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Abstract

Quadratic programming (QP) has received significant consideration due to an extensive list

of applications. Although polynomial time algorithms for the convex case have been devel-

oped, the solution of large scale QPs is challenging due to the computer memory and speed

limitations. Moreover, if the QP is nonconvex or includes integer variables, the problem

is NP-hard. Therefore, no known algorithm can solve such QPs efficiently. Alternatively,

row-aggregation and diagonalization techniques have been developed to solve QP by a sub-

problem, knapsack separable QP (KSQP), which has a separable objective function and is

constrained by a single knapsack linear constraint and box constraints.

KSQP can therefore be considered as a fundamental building-block to solve the general

QP and is an important class of problems for research. For the convex KSQP, linear time

algorithms are available. However, if some quadratic terms or even only one term is negative

in KSQP, the problem is known to be NP-hard, i.e. it is notoriously difficult to solve.

The main objective of this dissertation is to develop efficient algorithms to solve general

KSQP. Thus, the contributions of this dissertation are five-fold. First, this dissertation

includes comprehensive literature review for convex and nonconvex KSQP by considering

their computational efficiencies and theoretical complexities. Second, a new algorithm with

quadratic time worst-case complexity is developed to globally solve the nonconvex KSQP,

having open box constraints. Third, the latter global solver is utilized to develop a new

bounding algorithm for general KSQP. Fourth, another new algorithm is developed to find a

bound for general KSQP in linear time complexity. Fifth, a list of comprehensive applications

for convex KSQP is introduced, and direct applications of indefinite KSQP are described

and tested with our newly developed methods.

Experiments are conducted to compare the performance of the developed algorithms with

that of local, global, and commercial solvers such as IBM Cplex using randomly generated

problems in the context of certain applications. The experimental results show that our

proposed methods are superior in speed as well as in the quality of solutions.
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1. Introduction

The quadratic programming (QP) is a mathematical optimization model with a quadratic

objective function and linear constraints:

(QP) Min
1

2
xTQx + cTx

s.t. Ax = b

l ≤ x ≤ u

where x ∈ Rn denote decision variables, and c, l, u ∈ Rn, b ∈ Rm, A ∈ Rm×n, and

Q ∈ Rn×n are data. In the box constraint, namely l ≤ x ≤ u, some uj can be infinite

(+∞) and some lj can be infinite (−∞) as well. If all eigenvalues of Q are nonnegative

(i.e. Q is positive definite or positive semidefinite), QP is a convex problem, and several

polynomial time algorithms are available [24]. If Q has some negative eigenvalues (i.e. Q is

indefinite or negative definite) or even one negative eigenvalue, QP is a very difficult problem

(NP-hard) [104]. Convex QP has been extensively studied due to its myriad applications

such as resource allocation, network flows, transportation, traffic scheduling, economies of

scale, and portfolio selection. Moreover, a nonlinear optimization problem having a twice

continuously differentiable objective function and constraints can be solved by the iterative

use of convex QP by the method of successive quadratic programming. Indefinite QP is

also appears in many applications such as VLSI (Very-large-scale integration) chip design

and linear complementarity problems. See surveys [97, 110] and books [34, 42] for detailed

applications and studies.

An example of convex QP is the index-tracking optimization model that finds the optimum

1



investment weights to construct equity index funds by mimicking a sample of historical

market return such as Standard & Poor’s 500 index. For stocks j = 1, 2...n and time

periods t = 1, 2, ..., T , the model can be formulated in a least-square framework as

Min
T∑
t=1

 n∑
j=1

Rtjxj − rt

2

= (Rx− r)2

s.t. 1Tx = 1

l ≤ x ≤ u

where x ∈ Rn is the portfolio weight for stock j, Rtj is return of stock j at time t, rt is the

index (market) return at time t, 1 ∈ Rn is a vector of 1, and l, u ∈ Rn are given bound for

the portfolio weights. See Edirisinghe [38] for more information and Nakagawa et al. [87]

for models that consider regulatory.

Knapsack Nonseparable QP (KNQP)

Although much research has been conducted for QP, development of better QP solution

algorithms is an ongoing challenge, because as the size of the problem increases the existing

algorithms suffer from limitation in computer memory and computational speed. So, for

specially structured QP with sparse or block angular matrix, efficient methods have been

proposed. However, most methods still have the same difficulties as the problem size grows.

An attractive way to overcome the above computational difficulties is by row-aggregating

the given set of linear constraints into a single linear constraint. Such an idea is the building-

block of surrogation techniques [48, 87] and dual ascent methods [73, 134, 137]. A QP

with a single linear constraint is called a knapsack QP. Moreover, when the matrix Q is

non-diagonal, the QP is said to be nonseparable. Thus, we name the problem knapsack

nonseparable QP (KNQP).

Because surrogation techniques and dual ascent methods solve KNQP iteratively, efficient

algorithms for KNQP are required. Moreover, KNQP is very useful itself for various appli-

cations. For example, the convex KNQP are found in resource allocation, support vector

2



machine (SVM) [31, 25], and portfolio selection [96]. The case of nonconvex KNQP can

be found in applications involving maximum clique problem [105] and subset-sum problem

[59, 132].

To solve convex KNQP, Pang (1980, [96]) employed the linear complementarity technique,

and Dussault et al. (1986, [36]) and Lin and Pang (1987, [73]) proposed diagonalization

technique (DT). Recently, spectral projected gradient (SPG) method of [12] was applied

by Dai and Fletcher (2006, [31]). Research that specially focuses on indefinite KNQP is

found in Pardalos et al. (1981, [105]), which applied interior point approach and simplicial

partitioning approach.

Knapsack Separable QP (KSQP)

When Q is diagonal, QP is said to be separable, and the class of knapsack QP is referred

to as knapsack separable QP (KSQP). For both convex and nonconvex cases, all available

algorithms are discussed in the survey Chapter 2, and applications are discussed in Section

5.1.

When all diagonal elements of diagonal matrix Q are positive in KSQP, geometrically,

the contours of the objective function are ellipsoids, and the optimum solution is the point

at which the smallest ellipsoid is tangential to the feasible domain. Thus, strictly convex

KSQP is a restricted projection problem [111]. For example, if Q is an identity matrix, the

optimum solution is the closest (projection) point from the center of the ellipsoid (in this

case, a sphere) to the feasible domain.

Due to this geometric nature and the existence of fast algorithms for convex KSQP (see

Table 2.1 for algorithm references), it is used as a sub-problem in many QP algorithms. For

example, DT and SPG approach to the solution iteratively projecting a point via KSQP

onto its feasible domain. Therefore, KSQP is the fundamental building-block to solve KNQP

with DT and SPG, and eventually, it can be used to develop algorithms for QP with row-

aggregation techniques.
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Indefinite QP

As mentioned earlier, indefinite QP is known to be NP-hard. It can be solved by some

general global optimization techniques such as Benders decomposition, branch and bound,

and cutting plane [99, 100], but there is a well known separable programming method that

is specialized for QP (e.g. [114]). It first diagonalizes Q with a spectral decomposition,

Q = VDVT ,

where D is a diagonal matrix with eigenvalues of Q in its diagonal part, and V is the

corresponding eigenvector matrix. With an appropriate constant vector s, a linear mapping

of

Vy + s← x

can transform indefinite QP to a form of separable QP:

Min 1
2yTDy + ĉy

s.t. Ây = b̂

α ≤ y ≤ β

(1.1)

where constants s, α, β ∈ Rn are determined by solving a linear program referred to

multiple-cost-row linear program (see [114] for more details).

Since some diagonal elements of D are negative, (1.1) is still NP-hard. But the separable

structure makes it possible to apply the piecewise linear approximation technique that for-

mulates a mixed integer binary program; however, this formulation naturally increases the

number of 0-1 variables exponentially as the number of variables and the level of accuracy

increase. Thus, the technique is not practical for large size problems. See Section 2.4.1 for

details of this formulation given in Pardalos and Kovoor [101].
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1.1. Motivations for KSQP

Indefinite QP If the row-aggregation techniques are applied to indefinite separable QP

in (1.1), it becomes indefinite KSQP. Thus, as an alternative to increasing the number of

0-1 variables exponentially by piecewise linear approximation, indefinite KSQP emerges as

a sub-problem of a solution approach. In this sense, indefinite KSQP becomes an important

class of problems for research.

Nonseparable QP As discussed earlier, the convex QP can be solved by KNQP with

row-aggregation techniques, and KNQP algorithms such as DT and SPG utilize KSQP for

their main sub-problem. In this respect, KSQP is a fundamental building-block to solve

nonseparable QP so the efficient algorithm development for KSQP in this dissertation is

beneficial to develop more efficient convex QP algorithms.

Mixed integer programming According to Pardalos [100], any nonlinear 0-1 program can

be reduced to a quadratic program, and quadratic 0-1 programming can be formulated as

a continuous global concave minimization problem. Because these converted problems can

be solved via indefinite KSQP as a sub-problem with row-aggregation and diagonalization

techniques, the value of research for KSQP is enlarged for mixed integer programming.

Indefinite KSQP Indefinite KSQP arises in various combinatorial problem formulations

[35, 53, 60], in resource allocation [54], and in subset-sum problems [83, 132]. In spite of these

valuable applications, indefinite KSQP is still a challenging problem as an NP-hard problem

[59, 132]. Moreover, there exists only a handful of algorithms that focus on indefinite KSQP.

Algorithms of [83, 132] finds a local optimum in polynomial time based on Karush-Kuhn-

Tucker (KKT) conditions, and algorithms of [101] and [131] approximate a solution based

on a mixed integer linear formulation and dynamic programming, respectively. Therefore,

an efficient indefinite KSQP method is indispensable for the above applications, especially,

when the problem size is large.
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Figure 1.1.: Motivation and research path

1.2. Research Scope

As discussed earlier, KSQP can be used as a sub-problem in solving general QP. However,

this dissertation is limited to the specific goal:

“Developing efficient algorithms to solve general KSQP.”

The integration and the application of KSQP methods toward solving the general QP are

outside the scope of this dissertation. See the flow chart in Figure 1.1.

1.3. Contributions of this Dissertation

1. Survey of KSQP (Chapter 2)

A comprehensive literature review of all convex and nonconvex cases of KSQP is

presented with theoretical and computational analysis. New ideas to improve the
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existing methods are also suggested.

2. A new O(n2) time global algorithm for open-box indefinite KSQP; OBG (Sec-

tion 3.2)

An algorithm, referred to Open-Box Global (OBG), is developed to find an exact global

optimum solution of indefinite KSQP with open box constraints (lj ≤ xj for concave

terms). Although OBG enumerates a subset of KKT points to determine a global

optimum, the enumeration is made efficient by developing the theory for shrinking and

partitioning the search domain of KKT multipliers, resulting O(n2) time complexity.

This is the first instance of such an algorithm to the best of the author’s knowledge.

The superiority of OBG is verified computationally by comparing with other solvers

such as the commercial solver Cplex 12.6.

3. A new bounding algorithm for closed-box indefinite KSQP (Section 3.3)

The OBG method in Section 3.2 is utilized to generate lower and upper bounds of

indefinite KSQP in the general case of closed box constraints (lj ≤ xj ≤ uj for concave

terms). An efficient method utilizing a search on the Lagrange multiplier space is

developed to find a lower bound, and a new procedure to construct a feasible upper

bound is developed. It is computationally tested on random problems as well as subset-

sum problems. It turns out that these bounds are quite tight and computationally very

efficient for very large problems compared to Cplex 12.6.

4. A new linear time bounding algorithm for closed-box indefinite KSQP; CBS

(Chapter 4)

A new bounding algorithm, referred to Closed-Box Solver (CBS), is developed to find

a tight bound of indefinite KSQP. The gap between the lower and upper bounds is

expected to be tight because the gap is determined by coefficients of a single variable.

The techniques used for strictly convex KSQP lead to achieve O(n) time complex-

ity of CBS, and new hybrid methods that are practically more reliable and faster are

developed and tested experimentally using a broad range of random problems. Com-
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putations show that CBS is superior in speed and solution quality to the compared

solvers such as Cplex 12.5. CBS also finds the exact global optima in some cases for

which a characterization is given. In the experiments, the global optimum is found in

69% of instances when 30% of variables are related with concave terms.

5. Practical applications of developed algorithms (Chapter 5)

An extensive list of applications for convex KSQP is presented. We demonstrate that

mixed integer QP can be solved very efficiently with high solution quality through

CBS. The superior speed and solution quality of the upper bounding procedure using

OBG is verified by subset-sum problem with an available local solver.

1.4. Outline of this Dissertation

The general content of this dissertation are described in the following chapters.

Chapter 2: Knapsack Separable Quadratic Programming (KSQP): Survey

All existing methods of KSQP in convex and nonconvex cases are discussed, and ideas for

computational enhancement are also proposed.

Chapter 3: Indefinite Open-Box Approach to Solution

A new global solver is developed for the indefinite case of KSQP, which has open box

constraints (lj ≤ xj for concave terms). Although the algorithm, which is referred to Open

Box Global (OBG) solver, finds an exact global optimum solution by enumerating all KKT

points that satisfy an additional necessary condition, it has only O(n2) time worst case

complexity. Furthermore, a new procedure that utilizes OBG to find lower and upper bounds

for general KSQP is presented. The performances of developed algorithms are tested in

experiments with local, global, and commercial solvers.
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Chapter 4: Lagrangian-relaxed Closed-Box Solution

For indefinite KSQP with closed box constraints (lj ≤ xj ≤ uj for concave terms), a new

O(n) time tight bound algorithm, which is referred to Closed Box Solver (CBS), is developed.

All root finding methods, which are discussed in the survey of Chapter 2 for strictly convex

KSQP, are applied for CBS, and hybrid methods that consider efficiency and reliability are

also proposed. All applied methods are computationally tested to select the best method in

a broad range of random problems from strictly convex to highly concave KSQP. Then, it is

compared with local, global, and commercial solvers. Impressive performance in speed and

solution quality is achieved and discussed. The reason of high quality solution is explained

by showing that the gap between lower and upper bound is determined by coefficients of a

single variable.

Chapter 5: Applications

This chapter presents lists of the applications of convex KSQP. The real investment portfolio

selection model is used to demonstrate that mixed integer QP can be solved using indefinite

KSQP. Subset-sum problem, a direct application of indefinite KSQP is also discussed and

tested.

Chapter 6: Concluding Remarks

The accomplishments and contributions of this dissertation are summarized, and potential

directions for future research are discussed.

1.5. Notation and Preliminaries

1.5.1. Notation

• Bold lower case alphabet: a column vector (e.g. a, l, u, c, and x)

• Bold upper case alphabet: a matrix (e.g. Q and D)

• 0: bold 0 means a vector of zeros
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• 1: bold 1 means a vector of ones

• n: the number of variables in a problem

• Superscript T of a vector or matrix means transpose (e.g. xT ∈ R1×n means the

transpose of the vector xT ∈ Rn×1.)

• Superscript ∗ of a scalar or vector means the optimum value (e.g. x∗ means an optimum

solution)

• | · | is the number of elements of the corresponding vector if the corresponding input

is a vector or is the absolute value if the input is a scalar (e.g. |a| = 3 for a vector

a = [2, 4, 7]T , and | − 3| = 3 for a scalar)

• d·e is the closest integer greater than the corresponding scalar. (e.t. d1.3e = 2)

• ∀j means for all j (e.g.
∑
∀j aj =

∑n
j=1 aj)

• xL means xj for j ∈ L ∈ {1, 2, ..., n}

• [a, b]: the interval of numbers between a and b including a and b (e.g. c ∈ [a, b] means

a ≤ c ≤ b). If the interval does not contain a or b, a parenthesis is used instead of the

square bracket. (e.g. c ∈ (a, b] means a < c ≤ b)

1.5.2. Preliminaries1

A mathematical programming model is an optimization problem of the form

Min f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m (1.2)

x ∈ Ω

where Ω is a nonempty subset of Rn and is in the domain of the real-valued functions,

f : Rn → R1, and gi : Rn → R1 for i = 1, ...,m. The relation, gi(x) ≤ 0 is called a
1This part mainly refers to [10, 141] so citation for specific parts are omitted in this section.
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constraint, and f(x) is called the objective function.

A given x ∈ Rn is feasible if it is in the domain of Ω and satisfies the constraints gi(x) ≤ 0.

A point x∗ is said to be a global optimum if it is feasible and if the value of the objective

function is not more than that of any other feasible solution: f(x∗) ≤ f(x) for all feasible

x. A point x̂ is said to be a local optimum if there exists an ε-neighborhood Nε(x̂), i.e., a

ball of radius ε with center at x̂, such that f(x̂) ≤ f(x) for all feasible x ∈ Nε(x̂).

A set S is said to be convex if the line segment connecting any two points in the set

belongs to the set. That is, if x1 and x2 are any two points in the set S, then a linear

combination of these two points, denoted by λx1 + (1 − λ)x2, is in S for any λ ∈ [0, 1]. A

function f is said to be convex on S if f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2), for each

x1 and x2 in S and for each λ ∈ [0, 1].

The Karush-Kuhn-Tucker (KKT) necessary optimality conditions can be stated as

Stationarity ∇xf(x) +
∑m

i=1 λi∇xgi(x) = 0

Primal feasibility gi(x) ≤ 0, x ∈ Ω i = 1, ...,m

Complementary slackness λig(x)i = 0 i = 1, ...,m

Dual feasibility λj ≥ 0 i = 1, ...,m

where ∇xf represents the gradient vector with respect to x, and λi is the Lagrange multi-

pliers associated with the constraints gi(x) ≤ 0. If x∗ is a local minimum for the problem

in (1.2) and constraint qualification holds at x∗, then x∗ satisfies the KKT conditions. In

addition, if f(x) and gi(x) are differentiable and convex, x∗ is a global minimum solution

to the problem in (1.2) if x∗ satisfies the KKT conditions.

Let the given problem in (1.2) be the primal problem. Then, there exists a problem that

is closely associated with it, called the Lagrangian dual problem in (1.3).

Maxλ≥0 θ(λ) (1.3)

where θ(λ) = inf{f(x) +
∑m

i=1 λi∇gi(x) : x ∈ Ω}, and λi in λ ∈ Rm is referred to dual

variable or Lagrange multiplier of the corresponding gi(x) ≤ 0. It may be noted that θ(λ)
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is a concave function even in the absence of any convexity or concavity assumptions on f or

g, or convexity of the set Ω. If x is feasible to the primal problem (1.2) and if λ ≥ 0, then

f(x) ≥ θ(λ). This result is called the weak duality theorem. Suppose that Ω is convex and

that f , gi : Rn → R1 for i = 1, ...,m are convex. Then, the objective values of both primal

and dual problems are equal. This result is called the strong duality theorem.
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2. Knapsack Separable Quadratic

Programming (KSQP): Survey

2.1. Introduction

Consider a continuous knapsack separable quadratic program (KSQP)

(KSQP) Min
1

2
xTDx − cTx

s.t. aTx = b (2.1)

l ≤ x ≤ u

where x ∈ Rn is decision variables, c, a, l, u ∈ Rn, b ∈ R, and D ∈ Rn×n is a diagonal

matrix with its diagonal elements dj . Without loss of generality, we assume lj < uj and

aj 6= 0 for ∀j. In the case of aj = 0, the optimum solution for the variables is trivial. See

Appendix A.1 for detail.

Transformation

Throughout this dissertation, three index sets

P = {j : dj > 0}, Z = {j : dj = 0}, N = {j : dj < 0}
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are used, and KSQP is considered in the form of (P ):

(P ) Min
1

2
xTDx − cTx

s.t.
∑
j∈∀j

xj = b (2.2)

l ≤ x ≤ u

such that

cj = 0 for j /∈ Z.

The form of (P ) can be obtained from any KSQP through the transformation of

xj ←


xj/aj + cj/dj for j /∈ Z

xj/aj for j ∈ Z
. (2.3)

Appendix A.2 explains the detail of the transformation, and the computational benefit of

the transformation is discussed in Appendix A.3.

KKT conditions

KKT conditions of KSQP are essential conditions to derive our algorithms and explain the

existing algorithms. KKT conditions of (P ) are

Stationarity djxj − cj + λ+ µj − γj = 0 ∀j

Primal feasibility
∑
∀j xj = b, lj ≤ x ≤ uj ∀j

Complementary slackness µj(xj − uj) = 0, γj(lj − xj) = 0 ∀j

Dual feasibility µj ≥ 0, γj ≥ 0 ∀j


(2.4)

where λ is a Lagrange multiplier for the knapsack constraint,
∑

j∈∀j xj = b, and µj and γj

are Lagrange multipliers of upper and lower bounds of each variable.
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Strictly convex case

If all dj ’s are strictly positive, i.e. dj > 0 ∀j, then KSQP is a strictly convex problem.

Since every KKT point is the global optimum solution in this case, according to the strong

duality theorem, the problem is relatively easy so O(n) time complexity algorithms have

been developed. Strictly convex KSQP has a lot of applications and is mainly used as a

sub-problem to project the current solution onto the feasible domain. Much research and

various algorithms have been developed since 1963 as summarized in Table 2.1.

Table 2.1.: History of Algorithms for strictly convex case

Methods
Comp-
lexity

1960’s 1970’s 1980’s 1990’s 2000’s
2010-
2013

Total

Bisection O(n log n)
1963

[123]
[116]

[93, 94, 95,

27, 36, 117,

133]

[120, 77,

137]
[140] 2012 13

Sorting
(Rank-
ing)

O(n log n)
1969

[29]

[49, 57,

75, 61]

[50, 2, 143,

39, 135,

112, 28]

[134, 88,

18] 1995
15

Pegging
(Var.
fixing)

O(n2)
1971

[116,

75]

[143, 14,

121, 82, 54,

133]

[134,

111, 19,

15]

[124, 125,

126, 17,

127, 128,

65]

[62] 2012 20

Median
search

O(n)
1984

[20, 21, 76]

[101,

134, 26,

52, 77]

[78, 63,

64]
[32] 2013 12

Secant
Not mea-
surable

1988

[112, 117]
[137] [31] [25]2012 5

Newton O(n2)
1992 [88,

111, 137]
[74] [25] 2012 5

Interval
test

O(n log n)
1992

[132]

[7, 8]

2013
3

Interior
point

Not re-
searched [136] 2013 1

Total 2 7 25 20 12 8 74

1. Citations are ordered by publication year.
2. The year of initial (last) paper is presented before (after) the corresponding citation.
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Positive semidefinite case

If D is positive semidefinite with diagonal elements of dj ≥ 0 ∀j, KSQP is a convex problem.

Typically, QP with positive semidefinite matrix for quadratic terms is considered to be

more difficult than the strictly convex case so the problem is called ill-conditioned problem.

However, because convex KSQP still satisfies the strong duality theorem and separable with

a diagonal matrix D, its all global optimum solutions are quite easily derived from KKT

conditions. Chapter 4 explains this derivation.

Nonconvex case

In the case of dj < 0 for some j, problem KSQP is notoriously difficult, and Pardalos

and Vavasis ([104]) proved that it is an NP-hard problem even if only one dj is negative.

Although it is theoretically known that the global optimum solution is at a boundary point

allowing at most one xj to be strictly within (lj , uu) (see Theorem 4.8), no efficient method

has been developed in the literature.

Due to such difficulty, the investigation for nonconvex case of KSQP has been rarely

considered. In this author’s best knowledge, there exist only four studies in [83, 101, 131, 132]

which find local or approximate solutions, and performances of these methods deteriorate

significantly as the number of negative dj increases.

A comprehensive literature review of all convex and nonconvex cases of KSQP is presented

in this chapter with theoretical and computational analysis, and ideas that improve the

existing methods are also suggested. Hybrid methods that combine the existing algorithms

for convex KSQP are discussed in Section 4.3.1, and experimental results for the strictly

convex KSQP algorithms, including hybrid methods, are also presented in Section 4.4.1.

2.2. Strictly Convex case

Survey papers of Bretthauer et al. [16] and Patriksson [106] classified methods into two

types: Lagrange multiplier search method (also called break point search method or relax-

ation method) and pegging method (also called variable fixing method). The main difference
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between the two methods is the way to approach finding the optimum solution. The La-

grange multiplier search method searches for the optimum Lagrange multiplier violating the

knapsack constraint (aTx = b), while the pegging method iteratively finds a solution violat-

ing the bound constraints (l ≤ x ≤ u) until all variables are within the bound. Patriksson

[106] categorized the Lagrange multiplier search method as explicitly dual and implicitly

primal and pegging method as explicitly primal and implicitly dual.

The Lagrange multiplier search methods that we present in this chapter are bisection,

sorting (ranking), exact median search (binary search), approximate median search, secant,

Newton (Quasi Newton, semi smooth Newton, dual Newton), and interval test methods.

Other methods we consider are pegging and interior point methods. For these, see Table

2.1.

Besides the above methods, Nielsen and Zenios (1992, [88]) also applied methods of Breg-

man projection and Tseng [130] on strictly convex KSQP. Bregman projection method is

similar to the pegging method, and Tseng [130] finds the optimum solution underestimating

the optimal step. However, we do not consider those two methods because (a) Bregman

projection method does not converge finitely, (b) [88] concluded that Newton method is

more robust than the two methods.

The review of this section is based on the review in Patriksson (2008, [106]), which focuses

on the problems minimizing separable, convex, and differentiable objective function with a

single separable convex knapsack constraint and box constraints in the continuous space

including the strictly convex case of (P ). Hence, this chapter is a successor of Patriksson

[106] focusing on the linear knapsack quadratic problem (P ).

Ventura (1991, [134]) and Robinson et al. (1992, [111]) also give an overview of the

methods that were available at that time and conducted experiments to compare with their

own methods. Experimental results from literature are summarized and compared in Section

2.2.4 with a summary Table 2.5. While reviewing the existing methods, we also present

computationally improved Newton methods.
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2.2.1. Solution characteristics

This section briefly describes the solution characteristics in order to explain the existing

algorithms. Most existing algorithms of convex KSQP find an optimum solution utilizing

KKT conditions, e.g. [18, 50, 64]. From the KKT conditions in (2.4), the following results

are derived.
If xj = lj , then µj = 0 and λ ≥ −djlj

If xj = uj , then γj = 0 and λ ≤ −djuj

If xj = (lj , uj), then µj = γj = 0 and λ = −djxj

 (2.5)

Then, (2.5) leads to define the following solution characteristics with a given λ as

xj(λ) = median{lj , uj ,−λ/dj}. (2.6)

Since xj(λ) satisfies all KKT conditions except for the knapsack constraint
∑
∀j xj = b,

most existing algorithms focus on finding the optimum λ∗ that solves the equation

g(λ) ≡
∑
∀j
xj(λ)− b = 0.

Since xj(λ) is a piecewise nonincreasing function having breakpoints −djlj and −djuj on

λ, g(λ) also inherits the same properties. Thus, the existing algorithms mainly focus on

searching for λ∗, a root of g(λ), i.e. λ∗ such that g(λ∗) = 0.

2.2.2. Algorithms

This section introduces the algorithms for strictly convex case of (P ). We define

λmin = min{−djuj : ∀j}

λmax = max{−djlj : ∀j},

and two values λl and λu are used such that λl ≤ λu and gl ≤ 0 ≤ gu, where gl = g(λu) and

gu = g(λl). Figure 2.1 illustrates examples.
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g(λ)

λ0
λu

gl

λl

gu

λu −λl < εgap

g(λ) < ε fea

λu −λl < εbra

(a) Tolerances

g(λ)

λ0
λu

gl

λl

gu

(b) Interpolation

Figure 2.1.: λl, λu, gl, gu, and tolerances

We also define four positive tolerances:

εgap > λu − λl

εfea > |g(λ)|

εbra > λu − λl

εpeg = εfea

, (2.7)

which are used to stop iteration or ensure convergence, so inequalities in (2.7) are the

termination conditions.

As Figure 2.1a, εgap is used to decide whether λl and λu are close enough to conclude

λ∗ is placed within a tolerance range. εbra is used to give a range [λl, λu] as a bracket to

interval test method so it may generally be greater than εgap. εfea determines the level of

feasibility of the knapsack constraint measuring the violation of g(λ) from zero, and εpeg is

used by pegging method to determine feasibility so its role is like that of εfea.

As observed in Figure 2.1, λ∗ can be found by any root finding method1 such as golden

section and Fibonacci search. But we present root finding methods that have been considered

in the literature for KSQP. Furthermore, two methods (interval test and pegging methods)

that do not use root finding methods are also discussed.

1See a book, “Numerical Mathematics” by Quarteroni et al. [109] for general root finding methods.

19



Bisection method

The Bisection method is most intuitive, and it was first applied by Srikantan (1963, [123]).

The method has been studied by [123, 116, 93, 94, 95, 27, 36, 117, 133, 120, 77, 137, 140] in

the order of publication years from 1963 to 2012. Its complexity is O(n log n) and is well

explained in the recent paper of Zhang and Hua (2012, [140]).

The biggest advantage of the bisection method is its guarantee of convergence because

the range of λ is halved at every iteration. If the method terminates satisfying

λu − λl < εgap, (2.8)

the maximum number of iterations is
⌈
log0.5

(
εgap

λmax−λmin

)⌉
, since the method iterates until

(λmax − λmin)0.5Max.Iter. < εgap is satisfied.

However, if the initial gap between λmax and λmin, which are generated by the given

problem, is large, the expected number of iterations increases. Moreover, the termination

criterion (2.8) with εgap does not guarantee feasibility. For example, if multiple different

breakpoints are within the last [λl, λu], whose range is less than εgap, the bisection method

may finish its iteration with an infeasible x(λ∗). Therefore, the bisection method should use

the termination criterion

|g(λ)| < εfea

to guarantee a feasible solution. A schema for the bisection method with the more reliable

termination criterion is shown in Algorithm 2.1.

Sorting method

The Sorting method has been researched extensively in [29, 49, 57, 75, 61, 50, 2, 143, 39,

135, 112, 28, 134, 88, 18] since it was first implemented by Dafermos and Sparrow (1969,

[29]). Most of the literature generally cite and implement Helgason et al. (1980, [50]). We

name the algorithm “the sorting method” in this dissertation. Note that Robinson et al.
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Algorithm 2.1 O(n log n); Bisection method

1. Set λl = λmin, λu = λmax, and λ = (λl + λu)/2

2. Iterate while |g(λ)| ≥ εfea

a) If g(λ) < 0, set λu = λ

Else set λl = λ

b) Set λ = (λl + λu)/2

3. Finish with λ∗ = λ and x(λ∗)

[111] called the method bisection search method.

The complexity of the sorting method is O(n log n). Most literature use QuickSort

for their implementation and experiments, but HeapSort and MergeSort have been used by

Bretthauer [18] and Ventura [134] respectively. The three sorting algorithms have O(n log n)

complexity on average, but QuickSort has O(n2) complexity in the worst case, while other

two algorithms keep O(n log n) complexity in the worst case. Helgason et al. [50] gives a

worst case complexity analysis of operations for this method.

The sorting step is the main cost of the sorting method. According to our experiments,

about 30%2 of the total time is spent to sort 2n breakpoints. For this reason, alternative

methods such as median search method have been developed to avoid sorting steps, and

the sorting method has not been used since Bretthauer and Shetty (1995, [18]). Moreover,

Bretthauer and Shetty switched to the pegging method for their succeeding studies in [15,

17, 19].

Algorithm

A scheme of sorting method is presented in Algorithm 2.2. It initially sorts all breakpoints

at step 1 and reduces breakpoints by half considering the sign of g(Tj) where Tj is the

median breakpoint among remaining and sorted breakpoints. This iterative step makes

sorting method guarantee to converge at most b1 + log2(2n)c iterations3, which is fixed by

2Matlab provides execution time for each line through a function profiler.m.
3The maximum iteration can be obtained from 1 ≥ 2n/2Max.Iter.−1
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n. In step 2.a, if the number of remaining breakpoints, |T |, is an even number, one can also

update λ by the mid point of the two middle breakpoints depending on the definition of

median.

Algorithm 2.2 O(n log n); Sorting method

1. Get a breakpoint set T = {−djlj ,−djuj}

2. Sort T = sort(T ) in ascending order

3. Iterate while T 6= ∅ (all break points are excluded)

a) Get λ = Tj for j = d|T |/2e
b) If |g(λ)| < εfea, finish algorithm with λ∗ = λ and x(λ∗)

Else if g(λ) < 0, set λu = λ and gl = g(λ), exclude break points by T = T\{Tj :
Tj ≥ λ}
Else set λl = λ and gu = g(λ), exclude break points T = T\{Tj : Tj ≤ λ}

4. Interpolate to get λ∗ = λl + gu(λu − λl)/(gu − gl) and finish algorithm with x(λ∗)

Note that, in step 3.a, we just use j = d|T |/2e for median index, but median of T can be
defined (Tj + Tj+1)/2 if |T | is an even number by the definition of median.

Remark 2.1. It is worth noting that Patriksson [106] made the error of classifying the classic

sorting method literature of Helgason et al. [50] as a bisection method. Maybe due to the

reason, Patriksson [106] also erroneously classified Bretthauer et al. [18] and Ventura [134],

which stemmed from [50], as a bisection method.

Exact median search method (Binary search)

The exact median search method, which is also called as binary search, uses a selection

algorithm to pick the median breakpoint instead of initially sorting all breakpoints as in the

sorting method. The replacement makes the exact median search method be more efficient

than the sorting method thanks to O(n) time selection algorithms such as Select of [66].

Exact median search method converges in less than b1 + log2(2n)c iterations, which is same

as the sorting method, but theoretical complexity is reduced to O(n) time. For detailed

complexity analysis, see [64, 78].
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Since this method was initially developed by Brucker (1984, [20]), numerous researchers

[20, 21, 76, 26, 52, 77, 78, 63, 64, 32] have improved the method, and it seems Kiwiel (2008,

[64]) finalized the research of the median search methods with his modified version showing,

with counter examples, that previous methods [26, 52, 77, 76, 101] may cycle. The result of

his experiments which compare median search methods is summarized in the Section 2.2.4.

A conceptual procedure of the exact median search method is available in Algorithm 2.3

and a more efficient and sophisticated version is provided in Kiwiel [64].

Algorithm 2.3 O(n); Exact Median search method (Binary Search)

1. Get a breakpoint set T = {−djlj ,−djuj}

2. Iterate while T 6= ∅ (all break points are excluded)

a) Get λ = median(T )

b) If |g(λ)| < εfea, stop algorithm with λ∗ = λ and x∗ = x(λ∗)

Else if g(λ) < 0, set λu = λ and gl = g(λ), exclude break points by T = T\{Tj :
Tj ≥ λ}
Else set λl = λ and gu = g(λ), exclude break points T = T\{Tj : Tj ≤ λ}

3. Interpolate to get λ∗ = λl + gu(λu − λl)/(gu − gl) and finish with x(λ∗)

Approximate median search method (Random search)

The approximate median search method was developed by Pardalos and Kovoor (1990,

[101]). Ventura (1991, [134]) suggested a similar idea with the name “random search” in

order to avoid sorting in [50]. The approximate median search method is very similar to

the exact median search method. It randomly chooses one remaining breakpoint instead of

picking the exact median of breakpoints. So the method can be presented replacing step 2.a

of the exact median search method in Algorithm 2.3 with Algorithm 2.4 keeping the other

steps the same.

This simple idea makes the method have expected O(n) time complexity with a small

time constant removing the exact median search procedure; however, its complexity grows
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Algorithm 2.4 Expected O(n); Approximate median search method (Random search)
This algorithm is completed by replacing step 2.a in Algorithm 2.3 with the following step.

2. Iterate while T 6= ∅ (all break points are excluded)

a) Get λ = r, where r is a randomly chosen element in T

to O(n2) in the worst case.

Secant method

The secant method was first proposed by Rockafellar and Wets (1988, [112]) for strictly

convex KSQP. In spite of its competitive performance, it has been less frequently considered

by [117, 137, 31, 25] (in the order of their publication year) than others because a well

developed method was proposed recently by Dai and Fletcher (2006, [31]).

The secant method of [31] uses a variant of false position (regula falsi) root finding method,

which is also a variant of the secant root finding method. False position method may be

less rapid than secant method but is safer because secant method travels out of the initial

bracket of [λmin, λmax] [108]. Because g(λ) is a piecewise non-increasing linear function, the

false position method can be intuitively applied enjoying the properties of g(λ). Because

g(λ) is continuous everywhere with linear pieces if (P ) is in strictly convex case, the final

secant step finds the exact λ∗.

Algorithm

The secant method of Dai and Fletcher (2006, [31]) has two phases as usual root finding

methods: bracketing phase and secant phase. Bracketing phase is used to find a bracket

[λl, λu] such that g(λl) ≥ 0 and g(λu) ≤ 0. At first, it calculates two g(λ)’s with a given

initial λ and updated λ with a given step and finds the third λ as Figure 2.2a if g(λ) with the

second λ has the same sign of g(λ) as the initial λ. Then, it iterates until it finds a bracket

with a safeguard to avoid too small steps. The safeguard is used in step 2.b.ii and step 2.e.ii

of Algorithm 2.5. So the step size ∆λ is updated by ∆λ = ∆λ+ ∆λ/s in a way like secant
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Figure 2.2.: Secant method

root finding method, and it restricts s to be at least 0.1 as in (2.10) to ensure that a new

step size is at least 10 times the previous step size. Dai and Fletcher [31] presented a pseudo

code for the bracket phase and its line 6 and 15 are related to this; however, two lines are

not correct. For example, the line 6 in our notation is given in (2.9), and it is trivial that the

value of s is always 0.1 because gu is updated before s is computed. So we communicated

with two authors, and they accepted the error on April 24, 2013. So we corrected it in (2.10)

in our implementation.

Error code : λl = λ; gu = g(λ); s = max(gu/g(λ)− 1, 0.1); (2.9)

Correct code : λl = λ; s = max(gu/g(λ)− 1, 0.1); gu = g(λ); (2.10)

Once we obtain a bracket, secant phase is applied to find the optimum solution as Figure

2.2b. The secant phase basically uses the false position method but a modification is made

to avoid too small reduction ensuring that the range is reduced by a factor of 3/4 or less in

step 2.a.ii and step 2.a.iv of Algorithm 2.6.
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Algorithm 2.5 Bracketing phase: Find a bracket [λl, λu]

1. Give initial λ and step size 4λ and get g(λ)

2. If g(λ) > 0

a) Update λl = λ, gu = g(λ), λ = λ+ ∆λ and get new g(λ)

b) Iterate while g(λ) > 0

i. Set λl = λ

ii. Update 4λ and λ using the modified secant method and set gu = g(λ)

iii. Get new g(λ)

c) Set λu = λ and gl = g(λ)

Else (g(λ) ≤ 0)

d) Update λu = λ, gl = g(λ), λ = λ−∆λ and get new g(λ)

e) Iterate while g(λ) < 0

i. Set λu = λ

ii. Update 4λ and λ using the modified secant method and set gl = g(λ)

iii. Get new g(λ)

f) Set λl = λ and gu = g(λ)

Pegging (Variable fixing, Projection algorithm)

The pegging algorithm is widely used for strictly convex resource allocation problems with

a single knapsack constraint and bounds. One can see the book by Ibaraki and Katoh [54]

and a review by Patriksson [106] for nonlinear resource allocation problems with pegging

method. According to Patriksson [106], the idea of pegging algorithm was presented by

Sanathanan (1971, [116]), and Bitran and Hax (1981, [14]) is the true pegging algorithm

with convergence theory. So most variant methods have been developed based on Bitran

and Hax (1981, [14]) in [19, 65, 62, 127, 134] for problem (P ). As we can see in the algorithm

history Table 2.1, pegging method is one of the more frequently studied algorithms in recent

years for (P ). It is due to its outstanding performance compared with Lagrange multiplier

search methods and its flexibility for nonlinear functions. Other literature that covers (P )

are [116, 75, 143, 14, 121, 82, 54, 133, 111, 19, 15, 124, 125, 126, 17, 127, 128, 65, 62] in

chronological order.
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Algorithm 2.6 Secant method: Do secant update
With given λ, ∆λ, λl, and λu from Bracketing pahse

1. Update 4λ and λ using the secant method

2. Iterate while |g(λ)| ≥ εfea

a) If g(λ) < 0, update λu = λ and gl = g(λ)

i. If a new λ is on the left half side of the bracket, update λ by secant

ii. Else set a new λ that reduces the bracket size by 3/4 or less.

Else update λl = λ and gu = g(λ)

iii. If a new λ is on the right half side of the bracket, update λ by secant

iv. Else set a new λ that reduces the bracket size by 3/4 or less.

b) Get new g(λ)

3. Finish with λ∗ = λ and x(λ∗)

Algorithm

Recently Kiwiel (2008, [65]) did a comprehensive review for pegging method and addressed

an improved and modified version proving, with counter examples, that [19, 111] may fail.

