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Abstract 

 

 Pollen tube growth is an essential aspect of plant reproduction because it is the 

mechanism through which non-motile sperm cells are delivered to ovules thus allowing 

fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth 

depends on actin filaments. Plants encode class VIII and class XI myosins as actin-based motor 

proteins, of which class XI myosins are required for cell expansion in vegetative tissues. 

In Arabidopsis thaliana, 6 of 13 myosin XI genes are expressed in pollen: XIA, XIB, XIC, 

XID, XIE, and XIJ. Initially, two artificial microRNA constructs were designed to target multiple 

class XI myosins; however, plants expressing the artificial microRNAs had no reduction in 

overall fertility and only a slight reduction in root hair elongation. Therefore, to explore the 

functions of individual pollen myosins, homozygous T-DNA insertion mutants were isolated for 

all six pollen myosin genes. Single mutants had little or no reduction in overall fertility, whereas 

double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In 

particular, xic xie pollen tubes grew more slowly than WT pollen tubes, which resulted in 

reduced fitness compared to WT and a drastic reduction in seed set. Organelle motility was 

significantly reduced in xic xie pollen tubes; however, vesicle accumulation and actin filament 

dynamics were not altered in the double mutant. Thus, it remains unclear how reduced organelle 

motility in xic xie pollen tubes leads to a slower growth rate.  

A novel role of myosin XI in pollen germination was also revealed in this study. Pollen 

from mutants of XIJ, the only short-tailed myosin XI in Arabidopsis, germinated poorly in vitro. 

This in vitro pollen germination defect was rescued by the addition of diffusible components 

from female tissues. Interestingly in pollen grains, YFP-XIJ and YFP-XIA localized to the future 

site of germination, suggesting a role in pollen germination for multiple myosin XI isoforms. In 
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summary, this study provided the first direct evidence that class XI myosins are involved in 

pollen tube growth and pollen germination. 
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Chapter 1: Introduction – Myosins and Pollen Tubes 

 

• Section 1 of this chapter is revised from a review published by Stephanie L Madison and 

Andreas Nebenführ. 

Madison SL, Nebenführ A (2013) Understanding myosin functions in plants: are we 

there yet? Current Opinion in Plant Biology. 16: 710-717 
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1.1: Plant myosins 

 Myosins form a large family of motor proteins that convert the energy released by ATP 

hydrolysis into mechanical force to move cargo along actin filaments. Myosin genes are found in 

almost all eukaryotes and can be grouped into 35 different classes, of which class VIII and class 

XI are found in plants (Odronitz and Kollmar, 2007). A recent comprehensive analysis of all 

known plant myosins has provided a definitive picture of myosin evolution in plants 

(Mühlhausen and Kollmar, 2013). On the basis of this analysis a new, unified myosin 

nomenclature was proposed (Mühlhausen and Kollmar, 2013) which removes previous 

inconsistencies and makes interspecies comparisons easier by clearly identifying orthologs. Class 

XI myosins were divided into five subgroups (Myo11A, Myo11C, Myo11E, Myo11G, and 

Myo11H) with three subgroups being further divided into subtypes (Myo11A/B, Myo11C/D, and 

Myo11E/F; Table 1.1). Subtypes Myo11B, Myo11D, and Myo11F are the result of a relatively 

recent genome duplication and are only present in eudicots. 

Both classes of plant myosins have similar domain architecture (Figure 1.1) that is 

related to class V myosins in animals and fungi (Hammer and Sellers, 2012), with which they 

share a common ancestry (Odronitz and Kollmar, 2007). The motor domain binds actin and 

hydrolyzes ATP (Tominaga et al., 2003) and is preceded by an N-terminal SH3-like domain of 

unknown function. The neck domain, containing IQ motifs, acts as a lever arm and is bound by 

calmodulin-like proteins (Kinkema and Schiefelbein, 1994; Tominaga et al., 2012). The coiled-

coil domain facilitates dimerization (Li and Nebenführ, 2008a), and the globular tail functions as 

the cargo binding domain (Li and Nebenführ, 2007). Class VIII myosins also contain an N-

terminal extension, MyTH8 (Mühlhausen and Kollmar, 2013), and class XI myosins contain a 

dilute domain in the C-terminal globular tail (Odronitz and Kollmar, 2007). Interestingly, there is 

a subtype of myosin XI, Myo11D, which is only present in eudicots and is mostly comprised of 
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Table 1.1: New nomenclature of myosin XI genes based on their phylogenetic relationships 

 Arabidopsis thaliana Oryza sativa 
Subgroup/type New Old New Old 

Myo11A Myo11A1 XIA Myo11A1 OsMyoXID 
 Myo11A2 XID Myo11A2 OsMyoXIG 
   Myo11A3 OsMyoXIB 

Myo11B Myo11B1 XIB   
 Myo11B2 MYA2   
 Myo11B3 XIH   
 Myo11B4 XIG   

Myo11C Myo11C1 XIC Myo11C OsMyoXIJ 
 Myo11C2 XIE   

Myo11D Myo11D XIJ   
Myo11E Myo11E1 XIK Myo11E1 OsMyoXIH 

 Myo11E2 HDK* Myo11E2 OsMyoXIA 
   Myo11E3 OsMyoXIF 
   Myo11E4 (pseudogene) 

Myo11F Myo11F MYA1   
Myo11G Myo11G XI-I Myo11G1a OsMyoXIC 

   Myo11G1b OsMyoXIK 
   Myo11G2 OsMyoXIL 

Myo11H Myo11H XIF Myo11H OsMyoXIE 
* HDK is a headless derivative of XIK that lacks the motor and IQ domains. 
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Figure 1.1: Myosin domain structures 

 Consensus domain structures for myosin VIII, myosin XI, and short-tailed myosin XI as  

 described by Mühlhausen and Kollmar (2013). An SH3-like domain (orange), a motor  

domain (red), IQ motifs (blue), and a coiled-coil region (green) are found in all three  

types of myosins. The dilute domain (purple) normally found in myosin XI is lacking in 

short-tailed myosins, but is replaced by ~100 a.a. conserved sequence (pink) in short-

tailed myosins. Myosin VIII also includes an N-terminal MyTH8 domain (yellow). 

 

 

 

 

 0                 500              1000             1500      a.a.

Myosin VIII

Short-tailed Myosin XI

Myosin XI
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short-tailed myosins (Mühlhausen and Kollmar, 2013). Short-tailed myosins lack the normal 

myosin XI C-terminus that follows the coiled-coil domain, but instead contain a conserved C-

terminal sequence which encodes ~100 amino acids (Mühlhausen and Kollmar, 2013). The 

function of this domain is not known. 

The cellular function of myosins is generally assumed to be the movement of cellular 

components along actin filaments, which in the case of flowering plants takes the form of 

cytoplasmic streaming, that is, the rapid movement of organelles and cytosol throughout the cell 

(Shimmen, 2007). The biological function of this energetically very expensive process is largely 

unknown, although it has been proposed that the large size of plant cells necessitates a constant 

‘mixing’ of cytoplasm to ensure rapid distribution of metabolites (Shimmen and Yokota, 1994). 

Comparisons with the related class V myosins in animals and fungi, which are involved in 

establishing and maintaining cell polarity (Hammer and Sellers, 2012), suggest that plant 

myosins may also participate in other cellular processes, but evidence for such activities has been 

slow to emerge. Recent progress, primarily in the model species Arabidopsis thaliana and 

Physcomitrella patens, has shed new light on these questions and allows us to draw preliminary 

conclusions about myosin functions in plants. 

1.1.1: Loss of myosin VIII leads to growth defects in moss 

 Relatively little is known about class VIII myosins. Myosin VIII localization to the cell 

surface, endosomes, plasmodesmata, and the forming cell plate, as determined by 

immunolocalization and expression of fluorescently labeled tail constructs, implicated these 

motors in endocytosis, cell-cell communication/transport, and cell division (Reichelt et al., 1999; 

Van Damme et al., 2004; Avisar et al., 2008a; Golomb et al., 2008; Sattarzadeh et al., 2008; 

Yuan et al., 2011). The myosin VIII gene family in angiosperms is relatively small with typically 

two to four paralogs (Mühlhausen and Kollmar, 2013), but a genetic analysis has not been 
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described so far, making it difficult to assess the relevance of myosin VIII activity to any of these 

processes. By contrast, all five myosin VIII genes in the moss, Physcomitrella patens, have 

recently been disrupted to test the effect of these genes on gametophyte growth (Wu et al., 2011). 

Interestingly, the resulting quintuple mutant was found to be viable although of smaller size than 

wild-type. This implies that this class of myosins modulates growth by facilitating a process that 

is limiting for cell expansion. 

 Curiously, the smaller size and slower growth of the quintuple mutants was accompanied 

by developmental defects such as increased branching and earlier gametophore development. 

Additional experiments also revealed defects in hormone responses and nutrient utilization, 

suggesting that class VIII myosins can have pleiotropic effects on the physiology of plants (Wu 

et al., 2011). It remains to be seen whether these development defects are indirect effects of the 

reduced cell growth in the quintuple mutants, or whether a fundamental problem in hormone 

homeostasis in the mutants causes all the observed phenotypes. The excellent genetic tools 

available in P. patens (Bezanilla et al., 2005; Vidali et al., 2009a) will be instrumental in 

resolving this problem. 

1.1.2: Myosins are involved in transporting proteins to plasmodesmata  

 Class VIII and class XI myosins have been implicated in transporting plant and viral 

proteins to plasmodesmata (PD) in Nicotiana benthamiana. Overexpression of dominant-

negative myosin tail fragments reduced the PD dependent spread of several viruses. Myosin VIII 

tails blocked transport of Beet yellows virus Hsp70h and Rice stripe virus NSvc4 to the PD 

whereas myosin XI tails blocked the PD dependent spread of Grapevine fanleaf virus and 

Tobacco mosaic virus (Avisar et al., 2008a; Harries et al., 2009; Amari et al., 2011; Yuan et al., 

2011). Interestingly, both class VIII and XI tail fragments inhibited the transport of endogenous 

Plasmodesmata Located Protein 1 (PDLP1) through the secretory pathway to PD (Yuan et al., 



! 7!

2011). Another recent study contradicted this result showing PDLP1 transport to PD was only 

class XI myosin-dependent (Amari et al., 2011). Perhaps differences between the two studies 

were a result of different growth conditions. Overall, viruses have evolved various mechanisms 

for spreading through PD with each relying on specific myosins from either class of plant 

myosins. 

1.1.3: Myosin XI activity is required for expansion of many different cell types 

 Most of the effort towards understanding myosin function in plants has been directed at 

class XI myosins since it is generally assumed that these motors are responsible for cytoplasmic 

streaming (Shimmen, 2007). Even though cytoplasmic streaming is absent from moss 

gametophytes, P. patens again demonstrated its usefulness as a model organism since the myosin 

XI gene family is very small in this species with only two expressed paralogs, compared to 

around 10 genes in angiosperms (Reddy and Day, 2001; Vidali et al., 2010; Mühlhausen and 

Kollmar, 2013). Targeted silencing of both myosin XI transcripts in P. patens resulted in small 

round cells that failed to undergo polarization or initiate tip growth. The resulting plants were 

severely stunted, emphasizing that myosin XI is required for setting up or maintaining proper 

cell polarity and growth (Vidali et al., 2010). 

 It is not known whether a similar situation exists for class XI myosins in angiosperms 

since the large size of the gene family, typically 7 to 13 (Mühlhausen and Kollmar, 2013), has so 

far prevented elimination of all myosin XI function from these plants. However, several 

publications have examined the effects of T-DNA insertions in highly expressed genes of 

Arabidopsis thaliana, primarily XIK and MYA2 (Ojangu et al., 2007; Peremyslov et al., 2008; 

Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ueda et al., 2010; Ojangu et al., 2012). A 

common theme that emerged from these studies is that myosin XI genes seem to act redundantly 

to enhance cell expansion in many different tissues. This is most readily visible in root hairs, 
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where single mutants of XIK and MYA2 genes already show an effect (Ojangu et al., 2007; 

Peremyslov et al., 2008). Higher order mutants involving these and other genes show 

progressively more stunting that coincides with reduced cell expansion in leaves (Prokhnevsky et 

al., 2008; Peremyslov et al., 2010; Ojangu et al., 2012) and trichomes (Ojangu et al., 2012). A 

recently published detailed study on the mya1 mya2 xik triple mutant revealed that pavement 

cells in the epidermis of leaves are not only smaller than in wild-type but also showed reduced 

lobing (Ojangu et al., 2012), again emphasizing the function of myosin XI in normal cell growth. 

Interestingly, this study also demonstrated that the placement of trichome branches is altered in 

the mya1 mya2 xik triple mutant, suggesting that myosin function is also required for normal 

branch point selection. 

 In addition to these cell expansion defects, it was also found that fertility was reduced in 

the mya1 mya2 xik triple mutant (Peremyslov et al., 2010; Ojangu et al., 2012). Reciprocal 

crosses revealed that the reduced number of seeds per silique resulted from a female defect 

(Ojangu et al., 2012) which was consistent with the mutated genes showing very low expression 

levels in pollen but high levels in the stigma (Hruz et al., 2008). Scanning electron microscopy 

demonstrated that the low fertility rate of the triple mutant correlated with delayed elongation of 

stigmatic papillae, which in turn resulted in poor pollination (Ojangu et al., 2012). Thus, the 

reduced fertility of higher order mutants could also be traced back to a cell expansion defect. The 

mechanism(s) by which class XI myosins mediate their effects on cell growth are still largely 

unknown, although recent research has identified several aspects of cell physiology that are 

affected in myosin XI mutants. 

1.1.4: Subcellular defects linked to myosin XI function 

 Myosin XI motors have been thoroughly examined for their effect on organelle motility 

and cytoskeletal elements by employing two different approaches. In the first approach, various 
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fluorescent markers were expressed in myosin knockout mutants. This demonstrated that Golgi 

stacks (Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010; Avisar et al., 

2012), peroxisomes (Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010), 

mitochondria (Peremyslov et al., 2008; Prokhnevsky et al., 2008), and the endoplasmic reticulum 

(Ueda et al., 2010) move at reduced speeds in Arabidopsis mutants of class XI myosins. The 

second approach employed by several groups was to overexpress the tail portion of myosins in 

cells expressing various organelle markers. These dominant-negative tail fragments resulted in 

reduced motility of Golgi stacks (Avisar et al., 2008b; Sparkes et al., 2008; Avisar et al., 2009; 

Avisar et al., 2012), peroxisomes (Avisar et al., 2008b; Sparkes et al., 2008), mitochondria 

(Avisar et al., 2008b; Sparkes et al., 2008; Avisar et al., 2009), endoplasmic reticulum (Sparkes 

et al., 2009; Yokota et al., 2011; Wang et al., 2012; Griffing et al., 2014), trans-Golgi network 

(Avisar et al., 2012), pre-vacuolar compartment (Avisar et al., 2012), endosomes (Avisar et al., 

2012), and exocytic vesicles (Avisar et al., 2012). 

 Interestingly, these results did not reveal a simple one-to-one relationship between 

myosin isoforms and specific organelles. While assigning unique functions to individual myosin 

XI genes is inherently difficult with the dominant-negative approach due to potential off-target 

effects (Vick and Nebenfuhr, 2012), this also proved to be difficult for knockout mutants. Single 

class XI myosin mutants have been shown to influence the motility of multiple organelles, and 

the motility of a particular organelle was affected by more than one myosin mutant, for example 

mya2 and xik (Peremyslov et al., 2008). It is not clear how this apparent promiscuity arises since 

various tail constructs of the different myosin XI isoforms were shown to localize to different 

organelles (Li and Nebenführ, 2007; Reisen and Hanson, 2007; Sparkes et al., 2008; Avisar et 

al., 2009; Sattarzadeh et al., 2011) and hence are expected to move only those subcellular 

compartments. It is possible that at least some organelle movements observed in wild-type occur 
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passively, that is, as a result of the general hydrodynamic flow caused by movement of other 

organelles (Esseling-Ozdoba et al., 2008). A reduction of this hydrodynamic flow in a given 

myosin mutant would then cause all organelles to display reduced movements even though they 

are not directly moved by this myosin. Alternatively, myosin XI mutations may affect other, 

more general aspects of intracellular dynamics that then lead to an overall reduction in organelle 

movement. A candidate for such a ‘common factor’ has emerged recently in the form of the actin 

cytoskeleton. 

 Actin filaments are well established as the tracks along which myosin motors move 

(Tominaga et al., 2003; Shimmen, 2007), but interestingly, these filaments can also be moved by 

myosins. This feedback effect became evident from work in P. patens where loss of all myosin 

XI activity resulted in a complete disorganization of the normally highly polarized actin array 

(Vidali et al., 2010). Similarly in A. thaliana, triple mya1 mya2 xik and quadruple mya1 mya2 xik 

xi-i myosin XI mutants displayed actin cables that were oriented more transversely while cables 

in equivalent wild-type cells were primarily longitudinal (Peremyslov et al., 2010). This latter 

result was later expanded to the mya2 xik double mutant that showed a subtle phenotype of more 

skewed actin filaments that did not align as well with the long axis of the cell (Ueda et al., 2010). 

Recently, a reduction in actin filament dynamics was described in the xik single mutant that did 

not show a difference in actin organization (Park and Nebenführ, 2013), thus confirming a direct 

effect of myosin motors on actin filaments that had previously been inferred from inhibitor 

treatments (Staiger et al., 2009). Presumably, the movement of myosin motors along actin 

filaments introduces tension in the filament network, which ultimately leads to alignment of the 

filaments with the long axis of the cell. It should be noted that actin dynamics do not appear to be 

affected by the near total loss of myosin XI activity in P. patens (Vidali et al., 2010). In this case, 

an interdependence of myosin and actin localization at the tip was found that again highlights the 
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mutual regulation of tracks and motors (Furt et al., 2013). Thus, the situation in plants is similar 

to yeast and mammalian cells where myosin V has been found to influence actin organization 

and thereby influence cell polarity (Lo Presti et al., 2012). 

 An exciting addition to the repertoire of myosin functions was described in Zea mays. 

Cloning of the Opaque1 gene revealed it to be one of two close homologs of XI-I in A. thaliana 

(Wang et al., 2012). The opaque1 phenotype of non-translucent seed kernels was caused by 

accumulation of abnormally small, non-spherical protein bodies in the endosperm. These protein 

bodies are subdomains of the endoplasmic reticulum. Interestingly, Opaque1 myosin appears to 

be associated with ER membranes based on cell fractionation studies, and ER dynamics are 

reduced in opaque1 mutants (Wang et al., 2012). Similar effects on ER dynamics and 

organization have also been described for myosin mutants in A. thaliana (Peremyslov et al., 

2010; Ueda et al., 2010). How these myosin driven movements of the ER lead to the formation 

of appropriately sized zein protein bodies in the lumen of the ER is still not clear, but this 

discovery highlights the variety of myosin functions that go beyond classical cytoplasmic 

streaming. 

 Another example of ‘alternative’ myosin functions was revealed when a mutant screen 

for abnormal nuclear shape in A. thaliana identified a defect in XI-I (Tamura et al., 2013). Loss 

of this myosin also resulted in greatly reduced nuclear motility, which is consistent with the 

subcellular localization of this motor to the nuclear envelope (Avisar et al., 2009; Tamura et al., 

2013). Other myosin single mutants did not affect nuclear shape, thus demonstrating a unique 

functional specialization of this myosin in A. thaliana. At the same time, XI-I appears to 

contribute to overall growth since loss of this gene in the mya1 mya2 xik triple mutant 

background exacerbates the phenotype (Peremyslov et al., 2010). Whether this effect depends on 

redundant functions of the involved myosins or on separate contributions of the myosins to 
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different growth-limiting processes is currently not known. It is also noteworthy that two closely 

related myosins appear to perform vastly different functions in Z. mays and A. thaliana (Wang et 

al., 2012; Tamura et al., 2013). Apparently, the simple assumption that orthologous genes 

perform the same or similar functions is not always correct. 

1.1.5: Myosin localization and interacting partners provide further insight 

 A crucial aspect to understanding how myosins exert their function is to identify their 

molecular interactions inside cells. While binding of the myosin motor domain to actin filaments 

is often considered a given and hence rarely investigated (Walter and Holweg, 2008), it is the 

interaction of the tail domain with myosin cargo that is of central importance in this respect (Li 

and Nebenführ, 2008b). Considerable effort has been extended towards identification of the 

subcellular localization of various tail constructs tagged with fluorescent proteins (Li and 

Nebenführ, 2007; Reisen and Hanson, 2007; Sparkes et al., 2008; Avisar et al., 2009; Sattarzadeh 

et al., 2011). Unfortunately, the functional relevance of these localizations cannot be assessed 

since the tail constructs appear to exert their dominant-negative effect on organelle movements 

non-selectively. In other words, a given tail construct either inhibits movement of all tested 

organelles, as is the case for XIK (Avisar et al., 2009; Avisar et al., 2012), or of none, as is the 

case for XIA (Avisar et al., 2009). It is therefore necessary to create full-length fusion constructs 

that can functionally complement well-documented mutant phenotypes. 

 This was first accomplished in P. patens (Vidali et al., 2010), but recently two groups 

succeeded in this endeavor in A. thaliana and rescued the mutant phenotypes with YFP-tagged 

transgenes. In the first case, a XIK-YFP construct driven by the native XIK promoter was 

transformed into the mya1 mya2 xik triple mutant (Peremyslov et al., 2012), while in the second 

case, the YFP tag was fused to the N-terminus of XIK and introduced into the xik single mutant, 

again under control of the native promoter (Park and Nebenführ, 2013). Interestingly, both A. 
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thaliana constructs localized to the tip of growing root hairs as well as to motile vesicles in the 

shank of root hairs and leaf midrib epidermal cells (Peremyslov et al., 2012; Park and Nebenführ, 

2013). The identity of the small vesicles or the nature of the accumulation at the root hair tip 

could not be identified, but it is tempting to speculate that they correspond to secretory vesicles 

as suggested by cell fractionation studies (Peremyslov et al., 2012), even though their 

distribution at the tip does not overlap completely with that of XIK (Park and Nebenführ, 2013). 

 The pool of XIK at the root hair tip depends on actin filaments (Park and Nebenführ, 

2013) and is constantly replenished from other sources in the cell (Peremyslov et al., 2012). This 

situation is similar to that described for myoXIa in P. patens which also accumulated at the tip of 

caulonemal cells during growth (Vidali et al., 2010; Furt et al., 2013). It remains to be seen 

whether this pattern is found for all myosin XI motors or whether some of the isoforms function 

far away from the growing tip. Importantly, the ability to complement mutant phenotypes will 

also allow new experimental manipulations that take advantage of targeted alterations of myosin 

sequences. 

 Another approach to determine the functions of individual myosins is to identify 

interacting partners for each myosin. An earlier study using a yeast two-hybrid screen identified 

RabC2a and RabD1 as interacting partners for Arabidopsis MYA2 (Hashimoto et al., 2008). 

RabC2a was shown to localize to peroxisomes suggesting it may recruit MYA2 to peroxisomes 

(Hashimoto et al., 2008). A second yeast two-hybrid screen identified HSP70-interacting protein 

(HIP) as an interacting partner for Z. mays Opaque1 (Wang et al., 2012). The C-terminus of HIP 

bound Opaque1 while the N-terminus of HIP contains a tetratricopeptide repeat domain that 

could be involved in other protein-protein interactions (Wang et al., 2012), raising the possibility 

that HIP could act as an adaptor between Opaque1 and the ER. Further studies are necessary to 

confirm the biological relevance of these interactions and their regulation. 
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 A recent study identified, also by a yeast two-hybrid screen, a family of plant-specific 

proteins containing the DUF593, domain of unknown function, as interacting partners of several 

myosin XI isoforms in A. thaliana (Peremyslov et al., 2013). These proteins appear to localize to 

a previously unidentified class of small vesicles that cannot be distinguished from the ER in 

density gradients, some of which co-localized with XIK-YFP (Peremyslov et al., 2013). In 

addition, different myosin XI isoforms showed various levels of selectivity for different 

members of the DUF593 family (Peremyslov et al., 2013), thus possibly explaining the observed 

mixture of genetic redundancy and specificity among myosin mutants. The detected genetic 

interaction with xik (Peremyslov et al., 2013) furthermore is compatible with the concept that 

DUF593 proteins act in the same pathway as myosins. Curiously, the DUF593 domain was 

previously identified as responsible for zein binding in the maize protein Floury1 (Holding et al., 

2007). While these two findings are clearly incompatible with each other, it is tempting to 

speculate that the similarity of the opaque1 and floury1 phenotypes actually results from the 

direct interaction of the Opaque1 motor with its cognate DUF593 receptor on the ER membrane. 

 Another type of myosin interactor was discovered in Arabidopsis using a biochemical 

approach of immunoprecipitating plant expressed XI-I tails and identifying co-precipitated 

proteins by mass spectrometry (Tamura et al., 2013). In this case, a WPP domain-interacting tail-

anchored protein (WIT2) was identified that localizes to the nuclear envelope. Importantly, loss 

of WIT2 and the related WIT1 in the wit1 wit2 double mutant resulted in mislocalization of YFP-

XI-I tails, thus demonstrating that WIT1 and WIT2 are required for attachment of this myosin 

motor to the nuclear envelope (Tamura et al., 2013). Furthermore, the wit1 wit2 double mutant 

resulted in the same phenotype of immobile round nuclei as the xi-i mutant, again confirming the 

close functional interaction of the two proteins. Finally, it could be shown by pull-down from 

plant extracts that WIT1/2 interacts with WIP, which in turn links to SUN proteins that anchor 
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the inner nuclear membrane to the nuclear lamina (Tamura et al., 2013), thus beautifully 

explaining how the forces exerted by XI-I on the nuclear surface lead to a different shape of the 

nucleus. 

1.1.6: Conclusions 

 Recent years have seen major progress in our understanding of myosin function in plant 

cells. It is now firmly established that myosin motors are responsible for the rapid organelle 

movements that lead to cytoplasmic streaming. It is also clear that these movements are required 

for normal rapid expansion of cells. In addition, other effects of myosins on cell polarity as well 

as actin/ER organization and nuclear shape have been described, raising the possibility that the 

biological functions of these important motors are broader than the previously envisioned 

‘mixing’ role. The distribution of these functions between myosin VIII and myosin XI is 

beginning to come into focus with recent progress in P. patens. 

 Deeper understanding of the mechanisms by which myosins exert these functions will 

require identification of the cargo molecules that are being moved by these motors. Knowledge 

of these interacting partners combined with the availability of functional full-length constructs 

will enable us to perform more specific experiments as nicely illustrated in the identification of 

myosin receptors on the nuclear surface (Tamura et al., 2013). Additional progress along these 

lines should help us to overcome the apparent redundancy of myosin genes and establish the 

biological functions of all myosins in plants. 

 

1.2: Pollen germination 

 Pollination is the first step in flowering plant reproduction when pollen is transferred 

from the anther to the stigma. Unlike a majority of angiosperm species that require cross-

pollination to occur with the aid of various animal species or the wind (Glover, 2014), 
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Arabidopsis thaliana self-fertilizes 97% of the time (Platt et al., 2010). Pollen is directly 

transferred to the stigma due to the close proximity of the anthers to the stigma (Glover, 2014). 

Once on the stigma, pollen grains adhere to the stigmatic papillae, hydrate, and germinate 

(Figure 1.2). 

1.2.1: A dry stigma allows selective adhesion and hydration of Arabidopsis pollen 

 Arabidopsis thaliana has a dry stigma, which allows for selective adhesion to pollen 

grains, a selection process that occurs within 30 seconds following pollination (Zinkl et al., 

1999). Foreign pollen can adhere to Arabidopsis stigmas, albeit to a much lower extent than 

Arabidopsis pollen (Zinkl et al., 1999). The pollen surface is comprised of three layers: an inner 

intine composed of cellulose, an outer exine made of sporopollenin, and a pollen coat consisting 

of lipids and proteins that fills the cavities in the exine (Edlund et al., 2004). The pollen coat is 

not required for the initial adhesion to stigmatic papillae because cer6 pollen lacking the coat and 

pollen with the coat removed with cyclohexane were able to adhere to the stigma with a similar 

affinity as wild-type pollen within the first few minutes following pollination (Zinkl et al., 1999). 

In contrast, the exine is required for normal pollen adhesion, as mutants with abnormal exine 

patterning have reduced adhesion to stigmatic papillae (Zinkl and Preuss, 2000; Dobritsa et al., 

2009; Dobritsa et al., 2010). The exine is composed of sporopollenin, which is extremely 

resistant to degradation thus making it impossible to fully characterize its chemical composition 

(Ariizumi and Toriyama, 2011). Even though the exact chemical composition of sporopollenin 

remains unknown, detailed chemical analyses suggested that it is a polymer comprised of both 

aliphatic and aromatic components (de Leeuw et al., 2006; Fraser et al., 2012). A recent study 

was able to show that the general composition of sporopollenin has remained largely unchanged 

for over 300 million years and only varies slightly between extant species (Fraser et al., 2012). 

Thus, it is possibly the exine patterning, which varies widely between species (Edlund et al.,  
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Figure 1.2: Pollen adhesion, hydration, and germination on a dry stigma 

 On the left, a desiccated pollen grain (brown) adheres to a stigmatic papilla (light green).  

 In the center, an adhered pollen grain hydrates and the ‘foot’ (orange) forms. On the  

right, a hydrated pollen grain germinates, and the pollen tube (blue) passes through the  

‘foot’ before penetrating the cell wall of the stigmatic papilla. 
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2004), that is important for the observed species-specific selection during initial pollen adhesion 

on Arabidopsis stigmas (Zinkl et al., 1999). It remains unclear how exine patterning could confer 

species-specific adhesion. Further chemical studies on the nature of sporopollenin and detailed 

genetic and microscopy analyses of exine patterning should shed light on the adhesion specificity 

observed in Arabidopsis. 

 Once adhered to the stigmatic papillae, Arabidopsis pollen grains begin to hydrate within 

a few minutes (Preuss et al., 1993). Depending on the species, some foreign pollen has been 

shown to be able to hydrate and germinate on Arabidopsis stigmas (Hiscock and Dickinson, 

1993; Hülskamp et al., 1995), while pollen from certain species failed to hydrate and germinate 

despite adhesion (Hiscock and Dickinson, 1993; Hülskamp et al., 1995; Zinkl et al., 1999). This 

indicates that a regulatory step exists between pollen-stigma adhesion and the start of pollen 

hydration, which helps confer mating specificity. Interestingly, the failure of Petunia pollen to 

hydrate and germinate on Arabidopsis stigmas could be rescued by the addition of exogenous 

lipids (Zinkl and Preuss, 2000) suggesting that the mechanism regulating species-specific 

hydration can be bypassed by providing a lipid-rich environment.  

Hydration is preceded by “foot” formation, an interface of the pollen coat and stigma 

surface (Elleman et al., 1992). Interestingly, the adhesion between pollen grains and the stigma 

has been shown to increase during pollen hydration (Zinkl et al., 1999). This suggests that either 

“foot” formation or something released from hydrated pollen grains might provide additional 

adhesives. Since the “foot” is partially composed of the pollen coat, it will be necessary to 

closely examine the lipid and protein components of the pollen coat.  

Hydration experiments with the eceriferum (cer) mutants provided strong evidence for 

the requirement of pollen coat lipids during hydration on dry stigmas. The absence of long-chain 

lipids in a strong allele of cer6 resulted in the lack of a pollen coat and prevented cer6 pollen 
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from hydrating on Arabidopsis stigmas (Preuss et al., 1993). Additionally, pollen from cer1 and 

a weaker allele of cer6 had fewer or smaller, respectively, lipid droplets on the pollen coat, and 

both failed to hydrate on stigmas (Hülskamp et al., 1995). Interestingly, the failure of pollen to 

hydrate from the stronger cer6 mutant could be rescued by the addition of exogenous lipids to 

the stigma or by growing the plants in a more humid environment (Preuss et al., 1993; Zinkl and 

Preuss, 2000). Pollen from cer1 and the weaker cer6 mutant were able to hydrate on Arabidopsis 

stigmas when mixed with wild-type pollen (Hülskamp et al., 1995).  

Ten proteins have been isolated from Arabidopsis pollen coats: a potential calcium 

binding protein, 2 putative receptor kinases with extracellular domains, 2 extracellular lipases 

(EXLs), and 5 glycine-rich proteins (GRPs) each containing an oleosin domain (Mayfield et al., 

2001). The EXLs and GRPs made up more than 90% of the detectable pollen coat proteins 

(Mayfield et al., 2001). The genes encoding the five detected GRPs along with three other GRP 

genes are clustered in a 30 kb section of chromosome 5 (Fiebig et al., 2004). Even between 

closely related species, the GRP genes have diverged greatly compared to neighboring genes 

(Fiebig et al., 2004; Schein et al., 2004). Therefore, GRPs could be the key to species-selective 

pollen hydration on dry stigmas. GRP17 is the most abundant pollen coat protein comprising 

21% of the total isolated proteins (Mayfield and Preuss, 2000). Importantly, grp17 pollen had the 

appearance of a normal pollen coat; however, it took more than twice as long to initiate 

hydration on a stigma compared to wild-type pollen (Mayfield and Preuss, 2000). Interestingly, 

grp17 exl4 double mutant pollen showed an even longer delay in pollen hydration (Updegraff et 

al., 2009). The exl4 single mutant did not show a delay in pollen hydration initiation; however, 

exl4 pollen took three times as long to complete hydration than wild-type pollen (Updegraff et 

al., 2009). The duration of pollen hydration for the double mutant was the same as exl4 

(Updegraff et al., 2009). Thus, lack or reduction of lipids in the pollen coat resulted in pollen 
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unable to hydrate on dry stigmas, whereas, pollen lacking abundant pollen coat proteins resulted 

in either a delay or lengthening of the hydration process. This suggests that pollen coat lipids are 

required for pollen hydration while pollen coat proteins might be more involved in the timing of 

hydration. It is important to note that stigma lipids and proteins are also required for pollen 

hydration to occur on dry stigmas (Samuel et al., 2009; Chapman and Goring, 2011). 

1.2.2: Pollen germination requires a complete intracellular reorganization 

 In Arabidopsis, a pollen tube usually grows through the foot and penetrates a stigmatic 

papilla within 20 minutes following pollination (Elleman et al., 1992; Kandasamy et al., 1994). 

