long-term. For all cases, the most critical failure 

mechanism is shallow and is consistent with the assumed failure mechanism in the infinite slope 

method. Fig. 2.6 shows the FEM model of the shallow failure mode with a section of the slope 

enlarged (the 1.5 m thick surface layer is small with respect to the size of the model and may not 

be clearly distinguished in the full model). It also shows nodal displacement vectors. Larger strains 

are observed at the interface of the weak surface and core materials, with the displacement vectors 

acting parallel to the surface suggesting a planar failure mechanism. The obtained long-term FS’s 

are valid for drained conditions in the absence of seepage forces due to transient flow. However, 

since the occurrence of downslope water flow through the complete thickness of the loose layer is 

highly unlikely, this condition represents a lower bound or worst case value for the stability of 

FRA, and would reduce the FS by a factor of 2. 
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Table 2.4 Summary of internal friction angle and cohesion for reclaimed mine materials 

Author 

Origin of 

Material 

Tested 

Type of Test 

Sample 

Dimensions, 

mm 

Internal 

friction angle 

 , Degrees 

Cohesion c , 

kN/m2 

Ulusay et al. 

(1995) 

Limestone, 

Claystone and 

Marl 

(Turkey) 

In situ SPT Test N/A 31-38 N/A 

Ulusay et al. 

(1995). 

Limestone, 

Claystone and 

Marl 

(Turkey) 

Direct Shear 

Test 
N/A 

34 (peak) 

33 (residual) 

12  (peak) 

9 (residual) 

Ulusay et al. 

(1995) 

Limestone, 

Claystone and 

Marl 

(Turkey) 

Triaxial (CD) 

Test 

Diameter= 191 

Height = 382 
23-35 0 - 10 

Stormont and 

Farfan (2005) 

N/A 

(San Juan, 

Colorado) 

Direct Shear 

Test (Large 

Laboratory 

Box) 

Length = 762 

Width = 762 

Height = 457 

37 5 

Gutierrez et al. 

(2008) 

N/A 

(Northern New 

Mexico) 

Direct Shear 

Test 

Length = 51 

Width = 51 

Height = N/A 

42-47 (peak) 

37-41 (residual) 
0 

Kasmer and 

Ulusay (2006) 

Limestone 

and marl 

(Turkey) 

Direct Shear 

Test 
N/A 

31-34 (peak) 

24-33(residual) 

18-34 (peak) 

6-10 (residual) 

Sweigard et al. 

(2011) 

Sandstone and 

Shale 

(Pike County, 

Kentucky) 

Triaxial (CU) 

Test 
N/A 37 0 

FRA research 

sites 

(this study) 

Sandstone and 

Shale 

(Northeast 

Tennessee) 

Angle of repose N/A 38 0 
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Table 2.5 FS obtained for long-term static stability focused on the low strength surface layer 

slope stability analysis results for generic slope (   = 28°, H  = 21 m,   = 38°, c  = 0,   T = 20.4 kN/m3) 

Analysis Method Assumptions FS Critical failure mode 

a) LEM 
Rigid core and Search Block - non-linear Janbu’s Method 

with 10,000 critical surfaces analyzed 
1.48 

Shallow planar failure 

surface 

b) FEM 

Core much stronger than loose surface layer, Shear 

Strength Reduction Method to determine FS, with 500 

iterations solved by Gaussian elimination 

1.47 
Shallow planar failure 

surface 

c) Analytical Infinite slope equation (no seepage) 1.47 
Shallow planar failure 

surface 

 

 

Fig. 2.6. Shear strains and nodal displacements obtained from the FEM analysis assuming a very 

strong core. Upper left corner illustrates the geometric dimensions employed for LEM and FEM 

analyses. 
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Deep rotational stability of the overall soil mass 

The results from LEM and FEM analyses of the deep failure mode of the homogeneous slope yield 

a FS = 1.48, which is consistent with that obtained from the shallow stability analyses. Fig. 2.7 

shows the results of a FEM analysis when the core strength was 30% stronger than the loose layer 

(i.e. tan / tan 1.3core loose   ). Here two possible failure mechanisms were observed in the form of 

shear bands; a deeper mechanism through the core material with a FS = 1.94, and a shallow 

mechanism with the lowest FS = 1.48 and highest shear strains at the interface of the materials. 

The FS of the shallow mechanism is equal to those obtained from the shallow analyses above. A 

similar trend is observed for cases when 1.1, 1.2, andtan / t 4an  1.core loose   (Fig. 2.8). As the 

strength of the core increases, the FS of the deeper mechanism increases; however, the lowest FS 

is found to be constant with a consistent shallow failure mode and dependent only on the strength 

level of the loose surface layer. Additional analyses at angles of inclination of 20 and 35 degrees 

yielded similar results and confirm that the critical failure mode is a surface failure. 

 

These results are consistent with the observation that the failure mechanisms through the loose 

surface layer will govern and the determination of the strength parameters of the stronger dense 

core are not important for FRA slope design. Furthermore, since the infinite slope method 

adequately approximates the shallow failure mode, and accurately predicts the FS, it can be taken 

as a simple and reliable method to evaluate the performance of FRA slopes and more sophisticated 

computer analyses are not necessary for most applications. The use of the infinite slope method 

also simplifies the field characterization of materials and disregards the unit weight determination, 

because it only requires loose  and   for long-term conditions. The simplicity of the method is  
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Fig. 2.7. Failure mechanisms and FS’s obtained from FEM stability analysis for tan / tancore loose   

= 1.3. The FS = 1.94 shown for the deeper failure mechanism was obtained when the strength 

reduction factor (SRF) search was restricted to be outside the zone where the shallow mechanism 

occurred. Shear strains showed for SRF = 2.02 to emphasize failure mode. 

 

 

Fig. 2.8. FEM analyses of the global stability for various values of tan / tancore loose   and the 

infinite slope equation 
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appropriate for design of reclaimed mine slopes which are typically designed in advance of mineral 

extraction with assumed overburden properties. Accordingly, the lowest FS for drained or long-

term conditions at each instrumented site using the infinite slope equation is approximately 1.47 

for Premium, 2.07 for National and 1.47 for Mountainside. 

 

Conclusions 

 Characterization and stability evaluation of three FRA slopes in northeastern Tennessee 

with inclinations as high as 28 degrees were conducted. A large number of oversize 

particles were found in the reclaimed materials. In general, the material finer than 51 mm 

classified as Clayey Gravels with the average Plasticity Index (PI)  ranging from 13-15, 

suggesting that the physical characteristic of the soils are similar across the three research 

sites. 

 Unit weights determined using a Nuclear Density Gage were found to be higher than those 

determined by replacement methods, yet vary significantly across the study plots. NDG 

measures are preferred for stability analyses because they better capture the effect of 

oversize particles on the in situ state of stresses of FRA slopes. It also allows more 

measurements to characterize the wide range of in-place density. Tolerance intervals were 

constructed to reflect the probable future range of unit weights that each site will have on 

average. 

 The analysis of several potential modes of failure suggests that the governing failure mode 

is shallow and contained within the weak, loose surface layer. The determination of the 

strength parameters of the core is not important for FRA slope design. 
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 Because the infinite slope method adequately approximates the shallow failure mode and 

accurately predicts the FS, it may be an appropriate method to evaluate the performance of 

FRA slopes and more sophisticated analyses are not necessary for most applications. Since 

the unit weight of the material is not considered in the infinite slope expression, field 

measurements of the highly variable unit weight are not required for long-term analyses. 

  The angle of repose was suggested to be a conservative estimate of the internal friction 

angle and it is consistent with the loose nature of the FRA material. This provides a means 

to quantify the friction angle of the mine spoil, which has been traditionally assumed based 

on experience. 

 The shear strength along the most critical slip surface, for the typical FRA slope 

investigated, is at least 47% greater than that required to maintain static equilibrium in the 

long-term. In case that the entire loose surface zone becomes saturated with downslope 

seepage and no infiltration into the core, the FS is reduced by a factor of 2, suggesting that 

the slope would be unstable. However, these conditions are very unlikely and provide a 

lower limit to the factor of safety 

 The likely conditions would suggest that the FRA has no negative impact on slope stability, 

and the benefits of faster forest establishment in terms of reduced erosion and sediment 

delivery make the FRA very attractive for future reclamation work. 
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Abstract 

While traditional mine reclamation methods emphasize compaction to increase the strength of the 

materials and ensure stability of the restored slope, high compaction restricts the successful 

reforestation of reclaimed mine sites. The Forest Reclamation Approach (FRA), which uses low 

compaction in the uppermost 1.2 m – 1.5 m of the surface has been shown to facilitate the 

establishment of healthy native forests. Slope stability analyses of three steep FRA sites from the 

southern Appalachian region have shown that the long-term static stability is not compromised, 

and that the infinite slope method provides a rational method to evaluate the stability of steep FRA 

slopes. In this article, modifications of the infinite slope equation were utilized to a) include the 

effects of matric suction due to unsaturated soil conditions, and b) evaluate the seismic 

performance of FRA slopes based on spectral accelerations. Monthly variation of the water content 

at three research sites demonstrated the seasonal stability variation of FRA slopes due to matric 

suction, while seismic analyses illustrated the conditions under which instability may occur. 
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Introduction 

The Forest Reclamation Approach (FRA) (Angel et al. 2007, Sweigard et al. 2007) is a method of 

mine slope reclamation which maintains a loose surface layer (1.2 to 1.5 m thick) above a well 

compacted core to facilitate tree growth. This method has been shown to be successful in 

promoting healthy reforestation (Angel et al. 2007, Barton et al. 2007) and is currently being 

promoted by the US Office of Surface Mining (OSM). However, there has been limited experience 

with the FRA on steep slopes, which the OSM defines as those inclined at more than 20 degrees 

(USDoI 2009). Jeldes et al. (2013) conducted a series of static slope stability analyses (including 

effects of seepage water forces) via Finite Element Method (FEM) and Limit Equilibrium Methods 

(LEM), and concluded that: 1) the static long-term stability of FRA slopes with inclinations as 

much as 28 degrees is not compromised; 2) shallow failure modes inside the loose surface layer 

are the dominant failure mechanism, regardless of the strength level of the core; and 3) the infinite 

slope method using the angle of repose as a conservative estimate of the shear strength provides a 

rational method to evaluate the stability of steep FRA slopes. 

 

The theoretical idealizations for the static long-term stability overlook two field conditions that 

affect the strength and the stress state of slopes: partial saturation of soils and seismicity. 

Specifically, the long-term stability involves the analysis of saturated soils under drained loading, 

which is not consistent with field conditions and the seasonal variations of soil water content. In 

reality, the solid and liquid soil phases cohabit with air and, in most cases of geotechnical interest, 

the water pore pressure can be negative with respect the air pore pressure, resulting in higher soil 

strengths (Fredlund and Rahardjo 1993). On the other hand, static analyses do not include seismic-

induced forces that, if not accounted for, may trigger slope failures by increasing the shear stresses 



50 

 

and, sometimes, decreasing the strength (Abramson 1996). The Appalachian region is recognized 

as one of the most seismically active areas in the eastern North America (Chapman et al. 1997), 

with a concentration of events occurring in eastern Tennessee of magnitudes even larger than 4.5 

(Bollinger et al. 1976, Chapman et al. 1997). Therefore, it becomes important to investigate the 

seismic effects on steep FRA slopes. 

 

The objectives of this paper are to 1) investigate the implications of unsaturated soils on steep FRA 

slopes and 2) investigate the seismic response of steep FRA slopes. This is accomplished using 

three reclaimed field sites at which the geometric and material characteristics were determined 

(Jeldes et al. 2013). To evaluate the stability of unsaturated FRA slopes, an expansion of the 

infinite slope equation to include the effects of matric suction is proposed here. Similarly, to 

evaluate the seismic response of FRA slopes, an infinite slope equation which includes the spectral 

response is developed with solutions presented in terms of charts for design applications. 

 

Background 

Unsaturated soil shear strength 

The total shear strength of an unsaturated soil has been typically approached as an extension of 

traditional saturated soil mechanics, where matric suction and net normal stress are considered to 

be independent stress variables, and consequently the Mohr-Coulomb (M-C) failure criterion for 

unsaturated soils can be extended as (Fredlund et al. 1978): 

   tan ( ) tan b

a a wc u u u         (3.1) 
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where c  and   are the cohesion and the internal friction angle (effective strength parameters), 
au  

is the pore air pressure, 
wu  is the pore water pressure, ( )au   is the net normal stress, ( )a wu u  

the soil matric suction, and b  is the rate of increase of shear strength due to matric suction. 

Although this expression is widely used, it has been pointed out to be philosophically erroneous, 

since the matric suction is not a stress variable and transfer functions are required to upscale the 

negative pore pressure to a macroscopic level (Lu 2008). In this regard, an extension of the M-C 

criteria based on the classical effective stress expression  ' ( )a a wu u u       (Bishop 1959) 

may be more appropriate, since the effective stress parameter   is indeed a transfer function:  

   ( ) tana a wc u u u           (3.2) 

 Naturally,   is strongly related to the degree of saturation of the soil mass and it ranges from 0 

(completely dry material) to 1 (complete saturation). Theoretical relationships to relate effective 

stresses and the degree of saturation have been developed for ideal arrangements of spherical 

particles (Cho and Santamarina 2001), which assume a matric suction only dependent on 

capillarity and valid for cases with degree of saturation less than 25% (Lu and Griffiths 2004). For 

higher degrees of saturation some empirical expressions have been proposed and reviewed 

(Vanapalli and Fredlund 2000) with the one based on the Vanapalli et al. (1996) approach being 

of particular interest since it allows the relationship between effective stresses and matric suction 

via the Soil Water Characteristic Curve (SWCC) , 

    r

s r

 

 

 
 

 
 (3.3) 

where   is the volumetric water content (volume of water over total volume of soil) at some level 

of matric suction, r  is the residual volumetric water content, and s  is the volumetric water 
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content at saturation. This expression [Eq. (3.3)] was shown to provide reasonable estimates of the 

unsaturated shear strength for suctions in the range of 0 – 1500 kPa (Sheng et al. 2011, Vanapalli 

and Fredlund 2000), but to be sensitive to small changes in residual water content (Sheng et al. 

2011). On the other hand, the use of the SWCC to estimate the shear strength of unsaturated soils 

has been suggested as an adequate framework for stability problems in soil mechanics (Lu and 

Griffiths 2004) and also to overcome conceptual limitations regarding the stress suction (Lu 2008, 

Lu 2010, Lu and Likos 2006). Accordingly, Eqs. (3.2) and (3.3) will be employed here to 

investigate the stability of three steep FRA slopes under partially saturated conditions in the 

Appalachian region. 

 

Shear strength and the pseudo-static forces for seismic analyses 

For seismic analyses, the saturated-undrained shear strength is typically used since seismic 

excitation may be considered a short-term loading condition, and excess of positive pore water 

pressure may develop. However, it is assumed that the coarse, low density material resulting from 

the FRA compaction methods would drain appropriately, and the probability of significant 

development of excess positive pore water pressure during an earthquake event is low (Duncan 

and Wright 2005), especially during seasons of low water content where negative pore water 

pressure arises. Consequently, drained strength parameters will be employed here for dynamic 

slope stability analysis. 

 

The pseudo-static approach remains as one of the most widely used methods for addressing seismic 

hazards in civil engineering practice, due to its simplicity and practicality (Duncan and Wright 

2005). This method is based on d’Alembert’s principle of mechanics, which assumes that 
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equilibrium may be achieved by adding a fictitious static inertial force equal to the maximum 

acceleration of the body, with the inertial force expressed as a fraction of the acceleration of gravity 

(g) (named pseudo-static coefficient K ) times the mass of the structure (Paz 1997). However, the 

maximum horizontal acceleration experienced during an earthquake is usually not equivalent to 

the horizontal pseudo-static coefficient 
hK  (Towhata 2008), and therefore, many authors have 

proposed either arbitrary values of maximum acceleration for design or reduction factors for the 

maximum horizontal Peak Ground Acceleration hPGA  (Table 3.1). Regarding the vertical 

coefficient vK , it has been usual practice to either assume a fraction of hPGA  or neglect its 

contribution. Examples of recorded seismic activity (e.g. Towhata, 2008) show that the maximum 

vertical acceleration can be assumed 0.5 hPGA  with little error, while neglecting its effect may lead 

to unstable slopes.  

 

More recently, a procedure to calculate hK  based on the 5% damped elastic spectral acceleration 

at the degraded fundamental period aS , the maximum allowable displacement aD  (in cm), the 

initial fundamental period sT , the earthquake magnitude M , and a random normal distributed 

variable   was proposed (Bray and Travasarou 2009): 

 0.665

a b

hK e
 

  (3.4) 

 2.83 0.566  ( )aa ln S   (3.5) 

     

     

2 2

2 2

1.33  ln 1.10 3.04ln 0.244  1.5  0.278  7 ,   0.05 

  1.33  ln 0.22 3.04ln 0.244  1.5  0.278  7 ,   0.05

a a a s s

a a a s s

a D S ln S T M T
b

a D S ln S T M T





             
  

            

 (3.6) 
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Table 3.1 Summary of recommended pseudo-static values and expressions available in the 

literature (after Duncan and Wright, 2005) 

Method 

Seismic Coefficient K  

Accel. 
Accel. 

reduction  

Cyclic 

degrade 

reduction 

Min. 

FS 

Max. 

displ.  

(m) 

Requirements/ 

comments 

Terzaghi (1950) 

0.10g - - >1.00 - - 

0.25g - - >1.00 - - 

0.50g - - >1.00 - - 

Noda et al. (1975) 

 
hPGA   1/3 / 3hPGA  - - - - 

Makdisi and Seed 

(1978) 

0.20g 0.50 0.80 1.15 ≈ 1.0 For M≈6.5 

0.75g 0.20 0.80 1.15 ≈ 1.0 For M≈8.25 

Seed (1979) 0.1-0.15g - - - - 
Earth dams in several 

countries 

Hynes-Griffin and 

Franklin (1984) 

 
hPGA  0.50 0.80 >1.00 1.0 - 

Kavazanjian et al. 

(1997) (*) 

hPGA   0.17 0.80 >1.00 1.0  Response analysis 

 
hPGA  0.50 0.80 >1.00 1.0 No response analysis 

Bray and Rathje 

(1998) 

 
hPGA  0.75 - >1.00 0.15–0.30 Conservative strength  

(*) Acceleration reduction factor reported for soil conditions. Strength reduction factor only for saturated or 

sensitive clays 
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The form of 
hK  in Eq. (3.4) was obtained from a semi-empirical probabilistic approach originally 

developed to determine permanent displacements (Bray and Travasarou 2007). The relationship 

between induced displacement and a single value of motion intensity was found to be optimally 

satisfied not by PGA, but by the 5% damped elastic spectral acceleration at the degraded 

fundamental period, 
aS . The degraded period was found to be well represented by 1.5

sT , due to 

material non-linearity. Both, the traditional pseudo-static coefficients listed in Table 3.1 as well as 

Eqs. (3.4) – (3.6) will be employed to investigate the seismic stability of three steep FRA slopes 

constructed in the Appalachian region. 

 

Field and experimental methods 

Study sites: construction and site characterization 

Location of field sites and construction process 

To investigate the effects of the low-compaction grading technique on the mechanical stability of 

steep slopes (> 20 degrees), three reclaimed mine sites in northeastern Tennessee were constructed 

(Fig. 3.1), referred to here by the name of the initial coal operator (Premium, National and 

Mountainside). Each site was instrumented with weather stations to concurrently investigate the 

runoff hydrology and sediment erosion on the FRA slopes, as described elsewhere (Hoomehr et 

al. 2013). 

 

At each of the three sites in this study, the construction procedure followed the contour haulback 

method (Sweigard and Kumar 2010), where a ramp is constructed on the contour bench and spoil 

is hauled up the ramp and dumped over the edge. The sequence of the construction process can be 
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Fig. 3.1. Location of field sites in northeastern Tennessee, referred to as Premium, National, and 

Mountainside. 
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divided into four major steps (Sweigard et al. 2007) depicted schematically in Fig. 3.2 (Jeldes et 

al. 2013): a) placement and compaction of the materials for the primary backfill core using 

traditional practices, b) dumping of the soil that will constitute the loose surface layer (1.2 -1.5 m 

thick), c) grading of the loose soil layer with the lightest equipment available using the fewest 

passes possible, and d) seeding of cover vegetation and reforestation. 

 

Geometry, unit weight and saturated shear strength parameters 

The slope lengths, widths, and angles of inclination of the research fields were determined using a 

total station instrument, while unit weights and gravimetric water contents were measured in situ 

through water and sand replacement methods and Nuclear Density Gauge (NDG) readings. A 

randomized systematic sampling technique was employed for the data collection, as described by 

Jeldes et al. (2013). Due to the extreme range of particles size (from clay particles to boulders), 

the determination of the shear strength parameters is difficult to conduct in mine spoil. Since by 

definition the angle of repose represents the friction angle at the soil’s loosest state (Holtz and 

Kovacs 1981), it was chosen as a conservative estimate of the friction angle   for the surface layer 

which received minimum compaction effort. Because the design of these reclaimed slopes seldom 

includes laboratory testing, it is suggested that the use of the angle of repose also captures the 

overall strength of the mass, including the contribution of the oversize particles. A negligible value 

of cohesion was assumed. Jeldes et al. (2013) provide a comparative summary of the employed 

strength parameters and values reported in the literature. Similar values of   and c for loose spoils 

in the Appalachian region were reported by Sweigard et al. (2011), while similar values for 

reclaimed spoils outside the Appalachian are reported in the literature (Gutierrez et al. 2008, 

Kasmer and Ulusay 2006, Stormont and Farfan 2005, Sweigard et al. 2011, Ulusay et al. 1995). 
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Fig. 3.2. Depiction of the reclamation process according to FRA (Jeldes et al. 2013). 
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Table 3.2 summarizes the obtained slope lengths, slope angles, unit weights and angles of repose 

for the Premium, National and Mountainside sites. 

 

Seasonal variation of volumetric water content 

The field variation of volumetric water content   was obtained (Aubuchon 2010) for each of the 

three research sites at various depths in the loose layer, up to a maximum depth of 0.76 m using a 

capacitance sensor (Aqua Pro-Sensors LLC 2012) moisture probe. Since capacitance sensors can 

provide a good indication of seasonal variations in  , but may not yield good absolute values 

(Leib et al. 2003), the measured monthly variations of   taken from a depth of 0.15 m were 

corrected relative to the measured July 2009   values from the NDG and used to obtain monthly 

values of   for the range of depths. Corrected values of   from a depth of 0.76 m were then used 

to determine the variation in strength and stability for each FRA site during the first year of data 

collection. 

 

Soil water characteristic curves for unsaturated stability analyses 

For each of the three sites, SWCCs were obtained via: a) suction table and pressure plate laboratory 

tests conducted in general accordance with Dane and Hopmans (2002) and the ASTM D6836-02; 

and b) the neural network ROSETTA model (Schaap et al. 2001). 

 

Laboratory suction experiments were conducted on representative soil samples obtained from the 

field, which were reconstructed to densities of 1.65 Mg/m3 for Premium, 1.66 Mg/m3 for National, 

and 1.57 Mg/m3 for Mountainside. Two sets of suction table experiments, at pressures between 

0.5 and 10 kPa, were conducted: a) with material smaller than 12.7 mm (1/2” sieve), and b) with  
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Table 3.2 Average values of slope length, inclination angle, unit weights, water content, and 

observed angles of repose for Premium, National and Mountainside sites. 

Sites 
Slope 

length 

(m) 

Slope angle 

(Degrees) 

Dry unit 

weight, 

dγ  

(kN/m3) 

Wet unit 

weight, 

T
γ  

(kN/m3) 

Gravimetric 

water 

content, w   

(%) 

Volumetric 

water 

content, θ  

(%) 

Angle of 

repose,   

(Degrees) 

 Premium 32 28 16.2 18.5 14.5 23.9 38 

National 48 20 18.5 20.3 9.7 18.2 37 

Mountainside 45 28 18.6 20.4 9.8 18.8 38 
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material smaller than 3.36 mm (# 6 sieve). The sample size in both aforementioned cases was 102 

mm in diameter and 64 mm height. Pressure plate experiments at pressures between 20 and 1100 

kPa were conducted only on material smaller than 3.36 mm (# 6 sieve), with a sample size of 50 

mm in diameter and 10 mm height. The pressure plate results were then adjusted to reflect the 

absence of gravel size particles, by subtracting the equivalent volume of water that would have 

been occupied by these oversize materials. In addition, the neural network ROSETTA model 

(Schaap et al. 2001) was used to determine SWCCs using transfer functions based on the van 

Genuchten (1980) equations. The input parameters used for the ROSETTA model are summarized 

in Table 3.3, with gravels included with the sand as the coarser fraction. 

 

Peak ground and spectral accelerations for seismic stability analyses 

Local spectral acceleration values as a function of the earthquake period (Fig. 3.3) and values of 

PGA were estimated from local hazard maps developed by the U.S. Geological Survey, USGS 

(http://earthquake.usgs.gov/earthquakes), for a 2 and 10% of probability of exceedance (P.E.) in 

50 years. The three sites have small variations of PGA thus the maximum among them (0.2g for a 

2% P.E. in 50 years and 0.07g for 10% P.E. in 50 years) will be used for stability analysis. 