We present a new version of pegging method in Algorithm 2.7, which is simpler than the

version of Kiwiel[65] with fewer index sets.

Pegging method is conceptually different from other Lagrange multiplier search methods.

As we will show the difference with a geometric interpretation in Section 2.2.3, pegging

method does not search for λ∗, instead it iteratively projects (step 2) the center of the

objective function to the hyperplane of the knapsack constraint and pegs (fixes) (step 3.c) a

part of variables at its bound lj or uj dependent on the violation of the projected point to

the box constraint. For these reasons, pegging method is also called (restricted) projection

method (Robinson et al. [111]) or variable fixing method (Kiwiel [65]).

The minimum solution x in step 2 geometrically means projecting the origin of the ob-

jective function to the hyperplane (knapsack constraint) proportional to 1/dj in the space

of unpegged variable index set I. We may get the projected point x quite easily using

KKT conditions ignoring box constraint. From the KKT stationarity condition (2.4), we
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Algorithm 2.7 O(n2); Pegging method (Variable fixing)

1. Let I = {1, 2, ..., n}

Iterate until stopping criteria is satisfied

2. Solve a sub-problem (Projection)

x = argmin{
∑

j∈I djx
2
j :
∑

j∈I xj = b}

3. Feasibility check

a) Get infeasibility indicator (Force x into box)

i. Get SL =
∑

j∈L lj and ∇ = SL −
∑

j∈L xj for L = {j ∈ I : xj ≤ lj}
ii. Get SU =

∑
j∈U uj and ∆ =

∑
j∈U xj − SU for U = {j ∈ I : xj ≥ uj}

b) Stopping criterion

i. If |∇ −∆| < εpeg, finish with xj = lj for j ∈ L and xj = uj for j ∈ U

c) Pegging (Variable fixing)

i. If ∇ > ∆, then I = I\L, b = b− SL, and xj = lj for j ∈ L
ii. If ∇ < ∆, then I = I\U , b = b− SU , and xj = uj for j ∈ U

can derive

djxj + λ = 0→ xj =
−λ
dj

(2.11)

and substitute (2.11) into the knapsack constraint to get a closed form of λ as in (2.12).

∑
j∈I

−λ
dj

= b→ λ =
−b∑

j∈I 1/dj
(2.12)

Therefore, we can get the solution at step 2 as

xj =

(
b∑

j∈I 1/dj

)
/dj for j ∈ I (2.13)

This simple closed form to get x is the source of advantage of pegging method. Patriksson

[106] concluded that pegging method generally performs better than Lagrange multiplier

search methods if a problem has a closed form to get its projection onto the knapsack

constraint.

Another efficiency source is the fact that the number of variables to be projected in step

28



2 decreases with every iteration, as it will be proved in proposition 2.2. Once the projected

point is obtained, we consider the box constraint (l ≤ x ≤ u) in step 3. Robinson et al. [111]

named this step “force x into box.” Then, we check the feasibility of the box forced point

on the knapsack constraint in step 3.c. If it is not feasible, we can peg some variables at its

extreme points. For example, consider we have λ̄ and it results in g(λ̄) > 0 and xj(λ̄) = lj

for some j. Then, since g(λ) is non-increasing, it holds λ̄ < λ∗, and xj(λ) stays at lj for any

λ̄ ≤ λ because it is also a non-increasing function (see Figure 4.1a for intuition). Similarly,

the case of λ∗ > λ̄ with g(λ̄) < 0 and xj(λ̄) = uj is trivial. Therefore, we can peg x∗j by

x∗j =


lj for j ∈ L = {j : xj(λ) = lj , } if g(λ) > 0,

uj for j ∈ U = {j : xj(λ) = uj , } if g(λ) < 0,

(2.14)

The two steps of box forcing and pegging in step step 3.a and step 3.c can be efficiently

done with two variables: up triangle ∆ and down triangle ∇. Consider the initial steps

assuming all variables are unpegged, that is, I = {1, 2, ..., n}. Then, the violation of knapsack

constraint g(λ) with x in (2.13) can be expressed by ∆ and ∇ with

g(λ) =
∑
∀j
xj(λ)− b

=
∑
j∈I

xj − b+ SL −
∑
j∈L

xj +
∑
j∈U

xj − SU since
∑
j∈I

xj = b

= ∇−∆ (2.15)

where L = {j ∈ I : xj ≤ lj}, U = {j ∈ I : xj ≥ uj}, ∇ = SL −
∑

j∈L xj , and ∆ =∑
j∈U xj − SU . This leads to prove proposition 2.2.

Proposition 2.2. The pegging method in Algorithm 2.7 pegs at least one variable per iter-

ation so it converges in at most n iterations.
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Proof. It is easily verified that

g(λ) > 0 if and if only ∇ > ∆

g(λ) < 0 if and if only ∇ < ∆

by (2.15). Thus, if ∆ 6= ∇, since g(λ) 6= 0 at least one xj should be pegged at one of its

bounds lj and uj by (2.14). Therefore, the maximum iteration is n if we assume only one xj

is pegged every iteration as the worst case, and the stopping criterion in step 3.b guarantees

the optimum solution x∗ because it satisfies all KKT conditions, which are necessary and

sufficient conditions.

Other good approaches for convergence proofs are also available in [65, 111]. The propo-

sition 2.2 is also a clue to get the complexity of pegging method. All steps in the Algorithm

2.7 have O(n) time, but the total complexity is O(n2) because it can iterate n times in the

worst case. The computational cost in the worst case of iteration part step 2-3 is 4n2 + 7n

as computed in Table 2.4. In spite of the quadratic complexity, pegging method may be

efficient in practice in the sense that it avoids median search or sorting, and it is proved by

previous studies as in experiment history Table 2.5.

Kiwiel [65] noticed two important modifications from previous methods. The first one is

a way to get L and U in step 3.a. It finds index sets that contain the case of xj = lj or

uj , while Robinson et al. [111] and Bretthauer et al. [19] define L = {j ∈ I : xj < lj} and

U = {j ∈ I : xj > uj} with strict inequalities. This modification is simple but can accelerate

pegging method saving iterations. The second one is the stopping criterion in step 3.b. The

classic pegging method of Bitran and Hax [14] stops the iteration if

lj ≤ xj ≤ uj for j ∈ I or I = ∅

However, the second stopping criterion is redundant to the first criterion because the first

one covers the second one. Moreover, stopping criterion in step 3.b covers the two criteria

of Bitran and Hax [14].
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Remark 2.3. It is true that pegging method actually starts at a specific λ in (2.12) with

full index set I = {1, 2, ..., n}. So Cominetti et al. [25] conclude that pegging method

has a disadvantage because it cannot adopt an initial given λ, which may make critical

improvements when (P ) is used for a subproblem as proved in the experiments of [25, 31, 44].

However, it is possible to exploit pegging method with any initial λ if we peg variables by

(2.14) with the initial λ before we use pegging method.

Remark 2.4. A real drawback of pegging method is that it can solve only the strictly convex

problems because a non-strictly convex objective function does not have a unique center

to project onto a hyperplane. This will be considered carefully in Section 4.3.1 when we

present suggested method for the indefinite case of (P ).

Newton method

The Newton method is quite lately developed than other methods, although it is also intu-

itively considerable if we draw g(λ) as in Figure 4.5a. Maybe the reason is the well known fact

that Newton method does not guarantee convergence as a root finding method. In addition

to the (a) convergence issue, newton method have more serious issues: g(λ) is (b) non-

differentiable at breakpoints and (c) possibly has zero slope because g(λ) is non-increasing.

Moreover, (d) an updated λ may be placed out of the feasible bound of [λmin, λmax]. For

these reasons, Dai and Fletcher (2006, [31]) did not implement Newton method although

they noticed the method; instead they developed secant method.

It seems Nielsen and Zenios (1992, [88]) is the first reference which considered Newton

method officially for (P ), and in the same year, Robinson et al. [111] also considered it

thanks to a referee’s suggestion to compare with their pegging method. Lotito (2006, [74])

considered Newton method when extending the method of [88] to the semi definite case,

but his work is limited by one sided bounds (0 ≤ x). Recently, Cominetti et al. (2012,

[25]) considered Newton method in depth and utilized secant method for safeguards of the

convergence issues.
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Safeguards

The line of g(λ) is not appropriate for the case of Newton method because it is not differen-

tiable at breakpoints and can cycle or have zero slope. Thus, some safeguards are suggested

by prior studies, summarized in Table 2.2.

Table 2.2.: Safeguards of Newton method
Robinson
et al.
[111]

Nielsen et
al. [88]

Lotito [74]
(l ≤ x)

Cominetti et
al. [25] (l ≤ x)

Cominetti
et al. [25]

Proposed
method

Cycle,
Out of
Range

Wrong
proof

Not
mentioned

Proved not
happen

Secant Secant

Non-diff-
erentiable

Bisection Directional derivative by sign of g(λ)
Act like
it is not

Zero
slope

Not
mentioned

Not
mentioned

Closest left or right break
point by sign of g(λ)

Secant

As shown in Figure 2.3a, cycles can happen only when the updated λ is not strictly inside

of the updated range [λl, λu]. Thus, if we keep λ being updated strictly within the last

range, we can resolve the cycle and out of bound issues. As a resolution, Cominetti et

al. [25] suggest secant method of [31] (see Figure 2.3b) and Robinson et al. [111] choose

bisection method as a safeguard. Lotito [74] does not consider the issue, but Cominetti et al.

[25] proves that cycling does not happen if variables are bounded by one side such as l ≤ x

or x ≤ u. Nielsen and Zenios ([88]) argues that the cycle does not happen via proposition 5

in their paper, but it is wrong if their Proposition 4 is correct. Moreover, Cominetti et al.

[25] show a cycle example.

The non-differentiability issue has been simply resolved by taking right derivative if g(λ) >

0 and left derivative otherwise as most literature [88, 74, 25] do; however, we will show a

way to remove this issue in Algorithm 2.8.

If g(λ) has zero slope at a λ, Newton method cannot update λ. Although [88, 74] could

not notice this issue, Robinson et al. [111] suggested the convergence guaranteed bisection
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Figure 2.3.: Newton method

method, and Cominetti et al. [25] proposed to use the closest right breakpoint from the

current λ if g(λ) > 0 and the closest left breakpoint otherwise. However, finding the closest

breakpoint takes up to 4n operations because it has to look through 2n breakpoints and

compare the closeness. The cost of 4n is exactly the same as testing a λ point in xj(λ) and

g(λ) as

xj(λ) = median{lj , uj ,−λ/dj} → 3n operations

g(λ) =
∑
∀j
xj(λ)− b → n operations

in our transformed problem, and the cost is higher if (P ) is not transformed. Therefore, as

suggested by Robinson et al. [111] testing the bisection point is more efficient than taking

the closest breakpoint in the sense of reducing the feasible domain of λ.

Algorithm

In this manner, it seems Newton method is not fully studied yet even though all literature

concluded that the method performs well and is stable. Thus, we propose an improved

method with more robust and computationally efficient safeguards in Algorithm 2.8.

For the issues of cycling and out of bounds, we suggest to utilize secant method of [31] as

Cominetti et al [25] does. We can use pegging method or any convergence guaranteed root
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Algorithm 2.8 O(n2); Newton method

1. Set initial λl = −∞, λu =∞, and λ = −b/
∑
∀j(1/dj)

Iterate until step 3 is satisfied

2. Get x(λ) and g(λ)

3. If |g(λ)| < εfea, finish algorithm with λ∗ = λ and x∗ = x(λ∗)

4. Get I = {i : li < x(λ) < ui}

5. If I = ∅, (slope is zero)

Do bracketing if necessary and do secant (Safeguard 1)

Else (slope is not zero)

a) If g(λ) > 0, set gu = g(λ) and λl = λ

Else set gl = g(λ) and λu = λ

b) Update λ = λ+ g(λ)/
∑

j∈I(1/dj) by Newton method

c) If λ /∈ (λl, λu), (out of bound or possible cycle)

Do bracketing if necessary and do secant (Safeguard 2)

finding methods such as bisection, sorting, or median search methods, but secant method

can take the feature of the piecewise linearity of g(λ) and our experiment shows that secant

method is superior to other methods. We name it safeguard 2 in step 5.c.

To overcome the case of zero slope, we use safeguard 1 in step 5. It happens when xj(λ)

for all j are placed at an extreme point lj or uj . So we can verify whether the slope is zero

by looking at an index set I

I = {j : lj < xj(λ) < uj} (2.16)

of step 4. Cominetti et al. [25] use the closest left or right break point. It may give a good

λ update, but as we mentioned earlier it takes up to 4n operations to update λ without the

guarantee of a considerable reduction of the feasible domain, while the bisection and secant

methods of [31] reduce it by half and at most 3/4 respectively. We prefer secant method to

bisection method although secant method may reduce the feasible domain by less than half

because it gives more reliable solutions and tends to have less iterations from experiments

34



than bisection method.

To resolve the non-differentiability of g(λ) at a breakpoint, all previous algorithms use

the left derivative to update λ with newton method if g(λ) < 0, and the right derivative if

g(λ) > 0. Two directional derivatives in (2.17) can be obtained with I in (2.16) and two

index sets: JR = {j : λ = −djuj} and JL = {j : λ = −djlj}.

Right derivative = −
∑

j∈I 1/dj −
∑

λ=−djuj 1/dj if g(λ) > 0

Left derivative = −
∑

j∈I 1/dj −
∑

λ=−dj lj 1/dj if g(λ) < 0
(2.17)

However, the probability that JR and JL are used is very small in practice because λ and

breakpoints are continuous numbers and the possibility that an updated λ is exactly same

as a breakpoint is almost practically impossible. Thus, consuming n operations at each

iteration to get JR or JL comparing λ and n breakpoints is wasteful. For this reason, our

simple resolution is acting like we never reached a breakpoint even when the current λ is at

a breakpoint. So our proposed derivative is

Proposed derivative = −
∑
j∈I

1/dj (2.18)

without JR and JL. This may sometimes result in a worse λ update than right or left

derivative; however (2.18) is more efficient if we take account of 2n operations to get JR

and JL, which are highly possibly empty. Therefore, our simple proposed derivative (2.18)

not only saves 2n× total iterations operations but also makes Newton method more robust

eliminating the issue of non-differentiability.

In addition to the operation saving, our safeguards also save operations to get breakpoint

because our Newton method Algorithm 2.8 never uses them. Therefore, in contrast to

Cominetti et al. [25], our Algorithm 2.8 can save 4n × zero slope instances operations in

safeguard 2 from getting the left or right most closest breakpoint when zero slope occurs,

at least 2n× total iterations operations from proposed derivative (2.18), and 2n operations

to get breakpoints as summarized in Table 2.3. These savings are counted based on our

transformed (P ), which leads to simpler computation than other formats, so the saved
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operations increase if (P ) is not in our transformed format.

Table 2.3.: Minimum saved operations in Newton method
Minimum saved operations

Zero slope 4n× zero slope iterations
Proposed derivative 2n× total iterations

No need of Breakpoints 2n

As noticed by [25, 111] and proved by our experiment (Table 4.7), instances that need

safeguards have not occurred frequently in most test problems. So the chance to save

4n× zero slope instances operations to get the closest breakpoint as [25] does may be low.

Nevertheless, our Algorithm 2.8 can save at least 2n+ 2n× total iterations operations due

to a different way to get a slope.

The complexity of Newton method is O(n2) because the possible maximum iteration is

4n + 1 (see [25] for details). In addition to the large possible iteration, Newton method

also requires much more operations to update λ than other methods because it requires to

update I in step 4 and compute derivatives in step 5.b.

Although Newton method may have fast convergence, because of the high operational cost

in each iteration, performance of the method is sensitive to the number of iterations, and the

only one parameter that we can affect is the initial λ. We suggest to use λ = −b/
∑
∀j(1/dj)

for the initial λ as step 1. It is the same value used in pegging method in (2.12), and [25]

also uses it hoping that x∗ is inside the box constraint (l ≤ x ≤ u).

Remark 2.5. Newton method and pegging method are actually highly related with respect

to the use of index sets I in (2.16) to get derivatives in Newton method and I for unpegged

variables to project in pegging method. Because two index sets are essentially identical in

some conditions, Cominetti et al. [25] proved that Newton method takes exactly the same

iterations as pegging method if (P ) has one sided bound and and aj > 0 ∀j.
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Interval test method

Interval test method is the most undeveloped method among all methods. Vavasis (1992,

[132]) mentioned the interval test idea very briefly to solve the convex part of the indefinite

case of (P ), and Bayón et al. [7, 8] used the idea to get analytical solution on right hand

side b. However, no one has clearly developed an efficient implementation and compared

with other methods. Thus, we clearly present an efficient procedure of interval test method

in Algorithm 2.9.

Optimum conditions

The main difference between interval test method and other Lagrange multiplier search

methods is the way to reduce the domain of Lagrange multiplier. Other multiplier search

methods reduce the dual domain by a point substituting a λ and update it by the sign of g(λ)

until it gets a feasible solution. On the other hand, interval test method uses breakpoints

to construct intervals on the line of λ and reduces the domain of Lagrange multiplier by a

sub domain (interval or range) in each iteration. This is possible because (P ) is a separable

knapsack problem and xj(λ) has a unique value at a given λ. Suppose that breakpoints are

sorted in ascending order and we have an interval [λ̂l, λ̂u] that consists of two consecutive

breakpoints as

[λ̂l, λ̂u] ⊆ [λl, λu]

Then, the index set I = {j ∈ P : lj < xj(λ̄) < uj} is unchanged for a λ̄ that is strictly within

the interval (λ̂l, λ̂u) because xj(λ) is a decreasing function between its two breakpoints or

constant at lj or uj . With the index set I, we can define g(λ) as

g(λ) =
∑
j∈L

lj +
∑
j∈U

uj − b− λ
∑
j∈I

(1/dj) (2.19)

= H − λG
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where
L = {j : xj(λ̄) = lj} U = {j : xj(λ̄) = uj}

H =
∑
j∈L

lj +
∑
j∈U

uj − b G =
∑

j∈I(1/dj)
(2.20)

Moreover, if λ∗ ∈ [λ̂l, λ̂u], then

g(λ∗) = 0 = H − λ∗G

, and it implies

λ∗ = H/G

This is proved by Lemma 2.6 and Theorem 2.7 and applied in step 5.a and step 5.c of

Algorithm 2.9.

Lemma 2.6. Define an interval [λ̂l, λ̂u] which consists of two adjacent breakpoints and

λ̂ = H/G. Then,

λ̂u < λ∗ if and only if λ̂u < λ̂ (2.21)

λ∗ < λ̂l if and only if λ̂ < λ̂l (2.22)

Proof. If g(λ) > 0 for a λ ∈ [λ̂l, λ̂u], then λ̂u < λ∗ and g(λ̂u) > 0 since g(λ) is a non-

increasing function. This results in

0 < g(λ̂u) = H − λ̂uG since G > 0

λ̂u < H/G = λ̂

Similarly, if g(λ) < 0 for a λ ∈ [λ̂l, λ̂u] , then λ∗ < λ̂l and g(λ̂l) < 0 since g(λ) is a

non-increasing function. This results in

0 > g(λ̂l) = H − λ̂lG since G > 0

λ̂l > H/G = λ̂
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Theorem 2.7. Let λ̂ = H/G. If λ̂ ∈ [λ̂l, λ̂u], then λ∗ = λ̂.

Proof. If we have an interval [λ̂l, λ̂u] such that

g(λ̂u) ≤ 0 ≤ g(λ̂l)

, then by Lemma 2.6 it holds that

λ̂l ≤ H/G ≤ λ̂u

Therefore, the theorem is proved.

Algorithm and its efficiency

To construct intervals, we first select breakpoints that are within [λl, λu], and then sort

the selected breakpoints as in step 4 of Algorithm 2.9. The sorting procedure dominates

the complexity of interval test method by O(n log n) as the main disadvantage. However,

interval test method can be practically efficient if the number of breakpoints to be sorted

is small. It is affected by two factors: (a) an initial [λl, λu] and (b) the distribution of

breakpoints around λ∗. The distribution is uncontrollable because it is determined by the

given coefficients of problem, but we can control the initial range. The initial range can be

[λmin, λmax] or obtained by any root finding methods that we have considered, but secant

method would be the best choice because it guarantees to find a bracket that contains λ∗

efficiently, and our experimental results show that it has the fast convergence. Newton

method also tends to have fast convergence, but we prefer secant method because Newton

method requires much more operations to update λ and uses secant method as a safeguard.

The superior performance of use of secant method for the bracket is proved by experiments.

Once we construct intervals within a range of [λl, λu], we have values of xj(λ) and g(λ) on
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Algorithm 2.9 O(n log n); Interval test method

1. Obtain [λl, λu] (λu− λl < εbra), λ (= λl or λu), x(λ), and g(λ) using methods such as
secant method.

2. Initialize H = 0 and G = 0, and get breakpoints T = {−djuj ,−djlj}

3. Get I = {j ∈ P : lj < xj(λ) < uj}, H =
∑

j /∈I xj(λ)− b, and G =
∑

j∈I(1/dj)

4. Get R = {j : λl ≤ Tj ≤ λu}, [T,R] = sort(Tj : j ∈ R) in ascending order

where T is sorted Tj for j ∈ R and R is corresponding index set of sorted T .

5. If g(λ) ≥ 0, iterate for i = 1 to |T |, set j = Ri

a) If G 6= 0 (nonzero slope), set λ̂ = H/G

i. If λ̂ ≤ Ti, finish algorithm with λ∗ = λ̂ and x∗ = x(λ∗)

b) If j ≤ n (if Ti = −djuj), update H = H − uj and G = G+ 1/dj

Else (if Ti = −djlj), update j = j − n, x∗j = lj , H = H + lj and G = G− 1/dj

Else (g(λ) < 0), iterate for i = |T | to 1, set j = Ri

c) If G 6= 0 (nonzero slope), set λ̂ = H/G

i. If λ̂ ≥ Ti, finish algorithm with λ∗ = λ̂ and x∗ = x(λ∗)

d) If j ≤ n (if Ti = −djuj), update x∗j = uj , H = H + uj and G = G− 1/dj

Else (if Ti = −djlj), update j = j − n, H = H − lj and G = G+ 1/dj

6. (at leftmost or rightmost interval) Finish with λ∗ = H/G and x∗ = x(λ∗)

hand with λ = λl or λu. So we are already on the leftmost interval if g(λ) ≥ 0 or rightmost

interval if g(λ) ≤ 0 on λ. At the current interval, we calculate λ̂ = H/G if G 6= 0 and test

if λ̂ is within the current interval as step 5.a and step 5.c. If it is within the interval, it is

the optimum λ∗ thanks to Theorem 2.7. If it is not, we need to update only H and G. For

example, if we are on an interval [λ̂l, λ̂u] where is strictly left from λ∗ (that is, λ̂u < λ∗), we

first check where λ̂u is from. If it is the value of −djuj , then the index j should be switched

from a member of U to I. That implies to update H and G by

H = H − uj and G = G+ 1/dj

, and all four cases are presented in step 5.b and step 5.d.
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The reason why we decide the first interval by the sign of g(λ) in step 1 is the efficiency.

When the last g(λ) is obtained by either the last λl or λu, x(λ) is also obtained. Then,

the optimum solution x∗ can be acquired easily switching one variable from either lj , uj or

(lj , uj) to another while H and G are updated in step 5.b and step 5.d. This is consistent to

the fixing Algorithm 4.5 that will be considered in Section 4.3.1 as a convergence accelerator.

The update procedure makes the interval test method extremely efficient since it requires

to updates only H and G to find λ̂ and decide the optimality with only 5 or 6 operations in

our experiments. This is a big advantage comparing with other methods. See the Table 2.4.

It shows the worst case number of operations in the iteration part of all considered methods

except for interior point method and an example of total operations with n = 100 and

moderate values (see the Table description for values). It shows that interval test method

requires the extremely smaller operations than other methods (say, about 3 to 224 times

smaller operations) in the worst case. Therefore, although interval test method requires to

sort a part of breakpoints, it can find the optimum solution very efficiently once it construct

intervals via a methods such as secant method.

Remark 2.8. We can see that −G is actually the slope of the piecewise liner function g(λ)

strictly within a testing interval (λ̂l, λ̂u) as same as the proposed derivative (2.18) in Newton

method. Thus, if G = 0 in step 5.a and step 5.c of Algorithm 2.9, the slope of g(λ) is zero

and the testing interval cannot contain λ∗ /∈ (λ̂l, λ̂u). So we just skip the interval updating

H and G for the next interval.

Remark 2.9. We have considered jump interval test method that tests intervals jumping the

computationally optimum number of intervals forward and backward until it converges to

save computations to get λ̂ and check its optimality in step 5.a and step 5.c of Algorithm

2.9. The idea helps interval test method perform little better; however, we do not present it

because it is proved that the performance improvement is not always positive and practically

negligible through our experiments. So we show a simpler and competitive version of interval

test methods in Algorithm 2.9.
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Table 2.4.: The worst case number of operations in iteration parts

Maximum Iteration Computation
per Iteration Total in n Total with

n = 100

Interval
test1 2n

5.5 (5 for n times
and 6 for n times) 11n 1100

Sorting2 b1 + log2(2n)c 3 + 4n 3224

Median
search2 b1 + log2(2n)c 1 + 4n and

Median search

3208 +
Median
search

Secant3 Not measurable 16 + 4n or 9 + 4n 6240

Bisection4
⌈
log0.5

(
εgap

λmax−λmin

)⌉
3 + 4n 12090

Pegging5 n
3 + 8n̂

(n̂: the number of
unpegged var.)

4n2 + 7n 40700

Newton6 4n+ 1
3 + 6n and

fixed n(n+ 1)/2
24.5n2 +
18.5n+ 3

246853

1. There are at most 2n+ 1 intervals in interval test method so at most 2n iteration is required.
2. Iteration of sorting and median search method is 8 = b1 + log2(2n)c with n = 100
3. Secant method takes usually much less than 15 iterations for the size of n = 2e6 from literature

and our experiments. So 15 iteration may be enough to assume the worst case for n = 100.
4. With εgap = 1e− 7 and λmax − λmin = 100, bisection method has at most 30 =

⌈
log0.5

(
εgap

λmax−λmin

)⌉
iterations.

5. Pegging method decreases n̂, the number of index for unpegged variables, by one every iteration in the
worst case. If we assume that 1/dj ∀j is computed before iteration, the number of operations is computed
by 3n+ 8

(∑n
i=1 i

)
= 3n+ 8n(n+ 1)/2 = 4n2 + 7n. This is acquired based on Kiwiel [65] and our

implementation in the code, whichever is computationally more efficient.
6. In Newton method, if we assume that 1/dj ∀j is computed before iteration and only one variable is

excluded from I in each iteration, then it needs at most n(n+ 1)/2 (=
∑n
i=1 i) computations to get

our proposed derivative
∑
j∈I(1/dj) in (2.18). So the total number of operations is

(1 + 4n)(3 + 6n) + n(n+ 1)/2 = 24.5n2 + 18.5n+ 3.

Interior point method

Wright and Rohal (2013, [136]) developed an interior point method for a problem that

consists of twice differentiable separable convex objective function and a knapsack and box

constraints so it covers the problem (P ). Their algorithm basically solves KKT system

applying primal-dual interior point method searching for directions and step sizes with

barrier parameters. They argues that “the key to making it competitive is the fact that the

direction search (efficient linear-system solution in the Newton update) can be found in Cn

arithmetic operations for a small fixed value of C”, and their experiment results show that
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interior point method outperforms the median search method.

However, the purpose of the algorithm is to solve a separable general resource allocation

problem that does not have a closed-form solutions like x(λ) so its subproblem must be

solved numerically. Thus, a quadratic problem (P ) is not considered among 10 problem

classes in their experiments. Above all, they left the proof for convergence and complexity

for the future research. For all these reasons, we do not consider interior point method as a

competitor to solve (P ) in this chapter.

2.2.3. Geometric interpretation

As discussed in Chapter 1, the solution of the strictly convex case of (P ) is the closest

point from the ellipsoidal center of the objective function to the feasible domain which is

intersection of the hyperplane (knapsack constraint) and box constraints. This section gives

geometric interpretations for Lagrange multiplier search methods, pegging method, and

interval test method with an example. This interpretation is worth better understanding

the difference of methods. Consider an example problem

(Pex) Min
1

2
x′x

s.t. x1 − 2x2 = 0.8

0 ≤ x ≤ 1

The contours of objective function of the strictly convex case of (P ) are ellipsoids as we

stated in the introduction, but in the case of (Pex), the contours are circles centered at the

origin (0, 0) because its D is an identity matrix in two dimensional domain. Then, we can

geometrically interpret (Pex) in two ways:

1. Find a smallest circle (hypersphere) that touches the intersection of the hyperplane

and box constraint.

2. Find a closest point from the center (the origin in this case) to the intersection of the
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hyperplane and box constraint.

Lagrange multiplier search method

The example problem (Pex) can be drawn on two dimension as Figure 2.4a. The box

constraint 0 ≤ x ≤ 1 and the knapsack constraint aTx = b appears as a shade box and a

line. So the feasible domain is the line in the box. If we draw a circle centered at the origin

0, the smallest circle touches the optimum solution point dotted by a star on the feasible

area.

a 'x = b

x1

x2(−λ, 2λ) a 'x < b

a 'x > b

x(0)

x(λ)=Proj (-λ, 2λ)  
          onto the box�

0

(a) Stay on (x1, x2) = (−λ, 2λ)

a 'x = b

x1

x2(−λ, 2λ)

x(λ*)�

(−λ *, 2λ*)

x(0)

0

(b) Project (−λ, 2λ) onto the box

Figure 2.4.: Lagrange multiplier search method

Following x(λ) in (2.6), the solution of (Pex) can be determined by

x1 = median{0, 1,−λ}

x2 = median{0, 1, 2λ}
(2.23)

This means we specify a point on the line (plane) of (x1, x2) = (−λ, 2λ) with a given λ

as Figure 2.4a, and then the point is projected onto the box by (2.23). Thus, Lagrange

multiplier search methods basically tries a λ and projects it onto the box until it meets the

optimal solution, which satisfies knapsack constraint as Figure 2.4b.

This simple projection function x(λ) works because the principal direction of the ellipsoid
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of objective function xTDx is same as the box constraint. A principal direction of ellipsoid

can be obtained by eigen vectors. The orthonormal eigen vectors of the diagonal matrix

D is always the identity matrix I, and eigenvalues dj give the weight to form an ellipsoid.

Since the box constraint can be expressed by

l ≤ Ix ≤ u

, the principal directions of the ellipsoid and the box constraints are same as I.

If we think of the non-diagonal matrix D, its eigen vectors are no longer the identity

matrix. Thus, the ellipsoid is rotated or flipped by its principal direction, and a projected

point from a point to box is not a point on the smallest ellipsoid since its size is changed on

its principal direction. This is the geometric reason why we cannot get a simple projection

function x(λ) in the case of non diagonal matrix D. We call the case the nonseparable

quadratic programming. See an example on Figure 2.5.

a 'x = b

x1

x2

Principal direction  
of separable problem 

0

Center 

(a) Separable case

a 'x = b

x1

x2

Principal direction  
of a rotated ellipse�

0

Center 

(b) Nonseparable case with rotated ellipse

Figure 2.5.: Separable and Non-separable case

Two ellipses on Figure 2.5 have the same center but different principal directions. Since

the principal directions of the ellipse in Figure 2.5a are unit vectors, the smallest ellipse that

touches the feasible domain is the projected point from the center to the feasible domain;

however, since the ellipse in Figure 2.5b is rotated with non-unit vector principal direction,

the point that the smallest ellipse touches the feasible domain is not the projection of center.
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Therefore, a simple projection function x(λ) could not exist in the nonseparable quadratic

programming.

Pegging method

Lagrange multiplier search method projects a point (x1, x2) = (−λ, 2λ) onto the box, while

pegging method first projects the center of the objective function onto the knapsack con-

straint and then project the point again onto the box. If the box projected point violates

the knapsack constraint, variables are pegged depending on the sign of violation as Figure

2.6a.

The two projection steps and pegging are iteratively done as Figure 2.6b until all unpegged

u2

x10 u1

x2
a 'x = b

Proj  0 onto a'x=b1�

2�Peg x2 = l2

a 'x < b

(a) Project center onto knapsack constraint and
peg a variable

u2

x10 u1

x2

Proj  0 onto 
a1x1 = (b - a2l2 )

3�

a1x1 = (b - a2l2 )

(b) Project center onto knapsack constraint with
unpegged variables

Figure 2.6.: Pegging method

variables are projected within the box. Another similar geometric interpretation is nicely

presented by Robinson et al. [111], and they call the method a series of restricted projection

problems.

Since pegging method first projects its center onto the knapsack constraint, it must have a

unique center. That is why all literature about pegging method for non-quadratic objective

functions also assume its objective function is strictly convex and twice differentiable. For

the same reason, if (P ) is in positive semidefinite case, pegging method is no longer capable to

solve (P ) because the center of the objective function is not unique, while Lagrange multiplier
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search methods can find a x(λ) and all global optimum solutions xU∗ = {x ∈ XU : aTx = b}

by the global case 1 of Section 4.2.3.3.

Interval test method

λ
−1 0 2

1�l u2� 3�

Each interval represents a face,  
edge, vertex, or inside the box.�

x2 = l2 x1 = u1
x2 = l2

x1 = u1

(a) Construct intervals

a 'x = b

x1

x2

1�
l

u

2�

3�

(b) Travel on the box

Figure 2.7.: Interval test method

While the previous two methods use projection, interval test method does not use it. Interval

test method first constructs intervals on λ using breakpoints. Breakpoints of (Pex) are

{−1, 0, 0, 2} and intervals can be constructed as Figure 2.7a. Since λ∗ ∈ [−1, 2], each

interval is a subspace of dual feasible domain. At an interval, we can get three index sets I,

L, and U , which are used in (2.19) for interval test method. If we use L and U to fix xj to

lj or uj and I to allow xj to be placed within [lj , uj ], all x points stay on a face of the box.

Therefore, an interval represents a face, vertex, edge, or inside of the box, and breakpoints

indicate a vertex of the box since I = ∅ at a breakpoint as Figure 2.7b.

Moving form an interval to another interval actually means we travels a face to a connected

face of the hyperbox looking for an optimal solution. For example, if we are on the leftmost

interval 1○ in Figure 2.7a, then we investigate whether an optimal solution exists on the

face 1○ in Figure 2.7b. Although the number of faces of a hyperbox4 is n(n − 1)2n−3, we

travels much smaller number of faces since at most distinct 2n break points generate only

at most 2n− 1 intervals.
4A hyperbox has n2n−1 edges and 2n vertices.

47



2.2.4. Which one is the best?

We have considered nine methods to solve the strictly convex case of (P ). If we count only

complexity, O(n2) time pegging and Newton method should have the worst performance

theoretically. However, it is not always true in practice. According to the experiment

results of Cominetti et al. [25], theoretically leanest O(n) time median search method is

always slower than other theoretically most expensive pegging and Newton methods, and

Experiment results of Kiwiel [65] shows that pegging method is up to 1.14 times faster than

his median search method in [63].

This result is also supported by survey of Bretthauer and Shetty (2002, [16]) and Pa-

triksson (2008, [106]). Both survey literature concluded that pegging method is generally

performs better than Lagrange multiplier search methods if a problem has a closed form like

x(λ).

Because experiment result is highly affected by environment such as test problems, com-

puter language, coding style, and computer system, we need to test multiple methods in

the same environment to compare performances. Comprehensive experiments have been

done by Robinson et al. (1992, [111]), Kiwiel (2007, [63], 2008, [64, 65]), and Cominetti et

al. (2012, [25]). The results are summarized in Table 2.5, and it also includes results of

literature that compared more than two methods. According to the Table, it seems pegging

is prior since most experiments concluded it is faster than others. More detailed experiment

results are described from the recent paper below.

Note that a recently developed interior point method of Wright et al. (2013, [136]) is

not included in Table 2.5 although they concluded that their method outperforms medians

search method because they did not tested the quadratic programming.

2012 Cominetti et al. [25] compared their Newton method with all recent algorithms: the

secant method (2006, [31]), median search method (2008, [64]), and pegging method

(2008, [65]). Bisection, Sorting, and Approximate median search methods may be ex-

cluded because it has been known that those methods are practically and theoretically
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Table 2.5.: History of experiment for strictly convex case
Year
[Cite]

Bisect
Sorting
(Rank)

Exact
Median

Approx.
Median

Secant Newton
Pegging
(Var. fix.)

2012 [25] [64] [31] ?, ≈ ?, ≈ [65]

2008 [64]
? own
[20, 21]

own

2008 [65] ≈ [63] ?

2007 [63]
? own
[20, 21]

2006 [31] [101]3 ?
2006 [74] [20] [101] ?
2002 [17] [18] ?
1998 [137] ≈ [117] ≈ [117] ≈ [117]
1997 [15] [50] ?
1996 [19] [50] ?
1992 [111] [50] [20] [101] ≈ ?
1992 [88] [50] ?
1991 [134] [50] own ? [14]
1990 [101] [50] ?
1989 [133] [27] ? [14]

1. Citation in each cell is the algorithm that was used for the corresponding paper’s experiments.
2. In the corresponding paper’s experiments, ? means the fastest method; ≈ means comparable method

to the fastest one; “own” means tester’s own method
3. Dai and Fletcher [31] used exact median search based on the procedure in the approximate median search

method in Pardalos and Kovoor [101].

performs worse than others. Because the experiments have been done for all recent

algorithms with recently considered problems in [31, 64, 65], we state detail of the

experiment results. Cominetti et al. [25] conducted tests with two sets of random

problems and support vector machine (SVM) problems as a sub-problem.

• Two random problems

– The random problem of [65] was used to test integer problems by Bretthauer and

Shetty (1995, [18]). With the random problem, Cominetti et al. [25] reported

their Newton method is about 20% faster than others. Ironically the theoretically

most efficient method, exact median search method is the slowest one. “Newton

method takes significantly smaller iteration than others, but the running time

does not reflect it because Newton method needs to compute slopes at each
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iteration” [25]. The order of speed in this random problems is Newton (fastest) -

Pegging - Secant - Median search (slowest).

– The other random problem is quite practical because it is oriented from mul-

ticomodity network flows and logistics problems, which were similarly used in

[31]. The result shows that Newton method is beaten by Pegging method. It

is because Newton and pegging methods have the almost same iterations and

Newton method requires to compute derivative in each iteration. The order of

speed in this random problem is Pegging (fastest) - Newton - Secant - Median

search (slowest).

• Support vector machine (SVM) problems

– Cominetti et al. [25] did the same experiments that [31] did with a real SVM

problems of MNIST5 and UCI Adult6. SVM problem is in the form of (P ) but

the quadratic terms are not separable. So SVM problems are solved by spectral

projected gradient (SPG) method of [13], and (P ) is solved multiple times as a

sub-problems. The order of speed in SVM problems is Newton (fastest) - Pegging

- Secant - Median search (slowest).

– In addition, Cominetti et al. [25] also suggested a new way to give an initial λ

(hot start) for the next iteration, while [31] just uses the last λ for the initial

value in the next iteration. The new hot start saves CPU time about 45% with

Newton method and about 57% with secacnt method.

2008-2007 Kiwiel [64] investigated the median search method in depth based on his previ-

ous research on median search algorithm Select [66] and improved the median search

method proving that other median search methods [26, 52, 77, 76, 101] may not con-

verges. The improvement of his median search method is proved by the experiment

comparing five versions of median search methods: his own method with (1) exact me-

dian and with (2) approximate median method, (3) modified and (4) original Brucker
5http://yann.lecun.com/exdb/mnist/
6http://archive.ics.uci.edu/ml/datasets/Adult.
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[20], and (5) Calamai-More [21]. The experiment shows that Kiwiel’s exact median

search method is the best, but we may not consider that the difference is significant

because his best method is less than 1.3 times faster than other methods in the large

enough size of n = 2, 000, 000. Kiwiel published a similar median search method pa-

per (2007, [63]) one year before his paper [64] and compared with two median search

methods: Brucker [20] and Calamai-More [21].

2008 Kiwiel [65] also studied the pegging method in addition to his work [63, 64] on the

median search method. According to his experiment, his pegging method is slightly

faster (up to 1.14 times) than his exact median search method [63] on average, but

exact median search method is more stable with smaller range of CPU times. Kiwiel

[65] says it is due to the high efficiency of median search routine [66]. This experiments

may conclude that Kiwiel’s pegging method is better than Kiwiel’s medians search

method on average CPU time.

