
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-1993 

Depositional History, Sequence Stratigraphy and Diagenesis of the Depositional History, Sequence Stratigraphy and Diagenesis of the 

Maryville Limestone (Middle Cambrian) Southern Appalachians Maryville Limestone (Middle Cambrian) Southern Appalachians 

Krishnan Srinivasan 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Geology Commons 

Recommended Citation Recommended Citation 
Srinivasan, Krishnan, "Depositional History, Sequence Stratigraphy and Diagenesis of the Maryville 
Limestone (Middle Cambrian) Southern Appalachians. " PhD diss., University of Tennessee, 1993. 
https://trace.tennessee.edu/utk_graddiss/2640 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2640&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2640&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Krishnan Srinivasan entitled "Depositional 

History, Sequence Stratigraphy and Diagenesis of the Maryville Limestone (Middle Cambrian) 

Southern Appalachians." I have examined the final electronic copy of this dissertation for form 

and content and recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy, with a major in Geology. 

Kenneth R. Walker, Major Professor 

We have read this dissertation and recommend its acceptance: 

Kula Misra, Craig Barnes, Gary Jacobs, Steve Driese 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council 

I am submitting herewith a dissertation written by Krishnan Srinivasan entitled 
"Depositional History, Sequence Stratigraphy and Diagenesis of the Maryville Limestone 
(Middle Cambrian) Southern Appalachians". I have examined the final copy of this 
dissertation for form and content and recommend that it be accepted for the degree of 
Doctor of Philosophy, with a major in Geology . 

We have read this dissertation and 
recommend its acceptance 

{ . i' J 
• • I. I' I I ' 

,......_ _ __ : J� f.,. ' J.� .. -t-� .... ···················�················· \ 

!' 

.............................................. 
. • 

I / · ' ' ............................................. 

4�./( .. � (/ ,/; 

. L/ #;:11 1£,:/) J{ r .. cu.f·u.U 'y:', kt,;,i/�. !························································ 
·
Kenneth R. Walker, Major Professor 

Accepted for the council 

Associate Vice Chancellor 
and Dean of the Graduate 
School 



DEPOSITIONAL HISTORY, SEQUENCE STRATIGRAPHY AND DIAGENESIS OF 
MARYVILLE LIMESTONE (MIDDLE CAMBRIAN), SOUTHERN APPALACHIANS 

A Dissertation 
Presented for the 

Doctor of Philosophy 
Degree 

The University of Tennessee, Knoxville 

Krishnan Srinivasan 
August, 1 993 



ACKNOWLEDGMENTS 

My sincere thanks to Dr. Kenneth R. Walker, Carden Professor of the Department 

of Geological Sciences, for his help and support in all aspects of this dissertation. Ken's 

constant moral and financial support and his concern for my well being throughout my 

graduate career is greatly appreciated. 

I would like to thank other members of my committee who are Drs. Kula Misra 

and Steve Driese from the Department of Geological Sciences at the University of 

Tennessee, Dr. Gary Jacobs from Oak Ridge National Laboratory, and Dr. Craig Barnes 

from the Chemistry Department at the University of T ennessee for their critical reviews 

and guidance. Dr. Claudia Mora's generosity with the stable isotope facility at the 

Department of Geological Sciences, University of Tennessee is much appreciated. 

Mike Doty and Allan Patchen at the Department of Geological Sciences, 

University of Tennessee provided valuable help with stable isotope and microprobe 

analyses. Interest in this work of present and past members of the Carbonate Research 

Group at the University of Tennessee, Lincoln Foreman, Keith Roberson, Mark 

Steinhauff, Mike Kozar, Ken Tobin, Gene Rankey, and Bosiljka Glumac are greatly 

appreciated. 

Special thanks to Fred Read, Noel James, J.F. Sarg, Bob Shaver, and Jay Gregg 

for providing critical reviews for my manuscripts. This research was supported by NSF 

under a grant to Dr. K.R. Walker. Additional support for this research was provided by 

the Mobil Carbonate Fund, Sigma Xi, the Geological Society of America, and the 

University of Tennessee Discretionary Fund. Finally, I would like to thank my parents, my 

brother and sister for their constant support and encouragement. 



ABSTRACT 

The Conasauga Group constitutes part of a thick pericratonic Cambro-Ordovician 

passive-margin sequence along the eastern North American continent. The Cambrian 

carbonate platform was flanked by a high-relief shelf margin towards the east, facing the 

open ocean, while to the west the carbonate platform sloped into an intrashelf basin. It is 

this western shelf margin that is the topic of the present study. Detailed lithofacies 

analysis of the Middle Cambrian Maryville Limestone along a shelf-to-basin depositional 

transect reveals that the shelf evolved from a gently basinward sloping ramp to a rimmed 

platform fringed with steeper slopes. Cyanobacterial buildups (Renalcis-Girvanella) 

dominated the platform margin environments. Progradation of the platform occurred 

towards the craton. 

A process oriented approach is applied to define the sequences, sequence 

boundaries, and the stacking pattern of the Maryville Limestone. The Maryville 

Limestone sequence consists of two depositional subsequences. The boundary between 

the two subsequences is not a sequence boundary, because it does not separate rocks 

deposited in different environmental regimes. The two subsequences within the Maryville 

sequence consist of a combination of aggradational, retrogradational, and progradational 

units (with respect to the platform interior). The stacking pattern recognized is the result 

of variations in sedimentation rate, subsidence, and eustatic sea-level change. Each of the 

dominantly carbonate units within the Conasauga represents this gradual transition from a 

ramp-like platform to basin transition into a rimmed platform. 

In the study area, the transition between the Maryville Limestone (Middle 

Cambrian) and the overlying Nolichucky Shale (Late Cambrian) is a sequence boundary. 

This sequence boundary is both an exposure surface and a drowning unconformity, and 

marks a distinct shift in the pattern of sedimentation. 



The Maryville Limestone was subjected to a complex diagenetic history. A 

combined field, petrographic, and geochemical approach are applied to describe the 

diagenetic history of the Maryville Limestone. The stabilization history of the Maryville 

Limestone during early diagenesis was characterized by microscale dissolution and 

reprecipitation during shallow burial and fabric selective dissolution in response to 

subaerial exposure and influx of meteoric fluids. However, during deep burial 

dolomitization was the dominant diagenetic event. 

iv 

Depositional components such as intraclasts and ooids and synsedimentary fibrous 

(marine) cements were subjected to microscale dissolution and reprecipitation during 

shallow burial. Depleted oxygen isotopic composition of ooids (mean cS 1 8o = -8.7 Ofoo 

PDB) and fibrous cements (mean cS 1 8o = -8.4 Ofoo PDB) relative to Cambrian marine 

carbonate value (& 1 8o = -5 .0 Ofoo PDB) suggests that diagenetic alteration probably 

occurred during burial. Preserved ultrastructures of ooids and fibrous cements suggest 

that stabilization involved microscale dissolution and reprecipitation. Blocky, turbid 

calcite in intergranular pores is interpreted to be of shallow burial origin based on the 

presence of inclusions and cross cutting relationships. Blocky, turbid calcite spar is 

characterized by depleted oxygen isotopic composition (mean cS 1 8o = -8.2 °/oo PDB). 

Sr isotopic composition of blocky turbid calcite spar (0.7095) which is similar to Cambrian 

seawater values (0.7091 -0.7095) suggests that shallow burial cementation occurred 

within a rock dominated system. 

In contrast, wholesale dissolution and cementation occurred in response to the 

influx of freshwater during periods of subaerial exposure. Meteoric diagenesis is restricted 

to parts of formation near exposure surfaces. Petrographic evidence for subaerial 

exposure consists of planar truncation surfaces, insitu brecciation, pores partly filled with 

vadose silt, and fabric-selective dissolution and cementation. Fabric selective dissolution 

yielded biomolds. Blocky, clear calcite spar commonly occludes the moldic pores. The 
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stable oxygen isotope composition ofblocky, clear calcite spar (o 1 8o = -8.0 Ofoo to -9.5  

Ofoo PDB) i s  considerably depleted when compared to  Cambrian marine carbonate values 

(-5 Ofoo PDB). Depleted o 1 8o values are consistent with subaerial exposure and 

meteoric diagenesis. However, o Be values show little shift . A possible reason for this 

lack of negative shift in carbon isotopic values is probably the absence of land plants 

developed on the surface during exposure. Blocky, clear calcite spar is enriched in Fe 

(avg. 1 600 ppm). Enriched Fe values in blocky, clear calcite spar suggest that the 

meteoric system was relatively stagnant promoting reducing conditions. 87sr;86sr values 

of blocky, clear calcite spar which are similar to Cambrian marine carbonate composition 

offers supporting evidence for meteoric origin of blocky clear calcite spar. 

Detailed petrographic analyses along a depositional transect from a carbonate

platform to shale basin reveal that dolomite is the principal burial diagenetic phase. Four 

different types of dolomite were identified based on detailed petrographic and geochemical 

analyses. Dolomite occurs as replacement of precursor carbonate and as inter- and 

intraparticle cements. 

Type I dolomite occurs as small, irregular disseminations typically within mud rich 

facies. Type II dolomite typically occurs as inclusions of planar-e rhombs (ferroan), 5 to 

300 j.lm in size, in blocky, clear ferroan calcite (meteoric) spar. Type II dolomite is non

luminescent. Type I and II dolomite formed during shallow-intermediate burial diagenesis. 

Type III dolomite consists of subhedral to anhedral crystals approximately 1 0  j.lm to 1 50 

j.lm in size. Type IV dolomite consists of baroque or saddle-shaped, 1 00- 1 500 j.lm 

crystals, and is non-luminescent. Type IV dolomite formed during maximum burial. 

Types III and IV dolomite increase in volume downslope. Type III dolomite 

contains 1 .2-2 .6  wt% Fe and a maximum of 1 000 ppm Mn. The distribution of these 

elements displays no distinct vertical or lateral trends. In contrast, Fe and Mn 

distributions in Type IV dolomite exhibit distinct spatial trends. Fe and Mn values 



vi 
decrease from 3 . 5-4 .5  wt% Fe, and 0 . 1 -0 .3 wt% Mn in the west (slope/basin) to 1 . 5-2.5 

wt %  Fe, and less than 600ppm Mn in the east (shelf-margin), over a distance of 

approximately 60 km. Type III and Type IV dolomite have a mean 8 1 8o value of -7. 8 

0
100 and a mean 8 Be value of+ 1 . 1  °/00 (relative to the PDB standard). Based on an 

assumed basinal fluid composition of 5 Of 00 SMOW, temperatures calculated from 8 1 8o 

values of Type III and Type IV dolomite range between 850 C to 1 050 C .  87sr/ 86sr 

compositions of Type III and Type IV dolomite are enriched with respect to Cambrian 

marine values and range from 0 .7 1 1 1 -0 .7 1 39, probably indicating that the diagenetic fluid 

had interacted with the siliciclastic sediments ofbasinal shales. 

Based on the Fe and Mn distributions in Type IV saddle dolomite, a west-east fluid 

flow during late burial diagenesis is indicated. Calculated temperatures indicate that the 

fluids were warm. The distribution ofPaleozoic facies in the southern Appalachians 

indicates a Cambrian shale source for these fluids, and burial curves suggest an early 

Ordovician age for burial fluid movement. 
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CHAPTER 1 

INTRODUCTION 

The Conasauga Group (Middle and Upper Cambrian) consists of a sequence of six 

alternating limestone and shale formations. It constitutes part of a thick pericratonic 

Cambro-Ordovician passive-margin sequence along the eastern edge of the North 

American continent. The Conasauga sequence consists of three distinct phases  of 

sedimentation during the Middle and Late Cambrian (Rodgers, 1 953) :  ( 1 )  an area 

dominated by carbonate lithologies to the east, (2) a western and northwestern area 

dominated by shale, and (3) a central zone of interbedded carbonate formations and shale 

formations (Fig. 1 . 1  ). A detailed regional stratigraphic framework for the Conasauga has 

been established by several workers in the past (Rodgers, 1 968; Harris, 1 964; Erwin, 

1 98 1 ;  Markello and Read, 1 98 1 ,  1 982; Simmons, 1984 ; Kozar, 1 986; Hasson and Haase, 

1 988; Weber, 1 988; Foreman, 1 99 1 ). This research is focused on the central phase which 

consists of a succession of interbedded carbonate and shale formations. This dissertation 

concerns the detailed sedimentology, sequence stratigraphy and diagenesis of the 

Maryville Limestone (Middle Cambrian). The outcrops of interest for this study are 

exposed within the Copper Creek fault block (Fig. 1 .2). 

The dissertation is organized into five chapters. In Chapter I, regional 

stratigraphic setting, and purpose and significance ofthe dissertation are described. 

Beginning with chapter 2, the dissertation examines depositional history, sequence 

stratigraphy and diagenesis. A brief description of the salient features of chapters 2, 3 and 

4 are given below. The major conclusions ofthe dissertation are summarized in chapter 5 .  

Chapter 2 :  Sequence Stratigraphy of an IntrashelfBasin Carbonate Ramp to Rimmed 

Platform Transition: Maryville Limestone (Middle Cambrian), Southern Appalachians. 
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Figure 1.1 Palinspastic base map of Tennessee showing the three major phases of Middle 

and Upper Cambrian sedimentation (from Weber, 1988, modified after Hasson and 

Haase, 1988). 
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In this chapter, detailed depositional history, evolution and sequence stratigraphy of the 

Middle Cambrian carbonate platform is described. Detailed lithofacies analysis 

along a shelf-to-basin depositional transect within the Copper Creek fault block reveals 

that the shelf evolved from a gently basinward sloping ramp to a rimmed platform fringed 

with steeper slopes . Cyanobacterial buildups (Renalcis-Girvanella) dominated the 

platform margin environments . 

Sequence stratigraphy has its roots, and has been most widely applied in 

siliciclastic systems . In contrast, applications of sequence stratigraphic concepts to 

carbonate rocks, both ancient and recent has been rather limited. Schlager ( 199 1 )  argued 

for a much needed process oriented approach in carbonate systems . Such an approach 

was particularly useful in defining sequences, sequence boundaries, and the stacking 

pattern of the Maryville Limestone . 

The approach here involved detailed field and petrographic analysis . Subaerial 

exposure surfaces were documented on the basis of field, petrographic and geochemical 

evidence (stable carbon and oxygen isotopic composition). 

Chapter 3 :  Microscale and Fabric Selective Dissolution and Cementation During Early 

Diagenesis ofMaryville Limestone (Middle Cambrian), Southern Appalachians . 

4 

Previous studies only briefly touched on the diagenesis of the Maryville Limestone 

(Kozar, 1 986). In this study an integrated approach consisting of detailed petrography 

and geochemistry (trace elements, stable carbon, oxygen, and strontium isotopic ratios) 

was applied to describe the diagenetic history of the Maryville Limestone.  The Maryville 

Limestone was subjected to a complex diagenetic history. In general, this history may be 

divided into early diagenesis consisting of marine, meteoric, and shallow burial (less than 1 

krn of burial) and deep burial diagenesis ( maximum burial depth 4 krn). The emphasis of 

chapter 3 is on the stabilization of the Maryville Limestone during early diagenesis . Early 



diagenesis consisted of micro scale dissolution and reprecipitation during shallow burial 

and fabric selective dissolution and cementation in response to subaerial exposure and 

meteoric diagenesis. 

Chapter 4: Petrographic and Geochemical Constraints for Fluid Source and Possible 

Pathways During Burial Diagenesis ofMaryville Limestone (Middle Cambrian), Southern 

Appalachians. 

5 

This chapter focuses on the deep burial diagenesis of the Maryville Limestone, 

which consisted mostly of partial dolomitization. Petrographic analyses, both 

conventional and cathodoluminescent microscopy, reveal that dolomite is the principal 

burial diagenetic phase . Four different generations of dolomite were identified along the 

platform-to-basin depositional transect. An integrated approach consisting of detailed 

petrography and geochemistry (stable carbon and oxygen isotopes, trace elements, and Sr 

isotopes) was applied to unravel the burial diagenetic history, trace the direction of fluid 

flow, and to hypothesize about possible fluid source (s) during deep burial dolomitization. 

Sr isotopic composition of the burial dolomite phases proved critical in identifying the 

fluid source and composition. Minor and trace elements were particularly useful in 

delineating the fluid migration pathways. Burial curves were constructed to estimate the 

maximum burial depth, and thus maximum burial temperatures of the Maryville Limestone 

in the study area. 

Stratigraphic Setting 

A broad regional carbonate shelf was established along the eastern North 

American continental margin following the Late Precambrian rifting (Bird and Dewey, 

1970; Read, 1 988). Initial rifting of the eastern North American continent was followed 

by rift-dominated sedimentation. The rift-to-drift transition and establishment of passive 



margin carbonate sedimentation occurred by Late Cambrian time period according to 

Rankey ( 1 993, in prep). The Conasauga sequence (Middle and Upper Cambrian) in 

northeast Tennessee and Virginia are part of this passive margin sequence . 

General sequence stratigraphy of Conasauga (Fig. 1 .3) and other Cambrian strata 

in east Tennessee is adopted from Kozar et al. ( 1 990). The regional Conasauga 

stratigraphy is given in Figure 1 .4 .  The Conasauga rocks in northeast Tennessee are 

exposed in a series of southeasterly dipping imbricate thrust sheets. It overlies the Lower 

Cambrian Rome Formation which is predominantly of tidal flat origin and is in tum 

overlain conformably by the Knox Group which consists dominantly of shallow subtidal 

and peritidal carbonate rocks (Rodgers and Kent, 1 948; Harris, 1 964) .  The thickness of 

the Conasauga Group in east Tennessee ranges between 350 m and 700 m. In the Valley 

and Ridge province, the carbonate parts of the Conasauga sequence are much thicker in 

the more eastern exposures. 

6 

The Maryville Limestone (Middle Cambrian) crops out in the southeasterly dipping 

thrust sheets in the Valley and Ridge Province of the southern Appalachians. It consists of 

a combination of peritidal and subtidal carbonates in the more eastern exposures ( for 

example, in the Dumplin Valley thrust sheet). However, the more western and 

northwestern exposures (Copper Creek thrust sheet) dominantly consist of shallow and 

deep subtidal carbonates with an increased proportion of interbedded shale . The present 

research is focused on five outcrops of the Maryville Limestone (Fig. 1 .2). The five 

outcrops represent a depositional transect from shelf (east) to basin (west). 

Biostratigraphy of the Maryville Limestone based on trilobite zonations reveal that the 

upper part of the Maryville Limestone in the study area ranges between the Bolaspidella 

zone (Middle Cambrian) and the overlying Cedaria zone (Dresbachian) (Derby, 1 965). 

Within the Copper Creek fault block, deeper water environments to the west and 
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8 

solid lines enclose formation-level units except to the left of the Maryville 

Formation where a more shaley (basinal) equivalent of the Maryville exists. Note 

gradual progradation of each carbonate unit toward the basin and the concomitant 

conversion of the basin-platform transition from gentle ramp to steeper slope (from 

Walker and others, 1990). 



southwest are replaced further northeast (southwest Virginia) by peritidal areas as 

documented by Markello and Read ( 1 98 1 )  and Erwin ( 1 98 1 ) . 

Purpose and Significance 

Few studies prior to this (Simmons, 1 984; Kozar, 1 986) have focused on the 

detailed paleoenvironmental interpretation, sequence stratigraphy, and diagenesis of the 

Maryville Limestone. The main objectives of this study are to: ( 1 )  establish a detailed 

depositional history of the Maryville Limestone along a shelf-to-basin depositional 

transect, (2) develop a detailed sequence stratigraphic model for the formation, and (3) 

finally, to use the sequence stratigraphic model thus developed as a basic framework for 

the interpretation of the diagenetic history of the Maryville Limestone. 

Sequence stratigraphy has been most widely applied to siliciclastic successions. 

In contrast, application of sequence stratigraphic concepts to carbonate successions has 

been more limited. There is presently no entirely satisfying conceptual framework for 

discussing the sequence stratigraphy of carbonate successions. This is mainly due to the 

fact that carbonate depositional systems are fundamentally different from siliciclastic 

systems. The application of sequence stratigraphic concepts to the evolution of Middle 

Cambrian carbonate sequence can serve as a useful analog to other lower Paleozoic and 

possibly younger passive-margin carbonate sequences. 

9 

An integrated approach combining petrography and geochemistry facilitated a 

better understanding of the physical and chemical processes that operated during 

diagenesis of the Maryville Limestone. The diagenetic history of the Maryville Limestone 

demonstrates the control of sea-level changes on the early diagenetic history and the 

influence of shale diagenesis on the late diagenetic history of shallow platform carbonates, 

and provides insight into regional burial dolomitization and cementation of the Maryville 



1 0  

Limestone and perhaps of the entire Conasauga. In the future, research on burial 

dolomitization of the Maryville Limestone will be extended to the more eastern exposures 

where the peritidal section of the Maryville Limestone is well exposed (Rankey, in prep). 

Such a regional study is more likely to demonstrate the importance of early versus late 

burial dolomitization of platform carbonates. 



CHAPTER2 

SEQUENCE STRATIGRAPHY OF AN INTRASHELF BASIN CARBONATE RAMP 

TO RIMMED-PLATFORM TRANSITION: MARYVILLE LIMESTONE (MIDDLE 

CAMBRIAN), SOUTHERN APPALACHIANS 

Introduction 

The Conasauga Group (Middle and Upper Cambrian) consists of a sequence of six 

alternating limestone and shale formations. The changes from mostly limestone to mostly 

shale deposition were likely caused by sea-level changes (Kozar and others, 1990; 

Srinivasan and others, 1991). The alternating limestone and shale formations are 

characteristic of Cambrian strata of the southern Canadian Rocky Mountain, the 

Appalachian, and the Cordilleran passive-margin sequences. These alternating limestone

shale formations from the southern Canadian Rocky Mountains were originally described 

as "grand cycles" by Aitken ( 1966). 

The Conasauga Group constitutes part of a thick pericratonic Cambro-Ordovician 

passive-margin sequence along the eastern edge of the North American continent. 

Following late Precambrian crustal extension and rift dominated sedimentation during 

early and middle Cambrian time period, passive-margin sedimentation was initiated during 

late Cambrian time period along the eastern North American continent. The Conasauga 

sequence resulted from three distinct paleogeographic phases of sedimentation during 

Middle and Late Cambrian time (Rodgers, 1953): (1) a succession dominated by 

carbonate lithologies to the east and southeast, (2) a western and northwestern succession 

Note: This chapter is a paper in press, GSA Bulletin. 

Srinivasan, K, and Walker, KR, 1993, Sequence stratigraphy of an intrashelf basin carbonate 

ramp to rimmed-platform transition: Maryville Limestone (Middle Cambrian) 



1 2  

dominated by shale, and (3) a central succession of interbedded carbonate formations and 

shale formations. The present study concerns a part of this central phase. Deposition of 

the Conasauga strata occurred within a regional intrashelf depocenter consisting of 

intracratonic basin and associated carbonate platform environmental arrays ( Markello and 

Read 1 98 1 ;  1 982). 

The Maryville Limestone (Middle Cambrian) of the Conasauga group represents 

deposition along a rimmed shelf edge-to-basin transition (Srinivasan and others, 1 99 1  ) . 
Shelf, shelf-margin, and slope/basin lithologies are well exposed in the Copper Creek fault 

block in east Tennessee (Fig. 1 .2) . Cyanobacterial buildups (Renalcis - Girvanella) 

dominated the platform-margin environments. This is the first reported occurrence of 

Cambrian shelf-margin cyanobacterial buildups in Tennessee. Although the Middle 

Cambrian platform margin-to-basin transition in the study area was marked by slope 

steepening, absence of large shelf-edge-derived blocks in the peri platform deposits 

suggests that it was not a high-relief shelf edge or a high angle slope. The platform

margin prograded basinward in a direction west to southwest (present geographic 

direction). The facies distribution of the Maryville Limestone reflects a change in the 

depositional mode through time from a gently sloping ramp ( 1 o or perhaps less) (Erwin, 

1981; Markello and Read, 1 98 1 ;  Simmons, 1 984; Kozar, 1 986) to rimmed-platform 

depositional mode with significant slope steepening (20 to 30). 

A high-relief shelf margin on the oceanward side (east) of the Cambrian carbonate 

platform has been documented from different parts of the Appalachians (Reinhardt, 1 977; 

Pfeil and Read, 1 980; James, 1 98 1 ;  Read and Pfeil, 1 983; Demicco, 1 985; James and 

Stevens, 1 986; Barnaby and Read, 1990) . The shelf margin documented in the present 

study faced a shallower intracratonic basin to the west. 

The objectives of this paper are to: (1 ) outline the lithofacies types of the Maryville 

Limestone exposed within the Copper Creek fault block, and (2) describe the evolution 
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and the sequence stratigraphy of the Middle Cambrian carbonate platform. One of the 

interesting aspects of the Conasauga Group are the alternating limestone-shale formations 

(Fig. 1 .4). The emphasis ofthe present research is on the transition between the 

Maryville Limestone (Middle Cambrian) and the overlying Nolichucky Shale (Late 

Cambrian), but the general nature ofthe limestone-shale transitions (exposure/drowning) 

in the entire group will also be discussed. The Maryville-Nolichucky transition has been 

identified as a third-order sequence boundary by Read ( 1 989) and Kozar and others 

( 1 990). We employ a process-oriented approach to describe the sequence stratigraphy of 

the Maryville. 

Geologic Setting 

Late Precambrian crustal extension of the eastern North American continent was 

accompanied by the establishment of a broad regional carbonate shelf (Bird and Dewey, 

1970; Read, 1 989, among others). As mentioned earlier, the regional shelfthat fringed the 

eastern North American continental margin experienced more or less continous deposition 

from Early Cambrian through Early Ordovician time. The Middle and Upper Cambrian 

Conasauga rocks in northeastern Tennessee and Virginia are part of this Cambro

Ordovician sequence. In the study area, the Conasauga rocks are exposed in a series of 

southeasterly dipping imbricate thrust sheets. The Conasauga Group in East Tennessee 

conformably overlies the Rome Formation (lower Cambrian) and is in tum overlain 

conformably by the Knox Group (Rodgers and Kent, 1 948; Harris, 1 964; Palmer, 1971  ) .  