Arabidopsis pollen tubes can even emerge through the exine wall in between apertures if that is 

where the pollen-stigma interface is located (Edlund et al., 2004). Studies have suggested that 

localized lipid-mediated uptake of water during pollen hydration determines the site of 

germination (Lush et al., 1998; Wolters-Arts et al., 1998). Even though signal origin and 

perception is unknown, many studies have examined the distribution of cytoskeletal elements, 

vesicles/organelles, and ions preceding pollen germination. Pollen hydration changes the uniform 

pollen grain into a highly polarized cell (Kandasamy et al., 1994). Vesicles accumulate at the 

future germination site (Kandasamy et al., 1994) while the vegetative nucleus and the two sperm 

cells move from the center of the pollen grain to the wall opposite of the site of germination 

(Lalanne and Twell, 2002). Actin filaments also orient towards the potential germination site 

(Heslop-Harrison and Heslop-Harrison, 1992b).  

The role of specific cytoskeletal elements in pollen germination has been examined using 

various drug treatments that affect either actin filaments or microtubules. Colchicine or oryzalin 

treatment of pollen grains resulted in the complete disappearance of microtubules, yet pollen 

germination was unaffected (Franke et al., 1972; Heslop-Harrison et al., 1988; Gossot and 

Geitmann, 2007). Treatments of cytochalasin B, cytochalasin D, and latrunculin B each resulted 
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in pollen germination inhibition indicating that actin filaments are required for pollen 

germination (Franke et al., 1972; Tiwari and Polito, 1990; Gibbon et al., 1999). FIMBRIN5 

(FIM5) is an actin bundling protein, and fim5 mutants were shown to have reduced pollen 

germination compared to wild-type (Wu et al., 2010). Actin filaments in germinating fim5 pollen 

formed thicker bundles and lacked the typically orientation of actin filaments converging on the 

germination site (Wu et al., 2010). This suggests that altering the germination site focused actin 

arrangement will prevent or delay pollen germination.  

Rho GTPases and their interacting proteins have also been implicated in pollen 

germination. Expression of a constitutively active ROP1, a pollen-specific Rho GTPase, resulted 

in the formation of bulbous cells instead of normal polarized pollen tubes (Li et al., 1999). This 

study indicated that the local activation of ROP1 at the site of germination might be required for 

the initiation of tip-focused growth. Activated ROP6 was shown to be S-acylated, which possibly 

means other active ROPs are also S-acylated (Sorek et al., 2007). S-acylation of active ROPs has 

been proposed to increase the binding of active ROPs to the plasma membrane (Payne and 

Grierson, 2009; Sorek et al., 2010). TIP GROWTH DEFECTIVE1 (TIP1) is an S-acyl 

transferase (Hemsley et al., 2005), and tip1 pollen was shown to germinate poorly both in vivo 

and in vitro (Ryan et al., 1998). It is possible that TIP1 S-acylates active ROP1 in hydrated 

pollen grains, stabilizing active ROP1 at the future germination site. Confirmation of S-acylation 

of active ROP1 in pollen will be crucial before future experiments utilizing ROP1 lacking S-

acylation sites can be used to determine the importance of ROP1 S-acylation in pollen 

germination.  

Interestingly, a GFP-labeled ROP interactive partner, GFP-RIP1, was shown to initially 

label the three nuclei in pollen grains; however, after incubation on pollen germination medium, 

GFP-RIP localized to the future site of germination (Li et al., 2008). RIP1 was shown to interact 
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with inactive and active ROP1making it difficult to predict the functional importance of this 

interaction (Lavy et al., 2007; Li et al., 2008). The localization of RIP1 to the future germination 

site could imply that RIP1 has a role in establishing polarized growth; however, future studies 

focusing on rip1 mutants will be needed to elucidate the role of RIP1 in pollen germination and 

the significance of its interaction with ROP1. 

Influx of calcium has been shown to be crucial for pollen germination. The addition of 

calcium improved in vitro pollen germination (Brewbaker and Kwack, 1963), and the addition of 

calcium channel blockers inhibited pollen germination (Heslop-Harrison and Heslop-Harrison, 

1992a; Iwano et al., 2004; Wang et al., 2004). Furthermore, the cytoplasmic concentration of 

calcium was shown to increase at the future germination site in vivo (Iwano et al., 2004). 

Interestingly, calcium concentrations sometimes increased at another site, in addition to the 

future germination site, for pollen grains placed on pollen germination medium (Iwano et al., 

2004). Germination was never observed in pollen grains with uniform calcium concentrations 

(Iwano et al., 2004) suggesting the calcium gradient is a prerequisite of germination. 

1.2.3: Pollen germination in vitro can be stimulated by pistil extracts 

 Multiple variations of Arabidopsis pollen germination medium have been published 

(Azarov et al., 1990; Thorsness et al., 1993; Li et al., 1999; Fan et al., 2001; Derksen et al., 2002; 

Mouline et al., 2002; Hicks et al., 2004; Boavida and McCormick, 2007; Bou Daher et al., 2009). 

Pollen hydrates instantaneously on germination medium (Iwano et al., 2004); however, pollen 

germination takes longer in vitro than in vivo (Kandasamy et al., 1994; Iwano et al., 2004). The 

pistil must provide a pollen germination stimulant. Indeed, pistil-derived germination stimulants 

have been isolated from a few species. Some studies have shown that pistil extracts can stimulate 

germination of orchid, Chrysanthemum, and Polygonatum odoratum pollen; however, the 

stimulants have not been identified (Sanford et al., 1964; Tsukamoto and Matsubara, 1968; 
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Takagi et al., 1995). Kaempferol, a flavonol extracted from Petunia hybrida V26 stigmas (Mo et 

al., 1992), has been shown to stimulate Petunia hybrida and Nicotiana tabacum pollen 

germination (Ylstra et al., 1992). More recently, N-methanesulfinyl 1-azadecalin and N-

methanesulfinyl 2-azadecalin were synthesized to mimic the diffusible chemical present in A. 

thaliana pistils that stimulates A. thaliana pollen germination (Qin et al., 2011). Interestingly, 

these synthesized chemicals also stimulated pollen germination of the closely related species 

Olimarabidopsis pumila and Capsella rubella, but they did not stimulate Sisymbrium irio and 

Nicotiana tabacum pollen germination (Qin et al., 2011). This study suggests that pistil-derived 

pollen germination stimulants are quite divergent, even among species within the same family 

such as A. thaliana and S. irio.  

1.2.4: Conclusions 

 Arabidopsis pollen grains adhere, hydrate, and germinate within 20 minutes of making 

contact with the stigmatic papillae. Since these processes occur in a quick succession, it has been 

difficult to clearly identify the mechanism behind each process. In recent years, the processes of 

pollen adhesion and hydration have received very little attention. Although pollen tube growth is 

heavily studied, the steps leading up to germination are hardly examined. Most recently, two 

reports provided evidence for the possible roles of nitric oxide regulation (Sirova et al., 2011) 

and lysophosphatidylethanolamine production (Kim et al., 2011) in pollen germination. It is clear 

that pollen germination is preceded by the reorientation of the cytoskeleton, redistribution of 

vesicles, repositioning of the three nuclei, and establishment of a calcium gradient (Figure 1.3). 

What remains unclear is the relative timing of these events and how these events affect each 

other. Utilizing various fluorescent markers, detailed time-lapse imaging of pollen grains during 

their transition to a highly polarized cell that ultimately germinates will finally answer many of 

the questions that still remain about pollen germination. 
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Figure 1.3: Intracellular reorganization leading to pollen germination 

 Following hydration, a tricellular pollen grain (left) will transition into a highly polarized  

cell (center) before the pollen tube emerges (right). Actin filaments reorient towards the  

future site of germination where vesicles start to accumulate. The vegetative nucleus and  

the two sperm cells relocate from the center of the cell to the wall opposite of the future  

germination site. A calcium gradient is also established. 
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1.3: Pollen tube growth 

 After pollen germination, a pollen tube grows through the stigma and style to the ovary. 

A pollen tube is a single cell that transports two sperm cells to an ovule where it will penetrate 

the female gametophyte and rupture. When the pollen tube ruptures, both sperm cells are 

released allowing double fertilization to occur. One sperm cell fertilizes the egg cell which then 

develops into the embryo, and the other sperm cell fuses with the central cell which then 

develops into the endosperm. 

Pollen tubes are only 5-20 µm in diameter, but they have to grow to great lengths to reach 

the ovules. For an extreme example, Zea mays pollen tubes have to grow as long as 50 cm to 

reach the first ovule (Williams, 2008). Pollen tube growth rates range from as slow as 0.31 µm/h 

for Ginkgo biloba pollen to as fast as 40,000 µm/h for Cichorium intybus pollen (Williams, 

2008). Arabidopsis thaliana pollen tube growth rates have been measured at 5-6 µm/min (300-

360 µm/h) on stigmatic papilla and 2-3 µm/min (120-180 µm/h) growing through the style 

(Cheung et al., 2010). This highly regulated tip growth is supported by rapid membrane 

trafficking and a dynamic cytoskeleton.  

1.3.1: Intracellular organization of growing pollen tubes 

A pollen tube is a cylindrical cell with a cell wall composed of an outer cellulosic layer 

and an inner callose layer. The cell wall at the pollen tube tip is very thin and mostly comprised 

of pectin, and the inner callose wall is completely absent (Derksen et al., 2002). To maintain tip 

growth, cell wall components must be constantly delivered to the tip of the pollen tube. The 

cytoplasmic streaming in pollen tubes forms a ‘reverse fountain’ because organelles moving 

towards the tip travel along the cell membrane while organelles moving away from the tip travel 

through the center of the tube (Heslop-Harrison and Heslop-Harrison, 1990; Derksen et al., 

2002). Despite vigorous cytoplasmic streaming, pollen tubes maintain a characteristic 
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organelle/vesicle organization (Figure 1.4). A pollen tube can be divided into three regions from 

the tip to the grain: apical, subapical, and shank regions. Small vesicles accumulate forming an 

inverted cone in the apical region of growing pollen tubes (Lancelle and Hepler, 1992; Derksen 

et al., 2002). In contrast, larger organelles, such as mitochondria, peroxisomes, and Golgi stacks,  

are only present in the subapical and shank regions (Pierson et al., 1990; Derksen et al., 2002). 

Actin filaments and microtubules have an axial orientation in the shank; however, irregular 

orientations of short actin filaments in the subapical region form a mesh (Derksen et al., 2002; 

Cheung and Wu, 2008).  

1.3.2: The actin cytoskeleton is vital for pollen tube growth 

 In the past decade, multiple attempts have been made to accurately label all of the actin in 

living pollen tubes without affecting actin architecture or pollen tube growth rates. The 

localization of GFP-labeled actin binding proteins were usually compared to fixed pollen tubes 

labeled with actin antibodies. Immunolabeling revealed fine longitudinal actin cables in the 

shank and a dense actin fringe in the subapical region (Derksen et al., 2002; Wilsen et al., 2006). 

GFP-mTalin, GFP fused to the actin-binding domain of mouse talin, labeled actin filaments in 

the shank and weakly labeled a band in the subapical region (Kost et al., 1998; Wilsen et al., 

2006). This weak band most likely represented the actin fringe revealed by immunolabeling; 

however, individual filaments in the fringe could not be distinguished with GFP-mTalin (Wilsen 

et al., 2006). GFP-mTalin also frequently labeled a thick central actin bundle and occasionally 

labeled coils of actin near the tip, which were considered to be artifacts of GFP-mTalin 

expression (Wilsen et al., 2006). Expression of GFP-mTalin also reduced tip growth (Ketelaar et 

al., 2004; Wilsen et al., 2006). GFP-ADF1, GFP fused to actin depolymerizing factor 1 from 

either N. tabacum or L. longiflorum, labeled the actin fringe, but it rarely labeled distinct actin 

filaments in the shank (Chen et al., 2002; Wilsen et al., 2006; Cheung et al., 2008). GFP-ADF1  
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Figure 1.4: Growing angiosperm pollen tubes have a distinct intracellular organization 

The pollen tube cell wall has an outer cellulosic layer and an inner callose layer that is  

absent at the tip. There is a cytoplasmic calcium gradient with the highest concentration  

of calcium at the tip where vesicles also accumulate. Organelles are excluded from the  

apical region. Long actin filaments stretch the length of the shank while a fine actin mesh  

is present in the subapical region. Note that the vegetative nucleus and sperm cells  

followed by the vacuole are usually located 30 – 40 µm behind the tip; therefore, they are  

not depicted in this diagram. 
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expression also resulted in a diffuse fluorescence throughout the cytosol (Chen et al., 2002; 

Wilsen et al., 2006; Cheung et al., 2008). GFP-FABD2, GFP fused to the second actin-binding 

domain of A. thaliana fimbrin1, only labeled actin filaments in the shank of growing pollen tubes 

(Wilsen et al., 2006). Expression of GFP-FABD2 resulted in reduced pollen tube growth and 

frequently actin filaments were seen to form aggregates in the shank (Wilsen et al., 2006). 

PLIM2b-GFP, a pollen-expressed LIM protein from N. tabacum fused to GFP, clearly labeled 

actin filaments in the shank and sometimes labeled the subapical actin mesh (Cheung et al., 

2008). Expression of PLIM2b-GFP reduced pollen tube growth and occasionally resulted in 

fluorescent intertwining donut-shaped structures near the tip (Cheung et al., 2008). Recently 

Lifeact-mEGFP, the first 17 amino acids from Saccharomyces cerevisiae ABP-140 fused to GFP 

with a 7 amino acid linker, was shown to label actin filaments in pollen tubes without causing 

any alterations in actin architecture or pollen tube growth defects (Vidali et al., 2009b). 

Importantly, Lifeact-mEGFP labeled actin filaments in the shank and in the subapical actin 

fringe (Vidali et al., 2009b). Unlike previous GFP fusions to actin binding proteins/domains, 

Lifeact-mEGFP will allow researchers to visualize actin in living pollen tubes under various 

experimental conditions with less concern about negative effects from expression of the GFP 

fusion itself. 

 Indeed, Lifeact-mEGFP has been used to visualize the disruption of the actin fringe 

during a low dose latrunculin B (latB) treatment of lily pollen tubes (Vidali et al., 2009b). Drug 

treatments that disrupt actin filaments have provided the strongest evidence for the important 

role of actin filaments in pollen tube growth. Pollen tubes treated with latB, cytochalasin B, and 

cytochalasin D stopped growing, lost the accumulation of vesicles at the tip, and organelles 

stopped moving (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and 

Heslop-Harrison, 1989a; Parton et al., 2001; Vidali et al., 2001). Interestingly at very low 
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concentrations of latB, pollen tube tip growth can be inhibited without stopping organelle 

movements in the shank (Vidali et al., 2001). Utilizing Lifeact-mEGFP, Vidali et al. (2009) were 

able to show that the low dose of latB that inhibits growth but does not stop organelle 

movements in the shank resulted in the disappearance of the actin fringe while actin cables in the 

shank remained. These results suggest that the fragile actin fringe is more important for tip 

growth than the more stable actin filaments in the shank. Additional evidence for the crucial role 

of actin during pollen tube growth comes from investigations of myosins, actin-based motor 

proteins. An antibody for animal myosins was used to isolate a 175 kDa myosin from Nicotiana 

(Tang et al., 1989). Additional myosin antibodies were shown to label vesicles, organelles, and 

the male germ unit (MGU) in pollen tubes (Heslop-Harrison and Heslop-Harrison, 1989b; Tang 

et al., 1989; Miller et al., 1995; Tirlapur et al., 1996). It is important to note that it is still unclear 

whether or not these antibodies really bind to plant myosins. Furthermore 2,3-butanedione 

monoxime, commonly used as a myosin inhibitor, inhibited growth and organelle motility in lily 

pollen tubes (Tominaga et al., 2000). These results indicate that myosins might localize to 

various organelles and vesicles in pollen tubes and could potentially be required for normal tube 

growth. 

1.3.3: The role of microtubules in pollen tube growth is still up for debate 

 In growing pollen tubes, complete disruption of microtubules with either colchicine or 

oryzalin did not inhibit tip growth, stop cytoplasmic streaming, or completely arrest the 

movement of the MGU (Franke et al., 1972; Heslop-Harrison et al., 1988; Astrom et al., 1995; 

Gossot and Geitmann, 2007). When microtubules were disrupted, movement of the MGU into 

the pollen tube was delayed (Astrom et al., 1995). Also in the absence of microtubules, the 

vegetative nucleus and the generative cell were not located as close to the tip compared to 

untreated pollen tubes (Heslop-Harrison et al., 1988; Laitiainen et al., 2002). Heslop-Harrison et 
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al. (1988) also showed that upon microtubule disruption, the vegetative nucleus and the 

generative cell tended to be further apart than in untreated pollen tubes. Overall, these results 

suggest that microtubules are not solely responsible for but do contribute to the movement of the 

MGU into and through the pollen tube. Another piece of evidence suggesting that microtubules 

may be involved in intracellular transport in pollen tubes comes from immunological studies. 

Using antibodies against animal kinesins, 100 kDa proteins have been isolated from Nicotiana 

tabacum and Corylus avellana pollen (Tiezzi et al., 1992; Cai et al., 1993; Liu et al., 1994). The 

kinesin-like protein from C. avellana was identified from a fraction enriched in Golgi-derived 

vesicles (Liu et al., 1994). The kinesin(s) from N. tabacum localized to the subapical and apical 

regions of pollen tubes (Tiezzi et al., 1992; Cai et al., 1993). With the lack of an effect on tube 

growth by disrupting microtubules, it is unclear what these kinesins may be doing in the tip of 

growing pollen tubes. So far, microtubules seem to only be important for transport of the MGU; 

however, myosin antibodies not kinesin antibodies labeled the MGU in pollen tubes (Tang et al., 

1989; Tiezzi et al., 1992; Cai et al., 1993; Miller et al., 1995). 

Recently, Idilli et al. (2013) suggested that microtubules are involved in endocytosis and 

exocytosis in the tip of growing tobacco pollen tubes; however, all of their experiments used 

nocodazole to partially depolymerize microtubules. Nocodazole depolymerized microtubules 

closer to the tip, while leaving the microtubules far back in the shank unaffected, yet pollen tube 

growth was reduced between 15 and 45 minutes after the start of the drug treatment (Idilli et al., 

2013). On the other hand, low concentrations of oryzalin completely depolymerized the 

microtubules throughout the pollen tube and did not inhibit pollen tube growth (Idilli et al., 

2013). This suggests that nocodazole might be affecting something besides microtubules that 

results in growth inhibition. Therefore at this moment, it is difficult to draw any conclusions 

about the role of microtubules in endocytosis and exocytosis. Future experiments to investigate 
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this possibility will be necessary to be able to conclusively state the role of microtubules in 

pollen tube growth. 

1.3.4: Membrane trafficking and regulation of tip growth 

 In order for the pollen tube to elongate, membrane and cell wall materials must be 

delivered to and secreted at the tip. In addition to secretion, endocytosis actively occurs in 

growing pollen tubes to retrieve excess membrane materials. Endocytosis occurs at the extreme 

apex of tube, while exocytosis occurs adjacent to the apical dome (Zonia and Munnik, 2008). 

Vesicle accumulation at the tip can be visualized by fusing a fluorescent protein to RabA4d, a 

small pollen-expressed GTPase (Lee et al., 2008; Szumlanski and Nielsen, 2009). RabA4d is 

predicted to associate with post-Golgi vesicles (Vernoud et al., 2003) and is closely related to 

RabA4b which is expressed in vegetative tissues (Preuss et al., 2004). RabA4b has been shown 

to be associated with secretory vesicles from the trans-Golgi network (Kang et al., 2011). raba4d 

pollen tubes are wider and have swollen tips compared to WT pollen tubes, and these phenotypes 

can only be partially rescued by expressing YFP-RabA4b in pollen, suggesting there is only 

partial functional overlap between RabA4d and RabA4b (Szumlanski and Nielsen, 2009).   

 Rho-GTPases are common regulators of tip growth. ROP1, a small Rho-GTPase 

expressed in pollen (Li et al., 1998) is not only required for pollen germination, but it also has a 

vital role in pollen tube growth (Lin and Yang, 1997; Li et al., 1999). ROP1 localizes to the 

apical plasma membrane of growing pollen tubes (Lin et al., 1996; Hwang et al., 2008), and is 

required for the polarized growth of pollen tubes (Li et al., 1999). Comparable to ROP1 

overexpression lines, expression of fluorescently tagged ROP1 in Arabidopsis pollen tubes 

resulted in short, wide pollen tubes with slight swelling of the tip (Hwang et al., 2008) 

suggesting tight regulation of the level of ROP1 present in the pollen tube is necessary for 

normal tip growth. Two types of negative regulators of ROP1 are guanine dissociation factors 
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(GDI) and GTPase activating proteins (GAP). GDI sequesters ROP1 in the cytoplasm, which 

prevents ROP1 from localizes to the plasma membrane (Klahre et al., 2006; Hwang et al., 2010). 

GAPs, ROPGAPs and ROP Enhancer 1 (REN1), promote GTP hydrolysis thus inactivating 

ROP1 (Hwang et al., 2010). Furthermore, REN1 localization depends on ROP1-regulated 

exocytosis, which indicates the existence of a feedback loop that contributes towards the 

oscillation of ROP1 at the tip of growing pollen tubes (Hwang et al., 2008).  

Two ROP1 effectors, RIC3 and RIC4, have been shown to regulate tip growth by 

affecting F-actin dynamics. ROP1 mediated regulation of actin filaments further emphasizes the 

importance of actin filaments in pollen tube growth. RIC, ROP-interactive CRIB motif-

containing, proteins interact with active ROP1, and similar to ROP1 overexpression, when either 

RIC3 or RIC4 was overexpressed, the pollen tubes became partially depolarized (Wu et al., 

2001). Interestingly, co-overexpression of RIC3 and RIC4 results in normal vesicle accumulation 

and pollen tube growth, suggesting RIC3 and RIC4 expression levels also must be tightly 

regulated to maintain normal tip growth (Gu et al., 2005; Lee et al., 2008). At the tip of growing 

pollen tubes, RIC4 promotes F-actin assembly while RIC3 promotes the disassembly of F-actin 

by increasing calcium influx (Gu et al., 2005). The cytoplasmic concentration of calcium forms a 

gradient in growing pollen tubes with the highest concentration in the apical region (Iwano et al., 

2004). The calcium concentration at the tip oscillates with a maximum concentration of 

approximately 2 µM (Iwano et al., 2004). 

1.3.5: Differences found in gymnosperm pollen tubes 

 Gymnosperm pollen tubes grow more slowly than angiosperm pollen tubes. Besides 

growth rate, gymnosperm pollen tubes also have a different intracellular organization compared 

to angiosperm pollen tubes. Gymnosperm pollen tubes have a crescent-shaped accumulation of 

vesicles at the tip (de Win et al., 1996; Wang et al., 2005; Wang et al., 2006) instead of the 
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inverted cone shape observed in angiosperm pollen tubes (Lancelle and Hepler, 1992; Derksen et 

al., 2002). In addition to the shape of vesicle accumulation, gymnosperm pollen tubes exhibit 

organelle movements that form a fountain-like cytoplasmic streaming pattern (de Win et al., 

1996) instead of the reverse fountain pattern found in angiosperm pollen tubes (Heslop-Harrison 

and Heslop-Harrison, 1990; Derksen et al., 2002). It has been proposed that the reversal of actin 

filament orientation could result in the different vesicle accumulation and cytoplasmic streaming 

patterns observed in gymnosperm pollen tubes (Kroeger et al., 2009). In angiosperm pollen 

tubes, actin filaments near the cell membrane are oriented with the plus end pointing towards the 

tip, while filaments in the center of the cell are oriented with the plus end pointing towards the 

pollen grain (Lenartowska and Michalska, 2008). Since myosins are plus end directed motors, it 

is clear why cytoplasmic streaming occurs in a reverse fountain pattern in angiosperm pollen 

tubes. Unfortunately, actin filament orientation has yet to be determined in gymnosperm pollen 

tubes; however, computer modeling suggests that a reversal in actin filament orientation would 

explain the observed differences in gymnosperm pollen tubes (Kroeger et al., 2009). Another 

important difference between angiosperm and gymnosperm pollen tubes is the role of 

microtubules in pollen tube growth. When either actin or microtubule-disrupting drugs were 

applied to gymnosperm pollen tubes, growth was inhibited (Anderhag et al., 2000) suggesting 

that both microtubules and actin filaments are required for the normal growth of gymnosperm 

pollen tubes. Perhaps these intracellular differences contribute to the slower growth rate 

observed for gymnosperm pollen tubes. 

1.3.6: Conclusions 

 In angiosperms, actin filaments, but not microtubules, play an essential role in pollen tube 

growth. Tip growth requires the continual delivery of secretory vesicles to the apex, and this 

accumulation depends on actin filaments, particularly in the subapical actin fringe. Even though 
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pollen tube growth has been frequently studied, the complex regulation of pollen tube growth is 

still not fully understood. ROP1 regulation of pollen tube growth is complicated and not all of 

the steps in this process have been clarified. Some ROP1 effectors are known; however, not 

much is known about the how ROP1 activation is regulated during pollen tube growth. Recently, 

studies in Arabidopsis have shown that AtPRK2, a receptor-like protein kinase, may activate 

RopGEF1, a Rho guanine nucleotide exchange factor, which in turn activates ROP1 (Gu et al., 

2006; Zhang and McCormick, 2007; Chang et al., 2013). Further studies are necessary to not 

only clarify the ROP1-mediated regulation of pollen tube growth, but also other signaling 

pathways (Guan et al., 2013). In particular, it will be important to determine what initiates the 

oscillations in ROP1, growth, and cytoplasmic calcium concentration. 

 

1.4: Rationale of this study 

Pollen tubes grow exclusively at the tip, and in some species, pollen tubes can grow as 

fast as 40 mm/h (Williams, 2008). In angiosperms, this rapid pollen tube growth is dependent on 

the acto-myosin network (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-

Harrison and Heslop-Harrison, 1989a; Tominaga et al., 2000). To date, myosin mutants have not 

been examined for defects in pollen tube growth; however, by examining vegetative tissues, 

class XI myosins have been shown to be required for the expansion of various cell types 

including root hairs, trichomes, stigmatic papillae, and leaf epidermal cells (Ojangu et al., 2007; 

Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ojangu et al., 2012). 

Therefore, class XI myosins are predicted to be involved in pollen tube growth. Interestingly, 

pollen of an Oryza sativa myosin mutant developed abnormally under short-day conditions 

(Jiang et al., 2007) suggesting a possible role for myosins outside of cell expansion. 
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In A. thaliana, 6 out of the 13 myosin XI genes are expressed in pollen (Peremyslow et 

al., 2011; Sparkes, 2011). With multiple pollen-expressed myosins, there probably will be some 

redundancy similar to what has been shown for the vegetative myosins (Prokhnevsky et al., 

2008; Peremyslov et al., 2010; Ojangu et al., 2012). Since myosin mutants have defects in cell 

expansion, it is quite probable that at least higher order pollen myosin mutants will have reduced 

pollen tube growth. In this study, pollen myosin mutants, T-DNA insertion lines for pollen 

myosin genes and lines expressing artificial microRNAs designed to silence multiple myosins, 

will be examined for defects in overall pollen tube growth and fertility. A closer look at 

organelle trafficking, vesicle accumulation, actin dynamics, and myosin localization will also 

help clarify the role of each pollen myosin in intracellular transport and overall pollen tube 

growth. 
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Chapter 2: Silencing Multiple Class XI Myosins 

 

• Eunsook Park, a former graduate student in the lab, performed the initial steps for this 

project. Lauren Swientoniewski, an undergraduate student who earned research credit in 

this lab, contributed to the results in this chapter. She assisted with replacing the 35S 

promoter with the SYP22 and XIJ promoters and then helped screen T1 and T2 plants. 

She also measured all of the root hairs for the dexamethasone-inducible lines. 
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2.1: Introduction 

 In Arabidopsis thaliana, there are 13 class XI myosins, and myosin XI mutants have been 

shown to have defects in cell elongation. In particular, single mutants of MYA2 and XIK have 

shorter root hairs than WT, and xik has reduced trichome elongation (Ojangu et al., 2007; 

Peremyslov et al., 2008; Park and Nebenführ, 2013). Furthermore, double, triple, and quadruple 

mutants, consisting of various combinations of mya1, mya2, xib, xi-i, and xik, have more drastic 

defects in cell elongation (Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ojangu et al., 

2012). These higher order mutants have reduced elongation of root hairs, trichomes, stigmatic 

papillae, and various types of leaf cells (Prokhnevsky et al., 2008; Peremyslov et al., 2010; 

Ojangu et al., 2012). Since single myosin XI mutants either exhibit a mild phenotype or have no 

detectable phenotype, there is functional redundancy among the 13 class XI myosins.  

Surprisingly, eight of the Arabidopsis class XI myosins have not been examined as part 

of higher order mutants. Of these eight, five are predominately expressed in pollen: XIA, XIC, 

XID, XIE, and XIJ (Peremyslow et al., 2011; Sparkes, 2011). XIB is expressed in pollen but also 

in vegetative tissues such as root hairs (Peremyslow et al., 2011; Sparkes, 2011). Since pollen 

tubes undergo rapid cell elongation, it is quite plausible that higher order mutants of the pollen 

myosins will have reduced fertility due to reduced pollen tube growth. Indeed, myosins have 

been implicated in pollen tube growth, as disruption of actin filaments inhibits pollen tube 

growth (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-

Harrison, 1989a). Since generating higher order mutants from single T-DNA insertion mutants 

takes a long time, an alternative approach utilizing artificial microRNA could provide insights 

into the functions of class XI myosins in pollen tube growth faster than the traditional approach. 

 microRNAs are small, noncoding RNAs that negatively affect gene expression. Mature 

microRNAs are usually 19-24 nucleotides in length and are produced from a precursor 
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microRNA that forms a hairpin. In plants, Dicer-like I cleaves the hairpin precursor into smaller 

fragments (Kurihara and Watanabe, 2004). The mature microRNA binds to the RNA-induced 

silencing complex (RISC), and one strand of the microRNA serves as a probe to link RISC to the 

target mRNA. Binding of target mRNA to RISC usually leads to cleavage followed by 

degradation of the target mRNA; however, in a few cases, the target mRNA undergoes 

translational repression (Naqvi et al., 2012). Plant microRNAs have only a few mismatches to 

their target mRNAs, so each microRNA can only target a small number of closely related 

mRNAs (Schwab et al., 2005). Since sequence parameters determining native microRNA target 

recognition have been identified (Schwab et al., 2005), artificial microRNAs can be designed to 

target specific mRNAs (Schwab et al., 2006).  

The motor domain is highly conserved among class XI myosins, raising the possibility of 

designing artificial microRNAs that target multiple class XI myosins. Since the quadruple 

myosin XI mutants exhibited reduced growth and were smaller in size (Peremyslov et al., 2010), 

it was hypothesized that silencing a majority of the class XI myosins would severely affect plant 

growth. Therefore, a dexamethasone-inducible system (Craft et al., 2005) was used to express 

the artificial microRNAs. Since some myosin XI mutants have shorter root hairs than WT 

(Ojangu et al., 2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008; Park and Nebenführ, 

2013), it was predicted that expression of the artificial microRNAs in WT would result in shorter 

root hairs. In addition, reduced expression of the pollen myosins was predicted to decrease pollen 

tube growth, thus reduce overall fertility. 
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2.2: Methods  

2.2.1: Plant lines, constructs, and plant transformations 

 Arabidopsis thaliana Col-0 was used as wild-type (WT). T-DNA insertion mutants, mya1 

(SALK_022140) and xik (SALK_018764) were obtained from the Arabidopsis Biological 

Resource Center and confirmed to be knockout mutants by Eunsook Park in this lab. Eunsook 

Park also generated the mya1 xik double mutant. Dr. Xue Cai, a former post-doc in this lab, 

transformed WT with the 35Spro:GUS construct to use as a positive control for GUS staining. 

Eunsook Park used the Web MicroRNA Designer (Schwab et al., 2006) to design two 

artificial microRNAs, R1 (TAACATGCAAGCTTCGTCGAG) and R2 

(TACATGCTGATTAAAGTGCTG), to target multiple class XI myosins. The mature artificial 

microRNA sequences were cloned into the endogenous miR319a precursor by performing PCR 

on pRS300 with three different primer sets and then combining the products in a fourth PCR 

(Tables 2.1 and 2.2). pRS300 was kindly provided by Dr. Detlef Weigel (Max Planck Institute, 

Tübingen, Germany). The resulting PCR products were cloned into pBS using blunt end ligation. 

The artificial microRNA precursors were moved into the multiple cloning site of the binary 

plasmid pV-TOP, which was kindly provided by Dr. Ian Moore (University of Oxford, Oxford, 

UK). pV-TOP contains a six-operator array flanked by two divergent TATA boxes with the GUS 

reporter gene on one side and the multiple cloning site on the other side (Craft et al., 2005). pV-

TOP + R1 was transformed into WT and xik, and pV-TOP + R2 was transformed into WT, xik, 

mya1, and mya1 xik, all by the Arabidopsis floral dip method (Weigel and Glazebrook, 2002). 

