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ABSTRACT 

Mass spectrometry-based proteomics is focused on identifying the entire suite of proteins 

and their post-translational modifications (PTMs) in a cell, organism, or community. In 

particular, quantitative proteomics measures abundance changes of thousands of proteins among 

multiple samples and provides network-level insight into how biological systems respond to 

environmental perturbations. Various quantitative proteomics methods have been developed, 

including label-free, metabolic labeling, and isobaric chemical labeling. This dissertation starts 

with a systematic comparison of these three methods, and shows that isobaric chemical labeling 

provides accurate, precise, and reproducible quantification for thousands of proteins. Based on 

these results, we applied this approach to characterizing the proteome of Arabidopsis seedlings 

treated with Strigolactones (SLs), a new class of plant hormones that modulate a range of 

developmental processes. Our study reveals that SLs regulate the expression of a range of 

proteins that have not been assigned to SL pathways, which provides novel targets for follow-up 

genetic and biochemical characterization of SL signaling. The same approach was also used to 

measure how elevated temperature impacts the physiology of individual microbial groups in an 

acid mine drainage (AMD) microbial community, and shows that related organisms differed in 

their abundance and functional responses to temperature. Elevated temperature repressed carbon 

fixation by two Leptospirillum genotypes, whereas carbon fixation was significantly up-

regulated at higher temperature by a third member of this genus. Further, we developed a new 

proteomic approach that harnessed high-resolution mass spectrometry and supercomputing for 

direct identification and quantification of a broad range of PTMs from an AMD microbial 

community. We find that PTMs are extraordinarily diverse between different growth stages and 

highly divergent between closely related bacteria. The findings of this study motivate further 

investigation of the role of PTMs in the ecology and evolution of microbial communities. 

Finally, a computational approach has been developed to improve the sensitivity of 

phosphopeptide identification. Overall, the research presented in the dissertation not only reveals 

biological insights with existing quantitative proteomics methods, but also develops novel 

methodologies that open up new avenues in studying PTMs of proteins (e.g. PTM cross-talk). 
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CHAPTER 1 

PRINCIPLES OF HIGH-RESOLUTION MASS 

SPECTROMETRY-BASED PROTEOMICS AND ITS 

APPLICATIONS IN SYSTEMS-LEVEL CHARACTERIZATION 

OF PROTEINS AND POST-TRANSLATIONAL 

MODIFICATIONS 

1.1 Introduction to systems biology 

One of the greatest scientific achievements in the 20th century was the discovery of the 

central dogma of molecular biology1, which established the principle of biological information 

flow from DNA to RNA to protein in order to generate phenotypes. The establishment of the 

basic relationship among these biomolecules gave birth to the field of molecular biology, which 

is designed to address the fundamental question of where, when, and how the genetic 

information encoded in the genome of an organism is expressed and then translated into proteins 

to carry out biological functions, and how such biological information relay is spatially and 

temporally regulated? 

Over the past decades, this molecular biology paradigm, based on the assumption of “one 

gene-one protein-one function”2, has dominated biological research and provided a wealth of 

knowledge about the identity of molecular components and their functions. Despite its great 

success in the past, it is still very difficult to establish a direct link between genotype and 

phenotype3. Part of the reason is because a phenotype cannot be simply attributed to one single 

gene. It is becoming increasingly clear that molecular constituents of a cell do not function in 

isolation of one another; instead, they are organized as biological networks where the nodes of a 

network represent genes, RNAs, proteins, metabolites, or any other biomolecules and the edges 

between the nodes represent certain functional connection4, such as enzyme-substrate 

interaction5, or transcriptional factor-cis regulatory DNA interaction6. It is the structure and 

dynamics of these biological networks that collectively determine the phenotype of an organism. 

Recently, a new paradigm in biology is emerging, which focuses on studies of the molecular 

components of a cell in the network perspective, referred to as systems biology7,8. Since its first 

introduction by Leroy Hood and colleagues in 2001, systems biology has embraced various 

branches of biological research and revolutionized our understanding of the molecular principles 

governing cellular functioning.  In contrast to molecular biology, which usually focuses one or a 
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few gene(s) transcript(s), and protein(s) at a time, systems biology characterizes the entire 

biological molecules present in a cell or organism with ultimate goal of using such global 

information to built predicative mathematical model of a system7. 

Only limited and incremental progress in a scientific discipline would be made if there 

was no technology breakthrough. Just like the profound scientific impact of molecular biology 

would not have existed if polymerase chain reaction (PCR) technique had not been invented9, the 

advancement of systems biology has been being powered by various omics-based technologies. 

The sequencing technologies created “Genomics”, which dissects an organism’s genetic 

blueprint and informs the potential functions that this organism is able to perform10. However, 

gene expression is dynamic and condition-dependent11. Just because a gene is encoded in a 

genome does not necessarily mean this gene would be expressed all the time (or at all). 

“Transcriptomics”, initiated by microarray technologies12 and advanced by RNA-Seq 

technologies13, profiles gene transcripts and provides insight into spatial-temporal gene 

expression dynamics. 

Genomics and transcriptomics have significantly deepened our understanding of the 

molecular mechanism underlying the various biological processes. However, most biological 

functions and metabolic activities are carried out by proteins, and neither genomics nor 

transcriptomics would completely and accurately inform what proteins are present in a cell, 

which have closer connection to phenotypes than gene and RNA transcript. Furthermore, most 

protein activities are regulated by post-translational modifications, the chemical modification of 

proteins after translation14. The mass spectrometry technologies brought into being “Proteomics” 

which catalogs the entire proteins and their post-translational modifications present in a cell and 

provides a more direct measurement of molecular signatures underlying the phenotypes15. 

1.2 Mass spectrometry-based proteomics as a central approach in systems 

biology 

1.2.1 Principles of mass spectrometry-based proteomics 

The term, Proteomics, was first introduced by Wilkins and colleagues in 1996 with the 

goal of identifying all proteins present in a cell under a specific condition16. Despite a similar 

scale of ambition as genomics and transcriptomics, the technical challenges encountered by 

proteomics researchers were more formidable. Previous biotechnologies had already laid a solid 

foundation for genomics and transcriptomics for decoding the genome and transcriptome, 
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respectively, primarily based upon the PCR which can be routinely used to amplify DNA 

fragments, so the sensitivity issue in the genome sequencing or gene chip-based RNA detection 

had been eliminated17. However, there was no such technology that could increase the copy 

number of proteins to benefit the protein measurement. Fortunately, the field of proteomics has 

been dramatically propelled forward by innovative advancements in new high-performance mass 

spectrometric technologies15. 

Nowadays, mass spectrometry has become an indispensable tool in proteomic 

measurement because it can be used to not only confidently identify proteins, but also accurately 

quantify their abundances. Such a pivotal role of mass spectrometry in proteomics was 

established due to the invention of two ionization techniques in 1980s: matrix assisted laser 

desorption/ionization (MALDI)18 and electrospray ionization (ESI)19. Such technological 

breakthroughs eliminated the bottleneck of producing ions for large, non-volatile biomolecules, 

such as peptides and proteins, in the gas phase. Since the first large-scale proteome measurement 

of yeast by John Yates and colleagues in 200120, proteomics has undergone tremendous 

development, mainly driven by the continuous improvement on the performance of mass 

spectrometer, in terms of mass accuracy, speed, sensitivity, dynamic range, etc. Previously, it 

took ~68 hours to finish the first yeast proteome measurement with identification of 1484 

proteins. Recently, with the latest generation of mass spectrometer-the Orbitrap Fusion mass 

spectrometer, Coon and colleagues were able to achieve much deeper measurement of the yeast 

proteome with identification of 3,977 proteins in 1.3 hours21. 

In a typical proteome measurement, whole proteins are extracted from cells. Because of 

the enormous complexity of the extracted protein sample and huge difference in the abundance 

between the most abundant protein and the least abundant protein (i.e. dynamic range), 

separation is normally required to reduce the sample complexity. In the early proteomic studies, 

two-dimensional gel electrophoresis (2D-GE)16, which first separates protein by isoelectric 

focusing point and then by molecular size in a gel, had been commonly used to resolve the 

complex protein sample. Then, the gel is stained, and some selected spots that contain proteins 

are excised from the gel. Proteins within the gel spots can be identified by mass spectrometry. 

There are a few disadvantages in the 2D-GE-based approaches. Firstly, due to the complexity of 

proteome sample, SDS gel electrophoresis is unable to separate each individual protein species. 

Thus, a gel spot could contain a few different protein species. Such protein co-migration 
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phenomenon would distort protein abundance quantification because the staining intensity of a 

spot is a composite of many different protein species. Secondly, this approach has poor 

separation for membrane proteins, limited dynamic range, and inability to identify proteins in all 

the spots. In addition, excising gel spot is time-consuming and label-intensive. 

The instrumentation that couples liquid chromatography with mass spectrometry (LC-

MS) has significantly accelerated the development of proteomics and made mass spectrometry a 

powerful analytical technology for proteome characterization. Various LC separation approaches 

have been developed, such as reverse phase liquid chromatography20 that separates proteins or 

peptides based their hydrophobic interaction with C18 resins and hydrophilic interaction liquid 

chromatography22 that separates proteins or peptide based on their hydrophilic interaction with 

anionic resins. The LC-MS configuration offers much better separation and higher throughput 

than the 2D-GE-based approach. Furthermore, this approach is highly automated, which requires 

much less human labor. 

There are two types of proteomic approaches for protein characterization: top-down 

approach23 and bottom-up approach (or shotgun approach)24. The top-down proteomics targets 

intact proteins. In this approach, various separations are usually carried out at the protein level to 

generate multiple fractions of a protein mixture. Then each fraction is introduced into mass 

spectrometry for protein sequence analysis. The advantage of the top-down approach is it can 

identify protein isoforms resulting from alterative splicing of mRNA and detect a combination of 

multiple PTMs present on the same protein molecule. The current high-throughput top-down 

proteomics is able to identify thousands of proteins, however, there are still significant 

challenges in this approach. First, it is much more difficult to separate proteins than peptides. 

Second, traditional separation methods still commonly used in the top-down approach, such as 

gel electrophoresis, result in limited recovery of proteins. Liquid chromatography-based 

separation offers less sample loss, but it works poorly for proteins with more than 500 amino 

acid residues. Third, identification of protein from mass spectrometric spectra requires 

fragmentation of protein to generate ladders of fragment ions for sequence interrogation. 

However, sequence-informative fragment ions needed for confident protein identification are 

often sparse in mass spectra. 

The alternative approach that targets peptides is shotgun proteomics. Instead of 

separating and measuring intact proteins, proteins are digested into peptides that are separated by 
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liquid chromatography and then sequenced by tandem mass spectrometry. The peptide sequences 

identified from tandem mass spectra are used to infer what proteins are present in the sample 

(Figure 1.1). The advantage of the shotgun approach over the top-down approach is that it is 

much easier to separate peptides than proteins. Because peptide is much smaller than a protein, it 

is also easier to generate a ladder of sequence-informative fragment ions for peptide sequence 

identification. However, because peptides are disconnected from their parent proteins during the 

enzymatic digestion in the shotgun proteomics approach, definitively inferring what proteins are 

present in a sample from their peptides is a non-trivial task because a peptide can be shared 

between multiple proteins25. This protein inference problem becomes even more severe when 

dealing with eukaryotic organisms that have undergone extensive gene duplication, resulting in 

high sequence redundancy. Furthermore, it is difficult to use shotgun proteomics approach to 

tease apart which protein isoforms resulting from alternative splicing are present in the sample, 

because identification of a peptide that is unique to a particular isoform may not always succeed. 

Despite these technical challenges, shotgun proteomics has been extremely successful for deep 

proteome characterization, not only qualitatively but also quantitatively. In 2011, Mann and 

colleague was able to identify and quantify ~10,000 proteins from a human cell line, 

demonstrating that the depth of proteome coverage by mass spectrometry-based proteomics was 

similar to that of transcriptome coverage by RNA-Seq26. 

Nowadays, it is routine to generate hundreds of thousands of tandem mass spectra within 

one day of measurement. Such magnitude of data precludes manual identification of peptides 

from spectra.  However, database searching has automated the process of identifying peptides 

sequence from mass spectra27. During a database search, the protein sequence database predicted 

from the genome of an organism is usually input to a search algorithm, and each database protein 

is in silico digested into to characteristic peptides based on the cleavage rule of the protease used 

in an experimental digestion. Since the fragmentation pattern of a peptide is predictable, usually 

b- and y-ion series in collision-induced dissociation (Figure 1.2), the theoretical spectrum of each 

database peptide can be generated in silico. In order to identify the exact amino acid sequence 

from an experimental spectrum, a list of candidate theoretical spectra are scored to identify the 

best peptide-to-spectrum match. This spectrum-matching approach is the oldest and still the most  



 

Figure 1.1 Workflow of shotgun proteomics. (A) Sample preparation. (B) Liquid 

chromatography-tandem mass spectrometry. (C) Database searching for protein identification

 

 

 

 

6

Workflow of shotgun proteomics. (A) Sample preparation. (B) Liquid 

tandem mass spectrometry. (C) Database searching for protein identification

 

Workflow of shotgun proteomics. (A) Sample preparation. (B) Liquid 

tandem mass spectrometry. (C) Database searching for protein identification. 



 

Figure 1.2 Nomenclature of fragment ions from a peptide. The fragment ions containing 

N-terminus are classified as a, b or c ion

classified as x, y or z ions. The number 
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Nomenclature of fragment ions from a peptide. The fragment ions containing 

terminus are classified as a, b or c ions. The fragment ions containing C-terminus are 

. The number indicates the number of residues in a fragment ion.
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widely used method for peptide identification. There are also a few other different database 

searching approaches, such as spectral library searching28 and de novo sequencing29. 

Functional characterization of an organism requires not only cataloging what protein 

species are expressed in a cell but also quantifying the abundance change of these proteins in 

response to external and internal stimuli, because quantification of protein abundance changes 

could provide an insight into how an organism utilizes its protein machineries to deal with the 

stimuli.  Mass spectrometry-based proteomics is a method of choice for quantitative 

characterization of proteome30, because it can determine not only absolute copy number of 

protein in a cellular state, termed absolute quantification, but also relative abundance of each 

protein in different conditions, termed relative quantification, with high accuracy, precision, and 

reproducibility. There are two categories of quantitation methods in general: label-free methods 

and labeling-based methods. Label-free approaches correlate protein abundance with either the 

number of spectra that are identified for a protein (spectral counting) or mass spectrometric 

signal intensity of a protein. In contrast, with labeling-based approaches, different stable isotopes 

are incorporated into a series of samples, chemically, enzymatically, or metabolically, to 

generate different isotopic versions of the same organism. Then, the relative abundance of 

different versions of the same peptide, for example, 14N-labeled peptide and 15N-labeled peptide, 

are compared to quantify relative abundance change. In both label-free and labeling approaches, 

absolute quantification can be realized by spiking internal standards with known abundance. 

Then, the absolute abundance of a protein/peptide can be calculated by quantifying the relative 

abundance ratio between the protein/peptide and its internal standard. 

1.2.2 Global characterization of PTMs by mass spectrometry-based proteomics 

Cells are an information-processing unit that must quickly respond to various 

environmental stimuli in order to adapt to changing environmental conditions. Thus, an organism 

has developed complex, hierarchical regulatory systems that are able to adjust their molecular 

machineries for cell survival. For example, transcription factor binding to regulatory DNA 

sequence can modulate gene transcription6. RNA transcripts can undergo various post-

transcriptional regulations before a protein can be made, such as alternative splicing which 

produces different mRNA isoforms from the same precursor31, and RNA editing which can 

change final amino acid sequence of protein. MicroRNA binding to mRNA can affect the mRNA 

stability and protein translation32. After protein translation, post-translational modification can 
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modulate various aspects of protein function14. These post-transcriptional and post-translational 

processing greatly enhances the functional potential of a genome. For example, the number of 

proteins encoded by the human genome surprisingly turned out to be about 20,000, which is not 

much bigger than that of the worm33. However, post-translational modifications vastly expand 

the chemical forms of a protein, which could be a molecular mechanism to compensate the 

relative paucity of protein-coding genes in a genome. For example, one protein can be modified 

with multiple types of PTMs and/or one type of PTM on multiple positions. Particularly, these 

protein modifications are combinatorial, meaning that the number of PTM isoforms of a protein 

would exponentially increase and different PTM isoforms could perform varied biological 

functions. 

Mass spectrometry has been used to study post-translational modifications of purified 

proteins since 197434. However, it was not until the early 2000’s that proteome-wide PTM 

characterization became possible due to the development of various approaches for enriching 

PTM-containing peptides and the introduction of liquid chromatography into proteomics. 

Proteome-wide PTM characterization is more challenging than protein characterization because 

1) PTM-containing peptides are usually low abundance. Thus, modified peptides have less 

chance to be sampled by mass spectrometer than unmodified peptides; 2) the presence of a 

chemical moiety on peptide creates a difficult in generating high quality spectra for confident 

peptide identification, because sequence-informative fragment ions are usually rare compared to 

unmodified peptides; 3) Identification of a modified peptide may not always guarantee the 

correct localization of PTM on the modified residue, because site-determining fragment ions are 

often missing in spectra. 

Technical advancements in the past decade have begun to overcome these above- 

mentioned challenges. For example, various PTM enrichment techniques35, such as antibody-

based approaches and metal affinity-based approaches (e.g. TiO2 and IMAC), have been used to 

enrich low abundant modified peptides before the measurement. A range of fragmentation 

methods, such as neutral loss-triggered MS336, multistage activation37, and higher-energy 

collisional dissociation38, has been explored to generate information-rich fragment ion spectra for 

peptide sequencing. Sophisticated algorithms, such as phosphoRS39 and Ascore40, have been 

developed to localize PTM from tandem mass spectra. With the current high-performance mass 
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spectrometry-based proteomics, it is now possible to identify tens of thousands of PTM events 

from a single study. 

1.2.3 Proteomics in high-resolution mass spectrometry era 

Currently, shotgun proteomics approach is still dominating the field. With this approach, 

a complex mixture of hundreds of thousands of peptide species with huge dynamic range is often 

measured in a few hours of chromatographic run. It is very common that hundreds of different 

peptide species could co-elute at a given chromatogram time point. Furthermore, a window with 

a few m/z wide is frequently isolated for fragmentation to determine peptide sequence. In such 

complex sample, it is highly likely that a few different co-eluting peptides with similar m/z are 

co-isolated and then co-fragmented to generate a multiplexed MS/MS spectrum. These 

multiplexed spectra are more prone to false positive unless the accurate mass measurement is 

used. 

In the early 2000’s, a proteomics researcher had to use 3-dimensional ion trap mass 

spectrometer with moderate sequencing speed, high sensitivity, but low mass resolving power. 

Such low-resolution mass spectrometer precluded accurate mass measurement, accurate charge 

state determination, and accurate quantification. In 2004, with introduction of hybrid linear ion 

trap-Fourier transform instrument (LTQ-FTICR-MS)41, measuring proteomic sample with high 

resolution and high mass accuracy had become possible. This greatly boosted the data quality 

and increased the confidence of peptide identification. A few years later, a new generation of 

mass spectrometer, the LTQ-Orbitrap hybrid instrument42, was introduced. Since then, proteome 

measurements have become quite common with a high-low approach: detection of precursor 

peptides occurs in Orbitrap with high resolution and high mass accuracy whereas detection of 

fragment ions occurs in LTQ with relative low resolution but high sequencing speed. Such a 

high-low approach is still the most widely used data acquisition method in proteome 

measurement. 

In recent years, the high-high approach that measures both precursor peptides and 

fragment ions in Orbitrap with high resolution and high mass accuracy has begun to receive 

more attention. Mann and co-workers first demonstrated this high-high data acquisition approach 

for measuring post-translational modification on LTQ-Orbitrap platform using higher energy 

collisional dissociation38. One year later, a new generation of mass spectrometer, LTQ-Orbitrap 

Velos43, was introduced, featuring a delicate higher energy collision cell. Then, the feasibility of 
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large-scale phosphoproteomic study with the high-high approach on this new generation of mass 

spectrometer was demonstrated44. However, it took much longer time to acquire a high-

resolution fragment ion spectrum in Orbitrap than recording a low-resolution spectrum in LTQ. 

The prolonged data acquisition time could adversely impact the depth of measurement, which led 

to the argument about whether the high-high approach would be suitable for the large-scale 

proteome or PTM characterization45. In 2012, the LTQ-Orbitrap Elite mass spectrometer was 

introduced with 4-fold increased scan rate of the Orbitrap mass analyzer46. Such an improvement 

made the duty cycle of the high-high approach comparable to that of the high-low approach, 

which allows similar depth of measurement between these two methods. However, the high-high 

approach offers much better specificity for database searching, which significantly decreases 

false positive identifications. For example, typically, 0.5 Dalton of fragment ion mass tolerance 

is allowed during the database searching of data acquired with the high-low approach. With the 

high-high approach, the mass tolerance can be specified as stringent as 0.01 Dalton, which is 50-

fold more accurate when matching measured fragment ions with predicted ones. 

1.3 Community proteomics of natural microbial consortia 

1.3.1 Introduction to microbial community 

Over the past centuries, microbiologists had focused on studying pure cultures using 

classic methodologies, such as microscopy, cell isolation and culturing, and recombinant DNA 

techniques. These approaches had tremendously advanced our understanding of microbial 

physiology and been frequently explored to benefit the human world, such as utilizing microbial 

fermentation for providing food and medicine, and harnessing microbial metabolism for 

environmental cleanup. It was not until the development of an approach to directly recover 

microbial DNA from natural environment that people began to realize centuries of culture-

dependent microbial research only captured less than one percent of microbial species on the 

earth47. Fortunately, microbiology entered the systems biology era, which brought in various 

cultivation-independent approaches to study microorganisms in their natural settings. These 

approaches include metagenomics which sequences DNA directly recovered from free-living 

microorganisms48, metatranscriptomics which measures in situ gene expression49, and 

metaproteomics which characterizes expressed protein molecules50. 
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The study of whole microbial communities is a daunting task, because of extraordinary 

biodiversity, and undefined structural and functional boundaries, of most natural communities. 

Thus, starting with a system with reduced complexity provides an opportunity to not only 

generate hypotheses that could be extrapolated to more complex systems, but also develop 

molecular methods that can be applied to characterizing those complex microbial communities. 

Microbial biofilms growing in the Acid Mine Drainage (AMD) offer such a model 

system51. This natural environment contains high level of acid and toxic heavy metals, such as 

lead and arsenic, which creates a serious environmental problem. However, in such harsh 

environment, dozens of microbial species, mostly Leptospirillum group II bacteria, are able to 

thrive. They utilize Fe2+ released from pyrite dissolution to make energy and fix carbon for their 

growth. They also build microbial biofilms on the AMD solution-air interface. At the same time, 

the Fe3+ derived from the microbial oxidation of Fe2+ further drives pyrite dissolution, which 

continuously provides Fe2+ for the microbial growth. The life cycle of an AMD biofilm has three 

developmental stages. In the early developmental stage, carbon fixation carried out by bacteria is 

highly active and the biofilm begins to establish. As biofilm further grows, it will enter the late 

developmental stage where organic carbons synthesized in early stage are partitioned into 

heterotrophs that cannot fix carbon on their own. As biofilm further matures, it will be degraded 

by anaerobic archaea. Carbon fixed in the early development stage are respired and then released 

into environment as CO2. 

Decades of research on AMD microbial community has not only gleaned insight into the 

microbial evolution and ecology in nature, but also enabled the development of various culture-

independent molecular techniques that have been adapted to study more complex microbial 

communities, particularly the community proteomics that allows functional characterization of 

microbial community by analysis of expressed proteins. 

1.3.2 in situ functional analyses of microbial activities using community proteomics 

Initial attempts to characterize proteins recovered directly from natural occurring 

microbial communities were hampered by the limited resolution of 2D-GE-based approach and 

lack of high-quality genomic databases that can be used to match experiment spectra with 

theoretical spectra. In 2004, the composite genomes of several co-existing microbial species in 

an AMD system were reconstructed through metagenomic sequencing48. This provided a high-

quality genome database that allowed peptide and protein identification using automated 
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database searching. Then, the first large-scale environmental proteomics study was made 

possible with liquid chromatography-mass spectrometry-based proteomics50. This study 

identified over two thousand proteins from five abundant organisms. Particularly, these 

identified proteins can be assigned to different organisms, permitting differentiation of functional 

activities among co-existing organisms. Since this pioneering study, community proteomics has 

been applied to studying microbial communities existing in other environments, such as soil52, 

ocean53, and human body54. 

It is now routine to identify thousands of proteins from low-to-medium complexity 

systems with community proteomics. However, it remains a significant challenge to achieve 

deep measurement of complex systems, such as soil environments, because 1) proteins are often 

co-extracted with soil contaminants, such as humic acids, which creates extra technical hurdles 

in the downstream sample processing and liquid chromatography-mass spectrometry 

measurement; 2) the enormous genetic diversity and redundancy within complex microbial 

community and short sequence reads generated from the current high-throughput sequencing 

technology often complicate genome assembling. This problem propagates into the proteomic 

database searching, which precludes peptide and protein identification even from high quality 

tandem mass spectra; 3) the size of a metagenomic database from a complex community could 

contain more than a million protein sequences. The database searching against such huge 

database is computationally time-consuming.  Despite these technical hurdles, progress has been 

being made. For example, novel sample extraction approaches have been shown to overcome at 

least some of the difficulties in protein extraction from challenging environment55. Deep 

sequencing and new genome assembling algorithms would enable construction of high-quality 

metagenomic databases, which would aid in protein identification from mass spectrometry 

data56. High-performance computing would unblock the informatic bottleneck. 

1.4 Objectives of dissertation 

Various quantitative proteomics approaches have been developed, ranging from label 

free, metabolic labeling, to chemical labeling. Each approach has its own unique advantages and 

disadvantages. There have been a few studies that have compared different quantitative methods, 

however no study had compared all three methods simultaneously on the same analytical 

platform. Thus, the goal of the Chapter 3 is to head-to-head compare the identification and 
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quantitation performance of these three above-mentioned approaches on the state-of-art Linear 

Ion Trap (LTQ) Orbitrap Velos mass spectrometer platform in order to provide guidance on how 

to choose an appropriate approach for a quantitative proteomic study57. 

Strigolactones are a new class of plant hormones. In addition to acting as a key inhibitor 

of shoot branching, they stimulate seed germination of root parasitic plants and promote hyphal 

branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate 

many other aspects of plant growth and development. At the transcription level, strigolactones-

regulated genes have been reported. However, nothing is known about the proteome regulated by 

this new class of plant hormones. Thus, the objective of the Chapter 4 is to apply isobaric 

chemical labeling-based quantitative proteomics approach to quantify the proteome regulated by 

the strigolactone in Arabidopsis seedlings and to identify potential target proteins for follow-up 

genetic and biochemical study58. 

Microbial communities are central to global carbon recycling and have direct feedbacks 

with the climate system. Nonetheless, their response to global change remains enigmatic largely 

due to the complex nature of their membership and metabolism. Our limited knowledge of 

microbial response to change, the difficulty of identifying and quantifying microbial function 

within complex samples, and the inability to link metabolisms directly to community members 

have proven to be major limitations in progressing integration of microbial carbon cycling into 

Earth System models. Thus, the objective of the Chapter 5 was to apply chemical labeling-based 

quantitative proteomics to determine how elevated temperature impacts the physiology of 

individual microbial groups in a community context, using a model microbial-based ecosystem. 

Post-translational modifications play an important role in regulating protein function. Current 

global PTM studies by mass spectrometry-based proteomics generally rely on enrichment and 

can only target a specific type of PTM unless multiple enrichments are used. Also, the 

enrichment-based approach cannot directly quantify PTM fractional occupancy defined as the 

percentage of the copies of a protein that is modified with a specific PTM. Thus, the first 

objective of the Chapter 6 is to demonstrate a new proteomic approach that is able to 

simultaneously characterize a broad range of PTMs in microbial systems without enrichment. 

PTM-level regulation of protein activities in microbial community is largely unknown, thus the 

second objective of the Chapter 6 is to apply this demonstrated approach to profiling the 

diversity, dynamics, and divergence of PTMs in individual organisms within a natural AMD 
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microbial community and to provide insight into the role of PTMs in microbial adaptation, 

evolution and ecology. 

Protein phosphorylation is one of the most studied PTM type by mass spectrometry-based 

proteomics. Due to labile nature of phosphate group during fragmentation, fragment ions 

covering phosphorylated residue often suffer from various extent/form of neutral loss, resulting 

in a mass shift from their expected mass. Most database searching algorithms do not consider 

these neutral-loss fragment ions in their scoring functions, which could preclude identification of 

phosphopeptide when neutral loss fragment ions dominate the spectra. Thus, the objective of the 

Chapter 7 is to evaluate a neutral loss search algorithm for the improved sensitivity of 

phosphopeptide identification. 

1.5 Overview of dissertation 

The research in this dissertation demonstrates the feasibility of quantitative proteomic 

approaches that can be broadly used for characterization of proteins and post-translational 

modifications from complex proteome, focusing on acid mine drainage microbial community 

and Arabidopsis. This dissertation consists of following chapters: Chapter 2 describes 

experimental and bioinformatic methods. Chapter 3 compares three quantitative proteomics 

approaches: labeling free, metabolic labeling, and isobaric chemical labeling. Chapter 4 used 

isobaric chemical labeling-based quantitative approach to study how elevated temperature 

impacts organism’s physiology in acid mine drainage biofilm growing in bioreactor. Chapter 5 

also applied isobaric chemical labeling-based approach to profiling Arabidopsis proteome in 

response to the treatment with strigolactone. Chapter 6 demonstrated a new proteomic approach 

that combines high-performance mass spectrometry-based proteomics and high-performance for 

quantitative characterization of a broad range of PTM in both laboratory-grown E. coli and free-

living microorganisms in acid mine drainage microbial community. Chapter 7 describes a 

bioinformatic approach for improving sensitivity of phosphopeptide identification in high-

resolution mass spectrometry data. Chapter 8 serves as a conclusion of the research presented in 

the dissertation as well as the outlook of the future direction of mass spectrometry-base 

proteomics. 
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CHAPTER 2 

EXPERIMENTAL AND BIOINFORMATIC APPROACHES 

2.1 Overview of mass spectrometry-based approaches 

In this dissertation, shotgun proteomics approach is used to characterize complex 

proteomes because 1) it is much easier to separate peptides in shotgun proteomics than proteins 

in top-down proteomics; 2) better separation allows improved identification of peptides from 

relatively low abundant proteins, which provides deeper proteome coverage; 3) tryptic digestion 

of proteins usually results in peptides with ideal length for generating more sequence-informative 

fragment ions during fragmentation, which enhances the confidence of peptide identification; 

and 4) there are more selection of bioinformatic tools for analyzing shotgun proteomic data. 