2006 Dai and Fletcher [31] is the first paper which explicitly applied secant method for

(P ). The secant method was compared with the exact median search , which is based

on Pardalos and Kovoor [101]7. The experiments shows that secant method is up to

about 5 times faster than the exact median search method.

2006 Lotito [74] tested his own Newton method following the methods of [88] versus ex-

act median search method [20] and approximate median search method [101]. He

concluded his own Newton method is faster and more robust than other methods.

2002 Bretthauer and Shetty [17] compared sorting methods of [50, 18] and pegging method

in order to solve (P ) with integer variables. The continuous version of (P ) is used to

do branch and bound for integer solutions. In the experiment results, pegging method

is 3 − 4 times faster for uncorrelated, weakly, and strongly correlated problems and

1.5− 1.6 times faster for manufacturing capacity planning problems .

7Pardalos and Kovoor [101] suggested the approximate median search method, but Dai and Fletcher [31]
replaced the approximate median search with the exact median search for their experiment.
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1998 Wu et al. [137] used two hybrid methods, Newton-secant and Secant-bisection of [117],

to find a step size of dual ascent algorithm. Two hybrid methods use two multiplier

search methods sequentially8. A statistical test, two-way analysis of variance, shows

that two methods does not have significantly different performance.

1997 Bretthauer and Shetty [15] developed a method to solve a generalized upper bound

(GUB problem), and a method is required to solve (P ) as a sub-problem. So authors

tested sorting methods [50] and their pegging method, which is a modified version of

[111] to avoid transformation such that dj = 1 and cj = 0. In the test results, their

pegging method is faster than sorting method [50] and approximately 4000 times faster

than a general purpose nonlinear programming software LSGRG [122].

1996 Bretthauer et al. [19] suggested a modified version of a pegging method [111]. The

purpose of modification is to avoid the problem transformation in [111] whenever their

branch and bound algorithm solves (P ) in every node. In their three correlated test

problems, pegging method is 3.2− 3.7 times faster than sorting method.

1992 Robinson et al. [111] did comprehensive experiments with all accessible methods at

that time except bisection method. The test results show that his pegging algorithm is

superior to approximate median search method [101], sorting method [50], and exact

median search method [20] and is comparable to Newton method. Robinson et al.

[111] tested Newton method by a referee’s suggestion, and it is believed that it is the

first time to include Newton method in experiments.

1992 Nielsen and Zenios [88] tested four methods including Newton and sorting [50] methods

and is the only one that tested Bregman projection algorithm and Tseng method [130].

The experiment results show that the performances are mixed. However, authors

concluded that Newton method performs consistently well because it usually takes

fewer iteration than others.

8For example, it solves a problem by Newton method for iteration 1, secant method for iteration 2, Newton
method for iteration 3, and so on
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1991 Ventura [134] compared sorting method [50] with MergeSort, approximate median

search method9, and pegging algorithm [14] to solve the multidimensional quadratic

programming with (P ) as a sub-problem to find the optimal step size. His experiment

shows that pegging is the best and sorting method is the worst.

1990 Pardalos and Kovoor [101] developed the approximate median search method and

compared with a sorting Algorithm [50]. The experiments approved their argument

that the approximate median search method has expected O(n) complexity although

the worst case complexity is O(n2) with 500 random problems, which may be large

enough to show the expected complexity. However, they did not compare with the

linear time exact median search method [20] which is noticed as an O(n) time method

by themselves.

1989 Ventura [133] compared bisection method [27], pegging method [14], and a hybrid

method. The hybrid method initially use pegging method and switch to use bisection

method. The hybrid method performs better than two pure methods for all instances,

and pegging method is better than bisection method. But the author could not find

the good transition strategy.

2.3. Positive Semidefinite case

In this section, we consider the positive semidefinite case of (P ). That is, dj ≥ 0 ∀j. As we

shall show in the global case 1 of Section 4.2.3.3, we can find a set of all global optimum

solutions due to the strong duality theorem.

A recent literature Zhang and Hua (2012, [140]) stated that they could not find any

specialized method for this case of (P ), but this case actually has been considered in a few

literature [31, 74, 132] since 1992.

It seems Vavasis (1992, [132]) is the first one who considered this case. He presents xj(λ)

for j ∈ Z as (4.5) and suggests the interval test method to find the λ∗. Over one decade later,

9Ventura (1991, [134]) named this the random search, and he did not cite Pardalos and Kovoor (1990,
[101]), who developed the approximate median search method at the first time in a similar moment.
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Dai and Fletcher (2006, [31]) also suggest a different interval test method that construct

intervals only with breakpoints from dj = 0. In the same year, Lotito (2006, [74]) studied

the semidefinite case with Newton method presenting λmin that is narrowed by variables in

Z as Lemma 4.5, but his work is limited by one sided bound constraints (0 ≤ x).

Zhang and Hua (2012, [140]) utilize bisection method to solve the case with inequal

knapsack constraint in a continuous space and present two heuristic methods to find integer

solutions based on the continuous solution. However, their contribution is quite limited

because of four reasons. (a) By Lemma 4.5, we can narrower the dual domain by breakpoints

from variables in Z; however, [140] finds λmax from the maximum value of all breakpoints

and sets λmin just zero although breakpoints from Z can give greater value of λmin than zero.

(b) Thus, its possibly larger dual domain makes the performance of its bisection method

worse resulting in more iterations. (c) Above all, bisection method is numerically unreliable

to solve the non-strictly convex case because multiple distinct breakpoints tj for j ∈ Z can

exists within εgap range of the last interval [λl, λu]. So it can easily miss the global optimum

for relatively easy separable convex problem. (d) For the last, although global solutions are

a subset of XU in (4.16) that satisfies the knapsack constraint, it restricts its solution to

only one. It is presented in its proposition 5, but even it is wrong. In addition to the

error, its proposition 6 is also not correct because it says g(λ) is decreasing although it is

non-increasing possibly having zero slope.

Experiments have been done only by Zhang and Hua (2012, [140]) for the positive semidef-

inite case, and they compared their bisection method with general purpose quadratic solvers:

quadprog.m of Matlab and mskqpopt.m of Mosek. The results says the speed of [140] is

about 10 times faster, yet it does not mean that their algorithm is better than two commer-

cial solvers because it is specially designed to solve the simple structure problem (P ).

2.4. Nonconvex case

If there exist some negative dj (dj < 0 for some j), problem (P ) is an NP-hard problem.

Pardalos and Vavasis [104] proved that (P ) is an NP-hard problem even if a single dj is
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negative. Moreover, Pardalos and Schnitger [103] proved that checking local optimality in

constrained quadratic programming is NP-hard as its paper title.

Although it is very hard to solve, many researchers have challenged to develop global

solvers for the general (nonconvex, nonseparable, and multidimensional constrained) quadratic

programming by recently because of its usefulness. See [102] for its enormous applications.

The difficulty also results in various techniques and methods. As a recent research Chen

and Burer (2012, [23]) developed a global solver combining ideas of branch-and-bound and

copositive programs. A new interior point method was developed by Absil and Tits (2007,

[1]). Chinchuluun et al. (2005, [24]) applied approximation set method, and Phong et al.

(1995, [107]) used branch-and-bound techniques. Methods that employ benders cut method

were presented by Kough (1974, [68] 1979, [69]). A good overview of important methods and

applications is available in Pardalos (1991, [99]) with description about Benders decomposi-

tion, concave programming approaches, enumerative techniques, and bilinear programming.

One can also refer a book of Pardalos and Rosen [102] and a survey of Pardalos and Rosen

[97], and Absil and Tits [1] has a good introduction with history.

As similar to (P ), the separable (nonconvex, nonlinear, and multidimensional constrained)

programming has been studied by Illés and Nagi (2005, [55]) and Xue et al. (2004, [138]), and

[55] listed numerous literature for three most used algorithms: branch-and-bound, Vertex

enumeration, and cutting-plane methods. For the quadratic objective function and linear

constraints, Rosen and Pardalos (1986, [114]) and Barrientos and Correa (2000, [5]) devel-

oped methods for separable programming to solve the general quadratic programming by

diagonalizing procedure of [114].

Recent studies that focused on knapsack (nonconvex, nonlinear and nonseparable) pro-

gramming are the multiple-choice knapsack programming of Sharkey (2011, [118]), the de-

composition methods for large size problems of Lin et. al (2009, [72]), and the locally Lips-

chitz continuous objective function of Romeijn et al. (2007, [113]). The knapsack quadratic

programming is researched by Nowak (1998-1999, [90, 91, 92]) for the simplex constraint,

by Pardalos (1988, [98]) for the quadratic programming on a convex hull, and by Pardalos

et al. (1991, [105]) for two global interior point methods.
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The papers that focus on indefinite KSQP are (1990-1992 [83, 101, 131, 132]) to our best

knowledge, and it is supported by a recent survey of Bretthauer and Shetty (2002, [16]) and

the encyclopedia of optimization (2009, [139]).

2.4.1. Algorithms for nonconvex case

All four methods [83, 101, 131, 132] specialized for the nonconvex KSQP are introduced in

this section. Briefly [83] developed a local solver for the strictly concave case, and one of its

authors, Vavasis extended it to a local solver for the indefinite case in [132]. The algorithm

of [83] takes O(n log n) time complexity because it uses sorting, but we improve it to have

O(n) time complexity replacing the sorting step with O(n) median search algorithm such

as Select [66] and present it in Algorithm 2.11. A simplified and more efficient version

of O(n log n) algorithm of [83] is also presented in Algorithm 2.10. Including other two

approximate methods [101, 131], we describe all methods in the order of published years.

1990 Pardalos and Kovoor [101] for indefinite case

Their algorithm first departs convex and concave part and underestimates the concave part

by piecewise linear convex functions solving 0-1 mixed integer linear program. It guarantees

an ε approximate solution. However, the size of mixed integer linear program exponentially

grows by 2N , where N is the number of pieces for the piecewise linear function. Thus, the

algorithm gets exponentially deteriorated for the number of variables in N and the level of

accuracy.

1991 Moré and Vavasis [83] for strictly concave case

They proposed a method to find a local optimum solution for the strictly concave KSQP

and named their algorithm CKP*, which stands for Concave Knapsack Problem. We present

CKP* in Algorithm 2.10 with our modification for efficiency and simplicity. The basic idea

is finding three sets L = {i : xi = li}, U = {j : xj = uj}, and {k} = {1, 2, ..., n}\(L ∪ U)

that satisfies

−dili ≤ −dkxk ≤ −djuj
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as local optimum conditions in (4.21) and (4.22). Note that −xkdk is the value of λ because

x∗k = −λ∗/dk ∈ [lk, uk], and dili and djuj are the slope of separate objective function

fj(xj) = 1
2dx

2
j at lj and uj . That is, −djxj = −dfj(xj)

dxj
= −f ′j(xj), and it is a kind of

efficiency to minimize objective value per a unit of xj . So the set L is filled with index that

has less efficiency than others.

To find the three sets, it first gets the order of index sorting all −djlj in ascending order

and sets xj = lj for the first half index and xj = uj for the last half index except for the

median index k as in step 1-3. Then it tests if a feasible solution can be found adjusting

xk within its bound [lk, uk]. If the current trial solution violates the knapsack constraint,

it switches the current half xj = uj to lj or in the reverse way depending on the violated

values as step 4.

Algorithm 2.10 O(n log n); Simplified version of CKP* of Moré and Vavasis [83]

1. Sort w = sort{j : −djlj ∀j}, where w(j) is the j − th smallest element of −djlj ∀j

2. Set kl and ku (kl < ku) such as kl = 1 and ku = n

3. Get k =
⌊
kl+ku

2

⌋
and g = b−

∑k−1
i=1 lw(i) −

∑n
i=k+1 uw(i)

4. Iterate until stopping criterion is satisfied

If g < lk (include some uj), set ku = k, k =
⌊
kl+ku

2

⌋
, and

g = g −
∑ku−1

i=k lw(i) +
∑ku

i=k+1 uw(i)

Elseif g > uk (exclude some uj), set kl = k, k =
⌊
kl+ku

2

⌋
, and

g = g +
∑k−1

i=kl
lw(i) −

∑k+1
i=kl+1 uw(i)

Else (lk ≤ g ≤ uk), finish algorithm with

xj =


lj for j = w(1), w(2), ...w(k − 1)

g for j = k

uj for j = w(k + 1), w(k + 2), ...w(n)

They implemented this binary search type approach with sorting procedure, which domi-

nates the complexity to be O(n log n). However, the complexity can be down to O(n) simply
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replacing the sorting procedure to median search procedure such as Select [66]. This our

improved method is presented in Algorithm 2.11.

Algorithm 2.11 O(n) time improved version of Moré and Vavasis [83]
Define a median function: [L, k, U ] = argmed{sj : j ∈ I}
where k is the index such that sk is the dn/2eth sj for j ∈ I, and si ≤ sk ≤ sj for i ∈ L and
for j ∈ U

1. Set s = {−djlj ∀j} and U = {1, 2, ..., n}

2. Find [L, k, U ] = argmed{sj : j ∈ U}

3. Get g = b−
∑

j∈L lj −
∑

j∈U uj

4. Iterate until stopping criterion is satisfied

If g < lk (k∗ is in L), set xU = uU , kold = k, [L, k, U ] = argmed{sj : j ∈ L}, and
g = g −

∑
j∈{k}∪U lj +

∑
j∈{kold}∪U uj

Elseif g > uk (k∗ is in U), set xL = lL, kold = k, [L, k, U ] = argmed{sj : j ∈ U}, and
g = g +

∑
j∈{kold}∪L lw(i) −

∑
j∈{k}∪L uj

Else (lk ≤ g ≤ uk), finish algorithm with

xj =


lj for j ∈ L
g for j = k

uj for j ∈ U

1992 Vavasis [132] for indefinite case

Vavasis extended his study [83] on concave case to indefinite case in [132] as a local solver.

Because xj(λ) for j ∈ P is determined by a λ and at most one xj for j ∈ N is the value

of −λ/dj at the local optimum as proved in Theorem 4.8, his algorithm essentially finds a

solution that satisfies the conditions in (4.21) and (4.22) in Theorem 4.9. So as Algorithm

2.10, it picks the median index k ∈ N and fixes xj = lj or uj for other index in N . Then, it
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tests if the knapsack constraint can be satisfied by

xj =


xj(λ) for j ∈ P

−λ/dk for j = k

∈ [lj , uj ] for j ∈ KZ = {j ∈ Z : λ = tj}

(2.24)

for λ ∈ [−dklk,−dkuk]. If no feasible solution is found, it picks a new k as Algorithm 2.10

and tries to find a feasible solution iteratively.

This procedure converges at a local optimum; however, the implementation is not so

efficient because he assumes all values of

∑
j∈P

xj(λ) +
∑
j∈Z

xj (2.25)

where xj = [lj , uj ] for j ∈ Z, are obtained before it starts iteration to find k ∈ N . This

means the algorithm should compute all values of (2.25) at all breakpoints of P and Z and

uses the values to get a solution in (2.24) for every iteration.

He proposed four versions of algorithms which has complexity of O(n3), O(n2 log n),

O(n2 log n), and O(n(log n)2) named by IKP1, IKP1-CG, IKP2 and IKP2-CG respectively

(IKP stands for indefinite knapsack problem). IKP1 and IKP2 use the straightforward im-

plementation as we described, and IKP1-CG and IKP2-CG solves the problem with geometric

study of Chazelle and Guibas [22] based on IKP1 and IKP2.

Although IKP1-CG and IKP2-CG are more advanced in complexity, he implemented only

IKP1 and IKP2 due to the implementation difficulty of [22] and tested the subset-sum prob-

lem, which will be discussed in Section 5.2.2. His experiment results show that the time

growth is O(n2) for IKP1 and O(n log n) for IKP2, but IKP1 is about 13 times faster than

IKP2 for the size of up to 80. He expected that IKP2 would outperform over about n = 2000.

Above all, his two implementations found the global optimum only one time among 80 test

problems.

1992 Vavasis [131] for general case
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In addition to [132], Vavasis also developed to solve indefinite KSQP approximately in

[131]. The study is for the general quadratic programming. It suggests to transform the

nonseparable quadratic terms using eigenvalue decomposition to make the problem separable

and solves it using his approximation idea. As a special case, he mainly focused on developing

algorithms for the indefinite KSQP.

First he showed that strictly concave KSQP can be exactly solved by dynamic program-

ming with exponential time complexity, and then he suggested an approximate dynamic

programming idea. The idea is that we can use linear interpolation for sufficiently small

intervals on b instead of solving dynamic programming for all b. He calls this Linearize, and

it leads his algorithm to have polynomial time complexity.

After the algorithm solves approximate dynamic programming for concave part, it solves

the convex part with an updated b = b−
∑

j∈N xj using the O(n log n) sorting method of

[50]. So the complexity consists of convex and concave part as

O(n1 log n1 + n2rα(r)log r) (2.26)

where n1 is the size of P ∪Z, n2 is the size of N , α(r) is the inverse Ackerman function10, and

r is the number of breakpoints for dynamic programming so r grows exponentially by n2.

Thus, the first part of (n1 log n1) in (2.26) is the cost to solve convex part and the second

part of (n2rα(r)log r) is to solve the concave part of indefinite KSQP with the approximate

dynamic programming.

The value of [131] is in its conclusion part where he left a possibility that if the problem

can be solved dependent on |log ε| - where ε ∈ (0, 1) is an approximation parameter - in

polynomial time as he suggested, the indefinite quadratic programming may not be NP-

hard contradicting proofs for NP-hardness in [104, 115]. He commented that more proofs

are available in [41].

10Vavasis [131] noticed that α(r) glows extremely slowly, and it is safe to assume ≤ 6.
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2.5. Conclusion

All algorithms that focus on KSQP are considered in this literature review chapter. In the

convex case, the various algorithms were discussed with their computational natures and

theoretic properties, and we show how the algorithms have been improved through history

for over fifty years. In addition, the more robust and efficient version of Newton method is

proposed, and the computational superiority of interval test is analytically compared with

other methods. This comprehensive survey for convex case leads to develop new hybrid

methods in Chapter 4, and the new methods also applied to develop a new tight bound

algorithm, CBS, for indefinite case. For nonconvex case, the properties that explains the

difficulty of the problem is discussed, and all existing algorithms are considered with detailed

algorithmic steps. Furthermore, we suggest an idea that improves O(n log n) time algorithm

of Moré and Vavasis [83] to O(n) time algorithm.
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3. Indefinite Open-Box Approach to

Solution

3.1. Introduction

Since the indefinite case of (P ) in (2.2) is an NP-hard problem, the solution may not be

easily found directly. We use the Lagrangian relaxation of the upper bound constraints of

variables xj , j ∈ N to generate the following Lagrangian dual problem (D).

(D) Maxρ≥0 R(ρ) (3.1)

where R(ρ) with ρ ∈ R|N | is

R(ρ) := Min 1
2xTDx− cTx +

∑
j∈N ρj(xj − uj)

s.t.
∑

j∈∀j xj = b

lj ≤ xj ≤ uj for j ∈ P ∪ Z

lj ≤ xj for j ∈ N,

(3.2)

which has open-box constrains (lj ≤ xj for j ∈ N).

From the Lagrangian duality theorem, see [10], for any ρ ≥ 0, R(ρ) is a guaranteed lower

bound on (P ). Indeed, the best lower bound is then obtained by solving the Lagrangian

dual problem (D). In this chapter, we will use R(ρ) as the basis to construct lower and

upper bounds of (P ) in polynomial time, and the approach is completed by the following

three stages:
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Stage-1 Develop an efficient algorithm (OBG) that finds an exact global optimum solution

of R(ρ) in O(n2)

Stage-2 Develop a procedure that updates ρ iteratively to solve (D) that generates a lower

bound

Stage-3 Develop an upper bounding method, based on the lower bound, to find a feasible

solution of high quality in O(n)

In section 3.2, we prove that OBG solution method has quadratic time worst-case complexity.

Then, Stages-2 and 3 are covered in section 3.3. In section 3.4.2, the superior performance

of OBG is confirmed by experimental comparison with a global solver of Chen and Burer [23],

a local solver of Vavasis [132], and the commercial global solver of Cplex 12.6 of IBM using

a test-set of problem. The quality and speed of the bounding procedure are also discussed

in section 3.4.3.

3.2. Open-Box Global (OBG) Solver

To complete the Stage-1, we present a global solver, which is referred to Open-Box Global

(OBG) solver, in the form of (P ′), which has a similar format of (P ) in (2.2).

(P ′) Min 1
2xTDx − cTx

s.t.
∑
∀j xj = b

lj ≤ xj ≤ uj for j ∈ P ∪ Z

lj ≤ xj for j ∈ N

It is easily recognized that (P ′) is bounded if and only if lj has a finite value for j ∈ N ∪Z;

moreover, it also holds for (P ).

To the best of author’s knowledge, the problem (P ′) has not been researched as this is the

first instance an open-box approach is being utilized to solve the closed-box problem. Lotito

(2006, [74]) and Cominetti et al. (2012 [25]) considered the case of l ≤ x, but both papers

focus only on the strictly convex problems (dj > 0 ∀j). The indefinite KSQP with the finite
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valued closed-box constraints (l ≤ x ≤ u) has been rarely studied because efficient conditions

to verify the global optimality are not known as Sahni [115] and Pardalos and Vavasis [104]

proved that the problem is an NP-hard problem. Thus, only four previous research, i.e.

[83, 101, 131, 132], have presented algorithms, which are considered to be inefficient. [83, 132]

find only local optimum solutions, and [101] and [131] find an approximate global optimum

in exponential time and polynomial time at a given parameters respectively. In the survey

in Section 2.4.1, the above algorithms and their complexity analyses are presented.

Our new method mainly utilizes KKT conditions of (P ′) based on a two-stage decomposi-

tion method, which is inspired by the separability of the problem. A similar idea is employed

by Vavasis [132], but the way to treat the two stages is in reverse. Moreover, Vavasis [132]

uses KKT conditions with modifications, while our method enumerates all KKT points that

satisfies an additional necessary condition of optimization and chooses the best solution.

Moreover, our method guarantees to find all global optimum solutions to the problem.

In spite of the exhaustive enumeration procedure, our algorithm is very efficient thanks

to the techniques of interval test method having polynomial time complexity and the La-

grangian multiplier shrinking step. The experiment verifies the complexity of O(|T | log |T |)

holds for n ≤ 3000 with |T | = 2|P |+ |Z|, and O (|N |(n− |N |)) holds for greater sizes in the

worst case.

3.2.1. Problem characteristics

Observe that (P ′) can be equivalently expressed as the following two stage model structure:

(P1) Min
(

1
2

∑
j∈P djx

2
j −

∑
j∈Z cjxj

)
+ Φ(β)

s.t.
∑

j∈P∪Z xj = β

lj ≤ xj ≤ uj j ∈ P ∪ Z

where

(P2) Φ(β) = Min{1

2

∑
j∈N

djx
2
j :
∑
j∈N

xj = b− β, lj ≤ xj , j ∈ N}

64



We can observe that (P1) has only convex quadratic terms and (P2) has only concave terms

in the problems’ objective functions sharing a single common variable of β.

The KKT conditions of (P ′) can be obtained from the KKT conditions of (P ) in (2.4)

by imposing µj = 0 for j ∈ N . These KKT conditions are the necessary conditions for

the global optimality of (P ′) (see page 162 of [10]). OBG basically enumerates all candidate

solutions based on KKT conditions, but the number of solution to be enumerated can be

significantly reduced based on the following necessary condition proved in Theorem 3.1 and

Theorem 3.2.

Theorem 3.1. At a local optimum of (P2), xj = lj for j ∈ N except for at most one k ∈ N

for which xk > lk.

Proof. Since the problem (P2) is a strictly concave minimization problem on a convex

ployhedron for a given β, its global solution is found at an extreme point of its feasible

domain; however because (P2) has a knapsack constraint, it should allow possibly at most

one variable to be non extreme point, that is xk > lk for a single k ∈ N , as a basic feasible

solution. Hence, the theorem is completed. Another approach can be found in Lemma 4

of Vavasis [132] and Theorem 2.1 of Pardalos [99]. Note that the proof of this theorem is

presented in the similar Theorem 4.8.

In addition to Theorem 3.1, Theorem 3.2 proves that two stage problems (P1) and (P2)

can have the same Lagrange multiplier for the knapsack constraints.

Theorem 3.2. Let λP and λN be optimum Lagrange multipliers of knapsack constraints of

(P1) and (P2) respectively as we define λ in (2.4). When xk > lk for a single k ∈ N , it

holds that

λP = λN

Proof. Since a single xk > lk for k ∈ N by Theorem 3.1, its value is obtained using the

knapsack constraint as

xk = b− β −
∑

j∈N\{k}
lj (3.3)
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and by KKT conditions of (P2), it can also be defined as

xk = −λN/dk (3.4)

Then, the objective value of Φ(β) is

Φ(β) =
1

2

(∑
j∈N\{k}

djl
2
j + dkx

2
k

)
, (3.5)

and by substituting (3.3) in (3.5) and taking partial derivative on β , we have

∂Φ(β)

∂β
= −dk

(
b− β −

∑
j∈N\{k}

lj

)
= −dkxk = λN

due to (3.4). Moreover, if we consider β as a variable, a stationarity KKT condition of (P1)

is
Φ(β)

∂β
− λP = 0.

Hence, it results in
Φ(β)

∂β
= λP = λN ,

and we conclude the theorem.

Our solution strategy is enumerating all KKT points that satisfy the necessary conditions

proved in Theorem 3.1 and 3.2. Therefore, a global optimum solution is found at λ∗ = λ∗P =

λ∗N when x∗k > lk for a single k ∈ N . If x∗j = lj , j ∈ N , λ∗P and λ∗N may not be identical.
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Solution characteristics

By the KKT conditions of (P ′), we can obtain following solution characteristics for each

variable.

xj(λ) =

{
median{lj , uj ,−λ/dj} for j ∈ P
lj if λ > cj

uj otherwise

for j ∈ Z


lj if λ < −djlj

lj or − λ/dj otherwise

for j ∈ N

(3.6)

The derivation of xj(λ) for j ∈ P is available in (2.5). For j ∈ Z, xj(λ) is defined based on

KKT conditions considering three cases of xj as

If xj = lj , then µj = 0 and λ ≥ cj

If xj = uj , then γj = 0 and λ ≤ cj

If xj = (lj , uj), then µj = γj = 0 and λ = cj

 (3.7)

At an optimum solution, xj for j ∈ Z at λ = cj is actually a value within [lj , uj ] although

uj is assigned for xj(λ) at λ = cj . Hence, our algorithm uses xj(λ) only at λ 6= cj , and a

detailed procedure to get an optimum xj at λ = cj will be presented in Section 3.2.2.

For j ∈ N , xj(λ) can be derived by considering two cases that xj is either lj or strictly

greater than lj as

If xj = lj , then γj ≥ 0 and λ ≥ −djlj

If xj > lj , then γj = 0 and xj = −λ/dj

Moreover, by Theorem 3.1, at most one xj can have the value strictly greater than lj for an

index set of {j ∈ N : λ∗ > −djlj}. xj(λ) for j ∈ N is illustrated in Figure 3.1, and Figure

4.1a and Figure 4.1b show the behavior of xj(λ) for j ∈ P and j ∈ Z respectively.

Note that xj(λ) ∀j satisfies all KKT conditions except for knapsack constraint at a given

λ because it is derived from KKT conditions without the knapsack constraint.

Definition 3.3. Breakpoint and λ interval
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λ

x j = l j  or −λ
dj

l j
−djl j

x j (λ)

Figure 3.1.: xj(λ) for j ∈ N

Define breakpoints in which xj(λ) is not differentiable. For j ∈ P , xj(λ) have two beak

points

−djuj and − djlj ,

and as observed in (3.6) each xj(λ) for j ∈ Z ∪N has one breakpoint

tj =


cj for j ∈ Z

−djlj for j ∈ N
.

Throughout this chapter, we denote T to be the set of finite value breakpoints of P and Z

as

T =


−diui,

−djlj ,

ck

∣∣∣∣∣∣∣∣∣∣
i ∈ P, ui <∞

j ∈ P, lj > −∞

k ∈ Z, uk <∞

 .

The set of breakpoints T is used to construct intervals on λ by sorting elements of T , and

we name the intervals λ intervals.

Domain of Lagrange multiplier

As we define x(λ) for solution characteristic, the single Lagrange multiplier λ roles as the

key to find optimum solutions, and it can be bounded by KKT conditions and breakpoints.
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We denote the maximum finite value of breakpoints by

λ̂max =


−∞ if P ∪ Z = ∅

max{Tj} otherwise

. (3.8)

Note that −djuj for j ∈ P in T are not necessary to get λ̂max in practice because it is always

−djuj < −djlj by the assumption of lj < uj . In the case of strictly concave case of (P ′), we

can simply set λ̂max = −∞. Furthermore, since lj for j ∈ N is finite value in the bounded

problem (P ′), the following Lemma 3.4 proves λ∗ can be greater than λ̂max.

Lemma 3.4. It is possible that λ̂max ≤ tk < λ∗ for k ∈ N

Proof. By contradiction, suppose λ∗ < λ̂max ≤ tk for k ∈ N . For a simple example, consider

a (P ′) such that lj ≥ 0 for j ∈ P , Z = ∅, |N | = 1, and b >
∑

j 6=k lj + lk. Then, the global

objective value is

f(x∗) =
∑
j 6=k

djl
2
j + dkx

2
k

since any value of xj > lj for j ∈ P worsens the objective value and it is allowed that

xk = −λ∗/dk > lk by Theorem 3.1. The value of x∗k can be obtained by knapsack constraint

as

xk = b−
∑
j 6=k

lj

and since b >
∑

j 6=k lj + lk, the dual solution λ∗ is

xk = −λ∗/dk = b−
∑
j 6=k

lj > lk

λ∗ > −dklk = tk

Since this is a contradiction, we conclude the lemma.

69



Theorem 3.5. The optimum Lagrange multiplier λ∗ is in the range of [λmin, λmax] where

λmin = max{−∞, tj : j ∈ Ju} (3.9)

λmax = ∞

for Ju = {j ∈ Z : uj =∞} ∪N .

Proof. If uj =∞ for some j ∈ Z ∪N by the KKT conditions

djxj − cj + λ = γj ≥ 0

λ ≥ cj − djxj since dj ≤ 0

≥ cj − djlj = tj

Thus, λ∗ ≥ tj for j ∈ Ju, and λmin can be found. Moreover, it is possible that λ∗ is greater

than any finite breakpoints (λ∗ > λ̂max) by Lemma 3.4. Hence, a KKT point can be found

at λ∗ ∈ [λmin,∞].

In addition, if the knapsack constraint is inequality as aTx ≤ b, λmin should be updated

to zero when the value is negative to ensure λ∗ ≥ 0. Moreover, we will show in the next

Section 3.2.1.1 that λmin can be set to a greater value if some conditions are satisfied so

[λmin, λmax] can be narrower.

3.2.1.1. Global cases

In this section, we present five global cases that global optimum solutions are found. The

cases are determined by the behavior of xj(λ) for j ∈ P ∪ Z when we fix xj = lj for j ∈ N .

We define it in the knapsack constraint as g(λ) with H and G.
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g(λ) =
∑
j∈N

lj − b+
∑
j /∈N

xj(λ)

=
∑
j∈N

lj − b+
∑
j∈L

lj +
∑
j∈U

uj − λ
∑
j∈I

(1/dj)

= H − λG (3.10)

where

L = {j /∈ N : xj(λ) = lj}, U = {j /∈ N : xj(λ) = uj}, I = {j ∈ P : lj < xj(λ) < uj},

(3.11)

and H is the sum of constant parts and G is the sum of parts that include λ.

Since G is always positive with positive dj when I 6= ∅ or zero when I = ∅, g(λ) is non-

increasing function, and it is a piecewise linear function with discontinuous points at tj for

j ∈ Z because xj(λ) for j ∈ P ∪ Z has the same properties and g(λ) is a sum of xj(λ) for

j ∈ P ∪ Z and constants. Then, global cases can be classified with

Pl = {j ∈ P : lj = −∞} (3.12)

gu = g(λmin) (3.13)

gl = g(λ̂max) +
∑

j∈JZ(λ̂max)
(lj − uj). (3.14)

As illustrated in Figure 3.2, gu and gl are kinds of two end points of g(λ) on λ ∈ [λmin, λ̂max]

with an index set

JZ(λ̂max) = {j ∈ Z : λ̂max = tj}

Note that the last summation part of gl with JZ(λ̂max) is to drag down g(λ̂max) to its

minimum value with xj ∈ [lj , uj ] for j ∈ Z.
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Global cases

Since g(λ) is non-increasing function, we start to determine the global cases of (P ′) by the

sign of gl and the emptiness of Pl, and then gu may be used to detect further global cases if

it is necessary. We present five global cases in the order from the case that a global optimum

solution is determined by smaller operations so the global Case 5 represents the worst case

of (P ). Examples of each case are illustrated in Figure 3.2.

g(λ)

λ0
t j  j ∈ Zλmin

gl > 0

gu

λ̂max

λP
*

(a) Case 1.2: gl > 0 and Pl 6= ∅

g(λ)

λ0
λmin

gl = 0

λ̂max = λP
*

(b) Case 2: gl = 0

g(λ)

λ0
λmin

λP
*

λ̂max

(c) Case 4: gl < 0 and gu ≥ 0

g(λ)

λ0 λmin

gu < 0

λ̂max

(d) Case 5: gu < 0

Figure 3.2.: Global cases

Case 1. If gl > 0


Case 1.1 : (P ) is infeasible if Pl = ∅

Case 1.2 : λ∗ ≥ λ∗P > λ̂max otherwise
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Case 2. If gl = 0


Case 2.1 : λ∗ = λ∗P = λ̂max, x∗ = l if Pl = ∅

Case 2.2 : λ∗ ≥ λ∗P = λ̂max otherwise

Case 3. If gl < 0 and λ̂max ≤ λmin, then λ∗ ≥ λmin with a Type B solution

Case 4. If gl < 0 and gu ≥ 0, then λ∗ ≥ λ∗P

Case 5. If gl < 0 and gu < 0, then λ∗ ≥ λmin with a Type B solution

Theorem 3.5 proves that λmin is greater than or equal to the maximum value of breakpoints

of N . That means all xj(λ) for j ∈ N are candidate that can be xj > lj at a global optimum;

thus, a global optimum solution is either Type A or B by Theorem 3.1.

• Solution Type A: x∗j = lj for all j ∈ N

• Solution Type B: x∗j = lj for j ∈ N\{k∗} and x∗k∗ > lk∗ for a single k∗ ∈ N

The Type A global solution can be easily found because when xj for all j ∈ N are fixed at

lj and (P ) becomes a convex problem. The convex problem can be solved via methods1 in

Chapter 2 by searching for a λ where the non-increasing function g(λ) passes zero or jumps

at tj for j ∈ Z passing zero. We denote the Lagrange multiplier by λ∗P , and it exists in Case

1.2, 2, and 4. Since g(λmax) < 0 is guaranteed when Pl 6= ∅, if gl ≥ 0 with nonempty Pl,

g(λ) must pass zero at λ∗P between [λ̂max, λmax] as considered in Case 1.2 and 2.2. Case 2.1

simply represent the case when x∗ = l, and Case 4 is detected when the signs of two end

points gl and gu of g(λ) on λ ∈ [λmin, λ̂max] are different.

In the global solution Type B, x∗k∗ is strictly greater than lk∗ for a single k∗ ∈ N . Then,

λ∗ is placed where it satisfies

g(λ∗)− lk + x∗k = 0 since x∗k∗ > lk∗

g(λ∗) < 0,

1The method Sec+Int in Section 4.3.1.1 is recommended because it is proved to be the best method in
speed and reliability by thoughtful experiments in Section 4.4.1.
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and if we replace xk = lk for a single k ∈ N with xk = −λ/dk > lk in g(λ), we have the

value of ĝ(λ)

ĝ(λ) = g(λ)− lk +
−λ
dk
.

Hence, ĝ(λ) is actually a lifted up value from g(λ) by xk > lk, and a KKT point is found

when ĝ(λ) = 0 is satisfied. In other words, if gl < 0 or g(∞) < 0 with Pl 6= ∅, there is

a chance that a single xk > lk can lift up ĝ(λ) to touch zero as a Type B global solution.

Otherwise, if gl ≥ 0 and Pl = ∅ as Case 1.1 and 2.1, the feasibility or a global optimum

solution is determined without considering Type B because g(λ) cannot be further decreased

to give xk for k ∈ N a chance to lift up ĝ(λ).

Our algorithm exploits the technique of interval test method to search for k∗ that satisfies

ĝ(λ) = 0 for every k ∈ N in each interval which is constructed by breakpoints of T . This

means we have to take O(|N |) time operations in each interval and each point tj for j ∈ Z,

but the enumeration procedure can be saved by constructing the intervals with breakpoints

that is greater than

λ̂min = max{λ∗P , λmin} (3.15)

because KKT points can exist for λ ≥ λmin as proved in Theorem 3.5 and Type B solution

can be found only at λ ≥ λ∗P . The idea of narrower λ domain highly decreases the number

of intervals to enumerate. As extreme cases, Case 2.1 has one interval as a point λ∗P = λ̂max

and Case 1.2 and 2.2 have only one interval of [λ∗P , λmax].

Another one interval occurs in Case 3. If conditions in Case 1 and 2 are not met, our

algorithm obtains λmin to get gu. But we can detect global Case 3 before gu is computed. If

λ̂max ≤ λmin as a condition of Case 3, there are no breakpoints to construct intervals within

[λmin, λmax], and the bound is the only interval that KKT points are found.

If a global cases is not detected until Case 3, our algorithm executes more computations

to get gu, and it is used to make a decision whether λ∗P exists. If gu is negative, we skip

Case 4 and consider Case 5 searching for only a Type B global solution because λ∗P does not

exist in Case 5. For the same reason, Case 3 also finds only Type B global solution.
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3.2.2. Interval test method and Algorithm

Although our algorithm basically enumerates all KKT points that satisfy Theorem 3.1 to

find an exact global optimum, it can be done quite efficiently via techniques in interval test

method. This section presents two efficient enumeration procedures at an interval (interval

test) and at a point (point test) of tj where xj for j ∈ JZ(tj) can be set to a value in [lj , uj ].

Then, update procedure that requires few operations when we move from an interval to next

interval is also addressed in Algorithm 3.2, and the full steps are described in Algorithm 3.1.

Interval test at an interval

Let [λl, λu] be the current λ interval that consists of two consecutive breakpoints in T within

[λ̂min, λmax]. If x∗j = lj for j ∈ N as Type A global solution and λ∗P ∈ [λl, λu], it can be

obtained by

λ∗P = H/G

with H and G in (3.10), and the objective value of (P ) to the corresponding solution is

f =
1

2

R+
∑
j∈P

djx
2
j (λ
∗
P )

− ∑
j∈Z\JZ(λ∗P )

cjxj(λ
∗
P )− λ∗Pw (3.16)

where R =
∑

j∈N djl
2
j , which is 2Φ(β) when xj = lj for j ∈ N , and

w =


0 if JZ(λ∗P ) = ∅

b−
∑
j∈N

lj −
∑

j∈P∪(Z\JZ(λ∗P ))

xj(λ
∗
P ) otherwise

.

Note that essentially w =
∑

j∈JZ(λ∗P ) x
∗
j , and since λ∗P = cj for j ∈ JZ(λ∗P ), the last part of

(3.16) is expressed with λ∗P instead of cj . Thus, Type A global solution can be found at λ∗P .

To find a Type B global solution with x∗k > lk for a single k ∈ N , we can do following

efficient enumeration procedure, which is called interval test, including a single k ∈ N into
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Algorithm 3.1 O (|N |(n− |N |)); Open-Box Global (OBG) solver
Given initial values of f∗ =∞, λ∗ =∞, λu =∞, fP = 0, w = 0, JZ = ∅, a tolerance εfea,
and sub algorithms 3.3 and 3.2

1. Get H, G, fP in (3.24) with Pl, λ̂max (3.8), gl (3.25), and

a part of T = {−dili, cj : i ∈ P, j ∈ Z}

2. (Case 1) If gl ≥ εfea,

a) (Case 1.1) If Pl = ∅, finish. (P ) is infeasible.