 

Analytical methods for stability analyses 

Infinite slope equation for unsaturated soil strength 

The infinite slope method is a limit equilibrium analysis in which the failure surface is assumed to 

be parallel to the ground surface, at a depth that is small with respect to the length of the slope 

(Skempton and Delory 1957). The assumptions behind this method match well with the geometry 

of slopes constructed according to the FRA, because a surface layer of loose material runs  

http://earthquake.usgs.gov/earthquakes
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Table 3.3 Soil texture (USDA) and unit weights for ROSETTA model. 

 Soil Fraction (%) 

 Premium National Mountainside 

Coarse (sand + gravel) 87.0 79.5 58.5 

Silt 7.3 11.0 22.6 

Clay 5.7 9.5 18.9 

Dry unit weight (Mg/m3) 1.65 1.66 1.57 

 

 

 

 

 

Fig. 3.3. Depiction of the 3 Spectral Accelerations for Premium, National and Mountainside 

(USGS 2012). 
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approximately parallel to the contour of the strong, dense core (Fig. 3.4). Also, the ratio of 

horizontal length to depth of the failure surface at each of the three research slopes is large enough 

so that they can be considered infinite (Griffiths et al. 2011, Milledge et al. 2012). FEM and LEM 

analyses conducted by Jeldes et al. (2013) demonstrated the appropriateness of the infinite slope 

method for static long-term analysis of steep FRA slopes, and therefore, it is extended here to 

include the effects of partially saturated soils. Fig. 3.4 shows a slip surface of thickness z  below 

the ground surface inclined at     degrees from the horizontal. The weight of the slice is 

/TW bz cos  , where T  is the total unit weight of the soil, b  is the horizontal width of the 

slice that can be expressed as  b l cos , and l is the length of the corresponding slip segment. P  

and T  are the corresponding normal and shear resultant forces at the bottom of the slice. 

Neglecting the effects of the side forces LQ  and RQ  and satisfying equilibrium of forces in a free 

diagram space, the factor of safety (FS) defined here as the ratio of the magnitude of resisting 

forces of the slide to the magnitude of the destabilizing forces becomes: 

 FS   

( ) tan  
t́an tan

T  sin tan

r
a w

s r

T

c u u
cl P

z

 


  

  

  
    

      (3.7) 

where ´P  is the force corresponding to the effective stress written in terms of Bishop’s 

formulation. In the presence of pure coarse material, Eq. (3.7) is only valid for r  , since below 

this point capillarity decreases radically (Lu and Likos 2006). Similar expressions of the infinite 

slope equation have been proposed by Uchaipichat (2012) and Lu and Godt (2008). While the 

Uchaipichat (2012) equation incorporated the relationship between the effective stress parameter 
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Fig. 3.4. The Infinite Slope method. Figure modified from Salgado (2008). 

  



65 

 

and the matric suction proposed by Uchaipichat and Man-Koksung (2011), Lu and Godt (2008) 

assumed a form of stress suction that is a function of the infiltration rates, saturated hydraulic 

conductivity and empirical fitting parameters obtained from van Genuchten (1980). Eq. (3.7) 

provided here shares the same fundamental principles as the Lu and Godt (2008) approach, since 

the empirical model proposed by van Genuchten (1980) is directly related to    /r s r     . 

 

Infinite Slope equation for horizontal and vertical pseudo-static forces 

Analogous to the formulation for the partially saturated soils, when horizontal and vertical pseudo-

static forces ( hK W  and vK W ) are applied at the center of mass (Fig. 3.5), the following seismic 

infinite slope equation is obtained: 

 FS  
 
 

(1 )cos  sin tan

(1 ) sin  cos

T v h

T v h

c z K K

z K K

   

  

  


 
 (3.8) 

Note that when the effects of the vertical ground acceleration are neglected, Eq. (3.8) simplifies to 

an equivalent form of the equation proposed by Duncan and Wright (2005). If hK  in Eq. (3.8) is 

forced to take the form defined by Eqs. (3.4) – (3.6), a single expression for the seismic infinite 

FRA slope based on spectral accelerations is obtained here, 

 FS  

1 0.5 exp( )  cos exp( ) sin tan
0.665 0.665

1 0.5 exp( )   sin exp( ) cos
0.665 0.665

T

T

a b a b
c z

a b a b
z

   

  

      
    

   


      
   

   

 (3.9) 

where a and b are defined by the Eqs. (3.5) and (3.6), and vK  is assumed to be 0.5 hK . 
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Fig. 3.5. Infinite Slope method with horizontal and vertical pseudo-static forces. 
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Summary of the methodology 

The stability of steep FRA slopes under partially saturated conditions will be accomplished by: 

 Obtaining experimental and model based SWCCs for each research site. 

 Using the measured field variations of  . 

 Estimating the seasonal variations of FS via the proposed Eq. (3.7), for both sets of SWCCs 

and the measured  . The effective strength parameters, unit weights and geometry reported 

in Table 3.2 will be used, with z = 1.5 m. 

 

The seismic stability of steep FRA slopes will be investigated by: 

 Employing Eq. (3.8) and a variety of traditional pseudo-static coefficients (Table 3.1), for 

the highest PGA among the three sites and the soil and geometrical characteristic of 

Mountainside (Table 3.2) since they are the most critical among the 3 sites. Here, z  = 1.5 

m. 

 Comparing/validating results from Eq. (3.8) via the Simplified Bishop’s Method of slices 

iterated with the software XSTABL (Interactive Software Designs INC 2008). 

 Calculating site specific FS’s based on the spectral accelerations of the field with the 

proposed Eq. (3.9) and presenting the results in the form of solution charts for design 

applications. 
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Results and Discussion 

SWCCs and stability results for unsaturated FRA soils 

The resulting SWCCs from the ROSETTA model and laboratory suction are compared in Figs. 

3.6, 3.7 and 3.8, for Premium, National and Mountainside respectively. The corrected SWCCs 

obtained from the pressure plate results on material < 3.36 mm, follow fairly well those obtained 

from the suction table with material smaller than 12.7 mm (1/2” sieve), and provide a complete 

SWCC for this case. Accordingly, SWCCs from the laboratory tests (material < 12.7 mm) and the 

ROSETTA model are used in the stability calculations. 

 

Resulting seasonal variations of the FS [Eq. (3.7)], along with the monthly cumulative 

precipitation (obtained with the in situ weather stations) and measured water content are shown in 

Figs. 3.9, 3.10 and 3.11 for each of the sites. The figures illustrate the increase in FS that 

accompanies the dryer (higher suction) periods of the year, with the variation in FS depending 

upon the method used to obtain the SWCC. Also, smaller levels of stress suction may be found 

upon re-wetting of the loose surface layer (Likos and Lu 2004); however, these effects, related to 

the hysteresis of SWCC, are neglected here. The laboratory measured SWCCs yield larger 

variations in FS’s than the ROSETTA model for National and Mountainside, suggesting that 

ROSETTA may yield more conservative estimates of suction for these soils. The maximum 

seasonal increase in stability at Premium and National sites occurred in March 2010, while the 

same occurred in June 2010 at Mountainside site. Saturation of the FRA material and a 

corresponding minimum FS were observed at least once during the year at each research site. 
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Fig. 3.6. Soil water characteristic curves measured in laboratory experiments and the ROSETTA 

model (Schaap et al. 2001), for the Premium site. 

 

 

Fig. 3.7. Soil water characteristic curves measured in laboratory experiments and the ROSETTA 

model (Schaap et al. 2001), for the National site. 
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Fig. 3.8. Soil water characteristic curves measured in laboratory experiments and the ROSETTA 

model (Schaap et al. 2001), for the Mountainside site. 
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Fig. 3.9. Calculated monthly variations in stability (FS), volumetric water content and cumulative 

monthly rainfall from July 2009 to August 2010 at the Premium site. 
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Fig. 3.10. Calculated monthly variations in stability (FS), volumetric water content and cumulative 

monthly rainfall from July 2009 to August 2010 at the National site. 
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Fig. 3.11. Calculated monthly variations in stability (FS), volumetric water content and cumulative 

monthly rainfall from July 2009 to August 2010 at the Mountainside site. 
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Monthly cumulative rainfall data (Figs. 3.9, 3.10 and 3.11) shows that the sites were exposed to 

relatively large amounts of rainfall during late spring, summer, and early winter. Precipitation 

intensity was found to be significant during this period, with shorter and more intense rainfall 

events at National and Mountainside and longer but less intense events at premium site (Hoomehr 

et al. 2010). Rainfall events of this nature are capable of saturating the loose surface layer, and 

therefore, stability analyses employing traditional saturated strength parameters should always 

prevail in the design of FRA slopes. 

 

Seismic stability analyses 

Stability analysis with traditional pseudo-static coefficients 

Results from the seismic stability analyses are shown in Table 3.4. All combinations of force 

orientations were examined, with the most critical being when the vertical pseudo static force is 

upward and the horizontal force is acting horizontally away from the slope. 

 

Results show that the seismic infinite slope equation [Eq. (3.8)] is in good agreement with the 

Simplified Bishop’s method, and it can be used with confidence. The Simplified Bishop’s method 

with pseudo static forces predicts a shallow failure mechanism which is consistent with the 

assumptions of the infinite slope method. For a 10% P.E. in 50 yr. it is expected that the shear 

strength along the slip surface be 25-31% greater than the required to maintain equilibrium, 

whereas for a 2% P.E. in 50 yr. the shear strength is only 2-15% greater and the slope may be at 

the verge of failure. Since the static long-term FS was found to be 1.47 (Jeldes et al. 2013), the 

stability of these slopes is reduced up to 30% when seismic forces are introduced. Notice that the 

acceleration reduction proposed by Noda et al. (1975) for a 10% P.E. in 50 yr. yields a lower FS 



75 

 

Table 3.4 Summary of 
hK , 

vK  and obtained FS’s for a 2 and 10% P.E. in 50 yr. 

Method 

Seismic Coefficient Computed Factor of Safety (FS) 

 

K  

2% P.E. in  

50 yr. 
(PGA=0.2) 

10% P.E. 

 in 50 yr. 

(PGA=0.07) 

Infinite 

Slope 

Equation 

Simplified 

Bishop’s 

Method 

Infinite 

Slope 

Equation 

Simplified 

Bishop’s 

Method 

2% P.E. in 50 yr. 10% P.E. in 50 yr. 

Theoretical 

d'Alembert’s Principle 

(no reduction) 

 

hK  
0.20 0.07 

0.91 0.92 1.24 1.25 
 

vK  
0.10 0.04 

Makdisi and Seed 

(1978) (M≈6.5) 

 

hK  
0.10 0.04 

1.14 1.15 1.35 1.34 
 

vK  
0.10 0.04 

Hynes-Griffin and 

Franklin (1984) 

 

hK  
0.10 0.04 

1.14 1.15 1.35 1.34 
 

vK  
0.10 0.04 

Noda et al. (1975) 

 

hK  
0.19 0.14 

0.92 0.94 1.07 1.07 
 

vK  
0.10 0.04 

Bray and Rathje (1998)  

 

hK  
0.15 0.05 

1.02 1.03 1.29 1.31 
 

vK  
0.10 0.04 

Kavazanjian et al. 

(1997)  (without 

response analysis) 

 

hK  
0.10 0.04 

1.14 1.15 1.35 1.34 
 

vK  0.10 0.04 
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than the case without reduction, which is an inconsistency. Noda et al. (1975) developed the 

equation based on limit-equilibrium analysis of structures (quay walls) that were already damaged 

by earthquakes, where the results and parameter selection probably have a high level of 

subjectivism (Towhata 2008). Regarding the seismic coefficient to be used, Hynes-Griffin and 

Franklin (1984), Bray and Rathje (1998) and Kavazanjian et al. (1997) are suggested here, because 

they express the seismic coefficient in terms of hPGA  rather than an arbitrary fraction of the 

acceleration of gravity. Current hazard maps have broad coverage and easier access, and a more 

site-based design is possible. 

 

Slope stability charts based on spectral accelerations and an Illustrative example 

Graphical chart solutions of Eq. (3.9) for different earthquake magnitudes, maximum allowable 

displacements and soil properties were developed for each of the FRA reclaimed sites. Fig. 3.12 

illustrates the solution chart for the conditions at Mountainside site when M = 5.0 (about the 

highest earthquake magnitude recorded in the area) aD = 30 cm for a 2% P.E. in 50 years. The 

random variable ε was selected to be 0.66 representing a 16% of allowable displacement 

exceedance (Bray and Travasarou 2009). Similar solution charts for other values of M , aD  and 

probability of exceedance can be created. Fig. 3.12 suggest that failure may occur at Mountainside 

when aS  > 0.4g and sT  > 1.5 s. 

 

To illustrate the use of the solution charts, the Mountainside slope is used with M = 5.0 and aD  = 

30 cm. The initial fundamental period of the slope may be calculated using   4 /sT H Vs , where 

H  is the depth of the sliding plane and Vs  average shear wave velocity. Since Vs  has not been 
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Fig. 3.12. FS chart for Mountainside site as a function of spectral accelerations and initial 

fundamental period. 
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measured, an average  Vs  = 200 m/s is assumed. For a shallow failure mode in the upper 1.5 m, the 

initial fundamental period becomes sT = 0.03 and the spectral acceleration at the degraded period 

aS  (T  = 0.045) ≈ 0.36g (Fig. 3.3). Then, for sT = 0.03 s and aS  = 0.36g the FS is found from Eq. 

(3.9) or Fig. 3.12 to be approximately 1.26. 

 

Conclusions 

Static long-term stability analyses of the three constructed FRA slopes conducted by Jeldes et al. 

(2013) showed that shear strength is at least 47% greater than that required to balance the 

destabilizing forces, in the absence of downslope seepage. These results reflect the assumption of 

total saturation of the soil at the slip surface, which is not always consistent with the in situ FRA 

conditions, where the surface layer can be seen as an active unsaturated zone whose variations in 

water content will be directly affected by periodic changes in environmental conditions. Slope 

stability analyses for partially saturated mine soils showed that seasonal increments in the stability 

of steep FRA slopes are possible, and the static long-term stability is a lower bound of the real 

field performance. Naturally, the interpretation of results is restricted to the hydrological 

conditions experienced during the time period at which the data was collected. This period was 

characterized by relatively poor establishment of ground cover, and therefore, evaporation was 

probably the main mechanism inducing matric suction and the relative increase in stability. 

Different monthly stability patterns may be observed in the future depending on the amount of 

vegetation, precipitation and variations in temperature affecting evapotranspiration rates. In any 

case, temporal saturation of the loose surface layer is likely to occur and slope stability analysis 

employing traditional saturated strength parameters should prevail in the design of FRA slopes. 
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Under seismic loading conditions, the proposed infinite slope equation showed good agreement 

with the simplified Bishop’s method of the slices. The selection of the pseudo-static coefficient 

requires an understanding of the assumptions behind the coefficient and practical knowledge of 

the local seismicity. Site specific results were obtained when the horizontal seismic coefficient 

proposed by Hynes-Griffin and Franklin (1984), Bray and Rathje (1998) and Kavazanjian et al. 

(1997) were employed, and suggest that FS can be as low as 1.02. While these methods based on 

a fraction of the probable PGA are most common, they do not consider the effects of frequency 

and duration (Bray 2007). A method based on spectral response may provide a better tool for 

evaluating slope stability, and a combination of Bray and Travasarou (2009) approach with the 

proposed modification of the infinite slope equation was suggested. Charts were developed for this 

method employing site-specific aS  values and local soil properties and slope geometry. Here, the 

FS is a function of parameters that have less selection subjectivity for the designer and are a 

function of the importance of the project, available seismic data, and accuracy of the site 

characterization. It is suggested that the use of spectral values for a 2% P.E. in 50 yr. or higher are 

sufficient, except when the designer has reasons for using lower local values. 
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Chapter 4. An Approximate Solution to the Sokolovskiĭ Concave Slope 

at Limiting Equilibrium 
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Abstract 

The growth of precision auto-guidance systems on construction equipment suggests that non-

planar slopes and landforms can now be readily constructed. Slopes with concave cross sections 

not only appear more like natural slopes, but can also have superior stability and erosion resistance. 

Thus, it is desirable to have the description of concave slopes that provide mechanical stability for 

given set of soil properties. In this article, an approximate solution that defines the geometry of 

critical concave slopes (FS ≈ 1) in a frictional medium is developed, based on the slip line field 

method of Sokolovskiĭ. The approximate solution is compared with the Sokolovskiĭ’s numerical 

results and validated via Limit Equilibrium and Finite Element Method analyses. The proposed 

solution is simple in form, and when implemented with precision construction equipment will 

allow the construction of embankments and reclaimed mine lands which appear more like those in 

nature, and yet are more erosion-resistant. 

 

Introduction 

The growth of precision of auto-guidance construction equipment and 3D mapping technology 

allows more complex non-planar slopes and landforms to be readily constructed. This can lead to 

engineered slopes of concave cross sections which appear more like natural slopes and have 
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superior stability and erosion resistance (Schor and Gray 2007). In fact, experimental and 

numerical simulations have shown that concave slopes lead to less erosion than planar slopes 

(Meyer and Kramer 1969, Rieke-Zapp and Nearing 2005). The general concept of “form follows 

function” is observed in geomorphological evolutionary processes such us fluvial systems where 

concave slopes are suggested as the most probable shape in landform evolution (Leopold and 

Langbein 1962, Miyamoto et al. 2005). Furthermore, slopes subjected to physical weathering seem 

to evolve into steady-state concave-like forms to achieve erosional equilibrium (Nash 1980, 

Pelletier and Rasmussen 2009, Twidale 2007). The use of concave surfaces can become a powerful 

ecological building technique to reduce sediment yield in constructed embankments, reclaimed 

mine lands, and highway cut and fill sections, with shapes that appear more like those observed in 

nature. Thus, it is important to investigate and define the optimum concave shape relative to 

mechanical slope stability. While computational methods based on limit equilibrium and limit 

analysis techniques (Ahmed et al. 2012, Liu and Zhao 2012, Michalowski 2010) prevail in slope 

analyses and design, a rational mechanics approach based on the Sokolovskiĭ’s slip line field 

theory was employed here to define concave slope shapes at critical equilibrium. 

 

Sokolovskiĭ (1960, 1965) found that the slope surface at critical or limiting equilibrium has a 

concave shape, mathematically described as a function of the Mohr-Coulomb (M-C) shear strength 

parameters and the material unit weight. Since the solution for a non-frictional soil (i.e. undrained 

loading conditions) is mathematically straightforward, this work focuses on the c -  case (  is 

the soil internal friction angle and c is the soil cohesion), which has no analytic solution. For a soil 

with 0  , 0c  , and unit weight 0  , Sokolovskiĭ (1960) implemented a numeric solution 
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reporting the slope surface as a function of the ratio /c  . This solution, however, has some 

practical design limitations. The Sokolovskiĭ geometric description of the contour is incomplete 

which limits the application to distinct values of   and slope heights /y c  . In this article we: a) 

revisit and fully describe Sokolovskiĭ’s formulation and solution based on slip line field theory for 

a weightless slope ( 0  ), b) develop an approximate analytic solution which describes the 

concave slope at critical equilibrium for a medium with self-weight ( 0  ), and c) validate the 

solution via the Limit Equilibrium (LEM) the and Finite Element Method (FEM). While the main 

objective of this piece of work is to provide a rational mathematic description of the critical 

concave slope shape (FS = 1), the solution can be easily extended to FS’s > 1 as needed for design. 

This issue, along with those related to transient underground water flow and constructability are 

briefly addressed in the discussion.  

 

Background: the slip line field theory and the characteristic equations 

The slip line field theory in soil mechanics rests on the assumptions that the soil yield stress is 

independent of the strain level and that the strain-stress behavior can be described by either elastic 

perfectly plastic or rigid perfectly plastic idealizations. For frictional materials like soils, the Mohr-

Coulomb shear strength expression has been traditionally used as the constitutive law defining the 

yield or maximum allowable stress. In this context, to bring the body into a limiting equilibrium 

state or at the verge of flowing plastically, the largest difference between the shear stresses and the 

shear strength must be zero (Sokolovskiĭ 1960). Expressed in terms of principal stresses: 

   1 3 1 3max  sin(2 ) sin ( 2 ) 0H             (4.1) 

where 1  is the major principal stress, 3  is the minor principal stress (Fig. 4.1), cotH c    is  
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Fig. 4.1. Orientation of slip lines in a soil mass at limiting equilibrium [adapted from Sokolovskiĭ 

(1965)]. 
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the tensile strength of the soil, and   is the angle between the normal to the plane and the major 

principal direction. Approaching [Eq. (4.1)] as a mathematical optimization problem, the limiting 

condition is reached when 

 2
2


    (4.2) 

which implies that failure or slip line initiates at an angle   (Fig. 4.1) inclined at 45 / 2  from 

the direction of the major principal stress and 45 / 2  from the direction of the minor principal 

stress. Note that the inclinations of the slip lines are independent of the strain level, which is not 

always consistent with experimental observations. Roscoe (1970) concluded that a strain based 

approach rather than a stress approach better predicts the inclination of the slip plane, and its 

magnitude can be approximated by 45 / 2  (measured from the minor principal direction), 

where   is the dilatancy angle at failure. Later studies on shear band formation in plane strain 

experiments confirmed Roscoe’s findings (Alshibli and Sture 2000). Nevertheless, this approach 

is still valid in the context of associated plasticity (  ), which for relatively unconfined 

problems such as slope stability, does not significantly influence the prediction of the Factor of 

Safety (FS) (Griffiths and Lane 1999) nor the prediction of the critical slip or failure mechanism 

(except for cases of very low friction angle and high cohesion) (Cheng et al. 2007). By combining 

Eqs. (4.1) and (4.2), Sokolovskiĭ (1960) obtained the limiting equilibrium in terms of principal 

stresses as: 

    1 3 1 3sin   2H         (4.3) 

 

If the Sokolovskiĭ (1965) x-y reference frame is adopted (see Fig. 4.1) where the normal of an 

infinitesimal element located anywhere inside the soil mass is inclined at an angle   from the x-
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axis, the slip lines will be inclined at an angle    from the x-axis. Then, the equations of limiting 

stresses can be written in the directions of the adopted reference frame as: 

    (1 sin cos2 )xx H       (4.4) 

    (1 sin cos2 )yy H       (4.5) 

  sin sin 2xy     (4.6) 

and in the normal n̂  and tangential t̂  directions (Fig. 4.1)  

      1 sin cos2( )n H         (4.7) 

      1 sin cos2( )t H         (4.8) 

where xx  and 
yy  are the normal limiting stresses acting in the x and y direction respectively, 

xy  is the shear limiting stress acting on planes perpendicular to the x and y axes, n  and t  are 

the normal limiting stresses acting in the normal n̂  and tangential t̂  directions respectively, and 

 1 31/ 2 H     is the mean stress. When Eqs. (4.4), (4.5) and (4.6) are combined with those 

of a continuum solid at equilibrium (Malvern 1969), a set of two first order partial differential 

equations is obtained, which upon solution via the method of characteristics (Hill 1950) becomes 

a set of two differential equations that describe the direction of the slip lines in a soil body, called 

characteristic equations. Sokolovskiĭ (1965) obtained: 

 tan( )
dy

dx
   (4.9) 

  2 tan tand d dy dx       (4.10) 
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Elaboration of Sokolovskiĭ solution for the critical slope in a weightless medium 

By assuming a weightless medium ( 0  ), the first-order hyperbolic Eq. (4.10) yields an analytic 

solution. Here, an alternative development of Sokolovskiĭ (1960) analytic solution of this problem 

is offered, aiming to provide clarity to the mathematical formulation.  

 

Consider the boundary conditions under an external stress q  depicted in Fig. 4.2, where the origin 

of the rectilinear system of coordinates is set at the intersection of the slope surface and the 

horizontal ground surface. At the top of the slope (along the horizontal ground surface), the stresses 

(  0xx  ,  yy q  , 0xy  ) of the first boundary condition define the y-axis and the x-axis as the 

major and minor principal directions. Here, / 2   and the mean normal stress 
surf  from Eq. 