During deposition of the Rome Formation the environmental pattern was influenced by 

linear "pull-apart" basins initially formed during the breakup of the continental margin that 

occurred in late Precambrian and Early Cambrian time (Read, 1 989). The upper part of 

the Maryville Limestone in northeastern Tennessee and parts of southwestern Virginia 

ranges between the Bolaspidella zone (Middle Cambrian) and the overlynig Cedaria zone 
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(Dresbachian) (Derby, 1 965). 

Methods 

The regional stratigraphic framework presented here for the Conasauga Group was 

adopted from the work ofRodgers ( 1 968), Harris ( 1 964), Erwin ( 1 98 1 ), Markello and 

Read ( 1 98 1 ,  1 982), Simmons ( 1 984), Kozar ( 1 986), Hasson and Haase ( 1 988), Weber 

( 1 988), Foreman ( 1 99 1 ) . A more detailed stratigraphy of the Maryville Limestone was 

established by the examination of five complete or partial stratigraphic sections within the 

Copper Creek fault block in the study area. Detailed field work was accompanied by 

analysis of over 200 thin sections from the five stratigraphic sections. Definition of 

sequence boundaries is based on detailed field studies and petrographic analysis. Data 

from the latter approach were especially useful in defining sequence bounding surfaces, 

many of which are the result of exposure or flooding. These events (particularly 

exposure) are commonly more clearly reflected in the diagenetic fabrics observed by 

petrographic study and in the geochemical signatures of components in the affected 

sediments than in the characteristics visible in the field. 

Description of Maryville Rock Types 

The Maryville Limestone in the study area consists entirely of subtidally deposited 

rocks. A detailed cross-section of the Maryville Limestone is given in Figure 2 . 1 .  Thus, 

the cyclicity delineated by other workers in the Conasauga in Virginia and upper northeast 

Tennessee, where many cycles are capped by intertidal or supratidal facies (e.g. , Markello 

and Read, 1 98 1 ,  1 982), is not so obviously developed in our study area. Only larger 

excursions of relative sea-level are evidenced in these wholly subtidal settings, and the 
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effects of autocyclic processes such as tidal-island migration should be minimal. The 

Maryville Limestone exposed within the Copper Creek fault block consists of mostly 

shallow subtidal rocks towards the northeast and deeper subtidal towards the southwest. 

Along this depositional transect, shelf, shelf-margin and slope/basin are well exposed. As 
shown by Table 2 . 1 ,  each depositional setting is characterized by a distinctive suite of rock 

types. 

Environmental Interpretation of Maryville Rock Types 

Subtidal Onshelf 

Burrow mottled lime mudstone indicates subtidal open-marine conditions of 

deposition. The wackestone and mudstone (Fig. 2.2A) lithologies represent deposition 

below normal wave base, perhaps on the upperslope or possibly in onshelf areas protected 

from current agitation by the basinward shelf-marginal cyanobacterial buildups. Packstone 

and grainstone lithologies indicate periodic increased agitation, perhaps during storms. 

Thus, deposition of burrow-mottled lime mudstone occurred below normal wave base but 

above storm wave base. Fining upward sequences indicate deposition during waning 

energy conditions (Kriesa, 1 98 1  ). Burrow mottled lime mudstone possibly represents 

deposition in water depths ranging between 1 0-20 m. The ooid grainstone and packstone 

layers within this facies represent resedimentation of grains derived from nearby ooid 

producing, shoal-water environments. 

In the thicker ooid shoal (up to 1 3m) deposits, two subenvironments can be 

recognized: ( 1 )  an active oolite zone, characterized by the dominance of ooids as 

allochems (Fig. 2 .2B), cross beds, and well washed grainstone with marine cements and 

(2) a stabilized oolite zone, characterized by a decrease in ooids as allochems and by the 



Table 2. 1. Description of lithofacies 

I .  Depositional Setting - S u b t id a l  o n s h c l f  
... 

Lithofacies Color and Thickness Constituents Sedimentary Structures Earty Diagenesis 
. .  

Ourrow mottled fime mudstone Dark gray to ligh t  gray. Weathers Micrite dominant with ooids, oncoids, Fining upward sequences consislir1 or Bunows dolomitized. 
(wackestone with thin packstone bull. Thickness 0-40m. trilobite fragments, echinoderms, grainstone, packstone, wackestone �nd Hardgrounds occur as planar 
a n d  grainstone layers) peloids, intracla sts,  and Renalcis mudstones. Bunows In wackeslon t! (rig. darkened surfaces. 

4A) 
.. 

Oolitk/oncolitic (packstone/grain Generally light gray. Thlckness O- Ooids, on colds, trilobite fragments, Percentage ol ooids, and cross Fibrous cements In grainstone and 
stone wackestone and thin 1 3m. echinoderms, Renalic:;, peloids, silt lamina lions Increase upward (Simm<: lllS, packstone layers (Fig. 4 8). IJiocky 
mudstone layers) sized angular quartz grains, and :1oid 1 904), similar to those of Holocene c calcite spar Is evidence lor 

intraclasts. Ball, shoal deposits (Newell, et al., 1 960; I subactial exposure. 
1 967; and Harris, 1 979, 1 904). Thim ner 
oolite layers lack these trends. 

-- -

Oncolitic packstone/grainstone (thin Light gray. Thickness 0-Sm. Oncoids (C, n. and I type ol Logan et Lacks Internal bedding and other Fibrous, micritic, line equant, and 
wackestone layers) al., 1 964), trilobite fragments, ooids, sedimentary structures. blocky spar. Blocky calcite spar Is 

peloids, quartz silt, and minor sponge evidence lor subaerial exposure. 
spicules. Oncolds range up to S-Gmm Hardgrounds truncate oncoids. 
(Fig. 4c). 

' Quartz silty peloidal packstone Dar1< gray. Thlcknes s 0- 1 0rn. Angular silt sized quartz grains Thin laminations and possible humrn< ocky l lardgrounds occur as irregular to 
dominant with peloids, ooids, oncolds, cross stratification. planar blacker�ed surfaces (Fig. 
Intraclasts, echinoderms, and 4D). Pyrite and glauconite 
phosphatic brachiopods. common . I .. 

II. Depositional setting: She lf  m a rg i n  
. .  

Lithofacies Color and Thickness Constituents Sedimentary Structures Early Diager�esls 

Renalcis- Girvane� boundstone Light to dark gray. Thickness 0-1 Sm. Renalcis clusters and fragments, Biohermal g eometry. Growth cavities Hardground at base ol the bundup 
(Grainstone, packstone, and Thickness decreases downslope Girvan ella crusts, oncolds, trilobite noored with geopetal sediment and is s lylolitlzed in places anct loe��lly 
wackestone) from s h ell margin. lragmenls, and minor sponge spicules. fibrous cement. Ren11lcls clusters disr play shows borings lined with 

R enalcis display the chambered relief or a lew em. s ediments And spar (Fig. SA). 
morphological form (Figs. 4D and E). Suba erial exposure surface ClipS 
Proportion of oncoids Increases buildup. The surface Is local, 
upwards. restricted to shell margin. 

.. 

Girvanella - sponge- Renalcis Dark gray to gray. Thickness 0-1 0m, Girvan ella crusts and lntgmenls, sponge Biohermal in shape. Growth cavities Fibrous cement in packstone 
boundstone (packstone, and decreases downs lope. 1 spicules (Monaxon and polyaxon, (Fig. Roored with Internal sediment and 
wackestone) SF), nenalcis, oncolds, trilobite cement. Burrows commonly occur in 

· fragmenls, calcispheres, peloids, and mudstone lithologies. 

layers. Buiidup capped by 
subaerial exposure surface. The 
surface is coincident with the lop 

calcareous sponges(?) Proportion of or Maryville l imestone. Pervasive 
oncoids increases upwards. occurrence of blocky dear calcite 

spar (Figs. 6A & 8). M eteoric 
diagenesis widespread on outer 
s hell, s hell margin and upper 

. .  slope . 
-



------·- - ---- -�- - - - -- - - ·-

Ill. Depositlonal s etling: Slope/bas i n  
Lithofacies Color and Thickness I Constituents Bedding and Early Diagenesis 

' Sedimentary Structures 

lntracfastic packstone Dark gray. Thickness of beds 5-35 Intraclasts, silt sized angular quartz Beds display crude grading. Lower Absence of peloidal Rattening. 
ern grains, trilobite fragments, and peloids. contacts are Irregular and eror.ional. Sole slylolites, and clast breakage 

Intraclasts consist of peloidal, laminated marks common. Beds occasbnally suggest early diagenesis (Fig. 6D). 
and non-laminated calcareous siltstone, amalgamated. Thin intervening layers of 
micrite, and multigeneration. mud occur between two inlraclastic 

layers. The clasts display subparallel to 
random orientation, occasionally 
imbricated (Fig. 6C). 

Calcareous siltstone Dark gray. Bed lhickness0-10cm Sill sized angular quartz grains, peloids, Interbedded with intraclaslic p;lckstone, Hardgrounds common, with 
and bloclasts. lime mudstone/nodular limestone, and associated pyrite and 

shale. Thin laminations, small scale glauconite. 
hummocky cross stratification, and partial 
Bouma sequences occur (Fig. 6E). 
Planar lower contacts. Sole m�rks occur. 
Grading is subtle. I 

lime mudstone/nodular lime Thicknes s O  2 m .  Lime mud, peloids, a n d  silt-sized quartz Thin argillaceous layers Intercalated with Glauconite and pyrite. 
mudstone (wackestone) grains. few well preserved bioclasts. lime mud. Burrows common. Occurs a s  

interbeds within shale. 
. .  

Allochthonous oolitic/ Thickness 0·75 em. Ooids, trilobite fragments, oncolds, Beds lack Internal primary sedimentary Hardgrounds with glauconite and 
on coli lie grainstone/packstone echinoderms, inlraclasts, and quartz silt. structures. Usually occurs as Interbeds pyrite. 

Matrix contains abundant mud. Ooid within calcareous siltstone. lower 
rnicrolabrics similar Ia ooids ol shoal contaclsare erosional. 
water origin. 

Shale Dark gray to IJiack. Thicker In tile fllack lime mud with terrigenous clay Thinly laminated. None. 
lower part, and as thin beds in :Jj>per and quartz s ill. Fossils absent .  
part of sequence. 

. 
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Figure 2.  2 .  Photomicrographs (cross-polarized light) of different types of lithofacies of 

the Maryville Limestone (field width = 4 .5  mm). A) Burrow mottled limestone 

from Thorn Hill section. Note the vertical burrow is filled with spar. B) Oolitic 

grainstone from Thorn Hill section. Note abundant intergranular fibrous cements 

(F) (field width = 4 .5  mm). C) Oncolitic packstone from Woods Gap section (field 

width = 4 .5  mm). D) Quartz silty peloidal packstone from Thorn Hill section. 

Note the hardground (H) truncates depositional components (field width = 4 .5  

mm). E)  and F)  Renalcis-Girvanella limestones from Woods Gap section (field 

width = l mm). Note the chambered morphology of Renalcis (R). 
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occurrence of intraclasts and interstitial micrite. Thin bedded oolitic/oncolitic limestone 

(up to 2m) with fewer ooids and a higher proportion of mud, silt, and bioclastic remains 

was probably derived by resedimentation from nearby ooid-forming environments. They 

represent deposition in relatively deeper water.Oncolitic limestones in the Maryville 

Limestone with well-developed oncoids (Fig. 2 .2C) and abundant fibrous and micritic 

cements represent shallow subtidal deposition in water depths of less than 5 m. Actively 

growing oncolites in the modem Joulters Cay area occur in very shallow subtidal settings 

in water depths of less than 1 m (Gebelein, 1976). Ginsburg ( 1 960), Logan and others 

( 1964), and Flugel ( 1 982) described examples of oncolites from shallow subtidal settings. 

In contrast, oncolitic limestones of the Maryville with quartz silt, skeletal fragments, and 

other constituents represent deposition in deeper subtidal settings in which the oncoids 

have been transported from shallower areas. Similarly Markello and Read ( 198 1 )  and 

Kozar ( 1 986) described oncolitic limestones with quartz silt from deeper subtidal 

environments. 

Quartz silty peloidal packstone represents deposition in relatively deeper water 

below normal wave base (Fig. 2 .2D). The associated layers of intraclasts, ooids, and 

skeletal fragments can be attributed to lowered wave base during storms, or alternatively 

these grain types may have been transported into deeper water (20-30 m) by grainflows 

and/or debris-flows triggered by storms (Kozar and others, 1986). 

Shelf Margin 

The dominant constituents of the shelf-margin reefal lithologies are Renalcis, 

Girvanella, sponge spicules, and carbonate mud. Other associated reef constituents are 

trilobite skeletal fragments, peloids, and calcispheres. The fossils to a large extent are in 

place and many (especially the cyanobacteria) are found in their growth position. Growth 
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cavities are filled with geopetal sediment and fibrous cements . Fibrous and micritic 

cements are common in the intergranular pores . Finally, the buildups had the capability of 

modifying conditions in surrounding environments, a characteristic of true reefs. 

Renalcis and Girvanella are described as calcimicrobes (calcified microbial 

microfossils ; James and Gravestock, 1 990). The framework of these Maryville reefs was 

built by cyanobacterial calcification (Renalcis) and sediment binding action (Girvanella). 

The reefs at the shelf margin are biohermal in shape.  On the basis of the dominant 

constituents, the reefal complex is subdivided into: (a .) Renalcis-Girvanella boundstone 

(Figs . 2.2E and F), this part of the reefal complex being floored by a hardground (Fig . 

2.3A). (b .) Girvanella-sponge-Renalcis boundstone (Figs . 2.3E and F, also see Table 2. 1 

for description). 

The increase in Girvanella oncoids upwards indicates that the buildups shallowed 

upward . The reefal complex is punctuated by two subaerial exposure surfaces caused by 

falls in relative sea-level. The stratigraphically lower subaerial exposure surface is 

restricted to the shelf margin area. Evidence for this stratigraphically lower subaerial 

exposure consists of a planar truncation surface, insitu brecciation (Fig. 2.3B), pores 

partly filled with laminated vadose silt (Fig . 2.3C), scalloped surface (Fig. 2.3D) and 

blocky clear calcite spar in inter- and intraparticle pores (Fig . 2.4A). However, the 

exposure surface which caps the top of the Maryville (Fig. 2.4B) is areally more extensive 

(see Fig. 2. 1 ). Although the upper exposure surface itself is not easily traceable from 

outcrop to outcrop in the field, subaerial exposure in most places at this stratigraphic level 

can be confidently inferred from the diagenetic fabrics .  Petrographic evidence for 

subaerial exposure consists of extensive dissolution and calcitization of depositional 

components such as Renalcis grains, Girvanella oncoids, and trilobite fragments in 

addition to those features described above . Blocky, clear calcite spar occludes inter- and 

intraparticle pores. Stable oxygen isotope composition of blocky, clear calcite spar (mean 
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Figure 2. 3. Photographs (A and B) of polished slabs and photomicrographs (C - F) of 

Maryville lithologies from Woods Gap section. A) Note a hardground separates 

the underlying burrowed mudstone from oncolite grainstone. The hardground (H) 

is stylolitized in part (S), but at places it is still well preserved. The hardground is 

locally bored (scale bar = 1 em). B) Features associated with subaerial 

exposure which include, the exposure surface (ES) and insitu brecciation (IB, scale 

bar = I em). C) Thin section plane polarized light showing laminated vadose 

silt (LS) associated with the exposure surface ( field width = 4.5  mm). D) Thin 

section under cross-polarized light showing scalloped surface (SS, field width = 

4.5  mm). E) Thin section under cross polarized light of Girvanella-Renalcis 

boundstone (G, R). The light colored areas are Girvanella. F) Under plane 

polarized light, thin section showing sponge spicules (field width = 4 .5 mm) 
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Figure 2. 4. Photographs (B, C, E and F) and photomicrographs (A and D) ofMaryville 

lithologies. A) Thin section under cross-polarized light from Woods Gap section 

showing diagenetic evidence for subaerial exposure and meteoric diagenesis in the 

upper part of the Maryville Limestone. The evidence consists of leached fossils 

(in this case Renalcis ) replaced with clear blocky spar (BS). B) Polished slab 

from Woods Gap section showing the contact between Maryville Limestone and 

the overlying Nolichucky Shale (scale bar equals 1 em). The top of the Maryville 

is an exposure surface (ES) as well as a drowning surface (DS). C) Polished slab 

of intraclastic packstone from Clinton Highway section. Note the clasts in the 

upper part of the photograph are imbricated (scale bar equals 1 em). D) Thin 

section of intraclastic packstone under cross-polarized light. Note the clasts are 

composed of peloids and silt sized quartz grains (field width = 4.5 mm). E) 

Polished slab of laminated calcareous siltstone from Norris Freeway section 

displaying partial Bouma sequence (A,B, and C). F) Field photograph of shale 

interbedded with thick bedded intraclastic packstone from Norris Freeway section. 

Hammer for scale. 
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B 1 8o = -9.3 ,  range -9 to - 10  Of00 PDB) is considerably depleted (at least 4-5 Of00 PDB) 

compared to Cambrian marine values of -5 Of00 PDB (Lohmann and Walker, 1 989; 

Walker and others, 1 989). The depleted oxygen isotope composition is consistent with 

subaerial exposure and meteoric diagenesis. The lack of negative shift in carbon isotopic 

values is interpreted to be the result of the absence ef land plants developed on the surface 

during exposure. 

Lowering of relative sea-level at slope localities (Fig. 2 . 1 ,  Norris Freeway section) 

during formation of the exposure surface at shelf-margin localities (Fig. 2 . 1 ,  Woods gap 

section), allowed development of cyanobacterial reefs on the former slopes. The upper 

part of the Maryville Limestone indicates a possible progradation of the shelf margin 

toward the west or southwest (present geographic direction). The magnitude of 

progradation during deposition of the upper part ofthe Maryville is estimated to have 

been about 20 km. This estimation is based on three well-spaced outcrops down the 

depositional slope within the same thrust sheet. 

Slope/basin 

The slope and basinal facies in the study area represent mid- to upper-slope 

positions. Other localities farther west and southwest represent more basinal positions 

(e.g. Kozar, 1 986). The majority ofthese lithofacies in the present study area represent 

deposition below normal wave base in water depths on the order of 25 to 50 meters. This 

interpretation is based on the general abundance of allochthonous lithologies, paucity of 

fossils, and abundance of lime mud and quartz silt. However, gravity slides and slumps 

have not been recognized, although debris flows occur. On the basis of modem 

analogues, these flows suggest slope angles on the order of 20 to 40 (Reading, 1 986). 

The characteristics of intraclastic limestones (Fig. 2 .4C) which favor a relatively 
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deeper water origin are: ( 1 )  their association with dark colored shales, (2) abundance of 

fine-grained quartz silt , and (3) absence of associated tidal-flat features such as 

mudcracks, fenestrae, and subaerial exposure features, as well as shallow subtidal features 

such as ripple marks and planar cross-bedding. In addition, presence of glauconite, and 

framboidal (?) pyrite further support a deeper water, low oxygenated environment. 

Features which support an allochthonous origin for the intraclastic limestones include 

rafted and projecting clasts, polymictic clast associations, subparallel to random clast 

orientations, and fine grained lime mud in the matrix (Kozar and others, 1 986). However, 

some of the associated beds are probably storm-derived as evidenced by the occurrence of 

monomictic clasts, shelter voids and well washed grainstone. 

The composition of most of the individual clasts suggests initial deposition in a 

shallower subtidal setting. Absence of compaction features like peloidal flattening, 

stylolites, and clast breakage (Fig. 2.4D) suggests that early submarine cementation played 

an important role in the origin of intraclasts (Sepkoski, 1 982; Srinivasan and others, 

1990). 

Thin laminated calcareous siltstone with evidence of grading is commonly 

interpreted to have been deposited in deep water slope/basinal settings (Wilson, 1 969). 

Similarly the calcareous siltstone beds of the Maryville Limestone are interpreted to have 

been deposited in relatively deeper water slope settings (many 1 0  's of meters). Beds that 

display a partial Bouma sequence represent deposition by turbidity currents (Fig. 2.4E). 

These beds are analogous to facies TM and MT ( originally silt turbidites/mud turbidites, 

see Stow and Shanmugam, 1980) described by Ghibaudo ( 1992). 

Mud sized lime sediment is commonly generated in shallow water environments 

(Stockman and others, 1 967). Lime mud generated in shallow shelves such as in the case 

of Campeche bank are later redeposited downslope from shelf margin (Logan and others, 

1969). Similarly lime mudstone/nodular mudstone which occur as interbeds in shale and 
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calcareous siltstone in the Maryville is interpreted to have been deposited in deeper water 

slope/basinal settings. This interpretation is further supported by the presence of a limited 

fauna and the abundance of thin layers of terrigenous silt. Ooid packstone/grainstone 

interbeds within this facies are interpreted to be allochthonous because the matrix is 

composed of mud suggesting a lack of winnowing. The ooid microfabrics are similar to 

those of the ooids of shoal origin . 

Stratigraphic association of shale (Fig. 2.4F) with the above mentioned rock types 

suggests deeper water slope/basin conditions of deposition. Absence of shallow water 

features and absence of evidence of emergence further support this interpretation . 

Depositional Sequences, Subsequences and Stacking Patterns 

During the deposition of the Conasauga Group, the shelf followed a cyclical 

pattern of evolution from a ramp depositional mode to a platform depositional m ode . 

Gentle depositional slopes prevailed during deposition of shales such as those of the 

Rogersville Shale that underlies the Maryville . The deposition of pure carbonates 

represents a gradual change in a depositional mode to a flat topped platform fringed by 

relatively steeper slopes. This interpretation is based on the regional facies distribution. It 

is our belief that a combination of several factors including tectonics, eustasy, and 

sedimentation rate played an important role in shaping the Conasauga stratigraphy in the 

southern Appalachians. 

The Maryville Limestone is a third order sequence . The Maryville sequence can be 

subdivided into two subsequences on the basis of the stacking of lithologic units . The 

boundary between the subsequences is marked by a shallowing upward event, but does n ot 

separate genetically different groups of strata . This boundary is not defined as a sequence 

boundary s ince it does not represent a long break in sedimentation and there is no distinct 
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change in the pattern of sedimentation across the boundary. In contrast, the upper 

subsequence is capped by a subaerial exposure surface representing a longer break in 
deposition, and a consequent profound change in depositional regime. In this section we 

describe the subsequences, stacking patterns, and sequence boundaries. Although we are 

using the term sequence in the sense of Mitchum and others ( 1 977), we have avoided 

terms such as transgressive systems tract (TST) because we do not feel they fit well with 

the development of this carbonate sequence. 

Lower Subsequence 

The thickness of the lower subsequence varies from about 3-60 m on the shallow 

platform to a maximum of 40 m further basinward (see Fig. 2 . 1 ) .  The general succession 

of lithofacies from bottom to top on the shallow platform consists ofburrow mottled lime 

mudstone, quartz silty peloidal packstone, and oolitic/oncolitic packstone/grainstone. This 

succession indicates a shallowing upward event. The lower subsequence is separated from 

the overlying subsequence by the culmination of this shallowing upward event. Shoaling 

upward was in response to a decrease in accomodation space. Shoaling on the shallow 

platform was accompanied by the deposition of platform derived oolitic limestones further 

basinward. The slope/basinal part of the subsequence is dominated by shale and platform 

derived allochthonous lithologies but no subaerial exposure occurred. In terms of the 

spatial sequencing, processes involved in producing the stacking pattern of this lower 

subsequence consisted of a combination of aggradational, retrogradational and 

progradational units. 



Figure 2 .5 .  An idealized model for the development of the ramp to rimmed-platform 

sequences of the Conasauga Group developed from study of the Maryville 

Limestone. A =  oldest, F= youngest. Black arrows show dominant direction of 

facies migration. ASP = Aggradational stacking pattern where sedimentation 

"keeps up" with increase in accomodation space. PSP = Progradational stacking 

pattern where carbonate sediment production outpaces increase in accomodation 

space and the platform progrades basinward. RSPSP = Rimmed shelf 

progradational stacking pattern in which a steepened slope results in mass 

movement of platform edge sediments down slope. RSP = Retrogradational 

stacking pattern in which basinal facies are deposited onto the old platform. 

3 1  
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Aggradational Stacking Pattern (ASP) 

Burrow mottled lime mudstone of the Maryville represents the initiation of 

carbonate sedimentation on the shallow subtidal ramp (Fig. 2. 5A). This lithofacies 

represents open- and normal-marine conditions of deposition. Lateral facies variations and 

sediment thicknesses indicate that muddy sediment deposition occurred on a gentle 

seaward sloping ramp. This initial accumulation of carbonate mud is similar to the start

up phase ofKendall and Schlager ( 198 1) .  The stacking pattern ofthis unit is 

aggradational, that is, the depositional rate on the mid-to-upper ramp probably was about 

equivalent to the increase in sediment accomodation space. While deposition of muddy 

carbonates occurred on the shelf, further offshore starved conditions of deposition 

prevailed (Fig. 2 .5A), represented by well developed hardgrounds in downslope sections. 

Thus, down-ramp deposition rate did not keep pace with increase in accomodation space. 

These differences in up-ramp versus down-ramp rates of sediment deposition versus 

accomodation space lead to aggradation in upramp areas and the beginning of change in 

the ramp profile. 

Retrogradational Stacking Pattern (RSP) 

In the Maryville Limestone, deposition of quartz silty peloidal packstone and shale 

intervals represent periods of apparent deepening of the platform. These lithofacies are 

characterized by a high amount of quartz silt and terrigenous clay and carbonate mud. 

The stacking pattern is retrogradational and is caused by migration of deeper-water 

environments bankward. This apparent deepening can be attributed to an increase in the 

of rate of sea-level rise, decrease in carbonate productivity, and a consequent decrease in 

sedimentation rate. 
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Progradational Stacking Pattern {PSP) 

Oolitic/oncolitic limestone in the Maryville represent deposition during a period 

when carbonate deposition kept pace with or outpaced sea-level rise (decreasing 

accomodation space) on the platform leading to transportation of sediment off the 

platform. The oolitic/oncolitic lithologies characterize the shallow subtidal shelf and the 

shelf-margin, forming shoals and also occurring as subtidal sand sheets derived from 

active ooid-forming environments. The succession of lithologies consisting of 

wackestone, packstone, and grainstone in the oolitic/oncolitic limestone indicates a 

decrease in accommodation space (shoaling upward). The stacking pattern is typically 

aggradational to progradational (Fig. 2 .5B). Increased proportion of ooids upwards, 

coupled with presence of planar, trough, and ripple-drift crossbeds suggests increased 

wave activity in response to shoaling. Lateral transport (progradation) was the dominant 

process in response to a decrease in accommodation space. 