Else (Pl 6= ∅)
i. Get λ∗P = H/G and f in (3.16) → Update(f , λ∗P )

ii. (Case 1.2) Set λl = λ∗P

3. (Case 2) If |gl| < εfea,

a) (Case 2.1) If Pl = ∅, finish algorithm with λ∗ = λ̂max, x∗ = l, and f∗ = f(x∗)

(Case 2.2) Else (Pl 6= ∅) → Update(f , λ̂max) and set λl = λ̂max

4. (Case 1.2 or 2.2) If gl > −εfea, do interval test for f in (3.18) → Update(f , Λk̂, k̂)
and go to step 12

5. Get λmin (3.9)

6. (Case 3) If λ̂max ≤ λmin (and gl < 0),

a) Set λl = λmin (if Pl = ∅, get Fk by (3.26))

b) Do interval test for f in (3.18) → Update(f , Λk̂, k̂) and go to step 12

7. Get gu in (3.12) and full T = ({−djuj : j ∈ P}, T )

8. (Case 4) If |gu| < εfea → Update(f , λmin, ∅, w, JZ(λmin))

(Case 4) Elseif gu > 0, get λ∗P using Sec+Int → Update(f , λ∗P , ∅, w, JZ(λ∗P )) and set
λmin = λ∗P

(Case 5) Else (gu < 0), (P ) is in Case 5

9. Select and sort breakpoints in descending order

JT = {j : λmin < Tj} and [T, J ] = sort(Tj : j ∈ JT )

where T is sorted Tj for j ∈ JT , and J is corresponding index set of sorted T .

10. Include λmin into T as T = (T, λmin) and set i = 1, λl = T1, and λu =∞

11. Iterate for point test and interval test with the sub Algorithm 3.2

12. Finish with f∗, λ∗, k∗, and x∗ in (3.27)

a) If w∗ 6= 0, set x∗j = xj(λ
∗) for j ∈ Z\J∗Z and get x∗j for j ∈ J∗Z by Algorithm 3.4

Else (w = 0), set x∗j = xj(λ
∗) for j ∈ Z
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G and excluding it from H. So the corresponding value of λ for k ∈ N is computed as

Λk =
H − lk
G+ 1/dk

for k ∈ N,

and only the selected k in an index set

S = {k ∈ N : λl ≤ Λk ≤ λu}. (3.17)

Then, only the index k ∈ S can lead to find feasible KKT points with xk = −Λk/dk. To

find the best KKT point at the current interval, we compute 2Φ(β) by

Fk = rk + Λ2
k/dk for k ∈ S

with rk = R− dkl2k , and the minimum objective value at the current interval is

f =
1

2

(
Fk̂ + Λ2

k̂
G+ fP

)
(3.18)

where k̂ = argmin{Fk : k ∈ S} and

fP =
∑
j∈L

djl
2
j +

∑
j∈U

dju
2
j − 2

∑
j∈L

cjlj +
∑
j∈U

cjuj

 (3.19)

is a part of objective values from the fixed solutions in the testing interval, and I, L, and U

are index sets used to get H and G in (3.10).

As we can see in Λk and Fk, our algorithm actually considers β as a range of

g(λu) ≤ β +
(∑

j∈N
lj − b

)
≤ g(λl)

rather than a fixed value; therefore, (P1) and (P2) interactively determine a value of β in

the range to satisfy

ĝ(Λk) = β +
(∑

j∈N
lj − b

)
− lk + xk = 0
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lifting up ĝ(λ) to touch zero from negative g(λ) with a single xk = −Λk
dk

> lk.

Point test at a break point tj for j ∈ Z

Recall that xj(λ) for j ∈ Z is set to uj at λ = tj although it can be a value in [lj , uj ] as

a KKT point. Thus, we have to find KKT points considering xj = [lj , uj ] at tj for j ∈ Z.

Since a candidate λ is determined to a tj in this case, we can find the best KKT point at

this point testing which xk = −tk/dk > lk for k ∈ N can yield the best objective value, and

we name the procedure point test.

Suppose we have tested an interval [λl, λu], and the λl is from tj in j ∈ Z. Then, we can

utilize the current H and G to find KKT points at λ = λl updating H and fP as

H = H −
∑

j∈JZ(λ) lj

fP = fP + 2
∑

j∈JZ(λ) cjlj

(3.20)

and searching for a selected index set

S = {k ∈ N :
∑

j∈JZ(λ)

lj ≤ wk ≤
∑

j∈JZ(λ)

uj} (3.21)

where

wk = λ (G+ 1/dk)−H

is essentially
∑

j∈JZ(λ) xj when a single xk = −tk/dk > lk is included in the KKT point.

Then, a part of objective value is

Fk =
1

2

(
rk + λ2/dk

)
− λwk

where λ is used instead of cj for j ∈ JZ(λ), and the minimum objective value at λ is

f =
1

2

(
fP + λ2G

)
+ Fk̂ (3.22)
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with k̂ = argmin{Fk : k ∈ S}.

At the first (rightmost) interval

Once intervals are constructed with sorted breakpoints and λ̂min, interval test can be

started either at the leftmost interval or rightmost interval as interval test method Algo-

rithm 2.9. We recommend starting from the rightmost interval since it has computational

advantages to get initial values and a global optimum can be determined at the rightmost

interval in Case 1.2, 2, and 3.

At the first interval we need to calculate initial values of H and G in (3.10) and fP in

(3.19) with three index sets L, U , and I similarly in (3.11). However, if we are at the

rightmost interval, because the three index sets are simply

L = (P\Pl) ∪ Z, U = ∅, I = Pl (3.23)

the initial values can be efficiently calculated without obtaining L, U , and I as

H =
∑
j /∈Pl

lj − b, G =
∑
j∈Pl

1/dj , fP =
∑

j∈P\Pl

djl
2
j − 2

∑
j∈Z

cjlj (3.24)

and the global case determinant gl is simply calculated by

gl = H − λ̂maxG (3.25)

Note that since xj for all j ∈ Z are set to lj in (3.23), the last part for gl in (3.14) is not

included in (3.25).

Moreover, if Pl = ∅, the computational advantage is enlarged at the right most interval

since it is simply

G = 0 and H = gl,

and Fk can be easily calculated without Λk as

Fk = rk + dk(lk − gl)2 for k ∈ N (3.26)
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since xk = lk − gl.

Update procedure at the next intervals and a global x∗

If a global optimum is not determined with initial values of (3.24) through Case 1-3 at

step 6 of Algorithm 3.1, the initial values are used to test the rightmost interval, and then

we moves to the next intervals on the left side to search for a better optimum solution in

Case 4 or 5. Interval test technique has strong efficiency in obtaining index set S in (3.17)

and (3.21) that are used to enumerate KKT points; moreover, it enhances our algorithm’s

performance with efficient update procedures for H, G, and fP as Algorithm 3.2 when we

move to the left interval.

Algorithm 3.2 Update procedure in point and interval test
Given i = 1, λl = T1, λu =∞, and the sub Algorithm 3.3, iterate until termination criteria
in step 3 is satisfied.

1. Do interval test for f in (3.18) → Update(f , Λk̂, k̂)

2. If λl is from tj for j ∈ Z,

a) Update H = H −
∑

j∈JZ(λl)
lj and fP = fP + 2

∑
j∈JZ(λl)

cjlj as (3.20)

b) Do point test for f in (3.22) → Update(f , λl, k̂, wk̂, JZ(λl))

c) If i < |T |, update H = H +
∑

j∈JZ(λl)
uj and fP = fP − 2

∑
j∈JZ(λl)

cjuj

3. If i = |T |, stop iteration

4. Update the interval by λu = λl, i = i+ 1, and λl = Ti

5. If λl is from −djlj for j ∈ P ,

a) Update H = H − lj , G = G+ 1/dj , and fP = fP − djl2j
Else (λl is from −djuj for j ∈ P ),
b) Update H = H + uj , G = G− 1/dj , and fP = fP + dju

2
j

Algorithm 3.2 first does interval test for the given rightmost interval at step 1, and then

check if λl, the lower bound of the current interval, is tj for j ∈ Z to decide whether the

algorithm needs to do point test at step 2.b. Since xj for j ∈ JZ(λl) can be set to any value

in its range [lj , uj ] from the fixed lj when we move on λl, H and fP are updated as (3.20) at

step 2.a for point test, and then H and fP are updated at step 2.c after point test for interval
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test at the left next interval since xj for j ∈ JZ(λl) are fixed to uj for all left intervals. The

interval [λl, λu] are updated at step 4 for the next interval, and the algorithm tries to find

a better optimum solutions at the interval going back to step 1.

If λl is from −djlj for j ∈ P , xj is switched from lj to a value of −λ/dj in the next interval.

So H, G, and fP are updated to reflect the status change of xj at step 5.a. Similarly if λl

is from −djuj for j ∈ P , since xj is fixed to uj from −λ/dj , the values of H, G, and fP are

updated at step 5.b.

Algorithm 3.3 O(1); Update: a sub function to update the best values
Update(f , λ, k, w, JZ) → f∗, λ∗, k∗, w∗, J∗Z
If f < f∗,

1. Update f∗ = f and λ∗ = λ

2. If k = ∅, update k∗ = ∅; Else update k∗ = k

3. If w = ∅, update w∗ = 0; Else update w∗ = w, and J∗Z = JZ

Whenever the best objective value f is selected from an index set S at an interval or a

point, it is compared with the best objective value f∗, and if the new value f is better than

best value f∗, a sub function Update in Algorithm 3.3 is used to update not only objective

value but also all necessary values to obtain a global optimum solution at the final step 12

in the main Algorithm 3.1 as

x∗j =


xj(λ

∗) for j ∈ P ∪ (Z\J∗Z)

lj for j ∈ N\k∗

−λ∗/dk∗ for j = k∗

(3.27)

For j ∈ J∗Z , if w = 0, we conclude x∗j = lj for all j ∈ Z; otherwise the value of w can be

distributed to x∗j keeping it within [lj , uj ] in any preferred way, and Algorithm 3.4 shows an

easy linear time way.

Since it is well known that KKT conditions are necessary conditions for indefinite problem
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Algorithm 3.4 O(|J∗Z |); Get x∗j for j ∈ J∗Z distributing w
Given J∗Z ⊆ Z, w∗, and i = 1

1. Iterate to distribute w∗ to x∗j ∈ [lj , uj ] for j ∈ J∗Z
a) Set j = J∗Z(i), x∗j = max(lj , uj − w∗), and w∗ = w∗ − uj + x∗j

b) If w∗ = 0, finish iteration; Else i = i+ 1

(P ), one of KKT points is the global optimum solution. All KKT points that satisfy theorem

3.1 are enumerated very efficiently through interval test and point test in Algorithm 3.1

utilizing the idea of interval test method. Therefore, Algorithm 3.1 guarantees a global

optimum solution, and if it is necessary, we can find all global optimum solutions keeping

the solutions that result in the same best objective value. Moreover, in the next section, we

show that the algorithm has at most quadratic complexity in the worst case even though it

is an enumerative algorithm.

3.2.2.1. Computational complexity; O
(
n2
)

For the worst case complexity, we may ignore procedures to update H, G, and fP in Al-

gorithm 3.2 and to update best values in Algorithm 3.3 because the procedures have only

O(1) or O(|Z|) complexity. The cost to get λ∗P for global Case 4 is O(n) time if the median

search method in Algorithm 2.3 is used. Other minor operations are consumed to get initial

values of H, G, and fP , required values such as T , λmin, λ̂max, and gl, and a global optimum

solution in (3.27) and Algorithm 3.4; all the operations are taken only one time with the

complexity of O(n).

A main cost occurs when our algorithm enumerate KKT points in point test and interval

test since the both procedures takes O(|N |) complexity at each tj for j ∈ Z and λ intervals.

In the worst case, the maximum number of enumeration steps is 2(|P | + |Z|) because of

|T | = 2|P | + |Z| number of interval tests and |Z| number of point tests. Therefore, the

enumeration steps requires the complexity of

O (|N |(|P |+ |Z|)) = O (|N |(n− |N |)) (3.28)
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Another main cost occurs in step 9 of the main Algorithm 3.1 to sort breakpoints T .

So if all breakpoints are greater than λmin in the worst case, the sorting step spend the

complexity of

O(|T | log |T |) (3.29)

Thus, the worst case occurs in global Case 5 because it has the largest number of breakpoints

to sort and the largest number of intervals and points to enumerate.

In conclusion, the worst case complexity of our algorithm is O(n2) by (3.28) as n → ∞

and |N | → n/2. However, sorting cost dominates the enumeration steps in practice for the

small size problems. In our experiment environment that will be described in Section 3.4,

the complexity is dominated by the sorting procedure for size of n ≤ 3000 as shown in Figure

3.3.
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(b) O (|N |(n− |N |)) at n = 104

Figure 3.3.: Complexity curves on the proportion of |N |

The Figures are drawn with the average time of 10 small coefficient problems (I1) and 10

large coefficient problems (I2), which are described in the next paragraph, in global Case

5 (worst case) problems with |Z| = 0% and various proportions of |N | from 10% to 90%

at each size of n = 103 and n = 104. If the complexity is dominated by O (|N |(n− |N |))

(3.28), the average time should have a peak at 50% as Figure 3.3b in the problems of n = 104.

However, the peak is at 10% in the problem of n = 103 as Figure 3.3a. It is because the

sorting step spends more CPU time to sort breakpoints of positive dj than enumeration
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step. Moreover, the practical CPU time is much less in global Case 1, 2, and 3 because the

cases have only one interval; thus, the complexity is dominated by the minor operations and

has O(n) time complexity.

Two random problems: (I1) and (I2)

Two indefinite random problems are generated based on the settings of

(I1) Small coefficient problem: dj = [1, 10], cj = 0, aj = 1, lj = [−10, 0], uj = [0, 10]

(I2) Large coefficient problem: dj = [1, 2000], cj = 0, aj = 1, lj = [−1000, 0], uj = [0, 1000]

All coefficients are generated by Matlab’s built-in uniform random number generator

rand.m, and an index set N for dj < 0 is randomly generated by Matlab’s built-in function

randperm.m in the size of the given proportion of negative dj . Then, the indefinite problems

are generated by changing the sign of dj for j ∈ N to negative, and uj for j ∈ N is set to the

∞ by inf in Matlab. We set both indefinite problems have cj = 0 and aj = 1 because any

(P ) can be transformed to have the coefficients by transformation in Appendix A.2, and,

above all, the format gives good base problems to generate Case 5 problems. Once (I1) and

(I2) are generated, we change lj ← 2lj for j ∈ N to generate Case 5 problems that satisfies

λmin < min{Tj}.

Right hand side b is also controlled to generate the intended problems by

b = bmin + β(b̂max − bmin)

where bmin =
∑
∀j lj and b̂max =

∑
j∈N lj +

∑
j∈P uj . Since problems are feasible only when

gl ≤ 0, b should satisfy

gl = bmin − b ≤ 0→ bmin ≤ b,

and Case 4 can happen if we set b to be

gu = b̂max − b ≥ 0→ b ≤ b̂max
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Thus, we used β = 1.2 for Case 5 to ensure that gu < 0.

3.3. Bounding with Open-Box Global (OBG) solver

This section explains the procedure to find a lower bound by iteratively solving R(ρ) with

OBG at updated ρ for the dual problem (D) in (3.1). Then, a heuristic method is developed

to find a feasible upper bound solution based on the lower bounding solution.

3.3.1. Lower bounding procedure

For any ρ ∈ R|N |, R(ρ) is an open-box problem of the type (P ), and it is efficiently solvable

to global optimality by the OBG solver in Algorithm 3.1. Furthermore, since R(ρ) is a

piecewise concave function in a vector ρ due to duality, there exists ρ∗ ≥ 0 that maximizes

R(ρ) in (D). So R(ρ∗) guarantees the lower bound of (P ). However, finding ρ∗ is time-

consuming since a search algorithm, such as a subgradient optimization procedure, must be

applied. To compute quick lower bounds, we consider the restricted dual function R̂(w) that

uses some univariate w ≥ 0 for ρj , i.e. ρj = w for j ∈ N . Then, it also gives a lower bound,

and it is trivial that

R(ρ∗) ≥ R̂(w).

Since R̂(w) is a piecewise concave function, the Lagrangian multiplier w∗ can be ob-

tained by a root-finding method such as bisection search, which has a finite iteration of⌈
log0.5

(
εgap

λmax−λmin

)⌉
with the tolerance εgap.

The subgradient of R̂(w) with respect to w is ∇wR̂(w) =
∑

j∈N (xj − uj). So w∗ is found

with a bisection point in the range of [wL, wU ] such that ∇wR̂(wL) ≥ 0 ≥ ∇wR̂(wU ). Note

that if ∇wR̂(0) < 0, the maximum value of R̂(w) is simply at w∗ = 0 since ∇wR̂(w) < 0 for

w ≥ 0.

Let the solution of R̂(w) be xw. If xw∗j ≤ uj for j ∈ N , then, xw∗ is a global optimum

solution of the primal problem (P ). Otherwise, there exists k ∈ N such that xw∗k > uk and
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xw∗j = lj for j ∈ N\{k}. Then, the lower bound is given by

LB∗ :=
1

2
(xw∗)TDxw∗ − cTxw∗ + w∗

∑
j∈N

(xw∗j − uj). (3.30)

3.3.2. Upper bounding procedure

Note that if xwj ≤ uj , j ∈ N , then, xw is a global optimum solution of (P ). Otherwise, we

construct a feasible upper bound solution x̂ by utilizing xw and the Lagrange multiplier λw

of the knapsack constraint in R̂(w). The basic idea is to try to find x̂ that satisfies the part

of KKT conditions of (P ). Consider a part of KKT conditions of (P ) for j ∈ N :

djxj + λ+ µj − γj = 0

µj(xj − uj) = 0, γj(lj − xj) = 0

µj ≥ 0, γj ≥ 0

(3.31)

where λ, µj , and γj are Lagrangian multipliers for constraints of
∑
∀j xj = b, xj ≤ uj , and

lj ≤ xj . Then, x̂ that satisfies 3.31 can be obtained with λw and k ∈ {j ∈ N : xwj > lj}.

In the sense of Theorem 3.1, we allow only one xk to be a value within [lk, uk]. Then, since

KKT conditions (3.31) implies

xj =


lj if djuj + λ > 0

uj if djlj + λ < 0

lj , uj , or − λ/dj otherwise

,

the upper bound solution for k is set to

x̂k =


lk if dkuk + λw > 0

uk if dklk + λw < 0

−λw/dk otherwise

. (3.32)

For other variables for j ∈ N\{k}, KKT conditions (3.31) also implies
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If xj = lj , then µj = 0 and γj = djlj + λ ≥ 0

If xj = uj , then γj = 0 and − µj = djuj + λ ≤ djlj + λ ≤ 0.

Thus, a feasible solution is constructed for j ∈ N\{k} with

x̂j =


lj if djlj + λw ≥ 0, j 6= k

uj otherwise, j 6= k.

Then, the knapsack constraint is considered with xwj for j /∈ N and x̂j for j ∈ N . If the

solution satisfies the knapsack constraint, i.e.

∑
j∈P∪Z

xwj +
∑
j∈N

x̂j = b,

it is a feasible upper bound solution. However, if it is not satisfied, we find a solution xj for

j ∈ P ∪ Z to be feasible to the knapsack constraint by solving the following convex KSQP

fc := Min 1
2

∑
j∈P djx

2
j −

∑
j∈Z cjxj

s.t.
∑

j∈P∪Z xj = b̂

lj ≤ xj ≤ uj for j ∈ P ∪ Z

with a given b̂ = b−
∑

j∈N x̂j using the algorithms in Chapter 2. In the case that fc is not

feasible because b̂ does not satisfy

∑
j∈P∪Z

lj ≤ b̂ ≤
∑

j∈P∪Z
uj ,

some x̂j for some j ∈ N are adjusted from lj to uj or vice versa. A proposed adjustment

procedure is described in step 6 and step 7 in Algorithm 3.5.
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Algorithm 3.5 Upper Bounding algorithm with OBG
Let the objective function value of (P ) be f(x) = 1

2xTDx− cTx

1. Given w, solve R̂(w) by OBG to get xw, λw, LB = f(xw), and k = {j ∈ N : xwj > uj}

2. If {k} = ∅, Stop with UB = f(xw)

3. Get tj = djlj + λw for j ∈ N\{k}, L = {j : tj ≥ 0}, and U = {j : tj < 0}

4. Set xj = lj for j ∈ L, xj = uj for j ∈ U , and xk by (3.32)

5. Get bmin =
∑

j /∈N lj , bmax =
∑

j /∈N uj , and b̂ = b−
∑

j∈N x
w
j

6. Iterate while b̂ < bmin

r = argmax{tj : j ∈ U}, U = U\{r}, xr = lr, b̂← b̂+ ur − lr
If b̂ > bmax, set b̂← b̂− ur + lr, lr ← b̂+ ur − bmax, ur ← b̂+ ur − bmin, and go to step
9

7. Iterate while b̂ > bmax

r = argmin{tj : j ∈ L}, L = L\{r}, xr = ur, b̂← b̂− ur + lr

If b̂ < bmin, set b̂← b̂+ ur − lr, lr ← b̂+ lr − bmax, ur ← b̂+ lr − bmin, and go to step 9

8. Solve fc with b̂ to get xj for j /∈ N ; Stop with xj = x̂j for j ∈ N and UB = f(x)

9. Solve the indefinite problem with b̂ to get xj for j ∈ P ∪ Z ∪ {r}

a) Set x̂r = ur, xj = lj for j ∈ P ∪ Z. Set xj = x̂j for j ∈ N and UB1 = f(x)

b) Solve OBG in λ ∈ [−drlr,−drur] to get xj for j ∈ P ∪ Z ∪ {r}. Set xj = x̂j for
j ∈ N\{r} and UB2 = f(x)

c) Finish with UB = Min{UB1, UB2}

Step 9 in Algorithm 3.5 considers the case when the adjustment procedure for b̂ fails in

step 6 and step 7. In other words, step 6 fails when there does not exist r such that

b̂+ ur − bmax ≤ xj ≤ b̂+ ur − bmin,

and step 7 fails when there does not exist r such that

b̂+ lr − bmax ≤ xr ≤ b̂+ lr − bmin.

For the either one of two cases, step 9 finds a feasible solution considering the cases that

xr = ur in step 9.a and xr ∈ [lr, ur) in step 9.b.
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The restricted dual function R̂(w) is guaranteed to converge to the lower bound LB∗

in (3.30) at the final iteration of the bisection search method; however, the upper bound

solution obtained by Algorithm 3.5 with w∗ has no guarantee of the best upper bound UB∗.

Thus, we compute the upper bound UB at every iteration during R̂(w) is solved, and the

minimum value of upper bound is picked for UB∗.

A random problem GN2(n = 100, δ = 10, |N | = 20, |Z| = 16), which will be described

in Section 3.4.3, is used to illustrate the progression of LB and UB in Figure 3.4. As

iteration goes, LB converges to LB∗, while UB fluctuates in a certain range. As shown

in Figure 3.4, for GN2 with various parameters, LB∗ is weak; however, UB∗ is generally

quite close to the global optimum. UB∗ in the illustrated example the has relative gap

(= (UB∗ − obj(Global))/|obj(Global)|) of 1.17%.
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Figure 3.4.: Behavior of lower and upper bounds by iteration

3.4. Experiments

This section is to test the performance of OBG and OBG-based bounding procedure. A local

and two global solvers are selected to compare with our proposed methods in the respect

of speed and solution quality. All experiments and implementations are done in Matlab

2013a (version 8.1) with two identical computers (Intel core i5, 3.47Ghz, 8GB RAM, Win-

dows 7, 64bit). The codes are generated by all Matlab’s features such as Just-in-Time
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compilation, copy-on-write type editing, and fast full vector computation (see Appendix B.2

for an efficient coding style in Matlab). For the time measurement, the stop watch like

function tic/toc is used rather than cputime that counts the time that CPU are actually

used by Windows operations (see Appendix 4.3.2 for more detail).

Implementation

In the implemented Matlab code, the secant method of Dai and Fletcher (2006, [31]) is used

to find λ∗P in the global Case 4 because their experiments and the experiments in Section

4.4.1 show that the secant method is superior to O(n) time median search method. The

secant method narrows the domain of λ iteratively by secant steps until either the violation

value |g(λ)| > εfea or the domain is greater than 0.001. Then, if there exist cj , j ∈ Z within

the narrowed domain, it sorts the selected cj and does the interval test like steps to find λ∗P .

Otherwise, it keeps iteration with secant steps. Note that the feasibility tolerance is set to

εfea = max{1e− 7, ε(n+ |b|)}

in the same reason described in Section 4.4 with the machine precision ε = 2.2204e− 16.

The Algorithm 3.1 requires to sort breakpoints in step 9. We selected Matlab’s built-in

function sort.m because it implements QuickSort algorithm which is known as the fastest

sorting algorithm in practice as described in Appendix B.1.

Compared solvers

In order to compare the performance of OBG and the bounding procedure, three different

solvers are used.

• VAV92: IKP1 of Vavasis (1992, [132])

A local solver IKP1 (O(n3) complexity) of Vavasis [132] is used, and further reasons

to choose it over other versions of solvers in Vavasis [132] is available in Appendix

A.5.2. Because VAV92 works only when finite values of uj for j ∈ N exist, we give

uj = 1
aj

(
b−

∑
i∈N,i6=j aili

)
, which does not affect to the optimal solution.
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• CHB12: Chen and Burer (2012, [23])

A recent version of global quadratic programming solver of Chen and Burer (2012,

[23]) is compared. The code is obtained in Burer’s website2, and options described in

Appendix A.5.1 are used to avoid time consuming warning messages.

• CPX-G: cplexqp.m of Cplex 12.6

The recently (December 2013) released version of global quadratic programming solver

of IBM Cplex 12.6 is used to compare the solution quality and speed with our pro-

posed methods.

More detailed explanation and options that are used in the experiments are available in

Appendix A.5.

3.4.1. Random test problems

A set of randomly generated problem is used to test the performance of the proposed algo-

rithms with four parameters:

• n: the total number of variables

• δ: the size of problem data

• ζ: the proportion of dj = 0 out of n. i.e. |Z| = bζnc

• ν: the proportion of dj < 0 out of n− |Z|. i.e. |N | = bν(n− |Z|)c

As we did for test problems (I1) and (I2) in Section 3.2.2.1, Matlab’s built-in uniform

random number generator rand.m is used for problem data, and randperm.m is used to

generate Z and N . We name the test problem GN1(n, δ, ζ, ν). The steps to generate GN1

is followed.

2http://dollar.biz.uiowa.edu/~sburer/pmwiki/pmwiki.php%3Fn=Main.QuadprogBB%3Faction=logout.html
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Random problem generator: GN1(n, δ, ζ, ν)

1. Generate random data

dj ∈ [1, δ], cj ∈ [0, δ2], aj ∈ dj + [0, δ], lj ∈ −1− [0, δ2], uj ∈ 1 + [0, δ]

2. Generate a random solution xj ∈ [lj , uj ] to construct b =
∑
∀j ajxj

3. Generate Z in the size of bζnc, and set dj = 0 for j ∈ Z

4. Generate N in the size of bν(n− |Z|)c from {1, ..., n}\Z, and dj = −dj for j ∈ N

5. Set uj = +∞ for j ∈ N

Note that the lower limit lj is set to a considerably small negative value. This generates a

small enough λmin to construct considerably many intervals in λ by breakpoints of dj ≥ 0.

Thus, GN1 is designed to be disadvantageous to OBG solver.

3.4.2. Experiments using OBG

The initial computational experiments of OBG is conducted in the various choices of (n, δ, ζ, ν):

ζ = 0, ν = 0.5, δ = 10 and 100, and 3 size groups of small (n from 50 to 500), medium (n

from 1,000 to 20,000), and large (n from 30,000 to 150,000). The value of ζ = 0 means that

OBG does not do the point test, and the combination of ζ = 0 and ν = 0.5 results in the

worst case problem for OBG as mentioned in Section 3.2.2.1. 10 random problems are tested

for each instance, and the time limit of 30 minutes are give for all solvers.

The test results are summarized with average CPU time and coefficient of variation (cov

in parenthesis). The solution quality of local solver VAV92 is measured by the relative error

metric:

rel. error = [obj(VAV92)-obj(OBG)]/|obj(OBG)|×100%

The results of the experiments are in Table 3.1, 3.2, and 3.3 for each size group. Through

all sizes, OBG finds a global solution significantly faster than all other solvers. In small size

group (Table 3.1), CHB12 is considerably slow or unable to solve within 30 minute time
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limit. So CHB12 is excluded for larger size group experiments. The time growth rate of local

solver VAV92 is very high, and it consumes slightly less time (about 29 minutes) than the 30

minute time limit. Thus, for large size problems, CPX-G is only testable with OBG, but it is

also significantly slower than OBG.

Table 3.1.: Average CPU times for small problems using GN1(n, δ, 0, 0.5)

Solver Data size Solution Problem size, n
name parameter details1 50 80 100 250 500
OBG δ = 10 cpu sec 0.00064 0.00064 0.00051 0.00088 0.00154

(cov)2 (0.303) (0.503) (0.099) (0.142) (0.213)
δ = 100 cpu sec 0.00060 0.00062 0.00064 0.00110 0.00203

(cov) (0.391) (0.209) (0.111) (0.157) (0.155)
CPX-G δ = 10 cpu sec 0.012 0.012 0.012 0.018 0.057

(cov) (0.117) (0.111) (0.067) (0.043) (0.789)
δ = 100 cpu sec 0.012 0.015 0.027 0.040 0.112

(cov) (0.295) (0.375) (0.708) (0.507) (0.468)
CHB12 δ = 10 cpu sec 250.37 714.54 *3 * *

(cov) (0.996) (0.520)
δ = 100 cpu sec * * * * *

(cov)
VAV92 δ = 10 cpu sec 0.007 0.018 0.025 0.112 0.430

(cov) (0.050) (0.505) (0.506) (0.133) (0.043)
rel. error 72.5% 74.6% 41.4% 57.6% 61.3%

δ = 100 cpu sec 0.008 0.014 0.021 0.108 0.4237
(cov) (0.189) (0.017) (0.007) (0.017) (0.007)
rel. error 88.2% 82.2% 91.5% 90.6% 70.0%

1. CPU seconds and relative errors are averaged over 10 random problems
2. Coefficient of variation, cov=std.deviation/avg cpu time
3. 30 minutes cpu time limit or memory exceeded for all problems

Sensitivity of OBG solver

The sensitivity of OBG to the various proportions of ζ and ν at δ = 10 is measured in n

from 10,000 to 100,000. The average cpu times of 10 runs of each instance are in Table 3.4

and 3.5. The relative efficiency of OBG relative CPX-G is measured by the ’speed-up factor’,

defined by the logarithmic measure,

SF = ln
cpu− time(CPX− G)

cpu− time(OBG)
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Table 3.2.: Average CPU times for medium problems using GN1(n, δ, 0, 0.5)

Solver Data size Solution Problem size, n
name parameter details 1,000 5,000 10,000 15,000 20,000
OBG δ = 10 cpu sec 0.003 0.030 0.092 0.167 0.205

(cov) (0.148) (0.195) (0.355) (0.300) (0.338)
δ = 100 cpu sec 0.005 0.058 0.208 0.449 0.639

(cov) (0.082) (0.123) (0.147) (0.206) (0.207)
CPX-G δ = 10 cpu sec 0.143 2.342 7.297 16.535 27.809

(cov) (1.025) (0.152) (0.209) (0.190) (0.200)
δ = 100 cpu sec 0.338 4.157 16.079 30.880 55.793

(cov) (0.365) (0.244) (0.217) (0.132) (0.137)
VAV92 δ = 10 cpu sec 1.858 87.809 556.157 1713.139 *1

(cov) (0.006) (0.009) (0.007) (0.004) *
rel. error 57.8% 40.9% 32.5% 48.8% *

δ = 100 cpu sec 1.862 87.025 558.307 1711.397 *
(cov) (0.018) (0.008) (0.005) (0.005) *
rel. error 92.1% 74.3% 65.8% 76.1% *

1. 30 minutes cpu time limit or memory exceeded for all problems

Table 3.3.: Average CPU times for large problems using GN1(n, δ, 0, 0.5)

Solver Data size Solution Problem size, n
name parameter details 30,000 50,000 70,000 100,000 150,000
OBG δ = 10 cpu sec 0.34 0.68 1.07 1.65 2.46

(cov) (0.471) (0.491) (0.399) (0.653) (0.392)
δ = 100 cpu sec 1.51 3.74 5.90 9.35 20.01

(cov) (0.071) (0.206) (0.309) (0.376) (0.242)
CPX-G δ = 10 cpu sec 64.84 215.47 547.40 1002.24 *1

(cov) (0.081) (0.094) (0.066) (0.024) *
δ = 100 cpu sec 142.19 700.60** 1044.88**2 * *

(cov) (0.127) (0.829)** (0.262)** * *

1. 30 minutes cpu time limit or memory exceeded for all problems
2. 30 minutes cpu time limit or memory exceeded for at least one problem

and it is depicted in Figure 3.5.

As shown in Table 3.4, as the proportion of linear terms in the objective function increases,

both OBG and CPX-G consumes less time; however, the Figure 3.5a shows that the decreasing

rate of CPX-G is higher as size increases. The behavior of OBG and CPX-G in various proportion

of concave terms is presented in Table 3.5 and Figure 3.5b. Although theoretically OBG has

the worst time consuming case when ν = 0.5, ironically it performs best in the experimented

instances. On the other hand, CPX-G tends to consume more time as concave terms incase.
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However, the speed of OBG is superior with high values of SF.

Table 3.4.: Sensitivity on ζ (average CPU times (sec.) for GN1(n, 10, ζ, 0.5))
Solver ν = 50% Problem size, n
name ζ 10,000 30,000 50,000 70,000 100,000
OBG 0 0.09 0.34 0.68 1.07 1.65

0.4 0.05 0.46 0.85 0.94 1.71
0.8 0.02 0.07 0.12 0.24 0.55

CPX-G 0 7.30 64.84 215.47 547.40 1002.24
0.4 4.33 34.27 115.61 269.71 523.46
0.8 2.74 16.66 33.54 80.85 182.71

Table 3.5.: Sensitivity on ν (average CPU times (sec.) for GN1(n, 10, 0, ν))
Solver ζ = 0% Problem size, n
name ν 10,000 30,000 50,000 70,000 100,000
OBG 0.2 0.2 0.5 2.0 3.3 3.8

0.5 0.1 0.3 0.7 1.1 1.7
0.7 0.1 0.4 1.0 1.4 2.5

CPX-G 0.2 4.2 26.8 73.8 169.2 346.2
0.5 7.3 64.8 215.5 547.4 1002.2
0.7 11.2 93.9 298.5 713.4 1738.7
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Sensitivity of OBG solver in million sizes

The sensitivity to ν and ζ (the proportions of negative and zero dj) of OBG is measured

in very large sizes (n from 0.5 to 2 millions). Since CPX-G consumes over one hour for 0.5

millions size, only OBG is considered for this experiment. The sensitivity to the parameters

(δ, ζ, and ν) is measured by comparing average speeds, a and b, at two levels of parameters

with the relative speed,

Relative Speed :=
max{avg − CPU − time(a), avg − CPU − time(b)}
min{avg − CPU − time(a), avg − CPU − time(b)}

,

which is designed to be the value ≥ 1. As the metric is closes to 1, the average CPU times

in two parameter levels a and b are insensitive. Parameter combinations of ζ = 0, 20%,

ν = 0, 50%, and δ = 10, 100 are used to run 10 instances, and the relative speed is in Table

3.6. Average relative speeds for each combination are ranged from 1.14 to 1.80. Thus, OBG

solver may be concluded to be fairly insensitive for proportions of concave or linear terms

of the objective function even in the millions sizes.

Table 3.6.: Relative speed of OBG on (n, δ, ζ, ν)

Compared
Parameters

Data size Problem size, n, in millions
parameters parameter 0.5 0.75 1 1.25 1.5 Average
ζ = 0 vs. 0.2 ν = 0.5 δ = 10 1.15 1.93 1.30 1.08 1.10 1.31

δ = 100 1.43 1.20 1.11 1.15 1.19 1.22
ν = 0.8 δ = 10 1.27 1.00 1.88 1.26 2.19 1.52

δ = 100 1.48 1.37 1.70 1.28 1.38 1.44
ν = 0.5 vs. 0.8 ζ = 0 δ = 10 1.03 1.03 1.34 1.25 1.04 1.14

δ = 100 1.08 1.12 1.47 1.11 1.16 1.19
ζ = 0.8 δ = 10 1.42 2.00 1.83 1.70 2.06 1.80

δ = 100 1.96 1.84 1.29 1.62 1.90 1.72

1. CPX-G is not tested because it spends over 1 hour in the tested sizes.
2. CPU times for each instances are in Appendix A.7.1.
3. As the values close to 1, the corresponding instance is insensitive to the compared parameters.

3.4.3. Experiments on Bounding with OBG

The quality of bounding procedure considered in Section 3.3 is tested with two random

problems: GN2 and subset-sum problem. The results of subset-sum problem is described in
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Section 5.2.2. GN2 is generated following the steps for GN1, but it omits step 5 that changes

uj = +∞. Parameters for GN2 is given by δ = 10, ζ = 0, and ν = 0.5, and 10 instances

are run for each instance in sizes from 500 to 50,000. The quality is measured by relative

error with the global objective value from CPX-G. An upper bounding solver VAV92 is also

considered, and average values of all results are in Table 3.7.

Clearly, VAV92 generates better quality upper bounds than OBG-based UB ; however,

VAV92 is not viable for large sizes (n ≥ 30, 000) within 2 hour time limit, while the OBG-

based upper bounding procedure finds UB in a reasonable time.

Table 3.7.: Quality and speed of upper bounds on closed-box problems with GN2(n, 10, 0, 0.5)

Problem size (n) 500 1,000 2,500 3,500 5,000
UB rel. error1 5.62% 6.07% 5.19% 5.36% 5.05%

cpu sec. 0.184 0.480 2.335 4.545 8.695
VAV92 rel. error2 1.22% 1.21% 1.25% 1.19% 1.19%

cpu sec. 0.646 2.834 23.278 52.499 129.266

Problem size (n) 10,000 20,000 30,000 40,000 50,000
UB rel. error 5.51% 4.84% 5.27% 5.12% 5.09%

cpu sec. 34.1 160.7 338.5 583.5 890.5
VAV92 rel. error 1.24% 1.21% * * *

cpu sec. 815.5 5656.2 *3 * *

1. Relative error is defined by [UB - obj(CPX-G)]/abs[obj(CPX-G)]
2. Relative error is defined by [obj(VAV92) - obj(CPX-G)]/abs[obj(CPX-G)]
3. Two hour cpu time limit or memory exceeded for all problems

3.5. Conclusion

We have presented a quadratic time algorithm OBG that finds a global optimum for a class of

indefinite knapsack separable quadratic programs with open box constraints. The two-stage

decomposition approach leads necessary conditions, and our algorithm enumerate all KKT

points that satisfy the necessary conditions efficiently employing the interval test technique.

Moreover, based on the five global cases, the efficiency of algorithm is enhanced by detecting

the global optimality with the least operations, and the worst case complexity of O(n2) is

confirmed. Computational experiments turn out that OBG is quite insensitivity to the
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proportion of the negative and zero dj , and it is superior in speed comparing to all other

tested solvers.

The bounding algorithm that finds lower and upper bounds based on OBG is also developed

to solve the indefinite knapsack separable quadratic programs with closed box constraints,

which is already known as an NP-hard problem. Although the quality of the proposed

algorithm is not preeminent to other solvers, it generates a quite acceptable feasible upper

bound solution in the reasonable time limit.
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4. Lagrangian-relaxed Closed-Box Solution

4.1. Introduction

In this chapter, another new methodology is developed to solve the indefinite case of (P )

in (2.2) using a different approach to that developed in Chapter 3. In this approach, the

knapsack constraint
∑
∀j xj = b is relaxed in Lagrangian fashion. Toward this, we define

the dual problem (D):

(D) Maxλ∈R R(λ)

where λ ∈ R and R(λ) is given by

R(λ) := Min 1
2xTDx− cTx + λ(

∑
∀j xj − b)

s.t. l ≤ x ≤ u.
(4.1)

This relaxation approach in (4.1) is quite attractive because the problem is completely

separable in all of the problem variables. Thus, an optimal solution xj in R(λ) is easily

obtainable for each xj for a given λ, and consequently, the dual problem (D) can be very

efficiently solved by searching over the univariate λ.

Since the optimum solution (D) guarantees a lower bound of (P ) by the weak duality

theorem, see [10], if the optimum solution of (D) is feasible to (P ), it is also a global

optimum solution. Otherwise, the solution guarantees only a lower bound. In the latter

case, we develop a new method that finds an upper bounding solution, which is feasible

in (P ), based on the lower bound solution. Therefore, this chapter present an algorithm,

named Closed-box solver (CBS), that attempt KSQP solution in two stages:
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Stage-1: Solve (D) to get a lower bound solution x(λ∗)

Stage-2: If x(λ∗) is not feasible to (P ), get a feasible upper bound solution xU∗

Although the upper bound solution xU∗ has no guarantee of being either a local or a global

optimum, the gap between the lower and upper bounds is expected to be tight because the

gap is determined by given coefficients of a single variable. Consequently, our experiments

show that the quality of xU∗ is significantly better than the local solution found by the local

solver in [132].