35Spro:LhGR was moved from pBIN-LhGR-N (Craft et al., 2005) into another binary plasmid, 

pFGC19 (Nelson et al., 2007). pBIN-LhGR-N was kindly provided by Dr. Ian Moore (University 

of Oxford, Oxford, UK). Eunsook Park left the project at this stage. The new 35Spro:LhGR 

construct was transformed into the inducible artificial microRNA lines by the Arabidopsis floral  
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Table 2.1: Construction of artificial microRNAs, R1 and R2 

Template Primers Product 
pRS300 OLIGO-F & A14 A 
pRS300 A12 & A13 B 
pRS300 A11 & OLIGO-R C 
A, B, C OLIGO-F & OLIGO-R R1 
pRS300 OLIGO-F & A24 1 
pRS300 A22 & A23 2 
pRS300 A21 & OLIGO-R 3 
1, 2, 3 OLIGO-F & OLIGO-R R2 
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Table 2.2: List of primers 

Primer name Primer sequence (5’ to 3’) 
A11 GATAACATGCAAGCTTCGTCGAGTCTCTCTTTTGTATTCC 
A12 GACTCGACGAAGCTTGCATGTTATCAAAGAGAATCAATGA 
A13 GACTAGACGAAGCTTCCATGTTTTCACAGGTCGTGATATG 
A14 GAAAACATGGAAGCTTCGTCTAGTCTACATATATATTCCT 
A21 GATACATGCTGATTAAAGTGCTGTCTCTCTTTTGTATTCC 
A22 GACAGCACTTTAATCAGCATGTATCAAAGAGAATCAATGA 
A23 GACAACACTTTAATCTGCATGTTTCACAGGTCGTGATATG 
A24 GAAACATGCAGATTAAAGTGTTGTCTACATATATATTCCT 

OLIGO-F CTGCAAGGCGATTAAGTTGGGTAAC 
OLIGO-R GCGGATAACAATTTCACACAGGAAACAG 

SEQ-35S-F CGCACAATCCCACTATCCTTCGCA 
SYP22pro-F3 CGAGAATTCATCAACCACTATCTGTCGTCC 
M11.J-pro-F1 ACGTCCGGAGGTCTGCTGAACTAGAGACT 

DT6-LP ATACCATCAAGAAGGTTCGGG 
DT6-RP CTTTTCCGGTGGATTCTCTTC 
JT3-LP2 CTCACCTTGCAAAGTGGAGTC 
JT3-RP2 CTCAACTTGCAATAAGGCCTG 
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dip method (Weigel and Glazebrook, 2002). To simplify the naming of plant lines containing 

both the artificial microRNA/GUS reporter gene construct and the 35Spro:LhGR construct, lines 

were referred to as R1X and R2X. X indicates the background: C – WT, M – mya1, K – xik, and 

D – mya1 xik. 

For constitutive expression, R1 and R2 were expressed by the CaMV 35S, SYP22, and XIJ 

promoters. The native SYP22 promoter extended 1,357 base pairs upstream of the SYP22 start 

codon and included the first 20 base pairs of the SYP22 coding sequence (19,013,796-19,015,171 

based on TAIR10). The native XIJ promoter extended 757 base pairs upstream of the XIJ start 

codon and included the first 9 base pairs of the XIJ coding sequence (21,534,040-21,534,805 

based on TAIR10). 35Spro:R1 and 35Spro:R2 were moved into the binary plasmid pFGC19 

(Nelson et al., 2007). SYP22pro:R1, SYP22pro:R2, XIJpro:R1, and XIJpro:R2 were moved into 

the binary plasmid pPZP221 (Hajdukiewicz et al., 1994). All constructs were transformed into 

WT by the Arabidopsis floral dip method (Weigel and Glazebrook, 2002). 

2.2.2: Seed sterilization and plant growth conditions 

 Seeds were incubated at -80°C for a minimum of 15 minutes to kill pests and then surface 

sterilized with 30% bleach and 0.1% TritonX-100. Sterilized seeds were washed 3 – 5 times with 

sterile dH2O and unless otherwise noted, plated on ½X Murashige and Skoog medium with 1% 

sucrose (pH 6.0) solidified with 0.2% phytagel. For selection of transgenic lines, glufosinate 

(Basta), hygromycin B, or gentamicin was added to a final concentration of 10 µg/ml, 37.5 

µg/ml, or 25 µg/ml, respectively. Note that 0.6% plant agar was used instead of phytagel when 

gentamicin was included. Plates were incubated at 4°C for 2 days to stratify the seeds and then 

transferred to 22°C with 16 hours of light and 8 hours of dark. 10 -14 day-old seedlings were 

transferred to soil (Fafard Superfine Germinating Mix) and grown in 60% humidity at 22°C in 16 

hours of light and at 20°C in 8 hours of dark.  
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2.2.3: Dexamethasone induction 

The first induction method was only used to check for the expression of the GUS reporter 

gene. Leaves were removed and soaked in 500 µM dexamethasone overnight. The 500 µM 

dexamethasone solution was a dilution from a 100 mM dexamethasone in 95% ethanol stock 

solution. Ethanol was added to the dH2O used to soak the control leaves. The second induction 

method was used for screening for homozygous mutants and for the root hair and gravitropism 

experiments. Seeds were germinated and grown on MS medium containing 0 µM, 10 µM, or 200 

µM dexamethasone. Dexamethasone was added to the medium from a 100 mM dexamethasone 

in DMSO stock solution. Dexamethasone or DMSO was added to the medium after autoclaving. 

2.2.4: GUS staining 

After dexamethasone induction, the leaves or seedlings were transferred to 24-well plates 

with staining buffer containing 50 mM sodium phosphate buffer (pH 7.2), 0.2% Triton X-100, 

0.2 mM potassium ferrocyanide, 0.2 mM potassium ferricyanide, and 1 mM X-Gluc (5-bromo-4-

chloro-3-indolyl-β-glucuronide). The samples were incubated at 37°C overnight. Leaves and 

seedlings were washed three times with 70% ethanol and three times with 95% ethanol. Root 

hairs were imaged in 95% ethanol using a Zeiss SteREO Discovery.V8 stereomicroscope 

equipped with a Canon EOS Rebel XS digital camera. Leaves were transferred to dH2O by 

gradually reducing the concentration of ethanol and then transferred to a 50% glycerol solution 

before imaging. Leaves were imaged using a Leica MZ16 FA stereomicroscope equipped with a 

Leica DFC420 digital camera. 

2.2.5: Root hair analysis 

 For all root hair analysis experiments, 24 seeds were plated in two rows on square plates 

containing ¼X MS medium with 1% sucrose (pH 5.7) solidified with 0.5% phytagel. Plates were 

placed in a vertical orientation in the growth chamber. Five-day-old seedlings were imaged using 
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a Zeiss SteREO Discovery.V8 stereomicroscope equipped with a Canon EOS Rebel XS digital 

camera. The lengths of all in focus mature root hairs were measured in ImageJ. Mutants that 

were statistically different from the control were identified by a Mann-Whitney unpaired t-test 

using Prism 6 software (GraphPad). 

 For the dexamethasone-inducible lines, each line was plated along with the 35Spro:GUS 

line and the corresponding control (WT, mya1, xik, or mya1 xik) on MS medium containing 0 

µM, 10 µM, or 200 µM dexamethasone. GUS staining was performed on each seedling, and the 

root hairs were examined for positive GUS staining. Root hair measurements were combined by 

genotype and dexamethasone concentration. 

 For the constitutively expressed artificial microRNA lines, T2 seeds from 5 35Spro:R1 

lines and 5 35Spro:R2 lines were plated with one plant line per plate. Genomic DNA (gDNA) 

was extracted from each 15-day-old seedling, and PCR was used to amplify the construct in 

order to determine which seedlings contained the artificial microRNA and which did not (Tables 

2.2 and 2.3). JT3-LP2 and JT3-RP2 were used as control primers to check for the presence of 

gDNA. For each plate, root hair measurements were combined into two groups, one from 

seedlings containing the artificial microRNA and one from WT seedlings.  

2.2.6: Gravitropism analysis 

Seeds were plated on MS medium with 0.8% plant agar and either 10 µM dexamethasone 

in DMSO or DMSO only. Plates were incubated for two hours at 22°C in the light and then 

placed in a vertical orientation at 22°C in the dark for 48 hours. The plates were then moved to 

room temperature and rotated 90° to the left. Images were captured in the dark every 15 minutes 

for 24 hours using a Marlin CCD camera and infrared radiation. Angles of the hypocotyl and 

root were measured using ImageJ. 0° was horizontal and 90° was vertical (up for hypocotyls and 

down for roots). 
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Table 2.3: Primer pairs used for genotyping 

Template Gene/construct Primers PCR condition 
gDNA 35Spro:R1 SEQ-35S-F & A12 A58E30C 

 35Spro:R2 SEQ-35S-F & A22 A58E30C 
 SYP22pro:R1 SYP22pro-F3 & A12 A58E120C 
 SYP22pro:R2 SYP22pro-F3 & A22 A58E120C 
 XIJpro:R1 M11.J-pro-F1 & A12 A58E90C 
 XIJpro:R2 M11.J-pro-F1 & A22 A58E90C 
 XID DT6-LP & DT6-RP A58E90C 
 XIJ JT3-LP2 & JT3-RP2 A60E90C 

PCR conditions are identified by their annealing temperature (A##), extension time (E##), and 
number of cycles (letter code: A=20, B=25, C=30, D=35, E=40). 
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2.2.7: DNA extraction and genotyping 

Genomic DNA (gDNA) was extracted from either a leaf or a seedling. Plant tissue was 

ground in a microcentrifuge tube with a small plastic pestle in 400 µl of extraction buffer (200 

mM Tris-Cl pH 7.0, 250 mM NaCl, 25 mM EDTA, and 0.5% SDS). gDNA was precipitated 

with isopropanol and washed twice with 75% ethanol. Pellets were dissolved in 100 µl of dH2O, 

and 1-2 µl of gDNA was used for PCR. PCR was performed using construct specific primers 

with the following conditions: initial denaturation at 94°C for 2 minutes, followed by multiple 

cycles with 94°C (15 s), an annealing temperature (15 s), 72°C (for a set time), and after the final 

cycle 5 minutes at 72°C (Tables 2.2 and 2.3). Note that for the pollen expressed artificial 

microRNA lines, DT6-LP and DT6-RP were used as control primers to check for the presence of 

gDNA. 

A variation on the gDNA extraction protocol was utilized when there were hundreds of 

samples. Leaves were placed in microfuge tubes each containing one cleaned BB (a 4.5 mm 

zinc-plated steel pellet) and incubated at -80°C for at least 24 hours. Immediately after removing 

the tubes from the freezer, they were inverted and tapped repeatedly on a hard surface to break 

apart the leaves. 200 µl of extraction buffer was added and the remainder of the normal 

procedure was followed except the pellets were dissolved in 50 µl of dH2O.  

 

2.3: Results 

2.3.1: Generation of artificial microRNAs 

Since there is redundancy among class XI myosins in Arabidopsis (Prokhnevsky et al., 

2008; Peremyslov et al., 2010; Ojangu et al., 2012), some defects might not be detected until a 

majority of the myosins are knocked out. Instead of generating higher order mutants by crossing 

single T-DNA insertion mutants, artificial microRNAs were designed to reduce the expression of 
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multiple class XI myosins at once. Web MicroRNA Designer (WMD), a web application for the 

automated design of artificial microRNAs (Schwab et al., 2006), was used to identify artificial 

microRNA sequences that could target as many of the 13 class XI myosins as possible. Of the 

multiple suggested sequences, two artificial microRNAs, R1 

(TAACATGCAAGCTTCGTCGAG) and R2 (TACATGCTGATTAAAGTGCTG), were 

selected and cloned into an endogenous microRNA precursor, miR319a. In the time since the 

two artificial microRNAs were cloned, the web application was updated twice and is now on 

version 3, WMD3. Using WMD3 to design artificial microRNAs to target the 13 class XI 

myosins, R1 and R2 were not among the sequences recommended (data not shown). Therefore if 

this experiment were repeated today, the artificial microRNA sequences would be different. 

WMD3 also has a target search application to predict targets of native or artificial microRNAs 

based on criteria obtained from experiments with native and artificial microRNAs (Schwab et al., 

2005; Schwab et al., 2006). Using the WMD3 target search application, R1 and R2 were 

predicted to target 9 and 6 out of the 13 class XI myosins, respectively (Tables 2.4 and 2.5). R1 

was also predicted to target ILITYHIA (At1g64790), a target that was not identified with the 

original version of WMD. ILITYHIA is expressed throughout the plant (Hruz et al., 2008) and 

encodes a protein involved in plant immunity (Monaghan and Li, 2010).  

2.3.2: The GUS reporter gene was successfully induced with the addition of dexamethasone 

Quadruple myosin XI mutants were the highest order of myosin mutants examined in 

Arabidopsis, and these mutants exhibited reduced growth (Peremyslov et al., 2010). Since R1 

and R2 were predicted to target six or more myosins at once, there was concern that the seedlings 

expressing the constructs would not survive. Therefore, a dexamethasone-inducible system was 

used to drive the expression of the artificial microRNAs (Craft et al., 2005). This system 

involves transforming two constructs into plants. One construct contains the artificial microRNA 
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Table 2.4: Predicted targets of R1 

Gene Location (bp)* Sequence (5’ to 3’) Hybrid. energy (kcal/mol) 
XIC 1,543-1,563 CTCGATGAAGCTTGCATGTTT -40.66 
XIE 1,528-1,548 CTTGATGAAGCTTGCATGTTT -38.43 
XIG 1,546-1,566 CTGGACGAGGCTTGCATGTTC -37.62 
XIA 1,516-1,536 CTAGACGAGGCTTGCATGTTT -36.54 
XID 1,567-1,587 CTTGATGAGGCTTGTATGTTC -35.83 
XIB 1,522-1,542 CTAGATGAAGCTTGCATGTTT -34.84 
XI-I 1,707-1,727 TTAGATGAAGCTTGCATGTTT -34.84 

MYA2 1,692-1,712 CTAGATGAAGCTTGCATGTTT -34.84 
ILITYHIA 2,795-2,815 CTTGGTGAAGCTTGCACGTTG -31.99 

XIH 1,798-1,818 CTGAATGAGGCTTGCATGTTC -30.73 
* Based on the TAIR9 cDNA sequence. 
Red letters are mismatches. 
Perfect match hybridization energy = -44.07 kcal/mol 
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Table 2.5: Predicted targets of R2 

Gene Location (bp)* Sequence (5’ to 3’) Hybrid. energy (kcal/mol) 
MYA1 1,519-1,539 CAGCATTTTAATCAGCATGTC -36.77 
MYA2 1,551-1,571 CAGCATTTTAATCAGCATGTC -36.77 
XIB 1,381-1,401 CAGCACTTTAATCAGCACGTC -34.42 
XIF 1,378-1,398 CAGCATTTCAATCAGCATGTA -33.82 
XIJ 1,372-1,392 CAGCATTTCAATCAGCATGTA -33.82 
XID 1,426-1,446 CAGCATTTCAATCAGCATGTG -33.51 

* Based on the TAIR9 cDNA sequence. 
Red letters are mismatches. 
Perfect match hybridization energy = -40.82 kcal/mol 
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and a GUS reporter gene, separated by six lac operators. The other construct encodes LhGR 

under the control of the CaMV 35S promoter. LhGR is comprised of the ligand binding domain 

of the rat glucocorticoid receptor, the high affinity DNA binding domain of the lac repressor, and 

the GAL4 transcription activation domain II (Craft et al., 2005). In the absence of 

dexamethasone, LhGR remains bound to heat shock protein 90 (HSP90) in the cytoplasm 

(Figure 2.1). In the presence of dexamethasone, the interaction between LhGR and HSP90 is 

disrupted, allowing LhGR to enter the nucleus and induce expression of the artificial microRNA 

and the GUS reporter gene (Figure 2.1). 

 The dexamethasone-inducible system with R1 was transformed into WT and xik and 

while a similar system with R2 was transformed into WT, mya1, xik, and mya1 xik. All lines were 

initially screened for expression of the GUS reporter gene in the absence and presence of 

dexamethasone. Leaves were collected, soaked in dexamethasone, and then GUS staining was 

performed to determine whether or not the GUS reporter gene was expressed. In a few lines, the 

GUS reporter gene was expressed in the absence of dexamethasone (data not shown). These lines 

were not examined further. In most lines, leaves exhibited the expected result: no staining in the 

absence of dexamethasone and some degree of positive GUS staining in the presence of 

dexamethasone (Figure 2.2A). Lines with strong GUS staining were selected for in every 

generation following the transformation. 

The inducible artificial microRNA lines were also germinated and grown on medium 

containing dexamethasone. The seeds germinated normally, and the seedlings appeared to grow 

as well as WT (data not shown). GUS staining revealed that when grown on dexamethasone, the 

GUS reporter gene was expressed throughout each seedling, including the root hairs (Figure 

2.2C). This result indicated that induction of the GUS reporter gene and the inferred induction of 

either R1 or R2, did not drastically affect seed germination or seedling growth.  
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Figure 2.1: Dexamethasone-inducible system 

In the absence of dexamethasone (Left), LhGR (light blue) remains bound to HSP90 

(green) in the cytoplasm, so the artificial microRNA and the GUS reporter gene are not 

transcribed. When dexamethasone (dark blue) is present (Right), it binds to LhGR and 

disrupts its interaction with HSP90. Then LhGR can enter the nucleus, bind to the six lac 

operators (purple), and activate transcription of the artificial microRNA and the GUS 

reporter gene (red). 
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Figure 2.2: GUS staining results of inducible artificial microRNA lines 

(A) Leaves from a mya1 plant expressing the dexamethasone-inducible system with R2: 

Top = induced, Bottom = not induced. Positive GUS staining result was only obtained 

after induction with dexamethasone. Scale bar = 5 mm. 

(B) WT seedling grown on 200 µM dexamethasone. No GUS staining observed in the 

root or root hairs. 

(C) WT seedling expressing the dexamethasone-inducible system with R2 grown on 200 

µM dexamethasone. Positive GUS staining observed in the root and root hairs. Scale bar 

= 0.5 mm. 
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2.3.3: Induced expression of myosin XI artificial microRNAs did not shorten root hairs 

 The mya2 single mutant has short root hairs, and the mya2 xib double mutant has even 

shorter root hairs (Peremyslov et al., 2008; Prokhnevsky et al., 2008). Since both R1 and R2 

should target MYA2 and XIB (Tables 2.4 and 2.5), the inducible artificial microRNA lines can 

be expected to have shorter root hairs when grown on dexamethasone. Two lines for each 

construct in every genetic background were grown on vertical plates along with 35Spro:GUS 

seedlings and the corresponding control (WT, mya1, xik, or mya1 xik) on medium containing 0 

µM, 10 µM, or 200 µM dexamethasone. Five-day-old seedlings were imaged, and the lengths of 

all in-focus, mature root hairs were measured (Figure 2.3). GUS staining was performed on all 

seedlings, and the root hairs were examined for the presence of staining. None of the controls 

(WT, mya1, xik, or mya1 xik) had positive GUS staining, and the 35Spro:GUS seedlings always 

had positive GUS staining. Some artificial microRNA seedlings were omitted from the root hair 

analysis because they either had positive staining when grown on 0 µM dexamethasone or lacked 

positive staining when grown on 10 µM or 200 µM dexamethasone. All genotypes had shorter 

root hairs when grown on medium containing 200 µM dexamethasone (Figure 2.3). 

35Spro:GUS seedlings have a WT background, so they always had longer root hairs than 

seedlings with either the xik or the mya1 xik background (Figure 2.3). Five of the 12 artificial 

microRNA lines were statistically shorter or longer than the control when grown on 0 µM 

dexamethasone (Figure 2.3; p < 0.01). This difference was most likely due to variation and 

sample size. Six of the 12 artificial microRNA lines were not statistically different from the 

control when grown on dexamethasone (Figure 2.3; p > 0.01). Four of the 12 artificial 

microRNA lines were statistically longer than the control when grown on either 10 µM or 200 

µM dexamethasone (Figure 2.3; p < 0.01). This was the opposite of the expected result. R2C-2 

and R2M-2 were statistically shorter than the control when grown on 10 µM but not on 200 µM 



! 54!

 

 

 

 

 

 

Figure 2.3: Inducible artificial microRNA lines do not have shorter root hairs 

The inducible artificial microRNA lines (R1 and R2) were grown on vertical plates along 

with 35Spro:GUS and control seedlings at three concentrations of dexamethasone. The 

controls were WT, mya1, xik, and mya1 xik depending on the background of R1/R2: C = 

WT, M = mya1, K = xik, and D = mya1 xik. The length of every in focus mature root hair 

was measured (Mean ± SD; n = 12 to 218). Overall, the inducible artificial microRNA 

lines did not have shorter root hairs than the control when grown on medium containing 

dexamethasone (* p < 0.01, Mann-Whitney test). Note, R2K-1 was not grown on 200 µM 

dexamethasone, and statistics were not performed on the 35Spro:GUS line. 
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Figure 2.3: Continued 
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dexamethasone (Figure 2.3; p < 0.01). Overall, the addition of dexamethasone resulted in the 

expression of the GUS reporter gene, but it did not reliably result in shortened root hairs in the 

artificial microRNA lines. This means that the expression levels of MYA2 and XIB probably were 

not reduced at all or not reduced enough to detect a defect in root hair growth. This suggests that 

the artificial microRNAs were not expressed, not expressed at a high enough level, or MYA2 and 

XIB were not targeted by R1 and R2. 

2.3.4: The gravitropic response was unaffected when R2M was grown on dexamethasone 

 Gravitropism is the response of plants to the direction of gravity. Roots grow downward, 

and shoots grow upward. Myosin XI mutants have not been examined for defects in 

gravitropism; however, the gravitropic response is dependent on differential cellular elongation 

(Toyota and Gilroy, 2013). Since class XI myosins are involved in the elongation of various cell 

types (Ojangu et al., 2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 

2010; Ojangu et al., 2012), myosin XI might be involved in gravitropic responses. Therefore, the 

inducible artificial microRNA lines might have a delayed gravitropic response when grown on 

dexamethasone.  

 R2M seedlings were germinated and grown in the dark for 48 hours on vertical plates 

containing either 0 µM or 10 µM dexamethasone. The plates were rotated 90° and imaged in the 

dark every 15 minutes for 24 hours (Movie 2.1). The angles of the roots and hypocotyls were 

measured as they reoriented from 0° to 90°. There was a large degree of variation in the 

reorientation rate for roots and hypocotyls among seedlings, and no difference was detected 

between seedlings grown on 0 µM and 10 µM dexamethasone (Figure 2.4). Therefore, induction 

of the GUS reporter gene and the possible induction of R2, did not affect the root or hypocotyl 

gravitropic response. Since myosin XI mutants have not been tested for delays in gravitropic 

responses, the effectiveness of R2 could not be evaluated from this experiment. 
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Figure 2.4: Gravitropism was unaffected in the R2M line grown on dexamethasone 

Gravitropism was examined in R2M, the inducible R2 line in the mya1 background, 

grown on 0 µM (black) or 10 µM (blue) dexamethasone. Two-day-old seedlings were 

grown and imaged in the dark. The reorientation rate of the root (A) and hypocotyl (B) 

remained unchanged between the absence and the presence of dexamethasone. 
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2.3.5: Constitutively expressed myosin XI artificial microRNAs shortened root hairs 

 Even though the inducible artificial microRNA lines did not have defects in root hair 

elongation or gravitropic response (Figures 2.3 and 2.4), it was still possible that the artificial 

microRNAs were able to target the myosin XI mRNAs, but were not expressed at a high enough 

level to result in growth defects. To test the effectiveness of R1 and R2, they were constitutively 

expressed in WT under control of the strong CaMV 35S promoter. MYA2 and XIB are involved in 

root hair elongation (Peremyslov et al., 2008; Prokhnevsky et al., 2008), and both R1 and R2 

should target MYA2 and XIB (Tables 2.4 and 2.5). Therefore, root hair lengths of five 

35Spro:R1 and five 35Spro:R2 lines were examined. T2 seedlings were grown on vertical plates, 

imaged five days post-germination, and genotyped to determine which seedlings contained the 

artificial microRNA constructs. Seedlings not containing R1 or R2 were considered to be WT. 

R2-2, R2-3, and R2-5 probably contained multiple insertions of the 35Spro:R2 construct because 

none of the T2 seedlings tested were WT (Figure 2.5).  

 All five R1 lines and R2-1 had shorter root hairs than their WT siblings grown on the 

same plate (Figure 2.5; p < 0.01). R2-4 did not have shorter root hairs than WT, and R2-5 

appeared to have root hairs similar in length to WT seedlings grown on other plates (Figure 2.5), 

suggesting that R2 might have been silenced in those lines. R2-2 and R2-3 appeared to have 

shorter root hairs than WT on other plates (Figure 2.5). Overall, constitutive expression of R1 or 

R2 resulted in shortened root hairs. This was most likely due to the reduced expression of myosin 

XI genes, in particular MYA2 and XIB, suggesting that R1 and R2 were able to silence myosin XI 

gene expression. 

2.3.6: Constitutively expressed myosin XI artificial microRNAs did not affect fertility 

 R1 and R2 should target five and three out of the six myosin XI genes expressed in 

pollen, respectively. Pollen tube growth has not been examined in myosin XI mutants; however, 
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Figure 2.5: Constitutively expressed artificial microRNA lines have shorter root hairs 

Five-day-old T2 35Spro:R1 and 35Spro:R2 vertically grown seedlings were imaged, and 

the length of every in-focus mature root hair was measured. All seedlings were genotyped 

to determine which ones contained the artificial microRNA construct and which ones did 

not (WT). All R1 lines and some R2 lines had shorter root hairs than WT (Mean ± SD; n = 

11 to 546; * p < 0.01). Note, R2-2, R2-3, and R2-5 lines most likely contained multiple 

insertions, so there were not any WT seedlings to compare to those R2 lines. 
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actin disrupting drug treatments have implicated myosins in angiosperm pollen tube growth 

(Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 

1989a). Since the 35S promoter does not function in pollen, it was exchanged for the SYP22 and 

XIJ promoters. SYP22 is expressed throughout the plant, including pollen, and XIJ is 

predominately expressed in pollen (Hruz et al., 2008). If pollen tube growth is affected by 

silencing of myosin genes, there could be a reduction in the number of ovules being fertilized 

that would reduce the number of seeds per silique. If pollen tube growth was drastically reduced 

or inhibited, the plants would be male-sterile. Male sterility is easily observed in Arabidopsis 

because siliques will not be formed, meaning the pistils will not elongate. 

 SYP22pro:R1, SYP22pro:R2, XIJpro:R1, and XIJpro:R2 were transformed into WT. T1 

plants were selected by antibiotic resistance and confirmed by genotyping (Table 2.6). No 

obvious defects were observed for any of the T1 plants (data not shown). T2 seeds were 

germinated on selection medium and lines with a resistant : sensitive ratio larger than 3 : 1 were 

not tested any further because they likely contained multiple insertions. Surprisingly, multiple 

lines had resistant : sensitive ratios lower than 3 :1, such as 2 : 1 or 1 : 3. This segregation pattern 

could only occur if the antibiotic resistance gene was silenced in those lines. These lines were 

examined for fertility defects along with lines that exhibited the expected 3 : 1 ratio (Table 2.6). 

 Twelve T2 seedlings from each line that was screened further were transferred to soil, 

and then 8-week-old plants were examined for fertility defects. One SYP22pro:R1, one 

XIJpro:R1, and six XIJpro:R2 lines exhibited some degree of sterility (Table 2.6). In most of the 

lines with fertility defects, not all 12 T2 plants were sterile. SYP22pro:R1 had the weakest 

phenotype; all flower structures appeared normal; however, siliques were not always formed 

(Figure 2.6). XIJpro:R1 had the most severe phenotype; all of the plants transferred to soil were 

completely sterile. The plants had lancet-shaped rosette leaves and abnormally small flowers 
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Table 2.6: Plant lines generated for the pollen artificial microRNA experiment 

Construct # of independent lines # of lines examined  # of lines with fertility defect  
SYP22pro:R1 27 14 1 
SYP22pro:R2 11 7 0 

XIJpro:R1 24 12 1 
XIJpro:R2 17 8 6 
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Figure 2.6: Subtle phenotypes detected in a SYP22pro:R1 line. 

One SYP22pro:R1 line exhibited a slight fertility defect. The majority of siliques on some 

plants were shorter than normal (A) while some plants appeared completely normal (B). 

Flowers from plants with reduced fertility appeared normal and had numerous pollen 

grains (C). 

A B

C
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with short filaments (Figure 2.7). Interestingly, the anthers appeared normal; however, mature 

flowers lacked free pollen. The observation that XIJpro:R1 plants had defects in vegetative 

tissues was not consistent with the XIJ promoter being primarily active in pollen (Hruz et al., 

2008). However, the transgene could have inserted immediately downstream of a promoter that 

is active throughout the plant. Sterile XIJpro:R2 plants appeared normal except no siliques were 

formed and the anthers appeared shriveled and brown, suggesting a sporophytic defect (Figure 

2.8). In one XIJpro:R2 line, the plants with reduced fertility were completely sterile. In the other 

five lines, only certain branches were affected on the plants with reduced fertility.  

 T2 seeds from all eight lines with fertility defects were grown up again; however, this 

time without selection to determine if the fertility defects segregated with the transgene. 45 to 60 

seedlings per line were transferred to soil, and 8-week-old plants were examined for the fertility 

defects. Sterile or partially sterile plants were not observed in the five weaker lines of XIJpro:R2, 

so these lines were not examined further. For the remaining three lines, each T2 plant was 

genotyped to determine whether or not the artificial microRNA construct was present and 

examined for the sterility phenotype (Table 2.7). For SYP22pro:R1, not all of the partially sterile 

plants contained the artificial microRNA construct, so reduced expression of class XI myosins 

could not be responsible for this phenotype. For XIJpro:R1, all of the plants contained the 

artificial microRNA (Table 2.7), indicating multiple insertions were likely present. However, 

only ~25% of the plants exhibited the strong phenotype (Table 2.7 and Figure 2.7). This could 

be due to the copy number of the transgene, meaning there is a level of artificial microRNA 

expression that has to be reached before growth and fertility defects are detectable. An 

alternative explanation would be that one of the insertions occurred within a gene that when both 

copies are mutated results in the observed phenotype. The XIJpro:R2 line also might have 

contained multiple insertions due to the deviation from a 3 : 1 ratio (Table 2.7). Similarly to the 
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Figure 2.7: Strong defects observed in an XIJpro:R1 line. 

(A) When grown without selection, some XIJpro:R1 plants were reduced in size and 

completely sterile (left), while some plants were fertile and normal in appearance (right). 

(B) Sterile XIJpro:R1 flowers were smaller in size, had short filaments with yellow 

anthers, and lacked free pollen. 
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Figure 2.8: Abnormal anthers present in an XIJpro:R2 line. 

The XIJpro:R2 line with the strongest phenotype had some plants that appeared normal 

(A), while some plants were completely sterile (B). For sterile plants, stigmas from open 

flowers lacked pollen (C), and the anthers were brown and shriveled (D). 
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Table 2.7: T2 plants grown without selection were genotyped and examined for defects. 

Construct Total # of plants # of plants with construct # of sterile plants 
SYP22pro:R1 47 26 10 

XIJpro:R1 60 60 16 
XIJpro:R2 53 47 14 
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XIJpro:R1 line, only ~25% of the plants that contained R2 were sterile. 

 To determine whether or not the phenotypes in XIJpro:R1 and XIJpro:R2 were due to a 

mutation caused by the insertion of the transgene, both lines were crossed to WT. The F1 plants 

were grown up and examined for fertility defects (Table 2.8). F1 seeds were formed from using 

sterile XIJpro:R1 and XIJpro:R2 plants as the female in crosses with non-sterile plants. This 

supported the hypothesis that the sterility was a result from defects in either the male 

gametophyte or sporophytic tissues involved in pollen development. If the sterility phenotype 

was due to the construct being inserted into a sporophytic gene that when homozygous recessive 

the plants were sterile, all of the F1 plants would be fertile from a cross with WT. This was 

observed for both XIJpro:R1 and XIJpro:R2 lines (Table 2.8). The single sterile plant from WT x 

XIJpro:R2 could have been from a contamination. Since sterile plants were grown in the same 

pots as non-sterile siblings, a pollen grain from the non-sterile sibling could have landed on the 

stigma of the sterile plant used in the cross. Obtaining only fertile F1 plants from backcrossing to 

WT does not completely rule out the possibility that the sterility phenotypes were related to the 

number of copies of the artificial microRNA construct. F1 plants could have been fertile because 

the number of copies of the artificial microRNA was drastically reduced from the backcross to 

WT. Therefore, a sterile XIJpro:R2 plant was also crossed to a non-sterile sibling. If the sterility 

phenotype was due to the transgene being inserted into a gene required for anther development 

that when homozygous recessive the plants were sterile, fertile siblings would either be 

heterozygous for the mutation or WT. If a homozygous recessive mutant (sterile) was crossed to 

a heterozygous mutant (fertile), F1 plants would have a 1 : 1 ratio of sterile : fertile plants. This 

was observed for the sibling cross (Table 2.8; χ2 = 0.81, p = 0.37). A 1 : 1 ratio most likely 

would not have been observed if the sterility phenotype was a result of the number of copies of 

the artificial microRNA. Given the cross results (Table 2.8) and that approximately only ¼ of 
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Table 2.8: Phenotypes of F1 plants resulting from crosses with the sterile lines. 

Male parent Female parent # of sterile F1 plants # of fertile F1 plants 
WT XIJpro:R1 (sterile) 0 27 
WT XIJpro:R2 (sterile) 1 41 

XIJpro:R2 (fertile) XIJpro:R2 (sterile) 18 13 
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the T2 plants were sterile (Table 2.7), the sterility phenotypes in the XIJpro:R1 and XIJpro:R2 

lines were almost certainly a result from a single gene, recessive mutation caused from the 

insertion of the transgene. Although the drastic fertility defects were not due to the artificial 

microRNAs, these lines could still have slight defects in pollen tube growth that could be 

identified by performing in vitro pollen tube growth experiments. 

 

2.4: Discussion 

 There are 13 class XI myosins in Arabidopsis thaliana, and analysis of higher order 

mutants has revealed that there is redundancy among some of the myosins (Prokhnevsky et al., 

2008; Peremyslov et al., 2010).  Some myosin XI genes have not been studied as much as the 

more highly expressed genes in vegetative tissues, such as XIK, MYA2, and XI-I. In particular, 

little attention has been given to the myosin XI genes expressed in pollen: XIA, XIB, XIC, XID, 

XIE, and XIJ (Peremyslow et al., 2011; Sparkes, 2011). Since it takes years to generate different 

combinations of higher order mutants, a faster approach would be to generate artificial 

microRNAs that would target multiple class XI myosins at once (Schwab et al., 2006). 

Therefore, two artificial microRNAs were designed to target 9 and 6 out of the 13 class XI 

myosins. 