Upper Subsequence 

The total thickness of this subsequence which comprises the upper part ofthe 

Maryville (Fig. 2 .3), ranges up to a maximum of 55 m on the shallow platform. It 

decreases in thickness farther basinward. The development of the upper subsequence 

accompanied the establishment and migration of reefal environments basinward. The 

shelf-margin reefs prograde basinward and downlap slope/basinal deposits. The 

succession of lithofacies consisting of burrow mottled limestone, Rena/cis-Girvanella 

boundstone, oolitic and oncolitic limestones suggests shallowing upward. Development of 

the upper subsequence was terminated by subaerial exposure. Subaerial exposure of the 

shallow platform and platform margin was accompanied by the development of reefs 
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(upper part ofNorris Freeway section) on top of platform derived allochthonous deposits 

on the former slope. 

Rimmed ShelfProgradational Stacking Pattern (PSP) 

Studies of several outcrops along the depositional transect of the study area 

provide critical evidence for the basinward progradation of a shelf-margin reefal complex 

(Fig. 2 .5C). This lateral expansion of the platform was in response to a relative rise in sea

level because carbonate production requires flooding ofthe bank margin (Harris and 

others, 1986). The boundstone deposits downlap the underlying deeper water lithologies. 

Progradation ofNorthwest Bahama Bank toward the Straits of Florida indicates that 

lateral expansion of platforms are facilitated by low depositional slopes, increase in 

carbonate productivity, and the ability of currents to transport sediments (Eberli and 

Ginsburg, 1989). Progradation during late Maryville depositional time may have been 

facilitated by a combination of slow relative rise in sea-level and fairly gentle depositional 

slopes, allowing carbonate deposition to keep pace with the rising sea-level (Kendall and 

Schlager, 1981). The basinward progradation of the Renalcis boundstone occurred for a 

distance of about 20 kilometers. This estimate is based on three well-spaced outcrops 

down the depositional slope. Deposition of reefal lithologies downslope of the shelf

margin occurred during a period of relative sea-level lowstand when the bank-margin was 

subaerially exposed (top ofMaryville). 

Retrogradational Stacking Pattern (RSP) 

The close ofMaryville deposition in the area ofthe platform was marked by a fall 

in sea-level and the consequent development of an exposure surface. As mentioned earlier 
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the exposure interval is not recorded in the down-slope localities (e.g. Norris Freeway) but 

shallowing did occur there leading to the development of cyanobacterial buildups on the 

former slope. The rise in sea level following the exposure event led to deepening again on 

the slope, and a flooding of the old Maryville platform. During the carbonate "lag time" in 

the area of the old exposure surface, continued subsidence led to gradual deepening and 

establishment of slope/basin depths, and a change in the profile to a ramp. Deposition of 

the Lower Nolichucky formation shales began, marking the first stages of the next ramp to 

platform transition and the next Conasauga sequence. 

To summarize, the Maryville Limestone sequence consists of two depositional 

subsequences. The stacking pattern within the subsequences consists of a combination of 

aggradational, retrogradational and progradational units, as a consequence of variations in 

sedimentation rate, subsidence, and absolute sea-level change. The sea-level change may 

have been eustatic in nature (Osleger and Read, 1 991)  or only of regional extent . Ifthe 

latter, it may have ultimately been caused by regional or subregional tectonism. The 

intrashelfbasin may have developed and been maintained by repeated subsidence in relict 

normal faulted basins which existed during early Cambrian deposition of the Rome 

Formation (Rankey in prep) 

Sequence Bounding Surface 

As originally recognized by Mitchum and others ( 1 977) some sequence-bounding 

surfaces developed subaerially; others developed as submarine surfaces. According to 

Van Wagoner and others (1 988), a sequence-bounding surface is a surface of subaerial 

truncation. As proposed by Schlager ( 1 99 1 )  sequence boundaries, particularly in 

carbonate successions, should have a more process-oriented definition, and they should 

represent a significant change in the pattern of sedimentation. Subaerial truncation and 
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drowning unconformities are ubiquitous in the Phanerozoic rock record. Drowning can 

occur with or without subaerial exposure (Schlager, 198 1 ,  1 989). Drowning 

unconformities represent a significant change in the depositional pattern in which shallow 

water carbonate deposition is terminated, accompanied by onlap of deep water sediments 

over the shallow carbonate deposits (Schlager, 1 99 1 ). 

As described earlier, the upper part of the Maryville Limestone is punctuated by 

two stratigraphic discontinuities caused by minor relative sea-level falls. The 

stratigraphically lower discontinuity is restricted to the bank-margin. The upper 

discontinuity which is coincident with the top of the Maryville Limestone in the study area 

is areally extensive (Fig. 2.5D). In terms of duration of the sea-level fall, that which 

formed the upper surface probably lasted longer as evidenced by extensive meteoric 

diagenesis in the upper part of the Maryville Limestone. Subsequently, a rapid relative 

sea-level rise drowned the platform (Fig. 2 .5E). This drowning unconformity is 

recognized on the basis of an abrupt shift in facies (deep water shale superposed upon 

shallow platform limestone), indicating a significant change in the pattern of sediment 

input. Deposition of shallow platform carbonates was suppressed and siliciclastics derived 

from the west and northwest (craton) were deposited on the platform. This transition 

between the Maryville Limestone and the overlying Nolichucky Shale is interpreted here 

as a sequence boundary. Suppression of carbonate deposition, slow deposition of fine 

siliciclastics, and continued subsidence lead to gradual deepening and finally to re

establishment of a ramp-like profile (Fig. 2 .5F). 

Summary of Evolution of The Platform 

This Middle Cambrian carbonate platform was flanked by an intrashelf basin to the 

west and northwest and open, deeper ocean to the east (Fig. 2 .6) .  The complex pattern of 
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Figure 2. 6. Map showing Middle Cambrian paleogeography in eastern Tennessee and 

southwest Virginia. The angled lines on the western side of the platform mark the 

transition to the intrashelfbasin. 
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evolution of the shelf from ramp to a platform and vice versa involved a strong interplay 

between siliciclastic basinal environments located to the northwest and carbonate 

dominated environments which were located to the southeast. Deep-water subtidal 

environments to the west and southwest are replaced farther northeast (southwestern 

Virginia) by peritidal areas and shallow intrashelfbasin documented by Erwin ( 198 1 )  and 

Markello and Read ( 198 1  ) . 

Carbonate sedimentation on the shallow subtidal shelf was initiated in response to 

widespread flooding of the shelf. Burrow mottled limestone and quartz silty peloidal 

packstone represent the initial establishment of carbonate mud-forming environments. 

They characterize deposition on a gentle basinward-sloping ramp (Fig. 2. 7 A) during 

deposition of the lower part of the Maryville Limestone. The recognition of ramp 

depositional mode is based on the vertical and lateral facies relationships. A relative 

decrease in the rate of sea-level rise, accompanied by increased carbonate productivity, 

caused widespread deposition of oolitic/oncolitic and Renalcis limestone and progradation 

of shallower subtidal environments westward across the ramp. Shoaling by this process 

eventually converted the ramp into a flat-topped platform. Oolitic/oncolitic limestone 

deposits seaward of the shallow shelf, shoal upward into cyanobacterial buildups, which 

eventually formed a barrier (Fig. 2. 7B). During a period of slow relative sea-level rise, the 

shelf-margin buildups prograded basin ward. Establishment and migration of this seaward 

barrier accompanied the change in the depositional mode from a ramp to a flat-topped 

platform fringed by relatively steeper slopes. Abundance of mass flows and turbidites 

downslope of the barrier provides evidence for steepening of the depositional slopes (Fig. 

2. 7C). Shoaling upward punctuated by subaerial exposure caused by minor sea-level falls 

characterizes the upper part of the Maryville. Finally, deposition of the Maryville 

Limestone was terminated in the study area by a rapid relative sea-level rise and 

siliciclastics derived from the craton were deposited on the platform during the "lag-time" 



Figure 2. 7. Block diagrams summarizing the evolution of the platform during the 

deposition of the Maryville Limestone. A. Carbonate deposition on a gentle 

basinward sloping ramp grades downslope into shale. 

40 

B. During a period of slow down in relative sea-level rise progradation of 

shallower subtidal environments (oolites and cyanobacterial reefs) occurred across 

the ramp. 

C. Establishment and migration of cyanobacterial reefs accompanied the change in 

the depositional mode from a ramp to a flat-topped platform fringed by steeper 

slopes. 
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after flooding (the beginning of deposition of the Nolichucky Shale). 

Approximate intrashelfbasin minimum water depth can be calculated by taking a 

depositional slope of 1 °  over the distance between the closest shelf edge and wholy 

basinal localities. Basinal depths estimated in this way are on the order of 200-300 m. 
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A 1 o slope was adopted as the lowest angle on which mass sediment movement (grain 

flow and debris flow) is likely to be initiated (e.g. see Foreman and others, 1 99 1 )  although 

actual slopes were likely slightly greater. The slope localities treated here were mid- to 

upper-slope with maximum depths of a few tens of meters. 

Conclusions 

Carbonate depositional systems are fundamentally different from siliciclastic 

systems. Their differences must be taken into consideration when translating sequence 

stratigraphic concepts developed for siliciclastic systems to carbonate successions. In 

view of the fundamental differences, a process-oriented approach has allowed us to define 

the sequences, sequence boundaries, and the stacking pattern of the Maryville Limestone. 

The Maryville Limestone, which is a third-order sequence, consists of two 

subsequences. The subsequences are characterized by a combination of aggradational, 

retrogradational, and progradational units as a consequence of variations in sedimentation 

rate, subsidence, and absolute sea-level change. The transition between the Maryville 

Limestone and the overlying Nolichucky Shale is a sequence boundary. This transition has 

been interpreted by us as a drowning unconformity. The drowning event was preceded by 

subaerial exposure of the outer platform. A rapid relative sea-level rise drowned the 

platform and siliciclastics derived from the northwest were deposited on top of the shallow 

water carbonates. This drowning, coupled with carbonate lag-time on the old platform, 

continued subsidence, and retrogradation onto the platform of siliciclastic basinal facies 



converted the flat-topped platform into a ramp-like profile. The subsequent ramp 

. deposition is represented by the lower part of the overlying Nolichucky Shale. 
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Our explanation for the limestone to shale transition can serve as a useful analog to 

other lower Paleozoic and possibly younger passive-margin sequences. 



CHAPTER 3 

MICRO SCALE AND FABRIC SELECTIVE DISSOLUTION AND CEMENTATION 

DURING EARLY DIAGENESIS OF MARYVILLE LIMESTONE (MIDDLE 

CAMBRIAN), SOUTHERN APP ALACIDANS 

Introduction 

Holocene shallow water carbonate deposits are composed of metastable mineral 

phases , aragonite, magnesian calcite, and calcite. However, this metastable assemblage 

varied throughout the Phanerozoic (Sandberg, 1 983). In particular, lower and middle 

Paleozoic sequences were dominantly composed of magnesian calcite, and calcite 

sediments (Wilkinson and Given, 1 986). Shallow platform carbonates undergo 

stabilization in the presence of meteoric fluids introduced during sea level lowstand and 

subaerial exposure. The sediments subsequently undergo recrystallization during burial. 

The cementation history of shallow water carbonate deposits is largely a function of their 

original metastable mineral assemblage. Aragonite-rich sediments will have a greater 

potential for cementation in meteoric environments (James and Choquette, 1 984). During 

burial, stabilization pathways involve recrystallization where microscale dissolution and 

reprecipitation are believed to predominate. However, during deeper burial large scale 

dissolution can occur in the presence of reactive basinal brines. 

There are numerous examples where fresh water diagenesis has been an important 

process of Quaternary and Recent carbonate sequences (Land, 1 970� Steinnen and 

Matthews 1 973; Halley and Harris, 1979� Buchbinder and Friedman, 1 980� Chafetz et al. ,  

1988; Budd, 1 992 ). The cement morphologies associated with meteoric diagenesis are 

quite distinct . They include blocky clear calcite spar precipitated in vuggy porosity in the 

meteoric phreatic environment. However, the vadose diagenetic environment is 
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characterized by features such as meniscus and pendant cements. Climate plays an 

important role in the cementation history of carbonate sequences. For instance, under arid 

climatic conditions dissolution and cementation are limited. 

Isotopic systematics have been successfully applied in the delineation of fresh 

water diagenesis in ancient as well as recent carbonates (Hudson, 1 977; Allan and 

Matthews, 1982, Moldovanyi and Lohmann, 1 984; Meyers and Lohmann, 1 985 among 

many others). In general, meteoric calcite is characterized by depleted o1 8o compositions 

relative to contemporary seawater values. However during burial, an increase in 

temperature also leads to fractionation which causes a similar depletion in o 1 8o values in 

precipitated diagenetic phases. Post Silurian carbonate sequences that have been 

subjected to fresh water diagenesis exhibit considerable depletion in o1 3c. This depletion 

in o1 3c is caused by input of soil-gas derived light carbon. Absence of land plants during 

pre-Silurian time resulted in a much lower depletion in carbon isotopic compositions. 

Therefore, carbon isotopic signatures cannot be used as an indicator of meteoric 

diagenesis in most pre-Silurian carbonates. In these rocks, petrographic analysis takes on 

special importance. 

The Middle Cambrian Maryville Limestone in the southern Appalachians provides 

an excellent opportunity to study the effects of sea-level changes on the cementation 

history of subtidal carbonates. In the study area the unit represents deposition along a 

rimmed shelf-edge to basin transition. The development of the Maryville sequence was 

controlled in part by sea-level changes, and partly by progradation of the platform toward 

the craton (Srinivasan and Walker, 1 993, in press). The outer platform facies is 

punctuated by two subaerial exposure surfaces caused by sea-level lowstands. The 

statigraphically lower exposure surface is restricted to the shelf-margin strata. However, 

the exposure surface which caps the Maryville is areally more extensive. 
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The main objective of this research is to describe the stabilization history of the 

Maryville Limestone during early diagenesis. The approach includes a combination of 

field work, petrography and geochemistry. Detailed petrography reveals considerable 

variation in the degree ofburial alteration across the depositional transect from shallow 

platform to basin. The upper part of the Maryville depositional sequence which was 

affected by meteoric diagenesis shows very little evidence for deep burial diagenesis, 

which is probably related to the higher degree of cementation during early diagenesis. 

However, deep burial diagenesis was more pronounced where the effects of meteoric 

diagenesis were minimal or absent, particularly in slope/basin and the lower part of the 

Maryville sequence. Various types of dolomite, the main burial diagenetic product in 

these rocks, are discussed in chapter 4 of this dissertation. The present chapter is mainly 

concerned with early diagenesis which occurred under surficial and shallow burial 

conditions. 

Geologic Setting 

Late Precambrian crustal extension of the eastern North American continent was 

accompanied by the establishment of a broad regional carbonate shelf (Bird and Dewey, 

1970; Read, 1989, among others) that experienced deposition from Early Cambrian 

through Early Ordovician time. The Middle and Upper Cambrian Conasauga rocks in 

northeastern Tennessee and Virginia are part ofthis Cambro-Ordovician sequence. In the 

study area, the Conasauga rocks are exposed in a series of southeasterly dipping imbricate 

thrust sheets. The Conasauga Group in East Tennessee conformably overlies the Rome 

Formation (lower Cambrian) and is in tum overlain conformably by the Knox Group 

(Rodgers and Kent, 1 948; Harris, 1 964; Palmer, 1 971). During deposition ofthe Rome 

Formation the environmental pattern was influenced by linear "pull-apart" basins formed 
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during the breakup of the continental margin that occurred in late Precambrian and Early 

Cambrian time (Read, 1 989). The outcrops for this study are exposed within the Copper 

Creek fault block (Fig. 1 .2). The upper part of the Maryville Limestone in northeastern 

Tennessee and parts of southwestern Virginia ranges between the Bolaspide/la zone 

(Middle Cambrian) and the overlying Cedaria zone (Dresbachian) (Derby, 1965). 

Detailed stratigraphy of the Maryville Limestone is shown in Figure 2 .3 . In the 

study area it represents deposition along a rimmed platform edge-to-basin transition 

(Srinivasan and others, 1 99 1 ;  Srinivasan and Walker, 1 993). The Maryville environmental 

array evolved over time from a gentle basinward sloping ramp to a rimmed platform. 

Cyanobacterial buildups marked the platform margin environments. The transition from 

platform-margin to basin consisted of a slightly steeper slope environment. The 

development of Maryville sequence was controlled by sea-level changes in part, and partly 

by progradation of the platform toward the craton. Deposition of the Maryville Limestone 

was terminated by sea-level fall and subaerial exposure. A subsequent rapid relative sea

level rise drowned the platform and during the lag time before carbonate deposition could 

be initiated, the platform was onlapped by basinal deposits of the Nolichucky Shale. The 

Maryville-Nolichucky contact has been interpreted as a sequence boundary (Srinivasan 

and Walker, 1 992), which may have also involved nonthermal tectonic subsidence 

(Rankey and others, submitted). 

Methods 

Detailed petrographic analyses were carried out on 1 50 thin sections from 5 

localities chosen from a total of 400 samples examined. Selected thin sections from each 

locality were stained with alizarin red S and a mixed stain of alizarin red S and potassium 

ferricyanide, according to the procedure outlined by Dickson ( 1 965), to differentiate 
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calcite and dolomite and to identify ferroan phases. Selected polished thin sections were 

analyzed for cathodoluminescence using a nuclide ELM-2A VG luminoscope. Blocky 

clear calcite spar from shelf margin facies were analyzed for Ca, Mg, Fe, Mn, and Sr using 

a Cameca SX50 electron microprobe. Operating conditions were 20 nA beam current, 5 -

1 OJ..Lm beam spot, and count time of 40 sec for Fe, 50 sec for Mn, 20 sec for Mg, and 1 0  

sec for Ca. The accelerating voltage was 1 5  keV. Detection limits i n  ppm for these 

conditions at 99% confidence are Fe = 4 50 ppm and Mn = 4 1  0 ppm, Sr was below 

detection limits. Totals greater than 102 % and less than 98% are not reported. 

Samples for stable isotope analyses were drilled from polished slabs using a 

microscope mounted microdrill . A total of 90 samples were analyzed for carbon and 

oxygen isotopes at the University of Tennessee stable isotope laboratory. Sample sizes for 

isotopic analyses ranged between 0.2 to 8 .0 mg. Isotopic analyses of large samples were 

carried out by C02 extraction from a carbonate line into sealed vessels. The C02 was 

later analyzed in the Mass spectrometer. However, isotopic analyses of small samples 

(less than 1 mg) were carried out using a common acid extraction line directly linked to a 

VG903 stable isotope mass spectrometer. Custom made glass tubes (referred to as boats) 

measuring approximately 1 -2 em in length and 0.5 em in width sealed at one end served as 

sample holders. These sample holders were assembled sequentially onto a rectangular 

block. The samples were housed in a rectangular glass chamber under vacuum and 

maintained at 550 C with the help of a heat tape. The sample holders or boats were 

dropped into the common acid bath containing 1 03% phosphoric acid maintained at 550 

C. The reaction time for each sample varied depending on the sample size. In-house 

calcite standards were run as unknowns with Maryville samples. The precision of the 

resulting isotopic values is better than 0.2 Ofoo PDB for both carbon and oxygen. The 

isotopic composition was corrected for temperature fractionation. Sr-isotope analyses 
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were performed by Dr. Steven Goldberg at the University of North Carolina, Chapel Hill. 

The 87sr;86sr data have been normalized to the SRM 987 Sr carbonate standard. 

Early Diagenesis of Maryville Limestone  

Description of Depositional and Diagenetic Components 

The paragenetic sequence that was established with the help of detailed standard 

and cathodoluminescence microscopy is summarized in Figure 3 . 1 .  The evidence for the 

relative timing of the various diagenetic phases is given below in the discussion of each 

phase. In general, the Maryville Limestone was subjected to a complex diagenetic history. 

As mentioned earlier, sea-level changes played an important role in the early diagenetic 

history. The following section provides a detailed description of different depositional and 

diagenetic components associated with early diagenesis. Later diagenetic phases are 

treated in the following chapter. 

Fibrous (marine) cements 

Fibrous cement occurs as a thin fringe of isopachous cement around depositional 

components. Because this is the first phase to have precipitated on the walls of pores, it 

was first in the relative timing sequence (Fig. 3 .2A). In grainstone lithologies this phase 

occludes primary porosity (Figs. 3 .2A and B). Fibrous cement in the Maryville Limestone, 

as is the case with all marine diagenetic phases, appears turbid and full of very tiny 

inclusions. Fibrous cements typically grade into turbid calcite spar and where the turbid 

calcite spar is absent, the intergranular pores are filled with blocky, clear calcite spar. The 
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Fig 3 . 1 .  Paragenetic sequence of the Maryville Limestone. The bars indicate relative 

timing of the different processes and diagenetic phases. 
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Figure 3 .2 .  Photomicrographs (cross-polarized light and plane light) of different 

diagenetic phases of the Maryville Limestone. A) Intergranular fibrous cement (F) 

in ooid grainstone from Thorn Hill section (field width = 6.5 mm). B) Close up of 

the same feature. Note the intergranular pore space is occluded by fibrous cement 

(F). Also note the ooid fabric is well preserved.(field width = 1 .5 mm). C) Thin 

section plane polarized light showing intergranular blocky, turbid calcite spar 

(BTS) in Renalcis boundstone from Woods Gap section. Note, arrow points to 

pore central blocky, clear calcite spar (field width = 6.5 mm). D) Blocky, turbid 

calcite spar (BTS) in intergranular pore space. Note thin fiinge of first generation 

fibrous cements (indicated by arrow) on depositional components (field width = 

1 . 5 mm). E) Intergranular pore central blocky, clear calcite spar (indicated by 

arrow) in Renalcis boundstone from Woods Gap section (field width = 6.5 mm). 

F) Blocky, clear calcite spar (BCS) in moldic pore in oncolite grainstone from 

Woods Gap section. Note inclusions of dolomite rhombs (indicated by arrow) in 

calcite spar (field width = 1 . 5mm). 





primary depositional fabric of fibrous cement is well preserved. Less commonly this 

cement type is partially replaced by dolomite. 

Microcrystalline calcite and Microspar cement 

Micrite occurs as cement in boundstones. However, this cement type is rare to 

absent in other rock types of the Maryville Limestone. Microspar commonly occurs as a 

mosaic of irregular crystals in micrite rich lithologies. Microspar shows variable crystal 

sizes, is non-ferroan, and is occasionally replaced by dolomite. 

Syntaxial overgrowths 
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Syntaxial overgrowths on echinoderm grains are restricted to grainstone and 

packstone lithologies. The overgrowths generally appear turbid. Rarely the overgrowths 

are replaced by dolomite. 

Blocky, turbid calcite spar 

Blocky turbid calcite spar occludes intergranular pore spaces and burrows (Figs. 

3 .2C and D). This cement type is particularly abundant in grainstone and packstone 

lithologies. Blocky, turbid calcite spar post-dates fibrous cement. In intergranular pores, 

it occasionally grades into blocky clear calcite spar (Figs. 3 .2C and E). In general, blocky, 

turbid calcite spar is non-ferroan with irregular micron sized inclusions of dolomite. 

Under cathodoluminescence blocky turbid calcite spar appear dull. 
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Blocky, clear calcite spar(intergranular pores) 

This particular cement type occurs in intergranular pores as final pore filling (Figs 

3 .2C and E). Blocky, clear calcite spar in intergranular pores is volumetrically less 

abundant than other cement phases. 

Blocky clear calcite spar (moldic pores) 

This particular phase commonly occurs in fabric selective dissolution voids (Fig. 

3 .2F) and less commonly in intergranular pores. Blocky, clear calcite spar is 

volumetrically more abundant in outer shelf facies, particularly in Renalcis and Girvanella 

boundstones. Renalcis is the most common constituent that has been subjected to fabric 

selective dissolution. This cement type occurs mainly below the prominent exposure 

surface at the top of the Maryville in the outer shelf facies. Field and petrographic 

evidence for subaerial exposure consists of blocky clear calcite spar in moldic pores (Fig. 

3 . 3A), planar truncation surface (Figs. 3 . 3B and C), pores partly filled with vadose silt 

(Figs. 3 . 3D and E), and insitu brecciation (Fig. 3 .3F). 

Blocky, clear calcite spar in the Maryville Limestone is ferroan. Under CL it 

displays dull orange luminescence with moderately luminescent intercrystalline boundaries. 

The crystals commonly contain inclusions of ferroan dolomite rhombs (Fig. 3 .2F). 

Occasionally the dolomite rhombs transect grain boundaries. There are only a few 

examples where blocky, clear calcite spar in moldic pores occurs in a drusy mosaic 

(probably because the size of most voids does not permit a clear increase in grain size 

towards the center of the pore). 
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Figure. 3 . 3 .  Photomicrographs (ABDE and F) and photograph of a polished slab (C) of 

Maryville Limestone showing different diagenetic features. A) Blocky, clear 

calcite spar (BCS) in intraparticle pore. Note minor blocky, turbid calcite spar 

(indicated by arrow) in the same pore (field width = 1 . 5 mm). B) Vadose silt 

(indicated by arrow) and blocky, clear calcite spar in intraparticle pore (field 

width = 6 .5 mm). C) thin section plane light showing vadose silt and blocky, clear 

calcite spar in intraparticle pore (field width = 1 . 5 mm).Slab of Renalcis 

boundstone showing subaerial exposure features, planar truncation surface (T), 

insitu brecciation (ill), and laminated vadose silt (LS) (field width = 1 em). D) E) 

Thin section cross-polarized light showing planar truncation surface (T) associated 

with subaerial exposure (field width = 1 . 5 mm). F) Thin section cross-polarized 

showing insitu brecciation (ill) (field width = 1 . 5mm). 
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Intraclasts 

Intraclasts are common constituents of slope/basinal lithofacies. Several different 

types of intraclasts have been recognized, they include peloidal, micrite, calcareous 

siltsone, and multigeneration clasts. The clasts in general lack compactional features such 

as clast breakage, peloidal flattening, and stylolites. Under CL, the clasts display a dull 

uniform orange luminescence. Mean carbon and oxygen isotope values for the intraclasts 

are -0. 8  Ofoo (PDB) for carbon and -8.6 Ofoo (PDB) for oxygen. 

