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Abstract

How to automatically label videos containing human motions is the task of human

action recognition. Traditional human action recognition algorithms use the RGB

videos as input, and it is a challenging task because of the large intra-class variations

of actions, cluttered background, possible camera movement, and illumination

variations. Recently, the introduction of cost-effective depth cameras provides a

new possibility to address difficult issues. However, it also brings new challenges

such as noisy depth maps and time alignment. In this dissertation, effective and

computationally efficient feature extraction and recognition algorithms are proposed

for human action recognition.

At the feature extraction step, two novel spatial-temporal feature descriptors are

proposed which can be combined with local feature detectors. The first proposed

descriptor is the Shape and Motion Local Ternary Pattern (SMltp) descriptor which

can dramatically reduced the number of features generated by dense sampling without

sacrificing the accuracy. In addition, the Center-Symmetric Motion Local Ternary

Pattern (CS-Mltp) descriptor is proposed, which describes the spatial and temporal

gradients-like features. Both descriptors (SMltp and CS-Mltp) take advantage of the

Local Binary Pattern (LBP) texture operator in terms of tolerance to illumination

change, robustness in homogeneous region and computational efficiency.

For better feature representation, this dissertation presents a new Dictionary

Learning (DL) method to learn an overcomplete set of representative vectors (atoms)

so that any input feature can be approximated by a linear combination of these

v



atoms with minimum reconstruction error. Instead of simultaneously learning one

overcomplete dictionary for all classes, we learn class-specific sub-dictionaries to

increase the discrimination. In addition, the group sparsity and the geometry

constraint are added to the learning process to further increase the discriminative

power, so that features are well reconstructed by atoms from the same class and

features from the same class with high similarity will be forced to have similar

coefficients.

To evaluate the proposed algorithms, three applications including single view

action recognition, distributed multi-view action recognition, and RGB-D action

recognition have been explored. Experimental results on benchmark datasets and

comparative analyses with the state-of-the-art methods show the effectiveness and

merits of the proposed algorithms.
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Chapter 1

Introduction

1.1 Human Action Recognition

Human action recognition has been researched since early 1980s, due to its promise

in many application domains, including visual surveillance, video indexing, gesture

recognition, video retrieval and human-computer interaction. The goal of human

action recognition is to recognize ongoing actions from unknown video consisting of

a sequence of images. As shown in Figure 1.1, the input sources are videos (RGB or

Depth videos) and the output are class labels which are automatically generated by

designed algorithms.

Algorithm

Database

Drink ?

Figure 1.1: Task of human action recognition.

1



(a) Actions

(b) Activity

Figure 1.2: Sample images for actions and activities. (a) Four actions from the
UCF action dataset Rodriguez et al. (2008): diving, walking, swinging and kicking.
(b) Example video sequence of a simulated bank attack Georis et al. (2004).

Based on the complexity of motions, human body movements can be divided into

different levels. Human action recognition is to classify motions that belong to the

“action” level. According to the definition in the literature Turaga et al. (2008);

Aggarwal and Ryoo (2011), we conceptually categorized the motions into three levels

including: gesture, action and activity.

• Gestures are the atomic components that describe the meaning of the motions.

“raising an arm” and “waving arms”are motions belong to this category.

• Actions are single person activities that may be composed of multiple gestures

organized temporally. ‘Walking’, ‘waving’ and ‘drinking’ are examples of simple

actions.

• Activities are complex sequences of actions performed by several persons and/or

objects. They are typically characterized by interacting with each other in a

constrained manner. “Playing basketball” is an example of activity consisting

of actions, such as running, shooting, dribbling, and objects such as basketball.

Figure 1.2 shows the sample images for actions and activities. Actions such as

diving, walking, swinging and kicking may contain complex background as shown in

2



Figure 1.2a. The task of human action recognition is to generate class labels for query

video that may contain complex background information. Images in Figure 1.2b shows

the sample sequences of a simulated bank attack, which is an example of activity. As

shown in Figure 1.2b, two persons are evolved in this activity including a series of

actions, i.e walking, standing up, opening the door and existing the door. Before

fully exploring the characteristics of human activity, how to design a system that can

automatically recognize what actions are being or have been performed is the initial

step and of great importance.

In this dissertation, we focus on actions and do not explicitly consider context

such as background, interactions between persons or objects. Especially, we explore

the spatial-temporal information for human action recognition and proposed novel

algorithms that can be applied on different tasks. To generate the recognition result,

there are three important and necessary steps:

• Feature extraction: Raw video sequence consists of massive spatio-temporal

pixel intensity variations that contribute nothing to the action itself, such

as pixels related to the color of clothes and cluttered background. Feature

extraction is a process that detects and extracts most representative information

from raw data as features.

• Feature representation: Any video sequence will generate a specific number of

features, and different video sequences will have distinctive number of features.

Feature representation is a process to give a unique representation for every

video sequence based on the extracted features. The final representation should

be of the same dimension among different videos.

• Classification: Based on the calculated representation, classification is a process

to assign class labels to any unknown video sequence according to the learned

classifier. Parameters for the classifier are learned from training samples.

3



1.2 Motivations

The solution to automatically recognize actions from videos is more difficult than

the question itself. During the past 20 years, many approaches have been pursued to

address this problem. However, there is still a long distance from practical application

of these proposed algorithms due to challenges in this task.

One main challenge is how to efficiently extract representative features from raw

data. These detected features should be distinctive for various actions, and be

similar among actions from the same class. However, subjects are free to choose

their styles to perform actions which could cause large intra-class variations. In

addition, cluttered background and camera motion will further introduce noise to

the process. In the literature, feature detection and feature description are two

main steps in extracting local spatio-temporal features. The feature detector aims to

detect locations of representative interest points with various scales. The shape and

motion characteristics of the detected 3D patches (or interest regions surrounding the

detected interest points) can be further described by feature descriptors. Many feature

detectors Dollar et al. (2005); Huang et al. (2007); Laptev and Lindeberg (2005);

Oikonomopoulos et al. (2006); Willems et al. (2008b); Wong and Cipolla (2007) and

descriptors I.Laptev et al. (2008); Willems et al. (2008b); Klaser et al. (2008); Laptev

and Lindeberg (2004); Scovanner et al. (2007) have been proposed in the past years.

However, the performance of various descriptors depends on the selection of detectors

and action datasets Wang et al. (2009). In addition, the computational cost is large

for some algorithms, which hinders the real world application.

Another main challenge is how to represent the extracted features for any video

sequence. The number of extracted features can be large and different for given

videos. Moreover, how to incorporate the spatial and temporal information during

the representation process for better performance should be taken into consideration.

The most popular framework at this step is the Bag-of-Words (BoW) model, where

the “visual words” are referred to as extracted features. One of the notorious

4



disadvantages of BoW is that it ignores the spatial relationships among the extracted

features, which is very important in video representation. Furthermore, the BoW

model has not been extensively tested yet for view point invariance and scale

invariance.

Recently, the release of the Microsoft Kinect provides a new possibility to address

these issues. The Kinect device can provide both high resolution depth maps and RGB

images at low cost, which opens up new opportunities to the research in computer

vision, gaming, gesture-based control and virtual reality Xia et al. (2012). Figure

1.3 shows the sample images captured by the RGB camera and depth camera. Pixel

intensities in the depth maps show the distances of pixel locations so that all the

texture information is neglected.

However, action recognition based on depth maps also have new challenges.

For example, the direct usage of the 3D joint positions extracted by the skeleton

tracker Shotton et al. (2011) is not optimal due to the possible failure caused by

noisy depth maps or occlusions. In addition, different lengths of sequences require

algorithms to be tolerant to the time misalignment. Moreover, to fully utilize the

existing sources for better performance, the problem of whether or how to combine

the features or classifiers from both the depth maps and the color images remains

unanswered.

Most existing algorithms for human action recognition focus on solving challenging

issues without considering the real world application requirements. In addition, how

to design a framework that is effective under variant scenarios has not been well

explored yet. For example, algorithms designed for single view action recognition

may not be able to solve the problem of multi-view action recognition, or feature

extractions for color images may not be suitable for depth maps.

In this dissertation, we explore different characteristics of both sources, RGB

images and depth maps for the task of human action recognition and present efficient

feature extraction and representation algorithms. Especially, the designed algorithms
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Figure 1.3: Sample images from RGB and depth cameras Wang et al. (2012b). The
upper row shows the images captured by depth camera and the lower row shows the
images captured by RGB camera.

take the real world application into consideration and require low computational cost

to achieve state-of-the-art performance.

1.3 Contributions

In this dissertation, algorithms relate to the feature extraction and representation

steps are proposed since both steps are most important to the recognition accuracy.

The designed algorithms aim to characterize the intrinsic spatial-temporal properties

of human actions such that high accuracy can be achieved at low computational cost.

We briefly emphasize our research contributions as follows.

From the feature extraction perspective, our contribution lies in the design of two

computationally efficient feature descriptors.

• Shape and Motion Local Ternary Pattern (SMltp): As a feature descriptor,

SMltp captures both the appearance and motion information efficiently and

takes advantage of the Local Binary Pattern (LBP) Ojala et al. (2002)

texture operator in terms of tolerance to illumination change, robustness in

homogeneous region and computational efficiency. In addition, SMltp can be

easily combined with various feature detectors to perform action recognition at

low computational cost.
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• Center Sysmetric Motion Local Ternary Pattern (CS-Mltp): CS-Mltp is

proposed to describe gradient-like characteristics of RGB sequences at both

the spatial and temporal directions. Compared to the SMltp, CS-Mltp is more

sensitive to noise, but better for describing motions with small body movements.

From the feature representation perspective, our contribution lies in the design

of a temporal pyramid matching approach based on sparse coding of the extracted

features to represent the temporal patterns. Especially, a discriminative class-specific

dictionary learning algorithm is proposed for sparse coding. By adding the group

sparsity and geometry constraints, features can be well reconstructed by the sub-

dictionary belonging to the same class, and the geometry relationships among features

are also kept in the calculated coefficients. Different from the BoW model that assigns

each feature to its nearest “visual word”, the proposed algorithm will choose a sparse

and linear combination of “visual words” to approximate the representation, such

that less quantization error will be introduced during feature representation step.

We further apply the proposed framework on the tasks of human action recognition

under different scenarios to show the robustness of the proposed algorithms and

discuss the problems of how to fuse information from different sources. Single view

human action, distributed human action and RGB-D human action recognition are

discussed:

• Single view human action recognition: In the single view recognition task,

the RGB videos are used as input source and there are only one video for

each action performed by a specific person. However, background can be

very complicated and different among these videos. We evaluate the proposed

algorithms on challenging datasets and propose a patch selection scheme that

makes the average number of features 20 times smaller than dense sampling, so

that the computational load for the bag-of-features representation is reduced.

Parameters existing in the proposed algorithms are well evaluated and adjusted.

7



• Distributed human action recognition: In the distributed camera networks

(DCNs), there are several local smart cameras surrounding the actors and

simultaneously capturing the actions with different viewing angles. In addition,

there is a base station connected with local cameras through wireless connection.

Due to the resources limitation, communication among local cameras are

limited, and information transmission between local cameras and base station

should satisfy the bandwidth limitation. Since it is not practical to transmit

original video sequences to the base station, lightweight feature extraction

algorithms should be explored. In addition, how to fuse the information from

local cameras should be designed as well. We proposed a new framework to

realize action recognition in DCNs and apply the proposed descriptors to reduce

bandwidth consumption and computational cost.

• RGB-D human action recognition: In the RGB-D human action recognition,

both RGB videos and depth maps are available for processing, which requires

both RGB and depth feature extractions. We first proposed a new feature

extraction and representation algorithm based on the 3D skeleton tracker to

solve the problem of time alignment in depth maps. The proposed dictionary

learning algorithm is applied on depth feature representation and compared

with the state-of-the-art work. In addition, different fusion schemes to combine

both RGB and depth information for better performance are explored.

1.4 Dissertation Organization

The dissertation is organized as follows: In Chapter 2, a literature review on feature

extraction and representation is provided. In Chapter 3, two feature descriptors are

proposed to describe the shape and motion patterns at local structure. In addition,

a key frame detection scheme is presented to detect important frames from depth

sequence. In Chapter 4, a discriminative dictionary learning algorithm is presented
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for feature representation. In Chapter 5, the proposed descriptors are applied on

the single view human action recognition. In Chapter 6, a distributed human action

recognition framework is evaluated based on the proposed motion descriptor. In

Chapter 7, both RGB images and depth sequence are available for RGB-D human

action recognition. Conclusions and future work are discussed in Chapter 8.
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Chapter 2

Literature Review

In this chapter, literature work in the field of human action recognition is explored

and discussed. We start with an review on feature extraction methods, which is the

first step for action recognition. Instead of working on the raw video sequences which

contain many pixels (e.g. for a 100-frame sequence video, the number of pixels will

be 30, 720, 000 with image size as 480 × 640) and redundant information (e.g. the

temporal variations can be very small between two consecutive frames), it is necessary

to extract a set of features which are considered as more compact representation of

input data. This is the process referred to as feature extraction. We then describes

existing algorithms for feature representation from RGB videos and depth maps.

Since different videos will generate different number of features, we need to generate

a vector representation for the video sequence and the dimension of such vector should

be the same for all the videos for classification. The process to generate a unique-

length vector representation based on extracted features is feature representation.

2.1 Feature Extraction from RGB Videos

In the literature, feature extraction from RGB videos can be divided into two

categories: global feature extraction and local feature extraction. The former category

usually involves two steps: a person is localized first in the image using background
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subtraction or tracking. Then, the region of interest is encoded as a whole, which

results in the image descriptor. The latter category usually detects the local spatio-

temporal interest points first, and then local patches are calculated around these

points. Local spatio-temporal features describe the observed video sequence as a

collection of these detected local patches. Compared to the global feature extraction,

local feature extraction is less sensitive to noise and partial occlusion, and does not

strictly require background subtraction or tracking Poppe (2010). Therefore, local

spatial-temporal features have been heavily used for human action recognition.

In this dissertation, we focus on the local spatio-temporal feature extraction

algorithms that include feature detection and feature description.

2.1.1 Feature Detectors

Feature detection is a process to examine every pixel to see if there is a feature

present at that pixel. For human action recognition, regions (patches) centered at

the detected pixels can be cropped with calculated spatial and temporal scales and

orientations. Algorithms used to generated features and patches can be referred to as

feature detectors. Feature detectors usually select spatio-temporal locations, scales

and orientations in video by maximizing specific saliency functions. There are a

variety of detectors briefly reviewed in the following.

Harris3D Detector

The Harris3D detector Laptev and Lindeberg (2005) is a space-time extension of

the Harris detector Harris and J. (1988) and detect local structures in space-

time where the image values have significant local variations in both space and

time. A spatio-temporal second-moment matrix at each video point is computed

as µ(·, σ, τ) = g(·, sσ, sτ) ∗ (∆L(·, σ, τ)(∆L(·, σ, τ))T ). Here, σ, τ are independent

spatial and temporal scale values respectively, g is a separable Gaussian smoothing
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function, and ∆L is space-time gradients. The final locations of space-time interest

points are given by local maxima of H = det(µ)− ktrace3(µ), H > 0.

Cuboid Detector

The Cuboid detector was proposed by Dollar Dollar et al. (2005) to detect the spatio-

temporal interest points. Instead of using a 3D filter on the spatio-temporal domain,

it applies two separate linear filters respectively to both the spatial and temporal

dimensions. The response function at pixel location I(x, y, t) is of the form R =

(I(x, y, t) ∗ gσ(x, y) ∗ hev(t))2 + (I(x, y, t) ∗ gσ(x, y) ∗ hod(t))2, where gσ(x, y) is the 2D

Gaussian smoothing function that applied only in the spatial domain. The hev and hod

are a quadrature pair of 1D Gabor filters that applied in the temporal direction. The

1D Gabor filters are defined as hev(t; τ, ω) = − cos(2πtω)exp−t
2/τ2 and hod(t; τ, ω) =

− sin(2πtω)exp−t
2/τ2 , where ω = 4/τ . The parameters σ and τ roughly correspond

to the spatial and temporal scale. The interest points are detected at locations where

the response is local maximum. The spatio-temporal patches around the points are

extracted for feature description. The size of the patches is defined by the value of σ

and τ .

Hessian Detector

The Hessian detector was proposed by Willems Willems et al. (2008b) as a spatio-

temporal extension of the Hessian saliency measure for blob detection in images. The

determinant of the 3D Hessian matrix is used to measure the saliency. Computations

are speeded-up further through the use of approximative box-filter operations on

an integral video structure. Since the scale invariance and good scale selection are

achieved simultaneously with the scale-normalized determinant of Hessian matrix, no

iterative procedure is needed.
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Figure 2.1: Dense sampling.

Dense Sampling

The dense sampling extracts video blocks at regular positions and scales in space and

time Wang et al. (2009). There are 5 dimensions to sample from: (x, y, t, σ, τ), where

σ and τ are the spatial and temporal scale, respectively. Multi-scale patches can be

obtained by selecting different values of σ and τ . Figure 2.1 shows the example of

dense sampling in spatial direction. Given the predefined scales corresponding to the

patch sizes, overlapped regions can be defined from the entire image. Different from

the other feature detectors, dense sampling cover the whole image patch and will

generate large number of features.

Dense Trajectory

Dense trajectories Wang et al. (2011) are extracted for multiple spatial scales. Feature

points are sampled on a grid spaced by N pixels and tracked in each scale separately.

Then 8 spatial scales spaced by a factor of 1√
2

are used to keep scale invariance. Each

point Pt = (xt, yt) at frame t is tracked to the next frame t+ 1 by median filtering in

a dense optical flow field ω = (ut, vt). Once the dense optical flow field is computed,
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points can be tracked very densely without additional cost. Points of subsequent

frames are concatenated to form a trajectory.

2.1.2 Feature Descriptors

Feature descriptors are used to describe the detected regions in a representation that

is ideally invariant to background clutter, appearance and occlusions, and possibly

to rotation and scale Poppe (2010). The spatial and temporal size of a patch is

usually determined by the scale of the interest point. For example, after feature

detectors detected the features centered at (x, y, t) with the spatial size defined by σ

and temporal size defined by τ , the corresponding 3D patch can be cropped, and the

feature descriptor is used to summarize the information within that patch.

Cuboid

The Cuboid descriptor Dollar et al. (2005) is used to describe the 3D patches detected

by Cuboid detector. The size of the descriptor is determined by ∆x(σ) = ∆y(σ) =

2×3σ+1 and ∆t(τ) = 2×3τ+1. The gradients for all pixels within the extracted patch

are calculated and concatenated into a vector. The principle component analysis

(PCA) is applied on the vector for dimension reduction.

HOG/HOF

The HOG/HOF descriptors (Laptev and Lindeberg, 2005) characterize local ap-

pearance and motion by computing histograms of spatial gradient and optic flow

accumulated in space-time neighborhoods of the detected interest points. The

descriptor size is defined by ∆x(σ) = ∆y(τ) = 18σ,∆t(τ) = 8τ . To keep the spatio-

temporal relationship, each volume is subdivided into a nx×ny×nt grid of cells. For

each cell, 4-bin histograms of gradient orientations (HOG) and 5-bin histograms of

optic flow (HOF) are computed. Normalized histograms are concatenated into HOG,

HOF as well as HOG/HOF descriptor vectors.
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HOG3D

The HOG3D descriptor Scovanner et al. (2007) is based on histograms of 3D gradient

orientations and can be seen as an extension of the popular SIFT descriptor Lowe

(2004) to video sequences. Gradients are computed using an integral video

representation. Regular polyhedrons are used to uniformly quantize the orientation

of spatio-temporal gradients. Similar to the other feature descriptors, a given 3D

patch is divided into nx × ny × nt cells. The corresponding descriptor concatenates

gradient histograms of all cells and is then normalized.