Constitutive expression of myosin XI artificial microRNAs resulted in shorter root hairs 

 Initially, we expressed the two artificial microRNAs using a dexamethasone-inducible 

system that also included a GUS reporter gene (Craft et al., 2005). Both the artificial microRNA 

and the GUS reporter gene should be expressed when dexamethasone is present. In all of the 

lines tested, the GUS reporter gene was expressed in the presence of dexamethasone. It is 

important to note that the expression of the GUS reporter gene and the artificial microRNA were 

most likely poorly correlated (Craft et al., 2005). Selection of lines with strong positive GUS 
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staining ensured that the plants examined contained a functional LhGR; however, it did not 

guarantee that the artificial microRNA was highly expressed in those lines. Both artificial 

microRNAs, R1 and R2, should target MYA2 and XIB. mya2 and mya2 xib mutants have shorter 

root hairs than WT (Peremyslov et al., 2008; Prokhnevsky et al., 2008), so when R1 and R2 were 

expressed, they should have had shortened root hairs. Only constitutive expression of the 

artificial microRNAs resulted in shortened root hairs. This suggests that the artificial microRNAs 

were probably not expressed well using the dexamethasone-inducible system. RNA was 

extracted and cDNAs were generated from the roots of 35Spro:R1 and 35Spro:R2 lines; 

however, there were problems with the RT-PCR, so the reduced expression of the targeted 

myosin XI genes was not confirmed. In the future, quantitative RT-PCR could be performed on 

these lines to determine which myosins were effectively target by R1 and R2. Besides having 

shorter root hairs than WT, the 35Spro:R1 and 35Spro:R2 lines had no other obvious phenotypes. 

Expression of myosin XI artificial microRNAs in pollen did not drastically reduce fertility 

 R1 and R2 should target 5 and 3, respectively, of the pollen myosins when expressed 

from the native SYP22 and XIJ promoters, which are both active in pollen (Hruz et al., 2008). If 

silencing of the pollen myosins reduced pollen tube growth, a reduction in overall fertility would 

have been expected. Drastic fertility defects resulting from the artificial microRNA constructs 

were not detected. It is possible that the pollen expressed artificial microRNAs do slightly reduce 

pollen tube growth; however, to detect a subtle pollen tube growth defect, multiple lines for each 

construct would have to be thoroughly examined. The number of seeds per silique could be 

counted, or in vitro pollen tube growth experiments could be performed. However, the amount of 

work required to possibly detect a slight defect would have to be considered before examining 

these lines further. An alternative approach could be to express the artificial microRNAs in 

pollen using a stronger promoter, such as the LAT52 promoter (Twell et al., 1990). It is possible 
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that expressing the artificial microRNAs at a higher level would result in an easily detectable 

reduction in fertility. 

Conclusions 

 The dexamethasone-inducible system did not work well with the artificial microRNAs. 

The artificial microRNAs were either not expressed or not expressed at a high enough level in 

the presence of dexamethasone. Expression of the artificial microRNAs could be tested by 

performing real-time PCR on cDNA samples from the inducible lines (Shi and Chiang, 2005). 

R1 and R2 most likely can reduce the expression of some myosin XI genes. When the artificial 

microRNAs were constitutively expressed, the seedlings had shorter root hairs than WT. This 

was a phenotype that had been observed in single and double myosin XI mutants (Ojangu et al., 

2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008). It will be important to confirm which 

myosin XI genes were efficiently targeted by R1 and R2. As for expressing R1 and R2 in pollen, 

there was no drastic decrease in fertility, which could have been due to a few reasons. The 

artificial microRNAs might not have been expressed at a high enough level; the pollen myosins 

might not have been targeted well; or reducing the expression of multiple pollen myosins does 

not result in a drastic decrease in fertility (but see Chapter 3). 

 Overall, R1 and R2 might not have been the best artificial microRNAs to use in this 

experiment. Using the latest version of the web application used to design R1 and R2, these 

sequences are no longer recommended for silencing multiple class XI myosins. Recently, it has 

also been shown that artificial microRNAs expressed using the miR390a precursor are expressed 

at significantly higher levels than the same artificial microRNAs expressed using the miR319a 

precursor (Carbonell et al., 2014), which was used in this study. Ultimately, if this experiment 

were started over today, it would be designed differently. There are also a number of tools 

available now that make design and testing of artificial microRNAs much more efficient. For 
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example, a method for testing the effectiveness of artificial microRNAs using transient 

expression in protoplasts has been developed (Li et al., 2013). Using this approach, only optimal 

artificial microRNAs would be transformed into plants, thus drastically reducing the time 

required to obtain transgenic plants with artificial microRNAs that efficiently silence their target 

mRNAs. It should be noted that even if a novel phenotype were detected using a single artificial 

microRNA that reduces the expression of multiple myosins, it would still be necessary to 

examine other mutant lines. A single artificial microRNA line cannot be used to determine 

exactly which myosins are required for a particular function. Either higher order myosin XI 

mutants using T-DNA insertion lines or a collection of specific artificial microRNA lines would 

have to be examined.  
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Chapter 3: Phenotype Survey of Pollen Myosin Mutants Using a 

Reverse Genetics Approach 

 

• Undergraduate students who earned research credit in this lab contributed to the results 

in this chapter. Whitnee Ferari assisted in genotyping the new T-DNA lines for XIJ and 

in making the XIJpro:YFP-XIJ construct. Tarah McClain, Matt Buchanan, and Kenneth 

Hoang helped count seeds, and Jeremiah Glass observed the offspring from the XIB 

pollen competition experiment. Matt Buchanan imaged and analyzed a majority of the 

pollen tubes grown in vitro and observed the offspring from the XIA pollen competition 

experiment. Tanner Beard assisted in the in vivo pollen tube growth experiment. 
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3.1: Introduction 

Class XI myosins have been shown to be required for the expansion of various cell types 

in Arabidopsis thaliana. Single mutants of MYA2 and XIK have shorter roots hairs (Ojangu et al., 

2007; Peremyslov et al., 2008), while higher order mutants involving these and other genes show 

progressively more stunting that coincides with reduced cell expansion in leaves (Prokhnevsky et 

al., 2008; Peremyslov et al., 2010; Ojangu et al., 2012). MYA1, MYA2, and XIK are also 

involved in trichome branch and stigmatic papillae elongation (Ojangu et al., 2007; Ojangu et al., 

2012). Additionally, root hairs of the xik mutant were shown to have a slower growth rate than 

wild-type root hairs (Park and Nebenführ, 2013). Even though class XI myosin mutants have 

been studied extensively in various vegetative cell types, no studies have examined pollen tube 

growth in myosin mutants.  

 Pollen tubes undergo rapid tip growth making them an ideal cell type to study cell 

expansion. Drug treatments to disrupt microtubules or actin filaments or to inhibit myosins have 

been used to suggest which cytoskeletal elements play an important role in pollen tube growth. 

In gymnosperm pollen, both microtubules and the acto-myosin network are required for tube 

elongation (Anderhag et al., 2000). On the other hand, the acto-myosin network, and not 

microtubules, is required for pollen tube elongation in angiosperms (Franke et al., 1972; 

Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 1989a; Tominaga et 

al., 2000). Although class XI myosins have been suggested to be involved in angiosperm pollen 

tube growth for over a decade, direct evidence linking class XI myosins to pollen tube growth is 

still missing. There is one study that suggested class XI myosins are involved in pollen 

development where Oryza sativa XIB was shown to be required for normal pollen development 

under short-day conditions (Jiang et al., 2007). 
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 In Arabidopsis thaliana, there are 13 class XI myosin genes of which XIA, XIB, XIC, 

XID, XIE, and XIJ are preferentially expressed in pollen (Peremyslow et al., 2011; Sparkes, 

2011). Some functional redundancy among the pollen myosins is predicted since vegetative 

myosins have been shown to have partially overlapping roles in growth and development 

(Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ojangu et al., 2012). Recently, a 

phylogenetic analysis based on myosin motor domains was used to divide class XI myosins into 

five subgroups with three subgroups being further divided into subtypes. XIA and XID are 

members of subtype Myo11A while XIC and XIE are in subtype Myo11C (Mühlhausen and 

Kollmar, 2013). This means that of the six pollen myosins, XIA and XID, as well as XIC and 

XIE, are most likely to have overlapping functions based on sequence similarity. It is important 

to note that XIJ belongs to subtype Myo11D which is only present in eudicots and contains 

mostly short-tailed myosins (Mühlhausen and Kollmar, 2013). Short-tailed myosins, including 

XIJ, lack the normal class XI myosin domains that follow the coiled-coil domain (Kinkema and 

Schiefelbein, 1994; Li and Nebenführ, 2007), but instead contain a conserved C-terminal 

sequence which encodes ~100 amino acids (Mühlhausen and Kollmar, 2013). 

To address the question as to which pollen myosins are responsible for normal pollen 

tube growth in Arabidopsis thaliana, we isolated T-DNA insertion mutants for all six pollen 

myosins and examined them for defects in overall fertility, pollen fitness, and pollen tube 

growth. Myosin mutants have reduced cell expansion in various cell types. Since pollen tubes 

undergo rapid tip growth, we hypothesized that pollen myosin mutants would exhibit reduced 

pollen tube growth and therefore have reduced pollen fitness and overall fertility. 
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3.2: Methods 

3.2.1: Mutant lines 

 T-DNA insertion lines for myosin genes were ordered from the Arabidopsis Biological 

Resource Center (Table 3.1). Homozygous T-DNA insertion lines were identified by genomic 

PCR using three different primer pairs: 1) XT#-LP and XT#-RP to identify the wild-type allele, 

2) XT#-LP and TP to test for the insertion, and 3) XT#-RP and TP to test for the insertion. X 

refers to the gene letter, # refers to the allele number. For example, AT2 genomic DNA was 

tested with AT2-LP and AT2-RP primers to detect the wild-type allele. The TP primers used 

were T-LBa-1 for SALK lines, SAIL-LB1 for SAIL lines, and GABI-LB for GABI-Kat lines 

(Table 3.2).  

Several crosses were made to obtain double mutants, and potential F1 seeds were 

collected and grown up. Potential F1 plants were genotyped for presence of both T-DNA 

insertions. F2 seeds were collected from verified double heterozygous plants. F2 plants for 3 xia 

xid and 3 xic xie lines were genotyped, and double homozygous mutant plants were identified.  

3.2.2: RNA extraction and RT-PCR 

For each T-DNA insertion mutant, the presence/absence of the full-length transcript 

encoded by the disrupted gene was tested by RT-PCR on flower cDNA using gene specific 

primers (Tables 3.2 and 3.3). RNA was isolated from whole flowers. At least 100 mg of flowers 

was collected for each genotype and froze in liquid nitrogen. The flowers were ground slightly 

before the addition of 500 µl of Trizol (Sigma). The tissue was ground completely, and another 

500 µl of Trizol was added. After 200 µl of chloroform was added, the samples were centrifuged 

at 11,000 rpm for 15 minutes at 4°C. The top aqueous layer was transferred to a new microfuge 

tube, and the RNA was precipitated with isopropanol and washed with 75% ethanol in DEPC 

dH2O. Pellets were dissolved in 50 µl of dH2O, and cDNAs were generated using Superscript III  
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Table 3.1: List of T-DNA insertion lines 

Gene Stock name Local name Allele name Primer used# 
XIA SALK_086989* AT2 xia-1 LP 

 SALK_117717* AT4 xia-2 LP 
XIB SALK_113062* BT2 xib-1 LP 

 SALK_016579* BT3 xib-2 Not tested 
 SALK_087951* BT5 - Not tested 

XIC SALK_097302* CT1 - Not tested 
SALK_002170* CT2 - Not tested 
SALK_104026* CT5 - Not tested 
SALK_129231C CT6 xic-1 RP 
GABI_262B03 CT7 - RP 
SAIL_905_C08 CT8 xic-2 RP 
SALK_051582 CT9 - No T-DNA 

XID SALK_082078* DT2 - Not tested 
 SALK_029987* DT3 - Not tested 
 SALK_029988 DT4 - No T-DNA 
 SALK_033198 DT6 xid-2 RP 
 SALK_033208 DT7 - No T-DNA 
 SAIL_607_G06 DT8 xid-1 LP or RP 

XIE SALK_122989* ET1 - Not tested 
 SALK_119881* ET2 - Not tested 
 SALK_044890* ET4 - Not tested 
 SALK_089338C ET6 xie-2 LP or RP 
 SALK_025293C ET7 xie-3 LP or RP 
 SALK_072023 ET8 xie-1 RP 
 SALK_072025 ET9 - No T-DNA 

XIJ SALK_026367* JT1 - Not tested 
 SALK_048730 JT2 - No T-DNA 
 SALK_063159 JT3 xij-2 LP or RP 
 SAIL_341_F05 JT6 xij-3 LP or RP 
 SALK_005198C JT7 xij-1 RP 

* Homozygous T-DNA insertion lines were identified by Eunsook Park. 
# Primer used to detect the T-DNA insertion. 
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Table 3.2: List of primers 

Gene Primer name Primer sequence (5’ to 3’) 
SALK T-DNA T-LBa-1 TGGTTCACGTAGTGGGCCATCG 
SAIL T-DNA SAIL-LB1 CAGAAATGGATAAATAGCCTTGCTTCC 

GABI-Kat T-DNA GABI-LB ATATTGACCATCATACTCATTGC 
RuBisCO Rbs-F CATCCACCGTGCAATGCACGCTG 

 Rbs-R AGCAGCAGCTAGTTCAGGACTCC 
NIP4;1 NIP4;1-F GGAAGATCTATGTCTTCGCATAGTGAT 

 NIP4;1-R GGAAGATCTTTAAGTCTTAGAACTAGA 
XIA AT2-LP TGCAACAACATTTCAACCAGG 

 AT2-RP TCCGTGGTGCTCAAACTCTCC 
 AT4-LP CGTTCAACCTCTTCCCCGAAT 
 AT4-RP GGATCCTACGAACTGCATTCAAGA 
 M11.A-F1 GGAGTCATCGGGAGATAAG 
 M11.A-R1 GAAGCTGACTTTACATTCGC 
 M11.A-F2 GCTCCGGAATGGCGCTTCAGCCAAAG 
 M11.A-R2 CTCGTCTAGAAGGGCAATG 
 M11.A-F3 GCTCTAGACGAGGCTTGCATG 
 M11.A-R3 CTCCATGGAACTTACCAATG 
 M11.A-F4 GTTCCATGGAGGAGAAAATC 
 M11.A-R4 CGGCGGCCGCGGAATGTTATACCAAG 

XIB BT2-LP TTCCAGTGGCCTAGATTGGCTT 
 BT2-RP TTTACATGAGAAGCTCGGCGG 
 M11.B-D-F1 ACGGGATCCCCGAGAATTTCAAAAGG 
 M11.B-Stop-R1 GCAGCGGCCGCTTGCAAGAAAGAAACAACCC 

XIC M11.C-D-F1 ACGTCCGGACCAAGAACATCGAGGG 
 M11.C-Stop-R1 GCAGCGGCCGCAGAATCACTCAGAGA 
 CT5-RP GGCAGCCTTTGTTTGCTTCCT 
 CT6-LP GGAGCTGGAAAAACTGAAACC 
 CT6-RP TTGATAACTTCCTCGGGTGTG 
 CT7-LP TTATGATCACACCCGAGGAAG 
 CT7-RP AAAGACCCACAACAAAGGGAC 
 CT8-LP TGGTTTGCATTTGGGTTAATC 
 CT8-RP AGTCAACCCACGAAACATTTG 
 CT9-LP GTTCGAGGGTATTTGCCCTAG 
 CT9-RP TGGTTAATCGAATGGCTATGC 

XID 11.D-GSP-F AACAGGAGGTTCCCGTCA 
 11.D-GSP-R AGAGGTTAGTCGTTAGATCA 
 DT4-LP2 CTGCATCAACTTAGGTGTGGG 
 DT4-RP2 AGCCACATTGAGTGGTAATCG 
 DT6-LP ATACCATCAAGAAGGTTCGGG 
 DT6-RP CTTTTCCGGTGGATTCTCTTC 
 DT7-LP ATGCAGGAATTTGTTGACGTC 
 DT7-RP TGGGTGAATTCTCCTCAGATG 
 DT8-LP GGTGTGCAACTTTCACTCTCC 

Underlined sequences are restriction sites used in cloning. 
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Table 3.2: Continued 

Gene Primer name Primer sequence (5’ to 3’) 
XID DT8-RP GAGGCAACGGAGAGAAGGTAG 
XIE M11.E-F1 CTTAAGGCAAGTTGAGGCG 

 M11.E-R1 CATCTCCGATCTCTATCCG 
 ET2-RP AGGTTCAAGCCACAAACGGAA 
 ET4-RP CAGATTTCTGATCCAGAGCGCA 
 ET5-RP GGGTCATCCCAAGACGTTTCA 
 ET6-LP GCAGAGGTGAACCATCTGATTC 
 ET6-RP ATCTGATCGCCAATGAATACG 
 ET7-LP TGCTGCAACTTCTCATTTGTG 
 ET7-RP GCTGCACCACAGGAGGTATAC 
 ET8-LP* TTGGGATGACCCAACTTGTAC 
 ET8-RP* GCCTGGAATACACTGAAGCTG 

XIJ M11.J-F1 GCACTAGTATGGCTGAAAACATAATGGTGG 
 M11.J-R1 GAGTCTAGAGTATATTGTCTTTG 
 M11.J-F2 TATACTCTAGACTCTTTGATTGG 
 M11.J-R2 CGGGATCCTCAAAAGTAATCTTCGAAGCCC 
 JT2-LP2 TACACTCAAGGGGTCAGGTTG 
 JT2-RP2 ACTTCTTCTGGGGTGACCATC 
 JT3-LP2 CTCACCTTGCAAAGTGGAGTC 
 JT3-RP2 CTCAACTTGCAATAAGGCCTG 
 JT4-LP TCCCTCACTGCAGAAGTTGAGATG 
 JT4-RP TCGAAGCCCCCTTCCTTATCA 
 JT6-LP GCTTCAGCACATTTTCTTTCG 
 JT6-RP AATCAACTTGCAGGCGTATTG 
 JT7-LP GTCGTAGCTCTCAGTTCCTGC 
 JT7-RP TTCCATCGAATCAGAAGATGG 

* Primers were also used for ET9. 
Underlined sequences are restriction sites used in cloning. 
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Table 3.3: Primer pairs used for RT-PCR 

Gene Primers used Product size (bp) PCR condition 
RuBisCO Rbs-F & Rbs-R 499 Varied 
NIP4;1 NIP4;1-F & NIP4;1-R 870 A54E60C 

XIA M11.A-F1 & M11.A-R1 678 A58E60C 
 M11.A-F2 & M11.A-R2 1,524 A58E120D 
 M11.A-F3 & M11.A-R3 1,681 A58E120D 
 M11.A-F4 & M11.A-R4 2,026 A58E120D 

XIB M11.B-D-F1 & M11.B-Stop-R1 825 A60E90D 
XIC M11.C-D-F1 & M11.C-Stop-R1 711 A58E90D 

 CT6-LP & CT6-RP 679 A58E90D 
 CT7-LP & CT7-RP 640 A58E90D 
 CT8-RP & CT5-RP 961 A58E90D 

XID 11.D-GSP-F & 11.D-GSP-R 1,953 A56E120E 
 DT4-LP2 & DT6-RP 2,520 A60E180D 

XIE M11.E-F1 & M11.E-R1 787 A56E60D 
 ET4-RP & ET7-LP 644 A58E60E 
 ET2-RP & ET8-LP 724 A58E60E 

XIJ JT4-LP & JT4-RP 467 A62E30C 
 JT3-LP2 & JT6-LP 916 A58E90D 
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Reverse Transcriptase following the manufacturer’s instructions (Invitrogen). 1-2 µl of cDNA 

was used for PCR. 

3.2.3: Constructs and plant transformations 

 The native XIJ promoter, which extended 757 base pairs upstream of the XIJ start codon 

and included the first 9 base pairs of the XIJ coding sequence (21,534,040-21,534,805 based on 

TAIR10), was used to drive expression of the YFP peroxisome marker (Nelson et al., 2007) and 

XIJ complementation constructs. The YFP peroxisome construct was moved into the binary 

plasmid pVKH18 (Batoko et al., 2000) and transformed into WT (then referred to as WT*) by the 

Arabidopsis floral dip method (Weigel and Glazebrook, 2002). For the XIJ complementation 

construct, the promoter was followed by YFP, a linker sequence that encodes GGPGGSG, and 

the full-length XIJ coding sequence. This construct was moved into the binary plasmid pPZP221 

(Hajdukiewicz et al., 1994) and transformed into xij-1 by the Arabidopsis floral dip method 

(Weigel and Glazebrook, 2002). The full-length XIJ cDNA was obtained by overlapping PCR 

from flower cDNA with the primers M11.J-F1, M11.J-R1, M11.J-F2, and M11.J-R2 (Table 3.2).  

The native XIA promoter, which extended 709 base pairs upstream of the XIA start codon 

and included the first exon, first intron, and first 8 base pairs of the second exon of XIA 

(1,261,414-1,262,561 based on TAIR10), was used to drive expression of the XIA 

complementation construct. The promoter was followed by YFP, a linker sequence that encodes 

GGPGGSG, and the full-length XIA coding sequence including 38 base pairs of the 3’UTR.!The!

construct was moved into the binary plasmid pFGC19 (Nelson et al., 2007) and transformed into 

WT and xia-2 by the Arabidopsis floral dip method (Weigel and Glazebrook, 2002). The full-

length XIA cDNA was obtained by overlapping PCR from flower cDNA with the primers 

M11.A-F2, M11.A-R2, M11.A-F3, M11.A-R3, M11.A-F4, and M11.A-R4 (Table 3.2). 
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3.2.4: Seeds per silique analysis 

 Plants were grown, as described in Chapter 2, in individual 6 cm circular pots (except the 

WT and xid-2 set with 4 plants per 8 cm square pots) until maturity, and individual dry siliques 

were collected.  The silique length was measured to an accuracy of 0.5 mm. Unopened siliques 

were manually opened, and the seeds were counted. Mutants that were statistically different from 

WT were identified by a Mann-Whitney unpaired t-test using Prism 6 software (GraphPad). 

Which genotypes were grown and which siliques were collected varied between experiments.  In 

one experiment, the plants were fertilized (MiracleGro, ¼ tsp/gallon) once every two weeks. In 

all other experiments, no fertilizer was used. 

3.2.5: Pollen competition experiment 

 Seeds for FTL 1285 and FTL 2217 were graciously donated by Dr. Greg Copenhaver 

(University of North Carolina, Chapel Hill, NC). FTL 1285 and FTL 2217 are fluorescently 

tagged lines that have pollen specific cytoplasmic DSRed2 or AmCyan markers inserted at 

positions 80,614 or 2,007,280 on chromosome 1, respectively(Francis et al., 2007). XIA 

(1,262,123-1,272,376) and XIB (1,086,495-1,096,146) are located nearby these insertion sites on 

chromosome 1. Positions are based on TAIR10. 

 WT, xia-1, and xib-1 were each crossed to FTL 1285, and WT, xia-1, and xia-2 were each 

crossed to FTL 2217. Pollen from the F1 plants was used to pollinate ms1 plants. Seeds for ms1 

(Wilson et al., 2001) were kindly provided by Dr. Ravi Palanivelu (University of Arizona, 

Tucson, AZ). Pollen from the resulting offspring was examined using an AxioObserver.Z1 

microscope (Zeiss) equipped with filters for RFP and CFP fluorescence (63 HE and 47 HE, 

Zeiss). If fluorescence was present in half of the pollen grains, the offspring was counted as a WT 

offspring; if fluorescence was not present, the offspring was counted as a test offspring. The 

observed segregation ratio was tested against the expected 1:1 ratio using a chi-square analysis. 
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Before some of the hand pollinations, the F1 and ms1 plants were watered with fertilizer 

(MiracleGro, ¼ tsp/gallon). 

3.2.6: in vitro pollen tube growth, pollen germination efficiency, and pollen hydration 

 WT or mutant flowers were brushed together with WT* flowers onto solid pollen 

germination medium (PGM; 0.01% H3BO3, 5 mM CaCl2, 1 mM MgSO4, 5 mM KCl, 10% 

sucrose, 1% SeaPlaque GTG Agarose, pH 7.75) on a microscope slide and incubated in a dark, 

humid chamber at 22°C (Boavida and McCormick, 2007). Incubation times were 3 hours for 

pollen tube growth experiments and 1-4.5 hours for pollen germination efficiency experiments. 

Pollen tubes were observed on an AxioObserver.Z1 microscope (Zeiss) equipped with filters for 

YFP fluorescence (46 HE, Zeiss). Images were captured using a digital camera (Orca ER; 

Hamamatsu Photonics) operated by OpenLab5 software (Improvision/Perkin Elmer). For pollen 

tube length measurements, DIC images were captured using a 10X objective, and tube lengths 

were measured using OpenLab5 software. For pollen tube growth rate measurements, DIC time-

lapse images were taken at 10-second intervals for 1.5 minutes using a 40X objective. Growth 

rate was calculated by measuring the amount of elongation that occurred within 1 minute using 

OpenLab5 software. WT and mutant measurements for tube length and growth rate were adjusted 

to the WT* measurements for each slide. Specifically, the average of all WT* measurements was 

divided by the average WT* measurements from each slide to obtain the correction factor for the 

test sample on each slide. The WT or mutant measurements for each slide were multiplied by the 

corresponding correction factor. This correction factor allowed for measurements from multiple 

trials of the same genotype to be combined for the analysis.  Mutants that were statistically 

different from WT were identified by a Mann-Whitney unpaired t-test using Prism 6 software 

(GraphPad). For determining percentage of pollen germination, DIC and YFP images, covering 

the entire area of PGM where pollen grains were present, were captured using a 10X objective. 
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The numbers of pollen grains and pollen tubes for mutant and WT* were manually counted, and 

the germination percentages were calculated. For the pollen hydration experiment, WT* and xij-1 

flowers were dabbed onto a coverslip. DIC and YFP images of the pollen grains were captured 

using a 10X objective. 10 µl of dH2O was added to the coverslip, and the pollen grains were 

immediately re-imaged. Pollen grain widths were measured using OpenLab5 software. 

3.2.7: Germination efficiency in the presence of ‘cut pistil’ exudate 

 ‘Cut pistil’ exudate was obtained by soaking 36 ‘cut pistils’ overnight in 120 µl of PGM 

lacking agarose (Qin et al., 2011). Cut pistils included the stigma and style of ms1 pistils. 5 µl of 

either liquid PGM or PGM with exudate was pipetted onto the center of solid PGM. Two flowers 

of either WT or xij-1 were dipped into the droplet before incubating the slide for 5 hours in a 

dark, humid chamber at 22°C. For determining percentage of pollen germination, DIC images, 

covering the entire area of PGM where pollen grains were present, were captured using a 10X 

objective. Pollen grains and tubes were counted, and the germination percentages were 

calculated. 

3.2.8: in vivo pollen tube growth 

Pollen tube growth in vivo was visualized by staining callose with aniline blue (Mori et 

al., 2006). WT or mutant pollen was used to pollinate ms1 flowers. Pollinated pistils were 

removed at various time points following pollination and placed in a fixing solution (3:1, ethanol 

: acetic acid). The pistils were aspirated and left in the fixing solution overnight. The fixed pistils 

were rehydrated by soaking for 10 minutes in each of the following solutions: 70% ethanol, 50% 

ethanol, 30% ethanol, and dH20. The pistils were softened overnight in 8 M NaOH and washed 

for 10 minutes in dH20. Aniline blue solution (0.11% aniline blue in 0.1 M K2HPO4, pH ~11) 

was added, and the samples were covered with aluminum foil for two hours. The aniline blue 

solution was made 1-3 days prior to use and was stored at 4°C. Immediately before use, glycerol 
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was added to the aniline blue solution to a final concentration of 2%. After the two-hour 

incubation, the pistils were transferred to microscope slides. A small amount of aniline blue 

solution was added to each slide before placing a coverslip on it.  

The pollen tubes in the pistils were observed using a 20X objective on an Axiovert 200 M 

microscope (Zeiss) equipped with filters for DAPI fluorescence (62002, Chroma). Images 

covering the length of each pistil were captured using a digital camera (Orca ER; Hamamatsu 

Photonics) using OpenLab5 software (Improvision/Perkin Elmer). Using OpenLab5 software, 

the furthest distance traveled by a pollen tube was measured for each pistil.  This was the 

distance from the highest (furthest from the style) pollen grain on the stigma to the lowest 

(furthest from the style) pollen tube tip in the ovary (Figure 3.1). Pollen tubes were not clearly 

visible in the style; therefore, if the pollen tube tips had not emerged from the style for a given 

pistil, the distance from the highest pollen grain on the stigma to halfway through the style was 

used for that measurement. Only pistils with more than 5 pollen grains on the stigma were used 

in the analysis since low pollen density negatively affected pollen germination and growth (data 

not shown). Statistically significant differences were calculated by a Mann-Whitney unpaired t-

test using Prism 6 software (GraphPad). 

 

3.3: Results 

3.3.1: Identification of knockout mutants 

 To investigate the function of class XI myosins during pollen tube growth, a total 

of 14 T-DNA insertion lines for XIA (At1g04600), XIB (At1g04160), XIC (At1g08730), XID  

(At2g33240), XIE (At1g54560), and XIJ (At3g58160) were previously isolated by Eunsook Park 

(Table 3.1). Four additional T-DNA insertion lines were ordered from the Arabidopsis Biological 

Resource Center for each XIC, XID, XIE, and XIJ (Table 3.1). Presence of the T-DNA insertion 
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Figure 3.1: An Arabidopsis pistil stained with aniline blue. 

 Overlapping images covering the length of the pistil were captured, and the furthest  

 distance traveled by a pollen tube was measured in a straight-line between the asterisks. 

 To simplify visualization in this figure, individual images were stitched together using 

 Adobe Photoshop CS3. Scale bar = 65 µm. 

*

*
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was confirmed by PCR using primers specific for each insertion line (Table 3.2). The expected 

T-DNA insertion was not detected in 5 out of the 16 new lines while homozygous mutants were 

identified for the remaining 11 lines (Table 3.4).  

 The 25 homozygous mutants were then checked for gene expression by RT-PCR using 

gene specific primers (Tables 3.2 and 3.3 and Figure 3.2). Only 6 out of the 25 lines lacked 

transcript downstream of the insertion site while 13 out of the 25 either had no normal transcript 

or a low level of transcript detected when primers spanned the insertion site (Table 3.5). When a 

decreased amount of transcript was detected for a mutant by RT-PCR (see CT6 and CT7 Figure 

3.2H), the PCR product was re-amplified by PCR and then digested with various restriction 

enzymes. For CT6, the PCR product from using primers CT6-LP and CT6-RP was only digested 

by restriction enzymes specific for XIE not XIC transcript indicating that CT6 was a knockout for 

XIC. On the other hand for CT7, the PCR product from using primers CT7-LP and CT7-RP was 

digested by restriction enzymes specific for both XIC and XIE suggesting that expression of XIC 

is just extremely knocked-down in CT7. It is also important to note that for 10 lines, primers 

were only used downstream of the insertion site where transcript was detected. Those lines might 

have also been classified as knockout mutants if primers had been used that spanned the insertion 

site. For example, BT5 had normal transcript downstream of the insertion site; however, BT5 

seedlings were shown by Eunsook Park to have slightly shorter root hairs than wild-type, a 

phenotype also seen in BT2 and BT3 which lacked transcript at the 3’ end (Figure 3.2B). 

Interestingly, an increase in transcript was occasionally detected when using primers downstream 

of the insertion site. This was most strikingly seen for BT5 (Figure 3.2B), DT2 (Figure 3.2D), 

and ET8 (Figure 3.2G). In summary, AT2, AT4, BT2, BT3, CT6, CT8, DT6, DT8, ET6, ET7, 

ET8, JT3, JT6, and JT7 were confirmed as knockout mutants while CT7, was confirmed as a 

knockdown mutant. All of the knockout mutants were examined further and given allele names 
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Table 3.4: Isolation of T-DNA insertion lines 

Gene Local name Genotype 
XIC CT6 Homozygous 

 CT7 Homozygous 
 CT8 Homozygous 
 CT9 No T-DNA found 

XID DT4 No T-DNA found 
 DT6 Homozygous 
 DT7 No T-DNA found 
 DT8 Homozygous 

XIE ET6 Homozygous 
 ET7 Homozygous 
 ET8 Homozygous 
 ET9 No T-DNA found 

XIJ JT2 No T-DNA found 
 JT3 Homozygous 
 JT6 Homozygous 
 JT7 Homozygous 
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Figure 3.2: Confirmation of knockout and knockdown mutants by RT-PCR 

 Small white letters indicate whether the primers amplified transcript upstream of (U),  

across (A) , or downstream of (D) the insertion site. 

 (A) Lack of XIA transcript for AT2 and AT4 using M11.A-F1 & M11.A-R1 confirmed 

 both are knockout mutants. Rbs-F & Rbs-R were control primers. 

 (B) Lack of XIB transcript for BT2 and BT3 using M11.B-D-F1 & M11.B-Stop-R1  

 confirmed both are knockout mutants. JT4-LP & JT4-RP were control primers. BT5 was  

 not confirmed as a knockout mutant. 

 (C) Presence of XIC transcript using M11.C-D-F1 & M11.C-Stop-R1. CT1, CT2, and  

 CT5 were not confirmed as knockout mutants. 

 (D) Presence of XID transcript using 11.D-GSP-F & 11.D-GSP-R. DT2 and DT3 were  

 not confirmed as knockout mutants. 

 (E) Presence of XIE transcript using M11.E-F1 & M11.E-R1. ET1, ET2, and ET4 were  

 not confirmed as knockout mutants. 

 (F) Presence of XIJ transcript using JT4-LP & JT4-RP. JT1 was not confirmed as a  

 knockout mutant. 

 (G) Lack of XIE transcript for ET6 and ET8 using ET2-RP & ET8-LP, lack of XIE  

 transcript for ET6 and ET7 using ET4-RP & ET7-LP, and lack of XIE transcript for ET6  

 using M11.E-F1 & M11.E-R1 confirmed all three as knockout mutants. Rbs-F & Rbs-R 

  were control primers. 

 (H) Lack of XIC transcript for CT6 (faint product was confirmed to be XIE) using CT6- 

 LP & CT6-RP, extremely decreased XIC transcript for CT7 using CT7-LP & CT7-RP,  

and lack of XIC transcript for CT8 using CT8-RP & CT5-RP and M11.C-D-F1 & M11.C- 

Stop-R1 confirmed CT6 and CT8 as knockout mutants and CT7 as a knockdown mutant.  
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Rbs-F & Rbs-R were control primers. 