Dolomite 

Dolomite is the principal diagenetic phase in the Maryville Limestone formed 

during deeper burial . In general, the Maryville Limestone has been subjected to 

incomplete dolomitization. Four different types of dolomite were formed during 

progressive burial . Among the four dolomite types, Type I and Type II are interpreted to 

have formed during shallow and intermediate burial. However, Type III and Type IV 

dolomite represent deep burial diagenesis .  A detailed discussion of dolomite formation 

during early as well as late burial is given in chapter 4 .  

Geochemistry 

Stable Isotopes 

Stable isotope systematics provide important clues to the effects of different 

diagenetic environments. Stable isotopic composition of individual depositional and 

diagenetic components is controlled by temperature and isotopic composition of the fluid 
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(Urey et al. ,  1 95 1) .  The stable isotope composition of all the different depositional and 

diagenetic phases (particularly those resulting from early diagenesis) are given in Figure 

3 .4  and the values are summarized in Table 3 . 1 .  It is clear from Figure 3 .4 that the 

oxygen isotopic composition of all the phases are considerably depleted (by 2 to 5 ol 00 

PDB) relative to Cambrian marine carbonate composition (o 1 8o = -5 Ofoo, Lohmann and 

Walker, 1 989). The o 1 8o values of depositional components such as ooids, intraclasts 

and synsedimentary fibrous cements typically cluster around -7.5 to - 9 Ofoo. However, o 
1 8o values of blocky clear calcite spar, which commonly occurs in moldic pores and as 

final fillings in intergranular pores are considerably depleted (by at least 4-5 Ofoo PDB). 

Elemental Composition 

Dissolution of metastable carbonates results in a transfer of cations from the 

carbonates to the fluid. Dissolution continues until fluid saturation is reached. Eventually 

when precipitation is initiated, elements are partitioned between the fluid and the 

precipitating solid (Lohmann, 1 988). The partitioning of minor and trace elements is a 

function of distribution coefficient and redox conditions, particularly in the case of Fe and 

Mn (Mcintire, 1 963 ; Kinsman, 1 969). Mg and Sr which have distribution coefficients of 

less than unity tend to be retained in the fluid. Fe and Mn which have distribution 

coefficients of greater than unity preferentially enter the diagenetic phase under reducing 

conditions (Veizer, 1 983). Electron microprobe analyses were carried out on blocky, 

clear calcite spar from the Maryville Limestone. The elemental composition is 

summarized in Table 3 . 1 .  In general, blocky, clear calcite spar is low magnesian calcite. 

The MgC03 compositions (Fig. 3 .5) range from 0.5 to 1 .25 mol% (avg. 0.92 mol%). 

Thus, these diagenetic phases are uniformly low-magnesian calcite. However, Fe and Mn 
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Table 3 . 1 .  Summary of all geochemical data. The number of samples (n) for ol3c is the 

same as for o 1 8o.  87sr;86sr for Cambrian seawater has been estimated as 

0. 7094-0.7098 . SD represents standard deviation for total carbonate 

concentrations. BD represents below detection limits. 

COMPONENT 
I 

Fibrous (marine) 

cements 

Ooids 

Blocky turbid calcite 

spar 

Blocky clear calcite 

spar (ferroan) I 

Type II dolomite 

Type I l l  dolomite 

Type IV dolomite 

Intraclasts 

'61 80 °6o 
PDB 
(n) 

-8.8 
(1 0) 

-7.8 
(6) 

-8.2 
(23) 

-9.2 
(24) 

-8. 1  
(6) 

-7.2 
(1 4) 
-7.8 
(27) 

o1 3C 06o MgC� CaC03 
POB mol% mol% 

(sd) (Sd) 
-0.4 

0.5 

0.2 

0.01 0.92 98.74 
(0.22) (0.27) 

0.94 44.83 53. 1 1 
(1 .8) (1 .52) 

1 . 1 6  43.02 53.49 
(1 .65) (1 .49) 

-0.7 

Fe Mn 
(ppm) (ppm) 

1 600 B.D. 

1 5,460 41 0 

1 4,71 5 420 

27,427 1 01 0  

B7siB6 sr1 
(n) I 

0.7095 
(2) 

0.7098 
(1 ) 

0.71 33 (3) 
0.71 24 

(3) 
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distributions are variable. A cross plot of Fe vs Mg (Fig. 3 .6) reveals that Fe values in the 

blocky, clear calcite spar range up to a maximum of 2,200 ppm (avg. 1 ,600 ppm). 

However, Mn values are below the detection limit of 400 ppm. A similar range of Fe and 

Mn values were reported by Holail ( 1 992) for Jurassic-Pleistocene meteoric cements from 

Egypt. 

Sr Isotopes 

The equilibrium Sr-isotopic compositions of marine carbonate and seawater ofthe 

same age should be equal (Faure, 1 986). The Sr isotope ratios in seawater is derived from 

a mix of three different sources consisting of young volcanic rocks, sialic continental 

rocks, and Phanerozoic carbonate rocks (Faure, 1 986). The Sr isotope ratio in seawater 

has fluctuated during the entire Phanerozoic. It is estimated to have been the highest for 

Cambrian and present day sea-water (Burke et al . ,  1982). According to Burke et al 

( 1 982) Cambrian values ranged from 0.7090 - 0 .7095. Sr isotope ratios provide important 

constraints on the timing of cementation and fluid source (Banner et al., 1 988; 

Vahrenkamp et al . ,  1 99 1 ). Three Sr-isotope analyses were performed on the early 

diagenetic phases of the Maryville Limestone. The 87sr;86sr values for blocky turbid 

calcite spar range from 0. 7096 to 0. 7094 and 0. 7096 - 0. 7098 for blocky, clear calcite spar 

(Fig. 3 .  7). These values are within the range of values for Cambrian seawater 
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Figure 3 .  7. o 1 8o versus 87 Srf86sr crossplot of early and late burial diagenetic phases. 
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Discussion of Stabilization Processes 

Shallow Burial (microscale dissolution and reprecipitation) 

Stabilization of shallow water carbonate sediments can take place by wholesale 

dissolution and reprecipitation in response to the influx of undersaturated meteoric fluids 

or by microscale dissolution and reprecipitation during burial compaction. Given that 

seawater is saturated with respect to calcite and aragonite, very little dissolution is 

expected at the sediment-water interface. However, several reactions near the sediment

water interface occur that can contribute to undersaturation of pore waters with respect to 

carbonate (McKenzie and Morse, 1 990). Undersaturation and dissolution takes place 

under both aerobic and anaerobic conditions. It is being increasingly recognized that 

dissolution occurs related to sulfate reduction in shallow marine environments. Sulfate 

reduction typically results in increased alkalinity which can cause carbonate precipitation 

(Berner, 1 97 1 ;  Baker and Kastner, 1 98 1 ;  Compton, 1 988; Slaughter and Hill, 1 99 1 ). 

However, the concomitant decrease in pH, may cause carbonate dissolution (Morse et al, 

1 985;  Walter and Burton, 1 987; Stoessell, 1 992; Morse et al. ,  1 992) .  Depositional 

components (synsedimentary fibrous and micritic cements) provide evidence for 

microscale dissolution and reprecipitation. Fibrous cements associated with 

Quaternary reefs are generally Mg-calcite in composition (Aissaoui, 1 988  and references 

cited therein) . Foreman et al ( 1 989) hypothesized that shallow water ooids and fibrous 

cements from the upper Cambrian Nolichucky Shale were probably Mg-calcite in 

composition (Figs 3 . 5  and 3 .6). In Maryville Limestone, preservation of the primary 

fabric of synsedimentary fibrous (marine) cements and ooids suggests that wholesale 

dissolution did not take place. However, stable isotopic composition of fibrous cements 

provides constraints on diagenetic stabilization. 8 1 8o values of fibrous cements which 
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cluster around -8.0 °/oo PDB are considerably depleted when compared to Cambrian 

marine carbonate values (-5 .0 Ofoo PDB, Lohmann and Walker, 1 989). It is well 

established that depletion in isotopic composition is generally caused by interaction with 

depleted meteoric fluids or an increase in temperature. Lack of evidence for wholesale 

dissolution and preservation offibrous cement ultrastructure suggest that stabilization was 

largely microscale. The depleted oxygen isotopic composition is attributed to an increase 

in temperature of pore fluids during burial. There is considerable spread in the o 1 8o 

values of fibrous cements indicating a variable degree of stabilization compared to other 

primary components such as ooids. Diagenetic stabilization probably took place in the 

presence of modified marine fluids. The non-ferroan nature and absence of CL zonation 

indicates that the pore fluids were probably oxidizing or alternatively that there was no 

supply of Fe for the pore fluids. Since all the marine phases and cements of shallow burial 

origin display a similar range of isotopic composition, stabilization of marine phases 

(ooids, fibrous cements, and intraclasts) and precipitation of shallow burial pore filling 

cements probably occurred in diagenetic fluids of similar composition. According to Land 

( 1989) dissolution and reprecipitation, both wholesale and micro scale, is neither a closed 

system nor a open system process and the degree of openness of the system is usually 

variable. The degree of openness of the system during early diagenesis of the Maryville 

Limestone is difficult to evaluate. Quantitative modeling can probably help resolve this 

question. However, quantitative modeling is still in its infancy and is beyond the scope of 

this project. 

Subaerial Exposure & Meteoric Diagenesis (fabric selective dissolution and cementation) 

Carbonate platform shelf-margin facies typically build up to sea-level. During sea

level lowstand the shelf-margin settings are the most common locales to be affected by 
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meteoric diagenesis. An array of diagenetic features are associated with subaerial 

exposure and meteoric diagenesis. In general, the different hydrologic regimes associated 

with meteoric diagenesis such as vadose and phreatic environments are commonly 

characterized by distinct cement morphologies (James and Choquette, 1 984, Walker, 

1989). While dissolution occurs in vadose environments, cementation is the dominant 

process in phreatic environments. 

Sea-level fluctuations punctuated the development of the Maryville depositional 

sequence (Srinivasan and Walker, in press). In particular, outer platform facies ofthe 

Maryville depositional sequence appear to have been more affected by meteoric 

diagenesis. Several workers have suggested that HMC allochems can undergo fabric 

selective dissolution in both meteoric and deep burial diagenetic realms (Donath et al. ,  

1980� Mazzullo, 1 98 1 �  James and Klappa, 1983 � Budd, 1 992). Sandberg ( 1983) 

suggested that skeletal molds can form in both aragonitic and calcitic components. In the 

Maryville Limestone, moldic pores are widely developed in Renalcis which is generally 

believed to have been Mg calcite in original composition (Pratt, 1 984) and less commonly 

in other constituents such as Girvanella and trilobite grains. 

Although dissolution commonly occurs during subaerial exposure, cementation 

may not occur (Land, 1 987). Cementation of pores is largely a function of supersaturation 

of pore fluids with LMC (Morse and Mackenzie, 1990). The presence oftextural 

evidence in the form of fabric selective dissolution in the Maryville shelf margin facies 

supports emergence and meteoric diagenesis. Cementation occurred in both primary as 

well as in secondary pores. Precipitation of blocky, clear calcite spar in fabric selective 

dissolution voids probably occurred in downdip portions under reducing conditions of a 

regional ground water system. Reducing conditions for the pore fluids is reflected by 

enriched Fe concentrations in blocky, clear calcite spar. Depleted 8 1 8o composition of 

blocky, clear calcite spar with respect to Cambrian marine values (o 1 8o = - 5 .0 °/oo 
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PDB, Lohmann and Walker, 1 989) is consistent with a meteoric interpretation. A 

depletion of 4 ± 2 in meteoric calcites compared to marine calcites is commonly seen in 

Holocene settings (Lohmann, 1 988; Budd and Land, 1 990). In general, depleted o 1 8o 

values can result from depleted meteoric fluids or from an increase in temperature during 

precipitation (Wagner and Matthews, 1982). 

Middle and Upper Paleozoic and younger carbonate rock sequences that have been 

subjected to subaerial exposure exhibit considerable depletion in carbon signatures. This 

depletion in carbon signatures is caused by input of soil-gas derived light carbon related to 

the respiration of land plants. However, it is not surprising that meteoric blocky, clear 

calcite spar from the Maryville Limestone shows little shift in its carbon isotopic 

composition, suggesting that lack of negative shift in carbon isotopic values is probably 

due to the absence of land plants developed on the surface during exposure. Sr isotopic 

composition of blocky clear calcite spar which are similar (0. 7098) to the host carbonate 

composition (0. 7095) also supports meteoric origin. 

Given that it is difficult to demonstrate unequivocally subaerial exposure and 

meteoric diagenesis, we have applied field, textural, and geochemical criteria to support 

meteoric diagenesis in the Maryville Limestone. Such an integrated approach is clearly 

needed, particularly in the case of lower Paleozoic carbonate sequences. 

Conclusions 

1 )  An integrated approach consisting of field, petrography and geochemistry 

resulted in the recognition of micro scale dissolution and reprecipitation and fabric 

selective dissolution and cementation during early diagenesis of the Maryville Limestone. 



2) Preserved ultrastructures and depleted oxygen isotopic composition of 

depositional components such as ooids (mean 8 1 8o = -8 . 7  Ofoo PDB) and intraclasts 

(mean 8 1 8o = -8.2 Ofoo PDB) and synsedimentary fibrous cements (mean 8 1 8o = -8.4 

Ofoo PDB) suggest stabilization by microscale dissolution and reprecipitation during 

shallow burial. 
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3) Fabric selective dissolution occurred in response to subaerial exposure and 

influx of meteoric fluids. Blocky clear calcite spar commonly occludes moldic pores. 

Depleted oxygen isotopic composition (mean 8 1 8o = - 9.2 Ofoo PDB) values for blocky 

clear calcite spar are consistent with subaerial exposure and meteoric diagenesis. 

87 Srf86sr values which are similar to Cambrian seawater values lend support to this 

interpretation. 

4) Finally, enriched Fe concentrations in blocky clear calcite spar suggests that 

some of the phreatic part of the meteoric system was relatively stagnant which promoted 

reducing conditions. 



CHAPTER 4 

PETROGRAPHIC AND GEOCHEMICAL CONSTRAINTS FOR FLUID SOURCE 

AND POSSIBLE PATHWAYS DURING BURIAL DIAGENESIS OF MARYVILLE 

LIMESTONE (MIDDLE CAMBRIAN) SOUTHERN APPALACHIANS 

Introduction 

Various mechanisms for formation of dolostone in platform carbonates have been 

summarized by Hardie (1 987). Among these hypotheses, dolomitization related to 

hypersaline brines, mixed meteoric and sea-water, and deep basinal brines have found 

popular acceptance. Massive dolomitization of platform carbonates requires a large 

reservoir that can supply adequate quantities of Mg. In general, sea water is the biggest 

storehouse ofMg (Land, 1 980; 1 985; Morrow 1 982 and others). The dolomitization in 

question in the present study is incomplete and non-evaporite related. This research is 

focused on burial dolomitization of subtidal limestone deposits. Burial dolomitization of 

subtidal carbonates typically occurs in the presence of modified marine and/or deep basinal 

brines derived from compaction of fine grained basinal sediments (llling, 1 959). Mass 

balance considerations require large volumes of compaction derived fluids to form 

regional bodies of dolomite (Morrow, 1 982). The Maryville Limestone in our study area 

is only partially dolomitized, so large volumes of extraformational fluids were probably not 

involved. 

This chapter has been submitted to Sedimentology. 

Srinivasan, K., Walker, K. R., and Goldberg, S. A., 1993, Petrographic and geochemical 

constraints for fluid source and possible pathways during burial diagenesis of Maryville 

Limestone (Middle Cambrian) Southern Appalachians. 
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Four different generations of dolomite have been identified along a platform-to-basin 

depositional transect, using standard and cathodoluminescent microscopy. The different 

dolomite types di splay distinct trends in their distribution and chemistry, and formed 

during different stages of progressive burial diagenesis. In this study, petrographic and 

geochemical data are used to identify fluid source( s) during deep burial diagenesi s of the 

Maryville Limestone. This  study offers an important insight into hydrologic events, 

regional burial dolomitization and cementation history of the Maryville and, by implication 

of the entire Conasauga Group . 

Geologic Setting 

The Cambrian Conasauga Group in the southern Appalachians constitutes part of a 

thick, pericratonic, Cambro-Ordovician passive-margin sequence along the eastern North 

American continent . The Maryville Limestone (Middle Cambrian) of the Cona sauga 

Group is entirely subtidal in the study area . It is well-exposed within the Copper Creek 

fault block in eastern Tennessee (Fig. 1 .2). The detailed stratigraphy of the Maryville 

Limestone is shown in Figure 2.3 . It represents deposition along a rimmed platform edge 

to basin transition (Srinivasan et al., 1 99 1 ;  Srinivasan and Walker, 1 993 in press). The 

Maryville environmental array evolved over time, from a gentle ba sinward sloping ramp to 

a rimmed platform . Cyanobacterial buildups marked the platform margin environments 

(Srinivasan and Walker, in press).  The transition from platform-margin to basin consisted 

of a slightly steeper slope environment .  The development of the Maryville sequence was 

controlled by sea-level changes in part, and partly by progradation of the platform toward 

the craton. Deposition of the Maryville Limestone in the study area was terminated by 

sea-level fall and subaerial exposure . A subsequent rapid relative sea-level rise drowned 

the platform and during the lag time before carbonate deposition could be initiated the 
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platform was onlapped by basinal deposits of the Nolichucky Formation. The Maryville

Nolichucky contact has been identified as a sequence boundary (Srinivasan and Walker, in 

press), which may have also involved nonthermal tectonic subsidence (Rankey et al. ,  

submitted). 

Methods 

Detailed petrographic analyses were carried out on 120 thin sections from 5 

localities, chosen from a total of 400 samples examined. Selected thin sections from each 

locality were stained with alizarin red S and a mixed stain of alizarin red S and potassium 

ferricyanide according to the procedure outlined by Dickson ( 1 965) to differentiate calcite 

and dolomite and to identify ferroan phases. Selected polished thin sections were analyzed 

for cathodoluminescence using a nuclide ELM-2AVG luminoscope (operating conditions 

12- 14  kev and 45 - 60 Jlamp). Various phases in twelve carbon-coated thin sections from 

critical samples were analyzed for Ca, Mg, Fe, Mn, and Sr using a Cameca SXSO electron 

microprobe. Operating conditions were 20 nA beam current, 5 - 1 OJ..lm beam spot, count 

time of 40 sec for Fe, 50 sec for Mn, 20 sec for Mg, and 1 0  sec for Ca, and the 

accelerating voltage was 1 5  ke V. Detection limits in ppm for these conditions at 99% 

confidence are Fe (450 ppm) and Mn (4 10  ppm). Totals greater than 1 02 % and less than 

98% are not reported. Samples for stable isotope analyses were drilled from polished 

slabs using a microscope mounted microdrill assembly. A total of twenty samples were 

analyzed for carbon and oxygen isotopes at the University of Tennessee stable isotope 

laboratory. Saddle dolomite (14 samples) was analyzed using a timed extraction 

procedure outlined by AI-Aasm et al. ( 1990) for mixed calcite-dolomite samples. The 

samples were reacted in 100% phosphoric acid at 550 C for 1 6- 1 8  hrs. However, 

stylolite-associated dolomite was reacted with 1 00% phosphoric acid at 25° C for 48 
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hours. In-house dolomite standards were run as unknowns with Maryville samples. The 

precision is better than 0 .2 °/oo PDB for both carbon and oxygen. Sr-isotope analyses 

were performed by Dr. Steven Goldberg at the University ofNorth Carolina, Chapel Hill. 

Isotopic data were collected on a VG sector 54 in a quintuple-collector dynamic mode 

which yielded a value of 0.7 10250 ± 0.00001 6  for the SRM 987 Sr carbonate standard. 

Burial Diagenesis and Dolomitization 

Petrographic and Cathodoluminescence Characteristics 

Petrographic analyses reveal that dolomite is the principal burial diagenetic phase 

in the Maryville Limestone samples examined. The paragenetic sequence that was 

established with the help of detailed standard and cathodoluminescence microscopy is 

given in Figure 4. 1 .  Based on petrographic characteristics, geochemical considerations, 

and cross cutting relationships we have identified four different generations of dolomite. 

The crystal shape classification in our petrographic work is based on Sibley & Gregg 

(1987). 

Type I Dolomite 

This type occurs as anhedral and rarely as subhedral crystals (Fig. 4.2A). The size 

of individual crystals is variable, ranging from 2 to a few tens of J.lm . Type I dolomite 

preferentially replaced micrite and is abundant in wackestone lithologies. The replacement 

of micrite is typically partial to complete. Under cathodoluminescence, these dolomite 

crystals appear uniformly dull orange. In rare cases, the crystals coalesce to form a mosaic 
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Figure 4. 1 .  Paragenetic sequence of the Maryville Limestone. The bars indicate relative 

timing of the different phases. 
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Figure 4.2.  Photomicrographs of different dolomite types of Maryville Limestone in the 

study area. A) Example of irregular dolomite disseminations (indicated by arrow) 

in micrite also note abundant rhombs. Plane light, field width = 0. 7mm. B) 

Inclusions (at arrows) of planar dolomite rhombs (Type II) in blocky clear calcite 

spar. Occasionally rhombs form a mosaic (M). Cross-polarized light, field width 

= 1 .5mm. C) Example of dolomite type associated with stylolites (arrow). Cross

polarized light, field width = 1 . 5mm. D) Zoned dolomite associated with stylolites 

under cathodoluminescence. Note the rims appear bright. field width = lmm. E) 

Saddle dolomite (S); note the coarse crystal size and curved crystal boundaries. 

Under cross-polarized light, field width = l . Smm. F) Void-filling saddle dolomite 

(S), cross-cut by fracture (indicated by arrow). Under cross polarized light, field 

width = 6 .5mm. 
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of anhedral crystals. Staining reveals that Type I dolomite is generally only weakly 

ferroan, but larger mosaics of anhedral crystals appear to be slightly more ferro an. 

Type II Dolomite 

77 

Type II dolomite is commonly a replacement phase and occurs as planar euhedral 

rhombs (Fig. 4 .2B). The grain size is variable, ranging from 5 to 300 11m. This planar-e 

dolomite commonly occurs as inclusions in blocky, and clear (ferroan) calcite spar, which 

is interpreted as meteoric in origin on the basis of crystal fabric, and stable isotope and 

trace element compositions. Typically Type II dolomite is concentrated along 

intercrystalline boundaries between blocky, clear calcite spar grains, but in rare instances 

the rhombs transect grain boundaries. The crystals also occur along cleavage planes in 

blocky calcite spar. The degree of dolomite replacement typically decreases away from 

pore walls and toward pore centers. Under cathodoluminescence, Type II dolomite 

appears as non-luminescent rhombs. The crystals may coalesce to form dense mosaics of 

planar crystals. The formation of this dolomite type was controlled by intercrystalline 

porosity, as evidenced by the concentration of rhombs along grain boundaries. 

Type III Dolomite 

Type III Dolomite consists of euhedral to subhedral and occasionally anhedral 

crystals, ranging from approximately 10  to 1 50 11m in size. Type III dolomite occurs in 

grainstone, packstone, wackestone and mudstone, but is more common in mudstone and 

wackestone. Type III dolomite occurs as thin seams along stylolites and as thick bands 

measuring a few mm commonly bounded by stylolites (Fig. 4 .2C). The individual crystals 

typically appear as planar rhombs with a turbid core and less commonly as zoned crystals 



78 

(Fig. 4.2D). Intercrystalline boundaries are marked by iron oxide staining. Under 

cathodoluminescence, Type III dolomite is non-luminescent, or consists of zoned rhombs 

with a dark core and bright rim, or orange luminescent rhombs. Zoned dolomite crystals 

and crystals with orange luminescence are restricted to shelf-margin lithofacies. The 

individual rhombs usually crosscut by stylolites, but very rarely crosscut stylolites. 

Type IV Dolomite 

Type IV dolomite is the saddle or baroque dolomite of Radke and Mathis ( 1 980). 

Type IV dolomite typically occurs as void fillings (Fig. 4.2E) and rarely in the matrix. In 

general, saddle dolomite is abundant in grainstone and packstones. The subhedral to 

anhedral crystals are variable in size from 1 00 Jlm to 1 500 Jlm. Saddle dolomite is ferro an 

and displays undulose extinction. Under cathodoluminescence the crystals are typically 

non-luminescent. Saddle dolomite crystals commonly are crosscut by post cementation 

fractures (Fig. 4.2F). 

Saddle dolomite displays regional and local variations in its distribution. It 

increases in abundance basin ward from the shelf margin. However, at the shelf margin, 

this dolomite type is restricted to the lower part of the reefal complex of the upper 

Maryville. 

Stratigraphic Distribution 

Dolomitization of the Maryville Limestone is incomplete with the degree of 

dolomitization greatest in muddy facies. In contrast, in grainstone and packstone facies, 

dolomite occurrence is restricted to intragranular pores. There are local as well as 

regional variations in the occurrence of the individual varieties of dolomite. Type II 



dolomite, which occurs as inclusions in clear blocky spar, is typically restricted to the 

shallow-platform lithofacies. Type III zoned crystals and crystals with orange 

luminescence are restricted to the shelf-margin strata. Volumetrically, Type III dolomite 

is more abundant. Coarse baroque dolomite is abundant in shelf-margin and slope/basin 

lithofacies and is less abundant in the shallow platform rock types. 

Geochemistry 

Major Element Geochemistry 

Ideal dolomite is stoichiometric and well ordered (Graf and Goldsmith, 1956; 

Goldsmith and Graf, 1 958; Lumsden and Chimahusky, 1 980) . Numerous workers have 

noted that dolomites associated with Holocene carbonates is typically nonstoichiometric 

(McKenzie, 1 98 1 ;  Carballo et al. ,  1987, and many others ). Stoichiometry of recent 

dolomite increases with age (Gregg et al. ,  1 992). However, ancient dolomite generally 

tends to show a higher degree of stoichiometry. This increase in stoichiometry is 

attributable to neomorphic alteration (Mazzullo, 1 992). 