The sample preparation starts with cell lysis to extract the whole protein, followed by denaturing, 

reducing, and digestion of the proteins. The resulting peptides are then loaded into back column 

off-line, separated with on-line two-dimensional liquid chromatography, and measured with 

tandem mass spectrometry. The raw mass spectrometric data are automatically searched for 

protein identification. Detailed experimental and bioinformatic procedures are described as 

follows. 

2.2 Experimental approaches 

2.2.1 Sample description 

The general workflow of mass spectrometry-based proteomics starts with whole protein 

extraction from cells. As mass spectrometry is an extremely sensitive analytical technique and its 

performance can be adversely affected by various contaminants, such as salts, only a few 

micrograms of proteins with high purity (free of salts) are typically needed in one experiment. 

Because proteins and peptides are usually stable under low temperature, extracted proteins and 

digested peptides can be stored at -80 oC. 

A variety of samples have been studied in this dissertation, including, P. putida F1, 

Arabidopsis, E. coli K12, and AMD microbial community. For the P. putida F1 samples in 

Chapter 3, cells were grown aerobically at 30 °C with vigorous shaking (200 rpm) in M9 

minimal medium [2 mM MgSO4, 0.1 mM CaCl2, and 1X M9 salts (5X M9 salts contain per liter: 

15 g KH2PO4, 2.5 g NaCl, 5 g NH4Cl (normal NH4Cl for unlabeled medium and 98%-enriched 
15NH4Cl for 15N-labeled medium), 64 g Na2HPO4·7H2O)] supplemented with 50 mM (final 



 17

concentration) of glucose. The M9 minimal medium was sterilized by autoclaving, and 1 M 

glucose stock solution was sterilized by passing through a 0.2 µm filter (Nalgene). Three cell 

cultures were grown identically. The unlabeled medium was used for cultures 1 and 2 and the 
15N-enriched medium was used for culture 3. Cells were harvested from the three cultures at the 

mid-log phase of growth (OD600 ∼ 0.4). 

For the Arabidopsis samples in the Chapter 4, wild-type Columbia-0 (Col-0) and mutants 

max3-9 and max3-12 (Salk_015785c) were obtained from the Arabidopsis Biological Resources 

Center (Columbus, Ohio). Seeds were surface sterilized by serial washing with 96% (volume / 

volume) ethanol, 20% (volume / volume) household bleach supplemented with 0.05% (volume / 

volume) Tween-20, and placed at 4°C for 2 days. Seeds were subsequently plated on ½ 

Murashige and Skoog (MS) medium supplemented with 1% (weight / volume) sucrose and 0.8% 

(weight / volume) agar, and germinated in 12 h/12 h photoperiod at 23°C, approx. 90 µmol 

photons m-2 s-1. Four-day-old seedlings were transferred to fresh ½ MS supplemented with 1% 

(weight / volume) sucrose and 0.8% (weight / volume) agar plates with vertical growth 

orientation. A synthetic strigolactone GR24 was obtained from LeadGen Labs, LLC (Orange, 

CT) and a 10 mM stock solution was made in acetone. To monitor the time curve for the effect 

of GR24 treatment on root growth, four-day-old Arabidopsis Col-0 seedlings were transferred to 

½ MS supplemented with 1% (weight / volume) sucrose and 0.8% (weight / volume) agar plates 

plus 5 µM GR24 or acetone as mock treatment. Primary root length of the seedlings was 

measured at the beginning of the treatment and in 6 h intervals for 24 h in total. For the proteome 

analysis, 14-day-old seedlings were treated with 5 µM GR24 for 12 hours. Fifteen whole 

seedlings of vertically-grown Col-0 and max3-12 were picked from plates, transferred to 50 ml 

tubes and incubated in 20 ml liquid ½ MS supplemented with 1% (weight / volume) sucrose plus 

GR24 or acetone as mock treatment. Treatment was performed on a roller shaker in the darkness 

and was started at the beginning of the dark period of plant growth to potentially avoid the 

accumulation of large amount of light-regulated proteins. After incubation, plants were 

harvested, thoroughly washed with water, dried on filter paper, snap-frozen in liquid nitrogen 

and stored at -80°C until protein or RNA extraction. Three biological replicates were sampled for 

each treatment. 

For the AMD microbial community samples in Chapter 5, biofilms were collected from 

the AB Muck Dam site at the Richmond Mine on 7/15/11, where pH is typically 0.85.  For 
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cultivation, biofilms were stored on ice for return to the laboratory.  For community analyses of 

the biofilm inoculum used for cultivation, biofilms were flash-frozen on-site in a dry ice/ethanol 

bath and then transferred to –80 °C upon return to the laboratory. Biofilms were cultured in 

bioreactors using 9K-BR growth media. The flow rate of the bioreactors was approximately 200 

µL/min.  Incubator temperature was monitored using HOBO® Pendant Temperature Data 

Loggers.  After four weeks of biofilm development at 40 °C, biofilms were regrown at 40ºC, 43 

ºC, 46 ºC, and 49 ºC in separate reactors.  Biofilms were harvested after three weeks and then 

reestablished before a second harvest five weeks later, representing two growth phases. 

For the AMD community samples in Chapter 6, early growth stage and late growth stage 

biofilms were sampled the AB Muck Dam site at the Richmond Mine on 9/17/2010 (pH ~1, 39 

°C). For the E. coli K-12 sample, cells were cultivated aerobically with constant agitation (250 

rpm) at 37 °C in Luria-Bertani medium (pH 7.2). Cells were harvested when the culture reached 

an O.D. of 0.8. 

2.2.2 Cell lysis and protein sample preparation 

Since this dissertation covers different biological systems, such as microbial isolate, 

microbial communities, and plant, sample preparation methods have been tailored to specific 

sample in order to achieve maximum protein yield. For the research presented in Chapter 3, in 

label-free quantification, two standard samples were prepared using 1 g of cell pellet from 

culture 1 and 1 g of cell pellet from culture 2 of P. putida strain F1. For metabolic-labeling 

quantification, one standard sample was prepared by mixing 1 g of unlabeled cell pellet from 

culture 1 and 1 g of 15N-labeled cell pellet from culture 3. For isobaric chemical labeling-based 

quantification, two peptide samples were prepared separately using 1 g of cell pellets from 

cultures 1 and 2, respectively, and were mixed after labeling. For each quantification method, all 

quantified proteins were expected to have an abundance ratio of 1:1. Cells were lysed by 

sonication with 2-minute duration at 20% amplitude (5 seconds on and 10 seconds off) in 6 M 

guanidine and 10 mM dithiothreitol (DTT). The extracted proteins were precipitated by chilled 

acetone. Protein pellets were obtained by centrifugation (21,000 g), air-dried, and then 

resolubilized in triethylammonium bicarbonate (TEAB) buffer. Protein concentration was 

measured by a bicinchoninic acid (BCA) (Thermo Scientific) assay, following the 

manufacturer’s protocol. Sequencing grade trypsin (Promega, Madison, WI) was added at 1:100 

(weight/weight) into proteins in TEAB buffer supplemented with 10 mM CaCl2 (final 
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concentration). The first digestion was run overnight at 37 °C, and after adding additional trypsin 

at 1:100 (weight/weight) into proteins, the second digestion was run for 5 h at 37 °C. Finally, the 

samples were reduced with 10 mM DTT for 1 h at 60 °C and desalted using C18 solid-phase 

extraction (Sep-Pak Plus, Waters, Milford, MA). A BCA assay was conducted to determine 

peptide concentration in order to make sure that equal amount of peptides from each sample are 

labeled with an isobaric chemical labeling reagent as described later. BCA assay was originally 

designed for estimation of protein concentration based on the reduction of Cu2+ to Cu+ by amide 

bonds in proteins. Since amide bonds also exist in peptides, the BCA assay should be applicable 

to estimation of peptide abundance. All peptide samples were stored at -80 °C until ready to use. 

For the research presented in Chapter 4, total proteins were extracted from frozen 

seedlings using a modified method for plant proteomes59. In brief, Arabidopsis seedlings were 

ground to powder in liquid nitrogen along with ~10 mg of polyvinylpolypyyrolidone and 

suspended in 2 ml chilled acetone containing 0.07% (volume/volume) beta-mercaptoethanol (β-

ME) and 10% (weight/volume) trichloroacetic acid. The extract was kept at -20°C overnight 

followed by centrifugation at 21,000 g for 20 min. The resulting pellet was retained and washed 

with chilled acetone containing 0.07% β-ME three times with brief centrifugation (5 min, 21,000 

g) between washes. The washed pellet was air dried, solubilized in 6 M guanidine HCl 

supplemented with 10 mM DTT and incubated at 60 °C for 3 h with intermittent mixing. The 

protein content of each sample was estimated using the reducing agent compatible/detergent 

compatible (RC/DC) protein assay kit (Biorad, Hercules, CA) as per the manufacturer’s protocol. 

The total protein concentration was used as guideline for trypsin assisted proteolysis. Cysteines 

were blocked by adding 20 mM iodoacetamide for 15 min at room temperature. Samples were 

diluted six-fold using Tris-CaCl2 buffer, pH 8.5 (50 mM Tris, 10 mM CaCl2). Subsequently, the 

proteins were proteolysed by adding modified sequencing grade trypsin (Promega, Madison, WI) 

at 40 µg enzyme per mg protein and incubated overnight at 37 °C with gentle mixing. Samples 

were desalted using reverse-phase solid phase extraction (C18 SepPak, Waters, Milford MA) and 

solvent exchanged. All peptide samples were stored at -80 °C until ready to use. 

For the research presented in Chapter 5, proteins were extracted from AMD biofilm using 

the sodium dodecyl sulfate (SDS)-boiling method. Between 500-750 mg of frozen biomass was 

resuspended in 1 mL SDS cell Lysis Buffer (5% SDS; 50 mM Tris-HCl, pH 8; 150 mM NaCl; 

0.1 mM EDTA; 1 mM MgCl2) and 10 µL of 5 M DTT.  The biofilm was dispersed in the buffer 
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by vigorously vortexing for 2-3 minutes.  Samples were heated at about 100 °C for 15 minutes, 

followed by vigorous vortexing for 3 minutes.  Cellular debris was pelleted by centrifugation at 

21,000 g for 10 minutes at 4 °C.  The supernatant was transferred to a fresh tube, 300 µl cold 

100% trichloroacetic acid was added, and the proteins precipitated overnight at 4 °C.  

Precipitated proteins were centrifuged at 21,000 g for 20 minutes at 4 °C and the concentrated 

protein pellet washed three times with cold acetone.  The pellet was resuspended in a 

guandinium chloride buffer (6 M guanidium chloride, 10 mM CaCl2, 50 mM Tris pH 7.6) and 

reduced with 10 mM DTT.  Total protein concentrations were estimated with the BCA assay. 50 

µg of protein from each sample was further processed with the Filter-aided Sample Preparation 

(FASP) method following the manufacturer's protocol (Expedeon, CA) with a minor 

modification by substituting urea with triethylammonium bicarbonate (TEAB) buffer for sample 

washes to avoid the primary amine group-containing chemical that would interfere with isobaric 

chemical labeling.  Each sample was digested with sequencing-grade trypsin (Promega, WI) in 

500 mM TEAB buffer overnight in an enzyme: substrate ratio of 1:100 (weight: weight) at room 

temperature with gentle shaking, followed by a second digestion for 4 hours.  Then the digested 

peptide samples were eluted off the filter by centrifugation and then were stored at -80 °C until 

ready to use. 

For the research presented in Chapter 6, AMD biofilm samples and E. coli sample were 

prepared similarly, using the SDS-boiling/FASP-based methods as described for the Chapter 5. 

Biofilm samples were digested with trypsin (Promega), Lys-C (Roche), and Glu-C (Roche) in 

parallel. E. coli sample was digested with trypsin and Lys-C in parallel. 

2.2.3. Isobaric chemical labeling 

For research presented in Chapter 3, the two iTRAQ (isobaric Tag for Relative and 

Absolute Quantification) samples of P. putida, each containing 100 µg of peptides, were labeled 

using iTRAQ116 and iTRAQ117 following the manufacturer’s standard protocol. The two 

samples were then mixed, yielding the standard sample for iTRAQ. Similarly, the two TMT 

(Tandem Mass Tag) samples, each containing 100 µg of peptides, were labeled using TMT126 

and TMT127 following the manufacturer’s protocol. The two samples were then mixed, yielding 

the standard sample for TMT. 

For research presented in Chapter 4, 100 µg peptide from each set of four samples (i.e. 

Col-0 without strigolactone treatment, Col-0 with strigolactone treatment, max3-12 without 
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strigolactone treatment, and max3-12 with strigolactone treatment) was labeled using 

iTRAQ114, iTRAQ115, iTRAQ116, and iTRAQ117 reagents according to the manufacturer’s 

protocol, respectively, and then combined into one aliquot at a ratio of 1:1:1:1. 

For research presented in Chapter 5, a total of 12 samples were labeled by the TMT 6-

plex reagent in the following scheme: for the 6 samples in the replicate A that included 40C-

1A(note: the first number denotes the growth temperature of AMD biofilm and the second 

number denotes the growth phase), 43C-1A, 46C-1A, 40C-2A, 43C-2A, and 46C-2A, 50 µg of 

each was labeled with TMT126, TMT127, TMT128, TMT129, TMT130, and TMT131, 

respectively; and for the 6 samples in the replicate B that included 40C-1B, 43C-1B, 46C-1B, 

40C-2B, 43C-2B, and 46C-2B, 50 µg of each was labeled with TMT126, TMT127, TMT128, 

TMT129, TMT130, and TMT131, respectively.  After the labeling was finished, the 6 samples in 

the same replicate were combined into one aliquot at a ratio of 1:1:1:1:1:1. 

2.2.4 Liquid chromatography 

For all research presented in this dissertation, multi-dimensional liquid chromatography, 

first introduced by Yates and colleagues20, was used to separate the complex peptide samples. 

This separation strategy couples strong cation exchange (SCX) as the first dimension with 

reverse phase as the second dimension. In SCX, positively charged peptides bind to negatively 

charged functional groups of SCX resins, typically sulfonate. Peptides are differentially eluted 

from SCX resins by increasing the concentration of salt, typically ammonium acetate, in mobile 

phase. The elution order of a peptide in SCX depends on its isoelectric point: the higher the 

isoelectric point is, the later it elutes.  In reverse phase chromatography, peptides bind to C18 

resins due to hydrophobic interaction. Differential elution of peptides is carried out by increasing 

organic solvent concentration, typically acetonitrile, in the mobile phase. The elution order of a 

peptide in reverse phase chromatography is based on its hydrophobicity: the higher the 

hydrophobicity is, the later it elutes. 

Specifically, in each run, 10~25 µg of peptides were loaded offline into a 150-µm-I.D. 2-

dimensional back column (Polymicro Technologies) packed with 3 cm of C18 reverse phase 

resin (Luna, Phenomenex) and 3 cm of strong cation exchange (SCX) resin (Luna, Phenomenex). 

The back column loaded with peptides was de-salted offline with 100% Solvent A (95% H2O, 

5% CH3CN, and 0.1% formic acid), and washed with a 1-hr gradient from 100% Solvent A to 

100% Solvent B (30% H2O, 70% CH3CN, and 0.1% formic acid) to move peptides from reverse 
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phase resin to SCX resin. Then, the back column was connected to a 100-µm-I.D. front column 

(New Objective) packed in-house with 15 cm of C18 RP resin and placed in-line with a U3000 

quaternary high-performance liquid chromatography pump (Dionex). Each run was configured 

with 11 SCX fractionations using 5%, 7%, 10%, 12%, 15%, 17%, 20%, 25%, 35%, 50%, and 

100% of Solvent D (500 mM ammonium acetate dissolved in Solvent A). Each SCX fraction 

was separated by a 110-min reverse gradient from 100% Solvent A to 60% Solvent B. The LC 

eluent was directly nanosprayed (Proxeon) into mass spectrometer (Thermo Scientific) with a 

flow rate of ~300 nL/min. 

2.2.5 Mass spectrometry 

2.2.5.1 Analytical figures of merit 

An mass spectrometer is composed of three indispensable parts: the ionization source 

which generates ions for analytes in gas phase and delivers them into mass spectrometer, the 

mass analyzer which measures the mass-to-charge ratio (m/z) of ions, and detector which records 

the measured m/z value of ions. There are many different types of mass spectrometers that use 

different ways to ionize, analyze, and detect analytes. However, when choosing an appropriate 

instrumentation for a proteomic measurement, the following analytical figures of merit should be 

considered60: 

1: mass resolution: the ability to tease part different ions with similar m/z - calculated by the full 

width at half-height of a peak. 

2: sensitivity: the amount of signal gain with increasing concentration of analyte. 

3: dynamic range: the ability to measure the concentration difference between the most abundant 

and least abundant analytes. 

4:  speed: the amount of time that is taken to collect a spectrum. 

5: precision: the variation in ion abundance when the same analyze is measured multiple times. 

6: mass accuracy: the difference between the measured mass and calculated mass. 

7: mass range: the m/z range that can be measured by a mass analyzer. 

8: detection limit: the lowest quantity of an analyte needed to generate a signal larger than 

background noise level. 

In this dissertation, LTQ-Orbitrap family mass spectrometers were used for proteomic 

measurements. Such versatile instrumentation allows measuring ions with high mass accuracy, 
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high resolution, and smaller low-end of mass range in Orbitrap and with high speed, high 

sensitivity in LTQ ions (Table 2.1). In previous generations of LTQ-Orbitrap mass 

spectrometers, the speed of measuring ions in Orbitrap is lower than that in LTQ. However, since 

the LTQ-Orbitrap-Elite mass spectrometer has been introduced, the scanning speed of Orbitrap 

becomes comparable to that of LTQ. 

2.2.5.2 Ionization techniques 

The first step in mass spectrometric analysis of molecules is to generate ions from 

analytes. However, producing ions in gas phase for biomolecules had long been the bottleneck 

that impeded the wide application of mass spectrometry in biology. In the late 1980s’, the 

development of the two soft ionization techniques: matrix-assisted laser desorption ionization 

(MALDI) and electrospray ionization (ESI) that is able produce gas phase ions from proteins and 

peptides, paved the way for the rapid development of the proteomics in the early 2000s. 

In MALDI ionization techniques, analytes of interest are spotted on a MALDI plate. 

Firing UV laser at the plate causes desorption and then ionization of matrix. Ionized matrix is 

thought to transfer a proton into analyte for ionization. Since the laser is fired intermittently and 

singly charged ions are often generated, MALDI is often coupled to pulsed mass analyzer with 

high mass range, such as Time-of-Flight. 

ESI is more frequently used in the proteomic measurement.  During ESI process, mobile 

phase containing volatile solvent and pre-charged analytes is sprayed into fine aerosol, which is 

driven by the high voltage (2 – 4 kV) applied between the emitter and the inlet of a mass 

spectrometer. As extensive solvent evaporation occurs, the size of droplets shrink until they 

reach the Rayleigh limit where Coulombic explosion occurs and droplets fall apart, producing 

smaller droplets that repeat this process and ions that enter mass spectrometer for mass analysis. 

ESI is especially suitable for analyzing large biomolecules, such as proteins and peptides, 

because it produced multiply charged ions with relatively small m/z that falls within the optimal 

mass range of some mass analyzer (e.g. LTQ). 

In this dissertation, a variant of ESI-nanospray ionization that operates with flow rate of 

200 nl/min was used. The use of such low flow rate produces smaller droplets and improves 

ionization efficiency and sensitivity. 
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Table 2.1 Performance metrics of the mass spectrometer used in this dissertation. 
 

Instrument  Mass 
resolution  

Sensitivity*  Dynamic 
Range  

Speed 

(# of 
MS/MS 

per 
second)  

Mass 
Accuracy  

Mass 
Range  

Detection 
Limit  

Precision 

LTQ 
Orbitrap 

Pro 

7,500-
100,000 

s/n: 100:1 
5,000 

within a 
scan 

10 <1 ppm 

50 - 
2,000 

Attomole-
Femtomole 

high 

LTQ 
Orbitrap 

Elite 

15,000-
240,000 s/n: 100:1 

> 5,000 
within a 

scan 
12 < 1 ppm 

50 - 
2,000 

Attomole-
Femtomole high 

 

* evaluated with 2 µL of a 50 fg/µL solution of reserpine (100 femtograms total) injected 

at a flow of 500 µL/min. Some performance metrics were from http://planetorbitrap.com/ 
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2.2.5.3 Mass analyzer 

Each mass spectrometer must be equipped with a mass analyzer that measures the mass-

to-charge ratio of ionized analytes. There are many different types of mass analyzers, but LTQ 

and Orbitrap have emerged as the most popular ones in proteomic measurement (Figure 2.1). 

LTQ can either operate stand-alone in LTQ mass spectrometer or be hybridized with Orbitrap to 

build LTQ-Orbitrap mass spectrometer (Figure 2.1A). Ions in LTQ are trapped radially by a two-

dimensional radio frequency (RF) potential, and axially by a direct current (DC) potential 

applied to electrodes at the entrance and exit. Manipulation of ions, such as transmission, 

isolation, and activation can be realized by changing the RF and DC potential. LTQ offers fast 

scanning speed that is crucial for deep proteomic measurements and high sensitivity that are 

critical to sequencing low abundant peptides. However, since LTQ has limited mass accuracy 

and resolution, ambiguity in peptide identifications could arise when measuring complex 

mixture. Recently, the dual-pressure linear ion trap mass spectrometer-LTQ Velos was 

introduced43. Two ion traps with differential pressure are installed (Figure 2.1B).  The first ion 

trap operates at high pressure, which allows more efficient ion trapping, isolation, fragmentation 

and the second one at low pressure, which enables faster spectra acquisition. The commercial 

introduction of Orbitrap mass analyzer in 2005 has revolutionized the mass analysis for 

proteomic measurement42. The Orbitrap consists of an outer barrel-like electrode and an inner 

spindle-like electrode, coaxial with each other. In contrast to linear ion trap, ions in Orbitrap are 

confined radially around the inner spindle-like electrode by electrostatic attractions, instead of 

using RF as in linear ion trap.  Oscillation frequencies of ions are measured by acquisition of 

time-domain image current transients and then converted to mass spectra by fast Fourier 

transforms. Orbitrap features high resolution, high mass accuracy which significantly reduces the 

false positive identifications in proteomics. The lower mass cutoff in Orbitrap than LTQ 

detection makes it compatible with isobaric chemical labeling-based quantification. The 

disadvantage of Orbitrap was it requires longer time for spectra production than LTQ, which 

lowers the duty-cycle of measurement. However, the introduction of stand-alone Orbitrap (Q-

Exactive)61 and Orbitrap Elite46 with significantly increased scanning speed made the sequencing 

speed comparable between these two mass analyzers. 

For research presented in Chapter 3, 4, and 5, all precursor and fragment ion mass 

analyses were performed in LTQ and Orbitrap, respectively. Reporter ion mass analyses for  
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Figure 2.1 Schematics of LTQ Oribtrap XL mass spectrometer (A) and LTQ Orbitrap 

Velos/Pro/Elite mass spectrometer (B). The cartoons are adapted from http://planetorbitrap.com/ 
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isobaric chemical labeling-based quantification were performed in Orbitrap. For research 

presented in Chapter 6, both precursor and fragment ion mass were analyzed in Orbitrap. 

2.2.5.4 Fragmentation methods 

Because of the huge complexity of proteome sample, precursor peptide mass detection is 

coupled with fragment ion mass measurement for more definitive peptide identification. In order 

to avoid repetitively fragmenting relatively high-abundant peptides, intelligent data-dependent 

acquisition (DDA) strategy has been devised, which utilizes the ion information in full scan to 

determine target ions for triggering MS/MS experiments. In a typical proteomic measurement, 

DDA is often realized by designing a Top N method where a full scan is followed by sequential 

isolation of top N (usually N = 10~20) most abundant peptide species for fragmentation. Such 

Top N method is often combined with the dynamic exclusion method where already fragmented 

peptide ions are temporarily excluded from MS/MS experiment for certain period of time (e.g. 

60 seconds) in order to maximize the diversity of peptides being sequenced. 

There are a few different types of fragmentation approaches used in proteomics62, 

including collisional-induced dissociation (CID), higher-energy collisional dissociation (HCD), 

and electron transfer/capture dissociation (ETD/ECD). 

In CID, peptide ions are accelerated in the electric field and collided with neutral gas, 

such as helium. The collision converts kinetic energy generated in the acceleration to internal 

energy, which results in chemical bond breakage, usually the amide bond in peptides. The 

fragmentation produces a ladder of fragment ions from a precursor peptide, which can be used to 

infer the amino acid sequence. CID is the most commonly used fragmentation method in 

proteomics. However, because of the 1/3 rule where fragment ions with m/z smaller than 1/3 of 

precursor ion m/z are not stable, this fragmentation method is not suitable for isobaric-chemical 

labeling-based quantification. 

In HCD, precursor ions are isolated in ion trap and then injected, via the C-trap, to an 

octopole collision cell where precursor ions are collided with nitrogen gas to generate fragment 

ions. The fragment ions are then sent to Orbitrap via the C-trap for mass measurement. HCD is 

becoming more popular in proteomic measurement, not only for regular peptide identification, 

but also post-translational modification identification, because Orbitrap measures HCD-

generated fragment ions with high resolution, high mass accuracy, and no constraint from the 1/3 
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rule and HCD spectra contain richer fragment ions, which provides more information content for 

peptide identification. 

For the research presented in Chapter 3, MS data were acquired with following 

configurations: ten CID MS/MS scans per full scan for label free-based quantification; six CID 

MS/MS scans per full scan for metabolic labeling-based quantification; and four data-dependent 

CID-HCD dual MS/MS scans per full scan for isobaric chemical labeling-based quantification. 

In the CID-HCD dual scan, each selected parent ion was first fragmented by CID and then by 

HCD. Such configuration combines the benefit of using high-speed detection of CID-generated 

fragment ions in ion trap for peptide identification and Orbitrap detection of HCD-generated low 

mass reporter ions for quantification. The research presented in Chapter 4 and 5 also used the 

CID-HCD dual scan mode. The research presented in Chapter 6 used the HCD for fragmentation. 

2.3 Bioinformatics 

2.3.1 Peptide identification 

The experimental part of mass spectrometry-based proteomics is to generate mass spectra 

which can be used for peptide identification. Typically, one day of measurement can produce 

hundreds of thousands of tandem mass spectra. Such magnitude of the data makes it impossible 

to decode amino acid sequence from spectra manually. However, numerous peptide 

identification software have been developed, such as Sequest63, Mascot64, Myrimatch65, and 

Sipros66-68. By reversing target protein sequences and then appending the resulting decoy 

sequences to the original protein database for searching, false positive identifications can be 

controlled through adjusting the score threshold until the percentage of decoy identifications is 

reduced to a desirable level69,70 (usually 1%).  The false positive rate is usually calculated by 

[2 x (the number of decoys)] / (the number of targets + the number of decoys). 

In the research presented in Chapter 3, 4, and 5, Sequest was used for peptide 

identification. Specifically, all MS Raw files were converted into MS2 flat file using Raxport and 

then searched with following parameters: precursor mass tolerance of 3 Da; fragment ion mass 

tolerance of 0.5 Da; full enzymatic cleavage specificity required. Reverse sequences were 

appended into the protein sequence database for estimation of false positive rate (FDR).  In the 

Chapter 3, all MS/MS spectra were searched against the P. putida F1 genome database (released 

in 2010) containing a total of 5251 predicted proteins and 44 common contaminants (trypsin, 
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keratin, etc.). Two SEQUEST searches were performed for each iTRAQ and TMT run. The first 

search used static modification at the N-terminus and dynamic modification at the lysine residue 

by the labeling reagents. The second search used only dynamic modification at the lysine 

residue. The second search was used to evaluate the labeling efficiency. In Chapter 4, all MS/MS 

spectra were searched against a Arabidopsis thaliana proteome database which contains 27,416 

protein sequences from the January 2011 TAIR10 annotation 

(TAIR10_pep_20110103_representative_gene_model), 1,413 small proteins, 36 common 

contaminants, and 28,865 reverse sequences of all these proteins for a total of 57,730 entries. 

Cysteine blocking by iodoacetamide was specified as a static modification. Static modification at 

the N-terminus and dynamic modification at lysine residues by the iTRAQ labeling reagents 

were specified for peptide identification. An additional search with no iTRAQ modification 

specified was performed for the test run to estimate labeling efficiency. In the Chapter 5, all 

MS/MS spectra were searched against a database containing 79,633 proteins obtained from 

previous genomic characterizations of acid mine drainage biofilms sampled from the Richmond 

Mine AMD system.  Static modification of cysteine by iodoacetamide and static modification of 

N-terminus, and dynamic modification of lysine by the TMT labeling reagent were specified for 

peptide identification. 

For research presented in the chapter 6 and 7, Sipros was used for peptide identification. 

