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ABSTRACT 

The Middle and Upper Cambrian deposits of the southern Appalachians reveal the 

existence of a broad carbonate platform that was facing the Iapetus Ocean to the east and 

was separated from the exposed craton to the west by the Conasauga intrashelf basin. 

This study focuses on the Maynardville Formation, which was deposited during the early 

Late Cambrian along the western carbonate platform margin. As the uppermost carbonate 

unit of the alternating shale and carbonate units or Grand Cycles of the Conasauga Group 

(Middle to Upper Cambrian), the Maynardville marks a change in style of passive-margin 

deposition reflected in the cessation of Grand Cycle deposition. 

The Maynardville is a transitional interval between the largely subtidal carbonate 

and siliciclastic deposits of the Conasauga Group, and the peritidal carbonate deposits of 

the overlying Knox Group (Upper Cambrian to Lower Ordovician). The Maynardville 

consists of a lower subtidal package, underlain by the Nolichucky Shale, and an upper 

peritidal package, overlain by the Copper Ridge Dolomite. Mixed carbonate/siliciclastic 

deposition took place in a deep ramp (upper Nolichucky) to shallow-ramp and lagoonal 

(subtidal Maynardville) setting. To the east was a broad, semi-arid carbonate tidal flat 

with a variety of peritidal environments (upper Maynardville/Copper Ridge). The 

Nolichucky represents a retrogradational depositional package that formed in response to 

an increase in the rate of relative sea-level rise. Deposition of a shallowing-upward 

succession of the Maynardville reflects carbonate platform aggradation and progradation 

favored by a subsequent decrease in the rate of relative sea-level rise. Stacking patterns of 

the Maynardville are a result of the interplay between intrinsic factors of carbonate 

depositional systems, the mechanisms related to the history of the adjacent siliciclastic 

basin, and possible eustatic sea-level changes. 

The cessation of Grand Cycle deposition is a consequence of passive-margin 
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evolution. The abrupt change from carbonate to shale deposition in the Grand Cycles may 

have been caused by short-term, episodic, non-thermal tectonic subsidence related to 

active extension and vertical readjustments, enhanced by sediment and water loading, 

during the immature stage of passive-margin development. These processes were 

superimposed on eustatic sea-level changes and thermal post-rift subsidence. The 

transition from an immature to a mature passive-margin setting occurred during deposition 

of the Maynardville Formation. The mature margin was characterized by the cessation of 

tectonic activity in the area. Decreased rates of thermal subsidence and the complete 

infilling of the Conasauga basin favored shallow-water deposition and carbonate platform 

progradation. The Maynardville grades conformably into the Copper Ridge Dolomite. 

This conformable interval is interpreted as a sequence boundary zone correlative to the 

Dresbachian/Franconian (Sauk II!Sauk III) unconformity. This boundary separates a 

third-order sequence (terminal Grand Cycle), composed of the Upper Shale Member of 

the Nolichucky and the Maynardville, from the thick peritidal carbonate deposits of the 

Knox Group, which reflect the final passive-margin stabilization. 

The transition from the Conasauga into the Knox Group is characterized by a shift 

in diagenetic patterns. The distribution of early diagenetic phases within the Maynardville 

was controlled by changes in the depositional setting from a subtidal to a semi-arid tidal 

flat. The infilling of the Conasauga basin and carbonate platform progradation at the end 

of Grand Cycle deposition influenced the regional facies distribution, which consequently 

affected the burial diagenesis of this transitional interval. 

The subtidal deposits of the Maynardville contain a variety of calcite cements that 

represent marine, meteoric and burial diagenetic environments. Dolomite is not abundant 

within these deposits, and it primarily occurs associated with argillaceous layers. The 

subtidal deposits contain rare ferroan saddle dolomite cement associated with Mississippi 

Valley Type (MVT) minerals. Pressure dissolution, diagenetic alteration of clay minerals, 
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and pore fluids expelled from interbedded shale, provided a local source for the formation 

of ferroan dolomite during burial. The presence ofMVT minerals suggests the 

involvement of externally derived diagenetic fluids. 

The peritidal deposits have been extensively dolomitized. Fine-crystalline 

penecontemporaneous dolomite formed under sabkha-like conditions. Coarser-crystalline 

replacement dolomite formed from recrystallization of early dolomite and from 

dolomitization of limestone during burial. Fenestrae, desiccation and evaporite dissolution 

voids are occluded with dolomite cement, which is often complexly zoned. Zoned 

dolomite cement precipitated from modified marine, mixed meteoric/marine, and burial 

fluids. Saddle dolomite cement in pore-centers, tectonic fractures, and dissolutional voids 

formed during late burial from warm, basinal fluids associated with the migration ofMVT 

mineralizing brines, and from fluids provided locally by pressure solution. 

The formation and preservation of Upper Cambrian microbial deposits were 

controlled by the conditions within the environments of deposition, but were also biotically 

influenced. Digitate stromatolites and thrombolites formed by calcification of 

cyanobacteria in lower intertidal and upper subtidal environments, which were not primary 

sites for dolomitization. Early diagenetic calcification of cyanobacteria reduced the 

susceptibility of these deposits to dolomitization. Laterally linked hemispheroidal (LLH), 

vertically stacked hemispheroidal (SH), and columnar stromatolites, as well as most 

stratiform stromatolite laminae formed by the trapping of sediment in supratidal and 

intertidal environments on semi-arid tidal flats. Extensive dolomitization altered these 

peritidal carbonate deposits early in their diagenetic history. 

The Maynardville Formation records an increase in the 13C/12C ratio of Late 

Cambrian sea water. Comparison with studies of time-equivalent deposits elsewhere 

suggests that this positive carbon-isotope excursion is secular in scope. Petrographic and 

geochemical analyses were used to evaluate the extent of variations related to the 
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depositional and diagenetic environments, which are superimposed on the secular marine 

carbon-isotope trend. This approach enables carbon-isotope variations to be used as a 

stratigraphic tool, and as an indicator of the global cycling of carbon. The excursion is 

related to changes in the rate of organic-carbon burial, which can be linked to changes in 

ocean stratification, climate, sea-level, and paleoproductivity rate. 

The excursion started during deposition of the Nolichucky Shale, and ended during 

the deposition of the Copper Ridge Dolomite. The maximum 813C values (4 to 5o/oo 

PDB) are associated with the sequence boundary zone at the Maynardville/Copper Ridge 

Dolomite transition. Elsewhere, the excursion started at the base of the Pterocephaliid 

Biomere (near the base of the Aphelaspis zone). The excursion ended prior to the end of 

the Pterocephaliid Biomere, with the maximum excursion at the Sauk II!Sauk III 

unconformity. This supports the correlation between the Late Steptoean (Dresbachianl 

Franconian) sea-level fall and the sequence boundary at the end of Grand Cycle 

deposition, and demonstrates the application of carbon-isotope stratigraphy to successions 

with poorly constrained biostratigraphy. 
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CHAPTER I 

INTRODUCTION 

The Upper Cambrian carbonate strata of the southern Appalachians are a part of a 

thick sedimentary succession deposited on the lower Paleozoic passive margin of eastern 

North America. This passive margin formed by rifting of a supercontinent in the Late 

Proterozoic and Early Cambrian (Bond et al. 1984). Following rifting, sedimentary basins 

characterized by the deposition of sediments derived from the craton formed along the 

margin. The Conasauga intrashelf basin was one such depocenter that was, during the 

Middle and early Late Cambrian, separated from the Iapetus Ocean to the east by a broad 

carbonate platform (Fig. 1.1 ). A complex interplay between siliciclastic deposition, 

characteristic of the deeper intrashelf basin, and carbonate-platform deposition resulted in 

the formation of alternating shale and carbonate units of the Middle and Upper Cambrian 

Conasauga Group (Fig. 1.2). This distinct pattern of deposition is commonly referred to 

as Grand Cycles. The Conasauga Grand Cycles are interpreted as third-order depositional 

sequences of Vail et al. ( 1977), reflecting shallowing-upward from the basinal shales into 

platform carbonates (Kozar et al. 1990; Srinivasan and Walker 1993). These sequences 

are bounded by subaerial exposure surfaces and/or drowning unconformities. Cessation of 

Grand Cycle deposition in the southern Appalachians is marked by the progradation of the 

carbonate platform in a cratonward direction over the Conasauga basin, which 

consequently ceased to exist. The thick peritidal carbonate succession of the Upper 

Cambrian to Lower Ordovician Knox Group overlies the Conasauga Group. The deposits 

of the Conasauga and the Knox Groups represent deposition within the two apparently 

different depositional regimes on the passive margin. The transition between these two 

distinct sedimentary successions is marked by the deposition of the uppermost carbonate 



Figure 1.1.  Generalized, restored paleogeography of Tennessee during the Middle and 
early Late Cambrian. Note the position of the carbonate platform bordered by the 
Conasauga intrashelf basin to the west and the Iapetus ocean to the east. 
Palinspastic reconstruction is based on Roeder and Whiterspoon (1978). 
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Figure 1.2. Middle to Upper Cambrian stratigraphy of eastern Tennessee. Modified from 
Walker et al. ( 1990). 
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unit of the Conasauga Group-the Maynardville Fonnation (Fig. 1.2). This transitional 

nature makes the Maynardville an important part of the lower Paleozoic sedimentary 

succession of the southern Appalachians with the potential of providing infonnation for 

the interpretation of carbonate-platfonn depositional and diagenetic history in the 

framework of passive-margin evolution. 

PURPOSE AND SIGNIFICANCE 

In order to better understand the sedimentologic consequences of passive-margin 

evolution this study focuses on the Upper Cambrian Maynardville Fonnation (Conasauga 

Group), and its transition into the overlying Copper Ridge Dolomite of the Knox Group. 

The main objectives of this study are: 1) reconstruction of the depositional environments 

for the lithofacies present within the Maynardville Fonnation; 2) interpretation of the 

Upper Cambrian carbonate-platfonn depositional dynamics and sequence stratigraphy; 3) 

interpretation of passive-margin evolution based on the infonnation inferred from the 

study of the sedimentary record; and 4) determination of the diagenetic history of the 

studied units. 

6 

The selected stratigraphic succession is of interest because a distinct change in the 

pattern of passive-margin sedimentation took place during deposition of this interval. This 

change is reflected in the termination of Grand Cycle deposition in the southern 

Appalachians. The rocks in the lower part of the Maynardville Fonnation resemble the 

predominately subtidal, mixed siliciclastic and carbonate (mostly limestone) deposition of 

the remainder of the Conasauga Group, whereas the rocks in the upper part of the 

Maynardville are similar to the substantially dolomitized peritidal carbonates found in the 

Knox Group. Unlike older carbonate fonnations of the Conasauga, deposition of the 

Maynardville was not terminated by a subaerial exposure and/or drowning event followed 

by the deposition of siliciclastics. The Maynardville is confonnably overlain by the Copper 
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Ridge Dolomite of the Knox Group (Fig. 1.2). The study of sedimentary packaging, 

regional distribution, and the transitional nature of the Maynardville provides information 

for a better understanding of the processes which controlled the cessation of subtidal 

Grand Cycle deposition of the Conasauga Group and the transition into peritidal carbonate 

deposition of the Knox Group. Consequently, the results of this study aid in the 

interpretation of the southeastern North American continental-margin development during 

the Late Cambrian, and the consequences of passive-margin evolution upon the dynamics 

of carbonate deposition and the style of diagenetic alterations. 

GEOLOGIC SETTING 

A thick lower Paleozoic sedimentary succession of the U.S. Appalachians was 

deposited on a passive continental margin (Rodgers 1968; Bird and Dewey 1970) that 

formed along eastern North American or the Laurentian continent by rifting and breakup 

of the supercontinent Rodinia in the Late Proterozoic to Early Cambrian (Bond et al. 

1984; Hatcher 1989; Read 1989). Sediments derived from the craton were deposited in 

block-faulted basins along the subsiding continental margin (Thomas 1977, 1983; Hatcher 

1987). The Conasauga Basin of southwestern Virginia, eastern Tennessee, and 

northwestern Georgia was a depocenter located between the exposed craton to the west 

and northwest (present-day orientation), and a broad shallow carbonate platform facing 

the Iapetus ocean to the east, during the Middle and early Late Cambrian (Fig. 1. 1 ). 

During the Early to early Late Cambrian the Mississippi Valley-Rough Creek-Rome 

Trough intracratonic graben or rift system was located inland from the shelf edge (Fig. 

1. 1; Webb 1980; Thomas 1991, 1993). Siliciclastic material derived from the exposed 

craton was deposited in the Conasauga basin and the graben system possibly by large delta 

systems (Rankin et al. 1989). Deposition of siliciclastics during the Early and Middle 

Cambrian is represented by the Rome Formation and the overlying Conasauga Group 
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shale in the southern Appalachians (Fig. 1.3). Carbonate sedimentation was first initiated 

along the margin during the Early Cambrian as evidenced by the deposition of the Shady 

Dolomite (Fig. 1.3; Pfeil and Read 1980; Read 1989; Barnaby and Read 1990). 

Sedimentation continued along this broad carbonate platform-bound passive margin 

during the Middle and early Late Cambrian (Rodgers 1968; Palmer 1971, Markello and 

Read 1981, 1982; Srinivasan 1993; Srinivasan and Walker 1993; among others). This 

period of sedimentation is represented by the deposits of the Conasauga Group (Figs. 1. 2, 

1.3). The Conasauga Group reveals three distinct phases of sedimentation: 1) dominantly 

dolostone in northeastern Tennessee and southwestern Virginia, represented by the 

Honaker and Elbrook Dolomite; 2) alternating carbonate and shale units in the central part 

of eastern Tennessee (the Knoxville area), where the Group is divided into six formations 

(in ascending stratigraphic order, see Fig. 1.2): the Pumpkin Valley Shale, the Rutledge 

Limestone, the Rogersville Shale, the Maryville Limestone, the Nolichucky Shale, and the 

Maynardville Formation; and 3) predominantly shale toward the west and southwest (Fig. 

1.3; Rodgers 1953). These three phases represent deposition on a carbonate platform to 

the east, and in a deeper intrashelf basin, filled with siliciclastics to the west (Fig. 1.1 ) . 

The alternating shale and carbonate units of the Conasauga Group are interpreted 

as Grand Cycles (Aitken 1966, 1981; Palmer 1971; Koerschner and Read 1989; Srinivasan 

and Walker 1993; Rankey et al. 1994). Grand Cycles are recognized in the Paleozoic 

sedimentary successions of the southern Great Basin (Palmer and Halley 1976; Mount and 

Rowland 1981 ), the southern Canadian Rocky Mountains (Aitken 1966, 1978), and the 

northern Appalachians (Chow and James 1987; Cowan and James 1993). The thickness 

of these large-scale cycles varies from 100 to 650 m (Aitken 1981), and they can be 

related to the third-order sequences, which represent time periods of 1 to 10 my (Vail et 

al. 1977). The formation of Grand Cycles is the result of a complex interplay of different 

factors such as relative sea-level change (Aitken 1978; Bond et al. 1988), tectonism 



Figure 1.3. Generalized stratigraphy of the Upper Proterozoic and Lower Paleozoic 
strata in eastern Tennessee and adjacent southwestern Virginia. Unit thickness is 
not to scale. Based on the COSUNA (Correlation of Stratigraphic Units of North 
America) chart for the southern Appalachian region (Patchen et al. 1985). 
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(Rankey et al. 1994), and rate of sedimentation and sediment supply (Walker et al. 1990; 

Cowan and James 1993; Srinivasan and Walker 1993), superimposed on thermal post-rift 

subsidence. 

The Conasauga Group is conformably overlain by the Cambro-Ordovician Knox 

Group. In eastern Tennessee the Knox Group is divided into five formations (in ascending 

stratigraphic order): the Copper Ridge Dolomite, the Chepultepec Dolomite, the 

Longview Dolomite, the Kingsport Formation, and the Mascot Dolomite (Fig. 1.3; 

Rodgers 1953; Bridge 1956). The Copper Ridge Dolomite represents the beginning of 

complete predominance of carbonate deposition over siliciclastics during the Late 

Cambrian and Early Ordovician that was established by progradation of shallow 

carbonate-shelf environments across the intrashelf basin (Read 1989; Walker et al. 1990). 

The shallow carbonate-platform deposition continued until the late Early Ordovician, 

when it was interrupted by subaerial exposure in response to the transition from passive­

margin to convergent-margin setting (Benedict and Walker 1978; Shanmugam and Walker 

1978, 1980; Read 1980). The regional Knox-Beekmantown unconformity, which is 

characterized by the development of paleokarst on top of the Lower Ordovician carbonate 

succession, marks the end of the first stratigraphic (Sauk) sequence in the Paleozoic 

history of the southern Appalachians (Fig. 1.3; Walker 1985; Read 1989). 

OVERVIEW OF PREVIOUS RESEARCH 

The name Maynardville Limestone for the Cambrian carbonate unit deposited on 

top of the Nolichucky Shale (the Conasauga Group), and overlain by the Knox Dolomite 

was first proposed by Oder in 1934. Prior to 1953, the Maynardville Limestone was 

considered a transitional unit between the Conasauga Group and the Knox Group. The 

"transitional" status of the Maynardville Limestone was a matter of controversy, with 

some authors considering the Maynardville part of the Nolichucky Shale (Rodgers and 
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Kent 1948; Bridge 1956), while others grouped it within the Knox Group (Ulrich 1911; 

Oder 1934). In 1953, Rodgers promoted the Maynardville Limestone to the uppermost 

formational unit of the Middle to Upper Cambrian Conasauga Group. The base of the 

Maynardville Formation is defined at the point in the stratigraphic section above which 

carbonate becomes the predominant lithologic type (Bridge 1956), or at the base of the 

first thick carbonate unit above the Nolichucky Shale (Tarkoy 1970; Simmons 1984; 

Weber 1988). The base of the Maynardville corresponds approximately with the boundary 

between Crepicephalus and Aphelaspis faunal zones (Derby 1965). Since only the 

Aphelaspis zone is represented in the Maynardville Formation (Derby 1965), its age is 

Late Dresbachian (Steptoean). The upper contact of the Maynardville is conformable and 

is usually recognized during field mapping by the first appearance of abundant chert within 

the Knox Group (Bridge 1956). Different criteria, however, have been suggested for the 

placement of the upper boundary of the Maynardville, such as: 1) "two feet of dark-gray, 

shaly dolomite" (Oder 1934); 2) "a thin shale parting" (Bridge 1956); 3) the base of the 

first massive, more coarsely crystalline dolomite of the Knox Group (Bridge 1956; Milici 

1973); or 4) the appearance of a thin quartz sandstone (Finlayson et al. 1965; Oder and 

Milici 1965). The overall reported thickness of the Maynardville Formation ranges from 

4 2 to 15 5 m (Hasson and Haase 1988). In the field mapping of some areas the division of 

the Maynardville into a lower Low Hollow Limestone Member, and an upper Chances 

Branch Dolomite Member (Miller and Fuller 1954) has been used (Harris 1965; Helton 

1967; Harris and Mixon 1970). 

Descriptions of the lithologies and fossil assemblages of the upper Conasauga 

Group in the southern Appalachians can be found in published geologic maps and 

investigative reports (Hall and Amick 1934; Rodgers and Kent 1948; King and Ferguson 

1960; Oder and Bumgardner 1961; Harris 1964; Milici 1973; among others), as well as in 

unpublished Master's and Ph.D. theses (Raymond 1959; Helton 1967; McConnell 1967; 
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Tarkoy 1967; VanArsdall 1974; Weber 1988; among others). Based on the work of many 

authors, the generalized stratigraphy of the Conasauga Group in the Tennessee 

Appalachians has been established (Hasson and Haase 1988; Walker et al. 1990; Fig. 1.2). 

Various depositional models have been proposed for the upper Conasauga Group 

in eastern Tennessee and southwestern Virginia. Milici and others ( 1973) interpreted the 

Nolichucky Shale and Maynardville Formation from central eastern Tennessee to represent 

deposition in a protected lagoonal environment, bounded to the east by a carbonate bank 

and to the west by a siliciclastic depocenter. Markello and Read (1981, 1982) recognized 

three depositional environments: 1) an intrashelf basin (for example, the Nolichucky 

Shale); 2) a gently westward-sloping carbonate ramp (Maynardville Formation); and 3) a 

peritidal carbonate platform (Elbrook and Honaker Formations), in the Virginia 

Appalachians. Weber (1988) interpreted the upper Conasauga of central eastern 

Tennessee as transitional between an intrashelf basin and a shallow-water carbonate 

platform. The Maynardville represents small tidal flats that accreted vertically and 

migrated laterally (Weber 1988). Koerschner and Read (1989) studied the cyclic peritidal 

carbonates of the Elbrook and Conococheague Formations in the Virginia Appalachians 

that formed on the aggraded, rimmed shelf of the passive continental margin. These 

formations are time-equivalents to the Conasauga Group and Copper Ridge Dolomite in 

Tennessee (Fig. 1.3). Osleger (1990), and Osleger and Read (1991) described the Late 

Cambrian peritidal cycles of Tennessee, Virginia and east Pennsylvania composed of basal 

ooid-intraclast grainstone lag deposits overlain by ribbon carbonates or thrombolites, and 

capped by mudcracked laminates. The authors interpreted these "cycles" to be a result of 

high-frequency eustatic sea-level oscillations. 

INVESTIGATIVE METHODS 

Despite the uniqueness of the Maynardville, the data on this formation from the 
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northeastern Tennessee Appalachians are rather scarce (Hall and Amick 1934; Rodgers 

and Kent 1948; Osleger and Read 1991). The present research represents the first 

comprehensive study of the Maynardville Formation from this part of the southern 

Appalachians. The investigative methods used to accomplish the research objectives 

include: 1) field work; 2) petrographic analysis; 3) paleoenvironmental reconstruction with 

interpretation of sequence stratigraphy; and 4) diagenetic study including petrographic and 

geochemical analyses. 

Field work focused on the detailed measuring and sampling of five stratigraphic 

sections located within the Valley and Ridge physiographic province of northeastern 

Tennessee (Fig. 1.4). Detailed descriptions of measured sections are given in Appendix A. 

Palinspastic reconstruction of the position of the outcrops on the prograding Upper 

Cambrian carbonate platform reveals two distinct transects (Fig. 1.5). The transect 

outlined by the Tazewell-River Ridge-Thorn Hill outcrops trends northwest-southeast, 

and is approximately perpendicular to the reconstructed western margin of the carbonate 

platform facing the Conasauga intrashelf basin (Fig. 1.5). The palinspastic reconstruction 

by Roeder and Witherspoon (1978) was used to estimate the actual distance between the 

outcrops prior to thrusting. The second transect consists of the Thorn Hill-Flat Gap-Lee 

Valley outcrops, all of which are contained within the Copper Creek thrust sheet. This 

transect trends southwest-northeast and is approximately parallel to the reconstructed 

platform margin (Fig. 1.5). 

Petrographic analysis included detailed conventional microscopy of 330 thin 

sections prepared from over 600 collected samples. Selected thin sections were also 

analyzed by using cathodoluminescence microscopy. As a result, the lithofacies present 

were determined and described. From the features observed, depositional environments 

were inferred. Stratigraphic stacking patterns were interpreted in terms of depositional 

sequences and sequence boundaries. In the diagenetic study, an integrated approach 



Figure 1 .4. A map showing location of outcrops studied. Outcrop key: TZ-Tazewell, 
RR-River Ridge, TH-Thorn Hill, FG-Flat Gap, and LV -Lee Valley. 
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Figure 1.5. Location of outcrops along western carbonate platform-margin. Position of 
outcrops is palinspastically reconstructed (open circles), and shown relative to the 
carbonate platform-margin (dashed line), and present-day outcrop location (solid 
circles). Outcrop key: TZ-Tazewell, RR-River Ridge, TH-Thorn Hill, FG-Flat 
Gap, and LV-Lee Valley. Northwest-southeast trending transect, marked by the 
Tazewell-River Ridge-Thorn Hill outcrops, represents a basin-to-platform 
transition. The Thorn Hill-Flat Gap-Lee Valley outcrops are located more on­
platform and they mark a southwest-northeast transect that runs approximately 
parallel to the prograding platform margin. Palinspastic reconstruction is based on 
Roeder and Whiterspoon (1978). 
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consisting of detailed petrographic analyses and geochemistry was utilized. Geochemistry 

involved the determination of major and trace elements, along with stable isotope (carbon 

and oxygen) and radiogenic strontium isotope analyses on individual depositional and 

diagenetic components. Details of the analytical procedures are presented in the chapters 

dealing with the diagenesis of the units studied. The collected data were integrated to 

interpret diagenetic history. Combined with the data from studies of time-equivalent units 

from throughout the southern Appalachians, this study broadens the regional perspective 

ofUpper Cambrian passive-margin sedimentation along eastern North America. 

DISSERTATION ORGANIZATION 

Including the introductory chapter this dissertation contains seven chapters. 

Chapter 2 focuses on environmental interpretations for the various lithofacies present 

within the Maynardville Formation and the lower part of the overlying Copper Ridge 

Dolomite. Vertical stacking patterns and the regional distribution of lithofacies are 

described and interpreted in order to provide insights into carbonate-platform depositional 

dynamics and sequence stratigraphy. In Chapter 3, the findings from Chapter 2 are used 

to make interpretations for passive-margin evolution. The transition from the Conasauga 

into the Knox Group is related to passive-margin stabilization and a shift from an 

immature into a mature passive margin. The processes operating in these two different 

passive-margin stages and their sedimentologic consequences are discussed. Chapter 4 

deals with interpretation of the diagenetic history of the deposits studied. In this Chapter 

the diagenesis of the subtidal deposits of the lower Maynardville is compared with that of 

the peritidal deposits from the upper Maynardville and the lower Copper Ridge Dolomite. 

A comparison is also made between the diagenetic history of the Maynardville and the 

older carbonate units of the Conasauga Group, as well as the upper Knox Group deposits, 

in order to evaluate the effect of the end of Grand Cycle deposition on the style of 
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diagenesis. In Chapter 5, unusual carbon isotope values ofvarious components of the 

Maynardville Formation are interpreted as a large positive carbon-isotope excursion. The 

relationships between the excursion and Late Cambrian biostratigraphy and sequence 

stratigraphy are discussed, and implications are proposed for the interpretation of 

diagenesis. Chapter 6 explores the selective dolomitization of the microbial deposits 

present in the succession. The pattern of dolomitization is used as an indicator of 

mechanisms and environments of origin for the microbial deposits. The concluding 

Chapter 7 is a summary of the major findings of this study. 
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CHAPTER 2 

CARBONATE DEPOSITIONAL DYNAMICS AND SEQUENCE 

STRATIGRAPHY IN THE FRAMEWORK OF GRAND CYCLE CESSATION 

INTRODUCTION 

Recognizing and distinguishing the influence of different mechanisms on carbonate 

deposition has been the matter of much debate among carbonate sedimentologists. The 

two main controlling mechanisms, allocyclic and autocyclic, are based upon the 

predominant influence of extrinsic and intrinsic factors, respectively. It is not yet certain 

that extrinsic controls, such as tectonic subsidence (Schlager 198 1 ;  Cloetingh et al. 1 985), 

eustatic sea-level changes (Fischer 1 964; Vail et al. 1977; Goodwin and Anderson 1 985; 

Read et al. 1 986; Goldhammer et al. 1987; among others), or clastic sediment input 

(Walker et al. 1 983 ; Doyle and Roberts 1988; Budd and Harris 1 990; Lomando and Harris 

1 991  ), can be distinguished from intrinsic factors, such as antecedent topography, biotic 

evolution., carbonate growth potential and lag time (Ginsburg 197 1 ;  Schlager 198 1 ;  Jones 

and Desrochers 1 992), based upon signatures preserved in the rock record. The concept 

of an exclusive role of eustasy in controlling the succession and geometry of sequences in 

classical sequence stratigraphy (Vail et al. 1 977; Haq et al. 1 987; Van Wagoner et al. 

1 988) has been challenged by many authors (Watts 1982; Cloetingh et al. 1985; Miall 

1 986, 1 992; Summerhayes 1986; Hubbard 1988; Sloss 199 1 ;  among others). It is now 

recognized that the development and anatomy of sequences are controlled by a complex 

interplay of eustasy, regional tectonics, and various sedimentologic processes, and that 

extrinsic and intrinsic factors act simultaneously, imposing a complex set of controlling 

mechanisms (Reynolds et al. 1 99 1 ;  Schlager 199 1 ,  1 992; Loucks and Sarg 1 993 ; 

Posamentier et al. 1993 ; Christie-Blick and Driscoll 1995; Haq 1 995). 
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The primary objective of this study is unraveling mechanisms that controlled the 

deposition of the Upper Cambrian Maynardville Formation (Conasauga Group) of the 

southern Appalachians. The Maynardville marks a distinct change in the pattern of lower 

Paleozoic passive-margin sedimentation, which is reflected in the cessation of Grand Cycle 

deposition. The termination of Grand Cycle deposition is recorded in the transition from 

the alternating shale and carbonate units or Grand Cycles of the Conasauga Group 

(Middle to Upper Cambrian) into the thick dolostone succession of the Knox Group 

(Upper Cambrian to Lower Ordovician). The advantages of studying this particular 

stratigraphic interval are: 1 )  the Maynardville Formation is a transitional unit between the 

Conasauga and the Knox passive-margin sedimentary successions; 2) a depositional 

setting, in which a carbonate platform was adjacent to a deeper-water siliciclastic basin, 

allows for the evaluation of the response of carbonate deposition to varying siliciclastic 

input; and 3) deposition in a passive-margin setting characterized by variable rates of 

thermal and non-thermal tectonic subsidence, and with relatively high sedimentation rates, 

promoting sediment loading and compaction, provides a means for examining the 

influence of actively changing accommodation space on sequence development. 

In order to gain a better understanding of the response of a carbonate system to 

various mechanisms operating in the passive-margin setting, a detailed sedimentological 

and stratigraphic analysis of the Maynardville Formation is focused on the interpretation of 

carbonate depositional dynamics and sequence stratigraphy of this transitional interval. 

The relative importance of the controlling mechanisms is evaluated in the context of a 

regional tectono-sedimentary setting, sea-level fluctuations, and other paleoenvironmental 

changes. The main objectives of sequence stratigraphic analysis were to : 1 )  determine the 

character of transition between the underlying Nolichucky Shale and the Maynardville 

Formation; 2) interpret the stacking patterns of the Maynardville; and 3) characterize the 

transition between the Maynardville and the overlying Copper Ridge Dolomite. The lack 
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of widespread unconformities within the succession examined seems to preclude the first 

step in carbonate sequence stratigraphy, which is the division of a stratigraphic interval 

into unconformity-bounded sequences. The definition of sequence, however, allows for 

the recognition of conformable surfaces that may be laterally correlative to unconformities 

representing sequence boundaries. In addition, a process-oriented approach permits the 

recognition of a genetically related succession of strata deposited under similar 

environmental regimes, and separated by surfaces or intervals that represent changes in the 

pattern of sedimentation, including sediment input and distribution within the depositional 

system. The principles of "classic" sedimentologic analysis are very important in a 

sequence stratigraphic study of conformable successions with gradual transitions both 

within and between the sequences, and in the absence of abrupt breaks in the stratigraphic 

record (Schlager 1 992). 

MAYNARDVILLE LITHOFACIES 

The sedimentary packaging of the Maynardville Formation lithofacies was studied 

at five outcrops in northeastern Tennessee (Fig. 1 .4). These outcrops define two 

transects, one trending approximately perpendicular and the other parallel to the 

reconstructed western margin of the carbonate platform (Fig. 1 .  5) .  Generalized 

stratigraphic sections of the intervals measured are shown in Figure 2 . 1 .  A summary of 

lithofacies characteristics is given in Tables 2. 1 and 2 .2 .  

Lithofacies Description 

The Maynardville Formation conformably overlies the Nolichucky Shale (Upper 

Cambrian; Figs. 1 .2, 2 . 1 ) .  The base of the Maynardville is placed at the base ofthe first 

thick-bedded limestone unit above the Nolichucky (Fig. 2 .2A). At the Tazewell outcrop 

the Maynardville is in thrust contact with the Middle Ordovician strata (Fig. 2 . 1 ). Due to 



Figure 2.1. Stratigraphic columns of the Maynardville Formation and the lower Copper 
Ridge Dolomite. See Tables 2 . 1 and 2.2 for the explanation of the symbols. See 
text for interpretation of sequence stratigraphy. Key to distance between 
outcrops:  present day/reconstructed distance. Outcrop key: TZ-Tazewell, RR­
River Ridge, TH-Thorn Hill, FG-Flat Gap, and LV -Lee Valley. 
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Table 2 . 1 .  Lithofacies of the subtidal package. Symbols correspond to those on Figure 2. 1 .  

Lithofacies 

Thrombolites 

Oolite 

Fossiliferous­
peloidal packstone/ 
grainstone 

Symbols and Descriptions 

bioherms with synoptic relief; Rena/cis-Epyphyton-Girvanel/a boundstones; originate on coarse-grained 

!IW!III\ intraclastic lithology (flat-pebble conglomerate); bwrowed and preserved as patches of dark, dense micrite 
embedded in fossiliferous-I)(!loi<lal wackestone/packstone; c_!<ly_seams and quartz silt grains present. 
ooid- and/or intraclastic-ooid grainstone; cross-bedding present; rare echinoderm, trilobite and brachiopod 

1 0  0 0 1  fragments as ooid nuclei and in the matrix; micritized ooids and peloids common; intraclasts composed of 
bwrow-mottled mudstone, J><!loidal packstone/grainstone, ��dNainstone, and thrombolite fragments. 
common echinoderm and trilobite fragments, intraclasts, pellets, and some ooids; horizontally and cross-

1 :� 1 laminated; intraclasts composed of mudstone, peloidal packstone, and fossiliferous wackestone; some 
bwrows present. 

wavy-laminated and nodular appearance; alternating limestone and fme grained siliciclastic layers; carbonate interlayers 
commonly contain clay seams, quartz silt grains, and framboidal pyrite; occasional flat-pebble conglomerates; hardgrmmds with 
pyrite crusts and _£<>Bled grains present. 

Ribbon 
rock 

Shale 

1 ,-...· 1 
[� I 

with 
shale 

carbonate interbeds alternating with siltstone and shale; carbonates commonly make fming upward 
sequences (skeletal grainstone-tpeloidal-fossil wackestone/packstone-thorizontally laminated and 
bwrowed mudstone); skeletal fragments: trilobites, articula_te lll!�inarticulate brachiopods, echinoderms. 

without carbonate interbeds alternating with argillaceous dolostone and calcareous siltstone; carbonate interbeds 

shale 

-

composed primarily of burrow-mottled mudstone or peloidal packstone. 

silty shale and calcareous siltstone; with or without thin l imestone interbeds compositionally similar to 
limestone interbeds from the ribbon rocks. 

Environments 

Shallow subtidal 
patch reefs 

Agitated shallow 
subtidal shoals 

Moderately 
agitated shallow 

subtidal 

Protected to 
agitated subtidal : 

Storm-dominated 
shallow ramp 

Protected 
lagoon 

Shallow to deep 
ramp 

tv Vl 



Table 2 .2 .  Lithofacies of the peritidal package. Symbols correspond to those on Figure 2 . 1 .  See Chapter 6 for more detailed 
description of rnicr_9bial deposits. 

Lithofacies Symbols and Descriptions 

" Couplets" 

Dolomitized 
mudstone 

Calcareous 
siltstone 

Oolites 

Microbial 
deposits 

Shale 

alternating "couplets" of basal coarse-grained deposit grading upward into laminated and sporadically burrowed fmer­
grained deposits; extensiv(!ly dojomitized; copunorl_�!ylolites. 

[�-.J 
� 

EJ 
�0] 

0 

�-

w ww 
�UH� 
� 

,...,.,� 

NNM 

-

C . d intraclastic packstone/grainstone (+/- ooids, quartz sand and silt grains), grading upward into M�1rn� . · 
peloidal packstone and mudstone; "couplet" bases sharp and truncatlonal. 

Medium-
grnined 

Fine1rained 

horizontally and cross-laminated peloidal packstone/grainstone (+/- small intraclasts, ooids, 
and quartz silt), grading upward into mudstone with occasional desiccation cracks; "couplet" 
bases wavy (truncational) to planar. 
lanlinated dolomicrite with thin lanlinae or lenses of peloidal packstone at the base (starved 
ripple); desiccation cracks, evaporite molds, and cryptalgal laminae present in the upper part 
of some "couplets". 

completely dolomitized micrite; some horizontal (microbial?) lamination and mottling (burrows?) present; 
evaporite molds common. 

thinly bedded; horizontally and noss-lanlinated micritic and peloidal deposits with abundant quartz silt; 
desiccation cracks common; microbial lanlinae and fenestrae present; interbedded with calcareous and silty shale. 

single layers of variable thickness or composite bodies made up of several ooid grainstone layers; completely 
dolomitized and commonly silicified; evidence for compaction and pressure solution common; ooid packstones 
sometimes present at bases of coarse-grained "cot1plets".  

bioherms with clotted fabric; contain irregular to digitate and branching patches of dense 
Thrombolites micrite and scattered in fossiliferous-peloidal wackestone/packstone; some Renalcis(?) grains 

present; common burrows. 
Digitate bioherms composed of branching colunms of low relief; crudely lanlinated micritic pelleted 

stromatolites fabric; colunms composed of micrite with SO!lle scattered dolomite cry�Ui� burrows present. 
Columnar lanlinated, non-linked, vertically stacked colunms of cylindrical or clubbed shape; lamination 

stromatolites is obscured by dolomitiz<l!ion and silicification;Q(!Siccation cracks and fenestrae present. 

SH individual hemispheroids composed of wavy laminated micritic deposit which is entirely 
stromatolites dolomitized and sometimes silicified; small desiccation cracks and fenestrae present. 

LLH low relief, linked hemispheroids containing wavy crinkly dolomicritic lanlinae, common 
stromatolites desiccation cracks and fenestrae; some pellets/peloids, ooids, and burrows present. 

Microbial flat, planar crinkly laminae composed of micrite, dolomicrite and dolomicrosparite; common 
laminates desiccation cracks; large prism cracks; contain lenses of coarser-grained deposits containing 

(Stratiform pellets, peloids, ooids, and quartz silt grains; common fenestrae; evaporite molds and some 
stromatolites) burrows present. 

silty and calcareous shale; max. I 0 em thick; thin shale commonly occurs along prominent bedding planes. 

Environments 

Storm-, wave-, and 
tide- dominated 

semi-arid tidal flat: 

Agitated shallow 
subtidal to 
intertidal 

Less agitated 
upper intertidal 

to supratidal 

Moderately 
agitated intertidal 

Small localized 
high energy ooid 

shoals 

Agitated 
shallow subtidal 

Agitated to 
protected 
intertidal 

Restricted 
upper intertidal 
and supratidal 

Lag deposits N 0\ 
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Figure 2.2. Photographs illustrating the most common Maynardville lithofacies. Intervals 
on Jacob's staff= 10 em. A) Base of the Maynardville (arrow) is placed at the base 
of first thick limestone unit overlying shale ofthe Nolichucky Formation. B) 
Maynardville subtidal depositional package is dominated by ribbon rocks 
composed oflight-colored limestone layers alternating with darker argillaceous 
layers. C) Gradual transition between ribbon rocks and microbial laminates marks 
a transition from subtidal into peritidal depositional package. D) Microbial 
laminates are characterized by crinkly, wavy lamination and prominent desiccation 
cracks. E) "Couplets" or mechanical laminates are a predominant lithofacies ofthe 
peritidal package. Note truncational bases, cross-laminated coarser-grained lower 
parts, and laminated mudstone tops of individual "couplets" .  Intervals on scale bar 
= 1 em. F) Interbedded with "couplets" in the peritidal package are various 
microbial carbonate deposits such as digitate stromatolite bioherms. Photo scale is 
16.5  em long. 
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low resistance to weathering, thick soil cover and dense vegetation, the shale-rich deposits 

ofthe Conasauga are, in general, poorly exposed in the southern Appalachians. In the 

field area, poorly exposed parts ofthe Nolichucky are primarily composed of paper­

laminated shale. The uppermost part of the Nolichucky Shale consists of calcareous and 

silty shale interbedded with carbonate layers, which are compositionally similar to 

carbonate deposits from the lower part of the overlying Maynardville. 

The Maynardville Formation consists of a lower subtidal and an upper peritidal 

depositional package (Figs. 1 .2, 2. 1 ). The subtidal depositional package is dominated by 

ribbon rocks which consist of layers and lenses of limestone alternating with argillaceous 

dolostone, siltstone or thin shale layers (Fig. 2.2B; Table 2. 1) .  Shale, thrombolitic 

bioherms, and flat-pebble conglomerate (coarse-grained intraclastic packstone/grainstone) 

layers occur interbedded within the ribbon rocks (Fig. 2 . 1 ) .  At the most basinward 

outcrop (Tazewell), the subtidal package also contains ooid grainstone, intraclastic-ooid 

grainstone and fossiliferous-peloidal packstone/grainstone deposits (Fig. 2 . 1 ;  Table 2 . 1 ) .  

Biohermal bodies characterized by thrombolitic microbial fabric are more common at 

Tazewell than in the subtidal packages at other outcrops (Fig. 2. 1) .  

The transition from the subtidal to the peritidal package of the Maynardville is 

marked by a change from ribbon rocks into relatively thick, microbial laminates or 

stratiform stromatolites (Figs. 2 . 1 ,  2 .2C, 2 .2D). At the Tazewell outcrop, the subtidal to 

peritidal transition is denoted by the first occurrence of microbial laminates and by 

thrombolitic bodies overlain by ribbon rocks (Fig. 2 . 1 ). Overlying the transitional interval 

at Tazewell, and the microbial units at other localities, is a part of the peritidal package 

containing a variety of lithofacies, most ofwhich are substantially dolomitized (Fig. 2. 1 ;  

Table 2 .2) .  Fining-upward centimeter-scale "couplets" or mechanical laminates make up 

the predominant lithofacies at this part of the peritidal package (Fig. 2.2E). A variety of 

"couplets" occur interbedded with dolomitized mudstone and several different types of 
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microbial carbonate deposits (Figs. 2. 1 ,  2.2F; Table 2.2). The vertical stacking pattern of 

the peritidal lithofacies is very complex, revealing some meter-scale shallowing-upward 

successions composed of coarser -grained oolitic and/ or intraclastic bases overlain by 

thrombolites, stromatolites, and/or "couplets", and capped by microbial laminates. Both 

prominent and more subtle subaerial exposure surfaces are present in the peritidal package 

(Fig. 2. 1) .  

The peritidal package of the Maynardville grades conformably upward into the 

peritidal carbonate deposits of the Copper Ridge Dolomite. There is no uniform field 

criteria for determining the position of the upper boundary of the Maynardville (see 

Chapter 1 ) . For the present study a combination of several criteria (bedding, quartz 

content, chert) was used for the placement of this boundary (Fig. 2. 1) .  

Environments of Deposition 

In central east Tennessee the most basinward lithofacies of the Nolichucky Shale 

represent deposition in slope and basinal environments reaching 250-300 m water depth 

(Foreman et al. 1 99 1 ). The Nolichucky Shale exposed within the Copper Creek thrust 

sheet in east Tennessee was deposited in a moderate depth (30-50 m) to shallow-water (5-

30  m) intrashelfbasin setting (Weber 1988). Similarly, in southwestern Virginia the 

Lower and Upper Shale members of the Nolichucky represent deposition in an intrashelf 

basin, with the Middle Limestone member marking shoaling of the basin and the 

deposition of carbonates in a deeper-ramp setting (Markello and Read 1982) . The upper 

part of the Nolichucky in the study area was deposited in a similar setting. The transition 

from the Nolichucky Shale to the carbonate-dominated Maynardville Formation reflects 

the shallowing of the Conasauga intrashelfbasin, aggradation of the carbonate platform 

and its progradation in cratonward direction. 

A generalized illustration of the depositional environments for the various 
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Maynardville lithofacies is shown in Figure 2.3. The occurrences ofUpper Cambrian 

ribbon rocks are most commonly interpreted as a result of shallow subtidal deposition 

(Demicco 1 983; Osleger and Read 1 99 1 ;  Chow and James 1 992). The shaley, subtidal 

ribbon rocks of the lower part of the Maynardville Formation were deposited on a storm­

dominated shallow ramp. Fining-upward carbonate layers that are interbedded with 

argillaceous layers were deposited as a result of storm wave and current action as 

evidenced by their truncational bases and skeletal lag deposits (Fig. 2 .4A; see also Kriesa 

1 981 ; Markello and Read 1 981) .  High-energy storm waves, such as those produced by 

hurricanes, were capable ofbreaking the semilithified carbonate layers into clasts, which 

were then redeposited forming storm-lag flat-pebble conglomerate layers interbedded 

within ribbon rocks (Fig. 2 .4B; see Sepkoski 1 982; Demicco 1 985) .  Periods of prolonged 

residence of clasts on the sea floor are suggested by the presence of pyrite coatings, which 

are a common feature of submarine hardgrounds (Fig. 2 .4B; e.g. Chow and James 1 992). 

The deposition of finer-grained, laminated carbonate and argillaceous layers of the 

ribbon rocks took place during quiet periods between major storms. Storm remobilization 

of the fine-grained siliciclastic sediment from the Conasauga intrashelf basin was also the 

important mechanism for the deposition of shale units of variable thickness present within 

the Maynardville Formation (Fig. 2 . 1 ). Others have reported that periods with an 

increased supply of siliciclastic material may be related to possible climatic changes (Read 

1 989; Cowan and James 1 993). Some of the fine-grained siliciclastic particles within the 

subtidal deposits may have been transported by wind directly from the exposed craton to 

the west (Dalrymple et al. 1985) .  

The ribbon rocks containing bioturbated mudstones interbedded with calcareous 

siltstone and argillaceous dolostone represent deposition in a less agitated subtidal setting. 

This setting may have existed in the shallow subtidal lagoonal environment protected by 

locally developed microbial buildups and ooid shoals. This interpretation is supported by 



Figure 2.3. Generalized illustration of depositional environments for the most common 
lithofacies present within the succession examined (not to scale). See Tables 2.1 
and 2.2 for additional explanation of the symbols used. 
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Figure 2.4. Photographs illustrating details ofMaynardville lithofacies. A) Truncational 
bases and skeletal lag deposits characterize limestone layers alternating with 
argillaceous layers (a) within the ribbon rocks. Scale bar = 1 mm. B) Flat-pebble 
conglomerates composed of em-scale micritic intraclasts (i) occur interbedded with 
the ribbon rocks in the subtidal package. Note common pyrite (p) as coatings on 
intraclasts and in the matrix. Scale bar = 1 mm. C) Evaporite molds (occluded by 
dolomite cement) in a completely dolomitized fine-crystalline matrix of peritidal 
lithofacies. Scale bar = 0.5 mm. D) Subaerial exposure surface (arrow) in the 
peritidal package characterized by erosional relief and a thin shaley condensed 
interval deposited prior to the reestablishment of peritidal carbonate deposition. 
Intervals on Jacob's  scale = 10 em. 
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the paucity of skeletal allochems and shale. In addition, the occurrence of thrombolites 

within the subtidal package reflects deposition within a shallow subtidal setting where the 

thrombolites were forming broad, low-relief patch reefs (Figs. 2.1, 2.3). 

The transition from ribbon rocks into the microbially laminated carbonate deposits 

(Fig. 2.2C) represents a change from entirely subtidal into predominantly peritidal 

carbonate deposition in response to aggradation and shallowing of the carbonate platform. 

Peritidal environments encompass a variety of depositional settings on a broad tidal flat, 

ranging from supratidal to shallow subtidal . Evaporite molds and desiccation cracks, as 

evidence of increased salinity and periodic exposure, are common in some of the peritidal 

lithofacies (Figs. 2.2D, 2.4C). The lack of evidence for abundant evaporite deposits 

suggests semi-arid climatic conditions during the deposition of the Maynardville. Periods 

of more prolonged subaerial exposure are marked by prominent surfaces with up to 30 em 

of erosional relief (Fig. 2.4D). Thin shaley layers were deposited on these surfaces as 

condensed intervals during the lag time following subsequent reflooding. Overlying the 

condensed intervals are dolomitized carbonate deposits that represent the reestablishment 

of peritidal sedimentation. 

An array of environmental settings for the peritidal Maynardville is suggested by 

the diversity of lithofacies present, among which "couplets" predominate (Fig. 2.2E; Table 

2.2). The coarse- to medium-grained "couplets" represent deposition in tide-, wave- and 

storm-dominated, shallow subtidal and intertidal settings. Truncational bases of coarser­

grained "couplets", and their intraclastic lag deposits, are indicative of storm activity. 

Storms may have also been responsible for the reworking of ooids forming on small, 

locally developed, high-energy shoals (Fig. 2.3). The ooids were redeposited and 

incorporated in the bases of some of the "couplets" or scattered in the muddy matrix of 

other lithofacies. The effect of wave and tidal currents is reflected in the rounding of 

micritic clasts and in the trough-, hummocky-, and wave-ripple (including starved ripples) 
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cross-stratification of the peloidal sediment comprising coarse- and medium-grained 

"couplets" (Fig. 2.2E). Similar sedimentary structures are present within the calcareous 

siltstones from the peritidal Maynardville, suggesting deposition in a moderately agitated 

intertidal setting. This interpretation also accounts for the presence of desiccation cracks 

and microbial laminae. An intertidal setting is likewise proposed for the medium-grained 

"couplets" from the Maynardville based on their similarity with peloidal silt and carbonate 

mud deposited by storm and tidal currents in a modern intertidal setting in the Bahamas 

(Hardie and Ginsburg 1977). The fine-grained "couplets" and dolomitized mudstone were 

deposited on the upper intertidal to supratidal muddy flats of the Maynardville platform. 

This interpretation is substantiated by the presence of desiccation cracks, evaporite molds, 

and extensive early diagenetic (penecontemporaneous) dolomitization (Fig. 2.4C). 

Thrombolites and digitate stromatolites are generally the only two lithofacies from 

the peritidal package that have not been completely dolomitized. The susceptibility of 

these deposits to early dolomitization may have been reduced by microbial calcification in 

a shallow subtidal to lower intertidal environment (see also Chapter 6). This 

environmental setting is supported by the presence of thrombolites within the subtidal 

package, and by the association with coarse- and medium-grained peritidal "couplets". 

The succession from thrombolites, digitate stromatolites, columnar stromatolites, stacked 

hemispheroidal (SH) stromatolites, and laterally linked hemispheroidal (LLH) 

stromatolites, to microbial laminates or stratiform stromatolites, represents decreasing 

water turbulence from a subtidal to a supratidal depositional environment (Logan et al. 

1964; Aitken 1967; Chafetz 1973; see also Chapter 6). The entire succession was never 

observed in the field, and is inferred from the vertical stacking of two to as many as four 

different types of microbial deposits. Microbial laminates, LLH, SH, and columnar 

stromatolites formed primarily by sediment trapping in environments ranging from 

supratidal to lower intertidal. This interpretation is supported by the association with fine-



to medium-grained "couplets", and the presence of desiccation cracks, fenestrae, and 

evaporite pseudomorphs. These microbial deposits have experienced extensive 

penecontemporaneous dolomitization. 

CARBONATE PLATFORM DEPOSffiONAL DYNAMICS 

3 8  

The vertical stacking pattern of the Maynardville lithofacies reveals the changing 

style of the carbonate deposition from subtidal into peritidal depositional regime, and 

implies shallowing upward of the carbonate platform (Fig. 2 . 1 ). The lateral lithofacies 

distribution reflects platform progradation in a westward direction across the Conasauga 

intrashelfbasin (Figs. 1 .2, 1 . 5). A model for the deposition of the Maynardville Formation 

in the study area is shown in Figure 2 .5 .  The subtidal package of the Maynardville was 

deposited on a ramp to a lagoonal setting protected by locally developed shoals, as 

evidenced by the presence of oolites, microbial buildups and fossiliferous-peloidal 

grainstone deposits. These deposits produced a slightly elevated platform rim at the most 

basinally located Tazewell outcrop (Fig. 2.5A). The transition from subtidal into peritidal 

deposition was a result of platform aggradation, but was also triggered by a sea-level fall 

that caused the development of an irregular, erosional exposure surface on subtidal, 

burrow-mottled ribbon limestone at the Tazewell locality (Figs. 2 .5B, 2.6). This event 

also caused the conversion of on-platform lagoonal areas into a wide, restricted tidal flat 

covered by extensive microbial mats, as evidenced by a transition from ribbon rocks into 

stratiform stromatolites or microbial laminates observed at other localities (Figs. 2 .2C, 

2 .5B). Upon reflooding, on-platform deposition was able to "keep-up" with changing 

accommodation, as suggested by thick, uniform microbial carbonate deposits (Figs. 2.2D, 

2 .5C). Laminated dolomicrite, reaching a maximum thickness of 0. 5 m, overlies the 

exposure surface at the Tazewell locality (Fig. 2 .6) .  This unit was deposited in a very 

shallow intertidal to a supratidal environment established during initial reflooding. When 
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Figure 2.5. A model for the deposition of the Maynardville in the study area. See Tables 
2.1 and 2.2 for the explanation of the lithofacies symbols. A) The subtidal 
depositional package was deposited on a shallow ramp and within a lagoonal 
setting protected by locally developed shoals. B) The transition from the subtidal 
into the peritidal depositional package was a result of a sea-level fall, which 
exposed an area along the elevated platform rim and converted on-platform 

lagoonal area into a tidal flat covered by extensive microbial mats. C) Foil owing 
lag time, subtidal deposition was reestablished on the former platform rim during a 
sea-level rise. On-platform deposition kept pace with changing accommodation 
space and a resulting thick microbially laminated deposit formed. D) The upper 
part of the peritidal package was deposited on a broad, aggraded, semi-arid tidal 
flat dominated by "couplets" or mechanical laminates and diverse microbial 
deposits, which formed in a variety of environments, ranging from shallow subtidal 
to supratidal. Note the approximate position of the outcrops studied. 



A) 
storm­
dominated 
shallow 

� to deep ramp and 
� intrashelf basin 

C) 
shallow subtidal sedimentation 
reestablished followi ----···�� lag time 

40 

microbial mats 

"keep-up" on-platform sedimentation 



4 1  

B URROWED RIBBON ROCKS 

DROWNING S URFACE 

� 
· · · · · · 

LAMINATED DOLOMICRJTE 

EXPOSURE S URF ACE 

B URROWED RIBBON ROCKS 

Figure 2.6. Outcrop photograph, with accompanying explanation, for the exposure 
surface and drowning interval within the subtidal package at the Tazewell outcrop. 
Intervals on Jacob' s  scale = 1 0  em. 
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the rate of relative sea-level rise outpaced the rate of carbonate production, a sharp 

truncational drowning surface formed on top of the dolomicritic unit (Fig. 2 .6). Following 

lag time, subtidal depositional regime was reestablished in this area as evidenced by the 

overlying subtidal, burrow-mottled ribbon limestone (Figs. 2. 5C, 2 .6) .  Thrombolitic 

bioherms and other shallow subtidal peritidal lithofacies overlie the subtidal package at the 

Tazewell locality, causing aggradation and allowing progradation of microbial deposits 

over the area (Fig. 2. 1 ). Eventually, the entire area was converted into a fully aggraded 

tidal flat characterized by a variety of environments, ranging from shallow subtidal to 

supratidal islands (Fig. 2.5D). The conditions within these environments of deposition 

varied greatly, with respect to water agitation, circulation, and salinity levels, from 

agitated to protected, and from hypersaline and very restricted, to areas with normal or 

close to normal salinity. This is substantiated by a variety of deposited peritidal lithofacies 

(Table 2.2). A very complex vertical stacking pattern of peritidal lithofacies reflects an 

intricate pattern of tidal-flat facies migration, including vertical .aggradation and lateral 

progradation. 

The peritidal package of the Maynardville grades conformably into the overlying 

peritidal deposits of the Copper Ridge Dolomite. The lack of uniform criteria, such as a 

laterally extensive marker bed or other firm datum, as well as the paucity of skeletal fauna 

that can be used for successful biostratigraphic determination, all preclude the 

determination of the precise position of the Maynardville/Copper Ridge transition in the 

stratigraphic succession. The transition is contained within a relatively conformable 

interval that contains common detrital quartz and feldspar sand grains (Figs. 2. 1 ,  2 . 7) .  

The deposition of this interval was influenced by the shallowing of the intrashelfbasin, in 

addition to an increasing input of cratonically-derived sediments. These conditions were 

established during the well-documented, craton-wide Dresbachian!Franconian 

unconformity (Lochman-Balk 1 97 1 ;  Palmer 1 97 1 ,  1 98 lb; Osleger and Read 1 993). The 
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Figure 2. 7. Occurrence of detrital quartz and feldspar sand grains marks the sequence 
boundary zone represented by a conformable interval correlative with the 
Dresbachian/Franconian unconformity. A) Hand sample showing a darker layer 
with abundant sand grains overlying mottled dolornicrite. Intervals on scale bar = 1 

em. B) Photomicrograph of a lens with common quartz and occasional rnicrocline 
grains. Scale bar = 1 mm. 



44 

deposition of the Copper Ridge Dolomite of the Knox Group marks the predominance of 

peritidal carbonate deposition in the study area. 

SEQUENCE STRATIGRAPHY 

Nolichucky /Maynardville Transition 

The Grand Cycles ofthe Conasauga Group have been interpreted as third-order 

depositional sequences composed of a lower shale half-cycle and an upper carbonate half­

cycle (Fig. 1 .2; Kozar et al. 1990; Srinivasan and Walker 1 993). The termination of 

carbonate platform deposition by subaerial exposure and drowning, followed by an abrupt 

onlap of basinal shales, produced sequence boundaries at the end of each Grand Cycle 

(Srinivasan and Walker 1993). The deposition of shale half-cycles resulted from the 

migration of deep water siliciclastic depositional environments towards the carbonate 

platform as a consequence of an increased rate of sea-level rise (Srinivasan and Walker 

1 993). 

The Nolichucky Shale consists of the Lower and Upper Shale Members and the 

Middle Limestone Member (Fig. 1 .2). The Lower Shale Member onlaps on the Middle 

Cambrian Maryville Limestone, thus marking a sequence boundary on top of the upper 

Rogersville Shale/Maryville Limestone Grand Cycle (Fig. 1 .2; see also Srinivasan and 

Walker 1993). In a similar way, the onlap of the Upper Shale Member of the Nolichucky 

Shale on the carbonate deposits of the Middle Limestone Member is interpreted as a 

sequence boundary on top of the sequence composed of the Lower Shale/Middle 

Limestone Members ofthe Nolichucky (Fig. 1 .2) . The deposition of the Upper Shale 

Member of the Nolichucky represents a retrogradational depositional package deposited in 

response to deepening that indicates an increase in the rate of sea-level rise. 

Retrogradational stacking patterns are a common characteristic of transgressive 

depositional conditions and are an important part of transgressive system tracts (e.g. Van 
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Wagoner et al. 1988). 

A shift from shale- to carbonate-dominated deposition within Grand Cycles does 

not represent a sequence boundary. The transition between the Nolichucky Shale and the 

Maynardville subtidal depositional package is gradational, and it corresponds to the period 

of maximum flooding of the carbonate platform during the early Late Cambrian (see Bond 

et al. 1 988). This is also substantiated by the presence of common hardground surfaces 

observed in the upper part of the Nolichucky and the lower Maynardville in the study area. 

The Nolichucky/Maynardville transition represents a change from retrogradational into 

aggradational-to-progradational stacking patterns as a result of a decrease in the rate of 

relative sea-level rise. 

Stacking Patterns of the Maynardville Lithofacies 

The Maynardville subtidal depositional package represents the establishment of 

predominantly carbonate deposition following the deposition of the Nolichucky Shale (Fig. 

1 .2, 2. 1) .  Following the drowning of the carbonate platform and shale onlap in response 

to a rapid, relative rise of sea level, carbonate deposition can be reestablished through 

start-up, catch-up, and keep-up phases (Kendall and Schlager 198 1) .  Deposition ofthe 

mixed siliciclastic/carbonate deposits of the upper part of the Nolichucky Shale and the 

lowermost part of the Maynardville subtidal depositional package represents the start-up 

of carbonate platform deposition, with the rate of relative sea-level rise still exceeding the 

rate of carbonate sediment accumulation. This is suggested by the relatively high 

shale/carbonate ratio, and common hardground surfaces observed in this part of the 

stratigraphic succession, which is composed primarily of shale interbedded with carbonate 

layers (Nolichucky) and ribbon rocks interbedded with shale (Maynardville; Figs. 2 . 1 ,  

2.2A, 2.3). The remainder of the subtidal package i s  characteristic of  catch-up phase 

during which the carbonate accumulation rate exceeds the rate of sea-level rise and the 
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platform builds or aggrades to sea level. The increasing rate of carbonate production is 

reflected in the decreasing shale/carbonate ratio in the upper part of the subtidal deposits, 

which consists predominantly of shale-free ribbon rocks (Fig. 2. 1 ,  2.2B, 2 .3) .  

The most prominent change in the pattern of deposition within the Maynardville is 

the transition from the subtidal into the peritidal depositional package (Fig. 2. 1) .  This shift 

occurred in response to carbonate-platform aggradation, but was also facilitated by a sea­

level fall (Fig. 2.5B). In an area along the slightly elevated platform rim (the Tazewell 

outcrop) this event is reflected in a subaerial exposure/ drowning unconformity (Figs. 2 . 1 ,  

2 .6). Conformable intervals correlative to this unconformity mark the transition from 

ribbon rocks into microbial laminates in on-platform areas (Figs. 2 . 1 ,  2.2C, 2. 5B) . The 

reestablishment of subtidal deposition, following exposure and drowning, is the reason 

why the transition between the subtidal and peritidal depositional package, defined on the 

basis of lithofacies distribution, is younger at the Tazewell locality than at the other 

outcrops (Fig. 2. 1 ). 

The peritidal depositional package of the Maynardville is characteristic of keep-up 

phase of carbonate platform deposition, with the rate of carbonate accumulation matching 

or exceeding the rate of relative sea-level rise. This is evidenced by the succession of 

carbonate deposits that are representative of shallow water deposition, and carbonate­

platform progradation in a cratonward direction (Figs. 2. 1 ,  2 .3) .  High rates of carbonate­

sediment accumulation are favored during sea-level highstands which promote carbonate 

production by increasing the areas with active carbonate production (carbonate factory) 

because of the great extent of carbonate-platform flooding (Handford and Loucks 1993 ; 

Schlager et al. 1 994). The vertical stacking pattern of the Maynardville, which consists of 

the subtidal depositional package overlain by the peritidal package, represents an 

aggradational-to-progradational stacking pattern (Fig. 2. 1 ). Such stacking patterns are 

typical of highstand system tracts that are deposited during decreasing rates of relative 



sea-level rise, a sea-level stillstand, and during an initial relative sea-level fall (e.g. Van 

Wagoner et al. 1988) .  
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The stacking pattern within the two depositional packages of the Maynardville is 

complex (Fig. 2. 1) .  Certain parts of the subtidal package can be divided into meter-scale 

successions based on the occurrence of shale intervals (Figs. 2. 1 ,  2.8A). The amount of 

shale interbedded with ribbon rocks decreases upward within some of these subtidal 

successions, possibly indicating a shallowing-upward trend (Fig. 2 . 8A). Parts of the 

peritidal package can be similarly divided into meter-scale shallowing-upward successions 

based primarily on the presence of subaerial exposure surfaces (Figs. 2. 1 ,  2 .8B). These 

meter-scale successions can be regarded as parasequences, possibly representing short­

term eustatic sea-level oscillations (e.g. Koerschner and Read 1 989; Bond et al. 1 99 1 ;  

Osleger and Read 1 991 ,  1 993 ; Montanez and Osleger 1993; McLean and Mountjoy 1 994; 

Yang et al. 1995; among others). An alternative explanation for the deposition of subtidal 

parasequences is changes in the supply and dispersal of siliciclastic sediment that can be 

caused by climatic variations, or by physiographic changes within the source area, or the 

basin itself Peritidal parasequences, on the other hand, may reflect the complex pattern of 

random tidal flat lithofacies migration independent of periodic extrinsic mechanisms (e.g. 

Kozar et al. 1 990; Hardie et al. 1 99 1 ;  Drummond and Wilkinson 1 993 ; Wilkinson et al. 

1 996). The meter-scale successions ofthe Maynardville Formation cannot be laterally 

correlated between outcrops with certainty. This poor lateral correlation can be attributed 

to the substantial distance between outcrops and to the fact that the observed successions 

may not be laterally extensive. Poorly exposed sections of the outcrops additionally 

preclude lateral correlation. Because ofthese reasons, in addition to the apparent non­

cyclic nature of parts ofthe stratigraphic succession, and possible subjectivity in 

determining shallowing-upward peritidal successions (see Wilkinson et al. 1 996), the 

subdivision of the measured stratigraphic intervals in meter-scale successions and their 
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Figure 2.8. Examples of a subdivision of depositional packages in meter -scale 
successions or parasequences. See Figure 2. 1 ,  Tables 2. 1 and 2.2 for the 
explanation of the symbols. A) Subtidal subpackages contain basal shale units 
overlain by shaley ribbon rocks. Upper parts of the subpackage are composed of 
shale-free ribbon rocks. Hardgrounds occasionally develop on top of subtidal 
subpackages. B) Peritidal subpackages have coarser-grained oolitic/intraclastic or 
thrombolitic bases overlain by "couplets" and microbial deposits, and capped by 
subaerial exposure surfaces. 
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lateral correlation was not attempted (Fig. 2.1 ). 

Maynardville/Copper Ridge Transition: Termination of Grand Cycle Deposition 

The transition between the peritidal package of the Maynardville and the overlying 

peritidal deposits of the Copper Ridge Dolomite is contained within a 10-20 m thick, 

relatively conformable interval characterized by the occurrence of layers with common 

quartz and feldspar sand grains (Figs. 2.1, 2.7). The Dresbachian/Franconian episode of 

sea-level lowering, subaerial exposure of the craton, and eastward migration of siliciclastic 

source areas affected deposition of this interval by allowing the transport of coarser­

grained siliciclastic detritus onto the carbonate platform (Fig. 2. 7). This sea-level fall also 

facilitated the complete infilling of the Conasauga intrashelf basin, which allowed 

carbonate-platform progradation across the former basin during a subsequent sea-level rise 

(Fig. 1.2). The recognition ofthese events, and their consequences upon the style of 

deposition, led to the interpretation of this conformable interval as a sequence boundary. 

In this study, this sequence boundary is referred to as a sequence boundary zone 

correlative to the Dresbachian/Franconian unconformity (Figs. 2.1, 2.9). The sequence 

boundary zone marks the end of Grand Cycle deposition in the southern Appalachians, 

thereby separating two distinct sedimentary successions deposited within different 

environmental settings: the Conasauga Group deposited on a carbonate platform laterally 

linked to a siliciclastic basin, and the Knox Group representing deposition on a broad 

carbonate platform that was established following westward progradation of the platform 

over the completely infilled siliciclastic basin (Fig. 2.9). The lower depositional sequence, 

composed of the Upper Shale Member of the Nolichucky Formation and the overlying 

Maynardville Formation, is interpreted as a third-order depositional sequence (Fig. 2.9). 

This sequence reflects a Conasauga Group style of deposition characterized by subtidal, 

mixed siliciclastic and carbonate deposits overlain by peritidal carbonates. The 
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Figure 2.9. Interpretation of sequence stratigraphy for the terminal southern Appalachian 
Grand Cycle. The Maynardville Formation and the underlying Upper Shale 
Member ofthe Nolichucky Shale comprise a third-order sequence. This sequence 
is bounded on top by a conformable interval (shaded pattern) that represents a 
sequence boundary zone correlative with the Dresbachian/Franconian 
unconformity. The sequence boundary zone separates the deposits typical of the 
Conasauga Group from the overlying peritidal carbonate deposits of the Knox 
Group. 
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depositional sequence overlying the sequence boundary zone is typical ofKnox deposition 

and consists of peritidal carbonate deposits (Fig. 2.9). 

DISCUSSION: CONTROLS ON CARBONATE DEPOSITION 

The deposition of Cambrian Grand Cycles is most commonly attributed to eustatic 

sea-level changes (Aitken 1978, 1 98 1 ;  Palmer and Halley 1 979; Palmer 1 98 1  b; Bond et al. 

1 988; James et al. 1 989; Read 1989). Glacio-eustasy is a plausible mechanism for third­

order sea-level fluctuations (Vail et al. 1 977), but an unequivocal evidence for continental 

glaciation during the Cambrian is not present in the geological record (Hambrey and 

Harland 1 98 1 ;  Scotese and McKerrow 1 990). Small-scale continental or alpine 

glaciations have been proposed as a possible cause for small amplitude ( 10-50 m) sea-level 

changes responsible for Grand Cycle formation (Read 1 989; Osleger and Read 1 993). 

The unsuccessful interbasinal correlation of all Cambrian Grand Cycles suggests factors 

beyond eustasy as controls for the formation of at least some Cycles (Palmer 198 1  b; 

Rankey et al. 1 994). Kozar and others (1990) referred to mechanisms such as tectono­

eustasy and geoidal eustasy, which can operate at the same time scale and may be 

important controlling mechanisms for Grand Cycle development. In a preliminary 

stratigraphic model for the Conasauga Group, developed by Walker and others ( 1990), the 

carbonates of the Rutledge, Maryville and the Maynardville were interpreted as the result 

ofbasinward progradation of a shallow-water platform, whereas the shale units of the 

Conasauga represent the encroachment of shale onto the platform in response to increased 

input of siliciclastic sediment from source regions to the west and northwest (Fig. 1 .2). In 

this model the environmental factors, especially the suppression of carbonate production 

due to increased siliciclastic input, were invoked as controlling mechanisms for the 

deposition of the Conasauga Group depositional sequences. Rankey ( 1993) and Rankey 

and others ( 1994) examined the two Middle Cambrian third-order sequences of the 
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Conasauga: 1 )  the lower shale member and the Craig Limestone Member of the 

Rogersville Shale; 2) the upper shale member of the Rogersville and the overlying 

Maryville Limestone (Fig. 1 .2). Their study demonstrated that carbonate-platform 

aggradation and progradation are the main controls on internal stratigraphic packaging 

within a sequence, whereas the development of sequence boundaries is controlled by the 

sedimentologic response to subaerial exposure and changing rates of subsidence caused by 

thermal cooling ofthe lithosphere, sediment loading, regional extension, and eustasy. 

Srinivasan ( 1 993) and Srinivasan and Walker ( 1 993) proposed the general model for the 

deposition of the Conasauga Grand Cycles based on a study of the Middle Cambrian 

Maryville Formation. The Conasauga Group reveals a cyclical pattern of development 

from a ramp to a carbonate platform. Gentle sloping ramps existed during the deposition 

of shale units, whereas the carbonate units represent the gradual establishment of a flat­

topped rimmed carbonate platform as a result of aggradation and progradation in a 

basinward direction. Carbonate platform deposition ended by subaerial exposure and 

drowning events, producing surfaces recognized as sequence boundaries. Continuing 

subsidence, coupled with lag time on the platform, allowed basinal siliciclastic deposits to 

retrograde onto the platform again, thereby forming a ramp profile. The characteristic 

stacking patterns of the Conasauga are the result of a variable sedimentation rate, 

subsidence, and eustatic sea level change (Srinivasan and Walker 1 993) .  

Comparison between the depositional models proposed for the older Conasauga 

sequences, especially the Maryville Formation (Srinivasan and Walker 1 993; Rankey et al. 

1 994), and the Maynardville Formation (this study), provides important information for 

the changing style of passive-margin deposition from the Middle into the Late Cambrian. 

Even though the Maynardville at the Tazewell locality contains lithofacies indicative of 

platform-margin deposition, the Maynardville in the study area lacks well-developed shelf 

margin buildups comparable to those of the Maryville Formation (Srinivasan and Walker 
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1 993) .  In addition, the Maryville contains abundant intraclastic packstone or flat-pebble 

conglomerate deposits interpreted as debris-flow deposits. These differences suggest that 

the platform-to-basin slope was gentler during deposition of the Maynardville Formation 

(Upper Cambrian) as opposed to the Maryville Limestone (Middle Cambrian). As a 

consequence, the development from a ramp to a high-relief, rimmed platform during 

deposition of the Maryville Formation (Middle Cambrian) was replaced in the Late 

Cambrian by the evolution from a gently sloping ramp, and a lagoonal subtidal 

environment, protected by locally developed shoals, into the broad, flat-topped tidal flat of 

the Maynardville platform (Fig. 2 .5). 

Another pronounced difference between the two Conasauga carbonate platforms is 

that carbonate deposition of the Maryville was terminated by subaerial exposure and a 

drowning unconformity, followed by deposition of a relatively thin, subtidal, backstepping 

package in on-platform areas, and by the Nolichucky Shale onlap (Fig. 1 .2). The 

transition from the Maynardville into the overlying Copper Ridge Dolomite represents a 

conformable interval stratigraphically correlated with the Dresbachian/Franconian 

unconformity. The absence of a major unconformity in the southern Appalachians 

suggests that the rate of thermal passive-margin subsidence was higher than the rate of 

sea-level fall (Bond et al. 1 989; Osleger and Read 1 993 ; this study). Biostratigraphic 

control is insufficient to precisely determine the time interval represented by this 

conformable succession, which may represent a condensed interval (see also Chapter 5). 

The presence of Aphelaspis fauna verifies Dresbachian age for the Maynardville (Fig. 1 .2; 

Resser 1 938; Rasetti 1 965; Derby 1 965). Preserved skeletal fragments are very rare in the 

uppermost, highly dolomitized part of the Maynardville and in the overlying Copper Ridge 

Dolomite. The presence of a Franconian fauna has not yet been identified in the southern 

Appalachians (Fig. 1 .2). 

The Dresbachian/Franconian episode of sea-level lowering initiated a significant 
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paleogeographic change in  the southern Appalachians. The complete infilling of the 

Conasauga intrashelfbasin facilitated carbonate-platform progradation toward the craton 

upon subsequent reflooding (Fig. 1 .  5). Similar paleogeographic changes have been 

documented for the Great Basin area where a flood of terrigenous sediment (Warm Creek 

Quartzite), reflecting a brief sea-level lowering prior to Elvinia zone (lowermost 

Franconian), was followed by elimination of the Eureka-House Range embayment and 

establishment of carbonate sedimentation in the entire Great Basin region (Palmer 1 97 1) .  

The Late Cambrian Grand Cycle cessation and establishment of peritidal carbonate 

deposition of the Knox Group can also be attributed to the mechanisms related to the 

evolution of the passive margin (see Chapter 3).  The Middle Cambrian was a time interval 

characterized by prominent tectonic activity in southeastern North America, represented 

by extension and vertical readjustments along an intracratonic graben system to the west 

and northwest, a fault system to the south, and other basement faults to the southwest and 

west from the study area in eastern Tennessee (Thomas 1991). The Middle Cambrian 

Conasauga Group Grand Cycles were deposited under such an immature passive-margin 

depositional regime (Rankey et al. 1994). A shift from carbonate into shale deposition at 

the end of each Grand Cycle could have been related to episodic, short-term, tectonic 

(non-thermal) subsidence enhanced by loading and coupled with possible eustatic sea-level 

changes, all superimposed on thermal passive-margin subsidence. Deposition ofthe 

Maynardville Formation (Upper Cambrian) marks a transition into the mature passive­

margin stage, which was characterized by the cessation of the tectonic activity along the 

intracratonic fault and graben systems (see Thomas 199 1) .  This time interval is also 

characterized by significantly decreased rates of thermal passive-margin subsidence, 

coupled with a long-term eustatic sea-level fall during the Late Cambrian and Early 

Ordovician (Bond et al. 1 988, 1989) .  A direct consequence of the changes in rate of 

passive-margin subsidence is changing accommodation space. A decrease in 



accommodation space favored shallow-water carbonate deposition, which resulted in 

deposition of the thick (about 1 000 m) peritidal succession of the upper Maynardville 

Formation and the overlying Knox Group. 
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This study demonstrates that deposition of the Maynardville Formation was 

influenced by numerous mechanisms, both intrinsic and extrinsic, and that these 

mechanisms were likely highly variable both temporally and spatially. Intrinsic properties 

of carbonate depositional systems that are reflected in the Maynardville packaging are, in 

particular, the effects of differing sedimentation rates related to the productivity of the 

carbonate "factory", and the effect of lag time (Fig. 2.5) .  The extrinsic factors affecting 

the Maynardville deposition were operational on various scales. The distribution of 

siliciclastic sediment can be attributed to local- to regional-scale mechanisms related to the 

depositional history of the adjacent Conasauga intrashelf basin. The history of the basin 

was, on the other hand, controlled by tectonic and thermal subsidence, eustatic sea-level 

changes, climate, and other changes (physiographic, structural) in the source area. The 

effects of possible local to regional tectonic events are not clearly discernible from the 

sedimentary record of the Maynardville. Some of the recorded events of sea-level 

fluctuation may be related to minor tectonic readjustments during the time period that 

represents cessation of tectonic activity in the area and transition into the mature or stable 

passive-margin depositional regime. Large-scale (passive-margin scale to global) factors 

substantially influenced the overall Maynardville sedimentary packaging, which represents 

shallowing-upward as a result of carbonate-platform aggradation and progradation 

facilitated by decreased rates of thermally controlled passive-margin subsidence, 

stabilization of the margin, infilling of the intrashelf basin, and long-term eustatic sea-level 

fall. The effects of short-term sea-level fluctuations are reflected in the nature of the 

transition between the subtidal and peritidal package and in the Maynardville/Copper 

Ridge transition. Meter-scale shallowing-upward peritidal successions similar to those in 
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the upper part of the Maynardville have been described as common in the overlying Knox 

Group, and are interpreted as a result of high-frequency eustatic sea-level fluctuations 

(Osleger 1 990; Osleger and Read 1991 ,  1993). The formation of subaerial exposure 

surfaces and meter-scale Maynardville successions can be attributed to similar sea-level 

fluctuations coupled with mechanisms intrinsic to the carbonate depositional system, such 

as facies migration and lag time. 

CONCLUSIONS 

The termination of Grand Cycle deposition in the southern Appalachians 

represents a prominent change in the pattern of passive-margin sedimentation, which 

occurred during the deposition of the Maynardville Formation (Upper Cambrian). The 

Maynardville was deposited in a gently sloping, shallow subtidal ramp and lagoonal 

environment, protected by locally developed microbial patch reefs and ooid shoals, and 

laterally linked to a broad, semi-arid tidal flat characterized by an array of peritidal 

environments. The Maynardville represents an aggradational to progradational stacking 

pattern, overlying the retrogradational depositional package of the Nolichucky Shale. The 

transition from the Nolichucky into the Maynardville corresponds to a maximum flooding 

of the carbonate platform during the early Late Cambrian and a change from transgressive 

into highstand system tracts. The vertical stacking pattern of the Maynardville lithofacies 

reveals overall shallowing upward from entirely subtidal, mixed carbonate and siliciclastic 

deposits to predominantly peritidal dolostone deposits in response to numerous processes 

operating on various scales. The processes related to the evolution of the passive margin 

are stabilization of the margin, reflected in the cessation of tectonic activity by the early 

Late Cambrian, and the decreased rate of thermal subsidence, favoring both the infilling of 

the Conasauga siliciclastic basin and carbonate-platform progradation. The effects of 

eustatic sea-level changes are more easily discernible from a stabilized passive-margin 
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sedimentary succession, as evidenced by the transition from the Maynardville into the 

overlying Copper Ridge Dolomite, which is contained within a conformable interval 

interpreted as a sequence boundary zone correlative with the Dresbachian/Franconian 

unconformity. This sequence boundary separates the underlying third-order depositional 

sequence, which consists of the Upper Shale Member of the Nolichucky Shale and the 

Maynardville Formation, and represents the terminal Grand Cycle in the southern 

Appalachians, from the overlying Knox Group. The transition from the subtidal to 

peritidal depositional regime, minor subaerial exposure surfaces, as well as some of the 

meter-scale depositional successions within the Maynardville, may also reflect possible 

eustatic sea-level changes. Local- to regional-scale processes that controlled deposition of 

the Maynardville Formation are closely related to the intrinsic properties of the carbonate 

depositional system such as differing sedimentation rates, tidal flat migration, and the 

effect of lag time, as well as the extrinsic factors related to the history of the adjacent 

siliciclastic basin controlling the rate of sediment input, dispersal, and the infilling of the 

basin. 
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CHAPTER 3 

SEDIMENTOLOGIC CONSEQUENCES OF PASSIVE-MARGIN EVOLUTION: 

TRANSffiON FROM CAMBRIAN GRAND CYCLES TO MATURE PASSIVE­

MARGIN DEPOSITION, SOUTHERN APPALACHIANS 

INTRODUCTION 

Early studies of the dynamics of passive margins focused primarily on the 

1
1 crystalline crust and deeper rocks 1 1 ,  whereas detailed studies of associated sedimentary 

successions played only a smaller role in deciphering the mechanisms of passive-margin 

evolution (Scruton 1 982a). More recently, the processes operating in passive-margin 

depositional settings have been extensively studied and modeled based on outcrop studies 

ofthe ancient passive-margin sedimentary successions, and seismic studies of modem 

examples (Beaumont et al. 1982; Scruton 1982b; Bond and Kominz 1 984; Bond et al. 

1 988, 1 989; Manspeizer 1988; Sheridan and Grow 1 988; Tankard and Balkwill 1 989; 

Edwards and Santogross 1990; Meyer et al. 1 99 1 ;  Steckler et al. 1 993; among others). 

Many of these studies identified carbonate platforms as a common component of a passive 

margin depositional setting (Read 1 982) . Deposition on a passive margin is strongly 

influenced by mechanisms such as thermal evolution ofthe margin, eustatic sea-level 

changes, and sediment supply. Therefore, the detailed study of carbonate successions may 

provide unique insights into these mechanisms because of the sensitivity of carbonate 

systems to small changes in accommodation space and other environmental conditions. 

Deciphering the steps in the evolution of the Lower Paleozoic passive margin of 

southeastern North America has been of interest to numerous researchers (Hatcher 1989; 

Read 1 989; Thomas 1991 ,  1993 ; Bond et al. 1984, 1988, 1 989; among others) . This 

study focuses on a part of the passive-margin sedimentary succession that contains a 
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record of a distinct change in the style of passive-margin sedimentation as reflected in : 1 )  

the cessation of alternating shale and carbonate Grand Cycle deposition of  the Conasauga 

Group (Middle to Upper Cambrian); and 2) the establishment of shallow-water, peritidal 

carbonate deposition of the overlying Knox Group (Upper Cambrian to Lower 

Ordovician) in the southern Appalachians. The primary objective of this study is to relate 

processes responsible for the formation of the observed sedimentary packaging to passive­

margin evolution. This study is an example how a detailed sedimentologic study of a 

passive-margin succession, when considered in a regional context of passive-margin 

sedimentation, can provide insights into the relationship between sedimentologic processes 

and passive-margin evolution. 

PASSIVE-MARGIN SETTING 

The rifting and breakup of the supercontinent Rodinia in the Late Proterozoic to 

Early Cambrian produced a passive continental margin along eastern North American or 

the Laurentian continent (Bond et al. 1984; Hatcher 1989; Read 1 989). The passive­

margin sedimentary succession of the southern Appalachians contains rift-related volcanic 

rocks and clastic deposits (Upper Proterozoic Ocoee Supergroup, and the lower part of 

the Upper Proterozoic to Lower Cambrian Chilhowee Group), unconformably overlying 

the Grenville basement (Fig. 3 . 1 ;  see also Rast and Kohles 1986; Hatcher 1 989; Read 

1 989; Thomas 1991 ). The rift-to-drift transition occurred during the Early Cambrian as 

evidenced by more laterally extensive, deep to shallow marine shelf clastics in the upper 

part of the Chilhowee Group that were deposited in post-rift environments (Fig. 3 . 1 ;  

Williams and Hiscott 1987; Hatcher 1989; Simpson and Eriksson 1 989). The Middle to 

Upper Cambrian passive-margin sedimentary record reveals the existence of a broad 

carbonate platform facing the Iapetus Ocean to the east, and the Conasauga intrashelf 

basin to the west (Fig. 1.1 ). The western margin of the carbonate platform was 



Figure 3.1.  Stratigraphy ofthe Lower Paleozoic passive-margin succession of the 
Southern Appalachian Valley and Ridge physiographic province in eastern 
Tennessee. 
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characterized by deposition of alternating shale and carbonate units, or Grand Cycles, of 

the Conasauga Group (Figs. 3 . 1 , 1 . 1 , 1 .2). The Maynardville Formation is the uppermost 

carbonate unit of the Conasauga, and it grades conformably upward into the Copper 

Ridge Dolomite (Upper Cambrian) of the Knox Group (Figs. 3 . 1 ,  1 .2). The Lower 

Paleozoic passive-margin sedimentation terminated in the early Middle Ordovician by a 

prolonged subaerial exposure that produced the Knox unconformity (Fig. 3 . 1  ). This event 

marks the transition into a convergent-margin setting (Benedict and Walker 1 978; 

Shanmugam and Walker 1 978, 1 980; Mussman and Read 1986; Read 1989). 

TRANSITIONAL NATURE OF THE MAYNARDVILLE FORMATION AND 

IMPLICATIONS FOR PASSIVE-MARGIN EVOLUTION 

Unlike the older carbonate units of the Conasauga Group, deposition of the 

Maynardville was not terminated by subaerial exposure and/or drowning followed by 

siliciclastic deposition (Fig. 1 .2). Instead, the transition from Conasauga-like, mixed 

carbonate and siliciclastic subtidal deposition of the lower Maynardville, to peritidal 

carbonate deposition of the upper Maynardville, and the conformable transition into the 

overlying Copper Ridge Dolomite (Knox Group) mark the rise to nearly complete 

dominance by carbonate deposition in the area (Fig. 3 . 1 , 1 .2). These differences in the 

sedimentation pattern can be related to the mechanisms that controlled the Middle to Late 

Cambrian subsidence of the southern Appalachian passive margin, and consequently 

influenced the sedimentary regime on the margin. The mechanisms given special attention 

here are eustasy, episodic non-thermal tectonic subsidence, and thermal post-rift 

subsidence. 

Eustasy and Grand Cycle Formation 

Eustatic sea-level fluctuations are commonly considered to be a primary cause for 
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the deposition of Grand Cycled based on their ubiquitous occurrence in the Cambrian 

sedimentary successions of the Appalachians, the southern Great Basin, and the southern 

Canadian Rocky Mountains (see Chapter 2). The cause for the third-order sea-level 

fluctuations, which could have been responsible for the formation of Grand Cycles, 

remains unclear (Read 1 989). The glacio-eustatic explanations for the formation of 

Cambrian Grand Cycles face two major problems: 1 )  the Cambrian was a time interval 

without geological evidence for glaciation; and 2) the inability of glacio-eustasy to cause 

uniform sea-level changes because the magnitude and sign of the change depend on the 

distance from ice caps ( Cloetingh 1 991). Interbasinal correlation of Cambrian strata has 

been used to evaluate the extent of eustatic control on Grand Cycle development (Palmer 

1 98 1 a; Bond et al. 1 989; Osleger and Read 1 993). The detailed correlation is hindered by 

poor biostratigraphic resolution. The correlation of depositional sequences additionally 

encounters the difficulties in the interpretation of stratigraphic patterns in terms of eustasy 

as discussed by Pitman (1978), Pitman and Golovchenko ( 1 988), and Angevine (1 989). 