In the Maryville Limestone, major element chemistry of the different dolomite 

types has been determined from electron probe analyses of individual crystals .  

Microprobe analyses were largely done on Type III and Type IV dolomite. However, a 

limited number of analyses were carried out on Type II dolomite. Because of the 

limitation imposed by the crystal size, no microprobe analysis was carried out on Type I 

dolomite. 

Stylolite bounded dolomite (Type III) shows both stoichiometric and non

stoichiometric compositions (Fig. 4 .3A). XRD patterns of a limited number of samples 

indicate that the dolomite is well ordered. The MgC03 molar compositions of Type III 
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Figure. 4.3 . Electron microprobe data of Maryville dolomite types. (A) MgC03 and 

CaC03 content of dolomite associated with stylolites (Type III); (B) MgC03 and 

CaC03 content of saddle dolomite; (C) Fe and Mn content of stylolite dolomite 

(zoned and non-luminescent, Type III) and dolomite inclusions (Type II) in block)', 

clear calcite spar. Most Type II dolomite have Mn values below detection limits, 

unlike most Type III dolomite. (D) Fe and Mn content of saddle dolomite (Type 

IV) . Note that saddle dolomite displays chemical trends from slope/basin 

(southwest) to shelf margin (northeast). Note that Mn compositions of those 

samples with Mn less than about 450 ppm may have any value between 0 ppm and 

449 ppm. 
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zoned dolomite are variable from core to rim of individual crystals. In general, the cores 

are more stoichiometric and analyses close to the rim are calcian. However, the rims 

could not be analyzed because the width of the rim is smaller than the beam diameter. 

Type III dolomite does not display spatial lateral trends in its geochemistry. In contrast, 

Type IV late-stage, void-filling baroque dolomite displays distinct spatial lateral trends 

(Fig. 4 .3B). This phase shows both calcian and near stoichiometric compositions varying 

from nonstoichiometric composition in downslope facies to near stoichiometric 

compositions (Fig. 4 .3B) in platform edge facies. 

Minor and Trace Elements 

A limited number of electron microprobe analyses were performed on Type II and 

Type III dolomites. However, a large number of analyses were carried out on Type IV or 

saddle dolomite. The heterogeneous Distribution Law predicts that trace elements with 

distribution coefficients greater than 1 tend to become depleted in the the precipitating 

solid in the direction of flow (Machel, 1 988). Machel ( 1 988) suggested that trends in the 

distribution of trace elements can be used to determine the direction of fluid flow. Gregg 

& Shelton ( 1989) employed similar lateral trends in the distributions ofFe, Mn, and Sr in 

the Bonneterre Dolomite (Cambrian) to interpret fluid flow direction. In the Maryville 

Limestone, Fe and Mn contents show a general enrichment from Type II to Type IV 

dolomite. Fe and Mn concentrations in Type II dolomite are 0.93-2 .5  wt %  Fe and a 

maximum of 700 ppm Mn (4.3C). Type III dolomite is commonly more enriched in Fe 

and Mn when compared to Type II dolomite with values ranging from 1 .2-2.6 wt% Fe and 

a maximum of 1 000 ppm Mn (Fig. 4.3C). Although Fe and Mn contents of Type III 

dolomite are variable, there are no distinct vertical or lateral spatial trends. However, 

zoned crystals of Type III dolomite display chemical zonation, with cores enriched in Fe 
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and decreasing Fe from core to rim. The bright luminescent rims represent an increased 

incorporation ofMn. These differences in chemistry are also reflected in the luminescence 

characteristics of Type III dolomite as described earlier. 

Type IV or saddle dolomite displays distinct lateral spatial trends in the distribution 

ofFe and Mn (Fig. 4 .3D). Values decrease from 3 .5-4 .5  wt %  Fe and 0. 1 -0.3 wt% Mn in 

the west (slope/basin) to 1 . 5-2. 5  wt %  Fe and less than 600 ppm Mn in the east (platform

margin). 

Stable Isotopes 

Stable oxygen and carbon isotope composition of a precipitating phase is a 

function oftemperature, fluid composition,and the isotopic composition ofthe ambient 

rock (Banner et al. ,  1 988). The stable isotope compositions of Type III and Type IV 

dolomite are given in Figure 4.4. Note that in Figure 4.4, the stylolite-related dolomite 

(Type III) and saddle dolomite (Type IV) show a similar variation. The 8 1 8o values for 

stylolite-bounded dolomite range from -7.5 Ofoo to -8 . 5  Ofoo PDB and that of saddle 

dolomite from -6.75 Ofoo to -8 .75 Ofoo PDB. 8 Be values for both the dolomite types 

range from 0.3 Ofoo to 1 .70/oo PDB. The isotopic compositions of other associated 

phases are as follows: fibrous (marine) cements, 8 1 8o =-6. 5  Ofoo to 8 .0 Ofoo and 8 Be 
= -0. 5  to +0.50/oo PDB; blocky, clear calcite spar, 8 1 8o = -9 .0 Ofoo to - 10  Ofoo PDB 

and 8 Be = -0. 50/oo to +0.50/oo PDB. In general, oxygen isotope compositions of Type 

III and Type IV dolomite are significantly depleted when compared to the estimated 

original Cambrian marine carbonate value (8 1 8o = -5 .5  Ofoo PDB, Lohmann & Walker, 

1 989). The depleted oxygen isotopic compositions ofType III and Type IV dolomites 

suggest that the fluids were not in isotopic equilibrium with the host rock. It is reasonable 
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Figure 4.4. 8 1 8o versus 8 Be crossplot of replacement stylolite dolomite (Type Ill) and 

void filling saddle dolomite (Type IV). 
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to suggest that temperature calculations based on oxygen isotope compositions of saddle 

dolomite will reflect the minimum temperature of precipitation. Such a calculation yields a 

temperature of about 850 to 1 050 C for the precipitation of Type IV dolomite. 

Strontium Isotopes 

The timing of dolomitization and fluid source can be constrained by using Sr

isotope ratios (Scholle & Halley, 1 985;  Banner et al., 1 988;  Vahrenkamp et al. ,  1 99 1 ). 

Seawater Sr-isotope ratio was constant for any particular time period, but has varied 

hrough time during the Phanerozoic. Secular variation of Sr-isotope ratios of sea-water 

for the entire Phanerozoic has been summarized by several workers (e.g . ,  Burke et al . , 

1 982). The Sr-isotope ratios of seawater for the Phanerozoic is estimated to be the 

highest for Cambrian and present-day seawater (.70907; Burke et al . ,  1 982). 

Burial phases with radiogenic Sr-isotope ratios higher than coeval seawater have 

been attributed to basinal brines (Moore, 1 985; Scholle and Halley, 1 985). Several studies 

have reported Sr-isotope ratios for dolomite cementation and dolomitization associated 

with burial diagenesis (e.g. ,  Kaufinann et al. ,  1 990; Kupecz and Land, 1 99 1 ;  Banner et al. ,  

1 988). In the Maryville Limestone, Sr-isotope ratios determined for Type III and Type IV 

dolomite range from 0 .7 104-0.7 1 39  (Fig. 4.5). The Sr-isotope ratios of Type III dolomite 

appear to be slightly more enriched (0.7 1 336) than Type IV dolomite (0. 7 1 1 95). These 

values are considerably higher than Cambrian marine values (Burke et al. ,  1 982). 
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Burial History 

Maximum burial temperatures can be approximated from burial history curves. 

The maximum burial of the Maryville Limestone is estimated from the thickness of 

overburden units, which range in age from Late Cambrian to Middle Pennsylvanian. 

Overburden thickness and biostratigraphic age data to construct the burial curves were 

extracted from Cattermole (1 966), Milici et al. ( 1 979), Breland (1 980), Borowski ( 1982), 

Walker (1 985), Englund et al. ( 1985), and Hatcher (1 989). 

The estimated maximum burial depth of the Maryville Limestone in the study area 

was approximately 4-4 .5 kms (Fig. 4.6). Taking an average geothermal gradient of 300 C 

and a surface temperature of 200 C, estimated maximum burial temperatures were 

approximately 1400- 1 500 C. Calculated temperatures from stable oxygen isotope 

compositions of Type III and Type IV dolomite range from 850- 1 050 C. The temperature 

calculations are based on Land's ( 1985) equation, 103 In ado lomite-fluid = 2 .  78 * 1 o6 T-
2 

(K) + 0.9 1 .  From a comparison of the probable temperature of formation ofburial 

dolomite with the maximum burial temperatures, it is evident that the dolomite formed 

prior to maximum burial. These rocks probably reached the dolomite formation 

temperature in the midddle Paleozoic. A consideration of a regional set of burial curves 

(Walker et al . ,  1992) suggests that the shale sections ofthe basin coeval with the 

Maryville were buried slightly more rapidly than the Maryville and that these shale 

deposits reached temperatures of about 1 ooo C during the Middle to Late Ordovician. 

Discussion of Fluid Source and Diagenetic Pathways 

Textural and chemical variations of the Maryville dolomite types as described 

above suggest that they represent different episodes of diagenesis. Although the major 
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emphasis of this research is on the fluid source and pathways during late stage burial 

diagenesis, we discuss here the origin of all the dolomite types in order to provide a 

complete burial diagenetic history of the Maryville Limestone. The different dolomite 

types formed during progressive burial, based on their petrographic characteristics and 

differences in chemistry described in the section above. 

Early Dolomitization 

9 1  

Type I and Type II dolomite likely formed during shallow and intermediate burial 

diagenesis. A shallow subsurface origin for Type I dolomite is interpreted based on crystal 

size and low iron content as revealed by staining. Type II dolomite, which occurs as 

inclusions of planar dolomite rhombs in blocky, clear (meteoric) calcite spar, is interpreted 

as having formed during shallow to intermediate burial. Gregg & Sibley ( 1 984) and Gregg 

& Shelton ( 1 990) proposed that planar crystal boundaries are indicative of early diagenesis 

and nonplanar boundaries of deep burial diagenesis. A shallow to intermediate burial 

origin for this dolomite type is proposed based on the following petrographic and chemical 

relationships: (a) planar crystal boundaries, (b) association with shallow platform 

lithologies, (c) position in the overall paragenetic sequence revealed by petrography, and 

(d) enriched in Fe ( 1 -2.4 wt%) and Mn (up to a maximum of 700ppm) concentrations 

(Fig. 4 .3C) .  

Since Type I dolomite is commonly associated with subtidal fine grained 

lithofacies, the fluids involved in the formation of this dolomite type were non-evaporite 

related. Mg liberated from stabilization ofMg-calcites probably served as a local source 

ofMg+2 for dolomite formation. The occurrence of microspar (see Figure 4. 1 ,  

paragenetic sequence) in fine grained lithofacies provides evidence for neomorphic 

alteration of micrite. Numerous workers have proposed that dolomite formation is 



promoted during early diagenesis by bacterial reduction of sulfate, which results in 

increased alkalinity and dolomite supersaturation (Baker & Kastner, 1 98 1 ;  Compton, 

92 

1988; Slaughter & Hill, 199 1 ). In the Maryville Limestone, evidence for sulfate reduction 

during early diagenesis is provided by the occurrence of pyrite. Although we do not have 

any control to estimate the depth of dolomite formation, it is conceivable that Type I 

dolomite formation occurred in the first few meters of burial because sulfate reduction 

occurs fairly early. We propose that Mg+2 and ca+2 were probably derived from the 

dissolution of precursor carbonates and by diffusion from overlying seawater. Diffusion of 

Mg from the overlying sea water is facilitated by the high degree of porosity and 

permeability in sediments during early diagenesis. 

In the case of Type II dolomite, it is difficult to evaluate whether Mg, Fe and Mn 

were supplied by the precursor carbonate. This dolomite type is enriched in Fe (unlike 

marine and other early diagenetic phases) which could be the result of initial formation 

from Fe rich fluids. It is conceivable that iron oxide coatings formed during subaerial 

exposure (see Srinivasan & Walker, in press) on detrital grains may have served as a local 

source of Fe under later reducing conditions of diagenesis. Alternatively, neomorphic 

alteration (Mazzullo, 1 992) of early fine-grained dolomite (poorly ordered and less 

stoichiometric) during burial in the presence of compaction derived basinal fluids may 

have contributed to elevated Fe+2 concentrations. Sibley and Gregg ( 1 987) suggested 

that planar crystal boundaries can be retained during neomorphism at higher temperatures. 

In general, Holocene dolomites are fine crystalline (< 1 Oj...Lm}, low in Fe and non 

stoichiometric (Land, 1 985; Hardie, 1987; Sibley, 1990; Mazzullo, 1 992) . However, the 

coarse planar textures and the higher stoichiometry observed in the case of Maryville Type 

II dolomite suggest that it has undergone neomorphic alteration. 
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Late Burial Dolomitization 

Type III dolomite (stylolite associated) and Type IV dolomite (saddle/baroque 

dolomite) are recognized as products of intermediate and deep burial diagenesis. Because 

Type III dolomite is associated with stylolites and increases in abundance towards 

stylolites, the formation of this dolomite type probably was associated with the process of 

stylolitization. An intermediate to deep burial origin for Type III dolomite is consistent 

with the following petrographic and chemical relationships: (a) association with stylolites, 

(b) elevated Fe ( 1 .2 - 2.6 wt%) and Mn (maximum of 1 000 ppm) concentrations when 

compared to Type II dolomite (c) depleted 8 I 8o compositions with respect to Cambrian 

seawater composition, and (d) enriched Sr-isotope ratios. 

Void filling saddle or baroque dolomite (Type IV) formed during late burial 

diagenesis. This is the latest phase in the paragenetic sequence prior to the formation of 

fractures. A late burial diagenetic origin for saddle dolomite is consistent with the 

following petrographic and geochemical relationships: (a) occurrence as void fillings, (b) 

elevated Fe and Mn concentrations compared to other dolomite types ofburial origin, (c) 

depleted 8 1 8Q compositions compared to Cambrian sea water composition, (d) enriched 

Sr-isotope ratios compared to Cambrian marine values, and (e) the inferred elevated 

temperature of formation of this phase. 

Compositional zoning in Type III zoned dolomite can be explained by fluctuations 

in pore-water chemistry such as decrease in the supply ofFe and a relative increase in Mn 

concentrations in the fluid. Increased incorporation ofMn, which serves as luminescence 

activator (Machel, 1 985) towards the rims of zoned dolomite crystals, resulted in bright 

luminescent rims. Given that zoned dolomite crystals have a limited stratigraphic 

distribution, it is conceivable that fluctuations in pore water chemistry were local. 
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Constraints on Fluid Source from Carbon, Oxygen, and Sr-isotope ratios 

In trying to evaluate fluid source, it is imperative that fluid sources such as 

seawater, meteoric and deep basinal brines be considered. In general, fluids derived from 

the zone of sulfate reduction tend to be characterized by isotopically light carbon values 

(Bums et al . ,  1 988). Isotopically heavy carbon values of Type III and Type IV dolomite 

of Maryville Limestone suggest fluid derivation far removed from the zone of sulfate 

reduction. 

Oxygen and Sr-isotope ratios of Type III and Type IV dolomite provide 

constraints on the fluid source, composition and possible pathways. In general, the 8 I 8o 

values of Type III and Type IV dolomite are depleted relative to the Cambrian marine 

value. Depleted 8 1 80 values can result from depleted meteoric fluids or elevated 

temperatures. However, a meteoric origin is not consistent with the relatively high 

radiogenic Sr-isotope ratios of Type III and Type IV dolomite of the Maryville Limestone. 

The range in 8 1 8o values of void filling baroque dolomite suggests that precipitation 

occurred over a range of temperatures. Alternatively, heavier values can be attributed to 

isotopically heavy basinal fluids. The calculated temperatures, which are based on Land's 

( 1985) equation, range from 850 C to 1 050 C. In our temperature calculations, we 

assumed a 8 1 8o of 5 Ofoo SMOW for the burial fluids. This assumption is based on 

SMOW values of modem subsurface brines. Our burial history curve (Fig. 8) indicates 

that the estimated temperatures are consistent with the overall burial history of the 

Maryville Limestone and that elevated temperatures can be accounted for by burial alone 

(over 4 km ofburial). 

A siliciclastic source for the burial fluids is proposed on the basis of elevated Sr

isotope ratios of Type III and Type IV dolomite. Radiogenic Sr-isotope ratios reflect 

sources external to the Maryville Limestone. Regional stratigraphic relationships suggest 
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that the Cambrian in trash elf basin that flanked the western margin of the carbonate 

platform may have served as a potential fluid source during burial. During progressive 

burial silicate reactions serve as a potential source of radiogenic strontium to basinal fluids 

(Steuber et al . ,  1 984). Numerous workers proposed that burial diagenetic transformation 

of smectite to illite is accompanied by the release of metal ions to the pore fluid. The 

potential ofbasinal shale to serve as a source ofCa, Fe, Mg, Na and Si during deep burial 

diagenesis is well documented in the literature (Dunoyer de Segonzac, 1 970; Boles and 

Franks, 1 979; McHargue and Price, 1 982; Lee and Friedman, 1 987; Gregg, 1988; 

Kaufinann et al . ,  1 990). Fe and Mg in the smectite layers typically tend to get released at 

higher temperatures of transformation (Boles and Frank, 1 979) and the smectite-to-illite 

conversion takes place over a temperature range of SO to 125 o C (burial depths of 2 to 4 

km with normal geothermal gradients). Freed and Peacor ( 1 992) documented a sudden 

increase in the proportion of illite relative to smectite in Gulf Coast shale over a depth 

range of2-2 1 /2 kms. Similarly, basinal shale may have supplied the necessary metal ions 

for dolomitization of the Maryville Limestone. Because we interpret Type II and Type III 

dolomite as neomorphic products of early formed dolomite, it is not difficult to account 

for a source of magnesium. However, in the case of void-filling saddle dolomite, Mg for 

dolomite formation was supplied by basinal fluids. Also, this phase is volumetrically less 

abundant. Hence it is not difficult to envision basinal shale as the main source ofMg for 

Type IV dolomite formation. 

Given that the geochemical attributes of Type III and Type IV dolomite ofthe 

Maryville Limestone support a siliciclastic source, fluid migration pathways can be 

inferred from spatial lateral trends in the distribution ofFe and Mn in saddle dolomite. 

Spatial lateral trends, consisting of a decrease in Fe and Mn values from slope/basin to the 

shelf-margin, suggest a fluid source to the west and/or southwest of the platform. Warm 
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basinal fluids derived from the Cambrian intrashelfbasin migrated updip into the adjacent 

carbonate platform (see Fig. 2 .8). 

The geochemistry of late burial dolomite types clearly indicates that an active 

hydrologic system was operative during burial of the Maryville Limestone. Several 

mechanisms have been proposed for regional subsurface fluid flow, and these include 

gravity-driven fluid flow (Garven and Freeze, 1 984), compaction driven fluid flow (Noble, 

1963; Bethke, 1 985), and episodic dewatering ofbasinal sediments (Cathles and Smith, 

1983) .  Qing and Mountjoy ( 1 992) postulated tectonism and sedimentary loading to 

explain regional fluid migration in western Canada sedimentary basin. A similar scenario 

can be envisioned for deep basinal fluid migration in the southern Appalachians. Tectonic 

compression in the southern Appalachians related to arc collision was initiated during the 

early part of the Middle Ordovician (Quinlan and Beaumont, 1 984; Hatcher, 1 987). 

Burial history curves suggest that by the end of Middle Ordovician time, the Maryville 

Limestone was buried to depths of approximately 3 to 3 1f2 kms. Thus fluid migration 

responsible for dolomite recrystallization and dolomite cementation in the Maryville 

Limestone may have occurred in response to tectonic compression and sediment loading. 

By the end of the Middle Ordovician time, two potential basinal fluid sources existed, the 

Cambrian intrashelfbasin that flanked the western margin of the carbonate platform and 

the Middle Ordovician Sevier Basin that developed in response to thrust and sediment 

loading (Shanmugam and Lash, 1 982, Quinlan and Beaumont, 1 984). However, probable 

pressure gradients (Walker et al . ,  1 992) from the Sevier Basin do not correlate with the 

inferred fluid migration pathways involved in burial diagenesis of Cambrian rocks, which 

are based on minor and trace element compositions of late-stage saddle dolomite. 

Therefore, deep basinal fluids originated in the Cambrian shale basin juxtaposed against 

the carbonate platform and migrated from west to east into the adjacent platform 

carbonates. Given that void-filling saddle dolomite is abundant in grainstone and 
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packstone lithologies, it is conceivable that warm fluids migrated through these relatively 

more porous and permeable units that served as conduits for focused fluid flow. 

Fluid-rock ratios, variations in 8 1 8o, 87 srf86sr isotope compositions 

Basinal fluids evolve progressively along the migration path as a result ofwater

rock interaction. Progressive water-rock interactions will be reflected in the 0 and Sr 

isotope ratios, which generally shift toward host-carbonate values depending on the extent 

ofwater-rock reactions. Banner et al. ( 1988) explained the observed variations in C,O 

and Sr ratios of Burlington dolomite by changes in fluid-rock ratios. 

We propose an evolutionary pathway involving water-rock interaction to explain 

the depleted 8 18Q and enriched radiogenic Sr-isotope ratios ofType III dolomite. Water

rock interaction at low water-rock ratios will shift the isotopic composition toward the 

host carbonate composition. In contrast, continued water-rock interaction at high water

rock ratios will result in isotopically light 8 I 8o values relative to the host carbonate 

composition. Depleted but nonetheless uniform oxygen isotopic values of Type III 

dolomite are suggestive ofhigh water-rock ratios involved in the recrystallization of Type 

III dolomite. Fluid-rock interaction at low water-rock ratios would have shifted the Sr

isotopic composition toward Cambrian carbonate values. However radiogenic Sr-isotope 

ratios of Type III dolomite support recrystallization at high water-rock ratios. 

Alternatively, the isotopic compositions may reflect little interaction with the host rock. 

In the case of Type IV, or saddle dolomite the observed scatter in 8 I 8o values 

could have been caused by any one or a combination of the following: (a) variation in 

water-rock ratios, (b) changes in temperature, and (c) changes in 8 I 8o composition of 

the fluid . As in Type III dolomite, depleted oxygen and enriched Sr-isotopic ratios reflect 
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fluid rock interaction at high water-rock ratios. The observed range of 8 1 8o values may 

simply reflect changes in temperature, or alternatively, changes in water composition. 

Conclusions 

( 1 )  Petrographic and geochemical studies reveal that several stages of 

dolomitization occurred during progressive burial . 

(2) Early burial dolomitization involved normal marine fluids. Mg was derived 

from overlying seawater and stabilization ofMg calcite phases. 

(3) Late burial dolomitization and dolomite cementation involved deep basinal 

brines. 

(4) Depleted 8 1 8o and enriched 87sr;86sr values compared to Cambrian 

seawater values suggest that fluids were warm and radiogenic. Temperatures ranged from 

850 to 1 050 C. This is consistent with burial history. 

(5) Fe and Mn values in saddle dolomite decrease from 3 . 5  -4 . 5  wt% Fe, and 0. 1 -

0.3 wt% Mn in the west (slope/basin) to 1 . 5-2 .5  wt% Fe, and less than 600 ppm Mn in the 

east (shelf-margin) indicating fluid migration from west to east . Fluids responsible for late 

dolomitization were derived from the Cambrian intrashelfbasin. 



CHAPTER S 

CONCLUSIONS 

1 . Carbonate depositional systems are fundamentally different from siliciclastic 

systems. Their differences must be taken into consideration when translating sequence 

stratigraphic concepts developed for siliciclastic systems to carbonate successions. In 

view of the fundamental differences, a process-oriented approach is applied to define the 

sequences, sequence boundaries, and the stacking pattern of the Maryville Limestone. 

2. The Maryville Limestone, which is a third-order sequence, consists of two 

subsequences. The subsequences are characterized by a combination of aggradational, 

retrogradational, and progradational units as a consequence ofvariations in sedimentation 

rate, subsidence, and absolute sea-level change. 

3 .  The transition between the Maryville Limestone and the overlying Nolichucky 

Shale is interpreted to be a sequence boundary. This transition is a drowning 

unconformity. The drowning event was preceded by subaerial exposure ofthe outer 

platform. A rapid relative sea-level rise drowned the platform and siliciclastics derived 

from the northwest were deposited on top of the shallow water carbonates. This 

drowning, coupled with carbonate lag-time on the old platform, continued subsidence, and 

retrogradation onto the platform of siliciclastic basinal facies converted the flat-topped 

platform into a ramp-like profile. The subsequent ramp deposition is represented by the 

lower part of the overlying Nolichucky Shale. 

4. The Maryville Limestone was subjected to a complex diagenetic history. An 

integrated approach consisting of field, petrography and geochemistry resulted in the 

recognition of microscale dissolution and reprecipitation and fabric selective dissolution 

and cementation during early diagenesis of the Maryville Limestone. 

5 .  Preserved primary fabrics and depleted oxygen isotopic composition of 

depositional components such as ooids (mean 8 18o = -8.7 Ofoo PDB) and intraclasts 
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(mean 8 1 8o = -8.2 Ofoo PDB) and synsedimentary fibrous cements (mean 8 1 8o = -8.4 

0/oo) suggest stabilization by microscale dissolution and reprecipitation occurred during 

shallow burial. 

6. Fabric selective dissolution occurred in response to subaerial exposure and 

influx of meteoric fluids. Blocky clear calcite spar commonly occlude moldic pores. 

Depleted oxygen isotopic composition (mean 8 1 8o = - 9.2 Ofoo PDB) values for blocky 

clear calcite spar relative to Cambrian marine calcite values (-5 Ofoo PDB) are consistent 

with subaerial exposure and meteoric diagenesis. 87sr;86sr values which are similar to 

Cambrian seawater values lend support to this interpretation. 

7. Finally, enriched Fe concentrations in blocky clear calcite spar suggests that 

some of the phreatic part of the meteoric system was relatively stagnant which promoted 

reducing conditions. 

8. Petrographic and geochemical studies reveal that several stages of 

dolomitization occurred during progressive burial. 

9. Dolomitization of the Maryville Limestone during early burial involved normal 

marine fluids. Mg was derived from overlying seawater and stabilization ofMg calcite 

phases. 

1 0. Late burial dolomitization and dolomite cementation involved deep basinal 

brines. 