All Raw files were converted to FT1 and FT2 flat files using Raxport and then searched against 

either the E. coli K12 MG1566 genome database or the AMD metagenome database using Sipros 

(http://sipros.omicsbio.org). A broad range of PTMs were dynamically searched, including 

oxidation of methionine, hydroxylation of proline and lysine, deamidation of asparagine and 

glutamine, citrullination of arginine, mono-methylation of arginine, lysine, aspartic acid, and 

glutamic acid, di-methylation of arginine and lysine, tri-methylation of lysine, phosphorylation 

of serine, threonine, tyrosine, histidine, and aspartic acid, acetylation of lysine, s-nitrosylation of 

cysteine, nitration of tyrosine, methylthiolation of aspartic acid, and alkylation of cysteine by 

iodoacetamide. Although oxidation and hydroxylation introduce identical mass shift, so do 

deamidation and citrullination, these isobaric PTMs can be distinguish by localization: when 

methionine co-exists with proline or lysine on the same peptide, PTM localized to proline or 

lysine was considered as hydroxylation, otherwise it was ignored; when asparagine or glutamine 

co-exists with arginine on the same peptide, PTM localized to arginine was considered as 
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citrillunation, otherwise it was ignored. Because some UBA-type peptides and 5wayCG-type 

peptides only differ in one single amino acid and some of these amino acid mutations introduce 

identical mass shift as PTM (e.g. aspartic acid/glutamic acid mutation is isobaric as mono-

methylation), in order to be conservative, we selected the unmodified peptide when the top-rank 

modified peptide and unmodified peptide have tied scores for a spectrum, or selected the peptide 

with the fewest PTM when there were multiple top-rank modified peptides with tied scores. In 

order to handle the exponentially expanded search space, the broad-range PTM searches were 

conducted with scalable database searching algorithm Sipros 3.0 on the Titan, a supercomputer 

located in the Oak Ridge National Laboratory. A run of the trypsin-digested GS2 sample was 

initially searched against the complete AMD database. Based upon the preliminary search 

results, species that were not significantly detected in the sample were excluded in order to 

reduce computational search space. The final database contains 15,523 proteins from 7 

organisms, including Leptospirillum group II UBA, Leptospirillum group II 5wayCG, 

Leptospirillum group III, and several archaea. All runs were searched with the following 

parameters: parent mass offsets of  -1, 0, +1, +2, +3 Da; 0.03 Da and 0.01 Da of mass tolerance 

for parent ions and fragment ions, respectively; up to 3 missed cleavages; a maximum of 2 PTMs 

per peptides, and full enzyme specificity required.  For the HCD run and CID run that were used 

to compare the identification performance of CID with HCD, only oxidation of methionine, and 

deamidation of asparagine and glutamine were dynamically searched, and alkylation of cysteine 

by iodoacetamide were statically searched on a desktop computer. The fragment ion mass 

tolerance for the CID run and HCD run was 0.5 Da and 0.01 Da, respectively. All the other 

search parameters were kept the same as mentioned above. Particularly for the phosphorylation 

search, we implemented neutral loss search algorithm in Sipros. For each predicted 

phosphopeptide, we generated three types of fragment ion spectra in silico to search: 1) 

phosphorylation without neutral loss, 2) phosphorylation with neutral loss of HPO3 where the 

mass of the HPO3 (79.966331 Da) was subtracted from fragment ions that contained modifiable 

residues, and 3) phosphorylation with neutral loss of HPO3 and H2O where the mass of the HPO3 

and H2O (97.9769 Da) was subtracted from fragment ions that contained modifiable residues. 

To evaluate the accuracy of PTM localization by Sipros, we also re-searched the first 20 

libraries of synthetic peptide/phosphopeptide with known phosphorylation sites from a published 

study. Each library’s MS/MS data was searched against its matched peptide database with 
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concatenated reverse sequences. The database searching parameters were kept the same as the 

broad-range PTM search, but only oxidation of methionine and phosphorylation of serine, 

threonine, and tyrosine were dynamically searched. The identified phosphorylated spectra with 

DeltaP of 0 were ignored. Of the remaining modified spectra, 97% had correct PTM localization. 

After the database searching is finished, the search result is filtered in order to control 

false positive identifications. In the research presented in the chapter 3, 4, and 5, DTAselect71 

was used for post-search filtering with the following parameters: minimum XCorr score of 1.8, 

2.5, and 3.5 for charge states (z) = +1, z=+2, and z=+3 precursor peptide ions, respectively; a 

minimum DeltCN value of 0.08. For the research presented in the chapter 6 and 7, Sipros-Post 

was used for the post-search filtering to achieve 1% FDR at the peptide level. 

2.3.2 Protein inference 

In shotgun proteomics, proteins are unlinked from peptides due to enzymatic digestions. 

Thus, proteins present in a sample have to be inferred from a list of identified peptides. Protein 

inference is non-trivial task because sequence redundancy between proteins results in many non-

unique peptides that are shared among some proteins, which makes it difficult to definitively 

infer which protein(s) are actually expressed in the sample. In the research presented in the 

Chapter 3, 4, and 5, we required a minimum of two distinct peptides for each identified protein 

(note: these two distinct peptides may not be unique to that identified protein). In the Chapter 6 

and 7, we required a minimum of two peptides for each identified proteins and one of them must 

be unique to that identified protein. Due to sequence redundancy between different proteins, the 

same peptide could originate from multiple proteins. This creates ambiguity in inferring which 

protein(s) are actually present in the sample (Figure 2.2). Thus, these indistinguishable proteins 

were combined into protein groups, indicating that each protein or all proteins in a group are 

likely to exist in the sample. 

2.3.3 Protein quantification 

In this dissertation, various protein quantification approaches have been used. For the 

research presented in the Chapter 3, three different approaches (i.e. label-free, metabolic 

labeling, and isobaric chemical labeling) were used. For label-free quantification, the raw 

spectral counts calculated by DTASelect for identified proteins were normalized using the 

following formula: 
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where Ni and Ri are the normalized and raw spectral counts of a protein in run i, respectively; Ci 

is the total spectral count of run i; and C	 is the averaged total spectral count of all the runs 

under comparison. The scaling factor, C	/Ci, was used to normalize total spectral count of each 

run to the same to reduce run-to-run variability. 14N/15N metabolic labeling-based quantification 

was performed using the ProRata program72. ProRata re-constructed ion chromatograms for each 

identified peptides using high mass accuracy (0.03 Da mass tolerance) and detected its 

chromatographic peak. Both peak area and peak height for each quantified peptide were 

calculated, but the peak height was used to represent the peptide abundance in this study due to 

its lower run-to-run variability. For protein quantification, ProRata summed peak heights of all 

quantified unique peptides from a protein and used such total peak height for protein relative 

abundance estimation. For isobaric chemical labeling-based quantification, in-house Perl scripts 

were developed to process iTRAQ and TMT data sets for protein quantification. Briefly, all 

LC−MS/MS data sets from iTRAQ and TMT experiments were converted from the Xcalibur 

Raw file format to the MS2 flat file format using the Raxport program. In the CID-HCD dual 

scan configuration, peptide identification can be obtained from the CID scan, the linked HCD 

scan, or both. Reporter ions for all peptide identifications were extracted from small windows 

(±0.02 Da) around their expected m/z in the HCD scan. If multiple peaks were found within the 

accepted m/z window of a reporter ion, the one with the highest intensity was considered to 

represent the reporter ion. The total intensity at a reporter ion channel for a protein was 

calculated as the sum of this reporter ion’s intensities from all constituent unique peptides from 

this protein. The abundance ratio of a protein was estimated using the ratio between the protein’s 

total intensities in different reporter ion channels. For research presented in chapter 4 and 5, 

isobaric chemical labeling-based quantifications were used. The quantification procedures were 

the same as described in Chapter 3. For research presented in chapter 6, ProRata was used to 

conduct intensity-based label free quantification. For quantification of protein abundance, 

ProRata used similar procedure as described for Chapter 3. For quantification of PTM fractional 

occupancy, ProRata calculated the total peak heights of all modified unique peptides that carried 

a specific PTM event and the total peak heights of both modified and unmodified unique 

peptides that covered the same residue. Fractional occupancy was calculated as the total peak  
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Figure 2.2 Illustration of indistinguishable proteins. Since Peptide 1 and peptide 2 are 

shared between protein A and protein B, it is likely that either protein A or protein B, or both 

protein A and protein B exist in the sample.
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Illustration of indistinguishable proteins. Since Peptide 1 and peptide 2 are 

shared between protein A and protein B, it is likely that either protein A or protein B, or both 

n the sample. 

 

Illustration of indistinguishable proteins. Since Peptide 1 and peptide 2 are 

shared between protein A and protein B, it is likely that either protein A or protein B, or both 
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height of a modified site out of the total peak height of this site. In instances where only 

modified peptide was quantified for a given site, the abundance of unmodified site was assigned 

with “1”. 

In summary, this dissertation used various cell lysis methods tailored for each biological 

system, including microbial isolate, microbial community, and plant. Extracted proteins were 

digested and analyzed with high-resolution mass spectrometry-based shotgun proteomic 

approaches. A range of quantitative proteomic results has been covered, such as label-free, 

metabolic labeling, and isobaric chemical labeling. 
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CHAPTER 3 

SYSTEMATIC COMPARISON OF LABEL-FREE, METABOLIC 

LABELING, AND ISOBARIC CHEMICAL LABELING FOR 

QUANTITATIVE PROTEOMICS ON LTQ ORBITRAP VELOS 
 
All of the data presented below has been adapted from 
 
Zhou Li, Rachel Adams, Karuna Chourey, Gergory Hurst, Robert Hettich, Chongle Pan. 
Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for 
quantitative proteomics on LTQ Orbitrap Velos. Journal of Proteome Research, 2012, 11 (3), pp 
1582–1590 
 
Zhou Li’s contributions include experimental design, MS measurement, data analysis, and 
writing the manuscript. 

3.1 Introduction to quantitative proteomics 

Quantitative proteomics measures abundance changes of many proteins among multiple 

samples in a high-throughput manner30. Results from such measurements provide information on 

how biological systems respond to environmental perturbations at a genomic scale. A number of 

methods have been developed for quantitative proteomics to obtain high proteome coverage, 

accurate quantification, and wide applicability to different types of samples73. In proteomics 

analysis based on 2D-GE74, quantification is achieved by measuring staining intensities of 

protein spots. To eliminate gel-to-gel variability, proteomes under comparison can be labeled 

separately using different fluorescent cyanine dyes (Cy2, Cy3, and Cy5) and then combined for 

2D-GE analysis. However, both identification and quantification are difficult for gel spots 

containing multiple co-migrating proteins75. Only one of those co-migrating proteins may be 

identified in such a gel spot, and that protein may not be the one responsible for the differential 

expression. In addition, the capability of 2D-GE proteomics is also limited by the number of 

quantifiable proteins in a gel, a bias against membrane proteins, and a low sample throughput76. 

In the shotgun proteomics approach, proteins are typically digested using proteases into peptides, 

which are then analyzed using liquid chromatography coupled with tandem mass spectrometry. 

Without using any isotopic or chemical modification of proteins or peptides, label-free 

quantification can be achieved by correlating protein abundance with either mass spectrometric 

signal intensities of peptides77 or the number of MS/MS spectra matched to peptides and proteins 

(spectral counting)78. Label-free quantification is widely used because it allows simultaneous 
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identification and quantification of proteins without a laborious and costly process of introducing 

stable isotopes into samples, and this approach is applicable to samples from any source. 

However, because samples to be quantified are prepared and measured separately, label-free 

approaches have limited quantification performance in terms of accuracy, precision, and 

reproducibility. 

To improve quantification performance, many approaches were developed on the basis of 

stable isotope labeling, including metabolic labeling79, enzymatic labeling80, and chemical 

labeling81. In metabolic labeling, stable heavy isotopes are incorporated into proteins by growing 

cells in controlled media containing a 15N-enriched nitrogen source82 (15N labeling) or 

isotopically labeled essential amino acids (stable isotope labeling by amino acids in cell culture 

or SILAC83). Metabolic labeling allows samples grown in different states to be combined at the 

cell level. Therefore, any bias in the downstream sample preparation and measurement would 

alter protein abundances from different samples to the same extent, making their ratios relatively 

unchanged. However, many biological systems are not amenable to efficient metabolic labeling, 

such as natural microbial communities. To overcome this, chemical or enzymatic methods have 

been developed to label proteins or peptides using different isotopic tags. For example, after cell 

lysis, extracted proteins can be labeled using isotope-coded affinity tags (ICAT)81. After protein 

digestion, peptides can be labeled enzymatically at the C-terminus using H2
18O80. Peptides can 

also be labeled on the primary amine group at the N-terminus and lysine side chain using 

reductive dimethylation (ReDi)84. In proteomics measurements based on these stable-isotope 

labeling strategies, the abundance ratios of mass-different isotopic variants of peptides are 

determined using their signal intensities in full parent ion scans of the LC− MS/MS analysis. 

Abundance ratios of peptides are then used to infer abundance ratios of their parent proteins. 

Recently, two similar isobaric chemical labeling methods, isobaric tag for relative and 

absolute quantification (iTRAQ)85 and tandem mass tag (TMT)86, have become increasingly 

popular for quantitative proteomics. After proteolysis, samples are labeled separately with 

different isotopic variants of iTRAQ or TMT and are then combined for LC−MS/MS analysis. 

Both iTRAQ and TMT tags contain three functional parts: a reporter ion group, a mass 

normalization group, and an amine-reactive group. The amine-reactive group specifically reacts 

with N- terminal amine groups and epsilon-amine groups of lysine residues to attach the tags to 

peptides. The mass normalization groups balance the mass difference among the reporter ion 
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groups such that different isotopic variants of the tag have the same mass. Peptides labeled with 

different variants of the tag are indistinguishable in full scans, which prevents increasing the full-

scan complexity after mixing multiple samples. In MS/MS scans, reporter ions of different 

masses are dissociated from isolated peptide species. The mass of a reporter ion is associated 

with a specific variant of the tag, and the relative intensity of the reporter ions measures the 

relative abundance of the peptide labeled with that specific tag variant. 6-Plex TMT and 8-plex 

iTRAQ allow comparing up to 6 and 8 samples in a single LC−MS/MS analysis, respectively. 

Multiplexing is a unique capability of iTRAQ and TMT in comparison to the other labeling 

techniques. 

Each of the described methods has its advantages and disadvantages for quantitative 

proteomics. A comparison of SILAC and spectral counting showed that spectral counting 

provided less precise quantification to proteins with low spectral counts87. A comparison of 14N 

/15N metabolic labeling with spectral counting showed that spectral counting was less sensitive to 

detecting small fold changes88. iTRAQ was also compared to a label-free quantification method 

based on normalized chromatographic peak intensity89. While the number of identified proteins 

and reproducibility were comparable between these two methods, proteome coverage was 

significantly higher in the label-free method. To date, no study has systematically compared 

label-free, metabolic labeling, and isobaric chemical labeling with iTRAQ or TMT using the 

same analytical platform. 

In this study, performances of spectral counting, 14N /15N metabolic labeling, iTRAQ, and TMT 

were benchmarked using standard proteome samples prepared from a model microorganism, 

Pseudomonas putida F1 (Figure 3.1). P. putida F1 is a gram negative soil microbe, known for its 

diverse metabolism and ability to degrade aromatic hydrocarbons. Its unique bioremediation 

potential is frequently exploited for remedying contaminated soils90. Measurements for all four 

methods were performed using the LTQ Orbitrap Velos. The higher-energy collisional 

dissociation (HCD) capability and the improved ion extraction efficiency of LTQ Orbitrap Velos 

enabled excellent measurement of iTRAQ- or TMT-labeled samples. 

3.2 Comparison of Protein and Peptide Identification Results 

The results of protein identifications from label-free, metabolic labeling, and isobaric 

chemical labeling are summarized in Table 3.1. A total of 1980 unique proteins were identified  



 

 

Figure 3.1 Experimental design. Three 

that the culture 3 was metabolically labeled with 15N. Proteins were extracted from cell cultures 

and digested into peptides, which were measured using LC

the cultures 1 and 2 were prepared and measured separately. In metabolic labeling, the cultures 1 

and 3 were mixed at the beginning. In isobaric chemical labeling, peptides from the cultures 1 

and 2 were mixed after isobaric chemical labeling with TMT or iTRAQ
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design. Three P. putida cultures were grown in parallel, except 

that the culture 3 was metabolically labeled with 15N. Proteins were extracted from cell cultures 

and digested into peptides, which were measured using LC−MS/MS. In the label

repared and measured separately. In metabolic labeling, the cultures 1 

and 3 were mixed at the beginning. In isobaric chemical labeling, peptides from the cultures 1 

and 2 were mixed after isobaric chemical labeling with TMT or iTRAQ. 

cultures were grown in parallel, except 

that the culture 3 was metabolically labeled with 15N. Proteins were extracted from cell cultures 

−MS/MS. In the label-free method, 

repared and measured separately. In metabolic labeling, the cultures 1 

and 3 were mixed at the beginning. In isobaric chemical labeling, peptides from the cultures 1 



 39

using the label-free method (on average approximately 1600 non-redundant proteins from a run, 

FDR = 2%). 79% of all identified proteins in the duplicate runs of a sample were identified 

reproducibly in both duplicate runs (Figure 3.2A). A total of 1606 unique proteins were 

identified using the metabolic labeling method with 77% identification reproducibility between 

duplicate runs (FDR = 3%) (Figure 3.2B). 1473 unique proteins were detected from the iTRAQ-

labeled sample (FDR = 2%) and 1404 in the TMT-labeled sample (FDR = 3%). 73% of proteins 

were identified reproducibly between duplicate runs in iTRAQ (Figure 3.2C) and 76% in TMT 

(Figure 3.2D). This shows that the label-free method had the highest number of protein 

identifications and provided the deepest coverage of the genome (∼30%). Identification 

reproducibility between duplicates was similar among all four methods. 

Different data acquisition schemes were used for label-free, metabolic labeling, and isobaric 

chemical labeling in the current study. Every full scan was followed by ten data-dependent CID 

MS/MS scans in the label-free analysis, which generated the highest number of identified 

peptides and proteins. Because in metabolic labeling proteins were quantified using full scans, 

six data-dependent CID MS/MS scans per full scan were configured to provide more frequent 

full scan acquisition and better reconstruction of chromatographic peaks of peptides. The sample 

complexity in full scans was doubled as a result of mixing an unlabeled proteome with a 15N-

labeled proteome. Because many peptides were identified redundantly in both isotopic variants, 

although more spectra were identified in the metabolic labeling analysis than in the label-free 

analysis, fewer peptides and proteins were identified, and the average sequence coverage of 

proteins was not increased. For iTRAQ and TMT analysis, every full scan was followed by four 

CID-HCD dual MS/MS scans, in which a selected parent ion was first fragmented by CID for 

peptide identification and then by HCD for quantification. HCD offers higher fragmentation 

efficiency and lower minimum m/z detection limit than CID, which enables measurement of 

reporter ions in Orbitrap analyzer with high signal-to-noise ratio. However, because of the extra 

time needed for HCD analysis, the duty cycle of MS/MS acquisition was significantly lower in 

the CID-HCD dual-scan configuration than the CID-only configuration used for the other 

analyses. 

Furthermore, previous studies have shown that the presence of fragment ions as a result 

of losing isobaric tags from precursor ions complicates the interpretation of spectra by database 

searching algorithms91. Therefore, fewer peptides and fewer proteins were identified in isobaric  
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Table 3.1 Protein identification results from label-Free, metabolic labeling, iTRAQ, and 

TMT. 

Method Label-Free 
Metabolic 

Labeling 
iTRAQ TMT 

Run 
Culture1 

Run 1 

Culture2 

Run 1 

Culture1 

Run 2 

Culture2 

Run 2 
Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 

Spectrum 

count 
58674 61440 43595 49389 52348 64972 29926 29328 35826 32897 

Peptide count 12391 12727 11472 11184 9862 9618 7317 8248 6464 6795 

Lys: Arg 

peptide ratio 
0.64 0.66 0.68 0.69 0.67 0.57 0.68 0.76 0.66 0.70 

Protein count 1687 1607 1598 1516 1447 1394 1202 1353 1239 1233 

Average 

spectrum count 

per peptide 

4.7 4.8 3.8 4.4 5.3 6.7 4.0 3.6 5.5 4.8 

Average 

peptide count 

per protein 

7.3 7.9 7.2 7.4 6.8 6.9 6.1 6.1 5.2 5.5 

Average 

sequence 

coverage 

24.6% 25.8% 23.6% 24.1% 22.3% 23.2% 19.9% 19.3% 16.5% 17.3% 

Genome 

coverage 
32.1% 30.6% 30.4% 28.9% 27.6% 26.6% 22.9% 25.8% 23.6% 23.5% 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.2 Protein identification reproducibilit

protein identifications between the duplicate runs (A: label

iTRAQ; and D: TMT). The red circle and the blue circle represent proteins identified in run 1 

and run 2, respectively. More than 70% of proteins were re

duplicate runs. 
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Protein identification reproducibility. The venn diagrams show the 

protein identifications between the duplicate runs (A: label-Free; B: metabolic labeling; C: 

iTRAQ; and D: TMT). The red circle and the blue circle represent proteins identified in run 1 

and run 2, respectively. More than 70% of proteins were reproducibly identified between the 

 

enn diagrams show the overlap of 

Free; B: metabolic labeling; C: 

iTRAQ; and D: TMT). The red circle and the blue circle represent proteins identified in run 1 

producibly identified between the 
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chemical labeling than in label-free and metabolic labeling (Table 3.1). Similar protein 

identification results were observed between iTRAQ and TMT. 

Because HCD spectra can be used for both peptide identification and quantification, 

TMT and iTRAQ samples can be analyzed using only HCD. We found that only less than 30% 

of identified spectra were from HCD fragmentation. Less than 10% of those identified HCD 

spectra have a paired CID spectrum that did not identify a peptide, whereas approximately 60% 

of identified CID spectra have a paired HCD spectrum that did not identify a peptide. This 

indicates the value of CID for peptide identification. The duty cycle of the CID-HCD 

configuration was not significantly lower than the HCD-only configuration because the 

acquisition time for CID coupled with ion-trap detection is only a fraction of the acquisition time 

for HCD coupled with Orbitrap detection in the dual scan. 

Isobaric mass tags were chemically linked to N-terminus amine groups and the epsilon-

amine group of lysine. In one database search, derivatization of the N-terminus was set as a static 

modification and dynamic modification was set at lysine residue. >98% of lysine residues in the 

identified peptides were labeled, indicating high labeling efficiency of lysine in sample 

preparation. A separate search for peptides with an unmodified N-terminus using dynamic 

modification at lysine identified only a few hundred peptides with a greater than 50% FDR, 

which suggests a high labeling efficiency of the N-terminus by iTRAQ and TMT. 

Ross et al. observed that the ratio of Lys-terminated peptides to Arg-terminated peptides 

(Lys/Arg peptide ratio) increased from 0.79 in an unlabeled sample to 0.98 in an iTRAQ labeled 

sample85. However, in this study, the Lys/Arg peptide ratios from TMT and iTRAQ were not 

significantly higher than those from label-free or metabolic labeling (Table 3.1). An expected 

Lys/Arg peptide ratio of 0.50 (170,662 Lys-ending peptides and 342,497 Arg-ending peptides.) 

was calculated based on in silico digestion92 of the P. putida F1 proteome. The observed Lys/Arg 

peptide ratios in all runs were higher than the expected ratio. 

3.3 Comparison of Protein Quantification Results 

Standard samples were prepared for the quantitative proteomics methods under 

comparison such that every protein was expected to have an abundance ratio of 1:1 (Figure 3.1). 

The measured abundance ratios of peptides and proteins were transformed to log2 scale (log2 

ratio). Protein quantification results from each quantitative proteomics method are summarized 
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in Table 3.2. Figure 3.3 shows that the majority of spectral counting variability stemmed from 

proteins with low spectral counts. Therefore, a minimum spectral count cutoff of four was used 

to filter out proteins with poor quantification precision93. As a result, although more proteins 

were identified using the label-free approach than labeling-based approaches, fewer proteins 

were precisely quantified. 

For iTRAQ and TMT measurements, we examined the relationship between the reporter 

ion intensity and the quantification accuracy and precision of peptides. Log2 ratios of peptides 

were plotted against reporter ion intensity in log2 scale (log2 intensity) (Figure 3.4A and B). For 

both iTRAQ and TMT, most peptides had reporter ion intensities greater than 210 and were 

quantified accurately. The log2 ratios of peptides measured by iTRAQ have greater spread than 

those measured by TMT at log2 intensity below 10 (Figure 3.4A and B), indicating that the 

observed TMT ratios were slightly more precise. The median of peptide log2 ratios was slightly 

closer to 0 in the TMT runs than in the iTRAQ runs (Table 3.2), suggesting that TMT ratios were 

slightly more accurate. Therefore, TMT may have slightly better quantification performance than 

iTRAQ at the peptide level. However, there was little difference at the protein level (Table 3.2). 

To assess quantification accuracy and precision at different reporter ion intensity ranges, 

peptides were binned by their reporter ion intensities, and the median and median absolute 

deviation (MAD) of log2 ratios in each intensity bin were calculated (Figure 3.4C). The 

quantification precision as measured by MAD was consistently maintained at ∼0.2 across the 

entire range of reporter ion intensities. Karp et al. observed that the quantification variability was 

higher at lower reporter ion intensities in iTRAQ measurements94. This discrepancy may be due 

to different instruments and data acquisition schemes used in the two studies. The quantification 

bias as measured by the deviation of the median from the expected value, 0, decreased as the 

reporter ion intensity increased. The quantification bias for low-intensity peptides could stem 

from the background noise in the detection of their reporter ions. Thus, peptides with higher 

reporter ion intensities should be given higher weight when used to calculate a protein’s relative 

abundance. To be general to comparisons involving more than two samples, let us represent a 

protein’s relative abundance in sample x as the percentage of the protein’s quantity in sample x 

out of the protein’s total quantity from all mixed samples, or x %. Suppose this protein has n 

quantified peptides. x % can be calculated as follows: 
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where xj is the reporter ion intensity of peptide i at the reporter ion channel corresponding to 

sample x, Pj is the total reporter ion intensity of peptide i from all channels, and T is the sum of 

the total reporter ion intensities of all peptides from this protein. In this formula, the relative 

reporter ion intensity of a peptide at a channel, xj/ Pj, is simply weighted by its total ion intensity, 

Pj, when it is pooled together with other peptides to calculate a protein’s relative abundance. This 

abundance. This is mathematically equivalent to the summing method previously described95: 

 

In this study, abundance ratios of proteins were calculated using this approach for TMT and 

iTRAQ. As a result, the overall quantification accuracy and precision were significantly better 

for proteins than for peptides. 

Quantification precision of proteins by the four quantitative proteomics methods was 

compared using MAD of protein log2 ratios and the percentage of proteins within 2-fold 

abundance change (Table 3.2). The performance metrics were highly reproducible between the 

two technical replicates of every method. To examine how the measured protein and peptide 

abundance ratios from each method were distributed, density plots were generated for the set of 

log2 ratios from each method, both at the protein level and at the peptide level (Figure 3.5). The 

distributions from iTRAQ and TMT experiments were narrowest, indicating the highest 

quantification precision. Together, our data demonstrates that iTRAQ and TMT provided the 

most precise measurements and will be more sensitive for detecting protein expression with 

small fold changes. Metabolic labeling was able to yield accurate quantification; however, the 

measurement variability was relatively wider than iTRAQ and TMT. Although the spectral 

counting method was the least precise among the compared methods, reasonable quantitative 

results can be still obtained. 

We finally examined the quantification reproducibility of each method across technical 

replicates. Protein log2 ratios from duplicate measurements of each method were plotted on a 

two-dimensional histogram (Figure 3.6). Correlation between protein log2 ratios of the technical 

duplicates was also the lowest in the spectral counting analysis (R2 = 0.2) (Figure 3.6A). Note  
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Table 3.2 Protein quantification results from label-Free, metabolic labeling, iTRAQ, and 

TMT. 

 

Method Label-free 
Metabolic 

labeling 
iTRAQ TMT 

Run    Run 1 Run2 Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 

Median of protein log
2
ratio 0.07 0.10 0 0 -0.02 0.00 0.00 0.00 

Median of peptide log
2
ratio N/A N/A 0.02 0.03 -0.13 -0.14 -0.07 -0.06 

Median absolute deviation of 
protein log

2
ratio 0.40 0.43 0.3 0.3 0.17 0.17 0.17 0.05 

Median absolute deviation of 
peptide log

2
ratio N/A N/A 0.37 0.35 0.22 0.24 0.20 0.18 

Percentage of proteins with 
log

2
ratio within  [-1,1] 87% 84% 94% 93% 99% 98% 99% 100% 

Percentage of peptides with 
log

2
ratio within  [-1,1] N/A N/A 86% 86% 98% 98% 99% 99% 

Number of quantified proteins 1174 1116 1327 1300 1185 1338 1231 1215 

Number of quantified spectra N/A N/A 23331 24300 20919 21447 24818 23147 

 

 

 

 

 

 

 

 

 



 

Figure 3.3 Reproducibility of 

were constructed using log2 spectral counts of protein measured in the duplicate runs of culture 1 

(A) and culture 2 (B). The color encodes protein frequency in the 2

Proteins with higher spectral counts have more similar spectral counts between the duplicate

runs. 
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Reproducibility of the spectral counting method. 2-Dimensional histograms 

spectral counts of protein measured in the duplicate runs of culture 1 

(A) and culture 2 (B). The color encodes protein frequency in the 2-dimensional histograms. 

Proteins with higher spectral counts have more similar spectral counts between the duplicate

 

Dimensional histograms 

spectral counts of protein measured in the duplicate runs of culture 1 

dimensional histograms. 