These authors recognized that transgressive and regressive events recorded in passive­

margin sedimentary successions may not be related to eustatic sea-level changes, but may 

instead be caused by changes in the rate of sea-level change. Additionally, the deposition 

of transgressive and regressive successions is commonly not synchronized with highstands 

and lowstands in the eustatic record (Angevine 1 989). Because of these reasons, it has 

been recognized that, in addition to eustasy, other factors may have played an important 

role the formation ofthe Grand Cycles (Palmer 1981a; James et al. 1 989; Kozar et al. 

1 990; Rankey et al. 1 994). 

Middle Cambrian Immature Passive Margin: Role of Non-Thermal Subsidence 

Detailed studies of the Conasauga Group in the southern Appalachians 

demonstrated that the formation of Grand Cycles was controlled by tectonism (Rankey et 
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al. 1994), and varying rate of sedimentation and sediment supply (Walker et al. 1990; 

Srinivasan and Walker 1 993). Rankey and others (1 994) linked the formation ofMiddle 

Cambrian Conasauga Grand Cycles to the complex evolution of the passive margin. 

During the Middle Cambrian, the margin was not completely stabilized and the 

development of depositional sequences was governed by sedimentological responses to 

subaerial exposure and non-thermal tectonic subsidence (Rankey et al. 1 994). The Middle 

Cambrian was a period of pronounced tectonic activity along the Mississippi Valley­

Rough Creek-Rome Trough intracratonic graben system to the west, the Birmingham fault 

system to the southwest, and other basement faults to the east of the study area in eastern 

Tennessee (Fig. 3 .2A; see also Thomas 199 1 ). The Mississippi Valley-Rough Creek­

Rome Trough graben system was a site of active extension that developed about 3 00 km 

from the shelf edge (Fig. 3 .2A; Webb 1980, Read 1 989; Thomas 1 991) .  Thomas ( 199 1 )  

documented synsedimentary fault movement during the Middle Cambrian, and infilling of 

the resulting grabens by the Late Cambrian, when the region around the graben became a 

part of a stable cratonic setting. Similarly, Early Cambrian initiation of the Birmingham 

basement fault system (Fig. 3 .2A), and continued fault movement until the early Late 

Cambrian was suggested based on evidence of synsedimentary movement (Thomas 1 986, 

199 1 ;  Ferrill 1 989). Ferrill (1 989) observed that the thickness and distribution ofthe 

Conasauga Group facies in Alabama are related to separate Birmingham basement fault 

blocks. 

Deposition of the Conasauga Group Grand Cycles took place during this immature 

stage of passive-margin development. Abrupt changes from carbonate- to siliciclastic­

dominated deposition may represent a consequence of short-term, non-thermal, tectonic 

events related to episodic reactivation of extensional faults, enhanced by sediment and 

water loading (Fig. 3 .2B). Reactivation of older faults is common during the post-rift 

stage of divergent plate-margin basin development (Frostick and Steel 1 993a). For 
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Figure 3.2. Middle Cambrian immature passive-margin setting. A) Immature passive 
margin reconstruction (after Thomas 1 991 ). Note the position of the intracratonic 
graben and basement fault systems. B) Schematic cross-section through the 
immature passive margin (modified after Read 1 989), showing the Grand Cycles as 
a result of a complex interplay between Conasauga intrashelf basin deposition and 
carbonate platform deposition. Abrupt changes from carbonate- to siliciclastic­
dominated deposition may be a consequence of short-term, episodic, non-thermal 
tectonic events related to vertical readjustments along extensional faults. 
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example, faulting in the continental basement and the overlying sedimentary succession of 

the Atlantic passive margin extended into the Late Cretaceous and the Eocene (Heller et 

al. 1 982; Scruton 1 982a). The disruption of planar horizons in the Atlantic passive-margin 

strata by faulting related exclusively to sedimentary processes was described by Pitman 

and Golovchenko ( 1988). Episodic post-rift subsidence of passive margins, caused by 

tectonism and amplified by loading, represents a relatively rapid subsidence superimposed 

on the slower thermal subsidence (Heller et al. 1 982) . Sediment and water loading creates 

passive-margin subsidence by causing lithospheric flexure, sediment compaction, and 

displacement along marginal faults (Watts 198 1 ;  Heller et al. 1 982; Steckler and Watts 

1 982; Turcotte 1982; Pitman and Golovchenko 1988; Reynolds et al. 1 99 1 ;  Bott 1 992). 

Consequently, tectonism and subsidence due to loading are recognized as important 

mechanisms controlling the development of depositional sequences (Bally 1 982; Watts 

1 982; Watts and Thome 1 984; Cloetingh et al. 1 985;  Summerhayes 1 986; Lambeck et al. 

1 987; Stephenson 1 989; Embry 1 989; Sloss 1 99 1 ;  Aubry 199 1 ;  Frostick and Steel 1993b). 

These mechanisms provide an alternative to primarily eustatic control on sequence 

development (Haq et al. 1987, 1988;  Vail et al. 1 977, 1987; Hallam 1 984; Van Wagoner 

et al. 1 988). "Jerky" subsidence produced by these mechanisms may have caused 

drowning and the "shut-down" ofthe Conasauga carbonate-platform production followed 

by basinal shale onlap (Figs. 3 .2B, 1 .2). In conjunction with possible eustatic sea-level 

fluctuations, these mechanisms created exposure surfaces/drowning unconformities on top 

of the Middle Cambrian Conasauga carbonate platform successions, thus producing 

surfaces identified as third-order sequence boundaries (Fig. 1 .2; Kozar et al. 1 990; Walker 

et al. 1 990; Srinivasan and Walker 1 993 ; Rankey et al. 1 994). Thus, deposition on the 

Middle Cambrian immature margin was primarily controlled by episodic tectonic 

subsidence, sediment loading, and eustatic sea-level changes superimposed on thermal 

post-rift subsidence. 
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One criticism of these ideas was that researchers have not specifically located the 

extensional faults in the field and proved their synsedimentary activity. The southern 

Appalachian passive-margin sedimentary succession has, of course, been subjected to 

substantial post-depositional structural deformation. The most prominent deformation 

was folding and thrust faulting during the Late Paleozoic Alleghanian orogeny (Hatcher 

1 987, 1 989). It is likely that Cambrian faults were obscured during these later tectonic 

events. Post-Cambrian, especially Late Paleozoic, reactivation of Cambrian faults has 

been documented in southeastern North America (Dever 1 986; Thomas 1 986, 199 1 ;  

Ferrill 1 989). Another argument against "jerky" subsidence, and in support of eustasy as a 

controlling factor for the formation of Appalachian Grand Cycles is based on the 

synchroneity of relative sea-level changes along the length of the passive margin, and on 

the restriction of major pulses ofMiddle Cambrian subsidence to the intracratonic graben 

system and the basement fault zone (Read 1 989). Cloetingh (1986, 1 988), however, 

proposed an explanation for a tectonic cause ofthird-order sea-level cycles deduced from 

passive-margin stratigraphic records. Apparent sea-level changes of up to 1 00 m can be 

caused by the interaction of intraplate-stress fluctuations and lithosphere deflection due to 

loading (Cloetingh 1 988). Short-term sea-level variations ofup to 50 m, such as those 

proposed for the Grand Cycles in the Appalachians (Read 1 989), may be produced by 

intraplate-stress variations associated with local adjustments of stresses at passive margins 

(Cloetingh 1988). Because of the extensional regime, local fluctuations and adjustments 

of stresses likely occurred in southeastern North America during the Middle Cambrian, 

thereby providing a mechanism for tectonic sea-level change (Rankey et al. 1994). 

Late Cambrian Mature Passive Margin 

Carbonate deposits of the Knox Group (Upper Cambrian to Lower Ordovician) 

extend across the intracratonic graben and basement fault systems without substantial 
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thickness variations indicative of synsedimentary tectonics, thus indicating that by Knox 

time, extension in the area had ended (Thomas 1991) .  Thus, the change from Conasauga 

Grand Cycle deposition to the thick peritidal carbonate sequence of the Knox Group is 

interpreted to correspond with the cessation of tectonic activity along extensional fault 

systems (Fig. 3 .3) .  The stabilization ofthe margin and the transition from immature into 

mature passive margin occurred during the Late Cambrian, and is marked by the 

deposition of the Maynardville Formation. 

The proposed cessation of tectonic activity was associated with a decrease in the 

rate of passive-margin subsidence. The rates of passive-margin net subsidence were 

determined to be high and rapidly decreasing (from 95 to 35  m/Ma) during the Middle 

Cambrian, and much lower and slowly decreasing (from 3 5  to <10  m/Ma) for the Late 

Cambrian and Early Ordovician based on one-dimensional modeling of early Paleozoic 

passive margins in the Cordillera and the Appalachians (Bond et al. 1 989). The change in 

subsidence rate was a direct consequence of the exponential decline of thermally 

controlled subsidence caused by an increase in lithospheric rigidity due to crustal cooling 

and thickening (Watts 1 982; Steckler and Watts 1 982; Bond and Korninz 1 984; Bond et 

al. 1988, 1989; Bott 1992). This change was probably coupled with long-term eustatic 

sea-level fall related to the subsidence of the mid-oceanic ridges with progressive cooling 

and consumption of ridges at subduction zones (Bond et al. 1 988, 1 989; Read 1 989). An 

increase in flexural rigidity of the lithospere can cause significant changes in passive 

margin stratigraphy because of the modification in the distribution of accommodation 

space produced by isostatic processes (Reynolds et al. 1 991  ) .  Lower flexural rigidities 

cause vertical distribution of accommodation space favoring narrow shelves and the 

formation of Type 2 sequence boundaries (Reynolds et al. 1 99 1). This was the case for 

the Middle Cambrian passive margin, which was characterized by an isolated carbonate 

platform and deposition of Conasauga Grand Cycles separated by Type 2 sequence 
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Figure 3.3. Late Cambrian mature passive-margin setting. A) Mature passive margin 
reconstruction (after Thomas 1 991) .  Note the lateral expansion of the shelf, 
related to carbonate platform progradation. B) Schematic cross-section through 
the mature passive margin, illustrating cessation of tectonic activity and the 
carbonate-platform progradation. 
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boundaries (Kozar et al. 1990). Type 2 sequence boundaries are interpreted to form when 

the rate of sea-level fall is lower than the rate of basin subsidence (Van Wagoner et al. 

1 988). On the other hand, higher flexural rigidities promote horizontal distribution of 

accommodation space. This favors wide shelves and the formation of Type 1 sequence 

boundaries (Reynolds et al. 1991  ), which are interpreted to form when the rate of sea-level 

fall exceeds the rate ofbasin subsidence (Van Wagoner et al. 1 988) . The Maynardville 

Formation (Upper Cambrian) reflects shallowing-upward in response to platform 

aggradation, enhanced by decreased accommodation related to increased lithospheric 

rigidity, the absence of episodic non-thermal tectonic subsidence, and possible long-term 

sea-level fall. The combination of these factors resulted in a significantly lower and much 

more steady subsidence rate during the Late Cambrian, allowing carbonate production to 

keep pace more easily with changing accommodation. These conditions also favored 

lateral expansion of the upper Maynardville/Copper Ridge Dolomite peritidal carbonate 

platform by progradation towards the craton over the completely infilled intrashelf basin 

and inactive graben system (Fig. 3 . 3B). Within this peritidal carbonate succession, a Type 

1 sequence boundary was recognized between the Maynardville and the Copper Ridge 

Dolomite, or within the basal Copper Ridge (Kozar et al. 1 990; Osleger and Read 1 993) .  

The Maynardville/Copper Ridge transition is  interpreted in the present study as a sequence 

boundary zone, contained within a relatively conformable succession, correlative to the 

Dresbachian/Franconian unconformity. In the absence of pronounced short-term 

tectonically induced subsidence, the sedimentologic consequences of this eustatic sea-level 

fluctuation are discernible from the sedimentary record of a stabilized or mature passive 

margin. The final establishment of a mature passive margin, with sedimentation controlled 

primarily by thermal subsidence and eustatic sea-level fluctuations, is reflected in the 

deposition of an approximately 1000 m thick, relatively uniform peritidal carbonate 

succession of the Knox Group. 
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Similar changes in the sedimentation patterns of other passive-margin depositional 

successions may represent the same sedimentologic consequences of continental-margin 

stabilization. Understanding the response by a sedimentary system to a set of conditions 

that exist during different stages in passive-margin development is a necessary step 

towards refinements in the reconstruction of passive-margin evolutionary histories. 

CONCLUSIONS 

The Middle Cambrian Grand Cycles of the Conasauga Group in the southern 

Appalachians were deposited during an immature passive-margin stage. This stage was 

characterized by episodic, non-thermal tectonic subsidence, sediment loading, and eustatic 

sea-level changes, superimposed on thermal post-rift passive margin subsidence. 

Deposition of the uppermost Conasauga carbonate unit, the Maynardville Formation 

(Upper Cambrian), reflects a transition from an immature into a mature stage in passive­

margin evolution. Sedimentation on the mature passive margin was primarily controlled 

by thermal subsidence and eustatic sea-level changes. The final stabilization of the passive 

margin is reflected by deposition of the thick peritidal carbonates of the Knox Group 

(Upper Cambrian to Lower Ordovician). The presence of similar transitions in passive­

margin successions elsewhere, can be the result of the same sedimentologic response to 

continental-margin stabilization. 



CHAPTER 4 

DIAGENETIC IDSTORY OF A TERMINAL CAMBRIAN GRAND CYCLE 

CARBONATE SUCCESSION, SOUTHERN APPALACIDANS 

INTRODUCTION 

The termination of Grand Cycle deposition represents a prominent change in the 

Lower Paleozoic passive-margin sedimentation of the southern Appalachians. The 

deposition of the Maynardville Formation (Upper Cambrian) marks a transition between 

the alternating shale and carbonate units or Grand Cycles of the Conasauga Group 
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(Middle to Upper Cambrian), and the overlying thick peritidal carbonate succession of the 

Knox Group (Upper Cambrian to Lower Ordovician) . This Chapter presents the results of 

the first detailed diagenetic study of this transitional interval. The distribution and 

characteristics of various diagenetic and depositional components were examined in order 

to document the relationship between the shift in the sedimentation regime and the 

prominent change in the diagenetic patterns recorded within this terminal Grand Cycle 

carbonate succession. 

The Maynardville consists of a lower subtidal depositional package and an upper 

peritidal depositional package (Fig. 2. 1 ). The subtidal package contains mixed siliciclastic 

and carbonate deposits (predominantly limestone), and is lithologically similar to the rest 

of the underlying Conasauga Group deposits. Therefore, the diagenesis of the subtidal 

deposits of the Maynardville is compared to that of the Maryville Formation (Middle 

Cambrian� Srinivasan 1993 � Srinivasan et al. 1994), and the Nolichucky Shale (Upper 

Cambrian� Foreman 1991 )  ofthe Conasauga Group. The peritidal package ofthe 

Maynardville consists primarily of extensively dolomitized carbonate deposits which are 

similar to the overlying Copper Ridge Dolomite and the rest ofthe Knox Group. 



76 

Consequently, diagenesis of the peritidal deposits of the Maynardville is compared with 

the results of diagenetic studies of the Upper Knox Group (Lower Ordovician; Montanez 

and Read 1 992a, 1 992b; Montanez 1 994). 

The transition from the subtidal to the peritidal depositional regime at the end of 

Grand Cycle deposition resulted in the formation of lithofacies which differ in type and 

distribution of porosity, and have accordingly undergone different early diagenesis. The 

late diagenesis of these deposits is examined in the context of changes in regional facies 

distribution, and the complex burial history controlled by the latest stages of passive­

margin development and the transition into a convergent margin setting. 

METHODS 

Following field work and sample collection, detailed petrographic and geochemical 

analyses were performed on a selected set of samples from the Maynardville Formation 

and the lower part of the overlying Copper Ridge Dolomite. Petrographic analysis 

included examination of over 600 cut hand samples. Standard (transmitted light) 

petrographic microscopy was carried out on 330 thin sections (75x50 mm), that were 

stained following the procedure outlined in Dickson ( 1965, 1 966). Selected thin sections 

were examined using a Citl Cold Cathode Luminescence 8200 mk3 microscope under the 

following operating conditions: voltage 1 0- 12  kV, beam current 1 50- 1 80 J..I.A, and 

chamber pressure 1 80-200 millitorr. Scanning electron microscopy (SEM) was performed 

using a low energy beam ( 10  ke V) on a small subset of unetched, coated samples, that 

were broken off thin section billets. Crystal sizes were described using the terminology 

after Boggs ( 1 987). Detailed microscopic analyses aided in the identification of 

components for geochemical analysis. 

The samples for stable isotope (oxygen and carbon) analysis were collected by 

drilling 2-1 0 mg of individual carbonate depositional and diagenetic components from 
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polished thin-section billets using a microscope-mounted microdrill. Organic matter 

was removed by roasting the powdered samples at 380°C for one hour. Samples were 

reacted off-line with 1 00% H3P04 at 25°C for 24 hours (calcite) and 48 hours (dolomite). 

For mixed calcite/dolomite samples, a time extraction procedure was used (Epstein et al. 

1 963; Walters et al. 1 972; Wada and Suzuki 1 983). The carbon dioxide evolved within 

one hour after the start of the reaction with phosphoric acid is primarily generated by the 

dissolution of calcite, whereas the gas produced during the following three hours of the 

reaction represents a mixture of calcite- and dolomite-derived C02. The gas evolved after 

48 hours is considered representative of the dolomite present in the sample. Isotope 

values were obtained on a VG-903 isotope ratio mass spectrometer and are reported as 

(513C and (5180 in permil (o/oo) relative to the PDB standard. External precision was ± 0.05 

o/oo for both (513C and (5180; sample reproducibility (± l cr) was 0.2 o/oo. 

Major and trace element compositions of selected carbonate components were 

analyzed on a Cameca SX-50 Electron Microprobe equipped with four wavelength­

dispersive spectrometers and one energy-dispersive spectrometer. Analyses were 

performed on polished thin sections using a defocused beam ( 1 0-20 J..lm in diameter), 25 

kV accelerating voltage, and 10  nA beam current. Detection limits were 0. 1 mole % 

MgC03 for Mg (count time = 20 sec), 100 ppm for Mn and Fe, and 200 ppm for Sr 

(count time = 60 sec). Well-characterized carbonate standards were analyzed to monitor 

the calibration error. 

Radiogenic strontium isotope analyses were performed by Dr. Steven A Goldberg 

at the University ofNorth Carolina at Chapel Hill. Samples for Sr isotopic analysis were 

dissolved in 1 .  0 M Ultrex II acetic acid at room temperature. Prior to carbonate 

dissolution, samples were washed twice in 500 ml of 0.25 M Ultrex II acetic acid at room 

temperature for 5 minutes, followed by two rinses with ultraclean Milli-Q deionized water 

to remove exchangeable Sr from any clay minerals or other residue. Splits of powdered 



samples were also washed with 0.25 M ammonium acetate and leached in the same 

87 86 
manner as above. The Sr/ Sr of samples treated with ammonium acetate were 

compared with that of dilute acetic acid washed splits to ensure that Sr was not derived 
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from clays or other impurities. Sr isotope data were collected on a VG sector54 thermal 

ionization mass spectrometer in quintuple collector dynamic mode. 

A burial curve for the Maynardville Formation in northeastern Tennessee was 

constructed using the SUBSIDE computer program (Wilkerson and Hsui 1 989). The 

information on the lithologic content, thickness, and age of the units for the construction 

ofthe burial curve was compiled from Walker ( 1 985), Harland et al. ( 1 989), and the 

CO SUN A (Correlation of Stratigraphic Units of North America) chart for the southern 

Appalachian region (Patchen et al. 1 985). 

PETROGRAPIDC OBSERVATIONS 

As a function of different environmental regimes, the subtidal and peritidal 

sedimentary packages of the Maynardville have different lithologic content (Fig. 2 . 1 ;  

Tables 2 . 1 ,  2 .2). This is accompanied by difference in the diagenetic patterns observed. 

The two packages differ in the occurrence and distribution of pore types and the occluding 

cement phases, as well as in the mineral composition of the micritic matrix and allochems 

present. 

Subtidal Package 

The characteristics of the various diagenetic phases present within the subtidal 

depositional package ofthe Maynardville are summarized in Tables 4. 1 and 4.2. The 

subtidal depositional package is dominated by centimeter-scale interbedded limestone and 

argillaceous layers, which comprise the ribbon rocks (Fig. 2. 1 ;  Table 2. 1 ) .  The 

depositional micrite is composed of a mosaic of non-ferroan, aphanocrystalline to very 



fth btidal d al k 
Dia2enetic comoonent Occurrence Description 

Patchy distribution within mud-rich layers, associated Mosaic of very fmc- to fine-
with burrows with diffuse walls and framboidal pyrite. crystalline ( 10-25 J.Un) calcite. 
Comprises internal sediment at bottoms of burrows with Commonly stains ferroan. 

Microsparite sharp walls. In ribbon rocks occurs adjacent to and within 
argillaceous layers. In packstone layers present in 
interparticle space and as a replacement of skeletal 
fragments and micritic allochems. 
First generation of cement. Fibrous morphology is Radial- and radiaxial-fibrous crystals 
occasionally replaced by bladed (prismatic) crystals with (length:width ratio > 6: 1  ), and 
subsequent precipitation, widening and enlarging of bladed (prismatic) crystals 

Fibrous/bladed calcite crystals away from the substrate. Fibrous cement is (length:width ratio < 6: 1 )  reaching 
cement common as isopachous rims on ooids and trilobite maximum width of 200 J.Ull and 

fragments. Fibrous/bladed calcite also originates on length of 500 f.llll. Cloudy or turbid 
burrow walls and framework voids of microbial deposits. appearance (inclusion rich). 
Present in packstone/grainstone deposits as syntaxial Coarse crystals (up to 2 . 5  mm) share 
overgrowth cement precipitated as individual crystals compromise growth boundaries with 

Syntaxial calcite cement sharing crystallographic orientation with host echinoderm fibrous/bladed cement. Turbid 
fragments. Rare coarse crystals poikilotopically engulf appearance (inclusion-rich), with 
other allochems present. less turbid outer parts. 
Precipitated on fibrous/bladed cement, or as the first Drusy and non-drusy fabric of 
generation of cement in intergranular pores, some burrows equidimensional fme- to medium-

Equant calcite cement 
and dissolutional voids. Fills in small fractures formed by crystalline (up to 80 J.Ull) turbid 
mechanical compaction of allochems, which are in turn crystals, and coarse-crystalline (up to 
truncated by stylolites. 0.5 mm) less turbid crystals. 

Subsequently precipitated on non··ferroan calcite cements. Coarse- to very coarse-crystalline 
Ferroan equant calcite Commonly fom1s the pore-central cement. Also occurs as (0.5-3 mm) calcite. Also forms clear 

cement the frrst generation of cement in some burrows and overgrowths on turbid non-ferroan 
dissolutional voids. equant calcite. 

Ferroan calcite in 
Ferroan equant calcite occludes bed-oblique and bed- Equant and fibrous crystal 
normal fractures. Bed-parallel fractures within ribbon morphologies comprise massive and 

fractures 
_ rocks also contain ferroan fibrous calcite. "stretched" vein fills, respectively. 

CL pattern 

Primarily non- to dark dull 
luminescent. Individual crystals are 
more brightly luminescent. 

Uniform to patchy distribution of 
non- to dark dull 1uminescence. 
Some crystals have non-luminescent 
cores and dull to bright luminescent 
outlines and terminations which 
occasionally show complex CL 
banding. 

Dark dull luminescence. Occasional 
patches and thin outer crystal rims of 
more brightly luminescent calcite. 

Uniformly dark dully luminescent or 
zoned with dull luminescent cores 
and thicker, more brightly 
orange/yellow luminescent outer 
parts which commonly contain dully 
luminescent patches or subzones. 
Complexly zoned with numerous 
non- to dark dully luminescent 
subzones. Some coarser crystals are 
uniformly non- to dark dully 
luminescent. 
Non-luminescent (fibrous) and non-
to dull orange luminescent (equant). 

._J 1.0 



Table 4 .2 .  D f dolomitic d' fth 
Dial!enetic component Occurrence 

Associated with clay seams within argillaceous layers of 
the ribbon rocks and with small amplitude stylolites in 

Ferroan fine- otl1er less argillaceous deposits. Also occurs as scattered 
crystalline dolomite crystals replacing micritic matrix and allochems (peloids, 

intraclasts). Commonly associated wifu ferroan calcite 
and framboidal pyrite. 
Selectively replaces allochems (skeletal fragments, 

Replacement saddle 
peloids). Also common in interparticle pores of skeletal 
packstone/grainstone as a possible replacement of 

dolomite preexisting cement phases. Associated wifu hardgrounds 
characterized by pyrite crusts and coatings on allochems. 
Pore central cement phase, postdates ferroan calcite 
cement, and was preceded by a dissolutional event. 

Saddle dolomite cement 
Association wifu pyrite, rare galena and sphalerite 
observed in coarse-grained intraclastic layers, rare shaley 

---- layers of fue ribbon rocks, and some dissolutional voids. 

btidal d k 
Description 

Ferroan, mostly very fine- to fme-
crystalline ( 1 0  - 50 J.Ull) anhedral to 
subhedral dolomite, associated witl1 
some medium-crystalline (up to 1 50 
J.Ull) rhombohedral (planar-e) 
dolomite. 
Ferroan, coarse- to very coarse-
crystalline (250 J.Ul1 ·  1 . 5 mm) saddle 
dolomite wifu characteristic 
undulatory extinction. 

F erroan, very coarse-crystalline ( 1-4 
mm) saddle dolomite crystals wifu 
curved boundaries and undulatory 
extinction. Some crystals have 
brownish color in plane light. 

CL pattern I 
Dark, non-lwninescent. Rare I rhombohedral crystals have uniform 
or zoned dull to bright luminescence. 

Non-lmninescent. Less common 
dark dull lwninescent crystals. 

Non-luminescent to very dark dull I 
reddish/brown lwninescent. ! 

Occasionally one thin brightly 
red/orange lwninescent zone present. 

---·---

00 0 
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fine-crystalline calcite (Fig. 4. 1A), that shows patches ofbright to dull luminescence, 

and contains many individual non-luminescent crystals. The subtidal micritic deposits are 

commonly burrow-mottled (Fig. 4 . 1A).  Burrows with diffuse walls are represented by 

patches of fine-crystalline ferro an calcite or microsparite which is commonly associated 

with framboidal pyrite (Fig. 4. 1 A; Table 4. 1 ). 

Interparticle pores are common in subtidal ooid, skeletal (trilobite, brachiopod), 

and intraclastic packstone/grainstone deposits (Figs. 4 . 1C-E). These pores are occluded 

by various calcite cement types including fibrous/bladed, equant and syntaxial overgrowth 

cement (Figs. 4. 1 C-E, 4.2; Table 4. 1) .  Subtidal microbial deposits (thrombolites and 

digitate stromatolites) also contain framework voids and burrows with sharp walls .  These 

voids commonly show geopetal features, and have the upper parts occluded with calcite 

cement (Table 4. 1 ;  Fig. 4 . 1F). Dissolutional pores are not abundant within the subtidal 

deposits. Some ofthe burrow- and framework-related voids are dissolution enlarged (Fig. 

4. 1 G). Dissolution voids have also been observed associated with an exposure surface 

developed on subtidal lithofacies at the Tazewell outcrop (Fig. 2 .6) .  Such voids are 

primarily occluded with equant calcite cement and rare dolomite cement (Figs. 4. 1 G; 

4.3A-B; Tables 4 . 1 -2). 

Dolomite is not an abundant diagenetic phase in the subtidal package and it occurs 

exclusively in a ferroan form. The most common dolomite type is fine-crystalline dolomite 

associated with argillaceous layers of the ribbon rocks (Figs. 2.2B, 2 .4A, 4 . 1 A-B, 4 . 1E; 

Table 4.2) .  The argillaceous layers contain numerous pressure dissolution surfaces that 

represent non-sutured dissolution seams, microstylolites, or clay seams (Fig. 4 . 1A; 

Wanless 1 979; Simpson 1 985; Bathurst 1987; Choquette and James 1 987; Railsback 

1 993). Clay- to silt-size quartz grains, pyrite, ferroan calcite, and rare glauconite are also 

present within the argillaceous layers. F erroan dolomite also occurs along small amplitude 

stylolites developed in less argillaceous subtidal deposits (Table 4 .2) .  Coarser-crystalline, 
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Figure 4.1. Photomicrographs illustrating characteristic features of the subtidal deposits. 
A) Photomicrograph of a ribbon rock showing the contact between a dark-colored 
argillaceous dolomicritic layer (a) above, and a limestone layer below. Partial 
dissolution of a trilobite skeletal fragment in the upper left comer of the 
photograph is indicative of the presence of pressure solution surfaces (arrow) 
within the argillaceous layer. The limestone layer is composed ofburrow-mottled 

micrite (m). Burrows and areas adjacent to argillaceous layer are composed of 
ferroan microsparite (ms) . Framboidal pyrite (p) is common within both limestone 

and argillaceous layers. Scale bar = 1 mm. B) SEM photomicrograph of dolomite 

(d) within clay matrix (a) of argillaceous layers from the ribbon rocks. Scale bar = 

20 J..Lm. C) Photomicrograph of an ooid grainstone deposit with intergranular 
space occluded primarily by turbid fibrous/bladed calcite cement (f). Ooids have a 
variable degree of preservation, from well preserved radial fabric ( r ), to altered (a). 

Scale bar = 1 mm. D) Photomicrograph showing a compromise boundary (arrow) 
between fibrous/bladed calcite cement (f) and syntaxial calcite cement (s) that 
precipitated as overgrowth on an echinoderm skeletal fragment (e). Scale bar = 

1 00 J..Lm. E) Photomicrograph of a ribbon rock showing a skeletal 

packstone/grainstone layer adjacent to an argillaceous layer (a) with scattered 

dolomite crystals (d). Intergranular space is occluded with: syntaxial calcite 

cement overgrowth ( s) on an echinoderm fragment (e), fibrous/bladed calcite (f) 

that precipitated on trilobite fragments in shelter voids, and some equant calcite 

cement (q). Arrow points at the boundary between an initial turbid and later clear 
syntaxial overgrowth cement. Scale bar = 1 mm. F) Framework void in 
thrombolitic deposit occluded with pore-rim turbid fibrous/bladed calcite (f), and 
pore-central clear equant calcite cement (e). Scale bar = 1 mm. G) Dissolution­

enlarged void within thrombolitic deposit occluded with ferroan equant calcite 
cement (e), and rare, pore-rim, rhombohedral dolomite (d). Scale bar = 1 mm. 
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Figure 4.2. Paired plain-light and CL photomicrographs ofthe most common cement 

types in the subtidal deposits. A) Plain-light photomicrograph of a fibrous/bladed 
calcite cement (f) and pore-central equant calcite cement (e). The cements show 
patchy distribution of non- to dark dull luminescence on the paired CL 

photomicrograph B. Scale bar = 1 mm. C) Cross-polarized light 

photomicrograph of the fibrous/bladed calcite cement (f), postdated by turbid to 

clear equant calcite cement (e). On the paired CL photomicrograph D, 
fibrous/bladed calcite has non-luminescent cores (c) and more brightly luminescent 
crystal terminations (t). Equant calcite is non to dark dull luminescent and shows 

faint zonation. Scale bar = 250 J..l.m. E) Shelter void underneath a trilobite 
fragment occluded with fibrous/bladed calcite (f), and equant calcite cement (e). 

Internal sediment on the bottom ofthe void is composed ofmicrosparite (ms). On 
the paired CL photomicrograph F, the initial fibrous/bladed calcite shows a patchy 
distribution of luminescence. Crystal terminations show complex CL zonation 

with several non- and dull luminescent zones, and a more brightly luminescent 
outer part (arrow). Equant calcite cement is dull luminescent and does not show 
obvious zonation. Scale bar = 0. 5 mm. 
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Figure 4.3. Paired plain-light and CL photomicrographs ofthe equant calcite cement and 
saddle dolomite from the subtidal deposits. A) Pore-central saddle dolomite 
cement (d), surrounded by equant to prismatic calcite cement. Arrow indicates a 
boundary between an initial turbid, and a later clear calcite cement. On the paired 
CL photomicrograph B, dolomite is non-luminescent with the exception of one 

thin brightly luminescent zone. Equant calcite cement shows complex CL zonation 

including: 1)  non-luminescent core; 2) bright to light dull luminescent zone with 
minor subzones; 3) non-luminescent zone; and 4) dark dull luminescent zone with 
numerous subzones. The boundary between zones 2 and 3 represents a transition 

from nonferroan to ferroan calcite. Ferroan equant calcite was partially dissolved 
(arrows) prior to the deposition of the saddle dolomite. Scale bar = 0 .5  mm. C) 

Replacement saddle dolomite (d) in a skeletal packstone layer, about 1 em below a 

hardground surface. Note common pyrite (p). On the paired CL photomicrograph 
D saddle dolomite is non-luminescent. Scale bar = 0.5 mm. 
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ferroan saddle dolomite is present within the subtidal lithofacies as a replacement phase 

commonly associated with hardgrounds characterized by pyrite crusts and coatings (Fig. 

4.3C-D; Table 4.2).  Saddle dolomite also occurs as a pore central cement phase (Fig. 

4.3A-B). The association of saddle dolomite cement with Mississippi Valley Type (MVT) 

minerals such as galena, sphalerite, and pyrite has also been observed. 

Peritidal Package 

The deposits of the peritidal package that have not been completely dolomitized 

include: 1 )  lower parts of microbial laminates or stratiform stromatolites which mark the 

transition from the subtidal into the peritidal depositional regime; and 2) shallow subtidal 

microbial deposits such as thrombolites and digitate stromatolites. These deposits are 

composed primarily of aphanocrystalline to fine-crystalline non-ferroan calcite. The most 

common type of voids within these deposits are burrows. In the stratiform stromatolite 

deposits, burrows contain framboidal pyrite and equant calcite cement which is commonly 

ferroan. The small burrows in the thrombolites and digitate stromatolites are also 

occluded by fibrous/bladed calcite. Dolomite is present within these deposits as a 

replacement of micritic laminae in the stratiform stromatolites, and as a selective 

replacement of non-microbial allochems within the thrombolites and digitate stromatolites. 

Details on the selective dolomitization of microbial deposits and its implications are 

presented later in Chapter 6. 

The remaining peritidal lithofacies have been extensively dolomitized. Four 

dolomite replacement fabrics are recognized within the upper Maynardville Formation and 

the overlying Copper Ridge Dolomite : 1 )  dolomicrite; 2) dolomicrosparite; 3) coarser­

crystalline dolomite; and 4) saddle dolomite (Fig. 4.4; Table 4.3) .  Dolomicrite and 

dolomicrosparite are the most abundant types of dolomite (Figs. 4.4A-C). They are finer­

crystalline, have abundant planar crystal boundaries, and are fabric retentive in comparison 
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Figure 4.4. Photomicrographs illustrating replacement dolomite types from the peritidal 
deposits. A) Dolomicrite. Scale bar = 0.5 mm. B) SEM photomicrograph of 
dolomicrite. Scale bar = 5 1-1m. C) Photomicrograph of dolomicrosparite. Scale 
bar = 0.5 mm. D) Photomicrograph showing a typical xenotopic texture of 
coarser-crystalline replacement dolomite. Arrow points at an allochem ghost. 
Scale bar = 0.5 mm . E) Photomicrograph of saddle dolomite in a dark bituminous 
matrix. Scale bar = 0.5 mm. 
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bl � - - - - . - - - - -- - - :r_ 
Replacement dolomite 

Dolomicrite 

Dolomicrosparite 

Coarser-crystalline 
dolomite 

Saddle dolomite 

Cement dolomite 

bned dolomite cement 

Saddle dolomite cement 

- - f dol . .  d" �- - - - --- - -- fth 
Occurrence 

The primary component of mud-rich deposits including: 
dolomitized mudstone, fine-grained mechanical laminates 
or "couplets", upper micritic parts of medium- to coarse-
grained "couplets", and micritic laminae of stratiform, 
LLH and SH stromatolites. 
Similar to dolomicrite. More abundant in lower, grainy 
portions of medium- to coarse-grained "couplets" and in 
laminated microbial deposits. Also occurs in irregular 
patches that cross-cut lithologic bmmdaries. 
Increases in abundance upsectiQn. Comprises microbial 
(SH and colunmar stromatolites), and coarser-grained 
oolitic, intraclastic and peloidal deposits with laminae and 
allochem ghosts preserved. In some cases fabric is 
completely obliterated. Patchy distribution within rare 
partially dolotnitized microbial deposits. 

Volumetrically least abundant replacement phase 
restricted to the uppermost Maynardville and the Copper 
Ridge Dolomite. Fabric obliterate. Patchy, irregular 
distribution and rare remnant fibrous/bladed calcite may 
suggest preferential replacement of burrows. Embedded 
in brownish to black, argillaceous or bituminous matrix. 

Occurrence 

Completely occludes smaller desiccation, evaporite 
dissolution, fenestral and rare intergranular voids. In 
larger voids forms pore rim cement. Individual 
rhombohedral crystals occur on burrow walls and rims of 
dissolution enlarged voids in rare non-dolomitized 
thrombolitic deposits. Also occludes rare oomoldic voids. 

Subsequently precipitated on pore rim zoned dolomite 
cement in larger desiccation and evaporite dissolution 
voids as the last, pore occluding cement phase. 
Completely occludes tectonic fractures, dissolution voids 
and some voids of uncertain origin in fabric-obliterated 
deposits. 

· "dal d k 
Description CL pattern 

Fabric retentive mosaic of Uniform to patchy distribution of 
aphanocrystalline to very fme- non- to dark dully orange 
crystalline ( <10- 1 5  Jllll) anhedral to luminescence. 
euhedral (planar-e) dolomite. 

Fabric retentive mosaic of fme- Patchy distribution of non- to bright 
crystalline ( 1 5-60 Jllll) subhedral orange luminescence. 
(planar-s) to euhedral (planar-e) 
dolomite. 
Mosaic of medium- to coarse- Non- to dark dull luminescent. 
crystalline (60-300 Jllll) dolomite Patchy distribution of dull 
with irregular and non-planar luminescence is related to the 
boundaries (xenotopic mosaic). presence of allochem ghosts. 
Some crystals have turbid cores and 
less turbid to clear outer parts. 
Coarse- to very coarse-crystalline (up Non-luminese<.'tlt to dark dull brown 
to 1 -2 mm) saddle dolomite. Well luminescent. Surrounding 
developed curved crystal faces. bituminous matrix has dark blue 
Some crystals have turbid centers luminescence. 
and less turbid to clear outer parts. 

Description CL pattern i 
Medium- to coarse-crystalline (200 I! Complexly zoned. Number and 
m - 1 mm). Individual pore-rim thickness of zones vary. Turbid 
rhombohedral crystals are < 300 Jllll . cores are dull luminescent, followed 
Commonly zoned with turbid centers by several bright to dull luminescent 
and less turbid to clear outer parts. zones and an outermost non to dark 
Uniform to undulatory extinction. dull luminescent zone. 

Very coarse-crystalline ( 1 -3 mm) Similar to outermost zone of zoned 
saddle dolomite. Well developed dolomite cement: non-luminescent 
curved crystal faces and undulatory with some faint, dark dully 
extinction. Some crystals are lwninescent zones. Turbid crystals 
uniformly turbid or have turbid cores are bright to dull luminescent and 
and less turbid rims. show no zonation. \0 ........ 



to the coarser-crystalline and saddle dolomite (Fig. 4.4; Table 4.3) .  The amount of 

coarser-crystalline replacement dolomite and saddle dolomite increases upsection, with 

saddle dolomite being the least abundant dolomite replacement type (Figs. 4.4D-E). 
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The most common pore types in the peritidal package are desiccation voids, 

evaporite dissolution voids, and fenestral voids (Fig. 4.5A).  These pores are occluded 

with zoned dolomite cement and a pore-central, coarse-crystalline saddle dolomite cement 

(Fig. 4 .5;  Table 4.3) .  The number and thickness of individual zones of dolomite cement, 

recognized using cathodoluminescence (CL), vary substantially between pores (Fig. 4.5D­

E). Small fenestral and evaporite dissolution voids are occluded by non-luminescent 

dolomite which is petrographically similar to cores of complexly zoned dolomite crystals 

from larger pores (Fig. 4.5) .  In the rare, partially dolomitized, shallow subtidal microbial 

deposits, zoned rhombohedral dolomite crystals precipitated on pore walls (Figs. 4. 5B-C). 

The centers of large pores are occluded with coarse-crystalline saddle dolomite cement 

(Table 4.3) .  This cement type also occludes dissolutional voids and tectonic fractures 

(Fig. 4.5F-G). 

Fractures 

Tectonic fractures are not abundant in the Maynardville Formation, except at the 

River Ridge outcrop where more prominent structural deformation features have been 

observed (see Appendix A). Bed-oblique and bed-perpendicular fractures are occluded by 

medium- to very coarsely-crystalline equant calcite cement, which is commonly ferroan 

(Table 4. 1 ) , and/or by saddle dolomite cement (Table 4.3). Rare bed-parallel fractures 

from subtidal ribbon rocks also contain ferroan fibrous calcite (Table 4. 1 ). 

Silicification 

The first occurrence of chert in the peritidal succession is one of the criteria used 



Figure 4.5. Photomicrographs illustrating dolomite cements from the peritidal deposits. 
A) Fenestral voids occluded with dolomite cement. Scale bar = 1 mm . B) Plain­
light, and the paired CL photomicrograph C, of a pore-rim, zoned rhombohedral 
dolomite (d) postdated by ferroan equant calcite cement (e). See also Fig. 4. 1 G. 
Scale bar = 250 Jlm. D) Desiccation void occluded by zoned dolomite cement 
which on the paired CL photomicrograph E, shows a complex CL zonation 
pattern. Scale bar = 0. 5 mm . F) A void occluded primarily by saddle dolomite 
cement and a rare pore-rim rhombohedral dolomite (r) . On a paired CL 
photomicrograph G), rhombohedral dolomite shows zonation, whereas saddle 
dolomite is uniformly non to dark dull luminescent. Scale bar = 0 .5  mm . 
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for the placement of the boundary between the Maynardville and the Copper Ridge 

Dolomite. Even though chert is more common in the overlying Copper Ridge Dolomite, 

silicification is also associated with rare ooid grainstone layers, intraclastic-ooid 

packstone/grainstone layers, and microbial deposits (stratiform, LLH, SH, and columnar 

stromatolites) of the upper part of the Maynardville. Chert replaces micritic allochems and 

matrix, whereas the pore space is infilled with two types of silica cement : 1 )  an earlier, 

often banded, chalcedony cement; and 2) a later, pore-central, coarser-crystalline, equant 

quartz cement. The later cement type also precipitated on pore rims in the absence of 

chalcedony. The silica cements are commonly associated with replaced evaporite nodules. 

GEOCHEMISTRY 

The geochemistry of various depositional and diagenetic components, including 

stable isotope (oxygen and carbon) values, major (Ca, Mg) and trace element (Fe, Mn, Sr) 

compositions, and Sr isotope ratios, are summarized in Tables 4.4 and 4 .5 .  See 

Appendices B and C for a more detailed description of individual samples and results of 

geochemical analyses. 

Stable Isotope Compositions 

Lohmann and Walker ( 1989), estimated a ol8Q value of -5 o/oo PDB, and a ol3C 

value of -0.5  o/oo PDB for Cambrian marine calcite. Gao and Land ( 1 991b), proposed a 

range of stable isotope values for Late Cambrian/Early Ordovician marine carbonate 

deposits of -5 to -3 o/oo PDB for oxygen, and - 1  to +2 o/oo PDB for carbon. In comparison 

to these values, all of the depositional and diagenetic components analyzed in this study 

are depleted in 18Q, and are generally enriched in 13C (Figs. 4.6, 4 .7) .  The significance of 

a large scatter in ol3C values and the overall l3C-enrichment for the samples analyzed is 

discussed later in Chapter 5 .  



Table 4.4. Summary of geochemical data for the depositional and diagenetic components of the deposits that have not been 
xtensivelv dolomitized - -

Component 
B180 � PDB B13C � PDB 87Srf'I6Sr Ran2e Avl! (n) Ran2e Avl! (n) 

Micritic matrix: non-microbial -8.98 to -7. 16 -7.82 (26) 0.49 to 4.09 2.40(26) -

Micritic matrix: microbial - 10.98 to -8.63 -9.54 ( 10) 1 .53  to 3.68 2.89 ( 10) 0.70920 
Fibrous/bladed calcite -10 . 16 to -7.48 -8.92 ( 17) 2 .3 1  to 4.89 3.48 ( 17) 0.70910 
Equant calcite cement -10.65 to -8.83 -9.53(1!) 1 .24 to 4.72 2.76 ( 1 1 )  -

Ferman equant calcite - 1 1 .00 to -9.07 -9.87 ( 8) 1 .97 to 3 . 1 9  2 .53( 8) 0.70889 
Dolomite from argillaceous layers -8. 1 5  to -6.05 -7.07 ( 12) 2.83 to 4.99 3 .71 (12) -

Calcite from argillaceous layers -8.92 and -8.23 -8.57 ( i) 1 . 98 and 2.35 2 . 17(i) -

Equant calcite cement in fractures -12.92 to -9.38 - 1 1 .22 ( 10) 0.70 to 3.29 2.28 -(10) -

Saddle dolomite replacement - -8. 1 3  ( 1 )  - 3.39( i) -

Saddle dolomite cement -9.90 to -8.4 1 -8.94 ( 3). 3.44 to 3.97 3.65(3) 0.70960 

Component 
CaC03 mole % MgC03 mole % Fe ppm Mn ppm Sr ppm 

Range Avg Range Avg Range A\·g• Range Avg• Range Avg• 
Micritic matrix: non-microbial 96.85 - 98.23 97.55 1 .63 - 2 .50 2.22 335 - 3 18 1  847 < 100 - 169 571154 200 - 673 463 
Altered ooids 97.72 and 98.03 97.88 1 .79 and 2.09 1 .94 910 and 998 954 < 100 - < 200 -

Fibrous/bladed calcite 97.38 - 99.54 98.24 0 . 16 - 2.52 1 . 58 < 100 - 1712 33/306 < 100 - 53 1  40/2 1 3  < 200 - 2695 1 1 11092 
Syntaxial calcite cement 97.46 - 99.21  98.32 0.71 - 2.37 1 . 54 153 - 1039 698 < 100 - 264 69/154 < 200 -

Equant calcite cement 96.98 - 99. 1 8  98.23 0.75 - 2.90 1 .63 < 100 - 1 337 43/633 < 100 - 403 43/233 < 200 - 1 874 47n3o 
Ferman equant calcite 97.3 1  - 99.31  98.63 0.62 - 2.53 1 .25 345 - 727 5 12 < 100 - 275 43/174 < 200 -

Equant calcite cement in fractures 97.29 - 99.75 98.46 0.24 - 2.37 1 .4 1  < 100 - 1748 5411259 < 100 - 33 1  4211 92 < 200 - 340 96/340 
Saddle dolomite replacement 53.83 - 55.28 54.74 39.59 - 42.22 4 1 . 1 0  20752 - 32663 23995 429 - 1057 653 < 200 -

Saddle dolomite cement 53 .23 - 55.57 54.53 40.95 - 43 .91  42.36 12821 - 21 962 17584 472 - 1 100 847 < 200 -

• for the set of data containing values below detection limits ( I  00 ppm for Fe and Mn, and 200 ppm for Sr), the flrst number represents the percentage of analyses below 
detection limit, and the second number represents the average value for the analyses above the detection limit 

\0 0\ 



Table 4 .5 .  Summary of geochemical data for the depositiona and diagenetic components of extensively dolomitized peritidal deposits. 
B13C "-PDB 

I I 
Component 

Dolomicritic matrix: non-microbial 
Dolomicritic matrix: microbial 
Dolomicrosparite 
Coarser-crystalline replacement dolomite 
Saddle dolomite (replacement) 
Dolomite cement: zoned 
Dolomite cement: saddle 

Component 

Dolomicritic matrix: non-microbial 
Dolomicritic matrix: microbial 
Coarser-crystalline repl. dolomite 
Saddle dolomite (replacement) 
Dolomite cement: zoned 
Dolomite cement: saddle 

B180 "-PDB 
Range Avg (n) 

-7.88 to -5.86 -6.78 (41)_ 
-7.77 to -6.21 -6.70__li!l 
-8.07 to -6. 14 -6.83 {l� 
-9.04 to -6.09 -7.42__C!ll 

-10 .51  to -6.44 -7.75 ( 8) 
-8.46 to -6.87 -7.70_{_111 
-9.80 to -6.88 -8.2 1__nn 

Range Avg (n) 
0.32 to 4.68 3 . 1 3_{41) 
0.67 to 4.38 3 . 1 3_(_11} 
1 . 52 to 4.78 3 . 5 1 (1 5) 
0.62 to 3 .52 2 .34__C!ll 
2.64 to 4.32 3.22 ( 8) 

87Srf86Sr 

0.70970 

1 .27 to 3 . 37 2.46i!!.l l 0.70865; 0.70874 
-0.61 to 4 .39 2 .8l_(L8l l 0.70866; 0.70896 

CaC03 mole % MgC03 mole % Fe ppm Mn ppm 
Range Avg 

52.77 - 55.92 54. 1 6  
50.61 - 5 1 . 50 5 1 .04 
53.84 - 56.69 55 .00 
52.92 - 54.84 53.58 
50.26 - 54. 10  52.28 
5 1 .47 - 56.59 53.70 

Range Avg 
43.92 - 47. 1 0  45.70 
48.38 - 49.30 48.84 
43. 19 - 45. 1 5  44.29 
43.63 - 45.99 45.2 1 
45.5 1  - 49.64 47.30 
43.30 - 47.60 45.21 -- ------------ -- - ------------------

Range Avg• Range Avg• 
281 - 1 3 1 5  774 < 100 - 124 56/ 1 1 2  

349 - 892 623 < 100 - 1 57 78/ 154 
343 - 8214  4025 < 100 - 43 1  27/274 

5426 - 9867 7025 < 100 - 488 1 1 /246 
< 1 00 - 4982 5/2471 < 100 - 408 161222 
458 - 10670 6264 < 100 - 6 18  1 1 /339 

Sr ppm 

Range Avg• 
< 200 - 288 781254 

< 200 -

< 200 -

< 200 -

< 200 -

< 200 - 261  99/261 
• for the set of data containing values below detection limits ( 1  00 ppm for Fe and Mn, and 200 ppm for Sr), the first number represents the percentage of analyses below 
detection limit, and the second number represents the average value for the analyses above the detection limit 

\0 -....) 



Figure 4.6. Stable isotope composition of various carbonate components from the 
subtidal deposits. A) Matrix calcite and dolomite samples. B) Calcite and 
dolomite cement and saddle dolomite replacement samples. 
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Figure 4 .  7 .  Stable isotope composition of various carbonate components from the 
extensively dolomitized peritidal deposits. A) Replacement dolomite samples. B) 
Dolomite cement. 
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Figure 4. 6 shows the stable isotope compositions for the subtidal depositional 

package of the Maynardville Formation. The compositions of different components 

overlap significantly. The ()18Q values generally range from - 1 3 . 0  to -6 .0 o/oo PDB, with 

dolomite from argillaceous layers being among the least depleted in 180. Conversely, the 

equant calcite cement from tectonic fractures has the most 180-depleted compositions 

(Fig. 4 .6, Table 4.4). Figure 4. 7 is a compilation of stable isotope data for the extensively 

dolomitized peritidal depositional package of the Maynardville Formation and the lower 

part of the Copper Ridge Dolomite. Oxygen isotope values for various replacement 

dolomite samples show substantial overlap (Fig. 4.7A), with average ()180 values 

decreasing slightly from dolomicrite (replacement fabric 1) to saddle dolomite 

(replacement fabric 4; Table 4.5). Isotope values for the zoned and saddle dolomite 

cement ofthe peritidal package also overlap, but zoned dolomite is on average less 

depleted in 180 than saddle dolomite (Figure 4 .7B; Table 4.5). Because of sample size 

considerations and limited thickness, individual zones of dolomite cement were not 

sampled and analyzed separately for stable isotope compositions. 

Major and Trace Element Compositions 

The amount of magnesium in various depositional and diagenetic components 

composed of calcite ranges from 0. 16  to 2.90 mole % MgC03 with significant intersample 

variations for most components (Fig. 4.8A; Table 4.4). Average MgC03 compositions 

range from 1 .2 mole % in ferroan equant calcite, to 1 .9 and 2.2 mole % in altered ooids 

and microcrystalline matrix, respectively (Table 4 .4). Sr compositions range from below 

detection limit (< 200 ppm) to a maximum of2695 ppm for some of the fibrous/bladed 

calcite cements (Fig. 4.8A; Table 4.4). Fe and Mn compositions of various components 

range from below detection limit (< 1 00 ppm) to a maximum of 3 1 8 1 ppm and 53 1 ppm, 

respectively (Fig. 4 .8B;  Table 4.4). 
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Figure 4.8. Elemental composition ofvarious depositional and diagenetic components 
from the subtidal deposits, composed of calcite. A) MgC03 versus Sr 
composition. Detection limit for Sr is 200 ppm. Note the apparent negative 
correlation (r = 0.54) between MgC03 and Sr compositions of fibrous/bladed 
calcite cement. B) Fe versus Mn composition. Detection limit for both elements is 
1 00 ppm. Note: samples that plot below the detection limit for a certain element 
have indeterminate compositions less than the detection limit for that element. 
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The elemental composition of fine-crystalline dolomite from argillaceous layers 

of the Maynardville was not determined because of the small size of individual crystals. 

Coarser-crystalline dolomite from the subtidal depositional package is non-stoichiometric 

or Ca-rich (Fig. 4. 9 A). The average MgC03 composition is the lowest ( 4 1 . 1  mole %) for 

the subtidal replacement dolomite, which is also characterized by an elevated Fe 

composition, averaging about 24000 ppm or 2.4 wt %  (Fig. 4.9; Table 4 .5). Saddle 

dolomite cement from the subtidal package has a somewhat higher MgC03 composition, 

and lower Fe concentration than subtidal replacement dolomite (Fig. 4 .9). The peritidal 

replacement and cement dolomite have a stoichiometric to Ca-rich composition, and are 

on average enriched in MgC03, and depleted in Fe and Mn relative to the subtidal saddle 

dolomite (Fig. 4.9). 

The distribution of major and trace elements was examined along transects through 

pores filled with zoned peritidal dolomite cement (Fig. 4. 1 OA), and from the rims to 

centers of pores occluded with saddle dolomite cement (Fig. 4. 10B). The CaC03 

compositions of zoned dolomite cement correlate well with the composition of dolomicrite 

in the host lithology, but do not show any systematic trends along the transects through 

the pore (Fig. 4. 1 OA). Pore-rim saddle dolomite cement is least Ca-enriched (near 

stoichiometric; Fig. 4. 1 0B). The amount of Ca in the saddle dolomite cement increases, in 

general, away from the pore rim, but fluctuates significantly. Pore-central saddle dolomite 

is characterized by a decrease in the amount of Ca (Fig. 4. 10B). In both zoned and saddle 

dolomite cements, the Fe concentrations increase towards the pore centers (Fig. 4. 10).  

The maximum Fe concentrations in the outer non-luminescent zones of the zoned 

dolomite cement are comparable to the lowermost Fe concentrations in the saddle 

dolomite cement measured along pore rims (Fig. 4 . 1 0). 



Figure 4.9. Comparison between elemental compositions of subtidal and peritidal 
dolomite phases. A) CaC03 versus MgC03 plot. B) Fe versus Mn plot. 
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Detection limit for both Fe and Mn is 100 ppm. Note: samples that plot below the 
detection limit for a certain element have indeterminate compositions less than the 
detection limit for that element. 
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Figure 4.10. Compositional transects for peritidal dolomite cement. A) CaC03 and Fe 
compositional variations for zoned dolomite cement along transects through the 
pore. Circles and triangles denote transects ( 1 .  7 mm and 1 .  8 mm long, 
respectively) through fenestral and evaporite dissolutional voids of laminated 
microbial deposits (stratiform stromatolites). Squares mark a transect (2 .7  mm 
long) through a desiccation void of"couplet" lithology. Hatched pattern denotes 
the CaC03 composition ofthe associated matrix dolomicrite. The maximum 
CaC03 concentration of dolomicrite from the "couplet" lithology (55.9 mole%) is 
not shown. B) CaC03 and Fe compositional variations for saddle dolomite cement 
along transects from pore rim to pore center. Transect lengths: 1 .2 mm (circles), 
0.9 mm (squares), and 1 .6 mm (triangles). 
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Strontium Isotope Ratios 

Individual data points on Figure 4. 1 1  illustrate the 87Sr/86Sr values for the samples 

from the Maynardville/lower Copper Ridge Dolomite carbonate succession. The Sr 

isotope ratio of the micritic matrix and the fibrous/bladed calcite cement from the subtidal 

deposits is within the predicted range for Late Cambrian seawater, whereas the subtidal 

saddle dolomite cement has a slightly higher 87Sr/86Sr value (Fig. 4. 1 1 ) .  The Sr ratio for 

the dolomicrite sample from the peritidal succession (0.7097) is also enriched in 87Sr 

relative to Late Cambrian seawater, but is comparable to some of the most radiogenic 

values reported for Upper Cambrian deposits (Burke et al. 1982; Keto and Jacobsen 

1 987). The 87Sr/86Sr compositions of all the other samples analyzed, including ferroan 

equant calcite cement and peritidal dolomite cements, are lower than that for the Late 

Cambrian, and are in fact similar in composition to Early to Middle Ordovician seawater 

(Fig. 4. 1 1) .  

INTERPRETATION OF DIAGENETIC HISTORY 

Paragenetic sequences were determined separately for the predominantly limestone 

and the extensively dolomitized peritidal lithofacies (Fig. 4. 12), and are related to the 

constructed burial curve for the Maynardville Formation (Fig. 4. 1 3) .  Limestone deposits 

comprise the subtidal to lowermost intertidal lithofacies including: 1 )  the entire subtidal 

diagenetic package of the Maynardville Formation; 2) the lower part of the microbially 

laminated (stratiform stromatolite) deposits which mark the transition into the peritidal 

package; and 3) the rare non-dolomitized deposits within the peritidal package. The 

dolomitized lithofacies represent the majority of the peritidal deposits of the upper 

Maynardville and the overlying Copper Ridge Dolomite. 
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Figure 4.1 1. Variations in Sr isotope composition. Individual data points show Sr 
isotope composition for various depositional and diagenetic components from the 
Upper Cambrian deposits. Compositional fields for the Lower Ordovician Upper 
Knox early dolomite and late diagenetic dolomite cement (from Montanez 1 994), 
and the Middle Ordovician Maryville Limestone (Conasauga Group) burial 
dolomite (from Srinivasan et al. 1 994) are shown for comparison. The Sr isotope 
composition for Ordovician and Late Cambrian seawater is also indicated in the 
right margin (from Burke et al. 1 982). 
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Limestone Deposits 

The lithification of carbonate mud was among the earliest syndepositional events in 

the diagenetic history of the deposits that did not experience substantial dolomitization. 

The formation of hardgrounds, intraclasts, and burrows with sharp walls occurred in 

carbonate sediment that was lithified to some degree. Calcification by cyanobacteria may 

have played an important role in the early lithification of thrombolite and digitate 

stromatolite deposits (see Chapter 6). The formation offramboidal pyrite started 

simultaneously with lithification of the carbonate mud. Early diagenetic framboidal pyrite 

forms in the sulfate reduction zone below the sediment/water interface, within the first 

several meters to tens of meters ofburial (Berner 1 984; Compton 1 988b; Morse et al. 

1 992). Bacterially degrading organic matter and detrital clay minerals are important 

sources ofFe for the precipitation offramboidal pyrite (Compton 1 988b). The subtidal 

sediments of the Maynardville were well suited for the formation of pyrite because of the 

presence of argillaceous layers, which were probably organic-rich when deposited. 

Additional evidence for the presence of organic matter in the subtidal deposits is 

bioturbation and the presence of skeletal fragments. 

Fibrous/bladed calcite is the earliest pore-occluding cement phase (Figs. 4. 1 ,  4.2; 

Table 4. 1 ) .  The precipitation of this cement commenced syndepositionally from marine 

pore water. A marine origin for the fibrous/bladed calcite is supported by the 

morphological similarity to documented occurrences of modem and ancient marine 

cements (James et al. 1 976; Longman 1980; Marshal and Davies 1 98 1 ;  James and 

Choquette 1 983; Kendall 1985; Sandberg 1985; Freeman-Lynde et al. 1 986; Saller 1 986; 

Aissaoui 1 988; Hird and Tucker 1 988; Woo et al. 1 993 ; among numerous others). The 

87Sr/86Sr value of the fibrous/bladed calcite cement, is similar to that of depositional 

micrite, and is consistent with precipitation from Cambrian seawater (Fig. 4 . 1 1  ). The 

oxygen isotope compositions of the fibrous/bladed cement and micrite matrix samples, 
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however, are depleted in 18Q relative to Cambrian marine calcite (Fig. 4.6; Table 4.4) . 

This, in conjunction with a wide range of CL patterns observed for the fibrous/bladed 

calcite cement (Fig. 4.2; Table 4. 1), supports diagenetic modifications in the presence of 

isotopically light meteoric water or at elevated temperatures during burial (Dickson and 

Coleman 1 980; Allan and Matthews 1 982; James and Choquette 1984; Choquette and 

James 1 987). 

In the case of calcite cement with Mg and Sr derived from seawater, a covariant 

relationship between the concentrations of these elements indicates that a water-rock 

exchange through dissolution/precipitation reactions did not significantly influence calcite 

precipitation (Lohmann 1 988; Banner and Hanson 1 990; Carpenter et al. 1 99 1 ;  Saller and 

Moore 1 99 1 ;  Carpenter and Lohmann 1 992; Frank and Lohmann 1 996). The MgC03 

composition ofthe analyzed fibrous/bladed calcite shows an apparent negative correlation 

with Sr abundances (Fig. 4.8A). This suggests that the precipitation of fibrous/bladed 

calcite, with an elevated Sr (close to and above 2000 ppm) and relatively low MgC03 (<1 

to 1 .  5 mole %) content, may have been influenced by aragonite dissolution in a partially 

closed diagenetic system (Fig. 4.8A; Brand and Veizer 1 980; Mazzullo 1 980; James and 

Klappa 1 983 ; Wiggins 1 986; Budd 1988; Lohmann 1988; Budd and Land 1 990; Saller and 

Moore 1 99 1). In the absence of any unequivocal petrographic evidence for an aragonite 

precursor, an elevated Sr composition is the only indicator for the possible presence of 

aragonite in the subtidal deposits (see Lasemi and Sandberg 1984; Sandberg 1984; 

Moshier 1989). Fibrous/bladed calcite cement with elevated MgC03 ( > 1 . 5  mole %) and 

lower Sr ( < 1 500 ppm) concentrations likely precipitated from marine pore water in a 

more open diagenetic system (Fig. 4.8A). The range of Sr concentration in this cement 

may reflect various degrees of diagenetic alteration, based on the similarity to the 

composition of modem marine calcite (900 to 1 500 ppm Sr; Veizer 1 983; Tucker and 

Wright 1 990; Carpenter et al. 1 99 1 ), and diagenetically stabilized calcite (tens or a few 
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hundred ppm Sr; Veizer 1 983). The fibrous/bladed calcite and other marine 

components present (micrite and ooids) are now composed of low-Mg calcite (< 4 mole 

% MgC03; Fig. 4.8A; Table 4.4). The diagenetic stabilization ofhigh-Mg calcite is 

commonly associated with the retention of "Mg-memory" or the preservation of up to 

several mole % ofMgC03 in diagenetic low-Mg calcite (Lohmann and Meyers 1 977; 

Marshal and Ashton 1980; Prezbindowski 1 985). The presence of microdolomite, as an 

indicator for the diagenetic stabilization ofhigh-Mg calcite (Lohmann and Meyers 1 977), 

is only rarely observed within the fibrous/bladed calcite cement from the subtidal deposits. 

This may indicate an open system during diagenetic stabilization with an efficient removal 

ofMg, or a relatively low original MgC03 concentration, typical of a low- to 

intermediate-Mg calcite (< 12 mole % MgC03). 

Calcite cement precipitated from modem oxic marine waters is expected to contain 

about 40 ppm Fe and 1 ppm Mn (Veizer 1 983). The elevated Fe and Mn concentrations 

of fibrous/bladed calcite from the subtidal deposits indicate precipitation or diagenetic 

modifications under reducing conditions (Fig. 4 .8B; Table 4.4). The stabilization of high­

Mg calcite under reducing conditions can cause 500-1000 ppm Fe and 1 00-250 ppm Mn 

to be substituted into calcite with a subsequent loss of about 4-6 mole % MgC03 (Major 

et al. 1 988; Meyers 1 989). The amount ofFe and Mn in most ofthe fibrous/bladed calcite 

cement samples, as well as in the micritic matrix and ooids, may reflect a loss ofup to 

about 4-6 mole % MgC03 (Fig. 4 .8B; Table 4 .4). This would additionally imply an 

original low- to intermediate-Mg calcite mineralogy for these marine depositional and 

diagenetic components, and could explain a well preserved radial structure in some ofthe 

Maynardville ooids (Fig. 4. 1C). The CL zonation pattern observed in some ofthe 

fibrous/bladed calcite cement suggests that Fe and Mn could have also been added during 

precipitation of these cements (Fig. 4 .2F; see also Tobin et al. 1 996). Bladed and equant 

calcite crystals with elevated Fe and Mn concentrations, and which often show CL 
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zonation, have sometimes been interpreted as syndepositional marine precipitates from 

suboxic to anoxic pore waters (Pigott and Land 1986; Weiss and Wilkinson 1 988; 

Sansone et al .  1 990; Sun 1 990; Major and Wilber 1991 ;  Hendry 1 993 ; Tribble 1 993; 

Tobin et al. 1 996). The preservation of CL zonation can be used as indicators for the 

absence of significant recrystallization, and thus an original low-Mg calcite mineralogy. It 

is possible, however, that the zoned calcite cements lost some Mg through fabric retentive 

recrystallization (Major et al . 1 988; Rush and Chafetz 1 990; Major and Wilber 1 99 1 ;  

Budd and Hiatt 1 993 ; Lavoie and Bourque 1 993). Johnson and Goldstein ( 1993) 

interpreted bladed calcite cement in the Wilberns Formation from Texas with major and 

minor element and Sr isotope compositions comparable to those of the fibrous/bladed 

calcite from the Maynardville, but with more positive 818Q values (-6.2 to -5 .5  o/oo PDB), 

as a primary Late Cambrian low-Mg calcite that precipitated from oxic to suboxic marine 

pore waters, and has not undergone significant recrystallization. These observations are 

consistent with the hypothesis that, during the Late Cambrian, calcite with relatively low 

Mg content was preferred over aragonite and high-Mg calcite as the abiotic carbonate 

precipitate (Sandberg 1 983). 

The precipitation of calcite cement as syntaxial overgrowths on echinoderm 

fragments may have also started in the marine diagenetic environment (Table 4 . 1 ) . This is 

suggested by the presence of compromise boundaries with marine fibrous/bladed calcite 

cement (Fig. 4 . 1D; Walker 1989; Walker et al. 1 990). The turbid appearance ofthe initial 

overgrowth cement is indicative of precipitation from marine fluids, based on the similarity 

with the documented occurrences of inclusion-rich marine syntaxial cement (Fig. 4 .  1 E; 

Meyers 1 978; Hird and Tucker 1988; Walker 1989; Walker et al. 1 990). Studies of 

intercrystalline isotopic variations within Mississippian syntaxial overgrowth cements, 

previously interpreted to be exclusively of meteoric origin, suggest that most of these 

cements formed during early diagenesis in marine phreatic and marine-meteoric mixing 
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environments (Frank and Lohmann 1995; Frank et al. 1 995). 

A marine origin for some of the equant calcite cement is suggested by the 

maximum MgC03 (2.9  mole %) and Sr (1 874 ppm) compositions, which are similar to 

those ofthe interpreted marine depositional and diagenetic components (Fig. 4.8A; Table 

4.4). The "anomalous occurrences" of marine equant calcite cement have been 

documented from both modem and ancient carbonate rocks (Schroeder 1 972; Al-Hashimi 

1 977; James and Ginsburg 1979; Warme and Schneidermann 1 983 ; Pierson and Shinn 

1 985; Wilkinson et al. 1 982, 1985; Freeman-Lynde et al. 1 986; Aissaoui 1 988; Mayall and 

Cox 1 988; Major and Wilber 199 1). Equant calcite cement precipitates as a later phase in 

a succession of marine cement, or in smaller pores with substantially reduced fluid flow 

(Given and Wilkinson 1 985; Harris et al. 1985; Gonzales et al. 1 992). The composition of 

this cement is commonly identical to the associated marine calcite with an elongated 

crystal morphology, which precipitates in larger pores within carbonate reefs or other 

areas with active circulation (Gonzales et al. 1 992). The type of substrate may also 

control the precipitation of elongated versus equant calcite cement from marine pore 

water (Major and Wilber 1 991). The preferential precipitation of fibrous/bladed calcite on 

ooids and trilobite fragments, and equant calcite on micritic surfaces, observed within the 

subtidal deposits, may reflect such a substrate control on cement precipitation (Table 4 . 1 ). 

During the precipitation of equant calcite cement in larger pores, pore-fluid 

chemistry fluctuated, as evidenced by the zonation observed in both plane light and under 

CL (Fig. 4.3A-B). The presence of an equant fabric, an increase in crystal size, and a 

decrease in the degree of turbidity are all consistent with a lower rate of precipitation from 

fluids oflower saturation (Fig. 4.3A). Inclusion-free equant and syntaxial overgrowth 

calcite cements are most commonly interpreted to represent precipitation from meteoric 

water (Longman 1 980; James and Choquette 1 984; Choquette and James 1 988; Niemann 

and Read 1 988). The paucity of aragonite, and the presence of calcite with relatively low 



Mg content may have precluded extensive dissolution of the subtidal deposits in the 

presence of meteoric water. 
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The equant calcite is on average depleted in 18Q relative to the fibrous/bladed 

calcite (Fig. 4 .6B; Table 4.4). This is consistent with the hypothesis of the involvement of 

meteoric diagenetic fluids in the precipitation of equant calcite cement. The overlap 

between the 8 180 values of the equant and fibrous/bladed calcite cement, on the other 

hand, suggests: 1 )  a similar composition ofthe fluids from which some ofthese cements 

precipitated; 2) stabilization of marine calcite in the presence of meteoric fluids; and 3) 

"contamination" of the samples. The first possibility is consistent with the interpretation 

that the precipitation of equant calcite cement started in the marine realm. It is also 

possible that the precipitation of fibrous/bladed calcite cement continued during the 

changes from marine to meteoric pore water. Occurrences of elongated, especially bladed 

or prismatic calcite cement, have been interpreted as a result of precipitation during mixed 

marine/meteoric, phreatic meteoric, and burial diagenesis (Longman 1 980; James and 

Klappa 1 983 ; Choquette and James 1987; Lavoie and Bourque 1 993; Frank and Lohmann 

1 996). Similar interpretations are plausible for the bladed calcite crystals, which 

subsequently precipitated on calcite cement with the typical fibrous morphology of marine 

precipitates from the subtidal deposits (Table 4 . 1 ;  Fig. 4.2F). A varying fluid chemistry is 

also suggested by the CL zonation observed in some of the bladed cement (Fig. 4.2F). 

The 18Q-depletion ofboth equant and fibrous/bladed calcite relative to predicted 

Cambrian marine calcite supports the involvement of meteoric fluids in the precipitation 

and/or diagenetic alteration of these cements (Fig. 4.6B). Finally, even though special 

care was taken to sample individual diagenetic phases, it was difficult to separate 

fibrous/bladed calcite from subsequently precipitated equant calcite, and some of the 

samples may contain a mixture of these cements (see Appendix B). Some of the calcite 

cements with equant crystal morphology, may in fact represent fibrous/bladed crystals cut 
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perpendicular to the c-axis along which the crystals are elongated. 

Distinguishing between the results of meteoric phreatic and burial diagenesis is 

very difficult (Tucker and Wright 1990; Saller and Moore 1 99 1) .  The precipitation of 

clear equant calcite as the first cement phase in dissolutional voids is likely a result of 

meteoric diagenesis, but the dissolution may also occur in the presence of marine pore 

fluid influenced by organic-matter degradation (Druckman and Moore 1 985;  Curtis 1 987; 

Walter and Burton 1 990; Hendry 1993) .  The low Sr concentrations of some ofthe equant 

calcite cement, and all analyzed ferroan equant and syntaxial calcite cements, coupled with 

elevated Fe and Mn concentrations, indicate precipitation from fluids with a low Sr/Ca 

ratio under reducing conditions, and may also reflect the effects of a low precipitation rate 

and increased temperature (Fig. 4 .8;  Table 4.4; Katz et al. 1 972; Lorens 1 98 1 ;  Mucci and 

Morse 1 983 ; Mucci 1 988; Pingitore et al. 1988; Dromgoole and Walter 1 990; Morse and 

Bender 1 990; Machel and Burton 1991 ). All ofthis is consistent with precipitation in 

either meteoric phreatic and burial diagenetic environments. Formation during burial is 

also supported by the similarity in elemental composition with equant calcite cement from 

tectonic fractures (Fig. 4 .8 ;  Table 4.4). The ferroan equant calcite cement has the lowest 

determined average Mg concentration (1 .25 mole % MgC03), followed by equant calcite 

cement from fractures (1 .41 mole % MgC03). This is indicative ofthe precipitation from 

pore fluids with low Mg/Ca ratio, which is typical of meteoric water and many burial 

brines (Heydari and Moore 1993). The decrease in the amount ofMg incorporated in 

calcite may also be related to a locally elevated pC02 of pore waters due to organic-matter 

degradation (Burton and Walter 1 99 1 ;  Hendry 1 993). The possible influence of organic 

matter on the diagenesis of the subtidal deposits is suggested by the association of ferroan 

calcite and microsparite with burrows, framboidal pyrite, fossiliferous lithofacies, and 

argillaceous layers. The ferroan microsparite represents the result of diagenetic 

neomorphism or recrystallization of micritic deposits that likely started under reducing 
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conditions in meteoric phreatic environment and continued during burial (Fig. 4. 1 A; 

Table 4. 1 ) .  The anticipated decrease in the amount ofMg in meteoric and burial cements 

relative to marine cements can be counteracted by an increase in the Mg/Ca ratio of pore 

water with progressive calcite precipitation in a closed diagenetic system, and by 

temperature increase (Katz 1973; Mucci 1987; Mucci et al. 1 989; Burton and Walter 

1 987, 1 99 1 ). These processes could have influenced the Mg content of some ofthe pore 

central equant calcite and syntaxial overgrowth calcite cement (Table 4 .4;  Fig. 4 .8A) .  The 

overlap ofo18Q values of non-ferroan and ferroan equant calcite cements suggests a 

similar isotope composition for the diagenetic fluids and/or comparable temperatures 

during precipitation. The slightly more negative average o18Q value for the ferroan 

calcite, and the substantially 180-depleted compositions of equant calcite cement from 

fractures can be attributed to the higher temperatures associated with precipitation during 

progressive burial (Fig. 4.6B; Table 4.4). 

The presence of tectonic fractures and MVT minerals indicates the migration of 

hot burial fluids through the subtidal deposits of the Maynardville. The occurrence of 

MVT minerals within the intraclastic deposits suggests the preferential migration ofburial 

fluids through the coarse-grained porous lithofacies. The larger framework pores and 

burrows within the thrombolitic deposits, that have not been completely occluded during 

early marine diagenesis, also provided pathways for the preferential migration of both 

meteoric fluids during earlier diagenesis and burial fluids later on. This is evidenced by the 

dissolution enlargement of pores and their occlusion with non-ferroan and ferroan equant 

calcite, and pore-central saddle dolomite cement. The negative ol8Q values observed for 

the micrite samples comprising the microbial deposits can be related to diagenetic 

alteration by meteoric, and especially burial fluids at elevated temperature (Fig. 4.6A). 
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Dolomite 
Dolomite is not an abundant diagenetic phase of the subtidal package and therefore 

an extensive external source ofMg is not required. Any postulated interpretations for the 

occurrence of fine-crystalline dolomite within the ribbon rocks should account for: 1 )  the 

stratigraphic distribution of dolomite within the centimeter-scale argillaceous layers; 2) the 

ferroan composition (revealed by staining); and 3)  the negative 8180 composition, but on 

average enrichment in 180 relative to other subtidal carbonate components. 

The occurrences of dolomite within subtidal argillaceous deposits have been 

interpreted as: 1 )  eolian transport of dolomite; 2) early diagenetic formation of 

organogenic dolomite or synsedimentary dolomitization from normal seawater; and 3 )  

burial dolomitization related to pressure solution, compaction and clay-mineral diagenesis. 

Deeper water sediments in the Persian Gulf contain up to 1 0  % windbom detrital dolomite 

(Narkiewicz 1 983). Even though the eolian transport of clay minerals and silt-size 

siliciclastic detritus played an important role in the deposition of the argillaceous layers of 

the Maynardville Formation, it is unlikely that the associated dolomite represents a detrital 

phase. The expected degree of abrasion and weathering characteristic of detrital dolomite 

(Price and McHargue 1 983), was not observed (Fig. 4. 1B). Additionally, the ferroan 

composition of the dolomite is inconsistent with the syndepositional dolomitization of 

sediment on the contemporaneous tidal flat of the Maynardville/Elbrook carbonate 

platform to the east, which was the most probable source of detrital dolomite (Figs. 1 .  1 ,  

1 .3) .  

The mechanisms for the early diagenetic formation of dolomite, including 

organogenic and normal-marine dolomitization models, have been invoked for the 

occurrences offerroan, fine-crystalline dolomite in subtidal, centimeter-thick, clay-rich 

layers (Behrens and Land 1972; Baker and Kastner 198 1 ;  Saller 1 984; Land 1 985;  Mullins 

et al. 1 985; Carballo et al. 1987; Mazzullo et al. 1987; Mitchell et al. 1 987; Cander et al. 
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1 988; Compton 1988a, 1988b; Ruppel and Cander 1988; Middelburg et al. 1 990). 

The source ofMg for dolomitization is a diffusive flux from the overlying seawater of 

normal salinity (Baker and Bums 1 985). Additional Ca and carbonate ions are supplied 

from the dissolution of precursor carbonate (Compton 1988a). Precipitation of early 

diagenetic dolomite is promoted by: 1 )  an increase ofthe Mg!Ca ratio in interstitial marine 

pore-water due to the high smectite/calcium carbonate ratio in the siliciclastic-rich 

carbonate sediment, coupled with a decrease in the sedimentation rate, which promotes an 

interaction between seawater and sediment (Ruppel and Cander 1 988); and 2) the 

degradation of organic matter by sulfate-reducing bacteria which increases the carbonate 

alkalinity and pH of the pore water, and decreases the sulfate ion concentration (Baker 

and Kastner 1 98 1 ;  Slaughter and Hill 1 99 1) .  The ferro an composition of dolomite reflects 

a high clay mineral/organic-matter ratio, coprecipitation of dolomite and pyrite in the 

sulfate reduction zone, or a low precipitation rate (Compton 1 988b; Ruppel and Cander 

1 988). The source of iron is from the reduction ofFe oxides and hydroxides during 

bacterial degradation of organic matter (Ruppel and Cander 1 988). Additionally, the 

degradation of marine organic matter provides mechanisms for remobilizing Fe from 

siliciclastic phases and for the releasing of Fe bound with organic matter (Holail et al. 

1 988; Tucker and Wright 1 990). The involvement of organic matter is reflected by the 

large variations in the carbon isotope composition of dolomite ( - 1 5  to +20 o/oo PDB; Irwin 

1 980, Kushnir and Kastner 1984). An early diagenetic formation, at or near normal 

sedimentary temperature, results in relatively positive ol80 values for precipitated 

dolomite (Irwin 1 980; Taylor and Sibley 1 986; Gregg 1988). 

The estimated ol80 composition of dolomite precipitated in equilibrium with 

Cambrian seawater of normal salinity ranges between -3 and -1 o/oo PDB, or may even 

reach + 1 o/oo PDB for Upper Cambrian dolomite. This range was estimated from the 

isotope compositions for Cambrian marine calcite reported in Lohmann and Walker 
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( 1989), and Gao and Land (1991b), and by considering an equilibrium fractionation 

factor of 3 ± 1 o/oo between coprecipitated calcite and dolomite (Land 1 980). The validity 

of this fractionation factor is supported by the observation that the C02 derived by 

dissolving dolomite in phosphoric acid has a o 18Q value of about 3 .2 o/oo (McKenzie 1 98 1 )  

or 3 . 8  o/oo (Land 1 985) more positive than the C02 derived from calcite that coprecipitated 

in equilibrium with dolomite. The o 18Q compositions of the dolomite from the 

argillaceous layers of the Maynardville ( -8.2 to -6. 1 o/oo PDB), is substantially lower that 

the estimated Cambrian seawater dolomite. This would imply a substantial diagenetic 

modification of synsedimentary or early diagenetic dolomite. Thus, burial dolomitization 

models provide the most plausible explanation for the formation of dolomite which occur 

in the subtidal deposits. 

The argillaceous layers contain pressure-solution features which indicate that the 

associated fine-crystalline dolomite may be of styloreactate or stylocummulate origin (Fig. 

4 . 1A). Pressure solution ofMg-calcite during burial serves as a source ofMg for the 

precipitation of dolomite as a styloreactate mineral (Wanless 1979). The evidence for the 

styloreactate origin of dolomite, which can be observed in the Maynardville, includes: 1 )  

truncation ofmicrostylolites by dolomite rhombs; 2 )  preferential concentration of dolomite 

along clay seams; and 3) a sharp drop in the amount of dolomite in the adjacent limestone 

layers (Logan and Semeniuk 1976; Wanless 1 979; Zenger and Dunham 1 988). Some of 

the dolomite from the argillaceous layers may also represent stylocummulate or a 

concentration of dolomite as a less soluble residue. The dolomite crystals disseminated in 

the interbedded limestone layers, however, are commonly coarser than dolomite crystals 

within the argillaceous seams. This, coupled with the paucity of disseminated dolomite in 

the limestone layers, indicates that pressure solution alone could not have produced all the 

dolomite as residue. Pre-burial stabilization ofhigh-Mg calcite and the deep-burial origin 

for stylolites are possible drawbacks of the pressure-solution dolomitization model 
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(Morrow 1 982). In the absence of substantial meteoric modifications, however, 

metastable carbonate phases may persist through shallow to intermediate burial (Tucker 

and Wright 1990) . Additionally, pressure solution can start within the first few hundred 

meters of burial (Choquette and James 1987). 

The burial compaction model of dolomitization involves the expulsion of pore 

water from argillaceous sediment during compaction. The source of Mg is trapped 

seawater and ions adsorbed on clay mineral surfaces. Additional Mg and Fe ions are 

supplied by the expulsion of structural water from clay minerals during diagenetic changes 

such as the transformation of montmorillonitic clay (smectite) to illite (Mattes and 

Mountjoy 1 980; McHargue and Price 1 982). This transformation occurs at temperatures 

between 50 and 1 25°C (Boles and Franks 1 979; Lahann 1 980), and produces substantial 

amounts ofMg2+, Fe2+, Ca2+, Si4+, and Na+ (Mattes and Mountjoy 1 980; McHargue and 

Price 1 982). The released ions contribute to the formation ofburial dolomite, which is 

commonly enriched in Ca and Fe, and is accompanied by ferroan calcite (Irwin 1 980; 

Taylor and Sibley 1 986, Gregg 1 988). Burial compaction dolomitization has been 

proposed for the formation of the fine-crystalline ferroan dolomite disseminated in the 

argillaceous lime mudstone or in selectively replaced allochems, and as dolomite cement 

within voids in argillaceous carbonates and in carbonates adjacent to marine shales 

(McHargue and Price 1 982; Gregg 1988). 

A burial origin, from fluids derived locally by compaction of interbedded shale, 

carbonate dissolution, and diagenetic alteration of clay minerals, can account for the 

observed characteristics of the dolomite from argillaceous subtidal deposits. The relatively 

13C-enriched composition of dolomite may reflect organic matter degradation reactions 

including bacterial fermentation and methanogenesis (Fig. 4.6A; Irwin et al. 1 977; Irwin 

1 980). The unusually high ()13C values of the Maynardville carbonate components, 

however, are considered to reflect a secular increase in the carbon isotope ratio of Late 



Cambrian seawater (see Chapter 5). Superimposed on the secular trend are variations 

due to diagenetic modifications in the presence of degrading organic matter. 
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Processes similar to that for the formation of dolomite within argillaceous layers 

can account for the formation of ferroan replacement calcite, disseminated replacement 

dolomite in limestone layers of ribbon rocks, and more coarse-crystalline replacement and 

cement saddle dolomite. Pyrite-coated hardgrounds provided an additional source ofFe 

for saddle dolomite replacement. A non-stoichiometric (Ca-rich) composition, elevated Fe 

and Mn concentrations, and negative 8180 values support the burial origin for saddle 

dolomite (Figs. 4 .6B, 4.9; Table 4.4). The coarse-crystalline, non-planar texture of the 

saddle dolomite is also consistent with precipitation at elevated temperatures (Fig. 4 .3 ;  

Table 4 .2 ;  see Gregg and Sibley 1984). The paucity of saddle dolomite cement confirms 

that the precipitation from locally derived fluids can account for the formation of all of this 

cement. On the other hand, the presence ofMVT minerals (sphalerite, pyrite, galena), are 

evidence for the migration of externally derived fluids through the Maynardville platform 

carbonates. The formation of saddle dolomite, associated with the MVT minerals, is 

interpreted as burial dolomitization involving the migration of basinal brines (Mattes and 

Mountjoy 1 980; Kesson et al. 1 98 1 ;  Sverjensky 198 1 ;  Gregg 1 985; Moore 1 985; Scholle 

and Halley 1985; Banner et al. 1 988). A dissolution episode prior to the precipitation of 

saddle dolomite in the Maynardville is indicative of the presence of chemically aggressive 

waters rich in organic acid or C02, which is a common characteristic of subsurface brines, 

including MVT mineralizing fluids (Fig. 4.3A-B; Kharaka et al. 1 983; Meshri 1986; 

Choquette and James 1 987; Spirakis and Heyl 1 988; Stueber and Walter 1 99 1 ;  Barnaby 

and Read 1 992; Kharaka and Thordsen 1 992; Gregg et al. 1 993; Montafiez 1994). 