1 1 . Depleted 8 I 8o and enriched 87 Srf86sr values of late burial dolomite phases 

relative to Cambrian marine calcite values and dolomite precipitated in equilibrium with 

seawater suggest that fluids were warm and radiogenic. Temperatures ranged from 850 to 

1 050 C. This is consistent with burial history. 

1 2. Fe and Mn values in saddle dolomite decrease from 3 . 5  -4.5  wt% Fe, and 0. 1 -

0.3 wt% Mn in the west (slope/basin) to 1 . 5-2.5  wt% Fe, and less than 600 ppm Mn in the 

east (shelf-margin) indicating fluid migration from west to east. Fluids responsible for late 
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dolomitization were derived from the adjacent intrashelfbasin. Late burial fluid movement 

was related to shale diagenesis. 
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STANDARD MEASUREMENT CONVENTIONS 

Bed thickness terminology used in the description of measured sections follows 
Ingram ( 1 954). Grain size descriptions are based on Wentworth scale ( 1 922). 

Bed Thickness 

Thick-bedded 

Medium-bedded 

Thin-bedded 

Very thin-bedded 

Laminated 

Grain Size 

Coarse-Grained 

Medium-Grained 

Fine-Grained 

Very fine-grained 

30.0 - 1 00.0 em 

1 0.0 - 30.0 em 

3 .0 - 1 0.0  em 

1 .0 - 3 .0  em 

0.3 - 1 .0 em 

Grains visible to the unaided eye (> 1 mm). 

Grains visible with hand lens and readily identifiable (0.25 -
1 .0 mm). 

Grains visible with hand lens but not readily identifiable (0 . 1  
- 0.25 mm). 

Grains not visible with hand lens ( < 0 . 1 mm).  
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APPENDIX B 

DESCRIPTION OF STRATIGRAPIDC SECTIONS 
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NOTE 

1 .  Field descriptions are given in ascending order from base of the section to the top. 

2. Thin sections were cut for samples that are underlined. Polished slabs were prepared for 
samples from the Thorn Hill section. However, thin sections prepared by Simmons ( 1 984) 
were used for petrographic studies 

3 .  For sample identification with respect to locality and stratigraphic interval, a 
combination of alpha-numeric code is used. For example: 

Th = Thorn Hill (for e.g. Th 2 .5  mab) 

WG = Woods Gap 

GS = Graveston 

NF = Norris Freeway 

CH = Clinton Highway 

mab after each sample number represents meters above base of the measured section. 
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THORN HILL SECTION AND SAMPLES 

The Maryville Limestone is well exposed in this area along U .S .  highway 25 E in 
northern Grainger County, Tennessee (Howard Quarter and Avondale Quadrangles). 
Exposed is 1 20 m ofMaryville Limestone at this outcrop. Contact with the underlying 
Rogersville Shale is sharp. Measurement and description begins at the base of the 
Maryville Limestone. 

UNIT THK (m) CUM. TKN (m) 

1 2 .3  2 .3  

2 2 .2  4 .5  

3 4 .0  8 . 5  

4 1 3 . 1 2 1 .6 

DESCRIPTION 

Maryville Limestone: Intraclastic oncolitic 
packstone/grainstone. Dark gray colored, the clasts 
measure up to 4 em. Base of this unit is 
marked by lag. Contact with the underlying 
Rogersville is sharp. this unit also consists of 
oncoidal packstone/grainstone layers. Individual 
oncoids are large and appear dark gray colored. 
Occasional occurrence of hardgrounds. Thin dark 
gray to black colored bioturbated layers also occur. 
The burrows are filled with sparry calcite. Samples: 
0 .2 mab, 0 .8  mab, 1 . 5 mab. 

Maryville Limestone: Burrow mottled limestone, 
dark colored. Fabric not clearly visible, because 
outcrop is fresh. Mottled layers typically weather to 
buff color. Samples: 3 .2 mab, 4 .0  mab. 

Maryville Limestone: Burrow mottled limestone. 
Light gray colored with pale yellow stringers of 
dolomite. Black spots on the surface could be 
pyrite. Thin grainy layers consisting of ostracods 
are discernible. Samples: 5 . 3  mab, 6 .8  mab, 8 . 5  
mab. 

Maryville Limestone: Burrow mottled limestone: 
Contact with underlying unit sharp. Dark 
gray to light gray, burrows commonly filled with 
calcite spar. The intensity ofburrowing commonly 
varies in this unit . Burrows commonly dolomitized. 
Thin grainy layers consisting of ostracods 
and trilobites common. Coarsening and fining 
upward layers common. Occasional occurrence 
ofthin intraclastic layers. Samples: 9 .5  mab, 1 2 .0  



5 7 .9 29.5  

6 1 . 7 3 1 .2 

7 4 .8  36.0 

8 4 .0  40.0 

9 5 . 5  45 .5 

1 27 
mab, 1 3 . 5  mab, 1 5 .4 mab, 1 7 .4 mab, 1 8 .0  mab, 1 8 .5  
mab, 20 .0 mab, 2 1 .2 mab, 2 1 .6 mab. 

Maryville Limestone: Lime mudstone, bioturbated, 
burrows appear both horizontal and vertical. 
Appears light gray to dark gray in color. Outcrop is 
fresh. Thin layers of dolomite weather to buff color. 
The dolomite layers occur parallel to bedding. 
Contact with the upper unit is sharp. Minor 
occurrence of fossils. Thin grainy layers with ooids 
and fossils occur in the upper part of this unit. The 
top of this unit is marked by a thin oncolite layer. 

Maryville Limestone: Oncolite/oolite packstone: 
Contact with the lower unit sharp. This unit appears 
dark gray to light gray. Bioturbated, mostly 
horizontal burrows. The ooid part of the unit 
appears light gray. Upper part of this unit is ooid 
packstone/grainstone. Thin intraclastic layers 
common towards the upper part of this unit. 

Maryville Limestone: Ooid grainstone/packstone: 
Well exposed. Contact with the underlying unit, 
sharp. The unit appears massive. Light gray in color. 
Thin intraclastic layers occur. Individual clasts 
appear elongated. Faintly cross laminated towards 
the upper part of the unit. Bioturbated near the top. 
Samples: 3 1 .2 mab, 3 1 .7 mab, 32. 1 mab, 32 .5  mab, 
33 .9  mab, 34. 8 mab, 35 .6mab, 35 .7  mab 

Maryville Limestone: Oolitic intraclastic 
Packstone/grainstone: Light gray to dark gray, thick 
bedded. Thin shale layers interspersed within the 
intraclastic layers. The intraclastic layers pinchout. 
Samples: 39 .0 mab, 40.0 mab. 

Maryville Limestone: Burrow mottled limestone: 
Thin layers oolitic limestone alternate. Thin layers of 
dolomite commonly weathers to buff color. Thin to 
medium bedded. Oolitic/intraclastic layers within 
this unit appear light gray in color. Burrows filled 
with calcite spar commonly occur. Top ofthis unit is 
marked by oolitic/intraclastic packstone. Samples: 
40.2 mab, 40.9 mab, 43 .0 mab, 44. 8  mab, 45 .5  mab. 



1 0  0 .7  46.2 

1 1  1 . 8 48.0 

12 2.5 50.5 

13  3 . 5  53 .5  

14  1 . 8 55 .3 

1 5  3 . 7  59.0 

Mai}'Yille Limestone: Oolitic intraclastic 

1 28 

grainstone/packstone: Intraclastic at the bottom and 
oolitic at the top. Contact with the underlying sharp 
to scoured. Light gray colored. No discernible 
sedimentary structures. Abundant stylolites. 

Mai}'Yille Limestone: Burrow mottled and oolitic 
limestone. Thin to medium bedded. Fine to medium 
grained. Light gray colored. Well exposed. Some 
Renalcis towards the top. Coarsening upward. 
Intraclastic layers towards the top of this unit. The 
individual clasts vary in size. Intraclastic part 
appears gray. Samples: 47.2 mab, 48 .0 mab. 

Maryville Limestone: Oolitic oncolitic intraclastic 
grainstone/packstone: Grayish colored, thin to 
medium bedded, coarsening upward. Intraclastic 
towards the top. Thin dolomite layers alternate 
within the intraclastic layers. Dolomite layers 
weather to buff color. Contact with the underlying 
unit is sharp. Minor Renalcis. Oolitic intraclastic 
unit appears gray to dark gray. 

Maryville Limestone: Light gray colored. 
Alternating layers of dolomite/silt and thin ooid 
layers. The dolomite layers are thinly bedded. Fine 
to medium grained. Stylolitic, contact with the 
underlying unit sharp. The unit is coarsening 
upward. The upper part of this unit is oolitic. 
Samples: 5 1 . 5mab, 52.8 mab, 53 . 5  mab. 

Maryville Limestone: Well exposed ooid grainstone, 
dark gray colored. Contact with the underlying unit 
is diffuse. No macro fossils. The unit typically fines 
upward. Samples: 53 .8  mab, 54.5 mab, 54.9 mab, 
55 .0 mab. 

Mai}'Yille Limestone: Intraclastic/oolitic grainstone. 
Intraclastic at the base and oolitic 
grainstone/packstone towards the top. Thin to 
medium bedded, also medium to coarse 
grained. Alternating mudstone layers occur. Base of 
this unit appears scoured. Gray to light gray. 



1 6  4 .0  63 .0 

1 7  6 .4  69.6 

1 8  4 .8  74.4 

1 9  2 .0  76. 5  

1 29 
Burrows commonly occur in the muddy layers. 
Samples: 55 .5  mab, 56.3 mab, 56.6 mab, 57.3 mab. 
Maryville Limestone: Oolitic intraclastic grainstone 
packstone: Base of this unit scoured. Intraclasts 
occur as lag on the scoured base. Intraclasts occur 
sub parallel to inclined to bedding. Light gray 
colored. Mediun to thick bedded. The percentage of 
ooids increases towards the central part of this unit. 
The oolitic beds are faintly cross laminated. Few 
hardgrounds. Coarsening upward unit. Thin layers of 
burrow mottled limestone commonly occur. Thin 
oncolite layers occur toward the top. The oncolite 
layers are gray to dark gray. Samples: 59.5 mab, 
60.4 mab, 60.5 mab, 6 1 .3 mab, 6 1 .7 mab. 

Maryville Limestone: Burrow mottle limestone-
quartz silty peloidal packstone: Alternating layers of 
mudstone and siltstone. Siltstone layers consist 
of abundant quartz, typically fining upwards. Also, 
thin intraclastic, oolitic/oncolitic, and bioclastic 
layers which typically occur towards the top of this 
unit. Alternating coarsening and fining upward 
layers. The siltstone layers are 3-4 em thick. 
Samples: 63 .3  mab, 63 .4 mab, 64. 1 mab, 64. 5  mab, 
65 . 1 mab, 65 .5  mab, 67.3 mab, 68 .2  mab, 69.0 mab. 

Maryville Limestone: Alternating calcareous 
siltstone layers: The siltstone layers are typically 
fining upwards. Weather to buff color, thin bedded. 
The unit generally becomes argillaceous towards the 
top. Siltstone layers display parallel and low angle 
cross laminations. The limestone layers are grainy 
with intraclasts. The intraclasts range from 
sub parallel to inclined to bedding. Samples: 70. 1 
mab, 70. 5  mab, 72 mab, 73 mab, 74 mab, 74.4mab. 

Maryville Limestone: Limestone with thin siltstone 
layers. Contact with the underlying bed, sharp. 
Limestone at the bottom, siltstone at the top. 
Siltstone layers parallel to low angle cross 
laminated. Intraclasts commonly occur. Siltstone 
layers range from 8- 1 0  em thick. Medium bedded 
intraclastic packstone with thin shale layer toward 



20 1 1 . 5  88.0 

2 1  9 .0 97.0 

22 6 .0  1 03 . 0  

23 2 .4 1 05 .4 

24 1 . 8  1 07.2 

the upper part of the unit. Samples: 75 mab, 75 .5  
mab, 75 .9 mab. 

Maryville Limestone: Nodular limestone with thin 

1 30 

siltstone and intraclastic layers: Moderate to poorly 
exposed. Thin argillaceous layers alternate. 
Argillaceous layers weather to buff color. The 
limestone layers are 8- 1 0  em thick and are thinly 
laminated. The upper part of the outcrop is poorly 
exposed. Siltstone layers appear thin bedded with 
minor intraclasts. Samples: 77.5 mab, 79.5 mab, 
80.5 mab, 82 mab, 82.8 mab, 85 mab, 86. 1 mab. 

Maryville Limestone: Burrow mottled limestone: 
Contact with the lower unit, sharp. Thin nodular 
limestone, oolitic grainstone layers occur. The 
limestone layers appear gray in color. The mottled 
layers weather to buff color. The mottled layers are 
thin and continuos. Samples: 88 mab, 89 mab, 90.5 
mab, 92.9 mab, 93 . 8  mab, 95 .5  mab. 

Maryville Limestone: Oolitic/intraclastic grainstone 
with thin mudstone layers: Contact with the lower 
unit diffuse. Coarsening upward. Oolitic grainstone 
is grayish colored, medium to thick bedded with 
cross bedding. Intraclastic layers are medium to 
thick bedded. Mudstone layers are thin bedded. 
Minor Renalcis. Upper oolitic layer appears 
massive. Samples: 97.2 mab, 97.5  mab, 98. 5mab, 
99.7  mab, 1 0 1 . 5 mab, 1 02.9 mab. 

Maryville Limestone: Intraclastic oolitic 
grainstone/packstone with thin mudstone layers: 
Light gray to dark gray. Thin to thick bedded. Few 
scoured surfaces occur overlain by bioclastic layers. 
Minor Renalcis, although it is difficult to recognize 
them where the outcrop is fresh. The mudstone 
layers are bioturbated. Burrows dolomitized. Thin 
coarsening and fining upward layers. 

Maryville Limestone: Limestone with thin 
dolomitized layers: Dark gray colored. Contact with 
the lower unit sharp. Thin bedded, no macro fossils. 
Samples: 1 06.4 mab, 1 07.2 mab. 



25 9. 1 1 16 .3 

26 3 . 0  1 1 9.3 

27 1 . 8 1 20.8 

28 4 .8  1 25 .6 

29 4 .8  1 30.4 

30 8 .6  1 4 1 .0 

Maryville Limestone: Contact with the lower unit 
sharp. Well exposed. Thin dolomitized layers 
commonly weather to buff color. Bioturbated, 
burrows occur as both vertical and horizontal to 
bedding. Fossils include, Renalcis, trilobites, and 
few ostracods. Samples: 1 08 . 1 mab, 1 08 .8  mab, 
1 10.2 mab, 1 13 . 0  mab, 1 14 . 1 mab, 1 1 5 .7  mab. 

13 1 

Maryville Limestone: Oolitic intraclastic grainstone: 
Well exposed, contact with the lower unit sharp. 
Cross bedded. Light gray colored. Intraclastic at the 
bottom, grading upward into oolitic grainstone. Thin 
to thick bedded. Thin dolomitized layers occur. 
Abundant intergranular cements. The oolitic 
grainstones are dolomitized. Stylolites are common. 
No macroscopic fossils. Samples: 1 1 6.4 mab, 1 1 6 .7  
mab, 1 1 7.6  mab, 1 1 8 .2 mab, 1 1 9.3 mab. 

Covered Interval . The top of the Maryville 
Limestone is a sequence boundary. 

Nolichucky: Poor to moderately exposed. Bioclastic 
grainstone, thin intraclastic and mudstone layers. 
Gray to dark gray. Fossils include, ostracods, 
trilobites, ooids and oncoids. Bioturbated, 
burrows filled with sparry cement. Lower contact of 
this unit not visible. Typically fining upward. 
Mudstone layer becomes more common upward in 
the unit. Upper 1 m of this unit is covered. Samples: 
1 2 1 .4 mab, 1 2 1 .6 mab, 1 23 mab, 1 24 mab. 

Nolichucky: Bioclastic, oolitic, intraclastic 
grainstone. Lower part of this unit is well exposed, 
upper part poorly exposed. Light gray colored. 
Oolitic layers dolomitized. Individual clasts appear 
parallel and randomly oriented to bedding. Thin 
argillaceous layers common. 

Nolichucky: Moderate to poorly exposed. 
Bioturbated lime mudstone, oolitic grainstone, and 
intraclastic packstone. Thin to thick bedded. 
Intraclastic layers are thick bedded. 
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The outcrop is located in Luttrell Quadrangle on 61  west . The outcrop is a quarry located 
adjacent to Bull Run Creek. Base of the outcrop is covered, however the top of this 
outcrop is well exposed. Description and measurement begins at the first exposed massive 
limestone layer. 

UNIT THK(m) 

1 0 .8 

2 1 . 5 

3 1 . 5  

4 1 .2 

5 2 . 1 

6 6 .9 

CUM THK(M) DESCRIPTION 

0.8 

2 .3 

3 .8  

5 .0 

7. 1 

14 .0 

Maryville Limestone: Oolitic grainstone with thin 
bioclastic layers. Well exposed, gray to dark gray. 
Macro fossils consist of well preserved trilobites 
and ostracods. Oolitic grainstone weathers to buff 
color. Samples: 0 .0 mab, 0.7 mab. 

Maryville Limestone: Alternating layers of 
laminated limestone and mudstone. Poorly exposed, 
fining upward. This unit is followed by a thin 
covered interval . Samples: 2.3 mab. 

Maryville Limestone: Oolitic grainstone with 
intraclasts. Poorly exposed, weathers to buff color. 
Contact with the lower unit not exposed. Oolitic 
grainstone layer contains abundant bioclasts. This 
unit is followed by a small covered interval. 
Samples: 3 .2  mab, U mab. 

Covered Interval . 

Maryville Limestone: Well exposed grainstone, 
mudstone layer at the top which appears 
bioturbated. Light gray to gray colored. Contact 
with the underlying not visible. No discernible macro 
fossils or sedimentary structures. Fining upward 
unit. Samples: 5 .4 mab, 6 .5  mab, Ll mab. 

Maryville Limestone: Renalcis 
boundstone with thin packstone and grainstone 
layers. Well exposed, contact with the underlying 
unit sharp. A well developed hardground marks the 
base of this unit . Macrofossils include, Renalcis, 
trilobites, and ostracods. The grainstone layers are 
composed of oncoids. Abundant intergranular 
fibrous cements. Bioturbated. Samples: Ll mab, 7 .5  



7 6.4 20.4 

8 0 .2  20.6 

9 3 .0 23 .6 

1 0  4.4 28 .0  

1 1  4 .0  32 .0  

mab, 8 .0 mab, 9.2 mab, 1 1 .0  mab, 12 . 1 mab, 1 3 .0 
mab, 14 .0  mab. 

Mcuyyille Limestone: Rena/cis-Girvanella 
boundstone with thin packstone and grainstone 
layers. Well exposed, weathers to buff color. The 
grainstone layers are composed of oncoids. The 
proportion of oncolite layers increase towards the 
top. Abundant intergranular cements. Coarsening 
upward. When viewed from a distance, the unit 
appears biohermal in shape. Fabric is not clearly 
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visible, because the outcrop is fresh. Samples: 14 .9 
mab, 1 5 .2 mab, 1 5 .3 mab, 1 6. 3  mab, lL.O mab, 1 7 .8 
mab, 1 8 .6  mab, 1 9.4 mab. 

Maryville Limestone: Exposure surface 1 .  The 
surface is characterized by a micro scalloped 
surface. Evidence for exposure also consists of 
reddening and insitu brecciation. Abundant 
bioclasts. Samples 20.4 mab. 

Maryville Limestone: Girvanella-Rena/cis-sponge 
boundstone with thin bioclastic layers. Dark gray to 
gray colored. Bioclastic layers consist sponge 
spicules. Well exposed. Contact with the 
underlying unit sharp. The fabric is not clear because 
of the freshness of the outcrop. Commonly 
bioturbated. Intergranular cements in bioclastic 
layers. Samples: 2 1 .2 mab, 2 1 .6 mab, 22.4 mab, 
23 . 1  mab, 23 .6 mab. 

Maryville Limestone: Boundstone with thin 
packstone and grainstone layers, components 
include, Renalcis, Girvanella, sponge, and trilobite 
fragments. Well exposed. Contact with the 
underlying unit sharp. Geometry of the unit is 
biohermal when viewed from a distance. Unit 
appears gray to dark gray. Abundant oncoids in the 
upper part of the unit. Bioturbated. Grainstone 
layers increase towards the top. Samples: 24. 8  mab, 
25 .0 mab, 26.0 mab, 26.6 mab, 27.6 mab. 

Maryville Limestone: Oncoidal 
grainstone/packstone with thin mudstone and 



1 2  1 . 5 33 .5  

13  1 . 7 35 .2  

14  2 .8  38 . 0  

1 5  6 . 0  44.0  

1 34 

bioclastic layers. Light gray to dark gray, 
bioturbated, burrows filled with dolomite. Contact 
with the underlying unit sharp. Well exposed. 
Generally becomes grainstone upwards. The unit 
generally turns bioclastic upwards. Samples: 28 .3 
mab, 28.9 mab, 29.0 mab, 30 .2 mab, 3 1 . 1  mab, 3 1 . 8 
mab. 

Maryville Limestone: Oncoidal limestone with thin 
bioclastic layers. Well exposed, contact with the 
underlying unit sharp. Oncoidal at the base grading 
upwards into bioclastic layers. Samples: 32 .4 mab, 
32.9 mab, 33 .2 mab. 

Maryyille Limestone: Oncoidal 
packstone/wackestone with thin mudstone layers. 
Contact with underlying unit sharp. Well exposed, 
gray to dark gray, weathers to tan color. The 
wackestone and mudstone layers are bioturbated. 
No visible macro fossils. Sponge spicules can be 
identified in freshly broken samples. Few oncoids at 
the base of the unit with increasing proportion of 
oncoids towards the top. Oncoids appear dissolved 
and replaced with blocky clear calcite spar. 
Samples: 33 . 5  mab, 33 . 8  mab, 34 .8  mab. 

Maryville Limestone: Oncoidal 
grainstone/packstone with few bioclastic layers. 
Well exposed, contact with the underlying unit 
sharp. Light gray. The top of the Maryville 
Limestone is at 38 .0 mab. Top is marked by a 
microscalloped surface with a thin layer of skeletal 
lag and abundant spar. The microscalloped surface is 
marked by a thin dark colored crust. Samples: 3 5 .2 
mab, 36. 1 mab, 36 .5  mab, 37 .3 mab, 38 . 0  mab. 

The top of the Maryville Limestone is interpreted to 
be a sequence boundary. It is interpreted to be an 
exposure as well as a drowning surface. 

Nolichucky Shale: Well exposed, contact sharp with 
the underlying unit. The lime nodules at the base of 
this unit appears bioturbated. No macrofossils. The 
carbonate layers are thinly laminated occasionally 



135 
appearing as microhummocky cross laminated. 
Sparse intraclasts. Upper part of this unit is poorly 
exposed. Samples: 38 .2  mab, 39. 1 mab, 40. 5  mab, 
42.0 mab. 
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Outcrop is located in the Graveston Quadrangle. This outcrop is a roadcut located 
adjacent to the Bull Run Creek on 1 44 W. Base of the outcrop is covered, however the 
top of this outcrop is well exposed. Description and measurement begins at the first 
exposed massive limestone layer. 

UNIT THK(rn) CUM. THK(rn) 

1 3 .0  3 .0  

1 . 5  4 .5  

2 4 . 5  9.0 

3 0 .7  9.7 

0 .5  1 0.2 

4 3 . 0  1 3 .2 

DESCRIPTION 

Maryville Limestone: Oolitic-intraclastic 
grainstone. Thin layers ofbioclastic grainstone. Well 
exposed, light gray colored unit. Weathers to buff 
color. Contact with the underlying unit not exposed. 
Macro fossils include trilobites and ostracods. 
Individual clasts measure up to 2 - 3 ern. Samples: 
0. 0 mab, U rnab, 2 .0  mab, 2. 7 mab, 2 .8 mab. 

Covered interval . 

Maryville Limestone: Nodular limestone and 
intraclastic grainstone/packstone. Contact with the 
underlying unit not exposed. This unit is moderately 
exposed. Intraclastic at the base and nodular 
towards the top. The intraclastic beds are 5 - 1 0  em 
thick. Light gray to gray colored. The nodular beds 
appear bioturbated. Samples: 4 .5  mab, 5 . 1  mab, 5 .4  
mab, 6 .9 rnab, 8 .0  mab. 

Maryville Limestone: Oolitic grainstone. Well 
exposed, cross-bedded. Contact with the underlying 
unit sharp. Weathers to buff. No macro fossils. This 
unit is overlain by a thin covered interval. Samples: 
� mab. 

Covered interval. 

Maryville Limestone: Oolitic-intraclastic 
grainstone. Contact with the underlying unit not 
exposed. Macro fossils include trilobites and 
ostracods. Thin bioclastic layers occur. Light gray 
colored, no distinct sedimentary structures. Thin 
argillaceous layers occur. Stylolites common. 
Samples: 1 0 .5  rnab, 1 0.8  mab, 1 1 .6 mab, 12 .2  mab, 
1 3 . 2  rnab. 



5 2.4 1 5 .6 

6 1 5  30.6 

7 0.8 3 1 .4 

8 0 . 87 32.27 

9 3 . 5  35 . 77 

Maryville Limestone: Oolitic/oncolitic/bioclastic 

1 3 7  

packstone and wackestone. Well exposed, contact 
with the underlying unit not visible. gray to light 
gray in color. Weathers buff to tan color. Few 
Renalcis fragments. Individual oncoids appear large 
with concentric laminae. Thin argillaceous laminae 
commonly occur. Abundant spar cement. Samples: 
1 3 . 7  mab, 1 4 .4 mab. 

Maryville Limestone: Renalcis boundstone with thin 
grainstone and packstone layers. Contact with the 
underlying unit sharp. Macro fossils consist of few 
trilobite fragments. Moderately well exposed. Light 
gray to greyish in color. Grainstone layers contain 
abundant intergranular cements. Well bedded. 
Boundstone layers are composed of thin argillaceous 
layers which are dolomitized. The proportion of 
oncoids increases toward the top of this unit. 
Individual oncoids display well developed 
concentric laminations. No distinct sedimentary 
structures. Samples: 1 5 .6  mab, 1 6.0  mab, 1 7.0  mab, 
1 8 .2 mab, 1 8 .6 mab, 1 9.4 mab, 20.0 mab, 2 1 .0 mab, 
2 1 .6 mab, 22.7 mab, 24.0  mab, 25 .6 mab, 27.0 mab, 
28.3 mab, 29.6 mab, 30.4 mab. 