 (I) Lack of XID transcript for DT6 and DT8 using DT4-LP2 & DT6-RP confirmed both  

are knockout mutants. Rbs-F & Rbs-R were control primers. 

 (J) Lack of XIJ transcript for JT3 and JT6 using JT3-LP2 & JT6-LP and for JT7 using  

 JT4-RP & JT4-RP confirmed all three were knockout mutants. NIP4;1-F & NIP4;1-R  

 were control primers. 
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Table 3.5: Identification of knockout mutants by RT-PCR 

 Normal transcript present in relation to insertion site  
Local name Upstream Across Downstream Knockout 

AT2 Yes No No Yes 
AT4 Yes No No Yes 
BT2 n.t. n.t. No Yes 
BT3 n.t. n.t. No Yes 
BT5 n.t. n.t. Yes Maybe* 
CT1 n.t. n.t. Yes ? 
CT2 n.t. n.t. Yes ? 
CT5 n.t. n.t. Yes ? 
CT6 n.t. No Yes Yes 
CT7 Yes Reduced Yes Knockdown 
CT8 Yes No No Yes 
DT2 n.t. n.t. Yes ? 
DT3 n.t. n.t. Yes ? 
DT6 n.t. No n.t. Yes 
DT8 n.t. No Yes Yes 
ET1 n.t. n.t. Yes ? 
ET2 n.t. n.t. Yes ? 
ET4 n.t. n.t. Yes ? 
ET6 No No No Yes 
ET7 Yes No Yes Yes 
ET8 n.t. No Yes Yes 
JT1 n.t. n.t. Yes ? 
JT3 n.t. No Yes Yes 
JT6 n.t. No Yes Yes 
JT7 Yes No n.t. Yes 

* BT5 was shown by Eunsook Park to have shorter root hairs similar to BT2 and BT3. 
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for publication (Table 3.6). Meanwhile, BT2, CT7, DT2, ET8, and JT3 were isolated as knockout 

mutants by another group; however, they never assigned allele numbers to those lines 

(Peremyslov et al., 2008). 

3.3.2: Double mutant screening 

 Since six class XI myosins are expressed in pollen, it was predicted that there would be at 

least some redundancy among the pollen myosins. In case phenotypes were not detected in single 

mutants, several crosses were initiated to generate double mutants (Table 3.7). F1 plants were 

genotyped to confirm the presence of both T-DNA insertions, and F2 seeds were collected for all 

11 lines. Of the pollen myosins, XIC and XIE are most similar to each other with 90.9% identity 

and 97.7% similarity (Pearson and Lipman, 1988). XIA and XID are also very similar to each 

other with 78.0% identity and 89.3% similarity (Pearson and Lipman, 1988). Therefore, it was 

hypothesized that XIC and XIE would have at least partial overlapping functions and that XIA 

and XID would also be partially redundant. Consequently, F2 plants for 3 xic xie and 3 xia xid 

lines were screened to obtain double homozygous mutants (Table 3.7). Double mutants were 

identified for xia-1 xid-1, xia-2 xid-1, xia-2 xid-2, and xic-1 xie-1. Out of 96 xic-2 xie-2 and 103 

xic-2 xie-3 F2 plants, no double homozygous mutants were identified, so F3 seeds were 

collected, and double homozygous mutants were identified in the F3 generation. Interestingly 

when generating all three allele combinations for xic xie, significantly fewer double homozygous 

mutants were obtained in the F2 generation than expected (χ2 > 4.8; p < 0.05; Table 3.7). XIC 

and XIE are more than 17 Mb apart on chromosome 1 (TAIR10) and are likely to be unlinked 

(Koornneef et al., 1983). Therefore, the segregation distortion could have been due to a defect in 

the male gametophyte, female gametophyte, or embryo development; however, XIC and XIE are 

primarily expressed in pollen based on microarray experiments (Peremyslow et al., 2011; 

Sparkes, 2011). Segregation distortion was not observed for any of the allele combinations for  
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Table 3.6: Allele names for mutants analyzed further 

Gene Local name Allele name 
XIA AT2 xia-1 

 AT4 xia-2 
XIB BT2 xib-1 

 BT3 xib-2 
XIC CT6 xic-1 

 CT8 xic-2 
XID DT8 xid-1 

 DT6 xid-2 
XIE ET8 xie-1 

 ET6 xie-2 
 ET7 xie-3 

XIJ JT7 xij-1 
 JT3 xij-2 
 JT6 xij-3 
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Table 3.7: List of double mutants generated 

Genes Alleles # homozygous / total F2 screened Homozygous 
XIA XIB xia-2 xib-1 n.t. No 
XIA XID xia-1 xid-1 3 / 77 Yes 

 xia-2 xid-1 1 / 22 Yes 
 xia-2 xid-2 1 / 53 Yes 

XIC XIE xic-1 xie-1 1 / 101 Yes 
 xic-2 xie-2 0 / 96 Yes 
 xic-2 xie-3 0 / 103 Yes 

XID XIJ xid-1 xij-1 n.t. No 
 xid-2 xij-1 n.t. No 

XIE XIJ xie-2 xij-1 n.t. No 
 xie-3 xij-1 n.t. No 
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xia xid (χ2 > 4.8; p < 0.05; Table 3.7). 

3.3.3: Pollen myosins are required for normal seed set 

 If pollen myosin mutants had defects in pollen tube growth, a reasonable prediction 

would be that a reduction in overall fertility should be observed. It was possible to obtain 

homozygous single and double mutants, so any reduction in fertility compared to WT had to be 

very small. Pollen myosin mutant plants developed normally, produced seeds, and had no 

obvious phenotypes (data not shown). Even though mutant plants produced a normal amount of 

seeds, it was possible that a slight decrease in seed set could be detected by examining individual 

siliques. Therefore, the average number of seeds in 10 mm long siliques was determined for WT, 

xia-1, xia-2, and xib-1 (Figure 3.3). Both xia mutants had significantly fewer seeds per silique 

than WT (p < 0.01). xib-1 had fewer seeds than WT, but it was not statistically different from WT. 

To further examine the reduced seed set phenotype in xia mutants, every unopened silique on 

inflorescences initiating from the rosette were collected from 1 WT, 2 xia-1, and 3 xia-2 plants. 

Collecting siliques of all lengths allowed for a more detailed analysis of seed set differences 

between WT and mutants compared to the previous experiment. Silique length and the number of 

seeds per silique were positively correlated for all three genotypes (Figure 3.4A). Instead of 

comparing the average number of seeds at each length, a method for combining all of the data 

into one comparison of the number of seeds per mm of silique was developed. Simply dividing 

the number of seeds by the silique length did not remove the effect of length on seed set because 

the x-intercepts of the linear regressions do not equal zero (Figure 3.4B). To adjust for length, 

the x-intercept from the WT linear regression (5.1 mm) was subtracted from each silique length, 

and then the new length values were used to divide the seed count values. The new seeds / mm 

values no longer correlated with silique length (Figure 3.4C). The xia mutants had significantly 

fewer seeds / mm than WT (p < 0.0001; Figure 3.4D). Interestingly, average silique length did 
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Figure 3.3: xia mutants had a reduced seed set in 10 mm siliques 

 10 mm long siliques were collected from WT, xia-1, xia-2, and xib-1 plants, and the  

 number of seeds in each silique were manually counted (Mean ± SEM; n = 50;  

* p < 0.01). xia mutants had significantly fewer seeds per silique than WT. 
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Figure 3.4: xia mutants had a reduced seed set 

 (A) Silique length and the number of seeds per silique had a positive correlation for WT, 

 xia-1, and xia-2.  

 (B) Dividing the number of seeds by the length of the silique did not completely remove  

 the effect of length on the number of seeds. Note the slight positive correlation between  

 seeds/mm and silique length. 

 (C) Seeds / mm was calculated by dividing the number of seeds by the (length – 5.1). 5.1  

was the x-intercept of the WT linear regression (black line) shown in A. Note the lack of  

correlation between seeds / mm and silique length. 

(D) Average number of seeds / mm for WT, xia-1, and xia-2 as calculated in C (Mean ±  

SEM; n = 84, 178, and 281; * p < 0.0001). xia mutants had significantly fewer seeds per  

silique than WT. 

(E) Average silique length for WT, xia-1, and xia-2 (Mean ± SEM; n = 84, 178, and 281;  

* p < 0.0001). There was no difference between WT and mutant siliques lengths. 
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Figure 3.4: Continued 
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not vary between WT and the xia mutants (Figure 3.4E) suggesting that XIA is required for seed 

set and not silique length. If the loss of XIA had a drastic effect on seed set, an overall decrease in 

silique length would be expected. It is also important to note that the difference in seed set 

between WT and the xia mutants was so slight that there was not a visible difference between 

them. Thus, the decrease in the number of seeds / mm was small but detectable. 

 Following the slight fertility defect detected in the xia mutants, mutants for all of the 

pollen myosins were grown to collect siliques for analysis. In these experiments, unopened and 

opened siliques were collected from the primary inflorescence of multiple plants. Plants were 

grown in five sets, and mutants were always compared to the WT in their own set (Figure 3.5). 

In the first 3 sets (Figure 3.5A-3.5F), plants were grown in individual pots. In set 4 (Figure 

3.5G-3.5H), plants were grown four to a pot. In set 5 (Figure 3.5I-3.5J), plants were grown in 

individual pots and fertilized once every two weeks. 

 All single and double mutants for XIA, XIC, XID, and XIE were examined within the first 

three sets (Figure 3.5A-3.5F). xid-2 was excluded from Figure 3.5A and 3.5B. xid-2 had visibly 

fewer seeds per silique with gaps visible throughout the length of the silique. Since this striking 

phenotype was not present in xid-1, xid-2 was backcrossed to WT. F1 plants were allowed to self, 

and F2 plants were grown up. The F2 plants were genotyped using primers for DT6 (Table 3.2), 

and the siliques were examined for the striking seeds per silique phenotype. Only 5 out of 9 

homozygous plants had the striking phenotype in the F2 generation suggesting that the drastic 

phenotype was caused by a mutation in another gene other than XID which probably only 

displayed the striking phenotype when homozygous. 2 out of the 4 homozygous xid-2 plants 

lacking the strong phenotype were used for set 4 of the seeds per silique analysis (Figure 3.5G-

3.5H). Only 2 out of the 4 plants were used in the analysis because the other 2 plants were 

determined to be heterozygous for the additional mutation due to the presence of the strong 
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Figure 3.5: Pollen myosin mutants had reduced seed sets compared to WT 

 Mature siliques were collected, and the average silique lengths (A, C, E, G, and I) and  

seeds / mm values (B, D, F, H, and J) of the mutants were compared to WT (Mean ±  

SEM; * p < 0.05; * p < 0.01). When plants were grown without fertilizer (A-H), the most  

striking phenotype observed was that all three xic xie double mutants had shorter siliques  

and fewer seeds / mm than WT (A-F). When plants were fertilized (I-J), all single  

mutants had fewer seeds / mm than WT (J). Number in columns indicates the sample  

size. 
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Figure 3.5: Continued 
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Figure 3.5: Continued 
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phenotype in ¼ of the next generation. The 2 plants heterozygous for the additional mutation did 

have slightly shorter siliques with fewer seeds / mm than WT (data not shown).  

Other than xid-2 before backcrossing, the most striking phenotype observed was for xic 

xie. All three double mutants had shorter siliques and fewer seeds / mm than WT (Figure 3.5A-

3.5F; p < 0.01). Occasionally, other myosin mutants had fewer seeds / mm than WT; however, 

the xic xie mutants were the only mutants with visibly fewer seeds per silique than WT (Figure 

3.6). Gaps were frequently observed at the bottom of the xic xie siliques (Figure 3.6B) 

suggesting that there was a defect in xic xie pollen tube growth. Single mutants of XIC never 

showed a difference in silique length or seed set compared to WT (Figure 3.5A-3.5F). On the 

other hand, 2 out of 3 xie mutants had fewer seeds / mm than WT while xie-2 had more seeds / 

mm than WT (Figure 3.5A-3.5F). None of the xie mutants had shorter siliques or as few of seeds 

per silique as the xic xie double mutants. Therefore, XIC and XIE seem to function redundantly 

in their role in fertility. No differences from WT were detected for mutants of XID (Figure 3.5A, 

3.5B, 3.5G, and 3.5H). As for mutants of XIA, xia-2 had fewer seeds / mm than WT while xia-1 

did not even though differences were previously detected for both alleles (Figures 3.3, 3.4D, 

and 3.5B). Both xia-2 and xia-2 XIApro:YFP-XIA had fewer seeds / mm than WT suggesting that 

the XIApro:YFP-XIA construct did not rescue the xia mutant phenotype.  

 Single mutants for XIA, XIB, XIC, XID, XIE, and XIJ were examined in set 5 which 

included fertilization. In the previous seed set experiments, the plants were not as healthy as they 

could have been with the addition of fertilizer. Even WT did not always produce completely full 

siliques (data not shown). It was possible that a reduction in seed set for some of the single 

mutants was dependent on an overall nutrient deficiency. To remove the effect of nutrient 

deficiency on seed set, WT and the single mutants were grown with the regular addition of 

fertilizer. Interestingly, when plants were fertilized, all of the single mutants had fewer seeds / 
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Figure 3.6: xic xie mutants lacked seeds in the bottom half of siliques 

 xic xie mutants (B) had fewer seeds per silique than WT (A). There were fewer seeds in  

 the bottom half of xic xie siliques. Scale bar = 1 mm. 
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mm than WT (p < 0.05; Figure 3.5J) suggesting that the addition of fertilizer increases the seed 

set for WT to a greater extent than for pollen myosin mutants. With the addition of fertilizer, 

significant differences were detected for xib-1, xic-1, xic-2, and xid-1 that were not detected 

when plants were not fertilized (Figures 3.3, 3.5B, 3.5D, and 3.5F). By fertilizing plants, small 

decreases in seed set can be detected. 

3.3.4: XIB is necessary in pollen for normal fertilization success 

Decreased fertility in xia and xib mutants could be a result of a defect in the male 

gametophyte, female gametophyte, or embryo development; however, in reproductive tissues, 

XIA and XIB are primarily expressed in pollen (Peremyslow et al., 2011; Sparkes, 2011). In order 

to test the pollen fitness of xia and xib, mutants were crossed with fluorescently tagged lines 

(FTLs) containing pollen specific cytoplasmic markers expressed from genes that had inserted 

near the XIA and XIB loci. The number of offspring resulting from pollination of ms1 plants with 

pollen from plants heterozygous for a marker gene near the XIA and XIB loci were counted 

(Table 3.8). Pollen carrying the xib-1 allele had significantly reduced fertilization success than 

WT (p = 0.011) while the xia mutants were similar to WT (Table 3.8). This was surprising since 

the xia mutants showed more of a reduction in seed set than xib mutants (Figures 3.3 and 3.5J). 

Furthermore, the pollen competition experiment for the xia mutants was conducted with and 

without fertilizing the F1 and ms1 plants prior to the hand pollinations. The addition of fertilizer 

did not affect pollen fitness (Table 3.8). 

3.3.5: XIC and XIE function redundantly to sustain normal pollen tube growth in vitro  

 To directly examine the role of myosins in pollen tube growth, pollen from all single and 

double mutants were grown in vitro along with WT*, WT expressing a YFP peroxisome marker, 

to control for experimental variation from slide to slide. Three hours after setup, pollen tube 

lengths and growth rates were measured, adjusted to WT*, and compared to WT (Figure 3.7). xij  
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Table 3.8: Results from the pollen competition experiment 
 
FTL Test genotype # of test offspring # of WT offspring p value Fertilizer 
1285 WT 670 664 0.87 No 

 xib-1 188 241 0.011 No 
 xia-1 712 751 0.31 Yes 

2217 WT 280 282 0.93 Yes 
 xia-2 188 194 0.76 Yes 
 WT 378 355 0.40 No 
 xia-1 271 315 0.069 No 
 xia-2 342 349 0.79 No 
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Figure 3.7: xic xie mutants had reduced pollen tube growth in vitro 

 Three hours after incubation, the tube lengths (A) and growth rates (B) for WT and  

 mutant pollen were measured and corrected based on the control (WT*) included on each  

slide. All trials with the same genotypes were combined (Mean ± SEM; * p < 0.05). All  

three xic xie double mutants had shorter pollen tubes than WT pollen tubes while none of  

the other mutants’ pollen were consistently different from WT pollen. The pollen tubes  

from double mutants tended to grow slower than WT pollen tubes, while whenever  

XIApro:YFP-XIA was expressed, the pollen tubes grew faster than WT pollen tubes.  

Sample size given at the bottom of columns. 
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pollen germinated poorly in vitro, so it was not included in the analysis. All three allele 

combinations of the xic xie double mutants had shorter pollen tubes than WT (p < 0.05; Figure 

3.7A) suggesting xic xie pollen tubes either grew slower than WT pollen tubes or xic xie pollen 

germinated later than WT pollen. There most likely was not a germination delay because all three 

xic xie double mutants had slower pollen tube growth rates than WT pollen tube growth rates, 

and 2 out of the 3 mutants had statistically slower pollen tube growth rates than WT (Figure 

3.7B). xib-1 pollen tubes were also shorter than WT pollen tubes (p < 0.05; Figure 3.7A) which 

supported results from the pollen competition experiment (Table 3.8). On the contrary, xib-2 did 

not have shorter pollen tubes; however, the sample size for this genotype was small (Figure 

3.7A).  Variation in tube length between alleles was also seen for xic, xid, and xia xid (Figure 

3.7A). One source of variation stems from not all of the pollen grains germinated at the same 

time, so pollen tube lengths following three hours of incubation varied greatly. There was also a 

lot of variation in pollen tube growth rates, so it was difficult to detect differences between WT 

and mutant pollen. All three xia xid double mutants had slower pollen tube growth rates than the 

growth rate of WT pollen tubes; however, only two mutants were statistically different from WT 

(Figure 3.7B). xie-2 had a drastically faster pollen tube growth rate than WT pollen tubes (p < 

0.05); however, the sample size for xie-2 was extremely small (Figure 3.7B). Interestingly, 

whenever XIApro:YFP-XIA was present in either WT or xia-2 pollen, the pollen tubes grew faster 

than WT pollen tubes (p < 0.05; Figure 3.7B) suggesting a role for XIA in pollen tube growth 

even though xia pollen showed no defects. 

3.3.6: XIJ is essential for efficient pollen germination in vitro. 

 Since xij pollen germinated so poorly in vitro, xij pollen germination efficiency was 

examined. xij and WT* pollen were germinated side by side on the same microscope slide, so 

germination efficiencies could be compared. xij-1, xij-2, and xij-3 all had poor pollen 
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germination efficiencies compared to WT*, always less than 10% of the WT* pollen germination 

efficiency (Table 3.9). JT1 pollen germinated normally further confirming that JT1 was not a 

knockout mutant for XIJ (Figure 3.2 and Table 3.9). xij-1 pollen containing XIJpro:YFP-XIJ 

also germinated normally (Table 3.9) confirming the poor germination efficiency was due to the 

loss of XIJ and also confirming that YFP-XIJ was functional. WT pollen did not germinate very 

well, but it still germinated a lot better than xij pollen by germinating 25-36% of the 

corresponding WT* pollen germination efficiencies (Table 3.9).  

 A delay in pollen germination could be due to a delay in hydration, so xij-1 and WT* 

pollen were examined before and after the addition of water. Before hydration, the average 

widths of WT* and xij-1 pollen grains were 14.7 ± 1.8 µm (n = 44) and 13.8 ± 1.8 µm (n = 253), 

respectively. Both WT* and xij-1 pollen grains hydrated within 30 seconds after the addition of 

water. Post-hydration, the WT* and xij-1 pollen grains were 23.0 ± 2.8 µm (n = 39) and 22.1 ± 

3.4 µm (n = 356), respectively. Therefore, the poor in vitro germination efficiency of xij pollen 

was not a result of a defect in hydration. Once germinated, xij-1 pollen tubes appeared to grow at 

a normal rate; however, the sample size was too small to do statistical analysis (data not shown). 

3.3.7: Double mutants have slower pollen tube growth rates in vivo 

 To determine whether or not myosin mutants had defects in pollen tube growth in vivo, 

male sterile (ms1) plants were pollinated with one of the following genotypes: WT, xij-1, xia-1 

xid-1, xib-1, or xic-1 xie-1. Pollinated pistils were fixed at various time points, and the pollen 

tubes were stained with aniline blue. For each pistil, the furthest distance traveled by a pollen 

tube was measured. The distance was measured in a straight-line, so the actual path taken by a 

given pollen tube was actually longer (Crawford and Yanofsky, 2011). The furthest distance 

traveled for the double mutant pollen, xia-1 xid-1 and xic-1 xie-1, was significantly shorter than 

that for WT pollen at all four time points (p < 0.01; Figure 3.8) with the xic-1 xie-1 mutant 
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Table 3.9: xij pollen germinated poorly in vitro 
 

Percent pollen germination (%) 
WT* WT WT* xij-1 WT* xij-1# WT* xij-2 WT* xij-3 WT* JT1 
3.4 0.84 7.0 0.37 9.3 4.4 3.6 0.079 4.4 0.31 5.6 3.6 
1.6 0.46 8.5 0 1.1 2.4 14 0.81 5.0 0.091 15 7.4 
1.8 0.64 9.6 0.29 0.78 0.99       

  4.2 0.081 0.55 2.3       
  0.52 0         
  2.8 0.13         

# indicates the presence of XIJpro:YFP-XIJ. 

 

 

 

 

 

 

 

 

 

 



! 116!

 

Figure 3.8: Some myosin mutants had slower pollen tube growth rates in vivo 

 WT or xij-1 (Top) or WT, xia-1 xid-1, xib-1, or xic-1 xie-1 (Bottom) pollen was used to  

 pollinate ms1 plants. Pollinated pistils were removed, fixed, and stained with aniline blue  

at various time points following pollination. For each pistil, the furthest distance traveled  

by a pollen tube was measured (Mean ± SD; n = 4 to 23; * p < 0.01). Pollen tubes of xia- 

1 xid-1 and particularly xic-1 xie-1 mutants grew more slowly than WT pollen while  

pollen tubes of xij-1 and xib-1 single mutants showed essentially no difference to WT  

pollen. 
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having the shortest pollen tubes. This suggests that within the first 48 hours following 

pollination, the double mutants’ pollen tubes grew slower than WT pollen tubes. Another 

possible explanation for the shorter distances would be that the double mutant pollen germinated 

later than WT pollen; however, this was not observed during in vitro pollen germination 

experiments for these mutants. Starting at 195 minutes post-pollination, xib-1 had shorter pollen 

tubes than WT; however, it was not always statistically different from WT pollen tubes (Figure 

3.8). This result was consistent with xib-1 pollen being less fit than WT pollen in the pollen 

competition experiment (Table 3.8) and having shorter tubes in vitro (Figure 3.7A). xij-1 was 

tested separately from the other genotypes, so it could only be compared to its WT control. xij-1 

pollen tubes grew slightly further than WT pollen tubes by 180 minutes (p < 0.01; Figure 3.8); 

however, this difference was probably due to unusually poor pollen tube growth by WT for that 

time point. Surprisingly, these results suggest that in vivo pollen tube growth and pollen 

germination is not affected by the loss of XIJ.  

3.3.8: Poor germination of xij pollen in vitro can be rescued with ‘cut pistil’ exudate 

 Since xij pollen germinated poorly in vitro but not in vivo, pistils were added to the solid 

PGM to test whether or not it improved germination efficiency for xij pollen. When whole pistils 

were added to the medium, more pollen grains for WT* and xij-1 germinated near the pistils. 

However, the germination efficiencies could not be calculated accurately due to difficulties 

imaging around large pistils. Next, a drop of ‘cut pistil’ exudate or liquid PGM was added to the 

solid PGM, and WT or xij-1 flowers were dabbed directly onto the droplet. With the addition of 

liquid PGM, the pollen germination efficiencies for WT and xij-1 were 5% and 0.4%, 

respectively. With the addition of ‘cut pistil’ exudate, the pollen germination efficiencies for WT 

and xij-1 were 9.1% and 10.8%, respectively. The germination efficiency improved for both WT 

and xij-1, and xij-1 even caught up to WT suggesting XIJ is only required for pollen germination  
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in the absence of female components. 

 

3.4: Discussion 

 The vegetative tissues of class XI myosin mutants have been studied extensively, which 

revealed roles for class XI myosins in cell expansion, organelle motility, and actin dynamics 

(Ojangu et al., 2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010; 

Ojangu et al., 2012; Park and Nebenführ, 2013). On the other hand, very few studies have 

examined reproductive tissues of class XI myosin mutants. Recently, a triple mutant in 

Arabidopsis thaliana was shown to have fewer seeds per silique than WT due to reduced 

elongation of the stigmatic papillae (Ojangu et al., 2012), thus providing further evidence for the 

role of class XI myosins in cell expansion. Another recent study showed that a single myosin XI 

mutant in Zea mays had an accumulation of abnormally small protein bodies in the endosperm 

(Wang et al., 2012). It is unclear how myosin XI contributes to the formation of appropriately 

sized protein bodies; however, this result alludes to a possible role of myosins outside of moving 

organelles and contributing to cell expansion. Another study in Oryza sativa showed that XIB 

was required for normal pollen development under short-day conditions (Jiang et al., 2007) 

further suggesting a role for myosins outside of cell expansion.  

Due to the known involvement of class XI myosins in trichome, stigmatic papillae, and 

root hair elongation (Ojangu et al., 2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008; 

Peremyslov et al., 2010; Ojangu et al., 2012), it was very reasonable to predict that class XI 

myosins were also required for the rapid elongation of pollen tubes. Indeed, the acto-myosin 

network had been shown to be required for angiosperm pollen germination and tube growth 

(Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 

1989a; Tiwari and Polito, 1990; Gibbon et al., 1999; Tominaga et al., 2000). Even though 6 out 
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of the 13 class XI myosins in Arabidopsis are predominately expressed in pollen (Peremyslow et 

al., 2011; Sparkes, 2011), no one has published any results describing pollen phenotypes. Pollen 

myosin mutants would be expected to have reduced pollen tube growth, which could lead to an 

overall reduction in fertility. The lack of publications describing Arabidopsis pollen myosin 

mutants is probably due to two reasons. First, redundancy among the pollen myosins makes it 

difficult to detect any phenotypes in single mutants. Secondly, most experiments to detect 

defects in pollen tube growth are tedious, have a large variation, and do not always provide 

consistent results.  

A detailed seeds per silique analysis, a direct pollen competition experiment, and an 

examination of in vitro and in vivo pollen tube growth can provide crucial information for 

mutants that possibly have slight defects in pollen tube growth. Small differences in seed set can 

be detected if a large number of siliques are analyzed; however, this is an extremely tedious 

experiment that is dependent on growth conditions. I would only recommend counting the 

number of seeds per silique for genotypes that have a visible reduction in seed set as seen for the 

xic xie double mutants. Of course, this will miss weak effects such that any ‘small contribution’ 

gene will go undetected. The pollen competition experiment does take the longest from start to 

finish due to generation times, and a lot of materials are used to grow vast quantities of plants. 

However, this experiment does specifically test pollen fitness, and a small decrease in fitness can 

be detected as seen with xib-1 pollen. It is important to note that the pollen competition 

experiment is only practical with single mutants. Examining pollen tube lengths and growth rates 

in vitro is fairly easy; however, there is a lot of variation within each genotype making it difficult 

to detect differences between WT and mutant pollen. The in vivo pollen tube growth experiment 

takes a week to perform and a long time to image all of the pistils; however, the analysis is 

quick. There also is very little variation within genotypes making comparisons between WT and 
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mutant pollen easier. When examining mutants for slight defects in pollen tube growth, I would 

recommend the in vivo pollen tube growth experiment. This experiment is very useful for 

detecting pollen tube growth defects in vivo, yet any ‘in vitro specific defects’, as with xij pollen, 

would go undetected. Overall, each of these experiments can provide unique and useful 

information when trying to determine the role of a particular gene in pollen tube growth.  

XIB has a slight role in both root hairs and pollen tubes 

 XIB has been shown to be involved in root hair elongation. The single mutant did not 

have a root hair phenotype; however, the xib mya2 double mutant had drastically shorter root 

hairs than WT, even shorter than the mya2 single mutant (Prokhnevsky et al., 2008). XIB is 

expressed in root hairs and pollen (Peremyslow et al., 2011; Sparkes, 2011) suggesting that this 

myosin may also affect pollen tube growth. After observing over 400 offspring from the pollen 

competition experiment, xib-1 pollen was shown to be slightly less fit than WT pollen (p = 

0.011). xib-1 pollen tubes were also shown to not have grown quite as far as WT pollen tubes in 

vivo, and xib-1 had shorter pollen tubes than WT pollen tubes in vitro. xib-2 pollen tubes were 

not shorter than WT pollen tubes in vitro; however, both xib-1 and xib-2 had slightly reduced 

seed sets compared to WT. Overall, XIB is involved in both root hair and pollen tube growth; 

however, when other myosins are present, loss of XIB results in marginal defects. Due to the role 

of XIB in both pollen tube and root hair growth, it would be interesting to examine the 

localization of XIB by generating and then expressing an XIBpro:YFP-XIB construct in xib 

mutants. It would be interesting to determine whether or not YFP-XIB has a similar localization  

pattern in both tissue types. 

XIA and XID may function redundantly in pollen tube growth 

 Comparing the amino acid sequences of XIA and XID, they have 78.0% identity and 

89.3% similarity (Pearson and Lipman, 1988). The xia-1 xid-1 double mutant showed slower 
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pollen tube growth in vivo; however, xia and xid single mutants were not tested. Therefore, it is 

unknown whether the defect is due to a loss of both closely related myosins or if one of the 

single mutants would have shown the same effect. One piece of evidence supporting at least 

partial redundancy is that neither single mutant showed a defect during in vitro growth; whereas, 

all three xia xid double mutants had slower pollen tube growth rates compared to WT pollen 

tubes, with 2 having significant differences. In some experiments, the single and double mutants 

showed reduced seed set compared to WT suggesting XIA and XID play either a minimal role in 

fertility or the other pollen myosins can compensate for the loss of both XIA and XID.  

Surprisingly, xia pollen was not less fit than WT pollen. Even though XIA is expressed primarily 

in pollen (Peremyslow et al., 2011; Sparkes, 2011), it is a possibility that the reduced seed set 

was a result of a defect in the female gametophyte, sporophytic tissues, or embryo development. 

Unfortunately, the XIApro:YFP-XIA construct did not rescue the reduced seed set phenotype of 

xia-2 suggesting that YFP-XIA is either not fully functional or the reduced seed set is not due to 

the mutation in XIA. Currently, the XIApro:YFP-XIA construct is being tested for partial 

complementation of the xia xid reduced pollen tube growth phenotype observed in vivo. 

Interestingly when YFP-XIA was expressed in WT and xia-2 pollen, the pollen tubes grew faster 

than WT pollen tubes in vitro. One explanation could be that either YFP-XIA was overexpressed 

compared to native XIA or YFP-XIA was more stable than native XIA which led to extra XIA in 

the pollen tube that somehow increased the overall growth rate. This could suggest a role for XIA 

in pollen tube growth under certain circumstances even though it normally is not required. 

XIC and XIE function redundantly and are required for normal pollen tube growth 

 XIC and XIE have 90.9% amino acid sequence identity and 97.7% similarity (Pearson 

and Lipman, 1988). Double mutants have a reduced seed set with fewer seeds present in the 

bottom-half of siliques. This phenotype can be explained by the drastically slower pollen tube 
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growth in vivo. xic xie pollen tubes also grew slower than WT pollen tubes in vitro. Because 

single mutants of XIC and XIE had minimal defects, XIC and XIE clearly have overlapping roles 

in pollen tube growth.  When one is absent, the other closely related myosin can compensate for 

the loss. Out of the pollen myosins, XIC and XIE seem to play the most important role in pollen 

tube growth. Future experiments should focus on determining exactly how XIC and XIE 

contribute to pollen tube elongation. 

XIJ is required for pollen germination in the absence of female components 

 The most striking phenotype observed for a single pollen myosin mutant was for xij. xij 

pollen germinated very poorly in vitro; however, this drastic defect was absent in vivo. 

Interestingly, the poor pollen germination in vitro could be rescued by the addition of ‘cut pistil’ 

exudate. This suggests that XIJ is only required for germination in the absence of some unknown 

diffusible female component. It will be extremely important to determine the exact mechanisms 

behind XIJ-dependent and XIJ-independent pollen germination. The first step will be to identify 

the diffusible female component that rescued the xij pollen germination defect. The first 

chemicals to test would be N-methanesulfinyl 1-azadecalin and N-methanesulfinyl 2-azadecalin. 

These chemicals were synthesized to mimic the diffusible chemical present in ‘cut pistil’ exudate 

that stimulates WT pollen germination (Qin et al., 2011). If these chemicals do not rescue the xij 

pollen germination defect, the ‘cut pistil’ exudate will have to be examined further. It is possible 

that the ‘mystery’ component somehow stimulates the expression of certain pollen myosins, 

which are not expressed well in vitro. Indeed, XIE showed a three-fold increase in expression 

level during semi in vivo pollen tube growth compared to in vitro pollen tube growth (Qin et al., 

2009). The other pollen myosins exhibited similar expression levels between the two pollen tube 

growth conditions (Qin et al., 2009). XIE and XIC are closely related to XIJ (Mühlhausen and 

Kollmar, 2013); however, it is hard to imagine that XIJ and XIE perform the same function since 
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XIJ has such a different C-terminus compared to the other pollen myosins (Mühlhausen and 

Kollmar, 2013). 