The algorithm CBS is proposed in section 4.2, and section 4.3 presents the our new hybrid

methods that combine the techniques used for strictly convex KSQP. Through the extensive

experiments in section 4.4, the performance of our hybrid methods are compared with the

existing pure methods to pick the best hybrid method, and it is compared with the local

method [132], global method [23], and commercial solvers, Cplex and Matlab.

4.2. Closed-Box Solver (CBS)

This section derives solution characteristics to generate a lower bound solution, which is a

global optimum solution of R(λ), via geometric intuition. Then, a linear time procedure is

proposed to construct a feasible upper bound solution based on the lower bound solution.

The tightness of lower and upper bounds are discussed, and the cases that CBS finds an

exact global optimum are explained.
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4.2.1. Dual problem

Solution characteristics of dual function R(λ)

The global solution of R(λ) in (4.1) for a given λ is defined by the following characteristics:

xj(λ) =

{
median{lj , uj ,−λ/dj} for j ∈ P
lj if λ > cj

uj otherwise

for j ∈ Z


lj if λ > −dj(lj + uj)/2

uj otherwise

for j ∈ N

(4.2)

To show the above characteristics, define

qj(xj , λ) =
1

2
djx

2
j − cjxj + λxj .

Then,

R(λ) =
∑
∀j
qj(xj(λ), λ).

Because R(λ) is the sum of separate linear or quadratic functions with only box

constraints lj ≤ xj ≤ uj , the solution is quite straitforward for each variable sets.

• For j ∈ P , since qj(xj , λ) is convex, it is minimized at d
dxj

qj(xj , λ) = (djxj + λ) = 0

for a given λ and if xj = −λ/dj is within the box constraint lj ≤ −λ/dj ≤ uj . If

xj = −λ/dj is out of the box constraint, a closer extreme point lj or uj results in the

minimum value of qj(xj , λ). It implies

xj =


lj if λ ≥ −djlj

uj if λ ≤ −djuj

−λ/dj otherwise

⇒ xj(λ) = median{lj , uj ,−λ/dj} (4.3)
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The same result can be derived by KKT conditions as in (2.5) or in [50].

• For j ∈ Z, the the optimum solution of the objective function qj(xj , λ) = (−cj + λ)xj

for a given λ can be determined by the sign of (−cj + λ). Moreover, if λ = cj , the

objective value qj(xj , λ) is zero for any xj , that is

qj(xj , cj) = 0 for xj ∈ [lj , uj ] (4.4)

so we can choose any arbitrary value within [lj , uj ] in that case and set it to uj in our

algorithm. It implies

xj =


lj −cj + λ > 0

uj −cj + λ < 0

[lj , uj ] −cj + λ = 0

(4.5)

⇒ xj(λ) =


lj if λ > cj

uj otherwise

(4.6)

• For j ∈ N , the maximum value of qj(xj , λ) is at xj = −λ/dj for a given λ, and the

minimum value can be obtained at lj (or uj), if xj = −λ/dj is farther from lj (or

uj) than uj (or lj). Moreover, if xj = −λ/dj is the middle point of [lj , uj ], that is

xj = (lj + uj)/2 yielding λ = −dj(lj + uj)/2, then qj(xj , λ) is minimized at either

xj = lj or uj having the same value of −djljuj/2, that is,

qj(lj , tj) = qj(uj , tj) = −djljuj/2 for tj = −dj(lj + uj)/2 (4.7)
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So we set it to an arbitrary value uj as we do for j ∈ Z. It implies

xj =


lj if −λdj >

lj+uj
2

uj if −λdj <
lj+uj

2

lj or uj if −λdj =
lj+uj

2

⇒ xj(λ) =


lj if λ > −dj(lj + uj)/2

uj otherwise.

(4.8)

See Appendix A.4 for another derivation for (4.8).

Note that x(λ) satisfies all KKT conditions in (2.4) of (P ) except for the knapsack constraint∑
∀j xj = b.

Definition 4.1. Breakpoint

We define that breakpoints are the values on λ which make xj(λ) be non-differentiable.

xj(λ) for j ∈ P generates two beak points

−djuj , and − djlj

and each variable for others sets generate one breakpoint

tj =


cj for j ∈ Z

−dj(lj + uj)/2 for j ∈ N
(4.9)

Note that the value of tj is same for original KSQP and transformed (P ) because transfor-

mation (2.3) is linear and separate.

Theorem 4.2. xj(λ) is a non-increasing piecewise linear function on λ and discontinuous

at tj.
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x j (λ)

λ

x j =
−λ
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l j
−djl j

(a) xj(λ) for j ∈ P

ju

x j (λ)

λ
l j

t j

(b) xj(λ) for j ∈ Z ∪N

Figure 4.1.: xj(λ) is a non-increasing piecewise linear function on λ

Proof. For the case of j ∈ P , as shown in Figure 4.1a, it is easy to see that xj(λ) is a constant

value of uj for λ less than lower breakpoint −djuj and is continued as a decreasing linear

function with the slope of −1/dj until the value is reached to lj at the upper breakpoint

−djlj . The line is also continued with a constant value of lj for λ greater than the upper

breakpoint. For other cases of j ∈ Z ∪ N , we can also easily see that xj(λ) is uj for λ

less than or equal to breakpoint tj and is lj otherwise. The Figure 4.1b shows it with a

discontinuous point at a breakpoints tj .

Theorem 4.3. R(λ) is a continuous piecewise concave function and non-differentiable at

breakpoints tj for j ∈ Z ∪N

Proof. The theorem can be proved by each feature.

Continuity and Concavity (page 215, Bazaraa et al. [10])

Let f(x) = 1
2xTDx− cTx, g(x) = aTx− b, and B = {x : l ≤ x ≤ u}. Since λ ∈ R and B

is a nonempty compact set in Rn, R(λ) is continuous and finite everywhere on λ ∈ R. Let
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α ∈ (0, 1). By the definition of concave function, we have

R(αλ1 + (1− α)λ2) = Min{f(x) + [αλ1 + (1− α)λ2]g(x) : x ∈ B}

= Min{α[f(x) + λ1g(x)] + (1− α)[f(x) + λ2g(x)] : x ∈ B}

≥ αMin{f(x) + λ1g(x) : x ∈ B}+ (1− α)Min{f(x) + λ2g(x) : x ∈ B}

= αR(λ1) + (1− α)R(λ2)

Thus, R(λ) is a continuous concave function.

Piecewise function and non-differentiability

We define Rj(λ) = 1
2djx

2
j (λ) − cjxj(λ) + λxj(λ) be a separate part of R(λ) for each j.

That is, R(λ) =
∑
∀j Rj(λ). Then, we can see that Rj(λ) is a linear or quadratic function

on λ in (4.10), (4.11), and (4.12), and examples are illustrated in Figure 4.2a, 4.2b, and 4.2c.

• For j ∈ P , we can show that Rj(λ) is a continuous piecewise concave function substitut-

ing xj(λ) in (4.3) into Rj(λ) as (4.10). Rj(λ) is a quadratic concave function if λ is between

breakpoints (λ ∈ [−djuj , −djlj ]) and two linear lines are continued with the slope at each

breakpoint. So Rj(λ) is continuous and differentiable everywhere.

Rj(λ) =
1

2
djx

2
j (λ) + λxj =


djl

2
j/2 + λlj if λ ≥ −djlj ⇒ Linear function

dju
2
j/2 + λuj if λ ≤ −djuj ⇒ Linear function

−λ2/(2dj) otherwise⇒ Quadratic function

(4.10)

• For j ∈ Z, the objective function Rj(λ) = (−cj + λ)xj(λ) consists of two linear lines

with the slope of uj and lj as in (4.11). Thus, it is a continuous piecewise linear concave

function and is non-differentiable at a break point tj . Note that the objective value at the

breakpoint is Rj(tj) = 0 for any xj as (4.4).

Rj(λ) = (−cj + λ)xj =


−cjlj + λlj if λ > cj ⇒ Linear function

−cjuj + λuj otherwise⇒ Linear function

(4.11)
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• For j ∈ N , Rj(λ) is like the case of j ∈ Z as in (4.12), but Rj(tj) has the same value of

−djljuj/2 for either xj = lj or uj as noticed in (4.7).

Rj(λ) =
1

2
dx2

j+λxj =


djl

2
j/2 + λlj if λ > −dj(lj + uj)/2⇒ Linear function

dju
2
j/2 + λuj otherwise⇒ Linear function

(4.12)

Since R(λ) is the sum of Rj(λ) that are piecewise concave and non-differentiable at break-

points tj , R(λ) also has the same properties (see an example in Figure 4.2d). Therefore, the

theorem holds.

−djuj
λ

−djl j

Rj (λ)

(a) Rj(λ) for j ∈ P

λ

slope = u slope = l

0
t j

Rj (λ)

(b) Rj(λ) for j ∈ Z

λ
−djl j

slope = u slope = l

t j

=
�

Rj (λ)
−djl juj
2

−djuj

=
�

(c) Rj(λ) for j ∈ N

R(λ)

λt j

(d) R(λ)

Figure 4.2.: R(λ) =
∑
∀j Rj(λ) is a continuous piecewise concave function
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Duality Gap

If we let f∗ be the global optimum solution of (P ), by the weak duality theorem (see [10]),

it always holds that R(λ∗) ≤ f∗ for λ ∈ R. If R(λ∗) < f∗, the difference f(x∗) − R(λ∗) is

called duality gap. In 4.6 and 4.8, we set xj(tj) to be uj for j ∈ Z ∪N ; however, the KKT

conditions of (P ) in (2.4) implies that at λ = tj , xj can be a value as xj ∈ [lj , uj ] for j ∈ Z

and xj ∈ {lj , uj ,−λ/dj} for j ∈ N . It is drawn as in Figure 4.3. Then, one can easily see

the difference between the Figure 4.3 and Figure 4.1b for xj(λ) j ∈ Z ∪N . Therefore, even

in the case that λ∗ of (D) is the global optimum value in KKT conditions of (P ), the duality

gap can occur due to the way we set xj(tj) = uj for j ∈ Z ∪N .

ju

x j

λ
l j

t j = cj

x j  can be any 
value in [l j,uj ]

(a) xj for j ∈ Z

−djuj

ju

x j

λ

x j =
−λ
dj

l j
−djl j

x j  is one of three points

t j

=
�

=
�

(b) xj for j ∈ N

Figure 4.3.: xj for j ∈ Z and j ∈ N

Domain of Lagrange multiplier λ

The domain of λ is unrestricted in (D) , but from x(λ) we can observe that breakpoints can

be used to restrict the range of λ. Here we show that the observation can be proved by KKT

conditions (2.4). The dual domain varies dependent on the bounds in the box constraints

(l ≤ x ≤ u). If all bounds for xj are finite, we can get the minimum domain of λ simply

from break points. However, if xj are one sided bounded for some j ∈ Z, that is, lj ≤ xj ,

we can further narrower the domain using KKT conditions.
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Lemma 4.4. If lj and uj are finite values for j ∈ Z, then λ∗ ∈ [λmin, λmax] where

λmin = min{−diui, tj : i ∈ P, j ∈ Z ∪N}

λmax = max{−dili, tj : i ∈ P, j ∈ Z ∪N}

are minimum and maximum break points.

Proof. If (P ) is bounded, b must be bounded as

∑
∀j
lj ≤ b ≤

∑
∀j
uj ,

and each side of bounds can be obtained by x(λ) at λmin and λmax + ε, ε > 0 because

xj(λmin) = uj and xj(λmax + ε) = lj ∀j

Notice that ε can be ignored and we can argue λ∗ is in the range [λmin, λmax] because a

part objective value Rj(λ) has the same value at either xj = lj or uj for tj = λmax. In other

words,

Rj(λmax) = Rj(λmax + ε)

having values of

Rj(λmax) = 0 for xj ∈ [lj , uj ], tj = λmax, j ∈ Z

Rj(λmax) = −dlljuj/2 for xj ∈ {lj , uj}, tj = λmax, j ∈ N
(4.13)

as derived in (4.6) and (4.8).

Lemma 4.5. If lj and uj are infinite values for some j ∈ Z, then λ∗ ∈ [λmin, λmax] where

λmin = max{λ̂min, tj : j ∈ Zu}

λmax = min{λ̂max, tj : j ∈ Zl}
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and
λ̂min = min{−diui, tj : i ∈ P, j ∈ (Z ∪N)\(Zu ∪ Zl)}

λ̂max = max{−dili, tj : i ∈ P, j ∈ (Z ∪N)\(Zu ∪ Zl)}
(4.14)

for Zl = {j ∈ Z : lj = −∞}, and Zu = {j ∈ Z : uj =∞}.

Proof. λ̂min and λ̂max are proved in Lemma 4.4. Consider other parts with KKT conditions.

If lj = −∞ for some j ∈ Z by the stationarity KKT conditions (2.4),

−cj + λ+ µj = 0

−cj + λ = −µj ≤ 0

λ ≤ cj = tj

Thus, λ∗ ≤ λmax ≤ tj for j ∈ Zl.

If uj =∞ for some j ∈ Z by the stationarity KKT conditions (2.4)

−cj + λ− γj = 0

−cj + λ = γj ≥ 0

λ ≥ cj = tj

Thus, λ∗ ≥ λmin ≥ tj for j ∈ Zu, and Lemma is complete.

A similar result of Lemma 4.5 is presented in Lotito (2006, proposition 3 of [74]) with one

sided bound 0 ≤ xj for positive semidefinite case (N = ∅), but the proof does not rely on

KKT conditions. Note that the one bounded cases for j ∈ N was considered in the previous

Section 3.2.

If (P ) has the inequality knapsack constraint
∑
∀j xj ≤ b, then it is trivial that λ∗ ≥ 0

from KKT conditions (2.4). This case has been considered in the literature such as Stefanov

[127] and Bretthauer et al. [18]. Practically, in the inequality case, we can first test whether
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the knapsack constraint is satisfied at λ = 0 by

∑
∀j
xj(0) ≤ b.

If the inequality is satisfied, x(0) is a global optimum of (P ). If it is not satisfied, simply

we can search for a λ∗ > 0 within [λmin, λmax] as defined in Lemma 4.4 and 4.5.

Theorem 4.6. R(λ) is maximized at a λ ∈ [λmin, λmax]

Proof. Since R(λ) is a concave function as proved by Theorem 4.3 and x(λ) covers all feasible

solutions of R(λ) with λ ∈ [λmin, λmax] by Lemma 4.4 and 4.5, the theorem holds. Hence,

(D) has an optimum solution at the λ∗ ∈ [λmin, λmax].

4.2.2. Solving the dual problem

Theorem 4.3 and Theorem 4.6 imply that R(λ) is concave having the maximum point in the

range of λ ∈ [λmin, λmax]. That means λ∗ is a value that satisfies

d

dλ
R(λ∗ − ε) ≥ 0 ≥ d

dλ
R(λ∗ + ε)

for a given ε ≥ 0 such that λ∗ − ε 6= tj , and λ∗ + ε 6= tj for j ∈ Z ∪N .

Right and Left derivatives of R(λ)

R(λ) can be non-differentiable at λ∗ if and only if λ∗ = tj for some j ∈ Z ∪ N as proved

in Theorem 4.3. Figure 4.2 illustrates an example. So we may search for λ∗ such that the

right and left derivatives of R(λ) have opposite signs or at least one is zero.

For ε ≥ 0, consider the following two derivatives:

Right derivative : g(λ) = lim
ε→0

[R(λ)−R(λ− ε)]/ε

=
∑
∀j
xj(λ)− b
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Left derivative : gl(λ) = lim
ε→0

[R(λ)−R(λ+ ε)]/ε

=
∑
∀j
x̂j(λ)− b

= g(λ) +
∑

j∈K(λ)

(lj − uj)

where

K(λ) = {k ∈ Z ∪N : tk = λ},

and x̂(λ) is define by

x̂j(λ) =


lj for j ∈ K(λ)

xj(λ) for j /∈ K(λ).

(4.15)

Since xj(λ) is a non-increasing piecewise linear function and discontinuous at tj , the

function g(λ), which consists of a constant b and the sum of xj(λ), has the same properties.

An example of g(λ) is illustrated in Figure 4.4a, and an example of right and left derivatives

is illustrated in Figure 4.4b.

g(λ)

λtit j

Slope can be zero

(a) g(λ) is a non-increasing piecewise linear func-
tion and discontinuous at tj

R(λ)

λt j

g(t j )gl (t j )

(b) Right derivative g(λ) and left derivative gl(λ)
of R(λ)

Figure 4.4.: g(λ) is the right derivative (slope) of R(λ)
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Upper bound solution xU∗

Note that both g(λ) and gl(λ) represent the violation of knapsack constraint. If one of

derivatives (violations) is zero at λ∗, then the corresponding solution x(λ∗) or x̂(λ∗) is a

global optimum solution because it is feasible in (P ) and guarantees the lower bound of

(P ) by weak duality theorem. Otherwise, x(λ∗) and x̂(λ∗) are infeasible in the knapsack

constraint and guarantees only a lower bound. Note that the lower bound R(λ) has the

same value in either choice of x(λ∗) and x̂(λ∗) due to the properties in (4.13).

However, a feasible solution xU∗ can be found in the solution set XU :

Upper bound solution set : XU =

x : xj =


∈ [lj , uj ] for j ∈ K∗

xj(λ
∗) for j /∈ K∗

 (4.16)

where

K∗ = K(λ∗). (4.17)

We name xU∗ upper bound solution because it guarantees an upper bound of (P ) as a feasible

solution. Similarly, we also call x(λ∗) lower bound solution. Hence, the following inequalities

hold

R(λ∗) ≤ f(x∗) ≤ f(xU∗),

where f(x) is the objective function of (P ). Moreover, if K∗ = ∅, since x(λ∗) is a global

optimum solution, we set xU∗ = x(λ∗), and no duality gap exists as

R(λ∗) = f(x∗) = f(xU∗).

The existence of xU∗ is proved through the following Theorem 4.7.

Theorem 4.7. If K∗ 6= ∅, there exists an upper bound solution xU∗ ∈ XU that is feasible

to (P ).
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Proof. If K∗ 6= ∅, then

g(λ∗)− gl(λ∗) =
∑
j∈K

(uj − lj)

g(λ∗) = gl(λ
∗) +

∑
k∈K∗

(uk − lk) since gl(λ
∗) ≤ 0

≤
∑
j∈K∗

(uj − lj)

Moreover, because lj < uj , it holds that

∑
j∈K∗

(uj − lj) > 0

See Figure 4.5b for graphical intuition. Thus, g(λ∗) ≤
∑

k∈K∗ (uk − lk), and it implies

that xU∗ can be found by adjusting xj in the range within [lj , uj ] for j ∈ K∗ and holding

xU∗j = xj(λ
∗) for j /∈ K∗. Hence, a feasible upper bound solution xU∗ ∈ XU exists.

g(λ)

λ
λmin λmax

0

λ*

(a) g(λ) in a strictly convex case of (P )

g(λ)

λ

0

t j = λ
*

g(λ*)
∑

t j=λ
* uj − l j( )

(b) g(λ) in an non-strictly convex case of (P )

Figure 4.5.: g(λ)

Figure 4.5a is an example of g(λ) for the strictly convex case of (P ). It shows that x(λ∗)

is always a global optimum for a feasible b since g(λ∗) is continuous for λ ∈ [λmin, λmax] .

On the other hand, a nonconvex case of (P ) is drawn in Figure 4.5b with a discontinuous

piecewise linear lines presenting Theorem 4.7.
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Tightness of the upper and lower bounds; bound gap

There can exist difference between lower and upper bounds that are obtained through x(λ∗)

and xU∗. We name the gap bound gap:

Bound Gap = f(xU∗)−R(λ∗).

The maximum bound gap is totally dependent on the given coefficients of a single variable

for j ∈ K∗. Define the separate objective function fj(xj) = 1
2djx

2
j − cjxj . If only the box

constraints are considered, the maximum value of fj(xj) is

fj =


−cjlj if cj > 0

−cjuj if cj < 0

for j ∈ Z ∩K∗

{
1
2dj x̄

2
j

for j ∈ N ∩K∗

where x̄j = median{lj , 0, uj}.

Since at most one x∗j for j ∈ N is strictly within (lj , uj) as will be proved in Theorem 4.8

in Section 4.2.3.3, if we find xU∗ following the theorem, the maximum limit of bound gap is

Bound Gap ≤Max {fj − qj(uj , λ∗) : j ∈ K∗} , (4.18)

and it also gives the limit of duality gap by

Duality gap ≤ Bound Gap

Note that we substitute uj in qj(xj , λ) for (4.18) because qj(lj , λ∗) = qj(uj , λ
∗) for j ∈ K∗,

i.e.

qj(xj , λ
∗) =


−djljuj/2 for j ∈ N ∩K∗ and xj = {lj , uj}

0 for j ∈ Z ∩K∗ and xj ∈ [lj , uj ],

(4.19)

as shown in (4.4) and (4.7).
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Finding an upper bound solution xU∗; weakness of CBS

As we will discuss about the global solution in the next Section 4.2.3, we can find a xU∗

as a global optimum solution if K∗ is empty or includes at least one index in Z with some

conditions in (4.24). However, if all indices in K∗ are in N (i.e. K∗ ⊆ N), finding the best

xU∗ is a strictly concave problem of (P2)

(P2) Min
1

2

∑
j∈K∗

djx
2
j

s.t.
∑
j∈K∗

xj = b−
∑
j /∈K∗

x(λ∗)

lj ≤ xj ≤ uj for j ∈ K∗

This strictly concave case is known to be NP-hard and has been considered by Moré and

Vavasis (1991, [83]), but their algorithm gives only a local optimum in O(n log n) time.

This is the only weakness of CBS because even though we are able to find a global optimum

of (P2) taking exponential time with some methods such as branch and bound or dynamic

programming, the feasible solution xU∗ does not guarantee the global optimum to (P ).

An extreme case is the subset-sum problem, which will be discussed in application Chapter

5.2.2, because all tj for j ∈ N are same as zero and the size of K∗ = N is n− 1. However,

the case that K∗ includes multiple index may be practically rare because having the exactly

same tj = −dj(lj + uj)/2 requires a special structure of (P ) like the subset-sum problem.

Furthermore, if there is only one index in K∗ ⊆ N , there is a unique xU∗, which can be

found without computation by

xU∗j =


g(λ∗) j ∈ K∗

xj(λ
∗) j /∈ K∗

(4.20)

4.2.3. Global solution

In this section, we show all cases that CBS can find a global optimum solution. To prove the

global optimality, we present necessary conditions and sufficient conditions for optimality of
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(P ).

4.2.3.1. Necessary conditions

It is well known that KKT conditions are necessary conditions (see page 162 of [10]) to

verify that a feasible solution is a local optimum solution. In addition to KKT conditions,

Theorem 4.8 and 4.9 give more conditions for local optimality.

Theorem 4.8. If x is a local optimum solution of (P ), then xj for j ∈ N is at its extreme

point lj or uj except for at most one x∗j ∈ (lj , uj).

Proof. This is proved by theorem 2.2 and 2.3 of Moré and Vavasis [83] and by Lemma 4 of
Vavasis [132], so we show a brief idea based on Lemma 4 of Vavasis [132].

By contradiction, suppose x is a local optimum solution and its two values are non-extreme

value as xj ∈ (lj , uj) for j = 1, 2 and j ∈ N . Then, we can generate two feasible solutions

x1 = (x1 + ε, x2 − ε, x3, ...xn)

x2 = (x1 − ε, x2 + ε, x3, ...xn)

for ε > 0. The average of two objective values f(x1) and f(x2) is strictly smaller than f(x).

That is,

f(x) + (d1 + d2)ε < f(x)

since (d1 + d2) < 0. This contradicts to a hypothesis that x is a local optimum with two

non-extreme values for j ∈ N .

Theorem 4.9. A solution x is a local optimum solution of (P ) if and only if it satisfies

(4.21) or (4.22).

If xj for j ∈ N is at its extreme point lj or uj

−dili ≤ λ∗ ≤ −djuj for i ∈ L, j ∈ U

−dili < −djuj for i ∈ L, j ∈ U
(4.21)

If xj for j ∈ N is at its extreme point lj or uj except for one xm ∈ (lj , uu) for m ∈ N
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−dili < λ∗ < −djuj for i ∈ L, j ∈ U

λ∗ = −xmdm
(4.22)

for L = {i ∈ N : xi = li} and U = {j ∈ N : xj = uj}

Proof. This is suggested and proved in Lemma 5 and 6 of Vavasis [132]. It is basically

strengthened KKT conditions to get sufficiency of local optimum based on −djlj and −djuj ,

which are the negative value of derivative of fj(xj) = 1
2djx

2
j at its bounds. We omit the

proof because this is well proved in [132], and above all, this cannot be used to determine

global optimality in CBS. This theorem is in Section 2.4.1 to explain [83, 132].

4.2.3.2. Sufficient conditions

We have seen that xU∗ is a global optimum if K∗ = ∅. In addition to that, a sufficient

condition that ensures the global optimality of xU∗ is presented in Theorem 4.10 introducing

a restricted solution xR ∈ XU .

Theorem 4.10. A solution xR ∈ XU is a global optimum solution, if it is feasible in (P )

and restricted as

xRj =


xj(λ

∗) for j /∈ K∗

lj or uj for j ∈ K∗ ∩N

[lj , uj ] for j ∈ K∗ ∩ Z

(4.23)

Proof. It is possible that a feasible solution xR exists in XU due to Theorem 4.7. For xR,

qj(x
R
j , λ

∗) = qj(xj(λ
∗), λ∗)

because qj(xRj , λ
∗) stays at the same value for any xRj as shown in (4.19). Moreover, by the

weak duality theorem, it is guaranteed that

f(x∗) ≥ R(λ∗) =
∑
∀j
qj(xj(λ

∗), λ∗).
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Therefore, if xR is feasible in (P ), it is a global optimum solution since

f(x∗) = R(λ∗) = f(xR).

4.2.3.3. Global optimum cases

This section presents four cases that xU∗ can be a global optimum solution. Case 1 is for

the convex case of (P ) and other three cases are for indefinite cases of (P ).

Case 1. N = ∅

This is the convex case of (P ). So there exists a global optimum solution xU∗ by strong

duality theorem. Consider two cases by the emptiness of Z.

• Case 1.1 If N = ∅ and Z = ∅, a global optimum solution is xU∗ = x(λ∗).

• Case 1.2 If N = ∅ and K∗ ∩ Z 6= ∅, any xU∗ that satisfies the knapsack constraint

(
∑
∀j xj = b), that is

xU∗ = {x ∈ XU :
∑
∀j
xj = b},

is a global optimum solution. We can easily find a xU∗ in O(n) time distributing the

value of g(λ∗) to xj for j ∈ K∗ ∩Z by any preferable ways. An easy way is suggested

in Algorithm 4.1.

Case 2. K∗ = ∅ and Z ∪N 6= ∅

This is the case that g(λ) is continuous at its root as Figure 4.5a so R(λ) is differentiable

at λ∗ and knapsack constraint (
∑
∀j xj = b) is satisfied with x(λ∗). Therefore, a global

optimum solution is xU∗ = x(λ∗).
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Algorithm 4.1 O(n); Find a global optimum solution xU∗ for the case of K∗ ⊆ Z

1. Find KZ = K∗ ∩ Z

2. Set xU∗ = x(λ∗), gu = g(λ∗), s =
∑

j∈KZ uj , and i = 1

3. Iterate to distribute gu to xj ∈ [lj , uj ] for j ∈ KZ

a) Set j = KZ
i , x

U∗
j = max(lj , uj − gu), and gu = gu − uj + xU∗j

b) If gu = 0, finish algorithm with xU∗

Else i = i+ 1

Case 3 K∗ ∩ Z 6= ∅, K∗ ∩N 6= ∅, and (P3) is feasible

(P3) bl ≤
∑

j∈KN

xj ≤ bu

xj = {lj , ui} for j ∈ KN

(4.24)

where b̂ = b−
∑

j /∈K∗ xj(λ
∗) and

KZ = K∗ ∩ Z, bl = b̂−
∑

j∈KZ uj

KN = K∗ ∩N, bu = b̂−
∑

j∈KZ lj

(4.25)

(P3) is quite similar to a strictly concave problem (P2) without the objective function, and

the existence of KZ looses the knapsack constraint to be bounded. The feasibility of (P3)

gives a chance to find a restricted solution xR in (4.23). If xR is found, we are able to find a

global solution distributing the value of b̂−
∑

j∈KN xj to xj for j ∈ KZ via Algorithm 4.1.

Otherwise, we find a feasible solution of (P3) allowing a single xj for j ∈ KN to be a value

within [lj , uj ] in the mind of Theorem 4.8 and then distribute the remaining value to xj for

j ∈ KZ by Algorithm 4.1. All these steps are presented in Algorithm 4.2, and it has O(n)

time complexity if step 4 is not used.

The problem (P3) can be exactly solved in pseudo polynomial time by dynamic program-

ming or branch and bound techniques if it is feasible, but a candidate solution can be simply

found by our O(n) time version Algorithm 4.3. Even in the case that Algorithm 4.3 fails

to find xR, its feasible solution roles a good starting solution for dynamic programming or
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Algorithm 4.2 Try to find the best xU∗ in case of K∗ ∩ Z 6= ∅ and K∗ ∩N 6= ∅,

1. Find KZ = K∗ ∩ Z and KN = K∗ ∩N

2. Set xU∗ = x(λ∗) and get bl and bu in (4.25)

3. Solve (P3) to get x using Algorithm 4.3

4. If x /∈ xR, solve (P3) to get x using dynamic programming or branch and bound
techniques based on x from step 3

5. Finish with a solution

a) Set xU∗ = x, i = 1, gu = g(λ∗)−
∑

j∈KN xU∗j , and s =
∑

j∈KZ uj

b) Use step 3 of Algorithm 4.1 to find xU∗j for j ∈ KZ

Note that if x ∈ xR, xU∗ is global optimum, otherwise xU∗ is just a feasible upper
bound solution

branch and bound techniques in step 4 of Algorithm 4.2.

Algorithm 4.3 is a modified version of Algorithm 2.11 for bounded knapsack constraint,

and Algorithm 2.11 is an improved version of O(n log n) time Algorithm 2.10 of [83] (see

Section 2.4.1). It solves (P3) with objective function of

Min
1

2

∑
j∈KN

djx
2
j

finding a local optimum solution. All solutions are at its extreme point except for possibly

one xk as in step 4.a, and it is obtained in a similar sense of xj(λ) for j ∈ N in (4.8).

As we stated earlier in Section 4.2.2, the probability that K∗ includes multiple index of N

may be low in practice because a special structure of (P ) is required to have exactly same

multiple tj for j ∈ Z ∪N . Thus, we may have a little chance to face the global case 3 unless

(P ) has a specific structure.

Case 4 K∗ ⊆ N

We have discussed this case in Section 4.2.2 mentioning that this is the weakness of CBS

since it may not be able to find a global optimum solution in this case. However, we still
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Algorithm 4.3 O(n); A modified version of Algorithm 2.11 for (P3)

Define a median function: [L, k, U ] = argmed{sj : j ∈ I}
where k is the index such that sk is the dn/2eth sj for j ∈ I, and si ≤ sk ≤ sj for i ∈ L and
for j ∈ U

1. Set s = {−djlj ∀j} and U = {1, 2, ..., n}

2. Find [L, k, U ] = argmed{sj : j ∈ U}

3. Get g =
∑

j∈L lj +
∑

j∈U uj

4. Iterate until stopping criterion is satisfied

If bu − g < lk (k∗ is in L), set xU = uU , kold = k, [L, k, U ] = argmed{sj : j ∈ L},
g = g −

∑
j∈{k}∪U lj +

∑
j∈{kold}∪U uj

Elseif bl − g > uk (k∗ is in U), set xL = lL, kold = k, [L, k, U ] = argmed{sj : j ∈ U},
g = g +

∑
j∈{kold}∪L lj −

∑
j∈{k}∪L uj

Else

a) If bl − g ≤ lk, then xk = lk

Elseif bu − g ≥ uk, then xk = uk

Else xk =

{
bu − g if |bu − g| > |bl − g|
bl − g otherwise

b) Finish algorithm with

xj =

{
lj for j ∈ L
uj for j ∈ U

have chances to find a global solution if g(λ∗) or gl(λ∗) is zero or if we can find a restricted

solution xR in (4.23) solving (P2) due to Theorem 4.10. Our O(n) time Algorithm 2.11

finds a local optimum for the strictly concave problem (P2), but it may tend not to be in

xR so the solution may not satisfy the necessary condition in Theorem 4.10. Thus, we may

have to use a nonlinear time algorithm such as dynamic programming or branch and bound

techniques to try to find a solution in xR. This is presented in step 1-2 of Algorithm 4.4.

Even if we fail to find a xR, we still have a chance to find a possibly local optimum of

(P ). A way to attempt to find a local optimum is presented in step 4-5 of Algorithm 4.4.

The idea is based on the fact that we know λ∗. If one xm for m ∈ K∗ ⊆ N should be in

(lj , uj) to satisfy the knapsack constraint by a local optimum condition Theorem 4.8, the
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Algorithm 4.4 Try to find the best xU∗ in the case of K∗ ⊆ N

1. Try to solve (P2) to get x using Algorithm 2.11

2. If x /∈ xR, try to solve (P2) to get x using dynamic programming or branch and bound
techniques based on x from step 1

3. If x ∈ xR, then finish algorithm with xU∗ = x → Global optimum

4. Set sold =∞ and s =∞

5. Iterate for m = 1 to |K∗|

a) Hold xm = −λ∗/dm
b) Solve (P2.2)

(P2.2) Min
∑

j∈K∗\{m}
(lj − xj)(uj − xj)

s.t
∑

j∈K∗\{m}
xj = b−

∑
j /∈K∗

xj(λ
∗)− xm

xj = {lj , ui} for j ∈ K∗\{m}

c) If a solution of (P2.2) is found and satisfies local optimum condition (4.22), get
a partial local optimum objective value s =

∑
j∈K∗ djx

2
j

d) If s < sold, update xU∗j = xj for j ∈ K∗ → Finish with xU∗, a possibly local or
global optimum solution

6. If s =∞ (no local optimum found), finish with the best solution x in step 1 or step 2
→ xU∗ is a feasible upper bound solution

value should be xm = −λ∗/dm, and other xj for j ∈ K∗\{m} can be found solving (P2.2),

which is a subset-sum problem and can be exactly solvable by well developed 0-1 knapsack

problem algorithms such as COMBO of [79]. Thus, the best local optimum solution may be

found during step 4-5. However, we do not know if the local optimum is a global optimum,

and even it is proved that determining whether a solution is global optimum is NP-hard by

Sahni [115].

Finally, if we fail to find a local optimum, we may finish the algorithm with just a feasible

upper bound solution that is obtained in step 1 and step 2. However, again as we stated in

Section 4.2.2 and the global case 3, it is likely that K∗ does not consist of multiple index

of N in general because it happens only when (P ) has a special structure like a subset-sum

problem. Hence, if only one index j ∈ K∗ ⊆ N exists, we can find a xU∗ easily by (4.20).
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4.2.4. Lower index rule to develop O(n) time CBS method

As discussed, in the global case 1 and 2, the global optimum solution can be obtained by

CBS in O(n) time if median search method in Section (2.2.2) used for strictly convex case is

applied. However, in the global case 3 and 4, executing Algorithm 4.2 and 4.4 is practically

not efficient since the algorithms require to solve NP-hard problems. On the other hand, if

the maximum bound gap in (4.18) is expected to be acceptable, finding a feasible xU∗ by

adjusting the value xj for j ∈ K∗ and allowing at most one xj ∈ (lj , uj) for j ∈ K∗ ∩N is

practically efficient, and the solution guarantees the acceptable solution quality.

In this respect, we can develop CBS method that has the O(n) time complexity with the

lower index rule. The lower index rule simply switches xj = uj to lj from the lower index in

K∗ until the switched value satisfies the knapsack constraint. The last switched value may

be adjusted in the range of [lj , uj ] to satisfy the knapsack constraint. The similar idea is

presented in step 3 of Algorithm 4.1. Moreover, in the global case 3, O(n) time complexity

for CBS can be also achieved if Algorithm 4.2 that omits step 4 is used for the case.

4.3. Methodology and Implementation

We have shown that the dual problem (D) can be globally solved with the lower bound

solution x(λ∗), even though the primal problem (P ) is NP-hard when D is nonconvex.

Moreover, we also showed that x(λ∗), which guarantees the lower bound, can be used to

derive a feasible solution xU∗ with the proof of its existence by Theorem 4.7.

Then, one question naturally arises:

“How to find λ∗?”

We revealed two important characteristics related to λ. First, it exists within [λmin, λmax].

Second, λ∗ exist at the point where g(λ) passes its root where g(λ∗) = 0. Fortunately, if (P )

is in the strictly convex case, g(λ) is a continuous non-increasing function having a single

root as Figure 4.5a. So we are able to search for λ∗ applying any root finding methods or

one dimensional line search methods. In contrast, if (P ) is in the non-strictly convex case,
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g(λ) is not continuous at breakpoint tj as Figure 4.5b. However, we are still able to consider

it as a root finding problem. According to Press and Teukolsky [108], it is clear by

“If the function is discontinuous, but bounded, then instead of a root there

might be a step discontinuity that crosses zero. For numerical purposes, that

might as well be a root, since the behavior is indistinguishable from the case

of a continuous function whose zero crossing occurs in between two “adjacent”

floating-point numbers in a machine’s finite-precision representation”

in page 445, Numerical Recipe, third edition (2007)

Therefore, we can also apply any root finding techniques that is reliable to the discontinuous

lines for non-strictly convex case of (P ).

4.3.1. Methods

From the Section 2.2.4, the experiment results of previous studies show that pegging method

seems to outperform over other methods for strictly convex case; however, as mentioned in

geometric interpretation of Section 2.2.3, it is not applicable because the objective function

no longer has a unique center to project onto the knapsack constraint if (P ) is not strictly

convex problem. Thus, among the methods considered in Section 2.2.2, only five root finding

methods (bisection, sorting, median search, secant, and Newton) and interval test method

are applicable for non-strictly convex case of (P ). In the following sections, we propose ideal

combinations of those methods that bring efficiency and reliability.

Reliability for non-continuous g(λ)

As we have considered the global case 3 and case 4 in Section 4.2.3.3, g(λ) may not be

continuous at λ∗ with nonempty K∗, and the possibility of the cases naturally increases as

the proportion of N and Z increase because those variables generate more discontinuous

points on g(λ) at breakpoints tj .

Thus, if λ∗ is one of tj where g(λ) is discontinuous, secant method that update λ connect-

ing two last g(λl) and g(λu) may have difficulty to reduce the gap between [λl, λu] around
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λ∗. The similar case can also happen for strictly convex case as the secant method devel-

oper Dai and Fletcher [30] observed that secant method took a long iteration when a linear

piece of g(λ) crossing its root is very short. Newton method also has the same unreliability

problem because it has to use secant method as a safeguard when λ∗ = tj .

Moreover, if (P ) is not in strictly convex case, an additional termination criterion λu−λl <

εgap is required for bisection, secant, Newton methods because the termination condition

|g(λ)| < εfea that the methods use cannot be satisfied if λ∗ is one of tj . However, as we

similarly considered in the bisection Algorithm 2.1, those methods may find worse lower and

upper bounds or even fail because multiple distinct breakpoints tj can exist within the last

[λl, λu] whose range is less than εgap, and it is possible that one of the breakpoints is λ∗,

while those methods terminate iterations with just a λ between the last [λl, λu] ignoring the

possible fact of λ∗ = tj for some j.

Therefore, if we consider reliability, we have to use methods that do not use the termination

criterion of λu − λl < εgap and handle breakpoints at its termination criteria. The methods

that satisfies two conditions for reliability are sorting, median search, and Interval test

methods.

Convergence accelerator; fixing algorithm

Inspired by pegging method, we can accelerate the convergence reducing the problem size

every iteration with fixing Algorithm 4.5. It is essentially same as (2.14), which is used for

pegging method and made for j ∈ P , but it can be also used for j ∈ N and Z because xj(λ)

is non-increasing function. Fixing algorithm has been implemented in multiple literature for

strictly convex case. For example, Robinson et al. [111] and Cominetti et al. [25] used fixing

algorithm for their Newton method, and Kiwiel [64] used it for his median search method.

All of them report that fixing algorithm 4.5 speeded up the performance.