Proteins with higher spectral counts have more similar spectral counts between the duplicate 



 

Figure 3.4 Peptide quantification results at different reporter ion intensities of iTRAQ and 

TMT. Panels A (iTRAQ) and B (TMT) show two

versus the associated log2 intensity for reporter ions. The color

peptides at a given log2 ratio and log2 intensity. Then, the entire intensity range was split into 

eight bins. Median and median absolute deviation were calculated and plotted for each bin (Panel 

C). As reporter ion intensity increased, quantification accuracy was improved. The value of 

MAD was independent of reporter ion intensity.
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Peptide quantification results at different reporter ion intensities of iTRAQ and 

TMT. Panels A (iTRAQ) and B (TMT) show two-dimensional histograms of peptide log2 ratio 

versus the associated log2 intensity for reporter ions. The color encodes the frequency of 

peptides at a given log2 ratio and log2 intensity. Then, the entire intensity range was split into 

eight bins. Median and median absolute deviation were calculated and plotted for each bin (Panel 

eased, quantification accuracy was improved. The value of 

MAD was independent of reporter ion intensity. 

 

Peptide quantification results at different reporter ion intensities of iTRAQ and 

dimensional histograms of peptide log2 ratio 

encodes the frequency of 

peptides at a given log2 ratio and log2 intensity. Then, the entire intensity range was split into 

eight bins. Median and median absolute deviation were calculated and plotted for each bin (Panel 

eased, quantification accuracy was improved. The value of 
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Figure 1.5 Distributions of quantified protein log2 ratios and peptide log2 ratios. Density 

plots were generated for log2 ratios quantified by each method at the protein level (A) and at the 

peptide level (B). iTRAQ and TMT produced narrower log2 ratio distributions than metabolic 

labeling and label-free at both the protein level and the peptide level, which indicates higher 

quantification precision. 

 

  



 

 

Figure 3.6 Quantification reproducibility. Two

represent log2 ratios measured from the two technical replicates of each method (A: label

(R2 = 0.2); B: metabolic labeling (R

color encodes the frequency of proteins quantified at log2 ratios in the two replicates. 

Quantification reproducibility was significantly improved in the labeling
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Quantification reproducibility. Two-dimensional histograms were plotted to 

represent log2 ratios measured from the two technical replicates of each method (A: label

= 0.2); B: metabolic labeling (R2 = 0.77); C: iTRAQ (R2 = 0.87); D: TMT (R

color encodes the frequency of proteins quantified at log2 ratios in the two replicates. 

Quantification reproducibility was significantly improved in the labeling-based approaches.

 

dimensional histograms were plotted to 

represent log2 ratios measured from the two technical replicates of each method (A: label-free 

= 0.87); D: TMT (R2 = 0.87)). The 

color encodes the frequency of proteins quantified at log2 ratios in the two replicates. 

based approaches. 
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that spectral counts of proteins from two technical replicates of a culture are relatively 

reproducible: R2 = 0.86 for culture 1 and R2 = 0.87 for culture 2 (Figure 3.3). Quantification 

reproducibility was significantly improved in labeling-based approaches: R2 = 0.77 for metabolic 

labeling (Figure 3.6B) and R2 = 0.87 for iTRAQ and TMT (Figure 3.6C and D). Note that 

biological variability was observed to be more significant than technical variability in the 

comparison of different biological samples. Therefore, regardless of the quantification method 

used, it is important to use not only technical replication but also biological replication for 

statistical assessment in biological studies. 

3.4 Considerations in method selection for a quantitative proteomics study 

In label-free quantification, each sample of interest must be prepared and analyzed by 

LC−MS/MS separately. The semirandom-sampling nature of the peptide identification process in 

a shotgun proteomics run also contributes to the variability of spectral counting for protein 

quantification. Therefore, relatively poor quantification results were observed with the spectral 

counting method. Several alternative MS/MS acquisition methods have been developed, which 

could overcome this limitation. Venable et al. introduced a data- independent acquisition method 

based on sequential isolation and fragmentation of a series of predetermined precursor 

windows96. Carvalho et al. extended this method and developed an algorithm to identify 

multiplexed spectra acquired with CID and electron transfer dissociation97. In the MSE approach, 

a quadrupole time-of-flight mass spectrometer was used to fragment all precursor ions in an 

elevated-energy mode98. These data-independent methods will probably increase the 

reproducibility of label-free quantification. Alternative data analysis methods have also been 

developed to improve label- free quantification. For example, chromatographic peak areas of 

peptides, instead of spectral counts, can be used as the measure of protein abundance for 

quantification. The normalized spectral index (SIN) method estimates protein abundance by 

combining spectral counts and total ion intensity of MS/MS spectra99. 

In contrast to label-free quantification in terms of sample preparation, metabolic labeling 

allows the mixing of samples at the very beginning of preparation. Samples representing two 

states are prepared and measured together, which minimizes potential bias in these processes. 

The relative abundance ratio of a protein between samples is maintained. Thus, accurate and 

reproducible quantification results can be obtained from metabolic labeling. 
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In iTRAQ and TMT analysis, samples from different conditions are processed separately 

until peptides are generated and labeled with different tags. After that, these samples are pooled 

for subsequent LC−MS/MS measurement. HCD provides efficient ion extraction and 

fragmentation for generation of reporter ions, allowing detection of reporter ions with high 

signal-to-noise ratio in Orbitrap analyzer. In comparison to metabolic labeling, MS detection of 

reporter ions in an Orbitrap MS2 scan may be better for quantifying a peptide than detection of 

precursor ions in a series of Orbitrap MS1 scans. Thus, although TMT and iTRAQ require 

samples to be mixed at a later sample preparation stage than metabolic labeling, they produced 

better overall quantification results. 

The comparison results provided guidance for choosing an appropriate approach for a 

proteomics experiment. The label- free method has the largest dynamic range for protein 

identification; however, high spectral counts are required for reliable quantification. In addition, 

special care is necessary to minimize sample-to-sample variability during sample preparation and 

measurement. Both metabolic labeling and isobaric chemical labeling provide accurate, precise, 

and reproducible quantification for many proteins, but each has advantages and disadvantages. 

Metabolic labeling is ideal for samples that need to undergo extensive preparation steps at the 

protein level, such as fractionation and enrichment, which may introduce a significant amount of 

error without pooling samples together. However, metabolic labeling is feasible only for selected 

microorganisms and cell cultures. The unique advantage of iTRAQ and TMT is the capability to 

multiplex more than two samples in a measurement. This not only saves instrument time but also 

simplifies experimental design. However, iTRAQ and TMT require advanced MS instruments, 

such as Q-TOF and LTQ Orbitrap Velos. 

3.5 Conclusions 

In this study, four quantitative proteomic approaches, label-free, metabolic labeling, and 

isobaric chemical labeling by iTRAQ or TMT, were compared using an LTQ Orbitrap Velos 

mass spectrometer for protein identification and quantification. Our results indicate that the 

label-free method provides the deepest proteome coverage. However, the quantification is not as 

efficient as in the labeling-based approaches, especially for low- abundance proteins. Metabolic 

labeling and isobaric chemical labeling have improved quantification accuracy, precision, and 

reproducibility. iTRAQ and TMT have similar performance in all aspects. 
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CHAPTER 4 

STRIGOLACTONE-REGULATED PROTEINS REVEALED BY 

ITRAQ-BASED QUANTITATIVE PROTEOMICS IN 

ARABIDOPSIS 

 
All of the data presented below has been adapted from 
 
Zhou Li, Olaf Czarnecki, Karuna Chourey, Jun Yang, Gerald Tuskan, Gregory Hurst, Chongle 
Pan, Jin-Gui Chen. “Strigolactone-regulated Proteins Revealed by iTRAQ-based Quantitative 
Proteomics in Arabidopsis”. J. Proteome Res., 2014, 13 (3), pp 1359–1372 
 
Zhou Li’s contributions include MS measurement, data analysis, and co-writing the manuscript. 

4.1 Introduction 

Plant architecture plays an important role in determining efficiency of light capture for 

photosynthesis and biomass yield. Shoot branching is a key determinant of plant architecture. 

The discovery of strigolactones (SLs) as a new class of plant hormones controlling shoot 

branching100,101 was a recent breakthrough in the field of plant biology. 

SLs are terpenoid lactones derived from carotenoids. They were originally isolated from 

plant root exudates and recognized as germination stimulants for root parasitic plants102 and for 

hyphal branching of symbiotic arbuscular mycorrhizal fungi103. Recent studies demonstrate that 

SLs also regulate many other processes of plant growth and development including primary root 

growth, lateral root formation, adventitious root formation, root hair development, seed 

germination, photomorphogenesis, stress response and nodulation104. 

Several important genes involved in SL biosynthesis or signaling pathway have been 

identified through the analysis of branching mutants in Arabidopsis (more axillary growth, max), 

pea (ramosus, rms), rice (dwarf, d; high tillering dwarf, htd) and petunia (decreased apical 

dominance, dad). SL biosynthesis involves two carotenoid cleavage dioxygenases, CCD7 

(encoded by MAX3 gene in Arabidopsis) and CCD8 (encoded by MAX4 gene in Arabidopsis), 

one cytochrome P450 monooxygenase and one novel iron-containing protein105. SL biosynthesis 

may also involve GRAS-type transcription factors NODULATION SIGNALING PATHWAY1 

(NSP1) and NSP2 in Medicago
106. The synthesis and exudation of SLs from roots are regulated 

by nutrient availability, in particular inorganic phosphate (Pi) deficiency101. For systemic 
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signaling, SLs are transported through the xylem, partly mediated by ATP-binding cassette 

(ABC) transporters107. 

SL signaling involves MAX2, an F-box leucine-rich protein118108, and DWARF14 (D14), 

a protein of the α/β-fold hydrolase superfamily109. Recent studies have provided strong evidence 

to support a function of D14 as a receptor for SLs. For example, rice d14 is an SL-insensitive 

mutant that displays accelerated outgrowth of tiller109. Similarly, knockout of the Arabidopsis 

D14 ortholog, AtD14, also conferred increased shoot branching and SL-insensitivity110. 

Computational-based structure analysis using homology modeling and molecular dynamic 

simulation and the analysis of crystal structure support the view that D14 functions as an 

important component of SL perception complex111. Recently, it was demonstrated that PhDAD2 

(a petunia ortholog of D14) interacts with PhMAX2A (a petunia ortholog of MAX2) in a GR24, 

a synthetic SL analog112, concentration-dependent manner113. Further, D14 can directly bind 

GR24. One potential downstream component in the SL signaling pathway is FINE CULM1 

(FC1), a member of the TCP transcription factor family. It was shown that the pea TCP 

transcription factor PsBRC1, a homolog of the maize TEOSINTE BRANCHED1 and the 

Arabidopsis BRANCHED1 (AtBRC1) acts downstream of MAX2 to control shoot branching114. 

Recently, it has been shown that rice D53, a member of class I Clp ATPase protein family, is a 

substrate of the SCFD3 ubiquitination complex and that the degradation of D53 protein is 

promoted by GR24 and is dependent on D14 and D3 (a rice ortholog of MAX2)115. 

Plant hormones interact with each other in the regulation of plant growth and 

development116. There is substantial evidence that this is also the case for SLs. For example, SLs 

interact with auxin and cytokinin to regulate shoot branching and secondary growth117, interact 

with auxin to regulate mycorrhizal symbiosis118 and primary root growth, lateral root formation 

and adventitious root formation119, interact with auxin and ethylene to regulate root hair 

elongation120, and interact with gibberellin (GA) and abscisic acid (ABA) to regulate seed 

germination and photomorphogenesis121. Recently, it has been reported that BES1, a positive 

regulator in brassinosteroid (BR) signaling pathway, interacts with MAX2 and that the 

degradation of BES1 is dependent on MAX2 and is promoted by GR24122. 

At the transcription level, SLs regulate the expression of many genes. When Arabidopsis 

max3 mutant seedlings that were defective in SL biosynthesis were treated with GR24, the 

expression of a total of 31 and 33 genes was significantly up- and down-regulated, 
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respectively123. In tomato, a mutant deficient in SL production (Sl-ORT1) was used to investigate 

the SL-regulated transcriptome. It was found that GR24 induces the expression of a number of 

genes putatively involved in light harvesting. Consistent with this notion, the Sl-ORT1 mutant 

contained less chlorophyll and showed reduced expression of light-harvesting-associated 

genes124. 

However, despite this progress, essentially nothing is known about cellular proteome 

regulation by this new class of plant hormones. In this study, we treated Arabidopsis seedlings 

with GR24 and applied quantitative proteomics to determine the SL-regulated proteome. 

4.2 Additional materials and methods 

Genotyping and semi-quantitative RT-PCR: A SALK T-DNA specific primer (LBb1.3, 

5’-ATTTTGCCGATTTCGGAAC-3’) and AtMAX3 gene-specific primers (RP, 5’-

TATCGTTAAACCCAAGCAACG-3’; LP, 5’-AGCCCATAAACCATGAAAACC-3’) were 

used for PCR genotyping. To examine the absence or presence of AtMAX3 transcripts in the 

max3-12 mutant, total RNA was extracted from 8-day-old seedlings using the Invisorb Spin 

Plant Mini Kit (Stratec Molecular). Two µg of total RNA were reversely transcribed in cDNA 

using Fermentas RevertAid reverse transcriptase (Thermo Scientific). For semi-quantification, 

AtMAX3-specific primers (sqP1: 5’-TATCGTTAAACCCAAGCAACG-3’ and sqP2: 5’-

CAATGTAACCATCGTCCTCT-3’) spanning 636 bp of AtMAX3 fragment were used (Figure 

4.1B). PCR amplification of AtTUA5 (At5g19780) using primers 5’-

TGGTTCTGGATTGGGTTCTC-3 and 5’-ACAGCATGAAATGGATACGG-3 served as a 

control. 

Quantitative RT-PCR: Quantitative Real-time PCR (qRT-PCR) was performed using a 

StepOnePlus (Applied Biosystems), Maxima SYBR Green/ROX qPCR Master Mix (Thermo 

Scientific) and cDNA corresponding to 80 ng RNA in a total volume of 25 µl. The following 

cycling conditions were used for PCR: 10 min at 95°C, 40 cycles of 15 s at 95 °C, 60 s at 60 °C, 

and 30 s at 72 °C. Calculation of expression levels in relation to AtACT2 (At3g18780) expression 

was performed using the 2-∆∆Ct method according to Livak and Schmittgen125. Gene-specific 

primers were designed using QuantPrime126 or taken from Mashiguchi et al, and are listed in 

Table 4.1. 
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Data normalization: raw protein intensities were normalized by making the total intensity 

of each sample identical. The ratio of a protein’s intensities between two conditions was log2-

transformed and also converted to fold-change. The data were further normalized by centering 

the median of the distribution of these log2ratios between two conditions to 0. Rank product 

statistical analysis127, a non-parametric statistical test based on calculating the rank products of 

protein’s fold-changes from replicates, was used to detect differentially regulated proteins. 

Calculation of molecular mass and isoelectric point: molecular mass and isoelectric point 

distributions were compiled for detected proteins and for all Arabidopsis proteins in the protein 

database used for Sequest searches. Molecular mass and isoelectric point for each protein were 

obtained by uploading the Arabidopsis protein sequences to the Compute pI/Mw tool on the 

ExPASy server at URL http://web.expasy.org/compute_pi/. Distributions were normalized to the 

largest bin to facilitate comparison of the detected proteome to the fully predicted proteome. 

4.3 Experimental design 

In addition to acting as a key inhibitor of shoot branching in Arabidopsis, SLs regulate 

diverse processes of plant growth and development in young seedlings, including primary root 

growth, lateral root formation, adventitious root formation, root hair development, seed 

germination, and photomorphogenesis. In this study, we specifically focus on the investigation of 

the proteome regulated by SLs in Arabidopsis seedlings. Because an SL microarray study has 

been previously conducted using 14 day old light-grown Arabidopsis whole seedlings123, we 

wanted to use Arabidopsis seedlings at a developmental stage that is similar to the previous study 

(e.g., 14 day old light-grown seedlings) as our experimental materials. This would allow us to 

potentially compare the SL-regulated proteome with the SL-regulated transcriptome. 

The response of Arabidopsis seedlings to different concentrations of the synthetic SL analog 

GR24 has been previously studied119.  In general, both primary root growth and lateral root 

formation can be affected by GR24 at micromolar concentration ranges. These effective 

concentrations of GR24 were also consistent with the level of GR24 (e.g., 5 µM) required for a 

complete rescue of the branched phenotypes of Arabidopsis mutants defective in SL 

biosynthesis.  Therefore, in our proteomics study, we treated 14 day old light-grown Arabidopsis 

whole seedlings with GR24 at 5 µM. 
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In a previous SL microarray using Arabidopsis whole seedlings, seedlings were treated 

with GR24 for 90 min. Because the proteome response typically required longer time than the 

transcriptome response due to the need of additional processes for de novo protein synthesis (at 

least for some proteins), in our proteomics study, we chose to treat Arabidopsis whole seedlings 

with 5 µM GR24 for 12 h. This selection was mainly based on proteomics studies using other 

plant hormones. For example, in a proteomics study using BR, no protein was detected to have 

differential expression after 0.5 or 3 h of brassinolide (BL) treatment, 6 BR-induced proteins 

were detected after 6 h of BL treatment, and 15 BR-induced and 3 BR-repressed proteins were 

detected after 12 h of BL treatment128.  Furthermore, GR24-regulated growth response becomes 

significant after 12 h of treatment, as measured by the growth inhibition of primary root (Figure 

4.1). Therefore, we expected that 12 h of GR24 treatment would allow the detection of a 

substantial number of proteins up- or down-regulated by GR24. 

In light of these considerations, we used 14 day old light-grown Arabidopsis whole 

seedlings for GR24 treatment (5 µM GR24 for 12 h). Three biological replicates, each containing 

50 individual seedlings, were used for each sample. Because SL-deficient mutants were used in 

previous transcriptomics studies in Arabidopsis and tomato and because a plant hormone 

deficient mutant may respond more potently to the corresponding hormone, we also included an 

Arabidopsis max3 mutant in our study. MAX3 encodes one of the two carotenoid cleavage 

dioxygenases, CCD7, required for SL-biosynthesis. The widely used max3 mutant allele, max3-

9, is an ethyl methanesulfonate (EMS)-induced mutant allele harboring a recessive mutation in 

MAX3 in Col-0 background, which had been backcrossed to Col-0 three times. For our 

experiments, we sought to use a T-DNA insertion mutant allele in the Col-0 background to avoid 

the potential effects of other EMS-induced mutations in the max3-9 mutant background because 

three backcrosses were able to remove only 90% of EMS-induced mutations in the max3-9 

mutant background. By searching the collection of T-DNA insertion lines at SIGNAL 

(http://signal.salk.edu/cgi-bin/tdnaexpress), we selected SALK_015785, in which T-DNA was 

inserted in the fourth intron of MAX3  (Figure 4.2B and C). This mutant displayed identical 

branching phenotype to max3-9 (Figure 4.2A). RT-PCR analysis indicated that the full transcript 

of MAX3 was largely absent in this allele (Figure 4.2D), suggesting that this likely represents a 

loss-of-function allele of MAX3. To follow the existing nomenclature for max3 mutants, we 

named this mutant allele, max3-12. We prepared a total of 12 samples (two genotypes: Col-0 and 



 

 

Figure 4.1 Response of Arabidopsis

Four-day-old seedlings were transferred to 1/2 MS supplemented with 1% (w/v) sucrose and 

0.8% (w/v) agar plates plus 5 µM GR24 or acetone as mock treatment. (A) Primary root growth 

within 24 h of treatment. (B) Primary root length increment within 24 h of

beginning of treatment. 
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Figure 4.2 Arabidopsis max3-12 mutant. (A) Phenotype of 6 weeks old soil-grown 

Arabidopsis max3-9 (right panel) and max3-12 (middle panel) compared with the wild-type Col-

0 (left panel). (B) Schematic presentation of the AtMAX3 gene structure and the max3-12 

(Salk_015785) TDNA insertion site. Primers used for genotyping and expression analysis and 

the corresponding PCR amplicon sizes are indicated. It is noteworthy that the originally cloned 

AtMAX3 coding sequence (Booker et al., 2004) encoded six exons, which is different from the 

current annotation in TAIR10. (C) Genotyping of max3-12 mutant. A PCR product can be 

amplified using a T-DNA-specific primer (LBb1.3) and an AtMAX3-specific primer (RP) in 

max3-12, whereas the wild-type allele (primers RP and LP) can be amplified in Col-0 only. A 

1033bp PCR product amplified by using primers specific to At3g09250 served as a control. (D) 

Semi-quantitative RT-PCR analysis of AtMAX3 in the max3-12 mutant in comparison with Col-0 

wild type. A 636 bp amplicon specific for AtMAX3 can be amplified from Col-0 but not from 

max3-12 cDNA (upper panel). The presence of equal amounts of template is shown by 

amplification of an AtTUA5 (At5g19780) amplicon (lower panel). Non-reverse-transcribed Col-

0 RNA (RT-), H2O, and genomic DNA served as PCR controls. Shown are the results of three 

biological replicates 

 



 59

Table 4.1 Primers used for quantitative RT-PCR analysis in this study. 

LocusID Foward and reverse primer sequences (5’ – 3’) 

AtACT2 CCAGAAGGATGCATATGTTGGTGA; GAGGAGCCTCGGTAAGAAGA 

AtSAND AACTCTATGCAGCATTTGATCCACT; TGATTGCATATCTTTATCGCCATC 

At1g18270.3 TCCAGCTGAAGTGACGAAAGATG; TCCTCAGCCTGAACCTCGTTTG 

At1g75270.1 AGATATCTGCGTGAAGGTTGCC; GAACACGTTGGCTAAACGGACAG 

At1g76680.2 TGGATGCACCGCTGAATAAGTACG; AATCGGTGTAACCGACGACTGG 

At2g22450.1 TTACTGCGGTTGCGCCTATACC; TCCCATCTCCGATTTCTCCCTTG 

At3g18600.1 ATGATGGCAGACGCAAGGTGAC; TTGCTCGGAACAACACAATAGCC 

At4g01870.1 ATGCCTTGCTGGTCTCCGAAAG; ACGGCCGTGTTCTCTGGATTATG 

At4g15760.1 TGTTTCCGGTTGTTCACTTAGCC; TCGCATCCAATCAGGACCTTGG 

At5g13710.1 AGGATTAGTCGACGGTGGAAGGAG; ACGATGACCATCGCCATCTCTC 

At5g57460.1 TGCAGCTGCTGAGGGAAATACAG; AGACTCCGGTTTCGTACCTGTG 

At5g61820.1 ACCAATGGCGATGGATGCGTTG; AGCGCATATCCCTTCACCGTTCTC 

At1g15580.1 GCTCTGCAAATTCTGTTCGGATGC; CACGATCCAAGGAACATTTCCCAAG 

At2g40670.1* CCGATTACTGTATGCCTGGA; TTTGAGCTCCACTCGCTAAA 

At1g64380.1* CTCCGGTGACGACAACTACT; TTCACTAGGGACCGAAACTG 

At3g18550.1* CCAGTGATTAACCACCATCG; TGCATGAGGTCTCTTGGTTT 

At1g29440.1* TGCTCTTTTCAACCACAAGA; TGAAATGATCTGTCTATCTAATCCA 

 

* Primer sequences were taken from Mashiguchi, K; Sasaki, E.; Shimada, Y.; Nagae, M.; 

Ueno, K.; Nakano, T.; Yoneyama, K.; Suzuki, Y.; Asami, T. Feedback-regulation of 

strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Bioscience 

Biotechnology and Biochemistry 2009, 73, (11), 2460-2465. 
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max3-12; two treatments: with/without 5.0 µM GR24 for 12 h; three biological replicates) for 

proteome analysis. 

4.4 iTRAQ Analysis 

Total proteomes were extracted from the whole seedlings and compared by quantitative 

proteomics using an isobaric chemical labeling reagent, iTRAQ. A trial run with a test sample 

indicated high iTRAQ labeling efficiency, resulting in 14, 780 spectra identified with iTRAQ 

labeling on N-terminal or lysine residues and only 537 spectra identified with no iTRAQ 

labeling. Each of the four samples (Col-0, Col-0 + GR24, max3-12, and max3-12  + GR24) in 

each biological replicate was labeled by one of the four reagents of the iTRAQ 4-plex and then 

was combined into one aliquot. The three biological replicates were measured in technical 

duplicates on an LTQ Orbitrap Velos Pro mass spectrometer. 

A total of 2095 proteins were identified across all samples with an average of about 

1,700 proteins across the biological triplicates. Approximately 63% of the identified proteins 

were reproducibly detected across all three biological replicates (Figure 4.3). This is well within 

the range of reproducibility of other iTRAQ studies in plants. For example, in an iTRAQ study 

using Arabidopsis guard cells, the overlaps of proteins detected between any two biological 

replicates were from 49 to 71%129. As shown in Figure 4.4, the molecular weight distribution and 

isoelectric point range of identified proteins largely matched with predicted ranges of the fully 

annotated Arabidopsis proteome, although it appeared that our iTRAQ study detected fewer 

proteins with high isoelectric point. In general, our overall protein extraction and digestion 

protocols and subsequent proteomics measurements were not strongly biased with respect to 

these physical and chemical traits of the proteins. 

Our primary objective was to identify GR24-regulated proteins. Specifically, we wanted 

to compare protein abundances between Col-0 + GR24 and Col-0 and between max3-12 + GR24 

and max3-12. As discussed in an iTRAQ study using Arabidopsis guard cells, stringency 

requirements to determine a protein as significantly changed in abundance have not been 

standardized for quantitative proteomics methods. Zhao et al. used fold-change ratios of protein 

abundance of <0.85 or >1.17 with P < 0.05. In our study, protein abundances were compared 

between Col-0 + GR24 and Col-0, and between max3-12  + GR24 and max3-12 using the rank 

product test. We considered proteins with fold changes <0.75 or >1.25 with P < 0.01 as  
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Figure 4.3 Venn diagram illustrating the number of proteins detected in all three 

biological replicates. Each circle represents a set containing 4 samples (Col-0, Col-0 + GR24, 

max3-12, max3-12 + GR24), each labeled with a different iTRAQ reagent. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4.4  Comparisons in the molecular mass (A) and isoelectric point (B) frequency 

distributions between the fully predicted 

iTRAQ-based quantitative proteomics in this study (red).
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Comparisons in the molecular mass (A) and isoelectric point (B) frequency 

distributions between the fully predicted Arabidopsis proteome (blue) and proteins detected by 

based quantitative proteomics in this study (red). 

 

Comparisons in the molecular mass (A) and isoelectric point (B) frequency 

proteome (blue) and proteins detected by 
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significantly changed in abundance. In addition, we applied FDR < 0.25. The FDR value (i.e. 

falsely identifying proteins with significant changes from a large number of proteins with no 

change) was estimated empirically using a permutation test. Biological replicates were randomly 

permutated between different conditions to create decoy comparisons with random variability 

and no biological difference. The described filtering criteria found no protein with statistically 

significant difference in such decoy comparisons, indicative of a minimum empirical FDR of our 

analysis. 

4.5 Proteins up-regulated by SL 

The distributions of log2-transformed ratios of protein abundance changes of all 

quantified proteins in Col-0 and max3-12 background were plotted (Figure 4.5). The set of log2 

ratios in Col-0 appeared to have slightly wider distribution than that in max3-12, suggesting that 

more proteins may be regulated in response to GR24 in Col-0 than in max3-12. Consistent with 

this observation, the iTRAQ detected 19 proteins whose abundance was reproducibly increased 

by more than 1.25-fold and 18 proteins whose abundance was decreased by more than 25% in 

Col-0 seedlings treated with GR24 compared with the mock control (Tables 4.2 and 4.3). In 

max3-12, the iTRAQ detected nine GR24-up-regulated and two GR24-down-regulated proteins. 

Among 19 proteins that were reproducibly increased by more than 1.25-fold in Col-0 

seedlings treated with GR24 compared with the mock control (Table 4.2), the highest induction 

of protein abundance by GR24 was 2.52-fold. This is consistent with reports that less than 2.0-

fold changes in protein abundance in the identification of plant proteins are common in iTRAQ 

studies129-131. Because it has been reported that fold changes in protein abundance determined by 

iTRAQ were relatively smaller than those determined by blue native gel and label-free 

methods132, the fold changes here may be underestimated. We found that six proteins were 

commonly up-regulated by GR24 in Col-0 and max3-12 mutant background. We briefly discuss 

each of these six proteins below. 

Among proteins whose abundance is up-regulated by GR24, OPR1 (12-oxophytodienoate 

reductase 1) showed the highest fold change (2.52 in Col-0 and 2.42 in max3-12). OPR1 shares 

similarity with the Old Yellow Enzyme family and can transform explosive 2,4,6-trinitrotoluene 

(TNT) to yield nitro-reduced TNT derivatives133. The biological function of OPR1 in plants is 

unknown. OPR1 was found to be predominantly expressed in roots134. Previous studies showed 



 

 

Figure 4.5 The distributions of GR24

transformed ratios) of all quantified proteins in 

the max3-12 mutant (red, dashed) genetic backgrounds.
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The distributions of GR24-induced changes in protein abundance (as log

transformed ratios) of all quantified proteins in Arabidopsis wild-type Col-0 (purple, solid) and 

mutant (red, dashed) genetic backgrounds. 