Extend SURF

Willems et al. (Willems et al., 2008a) proposed the extended SURF (ESURF)

descriptor which extends the image SURF descriptor (Bay et al., 2006) to videos.

The size of extracted 3D patches is defined as ∆x(σ) = ∆y(σ) = 3σ,∆t(τ) = 3τ .

After dividing the 3D patches into nx × ny × nt cells, a vector of weighted sums

v = (
∑
dx,
∑
dy,
∑
dt) can be calculated on each cell. Note that dx, dy, dt are

uniformly sampled responses of Haar-wavelets along the three axes.

Motion Boundary Histogram

The motion boundary histogram (MBH) Dalal et al. (2006) is a descriptor for human

detection, where derivatives are computed separately for the horizontal and vertical

components of the optical flow. The MBH descriptor separates the optical flow field

Iω = (Ix, Iy) into its x and y component. Spatial derivatives are computed for each

of them and orientation information is quantized into histograms. Wang et al. Wang

et al. (2011) combined the MBH descriptor and dense trajectories for human action

recognition to achieve state-of-the-art performance.
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Local Ternary Pattern

The Local Binary Pattern (LBP) texture operator Ojala et al. (2002), based on

the relative order of neighboring pixels, has been very successful in solving various

problems, such as texture classification Ojala et al. (2002), face recognition Ahonen

et al. (2004); Tan and Triggs (2007) and feature description Heikkila et al. (2009);

Gupta et al. (2010). Binary patterns are created for each pixel by comparing the

pixel value with its neighboring pixel intensities. Thus, LBP is robust to monotonic

gray-scale changes and is computationally efficient.

Local Ternary Pattern (LTP) Tan and Triggs (2007), as a variant of LBP, is a 3-

valued coding that includes a threshold around zero for improved resistance to noise.

Different from the LBP descriptor that assigns positive or negative pattern to each

comparison, LTP includes a smooth pattern when the intensity differences are within

a small region. Therefore, LTP will be more robust to noise.

Although both LBP and LTP descriptors are originally applied on 2D images,

the various flavors of LBP have also been used for human action recognition.

Kellokumpu et al. Kellokumpu et al. (2008) used a dynamic LBP description from

two orthogonal planes: xt and yt to detect human bounding volumes and to describe

human movements. The Hidden Markov Modelling was adopted to perform activity

classification. However, the detection part in this algorithm is not adaptive to the

background change, which limits its application in more challenging dataset. Yeffet

and Wolf Yeffet and Wolf (2009) presented a local trinary pattern for human action

recognition, which combined the self-similarity with LTP. It sliced the video sequence

in space and time, and concatenated the histograms from different regions to get a

global representation. However, there are two limitations with this algorithm: one is

the long length of the extracted feature vector; the other is the absence of appearance

information, which is also of great importance for human action recognition Wang

et al. (2009); Klaser et al. (2008).

16



2.2 Feature Extraction from Depth Videos

The introduction of the low-cost RGB-D sensors (Kinect) largely benefits the practice

of human action recognition by providing both depth maps and color images

simultaneously. Although the issues of feature extraction and representation have

been widely explored for color images, related research on depth maps has been very

limited.

As for feature extraction from the depth sequence, some algorithms focus on 3D

point cloud such as the bag of 3D points Li et al. (2010) and Random Occupied

Patterns Wang et al. (2012a), while others take advantage of the 3D joint positions

detected by the skeleton tracker Shotton et al. (2011) as robust and compact

representation. For example, a view-invariant 3D joint feature Xia et al. (2012) was

extracted based on the 3D joint positions. The work of Wang et al. (2012b); Yang

and Tian (2012) used the relative 3D joint positions as the discriminative and robust

features.

Since 3D joint features are frame-based, the different numbers of frames in each

sequence requires algorithms to provide solutions for “temporal alignment”. Most

existing algorithms solve this problem through temporal modeling that models the

temporal evolutions of different actions. For example, the Hidden Markov Model

(HMM) is widely used to model the temporal evolutions Xia et al. (2012); Gu et al.

(2010). The conditional random field (CRF) Han et al. (2010) predicts the motion

patterns in the manifold subspace. The dynamic temporal warping (DTW) Muller

and Roder (2006) tries to compute the optimal alignments of the motion templates

composed by 3D joints. However, the noisy joint positions extracted by the skeleton

tracker Shotton et al. (2011) may undermine the performance of these models and

the limited number of training samples makes these algorithms easily suffer from the

overfitting problem.

Recently, a Fourier Temporal Pyramid Wang et al. (2012b) technique is proposed

to solve the temporal alignment problem. This method partitions every sequence
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into a pyramid structure and calculates the low-frequency Fourier coefficients for all

the segments. Since each segment is actually a discrete signal with short length

(8 ∼ 300 frames), frequency calculations of such discrete short signal will be sensitive

to disturbances caused by different speed of movements.

2.3 Feature Representation

Since different number of features are collected for different video sequences, a process

that can generate a unique-length vector representation for each video is necessary

for classification purpose. Feature representation treats each video as a collection

of extracted features, and generate a vector representation for each video which can

be good for classification purpose. In the literature of human action recognition,

Bag-of-Words (BoW) and sparse coding (SC) are widely used feature representation

schemes.

2.3.1 Bag-of-Words

The BoW model uses k-means clustering to learn the codebook and every cluster

center corresponds to a “visual word”. This method treats each video as a collection

of features and quantize them into the nearest “visual words” in terms of the Euclidean

distance, as shown in Figure 2.2.

To keep the temporal order of extracted features, existing methods based on BoW

framework will use a pyramid matching scheme which divide the features into different

segments according to spatial and temporal locations of interest points. However,

BoW model will generate large quantization error into the representation since each

feature is assigned to the nearest visual word only. In addition, computational cost is

expensive since the BoW model performs well when combined with a particular type

of nonlinear Mercer kernels, e.g. the intersection kernel or the Chi-square kernel.
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Figure 2.2: Bag-of-Words framework used for action recognition.

2.3.2 Sparse Coding

Compared to the codebook used in BoW modeling, the learned overcomplete basis set

in sparse coding is referred to as the “dictionary”, consisting of a set of representative

vectors learned from a large number of features. These representative vectors are

referred to as the “codewords” in BoW and “atoms” otherwise. Considerable amount

of quantization error is incurred by the approximation process that each sample

vector is assigned to the nearest codeword of BoW. This can be largely improved

by sparse coding that allows a linear and sparse combination of atoms to be used in

the approximation process. The calculated sparse codes for one feature corresponds

to the responses of that feature to all the atoms in the dictionary. Or put it another

way, the sparse codes represent the coefficients in the linear combination of atoms.

Let Y = [y1, . . . ,yN ]T ∈ RN×f be a set of extracted features in a f -dimensional

feature space, and X = [x1, . . . ,xN ]T ∈ RN×K be the sparse codes for these feature

vectors. The approximation process can be represented by sparse coding (Yang et al.,

2009a):

min
D,X

=
N∑
m=1

‖ym −Dxm‖2 + λ|xm|

subject to ‖dk‖ ≤ 1, ∀k = 1, 2, . . . , K

(2.1)
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Figure 2.3: Comparison of K-means and the sparse coding for feature quantization.

where D = [d1, . . . ,dK ]T ∈ RK×f is the learned overcomplete dictionary with K

atoms, and xm is the calculated sparse codes for feature vector ym. The unite L2-

norm constraint on dk is typically applied to avoid trivial solutions (Yang et al.,

2009a). Note that the L1 regularization on xm enforces xm to have a small number of

nonzero elements. In other words, instead of assigning the nearest codeword as does

in the BoW modeling, each feature vector is approximated by a linear and sparse

combination of atoms in the learned dictionary.

Figure 2.3 shows the difference of the two quantization strategies: BoW and

SC. Given the feature (yellow start) to be quantized, K-means will find the nearest

centroid (blue stars) and thus be sensitive to the variation of the locations of the

feature. For example, if we move the location of yellow star to slightly closer to

centroid 4, the feature will be quantized to centroid 4 instead of centroid 6. SC method

will find the sparse and linear combination of atoms (blue stars) to approximate the

feature, and thus be stable to the variations and generate less approximation error.

For example, if we move the location of feature slightly, it will still select the same

atoms to approximate it but with a small variations in the coefficients. Compared to

the BoW model, the SC will generate a representation that is more close the original

representation.
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Chapter 3

RGB-D Feature Extractions

3.1 Introduction

Traditional human action recognition is based on RGB videos, and spatio-temporal

feature extraction algorithms Dollar et al. (2005); Klaser et al. (2008); Scovanner

et al. (2007); Laptev and Lindeberg (2005); Willems et al. (2008b); Wang et al. (2011)

have been widely used. Recently, the release of Kinect provides depth information

(3D motion information) and makes it available to use RGB-D information for human

action recognition. In this chapter, we explore new feature extraction algorithms for

both RGB images and depth maps.

For the RGB videos, we propose two efficient spatio-temporal descriptors: the

Shape and Motion Local Ternary Pattern (SMltp) descriptor and the Center-

Symmetric Motion Local Ternary Pattern (CS-Mltp) descriptor, which can be

combined with existing feature detectors efficiently for action recognition.

SMltp contains both shape (Sltp) and motion (Mltp) descriptors. For shape

information, Sltp encodes each frame as a short string of ternary digits by a revised

Center-Symmetric Local Ternary Pattern (CS-LTP) Gupta et al. (2010), which

extracts gradient-like features along the diagonal directions. For motion information,

Mltp compares each pixel at every frame with its vertical and horizontal neighboring
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pixels in the previous and the next frames, respectively. A ternary pattern can then

be generated to describe the motion directions based on the comparisons. Given a

3D patch, SMltp describes both the shape and motion information by various local

ternary patterns.

CS-Mltp is proposed to describe gradient-like characteristics of image sequences

at both the spatial and temporal directions. The proposed CS-Mltp first compares

the diagonal difference at each frame, and then a ternary pattern will be assigned

to the difference based on the center pixel’s intensity. Compared to the SMltp, CS-

Mltp is more sensitive to motions since it compares the difference at the same spatial

locations with different temporal information.

Compared to other feature descriptors, there are several advantages of the

proposed algorithms: 1) The proposed descriptors can be combined with any feature

detectors, such as Harris3D Laptev and Lindeberg (2005) and Cuboids Dollar

et al. (2005), with state-of-the-art performance for action recognition. 2) Without

sacrificing the recognition accuracy, the proposed descriptors are much more compu-

tationally efficient than the traditional Histogram of Gradient (HOG) and Histogram

of Flow (HOF) descriptors. 3) Both descriptors can reduce the noise generated from

background to some extend and capture the most important motion characteristics.

For the depth-based feature extraction, the 3D joint skeleton Shotton et al. (2011)

will generate stable 3D joint positions. Compared to the original depth maps, the

3D joints information is more compact and discriminative. Therefore, 3D joints

information can be used as depth features. In this chapter, we introduce a pre-

processing step where a simple key frame detection method based on “joint angles”

is developed to remove frames without motion information from the whole depth

sequence, so that the signal-to-noise ratio is increased, providing more reliable inputs

to the subsequent feature representation step.
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3.2 Feature Extraction from RGB Videos

3.2.1 The SMltp Descriptor

The proposed Shape and Motion Local Ternary Pattern (SMltp) is the integration of

two feature descriptors: the shape local ternary pattern (Sltp) that describes gradient-

like features and the motion local ternary pattern (Mltp) that captures the effect of

motion on local structure.

Shape Descriptor - Sltp

The Center-Symmetric Ternary Pattern (CS-LTP) is a variant of the Center-

Symmetric Local Binary Pattern (CS-LBP) and is designed to be more robust to

Gaussian noise than previous descriptors in the LBP family. CS-LTP uses ternary

codes to represent the local gradient information by two intensity comparisons

between diagonal pixels. Mathematically, CS-LTP at the center point (nc) with a

neighboring distance (h) and threshold (T ) can be represented as Gupta et al. (2010):

CS − LTP (nc, h, T ) = f(n1 − n5) + f(n3 − n7)× 3 (3.1)

where

f(x) =


0 x < −T

2 x > T

1 else

(3.2)

and n1, n3, n5, n7 are neighboring pixels of point nc in the two diagonal directions, as

illustrated in Fig. 3.1, where h = 2.

We adopt CS-LTP as the foundation for Sltp due to its success in feature

description for 2D images. Compared to other LBP-like feature descriptors, CS-LTP

has a shorter histogram representation with 9 bins. To make the CS-LTP suitable

for the action recognition task, we make modifications in three aspects. The revised

CS-LTP is referred to as the Shape Local Ternary Pattern (Sltp).
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Figure 3.1: The CS-LTP operator for 8-neighborhood definition where nc is the
center pixel and n0-n7 are 8 neighboring pixels at distance h = 2.

First, Eq. 3.2 is revised as:

f(x) =


1 x < −max{Ts × Inc , t}

2 x > max{Ts × Inc , t}

0 else

(3.3)

such that the homogeneous regions would have zero Sltp values, and the threshold

will be dynamically depending on the gray scale value of center point. The reason

for using a dynamic threshold depending on the center pixel’s intensity (Inc) is to

ensure its sensitivity at dark regions. The value of t is assigned to be 5 (for any 256

gray scale image) and used for noise compression. We refer to the image generated

by applying Eq. 3.1 as the texture image. Figure 3.2 shows results of using different

sign functions f(x) on the original image (h = 2, i.e. a 5 × 5 patch). The texture

images 3.2c and 3.2d, calculated by Sltp, have intuitive representations of zero values

(i.e., background), compared to the texture images 3.2b calculated by CS-LTP.

Second, Sltp uses a large threshold Ts × Inc to keep only the strongest gradient

information, compared to a small and fixed value of T used in the literature. For

Sltp, only the shape information is kept for further analysis, and the locations of

shape outlines always possess large gradient values. The results of choosing various

values of Ts are shown in Figure 3.2. The large threshold Ts = 0.12 produces a
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(a) (b)

(c) (d)

Figure 3.2: Texture images (h = 2). (a) The original image. (b) The texture image
calculated by Eqs. 3.1 and 3.2 (T = 3, the same as used in Gupta et al. (2010)). (c)
The texture image calculated by Eqs. 3.1 and 3.3 (Ts = 0.03). (d) Texture image
calculated by Eq. 3.1 and 3.3 (Ts = 0.12).

clean image, as shown in Figure 3.2d, while the small threshold Ts = 0.03 or T = 3

introduces many noisy points which makes the foreground pixels less distinctive, as

shown in Figures 3.2b and 3.2c.

Third, at the step of histogram representation of Sltp, it gives equal weight to every

code generated by Eq. 3.1, and thus 9 bins in total are used as the unique feature

vector. The histogram of original CS-LTP removes the bin of code (1,1) calculated

by Eq. 3.2 (corresponding to the code (0,0) calculated by Eq. 3.3), claiming that

this code is less reliable than the other codes Gupta et al. (2010). However, our

experimental results indicate that equal weight to every code actually generates the

highest accuracy. Since Sltp uses a large and dynamic threshold, the homogeneous

region is less sensitive to noise and much more reliable than Gupta et al. (2010).

Furthermore, by keeping the zero value bin (corresponding to code (0,0) calculated

by Eq. 3.3), a patch can be defined as non-informative if the counts of this bin is

high.
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Figure 3.3: Encoding process of Mltp. Ni and N ′i are the calculated mean
neighboring pixel values at the i-th location centered at nc of the previous frame
and the next frame, respectively. D3 and D′3 are distances between Ni (or Ni) and
the center pixel intensity of the current frame (Inc).

In order to give a short representation of extracted features, the Sltp descriptor

counts the occurrence of the 9 codes within the extracted 3D patches and gets a 9-

bin histogram representation. To keep the spatial and temporal information to some

extend, every 3D patch detected from the video sequence is further divided into a

grid of nσ × nσ × nτ cells. For each cell, a 9-bin histogram of Sltp can be computed.

The normalized histograms are then concatenated into Sltp with length of 9n2
σnτ .

Motion Descriptor-Mltp

Motion Local Ternary Pattern (Mltp) is a new feature descriptor used for capturing

motion information by combining the effective description properties of LTP with the

intensity similarity of the neighboring pixels among adjacent frames. For any pixel

(x, y) at frame t, motion will cause the intensity change of its neighboring pixels at

the previous frame t−∆t and the next frame t+ ∆t. Mltp is designed to capture the

effect of motion at local structure.

Details of the process of Mltp is illustrated in Figure 3.3(a). The first step of

Mltp is to calculate the gradient information among frames in 8 directions. Given

a pixel nc, its neighboring pixels can be defined as n0 ∼ n3 and n4 ∼ n7, referred

to as the inner and outer neighbors, receptively. To reduce the effect of noise, the
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mean values of the four inner and outer neighbors, Ni = 0.55 × Ini
+ 0.45 × Ini+4

,

i = 0, 1, 2, 3, are calculated and used as new intensities for the neighborhood. Note

that parameters 0.55 and 0.45 are empirically selected, and various ratios between

them do not affect much the recognition result. The gradient information are simply

defined as Di = Ni−Inc for the previous frame (t−∆t) and D′i = N ′i−Inc for the next

frame (t+ ∆t). In total, there are 8 comparisons that correspond to 8 directions. In

other words, the intensity differences between the neighborhood pixels and the center

pixel at frame (t) are used as the spatio-temporal gradient information. The second

step of Mltp is to assign a ternary pattern to the comparison results:

Mltp =
3∑
i=0

f(|Di| − |Di|′)3i (3.4)

f(x) =


1 x < −max{Tm × Inc , T0}

2 x > max{Tm × Inc , T0}

0 else

(3.5)

where Tm is the threshold and need to be selected. Similar to Eq. 3.3, the dynamic

threshold is used for sensitivity purpose. The value of T0 is assigned to be 5, the same

as that in Sltp.

Each pixel within a video can be assigned its Mltp value by Eq. 3.4. To intuitively

show the result of Mltp, we use the action “hand waving” as an example to apply Mltp

on nearby frames as shown in Figure 3.4. For the action “hand waving”, it contains

two basic movements: hands up and hands down as shown in Figures 3.4(a) and 3.4(c)

respectively. After getting the Mltp values for the current frame (the center images

in Figure 3.4(a) and 3.4(c)), we define three motion status for illustration purpose.

Here, black or value 0 is used to represent pixels with no motion, gray or value 125 is

used to represent locations where motion is caused by the intensity difference between

the current frame and the next frame, and white or value 255 is used to represent

pixels where motion is caused by the difference between the current frame and the
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previous frame. As shown in Figure 3.4(c) and 3.4(d), the two opposite movements

are distinctively described since their gray and white pixels distributed differently.

Note that pixels with no motions are well captured and assigned with zero values,

such as all the background pixels, as well as body parts with no contribution to the

motion.