Although Cominetti et al. [25] noticed that fixing algorithm 4.5 saves computations, they

did not use it for secant methods with their argument that g(λ) “needs to be recomputed at

the end point of the bracketing interval that was computed in previous iteration”; however,
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Algorithm 4.5 O(n); Fixing algorithm

1. If g(λ) > 0, fix x∗j = lj for j ∈ {j : xj(λ) = lj}

2. If g(λ) < 0, fix x∗j = uj for j ∈ {j : xj(λ) = uj}

we do not agree with it since we can simply and have to store updated values of g(λ) at the

each bound of bracket to get secant point.

4.3.1.1. Suggested hybrid methods

Although secant and Newton methods are not reliable, through the survey of experiment

results for the strictly convex case, we can observe that the methods practically converge

more rapidly with less iteration than the reliable median search method (see Table 2.5).

Furthermore, interval test method is reliable and spends much smaller operations in iteration

part as shown in Table 2.4, but it requires a small enough bracket [λl, λu] because its

performance is mainly affected by the time to sort breakpoints within the bracket.

Bracketing phase Termination phase
Unreliable but Fast
convergent method → [λl, λu]→

with εbra
Reliable method → x(λ∗)→ xU∗

1○ (Secant + Fixing)
2○ (Newton + Fixing)

1○ (Interval test + Fixing)
2○ (Median search + Fixing)

1. Denote “+” between methods be the hybrid of the methods.
2. Denote “Fixing” for fixing Algorithm 4.5
3. Pegging method is excluded because it is not applicable for non-strictly convex (P ).
4. Bisection method is excluded because it is unreliable and has slow convergence.
5. Sorting method is excluded because it is slower than medians search method having the same iterations.

Figure 4.6.: Suggested hybrid methods for Closed-box solver (CBS)

Then, we can think of hybrid methods that initially converges quickly and guarantees the

reliability at the last iterations as Figure 4.6. The hybrid methods consist of two phases of

(a) bracketing phase and (b) termination phase, and fixing Algorithm 4.5 is equipped for all

phases with the denotation of “Fixing”. Thus, bracketing phase quickly gives a close enough

bound of [λl, λu] whose range is less than a given εbra with fast convergent method such as

secant or Newton method and termination phase uses it to find λ∗ exactly by reliable and
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efficient method such as interval test or median search method. A reliable sorting method

is excluded because it is theoretically and practically requires more operations than median

search method having the same iteration of median search method. Bisection is also excluded

because it is neither reliable nor efficient.

Table 4.1.: Hybrid methods for strictly convex case of (P )

Fast convergent methods Reliable methods Fixing

[25] Newton + Fixing

[111] Newton + Fixing

[137]1 Newton + Secant

[137]1 Secant + Bisection

[64, 63, 32, 101] Median search + Fixing

[31] Secant + Median search

1. Wu et al. [137] used two methods sequently. e.g.) Newton for 1st iteration, Secant for 2nd
iteration, Newton for 3rd iteration, and so on.

2. Ventura [133] also implemented bisection + pegging.

Various hybrid methods for strictly convex case of (P ) has been implemented and suggested

through a couple of papers as listed in the Table 4.1. Ironically, no one used the combinations

of our suggested methods except for Dai and Fletcher [31], but they only left suggestion

without implementation. Therefore, we propose new four combinations of hybrid methods

in Figure 4.6 and the best combination will be determined through experiments in Section

4.3.2.

Complexity to get λ∗: O(n)

The complexity of our hybrid methods is determined by the choice of the methods for hybrid

methods and εbra. If εbra is too small or g(λ) has a shape that is favor to secant or Newton

method, in the worst case, the complexity is O(n2) if Newton method is used, and it is not

measurable if secant method is chosen.

On the other hand, if εbra is too large so the bracket [λl, λu] includes all breakpoints, then,
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the worst case complexity is O(n log n) if interval test method is selected and is O(n) if

median search method is utilized.

Therefore, we can keep the hybrid methods in O(n) time complexity if we set εbra = ∞

and use median search method for termination phase. However, our experiments show that

median search method is practically worse than secant method based hybrid methods.

4.3.2. Implementation

The following 7 pure algorithms and 5 hybrids methods are implemented in Matlab.

• 7 pure methods: Pegging, Bisection, Sorting, Newton, Secant, Median search, Interval

test methods

• 5 hybrid methods: Sec+Med, Sec+Sor, Sec+Int, New+Med, and New+Int

For convenient, we name the hybrid methods with the first three letters of methods with “+”

meaning hybrid of two methods. Interval test method can uses [λmin, λmax] for its initial

bracket, but we used bracketing phase Algorithm 2.5 of [31], which is used for secant method.

Although a hybrid method Sec+Sor is not suggested in our hybrid method in Figure 4.6, we

also tested it to compare with Sec+Med because we have experienced in preliminary test

that one time sorting tends to be faster than multiple time median search in practice for

not too large size of array.

In the implemented code, the fixing Algorithm 4.5 is not included because it actually

deteriorates the performance of codes due to Matlab’s features such as Just-in-Time com-

pilation, copy-on-write type editing, and fast full vector computation. Appendix B.2 explains

the reasons with efficient coding style in Matlab.

The performance of median search, sorting, and interval test methods is significantly

affected by the choice of sorting algorithm and median search algorithm because median

search and sorting steps are the main time consuming parts in the methods. Thus, for

the sorting algorithm, we used Matlab’s built-in function sort.m, which implemented

QuickSort algorithm of Hoare [51] because it is known to be the fastest sorting algorithm

in practice. For the median search algorithm, a O(n) time Select algorithm of Floyd
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and Rivest [43] is used by compiling the C++ standard template library nth_element into

Matlab, instead of Matlab’s built-in function median.m because the built-in function does

not implemented O(n) time algorithm. A detailed explanation about sorting and median

search algorithms are available in Appendix B.1.

The 7 pure methods can be classified into two types:

• Root finding type: bisection, secant, and Newton methods

• Breakpoint search: sorting, median search, and interval test methods

Two types can be easily applied for non-strictly convex case of (P ) to find lower and upper

bound solutions and can be combined for hybrid methods.

Recall the tolerances in (2.7)

εgap > λu − λl

εfea > |g(λ)|

εbra > λu − λl

εpeg = εfea

that are used for feasibility test and iteration termination condition.

Algorithms for root finding type

As shown in Algorithm 2.1, 2.6, and 2.8, root finding type methods such as bisection,

secant, and Newton methods use only εfea for termination criterion. However, an additional

termination condition λu − λl < εgap is required in the non-strictly convex case of (P )

because |g(λ∗)| is not always converged within εfea. So the termination criterion εgap is

used first and then it is switched to εfea if no breakpoints tj for j ∈ N ∪ Z exist between

[λl, λu] as in step 2.a in Algorithm 4.6. If there exists tj with nonempty set K in step 2.a,

we set λ∗ to be one of the tj assuming all tj for j ∈ K are identical and search for an upper

bounds solution considering the global case 3 and case 4 in step 4.
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Algorithm 4.6 Root finding type algorithm for indefinite case of (P )

1. Get necessary initial values such as breakpoints and initial λ

2. Iterate with a root finding method (bisection, secant, Newton methods)

a) If λu − λl < εgap, find K = {j : λl ≤ tj ≤ λu}

i. If K = ∅, do more iteration until |g(λ)| < εfea is satisfied in step 2.c

ii. Else (if K 6= ∅), go to step 3

b) Update λ and g(λ)

c) If |g(λ)| < εfea, go to step 5

3. Set λ∗ = tj for a j in K assuming all tj for j ∈ K are identical

4. Finish considering the global case 3 and 4

5. Finish with global optimum by the global case 2

Algorithms for breakpoint search type

In contrast to root finding type methods, breakpoint search type methods are reliable be-

cause it dose not assume that all tj within [λl, λu] are identical as in step 3 of Algorithm 4.6.

Instead, breakpoint search type methods such as sorting, median search, and interval test

methods directly use breakpoints to test its feasibility with only the termination condition

of εfea and find the exact λ∗ by interpolation when it finds a global optimum.

Algorithms for sorting and median search methods are described in Algorithm 4.7. The

difference from the algorithms for the strictly convex case in Algorithm 2.2 for sorting method

and 2.3 for median search method is at step 3-4. The binary search type methods terminate

with g(λl) > 0 and g(λu) < 0, and it naturally guides the algorithm to test if λ∗ = λl at

step 4 with an index set K, which is K∗ in (4.17) if λ∗ = λl.

Interval test method for non-strictly convex case is similar to the strictly convex case

Algorithm 2.9 but has more cases to be considered as in Algorithm 4.8. The main difference

is in the way to update H and G in (2.20). Since variables in Z ∪ N are not related with

G, only H is updated when the testing breakpoint is from Z ∪N as in step 3.b.ii and step

3.d.ii. The global case 3 and case 4 are also detected during step 3.b.i and step 3.d.i.
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Algorithm 4.7 Breakpoint search type algorithm for indefinite case of (P )

1. Get necessary initial values such as breakpoints and initial λ

2. Iterate until all break points are excluded by binary search (sorting, median search
methods)

3. Find K = {j : λl = tj}

4. If K 6= ∅, get g = gu +
∑

j∈K(lj − uj)

a) If g < −εfea,

i. Set λ∗ = λl

ii. Finish algorithm considering the global case 3 and 4

b) Else set gu = g

5. Global case 2

Interpolate to get λ∗ = λl + gu(λu − λl)/(gu − gl) and finish with x∗ = x(λ∗)

Algorithms for hybrid methods

In our suggested hybrid methods in Figure 4.6, two types are combined taking advantages

of initially fast convergence performance of root finding type methods and reliability of

breakpoint search type methods. Thus, we can create hybrid methods pairing one of root

finding type Algorithm 4.6 and one of breakpoint search type Algorithm 4.7 or interval test

Algorithm 4.8. Since root finding type algorithms tend to converge slowly around λ∗ as

more variables in Z ∪N exist, we need to replace εgap with a not too small value of εbra (we

used 0.1 for experiments).

4.4. Experiments

Because we implemented 12 methods (7 pure algorithms and 5 hybrids methods), we first

took extensive experiment to pick the best one before comparing with other methods such
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Algorithm 4.8 Interval test algorithm for indefinite case of (P )

Given that [λl, λu] (λu − λl < εbra), λ (= λl or λu), x(λ), and g = g(λ), and breakpoints
T = {−djuj ,−djlj , tj} from bracketing phase in Figure 4.6

1. Get I = {i : li < x(λ) < ui}, H =
∑

j /∈I xj(λ)− b, and G =
∑

j∈I(1/dj)

2. Get R = {j : λl ≤ Tj ≤ λu} and T = sort(Tj : j ∈ R) in ascending order where T is
sorted Tj for j ∈ R

3. If g ≥ 0, i = 1, and iterate while i ≤ |T |

a) If G 6= 0, set λ̂ = H/G

i. If λ̂ ≤ Ti, then go to step 5

b) If Ti = −djuj for j ∈ P , update H = H − uj and G = G+ 1/dj

Elseif Ti = −djlj for j ∈ P , update x∗j = lj , H = H + lj and G = G− 1/dj

Else (if Ti = tj for j ∈ N ∪ Z), find K = {j : Ti = tj for j ∈ N ∪ Z}
and get g =

∑
j∈K(lj − uj) and gu = H − Ti ·G+ g

i. If gu < εfea, set λ̂ = Ti

A. If K ∩ Z 6= ∅, go to step 7

B. Else go to step 6

ii. Set i = i+ |K|, H = H + g and x∗j = lj for j ∈ K

Else (g < 0), i = |T |, and iterate while i ≥ 1

c) If G 6= 0, set λ̂ = H/G

i. If λ̂ ≥ Ti, then go to step 5

d) If Ti = −djuj for j ∈ P , update x∗j = uj , H = H + uj and G = G− 1/dj

Elseif Ti = −djlj for j ∈ P , update H = H − lj and G = G+ 1/dj

Else (if Ti = tj for j ∈ N ∪ Z), find K = {j : Ti = tj for j ∈ N ∪ Z}
and get g =

∑
j∈K(uj − lj) and gl = H − Ti ·G+ g

i. If gl > −εfea, set λ̂ = Ti

A. If K ∩ Z 6= ∅, go to step 7

B. Else go to step 6

ii. Set i = i− |K|, H = H + g and x∗j = uj for j ∈ K

4. (at leftmost or rightmost interval) set λ∗ = H/G and go to step 5

5. Global case 2 → finish with λ∗ = λ̂ and x∗ = x(λ∗)

6. Global case 4 → finish with λ∗ = λ̂ and try to find global optimum by Algorithm 4.2

7. Global case 3 → finish with λ∗ = λ̂ and try to find global optimum by Algorithm 4.4
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as Cplex. So experiments were done in the order of

Test 12 methods→ Pick the best one→ Compare with others

To find the best method, we need good test problems. So we employed six small and

three large coefficient problems, which have been used in literature, and the problems are

randomly generated by the Matlab’s built-in uniform random number generator rand.m.

Once the best method is selected, the similar settings of random problems are tested to

compare it with a global [23], a local [132], and two commercial (Cplex and Matlab)

solvers.

All experiments are conducted in two identical computers (Intel core i5, 3.47Ghz, 8GB

RAM, Windows 7, 64bit) in Matlab 2013a (version 8.1), and Matlab’s built-in time

measurement function tic/toc is used. See Appendix 4.3.2 for the choice of time measure-

ment function in Matlab for Windows operations system.

Tolerances

As usual optimization solvers, we used the following tolerance values.

εgap > λu − λl = max{1e− 7, ε(|λl|+ |λu|)/2}

εfea > |g(λ)| = max{1e− 7, ε(n+ |b|)}

εbra > λu − λl = 0.1

εpeg = εfea = εfea

where ε is the machine precision and λl and λu are initial values that each solver obtains.

For example, bisection method sets λl = λmin and λu = λmax, and secant method get the

initial λl and λu from bracketing phase Algorithm 2.5.

The machine precision ε = 2.2204e − 16 is used by Matlab 2013a in test computers

(Windows 7, 64bit) for our experiments. εgap is used for bisection, secant, and Newton

methods, and we obtain it by ε(|λl| + |λu|)/2 as recommended in (page 448, Numerical

Recipe [108]) restricting it to be at least 1e− 7 to prevent unnecessary iterations from too
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small steps.

The second tolerance εfea that used for all methods are obtained in the similar manner,

and the third tolerance εpeg is set to be the same value because it has the same role. We

chose εbra = 0.1 for not too small values that gives tight enough brackets for our hybrid

methods based on our preliminary tests.

In addition to the tolerances, we use two more termination conditions for unreliable meth-

ods that may never satisfy |g(λ∗)| < εfea with an empty K∗ in the global optimum cases due

to the numerical error for the large size problem such as n = 5e6. So the second tolerance

gap εgap2 = 1e− 10 is applied for secant and Newton methods to terminate iteration when

λu − λl < εgap2 = 1e− 10

is satisfied because Newton method uses secant method as safeguard and secant method

always reduces the gap to be at least 1/4 of the previous gap as in secant phase Algorithm

2.6. Furthermore, because we exactly know the maximum iteration of bisection method,

we restrict the iteration to be less than its maximum iteration plus a constant 5. So it

guarantees to terminates iteration when the total iteration is

Iteration >

⌈
log0.5

(
εgap

λmax − λmin

)⌉
+ 5 (4.26)

Test problems

Test problems are important to measure the performance of methods because experiments

can be biased if a specific problems are tested. Thus, we use two groups of random problems

that have small coefficients and large coefficients.

The small coefficient group was used by recent papers of Kiwiel (2007-2008, [63, 64, 65])

and Cominetti et al. (2012, [25]). The problems were initially used by Bretthauer et al.

(1995, [18]) to test their algorithms to solve (P ) with integer variables. He used three kinds

of problems that have different degrees of correlations in coefficients and it was inspired by

the observation of [80] that a budgeting problem which has strongly correlated coefficients is
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generally difficult to solve. Bretthauer et al. [18] also concluded that the strongly correlated

problem is considerably difficult to solve (P ) with integer variables, while Kiwiel [64] could

not find significant difference in his experiment for (P ) with continuous variables.

1. Small coefficients test problems are

(T1) Uncorrelated: dj , cj , aj ∈ [10, 25]

(T2) Weakly correlated: aj ∈ [10, 25], cj , dj ∈ [aj − 5, aj + 5]

(T3) Strongly correlated: aj ∈ [10, 25], cj , dj = aj + 5

All lower and upper bounds are set to l, u ∈ [1, 15] for all three problems.

The large coefficient group is first tested by Dai and Fletcher (2006, [31]), and Cominetti et

al. (2012, [25]) used a similar coefficients. We used the three same random problems of [31]

that mimic the sub-problems that arise in the real problems of multicommodity and SVM

problems.

2. Large coefficients test problems are

(T4) Random: aj ∈ [−500, 500], lj ∈ [−1000, 0], uj ∈ [0, 1000], dj ∈ [1, 104],

cj ∈ [−1000, 1000]

(T5) Multicommodity: a = 1, l = 0, u ∈ [0, 1000], dj ∈ [1, 104], c ∈ [−1000, 1000]

(T6) SVM subproblem: a = {−1, 1}, l = 0, u = 1000, dj = 1, c ∈ [−1000, 1000]

All test problems are generated with the Matlab’s built-in uniform random number gen-

erator rand.m, and for indefinite problems, we randomly choose a certain percentage of dj

with Matlab’s built-in unique integer random number generator randperm.m and change

its sign. Because xj(λ) for j ∈ N performs like that for j ∈ Z, we do not tested the case of

dj = 0; thus, all our test problems with (T1) − (T6) do not have variables of dj = 0, that

is, Z = ∅.
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Parameters; initial λ and ∆λ

The initial λ plays an important role for the performance of secant method because it can

take less iteration as closer as the initial λ is to λ∗ in bracketing phase Algorithm 2.5 of

secant method, and the same reason is also applied to hybrid methods that utilize secant

method.

We may get an expected value of λ∗ based on the expected shape of g(λ). Because g(λ)

is the non-increasing function, the easiest expected shape may be the linear line assuming

the slopes of linear pieces of g(λ) are not so different. Then, an expected λ̄ can be obtained

by

λ̄ = λmin + (λmax − λmin)
b− bmin

bmax − bmin

based on b with bmin =
∑

lj>−∞ lj and bmax =
∑

uj<∞ uj . However, the similar slope

assumption is so naive, and it does not guarantee the quality of λ̄.

Alternatively more sophisticated method is developed based on the observation that g(λ)

has a folded sigmoid shape (folded s shape). There are a couple of popular sigmoid func-

tions such as cumulative distribution functions of statistics distributions, and we tried the

algebraically simple folded logistic regression function

b =
1

1 + eλ
∈ (0, 1) (4.27)

adjusting the sigmoid shape in the ranges of [λmin, λmax] and (bmin, bmax). Then, the ex-

pected λ̄ is

λ̄ =

(
λmax − λmin

M

)
ln

(
bmax − bmin
b− bmin

− 1

)
+
λmax + λmin

2

with a large enough M such that

M ≥ −2ln

(
π

1− π

)
where π =

δ

bmax − bmin

Because the sigmoid function (4.27) never reaches 0 or 1, it cannot be exactly adjusted to

pass the points of bmax at λmin and bmin at λmax. So δ is used to control gap between bmax
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Figure 4.7.: g(λ) and folded sigmoid function

and the point of sigmoid line at λmin, and the same gap is applied for the point at λmax.

Thus, we can control the shape of the sigmoid line with δ ∈ (0, bmax−bmin), and the detailed

derivation is available in Appendix A.6.

Examples of g(λ) and the folded sigmoid functions are drawn in Figure 4.7 for each test

problem with a given value of δ = (bmax− bmin)/100. The line of g(λ) is non-increasing and
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has some sudden drops in indefinite problems as expected, but it is significantly different from

folded sigmoid lines for some problems such as (T4). The shape of g(λ) is actually follows

the cumulative distribution of breakpoints. Figure 4.8a and 4.8b show the histogram of

breakpoints for size n = 1e6 in the strictly convex case and 50% negative dj case respectively.

Observe the distribution of (T6) in Figure 4.8. As it has the most closely bell shaped

distribution, the corresponding g(λ) in Figure 4.7 also follows most closely to the folded

sigmoid function, which has a similar shape of cumulative normal distribution. We can also

observe the similar relations from other problem’s distributions and the corresponding lines

of g(λ). Therefore, if the distribution of breakpoints is known, an initial λ that is highly

closed to λ∗ can be obtained from its folded cumulative distribution function.

However, this idea was not applied for our implementation because the amount of com-

putations to obtain λmin, λmax, bmin, and bmax is equivalent to about two iterations and,

above all, finding the distribution of breakpoints is not economic.

Thus, we used the initial λ = 0 for secant method as Dai and Fletcher [31] did. They

noted that it is just an arbitrary value, but it is actually numerically the best value in our

transformed problem since the zero initial λ saves computations to get −λ/dj for the initial

solution as

xj(0) = median{lj , uj , 0} j ∈ P

Moreover, secant method needs an additional parameter ∆λ as an initial step size. For the

value, we used the same value of ∆λ = 2 as a secant method developer [31] used.

Newton method requires an initial λ, but the zero initial λ does not give any benefit for

convergence. Thus, as the recent study of [25], we implemented the λ in (2.12), which pegging

method uses, for the initial λ of Newton and its hybrid methods. Therefore, proposed hybrid

methods that uses secant and Newton methods also use the same initial values.
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Figure 4.8.: Histograms of breakpoints
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Right hand side b

Dai and Fletcher [31] tested their problems varying the right hand side b by

b = bmin + β(bmax − bmin) (4.28)

with a parameter β = 0.1, 0.3, and 0.5 and its minimum and maximum possible values bmin

and bmax. That is, b is defined at a certain point of its range rather than a random number

as other literatures do, and their experiment results show that the performance of secant

method is significantly affected by β.

We guess it is due to the initial λ. Because λ∗ is solely determined by b when other

coefficients are fixed, the performance of secant method, which use the initial λ = 0, may

have to take more iteration if λ∗ is far from its initial λ. See the range of breakpoints in Table

4.2. Because breakpoint ranges of three small coefficient and multicommodity problems are

highly biased to negative side, if secant method uses the initial λ = 0, its performance may

be highly affected by the value of b.

Table 4.2.: Range of breakpoints for test problems

Problems Range of
Breakpoints

Max. gap of
breakpoints

Small coefficient
(T1) Uncorrelated [−36.5, 1.5] 38
(T2) Weakly correlated [−44.5, 2.5] 47

(T3) Strongly correlated [−43.5, 1.5] 45

Large coefficient
(T4) Random [−∞,∞] Undetermined
(T5) Multicommodity [−100001000, 1000] 100002000

(T6) SVM [−2000, 2000] 4000

The suggested hybrid methods that use secant method for its bracketing phase also has

a similar negative effect. Therefore, we test random problem setting the right hand side as

(4.28) with β = 0.2, 0.4, 0.6, and 0.8.
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Range of breakpoints

Another reason why we test small and large coefficient problems is to compare the perfor-

mance on the different breakpoint ranges. As in Table 4.2, large coefficient problems have

much larger range of breakpoints than small coefficient problems. Because bisection method

reduces the range by half every iteration, it is quite obvious that its iteration is greater for

large coefficient problems.

Moreover, we may expect that the performance of the proposed hybrid methods and

interval test method would be better if breakpoints are distributed in a larger range because

the larger the range, the higher the chance that a smaller number of breakpoints remained

after bracketing phase with εbra = 0.1 is used. Thus, we expect the the proposed hybrid

methods perform better for large coefficient problems.

Global instances

We test random problems varying the percentage of negative dj to 0%, 30%, 60%, and 90%

with Z = ∅. Thus, we naturally have only the global case 1.1, 2, and 4.

For 0% case, since (P ) is strictly convex problem, all methods always guarantee a global

optimum by the global 1.1, and the solution of the global case 2 (K∗ = ∅) can also be

obtained easily by xU∗ = x(λ∗).

For indefinite cases of K∗ ⊆ N in the global case 4, we implement “ lower index rule” in

codes instead of Algorithm 4.4. Because our random test problems do not have a special

structure like subset-sum problem, all breakpoints are distinct so the probability that K∗

has multiple index is very low and was zero in the 9000 test problems as Table 4.3. Thus,

our codes actually found upper bound solution changing only xU∗k = g(λ∗) for k ∈ K∗ from

xk(λ
∗) = u as (4.20) in the global case 4.
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Table 4.3.: Instances by size of K∗ and % of negative dj
|N |/n 30% 60% 90% Total

Global 2069(69.0%) 1023(34.1%) 38(1.3%) 3130 (34.8%)

|K∗| = 1 931(31.0%) 1977(65.9%) 2962(98.7%) 5870 (65.2%)

1. Percentage in parenthesis is the proportion of instances in % of negative dj .
2. Note that sum of proportions of global cases and |K∗| = 1 cases are all 100% for each % of negative dj .

Chance to find global optimum

Table 4.3 also reveals that the chance to find global optimum naturally increases as the

number of negative dj decreases as it can be naturally expected because the non-global

cases occur only when λ∗ is one of breakpoints of variables in j ∈ N .

4.4.1. Selecting the best method

This section shows experiment results of 7 pure methods and 5 hybrid methods. The exper-

iments are conducted in various environments:

• 4 percentages of negative dj : 0%, 30%, 60%, and 90%

• 5 sizes of n: 1e6, 2e6, 3e6, 4e6, and 5e6

• 6 problems: (T1), (T2), (T3), (T4), (T5), and (T6)

• 4 locations of right hand side b by β = 0.2, 0.4, 0.6, and 0.8

• 25 random problems for each instance

Thus, total 12, 000 (= 4 × 5 × 6 × 4 × 25) random problems are tested. In addition to the

experiment results, we also consider the reliability issue for bisection, secant, and Newton

methods, and the best method is picked regarding overall performance through experiment

results.

Performances in strictly convex case

The average speed of 12 methods for strictly convex case of (P ) are presented in Figure

4.9 by size. Although some methods have theoretically non linear complexity, all methods
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have almost linear time growth by size having negligible curvature, and only Newton and

its hybrid methods have a peak at n = 4e6 for the large size coefficient problems in Figure

4.9b.

Clearly secant method is the fastest method for all sizes and all test problems (see Figure

4.9 and 4.10). Ironically, Table 4.4 shows that secant and its hybrid methods are on top

rankings having about 2 times faster speed than Newton and its hybrid methods, but their

iteration is about 2 times more. It is because Newton method takes much more operations

to update λ computing the slope in (2.18) than secant method. This is also observed by

Cominetti et al. [25] that Newton method tends not to reflect its fewer iteration to speed.
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Figure 4.9.: Average speed by size for strictly convex case
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Table 4.4.: Average seconds and average iteration by size for strictly convex case
Small coefficient problem Large coefficient problem

Size 1e6 2e6 3e6 4e6 5e6 Iter. Size 1e6 2e6 3e6 4e6 5e6 Iter.

Secant 0.11 0.21 0.32 0.42 0.52 11.6 Secant 0.16 0.32 0.47 0.63 0.78 13.2

Sec+Int 0.18 0.36 0.54 0.71 0.88 9.3 Sec+Med 0.20 0.39 0.58 0.78 0.98 13.1

Sec+Med 0.19 0.38 0.57 0.75 0.95 19.1 Sec+Sor 0.20 0.39 0.58 0.78 0.98 13.1

Sec+Sor 0.19 0.38 0.57 0.75 0.95 19.1 Sec+Int 0.21 0.43 0.64 0.85 1.07 11.9

Bisection 0.22 0.42 0.63 0.83 1.02 28.2 Interval 0.23 0.46 0.69 0.92 1.15 7.2

Newton 0.20 0.41 0.64 0.86 1.05 5.6 Median 0.30 0.59 0.89 1.20 1.52 22.6

New+Med 0.23 0.47 0.72 0.97 1.20 5.4 New+Med 0.31 0.63 0.94 1.45 1.56 7.7

Median 0.26 0.52 0.78 1.04 1.33 22.6 Newton 0.32 0.66 0.91 1.52 1.52 8.8

New+Int 0.25 0.52 0.80 1.08 1.34 5.3 Bisection 0.34 0.66 0.99 1.32 1.65 45.5

Pegging 0.34 0.68 1.03 1.37 1.72 8.1 New+Int 0.34 0.68 1.02 1.54 1.68 7.4

Sorting 0.34 0.70 1.07 1.43 1.84 22.6 Pegging 0.36 0.73 1.09 1.47 1.83 7.2

Interval 0.50 1.01 1.52 2.03 2.56 4.0 Sorting 0.39 0.78 1.19 1.61 2.04 22.6

* Lists are sorted in total time for each size of coefficient.
* Iteration for interval test method is only for bracketing phase Algorithm 2.5 of [31]

* Range of speed and iterations are in Appendix Table A.3 and Table A.4.

Sorting and median search methods have the same iterations as designed but speed is

discrepant due to the difference in sorting and median procedure. However, the speeds of

Sec+Med and Sec+Sor are quite similar because operations for one time sorting for a small

size array is competitive to that of multiple times of median search procedure.

For small coefficient problems, bisection method is on the middle ranking having faster

speed than Newton and its hybrid methods, while it performs worse for large coefficient

problems. It is because the ranges of dual domain for small coefficient problems are much

smaller than large coefficient problems as shown in Table 4.2 so bisection method takes

about 1.6 (= 45.5/28.2) times more iterations for large coefficient problems to reduce the

larger range of dual domain by half. Thus, the performance of bisection method is directly

affected by the size of feasible domain of dual variable.

Contrast to the experiment results of literature, the performance of pegging method is

quite bad. It is because it takes more computations in each iteration as in Table 2.4 and

Matlab’s fast vector computation feature. As in Table 4.4, pegging method take about

half average iteration than top 5 fast methods for small coefficient problems and smallest
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iteration than all other methods for large coefficient problems. This behavior is consistent

to results of literature; however, results of speed are conflicted. We believe it is because

Matlab has specially fast performance in full vector computations that other methods

enjoy without fixing Algorithm 4.5, while pegging method consumes time to peg (memory

releasing in our code) variables every iterations.

T1 T2 T3 T4 T5 T6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Problem

A
vg

. S
ec

on
ds

 

 

Secant
Sec+Med
Sec+Sor
Sec+Int
Bisection
Newton
Median
New+Med
New+Int
Pegging
Interval
Sorting

Figure 4.10.: Average speed by problem

Table 4.5.: Average seconds by problem
Test problems T1 T2 T3 Test problems T4 T5 T6

Secant 0.32 0.31 0.32 Secant 0.53 0.37 0.51

Sec+Int 0.50 0.54 0.55 Sec+Med 0.66 0.46 0.64

Sec+Med 0.57 0.58 0.55 Sec+Sor 0.66 0.46 0.64

Sec+Sor 0.58 0.58 0.55 Sec+Int 0.71 0.47 0.73

Bisection 0.64 0.61 0.62 Interval 0.71 0.57 0.80

Newton 0.65 0.62 0.63 Median 0.97 0.76 0.96

New+Med 0.74 0.70 0.70 New+Med 0.90 0.74 1.30

Median 0.79 0.79 0.78 Newton 0.85 0.70 1.41

New+Int 0.82 0.78 0.78 Bisection 1.20 0.89 0.89

Pegging 1.06 1.01 1.01 New+Int 0.96 0.79 1.40

Sorting 1.08 1.07 1.08 Pegging 1.17 0.86 1.26

Interval 1.29 1.60 1.69 Sorting 1.28 1.07 1.24

* Lists are sorted in total time for each size of coefficient.

* Ranges of speed are in Appendix Table A.3 and Table A.4.

Table 4.4 and 4.5 show that interval test method is the slowest method for small coefficient

problems in general, while for for large coefficient problems, its ranking is high and just
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below the secant and its hybrid methods. It is because the number of breakpoints sorted

after bracketing phase is 7.2 times less for large coefficient problems as Table in 4.6.

Table 4.6 also supports the expectation in Section 4.4 that hybrid methods have less

number of breakpoints after bracketing phase for large coefficient problems, but it does not

significantly affect to rankings for secant method based hybrid methods although average

breakpoints are 1677.5 times less for large coefficient problems since they are on top rankings

for both problem groups regardless of the number of breakpoints. Newton method based

hybrid methods also cannot take the benefit because there are only few breakpoints remained

after bracketing phase by Newton method for all problems.

Table 4.6.: Average number of breakpoints after bracketing phase by problem

Test problems T1 T2 T3 T4 T5 T6
(T1+T2+T3)/

(T4+T5+T6)

Interval 2889967.4 3542640.8 3831648.7 328940.5 329518.8 767143.9 7.2

Secant based hybrid 15599.6 4913.1 9.4 11.1 0 1.1 1677.5

Newton based hybrid 0.92 1.4 0.8 0.016 0 1.3 2.5

Cominetti et al. [25] and Robinson et al. [111] noticed that newton methods rarely use

safeguard, and it seems correct except for (T6) as in Table 4.7 because the total number

of safeguard used over 500 instances are all less than 6; however, the proportions that

safeguards are used in total iteration for SVM like problem (T6) is 57% (= 284/500) and

30% (= 161/500) on average for Newton and its hybrid methods respectively.

Table 4.7.: Total number of safeguard used for each 500 instances
Test problems T1 T2 T3 T4 T5 T6

Newton 1 6 3 5 3 284

New+Med, New+Int 1 4 3 2 2 161
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Performances in indefinite case

Except for pegging method, 11 methods are tested for indefinite case. Similarly to the

strictly convex case, all methods have linear growth by size although sorting and Newton

methods have nonlinear complexity, and only bisection methods has a little curvature at

n = 4e6.

Hybrid methods are generally on top rankings (Figure 4.11 and Table 4.8), and the results

show that interval test method has strong point for indefinite case because all three methods

that employ interval test method occupy the first three rankings for small coefficient prob-

lems, and, for large coefficient problem, interval test method has the top speed and Sec+Int

is followed.

Most pure methods such as Newton, median search, sorting, and bisection methods are

on the bottom ranks, but secant method is on fourth rank for small coefficient problem.

Bisection method is placed on the lowest rank for both problem groups although the range

of dual variable λ is narrower for small coefficient problems as in Table 4.2.

The order of rankings on size are almost identical in the respect to problems (Figure 4.12

and Table 4.10) and the percentage of negative dj (Figure 4.13 and Table A.8). Thus, the

performances are quite consistent through size, problem, and the proportion of negative dj .

Table 4.8 shows that the rankings follow the number of iteration, but only interval test

method for small coefficient problems is inconsistently on the third rank although it has

the smallest iteration. It is because the feasible domain of λ is too narrow (Table 4.2) to

efficiently filter out breakpoints via the bracketing phase Algorithm 2.5 of [31]. So Sec+Int

is placed on the first rank for small coefficient problems filtering out more breakpoints with

εbra = 0.1; however, it is downed to the second rank followed after interval test method for

the large coefficient problems because εbra = 0.1 is relatively small in that case resulting in

a few number (maximum 166 in Table A.7 and 6.4 on average in Table 4.9) of breakpoints.

In other words, Sec+Int takes almost double (= 13.5/7) iteration of interval test method to
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Figure 4.11.: Average speed by size for indefinite case

reduce the number of breakpoints, and it is less efficient than interval test method for large

coefficient problems.

Table 4.9 also shows the average number of breakpoints after bracketing phase. The

average number of breakpoints for interval test method in both groups of problems are very

big, but it is too big to have efficiency in small coefficient problems and is small enough to

have efficiency in large coefficient problems. Therefore, we can improve Sec+Int to have the

best performance controlling εbra that results the optimum balance between the number of

iterations in bracketing phase and the number of breakpoints to be sorted for interval test
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Table 4.8.: Average seconds and average iteration by size for indefinite case
Small coefficient problem Large coefficient problem

Size 1e6 2e6 3e6 4e6 5e6 Iter. Size 1e6 2e6 3e6 4e6 5e6 Iter.

Sec+Int 0.34 0.68 1.01 1.34 1.67 10.0 Interval 0.37 0.74 1.10 1.47 1.83 7.0

New+Int 0.40 0.80 1.20 1.60 2.00 11.5 Sec+Int 0.47 0.93 1.37 1.82 2.25 13.5

Interval 0.49 0.96 1.43 1.95 2.41 3.9 Sec+Med 0.52 1.03 1.53 2.03 2.52 15.7

Secant 0.54 1.03 1.50 1.98 2.45 18.8 Sec+Sor 0.52 1.03 1.53 2.03 2.52 15.7

Sec+Med 0.50 1.02 1.55 2.10 2.64 19.3 New+Int 0.55 1.09 1.62 2.14 2.66 13.7

Sec+Sor 0.50 1.03 1.55 2.11 2.65 19.3 New+Med 0.61 1.22 1.82 2.43 3.03 17.1

New+Med 0.58 1.17 1.77 2.36 2.99 20.0 Median 0.65 1.32 1.99 2.68 3.35 22.4

Newton 0.63 1.23 1.82 2.40 2.99 21.2 Sorting 0.70 1.45 2.19 2.97 3.72 22.4

Median 0.60 1.23 1.86 2.52 3.15 22.4 Secant 0.77 1.54 2.25 2.96 3.65 28.7

Sorting 0.66 1.36 2.06 2.80 3.51 22.4 Newton 0.96 1.93 2.89 3.81 4.79 30.8

Bisection 0.77 1.46 2.17 3.05 3.60 33.0 Bisection 1.04 2.06 3.05 4.11 5.06 48.2

* Lists are sorted in total time for each size of coefficient.
* Iteration for interval test method is only for bracketing phase Algorithm 2.5 of [31]

* Ranges of speed and iterations are in Appendix Table A.5 and Table A.6.

Table 4.9.: Average number of breakpoints after bracketing phase
Small coefficient problem

% of negative dj 0 30 60 90

Interval 3421419.0 1740051.3 1148770.9 2278400.3

Secant based hybrid 6840.7 1993.8 1597.1 2592.8

Newton based hybrid 1.0 1312.9 5169.7 13802.2

Large coefficient problem

% of negative dj 0 30 60 90

Interval 475201.1 376307.2 297763.3 401030.5

Secant based hybrid 4.1 3.6 5.6 6.4

Newton based hybrid 0.4 44.5 16.2 23.1

* Ranges are in Appendix Table A.7.

in termination phase.

Interval test based methods have speed priority although the methods include O(n log n)

complexity sorting procedure. We believe that it is because the one time sorting step is

practically not so costly up to some size of array. This is supported by performances of

methods that use sorting. Sorting method that sorts entire breakpoints is ranked on the

bottom for all problem groups, but Sec+Sor that sorts a part of breakpoint is on the middle

upper ranking. Moreover, both methods are just followed after median search method and

Sec+Med respectively meaning cost for one time sorting of not too many breakpoints is
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similar to the multiple times of median search.
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Figure 4.12.: Average speed by problem

Table 4.10.: Average seconds by problem
Test problems T1 T2 T3 Test problems T4 T5 T6

Sec+Int 0.99 1.04 1.00 Interval 1.16 0.99 1.16

New+Int 1.21 1.20 1.19 Sec+Int 1.39 1.43 1.28

Interval 1.41 1.53 1.40 Sec+Med 1.58 1.51 1.48

Secant 1.48 1.51 1.50 Sec+Sor 1.58 1.51 1.48

Sec+Med 1.52 1.59 1.57 New+Int 1.80 1.54 1.49

Sec+Sor 1.53 1.60 1.57 New+Med 2.04 1.61 1.81

New+Med 1.77 1.80 1.76 Median 2.12 1.80 2.08

Newton 1.85 1.80 1.80 Sorting 2.34 2.00 2.29

Median 1.86 1.88 1.88 Secant 2.28 2.37 2.05

Sorting 2.07 2.08 2.08 Newton 3.09 2.55 2.99

Bisection 2.22 2.19 2.21 Bisection 3.40 3.03 2.77
* Lists are sorted in total time for each size of coefficient.

* Ranges of speed are in Appendix Table A.5.

Figure 4.12 shows that all methods performs quite evenly for small coefficient problems,

but there are inconsistency for large coefficient problems. Especially methods have differ-

ent performances for problem (T5), but hybrid methods that employ secant method have

relatively stable speed.