 

induced changes in protein abundance (as log2-

(purple, solid) and 
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Table 4.2 List of proteins up-regulated in Arabidopsis Col-0 wild-type background after 

12 h of treatment with 5 µM GR24a 

aProteins were considered to be up-regulated if they met the following criteria: fold 

change ≥1.25, P < 0.01, and FDR < 0.25. Locus identifiers of genes selected for subsequent 

quantitative RT-PCR analysis are bold. FDR, false discovery rate. bNumber of identified tryptic 

peptide ions including different charge states. cIdentified peptides are not unique and can be 

attributed to both loci. 
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Locus 
identifier 

P 
value 

FDR 
value 

(Col+GR
24)/Col 

fold 
change 

Peptide 

count
b
 

Sequence 
coverage 

Description 

AT1G76680 0.0000 0.020 2.52 11 30% 

OPR1, 12-oxophytodienoate reductase 

1 

AT3G18740 0.0001 0.070 1.70 7 29% Ribosomal L7Ae/L30e/S12e/Gadd45 
family protein 

AT5G61820 0.0001 0.053 1.64 4 9% molecular function unknown 

AT1G36240
c
 

0.0007 0.179 1.55 6 29% 

ribosomal L7Ae/L30e/S12e/Gadd45 
family protein 

AT1G77940
c
 

0.0007 0.179 1.55 6 29% 

ribosomal L7Ae/L30e/S12e/Gadd45 
family protein 

AT4G01870 0.0009 0.192 1.45 9 18% tolB protein-related 

AT1G60950 0.0015 0.211 1.43 3 31% 

FED A, ATFD2, 2Fe-2S ferredoxin-like 
protein 

AT1G56340 0.0013 0.196 1.42 8 16% 

CRT1, CRT1a, AtCRT1a, calreticulin 
1a 

AT5G64040 0.0021 0.238 1.39 2 6% 

PSAN, photosystem I reaction center 
subunit PSI-N 

AT1G10960 0.0023 0.240 1.39 3 31% ATFD1, FD1, ferredoxin 1 

AT3G50820 0.0017 0.209 1.38 28 57% 

PSBO2, PSBO-2, photosystem II 
subunit O-2 

AT2G20260 0.0024 0.226 1.38 9 50% PSAE-2, photosystem I subunit E-2 

AT4G28750 0.0025 0.219 1.37 13 43% 

PSAE-1, photosystem I reaction center 
subunit IV 

AT4G15760 0.0030 0.229 1.36 3 10% MO1, monooxygenase 1 

AT3G02560 0.0034 0.232 1.35 3 13% ribosomal protein S7e family protein 

AT4G13180 0.0034 0.245 1.34 7 18% 

NAD(P)-binding Rossmann-fold 
superfamily protein 

AT2G40610 0.0009 0.166 1.34 3 13% 

ATEXPA8, EXP8, ATEXP8, expansin 
A8 

AT4G34620 0.0040 0.248 1.33 3 38% 

SSR16, small subunit ribosomal protein 
16 

AT1G75270 0.0038 0.247 1.33 5 23% 

DHAR2, dehydroascorbate reductase 

2 

AT4G19880 0.0030 0.244 1.30 2 7% glutathione S-transferase family protein 

 

Table 4.2 continued 
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Table 4.3 List of proteins down-regulated in Arabidopsis Col-0 wild-type background 

after 12 h of treatment with 5 µM GR24a 

aProteins were considered to be down-regulated if they met the following criteria: fold 

change ≤0.75, P < 0.01, and FDR < 0.25. Locus identifiers of genes selected for subsequent 

quantitative RT-PCR analysis are bold. FDR, false discovery rate. bNumber of identified tryptic 

peptide ions including different charge states.  
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Locus 
identifier 

P 
value 

FDR 
value 

(Col+GR
24)/Col 

 fold 
change 

Peptide  

count
b
 

Sequence 
coverage 

Description 

AT5G57460 0.0001 0.130 0.43 2 4% molecular function unknown 

AT3G03060 0.0018 0.246 0.48 4 7% 

P-loop containing nucleoside 
triphosphate hydrolase 

AT5G13710 0.0002 0.097 0.53 2 4% 

SMT1, CPH, sterol methyltransferase 

1 

AT4G14160 0.0020 0.224 0.57 3 4% 

Sec23/Sec24 protein transport family 
protein 

AT1G21150 0.0002 0.110 0.60 2 2% 

mitochondrial transcription termination 
factor 

AT3G59780 0.0033 0.240 0.64 3 6% rhodanese/cell cycle control phosphatase 

AT4G14040 0.0021 0.221 0.65 9 17% 

EDA38, SBP2, selenium-binding 
protein 2 

AT4G30190 0.0034 0.221 0.65 6 8% HA2, H(+)-ATPase 2 

AT3G18600 0.0009 0.175 0.65 2 2% 

P-loop containing nucleoside 

triphosphate hydrolase 

AT1G18270 0.0012 0.178 0.66 4 3% 

ketose-bisphosphate aldolase class-II 

family protein 

AT2G22450 0.0024 0.226 0.68 2 3% 

putative riboflavin biosynthesis 

protein 

AT5G64120 0.0011 0.200 0.70 8 28% peroxidase superfamily protein 

AT3G09910 0.0004 0.128 0.70 3 11% 

ATRAB18C, ATRABC2B, RAB 
GTPase homologue C2B 

AT4G02520 0.0033 0.227 0.70 6 27% 

ATGSTF2, GST2, glutathione S-
transferase PHI 2 

AT1G54270 0.0031 0.242 0.71 14 41% EIF4A-2, eif4a-2 

AT2G18730 0.0008 0.192 0.73 2 4% 

ATDGK3, DGK3, diacylglycerol kinase 
3 

AT3G22060 0.0037 0.228 0.73 4 11% 

receptor-like protein kinase-related 
family protein 

AT1G64510 0.0026 0.226 0.73 3 5% 

translation elongation factor 
EF1B/ribosomal protein S6 

 

Table 4.3 continued 
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that the transcript level of OPR1 was transiently increased in response to abiotic stimuli, but no 

subsequent changes in protein levels were detected. It was proposed that post-transcriptional 

regulation may inhibit the generation of higher levels of OPR1 proteins in the Arabidopsis plants 

overexpressing OPR1. Because the transcript of OPR1 is highly induced by TNT and OPR1 may 

function in the detoxification of TNT and here we show that the protein abundance of OPR1 is 

increased by GR24 in Arabidopsis seedlings, this raises a question of whether the SL pathway 

may affect TNT detoxification. 

Protein encoded by gene locus At4g01870 was up-regulated 1.45-fold in Col-0 and 1.64-

fold in max3-12 by GR24. At4g01870 is annotated as tolB protein-related and categorized as a 

gene involved in stress responses. tolB is a bacterial protein that maintains outer membrane 

stability and integrity135,  which is important for protecting cells against antibacterial agents. 

However, the molecular function of tolB-related proteins in plants is unknown. The transcript of 

At4g01870 is highly induced by A1-phytoprostanes (PPA1) (20.1-fold induction) and PPB1, 

compounds that are structurally highly similar to 12-oxo-phytodienoic acid (OPDA), which is a 

precursor for the plant hormone jasmonic acid but may also act as a signal molecule regulating 

plant development and stress response136. 

Protein encoded by gene locus At5g61820 was up-regulated 1.64-fold in Col-0 and 1.96-

fold in max3-12 by GR24. The molecular function of this protein is unknown. BLAST searching 

revealed that this protein shares similarity with a family of proteins implicated in nodule 

development in the legume Medicago, whose transcription is induced during nodulation137.  It is 

interesting to note that SLs promote nodulation in pea138. 

The protein abundance of monooxygenase 1 (MO1) was increased by 1.36-fold in Col-0 

and 1.42-fold in max3-12 by GR24. MO1 was identified as a gene whose transcript is 

preferentially up-regulated by Alternaria brassicicola, a ubiquitous plant pathogenic fungus, in a 

compatible Arabidopsis ecotype Dijon G but not in the incompatible ecotype Col-0. MO1 has 

similarity with monooxygenases that are known to degrade salicylic acid (SA), but the exact 

reaction catalyzed by MO1 is unknown. It has been postulated that MO1 may catalyze the 

production of SA-derived aromatic compounds that have signaling roles or that MO1 may be 

involved in the suppression of SA pathway139. 

The fifth protein whose abundance was enhanced by GR24 in both Col-0 (1.34-fold 

increase) and max3-12  (1.32-fold increase) is a protein encoded by gene locus At4g13180. This 
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protein is predicted to be a member of NAD(P)-binding Rossmann-fold superfamily, but its 

biochemical function has not been experimentally demonstrated. At4g13180 was identified as 

one of the early phosphate starvation-responsive genes.  It has been well-documented in several 

plant species that Pi deficiency stimulates SL production and exudation from roots140. Therefore, 

it will be interesting to investigate whether At4g13180 is involved in SL-mediated Pi deficiency 

response. 

The sixth protein that was up-regulated both in Col-0 (1.30-fold increase) and max3-12  

(1.33-fold increase) was a glutathione S -transferase (GST) family protein encoded by the gene 

locus At4g19880. Plant GSTs perform both catalytic functions, such as glutathione conjugation 

in the metabolic detoxification of herbicides and natural products, and nonenzymatic functions, 

such as binding plant hormones to facilitate their distribution and transport.  Therefore, plant 

GSTs are considered to be a heterogeneous superfamily of multifunctional proteins. Little is 

known about the role of GTSs in SL-biosynthesis, transport, or signaling. Recently, it has been 

reported that GR24 can increase the level of glutathione in roots in an MAX2-dependent manner, 

implying an involvement of glutathione in SL-regulation of root architecture141. 

It was also interesting to note that several members of the photosystems I and II (PS I and 

II) were up-regulated by GR24 in Col-0 (Table 4.1). These results suggest that SL may be 

involved in the regulation of some photosynthetic processes. This finding is consistent with the 

result of microarray experiments in tomato, where SLs are found to be positive regulators of 

light-harvesting genes. 

4.6 Proteins down-regulated by SL 

Among proteins identified by our proteome analysis, the abundance of a total of 18 

proteins was reproducibly decreased by more than 25% in seedlings treated with GR24 

compared with the mock control in Col-0 (Table 4.3). At least 11 of these identified proteins are 

involved in enzymatic reactions in diverse pathways, including methyltransferase (SMT1, sterol 

methyltransferase 1), ATPase (HA2, H+-ATPase 2), hydrolase (P-loop containing nucleoside 

triphosphate hydrolases superfamily protein), aldolase (ketose-bisphosphate aldolase class-II 

family protein; aldolase-type TIM barrel family protein), proteins involved in riboflavin 

biosynthesis, peroxidase superfamily protein, GTPase (ATRABC2B, RAB GTPase homologue 

C2B), GST (ATGSTF2, glutathione S-transferase PHI2), diacylglycerol kinase (ATDGK3, 
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diacylglycerol kinase 3), phosphatase (Rhodanese/cell cycle control phosphatase superfamily 

protein), and receptor-like protein kinase. The involvement of these proteins in SL pathways has 

not been previously studied, but these findings may imply that enzymatic reactions represent an 

important mechanism in SL-regulated processes. 

4.7 Transcriptional response of selected SL-regulated proteins 

To complement the proteomics results, we applied quantitative RT-PCR (qRT) analysis 

to examine transcript levels of selected proteins in the Arabidopsis Col-0 seedlings treated with 

GR24. We selected a total of 10 proteins, five each for GR24 up- or down-regulated. Our 

selection covered both those strongly (e.g., >2.0-fold change) regulated by GR24 and those 

weakly regulated (e.g., ~1.3-fold change) as well as those with low (e.g., 0.02) or high FDR 

values (e.g., 0.25) (Tables 4.2 and 4.3). 

In a test run of qRT, we first wanted to examine whether we could validate those GR24-

responsive genes reported by Mashiguchi et al. Similar to the microarray experiment, we treated 

Arabidopsis Col-0 seedlings with 1.0 µM GR24 for 90 min, except that we used 10 day old 

seedlings whereas 14 day old seedlings were used in the microarray experiment. For GR24-up-

regulated genes reported by Mashiguchi et al., we selected ARR16, AP2, and BRC1  (not shown 

in the microarray experiment but shown in one of the qRT analyses). For GR24-down-regulated 

genes, we selected IAA5 and At1g29440. As shown in Figure 4.6, all three selected genes 

reported as GR24-induced genes by Mashiguchi et al. were also up-regulated by GR24 in our 

qRT experiment, although the up-regulation is generally less than 2.0-fold. This is consistent 

with the microarray data, where the highest GR24-upregulation in transcript among all 31 genes 

was 3.56-fold. It had also been noted by Mashiguchi et al. that up-regulation of BRC by GR24 

was much lower or rarely observed when the seedlings were treated with GR24 for 90 min. 

Similar to the results from microarray experiment, the transcript levels of IAA5 and At1g29440 

were down-regulated by GR24 in our experiment (Figure 4.6). Taken together, our results 

suggested that we could largely validate those GR24-responsive genes reported in the microarray 

experiment under our experimental conditions and that our GR24 induction experiment was 

reliable. 

Subsequently, we examined the levels of transcripts of those 10 genes selected from our 

proteomic analysis in 14-day old Arabidopsis Col-0 seedlings treated with 5.0 µM GR24 for 90 
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min (induction time used in the microarray experiment by Mashiguchi et al.) and 12 h (induction 

time used in our proteomic study) and compared their levels of transcripts with mock control. 

For normalization of the measured gene expression data, we used two reference genes. The first 

one was ACT2, one of three traditional housekeeping genes. The second one was AtSAND, one 

of the 10 most stably expressed genes for Arabidopsis thaliana ecotype Col-0 identified by 

Czechowski et al.
142. The qRT data normalized using AtSAND as reference gene are presented 

in Figure 4.7, and the qRT data normalized using ATC2 as reference gene are presented in 

Figure 4.8. As shown in Figure 4.7A, expression of none of those five selected genes whose 

products were down-regulated by GR24 in the proteome analysis were significantly different 

from the mock control, implying that post-transcriptional and post-translational modifications 

may be important for SL’s action. All transcripts of those five selected genes whose products 

were up-regulated by GR24 in the proteome analysis were significantly increased upon GR24 

treatment (Figure 4.7B). Over 10-fold increase in the transcript level was observed in At1g76680 

(encoding OPR1), At5g61820 (encoding a protein with unknown function), and At4g01870 

(encoding a tolB protein-related) when Arabidopsis Col-0 seedlings were treated with 5.0 µM 

GR24 for 12 h. 

4.8 Discussion 

SLs are a new class of plant hormones. In this study, we explored the effects of SLs on 

the proteome by using quantitative proteomics to uncover SL-regulated proteins in Arabidopsis 

seedlings. Because transcription and translation are not always correlated well with each other, 

we expect that our proteomic analysis may reveal novel players in the SL pathways. 

Our iTRAQ study identified 19 GR24-up-regulated and 18 GR24-down-regulated 

proteins in wild-type Arabidopsis and 9 GR24-up-regulated and 2 GR24-down-regulated 

proteins in the max3-12 mutant. The fold changes of protein abundances between GR24 

treatment and mock control ranged from 0.43 to 2.52. This detection range of protein abundance 

was consistent with previous iTRAQ studies using Arabidopsis. For example, in an iTRAQ study 

using Arabidopsis guard cells, protein abundance ratios varied from 0.6 to 2.8 (P  < 0.05).  In 

another iTRAQ study for analyzing early changes to the phosphoproteome during the defense 

response to Pseudomonas syringae  pv tomato DC3000, the fold changes in protein abundance 

ranged from 0.5 to 3.0 (p  < 0.05). In a third iTRAQ study of Arabidopsis chloroplast 
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Quantitative RT-PCR analysis of GR24-responsive genes. Genes were 

selected from the microarray experiment previously performed by Mashiguchi et al

Arabidopsis Col-0 seedlings treated with or without 1µ

min. Expression levels were quantified by real-time RT-PCR and calculated by the 2

AtACT2 expression. Expression data are compared to the untreated 

control and shown as means of at least three biological replicates + S.D. 
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Figure 4.7 Quantitative RT-PCR results normalized using AtSAND as reference gene. A 

total of 10 proteins, 5 each for GR24-down- (A) or up-regulated (B), were selected for 

quantitative RT-PCR analysis. RNA was extracted from 14 day old Arabidopsis Col-0 seedlings 

treated with or without 5 µM GR24 for 90 min and 12 h. Expression levels were quantified by 

real-time PCR and calculated by the 2−∆∆Ct method normalized against AtSAND expression. 

Expression data are compared with the untreated control at both time points and shown as means 

of at least three biological replicates ± SE. *, significant difference (F-test followed by t test) 

from untreated control, p < 0.05. 
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Figure 4.8 Quantitative RT-PCR results normalized using ATC2 as reference gene. A 

total of 10 proteins, five each for GR24-down- (A) or up-regulated (B), were selected for 

quantitative RT-PCR analysis. RNA was extracted from 14-days-old Arabidopsis Col-0 

seedlings treated with or without 5µM GR24 for 90 min and 12 hours. Expression levels were 

quantified by real-time PCR and calculated by the 2−∆∆Ct method normalized against AtACT2 

expression. Expression data are compared to the untreated control at both time points and shown 

as means of at least three biological replicates ± S.E. *, significant difference from untreated 

control, p<0.05. 
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SRP54 sorting mutant, fold changes of all proteins in leaves ranged from 0.59 to 2.07 (p < 0.05). 

Furthermore, our selection criteria of up- or down-regulated proteins with fold change >1.25 or 

<0.75 (p  < 0.01) detected in at least two labeling experiments were similar to those imposed by 

previous iTRAQ studies using Arabidopsis. The same FDR value cutoff of 0.25 was used in the 

Arabidopsis SL microarray experiments. 

In Arabidopsis seedlings, GR24 up-regulates the expression of 31 genes and down-

regulates the expression of 33 genes. This is a relatively small set of genes compared with the 

number of genes regulated by other plant hormones, which typically range from several hundred 

to a couple of thousands (e.g., 791 IAA responsive genes and 2936 ABA-responsive genes)143. 

Furthermore, the magnitude of regulation of transcripts by GR24 is also relatively small. In the 

SL microarray experiment, the largest up-regulation was 3.56-fold and the largest down-

regulation was 5.06-fold. In contrast, the maximum of induction observed by the plant hormone 

auxins could be as high as 2000-fold and the maximum suppression as high as 20-fold in 

Arabidopsis seedlings186. In another example, the maximal induction and suppression by plant 

hormone ABA are as high as 1666-fold and 50-fold, respectively. Therefore, compared with 

other plant hormones, the effect of global regulation of transcription by SLs is generally mild in 

Arabidopsis seedlings. 

At the protein level, the present iTRAQ study identified a small set of GR24-responsive 

proteins (e.g., 19 GR24-upregulated and 18 GR24-down-regulated proteins) in Arabidopsis 

seedlings. The total number of proteins (37 proteins) with significant fold-change detected in our 

proteomic analysis is smaller than the total number of transcripts (64 transcripts) with significant 

fold-change detected in the microarray experiment. However, when considering the fact that our 

proteomics approach detected ∼1,700 proteins whereas typically over 10 000 transcripts can be 

detected in microarray studies using the Arabidopsis ATH1 genome array144, the percentage of 

SL-responsive proteins may be actually much higher than the percentage of SL-responsive 

transcripts at the whole genome level, implying an important role of protein regulation in SL’s 

action. The number of proteins detected with significant fold change in our study is comparable 

to previous proteomic studies using other plant hormones. For example, in a proteomics study 

using BR, 15 BR-up-regulated and 3 BR-down-regulated proteins were detected when 

Arabidopsis seedlings were treated with BR for 12 h. 



 79

In contrast with the microarray study in which the expression of many auxin-responsive 

genes was found to be repressed by GR24 (e.g., 76% GR24-repressible genes encoded auxin-

inducible genes), we did not detect any of these types of proteins as affected by GR24. In fact, no 

proteins corresponding to GR24-responsive transcripts were detectable by iTRAQ. This could be 

due to a number of reasons. In the microarray experiment, 14-day-old seedlings were treated 

with 1 µM GR24 for 90 min, whereas in our iTRAQ experiment, seedlings were treated with 5 

µM GR24 for 12 h. The concentration of GR24 used and duration of treatment may have 

partially contributed to these differences. It should also be noted that proteomics methods 

typically detect proteins that are relatively abundant; quantitative proteomics is therefore limited 

to identifying proteins of altered abundance from among these detected proteins. Transcriptomics 

is capable of characterizing genes even with low expression levels. More specifically, gene 

products of many auxin-inducible genes, such as AUX/IAA genes, are undergoing rapid 

degradation, and their abundance is at very low levels in plant cells145. Therefore, our proteomic 

analysis may have missed those auxin-responsive proteins whose transcripts were shown to be 

repressed by GR24 in the microarray study. Consistent with this view, the iTRAQ detected only 

two proteins (encoded by gene loci At3g07390 and At1g28130) annotated as auxin-responsive 

proteins, but neither of them showed significant fold changes upon GR24 treatment and neither 

of them were identified as GR24-repressible genes in the microarray study. This may also 

partially explain the fact that none of the SL-responsive genes identified by microarray 

experiment was identified in our proteomic study. 

None of the genes encoding those proteins whose abundance was shown to be up- or 

down-regulated by GR24 in our proteomics study was shown to be GR24 responsive in the 

microarray study.  Similar trends were found with BR proteomic studies where ∼ 80% of the 

BR-responsive proteins were not identified in microarray studies. Furthermore, in our qRT-PCR 

test with five selected genes whose gene product was shown to be down-regulated by GR24, we 

did not detect corresponding down-regulation at the transcript level. Similarly, direct comparison 

between protein and RNA changes in BR mutants also revealed a very weak correlation. These 

results argue for an important role of post-transcriptional or post-translational process in SL 

pathways. Consistent with this view, it has been found that microRNA plays an important role in 

regulating shoot branching146, a process where SLs are best known to function as a negative 

regulator. More importantly, MAX2 functions as a key signaling component in the SL pathway. 
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MAX2 is an F-box protein that forms a protein complex with the core SCF complex (Skp, 

Cullin, F-box-containing complex) subunits ASK1 and AtCUL1147, indicating that ubiquitin-

proteasome-mediated protein degradation plays an important role in SL signaling. Consistent 

with this view, recently, it has been shown that the degradation of D53 protein is dependent on 

D14 and D3 (a rice ortholog of MAX2). Arabidopsis orthologs of D53 (the SMAX1 and SMXL 

proteins148) were at undetectable levels in our proteomics studies. 

Our proteomic analysis has revealed several proteins that could potentially fit in the SL 

pathways. For example, the protein encoded by gene locus At5g61820 has similarity with 

proteins implicated in nodule development in the legume Medicago, and it has been shown that 

SLs promote nodulation in pea. Another example is the NAD(P)-binding Rossmann-fold 

superfamily protein encoded by gene locus At4g13180, which was up-regulated by GR24 in our 

study. This gene was among one of the early phosphate starvation responsive genes.  As 

previously noted, Pi deficiency can stimulate SL production and exudation from roots. 

Furthermore, several proteins that are known or predicted to have a role in photosynthesis were 

also up-regulated by GR24 in our proteomics study, consistent with the finding that SLs function 

as positive regulators of light-harvesting genes 

Another outcome of our proteomic analysis was the identification of proteins that have 

not been previously known to have a role in SL pathways. For example, OPR1, whose 

abundance was up-regulated by GR24 at the highest level, was implicated in TNT detoxification. 

A tolB-related protein was also shown to be up-regulated by GR24 in our study. Although the 

molecular function of tolB-related protein in plants is still unknown, this protein was implicated 

in plant detoxification and stress responses. We also noticed that the action of both OPR1 and 

this tolB-related protein might potentially involve OPDA-related pathways because OPR1 is 

annotated as a 12-oxophytodienoate reductase, although it showed little activity with the 

naturally occurring OPDA isomer, whereas the transcript of this tolB-related protein was shown 

to be induced by compounds that are structurally highly similar to OPDA. Further proteome 

studies using more time points and different concentrations of SL as well as using mature plants 

may help reveal a more comprehensive view of SL-regulated proteins. 

In summary, our iTRAQ studies have uncovered about three dozens of proteins that have 

not been previously known to have any roles in SL pathways. Further characterization of these 

SL-regulated proteins may provide new insights into the molecular mechanism of action of SLs. 
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CHAPTER 5 

ELEVATED TEMPERATURE ALTERS CARBON CYCLING IN 

A MICROBIAL COMMUNITY 

 
All of the data presented below has been adapted from 
 
Annika Mosier, Zhou Li, Brian Thomas, Robert Hettich, Chongle Pan, and Jillian Banfield. 
“Elevated temperature alters carbon cycling in a microbial community”. Submitted to the ISME 

Journal 
 
Zhou Li’s contributions include MS measurement, data analysis, and co-writing the manuscript. 

5.1 Introduction 

The impacts of elevated temperature on microbial communities will have direct 

implications for ecosystem- and global-scale processes. Many microbial community studies have 

evaluated the effect of warming on overall population structure and on specific metabolic 

processes such as respiration149. Far fewer studies have comprehensively assessed functional 

responses across the entire community (e.g., using “omic” approaches150 or functional gene 

arrays151). 

Individual microbial groups (e.g., genotypes, species, or functional groups) will likely 

have different functional responses to elevated temperature, and yet an organism’s response and 

adaptation to changing conditions in part relates to its behavior within a community. Thus, 

understanding the physiology and activity of individual microbial groups within a community 

context is essential for predicting the impact, resilience and response of ecological systems to 

changing conditions. This topic is relatively little studied, in part because it can be challenging to 

tease apart contributions of individual organisms from overall metabolic processes. Further, such 

investigations require a high level of taxonomic and functional resolution because closely related 

strains and species may respond very differently to temperature regime. 

Quantitative proteomics can elucidate function of individual microbial groups within a 

community context by measuring protein abundance in a high-throughput manner. Both 

taxonomic and functional annotations are simultaneously assigned to unique proteins in the 

community proteome. Protein abundance can more accurately represent cellular activities than 

mRNA quantification, because mRNA abundance changes do not necessarily correlated with 

protein abundance change79. For example, some proteins may have long lifetimes, so that new 
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production from mRNA is infrequently required. Conversely, cells may also have a low level of 

a protein with abundant mRNA expression because of protein degradation and post-transcription 

regulation. 

Recent advances in protein quantification using tandem mass tags (TMTs) and isobaric 

tags for relative and absolute quantification (iTRAQ) have dramatically improved measurement 

precision, accuracy, and reproducibility, surpassing label-free quantification methods such as 

spectral counting57. TMT/iTRAQ-based quantitative proteomics can be used with complex 

samples, including biological systems that are not amenable to efficient metabolic labeling with 

stable isotopes. In isobaric chemical labeling, peptides from different samples are labeled 

separately with different isotopic variants of the labeling reagent and then combined for analysis 

using liquid chromatography coupled with tandem mass spectrometry (LC−MS/MS). Each 

isotopic variant has the same overall mass but contains a reporter ion with a unique molecular 

mass, thus enabling accurate overall quantification alongside precise measurement of the relative 

protein abundance between samples. Currently, TMT/iTRAQ-based quantitative proteomics 

enables multiplexing of up to 8-10 samples with deep proteome coverage. 

The objective of this study was to determine the impact of elevated temperature on the 

physiology of individual microbial groups in a community. The experiments were conducted at 

temperatures between the average in situ temperature and the maximum growth temperature, 

which was established in this study. We compared the protein expression levels using a new 

approach that combined shotgun community proteomics analysis with TMT quantification. The 

analyses targeted laboratory-grown acid mine drainage (AMD) biofilms that represent natural 

AMD populations and have served as a model microbial community system in many prior 

studies. The current research shows the utility of quantitative proteomics for understanding 

ecological processes by highlighting differential expression of closely related organisms. 

5.2 Additional materials and methods 

Fluorescence in situ hybridization: Fluorescence in situ hybridization (FISH) was carried 

out on fixed (4% paraformaldehyde) AMD biofilm samples as described previously152,153.  

Oligonucleotide probes used in this study for identification of the dominant individual species 

and groups were as follows: EUBMIX (all Bacteria); ARC915 (all Archaea); EUKMIX (all 

Eukaryotes); LF655 (all Leptospirillum bacteria); LF1252 (Leptospirillum group III bacteria); 
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L2UBA353 (Leptospirillum group II UBA-genotype); L2CG353 (Leptospirillum group II 5-way 

genotype); and SUL230 (Sulfobacillus spp.).  For estimation of abundance, cells were counted in 

three replicate fields of view (average of 468 total cells counted per probe per sample) and 

converted to a percentage of the total cell count found using the general nucleic acid stain 4',6-

diamidino-2-phenylindole (DAPI).  Cell counts from both growth phases were averaged. 

Proteome-based community structure and function analyses: Hierarchical clustering was 

performed on protein abundance values normalized at the community-level with absolute 

intensities converted to percentages for each protein (the sum of the percentages for each protein 

is equal to 1).  The clustering method used a Pearson correlation distance matrix and average 

linkage clustering (using Multi-experiment Viewer; MeV_4_8; http:// www.tm4.org/mev/)154. 

For further analyses, protein counts from both growth phases were summed.  Community 

structure was evaluated by summing the total intensities of the proteins for each organismal 

group (e.g., Leptospirillum group III, archaea, etc.) and then dividing by the total sum of all 

proteins in a sample.  Differentially expressed proteins were identified as those with normalized 

total intensity ratios (40 ºC : 46 ºC) >1.2 or <0.8 combined with a Rank Product p-value ≤0.05 

(except where noted), similar to methods used in other studies155. Functional categories of 

significant proteins were assigned upon manual review of annotations in ggKbase 

(http://ggkbase.berkeley.edu/) [including Clusters of Orthologous Groups156 assignment], as well 

as reciprocal blast searches against the KEGG database (conducted using the KAAS157 server).  

Carbohydrate Active Enzymes (CAZymes) were predicted with the CAZymes Analysis Toolkit 

(http://mothra.ornl.gov/cgi-bin/cat.cgi)158 with an e-value threshold of 0.0001 for Pfam searches 

and 0.000001 for orthology searches with “Domain consistent” and “Length Consistent” rules. 

5.3 Growth of AMD biofilms at different temperatures 

During periods of observed biofilm accumulation at the AB-muck site in the Richmond 

Mine over the last decade, the average in situ temperature of the AMD solution was 40.4 ºC 

(based on discrete measurements during sampling trips; Figure 5.1). Biofilms were never 

observed at temperatures above 47 °C. 