Conclusions 

 Class XI myosins are involved in pollen tube growth and surprisingly, in in vitro pollen 

germination. The exact mechanisms of how pollen myosins contribute to these processes remain 

unknown. In the future, it will be important to identify what intracellular defects are present in 

mutant pollen tubes in order to elucidate the exact function of each pollen myosin. YFP-tagged 

complementation constructs will also shed light on this dilemma. There is definitely some 

redundancy among the pollen myosins because single mutants show minimal defects; therefore, 

it will also be crucial to identify the cargo of each pollen myosin in order to fully determine the 

level of functional redundancy among the pollen myosins. 
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Chapter 4: Examining the Subcellular Function of Pollen Myosins 

 

• Undergraduate students who earned research credit in this lab contributed to the results 

in this chapter. Tanner Beard assisted with imaging some of the marker lines. Tanner 

Beard and Ryan Wilson manually tracked peroxisomes and Golgi stacks in WT and 

mutant pollen tubes. 
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4.1: Introduction 

 There are 13 class XI myosins in Arabidopsis thaliana, and examination of higher order 

mutants revealed that there is a degree of redundancy among the myosin XI genes expressed in 

vegetative tissues (Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ojangu et al., 2012). One 

method to examine the degree of functional overlap among class XI myosins is to determine the 

subcellular function of each myosin. Two approaches have been employed to show that class XI 

myosins are required for normal organelle trafficking in vegetative cells. First, several groups 

overexpressed the tail portion of myosins in cells expressing various fluorescent markers. The 

dominant-negative tail fragments are predicted to saturate myosin binding sites on the cargo, thus 

preventing native myosins from binding to and transporting the organelle or vesicle. Expression 

of myosin XI tails resulted in reduced motility of peroxisomes, Golgi stacks, mitochondria, the 

endoplasmic reticulum (ER), trans-Golgi network, pre-vacuolar compartment, endosomes, and 

exocytic vesicles (Avisar et al., 2008b; Sparkes et al., 2008; Avisar et al., 2009; Yokota et al., 

2011; Avisar et al., 2012; Wang et al., 2012). Unfortunately, tail constructs appear to exert their 

dominant-negative effect on organelle movements non-selectively. For example, XIK tails 

reduced the motility of all tested organelles despite not being localized to most of them (Avisar 

et al., 2009; Avisar et al., 2012). In the second approach, knockout mutants for class XI myosins 

have been examined for defects in organelle motility using various fluorescent markers. With 

this approach, myosin XI was implicated in moving peroxisomes, Golgi stacks, mitochondria, 

the ER, and the nucleus (Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 

2010; Ueda et al., 2010; Avisar et al., 2012; Tamura et al., 2013). In addition to organelle 

motility, myosin XI mutants have also been shown to have disorganized actin filaments and 

reduced actin filament dynamics (Peremyslov et al., 2010; Ueda et al., 2010; Vidali et al., 2010; 

Park and Nebenführ, 2013). Similarly to the dominant-negative approach, some single myosin 
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XI mutants have been shown to reduce motility of various organelles. Additionally, the 

movement of a particular organelle was reduced in more than one myosin mutant. 

 Another method to evaluate the level of overlapping functions among the class XI 

myosins is to determine the subcellular localization of each myosin. Myosins are predicted to 

function where they are localized. For instance, if a particular myosin was localized to Golgi 

stacks, it would be predicted to transport Golgi stacks throughout the cell. Therefore, it is 

necessary to create fluorescent protein tagged, full-length constructs that can complement well-

documented mutant phenotypes. To date, this has been accomplished for myoXIa, a myosin XI 

in Physcomitrella patens, (Vidali et al., 2010) and XIK in Arabidopsis thaliana (Peremyslov et 

al., 2012; Park and Nebenführ, 2013). Interestingly, YFP-tagged XIK and myoXIa accumulated 

at the tips of growing root hairs and caulonemal cells, respectively (Vidali et al., 2010; 

Peremyslov et al., 2012; Park and Nebenführ, 2013). It will be interesting to determine whether 

or not all class XI myosins have a similar localization pattern. 

 In A. thaliana, 6 out of the 13 myosin XI genes are expressed in pollen (Peremyslow et 

al., 2011; Sparkes, 2011). Some pollen myosin knockout mutants exhibited a reduction in overall 

fertility (see Chapter 3). In particular, xic xie pollen tubes grew slowly which resulted in 

drastically shorter siliques with fewer seeds (see Chapter 3). The exact role of XIC and XIE in 

pollen tube growth is unclear. Pollen tubes undergo rapid tip growth that is dependent on the 

actin cytoskeleton, the accumulation of vesicles at the tip, and the balance of signaling pathways 

coordinating tip-focused growth (Guan et al., 2013). Determining the subcellular functions of 

XIC and XIE should indicate how XIC and XIE contribute overall pollen tube growth.   

Furthermore, pollen from mutants of XIJ, the short-tailed myosin XI (Mühlhausen and Kollmar, 

2013), germinated poorly in vitro suggesting a role in of myosin XI in pollen germination (see 

Chapter 3). The first step to identify the role of XIJ during in vitro pollen germination is to  
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determine its localization during germination. 

 In this study, the subcellular function of the pollen myosins was examined. The 

localization of two pollen myosins, XIA and XIJ, was determined using YFP-tagged, full-length 

fusion constructs. Additionally, the xic xie double mutant and the xij single mutant were 

examined for defects in organelle motility, vesicle accumulation, and actin dynamics in growing 

pollen tubes using various fluorescent markers. Since myosin XI mutants that have reduced cell 

expansion in vegetative tissues also tend to have reduced organelle motility, xic xie pollen tubes 

were predicted to have reduced organelle motility. 

 

4.2: Methods 

4.2.1: Plant lines, constructs, and transformations 

Arabidopsis thaliana plants were grown as described in Chapter 2, and Col-0 was used as 

WT. xia-2 XIApro:YFP-XIA, xij-1 XIJpro:YFP-XIJ, xic-1 xie-1, and xij-1 were generated or 

identified as described in Chapter 3. Seeds for LAT52pro:GFP were kindly provided by Dr. 

Mark Johnson (Brown University, Providence, RI). All plant transformations were performed 

using the Arabidopsis floral dip method (Weigel and Glazebrook, 2002). The native XIJ 

promoter, which was described in Chapter 3, was used to drive expression of most markers. The 

native XIA promoter, which was described in Chapter 3, was used to drive expression of YFP-

XIA and mCherry-XIA. mCherry-XIA was composed of mCherry, a linker sequence that encodes 

ELYGGPGGSGSA, and the full-length XIA coding sequence including 38 base pairs of the 

3’UTR.!The full-length XIA coding sequence was obtained as described in Chapter 3. The!

construct was moved into the binary plasmid pFGC19 (Nelson et al., 2007) and co-transformed 

into WT along with XIJpro:YFP-XIJ.  
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The YFP peroxisome marker, described in Chapter 3, was transformed into xic-1 xie-1 

and xij-1. The Golgi marker was the first 49 amino acids of soybean α-1,2 mannosidase I fused 

to YFP (Saint-Jore-Dupas et al., 2006). YFP-FABD2 was reconstructed based on the 

35Spro:GFP-FABD2 plasmid graciously donated by Dr. Carola Holweg (University of Freiburg, 

Germany). Full-length RabA4d, ROP1, RIC3, and RIC4 coding sequences were amplified from 

Arabidopsis flower cDNA using specific primers (Table 4.1) and fused to the C-terminus of 

YFP. The YFP-Golgi, YFP-RabA4d, YFP-ROP1, YFP-RIC3, and YFP-RIC4 constructs were 

moved into the binary plasmid pVKH18 (Batoko et al., 2000) and transformed into WT, xic-1 

xie-1, and xij-1. The YFP-FABD2 construct was moved into the binary plasmid pPZP221 

(Hajdukiewicz et al., 1994) and transformed into WT, xic-1 xie-1, and xij-1. 

4.2.2: in vitro pollen germination / growth and microscopy 

Pollen was germinated and grown in vitro as described in Chapter 3. Unless otherwise 

noted, pollen tubes were observed using an Axiovert 200 M microscope (Zeiss). The microscope 

was equipped with filter sets for CFP, YFP, and mCherry fluorescence (52017 and 69308, 

Chroma). Images were captured using a CCD camera (Orca ER; Hamamatsu Photonics). 

4.2.3: Fluorescence resonance energy transfer (FRET) analysis 

 xia-2 XIApro:YFP-XIA XIJpro:CFP-RabA4d and xij-1 XIJpro:YFP-XIJ XIJpro:CFP-

RabA4d pollen tubes were grown in vitro and imaged using a 63X (1.4 NA) plan-apo oil 

immersion objective. Using OpenLab5 software (Improvision/Perkin Elmer), CFP and YFP 

images were captured sequentially for one minute with 2-s intervals. CFP (donor), YFP 

(acceptor), and FRET images were acquired using an image splitter (Dual-View; Optical 

Insights) to separate the emission wavelengths into two images that were projected side by side 

on the camera chip (dichroic filter 505dcxr; emission filters D465/30 for CFP and HQ535/30 for 

YFP; Chroma Technology). The CFP and YFP half-images were separated, and normalized 
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Table 4.1: List of primers 

Gene Primer name Primer sequence (5’ to 3’) 
RabA4d RabA4d-F GCGGATCCATGTCTAATTTGTATGGAGATTATA 

 RabA4d-R CGCTGCAGTTACGATTTGCCGCAACATCC 
RIC3 RIC3-F GCAGATCTATGGCGACCGTGAAAGGCC 

 RIC3-R CGCTGCAGTTACTCTTTGTCACTGATATTATTA 
RIC4 RIC4-F GCGGATCCATGAGAGATAGAATGGAGAGAC 

 RIC4-R CGCTGCAGTTATAAAGTTGGATGAAGATGAG 
ROP1 ROP1-F GCAGATCTATGAGCGCTTCGAGGTTCGTA 

 ROP1-R CGGCGGCCGCTCATAGAATGGAGCATGCCTTC 
Underlined sequences are restriction sites used in cloning. 
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FRET (NFRET) values were calculated with the NFRET algorithm (Xia and Liu, 2001) using the 

FRET module in OpenLab5 software. The bleed-through constants used were 0.8 for the donor 

and 0.03 for the acceptor. NFRET images were colorized to represent the relative degree of 

normalized FRET within the pollen tubes.  

4.2.4: Drug treatments 

xia-2 XIApro:YFP-XIA and xij-1 XIJpro:YFP-XIJ pollen were germinated and grown in 

vitro as described in Chapter 3. Pollen tubes were observed using a 40X objective on an 

AxioObserver.Z1 microscope (Zeiss) equipped with filters for YFP fluorescence (46 HE, Zeiss). 

Inhibitors were diluted in liquid pollen germination medium (PGM) to final concentrations of 

100 nM or 1 µM of latrunculin B (latB), from a 1 mM stock in DMSO, and 10 µg/ml (36 µM) 

brefeldin A (BFA) from a 5 mg/ml stock in ethanol. 5 µl of the diluted inhibitors or diluted 

DMSO or ethanol (mock treatment), was pipetted onto each sample immediately before imaging. 

Images were captured with 15-s intervals for at least 20 minutes for latB treatments and for 30 

minutes for BFA treatments. 

4.2.5: Analysis of RabA4d accumulation 

 Pollen expressing YFP-RabA4d were germinated and grown in vitro, as described above. 

Pollen tubes were observed 4 to 8 hours after setup using a 100X oil immersion objective. Using 

OpenLab5 software (Improvision/Perkin Elmer), images were captured for two minutes with 0.5-

s intervals. For every frame, the mean YFP fluorescence intensity was measured in an oval area 

at the tip using a custom macro in ImageJ. Raw fluorescence intensity values were corrected for 

photo-bleaching by normalizing to an exponential decay that was obtained by linear regression 

of the log-transformed raw data. For each pollen tube, the coefficient of variation was calculated 

by multiplying 100 by the standard deviation divided by the mean of the normalized fluorescence 

intensity. Significant differences were calculated by a Mann-Whitney unpaired t-test using Prism  
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6 software (GraphPad). 

4.2.6: Organelle movement analysis 

 Pollen expressing either the peroxisome marker or the Golgi marker were germinated and 

grown in vitro, as described above. Pollen tubes were observed 3 to 10 hours after setup using a 

63X (1.4 NA) plan-apo oil immersion objective. Using OpenLab5 software (Improvision/Perkin 

Elmer), images were captured for two minutes at 0.5-s intervals. At least nine independent 

videos were analyzed per treatment, except only three were analyzed for xij-1 expressing the 

peroxisome marker. Most time-lapse images included only one pollen tube; however, in a few 

cases, multiple pollen tubes were imaged together. Time-lapse images always included the pollen 

tube tip. 

 Image sequences were exported to ImageJ, and background subtraction was performed 

using the rolling ball radius that yielded the largest signal-to-noise ratio as calculated by a 

custom macro. Individual organelle velocities were measured using the Particle Tracker plug-in 

(Sabalzarini and Koumoutsakos, 2005) for ImageJ. For particle detection, the radius and cutoff 

were always set to 2 and 1, respectively, while the percentile was adjusted between 0.2% and 

0.9% depending on the image sequence. For particle linking, the link range was always set to 1, 

and the displacement was set to 20 pixels for peroxisomes and 15 pixels for Golgi stacks, 

corresponding to a maximal velocity of 8 µm/s and 6 µm/s, respectively. The displacement 

values chosen were based on the maximum velocities measured for peroxisomes and Golgi 

stacks by manual tracking. For automated tracking, all measured velocities from one time-lapse 

were combined to examine the range of cumulative distributions observed for each genotype. 

Velocities were then combined by genotype, and significant differences in the cumulative 

distribution of velocities between WT and mutant were calculated by a Kolmogorov-Smirnov test 

using Prism 6 software (GraphPad). 
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Organelles were manually tracked using OpenLab5 software. Organelles visually 

identified as moving very fast were tracked in two pollen tubes for every treatment. For each 

pollen tube analyzed, ten organelles moving towards the tip and ten organelles moving away 

from the tip were tracked for as long as they were in focus. Significant differences in the 

cumulative distribution of velocities between WT and mutant or between towards the tip and 

away from the tip movement were calculated by a Kolmogorov-Smirnov test using Prism 6 

software (GraphPad). 

4.2.7: Actin analysis 

Pollen expressing YFP-FABD2 were germinated and grown in vitro, as described above. 

Pollen tubes were observed 2 to 5 hours after setup using a 63X (1.4 NA) plan-apo oil immersion 

objective. Using OpenLab5 software (Improvision/Perkin Elmer), images were captured for two 

minutes with 1-s intervals. Actin dynamics were quantified by determining the decay of image 

cross-correlation over time (Park and Nebenführ, 2013). Images were exported to ImageJ, and 

analyzed using a custom macro. The images were divided into 2 µm x 2 µm squares. The images 

were also divided into a second set of squares that were displaced by 1 µm from the original set 

of squares. For each square, cross-correlation was calculated for increasing intervals between all 

possible image frame pairs. An exponential decay was fitted to the data using Prism 6 software 

(GraphPad). The decay constants from the 10 squares with the largest range in the y-axis were 

plotted and their average was used to perform a Mann-Whitney unpaired t-test using Prism 6 

software. 

 

 

 

 



! 133!

4.3: Results 

4.3.1: YFP-XIA and YFP-XIJ localized to the tips of growing pollen tubes 

One crucial piece of information for determining the function of a protein is to determine 

its localization. For a myosin, localization to a subcellular compartment suggests that particular 

myosin moves those organelles. Therefore, it was important to determine where the pollen 

myosins were localized within pollen grains and tubes. XIJpro:YFP-XIJ was shown to 

complement the xij in vitro pollen germination defect (see Chapter 3), while XIApro:YFP-XIA is 

currently being tested for its ability to at least partially complement the xia xid in vivo pollen 

tube growth defect. Nevertheless, YFP-XIJ and YFP-XIA localization was examined in xij-1 and 

xia-2 pollen grains, respectively, that were incubated on pollen germination medium.  

YFP-XIJ usually was diffuse throughout the cytoplasm of pollen grains; however, in some 

grains, YFP-XIJ accumulated in a small region (Figure 4.1). Most pollen grains with the 

accumulation of YFP-XIJ were not observed germinating; however, some of the grains were 

observed bursting during germination (data not shown). In the rare cases where a pollen grain 

was observed from the start of accumulation of YFP-XIJ through germination, YFP-XIJ was 

observed to accumulate and then become diffuse again well before tube emergence although the 

distribution of YFP-XIJ fluorescence was uneven (Figure 4.1). The accumulation of YFP-XIJ 

appeared to be located near the future germination site (Figure 4.1), suggesting XIJ is involved 

in an early step of germination. As soon as the tube emerged, YFP-XIJ accumulated in the pollen 

tube (Figure 4.1).  

Similar to YFP-XIJ, YFP-XIA appeared diffuse throughout the cytoplasm of most pollen 

grains, while accumulating in a small region in a few pollen grains. Interestingly, YFP-XIA 

accumulated at the future germination site (Figure 4.2). Pollen tubes only emerged at locations 

of YFP-accumulation, and as the tube emerged, YFP-XIA accumulated in the tube (Figure 4.2). 



! 134!

 

 

 

 

 

 

Figure 4.1: YFP-XIJ might localize to the future germination site 

DIC (Top) and YFP fluorescence (Center) images of xij-1 XIJpro:YFP-XIJ pollen grains 

on pollen germination medium were captured and merged (Bottom) at various time 

points. Before YFP-XIJ accumulated in a small region, it appeared diffuse throughout the 

cytoplasm. YFP-XIJ became diffuse again over 10 minutes before germination, and once 

germinated YFP-XIJ accumulated in the newly emerged tube. Scale bar = 12.5 µm. 
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Figure 4.2: YFP-XIA localized to the future germination site 

DIC (Top) and YFP fluorescence (Center) images of xia-2 XIApro:YFP-XIA pollen 

grains on pollen germination medium were captured and merged (Bottom) at various 

time points. YFP-XIA accumulated at the future germination site and in the newly 

emerged pollen tube. Scale bar = 5 µm. 
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This suggests that XIA might be involved in pollen germination; however, a pollen germination 

defect was not detected in xia or xia xid mutants. It is possible that XIA is only required for 

germination under certain environmental conditions or the other four pollen myosins compensate 

for the loss of XIA and XID.  

The localization YFP-XIA and YFP-XIJ was also examined in growing pollen tubes. 

Both YFP-XIA and YFP-XIJ localized to the tip of growing pollen tubes (Figures 4.3A and 

4.3B and Movies 4.1 and 4.2). XIApro:mCherry-XIA and XIJpro:YFP-XIJ were transformed into 

WT, and mCherry-XIA and YFP-XIJ co-localized at the tip of growing pollen tubes (Figure 

4.3D). Sometimes mCherry-XIA appeared closer to the tip while other times YFP-XIJ was 

observed closer to the tip; however, this could have been a result of the delay in image capture. 

To confirm that YFP-XIA and YFP-XIJ were not freely diffusing throughout the cytoplasm and 

only appeared to accumulate at the tip as a result of the higher density of cytoplasm at the tip, 

LAT52pro:GFP pollen tubes were observed (Figure 4.3C). The cytoplasmic GFP appeared more 

evenly distributed throughout the pollen tube than YFP-XIA and YFP-XIJ. Interestingly, when 

pollen tubes stopped growing, YFP-XIA, mCherry-XIA, and YFP-XIJ were no longer 

concentrated at the pollen tube tip and only a weak fluorescence was observed throughout the 

pollen tube (data not shown). To confirm that the tip-localization of YFP-XIA and YFP-XIJ was 

a result of functional XIA and XIJ traveling along actin filaments, pollen tubes expressing either 

YFP-XIA or YFP-XIJ were treated with latrunculin B (latB), an inhibitor of actin polymerization. 

1 µM latB, but not 100 nM latB, was sufficient to inhibit pollen tube growth within 10 minutes. 

100 nM latB was the upper end of latB concentrations previously tested with Arabidopsis pollen 

(Zhang et al., 2010); however, since the latB was pipetted onto moist, solid medium, the 

concentration of latB could be diluted. Both latB concentrations resulted in the loss of YFP-XIA 

and YFP-XIJ accumulation at the tip (Figure 4.4 and Movies 4.3 - 4.6). Mock treatment with  
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Figure 4.3: YFP-XIA and YFP-XIJ localized to the tips of growing pollen tubes 

(A) 30-s intervals between images of xia-2 XIApro:YFP-XIA pollen tubes. YFP-XIA 

localized to the tip of growing pollen tubes. 

(B) 1-min intervals between images of xij-1 XIJpro:YFP-XIJ pollen tubes. YFP-XIJ 

localized to the tip of growing pollen tubes. 

(C) LAT52pro:GFP pollen tube had fluorescence throughout the cytoplasm. 

(D) mCherry (Top) and YFP (Center) fluorescence images of a WT pollen tube with 

XIApro:mCherry-XIA and XIJpro:YFP-XIJ were captured and merged (Bottom). There 

was a 1.1-s delay between images. mCherry-XIA and YFP-XIJ co-localized at the tip of 

growing pollen tubes.  

Scale bars = 2 µm. 
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Figure 4.4: Accumulation of YFP-XIA and YFP-XIJ at the tip was actin dependent 

xia-2 XIApro:YFP-XIA (A-C) and xij-1 XIJpro:YFP-XIJ (D-F) pollen tubes were treated 

with 0 nM (A,D), 100 nM (B,E), or 1 µM (C,F) of latrunculin B (latB). Only 1 µM of 

latB was sufficient to completely inhibit pollen tube growth; however, both 100 nM and 1 

µM latB resulted in the loss of YFP-XIA and YFP-XIJ accumulation at the pollen tube 

tip. Scale bar = 3 µm. 
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Figure 4.4: Continued 

 

 

 

Mock (DMSO)

100 nM latB

1 +M latB

2 min

10 min

20 min

2 min

10 min

20 min

2 min

10 min

20 min

D

E

F



! 142!

DMSO did not affect YFP-XIA accumulation or pollen tube growth (Figure 4.4A and Movie 

4.7). Mock treatment with DMSO did initially retard the growth of YFP-XIJ pollen; however, the 

pollen tubes recovered within 15 minutes and accumulated YFP-XIJ at the tip (Figure 4.4D and 

Movie 4.8). In the mock treatment, YFP-XIJ was observed accumulated at the tip only during 

pollen tube growth. This correlation between growth and accumulation of YFP-XIJ was 

disrupted with 100 nM latB (Figure 4.4E). The pollen tube was still growing, but lost the 

accumulation of YFP-XIJ at the tip. Overall, these results suggest that the accumulation of YFP-

XIA and YFP-XIJ at the pollen tube tip is dependent on the actin cytoskeleton.  

Since YFP-XIA and YFP-XIJ accumulated at the tip of growing pollen tubes, these 

pollen myosins were predicted to transport the secretory vesicles that accumulate at the apex. 

Therefore, the degree of overlap between vesicle accumulation and myosin accumulation was 

determined. RabA4d is predicted to associate with post-Golgi vesicles (Vernoud et al., 2003), 

and the accumulation of YFP-RabA4d at the tip of growing pollen tubes is sensitive to brefeldin 

A, a secretion inhibitor (Lee et al., 2008; Szumlanski and Nielsen, 2009). Therefore, 

XIJpro:CFP-RabA4d was transformed into xia-2 XIApro:YFP-XIA and xij-1 XIJpro:YFP-XIJ 

plants. CFP and YFP images of growing pollen tubes were captured and merged. YFP-XIA and 

YFP-XIJ accumulation was confined to a small region in the apex of growing pollen tubes, 

whereas, CFP-RabA4d accumulation was not as consolidated (Figure 4.5 and Movies 4.9 and 

4.10). Interestingly, CFP-RabA4d in xia-2 XIApro:YFP-XIA pollen tubes was not as confined in 

the apical region as was observed in WT (see Figure 4.7) and xij-1 XIJpro:YFP-XIJ pollen tubes 

(Figure 4.5). It is possible that vesicle accumulation is altered either in the xia mutant or in the 

presence of YFP-XIA, so this will have to be investigated further. Since CFP-RabA4d 

accumulation partially overlapped with YFP-XIA and YFP-XIJ accumulation, a fluorescence 

resonance energy transfer (FRET) experiment was conducted using these lines to determine  
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Figure 4.5: YFP-XIA and YFP-XIJ do not co-localize or interact with CFP-RabA4d 

xia-2 pollen tubes expressing YFP-XIA and CFP-RabA4d (A) and xij-1 pollen tubes 

expressing YFP-XIJ and CFP-RabA4d (B) were grown in vitro. CFP (red), YFP (green), 

and FRET images were captured. Normalized FRET (NFRET) values were calculated 

and visualized using color to represent the relative degree of NFRET. Neither YFP-XIA 

nor YFP-XIJ produced a FRET signal with CFP-RabA4d. CFP and YFP images were 

also merged to compare the tip-localization of myosins and RabA4d. The accumulation 

of CFP-RabA4d only partially overlapped (yellow) with the accumulation of YFP-XIA 

and YFP-XIJ. Scale bar = 2 µm. 
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whether or not RabA4d was closely associated with these pollen myosins. Pollen tubes 

expressing both YFP-XIA and CFP-RabA4d or YFP-XIJ and CFP-RabA4d did not produce a 

FRET signal (Figure 4.5). This suggests that RabA4d probably does not interact with XIA or 

XIJ. Even though YFP-XIA and YFP-XIJ do not interact with CFP-RabA4d, they could still be 

associated with the secretory vesicles at the tip. 

To investigate the possible association of XIA and XIJ to secretory vesicles accumulated 

at the tip, pollen tubes expressing either YFP-XIA or YFP-XIJ were treated with 36 µM brefeldin 

A (BFA), a secretion inhibitor. BFA results in cessation of pollen tube growth, loss of vesicle 

accumulation at the tip, and aggregation of membranes from secretory vesicles in the subapical 

region (Parton et al., 2003). As expected, pollen tube growth ceased 10-15 minutes after the 

addition of BFA (Figure 4.6B and 4.6D and Movies 4.11 and 4.12). BFA also resulted in the 

gradual loss of YFP-XIA and YFP-XIJ accumulation at the pollen tube tip; however, aggregation 

was not observed (Figure 4.6B and 4.6D and Movies 4.11 and 4.12). Mock treatment with 

ethanol did not affect YFP-XIA accumulation or pollen tube growth (Figure 4.6A and Movie 

4.13). Mock treatment with ethanol did initially inhibit the growth of YFP-XIJ pollen; however, 

the pollen tubes recovered within 25 minutes and accumulated YFP-XIJ at the tip (Figure 4.6D 

and Movie 4.14). These results suggest that YFP-XIA and YFP-XIJ may normally associate with 

secretory vesicles at the pollen tube tip; however, they do not stay associated after treatment with 

BFA. 

4.3.2: RabA4d accumulation at the tip of growing pollen tubes was not altered 

The accumulation of vesicles at the tip of growing pollen tubes is dependent on actin 

filaments (Parton et al., 2001), suggesting a role for myosins in vesicle accumulation. 

Fluorescently tagged RabA4d and XIJ accumulated at the tips of growing pollen tube; however, 

they did not completely co-localize or interact. Nevertheless, it was still possible that XIJ was 
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Figure 4.6: BFA treatment reduced the accumulation of YFP-XIA and YFP-XIJ at the tip 

xia-2 XIApro:YFP-XIA (A-B) and xij-1 XIJpro:YFP-XIJ (C-D) pollen tubes were treated 

with 0 µM (A,C) or 36 µM (B,D) of brefeldin A (BFA). BFA completely inhibited pollen 

tube growth and resulted in the gradual loss of YFP-XIA and YFP-XIJ accumulation at 

the pollen tube tip. Scale bar = 3 µm. 
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Figure 4.6: Continued 
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involved in the accumulation of RabA4d-associated vesicles. Furthermore, out of the remaining 

five pollen myosins, XIC and XIE might also have a role in the vesicle accumulation at the tip of 

growing pollen tubes because xic xie pollen tubes grew more slowly than WT pollen tubes (see 

Chapter 3). Therefore, YFP-RabA4d accumulation was examined in WT, xic-1 xie-1, and xij-1 

pollen tubes.  

In WT, xic-1 xie-1, and xij-1, YFP-RabA4d accumulated at the tip of growing pollen 

tubes (Figure 4.7A and Movies 4.15 - 4.17). YFP fluorescence at the tip of pollen tubes was 

measured over time; however, a direct comparison of fluorescence intensity among the three 

genotypes was not possible because fluorescence intensity varied even among pollen from the 

same flower (data not shown). Mean fluorescence intensity at the tip fluctuated slightly over time 

in all three genotypes (Figure 4.7B). Coefficients of variation of YFP-RabA4d accumulation at 

the tip of xic-1 xie-1 pollen tubes were slightly lower but not significantly different from those of 

WT and xij-1 pollen tubes (Figure 4.7C; p > 0.05). Overall for WT and mutant pollen tubes, 

accumulation of YFP-RabA4d was stable with only slight fluctuations in intensity over time 

(Figure 4.7).  

4.3.3: Golgi stacks and peroxisomes moved at reduced velocities in xic xie pollen tubes 

 Single and higher order myosin XI mutants have reduced organelle motility in vegetative 

tissues (Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010; Ueda et al., 

2010; Avisar et al., 2012). Furthermore, drug treatments that disrupt actin filaments have been 

shown to inhibit organelle movements in pollen tubes (Mascarenhas and Lafountain, 1972; 

Heslop-Harrison and Heslop-Harrison, 1989a; Vidali et al., 2001). Hence, pollen myosin mutants 

were predicted to have reduced organelle motility. Since xic xie pollen tubes exhibited the 

strongest growth defects and xij pollen had the unique pollen germination defect (see Chapter 3), 

peroxisome and Golgi stack movements were examined in WT, xic-1 xie-1, and xij-1 pollen  
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Figure 4.7: RabA4d accumulation at the tip of growing pollen tubes was not altered 

(A) WT, xic-1 xie-1, and xij-1 pollen tubes expressing YFP-RabA4d were imaged for two 

minutes at 0.5-s intervals. YFP-RabA4d accumulated at the tip. Scale bar = 2 µm. 

(B) Normalized fluorescence intensity of YFP-RabA4d fluctuated to the same degree in 

WT (black), xic-1 xie-1 (blue), and xij-1 (red) pollen tubes. Each line represents data from 

one pollen tube.  

(C) Coefficients of variation of YFP-RabA4d accumulation at the tip of WT, xic-1 xie-1, 

and xij-1 pollen tubes. Means ± SD were not significantly different (p > 0.05, Mann-

Whitney test). 
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tubes. 

 Pollen tubes stably expressing either a YFP-peroxisome or YFP-Golgi marker were 

grown in vitro and examined using wide-field epifluorescence microscopy. xic-1 xie-1 pollen 

tubes had visually reduced peroxisome and Golgi stack movements compared to WT pollen tubes 

(Figure 4.8A and Movies 4.18 - 4.21). There was not a visual difference in organelle velocities 

between WT and xij-1 pollen tubes (Figure 4.8A and Movies 4.18 - 4.19 and 4.22 - 4.23). At 

least nine independent, two-minute time-lapse image sequences with 0.5-s intervals were 

captured for each treatment, except only 3 were captured for xij-1 pollen tubes expressing the 

peroxisome marker. Organelles were detected and tracked automatically using the Particle 

Tracker plug-in (Sabalzarini and Koumoutsakos, 2005) for ImageJ. The cumulative frequency 

distribution of velocities was plotted for all measurements from individual time-lapse image 

sequences. The frequency distribution of Golgi stack and peroxisome velocities varied greatly 

between pollen tubes of the same genotype (Figure 4.8B). Despite this variation from cell to 

cell, the results from WT and xic-1 xie-1 pollen tubes were clearly separated (Figure 4.8B). 

Velocities were then combined by genotype, and the cumulative frequency distribution of 

velocities between WT and xic-1 xie-1 were significantly different from each other (p < 0.0001; 

Figure 4.8B). Organelle movements were not analyzed in the xic and xie single mutants; 

however, the lack of major fertility and growth defects in the single mutants would suggest that 

organelle motilities remain similar to WT. Interestingly in xij-1 pollen tubes, peroxisomes moved 

significantly slower and Golgi stacks moved significantly faster than in WT pollen tubes (p < 

0.0001; Figure 4.8B). Since there did not appear to be a difference visually (Figure 4.8A and 

Movies 4.19 and 4.23), perhaps the slight differences between WT and xij-1 organelle velocities 

were exaggerated as a result of the large sample sizes (Table 4.2). 
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Figure 4.8: Golgi stacks and peroxisomes moved at reduced velocities in xic xie pollen tubes 

WT (black), xic-1 xie-1 (blue), and xij-1 (red) pollen tubes expressing either a YFP 

peroxisome marker or a YFP Golgi marker were imaged for two minutes at 0.5-s 

intervals.  

(A) For each genotype, the first frame (Top) was compared to the first 20 frames, 

representing 10 seconds, merged (Bottom). xic-1 xie-1 pollen tubes had visually slower 

peroxisome and Golgi stack movements than WT and xij-1 pollen tubes. Scale bar = 2 

µm. 

(B-C) Velocity measurements were plotted as cumulative frequency distribution graphs. 

Peroxisomes and Golgi stacks moved more slowly in xic-1 xie-1 pollen tubes than WT 

pollen tubes. Peroxisomes moved slower and Golgi stacks moved faster in xij-1 pollen 

tubes than WT pollen tubes.  

(B) Organelles were automatically detected and velocities were measured for each frame. 

Velocity measurements were combined for each time-lapse (Top) and by genotype 

(Bottom). 

(C) 20 organelles moving visually very fast were manually tracked for two pollen tubes 

per treatment. Velocity measurements were combined for each pollen tube (Top) and by 

genotype (Bottom). 
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Figure 4.8: Continued 
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Figure 4.8: Continued 
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Table 4.2: Sample sizes for organelle movement analysis 
 

Method Organelle Genotype # of measurements # of organelles 
Automated Peroxisomes WT 108148 479 

  xic-1 xie-1 144471 663 
  xij-1 40650 183 
 Golgi stacks WT 270017 1190 
  xic-1 xie-1 218766 949 
  xij-1 250523 1110 

Manual Peroxisomes WT 978 20 
  xic-1 xie-1 1601 20 
  xij-1 890 20 
 Golgi stacks WT 882 20 
  xic-1 xie-1 1723 20 
  xij-1 638 20 

# of organelles for the automated method was calculated by adding the average # of particles 
detected per frame for each time-lapse sequence. 
 

 

 

 

 

 

 

 



! 158!

 After examining the tracking results, it was apparent that the automated tracking program 

made some errors due to the high velocity and high density of the organelles in pollen tubes. 