We may think break point search type methods such as sorting, median search, and

interval test methods can have better performance as the percentage of negative dj increases

because those variables generate only one breakpoint, while variables in j ∈ P generate two
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breakpoints. However, it does not significantly affect the speed for sorting and median

search methods as Figure 4.13 because such binary search methods can reduce the number

of breakpoints by half in an iteration. For example, the number of breakpoints for no

negative dj is 2n and for 100% negative dj is n. Then, sorting and median search method

have just one less iteration in (P ) of 100% negative dj than in that of no negative dj . Thus,

the average number of iteration decreases slightly from 22.6, 22.6, 22.4, to 22.2 for 0 to 90%

negative dj respectively. As Figure 4.13, most methods tend to be slower as the percentage
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Figure 4.13.: Average speed by % of negative dj

of negative dj increases, but Table 4.11, which shows the growth rate on percentage of

negative dj , shows that interval test method has the slightest growth rate in large coefficient
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Small coefficient problem Large coefficient problem

% of negative dj 0-30 30-60 60-90 % of negative dj 0-30 30-60 60-90

Sec+Int 1.06 0.66 0.27 Interval 1.09 0.38 0.09

New+Int 0.88 0.34 0.73 Sec+Int 1.59 0.91 0.68

Secant 1.91 2.05 1.99 Sec+Med 1.88 1.31 1.11

Sec+Med 1.84 1.53 1.38 Sec+Sor 1.88 1.32 1.12

Sec+Sor 1.84 1.54 1.40 New+Int 2.11 -0.77 0.83

Interval -0.76 -0.10 1.69 New+Med 2.68 -0.48 1.34

New+Med 1.46 1.65 2.89 Median 2.28 1.50 1.14

Newton 1.78 1.98 2.49 Secant 2.85 2.76 3.56

Median 2.12 1.56 1.38 Sorting 2.10 1.39 1.01

Bisection 3.53 1.73 1.79 Newton 5.14 0.40 2.68

Sorting 1.97 1.43 1.26 Bisection 4.20 2.81 2.50

* Lists are sorted in total time for each size of coefficient.
* Growth rates that are less than 1 are colored in red indicating less than O(n) time growth.
* Average seconds are available in Appendix Table A.8.

Table 4.11.: Average time growth rate by % of negative dj

problems, and Sec+Int has less than linear growth rate for all problems and percentages.

The Table also shows that bottom ranking methods and root finding type methods such as

secant and Newton method tend to have high growth rate. Newton and its hybrid methods

Table 4.12.: Average percentage in use of safeguard
Small coefficient problem Large coefficient problem

% of negative dj 0 30 60 90 0 30 60 90

Newton 0.120 49.7 75.1 88.5 2.2 35.9 73.0 89.3

New+Med 0.099 18.7 31.8 41.3 1.4 10.1 42.4 66.2

New+Int 0.101 27.3 55.0 77.9 1.5 12.8 54.9 79.8

tend to use safeguard more times as the percentage of negative dj increases as shown in

Table 4.12. In the case of 90% negative dj , Newton method uses secant method 89% of its

iteration on average as a safeguard. Thus, Newton and its hybrid methods naturally take

more time to compute the slope (2.18) of g(λ), and performance of the methods always

worse than secant and secant based hybrid methods.

Reliability

As we mentioned in Section 4.3.1, unreliable methods such as bisection, secant and Newton

methods can have worse objective values than other reliable methods because
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(a) Unreliable methods pick a breakpoint among index in K∗ as step 3 of Algorithm 4.6

(b) Sometimes never satisfies feasibility with εfea due to numerical error as additional

termination criteria εgap2 and maximum iteration in (4.26) are required.

However, the former problem (a) does not happen in our experiments because |K∗| ≤ 1 for

all instances as in Table 4.3.

We counted the number of instances if the unreliable methods have worse lower and

upper bound objective values than reliable method, that is, if the difference of objective

values is greater than 0.01. Table 4.13 shows the counted number and its percentage in

9000 indefinite case instances. Fortunately, the chances of happening are not big, but it can

happen relatively often for bisection method in 9%.

Table 4.13.: Total count of worse bound
Method Lower bound Upper bound

Bisection 807 (9%) 807 (9%)

Newton 516 (6%) 516 (6%)

Secant 83 (0.9%) 83 (0.9%)

Conclusion

For strictly convex case, secant method is obviously the fastest method, and for indefinite

case, Sec+Int and interval test method are fastest for small and large coefficient problem

as in Table 4.14. We can also observe from the Table that all the top ranking methods are

based on secant and interval test method, and the methods are actually thought of a kind

of Sec+Int because it can be secant method if we give εbra = −∞ and behave like interval

test method if εbra =∞.

Table 4.14.: Top rankings
Coefficients First rank Second rank

Strictly convex case Small Secant Sec+Int

Large Secant Sec+Int (fourth)

Indefinite case Small Sec+Int Interval (third)

Large Interval Sec+Int

For indefinite problems, Sec+Int is downed from the first rank in small coefficient problem
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to the second rank in large coefficient problem. Because the range [lj , uj ] for variables in

large coefficient indefinite problem are large (at most 2000), g(λ) can have relatively big

jump at tj within small range of [λl, λu], and that is the case when secant method has

difficulty to reduce the dual domain efficiently. Thus, last many iterations in bracketing

phase of Sec+Int are consumed just to satisfy λu − λl < εbra = 0.1 with small dual domain

reduction rate although there are already few number of breakpoints between [λl, λu] are

remained. So Sec+Int consumed almost double (=13.5/7, Table 4.8) iterations than interval

test method remaining less than 7 (unnecessary too small) breakpoints (tables 4.9). Hence,

if εbra is properly assigned to avoid the inefficient last iterations, Sec+Int can also take the

first rank for large coefficient indefinite problem.

Moreover, as we have seen the almost identical performances of Sec+Sor and Sec+Med,

sorting procedure is not practically worse than linear time median procedure. That means

Sec+Int may not be significantly deteriorated by O(n log n) sorting procedure if secant

method filters out proper number of breakpoints. In addition, interval test method can find

exact solution without reliability issue.

The performance of Sec+Int may be affected by the initial λ; however it actually increases

the value of Sec+Int as a sub-problem solver because [25, 31, 44] experimentally show that

the initial λ plays a significant role when the nonseparable QP is solved by SPG method

using secant or Newton method as a sub-problem solver.

Therefore, we conclude Sec+Int is the best method among 12 tested methods and give

name, Closed-box solver (CBS), to the method. We may let Sec+Int dynamically controls

εbra looking at the remaining number of breakpoints during secant method in bracketing

phase narrows [λl, λu] in bracketing phase to get the optimum balance between the iteration

of secant method and the number of breakpoints for interval test method. We leave it for

the future research.

4.4.2. Comparison with other methods

In this section, we compare CBS (Sec+Int) with other selected four solvers: a global solver

of Chen and Burer (2012, [23]) , a local solver of Vavasis (1992, [132]), two commercial
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solvers of Cplex 12.5 and Matlab 2013a. For detailed descriptions for compared solvers,

see Appendix A.5.

Performance profiler

Dolan and Moré (2002, [33]) developed performance profile to compare optimization solvers,

and it has been widely1 used these days because it overcomes drawbacks of statistics such

as average, ranking, and ratio in a compact graph. However, since the performance profile

is mainly for time comparison, Dai and Fletcher [31] modified it to compare local optimum

objective values. So we use performance profile of the version of Dai and Fletcher [31] to

compare the quality of solutions of CBS with that of other solvers.

Suppose we have the set of solvers S on a test set P with np number of problems. We

denote fp,s the objective value of a problem p ∈ P by a solver s ∈ S, and let f
p
and f̄p be

the minimal and maximal values of {fp,s : s ∈ S}. We get the quality of fp,s normalizing it

into a ratio as

Quality ratio : rp,s =


0 if f̄p − fp ≤ ε

(fp,s − fp)/(f̄p − fp) otherwise

where ε > 0 is a value to admit numerical error in objective values, and we used ε =

10blog10(n)c× 10−6. Then, we draw a graph with a given factor τ ∈ [0, 0.9] versus probability

Probability : ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}

that the quality ratio rp,s is equal to or less than a factor τ for solver s. In other words, it

means that a solver s can yield objective value less than τ × f
p
in a probability of ρs(τ). So

ρs(0) is the probability that a solver s finds the best solution (fp,s = f
p
for p ∈ P).

Thus, the probability ρs is a cumulative distribution function with a non-decreasing,

piecewise constant and continuous line on τ , and a line under 1 means that the solver is not

better for all problems than others.

1[33] has been cited by 1051 papers as of July 15, 2013.
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Small size problems

The five methods (CBS, Chen and Burer [23], Vavasis [132], cplexqp.m of Cplex, and

quadprog.m of Matlab) are used to compare the speed and the quality of optimum values.

Small sizes are tested because the global solver of Chen and Burer [23] and quadprog.m of

Matlab consume exponentially long time for large size problems, say over n = 300. The

random problems are generated by

• 3 percentages of negative dj : 20%, 50%, and 80%

• 3 sizes of n: 20, 40, and 60

• 3 small coefficient problems: (T1), (T2), and (T3)

• 3 locations of right hand side b by β = 0.2, 0.5, and 0.8

• 10 random problems for each instance

Thus, the total 810 (= 3× 3× 3× 3× 10) problems are tested. Note that large coefficient

problem (T4), (T5), and (T6) could not be used because the solver of Chen and Burer [23]

tends to fail to solve frequently for the problems.

The average and range of speed (in seconds) of five methods are presented in Table

4.15. CBS spent a fraction of time with almost no time growth, while other methods shows

nonlinear time growth. Chen and Burer shows the fastest time growth, but the growth rate

is actually much higher because the method reached the time limit up to 42.6% as shown in

Table 4.16.

Table 4.15.: Average seconds and range for small size indefinite problems
Size CBS Vavasis Cplex Matlab Chen&Burer

20 0.00054 0.0018 0.017 0.018 23.3

40 0.00048 0.0036 0.019 0.052 318.4

60 0.00055 0.0066 0.021 0.109 489.6

20 [0.0002, 0.008] [0.0009, 0.013] [0.015, 0.048] [0.01, 0.037] [1.013, 322.93]

40 [0.0002, 0.002] [0.0013, 0.019] [0.015, 0.055] [0.034, 0.081] [3.404, 900]

60 [0.0002, 0.002] [0.002, 0.038] [0.016, 0.055] [0.074, 0.142] [8.527, 900]

156



Rather than speed, we may compare the probabilities that solvers find global optimum.

Since Chen and Burer theoretically guarantees the global optimum solution, we can compare

global optimality comparing with the objective value of Chen and Burer. However, because

Chen and Burer sometimes finds worse objective value than other solvers and overs the

time limit of 15 minutes, we obtain the probabilities counting the instances that a solver’s

objective value is not different from the best value of all solvers. That is, the probability is

P [fp,s − fp < n× 10−6 : p ∈ P, s ∈ S] (4.29)

with numerical error admissible range of n× 10−6. The percentage values are in Table 4.16.

Most solvers can similarly get global optimum in about 60%, and Chen and Burer fails to

find global optimum in 2.7%, which is much less than time limit over rate 22%. But the

time over rate significantly increases as size grows.

Although the upper bound solutions of CBS are just feasible solutions when K∗ 6= ∅, the

solutions are actually the best or global in 12% as shown in the last column of Table 4.16.

But the rate decreases as the size grows.

Table 4.16.: Percentage of the best solution found for small size indefinite problems

Size CBS Vavasis Cplex Matlab Chen&Burer
Time > 15 min.

of Chen&Burer

K∗ 6= ∅ and CBS is

the best

20 67.0 66.3 72.2 62.2 95.6 0.0 17.8

40 62.6 58.1 65.9 56.7 99.3 23.3 10.7

60 58.9 55.9 61.9 54.4 97.0 42.6 8.1

Overall 62.8 60.1 66.7 57.8 97.3 22.0 12.2

Since performance profile gets cumulated distribution pooling all objective values, we

cannot use the numerical error admissible range of n× 10−6 that is used for Table 4.16. So

we use

ε = 10blog10(n)c × 10−6 = 10−5

for performance profile in Figure 4.14. Due to the different numerical error admissible range,

ρ(1) = 0.6 for Cplex is significantly different from 66.7% in the last row of Table 4.16.
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Chen and Burer, of course, is placed on the top line almost along at 1 as a global solver,

while Matlab’s quadprog.m always yields the worst quality solutions. CBS is almost 10%

above Cplex for τ > 0.15. That means the quality of upper bound solution of CBS is quite

better than that of Cplex. It may be because the small coefficients of test problems (T1),

(T2), and (T3) yield relatively small bound gaps (4.18) for CBS. Test with large coefficients

are followed in the next section.
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Figure 4.14.: Performance profile for small size indefinite problems

Large size problems

In addition to the small size problems, experiments with large size are also conducted without

Matlab’s quadprog.m and the global solver of Chen and Burer since two methods consume

too much time and fail to solve in many times for large size problems. The random problems

are generated by

• 3 percentages of negative dj : 20%, 50%, and 80%

• 4 sizes of n: 1000, 20000, 3000, and 4000

• 6 problems: (T1), (T2), (T3), (T4), (T5), and (T6)

• 3 locations of right hand side b by β = 0.2, 0.5, and 0.8

• 10 random problems for each instance
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Thus, the total 2, 160 (= 3×4×6×3×10) problems are tested. Note that we include all six

test problems for this case because Chen and Burer is not tested in this large size problems.

The average speeds and ranges of solvers in seconds are presented in Table 4.17. All solvers

tend to take more time in large coefficient problems, and both Vavasis and Cplex spent

approximately double time for large coefficient problems than for small coefficient problems

although the most minimum times are similar for both problem groups.

Time growth rate can be computed by

tn,s/t1000,s

(n/1000)Growth rate
w 1 (4.30)

with tn,s, the average time for solver s in the size of n, and it is presented on the middle

row of Table 4.15. Growth rates are approximately identical for both sizes of coefficients in

the three solvers, and CBS shows less than linear time growth rate (0.5). Cplex has almost

linear growth rate (1.2), but Vavasis has more than quadratic growth rate (2.3) over size.

Table 4.17.: Average seconds and range for large size indefinite problems
Small coefficient Large coefficient

Size CBS Vavasis Cplex CBS Vavasis Cplex

1000 0.0006 0.9 0.12 0.0008 1.9 0.22

2000 0.0009 4.3 0.26 0.0011 9.1 0.50

3000 0.0012 11.4 0.44 0.0016 24.2 0.90

4000 0.0014 23.6 0.66 0.0019 49.2 1.30

Growth rate 0.5 2.3 1.2 0.5 2.3 1.2

1000 [0.0003, 0.003] [0.04, 3.9] [0.04, 0.4] [0.0004, 0.004] [0.05, 4.7] [0.04, 0.8]

2000 [0.0005, 0.003] [0.13, 22.3] [0.09, 0.7] [0.0005, 0.004] [0.13, 23.1] [0.07, 1.7]

3000 [0.0006, 0.004] [0.27, 53.3] [0.14, 1.3] [0.0007, 0.006] [0.27, 62.5] [0.12, 4.2]

4000 [0.0008, 0.005] [0.44, 116.3] [0.21, 1.8] [0.0008, 0.008] [0.44, 129.1] [0.17, 5.7]

Consider the probability that a solver gets the best optimum solution as (4.29). Table 4.18

shows the probabilities, and CBS has obviously great rate for best optimum solution. We

expect that CBS would yield worse upper bound objective value for large coefficient problems

because large coefficients naturally give larger bound gap (4.18); however, it might affect to

Vavasis and Cplex more seriously since the probabilities of Vavasis and Cplex for large
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coefficient problems are significantly lower than that for small coefficient problems. Another

reason may be found in the last columns for each size coefficient groups in Table 4.18.

Because the probabilities that CBS finds the best when K∗ 6= ∅ is greater in large coefficient

problems than in small coefficient problems, it may leads the lower probabilities for other

methods.

Table 4.18.: Percentage of the best solution found for large size indefinite problems
Small coefficient Large coefficient

Size CBS Vavasis Cplex K∗ 6= ∅ and Best1 CBS Vavasis Cplex K∗ 6= ∅ and Best1

1000 83.3 50.7 63.7 33.0 94.1 15.9 5.9 44.8

2000 88.5 49.6 54.8 39.3 94.1 16.3 5.2 41.1

3000 93.3 50.0 50.0 43.7 94.4 15.2 5.2 47.0

4000 91.5 50.0 54.1 42.2 94.4 16.3 5.6 47.4

Overall 89.2 50.1 55.6 39.5 94.3 15.9 5.5 45.1

1. K∗ 6= ∅ and Best means CBS yields the best solution when K∗ 6= ∅.

Performance profiles in Figure 4.15 also clearly show the worse performance of Vavasis

and Cplex. The two lines of the methods have larger gap from the line of CBS in large

coefficient problems

For the same reason in the small size experiments, Table 4.18 is obtained with the numer-

ical error admissible range of n × 10−6 and performance profiles in Figure 4.15 is obtained

with

ε = 10blog10(n)c × 10−6 = 10−3

by pooling all objective values. Thus, ρ(1) = 0.5 for Cplex in Figure 4.15a of small

coefficient problems is discrepant from 55.6% on the last row of Table 4.18.

Performance profiles show that CBS always above Vavasis and Cplex touching the prob-

ability of 1. Vavasis never increases its probability through all τ = [0, 0.9], and it means its

quality of solutions is quite worse than other solvers.
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Figure 4.15.: Performance profile for large size indefinite problems

4.4.3. Experiments with GN2

Since Cplex 12.6 was recently released on December 2013 with a new global quadratic

solver, CBS is also tested with GN2 of Section 3.4.3. Table 4.19 is made based on Table 3.7

adding the results of CBS. The upper bound of CBS and CPX-G are very close with numbers

almost 0%; however, somehow, all average relative errors are negative meaning that CBS finds

better global optimum solution than CPX-G. In the experiment results, the global objective

value of CPX-G is always greater than or equal to the objective value of CBS for all tested

problem. This phenomenon might mean that CPX-G does not guarantee an exact global
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Table 4.19.: Performance of CBS for GN2(n, 10, 0, 0.5)

Problem size (n) 500 1,000 2,500 3,500 5,000
UB of OBG rel. error1 5.62% 6.07% 5.19% 5.36% 5.05%

cpu sec. 0.184 0.480 2.335 4.545 8.695
VAV92 rel. error2 1.22% 1.21% 1.25% 1.19% 1.19%

cpu sec. 0.646 2.834 23.278 52.499 129.266
UB of CBS rel. error4 -0.001% -0.002% -0.001% -0.003% -0.002%

cpu sec. 0.0005 0.0006 0.0010 0.0016 0.0021
CPX-G cpu sec. 0.187 0.370 0.723 2.005 3.187

Problem size (n) 10,000 20,000 30,000 40,000 50,000
UB of OBG rel. error 5.51% 4.84% 5.27% 5.12% 5.09%

cpu sec. 34.1 160.7 338.5 583.5 890.5
VAV92 rel. error 1.24% 1.21% * * *

cpu sec. 815.5 5656.2 *3 * *
UB of CBS rel. error2 -0.0008% -0.0006% -0.0002% -0.0002% -0.0004%

cpu sec. 0.0034 0.0063 0.0091 0.0115 0.0135
CPX-G cpu sec. 9.891 41.421 100.451 197.155 334.716

1. Relative error is defined by [UB(OBG) - obj(CPX-G)]/abs[obj(CPX-G)]
2. Relative error is defined by [obj(VAV92) - obj(CPX-G)]/abs[obj(CPX-G)]
3. 2 hour cpu time limit or memory exceeded for all problems
4. Relative error is defined by [UB(CBS) - obj(CPX-G)]/abs[obj(CPX-G)]

solution. In the respect of speed, CBS is excessively faster than all other methods. Further

performance investigation of CBS in a broader range of test problems are left for the future

research.

4.5. Conclusion

A linear time algorithm to find lower and upper bounds of indefinite knapsack separable

quadratic programs is presented. The relaxation of the knapsack constraint with a single

Lagrange multiplier makes the dual problem completely separable, and it gives a chance

to find a lower bound very efficiently in the root-finding scheme. In the experiments, the

proposed hybrid root-finding algorithm performs significantly better than existing methods,

and moreover, it turns out that the best methods, Sec+Int is fairly impressive in the respect

of speed and solution quality through all tested problems relative to the compared solvers.
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4.5.1. Future research in CBS

Two chances to improve CBS

Experiments show that CBS is superior to other tested solvers, but there are still two chances

to improve it. One is the parameter εbra that determines the iteration to switch from secant

method to interval test method. Because sorting the breakpoints for interval test method

consumes more significant time as there exist more breakpoints within the bracket range,

which is less than εbra, a method to determine the optimum εbra that can balance the

iterations of secant and interval test methods is required. The other chance is for the

quality of the upper bound solution. As discussed at the end of section 4.2.2, when multiple

breakpoints from N are exactly same as λ∗, CBS may not determine the best upper bound

solution since it is found by our suggested heuristic lower index rule. Thus, further research

is required for the two chances.

Minimizing the bound gap

In the case that all breakpoints tj for j ∈ N are unique,the bound gap can be further mini-

mized with a better upper bound solution with the following idea. Suppose all breakpoints

tj for j ∈ N are unique in non-strictly convex (P ), and there exists

k = {j ∈ N : xU∗j ∈ (lj , uj)}.

In the case, xU∗ does not guarantee local or global optimality because conditions that verify

the global optimality of indefinite (P ) are not known. Then, we may think of three cases for

global optimum solution x∗k = lk, uk, or xU∗k . Since the third case is xU∗, the other two cases

can be tested with CBS fixing xk = lk and uk. Each case generates the corresponding pair of

(λ∗L, xU∗L ) and (λ∗U , xU∗U ). These two paris can be obtained in relatively little computation

because of two reasons: (see Figure 4.16 to help understanding)

1. The range for λ∗L and λ∗U are determined.

• If xk = lk, then λ∗L ∈ [λmin, λ
∗] with xU∗L
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xk = uk → lk
xk = lk → uk

Figure 4.16.: λ∗L and λ∗U

• If xk = uk, then λ∗U ∈ [λ∗, λmax] with xU∗U

2. The shape of g(λ) are identical to g(λL) and g(λU )

• If xk = lk, then g(λL) = g(λ)− uk + lk

• If xk = uk, then g(λU ) = g(λ)− lk + uk

Thus, if g(λ) is recorded for tested λ’s while λ∗ is obtained, computations to get λ∗L and λ∗U

can be obtained fairly less computation than that for λ∗. Once xU∗L , and xU∗U are obtained,

the corresponding objective values are calculated, and one of two solution is selected if its

objective value is better than that with xU∗. This steps are repeated until xU∗ is the best

solution or the selected solution does not have k. The preliminary experiments show that

this idea actually lead to often find a global optimum solution or improve the solution quality

in at most 5 iterations; however, the iteration can be up to |N |. Further research on this

idea is left for the future research.
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5. Applications

This chapter considers applications of convex and nonconvex KSQP. For the convex case,

a list of applications is presented with references. As for applications of the nonconvex

case, randomly generated application problems are tested with the proposed algorithms and

benchmarked for performance.

5.1. Applications for Convex case

Applications for strictly convex KSQP are tremendous and are well collected by the book

by Ibaraki and Katoh [54], a survey of Bretthauer and Shetty[16], and Patriksson [106].

Above all, strictly convex KSQP is very useful as a sub-problem in many algorithms as

listed below.

KSQP as a sub-problem

• Support vector machine (SVM) by spectral projected gradient method [25, 31, 44]

• Quadratic programming [21, 27, 36, 93, 94, 95, 96]

• Dual ascent algorithm to find the step size [73, 134, 137]

• Discrete nonlinear knapsack problem [67]

• Traffic assignment problem [70, 74]

• Stochastic quasi gradient method [112, 124]
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In addiction, the strictly convex KSQP is used mainly for network, traffic, and resource

allocation problems. Since Kiwiel [63, 64, 65] and Patriksson [106] gathered many valuable

applications, we added more applications based on their work. In addition, applications that

are not in their papers are also listed below.

Mostly based on Kiwiel [63, 64, 65]

• Resource allocation [14, 15, 52]

• Hierarchical production planning [14]

• Network flows [134]

• Transportation problems [26]

• Multicommodity network flows [2, 50, 58, 61, 71, 88, 120, 134]

• Integer quadratic knapsack problems [18, 19, 140]

• Integer and continuous quadratic optimization over submodular constraints [52]

• Lagrangian relaxation via subgradient methods [49]

Mostly based on Patriksson [106]

• Decomposition methods for Stochastic programming problems [84, 89, 112]

• Traffic equilibrium problems [11, 29, 28, 70, 74]

• Constrained matrix problems[3, 4, 27, 88, 93, 94, 95, 120, 133, 134]

• Portfolio selection problems [36, 40, 57, 119, 129, 96]

Other applications

• Matrix balancing in regional and national economics [27, 85, 86]

• Economic Dispatch Problem [6, 8, 9]

• Quadratic resource allocation problem with generalized upper bound (GUB): [15]
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5.2. Applications for Nonconvex case

Applications for nonconvex KSQP mainly appear in combinatorial optimization problems.

The combinatorial book of Du and Pardalos [35] presents a comprehensive list of applications.

In this section, we present an application where indefinite KSQP can be used to solve mixed

integer problems arising in a portfolio selection problem. Then, subset-sum problem, a direct

application of indefinite KSQP, is also discussed with numerical experience.

5.2.1. Real investment portfolio selection

Suppose there exist N = n + m real investment options with uncertain returns. First n

options can be invested as a fraction (such as partial ownership), while each of the last m

options may only be either fully-invested or not invested at all. Let the vector x ∈ RN be

the investment decision and the mean vector of returns is denoted by µ ∈ RN if each option

is fully-invested. The uncertainty of the investment returns is captured by the variance-

covariance matrix V. Then, the risk (variance) of investment returns is given by

xTVx. (5.1)

We assume that investments are only allowed to be “long”, that is, xj ≥ 0 ∀j. Then, the

decision of the investment can be made with xj ∈ [0, 1], j = 1, ..., n and xj = {0, 1},

j = n + 1, ..., N . Suppose the (unit) cost of investment option j is cj , j = 1, ..., N . The

available total budget is denoted by B. Then, the portfolio investment problem is formulated

as the mixed-integer QP model in (5.2) that minimizes the risk of investment portfolio, less

the invest return, for a given level of the trade-off parameter θ (≥ 0):

Min xTVx− θµTx

s.t. cTx ≤ B

xj ∈ [0, 1], j = 1, ..., n

xj ∈ {0, 1}, j = n+ 1, ..., N

(5.2)
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Pardalos and Rosen [102] and Zhang and Edirisinghe [142] present a technique to transform

a given binary mixed-integer QP such as (5.2) to a continuous nonconvex QP by replacing

binary constraints with concave continuous functions. Applying this technique, the model

in (5.2) can be equivalently written as:

Min xTVx− θµTx +M
∑N

j=n+1 xj(1− xj)

s.t. cTx ≤ B

xj ∈ [0, 1], j = 1, ..., N
(5.3)

where M ≥ 0 is a penalty parameter to force xj , j = n+ 1, ..., N to the binary values.

Consider the special case of investment options that are geographically separated in na-

ture, and thus, their returns are uncorrelated, i.e. V is a diagonal matrix. Then, (5.3) is an

indefinite KSQP that can be efficiently solved by CBS and the bounding procedure based on

OBG, as discussed in Section 3.3.

5.2.1.1. Implementation and computational experiments

Real investment portfolio selection model in (5.2) with uncorrelated invest options is com-

putationally tested in Matlab with CBS and cplexmiqp.m, which is a solver of Cplex 12.6

for mixed integer quadratic problems. Cplex directly solves (5.2), while CBS can only solve

(5.3) for a given parameter M .

In order to converge solution of (5.3) to a global solution of (5.2), we iteratively update

M , based on the current solution of (5.3). This update is based on a rule that depends

on the current Mk, the solution provided by CBS, xk, and the degree of violation vk of the

binary constraints, defined by

vk =

N∑
j=n+1

xkj (1− xkj ).

For a given constant C, this rule is

Mk+1 = Mk(1 + C ·max{1, vk}). (5.4)
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If at some iteration, vk = 0, then xk is a binary feasible solution that is approximately

global optimum. The implementation of updating rule is presented in Algorithm 5.1. For

the experiment, the initial value of M0 = 0.1 is given, and C = 20, the maximum iteration

K = 100, and εvio = 10−5 are used.

Algorithm 5.1 Mixed Integer programming with CBS (MICBS)
Given that K for maximum number of iteration and εvio for tolerance of solution violation

1. Set k = 1, C = 20 and M0 = 0.1

2. Iterate while k ≤ K

a) Solve (5.3) using CBS to get xk

b) Get the violation value vk =
∑N

j=n+1 xj(1− xj)

c) If |vk| < εvio, finish algorithm with xk

d) Update Mk = Mk−1(1 + C ·max{1, v}) and k ← k + 1

Experimental results

For the experiment, random problems are generated using the following two steps:

1. Generate random data

Vjj ∈ [1, 10], cj ∈ [10, 200], µj ∈ [1%, 7%], j = 1, ..., n, µj ∈ [5%, 15%], j = n+ 1, ..., N

2. Generate a random solution xj ∈ [0, 1], j = 1, ..., n, xj ∈ {0, 1}, j = n + 1, ..., N to

construct B = cTx

With a random instance in the size of N = 1000 and n = 500, the efficient frontier line

is drawn in Figure 5.1 with θ = 1, 2, ..., 100. The line is drawn based on the solutions of

Cplex and the dots are plotted using the solutions from MICBS. MICBS reaches to iteration

limit of 100 in three θ’s, and the three instances are shown by dots that are considerably far

from the efficient frontier line of Cplex in Figure 5.1. Table 5.2 presents the relative errors

of the three instances. The table also shows the 8 instances that MICBS finds worse solutions

than Cplex. The instances are selected if the relative error values in (5.5) are greater than
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Figure 5.1.: Efficient frontier line

Figure 5.2.: Cases that Rel.error > 0.001

CPU time (sec.) MICBS
θ TimeC TimeM Risk Return Iteration Rel.error1

66 0.051 0.011 1577.1 52.7 13 3.45%
67 0.021 0.011 1594.1 53.1 12 3.15%
70 0.022 0.006 1714.1 55.1 13 2.49%
76 0.067 0.007 1863.3 57.5 13 1.61%
85 0.019 0.009 1962.3 58.6 11 1.86%
90 0.019 0.009 2001.1 59.2 13 1.42%
92 0.115 0.009 2013.8 59.4 13 1.23%
96 0.019 0.010 2035.8 59.6 13 1.11%
53 0.017 0.137 1859.0 45.8 Max. Iter.2 55.80%
71 0.019 0.131 1746.6 41.9 Max. Iter. 45.56%
84 0.078 0.113 1701.2 39.9 Max. Iter. 45.20%

1. Rel.error = [Obj(MICBS)−Obj(CPLEX)]/ |Obj(CPLEX)|, where Obj(·) is the objective value in (5.2).
2. Maximum number of iteration is set to 100.

0.001.

Rel.error =
Obj(MICBS)−Obj(CPLEX)

|Obj(CPLEX)|
× 100% (5.5)

where Obj(·) is the objective function value in (5.2). The 8 instances have quite small

relative errors ranged in [1.11%, 3.45%]. For all other 89 cases, MICBS finds either an exactly

same solution as Cplex or very closely approximate solutions in from 2 to 12 iterations.

The performance of MICBS is also compared with Cplex in the larger sizes ranged from

5,000 to 100,000. For each size, 10 random problems are generated, and 5 different θ’s are

used. Table 5.1 presents the average CPU time. MICBS solves all instances in a fraction
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Table 5.1.: Average CPU time (in seconds) for real investment portfolio selection
θ Solvers \ Sizes 5,000 10,000 30,000 50,000 70,000 100,000
101 Cplex 0.033 0.059 0.294 0.411 0.613 0.928

MICBS 0.001 0.002 0.004 0.006 0.009 0.014
30 Cplex 0.038 0.073 0.330 0.470 0.758 1.192

MICBS 0.001 0.002 0.004 0.007 0.010 0.015
50 Cplex 0.046 0.095 0.385 0.667 0.920 1.392

MICBS 0.001 0.002 0.004 0.007 0.010 0.015
70 Cplex 0.12 0.46 3.90 12.77 28.59 66.18

MICBS2 0.01 0.02 0.02 0.07 0.12 0.17
Avg. iter.3 (Max. iter.4) 5.7 5.5 2.8 4.6 (1) 5.8 5.6
# Rel.error > 0.0015 1 0 0 1 0 1

90 Cplex 0.147 0.560 4.383 14.025 31.414 71.632
MICBS 0.013 0.014 0.055 0.064 0.129 0.199

Avg. iter. 7.6 4.6 6.6 4.7 6.4 6.7
# Rel.error > 0.001 1 1 0 1 0 1

1. MICBS finds the same solution as Cplex in 2 iterations for all instances at θ=10, 30, 50.
2. Average time (in seconds) of MICBS except for instances that reaches iteration limit of 100 (only one case
in N = 50, 000).
3. Average iteration of MICBS except for instances that reaches iteration limit of 100.
4. The number of instances that the iteration limit of 100 reaches in MICBS.
5. The number of instances that Rel.error = [Obj(MICBS)−Obj(CPLEX)]/ |Obj(CPLEX)| ≥ 0.001.

of second for all instances, while Cplex spends significantly more time than MICBS with

higher time growth rates. The quality of solutions of MICBS is excellent. For each problem

instance, MICBS has none or one case in which the relative error value in (5.5) is greater than

0.001. Moreover, MICBS reaches the iteration limit in only 1 time over 300 tested problems,

yielding the relative error of 39.3% in the case. MICBS also finds either global solution or

high quality solution (Rel.error. < 0.001) in 2 iterations for all instances at θ = 10, 30, and

50 and in 4 to 7 iterations for instances at larger θ’s.

5.2.2. Subset-sum problem

Consider a given set of 1, ..., n different items, each of which has resource consumption aj

(> 0). The problem is to determine a subset (I ⊆ {1, ..., n}) of the items when collected

together will not be not too different from a pre-specified capacity b (say of a collector

cell). Such problems occur in graph coloring, risk-allocated-capital problems, bin-packing

in logistics problems, etc.
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The problem is called by subset-sum problem, and it can be mathematically formulated

as

MinI
(
b−

∑
i∈I ai

)2
s.t. I ⊆ {1, ..., n}

to get a subset I. In spite of the simple structure, subset-sum is a well-known NP-complete

problem. One can refer to Karp (1972, page 380 of [59]) for proof and books of [35, 53, 60, 80]

for methods and applications.

Vavasis [132] solves the subset-sum problem in the format of indefinite KSQP:

Min y2 +M
∑
∀j xj(aj − xj)

s.t. y +
∑
∀j xj = b

0 ≤ x ≤ a

y free

(5.6)

where M is a parameter to control the concavity.

5.2.2.1. Experiments of subset-sum problem

Subset-sum problem is a special case for CBS because as mentioned in Section 4.2.2, subset-

sum problem is an extreme case that generates n − 1 identical breakpoints at λ∗ for all

j ∈ N . In the case, the heuristic method, lower index rule, suggested for CBS does not

have any theoretical reason to yield a good solution. Thus, CBS is not considered for the

experiments in subset-sum problem, and only two methods, bounding procedure in Chapter

3 and the local solver of Vavasis [132], are compared. To present the experiment result, as

Chapter 3, the upper bound of our algorithm is referred to UB, and a name VAV92 is used

for the algorithm of Vavasis [132].

The random subset-sum problem is generated in the form of (5.6). If the right hand

side b is sum of some aj , then the global objective value of (5.6) is known to be zero. For

the experiments, aj are randomly generated in the interval of (0, round(n/100)]. Then, the
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randomly chosen half of aj are summed up for b. For the concavity parameter, we setM = 5.

The two upper bounds of UB and obj(VAV92) are compared using the following metric,

named “relative quality of upper bounds” (RQUB):

RQUB =
obj(VAV92)− UB

min{obj(VAV92), UB}+ 1
.

The large positive value of RQUB means that UB is much better than the upper bound of

VAV92 and that UB is closer to the global optimum value of zero. Moreover, if RQUB is a

negative value close to zero, the upper bound of VAV92 is better than UB but the difference

is not so great. So when two upper bounds are about to same, RQUB is close to zero. Each

value of RQUB is plotted (blue circle) in Figure 5.2.2 for 10 instances in each size ranging

from n = 500 to 5, 000. As observed in the figure, most RQUB values are positive, and many

points are far from zero. Thus, we conclude UB has quite higher solution quality than VAV92

in the tested problems.
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Figure 5.3.: Relative quality of upper bounds (RQUB) on subset-sum problems

The speed is also compared with the speed-up factor (SF), used in section 3.4.2.

SF = ln
cpu− time(VAV92)

cpu− time(UB)

It is also drawn in Figure 5.2.2 with a red line, and it indicates that the time growth rate of
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Figure 5.4.: Average speed (second) in subset-sum problem
Size n 500 1000 2500 3500 5000

UB of OBG 0.004 0.008 0.036 0.061 0.112
VAV92 0.734 3.252 25.210 57.068 142.748
CPX-G 364.698 1218.367 1236.518 1887.225 1219.483

CPX-G time range [1.9, 777.9] [3.0, 3642.0] [28.3, 3915.6] [103.6, 4886] [61.7, 4654.1]

UB is quite less than VAV92 in a higher speed. The average speeds of each method are also

available in Table 5.4. It shows that the upper bounding method using OBG is also superior

in the speed as well as the quality.
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6. Concluding Remarks

This dissertation focuses on the goal: “developing efficient algorithms to solve general KSQP ”.

Toward this goal, three new methods for nonconvex case are developed and applications for

both convex and nonconvex are discussed.

Contributions

The goal of this dissertation is achieved with the following five main contributions.

First, the computational efficiency and theoretical complexity of existing methods are

discussed through the comprehensive literature review for convex and nonconvex KSQP.

In addition, several ideas that improve the computational complexity and efficiency of the

existing methods are suggested and utilized for the development of our new algorithms.

Second, a new global algorithm, OBG, that solves the open-box constrained indefinite KSQP

in O(n2) is developed. The global optimality is guaranteed by choosing the best solution

among all enumerated KKT points that satisfy additional necessary conditions. In spite

of the enumeration steps, the O(n2) time complexity is achieved by utilizing techniques in

the interval test method and by developing Lagrange multiplier domain shrinking procedure.

The superior performance is verified through the experimental comparison with local, global,

and commercial solvers.

Third, a new bounding algorithm for general KSQP, which has closed-box constraints,

is proposed utilizing the global optimizer OBG. A lower bound is obtained by searching for

Lagrangian multipliers, and an upper bound is found based on the lower bound solution and

KKT conditions. In computational experiments using very large size problems, the bounds

are found to be quite tight, as well as computations are relatively faster in comparison to
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other tested solvers.

Fourth, another new algorithm, CBS, is developed to find lower and upper bounds for gen-

eral KSQP. The gap between two bounds is expected to be tight because it is determined by

the given coefficients of a single variable, and the conditions to ensure the global optimality

of the solution are also presented. The algorithm inherits efficiency and reliability due to

the newly developed hybrid method that combines techniques in strictly convex KSQP. CBS

and other existing solvers are compared, and experiment results show the superiority of CBS

in speed as well as in solution quality.

Fifth, an extensive list of applications is presented for the convex KSQP. A practical

investment portfolio selection problem is used to show that CBS can be used to solve mixed

integer problems very efficiently, and the performance of the upper bounding procedure,

which utilizes OBG, is compared with a local solver using the subset-sum problem as the

prototype of various applications.

Future directions of research

KSQP is an important class for research with regard to efficient algorithmic development in

nonlinear programming as well as in complexity theory.

Quadratic Programming Indefinite KSQP is useful for its direct applications in combina-

torial problems such as subset-sum problem, and furthermore, its potential value is found in

mixed integer programming as we demonstrated with the portfolio selection model in Section

5.2.1. The considered model has a separable objective function and only a knapsack con-

straint with box constraints, but it can be extended to more general problems. For example,

multiple-constrained quadratic integer problems are considered in Edirisinghe [37] applying

the transformation in Zhang and Edirisinghe [142] supplemented with constraint-relaxation.

The efficient solution technique developed in this dissertation for the single constraint case

can be incorporated in the multiple-constrained integer problems to develop a new class of

solution methodologies. Moreover, as discussed in the introduction chapter, the methods de-

veloped for indefinite KSQP in this dissertation can be used as a fundamental building-block

176



to solve general QPs such as nonseparable QP and indefinite QP when the row-aggregation

and diagonalization techniques are applied. Thus, developing algorithms toward various QP

utilizing the proposed methods will be a part of future research.

NP-hard problem Indefinite KSQP is one of the simple form of NP-hard problems, and it

is involved in a long time unproved theoretic question “P=NP?”. This question may be able

to be explained through the CBS method. As illustrated in Figure 6.1, CBS finds an exact

global optimum solution when the right hand side b is not in the range of

B =
⋃
k∈N

∑
∀j
x̂j(tk),

∑
∀j
xj(tk)


where tj in (4.9), x̂j(λ) in (4.15), xj(λ) in (4.2).