AMD biofilms were grown in laboratory bioreactors in order to evaluate the effect of 

elevated temperature on community composition and function. Mature biofilms developed at 40 

ºC, 43 ºC, and 46 ºC. This temperature range corresponds with the normal range of temperatures 



 84

associated with biofilm growth in the field. There was no visible biofilm growth at 49 ºC after 

four weeks. Biofilm growth rates may have differed between the temperature treatments; 

however, we expect that any differences that might have occurred were likely a result of 

temperature since all other growth conditions were identical. 

Tandem mass tag quantitative shotgun proteomics (TMT-proteomics) was used to 

determine protein abundance and inferred function in bioreactor-grown biofilms grown at 

40 ºC, 43 ºC, 46 ºC. TMT-proteomics identified 1724-1916 proteins from the biofilm 

communities (across all samples, extraction replicates, and technical runs), 1596 of which could 

be uniquely assigned to one organism. Hierarchical clustering showed that the samples 

reproducibly clustered into two groups based on their protein abundance levels: biofilms grown 

at 40 ºC and 43 ºC clustered together, whereas those grown at 46 ºC clustered independently 

(Figure 5.2). 

5.4 Community composition of AMD biofilms grown at different 

temperatures 

Proteins were quantified from 23 different bacterial, archaeal, and eukaryal organisms 

(Table 5.1). We evaluated community composition based on FISH and TMT-proteomics 

measurements. FISH estimates indicated that archaea were very abundant in the field-collected 

and bioreactor biofilms, making up 35 to 51% of the communities (Figure 5.3). Proteins were 

identified from many different archaea: ARMAN I, ARMAN II, ARMAN IV, ARMAN V, 

Ferroplasma I, Ferroplasma II, A-plasma I, A-plasma II, C-plasma, D-plasma, E-plasma, G-

plasma and I-plasma. While the overall abundance of archaea did not change significantly with 

increasing temperature, closely related organisms responded differently to temperature 

(Figure5.4, Table 5.2). For instance, ARMAN II abundance increased with temperature, but 

ARMAN IV decreased with temperature. Two other ARMAN types had similar abundance 

levels at 40ºC and 46ºC, but lower abundance at 43ºC. 

The chemoautotrophic iron-oxidizing bacteria Leptospirillum Group II, which often 

dominate natural biofilms, were present in all of the biofilms. Elevated temperature differentially 

impacted the abundance of three distinct Leptospirillum Group II organisms referred to as the  

Type I (5-way), Type III (C75), and Type VI (UBA) genotypic groups159-162. The UBA and C75 

genotypes increased in abundance from 40ºC to 46ºC, whereas the 5-way genotype abundance  
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Temperature of the acid mine drainage solution at the AB-muck site in the 
 

muck site in the 
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Figure 5.2  Hierarchical clustering of protein abundance values normalized at the 

community-level (A) and the number of proteins assigned to COGs that are significantly 

different between temperatures at the community-level (B). COG categories J: Translation, 

ribosomal structure and biogenesis; A: RNA processing and modification; K: Transcription; L: 

Replication, recombination and repair; B: Chromatin structure and dynamics; D: Cell cycle 

control, cell division, chromosome partitioning; Y: Nuclear structure; V: Defense mechanisms; 

T: Signal transduction mechanisms; M: Cell wall/membrane/envelope biogenesis; N: Cell 

motility; Z: Cytoskeleton; W: Extracellular structures; U: Intracellular trafficking, secretion, and 

vesicular transport; O: Posttranslational modification, protein turnover, chaperones; C: Energy 

production and conversion; G: Carbohydrate transport and metabolism; E: Amino acid transport 

and metabolism; F: Nucleotide transport and metabolism; H: Coenzyme transport and 

metabolism; I: Lipid transport and metabolism; P: Inorganic ion transport and metabolism; and 

Q: Secondary metabolites biosynthesis, transport and catabolism 
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 Table 5.1 Number of proteins quantified per organism. Only proteins quantified with 

unique peptides were considered. 

domain Organism No. of Proteins 

Bacteria 

Leptospirillum group II CG 5-way type 195 

Leptospirillum group II UBA type 197 

Leptospirillum group II C75 type 11 

Leptospirillum group III 695 

Leptospirillum group IV 27 

Actinobacteria I 7 

Actinobacteria II 7 

Firmicute 3 

Sulfobacillus III 6 

Archaea 

A-plasma I 74 

A-plasma II 1 

C-plasma 4 

D-plasma 6 

E-plasma 4 

G-plasma 206 

I-plasma 10 

Ferroplasma I 25 

Ferroplasma II 12 

Arman I 6 

Arman II 4 

Arman IV 11 

Arman V 6 

Eukarya Acidomyces richmondensis 28 

 

  



 

 
 Figure 5.3  Community composition of natural and cultivated AMD communities based 

on A) fluorescence in situ hybridization and B) protein abundance as measured by TMT

proteomics. 
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Community composition of natural and cultivated AMD communities based 

hybridization and B) protein abundance as measured by TMT

 

Community composition of natural and cultivated AMD communities based 

hybridization and B) protein abundance as measured by TMT-



 

 

 Figure 5.4  Relative abundance of archaea, bacteria, and eukarya in AMD biofilms grown 

at 40ºC and 46ºC (based on protein abundance as measured by TMT
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Relative abundance of archaea, bacteria, and eukarya in AMD biofilms grown 

at 40ºC and 46ºC (based on protein abundance as measured by TMT-proteomics).

 

Relative abundance of archaea, bacteria, and eukarya in AMD biofilms grown 

proteomics). 
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Table 5.2 Relative abundance of each organism at 40ºC, 43ºC, and 46ºC (based on 

summing the total intensities of the proteins for each organism and then dividing by the total sum 

of all proteins in a sample). Abundance plots are scaled by normalizing to 100% for each 

organism. 
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decreased. Leptospirillum group III bacteria were very abundant at all temperatures in the 

bioreactors. As seen previously163, the bioreactor biofilms had a much higher percentage of 

Leptospirillum group III bacteria than that seen in the in situ mine biofilm (31 to 41% compared 

to only 2% in the mine). Leptospirillum Group III has been shown to dominate AMD biofilms in 

solutions with low Fe(II)/Fe(III) ratios (Spaulding et al., unpublished data). 

5.5 Community function at low and high temperatures 

Protein expression was further evaluated to determine if elevated temperature impacted 

function. Protein abundance was first normalized at the community-level to determine each 

protein’s abundance compared with all proteins in the sample (normalizing to account for 

biomass differences between samples, but not accounting for differences in each organism’s 

abundance). 

In a COG-based functional analysis (Figure 5.2), the greatest number of significantly 

different proteins occurred when comparing biofilms grown at 40 ºC and 46 ºC. There were 

fewer significantly different proteins in the 40 ºC: 43 ºC and 43 ºC: 46 ºC comparisons (78 

significantly different proteins between 40 ºC and 43 ºC; 191 significantly different proteins 

between 43 ºC and 46 ºC; and 239 significantly different proteins between 40 ºC and 46 ºC). 

Overall, increasing temperature led to an increasing number of significantly different 

proteins in the COG functional categories (E) amino acid transport and metabolism, (C) energy 

production and conversion, and (O) posttranslational modification, protein turnover, chaperones. 

In particular, more than three times as many proteins involved in the metabolism and transport of 

amino acids (COG E) were significantly more abundant at 46ºC than at 40ºC. Nearly twice as 

many proteins involved in energy production and conversion (COG C) were significantly more 

abundant at 46ºC compared to 40°C. Additionally, there were 3.1 times as many proteins in the 

functional category of posttranslational modification, protein turnover, and chaperones (COG O) 

that were significantly more abundant at 46ºC than at 40ºC. 

5.6 Function of individual organisms in biofilms growing at 40 ºC and 46 ºC 

Protein abundance was evaluated at the organism-level by normalizing individual 

proteins to the total protein abundance from each specific organism, allowing for evaluation of 

protein abundance for individual organisms. Organisms representing ≥10% of the total proteins 

were analyzed, including three closely related Leptospirillum bacteria, as well as G-plasma 
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archaea. In the significance analysis (based on fold-change and Rank Product p-value), proteins 

that are considered as up-regulated in one condition are concomitantly considered as down-

regulated under the other condition. Protein expression at the organism level was only analyzed 

between the 40ºC and 46ºC conditions because very few proteins were significantly between 

40ºC and 43ºC (ranging from 2 to 18 proteins per organism-level comparison). Additionally, the 

40ºC and 43ºC community-level proteomes were similar (based on hierarchical clustering and 

community COG analysis). 

5.7 Function of Leptospirillum bacteria in biofilms growing at 40 ºC and 46 ºC 

Protein abundance was evaluated at the organism-level for three closely related 

Leptospirillum bacteria: Leptospirillum group II UBA genotype, Leptospirillum group II 

5way genotype, and Leptospirillum group III. Overall, 144 proteins were significantly different 

between 40 ºC and 46 ºC for the three organisms, spanning a broad range of functions. 

(I) Protein folding, sorting and degradation: several proteins involved in protein 

degradation were significantly up-regulated at 46 ºC for Leptospirillum group III and the group II 

UBA genotype. Of the proteins with the highest total intensities in the entire dataset (top 5% for 

each of the 3 organisms at 40 ºC and 46 ºC), 13% were chaperones. DnaK and ClpB chaperones 

were significantly up-regulated at 40 ºC for the group II 5way genotype and at 46 ºC for the 

UBA genotype. Leptospirillum group III bacteria had GroEL and HscA (p=0.06) chaperones and 

a chaperonin that were significantly up-regulated at 46ºC. Two trigger factors (ribosome 

associated chaperones) were up-regulated at 40ºC (p=0.01, p=0.09). 

(II) Carbon cycling: Carbon fixation by the Leptospirillum group II (UBA and 5way 

genotypes) and III bacteria responded strongly to temperature (Figure 5.5). These organisms are 

believed to fix carbon via the reductive tricarboxylic acid (rTCA) cycle164. Of the 60 different 

Leptospirillum proteins predicted to be involved in rTCA, 41were detected and quantified. Many 

of these proteins had very high total intensities: 11 were ranked in the top 5% highest total 

intensities. The majority of rTCA proteins from Leptospirillum group III and the group II 5way 

genotype were more abundant at 40ºC than at 46ºC. Many of these proteins were significantly 

up-regulated at 40ºC relative to 46ºC (7 proteins for 5way and three for group III). Conversely, 

rTCA proteins for the Leptospirillum group II UBA genotype had the opposite abundance 
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pattern. The majority of the rTCA proteins had higher intensities at 46ºC, two of which were 

significantly up-regulated relative to 40ºC. 

Twenty-five Carbohydrate Active Enzymes (CAZymes) were predicted amongst 

the quantified Leptospirillum proteins (additional CAZymes are found within the complete 

Leptospirillum genomes but were not measured here). CAZymes are classified as families of 

structurally-related enzymes that degrade, modify, or create glycosidic bonds. Only one 

CAZyme was predicted for the Leptospirillum group II 5way genotype (GH57) and four for the 

Leptospirillum group II UBA genotype (CBM13, GH109, and two GH57s). Leptospirillum group 

III had 20 predicted CAZymes (Figure 5.6). Most (7 out of 8) of the carbohydrate esterases (CEs; 

hydrolysis of carbohydrate esters) and glycosyltransferases (GTs; biosynthesis of saccharides) 

had higher total intensities at 46 ºC and one was significantly up-regulated (GT2). Two glycoside 

hydrolases (GH3 with ß-N-acetylhexosaminidase activity and GH109 with an oxidoreductase 

domain) were also significantly up-regulated at 46 ºC. Half of the Leptospirillum group III 

CAZymes were related to GH families (GH13 and GH57) acting on substrates containing α-

glucoside linkages including starch, glycogen, and α-maltose: 8/10 of these proteins had higher 

total intensities at 40 ºC, three of which were significantly up-regulated relative to 46ºC. The 

Leptospirillum group II UBA genotype also had one GH57 protein that was also significantly up-

regulated at 40 ºC. The Leptospirillum group II 5way genotype had one predicted GH57 protein 

that had a higher total intensity at 46ºC but was not significantly different than 40 ºC. 

(III) Energy production: The proposed mechanism of iron oxidation by Leptospirillum 

bacteria suggests that Cytochrome572 (Cyt572) functions as the Fe(II) oxidase, oxidizing Fe(II) 

on the surface of cells and transferring electrons to Cytochrome579 (Cyt579)165-167. However, 

further studies suggest additional routes of iron oxidation, including the possibility that both 

Cyt572 and Cyt579 act as Fe(II) oxidases or c-type cytochromes act as initial electron acceptors 

from Cyt572168. 

For Leptospirillum group III, abundance of iron oxidation proteins at 40ºC and 46ºC was 

decoupled between the initial steps of electron transfer and last steps converting oxygen to water 

and generating ATP.  Three cytochromes were more abundant at 46 ºC (2 of which were 

significantly up-regulated: Cyt579 p = 0.05; cytochrome C p = 0.03), whereas 15 out of 20 

downstream proteins were more abundant at 40 ºC (including 3 significant proteins: a 

cytochrome C oxidase and 2 ATP synthase subunits p = 0.003, 0.03, 0.02).  It is unclear how the  
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Abundance of proteins involved in CO2 fixation for Leptospirillum

(UBA and 5way genotypes) and group III.   (A) Reductive tricarboxylic acid  (rTCA) pathway, 

as proposed by Aliaga Goltsman et al., 2009.  (B) Leptospirillum proteins predicted to be 

involved in rTCA (Aliaga Goltsman et al., 2009).  (C) Abundance of rTCA proteins at 40ºC and 

46ºC.  Stars indicate proteins that are significantly different at a given temperature (fold

0.1; two stars p≤0.05). 
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 Figure 5.6 Abundance of predicted Carbohydrate Active Enzymes at 40ºC and 46ºC for 

Leptospirillum group III.  Stars indicate proteins that are significantly different at a given 

temperature (fold-change >1.2 or
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Abundance of predicted Carbohydrate Active Enzymes at 40ºC and 46ºC for 

group III.  Stars indicate proteins that are significantly different at a given 

change >1.2 or <0.8; one star p≤0.1; two stars p≤0.05). 

 

Abundance of predicted Carbohydrate Active Enzymes at 40ºC and 46ºC for 

group III.  Stars indicate proteins that are significantly different at a given 



 97

uncoupling of iron oxidation, electron transfer and ATP generation affects energy generation 

within the cells. 

(IV) Amino acid metabolism: at higher temperatures, the Leptospirillum bacteria (the 

group II 5way and UBA genotypes and Group III) increased expression of proteins involved in 

amino acid metabolism. Twelve amino acid biosynthesis and degradation proteins were 

significantly up-regulated at 46ºC, whereas only 1 was up-regulated at 40 ºC. Among those 

proteins up-regulated at 46ºC were those involved in the biosynthesis of alanine, lysine, 

glutamate, cysteine, isoleucine, and tryptophan. Additionally, 4 separate proteins in the histidine 

biosynthesis pathway were up-regulated at 46ºC for the Leptospirillum group II 5way genotype 

(p = 0.01-0.07). 

(V) Genetic information processing: of proteins with the highest total intensities (top 5% 

for each of the three Leptospirillum bacteria), 31% were involved in genetic information 

processing functions. More than 3.4 times as many proteins involved in genetic information 

processing were significantly up-regulated at 40 ºC relative to 46 ºC (24 at 40 ºC versus 7 at 46 

ºC) including functions of replication, recombination and repair; transcription; translation; and 

nucleotide transport and metabolism. More ribosomal proteins were significantly up-regulated at 

40 ºC relative to 46 ºC for all three Leptospirillum bacteria, but most striking was Leptospirillum 

group III which had 13 ribosomal proteins significantly up-regulated at 40 ºC and only one at 46 

ºC. 

(VI) Chemotaxis and Stress: Methyl-accepting chemotaxis sensory transducer proteins 

were significantly up-regulated at 40 ºC for each of the three Leptospirillum bacteria (p ≤ 0.05 

except for the UBA genotype with p-values of 0.09 and 0.08).  The Leptospirillum bacteria 

exhibited various stress responses: an oxidative stress protein was significantly up-regulated at 

46 ºC for the UBA genotype; an osmotic stress protein was significantly up-regulated at 40 ºC 

for the 5way genotype; and a metal stress protein was significantly up-regulated at 40 ºC for 

Leptospirillum group III.  One phage integrase protein was up-regulated at 40 ºC for 

Leptospirillum group III.  The Leptospirillum group III genome contains a cluster of Cas genes, 

which are CRISPR-associated genes involved in viral defense.  Five of these Cas proteins were 

up-regulated at 46 ºC (p = 0.013-0.095; one with an abundance ratio of 0.84).  Two phage 

proteins were also up-regulated at 46 ºC for the 5way genotype (phage shock protein A p = 0.01; 
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phage integrase p = 0.08).  One viral protein was detected and quantified in the dataset 

(AMDVIR_10150G0005). 

5.8 Function of G-plasma archaea in biofilms growing at 40 ºC and 46 ºC 

G-plasma (of the Thermoplasmatales order of Euryarchaea) protein abundance was also 

evaluated at the organism-level.  Overall, only 24 proteins were significantly different between 

40 ºC and 46 ºC.  Functions of these significant proteins included chaperones, amino acid 

metabolism, genetic information processing, and transport. 

A total of 34 proteins were quantified with predicted function in carbon cycling 

process169, including the Entner-Doudoroff pathway, glycolysis, pyruvate dehydrogenase 

complex, TCA cycle, and beta oxidation (Figure 5.7).  Of these, 29 proteins (85%) were more 

abundant at 40 ºC than at 46 ºC, though only two were significantly different. 

5.9 Discussion 

5.9.1 Experimentation on acid mine drainage biofilms 

Here, AMD biofilms were used to test an approach to determine how elevated 

temperature regulates physiology of individual microbial groups in a community context. These 

communities have a level of complexity suitable for ecological experiments and are tractable for 

testing new proteomic methods. The biofilms contain organisms that represent all three domains 

of life (Bacteria, Archaea, and Eukaryotes; as well as viruses); span multiple trophic levels; and 

carry out many steps of the carbon cycle, including autotrophic carbon fixation, heterotrophic 

carbon consumption, and turnover of fixed carbon during degradation. 

5.9.2 Use of TMT-proteomics to study microbial communities 

Prior proteomics studies using TMT- or iTRAQ-based isobaric chemical labeling have 

been applied exclusively to human tissues or cultured isolates170.  Here, we show that TMT-

based quantitative proteomics can provide mechanistic insights into enzymes and pathways of 

individual microbial groups in microbial communities and define their functional response to 

temperature change.  By multiplexing our samples, we were able to obtain accurate, precise, and 

reproducible quantification of proteins from three treatments with two sample replicates and two 

technical replicates per treatment in just four LC-MS/MS runs.  Across our samples, we  
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identified an average of 1799 proteins from 25 different organisms including Bacteria, Archaea, 

Eukaryotes, and viruses. 

5.9.3 Effect of warming on community structure 

We found that a thermal shift from 40 ºC to 46 ºC caused a dramatic change in 

community composition (as reflected within the community proteome), as has been reported in 

other warming studies in soils, oceans, and freshwater171-173. Nearly a quarter of the organisms 

had a greater than two-fold change in abundance between temperatures. It has been previously 

suggested that Leptospirillum group III favors environmental conditions with lower stress, 

including lower temperature174. Here, we found that the overall abundance of Leptospirillum 

group III, the dominant organism in the cultivated biofilms, decreased by 14% from 40 ºC to 46 

ºC (based on protein abundance) and ribosomal proteins were significantly down-regulated at 46 

ºC, suggestive of reduced cell growth at elevated temperature. 

The lack of visible biofilm growth at 49 ºC suggests that persistent temperatures above 

46ºC alter community structure and/or function in such a way that biofilm formation and 

development are hindered. Previous culture studies have shown that while some Leptospirillum 

isolates are capable of growth up to 45 °C, many others are unable to grow at that temperature or 

higher175,176. Thus, it may be the case here that the colonizing Leptospirillum bacteria have a 

maximum growth temperature around 46 ºC, thereby preventing the initial stages of biofilm 

formation at higher temperatures. Studies such as these enable observations of growth in a 

community context where organisms experience competition for resources and interactions with 

other organisms, compared to static culture conditions. 

Communities made up of both specialists and generalists are likely more productive and 

more stable over time under environmental fluctuations.  Amongst groups of closely related 

organisms in the AMD biofilms, there appear to be a subset that are specialists in terms of their 

temperature optima, as well as generalists able to grow over a wider range of temperature.  For 

instance, for the ARMAN archaea, ARMAN IV was more abundant at 40 ºC, ARMAN II was 

more abundant at 46 ºC, and two other ARMAN types had similar abundance levels at both 

temperatures. 
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5.9.4 Effect of warming on Leptospirillum function 

Elevated temperature differentially affected carbon fixation by closely related bacterial 

genotypes: high temperature repressed carbon fixation by Leptospirillum group III and the group 

II 5way genotype, whereas carbon fixation was significantly up regulated at higher temperature 

by the Leptospirillum group II UBA genotype. Functional overlap of three Leptospirillum 

genotypes (iron-oxidation coupled with carbon fixation) with different temperature responses 

may provide ecological insurance for community function under heterogeneous environments. 

Niche differentiation of Leptospirillum allows for asynchronous responses to fluctuating 

conditions and assists in preserving function within the community across changing 

environments. 

Increasing temperatures have been shown to enhance the decomposition of organic 

matter and the extracellular release of carbohydrates in seawater177,178. Here, 20 different 

Carbohydrate Active Enzymes (CAZymes) were quantified for Leptospirillum group III bacteria. 

CAZymes with different functionality were up-regulated under different conditions. For instance, 

GT2 involved in biosynthesis of carbohydrates was up-regulated at 46 ºC, whereas GH57 

involved in hydrolysis of carbohydrates was up-regulated at 40 ºC. The extracellular polymeric 

substance (EPS) in AMD biofilms from the Richmond mine has been shown to contain abundant 

carbohydrates, including galactose, glucose, heptose, rhamnose, and mannose179. Thus, 

Leptospirillum group III might act both as a source and sink to the carbohydrate pool in the 

biofilm matrix. 

Leptospirillum group III bacteria may have been subject to increased viral stress at 

elevated temperature (CRISPR-associated proteins were up-regulated at 46 ºC). Viral 

induced mortality impacts not only the abundance and composition of microbial communities but 

also system-level nutrient cycling. Viral lysis releases the contents of the host cell (including 

cytoplasmic and structural material) into the environment, thereby liberating a fraction of the 

organic matter pool and shifting nutrients from the particulate to dissolved states. Dissolved 

organic carbon (and other nutrients including phosphorus and nitrogen) released by viral lysis 

can stimulate the growth of non-infected populations, increase community respiration, and 

decrease the efficiency of carbon transfer to higher trophic levels180. Thus, increased 

susceptibility to viral stress at elevated temperature, as shown here, will likely lead to greater 

carbon turnover and altered community structure. 
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The expression of proteins involved in amino acid metabolism was up-regulated at higher 

temperatures both at the community-level and for each Leptospirillum genotype (group II 5way 

and UBA genotypes and Group III). It has been shown that some amino acids are thermo-labile, 

and thus can have a reduced frequency in thermophilic proteomes181,182. AMD organisms may be 

increasing expression of amino acid biosynthesis proteins at 46 ºC to increase the size of the 

amino acid pool available for making other cellular proteins that may be inactivated at higher 

temperature. 

Temperature has been shown to affect bacterial movement via impacts on both 

chemotaxis and flagellar assembly183,184. Here, methyl-accepting chemotaxis sensory transducer 

proteins were significantly up-regulated at 40ºC for each of the three Leptospirillum bacteria. 

Previous reports also showed that chemotaxis was strongly inhibited by high temperature in 

Escherichia coli
185-187.  Structural studies of AMD biofilms show Leptospirillum group II at the 

base of mature biofilms and Leptospirillum group III as dispersed cells and microcolonies within 

the interior regions188. Chemotaxis may be critical for positioning the bacteria within areas of the 

biofilm that are best suited for optimal growth. Decreased activity of chemotaxis proteins at 

elevated temperature may subject these bacteria to unfavorable geochemical conditions such as 

lower oxygen concentrations at the base of the biofilm or less nutrient availability in the interior. 

Nutrient limitation resulting from decreased chemotaxis at elevated temperature may be 

compensated for by enhanced nutrient scavenging, as indicated by up-regulation of two nutrient 

assimilation proteins at 46 ºC for the group II 5way genotype (NifA and a periplasmic phosphate 

binding protein). 

5.10 Conclusions 

The current research shows the utility of quantitative proteomics for studies of ecological 

of phenomena such as niche differentiation. The approach provided information about 

differential expression of thousands of proteins involved in diverse functions including 

metabolism, growth, signaling, and stress response. It enabled protein analysis at the level of 

individual microbial groups within a community context across the bulk community, and is 

broadly applicable to experimental studies that target microbial communities and more complex 

natural ecosystems. 
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CHAPTER 6 

DIVERSE AND DIVERGENT PROTEIN POST-

TRANSLATIONAL MODIFICATIONS IN TWO GROWTH 

STAGES OF A NATURAL MICROBIAL COMMUNITY 
 

All of the data presented below has been adapted from 
 
Zhou Li, Yingfeng Wang, Qiuming Yao, Nicholas Justice, Tae-Hyuk Ahn, Dong Xu, Robert 
Hettich, Jillian Banfield, Chongle Pan. “Diverse and divergent post-translational modification of 
proteins of closely related bacteria in two growth stages of a natural microbial community”. 
Submitted to Nature Communications 
 
Zhou Li’s contributions include experimental design, MS measurement, data analysis, and 
writing the manuscript. 

6.1 Introduction 

Microbial communities populate and shape diverse ecological niches within natural 

environments189. The physiology of organisms in natural consortia and their responses to 

changing environmental conditions have been studied by measuring the abundance changes of 

proteins across a series of field samples using community proteomics50,52,190. However, 

microorganisms in a community regulate their metabolic processes not only by changing the 

copy numbers of proteins, but also by modulating the specific activities of expressed protein 

molecules. 

Post-translational modifications (PTMs) are one of the most important mechanisms for 

activating, changing, or suppressing proteins’ functions14. Phosphorylation cascades are the 

mechanism for many signal transductions, such as two-component systems191 and cell-division 

cycle control192. Acetylation preferentially targets large protein complexes and regulates key 

metabolic pathways193, including glycolysis and gluconeogenesis in bacteria194. Proteome-wide 

interactions between phosphorylation and acetylation have been observed in bacterium 

Mycoplasma pneumonia
195. Methylation is actively involved in mediating protein-protein 

interactions through methylation-dependent binding domains196. Phosphorylation and 

methylation were found to collectively regulate signaling during bacterial chemotaxis191. S-

nitrosylation and nitration, caused by reactive nitrogen species, are the major signaling 

mechanisms under nitrosative and oxidative stress197,198. Citrullination of arginine plays critical 

roles in regulation of gene expression by changing DNA-protein interaction199. Hydroxylation 



 104

has been primarily found in collagen200 and beta-methylthiolation has been mainly observed in 

bacterial ribosomal proteins201, but their scope and significance in various complex biological 

processes remain unclear. 

PTMs can be identified using a shotgun proteomics approach by searching for modified 

peptides in liquid chromatography-tandem mass spectrometry (LC-MS/MS) data. Previous in-

depth PTM studies have generally targeted specific types of PTMs by enriching modified 

peptides via affinity purification prior to LC-MS/MS analysis. Although enrichment reduces the 

sample complexity, the measurements do not provide a comprehensive PTM profile of proteins 

that may carry many types of PTMs unless a separate enrichment is used for each PTM 

type202,203. Furthermore, enrichment does not permit direct quantification of PTM fractional 

occupancy, which is the percentage of the copies of a protein that is modified with a specific 

PTM event204,205. To overcome these limitations of enrichment-based approaches, we used an 

optimized global shotgun proteomics approach for broad-range PTM identification and 

quantification. The eight types of PTMs described above were simultaneously measured in two 

samples of a natural microbial biofilm community growing in an acid mine drainage (AMD) 

environment48. The proteomic PTM profiles were compared between two biofilm growth stages 

to uncover the dynamics of PTMs during community succession. These biofilms are ideal for 

such a study because there is an essentially comprehensive, curated, genome-resolved database 

of predicted protein sequences representing all dominant organisms. 

Because of the functional roles of PTMs in regulating biological activities, PTMs may be 

conserved across orthologous proteins, and the divergence of PTMs may contribute to 

phenotypic diversity206. Recently, phosphorylation, acetylation, and ubiquitination were 

compared between different eukaryotic species, and divergent PTM patterns were revealed 

between their orthologs207-211. However, the conservation of PTMs in bacteria and archaea, 

especially between closely related, co-evolving microorganisms, is largely unknown. Previously, 

community genomics and proteomics were used to study ecological differentiation of the UBA 

and 5wayCG variants of Leptospirillum group II, which typically dominates AMD biofilms212. 

These Nitrospirae phylum bacteria share 99.7% 16S rRNA gene sequence identity and exist as a 

continuum of genotypes that have undergone varying degrees of recent large-scale homologous 

recombination213. In the current study, we found divergent PTM patterns on many orthologous 
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proteins of Leptospirillum group II bacteria, further underlining metabolic distinction of these 

closely related organisms212. 

6.2 Additional materials and methods 

PTM localization: Sipros assigned PTMs to all modifiable residues in a peptide. Each 

candidate with the same PTM on different positions (PTM isoforms) was scored to identify the 

top-rank peptide for a spectrum. For every modified spectrum, Sipros calculated the DeltaP score, 

which is the score difference between the top-rank modified peptide and its next lower-ranked 

PTM isoform214. In modified spectra that had a DeltaP greater than 0, PTMs were localized on 

the modified residues of the top-rank peptides by Sipros. In modified spectra that had a DeltaP 

equal to 0, PTMs cannot be localized, because the top two candidates with different modified 

residues cannot be differentiated by any fragment ions. Only modified peptides with DeltaP 

greater than 0 were used for the PTM dynamics and divergence analysis, unless noted otherwise. 