Occasionally, an organelle in one frame would be incorrectly linked to a different organelle in 

the next frame, as has been described previously (Chenouard et al., 2014). This error in linkage 

often resulted in false high velocity measurements that affected the cumulative frequency 

distributions (Figure 4.8B). Therefore, the velocities of organelles that were visually identified 

as moving very fast were manually measured for two pollen tubes per genotype (Figure 4.8C). 

For WT pollen tubes, the maximum velocities for peroxisomes and Golgi stacks measured by 

manual tracking were 6.6 µm/s and 5.9 µm/s, respectively. For xic-1 xie-1 pollen tubes, the 

maximum velocities measured for peroxisomes and Golgi stacks were 1.8 µm/s and 3.3 µm/s, 

respectively. For xij-1 pollen tubes, the maximum velocities for peroxisomes and Golgi stacks 

measured were 5.8 µm/s and 4.2 µm/s, respectively. These maximal velocities were considerably 

slower than those determined by automatic tracking, particularly for the xic-1 xie-1 pollen tubes 

suggesting the false high velocity measurements have a particular range regardless of the actual 

velocities within the pollen tube. Nevertheless, the clear difference in velocity distribution 

between WT and xic-1 xie-1 detected by automatic tracking (Figure 4.8B) is still valid as the 

algorithm made only few mistakes at slower velocities (< 1 µm/s) that represent 65-95% of all 

measurements.  

Even though the manual tracking of visually very fast organelles provided very different 

maximal velocities than the automated tracking of all organelles, the differences detected 

between genotypes were similar for the two methods. Manually tracked peroxisomes and Golgi 

stacks in xic-1 xie-1 pollen tubes moved at significantly reduced velocities compared to 

organelles in WT pollen tubes (p < 0.0001; Figure 4.8C). Peroxisomes also moved significantly 

more slowly in xij-1 pollen tubes than in WT pollen tubes (p < 0.0001; Figure 4.8C). Manually 
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tracked Golgi stacks were traveling faster in xij-1 pollen tubes than in WT pollen tubes (p < 

0.0001; Figure 4.8C), as had been observed with automated tracking (p < 0.0001; Figure 4.8B). 

For manual tracking, ten organelles moving towards and ten organelles moving away from the 

pollen tube tip were tracked. Interestingly, organelles in 8 out of the 12 pollen tubes moved faster 

when traveling away from the tip, while only in 2 pollen tubes organelles moved faster when 

traveling towards the tip (p < 0.001; Figure 4.9).  

4.3.4:  Actin filament dynamics were not altered in myosin XI mutant pollen tubes 

 The mya2 xik double mutant has altered actin filament organization that in higher order 

mutants becomes more skewed from the typical longitudinal orientation (Peremyslov et al., 

2010; Ueda et al., 2010). Not only are class XI myosins required for normal actin organization, 

but they are also involved in the dynamic rearrangements of actin filaments. Recently, the xik 

single mutant was shown to have a reduction in actin filament dynamics compared to WT (Park 

and Nebenführ, 2013). To investigate the role of class XI myosins in actin filament organization 

and rearrangements in pollen tubes, actin filaments in WT, xic-1 xie-1, and xij-1 pollen tubes 

were visualized with YFP-FABD2. YFP-FABD2, YFP fused to the second-actin binding domain 

of A. thaliana fimbrin1, only labels the actin filaments in the shank of growing pollen tubes and 

not the subapical actin mesh (Wilsen et al., 2006). Overall, the organization of actin filaments in 

the shank was similar for WT, xic-1 xie-1, and xij-1 pollen tubes (Figure 4.10A). The rate of 

actin filament rearrangements also appeared similar in all three genotypes (Movies 4.24 - 4.26). 

Quantification of actin filament dynamics by measuring the decay of image cross-correlation 

over time confirmed that there was no significant difference between WT and mutant (Figure 

4.10B; p > 0.05). Therefore, either XIC, XIE, and XIJ are not involved in actin filament 

organization and rearrangements, or their function is redundant with other pollen myosins. 
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Figure 4.9: Organelles tended to move slowly traveling towards the pollen tube tip 

WT, xij-1, and xic-1 xie-1 pollen tubes expressing either a YFP peroxisome marker (Top) 

or a YFP Golgi marker (Bottom) were imaged for two minutes at 0.5-s intervals. 10 

organelles traveling towards (purple) and 10 organelles traveling away from (green) the 

pollen tube tip were manually tracked (Mean ± SEM; * p < 0.001, Kolmogorov-Smirnov 

test). Peroxisomes and Golgi stacks traveling away from the pollen tube tip tended to 

move faster than organelles traveling towards the pollen tube tip. 
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Figure 4.10: Actin filament dynamics were similar in WT and mutant pollen tubes 

(A) Actin filaments in the pollen tube shank were labeled with YFP-FABD2, and images 

are representative of actin filament organization 20 µm from the tip of growing pollen 

tubes. Actin filament organization in the shank was similar in WT, xic-1 xie-1, and xij-1 

pollen tubes. Scale bar = 2 µm.  

(B) Actin filament dynamics in WT (black), xic-1 xie-1 (blue), and xij-1 (red) pollen tubes 

were measured by fitting an exponential decay curve to image cross-correlation data with 

increasing time intervals. Each box-and-whisker plot represents the minimum, 25th 

percentile, median, 75th percentile, and maximum decay constants from the 10 most 

active regions of a single pollen tube. Mean decay constants were compared, and there 

was no significant difference between WT and mutant actin dynamics (p > 0.05, Mann-

Whitney test). 
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4.3.5: Localization of ROP1 and its effectors, RIC3 and RIC4, was unchanged in mutants 

 ROP1, a small Rho-GTPase, is predominately expressed in pollen (Li et al., 1998) and 

localizes to the apical plasma membrane of growing pollen tubes (Lin et al., 1996; Hwang et al., 

2008). ROP1 is required for pollen tube growth (Lin and Yang, 1997; Li et al., 1999). Expression 

of constitutively active ROP1 resulted in the complete depolarization of pollen tubes while 

overexpression of ROP1 only resulted in partial depolarization (Li et al., 1999). Comparable to 

ROP1 overexpression lines, expression of fluorescently tagged ROP1 in Arabidopsis pollen 

tubes resulted in short, wide pollen tubes with slight swelling of the tip (Hwang et al., 2008). 

Furthermore, GFP-ROP1 localization was not restricted to the apical plasma membrane (Hwang 

et al., 2008). It was hypothesized that the reduction in pollen tube growth observed in some 

myosin XI mutants (see Chapter 3) was a result of the mislocalization of ROP1. To determine 

whether or not ROP1 localization was altered in pollen myosin mutants, YFP-ROP1 was 

expressed in WT, xic-1 xie-1, and xij-1 pollen tubes. In all three genotypes, YFP-ROP1 was 

observed throughout the pollen tube (Figure 4.11A). An alternative approach using antibodies to 

ROP might have provided clearer results since antibodies would have only labeled native ROP1 

in the apical plasma membrane. 

 Two ROP1 effectors, RIC3 and RIC4, have been shown to regulate tip growth by 

affecting F-actin dynamics. RIC, ROP-interactive CRIB motif-containing, proteins interact with 

active ROP1, and overexpression of either RIC3 or RIC4 results in partial depolarization of 

pollen tube growth comparable to the overexpression of ROP1 (Wu et al., 2001). Furthermore, 

overexpression of either RIC3 or RIC4 alters the accumulation of vesicles at the tip of growing 

pollen tubes (Lee et al., 2008). Interestingly, co-overexpression of RIC3 and RIC4 results in 

normal vesicle accumulation and pollen tube growth, suggesting RIC3 and RIC4 expression 

levels must be balanced for normal growth to occur (Gu et al., 2005; Lee et al., 2008). RIC4 
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Figure 4.11: Localization of ROP1 and its effectors was unaffected by the loss of myosin XI 

WT, xic-1 xie-1, and xij-1 pollen tubes expressing YFP-ROP1 (A), YFP-RIC3 (B), or 

YFP-RIC4 (C) were imaged. No differences in localization were observed between WT 

and mutant pollen tubes. Scale bar = 2 µm. 
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promotes the assembly of F-actin at the tip of growing pollen tubes while RIC3 promotes the 

disassembly of F-actin at the tip through regulating calcium influx (Gu et al., 2005). The 

localization of fluorescently tagged RIC3 and RIC4 had only been examined via transient 

expression in tobacco pollen tubes. When co-expressed with ROP1, GFP-RIC4 is predominately 

localized to the plasma membrane whereas GFP-RIC3 is diffuse throughout the cytoplasm (Wu 

et al., 2001). In addition, GFP-RIC3 accumulates in the vegetative nucleus (Wu et al., 2001). To 

examine the localization of ROP1 effectors in pollen myosin mutants, YFP-RIC3 and YFP-RIC4 

were expressed in WT, xic-1 xie-1, and xij-1 pollen tubes. In all three genotypes, YFP-RIC3 was 

diffuse throughout the pollen tube except for one region of accumulation that most likely 

represented the vegetative nucleus (Figure 4.11B). Plasma membrane localization of YFP-RIC4 

was not observed in any pollen tubes, which could be a result of the YFP-RIC4 being 

overexpressed or the localization pattern in Arabidopsis differs from tobacco (Figure 4.11C). 

Instead YFP fluorescence was observed throughout the cytoplasm as well as in a punctate pattern 

that was only observed in the subapical and shank regions (Figure 4.11C). 

 

4.4: Discussion 

Class XI myosins are required for normal cell expansion, organelle motility, actin 

filament organization, and actin filament dynamics in vegetative cells. In Chapter 3, class XI 

myosins were shown to also be required for normal pollen tube growth and fertility. In order to 

determine the mechanism with which myosin XI contributes to pollen tube growth, various 

fluorescent markers were expressed in myosin XI mutant and WT pollen. In addition, the 

localization of two pollen myosins was examined. 
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Pollen myosins localize to the tips of growing pollen tubes 

Both YFP-XIA and YFP-XIJ accumulated at the tip of growing pollen tubes, a 

localization pattern strikingly similar to YFP-XIK in growing root hairs (Peremyslov et al., 2012; 

Park and Nebenführ, 2013). Additionally, YFP-myoXIa in moss also accumulated at the tip of 

elongating cells (Vidali et al., 2010). This leads to the question of whether or not all myosin XI 

isoforms localize to the apex of tip growing cells. It also raises the question as to what is the 

functional relevance of this localization. Growing pollen tubes have a high concentration of 

calcium at the tip (Iwano et al., 2009), and myosin XI has been shown in vitro to take smaller 

steps and detach easily from actin filaments in the presence of 10 µM calcium (Tominaga et al., 

2012). However, cytoplasmic calcium concentrations at the tip of growing Arabidopsis pollen 

tubes do not exceed 1 µM (Iwano et al., 2009), suggesting myosin XI at the tip of growing pollen 

tubes could still be actively transporting cargo on the short actin filaments in the actin fringe.  

An even more striking observation was the accumulation of YFP-XIA and YFP-XIJ at 

the future germination site within pollen grains. Interestingly, YFP-XIA localized to the 

germination site immediately preceding tube emergence; however, xia mutant pollen did not 

have a reduction in germination efficiency. Since xij pollen germinated poorly in vitro, it was not 

surprising that YFP-XIJ appeared to accumulate at the future germination site. However, YFP-

XIJ became diffuse again prior to tube emergence. These results suggest that XIA and XIJ are 

differentially regulated during pollen germination. It will be crucial to determine the order of the 

steps in the intracellular reorganization that occurs during pollen germination, in order to 

elucidate the roles of XIA and XIJ. 

Myosin XI is required for normal organelle motility during pollen tube growth 

In addition to the reduced growth of xic xie pollen tubes, peroxisomes and Golgi stacks 

moved at reduced speeds in the double mutant compared to WT pollen tubes. Organelle 
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movements were not examined in the single xic and xie mutants; however, given the high degree 

of similarity between XIC and XIE, these pollen myosins probably function redundantly to move 

peroxisomes and Golgi stacks.  Interestingly, loss of XIJ resulted in slower peroxisome 

movements, but faster Golgi stack movements. It could be possible that XIJ normally inhibits 

Golgi stack movements either by binding to the unidentified receptors on the Golgi thus 

preventing faster isoforms from binding or possibly by directly inhibiting other myosins. Given 

that XIJ is the only short-tailed myosin XI in Arabidopsis (Mühlhausen and Kollmar, 2013), 

meaning it lacks the typical myosin XI globular tail involved in cargo binding (Li and 

Nebenführ, 2007), it is currently not clear how XIJ can contribute to organelle motility. It is also 

unclear how XIJ could regulate organelle movements in the shank, while it is primarily localized 

to the apex. This is not a unique dilemma to a short-tailed myosin. XIK predominately localizes 

to the tip of growing root hairs (Peremyslov et al., 2012; Park and Nebenführ, 2013); however, 

xik mutants also have reduced organelle motility. The exact mechanism of how one isoform can 

regulate the motility of multiple organelles without localizing to those organelles is still 

unknown; however, myosin effects on the actin cytoskeleton (Peremyslov et al., 2010; Ueda et 

al., 2010; Park and Nebenführ, 2013) might result in the overall reduction in organelle motility. 

Pollen myosins are not involved in vesicle accumulation and actin dynamics 

 Fluctuations in vesicle accumulation at the tip of WT, xij and xic xie pollen tubes were 

similar. xic xie pollen tubes grow more slowly than WT, thus a reduction in the accumulation of 

secretory vesicles at the tip would be expected. Using YFP-RabA4d as a vesicle marker enables 

the analysis of fluctuations of accumulation at the tip. However, it cannot be used for 

quantification of vesicle number and density at the tip due to the inherent variation of YFP-

RabA4d expression among pollen tubes. To answer this question, images of the apex using 

electron microscopy could be used to count the number of vesicles. WT and mutant pollen tubes 
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also had similar levels of actin dynamics and localization of ROP1 and its effectors, RIC3 and 

RIC4. These results suggest that XIC, XIE, and XIJ are either not involved in vesicle 

accumulation or actin dynamics, or the other pollen myosins can compensate for the loss of one 

or two myosins. In contrast, the loss of a single myosin, XIK, in root hairs resulted in the 

reduction of actin filament dynamics (Park and Nebenführ, 2013). This suggests that there may 

be a higher degree of redundancy among pollen myosins than among vegetative myosins. 

Conclusions 

 Class XI myosins are involved in organelle motility during pollen tube growth; however, 

the direct link between myosin function and pollen tube growth has not been identified. It will be 

crucial to identify the interacting partners of pollen myosins in order to fill in the missing parts of 

the equation. The generation of functional, full-length fusion constructs also provided further 

insight into the role of XIA and XIJ. The localization of YFP-XIA and YFP-XIJ further 

implicated both myosins in tip growth, but also in pollen germination. The intracellular 

reorganization of pollen grains during germination is poorly understood. Detailed time-lapse 

imaging of pollen grains expressing an array of fluorescent markers will be necessary to tease 

out the process of pollen germination and the role of myosin XI during this process. Due to the 

auto-fluorescence of the pollen coat, a spinning-disk confocal microscope will be vital to this 

experiment. Additionally, electron microscopy could also be used to investigate the localization 

of pollen myosins during germination. However, this technique will be difficult because 

germination of pollen grains will have to be synchronized with a high percentage of the pollen 

grains germinating around the same time. 
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Chapter 5: Concluding Remarks 
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A pollen tube is a single cell that undergoes rapid tip growth for the sole purpose of 

delivering two non-motile sperm cells to an ovule. In some species, pollen tubes have to grow as 

long as 0.5 m to reach the first ovule (Williams, 2008). In order for a single cell to maintain tip-

focused growth, secretory vesicles must be continually delivered to the apex of the pollen tube. 

Actin filaments are necessary for angiosperm pollen tube growth (Heslop-Harrison and Heslop-

Harrison, 1989a); therefore, myosins, which are actin-based motor proteins, were predicted to 

also be required for normal pollen tube growth. Only two classes of myosins, class VIII and class 

XI, are found in plants (Odronitz and Kollmar, 2007). The localization of class VIII myosins, as 

determined by immunolocalization and expression of fluorescently labeled full-length or tail 

constructs, has implicated these myosins in cell-cell communication/transport, cell division, and 

endocytosis (Reichelt et al., 1999; Van Damme et al., 2004; Avisar et al., 2008a; Golomb et al., 

2008; Sattarzadeh et al., 2008; Yuan et al., 2011; Haraguchi et al., 2014). On the other hand, 

genetic analysis has revealed that class XI myosins are required for normal cell expansion 

(Ojangu et al., 2007; Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010; 

Ojangu et al., 2012). Thus, class XI and not class VIII myosins were hypothesized to be involved 

in pollen tube growth.  

In Arabidopsis thaliana, six myosin XI genes are expressed in pollen (Peremyslow et al., 

2011; Sparkes, 2011). To determine the levels of functional redundancy and specificity among 

the six pollen myosins, two approaches were employed. For the first approach, two artificial 

microRNAs were designed to silence multiple class XI myosins at once (Tables 2.4 and 2.5). 

Ultimately, the artificial microRNA lines only exhibited a slight reduction in root hair length that 

was not as severe as had been observed in double mutants (Prokhnevsky et al., 2008), and 

obvious fertility defects were not detected in any of the lines. The artificial microRNA constructs 

most likely did not efficiently target myosin mRNAs. Therefore, the functions of the six pollen  
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myosins were then investigated using single and double T-DNA insertion mutants. 

As previously reported for the vegetative myosins, the pollen myosins were observed to 

have at least partially overlapping functions. Single pollen myosin mutants had either minor or 

no defects in pollen tube growth and overall fertility. This suggests that each isoform contributes 

only a little toward pollen tube growth or is redundant with the other pollen myosins. The latter 

was best exemplified with XIC and XIE, two pollen myosins with greater than 90% amino acid 

sequence identity. XIC and XIE have the strongest influence on pollen tube growth since we 

could see an effect on seed set, segregation distortion, in vivo pollen tube growth, and even for 

most in vitro pollen tube growth experiments (see Chapter 3). Furthermore, both XIA and XID 

together are needed for normal pollen tube growth in vivo, which was also seen in some of the in 

vitro pollen tube growth experiments (Figures 3.7 and 3.8). These results indicate that at least 

four of the six pollen-expressed myosins contribute to pollen tube growth; however, it is still 

unclear whether or not they contribute to growth through the same pathway or different 

pathways. Generation of triple and quadruple mutants of myosins from different subgroups will 

be essential for determining the degree of overlapping functions between subgroups Myo11A 

(XIA, XID, XIB) and Myo11C (XIC, XIE, XIJ). Additionally, the level of redundancy between 

myosins from different subgroups could be examined by exchanging the native promoters used 

to express full-length myosin constructs. For example, YFP-XIA could be expressed using the 

native XIE promoter in the xic xie mutant. Then it would be possible to determine whether or not 

XIA can functionally replace XIE if it is expressed at the same time and at the same level as the 

native XIE. If XIEpro:YFP-XIA cannot rescue the double mutant phenotype, chimeras of XIE 

and XIA could be generated in order to determine which region of XIE is required for its role in 

pollen tube growth.  
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Future experiments should also focus on illuminating the mechanisms by which myosins 

contribute to pollen tube growth. xic xie pollen tubes had drastically reduced organelle motility 

(Figure 4.8), yet no defects were detected in vesicle accumulation or actin organization and 

dynamics (Figures 4.7 and 4.10). Organelle movements are not sufficient for pollen tube growth 

(Vidali et al., 2001); therefore, it will be essential to find the causal link between organelle 

movements and cell growth. Pollen tube growth is proposed to be dependent on vesicle 

accumulation at the tip, so it is perplexing to have pollen tubes that grow slowly with a 

seemingly normal vesicle distribution. Similarly, xik root hairs grow more slowly than WT, have 

reduced organelle motility, but do not have an altered vesicle accumulation (Peremyslov et al., 

2008; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Of course, vesicle accumulation in 

xik root hairs and xic xie pollen tubes was observed using YFP-tagged Rab GTPases that 

associate with secretory vesicles, which allowed for the analysis of fluctuations in accumulation 

but not quantification of vesicle accumulation. Therefore, electron microscopy would provide 

critical quantification of the number and density of vesicles at the tips of WT and myosin mutant 

root hairs or pollen tubes. Furthermore, actin organization and dynamics were only examined in 

the shank of xic xie pollen tubes, so it is possible that the double mutant pollen tubes have an 

altered actin fringe. Thus, WT and mutant pollen tubes expressing Lifeact-YFP will have to be 

thoroughly examined. 

Furthermore, observing the localization of fluorescently tagged full-length myosins will 

also shed light on the role of class XI myosins during pollen tube growth. Even though YFP-XIA 

and YFP-XIJ were shown to accumulate at the apex of growing pollen tubes (Figure 4.3), the 

identity of their cargo remains unknown. It is also unclear how XIJ can affect organelle 

movements in the shank when it is localized to the tip of growing pollen tubes. 

Immunoprecipitation experiments using pollen expressing the YFP-tagged full-length myosins 
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could identify the cargo of individual pollen myosins and possibly provide critical insights into 

this dilemma. Interestingly, observation of YFP-XIJ and YFP-XIA prior to germination revealed 

that both pollen myosins localized to the future site of germination (Figures 4.1 and 4.2). 

However, YFP-XIA remained localized to the site of germination during tube emergence, 

whereas YFP-XIJ accumulated at the future germination site and then became diffuse again prior 

to tube emergence. This result is consistent with the hypothesis that myosin isoforms are 

differentially regulated and also indicates that there is some degree of functional specificity 

among the pollen myosins. This was also evident with the in vitro specific pollen germination 

defect of xij mutants (Table 3.9). Not only was this a novel phenotype for myosin mutants, but it 

was also the first phenotype described for a short-tailed myosin XI. In order to elucidate the 

mechanism for XIJ-dependent in vitro pollen germination, it will be critical to identify the 

diffusible female component that rescues the xij germination defect. It will also be important to 

closely examine the localization of YFP-XIJ during germination along with fluorescent markers 

for actin, vesicles, and various organelles. Not only will this provide additional information on 

the role of XIJ during pollen germination, but it will also clarify the order of the steps of the 

intracellular reorganization that occurs during pollen germination. 

 Overall, the study in this dissertation has provided the first direct evidence for the role of 

myosin XI in pollen tube growth and pollen germination. The techniques described in Chapter 3 

will also be useful for examining higher order mutants as well as testing for the complementation 

of phenotypes using YFP-tagged full-length myosins. Finally, the results from this work will also 

help guide the direction of future experiments in this field. 
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Golgi Stack Dynamics in Tobacco BY-2 Cells 

 

• This appendix is revised from a paper published by Stephanie L Madison and Andreas 

Nebenführ. 

Madison SL, Nebenführ A (2011) Live-cell imaging of dual-labeled Golgi stacks in 

tobacco BY-2 cells reveals similar behaviors for different cisternae during movement 

and brefeldin A treatment. Molecular Plant. 4: 896-908 

Andreas Nebenführ performed the experiment and analyzed the results from the brefeldin 

A treatment on the ST-CFP/ManI-YFP line.  He also performed the monensin treatment 

on the ST-CFP/ManI-YFP line. 
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A.1: Introduction 

 The Golgi apparatus is at the heart of the secretory system in both animal and plant cells. 

It is comprised of stacks of flattened membrane cisternae surrounded by vesicles and has a 

characteristic cis-to-trans polarity (reviewed in (Staehelin and Moore, 1995; Polishchuk and 

Mironov, 2004; Staehelin and Kang, 2008). The Golgi apparatus is responsible for modifying 

and sorting proteins as well as synthesizing lipids. It plays a crucial role in the processing of N-

linked glycans on glycoproteins, which is achieved by multiple glycosidases and 

glycosyltransferases that are arranged from the cis to the trans cisternae in the order in which 

they operate on their substrates (reviewed in (de Graffenried and Bertozzi, 2004; Schoberer and 

Strasser, 2011). In plants, the Golgi apparatus also produces complex poly-saccharides needed 

for cell wall synthesis (Driouich et al., 1993). Only a few of the many enzymes predicted to be 

involved in the synthesis of pectins and hemicelluloses have been isolated to date and their 

localization within the different cisternae is just beginning to be unraveled (Chevalier et al., 

2010). The cis-to-trans polarity of Golgi cisternae is also reflected in a progressive acidification 

of the cisternal lumen (Boss et al., 1984). This progressive drop in pH presumably plays a role in 

sorting of cargo molecules as well as activation of proteolytic enzymes in later Golgi 

compartments (Jiang and Rogers, 1999). Drugs, such as the cation ionophore monensin, that 

disrupt the pH gradient across the membrane therefore block secretion and lead to a swelling of 

the trans Golgi network (TGN) and trans cisternae (Zhang et al., 1993). 

 A unique characteristic of the plant Golgi apparatus is that it consists of numerous motile 

stacks (Boevink et al., 1998; Nebenführ et al., 1999). These stacks are approximately 300 nm 

thick with a cisternal diameter ~800 nm. Plant Golgi stack movements are dependent on the actin 

cytoskeleton and myosin motor proteins (Nebenführ et al., 1999; Avisar et al., 2008; Peremyslov 

et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010). Even though Golgi stack motility 
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in plants has been observed for over a decade, there are still unanswered questions surrounding 

the underlying mechanisms. First, it is not known how myosin motors mediate Golgi 

movements. It is possible that myosin motors could attach directly to Golgi stacks (Li and 

Nebenführ, 2007) and thus move them in parallel to but essentially independently of the actin-

associated ER network. Alternatively, Golgi stacks could move through the cell by attaching to 

endoplasmic reticulum export sites (ERES), which, in turn, are part of the motile ER (Runions et 

al., 2006; Ueda et al., 2010). Second, we have only a very general understanding of how Golgi 

stack integrity is maintained in the face of the physical shear forces that are likely to act upon 

stacks during their movement through the cytoplasm. The matrix proteins that surround Golgi 

cisternae are currently the best candidates for providing the cohesive forces that maintain 

cisternal association (Latijnhouwers et al., 2005; Renna et al., 2005; Latijnhouwers et al., 2007; 

Matheson et al., 2007), although the specific interactions that mediate Golgi stack integrity are 

still unknown. 

 The structural organization of the Golgi apparatus into cisternae of different protein 

compositions is dynamically maintained by a complex interplay of anterograde and retrograde 

transport mechanisms. The anterograde flow of cargo through Golgi stacks is most likely 

mediated by a cisternal progression/maturation mechanism whereby individual cisternae are 

being pushed through the stack while their membrane composition is continuously modified by 

recycling Golgi-resident enzymes back to earlier compartments (Nebenführ, 2003; Schoberer 

and Strasser, 2011). This retrograde transport has been shown to depend on COPI vesicles 

(Letourneur et al., 1994). Interestingly, Golgi enzyme recycling reaches as far back as the ER 

(Brandizzi et al., 2002) so that Golgi stack maintenance also depends on continuous export from 

the ER. Indeed, Golgi stacks can be disrupted and Golgi enzymes redistributed to the ER by 

overexpressing a GTP-locked form of Sar1, the small GTPase necessary for COPII vesicle  
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formation at ERES (Osterrieder et al., 2010; Schoberer et al., 2010). 

 Curiously, inhibition of the COPI-dependent retrograde recycling pathway with the 

fungal drug brefeldin A (BFA) also leads to a redistribution of Golgi enzymes into the ER 

(Boevink et al., 1998; Lee et al., 2002; Ritzenthaler et al., 2002; Saint-Jore et al., 2002; 

Schoberer et al., 2010). This redistribution most likely depends on direct membrane continuities 

between Golgi cisternae and the ER (Sciaky et al., 1997; Ritzenthaler et al., 2002), although the 

mechanism by which these continuities occur is still debated. One model posits that loss of COPI 

coats during BFA treatment exposes SNARE proteins on the cisternal surface that normally 

mediate fusion of Golgi-derived vesicles with the ER (Elazar et al., 1994; Nebenführ et al., 2002; 

Ritzenthaler et al., 2002). Another model assumes that such COPI-independent membrane 

continuities occur also under normal conditions to mediate recycling of Golgi residents 

(Schoberer et al., 2010). Interestingly, two independent studies have concluded that the 

disassembly of Golgi stacks during BFA treatments occurs directionally such that trans cisternae 

fuse with the ER first, while cis cisternae fuse last (Ritzenthaler et al., 2002; Schoberer et al., 

2010). While the first study was mostly based on the analysis of EM images taken at various 

time points during the BFA treatment (Ritzenthaler et al., 2002), the second study relied on the 

observation of fluorescent markers that localized to different Golgi sub-compartments as well as 

fluorescently labeled Golgi matrix proteins (Schoberer et al., 2010). 

 In this study, these questions were revisited using tobacco BY-2 suspension-cultured cells 

that carry dual-labeled Golgi stacks. Individual Golgi stacks were observed during normal 

movement as well as during BFA and monensin treatments.  Analysis of detailed time-lapse 

imaging revealed both a remarkable stability of Golgi stacks as well as an unexpected 

equivalence of the cis and trans sides. 
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A.2: Methods 

A.2.1: Tobacco BY-2 cell culture growth conditions 

 Tobacco (Nicotiana tabacum var. Bright Yellow 2) cells were grown in modified 

Murashige and Skoog medium under constant shaking (120 rpm) in the dark at 27°C (Nagata et 

al., 1982). The cells were transferred to fresh medium every week using a 1:200 dilution to 

maintain them in the log growth phase. 

A.2.2: Constructs 

 Each tobacco BY-2 cell line was transformed with two of the following markers: (1) 

soybean α-1,2 mannosidase I-YFP, which localizes predominately to the cis end of the Golgi 

(Nebenführ et al., 1999; Saint-Jore-Dupas et al., 2006), (2) Arabidopsis thaliana β1,2-

xylosyltransferase-YFP, which is used to label medial cisternae (Pagny et al., 2003), and (3) rat 

α-2,6-sialyltransferase-YFP (or CFP), which primarily localizes to the trans half of the Golgi 

(Boevink et al., 1998). The cis marker is based on the full-length protein (Nebenführ et al., 

1999). For the medial marker, the coding region corresponding to the first 36 amino acids of XT 

was amplified from Arabidopsis cDNA. The trans markers incorporate the first 52 amino acids 

of ST and was a kind gift by Dr. Chris Hawes (Oxford Brookes University, UK). All markers 

carry the fluorescent protein at their C-termini in the lumen of the Golgi. Expression of all 

markers was driven by the double 35S promoter (Nelson et al., 2007). The expression constructs 

were cloned into binary plasmids (pVKH18, pFGC19, pBIN20) and transformed via 

Agrobacterium into BY-2 cells as described previously (Nebenführ et al., 1999). Selection of 

transformed cells was achieved by adding 100 µg/ml hygromycin, 10 µg/ml glufosinate, or 50 

µg/ml kanamycin, respectively, to the medium. 
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A.2.3: Microscopy 

 Tobacco BY-2 cells co-expressing two fluorescent protein fusions were visualized using 

an Axiovert 200 M microscope (Zeiss) equipped with filters for CFP and YFP fluorescence (C-

35520; Chroma Technology). Transgenic cells were observed in their cortical cytoplasm closest 

to the cover slip with a 63X (1.4 NA) plan-apo oil immersion objective, and images were 

captured using a digital camera (Orca ER; Hamamatsu Photonics) using OpenLab5 software 

(Improvision/Perkin Elmer). Most CFP and YFP images were taken sequentially after switching 

the excitation light with an external DG-4 wavelength switcher (Sutter Instruments). For 

simultaneous image capture, the excitation wavelengths were rapidly alternated 

(CFP/YFP/CFP/YFP/CFP) during a single exposure to avoid sequential detection of the two 

markers. In this case, an image splitter (Dual-View; Optical Insights) was used to separate the 

emission wavelengths into two images that were projected side by side on the camera chip 

(dichroic filter 505dcxr; emission filters D465/30 for CFP and HQ535/30 for YFP; Chroma 

Technology). The CFP and YFP half-images were separated and CFP bleed-through was 

removed computationally from the YFP image. For all images, background subtraction was used 

to remove camera noise prior to quantitative analysis. Contrast enhancement was used to 

increase the signal intensity and decrease background fluorescence for presentation in the figures 

and movies. To determine the relative position of two cisternae in the same Golgi stack, a peak-

finding plug-in (Particle Tracker; http://weeman.inf.ethz.ch/particletracker; (Sabalzarini and 

Koumoutsakos, 2005) to ImageJ (http://rsb.info.nih.gov/ij/) was used. 

A.2.4: Monensin treatment 

 Three to five-day-old tobacco BY-2 cells were placed in a perfusion chamber and 

modified Murashige and Skoog medium was perfused at 0.5 ml/min. Sequential time-lapse 

imaging was started about three minutes before monensin (Acros Chemicals) and latrunculin B 
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(LatB, Sigma) were added. Images were taken for 60 minutes with 10-second intervals using 

CFP and YFP filters. Final monensin concentration was 10 µM from a stock solution of 3 mM in 

ethanol, and LatB had a final concentration of 1 µM from a stock solution of 1 mM in DMSO. 

Sizes of cisternae were measured in ImageJ after manual selection of the fluorescent areas. 

A.2.5: Movement analysis 

 Six-day-old tobacco BY-2 cells co-expressing ST-CFP and ManI-YFP were observed. 

Simultaneous image capture was used to capture time-lapse images in 1-second intervals for 1 

minute. After separation of the CFP and YFP signals, 20 individual Golgi stacks were tracked 

over time separately in the CFP and YFP images using OpenLab5 software. X and Y coordinates 

of the manually selected center points were transformed so that the direction of movement was in 

the positive X direction, with very little movement in the Y direction. This allowed for progress 

of the stacks to be followed along this new axis with the new parameter d. For each time point, 

the location of the stack in the YFP image was subtracted from its location in the CFP image to 

obtain the distance between the cis and trans cisternae (dCFP - dYFP). Thus, positive values 

indicate the trans cisternae leading, whereas negative values indicate the cis cisternae leading. 

Neither half was considered to be leading when the measured distance between the ST-CFP and 

ManI-YFP markers was less than 0.14 µm, which is less than half the length of the diagonal of a 

pixel. For every image, the speed in each frame was calculated by OpenLab5 software. The 

calculated CFP and YFP image speeds were averaged to obtain the overall speed of the Golgi 

stack at that time point. 