Precipitation from basinal brines that underwent interaction with siliciclastic deposits at 

increased temperature commonly produces an elevated 87Sr/86Sr composition for burial 

cements (Kesson et al. 1 98 1 ;  Stueber et al. 1 984, 1 987; Chaudhuri et al. 1 987; Morton 



and Land 1987; Cander et al. 1 988; Chaudhuri and Clauer 1992; Banner 1 995). The 

Sr isotope composition of the analyzed subtidal saddle dolomite cement is elevated 
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(0. 7096) relative to Cambrian seawater (Fig. 4. 1 1  ) . This i s  consistent with precipitation 

from MVT basinal brines, as well as from locally derived dolomitizing fluids whose 

87Srl6Sr ratio was influenced by interaction with siliciclastic minerals from the argillaceous 

layers in the subtidal deposits. 

Extensively Dolomitized Peritidal Deposits 

Replacement Dolomite 
The peritidal deposits of the Maynardville Formation have been substantially 

dolomitized. The formation of aphanocrystalline to very finely-crystalline replacement 

dolomite (Fig. 4.4A-B; Table 4.3) occurred penecontemporaneously with, or soon after, 

deposition of fine-grained carbonate sediment. Conditions during formation of the 

Maynardville dolomicrite may have been similar to the present-day formation of sabkha 

dolomites in the Persian Gulf, and other Holocene peritidal environments (McKenzie et al. 

1 980; McKenzie 198 1 ;  Patterson and Kinsman 1 982; Illing and Taylor 1 993) .  The sabkha 

model of dolomitization involves seepage reflux and the evaporative pumping of seawater. 

Seepage reflux refers to infiltration of dense marine water with elevated salinity through 

the underlying sediment. Marine water is constantly replenished by tidal action and storm 

flooding (Morrow 1982). Evaporative pumping involves a flow of seawater landward 

through sediment to replace water lost by evaporation near the sabkha surface (McKenzie 

et al. 1 980; Morrow 1 982). Under sabkha conditions the kinetic problems associated with 

dolomite precipitation are overcome by an increase in temperature, and by gypsum and 

anhydrite precipitation that elevates the Mg/Ca and COiCa ratios, and decreases sulfate 

concentrations (Machel and Mountjoy 1 986). Dolomitization can be also promoted in the 

presence of mixed marine-meteoric waters during the exposure of tidal flat sediments. 
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Mixed brines are potential dolomitizing fluids due to their high Mg and HC03-

concentration, and the dilution effect (Morrow 1 982; Hardie 1987; Tucker and Wright 

1 990). Evaporative conditions and periodic subaerial exposure are conducive to early 

silicification oftidal-flat carbonate sediments (Milliken 1979; Williams and Crerar 1985; 

Parnell 1986; Holail et al. 1988; Tribble et al. 1995). The early diagenetic silicification of 

the Upper Cambrian peritidal deposits under such conditions is suggested by the 

association of chert with exposure surfaces and evaporite pseudomorphs. Silicification 

predated significant mechanical compaction and stylolitization as evidenced by the 

presence of uncompacted silicified ooids adjacent to extensively compacted dolomitized 

ooids. 

Dolomicrite from the peritidal package formed as an early diagenetic replacement 

of fine-grained carbonate sediment on a semi-arid tidal flat from fluids derived from 

modified seawater representing hypersaline brines, or seawater mixed with hypersaline or 

meteoric water. Evidence for the early diagenetic replacement origin of dolomicrite 

includes: 1 )  small crystal size; 2) retention ofthe depositional fabric; 3)  association with 

indicators of intertidal to supratidal deposition such as evaporites, fenestrae, microbial 

laminae, desiccation features, and intraclasts; 4) paucity of fossils indicating a restricted 

hypersaline setting in which early dolomitization is favored; and 5) the presence of 

dolomitic intraclasts in rare coarser-grained intraclastic layers that have not been 

completely dolomitized, suggesting that dolomitization of the fine-grained carbonate 

sediment took place prior to formation and redeposition of intraclasts. Additionally, 

pervasive dolomitization of carbonate sediment requires an abundant supply of Mg, which 

can be provided by active circulation of seawater-derived fluids through the sediment 

during early diagenesis, prior to significant lithification and porosity occlusion (Land 1985; 

Hardie 198 7). 

Examples from the Holocene indicate that early diagenetic dolomite is commonly 
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non-stoichiometric (Ca-rich), and poorly ordered (Land 1 980, 1 985;  McKenzie 1 98 1 ;  

Carballo et al. 1 987; Mitchell et al. 1 987; Lasemi et al. 1 989; Sibley 1 990; Tucker and 

Wright 1 990; Gregg et al. 1992; Mazzullo et al. 1 987; Mazzullo 1 992). These 

characteristics, in addition to very small crystal size, make early diagenetic dolomite 

susceptible to neomorphism and recrystallization during subsequent diagenesis. The 

criteria for the recognition of recrystallized early dolomite include: 1 )  stoichiometry and a 

high degree of ordering; 2) a coarse-crystalline mosaic; 3)  non-planar crystal boundaries; 

4) homogenized CL zonation; 5) low 180 and Sr concentrations; 6) enrichment in Fe and 

Mn; and 7) a Sr isotope composition different than that predicted for marine deposits of 

the same age (Gao and Land 1 99 1b; Mazzullo 1 992; Kupecz et al. 1 993). 

The composition of the Maynardville dolomicrite ranges from stoichiometric to 

Ca-rich (Fig. 4.9A; Table 4.5). Such a wide range of compositions can be related to 

varying degrees of diagenetic alteration, but may also be a function of the conditions 

within the depositional and early diagenetic environment. Dolomite associated with 

hypersaline conditions commonly has a more stoichiometric composition than dolomite 

not associated with evaporites (Lumsden and Chimahusky 1 980; Morrow 1 982; Shatkay 

and Magaritz 1987). Additionally, Sass and Bein ( 1 988) observed that dolomite 

associated with gypsum has a stoichiometric to Ca-rich (57 mole %) composition, whereas 

dolomite that accompanies halite is commonly stoichiometric. 

A crystal size comparison ofthe Maynardville dolomicrite (< 1 0- 1 5  J.!m) and 

dolomicrosparite (1 5-60 J.Lm), with dolomite crystals ( 1 -5 J.Lm) from the modem sabkhas 

(Paterson and Kinsman 1982), provides additional evidence for diagenetic recrystallization 

or neomorphism. Diagenetic alterations are also supported by the uniform to patchy 

distribution of luminescence, and the absence of CL zonation in the Maynardville 

replacement dolomite (Table 4.3). 

The most negative o18Q value for dolomite that precipitated in equilibrium with 
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normal salinity Cambrian seawater is estimated to b e  about -3  o/oo PDB . Dolomite that 

forms from hypersaline fluids is enriched in 180 due to the evaporation effect. Thus, 

dolomite associated with gypsum has ()18Q values about 3 o/oo higher than marine non­

evaporative dolomite (Sass and Bein 1988). Consequently, the ol8Q values of Cenozoic 

evaporative dolomite range from +0.5 to +7.5 o/oo PDB (McKenzie 198 1 ;  Botz and von 

der Borch 1 984; Pierre et al. 1984; Carballo et al. 1 987; Mitchell et al. 1 987; Gregg et al. 

1 992). The ol8Q composition of the Maynardville peritidal dolomicrite is not typical of 

hypersaline fluids, and suggests diagenetic modifications in the presence of 180-depleted 

fluids or at elevated temperatures during burial (Fig. 4.7A; Table 4 .5). 

Most ofthe Tertiary and Holocene marine dolomites studied have between 60 and 

1 000 ppm Sr (Land 1 980; Morrow 1 982; Veizer 1983;  Vahrenkamp and Swart 1 990), 

with many containing > 600 ppm Sr (Mattes and Mountjoy 1 980; Carballo et al. 1 987; 

Dawans and Swart 1 988; Banner 1 995). The elevated Sr composition in dolomites may 

reflect the influence of precursor aragonite, or the rapid precipitation of dolomite from 

supersaturated fluids during early diagenesis (Land 1980; Lorens 1 98 1 ;  Morrow 1 982; 

Bein and Land 1 983 ; Spotl and Bums 1 99 1 ;  Banner 1995). Dolomitization of a marine 

calcite precursor produces dolomite with a maximum of several hundred ppm Sr (Tucker 

and Wright 1 990). Dolomite with low Sr concentrations (60 ppm) may form from 

seawater due to a very low distribution coefficient for Sr in stoichiometric dolomite 

(Vahrenk:amp and Swart 1 990). The Sr content in non-stoichiometric dolomite is 

commonly reduced to < 200 ppm during diagenetic recrystallization (Land 1 980; Mattes 

and Mountjoy 1 980; Bein and Land 1 983 ; Banner 1 995). The low Sr content of the 

Maynardville replacement dolomite is consistent with diagenetic modifications (Table 4.5) .  

The measured 87  Sr/86Sr ratio for dolomicrite, which is  higher than that of Late 

Cambrian seawater, suggests diagenetic modifications in the presence of radiogenic pore 

fluids (Fig. 4. 1 1 ) .  The analyzed dolomicrite sample is from the sequence boundary zone at 
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the Maynardville/Copper Ridge transition, which i s  characterized by common detrital 

quartz and some K-feldspar grains (Fig. 2. 7). The diagenesis ofK-feldspar may have 

provided the radiogenic component during recrystallization of the early dolomite. The 

elevated Sr isotope composition may also reflect a possible Late Cambrian 87Sr/86Sr 

seawater increase related to the increased erosion of the craton during the continent-wide 

Dresbachian/Franconian unconformity. 

The succession of dolomite replacement fabric from: 1 )  dolomicrite; 2) 

dolomicrosparite; 3 )  coarser-crystalline dolomite; to 4) saddle dolomite, is accompanied 

with: 1 )  an increase in crystal size; 2) an increase in the number of non-planar crystal 

boundaries; 3) an increase in fabric obliteration; 4) the slight decrease in average o180 

values; and 5) with the exception of dolomicrosparite, which was not analyzed for the 

trace element composition, an increase in the average Fe concentration and the maximum 

Mn concentration (Figs. 4.4, 4.7A, 4.9B; Table 4.5). All ofthese trends are consistent 

with progressive recrystallization during later diagenesis. 

Recrystallization of sabkha-related dolomite starts during early diagenesis in the 

presence of marine water modified by mixing with meteoric water, and continues with 

subsequent burial (Kupecz and Land 1 99 1 ,  1 994; Gregg et al. 1 992; Montanez and Read 

1 992b; Chafetz and Rush 1 994) . Dolomicrosparite and coarser-crystalline replacement 

dolomite are commonly interpreted to be the result of mixed marine/meteoric 

dolomitization (Magaritz et al. 1 980; Simms 1 984; Choquette and Steinen 1980; 

Randazzo and Cook 1 987; Humprey 1 988; Shukla 1988; Humphrey and Quinn 1 989; 

Cander 1 994). Less turbid outer parts of some ofthe coarser-crystalline replacement 

dolomite from the Maynardville may represent later diagenetic overgrowths on the early 

diagenetic turbid cores (Table 4.3). Such clear outer parts can form from dilute 

subsurface solutions of mixed marine-meteoric or meteoric origin (Morrow 1 982; Moore 

et al. 1 988; Montanez and Read 1 992b). 
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Recrystallization of early dolomite during burial is an attractive interpretation 

for the formation of the coarse-crystalline replacement dolomite because no additional 

source ofMg is required (Banner et al. 1 988; Wallace 1 990; Mazzullo 1 992; Montanez 

and Read 1 992b; Gao et al. 1992; Gregg and Shelton 1990; Gregg et al. 1 992). A 

xenotopic texture of the coarser -crystalline replacement dolomite from the Maynardville 

and the Copper Ridge Dolomite suggests formation at temperatures above 50°C (Fig. 

4 .4D; Table 4.3 ; Gregg and Sibley 1984; Sibley and Gregg 1 987) . The coarse-crystalline 

dolomite with a xenotopic fabric, 180-depleted compositions, and elevated trace element 

(Fe, Mn) contents is commonly interpreted to reflect the influence ofhot, deep subsurface 

fluids (Zenger 1 983 ; Zenger and Dunham 1 988; Gregg 1 985; Buelter and Guillemette 

1 988; Gregg and Shelton 1 990). 

A fabric-obliterate mosaic of coarse-crystalline dolomite can form as a result of 

multiple recrystallization events of fine-crystalline dolomite, or may be controlled by the 

coarse-grained texture of deposits being replaced (Kupecz and Land 199 1 ;  Kupecz et al. 

1 993). Similar coarse-crystalline dolomite fabrics can also form by the dolomitization of 

precursor limestone during burial (Machel and Anderson 1 989; Qing and Mountjoy 1 989; 

Mountjoy and Amthor 1 994). Limestone layers, and grain-supported lithofacies in 

general, may have represented zones with higher porosity and permeability that served as 

pathways for preferential migration of dolomitizing fluids during burial (Lee and Friedman 

1 987; Sibley and Gregg 1 987; Amthor and Friedman 199 1 ;  Gao and Land 1991a; 

Montanez and Read 1 992b; Kupecz et al. 1993 ; Mountjoy and Amthor 1 994). The 

presence of allochem ghosts in the mosaic of the coarser -crystalline dolomite in the upper 

Maynardville and the Copper Ridge Dolomite indicates replacement of the coarser -grained 

deposits (Fig. 4.4D). Evidence for the burial dolomitization of limestone is denoted by the 

patchy distribution of coarser -crystalline replacement dolomite within the rare limestone 

deposits in the peritidal depositional package (Table 4.3). 



139 

Based on the association with hydrocarbons and sulfide mineralization, saddle 

dolomite is most commonly interpreted to form by thermochemical sulfate reduction 

processes from fluids provided by pressure solution and basinal brine migration during 

burial at temperatures between 60 and 1 50°C (Radke and Mathis 1 980; Machel 1987; 

Qing and Mountjoy 1 992). The occurrence of saddle dolomite within a bituminous matrix 

in the peritidal deposits suggests dolomite formation associated with hydrocarbon 

migration and accumulation (Fig. 4.4E). Potential sources for hydrocarbons are the 

organic-rich shales of the Cambrian Conasauga basin or the Ordovician Sevier basin. The 

burial compaction of the basinal mudrocks, in response to sediment and tectonic loading, 

provides a mechanism for the migration of hydrocarbons and mineralizing brines into 

adjacent platform carbonates (Cathles and Smith 1983; Bethke 1985; Oliver 1 986; Qing 

and Mountjoy 1 989; Bethke and Marshak 1990; Audet and Fowler 1 992; Cartwright 

1 994; Srinivasan et al. 1 994). Most formational waters have low Mg/Ca ratios (Hanor 

1 983, 1 987; Cander et al. 1 988; Moore 1989), which can account for the Ca-rich 

composition of the late diagenetic replacement dolomite (Fig. 4 .9A). The involvement of 

burial fluids can also account for the decrease in 8180 values, and elevated Fe and Mn 
compositions of the coarser-crystalline and saddle dolomite relative to the fine-crystalline 

early diagenetic dolomite (Figs. 4. 7 A; 4.9B; Table 4.5). 

Dolomite Cement 
The dully luminescent cores of the zoned dolomite cement could have started 

precipitating under conditions similar to those for the formation of the early diagenetic 

dolomite. This is suggested by the occurrence of zoned dolomite as the first cement phase 

in the voids of synsedimentary origin such as fenestral voids and desiccation voids, as well 

as in evaporite-dissolution voids. The low Fe content of the pore-rim zoned dolomite is 

consistent with precipitation from oxygenated pore fluids (Fig. 4 . 1 0A). Additionally, the 
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pore-rim zoned dolomite cement is compositionally similar to the fine-crystalline 

replacement dolomite (Fig. 4.9; Table 4 .5). The relationship between the CaC03 

composition of the zoned dolomite cement and the associated dolomicrite matrix suggests 

formation from fluids similar in composition, or possibly the buffering of dolomitizing fluid 

to the host-rock composition (Fig. 4 . 1 OA) 

The precipitation of dolomite cement could have been promoted by the 

introduction of meteoric water into the peritidal deposits during periods of subaerial 

exposure. The rhombohedral zoned dolomite crystals on walls of dissolution-enlarged 

voids may represent precipitation of dolomite under the influence of meteoric water (Fig. 

4.5B-C; Table 4.3). This pore-rim dolomite cement is succeeded by equant calcite cement 

of meteoric phreatic/shallow burial origin, and pore-central non-luminescent, coarse­

crystalline saddle dolomite cement. Similar occurrences of rhombohedral dolomite 

crystals ( 1  to 1 00 Jlm), lining cavities, which are occasionally zoned and postdated by 

meteoric calcite cements, have been interpreted as a result of mixing-zone dolomitization 

(Folk and Land 1975; Kaldi and Gidman 1982; Ward and Halley 1 985;  Humphrey and 

Quinn 1 989; Humphrey and Radjef 1 99 1 ;  Gill et al. 1995). 

Pressure-solution along numerous stylolites within the peritidal deposits could 

have provided a source for the continuing precipitation of dolomite cement into the burial 

environment. During burial, dolomitizing fluids could have also been provided by 

externally derived basinal brines. Both of these processes can account for the precipitation 

of dolomite cement with complex zones that can not be correlated between pores (Fig. 

4.5D-E; Fisher 1 988; Amthor and Friedman 1 992). Cement zones may represent pulses of 

dolomitizing fluids that evolved along the fluid migration pathway and precipitated cement 

of various composition in different parts of the carbonate succession. With progressive 

burial and pore occlusion, precipitation under reducing conditions resulted in the increased 

incorporation of Fe in the outer non-luminescent parts of the zoned dolomite cement (Fig. 
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4 . 10A). The 8180 composition of the zoned dolomite substantiates the involvement of 

dolomitizing fluids of meteoric origin and the precipitation from burial fluids at elevated 

temperature (Fig. 4.7B). 

The microstratigraphic relationship between the pore-rim zoned dolomite cement 

and the pore-center saddle dolomite cement, the distribution in pores of various origin 

(synsedimentary versus dissolutional or tectonic), and the differences in geochemical 

composition (Figs. 4.7B, 4.9, 4. 1 0; Tables 4. 3, 4. 5), indicate a predominance of shallow to 

intermediate burial environments for the formation of zoned dolomite cement, and later 

burial diagenesis for the saddle dolomite cement. The isotope compositions of the zoned 

dolomite cement overlap with the fine-crystalline replacement dolomite of early diagenetic 

origin (Fig. 4. 7B). The more stoichiometric composition, and lower Fe and Mn 
concentrations of the zoned dolomite cement are also comparable to those of dolomicrite 

(Fig. 4.9). The saddle dolomite cement, on the other hand, is compositionally similar to 

late diagenetic replacement dolomite, which may suggest their simultaneous formation 

(Fig. 4.9). The more negative average 6180 composition of the saddle dolomite cement 

relative to the zoned dolomite cement is consistent with precipitation at a higher burial 

temperature (Fig. 4.7B). The substantial overlap between the 6180 compositions of these 

dolomite cement types, however, indicates precipitation from fluids of similar isotopic 

composition. This overlap may also suggest that the outer non-luminescent parts of the 

zoned dolomite cement and the saddle dolomite cement may have precipitated under 

similar conditions. 

The late burial origin for the saddle dolomite cement is substantiated by its 

presence in tectonic fractures and the association with MVT mineralization (sphalerite in 

fractures and dissolutional pores). The latter also indicates that during late burial, in 

addition to dolomitizing fluids provided locally by pressure solution, extraformational 

brines served as a source for the precipitation of dolomite cement. The near 
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stoichiometric composition ofthe pore-rim saddle dolomite cement may result from 

initial buffering of the dolomitizing fluid to the host rock composition (Fig. 4. 10B). The 

generally increasing, but overall fluctuating amount of Ca in the subsequently precipitated 

saddle dolomite reflects the composition of the dolomitizing fluids, which is consistent 

with basinal brines with a low Mg/Ca ratio. The reduced amount of Ca in the pore-central 

saddle dolomite cement may represent slow precipitation under elevated temperatures 

(Fig. 4. 1 0B). The same process can account for the concurrent increase in the 

incorporation ofFe (Fig. 4. 1 0B). 

The temperature range for saddle dolomite formation can be estimated from 

measured o 180 values and the assumed o 180 compositions of burial fluids. A commonly 

observed range of o 180 compositions for formation waters in sedimentary basins of 0 to 8 

o/oo SMOW (Kharaka and Thordsen 1992), yields a temperature range for saddle dolomite 

precipitation from 80°C to greater than the maximum burial temperature of 200°C 

(equations after Land 1985). The temperature at the onset of saddle dolomite cement 

precipitation was reached by the Middle to Late Ordovician when the Maynardville was 

buried to a depth of about 2 km (Fig. 4. 1 3) .  Migration of hot brines from deeper parts of 

the sedimentary basin into shallow carbonate platform strata can account for the 

temperatures of mineral formation in excess of the maximum burial temperature (Coniglio 

et al. 1 994; Montanez 1994; Mountjoy and Amthor 1994). Mechanisms for brine 

migration are sedimentary and tectonic compaction due to thrusting and tectonic 

compression as well as topography-driven recharge related to tectonic uplift (Garven and 

Freeze 1984; Oliver 1 986; Leach and Rowan 1 986; Bethke and Marshak 1 990; Deming 

1 992; Kau:fi:nan 1 994). The assumed range ofburial fluid isotope composition yields a 

temperature of about 90 to 160°C for the precipitation of calcite cement in tectonic 

fractures (equations from Craig 1 965, and Friedman and O'Nei1 1 977), suggesting the 

simultaneous precipitation of the fracture-occluding calcite and saddle dolomite cements. 



The coprecipitation of these cements is also supported by the difference in their 

average o180 compositions of about 3 o/oo (Tables 4.4, 4.5). 

The Sr isotope composition of the dolomite cement from the peritidal deposits 
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(0. 70865 to 0. 70896) indicates the predominance of a dolomitizing fluid source different 

than: 1 )  Late Cambrian seawater; 2) dissolution ofUpper Cambrian carbonates; or 3) 

highly radiogenic basinal brines (Fig. 4. 1 1) .  The presence of non-radiogenic cements in 

the Upper Cambrian carbonate succession can be related to the precipitation from: 1) 

younger seawater; 2) marine pore-water expelled from younger shale successions during 

early diagenetic compaction; or 3) meteoric water that interacted with younger carbonate 

rocks (see also Gao 1 990; Gao and Land 1 991a, 1 99 1b). The Sr isotope composition of 

the dolomite cement from the peritidal deposits is comparable to Early to Middle 

Ordovician seawater (Fig. 4. 1 1) .  Thus, based on the burial history of the Maynardville 

carbonate platform succession (Fig. 4. 1 3), the plausible explanations for the observed 

87 Srl6Sr composition of dolomite are precipitation from: 1)  marine fluids, which circulated 

downward into the Upper Cambrian platform carbonate deposits during the Early and 

Middle Ordovician; 2) marine pore-water expelled from the Middle Ordovician Sevier 

shale basin; and 3)  burial fluids that interacted with the Ordovician carbonate rocks. Even 

though density-driven flow, including thermal convection, and eustatic-driven flow (see 

Kaufinan 1 994) could have provided the mechanism for circulation ofthe marine water 

overlying the Ordovician carbonate platform through the underlying Cambrian deposits, 

these mechanisms cannot account for the range of temperatures inferred for the 

precipitation of dolomite cement. The hypothesis of pore-water expulsion from the Sevier 

basin faces the same problem because mechanical dewatering and the release of marine 

pore-water from shale successions occur within the first 1 to 2 km of burial (Garven and 

Freeze 1 984; Jones and Addis 1 985; Machel and Mountjoy 1986; Bethke and Marshak 

1 990; Amthor and Friedman 1 992). Thus, circulation of warm burial fluids that interacted 



with Ordovician carbonate rocks may provide an explanation for both strontium and 

oxygen isotope compositions of dolomite cement from the Upper Cambrian carbonate 

success10n. 

144 

COMPARISON WITH THE UNDERLYING AND THE OVERLYING STRATA 

In order to evaluate the effects ofthe cessation of Grand Cycle deposition on the 

diagenetic history of the Maynardville Formation, a comparison was made with the 

underlying and overlying strata. The diagenetic history of the Maryville Limestone 

(Middle Cambrian) was described in Srinivasan ( 1993) and Srinivasan et al. ( 1994). The 

diagenesis of the Nolichucky Shale (Upper Cambrian) was studied by Foreman ( 199 1 ). 

No detailed diagenetic study has yet been conducted on the Upper Cambrian rocks of the 

overlying Knox Group. Therefore, comparison of the Maynardville was made with the 

diagenesis of the Lower Ordovician Upper Knox Group as reported in Montanez and 

Read ( 1 992a and b) and Montanez ( 1994). 

Maryville Limestone 

The marine diagenetic phases within the subtidal deposits of the Middle Cambrian 

Maryville Limestone include: turbid fibrous calcite, syntaxial overgrowth calcite cements, 

and framboidal pyrite (Srinivasan 1 993 ; Srinivasan et al. 1994). The average ()18Q value 

for the Maryville fibrous calcite (-8 .8  o/oo PDB), is similar to the average value for the 

Maynardville fibrous/bladed calcite (-8 .9 o/oo PDB), suggesting a similar diagenetic history 

(Fig. 4. 14). The diagenesis of the Maryville was influenced by the establishment of a 

meteoric diagenetic environment that resulted in carbonate dissolution followed by 

precipitation of 'blocky' clear calcite spar, and its turbid equivalent during early and 

intermediate burial. These diagenetic phases are petrographically similar to the equant 

calcite from the Maynardville. 
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Figure 4.14. Comparison of stable isotope compositions between carbonate components 
from the subtidal Maynardville deposits and the Middle Cambrian Maryville 
Limestone. Data for the Maryville Limestone are from Srinivasan ( 1993), and 
Srinivasan et al. ( 1994). 
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Four types of dolomite formed during the late diagenesis of the Maryville 

Limestone: I) small, irregular disseminations of dolomite crystals (2 J.lm to a few tens of 

J..tm) within mud-rich facies; II) planar rhombohedral dolomite (5-300 J..tm) inclusions in 

clear 'blocky' ferroan meteoric calcite; ill) subhedral to anhedral crystals ( 10- 1 50 J..tm) in 

thin seams and a few millimeter-thick bands associated with stylolites; and IV) saddle 

dolomite crystals (0. 1 to 1 . 5 mm) occurring as void filling and rarely as a replacement of 

matrix (Srinivasan et al. 1 994). 

Type I and II dolomite formed during shallow to intermediate burial diagenesis. 

Scattered dolomite crystals replacing micritic matrix and allochems in the subtidal deposits 

of the Maynardville are similar to the type I Maryville dolomite, whereas the pore-rim, 

rhombohedral-zoned dolomite crystals, succeeded by the coarse-crystalline equant ferroan 

calcite (Fig. 4.5B-C), bears resemblance to the type II Maryville dolomite. The 

Maynardville rhombohedral dolomite, however, is interpreted as a cement phase, unlike 

the replacement type II Maryville dolomite. 

The type ill and IV Maryville dolomite formed from basinal brines during 

intermediate and deep burial. This is supported by their elevated Fe ( 1 .2 to 4 .5  wt %) and 

Mn (0. 1  to 0.3 wt %) compositions, and highly radiogenic Sr isotope composition (0. 71 1 1  

to 0.7 1 39; Fig. 4. 1 1 ) .  Based on the trace element geographic gradients, Srinivasan et al. 

( 1994) inferred that the dolomitizing fluids originated in the adjacent Cambrian Conasauga 

shale basin and migrated to the east into the platform carbonates. 

The type III Maryville dolomite is petrographically similar to the dolomite 

associated with pressure solution features in the subtidal Maynardville deposits. The 8180 

compositions of type ill Maryville dolomite are slightly more negative than that of the 

Maynardville dolomite from the argillaceous layers (Fig. 4. 14). This difference may be a 

function of the greater burial depth and higher temperatures of formation for the Maryville 

dolomite. Externally derived hot basinal fluids, proposed for the formation of type ill 



Maryville dolomite, could have been warmer and more 180-depleted than pressure­

solution derived fluids that were responsible for the formation of the Maynardville 

dolomite. 
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The type IV Maryville dolomite resembles the cement and replacement saddle 

dolomite from the Maynardville subtidal deposits. The paucity of saddle dolomite cement 

in the Maynardville precluded the determination of any basin-to-platform compositional 

variations. The Maynardville saddle dolomite is on average more depleted in 180 relative 

to the Maryville Type IV saddle dolomite (Fig. 4. 14). Coupled with a difference in the Sr 

isotope composition (Fig. 4. 1 1 ), and the presence ofMVT minerals in the Maynardville, a 

different source is suggested for the fluids that precipitated saddle dolomite in the 

Maynardville versus the Maryville carbonate succession. 

There are many common characteristics in the early diagenetic histories of the 

Maryville Limestone and the Maynardville subtidal deposits. On the other hand, the late 

burial diagenesis of the Maryville was influenced by the fluids expelled from the laterally 

adjacent Conasauga basin shale deposits, whereas burial diagenetic phases of the 

Maynardville formed from locally derived fluids and in association with MVT mineralizing 

fluids. 

Nolichucky Shale 

The diagenetic study of the carbonate deposits in the Upper Cambrian Nolichucky 

Shale by Foreman ( 1991)  focused primarily on the diagenesis of oolitic lithologies and 

calcite vein formation. Fore man ( 1991 )  interpreted the Nolichucky ooids to represent 

stabilized high-Mg calcite based on: 1 )  a relict radial fibrous fabric; 2) the presence of 

microdolomite; 3)  the elevated MgC03 ( 1 . 5-2.5  mole %), Fe (> 1000 ppm), and Mn (> 

500 ppm) compositions; and 4) the low Sr content (below detection limit of 450 ppm). 

The diagenetic alteration of ooids occurred in the presence of pore water that underwent a 
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substantial interaction with clay minerals from the interbedded shale (Foreman 199 1 ). 

The difference in the present-day composition of the Nolichucky and the 

Maynardville ooids may be due to the difference in their original composition, and/or the 

difference in the style and degree of diagenetic modification (Table 4.4). The presence of 

abundant shale within the Nolichucky may have provided an important source ofF e and 

Mn that was oflesser influence in the diagenesis of the Maynardville subtidal deposits. 

Stable isotope analyses of the Maynardville ooids were not performed because of a sample 

size limitation, sample contamination concerns, and various degrees of alteration. The 

8180 composition of the Nolichucky ooids and fibrous calcite is similar to that of the 

Maynardville marine fibrous/bladed calcite cement, suggesting similar diagenetic 

modifications (Fig. 4. 1 5) .  

Foreman ( 1 991)  described veins from the Nolichucky Shale within the Whiteoak 

Mountain thrust sheet in central eastern Tennessee. Fluid inclusion data indicate that bed­

normal vein calcite precipitated at temperatures between 80 and l l 0°C (2.4 to 3 . 6  km 

burial) from highly saline brines, whereas bed-parallel vein calcite formed during maximum 

burial at 1 1 0°C, or at about 3 .6  km. Based on these observations, the bed-normal veins 

are interpreted to have formed between the late Mississippian and early Pennsylvanian 

during the onset of the Alleghenian orogeny, but prior to the emplacement of the thrust 

sheet. The bed-parallel slickensided veins formed contemporaneously with thrusting 

(Foreman 1 991  ) .  The temperatures determined for the precipitation of a single bed­

oblique vein calcite (>200°C) exceed the maximum burial temperature for the Nolichucky. 

This indicates precipitation from warm external fluids that could have been expelled from 

more deeply buried (4 to 5 km) sedimentary successions of the underlying Conasauga 

Group and the Rome Formation, or the Ordovician Sevier Shale deposits that were buried 

to sufficient depths before the end of the Devonian (Foreman 1991) .  

A more detailed study of the Maynardville veins is  needed to determine their 
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Figure 4.15. Stable isotope compositions of the comparable carbonate components from 
the Maynardville Formation and the underlying Upper Cambrian Nolichucky Shale. 
Data for the Nolichucky Shale are from Foreman ( 1991) .  
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relative timing and the relationship to the vein sets in the Nolichucky Shale. Based on 

their orientation, it is plausible that some of the bed-parallel veins observed in the 

Maynardville are related to the Alleghenian thrusting, whereas bed-perpendicular, oblique 

and irregular veins formed prior to thrusting. Comparison of oxygen isotope compositions 

reveals that, even though a significant overlap exists, the Maynardville vt�in calcite cements 

have on average more positive 8180 values than the Nolichucky vein calc:ite (Fig. 4. 1 5) .  

This suggests fluids of different compositions, and/or the effects of lower temperature in 

the precipitation of some of the Maynardville vein calcite. Foreman ( 1 99 1  ), interpreted 

the carbon isotope values for the Nolichucky vein cements to reflect buffering to the host 

carbonate values, based on the similarity in the o13C of vein calcite and the surrounding 

matrix. Similarly, the o13C compositions of the Maynardville equant calcite cement from 

tectonic fractures indicate buffering to the elevated o13C compositions of the Maynardville 

host carbonate deposits (Fig. 4.6 B; see also Chapter 6). 

Knox Group 

The Chepultepec, Kingsport and Mascot Formations of the Lowt:r Ordovician 

Upper Knox Group consist of stacked meter -scale peritidal cycles composed of 

extensively dolomitized carbonate deposits (Montaiiez and Read 1 992a). A sabkha model 

of dolomitization from modified sea water during tidal-flat progradation within high­

frequency cycles ( 1 o4 - 1  os yr) was proposed for the formation of early diagenetic 

(synsedimentary) dolomite. The early dolomite records a history of progressive diagenetic 

modification. The stabilization started syndepositionally in modified seawater, continued 

in fresh or mixed water, and was completed during deep burial by brines at elevated 

temperatures (Montaiiez and Read 1 992b). The early dolomite from the Upper Cambrian 

peritidal deposits of the Maynardville and the lower Copper Ridge Dolornite underwent a 

similar diagenetic history. The Upper Cambrian dolomicrite is depleted in 180 relative to 
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the Lower Ordovician early dolomite (Fig. 4 . 16). This is  consistent with diagenetic 

alteration at a higher temperature during deeper burial of the Cambrian deposits, but may 

also indicate a difference in the composition of the precursor carbonate cmd dolomitizing 

fluids. 

The Upper Knox late diagenetic dolomite formed as a result of the recrystallization 

of early dolomite, direct replacement of limestone at elevated temperature, and as cement 

in fractures and solution voids. This cement postdates non-ferroan meteoric and ferroan 

calcite cements, mechanical compaction and much stylolitization (Montanez and Read 

1 992b). The late diagenetic dolomitization of the Knox carbonates is associated with 

secondary porosity development, hydrocarbon migration, and local MVT mineralization 

(Montanez 1994). Many of these interpretations are similar to those for the late 

diagenetic replacement and cement dolomite from the Upper Cambrian peritidal deposits. 

On the basis of CL zonation patterns, Montanez ( 1994) recognized five 

generations of late dolomite cements in the Knox. The nonluminescent, relict cores of 

early dolomite comprise zone 1 dolomite. The complexly zoned (zones 2 to 6) dolomite 

cement contains: 2) a dull brown luminescent zone; 3)  a bright orange luminescent zone 

with alternating nonluminescent and dully luminescent cement subzones; 4) a dull brown 

luminescent zone, which corresponds to the transition from turbid to less turbid dolomite; 

5) a very dark brown to dark red luminescent zone representing the transition from 

moderately turbid to inclusion-free dolomite; and 6) a thin ( 10- 1 00 IJ.m) series of 

alternating nonluminescent and very bright luminescent subzones corresponding to 

alternating turbid and inclusion-free zones. Zone 2 and 3 Knox dolomite cement in 

eastern Tennessee predates main MVT ore-stage sphalerite, and their minimum age is 

constrained based on the Devonian to Mississippian age for the MVT mineralization 

(Montanez 1 994). Zone 4 to 6 dolomite cement fills the tectonic fractures interpreted to 

have formed during the Late Paleozoic Alleghenian orogeny (Hatcher et al. 1989; 
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Figure 4.16. Stable isotope compositions of the comparable carbonate components from 
the peritidal deposits of the upper Maynardville/lower Copper Ridge Dolomite and 
the Lower Ordovician Upper Knox Group from the Copper Creek thrust sheet in 
eastern Tennessee. Data for the Knox Group are from Montanez ( 1994). Isotope 
values of dolomite cement from the Knox Group are shown as compositional fields 
for zones 2 to 6 dolomite. 
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Montanez 1994). Bitumen observed within the Upper Knox deposits is synchronous 

with, or postdates the zone 4 dolomite cement, which in tum postdates all main ore-stage 

sphalerites. Cement zone 5 is synchronous with, or postdates sphalerite in eastern 

Tennessee (Montanez 1994). 

The zoned dolomite cement from the Upper Cambrian peritidal deposits is 

petrographically similar to zones 2 and 3 of the Knox dolomite. The zoned dolomite, 

however, primarily occludes syndepositional and evaporite dissolution voids in the 

Cambrian deposits, whereas the Knox dolomite occurs in tectonic fractures and carbonate 

dissolution voids. The CaC03 composition of early dolomite from the Knox (mean: 5 1 . 1  

mole %) is comparable to that of the first Knox dolomite cement generation (zone 2 mean: 

50 .8 mole %). A similar relationship has been observed between the comparable dolomite 

phases in the Upper Cambrian deposits (Fig. 4. 10A). The Fe composition of the zoned 

dolomite from the Cambrian strata is similar to that of zones 2 and 3 Knox dolomite ( 1  09 

to 5 1 1 5 ppm), with the amount ofMn slightly higher in the Knox dolomite (30 to 1069 

ppm; Table 4.5) .  On the other hand, zone 4 and 5 Knox dolomite petrographically 

resembles the saddle dolomite cement that occludes pore centers, tectonic fractures and 

dissolutional voids in the Upper Cambrian succession. Both Fe (2076 to 8452 ppm) and 

Mn ( 63 to 64 7 ppm) concentrations of zones 4 and 5 Knox dolomite are comparable with 

those of the Cambrian saddle dolomite cement (Table 4.5). The relationship between the 

8180 compositions of zoned (less 180-depleted) versus saddle dolomite (more 180-

depleted) cement in the Upper Cambrian deposits is similar to the relationship observed 

between the combined 8180 values of zones 2 and 3 Knox dolomite, in comparison to the 

zones 4 and 5 dolomite (Fig. 4. 1 6) .  The dolomite cement equivalent to zone 6 Knox 

dolomite has not been observed in the Upper Cambrian peritidal deposits. The least 180-

depleted saddle dolomite from the Upper Cambrian deposits has 8180 compositions 

between those of zones 5 and 6 Knox dolomite (Fig. 4 . 16), which are interpreted to have 
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formed during progressively decreasing diagenetic temperatures related to denudation 

of tectonically uplifted terranes (Montanez 1994). The temperature determined for the 

formation oflate diagenetic Knox dolomite (80°C to > 165°C) is identical to that 

estimated for the Upper Cambrian saddle dolomite. The observed similarities suggest 

similar processes of dolomitization from fluids of comparable composition and 

temperature, but do not imply simultaneous precipitation within the Uppter Cambrian and 

Lower Ordovician carbonate successions from aerially extensive homoge:nous diagenetic 

fluids. 

The Upper Knox late diagenetic dolomite cement is interpreted to represent 

precipitation from hot, saline basinal brines that underwent extensive fluid-rock interaction 

with siliciclastic deposits (Fig. 4 . 1 1 ; Montanez 1994). Dolomitizing fluids that migrated 

through the Knox carbonates at intermediate burial depths ( 1 . 5  - 2 .5  km) originated from 

burial-compaction dewatering of the shale-rich Sevier basin. Most late diagenetic 

dolomite formed from a deep subsurface (2 to > 5 km) fluid migration in response to late 

Paleozoic Alleghenian tectonism (Fig. 4 . 1 7; Montanez 1 994). 

DIAGENETIC IDSTORY IN THE CONTEXT OF GRAND CYCLE CESSATION 

This study documents significant differences between the early diagenesis ofthe 

subtidal and the peritidal deposits of the examined Upper Cambrian sedimentary 

succession. The early diagenetic history of the Maynardville Formation subtidal deposits 

is comparable to that of the underlying Grand Cycle carbonate deposits of the Conasauga 

Group. The peritidal carbonate deposits of the upper Maynardville and the overlying 

Copper Ridge Dolomite experienced early diagenesis similar to the Upper Knox Group 

deposits. These observations indicate that the prominent change in the style of passive 

margin deposition, that resulted in the cessation of Cambrian Grand Cyde sedimentation 

in the southern Appalachians, triggered substantial changes in the diagem�sis of associated 
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Figure 4.17. Schematic illustration ofthe topography-driven fluid flow (arrows) through 
the sedimentary succession of southwestern Virginia during the late Paleozoic 
Alleghenian orogeny (Figure 18  from Montanez 1994). 
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carbonate deposits. 

The model developed for the deposition of the Maynardville F onnation provides a 

means for the interpretation of the distribution and character of early diagenetic phases 

(Fig. 2.5) .  Diagenesis in the presence of normal seawater took place within the subtidal 

deposits of the Maynardville, as evidenced by the presence of various marine calcite 

cements. Pore water of marine origin was modified by the introduction of meteoric water 

into the subtidal package during an episode of sea-level fall that exposed areas along the 

slightly elevated platform rim at the Tazewell locality, and converted on-platform lagoonal 

settings into extensive tidal flats covered by microbial mats (Fig. 2.5) .  Meteoric water 

could have also been introduced in the subtidal deposits during repeated periods of 

subaerial exposure of the overlying peritidal package. The absence of substantial 

dissolution of the subtidal deposits may reflect the relatively short duration and magnitude 

of sea-level fall, coupled with arid to semi-arid climate. The transition into peritidal 

deposition resulted in the pervasive, penecontemporaneous dolomitization of the 

carbonate deposits by modified seawater under sabkha-like conditions. 

Differences in the depositional regime and early diagenesis influenced the late 

diagenesis of the tenninal Grand Cycle carbonate deposits. The establishunent of 

widespread peritidal deposition was related to the infilling of the Conasauga intrashelf 

basin and carbonate platform progradation (Fig. 3 . 3).  The associated decrease in the 

abundance of siliciclastic deposits resulted in a decrease in the amount of ferroan 

diagenetic phases within the peritidal deposits relative to the subtidal depositional package 

of the Maynardville. In the subtidal deposits, the presence of common argillaceous layers 

and the development of hardgrounds influenced the formation of ferroan dolomite during 

burial diagenesis. The late diagenetic dolomitization of the peritidal deposits, on the other 

hand, was controlled by recrystallization and pressure solution of early dolomite, and the 

dolomitization of limestone deposits by burial fluids. 
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The presence ofMVT minerals confirms that the late diagenesis of the 

Maynardville Formation was influenced by the migration of externally derived burial fluids. 

The most probable source for the MVT basinal brines in eastern Tennessee is the Middle 

Ordovician Sevier shale basin (Kesler et al. 1988, 1989; Haynes and Kesller 1989; Haynes 

et al. 1989; Bethke and Marshak 1990). The low Sr isotope ratio of the dolomite cement 

from the peritidal deposits may reflect the shallow to intermediate burial expulsion of 

Middle Ordovician marine pore-water with an original 87Sr/86Sr ratio bev..veen 0.7080 and 

0.7087 (Burke et al. 1 982; Keto and Jacobsen 1987) from the Sevier shale basin, prior to 

substantial interaction with siliciclastic deposits (Fig. 4. 1 8) .  The Sevier shale was 

deposited within a subsiding foreland basin, developed in response to conversion of the 

region into a convergent-margin setting (Fig. 4. 1 8; Shanmugam and Walker 1980). In 

eastern Tennessee the Sevier shale deposits reach a thickness of more than 2000 m, and 

therefore the dewatering of these deposits could have started as early as the Middle 

Ordovician (Fig. 4. 1 8) .  This interpretation is in agreement with a proposed Middle 

Ordovician to Middle Devonian age for the migration ofMVT mineralizing fluids in the 

southern Appalachians (Kesler and Van Der Pluijm 1990), and with early MVT brines 

representing connate waters expelled from the Sevier shale basin (Kesler et al. 1989). The 

expelled pore-water moved laterally into the Upper Knox carbonate deposits, which had 

experienced extensive karstification, including brecciation, during subaerial exposure 

related to the formation of the Knox unconformity (Fig. 4. 1 8). The most extensive MVT 

mineralization and evidence for hydrocarbon migration is associated with these highly 

porous carbonate deposits (Haynes and Kesler 1989; Montanez 1 994). The basinal fluids 

could have migrated into the underlying Maynardville deposits along fracture systems that 

might have developed concomitantly with foreland basin formation. As noted earlier, the 

expulsion of connate waters from the Sevier Shale during shallow to intermediate burial, 

however, does not account for the wide range of temperatures proposed for the 
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Figure 4.18. Schematic illustration ofthe compaction-driven fluid flow (dotted arrows) 
from the Sevier shale basin into the adjacent carbonate platform successions in 
eastern Tennessee. Stratigraphy from Walker ( 1980). 
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precipitation of the burial dolomite cement in the Upper Cambrian peritidal deposits. 

Burial fluids may inherit their Sr isotope compositions from the carbonate 

successions they interact with along the fluid migration pathway (Muller et al. 1 991 ;  

Banner et al. 1994; Banner 1995). In diagenetic systems characterized by high rates of 

recrystallization, involving dissolution and reprecipitation reactions, the Sr isotopic 

composition ofthe precursor carbonate is commonly inherited in the successor diagenetic 

carbonate phase (Veizer 1992). Non-radiogenic composition ofwarm basinal brines is, 

therefore, commonly interpreted to represent buffering of Sr isotope composition to 

carbonate host composition (Barnaby and Read 1992; Farr 1992) .  The late diagenetic 

dolomitization of the Lower Ordovician Upper Knox carbonate succession was associated 

with widespread dissolution and the development of secondary porosity. As a result, 

much of the Sr in burial diagenetic fluids was derived from the Knox host carbonate 

(Montaiiez and Read 1 992b ). 

The relatively low Sr isotope composition of the dolomite cement from the Upper 

Cambrian peritidal deposits may therefore indicate precipitation from bmial fluids that 

interacted with younger carbonate strata. The mechanism for the migration of fluids 

through deeply buried sedimentary successions is topography-driven recharge triggered by 

tectonic uplift (Fig. 4. 1 7). This mechanism, in conjunction with tectonic compaction, has 

been proposed for the migration of later-stage MVT dolomitizing fluids, which were 

meteoric fluids that underwent interaction with the Sevier shale deposits (Kesler et al. 

1 989). The relationship between tectonic events and burial fluid migration provides a link 

between the Acadian and Alleghenian tectonism, and the two distinct ages determined for 

the MVT mineralization in southeastern North America, which are: 1 )  the Devonian 

(Grant et al. 1984; Stein and Kish 1985;  Hay et al. 1988; Nakai et al. 1990, 1993); and 2) 

the Pennsylvanian/Early Permian (Hearn and Sutter 1985;  Hearn et al. 1987; Elliot and 

Aronson 1 987; Hay et al. 1988). The topography-driven migration ofbrines through the 
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Upper Knox carbonate succession during late burial (Montanez 1 994; Fig. 4. 1 7) may 

have influenced the underlying Upper Cambrian carbonates. This was possible because of 

the conformable transition between the Maynardville and the Knox Group peritidal 

carbonate deposits. 

Differences in the Sr isotope compositions ofburial cements can be attributed to 

the different source regions for the siliciclastic material with which the burial fluids 

interact. The highly radiogenic Sr isotope composition of the late diagenetic dolomite 

from the Maryville Limestone (Conasauga Group, Middle Cambrian) reflects the 

composition of fluids derived from the Cambrian Conasauga shale basin to the west (Fig. 

4. 1 1 ). Siliciclastic sediments from the Conasauga basin were derived by the weathering of 

cratonic crystalline basement rocks. The resulting siliciclastic deposits, rich in K-feldspars 

and mica, produce highly radiogenic formation waters (Stueber et al. 1 987; McNutt et al. 

1 990; Banner 1 995). On the other hand, interaction with plagioclase feldspar may result 

in relatively low Sr isotopic ratios ofbasinal brines (Franklyn et al. 1 99 1). Srinivasan et al. 

( 1 995) reported a mean Sr isotope ratio for burial diagenetic phases of the Middle 

Ordovician Chickamauga Group of 0.7095 . This value is interpreted to be the result of 

precipitation from basinal fluids expelled from the Sevier shale (Fig. 4. 1 8) .  The Sevier 

basin deposits represent K-feldspar-poor volcanic detritus, which was derived from an 

evolved volcanic-arc source to the east (Srinivasan et al. 1 995). The Sr isotope 

composition of the Middle Ordovician burial cement is comparable to that of the Upper 

Knox dolomite cement, suggesting a similar fluid source (Fig. 4. 1 1 ). The same fluid 

source is suggested for the saddle dolomite cement, associated with sphalerite in tectonic 

fractures from the peritidal Maynardville, on the basis of its Sr isotope composition, which 

overlaps with the compositional field for the Upper Knox dolomite cement (Fig. 4. 1 1 ) .  

Other dolomite cement samples from the Upper Cambrian peritidal deposits are slightly 

less radiogenic than the Knox late dolomite (Fig. 4. 1 1) .  The slight difference in Sr isotope 
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compositions may represent evolution of dolomitizing basinal fluids due to the 

interaction with Upper Knox carbonate deposits as they migrated from the Sevier basin to 

the Maynardville deposits (Fig. 4. 1 8) . On the other hand, the difference may suggest that 

while most pores in the Upper Cambrian deposits were occluded during shallow to 

intermediate burial, the substantial amount of porosity in the Upper Knox deposits 

remained available for the migration of fluids that interacted with the siliciclastics at higher 

temperatures during later burial diagenesis. 

The pronounced difference in the Sr isotope compositions ofburial dolomite 

cements indicate that the burial fluids that migrated through the Upper Cambrian/Lower 

Ordovician carbonate succession of the southern Appalachians did not significantly 

influence the underlying carbonate deposits of the Middle Cambrian Conasauga Group 

(Fig. 4. 1 1 ) .  The Upper Cambrian Nolichucky Shale, which separates these two 

sedimentary successions, may have served as an aquitard to cross-formational fluid 

migration (Fig. 4. 1 8). For the same reason the Maynardville deposits have not been 

significantly influenced by the migration of burial fluids from the Conasauga basin shale. 

A possible upward and lateral migration of these fluids may have had only a minor 

influence on the diagenesis of the lower part of the Maynardville subtidal deposits. This 

illustrates the consequences of the prominent change in the regional facies distribution, 

associated with the end of Grand Cycle deposition in the southern Appalachians, on the 

burial diagenetic patterns. The complex diagenetic history of the Maynardville Formation 

was influenced by processes related to passive-margin evolution, and later burial history in 

response to the conversion to a convergent margin. 

CONCLUSIONS 

The Maynardville Formation, as a terminal Grand Cycle carbonate succession in 

the southern Appalachians, marks a prominent change in the diagenetic patterns between 
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the Middle to Upper Cambrian Conasauga Group and the overlying Upper Cambrian 

to Lower Ordovician Knox Group carbonate deposits. The early diagenesis of the 

Maynardville has been significantly influenced by the change from subtidal into peritidal 

depositional regime. The subtidal deposits contain a variety of calcite c��ments 

representing marine, meteoric and burial diagenetic phases. The majority of dolomite in 

the subtidal package formed during burial from fluids provided locally by the diagenesis of 

clay minerals, compaction, and pressure solution. 

The fine-crystalline replacement dolomite of the peritidal package formed under 

sabkha-like evaporitic conditions on a semi-arid tidal flat, and was subjected to 

modifications later in its diagenetic history. The coarser-crystalline replacement dolomite 

formed during burial from the recrystallization of early dolomite and dolomitization of 

limestone in the presence of warm basinal brines. The zoned dolomite cement in the 

peritidal package precipitated from fluids of varying composition such as modified marine 

fluids, mixed marine/meteoric, and deeper burial basinal brines. The saddle dolomite 

cement precipitated during later burial from fluids generated by the pressure-solution of 

matrix dolomite and from basinal brines related to MVT mineralization and hydrocarbon 

migration. 

Burial fluids represent marine pore water expelled from the Middle Ordovician 

Sevier basin shale succession, and/or waters of meteoric origin that interacted with 

Ordovician carbonate rocks. This scenario is in contrast to the migration of basinal brines 

from the Conasauga shale into the adjacent Middle Cambrian carbonate platform 

succession. The differences in burial diagenesis between the underlying Conasauga Group 

and the overlying Maynardville/Knox carbonate deposits were influenced by changes in 

the regional facies distribution associated with the cessation of Grand Cycle deposition, 

coupled with the complex burial history of the passive margin sedimentary succession. 
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A LATE CAMBRIAN CARBON-ISOTOPE EXCURSION: RE:LATION TO 

BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY, AND 

IMPLICATIONS FOR INTERPRETING DIAGENETIC IDSTORY 

INTRODUCTION 
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Carbon-isotope stratigraphy is a promising tool for a higher resolution stratigraphy 

that can greatly facilitate correlation of successions lacking prominent biostratigraphic 

markers. This type of stratigraphic correlation has been applied to numerous Proterozoic 

and Neoproterozoic successions (Kaufinan et al. 199 1 ,  1993 ; Wickham and Peters 1 993 ; 

Narbonne et al. 1 994; Kaufinan and Knoll 1 995; Knoll et al. 1 986, 1 995:� Pelechaty et al. 

1 996; among others). In biostratigraphically better characterized parts of the Phanerozoic 

sedimentary successions, especially the Mesozoic and Cenozoic, carbon-· isotope 

stratigraphy has been used for basin-to-platform and regional correlation of strata beyond 

the current level ofbiostratigraphic resolution (Magaritz 1 99 1 ;  Folmi et al. 1 994; 

Vahrenkamp 1 996). 

Of special interest in carbon-isotope studies are deviations from usual or expected 

isotopic values, referred to as positive or negative carbon-isotope excursions. Such 

excursions provide indicators of tectonic, climatic, paleooceanographic and evolutionary 

changes that influence carbon cycling. Carbon-isotope excursions associated with changes 

in organic productivity and extinction events commonly occur at major boundaries 

throughout the stratigraphic record (Marshall and Middleton 1 990; Magaritz 1 991) .  

Most studies of carbon-isotope variations deal with marine carbonate rocks and 

their constituents, including skeletal allochems, abiotically precipitated cement, or 

homogeneous micrites. Because of relatively small equilibrium carbon-isotope 
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fractionation effects and temperature effects, variations in carbon-isotope 

compositions of carbonate minerals most commonly reflect changes in the 13Cf12C ratio of 

the solution from which they precipitated (Anderson and Arthur 1983). Therefore, 

changes in carbon-isotope values of marine carbonate components are considered useful 

indicators of changes in the marine bicarbonate reservoir composition. Temporal 

fluctuations in oBC of marine carbonate constituents are accordingly int,erpreted to 

represent secular trends of oceanic ()1 3C variations related primarily to the changing rate 

of organic matter burial and/or primary organic productivity (Kump 1989; Marshall 1 992). 

Stable isotope analysis, for the purpose of deciphering the diagenetic history of the 

Upper Cambrian Maynardville Formation, reveals rather unusual carbon--isotope values. 

Measured ()13C values ofvarious individual diagenetic and depositional components are 

highly variable, but are in general more positive or more enriched in 1 3C when compared 

to the underlying and the overlying strata (Figs. 4. 14- 16). Studies of time-equivalent 

successions elsewhere indicate that recorded carbon-isotope compositions may reflect a 

large, positive global excursion (Brasier 1 993; Saltzman et al. 1995a; Saltzman 1 996). 

The occurrence of positive carbon-isotope excursions are the result of: 1 )  increased 

primary organic productivity and the associated increase in the fraction of carbon buried as 

organic matter during explosive evolutionary events; 2) increased rates of sedimentation 

within the oceans and the associated increase in the rate of deposition of organic matter; 

and 3 )  enhanced preservation of organic material in the sediment caused by an expanded 

oxygen-minimum zone or marine anoxia 0Neissert 1 989; Derry et al. 1992; Brasier 1 992; 

Brasier et al. 1 994; among others). Table 5 . 1 is a compilation of documented Phanerozoic 

positive carbon-isotope excursions that appear to be global in scope and had a duration 

that exceeds the residence time of carbon in the modern ocean. The enhanced burial and 

preservation of organic matter associated with the positive carbon shifts at several 

important stratigraphic horizons in Mesozoic strata resulted in the deposition of 'black 
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Table 5 . 1 .  Phanerozoic positive carbon-isotope excursions with durations greater 
than the residence time of carbon in the modern ocean (- 2 x 1 05 yrs; modified from 
Schidlowski and Aharon 1 992). 

o13c 
shift (%o) 

1 
2 
2 

2-4 

2-3 
1 .5 
3 

3 .5 
3 
2 

2.5-3 .5  
4-5 

4-5 

1 -3 

age 

Miocene 

Late Paleocene 
Santonian/Campanian 

Cenomanian!furonian 

Aptian/ Albian 
V alanginian!Hauterivian 
Toarcian 
Late Pemrian 
Mid-Carboniferous 
Devonian/ Carboniferous 
Frasnian/Famennian 

Latest Ordovician 

Late Cambrian 
(Steptoean) 
Early Cambrian 
(multiple excursions) 

duration 
(x 106 yrs) 

3-4 
5 .5  
5 .7 

1 -3 

9.7 
1 -2 
0.5 

1 
? 

7-1 5  
- 1  
? 

2-4 

- 1  

reference 
Vincent and Berger 1985; Berger and 
Vincent 1986 
Shackleton 1987 
Arthur et al. 1985 
Scholle and Arthur 1980; Arthur et al. 
1985, 1987, 1 988; Schlanger et al. 1987; 
Pratt et al. 199 1 ;  Gale et al. 1 993 
Arthur et al. 1985; Weissert 1 989 
Lini et al. 1992; Follrni et al. 1994 
Jenkyns and Clayton 1986; Jenkyns 1 988 
Gruszczynski et al. 1989 
Popp et al. 1986 
Lohmann and Walker 1989 
Wang et al. 1 996 
Marshal and Middleton 1 990; Long 
1 993; Wang et al. 1993 
Brasier 1993; Saltzman et al. 1995, 
this study 

Brasier et al. 1 994; Derry et al. 1994 
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shales' (Scholle and Arthur 1 980; Jenkyns and Clayton 1986; Arthur et al. 1 987; 

Schlanger et al. 1 987; Weissert 1 989; Marshall 1 992). The association of a positive 

excursion with a glacial event during the Miocene suggests a possible correlation between 

the changes in carbon cycling, atmospheric pC02, eustatic sea-level changes and global 

climatic cooling (Vincent and Berger 1 985; Berger and Vincent 1 986). Similar 

relationships have been proposed for a positive carbon-isotope excursion at the end of the 

Ordovician, which is associated with extinction episodes and the glaciation of Gondwana 

(Marshall and Middleton 1 990). Positive carbon-isotope shifts, however, do not 

necessarily represent secular trends in carbon cycling. Instead, they may be a result of 

regional variations related to basin evolution (Beauchamp et al. 1 987). Therefore, any 

study of secular carbon-isotope variations should be concerned with recognizing possible 

variations caused by local-to-regional environmental factors and postdepositional 

diagenetic alterations. 

This Chapter presents the results of a more detailed study of the carbon-isotope 

variations within the Upper Cambrian sedimentary succession of the southern 

Appalachians that includes the upper part of the Nolichucky Shale, the Maynardville 

Formation, and the lower part of the overlying Copper Ridge Dolomite. The study was 

designed to meet the following objectives: 1 )  to document the variations in the stable 

isotopes of carbon, with special emphasis on deciphering the anatomy of the positive 

carbon-isotope excursion which is recorded within this sedimentary succ•�ssion. This was 

accomplished by selecting an outcrop with the most complete exposure of the 

stratigraphic interval in question, and by applying extensive sampling; 2) to apply carbon­

isotope stratigraphy to this Upper Cambrian sedimentary succession by using the 

information available on time-equivalent, highly fossiliferous successions elsewhere. The 

purpose of this objective was to provide a more detailed chronostratigraphic framework 

for the deposition of this stratigraphic interval; and 3 )  to evaluate the efn�cts of 
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depositional environments and diagenesis on the carbon-isotope signature. To meet 

this objective, carbon-isotope compositions for samples from various lithofacies were 

compared and related to paleoenvironmental interpretations. In addition, o18Q 

compositions of various individual depositional and diagenetic components were used to 

constrain the diagenetic environments and the extent of diagenetic modifications. 

INVESTIGATIVE METHODS AND SAMPLING STRATEGY 

Carbon-isotope stratigraphy was determined for the most complete of the five 

outcrops examined-the Thorn Hill section (Figs. 1 .4, 2 . 1 ,  5 . 1 ,  see also Appendix A). 

The samples for stable isotope analysis were collected at approximately 1 meter intervals, 

depending on the availability of suitable carbonate phases. Powdered samples were 

collected from polished and stained slabs and thin-section billets by using a microscope­

mounted microdrill assembly after careful petrographic examination. An attempt was 

made to collect samples representing homogenous individual depositional and diagenetic 

components. Care was taken to prevent contamination from the surrounding phases. The 

mineral composition ofthe collected material was checked by the use of standard X-ray 

diffraction methods. 

The majority of the samples are fine-grained carbonate matrix composed of calcite 

or dolomite, referred to as micrite and dolomicrite, respectively. Samples from the 

Nolichucky Shale and the subtidal package of the Maynardville are primarily composed of 

calcite, and were collected from the micritic or mudstone layers of the ribbon rocks. 

Some of the samples came from centimeter-scale micritic intraclasts comprising flat-pebble 

conglomerate layers, from micritic lenses encased within grainstone layers or from 

intergranular areas of micrite-supported lithofacies (see Appendix D for description of 

individual samples). The transition between the subtidal and the peritidal package is 

represented by micrite samples from microbial laminates or stratiform stromatolites. The 
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Figure 5.1. Stratigraphic column of the Thorn Hill section. For the explanation of 
lithologic symbols see Tables 2. 1 and 2.2, and Appendix A To the right ofthe 
stratigraphic column is a carbon-isotope variation curve constructed on the basis of 
measured o 1 3c values for the samples representing micrite (open squares) and 
dolomicrite (open circles). See Appendix D for an individual sample description. 
The curve is constructed by plotting the measured o1 3c values with a ±0.2 o/oo 
analytical precision considered. The sequence boundary zone, defined on the basis 
of lithologic criteria (see Chapter 2), within which the Maynardville/Copper Ridge 
Dolomite transition is contained, is indicated with a shaded pattern. 
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mineralogy of these samples reflects the trend in the declining amount of calcite up­

section and the predominance of dolomite in the peritidal deposits. Samples from the 

peritidal package of the Maynardville and the Copper Ridge Dolomite primarily consist of 

dolomicrite from mudstones, mechanical laminates or "couplets", and microbial deposits. 

Several samples represent dolomicrosparite, and rare coarser -crystalline replacement 

dolomite (see Appendix D). Individual cement phases were also collected where available. 

These include fibrous to bladed calcite, equant calcite and saddle dolomite cement. Rare 

calcite cement samples from the Copper Ridge Dolomite come from mostly undolomitized 

shallow subtidal lithofacies associated with microbial deposits. Calcite and dolomite 

samples were analyzed for the stable isotopes of carbon and oxygen following the 

procedure outlined previously in Chapter 4. 

RESULTS OF STABLE ISOTOPE ANALYSIS 

Stratigraphic variation in carbon-isotope composition of the micrite and 

dolomicrite samples is shown in Figure 5 . 1 .  The ()13C values of subtidal micrite fluctuate 

greatly but in general show an increase from the upper Nolichucky into the subtidal 

depositional package of the Maynardville. Dolomicrite samples from the peritidal package 

of the Maynardville and the overlying Copper Ridge Dolomite form a smoother carbon­

variation curve. Some ofthe most positive ()BC values correspond to the samples 

collected from the sequence boundary zone within which the Maynardville/Copper Ridge 

transition is contained (Fig. 5 . 1 ). The o13C values decline in the lower part of the Copper 

Ridge Dolomite. 

Figure 5 .2  illustrates the stratigraphic variations in both carbon and oxygen isotope 

values. Overall, there is a poor correlation or covariation between the ()13C and ()18Q 

values (Figs. 5 .2, 5 .3) .  In general, micrite samples from the Nolichucky Shale and the 

lower part of the Maynardville are more depleted in I 8Q (81 8Q = -9.3 to -7.2 o/oo PDB) 
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Figure 5.2. Variations in o 1 3c and o 1 8o values as a function of stratigraphic position of 
the micrite (open squares) and dolomicrite (open circles) samples. All error bars 
represent ±0.2 o/oo analytical precision. The shaded area on the vertical axis 
indicates the sequence boundary zone. Note poor correlation or covariation 
between ol 3c and o 1 8o values, and the difference between o 1 8o values for 
micrite versus dolomicrite. 
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Figure 5.3. Crossplot illustrating poor correlation or covariation between ol 3c and 
o l 8o values for the micrite (r = 0.045) and dolomicrite (r = 0.004) samples. 
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relative to dolomicrite samples (ol8Q = -8 . 1  to -5.9 o/oo PDB). 

In Figure 5 .  4 the data points representing the individual diagenetic phases are 

superimposed on the o13C and o180 stratigraphic variation trends. Data points for the 

fibrous/bladed calcite cement from the subtidal depositional package of the Maynardville 

plot within the ol3C and ol&Q variation curve. Rare fibrous/bladed calcite from the 

Copper Ridge Dolomite has the most negative o18Q value (- 10  o/oo PDB), and is 

significantly depleted in 1 8Q relative to the associated dolomicrite. Equant calcite cement 

is depleted in both nc and 180 in comparison to the associated micrite samples. The o l3C 

values of saddle dolomite show a rather good correlation with the dolomicrite o13C 

variation curve, with some values being only slightly depleted in 1 3C relative to the 

dolomicrite. On the other hand, the saddle dolomite samples have similar o 18Q values or 

are depleted in I 8Q in comparison to the associated dolomicrite (Fig. 5 .4). 

RELATIONSHIP OF CARBON-ISOTOPE STRATIGRAPHY TO 

BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY 

Chronostratigraphic correlation of Cambrian strata by means of biostratigraphy is 

often limited due to the restricted geographic distribution of many skeletal fossil taxa 

whose occurrence and preservation are strongly influenced by various ecological and 

taphonomic fc:t.ctors (Brasier 1 993). Carbon-isotope stratigraphy, developed for large 

Cambrian carbonate platfonn successions with a well-constrained biostratigraphic and 

sequence stratigraphic framework, has great potential to be used as a stratigraphic tool 

(Brasier 1 993) .  Thus, the Late Cambrian carbon-isotope variations reported for several 

biostratigraph�cally well-characterized successions (Fig. 5 .  5 ;  Brasier 1 993; Saltzman et a!. 

1 995a, Saltzman 1 996) can be compared with the ol3C variations documented for the 

coeval sedimentary succession of the southern Appalachians in this study (Fig. 5 . 1 ). 
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Figure 5.4. Comparison of carbon and oxygen isotope compositions of matrix samples 
and individual diagenetic phases. Variations in isotope composition as a function 
of stratigraphic position of matrix samples are denoted by the shaded curves. 
Superimposed data points represent the isotope compositions of the individual 
diagenetic phases including: fibrous to bladed calcite cement (solid triangles), 
equant calcite cement (open triangles) and saddle dolomite cement and 
replacement (open diamonds). 
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Figure 5.5. Positive carbon-isotope excursions documented for several time-equivalent 
Upper Cambrian sedimentary successions. A) the Great Basin ofNevada and Utah 
(from Brasier 1 993); B) the Great Basin ofNevada (from Saltzman 1 996); C) 
Kazakhstan and China (from Saltzman 1 996). 
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The Upper Cambrian succession of the southern Appalachians lacks prominent 

biomarkers, especially in the upper part of the Maynardville Formation and the overlying 

Copper Ridge Dolomite. Consequently, the biostratigraphy of this stratigraphic interval is 

poorly constrained. On the other hand, a detailed sedimentologic and sequence 

stratigraphic framework, with an emphasis on the Maynardville Formation, has been 

developed and is reported in Chapters 2 and 3 .  

Figure 5 .  6 relates the stratigraphy of the southern Appalachians in northeastern 

Tennessee to established Upper Cambrian biostratigraphy. The presence ofthe Cedaria 

and Crepicephalus faunal zones has been reported in the highly fossiliferous Nolichucky 

Shale of northeastern Tennessee (Fig. 5 .6; Bridge 1 956; Derby 1 965 ; Rasetti 1 965). 

Bridge ( 1 956) also reported that the elements ofthe Crepicephalus zone are sometimes 

present in the lower part of the Maynardville Formation. At the time these observations 

were made, the Maynardville was considered a member of the Nolichucky Shale. Derby 

(1 965) argued that the base of the Maynardville is at or above the lower boundary ofthe 

Aphelaspis zone, and that the Crepicephalus fauna is absent in the Maynardville 

Formation (Fig. 5 .6). In this study the base of the Maynardville is placed at the base of 

first thick-bedded limestone unit above the Nolichucky Shale, and as such it represents a 

facies boundary that may be at different time-stratigraphic horizons at different localities 

(Bridge 1 956; Derby 1 965). The presence ofthe Aphelaspis zone fauna in the lower part 

of the Maynardville Formation (the subtidal depositional package) constrains its age to the 

Dresbachian or Steptoean (Fig. 5 .6). The upper part of the Maynardville, comprising the 

peritidal depositional package, is extensively dolomitized and is poorly fossiliferous. The 

Maynardville conformably grades upward into similar peritidal deposits of the overlying 

Copper Ridge Dolomite (Knox Group).  Based on lithologic evidence, the conformable 

transitional interval between these two formations is correlative with the Dresbachian/ 

Franconian unconformity (Fig. 5 .6; Osleger and Read 1 993 ; see also Chapter 2). 



Figure 5.6. The Upper Cambrian stratigraphy of the southern Appalachians of 
northeastern Tennessee in relation to established Cambrian stratigraphy and 
biostratigraphy. 
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A major unconformity is absent in the southern Appalachians because the rate of 

passive-margin thermal subsidence exceeded the rate of sea-level fall (Bond et al. 1 989; 

Osleger and Read 1 993). It is possible that the stratigraphic interval deposited on the 

passive margin during the time period of continent-wide regression also represents a 

condensed interval. The presence of similar intervals was reported from the northern 

Appalachians ofwestern Newfoundland by James and Stevens ( 1 986), based on the 

occurrence of the upper four Dresbachian trilobite zones (Aphelaspis, Dicanthopyge, 

Prehousia, and Dunderbergia) in less than 20 m of strata associated with thin layers of 

quartz sand. Unfortunately, biostratigraphic control is insufficient to precisely determine 

the time period represented by the conformable succession in the southern Appalachians. 

As was the case for the uppermost highly dolomitized part of the Maynardville Formation, 

preserved skeletal fauna is very rare in the overlying Copper Ridge Dolomite. The 

presence of a Trempealeauan fauna has been documented from the upper part of the 

Copper Ridge Dolomite (Bridge 1 956; Derby 1965), but to date, no fossil ofFranconian 

age has been identified in the southern Appalachians. Therefore, the Copper Ridge 

Dolomite is considered to represent most of the Franconian and Trempealeauan stages 

(Elvinia to Saukia zones) of the Late Cambrian (Fig. 5 .6; Bridge 1 956; Rasetti 1 965; 

Derby 1 965; Osleger and Read 1 993). 

Palmer (1 965b) described the late Dresbachian fauna of the Great Basin, including 

the Aphelaspis, Dicanthopyge, Prehousia, and Dunderbergia trilobite zones and the lower 

Franconian Elvinia zone, as the Pterocephaliid biomere (Fig. 5 .6). A biomere is a regional 

biostratigraphic unit of stage magnitude defined by levels of trilobite mass extinction 

(Palmer 1 965a). Ludvigsen and Westrop ( 1 985) proposed that the Pterocephaliid biomere 

can be replact:d by the Steptoean stage (Fig. 5 .6). The Steptoean extends from the base of 

the Aphelaspis zone to the base of the lrvingella major subzone of the Elvinia zone 

(Ludvigsen and Westrop 1985; Fig. 5 .6). 
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Brasier ( 1993), Saltzman et al. ( 1995a), and Saltzman ( 1 996) reported a 

positive carbon-isotope excursion for the Upper Cambrian successions in the Great Basin, 

China, Kazakhstan and Australia, suggesting a likely global phenomenon (Fig. 5 . 5). The 

beginning of the ol 3C excursion is marked by an increase in ol3C values of marine 

carbonate phases above the background values ranging between - 1  and + 1 o/oo PDB (Fig. 

5 . 5). This increase is coincident with the first occurrence of the trilobite Glyptagnostus 

reticulatus which also corresponds to the base of the Pterocephaliid biomere, the 

Steptoean stage, and the Aphelaspis zone (Figs. 5 . 5  and 5 .6). This stratigraphic horizon 

represents a marine extinction horizon at the Mrujumiid-Pterocephaliid biomere boundary 

and can be correlated world-wide (Ludvigsen and Westrop 1985). Maximum ol3C values 

(between 4 and 5 o/oo PDB) correspond to the late Steptoean time of a craton-wide hiatus 

separating the Sauk II and Sauk III sequences (Fig. 5 .5A). This time of maximum 

excursion also coincides with the time of maximum faunal diversity within the 

Pterocephaliid biomere, which spans the late Dunderbergia to early Elvinia trilobite 

biozones (Palmer 1 965b, Rowell and Brady 1976; Saltzman et al. 1 995a; Saltzman 1 996). 

The end of the excursion occurred prior to the end of the Pterocephaliid Biomere (Fig. 

5 . 5A, B; Saltzman 1 996). 

The beginning of the positive carbon-isotope excursion in the stratigraphic 

succession of the southern Appalachians occurred during the deposition of the upper part 

of the Nolichucky Shale (Fig. 5 . 1  ) .  The analogy with the Great Basin localities relates the 

start ofthe excursion with the base ofthe Aphelaspis zone or the base ofthe 

Pterocephaliid biomere marked by the first occurrence of Glyptagnostus reticulatus (Fig. 

5 .6) .  Thus, carbon-isotope stratigraphy can potentially be used to make interpretations 

about the approximate position of the biozone and biomere boundaries in a stratigraphic 

succession for which detailed biostratigraphic determinations have not been previously 

made. Such interpretations are possible on the basis of the documented consistent 
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relationships between carbon-isotope excursions and biostratigraphic markers on 

different continents (Gale et al. 1 993 ), but should be made with a great degree of caution. 

Saltzman ( 1996), for example, noted that the Steptoean excursion started slightly earlier in 

China than in the Great Basin. Such differences should also be anticipated between the 

Great Basin and the southern Appalachians. 

The period of maximum carbon-isotope excursion at the Thorn Hill locality 

correlates with the sequence boundary zone within which the Maynardville/Copper Ridge 

transition is contained (Fig. 5 . 1) .  The sequence boundary zone is characterized by the 

presence of common sand-size quartz and feldspar detritus. The relationship between the 

time of maximum carbon-isotope excursion and sea-level low stand in western North 

America supports the interpretation that the sequence boundary zone is coeval with the 

time of continent-wide regression resulting in the Dresbachian/Franconian unconformity or 

Sauk WSauk Ill hiatus. In the southern Appalachians this stratigraphic interval is highly 

dolomitized and poorly fossiliferous. lfthe deposition of this interval corresponds to the 

time of maximum faunal diversity within the Pterocephaliid biomere it should be 

approximately correlative with the Dundenbergia (late Dresbachian) and Elvinia (early 

Franconian) fcmnal zones (Fig. 5 .6). This is consistent with the correlation between the 

maximum carbon-isotope excursion and the widespread influx of siliciclastics during the 

Dunderbergia and/or early Elvinia zones ofthe Great Basin (Saltzman 1 996). 

The g1�ometry of carbon variation curves can be used as indicators of sediment 

accumulation rates and the distribution of discontinuities in the geological record 

(Magaritz 1 99 1 ;  Pelechaty et al. 1 996). The thickness of the stratigraphic interval which 

records the Steptoean positive carbon-isotope excursion in the Great Basin of Nevada is in 

excess of200 m (Fig. 5 . 5B; Saltzman 1996). In comparison, the sedimentary succession 

at the Thorn Hill locality that contains the carbon-isotope excursion is about 80 m thick 

(Fig. 5 . 1) .  This implies a rather low sediment accumulation rate and thus indicates that the 



stratigraphic interval deposited on the passive margin of the southern Appalachians 

during the time period of continent-wide regression represents a condensed interval. 
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The return to background c)l3C values occurred during the deposition of the lower 

Copper Ridgt� Dolomite (Fig. 5 . 1) .  Elsewhere, the end of the excursion occurred prior to 

the end ofPterocephaliid biomere and during the Elvinia zone, which supports an early 

Franconian or late Steptoean age for the lowermost Knox Group deposits in the southern 

Appalachians (Fig. 5 . 6). 

RELATION TO ENVIRONMENTS OF DEPOSffiON AND DIAGENESIS 

Variations in c)l3C values of carbonate minerals are considered to represent 

changes in the composition of the solutions from which they precipitated. This can be 

attributed to the small fractionation of carbon during precipitation of carbonate minerals 

and to the relative insensitivity to temperature changes. Thus, o 1 3C variations of unaltered 

marine carbonate components are expected to reflect changes in seawater o13C 

composition. The synchronous occurrence of the Steptoean carbon-isotope excursion in 

several geographically distinct areas suggests the global scope of this event. In order to 

fully constrain the anatomy of any secular oceanic carbon-isotope fluctuations, it is 

necessary to evaluate all possible effects of the depositional environment and post­

depositional diagenetic changes upon the carbon-isotope signature. 

Environmental Influence 

The n�latively short residence time of carbon in the oceans contributes to their 

isotopic heterogeneity, including geographic and depth-related, inter- and intrabasinal 

variations (Bolser et al. 1 986� Kaufman et al. 1 993 � Kaufman and Knoll 1995). This is 

supported by the carbon-isotope composition of modern oceans, which ranges between 

about -0. 5  and +2.0 o/oo PDB (Kroopnick 1 985). Therefore, 1 to 2 o/oo variations in ancient 
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contemporaneous carbonates from different basins may not necessarily be related to 

secular changes. Excursions of such magnitude are difficult to apply for interbasinal 

correlation in the absence of sufficient biostratigraphic control (Kaufinan and Knoll 1 995). 

The magnitude ofthe Steptoean excursion (4 to 5 o/oo) is large enough to be attributed to 

the perturbation in carbon cycling on the global scale rather than the expected natural 

variation in oceanic carbon-isotope composition. 

Variations controlled by environments of deposition were documented by 

Patterson and Walter ( 1 994), who observed that the seawater of modem carbonate 

platforms (Bahama Banks and Florida) are depleted in Be by as much as 4 o/oo relative to 

open-ocean water. This is related to oxidation of marine and terrestrial organic matter, 

and changes in water chemistry caused by evaporation, freshwater discharge, and CaC03 

withdrawal. Restricted tidal flat or lagoonal carbonates have a lower potential of 

recording oBC of global surface seawater than shelf margin lithofacies such as oolites and 

organic build-ups (Joachimski 1 994; Patterson and Walter 1994). On the other hand, 

Gonzales and Lohman ( 1985) observed oBC variations within individual samples of 

Holocene reefal carbonates of up to 6 o/oo. Despite these facts, the documented carbon­

isotope variations for the entire Phanerozoic of up to about 1 1  o/oo is too large to be 

entirely a function of the depositional environment. 

The examined Upper Cambrian succession represents depositional environments 

that range from less restricted (shallow ramp) to more restricted, shallow subtidal to 

supratidal (lagoonal to semi-arid tidal flat) settings. These environments existed on an 

isolated carbonate platform separated from the exposed craton by an intrashelfbasin 

during the deposition ofthe Nolichucky Shale and the subtidal depositional package of the 

Maynardville Formation. The aggradation and progradation of this carbonate platform 

towards the craton, across a completely infilled intrashelfbasin, resulted in the formation 

of a wide tidal flat during the deposition of the uppermost Maynardville and the Copper 
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Ridge Dolomite. Rare oolites and microbial bioherms were deposited on localized 

shoals and microbial patch reefs. Thus, the typical shelf-margin deposits needed for the 

comparison with more restricted tidal flat and lagoonal deposits are not present. 

Carbon-isotope stratigraphy is not applicable if isotope compositions correlate 

strongly with facies (Kaufinan and Knoll 1995). Figure 5 .  7 illustrates that there is no 

systematic variation between lithofacies and carbon-isotope values. The range of values 

for individual lithofacies is proportional to the number of samples analyzed (Fig. 5 .  7). The 

scatter of data for the peritidal fine-grained couplets and dolomitized mudstone deposits 

suggests that depositional environments alone cannot account for such a large (> 5 .  5 o/oo) 

range of o 13C values (Fig. 5 . 1) .  Mean o 13C values for all peritidal lithofacies (microbial 

deposits and mechanical couplets) are similar ( < 1 o/oo difference between four mean 

values; Fig. 5 .  7). These mean values are slightly higher than the mean value for the 

subtidal lithofacies (Fig. 5 .  7). Bonferroni T tests were performed to evaluate the nature of 

the mean differences among lithofacies (Lehmann 1 975). A significant difference in mean 

o nc values was found only between subtidal ribbon limestone and stratiform stromatolite 

lithofacies (df= 87; a =  0.01 ). The difference between the mean values for the subtidal 

and peritidal lithofacies can be attributed to the larger number of samples representing the 

period prior to the start of the excursion than the period following the end of the 

excursion (Fig. 5 . 1 ). Possible depth-related variations in ()13C, however, could have 

produced a similar trend. 

The o 13C composition of surface waters of modem oceans is highly variable, but is 

in general enriched in 13C relative to deep ocean waters (by about 2 o/oo), due to biological 

and air-sea exchange processes (Kroopnick 1 985; Charles et al. 1 993). Such depth­

related variations do not apply to the Upper Cambrian deposits because they were 

deposited in shallow water. The carbonate deposits of the Nolichucky Shale are 

allochthonous deposits remobilized from shallower parts of the platform. This further 



Figure 5. 7. A range of o l3 C values for various lithofacies studied. The number of 
samples (n) and mean values (X) are indicated for each lithofacies. 
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excludes the possibility for pronounced depth-related variations in isotope 

composition. Depth-related variations are also improbable based on the studies of 

Cambrian carbonate strata from the Great Basin in which similar carbon-isotope values 

between contemporaneous deep and shallow water carbonates have been observed 

(Brasier 1 993). Global carbon-isotope changes affected the deep- and shallow-marine 

carbonate sediments of the Early Cretaceous strata in the Arabian Gulf in a similar way 

and at a comparable time resolution (Vahrenkamp 1 996). 
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Wide variations in carbon-isotope composition have been observed in modem 

marine hypersaline brines, ranging from a 12  o/oo decrease to a 20 o/oo increase in o 1 3C 

values of total inorganic carbon relative to normal-marine water (Stiller et al. 1985;  

DesMarais et al. 1 989; Lazar et al. 1989; Lazar and Erez 1 992). These variations are 

caused by evaporation, precipitation of CaC03, organic matter decomposition, 

atmospheric C02 invasion, and biogenic effects of microbial mat communities. 

Recognition of these effects are very important for the interpretation of isotopic 

compositions of ancient carbonates associated with evaporites and stromatolites. Stiller et 

al. ( 1985) suggested that the carbon-isotope compositions of carbonates formed in 

association with evaporating brines should be enriched in 1 3C as a result of non­

equilibrium gas-transfer isotope fractionation caused by the loss of C02 from the brines. 

Such processe:s could have influenced the 1 3C-enrichment of the peritidal carbonate 

deposits of th�� Maynardville and the Copper Ridge Dolomite relative to the subtidal 

deposits. The least negative o13C values of dolomicrite samples from the sequence 

boundary zone are associated with the sea-level fall that could have resulted in enhanced 

evaporation (Fig. 5 . 1) .  Evaporite pseudomorphs and dissolution voids are fairly common 

in this part of the stratigraphic succession, but they are also present within the peritidal 

carbonates characterized with significantly lower o13C values. If extensive evaporation 

was the primary cause for the 13C enrichment, then an associated enrichment in 1 80 can 



also be expected. Figure 5 .2 illustrates that maximum 813C values are not paired with 

an increase in 8180 values, and that the decrease in 813C values in the Copper Ridge 

Dolomite is not accompanied by a decrease in 8180 values. The lack of correlation 

between 813C and 8180 values provides evidence against the link between evaporitic 

conditions and increased 813C values. 
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In addition to evaporative effects, there is also a question of possible vital influence 

on the carbon-isotope composition for the analyzed Upper Cambrian microbial deposits or 

stromatolites (Fig. 5 .  7). The photosynthetic fractionation of carbon by cyanobacteria is 

dependent on C02 availability, growth rate, cell size and population density (Calder and 

Parker 1 973; Pardue et al. 1976; Goericke et al. 1 994). These factors control the 

variations in the 813C composition ofthe organic material produced. The 813C values of 

dolomicrites from the Upper Cambrian microbial deposits are comparable to that of 

inorganic micrites from the peritidal package, suggesting the absence of any significant 

vital influence (Fig. 5 .  7). This relationship can be predicted by the mode of formation for 

agglutinated stromatolites. These stromatolites form by the trapping of micritic particles 

which are basically the same constituents of inorganic micrites. The predicted and 

observed relationship is also in accordance with the lack of measurable carbon vital effects 

associated with Proterozoic stromatolites as determined from comparison of stromatolitic 

micrites and marine cements (Fairchild et al. 1 990). Fine-grained stromatolite deposits are 

considered to be suitable for the studies of secular 813C changes (Fairchild et al. 1 990; 

Marshall 1 992; Knoll et al. 1995). 

In general, there is a lack of correlation between conditions within environments of 

deposition and the observed 813C trend. It is unlikely that local variations in 

environmental conditions could have caused the large Steptoean positive carbon-isotope 

excursion. Minor variations in 813C, superimposed on the general trend, may in part be 

related to varying environmental factors. 
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Diagenetic Influence 

The carbon-isotope composition of ambient waters can best be reconstructed from 

ol3C values of carbonate minerals precipitated under equilibrium conditions, and in the 

absence of substantial postdepositional modifications (Weissert 1 989). Ideal samples for 

determining paleooceanic isotope compositions are unaltered abiotic marine cements 

precipitated as low-Mg calcite under oxic conditions and in isotopic equilibrium with their 

depositional environment (Lohmann and Walker 1 989; Carpenter et al. 1 99 1 ;  Marshall 

1 992). Turner ( 1 982) warned that a varying precipitation rate, temperature, and the 

mineralogy ofthe carbonate phase can cause variations in o13C values ofCaC03 between 

0.55 and 4.0 %o. A temperature effect can cause an increase in ol3C of calcite by about 1 

o/oo for every 27°C increase in temperature (Emrich et al. 1970). Romanek et al ( 1992), 

however, determined that fractionation in calcite shows no significant effects of 

temperature or precipitation rate, and that the discrepancies between observed and 

predicted carbon-isotope values are a function of non-equilibrium precipitation related to 

vital effects and the presence of diagenetic microenvironments. 

Marine cements are not common in the Upper Cambrian succession examined, and 

the study of stratigraphic carbon-isotope variations relied primarily on the use of 

depositional micrites. As discussed previously, stromatolitic micrites have the potential 

for recording the original marine oBC values. Similarly, Magaritz et al. ( 199 1 )  and 

Brasier et al. ( 1993) documented the potential of using shallow-water micrite and 

microspar with rare skeletal fragments for carbon stratigraphic studies. Brasier et al. 