Maryville Limestone: Oncolitic packstone. Well 
exposed. Contact with the underlying unit is 
irregular and scoured. Gray to dark gray. Oncoids 
are fairly large. Sparse intraclasts towards the top of 
this unit. Samples: 30 .6 mab, 30 .7 mab. 

Maryville Limestone: Oncoidal 
packstone/grainstone. Individual oncoids appear 
rounded to bean shaped. There is a well defined 
hardground within this unit. Oncoids display 
evidence for dissolution and replacement by spar. 
Contact with the overlying unit sharp. 

Maryville Limestone: Light gray to dark gray. 
Abundant biotic fragments and oncoids. Well 
exposed. Thin interspersed argillaceous layers. 
Biotic fragments appear to be trilobites. This unit 
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grades up into Nolichucky Shale. The contact with 
the overlying unit is sharp. 
Nolichucky Shale 
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The outcrop is located in Fountain City Quadrangle approximately 6 miles from Halls 
Crossroads on 44 1 N. This outcrop here is well exposed. Description and measurement 
begins at the base of the Maryville Limestone. 

UNIT THK(m) CUM.THK(m) 

1 4 .5  4 .5 

2 0.8 5 .3 

3 1 .9 7.2 

4 1 .0 8.2 

5 0 . 7  8.9 

6 9 .0 1 7.9 

DESCRIPTION 

Maryville Limestone: Limestone with thin shale 
interbeds. Base is marked by a well developed 
hardground. This unit is underlain by shale. 
lntraclastic units commonly alternate with thinly 
laminated limestone units. The intraclastic beds are 
medium to thick bedded. Coarsening upward. The 
shale layers are 2 - 3 em thick. In general limestone 
layers become increasingly numerous and thicker 
towards the upper part of this unit. Samples: 0 .35 
mab, U mab, 1 . 55  mab, 1 .60 mab, 3 .5  mab, 4 .5  
mab. 

Maryville Limestone: Shale with limestone 
interbeds. Thin paper laminated dark colored shale 
beds alternate with laminated limestone beds. 

Maryville Limestone: Intraclastic 
grainstone/packstone with thin interbeds of shale 
and limestone. Fining upward. The intraclastic beds 
are medium to thick bedded. Well exposed. Base of 
this unit is scoured. Samples: 6.05 mab, 6.25 mab. 

Maryville Limestone: Shale 

Maryville Limestone: Thick bedded intraclastic 
grainstone. Glauconite common in intraclastic layers. 
Fining upward unit, well exposed. Contact sharp 
with the underlying unit. Samples: 8 .3 mab, 8 . 8  mab. 

Maryville Limestone: Limestone and shale interbeds 
with thin to medium bedded intraclastic 
grainstone/packstone layers. Abundant nodular 
limestone layers towards the top of this unit. The 
lower part of the unit is poorly exposed. Contact 
with the underlying unit diffuse. Fining upward unit. 
Few scoured surfaces commonly occur within this 



7 1 0 . 0  27.9 

8 3 . 0  30.9 

9 2 .0 32 .9 

1 0  0 .35 33 .4 

1 1  3 . 5  36.9 

12 4 .0  40.9 

140 
unit. The limestone interbeds are commonly parallel 
to low angle cross lamination. Clasts within the 
intraclastic unit are subparallel to randomly oriented. 
They measure up to few em. Samples: tl mab, 9 .7  
mab, 1 0. 0  mab, 1 2 .4 mab, 1 3 . 5  mab, 1 4.2 mab, 
1 6.0  mab, 16 .9  mab. 

Covered interval 

Maryville Limestone: Shale and limestone interbeds. 
Shale is abundant at the bottom grading into 
limestone towards the top. Coarsening upward. The 
top of this unit is marked by a thick bedded 
intraclastic layer. The base of intraclastic bed is 
marked by scour marks. Samples: 28 .9 mab, 29.05 
mab, 30 .7  mab. 

Maryville Limestone: Shale and limestone and 
calcareous siltstone interbeds. Moderately exposed. 
The limestone beds range from 2-3 em thick, thinly 
laminated. Samples: 3 1 .6 mab. 

Maryville Limestone: Thick bedded intraclastic 
grainstone. Base of this unit is scoured. Well 
exposed. Abundant glauconite. Clasts subparallel to 
randomly oriented. Clasts display evidence for 
micritization. This unit is not laterally continuos 
even in outcrop scale. Samples: 33 .0  mab. 

Maryville Limestone: Limestone and shale interbeds. 
Moderate to poorly exposed. Coarsening upward. 
The top of this unit is marked by a medium bedded 
intraclastic layer. Intraclastic layer is typically 
capped by thin laminated limestone layer. The 
limestone interbeds measure up to a few em and are 
thinly laminated. Samples: 35 .9  mab, 36.4 mab, 36 .5  
mab. 

Maryville Limestone: Alternating intraclastic 
packstone, nodular limestone and shale interbeds. 
Contact with the lower unit sharp. Lower part of 
this unit is poorly exposed. This unit contains 
coarsening and fining upward layers. The intraclastic 
beds are typically thin, medium, and thick bedded. In 



1 3  0 .75 41 .65 

1 4  2 . 0  43 . 65 

1 5  0.25 43 .9 

1 6  1 . 35  45.25 

1 7  1 . 1 5 46.4 

1 4 1  
thickbedded layers, a thin shale layer occurs 
between two intraclastic layers. Clasts in the 
intraclastic beds appear subparallel to irregularly 
oriented. Limestone interbeds are thinly laminated. 
Polished slabs of limestone interbeds display partial 
Bouma sequence. Samples: 37 .0  mab, 37.25 mab, 
37 .5  mab, 38 .3 mab, 38 .5  mab, 38 .7  mab, 39.05 
mab, 39.25 mab, 40.2 mab, 40.5 mab, 40.6 mab. 

Maryville Limestone: Oolitic intraclastic 
grainstone/packstone. Well exposed, massive. Gray 
in color, weathers to buff. The individual ooids 
appear large and appear to be dolomitized. Contact 
with the underlying unit is sharp. Samples: 4 1 .2 
mab. 

Maryville Limestone: Limestone and shale interbeds 
with thin intraclastic packstone layers. Contact with 
the underlying unit sharp. Coarsening and fining 
upward unit. The intraclastic packstone beds exhibit 
planar contact with the underlying beds. The 
intraclastic beds are thin to medium bedded and 
commonly coarse grained. Limestone interbeds are 
commonly nodular. Shale interbeds appear dark. 
Samples: 4 1 . 7  mab, 42.0 mab, 42.2 mab, 42. 5  mab, 
43 .0  mab, 43 . 1  mab, 43 .3  mab, 43 . 5  mab. 

Maryville Limestone: Intraclastic 
grainstone/packstone. Medium bedded (25 em), 
contact with the underlying unit sharp. Interspersed 
within this unit is a thin shale layer. 

Maryville Limestone: Interbedded shale, intraclastic 
packstone and nodular limestone. Shale interbeds 
are much thinner compared to limestone beds. 
Coarsening upward unit. The intraclastic beds are 
amalgamated. There are several intraclastic layers 
each separated by a thin shale layer. Samples: 44.0 
mab, 44.5  mab, 44.7  mab. 

Maryville Limestone: Interbeds of limestone/shale 
and intraclastic packstone. Limestone interbeds 
appear light to dark gray with thin planar 
laminations. Shale appears as thin dark beds. 



1 8 3 .0 49.4 

1 9  3 .6  53 . 0  

1 5 .0  68 .0 

20 0 .3  68 . 3  

1 . 5  69. 8 

2 1  0 .6  70.4 

22 1 .0 7 1 .4 

23 1 .0 72.4 
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Samples: 45.4 mab, 45 .7  mab, 45 .9 mab, 46. 1 mab, 
46.3 mab. 

Maryville Limestone: Well exposed interbedded 
planar laminated limestone, intraclastic grainstone, 
and oolitic packstone with thin shale layers. Base of 
this unit consists of planar laminated layer grading 
upward into thin to thick bedded intraclastic layers. 
In general the intraclastic layers are thin bedded. 
Samples: 46.5  mab, 46.9 mab, 47.2 mab, 47.5 mab, 
48 .0 mab, 48 .25 mab. 

Maryville Limestone: Interbedded laminated 
limestone, intraclastic packstone, and shale layers. 
This unit is followed by a large covered interval . 
Measurement and description continues on the 
opposite of the road cut where the upper part of the 
Maryville Limestone is well exposed. Samples: 49.7 
mab, 50.8 mab, 5 1 .4 mab, 52.0 mab. 

Covered interval 

Maryville Limestone: Laminated argillaceous 
limestone. Poorly exposed. Contact with the 
underlying unit not exposed. Weathers to yellowish 
brown. Laminations occur as parallel to low angle 
cross laminations. 

Covered interval 

Maryville Limestone: Laminated mudstone. 
Moderately exposed. Dark gray in color. Weathers 
to dark brown. Samples: 70.0 mab. 

Maryville Limestone: Laminated argillaceous 
limestone. Poorly exposed. Contact with the 
underlying unit diffuse. 

Maryville Limestone: Laminated limestone and 
oolitic intraclastic grainstone. Basal part of this unit 
is poorly exposed. Upper part consists of thick 
bedded oolitic intraclastic grainstone. Coarsening 
upward. Weathers to buff Samples: 72.0  mab. 



24 1 .4  73 . 8  

25 1 .2 75 .0  

26 1 . 3 76.3 

27 0.9 77.2 

28 1 . 1  78 .3  

Maryville Limestone: Intraclastic packstone, 
laminated mudstone and thin shale layers. Well 
exposed. Gray to dark gray in color. The 
interbedded mudstone layers display thin 
laminations. Samples: 72. 5  mab, 73 .2 mab, 73 . 8  
mab. 

Maryville Limestone: Laminated limestone. 
Moderate to poorly exposed. Contact with the 
underlying unit sharp. Dark gray in color. 
Laminations appear as planar to low angle cross 
laminations. Samples: 74.6  mab, 74 .8 mab. 

Maryville Limestone: Lime mudstone, laminated 
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limestone and intraclastic packstone. Contact with 
the underlying unit sharp. Mudstone beds appear 
dark in color. Intraclastic beds are thin to medium 
bedded. Coarsening upward. Intraclastic beds are 
commonly separated by thin argillaceous layers. 
Samples: 75 .0  mab, 75 . 7  mab, 75 . 8  mab. 

Maryville Limestone: Interbedded intraclastic 
grainstone and laminated limestone. Contact with 
the underlying unit, sharp. Fining upward unit. 
Intraclastic beds range from thin to medium bedded. 
Base of thin bedded intraclastic layers marked by 
tool marks. Clasts are parallel laminated. Laminated 
lime mudstone interbeds range in thickness from 3-5 
em. Samples: 76.4  mab, 76.6 mab, 77.2 mab. 

Maryville Limestone: Interbedded intraclastic 
packstone and laminated silty limestone. Well 
exposed. Contact sharp with the underlying unit. 
Intraclastic beds are typically capped by a thin 
argillaceous layer. Individual clasts range from less 
than 1 em to about 4 em. They are parallel to 
imbricated. Intraclastic layers range from mud to 
clast supported. Laminations in silty limestone layers 
consist of parallel and low angle cross laminations. 
Undersides of these beds are marked by tool marks. 
Samples: 77.3 mab, 77.5 mab, 77.6 mab, 77.9 mab, 
78.2 mab. 



29 2.2 80 .5 

30 1 .0 8 1 . 5  

3 1  4 .5  86.0 

32 4.0 90.0 

33 2 .0  92.0  

Maryville Limestone: lntraclastic 
grainstone/packstone with thin shale layers. Well 
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exposed, thick bedded. Intraclastic layers capped by 
a thin shale layer. lntraclastic beds are laterally 
discontinuous. Samples: 79. 1 mab, 79.9 mab. 

Maryville Limestone: Laminated limestone. Well 
exposed. Overlying this unit is a poorly exposed 
unit. Samples: 80.6 mab. 

Maryville Limestone: Intraclastic limestone with 
thin shale layers. Poorly exposed unit. Light to dark 
gray in color. Samples: 8 1 .8 mab, 85 . 8  mab. 

Maryville Limestone: Renalcis boundstone. 
Exceptionally well exposed. Base of this unit is 
marked by a thin intraclastic layer. Fabric is not very 
clear probably because of dolomitization. Unit 
appears massive. Cross laminations?. Samples: 86 .0 
mab, 86.6 mab, 86.9 mab, 87.4 mab, 88 .0  mab, 
89.4 mab, 90.0 mab. 

Nolichucky Shale 
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CLINTON IDGHW AY OUTCROP AND SAMPLES 

Outcrop is located on the northeast side of Clinton Highway between Stradler 
Road (Brushy Valley Road) and the bridge over Bull Run Creek. Contact with the 
underlying Rogersville shale is covered. For this outcrop thin sections prepared by Kozar 
( 1986) were used for petrographic studies. 
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APPENDIX C 

ELECTRON MICROPROBE DATA 



Table: Electron Microprobe Analysis of Unaltered oncoids 

Sample Id/Sample No. MgC03 wt% MgC03 mol% CaC03 wt% 

Unaltered oncoid WG 28.8 1 .223 1 .450228 98.288 

Unaltered oncoid WG 28.8 1 .404 1 .665 145 98.207 

Unaltered oncoid WG 28.8 1 .771 2.09137 98.354 

Unaltered oncoid WG 28.8 1 .26 1 .4806 99.52 1 

Unaltered oncoid WG 28.8 1 .6 1 3  1 . 901448 98.705 

Unaltered oncoid WG 28.8 1 .5 1 5  1 .779404 99. 1 59 

Unaltered oncoid WG 28.8 1 .294 1 .537707 98. 194 

Unaltered oncoid WG 28.8 0.73 1 1 .730595 49.05 

Unaltered oncoid WG 28.8 1 .488 1 .777952 97.48 

Unaltered oncoid WG 28.8 1 .546 1 .825645 98.524 

Unaltered oncoid WG 28.8 1 .239 1 .481 563 97.572 

Unaltered oncoid WG 28.8 2.221 2.642585 96.93 1 

Unaltered oncoid WG 28.8 1 .689 1 . 985983 98.709 

Unaltered oncoid WG 28.8 1 .843 2. 1 86553 97.6 1 1 

Unaltered oncoid WG 28.8 1 .723 2.047075 97.506 

Unaltered oncoid WG 28.8 1 . 1 58 1 .36 142 1  99.38 

Unaltered oncoid WG 28.8 1 .746 2.0832 1 7  97.278 

Unaltered oncoid WG 28.8 1 .398 1 .682599 96.828 

Unaltered oncoid WG 28.8 1 .644 1 .959537 97.457 

Unaltered oncoid WG 28.8 1 .447 1 .691683 99.667 

CaC03 mol% 

98. 1 86 1 3  

98. 1 2222 

97.84627 

98.5 1 94 

98.02324 

98. 1 1469 

98.30238 

97.8266 

98. 1234 1 

98.0 1 4 14 

98.29103 

97. 1 5898 

97.77832 

97.56034 

97.59322 

98.42891 

97.77884 

98. 1 7804 

97.85988 

98. 1 6 1 62 
� � � 

MnC03 wt% 

0.023 

0.087 

0.003 

0 

0 

0 

0.08 

0 

0.067 

0 

0.04 

0.02 

0.054 

0.037 

0.05 

0.0 17 

0.047 

0.0 1 3  

0.05 

0.003 

MnC03 mol% FeC03 wt% FeC03 mol% Total wt% 

0.020006 0.377 0.325348 99.938 

0.075688 0. 1 1  0.094946 99.87 

0.002599 0.035 0.03008 100.2 1 

0 0 0 1 00.78 

0 0.087 0.074639 1 00.4 1 

0 0.098 0.083769 1 00.81  

0.069735 0.087 0.07524 1 99.677 

0 0.257 0.44280 1 50.038 

0.058724 0.02 0.017392 99.088 

0 0. 1 77 0. 1 52 1 1 7  1 00.26 

0.035086 0.221 0. 1 92326 99.072 

0.0 1 7455 0.209 0. 1 80977 99. 381 

0.046576 0.22 1 0. 1 89 1 1 9  100.67 

0.0322 0.248 0.2 1 4 1 33 99.749 

0.043575 0.335 0.289661 99.653 

0.014661 0 .213  0. 1 82247 100.79 

0.04 1 1 35 0.095 0.082492 99. 1 87 

0.01 1477 0. 146 0. 1 27886 98.385 

0.043716 0. 146 0. 1 26649 99. 3 1 2  

0.002573 0. 1 38 0. 1 1 74 1 6  1 0 1 .3 
��-� - � . 

-
� 
-..l 



Table: E lectron Mtcroprobe Analysts of Blocky clear calcite spar m moldtc pores 

Sample Id!Sarnple No. MgC03 wt% MgC03 mol% CaC03 wt% CaC03 mol% MnC03 wt% MnC03 mol% FeC03 wt% FeC03 mol% Total wt% 

Blocky clear calcite spar WG 28.8 0.802 0.952845 98.581 98.6691 0.059 0.05 1 4 1 9  0.355 0.306954 99.826 

Blocky clear calcite spar WG 28.8 0.939 1 . 1 1 58 1 1  98. 364 98.46935 0.087 0.075834 0. 392 0.339007 99.782 

Blocky clear calcite spar WG 28.8 1 .001 1 . 1 89 1 72 98.32 1 98.4004 0.09 0.078429 0.384 0. 332001 99.796 

Blocky clear calcite spar WG 28.8 0.7 0.837865 97.952 98.77 1 0 1  0 0 0.449 0.39 1 129 99. 1 0 1  

Blocky clear calcite spar WG 28.8 0.787 0.947371 97.336 98.7094 1 0.097 0.085652 0.294 0.257567 98. 5 1 4  

Blocky clear calcite spar WG 28.8 0.602 0.72248 97.96 0 0 0.27 0.235825 98.832 

Blocky clear calcite spar WG 28.8 0.443 0.521 652 1 00.02 99.22 1 04 0.03 1 0.026777 0.269 0.230529 1 00.76 

I3locky clear calcite spar WG 28.8 0.758 0.893469 99.4 1 7  98.72 1 33 0.059 0.05 1 0 1 3  0.388 0.332843 1 00.62 

Blocky clear calcite spar WG 28.8 1 .062 1 .252295 98. 825 98. 1 723 0.062 0.053628 0.608 0.52 1 775 100.56 

Blocky clear calcite spar WG 28.8 0 .912 1 . 1 02804 96.698 98.50558 0 0 0.445 0.39 1 6 1 6  98.055 

Blocky clear calcite spar WG 28.8 0.497 0.595376 98.274 99. 1 7764 0.003 0.002636 0.233 0.203 1 37 99.038 

Blocky clear calcite spar WG 28.8 0.635 0.7664 1 97.202 98.83309 0.087 0.077024 0.351  0.3083 1 3  98.297 

Blocky clear calcite spar WG 28.8 1 .02 1 .209628 98.827 98.734 1 1 0.024 0.020878 0.041 0.035386 99. 9 1 2  

B locky clear calcite spar WG 28.8 0.716 0.83725 1 00.36 98.86508 0.014 0.01 2009 0.298 0.253604 1 0 1 .44 

Blocky clear calcite spar WG 28.8 0.923 1 .091 639 99. 1 26 98.76542 0 0 0. 1 59 0. 1 36858 1 00.22 

Blocky clear calcite spar WG 28.8 1 . 1 63 1 .389304 97.654 98.27604 0. 1 56 0. 1 36699 0.2 1 2  0. 1 843 1 1  99.205 

Blocky clear calcite spar WG 28.8 0.893 1 .07478 97.353 98.70914 0.052 0.045908 0. 1 88 0. 1 64673 98.494 

Blocky clear calcite spar WG 28.8 1 .025 1 . 2 1 7891 98.294 98.39008 0.045 0.039221 0.408 0. 3528 1 1  99.772 

I3locky clear calcite spar WG 28.8 0.807 0.972786 97. 1 7  98.67701 0.024 0.021 222 0.375 0. 328982 98.376 

B locky clear calcite spar WG 28.8 0.908 1 .086492 97.854 98.64 1 35 0.048 0.042 1 3 1  0.26 1 0.227289 99.075 

Blocky clear calcite spar WG 28.8 0.927 1 . 1 1 8057 96.92 98.47762 0.007 0.006 1 93 0.452 0.396753 98.308 

Blocky clear calcite spar WG 28.8 0.495 0. 593468 98.07 99.0532 0.074 0.06508 0. 328 0.286 1 96 98.97 

Blocky clear calcite spar WG 28.8 0.688 0.82 1 1 9  98.278 98.82 147 0.047 0.04 1 1 5  0.364 0.3 1 6 1 94 99.377 



Blocky clear calcite spar WG 28.8 0.566 0.6794 14 97.985 99.08726 0.01  0.008805 0.257 0.2245 1 7  98. 8 1 8  

Blocky clear calcite spar WG 28.8 0.786 0.938362 98. 1 94 98.758 1 1  0.044 0.038532 0.305 0.264999 99.329 

Blocky clear calcite spar WG 28.8 0.942 1 . 1 33382 97. 1 64 98.485 1 2  0.034 0.030007 0.392 0.343248 98.544 

Blocky clear calcite spar WG 28.8 0.653 0.785954 97.583 98.94589 0.0 1 7  0.01 5009 0.289 0.253 1 5  98. 542 

Blocky clear calcite spar WG 28.8 0.5 1 9  0.620335 98.525 99.20763 0 0 0. 1 86 0. 1 6 1 796 99.245 

Blocky clear calcite spar WG 28.8 0.5 1 5  0.61 8701 97.974 99. 1 5726 0.03 0.026437 0.226 0. 1 97597 98.745 

Blocky clear calcite spar WG 28.8 0.876 1 .048888 97.776 98.62734 0 0 0.348 0. 30325 99.03 

131ocky clear calcite spar WG 28.8 0.8 1 3  0.977332 97.378 98.6 1 7 1 3  0.067 0.05908 1 0.396 0.346453 98.654 

Blocky clear calcite spar WG 28.8 0.9 1 7  1 . 1 00089 97.372 98.40847 0. 1 1 1  0.097679 0.4 5 1  0. 39376 98.8 5 1  

Blocky clear calcite spar WG 28.8 0.9 1 9  1 . 1 09767 96.78 98.45587 0.03 0.026574 0.464 0.407785 98. 1 93 

Blocky clear calcite spar WG 28.8 0.72 1  0.867249 97.508 98.807 1 8  0.027 0.023823 0.329 0.288006 98.605 

Blocky clear calcite spar WG 28.8 0.481 0.570693 99. 1 38 99.09 1 76 0.027 0.023499 0.348 0.300493 1 00.0 1 

Blocky clear calcite spar WG 28.8 0.52 0.623324 98.204 99. 1 699 0.003 0.002638 0.234 0.204 1 38 98.961 

Blocky clear calcite spar WG 28.8 0.599 0.71 4282 98.473 98.92357 0.037 0.032364 0.38 0.329779 99.489 

Blocky clear calcite spar WG 28.8 0.602 0.71 292 99. 1 58 98.92628 0.044 0.038222 0.368 0.3 1 7 1 68 1 00 . 1 8  

Blocky clear calcite spar WG 28.8 0.823 0.988267 97.407 98.53 8 1 3  0.034 0.029948 0.459 0.40 1 1 29 98.785 

Blocky clear calcite spar WG 28.8 0.647 0.7802 1 8  97. 394 98.94273 0 0 0.289 0.253634 98.364 

Blocky clear calcite spar WG 28.8 0.91 1 .080746 98. 342 98.39228 0.087 0.075792 0.522 0.45 1 1 8  99.86 1 i 
Blocky clear calcite spar WG 28.8 0.731 98. 1 14 98.68 1 62 0.04 0.03503 1 0.471 0.409245 

� 
99. 358 i 

-
+>-
'D 



Table: Electron Macroprobe Analysts of Planar Dolomate 

Sample Id/Sample No. MgC03 wt% MgC03 mol% CaC03 wt% CaC03 mol% 

Plan. dolo, core WG 28.8 39.78I 44.578 55.977 52.844 

Grain I ,  rim 38.436 43.229 57.34 54.329 

Grain I , rim 36.89I 4 1 .772 57.978 55.305 

Pia. dolo. grain 2 core 37. 1 1 5  42. 1 57 57.635 55. 1 5 1  

Grain 2 ,  rim 37.877 42.674 57.72 1 54.785 

Grain 2, rim 37.802 42.4 58.6 12  55.383 

P1a.dolo. grain 3 core 38.425 43.009 56.659 53.427 

Grain 3, rim 37.61 5 42.5 13  57.444 54.695 

Grain 3, rim 38.964 43.642 57.012 53.795 

Grain 4, core 39.71 8 44.388 56.085 52.804 

Grain 4, rim 38.234 43. 103 56.848 53.989 

Grain 4, rim 36.455 4 1 .246 57.43 54.74 

Grain 4, rim 37.765 42.82 56.2 53.683 

Grain 4, rim 34.709 39.397 60.474 57.827 

Dolo. inclu. in cal. spar 41 .381 46.455 53.859 50.937 

Same grain 40. 1 1 I  45.057 54.768 5 1 .828 
--

Pia. dolo grain 5 WG 17.8 37.862 42. 174 59.293 55.64 

Grain 5 37.238 4 1 .876 58. 5 1 5  55.435 

Grain 5 4 1 . 1 9 1  45.675 57. 1 8  53.4 1 5  

Grain 6 ,  core 41 .299 45.791 56.6 14 52. 882 

Grain 6, core 39.991 44.868 56.615 53. 5 1 1 

Grain 7, core 40.706 45.44 55.968 52.633 

(}rain 7, close to rim 38. 175 42.812 58. 10 1  54.892 

MnC03 wt% MnC03 mol% FeC03 wt% 

0.054 0.044 3. I07 

0. 105 0.087 2 .877 

0.078 0.065 3.468 

0.088 0.073 3. 168 

0. 1 3 I  0. 108 2.967 

0. 1 59 0. 1 3 I  2.555 

0.0 14 0.01 1 4.361 

0.05 1 0.042 3.343 

0.088 0.072 3.056 

0. 10 1  0.083 3 .351 

0.05 1 0.042 3.493 

0. 127 0 . 105 4.746 

0. 1 39 0. 1 16 4.097 

0.047 0.039 3.3 1 3  

0 0 3 . I 92 

0.093 0.077 3.7I7 

0.061 0.05 2.635 

0.09 0.074 3 . 1 95 

0.065 0.053 1 .062 

0. 1 1 9  0.097 1 . 525 

0.064 0.053 1 .92 1 

0.071 0.058 2.3 

0.064 0.053 2.748 

FeC03 mol% 

2.534 

2.355 

2.858 

2 .6 19  

2.433 

2.086 

3.552 

2.75 

2.491 

2.726 

2 .866 

3.908 

3 .38I 

2.737 

2.608 

3.039 

2. 1 36 

2.6 I 5  

0.857 

1 .23 1 

1 . 569 

1 . 869 

2.243 

Total wt% 

98.92 

98.76 

98.42 

98.0 1  

98.7 

99. 1 3  

99.46 

98.45 

99. 1 2  

99.26 

98.63 

98.76 

98.2 

98.54 

98.43 

98.69 

99.85 

99.04 

99.5 

99.56 

98.59 

99.045 

99.088 
-
v. 
0 



Grain 7, rim 38.095 42.952 56.544 53.709 

Grain 7, rim 33.784 38.23 62.837 59.903 

Grain 8, core 40.675 45.074 58.071 54.2 1 3  

Grain 8 ,  core 42.295 45.95 57. 14 52.298 

Grain 8, rim 37.357 42 .074 56.553 53 .658 

C'JTain 8 , rim 38.862 43.614 55.748 52.708 

Grain 9, core 4 1 .9 18  45.937 56.753 52.395 

Grain 9, close to rim 38.789 42.789 59.007 54.836 

Grain 9, close to rim 42.43 46.586 55.943 5 1 .745 

Grain 9, rim 38.435 42.955 56.484 53. 1 8 1  

Grain 10 ,  core 42.327 46.485 56. 1 95 5 1 .991 

Grain 10, core 42.532 46.424 56.768 52.2 

Grain 10, close to rim 40.016 44.09 58.244 54.063 

Grain 1 0, close to rim 4 1 .579 46. 198 55.36 5 1 .8 18  

Grain 1 1 , core 4 1 .967 45.978 56.475 52. 1 24 

Grain 1 1 , close to rim 4 1 .059 44.983 57.206 52.799 

Grain 1 1 ,  close to rim 40.994 44.97 57.382 53.03 

NL planar dolomite NF 1 7. 39.24 44.03 1 56.642 53.544 

NL planar dolomite 40.753 45.343 57.39 53.793 

NL planar dolomite 40.738 45.228 57.354 53.643 

NL planar dolomite 4 1 .331 46.3 55.938 52.79 

NL planar dolomite 38.65 43.22 56.746 53.458 

NL planar dolomite 40.774 45.438 56.801 53.325 

NL planar dolomite 40.033 44.718 56. 1 39 52.829 

NL planar dolomite 40.351 45.245 55.564 52.487 
··- ------ ... 