PTM divergence analysis: Orthologous protein pairs between the UBA and 5wayCG 

Leptospirilli was obtained from our previous studies212,215. Sequence alignment was performed 

using EMBOSS Needle216(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). The PTM 

divergence analysis used the orthologous protein pairs satisfying the following requirements: 

both proteins in a pair must be identified; and at least one protein in a pair must have organism-

specific localized PTMs. 

Statistical Analysis： Rank product test217 was used to calculate the p values for the 

changes of PTM fractional occupancy and the changes of protein abundances between GS1 and 

GS2. For the dynamic PTM and COG category enrichment analysis, p values were calculated 

using a two-tailed Fisher’s exact test and corrected for multiple comparisons using the 

Benjamini–Hochberg method. 

Protein Structure Prediction: MUFOLD218 was used to predict the structures and solvent 

accessibilities of Cas proteins and rTCA enzymes. UBA-type sequences of rTCA enzymes were 

used as the input for structure prediction. The top five structural templates in PDB were selected 

for each protein together with the optimal target-template alignment. The best model was then 

comprehensively determined by a composite score of the identity score, template coverage, and 

model quality assessment scores. PyMOL was then used to display the protein structures and 

mark the modified sites by ball structures. 
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6.3 Identification of diverse PTMs in community proteomes 

Large intact sheets of AMD biofilm were sampled at the AB Muck Dam site in the 

Richmond Mine at Iron Mountain, CA, on 9/17/2010 (pH ~1, 39 oC). Two samples were 

collected only centimeters apart: a thin, early growth-stage biofilm community (GS1), and a late 

growth-stage biofilm community represented by a thicker portion of the biofilm (GS2) (Figure 

6.1). Consistent with previous observations212, the GS1 biofilm had low diversity and was 

comprised predominantly of Leptospirillum bacteria, whereas the GS2 biofilm harbored a more 

diverse community with increased abundance of archaeal species. 

Three protein samples were prepared in parallel for each AMD biofilm sample, digested 

with trypsin, Lys-C, or Glu-C. Each protein digest sample was analyzed in technical duplicate by 

22-hour LC-MS/MS using an LTQ Orbitrap Elite mass spectrometer. We optimized the high-

resolution MS/MS method using higher-energy collisional dissociation (HCD)38. Spectral quality 

and identification results were significantly improved by using the mass-to-charge ratio (m/z) 

cutoff of 180 in MS/MS scans, normalized collision energy of 30% for HCD, and minimum ion 

threshold of 1,000 for MS/MS triggering. We compared the optimized high-resolution MS/MS 

method with a conventional low-resolution MS/MS method based on collision-induced 

dissociation (CID) using a test AMD biofilm sample.  The two methods identified comparable 

numbers of peptide-spectrum matches (PSMs) and peptides (Table 6.1). However, the high-

resolution MS/MS method identified 71% of the acquired fragment ion spectra and provided 

high mass accuracy (<0.01 Da mass error) on matched fragment ions, which allowed searching a 

much larger sequence space with a low false discovery rate (FDR). 

In addition to the eight biological PTMs described above, we also searched for three 

PTMs commonly resulting from proteome sample preparation, including oxidation of 

methionine, deamidation of asparagine and glutamine, and alkylation of cysteine. Because 

simultaneous consideration of these types of PTMs vastly expanded the sequence space for 

database searching, the database searching was performed with a scalable Sipros219,220 algorithm 

on a supercomputer, Titan, using up to 35,000 central processing unit (CPU) cores across 

thousands of compute nodes. Identification results were organized in a hierarchical structure with 

five levels: organisms, proteins/protein groups, PTM events, peptides, and PSMs. An 

identification at a given level generally comprised multiple identifications at the next lower level. 

A PTM event was defined as a specific type of PTM on a specific residue of a protein. As  
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Figure 6.1 Study overview. AMD biofilms representing two growth stages (GS1 and 

GS2) were collected from a site within the Richmond Mind. Proteome samples were digested 

using three proteases in parallel and analyzed by HCD MS/MS. The following biological PTMs 

were searched: hydroxylation (Hy), methylation (Me), citrullination (Ci), phosphorylation (Ph), 

acetylation (Ac), S-nitrosylation (Sn), methylthiolation (Mt), and nitration (Ni). The chemical 

formula (red) and modifiable amino acids are listed for each type of PTM. 
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Table 6.1 Comparison of the high-resolution HCD method with the low-resolution CID 

method. 

Method HCD (FDR) CID (FDR) 
Measurement time 22 hours 22 hours 

# of acquired fragment ion spectra 335,633 467,943 

# of PSMs 239,502 (0.3%) 221,806 (0.3%) 
Spectra identification rate 71% 47% 

# of distinct peptides 45,947 (1%) 43,948 (1%) 
# of proteins/protein groups 3,824 (0.3%) 4,013 (0.8%) 
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identification results were pooled across trypsin, Lys-C, and Glu-C digests of a sample, many 

PTM events were covered by multiple peptides. 

We identified 765,202 and 743,413 PSMs, 78,539 and 104,893 non-redundant peptides, 

3,599 and 3,723 unique PTM events, and 4,259 and 5,055 proteins/protein groups from 7 major 

organisms in the GS1 and GS2 biofilm, respectively (Table 6.1). Approximately 76% of the 

PSMs and 46% of the unique PTM events were identified from the UBA or 5wayCG 

Leptospirilli. The FDR, estimated by searching concatenated reverse sequences221, was ~0.34% 

at the PSM level, ~1.0% at the peptide level, ~2.0% at the PTM event level, and ~3.5% at the 

protein/protein group level. The FDRs in the identification hierarchy increased because upper-

level identifications from reverse sequences often comprised far fewer lower-level identifications 

than those from forward sequences. Adding longer Lys-C and Glu-C peptides to tryptic peptides 

nearly tripled the number of identified PTM events. 

The PTM events identified from the GS1 and GS2 samples were categorized by PTM 

types and organisms (Figure 6.2). Because of the ~95% average amino acid identity between 

orthologous proteins of the UBA and 5wayCG Leptospirilli, ~2,700 PTM events unique to the 

Leptospirillum group II cannot be resolved to a specific organism (shared Lepto II, Figure 6.2). 

Hydroxylation, methylation, and citrullination were the most commonly identified PTM types. In 

the Leptospirillum group II proteomes, ~29% of the identified proteins were modified with at 

least one unique PTM event in a biofilm sample. Of these modified proteins, ~43% carried 

multiple types of unique PTM events. Some extensively modified proteins included chaperone 

proteins, such as DnaK, GroEL and ClpB, enzymes in the reductive tricarboxylic acid (rTCA) 

cycle, and proteins involved in iron oxidation and electron transport, such as NADH 

dehydrogenase and several cytochromes. 

Because confident identification of a PTM event requires placement of that PTM on the 

correct residue, we separately estimated the accuracy of PTM localization by re-analyzing the 

HCD high-resolution MS/MS data of synthetic peptides with known phosphorylation sites from a 

recently published study222. The phosphorylation sites were assigned to the correct residues for 

more than 97% of the modified spectra with PTM localization (i.e. DeltaP > 0 for site 

differentiation) by Sipros. We then evaluated the depth and breadth of our broad-range PTM 

identification approach with a model organism, E. coli. 5,005 unique PTM events were found 

from 966 proteins out of a total of 2,082 identified proteins (Table 6.3). Hydroxylation,  
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Table 6.2 Summary of identification results at the PSM, peptide, PTM event, and 

protein/protein group levels. 

Sample Protease 

# of PSMs 
(FDR) 

# of peptides 
(FDR) 

# of unique PTM event* 

[non-unique event**] (FDR) 
# of proteins/ 

protein groups (FDR) 

AMD GS1

Trypsin 356,233 (0.34%) 40,825 (1.0%) 1,329 [2,931] (1.4%) 3,423 (1.5%) 

Lys-C 294,856 (0.26%) 30,325 (1.0%) 1,905 [3,041] (1.1%) 2,871 (1.4%) 

Glu-C 114,113 (0.29%) 13,709 (1.0%) 601 [963] (1.6%) 1,749 (0.85%) 

Total 765,202 (0.30%) 78,539 (1.0%) 3,599 [5,970] (2.0%) 4,259 (3.1%) 

AMD GS2

Trypsin 328,989 (0.37%) 50,699 (1.0%) 1,240 [2,336] (1.0%) 3,937 (1.9%) 

Lys-C 273,566 (0.37%) 37,720 (1.0%) 1,768 [2,794] (1.2%) 3,318 (1.8%) 

Glu-C 140,858 (0.43%) 23,683 (1.0%) 743 [1,080] (1.6%) 2,702 (1.2%) 

Total 743,413 (0.38%) 104,893 (1.0%) 3,723 [5,595] (1.9%) 5,055 (3.9%) 
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Figure 6.2 Histograms of identified PTM events in the AMD community. For each PTM 

type, the numbers of PTM events were compared among major community members (color-

coded sections) between GS1 (left bar) and GS2 (right bar). Shared Leptospirillum (Lepto) II 

represents PTM events that can be only assigned to the Leptospirillum group II, but cannot be 

resolved to a specific organism. 
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citrullination, and methylation were the three most abundant PTM types in laboratory-grown E. 

coli, which was consistent with the results of the AMD microbial communities. Previous 

enrichment-based measurements identified ~150 phosphorylation events223 and ~1,070 

acetylation events224 in E. coli. Here, our approach simultaneously identified 284 unique 

phosphorylation events and 470 unique acetylation events. While the PTM identification results 

were not directly comparable between different E. coli samples used in these measurements, our 

approach was successful in finding extensive modifications of proteins by many different types 

of PTMs without using multiple enrichments. For example, the transcriptional factor OxyR was 

recently discovered as a master regulator of S-nitrosylation in E. coli under anaerobic respiration 

on nitrate197. Here, we identified 176 unique S-nitrosylation events from 159 proteins under 

aerobic growth condition, including OxyR. In addition to the S-nitrosylation, OxyR was 

simultaneously modified with phosphorylation, methylation, and acetylation. 

6.4 PTM dynamics of the community during ecological succession 

We compared the unique and localized PTM events in UBA and 5wayCG Leptospirilli 

between the GS1 and GS2 samples. While ~75% of the proteins were identified in both samples, 

only ~17% of the organism-specific PTMs were maintained between the two samples (Figure 

6.3). PTMs that differed between samples were significantly enriched (p value <0.05) in 

citrullination and methylation. These PTMs may be involved in regulation of pathway activities. 

For instance, Leptospirillum group II was previously found to have different chemotaxis and 

motility activities between the two growth stages, possibly reflecting the diversified community 

membership and increased competition for nutrients in GS2225. The PTM patterns were 

compared between GS1 and GS2 for the chemotaxis gene clusters in the Leptospirillum group II 

and III (Figure 6.4A and B)226. While all proteins from the two gene clusters were identified, 

they had distinct PTM patterns in the two growth two gene clusters were identified, they had 

distinct PTM patterns in the two growth stages. More methylation events were identified in GS2 

than in GS1 on the chemotaxis scaffolding protein CheW (locus ID: CGL2_11277G0245 and 

UBAL2_8241G0195, where CGL2 and UBAL2 denote 5wayCG- and UBA-type orthologs, 

respectively), histidine kinase CheA (CGL2_11277G0248 and UBAL2_8241G0198), response 

regulator CheY (CGL2_11277G0249 and UBAL2_8241G0199), and methyl-accepting 

chemotaxis protein MCP (CGL2_11277G0246 and UBAL2_8241G0196) from Leptospirillum  
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Table 6.3 The number of PTM events identified from an E. coli sample. E. coli runs were 

searched and filtered with the same settings as the AMD runs. The FDR estimated at the PTM 

level was 3.2%. 

PTM type # of unique events # of non-unique events 

Hydroxylation 1,094 71 

Methylation 1,611 134 

Citrullination 877 25 

Acetylation 470 32 

Phosphorylation 284 44 

S-nitrosylation 176 16 

Methylthiolation 278 24 

Nitration 215 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6.3 (A) Dynamics of proteins and organism

growth stages in the UBA and 5wayCG 

identifications only in GS1 (green), in both GS1 and GS2 (orange), and only in GS2 (red). (B): 

The distributions of the organism

GS1 and GS2, and only in GS2 were shown in the pie charts, respectively. Only PTM events that 

can be localized to a specific residue were considered.
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(A) Dynamics of proteins and organism-specific PTM events between the two 

growth stages in the UBA and 5wayCG Leptospirilli. The three sections in each bar represent 

identifications only in GS1 (green), in both GS1 and GS2 (orange), and only in GS2 (red). (B): 

The distributions of the organism-specific PTM events that were identified only in GS1, in both 

n GS2 were shown in the pie charts, respectively. Only PTM events that 

can be localized to a specific residue were considered. 

 

specific PTM events between the two 

The three sections in each bar represent 

identifications only in GS1 (green), in both GS1 and GS2 (orange), and only in GS2 (red). (B): 

specific PTM events that were identified only in GS1, in both 

n GS2 were shown in the pie charts, respectively. Only PTM events that 



 

 
Figure 6.4 Changes of PTM patterns from GS1 to GS2 in key pathways. (A) Chemotaxis 

gene cluster in Leptospirillum group II. (B

(C) Cas gene cluster in Leptospirillum

GS1 sample (above the bar) and the GS2 sample (below the bar). PTM events were color

by PTM types and marked with amino acid types and residue positions. PTMs that cannot be 

localized to a specific residue were marked with *.
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Changes of PTM patterns from GS1 to GS2 in key pathways. (A) Chemotaxis 

group II. (B) Chemotaxis gene cluster in Leptospirillum

Leptospirillum group II. Different PTM patterns were identified in the 

GS1 sample (above the bar) and the GS2 sample (below the bar). PTM events were color

d marked with amino acid types and residue positions. PTMs that cannot be 

localized to a specific residue were marked with *. 

 

Changes of PTM patterns from GS1 to GS2 in key pathways. (A) Chemotaxis 

Leptospirillum group III. 

group II. Different PTM patterns were identified in the 

GS1 sample (above the bar) and the GS2 sample (below the bar). PTM events were color-coded 

d marked with amino acid types and residue positions. PTMs that cannot be 



 116

group II and on the CheY (UBAL3_8063G0048) and flagellar sigma factor FliA 

(UBAL3_8063G0049) from Leptospirillum group III. Citrullination was extensively found 

across many proteins. A cluster of hydroxylation events was only identified on the 

Leptospirillum II MCP in GS1. Two phosphorylation events were identified on the motility 

protein A MotA (CGL2_11277G0244 and UBAL2_8241G0194) and chemotaxis methylesterase 

CheB (CGL2_11277G0247 and UBAL2_8241G0197) from Leptospirillum group II in only GS2. 

An acetylation event was identified on the motility protein B (MotB; UBAL3_8063G0043) from 

Leptospirillum group III in GS1. 

The clustered regularly interspaced short palindromic repeats (CRISPR) and associate 

proteins (Cas) provide bacteria and archaea with resistance to phage invasion227,228. The 

CRISPR/Cas locus of Leptospirillum group II is encoded on one recombined sequence block that 

is now common across the genotypic series. Consistent with the calculated recent timing of this 

event213, the Cas proteins are identical among UBA, 5wayCG, and other variants of 

Leptospirillum II. Cas proteins showed very distinct PTM patterns between these two growth 

stages (Figure 6.4C). Citrullination on Cse1 (CGL2_11386G0024 and UBAL2_8241G0432) was 

maintained across the two growth stages. Cse2 (CGL2_11386G0025 and UBAL2_8241G0431) 

was modified with four different types of PTMs only in GS2. PTMs on Cse3 

(CGL2_11386G0028 and UBAL2_8241G0427) were only identified in GS1. Cse4 

(CGL2_11386G0026 and UBAL2_8241G0430) was extensively modified in both GS1 and GS2, 

but PTMs clustered on distinct regions of the protein in the two different biofilm growth stages. 

The structures of Cse1, Cse2, and Cse3, predicted based on homolog modeling, suggest that 

identified PTMs are localized on the surface residues of the structures (Figure 6.5 and Table 6.4). 

Because of the semi-stochastic nature of MS/MS acquisition in shotgun proteomics, some low-

abundance PTM events were identified with technical variability between individual runs. 

However, as each sample was measured after digestion using multiple proteases and in technical 

replicates, the identified PTM events aggregated across the six runs of a sample were 

reproducible and very few new PTM events were found with additional runs after the first three 

measurements (Figure 6.6). Moreover, the percentage of organism-specific PTMs maintained 

between GS1 and GS2 was almost unchanged after the first two measurements as the PTM 

coverage increased. This indicates that the difference between aggregated PTM events identified 

in the two samples was not a result of run-to-run variability and the repeated measurements  



 

 

 
Figure 6.5 Predicted structures of the Cse1, Cse2, and Cse3 proteins. Modified residues 

were highlighted with the ball structure.

backbone; yellow: carbon; blue: nitrogen; red: oxygen; orange: sulfur.
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Predicted structures of the Cse1, Cse2, and Cse3 proteins. Modified residues 

were highlighted with the ball structure. Color code of the balls on the protein structures: green: 

backbone; yellow: carbon; blue: nitrogen; red: oxygen; orange: sulfur. 

 

Predicted structures of the Cse1, Cse2, and Cse3 proteins. Modified residues 

structures: green: 
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Table 6.4 The identity score between the query and template in Mufold prediction 
 

Locus ID Protein Template Identity 

UBAL2_8241G0432 CRISPR-associated protein, Cse1 4F3E_A 30.91 

UBAL2_8241G0431 CRISPR-associated protein, Cse2 2ZCA_A 38.60 

UBAL2_8241G0427 CRISPR-associated protein, Cse3 3QRP_A 36.24 

UBAL2_8241G0532 PFOR-beta 2UZA_A 19.22 

UBAL2_8062G0194 PEP synthase 2OLS_A 52.32 

UBAL2_8241G0507 PEP carboxylase 3ODM_C 29.32 

UBAL2_8027G0031 Malate dehydrogenase 3TL2_A 46.88 

UBAL2_8135G0106 Fumarate hydratase 3TV2_A 60.08 

UBAL2_7931G0249 fumarate reductase 1YQ3_A 29.07 

UBAL2_7931G0248 Succinyl-CoA synthetase-beta 1JLL_B 50.51 

UBAL2_8241G0537 PFOR-alpha(second copy) 2UZA_A 20.69 

UBAL2_8524G0125 Isocitrate dehydrogenase 2D1C_A 50.89 

UBAL2_7931G0253 Aconitate hydratase 1ACO_A 37.29 

UBAL2_7931G0252 Probable citrate synthase 1IOM_A 24.91 
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approached the detection limit of our methodology. 

Many modified peptides were identified along with their unmodified versions in a 

sample, which indicated partial modification of those peptides. The fractional occupancies of 

3,287 and 3,207 unique PTM events were estimated in the GS1 and GS2 samples, respectively, 

with an average standard deviation of 6.5% (Figure 6.7). The reproducibility of these results was 

comparable to that of a previous study204. The quantified PTM events were separated into three 

ranges based on their fractional occupancy: low (<20%), medium (20%-80%), and high (>80%), 

and the frequency of each range was compared for each type of PTM (Figure 6.8). The majority 

of PTM events had low fractional occupancy, which is in agreement with the fractional 

occupancy of phosphorylation from yeast204. However, most S-nitrosylation events had high 

fractional occupancy. The percentages of the PTM events in the low occupancy range decreased 

from the GS1 to GS2 for all PTM types. 

Changes in PTM fractional occupancy were generally not correlated with changes in 

protein abundances, suggesting independent regulation of PTM abundances from protein 

abundances. For example, the fractional occupancy of the methylation at Glu35 of a 

pyruvate:ferredoxin oxidoreductase (PFOR; UBAL3_7952G0038) from the Leptospirillum 

group III increased from 3% in the GS1 to 88% in the GS2 (p value = 6.9�10-4), but the protein 

abundance decreased by 8-fold (p value = 1.8�10-2). Different PTM events on the same protein 

can also have different fractional occupancy changes. For example, the fractional occupancy of 

the citrullination at Arg113 of a 5wayCG-type chaperonin GroEL (CGL2_10776G0010) 

increased from 0.9% in GS1 to 9.6% in GS2 (p value = 2.7�10-2), but the fractional occupancy 

of the hydroxylation at Lys92 of the same protein decreased from 3.2% to 0.4% (p value = 

4.7�10-2). 

6.6 PTM divergence between closely related co-existing bacteria 

Although the UBA and 5wayCG Leptospirilli share 95% average amino acid identity 

between their orthologs, we identified ~18,000 and ~25,000 organism-specific peptides that 

covered the positions with single amino acid polymorphisms (SAAPs) in GS1 and GS2, 

respectively. Amongst these organism-specific peptides, 1,373 and 1,457 PTM events were 

unambiguously assigned to the orthologs of specific organisms in GS1 and GS2, respectively. 

The conservation of PTM events between orthologs was analyzed by mapping these organism- 



 

 

 

 
Figure 6.6 (A) Percentage of newly identified PTM events as additional runs were 

acquired in each organism, calculated by [(P

identified in the first i runs and P

run(s). i = 2,3,4,5,6. (B) Percentage of PTM events identified in both GS1 and GS2 as additional 

runs were acquired, calculated by [P

number of PTM events identified in both GS1 and GS2, 

exclusively identified in GS1, and P

GS2 in the first i run(s). i = 1,2,3,4,5,6. Only organism

both (A) and (B). T_1: first run of the tryptic digest; L_1: first run of the Lys

run of the Glu-C digest; T_2: second run of the tryptic digest; L_2: second run of the Lys

digest; G_2: second run of the Glu
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A) Percentage of newly identified PTM events as additional runs were 

acquired in each organism, calculated by [(Pi-Pi-1)/Pi] where Pi is the total number of PTM events 

runs and Pi-1 is the total number of PTM events identified in 

= 2,3,4,5,6. (B) Percentage of PTM events identified in both GS1 and GS2 as additional 

runs were acquired, calculated by [PiGS12/(PiGS1+PiGS12+PiGS2)] where PiGS12

number of PTM events identified in both GS1 and GS2, PiGS1 is the total number of PTM events 

exclusively identified in GS1, and PiGS2 is the total number of PTMs exclusively identified in 

= 1,2,3,4,5,6. Only organism-specific PTM events were considered in 

irst run of the tryptic digest; L_1: first run of the Lys-C digest; G_1: first 

C digest; T_2: second run of the tryptic digest; L_2: second run of the Lys

digest; G_2: second run of the Glu-C digest 

 

A) Percentage of newly identified PTM events as additional runs were 

is the total number of PTM events 

is the total number of PTM events identified in the first (i-1) 

= 2,3,4,5,6. (B) Percentage of PTM events identified in both GS1 and GS2 as additional 

 is the total 

is the total number of PTM events 

is the total number of PTMs exclusively identified in 

specific PTM events were considered in 

C digest; G_1: first 

C digest; T_2: second run of the tryptic digest; L_2: second run of the Lys-C 



 

 
Figure 6.7 Distribution of standard deviations of the quantified PTM fractional 

occupancy from replicate measurements.
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Distribution of standard deviations of the quantified PTM fractional 

occupancy from replicate measurements. 

 

Distribution of standard deviations of the quantified PTM fractional 
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Figure 6.8 Frequency of each fractional occupancy range for each type of PTM. PTM 

events in GS1 (left bars) and GS2 (right bars) were separated into three ranges: high occupancy 

of >80% (blue), medium occupancy of 20% to 80% (green), and low occupancy of <20% (red). 
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specific PTM events onto aligned orthologous sequences. Of those PTM events that can be 

localized to specific residues, only 30% and 21% of them were conserved in GS1 and GS2, 

respectively (Figure 6.9A). The results were consistent between replicate measurements. 

Of these divergent PTM events, a total of 774 and 880 from the two replicates occurred 

on the aligned positions with a conserved amino acid between orthologous proteins of the UBA 

and 5wayCG Leptospirilli in GS1 and GS2, respectively (Figure 6.9B). There were ~100 

divergent PTM events that occurred on the SAAP position in a sample (Figure 6.9C). Many 

SAAP events changed the amino acid type of a residue in one organism to another amino acid 

that cannot carry the same PTM in the other organism. As an example, the 815th residue of a 

transaldolase was an acetylated lysine in the 5wayCG-type ortholog (CGL2_11067G0037) but it 

was substituted by a glutamic acid that cannot be acetylated in the UBA-type ortholog 

(UBAL2_8692G0154) (Figure 6.10A). Some residues on the SAAP positions were modified 

with different PTMs. For example, there was a K267R substitution in a pair of orthologs 

annotated as “outer membrane efflux protein”, where the lysine of the 5wayCG-type ortholog 

(CGL2_11111G0096) was tri-methylated, but the arginine of the UBA-type ortholog was 

citrullinated (UBAL2_8241G0570) (Figure 6.10B). COG enrichment of the divergent PTMs was 

compared between GS1 and GS2. Proteins with divergent PTMs were significantly enriched (p 

value <0.05) in the COG categories of “Translation, ribosomal structure and biogenesis” in GS1 

and “Amino acid transport and metabolism”, “Replication, recombination and repair”, 

“Secondary metabolites biosynthesis, transport and catabolism”, and “Transcription” in GS2. 

Conserved PTM events and divergent PTM events were compared in terms of fractional 

occupancy (Figure 6.11). The majority of conserved PTM events and divergent PTM events 

belonged to the low fractional occupancy range, but significantly more divergent PTM events 

than the conserved PTM events were found in the high fractional occupancy range. This 

observation was consistent for both GS1 and GS2. 

Within the AMD biofilm, Leptospirillum group II likely uses the rTCA cycle for CO2 

fixation226. We identified every protein in the rTCA cycle from both UBA and 5wayCG 

Leptospirilli, with average sequence coverage of 82%. These proteins were extensively modified 

in both GS1 and GS2 samples. The PTM events were mapped onto the proteins’ predicted 

structures (Figure 6.12A and Table 6.4). Most of the PTM events were localized on surface 

residues. We focused on the organism-specific PTM events to study their dynamics between the  



 

 
Figure 6.9 Organism-specific PTM conservation and divergence between the UBA and 

5wayCG Leptospirilli and their frequency. Orthologous proteins were aligned and PTMs were 

mapped to the modified residues. (A): PTM conservation at the aligned position with a 

conserved amino acid. (B): PTM divergence at the aligned position with a conserved amino acid, 

(C): PTM divergence at the position with SAAP. The bar graph shows the frequency of each 

case. X and Y represent an amino acid residue.
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specific PTM conservation and divergence between the UBA and 

and their frequency. Orthologous proteins were aligned and PTMs were 

mapped to the modified residues. (A): PTM conservation at the aligned position with a 

conserved amino acid. (B): PTM divergence at the aligned position with a conserved amino acid, 

PTM divergence at the position with SAAP. The bar graph shows the frequency of each 

case. X and Y represent an amino acid residue. 

 

specific PTM conservation and divergence between the UBA and 

and their frequency. Orthologous proteins were aligned and PTMs were 

mapped to the modified residues. (A): PTM conservation at the aligned position with a 

conserved amino acid. (B): PTM divergence at the aligned position with a conserved amino acid, 

PTM divergence at the position with SAAP. The bar graph shows the frequency of each 
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Figure 6.10 Sequence alignment of orthologous transaldolase (A) and outer membrane 

efflux protein (B). The sequence on the top is from the 5wayCG-type ortholog and the sequence 

on the bottom is from the UBA-type ortholog. SAAP positions with divergent PTM were marked 

with * and modified residues were highlighted in red. Partial sequences were shown for the 

transaldolase due to space constraint. 



 

Figure 6.11 Comparison of divergent PTM event and conserved PTM events in terms of 

the fractional occupancy range. 
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Comparison of divergent PTM event and conserved PTM events in terms of 

 

Comparison of divergent PTM event and conserved PTM events in terms of 
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two growth stages and divergence between organisms on the rTCA cycle (Figure 6.12A and B). 

There were PTM events that occurred only in a specific organism in one sample [e.g. the PTMs 

on the fumarate reductase (GCL2_11068G0116 and UBAL2_7931G0249)] and PTM events that 

occurred across both organisms in both samples [e.g. the hydroxylation at the P245 and 

citrullination at the R207 and R244 on the aconitate hydratase (CGL2_11068G0120 and 

UBAL2_7931G0253)]. Some PTM events were specific to a growth stage and conserved across 

organisms [e.g. the hydroxylation on the alpha subunit of succinyl-CoA synthetase 

(CGL2_11068G0122 and UBAL2_7931G0255) in GS1, Figure 6.12B], while some PTM events 

were organism-specific in both samples [e.g. a cluster of methylations at the D226, D227, and 

R232 on the UBA-type succinyl-CoA synthetase’s beta subunit (UBAL2_7931G0248)]. 

6.7 Discussion 

In this study, we optimized a shotgun proteomic approach for identification and 

quantification of a broad range of PTMs. Combining multiple proteases with the optimized HCD 

method significantly increased the sequence coverage of proteins, which allowed identification 

of more PTM events and estimation of their fractional occupancy. High-resolution MS/MS 

provided parts per million-level mass accuracy on every matched fragment ion of the identified 

peptides, which was essential for controlling the FDR of PTM identification. High-performance 

computing enabled searching an enormous sequence space with these many types of PTMs. In 

comparison to enrichment-based approaches, our new approach has the advantages of 

simultaneous detection of multiple types of PTMs and direct quantification of the fractional 

occupancy of PTM events. Furthermore, our approach only consumes micrograms of proteins, 

whereas the enrichment-based approaches typically require milligrams of proteins, which are not 

available for many environmental samples. Using this approach, we identified a large number of 

PTM events in laboratory-grown E. coli and in the dominant bacteria associated with two growth 

stages of a natural biofilm community in acid mine drainage. This model community has a well-

curated protein database for effective database searching and the extensive prior work provided 

the ecological and evolutionary context for our results. 