( 1 994) observed that the Lower Cambrian micrite and microspar have o13C values very 

similar to associated early diagenetic marine fibrous cements, which do not show evidence 

for extensive diagenetic alteration based on trace element and ()18Q values. Marshall 

( 1992) noted that in most cases non-luminescent micrite or microspar retain their original 

carbon-isotope ratios. Schidlowski and Aharon (1 992) determined that diagenetically 
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stabilized sedimentary micrites preserve the isotope composition of the original 

carbonate muds within 1 o/oo of the original value inherited from a bicarbonate precursor 

with a shift of about + 1 %o due to equilibrium fractionation. All of these observations 

suggest that micritic deposits can represent a fairly reliable indicator of oceanic carbon­

isotope evolution. 

Dolomicritic samples were also extensively utilized in this study. Based on the 

study of coexisting metamorphic calcite and dolomite and extrapolation from high 

temperatures, Sheppard and Schwartz ( 1970) determined that dolomite is enriched in 1 3C 

by 2 to 3 o/oo relative to coprecipitated calcite. Even though fine-grained carbonate 

sediment has the potential to be isotopically altered during dolomitization, it has been 

demonstrated that fine-crystalline dolomites normally retain their carbon-isotope 

composition from the precursor CaC03 for the following reasons: 1 )  the dominant source 

of carbon in the dolomite is the precursor carbonate mineral phase; 2) the formation of 

fine-crystalline dolomite is most commonly a synsedimentary or very early diagenetic 

process occurring in the presence of fluids with similar isotope composition to seawater; 

and 3) pore space occlusion during penecontemporaneous cementation isolates dolostones 

from later diagenetic fluids (Narbonne et al. 1 994; Kaufinan and Knoll 1 995). Because of 

these reasons, carefully selected dolomite samples can be used in the reconstruction of 

seawater carbon-isotope evolution (Kaufinan et al. 1 993). 

Any interpretation of stratigraphic variations of carbon-isotope composition 

requires the n�cognition and understanding of the diagenetic processes capable of causing 

postdepositional changes (Schidlowski and Aharon 1 992). Such processes include 

neomorphism and recrystallization, reequilibration with fluids of differing isotope 

composition, and precipitation of isotopically different diagenetic carbonate phases 

(Veizer 1 983; Fairchild et al. 1 990; Derry et al. 1 992; Kaufinan et al. 1 992; Marshall 1 992; 

Kaufinan and Knoll 1 995). The carbon-isotope composition of carbonate mineral phases 
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can be significantly influenced by the incorporation of organogenic carbon during 

precipitation from diagenetic fluids, which are affected by the presence and degradation of 

organic material. Meteoric diagenetic phases, for example, are commonly characterized 

by negative 813C values resulting from soil-derived C02 (Allen and Matthews 1982; 

Lohmann 1 982, 1 988; Beeunas and Knauth 1 985). Such a trend is absent in carbonate 

successions subjected to meteoric diagenesis prior to the advent ofland plants. 

The carbon-isotope value of marine organic matter is about 25 o/oo more negative 

than inorganic bicarbonate (Marshall 1 992) . Thus, the degradation of organic matter has 

the potential to significantly change the carbon-isotope composition of marine carbonate 

sediment. The incorporation of organogenic carbon in diagenetic carbonate phases 

preferentially occurs in restricted environments such as in an oxygen-depleted burial 

diagenetic setting. Microbially mediated reactions of organic matter degradation include: 

1 )  iron, manganese, sulphate and nitrate reduction in suboxic conditions; and 2) 

methanogenesis in anoxic conditions. With increasing temperature during burial, 

abiogenic degradation of organic matter or thermal carboxylation processes take place 

(Claypool and Kaplan 1 974; Irwin et al. 1 977; Coleman and Raiswell 1 98 1 ;  Marshall 

1 992; Winter and Knauth 1 992). Most ofthe thermal and microbial reactions of organic 

matter degradation release organogenic carbon, which decreases the 813C value of 

dissolved bicarbonate and the resulting carbonate burial cements. The exception is C02 

that forms during the degradation of organic matter by methanogenic bacteria with 8 1 3C 

values of up to + 1 5  o/oo, due to kinetic fractionation between methane and C02 (Irwin et al. 

1 977). Positive 813C values of diagenetic carbonate minerals may therefore represent 

precipitation during methanogenesis. The products of different reactions of organic 

matter degradation are commonly mixed with each other and with dissolved marine 

bicarbonate, thereby producing a wide range of carbon-isotope composition of diagenetic 

pore fluids and the resulting carbonate mineral phases (Gautier and Claypool 1984; 
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Marshall 1 992; Iyer et al. 1 995). 

The massive alteration or resetting of (513C values in existing carbonate phases 

during diagenesis is hindered by small concentrations of carbon in diagenetic fluids 

(Banner and Hanson 1 990). The carbon-isotope composition of porewater is commonly 

controlled by the composition of the dissolving carbonate phase (Marshall 1 992). For 

example, the (513C composition of deep burial cements usually reflects the composition of 

the bicarbonate derived from pressure dissolution of the host carbonate. This effective 

buffering is promoted by low rates and short transport distances of fluid flow in the burial 

diagenetic environment (Marshall 1 992). Carbonate (513C values can be modified only in 

very open systems (high fluid-rock ratio) and/or in the presence of brines with elevated 

total dissolved carbon compositions (Banner and Hanson 1 990). 

The majority of samples used in this study represent homogenous micrites and 

dolomicrites, without visible cements and skeletal fragments. The samples predominantly 

have non-luminescent to dark, dully luminescent CL patterns, but in some cases exhibit a 

patchy distribution of non- to more bright luminescence, suggesting possible diagenetic 

modifications. Examples of diagenetic alteration of these deposits include neomorphism 

and recrystallization of micrite to microsparite, and dolomitization of fine-grained 

carbonate deposit to dolomicrosparite and coarser-crystalline replacement dolomite. 

Diagenetic modifications are substantiated by the oxygen-isotope compositions which are 

more negativ1e than the predicted Cambrian marine calcite value of about -5 .0 o/oo PDB 

(Fig. 5 .2; Lohmann and Walker 1 989). The Upper Cambrian micritic carbonate deposits 

lack petrographic evidence for original aragonitic mineralogy, such as: 1 )  the abundance of 

coarser-crystalline or microspar texture; 2) crystal-mosaic fabric with inclusions of original 

aragonite or needle relicts; and 3) elevated strontium content (see also Chapter 4; Fig. 4.8; 

Lasemi and Sandberg 1 984; Sandberg 1984; Moshier 1 989). This is in accordance with 

Sandberg's  ( 1983) notation of Late Cambrian 'calcite seas' . Calcite-dominated precursor 



micrites have a potential for retaining their original or close to the original carbon­

isotope value. 

202 

Superimposed on the general trend, which shows an increase of cSI3C values for 

subtidal micrite samples, is a wide scatter of cS 13C values (Fig. 5 . 1 ). Diagenesis in the 

presence of degrading organic matter can explain the scatter of data for the carbonate 

deposits ofthe Nolichucky Shale, and the limestone layers alternating with shaly and 

argillaceous dolomicritic layers in the Maynardville Formation (Fig. 5 . 1 ). This 

interpretation is substantiated by the association of subtidal deposits with framboidal 

pyrite, ferroan diagenetic phases, skeletal fragments, evidence for bioturbation, and 

interbedded shales that may have been organic-rich when deposited. Kaufman et al. 

( 1 992) noted the correlation between a wide range ofcS13C values and a high initial 

organic carbon content in carbonate deposits. Similarly, Ripperdan (pers. com. 1 996) 

observed substantial intersample cS13C variations for carbonate deposits interbedded with 

shales. Incorporation of organogenic carbon into precipitating carbonate phases may start 

in oxygen-deficient shallow-burial marine environments. Such environments are common 

in deeper-water organic-rich mudrocks and sandstones, but may also exist in shallow 

argillaceous lagoonal limestones, where anoxic conditions are promoted by the presence 

of clay material (Marshall l 992). The increase in cS13C values within the Nolichucky Shale 

is accompanied by a decrease in the amount of shale (Fig. 5 . 1 ), but is not associated with 

any apparent changes in the diagenetic pattern that could have caused a shift in the 

carbon-isotope signature. The recorded cS13C shift is consistent with a secular trend in 

marine 13CJ12C increase. 

Smaller intersample variation in a part of the stratigraphic carbon curve related to 

the peritidal dolomicrite is also consistent with a regional to global perturbation in carbon 

cycling, rather than local variations due to organic matter degradation. The less-scattered 

cS13C values of the peritidal dolomicrites correspond to less evidence for the presence and 
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degradation of organic matter, and to the paucity of ferroan carbonate phases. Brasier 

( 1 993) cited the absence offerroan carbonate phases and pyrite as a lack of evidence for 

methanogenic or sulphate-reducing diagenesis. The decline in ol3C values within the 

Copper Ridge Dolomite is not associated with changes in the diagenetic pattern, nor with 

lithologic changes, and thus indicates a secular trend. 

The comparison between stable isotopes of carbon and oxygen is used to evaluate 

the extent and type of diagenetic modification, as well as the influence of diagenesis upon 

the potential for the preservation of carbon-isotope signatures. The lack of systematic 

covariance between ol3C and ol8Q values is commonly used as evidence that the carbon­

isotope signal is not controlled by diagenetic alterations (Figs. 5 . 1 ,  5 .2; Hudson and 

Anderson 1 989; Derry et al. 1992; Brasier et al. 1 994). The 18Q-depletion of analyzed 

samples relative to the predicted Upper Cambrian marine calcite value is consistent with 

alteration in the presence of meteoric waters and/or diagenetic modification during burial 

at elevated temperature (see Chapter 4). 

Oxygen-isotope values of the peritidal dolomicrites are, in general, more enriched 

in 18Q relative to subtidal micrite samples (Figs. 5 . 1 ,  5 .2) . This trend can be explained by: 

1 )  an equilibrium fractionation effect that predicts a 3 ± 1 o/oo enrichment of dolomite 

relative to coprecipitating calcite (Friedman and O'Neil 1 977; Land 1 980); 2) evaporative 

enrichment in 1 8Q of penecontemporaneous dolomite formed under sabkha-type 

conditions (M:cKenzie 1 98 1 ;  Carballo et al. 1 987; Gregg et al. 1 992); and 3)  a lesser 

degree of late:r diagenetic alteration of dolomite relative to calcite, which is related to 

higher solubility and therefore higher reactivity of calcite (Knoll et al. 1 995). The 180-

depletion relative to estimated normal-marine Cambrian dolomite suggests that the 

analyzed dolomicrite samples have been diagenetically altered (see Chapter 4). The 

observed diffi�rence between the <)18Q values of micrite and dolomicrite samples is 

therefore most likely a function of the difference in precursor carbonate composition 
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coupled with different styles of diagenetic modification. 

The comparison of isotopic compositions of carbonate matrix and associated 

cements provides insights into the diagenetic environments and the extent of diagenetic 

modifications (Fig. 5 .4). The similarity of o13C and o18Q values for the fibrous/bladed 

calcite cement from the subtidal lithofacies and the associated micrite suggests formation 

from marine water and similar diagenetic modification (Fig. 5 .4). Depletion of l8Q in the 

fibrous/bladed calcite cement relative to the peritidal dolomicrite may be the result of 

meteoric modification during periods of subaerial exposure, or may reflect later burial 

alteration. During diagenetic modification, the o 1 3C value for fibrous/bladed calcite was 

buffered to the host-rock composition (Fig. 5 .4). Involvement of meteoric water may 

have been responsible for the 1 8Q- and Be-depletion observed in the equant calcite 

cement relative to the associated matrix samples (Fig. 5 .4). Equant calcite cement from 

the Maynardville Formation is ferroan in composition, and is associated with burrows. 

This suggests the possible incorporation of 1 3C-depleted organogenic carbon into the 

equant calcite cement under reducing conditions in deeper meteoric-phreatic or shallow­

burial environments. The oi8Q values of saddle dolomite are comparable with, or are 

depleted in 1 8Q relative to associated dolomicrite (Fig. 5 .4). This is coupled with similar 

ol3C compositions for saddle dolomite and dolomicrite. These observations are consistent 

with saddle dolomite formation during burial at elevated temperatures in a rock-dominated 

system. 

DISCUSSION 

Fluctuations in ol3C composition of marine carbonates through time are most 

commonly interpreted to represent secular trends of changing carbon-isotope values in the 

oceans. Positive carbon-isotope excursions are related to an increase in the rate of carbon 

buried as organic matter resulting from increased rates of sedimentation, increased primary 
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productivity, and/or marine anoxia (Deny et al. 1 992; Brasier 1 992; Brasier et al. 

1 994; Calvert et al. 1 996; among numerous others) . Removal of 1% of the oceanic 

organic carbon causes a positive isotopic shift in marine water of about 0.2 o/oo (Berger and 

Vincent 1 986). This suggests that a 4 to 5 o/oo shift recorded in marine carbonates can be 

related to a dramatic local or global change involving the removal of20 to 25% of the 

organic carbon from ocean water (Marshall and Middleton 1 990). The Late Cambrian or 

Steptoean positive carbon-isotope excursion is apparently global in scope, because it has 

been documented in contemporaneous stratigraphic successions at several localities world­

wide (Brasier 1 993 ; Saltzman et al. 1995a; Saltzman 1996; this study). The following 

discussion focuses on the relative importance of organic productivity, sedimentation rate 

and marine anoxia as possible causes for the excursion, and on the consequences of this 

pronounced perturbation in global carbon cycling. Possible changes in ocean circulation 

patterns, temperature and salinity gradients, and global climate, are also included in the 

discussion as a part of the complex dynamics pertaining to the atmosphere-hydrosphere­

biosphere system, which controls cycling of carbon on time scales ::; 1 0  7 years (Veizer 

1 985). 

The early Paleozoic was characterized by the accumulation of organic-rich 

sediments in greater thickness, over larger area, and for longer periods of time than at any 

other time interval in the Phanerozoic (Leggett 1 980; Thickpenny and Leggett 1 987). The 

Middle to Late Cambrian time period was one ofthe three main episodes of 'black shale' 

deposition during the early Paleozoic (Leggett 1980; Thickpenny and Leggett 1987) .  The 

Alum shale of Scandinavia is one example of organic-rich sediments deposited on the 

continental shelf during that period of time (Thickpenny and Leggett 1 98 7). The 

Conasauga Group shales were also deposited during the Middle to early Late Cambrian. 

These organic-rich deposits were a potential hydrocarbon source (Montanez 1 994). 

Following episodic glaciation in the Late Proterozoic, the Cambrian was a time 
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period with a relatively warm global climate (Wilde and Berry 1984). Long non-

glacial intervals are characterized by sluggish, global ocean-current circulation, favoring 

ocean stratification and the formation of less-oxygenated deeper waters (Wilde and Berry 

1 984; Weissert 1 989). Warmer waters contain less dissolved oxygen, which additionally 

promotes anoxic conditions. The sea-level was at one of its maxima on the Laurentian 

craton during the early Late Cambrian, spanning the Cedaria through Aphelaspis faunal 

zones (Fig. 5 .6; Bond et al. 1988). A high sea-level contributes to salinity stratification 

and decreased terrestrial runoff, which cause nutrient depletion and reduced primary 

organic productivity (Brasier 1 992). Such conditions probably resulted in the presence of 

nutrient-starved waters over deeper anoxic ocean waters during the Early through the 

Late Cambrian along the margins ofLaurentia (Brasier 1 992). The elevated Fe and Mn 
composition of the Upper Cambrian carbonates was interpreted by Gao and Land ( 1 99 1b) 

as a possible consequence of the expansion of an oxygen-minimum zone in the oceans. 

The sea-level maximum was followed by a regressive event and a wide-spread 

Dresbachian/Franconian (Sauk WSauk III) hiatus (Lohman-Balk 1 97 1 ;  Palmer 1 97 1 ,  

1 98 1 ;  Bond et al. 1 988; Osleger and Read 1 993). Increased terrestrial run-off during sea­

level fall increases the amount of nutrients in surface waters, thus resulting in greater 

organic productivity and 12C-depletion of surface waters (Brasier 1 992). This scenario can 

explain the relationship between the sea-level fall and the maximum Steptoean &Be 

excursion (Brasier 1993; Saltzman et al. 1995a; Saltzman 1 996). A similar explanation 

has been proposed for the positive carbon-isotope excursions near the Precambrian/ 

Cambrian boundary (Magaritz et al 1 986; Brasier 1 990). 

Trilobite and brachiopod diversity was at a maximum during the late Dunderbergia 

zone (Rowell and Brady 1976), but this does not necessarily imply increased organic 

productivity. Studies regarding the amount of organic matter stored in modem and more 

recent deposits suggest that high organic productivity may not be the best explanation for 



207 

the deposition of organic-rich 'black shales' during the early Paleozoic (Thickpenny 

and Leggett 1 987). In the absence of a direct evidence for a significant increase in organic 

productivity, the maximum positive carbon-isotope excursion during the Steptoean can be 

explained by the increased rates of organic carbon removal due to increased rates of 

siliciclastic sediment deposition, caused by the onset of regression and the accompanied 

increase in the erosion rate. The presence of silt- and sand-size quartz and feldspar 

particles in the carbonate rocks from the sequence boundary zone at the 

Maynardville/Copper Ridge transition is a reflection of sea-level lowering and an increase 

in the input of cratonically derived detritus. The hypothesis of increased erosion as a 

possible cause of positive carbon-isotope excursions can be tested by comparing the 

stratigraphic variations of813C with that of 87Srf6Sr through the intervals in question 

(Kaufman et al. 1993; Saltzman et al. 1995b). A coupled increase in ()l3C and 87Srf6Sr 

suggests that enhanced erosion rates could have caused elevated 813C values (Derry et al. 

1 994). A detailed study of87Srf6Sr variations has not yet been performed on the Upper 

Cambrian succession in the southern Appalachians. A compilation of Sr isotopic data 

(Burke et al. 1 982; Kaufman et al. 1993) shows a significant scatter (0.7090 to 0.7097) 

for the Late Cambrian. This scatter may be related to a possible change in the erosion 

rate. Also, one ofthe dolomicrite samples from the sequence boundary zone has a 

87Srf6Sr ratio of 0.7097, which is among the highest values for Phanerozoic marine 

carbonates recorded by Burke et al. ( 1982) . This value may reflect the high erosion rate 

related to the Dresbachian/Franconian unconformity. 

Many early Paleozoic organic-rich deposits are characterized by extremely low 

sedimentation rates (Thickpenny and Leggett 1987). Under these conditions, organic 

carbon removal could have been favored by enhanced organic-matter preservation in the 

presence of stratified oceans with deep anoxic waters (Thickpenny and Leggett 1 987). 

During the early Paleozoic such conditions were promoted by a high sea-level, a warm 
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climate and a low atmosphere and hydrosphere oxygen content (Thickpenny and 

Leggett 1987). These conditions may have triggered the positive carbon-isotope 

excursion in the Steptoean. Similarly, the Miocene positive carbon-isotope excursion 

started during high sea-level and warm climate conditions that contributed to poor 

aeration of ocean waters and to enhanced organic matter deposition (Vincent and Berger 

1 985; Berger and Vincent 1986). 

A consequence of an increase in the removal of carbon from the ocean surface 

layer is the decline in atmospheric pC02 and the subsequent global climatic cooling that 

can cause glaciation and sea-level fall. Such a scenario was first proposed as the 

'Monterey Hypothesis' by Vincent and Berger (1 985) for the Miocene positive carbon­

isotope excursion. The major cooling episode in the Miocene occurred about 1 5  Ma, in 

the middle of the carbon-isotope excursion, which lasted between 1 7  and 1 3  Ma (Berger 

and Vincent 1.986). This suggests that the removal of organic carbon caused the cooling, 

rather than vice versa. A similar scenario has been proposed for the cooling episodes and 

the onset of glacial activity in the Late Proterozoic (Knoll et al. 1 986) and the Late 

Ordovician (Marshall and Middleton 1990) . Saltzman et al. ( 1 995a) and Saltzman (1996) 

offered the 'Monterey Hypothesis' as a possible explanation for the linkage between the 

Steptoean carbon-isotope excursion and the maximum sea-level fall at the Sauk WSauk ill 

boundary. The cause of this eustatic sea-level fall is unclear, especially because the 

Cambrian has. been hypothesized as a time period with little or no continental glaciation 

(Hambrey and Harland 1 98 1 ;  Scotese and McKerrow 1 990). A possible cause for eustatic 

sea-level variations ofup to 10-50 m amplitude during the non-glacial Cambrian climate 

may have been small-scale continental or alpine glaciations (Read 1 989; Osleger and Read 

1 993). Saltzman ( 1 996) also suggested some alternative climate-controlled mechanisms 

for sea-level fall such as the storage of water in continental basins and subcontinental 

sediment-pore reservoirs (Hay and Leslie 1 990; Jacobs and Sahagian 1 993). 
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The lack of evidence for glaciation does not imply the absence of possible 

global climati:c cooling during the Steptoean, related to the positive carbon-isotope 

excursion. The cooling event may not have caused glaciation because of the absence of 

continental land masses in polar regions during the Late Cambrian (Fig. S . 8) .  Global 

climatic cooling can, however, cause major paleooceanographic changes. During cooling 

events a destabilization in the oceanic density structure or ocean overturn occurs when 

high-latitude waters, forming at about S°C, become denser than the middle-latitude waters 

with higher salinity (Wilde and Berry 1 984, 1 986). The ocean circulation models 

proposed by Weissert ( 1989) seem applicable for the Late Cambrian. The time period 

prior to, and during the onset of the carbon-isotope excursion was characterized by warm 

and equable climate, with high-latitude ocean water temperatures above S°C. This was 

followed by a period with a cooler climate and cold polar areas without ice formation 

during the maximum excursion. 

A climate-induced ocean overturn may cause major changes in the cycling of 

organic matter or nutrients, and can trigger pronounced changes in the carbon cycle 

(Arthur et al. 1987; Saltzman 1 996). The end of the Steptoean carbon-isotope excursion 

may have been associated with these events. The return of()BC compositions back to 

normal values following a positive excursion is generally attributed to the following: 1 )  a 

decrease in the productivity ofthe upper ocean-water mass; 2) mixing of the oceans that 

brings deep, Be-depleted water to the surface; and 3) oxidation of organic carbon on land 

and on exposed continental shelves due to a sea-level fall (Berger and Vincent 1 986; 

Holser and Magaritz 1 987; Magaritz 1 989; Kump 1 991) .  With a lack offirm criteria to 

evaluate the c:hange in the organic productivity, the end of the Steptoean carbon-isotope 

excursion can be sufficiently explained by climate-induced ocean mixing, coupled with the 

oxidation of organic matter enhanced by a sea-level fall. 

The interpretations put forward here for the Steptoean excursion are similar to 
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Figure 5.8. Paleogeographic reconstruction for the: A) Late Cambrian; and B)  the Latest 
Ordovician (from Scotese and McKerrow 1 990). 
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those for the Late Proterozoic (Knoll et al. 1 986; Kaufinan et al. 1 99 1 )  and Late 

Ordovician positive isotope shifts (Marshall and Middleton 1 990). High rates of organic 

burial, in the Late Proterozoic stratified ocean, resulted in 13C-enrichment of preglacial 

carbonate deposits (Kaufinan et al. 199 1). The onset ofLate Proterozoic glaciation 

caused upwelling and overturn of a stagnant water column bringing 13C-depleted deep 

waters onto shallow shelves (Derry et al. 1 992) . The Late Ordovician excursion was 

accompanied by a eustatic regression related to the glaciation of Gondwana. The positive 

shift in ()13C of up to 5 %o was accompanied by a positive ()18Q shift of2 o/oo, reflecting 

both a temperature decrease and an ice-volume effect (Marshall and Middleton 1 990) . 

The glaciation was favored by the presence of a land mass in the polar area during the 

Late Ordovician (Fig. 5 . 8) .  The end of Ordovician is also associated with faunal 

extinctions that may have been caused by the major oceanic overturn and the influx of 

deep, nutrient-rich, toxic waters onto the continental shelves (Wilde and Berry 1 984). 

Some of the Mesozoic extinction events have been interpreted in the same way (Arthur et 

al. 1 987, 1 988; Schlanger et al. 1 987). The Steptoean excursion ended prior to the end of 

the Pterocephaliid biomere (Saltzman 1 996), and it is unclear whether a similar 

relationship existed between the proposed ocean overturn, and the extinctions at the 

Pterocephaliid!Ptychaspid biomere boundary. 

Many aspects of the Late Proterozoic and the early Paleozoic carbon-isotope 

excursions are comparable to the Mesozoic and younger excursions. One of the 

prominent differences is that some of the Mesozoic positive carbon shifts, such as that at 

the Cretaceous Cenomanian/Turonian boundary, coincide with sea-level maxima (Berger 

and Vincent 1 986; Arthur et al. 1 987, 1988; Schlanger et al. 1 987; Jenkyns 1 996). The 

association of high sea-level and Be-enrichment in the oceans has been attributed to the 

storage of organic carbon in sediments on aerially extensive shelf seas at an above-normal 

rate during transgression (Berger and Vincent 1 986; Jenkyns 1 996). Follmi et al. ( 1994), 
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based on the study of the pelagic carbon-isotope record of the Early Cretaceous, 

suggested that a sea-level rise due to climate warming accelerates the water cycle and 

intensifies weathering, causing nutrient mobilization and an increase in primary organic 

productivity, which leads to increased carbon burial and the occurrence of positive carbon­

isotope excursions. Veizer (1985) however, warned that the models for carbon cycling 

based on the last 100 Ma, and especially on the Cretaceous isotope record, may not be 

appropriate for the whole Phanerozoic, and that the Cretaceous appears to represent an 

exception rather than a norm. Brasier (1992) suggested that the trend of increased 

nutrient availability in surface waters, and the associated increase in productivity and 

lowering of the 13C/12C ratio in the surface waters, occurs duringjalling sea-level and 

increased terrestrial run-off These various interpretations suggest that prominent changes 

in carbon cycling are likely to occur during changes in relative sea-level, and that similar 

signals in the carbon-isotope record of marine carbonates could have resulted from rather 

different controlling factors. 

Consequently, there is no unique explanation for the changes in carbon cycling 

throughout the geologic record. The difficulty in interpreting carbon-isotope excursions 

increases with increasing age of the rock successions in which the excursions are recorded. 

It is often difficult to determine the amount of time represented by an excursion (Magaritz 

1991). Additionally, the timing and causal relationship between excursions and changes in 

sea-level, faunal composition, climate and oceanography remain uncertain in many cases 

(Marshall and Middleton 1990). Despite these problems and uncertainties, studies of 

carbon-isotope variations, in conjunction with other geologic and geochemical evidence, 

have great potential as a valuable stratigraphic tool and as important indicators of the 

dynamics of global environmental changes. 



CONCLUSIONS 

1 )  The recorded increase in the oBC values within the Upper Cambrian Nolichucky 

Shale, Maynardville Formation, and the Copper Ridge Dolomite of the southern 

Appalachians reflects the secular trend of the increased 13C/2C ratio in sea water, as a 

consequence of a major perturbation in the global cycling of carbon. 
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2)  Comparison with coeval carbon-isotope excursions documented in biostratigraphically 

well-characterized successions elsewhere provides a means for improving the 

biostratigraphic resolution of this Upper Cambrian interval. 

3)  Superimposed on the secular trend are minor variations in oBC values related to 

varying conditions during deposition and postdepositional diagenetic modifications. 

4) The comparison ofthe oBC and oi8Q values between depositional and diagenetic 

phases provided unique insights into the type and extent of diagenetic modifications. 

5) The carbon-isotope excursion is related to the changes in the rate of organic carbon 

burial, which can be linked to the changes in ocean stratification, climate, sea-level, and 

possible paleoproductivity rate. 

6) If carefully applied, studies of carbon-isotope variations provide a useful stratigraphic 

tool and serve as an indicator of the dynamics of global environmental changes. 
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CHAPTER 6 

SELECTIVE DOLOMITIZATION OF CAMBRIAN MICROBIAL CARBONATE 

DEPOSITS: A KEY TO MECHANISMS AND ENVIRONMENTS OF ORIGIN 

INTRODUCTION 

The origin of ancient microbial deposits is often difficult to discern, especially in 

the case of poor preservation and absence of adequate modern analogs. Microbial deposit 

formation has been explained by analogy with modern microbial mats, but the relative 

importance of various processes in the formation of ancient microbial deposits is still 

controversial (Ginsburg 1 991 ;  Riding 1991c). Stromatolites, as a type ofbenthic 

microbial carbonate deposits characterized by a laminated fabric and produced primarily 

by the activities of cyanobacteria, bacteria, and algae, are good environmental indicators 

for shallow-marine carbonate deposits. The criteria commonly used for deducing 

paleoenvironments are stromatolite morphology and the characteristics of the associated 

deposits (Logan et al. 1 964; Aitken 1967; Hoffinan 1967; Chafetz 1 973; Monty 1 977; 

Horodyski 1 985; Beukes and Lowe 1989; and others). 

This study focuses on the microbial carbonate deposits of the Upper Cambrian 

Maynardville Formation (Conasauga Group) and the lower part of the Copper Ridge 

Dolomite (Knox Group) in eastern Tennessee. The objective was to examine the 

diagenetic history of microbial deposits, with special emphasis on early diagenesis and 

selective dolomitization, in order to make inferences regarding the formation of these 

deposits. The selected stratigraphic succession is well suited for this study because it 

contains a variety of microbial carbonate deposit types, which presumably formed by 

different mechanisms and/or under different environmental conditions. Partial 

dolomitization of the succession preserved features that allow inference of diagenetic 
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events preceding dolomitization. Selective dolomitization of microbial deposits provides a 

useful indicator of the mechanisms and environments of their origin. 

UPPER CAMBRIAN MICROBIAL CARBONATE DEPOSITS 

Microbial carbonates are organosedimentary deposits produced by benthic 

microbial communities, and are therefore synonymous to the microbialites and 

microbolites ofBurne and Moore (1 987) and Riding ( 199 1 c), respectively. The term 

stromatolite is usually used for microbial deposits which have a laminated fabric (Burne 

and Moore 1 987; Riding 1 991c). A universally accepted classification of microbial 

deposits does not exist. The classification used in this study represents a combination of 

several classification schemes, such as Logan et al. ( 1964), Aitken ( 1967), and Riding 

( 1 991 c). 

The following types of microbial carbonate deposits have been observed within the 

Upper Cambrian Maynardville Formation and the lower part of the Copper Ridge 

Dolomite: 1 )  stratiform stromatolites (microbial or cryptalgal laminates); 2) laterally linked 

hemispheroidal (LLH) stromatolites; 3) vertically stacked hemispheroidal (SH) 

stromatolites; 4) columnar stromatolites; 5) digitate stromatolites; and 6) thrombolites 

(Fig. 2 . 1 ). These microbial deposits are described in Table 6. 1 and illustrated in Figures 

6. 1 and 6.2. 

FORMATION OF MICROBIAL DEPOSITS: AN OVERVIEW 

Formation of microbial carbonate deposits is a result of a complex interplay 

between biologic, environmental, and diagenetic processes (Burne and Moore 1 987). 

Though still controversial (see Ginsburg 199 1 ), the formation of microbial deposits is 

believed to be the result of trapping of sediment particles and calcification of 

cyanobacteria (Fig. 6 .3;  Pentecost and Riding 1 986; Riding 199 1  c). The presence of 



Table 6 . 1 .  Description of microbial deposits. Symbols COI!�spond to those on Figure 2. 1 .  
Deposits Description Occurrence Present Mineralogy 

Thrombolites 

llfllf 
Digitate 

stromatolites 
(Dendrollt�s1 

� � �  
Columnar 

clotted fabric; composed of patches (mesoclots) of 
dark, dense micrite embedded in fossiliferous­
peloidal wackestone to grainstone; well preserved 
Renalcis, Epiphyton and GinJanella in subtidal 
package; Renalcis(?) present in peritidal package; 
common burrows. 

branching columns of low relief surrotmded with 
ooid-peloidal packstone/grainstone; crudely 
laminated micritic pelleted (clotted) fabric; 
burrows and small desiccation cracks present. 

laminated, non-linked, vertically stacked columns 
of cylindrical or clubbed shape, with a maximum 
diameter of2-3 em; intercolumnar space filled 

stromatolites with ooids, peloids, and micrite arranged in 
"couplets"; small desiccation cracks and fenestrae. 

� 
individual hemispheroids (maximum height = 20 
em; maximun1 diameter = 30 em) composed of 
wavy laminated micrite; quartz silt, peloids and 
ooids in surrounding material; small desiccation Sll 

stromatolites cracks and fenestrae. 

� 

LLH 

low relief (up to 1 em) linked hemispheroids; 
wavy crinkly micritic laminae; common 
desiccation cracks and small fenestrae; some 

. incorporated pellets/peloids and ooids; burrows 
stromatolites 

present. 

NNtN\ flat, planar crinkly micritic laminae (maximum 3-5 
Stratiform mm thick); common desiccation features, 

stromatolites fenestrae, and evaporite molds; lenses with pellets, 
(Cryptalgal peloids, ooids, and quartz silt grains; some 
laminates) bU1TQ\VS; rare teept."C structures. 

bioherms; in subtidal package overlie ooid 
grainstone or flat-pebble conglomerate, 
and underlie shales and ribbon rocks; in 
peritidal package embedded in coarse- to 
medium-grained "couplets", overlain by 
LLH and stratiform stromatolites or grade 
into digitate and columnar stromatolites. 

bioherms and biostromes interbedded 
with thrombolites, coarse- to medium­
grained "couplets" and calcareous 
siltstone. 

present only in the Copper Ridge 
Dolomite; underlain by thrombolites and 
overlain by stratifonn stromatolites. 

interbedded with fine- to coarse-grained 
couplets, LLH and stratifonn 
stromatolites. 

interbedded with stratiform and SH 
stromatolites, and fine- to medium­
grained couplets; overlie digitate 
stromatolites and thrombolites. 

from several mm (individual laminae) and 
several em ("crusts" )  to 8 m thick units; 
interbedded with couplets and other 
microbial deposits. 

mesoclots composed of 
microcrystalline calcite; 
surrounding material calcitic or 
partially dolomitized. 

microcrystalline calcite in 
columns; surrounding material 
extensively dolomitized. 

mosaic of medium to coarse 
crystalline dolomite; partially 
silicified; saddle dolomite in 
fenestrae and desiccation voids. 

entirely dolomitized and 
occasionally partially silicified; 
saddle dolomite in fenestrae 
and desiccation voids. 

entirely dolomitized; saddle 
dolomite in fenestrae and 
desiccation voids. 

lanlinae composed of 
microcrystalline calcite, 
dolomicrite and 
dolomicrosparite; saddle 
dolomite in fenestrae. 

Environment 

Agitated shallow 
subtidal to lower 

intertidal; 
microbial patch 

reefs 

Agitated to 
protected 
intertidal 

Restricted upper 
intertidal 

and supratidal 

N 
,_.. -..J 
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Figure 6.1. Photographs and photomicrographs illustrating different microbial deposits. 
Scale bar = 1 em on all photographs of hand specimens, and 1 mm on all 
photomicrographs. A) Polished slab of stratiform stromatolite showing 
characteristic lamination and a subvertical desiccation crack. B) Photomicrograph 
of stratiform stromatolite. Lamina with common fenestrae is calcitic, the other 
laminae are dolomitic. C) Polished slab ofLLH stromatolite showing wavy 
lamination. D) Photomicrograph of an entirely dolomitized LLH stromatolite. 
Note peloidal grains interbedded with micritic microbial laminae. E) Lower part 
of the photograph is a plan view of half an individual SH stromatolite specimen. 
Upper part of the photograph is a cross-section through the same specimen. F) 
Photomicrograph of SH stromatolite composed of laminated micritic deposit. The 
surrounding coarser-grained deposit contains peloids and quartz silt grains. The 
entire sample is dolomitized. G) Columnar stromatolite specimen. H) 
Photomicrograph of columnar stromatolite composed of a mosaic of medium­
crystalline dolomite, and partially silicified. Intercolumnar space is filled with 
peloids and ooids. 
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Figure 6.2. Photographs and photomicrographs illustrating different microbial deposits. 
A) Outcrop photograph of digitate stromatolite bioherm. Photo scale is 16 .5  em 
long. B) Photomicrograph of a part of an individual "digit" comprising digitate 
stromatolite. Note characteristic crudely laminated fabric composed primarily of 
microcrystalline calcite. The surrounding ooid-peloidal packstone/grainstone has 
been extensively dolomitized. Scale bar = 1 mm. C) Polished thrombolite slab 
showing characteristic clotted fabric. D) Photomicrograph of a predominantly 
calcitic thrombolite specimen from the subtidal package showing Girvanella 
filaments in the matrix surrounding darker micritic Renalcis grains. Scale bar = 
0.25 mm. E) Photomicrograph of a thrombolite specimen from the subtidal 
package containing abundant Epiphyton grains. Scale bar = 1 mm . F) 
Photomicrograph of a thrombolite specimen from the peritidal package showing a 
micritic patch (mesoclot) composed primarily of calcite and embedded in a 
partially dolomitized fossiliferous-peloidal wackestone/packstone. Scale bar = 1 
mm. 
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Figure 6.3. Schematic illustration of mechanisms responsible for the formation of 
microbial deposits using filamentous cyanobacteria as an example. A) Trapping of 
sediment particles. B) Calcification of cyanobacteria (modified after Riding 
1 99l c) . 
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suitable organisms and an adequate supply of detrital particles favor the trapping process 

in the formation of microbial deposits. The most common sediment trapping agent today 

is the network of interwoven mucilaginous sheaths of filamentous cyanobacteria which 

forms a sticky mat substrate (Golubic 1973, 1 976). Trapping includes retention of 

sediment particles on such substrates by the processes of adhesion, baffling, and binding 

(Fig. 6.3A; Riding 1991c). Calcification, on the other hand, involves nucleation of calcite 

crystals within and upon the extracellular sheaths of cyanobacteria as a result of 

physicochemical and/or biotically induced precipitation (Fig. 6.3B; Lowenstam 1 98 1 ;  

Riding 199 1 c) .  Biotically induced calcification involves calcite precipitation during the life 

of the organism and implies substantial biological control over carbonate mineral 

precipitation. In the case of cyanobacteria, it is believed that calcification is only partially 

controlled by the organism, and that it occurs only under suitable environmental conditions 

favoring physicochemical precipitation of calcium carbonate minerals (Pentecost and 

Riding 1986; Riding 1 99 1 a) .  The presence of dead cyanobacterial sheaths as nucleation 

sites, or changing water chemistry due to photosynthesis, may induce precipitation of 

calcium carbonate (Merz 1 992; Defarge et al. 1 994). Calcification of cyanobacteria can 

also be promoted by the metabolic processes of heterotrophic or sulfate reducing bacteria 

(Krumbein and Cohen 1 977; Krumbein et al. 1 977; Krumbein 1 979; Lyons et al. 1 984; 

Chafetz and Buczynski 1 992). It should be noted that cyanobacterial biocalcification and 

physicochemical precipitation can proceed simultaneously, resulting in a complex 

microbial fabric (Riding 1 991c; Defarge et al. 1 994). 

In the study of ancient microbial deposits it is often difficult to access the 

importance of the different processes which have influenced their formation. Processes 

involved may be highly variable, both spatially and temporally, calling for caution in 

applying modem analogs. A predominant mechanism in the formation of modem marine 

microbial deposits is the trapping of sediment particles, coupled with cementation 
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involving physicochemical precipitation ofMg-calcite and aragonite (Logan 1 96 1 ;  

Gebelein 1 969; Neumann et al. 1 970; Logan et al. 1974; Playford and Cockbain 1 976; 

Dravis 1983; Dill et al. 1986). Neoproterozoic and Cambrian time periods, on the other 

hand, were characterized by a decline in the abundance of agglutinated stromatolites and 

the expansion of calcified stromatolites (Riding 1 982, 1 99 1  c; Riding and Veron ova 1984; 

Pentecost and Riding 1 986). This expansion is attributed to possible changes in ocean 

water chemistry (Riding 1 982, 199 1  a; Pentecost and Riding 1 986), evolutionary changes 

in cyanobacteria (Riding 1991b), and the evolution of skeletal organisms (Knoll et al. 

1 993). The development ofmarine calcareous plankton and the associated changes in 

seawater saturation levels caused the virtual disappearance of calcified marine 

cyanobacteria in the Cenozoic (Gebelein 1976; Kempe and Kazmierczak 1988). Calcified 

cyanobacteria exist today in fresh water, some alkaline lakes, and rare hypersaline coastal 

embayments (Horodyski and V onder Haar 1 97 5; Golubic and Campbell 198 1 ;  Gerdes and 

Krumbein 1 987; Kempe and Kazmierczak 1 988; Braithwaite et al. 1 989; Riding 1 99 1 a; 

Chafetz and Buczynski 1 992; Defarge et al. 1 994). It is often assumed, based on modern 

analogs, that calcification of marine cyanobacteria in the past took place during early 

diagenesis, and was most likely influenced by bacterially induced calcium carbonate 

precipitation (Pratt 1 984; Pentecost and Reading 1986; Chafetz and Buczynski 1 992; 

Knoll et al. 1 993). 

SELECTIVE DOLOMITIZATION OF MICROBIAL DEPOSITS 

Petrographic analysis reveals that different types of Upper Cambrian microbial 

deposits experienced different diagenetic modifications (Table 6. 1 ). Stratiform 

stromatolites are commonly dolomitized, with only some calcitic laminae preserved (Fig. 

6 . 1A, B). LLH, SH, and columnar stromatolites are completely dolomitized (Fig. 6. 1 C­

H). This is in contrast to digitate stromatolites and thrombolites, which are most 
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commonly calcitic, even though they are commonly embedded within dolomitized deposits 

(Fig. 6 .2). 

Mechanisms of Microbial Deposit Origin 

Different mechanisms of formation may account for the different styles of 

diagenesis for the microbial deposits examined. The relative importance of calcification 

versus trapping of sedimentary particles in the formation of these deposits can be 

evaluated on the basis of the observed patterns of selective dolomitization. Early 

lithification promoted by calcification of cyanobacteria may have significantly influenced 

the preservation potential of microbial deposits by making them less susceptible to 

dolomitization. This assertion is supported by the presence of microbial micritic structures 

that contain only scattered dolomite crystals, and are commonly embedded in completely 

dolomitized non-microbial deposits (Fig. 6.2B). Digitate stromatolites and thrombolites 

are therefore interpreted to be the result of the calcification of cyanobacteria. This 

interpretation is supported by the absence of coarser-grained agglutinated particles within 

the individual micritic microbial "digits" (Fig. 6.2B) and thrombolitic mesoclots (Fig. 

6.2D, F). Peloidal grains, ooids and skeletal fragments are present only in the deposits 

surrounding microbial micritic structures (Fig. 6.2B, F). The presence of Renalcis, 

Epiphyton, and Girvanella further supports the calcification of cyanobacteria as a 

mechanism for formation of thrombolites from this study (Fig. 6.2D, E). Coccoid 

cyanobacteria Renalcis and Epiphyton have been interpreted to represent products of 

bacterially induced calcification (Pratt 1 984; Kennard and James 1 986; Pentecost and 

Riding 1 986; Thompson and Ferris 1 990; Chafetz and Buczynski 1 992). Girvanella 

filaments represent calcification of cyanobacterial sheaths as a result of both biotically and 

environmentally controlled processes (Riding 1975). Early lithification of thrombolites 

and digitate stromatolites is also substantiated by the presence of well preserved burrow 



walls and the abundance of fibrous and bladed calcite cement representing marine 

diagenetic phases. 

Entirely dolomitized microbial deposits formed primarily by sediment trapping. 
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LLH, SH, and columnar stromatolites represent examples of such microbial deposits (Fig. 

6 . 1C-H). This interpretation is supported by the absence ofpreserved calcified 

cyanobacterial forms, and the similarity with modern agglutinated stromatolites in terms of 

sediment size, nature oflamination, and disturbances in lamination (fenestrae and 

desiccation cracks). In the absence of processes that promote calcification, micritic 

sediment that was trapped on sticky microbial substrates could have been susceptible to 

dolomitization. Dolomitization would have been exceptionally pervasive if the 

dolomitizing fluids affected these deposits very early in the process of diagenesis. 

Stratiform stromatolites (cryptalgal laminates) contain both calcitic and dolomitic 

laminae (Fig. 6 . 1A, B). Preserved calcified cyanobacterial forms have not been observed 

within these deposits. The presence of calcitic laminae indicates that some of the laminae 

could have been firmly calcified fairly early in their diagenetic history, and were 

impermeable to dolomitizing fluids. Stratiform stromatolites are thus interpreted to be the 

result of both sediment trapping and early calcification. 

Environments of Deposition and Early Diagenetic History 

The environments of microbial deposition can be constrained based on the 

observed patterns of dolomitization because the calcification of cyanobacteria takes place 

only under favorable environmental conditions. The interpreted environments of 

deposition for the different types of microbial structures are shown schematically in Figure 

6.4. The study of microbial deposits also helped to constrain the earliest events in a 

complex diagenetic history of the carbonate deposits. 

Entirely dolomitized stromatolites formed in supratidal and upper intertidal 
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Figure 6.4. Interpretation of the environments of deposition. A) Generalized illustration 
of depositional environments for the most common lithofacies present within the 
succession examined (not to scale). B) Schematic representation of the 
relationship between environments of deposition for different types of microbial 
deposit on a tidal flat. The succession from left to right represents decreasing 
water agitation and shallowing from subtidal into supratidal environment (not to 
scale). 
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environments (Fig. 6 .4). These environments were the primary sites for dolomitization on 

the Upper Cambrian arid to semi-arid tidal flat. Calcification of cyanobacteria was not 

prominent during formation of these microbial deposits. This was likely due to periodic 

emergence and increased salinity, as evidenced by the presence of numerous desiccation 

cracks, and evaporite-mineral pseudomorphs. Under these conditions dolomitization of 

microbial deposits may have even preceded substantial lithification. Dolomitization of 

these deposits occurred during the very early diagenetic history as penecontemporaneous 

or syngenetic dolomitization operating under a sabkha-like tidal flat regime. 

Digitate stromatolites and thrombolites formed in a lower intertidal and upper 

subtidal environment where they comprised broad, low relief microbial patch reefs (Figs. 

6 .2A, 6 .4). This environmental interpretation is supported by the presence of common 

bioturbation, the absence or scarcity of exposure indicators, and the association with 

coarser-grained deposits containing skeletal fragments, ooids, peloids, and intraclasts (Fig. 

6.2B, F). These deposits represent deposition under less restricted and more agitated 

shallow water conditions. Deposits formed within the lower intertidal and subtidal 

environments were subjected to less extensive early dolomitization. Under these 

conditions calcification of cyanobacteria was an important process in the formation of 

microbial deposits. Due to the calcification, microbial deposits became less susceptible to 

dolomitization. This interpretation is substantiated by the presence of microbial deposits 

composed of microcrystalline calcite surrounded by non-microbial deposits, which are 

commonly extensively dolomitized (Fig. 6.2B). Additionally, thrombolites and digitate 

stromatolites are commonly the only lithofacies from the peritidal package of the 

Maynardville Formation that have escaped extensive dolomitization, even though the 

peritidal package contains other lithologies deposited in a shallow subtidal setting (Fig. 

2 . 1 ;  Table 2 .2). Such selective dolomitization would not have been possible if 

environmental conditions were solely controlling the dolomitization patterns. Therefore, 



preferential calcification of microbial deposits was likely biotically influenced and is 

responsible for the preservation of calcified microbial deposits. 

DISCUSSION 
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The response of stromatolites to diagenesis and the resulting selective 

dolomitization was used to distinguish between stromatolites formed by calcification of 

cyanobacteria and those formed by simple agglutination of sediment. The different 

mechanisms of formation and the presence of different microbial assemblages are 

supported by the microfabric difference among the microbial deposits studied. The clotted 

fabric of thrombolites and the crudely laminated to clotted fabric of digitate stromatolites 

(Fig. 6 .2) differ from the laminated fabric of stratiform, LLH, SH, and columnar 

stromatolites (Fig. 6. 1 ) .  The clotted fabric may form as a result of in situ calcification of 

coccoid-dominated microbial communities (Hofmann 1 973; Kennard and James 1 986). In 

contrast to the clotted fabric, stromatolitic laminae represent the results of sediment 

trapping and lithification of microbial mats containing primarily filamentous cyanobacteria 

(Gebelein 1 974, 1 976; Awramik 1 984; Kennard and James 1986). Stratiform, LLH, SH, 

and columnar stromatolites all have similar laminated microfabric (Fig. 6 . 1 ) .  This suggests 

that similar processes and a similar assemblage of mat-forming organisms were responsible 

for the formation of these stromatolite types. The difference in the macrostructure of 

these stromatolites was likely controlled by conditions within the environments of 

formation, such as water agitation (Gebelein 1974; Hoffman 1976; Semikhatov et al. 

1 979; Knoll and Awramik 1983). 

A unique aspect in the study of Cambrian microbial deposits is determining the 

importance of calcification by cyanobacteria. Despite the decline in diversity and 

abundance following the Proterozoic, stromatolites were still widespread during the 

Cambrian (Howe 1 966; Aitken 1 967; Ahr 197 1 ;  Chafetz 1973 ; Edhom and Anderson 
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1 977; Demicco et al. 1 982; Geldsetzer et al. 1 989; Kennard 1 988; and others). The 

Cambrian and Early Ordovician are characterized by the abundance of thrombolites, which 

has been related to the appearance of calcification in marine cyanobacteria near the 

Proterozoic-Cambrian boundary and to the evolution of calcareous microbes Renalcis, 

Epiphyton, and Girvanella (Riding 1982, 1 99 1 a; Riding and Veronova 1 984; Kennard and 

James 1 986; Pentecost and Riding 1 986). Several authors related the occurrence of 

thrombolites to the evolution ofmetazoa, and interpreted them as a result ofbioturbation 

causing disruption of the original laminated fabric ( Chafetz 1 973; Hofmann 1 973 ; Monty 

1 976; Walter 1977; Walter and Heys 1985). Bioturbation is common within the Cambrian 

thrombolites examined and has caused a significant modification of the original fabric. 

Parts of the thrombolites, however, that were not bioturbated do not contain remnant 

laminae. We, therefore, interpret the thrombolitic fabric to be the primary result of 

calcification of microbes, rather than bioturbation. 

Knoll et al. ( 1 993) proposed a hypothesis for the expansion of calcified microbes 

near the Proterozoic-Cambrian boundary. Due to the evolution of skeletal organisms both 

the saturation level of seawater with respect to carbonate mineral precipitates and the 

significance of non-skeletal precipitation decreased. In the absence of competing 

carbonate crystals cyanobacterial sheaths served as important sites for carbonate 

nucleation (Knoll et al. 1 993). The Upper Cambrian agglutinated stromatolites contain 

abundant trapped micrite-size carbonate particles, which may have served as competing 

sites for carbonate precipitation (Fig. 6. 1 ). Under these conditions, syndepositional 

calcification of cyanobacteria was not an important process and even in the presence of 

fabric retentive dolomitization the preservation of sheaths is unlikely. Ancient calcified 

microbes commonly occur surrounded by sparry cement (Kennard and James 1 986; Riding 

1 99 1b; Knoll et al. 1 993). The thrombolites and digitate stromatolites from this study 

occur in association with coarser-grained wackestone/packstone and grainstone lithologies 
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(Figs. 2 . 1 ,  6 .2B, F; Table 2. 1) .  Even though micrite was present within the environment 

of deposition, the lesser amount of micritic particles in the more agitated lower intertidal 

to subtidal environments may have influenced the preferential calcification of thrombolites 

and digitate stromatolites relative to other microbial deposit types. Stratiform 

stromatolites, however, contain micritic laminae composed ofboth calcite and dolomite 

(Fig. 6. 1B). Calcified laminae may represent mats with a more dense cyanobacterial 

population within which trapped micrite was less abundant (Fig. 6. 1B). The calcification 

of these laminae may have occurred as an early diagenetic process in the presence of a 

suitable organic substrate. The cyanobacterial filaments were destroyed by taphonomic 

and/or diagenetic processes. 

The studies of modem unlithified intertidal microbial mats composed of 

filamentous cyanobacteria show that these stromatolite precursors form primarily by the 

trapping offine-grained sediment (Fig. 6.3A; Gebelein 1969; Davies 1970; Monty 1 976; 

Bauld 1 984). The alternation of calcitic and dolomitic laminae in Holocene stromatolites 

has been attributed to the compositional variations within the sediment (Gebelein and 

Hoffman 1973; Monty 1976). Similarly, alternation of organic-rich and organic-poor 

laminae may have been responsible for the presence of calcitic and dolomitic laminae 

within Cambrian stratiform stromatolites (Fig. 6. 1B). The preferential calcification of 

some of the laminae may have also been environmentally controlled. Slight changes in 

water salinity, for example, may influence calcification of microbial mats (Defarge et al. 

1 994). Monty ( 1 97 6) noted that on modem arid intertidal and supratidal flats microbial 

organisms generally form uncalcified mats, as opposed to tropical supratidal flats 

characterized by seasonal freshwater flooding, where calcification of cyanobacterial 

filaments is likely to occur during growth. The analogy with these modem examples 

supports an arid to semi-arid intertidal and supratidal settings for the entirely dolomitized 

Cambrian stromatolites. 
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Early lithification is one of the main prerequisites for the preservation of microbial 

deposits (Park 1 977; Gerdes et al. 1991) .  Once preserved, microbial deposits are subject 

to later diagenetic alterations. The complex paragenetic diagrams constructed for the 

succession examined (Fig. 4. 12) has led to questions about the extent of diagenetic 

overprinting. Even though calcified microbial deposits may be considered to have a 

greater potential for preserving syndepositional and/or early diagenetic features, the 

oxygen-isotope composition of these deposits is indicative of diagenetic modifications in 

the presence of meteoric water or at elevated temperature during later burial (Fig. 4.6A). 

The presence of partially silicified columnar and SH stromatolites, and the mosaic of 

medium- to coarse-crystalline dolomite comprising some of the columnar stromatolites, 

suggest diagenetic alteration of these deposits beyond penecontemporaneous 

dolomitization (Fig. 6 . 1H; see also Chapter 4). 

It is likely that similar trends in selective dolomitization as those observed in this 

study could be present in other partially dolomitized carbonate successions containing a 

variety of microbial deposits. The approach used in this study should serve as a 

preliminary assessment of the origin of microbial deposits. The relative importance of 

processes influencing the formation of microbial deposits is expected to vary greatly, both 

spatially and temporally as a result of numerous factors, including evolutionary trends, and 

differing physical and geochemical characteristics of sedimentary settings. All available 

environmental indicators, such as morphologic characteristics, sedimentary structures and 

sediment composition, should be used in conjunction with diagenetic information to infer 

the mechanisms responsible for the formation and preservation of microbial deposits. A 

diagenetic study may reveal subtle details about the origin of microbial deposits that may 

not be available otherwise. 
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CONCLUSIONS 

Detailed petrographic analysis of microbial carbonate deposits that have undergone 

differential degrees of dolomitization allows a better understanding of the mechanisms and 

environments of microbial deposit formation. The Upper Cambrian Maynardville 

Formation and Copper Ridge Dolomite of the southern Appalachians contain several 

different types of microbial carbonate deposits. Entirely dolomitized laminae within 

stratiform, LLH, SH, and columnar stromatolites formed primarily by the trapping of 

sediment in intertidal and supratidal environments. These arid to semi-arid tidal flat 

environments were primary sites for very early dolomitization. Digitate stromatolites and 

thrombolites, composed primarily of microcrystalline calcite, formed in an upper subtidal 

and lower intertidal environment by calcification of cyanobacteria. This early calcification 

reduced their susceptibility to dolomitization. Stratiform stromatolites, composed of both 

calcitic and dolomitic laminae, formed by the combination of sediment trapping and early 

calcification. The presence of a variety of microbial structures with differing modes of 

formation was primarily controlled by the conditions within the environment of deposition, 

but was also biotically influenced to a certain degree. 
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CHAPTER 7 

CONCLUSIONS 

1 .  Deposition of the Upper Cambrian Maynardville Formation of the southern 

Appalachians marks a prominent change in the pattern ofLower Paleozoic passive-margin 

sedimentation. This change is reflected in the cessation of the Middle to Upper Cambrian, 

predominantly subtidal, mixed siliciclastic/carbonate Grand Cycles ofthe Conasauga 

Group, and the establishment ofperitidal carbonate deposition ofthe Upper Cambrian to 

Lower Ordovician Knox Group. 

2. The Maynardville consists of a lower subtidal depositional package underlain by the 

Nolichucky Shale, and an upper peritidal package overlain by the Copper Ridge Dolomite. 

The upper Nolichucky represents mixed carbonate and siliciclastic deposition in a deep­

ramp setting. The subtidal Maynardville was deposited in a gently sloping, shallow­

subtidal ramp and lagoonal environment, which was protected by locally developed 

microbial patch reefs and ooid shoals. To the east, the ramp was linked to a broad, semi­

arid carbonate tidal flat characterized by a variety of peritidal environments within which 

the upper Maynardville and the Copper Ridge Dolomite were deposited. 

3. The Nolichucky Shale represents a retrogradational depositional package characteristic 

of transgressive system tracts, which formed in response to deepening caused by an 

increase in the rate of relative sea-level rise. The Nolichucky/Maynardville transition 

corresponds to a maximum flooding of the carbonate platform during the early Late 

Cambrian. The shallowing-upward trend (subtidal-to-peritidal carbonate deposition) of 

the Maynardville Formation reflects an aggradational-to-progradational stacking pattern 

characteristic of highstand system tracts, which form during decreasing rates of relative 

sea-level rise, a sea-level stillstand, and during an initial relative sea-level fall . 
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4. The Maynardville Formation and the underlying Upper Shale Member of the 

Nolichucky Formation comprise a third-order sequence, which represents a terminal 

Upper Cambrian Grand Cycle in the southern Appalachians. Unlike the Middle Cambrian 

Grand Cycles of the Conasauga Group, the deposition of the Maynardville was not 

terminated by carbonate platform exposure followed by drowning and basinal shale onlap. 

The transition into the overlying Copper Ridge Dolomite of the Knox Group is marked by 

a conformable interval, which is characterized by the occurrences of common siliciclastic 

sand. This interval is interpreted as a sequence boundary zone correlative with the 

Dresbachian!F ranconian unconformity. 

5. The changing style of passive-margin deposition during the Cambrian was a 

consequence of passive-margin evolution. The Middle Cambrian Grand Cycles of the 

Conasauga Group were deposited during an immature stage of passive-margin 

development. This time period was characterized by short-term, episodic, non-thermal 

tectonic subsidence, which was enhanced by loading, coupled with possible eustatic sea­

level changes, and superimposed on thermal subsidence. Deposition of the Maynardville 

marked the transition into a mature or stabilized passive margin, as reflected by the 

cessation of tectonic activity, a decreased rate of thermal subsidence, infilling of the 

Conasauga basin, and carbonate platform progradation. Deposition of the thick peritidal 

carbonates of the overlying Knox Group represents the final stabilization ofthe passive 

margin with the sedimentation controlled primarily by thermal subsidence and possible 

eustatic sea-level changes. 

6. The stacking patterns ofthe Maynardville lithofacies were influenced by numerous 

processes operating on various scales. Besides mechanisms related to passive-margin 

evolution, other local- to regional-scale processes that controlled the deposition of the 

Maynardville were related to: A) the properties intrinsic to the carbonate depositional 

system, including variable sedimentation rates, facies migration, and lag time; and B) the 
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extrinsic factors controlling the rate of sediment input, dispersal, and the infilling of the 

adjacent siliciclastic basin. The transition from the subtidal to peritidal depositional 

regime, subaerial exposure surfaces, and some meter-scale shallowing-upward successions 

within the Maynardville, may reflect short-term eustatic sea-level changes. Alternatively, 

they may represent the effects of platform aggradation and tidal flat migration. 

7. The Maynardville Formation contains a record of a prominent change in diagenetic 

patterns. A transition from subtidal, mixed carbonate and siliciclastic deposits into 

extensively dolomitized peritidal deposits influenced early diagenesis of the Maynardville. 

Burial diagenesis of the Maynardville was affected by the regional facies distribution 

related to the cessation of Grand Cycle deposition, coupled with the infilling of the 

Conasauga basin and carbonate platform progradation, and burial history of the passive­

margin sedimentary succession. 

8. A variety of calcite cements (fibrous/bladed, syntaxial overgrowth, equant and ferroan 

equant calcite) within the subtidal deposits of the Maynardville represent marine, meteoric 

and burial diagenetic phases. These cements fill in intergranular voids, burrows, 

framework voids ofthrombolitic deposits, and less-common dissolution voids. Dolomite 

is not abundant within subtidal deposits. F erroan dolomite occurs as a fine-crystalline 

phase associated with argillaceous layers, and coarser -crystalline replacement and saddle 

dolomite cement. The majority ofthe dolomite formed during burial from fluids provided 

locally by the diagenesis of clay minerals, compaction, and pressure solution. The 

association of saddle dolomite cement with MVT minerals suggests the involvement of 

externally-derived diagenetic fluids. 

9. Peritidal deposits of the Maynardville are extensively dolomitized. Fine-crystalline, 

fabric-retentive replacement dolomite formed penecontemporaneously with, or soon after 

deposition on a semi-arid tidal flat. Fabric-destructive coarser-crystalline replacement 

dolomite formed during burial by the recrystallization of early dolomite and dolomitization 
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oflimestone. Dolomite cement, commonly complexly zoned, fills in fenestrae, desiccation 

and evaporite dissolution voids, and sparse intergranular voids within the peritidal 

deposits. This zoned dolomite precipitated from modified marine fluids, mixed 

marine/meteoric, and deeper burial basinal brines. The saddle dolomite cement occluding 

pore-centers, tectonic fractures and dissolutional voids precipitated during later burial 

from fluids generated by the pressure-solution of matrix dolomite and from basinal brines 

related to MVT mineralization and hydrocarbon migration. 

10. The combination of radiogenic strontium and stable oxygen isotope compositions 

provides insights into the source of fluids responsible for the precipitation ofburial 

dolomite cement within the Upper Cambrian peritidal deposits. Strontium isotope 

compositions of dolomite cement are less radiogenic than Cambrian seawater, and are 

similar to Early to Middle Ordovician seawater. This suggests that a source of fluids may 

have been: A) Ordovician marine fluids that circulated downward into the Cambrian 

deposits; or B) marine pore fluids expelled from the Middle Ordovician Sevier basin shale 

succession during shallow to intermediate burial. Oxygen isotopic compositions of 

dolomite cement, on the other hand, indicate elevated burial temperatures (> 80°C), and 

suggest the involvement of deep-burial fluids, which may represent waters of meteoric 

origin that interacted with Ordovician carbonate rocks. 

1 1. The Maynardville Formation contains a record of a secular increase in the 13C/12C 

ratio in Late Cambrian sea water. The study of this carbon-isotope excursion provides a 

means for improving the biostratigraphic resolution of the poorly fossiliferous and 

extensively dolomitized Upper Cambrian interval in the southern Appalachians. 

Comparison with coeval carbon-isotope excursions documented in biostratigraphically 

well-characterized successions elsewhere indicates that the carbon-isotope excursion 

started near the base of the Pterocephaliid Biomere, the Steptoean stage, and the 

Aphelaspis trilobite zone of the Late Cambrian (Dresbachian) . The maximum excursion is 
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associated with the Sauk II!Sauk III unconformity. The excursion ended prior to the end 

of the Pterocephaliid Biomere. In the southern Appalachians the excursion started during 

the deposition of the upper Nolichucky Shale. The maximum o 1 3  C values of about 4 to 

So/oo PDB are recorded within the sequence boundary zone containing the Maynardville/ 

Copper Ridge Dolomite transition. The excursion ended during the deposition of the 

lower Copper Ridge Dolomite. The carbon-isotope stratigraphy supports the correlation 

between the Sauk II!Sauk III or Dresbachian!Franconian sea-level fall and the sequence 

boundary at the end of Grand Cycle deposition in the southern Appalachians. 

12. The study of carbon isotope variations provides insights into the dynamics of the 

global cycling of carbon, including the changes in the rate of organic-carbon burial related 

to the changes in ocean stratification, climate, sea-level, and paleoproductivity rate. The 

positive carbon-isotope excursion reflects the enhanced burial of organic carbon promoted 

by ocean stratification, a warm, non-glacial climate, and a sea-level maximum during the 

early Late Cambrian. The onset of regression contributed to the maximum carbon-isotope 

excursion by increasing erosion and siliciclastic accumulation rates. Organic productivity 

could have been enhanced by the increase in nutrient availability. The removal of carbon 

from the ocean surface caused a decrease in pC02 of the atmosphere. The resulting 

cooling episode may have caused an oceanic overturn bringing bottom 12C-enriched 

waters to the surface to end the carbon-isotope excursion. The regression also caused 

oxidation of 12C-enriched organic matter previously stored in marginal sediments. 

13. The comparison of o 13 C and o I 8o values of matrix samples and the associated 

cement phases provides insights into diagenetic environments and the extent of diagenetic 

modifications. The o l3c values of peritidal dolomicrite plotted against stratigraphic 

position define a rather smooth curve, whereas the values for subtidal micrite have a 

significant scatter resulting from organic matter involvement in diagenesis. Fibrous/bladed 

calcite cement from the subtidal deposits has ol 3c and ol 8o values comparable to those 



241 

ofthe associated micrite, suggesting precipitation from marine water and similar 

diagenetic modifications. The involvement of meteoric water may be responsible for the 

13c_ and 1 8o-depletion in equant calcite cement relative to the associated micrite. The 

depletion of 1 8o in saddle dolomite cement, and o 1 3c values similar to those for the 

peritidal dolomicrite, are consistent with formation during burial at elevated temperatures 

in a rock-dominated system. 

14. An array of selectively dolomitized Upper Cambrian microbial deposits represent 

different mechanisms of formation and styles of diagenetic preservation, which were 

controlled by the conditions within the environment of deposition, and were also biotically 

influenced. Entirely dolomitized laminae of stratiform, LLH, SH, and columnar 

stromatolites formed by the trapping of sediment in intertidal and supratidal environments 

on a semi-arid tidal flat. These environments were the loci of penecontemporaneous 

dolomitization of carbonate deposits. The susceptibility to dolomitization of digitate 

stromatolites and thrombolites was reduced by calcification of cyanobacteria in upper 

subtidal and lower intertidal environments. 



242 

REFERENCES CITED 



243 
Ahr, W.M., 1 97 1 ,  Paleoenvironment, algal structures, and fossil algae in the Upper 

Cambrian of central Texas: Journal of Sedimentary Petrology, v. 4 1 ,  p. 205-2 1 6. 
Aissaoui, D.M., 1 988, Magnesian calcite cements and their diagenesis: dissolution and 

dolomitization, Mururoa Atoll: Sedimentology, v. 35 ,  p. 82 1 -84 1 .  
Aitken, J.D. ,  1 966, Middle Cambrian to Middle Ordovician cyclic sedimentation, southern 

Rocky Mountains of Alberta: Canadian Petroleum Geology Bulletin, v. 14, p. 405-
441 .  

Aitken, J.D. ,  1967, Classification and environmental significance of cryptalgal limestones 
and dolomites, with illustrations from the Cambrian and Ordovician of 
southwestern Alberta: Journal of Sedimentary Petrology, v. 37, p. 1 1 63-1 1 78 .  

Aitken, J.D.,  1978, Revised models for depositional grand cycles, Cambrian ofthe 
southern Rocky Mountains, Canada: Canadian Petroleum Geology Bulletin, v. 26, 
p. 5 1 5-542. 

Aitken, J.D., 198 1 ,  Generalizations about Grand Cycles, in Taylor, M.E., ed. ,  Short 
Papers for the Second International Symposium on the Cambrian System: United 
States Geological Survey Open File Report 8 1-743, p. 8-14. 

AI-Hashimi, W.S . ,  1 977, Recent carbonate cementation from seawater in some weathered 
dolostones, Northumberland, England: Journal of Sedimentary Petrology, v. 47, p. 
1 375- 1 39 1 .  

Allan, J.R., and Matthews, R.K. ,  1 982, Isotope signatures associated with early meteoric 
diagenesis: Sedimentology, v. 29, p. 797-8 1 7. 

Amthor, J.E., and Friedman, G.M., 1991 ,  Dolomite-rock textures and porosity 
development in Ellenburger Group carbonates (Lower Ordovician), Western Texas 
and Southeastern New Mexico: Sedimentology, v. 38, p. 343-362. 

Amthor, J.E. , and Friedman, G.M., 1992, Early- to late-diagenetic dolomitization of 
platform carbonates: Lower Ordovician Ellenburger Group, Permian Basin, West 
Texas: Journal of Sedimentary Petrology, v. 62, p. 13 1 - 144. 

Anderson, T.F., and Arthur, M.A. , 1 983, Stable isotopes of oxygen and carbon and their 
application to sedimentologic and paleoenvironmental problems, in Arthur, M.A., 
Anderson, T.F., Kaplan, I.R., Veizer, J., and Land, L.S., eds. ,  Stable Isotopes in 
Sedimentary Geology, SEPM Short Course 10, p. 1 - 1  - 1 - 1 5 1 .  

Angevine, C.L., 1 989, Relationship of eustatic oscillations to regressions and 
transgressions on passive continental margins, in Price, R.A., ed. ,  The Origin and 
Evolution of Sedimentary Basins and their Energy and Mineral Resources: 
American Geophysical Union, Geophysical Monograph Series 48, p. 29-35 .  

Arthur, M.A., Dean, W.E., and Pratt, L.M., 1 988, Geochemical and climatic effects of 
increased marine carbon burial at the Cenomanian/Turonian boundary: Nature, v. 
335,  p. 714-7 1 7. 

Arthur, M.A., Dean, W.E., and Schlanger, S .O. ,  1 985, Variations in the global carbon 
cycle during the Cretaceous related to climate, volcanism, and changes in 
atmospheric C02: Geophysical Monograph 32, p. 504-529. 

Arthur, M.A., Schlanger, S .O. ,  and Jenkyns, H.C. ,  1987, The Cenomanian-Turonian 
oceanic anoxic event, II. Palaeoceanographic controls on organic-matter 



244 
production and preservation, in Brooks, J. , and Fleet, A.J., eds., Marine Petroleum 
Source Rocks: Geological Society Special Publication 26, p. 401 -420. 

Aubry, M.P. ,  1 99 1 ,  Sequence stratigraphy: Eustasy or tectonic imprint : Journal of 
Geophysical Research, v. 96, p. 6641 -6679. 

Audet, D.M. , and Fowler, A.C., 1 992, A mathematical model for compaction in 
sedimentary basins: Geophysical Journal International, v. 1 1 0, p. 577-590. 

Awramik, S .M., 1 984, Ancient stromatolites and microbial mats, in COHEN, Y. , 
Castenholtz, R.W., and Halvorsen, H.O., eds., Microbial Mats: Stromatolites : 
MBL Lectures in Biology, Alan R. Liss, New York, p. 1 -22. 

Baker, P.A., and Kastner, M., 1 98 1 ,  Constraints on the formation of sedimentary 
dolomite: Science, v. 2 13,  p. 2 14-2 1 6. 

Baker, P.A., and Bums, S .J., 1 985, Occurrence and formation of dolomite in organic-rich 
continental margin sediments: American Association ofPetroleum Geologists 
Bulletin, v. 40, p. 721-730. 

Bally, A.W., 1982, Musings over sedimentary basin evolution: Philosophical Transactions 
of the Royal Society ofLondon, v. 305, p. 325-338 .  

Banner, J.L., 1 995, Application of the trace element and isotope geochemistry of 
strontium to studies of carbonate diagenesis: Sedimentology, v. 42, p. 805-824. 

Banner, J.L., and Hanson, G.N.,  1 990, Calculation of simultaneous isotopic and trace 
element variations during water-rock interaction with applications to carbonate 
diagenesis: Geochimica and Cosmochimica Acta, v. 54, p .  3 1 23-3 127 .  

Banner, J.L., Hanson, G.N., and Meyers, W.J., 1 988, Water-rock interaction history of 
regionally extensive dolomites of the Burlington-Keokuk Formation 
(Mississippian): Isotopic evidence, in Shukla, V., and Baker, P.B . ,  eds. , 
Sedimentology and Geochemistry ofDolostones: SEPM Special Publication 43, p. 
97- 1 1 3 .  

Banner, J.L., Musgrove, M. , and Capo, R., 1 994, Tracing ground-water evolution in a 
limestone aquifer using Sr isotopes: effects of multiple sources of dissolved ions 
and mineral-solution reactions: Geology, v. 22, p. 687-690. 

Barnaby, R.J., and Read, J.F., 1 990, Carbonate ramp to rimmed shelf evolution: Lower to 
Middle Cambrian continental margin, Virginia Appalachians: Geological Society of 
America Bulletin, v. 102, p. 391-404. 

Barnaby, R.J., and Read, J.F., 1992, Dolomitization of a carbonate platform during late 
burial: Lower to Middle Cambrian Shady Dolomite, Virginia Appalachians: Journal 
of Sedimentary Petrology, v. 62, p .  1023- 1 043 . 

Bathurst, R.G.C. ,  1 987, Diagenetically enhanced bedding in argillaceous platform 
limestones: stratified cementation and selective compaction: Sedimentology, v. 34, 
p. 749-778. 

Bauld, J. , 1 984, Microbial mats in marginal marine environments: Spencer Gulf, South 
Australia, and Shark Bay, Western Australia, in Cohen, Y.,  Castenholtz, R.W., and 
Halvorsen, H.O., eds., Microbial Mats: Stromatolites: MBL Lectures in Biology, 
Alan R. Liss, New York, p. 39-58. 

Beauchamp, B. ,  Oldershaw, A.E. , and Krouse, H.R. , 1987, Upper Carboniferous to Upper 
Permian 13C-enriched primary carbonates in the Sverdrup Basin, Canadian Arctic: 



245 
Comparison to coeval western North American ocean margins: Chemical Geology, 
Isotope Geoscience Section, v. 65, p. 391 -4 13 .  

Beaumont, C . ,  Keen, C.E., and Boutilier, R., 1 982, Evolution of rifted continental 
margins: Comparison of models and observations for the Nova Scotian margin: 
Royal Astronomical Society Geophysical Journal, v. 70, p. 667-7 15 .  

Beeunas, M.A., and Knauth, L.P., 1 985, Preserved stable isotope signatures of subaerial 
diagenesis in the 1 .2 Ga Mescal Limestone, central Arizona: Implications for the 
timimg and development of a terrestrial plant cover: Geological Society of 
America Bulletin, v. 96, p. 737-745. 

Behrens, E.W., and Land, L.S . ,  1 972, Subtidal Holocene dolomite, Baffin Bay, Texas: 
Journal of Sedimentary Petrology, v. 42, p. 155- 1 6 1 .  

Bein, A., and Land, L.S. ,  1983, Carbonate sedimentation and diagenesis associated with 
Mg-Ca-chloride brines: the Permian San Andres Formation in the Texas 
Panhandle: Journal of Sedimentary Petrology, v. 53, p. 243-260. 

Benedict, G.L. ,  and Walker, K.R., 1978, Paleobathymetric analysis in Paleozoic sequences 
and its geodynamic significance: American Journal of Science, v. 278, p. 579-607. 

Berger, W.H., and Vincent, E., 1 986, Deep-sea carbonates: Reading the carbon-isotope 
signal: Geologische Rundschau, v. 75, p. 249-269. 

Berner, R.A., 1 984, Sedimentary pyrite formation: An update: Geochimica et 
Cosmochimica Acta, v. 48, p. 605-6 15 .  

Bethke, C.M., 1 985, A numerical model of compaction-driven groundwater flow and heat 
transfer and its application to the paleohydrology of intracratonic sedimentary 
basins: Journal of Geophysical Research, v. 90, p. 68 1 7-6828. 

Bethke, C.M., and Marshak, S., 1 990, Brine migrations across North America-the plate 
tectonics of groundwater: Annual Review of Earth and Planetary Sciences, v. 1 8, 
p. 287-3 1 5 .  

Beukes, N.J., and Lowe, D.R. , 1 989, Environmental control on diverse stromatolite 
morphologies in the 3000 Myr Pongola Supergroup, South Africa: Sedimentology, 
v. 36, p .  383-397 . 

Bird, J.M., and Dewey, J.F., 1 970, Lithosphere plate-continental margin tectonics and the 
evolution of the Appalachian Orogen: Geological Society of America Bulletin, v. 
8 1 , p. 1 03 1 - 1060. 

Boggs, S., Jr., 1 987, Principles of Sedimentology and Stratigraphy: Merril Publishing 
Company, Columbus, Ohio, 784 p. 

Boles, J.R. , and Franks, S .G. ,  1 979, Clay diagenesis in Wilcox sandstones of Southwest 
Texas: implications of smectite diagenesis on sandstone cementation: Journal of 
Sedimentary Petrology, v. 49, p. 55-70. 

Bond, G.C . ,  and Kominz, M.A., 1 984, Construction of tectonic subsidence curves for the 
early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications 
for subsidence mechanisms, age ofbreakup and crustal thinning: Geological 
Society of America Bulletin, v. 9 5, p. 1 5  5- 1 73 .  

Bond, G.C. ,  Kominz, M.A., and Beavan, J . ,  1 99 1 ,  Evidence for orbital forcing ofMiddle 
Cambrian peritidal cycles-Wah Wah range, south central Utah, in Franseen, E.K., 
Watney, W.L. ,  Kendall, C.G.St.C. ,  and Ross, W., eds, Sedimentary Modeling-



246 
Computer Simulations and Methods for Improved Parameter Definition: Kansas 
Geological Survey Bulletin 233, p. 239-3 1 8. 

Bond, G.C., Nickeson, P.A., and Kominz, M.A. , 1984, Breakup of a supercontinent 
between 625 Ma and 555 Ma: New evidence and implications for continental 
histories: Earth and Planetary Science Letters, v. 70, p. 325-345. 

Bond, G.C. ,  Kominz, G.C. ,  and Grotzinger, J.P., 1988, Cambro-Ordovician eustasy: 
evidence from geophysical modeling of subsidence in Cordilleran and Appalachian 
passive margins, in Kleinspehn, K.L. ,  ed. ,  New Perspectives in Basin Analysis: 
Springer-Verlag, New York, p .  125- 1 60.  

Bond, G.C., Kominz, M.A., Steckler, M.S . ,  and Grotzinger, J.P., 1 989, Role of thermal 
subsidence, flexure, and eustasy in the evolution of early Paleozoic passive-margin 
carbonate platforms, in Crevello, P., Wilson, J.L., Sarg, J.F., and Read, J.F . ,  eds. ,  
Controls on Carbonate Platform and Basin Development: SEPM Special 
Publication 44, p.  39-61 .  

Bott, M.H.P, 1 992, Passive margins and their subsidence: Journal of the Geological 
Society, London, v. 149, p. 805-8 12.  

Botz, R.W., and von der Borch, C .  C. ,  1 984, Stable isotope study of carbonate sediments 
from the Coorong area, South Australia: Sedimentology, v. 3 1 , p. 837-849. 

Braithwaite, C.J.R., Casanova, J., Frevert, T., and Whitton, B.A. ,  1 989, Recent 
stromatolites in landlocked pools on Aldabra, western Indian Ocean: 
Palaeogeography, Palaeoclimatology, and Palaeoecology, v. 69, p. 145- 165 .  

Brand, U., and Veizer, J., 1980, Chemical diagenesis of a multicomponent carbonate 
system - 1 :  Trace elements: Journal of Sedimentary Petrology, v. 50, p. 1 2 1 9-
1236.  

Brasier, M.D. ,  1 990, Nutrients in the early Cambrian. Nature, v .  347, p. 521-522. 
Brasier, M.D.,  1 992, Nutrient-enriched waters and the early skeletal fossil rocord: Journal 

of the Geological Society ofLondon, v. 149, p. 621 -629. 
Brasier, M.D., 1 993, Towards a carbon isotope stratigraphy of the Cambrian system: 

potential of the Great Basin succession, in Hailwood, E.A., and Kidd, R.B . ,  eds, 
High Resolution Stratigraphy: Geological Society Special Publication 70, p. 341 -
359. 

Brasier, M.D. ,  Anderson, M.M., and Corfield, R.M., 1 992, Oxygen and carbon isotope 
stratigraphy of early Cambrian carbonates in southeastern Newfoundland and 
England: Geological Magazine, v. 3, p. 265-279. 

Brasier, M.D. ,  Corfield, R.M., Derry, L.A., Rozanov, A.Yu.,  and Zhuravlev, A.Yu. ,  1 994, 
Multiple 813C excursions spanning the Cambrian explosion to the Botomian crisis 
in Siberia: Geology, v. 22, p. 455-458 .  

Brasier, M.D. ,  Khomentovsky, V.V., and Corfield, R.M., 1 993, Stable isotopic calibration 
ofthe earliest skeletal fossil assemblages in eastern Siberia (Precambrian-Cambrian 
boundary: Terra Nova, v. 5, p. 225-232. 

Bridge, J., 1 956, Stratigraphy of the Mascot-Jefferson City Zinc District, Tennessee: U. S .  
Geological Survey Professional Paper 277, 74 p. 



247 
Budd, D.A.,  1 988, Aragonite-to-calcite transformation during freshwater diagenesis of 

carbonates: insights from pore-water chemistry: Geological Society of America 
Bulletin, v. 1 00, p. 1260-1270. 

Budd, D.A., and Harris, P.M., eds., 1 990, Carbonate-Siliciclastic Mixtures: SEPM Reprint 
Series 14, 272 p. 

Budd, D.A.,  and Hiatt, E.E., 1 993, Mineralogical stabilization of high-magnesium calcite: 
geochemical evidence for intracrystal recrystallization within Holocene 
porcellaneous foraminifera: Journal of Sedimentary Petrology, v. 63, p. 261 -274. 

Budd, D.A., and Land, L.S. ,  1 990, Geochemical imprint of meteoric diagenesis in 
Holocene ooid sands, Schooner Cays, Bahamas: correlation of calcite cement 
geochemistry with extant groundwaters: Journal of Sedimentary Petrology, v. 60, 
p. 361-378.  

Buelter, D.P. ,  and Guillemette, R.N., 1 988, Geochemistry of epigenetic dolomite 
associated with lead-zinc mineralization of the Viburnum Trend, southeast 
Missouri : A reconnaissance study, in Shukla, V., and Baker, P.B. ,  eds. ,  
Sedimentology and Geochemistry ofDolostones: SEPM Special Publication 43 , p. 
85-93 . 

Burke, W.H., Denison, R.E., Hetherington, E.A. ,  Koepnick, R.B. ,  Nelson, H.F., and Otto, 
J.B. ,  1 982, Variation of seawater 87Sr/86Sr throughout Phanerozoic time: Geology, 
v. 10, p. 5 16-5 19 .  

Burne, R.V., and Moore, L.S. ,  1987, Microbialites: organosedimentary deposits of benthic 
microbial communities: PALAIOS, v. 2, p. 241 -254. 

Burton, E.A., and Walter, L.M., 1987, Relative precipitation rates of aragonite and Mg 
calcite from seawater: Temperature or carbonate ion control: Geology, v. 1 5, p. 
1 1 1 -1 14 .  

Burton, E.A. ,  and Walter, L.M., 1 99 1 ,  The effects of Pc02 and temperature on magnesium 
incorporation in calcite in seawater and MgCb-CaCh solutions: Geochimica et 
Cosmochimica Acta, v. 55, p. 777-785. 

Cander, H.S . ,  1 994, An example of mixing-zone dolomite, Middle Eocene Avon Park 
Formation, Floridan Aquifer System: Journal of Sedimentary Research, v. A64, p. 
6 1 5-629. 

Cander, H.D.,  Kaufman, J., Daniels, L.D., and Meyers, W.J. , 1 988, Regional 
dolomitization of shelf carbonates in the Burlington-Keokuk Formation 
(Mississippian), Illinois and Missouri: Constraints from cathodoluminescent zonal 
stratigraphy, in Shukla, V., and Baker, P.B.,  eds., Sedimentology and 
Geochemistry ofDolostones: SEPM Special Publication 43, p.  1 29- 144. 

Calder, J.A., and Parker, P.L., 1 973, Geochemical implications of induced changes in C13 
fractionation by blue-green algae: Geochimica et Cosmochimica Acta, v. 37, p. 
1 33-140.  

Calvert, S .E. ,  Bustin, R.P. ,  and Ingall, E.D. ,  1 996, Influence of water column anoxia and 
sediment supply on the burial and preservation of organic carbon in marine shales: 
Geochimica et Cosmochimica Acta, v.  60, p. 1 577- 1 593 . 



248 
Carballo, J.D. ,  Land, L.S. ,  and Miser, D.E., 1 987, Holocene dolomitization of supratidal 

sediments by active tidal pumping, Sugarloaf Key, Florida: Journal of Sedimentary 
Petrology, v. 57, p. 1 53- 165 .  

Carpenter, S .J., and Lohmann, K.C. ,  1992, Sr/Mg ratios of modern marine calcite: 
empirical indicators of ocean chemistry and precipitation rate: Geochimica et 
Cosmochimica Acta, v. 56, p. 1 837-1 849. 

Carpenter, S.J., Lohmann, K.C.,  Holden, P.,  Walter, L.M., Huston, T.J., and Halliday, 
AN., 1 99 1 ,  8180 values, 87Sr/86Sr and Sr/Mg ratios ofLate Devonian abiotic 
marine calcite: Implications for the composition of ancient seawater: Geochimica 
et Cosmochimica Acta, v. 55, p. 1 99 1 -20 1 0. 

Cartwright, J.A, 1 994, Episodic basin-wide fluid expulsion from geopressured shale 
sequences in the North Sea basin: Geology, v. 22, p. 447-450. 

Cathles, L.M., and Smith, AT., 1983, Thermal constraints on the formation ofMississippi 
Valley-type lead-zinc deposits and their implications for episodic basin dewatering 
and deposit genesis: Economic Geology, v. 78, p. 983- 1 002. 

Chafetz, H. S . ,  1 973, Morphological evolution of Cambrian algal mounds in response to a 
change in depositional environment: Journal of Sedimentary Petrology, v. 43, p. 
435-446. 

Chafetz, H. S . ,  and Buczynski, C., 1 992, Bacterially induced lithification of microbial mats: 
PALAIOS, v. 7, p. 277-293 . 

Chafetz, H. S . ,  and Rush, P.F., 1 994, Diagenetically altered sabkha-type Pleistocene 
dolomite from the Arabian Gulf: Sedimentology, v. 4 1 ,  p. 409-421 .  

Charles, C.D.,  Wright, J.D. ,  and Faribanks, R.G., 1 993, Thermodynamic influences on the 
marine carbon isotope record: Paleoceanography, v. 8, p. 69 1 -697. 

Chaudhuri, S., Broedel, V., and Clauer, N., 1 987, Strontium isotopic evolution of oil-field 
waters from carbonate reservoir rocks in Bindley field, central Kansas, USA: 
Geochimica et Cosmochimica Acta, v. 5 1 , p. 45-53 . 