Although Mltp is designed to reflect the directions of a motion among nearby

frames, it is also possible to reveal the magnitude of a motion to some extend . For

example, a value 40 = 1 × 30 + 1 × 31 + 1 × 32 + 1 × 33 calculated from Eq. 3.4,

means f(x) is equal to 1 at every bit. In that case, the center pixel is more similar to

the four neighboring pixels (N0 ∼ N3) in the previous frame, which means a motion

exists between the current frame and the next frame at that pixel location. Similarly,

a value 2 = 2× 30 + 0× 31 + 0× 32 + 0× 33 indicates the center pixel is more similar

to the pixel N ′0 at the next frame and no motion detected from the rest bits, which

reveals a slight motion already occurred.

We further construct a histogram of Mltp as a motion feature descriptor. Various

values of Mltp are mapped onto bins in an unconventional manner, which reduces the

number of possible bins from 34 = 81 to 16. Figure 3.3(b) gives an example where

code 2011 is calculated by Mltp. We first divide this four digits into two strings,

20 and 11, respectively. For each string, it can be further separated into two parts:

one part indicates positions of “2” and the other part indicates positions of “1”,

i.e., 20 = (10, 00) and 11 = (00, 11). For each part, 4 bins are enough to uniquely

represent the possible values. In total, histogram with 8 bins is used for each short

string. Finally, concatenating the two histograms generated by short strings, a full-

length histogram of 2× 8 = 16 bins is constructed. For each code generated by Mltp,

it can be represented by 4 bins on the 16-bin histogram, i.e., the bins (3, 5, 9, 16) in

the Figure 3.3(b).

Similar to the Sltp descriptor, the Mltp descriptor divides the extracted 3D patches

into a grid of nσ × nσ × nτ cells as well. For each cell, a 16-bin histogram of Mltp

can be computed. Then for each 3D patch, a normalized histogram with length of
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16n2
σnτ are generated as Mltp descriptor vector. Note that the SMltp descriptor

is a normalized histogram with length of 25n2
σnτ formed by concatenating the Sltp

descriptor and Mltp descriptor.

Although Mltp is inspired by the work of Yeffet and Wolf Yeffet and Wolf (2009),

it outperforms the previous work in the field of action recognition in three aspects.

1) The pixel-wise comparison, as compared to the patch-wise comparison in Yeffet

and Wolf (2009), generates clear motion image with thin and smooth edges, making

the detected/sampled motion patches distinctive even at smaller scales. 2) Mltp

generates a 16-bin histogram, much shorter than the 512-bin histogram in Yeffet and

Wolf (2009), and thus can be used for both local and global representations. 3) Mltp

uses a dynamic threshold that ensures the capture of motion information even in dark

regions. Due to these advantages, Mltp achieves much higher recognition rates on all

tested datasets than Yeffet and Wolf (2009) does.

3.2.2 The CS-Mltp Descriptor

CS-Mltp is a new feature descriptor used for describing motion by combining the

effective description properties of Local Binary Pattern Heikkila et al. (2009) with

the intensity similarity of the neighboring pixels among adjacent frames. Figure ??

shows the details of CS-Mltp using an 8-neighbor definition. For an image patch

centered at nc, pixels n0 ∼ n7 are the 8 neighbors. The radius of the neighborhood

R is defined as the distance between the center pixel and n0, i.e., 2, in Figure ??. At

frame t, the CS-Mltp feature of the center pixel nc is calculated by two steps.

First, at each frame t, the difference of two pixels at opposite sides around the

center pixel nc is calculated as Ni(t) = Ini
(t)− Ini+L/2

(t) (i = 0, . . . , L/2− 1), where

Ini
(t) and Ini+L/2

(t) correspond to the gray-scale values of the center-symmetric pairs

of L(L = 8) equally spaced pixels on a circle of radius R Heikkila et al. (2009) at

frame t. This step is to obtain the gradient-like features of every frame, i.e., the

gradient at four directions are evaluated. Compared to the original pixel intensity,
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(a) (b)

(c) (d)

Figure 3.4: Mltp results on nearby frames from the KTH action dataset Schuldt
et al. (2004). (a) Three subsequent frames from the beginning of hand waving motion.
(b) Motion image calculated by Mltp on (a). The gray pixels (with intensity value
125) that have more similar intensity values as pixels in the previous frame than
pixels in the next frame in (a), and thus motion is caused by the difference between
the current frame and the next frame. The white pixels (with intensity value 255)
indicate locations where motion is caused by the difference between the current frame
and the previous frame, and black pixels indicate locations with no motion. (c) Three
subsequent frames from the end of hand waving motion. (d) Motion image calculated
by Mltp on (c).
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the gradient-like features are more discriminative and less sensitive to illumination

changes.

Second, in order to further extract the motion characteristics, CS-Mltp compares

the gradient-like features at the temporal direction by local ternary pattern. The

differences between the previous frame t−∆t and the current frame t are calculated

as Dis, and the differences between the next frame t+ ∆t and the current frame t are

calculated as D′i. Then a ternary pattern is assigned to each comparison given by:

CS-Mltp(i) = f(|Ni(t−∆t)−Ni(t)| − |Ni(t)−Ni(t+ ∆t|)

= f(Di −D′i) ∀i = 0, . . . , L/2− 1
(3.6)

f(x) =


−1 x < min{−Inc × Tcs,−T0}

1 x > max{Inc × Tcs, T0}

0 else

(3.7)

where Tcs is the threshold and the operator |m| is to calculate the absolute value of

m. Since the threshold is adaptively related to the pixel intensity, CS-Mltp is capable

of describing motion information with wide intensity range. To reduce the sensitivity

on dark region with small Inc , a fixed threshold T0 is also set up. The parameter

T0 is assigned empirically to be 5 (for any 256-level gray scale images) obtained

under extensive experimental study. Therefore, intensity changes larger than 5 will

be considered for motion patterns and assigned as 1 or −1 by Eq. 3.7.

Similar to the SMltp descriptor, we further construct a histogram of CS-Mltp as

a motion feature descriptor. Various values of CS-Mltp are mapped onto bins in an

unconventional manner, which reduces the number of possible bins from 34 = 81 to

16. Figure 3.5b gives an example where (−1)011 is calculated by Eq. 3.6. For each

code generated by CS-Mltp, it can be represented by 4 bins on the 16-bin histogram,

i.e., the bins (3, 5, 9, 16) in Figure 3.5b.

For pixels within an extracted 3D patch from feature detection, the CS-Mltp

values can be calculated according to Eq. 3.6. For any 3D patch, we then divide it
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Figure 3.5: The Center-Symmetric Motion Local Ternary Pattern. The first step of
CS-Mltp is to calculate the center symmetric intensity variations at four directions
within local region for every frame. The second step of CS-Mltp is to describe the
motion information among frames by local ternary patterns.

into nσ × nσ × nτ cells, each of which can be represented by a 16-bin histogram by

CS-Mltp. We then concatenate the normalized histograms into a feature vector at

the length of 16n2
σnτ . This histogram representation is referred to as the CS-Mltp

feature.

3.3 Feature Extraction from Depth Maps

Given a depth image, 20 joints of the human body can be tracked by the skeleton

tracker Shotton et al. (2011). The names of the 20 joints are marked in Figure 3.6a.

Samples of depth maps from the MSR-Action 3D dataset Li et al. (2010) and their

corresponding skeletons are shown in Figure 3.7. Each joint is marked as a red

dot, and the skeleton is formed by blue lines that connect two joints. At frame

t, the position of each joint i is uniquely defined by three coordinates pi(t) =

(xi(t), yi(t), zi(t)) and can be represented as a 3-element vector.

Compared to the original depth maps, the 3D joint positions are much more

compact since each frame can be represented by the 20 joints while originally there

are large number of pixels. However, the 3D joint positions are not as stable as the

relative joint positions Wang et al. (2012b). Instead of using the positions of joints
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Figure 3.6: Locations and names of the 20 joints and angles formed by concatenated
joints. (a) The names of the 20 joints used in the skeleton tracker Shotton et al.
(2011). (b) The joint angles (from A1 ∼ A20) used for key frames estimation where
three joints form one angle, e.g., angle A1 is formed by joints “head”, “shoulder
center”, and “shoulder right”.

Figure 3.7: Depth maps with 20 joints. Locations of joints are marked as red dots.
Connected joints are marked by blue lines.
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directly, we adopt the pairwise relative position Wang et al. (2012b); Yang and Tian

(2012) as more discriminative and intuitive 3D joint features. At frame t, the 3D

joint feature for joint i, (i = 1, . . . , 20) is defined as:

Pi(t) = {pi(t)− pj(t)|∀j 6= i} (3.8)

Note that both Pi and pi are functions of time, and Pi is a 57-element vector. For

any depth map sequence, there will be 20 joint features from P1 to P20.

In reality, the recording time of cameras usually last longer than the duration

of actions. In other words, frames captured at the beginning or end usually contain

almost no motion information. Figure 3.8 shows the extracted 20 joints for a sequence

of action “draw tick”. In this figure, the first 8 frames together with the last 5 frames

contain no obvious motion postures and contribute nothing to the representation of

action “draw tick”. Yet, these frames cover more than 1/3 of the sequence length,

and thus the significance of frames with representative postures is weakened. Or put

it another way, the signal-to-noise ratio of the entire sequence is low since the idle

frames do not carry any information (i.e., signal).

We propose a simple key frame detection method as a pre-processing step that

takes advantage of the so-called “joint angles” (angles formed by concatenated joints)

to remove frames with limited motion postures. Here the key frames are defined as

frames containing important postures that relate to the representation of actions.

Locations of the 20 joint angles are shown in Figure 3.6b. For example, A1 is the

angle formed by three joints: “head”, “shoulder center”, and “shoulder left”. Taking

the first frame as a reference, degrees of body movements for the subsequent frames

can be measured by the angle difference. For the angle formed by joints i, j, and k,

its cosine value can be determined as:

cos(A) =
pij � pjk
‖pij‖‖pjk‖

(3.9)
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Figure 3.8: Key frame extraction by setting up the thresholds. For every red dot,
its x value shows the current frame and the y value shows the calculated L2 norm
value. Key frames that contain large motion information are detected.

where pmn = pm − pn (m,n = 1, . . . , 20). At each frame t, 20 cosine values

corresponding to the 20 angles can be calculated by Eq. 3.9 and form a vector as

A(t) = [cos(A1(t)), . . . , cos(A20(t))]. By calculating the L2 norm of A(t) − A(1),

the motion variation between the current frame t and the reference frame can be

evaluated. Note that the first frame is always considered as the reference frame.

Detected frames with relatively large motion variations are considered as key frames.

For a sequence with T frames in total, the set of key frames from Ts to Te is calculated

by two predefined thresholds ts and te, as illustrated in Eq. 3.10. An example of the

key frames extraction is shown in Figure 3.8, which plots the values of the calculated

L2 norm of A(t) − A(1) at every frame. The bigger the value, the larger the body

movements in that frame. By removing the frames with low values of the L2 norm,

the key frames can be determined.

Ts = min{t} ∀t ∈ (1, T ] : ‖A(t)− A(1)‖2 > ts

Te = T −max{t} ∀t ∈ [0, Ts) : ‖A(T − t)− A(1)‖2 < te

(3.10)

Feature extraction based on key frames instead of the whole sequence has exhibited

some benefits. First, extracted features are more discriminative and intuitive since

idle frames that present no useful information are removed. Second, extracted features

are less sensitive to the time misalignment. For example, time shift of 7 frames of
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the sequence in Figure 3.8 would not influence the result no matter how the feature

is represented. Finally, storage space of features is much reduced. Hereinafter, the

extracted relative 3D joint positions by Eq. 3.8 on detected key frames are referred

to as the 3D joint features.
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Chapter 4

Feature Representation for Depth

Maps

4.1 Introduction

For the RGB videos, each frame contain many texture information and spatio-

temporal feature detectors and descriptors can be well applied. In addition, due

to the large number of features, the classic bag-of-words representation is widely used

for feature representation. Different from the RGB sequences, there are no texture

information in depth maps which record the depth information only. Therefore, local

spatio-temporal feature extraction algorithms are not suitable for depth maps. As

described in Chapter 3, the 3D joint skeletons Wang et al. (2012b) are frequently used

as features. Due to the possible noise, the extracted 3D joint positions are not stable,

which require a strong representation scheme for better performance. Although the

Bag-of-Words representation based on K-means clustering can serve the purpose,

it discards all the temporal information and large vector quantization error can be

introduced by assigning each 3D joint feature to its nearest “visual word”.

Recently, Yang et al. Yang et al. (2009a) showed that classification accuracies ben-

efit from generalizing vector quantization to sparse coding. However, discrimination

37



of the representation can be compromised due to the possible randomly distributed

coefficients solved by sparse coding Fang et al. (2012). Therefore, it is necessary

to design new sparse coding algorithms which can increase the discrimination power

of the feature representation so that good classification accuracy can be expected.

In this chapter, we propose a new Dictionary Learning (DL) method which aims to

learn a discriminative dictionary for feature representation. The proposed DL method

aims to learn an overcomplete set of representative vectors (atoms) so that any input

feature can be approximated by linear combination of these atoms. The coefficients

for the linear combination are referred to as the “sparse codes”.

Recent trend on sparse coding is to develop “discriminative” dictionaries to solve

classification problems. For example, Zhang and Li Zhang and Li (2010) proposed a

discriminative K-SVD method by incorporating classification error into the objective

function and learned the classifier together with the dictionary. Jiang et al. Jiang

et al. (2011) further increased the discrimination by adding a label consistent term.

Yang et al. Yang et al. (2011) proposed to add the Fisher discrimination criterion

into the dictionary learning. For these methods, labels of inputs should be known

before training. However, this requirement cannot be satisfied in our problem. Since

different actions contain shared local features, assigning labels to these local features

would not be proper.

The process that assigns each feature with coefficients according to a learned

dictionary can be defined as “quantization”, following the similar definition in the

field of image classification. As shown in Figure 4.1, different quantization methods

will generate different representations. Atoms from two classes are marked as “circles”

(class A) and “triangles” (class B), respectively. We use two similar features to be

quantized (both from class A) as an example to illustrate the coefficient distribution

from various quantization methods. In k-means, features are assigned to the nearest

atoms, which is sensitive to the variations of features. In the sparse coding with

l1 norm, features are assigned to atoms with lowest reconstruction error, but the

distributions of selected atoms can be random and from different classes Fang et al.
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(b) Sparse Coding (SC)

(c) SC + group sparsity (d) SC+group sparsity+geometry constraint

(a) K-means

Class A Class B Similar features to be quantized (class A)

Figure 4.1: Illustration of different feature quantization strategies. (a) K-means.
(b) Sparse coding. (c) Sparse coding with group sparsity constraint. (d) Proposed
method (sparse coding with group sparsity and geometry constraint).

(2012). In the spare coding with group sparsity, features will choose atoms from the

same group (class), but similar features may not choose the same atoms within the

group. In our method, features from the same class will be forced to choose atoms

within the same group, and the selections of atoms also relate to the similarity of

features.

Instead of simultaneously learning one overcomplete dictionary for all classes, we

learn class-specific sub-dictionaries to increase the discrimination. In addition, the

l1,2-mixed norm and geometry constraint are added to the learning process to

further increase the discriminative power. Existing class-specific dictionary learning

methods Ramirez et al. (2010); Kong and Wang (2012) are based on l1 norm which

may result in randomly distributed coefficients Fang et al. (2012). In this chapter,

we add the group sparsity regularizer Zou and Hastie (2005), which is a combination

of l1- and l2- norms to ensure features are well reconstructed by atoms from the same

class. Moreover, the geometry relationship among local features are incorporated
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during the process of dictionary learning, so that features from the same class with

high similarity will be forced to have similar coefficients.

4.2 Background

As discussed in Chapter 2, given a dataset Y = [y1, . . . ,yN ], sparse coding is a process

to solve the optimization problem as:

min
D,X

{
N∑
i=1

‖yi −Dxi‖22 + λ|xi|1

}
(4.1)

where matrix D = [d1, . . . ,dK ] is the dictionary with K atoms and elements in matrix

X = [x1, . . . ,xN ] are coefficients. Different from the K-means clustering that assigns

every data with its nearest cluster center, sparse coding uses a linear combination

of atoms in the dictionary D to reconstruct the data, and only a sparse number of

atoms have nonzero coefficients.

To increase the discriminative power of dictionary, class-specific dictionary learn-

ing methods have been proposed that learn a sub-dictionary for each class Ramirez

et al. (2010); Kong and Wang (2012). For example, Eq. 4.1 can be rewritten as:

min
D,X

C∑
i=1

{
‖Yi −DiXi‖2F + λ

Ni∑
j=1

|xij|1

}
(4.2)

where Yi = [yi1, . . . ,y
i
Ni

] and Xi = [xi1, . . . ,x
i
Ni

] are the dataset and coefficients for

class i, respectively. Matrix Di is the learned sub-dictionary for class i.

Since the sub-dictionaries are trained independently, it is possible that related

atoms among those sub-dictionaries are generated. In this case, the sparse

representation will be sensitive to the variations among features. Even though an

incoherence promoting term
∑

i 6=j ‖DT
i Dj‖2F can be added to the dictionary learning,

correlated atoms still exist Ramirez et al. (2010).
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4.3 Group Sparsity and Geometry Constrained

Dictionary Learning

The process that generates a vector representation for any depth sequence with a spe-

cific number of extracted 3D joint features is referred to as “feature representation”.

In this chapter, a class specific dictionary learning method based on group sparsity

and geometry constraint is proposed, referred to as DL-GSGC.

Group sparsity encourages the sparse coefficients in the same group to be zero

or nonzero simultaneously Zou and Hastie (2005); Fang et al. (2012); Bondell and

Reich (2008). Adding the group sparsity constraint to the class-specific dictionary

learning has three advantages. First, the intra-class variations among features can

be compressed since features from the same class tend to select atoms within the

same group (sub-dictionary). Second, influence of correlated atoms from different

sub-dictionaries can be compromised since their coefficients will tend to be zero or

nonzero simultaneously. Third, possible randomness in coefficients distribution can

be removed since coefficients have group-clustered sparse characteristics. For the

proposed DL algorithm, the Elastic net regularizer Zou and Hastie (2005) is added

as the group sparsity constraint since it has automatic group effect. The Elastic net

regularizer is a combination of the l1- and l2 norms. Specifically, the l1 penalty

promotes sparsity, while the l2 norm encourages the grouping effect Zou and Hastie

(2005).

Given a learned dictionary that consists of all the sub-dictionaries and an input

feature from class i, it is ideal to use atoms from the i-th class to reconstruct it. In

addition, similar features should have similar coefficients. Inspired by the work of Gao

et al. Gao et al. (2010), we propose to add geometry constraint to the class-specific

dictionary learning process.

Let Y = [Y1, . . . ,YC ] be the dataset with N features for C classes, where Yi ∈

Rf×Ni is the f -dimensional dataset from class i. DL-GSGC is designed to learn a

discriminative dictionary D = [D1, . . . ,DC ] with K atoms in total (K =
∑C

i=1Ki),
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where Di ∈ Rf×Ki is the class-specified sub-dictionary associated with class i. The

objective function of DL-GSGC is:

min
D,X



C∑
i=1

{‖Yi −DXi‖2F + ‖Yi −D∈iXi‖2F+

‖D/∈iXi‖2F + λ1
∑Ni

j=1
|xij|1 + λ2‖Xi‖2F}

+ λ3

J∑
i=1

N∑
j=1

‖αi − xj‖22wij


subject to ‖dk‖22 = 1, ∀k = 1, 2, . . . , K

(4.3)

where X = [X1, . . . ,XC ] represents the coefficients matrix and coefficients vector

for the j-th feature in class i is xij. The value D∈i is set to be [0, . . . ,Di, . . . ,0]

with K columns and the value D/∈i is calculated as D − D∈i. Term ‖Yi − DXi‖2F
represents the minimization of reconstruction error using dictionary D. The terms

‖Yi − D∈iXi‖2F and ‖D/∈iXi‖2F are added to ensure that features from class i can

be well reconstructed by atoms in the sub-dictionary Di but not by other atoms

belonging to different classes.