PTM profiles of many proteins were substantially different between the two growth 

stages of the AMD community, indicating that dynamic PTMs may regulate the metabolic 

activities of organisms under different environmental conditions. Leptospirillum spp. are the  
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Figure 6.12 Dynamics and organism-specific divergence of the PTM patterns in the 

rTCA cycle of the Leptospirillum group II. UBA-type protein sequences were used as input for 

structure prediction. Modified residues that carried PTMs unique to the Leptospirillum group II 

(GS1 on the left and GS2 on the right) were highlighted with ball representation in the predicted 

structures. Only one subunit was showed for multi-subunit enzymes. Residues with organism-

specific PTMs were showed in grids marked with residue positions and color-coded by PTM 

types. The four rows in each grid represent UBA-type ortholog in GS1, 5wayCG-type ortholog 

in GS1, UBA-type ortholog in GS2, and 5wayCG-type ortholog in GS2. PEP: 

phosphoenolpyruvate. PTMs that cannot be localized to a specific residue were marked with *. 

Position with SAAP was marked with #. Color code of the balls on the protein structures: green: 

backbone; yellow: carbon; blue: nitrogen; red: oxygen; orange: sulfur. 
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primary producers in the AMD system, using the rTCA cycle for carbon fixation. Proteomic 

stable isotope probing has shown scant protein production and little net growth in GS2 biofilms, 

which suggests decreased carbon fixation220. However, we found no significant protein 

abundance changes for most enzymes in the rTCA cycle, as has been observed previously225. 

Particularly, the key carbon fixation enzyme, PFOR, was highly abundant in both GS1 and GS2 

(total spectral counts of 14,514 in GS1 and 11,160 in GS2). We believe the discrepancy between 

the expected decrease in rTCA cycle activity and the lack of corresponding protein abundance 

changes for rTCA enzymes can be explained by the PTM changes on these enzymes between the 

two growth stages. We hypothesize that, in GS2, Leptospirillum II bacteria may modulate the 

rTCA cycle activity through concerted PTM changes on the rTCA enzymes, while maintaining 

the protein stocks of these enzymes to be able to quickly respond to favorable conditions for 

growth and rapidly meet the demand for carbon fixation. This example shows the importance of 

taking PTM regulation into account when inferring the activity changes of enzymes from their 

abundance changes in microbial ecology studies. 

In the mature biofilms, Leptospirillum group II bacteria have been shown to increase the 

abundances of chemotaxis proteins in response to diminishing availability of nutrients225. Here 

we observed similar results, with a 3.7-fold increase in the protein abundance of MCP and 4.1-

fold for CheA from GS1 to GS2. We additionally observed a number of PTM changes on 

chemotaxis-associated proteins that could alter environmental sensing and signal transduction. 

For example, a series of hydroxylations on MCP were observed only in GS1 within its predicted 

extracellular ligand-binding domain229. These changes could have profound effects on the ligand 

binding activities and may generate distinct environmental sensory responses between the two 

growth stages. Methylation and demethylation of chemotaxis proteins is a well-known 

mechanism for regulating organisms’ mobility in response to different attractants and 

repellents230. Here, we observed a number of methylation events of the chemotaxis proteins that 

differ between the two growth stages. Overall, these results suggest that, during the ecological 

succession of the AMD biofilm, Leptospirillum group II bacteria not only increase protein 

abundances to achieve higher degree of mobility, but also may use PTM changes to alter their 

chemotaxis behaviors for environmental sensing. 

Viral defense is essential for natural communities. Here, the Cas proteins of 

Leptospirillum II bacteria were highly abundant in both growth stages (total spectral counts of 
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3,008 in GS1 and 5,271 in GS2), but the Cas proteins were not detected in the E. coli laboratory 

culture. The abundances of Cas proteins may reflect the risk level of virus attack in the 

organisms’ environments, ranging from virtually none in the laboratory condition for E. coli, to 

medium risk in GS1 for Leptospirillum II bacteria, and to high risk in GS2 with elevated stress 

and no significant growth. We believe the activity of the CRISPR/Cas system may also be 

regulated by dynamic PTMs between the two growth stages to handle different levels or types of 

viral stresses. These PTMs were found to be located on the surface residues of proteins and, 

therefore, may exert regulatory effects by altering the protein-protein interactions or protein-

nucleic acid interactions in the CRISPR/Cas complex. To the best of our knowledge, this is the 

first report of PTMs on the CRISPR/Cas system. The biotechnology applications of engineered 

Cas proteins need to consider potential structural changes and regulatory implications of 

PTMs231. The finding of extensive modifications in this study may provide the foundation for 

further biochemistry studies to determine the biological effects of PTMs in Cas proteins. 

Remarkable PTM divergence was found between the UBA and 5wayCG Leptospirilli. 

SAAPs between orthologous proteins in these organisms can directly contribute to PTM 

divergence on the SAAP position by substituting a modifiable residue with an unmodifiable 

residue. There was also a large portion of divergent PTMs that occurred in the vicinity of the 

SAAP positions. Such divergent PTMs could be caused by SAAPs on the motif that might alter 

modification enzyme-substrate interactions5. Because of regulatory roles of PTMs in protein 

activities, differential modifications may contribute to subtle functional variations between 

orthologous proteins and may play an important role in ecological and evolutionary divergence 

between closely related organisms. 

The dynamics and organism-specific divergence of PTMs may be interpreted using a 

trans/cis model adapted from gene regulation206. Changes in transcriptional factor (trans-effects) 

or in regulatory DNA sequence (cis-effects) could cause variations in gene expression between 

closely related organisms232. Similarly in protein post-translational modification, a modification 

enzyme (trans-element) recognizes a motif on the protein (cis-element) to carry out a 

modification reaction. The dynamics of PTMs between different conditions in the same organism 

is probably due to changes in the modification enzymes’ activities (trans-effects). On the other 

hand, the divergence of PTMs between different organisms can be caused by polymorphism(s) 

on/around the target residue (cis-effects) or a combination of cis-effects and trans-effects. 
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Further study on model organisms will be needed to validate the cis-effects and trans-effects in 

the regulation of PTMs. 

In conclusion, our new proteomic approach revealed a broad range of PTMs on proteins 

from coexisting microorganisms in a natural biofilm community. The prevalence and variety of 

PTMs greatly expands the structural diversity and the function promiscuity231 of proteins. We 

believe dynamic PTMs are widely used in many ecological processes as a way of modulating 

enzyme activities in response to changes in environmental conditions. Closely related, but 

ecologically distinct, bacteria harbored notably divergent PTM patterns between orthologous 

proteins, which may contribute to their ecological divergence212. The findings of this study 

motivate further study of the role of PTMs in the ecology and evolution of microbial 

communities. 
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CHAPTER 7 

SEARCHING FOR NEUTRAL LOSS FRAGMENT IONS 

BOOSTS SENSITIVITY OF PHOSPHO-SPECTRUM 

IDENTIFICATION FROM HIGH-RESOLUTION MS/MS DATA 

7.1 Introduction to MS-based approaches in phosphopeptide analysis 

Protein phosphorylation/de-phosphorylation is one of the most important signal 

transduction switches that control a myriad of molecular and cellular processes233. Abnormal 

addition or removal of a phosphate group on a protein can erroneously turn on or turn off 

signaling pathway, which is implicated in the molecular basis of various diseases, such as cancer. 

Technical advancement of mass spectrometry-based proteomics in the past decade has overcome 

many challenges in proteome-wide characterization of the phosphoproteome. These include 

developing various enrichment techniques234, such as immobilized metal affinity 

chromatography (IMAC), antibodies, or strong cation exchange to increase in a complex peptide 

mixture the relative abundance of phosphopeptides that normally exist at low stoichiometry in 

cellular environment, and implementing PTM site localization algorithms40 to pinpoint the 

modified residue on a peptide. 

Fragmentation of phosphopeptide with ion trap CID typically results in MS/MS spectra 

that are dominated by precursor ions with the neutral loss of phosphate group235. The relatively 

paucity of sequence informative fragment ions in phospho-spectra (i.e. low quality spectra) often 

precludes phosphopeptide identification. To resolve this issue, various fragmentation methods 

have been tailored, such as multi-stage activation236, or neutral loss-triggered MS3237. In the 

multi-stage activation method, a precursor phosphopeptide is first isolated and activated, 

followed by an activation of the neutral loss precursor. The fragment ions from both the primary 

activation and the secondary activation are mass-analyzed and recorded in the same spectrum. In 

contrast, in the neutral loss-triggered MS3 method, the primary isolation and activation of a 

precursor phosphopeptide is followed by a secondary isolation and activation of the neutral loss 

precursor. Only fragment ions from the secondary isolation and activation are mass-analyzed. 

Fragment ions from the primary activation are not retained. Although these two methods have 

been demonstrated to obtain more sequence-informative fragment ions from neutral loss 

precursor, which improves the success of phosphopeptide identification, collection of MS3 

spectra in the neutral loss-triggered MS3 method or pseudo-MS3 spectra in the multi-stage 
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activation requires extra data acquisition time, which may adversely impact overall identification 

performance in large-scale phosphoproteomic study.  Thus, Gygi and colleagues contended that 

the conventional MS2 method implemented on high mass accuracy instrument platform can 

obviate the acquisition of MS3 or pseudo-MS3 because accurate precursor mass measurement 

already provides discriminating power for confident peptide identification, even though fragment 

ions are sparse238. 

HCD has become increasingly popular for phosphoproteomic studies. Compared with ion 

trap CID, it generates higher quality MS2 spectra with richer fragment ions that are usually 

detected in Orbitrap with high resolution and high mass accuracy. With Orbitrap HCD, 

collection of MS2 spectra is usually sufficient for phosphopeptide identification44; however, 

overwhelming neutral losses are also observed with both methods239. In either CID or HCD 

fragmentation, typically three types of outcome exist for fragment ion that originally bears a 

phosphate-group (Figure 7.1): Type I: without neutral loss, meaning phosphate group is still 

attached to the fragment ion; Type II: with neutral loss of HPO3 group, meaning the mass of 

fragment ion bearing modified residue is reduced by 79.966331 Da; Type III: with neutral loss of 

H3PO4, meaning the mass of fragment ion bearing modified residue is reduced by 97.9769 Da. 

Most database searching algorithms only assume the Type I fragmentation pathway for 

phosphopeptide and ignore fragment ions from the Type II and Type III pathway. Since the Type 

II and III pathway are more prevalent than the Type I pathway during ion trap CID and HCD 

fragmentation and the identification success depends on the number of matched fragment ions 

and matched ion intensities, we propose that consideration of all three pathways during the 

database searching would improve the score of phosphopeptides for more confident 

identification. Particularly, such score improvement may boost the sensitivity of phosphopeptide 

identification in large-scale phosphoproteomic studies because it could recuse the identification 

of phosphopeptides that would not be identified due to the lower number of matched fragment 

ions and lower matched ion intensities in the Type I pathway. 

7.2 Implementation of the neutral loss search module improves phospho-

spectrum identification 

During the development of Sipros 3.067, a neutral loss search module has been 

incorporated, which predicts neutral loss fragmentation pathway for a precursor ion. In this case,  



 

                                                                

Figure 7.1 Illustration of three fragmentation pathways of phosphopeptide. RA: relative 

abundance 
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Illustration of three fragmentation pathways of phosphopeptide. RA: relative 

 

Illustration of three fragmentation pathways of phosphopeptide. RA: relative 
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the user needs to specify the elemental compositions or the mass of neutral loss group and amino 

acid residue where the neutral loss occurs. Such flexible configuration design allows searching 

any types of neutral loss on any amino acid residue as long as the elemental compositions or the 

mass of neutral loss group and affected residue are provided to the program. 

In the case of the neutral losses on phosphopeptide (Figure 7.1), an elemental 

composition of HPO3 corresponding to the Type II fragmentation pathway were specified on 

serine, threonine, and tyrosine. An elemental composition of H3PO4 corresponding to the Type 

III fragmentation pathway was specified on serine and threonine residue. As a control, 

fragmentation without neutral loss (the Type I pathway) was specified on serine, threonine, and 

tyrosine. The performance of the neutral loss search module was evaluated by using a large 

synthetic peptide/phosphopeptide reference library from a published study. This library contains 

96 sub-libraries, with each sub-library containing up to 1,200 synthetic peptides and 1,200 

synthetic phosphopeptides, totaling more than 100,000 peptides and 100,000 phosphopeptides. 

Since the sequence of these synthetic peptides/phosphopeptide are known, we used these 

peptide sequences to construct the database to search without further in silico enzymatic 

digestion. To evaluate whether the neutral loss search module can identify more phospho-

spectra, we carried out two types of database searching against the first twenty sub-libraries, one 

with implementing neutral loss search module where all three fragmentation pathways are 

predicted for each phosphopeptides and the other without implementing the module where only 

the Type I fragmentation pathway is predicted. As shown in the Table 7.1, the implementation of 

the neutral loss search module increased the number of identified phospho-spectra for most sub-

libraries (16 out of 20) with an overall improvement of 13%. The percentage increase for 

individual sub-library was up to 91% (i.e. sub-library #4 in Table 7.1). However, the 

implementation of the module decreased the number of identified phospho-spectra for some sub-

libraries (3 out of 20). While it is unknown why these three sub-libraries (sub-library #9, #16, 

and #17 in Table 7.1) suffered a decrease in phospho-spectrum identifications, it is notable that 

the number of identified phospho-spectra for the sub-library #16 and #17 was considerably lower 

than other libraries, even without the module implemented. This raises concerns about the 

quality of peptide synthesis and or of mass spectrometric measurement for these two libraries. 

Overall, implementation of the module improved the identification of phospho-spectra by 13%. 

Since Sipros and some other search algorithms, such as MyriMatch, score candidate peptides  
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Table 7.1 Comparison of the number of identified phospho-spectra with or without 

neutral loss search module implemented. 

Sub-
library 

# of identified phospho-spectra 
with NL implemented 

# of identified phospho-spectra 
without NL implemented 

% of increase (positive value) or decrease 
(negative value) with NL implemented 

1 2897 2036 42% 

2 1932 1700 14% 

3 1285 798 61% 

4 484 253 91% 

5 2098 1877 12% 

6 2238 1374 63% 

7 3019 2803 8% 

8 460 271 70% 

9 1572 1898 -17% 

10 1706 1511 13% 

11 1199 653 84% 

12 2191 1875 17% 

13 1881 1706 10% 

14 NA NA NA 

15 2323 2110 10% 

16 264 887 -70% 

17 29 668 -96% 

18 2347 2192 7% 

19 1994 1871 7% 

20 2343 2108 11% 

total 32262 28591 13% 
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based on the number of matched fragment ions and matched ion intensities, the improved 

phospho-spectral identification can be explained by the fact that the Type II or Type III pathway 

generates more matched fragment ions and/or higher matched ion intensities, which increase the 

score of the phosphopeptides. As an example shown in Figure 7.2, there are three abundant peaks 

with m/z of 467.24, 667.35, and 780.44 that match to y4, y6, and y7 ions, respectively, from the 

Type III fragmentation pathway (Figure 7.2 A and C). In contrast, there are three noise-level 

peaks that also match to y4, y6 and y7 ions from the Type I fragmentation pathway (Figure 

7.2D). Because the matched ion intensities from the Type III pathway are much higher than 

those from the Type I pathway, the neutral loss version of this phosphopeptide ALLSLHpSNK 

received a higher score (36.74) than its counterpart without neutral loss (24.27). 

In summary, we designed a neutral loss search module in Sipros 3.0, which improves the 

sensitivity of phosphopeptide identification. We believe this module is broadly applicable to 

searching many other types of PTM-containing peptides that frequently suffer from neutral loss 

of PTM moiety during fragmentation, such as acetylation, methylation, glycosylation, etc. The 

deeper PTM identification enabled by this approach would allow new discoveries of regulatory 

mechanisms and functional roles of PTMs in many molecular and cellular processes. 
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Figure 7.2 Annotated spectrum for phosphopeptide ALLSLHpSNK’s Type III (A and C) 

and Type I (B and D) fragmentation pathway. The MS2 spectrum for this peptide was separated 

into two sub-spectra due to space constraint: (A) and (B) cover the m/z range of 0-500 for the 

Type III and Type I fragmentation pathway, respectively, and (C) and (D) cover the m/z range of 

500-1000 for the Type III and Type I fragmentation pathway, respectively. (A) and (C) constitute 

the annotated spectrum for the type III fragmentation pathway. (B) and (D) constitute the 

annotated spectrum for the Type I fragmentation pathway. 
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Figure 7.2 continued  
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CHAPTER 8 

CONCLUSIONS AND FUTURE OUTLOOK 

8.1 Scientific impact of this dissertation research 

The capability to identify and quantify thousands of proteins and their PTM signatures 

enabled by mass spectrometry-based proteomics has proven its pivotal role in systems-level 

functional characterization of a cell, organism, or community. By utilizing existing proteomic 

approaches, and to develop new proteomic approaches, five goals were outlined in the Chapter 1: 

1) head-to-head compare the identification and quantitation performance of label-free, metabolic 

labeling, and isobaric chemical labeling; 2) quantify the proteome of Arabidopsis seedlings in 

response to the strigolactone treatment; 3) characterize how elevated temperature impacts the 

physiology of individual microbial groups in a laboratory-grown AMD microbial community; 4) 

develop a new proteomic approach to profile a broad range of PTMs in individual organisms in a 

natural AMD microbial community; and 5) evaluate the utility of a neutral loss search module 

for improving the sensitivity of phosphopeptide identification. 

As described in Chapter 3, the label-free method provides the deepest proteome coverage 

for identification, and metabolic labeling and isobaric chemical labeling are capable of accurate, 

precise, and reproducible quantification. On the basis of the unique advantages of each method, 

we provide guidance for selection of the appropriate method for a quantitative proteomics study. 

As described in Chapter 4, strigolactone regulates the expression of about three dozen proteins 

that have not been previously assigned to strigolactone pathways. These findings provide new 

targets for follow-up biochemical and genetic studies to further investigate the molecular 

mechanism of strigolactone signaling. 

As described in Chapter 5, elevated temperature repressed carbon fixation by two 

Leptospirillum genotypes, whereas carbon fixation was significantly up-regulated at higher 

temperature by a third member of this genus. These results highlight the utility of proteomics-

enabled community-based physiology studies, an approach that can be applied to more complex 

ecosystems. 

As described in Chapter 6, a new proteomic approach has been developed for 

simultaneous characterization of a broad range of PTMs in microbial systems. Evaluation of this 

approach with an E. coli proteome revealed unexpected depth and breath of non-enriched PTMs 

in this model organism and provided valuable resource to study the regulatory mechanisms and 
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functional implications of PTMs in prokaryotic system. Application of this approach to AMD 

microbial community reveal diverse, dynamic, and divergent PTM patterns during an ecological 

succession. The findings of this study motivate further study to unravel the role of PTMs in 

microbial adaptation, evolution and ecology. 

As described in Chapter 7, implementation of the neutral loss search module improves 

the sensitivity of the phosphopeptide identification, evaluated with a synthetic phosphopeptide 

library. We believe this module should be broadly applicable to other PTM analysis by mass 

spectrometry-based proteomics to increase the depth of the PTM identification and to unravel 

novel biological insight into PTM regulations. 

8.2 Future outlook 

Although mass spectrometry-based proteomics has been able to provide robust proteome 

measurement, especially for model organisms, such as yeast21 and human cell line26, and 

microbial isolates240, technical developments are still needed to advance the field in the 

following aspects: 

(1) Direct proteome measurement without multi-dimensional liquid chromatography-

based separation: the instrumentation that couples multi-dimensional liquid chromatography to 

mass spectrometry has been dominating the field of Proteomics over the past decade. While 

application of multi-dimensional separation has alleviated some major technical issues associated 

with analyzing complex proteome sample with mass spectrometry, such as ionization 

suppression and dynamic range, it also significantly prolongs the measurement time in order to 

achieve decent deep proteome coverage. However, the sequencing speed of current state-of-art 

mass spectrometers is becoming faster and faster. For example, the next-generation mass 

spectrometer, LTQ Orbitrap Fusion, is able to perform 20 MS/MS experiments in ion trap or 15 

MS/MS experiments in Oribtrap within 1 second21. Assuming the average liquid 

chromatographic elution time of peptide is ~30 seconds, this high-speed mass spectrometer is 

able to sample up to 600 different peptide ions (20x30) within this time frame. Such 

unprecedented sampling depth would be able to sequence most, if not all, peptides delivered to 

the mass spectrometer.  This would significantly shorten the proteome analysis time because 

extensive, time-consuming multi-dimensional separation would become unnecessary. Indeed, the 

current high-throughput mass spectrometry has begun to obviate the multi-dimensional 
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separation of peptides from relatively simple proteome238 , such as yeast where nearly 4,000 

proteins can be identified in ~1.3 h of measurement time with one-dimensional reverse phase-

based separation. Although one-dimensional 4-hour separation has been applied to measuring 

human proteome241, the depth of human proteome coverage is far from complete compared to 

that of the yeast proteome coverage (50% of the expressed proteins in human proteome vs. 

~100% of the expressed proteins in yeast proteome). However, with further development of 

sequencing speed of mass spectrometer, it is likely that the complete human proteome analysis 

can be realized within an hour of measurement. 

(2) Increasing multiplexing capability of proteomic measurement: nowadays, mass 

spectrometry-based proteomics has become readily accessible to many biological researchers; 

however, the cost of performing proteome measurement is still relatively high, compared to 

DNA and RNA sequencing. One solution to reduce the cost is to expand the multiplexing 

capability of proteomic measurement where multiple proteome samples are simultaneously 

measured instead of analyzing one sample at a time, so that the cost per sample can be reduced 

significantly. Isobaric chemical labeling-based quantitative proteomics is an ideal approach to 

expand the measurement throughput because it allows not only identification but also 

quantification of thousands of proteins from multiple samples in one experiment. Recently, 

TMT-10 plex has been commercially available. With this reagent, ten proteome samples can be 

individually labeled and then combined to analyze together. Another elegant way of enhancing 

multiplexing capability takes advantage of subtle mass difference due to differential neutron-

binding energy between 13C and 15N isotopes242,243. Similar to isobaric chemical labeling reagent, 

a set of structurally identical but isotopically different chemical labels with tiny mass differences 

of only a few mDa are used to label multiple samples individually and then combined prior to the 

LC-MS/MS measurement. Due to such small mass differences between different chemical labels, 

peptides labeled with these isotopic variants (i.e. isotopologue-embedded peptide) are almost 

indistinguishable with modest high-resolution mass spectrometry analysis (30,000-60,000). 

However, these isotopologue-embedded peptides can be clearly resolved from each other with 

ultrahigh resolution mass spectrometry analysis (>200,000). The signal intensity of each 

isotopologue-embedded peptide can be used to quantify their relative abundance. Since regular 
12C and 14N atoms of the chemical label can be replaced with 13C and 15N isotope at any position 

with any quantity, the number of structurally identical but isotopic distinct chemical label can be 
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expanded tremendously. Such concept can also be applied to isobaric chemical labeling reagent 

to further “plex” the reagent239. Overall, with the continuous development of multiplexed 

chemical labeling reagents, it would be routine to qualitatively measure and quantitatively 

compare dozens of proteome samples or even more within one experiment in future. 

(3) Proteome-wide analysis of PTM cross-talk:  mass spectrometry-based proteomics has 

been very successful for characterization of a single type of PTM at a time. However, there are a 

few hundred different types of PTMs documented so far, and their prevalence, dynamics, and 

function in an organism are largely unknown. Furthermore, many proteins, such as histone, 

tumor suppressor p53, and tublin, are modified with multiple types of PTMs244. These proteins’ 

activities are often regulated by the cross-talk among different PTMs. To study how different 

PTMs collectively regulate protein functions at proteome-wide would require a method that is 

able to simultaneously identify a broad range of PTMs. The current enrichment methods have 

limited application to studying proteome-wide PTM cross-talk because only one type of PTM 

can be enriched at a time and peptides that carry other different types of PTMs are lost. Recently, 

tandem enrichment has been developed to enrich multiple types of PTMs202,203. However, these 

approaches consume a large quantity of materials that are often not available for many biological 

systems. Moreover, with the current enrichment approaches, it is difficult to quantify PTM 

abundance, especially the fractional occupancy because unmodified peptides are discarded, 

precluding the calculation of the ratio between modified version and unmodified version of a 

peptide. 

In this dissertation, we demonstrated a broad-range PTM identification and quantification 

approach that can be readily applied to studying proteome-wide PTM cross-talk. Although this 

approach has been tested in microbial systems because of the relatively simplicity of their 

proteome, we believe that with improving sequencing speed of mass spectrometer, it would be 

likely to realize this approach in complex eukaryotic organisms. Enrichment-free approach is 

appealing because it consumes less protein materials and offers an opportunity to 

comprehensively capture multiple types of PTMs at once and to quantify PTM fractional 

occupancy. 

(4) Environmental proteomics of complex microbial communities: environmental 

proteomics has been extremely successful for charactering microbial communities where enough 

biomass is relatively easy to obtain245. When dealing with recalcitrant communities, such as soil, 
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extraction of high quality protein sample becomes a major technical bottleneck. Thus, advanced 

protein preparation that is capable of obtaining clean, sufficient proteins for mass spectrometric 

analysis needs to be developed. Further, a complex microbial community likely contains 

thousands of species. Assuming each species may express 2,000 proteins in its cells, a complex 

metaproteome could contain up to 2 million (1,000 species x 2,000 proteins per species) different 

proteins. Since a typical mass spectrometric run can only identify thousands of proteins, a tiny 

fraction of the expressed proteins in a complex community can be captured with the current 

instrumentation. 

Most environmental samples, if not all, have been measured with the data-dependent 

acquisition approach. However, due to the currently un-measurably huge dynamic range of 

proteins in a complex metaproteome, data-dependent acquisition would inevitably miss sampling 

of low-abundant peptides. Recently, a data-independent acquisition (DIA) technique has become 

an attractive alternative to the DDA approach246. Instead of sequentially isolating and 

fragmenting the Top N (usually Top 10 - 20) most abundant peptide ions in the DDA approach 

and missing the remaining low abundant ions (Figure 8.1A), the mass spectrometer cycles 

through a series of precursor isolation windows (e.g. 25 m/z wide) and fragments all peptide ions 

within each window, until the entire m/z range is covered (Figure 8.1B). In the next sampling 

cycling, the series of same isolation window within the same m/z range will be isolated and 

fragmented again. Since the DIA approach sequences peptides independent of their intensities 

and is able to sample the entire m/z range which most eluting peptides fall within, theoretically 

almost all peptides that are delivered into mass spectrometer can be sequenced, as long as the 

cycling time is shorter than a peptide’s elution time. While DIA approach may not provide much 

benefit when measuring a single organism because the well-established DDA approach has been 

able to identify most expressed proteins for some model organisms, this approach would be 

especially appealing to environment proteomics because the potential capability that sequences 

all eluting peptides is able to alleviate the huge dynamic range and sample complexity issues 

associated with environmental proteome samples and is likely to provide much deeper 

metaproteome coverage than the DDA approach. Since multiple peptides are likely to exist 

within an isolation window in the DIA approach, all peptide ions will be co-fragmented to 

generate complex, multiplexed spectra, which creates a significant bioinformatic challenge in 

sequence identification. Although exhaustive peptide sequence identification from these  



 

 Figure 8.1 Illustration sampling difference between DDA approach (A) and DIA 

approach (B). In DDA approach, top 10 most abundant ions represented by orange peaks are 

sequenced and low-abundant ion represented by red peaks are often missed. In DIA approach, 

the entire m/z range is divided into a series of small isolation windows (spaced by blue dash line). 

Mass spectrometer sequentially cycle through each isolation windows until the entire m/z range 

is covered. All ions in each isolation window are fragmented and the 

recorded in high-resolution tandem mass spectra.
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Illustration sampling difference between DDA approach (A) and DIA 

approach (B). In DDA approach, top 10 most abundant ions represented by orange peaks are 

abundant ion represented by red peaks are often missed. In DIA approach, 

e m/z range is divided into a series of small isolation windows (spaced by blue dash line). 

Mass spectrometer sequentially cycle through each isolation windows until the entire m/z range 

is covered. All ions in each isolation window are fragmented and the resulting fragment ions are 

resolution tandem mass spectra. 

 

Illustration sampling difference between DDA approach (A) and DIA 

approach (B). In DDA approach, top 10 most abundant ions represented by orange peaks are 

abundant ion represented by red peaks are often missed. In DIA approach, 

e m/z range is divided into a series of small isolation windows (spaced by blue dash line). 

Mass spectrometer sequentially cycle through each isolation windows until the entire m/z range 

resulting fragment ions are 
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multiplexed spectra is risky with elevated propensity to false positive, we believe future 

algorithm development would be able to resolve this informatic challenge. Alternatively, as the 

sequencing speed of mass spectrometer is becoming faster, the width of isolation window in the 

DIA may be shortened to the one used in the DDA approach (usually 2~3 m/z wide), while 

maintaining the cycling time within the chromatographic elution time of peptide. This would 

reduce the number of co-fragmented ions and generate less complex fragment ion spectrum. 

With such relatively clean spectra, database searching algorithms developed for the DDA 

approach might be readily applied to searching the spectra acquired with the DIA approach. 

 

8.3 Concluding remarks 
 

Although challenges exist, such as those in metaproteomic characterization of complex 

microbial communities described above, it is reasonable to expect a new wave of technological 

innovations to resolve these challenges. With integration with other systematic measurements 

and advanced computational and bioinformatic approaches, powerful mass spectrometry-based 

proteomics will undoubtedly not only keep propelling forward our understanding of the 

genotype-phenotype relationships, but also spark more biotechnological applications, such as 

drug discovery, bioremediation, and bioenergy production. 
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