Chaudhuri, S . ,  and Clauer, N., 1992, Signatures of radiogenic isotopes in deep subsurface 
waters in continents, in Clauer, N., and Chaudhuri, S . ,  eds., Isotopic Signatures 
and Sedimentary Records: Springer-Verlag, New York, p. 497-529. 

Choquette, P.W., and James, N.P., 1987, Diagenesis in limestones - 3 .  The deep burial 
environment: Geoscience Canada, v. 1 4, p. 3-35 .  

Choquette, P.W., and Steinen, R.P., 1980, Mississippian non-supratidal dolomite, Ste. 
Genevieve limestone, Illinois basin: evidence for mixed-water dolomitization, in 
Zenger, D.H., Dunham, J.B ., and Ethington, R.L. ,  eds., Concepts and Models of 
Dolomitization: SEPM Special Publication, 28, p. 1 63- 196. 

Chow, N., and James, N.P., 1987, Cambrian Grand Cycles: A northern Appalachian 
perspective: Geological Society of America Bulletin, v. 98, p.  4 1 8-429. 

Chow, N., and James, N.P. ,  1 992, Synsedimentary diagenesis of Cambrian peritidal 
carbonates: evidence from hardgrounds and surface paleokarst in the Port au Port 
Group, western Newfoundland: Bulletin of Canadian Petroleum Geology, v. 40, p. 
1 1 5- 127. 

Christie-Blick, N.,  and Driscoll, N.W., 1 995, Sequence stratigraphy: Annual Reviews in 
Earth and Planetary Science, v. 23, p. 45 1 -478. 



249 
Claypool, G.E.,  and Kaplan, I.R., 1974, The origin and distribution of methane in marine 

sediments, in Kaplan, I.R., ed. ,  Natural Gases in Marine Sediments: New York, 
Plenum Press, p. 99- 140. 

Cloetingh, S . ,  1 986, Intraplate stresses: A new tectonic mechanism for fluctuations of 
relative sea level: Geology, v. 14, p. 6 1 7-62 1 .  

Cloetingh, S . ,  1 988, Intraplate stresses: A tectonic cause for third-order cycles in apparent 
sea level, in Wilgus, C.K., Hastings, B .S . ,  Kendall, C.G. St.C.,  Posamentier, H.W., 
Ross, C.A. ,  and Van Wagoner, J.C., eds. , Sea-Level Changes: An Integrated 
Approach: SEPM Special Publication 42, p. 19-29. 

Cloetingh, S . ,  1 99 1 ,  Tectonics and sea-level changes: a controversy?, in Mueller, D.W., 
McKenzie, J.A., and Weissert, H., eds., Controversies in Modern Geology: 
Academic Press, p. 249-277. 

Cloetingh, S . ,  McQueen, H., and Lambeck, K., 1 985, On a tectonic mechanism for 
regional sealevel variations: Earth and Planetary Sciences Letters, v. 75, p. 1 57-
1 66 .  

Coleman, M.L., and Raiswell, R. , 1 98 1 ,  Carbon, oxygen and sulphur isotope variations in 
concretions from the Upper Lias ofN.E. England: Geochimica et Cosmochimica 
Acta, v. 45, p. 329-340. 

Compton, J. S . ,  1 988a, Degree of supersaturation and precipitation of organogenic 
dolomite: Geology, v. 16, p. 3 1 8-32 1 .  

Compton, J. S . ,  1 988b, Sediment composition and precipitation of dolomite and pyrite in 
the Neogene Monterey and Sisquoc Formations, Santa Maria Basin area, 
California, in Shukla, V., and Baker, P.B.,  eds., Sedimentology and Geochemistry 
ofDolostones: SEPM Special Publication 43, p. 53-64. 

Coniglio, M., Sherlock, R., Williams-Jones, A.E. ,  Middleton, K., and Frape, S .K., 1 994, 
Burial and hydrothermal diagenesis of Ordovician carbonates from the Michigan 
Basin, Ontario, Canada, in Purser, B. ,  Tucker, M., and Zenger, D. ,  eds., 
Dolomites: A Volume in Honour of Dolomieu: International Association of 
Sedimentologists, Special Publication 2 1 ,  p. 23 1-254. 

Cowan, C.A.,  and James, N.P.,  1 993 , The interactions of sea-level change, terrigenous­
sediment influx, and carbonate productivity as controls on Upper Cambrian Grand 
Cycles of western Newfoundland, Canada: Geological Society of America Bulletin, 
v. 1 05, p. 1 576-1 590. 

Craig, H. , 1 965, The measurements of oxygen isotope paleotemperatures, in Tongiorgi, 
E.,  ed. ,  Stable Isotopes in Oceanographic Studies and Paleotemperatures: 
Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, Pisa, p. 1-
24. 

Curtis, C.D., 1 987, Mineralogical consequences of organic matter degradation in 
sediments: inorganic/organic diagenesis, in Legget, J.K., and Zuffa, G. G., eds., 
Marine Clastic Sedimentology: Graham and Trotman, London, p. 1 08- 123 . 

Dalrymple, R.W. , Narbonne, G.M., and Smith, L., 1 985, Eolian action and the distribution 
of shales in North America: Geology, v. 13 ,  p. 607-6 10. 

Davies, G.R. , 1 970, Algal laminated sediments, Gladstone Embayment, Shark Bay, 
Western Australia, in Logan, B.W., ed. ,  Carbonate Sediments and Environments, 



Shark Bay, Western Australia: American Association of Petroleum Geologists 
Memoir 1 3 ,  p. 1 69-205. 

250 

Dawans, J.M., and Swart P.K., 1 988, Textural and geochemical alteration in late Cenozoic 
Bahamian dolomites: Sedimentology, v. 35,  p. 385-403 . 

Defarge, C.,  Trichet, J., and Coute, A., 1 994, On the appearance of cyanobacterial 
calcification in modern stromatolites: Sedimentary Geology, v. 94, p. 1 1 - 1 9. 

Demicco, R.V., 1 983,  Wavy and lenticular-bedded carbonate ribbon rocks of the Upper 
Cambrian Conococheague Limestone, central Appalachians: Journal of 
Sedimentary Petrology, v. 53,  p. 1 12 1 - 1 1 32.  

Demicco, R.V., 1 985, Platform and off-platform carbonates of the Upper Cambrian of 
western Maryland, U. S.A. : Sedimentology, v. 32, p. 1 -22. 

Demicco, R.V., Hardie, L.A., and Haley, J. S . ,  1 982, Algal mounds ofUpper Cambrian 
carbonates of Appalachians, western Maryland: Examples of early patch and 
marginal reefs: American Association of Petroleum Geologists Bulletin Abstracts, 
v. 66, p. 563 . 

Deming, D. ,  1 992, Catastrophic release of heat and fluid flow in the continental crust : 
Geology, v. 20, p. 83-86. 

Derby, J.R., 1 965, Paleontology and stratigraphy of the Nolichucky Formation in 
southeast Virginia and northeast Tennessee [unpublished Ph.D. thesis] : Virginia 
Polytechnic Institute and State University, Blacksburg, 465 p. 

Derry, L.A., Brasier, M.D., Corfield, R.M., Rozanov, A. Yu. ,  and Zhuravlev, A. Yu. ,  
1 994, S r  and C isotopes i n  Lower Cambrian carbonates from the Siberian craton: 
A peleoenvironmental record during the 'Cambrian explosion' : Earth and Planetary 
Science Letters, v. 1 28, p. 671 -68 1 .  

Derry, L.A., Kaufman, A.J., and Jacobsen, S.B.,  1 992, Sedimentary cycling and 
environmental change in the Late Proterozoic: Evidence from stable and 
radiogenic isotopes: Geochimica et Cosmochimica Acta, v. 56, p. 1 3 1 7- 1 329. 

DesMarais, D.J.,  Cohen, Y., Nguyen, H., Cheatham, T., and Munoz, E., 1 989, Carbon 
isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, 
Baja California Sur, Mexico: Implications for Precambrian stromatolites, in Cohen, 
Y. , and Rosenberg, E., eds. ,  Microbial Mats, Physiological Ecology ofBenthic 
Microbial Communities: American Society for Microbiology, p. 1 9 1 -203 . 

Dever, G.R. , 1 986, Mississippian reactivation along the Irvine-Paint Creek fault system in 
the Rome trough, east-central Kentucky: Southeastern Geology, v. 27, p. 95- 1 05 .  

Dickson, J.A.D., 1 965, A modified staining technique for carbonates in thin section: 
Nature, v. 205, p. 587. 

Dickson, J.A.D.,  1 966, Carbonate identification and genesis as revealed by staining: 
Journal of Sedimentary Petrology, v. 36, p. 491 -505. 

Dickson, J.A.D.,  and Coleman, M.L., 1 980, Changes in carbon and oxygen isotope 
composition during limestone diagenesis: Sedimentology, v. 27, p. 1 07- 1 1 8 .  

Dill, R.F. ,  Shinn, E.A., Jones, AT.,  Kelly, K.,  and Steinen, R.P. ,  1 986, Giant subtidal 
stromatolites forming in normal salinity waters: Nature, v. 324, p. 5 5-58. 

Doyle, L.J. , and Roberts, H.H., eds . ,  1 988, Carbonate-Clastic Transitions: Developments 
in Sedimentology 42, Elsevier, Amsterdam, 304 p. 



25 1 
Dravis, J.J., 1 983, Hardened subtidal stromatolites, Bahamas: Science, v. 2 1 9, p. 385-3 86. 
Dromgoole, E.L., and Walter, L.W., 1 990, Iron and Manganese incorporation into calcite :  

Effects of growth kinetics, temperature and solution chemistry: Chemical Geology, 
v. 8 1 ,  p. 3 1 1 -3 36. 

Druckman, Y., and Moore, C.H.,  1 985, Late subsurface secondary porosity in a Jurassic 
grainstone reservoir, Smackover Formation, Mt. Vernon field, southern Arkansas: 
in Roehl, P.O.,  and Choquette, P.W., eds., Carbonate petroleum reservoirs: 
Springer Verlag, New York, p. 369-384. 

Drummond, C.N., and Wilkinson, B.H., 1 993, Aperiodic accumulation of cyclic peritidal 
carbonate: Geology, v. 2 1 ,  p. 1 023 - 1 026. 

Edhorn, A S . ,  and Anderson, M.M., 1 977, Algal remains in the Lower Cambrian 
Bonavista Formation, Conception Bay, Southeastern Newfoundland, in Fhigel, E. ,  
ed. ,  Fossil Algae - recent Results and Development: Springer-Verlag, Berlin, p. 
1 1 3 - 123 . 

Edwards, J.D., and Santogross, P.A.,  eds., 1 990, Divergent/Passive Margin Basins: 
American Association of Petroleum Geologists Memoir 48, 252 p.  

Elliot, W.C.,  and Aronson, J.L. , 1 987, Alleghenian episode of K-bentonite illitization in 
the southern Appalachian basin: Geology, v. 1 5, p. 73 5-739. 

Embry, A.F . ,  1 989, A tectonic origin for third-order depositional sequences in extensional 
basins - Implications for basin modeling, in Cross, T.A. ,  ed. ,  Quantitative Dynamic 
Stratigraphy: Prentice Hall, New York, p.  49 1-5 0 1 .  

Emrich, K.,  Ehhalt, D.H., and Vogel, J .C. ,  1 970, Carbon isotope fractionation during the 
precipitation of calcium carbonate: Earth and Planetary Science Letters, v. 8, p. 
363-3 7 1 .  

Epstein, S . ,  Graf, D.L., and Degens, E.T.,  1 963, Oxygen isotope studies on the origin of 
dolomites, in Craig, H. , Miller, S.L.,  and Wasserburg, G.J. , eds. ,  Isotopic and 
Cosmic Chemistry: North-Holland Publishing Company, Amsterdam, p. 1 69- 1 80. 

Fairchild, I.J.,  Marshall, J.D.,  and Bertrand-Sarfati, J., 1 990, Stratigraphic shifts in carbon 
isotopes from Proterozoic stromatolitic carbonates (Mauritania) : Influences of 
primary mineralogy and diagenesis: American Journal of Science, v. 290-A, p. 46-
79. 

Farr, M.R. , 1 992, Geochemical variation of dolomite cement within the Cambrian 
Bonneterre Formation, Missouri : evidence for fluid mixing: Journal of Sedimentary 
Petrology, v. 62, p. 636-65 1 .  

Ferrill, B.A. ,  1 989, Middle Cambrian to Lower Mississippian synsedimentary structures in 
the Appalachian fold-thrust belt in Alabama and Georgia [unpublished Ph.D.  
thesis] : The University of Alabama, Tuscaloosa, 268 p.  

Finlayson, C.P.,  Vest, W.C.,  Henderson, A.R.,  and McReynolds, J.L., Jr. ,  1 965, Geologic 
map of the Powder Springs quadrangle, Tennessee: Tennessee Division of 
Geology, Geologic Map GM- 1 54-SW. 

Fischer, A.G., 1 964, The Lofer cyclothems ofthe Alpine Triassic, in Merriam, D.F.,  ed. ,  
Symposium on Cyclic Sedimentation: State Geological Survey of Kansas, Bulletin 
1 69, p. 1 07- 149. 



Fisher, H.J. , 1 988,  Dolomite diagenesis in the Metaline Formation, northeastern 
Washington State, in Shukla, V., and Baker, P.B., eds., Sedimentology and 
Geochemistry of Dolostones: SEPM Special Publication 43, p. 209-2 1 9 .  

Folk, R.L.,  and Land, L. S . ,  1 975, Mg/Ca ratio and salinity, two controls over 
crystallization of dolomite: American Association of Petroleum Geologists 
Bulletin, v. 59, p. 60-68. 

252 

Follmi, K.B., Weissert, H., Bisping, M., and Funk, H., 1 994, Phosphogenesis, carbon­
isotope stratigraphy, and carbonate-platform evolution along the Lower 
Cretaceous northern Tethyan margin: Geological Society of America Bulletin, v. 
1 06, p. 729-746. 

Foreman, J.L. ,  1 99 1 ,  Petrologic and geochemical evidence for water-rock interaction in 
the mixed carbonate-siliciclastic Nolichucky Shale (Upper Cambrian) in east 
Tennessee [unpublished Ph.D. thesis] : The University of Tennessee, Knoxville, 
228 p. 

Foreman, J.L., Walker, K.R. , Weber, L.J., Driese, S .G. , and Dreier, R.B. ,  1 99 1 ,  Slope and 
basinal carbonate deposition on the Nolichucky Shale (Upper Cambrian), east 
Tennessee: Effect of carbonate suppression by siliciclastic deposition on basin­
margin morphology, in Lomando, A.J. , and Harris, P.M. , eds. ,  Mixed Carbonate­
Siliciclastic Sequences: SEPM Core Workshop 1 5, p. 5 1 1 -539.  

Frank, T.D. ,  and Lohmann, K.C.,  1 995, Early cementation during marine-meteoric fluid 
mixing: Mississippian Lake Valley Formation, New Mexico: Journal of 
Sedimentary Research, v. A65, p. 263-273 . 

Frank, T.D.,  and Lohmann, K.C.,  1 996, Diagenesis of fibrous magnesian calcite marine 
cement: Implications for the interpretation of 8180 and 813C values of ancient 
equivalents: Geochimica et Cosmochimica Acta, v. 60, p. 2427-2436. 

Frank, T.D., Lohmann, K.C., and Meyers, W.J., 1 995, Chronostratigraphic significance of 
cathodoluminescence zoning in syntaxial cement: Mississippian Lake Valley 
Formation, New Mexico: Sedimentary Geology, v. 1 05,  p, 29-50. 

Franklyn, M.T., McNutt, R.H., Kamineni, D.C.,  Gascoyne, M., and Frape, S .K., 1 99 1 ,  
Groundwater 87Sr/86Sr values in the Eye-Dashwa Lakes Pluton: evidence for 
plagioclase-water reaction: Chemical Geology, Isotope Geoscience Section, v. 86, 
p. 1 1 1 - 122. 

Freeman-Lynde, R.P. ,  Whitley, K.F. ,  and Lohmann, K.C.,  1 986, Deep marine origin of 
equant spar cements in Bahama escarpment limestones: Journal of Sedimentary 
Petrology, v. 56, p. 799-8 1 1 . 

Friedman, I . ,  and O'Neil, J.R., 1 977, Compilation of stable isotope fractionation factors of 
geochemical interest: United States Geological Survey Professional Paper 440-KK, 
p. 1 - 12 .  

Frostick, L.E., and Steel, R.J., 1 993a, Sedimentation in divergent plate-margin basins, in 
Frostick, L.E., and Steel, R.J., eds. ,  Tectonic Controls in Sedimentary 
Successions: International Association of Sedimentologists Special Publication 20, 
p. 1 1 1 - 128 .  

Frostick, L.E., and Steel, R.J., 1 993b, Tectonic signatures in sedimentary basin fills: an 
overview, in Frostick, L.E., and Steel, R.J., eds. ,  Tectonic Controls in Sedimentary 



253 
Successions: International Association of Sedimentologists Special Publication 20, 
p. 1 -9.  

Gale, A. S. ,  Jenkyns, H.C. ,  Kennedy, W.J. , and Corfield, R.M., 1 993, Chemostratigraphy 
versus biostratigraphy: data from around the Cenomanian-Turonian boundary: 
Journal ofthe Geological Society, London, v. 1 50, p. 29-32. 

Gao, G., 1 990, Geochemical and isotopic constraints on the diagenetic history of a 
massive stratal, late Cambrian (Royer) dolomite, Lower Arbuckle Group, Slick 
Hills, SW Oklahoma, U. S .A. :  Geochimica and Cosmochimica Acta, v. 54, p. 1 979-
1 989. 

Gao, G., and Land, L. S. ,  1 991a, Early Ordovician Cool Creek Dolomite, Middle Arbuckle 
Group, Slick Hills, SW Oklahoma, USA: Origin and modification: Journal of 
Sedimentary Petrology, v. 6 1 ,  p. 1 6 1 - 1 73 .  

Gao, G. , and Land, L.S.,  1 991b, Geochemistry of Cambro-Ordovician Arbuckle 
limestone, Oklahoma: Implications for diagenetic 8180 alteration and secular 813C 
and 87Sr/86Sr variation: Geochimica et Cosmochimica Acta, v. 55,  p. 29 1 1 -2920. 

Gao, G. , Land, L.S. ,  and Folk, R.L., 1 992, Meteoric modification of early dolomite and 
late dolomitization by basinal fluids, Upper Arbuckle Group, Slick Hills, 
southwestern Oklahoma: American Association ofPetroleum Geologists Bulletin, 
v. 76, p. 1 649- 1 664. 

Garven, G., and Freeze, R.A., 1 984, Theoretical analysis of the role of groundwater flow 
in the genesis of stratabound ore deposits: 1 .  Mathematical and numerical model : 
American Journal of Science, v. 284, p. 1 085-1 1 24. 

Gautier, D.L., and Claypool, G.E. ,  1 984, Interpretation off methanic diagenesis in ancient 
sediments by analogy with processes in modern diagenetic environments, in 
McDonald, D.A., and Surdam, R.C., eds., Clastic Diagenesis: American 
Association of Petroleum Geologists Memoir 37, p. 1 1 1 - 1 23 .  

Gebelein, C.D., 1 969, Distribution, morphology, and accretion rate of Recent subtidal 
algal stromatolites, Bermuda: Journal of Sedimentary Petrology, v. 3 9, p .  49-69. 

Gebelein, C.D., 1 974, Biologic control of stromatolite microstructure: implications for 
Precambrian time stratigraphy: American Journal of Science, v. 274, p. 575-598. 

Gebelein, C.D., 1 976, The effects of physical, chemical, and biological evolution ofthe 
earth, in Walter, M.R. , ed. ,  Stromatolites: Developments in Sedimentology, 
Elsevier, v. 20, p. 499-5 1 5 .  

Gebelein, C.D.,  and Hoffman, P.,  1 973, Algal origin of dolomite laminations in 
stromatolitic limestone: Journal of Sedimentary Petrology, v. 43, p. 603-6 1 3 .  

Geldsetzer, H.H.J. , James, N.P. ,  and Tebbutt, G.E., 1 989, Reefs, Canada and Adjacent 
Areas: Canadian Society of Petroleum Geologists Memoir No. 1 3, 775 p. 

Gerdes, G. , and Krumbein, W.E. ,  1 987, Biolaminated Deposits: Lecture Notes in Earth 
Sciences 9, Springer-Verlag, Berlin, 1 83 p. 

Gerdes, G., Krumbein, W.E. ,  and Reineck, H.E. , 1 99 1 ,  Biolaminations - ecological versus 
depositional dynamics, in Einsele, G., Rieken, W., and Seilacher, A. , eds. ,  Cycles 
and Events in Stratigraphy: Springer-Verlag, Berlin, p. 592-607. 

Gill, I.P., Moore, C.H. Jr. , and Aharon, P., 1 995, Evaporitic mixed-water dolomitization 
on St. Croix, U.S .  V.I. : Journal of Sedimentary Research, v. A65, p. 5 9 1 -604. 



254 
Ginsburg, R.N., 1 97 1 ,  Landward movement of carbonate mud: new model for regressive 

cycles in carbonates (abstract) : American Association ofPetroleum Geologists 
Bulletin, v. 5 5, p. 340. 

Ginsburg, R.N.,  1 99 1 ,  Controversies about stromatolites: vices and virtues, in Mueller, 
D.W., McKenzie, J.A.,  and Weissert, H, eds., Controversies in Modem Geology: 
Academic Press, London, p. 25-36. 

Given, R.K.,  and Wilkinson, B.H., 1 985, Kinetic control of morphology, composition, and 
mineralogy of abiotic sedimentary carbonates: Journal of Sedimentary Petrology, 
v. 55,  p. 1 09- 1 1 9 . 

Goericke, R., Montoya, J.P., and Fry, B. ,  1 994, Physiology of isotopic fractionation in 
algae and cyanobacteria, in Lajtha, K. , and Michener, R.H., eds., Stable Isotopes 
in Ecology and Environmental Science: Blackwell Scientific Publications, p. 1 87-
22 1 .  

Goldhammer, R.K., Dunn, P.A., and Hardie, L.A. , 1 987, High frequency glacio-eustatic 
sea-level oscillations with Milankovitch characteristics recorded in Middle Triassic 
platform carbonates in northern Italy: American Journal of Science, v. 287, p. 853-
892. 

Golubic, S . ,  1 973, The relationship between blue-green algae and carbonate deposits, in 
Carr, N.G., and Whitton, B.A., eds., The Biology ofBlue-Green Algae: Blackwell, 
Oxford, p. 434-472. 

Golubic, S . ,  1 976, Biology of stromatolites: Organisms that build stromatolites, in Walter, 
M.R. , ed., Stromatolites: Developments in Sedimentology, Elsevier, v. 20, p. 1 1 3-
1 26.  

Golubic, S . ,  and Campbell, S .E. ,  1 98 1 ,  Biogenically formed aragonite concretions in 
marine Rivularia, in Monty, C.L.V. , ed., Phanerozoic Stromatolites: Springer­
Verlag, Berlin, p. 209-229. 

Gonza.J.ez, L.A., and Lohmann, K.C. ,  1 985, Carbon and oxygen isotopic composition of 
Holocene reefal carbonates: Geology, v. 1 3 ,  p. 8 1 1 -8 1 4 .  

Gonzales, L.A., Carpenter, S.J., and Lohmann, K.C.,  1 992, Inorganic calcite morphology: 
Roles of fluid chemistry and fluid flow: Journal of Sedimentary Petrology, v. 62, p. 
3 82-399. 

Goodwin, P.W., and Anderson, E.J. , 1 985, Punctuated aggradational cycles: A general 
hypothesis of episodic stratigraphic accumulation: Journal of Geology, v. 93, p. 
5 1 5-53 3 .  

Grant, N.K., Laskowski, T.E. , and Foland, K.A., 1 984, Rb-Sr and K-Ar ages ofPaleozoic 
glauconites from Ohio-Indiana and Missouri, U. S.A, Isotope Geoscience, v. 2, p.  
2 1 7-239. 

Gregg, J.M, 1 985, Regional epigenetic dolomitization in the Bonneterre Dolomite 
(Cambrian), southeastern Missouri: Geology, v. 1 3 ,  p. 503-506. 

Gregg, J.M, 1 988, Origins of dolomite in the offshore facies of the Bonneterre Formation 
(Cambrian), southeast Missouri, in Shukla, V., and Baker, P.B. ,  eds., 
Sedimentology and Geochemistry ofDolostones: SEPM Special Publication 43, p. 
67-83 . 



255 
Gregg, J .M., and Shelton, K.L., 1 990, Dolomitization and dolomite neomorphism in the 

back reef facies of the Bonneterre and Davies formations (Cambrian), southeastern 
Missouri: Journal of Sedimentary Petrology, v. 60, p. 549-562. 

Gregg, J.M., and Sibley, D.F., 1 984, Epigenetic dolomitization and the origin ofxenotopic 
dolomite texture: Journal of Sedimentary Petrology, v. 54, p. 908-93 1 .  

Gregg, J.M., Howard, S .A. ,  and Mazzullo, S.J., 1 992, Early diagenetic recrystallization of 
Holocene ( <3000 years old) peritidal dolomites, Ambergiris Bay, Belize: 
Sedimentology, v. 39, p. 1 43 - 1 60. 

Gregg, J.M., Laudon, P.R., Woody, R.E. ,  and Shelton, K.L., 1 993, Porosity evolution of 
the Cambrian Bonneterre Dolomite, south-eastern Missouri, USA: Sedimentology, 
v. 40, p. 1 1 53- 1 1 69. 

Gruszczynski, M., Halas, S. ,  Hoffinan, A., and Malkowski, K., 1 989, A brachiopod calcite 
record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic 
transition: Nature, v. 337, p. 64-68. 

Hall, G.M., and Amick, H.C., 1 934, The section on the west side of Clinch Mountain, 
Tennessee: Tennessee Academy of Science Journal, v. 9, no. 2, p. 1 57- 1 68;  no. 3,  
p. 1 95-200. 

Hallam, A. , 1 984, Pre-Quaternary sea-level changes: Annual Reviews in Earth and 
Planetary Science, v. 12, p. 204-243. 

Hambrey, M.J. ,  and Harland, W.B.,  eds., 1 98 1 ,  Earth's Pre-Pleistocene Glacial Record: 
Cambridge University Press, New York, 1 004 p. 

Handford, C .R., and Loucks, R.G., 1 993, Carbonate depositional sequences and system 
tracts-Responses of carbonate platforms to relative sea-level changes, in Loucks, 
R.G., and Sarg, J.F., eds. ,  Carbonate Sequence Stratigraphy: Recent 
Developments and Applications: American Association ofPetroleum Geologists 
Memoir 57, p. 3-4 1 .  

Hanor, J. S. ,  1 983, Fifty years of development of thought on the origin and evolution of 
subsurface sedimentary brines, in Boardman, S.J., ed. ,  Revolution in the earth 
sciences: Advances in the past half-century: Kendall/Hunt, Dubuque, p. 99- 1 1 1 .  

Hanor, J. S. ,  1 987, Origin and migration of subsurface sedimentary brines: SEPM Short 
Course 2 1 ,  247 p. 

Haq, B.U., ed. ,  1 995, Sequence Stratigraphy and Depositional Response to Eustatic, 
Tectonic and Climatic Forcing: Kluwer Academic, Amsterdam. 

Haq, B.U., Hardenbol, J. , and Vail, P.R. , 1 987, Chronology offluctuating sea-levels since 
the Triassic: Science, v. 235,  p. 1 1 56-1 1 67.  

Haq, B.U.,  Hardenbol, J . ,  and Vail. P.R. , 1 988, Mesozoic and Cenozoic 
chronostratigraphy and cycles in sea level change, in Wilgus, C.K., Hastings, B .S . ,  
Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J .C . ,  eds., 
Sea-Level Changes: An Integrated Approach: SEPM Special Publication 42, p. 7 1 -
1 08 .  

Hardie, L.A., 1 987, Dolomitization: a critical view of some current views: Journal of 
Sedimentary Petrology, v. 57, p. 1 66- 1 83 .  

Hardie, L.A.,  and Ginsburg, R.N., 1 977, Layering: the origin and environmental 
significance of lamination and thin bedding, in Hardie, L.A., ed. ,  Sedimentation on 



the Modern Carbonate Tidal Flats ofNorthwest Andros Island, Bahamas: The 
Johns Hopkins University Studies in Geology 22, p. 50- 1 23 .  

256 

Hardie, L.A. , Dunn, P.A., and Goldhammer, R.K., 199 1 ,  Field and modelling studies of 
Cambrian carbonate cycles, Virginia Appalachians - Discussion: Journal of 
Sedimentary Petrology, v. 6 1 ,  p. 636-646. 

Harland, W.B. ,  Armstrong, R.L., Cox, A.V. , Smith, A.G., and Smith, D.G.,  1989, A 
geologic time scale: Cambridge University Press, New York, 263 p. 

Harris, L.D., 1 964, Facies relations of exposed Rome Formation and Conasauga Group of 
northeastern Tennessee with equivalent rocks in the subsurface ofKentucky and 
Virginia: U. S. Geological Survey Professional Paper 50 1-B, p. B25-B29. 

Harris, L.D., 1 965, Geologic map of the Tazewell, Clairborne County, Tennessee: U. S. 
Geological Survey Geological Quadrangle Map GQ-465 . 

Harris, L.D.,  and Mixon, R.B. ,  1 970, Geologic map ofthe Howard Quarter quadrangle, 
northeastern Tennessee: U. S. Geological Survey Geological Quadrangle Map 
GQ-842. 

Harris, P.M., Kendall, C. G. St. C. ,  and Lerche, I., 1 985, Carbonate cementation-A brief 
review, in Schneidermann, N., and Harris, P.M., eds., Carbonate Cements: SEPM 
Special Publication 36, p.79-95 . 

Hasson, K.O., and Haase, S.C., 1 988, Lithofacies and paleogeography of the Conasauga 
Group, (Middle and Late Cambrian) in the Valley and Ridge province of east 
Tennessee: Geological Society of America Bulletin, v. 1 00, p. 234-246. 

Hatcher, R.D. ,  Jr. , 1 987, Tectonics ofthe southern and central Appalachian Internides: 
Annual Reviews in Earth and Planetary Science, v. 1 5, p. 337-362. 

Hatcher, R.D., Jr., 1989, Tectonic synthesis of the U. S. Appalachians, in Hatcher, R.D., 
Jr., Thomas, W.A., and Viele, G.W., eds., The Appalachian-Ouachita Orogen in 
the United States: Geological Society of America, The Geology ofNorth America, 
v. F-2, p. 5 1 1 -535 .  

Hatcher, R.D.Jr. , Thomas, W.A., Geiser, P.A. , Snoke, A.W. , Mosher, S . ,  and Wiltschko, 
D.V., 1989, Alleghenian orogen, in Hatcher, R.D.Jr., Thomas, W.A. , and Viele, 
G.W., eds., The Appalachian-Ouachita Orogen in the United States: The Geology 
ofNorth America: Geological Society of America, v. F-2, p. 233-3 18 .  

Hay, R.L., Lee, M., Kolata, D.R., Matthews, J.C. ,  and Morton, J.P. , 1 988, Episodic 
potassic diagenesis of Ordovician tuffs in the Mississippi Valley area: Geology, v. 
1 6, p. 743-747. 

Hay, W.M., and Leslie, M.A., 1 990, Could possible changes in global groundwater 
reservoir cause eustatic sea-level fluctuations, in Sea-level Change: National 
Academy Press, Washington, D. C. ,  p. 1 6 1 - 1 70. 

Haynes, F.M., Beane, R.E., and Kesler, S.E., 1 989, Simultaneous transport of metal and 
reduced sulfur, Mascot-Jefferson City zinc district, east Tennessee: evidence from 
fluid inclusions: American Journal of Science, v. 289, p. 994-1 038 .  

Haynes, F.M., and Kesler, S.E., 1 989, Pre-Alleghenian (Pennsylvanian-Permian) 
hydrocarbon emplacement along Ordovician Knox unconformity, eastern 
Tennessee: American Association ofPetroleum Geologists Bulletin, v. 73, p. 289-
297. 



Hearn, P.P. Jr., and Sutter, J.F., 1 985, Authigenic potassium feldspar in Cambrian 
carbonates: evidence of Alleghenian brine migration: Science, v. 228, p. 1 529-
1 53 1 .  

257 

Hearn, P.P. Jr., Sutter, J.F.,  and Belkin, H.E.,  1 987, Evidence for late-Paleozoic brine 
migration in Cambrian carbonate rocks of the central and southern Appalachians: 
implications for Mississippi Valley-type sulfide mineralization: Geochimica et 
Cosmochimica Acta, v. 5 1 ,  p.  1 323- 1 334. 

Heller, P.L., Wentworth, C .M., and Poag, C.W., 1 982, Episodic post-rift subsidence of 
the United States Atlantic continental margin: Geological Society of America 
Bulletin, v. 93, p .  3 79-390. 

Helton, W.L., 1 967, Lithostratigraphy of the Conasauga Group between Rogersville and 
Kingsport, Tennessee: unpublished Ph.D. Dissertation, University of Tennessee, 
Knoxville, 96 p .  

Hendry, J .P. ,  1 993, Calcite cementation during bacterial manganese, iron, and sulphate 
reduction in Jurassic shallow marine carbonates: Sedimentology, v. 40, p. 87- 1 06. 

Heydari, E.,  and Moore, C.H., 1 993, Zonation and geochemical patterns ofburial calcite 
cements: Upper Smackover Formation, Clarke County, Mississippi: Journal of 
Sedimentary Petrology, v. 63, p. 44-60. 

Hird, K., and Tucker, M.E. ,  1 988, Contrasting diagenesis oftwo carboniferous oolites 
from South Wales: a tale of climatic influence: Sedimentology, v. 3 5, p .587-602. 

Hoffman, P., 1 967, Algal stromatolites : use in stratigraphic correlation and paleocurrent 
determination: Science, v. 1 57, p. 1 043- 1 045.  

Hoffman, P. ,  1 976, A stromatolite morphogenesis in Shark Bay, Western Australia, in 
Walter, M.R., ed. ,  Stromatolites: Developments in Sedimentology, Elsevier, 
Amsterdam, v. 20, p. 26 1 -273 . 

Hofinann, H.J. , 1 973, Stromatolites: characteristics and utility: Earth Science Reviews, v. 
9, p. 339-3 73 . 

Holail, H., Lohmann, K.C.,  and Sanderson, 1., 1 988, Dolomitization and dedolomitization 
of Upper Cretaceous carbonates: Bahariya Oasis, Egypt, in Shukla, V.,  and Baker, 
P.B.,  eds. ,  Sedimentology and Geochemistry of Dolostones: SEPM Special 
Publication 43, p. 1 9 1 -207. 

Holser, W.T.,  and Magaritz, M. , 1 987, Events near the Permian-Triassic boundary: 
Modem Geology, v. 1 1 , p. 1 55- 1 80.  

Holser, W.T. ,  Magaritz, M., and Wright, J . ,  1 986, Chemical and isotopic variations in the 
world ocean during Phanerozoic time. in Walliser, O.H., ed. ,  Global Bio-Events: 
Lecture Notes in Earth Sciences, v. 8 . ,  p.  63-74. 

Horodyski, R.J., 1 985, Stromatolites of the Middle Proterozoic Belt Supergroup, Glacier 
National Park, Montana: a summary and a comment on the relationship between 
their morphology and paleoenvironment, in Toomey, D.F.,  and Nitecki, M.H., 
Paleoalgology: Contemporary Research and Applications: Springer-Verlag, New 
York, p.  34-39. 

Horodyski, R.J., and Yonder Haar, S.P.,  1 975, Recent calcareous stromatolites from 
Laguna Mormona (Baja California) Mexico: Journal of Sedimentary Petrology, v. 
45, p. 894-906. 



Howe, W.B., 1 966, Digitate algal stromatolite structures from the Cambrian and 
Ordovician of Missouri: Journal of Paleontology, v. 40, p .  64-77. 

Howell, B.F., Bridge, J., Deiss, C .F. ,  Edwards, 1.,  Lochman, C., Raasch, G.O., and 
Resser, C.E., 1944, Correlation of the Cambrian formations ofNorth America: 
Geological Society of America Bulletin, v. 55, p. 993- 1003 . 

258 

Hubbard, R.J., 1 988, Age and significance of sequence boundaries on Jurassic and Early 
Cretaceous rifted continental margins: American Associations ofPetroleum 
Geologists Bulletin, v. 72, p. 49-72. 

Hudson, J.D., and Anderson, T.F., 1 989, Ocean temperatures and isotopic compositions 
through time: Transactions of the Royal Society ofEdinburgh: Earth Sciences, v. 
80, p. 1 83- 192. 

Humphrey, J.D., 1 988, Late Pleistocene mixing zone dolomitization, southeastern 
Barbados, West Indies: Sedimentology, v. 35, p. 327-348. 

Humphrey, J.D., and Quinn, T.M., 1 989, Coastal mixing zone dolomite, forward 
modeling, and massive dolomitization of platform-margin carbonates: Journal of 
Sedimentary Petrology, v. 59, p. 438-454. 

Humphrey, J.D. ,  and Radjef, E.M., 1 99 1 ,  Dolomite stoichiometric variability resulting 
from changing aquifer conditions, Barbados, West Indies: Sedimentary Geology, v. 
7 1 ,  129- 1 36. 

Illing, L.V., and Taylor, J.C.M., 1 993, Penecontemporaneous dolomitization in sabkha 
Faishakh, Qatar: Evidence from changes in the chemistry of the interstitial brines: 
Journal of Sedimentary Petrology, v. 63, p. 1042-1 048.  

Irwin, H., Curtis, C. ,  and Coleman, M., 1 977, Isotopic evidence for source of diagenetic 
carbonates formed during burial of organic sediments: Nature, v. 269, p. 209-21 3 .  

Irwin, H., 1980, Early diagenetic carbonate precipitation and pore fluid migration in the 
Kimmeridge Clay ofDorset, England: Sedimentology, v. 27, p. 577-591 .  

Iyer, S .S . ,  Babinski, M., Krouse, H.R., and Chamele, F., 1 995, Highly 1 3 C-enriched 
carbonate and organic matter in the Neoproterozoic sediments of the Bambui 
Group Brasil, in Knoll, A.H. ,  and Walter, M., eds. ,  Neoproterozoic Stratigraphy 
and Earth History: Precambrian Research, v. 73, p. 27 1 -282. 

Jacobs, D.K., and Sahagian, D.L., 1993 , Climate-induced fluctuations in sea level during 
non-glacial times: Nature, v. 361 ,  p. 7 1 0-712. 

James, N.P. ,  and Choquette, P.W., 1 983, Diagenesis 6. Limestones - The sea floor 
diagenetic environment: Geoscience Canada, v. 1 0, p. 162- 1 79.  

James, N.P. , and Choquette, P.W., 1984, Diagenesis 9. Limestones - The meteoric 
diagenetic environment: Geoscience Canada, v. 1 1 , p. 1 6 1 - 1 94 .  

James, N.P., and Ginsburg, R.N., 1 979, The seaward margin ofBelize barrier and atoll 
reefs: International Association of Sedimentologists Special Publication 3,  1 9 1  p. 

James, N.P., and Klappa, C.F., 1 983, Petrogenesis ofEarly Cambrian reeflimestones, 
Labrador, Canada: Journal of Sedimentary Petrology, v. 53, p. 1 05 1 - 1096. 

James, N.P., Ginsburg, R.N., Marszalek, D.S. ,  and Choquette, P.W., 1 976, Facies and 
fabric specificity of early subsea cements in shallow Belize (British Honduras) 
reefs :  Journal of Sedimentary Petrology, v. 46, p. 523-544. 



James, N.P., and Stevens, R.K., 1 986, Stratigraphy and correlation of the Cambro­
Ordovician Cow Head Group, western Newfoundland: Geological Society of 
Canada Bulletin, v. 366, 143 p .  

259 

James, N.P. ,  Stevens, R.K., Barnes, C.R., and Knight, I . ,  1 989, Evolution of a Lower 
Paleozoic continental-margin carbonate platform, northern Canadian Appalachians, 
in Crevello, P.,  Wilson, J.L., Sarg, J.F., and Read, J.F. , eds. ,  Controls on 
Carbonate Platform and Basin Development: SEPM Special Publication 44, p.  
123 - 1 46.  

Jenkyns, H.C. ,  1 988, The early Toarcian (Jurassic) anoxic event: stratigraphic, 
sedimentary, and geochemical evidence: American Journal of Science, v. 288, p.  
1 0 1 - 1 5 1 .  

Jenkyns, H.C.,  1 996, Relative sea-level change and carbon isotopes: data from the Upper 
Jurassic (Oxfordian) of central and Southern Europe: Terra Nova, v. 8, p. 75-85.  

Jenkyns, H.C.,  and Clayton, C.J. ,  1986, Black shales and carbon isotopes in pelagic 
sediments from the Tethyan Lower Jurassic : Sedimentology, v. 33,  p. 87- 1 06.  

Joachimski, M.M., 1 994, Subaerial exposure and deposition of shallowing upward 
sequences:  evidence from stable isotopes ofPurbeckian peritidal carbonates (basal 
Cretaceous), Swiss and French Jura Mountains: Sedimentology, v. 4 1 ,  p. 805-824. 

Johnson, W.J., and Goldstein, R.H., 1 993, Cambrian sea water preserved as inclusions in 
marine low-magnesium calcite cement: Nature, v. 362, p. 33 5-337.  

Jones, B . ,  and Desrochers, A.,  1 992, Shallow platform carbonates, in Walker, R.G. , and 
James, N.P., eds., Facies Models: Response to Sea level Change: Geological 
Association of Canada, p. 277-3 0 1 .  

Jones, M.A., and Addis, M.A., 1 985, Burial of argillaceous sediments: Marine and 
Petroleum Geology, v. 2, p. 247-253 . 

Kaldi, J. ,  and Gidman, J., 1 982, Early diagenetic dolomite cements: examples from the 
Permian Lower Magnesian Limestone of England and the Pleistocene carbonates 
of the Bahamas: Journal of Sedimentary Petrology, v. 52, p. 1 073- 1 085 .  

Katz, A., 1 973 , The interaction of magnesium with calcite during crystal growth at 25° -
90° C and one atmosphere: Geochimica et Cosmochimica Acta, v. 3 7, p. 1 563-
1 5 86.  

Katz, A, Sass, E.,  Starinsky, A, and Holland, H.D., 1 972, Strontium behavior in the 
aragonite-calcite transformation: an experimental study at 40-908°C: Geochimica 
et Cosmochimica Acta, v. 36, p. 48 1 -496. 

Kaufman, A.J. , Hayes, J.M., Knoll, A.H., and Germs, G.J.B. ,  1 99 1 ,  Isotopic compositions 
of carbonates and organic carbon from upper Proterozoic successions in Namibia: 
stratigraphic variation and the effects of diagenesis and metamorphism: 
Precambrian Research, v. 49, p. 3 0 1 -327. 

Kaufman, A.J. ,  Jacobsen, S.B. ,  and Knoll, A.H., 1 993, The Vendian record of Sr and C 
isotopic variations in seawater: Implications fro tectonics and paleoclimate: Earth 
and Planetary Science Letters, v. 1 20, p. 409-430. 

Kaufman, A.J. ,  and Knoll, A.H.,  1 995, Neoproterozoic variations in the C-isotopic 
composition of seawater: stratigraphic and biogeochemical implications: 
Precambrian Research, v. 73, p. 27-49. 



260 
Kaufinan, J., 1 994, Numerical models offluid flow in carbonate platforms: implications for 

dolomitization: Journal of Sedimentary Research, v. A64, p. 1 28- 1 39. 
Kempe, S . ,  and Kazmierczak, J., 1 988, Calcium carbonate supersaturation and the 

formation of in situ calcified stromatolites, in Ittekkot, V., Kempe, S . ,  Michaelis, 
W., and Spitzy, A. , eds., Facets ofModern Biogeochemistry: Springer-Verlag, p. 
255-278 . 

Kendall, A. C. ,  1 985, Radiaxial fibrous calcite: a reappraisal, in Schneidermann, N., and 
Harris, P.M., eds., Carbonate Cements: SEPM Special Publication 3 6, p. 59-77. 

Kennard, J.M., 1 988,  The structure and origin of Cambro-Ordovician thrombolites, 
western Newfoundland [Ph.D. dissertation] : St. John's Memorial University, 600 
p. 

Kennard, J.M., and James, N.P., 1 986, Thrombolites and stromatolites : two distinct types 
ofmicrobial structures: PALAIOS, v. 1 ,  p. 492-503 . 

Kesler, S .E. ,  Jones, L.M., and Ruiz. J., 1 988, Strontium isotopic geochemistry of 
Mississippian Valley-type deposits, east Tennessee: implications for age and source 
of mineralizing brines: Geological Society of America Bulletin, v. 1 00, p. 1 3 00-
1 3 07. 

Kesler, S.E., Gasink, J.A., and Haynes, F.M., 1 989, Evolution of mineralizing brines in the 
east Tennessee Mississippi Valley-type ore field: Geology, v. 1 7, p. 466-469. 

Kesler, S.E., and van der Pluijm, B.A. ,  1 990, Timing of Mississippi-Valley-type 
mineralization: Relation to Appalachian orogenic events: Geology, v. 1 8, p. 1 1 1 5-
1 1 1 8 .  

Kesson, K.M., Woddruff, M.S. ,  and Grant, N.K., 1 98 1 ,  Gangue mineral 87Sr/86Sr ratios 
and the origin of Mississippi Valley-type mineralization: Economic Geology, v. 76, 
p. 9 1 3-920. 

Keto, L. S . ,  and Jacobsen, S .B. ,  1 987, Nd and Sr isotopic variations ofEarly Paleozoic 
oceans: Earth and Planetary Science Letters, v. 84, p. 27-4 1 .  

Kharaka, Y.K., Carothers, W.W., and Rosenbauer, R.J., 1 983, Thermal decarboxylation 
of acetic acid: implications for origin of natural gas: Geochimica et Cosmochimica 
Acta, v. 47, p. 397-402. 

Kharaka, Y.K., and Thordsen, J.J., 1 992, Stable isotope geochemistry and origin ofwaters 
in sedimentary basins, in Clauer, N. ,  and Chaudhuri, S . ,  eds. ,  Isotopic Signatures 
and Sedimentary Records: Springer-Verlag, New York, p. 4 1 1 -466. 

King, P.B., and Ferguson, H.W., 1 960, Geology of northeastern-most Tennessee: C. S .  
Geological Survey Professional Paper 3 1 1 . 

Knoll, A.H.,  and Awramik, S.M., 1 983, Ancient microbial ecosystems, in Krumbein, 
W.E. ,  ed. ,  Microbial Geochemistry: Blackwell, Oxford, p. 287-3 1 5 .  

Knoll, A.H., Fairchild, I.J., and Swett, K., 1 993, Calcified microbes in Neoproterozoic 
carbonates: Implications for our understanding of the Proterozoic/Cambrian 
transition: PALAIOS, v. 8, p. 5 1 2-525 . 

Knoll, A.H.,  Grotzinger, J.P.,  Kaufinan, A.J., and Kolosov, P.,  1 995, Integrated 
approaches to terminal Proterozoic stratigraphy: An example from the Olenek 
Uplift, northeastern Siberia: Precambrian Research, v. 73, p. 25 1 -270. 



26 1 
Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, K. , and Lambert, I .B., 1 986, Secular 

variations in carbon isotope ratios from upper Proterozoic successions of Svalbard 
and East Greenland: Nature, v. 321 ,  p. 832-838.  

Knoll, A.H., Kaufinan, A.J., and Semikhatov, M.A., 1 995, The carbon-isotopic 
composition of Proterozoic carbonates: Riphean successions from Northwestern 
Siberia (Anabar massif, Turukhansk uplift): American Journal of Science, v. 295, 
p. 823-850. 

Koerschner, W.F., ill, and Read, J.F. ,  1 989, Field and modeling studies of Cambrian 
carbonate cycles, Virginia Appalachians: Journal of Sedimentary Petrology, v. 59, 
p. 654-687. 

Kozar, M.G., Weber, L.J., and Walker, K.R., 1 990, Field and modelling studies of 
Cambrian carbonate cycles, Virginia Appalachians - Discussion: Journal of 
Sedimentary Petrology, v. 60, p. 790-794. 

Kriesa, RD., 1 98 1 ,  Storm-generated sedimentary structures in subtidal marine facies with 
examples from the Middle and Upper Ordovician of southwest Virginia: Journal of 
Sedimentary Petrology, v. 5 1 ,  p. 823-848. 

Kroopnick, P.M. , 1 985, The distribution of 13C of l:C02 in the world oceans: Deep-Sea 
Research, v. 32, p. 57-84. 

Krumbein, W.E., 1 979, Calcification by bacteria and algae, in Trudinger, P.A., and 
Swaine, D.J. eds., Biogeochemical Cycling of Mineral-Forming Elements: Elsevier, 
Amsterdam, p .  47-68. 

Krumbein, W.E., and Cohen, Y. , 1 977, Primary production, mat formation and 
lithification: contribution of oxygenic and facultative anoxygenic cyanobacteria, in 
Flugel, E., ed. ,  Fossil Algae - recent Results and Development: Springer-Verlag, 
Berlin, p. 37-56. 

Krumbein, W.E., Cohen, Y., and Shilo, M., 1 977, Solar Lake (Sinai). 4. Stromatolitic 
cyanobacterial mats: Limnology and Oceanography, v. 22, p. 63 5-656. 

Kump, L.R., 1 989, Alternative modeling approaches to the geochemical cycles of carbon, 
sulfur, and strontium isotopes: American Journal of Science, v. 289, p. 390-4 10 .  

Kump, L.R., 1 99 1 ,  Interpreting carbon-isotope excursions: Strangelove oceans: Geology, 
v. 1 9, p. 299-302. 

Kupecz, J.A., and Land, L.S. ,  1 99 1 ,  Late-stage dolomitization of the Lower Ordovician 
Ellenburger Group, west Texas: Journal of Sedimentary Petrology, v. 6 1 ,  p. 5 5 1 -
5 74. 

Kupecz, J.A., and Land, L.S., 1 994, Progressive recrystallization and stabilization of 
early-stage dolomite, in Purser, B. ,  Tucker, M., and Zenger, D.,  eds. ,  Dolomites: 
A Volume in Honour ofDolomieu: International Association of Sedimentologists, 
Special Publication 2 1 ,  p. 255-279. 

Kupecz, J.A., Montanez, I.P., and Gao, G., 1 993, Recrystallization of dolomite with time, 
in Rezak, R. , and Lavoie, D.L. , Carbonate Microfabrics: Frontiers in Sedimentary 
Geology, Springer-Verlag, New York, p. 1 87- 1 94. 

Kushnir, J., and Kastner, M., 1 984, Two forms of dolomite occurrences in the Monterey 
Formation, California: Concretions and layers-A comparative mineralogical, 
geochemical and isotopic study, in Garrison, R.E. ,  Kastner, M., and Zenger, D .H., 



262 
eds., Dolomites of the Monterey Formation and other organic-rich units: SEPM 
Special Publication 4 1 ,  p. 1 7 1 - 1 84. 

Lahann, R.W.,  1 980, Smectite diagenesis and sandstone cement: the effect of reaction 
temperature: Journal of Sedimentary Petrology, v. 50, p. 75 5-760. 

Lambeck, K. S. ,  Cloeting, S., and McQueen, H., 1 987, Intraplate stresses and apparent 
changes in sea level: The basins of northwestern Europe, in Beaumont, C . ,  and 
Tankard, A., eds, Sedimentary Basins and Basin Forming Mechanisms: Canadian 
Society ofPetroleum Geologists Memoir 1 2, p. 259-268 .  

Land, L . S . ,  1 980, The isotopic and trace element geochemistry o f  dolomite: the state of 
art, in Zenger, D.H., Dunham, J.B. ,  and Ethington, R.L., eds., Concepts and 
Models ofDolomitization: SEPM Special Publication, 28, p .  87- 1 1 0. 

Land, L. S . ,  1 985,  The origin of massive dolomites: Journal of Geological Education, v. 
33 ,  p. 1 12- 125.  

Lasemi, Z. ,  and Sandberg, P.A., 1 984, Transformation of aragonite-dominated lime muds 
to microcrystalline limestone: Geology, v. 1 2, p. 420-423 . 

Lasemi, Z.,  Boardman, M.R., and Sandberg, P.A., 1989, Cement origin of supratidal 
dolomite, Andros Island, Bahamas: Journal of Sedimentary Petrology, v. 59, p .  
249-257. 

Lavoie, D., and Bourque, P.A., 1 993, Marine, burial, and meteoric diagenesis of early 
Silurian carbonate ramps, Quebec Appalachians, Canada: Journal of Sedimentary 
Petrology, v. 63, p.  233-247. 

Lazar, B . ,  and Erez, J., 1 992, Carbon geochemistry of marine-derived brines: I. 13C 
depletion due to intense photosynthesis: Geochimica et Cosmochimica Acta, v. 56, 
p.  3 3 5-345 . 

Lazar, B. ,  Javor, B . ,  and Erez, L., 1 989, Total alkalinity in marine-derived brines and pore 
waters associated with microbial mats, in Cohen, Y., and Rosenberg, E., eds. ,  
Microbial Mats, Physiological Ecology ofBenthic Microbial Communities: 
American Society for Microbiology, p. 84-93. 

Leach, D.L.,  and Rowan, E.L., 1 986, Genetic link between Ouachita foldbelt tectonism 
and the Mississippi Valley-type lead-zinc deposits of the Ozarks: Geology, v. 1 4, 
p. 93 1 -93 5 .  

Lee, Y.I.,  and Friedman, G.M., 1 987, Deep-burial dolomitization in the Lower Ordovician 
Ellenburger Group carbonates in west Texas and southeastern New Mexico : 
Journal of Sedimentary Petrology, v. 57, p. 544-557. 

Leggett, J.K.,  1 980, British Lower Paleozoic black shales and their palaeo-oceanographic 
significance: Journal of Geological Society ofLondon, v. 1 3 7, p .  1 39- 1 56. 

Lehmann, E.L., 1 975, Nonparametrics: Statistical Methods Based on Ranks: McGraw­
Hill, New York, 457 p. 

Lini, A., Weissert, H.,  and Erba, E. , 1 992, The Valanginian carbon isotope event: A first 
episode of greenhouse climate conditions during the Cretaceous:  Terra Nova, v. 4, 
p. 374-384. 

Lochman-Balk, C., 1 97 1 ,  Cambrian ofthe craton, in Holland, E.R., ed. ,  Cambrian of the 
New World, Lower Paleozoic Rocks of the World (Volume 1) : Wiley Interscience, 
New York, p .  79- 167. 



263 
Lohmann, K.C. ,  1 982, Inverted J carbon and oxygen isotopic trends--criteria for shallow 

meteoric phreatic diagenesis: Geological Society of America Annual Meeting, 
Abatracts with Program, p. 548. 

Lohmann, K.C.,  1 988, Geochemical patterns of meteoric diagenetic systems and their 
application to studies of paleokarst, in James, N.P. ,  and Choquette, P.W., ed., 
Paleokarst : Springer-Verlag, New York, p.  58-80. 

Lohmann, K.C. ,  and Meyers, W.J., 1 977, Microdolomite inclusions in cloudy prismatic 
calcites: A proposed criterion for former high magnesium calcites : Journal of 
Sedimentary Petrology, v. 47, p. 1 078- 1 088.  

Lohmann, K.C.,  and Walker, J.C .G. ,  1 989, the 8180 record ofPhanerozoic abiotic marine 
calcite cements: Geophysical Research Letters, v. 1 6, p. 3 1 9-322. 

Logan, B .W., 1 96 1 ,  Cryptozoan and associated stromatolites from the Recent, Shark Bay, 
Western Australia: Journal of Geology, v. 69, p. 5 1 7-53 3 .  

Logan, B.W., and Semeniuk, V., 1 976, Dynamic metamorphism: processes and products 
in Devonian carbonate rocks, Canning Basin, Western Australia: Geological 
Society of Australia, Special Publication 6, 1 3 8  p. 

Logan, B.W., Hoffinan, P., and Gebelein, C.D.,  1 974, Algal mats, cryptalgal fabrics and 
structures, Hamelin Pool, Western Australia: American Association ofPetroleum 
Geologists Memoir 22, p. 1 40- 1 94. 

Logan, B.W.,  Rezak, R., and Ginsburg, R.N., 1 964, Classification and environmental 
significance of algal stromatolites: Journal of Geology, v. 72, p. 68-83 . 

Lomando, A.J., and Harris, P.M., eds., 1 99 1 ,  Mixed Carbonate-Siliciclastic Sequences: 
SEPM Core Workshop 1 5, 569 p. 

Long, D.G.F., 1 993, Oxygen and carbon isotopes and event stratigraphy near the 
Ordovician-Silurian boundary, Anticosti Island, Quebec: Palaeogeography, 
Palaeoclimatology, Palaeoecology, v. 1 04. 

Longman, M.W., 1 980, Carbonate diagenetic textures from near-surface diagenetic 
environments:  American Association ofPetroleum Geologists, v. 64, p. 46 1 -487. 

Lorens, R.B . ,  1 98 1 ,  Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of 
calcite precipitation rate: Geochimica et Cosmochimica Acta, v. 45, p. 553-56 1 .  

Loucks, R.G., and Sarg, J.F. , eds. ,  1 993 , Carbonate Sequence Stratigraphy: Recent 
Developments and Applications: American Association of Petroleum Geologists 
Memoir 57, 545 p. 

Lowenstam, H. A, 1 9 8 1 ,  Minerals formed by organisms: Science, v. 2 1 1 ,  p.  1 1 26- 1 23 1 .  
Ludvigsen, R., and Westrop, S.R., 1 985, Three new Upper Cambrian stages for North 

America: Geology, v. 1 3 ,  p. 1 39-143.  
Lumsden, D.N.,  and Chimahusky, J .S. ,  1 980, Relationship between dolomite 

nonstoichiometry and carbonate facies parameters, in Zenger, D.H., Dunham, J.B. ,  
and Ethington, R.L., eds., Concepts and Models of Dolomitization: SEPM Special 
Publication, 28, p. 123 - 1 37.  

Lyons, W.B . ,  Long, D.T.,  Hines, M.E.,  Gaudette, H.E., and Armstrong, P.B.,  1 984, 
Calcification of cyanobacterial mats in Solar lake, Sinai : Geology, v. 12, p. 623 -
626. 



Machel, H. G.,  1 987, Saddle dolomite as a by-product of chemical compaction and 
thermochemical sulfate reduction: Geology, v. 1 5, p.  936-940. 

264 

Machel, H.G. ,  and Anderson, J.H. , 1 989, Pervasive subsurface dolomitization of the 
Nisku Formation in Central Alberta: Journal of Sedimentary Petrology, v. 59, p.  
89 1 -9 1 1 .  

Machel, H.G. ,  and Burton, E.A. , 1 99 1 ,  Factors governing cathodoluminescence in calcite 
and dolomite, and their implications for studies of carbonate diagenesis, in Barker, 
C.E., and Kopp, O.C.,  eds., Luminescence Microscopy and Spectroscopy: 
Qualitative and Quantitative Applications: SEPM Short Course 25, p.  3 7-57. 

Machel, H. G., and Mountjoy, E.W., 1 986, Chemistry and environments of dolomitization 
- a reappraisal : Earth Science Reviews, v. 23, p. 1 75-222. 

Magaritz, M., 1 989, 13C minima follow extinction events: A clue to faunal radiation: 
Geology, v. 1 7, p. 33 7-340. 

Magaritz, M., 1 99 1 ,  Carbon isotopes, time boundaries and evolution: Terra Nova, v. 3, p. 
25 1 -256. 

Magaritz, M. , and Stemmerik, L., 1 989, Oscillation of carbon and oxygen isotope 
compositions of carbonate rocks between evaporative and open marine 
environments, Upper Permian of East Greenland: Earth and Planetary Science 
Letters, v. 93, p. 233-240. 

Magaritz, M., Goldenberg, L., Ka:fri, U., and Arad, A. , 1 980, Dolomite formation in 
seawater-freshwater interface: Nature, v. 287, p. 622-624. 

Magaritz, M., Holser, W.T., and Kirschvink, J.L. , 1 986, Carbon-isotope events across the 
Precambrian-Cambrian boundary on the Siberian Platform: Nature, v. 320, p. 258-
259. 

Magaritz, M., Kirschvink, J.L., Latham, A.J. , Zhuravlev, A.Yu. ,  and Rozanov, A.Yu., 
1 99 1 ,  Precambrian/Cambrian boundary problem: Carbon isotope correlations for 
Vendian and Tommotian time between Siberia and Morocco: Geology, v. 1 9, p.  
847-850. 

Major, R.P. ,  Halley, R.B. ,  and Lukas, K.J., 1 988,  Cathodoluminescent bimineralic ooids 
from the Pleistocene of the Florida continental shelf: Sedimentology, v. 35,  p. 843-
855 .  

Major, R.P. ,  and Wilber, R.J., 1 99 1 ,  Crystal habit, geochemistry, and 
cathodoluminescence of magnesian calcite marine cements from the lower slope of 
Little Bahama Bank: Geological Society of America Bulletin, v. 1 03,  p. 46 1 -47 1 .  

Manspeizer, W., ed. ,  1 988, Triassic-Jurassic Rifting: Continental Breakup and the Origin 
of the Atlantic Ocean and Passive Margins: Developments in Geotectonics 22, 
Elsevier, New York. 

Markello, J.R., and Read, J.F., 1 98 1 ,  Carbonate ramp-to-deeper-shale shelf transitions of 
an Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia 
Appalachians: Sedimentology, v.28, p. 573-597. 

Markello, J.R., and Read, J.F.,  1 982, Upper Cambrian intrashelfbasin, Nolichucky 
Formation, southwest Virginia Appalachians: American Association of Petroleum 
Geologists Bulletin, v. 66, p.  860-878.  



265 
Marshall, J.D.,  1 992, Climatic and oceanographic isotopic signals from the carbonate rock 

record and their preservation: Geological Magazine, v. 2, p. 1 43 - 160. 
Marshall, J.D. ,  and Middleton, P.D. ,  1 990, Changes in marine isotopic composition and 

the late Ordovician glaciation: Journal of the geological Society ofLondon, v. 1 47, 
p. 1 -4 .  

Marshal, J.D. ,  and Ashton, M., 1 980, Isotopic and trace element evidence for submarine 
lithification of hardgrounds in the Jurassic ofEngland: Sedimentology, v. 27, p. 
27 1 -289. 

Marshall, J .F., and Davies, P .J., 1 98 1 ,  Submarine lithification on windward reef slopes: 
Capricorn-Bunker Group, southern Great Barrier Reef: Journal of Sedimentary 
Petrology, v. 5 1 ,  p .  953-960. 

Mattes, B.W., and Mountjoy, E.W., 1980, Burial dolomitization of the Upper Devonian 
Miette Buildup, Jasper National Park, Alberta, in Zenger, D.H., Dunham, J.B., and 
Ethington, R.L., eds., Concepts and Models ofDolomitization: SEPM Special 
Publication 28, p. 259-297. 

Mayall, M.J. , and Cox, M., 1988, Deposition and diagenesis ofMiocene limestones, 
Senkang Basin, Sulawesi, Indonesia: Sedimentary Geology, v. 59, p. 77-92. 

Mazzullo, S .J. ,  1 980, Calcite pseudospar replacive of marine acicular aragonite, and 
implications for aragonite cement diagenesis: Journal of Sedimentary Petrology, v. 
49, p. 409-422. 

Mazzullo, S.J., 1 992, Geochemical and neomorphic alteration of dolomite: a review: 
Carbonates and Evaporites, v. 7, p. 2 1 -37 .  

Mazzullo, S .J. ,  Reid, A.M. , and Gregg, J.M. , 1 987, Dolomitization ofHolocene Mg­
calcite supratidal deposits, Ambergis Cay, Belize: Geological Society of America 
Bulletin, v. 98, p. 224-23 1 .  

McConnell, R.L., 1967, Lithostratigraphy and petrography ofthe Upper Cambrian 
Maynardville Formation within the Copper Creek fault belt of east Tennessee 
[unpublished M.S .  thesis] : The University of Tennessee, Knoxville, 92 p. 

McHargue, T.R., and Price, R.C. ,  1982, Dolomite from clay in argillaceous or shale­
associated marine carbonates: Journal of Sedimentary Petrology, v. 52, p. 873-
886. 

McKenzie, J .A. ,  1 98 1 ,  Holocene dolomitization of calcium carbonate sediments from the 
coastal sabkhas of Abu Dhabi, U.A.E. , :  a stable isotope study: Journal of Geology, 
v. 89, p .  1 85- 1 98 .  

McKenzie, J.A., Hsu, K.J., and Schneider, J.F., 1 980, Movement of subsurface waters 
under the sabkha, Abu Dhabi, U.A.E., and its relationship to evaporative dolomite 
genesis, in Zenger, D.H., Dunham, J.B., and Ethington, R.L., eds., Concepts and 
Models ofDolomitization: SEPM Special Publication 28, p. 1 1 -30.  

McLean, D.J . ,  and Mountjoy, E.W. , 1994, Allocyclic control on Late Devonian buildup 
development, Southern Canadian Rocky Mountains: Journal of Sedimentary 
Research, v. B64, p. 326-340. 

McNutt, R.H., Frape, S.K., Fritz, P., Jones, M.G., and MacDonald, I.M., 1 990, The 
87Sr/86Sr values of Canadian Shield brines and fracture minerals with applications 



to groundwater mixing, fracture history, and geochronology: Geochimica et 
Cosmochimica Acta, v. 54, p. 205-2 1 5 . 

266 

Merz, M.U.E.,  1 992, The biology of carbonate precipitation by cyanobacteria: Facies, v. 
26, p. 8 1 - 1 02.  

Meshri, I.D. ,  1 986, On the reactivity of carbonic and organic acids and generation of 
secondary porosity, in Gautier, D.L., ed., Roles of Organic Matter in Sediment 
Diagenesis: SEPM Special Publication 38,  p. 1 23- 1 28 .  

Meyer, A . ,  Davis, T . ,  and Wise, S.W. , Jr. , eds., 1 99 1 ,  Evolution of Continental Margins: 
Marine Geology Special Issue, v. 1 02. 

Meyers, W.J., 1 978, Carbonate cements: their regional distribution and interpretation in 
Mississippian limestones of southwestern New Mexico: Sedimentology, v. 25, p. 
3 7 1 -400. 

Meyers, W.J., 1 989, Trace element and isotope geochemistry of zoned calcite cements, 
Lake Valley Formation (Mississippian, New Mexico): insights from water-rock 
interaction modelling: Sedimentary Geology, v. 63, p. 3 55-370. 

Miall, A.D.,  1 986, Eustatic sea level changes interpreted from seismic stratigraphy: a 
critique of the methodology with particular reference to the North Sea Jurassic 
record: American Association of Petroleum Geologists Bulletin, v. 70, p. 1 3 1 - 1 3  7. 

Miall, A.D.,  1 992, Exxon global cycle chart: An event for every occasion?: Geology, v. 
20, p. 787-790. 

Middelburg, J.J., de Lange, G.J., and Kreulen, R., 1 990, Dolomite formation in anoxic 
sediments ofKau Bay, Indonesia: Geology, v. 1 8, p. 399-402. 

Milici, R.C. ,  1 973, The stratigraphy ofKnox County, Tennessee: Tennessee Division of 
Geology Bulletin 70, p. 9-24. 

Milici, R.C. ,  Brent, W.B. ,  and Walker, K.R., 1 973, Depositional environments in upper 
Conasauga lagoon-fill sequences along 1-75 at Copper Ridge, Knox County, 
Tennessee: Tennessee Division of Geology Bulletin, 70, p. 1 3 8- 1 43 . 

Miller, R.L., and Fuller, J.O., 1 954, Geology and oil resources of the Rose Hill District ­
the Fenster area of the Cumberland overthrust block - Lee County, Virginia: 
Virginia Geological Survey Bulletin, 7 1 ,  383 p. 

Milliken, K.L., 1 979, The silicified evaporite syndrome-two aspects of silicification 
history of former evaporite nodules from southern Kentucky and northern 
Tennessee: Journal of Sedimentary Petrology, v. 49, p. 245-256.  

Mitchell, J.T., Land, L.S . ,  and Miser, D.N., 1 987, Modern marine dolomite cement in a 
north Jamaican fringing reef: Geology, v. 15 ,  p. 557-560. 

Montanez, I.P., 1 994, Late diagenetic dolomitization ofLower Ordovician, Upper Knox 
carbonates: A record of the hydrodynamic evolution of the southern Appalachian 
Basin: American Association ofPetroleum Geologists Bulletin, v. 78, p. 1 2 1 0-
1 239.  

Montanez, I .P. ,  and Osleger, D.A. ,  1 993, Parasequence stacking patterns, third order 
accommodation events, and sequence stratigraphy of Middle to Upper Cambrian 
platform carbonates, Bonanza King Formation, southern Great Basin, in Loucks, 
R.G., and Sarg, J.F., eds., Carbonate Sequence Stratigraphy: Recent 



267 
Developments and Applications: American Association ofPetroleum Geologists 
Memoir 57, p. 3 05-325 . 

Montanez, I.P. , and Read, J.F. ,  1 992a, Eustatic control on early dolomitization of cyclic 
peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, 
Appalachians: Geological Society of America Bulletin, v. 1 04, p. 872-886. 

Montanez, I.P., and Read, J.F. ,  1 992b, Fluid-rock interaction history during stabilization 
of early dolomites, Upper Knox Group (Lower Ordovician), U.S.  Appalachians: 
Journal of Sedimentary Petrology, v. 62, p. 753-778. 

Monty, C.L.V., 1 976, The origin and development of cryptalgal fabrics, in Walter, M.R. , 
ed. ,  Stromatolites : Developments in Sedimentology, Elsevier, Amsterdam, v. 20, 
p. 1 93-249. 

Monty, C .L.V., 1 977, Evolving concepts on the nature and the geological significance of 
stromatolites, in Fliigel, E., ed., Fossil Algae - recent Results and Development: 
Springer-Verlag, Berlin, p. 1 5-35.  

Moore, C.H., 1 985, Upper Jurassic subsurface cements: A case history, in 
Schneidermann, N., and Harris, P.M., eds., Carbonate Cements: SEPM Special 
Publication 36, p. 29 1 -308. 

Moore, C.H., 1 989, Carbonate Diagenesis and Porosity: Elsevier, New York, 338 p .  
Moore, C.H. ,  Chowdhury, A. ,  and Chan, L., 1 988, Upper Jurassic platform 

dolomitization, northwestern Gulf ofMexico:  A tale of two waters, in Shukla, V. , 
and Baker, P.B., eds., Sedimentology and Geochemistry ofDolostones: SEPM 
Special Publication 43, p. 1 75-1 89. 

Morrow, D.W., 1 982, Diagenesis 2.  Dolomite - Part 2 :  Dolomitization models and ancient 
dolostones: Geoscience Canada, v. 9, p. 95- 1 07. 

Morse, J.W., and Bender, M.L., 1 990, Partition coefficients in calcite: examination of 
factors influencing the validity of experimental results and their applications to 
natural systems: Chemical Geology, v. 82, p. 265-277. 

Morse, J.W., Cornwell, J.C.,  Arakaki, T., Lin, S . ,  and Huerta-Diaz, M., 1 992, Iron sulfide 
and carbonate mineral diagenesis in Baffin Bay, Texas: Journal of Sedimentary 
Petrology, v. 62, p.  67 1 -680. 

Morton, R.A., and Land, L. S.,  1 987, Regional variations in formation water chemistry, 
Frio Formation (Oligocene), Texas Gulf Coast: American Association of 
Petroleum Geologists Bulletin, v. 7 1 ,  p. 1 9 1 -206. 

Moshier, S .O. ,  1 989, Lime-mud diagenesis and microcrystalline cements, in Walker, K.R., 
ed. ,  The Fabric of Cements in Paleozoic Limestones: The University of Tennessee, 
Studies in Geology 20, p. 78-90. 

Mount, J.F. ,  and Rowland, S.M. , 198 1 ,  Grand Cycle A (Lower Cambrian) of the southern 
Great Basin: A Product of differential rates of relative sea-level rise, in Taylor, 
M.E., ed. ,  Short Papers for the Second International Symposium on the Cambrian 
System: United States Geological Survey Open-File Report 8 1 -743, p. 143-146. 

Mountjoy, E.W., and Amthor, J.E., 1 994, Has burial dolomitization come of age? Some 
Answers from the western Canada Sedimentary Basin, in Purser, B . ,  Tucker, M., 
and Zenger, D.,  eds., Dolomites: A Volume in Honour of Dolomieu: International 
Association of Sedimentologists, Special Publication 2 1 ,  p. 203-229. 



268 
Mucci, A. , 1 987, Influence of temperature on the composition of magnesian calcite 

overgrowths precipitated from seawater: Geochimica et Cosmochimica Acta, v. 
5 1 ,  p. 1 977- 1 984. 

Mucci, A. , 1 988, Manganese uptake during calcite precipitation from seawater: conditions 
leading to the formation of pseudokutnahorite: Geochimica et Cosmochimica Acta, 
v. 52, p .  1 8 59- 1 868. 

Mucci, A., Canuel, R., and Zhong, S., 1 989, The solubility of calcite and aragonite in 
sulfate-free seawater and the seeded growth kinetics and composition of the 
precipitates at 25°C: Chemical Geology, v. 74, p. 3 09-320. 

Mucci, A. , and Morse, J.W., 1 983, The incorporation ofMg2+ and S�+ into calcite 
overgrowths: influences of growth rate and solution composition: Geochimica et 
Cosmochimica Acta, v. 47, p.  2 1 7-233 .  

Muller, D.W., McKenzie, J.A., and Mueller, P.A., 1 99 1 ,  Abu Dhabi Sabkha, Persian Gulf, 
revisited: Application of strontium isotopes to test an early dolomitization model : 
Geology, v. 1 8, p. 6 1 8-62 1 .  

Mullins, H.T.,  Wise, S.W., Land, L. S. ,  Siegel, D.I . ,  Masters, P.M., Hinchey, E.J. , and 
Price, K.R., 1 985, Authigenic dolomite in Bahamian periplatform slope sediment: 
Geology, v. 1 3 ,  p. 292-295 .  

Mussman, W.J., and Read, J.F., 1 986, Sedimentology and development of a passive- to 
convergent-margin unconformity: Middle Ordovician Knox unconformity, Virginia 
Appalachians:  Geological Society of America Bulletin, v. 97, p. 282-295. 

Nakai, S., Halliday, AN., Kesler, S.E., and Jones, H.D., 1 990, Rb-Sr dating of sphalerites 
from Tennessee and the genesis of Mississippi Valley type ore deposits: Nature, v. 
346, p.  3 54-3 5 7. 

Nakai, S . ,  Halliday, AN., Kesler, S .E., Jones, H.D. ,  Kyle, J.R. , and Lane, T.E.,  1 993, Rb­
Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits: 
Geochimica et Cosmochimica Acta, v. 57, p. 41 7-427. 

Narbonne, G.M., Kaufman, A.J., and Knoll, A.H., 1 994, Integrated chemostratigraphy 
and biostartigraphy of the upper Windermere Supergroup (Neoproterozoic), 
Mackenzie Mountains, northwestern Canada: Geological Society of America 
Bulletin, v. 1 06, p. 128 1 - 1 29 1 .  

Narkiewicz, M., 1 983, Dolomite from clay in argillaceous or shale-associated marine 
carbonates-Discussion: Journal of Sedimentary Petrology, v. 53,  p. 1 353-1 3 54. 

Neumann, A.C.,  Gebelein, C.D., and Scoffin, T.P., 1 970, The composition, structure and 
erodability of subtidal mats, Abaco, Bahamas: Journal of Sedimentary Petrology, 
v. 40, p. 274-297. 

Niemann, J.C . ,  and Read, J.F.,  1 988, Regional cementation from unconformity-recharged 
aquifer and burial fluids, Mississippian Newman Limestone, Kentucky: Journal of 
Sedimentary Petrology, v. 5 8, p. 688-705 . 

Oder, C .R.L. ,  1 934, Preliminary subdivision of the Knox dolomite in East Tennessee: 
Journal of Geology, v. 42, p. 469-497. 

Oder, C.R.L., and Bumgarner, J.G., 1 96 1 ,  Stromatolitic bioherms in the Maynardville 
(Upper Cambrian) Limestone, Tennessee: Geological Society of America Bulletin, 
v. 72, p. 1 02 1 - 1 028. 



Oder, C.R.L., and Milici, R.C., 1 965, Geologic map of the Morristown quadrangle, 
Tennessee: Tennessee Division of Geology Geologic Map GM- 1 63 -NE. 

269 

Oliver, J. , 1 986, Fluids expelled tectonically from orogenic belts: their role in hydrocarbon 
migration and other geologic phenomena: Geology, v. 1 4, p. 99- 1 02. 

Osleger, D.A, 1 990, Cyclostratigraphy ofLate Cambrian cyclic carbonates: an 
interbasinal field and modeling study, U.S .A [unpublished Ph.D. thesis] : Virginia 
Polytechnic Institute and State University, Blacksburg, 303 p .  

Osleger, D.A, and Read, J.F., 1 99 1 ,  Relation of eustasy to stacking patterns of meter­
scale carbonate cycles, Late Cambrian, U. S.A : Journal of Sedimentary Petrology, 
v. 6 1 ,  p. 1 225-1 252. 

Osleger, D.A, and Read, J.F., 1 993, Comparative analysis of methods used to define 
eustatic variations in outcrop: Late Cambrian interbasinal sequence development: 
American Journal of Science, v. 293, p. 1 57-2 1 6. 

Palmer, AR., 1 965a, Biomere - A new kind ofbiostratigraphic unit: Journal of 
Paleontology, v. 39, p. 149- 1 5 3 .  

Palmer, AR., 1 965b, Trilobites o f  the Late Cambrian Pterocephaliid Biomere in the Great 
Basin, United States: U. S.  Geological Survey Professional Paper 493, 1 03 p. 

Palmer, AR., 1 97 1 ,  The Cambrian of the Appalachian and eastern New England regions, 
eastern United States, in Holland, C.H., ed. ,  Lower Paleozoic Rocks of the World: 
Cambrian of the New World (Volume 1) :  Wiley Interscience, New York, p. 1 69-
2 1 7. 

Palmer, AR., 1 98 1 a, On the correlatability of Grand Cycle tops, in Taylor, M.E., ed. ,  
Short papers for the Second International Symposium o n  the Cambrian system: 
United States Geological Survey Open File Report 8 1 -743, p. 1 56- 1 59. 

Palmer, AR., 1 98 1b, Subdivision of the Sauk sequence, in Taylor, M.E. ,  ed., Short 
papers for the Second International Symposium on the Cambrian system: United 
States Geological Survey Open File Report 8 1 -743, p. 1 60- 1 63 .  

Palmer, AR., and Halley, R.B., 1 979, Physical stratigraphy and trilobite biostratigraphy of 
the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin: 
U.S.  Geological Survey Professional Paper 1 047, 1 3 1  p.  

Pardue, J.W., Scalan, R. S.,  Van Baalen, C., and Parker, P., 1 976, Maximum carbon 
isotope fractionation in photosynthesis by blue-green algae and green alga: 
Geochimica et Cosmochimica Acta, v. 40, p. 309-3 12.  

Park, R.K., 1 977, The preservation potential of some recent stromatolites: Sedimentology, 
v. 24, p. 485-506. 

Parnell, J., 1 986, Devonian Magadi-type cherts in the Orcadian basin, Scotland: Journal of 
Sedimentary Petrology, v. 56, p. 495-500. 

Patchen, D.G., Avary, K.L., and Erwin, R.B. ,  1 985, Southern Appalachian Region, 
Correlation of Stratigraphic Units of North America (COSUNA) Project : 
American Association ofPetroleum Geologists. 

Patterson, R.J., and Kinsman, D.J.J., 1 982, Formation of diagenetic dolomite in coastal 
sabkha along Arabian (Persian) Gulf: American Association of Petroleum 
Geologists Bulletin, v. 66, p. 28-43 . 



270 

Patterson, W.P., and Walter, L.M., 1 994, Depletion of 13C in seawater LC02 on modem 
carbonate platforms: Significance for the carbon isotopic record of carbonates: 
Geology, v. 22, p. 885-888 .  

Pelechaty, S.M., Kaufinan, A.J., and Gretzinger, J.P., 1 996, Evaluation of813C 
chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia: 
Geological Society of America Bulletin, v. 1 08, p. 992- 1 003 . 

Pentecost, A., and Riding, R. , 1 986, Calcification in cyanobacteria, in Leadbeater, B . S .C. ,  
and Riding, R. ,  eds. ,  Biomineralization in Lower Plants and Animals: The 
Systematics Association, Special Volume 30, Claredon, Oxford, p. 73-90. 

Pfeil, R.W., and Read, J.F., 1 980, Cambrian carbonate pletform margin facies, Shady 
Dolomite, southwestern Virginia, U.S.A. : Journal of Sedimentary Petrology, v. 50, 
p. 9 1 - 1 1 6. 

Pierre, C . ,  Ortlieb, L., and Person, A. , 1 984, Supratidal evaporitic dolomite at Ojo de 
Liebre Lagoon: Mineralogy and isotopic arguments for primary crystallization: 
Journal of Sedimentary Petrology, v. 54, p. 1 049- 1 06 1 .  

Pierson, B .J.,  and Shinn, E.A. , 1 985, Cement distribution and carbonate mineral 
stabilization in Pleistocene limestones of Hogsty Reef, Bahamas, in 
Schneidermann, N., and Harris, P.M.,  eds. ,  Carbonate Cements: SEPM Special 
Publication 36, p. 1 53 - 1 68 .  

Pigott, J.D., and Land, L. S . ,  1 986, Interstitial water chemistry o f  Jamaican Reef sediment 
Sulfate reduction and submarine cementation: Marine Chemistry, v. 1 9, p. 3 5 5-
378. 

Pingitore, N.E., Eastman, M.P., Sandidge, M., Oden, K., and Freiha, B . ,  1 988, The 
coprecipitation of manganese (II) with calcite: an experimental study: Marine 
Chemistry, v. 25, p.  107- 1 20. 

Pitman, W. C. ,  III, 1 978, The relationship between eustacy and stratigraphic sequences of 
passive margins: Geological Society of America Bulletin, v. 89, p. 1 3 89- 1 403 . 

Pitman, W.C. ,  III, and Golovchenko, X., 1 988, Sea level changes and their effect on the 
stratigraphy of Atlantic-type margins, in Sheridan, R.E. ,  and Grow, J.A., eds. ,  The 
Atlantic Continental Margin: U. S . :  Geological Society of America, The Geology of 
North America, v. I-2, p. 429-436. 

Playford, P.E., and Cockbain, A.E. ,  1 976, Modem algal stromatolites at Hamelin Pool, a 
hypersaline barred basin in Shark Bay, Western Australia, in Walter, M.R., ed. ,  
Stromatolites: Developments in Sedimentology, Elsevier, Amsterdam, v. 20, p.  
3 89-4 1 2. 

Popp, B.N., Anderson, T.F., and Sandberg, P.A.,  1 986, Brachiopods as indicators of 
original isotopic compositions in some Paleozoic limestones: Geological Society of 
America Bulletin, v. 97, p. 1262- 1 269. 

Posamentier, H.W., Summerhayes, C.P.,  Haq, B.U., and Allen, G.P., eds.,  1 993, 
Sequence Stratigraphy and Facies Associations: International Association of 
Sedimentologists Special Publication 1 8, 644 p. 

Pratt, B .R., 1 984, Epiphyton and Renalcis - diagenetic microfossils from calcification of 
coccoid blue-green algae: Journal of Sedimentary Petrology, v. 54, p. 948-97 1 .  



271 
Pratt, L.M. ,  Force, E.R. , and Pomerol, B. ,  1 99 1 ,  Coupled manganese and carbon-isotopic 

events in marine carbonates at the Cenomanian-Turonian boundary: Journal of 
Sedimentary Petrology, v. 6 1 ,  p. 370-383 . 

Prezbindowski, D.R., 1 985, Burial cementation - is it important? A case study, Stuart City 
trend, south-central Texas, in Schneidermann, N.,  and Harris, P.M., eds., 
Carbonate Cements: SEPM Special Publication 36, p. 241 -264. 

Price, R.C.,  and McHargue, T.R. ,  1 983, Dolomite from clay in argillaceous or shale­
associated marine carbonates-Reply: Journal of Sedimentary Petrology, v. 53,  p. 
1 355 .  

Qing, H . ,  and Mountjoy, E.W., 1 989, Multistage dolomitization in Rainbow buildups, 
Middle Devonian Keg River Formation, Alberta, Canada: Journal of Sedimentary 
Petrology, v. 59, p. 1 14- 126. 

Qing, H., and Mountjoy, E.W., 1 992, Large-scale fluid flow in the Middle Devonian 
Presqu'ile barrier, Western Canada sedimentary basin: Geology, v. 20, p. 903-906. 

Railsback, L.B., 1 993, Lithologic controls on morphology ofpressure-dissolution surfaces 
(stylolites and dissolution seams) in Paleozoic carbonate rocks from the mideastern 
United States: Journal of Sedimentary Petrology, v. 63, p. 5 1 3-522. 

Radke, B.M., and Mathis, R.L., 1 980, On the formation and occurrence of saddle 
dolomite: Journal of Sedimentary Petrology, v. 50, p. 1 149- 1 1 68.  

Randazzo, A.F. ,  and Cook, D.J., 1987, Characterization of dolomitic rocks from the 
coastal mixing zone ofthe Floridan aquifer, U. S.A. : Sedimentary Geology, v. 43, 
p. 2 1 9-239. 

Rankey, E.C., 1993, Carbonate platform response to tectonism and eustasy: The Middle 
Cambrian carbonates of the Lower and Middle Conasauga Group, East Tennessee 
[unpublished M.S.  thesis] : The University of Tennessee, Knoxville, 19 1  p. 

Rankey, E.  C. ,  Walker, K.R., and Srinivasan, K., 1 994, Gradual establishment of lapetan 
"passive" margin sedimentation: stratigraphic consequences of Cambrian episodic 
tectonism and eustasy, southern Appalachians: Journal of Sedimentary Research, 
v. B64, p .  298-3 10 .  

Rankin, D.W., Drake, A.A., Jr. , Glover, L . ,  III, Goldsmith, R. , Hall, L.M., Murray, D.P., 
Ratcliffe, N.M., Read, J.F., Secor, D.T., Jr., and Stanley, R. S . ,  1 989, Pre-orogenic 
terranes, in Hatcher, R.D. ,  Jr., Thomas, W.A. ,  and Viele, G.W., The Appalachian­
Ouachita Orogen in the United States: Boulder, Colorado, Geological Society of 
America, The Geology ofNorth America, v. F-2, p. 7-99. 

Rasetti, F . ,  1 965, Upper Cambrian trilobite faunas of northeastern Tennessee: Smithsonian 
Miscellaneous Collection, v. 148, 140 p. 

Rast, N., and Kohles, K.M., 1986. The origin ofthe Ocoee Supergroup: American Journal 
of Science, v. 286, p. 593-6 16. 