The group sparsity constraint is represented as λ1|xij|1+λ2‖xij‖22, and the geometry

constraint is represented as λ3
∑J

i=1

∑N
j=1 ‖αi − xj‖22wij. In the geometry constraint,

elements in vector αi are calculated coefficients for “template” feature yi. Here,

templates are small sets of features randomly selected from all classes. In total,

there are J templates used for similarity measure. Especially, coefficients αi for the

template yi belonging to class m can be calculated by Eqs. 4.4 and 4.5:

β = min
β
‖yi −Dmβ‖22 + λ1|β|1 + λ2‖β‖22 (4.4)

αi = [ 0︸︷︷︸
K1

, . . . , 0︸︷︷︸
Km−1

β, 0︸︷︷︸
Km+1

, . . . , 0︸︷︷︸
KC

] (4.5)
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In αi, only coefficients corresponding to the atoms from the same class m are nonzero.

The weight wij between the query feature yj and template feature yi is defined as:

wij = exp(−‖yi − yj)‖22/σ) (4.6)

4.3.1 Optimization Step - Coefficients

The optimization problem in Eq. 4.3 can be iteratively solved by optimizing over D

or X while fixing the other.

The Eq. 4.3 can be rewritten as:

min
D,X



C∑
i=1

{

∥∥∥∥∥∥∥∥∥∥
Yi −DXi

Yi −D∈iXi

D/∈iXi

∥∥∥∥∥∥∥∥∥∥

2

F

+ λ1

Ni∑
j=1

|xij|1

+ λ2‖Xi‖2F}+ λ3

J∑
i=1

N∑
j=1

‖αi − xj‖22wij


(4.7)

After fixing the dictionary D, the coefficients for the j-th feature in class i, xij, can

be calculated by solving the following convex problem:

min
xij



∥∥∥∥∥∥∥∥∥∥∥∥∥

yij −Dxij

yij −D∈ix
i
j

0−D/∈ix
i
j

0−
√
λ2Ix

i
j

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ1|xij|1

+ λ3

J∑
m=1

‖αm − xij‖22wmj


(4.8)

where I ∈ RK×K is an identity matrix. To remove the influence of shared features

among classes, we use templates belonging to the same class as the input feature for
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similarity measure at this stage. Therefore, the objective function becomes:

min
xi
j

{∥∥sij −D′ix
i
j

∥∥2
2

+ λ1|xij|1 + λ3L(xij)
}

(4.9)

where

sij = [yij; y
i
j; 0; . . . ; 0︸ ︷︷ ︸

f+K

] (4.10)

D′i = [D; D∈i; D/∈i;
√
λ2I] (4.11)

L(xij) =

Ai∑
m=1

‖αm − xij‖22wmj (4.12)

According to Eqs. 4.5 and 4.6, we know that term L(xij) encourages the calculated

coefficients to have zeros at atoms not from the same class as the input feature. In

total, there are Ai templates used to calculate the unknown coefficient xij.

Since the analytical solution can be calculated for Eq. 4.9 if the sign of each

element in xij is known, the feature-sign search method Lee et al. (2007) can be used

to obtain the coefficients. However, the augmented matrix D′i needs to be normalized

before using the feature-sign search method. Let D′i be the l2 column-wise normalized

version of D′i. By simple derivations, we know that D′i = (
√

2 + λ2)D′i. Therefore,

Eq. 4.9 can be rewritten as:

min
xi
j


∥∥sij −D′ix

i
j

∥∥2
2

+
λ1√

2 + λ2
|xij|1+

λ3
2 + λ2

Ai∑
m=1

‖
√

2 + λ2αm − xij‖22wmj

 (4.13)

where xij =
√

2 + λ2x
i
j. Therefore, the feature-sign search method can be applied to

Eq. 4.13 to obtain xij, and the coefficients for input feature yij should be 1√
2+λ2

xij.
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To simplify notation, we present the following equivalent optimization problem:

min
x
f(x) ≡ h(x) + λ|x|1

h(x) = ‖s−Bx‖22 + γ

Ai∑
m=1

‖βm − x‖22wm
(4.14)

where B = D′i, λ = λ1√
2+λ2

, γ = λ3
2+λ2

and βm =
√

2 + λ2αm. Then the first derivative

of h(x) over x can be represented as:

∇h(x) =− 2BT s− 2γ

Ai∑
m=1

wmβm

+ 2(BTB + γ

Ai∑
m=1

wmI)x

(4.15)

The feature-sign search algorithm Lee et al. (2007) is designed to search the

“signs” of the coefficients xi, and then the results can be obtained by solving

unconstrained quadratic optimization problem (QP). In feature-sign search, an

“active set” containing potentially nonzero coefficients and their signs is maintained

and the solution is updated using an efficient discrete line search.

Details of coefficients calculation using the feature-sign search method Lee et al.

(2007) are provided in Algorithm 1.

According to the Algorithm 1, solutions for Eq. 4.13 can be obtained as xij. The

coefficients should be xij = 1√
2+λ2

xij.

4.3.2 Optimization Step - Dictionary

Fixing the coefficients, atoms in the dictionary can be updated. In this chapter, the

sub-dictionaries are updated class by class. In other words, while updating the sub-

dictionary Di, all the other sub-dictionaries will be fixed. Terms that are independent

of the current sub-dictionary can then be omitted from optimization, and the objective
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Algorithm 1 Coefficients Calculation

Input: β = [β1, . . . ,βAi
], W = [w1, . . . , wAi

], λ, γ, B, s, and h(x)
Output: xT = [x1, . . . , xK ]

1: Step 1: Initialization
2: x = 0, θ = 0, and active set H = {}, where θi = {1, 0,−1} denotes sign(xi).
3: Setp 2: Active Set Update
4: From zero coefficients of x, choose the one with the maximum absolute value of

the first derivative: i = arg maxi |∇h(xi)|
5: if ∇h(xi) > λ then
6: set θi = −1, H = {i} ∪ H
7: end if
8: if ∇h(xi) < −λ then
9: set θi = 1, H = {i} ∪ H
10: end if
11: Setp 3: Feature-sign step
12: Let B̂ be a submatrix of B that contains only the columns corresponding to the

active set H. Let x̂, β̂m, and θ̂ be subvectors of x, βm, and θ corresponding to
the active set H.

13: Compute the analytical solution according to Eqs. 4.14 and 4.15: x̂new = (B̂T B̂+

γ
∑Ai

m=1wmI)−1(B̂T s + γ
∑Ai

m=1wmβ̂m −
λθ̂
2

)
14: Perform a discrete line search on the closed line segment from x̂ to x̂new: check

the objective value at x̂new and all points where any coefficients changes sign; and
then update x̂ to the point with the lowest objective value.

15: Remove zero coefficients of x̂ from the active set H and update θ = sign(x).
16: Step 4: Check the Optimality Conditions
17: if ∇h(xj) + λsign(xj) = 0, ∀xj 6= 0 then
18: if |∇h(xj)| ≤ λ, ∀xj = 0 then
19: Return x as solution
20: else
21: Go to Step 2
22: end if
23: else
24: Go to Step 3
25: end if
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function when updating the sub-dictionary Di can be given as:

min
Di

{
‖Yi −DXi‖2F + ‖Yi −D∈iXi‖2F

}
(4.16)

To solve Eq. 4.16, atoms in the sub-dictionary Di are updated one by one. Let dik be

the k-th atom in the sub-dictionary Di. When updating atom dik, all the rest atoms

in D are fixed, and the first derivative of Eq. 4.16 over dik can be represented as:

∇(f(dik)) = (−4Yi + 2MXi + 4dikxi(k))x
T
i(k) (4.17)

where xi(k) is the r-th row (r =
∑i−1

j=1Kj + k) in matrix Xi ∈ RK×Ni , and it is

corresponding to the coefficients contributed by the atom dik. Matrix M is of the

same size as D and is equal to M1 + M2. Here M1 is the matrix after replacing the

r-th column in D with zeros, and M2 is the matrix after replacing the r-th column

with zeros in D∈i. The updated atom dik can be calculated by setting Eq. 4.17 to

zero, which is:

dik = (Yi − 0.5MXi) xTi(k)/‖xi(k)‖22 (4.18)

4.3.3 Representation

After constructing the discriminative dictionary D, the coefficients for a given feature

y can be calculated by solving the following optimization problem:

min
x
‖y −Dx‖22 + λ1|x|1 + λ2‖x‖22 + λ3

J∑
i=1

‖αi − x‖22wi (4.19)

Similar to the derivation in Sec. 4.3.1, the feature-sign search method Lee et al. (2007)

can be used to obtain the coefficients.
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Chapter 5

Application 1: Single View Human

Action Recognition

5.1 Introduction

The vision-based human action recognition has become an important research topic

due to its promise in many application domains, including visual surveillance, video

indexing, human-computer interaction, etc. In human action recognition, the common

approach is to extract image features from the video, based on which a corresponding

action class label can be assigned Poppe (2010). However, the large variations in

performing actions, different environmental settings, and possible camera movements

make the human action recognition problem very challenging.

In the literature, local spatio-temporal features have been successfully used for

human action recognition I.Laptev et al. (2008); Schuldt et al. (2010). Such features

describe the observed video sequence as a collection of local patches, and are less

sensitive to noise and partial occlusion. Different from global features that require

pre-processing methods such as background subtraction and tracking, local spatio-

temporal features are extracted directly from videos and therefore do not require pre-

processing methods. Feature detection and feature description are two main steps
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in extracting local spatio-temporal features. Many feature detectors Dollar et al.

(2005); Huang et al. (2007); Laptev and Lindeberg (2005); Oikonomopoulos et al.

(2006); Willems et al. (2008b); Wong and Cipolla (2007) and descriptors I.Laptev

et al. (2008); Willems et al. (2008b); Klaser et al. (2008); Laptev and Lindeberg

(2004); Scovanner et al. (2007) have been proposed in the past years. The feature

detector aims to detect the representative interest points and scales by solving an

objective function. The shape and motion characteristics of the detected 3D patches

(i.e., local regions surrounding interest points) can be further described by feature

descriptors.

However, limitations exist in current local spatio-temporal detectors and descrip-

tors. For example, their performances are sensitive to the selection of datasets.

Some local spatio-temporal features perform well on simple dataset but poor on some

challenging realistic datasets Wang et al. (2009). In addition, the computational cost

is expensive for some local spatio-temporal features. Especially, when using dense

sampling Wang et al. (2009) to extract features, a very large number of features (15-

20 times more than features generated by feature detectors such as Cuboid Dollar

et al. (2005) and Harris3D Laptev and Lindeberg (2005)) will be generated.

In this chapter, we apply the proposed Shape and Motion Local Ternary Pattern

(SMltp) descriptor to overcome the above-mentioned limitations and can be easily

combined with local feature detectors for human action recognition. SMltp contains

both shape (Sltp) and motion (Mltp) descriptors. For shape information, Sltp encodes

each frame as a short string of ternary digits by a revised Center-Symmetric Local

Ternary Pattern (CS-LTP) Gupta et al. (2010), which extracts gradient-like features

along the diagonal directions. For motion information, Mltp compares each pixel at

every frame with its vertical and horizontal neighboring pixels in the previous and

the next frames, which reflect both the directions and magnitude of a motion among

nearby frames.

Compared with current local spatio-temporal descriptors, the proposed SMltp

descriptor has three advantages. First, it is computationally efficient by assigning
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Figure 5.1: Example of patch removal for dense sampling. (a) The original image
with detected patches by dense sampling marked by different colors. (b) The original
image with detected patches after using patch removal. (c) Image generated by adding
all the detected patches in (a) together. (d) Image generated by adding all the selected
patches in (b).

ternary patterns to the local comparison results among frames. Second, it helps

to dramatically remove the non-informative features that in turn further improves

the computational efficiency without sacrificing the recognition accuracy. Third,

it consistently performs superior to the current spatio-temporal descriptors on the

evaluated public datasets, and even outperforms other more complicated algorithms

for action recognition.

5.1.1 Non-informative Patch Removal

As shown in Figures 3.4b and 3.4b, regions with little motion information contain

large number of (0000)-valued pixels. Patches from these regions are determined

as “non-informative” since they are useless for action recognition. Let r = Nd/N

be the ratio between the number of zero-valued code (Nd) and the total number of

pixels in the extracted 3D patches (N). The non-informative patches are the ones

with r > 0.9. These patches are deleted for further analysis, reducing the number of

patches generated by feature detectors to a great extent. Figure 5.1 shows the results
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before and after the non-informative patches are removed. Though dense sampling

generate many useless patches, the proposed patch removal scheme can dramatically

reduce the number of detected patches, and all the kept patches are more related to

the motions.

It should be noted that, for local interest point detection, around 10% extracted

patches will be removed as non-informative, and for dense sampling, around 60%

extracted patches will be selected as non-informative.

For dense sampling, the number of extracted patches also depend on how many

spatial and temporal scales adopted. For example, in Wang et al. (2009), 8 spatial

scales and 2 temporal scales with 50% overlapping is used for dense sampling. The

minimum size of a 3D patch is 18 × 18 pixels and 10 frames. Multiple scales are

spaced by a factor of
√

2. For SMltp, the same temporal scales at 10 and 14 frames

are used. However, for low resolution videos (such as KTH dataset Schuldt et al.

(2004) and Weizmann dataset Gorelick et al. (2007)), only 3 spatial scales starting

from 24× 24 with a scale factor of
√

2 are used. For high resolution videos (such as

the UCF dataset Rodriguez et al. (2008)), 3 spatial scales starting from 48× 48 with

the same factor as
√

2 are used. In this manner, the number of extracted patches by

dense sampling will be reduced dramatically and be close to the number of patches

(or interest regions) generated using feature detectors.

Table 5.1 compares the number of extracted features (after patch removal) by

various feature detectors on the KTH dataset and the UCF dataset respectively.

In addition, the number of patches generated by the original dense sampling used

in Wang et al. (2009) is listed in the table for comparison purpose. For both the

evaluated datasets, the patch removal scheme makes the detected number of features

close to 20 ∼ 40 times less than the original dense sampling, and this number is even

less than the number of features generated by feature detectors on the UCF dataset.

It should be pointed out that the number of features extracted by the Cuboid detector

is fixed to be 600 for the KTH dataset and 2,000 for the UCF dataset respectively. In
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Table 5.1: The average number of generated features (features/frame) by dense
sampling, Cuboid and Harris3D, combined with SMltp descriptor after patch removal
scheme is used.

XXXXXXXXXXXXDetectors
Datasets

KTH UCF

Features/frame Features/frame

Dense Wang et al. (2009) 148 1,840
Dense (SMltp) 7.8 49
Cuboid 1.8 42.3
Harris3D 1.1 82.9

addition, since we use the default parameter settings Laptev and Lindeberg (2005) for

Harris3D, the spatial scales and temporal scales are different from the dense sampling.

5.1.2 Recognition

Given a video, detectors will extract a specific number of 3D patches as features. For

any extracted 3D patch, a histogram representation of SMltp can be obtained.

Next, the bag-of-words representation is adopted to describe the whole video

sequence. For vocabularies construction, the K-means clustering is used for all the

experiments in this chapter. The number of vocabularies is set to be 3,000. Due to

the memory limitation, we randomly select 120,000 patches from the whole training

features for clustering. Every video is further represented as a histogram of visual

words occurrences using Euclidean distance.

Finally, we use the Support Vector Machine Chang and Lin (2001) with the χ2-

kernel I.Laptev et al. (2008) for classification:

K(Hi, Hj) = exp

(
− 1

2A

V∑
n=1

(hin − hjn)2

hin + hjn

)
(5.1)
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where Hi = {hin} and Hj = {hjn} are the frequency histograms of visual words

occurrences, and V is the number of visual words or the number of clusters. A is the

mean value of distances between all training samples Zhang et al. (2007).

5.2 Experiments and Results

In this section, four sets of experiments are conducted to evaluate the performance

of the proposed SMltp descriptor. First, the influence of different parameters on

recognition accuracy is evaluated. Secondly, the computational time of SMltp

descriptor is tested. Thirdly, the comparison between the proposed SMltp descriptor

and existing popular descriptors is thoroughly conducted when different feature

detectors are involved. Fourthly, the performance of SMltp is compared with other

state-of-the-art algorithms. We have used five popular action datasets for evaluation:

the KTH dataset Schuldt et al. (2004), the Weizmann action dataset Gorelick et al.

(2007), the Weizmann robustness dataset Gorelick et al. (2007), the UCF sports

dataset Rodriguez et al. (2008) and the Hollywood2 Marsza lek et al. (2009) dataset.

Figure 5.2 shows the sample frames from the five datasets.

The KTH action dataset Schuldt et al. (2004) contains six types of human

actions: walking, jogging, running, boxing, hand waving and hand clapping. There

are 25 subjects in four different scenarios: outdoors, outdoors with scale variation,

outdoors with different clothes and indoors. In total, the database contains 2,391

sequences. We choose 16 persons for training and the rest 9 persons for testing, the

same as Wang et al. (2009), and the leave-one-out scheme is also investigated.

The Weizmann action dataset Gorelick et al. (2007) consists of 90 low-

resolution (180×140) video sequences of 9 different people, each performing 10 natural

actions such as running, walking, skipping, jumping jack, jumping forward, jumping

in place, galloping sideways, waving both hands, waving one hand and bending. Fixed

camera setting and a simple background is used in this database. The simple leave-

one-out strategy is adopted for the evaluation.
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Figure 5.2: From top to down: the KTH action dataset, the Weizmann action
dataset, the Weizmann robustness action dataset, the UCF sports action dataset and
the Hollywood2 action dataset.

54



The Weizmann robustness dataset Gorelick et al. (2007) are 20 additional

video sequences used to test the robustness of various methods to high irregularities

in the performance of an action. Ten of the sequences are collected for viewpoint

changes and the rest contains occlusion, clothes changes and unusual walking styles.

The classifiers are trained from the Weizmann action dataset.

The UCF action dataset Rodriguez et al. (2008) consists of a set of actions

collected from various sports which are typically featured on broadcast television

channels. This dataset contains 150 video samples representing ten types of human

actions: diving, golf swinging, kicking, lifting, horseback riding, running, skating,

swinging (two different kinds) and walking. The sequences in this data set have large

intra-class variance, due to the background change, camera motion and illumination

variance. A leave-one-out setup is again used to train a multi-class classifier and get

the average accuracy.

The Hollywood2 action dataset Marsza lek et al. (2009) contains 12 actions

collected from 69 different Hollywood movies. The 12 classes of actions are: answering

phone, driving car, eating, fighting, getting out of the car, hand shaking, hugging,

kissing, running, sitting down, sitting up and standing up. The clean training subset

with action labels manually verified to be correct is used for training. We first

calculate the average precision (AP) for every action class, and then compute the

mean AP (mAP) over all classes.