(4.5) becomes: 

 
1  sin

surf q H








 ,   

2


   (4.11) 

Along the slope surface, the stresses redefine the major and minor principal directions as the 

tangential t̂  and normal n̂  components respectively. Therefore,   becomes the angle of the slope 

  measured from the x-axis. By defining the boundary normal stress 0 n  and / 2    , 

Eq. (4.7) returns the magnitude of the mean normal stress along the slope surface 
cont : 

 
1  sin

cont H






 ,      (4.12) 

Eqs. (4.11) and (4.12) establish the boundary conditions of the problem. For a weightless ( 0  ) 

medium, Eq. (4.10) becomes: 

 2 tan
 

d
d


 


   (4.13) 
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Fig. 4.2. Critical slope shape (planar) for a weightless medium. Inside zone AoC the principal 

directions are aligned with the reference frame. On the slope surface, the principal directions are 

aligned with the normal and tangential directions. 
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Integrating Eq. (4.13) and imposing the boundary condition along the slope surface from Eq. (4.12) 

yields  

 
cot

ln 1
 2 1  sin

H
c






 
   

 
 (4.14) 

where 1c  is the constant of integration. Eq. (4.14) reveals the existence of two planes satisfying 

the stress condition; they have the same absolute inclination, but differ only in direction. Choosing 

  and imposing the surface boundary condition from Eq. (4.11): 

 
cot

1 ln
 2 1  sin 2

q H
c

 



 
   

 
 (4.15) 

Substituting Eq. (4.15) into Eq. (4.14)   is found to be constant revealing a planar slope, 

 
cot 1 sin

ln
2  2   1  sin

q H

H

  




  
   

 
 (4.16) 

which is equivalent to the Sokolovskiĭ (1960) solution, with the discrepancy found only due to the 

difference in the employed coordinate system. The x-y coordinates can be found by solving the 

first equation of the characteristic system [Eq. (4.9)], with 0   and    at the slope surface: 

  tan
dy

dx
  (4.17) 

It is important to emphasize that for the case of a weightless medium, the slope is constant or 

planar. However, a medium with self-weight induces changing stress conditions which influences 

the principal directions, reducing the slope inclination downslope. Sokolovskiĭ’s general ( 0  ) 

solution of Eq. (4.10) is the result of a numeric boundary value problem, which has no analytical 

counterpart. Unfortunately, Sokolovskiĭ’s solution is constrained geometrically (i.e. slope height), 

limited by the ratio /c   and restricted to specific values of  . Furthermore, extending this 
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solution to other initial conditions requires the reconstruction of the sophisticated boundary value 

problem making its implementation in practical slope design unlikely. 

 

Proposed solution for the critical slope in a medium with self-weight 

An analytical approximation for the slope shape of a medium with self-weight is proposed here, 

based on a Weightless Medium Approximation (WMA). Our derivation begins with the initial 

conditions of the uppermost layer supporting the maximum vertical height of a continuous 

medium. This vertical height is limited by the height of the tension crack crh (Terzaghi 1943) and 

defines the upper portion of the slope (Fig. 4.3) as a tension zone lying above the x-axis. 

 
 
2 cos

  1 sin
cr

c
h



 



 (4.18) 

For the portion of the slope lying below the x-axis, the WMA assumes that the medium can be 

discretized as a series of finite weightless intervals with constant surface inclination, each 

supporting a line load representing the self-weight of the layer above. Fig. 4.4 depicts a model or 

analog for a slope composed of multiple layers of weightless media (rigid foam beads), with layers 

loaded by a line load (frictionless lead sheets). Each new layer adds a finite weight that changes 

the slope by a finite amount. As the layer thickness 0y  , the x-y concave slope emerges. The 

weight of the material is therefore introduced as an external stress q  including the weight of the 

tension zone [ crh ] above the x-axis, and a linearly increasing component [ y ] starting from the 

origin of the reference frame; thus: 

    ( )crq y h y    (4.19) 
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Fig. 4.3. Slope surface in a medium possessing weight [after Sokolovskiĭ, (1965)]. 

 

 

 

 

Fig. 4.4. Weightless Medium Approximation: discretized weightless medium (e.g. rigid foam 

beads) supporting thin, external loads (e.g. frictionless lead sheets) separated by a finite interval: 

a) coarser discretization and b) finer discretization. 
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The analytic solution from Eq. (4.16) can be modified by replacing the constant load q  with Eq. 

(4.19). Because  q y  is a function of the vertical direction, y is treated as the independent variable 

and the angular coordinates are transformed to measure the angle from the y-axis. This change of 

coordinates [ ' / 2    ] makes the slope of the first interval zero rather than infinite. 

  
 cot 1 sin

' ln
 2   1  sin

q y H
y

H

 




 
  

 
 (4.20) 

Accordingly, the first equation of the characteristic [Eq. (4.9)] after transformation and integration 

over the closed interval  0, y , becomes: 

    
0

tan ' ' '

y

x y y dy     (4.21) 

The exact solution of Eq. (4.21) involves a Gauss hypergeometric function 2 1F  with complex (real 

and imaginary) arguments. If as a first approximation only the real component [  x y ] of Eq. 

(4.21) is taken, it can be seen (Fig. 4.5) that a concave slope is depicted; however, this solution 

does not satisfy the critical equilibrium requirement. The discrepancy between Sokolovskiĭ’s 

critical slope and  x y  is illustrated in Fig. 4.5 (with  x y plotted in the negative side of x-axis 

to match Sokolovskiĭ). Notice that  x y soon diverges into a horizontal asymptote corresponding 

to an infinite slope ( /x y   ). The resolution of this infinite-slope problem lies in a second 

approximation. 

 

While our first WMA is a physical discretization and modification of Eq. (4.10), our second  
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Fig. 4.5. Sokolovskiĭ’s critical slope vs the real (non-imaginary) component of the solution of Eq. 

(4.21). 
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approximation is a mathematical modification of Eq. (4.21), via examination of the Taylor series 

of the tangent of an angle   

    
3 5

72
tan Ο

3 15

 
       (4.22) 

with  7Ο   representing truncation of the series from the 7th order. The higher order terms make 

the Taylor expansion diverge sooner near / 2   . This effect is minimized by removing the 

high-order terms, replacing  tan   . Applying the Taylor expansion without the high order 

terms reduces Eq. (4.21) to: 

    
0

' ' '

y

x y y dy   (4.23) 

which has the following analytical solution:  

  
    

0                                                                       , 0

    1 1     1   ,             0

cr

y

h y
x y

A B cosec H B cosec y  

  
 

       

 (4.24) 

where: 

 
 
cos

 2 1 sin
A



 



 (4.25) 

 
1 sin

1   1
  1 sin  

y y

aB ln ln K
H H

 



    
       

    
 (4.26) 

 
y y   (4.27) 

 cotH c   (4.28) 

Notice that the factor B  is a function of the Rankine (1857) active coefficient of earth pressure 

(1   sin ) / (1   sin )aK     . The proposed solution describes a critical slope surface in the 
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quadrant where x-axis and y-axis are positive, with the tension zone 
crh  above the x-axis from the 

origin to the point of coordinates (0,-   crh ).  

 

Validation of the WMA solution 

Comparisons between the concave slope surface from the proposed solution [Eq. (4.24)] and the 

Sokolovskiĭ (1960) numerical approach were conducted in terms of geometry, critical FS, and 

failure mechanism. For comparison, the results from Eq. (4.24) will be plotted in the negative side 

of the x-axis to match Sokolovskiĭ’s results. Concave slopes for the range of   and /c   typically 

observed in soils are employed here. For fine grained soils the range c = 5 – 40 kN/m2 covers the 

majority of the cases reported by Mesri and Abdelghaffar (1993), while  = 10 – 23 kN/m3 covers 

most materials from clays to coarse granular soils (NAVFAC 1986). Thus,   = 20˚, 30˚, and 40˚, 

and /c  = 0.2, 1, 2, 3, and 4 m are employed here to compare Sokolovskiĭ (1960) with the 

proposed solution. The total vertical slope height ( sH ) employed was the maximum reported by 

Sokolovskiĭ (1960) for the selected range of /c   (Table 4.1). The influence of sH  over the 

computed FS and failure mechanisms is discussed later.  

 

Geometry of the concave slopes 

The slope surfaces for   = 30˚ and for a /c  = 2 m are compared in Fig. 4.6 for a maximum sH

= 47 m, while slopes for   = 20˚, 30˚, and 40˚, are compared in terms of non-dimensional 

coordinates ( /x c , /y c ) in Fig. 4.7. For all combinations of   and /c  , a very close 

agreement at the upper portion of the slope is observed, while differences appear at the lower  
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Table 4.1 Maximum values of 
sH (m) reported by Sokolovskiĭ (1960) and used in stability 

analyses (1960) solution from LEM 

 Internal friction angle   (˚) 

c/ɣ (m) 20 30 40 

0.2 3.8 5.3 7.1 

1.0 19 26 35 

2.0 38 53 71 

3.0 57 79 106 

4.0 76 105 141 

 

 

 

 

 

 

Fig. 4.6. Comparison of Sokolovskiĭ (1960) numerical solution and the proposed analytical 

solution for   = 30˚ and /c  = 2 m. 
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Fig. 4.7. Comparison of Sokolovskiĭ (1960) numerical solution and the proposed analytical 

solution in dimensionless coordinates for   = 20˚, 30˚, and 40˚. 
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portion of the slope. The amount of variation seems to depend only on the value of  , with best 

geometrical agreement found for 20˚    30˚, which is the range found in many fine grained 

soils. Nevertheless, as discussed in the subsequent section, these geometrical variances only induce 

a minor difference in stability, because regardless of the value of   the critical failure mechanism 

develops in the upper zone of close agreement between the solutions. 

 

Critical FS and observed failure mechanisms 

Differences in stability between the two approaches were investigated via Finite Element Method 

(FEM) and Limit Equilibrium Method (LEM). FEM analyses were computed using the software 

Phase2 (Rocscience Inc. 2011), while LEM analyses using the Software Slide (Rocscience Inc. 

2011). In the FEM model, a non-associated flow rule with 0   was employed to avoid effects 

of computation domain size (Cheng et al. 2007) and to limit the over-prediction of dilation 

(Griffiths and Lane 1999). Also, nominal values for Young’s modulus (E = 2x104 kPa) and 

Poisson’s ratio (υ = 0.3) were used, since they play a minor role in the calculation of the FS (Cheng 

et al. 2007, Griffiths and Lane 1999). In the LEM analyses, the Simplified Bishop’s Method was 

used with 495,000 critical surfaces analyzed. 

 

A comparison of the computed FS’s via LEM are reported in Table 4.2, while the FEM results for 

Sokolovskiĭ’s and the proposed solutions when   = 30˚ and /c  = 2 m are shown in Figs. 4.8 and 

4.9 respectively. Very similar results in terms of FS’s were obtained from FEM and LEM 

approaches. For all combinations of   and /c  , the computed critical FS’s do not differ more 

than 4% between the proposed and Sokolovskiĭ’s solutions. More importantly, all computed FS’s  
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Table 4.2 Comparison of stability between proposed approximate solution and Sokolovskiĭ 

(1960) solution from LEM 

 Internal friction angle   (˚) 

 20 30 40 

c/ɣ (m) 
Proposed 

approximate 

Sokolovskiĭ 

(1960) 

Proposed 

approximate 

Sokolovskiĭ 

(1960) 

Proposed 

approximate 

Sokolovskiĭ 

(1960) 

0.2 1.00 1.04 1.04 1.03 1.06 1.03 

1.0 1.00 1.04 1.04 1.03 1.06 1.03 

2.0 1.00 1.04 1.04 1.03 1.06 1.03 

3.0 1.00 1.04 1.04 1.03 1.06 1.03 

4.0 1.00 1.04 1.04 1.03 1.06 1.03 

 

 

 

 

 

 

Fig. 4.8. FEM results in terms of shear strains for the Sokolovskiĭ (1960) critical concave slope. 
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Fig. 4.9. FEM results in terms of shear strains for the proposed critical concave slope. 
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approximate 1, which is consistent with the limiting strength condition, and confirms the 

appropriateness of Eq. (4.24). For the investigated range of  , the proposed solution does not 

deviate more than 6% from the theoretical FS = 1, which can be considered a minor difference in 

terms of practical applications in geotechnical design. 

 

Effects of slope height on failure mechanisms and FS obtained from the 

proposed solution 

To investigate the effects of the slope height sH  on the stability of the proposed concave slopes, 

LEM stability analyses were conducted for different values of  , /c  , and sH . 

 

Analyses of the results indicate the existence of a limiting slope height ( Lh ) at which the failure 

mechanism of the proposed concave slope changes. Concave slopes with heights sH  < Lh  develop 

toe-failure mechanisms, whereas those with sH  > Lh  develop face-failure mechanisms (Fig. 4.10). 

The change in failure mechanism naturally alters the computed FS, as illustrated in Fig. 4.11 for 

the   = 20˚ case. Concave slopes with sH  < Lh  tend to have slightly greater FS’s, which only in 

few cases exceeded the theoretical FS = 1 by more than 10%. As sH  approaches Lh , the FS 

decreases until it reaches a steady value (FS ≈ 1) that remains constant for all sH  > Lh . This steady 

equilibrium condition coincides with a somewhat steady position of the critical failure surface, and 

therefore, Lh  defines the height of the failure slip for larger concave slopes. Similar analyses on 

concave slopes with   = 30˚, 38˚ and 45˚, not only yielded equivalent results, but also showed 

that Lh  can be approximated as a linear function of /c   only (Fig. 4.12). Notice that over 99% of  
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Fig. 4.10. Modes of failure depicted in the form of shear bands (maximum shear strains) as 

observed in concave slopes (FEM). Figure illustrate case for   = 20˚ and /c  = 2 m, and two 

values of sH . 

 

 

Fig. 4.11. Computed FS (LEM) on concave slopes with different vertical heights sH  and /c   for 

  = 20˚. 
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Fig. 4.12. Relationship between the limiting height Lh  and /c  . 
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the variability in 
Lh  can be explained by the linear relationship 15.8  0/ .3Lh c   , which can be 

used to estimate the most likely failure mechanism of a concave slope. 

 

Discussion and conclusions 

Concave slope shapes mimic the landforms observed in nature, and have been determined to be 

less prone to erosion and sediment production. A mathematical description of the concave slope 

surface at limiting equilibrium was developed by Sokolovskiĭ (1960), but the characteristic 

equations must be solved numerically for the most relevant cases, i.e. frictional soils with self-

weight (  > 0,   > 0). The lack of an analytic solution limits the application of concave slopes in 

practice. 

 

In this article, an analytical mathematical approximation for the   > 0 and   > 0 case was offered 

in order to obtain concave slopes at critical equilibrium, for any combination of  , c , and  . This 

solution was based on the Sokolovskiĭ solution for a weightless (  = 0) medium. The 

approximation transformed a set of differential equations into a single algebraic expression, which 

can be more readily used in slope design with no need to reconstruct Sokolovskiĭ’s sophisticated 

numerical boundary value problem for the   > 0 case. The solution offered here is simple, 

effective, and it was shown to provide good agreement with Sokolovskiĭ’s numerical approach. 

Unlike Sokolovskiĭ’s tabulated values, the proposed solution can be used for any desirable 

maximum value of sH  or any value of  . In theory, every point of the slope surface depicted by 

Eq. (4.24) should be in limiting equilibrium such that, independent of the size of the physical 

domain, the FS approximates 1. Nevertheless, small deviations arise due to the approximate nature 



114 

 

of the solution. Though associated with the mode of failure, these deviations are small for 

geotechnical applications and indicate that the stability of the proposed critical concave slopes will 

range from FS = 1 - 1.1 for the majority of cases.  

 

Although the solution for the concave slope was developed in terms of the critical slope shape (FS 

= 1), the proposed solution can be used as a base line for practical applications. For design, a given 

FS can be obtained if a strength reduction factor (Griffiths and Lane 1999, Spencer 1967) equal to 

the desired FS is used with our proposed solution. The effects of an external semi-infinite surcharge 

( eq ) acting on the ground surface can be included by adding eq  to the right side of Eq. (4.19) and 

modifying Eq. (4.18) as  2 cos / [ 1 sin ] /cr eh c q      . Once the desired concave shape is 

defined, the effects of transient ground water flow can be investigated using commercial slope 

stability software. While the successful construction of concave slopes will depend on the 

precision of the employed construction equipment, the increasing precision and availability of GPS 

based auto-guidance equipment (Koehrsen et al. 2001) makes the construction of concave slopes 

possible. Nevertheless, in actual slope construction the sharp bluff at the top (the tension crack 

zone) is not likely to be constructed since it may erode over time; instead this would be rounded 

for a more natural appearance, which would decrease the destabilizing forces and add conservatism 

to concave slope performance.  
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Appendix: The slip line field theory and the characteristic equations 

Equations of internal equilibrium and principal stresses  

From the assumption that soil medium can be treated as a continuum, the complete state of stresses 

acting on any plane can be specified if the resultant stresses in the directions of the axes of the 

reference frame are known (Malvern 1969). For the plane strain condition (e.g. the profile of a 2D 

slope), strains and shear stresses in the z direction (perpendicular to the paper) vanish and 

therefore, the equations of internal equilibrium in a xy space that not necessarily coincides with 

the vertical and horizontal can be written as: 

 sin
xyxx

x y


 


 

 
  (4.29) 

  cos
yx yy

x y

 
 

 
 

 
 (4.30) 

where xx  and 
yy  are the normal stresses acting in the x and y directions, 

xy yx   are the shear 

stresses,    is the unit weight of the material, and   is the angle between an horizontal plane and 

the x-axis. The complete state of stresses at a point, mathematically expressed as a second order 

tensor, can be described by the principal stresses and directions, which are independent of the 

selected reference frame. Any normal and tangential stress component on any plane can be 

determined if the principal stresses are known (Holtz and Kovacs 1981): 
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2 2
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where 
1  is the major principal stress, 

3 is the minor principal stress, and   is the angle between 

the direction of the normal to the plane and the major principal direction. 

 

Formulation of the equations of the characteristics 

The slip line field theory in soil mechanics rests on the assumptions that the soil yield stress is 

independent on the strain level and that the strain-stress behavior can be described by either elastic 

perfectly plastic or rigid perfectly plastic idealizations. In this way, the formulation of the problem 

does not require stress and displacement boundary conditions, which combined impose a statically 

indeterminate condition (Scott 1963). For frictional materials like soils, Mohr-Coulomb has been 

traditionally used as the constitutive law defining the yield or maximum allowable stress. In this 

context, to bring the body into a limiting equilibrium state or at the verge of flowing plastically, 

the largest difference between the shear stresses and the shear strength must be zero (Sokolovskiĭ 

1960): 

  max   ( ) tan 0n n H      (4.33) 

where n  and n  are the normal and shear stresses acting on any plane within the soil body and 

H  is the tensile strength of the soil. If the stresses in the soil body exceed this liming state, plastic 

deformation will occur. According to the slip line field theory, the plastic deformation will take 

place by the relative movement of two planes on which the inclination of the stresses is maximum 

(Scott 1963). These planes, called slip planes or shear bands, are oriented parallel to the straight 

lines that connect the pole of the Mohr circle and its contact with the failure condition in a    

stress space (Fig. 4.13). If n  and n  are written in terms of principal stresses [Eqs. (4.31) and 

(4.32)], the limiting condition in Eq. (4.33) can be written as 
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Fig. 4.13. Illustration of slip planes on Mohr-Coulomb diagram. 
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   1 3 1 3max  sin(2 ) sin ( 2 ) 0H             (4.34) 

Approaching the condition of maximum difference as a mathematical optimization problem, it is 

found that the maximum difference between shear stresses and strength is reached when: 

 2
2


    (4.35) 

According to Sokolovskiĭ (1960), at the limiting condition the absolute values of  and  (the 

angle between the slip planes and the direction of the major principal stress) are complementary, 

and therefore, the slip planes make an angle 

 (45 / 2)    (4.36) 

with the direction of the major principal stress and (45 / 2)  with the direction of the minor 

principal stress. 

 

The solution in Eq. (4.36) is independent of the strain level, which is not always consistent with 

experimental observations. Roscoe (1970) concluded that a strain based approach rather than a 

stress approach better predicts the inclination of the slip plane, and its magnitude can be 

approximated by 45 / 2 , where   is the dilatancy angle at failure. Later studies on shear band 

formation in plane strain experiments confirmed Roscoe’s findings (Alshibli and Sture 2000). 

Nevertheless, Eq. (4.36) is still valid in the context of the associated plasticity (  ), which for 

relatively unconfined problems such as slope stability, do not influence the prediction of the FS 

(Griffiths and Lane 1999) neither the prediction of the critical slip or failure mechanism (except 

for cases of very low friction angle and high cohesion) (Cheng et al. 2007). Accordingly, if Eqs. 
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(4.34) and (4.35) are combined, the equation for the limiting equilibrium in terms of principal 

stresses becomes (Sokolovskiĭ 1960): 

    1 3 1 3sin   2H         (4.37) 

On the other hand, it can be shown that the slips on the physical plane (Fig. 4.14) are in general 

not straight, but curve, because shear boundary conditions may exist in real problems, changing 

the direction of the slips with depth (Scott 1963, Sokolovskiĭ 1960). This set of curve slips are 

called slip lines. If an x-y reference frame as shown in Fig. 4.14 is adopted, where the normal to 

the plane of an infinitesimal element is inclined at an angle   from the x-axis, the slip lines would 

be inclined at an angle ξ ε  from the x-axis.  Consequently, stresses in x and y directions in terms 

of the principal stresses can be written as (Sokolovskiĭ 1960): 

    1 3 1 3

1 1
     cos 2

2 2
xx          (4.38) 

    1 3 1 3

1 1
     cos 2

2 2
yy          (4.39) 

  1 3

1
sin 2

2
xy      (4.40) 

Combining Eq. (4.37) and the Eqs. (4.38), (4.39) and (4.40), the equations of limiting stresses are 

obtained in the x and y directions: 

    (1 sin cos2 )xx H       (4.41)  

    (1 sin cos2 )yy H       (4.42) 

  sin sin 2xy     (4.43) 
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Fig. 4.14. Orientation of slip lines (adapted from Sokolovskiĭ, 1965). 
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Analogously, the equations of limiting stresses in the normal n̂  and t̂  directions can be obtained 

(Sokolovskiĭ 1960): 

      1 sin cos2( )n H         (4.44) 

      1 sin cos2( )t H         (4.45) 

  sin sin 2( )nt       (4.46)  

where  1 31/ 2 H     . When Eqs. (4.41), (4.42) and (4.43) are combined with the 

equations of equilibrium [Eqs. (4.29) and (4.30)], a set of two first order partial differential 

equations which govern the variation of the stresses in the x and y directions is obtained: 

  1 sin cos 2 sin sin 2 2 sin sin 2 cos 2    sin
x y x y
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 (4.48)  

Applying the method of characteristics (Hill 1950), the system of Eqs. (4.47) and (4.48), can be 

solved. Multiplying Eq. (4.47) by  sin    and Eq. (4.48) by  cos   and adding them, the 

following expression is obtained: 
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Using the auxiliary quantities M and N, as defined by: 
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 (4.51)  

Eq. (21) can be written as (Sokolovskiĭ 1960): 
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  tan 0M N     (4.52)  

Obtaining the characteristic differential equations requires the expression of the auxiliary 

quantities in ordinary derivative form: 
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Introducing a new a new auxiliary quantity P,  
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M and N, can be rewritten as: 
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Note that the characteristics will be found when the numerator and denominator of the Eqs. (4.56) 

and (4.57) are simultaneously set to zero, and therefore the equations of characteristic are: 

 tan( )
dy

dx
   (4.58) 

    2 tan sin   cos  
cos

d d dx dy


       


     (4.59)   

Eq. (4.58) imposes the condition that the characteristics have to be inclined at  
o

  from the x-

axis. Therefore, they are indeed slip lines in the x-y space (Sokolovskiĭ 1965). For cases when the 

body forces are aligned in the direction of vertical y-axis, 0  and Eq. (4.59) simplifies to: 
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Chapter 5. Design of Stable Concave Slopes for Reduced Sediment 

Delivery 
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Abstract 

Constructed slopes have traditionally taken a planar form. However, natural slopes are more likely 

to be concave in cross section, and laboratory and computational studies have demonstrated that 

concave slopes yield less sediment than planar slopes. With the current auto-guided construction 

equipment, it is now possible to construct slopes with concave profiles and a more natural 

appearance, yet a simple method to describe such concave slopes for a given level of mechanical 

stability does not exist. This article begins with the examination of concave shapes satisfying a 

desired degree of stability and compare results with those from Finite Element and Limit 

Equilibrium methods. An erosion model is used to demonstrate that the concave slopes proposed 

here can yield 15-40% less sediment than planar slopes with same Factor of Safety. Finally, a 

sensitivity analysis suggests that reasonable construction deviations do not compromise the 

stability of typical concave slopes. 