Raymond, R.H. ,  1 959, Paleontology of a portion ofthe Nolichucky Shale and 
Maynardville Limestone (Cambrian) of the Powell quadrangle, Tennessee 
[unpublished M.S. thesis] : The University of Tennessee, Knoxville, 58 p. 

Read, J.F. 1 980, Carbonate ramp to basin transitions and foreland basin evolution, Middle 
Ordovician sequence, Virginia: American Association of Petroleum Geologists 
Bulletin, v. 64, p. 1 575- 1 612 .  



272 
Read, J.F . ,  1 982, Carbonate platforms of passive (extensional) continental margins: types, 

characteristics and evolution: Tectonophysics, v. 8 1 ,  p. 1 95-2 12. 
Read, J.F.,  1 989, Controls on evolution of Cambro-Ordovician passive margin, U.S .  

Appalachians, in Crevello, P., Wilson, J.L. , Sarg, J.F., and Read, J.F., eds., 
Controls on Carbonate Platform and Basin Development: SEPM Special 
Publication 44, p. 147- 1 65 .  

Read, J.F., Grotzinger, J.P., Bova, J.A., and Koerschner, W.F., 1986, Models for 
generation of carbonate cycles: Geology, v. 14, p. 1 07-1 1 0. 

Resser, C.E., 1 93 8, Cambrian system (restricted) of the southern Appalachians: 
Geological Society of America Special Paper 15 ,  140 p. 

Reynolds, D.J., Steckler, M.S.,  and Coakley, B.J., 1 991 ,  The role of sediment load in 
sequence stratigraphy: The influence of flexural isostasy and compaction: Journal 
of Geophysical Research, v. 96, p. 693 1 -6949. 

Riding, R., 1 975, Girvanella and other algae as depth indicators: Lethaia, v. 8, p. 1 73 - 179. 
Riding, R., 1 982, Cyanophyte calcification and changes in ocean chemistry: Nature, v. 

299, p. 8 14-8 1 5 .  
Riding, R., 1 99 1 a, Calcified cyanobacteria, in Riding, R., ed., Calcareous Algae and 

Stromatolites: Springer-Verlag, p. 55-87. 
Riding, R., 1 99 1b, Cambrian calcareous cyanobacteria and algae, in Riding, R. , ed. ,  

Calcareous Algae and Stromatolites: Springer-Verlag, p. 305-334 
Riding, R., 1 99 1c, Classification of microbial carbonates, in Riding, R. , ed. ,  Calcareous 

Algae and Stromatolites: Springer-Verlag, p. 2 1 -5 1 .  
Riding, R., and Veronova, L., 1 984, Assemblages of calcareous algae near the 

Precambrian-Cambrian boundary in Siberia and Mongolia: Geological Magazine, 
v. 12 1 ,  p. 205-2 1 0. 

Rodgers, J., 1 953, Geologic map of east Tennessee with explanatory text: Tennessee 
Division of Geology Bulletin 58, Part II, 168 p. 

Rodgers, J., 1 968, The eastern edge ofthe North American continent during the Cambrian 
and early Ordovician, in Zen, E-An, and others, eds., Studies of Appalachian 
geology: Northern and Maritime: Wiley, New York, p. 1 4 1 - 1 50. 

Rodgers, J. , and Kent, D.F., 1 948, Stratigraphic section at Lee Valley, Hawkins County, 
Tennessee: Tennessee Division of Geology Bulletin 55 .  

Roeder, D. ,  and Witherspoon, W.D., 1978, Palinspastic map of east Tennessee: American 
Journal of Science, v. 278, p. 543-550.  

Romanek, C.S . ,  Grossman, E.L. , and Morse, J.W., 1992, Carbon isotopic fractionation in 
synthetic aragonite and calcite: Effects of temperature and precipitation rate: 
Geochimica et Cosmochimica Acta, v. 56, p. 419-430. 

Rowell, A.J., and Brady, M.J., 1976, Brachiopods and Biomeres: Brigham Young 
University Geology Studies 23, p. 1 65- 1 80. 

Ruppel, S.C. , and Cander, H. S . ,  1 988, Dolomitization of shallow-water platform 
carbonates by sea water and seawater-derived brines: San Andres Formation 
(Guadalupian), west Texas, in Shukla, V., and Baker, P.B., eds., Sedimentology 
and Geochemistry ofDolostones: SEPM Special Publication 43, p. 245-262. 



273 
Rush, P.F. ,  and Chafetz, H. S., 1990, Fabric-retentive, non-luminescent brachiopods as 

indicators of original o13C and 3180:  a test : Journal of Sedimentary Petrology, v. 
60, p. 968-98 1 .  

Saller, A.H., 1 984, Petrologic and geochemical constraints on the origin of subsurface 
dolomite, Enewetak Atoll: An example of dolomitization by normal seawater: 
Geology, v. 12, p. 21 7-220. 

Saller, A.H., 1 986, Radiaxial calcite in Lower Miocene strata, subsurface Enewetak Atoll: 
Journal of Sedimentary Petrology, v. 56, p. 743-762. 

Saller, A.H. , and Moore, C.H., 1 991 ,  Geochemistry ofmeteoric calcite cements in some 
Pleistocene limestones: Sedimentology, v. 38, p. 601 -62 1 .  

Saltzman, M.R., 1 996, Extinction and Environmental Change, Late Cambrian, Wyoming 
and Utah [Ph.D. Dissertation] : The University ofCalifornia, Los Angeles, 1 69 p. 

Saltzman, M.R. , Brasier, M.D., Ripperdan, R.L., Lohmann, K.C. ,  and Runnergar, B., 
1 995a, A large and global positive carbon isotope excursion during the Late 
Cambrian: correlation with marine extinctions and sea-level fluctuations: 
Geological Society of America Annual Meeting Abstracts with Programs, v. 27, p. 
33 1 .  

Saltzman, M.R. , Davidson, J.P., Holden, P . ,  Runnegar, B. ,  and Lohmann, K.C.,  1995b, 
Sea-level-driven changes in ocean chemistry at an Upper Cambrian extinction 
horizon: Geology, v. 23, p. 893-896. 

Sandberg, P. A. , 1 983, An oscillating trend in Phanerozoic non-skeletal carbonate 
mineralogy: Nature, v. 305, p. 19-22. 

Sandberg, P.A., 1984, Recognition criteria for calcitized skeletal and non-skeletal 
aragonites: Palaeontographica Americana, v. 54, p. 272-28 1 .  

Sandberg, P.A., 1985, Aragonite cements and their occurrence in ancient limestones, in 
Schneidermann, N., and Harris, P.M. , eds., Carbonate Cements: SEPM Special 
Publication 36, p. 33-57. 

Sansone, F.J., Tribble, G.W., Andrews, C.C. ,  and Chanton, J.P., 1 990, Anaerobic 
diagenesis within Recent, Pleistocene, and Eocene marine carbonate frameworks:  
Sedimentology, v.  37, p. 997- 1009. 

Sass, E., and Bein, A. , 1 988, Dolomites and salinity: A comparative geochemical study, in 
Shukla, V., and Baker, P.B., eds., Sedimentology and Geochemistry of 
Dolostones: SEPM Special Publication 43, p.  223-233 .  

Schidlowski, M., and Aharon, P . ,  1 992, Carbon cycle and carbon isotope record: 
Geochemical impact oflife over 3 . 8  Ga ofEarth history: in Schidlowski, M. , et al. 
eds., Early Organic Evolution: Implications for Mineral and Energy Resources: 
Springer-Verlag, p. 147- 1 75 .  

Schlanger, S.O., Arthur, M.A. , Jenkyns, H.C., and Scholle, P.A., 1 987, The Cenomanian­
Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon­
rich beds and the marine ()13C excursion, in Brooks, J., and Fleet, A.J., eds. ,  
Marine Petroleum Source Rocks: Geological Society Special Publication 26, p. 
371 -399. 

Schlager, W., 198 1 ,  The paradox of drowned reefs and carbonate platforms: Geological 
Society of America Bulletin, v. 92, p. 1 97-2 1 1 .  



274 
Schlager, W., 1 99 1 ,  Depositional bias and environmental change - important factors in 

sequence stratigraphy, in Biddle, K.T.,  and Schlager, W., eds., The Record of Sea­
Level Fluctuations: Sedimentary Geology, v. 70, p .  1 09-130 .  

Schlager, W. ,  1 992, Sedimentology and sequence stratigraphy of reefs and carbonate 
platforms: American Association of Petroleum Geologists, Short Course 34, 7 1  p. 

Schlager, W., Reijmer, J.J.G. ,  and Drexler, A., 1 994, Highstand shedding of carbonate 
platforms: Journal of Sedimentary Research, v. B64, p .  270-28 1 .  

Scholle, P.A., and Arthur, M.A. , 1 980, Carbon isotope fluctuations in Cretaceous pelagic 
limestones: potential stratigraphic and petroleum exploration tool: American 
Association ofPetroleum Geologists Bulletin, v. 64, p. 67-87. 

Scholle, P.A., and Halley, R.B. ,  1 985, Burial diagenesis: out of sight, out of mind ! ,  in 
Schneidermann, N., and Harris, P.M., eds., Carbonate Cements: SEPM Special 
Publication 36, p. 309-334. 

Schroeder, J.H., 1 972, Fabrics and sequences of submarine carbonate cements in 
Holocene Bermuda cup reefs: Geologische Rundschau, v. 6 1 ,  p. 708-730. 

Scotese, C .R., and McKerrow, W.S . ,  1 990, Revised world maps and introduction: in 
McKerrow, W. S . ,  and Scotese, C.R. ,  eds., Palaeozoic Palaeogeography and 
Biogeography: Geological Society ofLondon Memoir 12, p. 1 -24. 

Scruton, R.A., 1982a, Passive continental margins: A review of observations and 
mechanisms, in Scruton, R.A., ed. ,  Dynamics ofPassive Margins: American 
Geophysical Union, Geodynamics Series, v. 6, p. 5- 1 1 .  

Scruton, R.A., ed. ,  1 982b, Dynamics ofPassive Margins: American Geophysical Union, 
Geodynamics Series, v. 6. 

Semikhatov, M.A., Gebelein, C.D., Cloud, P., Awramik, S.M., and Benmore, W.C., 1 979, 
Stromatolite morphogenesis: progress and problems: Canadian Journal of Earth 
Science, v. 1 6, p. 992- 1 014.  

Sepkoski, J.J . ,  Jr., 1 982, Flat-pebble conglomerates, storm deposits and the Cambrian 
bottom fauna, in Einsele, G., and Seilacher, A., eds. ,  Cyclic and Event 
Stratification: Springer-Verlag, New York, p. 37 1 -385 . 

Shackleton, N.J., 1 987, The carbon isotope record of the Cenozoic: history of organic 
carbon burial and of oxygen in the ocean and atmosphere, in Brooks, J., and Fleet, 
A.J., eds. ,  Marine Petroleum Source Rocks: Geological Society Special 
Publication 26, p. 423-434. 

Shanmugam, G. , and Walker, K.R. , 1 978, Tectonic significance of distal turbidites in the 
Middle Ordovician Blockhouse and lower Sevier formations in east Tennessee: 
American Journal of Science, v. 278, p. 5 5 1 -578. 

Shanmugam, G., and Walker, K.R., 1 980, Sedimentation, subsidence, and evolution of a 
foredeep basin in the Middle Ordovician, southern Appalachians: American Journal 
of Science, v. 280, p. 479-496. 

Shatkay, M., and Magaritz, M. , 1 987, Dolomitization and sulfate reduction in the mixing 
zone between brine and meteoric water in the newly exposed shores of the Dead 
Sea: Geochimica et Cosmochimica Acta, v. 5 1 ,  p. 1 135- 1 141 . 



Sheppard, S .M.F., and Schwarcz, H.P., 1 970, Fractionation of carbon and oxygen 
isotopes and magnesium between coexisting metamorphic calcite and dolomite: 
Contributions to Mineralogy and Petrology, v. 26, p. 161 -198 .  

Sheridan, R.E. ,  and Grow, J.A, eds., 1988, The Atlantic Continental Margin: U. S . :  
Geological Society of America, The Geology ofNorth America, v. 1-2, 6 1 0  p. 

275 

Shukla, V., 1 988, Sedimentology and geochemistry of a regional dolostone: correlation of 
trace elements with dolomite fabrics, in Shukla, V., and Baker, P.B. ,  eds. ,  
Sedimentology and Geochemistry ofDolostones: SEPM Special Publication 43, p. 
145- 1 57. 

Sibley, D.F., 1 990, Unstable to stable transformation during dolomitization: Journal of 
Geology, v. 98, p. 739-748. 

Sibley, D.F., and Gregg, J.M., 1987, Classification of dolomite rock textures: Journal of 
Sedimentary Petrology, v. 57, p. 967-975.  

Simmons, W.A, 1984, Stratigraphy and depositional environments of the Middle 
Cambrian Maryville Limestone (Conasauga Group) near Thorn Hill Tennessee 
[unpublished M. S.  thesis] : The University of Tennessee, 275 p. 

Simms, M., 1 984, Dolomitization by groundwater-flow systems in carbonate platforms: 
Gulf Coast Association of Geological Societies Transactions, v. 34, p. 41 1 -420. 

Simpson, E.L., and Eriksson, K.A, 1 989, Sedimentology ofthe Unicoi Formation in 
southern and central Virginia: Evidence for late Proterozoic to Early Cambrian 
rift-to-passive margin transition: Geological Society of America Bulletin, v. 10 1 ,  p. 
42-54. 

Simpson, J., 1 985, Stylolite-controlled layering in an homogeneous limestone: pseudo­
bedding produced by burial diagenesis: Sedimentology, v. 32, p. 495-505 . 

Slaughter, M., and Hill, R.J., 1991 ,  The influence of organic matter in organogenic 
dolomitization: Journal of Sedimentary Petrology, v. 61 ,  p. 296-303 . 

Sloss, L.L., 1 991 ,  The tectonic factor in sea level change: a countervailing view: Journal 
of Geophysical Research, v. 96, p. 6609-66 17. 

Spirakis, C .S . ,  and Heyl, A.V., 1988, Possible effects of thermal degradation of organic 
matter on carbonate paragenesis and fluorite precipitation in Mississippi Valley­
type deposits: Geology, v. 16, p. 1 1 1 7-1 120. 

Spotl, C. ,  and Bums, S .J. ,  1991 ,  Formation of 180-depleted dolomite within a marine 
evaporitic sequence, Triassic Reichenhall Formation, Austria: Sedimentology, v. 
38, p. 1 04 1 - 1 057. 

Srinivasan, K., 1 993, Depositional history, sequence stratigraphy and diagenesis of 
Maryville Limestone (Middle Cambrian), southern Appalachians [unpublished 
Ph.D. thesis] : The University of Tennessee, Knoxville, 1 66 p. 

Srinivasan, K., and Walker, K.R., 1 993, Sequence stratigraphy of an intrashelfbasin 
carbonate ramp to rimmed platform transition: Maryville Limestone (Middle 
Cambrian), southern Appalachians: Geological Society of America Bulletin, v. 
1 05, p. 883-896. 

Srinivasan, K., Walker, K.R., and Goldberg, S.A. ,  1 994, Determining fluid source and 
possible pathways during burial dolomitization of Maryville Limestone (Cambrian), 
Southern Appalachians, USA: Sedimentology, v. 4 1 ,  p. 293-308. 



276 
Srinivasan, K., Walker, K.R. , Steinhauff, D.M., Goldberg, S .A. ,  and Riciputi, L.R., 1 995, 

Radiogenic Sr isotopes and rare earth elements as indicators ofburial fluid sources 
in platform carbonates : Revisited: Geological Society of America Annual Meeting, 
Abstracts with Programs, p. 273-274. 

Steckler, M.S., and Watts, A.B. ,  1 982, Subsidence history and tectonic evolution of 
Atlantic-type continental margins, in Scrutton, R.A., ed. ,  Dynamics ofPassive 
Margins: American Geophysical Union, Geodynamics Series, v. 6, p. 1 84-1 96. 

Steckler, M.S . ,  Reynolds, D.J. , Coakley, B.J., Swift, B.A., and Jarrard, R., 1 993, 
Modelling passive margin sequence stratigraphy, in Posamentier, H.W., 
Summerhayes, C.P., Haq, B .U., and Allen, G.P., eds. ,  Sequence Stratigraphy and 
Facies Associations: International Associations of Sedimentologists Special 
Publication 1 8, p. 1 9-4 1 .  

Stein, H.J., and Kish, S .A. , 1985, The timing of ore formation in southeast Missouri: Rb­
Sr glauconite dating at the Magmont Mine, Viburnum Trend: Economic Geology, 
v. 80, p. 739-753 .  

Stephenson, R.A. , 1 989, Beyond first-order thermal subsidence models for sedimentary 
basins?, in Cross, T.A., ed. ,  Quantitative Dynamic Stratigraphy: Prentice Hall, p. 
1 13- 125. 

Stiller, M., Rounick, J. S . ,  and Shasha, S . ,  1985, Extreme carbon-isotope enrichments in 
evaporating brines :  Nature, v. 3 16, p. 434-435. 

Stueber, A.M., Pushkar, P. ,  and Hetherington, E.A. ,  1984, A strontium isotopic study of 
Smackover brines and associated solids, southern Arkansas: Geochimica et 
Cosmochimica Acta, v. 48, p. 1 637- 1649. 

Stueber, A.M., Pushkar, P., and Hetherington, E.A., 1987, A strontium isotopic study of 
formation waters from the Illinois Basin, U. S.A. :  Applied Geochemistry, v. 2, p. 
477-494. 

Stueber, A.M. , and Walter, L.M., 1991 ,  Origin and chemical evolution offormation 
waters from Silurian-Devonian strata in the Illinois basin, U. S .A. : Geochimica et 
Cosmochimica Acta, v. 55,  p. 309-325 . 

Summerhayes, C.P. ,  1 986, Sea level curves based on seismic stratigraphy: their 
chronostratigraphic significance: Palaeogeography, Palaeoclimatology, 
Palaeoecology, v. 57, p. 27-42. 

Sun, S .Q. ,  1 990, Facies-related diagenesis in a cyclic shallow marine sequence: The 
Corallian Group (Upper Jurassic) of the Dorset coast, southern England: Journal 
of Sedimentary Petrology: v. 60, p. 42-52. 

Svetjensky, D.A., 1 98 1 ,  The origin of a Mississippi Valley-type deposit in the Viburnum 
Trend, southeast Missouri: Economic Geology, v. 76, p. 1 848-1 872. 

Tankard, A.J., and Balkwill, H.R., eds., 1989, Extensional Tectonics and Stratigraphy of 
the North Atlantic Margins :  American Association ofPetroleum Geologists 
Memoir 49, 641 p. 

Tarkoy, P.J. , 1 967, Lithostratigraphy and petrography of the Upper Cambrian 
Maynardville Formation within the Hunter Valley fault belt ofEast Tennessee 
[unpublished M. S .  thesis] : The University of Tennessee, Knoxville, 99 p. 



277 
Tarkoy, P.J., 1970, Upper Cambrian Maynardville Formation within the Clinchport fault 

belt of east Tennessee: Transactions of the Illinois State Academy of Science, v. 
63 , p. 305-3 1 8 .  

Taylor, T.R., and Sibley, D.F., 1 986, Petrographic and geochemical characteristics of 
dolomite types and the origin of ferroan dolomite in the Trenton Formation, 
Ordovician, Michigan Basin: Sedimentology, v. 33,  p. 6 1 -86. 

Thickpenny, A., and Leggett, J.K., 1987, Stratigraphic distribution and palaeo­
oceanographic significance of European early Palaeozoic organic-rich sediments, 
in Brooks, J., and Fleet, A.J., eds., Marine Petroleum Source Rocks: Geological 
Society Special Publication 26 p. 23 1-247. 

Thomas, W.A. , 1977, Evolution of Appalachian-Ouachita salients and recesses from 
reentrants and promontories in the continental margin: American Journal of 
Science, v. 277, p. 1233-1278. 

Thomas, W.A. ,  1 983, Continental margins, orogenic belts, and intracratonic structures: 
Geology, v. 1 1 , p. 270-272. 

Thomas, W.A., 1986, A Paleozoic synsedimentary structure in the Appalachian fold-thrust 
belt in Alabama, in McDowell, R.C.,  and Glover, L., III, eds., The Lowry Volume: 
Studies in Appalachian Geology: Virginia Tech Department of Geological Sciences 
Memoir 3, p. 1 - 12 .  

Thomas, W.A., 1 99 1 ,  The Appalachian-Ouachita rifted margin of southeastern North 
America: Geological Society of America Bulletin, v. 103,  p. 4 1 5-43 1 .  

Thomas, W.A., 1 993, Low-angle detachment geometry of the late Precambrian-Cambrian 
Appalachian-Ouachita rifted margin of southeastern North America: Geology, v. 
2 1 ,  p. 92 1 -924. 

Thompson, J.B., and Ferris, F.G., 1 990, Cyanobacterial precipitation of gypsum, calcite, 
and magnesite from natural alkaline lake water: Geology, v. 1 8, p. 995-998. 

Tobin, K.J., Walker, K.R., Srinivasan, K., and Steinhauff, D.M., 1996, Suboxic to anoxic 
diagenesis of platform-marginal ooids and bladed-to-fibrous calcite from the 
Middle Ordovician Ottosee Formation (east Tennessee): Geological Society of 
America Bulletin, v. 108, p. 1 5 5- 167.  

Tribble, G.W., 1 993 , Organic matter oxidation and aragonite diagenesis in a coral reef: 
Journal of Sedimentary Petrology: v. 63, p. 523-527. 

Tribble, J. S . ,  Arvidson, R. S.,  Lane, M., III, and Mackenzie, F.T., 1 995, Crystal chemistry, 
and thermodynamic and kinetic properties of calcite, dolomite, apatite, and 
biogenic silica: applications to petrologic problems: Sedimentary Geology, v. 95, 
p. 1 1 -37.  

Tucker, M.E. ,  and Wright, V.P., 1990, Carbonate Sedimentology: Blackwell Scientific, 
Boston, 482 p .  

Turcotte, D.L., 1 982, The state of stress at passive continental margins, in Scrutton, R.A., 
ed., Dynamics of Passive Margins: American Geophysical Union, Geodynamics 
Series, v. 6, p. 14 1 - 146. 

Turner, J.V., 1 982, Kinetic fractionation of carbon-1 3  during calcium carbonate 
precipitation: Geochimica et Cosmochimica Acta, v. 46, p. 1 1 83-1 1 9 1 .  



Ulrich, E.O.,  1 9 1 1 ,  Revision of the Paleozoic systems: Geological Society of America 
Bulletin, v. 22. p.281 -680. 

278 

Vahrenkamp, V.C., 1 996, Carbon isotope stratigraphy of the Upper Kharaib and Shuaiba 
Formations: Implications for the Early Cretaceous evolution of the Arabian Gulf 
Region: American Association ofPetroleum Geologists, v. 80, p. 647-662. 

Vahrenkamp, V.C. ,  and Swart, P.K., 1990, New distribution coefficient for the 
incorporation of strontium into dolomite and its implications for the formation of 
ancient dolomites: Geology, v. 1 8, p. 3 87-39 1 .  

Vail, P.R., Mitchum, R.M., Jr., and Thompson, S . ,  III, 1 977, Seismic stratigraphy and 
global changes of sea level, Part 4:  Global cycles of relative changes of sea level, in 
Payton, C.E., ed. ,  Seismic Stratigraphy - Applications to Hydrocarbon 
Exploration: American Association ofPetroleum Geologists Memoir 26, p. 83-97. 

Vail, P.R., Van Wagoner, J.C. ,  Mitchum, R.M., Jr., and Posamentier, H.W. , 1 987, 
Seismic stratigraphy interpretation using sequence stratigraphy, in Bally, A.W. , 
ed. ,  Atlas of Seismic Stratigraphy, v. 1 :  American Association of Petroleum 
Geologists, Studies in Geology 27, p. 1 - 14.  

VanArsdall, D.E. ,  1974, Lithostratigraphy of the Conasauga Group within the Hunter 
Valley and Copper Creek strike belts, northeastern Tennessee [unpublished M. S .  
thesis] : Eastern Kentucky University, Richmond, Kentucky. 

Van Wagoner, J .C. ,  Posamentier, H.W. , Mitchum, R.M., Vail, P.R. , Sarg, J.F., Loutit, 
T. S . ,  and Hardenbol, J. , 1 988, An overview ofthe fundamentals of sequence 
stratigraphy and key definitions, in Wilgus, C.K., Hastings, B .S . ,  Kendall, 
C.G. St.C.,  Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C. ,  eds., Sea­
Level Changes: An Integrated Approach: SEPM Special Publication 42, p. 39-45 . 

Veizer, J. , 1 983, Trace elements and isotopes in sedimentary carbonates, in Reeder, R.J., 
ed. ,  Carbonates: Mineralogy and Chemistry: Reviews in Mineralogy, v. 1 1 , p. 265-
299. 

Veizer, J . ,  1 985, Carbonates and ancient oceans: Isotopic and chemical record on time 
scales of 1 07 - 109 years, in Sundquist, E.T., and Broecker, W. S . ,  eds., The Carbon 
Cycle and Atmospheric COz: American Geophysical Union Monograph 32, p. 595-
601 .  

Veizer, J . ,  1 992, Depositional and diagenetic history oflimestones: stable and radiogenic 
isotopes, in Clauer, N. , and Chaudhuri, S . ,  eds . ,  Isotopic Signatures and 
Sedimentary Records: Springer-Verlag, New York, p. 13 -48. 

Vincent, E., and Berger, W.H., 1985, Carbon dioxide and polar cooling in the Miocene: 
the Monterey hypothesis, in Sundquist, E.T.,  and Broecker, W. S. ,  eds., The 
Carbon Cycle and Atmospheric C02: American Geophysical Union Monograph 32, 
p. 455-468 . 

Wada, H., and Suzuki, K. , 1983, Carbon isotopic thermometry calibrated by dolomite­
calcite solvus temperatures: Geochimica et Cosmochimica Acta, v. 47, p. 697-706. 

Wall ace, M. W., 1 990, Origin of dolomitization in the Devonian carbonates on the 
Barbwire Terrace, Canning basin, Western Australia: Sedimentology, v. 37, p. 
1 05-122. 



279 
Walker, K.R., 1 980, Introduction to the stratigraphy and paleoenvironments of the Middle 

Ordovician ofTennessee (southern Appalachians, U. S .A.), in Walker, K.R., 
Broadhead, T.W., and Keller, F.B.,  eds., Middle Ordovician carbonate shelf to 
deep water basin deposition in the southern Appalachians: The University of 
Tennessee, Studies in Geology 4, p. 4- 12 .  

Walker, K.R., ed. ,  1 985, The geologic history ofthe Thorn Hill Paleozoic section 
(Cambrian - Mississippian), eastern Tennessee: The University of Tennessee, 
Studies in Geology 10, 128 p. 

Walker, K.R. , 1 989, Petrographic criteria for interpreting the origin of pore-fillings, in 
Walker, K.R., ed. ,  The Fabric of Cements in Paleozoic Limestones: The University 
of Tennessee, Studies in Geology 20, p. 4- 10. 

Walker, K.R., Foreman, J.L., and Srinivasan, K., 1 990, The Cambrian Conasauga Group 
of Eastern Tennessee: A preliminary general stratigraphic model with a more 
detailed test for the Nolichucky Formation: Appalachian Basin Industrial 
Associates, v. 1 7, p. 1 84- 1 89. 

Walker, K.R. , Jernigan, D.G. ,  and Weber, L.J., 1 990, Petrographic criteria for the 
recognition of marine, syntaxial overgrowths and their distribution in geologic 
time: Carbonates and Evaporites, v. 5, p. 14 1 - 152. 

Walker, K.R., Shanmugam, G. , and Ruppel, S.C. ,  1983, A model for carbonate to 
terrigenous clastic sequences: Geological Society of America, Bulletin, v. 94, p. 
700-712 .  

Walter, L.M., and Burton, E.A. , 1 990, Dissolution ofrecent platform carbonate sediments 
in marine pore fluids: American Journal of Science, v. 290, p. 60 1-643 . 

Walter, M.R., 1 977, Interpreting stromatolites: American Scientist, v. 65, p. 563-571 . 
Walter, M.R., and Heys, G.R., 1 985, Links between the rise ofthe Metazoa and the 

decline of stromatolites: Precambrian Research, v. 29, p. 149- 1 74.  

Walters, L.J., Claypool, G.E., and Choquette, P.W. , 1972, Reaction rates and &018 
variation for the carbonate-phosphoric acid preparation method: Geochimica et 
Cosmochimica Acta, v. 36, p. 129-140. 

Wang, K., Geldsetzer, H.H.J., Goodfellow, W.D.,  and Krouse, H.R. , 1 996, Carbon and 
sulfur isotope anomalies across the Frasnian-Framenian extinction boundary, 
Alberta, Canada: Geology, v. 24, p. 1 87- 19 1 . 

Wang, K.,  Orth, C.J., Sttrep, M., Jr., Chatterton, B.D.E., Wang, X., and Li, J., 1993, The 
great latest Ordovician extinction on the South China Plate: Chemostratigraphic 
studies of the Ordovician-Silurian boundary interval on the Yangtze Platform: 
Palaeogeography, Palaeoclimatology, Palaeoecology, v. 104, p. 6 1 -79. 

Wanless, H.R., 1 979, Limestone response to stress: pressure solution and dolomitization: 
Journal of Sedimentary Petrology, v. 49, p. 437-462. 

Ward, W.C., and Halley, R.B. ,  1 985, Dolomitization in a mixing zone of near-seawater 
composition, Late Pleistocene, northeastern Yucatan Peninsula: Journal of 
Sedimentary Petrology, v. 55, p. 407-420. 

Warme, J.E., and Schneidermann, N., 1 983, Patch-reef cementation: Holocene of 
Enewetak Atoll and Jurassic of Morocco (abstract) : American Association of 
Petroleum Geologists Bulletin, v. 67, p. 566. 



Watts, A.B. ,  1 98 1 ,  The U. S.  Atlantic continental margin: Subsidence history, crustal 
structure, and thermal evolution, in Geology of Passive Continental Margins : 
History, Structure, and Sedimentologic Record (with Special Emphasis on the 
Atlantic Margin) : American Association ofPetroleum Geologists, Education 
Course Note Series 1 9, 75 p. 

280 

Watts, A.B. ,  1 982, Tectonic subsidence, flexure, and global changes in sealevel: Nature, v. 
297, p. 469-474. 

Watts, A.B. ,  and Thome, J., 1 984, Tectonics, global changes in sea level and their 
relationship to stratigraphical sequences at the US Atlantic continental margin: 
Marine and Petroleum Geology, v. 1 . , 3 19-339. 

Webb, E.J., 1 980, Cambrian sedimentation and structural evolution ofthe Rome trough in 
Kentucky [unpublished Ph.D. thesis] : The University of Cincinnati, Ohio, 98 p. 

Weber, L.J., 1 988, Paleoenvironmental analysis and test of stratigraphic cyclicity in the 
Nolichucky Shale and Maynardville Limestone (Upper Cambrian) in central East 
Tennessee [unpublished Ph.D. thesis] : The University of Tennessee, Knoxville, 
389 p. 

Weiss, C.P., and Wilkinson, B.H., 1 988, Holocene cementation along the central Texas 
coast: Journal of Sedimentary Petrology, v. 58, p. 468-478. 

Weissert, H. , 1 989, C-isotope stratigraphy, a monitor of paleoenvironmental change: A 
case study from the early Cretaceous: Surveys in Geophysics, v. 1 0, p. 1-6 1 .  

Wickham, S.M., and Peters, M.T. ,  1 993, High 813C Neoproterozoic carbonate rocks in 
western North America: Geology, v. 2 1 ,  p. 1 65-168.  

Wiggins, W.D.,  1986, Geochemical signatures in carbonate matrix and their relation to 
deposition and diagenesis, Pennsylvanian Marble Falls Limestone, Central Texas: 
Journal of Sedimentary Petrology, v. 56, p. 771-783 . 

Wilde, P. ,  and Berry, W.B.N., 1984, Destabilization ofthe oceanic density structure and 
its significance to marine "extinction" events: Palaeogeography, Palaeoclimatoligy, 
Palaeocology, v. 48, p. 143- 1 62. 

Wilde, P., and Berry, W.B.N., 1986, The role of oceanographic factors in the generation 
of global bio-events, in Walliser, O.H., ed. ,  Global Bio-Events: Lecture Notes in 
Earth Sciences, v. 8. ,  p.  75-9 1 .  

Wilkerson, M. S . ,  and Hsui, AT.,  1 989, Application of sediment backstripping corrections 
for basin analysis using microcomputers: Journal of Geological Education, v. 37, p. 
337-340. 

Wilkinson, B.H., Diedrich, N.W., and Drummond, C.N., 1996, Facies successions in 
peritidal carbonate sequences: Journal of Sedimentary Research, v. 66, p. 1 065-
1078. 

Wilkinson, B.H., Janecke, S.U., and Brett, C.E., 1 982, Low-magnesian calcite marine 
cement in Middle Ordovician hardgrounds from Kirkfield, Ontario : Journal of 
Sedimentary Petrology, v. 52, p. 47-57. 

Wilkinson, B.H., Owen, R.M., and Carroll, AR., 1 985, Submarine hydrothermal 
weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine 
oolites: Journal of Sedimentary Petrology, v. 55, p. 1 7 1 - 1 83 .  



Williams, H., and Hiscott, R.N., 1 987, Definition of the Iapetus rift-drift transition in 
western Newfoundland: Geology, v. 1 5, p. 1 044- 1047. 

281  

Williams, L.A. , and Crerar, D.A., 1 985, Silica diagenesis, II . General mechanisms: Journal 
of Sedimentary Petrology, v. 55, p. 3 12-32 1 .  

Winter, B.L., and Knauth, L.P., 1 992, Stable isotope geochemistry of carbonate fracture 
fills in the Monterey Formation, California: Journal of Sedimentary Petrology, v. 
62, p. 208-219 .  

Woo, K. S . ,  Anderson, T.F. , and Sandberg, P.A., 1 993, Diagenesis of skeletal and 
nonskeletal components ofMid-Cretaceous limestones: Journal of Sedimentary 
Petrology, v. 63, p. 1 8-32. 

Yang, W., Harmsen, F., and Kominz, M.A., 1995, Quantitative analysis of a cyclic 
peritidal sequence, the Middle and Upper Devonian Lost Burro Formation, Death 
Valley, California-a possible record ofMilankovitch climatic cycles: Journal of 
Sedimentary Research, v. B65, p. 306-322. 

Zenger, D.H., 1 983, Burial dolomitization in the Lost Burro Formation (Devonian), east­
central California, and the significance oflate diagenetic dolomitization: Geology, 
v. 1 1 ' p. 5 1 9-522. 

Zenger, D.H., and Dunham, J.B. ,  1988, Dolomitization of Siluro-Devonian limestones in a 
deep core (5,350 m), southeastern New Mexico, in Shukla, V., and Baker, P.B. ,  
eds., Sedimentology and Geochemistry ofDolostones: SEPM Special Publication 
43, p. 1 6 1 - 1 73 .  



282 

APPENDICES 



283 
APPENDIX A 

DESCRIPTION OF STRATIGRAPHIC SECTIONS 

This appendix contains detailed descriptions of measured stratigraphic intervals 
(Figs. 1 .4, 2. 1) .  All measured intervals or units, and collected samples are shown on 
detailed stratigraphic columns. Each stratigraphic column is accompanied by a description 
of individual units containing: 

Unit # - corresponds to the division of a measured stratigraphic succession into units as 
indicated on each stratigraphic column. 

T (m) - thickness of individual unit in meters. 

C. T. ( m) - cumulative thickness of measured stratigraphic succession. 

Description - contains the lithologic content, layer thickness, characteristics of the layer 
boundaries, color, sedimentary structure, weathering pattern, and/or any other 
characteristic feature. Samples collected are listed in ascending stratigraphic order 
within each unit. Samples in bold denote samples for which petrographic thin 
sections were made. Geochemical data also exist for some of these samples (see 
Appendices B and C). The exact stratigraphic position of each sample is indicated 
on the stratigraphic columns. 



Explanation for Stratigraphic Columns 

Scale 
Unit # � 2 1  

Unit boundary � 1 
Depositional packag4 1 
Formation boundary 

- Shale 

= Hand sample 

- Thin section/Sample for 
geochemical analysis 

I ,.....,_,._............, I Ribbon rock without shale 

I -- I Ribbon rock with shale 

I� o-;: I Fossiliferous-peloidal packstone/grainstone 

1 0 0 0 0 0 0 0 I Oolite 

I - I - 1 Dolomitized mudstone/Fine-grained couplets 
- I --- I Medium-grained couplets 

I ---
I ---

• • • 

0 0 0 
1 l 1 

ES 

HG 

Q 

Coarse-grained couplets 

Digitate stromatolite 
Columnar stromatolite 

Stacked hemispheroidal (SH) stromatolite 
Laterally linked hemispheroidal (LLH) stromatolite 
Microbial laminate (Stratiform stromatolite) 
Covered interval 
Intraclasts (Flat pebbles) 
Ooids 
Bioturbation (Burrows) 

Desiccation cracks (Mudcracks) 

Exposure surface 

Hardground 

Quartz sand grains 

For additional explanations see descriptions of individual units, and Tables 2. 1 and 2.2. 

284 



285 

Figure A.l.  Stratigraphic column measured at the Thorn Hill outcrop. 
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The Thorn Hill Outcrop (TH) 

The Thorn Hill outcrop is located along U.S .  Highway 25E, in Grainger County, 
approximately 4 miles northwest of the Clinch Mountain Outlook. The exposure dips 45° 

to the southeast and is a part of the Thorn Hill stratigraphic section contained within the 
Copper Creek thrust block. The Thorn Hill section represents one of the most complete 
and best exposed Paleozoic sedimentary successions in the southern Appalachians, ranging 
from the Lower Cambrian Rome Formation to the Lower Mississippian Grainger 
Formation (Walker 1 985). As first noted by Hall and Amick in 1 934, the Thorn Hill 
locality probably contains the best exposure of both the Maynardville Formation and the 
Knox Group in this part of the southern Appalachians. The measured stratigraphic 
interval includes the uppermost 1 8 .4 m of the underlying Nolichucky Shale, the complete 
Maynardville Formation (47.55 m), and the lowermost 30.5 m of the overlying Copper 
Ridge Dolomite of the Knox Group. 

Unit T C.T. Description 

1 

2 

(m) (m) 

6.0 

0.6 

Nolichucky Shale 
6.0 Started measuring at the first better exposed shale interval ofthe 

Nolichucky Shale. Paper-laminated, light gray, calcareous shale 
with occasionally interbedded laterally extensive, moderately to 
extensively weathered, individual skeletal (trilobite and brachiopod) 
wackestone to grainstone layers. These layers have wavy lower 
and upper bedding planes and they range in thickness from 1 to 4 
em. In the upper part of the unit, there is a 3 0  em thick 
packstone/grainstone layer with common skeletal fragments, 
micritic intraclasts (flat-pebbles) and ooids. Interbedded with shale 
are also laterally discontinuous argillaceous mudstone nodules 
variably weathered. Samples: N0.4(-18.85) (skeletal 
packstone/wackestone), N0.6 and N0.7  (skeletal packstone/ 
grainstone), N 1 .2 (very weathered coarse-grained skeletal 
limestone), N 1 .  4 (carbonate nodule), N2.3( -16.95) (skeletal 
packstone/ grainstone with some intraclasts), N 4.9( -14.35). 

6.6 Lowermost part of the unit is composed of 4-5 em thick, weathered 
carbonate layers separated by thin argillaceous siltstone layers and 
overlain by thicker shale. Wavy layer planes give a characteristic 
ribbon appearance to this basal part. The carbonate layers are 
represented by skeletal (trilobite) wackestone/grainstone with 
occasional flat-pebbles (up to 5-6 em long). The uppermost 5 em 
of the unit consist of a weathered carbonaceous siltstone layer 
overlain by nodular mudstone. Samples: N6.3A, N6.3B(-12.95), 
N6.3C, N6.3D, N6.85A, N6. 85B . 
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3 1 .7 8.3 The base of the unit is a very weathered carbonaceous siltstone 

layer, 2-3 em thick. Rare nodular mudstone with incorporated 
pockets of skeletal packstone/wackestone and scattered pyrite 

occurs in the lower part of the unit. The rest is composed of 
calcareous, light gray shale. Samples: N6.9 (carbonaceous 

siltstone), N7.1(-12.15) (nodule). 

4 0.2 8 .5  Skeletal (trilobite) packstone/ grainstone layer. Sample: N-1 0.55. 

5 1 .0 9.5 Calcareous shale. 

6 0.3 9.8 Ribbon limestone composed of fine-grained horizontally laminated, 
weathered packstone/grainstone interbedded with a more coarse-
grained skeletal (trilobites and some phosphatic brachiopods) 
packstone/grainstone and dark gray argillaceous layers. Samples: 
N-9.45A, N-9.45B. 

7 1 .0 1 0.8  Calcareous shale. 

8 0 .35 1 1 . 1 5  The unit consists of two skeletal (trilobite) packstone/grainstone 

layers. Sample: N-8.15. 

9 0 .9 12 .05 Calcareous shale. 

1 0  2 .5 14 .55 Ribbon limestone composed of carbonate layers interbedded with 
common shale. Layer thickness: 2-5 em. Carbonate layers include 
skeletal and peloidal wackestone/grainstone and less common 

mudstone layers and lenses. Skeletal fragments include trilobites 
and phosphatic brachiopods. Common clay seams and horizontally 

laminated argillaceous dolomicritic layers. Scattered framboidal 

pyrite present. Samples : N-6.75, N-6.55,  N-6.25, N-5 .6, N-5.5, N-
5.0, N-4.5 .  

1 1  0.9 1 5 .45 Calcareous shale. 

12 0.8 16 . 1 Ribbon limestone with common interbedded shale in the lower part. 
Carbonate layers are composed of medium to dark gray mudstone 

and flat-pebble conglomerate layers interbedded with skeletal 

wackestone/grainstone layers. Uppermost 1 5  em composed of one 

layer with coarse flat-pebbles (up to 7 - 8 em long) in the lower part 
grading upward into ooid-skeletal packstone/grainstone. Common 

framboidal pyrite. Samples: N-3.3, N-2.8. 

1 3  0.45 16 .55 Calcareous shale. 
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1 4  0.85 1 7.4 Ribbon limestone with very little shale incorporated. Carbonate 

layers include mudstone layers with truncated tops, and peloidal-
skeletal wackestone/grainstone. Mudstone layers have nodular 
appearance in places. Many layers are bioturbated. Scattered 
framboidal pyrite present. Base of the unit is composed of 1 5  em 
thick flat-pebble conglomerate layer. A similar layer marks the top 
of the unit. Hardground development is evidenced by the presence 
of pyrite/F e-oxide coated pebbles (micritic intraclasts). Inverse 
grading suggests debris flow. Samples: N-2. 1 ,  N-1.75, N- 1 .5 .  

1 5  1 .0 1 8 .4 Calcareous shale at the top of the Nolichucky Shale. 

Maynardville Formation 
1 6  2.3 20.7 Base of the Maynardville defined as the first thicker carbonate unit 

above the Nolichucky Shale. Ribbon rock composed of em-size 
medium to dark gray limestone layers interbedded with light gray to 
brownish argillaceous dolostone. Carbonate layers are both 
laterally discontinuous (nodular) and continuous, and are composed 
ofburrow mottled mudstone, and skeletal (trilobite, inarticulate and 
articulate brachiopods) wackestone/packstone. Carbonate layers 
have wavy, undulatory, truncational boundaries. Individual, up to 
10  em thick, intraclastic packstone/grainstone (flat-pebble 
conglomerate with pebbles up to 5 em in diameter) layers present. 
Hardground development on these layers is indicated by pyrite 
coating on intraclasts. Pyrite is common in the basal 5-10 em of the 
unit. Upper boundary at the first thin shale layer. Samples: TH-

0.4, TH-0.2, THO.O, TH0.55, THl.l, TH1 .5 .  

17  0 .65 2 1 .35 Very weathered and poorly exposed. Lower part consists of shale-
free ribbon rocks (similar to Unit 1 6) that grade upward into ribbon 
rocks comprised of carbonate layers interbedded with calcareous 
shale. Amount of shale increases upward. Carbonate layers 
composed of burrow-mottled mudstone and skeletal 
wackestone/grainstone. Horizontal and cross- lamination visible. 
Samples : TH1 . 8, TH2.15, TH2.20, TH2.35. 

1 8  1 . 9  23.25 Ribbon rock composed of carbonate layers interbedded with 
calcareous shale and siltstone. Carbonate layers are dominated by 
skeletal packstone/grainstone that occasionally grade upward into 
laminated and burrowed mudstone with common truncational upper 
boundaries. Micritic intraclasts are incorporated in the bases of 
some of the layers. Upper boundary of the unit is marked by a 
pyrite crust. Samples: TH 2.15, TH2.2, TH2.35, TH2.55, 

TH2.65, TH2.85, TH.3.0, TH3.35, TH4.2. 
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1 9  0 .  5 23 .7  5 Dark gray shale with one 5-6 em thick carbonate layer 

interbedded in the lower part. The layer consists of skeletal 
packstone/ grainstone and is characterized by a wavy lower and a 
planar upper boundary. Sample: TH4.45. 

20 2.65 26.4 Lower part composed of carbonate layers interbedded with silty 
shale. The amount of shale decreases upward. Upper part consists 
of horizontally and cross-laminated calcareous siltstone layers 
interbedded with argillaceous dolostone, mudstone and skeletal 
packstone/grainstone layers. Upper boundary marked by 5 em 
thick shale layer. Poorly exposed part of the outcrop. Samples: 
TH4.9, THS.OS, TH5.2, TH5.3 ,  TH5.35, TH5.4, TH5.65, TH5.7, 

TH6.4, TH7.2, TH7.3, TH7.35. 

2 1  3 . 9  30 .3 Lower 80 em composed oflaminated silty carbonate layers and 

22 0 .35  30 .65 

23 5 .2  35 . 85 

24 0 .3  36. 1 5  

25 1 . 5 37.65 

calcareous siltstone interbedded with shale. Upper part lacks shale 
and consists of skeletal wackestone/packstone interbedded with 
horizontally and cross- laminated calcareous siltstone and 
argillaceous dolostone. Scattered pyrite present. Uppermost part 
of the unit is very poorly exposed. Samples: TH7.5,  TH7.55, 
TH8.0, TH8.5, TH9.0, TH9.5,  TH10.05, TH10.7, TH1 1.3. 

Light gray calcareous shale. Two carbonate layers with a maximum 
thickness of2.5 em incorporated within the shale. Carbonate layers 
are characterized with skeletal lag bases and laminated muddy 
upper parts. 

Ribbon rocks composed of medium to dark gray limestone layers 
interbedded with light brownish argillaceous dolostone. Limestone 
layers include some skeletal wackestone/packstone layers in the 
lower part of the unit. Upper part ofthe unit is dominated by 
mudstone layers with some bioturbation and horizontal lamination 
visible. Scattered pyrite present. Top ofthe unit is marked by a 
intraclastic lag deposit with pyrite/Fe-oxide coated intraclasts. 
Samples: TH1 1.75, TH1 1.9, TH12.6, TH1 3 .25, TH13.45, 

TH14.0, TH14.65, TH16.75, TH1 6.9.  

Shale with some incorporated isolated lenses/nodules composed of 
carbonate mudstone. 

Ribbon rocks with gradational transition upward into microbially 
laminated deposits (microbial laminates or stratiform stromatolites). 
Limestone layers of ribbon rocks are primarily mudstone layers, 
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some of which are horizontally laminated. Less commonly skeletal 
and intraclastic wackestone/packstone lag deposits are present in 
the bases oflimestone layers. Samples: TH17.45, TH1 7.85. 

26 9.0 46.65 Microbially laminated deposits. Prominent horizontal wavy, crinkly 
lamination. Mud-cracks and small fenestrae filled with sparite 
present. The abundance of dolomicritic laminae increases upward. 
Thin (3-7 em) shale layers present in the upper part. The 
uppermost part of the unit composed of SH and LLH stromatolites. 
Top is sharp, planar, and marked by a 2 em thick shale. Samples: 
TH18.8, TH19.1, TH19.6, TH20.5, TH2 1 .2, TH22.2, TH23.45, 
TH24.35, TH25.55, TH26.0, TH26.6, TH27.0, TH27. 1 ,  TH27.2, 
TH27.4, TH27. 7. 

27 0.85 47. 5 Coarse-grained mechanical laminates or couplets. Individual 
couplets are up to 20 em thick and are composed of coarse, basal 
intraclastic deposits grading upward into mudstone. Couplet tops 
are commonly truncated. Horizontal and cross-lamination visible. 
Light gray, entirely dolomitized. A single silicified oolitic layer ( 6-7 
em thick) is present in the lower part. Common stylolites. Upper 
contact is a sharp, wavy surface with 1 0- 1 5  em of erosional relief 
and a 2-3 em thick shale. Samples: TH27.8, TH27.9, TH28.0, 
TH28.2, TH28.35. 

28 1 .0 48.5 Thrombolite in the lower 30  em. Dark gray, massive appearance. 
Some voids with sparite present. Top of the thrombolitic layer is 
sharp and wavy. Upper part ofthe unit is composed of medium 
gray, dolomitized, medium-grained couplets with some horizontal 
and cross-lamination visible. Common stylolites. Upper contact is 
sharp, slightly wavy, and marked by 2-3 em thick shale. Samples : 
TH28.6, TH29.3. 

29 1 .4 49.9 Medium-grained couplets. Light to medium gray, dolomitized. 
Horizontal lamination visible. Planar to slightly wavy couplet 
contacts with minor evidence for scouring and truncation. A thin (2 
em) shale layer present at 40 em above the base of the unit . 
Laterally discontinuous, maximum 1 0- 1 5  em thick thrombolitic 
layer is present near the unit top. Upper unit contact is sharp, 
wavy, and marked by a 4 em thick carbonaceous siltstone and shale. 
Samples: TH29.6, TH30. 7, TH30.85, TH30.9, TH30.95. 

30 0.5 50.4 Medium to fine-grained couplets. Medium to dark gray, 
dolomitized. No prominent lamination visible. Voids occluded 
with sparite and some stylolites present. Unit top is a weathered, 
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wavy surface with a 3 em thick shale. Sample: TH31.4. 

3 1  0 .7  5 1 . 1  Medium to fine-grained couplets. Medium to dark gray. Parts 
have common vugs partially filled with sparite. Common stylolites. 
Faint horizontal and cross-lamination visible. Upper unit contact is 
sharp, planar, with very thin (< 1 em) weathered shale. Samples: 
TH31.5, TH32.05, TH32.1 .  

32 0 .5  5 1 .6 Medium to fine-grained couplets. Medium gray. Individual 
couplets are not laterally continuous. Common stylolites. Layer 
thickness: 2-3 em, with a maximum of 1 0  em. Upper unit contact is 
sharp, planar, and marked by 2 em thick shale. Samples : TH32.3. 

33  0 .75 52.35 Fine-grained couplets. Light to medium gray. Common 
stylolites. Some horizontal lamination visible. Upper unit contact 
is a very prominent, sharp surface with up to 20 em of erosional 
relief and about 3 -4 em of shaly interval on topographic highs with 
some associated sphalerite. Vuggy porosity, with voids partially 
filled with calcite cement, present immediately below the erosional 
surface. Samples: TH32.9, TH33.1B, TH33.1T, TH33.55. 

34 2. 1 54.45 Fine-grained couplets to dolomitized mudstone. Light to medium 
gray. Common stylolites. Base contains deformed (brecciated and 
fractured) dark gray grainstone deposits infilling topographic lows 
of the underlying erosional surface. These deposits contain 
dolomitized angular micritic clasts, some chert fragments and silica 
cement. Uppermost part of the unit contains coarse-grained 
couplets with intraclastic bases. Upper unit contact is sharp, planar, 
with about a 5 em thick shale interval interbedded with up to 1 .  5 
em thick carbonaceous siltstone layers. Samples: TH33.4, 

TH33.45, TH34.6, TH34.65, TH35.4. 

35  3 .45 57.9 Fine-grained couplets to dolomitized mudstone with occasional 
medium-grained couplets, SH and LLH stromatolites in the lower 
part. Upper part composed of fine- to medium-grained couplets 
with some quartz sand grains incorporated near the top of the unit. 
Several thin calcareous shale layers present throughout the unit. 
Vuggy porosity related to evaporite dissolution common in parts of 
the unit. Some horizontal lamination and mud-cracks visible, as 
well as cross-lamination in the bases of medium-grained couplets. 
Upper unit contact is a prominent wavy surface marked by 1 em 
thick shale. Samples: TH35.6, TH36. 15, TH36.55, TH37.35, 

TH37.4, TH37.6, TH38. 7, TH38.85. 
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36 1 .4 59.3 Medium-grained couplets grading upward into calcareous 

siltstone. Prominent horizontal lamination, including less common 
microbial laminae. Some cross-lamination visible. Bioturbation 
and mud-cracks present as well as small voids (fenestrae and 
burrows) filled with sparite. Upper unit contact is gradational. 
Samples: TH39.05, TH39. 75, TH40.25. 

3 7  0.75 60.05 Calcareous siltstone. Light gray. Horizontally and cross-laminated. 
Trace-fossils (horizontal burrows) visible along bedding planes. 
Mud-cracks present. Some sandy (calcarenite) layers present near 
the unit base. Upper unit contact is sharp, planar and marked with 
thin shale. Samples: TH40.65, TH40. 75, TH40.95. 

3 8  0.75 60. 8  Medium-grained couplets with light gray basal parts and darker 
gray micritic upper parts. Couplet thickness ranges from 1 em to 
maximum 1 0 em, and it decreases upward with concomitant 
increase in the thickness of basal grainy portions. Couplet bases are 
sharp, planar to slightly wavy, truncational. Horizontal and cross-
lamination as well as bioturbation visible. Mud-cracks present 
along upper bedding planes in the uppermost part of the unit. 
Upper unit contact is sharp, marked by 3 em thick calcareous shale 
and siltstone. Sample: TH41.15.  

3 9  0.4 6 1 .2 Medium- to coarse-grained couplets. Cross-laminated couplet 
bases overlain by horizontally laminated upper micritic parts. Basal 
portions of couplets are up to 1 0  em thick and have sharp planar to 
slightly wavy, truncational bases. Micritic portions are much 
thinner, laterally discontinuous and in places truncated. Light to 
medium gray. Upper unit contact is sharp, planar and marked by a 
very thin (<1 em) highly weathered shale. Sample: TH41.9. 

40 0.4 6 1 . 6  Thrombolite. Dark gray. Massive appearance. Common vuggy 
porosity in the lower third of the unit. Upper unit contact is sharp 
and wavy, with wavelengths of about 1 m  and amplitude of 1 0- 1 5  
em, and is also marked by about 2 em thick shale. Some stylolites 
present. Samples: TH42.3,  TH42.45, TH42.6.  

41 0 .4 62.0 Digitate stromatolites. Dark gray. Weathered parts are reddish, 
buff in color and characterized by large vugs. Massive to mottled 
appearance. Top of digitate stromatolite is very irregular and is 
likely stylolite-related with a thin (about 1 em), weathered 
argillaceous accumulation. Uppermost 1 0- 1 5  em of the unit is 
composed of medium-grained couplets with visible lamination. 
Upper unit contact is sharp, planar and marked by a highly 



weathered, maximum 7 em thick shale. Samples: TH42. 7, 
TH42.8, TH43.0. 

42 0.45 62.45 Fine-grained couplets to dolomitized mudstone. Medium gray. 
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Stylolites present. Some lamination visible on weathered surfaces. 
Upper unit contact is weathered with stylolites and a thin ( < 1  em) 
shale present. Sample: TH43.3. 

43 1 . 3 5  63 . 8  Fine-grained couplets to dolomitized mudstone, with some 
medium-grained couplets in the middle part of the unit. Light to 
medium gray. Common stylolites. Burrow-mottling expressed as 
reddish oxidized patches throughout. Some horizontal lamination 
visible. Layer thickness ranges from 5 em to maximum 1 5-20 em. 
Layer boundaries are sharp, planar. Upper unit contact is 
prominent, sharp, slightly wavy, and marked with 1 -3 em thick 
shale. Samples: TH43.8, TH44. 75. 

44 2. 1 5  65.95 Fine-grained couplets to dolomitized mudstone. Light to medium 
gray. Layer thickness ranges from 40 em in the lower part to 5 em 
in the upper part. Layer boundaries are slightly wavy with very thin 
interbedded calcareous shale. Rare stylolites and vuggy porosity 
present. Horizontal lamination visible. An erosional surface 
characterized by up to 1 0  em of relief and a thin (about 1 em) shale 
is present in the middle part of the unit. Top of unit marked by a 1 0  
em thick, light gray, silty, calcareous shale with rare, thin (up to 1 
em) carbonate to calcareous siltstone layers. This uppermost shaly 
part of the unit has a slightly wavy base and a rather planar top 
marking the upper boundary of the Maynardville Formation. 
Samples: TH44.95, TH45.7, TH46.45, TH46.85 .  

Copper Ridge Dolomite 
45 2 .35  68 .3  Base of the Copper Ridge Dolomite placed at the base of the first 

thicker unit with massive appearance. Medium- to fine-grained 
couplets, exhibiting some horizontal and cross-lamination, and with 
rare, thin (<I em), wavy shale layers, present in the lowermost and 
the uppermost parts of the unit. Central part of the unit has more 
massive appearance, common stylolites, and some vuggy porosity. 
Close examination of samples reveals the presence of a thrombolitic 
layer overlying the basal couplets, which is in tum overlain by LLH 
stromatolites and a silicified oolite layer with a maximum thickness 
of about 1 0  em. Overlying the oolite are digitate and LLH 
stromatolites. Medium to dark gray in color. Upper unit boundary 

is planar to slightly wavy and is marked by a 2 em thick shale. 

Samples: TH47.1, TH47.65, TH47.7, TH47.8, TH47.85, TH48. 1 ,  
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TH48. 1 5, TH48.9, TH49.25, TH49.3 5 .  

46 0 .7 69.0 Fine-grained couplets to dolomitized mudstone. Medium to dark 
gray. Some horizontal lamination and mottling related to 
bioturbation visible. Common stylolites and vuggy porosity 
partially filled with spar cement. Upper unit boundary is slightly 
wavy and marked by a thin (about 1 em) shale. Samples: TH49.4, 
TH50.0. 

47 1 . 1  70. 1 Fine-grained couplets interbedded with LLH stromatolites in the 
lower part. Horizontal lamination visible. Layer boundaries are 
wavy, irregular, and the layers are separated by thin shale. Upper 
part of the unit is composed of medium- to fine-grained couplets 
with common quartz sand grains. Stylolites and vuggy porosity are 
common in this part of the unit. Upper unit boundary is a 
prominent surface characterized by irregular erosional topography 
and the deposition of a maximum 5 em thick shale. Samples: 
TH50. 15 ,  TH50.35, TH50.5, TH50.7, TH51.0. 

48 1 . 1  7 1 .2 Medium- to fine-grained couplets with some thin (3-5 mm) oolites 
as couplet bases. Minimum layer thickness is 20-40 em. 
Horizontal- and cross-laminations visible. Common stylolites and 
vuggy porosity. Upper unit boundary is sharp, slightly wavy, and 
characterized by a thin shaly interval. Samples: TH51.2, TH51. 75, 
TH5 1 .9, TH5 1 .95, TH52.25. 

49 0.8 72.0 Thrombolite overlain by a silicified oolite layer. Medium to dark 
gray. Massive appearance. Common vuggy porosity. Extensively 
weathered. Some stylolites with argillaceous styloccumulate 
present. Upper unit boundary is a very prominent, slightly wavy 
surface, marked with 2-3 em thick shale. Samples: TH52.3, 
TH52.35, TH52.75, TH52.9, TH52.95, TH53.05 .  

50 0.45 72.45 Calcareous siltstone interbedded with medium- to fine-grained 
couplets and microbially laminated deposits (stratiform 
stromatolites). Horizontal lamination prominent throughout. 
Medium gray. Upper boundary is sharp, planar, and marked by 2-3 
em thick shale. Samples: TH53.1 ,  TH53.25, TH53 . 35 .  

5 1  0.45 72.9 Medium- to fine-grained couplets interbedded with some microbial 
laminae (stratiform stromatolites). Medium to darker gray. Upper 
contact planar. Sample: TH53.9. 

52 0.9 73 .8  Digitate stromatolite originated on medium to  coarse-grained 
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54 4 . 8  79.05 

55 1 .2 80.25 

56 1 .05 8 1 . 3 
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couplets with intraclastic lag deposits in couplet bases. Massive 
appearance. Dark gray. Common stylolites and vugs partially filled 
with sparite. Upper contact characterized by a sharp surface with 
broad wavy, synoptic relief producing mound-like, biohermal 
appearance. Samples: TH54.0, TH54.2, TH54.4, TH54.6. 

Carbonaceous siltstone interbedded with medium- to coarse-
grained couplets. Medium to dark gray. Some weathered 
carbonaceous shale present in the lower part. A maximum layer 
thickness is 1 0  em. Stylolites visible in the upper part. Upper 
contact planar. Sample: TH54.8, TH55.25. 

Coarse- to medium-grained couplets in the lower part, overlain by a 
thrombolitic deposit. The remainder of the unit composed primarily 
of dolomitized mudstone and fine-grained couplets with less 
common medium-grained couplets. Layer thickness ranges from 
1 5-20 em to more massive appearance. Horizontal lamination and 
some burrow(?)-mottling visible. Stylolites common in the upper 
part. Occasional thin calcareous shale interbeds. Vuggy porosity 
common in parts of the unit which are also commonly weathered to 
chalky material, white to reddish-buff in color. The most 
extensively weathered part of the unit, with large (>50 em) 
dissolutional voids, is indicated as covered interval on the 
stratigraphic column. The uppermost part of the unit contains an 
individual ooid grainstone layer. Upper unit contact is weathered, 
irregular, wavy surface marked with about 5 em thick shale. 
Samples: TH55.4, TH56.05, TH56.8, TH57.25, TH58.15, 

TH59.35, TH60.05. 

Microbial laminates overlain by medium- to fine-grained couplets. 
Calcareous shale and siltstone interbeds (3-7 em thick) present in 
the central part of the unit. Prominent horizontal lamination, both 
microbial, crinkly in the lower part, and physical, planar in the 
upper part of the unit. Layer thickness ranges from 1 to 20 em and 
it increases upward. Upper unit contact is sharp, planar, and 
marked by 2-3 em thick shale. Samples: TH60.4, TH60.6, 
TH60.95.  

Fine-grained couplets to dolomitized mudstone. Light gray to 
darker gray in the upper part. Horizontal lamination present. Rare 
carbonaceous silty shale interbedded in the lower part. Layer 
thickness ranges from 2-3 em to maximum 1 0- 1 5  em. Upper unit 
contact is marked by a prominent irregular, wavy stylolite and 2-3 
em thick shale. Sample: TH61.4. 
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57 1 .3 82 .6 Thrombolite overlain with medium- to fine-grained couplets. 

Highly weathered. Light to medium gray. Thrombolite is 
characterized by massive appearance, vuggy porosity, and common 
stylolites. Top of the thrombolite layer is a prominent wavy, 
irregular surface, along which extensive weathering and dissolution 
occurred as evidenced by the presence of large dissolutional voids. 
Upper part of the unit contains laterally discontinuous couplets and 
common stylolites along which weathering is the most prominent. 
Some mottling likely due to bioturbation visible. Uppermost 1 0  em 
consists of thin bedded silty carbonate layers interbedded with 
calcareous shale. Upper unit contact is planar to slightly wavy. 
Samples: TH62.45, TH63 . 3 5, TH63.5. 

58 0 .9 83 .5  Thrombolite capped by medium- to fine-grained couplets. Vuggy 
porosity present within the thrombolitic deposit whose top is a 
wavy surface with mound-like, biohermal shape. Overlying 
lithology is thin-bedded with layers averaging 1 -2 em in thickness. 
Upper unit contact is sharp, wavy. Sample: TH63. 7 .  

5 9  0 . 5  84.0  Ooid grainstone comprising 2-3 layers ranging in  thickness from 5 
to 25 em. Layer boundaries are wavy and layer thickness varies 
laterally. Dark gray individual ooids, composite ooids, and em-size 
angular clasts composed of ooid grainstone are surrounded with 
white dolomitic sparite. Upper unit contact is sharp, wavy. 
Sample: TH64.6. 

60 0.25 84.25 Thrombolite overlain by fine- to medium-grained couplets. 
Thrombolite is dark gray to brown in color, and contains many vugs 
both partially and completely infilled with sparite. Top of the 
thrombolite is an irregular contact, represented in places by a 
stylolite and marked by some reddening of the underlying deposits. 
Overlying couplets are darker gray. Upper unit contact is sharp, 
planar. Samples: TH65.0, TH65 . 1 ,  TH65 . 1 5, TH65.3. 

6 1  0 . 7  84.95 Fine-grained couplets overlain by ooid grainstone. Layer thickness 
1 5  to 20 em. Layer boundaries sharp, planar to slightly wavy. 
Horizontal lamination and stylolites are visible in the basal layer 
composed of couplets. The contact between couplets and oolite is 
sharp, planar and marked by 1 em thick shale. Oolitic lithofacies 
contains common vugs partially or completely filled with cement. 
In part more thinly bedded with maximum layer thickness reaching 
about 6 em. Layers have very irregular, wavy contacts and they 

pinch and swell laterally. Upper unit contact is sharp, planar. 
Samples: TH65 .35,  TH65 .45, TH65.55, TH6 5 . 7 .  
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62 0.85 85 .8 Carbonaceous siltstone overlain by medium-grained couplets 

and ooid grainstone. The lowermost part is thinly bedded 
(maximum layer thickness 2 em). Layer boundaries are very 
irregular, wavy and marked with common trace fossils (horizontal 
burrows). This silty deposit gradually grades upward into 1 0- 1 3  
em thick layers composed of couplets, which in tum grade upward 
into oolitic deposits. The uppermost part of the unit has reddish, 
buff coloration due to weathering. Layer thickness reaches a 
maximum of 5 em, and layer boundaries are irregular, wavy, with 
some thin shale interbedded. Cross-lamination is visible. Unit top 
is wavy, marked by a thin shaly interval. Samples: TH66. 1 ,  
TH66.25, TH66.4, TH66.6, TH66 .7. 

63 0.5 86.3 Medium- to fine-grained couplets with occasional SH stromatolites 
in the base. Thick bedded to massive appearance. Couplets are 
light gray, whereas stromatolite heads are darker gray. Couplets 
have truncational bases and cross-laminated basal deposits. Upper 
parts of couplets exhibit horizontal lamination with planar to 
slightly wavy laminae. Unit top is not exposed. Samples: TH66.9, 

TH67.0, TH67.25. 

0 .6 86.9 Covered interval. 

64 0.4 87.3 Burrowed dolomitized mudstone to fine-grained couplets. Mottled, 
light to medium gray in color. Faint horizontal lamination visible. 
Unit top planar. Sample: TH68.35. 

65 0.5 87.8 Thrombolite. Massive appearance. Mottled, light to dark gray in 
color. Common vuggy porosity. Dolomitized and partially 
silicified. Unit top is sharp, slightly undulatory. Sample: TH68. 75. 

66 0 .55 88 .35 Medium- to fine-grained couplets. Massive, burrow-mottled 
appearance. Some horizontal lamination visible. Certain layers 
have common vuggy porosity related to evaporite dissolution voids. 
Unit top is sharp, slightly wavy. Sample: TH69.3 . 

67 0.95 89.3 Thrombolite overlain by silicified LLH stromatolites and medium-
to fine-grained couplets. Thrombolite has characteristic massive, 
mottled appearance. Top of the thrombolitic layer is marked by 
laminated crust representing silicified stromatolites. The uppermost 
part of the unit contains common evaporite molds and exhibits 
some planar to wavy horizontal lamination. Maximum layer 
thickness 1 5  em. Top is poorly exposed. Sample: TH70.2. 
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68 0 .7 90.0 Thrombolite overlain with stromatolites. Thrombolite is dark 

gray in color and has characteristic mottled appearance. It is 
extensively dolomitized, with dolomite cement filled voids, and is 
partially silicified. Upper part of the unit is medium to dark gray 
and is composed primarily ofLLH stromatolites with occasional SH 
to columnar stromatolite head with low relief Unit top is poorly 
exposed but the unit overall has a biohermal shape. Samples: 
TH70.4, TH7 1 .0. 

69 0.45 90.45 Medium-grained couplets comprising an individual, medium to dark 
gray layer with rare vuggy porosity partially or completely filled 
with dolomite cement. Burrow-mottled appearance. Iron-oxides 
coated clasts present in some of the couplet bases. Unit top is 
poorly exposed. Sample: TH71.45. 

70 0.65 9 1 . 1  SH stromatolites overlain by fine- to medium grained couplets. 
Dark to medium gray microbial deposits from the base of the unit 
have biohermal shape and pinch out laterally. Couplets from the 
upper part are up to 3 em thick and comprise layers of maximum 
thickness of 20 em. Unit top is poorly exposed. Samples: 
TH71 .55, TH71 .8 .  

7 1  0 . 5  9 1 .6 Thrombolite overlain by fine- to medium-grained couplets. Poorly 
exposed. Thrombolite has a characteristic massive, mottled 
appearance, and some vuggy porosity. Overlying couplets have 
truncated, slightly burrow-mottled tops. Iron-oxide staining visible 
along couplet contacts. Couplet bases are partially silicified. 
Sample: TH72.55. 

72 0 .7 92.3  Dolomitized mudstone to fine-grained couplets. Poorly exposed. 
Rare horizontal lamination and burrow-mottling. Layer thickness 
5-20 em. Light to medium gray. Unit top, containing em-scale 
carbonate layers with thin interbedded shale is extensively 
weathered. Sample: TH73.25. 

73 0.95 93 .25 Dolomitized mudstone to fine-grained couplets. Dark gray base, 
lighter gray upper part. Patches ofFe-oxide present. Faint 
horizontal lamination visible. A thin silicified crust, without visible 
lamination, separates the uppermost layer which contains couplets 
with rather wavy, disturbed lamination as a result of bioturbation, 
compaction, and stylolitization. Samples: TH73.4, TH73 . 8, 
TH74.15 .  

74 1 . 3 94.55 Thrombolite overlain with LLH stromatolites. Thrombolitic body is 
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dark gray in color, and is composed of undulatory layers 
ranging in thickness from 5 em to maximum 20-30 em. Common 
vuggy porosity. The overlying stromatolites comprise a single 
layer with prominent wavy lamination. Sample: TH75 . 1 .  

96.45 Thrombolite in the lower part. Massive appearance. Partially 
silicified columnar stromatolites in the upper part. The rest of the 
Copper Ridge Dolomite was not measured. 
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Figure A.2. Stratigraphic column measured at the River Ridge outcrop. 
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The River Ridge Outcrop (RR) 

The River Ridge locality is within the Clinchport thrust sheet in Clairborne County, 
approximately 3 miles northwest of the Thorn Hill locality along U. S.  Highway 25E. At 
this locality parts of the Maynardville Formation are exposed on both sides of the 
highway. Exposures along the eastern side of the road are described in greater detail and 
were sampled. The lower part of the Maynardville comprising the subtidal depositional 
package, however, is better exposed on the western side of the road. This part of the 
succession was also measured and only briefly described. For the purpose of comparison, 
the two measured stratigraphic columns of the subtidal package are illustrated one next to 
another on Figure A.2. The columns are hung at the contact with the overlying peritidal 
depositional package marked by the first occurrence of microbially laminated deposits. 
Part of the peritidal depositional package of the Maynardville is repeated due to faulting. 
The fault is not exposed. The repeated parts of the stratigraphic successions are 
reconstructed and compared on Figure A.2. Figure 2. 1 contains a composite stratigraphic 
section comprised of the subtidal depositional package measured at the western side of the 
road, and the uppermost part of the succession that contains the more completely exposed 
part of the Maynardville Formation overlying the fault zone. The lower part of the 
Copper Ridge Dolomite is not exposed at this locality (see Figure 2. 1) .  

Unit T C.T. 

{m) {m) 

1 2 .8  2 .8 

2 1 . 1  3 .9 

3 4 .8  8 .7  

Description 

Eastern side of the road: Maynardville Formation 
Base of the Maynardville is placed at the base of the first exposed 
carbonate unit overlying a poorly exposed interval representing the 
shale deposits of the uppermost Nolichucky Shale. This basal unit 
consists of ribbon laminated limestone. Medium gray with brownish 
argillaceous dolomitic portions. Skeletal (trilobites) lag deposits 
are present in basal parts of carbonate interlayers. Upper muddy 
parts of limestone layers are occasionally burrow-mottled. Flat 
pebbles are present within several layers (maximum 1 0  em thick) . 
These flat pebble conglomerate layers show normal grading. Pyrite 
is present. Upper unit boundary is a sharp, slightly wavy layer 
boundary overlain by shale. Samples: RRO.O, RR1.2, RR1.4, 
RR2.7. 

Shale. Light gray. Poorly exposed. No interbedded carbonate 
layers were observed. 

Ribbon limestone. Unit base is a sharp, slightly wavy surface. 
Pyrite is common near the base of the unit. Carbonate layers 
containing coarse-grained, intraclastic basal lag deposits, grading 
upward into mudstone, present in the lower part of the unit. 
Limestone layers in the remaining part of the unit are dominated by 
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mudstone interbedded with some fossiliferous (trilobite) 
wackestone to grainstone. Ribbon rocks from the uppermost part 
of the unit contain some thin interbedded shale as well as some 
intraclastic lag deposits with intraclasts, reaching a maximum length 
of3 ern, and skeletal fragments. Weathered pyrite coatings and 
crusts, typical of marine hardgrounds, are present in this part of the 
succession. Samples: RR3 .9, RR4.0, RRS.l ,  RR8.4. 

14. 1 Poorly exposed ribbon rocks interbedded with shaly intervals. 
Carbonate layers pinch and swell laterally, reaching a maximum 
thickness of about 5 em, and giving this unit a nodular appearance 
in places. Common fossiliferous (trilobite) packstone/grainstone 
layers, with some incorporated intraclasts (up to 1 em in diameter), 
grading upward into mudstone layers. Cross-stratification present 
in the basal grainy deposits, whereas horizontal lamination is visible 
in the upper muddy deposits of some of the carbonate layers. 
Extensive bioturbation observed in parts ofthe unit. Scattered 
pyrite present. Some trace fossils and trilobite fragments can be 
observed along bedding planes of argillaceous layers. Samples: 

RR8.9, RR9. 1 ,  RRlO.O, RR1 1.8, RR12.5, RR13 .2, RR13.9, 

RR14.0. 

5 .  0 1 9. 1 Covered interval due to a road leading to a nearby house. It is 
impossible to precisely determine the thickness of this covered 
interval. Some ribbon limestone is present at the unpaved road 
surface as well as in a ditch on a southern side ofthe road. 

5 3 .35  22.45 Ribbon limestone. Some intraclasts present near the base of the 
unit. Limestone layers dominated by fine-grained 
wackestone/packstone and mudstone layers. Bioturbation common 
in places. Some cross-stratification and horizontal lamination 
present. Unit top marked by a thin shale interval. Sample: RR2 1 .6 .  

6 1 .4 23 .85 Transition from ribbon limestone into microbial (cryptalgal) 
laminates (see Fig. 2 .2C). Ribbon rocks from the lower part of the 
unit are composed primarily of fine-grained, micritic carbonate 
layers (up to 2-3 em thick) interbedded with argillaceous layers 
(maximum 1 .5-2 em thick) . Some bioturbation present. Wavy, 
crinkly microbial lamination and desiccation cracks apparent in the 
upper part of the unit. Small fenestrae and/or burrows filled with 
sparite observed within transitional and microbial deposits. Pyrite 
present. Unit top is a sharp, slightly wavy surface, marked by a thin 

shaly interval. Samples: RR22.45, RR23.45. 
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7 3 .9 27.75 Microbial ( cryptalgal) laminates. Light to medium gray. 

Characteristic horizontal crinkly, wavy microbial lamination visible 
throughout the unit. Common prominent vertical desiccation 
cracks (see Fig. 2.2D). Unit top is sharp, planar and marked by a 
thin shale. Samples: RR23 .9, RR25 .3 ,  RR26.35 .  

8 1 . 1 5  28.9 Thrombolitic bioherm with planar base and synoptic relief Medium 
to dark gray/brownish. Very porous and weathered. Upper 
boundary of the bioherm is gradual or is represented by a sharp, 
wavy surface, marked with a thin shale. Light gray microbial 
( cryptalgal) laminates overlie thrombolite. Characteristic microbial 
lamination visible. Unit top is sharp, planar, and marked with a thin 
shale. Samples: RR27.75, RR28.05, RR28.35. 

9 1 . 9 30 .8 Microbial ( cryptalgal) laminates. Light to medium gray/brownish. 
Prominent horizontal, crinkly lamination and some mudcracks. 
Some laminae contain incorporated intraclasts. The uppermost part 
of the unit contains some mechanical laminates or couplets 
separated from the underlying microbial deposits by a thin shale 
layer. Unit top is sharp, planar and marked with a thin shale. 
Samples: RR30. 1 ,  RR30.55, RR30.6 . 

1 0  1 .0 3 1 . 8 Digitate stromatolite bioherm. Medium to dark gray. Base is very 
weathered and may contain some thrombolites. Unit top is poorly 
exposed, characterized by synoptic relief, and a maximum of 5 em 
thick shale interval. Samples: RR30.8, RR31.4, RR31. 75. 

1 1  0 .6  32.4 Fine-grained dolomitized couplets. Light gray. Bed thickness: 1 5-
25 em. Planar, horizontal lamination and stylolites present. Some 
crinkly microbial laminae are also visible. Unit top is a sharp, 
undulatory surface, marked with 2-3 em thick shale. Samples: 
RR3 1 .8, RR32.2, RR32.3, RR32.35 .  

12  0 . 7  3 3 . 1 Stromatolitic hemispheroids (SH stromatolites) overlain by 
stratiform stromatolites (microbial laminates) and some fine-grained 
couplets. Stromatolitic hemispheroids reach 20-30 em in diameter 
and about 1 5  em in height (see Fig. 6. 1E) . Characteristic microbial, 
crinkly lamination visible. Pyrite present. Upper unit boundary is 
sharp and marked by 3-4 em thick shale. Samples: RR32.4, 
RR33.0 . 

1 3  1 .45 34.55 Thrombolite and digitate stromatolite bioherms overlain by fine-
grained couplets to dolomitized mudstone. Medium gray. Basal 
thrombolite is extensively weathered. Common vuggy porosity and 
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some stylolites. The thickness of microbial bioherms varies 
laterally. Upper part of the unit is also weathered and not well 
exposed. Samples: RR33.15, RR33 .2, RR34.0, RR34.15, 

RR34.3, 

1 4  2. 1 5  36 .7 Similar to previous unit. Microbial (predominantly digitate 
stromatolite, and some thrombolite) bioherms of variable lateral 
thickness, overlain by medium- to fine-grained couplets. Microbial 
deposits have mottled appearance, whereas some planar, horizontal 
lamination is associated with couplets. Structural deformation 
(fracturing) present. Samples: RR35.3 ,  RR35.9, RR36. 1 ,  RR36.5 .  

1 5  2.2 38 .9  Poorly exposed (partially covered) interval. Lower part consists of 
microbial (thrombolitic) deposit. Medium gray. Massive, mottled 
appearance. Middle part of the unit is covered. The uppermost 
part of the unit consists of highly fractured, light gray, dolomitized, 
fine-grained couplets. Sample: RR38.85 .  

16  2 .45 4 1 . 35 Poorly exposed and structurally deformed interval composed 
primarily of dolomitized medium-grained couplets and with some 
coarse-grained couplets at the unit base. Medium to light gray. 
Intraclasts, and some ooids present in basal parts of coarse-grained 
couplets. Rare vuggy porosity present. Sharp, planar (some 
truncational) bases, cross-stratification, and planar, horizontal 
lamination, typical of mechanical laminates (couplets), can be 
observed. Unit top is highly weathered. The uppermost part is not 
exposed. Observed structural deformation is related to faulting, 
and this poorly exposed interval represents a fault zone above 
which the stratigraphic succession is partially repeated. Samples: 
RR39.05, RR39.6, RR39.75, RR40.35, RR40.55, RR40.95 . 

1 7  1 . 8 43 . 1 5  Microbial ( cryptalgal) laminates. Substantial structural 
deformation complicates the stratigraphy. This unit seemed to 
represent the first exposed interval overlying the poorly exposed/ 
covered fault zone interval. However, in one part of the outcrop, 
the unit is underlain by a maximum of 1 .  5 to 1 .  7 m of ribbon 
limestone which was then used to reconstruct the repetition of 
stratigraphic section due to faulting (see Fig. A.2) . Structural 
deformation (folding and faulting) of microbially laminated deposits 
is obvious in this part ofthe succession. Some pyrite present. Unit 
top is marked by a thin shale. Samples : RR4 1 .4, RR42.55, 
RR42.65. 

1 8  6 .35 49.5  Microbial ( cryptalgal) laminates. Light to medium gray/brown. 
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Characteristic crinkly lamination, some mudcracks, incorporated 
micritic intraclasts and small fenestrae are visible. Lower part of 
the unit is deformed (fractures, small-scale faults and folds are 
present). Layer thickness ranges from several mm to about 50 em. 
Unit top is sharp, marked by 2 em thick shale. Samples: RR43.5, 
RR44.85, RR45.65, RR46.35, RR48.1, RR49.0. 

1 9  1 .2 50 .7 Thrombolite overlain by microbial laminates. Thrombolite is 
characterized by mottled fabric and common vuggy porosity. In 
places it grades upward and possibly laterally into digitate 
stromatolite. Characteristic fabric is not readily observed and 
distinction between the two is difficult in the field. Transition into 
overlying laminated deposits is gradual. Horizontal microbial 
lamination visible in the upper part of the unit. Layer thickness 
ranges from several mm to 10- 15  em. Medium gray. Upper unit 
contact is highly weathered. Samples: RR49.5, RR49.85, RRSO. l,  

RR50.35. 

20 1 . 85 52.55 Microbial ( cryptalgal) laminates. Medium gray. Horizontal, 
crinkly, microbial lamination is readily observable. Minor 
incorporated intraclasts and desiccation cracks are present. Layer 
boundaries are sharp, planar. Unit top is marked by about 5 em 
thick, weathered shaly interval. Samples: RR50.7, RR50.0, 
RR52.3. 

2 1  1 .05 53 .6  Digitate stromatolite bioherm. Massive, mottled appearance (some 
mottling may be related to bioturbation). Rare vuggy porosity. 
Stromatolite digits are darker gray; interdigitate deposits are lighter 
gray in color. Parts of the unit, without prominent microbial digits, 
resemble thrombolite. Unit top is a sharp, undulatory surface. 
Samples: RR52.65, RR52.85, RR53.3, RR53.5.  

22 0.6 54.2 Consists of two layers that vary laterally in thickness from 20-40 
em each. The lower layer is composed predominantly of fine- and 
some medium-grained couplets. Planar, horizontal lamination and 
some cross-lamination present. The upper layer contains wavy 
microbial lamination characteristic ofLLH stromatolites. Unit top 
is a wavy surface characterized by about 5 em thick weathered 
shale. Samples: RR53 .6, RR54. 1 ,  RR54. 1 5 .  

23 0.9 55 . 1 Alternation of SH, LLH and some stratiform (microbial laminate) 
stromatolites. Characteristic microbial lamination is prominent. 
Stromatolite hemispheroids reach a maximum height of about 5 em. 
Small fenestrae and desiccation cracks visible. Small (maximum 20 
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25 1 . 3 58.4 

26 1 .4 59.8 

27 1 . 1  60.9  
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em high) digitate stromatolite bioherm in the uppermost part of 
the unit. Unit top is a sharp, undulatory surface. Samples: 
RR54.4, RR54.95. 

Microbial deposits overlain by mechanical laminates. Thrombolite 
to digitate stromatolite bioherm present at the base of the unit. 
Mottled appearance. Thickness of these microbial deposits varies 
laterally. Some burrows present. The overlying mechanical 
laminates are dominated by medium-grained and rare coarse-
grained couplets. Light to medium gray. Maximum couplet 
thickness: 5 em. Couplet bases are commonly truncational. 
Couplet tops are occasionally burrowed. Several prominent 
stylolites present. Unit top is sharp, slightly undulatory, and 
marked by a thin shale. Samples: RR55.1,  RR55 .6, RR56.6, 
RR57.0. 

Similar to underlying unit: digitate stromatolite at the base, 
overlain by medium-grained couplets. Stromatolitic bioherm varies 
laterally in thickness from 1 5  to 50 em. Some horizontal to wavy 
lamination visible in the upper part of the unit, as well as common 
vuggy pores related to evaporite molds and nodules (up to 2 em in 
diameter). Unit top is sharp, irregular, wavy, associated with a 
large stylolite. Samples: RR57.1,  RR58.2. 

Medium- to coarse-grained couplets. Medium gray. Burrow-
mottled in places. Similar to underlying unit, but contains less 
common evidence for evaporites. Massive layering; laterally splits 
into 3-4 layers with planar to undulatory boundaries. Cross-
stratification and horizontal lamination visible. These sedimentary 
structures are more prominent in the upper part of the unit which 
also contains common coarse-grained intraclastic (lag) deposits 
comprising couplet bases. Intraclasts are most commonly 3 -5 mm 
in diameter; the largest are about 2 em long. Some stylolites 
present. Unit top is poorly exposed. Samples: RR58.4, RR59 . 1 ,  
RR59.3, RR59.6 .  

Microbial deposits overlain by mechanical laminates. Basal part is 
very weathered. The lower 80 em of the unit consists primarily of a 
digitate stromatolite bioherm with some thrombolite present. 
Microbial deposits are characterized by mottled fabric and vuggy 
porosity. The remaining part of the unit is composed of medium-
to coarse-grained couplets, characterized by cross-laminated basal 
parts and horizontally laminated upper parts which are commonly 
truncated by the basal deposits of the overlying couplets. Some of 
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the coarse-grained basal couplet deposits are partially silicified, and 
contain intraclasts up to 5-7 em long. Thin calcareous shale 
intervals are present in the uppermost part of the unit. Unit top is 
poorly exposed. Samples : RR60.2, RR60.25, RR60.3, RR60.75 .  

28 1 . 05 61 .95 Microbial deposit overlain by mechanical laminates. Microbial 
deposits comprise the lower, highly weathered and porous 40 em of 
the unit, and consists of digitate stromatolite and some thrombolite. 
Upper boundary of the microbial deposit is a sharp, slightly 
undulatory surface, that may have been marked by thin shale but is 
now completely weathered. The upper unit part consists of 
medium- to coarse-grained couplets. Cross-stratification and 
horizontal lamination present. Intraclasts are present in the bases of 
some couplets, and reach up to 2-6 em in length. Several thin (up 
to 2 mm) calcareous shale interbedded with couplets in the upper 
part ofthe unit. Unit top is a sharp, undulatory surface. Samples: 
RR61.05, RR6 1 .2, RR61.9. 