5.2.1 Parameter Setup

There are several parameters need to be decided to extract the SMltp descriptor.

For Sltp, the radius of the neighborhood is fixed to be 2 as commonly used in the

literature. The only parameter needs to be selected is the threshold Ts in Eq. 3.3. For

Mltp, the value of ∆t is fixed to be 2 since it consistently generates best results. Note

that the parameter t in both Eqs. 3.3 and 3.5 is fixed to be 5 to eliminate possible

too small values of dynamic threshold. Parameters need to be further adjusted are:
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the neighborhood radius h and the threshold Tm in Eq. 3.5. Note that h is defined

as the distance between the center pixel and any outer pixel in Figure 3.3. For

histogram representation, every extracted 3D patch is furthered divided into the grid

of nσ × nσ × nτ cells, and parameters nσ and nτ also need to be estimated. When

evaluating one parameter, the other parameters are fixed at the default values, i.e.,

h = 1, Ts = 0.12 (Sltp), Tm = 0.1 (Mltp), and nσ = 3, nτ = 2.

The KTH dataset is used to select the parameters for SMltp, since this dataset

contains simple background, various scales and illumination changes. Note that the

parameters are not sensitive to the testing datasets. In addition, the dense sampling

is used as feature detection in order to eliminate the influence of various feature

detectors. Here, 3 spatial scales and 2 temporal scales with 50% overlapping is used

for dense sampling. The minimum size of a 3D patch is 24× 24 pixels and 10 frames.

We first evaluate the influence of radius h in Mltp, and values 1, 2, and 3 are

tested, with accuracies of 90.4%, 88.2% and 86.4% respectively. Thus, we fix the

radius value to be 1 in this chapter.

We then test the results of using various thresholds in Sltp and Mltp, as shown

in Figure 5.3. It is clear to see that threshold Ts = 0.12 for Sltp and Tm = 0.1 for

Mltp achieve the highest recognition rates of 88.06% and 90.38% respectively. The

mean accuracies of SMltp, Sltp and Mltp descriptors with various cell grid structure

are shown in Figure 5.4. We observe the highest accuracy with a 3× 3× 2 cell grid.

Further increasing the number of cells does not improve the results.

As a local spatio-temporal descriptor, SMltp descriptor can be combined with

any detectors, such as Cuboid, Harris3D and dense sampling. In order to make a

fair comparison with the literature, we choose the similar parameter setting as Wang

et al. (2009). For the Cuboid detector, we detect the features using the original code∗

and the standard scale values σ = 2, τ = 4, and the number of extracted 3D patches

are fixed as 500 for the Weizmann dataset, 600 for the KTH dataset, 2,000 for the

UCF dataset and 3,000 for the Hollywood2 dataset. For the Harris3D detector, we

∗http://vision.ucsd.edu/ pdollar/research.html
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Figure 5.3: Threshold selection for SMltp descriptor. The KTH dataset Schuldt
et al. (2004) is used for threshold selection. Both Sltp and Mltp adopt dynamic
threshold, and the values in x axis indicate the values of Ts in Eq. 3.3 for Sltp and
Tm in Eq. 3.5 for Mltp respectively.
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Figure 5.4: Selection of various number of cells. Performance of SMltp combined
with dense sampling with various cell grid structure on the KTH dataset Schuldt
et al. (2004). The cell grid structure is represented as nσ × nσ × nτ .
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Table 5.2: Mean accuracies when different minimum spatial sizes are used. The
SMltp descriptor is combined with dense sampling with different minimum spatial
sizes on the KTH dataset Schuldt et al. (2004).

Size SMltp Sltp Mltp

18× 18 91.3% 90.7% 91.3%
24× 24 90.8% 88.1% 90.4%
36× 36 88.2% 82.2% 88.8%
48× 48 87.0% 79.2% 88.8%

use the original implementation available on-line† and standard parameter settings

k = 0.0005, σ2 = 4, 8, 16, 32, 64, 128, τ 2 = 2, 4. For dense sampling, we use 3 spatial

scales compared to the 8 spatial scales used in Wang et al. (2009), and 2 temporal

scales. Multiple scales are spaced by a factor of
√

2. Table 5.2 shows the results by

using different minimal spatial sizes. The bigger the spatial sizes selected, the lower

the recognition accuracy and higher the computational cost. For low resolution videos

(such as the KTH dataset Schuldt et al. (2004) and Weizmann dataset Gorelick et al.

(2007)), only 3 spatial scales starting from 24× 24 with a scale factor of
√

2 are used.

For high resolution videos (such as the UCF dataset Rodriguez et al. (2008) and the

Hollywood2 dataset Marsza lek et al. (2009)), 3 spatial scales starting from 48 × 48

with the same factor as
√

2 are used.

5.2.2 Computational Time

SMltp takes advantage of the LBP-like features in terms of computational efficiency.

From Eqs. 3.1 and 3.4, we see that the calculation of SMltp descriptor focuses on

simple pixel comparisons within local regions. It can be considered as having the

same complexity as gradient calculation. Furthermore, the histogram representation

of SMltp does not need any angle calculation as most local descriptors require. We

compare the computational cost of SMltp with HOG/HOF, combined with dense

†http://www.di.ens.fr/ laptev/download.html
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Table 5.3: Computational time (features/frame) of SMltp and HOG/HOF combined
with dense sampling.

HOG/HOF SMltp

video size 720× 576× 101 720× 576× 101
spatial scales 3 3
temporal scales 2 2
run time (frames/second) 1.8 5.9

sampling on 3 spatial scales and 2 temporal scales, on a 720× 526× 101 video. The

run-time estimates are obtained on a PC with Intel Xeon Processor X5550 (Nahalem)

2.66 GHz Quad Core and 12 GB memory. The coding language is C++. Table 5.3 lists

the calculation time of SMltp compared with the HOG/HOF descriptor, combined

with dense sampling. From Table 5.3, we can see that SMltp is almost three times as

fast as HOG/HOF.

5.2.3 Comparison with Other Descriptors

To test the robustness of the proposed descriptors, the results of SMltp descriptor

on the KTH, UCF and Hollywood2 datasets are compared with other popular

local spatio-temporal descriptors. The KTH dataset is well established with simple

background, containing illumination, environment and scale variation, while UCF and

Hollywood2 datasets are more challenging datasets with complicated background and

camera motions. We follow the frequently used experimental setup in the literature

to evaluate the performance on these datasets. Table 5.4 lists the recognition rates

of the proposed descriptors combined with Harris3D, Cuboids and dense sampling

for action recognition, and the results of other descriptors (HOG3D, HOG/HOF and

ESURF) are provided for comparison.

Experimental results show that the proposed SMltp descriptor significantly

outperforms the other shape and motion descriptors no matter what feature detectors

are used. Especially, the Sltp descriptor performs much better than HOG as a
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Table 5.4: Comparison with local spatio-temporal descriptors. Recognition rates
(%) of different local spatio-temporal descriptors are provided by Wang et al. (2009).
The ESURF descriptor is combined with Hessian detector Willems et al. (2008a).

Datasets Detectors
Descriptors Proposed

HOG3D HOG/HOF HOG HOF ESURF SMltp Sltp Mltp

KTH
Harris3D 89.0 91.8 80.9 92.1

81.4
94.0 92.1 93.7

Cuboids 90.0 88.7 82.3 88.2 93.7 91.3 92.1
Dense 85.3 86.1 79.4 88.4 90.8 88.1 90.4

UCF
Harris3D 79.7 78.1 71.4 75.4

77.3
85.3 82.0 83.3

Cuboids 82.9 77.7 72.7 76.7 83.3 78.7 80.7
Dense 85.6 81.6 77.4 82.6 95.3 93.3 94.0

Holly2
Harris3D 43.7 45.2 32.8 43.3

38.2
48.5 42.3 47.6

Cuboids 45.7 46.2 39.4 42.9 47.8 41.4 46.2
Dense 45.3 47.4 39.4 45.5 48.9 42.5 47.2

shape descriptor, and the Mltp descriptor outperforms HOF as a motion descriptor.

Specifically, the SMltp descriptor improves the performance by 3%∼5% when

combined with the Harris3D detector, by 2%∼5% when combined with the Cuboids

detector, and by 2%∼10% when combined with dense sampling.

For the simple action dataset such as the KTH dataset, the local spatio-temporal

detectors perform better than the dense sampling. For the challenging datasets,

such as UCF and Hollywood2 datasets, dense sampling generates higher accuracies

when combined with different descriptors. Note that dense sampling will generate

many more features that make the process of BoW representation for HOG3D and

HOG/HOF very time consuming. However, the proposed SMltp descriptor can

efficiently remove non-informative patches/features to ensure the number of features

generated by dense sampling close to the other local spatio-temporal detectors as

illustrated in Table 5.1. In addition, the computational speed of the proposed

descriptor is 3 times faster than the HOG/HOF descriptor which performs better

than HOG3D and ESURF. Therefore, not only the recognition rates are improved by

using SMltp, the computational time is also significantly reduced.

It is interesting to note that the improvements of performance using dense

sampling on the UCF dataset is more significant than that on the Hollywood2 dataset.
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Although SMltp helps to remove non-informative patches generated from background

by dense sampling, there are still patches from background if camera motions or scene

changes exist. Since the UCF dataset contains actions from sportscast on television

channels, backgrounds for the same actions are similar. In this case, if the descriptor

can well describe the detected regions, the recognition rate on the UCF dataset can be

satisfied. However, videos in the Hollywood2 dataset are from movies with different

background and large intra-class variations. In this case, the patches generated from

the background will obscure the importance of patches generated by actions. Even

if the descriptor can well describe each patch, the performance is still limited on this

dataset.

5.2.4 Comparison with State-of-the-art Algorithms

We evaluate the performance of the proposed algorithm with state-of-the-art methods

on the five public action datasets: Weizmann action dataset, Weizmann robustness

dataset, KTH dataset, UCF dataset and Hollywood2 dataset.

The Weizmann action dataset is well established with simple and fixed back-

ground, which makes it suitable for performance evaluation. Since this dataset

does not contain occlusion, viewpoint, spatial and temporal scales changes, only the

silhouettes extracted by background subtraction are used for the proposed descriptors,

same as Gorelick et al. (2007); Guha and Ward (2011). Table 5.5 shows the action

recognition rates by various approaches, all of which use the leave-one-out scheme for

evaluation. The highest recognition rate of 100% is achieved by the SMltp descriptor

combined with dense sampling or Cuboid. To the best of our knowledge, this accuracy

is the highest in the literature when all the 10 classes are used. It should be pointed

out that the work of Yeffet and Wolf Yeffet and Wolf (2009) achieves the highest

accuracy 100% on the old version of this dataset with 9 actions only, while the

proposed algorithm is tested on the new version of this dataset with 10 actions.
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Table 5.5: Results on Weizmann dataset.

Method No. of actions Accuracy
Guha and Ward (2011) 10 98.9%
Gorelick et al. (2007) 10 97.8%
Riemenschneider and Bischof (2009) 10 96.7%
Ali and Shah (2010) 10 95.7%
Thurau and Hlavac (2008) 10 94.4%
Zhang et al. (2008) 10 92.8%
Niebles et al. (2008) 10 90.0%
Scovanner et al. (2007) 10 84.2%
Yeffet and Wolf (2009) 9 100%
Wang and Mori (2009) 9 100%
Junejo et al. (2009) 9 95.3%

Proposed
Harris3D+SMltp 10 97.8%
Cuboid+SMltp 10 100%
Dense+SMltp 10 100%

The Weizmann robustness dataset contains a non-uniform background with

various difficult scenarios such as occlusion, various walking styles, clothing changes

and viewpoints difference. We train the proposed algorithms on the Weizmann

action dataset that contains no occlusion or viewpoint change, and evaluate the

performance on the Weizmann robustness dataset. Table 5.6 presents the results

of the SMltp descriptor under occlusion and other difficult scenarios, compared with

that reported in Gorelick et al. (2007); Guha and Ward (2011). Note that the work

of Gorelick et al. (2007) uses global features, while both Guha and Ward (2011)

and the proposed algorithms use local features. The SMltp descriptor combined

with the dense sampling outperforms the work of Guha and Ward (2011) that uses

sparse coding for representation. Table 5.7 shows the results under viewpoint changes,

varying between 0◦ and 81◦. Better than the sparse representation in Guha and Ward

(2011), 100% accuracy is achieved by SMltp combined with Harris3D or Cuboids
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Table 5.6: Performance evaluation on the Weizmann robustness dataset with real
occlusion and other difficult scenarios.

Query sequence
Algorithms Proposed

Gorelick et al. (2007) Guha and Ward (2011) Harris3D Cuboid Dense

Normal walk walk walk walk walk walk
Walking in a skirt walk walk walk walk walk
Carrying briefcase walk walk walk walk walk
Limping man walk walk skip skip walk
Occluded Legs walk walk walk walk walk
Knees Up walk run walk walk walk
Walking with a dog walk walk walk walk walk
Sleepwalking walk walk walk walk walk
Swinging a bag walk walk walk walk walk
Occluded by a “pole” walk walk walk walk walk

detector. Therefore, SMltp descriptor is robust to large intra-class variations and

viewpoint changes.

The KTH action dataset contains illumination, environment and scale variation,

which make it more challenging than the Weizmann action dataset. In the literature,

various algorithms require different experimental setups. There are two frequently

used experimental setups: one is the same as the original one Schuldt et al. (2010)

(16 people for training and 9 people for testing), and the other is to use leave-one-

out cross validation setting. Table 5.8 shows the comparison of our algorithm with

other approaches in the literature that use 16 people for training and 9 for testing.

The SMltp descriptor performs competitively to the state-of-the-art algorithms and

achieves 94.0% accuracy. Note that Wang et al. (2011) used combined features

which is computationally more demanding as compared to the features we propose.

Also, Kovashka and Grauman (2010) and Gilbert et al. (2011) do not use the

traditional bag-of-words representation as we do. Table 5.9 shows the results using the

simpler leave-one-out approach, and these results show higher average performance

as compared to those in Table 5.8. SMltp combined with Harris3D gets as high as

95.3% recognition rate, which is competitive to the highest accuracy in the literature

95.7%.
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Table 5.7: Performance of SMltp descriptor on the Weizmann robustness dataset
under viewpoint changes.

Query sequence
Algorithms Proposed

Gorelick et al. (2007) Guha and Ward (2011) Harris3D Cuboid Dense

Walking in 0◦ walk walk walk walk walk
Walking in 9◦ walk walk walk walk walk
Walking in 18◦ walk walk walk walk walk
Walking in 27◦ walk walk walk walk walk
Walking in 36◦ walk walk walk walk walk
Walking in 45◦ walk walk walk walk walk
Walking in 54◦ walk walk walk walk walk
Walking in 63◦ walk skip walk walk jump
Walking in 72◦ walk skip walk walk side
Walking in 81◦ walk side walk walk side

Table 5.8: Results on KTH dataset.

Method Average Precision
Kovashka and Grauman (2010) 94.53%
Gilbert et al. (2011) 94.5%
Wang et al. (2011) 94.2%
Le et al. (2011) 93.9%
Yuan et al. (2009) 93.3%
I.Laptev et al. (2008) 91.8%
Klaser et al. (2008) 91.4%
Yeffet and Wolf (2009) 90.1%
Nowozin et al. (2007) 87.04%
Schuldt et al. (2010) 71.71%
Gorelick et al. (2005) 62.97%

Proposed
Harris3D+SMltp 94.0%
Cuboids+SMltp 93.7%
Dense+SMltp 90.8%
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Table 5.9: Results on KTH dataset (Leave-One-Out).

Method Average Precision
Kovashka and Grauman (2010) 95.7%
Kim et al. (2007) 95.0%
Han et al. (2009) 94.33%
Liu and Shah (2008a) 94.1%
Uemura et al. (2008) 93.7%
Bregonzio et al. (2009) 93.2%
Yang et al. (2009b) 87.3%
Niebles et al. (2008) 81.5%
Dollar et al. (2005) 81.2%

Proposed
Harris3D+SMltp 95.3%
Cuboids+SMltp 94.1%
Dense+SMltp 93.2%

The UCF sports dataset is a challenging one since the sequences are mostly

acquired by moving cameras. Different from the Weizmann and KTH dataset using

the synthetic actions, sequences in the UCF dataset are captured from sportscast

on television channels. Thus, the performance of SMltp on this dataset can well

reflect the effectiveness and robustness of algorithms on real-world action recognition.

Table 5.10 shows the mean accuracies of the proposed methods, compared with various

approaches in the literature. Combined with dense sampling, SMltp significantly

outperforms the current state-of-the-art method Wu et al. (2011) by 5%. Note that

our algorithm is computationally efficient, and does not need to enlarge the training

set as Wang et al. (2009) and Zhu et al. (2004) do.

Table 5.11 shows the Mean AP for algorithms evaluated on Hollywood2 dataset.

This dataset is the most challenging one in the literature that all the videos in it

are from movies. Although the performance of SMltp descriptor is not as well as

the state-of-the-art algorithms on this dataset, it outperforms algorithms that use

other feature descriptors in Wang et al. (2009). This result further indicates the

limitation of using local spatio-temporal feature detectors. Possible improvements on
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Table 5.10: Results on UCF dataset

Method Average Precision
Wu et al. (2011) 89.7%
Wang et al. (2011) 88.2%
Kovashka and Grauman (2010) 87.27%
Yao et al. (2010) 86.6%
Wang et al. (2009) 85.6%
Zhu et al. (2004) 84.3%
Yeffet and Wolf (2009) 79.2%
Rodriguez et al. (2008) 69.2%

Proposed
Harris3D+SMltp 85.3%
Cuboids+SMltp 83.3%
Dense+SMltp 95.3%

performance can be expected if the dense trajectory presented in Wang et al. (2011)

is used for feature detection. However, it generates many more features even than

dense sampling, and thus requires large memory and computational time.

5.3 Summary

We presented an effective and computationally-efficient feature description algorithm,

referred to as SMltp, to capture both the shape and motion information for the

purpose of single view human action recognition. Experimental results demonstrated

that SMltp is fast, robust and highly accurate. As an LBP-like feature descriptor,

its simple calculations help save the computational cost greatly. As a local feature

descriptor, SMltp can be easily combined with various local feature detectors to

achieve the state-of-the-art accuracy. In addition, the proposed patch selection scheme

makes the dense sampling practical for real application by dramatically reducing the

number of features. Due to the robustness of SMltp, 3 spatial scales are enough for

achieving better performance than the dense sampling used in Wang et al. (2009)

on the testing datasets. The highest accuracy of the proposed SMltp on the UCF
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Table 5.11: Results on Hollywood2 dataset.

Methods Mean AP
Wang et al. (2011) 58.3%
Le et al. (2011) 53.3%
Gilbert et al. (2011) 50.9%
Wang et al. (2009) 47.7%
Taylor et al. (2010) 46.6%

Proposed
Harris3D+SMltp 48.5%
Cuboids+SMltp 47.8%
Dense+SMltp 48.9%

action dataset, compared to other approaches in the literature, further suggested the

feasibility of its real-world deployment.
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Chapter 6

Application 2: Distributed Human

Action Recognition

6.1 Introduction

With the emergence of distributed camera networks (DCNs) Chen et al. (2008), the

deployment of multi-view action recognition in DCN becomes a logical next step.