λ 	


Global optimum is 
x* = x(λ*) at this b	


Global optimum is not  
guaranteed by CBS at this b	


λ 	


Global optimum is 
x* = x(λ*) at this b	


b	


Σ xj(λ)	


Figure 6.1.: Global optimality depending on RHS b

According to the geometric interpretation of interval test in Section 2.2.3, the interval or

singleton partitions constructed by breakpoints can be geometrically interpreted as a face,

edge, vertex, or inside of the box (constraints) in the convex case. However, in the indefinite

case, the partitions, which are constructed at tj , represent multiple faces of the box since xj ,

j ∈ N can be one of three values lj , uj , and −λ/dj . Further research is required to explore
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the properties of the partition at tj .

Improvement of proposed methods Experimental results show that the methods devel-

oped in this dissertation have superior performance in speed and solution quality. But some

ideas that can further improve the proposed methods are still remained for the future re-

search. For example, in the lower bounding procedure using OBG in Section 3.3, the method

integrates multiple Lagrange multipliers into the univariate multiplier w because updating

|N | number of multipliers requires a more sophisticated procedure; however, the surroga-

tion technique [48, 87], which has been studied since 1970’s, may be an candidate for the

multiplier updating procedure.

In Section 4.5, three ideas to improve CBS are discussed. The third idea that minimizes the

bound gap has been already tested, and the results are highly promising. So the immediate

research on the idea will be followed after this dissertation.
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A. Appendix

A.1. The case of aj = 0

For the variables that aj = 0 in (P ), the optimal solution x∗j can be obtained by

x∗j =

{
median{lj , uj , cj/dj} for dj > 0
lj if cj < dj(lj + uj)/2

uj otherwise

for dj < 0


lj if cj < 0

uj otherwise

for dj = 0

Note that the case that cj = 0 and dj = 0 does not exist.

A.2. Transformation

Any problem in the format of (P ) can be equivalently transformed to a problem such that

aj = 1 ∀j and cj = 0 for dj 6= 0

by substituting xj with

xj =


x̂j/aj + cj/dj for dj 6= 0

x̂j/aj for dj = 0
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Then, coefficients are as below

d̂j = dj/a
2
j for dj 6= 0, b̂ = b−

∑
dj 6=0 ajcj/dj

l̂j =


aj(lj − cj/dj) if aj > 0

aj(uj − cj/dj) if aj < 0

for dj 6= 0, l̂j =


ajlj if aj > 0

ajuj if aj < 0

for dj = 0

ûj =


aj(uj − cj/dj) if aj > 0

aj(lj − cj/dj) if aj < 0

for dj 6= 0, ûj =


ajuj if aj > 0

ajlj if aj < 0

for dj = 0

ĉj =


0 for dj 6= 0

cj/aj for dj = 0

The objective value of the original problem can be obtained from the solution x̂ of the

transformed problem by

Obj =
1

2

(
x̂′D̂x̂− c′D̄c

)
−
∑
dj=0

ĉj x̂j

where D̄ is a partial inverse of D depending on its diagonal elements dj by

d̄j =


1/dj for dj 6= 0

0 for dj = 0

.

A.3. Transformation computation

Computational cost of the transformed and the original problems are available in the

Table A.1 for the worst case that Z = ∅ with |P | = n1, |N | = n2 where | · | is the number

of elements of the corresponding vector so n1 + n2 = n. According to Table A.1, the

transformed problem is more efficient than the original problem if the difference is less than
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Table A.1.: Computational comparison of transformed and original problems
With Transformation Without Transformation

Computation Cost Computation Cost

Objective
value

∑
∀j djx

2
j 3n− 1

∑
∀j djx

2
j − cjxj 5n− 1

Break
points

−djuj and −djlj
−dj(lj + uj)/2

2n1
†1

3n2
†2

(cj − djlj)/aj and
(cj − djuj)/aj[

cj − 1
2dj(lj + uj)

]
/aj

6n1
†1

5n2
†2

Transfo-
rmation†3

Including back
transformation for x

15n−1

Total
(fixed) 18n− 2 + 2n1 + 3n2 5n− 1 + 6n1 + 5n2

x(λ) in an
iteration

median{lj , uj ,−λ/dj}
λ > breakpoint

3n1

n2

median{lj , uj ,
(cj − λaj)/dj}
λ > breakpoint

5n1

n2

g(λ) in an
iteration

∑
∀j xj(λ)− b n aTx(λ)− b 2n

Total (in an
iteration) 3n1 + n2 + n 5n1 + n2 + 2n

Note that we do not count operations for changing the sign.
†1 Operations to compute breakpoint for dj > 0

†2 Operations to compute breakpoint for dj ≤ 0

zero as

(13n− 2− 4n1 − 2n2) + iteration× (−2n1 − n) < 0,

and the number of iteration that solving the transformed problem is more efficient than the

original problem is obtained by considering tow extreme cases: strictly convex and strictly

concave cases.

If (P ) is in the strictly convex case (that is, n1 = n and n2 = 0),

Iteration ≥ 3 > 3− 2

3n
.

If (P ) is in the strictly concave case (that is, n1 = 0 and n2 = n),

Iteration ≥ 11 > 11− 2

n
.
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Thus, the transformed problem is computationally more efficient than the original problem

if the iteration is more than 3 for the strictly convex case and more than 11 for any general

case.

A.4. Another derivation of xj(λ) for j ∈ N

In addition to the geometric intuition in the Section 4.2.1 for xj j ∈ N , we can find it

algebraically comparing the objective values.

• If xj = lj results in the less objective value than xj = uj ,

1

2
djl

2
j + λlj <

1

2
dju

2
j + λuj ⇒ −dj(lj + uj)/2 < λ.

• If xj = uj results in less objective value than xj = lj ,

1

2
djl

2
j + λlj >

1

2
dju

2
j + λuj ⇒ −dj(lj + uj)/2 > λ.

• If the objective value is same at xj = lj and uj ,

1

2
djl

2
j + λlj =

1

2
dju

2
j + λuj ⇒ λ = −dj(lj + uj)/2

Thus, xj(λ) for j ∈ N in the Section 4.2.1 is proved to be correct algebraically.

A.5. Compared solvers

There are a lot of solvers for non-convex quadratic programming. The web page1 of Gould

and Toint lists 28 solvers, and Hans Mittelmann lists more solvers and test problems in his

web site2. The solvers and options that are used for our experiments are listed below.

1http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
2http://plato.asu.edu/sub/nlores.html#QP-problem
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A.5.1. Global solver

Recently, Chen and Burer (2012, [23]) implemented their global algorithm for quadratic

programming in Matlab and share it in their website3. For fair time comparison, we used

an option

optChen.verbosity=0;

not to display any result during it solves the problem, and added

quadopts.Algorithm=’active-set’;

in the code not to display Matlab’s warning message when it use Matlab as a sub

solver. Because it also uses cplexlp.m of Cplex as a sub solver, we added a path to link

the solvers in Matlab. Moreover, we gave the time limit with the option max_time in the

code. For example, for 30 minutes time limit, the option is made with

optChen.max_time=60*30;

When the code reaches the time limit, it yields its best optimum solution.

A.5.2. Local solver

As we considered in methodology Section 2.4.1, only three algorithms are available for

indefinite case of (P ) in literature. Among the methods, we implemented a local solver of

Vavasis [132] because the piecewise linear approximation method of Pardalos and Kovoor

[101] and ε − approximation method of [131] get seriously deteriorated as the size of N

increases and practically hard to implement as authors never tried it.

Vavasis [132] suggested four versions of algorithms, but he implemented only two versions

of IKP1 (O(n3) complexity) and IKP2 (O(n2 log n) complexity) due to implementation

difficulties. Although IKP2 has lower complexity than IKP1, his experiments show that IKP1

is about 13 times faster than IKP2 for the size of up to 80. Therefore, we chose IKP1 to

implement as a local solver.
3http://dollar.biz.uiowa.edu/~sburer/pmwiki/pmwiki.php%3Fn=Main.QuadprogBB%3Faction=logout.html
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A.5.3. Commercial solver

Our algorithms are compared with the commercial solvers of IBM Cplex (version 12.5 and

12.6) and Matlab 2013a. Cplex provides its quadratic programming solver in Matlab

with a function name of cplexqp.m. Since the version 12.34 (June 2011), Cplex has allowed

users to obtain a solution that satisfies first order optimality KKT conditions for non-convex

problems with an option of

optCplex=cplexoptimset(’cplex’); optCplex.solutiontarget=2;,

and Cplex just launched a global quadratic solver in Dec 2013. The global solver is callable

with an option of

optCplex=cplexoptimset(’cplex’); optCplex.solutiontarget=3;

Cplex has various quadratic programming algorithms: Primal Simplex, Dual Simplex,

Network Simplex, Barrier, and Concurrent methods, but we let Cplex choose the best

algorithm as its default. The time limit option for Cplex can be given by, for 2 hours,

optCplex.timelimit=60*60*2;

Matlab includes quadprog.m as a built-in function for general non-global quadratic pro-

gramming with three algorithms, but we can use only Active-set method with an option of

optsMat=optimset(’Algorithm’,’active-set’,’Display’,’off’);

to solve indefinite case of (P ) because its Trust-region-reflective method can solve only

bound constrained or linear equality constrained problems, and Interior-point-convex

method is only for for convex quadratic programming. The Active-set method we used is

also known as a projection method and is based on studies of [47, 46, 45].

4One can refer the online manual at http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r3/index.jsp?topic=%2Filog.odms.studio.help%2FContent
%2FOptimization%2FDocumentation%2FOptimization_Studio%2F_pubskel%2Fps_COS_Eclipse7.html
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A.6. Initial expected λ by a sigmoid function

An initial λ for secant method can be expected by the folded logistic regression function

b =
1

1 + eλ
∈ (0, 1)

adjusting the sigmoid shape in the ranges of [λmin, λmax] and (bmin, bmax) where bmin =∑
lj>−∞ lj and bmax =

∑
uj<∞ uj by

b =
bmax − bmin

1 + exp
[(
λ− λmax+λmin

2

)
M

λmax−λmin

] + bmin

b− bmin∑
u− bmin

=
1

1 + exp
[(
λ− λmax+λmin

2

)
M

λmax−λmin

]
bmax − bmin
b− bmin

− 1 = exp

[(
λ− λmax + λmin

2

)
M

λmax − λmin

]
ln

(
bmax − bmin
b− bmin

− 1

)
=

(
λ− λmax + λmin

2

)(
M

λmax − λmin

)
λ =

(
λmax − λmin

M

)
ln

(
bmax − bmin
b− bmin

− 1

)
+
λmax + λmin

2

with a large enough M such that

M ≥ −2ln

(
π

1− π

)
where π =

δ

bmax − bmin

Because the sigmoid function never reaches 0 or 1, it cannot be exactly adjusted to pass the

points of bmax at λmin and bmin at λmax. So δ is used to control gap between bmax and the

point of sigmoid line at λmin, and the same gap is applied for the point at λmax. Thus, with
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a value of δ ∈ (0, bmax − bmin), a large enough M can be obtained by

bmax − b = δ

bmax − bmin =

 bmax − bmin
1 + exp

[(
λmin − λmax+λmin

2

)
M

λmax−λmin

]
+ δ

bmax − bmin =

(
bmax − bmin

1 + exp(−M/2)

)
+ δ

1 + exp(−M/2) = 1 + δ

(
1 + exp(−M/2)

bmax − bmin

)

Let π = δ
bmax−bmin and note that π < 1 because δ < bmax − bmin.

1 + exp(−M/2) = 1 + π [1 + exp(−M/2)]

exp(−M/2) (1− π) = π

exp(−M/2) = π/ (1− π)

M = −2ln

(
π

1− π

)

Note that the last line for M is similar to -2 Log likelihood ratio with an odd of π.
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A.7. Supplemental experiment results

A.7.1. Chapter 3

Table A.2.: Sensitivity of OBG on (n, δ, ζ, ν)

Solver Data size Solution Problem size, n, in millions

name parameter details 0.5 0.75 1 1.25 1.5

OBG δ = 10 cpu sec 27.7 48.5 80.8 157.2 229.0

(ζ = 0, (cov) (0.576) (0.511) (0.469) (0.393) (0.335)

ν = 0.5) δ = 100 cpu sec 186.8 477.8 524.8 972.1 1247.3

(cov) (0.319) (0.573) (0.622) (0.478) (0.673)

OBG δ = 10 cpu sec 31.9 93.8 105.2 169.7 207.3

(ζ = 0.2, (cov) (0.472) (0.463) (0.268) (0.299) (0.345)

ν = 0.5) δ = 100 cpu sec 267.1 573.0 584.5 1113.9 1489.2

(cov) (0.419) (0.399) (0.604) (0.243) (0.332)

OBG δ = 10 cpu sec 28.6 47.0 107.8 125.7 220.4

(ζ = 0, (cov) (0.393) (0.318) (0.444) (0.404) (0.325)

ν = 0.8) δ = 100 cpu sec 201.7 427.5 773.3 878.9 1078.7

(cov) (0.372) (0.293) (0.474) (0.553) (0.578)

OBG δ = 10 cpu sec 22.5 46.9 57.3 99.8 100.4

(ζ = 0.2, (cov) (0.414) (0.333) (0.445) (0.353) (0.355)

ν = 0.8) δ = 100 cpu sec 135.9 311.5 454.3 686.3 783.8

(cov) (0.373) (0.379) (0.473) (0.419) (0.491)

1. CPX-G is not tested because it spends over 1 hour in the tested sizes.
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A.7.2. Chapter 4

A.7.2.1. Experiment results for strictly convex case of (P )

Table A.3.: Range of seconds by size and problem for strictly convex case
Small coefficient problem

Size,Problem 1e6 2e6 3e6 4e6 5e6 T1 T2 T3

Bisection [0.2, 0.2] [0.4, 0.5] [0.6, 0.7] [0.8, 0.9] [1, 1.1] [0.2, 1.1] [0.2, 1] [0.2, 1]

Sorting [0.3, 0.4] [0.7, 0.8] [1, 1.2] [1.3, 1.6] [1.7, 2.1] [0.3, 2.1] [0.3, 2] [0.3, 2]

Median [0.2, 0.3] [0.5, 0.6] [0.7, 0.9] [1, 1.1] [1.3, 1.4] [0.2, 1.4] [0.2, 1.4] [0.2, 1.4]

Newton [0.2, 0.3] [0.3, 0.5] [0.5, 0.8] [0.6, 1.2] [0.7, 1.4] [0.2, 1.4] [0.2, 1.3] [0.2, 1.3]

Secant [0.1, 0.1] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.4, 0.6] [0.1, 0.6] [0.1, 0.6] [0.1, 0.6]

Interval [0.2, 0.9] [0.4, 1.9] [0.6, 2.8] [0.9, 3.7] [1, 4.6] [0.2, 3.2] [0.2, 4.6] [0.3, 3.8]

Sec+Sor [0.1, 0.2] [0.2, 0.4] [0.3, 0.7] [0.4, 0.9] [0.6, 1.1] [0.1, 1.1] [0.2, 1.1] [0.2, 1]

Sec+Med [0.1, 0.2] [0.2, 0.4] [0.3, 0.7] [0.4, 0.9] [0.6, 1.1] [0.1, 1.1] [0.1, 1.1] [0.2, 1]

Sec+Int [0.1, 0.2] [0.2, 0.4] [0.3, 0.6] [0.4, 0.8] [0.5, 1] [0.1, 1] [0.1, 1] [0.1, 1]

New+Med [0.1, 0.3] [0.3, 0.6] [0.5, 1] [0.6, 1.4] [0.7, 1.6] [0.2, 1.6] [0.2, 1.5] [0.1, 1.5]

New+Int [0.2, 0.3] [0.3, 0.7] [0.4, 1.1] [0.6, 1.5] [0.7, 1.8] [0.2, 1.8] [0.2, 1.7] [0.2, 1.7]

Pegging [0.3, 0.4] [0.6, 0.8] [0.9, 1.2] [1.2, 1.5] [1.5, 1.9] [0.3, 1.9] [0.3, 1.9] [0.3, 1.8]

Large coefficient problem

Size, Problem 1e6 2e6 3e6 4e6 5e6 T4 T5 T6

Bisection [0.3, 0.5] [0.6, 0.9] [0.9, 1.2] [1.1, 1.6] [1.4, 2] [0.4, 2] [0.3, 1.5] [0.3, 1.5]

Sorting [0.3, 0.5] [0.7, 0.9] [1, 1.4] [1.3, 1.9] [1.7, 2.4] [0.4, 2.4] [0.3, 2] [0.4, 2.3]

Median [0.2, 0.4] [0.5, 0.7] [0.7, 1] [1, 1.4] [1.2, 1.8] [0.3, 1.8] [0.2, 1.4] [0.3, 1.7]

Newton [0.2, 3.4] [0.3, 14.8] [0.4, 4.3] [0.7, 37.8] [0.7, 7] [0.2, 1.7] [0.2, 1.5] [0.3, 37.8]

Secant [0.1, 0.2] [0.2, 0.4] [0.3, 0.6] [0.4, 0.8] [0.6, 1] [0.2, 1] [0.1, 0.7] [0.2, 0.9]

Interval [0.2, 0.3] [0.3, 0.6] [0.5, 0.9] [0.6, 1.2] [0.8, 1.5] [0.2, 1.3] [0.2, 1.1] [0.2, 1.5]

Sec+Sor [0.1, 0.2] [0.2, 0.5] [0.3, 0.7] [0.4, 1] [0.6, 1.2] [0.2, 1.2] [0.1, 0.9] [0.2, 1.2]

Sec+Med [0.1, 0.3] [0.2, 0.5] [0.3, 0.7] [0.4, 0.9] [0.6, 1.1] [0.2, 1.1] [0.1, 0.9] [0.2, 1.1]

Sec+Int [0.1, 0.3] [0.2, 0.6] [0.3, 0.8] [0.4, 1.1] [0.6, 1.3] [0.2, 1.3] [0.1, 1.1] [0.2, 1.3]

New+Med [0.1, 2.4] [0.3, 13.3] [0.4, 4.4] [0.7, 37.9] [0.7, 6.9] [0.2, 2] [0.1, 1.5] [0.3, 37.9]

New+Int [0.1, 2.5] [0.3, 13.3] [0.4, 4.5] [0.7, 38.2] [0.7, 7.1] [0.2, 2.1] [0.1, 1.8] [0.3, 38.2]

Pegging [0.2, 0.4] [0.5, 0.9] [0.7, 1.4] [1, 1.9] [1.2, 2.2] [0.4, 2.2] [0.2, 1.6] [0.4, 2.2]

205



Table A.4.: Range of iteration by size and problem for strictly convex case
Small coefficient problem

Size, Problem 1e6 2e6 3e6 4e6 5e6 T1 T2 T3

Bisection [27, 29] [27, 29] [27, 29] [27, 29] [27, 29] [29, 29] [27, 28] [28, 28]

Sorting [21, 21] [22, 22] [23, 23] [23, 23] [24, 24] [21, 24] [21, 24] [21, 24]

Median [21, 21] [22, 22] [23, 23] [23, 23] [24, 24] [21, 24] [21, 24] [21, 24]

Newton [4, 8] [4, 8] [4, 8] [4, 9] [4, 8] [4, 9] [4, 8] [4, 8]

Secant [8, 14] [8, 16] [9, 16] [9, 16] [8, 16] [9, 15] [8, 16] [9, 16]

Interval [4, 4] [4, 4] [4, 4] [4, 4] [4, 4] [4, 4] [4, 4] [4, 4]

Sec+Sor [10, 25] [12, 26] [13, 25] [13, 25] [13, 26] [12, 25] [10, 26] [13, 21]

Sec+Med [10, 25] [12, 26] [13, 25] [13, 25] [13, 26] [12, 25] [10, 26] [13, 21]

Sec+Int [6, 14] [6, 15] [6, 14] [6, 14] [6, 15] [7, 15] [6, 12] [8, 12]

New+Med [4, 12] [4, 9] [4, 10] [4, 10] [4, 11] [4, 11] [4, 12] [4, 12]

New+Int [3, 8] [4, 8] [4, 8] [4, 9] [4, 8] [4, 9] [3, 8] [3, 8]

Pegging [7, 9] [7, 10] [7, 10] [7, 10] [7, 10] [7, 10] [7, 9] [7, 9]

Large coefficient problem

Size, Problem 1e6 2e6 3e6 4e6 5e6 T4 T5 T6

Bisection [36, 54] [36, 54] [36, 54] [36, 54] [36, 54] [53, 54] [44, 47] [36, 36]

Sorting [21, 21] [22, 22] [23, 23] [23, 23] [24, 24] [21, 24] [21, 24] [21, 24]

Median [21, 21] [22, 22] [23, 23] [23, 23] [24, 24] [21, 24] [21, 24] [21, 24]

Newton [5, 106] [5, 267] [5, 48] [5, 347] [5, 45] [5, 9] [5, 10] [5, 347]

Secant [10, 18] [10, 18] [10, 19] [10, 18] [10, 19] [10, 15] [13, 19] [10, 16]

Interval [5, 10] [5, 10] [5, 10] [5, 10] [5, 10] [6, 7] [9, 10] [5, 6]

Sec+Sor [8, 18] [8, 18] [9, 19] [9, 18] [10, 18] [11, 15] [13, 19] [8, 15]

Sec+Med [8, 18] [8, 18] [9, 19] [9, 18] [10, 18] [11, 15] [13, 19] [8, 15]

Sec+Int [8, 18] [8, 18] [8, 19] [8, 18] [8, 18] [9, 12] [13, 19] [8, 15]

New+Med [4, 84] [4, 239] [5, 48] [5, 347] [5, 45] [5, 9] [5, 10] [4, 347]

New+Int [4, 84] [4, 239] [4, 48] [4, 347] [4, 45] [5, 9] [5, 10] [4, 347]

Pegging [5, 9] [5, 9] [5, 9] [5, 9] [5, 9] [6, 8] [5, 7] [7, 9]

* Iteration for interval test method is only for bracketing phase Algorithm 2.5 of [31]
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A.7.2.2. Experiment results for indefinite case of (P )

Table A.5.: Range of seconds by size and problem for indefinite case
Small coefficient problem

Size,Problem 1e6 2e6 3e6 4e6 5e6 T1 T2 T3

Bisection [0.5, 1] [1, 2] [1.5, 3] [2.2, 4] [2.5, 5.3] [0.6, 5] [0.5, 5] [0.6, 5.3]

Sorting [0.5, 0.9] [1, 1.8] [1.6, 2.7] [2.1, 3.7] [2.7, 4.8] [0.5, 4.6] [0.5, 4.5] [0.5, 4.8]

Median [0.4, 0.8] [0.9, 1.7] [1.3, 2.6] [1.8, 3.4] [2.3, 4.6] [0.4, 4.2] [0.4, 4.2] [0.4, 4.6]

Newton [0.3, 1.3] [0.6, 2.4] [0.8, 3.6] [1.2, 4.5] [1.4, 5.7] [0.3, 5.4] [0.3, 5.7] [0.3, 5.6]

Secant [0.2, 1.2] [0.4, 2] [0.7, 2.9] [0.8, 3.9] [1.1, 4.8] [0.2, 4.3] [0.2, 4.8] [0.2, 4.8]

Interval [0.2, 1.5] [0.4, 2] [0.7, 3] [0.9, 3.7] [1.1, 4.8] [0.2, 4.2] [0.2, 4.8] [0.2, 3.6]

Sec+Sor [0.3, 0.9] [0.5, 1.8] [0.7, 2.6] [1, 3.6] [1.3, 4.5] [0.3, 3.9] [0.3, 4.5] [0.3, 4.2]

Sec+Med [0.3, 0.9] [0.5, 1.8] [0.7, 2.5] [1, 3.7] [1.3, 4.5] [0.3, 3.8] [0.3, 4.5] [0.3, 4.2]

Sec+Int [0.2, 0.5] [0.5, 1.1] [0.7, 1.6] [0.9, 2.2] [1.2, 3] [0.2, 2.7] [0.2, 3] [0.2, 2.5]

New+Med [0.3, 1] [0.6, 2] [0.8, 3.1] [1.2, 4.2] [1.4, 5.1] [0.3, 4.7] [0.3, 5.1] [0.3, 4.9]

New+Int [0.3, 0.6] [0.6, 1.2] [0.8, 1.8] [1.2, 2.5] [1.4, 3.1] [0.3, 2.8] [0.3, 3.1] [0.3, 2.8]

Large coefficient problem

Size,Problem 1e6 2e6 3e6 4e6 5e6 T4 T5 T6

Bisection [0.6, 1.7] [1.1, 3.4] [1.7, 4.9] [2.3, 6.5] [2.9, 8] [0.7, 8] [0.7, 7.7] [0.6, 6.9]

Sorting [0.5, 0.9] [1, 1.9] [1.5, 3] [2.1, 3.9] [2.6, 4.9] [0.6, 4.9] [0.5, 4.6] [0.5, 4.9]

Median [0.4, 0.9] [0.9, 1.8] [1.3, 2.8] [1.8, 3.7] [2.3, 4.6] [0.5, 4.6] [0.4, 4.3] [0.4, 4.6]

Newton [0.2, 3.1] [0.5, 11] [0.7, 11.2] [0.9, 10.2] [1.2, 40.6] [0.4, 8.9] [0.2, 8.5] [0.3, 40.6]

Secant [0.3, 1.9] [0.5, 3.9] [0.7, 6.3] [1.1, 7.2] [1.3, 9.9] [0.3, 7.1] [0.3, 9.9] [0.3, 6]

Interval [0.2, 0.5] [0.5, 0.9] [0.7, 1.3] [1, 1.8] [1.2, 2.2] [0.3, 2.2] [0.2, 2] [0.3, 2.2]

Sec+Sor [0.3, 1] [0.6, 2.1] [0.8, 3.1] [1.1, 3.8] [1.3, 4.4] [0.3, 3.8] [0.3, 4.4] [0.3, 3.3]

Sec+Med [0.3, 1.1] [0.6, 2.1] [0.7, 3.1] [1.1, 3.8] [1.3, 4.3] [0.3, 3.8] [0.3, 4.3] [0.3, 3.3]

Sec+Int [0.3, 1] [0.5, 2] [0.7, 2.9] [1.1, 3.5] [1.3, 4.1] [0.3, 3] [0.3, 4.1] [0.3, 2.7]

New+Med [0.2, 1.1] [0.5, 2.8] [0.7, 3.2] [0.9, 5] [1.2, 5.2] [0.4, 5.2] [0.2, 4.8] [0.3, 5]

New+Int [0.2, 1.1] [0.5, 2.6] [0.7, 3.1] [0.9, 4.4] [1.2, 4.9] [0.4, 4.9] [0.2, 4.5] [0.3, 4.4]
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Table A.6.: Range of iteration by size and problem for indefinite case
Small coefficient problem

Size,Problem 1e6 2e6 3e6 4e6 5e6 T1 T2 T3

Bisection [28, 52] [28, 36] [28, 36] [28, 54] [28, 36] [30, 54] [28, 52] [29, 52]

Sorting [21, 21] [22, 22] [22, 23] [23, 23] [23, 24] [21, 24] [21, 24] [21, 24]

Median [21, 21] [22, 22] [22, 23] [23, 23] [23, 24] [21, 24] [21, 24] [21, 24]

Newton [6, 47] [6, 46] [6, 46] [7, 43] [6, 52] [6, 49] [6, 52] [6, 46]

Secant [8, 41] [8, 45] [9, 46] [7, 42] [8, 41] [8, 38] [7, 41] [8, 46]

Interval [3, 4] [3, 4] [3, 4] [3, 4] [3, 4] [3, 4] [3, 4] [3, 4]

Sec+Sor [9, 27] [9, 28] [8, 27] [9, 29] [9, 30] [10, 25] [9, 30] [8, 26]

Sec+Med [9, 27] [9, 28] [8, 27] [9, 29] [9, 30] [10, 25] [9, 30] [8, 26]

Sec+Int [4, 20] [4, 22] [6, 20] [4, 20] [4, 21] [4, 17] [4, 21] [6, 22]

New+Med [6, 33] [6, 35] [6, 35] [6, 35] [6, 48] [6, 34] [6, 48] [6, 34]

New+Int [4, 21] [5, 21] [4, 21] [5, 20] [5, 37] [5, 21] [4, 37] [5, 21]

Large coefficient problem

Size,Problem 1e6 2e6 3e6 4e6 5e6 T4 T5 T6

Bisection [36, 79] [36, 59] [36, 59] [36, 81] [36, 59] [53, 81] [42, 55] [36, 42]

Sorting [21, 21] [22, 22] [22, 23] [23, 23] [23, 24] [21, 24] [21, 24] [21, 24]

Median [21, 21] [22, 22] [22, 23] [23, 23] [23, 24] [21, 24] [21, 24] [21, 24]

Newton [3, 93] [4, 212] [4, 118] [4, 87] [4, 313] [9, 66] [3, 122] [8, 313]

Secant [8, 70] [9, 68] [6, 72] [8, 66] [7, 77] [11, 49] [6, 77] [11, 43]

Interval [4, 10] [5, 10] [4, 10] [5, 10] [4, 10] [6, 7] [4, 10] [5, 6]

Sec+Sor [8, 41] [9, 34] [7, 36] [9, 31] [7, 31] [11, 21] [7, 41] [8, 18]

Sec+Med [8, 41] [9, 34] [7, 36] [9, 31] [7, 31] [11, 21] [7, 41] [8, 18]

Sec+Int [7, 40] [7, 33] [6, 35] [7, 30] [7, 30] [9, 17] [6, 40] [7, 17]

New+Med [3, 39] [4, 55] [4, 38] [4, 39] [4, 37] [8, 39] [3, 55] [6, 39]

New+Int [3, 36] [4, 49] [4, 35] [4, 35] [4, 36] [8, 34] [3, 49] [4, 32]

* Iteration for interval test method is only for bracketing phase Algorithm 2.5 of [31]

Table A.7.: Range of the number of breakpoints after bracketing phase
Small coefficient problem

% of negative dj 0 30 60 90

Interval [411294, 9092367] [10012, 6287608] [79, 3000000] [341888, 4500000]

Sec+Sor, Sec+Med,Sec+Int [0, 80936] [0, 47316] [0, 33136] [1, 39735]

New+Med, New+Int [0, 407] [0, 40774] [0, 37701] [41, 69781]

Large coefficient problem

% of negative dj 0 30 60 90

Interval [27609, 1859865] [5574, 1558528] [54, 1266247] [9285, 2004095]

Sec+Sor, Sec+Med,Sec+Int [0, 53] [0, 102] [0, 110] [0, 166]

New+Med, New+Int [0, 18] [0, 333] [0, 241] [0, 264]
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Table A.8.: Average seconds by % of negative dj
Small coefficient problem Large coefficient problem

% of negative dj 0 30 60 90 % of negative dj 0 30 60 90

Sec+Int 0.53 0.85 1.05 1.13 Interval 0.69 1.02 1.13 1.16

New+Int 0.80 1.06 1.16 1.38 Sec+Int 0.64 1.12 1.39 1.60

Secant 0.32 0.89 1.50 2.10 Sec+Med 0.59 1.15 1.54 1.88

Sec+Med 0.57 1.12 1.58 1.99 Sec+Sor 0.59 1.15 1.55 1.88

Sec+Sor 0.57 1.12 1.58 2.00 New+Int 1.05 1.68 1.45 1.70

Interval 1.53 1.30 1.27 1.78 New+Med 0.98 1.78 1.64 2.04

New+Med 0.72 1.16 1.65 2.52 Median 0.90 1.58 2.03 2.38

Newton 0.63 1.17 1.76 2.51 Secant 0.47 1.33 2.15 3.22

Median 0.79 1.42 1.89 2.30 Sorting 1.20 1.83 2.25 2.55

Bisection 0.62 1.68 2.20 2.74 Newton 0.99 2.53 2.65 3.45

Sorting 1.08 1.67 2.09 2.47 Bisection 0.99 2.25 3.10 3.85

* Lists are sorted in total time for each size of coefficients.
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B. Implementation in Matlab

In this dissertation, all algorithm implementations and experiments are done in Matlab,

but there are issues in implementation due to Matlab’s features such as Just-in-Time

compilation, copy-on-write type editing, and fast full vector computation. Considering the

issues, we present why we do not include fixing Algorithm 4.5 in our code for CBS and what

sorting and median algorithms, which are main sub procedure for sorting, medians search,

and interval test methods, are employed in our implementation.

B.1. Implementation in Matlab

The performance of sorting, median search, and interval test methods in Chapter 4 are

mainly dependent on sorting or median algorithms, which dominate complexity of the meth-

ods. So we need to choose an efficient sorting and median algorithms to implement methods.

Sorting algorithm

According to the book of Press and Teukolsky (2007, Numerical recipe [108]), “For large N

(say > 1000), QuickSort is faster, on most machines, by a factor of 1.5 or 2; it requires

a bit of extra memory, however, and is a moderately complicated program” although its

worst case complexity is O(n2) and average case performance is O(n log n). For this rea-

son, most literature that considered sorting method used QuickSort of Hoare [51] for their

implementation and experiments. Matlab has a built-in sorting function sort.m, which

implements QuickSort (See the web site manual 1). Thus, we use the Matlab’s built-in

sort.m for all sorting procedure in our implementation.
1http://www.mathworks.com/support/solutions/en/data/1-15K1B/
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Median search algorithm

For the median algorithm, it has been proved that Select of Floyd and Rivest [43] performs

best in practice by Kiwiel [66], and the book of Press and Teukolsky (2007, Numerical recipe

[108]) also mentions about Select as “the fastest general method for selection, allowing

rearrangement, is partitioning, exactly as was done in the QuickSort algorithm.” Thus,

Select may be the best choice for our implementation. However, Matlab’s built-in median

function median.m does not use Select. Instead, it first sorts entire elements in an array

using its sort.m function and picks the median2 so median search method cannot have

superiority over sorting method if median.m is used.

We can implement the algorithm of Select in Matlab, but it may not be efficient because

median search method uses it multiple times in every iteration, and generally such a sub

function performs significantly better if it is coded in C/C++ or Fortran and complied

for Matlab with Mex complier. Fortunately, Peter Li shares his Mex codes through a web

site of Matlab central3, and the code allows to compile the C++ standard template library

nth_element into Mex Matlab function. The template code nth_element guarantees the

O(n) expected time as described in the technical report [56] of International Standardization

Organization (ISO).

In the shared files of Peter Li, there are two types of median functions: fast_median.m for

copy-on-write type and fast_median_ip.m for in-place type. The in-place type is generally

faster and consume less memory than the copy-on-write type because the in-place type

directly swaps memory address to rearrange elements on the left half for ones that are

less than median and on the right for the rest of ones, while the copy-on-write type first

copies the input data in a separate memory and finds the median in the same way. In our

experiments, for an array with the size of n = 106, fast_median_ip.m is about 5 times

faster than Matlab’ median.m and about 1.3 times faster than fast_median.m on average.

Although Matlab persists copy-on-write type for its built-in functions, the in-place type

coincides with the purpose in median search method because we can exclude half of break-

2One can type “edit median” on Matlab’s command window to see the Matlab’s built-in median.m code.
3http://www.mathworks.com/matlabcentral/fileexchange/29453-nthelement
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points simply selecting first half or last half of the breakpoint array after finding median

by fast_median_ip.m. Therefore, we use fast_median_ip.m to implement median search

method.

Time measurement; tic/toc

Since a main performance measurement is the elapsed time of solvers, we carefully chose

a method to measure time. Matlab has two time measurement functions, cputime and

tic/toc. cputime records CPU time that Matlab actually spends for its operations, while

tic/toc functions just like a stop watch timer. So tic/toc may be sensitively influenced

by the computer’s environment. However, according to the online manual4 of Matlab,

tic/toc is recommended especially for Windows operations that we used for experiments

because cputime can fail to measure proper time if it is used in hyperthreading running

Windows system. Therefore, all time records in our experiments are measured by tic/toc.

B.2. Efficient coding in Matlab

In our suggested hybrid methods in Chapter 4, we include fixing algorithm 4.5 because it

efficiently reduces the size of problem fixing variables at its one of extreme points every

iteration; however, it does not improve the performance if the methods are implemented in

Matlab because it is a dynamic programming language. While the third generation pro-

gramming language (3GL) such as C/C++ or Fortran compiles before it executes, Matlab

a fourth generation programming languages (4GL) compiles its code for each line dynami-

cally so we call it Just-in-Time (JIT) compilation. It is very convenient when programmers

make prototype implementations because it interactively gives feedback for each line and is

easy to modify array size and data type during execution.

As a JIT programming language, Matlab supposedly does not have pointers to access

a memory directly with a memory address, and instead it copies the data allocating new

memory temporarily when a part of an array is used and then releases it from memory. The

4http://www.mathworks.com/help/matlab/matlab_prog/analyzing-your-programs-performance.html
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time for this operation is very considerable especially when the size is big and even results

worse if it needs to use virtual memory and page swaps.

However, the pure methods and proposed hybrid methods need to use pointers very fre-

quently to implement fixing algorithm 4.5 and get x(λ) every iteration because each variables

can be calculated by its separate coefficients. We found three indexing options which can

role as pointers in Matlab;

• Numerical index

• Logical index

• Handle object trick.

The first easy idea is numerical integer index set. Matlab allows to define four kinds of

unsigned integers5 by uint8, uint16, unit32, uint64. Each number after int represents

the size of bits for each element and maximum allowable integer number; for example, we

can hold integer numbers from 0 to 28− 1 by uint8 with 1 byte (= 8bits) for each element.

So it may be enough to use unit32 for experiments because it can hold an index number

up to about 4.29e9. The second option is logical index so called boolean array or true/false

array. Each element in a logical array is a binary number of either 0 or 1 consuming 1 bit.

In the respect to the efficient memory usage, it is not obvious to choose one of two options.

Suppose we solve (P ) for n variables. Then, memory has to be allocated for an index set

with 4n bytes if unit32 integer index is used and with n bytes if logical index is used.

Initially the numerical index consumes 4 times more memory than the logical index, but it

gradually reduces its memory usage and consumes less memory when the number of unfixed

variables are less than n/4, while logical index always hold n bytes. The third option is a

trick utilizing classdef and handle. As in the online Matlab manual6, we can define a

new class that allows to access memory directly as pointer does.

However, we have to consider another feature of Matlab before we choose one of three

indexing options. It is generally known that Matlab is highly specialized for vector and
5http://www.mathworks.com/help/matlab/matlab_prog/integers.html
6http://www.mathworks.com/help/matlab/matlab_oop/creating-object-arrays.html#brd4nrh and for a
simple example see http://www.matlabtips.com/how-to-point-at-in-matlab/
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matrix computation and the speed is dramatically faster than loops such as for-loop

and while-loop. To overcome the drawback, Matlab has developed and improved JIT

accelerator since version 6.5 (2002). It sometimes makes for-loop faster than vector

computation, but it works only when some strict conditions are satisfied (see [81] for condi-

tions) and any official manual has not been published due to its imperfection. So we have

observed that for-loop with all three indexing options is significantly slower than full vector

computation during we implement methods in Matlab.

Alternatively we may use vector computation with an index set as Matlab generally

recommends in its manual. For example, if we want to get s =
∑

j∈I ajbj with a subset

I ⊆ {1, 2..., n}, we can code it by

s=a(I)’*b(I)

in Matlab instead of for-loop. However, full vector computation

s=a’*b

is still much faster than (B.2).
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Figure B.1.: Computation time for s =
∑

j∈I ajbj

Figure B.1 shows the average computation time of (B.2) with numerical indexing and

logical indexing and (B.2) on various random subset size of 1% to 100% in n = 1e6. The full

vector computation is extremely faster than other indexing methods when the size of subset

is over approximately 5% for numerical indexing and is over approximately 1% for logical
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indexing. It is because of JIT compilation which abandons pointers. When Matlab calls a

part of array with an index set, it first check if the index is within the array and then allocate

temporary memory to copy the indexed elements and release the memory after computation

is finished. The time for the operations are not negligible and actually significant when the

array size is large.

Logical indexing is initially slower than numerical indexing, but it becomes much faster

when the size of subset is over approximately 15%. In addition to the speed advantage,

logical indexing is proper for our implementation because multiple index sets are used in

our codes and many index numbers are frequently in and out every iteration. If numerical

indexing is used, the size of memory for index sets fluctuates; thus, it harms the performance

of implementation while it dynamically allocate and release memory, and it may results

fragmented memory that also deteriorate the performance regardless of methods that the

codes implement. Therefore, we do not use fixing algorithm 4.5 in our implementation

and pursue the full vector computation and logical indexing coding style unless numerical

indexing is apparently better.
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