 

Introduction 

Constructed slopes designed with traditional planar cross sections are encountered in most land 

development, including highway cut and fill sections, constructed embankments, and reclaimed 
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mines. Planar landscape profiles are seldom encountered in nature, however, where curvilinear 

slopes with concave shapes usually arise as the result of evolutionary processes in fluvial systems 

and hillslopes (Leopold and Langbein 1962, Miyamoto et al. 2005, Rodríguez-Iturbe et al. 1992, 

Twidale 2007, Yang and Song 1979). Landforming approaches such as the Geomorphic 

Reclamation of mine lands (Toy and Chuse 2005) include the construction of concave-like shapes 

in both the transverse (cross-slope) and longitudinal (downslope) directions to create natural self-

sustainable ecosystems (Martín-Duque et al. 2010) with improved erosion resistance (Schor and 

Gray 2007). Nevertheless, not all concave shapes are mechanically stable, requiring a rational 

definition of those concave slopes that provide the desired degree of stability expressed in terms 

of a desired Factor of Safety (FS). For example, Howard et al. (2011) point out the risk associated 

with the growing practice of shaping slopes to reflect natural regional landforms without 

appropriate stability and erosion analyses and without accounting for the limited precision of the 

construction equipment employed to build concave profiles. Hence, the objectives of this work are 

to 1) describe concave shapes that provide a desired degree of stability (or FS) for given soil 

properties, 2) provide a quantitative measure of the difference in soil loss (erosion) between 

concave and planar slopes that satisfy the same degree of mechanical stability, and 3) investigate 

the precision to which concave forms can be constructed, and how this affects the desired slope 

stability. To accomplish these objectives this work focuses on slopes with concavity in the 

longitudinal direction, which have been shown to deliver less sediment than transversely-convex, 

transversely-concave, longitudinally-convex and planar slopes (Rieke-Zapp and Nearing 2005). 
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Background 

Mechanical stability of concave profiles 

Although a number of studies have shown that concave slopes produce less sediment than planar 

slopes, few studies have linked the benefits of concave slopes to mass stability. Utili and Nova 

(2007) demonstrated by means of the upper bound method that concave log-spiral slopes result in 

higher FS’s than planar slopes of same height and width and than planar slopes of same soil mass. 

Based on the slip line field theory and the associated characteristic equations, Sokolovskiĭ (1960) 

found a longitudinal concave critical slope contour (FS = 1) for plain strain conditions. 

Sokolovskiĭ’s solution is the result of a numeric boundary value problem, which for a medium 

with unit weight ( ) > 0 and friction angle ( ) > 0 has no analytical counterpart. Recently, Jeldes 

et al. (2013) proposed an approximate analytical expression to obtain coordinates of the critical 

contour for any desired combination of  , c ,   and slope height ( sH ). This expression brings a 

system of differential equations into a single algebraic expression, which highly simplifies the 

manipulation and solution as: 

 
    
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 cotH c   (5.5) 
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2 cos

  1 sin
cr

c
h



 



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Here, H  is the tensile strength of the soil, 1 sin ) / (1 sin )(aK     is the Rankine active 

coefficient of earth pressure, 
y  is the geo-static vertical stress, and crh  is the height of the tension 

zone. The equation describes a slope contour in the quadrant with x-axis positive to the right and 

y-axis positive downward (Fig. 5.1), and with crh  lying above the x-axis from the coordinates (0,0) 

to (0,-   crh ). A limiting slope height ( Lh ) was also found, defining where the failure mechanism 

changes. Slopes of heights sH  < Lh  indicate a toe-failure mechanism with FS values slightly 

greater than 1, while those with sH  > Lh  indicate a face-failure mechanism with a steady FS ≈ 1. 

A linear correlation between Lh  and /c   was approximated by  

 15.8  0/ .3Lh c    (5.7) 

which can be used as a preliminary estimate of the most likely failure mechanism for a concave 

slope (Jeldes et al. 2013). While in practice the sharp bluff at the top of the tension zone may be 

removed or rounded (as indicated by the dashed line in Fig. 5.1) adding conservatism, the full 

tension height was included in the development of the solution for mathematical completeness. 

 

Concave slopes and soil erosion 

Experimental and computational studies have shown that slopes with longitudinally-concave 

shapes yield less sediment than slopes with planar or other curvilinear shapes. Thus, this work 

focuses on the difference in soil loss between longitudinally concave (referred to henceforth as 

concave) and planar slopes, which are the two shapes of interest in this study. 
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Fig. 5.1. Illustration of the reference frame and the components of the concave slope formulation. 

In practice the sharp bluff at the top of the slope may be rounded, as indicated by the dashed line. 
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Since erosion rates increase with slope length and steepness, for a concave slope the increased 

erosion due to the increased length is partially counteracted by the decreased erosion due to 

decreasing slope steepness. In examining this, Young and Mutchler (1969) used field-scale plots 

on a silt soil and measured 10% less sediment loss on concave slopes with the same average 

inclination as planar ones. D'Souza and Morgan (1976) used laboratory scale models with a sandy 

soil, and measured 20-25% less soil loss on concave slopes with the same average inclination as 

planar slopes. Rieke-Zapp and Nearing (2005) reported 75% less soil loss for concave slopes with 

similar surface area as planar slopes using experiments conducted on laboratory models with silt 

soil. Reductions in erosion for concave slopes can also be predicted via computational models. 

Meyer and Kramer (1969), using the Universal Soil Loss Equation (USLE), reported less soil loss 

for concave slopes of the same height and average steepness as planar slopes, and the difference 

in soil loss increased with horizontal slope distance. Williams and Nicks (1988), employing the 

field-scale model CREAMS, computed approximately 50% lower soil loss for a concave slope of 

the same average inclination as a planar slope; grass cover and filter strips did not alter the ratio of 

soil losses between concave and planar slopes. Hancock et al. (2003), using the landform evolution 

model SIBERIA, computed up to 80% less soil loss for concave slopes of the same horizontal 

length and average inclination as planar slopes, and showed that sediment loss decreases as the 

slope becomes more concave. Lee et al. (2004) simulated moderately intense storm conditions via 

the Hillslope Erosion Model and found that concave slopes yielded 17, 22, 24, and 28% less 

sediment loss than planar slopes when sandy clay, clay, silt, and silty clay soils were used in the 

simulation. Priyashantha et al. (2009), also using SIBERIA, computed approximately 50% 

reduction in soil loss between planar and concave slopes with same overall inclinations, and again 

found that the reduction occurs regardless of vegetation and climate type. 
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While all the aforementioned erosional studies reported significantly less soil loss for concave 

slopes, most compared the difference in soil loss between planar and concave slopes with similar 

average steepness, and none of them linked the concave geometry to mechanical stability 

considerations. Accordingly, the investigation begins with the examination of concave shapes 

satisfying a desired degree of stability, and then proceeds by investigating their ability to reduce 

sediment yield. This is accomplished by comparing the soil loss on concave and planar slopes with 

the same FS. Finally, the impact of construction precision on the concave slope stability is 

explored. 

 

Methods 

Mechanical stability 

In this section concave slopes for a given design FS for long-term stability are defined and the 

undrained shear strength required such that short-term stability is unlikely to govern is determined. 

This approach is conservative in that it neglects any additional shear strength that may be present 

due to partial saturation and resulting soil suction. 

 

Stable concave slopes for   > 0 (long-term stability) with pre-selected FS 

While Eqs. (5.1) – (5.6) generate concave slopes at limiting equilibrium, a design factor of safety 

( DFS ) > 1 is desired for design and construction. The expression for the concave slope can be 

extended to any desired FS if a strength reduction factor (Griffiths and Lane 1999, Spencer 1967) 

equal to DFS  is used to reduce the strength parameters as follows: 
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where *  and 
*c  are reduced friction angle and cohesion employed in the design to achieve the 

desired FS. To obtain a concave slope satisfying a pre-selected DFS , replace   and c  in Eqs. (5.1) 

– (5.6) with *  and 
*c  and determine the x-y coordinates of the concave slope. The resulting 

concave shape will satisfy a FS ≈ DFS  under the original   and c  strength conditions. 

 

The proposed methodology was compared with results obtained via Limit Equilibrium Method 

(LEM) and Finite Element Method (FEM) analyses for soils with   = 20˚, 30˚, and 40˚ and /c   

ranging from 0.2 to 5 m, where the range c = 5 – 40 kN/m3 covers most of the cohesion values 

reported by Mesri and Abdelghaffar (1993), and the range  = 10 – 23 kN/m3 covers most 

materials from clays to coarse granular soils (NAVFAC 1986). Each combination of   and /c   

describing a unique concave slope was analyzed for heights sH  ranging from 2 to 100 m. The 

FEM analyses were conducted using Phase2 (Rocscience Inc. 2011), and the LEM analyses using 

Slide (Rocscience Inc. 2011). In the FEM analyses, an elastic perfectly plastic model with a Mohr-

Coulomb yield criterion and a non-associated flow rule (zero dilatancy angle) was employed since 

it has been shown to provide reliable FS’s (Griffiths and Lane 1999). Also, nominal values for 

Young’s modulus (E = 2x104 kPa) and Poisson’s ratio (υ = 0.3) were used, because they do not 

influence the calculation of the FS (Cheng et al. 2007, Griffiths and Lane 1999). In the LEM 
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analyses, the Morgenstern-Price, the Spencer and the Simplified Bishop Methods were used with 

over 30,000 critical surfaces analyzed for each set of variables. 

 

Stability check for short- term (  = 0) loading conditions 

Once the long-term (  > 0) stable concave shapes are defined, it is necessary to investigate under 

what conditions short-term failure may occur, e.g., failure during the construction period where 

the stability is controlled by the undrained shear strength (
uS ), which is the soil shear strength for 

  = 0 conditions. The question then becomes: what would be the minimum value of undrained 

shear strength ( min

uS ) such that the concave slope defined for long-term stability is also stable for 

short-term conditions? This problem was approached by making use of the critical slope concept. 

A critical contour implies that slopes less steep than this contour are safe, and steeper ones are 

unsafe (under same soil properties and slope height). Thus, any critical contour defined for long-

term stability that is less or equally steep than a critical contour defined for short-term (  = 0) will 

be stable in the short-term for a given height y. Although the long-term critical contour can be 

obtained via Eqs. (5.1) – (5.6), the critical slope contour for the   = 0 case can be obtained as a 

closed form solution of the characteristic equations (Sokolovskiĭ 1965): 

  
2

ln cos( ) ,      0
2

u
u

u

S y
x y y

S





 
   

 
 (5.10) 

Here ux  defines the horizontal projection of the slope contour. In the tension zone ( 0cruh y   ) 

0ux  , and 2 /cru uh S   (Fig. 5.2). This concept is illustrated in Fig. 5.2, where the long-term  

 



137 

 

 

Fig. 5.2. Long-term (  > 0) critical contour vs short-term (  = 0) critical contours defined by 

different uS  values. 

  



138 

 

critical contour is steeper than the short-term critical contours 1, 2 and 3 that have undrained shear 

strengths
1uS , 2uS , and 3uS  respectively, and therefore it is unsafe in the short-term. The opposite 

yet desirable case is shown for contour 4, where 4uS  is sufficiently large that the global stability 

is governed by the long-term condition. The value of min

uS  to satisfy this condition is found at the 

intersection of the long and short-term contours. To find min

uS , we must a) enforce that
cru crh h , 

and b) numerically solve the transcendental equation    u d crx y x y h  , where 

,  0cr cru cr crh h h h    . It should be noted that min

uS  is a conservative estimate of the necessary 

undrained shear strength and can be taken as an upper limiting value of the exact solution. 

 

Soil erosion and sediment yield 

Soil loss for concave and planar slopes with same FS’s was investigated via the widely recognized 

Revised Universal Soil Loss Equation RUSLE2 (USDA-ARS 2008): 

 A R K LS C P      (5.11) 

where the predicted soil loss A (units of / /Mg ha y ) is directly proportional to: the rainfall 

erosivity R (units of /MJ mm ha h y   ), quantifying the rainfall’s erosive potential; the soil 

erodibility K (units of /Mg ha h ha MJ mm    ) defining the soil’s susceptibility to that erosivity; 

the topographic factor LS (dimensionless) representing slope length and steepness effects; the 

surface cover factor C (dimensionless); and the conservation practices factor P (dimensionless).  

 

Through RUSLE2 pairs of planar and concave slopes [Eqs. (5.1) – (5.6)] that had the same FS 

under the same values of  , c ,   and sH  (Fig. 5.3) were investigated. For soil loss calculations,  
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Fig. 5.3. Illustration of concave and equivalent planar slopes (same FS and slope height). 
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the concave slopes were idealized using ten to twenty linear segments. Since RUSLE2 determines 

soil loss over the horizontal projection of the slope, for slope segments steeper than 45˚ (which are 

not defined in RUSLE2), the soil loss was calculated assuming a planar slope of 45˚ over the total 

horizontal length occupied by the steeper part of the contour. Three different soil textures were 

employed for the analyses: a silt loam (high erodibility), a clay (moderate erodibility), and a sandy 

loam (moderately low erodibility). A range of possible K values for each soil texture (Haan et al. 

1994, USDA-ARS 2008) was used (Table 5.1), which conservatively encompasses a large variety 

of soils found in practice, even mine reclaimed soils (Hoomehr et al. 2014). All the simulations 

were conducted for two locations with very different climates: Dakota County, Minnesota (R = 

2,180 MJ∙mm/ha∙h∙y) representing dry weather conditions and Monroe County, Florida (R = 

10,500 MJ∙mm/ha∙h∙y) representing high rainfall conditions. For simplicity, a bare surface (C = 1) 

and no conservation practices (P = 1) were modeled. A representative value of friction angle was 

assumed for each soil texture (Budhu 2011, Hough 1957). Values of /c   ranging from 0.2 to 3 

m were employed for the clay soils and from 0.2 to 2 m for the silt and sandy loam soils. Table 5.1 

summarizes the erosion and mechanical properties of the investigated soils. 

 

Construction and sensitivity 

The widespread use of high accuracy auto guidance GPS-based construction equipment for 

grading and earthwork operations suggests that the construction of more complex slope shapes can 

become more commonplace. The effects of construction precision on the stability were 

investigated by considering the worst case scenario: the vertical component of the contour is 

constructed deeper than designed, resulting in a steeper slope. Although the vertical accuracy of 

3D grade control systems is commonly within 30 mm (Trimble 2013), an accuracy T = 200 mm 
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Table 5.1 Soil composition, classification, erodibility and assumed internal friction angle of 

investigated soils 

RUSLE soil 

texture 

[USDA] 

Composition [USDA], (%) Equivalent 

USCS 

classification 

Range of 

erodibility 

(K)** 

Assumed   

 (˚) Clay 

<0.002 mm 

Silt 

<0.05-0.002 mm 

Sand 

<2-0.05 mm 

Silt Loam 20 60 20 ML 0.037-0.057* 25 

Clay 45 28 27 CL 0.032-0.042 20 

Sandy Loam 10 25 65 SM 0.026-0.037* 35 

*   Upper bound reported for cases of low permeability and low organic matter content.  

**All K values in SI units of /Mg ha h ha MJ mm    . 
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was used, which may be also achieved by conventional equipment. Because the horizontal 

accuracy of GPS receivers is usually up to 3 times higher than the vertical (Berber et al. 2012), the 

horizontal errors are expected to stay in the millimeter scale, with no significant effects on stability. 

The effect of construction accuracy on the stability was investigated by: a) lowering by 200 mm 

the vertical component of various critical concave contours (FS = 1) for   = 20˚, 30˚, and 40˚ and 

/c   = 0.2, 1, and 5 m [Eqs. (5.1) - (5.6)]; and b) conducting stability analyses on them via the 

Simplified Bishop’s Method. 

 

Results and Discussion 

Concave slopes with pre-selected FS’s for long-term (  > 0) conditions 

Results from LEM analyses are shown in Fig. 5.4 for the case   = 30˚, where the computed FS 

values are plotted against the dimensionless value /sH c . Each point represents a stability 

analysis on a concave slope of height sH , cohesion c , and unit weight  , and each *  reflects a 

different value of DFS . Note that /sH c  is the inverse of Taylor’s stability number N (Taylor 

1948). A change in failure mechanism is observed to occur at similar values of 1/N regardless of 

* . The change in failure modes observed on the critical concave slopes (Jeldes et al. 2013) is not 

altered by the use of a strength reduction factor, and Eq. (5.7) can still be used to estimate the most 

probable mode of failure with * /c   instead of /c  . Concave slopes with sH  > Lh  show steady 

computed values of FS ≈ DFS , while those with sH  < Lh  showed FS values higher (more 

conservative) than the sH  > Lh  case, with values increasing as /sH c  decreases. Similar results 

were obtained for the   = 20˚ and 40˚ cases. 
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Fig. 5.4. Computed FS vs /sH c  for   = 30˚ and DFS = 1.00, 1.25, 1.5 and 2.00. Lines are results 

from Simplified Bishop’s method, triangles are results from Morgenstern-Price’s method and 

squares are results from Spencer’s method. 
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It is important to note that the methodology proposed here is based on the slip line field theory, 

which requires a value of c  ≠ 0 for a valid mathematical solution to exist. However, the method 

can still be used to simulate long-term conditions using a very small value of cohesion, as it is 

illustrated in the example problem. It must be also emphasized that Eqs. (5.1) – (5.6) constitute an 

approximate solution in analytical form, so even when 
sH  > 

Lh  there may not be a perfect match 

between DFS  and the actual FS. As seen in Fig. 5.4, the best match occurs when *  ≈ 20˚. Concave 

slopes with *  > 20˚ yield FS values higher than the design DFS  (4% higher when *  = 30˚ and 

6% higher when *  = 40˚), which is conservative for design. On the other hand, slopes with *  < 

20˚ will have FS < DFS , which is not conservative. This is shown in Fig. 5.4 for the case *  = 

16.1˚, where the resulting FS = 1.92 is 4% less than the desired DFS = 2. Nevertheless, the 

deviations from the target DFS  obtained through the methodology do not compromise its 

applicability for design, considering that neither the geometry nor the shear strength parameters 

are usually determined within ±6% accuracy (Duncan 1996). Furthermore, since the FS values 

calculated by limit equilibrium methods that satisfy all conditions of static equilibrium can vary 

as much as 12% (Duncan 1996), an accuracy of ±6% is certainly acceptable. Once the desired 

shape for the design FS has been obtained, verifications can be conducted employing commercial 

slope stability software. In the same way, the effects of transient ground water flow and/or external 

surcharges on the FS can be investigated, which extends the applications of this solution to other 

field conditions. 
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Stability check for short-term (  = 0) conditions 

The minimum undrained shear strength min

uS  that the soil must possess for concave slopes to have 

FS > DFS  in the short term can be obtained from Fig. 5.5 as a function of the effective strength 

parameters *  and 
*c . Fig. 5.5 is a solution chart that assembles the numerical results from Eqs. 

(5.1) and (5.10) and is presented in terms of the dimensionless parameters */y c  and 

min */ )( DuS c FS  for a range of * . Here, y  is the height of the slope below the tension zone                 

( ,  0crsy hH y  ). The inner chart in Fig. 5.5 provides higher resolution for low values of 

*/y c . Note that Fig. 5.5 defines the conditions under which long-term stability will always 

govern, so the solutions are conservative. Also, this chart is based on an assumed failure 

mechanism, where the critical surface exists from or above the toe. Consequently, this solution 

provides a first check for the short-term stability of concave slopes and does not replace the 

necessity of conducting stability analyses once the undrained shear strength of the soil has been 

determined. 

 

Soil loss from the mechanically stable concave slopes 

Soil loss results obtained from RUSLE2 for the silt loam are shown in Fig. 5.6. All the analyses 

were conducted on concave and planar slopes with FS = DFS  = 1 ( *  and 
*c c ), since they 

provide generic results that can be extended to any FS. Figs. 5.6a and 5.6b compare the predicted 

total soil loss for concave and planar slopes of a silt loam with * /c  = 1 under wet weather 

conditions in Monroe County, FL, and dry conditions in Dakota County, MN. Planar slopes  
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Fig. 5.5. Solution chart for short-term stability check. 
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Fig. 5.6. Erosion analyses for a silt loam soil with   = 25˚; a) total soil loss for Monroe County, 

FL; b) total soil loss for Dakota County, MN; c) difference in soil loss for the Dakota (dry) and 

Monroe (wet) Counties; d) /c pA A  vs */sH c . Units: A (Mg/Ha/y), 
p cA A  (Mg/Ha/y), R 

(MJ∙mm/ha∙h∙y), K (Mg∙ha∙h/ha∙MJ∙mm), and sH (m). 
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yielded more sediment than equally stable concave slopes for all K and 
sH  values investigated, 

regardless of climate. Soil loss increased with K and 
sH  in both profiles, but the upper surfaces 

(soil loss from planar slopes) remain constantly above the lower surfaces (soil loss from concave 

slopes). Fig. 5.6c compares, for the two weather conditions, the variation in 
p cA A  (

pA  = soil 

loss from planar slopes, cA  = soil loss from concave slopes), or the erosion savings incurred using 

equally stable concave slopes. This illustrates that concave slopes can reduce erosion to a much 

larger extent in climates with high precipitations and stronger rainfall intensities. 

 

Generalized results for the silt loam soil are shown in Fig. 5.6d in terms of the ratio /c pA A  and 

the stability number */sH c . Since the same RUSLE2 R and K were used in both planar and 

concave slopes, they cancel out when the results are presented in terms of /c pA A  and the only 

factor affecting differences in the soil loss is the shape of the slope profile. The use of */sH c  

enables us to represent the results of different slopes with the same degree of stability for a given 

value of * . For the range of */sH c  values investigated, /c pA A  ranges from 0.85 - 0.60 (Fig. 

5.6d), indicating that concave slopes yield 15 - 40% less sediment than their planar counterparts. 

Similar results are shown in Figs. 5.7 and 5.8 in terms of 
p cA A  and the /c pA A  ratio for *  = 

20˚ (clay soil) and *  = 35˚ (sandy loam soil) respectively. The computed /c pA A  values show soil 

loss reduction of the same order and suggest that the concave slopes proposed in this article will 

reduce sediment delivery by 15-40% regardless of soil erodibility and climate. This finding  

 



149 

 

 

Fig. 5.7. Erosion analyses for the clay soil with   = 20˚: a) difference in soil loss for the Dakota 

(dry) and Monroe (wet) Counties; b) /c pA A  vs */sH c . Units: 
p cA A  (Mg/Ha/y), R 

(MJ∙mm/ha∙h∙y), K (Mg∙ha∙h/ha∙MJ∙mm), and sH (m). 

 

 

 

Fig. 5.8. Erosion analyses for the sandy loam soil with   = 35˚: a) difference in soil loss for the 

Dakota (dry) and Monroe (wet) Counties; b) /c pA A  vs */sH c . Units: p cA A  (Mg/Ha/y), R 

(MJ∙mm/ha∙h∙y), K (Mg∙ha∙h/ha∙MJ∙mm), and sH (m). 
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is extendable to slopes having natural or artificial surface covers (C < 1) where the erosion is 

proportionally reduced for both concave and planar slopes. 

 

In Table 5.2 a comparison of the relative reduction in soil loss (1 /c pA A ) obtained here with 

values reported in the literature is offered. Although a wide range of erosion reductions were found 

there, it should be noted that the concave and planar slopes in those studies likely do not satisfy 

the equal degree of mechanical stability (FS) purposely enforced here. Similar reductions were 

obtained among the studies except for those reported by Meyer and Kramer (1969), Hancock et al. 

(2003) and Rieke-Zapp and Nearing (2005), for which the reductions were significantly higher. 

Meyer and Kramer (1969), and Rieke-Zapp and Nearing (2005) observed that an important amount 

of sediment deposition occurred at the lowest part of the concave contours, which may explain the 

higher overall reduction in sediment yield for those studies. In contrast, sediment deposition was 

not indicated in the RUSLE2 prediction obtained here. Each segment of the concave slopes 

proposed in this article is the steepest possible to satisfy mass equilibrium requirements, and 

sedimentation on the profile will likely not occur, especially at large values of * . 

 

Sensitivity to construction accuracy 

Fig. 5.9 shows results obtained from the construction sensitivity analyses for concave slopes with 

FS = DFS  = 1 ( *  and 
*c c ) for a range of *  and */sH c values, with results expressed in 

terms of the percent decrease in FS due to the construction error. Slopes with sH  ≤ Lh  were 

excluded from the analyses, since it was previously shown that their performing FS’s are higher 

than required (conservative), and they did not present stability variations below equilibrium.  
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Table 5.2 Reduction in soil loss (1 /c pA A ) from concave contours reported in the literature 

             Reference    Method Details 1 /c pA A  (%) 

Young and Mutchler (1969) Experimental Field plots 10 

Meyer and Kramer (1969) Computational USLE 0-85 

D'Souza and Morgan (1976) Experimental Laboratory 20-25 

Williams and Nicks (1988) Computational CREAMS 50-55 

Hancock et al. (2003) Computational SIBERIA 50-80 

Lee et al. (2004) Computational Hillslope Erosion 17-28 

Rieke-Zapp and Nearing (2005) Experimental Laboratory 75 

Priyashantha et al. (2009) Computational SIBERIA 50 

This study Computational RUSLE2 15-40 

 

 

 

 

 

Fig. 5.9. Decrease in FS due to low precision construction (200 mm vertical) of the concave slope. 
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The results demonstrated that the FS’s are not significantly influenced by improper construction 

within the 200 mm of vertical accuracy. The largest difference was found for slopes with * /c  = 

0.2 m, where 5 - 5.5% lower FS’s were obtained. Considering that the analyses were conducted 

with a vertical accuracy only 1/6 that which can be achieved with typical auto-guidance equipment, 

it is concluded that the stability of concave slopes is not significantly compromised by the precision 

of GPS-guided equipment. In addition, practicality suggests that during construction, the top 

vertical section will likely not be built, but will likely be rounded back to an average 2:1 (H:V) or 

similar inclination. This in turn will increase the stability and add conservatism to the slope design. 