In the DCN environment, an object could be surrounded by multiple cameras and

observed by these cameras from different views. These cameras have imaging, on-

board processing, and wireless communication capabilities. Collaboratively they

could solve computer vision problems through distributed sensing and processing.

However, resource constraint is the major limitation of DCNs since each camera

has only limited memory and power supply, and the communication between local

cameras and base station is also expensive and limited by the bandwidth. These

constraints have largely hindered the successful deployment of existing multi-view

action recognition algorithms in DCNs.

To resolve the conflict between the constraint resource in DCNs and the need for

real-time recognition, two issues need to be investigated. First, what information

should be extracted by each local camera in order to satisfy the bandwidth
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requirement without jeopardizing recognition accuracy? Second, how to fuse the

information collected from distributed cameras for recognition purpose? In the DCN

environment, the transmission of the raw image data to the base station is not

feasible due to the expensive transmission cost, and thus the distributed feature-

based recognition becomes necessary.

In this chapter, we focus on the design of algorithms for distributed and

robust multi-view action recognition, which requires low memory and bandwidth

consumption. Here, “distributed” refers to the fact that each camera processes its

data locally and just sends limited information to the base station, and “robust”

refers to the fact that the recognition accuracy is not affected much if one or

more of the cameras are malfunctioning and if different selections of cameras are

used. Specifically, we propose a “distributed” and “robust” human action recognition

framework based on sparse coding of the extracted features. The framework consists

of three components, feature extraction, feature representation, and classification.

We summarize the main contributions of the paper also from these three aspects.

From the feature extraction perspective, we use the proposed Motion Local

Ternary Pattern (Mltp) as a new operator to describe the local intensity difference

among frames caused by any motion. Mltp takes advantage of Local Binary Pattern

(LBP) Ojala et al. (2002); Yeffet and Wolf (2009) in terms of computational efficiency,

tolerance to illumination change and robustness in homogeneous regions. Mltp is

distinctive for motion patterns without any additional information such as background

subtracted silhouettes or 3D visual hull volumes.

From the feature representation perspective, the sparse coding technique is

adopted to generate a histogram representation for every video to reduce the possible

quantization error caused by the popular Bag-of-Words (BoW) model. Given a 50-

frame video clip with image resolution of 120 × 160 pixels, instead of transmitting

960, 000 pixels, the amount of data transfer required by our system is only n

(n < 600) bins where each bin is represented by 4 bytes. During the whole process,

communication among cameras is unnecessary.
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To fuse the information transmitted from local cameras, we use Naive Bayesian

to integrate the prediction results from the Support Vector Machine (SVM) Chang

and Lin (2001) to give the final decision. Compared to the existing algorithms Yan

et al. (2008); Weinland et al. (2007); Liu and Shah (2008b) and applications Srivastava

et al. (2009) on the similar DCN environment, our proposed framework achieves higher

recognition accuracy, requires less memory and is with lower bandwidth consumption.

6.2 Proposed Methodology

Figure 6.1 shows the four steps involved in the proposed framework for distributed

multi-view action recognition: 1) feature detection that localizes the positions of

interest points from the feed videos; 2) feature description that generates the

distinctive feature descriptors for any 3D patches around the detected interest points.

In this chapter, we use the Mltp as feature descriptor; 3) feature representation

which aims to generate the histogram representation for every action video; and

4) distributed multiple view action recognition that fuses information sent from local

cameras to generate the final class label for a specific action.

6.2.1 Feature Detection

In this chapter, the Cuboid detector proposed by Dollar Dollar et al. (2005) is

adopted for spatio-temporal interest points detection. We use the proposed Mltp

as the feature descriptor. Figure 6.2 shows the result of Mltp on nearby frames from

the IXMAS multi-view action dataset Weinland et al. (2007). Figure 6.2a are three

subsequent frames representing the motion of “hands up”, while Figure 6.2c showing

the opposite motion of “hands down”. The directions of motion are encoded in three

gray scale values (0 or black, 125 or gray and 255 or white) as shown in Figure 6.2b

and Figure 6.2d. Comparing the locations of pixels with the intensity value of 125

(motion caused by the difference between the current frame and the next frame) and
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Figure 6.1: The proposed framework for distributed human action recognition.

71



(a) (b)

(c) (d)

Figure 6.2: Mltp results on nearby frames from the IXMAS multi-view action
dataset. (a) Three subsequent frames from the beginning of hand waving motion.
(b) Motion image calculated by Mltp on (a). (c) Three subsequent frames from the
end of hand waving motion. (d) Motion image calculated by Mltp on (c).

pixels with intensity value of 255 (motion caused by the difference between the current

frame and the previous frame), the two opposite motions are distinctively described.

Moreover, all the background pixels, as well as body parts with no contribution to

the motion, are singled out and assigned with zero values.

6.2.2 3D Motion Patch Selection

After applying feature detection on the input videos, a specific number of 3D patches

can be extracted. For pixels within any extracted 3D patch, 4-digit codes can be

calculated on a 4-neighbor definition of Mltp. In total, there will be 81 possible codes

that represent different motion patterns. The resulting 3D patch with assigned codes

is referred to as the 3D motion patch. Pixels with no motion have the code value as

(0000). Any 3D motion patch can be considered as non-informative if the number of

pixels with code (0000) is too large. Let m0 be the number of pixels with no motion

and N be the number of total pixels within the 3D motion patch. If the value of

the ratio m0/N is larger than a predefined threshold Tp, the 3D motion patch will be

considered as non-informative and removed. Figure 6.3 shows the results of applying
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(a) scratch head

(b) wave

Figure 6.3: Cuboid selection by Mltp values for two actions. Cuboids are marked
as colorful squares. The cuboids contain large number of pixels with no motion are
removed. Hence, cuboids located at background area are eliminated.

3D motion patch selection. The colorful squares show the extracted cuboids Dollar

et al. (2005) in the spatial domain. For both figures, the left images reflect the

locations of original patches, and the right images reflect the results after removing

patches without obvious motion. It is clear to see that the noisy patches generated

from background have been removed, which better highlights the foreground patches.

Note that the threshold Tp is set to be 0.9 as a compromise between the number of

selected features and the requirement for the informative 3D motion patches.

6.2.3 Feature Representation

In order to further reduce the transmission cost, a histogram representation of the

collected feature descriptors (Mltp) from a video is calculated and transmitted to the

base station. In this paper, the well known Bag-of-Words (BoW) model is used as a
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baseline. We further propose the Sparse Coding model for feature representation to

reduce the approximation error and increase the robustness. For both models, the first

step is to learn a set of representative vectors from a large number of feature vectors

and the second step is to obtain the histogram representation of features according

to the learned vectors. The set of learned representative vectors are referred to as the

“codebook” in BoW and “dictionary” in sparse coding. The individual representative

vectors are referred to as the “codewords” in BoW and “atoms” in sparse coding.

The BoW model uses k-means clustering to learn the codebook and every cluster

center corresponds to a codeword. Then each feature vector can be assigned to a

specific codeword that is closest to it in terms of the Euclidean distance. Considerable

amount of quantization error would incur by the approximation process where each

sample vector is assigned to the nearest codeword of BoW. This deficiency can be

largely overcome by sparse coding that allows a linear and sparse combination of

atoms to be used in the approximation process. The calculated sparse codes for

one feature corresponds to the responses of that feature to all the atoms in the

dictionary. Or put it another way, the sparse codes represent the coefficients in

the linear combination of atoms.

Let Y = [y1, . . . ,yN ] ∈ Rf×N be a set of extracted features in a f -dimensional

feature space, and X = [x1, . . . ,xN ] ∈ RK×N be the sparse codes for these feature

vectors. The approximation process can be represented by sparse coding Yang et al.

(2009a):

min
D,X

=
N∑
m=1

‖ym −Dxm‖2 + λ|xm|

subject to ‖dk‖ ≤ 1, ∀k = 1, 2, . . . , K

(6.1)

where D = [d1, . . . ,dK ]T ∈ Rf×K is the learned overcomplete dictionary with K

atoms, and xm is the calculated sparse codes for feature vector ym. The unit L2-

norm constraint on vk is typically applied to avoid trivial solutions Yang et al.
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(2009a). Note that the L1 regularization on xm enforces xm to have a small number

of nonzero elements. In other words, instead of assigning the nearest codeword as

does in the BoW modeling, each feature vector is approximated by a linear and sparse

combination of atoms in the learned dictionary.

To solve Eq. 6.1, two steps are involved by iteratively optimizing over D or X

while fixing the other. By fixing D, the optimization can be solved by:

min
xm

‖ym −Dxm‖2 + λ|xm| (6.2)

This is known as Lasso in the Statistical literature and can be efficiently solved by the

feature-sign search algorithm Lee et al. (2006). By fixing X, the objective function

becomes a least square problem with quadratic constraints:

min
D

‖Y −DX‖2F

subject to ‖dk‖ ≤ 1, ∀k = 1, 2, . . . , K

(6.3)

The Lagrange dual can be used to solve the optimization problem Lee et al. (2006).

In sparse coding, the dictionary D is learned in the training phase that collects

a large number of features from training samples by iteratively optimizing Eqs. 6.2

and 6.3. In the coding phase, the sparse codes are retained by optimizing Eq. 6.2

given learned D.

To yield the histogram representation after sparse coding, a pooling function

z = F(X) is applied in this paper. Note that different pooling functions construct

different image statistics. As noted in Yang et al. (2009a), max pooling produces

better performance than other pooling methods when using, for example, the square

root of mean squared statistics and the mean of absolute values, as evaluation metrics.

Therefore, we adopt the max pooling function:

zj = max{|x1j|, |x2j|, . . . , |xMj|} (6.4)

75



where zj is the j-th element of z ∈ RK , xij is the matrix element at the i-th row and

the j-th column of X, and N is the size of the extracted features (Mltp) set.

Using sparse coding as a tool for feature representation has two benefits. First,

the objective function of sparse coding minimizing the reconstruction error with

sparse coefficients reduces the approximation or quantization error. Second, the linear

combination representation makes it robust to the different combination of multiple

views and tolerant to the misalignment between training and testing samples.

6.2.4 Distributed Multiple View Action Recognition

In our system, one object is surrounded by several cameras capturing various views.

Cameras from distinctive views will record the same action simultaneously and process

the video data locally. The DCN systems like WiCa Kleihorst et al. (2006) and

CITRIC Chen et al. (2008) are some examples of smart camera platforms where our

algorithms can be implemented. To conduct the distributed multiple view action

recognition, two phases are involved: training and testing. We use the sparse coding

representation as an example to illustrate both phases and the BoW follows the similar

process.

• Training Phase: As illustrated in Figure 6.1, the training phase is designed

to learn the dictionary and train the classifier. To learn the dictionary, the

extracted features (Mltp) should be collected from training samples. Note that

only one dictionary is trained for all the actions. Each camera will store the

learned dictionary locally. After the classifier is trained, the base station will

store it for recognition purpose. All the training process is conducted off-line.

• Testing Phase: Each local camera extracts the features (Mltp) first, and

then calculates the histogram representation by Eqs. 6.2 and 6.4 for every

video sequence based on the learned dictionary. It should be pointed out that

our system does not need data transmission between cameras and only the

histogram representation of every video is transmitted to the base station. At
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the base station, the classification results obtained from these histograms based

on the classifier are fused to obtain the final decision.

In this chapter, we use a Naive Bayesian technique to fuse the results from each

view. We first apply the Support Vector Machine (SVM) Chang and Lin (2001) with

the χ2-kernel I.Laptev et al. (2008) for prediction based on each camera’s input:

K(Hi, Hj) = exp

(
− 1

2A

S∑
n=1

(hin − hjn)2

hin + hjn

)
(6.5)

where Hi = {hin} and Hj = {hjn} are the histograms calculated by BoW or sparse

coding, and S is the number of codewords in codebook or atoms in dictionary. A is

the mean value of distances between all training samples Zhang et al. (2007).

The second step performed at the base station is the integration of probability

outputs of SVM Platt (2000) using the Naive Baysian technique for the purpose of

multiple view action recognition. Same kernel function is used as Eq. 6.5. Each view

Wj will have a probability for action label li as P (li|Wj). Let the number of cameras be

n and the number of action classes be c. Our objective is to calculate the probability

of li when W1, · · · ,Wn are available, referred to as P (li|W1,W2, · · · ,Wn), i = 1, · · · , c.

To simplify the problem, we assume the selection of each camera is independent, so

that P (W1, · · · ,Wn) = P (W1) × · · ·P (Wn). In addition, the probability of every

action is assumed to be equal.

For any class label i, i = 1, · · · , c in an n-camera environment, its probability can

be calculated as

P (li|W1, · · · ,Wn) =
P (W1, · · · ,Wn|li)P (li)

P (W1, · · · ,Wn)

=
P (W1|li) · · ·P (Wn|li)P (li)

P (W1) · · ·P (Wn)

=
P (li|W1) · · ·P (li|Wn)

P (li)n−1

(6.6)
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Since P (l1) = P (l2) = · · ·P (lc), the probability of action class i can be calculated

by multiplying all the local probabilities P (li|Wj), j = 1, · · · , n. For any test sequence,

the class label can be assigned to the one with the highest value of Eq. 6.6.

6.3 Experiments and Results

We evaluate our approaches on the IXMAS multi-view action dataset Weinland et al.

(2007) which contains 13 daily-life motions performed each 3 times by 12 actors.

The actors choose free positions and orientations. In order to compare with other

algorithms, we choose the same experimental setting as Srivastava et al. (2009);

Weinland et al. (2007) which use 11 action categories and 10 subjects. In addition, we

select four views excluding the top view, same as Srivastava et al. (2009); Liu and Shah

(2008b). Figure 6.4a shows sample images of actions “check watch”, “cross arm”, and

“sit down”, performed by different actors from three orientations. Figure 6.4b shows

sample images of action “check watch” performed by the same actor from different

orientations. Note that actors are free to choose their own style to perform the same

action. For example, the actor in Figure 6.4b uses the left hand to perform the

action “check watch” in one orientation, but changes to use the right hand in another

orientation.

6.3.1 Parameter Setup

From each video 200 cuboids are extracted with spatial scale σ = 2 and temporal

scale τ = 2.5. The size of the cuboids (or 3D patches) is then 13 × 13 × 17 pixels,

which corresponds to 2873 pixels in total. For Mltp, the parameters for ∆t = 3,

Tm = 0.1, tm = 5, and D = 2 are experimentally selected. In addition, the parameter

Tp used for non-informative patches removal discussed in Sec. 5.1.1 is set to be 0.9.

Note that the selection of the parameters are not sensitive and can be adjusted simply

by choosing a few samples for testing purpose.
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Figure 6.4: Samples of the IXMAS dataset. (a) Four views of three selected action
examples. (b) Three orientations of the action “check watch”. People may choose
their own orientations and styles while performing the same action.
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As described in Chapter 3, the dimension of feature descriptor Mltp depends on

the number of small cells divided within every cuboid. In this paper, we divide the

cuboids into 2× 2× 2 cells to get a 128-dimensional feature descriptor (Mltp).

For feature representation, we follow the same setting as in the literature Yang

et al. (2009a), and choose the size of dictionary (when using sparse coding) to be of

4 times the feature dimension, which is 4× 128 = 512. For the size of codebook, we

evaluate various numbers of codewords and set it to be 180 for BoW representation.

6.3.2 Multi-View Human Action Recognition

At the multi-view performance evaluation stage, we first evaluate the proposed

framework in the case of all the four views and three orientations are used for training.

During the testing phase, different number of views are involved. Both the Leave-

One-Out strategy and the cross subjects strategy are used for evaluation. For the

Leave-one-out strategy, videos from 9 actors are used for learning and the remaining

one actor’s videos are used for testing. For the cross subjects strategy, videos from 5

actors are used for learning and the remaining 5 actor’s videos are used for testing.

The classification result is based on the probability output of SVM as described in

Sec. 6.2.4. It should be pointed out that our models do not need any preprocessing

such as background subtraction or 3D visual hull volumes Yan et al. (2008); Weinland

et al. (2007).

Table 6.1 lists the recognition accuracies of the proposed framework using different

feature representation models (Mltp+BoW and Mltp+sparse coding) when the Leave-

one-out and cross subject strategies are used, respectively. The performance of

the state-of-the-art algorithms that use the Leave-one-out strategy are listed for

comparison purpose. No cross-subject experimental results have been reported by

these algorithms. For the proposed framework, the class label is assigned to the

one with the highest value according to Eq. 6.6. The various combination of views

are explored and the maximum and average recognition accuracies are reported in
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Table 6.1: Performance evaluation of multi-view action recognition. The maximum,
averaged values and standard deviation of the proposed methods (Mltp+BoW and
Mltp+sparse coding) are listed in the table. Symbol ‘*’ indicates results are the
highest accuracies can be found in the original paper.

Method
# Cameras used for testing

1 2 3 4
Liu et al. Liu et al. (2008) 82.8% - - -
Liu & Shah Liu and Shah (2008b) 73.7% - - 82.8%
Yan et al. Yan et al. (2008) 64.0% 71%* 60%* 78%
Weinland et al. Weinland et al. (2007) 63.9% 81.3%* 70.2%* 81.3%
Srivastava et al. Srivastava et al. (2009) 69.1% 75.6% 79.1% 81.4%

Leave-One-Out (Mltp+)

BoW
max 77.6% 82.4% 83.9% 84.5%
avg 75.7% 80.3% 82.6% 84.5%
std 1.27 1.32% 1.16% 0

Sparse Coding
max 80.9% 85.2% 85.2% 86.4%
avg 77.7% 82.9% 84.6% 86.4%
std 3.6% 2.25% 0.52% 0

Cross Subjects (Mltp+)

BoW
max 73.4% 78.5% 77.7% 78.4%
avg 68.9% 74.7% 77.2% 78.4%
std 3.3% 2.7% 0.83% 0

Sparse Coding
max 76.1% 82.2% 83.6% 84.0%
avg 73.8% 80.4% 82.8% 84.0%
std 2.8% 1.6% 0.76% 0

Table 6.1. Recall that the standard deviation of recognition accuracies using different

combinations of views reflects the robustness of the evaluated algorithms - the smaller

the derivation, the less affected the algorithm to the selection of different views.

BoW vs Sparse Coding

The performance of the sparse coding representation and the BoW representation

are compared and listed in Table 6.1. It shows that the sparse coding representation

consistently outperforms the BoW representation in all testing cases. Especially,

if the number of actors used for training reduces from 9 to 5, the sparse coding
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(a) Results based on Bag-of-Words
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(b) Results based on Sparse Coding

Figure 6.5: The confusion matrix by using different representation methods when
only one camera is available at test step. From left to right, the confusion matrices
correspond to the results from camera 1 to camera 4.

representation outperforms the BoW representation by 5%. This is because the

sparse coding representation introduces less quantization error during the feature

representation step than BoW.

Figure 6.5 shows the confusion matrices of single view recognition by using the

Leave-one-out strategy. From left to right, the confusion matrices correspond to

camera 1 to camera 4. It is interesting to note that actions with large motions such

as “sit down”, “get up”, “turn around” and “walk” have high accuracy for both

BoW representation and sparse coding representation. In addition, sparse coding

representation performs much better than BoW representation for camera 1 and

camera 2. For camera 3 and camera 4, both representations are competitive to each

other.