29 0 .55 62. 5  Oolite overlain by medium-grained couplets. The basal oolite is 
composed of several 3-4 em thick, undulatory, dark gray ooid 
grainstone layers which also contains some micritic intraclasts (up 
to 6 mm in diameter). It grades upward into light gray to brownish 
dolomitized couplet deposits characterized by common vuggy 
porosity related to evaporite molds and nodules. Couplet bases 
contain ooids and some quartz sand grains. Some stylolite, 
horizontal lamination and rare cross-lamination visible. Uppermost 
part of the unit contains thin (maximum layer thickness: 2 em), 
undulatory, silty to arrenaceous carbonate layers. Unit top is not 
exposed. Samples: RR61 .95, RR62.2, RR62.25, RR62.35. 

30 0.4 62.9 Predominantly medium-grained couplets with some fine-grained 
couplets in the upper part. Light to medium gray. Very poorly 
exposed. Lower part is similar to silty to arrenaceous couplets of 
the uppermost part of the underlying unit. Couplet bases contain 
ooids, small intraclasts, and quartz sand grains. Planar horizontal 
laminations visible in the upper part of the unit together with some 
vuggs (evaporite nodules). Couplet thickness: several mrn to about 
1 em. Upper unit contact is a sharp, planar layer surface. Samples: 
RR62.55, RR62.85.  

3 1  1 .0 63 . 9  Medium-grained dolomitized couplets. Grainy couplet bases are 
darker gray, occasionally cross-laminated, and contain ooids and 
quartz grains. Muddy couplet tops are lighter gray. Couplet 
boundaries are sharp, planar, truncational surfaces. Couplet 
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thickness ranges from several mm to 2-3 em. Layer thickness: 
10-30 em. Unit top is a sharp, planar surface. Samples: RR63 .0, 
RR63 .7. 

3 2 1 .  4 65 . 3  Calcareous siltstone, sandstone and shale. Light gray to brownish. 
Very weathered. Undulatory layers range in thickness from several 
mm to 7-8 em. Trace fossils and desiccation cracks visible along 
bedding planes. Small vugs (fenestrae, burrows?) present. 
Horizontal and cross-lamination visible. Some micritic, angular 
intraclast present at the base of the unit. Unit top is weathered, 
slightly undulatory. Samples: RR64.05, RR64.5, RR65.05. 

33  0 .35  65 .65 Medium-grained dolomitized couplets overlain by microbial 
deposits. Light to medium gray/brownish. Horizontal and cross­
lamination visible in the lower part. Small micritic intraclasts 
present in couplet bases. Couplet tops contain microbially 
laminated deposits which are occasionally silicified and make 2-3 
mm thick silicified crusts. Chert also occurs in small nodules. 
Fabric of microbial deposits in the upper part is obscured by 
extensive dolomitization. Microbial lamination is well preserved in 
partially silicified deposits. Unit top is an undulatory, weathered 
surface. Samples: RR65.45, RR65.5, RR65.6. 

34 0.65 66.3 Microbial bioherm overlain by medium-grained couplets. Microbial 
deposits are dark gray, very porous, extensively weathered, and 
consist of digitate stromatolite and some thrombolite. The 
overlying couplets are light to medium gray/brownish, have 
truncational bases, and exhibit common planar, horizontal 
lamination and rare cross-stratification. Couplet thickness ranges 
from several mm to about 2 em. Some stylolites present. Unit top 
is a sharp, slightly undulatory surface. Samples: RR65. 7, RR66.0. 

35 1 . 85 68. 1 5  Medium to fine-grained dolomitized couplets interbedded with 
microbial deposits in the middle part of the unit. Poorly exposed. 
Medium to dark gray. Characteristic lamination and truncational 
bases visible in the couplet deposits from the lower part of the unit. 
Microbial deposits consist of dolomitized and partially silicified SH, 
LLH and some stratiform (microbial laminate) stromatolites. 
Characteristic microbial lamination, small fenestrae and mudcracks 
visible. Couplets in the upper part of the unit are in part burrow(?) 
mottled, contain common vuggs representing evaporite molds and 
nodules, and some stylolites. Most of the upper part of the unit is 
covered. The uppermost 10 em is poorly exposed and highly 
weathered. It consists of burrow(?) mottled dolomitized mudstone. 
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Unit top is weathered and slightly undulatory. Samples : RR66.8, 
RR67. 1 5, RR67.55,  RR68.05. 

3 6  0. 7 68.85 Dolomitized medium- to fine-grained couplets. Medium gray. 
Massive, in places have a mottled appearance. Some planar, 
horizontal lamination and stylolites are present. Common vuggs 
(evaporite nodules?), up to 3 em in diameter. Unit top is poorly 
exposed and slightly undulatory. Sample: RR68.35 .  

37  0 .55 69.4 Dolomitized medium- to fine-grained couplets comprise two layers 

Unit T C.T. 
(m} (m} 

1 3 .6  3 .6  

1 . 1  4 .7  

2 3 . 1 7 .8  

3 1 . 7  9 .5  

4 1 . 5 1 1 .0 

5 0.8 1 1 . 8 

(20 and 3 5  em thick). Medium to dark gray. Poorly exposed. 
Some planar, horizontal lamination visible. Unit top is not exposed. 
The rest ofthe succession is covered. 

Description 

Western side ofthe road: Maynardville Formation 
Ribbon limestone overlying a covered to poorly exposed shale 
interval ofthe uppermost Nolichucky Shale. Lower 60 em of the 
unit contains interbedded shale interlayers and is substantially 
weathered. Evidence for bioturbation present in the lower half of 
the unit. One 1 0  em-thick flat-pebble conglomerate layer, overlain 
and underlain by thin shaly/silty layers, present in the central part of 
the unit. Ribbon limestone with very thin argillaceous portions 
comprises the upper part of the unit. Carbonate layers are 
predominantly micritic, with some grainy layers present. Horizontal 
lamination and some burrows visible. Rare vuggy porosity present. 

Covered interval with minor exposure of paper laminated shale 
interbedded with rare, very thin carbonate layers. 

Ribbon rocks without interbedded shale. Unit base is a sharp, 
planar surface overlying paper laminated shale. Unit top is marked 
by 2-3 em thick shale interval. 

Similar to underlying ribbon rocks without interbedded shale 
interlayers. 

Ribbon limestone interbedded with shale interlayers. 

Paper laminated shale. Ribbon limestone comprises a 1 5  em thick 
carbonate layer in the central part of the unit. 
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6 2.2 14.0 Ribbon limestone without shale interlayers. In places, appears 

nodular. 

7 1 .4 15 .4  Ribbon limestone containing interbedded shale interlayers. Poorly 
exposed lower part. 

8 0.9 1 6.3  Ribbon limestone without interbedded shale. 

9 0 .8  1 7. 1  Ribbon limestone with common shaly interlayers. 

1 0  0 .55 17 .65 Calcareous shale overlain by shale-free ribbon limestone. 

0.6 1 8 .25 Covered interval. 

1 1  0.65 1 8 .9  Alternating layers of carbonaceous shale and shale-free ribbon 
limestone. 

12 0 .9 19 .8  Weathered ribbon limestone without prominent interbedded shale. 

1 3  0 .5 20.3 Shale. 

14 1 . 3 2 1 .6 Weathered ribbon limestone containing shale interbeds in the lower 
and upper part. Unit top is a sharp surface marked by 2-3 em thick 
shale. 

1 5  0. 85 22.45 Ribbon limestone without shale interbeds. Unit top is marked by 5 
em thick shale interval. 

1 6  0.75 23.2 Ribbon limestone without obvious shale interlayers. Shale occurs 
only as a 5 em thick interval in the upper part of the unit as well as 
a thin ( 1 -2 em) interval marking the unit top. 

1 7  1 .25 24.45 Shale-free ribbon limestone bound on top with a 10 em thick 
interval of calcareous shale. 

1 8  1 . 9  26.35  Gradual transition from ribbon rocks into microbial ( cryptalgal) 
laminates. Mudcracks present in the upper part of the unit. Unit 
top is marked by a shale about 1 em thick. 

1 9  1 .05 27.4 Microbial laminates. Horizontal laminations and mudcracks 
present. Unit top marked by 5-6 em thick calcareous shale. 
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Figure A.3. Stratigraphic column measured at the Tazewell outcrop. 
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The Tazewell Outcrop (TZ) 

The Tazewell locality is 1 .5 miles southeast of the town of Tazewell, within the 
Wallen Valley thrust block (Fig. 1 .  4). At this locality, the Maynardville, overlain by the 
Copper Ridge Dolomite, is exposed in a quarry on the northeastern side of the U. S .  25E. 
Here, the base of the Maynardville is thrust over the Hurricane Bridge Limestone (lower 
Middle Ordovician) by the Wallen Valley fault. The Nolichucky Shale and the lowermost 
Maynardville are absent due to the faulting. Poorly exposed parts of the outcrop preclude 
the determination of the Maynardville/Copper Ridge transition. The uppermost part of the 
stratigraphic succession is tentatively placed within the Copper Ridge Dolomite based on 
the similarity with deposits that belong to the lower Knox Group at other outcrops. 

Unit T C.T. Description 

1 

2 

3 

4 

(m) (m) 

1 .7 

1 .0 

5 .3 

2 . 1 

Maynardville Formation 
1 .  7 Ooid grainstone. Dark gray. Abundant centimeter -spaced 

stylolites. Common vuggy porosity. Cross-stratification was not 
observed. Some micritic intraclasts present. Base not exposed. 
Upper contact is sharp and slightly undulatory. Sample: TZO.S. 

2. 7 Thrombolite. Dark gray. Mottled appearance. Some vuggy 
porosity present. The uppermost 30  em consists of intraclastic­
fossiliferous grainstone. Micritic intraclasts reach a maximum of 3-
4 mm in diameter. Skeletal fragments include common trilobites 
and some echinoderm fragments. The transition between 
thrombolite and grainstone deposits appears to be gradual . 
Samples: TZ 1 . 8, TZ2.6. 

8.0 Ribbon limestone. Centimeter-scale, medium gray limestone 
interlayers are interbedded with light brownish argillaceous 
dolomicritic interlayers. Ribbon rocks are massive to thick bedded 
(bed thickness ranges from 20 em to over 2 m). Limestone 
interlayers are primarily composed of intraclastic and fossiliferous 
(predominantly trilobite) packstone/grainstone deposits. Scattered 
pyrite present. Argillaceous deposits display horizontal lamination. 
Uppermost 1 meter of the unit consists of burrow-mottled ribbon 
rocks. Samples: TZ3.1,  TZ5 . 1 , TZ7.6. 

10 . 1 Lower 40 em consists of poorly exposed ribbon rock interbedded 
with shale. Burrow-mottled ribbon rock comprises the remaining 
portion of the unit. Limestone layers are composed predominantly 
offossiliferous (trilobite) and intraclastic packstone/grainstone. 
Micritic intraclasts are angular and irregular in shape, and reach a 
maximum size of 1 em in diameter. Sample: TZ9.0. 
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5 2.45 12 .55  A thrombolite layer with mottled appearance comprises the 

lower 45 em of the unit. The basal thrombolite is overlain by a light 
to medium gray ooid grainstone layer which also contains some 

intraclasts. The oolite does not exhibit cross-stratification, but 
horizontal lamination and stylolites are visible. The uppermost 1 m 
of the unit consists of an another thrombolitic layer. Burrow-
mottling present. Upper unit contact is a sharp, slightly undulatory 
surface, and is marked by 3 -4 em of reddish soil that might 
represent weathered shale. Samples: TZ10.9, TZ12.3. 

6 3 . 5  1 6 .05 Ribbon limestone containing thin (< 5 mm), brownish, argillaceous 
dolomicritic portions interbedded with medium gray limestone 
portions reaching a maximum thickness of about 3 em. Limestone 
layers are occasionally burrowed and horizontally laminated. 
Framboidal pyrite is present. Some shale interbeds (2 to 5 em in 
thickness) are present in the middle part of the unit. Several 1 0 em-
thick intraclastic-ooid grainstone layers observed within the unit. 
The uppermost 25 em ofthe unit consists of fossiliferous (trilobite, 
echinoderms )-intraclastic packstone grainstone. Cross-stratification 
is visible. Unit top is slightly undulatory. Samples: TZ 1 3 .4, 
TZ13.85, TZ15.85. 

7 1 . 5  1 7 .55  Ribbon rocks. Medium to dark gray in color. Limestone units are 
primarily composed of fine-grained fossiliferous-intraclastic 
packstone/grainstone layers. Some burrows are present. 
Argillaceous portions reach a maximum thickness of about 1 em. 
Some stylolites visible. Layer thickness ranges from 20 to 70 em. 
Samples: TZ 16.9, TZ 1 7.25 . 

8 1 .05 1 8 . 6  Ribbon rocks interbedded with thin shale interlayers comprise the 
lower 60 em of the unit. Upper part is composed primarily of 
laminated mudstone interbedded with thin, wavy argillaceous 
laminae. Medium gray in color. Common burrows with some 
associated pyrite. Unit top is sharp and undulatory. Sample: 
TZ18.25. 

9 0 .95 1 9. 5 5  Thrombolitic layer, overlain by a thin shale, comprises the lower 25 
em of the unit . The rest of the unit is composed of medium gray, 
burrowed ribbon rocks interbedded with thin laminated argillaceous 
portions. Boundaries between layers are wavy, undulatory. 
Carbonate layers are composed primarily of fine-grained 
fossiliferous-intraclastic packstone/grainstone. Unit top is a 

prominent sharp, planar surface. Samples: TZ1 8.7, TZ 1 9.45.  
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1 0  1 .2 20.75 Similar to the underlying lithology. Sedimentary structures are 

not readily observable due to a rather fresh exposure. Some 
stylolites are visible. Limestone layers are composed of 
packstone/grainstone deposits containing micritic intraclasts and 
some skeletal fragments. Burrow-mottled appearance. Some parts 
of the unit appear to have mottled thrombolitic fabric. Upper unit 
boundary is a prominent, sharp, planar surface. Sample: TZ20.05. 

1 1  2.9 23 .65 The lower half of the unit consists of ooid-fossiliferous-intraclastic 
grainstone. Skeletal fragments include trilobite and some 
echinoderm fragments. Some stylolites present. The upper part of 
the unit consists of burrowed ribbon limestone with patchy, 
irregular distribution of argillaceous dolomicritic partings. Vuggy 
porosity and voids filled with dolomite cement and rare sphalerite 
present. The unit has a massive appearance. Fresh exposures in the 
quarry preclude observation of sedimentary structures. Parts of the 
unit resemble mottled thrombolitic fabric. Dark gray to reddish 
weathering coloration. Unit top is a sharp, prominent exposure 
surface characterized with a maximum of 1 5  em of erosional relief 
Samples : TZ21 .65, TZ21.95, TZ23 .55 .  

12  0.2 23 .85 Laminated dolomicrite ofvariable lateral thickness (20 to 50 em). 
Light to reddish brown. Unit top is a very prominent, sharp 
surface, characterized with wavy, undulatory relief Sample: 23. 75. 

1 3  4. 1 5  28.0 Light to dark gray burrow-mottled ribbon limestone. Common 
fossiliferous-intraclastic packstone/grainstone deposits. Stylolites 
present. Massive to thick bedded appearance. Parts may be 
thrombolitic. Sedimentary structures are difficult to observe due to 
a fresh exposure. Unit top is wavy, irregular and may represent a 
dissolution surface. Samples: TZ24.65, TZ26.65,  TZ27.75. 

14 0.65 28.65 Dolomitized microbial ( cryptalgal) laminate or stratiform 
stromatolite characterized with horizontal, slightly crinkly 
lamination. Some laterally linked hemispheroidal (LLH) 
stromatolite, containing wavy, crinkly lamination, is present in the 
upper part of the unit. Small fenestrae and desiccation cracks filled 
with dolomite cement are visible. Some small incorporated 
intraclasts. Light gray to brownish. Unit top is a prominent, sharp, 
slightly wavy to planar surface marked by a thin ( 1 -2 em) shale. 
Samples: TZ28.15, TZ28.25. 

1 5  0.3 28.95 Dark, reddish gray thrombolite layer with characteristic mottled 
fabric overlain by weathered ribbon limestone with argillaceous 
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portions reaching 2-3 em in thickness. Stylolites present. Unit 
top is weathered and marked with about 5 em thick shale. Samples: 
TZ28.65, TZ28.8 .  

16  0 .55  29. 5 Ribbon rocks containing undulose, 1 -3 em thick, weathered 
limestone layers interbedded with argillaceous layers in the lower 
part. Small intraclasts (2-3 mm) and some skeletal (trilobite) 
fragments visible within the limestone layers. The upper part of the 
unit is composed of dolomitized, light to medium gray, medium- to 
fine grained couplets. These deposits comprise 1 5  and 25 em thick 
layers, with visible horizontal physical lamination. Unit top is a 
planar, very subtle surface that separates the underlying couplets 
from the overlying mottled limestone. Samples: TZ29.0, TZ29.25. 

1 7  1 . 5 3 1 .0 Thrombolitic deposit with massive to mottled appearance in the 
lower part of the unit. Gradational contact with the overlying 
ribbon limestone composed primarily of fossiliferous-intraclastic 
packstone/grainstone layers. Some burrow-mottling and stylolites 
present. The upper part of the unit composed of light to medium 
gray to brownish couplets containing intraclastic bases overlain by 
dolomicritic deposits. Couplet deposits are separated from the 
underlying ribbon rocks along a prominent stylolite. Upper 
boundary of the unit is a prominent, sharp, slightly wavy surface 
marked by a thin 1 -2 em shale. Samples: TZ29.65, TZ30.5, 
TZ30.65. 

1 8  0 .75 3 1 .75 Ribbon rocks composed of laterally continuous, undulatory 
limestone layers interbedded with thin shale. Top of the unit is a 
planar surface marked by 2-3 em thick shale. Sample: TZ3 1 . 1 5 .  

1 9  0.4 32. 1 5  Burrow-mottled ribbon limestone. Medium to dark gray. Some 
intraclasts, skeletal fragments and pyrite visible. The uppermost 1 0  
em of the unit composed of one layer of light gray to brownish, 
dolomitized, medium-grained couplets bounded by thin shale. Unit 
top is weathered and not well exposed. Sample: TZ31.95, 
TZ32.05. 

20 0.4 32.55 Dolomitized coarse- to medium-grained couplets in the basal 1 0  em 
of the unit. Light to medium gray to brownish. Micritic intraclasts 
visible in couplet bases. Horizontal lamination, some likely of 
microbial origin present at couplet tops. The upper part of the unit 
consists of dolomitized microbial deposits: LLH stromatolites 
overlain by stacked hemispheroidal (SH) stromatolites. Wavy, 
crinkly microbial lamination and very small fenestrae visible. Some 
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micritic intraclasts incorporated. Upper unit boundary is sharp, 
undulatory, and marked by 2-3 em thick shale. Samples: TZ32.2, 
TZ32.4. 

2 1  1 .2 33 .75 Burrow-mottled ribbon rocks comprise the lower 80 em of the unit. 
Medium to dark gray in color. May in part be thrombolitic. Small 
voids with sparite visible. Layer thickness: 1 0- 1 5  em, to massive 
appearance. Upper part is composed of primarily medium-grained 
couplets with small intraclasts in couplet bases, and horizontally 
laminated couplet tops. Unit top is sharp, slightly wavy, and 
marked by a very thin shale. Sample: TZ32.  7 .  

22 0 . 7  34.45 Light gray, dolomitized medium- to coarse grained couplets in the 
basal part of the unit. The remaining part of the unit consists of 
microbial laminates (stratiform stromatolite) characterized by 
prominent crinkly horizontal laminations, and interbedded with 
several thin (< 1 em) calcareous shale intervals. Unit top is 
weathered and not well exposed. Samples: TZ33 . 75, TZ34.35 .  

23 0.25 34.7 Light gray to brownish calcareous shale interbedded with thin 
microbial ( cryptalgal) laminates and calcareous siltstone layers. 
Poorly exposed. 

24 0 .65 3 5 . 3 5  Light gray calcareous siltstone interbedded with microbial laminate 
and thin (2-3 em) shale layers. Fissile to very-thinly bedded. Planar 
horizontal laminations visible. Layer thickness increases and the 
amount of shale decreases upward. Unit top is sharp, planar. 
Samples: TZ34.8, TZ35.05. 

25 0.95 36.4 Lower part of the unit consists of light gray to brownish coarse-
and medium-grained couplets with intraclastic bases and microbial 
laminae in upper parts. Couplet thickness ranges from several mm 
to 2-3 em. Microbial ( cryptalgal) laminate dominates in the upper 
part of the unit. Prominent horizontal, crinkly to wavy lamination. 
Some incorporated intraclasts. Unit top is partially covered and not 
well exposed. Samples: TZ3 5 .8, TZ36.25. 

26 0.2 36.6 Medium gray carbonaceous shale interbedded with thin microbial 
( cryptalgal) laminate layers. Fissile to 1 -2 em thick layers. Unit top 
is slightly undulatory. 

27 1 .05 3 7. 65 Light gray, microbially laminated deposits. In the lower part 
interbedded with thin calcareous shale to carbonaceous siltstone. 
Thin (< 1 em) shaly intervals also present in the middle part of the 
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unit. Prominent horizontal, crinkly to slightly wavy laminations. 
Desiccation features (mud cracks) and some incorporated 
intraclasts visible. Unit top is sharp and slightly wavy. Sample: 
TZ36.85. 

28 1 . 5  39 . 1 5  Medium-grained couplets in the lower part. Light to medium gray 
in color. Horizontal and cross-stratification, as well as truncational 
couplet bases visible. Stylolites present. Microbial ( cryptalgal) 
laminates dominate in the upper part of the unit. Some interbedded 
mechanical couplets present. Horizontal lamination is visible, both 
wavy, crinkly microbial and planar, physical laminae. Common 
intraclasts (maximum 5 mm in diameter). Unit top is not exposed. 
Samples: TZ37.95, TZ38.85 .  

0 .9  40.05 Covered interval. 

29 1 . 1  4 1 . 1 5 Dolomitized microbial ( cryptalgal) laminates. Light to medium 
gray. In the lower part interbedded with thin shaly intervals. 
Common mudcracks. Layer thickness: from fissile to 20 em. 
Pronounced horizontal crinkly, wavy lamination in the upper part of 
the unit. Unit top is not well exposed. Samples: TZ40. 75, 
TZ40.85. 

30 1 . 1  42.25 Thrombolitic bioherm (0 to 30 em thick) in the base of the unit. 
Dark brownish-gray; massive to mottled appearance. Separated 
from the fine- to medium-grained dolomitized couplets in the upper 
part of the unit by a thin (about 1 em) shale. Light gray. Cross-
stratification visible in the deposits comprising couplet bases, and 
horizontal laminations are common in the upper parts of couplets. 
Some microbial laminae visible in the upper part of the unit. Unit 
top is sharp and marked by a prominent stylolite. Samples: 
TZ41.15, TZ41.95. 

3 1  0 .65 42.9 Dolomitized microbial ( cryptalgal) laminates. Light to medium 
gray. Horizontal, planar to crinkly lamination and some stylolites 
present. Thin, calcareous shale intervals present in the middle, 
extremely weathered part of the unit. Layer thickness: from fissile 
to 20 em. Some laminae contain common small intraclasts. Unit 
top is wavy and marked with thin (2 em) shale. Samples: TZ42.45, 
TZ42.7. 

32 0.65 43 .55  Dolomitized mudstone to  fine-grained couplets in the lower part of 
the unit. Abundant vuggy porosity related to evaporite molds and 
small (2-3 em) nodules. Some mottling (burrows?) present . The 
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upper part of the unit i s  dominated by coarse-grained couplets 
composed of intraclastic bases and horizontally laminated upper 
micritic parts. Medium gray. Unit top is sharp, planar to slightly 
wavy. Samples: TZ43 .0, TZ43 . 1 5 . 

44.25 Microbial (cryptalgal) laminates overlain by thrombolitic deposits. 

45.25 

46. 1 5  

47.4 

Common horizontal, crinkly to wavy lamination in the lower part. 
The contact with the overlying thrombolite is marked by a stylolite 
or a sharp, wavy surface. The thickness of the thrombolite varies 
laterally from about 1 5  to 45 em. Mottled appearance with some 
vuggy porosity present. Medium to dark gray. Unit top is a wavy 
surface marked by a 1 -2 em thick shale. Sample: TZ43 .55,  
TZ44.0. 

Coarse- to medium-grained couplets. Light to medium gray. 
Prominent horizontal lamination and some cross-stratification is 
visible in the basal couplet parts. A silicified oolite layer (8-9 em 
thick) occurs near the base of the unit. Ooids, and some large (1  
em) intraclasts present in the bases of coarse couplets. Upper part 
of the unit contains thinly bedded medium-grained couplets, 
interbedded with fissile shale intervals. Unit top is weathered and 
not well exposed. Samples: TZ44.35, TZ44.45, TZ45 . 1 5 .  

Dolomitized medium-grained couplets. Some coarse-grained 
couplet deposits, containing intraclasts 3-5 em long, are present at 
the unit base. Intraclastic couplet bases also contain some ooids 
and quartz sand grains, and are commonly silicified. Well 
developed medium-grained couplets in the remaining part of the 
unit are 1 -3 em thick and have up to 5 mm thick bases containing 
ooids and some quartz sand grains. An irregular erosional surface 
occurs in the middle part of the unit. The surface is marked by a 
thin shaly/silicified crust and likely represents an exposure surface. 
Stylolites are common in the upper part of the unit. Unit top is 
weathered and marked by 5- 10  em thick shale. Samples: TZ45.25, 
TZ45 .8 .  

Dolomitized mudstone to fine-grained couplets. Mottled fabric is 
indicative ofbioturbation, but also resembles a thrombolitic fabric. 
Medium to dark gray. Stylolites are abundant. They occur spaced 
at every 8- 12  em, and have a maximum amplitude of about 1 . 5 em. 
Small vugs present. Some horizontal, slightly wavy laminations 
visible in the upper part of the unit. Unit top is sharp, planar. 
Samples: TZ46.55,  TZ47.65. 
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37 0.45 48.25 Dolomitized coarse- to medium-grained couplets. Coarse-

grained intraclastic bases are prominent in the basal, 1 5  em thick 
layer, which is bound on top by a thin shale interval. Upper part of 
the unit consists primarily of medium grained couplets with ooids 
and small intraclasts in the bases. Some horizontal laminations 
visible in the upper parts of couplets. Thin shaly layers separate 
some of the couplets and give this unit a ribbon laminated 
appearance. Unit top is an irregular, wavy, erosional surface, 
marked by a thin shale and substantially weathered. Samples: 
TZ47.85, TZ48 . 1 5 .  

38  0.5 48.75 Fine-grained, dolomitized couplets. Planar, horizontal laminations 
visible. Medium gray. Unit top is not exposed. Sample: TZ48.25. 

0.2 48.95 Covered interval. 

39 0.25 49.2 Dolomitized mudstone truncated by coarse-grained intraclastic 
packstone deposit containing micritic intraclasts reaching a 
maximum length of 6-7 em. The intraclastic lag deposit is overlain 
by several burrow(?)-mottled, undulatory, dolomitized mudstone 
layers ( 1 -2 em thick). Light to medium gray to brownish. Samples: 
TZ48.95, TZ49. 1 .  

40 0.4 49.60 Dolomitized couplets to fine-grained couplets comprise two layers 
separated by 2-3 em thick shale interval. Some horizontal 
laminations and stylolites are visible. Some mottling present. Unit 
top is not exposed. Sample: TZ49.45. 

0.2 49.8 Covered interval. 

4 1  0 .35 50. 1 5  Dolomitized mudstone to fine-grained couplets. Medium gray. 
Very poorly exposed. Some stylolites and horizontal lamination 
visible. Unit top is weathered and poorly exposed. Sample: 
TZ50.05. 

42 0 .9 5 1 .05 Thrombolite overlain by microbial deposits and fine-grained 
couplets. Light to medium gray/brownish. Unit base is wavy and 
extensively weathered. Vuggy porosity is common within the 
thrombolitic deposit. The contact with the overlying microbial 
deposits is gradational. Microbial deposits show wavy, crinkly, 
discontinuous lamination typical of laterally linked hemispheroidal 
(LLH) stromatolites. Small fenestral voids, stylolites, and rare 
desiccation cracks are present. Upper part of the unit is poorly 
exposed. It consists of 5-25 em thick layers composed of fine-
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grained couplets. Stylolites and planar, horizontal lamination are 
visible. Unit top is covered. Samples: TZ50. 15, TZ50.25, 

TZ50.45, TZ50.8.  

5 1 .35  Dolomitized mudstone to fine-grained couplets. Light to medium 
gray to brownish. Mottled appearance. Some pyrite weathered to 
Fe-oxide present. Unit top is not exposed. Samples: TZ51.05, 

TZ51.25. 

1 .25 52.3 Covered interval. 

Copper Ridge Dolomite (?) 
44 0.75 53 .05 Medium- to fine-grained couplets. Light to medium gray. Unit 

45 

base is sharp, planar. Layer thickness: 1 0-25 em. Layer boundaries 
are sharp, planar to slightly wavy. Average couplet thickness: 
about 1 em. Some dark gray, small (maximum 2-3 mm) intraclasts 
visible in the bases of some couplets. Planar horizontal lamination 
present. Sample: TZ52.45. 

1 .05 54. 1  Covered interval. 

0.4 54.5 Medium- to fine-grained couplets. Very poorly exposed. Medium 
gray. Common vuggy porosity. Some horizontal lamination 
visible. Unit top is not exposed. Sample: TZ54. 1 .  
The rest of the section is not exposed. 
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Figure A.4. Stratigraphic column measured at the Flat Gap outcrop. 
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The Flat Gap Outcrop (FG) 

The Flat Gap outcrop is contained within the Copper Creek thrust sheet, 12 .5  
miles northeast from Thorn HilL The exposure i s  located in  Hancock County, 1 .3 miles 
from state highway 1 3 1 ,  along the northeastern side of the road from Flat Gap toward 
Sneedville. At this locality the upper part of the Nolichucky Shale is partially exposed. 
The contact with the overlying Maynardville Formation as well as the lowermost 
Maynardville are poorly exposed and extensively weathered. This part of the stratigraphic 
succession is described only briefly and was not sampled. 

Unit T C.T. 
(m) (m) 

Description 

Maynardville Formation 
1 3 . 35 3 . 35 Very poorly exposed ribbon rocks overlying paper laminated silty 

shale of the Nolichucky Shale. Thin limestone layers, composed 
primarily of fossiliferous packstone occur interbedded with shale 
and laminated calcareous siltstone. 

2 0.3 3 .65 Carbonaceous shale interbedded with several thin argillaceous/silty 
carbonate layers. 

3 2.3 5 .95 Ribbon rocks without interbedded shale intervals. Limestone layers 

4 1 .2 7. 1 5  

5 1 .0 8 . 1 5  

1 .0 9. 1 5  

6 2.4 1 1 . 55  

are composed primarily of mudstone, and some packstone/ 
grainstone deposits which are more abundant in the lowermost part 
of the unit. Mudstone layers are occasionally laminated and 
burrow-mottled. Packstone/grainstone layers contain small 
intraclasts and trilobite fragments. Argillaceous dolomicrite 
portions are rather thick (up to 7 em). Unit top is marked by 20 em 
thick calcareous shale. 

Similar to the underlying ribbon rocks composed of alternating 
limestone and argillaceous dolomicrite layers. Limestone layers are 
dominated by mudstone, in addition to several fossiliferous 
packstone/grainstone layers. 

Poorly exposed and extensively weathered paper laminated 
calcareous shale interbedded with several thin (up to 1 em) 
calcareous siltstone and argillaceous/silty carbonate layers. 

Covered interval. Most likely represents a shale interval. 

Ribbon rocks without interbedded shale. Nodular appearance in 
places. Mudstone layers predominate. Some horizontal 
laminations and burrow-mottling visible. Lenses of flat-pebble 
conglomerate present in the lower part of the unit. Sample: FG0.6 .  
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1 . 5  1 3 .05 Covered interval. Some layers of ribbon rock (without interbedded 

shale) are exposed, but may not be in place. 

7 1 .65 14 .7 Ribbon rocks composed of limestone layers interbedded with 
argillaceous dolomicritic layers. Only partially exposed. Light to 
medium gray. Limestone layers are primarily composed of 
mudstone. Horizontal lamination and burrow mottling present in 
some ofthe layers. Thickness oflimestone layers decreases 
upward. Both lower and upper unit boundaries are not exposed. 
Sample: FGS.l .  

1 . 5  16.2 Covered interval. 

8 0 .5 16 . 7  Microbial (cryptalgal) laminates. Medium gray. Composed oftwo 
layers of approximately the same thickness, separated by thin (2-5 
mm) shale. Wavy, crinkly, horizontal microbial lamination, some 
mudcracks, and small fenestrae present. The unit may not be 
entirely in place. Unit boundaries are not exposed. Sample:  
FG8.2. 

2.7 1 9.4 Covered interval. 

9 1 . 7  2 1 . 1  Microbial ( cryptalgal) laminates. Fissile to about 30 em thick 
layers. Prominent wavy, crinkly horizontal microbial lamination, 
mudcracks, and some small fenestral voids. Thin shaly intervals 
present along upper layer plane. Unit top is sharp, wavy, and 
marked by 2-3 mm thick shale. Samples: FG12.9, FG13.0. 

1 0  0.7 2 1 . 8  Dolomitized coarse- to medium-grained couplets overlain by 
microbial laminates. Couplet bases are truncational, and consists of 
lag deposits, up to 4 em thick, containing common intraclasts 
(maximum 2-3 em long), some ooids, and skeletal fragments 
(trilobites, echinoderms). Stylolites and some pyrite present. The 
upper part of the unit is not well exposed. It consists of microbial 
deposits that exhibit horizontal, crinkly lamination, and some 
mudcracks. Medium to dark gray. Unit top is planar and marked 
by up to 8 em of shale. Sample: FG1 3 .45. 

1 1  0.65 22.45 Microbial ( cryptalgal) laminates comprising two layers (20 and 25 
em thick). Medium gray/brownish. Characteristic microbial 
lamination present but no mudcracks nor fenestrae were observed. 
The boundary between the two layers is wavy and marked with a 
thin shale interval. One stylolite is present in the upper layer. Some 
lamination characteristic of mechanical laminates (couplets) present 
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at the top of the second layer which is capped by silicified 
medium to dark gray, intraclastic-ooid grainstone that comprise 
truncational couplet bases. Unit top is a planar upper couplet 
boundary, and not a layer boundary. Samples: FG14.0, FG1 4 . 3 5, 
FG14.4. 

1 2  0.75 23 .2 Medium-grained couplets. Light to medium gray. Prominent 
planar horizontal lamination. Couplet bases contain small 
intraclasts and ooids. Couplet thickness: several mm to about 5 em. 
Stylolites and some chert present. Unit top is a sharp, planar to 
slightly wavy surface, marked by about 1 em thick shale and a 
silicified crust. Sample: FG14.65.  

13 1 .3 5  24. 55 Thrombolite overlain by medium-grained couplets and capped by 
stromatolites. Thrombolitic deposit is dark gray, very porous, and 
has mottled appearance. Some burrows present. Coupled deposits 
are dolomitized, medium gray/brownish, and are composed of 
oolitic packstone in the basal part, overlain by laminated mudstone. 
Some burrows and/or desiccation cracks present in the upper, 
muddy parts ofthe couplets. Uppermost 20 em of the unit consist 
predominantly of LLH stromatolites, interbedded with some 
burrow(?)-mottled and partially silicified thrombolite(?) deposits. 
The unit top is a prominent, irregular surface marked by about 1 0  
em of erosional relief and capped by a maximum of 5 em silicified 
laminated crust. Samples: FG15.2, FG15.8, FG16.4, FG16.45. 

1 4  0.25 24. 8 Fine-grained dolomitized couplets. Medium gray to brownish. 
Planar horizontal lamination visible. Thin ( 1 -2 mm) grainy 
(peloidal?) bases. Couplet thickness: several mm to 2 em. The 
uppermost 5 em of the unit contain thin muddy couplets capped by 
partially silicified microbial laminae, giving the unit top a wavy, 
cherty, laminated crust appearance. The unit is capped by a thin ( < 
5 mm) shaly interval. Samples: FG1 6.55,  FG1 6. 75 .  

1 5  0 .35  25. 1 5  Medium- to fine-grained, dolomitized, 1 to 5 em thick couplets. 
Light to medium gray. Couplet boundaries are sharp, and range 
from planar to truncated and irregular. Some cross-lamination 
present in the basal couplet deposits. Unit top is marked by a 
laminated crust, and a 1 -2 em thick shale, similar to the top of the 
underlying unit. Sample: FG17.0. 

1 6  0.45 25 .6  Medium- to fine-grained, dolomitized, couplets similar to the 
deposits from the underlying unit. Medium to dark gray. Couplets 
are slightly thinner (several mm to 2 em), and the couplet bases are 
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slightly more wavy. Some silicified lenses and nodules are present, 
as well as the lenses of a yellowish argillaceous deposit. Unit top is 
a prominent pressure dissolution (stylolite) zone, about 7 em thick. 
Sample: FG1 7.3 . 

1 7  0.5 26. 1 Thrombolite deposit with an intraclastic lag deposit at the base and 
capped with a ribbon-laminated deposit. Planar horizontal 
lamination, typical of couplet deposits is present at the very base of 
the unit, and is truncated by intraclastic packstone/grainstone 
lenses. Micritic intraclasts are up to 2 em long, and occur 
associated with some pyrite. The overlying thrombolite is medium 
to dark gray, and has mottled appearance. Burrows with geopetal 
fabric are common. The uppermost 1 0 em of the unit consists of 
couplet-like deposits composed primarily of mudstone with very 
thin grainy (peloidal) lenses at the base. The couplets have a wavy 
to nodular appearance and are separated by thin argillaceous 
interlayers, which give these deposits a ribbon-laminated 
appearance. Unit top is wavy, and marked by 1 -2 em thick shale. 
Samples: FG17.6, FG17.95, FG1 8.0. 

1 8  0 .8 26. 9  Thrombolite overlain by couplets capped by microbial deposits. 
The basal thrombolitic deposit (about 1 7  em thick) is very porous, 
weathered, and has a mottled appearance. Burrows and evaporite 
molds are common. Some vugs (evaporite molds) are also present 
in the lowermost part of the overlying couplets. The couplets are 
medium- to fine-grained and exhibit planar, horizontal lamination. 
Some stylolites present. The unit top is marked by a medium to 
dark gray silicified crust, characterized by clotted to laminated 
microbial fabric. Vuggy porosity is associated with this interval. 
Samples: FG1 8 . 1 ,  FG18.85. 

1 9  1 .4 28. 3  Medium- to fine-grained, up to 3-4 em thick couplets. Dark gray. 
Horizontal lamination and rare cross-stratification present. Small 
intraclasts and ooids present at couplet bases. Stylolites present. 
Couplet tops are commonly capped by partially silicified laminated 
microbial crusts. Unit top is a planar surface marked with some 
evidence for pressure solution (stylolitization). Sample: FG19 .5 .  

20 2.25 30 .55 Dolomitized medium- to fine-grained couplets. The basal part 
consists of weathered, poorly exposed, dark gray, ooid grainstone 
deposit. The overlying couplets are 1 -4 em thick. The thickness of 
basal, grainy couplet deposits decreases upward. Common 
stylolites. Shaly intervals (up to 2 em thick) interbedded with 
couplets in the upper part of the unit. The upper unit contact is 
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sharp, planar. Samples: FG20.4, FG21.25, FG2 1 . 75 .  

2 1  0 .7  3 1 .25 Ribbon to nodular limestone overlain by couplets. The lower part 
of the unit contains wavy, undulatory limestone layers interbedded 
with extensively weathered shaly intervals, and laminated, brownish 
argillaceous dolomicritic interlayers. Limestone layers are 
composed of skeletal (trilobite) packstone to mudstone deposits. 
Rare burrows present. The upper part of the unit lacks shale, and is 
composed of 3-4 em thick couplets with planar, horizontal bases. 
Unit top is sharp, slightly wavy. Sample: FG22.65. 

22 1 .0 32.25 Coarse- to medium-grained, up to 5-6 em thick couplets. Light to 
medium gray/brownish. The basal, grainy parts of couplets are up 
to 2-3 em thick, and contain common ooids and intraclasts 
(maximum 2 em long). Common horizontal and cross-lamination. 
Stylolites present. The uppermost 1 5  em of the unit resembled 
ribbon-laminated deposits from the lower part of the underlying 
unit. Limestone layers are wavy, undulatory, and are composed of 
dark to medium gray burrow(?)-mottled mudstone. Unit top is not 
exposed. Samples: FG23 . 4, FG23 . 6, FG24 . 1 .  

0 .55  32 .8  Covered interval. 

23 0.45 33 .25 Similar to the upper part of unit 22. Ribbon rocks composed of 
wavy, undulatory, micritic limestone layers interbedded with 
argillaceous dolomicritic partings. Medium to dark gray. Unit top 
is planar to slightly wavy, and is marked by 5 em thick shale interval 
interbedded with thin ( 1 -2 mm) carbonate layers. Sample: 
FG25.15.  

24 0 .55  3 3 . 8  Fine-grained couplets. Light to medium gray. Couplets are 1 to 10  
em thick, and have planar, horizontal boundaries. Couplet bases 
are composed ofthin (up to 5 mm) lenses containing ooids. Vugs 
(most likely after evaporite nodules), up to 7 em in diameter, are 
common in the uppermost part of the unit. Unit top is sharp and 
slightly undulatory. Sample: FG25 .25 . 

25 0.65 34.45 Coarse- to medium-grained couplets. The lowermost (about 5 em 
thick) part of the unit is weathered out, which may suggest the 
presence of a shaly interval along the contact with the underlying 
unit. Couplet thickness: < 1 em to > 1 0  em. Couplets have wavy 
to irregular ( truncational) contacts. Intraclasts from the bases of 
coarse-grained couplets are up to 3-4 em long, and occur in 
association with common quartz sand grains. The basal, grainy 
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couplet deposits are occasionally cross-stratified and partially 
silicified. Samples: FG25.85, FG26. 1 ,  FG26.3. 

26 1 . 1 5  35 .6  Calcareous siltstone interbedded with silty carbonate layers and 
calcareous shale. Light to medium gray/brownish. Weathered and 
not well exposed. Fissile to 1 5  em thick, undulatory layers. 
Horizontal lamination, some cross-stratification and vertical 
burrows visible. Several intraclastic lag deposits present. Some 
trace fossils and mudcracks visible along bedding planes. Unit top 
is sharp, planar. Sample: FG27.2. 

27 0.45 36.05 Coarse- to medium-grained couplets comprising three layers (20 
em, 15 em, and 1 0  em thick) with planar layer boundaries. Light to 
medium gray/brownish. Planar, horizontal lamination visible. 
Couplet bases contain common intraclasts (up to 2 em long), some 
ooids and quartz sand grains. Vugs (up to 2 em in diameter) are 
common in the uppermost layer. Unit top is sharp, planar. Sample: 
FG27.95.  

28 0 .8 36 .85 Similar to unit 26. Calcareous siltstone interbedded with 
argillaceous/silty/arrenaceous carbonate layers and carbonaceous 
shale. Light gray/brownish. Fissile to 3 em thick layers. 
Horizontal lamination and some cross-stratification visible. Trace 
fossils and mudcracks visible along bedding planes. Unit top is not 
exposed. Samples: FG28.2, FG28.3 .  

0 .2 37 .05 Covered interval. 

29 0.35  37.4 Partially silicified microbial deposits. Light to medium gray. SH 
stromatolites (up to 5-7 em high hemispheroids) in the lower part. 
Middle part of the unit consists ofLLH to stratiform (microbial 
laminates) stromatolites. Medium- to coarse-grained couplets 
comprise the uppermost part of the unit. Intraclasts ranging in size 
from < 1 mm to 3 em, occur associated with quartz sand grains. 
Micritic deposits comprising upper parts of couplets contain 
evaporite molds and have mottled fabric. Unit top is sharp, planar, 
marked by < 1 em thick shale. Samples: FG29.25, FG29.3. 

30 0.3 37.7 Silicified oolite. Medium to dark gray. Thin-burrow mottled 
thrombolite at the base. Burrows with geopetal fabric common. 
Ooids and micritic intraclasts (up to 2-3 mm) present at burrow 
bottoms; upper parts ofburrows contain sparite. Middle part of the 
unit dominated by silicified oolite without observable sedimentary 
structures. Weathered pyrite present. The uppermost part of the 
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unit contains partially silicified microbial laminates. Brecciated 
fabric. Intraclasts and common quartz grains present. Unit top is 
wavy and marked by a 3 em thick shaly interval. Samples: FG29.4, 
FG29.45, FG29.5 .  

3 1  2 . 1 39 .8  Dolomitized couplets. Intraclastic basal lags present in the coarse-
grained couplets from the lower part of the unit. Intraclasts reach a 
maximum size of about 2 em. Middle part of the unit dominated by 
medium-grained couplets. Some vuggy porosity present, primarily 
related to evaporite molds. The uppermost part of the unit 
dominated by light gray, fine-grained couplets and dolomitized 
mudstone. Mottled appearance in places. Common stylolites, and 
some horizontal lamination present throughout the unit. Unit top is 
a wavy surface, marked by an about 3 em thick dark gray, 
laminated, silicified crust. Samples: FG29.7, FG30.15, FG30.25, 
FG3 1 . 1 5, FG3 1 .65, FG31.75. 

32 0.75 40.55  Medium-grained couplets overlain by microbial deposits. Medium 
gray. Planar, horizontal lamination and stylolites present in the 
lower part of the unit. Couplet thickness: from several mm to 5 
em. Microbial deposits are represented by SH stromatolites. 
Individual hemispheroids are up to 1 0  em high. Unit top is marked 
by a 10  em thick shale. Sample: FG32.05. 

33 0 . 1 5  40.7  Fine- to medium-grained dolomitized couplets. Wavy, 
discontinuous lamination present. Unit top is a wavy surface 
characterized with up to 1 0 em of erosional relief, and capped by a 
laminated, dark gray, 3 -4 em thick, shaly crust. Sample: FG32.6 .  

34 1 .95 42.65 Similar to the underlying unit. Fine-grained couplets and 
dolomitized mudstone with mottled fabric. Light to medium gray. 
Horizontal lamination, evaporite molds, partially silicified evaporite 
nodules, and several stylolites present. Thin shale intervals occur 
between carbonate layers, which range in thickness between 5 em 
and 30 em. The uppermost layer consists of coarse-grained 
couplets with intraclastic lag deposits. Unit top is marked by a 1 0  
em thick shale. Samples: FG32.7, FG33 . 85 ,  FG34.4. 

Copper Ridge Dolomite 
3 5  0.95 43.6 Thrombolite overlain by laminated microbial deposits. The 

lowermost part of the unit is composed of coarse-grained couplets. 
The contact with the overlying microbial deposits is marked by a 
stylolite. Thrombolite is dark gray in color, has mottled appearance 
and contain vuggy porosity. Parts have a digitate stromatolite 



fabric. The upper part of the unit exhibits prominent wavy 
lamination typical ofLLH stromatolites. Medium to dark gray. 
Partially silicified. Unit top is slightly wavy, and resembles a 
stylolite. Samples: FG34.7, FG35.35. 
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3 6 1 .  0 44.6 Medium-grained couplets overlain by SH stromatolites. Medium 
gray. Layer thickness: 5 em to 30 em. Lower part of the unit is 
weathered and poorly exposed. Stylolites present. Some microbial 
laminates occur interbedded with couplets in the lower part. 
Couplet thickness: several mm to 2 em. Characteristic horizontal 
lamination, cross-stratification and truncational couplet bases visible 
in better exposed parts. The upper part of the unit contains 
microbial hemispheroids, over 5 em high, composed of laminated 
micritic deposits. Deposits in between stromatolitic hemispheroids 
are coarser-grained and contain micritic intraclasts, peloids, ooids, 
and quartz grains. Small mudcracks present. Unit top is sharp, 
wavy, and marked by 2-3 em thick shaly interval. Samples: 
FG35 .6, FG36.4, FG36.45, FG36.5 .  

37  0 .4  45 .0  Fine-grained dolomitized couplets. Light to medium 
gray/brownish. Vuggy pores, partially filled with sparite present. 
Mottled (burrowed?) appearance in place. Some planar, horizontal 
lamination present. Unit top is a prominent wavy to irregular 
surface characterized by 1 5-20 em of erosional relief and capped by 
a 2-3 em thick shaly crust. Sample: FG36.85 .  

38  0 .35 45 .35 Fine-grained dolomitized couplets overlain by microbial laminates. 
Light to medium gray/brownish. Horizontal, planar laminations in 
the lower part of the unit are replaced by wavy, crinkly microbial 
laminations in the upper part. Mudcracks and fenestrae occur 
associated with microbial deposits. Unit top is a wavy to irregular 
erosional surface capped by 1 -3 em thick, medium to dark gray, 
dolomitized crust associated with some stylolites. Samples: 
FG37. 1 ,  FG37.25, FG37.32.  

39  0.75 46. 1 Medium- to fine-grained dolomitized couplets. Light to medium 
gray. Stylolites present. Common mottled fabric likely related to 
bioturbation which caused disruption of the original couplet fabric 
resulting in discontinuous lamination. Couplet bases are 
occasionally cross-laminated and are composed of common quartz 
sand grains, and some small micritic intraclasts. Quartz grains 
interbedded in dolomicritic matrix form 3-5 em thick, cross-bedded 
layers. Vuggy porosity, primarily represented by evaporite molds, 
is common in some of the layers which are correspondingly very 
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weathered. Upper part of the unit is  very porous and partially 
silicified. Unit top is marked by an erosional surface with up to 1 0  
em of relief Topographical lows are filled with ooids and micritic 
intraclasts; microbial laminae are present on topographical highs. 
Samples: FG37 .35, FG37.5, FG37.55 ,  FG37.8, FG37.9. 

40 0 .65 46.75 Fine- to medium-grained dolomitized couplets overlain by some 
microbial laminates. Light gray. Horizontal and cross-lamination 
visible in the lower part of the unit. Vuggy pores representing 
evaporite molds and nodules (up to 2-2 .5  em in diameter) also 
occur associated with these deposits. Couplets in the uppermost 
part of the unit are capped by some wavy, crinkly microbial 
laminae. Upper unit contact is an irregular, wavy surface marked 
by a thin (< 1 em) shale. Samples: FG38. 1, FG38.7. 

4 1  0.8 47. 55  Coarse-grained couplets. Light to  medium gray. Layer boundaries 
are planar to slightly wavy, and marked by thin shaly intervals. 
Couplet thickness reaches a maximum of about 5 em. Coarse-
grained couplet bases are up to 2.5-3 em thick and contain common 
micritic intraclasts and quartz grains. Intraclasts are up to 1 em 
long. Some pyrite and chert occurs within the grainy couplet bases. 
Stylolites present. Micritic parts of couplets are often burrow(?) 
mottled, and contain some vuggy pores (evaporite molds and 
nodules?) associated with some chert. The upper unit contact is 
marked by a prominent stylolite. Samples: FG38.75, FG39.0, 
FG39.35, FG39.45. 

42 1 .6 49. 1 5  Thrombolite overlain by digitate stromatolite. Thrombolite is dark 
gray, and has massive, mottled appearance, and variable thickness 
laterally. Intraclastic lag deposit and common pyrite are present at 
the base of thrombolite. The upper part of the unit is composed of 
digitate stromatolites. The typical branching microbial fabric is 
visible only on weathered surfaces. Microbial digits have crudely 
laminated fabric and contain small fenestrae. Interdigitate area 
contains small intraclasts and ooids. Some stylolites present. Unit 
top is a planar bedding plane along which some dissolution 
(stylolitization) appeared. Samples: FG39.55 ,  FG39.75, FG40.4, 
FG4 1 .05. 

43 0 .35  49. 5  Digitate stromatolite with a gradual transition upward into 
medium- to fine-grained couplets. Medium to dark gray. Stylolites 
present. Intraclasts (up to 4 mm in diameter) present in the base of 
some of the couplets. Micritic parts of couplets are commonly 
burrow-mottled. Unit top is marked by a low relief stylolite. 
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Samples: FG41.15, FG4 1 .4. 

44 0 .8 50 .3 Similar to the uppermost part of the underlying unit. Medium- to 
fine-grained couplets. Medium to dark gray. Commonly 
bioturbated. Layer thickness: 20 em, 10  em, and 50 em. Layer 
boundaries are planar to slightly wavy. Some horizontal planar 
lamination visible. Couplet thickness reaches a maximum of 2 em. 
Unit top is irregular, weathered, and probably represents a stylolite. 
Samples: FG4 1 .55, FG42.2. 

45 0 .7 5 1 .0 Thrombolitic bioherm overlain by couplets. Thrombolite is 
characterized by mottled, clotted fabric. Dark gray. Many vuggy 
pores, likely related to evaporites, and some pockets with sparite 
present. The thrombolite has a biohermal shape with planar lower 
contact, and sharp, wavy upper boundary. The overlying couplets 
are fine- to medium-grained. Light to medium gray. Horizontal 
and cross-lamination visible. Evaporite voids, brecciation and some 
pyrite present. Mottled fabric in places. Unit top is sharp, slightly 
wavy, and marked by a 2-3 em dark, black shaly interval. Samples: 
FG42.3, FG42.5,  FG42.9. 

46 0 .55 5 1 . 55  Fine-grained dolomitized couplets. Light to  medium gray. Layer 
thickness: 5-20 em. Couplets range in thickness from several mm 
to 5 em thick, and contain up to 5 mm thick grainy (peloidal) bases. 
Couplet contacts are planar, with only minor truncation present in 
some cases. Some horizontal lamination visible. Vuggy pores 
(maximum 2 mm in size) and stylolites present. Unit top is sharp, 
planar, and marked by thin ( < 1 em) shaly interval, reddish in color. 
Sample: FG43 .05 . 

47 1 .05 52.6 Medium- to fine-grained dolomitized couplets. Medium to light 
gray. Common vuggy porosity, likely related to evaporite 
dissolution. Couplet contacts are wavy, truncational in the lower 
part of the unit. The upper part exhibits horizontal lamination and 
some burrow-mottling. Stylolites present. Unit top is sharp, wavy, 
and marked by thin (< 1 em) shale. Samples: FG43.6, FG44.35. 

48 0.7 53 . 3  Thrombolite. Light to medium gray. Very weathered and poorly 
exposed. Mottled, clotted micritic fabric. Upper unit contact is not 
exposed. Samples: FG44.6, FG44.85 .  

0 .55  53 .85  Covered interval. 

49 0 .85 54 .7 Fine-grained dolomitized couplets. Medium to dark gray. Layer 
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thickness ranges from 2 em to 7-8 em. Stylolites present. 
Some wavy lamination visible. Parts of the unit are porous and 
very weathered. Unit top is not exposed. Sample: FG46.05 . 

0.6 55 .3  Covered interval. 

50 0 .55 55 .85  Medium-grained dolomitized couplets overlain by a silicified oolite. 
Very weathered and poorly exposed. Layer thickness: 7-8 em. 
Horizontal lamination and some cross-lamination visible in the 
lower part ofthe unit. Upper part of the unit consists of poorly 
exposed, weathered, dark gray, silicified oolite layers. Some 
stylolites present. Unit top is poorly exposed. Samples: FG47.4, 
FG47.7, FG47.75 .  

5 1  0 .3 56. 1 5  Fine-grained couplets comprise one very porous, poorly exposed 
layer. Dark gray. Unit top is poorly exposed; appears planar and 
capped by thin ( < 1 em) dark, black, fissile shale. Sample: 
FG47.85 .  

52 1 .05 57.2 Thrombolitic bioherm overlain by medium- to fine-grained 
couplets. The bioherm reaches a maximum thickness of 40 ern, and 
pinches out laterally. It consists of dark gray micritic deposit. 
Intraclastic lag deposit present at the bioherm base. Thin (about 2 
em) shale marks the top of the thrombolite. The overlying couplets 
are poorly exposed. Light to medium gray/brownish. Couplet 
thickness: several mm to 2 em. Some planar, horizontal lamination 
and cross-lamination visible. Rare stylolites. Samples: FG48.15, 

FG48.2, FG48.45. 

53 0.4 57 .6 Fine-grained dolomitized couplets. Light to medium gray. Very 
weathered and poorly exposed. Layer thickness: 1 em to 1 5  em. 
Planar, horizontal lamination present. 

54 1 .2 58 .8  Medium-grained dolomitized couplets. Medium gray. Layer 
thickness ranges from 5 to 25 em, with a maximum of 60-70 em. 
Couplet contacts are planar to wavy. Couplet thickness: from 
several mm to about 1 em. Prominent horizontal and cross-
lamination. Some chert nodules present in the lower part of the 
unit. Unit top is poorly exposed. Samples: FG49.85, FG50.6 .  
Overlying 29 m of the succession is covered, followed by 1 6  m of 
exposed Copper Ridge Dolomite. 
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Figure A.S. Stratigraphic column measured at the Lee Valley outcrop. 
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The Lee Valley Outcrop (LV) 

The Lee Valley outcrop is located within the Copper Creek thrust sheet, 1 7. 5 miles 
northeast from Thorn Hill. The Lee Valley section was first described and measured by 
Rodgers and Kent in 1948. This outcrop is located along state highway 66 in Hawkins 
County, approximately 1 . 1  miles northwest ofthe intersection between state highways 66 
and 1 3 1 .  An almost complete exposure of the Maynardville Formation, and the lower 
Knox Group is present along the northeastern side of the road. The lowermost part of the 
Maynardville, and the underlying Nolichucky Shale are poorly exposed. This part of the 
stratigraphic succession was only briefly described and was not sampled. 

Unit T C.T. Description 
{m} (m} 

Nolichucky Shale 
1 0.4 0.4 Poorly exposed paper laminated shale interbedded with several thin 

carbonate layers which are lithologically similar to limestone from 
the ribbon rocks in the lower part of the Maynardville. 

2 3 . 8  4.2 Ribbon rocks composed of limestone layers interbedded with shale 
intervals. Weathered and partially covered. 

3 0 .8  5 .0 Shale interbedded with several thin carbonate layers. 

4 4.4 9.4 Ribbon rocks composed of limestone layers interbedded with shale 
intervals in the lower 50 em of the unit. The remaining part of the 
unit consists of weathered, yellowish to brown, ribbon rocks 
without prominent interbedded shale. Less weathered parts reveal 
gray limestone layers, and brownish argillaceous dolomitic parts. 
Limestone layers are composed of fossiliferous (trilobite) packstone 
and laminated mudstone. Scattered pyrite present. Samples: 
L VO.O, L VO. 7, L V1 . 35 .  

5 1 . 2  10 .6 Carbonaceous shale and siltstone interbedded with several 
carbonate layers. Limestone layers exhibit some horizontal and 
cross-lamination, and are composed of mudstone, fossiliferous 
(trilobite) and peloidal wackestone/packstone. The uppermost part 
of the unit consists of nodular ribbon rock. Samples: LV 1 .  9, 
LV2.2. 

6 7 .3 1 7 .9  Thick bedded ribbon rock composed of limestone layers 
interbedded with thin argillaceous dolomicritic partings. Limestone 
layers are composed of skeletal (trilobite) and peloidal 
wackestone/grainstone, laminated mudstone and burrow-mottled 
mudstone. Samples: LV2.6, LV3 .7, LV4.45, LV6.0, LV7. 1 ,  
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LV8. 1 ,  LV9.5. 

19 .55  A 30 em gap interval at the base of the unit may represent a 
weathered out shale. Overlying the gap is a weathered coarse-
grained intraclastic packstone/grainstone deposit. Intraclasts are up 
to 3 em long, and are commonly coated with pyrite/F e-oxide, which 
is also common in intergranular pores, together with rare sphalerite 
and galena. Some skeletal (trilobite, echinoderm) fragments 
present. Thrombolite overlies this intraclastic deposit. Thrombolite 
deposit is very porous (burrowed?), medium to dark gray, with 
common weathered brownish patches. Some stylolites present. 
Some micritic intraclasts and skeletal fragments present in between 
micritic thrombolite mesoclots. Parts of the unit, including the 
uppermost part, are weathered out. Some remnant light gray 
calcareous shale present at the unit top. Samples: LV10.35, 
LV10.5, LV1 1.3. 

20.5 Ribbon rock composed of limestone layers interbedded with 
argillaceous/silty dolomite layers and some shale intervals. The 
lower contacts of limestone layers are sharp; the upper contacts 
with the overlying argillaceous partings are gradational. Limestone 
layers are composed of mudstone and fine-grained fossiliferous 
wackestone/packstone. Rare layer-parallel veins filled with calcite 
cement present. Unit top is not exposed. Samples: L V12.2, 
LV12.3. 

2 1 . 1 5 Covered interval. 

2 1 .4 Ribbon rocks similar to the underlying unit, with slightly thinner 
limestone and dolomite partings. Planar, horizontal lamination 
visible in some of the limestone layers. Some crinkly, microbial 
lamination present in the upper part of the unit. Unit top is marked 
by a 5 em thick gap. Sample: LV1 3 .25 .  

27.3 Microbial (cryptalgal) laminate. The lower 20 em is transitional 
between ribbon rocks and microbially laminated deposits. 
Prominent horizontal, wavy, crinkly lamination. Some burrows and 
mudcracks present. Some laminae are disturbed, broken, and 
deposits are reworked into elongated micritic intraclasts and peloids 
(maximum 1 mm thick, and 1 em long). Rare small fenestrae 
visible. Layers range from fissile to about 30  em thick. Light to 
medium gray/brownish. Parts of the unit are poorly exposed. Unit 
top is a sharp, planar layer boundary. Samples: LV14.4, LV14 .5 ,  
LV14.95, LV1 6.75, LV17.95, LV1 8.9, LV1 8.95, LV19.2.  
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1 1  0.25 27.55  Medium- to fine-grained couplets composed of peloidal bases 

and laminated micritic upper parts. Light gray. Couplet bases are 
planar to truncational. Lower part of the unit is highly weathered 
and partially covered. Unit top is wavy, and marked by 5 em thick, 
medium to dark gray/brownish, calcareous shale to siltstone 
forming fissile to 1 em thick, undulatory layers. Samples: LV1 9.45, 
LV1 9.5 .  

12 0.65 28.2 Medium- to fine-grained couplets underlain by intraclastic-ooid 
packstone/grainstone deposit and capped by microbial deposits. 
Light to medium gray/brownish. Horizontal lamination and cross-
stratification visible. Some of the couplets have burrow-mottled 
fabric. The uppermost part of the unit is composed primarily of 
LLH stromatolites and microbial laminates (stratiform 
stromatolites) with laminae commonly disrupted by desiccation 
cracks. Samples: LV19.55, LV19.85, LV20. 1 5 .  

1 3  0 .5 28.7 SH stromatolites, interbedded with and overlain by stratiform 
stromatolites (microbial laminates). Medium gray/brownish. 
Characteristic wavy, crinkly microbial lamination and small 
fenestrae visible. Some laminae contain incorporated peloids. Rare 
sheet cracks present. Layer thickness: 5 em to 30 em. Samples: 
LV20.2, LV20.6. 

14  0.4 29. 1 Ooid wackestone/grainstone. Dark gray. Dolomitized and partially 
silicified. Chert and vuggy porosity is common in the lowermost 
part ofthe unit. Some micritic intraclasts (up to 2 em long) 
present. The uppermost part of the unit is composed of couplets 
with oolitic bases. Layer thickness: 5-10 em. Samples: L V20. 7, 
LV21.0. 

1 5  0 .75 29. 85 SH stromatolites overlain by medium- to coarse-grained couplets. 
Light to medium gray. Microbial hemispheroids are up to 30 em 
wide, and 1 0  em high. Planar, horizontal lamination present in the 
upper part. Round, elongated intraclasts (up to 7-8 mm long), and 
ooids make up grainy couplet bases which are up to 2 em thick and 
are occasionally silicified. Upper parts of couplets are composed of 
laminated mudstone deposits, some of which contain vuggy pores 
(after evaporite minerals). Upper couplet contacts are commonly 
truncated. Stylolites, with maximum amplitude of 5 em, are 
present. Rare microbial lamination visible. Unit top is planar to 
slightly wavy. Samples: LV21 . 1 ,  LV2 1 . 3 5, LV21 . 7, LV2 1 .75. 

1 6  0 .7 30 .55 Thrombolite. Very porous and weathered. Clotted, burrow-
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mottled fabric. Dark to light gray with weathered brownish 
patches. Samples: L V22. 05, L V22. 3  5 .  

Dolomitized coarse- to medium-grained couplets capped by 
microbial deposits. Medium to dark gray. Couplets exhibit 
common horizontal and cross-lamination. Muddy deposits 
comprising the upper parts of couplets contain shallow vertical 
burrows, and some evidence for soft sediment deformation and 
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truncation. Couplets are not laterally continuous (pinch and swell), 
which coupled with argillaceous dolomicritic deposits present at 
some couplet tops, give this deposit a texture that resembles ribbon 
rocks. Oolitic and intraclastic packstone deposits, some partially 
silicified, form lenses, and bases of couplets. Micritic intraclasts are 
up to 1 em long. The uppermost part of the unit is composed of 
silicified SH stromatolites. Wavy lamination and fenestral voids 
visible. Unit top is a sharp, wavy surface. Samples: L V22.55, 
LV23.0, LV23 . 1 5, LV23 .2, LV23 .4.  

Fine-grained couplets in the lower part; medium-grained couplets in 
the upper part of the unit. Light to medium gray/brownish. 
Weathered stylolite surfaces with insoluble argillaceous residue 
present. Subtle horizontal lamination visible. Intraclastic (± ooids, 
peloids), truncational couplet bases present in the upper part of the 
unit. Rare chert (silicification of grainy couplet bases) present. 
Unit top is a planar, sharp surface. Samples: LV23 . 75, LV24. 1 ,  
LV24.6. 

Thrombolite. Dark gray. Clotted micritic fabric. Extensively 
burrowed. Burrows have geopetal fabric :  in:filled with internal 
sediment and occluded by sparite. Very porous and weathered. 
Rare intraclasts present at unit base. Upper unit contact is sharp, 
wavy. Sample: LV24.8. 

34.7 Coarse- to medium-grained couplets. Undulatory, wavy layers in 
the lower part of the unit resemble a ribbon rock texture. Dark 
gray. Some sparite-filled burrows present. Common ooid­
intraclastic grainstone layers. Horizontal lamination and stylolites 
common in the upper part of the unit which is dominated by 
medium-grained couplets. Medium to dark gray. Couplet have a 
maximum thickness of about 1 . 5  em, with up to 5 mm thick grainy 
bases (small intraclasts, ooids, peloids), overlain by laminated 
mudstone. Couplet tops contain V shaped features (vertical 
burrows or mudcracks) filled with grainy deposits of the overlying 
couplets. Layer thickness reaches up to 1 5-25 em. Layer 
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boundaries are planar. Layers are also commonly separated along 
stylolite surfaces. Samples: LV25 .0, LV25.25, LV26.0. 

2 1  0.3 3 5 .0 Thrombolite. Dark gray. Burrow-mottled with common vuggy 
pores. Rare evaporite molds present. Unit base is sharp, slightly 
irregular. Massive layering. Small amplitude stylolites and some 
clay seams present. Samples: LV26.8 .  

22 0.7 3 5 .7 Medium- to fine-grained dolomitized couplets. Medium to light 
gray. Small intraclasts, some ooids and peloids comprise bases of 
well exposed, medium-grained couplets in the lower part of the 
unit. Upper parts of couplets are laminated, have truncated tops, 
and are occasionally disturbed by mudcracks. The upper part of 
unit is partially covered. Exposed layers represent fine-grained 
couplets composed of laminated dolomicrite and very thin bases. 
Couplet boundaries are planar. Some burrow-mottling visible. 
Unit top is not exposed. Samples: LV27.7, LV27.65 . 

1 .45 37 . 1 5  Covered interval. 

23 1 .45 3 8 .6 Medium-grained couplets. The lowermost part of the unit contains 
coarse-grained couplets composed of ooid-intraclastic bases 
overlain by laminated dolomicrite. Horizontal lamination and 
stylolites are common in the remaining part of the unit together 
with less prominent cross-lamination. Some of the couplets have 
burrow-mottled fabric and vuggy porosity. Mudcracks present at 
upper couplet contacts. The uppermost 20 em of the unit is 
comprised ofLLH stromatolites with wavy, crinkly, commonly 
disrupted laminae. Common micritic peloids incorporated. Some 
vugs present (likely evaporite molds). Medium to light gray. Layer 
thickness: 1 0-30 em. Unit top is sharp, irregular to wavy. 
Samples: LV29.75, LV30.3,  LV30.45. 

24 0.9 39.5 Coarse- to medium-grained couplets. Light to medium gray. 
Couplet thickness: 2-3 em. Layer thickness : 8-25 em. Irregular, 
elongated, dolomicritic intraclasts and some ooids present in basal 
parts of couplets. Horizontal (planar to slightly wavy) and cross-
lamination present. Couplet contacts are sharp, truncational. 
Burrow(?)-mottling and vuggy porosity related to dissolution of 
evaporite minerals common in parts of the unit. Some small 
amplitude stylolites present. Samples: LV30.6, LV30.8, LV30.9, 

LV31.35. 

25 0 .6 40. 1 Coarse- to medium-grained couplets. Medium to dark gray. Not 
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well exposed. Couplets reach a maximum thickness of about 5 
em. Planar, horizontal lamination and truncated couplet tops 
visible. Rare evidence for bioturbation (brownish patches), and 
some stylolites present. Parts ofthe unit are covered. Unit top is a 
wavy surface. Sample: LV3 1 .75 .  

26 0.65 40.75 Fine- to medium-grained couplets comprising several layers with a 
maximum thickness of about 25 em. Light to medium 
gray/brownish. Planar, horizontal lamination and some cross­
lamination (especially in the upper part of the unit) visible. 
Couplets are not laterally continuous, and are thinner than in the 
underlying unit. Unit top is a gap marked by a spring (plastic tube). 
Sample: L V32.2.  

27 0. 55 4 1 . 3  Medium-grained couplets grading upward into microbial deposits. 
Planar horizontal lamination in the lower part is replaced by wavy 
crinkly lamination in the upper part of the unit. Microbial deposits 
are represented by LLH stromatolites. Some mudcracks and 
incorporated micritic intraclasts and quartz grains present. Unit top 
is sharp, slightly wavy, and not well exposed. Sample: LV33.15. 

1 .35  42.65 Covered interval. 

28 1 . 1 5 43 .8  Calcareous siltstone and shale interbedded with argillaceous/silty to 
arrenaceous carbonate layers. Light gray to brownish. The 
deposits comprise undulatory layers that pinch and swell laterally. 
The layers are thin, fissile, to a maximum 1 0 em thick. Shale is 
more common in the middle part of the unit which is poorly 
exposed. Carbonate layers become more abundant and thicker in 
the upper part of the unit. Carbonate layers are commonly normally 
graded (have a couplet texture), with some horizontal and cross­
lamination visible. Prominent mudcracks and some trace fossils 
present along bedding planes. Small vugs (fenestrae?) and mottling 
(burrows?) visible. Unit top is marked by weathered, 5-7 em thick 
shale interval. Samples: LV34.85, LV35 .0, LV35 .5 .  

29 1 . 1  44.9 Medium- to some fine-grained couplets in the lower part 
comprising several layers, with a maximum thickness of 25 ern, and 
separated by thin shale. Light to medium gray/brownish. Couplets 
near the base of the unit have upper parts disrupted by mudcracks 
and capped by microbial laminae Horizontal (planar to wavy) and 
cross-lamination present. Couplets are several em thick. Evaporite 
molds and some large vugs with in situ brecciation cause by 
dissolution of evaporites present. Middle part of the unit is poorly 
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exposed and reveals several dark gray to brown, 2-4 em thick, 
undulatory ooid grainstone layers. The uppermost part of the unit 
consists of coarse-grained, light to medium gray, up to 5 em thick 
couplets. Couplet bases contain common quartz grains and micritic 
intraclasts (up to 1 . 5 em in diameter). Couplet contacts are sharp, 
truncational. Laminated mudstone comprises upper parts of 
couplets. Upper unit contact is sharp and slightly undulatory. 
Samples: LV35 .8, LV36.0, LV36.5, LV36.6, LV36.7 .  

30 0 .9 45.8 Burrow-mottled couplets and mudstone. Medium to dark gray. 
Massive layering; laterally splits into two layers. Lower part of the 
unit contains some coarse-grained couplets with intraclastic bases, 
and planar, horizontal laminations. The remaining part of the unit 
consists ofburrowed mudstone to disturbed medium- to fine-
grained couplets with wavy, discontinuous laminae. The laminae 
are commonly disrupted by evaporite molds, responsible for the 
vuggy porous appearance, and by rare mudcracks. Grainy deposits 
occur as discontinuous lenses and irregular pockets, rather than 
continuous basal couplet deposits. Some stylolites present. 
Samples: LV37.25, LV37.6. 

3 1  1 .4 47.2 Fine-grained couplets to dolomitized mudstone. Medium to light 
gray/brownish. Layer thickness: 7-20 em. Burrow-mottling 
present. Small vugs (evaporite molds) and stylolites present. Faint 
planar, horizontal lamination and some truncated couplet tops 
present. Couplets reach a thickness of 2-3 em, and are composed 
primarily of laminated mudstone, and very thin grainy (peloids, 
quartz silt) bases. Rare mudcracks and small amplitude stylolites 
present. Parts of the unit are poorly exposed and may represent 
intervals with interbedded shale. Near the unit top an erosional 
exposure surface is developed on dolomitized, faintly laminated 
mudstone. The surface is capped by dark colored, microbial 
(cryptalgal) laminae exhibiting antigravitational fabric (thicker on 
topographic highs). Samples: LV37.95, LV38.05, LV38.8, 
LV39.0. 

32 0.7 47.9 Fine-grained couplets to laminated dolomicrite ( dolomitized 
mudstone). Medium to light gray. Burrow(?)-mottled fabric. 
Common vuggy pores representing small evaporite nodules and 
euhedral molds. Faint horizontal (wavy to planar) lamination 
present. Unit top is sharp, planar, and marked by a thin shale. 
Samples: LV39.2, LV39.7 .  

33  1 .4 49.3  Medium-grained dolomitized couplets exposed in the lower 50 em 
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of the unit. Light to medium gray. Layer thickness: 1 0-20 em. 
Horizontal lamination, rare cross-lamination, and common 
evaporite molds visible. Common light gray to pink, and reddish­
brown chert lenses and nodules. The upper part of the unit is 
mostly covered with only several carbonate layers ( 1  0- 1 5  em thick), 
representing fine-grained couplets, are exposed. Some planar, 
horizontal lamination visible. Unit top is not exposed. Samples: 
LV40. 1 ,  LV40.75.  

49.8 Burrowed, disturbed medium-grained dolomitized couplets. Dark 
to medium gray with brownish patches. Burrow-mottled 
appearance. Layer thickness: 10-20 em. Horizontal and cross­
lamination visible. Laminae are commonly disturbed by 
bioturbation and/or evaporite mineral growth. Grainy deposits 
form discontinuous lenses along couplet bases. Evaporite-related 
vugs and molds present in the lower part of the unit. Unit top is 
poorly exposed. Sample: LV 4 1 .7 .  

Copper Ridge Dolomite 
50.2 Dolomitized oolitic packstone/grainstone. Dark to medium 

gray/brownish. Deposits comprise three layers, that average about 
1 0  to 20 em in thickness, and pinch and swell laterally. Small 
micritic intraclasts present. Rare stylolites, faint lamination, and 
pyrite visible. The deposits in the uppermost part of the unit are 
partially silicified. Unit top is sharp, wavy, and significantly 
weathered. Sample: LV 42.05. 

5 1 .7 Medium-grained dolomitized couplets interbedded with microbial 
deposits. Light to medium gray. Some coarse-grained couplets 
present at the unit base. Couplets are up to 5 em thick, and are 
composed primarily of intraclastic packstone/grainstone with very 
thin (or lacking) overlying micritic deposits. Horizontal lamination 
is more pronounced in the upper part of the unit, ranging from 
planar to wavy associated with couplets, and crinkly microbial 
lamination characteristic ofLLH stromatolites. Small fenestrae 
occur associated with microbial deposits. Scattered evaporite 
molds. Abundant stylolites, up to 4-5 em in amplitude. Some chert 
present in the upper part of the unit. The upper unit contact is 
sharp, slightly undulatory. Samples: LV42.2, LV43.25, LV43 .6. 

52.9 Fine-grained couplets to dolomitized mudstone in the lower part, 
separated from the overlying medium- to coarse-grained couplets 
by about a 1 0  em thick calcareous shale/argillaceous carbonate. 
Light to medium gray. Layer thickness ranges from < 1 em to 20 
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em. Layer boundaries are planar to slightly undulatory. Unit base 
is weathered and not well exposed. Some fine-grained couplets, 
commonly < 1 em and up to about 1 .  5 em thick, are present in the 
lower part of the unit. Horizontal lamination, vuggy pores 
(evaporite molds), and burrow-mottling occur associated with these 
deposits. Medium-grained, normally graded, couplets in the upper 
part of the unit are up to 5 em thick, and contain ooids, quartz 
grains and micritic intraclasts at the couplet bases. Intraclasts reach 
a maximum thickness of 3 .  5 em. Couplet contacts are commonly 
truncational. Some horizontal and cross-lamination present. Unit 
top is sharp, wavy. Samples: LV43 .7, LV44. 1 ,  LV44.7, LV44.85. 

3 8  0.7 53 .6 Coarse- to medium-grained couplets. Medium gray/brownish. 
Coarse-grained bases contain intraclasts up to 1 . 5  em in size, ooids 
and quartz sand grains. Some horizontal, planar to slightly wavy 
lamination and burrow-mottling present. Bioturbation of couplets 
resulted in a patchy distribution of mudstone and coarser-grained 
deposits. Common small vugs (evaporite molds) present. Rare 
stylolites. Unit top is sharp, wavy. Sample: LV44.9.  

39  0.85 54.45 Fine-grained couplets to dolomitized mudstone. The unit base 
consists of several undulatory layers comprising a 8 em thick, 
medium to dark gray, silicified oolite. The overlying deposits are 
light gray in color. Faint planar, horizontal lamination visible. 
Several stylolites present. Some large vugs (up to 5 em in 
diameter), likely related to dissolution of evaporite nodules, present 
in the middle part of the unit. Upper unit contact is sharp, irregular 
to wavy, and marked by a 7-8 em thick dark laminated shaly crust. 
Samples: LV45.6, LV46. 1 ,  LV46.3 .  

40 0 .5 54.95 Dolomitized laminated microbial deposits comprising one layer of 
variable thickness laterally. Medium to dark gray/brownish. Wavy, 
crinkly lamination characteristic of LLH stromatolites comprise 
most of the unit. Laminae are discontinuous, disturbed. Many 
short mudcracks present. Incorporated peloids present. SH 
stromatolites are present in the uppermost part of the unit. 
Individual hemispheroids reach a maximum height of 5 em. Upper 
unit contact is sharp, wavy. Samples: LV46.6, LV46.85. 

4 1  0 .8 55 .75 Coarse- to medium-grained dolomitized couplets comprising two 
layers (25 and 55  em thick). Medium to dark gray. Intraclasts and 
some ooids present at the bases of coarse-grained couplets in the 
lower part of the unit. Couplet bases are planar. Micritic upper 
parts of couplets are laminated and in places burrow-mottled 
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(brownish patches). Couplets in the remaining part of the unit 
are more substantially bioturbated. Laminae are discontinuous, 
whereas grainy deposits form pockets or patches. Unit top is not 
well exposed; appears sharp, planar. Samples: LV47.25, LV47.35 .  

42 1 .0 56.75 Unit base is composed of 10 em thick interval consisting of dark 
gray to brown, shaly and laminated argillaceous carbonate layers, 
overlain by a thrombolite bioherm. Thrombolite deposit is medium 
to dark gray and has massive, mottled appearance. The upper part 
of the thrombolite is poorly exposed and partially covered. The 
exposed layers (up to 1 5  em thick) are composed of faintly 
laminated, dolomitized mudstone with some microbially laminated 
deposits in the upper part. Light gray/brownish. Stratiform 
stromatolite predominates; some lamination characteristic ofLLH 
and small relief SH stromatolites present. Some laminae are 
disrupted by desiccation cracks and vuggy porosity (evaporite 
dissolution voids) . Unit top is a prominent, sharp, wavy surface. 
Samples: LV47.75, LV47.8, LV47.85, LV48.4, LV48.65. 

43 0 .3  57.05 Thrombolite. Medium to dark gray/brownish. Massive, burrow(?)-
mottled appearance. Clotted micritic fabric with pockets of grainy 
(peloids, small intraclasts, ooids) deposit. Some vuggy pores, and 
small veins and voids with sparite present. Rare wavy lamination 
visible in the uppermost part. Unit top is sharp, planar. Sample: 
LV48.75 .  

44 0.7 57.75 Dolomitized mudstone to fine-grained couplets. Poorly exposed. 
Base is covered. Varies in color from light to dark gray/brownish. 
Burrow-mottled. Middle part consist of layers up to 1 5  em thick 
with planar layer boundaries. Some faint planar, horizontal, and 
discontinuous wavy lamination visible. Upper part of the unit 
contain undulatory layers, up to 5 em thick, interbedded with thin 
argillaceous carbonate intervals. Unit top is very weathered and 
not well exposed. Samples: LV49.4, LV49.65 .  

45 1 .05 58 . 8  Thrombolite in the lowermost 50  em of the unit comprises three 
layers that pinch and swell laterally. Thrombolitic deposits are very 
porous, weathered, and have mottled appearance. Dark gray, with 
some voids filled with cement. Top of the thrombolite is poorly 
exposed, but appears wavy. The upper part of the unit is only 
partially exposed. The exposed parts reveal planar horizontal 
lamination characteristic of fine grained couplets to laminated 
dolomitized mudstone. Unit top is not exposed. Sample: LV49.75. 
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46 1 . 7 60. 5  Thrombolite in the lower part of the unit. Several thin (2-3 

em), undulatory layers composed of medium gray/brownish 
burrowed mudstone with some discontinuous wavy lamination 
present at the unit base. Thrombolitic deposits comprise two layers 
( 45 em and 1 5  em thick), with characteristic mottled (burrowed?) 
appearance. Medium to dark gray in color. Some discontinuous 
wavy lamination present in the uppermost part of the thrombolite. 
Upper contact of the thrombolite is poorly exposed. Upper part of 
the unit is partially covered. Several exposed, 1 0- 1 5  em thick, 
layers are composed ofburrow-mottled (light gray with brownish 
and black patches), dolomitized mudstone to fine-grained couplets. 
Some horizontal lamination and rare cross-stratification visible. 
Unit top is not well exposed. Samples: LV50.8, LV5 1 .3 ,  LV5 1 .8, 
LV52.0, LV52.4. 

47 0.4 60.9 Thrombolitic bioherm. Light to medium gray/brownish. Mottled 
appearance. Very porous (evaporite molds), fractured, and 
weathered. Lenses of intraclastic-oolitic wackestone/packstone 
present. Rare stylolites present in the upper part. Unit top is 
poorly exposed, weathered and marked by 2-3 em thick intraclastic 
layer with some shale on top. Samples: LV52.7, LV52.85. 

48 0.4 6 1 .3 Thrombolite bioherm. Several thin (2-3 em), undulatory layers 
present at the unit base. Thrombolitic deposits comprise 7-8 em 
thick layers with wavy, irregular layer boundaries. Medium to dark 
gray, with some brownish patches. Mottled, clotted appearance. 
Common small voids filled with sparite. Some wavy, discontinuous 
lamination present. Unit top is sharp, undulatory, and marked with 
thin shale. Samples: LV53 . 1 , LV53 .2. 

49 0.2 6 1 . 5 Medium-grained, burrow-mottled, undulatory couplets, texturally 
reminiscent of ribbon-rock. Medium to dark gray. Some 
horizontal lamination and vuggy pores visible in the lower part. 
Burrow-mottling is more prominent in the upper part of the unit. 
Common voids with sparite. Upper unit contact is sharp, slightly 
wavy. Sample: LV53 .35 .  

50  0.6 62. 1 Thrombolite comprising several layers of variable lateral thickness 
ranging from 5 em to 30 em. Dark gray. Mottled appearance. 
Common vuggy pores and small voids filled with cement. Very 
weathered. Patches of grainy deposits, containing peloids, small 
ooids and intraclasts, present. Unit top is marked by a 2-3 em 
thick, dark, wavy, shaly crust. Sample: LV53 .55 .  
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5 1  1 .45 63 .55  Only the lowermost part of the unit, comprising two layers (7  

em and 8 em thick), is  exposed. Medium- to fine grained couplets 
interbedded with microbially laminated deposit. Light gray. The 
rest of the unit is covered, with the exception of one layer (about 3 0  
em thick) containing planar, horizontal lamination typical of 
couplets, which occurs in the middle part of the interval. Unit top 
is poorly exposed; appears shaly. Sample: LV54.1 .  

52 0 .85 64.4 Calcareous siltstone to silty carbonate overlain by microbial 
deposits. Unit base is a sharp, planar surface. Deposits comprising 
the lower part of the unit are light to medium gray, thin bedded 
(maximum layer thickness: 5 em), with planar to slightly undulatory 
layer boundaries. Horizontal lamination and rare cross-
stratification visible. Layers are normally graded and have a texture 
of fine-grained, less that 1 em thick, couplets with thin lenticular, 
slightly coarser-grained basal deposits. The contact with the 
overlying dolomicritic microbial deposits is a poorly exposed, thin 
shaly interval. The deposits in the upper part of the unit are 
medium to dark gray/brownish, and comprise slightly thicker (up to 
1 2  ern) undulatory layers. Some faint, discontinuous, wavy 
lamination, characteristic of stratiform to LLH stromatolites, is 
visible. Mottled (burrowed?) texture. Parts ofthe unit may 
represent a thrombolite. Small vugs (evaporite molds) present. 
Upper unit contact is sharp, wavy. Samples : LV5 5 . 8, LV56. 1 5, 
LV56.3 5 .  

5 3  1 . 3 5  65.75 Microbial deposits. Medium to dark gray. Biohermal shape. 
Thrombolite in the lowermost part. Common small vugs (evaporite 
voids, burrows). Major part of the unit consists of columnar 
stromatolites. Massive appearance. Only rare laminated 
stromatolitic columns apparent in outcrop. Rare stylolites present. 
Columnar stromatolites are capped by LLH stromatolites. The 
uppermost part of the unit looks burrow-mottled. Unit top is sharp, 
wavy, weathered, and marked by < 5 em shale interval. Samples: 
LV57.3,  LV57.6, LV57.7.  

54 0 .9 66.65 Thrombolite overlain by medium- to fine-grained couplets. 
Medium to dark gray. Thrombolite is very porous and weathered. 
Biohermal shape. The overlying couplets exhibit some horizontal 
and cross-lamination, and contain common evaporite molds. The 
unit is capped by about 5 em thick, undulatory, and very porous 
ooid grainstone layer. Unit top is sharp, wavy, and marked by thin 
shale. Samples: LV57.75, LV57.9, LV58. 55, LV58.6. 
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5 5  0.45 67. 1 Fine-grained couplets to dolomitized mudstone. Light to 

medium gray. The lowermost part of the unit is very fractured in 
the outcrop. Some horizontal planar lamination visible. A 
prominent, planar to wavy layer boundary with thin (2-3 em) shaly 
crust occurs on top of this fractured interval (about 1 0 em from the 
top of the unit). The uppermost part of the unit is represented by 
one layer with slightly undulatory boundaries, composed of several 
thin, fine-grained couplets exhibiting some horizontal lamination. 
Samples: LV58.9, LV59.0. 