 

Illustrative Examples 

The design of concave slopes for long-term mechanical and erosion stability is illustrated for two 

hypothetical soils in Monroe County, FL, indicating high-erosivity conditions. FEM analyses were 

conducted to verify the mechanical stability for each case. The short-term stability was checked, 

followed by erosion analyses for concave and planar slopes with equal FS. The two selected soils 

were sand (SM or SC) and a fine grained soil (ML or CL), with the assumed mechanical properties 

and design parameters for each case as shown in Table 5.3. A DFS = 1.5 was required for each 

slope. 

 

Finding the concave profile for long-term stability: 

Table 5.3 summarizes the initial steps: i) obtain *  and 
*c  with Eqs. (5.8) and (5.9); and ii) estimate 

the failure mechanism via Lh  [Eq. (5.7)] with 
*c  instead of c . The x-coordinates of the concave 

profile were then obtained by introducing *  and 
*c  in Eqs. (5.1) – (5.6) for different values of y. 
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Table 5.3 Geometry, soil properties, and probable failure mechanisms of illustrative examples 

      Step i Step ii 

Hypothetical 

soil 
DFS

 

sH  

m
 


 

(˚) 

c
 

kPa 


 

kN/m3 

*  
(˚) 

*c  

kPa 

* /c   

m 

Lh  

m 
Condition 

Predicted  

failure 

Sand  

(e.g. SM or SC) 
1.5 15

 
35 15 19 25.02 10.00 0.53 8.6 sLh H  

Face failure  

FS ≈ 
DFS  

Fine grained 

(e.g. CL or ML) 
1.5 30 25 35 17 17.27 23.33 1.37 22 sLh H  

Face failure 

FS ≈ 
DFS  
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For the sandy slope, 
Lh  = 8.6 m < 15 m and the concave slope will have a face failure mechanism 

with a performing FS ≈ 
DFS = 1.5. Verification of this condition was provided via FEM analysis 

(Fig. 5.10), which yielded FS = 1.51. The equivalent planar slope with FS = 1.5 is depicted with 

dashed lines in Fig. 5.10. Similarly, the fine grained slope has a face failure (
Lh  = 22 m < 30 m). 

In this case, since *  < 20˚ a small error was introduced and the FEM analysis indicated a FS = 

1.45. Note that the horizontal extent of the concave and planar slopes is similar, but there is less 

material involved in the concave slope. Since an analytical expression for the concave slope is now 

available, this could be incorporated into standard cut and fill balance calculations. On projects 

with significant cut slopes, the additional excavation may increase costs. However, on fill slopes 

and embankments, and especially in mine reclamation where a shortage of material is common, 

the construction of concave slopes could be an advantage and provide the benefit of more natural 

looking slopes and lower sediment loads. 

 

Checking the short-term stability of the concave slope: 

A conservative verification can be made using Fig. 5.5. For the sandy slope (  = 35˚ and *  = 

25˚), 
s cry H h  = 13.4 m and */y c = 25.4. From Fig. 5.5, min */ )( DuS c FS  = 5.5, and thus the 

long-term stability of the sandy slope will govern as long as min

uS  ≥ 83 kPa. Similarly, for the fine 

grained soil y  = 26.3, */y c = 19.2, and the long-term stability will govern provided that min

uS

≥ 150 kPa. 
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Fig. 5.10. Example case for sandy soil:   = 35 ˚, c  = 15 kN/m2,   = 19 kN/m3 and sH  = 15 m. 

Required FS = 1.5. Shear strains showed for SRF = 1.52 to emphasize failure mode. 
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Erosion analyses: 

Total soil loss was computed for low and high erodibility values for each soil texture (Table 5.4) 

for the Monroe County, FL weather conditions. The results (Table 5.4) reveal that the sandy 

concave slope yields on average 24% less sediment than its planar counterpart. Similarly, the fine 

grained concave slope yields on average 35% less sediment than a planar slope with the same FS. 

 

Conclusions 

Concave slopes not only resemble natural contours, but also have superior erosion resistance. The 

design of concave slopes requires: a) the definition of concave shapes that provide a desired FS, 

b) a quantitative measure of the erosion/sediment delivery reduction, and c) determination of 

possible loss of mechanical stability due to improper construction. In this article: 

 An approximate expression was described to provide the coordinates for concave slopes that 

satisfy a desired FS (long-term conditions) for any combination of  , c ,   and sH . The 

methodology was shown to be conservative for *  > 20˚, but provided slightly non-

conservative values of design FS for cases with *  < 20˚. The errors introduced by the 

methodology are less than ±6% for the majority of the cases, which is smaller than the accuracy 

to which the strength parameters are typically determined. 

 A simplified graphical solution was developed to estimate the required undrained shear 

strength min

uS  such that the design long-term (  > 0) stability is assured. The value of min

uS  for 

concave slopes is obtained as a function of the effective strength parameters. 

 Results from RUSLE2 analyses indicate that the concave slopes proposed here yield 15-40% 

less sediment than planar slopes of equal FS, regardless of soil erodibility and weather 
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Table 5.4 Soil parameters and results from erosion analyses of illustrative examples 

Soil 
*  

(˚) 
* *

1 sH

N c


  

R 

(MJ∙mm/ 

ha∙h∙y) 

K 

(Mg∙ha∙h/ 

ha∙MJ∙mm) 

cA  

(Mg/Ha/y) 

1 c

p

A

A
   

% avg 

Sand  25.02 28.5 10,500 
0.026 557 22 

24 
0.037 748 25 

Fine 

grained 
17.27 21.8 10,500 

0.037 1348 34 
35 

0.057 2347 37 
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conditions. Although the analyses were conducted on slopes with 
DFS  = 1, the findings are 

valid for slopes with other FS’s, as shown in the illustrative example. 

 Results from the sensitivity analyses reveal that the stability of concave slopes is not 

significantly influenced by errors in the constructed profile of as great as 200 mm of vertical 

deviation. Therefore, the stability is not compromised when typical high accuracy GPS 

construction equipment is employed for concave slope construction. 

The reduction of sediment delivery from constructed slopes is an important consideration in 

limiting environmental impact during land reclamation and site development. The proposed 

method suggests a rational design procedure which makes concave slopes an attractive eco-

technical alternative for more sustainable and natural appearing earthwork construction.  
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Abstract 

While manmade slopes are traditionally constructed with planar cross sections, natural stable 

slopes are usually curvilinear rather than planar. These curvilinear slope shapes with significant 

concave portions are obtained as a result of evolutionary processes where entropy is maximized 

through slope shape adjustments. Evidence suggests that this adjustment results in equilibrium 

between rain-driven erosion and sediment transport, yielding stable concave slopes with relatively 

constant shapes. This equilibrium shape is characterized by a parallel retreat with a uniform erosion 

rate over time. Concave slopes are more likely to maintain stable profiles than are planar slopes, 

where large amounts of soil are removed and delivered during the process of erosion equilibrium 

adjustment. Since a truly stable slope must be stable in terms of both mechanical and erosion 

processes, it becomes important to describe concave slopes in rainfall-erosion equilibrium and 

evaluate their mechanical stability. In this article concave profiles in rainfall erosion equilibrium 

are identified and described based on the well-known RUSLE2 model. Results indicate the 

existence of a family of potential slope shapes satisfying the condition of uniform erosion rate 

along the slope. Making use of the critical slope contour concept for a given mechanical soil 

strength, those steady concave shapes that also satisfy long-term stability are investigated. A true 

steady-state equilibrium slope is obtained when both erosion equilibrium and long-term 

mechanical stability are achieved. This suggests that concave slopes can be constructed to achieve 
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both minimal steady-state erosion equilibrium as well as mechanical stability, leading also to more 

“natural” landforms. Constructing slopes to reflect these stable shapes will provide more 

aesthetically pleasing results and minimize sediment delivery during initial slope adjustment. 

 

Introduction 

Concave profiles have been presented as a way to optimize mechanical stability and water erosion 

resistance of slopes (Jeldes et al. 2014, Jeldes et al. 2013). In that work, efforts were concentrated 

on a) defining mechanically stable concave contours with a controlled degree of stability, and b) 

quantifying their effectiveness in reducing erosion and sediment delivery while meeting mass 

equilibrium requirements. This approach results in slopes that appear more natural, and constitutes 

an eco-technical solution to the design of slopes as a function of geotechnical parameters familiar 

to engineers. While effective in reducing erosion and providing mechanical stability, these concave 

profiles may not be in equilibrium from an erosion perspective. Evidence exists that natural fluvial 

systems seek erosion and sediment transport equilibrium, and in doing so may adjust their 

geometry in order to achieve a steady-state form (Yang and Song 1979) that will be somewhat 

unchangeable over time. This shape is usually referred as an equilibrium shape, with a concave-

like form characterized by a parallel retreat (Penck 1953, Schumm 1956, Twidale 2007). In other 

words, man-made slopes (e.g., planar slopes) undergo continuous changes in slope morphology 

triggered by water erosion forces in order to ultimately achieve this equilibrium condition. During 

this process large amounts of soil are eroded. 

 

Geomorphological evolution toward an erosion equilibrium state does not imply that the resulting 

slopes are mechanically stable. A true equilibrium state will be achieved only when both erosion 
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equilibrium and long-term mechanical stability are satisfied. The unchangeable shape and the 

minimization of sediment delivery to a relatively constant rate are attractive characteristics that 

can positively impact the way slopes are constructed, and can promote a more natural and 

“sustainable” design. The question becomes whether we can describe fully sustainable slopes, 

where both erosion and mechanical equilibrium requirements are met. 

 

In this article the concept of steady-state landforms is explored, and from a conceptual perspective, 

the changes in slope morphology toward a concave erosion equilibrium shape are described. Based 

on the fundamentals of the RUSLE2 erosion model, concave profiles in water erosion equilibrium 

are identified and described, and a simple approach to discern between long-term mechanically 

stable and unstable erosion equilibrium shapes is proposed for any given combination of soil 

stresses and strength. A definition of the approximate limiting erosion rate at which equilibrium 

erosion shapes become mechanically stable and thus sustainable is explored, and a mathematical 

expression to obtain this limiting erosion rate is offered as a function of the Mohr-Coulomb 

parameters. 

 

Background  

Concave profiles as erosion equilibrium shapes 

In nature slope profiles are rarely uniform, but are usually curvilinear. This seems to be the result 

of a natural geomorphological evolution process of streams and slopes, where an optimum 

equilibrium profile is sought (Schor and Gray 2007). According to Leopold and Langbein (1962), 

the distribution of the energy in a fluvial system tends toward a state of maximum entropy, which 

is characterized by a uniform energy dissipation, where the same energy dissipation is experienced 
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at each point in the landscape (Miyamoto et al. 2005). Leopold and Langbein (1962) showed that 

the most probable longitudinal profile in a fluvial system is concave. Later studies have validated 

Leopold and Langbein’s ideas (Molnár and Ramírez 1998, Rodríguez-Iturbe et al. 1992, Yang and 

Song 1979), but also have introduced new concepts such as minimum entropy production as a 

characteristic of steady equilibrium of a geomorphic system (Miyamoto et al. 2005), and the 

concept of minimum rate of energy dissipation experienced by equilibrium shapes (Yang and Song 

1979). According to Yang and Song (1979), if fluvial systems deviate from an equilibrium state, 

the properties of slope inclination, roughness, channel geometry, and flow velocity will experience 

continuous adjustments in order to again achieve the steady equilibrium state. Other authors have 

also proposed concave profiles as the equilibrium or steady shape in fluvial systems (Goldrick and 

Bishop 2007, Larue 2008, Smith et al. 2000, Snyder et al. 2000).  

 

Steady concave shapes have also been proposed as the result of hillslope evolution. According to 

Pelletier and Rasmussen (2009), slopes in more humid areas tend to be more complex in cross 

section (concave slope with convexity at the upper portion), while slopes in more arid regions tend 

to have concave forms. According to Schumm (1956), complex slope shapes are formed mainly 

by gravity driven forces, since in humid areas soils are usually covered by thick vegetation and the 

role of water erosion is reduced. On the other hand, when the slope surface is affected by rainfall 

driven erosion, the formation of concave equilibrium slopes is expected (Schumm 1956), and, at 

the point of equilibrium, parallel or lateral slope retreat occurs where the equilibrium concave 

shape is maintained over time (Nash 1980, Pelletier and Rasmussen 2009, Schumm 1956). The 

equilibrium shape is characterized by a uniform rate of erosion everywhere on the slope profile 

(Hack 1960, Montgomery 2001). Twidale and Milnes (1983) proposed that parallel retreat in 
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concave slopes occurs sequentially in a series of soil movement stages starting from the slope toe 

and evolving upward until the same slope concavity shape is formed again. 

 

This geomorphology concept of a steady-state condition is not exempt from criticisms. Bracken 

and Wainwright (2008) reviewed several methods employed to measure geomorphological 

equilibrium, and conclude that all are flawed. They also argued that the lack of a precise definition 

of the spatial and temporal scales in geomorphology evolution makes many of the ideas related to 

steady forms untestable. Phillips (2011) states that even though steady-state conditions are 

sometime observed in nature, it is not a realistic representation of how geomorphologic evolution 

works in general. He also suggests that the idea of concave profiles as the equilibrium shape in 

fluvial systems is not well supported by empirical or theoretical evidence, casting doubt upon the 

Yang and Song (1979) concept of continuous system adjustments to reach equilibrium. 

Nevertheless, the fact that geomorphological studies cannot explain or include each and every 

single variable involved in this very complex behavior does not imply that they explain nothing. 

As Phillips (2011) recognized, steady-state assumptions have been useful in interpreting and 

modeling the evolutionary behavior of earth systems. Furthermore, there is a universal tendency 

for all natural processes--including geomorphological systems--to adjust and readjust themselves 

to dynamic equilibrium, i.e., through continuous adjustments between processes like erosion and 

soil resistance (Abrahams 1968, Ahnert 1994). Through these dynamic adjustments, steady-state 

landform shapes may be obtained (Abrahams 1968, Thorn and Welford 1994). Steady-state forms 

may indeed be dependent on the time scale and require unchanging boundary conditions (Thorn 

and Welford 1994), but if any external agent disturbs this steady equilibrium condition dynamic 
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adjustments will exist, so that the system will be naturally reshaped to re-obtain the steady-state 

form. 

 

Slope shape evolution and equilibrium profiles: A conceptual model 

Considering that slope water erosion is a process involving water flow and sediment transport, the 

generalized principle of minimum rate of energy dissipation (Yang and Song 1979) may be used 

to explain the concept of steady-state equilibrium shapes and parallel retreat observed in slope 

evolution. Here, a simple conceptual model that attempts to explain the changes in morphology of 

slopes actively eroded by water is offered. For a slope in an initial un-balanced state (e.g., a planar 

slope), continuous changes in the slope geometry and water flow velocities are expected in order 

for the system to adjust and reach equilibrium. In this process, the overall erosion rate would 

gradually decrease until a constant rate of erosion along the profile is achieved. The evolution 

toward a constant rate of erosion implies a reduction in the difference in energy entering and 

leaving the system with respect to a previous point in time, eventually reaching a minimum. 

According to Hack (1960), the steady-state equilibrium of the landscape requires the existence of 

“opposing forces” counteracting and balancing each other, such that energy dissipation can exist. 

As it is explained in the following paragraph, these “opposing forces” can conceptually be the 

slope length and slope angle. 

 

Erosion increases with slope length through the increase in cumulative runoff. The effectiveness 

of that runoff in detaching sediment or in transporting eroded sediment depends, however, not only 

on the amount of runoff, but also on its turbulent energy, which for a defined surface condition is 

determined by the slope steepness. This means that on a planar slope the detachment and transport 
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rates will increase (Fig. 6.1), as the steepness is constant but the slope length is increasing (Young 

and Mutchler 1969). In contrast, on a concave slope the steepness decreases with increased slope 

length, so the increase in detachment and transport potential due to the increased slope length may 

be counteracted by the reduction due to decreased steepness. This is consistent with Hack’s (1960) 

idea of opposing effects balancing each other. This natural morphology evolution process toward 

a concave slope requires a combination of soil detachment along the contour and soil deposition 

at the slope base (Fig. 6.1) until an equilibrium state is reached, where the concave geometry will 

experience a constant detachment and transport rate at every point along the slope. At this stage, 

the slope profile will not suffer further adjustments and the slope will start eroding backwards in 

a parallel retreat fashion as illustrated in Fig. 6.2. If the slope deviates from this equilibrium state, 

the system will again experience continuous adjustments such that the steady equilibrium state is 

reached again.  

 

Notice that over time, the sharp edge at the top of the slope may be naturally shaped to a convex 

form (Fig. 6.2), yielding a more complex slope contour as seen in many natural landscapes in more 

humid areas. It is not clear if this convexity is formed due to high erodibility soil conditions 

triggered by runoff coming over the top edge that would infiltrate and saturate the soil, or due to a 

series of small mechanical failures given the steepness of the contour and the effects of transient 

flow through the top edge. Since the mechanisms behind the formation of convexity at the upper 

portion of the slope are not fully understood, this effect is not included in the development of the 

model in the subsequent sections. 

 

 



172 

 

 

 

Fig. 6.1. Conceptual model of slope morphology evolution by water erosion. 

 

 

 

 

 

 

 

Fig. 6.2. Illustration of the parallel retreat concept. The sharp edge at the top of the slope may be 

naturally eroded (becoming convex) if there is runoff coming over the top edge of the slope. This 

effect is not included in the proposed model. 
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Methodology 

Conceptual Development 

From the previous discussion it can be inferred that physical processes may shape slopes into 

steady concave profiles, and it will be assumed that concave profiles represent a topographic 

equilibrium condition that is more likely to remain steady over time than for planar profiles. Here, 

our efforts are not concentrated on modeling the time-scale geomorphological evolution of slopes, 

but rather on describing the equilibrium shape that will provide a parallel retreat. In this vein, once 

the concave equilibrium shape has been developed the main mechanism inducing parallel retreat 

is erosion, and therefore, soil deposition will not be included in this model. 

 

As described above, the steady-state concave shape is characterized by a uniform water erosion 

rate. However, there are many potential concave profiles that can satisfy this condition, and the 

steady-state shape may not be unique. This may be explained using the widely recognized Revised 

Universal Soil Loss Equation RUSLE2 (USDA-ARS 2008): 

 A R K LS C P      (6.1) 

where the predicted soil loss A (units of / /Mg ha y ) is directly proportional to: the rainfall 

erosivity R (units of /MJ mm ha h y   ) quantifying the rainfall’s erosive potential; the soil 

erodibility K (units of /Mg ha h ha MJ mm    ) defining the soil’s susceptibility to that erosivity; 

the topographic factor LS (dimensionless) representing slope length and steepness effects; the 

surface cover factor C (dimensionless); and the conservation practices factor P (dimensionless). 

To observe solely the influence of the landscape topography or slope shape on the erosion rate, let 

us assume that all the variables remain constant across the landscape except the topographic factor 
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LS, which corresponds to the combined action of the slope length factor L and the slope steepness 

factor S. The length factor is not a function of the length along the profile, but of the slope 

horizontal length . The steepness factor is a function of the angle of the slope with respect to the 

horizontal, and it varies in form depending on the relative values of steepness and horizontal slope 

length. The longer the horizontal slope length, the higher the observed erosion rate. Similarly, the 

steeper the slope, the higher the erosion rate. Since in a planar slope the steepness is constant, the 

erosion rate will uniformly increase downslope due to the increasing slope length. Fig. 6.3 

illustrates the erosion rate experienced by four different points on a planar slope profile having 

bare soil surface conditions, assuming that all other inputs are equal to one in order to display the 

relative position differences. At the very top of the slope erosion is mainly controlled by raindrop 

detachment (sheet erosion), and the erosion rate will be proportional to the slope angle. At this 

point, little erosion is observed. As the runoff moves downslope it starts accumulating sufficient 

energy to detach soil particles, with that energy directly proportional to the runoff length and the 

slope angle. Thus, at point 1 on the profile, the experienced erosion rate 
1pA  will be equal to the 

product of the length factor 1pL  (function of the horizontal slope length 
1p ) and the steepness 

factor S (function of the slope angle  ). Further down the slope runoff gains more energy due to 

greater cumulative flow rate, and therefore the erosion rate at point 2 will be greater than at point 

1 (
2 1p pA A ). Analogously, the erosion rate at point 3 will be greater than at point 2, and the result 

is an uninterrupted increasing erosion rate downslope (
3 2 1 0p p p pA A A A   ). 
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Fig. 6.3. Erosion rates experienced by a planar profile as modeled by RUSLE2 perspective. 
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On the other hand, what if any increment in slope length is compensated with a decrease in the 

slope angle in such a way that the erosion remains equal along the profile? This would be the case 

if the value of i iL S  is constant for all segments. The resulting shape of this compensation process 

would be concave with a constant rate of erosion along the profile. Notice that the whole erosion 

phenomenon starts at the uppermost point of the slope, where only sheet erosion exists, and sheet 

erosion is a function only of the slope angle. Different initial slope angles will yield different initial 

rates of erosion, resulting in different subsequent downhill combinations of lengths and angles in 

order to achieve the same rate of erosion everywhere. Thus, many concave shapes may satisfy the 

condition of constant rate of erosion, each with a different level of constant erosion controlled by 

the assumed angle of the top segment. Fig. 6.4a shows a profile with an initial angle 0h  at the top 

of the slope and an initial erosion rate 0 0( )h hA S  . To maintain this erosion production constant 

along the profile ( 0 1 2 3h h h hA A A A   ), the angle of the slope i  must continuously decrease. 

Notice the erosion at i  needs to be a function of iL  and iS , which in turn are functions of i  

and i  respectively ( [ ( ) ( )]i i i if L S  ). Fig. 6.4b shows a profile initially inclined at 0m  at the 

top. Since 0 0  m h   the initial erosion rate for this case will be 0 0m hA A , and the adjustment 

process to achieve a constant erosion rate will yield a profile somewhat less steep. Similarly, the 

case illustrated in Fig. 6.4c corresponds to an even gentler concave profile, due to an even smaller 

initial rate of erosion 0lA . Notice that for the same soil strength an increase of mechanical stability 

from case a) to case c) is perceived due to the decrease in overall inclination. 
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Fig. 6.4. Illustration of a potential family of concave slopes with constant rate of erosion: a) high 

rate, b) intermediate rate, and c) low rate. 
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RUSLE2 approximation to steady-state concave slopes 

Normalized rate of erosion and equations for LS 

Following this conceptual idea, different levels of constant erosion will determine the concavity 

of the slope profile, starting from the initial angle at the top of the slope. To approach this problem, 

let us first modify Eq. (6.1) and define a normalized erosion rate nA  such that the amount of 

erosion is identical to the topographic factor LS: 

 
n

R

A
LS

K P
A

C 



  (6.2) 

Notice that in reality R K C P    is not truly constant over time. For example, the cover factor C 

right after construction of a hillslope will be one (highly erodible and disturbed conditions), but as 

the soil starts consolidating and vegetation starts growing on the slope surface, the factor C starts 

decreasing. However, it is difficult to predict how C will change over time, and therefore, C is 

assumed to be constant. Also, notice that nA  is a dimensionless quantity of erosion and LS is a 

function of slope length and slope angle [ ( , )LS   ]. For horizontal slope lengths    0.92 m         

(3 ft) LS is defined as (USDA-ARS 2008): 

  0.84.6
3 sin( ) 0.56

22.1

m

LS 
 

    
 

 (6.3) 

where   is the slope angle measured in degrees. The factor m in Eq. (6.3) is called the slope length 

exponent, and can be calculated as follows (Foster et al. 1977): 

 
1

m






 (6.4) 

where   is the ratio of rill to inter-rill erosion defined as (McCool et al. 1989):  

 
0.8

sin( ) / 0.0896

3 sin( ) 0.56







 
 (6.5) 
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For    4.6 m (15 ft) LS is computed as: 

 

 

10.8 sin( ) 0.3  ,   5.1
22.1

,  with  in m (SI units)

16.8 sin( ) 0.5   ,  5.1
22.1

m

m
LS


 




 

 
     

 
 

 
     
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 (6.6a) 

 

 
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72.6

,  with  in ft (U.S. customary units)
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72.6

m

m
LS


 




 

 
     

 
 

 
     

 

 (6.6b) 

For slope lengths of 0.92- 4.6 m (3 - 15 ft), the algorithm employs a linear interpolation between 

the natural logarithm of Eq. (6.3) and the natural logarithm of Eq. (6.6) with   = 4.6 m (15 ft) to 

calculate intermediate values of LS (USDA-ARS 2008). Notice that Eq. (6.3) is not a function of 

the slope length , and the same erosion is computed at any point of the profile that is shorter than 

0.92 m (3 ft). This is because only sheet erosion is observed for short flow lengths (Meyer and 

Harmon 1989). 