A.2.6: Brefeldin A treatment 

 Three to six-day-old tobacco BY-2 cells were treated with brefeldin A (BFA, Molecular 

Probes/Invitrogen) and latrunculin B (LatB, Sigma) while on a large coverslip on the inverted 

microscope. BFA was used at a final concentration of 10 µg/ml from a stock solution of 5 mg/ml 
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in ethanol. LatB had a final concentration of 1 µM. Cells were observed for 20 minutes after 

drugs were added by sequential time-lapse imaging with 5-second intervals between images. 

Individual Golgi stacks were identified manually, and OpenLab5 software was used to measure 

the maximal fluorescence intensities of the selected areas for every frame in the image sequence. 

 

A.3: Results 

A.3.1: Dual-labeled Golgi stacks reveal different localization of marker proteins 

 To examine Golgi stack movements and disassembly, fluorescent proteins were fused to 

the transmembrane domains of Golgi proteins that have been shown to localize to different 

cisternae with various degrees of overlap. A full-length clone of soybean α-1,2 mannosidase I 

fused to YFP (ManI-YFP; Nebenführ et al., 1999; Saint-Jore-Dupas et al., 2006) was used as a 

cis marker. The first 36 amino acids of Arabidopsis thaliana β1,2-xylosyltransferase fused with 

YFP (XT-YFP; Pagny et al., 2003) was utilized as a medial marker. Finally, the first 52 amino 

acids of rat α-2,6-sialyltransferase fused to YFP or CFP (ST-YFP/ST-CFP; Boevink et al., 1998) 

was employed as a trans marker. 

 Pairs of fusion proteins were examined in the cortical cytoplasm after stable co-

expression in tobacco BY-2 cells. Golgi stacks in cell lines expressing either ManI-YFP and ST-

CFP or XT-YFP and ST-CFP often appeared tri-colored due to partial overlap (Figure A.1A, 

A.1B, A.1D, and A.1E). This is most noticeable in the side-views shown in the insets of Figure 

A.1D and A.1E. There appeared to be more non-overlapping regions when ST-CFP was co-

expressed with ManI-YFP than with XT-YFP. This was confirmed by determining the centers of 

the labeled cisternae with a peak-finding algorithm. This analysis revealed that ST-CFP cisternae 

were, on average, slightly closer to XT-YFP cisternae (0.20 ± 0.01 µm; SE, n = 115 from four  
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Figure A.1: Differential localization of marker proteins in dual-labeled Golgi stacks 

 Transgenic tobacco BY-2 cells co-expressing ST-CFP (A-F) and ManI-YFP (A, D), XT- 

 YFP (B, E), or ST-YFP (C, F). Outlined regions (A-C) are magnified 3X in (D-F). Note  

 the different degrees of overlap between ST-CFP (green) and the YFP fusions (magenta).  

 The region of overlap (white) is most notable in the side-views shown for different stacks  

 at the same magnification in the insets (D-F). ST-CFP and ST-YFP are almost  

 completely overlapped while ST-CFP and XT-YFP or ManI-YFP have smaller  

 overlapping regions. Scale bar = 5 µm in (A-C) and 2 µm in (D-F). 
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cells) than to ManI-YFP cisternae (0.21 ± 0.01 µm; SE, n = 125 from eight cells), although this 

difference was not statistically significant (Mann-Whitney test, p > 0.05). Thus, our observations 

support previous findings that these proteins localize to different cisternae (Boevink et al., 1998; 

Nebenführ et al., 1999; Pagny et al., 2003). In contrast, Golgi stacks in cell lines expressing ST-

CFP and ST-YFP usually appeared predominately white with no clear separation between the 

channels because both fusion proteins localized to the trans cisternae (Figure A.1C and A.1F). 

Consistent with this impression, the average distance between ST-CFP and ST-YFP cisternae 

was only about half a pixel (0.09 ± 0.01 µm; SE, n = 137 from five cells). This slight 

displacement may have been caused by the temporal delay between CFP and YFP image capture, 

or could simply reflect random noise. 

A.3.2: Monensin treatment affects trans cisternae more than cis and medial cisternae 

 Previous studies have shown that treating plant cells with monensin, an ionophore that is 

specific for monovalent cations, ultimately results in the sequential swelling of Golgi cisternae 

(Zhang et al., 1993), presumably due to the resulting influx into acidic late Golgi compartments 

(Zhang et al., 1993; Satiat-Jeunemaitre et al., 1994). In electron micrographs, it could beobserved 

that the trans Golgi network is the first to swell followed by the trans cisternae. Medial and cis 

cisternae started to swell only later during the treatment. 

 The rate of swelling of different cisternae was observed by live-cell imaging in BY-2 

cells co-expressing ST-CFP and ManI-YFP (Figure A.2A) or XT-YFP (Figure A.2B). Cells 

were treated with 10 µM monensin and 1 µM latrunculin B (to prevent movement of the stacks) 

and observed using sequential time-lapse imaging with 10-second intervals between images. In 

cells expressing either ST-CFP and ManI-YFP or ST-CFP and XT-YFP, the cisternae labeled 

with ST-CFP began to swell by 5 minutes and appeared to reach a maximum size by 35 minutes 

after the addition of monensin (Figure A.2 and Movies A.1 and A.2). Swelling of the cis and  
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Figure A.2: Monensin treatment preferentially affects trans cisternae 

 Transgenic tobacco BY-2 cells co-expressing ST-CFP (green) and ManI-YFP (magenta;  

 A) or XT-YFP (magenta; B) were observed 0-50 minutes after addition of monensin.  

 Note the increase in fluorescence intensity in A beginning at 20 minutes. Also, note that  

 the trans cisternae swelled to a greater extent than the cis and medial cisternae. Due to  

 the focus shifting during the time lapse, different stacks are shown after 20 minutes. Scale  

 bar = 5 µm. 
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medial cisternae was less noticeable, but these cisternae appeared to start enlarging by about 30 

minutes after the start of the monensin treatment. Quantitative analysis of the apparent cisternal 

sizes at 0 and 50 minutes in monensin confirmed these impressions and revealed that trans 

cisternae swelled on average by ~ 50% whereas medial and cis cisternae increased in size by 

only ~20% and ~10%, respectively (n = 12-30 in two cells per treatment). 

 Frequently, swollen cisternae containing the ST-CFP marker surrounded by smaller 

cisternae labeled with either the ManI-YFP or XT-YFP marker were observed (Figure A.2). In 

some cases, the swelling of the cisternae also coincided with an increase in fluorescence 

intensities. This increase is clearly visible in Figure A.2A (20-50 minutes). Confirming previous 

studies, the trans cisternae were more affected by monensin treatment than the other cisternae. 

A.3.3: Golgi stacks move as intact units with a slight preference for the cis cisternae to lead 

 For over a decade, it has been known that plant Golgi stacks are motile and that their 

movements are dependent on the acto-myosin network (Boevink et al., 1998; Nebenführ et al., 

1999). While it is generally assumed that Golgi cisternae remain stacked during these 

movements, this has not been tested experimentally. Furthermore, it has yet to be determined 

whether Golgi stacks have a particular orientation while traveling through the cytoplasm. 

 To address these questions, a BY-2 suspension culture cell line that stably expressed ST-

CFP and ManI-YFP was observed. Simultaneous image capture of the two fluorophores was 

used to observe Golgi stacks at 1-second intervals for 1 minute (Figure A.3A and Movie A.3). 

Since there was no delay between the CFP and YFP images, it was possible to calculate the 

distance between the cis and trans cisternae in any given frame. Movements of 20 individual 

Golgi stacks in the video sequences from eight cells were independently tracked in both the CFP 

and YFP images, and the distance between the two signals in the direction of movement was 

calculated (dCFP - dYFP). Positive distance values indicate that the trans end was moving ahead  
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Figure A.3: Golgi stacks move as intact units at various speeds and orientations 

 (A) Transgenic tobacco BY-2 cells co-expressing ST-CFP (green) and ManI-YFP  

 (magenta) were imaged at 1-second intervals with simultaneous image capture for CFP  

 and YFP channels. Scale bar = 2 µm. 

 (B) For each Golgi stack, the distance between the trans and cis cisternae (dCFP - dYFP)  

 was calculated in every frame. Positive values indicate that the trans half was ahead  

 while negative values indicate that the cis half was ahead. Example 1 shows the distance 

 between cisternae for the stack shown in A. Note that stacks can have various  

 orientations while moving. 

 (C) Instantaneous speeds were also calculated for every measurement of 20 different  

 stacks. Note there is no correlation between speed and the distance between cisternae or  

 stack orientation. 

 (D) Summary of Golgi stack orientation in individual frames. A cisterna was counted as  

 leading if the distance between the markers was larger than 0.14 µm. 
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for a given frame, while negative distance values suggest that the cis half was leading at that time 

(Figure A.3B). In all observed stacks, the cis and trans markers remained in close proximity 

during the movements (maximal distance between centers < 0.8 µm), suggesting that Golgi stack 

integrity was maintained during movements. Of the 20 stacks observed, eight consistently had 

either the trans or cis cisternae leading (examples 2 and 3 in Figure A.3B), while 12 stacks 

alternated which end was ahead during the time lapse (Figure A.3A and example 1 in Figure 

A.3B). 

 Since either half of the Golgi stack could lead during movements, the next question asked 

was whether there was a correlation between orientation and speed of the Golgi stack at different 

time points. Analysis of a total of 204 time points revealed that orientation of a Golgi stack 

during movement was not influenced by its speed (Figure A.3C). Furthermore, there was also no 

correlation between the distance between cisternae and speed of the stack (Figure A.3C). This 

suggests that Golgi stacks remain intact and do not show a preferential orientation while moving 

at speeds of 0-3 µm/s. This was further explored by comparing the number of cases in which the 

cis half, trans half, or neither half was leading (Figure A.3D). Neither half was considered to be 

leading when the distance between the ST-CFP and ManI-YFP markers was less than 0.14 µm, 

which is one half of the diagonal of a pixel. Using this criterion, neither end of the observed 

stacks was clearly leading in almost half of the time points. In the remaining half of the 

observations, there was a slight but significant preference for the cis cisternae to lead while the 

stacks were moving (Figure A.3D; χ2 = 4.85, p = 0.028). 

A.3.4: Golgi stack disassembly can occur in either the trans-to-cis or cis-to-trans direction 

 Brefeldin A (BFA) treatment is known to cause the redistribution of Golgi enzymes to the 

endoplasmic reticulum (ER; Boevink et al., 1998; Ritzenthaler et al., 2002; Saint-Jore et al., 

2002; Schoberer et al., 2010). It has been proposed that this redistribution occurs sequentially, 
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beginning with the trans cisternae and progressing to the cis (Ritzenthaler et al., 2002; Schoberer 

et al., 2010); however, this redistribution has not been observed for individual stacks as it is 

occurring. To re-examine the order of redistribution of Golgi enzymes, tobacco BY-2 cells co-

expressing ManI-YFP and ST-CFP, XT-YFP and ST-CFP, or ST-YFP and ST-CFP were treated 

with 10 µg/ml brefeldin A (36 µM BFA) and 1 µM latrunculin B (LatB). LatB stopped all Golgi 

movements (data not shown) and prevented the observed stacks from moving out of the focal 

plane, thus ensuring that changes in fluorescence intensity were only due to fusion with the ER. 

It is important to note that BFA-induced redistribution of Golgi enzymes to the ER is not 

dependent on cytoskeletal networks (Saint-Jore et al., 2002). During the course of BFA 

treatment, the cells gradually lost distinct Golgi stacks (Figure A.4A and Movie A.4) while, 

slowly, an ER-like network appeared (data not shown). This recapitulates results previously 

obtained by several groups (Boevink et al., 1998; Ritzenthaler et al., 2002; Saint-Jore et al., 

2002; Schoberer et al., 2010).  

 To gain a more detailed view of the events during Golgi-ER fusion, tobacco BY-2 cells 

were observed during the first 20 minutes following addition of BFA using time-lapse imaging 

(Figure A.4A and Movie A.4). Images were taken in 5-second intervals and the CFP and YFP 

intensities of individual Golgi stacks were measured. Sometimes, multiple Golgi stacks were too 

close together to analyze separately; these clusters were measured as one unit as long as all 

included stacks responded to BFA at the same time. The maximal fluorescence intensities of 

individual stacks were plotted against the treatment time (Figure A.4B-A.4E) and used to 

determine the timing of the loss of Golgi signal for each marker. Several different behaviors of 

the two markers were observed. Many stacks lost both markers simultaneously (Figure A.4B 

and A.4D). Others lost only the ST-CFP marker while ManI-YFP remained largely unchanged 

(Figure A.4C). Still other Golgi stacks lost only the ManI-YFP marker (Figure A.4E).  
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Figure A.4: Brefeldin A treatment can result in sequential loss of ST-CFP and ManI-YFP 

 (A) Five Golgi stacks from a transgenic tobacco BY-2 cell co-expressing ST-CFP (green) 

 and ManI-YFP (magenta) are shown 12-16 minutes after the addition of brefeldin A. 

 (B-E) Maximal fluorescence intensities of individual stacks marked in A were plotted as  

 a function of treatment time. Black and gray arrows indicate the start of decrease in  

 fluorescence intensity for ST-CFP and ManI-YFP, respectively. Note that stacks B and D 

 lost both markers simultaneously, while stack C only lost the trans marker and stack E  

 lost only the cis marker. Scale bar = 2 µm. 
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Interestingly, Golgi stacks that lost one of their fluorescent markers in several steps were also 

observed, suggesting that these events could represent individual cisternae fusing with the ER 

(ManI-YFP in Figure A.4B). In many cases, there was a brief increase in fluorescence intensity 

immediately preceding the loss of a fluorescent marker from the Golgi stack (e.g. Figure A.4B 

and A.4D). 

 In those cases in which, initially, only one marker was lost from a Golgi stack, the other 

marker eventually also disappeared into the ER, thus leaving no trace of the Golgi stack (data not 

shown). The sequential loss of the two fluorescent markers could occur in close succession or 

with more delay. Depending on the relative timing of these events, each stack was assigned to 

one of five categories: those that lost both signals within less than 10 seconds of each other (CFP 

≈ YFP), those where the two events occurred within 10-30 seconds of each other (CFP > YFP 

and CFP < YFP), and those events in which loss of one marker preceded loss of the other one by 

more than 30 seconds (CFP >> YFP and CFP << YFP). When tobacco BY-2 cells co-expressing 

ManI-YFP and ST-CFP were treated with BFA, about half of the Golgi stacks lost both markers 

within 10 seconds of each other. The remaining half was split more or less evenly between those 

that lost the trans marker first (CFP < YFP and CFP << YFP) and those that lost the cis marker 

first (CFP > YFP and CFP >> YFP). Therefore, fusion of cis and trans cisternae with the ER 

occurred more or less simultaneously for about half of the stacks, and the sequential cisternal 

loss of the other stacks did not show a preference for either cis or trans cisternae to fuse first 

with the ER (n = 103 from 14 cells; Figure A.5A). 

 Similar results were obtained when tobacco BY-2 cells co-expressing XT-YFP and ST-

CFP were treated with BFA (n = 65 from 13 cells; Figure A.5A). In about half of the Golgi 

stacks observed, the YFP and CFP signals were lost simultaneously. The other stacks were 

distributed more or less evenly between those that lost the trans marker first (CFP < YFP and  
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Figure A.5: Golgi disassembly can occur in either a trans-to-cis or a cis-to-trans direction 

 Transgenic tobacco BY-2 cells co-expressing ST-CFP and ManI-YFP (A, B), XT-YFP  

 (A, C), or ST-YFP (A, D) were treated with brefeldin A and observed for 20 minutes. 

 Individual stacks could have lost both markers within 10 seconds of each other (CFP ≈  

 YFP), within 10-30 seconds of each other (CFP > YFP, CFP < YFP), or more than 30 

 seconds apart from each other (CFP >> YFP, CFP << YFP). Gray squares shown in (B- 

 D) represent the average ± the standard error of the mean. Note that about half of the  

 events affected the two markers independently when they localized to different cisternae  

(A). There was no apparent preference in timing for simultaneous or sequential events for 

any of the marker combinations (B-D). 
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CFP << YFP) and those that lost the medial marker first (CFP > YFP and CFP >> YFP). 

Interestingly, when the redistribution occurred sequentially, there was, on average, less of a 

delay between the medial and trans markers than between the cis and trans markers. In 

particular, the ratio of stacks that lost their markers sequentially within 30 seconds of each other 

(CFP > YFP and CFP < YFP) to those that lost their markers with a delay of more than 30 

seconds (CFP >> YFP and CFP << YFP) was 0.37 for the cis-trans marker pair and 1.83 for the 

medial-trans marker pair. 

 As a control, tobacco BY-2 cells co-expressing ST-YFP and ST-CFP were also treated 

with BFA. Since both markers were localized to the same compartment, sequential fusion with 

the ER was not expected to be observed. In almost all of the Golgi stacks observed (n = 64 from 

18 cells), YFP and CFP signals were lost simultaneously; however, two Golgi stacks showed loss 

of the CFP signal 10 seconds before the loss of the YFP signal. Thus, as expected, when YFP 

and CFP were both fused to the same Golgi protein, loss of both markers generally occurred 

simultaneously (Figure A.5A). 

 The summary of Golgi stack behavior did not reveal a specific pattern for the sequential 

loss of cisternae (Figure A.5A). However, it is possible that condensing the behavior of many 

stacks over 20 minutes could have masked such patterns. Therefore, the timing of events in 

different categories was analyzed (Figure A.5B-A.5D). No specific preference for trans first or 

trans last events was detectable in any of the datasets. The average start time of events in each 

category ranged from 7 to 13 minutes and none of the categories clearly preceded the others 

(Figure A.5B and A.5C). This suggests that, within the first 20 minutes of treatment, there is no 

preferential order of fusion. 
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A.4: Discussion 

 Among eukaryotic organelles, the Golgi apparatus has attracted considerable attention 

because of its unusual three-dimensional organization and remarkable dynamic behavior, both of 

which have defied simple explanations. Despite many decades of intensive research, we still 

have no detailed explanation of the mechanisms that maintain Golgi cisternae in a stable stacked 

arrangement with a clear cis-to-trans polarity while at the same time permitting continuous flow 

of secretory products through the organelle (Schoberer and Strasser, 2011). The plant cell Golgi 

introduces an additional layer of complexity by displaying rapid stop and go movements that put 

additional requirements on Golgi stack coherence and vesicle targeting (Nebenführ and 

Staehelin, 2001). In this study, we utilized detailed time-lapse observations of dual-labeled Golgi 

stacks to investigate various aspects of Golgi stack dynamics and integrity. 

 Different sub-compartments of the Golgi were labeled with fluorescent protein fusions to 

different Golgi-targeting domains. The transmembrane domains of mannosidase I (ManI), 

xylosyltransferase (XT), and sialyltransferase (ST) fused to fluorescent proteins have already 

been shown by immunogold labeling to localize primarily to the cis, medial, and trans cisternae, 

respectively (Boevink et al., 1998; Nebenführ et al., 1999; Pagny et al., 2003; Saint-Jore-Dupas 

et al., 2006). When ST-CFP and ST-YFP were co-expressed, their signals almost completely 

overlapped. The slight differences of ST-CFP and ST-YFP fluorescence signals may have 

resulted from the use of sequential time-lapse imaging, which has a delay between the capture of 

CFP and YFP images. During this delay, the Golgi stacks could have shifted slightly. 

Importantly, the differences between ST-CFP and ST-YFP signals were always smaller than the 

differences observed with other marker pairs. 

 Confirming previous findings from confocal microscopy, we observed with wide-field 

epifluorescence that ST-CFP fluorescence did not completely overlap with ManI-YFP or XT-
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YFP fluorescence, indicating that the fusion proteins are localized to different compartments 

(Boevink et al., 1998; Nebenführ et al., 1999; Pagny et al., 2003; Saint-Jore-Dupas et al., 2006). 

Similar results have been obtained previously with combinations of other Golgi markers in 

tobacco leaf epidermal cells (Saint-Jore-Dupas et al., 2006; Latijnhouwers et al., 2007; Schoberer 

et al., 2010). Thus, it is possible to distinguish different sub-compartments of the Golgi based on 

the slight separation of signal distributions of two fluorophores with wide-field-epifluorescence 

microscopy, even though the small size of Golgi stacks (cisternal diameter ~800 nm, stack 

thickness ~300 nm) is just slightly over the theoretical resolution limit of visible light 

microscopy (200-350 nm). The different localization of the two markers was most easily seen 

when observing side-views of Golgi stacks. We cannot determine whether or not the markers 

label a single cisterna or several; however, previous immunogold labeling suggests that the 

markers probably label two or more cisternae (Boevink et al., 1998; Nebenführ et al., 1999; 

Pagny et al., 2003). Interestingly, ManI-YFP often formed smaller fluorescent spots than the 

other markers, which is consistent with the observations of a smaller diameter of cis cisternae in 

EM images (Staehelin and Kang, 2008). In summary, the employed markers localize to different 

sub-compartments of the Golgi, thus allowing us to observe the fate of these different cisternae 

in living cells. 

Monensin preferentially affects the trans cisternae 

 Using electron microscopy, monensin has been shown to lead to swelling of the trans-

Golgi network, followed by similar effects on the trans cisternae and eventually also on the 

medial and cis cisternae (Zhang et al., 1993). This effect has been interpreted as resulting from 

an exchange of K+ ions and protons across the Golgi membranes, hence the stronger effect in the 

more acidic late Golgi compartments (Zhang et al., 1993; Satiat-Jeunemaitre et al., 1994). We 

could confirm these findings by using live-cell imaging to compare the rate of swelling between 
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ST-CFP-labeled cisternae and either ManI-YFP or XT-YFP-labeled cisternae. In both cases, the 

trans cisternae swelled to a greater extent compared to the medial and cis cisternae. Frequently, 

we observed trans cisternae from different stacks come in close proximity to each other while 

the other end of the stacks were pointed away from the cluster. This has not been described 

before, possibly because such larger-scale rearrangements are difficult to discern in EM thin 

sections. Alternatively, it is also possible that the clustering effect does not occur in sycamore 

cells (Zhang et al., 1993; Satiat-Jeunemaitre et al., 1994) but is specific for BY-2 cells. We also 

occasionally observed an increase in fluorescence intensity that coincided with the cisternal 

swelling. When observed, the increase in fluorescence intensity was usually greater for the ST-

CFP marker (data not shown). This is consistent with the predicted alkalinization effect of 

monensin on the lumen of Golgi cisternae (Pressman and Fahim, 1982), since fluorescent 

proteins have reduced fluorescence efficiency at low pH (Tamura et al., 2003). 

Golgi stacks move as intact units with various orientations 

 We used simultaneous imaging of CFP and YFP fluorescence to investigate the 

orientation and integrity of Golgi stacks while they were moving through the cell. Because of 

this unique approach, we were able to directly determine the location of each marker at any 

given moment in order to calculate the distance between cis and trans cisternae. We did not 

observe any Golgi stacks with a distance larger than 0.8 µm between the centers of ST-CFP and 

ManI-YFP signals, even when stacks were moving with speeds of up to 3 µm/s. This suggests 

that Golgi stacks remain intact while traveling through the cytoplasm. While this has been 

expected based on the scarcity of stack fragments in electron micrographs, this has not been 

documented before experimentally. 

 The observed separation of cis and trans markers during movements could, in principle, 

result from two different effects. On the one hand, Golgi cisternae may have shifted relative to 
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each other, as in a slanted stack of books, such that the front-most cisterna is traveling ahead of 

the trailing cisterna. For the vast majority of the observed Golgi stacks, this would imply that the 

trans cisternae would be displaced relative to the cis cisternae by less than one half of their 

diameter. Such ‘sheared’ Golgi stacks are sometimes visible in EM images, although the 

separation of cis and trans cisternae may not be as large as the maximum described here 

(Nebenführ, unpublished observations). On the other hand, Golgi stacks might move 

perpendicular to the plane of the cisternae. In this case, the separation of the signals would 

simply represent the distance between cis and trans cisternae within a stack. Previously, it was 

suggested that Golgi stack movements preferentially occurred in the plane of the cisternae 

(Nebenführ et al., 1999), which would rule out the second option. Our images, unfortunately, do 

not allow us to distinguish between these possibilities, since the relatively long exposure time 

needed to collect sufficient signal from both fluorophores (500 ms) results in a slight stretching 

of the shape of the fluorescent spots in the direction of movement. Alternative imaging 

approaches with higher temporal and spatial resolution will be necessary to resolve this issue. 

 Previous findings indicated that Golgi stack movements rely on the acto-myosin network 

(Boevink et al., 1998; Nebenführ et al., 1999). Recently, T-DNA knockout mutants for various 

class XI myosin isoforms in Arabidopsis thaliana supported the involvement of myosin motors, 

since several single, double, triple, and quadruple mutants showed reduced Golgi stack motility 

(Peremyslov et al., 2008; Prokhnevsky et al., 2008; Peremyslov et al., 2010). Similarly, 

overexpression of dominant-negative myosin tail fragments slowed down Golgi stack 

movements in tobacco and Arabidopsis leaf epidermal cells (Avisar et al., 2008; Sparkes et al., 

2008; Avisar et al., 2009; Avisar et al., 2012). These results do not establish whether Golgi 

stacks are moved directly by myosin motors attached to their surface or whether their movement 

depends on association with another motile organelle such as the ER. Such an association was 



! 216!

proposed when it became evident that Golgi stacks remain in close association with ER export 

sites (ERES) that were labeled with components of the COPII machinery. More recently, a 

physical connection between Golgi stacks and ER membranes was supported with results from 

laser trap experiments (Sparkes et al., 2009). On the other hand, direct binding of myosins to the 

plant Golgi has been suggested by labeling of stacks with fragments of a myosin organelle-

binding domain (Li and Nebenführ, 2007). 

 The observation that either end of a Golgi stack can move ahead of the other may provide 

insights into this question of direct versus indirect Golgi propulsion. In particular, it can be 

expected that the part of the Golgi where a force is applied should move ahead while the other 

end of the Golgi will be dragged behind. The fact that we have observed both kinds of Golgi 

stack movements, cis side leading or trans side leading, is difficult to reconcile with the ERES 

attachment model that presumably should result in a more uniform orientation, with the cis 

cisternae leading. Direct attachment of the myosin motors to all sides of the Golgi, on the other 

hand, could explain the observations presented here. In many cases, a moving Golgi stack kept 

alternating between having the trans and cis cisternae lead. These alternating polarities could be 

explained by a continuous change in orientation as a Golgi stack ‘rolls’ along the actin filament 

with the aid of multiple motor proteins bound all over its surface. It is also conceivable that the 

seemingly continuous movements observed by us in 1-second intervals actually consisted of a 

series of short runs interrupted by release of the actin filament from the Golgi myosin and 

rebinding on a different surface of the stack. Overall, we did observe a slight bias for the cis end 

of the Golgi stack to lead during movements. This may suggest that the cis side of Golgi stacks 

carries a higher density of myosin motor proteins or that the myosin motors on that half of the 

Golgi are more active. Further research will be needed to test this hypothesis; in particular, 

identification of Golgi myosins and their distribution on the Golgi surface will be crucial. 
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Golgi stack disassembly can occur in either the trans-to-cis or cis-to-trans direction 

 Previous studies have shown that brefeldin A (BFA) treatment results in the redistribution 

of Golgi enzymes to the endoplasmic reticulum (ER; Boevink et al., 1998; Ritzenthaler et al., 

2002; Saint-Jore et al., 2002; Schoberer et al., 2010). Normal retrograde transport from the Golgi 

back to the ER requires COPI-coated vesicles (Letourneur et al., 1994). COPI coat proteins are 

no longer recruited to Golgi stack membranes when plant cells are treated with BFA 

(Ritzenthaler et al., 2002), consistent with a BFA-induced block of ARF activation by Sec7-type 

ARF-GEFs (Donaldson et al., 1992). It has been proposed that the resulting redistribution of 

Golgi proteins to the ER during BFA treatment is a result of Golgi and ER membrane fusion in 

the absence of vesicle formation (Elazar et al., 1994; Nebenführ et al., 2002). An alternative 

model postulates that BFA unmasks a COPI-independent retrograde transport pathway of Golgi 

enzymes into the ER (Schoberer et al., 2010). Furthermore, two independent studies concluded 

that Golgi enzyme redistribution into the ER occurs sequentially in a trans-to-cis direction 

(Ritzenthaler et al., 2002; Schoberer et al., 2010). 

 To further identify the events and possible mechanisms of BFA-induced Golgi stack 

disassembly, we performed detailed time-lapse imaging of cells co-expressing ST-CFP and 

ManI-YFP, ST-CFP and XT-YFP, or ST-CFP and ST-YFP during the first 20 minutes of BFA 

treatment. The short interval between individual time-lapse images (5 s) allowed us to precisely 

determine the time at which the fluorescence signal was lost from a Golgi stack as well as the 

time it took for the fluorescence intensity to reach background levels (typically 15-20 s). The 

duration of loss of fluorescence signal from individual Golgi stacks in BFA-treated cells was 

significantly shorter than expected from the normal half-life of Golgi residents measured in 

FRAP experiments (2-5 min; Brandizzi et al., 2002; Schoberer et al., 2010). This suggests that 

loss of a Golgi marker into the ER in response to BFA involves processes that do not normally 
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operate in an untreated cell (Sciaky et al., 1997). Thus, we interpret the loss of fluorescence 

signal from a stack as indicating a BFA-induced fusion of the labeled cisternae with the ER  

(Ritzenthaler et al., 2002). 

 In almost all of the cases in which ST-CFP and ST-YFP were co-expressed, both markers 

were lost simultaneously. This result supports the idea that proteins localized to the same 

cisternae will redistribute to the ER simultaneously following treatment with BFA. On the other 

hand, when either cis and trans or medial and trans markers are co-expressed, about half of the 

stacks observed lost their fluorescence signals sequentially. This is consistent with the sequential 

fusion of cisternae with the ER that has been described by Ritzenthaler et al. (2002) based on EM 

images. It should be noted that the large number of Golgi stacks that lost both fluorescent signals 

at the same time would not have been detected in the previous study. 

 Our finding of a random order of fusion for cis and trans cisternae, on the other hand, 

contradicts conclusions that BFA-induced Golgi stack disassembly always occurs in the trans-to-

cis direction (Ritzenthaler et al., 2002; Schoberer et al., 2010). Apparently, the interpretation of 

the EM images as representing cis cisternae (Ritzenthaler et al., 2002) was incorrect, and we now 

assume that about half of the Golgi stack remnants in our earlier study actually represent the 

trans half. It is unclear why the recent study by Schoberer et al. (2010) did not observe the same 

random distribution of ER-Golgi fusions as described here. In that case, both Golgi membrane 

proteins and Golgi matrix markers residing in the trans half of the stacks were found to be 

preferentially lost during BFA treatments of tobacco leaf epidermis cells (Schoberer et al., 2010). 

It is possible that this reflects tissue-specific differences between suspension-cultured BY-2 cells, 

which have been proposed to be derived from root cells (Winicur et al., 1998), and leaf 

epidermis cells (Robinson et al., 2008). 



! 219!

 Our results indicate that, following BFA treatment, fusion between ER and Golgi 

membranes can occur anywhere on the Golgi stack. We postulate that the order of cisternal 

fusion with the ER is determined by the relative proximity of the different cisternae to the ER, 

such that the cisterna closest to the ER will be the first to fuse with it. This fusion may then lead 

to a disruption of normal Golgi organization, which results in additional fusion events with the 

remaining cisternae. Consistent with this model, we observed that the delay between trans and 

medial fusion events tended to be shorter than the delay between trans and cis fusions. 

Drug treatments as useful tools for protein localization within the Golgi 

 Identification of the precise sub-Golgi localization of a given protein is of great interest, 

since cargo molecules traverse the cisternae in a predictable cis-to-trans direction and therefore 

encounter Golgi-resident enzymes in a particular order. This is already well established for 

enzymes involved in the modification of N-linked oligosaccharides that are arranged in an 

assembly-line fashion according to the order in which they operate on their substrates (reviewed 

in Schoberer and Strasser, 2011). Enzymes involved in the synthesis of cell wall polysaccharides 

presumably also follow a similar arrangement (Zhang and Staehelin, 1992); however, very little 

is currently known about their distribution in Golgi stacks (Chevalier et al., 2010). 

 The most commonly used technique for determining the localization of proteins within 

the Golgi is using immunogold labeling and electron microscopy (e.g. Saint-Jore-Dupas et al., 

2006; Chevalier et al., 2010). While providing the most definitive evidence for cisternal 

localization, this method is technically challenging and requires suitable antibodies that 

recognize their epitope in fixed and embedded material. The results presented here, on the other 

hand, suggest that a relatively simple approach based on three fluorescently labeled markers and 

two drug treatments can give a good indication as to which section of a Golgi stack (cis, medial, 

or trans) the protein resides in. For example, the protein of interest fused to CFP could be co-
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expressed in tobacco BY-2 cells with ManI-YFP, XT-YFP, or ST-YFP. Researchers can then 

compare the localization of their protein to these three standard markers as well as perform BFA 

and monensin experiments to further confirm the location of the protein within the Golgi. An 

even simpler ‘first-look’ experiment might involve only co-expression with a medial marker 

such as XT-YFP followed by BFA and monensin treatments. Simultaneous loss of CFP and YFP 

signals in BFA would be interpreted as medial localization of the protein of interest. Sequential 

loss of signals would suggest cis or trans localization, which would be easily resolved with 

monensin treatment. Thus, our observations suggest a simple procedure for the identification of 

the localization of unknown membrane proteins to specific Golgi sub-compartments. 

Conclusions 

 Golgi stacks display a remarkable stability during rapid intracellular movements, which is 

probably due to the action of matrix proteins that anchor the cisternae to each other. Although 

Golgi stacks display a clear cis-to-trans polarity that is reflected in both cisternal morphology 

and protein composition, there is little to no difference between cisternae when it comes to 

myosin-driven movements or BFA responses. The specialization of different cisternae, on the 

other hand, is detectable by monensin treatment, which presumably is reflective of the higher 

luminal acidity in trans cisternae. We speculate that myosin motor proteins are binding all over 

the surface of Golgi stacks, which allows them to move in any direction and even change 

orientation during movements along actin filaments. Finally, we demonstrate that a combination 

of Golgi markers with known localization and drug treatments is sufficient to predict the sub-

Golgi localization of unknown membrane proteins by fluorescence microscopy. 
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