Algorithm Comparison

We further compare the results of the proposed framework with state-of-the-art

algorithms using the Leave-one-out strategy. Accuracies obtained by our approaches
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that are higher than the literature are marked in bold fonts. Note that the work

of Liu et al. (2008) uses knowledge transfer based on extracted features to achieve

high accuracy, which has not been used in our system. Experimental results indicate

that the proposed methods perform better than existing distributed multi-view action

recognition algorithms, and even superior to the complicated algorithms that require

preprocessing and large data transmission by 4% ∼ 14%. For example, the proposed

methods achieve higher accuracies using 2 views than other algorithms using 4 views,

as shown in Table 6.1. In addition, the proposed algorithms are less sensitive to the

different combinations of views selected for testing, since the average accuracies are

close to the highest accuracies and the standard deviations are small. Different from

the work of Yan et al. (2008); Weinland et al. (2007), the performance of the proposed

algorithms is steadily improved when more views are available at the testing stage.

This further indicates that information from various views can be well represented

and fused in our systems. The improvements of recognition accuracy are more obvious

from 2 views to 3 views or 1 view to 2 views, than 3 views to 4 views. In other words,

using the proposed algorithms, 3 views are enough to achieve competitive accuracy.

Leave-One-Out vs Cross Subjects

To evaluate the influence of the number of training actors to the results, we use

both the Leave-One-Out strategy and the cross subjects strategy on multiple view

recognition as shown in Table 6.1. For cross subjects, we randomly choose 5 actors

for training and use the remaining 5 actors for testing. Note that we run each

experiment 10 times to obtain the average accuracy for the cross subjects strategy.

The performances of cross subjects are worse than the Leave-One-Out strategy since

the information during training phase is limited when only half actors are used.

Compared to the Leave-One-Out strategy, the accuracies of cross subjects by using

the BoW representation decrease by 6%, as compared to the 2% by using the sparse

coding representation. Therefore, sparse coding representation is more robust than
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BoW. In addition, the performance of cross subjects by using sparse coding still

outperforms the state-of-the-art algorithms that use more actors for training.

6.3.3 Robustness of the Proposed Framework

We further evaluate the robustness of the proposed framework by using more

complicated experiments. As shown in Figure 6.4, the positions of four cameras are

distinctive. Although the view angles of the four cameras are overlapping, there are

still things can only be seen from one camera but not the rest. In addition, each actor

performs actions three times by choosing different orientations. In this case, not only

the positions of actors in each camera are different, the body movements of the same

action can also be different. In this paper, we design two experiments for robustness

evaluation. In the first experiment, we use two orientations for training, and test the

samples on the untrained remaining orientation. In the second experiment, we use

different numbers of cameras for training, and test on the remaining unseen cameras.

Note that for both experiments, we use 9 actors for training and the remaining actor

for testing. In other words, not only the views or orientations for testing are distinctive

from that of training, the actors for training are not included for testing.

Cross Orientation

Table 6.2 shows the results by using different orientations for testing. In each case,

we use two orientations for training and the rest one orientation for testing. Note

that the viewpoints are different from different orientations as shown in Figure 6.4.

Experimental results indicate that the proposed framework is tolerant to variance

in orientations, since the accuracies in Table 6.2 are competitive to the results in

Table 6.1. It is quite significant that even when the orientation used for testing is

different from the orientations used for training, the performance of the proposed

framework is not influenced much. In addition, the recognition rates increase with

the number of cameras used during the testing phase. The performances of sparse
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Table 6.2: Performance evaluation of multi-view action recognition under different
orientations.

Test Method
# Cameras used for testing

1 2 3 4

One
BoW 74.1% 76.2% 77.7% 78.2%

Sparse 77.0% 82.6% 85.2% 86.4%

Two
BoW 73.6% 77.3% 79.1% 79.1%

Sparse 76.8 81.2% 83.6% 84.5%

Three
BoW 75.7% 79.2% 79.5% 84.5%

Sparse 75.5 79.2% 80.7% 83.6%

coding representation for orientation 1 and orientation 2 are much better than the

BoW representation, and competitive for orientation 3.

Cross Views Recognition

In this experiment, we train the actions from selected views and test on the unseen

views. For example, we use 3 views from 9 actors for training, and choose the fourth

view from the remaining actor for testing. Table 6.3 lists the average accuracies when

different numbers of views are available during the testing phase. If we choose 3 views

for testing, only 1 view is available during the training phase. The accuracies are still

acceptable for both feature representation models. The experimental results further

indicate that the recognition rates increase with the number of unseen views available

during the testing phase. In other words, even though the information learned is quite

limited during the training phase, the performance of the proposed framework can

still take advantage of the different information provided by multiple views during

the test phase and improve the performance. It also reveals that our framework can

be used to improve the accuracy if more unseen views are involved during the test

phase.
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Table 6.3: Performance evaluation of multi-view action recognition using different
number of views for training and the remaining views for testing.

Method
# Unseen Cameras
1 2 3

Mltp+BoW
max 72.1% 74.5% 76.4%
avg 67.4% 66.3% 73.5%
std 5.0% 10.1% 2.4%

Mltp+Sparse Coding
max 80.0% 81.2% 79.1%
avg 70.8% 72.5% 75.0%
std 8.3% 10.6% 3.4%

6.3.4 Memory and Bandwidth Requirements and Computa-

tional Cost

For the 128-dimension Mltp, the trained codebook or dictionary need to be stored on

every camera, which is 180 codewords for BoW and 512 atoms for sparse coding.

Then, every camera only transmits the calculated histogram to the base station

for classification. Therefore, the (Mltp+BoW) transmits 4 histograms (from 4

cameras) with 180 bins to the base station, and (Mltp+Sparse Coding) transmits 4

histograms with 512 bins to the base station. Using the same calculation as Srivastava

et al. (2009), both the memory and bandwidth requirements for our system can

be calculated. Table 6.4 compares the memory and bandwidth consumption of our

models and the ones in Srivastava et al. (2009); Weinland et al. (2007). It shows

that our models require even less resource on memory and transmission bandwidth.

The difference of memory and bandwidth consumption of BoW and sparse coding is

caused by the size difference between the learned dictionary and codebook.

The Mltp descriptor takes advantage of the LBP-like features in terms of

computational efficiency. From Eq. 3.4, we see that the calculation of Mltp is focused

on simple pixel comparison within local region. It can be considered as having the

same complexity as gradient calculation. Furthermore, the histogram representation

of Mltp does not need any angle calculation as most local descriptors require. We
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Table 6.4: Memory and bandwidth requirements for our models.

Methods Memory(Mbytes) Bandwidth(Kbytes/s)
Srivastava et al. (2009) 0.315 2.7
Weinland et al. (2007) 1.72 47

Mltp+BoW 0.092 0.96
Mltp+sparse coding 0.26 2.7

test the computational cost of the proposed method on a 390 × 291 × 300 video.

The run-time estimates were obtained on a PC with Intel Xeon Processor X5550

(Nahalem) 2.66 GHz Quad Core and 12 GB memory. The coding language is C++.

The proposed method has around 15 fps run time which shows the possibility of its

real-time application.

6.4 Summary

In this chapter, we proposed a framework to perform distributed multiple view

action recognition. We first use the presented feature descriptor Mltp to extract

the motion information among frames. Combined with the Cuboid detector, Mltp

helps to remove the non-informative patches generated from background. Next,

two feature representation schemes, BoW and sparse coding were used to obtain

the histogram representation of Mltp. The proposed approaches do not need

complicated operation for feature extraction or description. Experimental results

indicated that our algorithms outperform existing algorithms for distributed multi-

view action recognition. Especially, the sparse coding representation was robust and

tolerant to the misalignment between training and testing views. Compared with the

existing algorithms, our proposed framework required less memory and bandwidth

consumption. In addition, communication among local cameras was unnecessary for

information fusion in the proposed system.
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Chapter 7

Application 3: RGB-D Human

Action Recognition

7.1 Introduction

Traditional human action recognition approaches focus on learning distinctive feature

representations for actions from labelled videos and recognizing actions from unknown

videos. However, it is a challenging task to label unknown RGB sequences due to the

large intra-class variability and inter-class similarity of actions, cluttered background,

possible camera movements and illumination changes.

Recently, the introduction of cost-effective depth cameras provides a new possi-

bility to address difficult issues in traditional human action recognition. Compared

to the monocular video sensors, depth cameras can provide 3D motion information

so that the discrimination of actions can be enhanced and the influence of cluttered

background and illumination variations can be mitigated. Especially, the work of

Shotton et al. Shotton et al. (2011) provided an efficient human motion capturing

technology to accurately estimate the 3D skeleton joint positions from a single depth

image, which are more compact and discriminative than RGB or depth sequences. As

shown in Figure 7.1, the action “drink” from the MSR DailyActivity3D dataset Wang
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Figure 7.1: Sample images obtained by different cameras for the action “drink”.
The 3D joints are estimated by the method in Shotton et al. (2011).

et al. (2012c), can be well reflected from the extracted 3D joints by comparing the

joints “head” and “hand” in the two frames. However, it is not that straightforward

to tell the difference between the two frames from the depth maps or color images.

Although with strong representation power, the estimated 3D joints also bring

challenges to perform depth-data based action recognition. For example, the

estimated 3D joint positions are sometimes unstable due to the noisy depth

maps. In addition, the estimated 3D joint positions are frame-based, which require

representation methods to be tolerant to the variations in speed and time of actions.

To extract robust features from estimated 3D joint positions, relative 3D joint

features have been explored and achieved satisfactory performance Wang et al.
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(2012c); Farhadi and Tabrizi (2008); Yang and Tian (2012). To represent depth

sequences with different lengths, previous research mainly focused on temporal

alignment of sequences Farhadi and Tabrizi (2008); Lv and Nevatia (2006); Muller and

Roder (2006) or frequencies evolution of extracted features Wang et al. (2012c) within

a given period. However, the limited lengths of sequences, the noisy 3D joint positions,

and the relatively small number of training samples may cause the overfitting problem

and make the representation unstable.

In this chapter, a new framework is proposed for depth-based human action

recognition. Instead of modeling temporal evolution of features, our work emphasizes

on the distributions of representative features within a given time period. To keep

the temporal information during the feature representation, a temporal pyramid

matching (TPM) based on a pooling function z = F(X) is used to yield the histogram

representation for every depth sequence.

In the proposed framework, the feature representation is an important step and

contribute most to the performance. In this chapter, both the classic sparse coding

based representation and the proposed DL-GSGC in Chapter 4 are applied in the

framework. Note that the depth features used in this chapter is based on the 3D

relative joint positions, and details can be referred to Chapter 3. In addition, the

performance on feature fusion from both RGB videos and depth maps are explored.

7.2 Sparse Coding Temporal Pyramid Matching

Given the depth features using the relative 3D joint positions (introduced in Chapter

3), the next step is feature representation. The main challenging issue is how to solve

the “time alignment” problem since sequences are of various lengths and actions

are of different paces. The common solutions using temporal modeling, such as the

DTW Muller and Roder (2006) or HMM Lv and Nevatia (2006), are not optimal

when only limited number of training samples is available which is always the case

in the existing databases. Regardless of temporal order, the Bag-of-Words model can
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be applied to the extracted features. However, large quantization errors will incur

due to the usage of K-means in the clustering process. In addition, all the temporal

information is discarded in BoW. In this chapter, we propose to use a sparse coding

scheme to learn representative features to reduce the quantization error. Next, a

temporal pyramid structure based on max pooling is used for histogram representation

of features. The whole representation process is referred to as Sparse coding Temporal

Pyramid Matching (ScTPM).

7.2.1 Feature Representation

From the feature extraction step, every frame generates a 20 × 57 3D joint feature,

where 20 is the number of joints and 57 is the dimension of the 3D joint feature

vector. Since different joints have distinctive features even for the same action, we

train 20 dictionaries for the 20 joints separately by Eq.4.1. To be specific, we use

each joint position as reference joint, and calculate the relative positions of the rest

19 joints using Eq. 3.8. Then, each joint is treated independently to solve the sparse

coding problem.

We first collect enough samples from the training dataset to learn the dictionary

Di for each joint i. Next, we obtain the sparse codes by solving Eq. 6.2 for every joint

on each frame. After that, each frame can be represented by K−dimensional sparse

codes. Then, a temporal pyramid matching based on a pooling function F(X) is used

to yield the histogram representation z for every joint. Note that different pooling

functions construct different image statistics. As noted in (Yang et al., 2009a), max

pooling produces better performance than other pooling methods when using, for

example, the square root of mean squared statistics and the mean of absolute values,

as evaluation metrics. Therefore, we adopt the max pooling function in Eq. 6.4 to

generate the histogram representation.

To keep the temporal order, we use a temporal pyramid matching approach

to perform max pooling. First of all, the number of pyramid levels should be
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Figure 7.2: Illustration of the proposed feature extraction and representation by
sparse coding and max pooling on 3D joint features.

defined. At level n, the video sequence is divided into 2n−1 segments. Next, on each

segment at each level, the max pooling function is applied to generate the histogram

representation z for that segment. Finally, all the histograms generated from all

the segments are concatenated together to form a long histogram as the feature

representation for this video sequence by one joint. There are two advantages of

using this temporal pyramid: 1) the temporal information is well kept by segments;

2) it is not sensitive to the temporal shift or misalignment since lower level of the

pyramid keeps less temporal information.

Figure 7.2 shows the process of the proposed scheme. The temporal pyramid

approach gives a histogram representation of the whole input video sequence for

every joint. Next, a long vector Z = [z1, . . . , z20] is formed by concatenating all the

20 histograms zi as the final histogram representation for one video.

7.3 DL-GSGC Temporal Pyramid Matching

Although sparse coding reduces the quantization error caused by K-means, it does not

take the classification error into construction. As proposed in Chapter 4, we propose

a discriminative dictionary learning algorithm DL-GSGC for better performance. In
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Figure 7.3: Temporal pyramid matching based on sparse coding.

this chapter, we will discuss how to apply the proposed algorithm in the problem of

action recognition.

Similar to the ScTPM framework, we also uses the temporal pyramid matching to

keep the temporal information. Also, the max pooling is selected as many literature

work did Yang et al. (2009a); Wang et al. (2010). TPM divides the video sequence into

several segments along the temporal direction. Histograms generated from segments

by max pooling are concatenated to form the representation, as shown in Figure 7.3.

Different from the ScTPM structure that we train dictionary for each joint, the

DL-GSGC based framework works well when we use the center hip as reference joint

and calculate the relative positions. Therefore, for the DL-GSGC based framework,

we train one dictionary, compared to the 20 dictionaries used in ScTPM.

During the training stage, the dictionary D can be calculated by alternatively

updating the coefficients and dictionary atoms by Eqs. 4.9 and 4.16. Details of the

optimization process can be referred to Chapter 4.

After constructing the discriminative dictionary D by using the proposed DL-

GSGC algorithm, the coefficients for a given feature y can be calculated by solving
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the following optimization problem:

min
x
‖y −Dx‖22 + λ1|x|1 + λ2‖x‖22 + λ3

J∑
i=1

‖αi − x‖22wi (7.1)

Similar to the derivation in Chapter 4, the feature-sign search method Lee et al.

(2007) can be used to obtain the coefficients.

7.4 Classification

For classification, the Support Vector Machine (SVM) Chang and Lin (2001) is the

most popular classifier with strong discriminative power. The SVM is a binary

classifier that aims to learn a decision function

f(z) =
n∑
i=1

αiK(z, zi) + b (7.2)

where {(zi, yi)}ni=1 is the training set and yi ∈ {−1, 1} is the label.

In literature, the Bag-of-Words (BoW) representation must be applied together

with a particular type of nonlinear Mercer kernels, e.g., Chi-square kernel to obtain

good performance Yang et al. (2009a). Equation 7.3 shows the kernel function:

K(Hi, Hj) = exp

(
− 1

2M

S∑
n=1

(hin − hjn)2

hin + hjn

)
(7.3)

where Hi = {hin} and Hj = {hjn} are the histograms calculated by BoW, and S

is the number of codewords. M is the mean value of distances between all training

samples Zhang et al. (2007). However, the complexity of nonlinear kernel is O(n2 ∼

n3) in training and O(n) in testing, where n is the training size. For the linear kernel

used in this chapter, the complexity is O(n) in training and a constant in testing Yang

et al. (2009a).
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To speed up the process of training and testing, a linear kernel K(·, ·) is used on

the calculated histogram Yang et al. (2009a). Note that the accuracy can be even

better if a nonlinear kernel is used at the price of speed. Given the training data zi

and the test sample z, the kernal can be calculated as

K(z, zi) = zTi z (7.4)

Combining Eqs. 7.2 and 7.4, the binary SVM decision function can be further

represented as

f(z) =

(
n∑
i=1

αizi

)T

z + b = wTz + b (7.5)

For multi-class, the linear SVM is equivalent of learning L linear functions

{wT
c z|c ∈ Y}, given the training data {(zi, yi)}ni=1, yi ∈ Y = 1, . . . , L. For a test

sample z, its class label is predicted by Yang et al. (2009a)

y = max
c∈Y

wT
c z (7.6)

As used in Yang et al. (2009a), the one-against-all strategy is adopted to train the L

linear SVMs by solving the optimization problem

min
wc

J(wc) = ‖wc‖2 + C
n∑
i=1

`(wc; y
c
i , zi) (7.7)

where `(wc; y
c
i , zi) = [max(0,wT

c z · yci − 1)]2 is the differentiable quadratic hinge loss

and can be solved by gradient-based optimization methods.

7.5 RGB-D Human Action Recognition

In this chapter, we evaluate both the DL-GSGC based action recognition and the

ScTPM based action recognition. Although the previous sections mainly focus on

the depth based representation, the proposed framework can also be applied on the
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RGB features. In this chapter, we conduct the proposed ScTPM on the CS-Mltp

features that have been proposed in Chapter 3. First, enough features are collected

from the training samples to learn the dictionary by Eq. 6.3. Next, sparse coefficients

can be calculated for any given CS-Mltp features by Eq. 6.2. Similar to the 3D joint

feature representation, the three-level temporal pyramid combined with max pooling

technique is applied on every RGB video and a final histogram representation is

formed by concatenating all the segments from the given RGB video.

To perform RGB-D human action recognition, we fuse the features of depth maps

and color images at two levels, 1) a feature-level fusion where the histograms generated

from two sources are simply concatenated together to form a longer histogram

representation as the input to classifier, and 2) a classifier-level fusion where the

classifiers for the two sources are trained separately and classifier combination is

performed subsequently to generate final result.

To combine the classifier outputs of both the 3D joint features and the CS-Mltp

features, we first interpret the classifier outputs as a probability measure. For each

test sample z, since the degree of confidence that it belongs to class i can be measured

by wT
i z, the probability representation of the classifier can be defined as:

pi =
exp(wT

i z)∑L
j=1 exp(wT

j z)
(7.8)

where pi gives the probability of sample z belongs to class i.