 

Discretization of the concave slope profile with linear segments of equal erosion rate 

By assuming that a concave slope can be obtained from the assembly of a discrete number of small 

linear segments (Fig. 6.5) where the same erosion rate holds on every segment of the entire length, 

a selected initial erosion rate 
1

nA  can be employed to determine the angle of the first linear segment 

1  at the top of the slope. From this point forward, each subsequent segment must produce on 

average the same amount of erosion 
1

nA  on the segment’s length: 

 
1

n ni
i

i

p
A A

x
   (6.7) 
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Fig. 6.5. Discretization of the slope profile in small linear segments. 
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Here n

iA  and ip  are the erosion rate and the erosion production at the i-th segment respectively, 

and ix  is the horizontal length of the i-th segment. The erosion production is defined as the 

product of the total erosion and the total horizontal distance at a particular point in the profile. 

Therefore, ip  becomes the subtraction of the erosion produced at the initial and final points of the 

i-th segment (Fig. 6.5). Making use of Eq. (6.2), ip  can be expressed as: 

 1 1 1( , ) ( , )i i i i i i ip LS LS            (6.8) 

Subsequently, the erosion rate at the i-th segment becomes: 

 1 1 1
1

( , ) ( , )n ni i i i i
i

i

iLS

x

LS
A A

        





  (6.9) 

Having a known initial erosion 
1

nA  and making the length of the first slope segment 1 1x   = 0.92 

m (since below this point erosion calculations are invariant), 1  can be determined, and with it the 

coordinates of the end point of the first segment using simple trigonometry, with the initial point 

as the origin of the coordinate system (Fig. 6.5). To obtain the coordinates of the second segment, 

Eq. (6.9) can be employed. Here, 2 1 x    ( x  is the selected horizontal length of each 

subsequent linear segment) and 
2 1

n nA A , so 2  is the only remaining variable. Notice that 1i   is 

always known, and therefore i  is the only variable to be determined. Repeating this process, the 

angle of all the subsequent segments can be determined along with the associated (x, y) coordinates 

of each point, with  corresponding to the x coordinate. Notice that in the selected reference frame 

the x-axis is positive to the right and y-axis is positive downward. Given the recursive nature of 

the proposed methodology and the non-linearity of the RUSLE2 LS equations, a numerical solution 

for i  was created. 
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Since at the top of the slope (   0.92 m) the erosion is dominated by raindrop detachment, the 

prediction of the slope contour results on a linear segment. However, here the overland flow path 

length is not important, and the linear shape of the first segment can be arbitrarily modified such 

that it preserves the overall slope shape predicted for  > 0.92 m (3 ft). A third-order polynomial 

of the form 

 
3 2( )V a b c d           (6.10) 

was chosen to construct a cubic spline for [0, 0.92 m]. The boundary conditions are: 

 ( ) 0,  at 0V     (6.11) 

 1 1( ) 0.92 tan( ) at 0., 92 m (3 t) fV x        (6.12) 

 2 1

( )
tan( ) at 0.92 m (3 ft),  

dV
x

d


 


     (6.13) 

To satisfy a continuity condition,  

 

2

12

( )
0 at 0.92 m (3 ft),  

d V
x

d





     (6.14) 

After imposing these boundary conditions on Eq. (6.10), the problem becomes a linear system of 

equations that will provide the resulting values of a, b, c, and d, defining the polynomial function. 

Different functions are obtained for different initial erosion rates 
1

nA . 

 

Sustainable slopes: mechanical and erosion stability 

The approach described above produces a family of concave profiles that satisfy the water erosion 

equilibrium condition. However, a truly stable slope must be stable in terms of both mechanical 

and water erosion processes. Employing the critical slope contour approximation proposed by 

Jeldes et al. (2013)  those steady concave shapes that also have long-term stability for a given 
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mechanical soil strength defined by the Mohr-Coulomb parameters of friction angle  , cohesion 

c , and unit weight   were investigated, using the relationship 
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 where: 
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y y   (6.18) 

 cotH c   (6.19) 
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
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


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In these relationships H  is the tensile strength of the soil, 1 sin ) / (1 sin )(aK     is the 

Rankine active coefficient of earth pressure, 
y  is the geo-static vertical stress, and crh  is the 

height of the tension zone. The equation describes a slope contour in the quadrant with x-axis 

positive to the right and y-axis positive downward, with crh  lying above the x-axis (Jeldes et al. 

2013). In many instances the sharp cusp at the origin of the coordinate system (Fig. 6.6) would not 

exist, but it is maintained to be consistent with the theoretical mathematical solution. 

 

Slopes in erosion equilibrium (for given values of 
1

nA ) that are less steep than the critical slope 

Eqs. (6.15) - (6.20) are mechanically stable, while steeper ones are unstable. This idea is further  
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Fig. 6.6. Illustration of steady-state or sustainable slope (profile 1) and a non-equilibrium slope 

with cyclic morphology changes (profile 2). 
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illustrated in Fig. 6.6, where two different slopes in erosion equilibrium are shown for a soil 

defined by a unique combination of ,  ,  and c  . Here, slope profile 1 satisfies both the erosion 

and mechanical equilibrium requirements, and therefore becomes a sustainable slope with a 

steady-state shape over time. Profile 2, on the other hand, only satisfies erosion equilibrium and 

mechanical failures are expected, which would alter the erosion equilibrium shape. However, 

natural adjustments may bring the slope to a new erosion equilibrium state, which if not 

mechanically stable, will repeat the failure and natural re-shaping process, creating cyclic changes 

in morphology over time. 

 

Results and Discussion 

Concave slopes with constant rate of erosion 

A family of concave slopes with constant rates of erosion (
1

nA  = 0.506 to 1.068) along the profile 

is shown in Fig. 6.7. These concave slopes are the result of a numerical solution of Eqs. (6.9) – 

(6.14), with x = 0.03 m (0.1 ft). The chosen discretization length was selected to be small enough 

such that the ratio 1/i i    remained within the 0.9 – 0.99 range for the majority of slope length. 

The computations stopped once i  fell below 3°. In this family of profiles there is a clear increase 

in the overall slope steepness as 
1

nA  increases. The overall steepness, defined as the slope of the 

straight line that connects the top and the bottom of the slope, increases at a much faster rate for 

1

nA   1 (Fig. 6.8). This means that the predicted equilibrium concave profiles are more sensitive 

to values of 1LS  . Although the entire family of profiles is in erosion equilibrium (equal erosion 

rate along the profile), these concave slopes may or may not be mechanically stable, so their 

stability must be analyzed based on the critical concave slope concept.  
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Fig. 6.7. Family of concave slopes with constant rate of erosion (equilibrium erosion profiles). 

 

 

 

Fig. 6.8. The overall steepness (defined as the slope of the straight line that connects the top and 

the bottom of the profile) increases at a much faster rate for 
1

nA   1, as denoted by dashed line. 
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Notice that in the analyses the constant erosion is implied for the whole extent of the concave 

slope. In reality, when the concave slope encounters a relatively horizontal surface (e.g., at the 

bottom of the slope), part of the detached soil is deposited. For erosion to occur along a slope, the 

transport capacity of the flow (
cT ) must be greater than its sediment load ( q ). Transport capacity, 

which is a measure of how much sediment the runoff can carry, is a function of the kinetic energy 

of the flow, which decreases as the slope becomes less steep. When the flow reaches a relatively 

flat area, 
cT  becomes less than q , and the flow is not capable of detaching new soil nor transporting 

the eroded soil, leading to deposition. Even though the employed equations do not capture this 

effect, the eroding portion of the profile will not be affected by deposition at the bottom end of the 

slope, so, the predicted profile with constant erosion rate would remain as predicted. 

 

Sustainable slopes 

Fig. 6.9 illustrates the sustainable slope concept for a medium soft clay soil with   = 20˚ and /c   

= 1 m. Using Eqs. (6.15) - (6.20), the critical concave slope (FS = 1) for this specific soil was 

determined and plotted together with the erosion equilibrium shapes. For the purpose of this 

comparison, the vertical tension zone of height 
crh  is not displayed. The results suggest that, for 

this specific soil erosion equilibrium slopes with 
1

nA   1.05 would be mechanically stable, and 

therefore would be sustainable with steady shapes over time. On the other hand, equilibrium 

concave shapes with 
1

nA  > 1.05 (shown with dashed lines in Fig. 6.9) are likely to experience 

mechanical failures, and changes in morphology may be observed. A second case is illustrated in 

Fig. 6.10 for a sandy soil with   = 30˚ and /c   = 0.5 m. This time erosion equilibrium shapes 
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Fig. 6.9. Erosion equilibrium profiles and a critical concave contour for   = 20˚ and /c   = 1 m. 

Concave slopes with 
1

nA   1.05 are considered sustainable. 

 

Fig. 6.10. Erosion equilibrium profiles and a critical concave contour for   = 30˚ and /c   = 0.5 

m. Concave slopes with 
1

nA   1.039 are considered sustainable. 

  



189 

 

with 
1

nA   1.039 will be sustainable, while concave shapes with 
1

nA  > 1.039 will not. Note that 

1

nA = 1.05 and 1.039 are approximated limiting values ( n

LA ) that separate sustainable and non-

sustainable concave slopes for the given soil mechanical properties. Similar chart results are shown 

in Fig. 6.11 for a wide range of mechanical soil properties (  = 20˚, 25˚, 30˚, 35˚ and 40˚; /c   = 

0.5, 0.75, 1, 1.5, 2 and 3 m). Generalized values of n

LA  are shown in Fig. 6.12 as a function   and 

/c  . From this chart, the following approximation for n

LA  is proposed: for the range of 
1

nA ,  , 

and /c   investigated here, concave erosion equilibrium slopes will be sustainable if: 

 
1 0.02 ln[tan( )] 0.01 1.06nA

c

c





     (6.21) 

In practice, slopes are rarely designed for mechanical stability with FS = 1, and some additional 

margin of safety is desired. Depending on the conditions and the impact of potential failure, slopes 

are designed for a minimum FS  always greater than 1. The concept of sustainable slopes is 

extended in Figs. 6.13, 6.14, and 6.15 by introducing critical concave contours with FS  > 1 (Jeldes 

et al. 2014). Fig. 6.13 shows erosion equilibrium slopes and a concave contours satisfying FS  

=1.25, for   = 20˚, 25˚, 30˚, 35˚ and 40˚; and /c   = 0.5, 0.75, 1, 1.5, 2, and 3 m. Erosion 

equilibrium slopes less steep than the critical contour for a given set of    and /c   will not only 

be sustainable, but also their shear strength along the most critical failure surface would be at least 

25% greater than that required to maintain mechanical equilibrium in the long-term. Similar charts 

for FS = 1.5 and 1.75 are shown in Figs. 6.14 and 6.15, respectively. 
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Fig. 6.11. Erosion equilibrium profiles and a critical concave contour for  = 20˚, 25˚, 30˚, 35˚, 

40˚ and /c   = 0.5, 0.75, 1, 1.5, 2, 3 m. 
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Fig. 6.12. Limiting values of erosion ( n

LA ) defining sustainability. 
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Fig. 6.13. Erosion equilibrium profiles and a concave contours with FS = 1.25, for  = 20˚, 25˚, 

30˚, 35˚, 40˚ and /c   = 0.5, 0.75, 1, 1.5, 2, 3 m. 
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Fig. 6.14. Erosion equilibrium profiles and a concave contours with FS = 1.5, for  = 20˚, 25˚, 30˚, 

35˚, 40˚ and /c   = 0.5, 0.75, 1, 1.5, 2, 3 m. 
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Fig. 6.15. Erosion equilibrium profiles and a concave contours with FS = 1.75, for  = 20˚, 25˚, 

30˚, 35˚, 40˚ and /c   = 0.5, 0.75, 1, 1.5, 2, 3 m. 
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In this article, the argument that slopes in nature are seldom planar, and concave contours are 

naturally formed as a result of evolutionary processes that seek erosion equilibrium has been 

presented. Therefore, why must constructed slopes be planar? The results presented here suggest 

that concave slopes can be constructed to achieve both minimal steady-state erosion equilibrium 

as well as mechanical stability. The desired slope profile could be selected by balancing erosion 

rates and desired mechanical stability for specific site conditions and regulation requirements such 

as discharge into sensitive waterbodies, highly erodible soils, and space limitations. Then, Figs. 

6.13, 6.14, and 6.15 can be used as design tools for the construction of slopes reflecting more 

natural landforms, while minimizing sediment delivery during initial slope shape adjustments. If 

this is done, erosion and sediment control activities to handle the eroded sediment can be less 

rigorous. The increasing precision of GPS-based construction equipment suggests that such 

complex landforms can be now achieved with high accuracy, while deviations in the constructed 

slope profile due to typical construction inaccuracies do not compromise the stability of concave 

slopes (Jeldes et al. 2014). With the current construction technology, sustainable concave slopes 

can become more than a theoretical exercise. 

 

Limitations of this work 

The methodology presented here has limitations that must be acknowledged. First, the topographic 

equations of RUSLE2 provide the fundamental prediction of erosion equilibrium slopes. RUSLE2, 

however, is defined for slope angles equal to or less than 45°, while in this analysis initial erosion 

rates sometimes requiring an initial angle (angle of the first segment 1 1x   = 0.92 m) exceeding 

this definition were used. For example, the erosion equilibrium slope defined for 
1

nA = 0.927 
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requires an initial angle of 50°, while the one defined for 
1

nA = 1.068 requires an initial angle of 

80°. In this sense, the limits of the empirical basis on which RUSLE2 was developed have been 

stretched. However, as the flow path crosses the   = 0.92 m limit, the angles rapidly decrease and 

fall below the 45° definition (Fig. 6.16). Notice that the angles of the concave slope with the highest 

erosion rate (
1

nA = 1.068) reach 45° at x = 1.3 m, and therefore the assumption that RUSLE2 holds 

for  > 45° only affects a small portion of the slope. Future empirical work on slopes steeper than 

45° with short flow paths is required to validate the solution for such steep initial segments.  

 

In addition, natural slopes often include a convex portion at the top, which may be the result of 

runoff coming over the top edge of the slope, increasing the soil detachment on a section that 

otherwise is only affected by sheet erosion. This effect was not included in this model, and future 

work is needed to understand and model this complex mechanism. 

 

Finally, this approach does not consider the effects of transient subsurface flow, nor the short-term 

stability of sustainable slopes. However, once the desired sustainable concave shape has been 

selected, the effects of transient ground water flow can be investigated using commercial slope 

stability software. Similarly, the short-term stability could be evaluated once the site specific 

undrained shear strength has been determined. The use of sustainable concave slopes in practice 

will not only provide more aesthetically pleasing results, but also contribute to the growing need 

for environmental-friendly techniques for landform construction and sustainable land management 

for agricultural development. 
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Fig. 6.16. Computed slope angles vs horizontal slope length. 
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Conclusions 

Natural landforms adjust their shape over time in order to seek erosion and sediment transport 

equilibrium. The resulting equilibrium shape is usually concave with a uniform erosion rate along 

the profile. In theory, this equilibrium shape would not suffer further adjustments, so the total 

erosion production is minimized. In this article, a conceptual model was offered attempting to 

explain how concave equilibrium shapes slopes are formed in nature. Also from a conceptual 

perspective, it was shown that the equilibrium shape may not be unique, and a family of potential 

slope shapes can exist according to the level of constant erosion the slope experiences. 

 

Using the fundamentals of the widely recognized RUSLE2 model, a set of equations to describe 

concave slopes in erosion equilibrium at different levels of constant erosion was developed. The 

resulting concave profiles were compared with critical concave slopes ( FS = 1) and concave slopes 

having FS = 1.25, 1.5, and 1.75, identifying those shapes that satisfy both erosion equilibrium and 

the desired degree of mechanical stability. A mathematical expression defining the limiting erosion 

at which equilibrium erosion shapes become sustainable was provided as a function of the Mohr-

Coulomb parameters, and the limitations of this work were discussed. The obtained results suggest 

that concave slopes can be constructed to achieve both minimal steady-state erosion equilibrium 

as well as mechanical stability, and that the slope profile can be chosen such that erosion rates and 

desired mechanical stability are balanced to satisfy site conditions and regulatory requirements. 

Sustainable concave slopes not only offer superior erosion control, but also a more natural 

appearing landform, being an attractive alternative to the traditional planar slopes that are typically 

constructed today. 
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Chapter 7. The Piling Framed Concrete Retaining Wall: Design 

Pressures and Stability Evaluation 
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Abstract 

The Piling Framed Retaining Wall (PFRW) is an innovative earth retention system applicable for 

soils underlain by rock, which is ideal for applications where only limited right-of-way is available 

or adjacent structures limit the use of tie-back anchors. Two PFRW’s were successfully built along 

the I-40/I-75 corridor in Knoxville, TN, with significant cost savings over traditional retaining wall 

designs. Although the walls were designed using conventional earth pressure theories, the soil 

pressures and forces acting on the wall face are not fully understood, and a rational design method 

has not been fully developed. Traditional theories of lateral earth pressure assume rigid translations 

or rotations as the fundamental deformation mode, when in reality more complex mechanisms of 

deformation and earth pressure distributions may exist. A series of Finite Elements analyses were 

used to evaluate the soils stresses on the face of the wall for various configurations of wall 

geometry, backfill slopes and soil properties. From the results, simplified design equations were 

developed to predict the earth pressures on the wall face and the overturning moments for stability 

analyses. The proposed design equations were validated against traditional expressions, and 

compared with earth pressures measured on the wall over a three year period. The measured 

stresses and the numerical results suggest that the typical earth pressure distribution of the PFRW 

is neither linear nor monotonically increasing, and the proposed design equations yield 
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conservative results for practical combinations of geometry and soil properties. The proposed 

design methods offer a reliable way to predict wall pressures and overturning moments, and 

eliminate the need to conduct extensive numerical analyses for each wall to be constructed. 

 

Introduction 

The Piling Framed Retaining Wall (PFRW) is an innovative earth retaining system, which is ideal 

for applications where the overburden soil is underlain by competent rock and where only limited 

right-of-way (ROW) is available or adjacent structures and underground utilities limit the use of 

tie-back anchor systems. Traditional retaining structures, such as concrete cantilever walls, usually 

require large excavations behind the wall, and thus may not be suitable when ROW is limited. 

Similarly, the need for underground easements behind the wall to avoid buried utilities or adjacent 

building foundations may constrain the use of tie-back walls. To overcome these limitations, the 

Tennessee Department of Transportation (TDOT) developed this innovative PFRW concept (Pate 

and Haddad 2007), and successfully implemented it in two walls along the I-40/I-75 corridor in 

Knoxville, TN (Fig. 7.1). This wall concept was found to be more economical than traditional 

retaining wall systems under the given geologic conditions. Despite its successful application, a 

rational design method for this wall has not been fully developed, and the soil pressures and forces 

acting on the structural elements are not fully understood. While traditional theories of lateral earth 

pressure assume that the wall behaves like a rigid body undergoing translations and/or rotations, 

in reality more complex mechanisms of deformation may exist, which in turn create earth pressure 

distributions different than those predicted by classical theoretical expressions. 
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In this investigation, the Finite Element Method (FEM) was used to create numerical models to 

investigate the soil pressures on the PFRW for various wall face inclinations, wall heights, and 

backfill slopes. The results were compared with theoretical expressions available in the literature 

for various configurations of wall geometry and soil properties. Simplified equations were 

developed from the FEM analyses to facilitate the design and stability calculations of PFRWs 

without the need to create geometric-specific finite element models. In addition, an approximate 

design approach based on the well-known Coulomb earth pressure theory is demonstrated. Finally, 

the earth pressures predicted by the design equations and the approximate design approach were 

compared with soil stresses measured on one of the walls built in Knoxville, TN, referred to here 

as the SmartFix wall (Fig. 7.1). 

 

Background 

The PFRW concept and the construction sequence 

The PFRW configuration consists of vertical and battered driven H-piles supported on rock to 

create the structural frame. The frames are spaced 3 m (10 ft) apart and are connected near the top 

by a horizontal waler (Fig. 7.2). After the piles are driven, vertical tie-down anchors are installed 

through the waler to provide stability against overturning (Fig. 7.2). The face of the wall is aligned 

with the battered piles and consists of timber lagging that is placed sequentially from top to bottom 

as the soil is being excavated. The face is finished with cast-in-place reinforced concrete placed 

over the lagging and acting composite with the battered piles.  
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Fig. 7.1. The PFRWs built along the I-40/I-75 corridor (Knoxville, TN). a) The SmartFix wall and 

b) The West Hills wall. 

 

 

Fig. 7.2. The piling frame system forming the basis of the PFRW concept. 
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A large cast-in-place concrete cap or parapet provides mass for additional stability against 

overturning. Pate and Haddad (2007) outline the details of construction of the first PFRW built in 

Knoxville, Tennessee in 2005. The construction sequence can be summarized as follows: a) Initial 

dry excavation and driving of battered piles (Fig. 7.3a), where the ground surface is excavated to 

a depth slightly below the connection of the battered pile, the vertical pile and waler, and then the 

battered piles are driven to refusal. b) Installation of walers and driving of vertical piles (Fig. 7.3b), 

where the tops of the battered piles are coped to fit inside the waler which is installed with the 

strong axis in the horizontal direction and welded to the top of the battered piles; the vertical piles 

are driven to refusal using the waler as a template. c) Installation of tie-down anchors (Fig. 7.3c), 

where holes are cut in the web of the waler, through which the tie-down anchors are drilled and 

anchored to rock and a preload applied to resist overturning. d) Excavation of soil and installation 

of timber lagging (Fig. 7.3d), where the soil in front of the wall is excavated and timber lagging 

installed between the battered piles as the excavation progresses (Fig. 7.4). e) Construction of 

structural concrete facing (Fig. 7.3e), where shear studs are installed on the top flange of the 

battered pile, reinforcing steel placed, and the structural concrete facing poured; a decorative ashlar 

stone finish can be obtained with a reusable form liner (Fig. 7.4). f) Pouring of concrete cap or 

parapet wall (Fig. 7.3f) of 2.6 m x 0.9 m (8 ft x 3 ft) (Fig. 7.4), which provides a finished 

appearance and is intended to introduce additional overturning resistance. The walls are then 

backfilled and graded. 

 

Theoretical expressions for active, passive, and at-rest earth pressure coefficients 

Traditionally, lateral earth pressures for rigid walls have been estimated using simplifications or 

assumptions based on elasticity and plasticity theory. The most rigorous expression for the at-rest  
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Fig. 7.3. Construction sequence for PFRW. 
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Fig. 7.4. Illustration of the construction stages for the timber lagging, concrete face and concrete 

cap. The black vertical material is a geosynthetic filter layer. 
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lateral earth pressure coefficient is based on the theory of elasticity [
0 / (1 )K    ], where   is 

the Poisson’s ratio, while empirical correlations with strength properties such as the friction angle 

have also been proposed (Jaky 1944): 

 0 1 sinK    (7.1) 

Methods that assume a plastic soil behavior employ the active and passive states as limiting 

conditions. These limits are determined via a) static approaches, such as the Rankine state of 

stresses (Rankine 1856) [Eq. (7.2)], where the active lateral earth pressure coefficient 
aK  is 

determined based on the equilibrium equations and the Mohr-Coulomb yield criterion: 

 
1 sin

1 sin
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
 (7.2) 

or b) kinematics methods, such as the Coulomb’s wedge method (Coulomb 1776) [Eq. (7.3)], 

where wedge failures are assumed and the resultant earth pressure is calculated by means of force 

equilibrium or by means of external rate of work and internal rate of energy dissipation: 
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 (7.3) 

Numerical solutions for aK  from the static Slip-line Network (Sokolovskiĭ 1960) and the 

kinematics Upper Bound in Limit Analysis (Chen and Rosenfarb 1973) and the Non-linear wedge 

analysis (Caquot and Kérisel 1948) are also available in the literature. All these aforementioned 

methods, however, have been developed for rigid walls under translation, rotation about the top, 

or rotation about the toe as the fundamental deformation mode. In reality, walls may exhibit more 

complex mechanisms of deformation, dictated by the structural rigidity and the presence or 

absence of anchorage, which in turn creates more complex failure mechanisms than those assumed 
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by theoretical expressions. The distribution, magnitude and direction of the earth pressures acting 

on the face of the PFRW remain unknown. 

 

Methods 

Numerical Analyses 

When designing a PFRW the number of H pile sections available is relatively limited. For 

modeling purposes sizes that were successfully used in the construction of the Tennessee walls 

were employed.  Then, the two important variables become a) the earth pressures on the wall face 

that will dictate the bending stresses on the wall facing, which in turn will determine the thickness 

and reinforcement of the concrete, and b) the overturning moments that will allow designers to 

determine how much anchorage force is needed to provide overturning stability. 

 

To understand how the magnitude and distribution of the earth pressures behave on the face of a 

PFRW and to determine the magnitude of the overturning moments, a series of two-dimensional 

plane strain models using the Finite Element Method (FEM) were created with the software 

Phase2 (Rocscience Inc. 2011) for different backfill slopes ( ), wall face angles (  ), and 

effective wall heights ( H ) (Fig. 7.5). Table 7.1 summarizes the wall configurations investigated; 

note that  =71.6˚ corresponds to a 1:3 (H:V) slope that was used on the Tennessee walls. This 

inclination is commonly used in driven battered piles for bridge foundations and therefore easily 

accommodated with typical pile driving equipment. 
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Fig. 7.5. Definition of “effective” wall height, wall inclination and backfill slope. 