56 0.4 67. 5 Medium- to coarse-grained dolomitized couplets. Light to medium 
gray. Prominent horizontal and cross-lamination present in the 
lower and upper parts of the unit. Couplet bases are composed of 
peloidal-intraclastic packstone, with some ooids. Middle part 
appears burrow-mottled, and contains common vuggy pores, some 
of which are related to dissolution of evaporites. Unit top is sharp, 
wavy. Sample: LV59.1 .  

57 1 . 1 5  68.65 Ooid grainstone overlain by thrombolite. Oolite in the lower part of 
the unit comprises several weathered, porous, dark gray, undulose 
layers. The lower part of the overlying thrombolite is extensively 
weathered; the upper part has a massive appearance. Medium to 
dark gray. Some vuggy pores, resembling evaporite nodules and 
molds, and voids filled with sparite present. Unit top is weathered; 
appears sharp, planar. Samples: LV59.6, LV59.7, LV60.5. 

58 0.2 68.85 Fine-grained couplets to dolomitized mudstones. Light to medium 
gray. Planar, horizontal lamination visible. Thin bedded (maximum 
layer thickness: 4-5 em). Layer boundaries are planar to slightly 
undulatory. Unit top is sharp, planar. Sample: LV60.7 .  

59 0.2 69.05 Oolite comprising several undulatory layers of a maximum 
thickness of about 8 em. Partially silicified. Light to dark gray. 
Unit top is slightly undulatory and very weathered. Sample: 
LV60.85 .  

60 0 .5 69.55  Medium- to fine-grained dolomitized couplets. Medium gray. 
Horizontal (planar to wavy, discontinuous) and cross-lamination 
visible. Some parts have mottled fabric (brownish patches). Upper 
unit contact is slightly wavy and weathered. Sample: LV6 1 .45 . 

6 1  0.25 69. 8  Lower part is covered (tree roots). Thrombolite comprises the 
upper exposed part of the unit. Medium gray. Biohermal shape 
with planar lower surface and wavy, undulatory upper surface. 
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Mottled appearance. Some wavy, discontinuous laminae 
visible. Several vuggy pores (up to 1 em in diameter) and voids 
filled with cement present. Sample: LV 6 1 .7 .  

62 0 .55  70.35  Microbial deposits interbedded with couplets. Light to  medium 
gray. Layers are 5-20 em thick and have planar to slightly wavy 
boundaries. Lower part of the unit contain SH stromatolites 
overlain by wavy laminated stratiform stromatolites (microbial 
laminates) and some LLH stromatolites. The upper part of the unit 
is dominated by fine- to medium-grained couplets. Planar, 
horizontal and cross-lamination visible. Some vugs present. Upper 
unit contact is sharp, planar. Sample: LV62 .2. 

63 0 .85 7 1 .2 The unit consists of two microbial bioherms. Medium to dark gray. 
The lower bioherm is composed of basal thrombolite grading 
upward into columnar stromatolite. The upper part of the bioherm 
has well exposed laminated microbial columnar structures. 
Bioherm upper contact is wavy. The overlying bioherm is 
thrombolitic, and had both upper and lower boundaries wavy. 
Thrombolitic deposits are porous, weathered and have mottled 
appearance. Upper unit contact is also weathered. Samples: 
LV62.35, LV62.55. 

64 0.65 7 1 .85  Coarse-grained couplets with ooid-intraclastic bases present in the 
lowermost part of the unit. Light gray. Some planar horizontal 
lamination visible. The remaining part of the unit consists of 
columnar stromatolite. Dark gray. Biohermal shape. Massive 
appearance. Very porous and weathered. Some voids filled with 
sparite present. Laminated columnar microbial structures visible in 
the outcrop. Unit top is sharp, slightly wavy. Sample: LV63.75. 

65 0 .65 72. 5  Predominantly medium-grained couplets interbedded with some 
coarse- and fine-grained dolomitized couplets. Light to medium 
gray. Ooid-intraclastic packstone deposits present at bases of 
coarser-grained couplets in the lower part ofthe unit. Vuggy 
porosity present. Middle part of the unit is weathered, and 
composed of thinly bedded (maximum layer thickness: 1 em) layers 
with planar layer boundaries composed of coarse- to medium-
grained couplets. Medium- to fine-grained couplets predominate in 
the upper part of the unit. Some horizontal lamination, and rare 
cross-lamination, vuggy pores, and patches ofFe-oxides visible. 
Sample: LV64.45. 

66 1 .05 73 .55  Columnar stromatolites in the lower part comprise one layer with 
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wavy upper layer boundary. Laminated columns with small 
fenestrae well exposed in the upper part of the layer. Intercolumnar 
space contains oolitic-peloidal packstone/grainstone. The overlying 
deposits contain substantially silicified microbial deposits. Some 
SH stromatolites visible, as well as stratiform to LLH stromatolites. 
Characteristic wavy, crinkly lamination and small fenestrae visible. 
Some grainy laminae and patches present. Rare vertical mudcracks 
and sheet cracks can be observed. In the uppermost part of the 
unit, stromatolitic hemispheroids are overlain by some fine-grained 
couplets to laminated dolomitized mudstone. Unit top is 
weathered, wavy. Samples: LV64.5, LV64.9, LV65.2, LV65.55. 
The remaining part of the Copper Ridge Dolomite is exposed, but 
was not measured. 
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APPENDIX B 

STABLE ISOTOPE DATA 

SUBTIDAL DEPOSITIONAL PACKAGE 

MICRITIC MATRIX OF MICROBIAL DEPOSITS 

Sample Description 8180 813C 

TZ 9.0t micrite comprising a thrombolitic mesoclot incorporated within ribbon -9.06 3 .67 
limestone 

TZ 1 8.7 dark. dense micrite comprising thrombolitic mesoclots -8. 7 1  3 .47 

RR 3 1 .75 micrite comprising thrombolite/digitate stromatolite: minor disseminated - 1 0.74 2.44 
replacement dolomite possible 

RR 35.9 micrite comprising digitate stromatolite; minor contamination from fenestrae - 1 0.98 2.29 
with calcite cement and from disseminated replacement dolomite possible 

TH 20.5 micrite from microbial laminates: contains about 30% dolomicrite; time -8.63 3.39 
extraction used 

TH 22.2 micrite from microbial laminates; contains about 1 0% dolomicrite; time -8.73 3 .68 
extraction used 

TH 23.45 micrite from microbial laminates: contains common dolomicrite; time -8.9 1 3.4 1 
extraction used 

TH 54.2( micrite comprising digitate stromatolites from the peritidal package; minor -9.52 1 .53 
contamination from small fenestrae and scattered dolomite possible 

FG 40.4 micrite comprising digitate stromatolite; contamination from small fenestrae - 1 0.39 2.58 
possible 

FG 4 1 . 1 5  micrite from digitate stromatolite; minor contamination from small fenestrae -9.74 2.48 
ossible 

Total (n): 1 0  Minimum: - 1 0.98 1 .53 

Maximum: -8.63 3.68 

Average: -9.54 2.89 

MICRITIC MATRIX OF NON-MICROBIAL DEPOSITS 

Sample Description 8180 813C 

TH -0.4 micrite from intraclasts and irregular patches from fossiliferous-intraclastic -8.98 1 .98 
packstone layer of ribbon limestone 

TH 0.0 micrite from a mudstone layer of ribbon limestone -8.84 2.54 

TH 1 . 1  micrite from burrow-mottled ribbon limestone -7.90 3 . 0 1  

TH 2. 1 5  micrite from a laminated mudstone layer o f  ribbon limestone -7.48 1 . 82 

TH 3.35 micrite from a mudstone layer of ribbon limestone -7.43 1 .66 

TH 4.2 micritic matrix in between trilobite fragments from a limestone layer of ribbon -8.03 1 .29 
rocks 

TH 5.2 micrite from intraclasts (flat pebbles) imbedded within argillaceous -7.87 0.49 
dolomicritic layers of ribbon rocks 

TH 5.4 micrite from a lense interbedded within argillaceous dolomicrite of ribbon -7.79 1 . 1 9  
rocks -----------

TH 6.4 micrite from a mudstone to peloidal mudstone layer of ribbon limestone -7.5 1 1 .53 

TH 8.0 b micrite in between trilobite fragments in fossiliferous wackestone/packstone of -7.43 1 . 1 3  
ribbon limestone 

TH 1 0.05 micrite from a mudstone layer interbedded within argillaceous dolomicrite of -7.77 2.92 
ribbon rocks 

TH 1 1 .3 micrite from a mudstone layer underlying flat pebble conglomerate of ribbon -7.76 1 .7 1  
limestone 



TH 1 1 .9 micrite from a mudstone/peloidal layer of ribbon limestone 
TH 1 2.6 micrite from a lense within ribbon limestone 
TH 1 3 .45 micrite from a lense within ribbon limestone 
TH 1 4.65 micrite from a mudstone layer of ribbon l imestone 
TH 1 6.75 micrite from a mudstone layer of ribbon limestone 
TH 1 7.85 micrite to peloidal packstone from lenses in ribbon limestone 

TH 1 8.8 micrite from burrowed lenses from transitional interval between ribbon 
limestone and microbially laminated deposits 

FG 0.6 micrite from a mudstone lal:er of ribbon limestone 

Total (n) : 20 Minimum: 

Maximum: 

Average: 

FIBROUS/BLADED CALCITE CEMENT 

Sample Description 

TZ 9.0 fibrous/bladed calcite cement from interparticle space within ribbon rocks: 
some pore central equant calcite cement possible 

TZ 9.0a bladed calcite cement from interparticle space of grainstone layers within 
ribbon rocks 

TZ 24.65a bladed calcite from intergranular space of a peloidal packstone/grainstone 

TZ 24.65b bladed calcite from burrows in peloidal packstone/grainstone; some pore 
central equant calcite cement possible 

TZ 26.65 bladed calcite from intergranular space of a peloidal packstone/grainstone 

TZ 28.65a pore-rim bladed calcite cement from a void (burrow likely) within peloidal 
packstone/grainstone with thrombolitic texture 

RR 28.05b pore rim bladed calcite cement; some equant calcite possible 

RR 33. 1 5  pore-rim bladed calcite cement from burrows within thrombolites; some pore-
central equant calcite cement likely 

RR 34.0 pore-rim bladed calcite cement from burrows within thrombolites; some pore-
central equant calcite cement likely 

RR 49.5 fibrous/bladed calcite cement from burrows within thrombolitic deposits 
RR 49.85 bladed calcite cement from burrows within thrombolitic deposits 

RR 52.65b fibrous/bladed calcite cement from burrows in thrombolites; some pore central 
equant calcite cement possible 

TH 0.55 a bladed calcite cement in between intraclasts of flat pebble conglomerate 
TH 0.55 c bladed calcite cement in between intraclasts of flat pebble conglomerate 

bladed calcite cement between micritic intraclasts of rare calcitic deposits 
TH 55.4 within peritidal package; succeeded by equant calcite and pore-central saddle 

dolomite cement 

FG 20.4 bladed calcite cement from intergranular and shelter voids of a grainstone 
layer: rare equant calcite cement possible 

LV 1 0.35 bladed/fibrous calcite cement in between intraclasts and �eloids 

Total (n) : 1 7  Minimum: 

Maximum: 

Average: 

CALCITE FROM ARGILLACEOUS DOLOMICRITIC LAYERS 

Sample 

TH 9.0 

TH 1 1 .75 

Description 

time-extracted calcite trom argillaceous dolomicrite or calcareous siltstone 

time-extracted calcite from argillaceous dolomicrite/calcareous siltstone 

Average: 
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-8. 1 4  3. 1 8  

-7.48 3 .2 1  

-7. 1 6  3.54 

-7.58 4.09 

-7.80 2.29 

-7.63 3 .52 

-7.88 3.80 

-7.98 3 .06 

-8.98 0.49 

-7. 1 6  4.09 

-7.82 2.40 

0180 onc 

-8.62 4.5 1 

-8.33 4.89 

-9. 1 6  4.60 

-9.38 4.35 

-9.08 4.27 

-8. 1 8  3.93 

-8.37 3.01 

- 1 0. 1 3  2.58 

-9.94 2.84 

-9. 1 8  3 .63 

-8.38 3 .75 

-9.70 2.47 

-7.86 2.88 

-7.77 2.97 

-9.96 2.65 

- 1 0. 1 6  2.3 1 

-7.48 3.5 1 

- 1 0. 1 6  2.3 1 

-7.48 4.89 

-8.92 3 .48 

0180 onc 

-8.23 2.35 

-8.92 1 .98 

-8.57 2 . 1 7  



FERRO AN MICROSP ARITE 

Sample 

TH 2 . 1 5b 

Description 

ferroan microsparite associated with burrows within mudstone layers of ribbon 
limestone 

EQUANT CALCITE CEMENT 

Sample Description 

TZ 3 . 1 b  pore-rim non-ferroan equant calcite cement from a grainstone layer o f  ribbon 
l imestone 

TZ 9.0b pore central equant calcite cement from interparticle pores of a grainstone layer 
within ribbon l imestone 

TZ 1 8.25 turbid equant calcite cement from burrows in laminated micritic deposits 

TZ 24.65c pore-central equant calcite cement in one large (dissolutional) void within 
reloidal rackstone/grainstone 

TZ 28.65b pore-central equant calcite cement from a void (burrow likely) within peloidal 
packstone/grainstone with thrombolitic texture 

RR 55. 1 pore-central equant calcite cement from burrows in thrombolitic deposits; some 
rore-rim bladed calcite likely 

TH 54.0b pore-central equant calcite cement in a layer-parallel void within micritic 
laver 

FG 5 . 1  
equant calcite cement from vertical voids (burrows?. synaeresis cracks?) i n  a 
micritic laver of ribbon rocks 

FG 1 7.6b equant calcite from a burrow within a ribbon laminated layer interbedded with 
mechanical cou12lets 

FG 1 8 . 1  equant calcite cement from burrows in thrombolitic deposits; some pore-rim 
bladed calcite cement rossible 

LV 24.8 pore-central equant calcite from burrows within thrombolitic deposits; some 
QOre-rim bladed calcite QOssible 

Total (n): I I  Minimum: 

Maximum: 

Average: 

FERROAN EQUANT CALCITE CEMENT 

Sample Description 

TZ 3 . 1 a  pore-central (burrow?) ferroan equant calcite cement from a grainstone layer of 
ribbon l imestone 

RR 23.45 ferroan equant calcite cement from burrows in microbial laminates 

RR 28.05a equant calcite cement subsequently precipitated on bladed calcite and 
succeeded by saddle dolomite cement 

TH 1 4.0 ferroan equant calcite cement in voids (burrows?) within a micritic layer of 
ribbon rocks 

TH 1 8.8  ferroan equant calcite cement in  voids (burrows likely) within ribbon 
l imestone 

TH 1 9. 1  ferroan equant calcite cement from burrows in microbially laminated 
deposits 

FG 1 7.6c ferroan equant calcite cement from a burrow within a ribbon laminated layer 
interbedded with mechanical couplets 

FG 29.4 coarse-crystalline ferroan equant calcite cement from burrows within 
thrombolitic de12osits 

Total (n) : 8 Minimum: 

Maximum: 

Average: 
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-8 .0 1  3 .03 

()180 813C 

- 1 0. 1 6  2 .61  

-8 .88 4.72 

-8.83 3 . 80 

-9.03 4.36 

- 1 0. 1 4  3 .25 

-9.75 1 .24 

-9.84 1 .54 

-8.85 2.7 1 

- 1 0.65 1 .65 

-9.28 2.50 

-9.43 2.00 

- 1 0.65 1 .24 

-8.83 4.72 

-9.53 2.76 

8180 813C 

- 1 0.69 2.42 

-9.28 3 . 1 9  

-9.44 2.75 

-9.68 2.27 

-9.07 2.70 

-9.69 2.69 

- 1 1 .00 1 . 97 

- 1 0. 1 5  2.23 

- 1 1 .00 1 . 97 

-9.07 3 . 1 9  

-9.87 2.53 



DOLOMITE FROM ARGILLACEOUS LAYERS 

Sample Description 

TZ 3 . 1 c  argillaceous dolomicrite from ribbon limestone; minor scattered calcite 
possible 

TZ 7.6 argillaceous dolomicrite from ribbon limestone 
TZ 9.0 argillaceous dolomicrite from ribbon limestone: does not stain ferroan 

RR 1 .2a argillaceous. ferroan dolomicrite from ribbon limestone; minor calcite 
present 

RR 1 .4 argillaceous. ferroan doiomicrite from ribbon limestone 
RR 1 3 . 9  argillaceous dolomicrite from ribbon limestone 
TH 0.0 argillaceous, ferroan dolomicrite from ribbon limestone 
TH 5.35 argillaceous dolomicrite from ribbon limestone 

TH 9.0 dolomicrite from argillaceous dolomicrite/calcareous siltstone; time extraction 
used 

FG 5 . 1  argillaceous dolomicrite from ribbon limestone; low carbonate content 

LV 1 0.35b dolomicrite from argillaceous layers interbedded with intraclastic packstone of 
ribbon l imestone 

LV 1 0.35c argillaceous. ferroan dolomicrite from ribbon limestone 

Total (n): 1 2  Minimum: 

Maximum : 

Average: 

SUBTIDAL SADDLE DOLOMITE CEMENT 

Sample 

TZ 1 2.3 

RR 8 . 1 a  

L V  1 0.35 

Total (n): 3 

Description 

ferroan saddle dolomite cement associated with burrows in borrowed mottled 
subtidal lithofacies 

ferroan. coarse-crystalline saddle dolomite cement from shelter voids beneath 
skeletal fragments in ribbon limestone 

ferroan. pore-central saddle dolomite cement associated with MVT minerals 
(pyrite. galena. sphalerite) 

Minimum: 

Maximum: 

Average: 

SUBTIDAL SADDLE DOLOMITE REPLACEMENT 

Sample 

RR 8. l b  

Description 

ferroan saddle dolomite replacing internal deposits on the bottom of shelter 
voids in fossiliferous lavers of ribbon limestone 
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8180 813C 

-7.08 3 .67 

-7.01 4 . 8 1  

-7.07 4.99 

-7. 1 0  3 .46 

-6.90 3 .45 

-6.75 3 . 0 1  

-8. 1 5  3 . 1 0  

-7.56 2.83 

-6.05 3 .22 

-6. 1 2  4.08 

-7.43 4.00 

-7.58 3 . 86 

-8. 1 5  2 . 83 

-6.05 4.99 

-7.07 3 . 7 1  

8180 ooc 
-8.5 1 3 .97 

-8. 4 1  3.44 

-9.90 3.53 

-9.90 3 .44 

-8.4 1 3.97 

-8.94 3 .65 

-8. 1 3  3.39 
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PERITIDAL DEPOSITIONAL PACKAGE 

DOLOMICRITIC MATRIX OF NON-MICROBIAL DEPOSITS 

Sample Description 8180 813C 

TZ 22.25d 
dolomicrite with peloidal texture from a lens within calcitic peloidal 
packstone/grainstone with clay-scam dolomite and veins with saddle dolomite -6.90 4.68 
and sphalerite 

TZ 48.25 dolomicrite from fine-grained couplets -6.73 2.72 

TZ 48.95 dolomicrite from fine-grained couplets -6.22 3.69 

TH 27.8 dolomicrite from a layer overlying microbially laminated deposits -6.4 1 3. 25 

TH 28.35 dolomicrite from upper parts of coarse-grained couplets -6.76 2.76 

TH 29.6 dolomicrite from fine-grained couplets -7.02 2.72 

TH 30.7 a dolomicrite from fine-grained couplets -7.4 1 2 .46 

TH 32.9 dolomicrite from upper parts of fine/medium-grained couplets -7.07 3.03 

TH 33. 1 B dolomicrite from fine-grained couplets -7.05 3 .0 1  

TH 3 3 . 1  T dolomicrite from dolomitized mudstone -7.88 3.25 

TH £2-33.35 dolomicrite from dolomitized mudstone: 5 em below a prominent exposure -7.29 3.28 
surface 

TH 33.4a dolomicrite from clasts in topographic lows immediately above the exposure -7.77 3.25 
surface 

TH 33.4b dolomicrite from clasts in topographic lows immediately above the exposure -7.67 3 . 1 8  
surface 

dark argillaceous dolomicritic matrix from a condensed shaly interval 
TH D-33.45 deposited on the erosional exposure surface; associated with -7.77 3.26 

sphalerite 

TH 1 -33.42 dolomicrite with a lamina interbedded with argillaceous laminae in the -7.64 2.97 
condensed shaly interval deposited on the exposure surface 

TH 2-33.43 laminated dolomicrite from fine-grained couplets with desiccation cracks; -7.72 3 .08 
deposited about 5 em above the exposure surface 

TH 34.6 dolomicrite from dolomitized mudstone -6.82 3.68 

TH 35.6 dolomicrite from dolomitized mudstone/fine-grained couplets -6. 1 2  3.06 

TH 36.55 T dolomicrite from upper parts of medium-grained couplets with common -6.96 2.88 
desiccation cracks 

TH 3 7.6 dolomicrite from fine/medium-grained couplets with desiccation cracks -6.39 2 .96 

TH 3 8.7 dolomicrite from dolomitized mudstone -6.59 3 . 1 4  

TH 39.05 dolomicrite from upper parts of fine/medium-grained couplets -5.86 3.43 

TH 40.25 dolomicrite from upper parts of medium-grained couplets -6.35 3.82 

TH 4 1 . 1 5  dolomicrite from upper. burrowed parts of medium-grained couplets -5.99 3.80 

TH 4 1 .9 dolomicrite from upper parts of medium-grained couplets -6.99 3 . 6 1  

TH 43.3 slightly laminated dolomicrite from dolomitized mudstone/very fine-grained -6.87 3.76 
couplets 

TH 47. 1 dolomicrite from fine-grained couplets/dolomitized mudstone -6. 1 8  3 .40 

TH 50.0 dolomicrite from burrowed mudstone/fine-grained couplets -6.24 4.08 

TH 50.7 dolomicrite from dolomitized mudstone/fine-grained couplets associated with -6.33 3.83 
evaporites and abundant quartz sand grains 

TH 5 1 .75 laminated dolomicrite from fine-grained couplets -6.68 3 . 1 1 

TH 55.25 dolomicrite from upp_er micritic part of coarse-grained couplets -5.99 2.65 

TH 56.8 dolomicrite from fine-grained couplets -6.38 2.20 

TH 57.25 dolomicrite from fine-grained couplets -7.44 2.42 

TH 58. 1 5  dolomicrite from burrow-mottled mudstone/fine-grained couplets -6.43 3 .71  

TH 6 1 .4 dolomicrite from fine to medium-grained couplets -7. 1 3  2.77 

TH 66.9 dolomicrite from fine-grained couplets overlying SH stromatolites -6.36 1 .42 



TH 

FG 

FG 

FG 

68.05 

32.7 

38 . l a  

3 8. l b  

dolomicrite from disturbed (burrow mottled) fine-grained couplets with some 
microbial laminae possible 

dolomicrite from dolomitized mudstone in the vicinity of an evaporite nodule 
with common silica cement 

dolomicrite from dolomitized mudstone; immediately underneath a karst 
surface 

dolomicrite from dolomitized mudstone: about I em above the karst surface ----------------

LV 44.85 

Total (n): 4 1  

dolomicrite from medium/coarse grained couplets associated with common 
quartz sand grains 

Minimum : 

Maximum: 

Average: 

DOLOMICRITIC MATRIX OF MICROBIAL DEPOSITS 

Sample Description 

TZ 28.25 dolomicritic laminae from stratiform stromatolites 

TH 25.55 dolomicritic laminae from stratiform stromatolites 

TH 26.6 dolomicritic laminae trom stratiform stromatolites 

TH 48.9 dolomicrite from LLH stromatolites; contamination from small fenestrae with 
saddle dolomite cement possible 

TH 52.75 laminated dolomicrite from microbial lumps imbedded within deposits with 
thrombolitic texture 

TH 60.4 dolomicrite from stratiform stromatolite laminae 

TH 62.45 dolomicrite from extensively dolomitized LLH or digitate stromatolites 
TH U46 dolomicrite from partially silicified SH stromatolites 

FG 1 4.0 dolomicritic laminae from stratiform stromatolites 

FG 3 6.45 dolomicrite from SH stromatolites; contamination from small fenestrae with 
saddle dolomite cement possible 

LV 20.2 
dolomicritic laminae from stratiform stromatolites; contamination from small 
fenestrae with saddle dolomite cement 12ossible 

Total (n): I I  Minimum : 

Maximum: 

Average: 

DOLOMICROSPARITE 

Sample Description 

TZ 3 5.05 dolomicrosparite replacing mudstone to peloidal wackestone 

TZ 29.25 dolomicrosparite from medium-grained couplets 

TZ 47.85 dolomicrosparite from medium-grained couplets 

TH 30.7 b dolomicrosparite from fine-grained couplets 

TH 3 1 .4 dolomicrosparite from fine/medium-grained couplets 

TH 43.8 dolomicrosparite from extensively dolomitized. burrowed mudstone 

TH 44.75 dolomicrosparite from burrowed mudstone/fine-grained couplets 

TH 45.7 dolomicrosparite from extensively dolomitized. slightly burrowed 
mudstone/fine-grained couplets 

TH 47.7 dolomicrosparite from _LLH stromatolites 

TH 5 3 .9 dolomicrite to dolomicrosparite from burrowed fine-grained courlets 

TH 54.8 dolomicrite to dolomicrosparite from dolomitized mudstone 

TH 63.5 dolomicrosparite from extensively dolomitized bioturbated peloidal 
packstone/wackestone 

FG 43.6 dolomicrosparite replacing muddy parts of medium-grained couplets 
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-6. 1 0  0.32 

-7.33 3 .45 

-6.42 3.2 1 

-6.49 3 .2 1 

-6. 1 0  3 . 73 

-7.88 0.32 

-5.86 4.68 

-6.78 3 . 1 3  

o1"0 o13C 

-6.29 4.38 

-6.58 3.90 

-6.2 1 4.0 1 

-6.78 3 . 5 5  

-6.55 2.94 

-6.37 2.72 

-6.42 2.36 

-7.77 0.67 

-6.85 3.32 

-6.84 3 .08 

-7.03 3 .47 

-7.77 0.67 

-6.2 I 4.38 

-6.70 3 . I 3  

o1"0 o13C 

-6. I 8  4.44 

-6. I 4  4.5 1 

-6. 7 I  3 .88 

-7.23 2.66 

-8.07 3 .0 I 

-6.55 4.78 

-6.38 4.30 
---------

-6.36 3.94 

-8.00 3 .69 

-6.54 3 .02 

-6 .55 2.3 1 

-6.49 2.66 

-6.6 I 3.59 
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LV 36.5 dolomicrosparite replacing peloidal mudstone/wackestone of medium-grained -7. 1 I 4.34 
cou lets 

LV 65.55 dolomicros12arite from burrowed mudstone/fine-t:[ained cou12lets -7.49 ! .52 

Total (n): I 5 Minimum : -8.07 ! .52 

Maximum: -6. I 4  4.78 

Average: -6.83 3.5 I 

COARSER-CRYSTALLINE REPLACEMENT DOLOMITE 

Sample Description 8180 813C 

RR 34.0b medium-crystalline replacement dolomite from patches (burrows?) within -8.5 I 3.52 
thrombolite de12osits 

RR 55 . 1  medium-crystalline replacement dolomite from patches (burrow-related) within -9.04 3 .08 
bioturbated thrombolite 

TH 56.05 saddle dolomite cement between angular clasts from coarser-crystalline -6.92 2.68 
extensively dolomitized de12osits 

TH 59.35 medium-crystalline replacement dolomite; originally the lithofacies might have -6.40 3 . I 6  
been bioturbated cou12lets 

TH 64.6 replacing cement within a composite-ooid grainstone -6.59 2.05 

TH 65.3 dolomicrosparite to medium-crystalline replacement dolomite from -6.09 2.45 
dolomitized mudstone overlying thrombolitic de12osits 

TH 65.55 rerlacing cement between extensively dolomitized angular peloidal clasts -7.39 1 .75 

FG 42.3c fabric obliterating mosaic of medium- to coarse-crystalline replacement -8.79 2.99 
dolomite 

LV 49.75 fabric obliterating mosaic of medium-crystalline replacement dolomite; some -7.34 3 .0I  
remnant thrombolitic fabric visible 

LV 59.6 replacing cement within a composite-ooid grainstone -7.72 1 .3 8  

LV 63.75 medium-crystalline replacement dolomite from digitate to columnar -7.09 1 .44 
stromatolites 

LV 64.5 medium- to coarse-c!l:sta!Iine dolomite re12lacing columnar stromatolites -7. I 4  0.62 

Total (n): I 2  Minimum: -9.04 0.62 

Maximum: -6.09 3 .52 

Average: -7.42 2.34 

SADDLE DOLOMITE {REPLACEMENT1 

Sample Description 8180 813C 

TZ 22.25e replacement saddle dolomite from burrows of peloidal packstone with -7.3 1 4.32 
thrombolitic fabric; associated with argillaceous matrix 

RR 65.6 coarse-crystalline replacement saddle dolomite from deposits with completely -7.50 3.94 
obliterated fabric; some associated argillaceous ,matrix 

TH 56.05a saddle dolomite in argillaceous/bituminous matrix replacing patches of -6.73 2.68 
microbial thrombolitic derosits 

replacement saddle dolomite embedded in bituminous matrix; from patches 
-6.65 2.90 TH 59.35b in mudstone or couplets replaced by a mosaic of coarser-crystalline 

dolomite 

TH 63.5b replacement saddle dolomite in argillaceous/bituminous matrix; associated -6.44 2.64 
with burrows in burrowed mudstone or fine-grained couplets 

FG 37.8 replacement saddle dolomite in burrows of dolomitized mudstone/fine-grained -6.54 3.44 
couplets; associated with argillaceous/bituminous matrix 



3 6 1  
FG 42.3a coarse-crystalline saddle dolomite in dark argillaceous/bituminous matrix - 1 0.5 1 2.88 
FG 42.3b coarse-c!Istalline saddle dolomite in dark argillaceous/bituminous matrix - 1 0.36 2.94 

Total (n): 8 Minimum: - 1 0. 5 1  2.64 

Maximum: -6.44 4.32 

Average: -7.75 3 .22 

PERITIDAL ZONED DOLOMITE CEMENT 

Sample Description 0180 o13C 

RR 33. 1 5  zoned saddle dolomite cement from calcitic thrombolitic deposits: -6.78 3.04 

RR 34. 1 5  zoned saddle dolomite cement from coup_lets with some microbial laminae -8.33 3 .37 

TH 59.35a complexly zoned saddle dolomite cement in voids (desiccation?, burrows?) -8.42 2.46 within extensively dolomitized bioturbated couplets 

TH 63.7  complexly zoned saddle dolomite cement in voids in  extensively dolomitized -7.77 1 .93 microbial (thrombolitic) deposits 

TH 65.0 zoned saddle dolomite cement in voids in extensively dolomitized microbial -6.96 1 .80 (thrombolitic) def>OSits 

TH 65.3b complexly zoned saddle dolomite cement in layer-parallel voids in thrombolitic -7.33 1 .66 deposits 

TH 68.75 zoned saddle dolomite cement from voids in extensively dolomitized and -7. 1 7  1 .27 
partially silicified microbial (thrombolitic) deposits 

FG 42.9 zoned saddle dolomite cement from evaporite dissolution voids in  medium- -7.88 2.90 
grained COUf>lets 

FG 42.9b pore-rim zoned dolomite cement from evaporite dissolution voids in medium- -8. 1 5  2.83 
grained couf>lets 

LV 48.65a zoned dolomite cement from evaporite dissolution and desiccation voids within -8.46 2.76 
stratiform to LLH stromatolites 

TZ 44.0 zoned dolomite cement from desiccation cracks in fine/medium grained -7.42 3 .06 
cou lets 

Total (n): 1 1  Minimum: -8.46 1 .27 

Maximum: -6.78 3.37 

Average: -7.70 2.46 

PERITIDAL SADDLE DOLOMITE CEMENT 

Sample Description ()'80 o!3C 

RR 4 1 .4b saddle dolomite cement from layer-perpendicular and oblique veins within -9.53 4.20 
microbially laminated deposits; associated with eguant calcite cement 

RR 52.65a saddle dolomite cement from calcitic thrombolitic deposits -9.22 3. 1 3  

TH 28.6 saddle dolomite cement from larger voids and fractures in deformed lithofacies -8.60 3 . 1 4  
with remnant thrombolitic fabric 

TH 3 1 .5B saddle dolomite cement in large dissolutional or dissolution enlarged void in  -8. 1 0  2.80 
couf>lets; similar to TH 32.05 

TH 32.05 coarse-crystalline saddle dolomite cement from voids in fine-grained -8.60 2.59 
COU2lets 

TH 3 6.55T saddle dolomite cement in desiccation cracks in medium-grained cou2lets -8.74 2.75 

TH 5 1 .2 saddle dolomite cement from tectonic veins -8.00 3 .24 

TH 54.0a saddle dolomite cement from voids (desiccation?) in between clasts in calcitic -7.0 1  2.77 
lithofacies 

TH 54.2 saddle dolomite cement from calcitic digitate stromatolites -6.98 2.63 

TH 54.4 saddle dolomite cement from calcitic microbial deposits (digitate -6.88 2.87 
stromatolites) 

TH 73.4 saddle dolomite cement from bed-perpendicular fractures in recrystallized -7.0 1 -0. 6 1  
cou lets 



saddle dolomite cement from voids (desiccation cracks or fractures) in FG 1 5 .8 
_

_
____ _:fic::m.c..ecc./:c:cm=-:e..::.d::.ciu"'-m:::c-grained couplets 

FG I 7.6 
pore-central coarse-crystalline saddle dolomite cement from voids of 
uncertain origin (desiccation voids or burrows) in coarse/medium-grained 
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-8.80 3 .4 1  

-9.80 2.95 

---�·-----=c�o.c:.u-"-p'-"lets _ ________________ ��---------�-------

FG 32.7b 

FG 42.3 

saddle dolomite cement associated with evaporite nodules in disturbed fine­
grained couplets 

coarse-crystalline turbid saddle dolomite cement from one large void in a 
fabric-obliterate mosaic of coarse crystalline replacement dolomite 

-9.35 3 .30 

-7.88 3.3 I 
------------------

LV 64.5a 

TZ 22.25 

TZ 5 1 .05 

Total (n): I 8 

saddle dolomite cement in voids within extensively dolomitized columnar 
stromatolites 

saddle dolomite cement from veins; adjacent to sphalerite 

coarse-crystalline. turbid saddle dolomite cement in desiccation cracks in 
medium-12rained couplets 

Minimum: 

Maximum: 

Average: 

CALCITE CEMENT IN FRACTURES 

Sample Description 

TZ 20.05A coarse-crystalline ferroan equant calcite cement from a bed-perpendicular vein 
within thrombolitic deposits 

RR 8 . 1  equant. turbid. ferroan calcite from large veins o f  irregular shape within 
fossiliferous layers of ribbon limestone 

RR 8.4 ferroan equant calcite in bed-parallel elongated void (fracture?) above 
hardground in a skeletal packstone/grainstone layer of ribbon limestone 

RR 1 2.5  coarse-crystalline ferroan equant calcite from bed-perpendicular fractures 
within ribbon limestone; associated with saddle dolomite cement 

RR 35.3 equant calcite cement (does not stain ferroan) from a bed-oblique fracture in 
fine-grained couplets/dolomitized mudstone 

RR 40.95 coarse-crystalline equant calcite cement from bed-oblique fractures of an 
extensively deformed layer 

RR 4 1 .4a equant calcite cement from layer-perpendicular and oblique veins within 
microbially laminated deposits; associated with saddle dolomite cement 

RR 43.5 ferroan equant calcite from tectonic veins in stratiform stromatolites 

FG 32.7a ferroan equant calcite from a large void (associated with evaporite nodule) fed 
by a vertical fracture through dolomitized mudstone 

LV 1 2.3a ferroan eguant calcite from a bed-parallel vein in ribbon limestone 

Total (n): 1 0  Minimum: 

Maximum: 

Average: 

-6.89 0.7 1 

-7.56 4.39 

-8.89 2.94 

-9.80 -0 . 6 1  

-6.88 4.39 

-8.2 1  2 .8 1  

8180 813c 
- 1 2.92 3 .20 

- 1  1 .79 2.48 

- 1 0.23 2.07 

-I 1 .4 7 2 .09 

- 1 0.34 2.08 

- 1 1 .5 1  0.70 

- 1 1 .42 3.29 

- 1 0.62 3 . 1 0  

- 1 2.50 2. 1 9  

-9.38 1 .64 

- 1 2.92 0.70 

-9.38 3.29 

- 1 1 .22 2.28 
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APPENDIX C 

ELECTRON MICROPROBE DATA 

Explanation of Data Tables 

Electron microprobe (EMP) data are organized according to the diagenetic and 
depositional components analyzed. For each sample, individual data points are indicated 
as PT, followed by the analysis number. For some data points, it is also indicated whether 
they represent analyses along pore-rims or pore-centers. Data points comprising 
compositional transects are indicated as LINE, followed by the transect number. Start and 
end points of transects are labeled relative to their position within the pore (rim or center). 

Analyses were performed on polished thin sections using a defocused beam ( 1 0-20 
Jlm in diameter), 25 kV accelerating voltage, and 10  nA beam current. Detection limits 
were 0. 1 mole % MgC03 for Mg (count time = 20 sec), 1 00 ppm for Mn and Fe, and 200 
ppm for Sr (count time = 60 sec). Minimum, maximum, and average values for the 
analyses performed are calculated for individual components within each sample. For the 
components that were analyzed in more than one sample, a summary of data which 
contains minimum, maximum, and average values for all the analyses of that particular 
component, are also reported. The values from these data summaries are presented in 
Tables 4.4 and 4. 5 .  Average values for the sets of data that contain analyses below 
detection limits are reported as two numbers separated by a slash (!). The first number 
represents the percentage of analyses below detection limit, and the second number 
represent the average value for the analyses above the detection limit. 



364 
CALCITE 

MICRITIC MATRIX: non-microbial 

SamJ.!Ie: RR 28.05 

Data J;!Oints CaC03 mol% MgC03 mol% Fe �I.!J.!m) Mn �J.!J.!m� Sr {J.!J.!ID� 

PT44 98.23 1 .63 438 < 1 00 434 
PT45 97.70 2. 1 8  335 1 69 200 

minimum: 97.70 1 .63 335 < 1 00 200 
maximum: 98.23 2. 1 8  438 1 69 434 

average: 97.97 1 .9 1  387 50 I 1 69 3 1 7  

SamJ.!Ie: LV 10.35 
Data eoints CaC03 mol% MgC03 mol% Fe {l.!l.!m} Mn {I.!J.!m} Sr {J.!J.!m) 

PT64 97.44 2.39 574 < 1 00 596 
PT65 97.52 2.33 447 1 3 5  4 1 8  
PT66 97.67 2. 1 4  476 1 5 7  673 
PT67 97.47 2.39 479 < 1 00 347 
PT68 96.85 2.50 3 1 8 1  < 1 00 573 

minimum: 96.85 2. 1 4  447 < 1 00 347 
maximum: 97.67 2.50 3 1 8 1  1 57 673 

average: 97.39 2.35 1 03 1  60 I 1 46 521  

Summary: 
minimum: 96.85 1 .63 335 < 1 00 200 
maximum: 98.23 2.50 3 1 8 1  1 69 673 

average: 97.55 2.22 847 57 I 1 54 463 

FIBROUS/BLADED CALCITE CEMENT 

SamJ.!le: RR 8.4 

Data eoints CaC03 mol% MgC03 mol% Fe {l.!l.!ml Mn {l.!l.!m} Sr {J.!J.!ID} 

BC1-PT1 98.3 1 1 .42 1 29 256 1 85 1  
BCI -PT2 98.5 1 1 .42 < 1 00 207 26 1 
BCI-PT3 98.62 1 .2 1  1 1 3 < 1 00 1 1 93 
BCI -PT5 97.77 2. 1 6  < 1 00 1 42 3 1 4  
BC I -PT6 98.55 1 . 1 6  < 1 00 229 2050 
BCI -PT7 97.77 2.09 244 257 466 
BC1 -PT8 98. 1 3  1 .69 246 325 688 
BC 1 -PT9 98.02 1 .8 1  265 1 83 738 
BCI-PT I O  99.28 0.44 1 84 < 1 00 2064 
BC1-PT 1 1 98.54 1 .26 283 < 1 00 1 1 67 
BCI-PT1 2  98.59 1 .04 2 1 2  1 48 2695 
BC1-PT1 3  97.55 2.36 < 1 00 1 98 5 1 1 
BC I -PT1 4  98. 1 3  1 .65 < 1 00 309 1404 
BC1-PT 1 7  97.67 2.22 249 225 205 
BCI-PT 1 8  98.20 1 .63 1 3 6  223 862 

minimum: 97.55 0.44 < 1 00 < 1 00 205 
maximum: 99.28 2.36 283 325 2695 

average: 98.24 1 .57 33 I 206 20 I 225 1 098 

SamJ.!Ie: LV 10.35 

Data J.!Oints CaC03 mol% MgC03mol% Fe {l.!em� Mn {eem1 Sr {eem� 

PT3 98.36 1 .47 701 1 75 <200 
PT4 97.83 1 .96 147 < 1 00 1 496 
PT1 6  97.38 2.52 395 < 1 00 <200 
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PTI 7  98.22 1 .62 2 1 1 < 1 00 1 059 
PT1 8 98. 1 9  1 .74 < 1 00 1 3 2  395 
PT I 9  98. 1 6  1 .73 < 1 00 1 82 496 
PT20 98.02 1 .84 < 1 00 228 740 
PT2 1 98.22 1 .70 < 1 00 2 1 9  2 1 3  
PT22 97.68 2. 1 3  1 56 234 1 083 
PT23 97.88 1 .98 1 6 1  < 1 00 930 
PT24 97.74 2. 1 1  1 40 1 79 763 
PT26 98.09 1 .80 < 1 00 < 1 00 92 1 
PT3 1 98.52 1 .26 1 6 1  1 75 1 448 
PT32 98.80 0.88 < 1 00 145 2392 
PT33 98.27 1 .64 256 < 1 00 376 
PT34 98.50 1 .35 308 203 489 
PT39 97.86 2.07 < 1 00 < 1 00 500 
PT40 98.54 1 . 1 9 1 86 < 1 00 1 898 
PT44 97.88 2.05 1 24 < 1 00 239 
PT45 97.83 1 .94 4 1 6  264 964 
PT46 97.7 1 2. 1 6  358 < 1 00 440 
PT48 97.99 1 .88 345 200 254 
PT49 98.40 1 .42 697 1 78 <200 
PT50 98.38 1 .46 5 1 0  233 279 
PT61 98.04 1 .89 < 1 00 135  272 
PT62 98.68 1 .05 < 1 00 < 1 00 2384 
PT63 98. 1 5  1 .69 2 1 6  < 1 00 1 043 
PT73 98.4 1 1 .42 579 246 <200 
PT72 98.93 0.80 1 6 1  < 1 00 2085 
PT7 1 98.08 1 .73 792 2 1 2  <200 
PT70 98.21 1 .3 8  1 7 1 2  53 1 <200 
PT75 98.20 1 .70 1 6 1  < 1 00 478 
PT86 98. 1 0  1 .78 129 255 471 
PT87 98.96 0.74 1 39 < 1 00 2383 
PT88 98.82 0.87 < 1 00 < 1 00 2606 
PT89 98.08 1 .8 1  < 1 00 < 1 00 800 
PT90 99.54 0 . 16  1 74 < 1 00 2283 
PT92 98.97 0.72 < 1 00 1 26 2365 
PT93 97.73 2 . 12  < 1 00 1 5 1  922 
PT94 97.91 1 .93 1 08 1 44 1 0 1 5  
PT95 99.20 0.5 1 < 1 00 < 1 00 2432 
PT96 97.71 2.2 1 1 32 < 1 00 3 1 8  

minimum: 97.38 0 . 16  < 1 00 < 1 00 <200 
maximum: 99.54 2.52 1 7 1 2  53 1 2606 

average: 98.24 1 .58 33 I 342 48 I 207 1 4 / 1 090 

Summary: 
minimum: 97.3 8 0 . 16  < 1 00 < 1 00 <200 
maximum: 99.54 2.52 1 7 1 2  53 1 2695 

average: 98.24 1 .58 33 I 306 40 I 2 1 3  1 1 / 1 092 

OOIDS 

Sam(!le: TZ 13.85 

Data (!Oints CaC03 mol% MgC03mol% Fe {l!l!m� Mn {l!l!m� Sr {l!l!ml 

PT 1 2  98.03 1 .79 9 1 0  < 1 00 <200 
PT 1 3  97.72 2.09 998 < 1 00 <200 

average: 97.88 1 .94 954 
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EQUANT CALCITE CEMENT 

Sam�le: RR 8.4 

Data �oints CaC03 mol% MgC03mol% Fe {��m) Mn {��m} Sr {��m} 
BCI -PT4 97.38 2.49 < 1 00 378 44 1 
BCI-PT I 5  98.29 1 .46 < 1 00 1 73 1 852 
BC I -PTI 6  97.63 2.28 < 1 00 1 08 6 1 0  

minimum: 97.38 1 .46 1 08 44 1 
maximum: 98.29 2.49 < 1 00 378 I 852 

average: 97.77 2.08 220 968 

Sam�le: LV 10.35 

Data �oints CaC03 mol% MgC03mol% Fe {��m} Mn {��m! Sr (��m) 

PT35 97.93 2.04 < I OO < 1 00 1 94 
PT36 98.37 1 .4 I  < 1 00 < I OO I 874 
PT37 97.75 2. 1 3  245 1 78 382 
PT38 98.61 1 . 1 5  854 3 1 4  2 1 6  
PT4l 98.40 1 .37 995 1 5 1  240 
PT43 98.39 1 .42 637 350 <200 
PT47 98.95 0.87 637 372 <200 
PT5 l 98.34 1 .35  1337 396 <200 
PT74 98.23 1 .59 669 341  <200 
PT76 97.87 1 .93 72 1 403 <200 
PT77 98. 1 5  1 .72 463 255 <200 
PT78 98.4 I 1 .44 560 I l l  263 
PT85 98.33 1 .43 I 1 1 6 258 <200 
PT9I 98.98 0.85 758 I 66 <200 

minimum: 97.75 0.85 < I OO < I OO <200 
maximum: 98.98 2 . 1 3  1 3 3 7  403 I 874 

average: 98.34 1 .48 I4 I 749 I 4  I 275 57 I 528 

Sam�le: RR 28.05 
Data �oints CaC03 mol% MgC03 mol% Fe ���m! Mn {��m} Sr {��m} 

PT I 96.98 2.90 < I OO 2 I 5  708 
PT2 98.33 1 .60 < I OO I 78 359 
PT3 97.24 2.64 < I OO < I OO 983 
PT4 97.77 2. I 5  < I OO < I OO 527 
PT5 97.85 2.03 < I OO < I OO 837 
PT6 98.67 l . I 9  < 1 00 2 1 8  742 
PT1 4  98.7 I 1 .24 < 1 00 < 1 00 334 
PTI 5  98.72 I . I O  1 1 6 I 88 1059 
PT1 6  98.30 1 .60 < 1 00 1 5 1  643 
PT 1 7  98.04 1 .86 < 1 00 < 1 00 820 
PTI 8  97.64 2.26 < 1 00 < 1 00 7 8 I  
PT I 9  98.07 1 .74 < I OO < 1 00 146I  
PT20 98.23 1 .73 < I OO < 1 00 <200 

minimum: 96.98 I . I O < I OO < 1 00 <200 
maximum: 98.72 2.90 I 1 6  2 I 8  I46I  

average: 98.04 1 .85 92 I I I 6  6 2  I I 90 8 ( 77I  

Sam�le: TZ 13.85 

Data �oints CaC03 mol% MgC03 mol% Fe ���m} Mn {��m) Sr (��m} 

PT I 99. 1 8  0.75 4 I O  < 1 00 <200 
PT I O  98.60 1 .29 563 < I OO <200 
PT 1 4  97.90 1 .93 9 1 8  < I OO <200 
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PT23 98.45 1 .37  782 1 3 5  <200 
PT24 98.79 1 . 1 0  568 < 1 00 <200 
PT25 98.99 0.91 523 < 1 00 <200 
PT26 98.94 0.98 350 < 1 00 <200 
PT27 98.85 1 .05 534 < 1 00 <200 
PT28 99.07 0.86 2 1 3  1 66 <200 
PT29 99.05 0.82 587 1 60 <200 

minimum: 97.90 0.75 2 1 3  < 1 00 
maximum: 99. 1 8  1 .93 9 1 8  1 66 <200 

average: 98.78 1 . 1 1 545 70 / 1 54 

Summary: 
m1mmum: 96.98 0.75 < 1 00 < 1 00 <200 
maximum: 99. 1 8  2.90 1 337 403 1 874 

average: 98.23 1 .63 43 / 633 43 I 233 47 I 730 

FERROAN EQUANT CALCITE 

Sam�le: RR 28.05 

Data �oints CaC03 mol% MgC03 mol% Fe ���ml Mn ���ml Sr {��ml 

PT7 98.30 1 .57 638 < 1 00 <200 
PT8 99.3 1 0.62 348 < 1 00 <200 
PT12 98.74 1 . 1 5  345 275 <200 
PT 1 3  98.84 1 .03 535 1 48 <200 
PT2 1 97.3 1 2.53 727 1 1 4 <200 
PT22 99.07 0.82 522 < 1 00 <200 
PT23 98.87 1 .02 467 1 60 200 

minimum: 97.3 1 0.62 345 < 1 00 
maximum: 99.3 1 2.53 727 275 <200 

average: 98.63 1 .25 5 1 2  4 3  I 1 74 

SYNT AXIAL OVERGROWTH CALCITE 

Sam�le: TZ 13.85 

Data �oints CaC03 mol% MgC03mol% Fe ���m1 Mn {��ml Sr ���m1 

PT2 97.71  2.07 939 264 <200 
PT3 97.46 2.37 940 < 1 00 <200 
PT4 98.03 1 .83 674 < 1 00 <200 
PT5 97.50 2.3 1 984 < 1 00 <200 
PT6 97.70 2. 1 1  1 039 < 1 00 <200 
PT7 98.75 l . 1 4 560 < 1 00 <200 
PT8 97.92 1 .92 771 1 20 <200 
PT9 99. 1 2  0.75 589 1 0 1  <200 
PT 1 5  97.97 1 .86 765 1 63 <200 
PT1 6  97.60 2.22 889 1 20 <200 
PT1 7  99.20 0.71 473 < 1 00 <200 
PT I 8  99. 1 9  0.71 5 1 3  < 1 00 <200 
PT1 9  98.70 1 . 1 8  6 1 3  < 1 00 <200 
PT20 97.97 1 .87 850 < 1 00 <200 
PT2 1 99.2 1 0.75 1 53 < 1 00 <200 
PT22 99.07 0.84 42 1 < 1 00 <200 

minimum: 97.46 0.7 1 1 53 < 1 00 
maximum: 99.21  2.37 1 039 264 <200 

average: 98.32 1 .54 698 69 I 1 54 
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CALCITE CEMENT IN FRACTURES 

Sam�le: FG 17.0 

Data �oints CaC03 mol% MgC03 mol% Fe {��m� Mn {��m� Sr {��m� 
PT2 97.3 1 2.32 1 748 3 3 1 <200 
PT3 97.75 1 .96 1 453 1 63 <200 
PT4 97.29 2.37 1 654 209 <200 
PT5 97.47 2.21 1 640 1 75 <200 
PT7 99. 1 5  0.64 832 1 29 340 
PT8 98.48 1 .50 < 1 00 < 1 00 <200 
PT9 99. 1 1  0.83 1 2 I  1 69 <200 
PTI 8  99.75 0.24 < I OO < 1 00 <200 
PTI 9  97.36 2.32 1 623 1 29 <200 
PT23 97.4 1 2.25 1 592 267 <200 
PT24 97.56 2.09 1 624 267 <200 
PT25 97.4 1 2.27 1 442 3 0 1  <200 
PT33 98.89 1 . 1 0  < 1 00 < 1 00 <200 
PT34 98.85 1 . 1 3  < 1 00 I l l  <200 
PT35 99.28 0.70 < 1 00 < 1 00 <200 
PT36 99. 1 1  0.87 < 1 00 1 05 <200 
PT37 99.05 0.93 < 1 00 < I OO <200 
PT38 98.7 1 1 .27 < I OO < 1 00 <200 
PT40 99. 1 6  0.8 1 I 1 6  < I OO <200 
PT4 1 99. 1 5  0.80 < 1 00 ! 5 1  <200 
PT43 98.74 1 .25 < 1 00 < 1 00 <200 
PT44 99.03 0.97 < 1 00 < 1 00 <200 
PT45 98.69 1 .30 < 1 00 < 1 00 <200 
PT46 98.33 1 .63 < 1 00 1 87 <200 

minimum: 97.29 0.24 < 1 00 < 1 00 <200 
maximum: 99.75 2.37 1 748 33 1 340 

average: 98.46 1 .4 1  54 ! 1 259 42 / 1 92 96 / 340 

DOLOMITE 

SUBTIDAL REPLACEMENT SADDLE DOLOMITE 

Sam�le: RR 8.4 

Data �oints CaC03 mol% MgC03 mol% Fe {��m� Mn ���m) Sr {��m) 

LINE! 54.7 1  40.87 25734 550 <200 
LINE I 55.24 40.95 2 1 778 750 <200 
PTI 54.02 42.05 22752 5 I I <200 
PT2 55. 1 I 40.87 23359 671 <200 
PT3 54.72 4 1 .57 2 1 388 580 <200 
PT4 54.84 4 1 . 1 3  23356 560 <200 
PT5 54.82 4 1 .52 2 1 1 23 5 1 1  <200 
PT6 54. 1 8  4 1 .73 23922 5 1 1 <200 
PT7 54.60 4 1 .73 2 1 1 93 532 <200 
PT8 53.83 42. 1 3  23378 602 <200 
PT9 54.65 4 1 .32 23442 535 <200 
PTI O  55.27 40.73 23 1 69 63 8 <200 
PTI I 54. 7 1  39.59 32663 1 057 <200 
PTI 3  54.97 4 1 .46 20752 429 <200 
PTI 4  54.55 4 1 .82 20992 5 1 1  <200 
PTI 5  55.28 40.6 1 23740 625 <200 
PTI 6  54.59 4 1 . 3 1  23792 554 <200 
PT I 8  54.96 40.52 25591 876 <200 
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PT 1 7  55. 1 6  40.52 25 1 1 8 548 <200 
PT 1 9  54.96 40.44 26 1 09 873 <200 
PT20 54.77 4 1 .20 23239 660 <200 
PT21 54.81  40.50 26839 8 1 3  <200 
PT22 54.82 4 1 .09 234 13  729 <200 
PT23 54.87 4 1 .06 2325 1 659 <200 
PT24 54.60 40.74 264 1 9  904 <200 
PT25 54.44 4 1 .45 234 1 0  7 1 3  <200 
PT26 54. 1 0  42.22 2 1 1 62 738 <200 
PT27 54.84 4 1 .09 23284 695 <200 
PT28 54.83 4 1 .29 22495 5 8 1  <200 
PT29 55.05 40.41  26 1 99 559 <200 
PT30 54.30 4 1 .26 25577 520 <200 
PT3 1 54.79 4 1 .24 22898 683 <200 
PT32 54.65 4 1 . 1 6 24 1 78 6 1 4  <200 
PT33 54.94 40.29 273 1 7  885 <200 
PT34 54.88 4 1 .02 236 1 5  793 <200 
PT35 54.70 40.62 27 1 75 526 <200 

minimum: 53.83 39.59 20752 429 
maximum: 55.28 42.22 32663 1 057 <200 

average: 54.74 4 1 . 1 0  23995 653 

SUBTIDAL SADDLE DOLOMITE CEMENT 

Sam�le: LV 10.35 

Data �oints CaC03 mol% MgC03mol% Fe {eem} Mn {eem} Sr {eem} 

PT 1 54.22 42.90 1 607 1 935 <200 
PT2 54.56 43.2 1 12821  472 <200 
PT5 54.26 42.93 1 6 1 09 635 <200 
PT6 54.30 42.95 1 5573 67 1 <200 
PT7 53.23 43.91  1 6 1 37 761 <200 
PT8 53.89 43.3 1 1 5833 705 <200 
PT9 54.41 42.28 1 83 1 9  1 0 1 1 <200 
PT ! O  54. 7 1  42. 1 6  1 7425 879 <200 
PT l l  53.98 43.08 1 6571  83 1 <200 
PT 1 2  53.96 42.80 1 8 1 06 852 <200 
PT1 3  54.08 42.70 1 8033 839 <200 
PT 1 4  54.56 42.56 1 6224 83 1 <200 
PT1 5  54.5 1 42. 1 7  1 8675 963 <200 
PT42 55.06 4 1 .30 2081 6  724 <200 
PT56 55.5 1 4 1 .27 1 8 1 1 8  977 <200 
PT57 54.23 42.63 1 7836 928 <200 
PT58 55.57 4 1 . 1 1 1 8897 872 <200 
PT59 55.23 40.95 2 1 962 874 <200 
PT79 54.86 4 1 .97 1 7803 850 <200 
PT80 55. 1 7  4 1 .67 1 7820 959 <200 
PT8 1  54.75 4 1 .98 1 8 1 95 1 1 00 <200 
PT82 54.51  42.25 1 8225 9 1 0  <200 
PT83 54.59 42.07 1 8868 895 <200 

minimum: 53.23 40.95 1282 1  472 
maximum: 55.57 43.91 2 1 962 1 1 00 <200 

average:  54.53 42.36 1 7584 847 
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PERITIDAL DOLOMICRITIC .MATRIX: non-microbial 

Sam�le: TZ 44.0 

Data �oints CaC03 mol% MgC03mol% Fe {��m} Mn {��m) Sr (��m} 

PT5 54.93 44.97 3 1 8  1 09 288 
PT6 54.28 45.55 906 < 1 00 <200 
PT7 55.01 44.80 1 062 1 12 <200 
PT8 54.28 45.48 1 3 1 5  1 24 <200 
PT20 53.36 46.59 281  < 1 00 <200 
PT22 53 .43 46.38 1 1 37 < 1 00 <200 
PT23 52.77 47. 1 0  742 < 1 00 <200 
PT24 53.42 46.49 487 < 1 00 <200 
PT35 55.92 43.92 722 1 03 2 1 9  

minimum: 52.77 43.92 281  < 1 00 <200 
maximum: 55.92 47. 1 0  1 3 1 5  1 24 288 

average: 54. 1 6  45.70 774 56 I 1 1 2 78 / 254 

PERITIDAL DOLOMICRITIC MATRIX: microbial 

Sam�le: LV 48.65 

Data �oints CaC03 mol% MgC03mol% Fe {��m) Mn {��ml Sr {��ml 

PT20 5 1 .0 1  48.92 349 < 1 00 <200 
PT2 1 5 1 . 1 0  48.8 1 424 < 1 00 <200 
PT22 50.61  49.30 541 < 1 00 <200 
PT23 5 1 . 1 8  48.67 840 < 1 00 <200 
PT24 5 1 .47 48.45 473 < 1 00 <200 
PT25 50.89 48.96 772 1 5 7  <200 
PT26 50.94 48.92 691 1 5 1  <200 
PT27 50.66 49. 1 9  892 < 1 00 <200 
PT28 5 1 .50 48.38 626 < 1 00 <200 

minimum: 50.6 1 48.38 349 < 1 00 
maximum: 5 1 .50 49.30 892 1 5 7  <200 

average: 5 1 .04 48.84 623 78 / 1 54 

PERITIDAL COARSER CRYSTALLINE REPLACEMENT DOLOMITE 

Sam�le: FG 42.3 

Data l!oints CaC03 mol% MgC03mol% Fe ���m) Mn ���m} Sr ���m} 

PT22-near pore 54. 1 4  44.43 8 1 22 374 <200 
PT44 56.69 43. 1 9  554 1 3 9  <200 
PT45 56.53 43.38 343 < 1 00 <200 
PT46 5 5 . 1  I 44.7 1  1 027 < 1 00 <200 
PT47 55.28 44.62 5 1 5  < 1 00 <200 
PT48 56.09 43.79 655 1 03 <200 
PT49 53.95 45. 1 5  5 1 26 223 <200 
PT50 54.67 43.9 1 82 1 4  299 <200 
PT5 1 54. 1 1 44.52 7893 307 <200 
PT52 53.84 45.07 605 1 43 1 <200 
PT53 54.63 44.36 5779 3 1 9  <200 

minimum: 53.84 43 . 1 9  343 < 1 00 
maximum: 56.69 45 . 1 5  82 1 4  43 1 <200 

average: 55.00 44.29 4025 27 / 274 
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PERITIDAL SADDLE DOLOMITE REPLACEMENT 

Sam[!le: FG 42.3 
Data [!Oints CaC03 mol% MgC03mol% Fe {[![!ffi) Mn {[![!ffi} Sr {[![!ffi} 

PT23 53 .56 45.37 6402 < 1 00 <200 
PT24 53.49 45.53 5634 1 42 <200 
PT25 53 .86 45.06 6235 1 8 1  <200 
PT26 53 .06 45.99 5458 2 1 4 <200 
PT27 53.66 45.28 6249 1 99 <200 
PT28 54.84 43.82 7733 3 1 6 <200 
PT29 53.30 45.59 6326 229 <200 
PT30 53.43 45.62 5426 1 63 <200 
PT3 1 54.00 44.46 8914  289 <200 
PT32 52.97 45.90 6556 202 <200 
PT33 54.3 1 43.98 9867 397 <200 
PT34 53.07 45.75 699 1 1 53 <200 
PT35 53 .60 45.34 6 1 47 247 <200 
PT36 53.20 45.44 7830 232 <200 
PT37 53.27 45. 12  9459 265 <200 
PT38 54.76 43.63 8975 488 <200 
PT39 53 .05 45.97 5664 2 1 7  <200 
PT40 52.92 45.97 658 1  < 1 00 <200 

minimum: 52.92 43.63 5426 < 1 00 
maximum : 54.84 45.99 9867 488 <200 

average: 53.58 45.2 1 7025 l l / 246 

PERITIDAL SADDLE DOLOMITE CEMENT 

Sam[!le: TH 32.05 

Data [!Oints CaC03 mol% MgC03 mol% Fe {[![!m} Mn �[![!ID) Sr {[![!ffi} 

I pore rim 5 1 .5 1  47.05 8282 3 1 4 <200 
LINE I 52.57 45.99 8 1 03 561 <200 
LINE I 52.32 46.49 673 7 4 1 8  <200 
LINE I 52.82 45.88 7429 4 1 5  <200 
LINE I 52.24 46.57 6735 388 <200 
LINE ! 52.37 46.38 7 1 67 355 <200 
LINE I 53.20 45.4 1 7846 464 <200 
LINE I 52. 1 0  46.47 8 1 97 373 <200 
LINE ! -center 5 1 .78 46.47 1 00 1 7  4 1 8  <200 
LINE2 rim 5 1 .72 47.34 53 1 9  245 <200 
LINE2 5 1 .53 47.60 4977 2 1 2  <200 
LINE2 52.46 46.83 5447 303 <200 
LINE2 52.69 45.95 7690 378 <200 
LINE2 52.62 45.98 8203 1 3 9  <200 
LINE2 52.22 46.05 1 0026 403 <200 
LINE2 5 1 .96 46.23 1 0642 22 1 <200 
LINE2 center 5 1 .47 46.71  1 0670 1 2 1  <200 
LINE3 center 52.33 45.92 1 00 1 9  524 <200 
LINE3 5 1 .58 46.96 8701 1 63 <200 
LINE3 5 1 .94 46.6 1 8400 3 1 2 <200 
LINE3 52.24 46.33 8 1 95 430 <200 
LINE3 53.60 44.96 8 1 1 2  503 <200 
LINE3 52. 5 1  46.30 6752 363 <200 
LINE3 52.44 46.49 6 1 49 242 <200 
LINE3 5 1 .95 47. 1 3  53 1 0  260 <200 
LINE3 52.41 46.66 5468 1 67 <200 
LINE3 52.08 46.85 62 1 6  236 <200 
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LINE3 5 1 .89 46.71  782 1 533 <200 
LINE3 rim 5 1 .62 47.00 7852 430 <200 

minimum: 5 1 .47 44.96 4977 1 2 1  
maximum: 53.60 47.60 1 0670 561  <200 

average: 52.2 1 46.46 7672 341  

Sam(!le: FG 42.3 
Data (!Oints CaC03 mol% MgC03mol% Fe {E!E!m� Mn {E!E!m� Sr {E!E!m} 

Pi l 55.26 44.61 634 1 03 <200 
PT2 55.64 44.28 499 < 1 00 <200 
PT3 55.76 44. 1 0  702 1 24 <200 
PT4 54.98 43.79 7022 368 <200 
PT5 55.89 44.00 523 1 00 <200 
PT6 55.93 43.98 458 1 06 <200 
PT7 55.67 44.2 1 6 1 1  < 1 00 <200 
PIS 55 .77 44. 1 1  6 1 6  1 5 1  <200 
PT9 53. 1 9  45.89 521 6  341  <200 
Pi lO 53.38 45.27 7603 490 <200 
Pil l  54.34 44.79 5016  250 <200 
Pi l 2  55.29 44.59 647 < 1 00 <200 
Pil 3  55.03 44.85 595 127 <200 
Pil 4  55.65 44.24 5 1 2  < 1 00 261 
PT 1 5  55. 1 6  44.69 767 1 00 <200 
Pil6 55.57 44.29 569 1 45 <200 
Pi l 7  56.59 43.30 548 < 1 00 <200 
Pi l S  55.89 43.99 556 1 3 0  <200 
Pi l 9  54.97 44.91  6 1 9  < 1 00 <200 
PT20 55.03 43.64 7492 477 <200 
PT4 1 55.55 44.37 468 < 1 00 <200 
PT42 56. 1 1 43.75 666 1 27 <200 
PT43 55.85 44.04 629 < 1 00 <200 

minimum: 53 . 1 9  43.30 458 < 1 00 <200 
maximum: 56.59 45.89 7603 490 261 

average: 55.33 44.33 1 868 3 5 / 209 96 / 26 1 

Sam(!le: RR 28.05 
Data (!Oints CaC03 mol% MgC03mol% Fe {(!(!m} Mn {E![!m) Sr ([![!m} 

PT9 52.08 46.52 7796 500 <200 
Pi lO 53.37 44.97 9670 289 <200 
Pil l  54.03 44.2 1 1 0253 3 1 1  <200 
PT24 52.56 45.84 8827 582 <200 
PT25 53.83 44.49 9449 53 1 <200 
PT26 53.85 44.48 9566 449 <200 
PT27 54.33 43.98 9449 597 <200 
PT28 54.83 43.56 9061 489 <200 
PT29 53.78 44.60 9227 295 <200 
PT30 53.78 44.57 9486 488 <200 
PT3 1 54.02 44.32 9502 377 <200 
PT32 55.02 43.43 8912 296 <200 
PT33 54.67 43.70 9246 344 <200 
PT34 52.86 45.94 6679 404 <200 
PT35 53.86 45.39 4290 223 <200 
PT36 54.05 44.43 8681 292 <200 
PT37 54.23 44. 16 9023 500 <200 
PT38 54.09 44.37 8747 437 <200 
PT39 54.22 44.25 8684 407 <200 
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PT40 54. 1 8  44.09 96 1 2  6 1 8  <200 
PT4 1 54.35 44.03 9236 467 <200 
PT42 53.88 44.40 9939 374 <200 
PT43 54.77 43.63 9034 401 <200 

m1mmum: 52.08 43.43 4290 223 
maximum: 55.02 46.52 1 0253 6 1 8  <200 

average: 53.94 44.49 8886 420 

Summary: 
minimum: 5 1 .47 43.30 458 < 1 00 <200 
maximum: 56.59 47.60 1 0670 6 1 8  26 1 

average: 53.70 45.2 1 6264 1 1  I 339 99 I 26 1 

PERITIDAL ZONED DOLOMITE CEMENT 

Saml!le: TZ 44.0 

Data l!oints CaC03 mol% MgC03mol% Fe �I!I!ID) Mn �l!l!m� Sr �l!l!m� 

PT2 - pore rim 53.26 46.35 2265 1 1 2 <200 
PT 1 52.85 46.58 3237 1 78 <200 
PT9 52.35 47. 1 2  2935 1 84 <200 
PTI O  53.33 46. 1 7  2670 308 <200 
PTI 1  53.60 45.90 2787 1 63 <200 
PT1 2 - center 53.47 46.30 942 365 <200 
PT25 -pore rim 53 . 1 7  46.66 939 < 1 00 <200 
PT26 53.81  45.70 2732 1 8 1  <200 
PT27 53.29 46.48 1 1 94 1 5 7  <200 
PT28 53. 1 9  46.5 1  1 668 < 1 00 <200 
PT29 - center 53.63 45.82 3037 259 <200 
PT30 - center 53. 1 2  46.35 3063 1 1 5 <200 
PT3 1 52.93 46.54 29 1 2  227 <200 
PT32 52.85 46.60 3 1 28 1 75 <200 
PT33 54. 1 0  45.5 1 1 897 408 <200 
PT34 -Eore rim 53.81  46.04 635 293 <200 

minimum: 52.35 45.5 1 635 < 1 00 
maximum: 54. 1 0  47. 1 2  3237 408 <200 

average: 53.30 46.29 2253 1 3  I 223 

Saml!le: LV 48.65 

Data l!oints CaC03 mol% MgC03mol% Fe �l!l!m� Mn {I!I!ID� Sr {l!l!m� 

PT 1 -pore rim 5 1 . 1 9  48.7 1 4 1 1 205 <200 
PT2 5 1 .56 48. 1 9  1 233 250 <200 
PT3 5 1 .66 47.83 2907 1 96 <200 
PT4- center 52. 1 9  46.97 4673 377 <200 
PT5- center 5 1 .8 1  47.39 46 1 2  259 <200 
PT6- center 5 1 .75 47.49 4325 277 <200 
PT7 50.92 48.39 3 805 296 <200 
PT8 50.29 49.6 1 549 < 1 00 <200 
PT9 50.61 49.35 < 1 00 1 75 <200 
PTI 0-pore rim 50.69 49. 1 9  630 < 1 00 <200 
PTI 1 -pore rim 50.99 48.89 567 1 1 2 <200 
PT1 2  5 1 .68 47.63 4019 1 00 <200 
PT1 3  5 1 .87 47.26 4982 250 <200 
PT 14 5 1 .55 47.59 4939 1 93 <200 
PT1 5  50.47 49.50 < 1 00 1 3 6  <200 
PT 1 6  5 1 .93 47.26 4650 229 <200 
PT1 7  52.06 47.30 3 6 1 8  205 <200 
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PT1 8  50.26 49.64 3 77 1 5 1  <200 
PT1 9-pore rim 50.55 49.36 5 1 0 < 1 00 <200 
PT29-pore center 5 1 . 1 4  48.22 3466 338  <200 
PT30-J::!ore rim 5 1 .23 48.73 1 87 < 1 00 <200 

minimum: 50.26 46.97 < 1 00 < 1 00 
maximum: 52. 1 9  49.64 4982 3 77 <200 

average: 5 1 .26 48.3 1 1 0 1 2656 1 9  I 22 1 

Summary: 
minimum: 50.26 45.5 1 < 1 00 < 1 00 
maximum: 54. 1 0  49.64 4982 408 <200 

average: 52.28 47.30 5 I 247 1 16 I 222 
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APPENDIX D 

DATA FOR CARBON ISOTOPE STRATIGRAPHY 

MICRITE 
NOLICHUCKY SHALE 

Sample Description 8180 813C 

N - 1 8.85 micritic matrix in between trilobite and brachiopod fragments of a limestone -8.52 0. 1 6  
layer interbedded with shale 

N - 1 6.95 micritic matrix in between skeletal fragments and from small micritic lenses -9.06 1 . 1 2  
and Eatches of a Eackstone/grainstone layer interbedded with shale 

N - 1 2.95 micrite from small patches and in between skeletal fragments of -8.96 0.27 
wackestone/grainstone layers interbedded with argillaceous layers 

N - 1 2. 1 5  micrite from a nodular layer interbedded with shale -8.47 0.89 

N -8. 1 5  micrite from lenses and i n  between skeletal fragments o f  a -8.03 0.33 
packstone/ grainstone layer 

N -6.25 micrite from a mudstone layer interbedded with argillaceous layers of ribbon -9.34 0.53 
laminated rocks 

N -5.0 micrite from a mudstone layer interbedded with argillaceous layers of ribbon 
-8. 1 0  0.97 

laminated rocks 

N -3.3 micrite from mudstone layers and lenses interbedded with flat-pebble -8.04 1 .37 
conglomerate and skeletal packstone/grainstone of ribbon rocks 

N -2.8 micrite from one small flat pebble incorporated within skeletal -8.06 1 . 1 3 
packstone/ grainstone layer 

N - 1 .75 micrite from a mudstone layer with nodular appearance in bedded within ribbon -7.95 1 . 1 8  
rocks 

MAYNARDVILLE FORMATION 

Sample Description 8180 813C 

TH -0.4 micrite from intraclasts and irregular patches from fossiliferous-intraclastic -8.98 1 .98 
Eackstone layer of ribbon limestone 

TH 0.0 micrite from a mudstone layer of ribbon limestone -8.84 2.54 

TH 1 . 1  micrite from burrow-mottled ribbon limestone -7.90 3 .01  

TH 2 . 1 5  micrite from a laminated mudstone layer o f  ribbon limestone -7.48 1 .82 

TH 3.35 micrite from a mudstone layer of ribbon limestone -7.43 1 .66 

TH 4.2 micritic matrix in between trilobite fragments from a limestone layer of ribbon -8.03 1 .29 
rocks 

TH 5.2 micrite from intraclasts (flat pebbles) imbedded within argillaceous 
-7.87 0.49 

dolomicritic layers of ribbon rocks 

TH 5.4 micrite from a lense interbedded within argillaceous dolomicrite of ribbon -7.79 1 . 1 9 
rocks 

TH 6.4 micrite from a mudstone to Eeloidal mudstone layer of ribbon limestone -7.51  1 .53 

TH 8.0b micrite in between trilobite fragments in fossiliferous wackestone/packstone of -7.43 1 . 1 3  
ribbon l imestone 

TH 9.0 time-extracted calcite from argillaceous dolomicrite or calcareous siltstone -8.23 2.35 

TH 1 0.05 micrite from a mudstone layer interbedded within argillaceous dolomicrite of -7.77 2.92 
ribbon rocks 

TH 1 1 .3 micrite from a mudstone layer underlying flat pebble conglomerate of ribbon -7 .76 1 .7 1  
limestone 

TH 1 1 .75 time-extracted calcite from argillaceous dolomicrite/calcareous siltstone -8.92 1 .98 

TH 1 1 .9 micrite from a mudstone/peloidal layer of ribbon limestone -8. 1 4  3 . 1 8  
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TH 1 2.6 micrite from a lense within ribbon limestone -7.48 3 .2 1  
TH 1 3 .45 micrite from a lense within ribbon limestone -7. 1 6  3 .54 
TH 1 4.65 micrite from a mudstone layer of ribbon limestone -7.58 4.09 
TH 1 6.75 micrite from a mudstone layer of ribbon limestone -7.80 2.29 
TH 1 7.85 micrite to peloidal rackstone from lenses in ribbon limestone -7.63 3.52 

TH 1 8.8 micrite from burrowed lenses from transitional interval between ribbon -7.88 3 .80 
limestone and microbially laminated derosits 

TH 20.5 micrite from microbial laminates; contains about 30% dolomicrite: time -8.63 3 .39 extraction used 

TH 22.2 micrite from microbial laminates; contains about I 0% dolomicrite; time -8.73 3 .68 
extraction used 

TH 23.45 micrite from microbial laminates; contains common dolomicrite; time -8.91 3 .41  extraction used 

DOLO MICRITE 
MAYNARDVILLE FORMATION 

Sample Description Dtso o13C 
TH 25.55 dolomicritic laminae from stratiform stromatolites -6.58 3 .90 

TH 26.6 dolomicritic laminae from stratiform stromatolites -6.2 1 4.0 1 

TH 27.8 dolomicrite from a layer overlying microbially laminated deposits -6.4 1  3 .25 

TH 28.35 dolomicrite from u�arts of coarse-grained couplets -6.76 2.76 

TH 29.6 dolomicrite from fine-�ained courlets -7.02 2.72 

TH 30.7a dolomicrite from fine-grained cou2lets -7.4 1  2.46 

TH 30.7b dolomicrosparite from fine-grained couplets -7.23 2.66 

TH 3 1 .4 dolomicros2arite from fine/medium-g.:ained cou2Iets -8.07 3 .01  

TH 32.9 dolomicrite from upper parts of fine/medium-grained couplets -7.07 3 .03 

TH 33. 1 B  dolomicrite from fine-grained cou2lets -7.05 3.01 

TH 33 . 1 T  dolomicrite from dolomitized mudstone -7.88 3.25 

TH E2-33.35 dolomicrite from dolomitized mudstone; 5 em below a prominent exposure -7.29 3 .28 
surface 

TH 33.4a dolomicrite from clasts in topographic lows immediately above the exposure -7.77 3 .25 
surface 

TH 33.4b dolomicrite from clasts in topographic lows immediately above the exposure -7.67 3 . 1 8  
surface 

TH 1-33 .42 dolomicrite with a lamina interbedded with argillaceous laminae in the -7.64 2.97 
condensed shaly interval deposited on the exposure surface 

TH 2-33.43 laminated dolomicrite from fine-grained couplets with desiccation cracks; -7.72 3 .08 
de2osited about 5 em above the exposure surface 

dark argillaceous dolomicritic matrix from a condensed shaly interval 
TH D-33.45 deposited on the erosional exposure surface; associated with -7.77 3 .26 

s halerite 
TH 34.6 dolomicrite from dolomitized mudstone -6.82 3 .68 

TH 3 5.6  dolomicrite from dolomitized mudstone/fine-grained cou2lets -6. 1 2  3.06 

TH 36.55T dolomicrite from upper parts of medium-grained couplets with common -6.96 2.88 
desiccation cracks 

TH 37.6 dolomicrite from fine/medium-E[ained couplets with desiccation cracks -6.39 2.96 
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SEQUENCE BOUNDARY ZONE 

Sample Description ()180 8JJC 

TH 38.7 dolomicrite from dolomitized mudstone -6.59 3 . 1 4  

TH 3 9.05 dolomicrite from upper parts of fine/medium-grained couplets -5.86 3.43 
----

TH 40.25 dolomicrite from upper parts of medium-grained couplets -6.35 3 .82 

TH 4 1 . 1 5  dolomicrite from upper, burrowed parts of medium-grained couplets -5.99 3.80 

TH 4 1 .9 dolomicrite from upper parts of medium-grained couplets -6.99 3 .61  

TH 43.3 slightly laminated dolomicrite from dolomitized mudstone/very fine-grained 
-6.87 3 .76 

couplets 

TH 43.8 dolomicrosparite from extensively dolomitized. burrowed mudstone -6.55 4.78 

TH 44.75 dolomicrosparite from burrowed mudstone/fine-grained couplets -6.38 4.30 

TH 45.7 dolomicrosparite from extensively dolomitized, slightly burrowed -6.36 3 .94 
mudstone/fine-�ained cou lets 

TH 47. 1 dolomicrite from fine-grained couplets/dolomitized mudstone -6. 1 8  3 .40 

TH 47.7 dolomicrosparite from LLH stromatolites -8.00 3.69 

TH 48.9 dolomicrite from LLH stromatolites; contamination from small fenestrae with -6.78 3 .55 
saddle dolomite cement possible 

TH 50.0 dolomicrite from burrowed mudstone/fine-grained couplets -6.24 4.08 

TH 50.7 dolomicrite from dolomitized mudstone/fine-grained couplets associated with -6.33 3.83 
evaporites and abundant quartz sand grains 

TH 5 1 .75 laminated dolomicrite from fine-!!fained couplets -6.68 3 . 1 1 

COPPER RIDGE DOLOMITE 

Sample Description 8180 8JJC 

TH 52.75 laminated dolomicrite from microbial lumps imbedded within deposits with -6.55 2.94 
thrombolitic texture 

TH 53.9 dolomicrite to dolomicrosparite from burrowed fine-grained couplets -6.54 3 .02 

TH 54.8 dolomicrite to dolomicrosparite from dolomitized mudstone -6.55 2 .3 1  

TH 55.25 dolomicrite from upper micritic part of coarse-grained couplets -5.99 2.65 

TH 56.8 dolomicrite from fine-grained couplets -6.38  2.20 

TH 5 7.25 dolomicrite from fine-grained couplets -7.44 2.42 

TH 5 8. 1 5  dolomicrite from burrow-mottled mudstone/fine-grained couplets -6.43 3 .71  

TH 59.35 medium crystalline replacement dolomite; originally the lithofacies might have -6.40 3 . 1 6  
been bioturbated couplets 

TH 60.4 dolomicrite from stratiform stromatolite laminae -6.37 2.72 

TH 6 1 .4 dolomicrite from fine to medium-grained couplets -7. 1 3  2.77 

TH 62.45 dolomicrite from extensively dolomitized LLH or digitate stromatolites -6.42 2.36 

TH 63.5 dolomicrosparite from extensively dolomitized bioturbated peloidal -6.49 2.66 
packstone/wackestone 

TH 65.3 dolomicrosparite to medium crystalline replacement dolomite from -6.09 2.45 
dolomitized mudstone overlying thrombolitic deposits 

TH 66.9 dolomicrite from fine-grained couplets overlying SH stromatolites -6.36 1 .42 

TH 67.25 dolomicrite from fine-grained couplets -6.64 1 .42 

TH 68.35 dolomicrosparite from mottled (burrowed) dolomitized mudstone -6.52 1 .78 

TH 69.3 dolomicrite from non-burrowed parts of extensively mottled medium-grained -6. 1 8  1 .64 
cou lets 

TH 70.2 dolomicrite from upper part of medium-�ained couplets -6.38 0.83 

TH 7 1 .45 dolomicrite from relatively undisturbed parts of extensively mottled -7.08 0.79 
fine/medium-grained couplets 

TH 72.55 dolomicrite from relatively undisturbed parts of mottled dolomitized -6.86 -0.07 
mudstone 
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TH 73.25 dolomicrite from dolomitized mudstone -7.3 1 -0.85 

TH 74. 1 5  dolomicrite from dolomitized mudstone -6.70 0.09 

OTHER DIAGENETIC AND DEPOSITIONAL COMPONENTS 
Sample Description 8180 813C 

TH 0.55a bladed calcite cement in between intraclasts of flat pebble conglomerate -7.86 2.88 

TH 0.55c bladed calcite cement in between intraclasts of flat pebble conglomerate -7.80 2.97 

TH 0.0 argillaceous, ferroan dolomicrite from ribbon limestone -8. 1 5  3 . 1 0  

TH 2. 1 5b ferroan microsparite associated with burrows within mudstone layers of ribbon -8.01  3.03 
limestone 

TH 5.35 argillaceous dolomicrite from ribbon limestone -7.56 2.83 

TH 9.0 
dolomicrite from argillaceous dolomicrite/calcareous siltstone; time extraction -6.05 3 .22 
used 

TH 14.0 ferroan equant calcite cement in voids (burrows?) within a micritic layer of -9.68 2.27 
ribbon rocks 

TH 1 8.8  ferroan equant calcite cement in  voids (burrows likely) within ribbon -9.07 2.70 
limestone 

TH 1 9 . 1  ferroan equant calcite cement from burrows i n  microbially laminated -9.69 2.69 
de osits 

TH 28.6 saddle dolomite cement from larger voids and fractures in deformed lithofacies -8.60 3 . 1 4  
with remnant thrombolitic fabric 

TH 3 1 .58 saddle dolomite cement in large dissolutional or dissolution enlarged void in -8. 1 0  2.80 
cou2lets; similar to TH 32.05 

TH 32.05 coarse crystalline saddle dolomite cement from voids in fine-grained -8.60 2.59 
cou lets 

TH 36.55T saddle dolomite cement in desiccation cracks in medium-grained couplets -8.74 2.75 

TH 5 1 .2 saddle dolomite cement from tectonic veins -8.00 3.24 

TH 54.0b 
pore-central equant calcite cement in a layer-parallel void within micritic -9.84 1 .54 
Ia er 

TH 54.0a saddle dolomite cement from voids (desiccation?) in between clasts in calcitic -7.0 1 2.77 
lithofacies 

TH 54.2 saddle dolomite cement from calcitic digitate stromatolites -6.98 2.63 

TH 54.2C micrite comprising digitate stromatolites from the peritidal package; minor -9.52 1 .53 
contamination from small fenestrae and scattered dolomite possible 

TH 54.4 saddle dolomite cement from calcitic microbial deposits (digitate -6.88 2.87 
stromatolites) 

bladed calcite cement between micritic intraclasts of rare calcitic deposits 
TH 55.4 within peritidal package; succeeded by equant calcite and pore-central saddle -9.96 2.65 

dolomite cement 

TH 56.05 saddle dolomite cement between angular clasts from coarser crystalline -6.92 2.68 
extensively dolomitized de2osits 

TH 56.05a saddle dolomite in argillaceous/bituminous matrix replacing patches of -6.73 2.68 
microbial thrombolitic de2osits 

TH 59.35a saddle dolomite cement in voids (desiccation?, burrows?) within extensively -8.42 2.46 
dolomitized bioturbated cou2lets 

replacement saddle dolomite embedded in bituminous matrix; from 
-6.65 2.90 TH 59.35b patches in mudstone or couplets replaced by a mosaic of coarser-crystalline 

dolomite 

TH 63.5b replacement saddle dolomite in argillaceous/bituminous matrix; associated -6.44 2.64 
with burrows in burrowed mudstone or fine-grained cou2lets 

TH 63.7 saddle dolomite cement in voids in extensively dolomitized microbial -7.77 1 .93 
(thrombolitic) de2osits 

TH 64.6 replacing cement within a composite-ooid grainstone -6.59 2.05 
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TH 65.0 saddle dolomite cement in voids in extensively dolomitized microbial -6.96 1 .80 
(thrombolitic) de osits 

TH 65.3b saddle dolomite cement in layer-rmrallel voids in thrombolitic de2osits -7.33 1 .66 

TH 65.55 replacing cement between extensively dolomitized angular 2eloidal clasts -7.39 1 .75 

TH 68.75 saddle dolomite cement from voids in extensively dolomitized and partially -7. 1 7  1 .27 
silicified microbial (thrombolitic) deposits 

TH 73.4 saddle dolomite cement from bed-perpendicular fractures in recrystallized -7.01  -0.61  
cou lets 
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