Next, the product and sum aggregation operators Kittler et al. (1998) are applied

as two classification confusion operators for evaluation. Different operators will

generate different classification results. Let h1 and h2 be classifiers for the 3D

joint features and the CS-Mltp features, respectively. The product operator can be

expressed as:

y = max
c∈Y

P (sc|h1)P (sc|h2) (7.9)
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if P (si) is the prior probability and set to be equal among all classes, i.e., P (s1) =

. . . = P (sL). The value of P (sc|hi) can be calculated by Eq. 7.8. Similarly, the sum

operator can be simplified into:

y = max
c∈Y

(P (sc|h1) + P (sc|h2)) (7.10)

7.6 Experiments

Two benchmark datasets, MSR-Action3D dataset Li et al. (2010) and MSR Daily-

Activity3D dataset Wang et al. (2012c), are used for evaluation purpose. For both

datasets, we compare the performance from two aspects, the effectiveness of the

proposed framework (i.e., ScTPM and DL-GSGC+TPM) as compared to state-of-

the-art approaches, the effectiveness of the proposed dictionary learning algorithm

(i.e., DL-GSGC) as compared to state-of-the-art DL methods. In addition, since

the second dataset also contains the RGB video sequence, we further compare the

performance between using the RGB sequence and the depth map sequence, and the

different fusion schemes that combine both RGB features and depth features. In all

experiments, the proposed approaches constantly outperform the state-of-the-art.

7.6.1 Parameters Setting

For the 3D joint features, the threshold ts and te need to be pre-defined for the key

frame detection step as described in Chapter 3. We randomly choose 10 samples from

the system, and find the values ts = 0.15 ∼ 0.25 and te = 0.2 ∼ 0.3 are acceptable.

We thus choose ts = 0.18 and te = 0.25 for all the experiments. Note that the

recognition performance is not very sensitive to the values of these two parameters

and thus they can be coarsely selected.

For the Cuboid detector, the value of σ is set to be 2, and τ to be 3. Note that the

patch size is then fixed to be 12× 12× 18. We detect 200 cuboid from every video.
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For the CS-Mltp, the radius of neighboring pixels is set to be 2. The frame step

∆t is set to be 3. The threshold Tcs in Eq. 3.5 is set to be 0.1. To keep the spatial and

temporal information, we divide the extracted cuboids into 2× 2× 2 cells. Note that

the recognition performance is not very sensitive to the values of these parameters

and thus we choose to use fixed values to all the datasets in our experiments.

For the DL-GSGC dictionary learning, there are three parameters: λ1, λ2 and

λ3 that corresponding to group sparsity and geometry constraints, respectively.

According to our observation, the performance is best when λ1 = 0.1 ∼ 0.2,

λ2 = 0.01 ∼ 0.02 and λ3 = 0.1 ∼ 0.2. Initial sub-dictionaries are obtained by solving

‖Yi−DiXi‖2F +λ1
∑Ni

j=1 |xij|1+λ2‖Xi‖2F using online dictionary learning Mairal et al.

(2009) and the number of atoms is set to be 15 for each sub-dictionary. For geometry

constraint, 1500 features are used to build the templates. Note that all these features

are collected from a subset of training samples, and cover all the classes. Compared

to the total number of training features, the number of templates is relatively small.

For the TPM, the depth sequence is divided into 3 levels with each containing 1, 2

and 4 segments, respectively.

7.6.2 MSR Action3D Dataset

The MSR-Action3D dataset Li et al. (2010) contains 567 depth map sequences. There

are 20 actions performed by 10 subjects. For each action, the same subject performs

it three times. The size of the depth map is 640 × 480. Figure 7.4 shows the depth

sequences of three actions: draw x, draw circle, and forward kick, performed by

different subjects. For all experiments on this dataset, the 1500 templates used for

geometry constraint are collected from two training subjects.

Compared with State-of-the-art Algorithms

We first evaluate the proposed algorithm (ScTPM and DL-GSGC + TPM) in

terms of recognition rate and compare it with the state-of-the-art algorithms that
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Figure 7.4: Sample frames from the MSR Action3D dataset. From top to bottom,
frames are respectively from actions: Draw X, Draw Circle, and Forward Kick.

have been applied on the MSR Action3D dataset. For fair comparison, all results

are obtained using the same experimental setting: 5 subjects are used for training

and the rest 5 subjects are used for testing. In other words, it is a cross-subject test.

Since subjects are free to choose their own styles to perform actions, there are large

variations among training and testing features.

Table 7.1 shows the experimental results by various algorithms. Our proposed

method achieves the highest recognition accuracy as 96.7%, and accuracies reduced

to 95.2% and 94.2% if only one constraint is kept. Note that the work of Wang et al.

(2012c) required a feature selection process on 3D joint features and a multiple kernal

learning process based on the SVM classifier to achieve the accuracy of 88.2%, whereas

our algorithm use simple 3D joint feature, combined with the proposed feature

representation and a simple linear SVM classifier. Therefore, the proposed dictionary

learning method and framework is effective for the task of depth-based human action

recognition. Compared to the ScTPM framework that uses 20 dictionaries, the Dl-

GSGC+TPM performs better and it just uses one dictionary.
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Table 7.1: Evaluation of algorithms on the cross subject test for the MSRAction3D
dataset.

Method Accuracy
Recurrent Neural Network Martens and Sutskever (2011) 42.5%
Dynamic Temporal Warping Muller and Roder (2006) 54.0%
Hidden Markov Model Lv and Nevatia (2006) 63.0%
Bag of 3D Points Li et al. (2010) 74.7%
Histogram of 3D Joints Farhadi and Tabrizi (2008) 78.97%
Eigenjoints Yang and Tian (2012) 82.3%
STOP Feature Vieira et al. (2012) 84.8%
Random Occupy Pattern Wang et al. (2012a) 86.2%
Actionlet Ensemble Wang et al. (2012c) 88.2%
DL-GSGC+TPM 96.7%
DL-GSGC+TPM(λ2 = 0) 95.2%
DL-GSGC+TPM(λ3 = 0) 94.2%
ScTPM 93.83%

Figure 7.5 shows the confusion matrix of the DL-GSGC+TPM. Actions of high

similarity get relative low accuracies. For example, action Draw Tick tends to be

confused with Draw X.

Comparison with Sparse Coding Algorithms

To evaluate the performance of the proposed DL-GSGC, classic DL methods are used

for comparison. These methods include K-SVD Aharon et al. (2006), sparse coding

used for image classification based on spatial pyramid matching (ScSPM) Yang et al.

(2009a), and the dictionary learning with structured incoherence (DLSI) Ramirez

et al. (2010). In addition, for all the evaluated DL methods, the feature-sign

search method is used for coefficients calculation, the TPM and max pooling are

used to obtain the vector representation, and the linear SVM classifier is used for

classification. We refer to the corresponding algorithms as K-SVD, ScTPM and DLSI

for simplicity.
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Figure 7.5: Confusion matrix for MSR Action3D dataset.

Comparisons are conducted on three subsets from the MSR Action3D dataset,

as described in Li et al. (2010). For each subset, 8 actions are included. All the

subsets(AS1, AS2 and AS3) are deliberately constructed such that similar movements

are included within the group while A3 further contains complex actions with large

and complicated body movements. On each subset, three tests are performed by

choosing different training and testing samples. Since each subject will perform

the same action 3 times, Test1 and Test2 choose 1/3 and 2/3 samples for training

respectively. Test3 uses the cross subjects setting, which is the same as described

in Sec. 7.6.2. Compared with Test1 and Test2, Test3 is more challenging since the

variations are larger between training and testing samples.

Table 7.2 shows the results on the three subsets. Note that the overall accuracies

based on all actions (20 actions) are also provided for each test. It shows that the

performance of DL-GSGC is superior to other sparse coding algorithms in terms of

accuracies on all tests. In addition, class-specific dictionary learning methods, such

as DL-GSGC and DLSI, perform better than methods learning a whole dictionary
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Table 7.2: Performance evaluation of sparse coding based algorithms on three
subsets. Method 1 is proposed in Li et al. (2010), method 2 is proposed in Farhadi
and Tabrizi (2008), and method 3 is proposed in Yang and Tian (2012).

Dataset 1 2 3 K-SVD ScTPM DLSI DL-GSGC

Test 1

AS1 89.5 98.5 94.7 98.8 98.8 97.4 100
AS2 89.0 96.7 95.4 95.6 95.6 98.1 98.7
AS3 96.3 93.5 97.3 98.8 98.8 99.4 100

Overall 91.6 96.2 95.8 97.8 97.3 97.6 98.9

Test 2

AS1 93.4 98.6 97.3 100 100 98.8 100
AS2 92.9 97.9 98.7 98 98 97.2 98.7
AS3 96.3 94.9 97.3 100 100 100 100

Overall 94.2 97.2 97.8 98.9 98.9 97.9 98.9

Test 3

AS1 72.9 87.9 74.5 92.4 96.6 96.6 97.2
AS2 71.9 85.5 76.1 91.9 92.9 93.7 95.5
AS3 79.2 79.2 96.4 95.5 96.4 96.4 99.1

Overall 74.7 79.0 82.3 92.0 92.7 93.2 96.7

simultaneously for all classes (i.e., K-SVD and ScTPM). Moreover, the proposed

framework (i.e., sparse coding + TPM), is effective for action recognition, since

accuracies when using different sparse coding methods outperform the literature work

in both Tables 7.1 and 7.2. Especially, our method outperforms other algorithms in

Table 7.1 based on 3D joint features by 15% ∼ 17% on test 3.

7.6.3 MSR DailyActivity3D Dataset

The MSR DailyActivity3D dataset contains 16 daily activities captured by a Kinect

device. There are 10 subjects in this dataset, and each subject performs the same

action twice, once in standing position, and once in sitting position. In total, there are

320 samples with both depth maps and RGB sequences available. Figure 7.6 shows

the sample frames for the activities: drink, write and stand up, from top to bottom.

As shown in Figure 7.6, some activities in this dataset contain small body movements,

such as drink and write. In addition, the same activity performed in different positions

have large variations in the estimated 3D joint positions. Therefore, this dataset is
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Figure 7.6: Sample frames for the MSR DailyActivity3D dataset. From top to
bottom, frames are from actions: drink, write, and stand up.

more challenging than the MSR Action3D dataset. Experiments performed on this

dataset is based on cross subjects test. In other words, 5 subjects are used for training,

and the rest 5 subjects are used for testing. The number of templates is also 1500

which are collected from 2 training subjects. Table 7.3 shows the experimental results

by using various algorithms.

Comparison with State-of-the-art Algorithms

We first compare the performance of DL-GSGC with literature work that have

been conducted on this dataset. As shown in Table 7.3, the proposed method

outperforms the state-of-the-art work Wang et al. (2012c) by 10% and the geometry

constraint is more effective for performance improvement. In addition, other DL

methods are incorporated in our framework for comparison, referred to as K-SVD,

ScTPM and DLSI. Experimental results show that the performance of DL-GSGC

is superior to other DL methods by 4% ∼ 5%. In addition, class-specific dictionary

learning methods, i.e., DL-GSGC and DLSI, are better for classification task than

K-SVD and ScTPM. Moreover, the proposed framework outperforms the state-of-

the-art work Wang et al. (2012c) by 5% ∼ 10% when different DL methods are
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Table 7.3: Performance evaluation of the proposed algorithm with eight algorithms.
Algorithms marked with (*) are applied on RGB videos and all rest algorithms are
applied on depth sequences.

Method Accuracy
Cuboid+HoG* 53.13%
Harris3D+HOG/HOF* 56.25%
Dynamic Temporal Wrapping Muller and Roder (2006) 54%
3D Joints Fourier Wang et al. (2012c) 68%
Actionlet Ensemble Wang et al. (2012c) 85.75%
K-SVD 90.6%
ScTPM 90.6%
DLSI 91.3%
CS-Mltp (RGB) 65.63%
DL-GSGC 95.0%
DL-GSGC (λ2 = 0) 93.8%
DL-GSGC (λ3 = 0) 92.5%
ScTPM+CS-Mltp (product) 90.63%
ScTPM+CS-Mltp (sum) 91.15%
ScTPM+CS-Mltp (concatenate) 92.5%

used. Considering the large intra-class variations and noisy 3D joint positions in this

dataset, the proposed framework is quite robust.

Comparison with RGB Features

Since both depth and RGB videos are available in this dataset, we also compare

the performance of RGB features with that of depth features. For traditional

human action recognition problem, spatio-temporal interest points based methods

have been heavily explored. Two important steps are spatio-temporal interest point

detection and local feature description. As for feature representation, Bag-of-Words

representation based on K-means clustering is widely used. In this chapter, we follow

the same steps to perform action recognition from RGB videos. To be specific, the

classic Cuboid Dollar et al. (2005) and Harris3D I.Laptev et al. (2008) detectors are

used for feature detection, and the HOG/HOF descriptors are used for description.

The Bag-of-Words representation is used for feature representation.
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Table 7.3 provides the recognition rates by using different feature detectors and

descriptors on RGB video sequences. Compared to the other feature descriptors,

the proposed CS-Mltp performs better on this dataset. However, compared with

the performance of depth features, recognition rates on RGB sequences are lower.

We argue the main reason to be that this dataset contains many actions with high

similarity but small body movements, i.e., Drink, Eat, Write, Readbook. In this

case, the 3D joint features containing depth information are more reliable than RGB

features. In addition, the K-mean clustering method will cause larger quantization

error than sparse coding algorithms. Therefore, depth information is important for

the task of action recognition, and the sparse coding based representation is better

for quantization.

Performance Evaluation of Various Fusion Schemes

The features extracted from different sources can be fused at two levels: feature level

and classifier level. For the former, histograms generated by the two features are

concatenated to form a longer histogram that used as input to the classifier. For the

latter, the common combination rules such as sum and product are used for classifier

fusion.

Table 7.3 shows the performance of different fusion methods compared with the

single classifier. Performance is improved by combining the two classifiers even with

the simple operator sum. In addition, concatenating both the CS-Mltp feature and

3D joint feature helps improve the recognition rate by 27% and 1.5% respectively

compared to the usage of just the CS-Mltp feature or the 3D joint feature.

Figure 7.7 shows the accuracies when using the RGB and depth features separately,

as well as the fused classifier for all 16 classes. For the CS-Mltp feature, it performs

better on actions with large body movements such as cheer up, walk, stand up and

sit down, but it fails to describe the small-scale body movements and performs worse

on actions such as call cell phone, use laptop and play guitar. The 3D joint feature is

less sensitive to the scale of body movements since its performance is stable on all 16
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Figure 7.7: Comparison of the proposed RGB feature (CS-Mltp) and depth features
(3D joints) used separately and in concatenation.

classes. By taking advantage of the two features, the accuracies of actions drink and

sit down are improved after concatenating the two features together.

7.7 Summary

In this chapter, a new framework is used to perform human action recognition on

RGB-D sensors. 3D joint features were extracted from the detected key frames on

each depth sequence and CS-Mltp features were proposed to simultaneously extract

both the spatial and temporal features from the RGB sequences. To achieve temporal

alignment as well as preserve temporal information, a temporal pyramid approach

combined with sparse coding and max pooling function was proposed for feature

representation. Approximation error of extracted features was largely reduced by

the linear and sparse combination of representative features. Compared to the BoW

model, the proposed framework that based sparse coding algorithms perform better

on depth based action recognition. In addition, the proposed DL-GSGC outperforms
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the other classic sparse coding algorithms (i.e, K-SVD and DLSI). Due to the

strong representation capability, the proposed features and framework outperformed

algorithms with complicated classifiers even with a simple linear SVM classifier.

Experimental results showed the significant improvement of the proposed algo-

rithms and revealed the robustness of depth features and RGB features on different

actions. On one hand, the proposed framework based on the 3D joint feature was

tolerant to the large intra-class variations and small inter-class variations. On the

other hand, the proposed framework based on the CS-Mltp features performed well

on actions with large movements and was superior to other local representation

approaches. In addition, simple fusion approaches, e.g., product, max and feature

concatenation, used as aggregation operators, yielded better classification accuracies,

especially on actions with small body movements or actions occluded by other objects.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the study findings of this dissertation and discusses possible

future research directions. Section 8.1 addresses the main findings and evaluates to

what extent the goals of this thesis have been achieved. Section 8.2 suggests possible

future research directions.

8.1 Summary

The objective of this dissertation is to explore efficient algorithms for the task of

human action recognition. Given different video input sources (i.e, RGB, depth or

both), how to automatically generate the class labels for actions with the videos is

a very challenging problem due to the large intra-class variations, camera motions,

and cluttered background. In addition, the performance when both RGB and depth

features are available needs to be evaluated and fusion schemes should be explored.

In order to extract more discriminative and efficient features, we first proposed

the SMltp descriptor to describe detected 3D patches from RGB sequences. Different

from the traditional LBP based descriptors with long vector representation, the

SMltp contains 25 bins in total so that can be combined with existing spatial-

temporal detectors. Compared to the popular HOG and HOF descriptor, the SMltp

is more computationally efficient and generates better performance on benchmark
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datasets. Next, we propose a new descriptor, referred to as CS-Mltp, to capture

motion information. Different from SMltp that compared on the intensity, the CS-

Mltp compares the gradient difference among frames and assign a ternary pattern

for measure. Compared to the SMltp, CS-Mltp is more sensitive to small motions

and noise. We further proposed a discriminative dictionary learning method (DL-

GSGC) for feature representation. Different from K-means that assign each query

feature to the nearest cluster center, the proposed algorithm uses soft assignment by

selecting atoms within the same class as the features to generate nonzero coefficients

and keeping the spatial distribution simultaneously.

To evaluate the effectiveness of the proposed algorithms, three classic kinds of

human action recognition are explored.

We first apply the proposed SMltp on the single view human action recognition.

Compared to the popularly used feature descriptors, our proposed SMltp is much

faster and achieves better performance when combined with the same feature

detectors. Especially, combined with the dense sampling, the proposed algorithms

significantly reduce the number of features, and achieve superior to or competitive

with the state-of-the-art descriptors in realistic settings.

Next, the distributed human action recognition is used as another application

of the proposed Mltp. In the distributed sensor network, our proposed algorithm

is computational efficient, and robust to the positions or orientations of cameras.

In addition, preprocessing and communication among local visual sensors are not

necessary.

Finally, we apply the CS-Mltp and DL-GSGC on the task of RGB-D human

action recognition. In addition, we propose a new framework for action recognition

from depth maps. Using the 3D joint features and CS-Mltp features, both feature-

level fusion and classifier-level fusion are explored. Experimental results indicate that

recognition accuracy benefits from the fusion schemes. In addition, the proposed

framework and dictionary learning algorithm outperforms existing state-of-the-art

approaches on benchmark datasets.
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8.2 Future Research

For the human action recognition based on RGB videos, existing work mainly focuses

on BoW representation due to the large number of features extracted from each

video sequence. Different from the depth features (i.e, 3D skeletons), many outliers

existing in the extracted RGB features. In this case, how to remove the outliers plays

an important role to the performance. In addition, although SMltp is tolerant to the

camera motion to some extend, it still be influence when the camera motions is large

and background is cluttered. In this case, possible feature selection algorithms can

be helpful to improve the performance.

In this distributed camera network, although the proposed Mltp and sparse

coding based framework performs better with less bandwidth consumption and

computational cost, how to take advantage of the information among cameras can be

further explored. Taking the advantage of transfer learning, it is possible to get good

performance when use different training and testing views. In this case, how to apply

the transfer learning algorithms to the distributed camera network can be essential,

so that view invariant action recognition is possible since information from any smart

camera is well explored and related to the rest.

As for the depth maps, features extracted from the 3D joint tracker are compact

and discriminative. However, it is necessary to add more information when actions

contain interaction between persons and objects. Therefore, besides the 3D joint

positions, other features extracted directly from depth maps may need to be explored.

In addition, when features from both RGB sequences and depth maps are both

available, more complicated feature selection and feature fusion algorithms can be

explored to fully explore the advantages of both sources.
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