 

 

 

 

 

Table 7.1 Wall configurations being investigated for every combination of   and /c   

  
H = 5 m  

(16 ft) 

H = 7.62 m  

(25 ft)  

H = 10 m  

(33 ft)  

H = 15 m 

(49 ft) 

Wall 
Inclination 

α = 0˚ α = 20˚ α = 0˚ α = 20˚ α = 0˚ α = 20˚ α = 0˚ α = 20˚ 

β = 50˚ 
 

 

  

   

 

β = 60˚ 
 

 

 

    

 

β = 71.6˚ 
 

 

  

   

 

β = 80˚ 
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Soil properties for FEM modeling 

To simulate the field conditions where the PFRW is appropriate, all the considered FEM models 

consisted of soil overlaying a very strong and stiff rock. An elastic perfectly plastic stress-strain 

behavior with a Mohr-Coulomb yield criterion was used to model the soil. For every combination 

of wall geometry parameters  ,  , and H  (Table 7.1) values of friction angle  = 20˚, 30˚, and 

40˚ and cohesion over unit weight ( /c  ) ranging from 0.3 to 3 m (1 to 10 ft),  were considered, 

where the range c = 5 - 40 kPa (104 – 835 psf) covers most of the cohesion values reported by 

Mesri and Abdelghaffar (1993), and the range  = 10 - 23 kN/m3 (64 – 146 pcf) would cover most 

materials from clays to coarse granular soils (NAVFAC 1986). A total of 288 FEM models were 

created. A different value of Young’s modulus ( E ) was input for each value of   employed. An 

E = 5x104 kPa (1,044 ksf) was used for soils with   = 20˚ to represent a medium stiff clay, an    

E = 1x105 kPa (2,089 ksf) was used for   = 30˚ to represent a medium dense sand, and an E = 

1.5x105 kPa (3,133 ksf) was used for   = 40˚ to represent dense sand or medium dense gravel 

(Bardet 1997). A single Poisson’s ratio   = 0.3 was used for all the models, since it has a small 

range of variation among soils (Bardet 1997). A non-associated flow rule (dilatancy angle  = 0) 

was implemented. The effects of using an associated flow rule (  ) in the model were also 

investigated for the SmartFix case. 

 

Structural and Geometric Properties for FEM modeling 

Since there is only a limited number of H pile sections suitable for these conditions, the analysis 

was limited to those employed in the construction of the Tennessee walls (e.g. the SmartFix wall) 

for all the models. The battered pile was a HP 10x42 and the vertical pile was a HP 12x53. The 
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concrete face was 0.3 m (1 ft) thick and the concrete cap was 0.9 m (3 ft) wide and 2.4 m (8 ft) 

high. All the structural members were modeled on a 3 m (10 ft) basis. Standard linear elastic 

Timoshenko beam elements were employed to model all piles. A Young’s modulus of 200 GPa 

(29,000 ksi) and a Poisson’s ratio of 0.29 were assigned to the beams. The moment of inertia 
gI  

with respect to the strong axis and the cross sectional area 
gA  of the steel H-piles were obtained 

from the AISC Steel Construction Manual and divided by the spacing between piles (Table 7.2). 

The wall elements comprised of steel H-piles and concrete (inclined wall face and cap) were 

treated as composite sections given that mechanical shear connectors provide a sufficient bond 

between the materials. The dimensions of the concrete elements were transformed to an equivalent 

steel section and the section properties of the composite sections calculated as if they were entirely 

comprised of steel (Table 7.2). Interface elements were employed to allow slip and separation 

between the soil and the battered composite wall. Due to a rough soil-lumber contact, a Mohr-

Coulomb slip criterion with a soil-wall interface friction angle equal to the soil friction angle   

was chosen. 

 

To restrict the parametric study to practical combinations of soil properties and geometry that 

would likely be constructed, the geometric/soil combinations that resulted in excessive wall 

deformations, assumed here to be deflection over the length of the inclined face of the wall / L  

> 1/240 (Council 2011), were excluded from the summary analyses. The combinations 

investigated are illustrated in Fig. 7.6. The triangles and squares are combinations with deflections 

exceeding 1/240 (the square markers are wall configurations that exceeded the more severe / L  

> 1/120 limit). The zones drawn in Fig. 7.6 capture the potential combinations that exceeded 
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Table 7.2 Section Properties of Beam Elements 

 

Cross Section Moment of Inertia, gI  Area, gA  

 m4 in4 m4/m in4/ft m2 in2 m2/m in2/ft 

Batter Pile  

HP 10x42 
8.75E-05 210 2.87E-05 21.0 7.98E-03 12.4 2.62E-03 1.24 

Vertical Pile  

HP 12x53 
1.63E-04 393 5.37E-05 39.3 1.00E-02 15.5 3.28E-03 1.55 

Batter Composite  

(wall face) 
1.43E-03 3436 4.70E-04 343.6 1.11E-01 172.1 3.65E-02 17.21 

Vertical Pile  

Top Encased 
2.96E-03 7111 9.73E-04 711.1 1.54E-01 238.7 5.08E-02 23.87 

 

 

 

 

Fig. 7.6. Resulting wall deflection over the inclined face of the wall ( / L ). Triangle and square 

dots are configurations of wall geometry and soil properties excluded from the result analyses due 

to large wall deflection ( / L  > 1/ 240). 
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the 1/240 and 1/120 limits, defined by the ratio /   and the stability number /H c . Circular 

dots outside those zones represent the cases without excessive wall deflection. Circular dots inside 

the shaded high deflection zones indicate that there were cases without excessive deformation in 

the shaded areas and suggest that the presented criteria will be conservative if used to evaluate 

serviceability of the PFRW. 

 

Modeling of tie-down anchors 

The vertical tie-down anchors were modeled using a linear elastic bar element with 3 m (10 ft) of 

bonded length inside the limestone rock. A Young’s modulus of 200 GPa (29,000 ksi) was used. 

The pre-tensioning force input to each FEM model was estimated based on stability calculations 

against overturning using the Coulomb earth pressure theory. In reality, more than one anchor may 

be required and they would be evenly distributed between pile frames (as shown in Fig. 7.2). 

However, for plane strain modeling purposes a single anchor with the total force and the necessary 

cross-sectional area was implemented on a per unit width basis. If the predicted horizontal 

translation of the wall was much larger than that required to mobilize an active condition (0.001 - 

0.01) H  (Salgado 2008) for the specific soil being analyzed, the pre-tensioning force was increased 

until this condition was satisfied. For simplicity, the anchor element was aligned with the 

centerline of the vertical pile. In reality, the anchor is installed on the centerline of the walers, 

which creates an eccentric force and moment. This moment was neglected for modeling purposes, 

because it was insignificant for the prediction of the earth pressures. 
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Definition of boundary condition and distance to boundaries 

The vertical boundaries of the soil mass were modeled such that only vertical translation and 

rotation were allowed. In this way, the soil was free to experience settlement/heave at each 

construction stage. The boundary conditions at the bottom of the soil mass were chosen to allow 

rotation only. While the H-piles are deeply embedded into the soil which creates a soil-pile 

connection somewhere between a fully fixed and truly pinned condition, they were modeled as 

pinned at the contact with the rock. To reflect the additional horizontal restraint offered by the 

pavement system, a second set of models were created where the battered concrete wall was pinned 

at a depth of at least 0.5 m (1.6 ft) below final grade, which also corresponds to the depth of 

embedment of the concrete wall face. Results indicated that this additional restraint resulted in 

slightly higher normal stresses on the battered wall (Figs. 7.20 and 7.21 in Appendix), and thus it 

was chosen for being more conservative. 

 

The extent of the model boundaries was investigated via a series of FEM analyses. The analyses 

indicated that boundary effects are negligible if the horizontal distance to the vertical boundaries 

are not less than 6 H  for the  = 0˚ cases and no less than 12 H  for the  = 20˚ including 4 H  of 

sloped backfield as shown in Fig. 7.7. A soil depth below the excavation level equal to H  was 

implemented for each model. Even though this value is somewhat arbitrary, the pinned condition 

of the wall at the final grade level helps to reduce the influence of the embedment depth of the 

battered pile on the numerical computations, making the predicted stresses more insensitive to the 

selected soil depth in the models. 
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Fig. 7.7. Typical FEM model for the PFRW: boundary conditions, distance to boundaries and 

structural elements considered. 
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Construction and excavation sequence 

Table 7.3 outlines the construction and excavation sequence as approximated in the FEM model. 

The concrete cap and the fill were simultaneously introduced at the last construction step, even 

though they are constructed sequentially. 

 

Model stresses vs. field measured stresses: The SmartFix case 

The SmartFix wall was constructed as part of the 2003-2009 reconstruction of I-40 in downtown 

Knoxville. The geometry of the wall at the tallest section was: H = 7.62 m (25 ft),  = 20°, and 

 =71.6°. The soil stratigraphy in the area is typical of the Chapman Ridge formation, i.e. silty-

sandy clay residual soils over limestone and sandstone rock, and thus it is ideal for the PFRW 

system. The geotechnical exploration indicated a diversity of soil types from clays (CL, CH) and 

silts (MH, ML) to silty sands (SM) and clayey sands (SC) (Wilbur Smith and Associates 2006). 

Results obtained from 14 consolidated undrained (CU) triaxial tests and in situ borehole shear tests 

indicated that the effective Mohr-Coulomb shear strength parameters could be represented by   

= 32˚ and c  = 11.7 kPa (244 psf). The total unit weight was taken as  = 19 kN/m3 (121 pcf). 

 

During the wall construction, an instrumentation system to measure the soil pressures on the 

battered wall was installed and continuously monitored from April 2008 to June 2013. The soil 

pressures were measured with Geokon Model 4800 Earth Pressure Cells, which were installed at 

the bottom half of the wall (approximately at 1/6, 1/3 and 1/2 of the total height of the wall) 

between the timber lagging and the concrete face. Two different sections were instrumented, with 

three pressure cells installed at the center and three at the edge of each section (Fig. 7.8).  
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Table 7.3 Construction sequence as approximated in the FEM models 

 

Step Description/Load 

1 Geostatic stresses (self-weight of soil). 

2 Dry Excavation. 

3 Driving of steel piles including self-weight. 

4 Installation and pre-tensioning of anchors. 

5 
Removal of soil in layers with thickness of 1-1.5 m (3.3 – 5 ft). This 

step involves 4 - 10 construction stages. 

6 

Installation of concrete face, concrete cap and backfill soil. Section 

properties of battered element are increased to reflect the increased 

rigidity of the composite section (steel + concrete) and the self-weight. 

 

 

 

 

 

Fig. 7.8. Earth pressure cells (white circles) positioned in Sections 1 and 2. Distances shown for 

Section 1 are along the inclined plane and measured from the final grade. 
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The field measured earth pressures at different time points were compared with those predicted by 

a FEM model with the geometry and material properties corresponding to the SmartFix wall. The 

implemented elastic constants for the soil were E = 1x105 kPa (2,089 ksf) and   = 0.3. 

 

Results and Discussion 

Normal stresses on battered wall 

The typical distribution of the normal stresses on the battered wall obtained with FEM analyses 

are shown in Fig. 7.9 for a wall of effective height H = 7.62 m (25 ft) (SmartFix height) 

constructed in a sandy soil with   = 30˚ and /c  = 0.3 m (1 ft) [e.g. c  = 5.7 kPa (119 psf) and   

 = 19 kN/m3 (121 pcf)]. The theoretical Rankine active stress on a vertical plane for this soil is 

also plotted in dashed lines for comparison purposes. The FEM results are consistent with the 

literature (Coulomb 1776, Sokolovskiĭ 1960) where for inclined walls the earth pressures decreases 

as the wall face inclination   approaches the friction angle  . Higher earth pressures are obtained 

when the backfill slope   increases. The classical Rankine stresses are, in general, much higher 

than those predicted by the FEM, and would produce over-conservative force resultants and 

overturning moments for stability calculations. The FEM results for all the geometric combinations 

show a sharp increase of stress as the depth approaches the final grade, which is a result of a higher 

horizontal restraint at that point. This is particularly evident for the  = 50˚ case where the large 

inclination and pinned pile tip induce a more at-rest state of lateral soil pressure. Similar earth 

pressure distributions were obtained for all the investigated cases. 
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Fig. 7.9. Typical FEM results for normal stresses on battered wall for H=7.62 m (SmartFix wall 

height). Results shown for a sandy soil with   = 30˚ and /c  = 0.3 m. 
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To provide a simplified means to design the structural members of the wall, equivalent uniform 

pressures normal to the wall face (
Neq ) were calculated for all the cases (Fig. 7.10a). The 

equivalent uniform pressure is that pressure which will produce the same force resultant as the 

original FEM pressure distribution, with no significant changes in the design moments and shear 

forces. The resulting 
Neq  vs. H  are shown in Fig. 7.11 for the   = 30˚ and /c  = 1 m (3.3 ft) 

soil case, for a wall with  = 71.6˚ (SmartFix wall inclination) for  = 0˚ and 20˚. Also shown in  

Fig. 7.11 are the equivalent uniform pressures obtained via the theoretical Coulomb and the 

Coulomb with tension correction methods (Bowles 1968) (Fig. 7.10b). The Coulomb theory 

accounts for the effects of sloped backfills and inclined wall faces, and the tension correction 

removes the small artificial tensile stress that is calculated due to the soil cohesion. The Coulomb 

uniform pressures with tension correction resulted in a conservative prediction of the normal 

stresses for the most detrimental conditions (high and steep walls with sloped backfills and soils 

with low cohesion); however, the Coulomb predicted soil pressures become lower than the FEM 

prediction (unconservative) as the soil cohesion increases and the wall inclination decreases as 

illustrated in Fig. 7.12 for the  = 50˚and  = 20˚ case (same soil properties). The Coulomb 

uniform pressure with tension correction may constitute a conservative simplified design approach 

if the predicted stresses are higher than those predicted by the FEM. This matter is illustrated later 

for the SmartFix field case study. 

  

Generalized FEM results in terms of the dimensionless quantities /Neq c  and /H c  are shown 

in Fig. 7.13 for the   = 30° case. This figure shows the potential range of normal stresses over the 

battered wall, represented here by the two bounds of wall inclinations investigated  
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Fig. 7.10. Definition of equivalent normal distributed pressures 
Neq : a) FEM and b) Coulomb and 

Coulomb with tension correction. 

 

 

 

 

Fig. 7.11. Equivalent normal uniform stress 
Neq  vs. wall height H, for the   = 30˚ and /c  =      

1 m soil case and the SmartFix wall inclination  = 71.6˚. a)  = 0˚ and b)  = 20˚. 
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Fig. 7.12. Illustration of a case when the theoretical Coulomb earth pressures are lower than FEM 

predictions, and therefore unconservative (  = 30˚ and /c  = 1 m,  = 20˚, and   = 50˚). 

 

 

 

 

 

Fig. 7.13. Dimensionless equivalent normal earth pressures vs. stability number as predicted by 

FEM for   = 30˚. a)  = 0˚ and b)  = 20˚. 
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(   = 50˚ and 80˚), and can be used to obtain the expected equivalent uniform pressure given the 

geometrical wall configuration ( ,  , and H ) and the Mohr-Coulomb soil properties (  and 

/c  ). Similar charts for the   = 20° and 40° were created (Figs. 7.22, 7.23 and 7.24 in Appendix). 

For each set of data, a linear regression was fit. Within each value of  , the slope for  = 50˚ is 

somewhat similar for  = 0˚ and 20˚, indicating that the stress /Neq c  is not highly affected by 

the backfill inclination at low values of  . The role of the backfill, however, becomes significant 

as the wall becomes steeper. 

 

Destabilizing moments for overturning stability 

The forces and moment arms used to calculate the wall overturning moments ( M ) are illustrated 

in Fig. 7.14. FEM results are compared with theoretical values from Coulomb pressures acting on 

the inclined wall and at-rest pressures acting on vertical cap. The FEM shear forces along the 

vertical edge of the cap were neglected, since they create a moment that resists the overturning. 

The FEM and Coulomb shear components on the battered wall act through the point of rotation 

and do not play any role in the overturning moment. Fig. 7.15 shows results for the   = 30˚ and

/c  = 1 m (3.3 ft) soil case for walls with  = 71.6˚ (SmartFix wall inclination) and  = 0˚ and 

20˚. Similarly to the normal stress cases, the moments calculated via Coulomb’s theory are a 

conservative prediction for the most detrimental wall conditions, but it under predicts the moments 

for the cases with low . Notice that FEM and Coulomb moments follow a similar trend as H 

increases. 
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Fig. 7.14. Forces and moment arms employed for overturning moments. a) Numerical FEM and 

b) Theoretical Coulomb with tension correction on wall + at-rest condition on cap. 

 

 

 

 

 

Fig. 7.15. Destabilizing moment M  vs. wall height H, for the   = 30˚ and /c  = 1 m soil case 

and the SmartFix wall inclination  = 71.6˚. 
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FEM results in terms of a normalized moment /eqM cM  and the dimensionless number /H c  

are shown in Fig. 7.16 for the   = 30˚ case. The normalized moments follow a linear trend. Note 

that the results in Fig. 7.16 include all the investigated values of  , and therefore the regression 

equation is independent of the wall inclination. For all the investigated cases R2 ≥0.85 and indicates 

that a linear trend is appropriate. Similar resulting linear trends were also obtained for the   = 20˚ 

and 40˚ cases (Figs. 7.25, 7.26 and 7.27 in Appendix). 

 

Design equations to predict earth pressures and destabilizing moments 

From the regression analyses based on the FEM results previously described, analytical 

approximations were developed to predict the equivalent uniform pressures 
Neq  and the 

overturning moments M  as a function of the wall geometry and the soil properties. By assuming 

linear behavior of the quantities between  = 0˚ and 20˚, and between   = 20˚ and 30˚, and  = 

30˚ and 40˚, the following equations for 
Neq   and M  were obtained: 

 
tan

0.018 (1 tan )
tan

Neq H





    (7.4) 

 
45 (1 1.5 tan ),  with  in m (SI units)

3.1 (1 1.5 tan ),  with  in ft (U.S. customary units)

H H

H H

M

M





 

 
 (7.5) 

Note that M  has SI units of kN-m/m, since the constant “45” has units of kN/m. Likewise, M  

has U.S. customary units of kip-ft/ft. A validation of these simplified models is offered in Fig. 7.17 

for all the cases comprising   = 30˚. Here, Neq  (Fig. 7.17a) and M  (Fig. 7.17b) predicted by 

Eqs. (7.4) and (7.5) respectively, are plotted against the FEM predictions. Notice that the 

distribution of the points tends to follow the 1:1 (45˚) line, indicating correlation between the  
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Fig. 7.16. Normalized overturning moment vs. stability number as predicted by FEM for   = 30˚. 

 

 

 

 

 

 

Fig. 7.17. Validation of design equations: a) Neq  (kPa) and b) M  (kN-m/m). 
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simplified proposed equations and the FEM results. The ratio between the design equation and the 

FEM prediction for 
Neq  is 1.2 and for M  is 1.5, suggesting that on average the design equations 

predict 20% higher values of 
Neq  and 50% higher values of M , making the design equations 

more conservative than the FEM prediction. Similar ratios were obtained for the   = 20˚ and 40˚ 

cases. The coefficients of variation of these ratios are less than or equal to 40% for all cases. It is 

important to keep in mind that the range of applicability of the design equations is constrained to 

values of  = 0 - 20˚,  = 50 - 80˚, H = 5 - 15 m (16 – 49 ft),  = 20 - 40˚ and /c  = 0.3 – 3 m 

(1 – 10 ft), and values outside the range of applicability are not defined by the Eqs. (7.4) and (7.5).  

 

The SmartFix case: predicted vs. measured stresses on the inclined wall 

Measured earth pressures over a period of 3 years (2010 – 2013) are shown in Fig. 7.18, along 

with the FEM predicted distribution of the earth pressures for the SmartFix model configuration   

[ H = 7.62 m (25 ft),  = 20°,  = 71.6°,   = 32˚, c = 11.7 kPa (244 psf),  = 19 kN/m3 (121 pcf)] 

using both, a non-associated ( = 0˚) and an associated (  ) flow rule, where   is the dilation 

angle. For comparison, two theoretical earth pressures that include the effects of  ,  , and the 

soil-wall interface friction angle are also shown: Wedge Equilibrium (Coulomb 1776) and Upper 

Bound Limit Analyses (Chen and Rosenfarb 1973). The vertical line represents the corresponding 

value of 
Neq  obtained from the proposed design equation [Eq. (7.4)]. Also shown is the equivalent 

uniform stress obtained from the simplified Coulomb design approach that includes tension 

correction. 
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Fig. 7.18. Field measured stresses over time vs. theoretical and numerical earth pressures. 
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The results in Fig. 7.18 indicate that the pressures predicted by the numerical models are in 

reasonable agreement with the field measurements, with the exception of the larger predicted 

stresses near the bottom of the wall. The FEM predicted stresses comprising an associated soil        

(  ) are on average 11% higher than those obtained with the non-associated model; similar 

behavior has been previously described in the literature (Benmeddour et al. 2012). While dilation 

effects are observed in soils, they rarely follow an associated flow rule, and dilation angles are 

usually smaller than  . It has been also shown that associated models tend to over predict failure 

loads in the context of “confined” problems. The PFRW can be considered as a partially confined 

system, and thus the degree of “over-prediction” is moderated, which makes the model more 

insensitive to the selected value of  . The results in Fig. 7.18 suggest that the equivalent uniform 

pressure Eq. (7.4) (developed from non-associated FEM results) predicts the measured earth 

pressures with a moderate degree of conservatism, and it is a better representation than the 

Coulomb and Chen approaches for this type of wall. The simplified desing approach based on 

uniform Coulomb stresses with tension correction provides, for this particular wall configuration, 

a prediction of  stresses higher than those obtained from Eq. (7.4), and therefore can also be used 

for design. It should be kept in mind that the classical solutions assume linearly increasing pressure 

distributions, typical of walls with rigid translations as the deformation mode. It has been 

demonstrated that the typical earth pressure distribution of the PFRW is neither linear nor 

monotonicly increasing, and classical solution methods are not always conservative for this type 

of wall. A PFRW specific method such as the design equations based on FEM analyses [Eqs. (7.4) 

and (7.5)] and the uniform Coulomb stresses with tension correction (when predicted values are 

higher than design equations), provides a more reasonable design prediction for the potential 

geometrical configurations of PFRW systems covered here. 
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Conclusions 

The Piling Framed Retaining Wall is a novel system which allows top-down construction and 

requires minimal right of way. This wall concept was found to be significantly less expensive than 

traditional retaining wall systems for two walls of this type successfully built along the  I-40/I-75 

corridor in Knoxville, TN. For their design, the magnitude and distribution of the earth pressures 

and overturning moments were estimated based on traditional earth pressure theories. However, a 

rational design procedure for this wall system has not been fully developed. 

 

To develop a simple design approach, a series of FEM analyses were conducted to compute the 

earth pressures on the wall face and the overall destabilizing moments for a range of wall 

geometries and different soil properties. The numerical results were used to develop simplified 

equations for design. It was found that the typical earth pressure distribution on the face of the 

PFRW is neither linear nor monotonically increasing. The design equations yield conservative 

results, relative to the FEM models, for most practical geometries and soil properties. Field 

measured earth pressures on the SmartFix prototype were well predicted by both, the design 

equations and the design method based on Coulomb stresses with tension correction. The proposed 

methods can be used to design future configurations of PFRW systems with no need to create 

advanced numerical models. 
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Appendix 

Active, passive, and at rest states of the soil mass 

For a soil medium stressed only by its own weight, any point on a horizontal plane at depth z  will 

experience the same level vertical effective stress z  (  is the unit weight of soil), with negligible 

shear stresses. This vertical direction becomes therefore a principal stress direction 
1 . From the 

assumption that soil is an isotropic continuous medium, the other principal direction must be 

orthogonal and act in the horizontal direction 3 . In reality, a third principal directions exist, but 

for simplification of this model to 2-D, let us assume that plane strain conditions are valid and the 

principal stress acting perpendicular to the paper remains intermediate between the two principal 

directions described.  

 

In geo-mechanics it is a usual practice to consider that the magnitude of the horizontal stress inside 

the soil medium is proportional to the vertical stress by a constant K . In cases when the soil has 

remained unaltered since formation, this constant is considered to be at-rest conditions and is 

usually referred as 0K . In technical terms, 0K  is the earth pressure coefficient when no lateral 

deformation is allowed to occur and corresponds to the in situ state of most geo-materials. Thus, 

when no external stresses act over the soil, the horizontal principal stress becomes 0K z . For most 

normally consolidated soils 0 1K   and the horizontal direction usually becomes the minor 

principal direction. If, by some mechanism, the soil is permitted to yield laterally by gradually 

decreasing the horizontal stress level and keeping the vertical stress constant, it will be observed a 

progressive lateral expansion of the soil until a point when plastic deformation will start taking 

place along slip lines, ideally, at constant stress values (for a perfectly plastic behavior). This point 
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corresponds to the active state in the soil medium. Since the vertical stress 
1 z   remained 

constant, the horizontal stress has to be proportional to smaller value of K . This constant of 

proportionality is called 
aK , the active earth pressure coefficient, and thus the lateral earth pressure 

at an active state is 
3a aK z  , where 

0aK K . On the other hand, if the soil is permitted to yield 

by gradually increasing the level of lateral stress and keeping the vertical stress constant, it will be 

observed a lateral compression until a point where the plastic deformation will start taking place. 

At this point the soil has reached a passive condition and, analogously to the active case, the lateral 

stress will be 
3 p pK z  , being 

pK  the passive earth pressure coefficient, where 
0pK K . From 

this discussion 
3 3 3a p     and therefore, 

0a pK K K  . Fig. 7.19 illustrates this concept 

employing the Mohr-Coulomb yield criteria. These lateral extension and compression mechanisms 

in the soil are observed in retaining wall problems. Wherever the structural rigidity of the system 

is such as the wall will deform moving “away” from the soil a sufficient amount, an active 

condition may be achieved. The opposite is true for the passive condition. The level of soil strain 

required to achieve the active and passive condition is highly conditioned to the rigidity of the 

structural system and its mode of deformation. 

 

Active and passive lateral earth pressure coefficients: a literature review 

Plasticity methods for the active and passive lateral earth pressure coefficient can be grouped in 

two major categories:  a) static based methods or b) kinematics based methods.  
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Fig. 7.19. Conceptual model of the different stress states on the retaining wall problem. 
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The static based approaches usually assume that portion of the material behind the wall is at the 

verge of flowing plastically, and only the equilibrium equations and yield conditions are satisfied. 

Some of the methods based on statics are listed below. 

 

Slip-line network. This method attempts to determine the family of slip-line curves that will 

develop inside the soil mass by combining the equations of equilibrium of a continuous medium 

with the Mohr-Coulomb yield criterion. The results of the combination of these equations are the 

differential equations of the characteristics that describe the planes where the plastic deformation 

will take place. This formulation allows the implementation of more complex stress boundary 

conditions; however, for materials possessing weight, the characteristic equations become 

complex and exact mathematical solutions are available for a limited number of simple cases. 

Sokolovskiĭ (1960), provided solutions for the lateral earth pressure problem by numerically 

integrating the characteristic equations. Sokolovskiĭ reported values of active and passive lateral 

and tangential earth pressures on a vertical wall considering: a) non-linearity of the slip-lines due 

to soil-wall friction interaction, b) sloped backfields and c) surcharges. The shortcomings of the 

slip-line method are in general related to the validity of the theoretical assumptions. Slip-line 

methods only take into account stress boundary conditions, when in many practical problems 

deformation conditions exist (Chen 2007); e.g. Sokolovskiĭ’s solution do not consider  the amount 

of deformation that must exist to bring the soil to a limiting condition. Also, in this technique, it is 

assumed that only the zone inside the slip-network is in plastic equilibrium and outside this zone 

the stress distribution is unknown (Chen 2007).  
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Rankine states of the soil mass. From the active and passive states of the soil defined by Rankine 

(1856),  expressions to calculate the active aK  and passive 
pK  earth pressure coefficients were 

developed. If it is assumed that no friction exist in the soil-wall interface, any rigid rotation or 

translation of the wall will develop a stress field composed of straight slip-lines that will intersect 

the horizontal at 45 / 2  for the active condition and 45 / 2  for the passive case. For these 

conditions the vertical and horizontal planes coincide with the principal planes and, therefore, 

Rankine’s formulation [Eq. (7.6)] is an exact closed form solution of the slip-field problem.  
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The more general expression includes the case of a vertical wall with a sloping backfield at  .  

degrees from the horizontal, as expressed in Eq. (7.7) (upper sign denotes the active condition and 

lower sign the passive) 
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The limitations of Rankine’s formulation are related to: a) the incapacity to include the soil-wall 

friction interaction and b) the inability to obtain lateral earth pressures in planes other than vertical 

ones. 

 

Lower Bound in Limit Analysis. Limit analysis is a plasticity based theory that is rigorous within 

the context of its assumptions. It defines two extremes, the lower and the upper bound, that 

correspond to the lowest and highest collapse load that can be possibly found, whereas the true 

collapse load is somewhere in between these two bounds. Similar to the slip-line method, the lower 

bound theorem only requires the satisfaction of the equilibrium equations and yield conditions; 
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however, here a complete stress distribution satisfying equilibrium and yield condition everywhere 

needs to be established. Lancellotta (2002), based on the lower bound theorem, developed an 

analytical expression for the lateral active and passive earth pressures on vertical walls [Eqs. (7.8) 

and (7.9)]. The solution includes the effects of the soil-wall friction ( ) and it simplifies to the 

Rankine’s expression for frictionless soil-wall interfaces: 
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Though rigorous, Lacellotta’s approach does not allow the evaluation of cases with a) sloped 

backfield and b) non-vertical walls.  

 

Kinematics based methods, on the other hand, usually involves a variety of assumed slip surfaces 

that define different soil wedges. The resultant earth pressure is calculated by means of force 

equilibrium or by means of external rate of work and internal rate of energy dissipation. Some of 

the methods based on kinematics are listed below. 

 

Coulomb’s wedge method. Based on the concept of limit equilibrium, Coulomb (1776) proposed 

the existence of one critical slip plane where the failure of a soil mass will take place, and will 

produce the maximum mobilized lateral stresses over the wall. In reality, many wedges of planar 

failure surfaces can be constructed, and an optimization process to find most critical wedge is 

necessary. Coulomb solved this problem in terms of force equilibrium, considering the soil weight 
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and soil-wall friction force, for a horizontal backfield. The maximum lateral force that resulted 

from the equilibrium and optimization is: 

 
21

2
a aP K H  (7.10) 
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where   is the soil unit weight, H  is the wall height. Note aK  coincides with the coefficient of 

earth pressure obtained from the Rankine’s stress analysis. Subsequent work conducted by 

Poncelet and Woodbury (1854), Rebhann (1871) and Müller-Breslau (1906) extended Coulomb’s 

wedge analysis to include the effects of a) soil-wall friction  , b) sloped backfield at angle  to 

the horizontal and c) wall inclination at angle   from to the vertical.  The obtained active and 

passive coefficients are (Salgado 2008): 
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 (7.12) 

In Eq. (7.12) it is assumed that the slip failure is planar, when in reality the soil-friction along the 

vertical boundary modifies the shape of the slip-lines to be curved. Also, this procedure does not 

predict the distribution of the vertical and lateral stresses. Perhaps, those are the two major 

shortcomings of the Coulomb’s formulation. 

 

Non-linear wedge analysis. Recognizing the inconsistency of assuming a planar slip failure when 

friction exists between soil and wall, Caquot and Kérisel (1948) provided an advanced 

mathematical formulation for the earth pressure problem assuming a log-spiral failure mechanism. 
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Caquot and Kérisel reported tables of active and passive earth pressure coefficients as a function 

of a) internal friction angle, b) soil-wall friction, c) angle of the sloped backfield and d) angle of 

wall face inclination. 

 

Upper Bound in Limit Analysis. This theorem states that an external load can only be resisted by 

the soil mass if the external rate of work of an assumed deformation mode is less than the internal 

rate of energy dissipation. If the velocity boundary conditions and the strain compatibility 

equations are satisfied by any load resulting by equating the external and internal energy rates, 

then the load is higher than the failure load. This theorem, assumes a perfectly plastic soil behavior 

with an associated flow rule. Chen and Rosenfarb (1973) reported upper bound solutions for the 

active and passive earth pressure coefficients from the optimization of a variety of assumed 

failures. More recently, Soubra and Macuh (2002) proposed different active and passive earth 

pressure coefficients for gravity loads, surcharge and soil cohesion, assuming a log-spiral failure 

and the effects of soil-wall friction and sloped backfield. The combination of three coefficients 

constitutes the lateral force acting on the wall. 

 

Other kinematic based approaches for the passive earth pressure are a) the method of triangular 

slices (Zhu and Qian 2000) and b) the upper-bond numerical analysis (Antão et al. 2011). In 

general terms, all the methods previously described provide similar results; e.g. the lower and 

upper bounds of the active earth pressure coefficients are close, and Sokolovskiĭ’s active 

coefficients falls somewhere in between these two bounds (Loukidis and Salgado 2011). Also, in 

one way or the other, all these methods assume a perfectly plastic soil behavior and they do not 

account for progressive failure experienced in soils. In reality more than one active state can occur 
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after the peak or yielding has occurred (Loukidis and Salgado 2011). All methods, except those 

based on Limit Analysis, do not include the effects of dilitancy and none of them include the effects 

of volumetric strains in shear zones. Despite of the extensive research that has been conducted on 

earth pressure coefficients, theoretical solutions still diverge from experimental results, perhaps 

due to the complex soil deformational behavior (Niedostatkiewicz et al. 2011). 

 

At-rest lateral earth pressure coefficients: a literature review 

Among all the equations that have been proposed to calculate 0K , the expression based on the 

Elasticity Theory seems to be the most theoretically rigorous. This expression is a function of the 

Poisson’s ratio of the material: 

 0
1

K



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
 (7.13) 

For cohesionless normally consolidated materials, Jaky (1944) offered and empirical equation 

based on the internal friction angle: 

 0 1 sinK    (7.14) 

Eq. (7.14) was validated  for cases when the backfield is in a loose state and improved for dense 

compacted backfield cases (Sherif et al. 1984). This expression [Eq. (7.15)] is a function of  , the 

in situ dry unit weight d  and the dry unit weight of soil at the loosest state dmin  
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To consider the effects of the soil stress history, Jaky’s equation can be modified to include the 

over consolidation ratio ' '/vp vOCR   , where 'vp  is the pre-consolidation effective pressure 

and 'v  is the effective vertical stress being experienced by the soil (Salgado 2008):   

  0(0 )  *  1 sinNCK K OCR OCR    (7.16) 

Mayne and Kulhawy (1982) also provided an empirical expression to account for the effects of 

OCR  on Jaky’s equation. 

 

Hendron (1963) and Hendron et al. (1963) formulated a theoretical expression for 0K  for a body 

constituted of perfect uniform spheres as a function of   and the friction coefficient f : 

 0
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 3 6 / 8 sin 6 / 8f    (7.18) 

For normally consolidated cohesive soils, Brooker and Ireland (1965) suggested that  Jaky’s 

equation tends to over predict 0K  values and proposed a new expression that better fit this 

condition: 

 0 0.95 sinK    (7.19) 

Brooker and Ireland (1965) also studied the effect of OCR and plasticity index PI  over oK , and 

reported their findings in terms of a solution chart. For over consolidated clays, Fioravante et al. 

(1998) suggested the following empirical expression based on in situ seismic shear waves 

experiments: 

 
5

0

0. 70.54*K OCR  (7.20) 
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Alpan (1967) exploring empirical correlations for 
0K  suggested that the following Eq. (7.21) is 

reliable for normally consolidated clays and provides a good agreement with Brooker and Ireland’s 

formulation [Eq. (7.19)] 

 0 0.19 0.233log( ),    in %K PI PI   (7.21) 

Other expressions available in the literature consider the effects of the secondary compression during 

loading (Mesri and Castro 1987) and the non-linear behavior of 0K  at high vertical pressures (Tian et al. 

2009, Zhao et al. 2010). An empirical equation based on CPTU test data was proposed by (Kulhawy et al. 

1990), and expressions based on non-destructive SCTPU and Cross Hole tests have been developed by 

Sully and Campanella (1995) and Fioravante et al. (1998), and validated by Guojun et al. (2011). 

 

Definition of boundary condition and distance to boundaries 

The vertical boundaries of the soil mass were selected such that only vertical translation and 

rotation were allowed. In this way, the soil was free to experience settlements/heave at each 

construction stage. The horizontal boundary at the bottom had restricted translation and was only 

allowed to rotate. Regarding the structural members, the H-piles are driven to refusal onto rock, 

which creates a soil-pile connection in between a fully fixed and truly pinned condition. It was 

assumed for modeling purposes that the piles were truly pinned at the bottom. The battered 

concrete wall, on the other hand, is extended to a depth of at least 0.5 m below final grade, which 

also creates a boundary in between an unrestricted translation and fully pinned condition. Two 

different models were considered: a) the 0.5 m below final grade is truly pinned and b) the 0.5 m 

below final grade is not pinned, and the translation is restricted only by a passive soil pressure 

(Fig. 7.20).  
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Fig. 7.20. Two FEM models considered: a) the 0.5 m of the battered pile below the final grade is 

truly pinned and b) the battered pile is truly pinned at the contact with the basal rock. 

 

 

Fig. 7.21. Difference in resulting normal stresses from the two battered wall end conditions 

investigated (SmartFix case). The model comprising a pinned condition at the 0.5 m below final 

grade resulted in higher overall stresses. 
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Preliminary FEM results indicated the first model (Fig. 7.20a) predicted in general higher normal 

stresses on the battered wall (Fig. 7.21), and therefore, it was chosen for being more conservative.  
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Generalized FEM soil stresses in terms of the dimensionless quantities /Neq c  and /H c   

 

 

Fig. 7.22. Dimensionless equivalent normal earth pressures vs stability number as predicted by 

FEM for   = 20˚. 

 

 

Fig. 7.23. Dimensionless equivalent normal earth pressures vs stability number as predicted by 

FEM for   = 30˚. 
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Fig. 7.24. Dimensionless equivalent normal earth pressures vs stability number as predicted by 

FEM for   = 40˚. 
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Generalized FEM overturning moments in terms of the quantities /M c  and /H c   

 

 

Fig. 7.25. Normalized overturning moment vs. stability number as predicted by FEM,   = 20˚. 

 

 

Fig. 7.26. Normalized overturning moment vs. stability number as predicted by FEM,  = 30˚. 
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Fig. 7.27. Normalized overturning moment vs. stability number as predicted by FEM   = 40˚. 
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Validation of simplified design equations 

 

Fig. 7.28. Validation of design equations: a) 
Neq  and b) M  for   = 20˚. 

 

 

 

Fig. 7.29. Validation of design equations: a) Neq  and b) M  for   = 30˚. 
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Fig. 7.30. Validation of design equations: a) 
Neq  and b) M  for   = 40˚. 
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Determination of soil strength parameters 

 

Fig. 7.31. Selected M-C strength parameters based on triaxial p-q diagram at 14% strain level. 
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Chapter 8. Conclusions 
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The Low Compaction Grading Technique on steep slopes (chapters 2 and 3) 

The analysis of several potential modes of failures via LEM and FEM analyses suggest that for 

FRA slopes the governing failure mode is shallow and contained within the weak loose surface 

layer. The determination of the strength parameters of the core is not important for FRA slope 

design. Because the infinite slope method adequately approximates the shallow failure mode and 

accurately predicts the FS, it may be an appropriate method to evaluate the performance of FRA 

slopes, so more sophisticated analyses are not necessary for most applications. Since the unit 

weight of the material is not considered in the infinite slope expression, field measurements of the 

highly variable unit weight are not required for long-term analyses, but necessary for partially 

saturated conditions and seismic analyses. The angle of repose was suggested to be a conservative 

estimate of the internal friction angle and it is consistent with the loose nature of the FRA material. 

This provides a means to quantify the friction angle of mine spoil having large number of oversize 

particles, which has been traditionally assumed based on experience.  

 

Slope stability analyses for partially saturated mine soils showed that seasonal increments in the 

stability of steep FRA slopes due to matric suction are possible, and the static long-term stability 

is a lower bound of the real field performance. However, it was shown that temporal saturation of 

the loose surface layer is likely to occur and slope stability analysis employing traditional saturated 

strength parameters should prevail in the design of FRA slopes. The interpretation of results is 

restricted to the hydrological conditions experienced during the time period at which the data was 

collected. This period was characterized by relatively poor establishment of ground cover, and 

therefore, evaporation was probably the main mechanism inducing matric suction and the relative 

increase in stability. Under seismic loading conditions, the proposed infinite slope equation 
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showed good agreement with the simplified Bishop’s method of the slices. While the selection of 

the pseudo-static coefficient based on a fraction of the probable PGA is common practice, the 

effects of frequency and duration are not included. A method based on spectral response may 

provide a better tool for evaluating slope stability, and a combination of the Bray and Travasarou 

(2009) approach with the proposed modification of the infinite slope equation was suggested. 

Charts were developed for this method employing site-specific 
aS  values and local soil properties 

and slope geometry. Here, the Factor of Safety (FS) is a function of parameters that have less 

selection subjectivity for the designer and are a function of the importance of the project, available 

seismic data, and accuracy of the site characterization. 

 

The results presented in these two chapters suggest that the FRA has no negative impact on slope 

stability. It is important to keep in mind that since the material receives minimum compaction 

effort, as shearing takes place this material will initially densify, becoming stronger over time. 

Also, further densification will occur through root reinforcement after reforestation, suggesting 

that the most detrimental conditions for the stability of FRA slopes are those experienced during 

the first years after construction. In this sense, the benefits of quick and proper establishment of 

vegetation go beyond the reduction of soil loss by water erosion, influencing also the mechanical 

stability of steep FRA slopes in the long-term. Future research work on steep FRA slopes could be 

directed to understand the role of vegetation on the stability of this type of reclamation process. 

Research questions to be addressed include the following: To what extent do plant roots positively 

affect the soil strength and mechanical stability of steep FRA slopes over time? Is there any arching 

soil effect that develops in the mine spoils due to this natural “anchor reinforcement” system? If 

so, how would this arching effect be quantified in stability calculations for FRA slopes? Would 
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the fundamental failure mode of these slopes be changed? How will root transpiration rates affect 

the unsaturated stability patterns observed on these sites? Would overloading and overturning of 

woody vegetation during high velocity wind events counteract the positive effects of root 

reinforcement on steep FRA slopes?  

 

The answers to these research questions would help to understand the behavior of steep FRA slopes 

once the vegetation has been successfully established, providing a broader picture of the field 

performance in the very long-term.  

 

The mechanical and erosional stability of concave slopes (chapters 4, 5 and 6) 

Concave slopes not only resemble natural contours, but also have superior water erosion resistance. 

The design of concave slopes requires: a) the definition of concave shapes that provide a desired 

FS, b) a quantitative measure of the erosion/sediment delivery reduction, and c) determination of 

possible loss of mechanical stability due to improper construction. A mathematical description of 

the concave slope surface at limiting equilibrium (FS = 1) for the   > 0 and   > 0 case was 

developed, based on the slip line field theory of Sokolovskiĭ (1960). The approximation 

transformed a set of differential equations into a single algebraic expression, which was validated 

using LEM and FEM analyses. Employing the developed equation, a mechanism to describe the 

coordinates of concave slopes that satisfy a desired FS (long-term conditions) for any combination 

of  , c ,   and slope height was offered. A simplified graphical solution was developed to 

estimate the required undrained shear strength such that the design long-term stability is assured. 

Results from RUSLE2 analyses indicate that these concave slopes yield 15-40% less sediment than 
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planar slopes of equal FS, regardless of soil erodibility and weather conditions. Sensitivity analyses 

reveal that the stability of concave slopes is not significantly influenced by errors in the constructed 

profile of as great as 200 mm of vertical deviation. Therefore, the stability is not compromised 

when typical high accuracy GPS construction equipment is employed for concave slope 

construction. 

Similarly, natural landforms seek to achieve erosion and sediment transport equilibrium, and in 

doing so evolve into concave forms. In theory, this equilibrium shape would not suffer further 

adjustments so the total erosion production is minimized. From a conceptual perspective, it was 

shown that the equilibrium shape may not be unique, and a family of potential slope shapes exist 

according to the level of constant erosion the slope experiences. From the fundamentals of the 

widely recognized RUSLE2 model, a set of equations to describe concave slopes in erosion 

equilibrium at different levels of constant erosion was developed. The resulting concave profiles 

were compared with critical concave slopes ( FS = 1) and with concave slopes having FS = 1.25, 

1.5, and 1.75, identifying those shapes that satisfy both erosion equilibrium and the desired degree 

of mechanical stability. A mathematical expression defining the limiting erosion at which 

equilibrium erosion shapes become sustainable was provided as a function of the Mohr-Coulomb 

parameters. 

 

The findings presented here suggest that concave slopes can be constructed to achieve both 

minimal erosion as well as mechanical stability, and that the slope profile can be chosen such that 

erosion rates and desired mechanical stability are balanced to satisfy site conditions and regulatory 

requirements. Concave slopes not only offer superior erosion control, but also a more natural 
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appearing landform, being an attractive alternative to the traditional planar slopes that are typically 

constructed today. 

 

The results from the illustrative example in chapter 5 suggest that concave and planar slopes 

having the same FS can potentially have a similar lateral extent, but that concave slopes comprise 

significantly less amount of soil. Since an analytical expression for the concave slope is now 

available, this could be incorporated into standard cut and fill balance calculations. On projects 

with significant cut slopes, the additional excavation may be costly. However, on fill slopes and 

embankments, and especially in mine reclamation where a shortage of material is common, the 

construction of concave slopes could be an advantage. Notice that under the FRA reclamation idea, 

as discussed in chapters 2 and 3, the quick establishment of vegetation is crucial for surficial water 

erosion control. The results obtained in here indicate that erosion reduction could be significantly 

enhanced if the FRA slopes are constructed with concave profiles. This requires, however, that not 

only the loose surface, but also the strong core must be concave. Future research on mine 

reclamation could be focused on understanding the erosion and mechanical slope stability 

behaviors of concave FRA slopes. Full-scale concave FRA slopes could be constructed and 

instrumented to investigate hydrology and sediment yield, and the results compared to those 

reported by Hoomehr et al. (2012) and Hoomehr et al. (2013) on steep planar FRA slopes. The 

quantitative benefit in terms of reduced soil loss when FRA slopes are built to be concave needs 

to be determined. Since the plane of discontinuity is not planar anymore, it will be necessary to 

investigate the fundamental failure modes of concave FRA slopes. Would the plane of 

discontinuity be the governing failure condition instead of the toe and face failure mechanism 

inherent of concave slopes? If yes, it will be necessary to investigate a new rational design 
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methodology for concave FRA slopes. On the other hand, what would be the implications of 

concave FRA slopes on the construction methodology? Would the contour haulback method 

typically used for FRA construction still be a valid construction methodology? The answer to these 

research questions would guide the development of an improved FRA methodology (FRA 2.0) 

that will be beneficial for erosion reduction not only post reforestation, but also during initial slope 

adjustments before vegetation is well established. 

 

The Piling Framed Concrete Retaining Wall (chapter 7) 

The Piling Framed Retaining Wall or confined slope system is a novel concept allowing top-down 

construction and requires minimal right of way. This wall concept was found to be significantly 

less expensive than traditional retaining wall systems under these conditions. To develop a rational 

design approach for this type of wall, a series of FEM analyses were conducted to compute the 

earth pressures on the wall face and the overall destabilizing moments for a range of wall 

geometries and different soil properties. The numerical results were used to develop simplified 

equations for design. It was found that the typical earth pressure distribution on the face of the 

PFRW is neither linear nor monotonically increasing. The design equations yield conservative 

results--relative to the FEM models--for most practical geometries and soil properties. Field 

measured earth pressures on the SmartFix prototype were well predicted by both the design 

equations and a proposed design method based on Coulomb stresses with tension correction. The 

proposed methods can be used to design future configurations of PFRW systems with no need to 

create advanced numerical models. 
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The PFRW concept could be extended to applications beyond highway development. Smoother 

integration of nature and structural reinforcing elements could be achieved thanks to the inclined 

wall face. For example, in urban land development, there are cases where a combination of natural 

slopes and retaining structures are required to avoid extensive cut or fill slopes and to preserve the 

natural slope contour. In this sense, the PFRW can be an attractive alternative to the traditional 

vertical or terrace walls, since the wall face inclination can be adjusted. Not only that, but the 

decorative ashlar stone finish could be replaced with a combination of precast concrete blocks and 

compacted soil installed in a staggered arrangement such that vegetation can grow over the wall. 

This same idea would apply when concave slopes are used for more natural urban land 

development, where additional reinforcement is needed at intermediate points on the landscape 

(e.g., immediately below a roadway). In fact, the mode of deformation associated to PFRW 

suggests that the reinforcement would not only benefit slopes below (or after) the wall, but also it 

would prevent any potential development of progressive failure on excavated concave slopes 

above (or before) wall construction. 

 

In summary, this dissertation examined slopes and the many factors affecting them that are 

typically overlooked during design and construction. It examined both compaction based slopes 

like those constructed during mine reclamation, and excavated slopes like the confined slopes with 

the piling framed retaining wall. The superior performance of concave slope contours in terms of 

the mechanical and water erosion stability was demonstrated, as well as the interaction between 

these two stability conditions. This dissertation examined novel ways of addressing some of the 

many issues that govern the design and sustainability of slopes, and contributed to the continuing 
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development of our understanding of the behavior of soil slopes and to the growing need for 

environmental friendly design and construction techniques. 
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