0. 107 0.088 3 .961 

0.034 0.028 2 .233 

0 0 0.884 

0. 108 0.086 2 . 1 07 

0.051 0.042 5 . 1 56 

0.04 1  0.034 4.462 

0.095 0.076 1 .996 

0.081 0.066 2.876 

0.085 0.068 2.004 

0. 135 0. 1 1 1  4 .615 

0. 1 35 0. 109 1 .771 

0.054 0.043 1 .677 

0 . 122 0.099 2 . 1 8  

0.068 0.055 2 .385 

0. 105 0.084 2.275 

0.058 0.047 2.723 

0.085 0.068 2.42 

0. 105 0.086 2.863 

0.005 0.004 1 .062 

0.027 0.022 1 . 37 

0.02 0.016 1 .096 

0.214 0. 176 3 .867 

0.032 0.026 1 .493 

0.066 0.054 2.95 1 

0.048 0.039 2.73 
----- ··· ·------------------

3.25 

1 .839 

0.71 3 

1 .666 

4.226 

3.644 

1 .592 

2.309 

1 .601 

3.754 

1 .4 1 5  

1 .332 

1 .748 

1 .929 

1 .8 14 

2 . 17 1  

1 .932 

2.338 

0.86 

1 . 1 07 

0.894 

3. 147 

1 .2 1 1  

2.399 

2.228 

98.707 

98.891 

99.63 

10 1 .65 

99. 1 17 

99. 1 1 3  ! 
1 00.76 

1 00.75 

100.46 

99.669 

100.43 

101 .03 

1 00.56 

99.392 

100.83 

10 1 .05 

100.92 

98.85 

99.21 

99.489 

98.385 

99.477 

99. 1  

99. 1 89 

98.693 
.... 
v. .... 



NL planar dolomite 39.874 44.474 56.44 53 .032 

NL planar dolomite 40.359 45.4 55.074 52. 1 9 1 

NL planar dolomite 39.794 44.582 55.946 52. 802 

NL planar dolomite 39.589 43.987 57.8 1 1 54. 1 12 

NL planar dolomite 40.087 44.888 55.6 1 9  52.468 

Pia. dolo. grain 12, core 37.222 42.073 57.946 55. 1 78 

Grain 1 2 ,  rim 36.981 4 1 .749 57. 954 55. 1 1 8  

Grain 1 2  37.98 42.809 57.603 54.697 

Grain 1 3, core 38.728 43 . 1 58 58.4 1 2  54 . 837 

Grain 1 3, rim 37.394 42.363 56.939 54. 342 

Grain 14, rim 33.46 37.998 60.088 57.487 

Grain 14,  rim 34.726 39.033 6 1 .28 58.027 

Grain 1 5, core 37.4 1 4  4 1 .903 58.554 55.247 

Grain 1 5, rim 37.909 42.559 57.591 54.468 

Grain 1 6  32. 1 53 36. 524 63.771 6 1 .026 

Grain 1 6  39. 1 56 44.228 54.935 52.274 

Grain 1 7, core 36.999 42.006 56.406 53 .95 

Dolo. inclu. in cal. spar WQ 37.734 42.325 58.36 55 . 146 

same grain 37.656 4 1 .737 58.345 54.479 

same grain 36.847 4 1 .489 57. 1 2 1  54. 1 83 

Grain 1 8, core 37.085 4 1 .648 58.4 1 5  55.267 

0.088 0.072 2 . 984 

0.09 0.074 2 .852 

0. 1 34 0. 1 1  3.074 

0.03 1 0.025 2.32 

0. 1 5 1  0. 124 3.092 

0.062 0.05 1 3.279 

0. 1 1 1  0.092 3.702 

0.083 0.069 2 . 957 

0.071 0.058 2.401 

0. 1 1 3 0.094 3 .883 

0. 1 14 0.095 5.348 

0. 1 1 8 0.097 3 .475 

0. 1 63 0. 1 34 3.333 

0.069 0.057 3 . 57 

0 0 2 . 964 

0.201 0. 1 67 4.052 

0.204 0. 1 7  4.689 

0.01 7  0.0 1 4  3.081 

0. 1 39 0. 1 1 3  4 . 5 5 1  

0. 1 1 8 0.097 5 . 1 62 

0. 1 32 0. 1 09 3 .64 1 

2.422 

2.335 

2. 506 

1 .876 

2.52 

2.697 

3.042 

2.426 

1 .947 

3.201 

4.42 

2 .843 

2 . 7 1 7  

2 . 9 1 7  

2.45 

3 . 3 3 1  

3 .874 

2 .5 1 5  

3.671 

4.23 

2. 976 

99.386 

98. 375 

98. 948 

99.75 1 

98.949 

98.509 

98.748 

98.623 

99. 6 1 2  

98.337 

99.03 1 

99.599 

99.464 

99. 1 39 

98.888 

98.344 

98.298 

99.2 1 6  

1 00.69 

99.293 

99.305 

-
V1 
N 



Table: Electron Mtcroprobe Analysts ot· Saddle dolomtte 

Sample Id!Sample No. MgC03 wt% MgC03 mol% CaC03 wt% CaC03 mol% 

Saddle dolomite, GS 20 m 37.646 42.344 56.097 53. 156 

Saddle dolomite, GS 20 m 38.9 43.73 55.9 52.94 

Saddle dolomite, GS 20 m 37.934 42.901 55 .528 52.904 

Saddle dolomite, GS 20 m 38.33 1 42 .963 55.679 52.574 

Saddle dolomite, GS 20 m 38.282 43.242 55.788 53.088 

Saddle dolomite, GS 20 m 38. 1 37 42 .926 56.075 53. 17 1  

Saddle dolomite, GS 20 m 37.956 42.75 55.943 53.082 

Saddle dolomite, GS 20 m 38.464 42.99 56. 178 52.896 

Saddle dolomite, GS 20 m 37.906 42.33 56.864 53.495 

Saddle dolomite, GS 20 m 39. 1 14 44.027 55.728 52.844 

Saddle dolomite, GS 20 m 39.229 43.75 1 55.777 52.406 

Saddle dolomite, GS 20 m 37.945 42.395 56.59 1 53.265 

Saddle dolomite, GS 20 m 38.086 42.533 56.754 53.395 

Saddle dolomite, GS 20 m 38.8 43.548 55.8 52.76 

Saddle dolomite, GS 20 m 39.4 1 3  44.394 55.836 52.984 

Saddle dolomite, GS 20 m 39.292 44.298 55.7 52.903 

Saddle dolomite, GS 20 m 38.85 43.9 1 1  55.952 53.277 

Saddle dolomite, GS 20 m 38.643 43.571 55 .892 53.091 

Saddle dolomite, GS 20 m 38.952 43.586 56.646 53.398 

Saddle dolomite, GS 20 m 39. 1 59 44.203 55.583 52.857 

Saddle dolomite, GS 20 m 39.2 43.96 56 52.906 

Saddle dolomite, GS 20 m 38.807 43.533 56.593 53.483 

Saddle dolomite, GS 20 m 38. 1 57 42.637 57.0 16  53.672 

MnC03 wt% MnC03 mol% FeC03 wt% 

0. 123 0 . 101  5.373 

0.06 0.049 4.01 

0.045 0.037 5.052 

0. 1 24 0. 102 5 .346 

0.079 0.065 4 .385 

0.071 0.059 4.693 

0.098 0.081 4 .986 

0.076 0.062 4.98 1 

0. 105 0.086 5.03 1 

0.068 0.056 3 .751 

0.094 0.077 4.64 

0.081 0.066 5.256 

0. 1 0.082 4.909 

0.05 0.04 1  4.47 

0.07 0.058 3 . 1 28 

0.095 0.079 3.3 16  

0.089 0.074 3 .328 

0.04 1 0.034 4.026 

0. 1 5  0. 123 3. 552 

0.048 0.04 3 .53 1  

0.05 0.04 1 3 .79 

0.061 0.05 3. 594 

0.091 0.075 4.447 

FeC03 mol% 

4.398 

3.281 

4. 1 58 

4.361 

3.605 

3.844 

4.087 

4.052 

4.089 

3.073 

3.766 

4.274 

3.99 

3.65 1 

2 .564 

2.721 

2.738 

3.304 

2.893 

2 .901  

3.093 

2.934 

3.616 

Total wt% 

99.239 

98.8 

98.559 

99.48 

98.534 

98.976 

98.983 

99.699 

99.906 

98.66 1 

99.74 

99.873 

99.849 

99.2 

98.447 

98.403 

98.2 1 9  

98.602 

99.3 

98.32 1 

99. 1 

99.055 

99.71 1 

' 

-
u. 
....., 



Saddle dolomite, GS 20 m 37.8 1 1 42.81 1 55.686 53. 1 16 0.061 0.05 1 4.882 4.023 98.44 

Saddle dolomite, GS 20 m 39.491 44.244 55.322 52.2 1 5  0.073 0.06 4.27 3.482 99. 1 56 

Saddle dolomite, GS 20 m 37.867 42.774 55.884 53. 18  0. 1 29 0. 107 4.791 3.939 98.671 

Saddle dolomite, GS 20 m 38.7 43. 1 1 1  57 53.492 0 . 1  0.082 4.09 3 . 3 16  99.8 

Saddle dolomite, GS 20 m 39.496 44.058 57.034 53.598 0.068 0.056 2 .818 2.288 99.4 16  

Saddle dolomite, GS 20  m 39.393 44.393 56.068 53.229 0.078 0.064 2.821 2 .3 14  98.36 

Saddle dolomite, GS 20 m 40. 19  44.691 57.05 1 53.444 0.08 1 0.066 2.223 1 .799 99.545 

Saddle dolomite, GS 20 m 39.361 44. 132 57. 1 53.934 0.03 1 0.025 2.339 1 . 909 98.83 1 

Saddle dolomite, GS 20 m 39.049 43.838 57. 324 54.2 1 5  0.076 0.063 2.307 1 . 885 98.756 

Saddle dolomite, GS 20 m 38.36 43. 1 1 1  55.735 52.769 0.08 0.066 4.957 4.054 99. 1 32 

Saddle dolomite, GS 20 m 38. 1 42.801 56.3 53.282 0. 1 0.082 4.69 3.834 99.2 

Saddle dolomite, GS 20 m 38.095 42.704 56.522 53.378 0. 1 1 3 0.093 4.689 3 .825 99.41 9  

Saddle dolomite, GS 20 m 39.647 44.435 56.235 53.096 0.057 0.047 2.97 2.423 98.909 

Saddle dolomite, GS 20 m 37.941 42.615 55 .86 1  52.858 0. 1 39 0. 1 1 5 5.398 4.4 1 3  99.339 ! 
Saddle dolomite, GS 20 m 37.232 42.043 56.01 3  53.285 0. 1 1  0.091 5.574 4.581 98.929 

Saddle dolomite, GS 20 m 37.5 18  42.462 55.716 53. 122 0.068 0.056 5.293 4.36 98.595 

Saddle dolomite GS 22.7m 37.24 4 1 .589 58. 125 54.685 0. 1 04 0.085 4.48 3.641 99.949 

Saddle dolomite GS 22.7m 38.6 43.252 56.6 53.428 0. 14 0. 1 1 5  3 .93 3.205 99.3 • 

Saddle dolomite GS 22.7m 36.969 4 1 .475 57.548 54.39 0. 108 0.089 4.955 4.046 99.58 

Saddle dolomite GS 22.7m 38.245 43.033 55.89 1 52.979 0.084 0.069 4.785 3 .9 18  99.005 

Saddle dolomite GS 22.7m 37.859 42.225 56.9 1  53.472 0.095 0.078 5.205 4.225 100.069 

Saddle dolomite GS 22.7m 37.017 4 1 .81 56.733 53.983 0.047 0.039 5.07 4 . 168 98.867 

Saddle dolomite GS 22.7m 39.688 44.354 56.429 53. 1 27 0.056 0.046 3.04 2.473 99.2 1 3  

Saddle dolomite GS 22.7m 37. 1 52 4 1 .825 56.955 54.016 0. 1 1 6 0.096 4.96 4.064 99. 1 83 

Saddle dolomite GS 22. 7m 37.4 4 1 .606 57.6 53.981 0. 1 0.082 5.35 4.33 1 100 ! 
-
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Saddle dolomite GS 22.7m 37. 131 42.079 

Saddle dolomite GS 22.7m 37.761 42.862 

Saddle dolomite GS 22. 7m 37.71 42.482 

Saddle dolomite GS 22. 7m 38.561 43.617 

Saddle dolomite WG 17.0m 40.567 45.456 

Saddle dolomite WG 17.0m 40.505 45.52 

Saddle dolomite WG 1 7.0m 38.01 1 42.962 

Saddle dolomite WG l 7.0m 39.201 43.862 

Saddle dolomite WG l 7.0m 41 .871 46.629 

Saddle dolomite WG 17.0m 38.022 42.802 

Saddle dolomite WG 1 7.0m 38.455 43.45 

Saddle dolomite WG 17.0m 38.946 43.869 

Saddle dolomite WG l 7.0m 36.843 4 1 .412 

Saddle dolomite WG l 7.0m 37.497 42.37 

Saddle dolomite WG 17.0m 39.986 45.054 

Saddle dolomite WG l7.0m 37.01 4 1 .69 

Saddle dolomite WG 17.0m 37.982 43.062 

Saddle dolomite WG 17.0m 36.741 41 .682 

Saddle dolomite WG 17.0m 38.8 1 1  43.517 

Saddle dolomite WG 17.0m 40.554 45.435 

Saddle dolomite WG 17.0m 4 1 . 104 46.064 

Saddle dolomite WG 17.0m 3 1 . 167 34.927 

Saddle dolomite WG 17.0m 39.759 44.442 

Saddle dolomite WG 17.0m 39.028 43.915 

Saddle dolomite WG 17.0m 39.683 44.4 1 1  
-----
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Saddle dolomite WG l7.0m 40.354 44.835 56.937 53.292 0. 10 1  

Saddle dolomite WG 17.0m 40. 167 44.993 56. 1 92 53.026 0.093 

Saddle dolomite WG 17.0m 38.972 43.556 56.967 53.636 0. 1 19 

Saddle dolomite WG 17.0m 37.503 4 1 .719 59.342 55.61 2  0.042 

Saddle dolomite WG 17.0m 38.971 43. 397 57. 1 98 53.658 0.091 

Saddle dolomite WG 17.0m 38.428 42.904 56.684 53.3 1 5  0. 1 18 

Saddle dolomite WG 17.0m 3 1 .054 34.97 64.401 6 1 .096 0. 1 2 1  

Saddle dolomite WG l7.0m 37.584 42.446 55.781 53.071 0.097 

Saddle dolomite WG 17.0m 38.342 42.86 56.003 52.739 0.097 

Saddle dolomite WG 17.0m 37. 194 4 1 .923 57.342 54.449 0.082 

Saddle dolomite WG 17.0m 36.571 4 1 . 1 16 59.0 16  55.896 0.069 

Saddle dolomite WG 17.0m 38.444 43.206 55.986 53.007 0.057 

Saddle dolomite WG 17.0m 39.68 44.498 54.752 5 1 .726 0.062 

Saddle dolomite Gs 20.0 m 38.2 17 42.345 57.209 53.402 0. 123 

Saddle dolomite Gs 20.0 m 37.852 42. 12 56.873 53 .314 0.058 

Saddle dolomite Gs 20.0 m 37.436 4 1 .772 57.091 53.666 0.095 

Saddle dolomite Gs 20.0 m 38.721 43.573 55.071 52.208 0. 102 

Saddle dolomite Gs 20.0 m 37.595 42. 187 56.446 53.361  0.085 

Saddle dolomite Gs 20.0 m 35.954 40.375 58.646 55.481 0.078 

Saddle dolomite Gs 20.0 m 37. 129 42. 185 55.729 53.34 1  0.078 

Saddle dolomite Gs 20.0 m 39.776 44.283 55.456 52.0 13  0.072 

Saddle dolomite Gs 20.0 m 36.97 41 .508 56.583 53.52 0. 101  

Saddle dolomite Gs 20.0 m 37.77 42.494 56.3 12  53 .373 0.082 

Saddle dolomite, J4 32.72 37.427 57. 1 65 55.086 0.356 

Saddle dolomite, J4 34. 139 39.001 56.654 54.525 0.49 
- ------- -- -----�-
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Saddle dolomite, J4 34.57 39.387 55.873 53.629 

Saddle dolomite, J4 34.348 39. 155 56.9 1 5  54.657 

Saddle dolomite, J4 33 37.587 58.9 56. 5 17  

Saddle dolomite, J4 34.945 39.356 57. 1 1 3 54. 1 88 

Saddle dolomite, J4 33.6 17 38.506 56.39 54.4 14 

Saddle dolomite, J4 33.65 37.978 57.873 55 .026 

Saddle dolomite, J4 34.307 38.848 57.636 54.981 

Saddle dolomite, J4 34.864 39.441 56.8 1 1 54. 143 

Saddle dolomite, J4 34.768 39. 147 57.428 54.473 

Saddle dolomite, J4 33.4 38.0 15  57.3 54.942 

Saddle dolomite, J4 32.361 36.944 59.2 17 56.952 

Saddle dolomite, J4 34.858 39.489 55.714 53. 1 72 

Saddle dolomite, J4 33.706 38.306 57.08 54.649 

Saddle dolomite, J4 34.837 39.444 56.4 53.797 

Saddle dolomite, J4 34.398 38.83 57.283 54.476 

Saddle dolomite, J4 34.2 38.521 57.6 54.656 

Saddle dolomite, J4 34. 1 7  38.9 1 5  56.425 54. 1 36 

Saddle dolomite, J4 33.046 37.58 57.628 55 .21 

Saddle dolomite, J4 33.597 38. 1 52 57.539 55.046 

Saddle dolomite, J4 33.839 38.497 57.344 54.958 

Saddle dolomite, J4 33.877 38.505 57.345 54.91  

Saddle dolomite, J4 33.698 38.061 58.006 55. 1 93 

Saddle dolomite, J4 34.853 39.257 55.854 52.999 

Saddle dolomite, J4 32.382 36.825 59.775 57.266 

Saddle dolomite, J4 34.549 39.262 56.89 54.465 
----- ---------L_ 

0.428 

0.34 

0.3 

0.48 

0.544 

0.747 

0.299 

0.358 

0.247 

0.43 

0.34 1  

0.433 

0.372 

0.34 1 

0.372 

0.35 

0.4 15  

0.643 

0.8 17 

0.3 14 

0.348 

0.339 

0.469 

0.304 

0.3 14 
. --· -

0.358 7.991 

0.284 7. 1 16 

0.25 1 6.8 1  

0.397 7.392 

0.457 7.944 

0.6 18  7.764 

0.248 7. 1 87 

0.297 7.43 1 

0.204 7.538 

0.359 8.07 

0.286 7.003 

0.36 8.465 

0.3 1  8 . 142 

0.283 7.858 

0.308 7.773 

0.289 7.97 

0.347 7.966 

0.536 8.063 

0.681 7.407 

0.262 7.589 

0.29 7.609 

0.281 7.865 

0.387 8.974 

0.254 6.833 

0.262 7.268 

6.626 

5.904 

5.645 

6.059 

6.622 

6.377 

5.923 

6. 1 18 

6. 177 

6.685 

5 .818 

6.979 

6.734 

6.475 

6.386 
6.533 
6.603 

6.673 

6. 122 

6.283 

6.294 

6.465 

7.356 

5.655 

6.01 1 

98.862 

98.7 19  

99 

99.93 

98.495 

100.034 

99.429 

99.464 

99.98 1 

99. 1 

98.922 

99.47 

99.3 

99.436 

99.826 

100 

98.976 

99.38 

99.36 

99.086 

99. 1 79 

99.908 

100. 1 5  

99.294 

99.021 

I ! 

I 
..... 
v. 
-..J 



Saddle dolomite, 14 33.09 37.973 55.992 54. 1 3 1  0.328 

Saddle dolomite, J4 34.588 38.936 57.52 54.549 0.345 

Saddle dolomite, 14 33.526 38.338 56.493 54.423 0.4 14 

Saddle dolomite, J4 32.445 37. 134 59.0 1 8  56.905 0.279 
··-

Saddle dolomite, J4 34.275 39. 1 39 56.5 1  54. 363 0.361 

Saddle dolomite, J4 34.265 38.962 56.598 54.2 17  0.5 

Saddle dolomite, J4 34.7 1 8  39. 177 57.01 5  54 .201 0.397 

Saddle dolomite, J4 34.2 12 38.849 56.739 54.278 0.394 

Saddle dolomite, J4 34.534 39.283 56.785 54.4 17  0.3 1 3  

Saddle dolomite, J4 34. 1 99 38.879 57.308 54.886 0.324 

Saddle dolomite, J4 34. 137 38.353 58. 1 92 55 .078 0.346 

Saddle dolomite, J4 33.957 38.872 56.679 54.66 0.376 

Saddle dolomite, J4 33.795 38.432 56.85 54.464 0.3 17  

Saddle dolomite, J4 34.41 3  38.955 57. 1 14 54.465 0.354 

Saddle dolomite, J4 34.83 39.23 57. 1 97 54.272 0.503 

Saddle dolomite, J4 34. 166 38.903 57. 1 39 54.8 1  0.327 

Saddle dolomite, J4 34. 1 89 39. 148 56.652 54.649 0.349 

Saddle dolomite, 14 33.868 38.34 57.792 55. 1 1 5  0.355 

Saddle dolomite, J4 32.649 37.281 57.594 55.403 0.376 

Saddle dolomite, J4 34.306 38.612 57.873 54.874 0.339 

Saddle dolomite, J4 34.245 38.834 57.274 54.7 1 5  0.351 

Saddle dolomite, NF 1 8.6 m 35. 1 58 39.874 56.844 54.3 I I  0.291 

Saddle dolomite, NF 18.6 m 34.808 39.546 56.975 54.531 0.238 

Saddle dolomite, NF 18.6 m 34.823 39.31  57.359 54.548 0.228 

Saddle dolomite, NF 1 8.6 m 35.305 39.76 57.23 54.296 0.255 
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Saddle dolomite, NF 18.6 m 34.876 39.691 56.493 54. 1 62 0.2 1 5  

Saddle dolomite, NF 1 8.6 m 36.809 41 .389 57. 1 51 54. 1 37 0.206 

Saddle dolomite, NF 1 8.6 m 36.419  40.998 56.901  53.963 0.301 

Saddle dolomite, NF 18.6 m 36.423 4 1 . 104 56.586 53.797 0. 142 

Saddle dolomite, NF 18.6 m 36.074 40.714 57.096 54.287 0.22 1 

Saddle dolomite, NF 18.6 m 40.973 46 55.002 52.02 1 0.2 17 

Saddle dolomite, NF 1 8.6 m 35.055 39.882 56.241 53.903 0.292 

Saddle dolomite, NF 1 8.6 m 33.579 38.718 57.343 55.701 0.21 

Saddle dolomite, NF 1 8.6 m 37.535 42.066 56.345 53 . 1 97 0.299 

Saddle dolomite, NF 1 8.6 m 35.657 40.093 57.923 54.867 0. 19  

Saddle dolomite, NF 1 8.6 m 37.401 42. 108 56. 1 84 53 .288 0.202 

Saddle dolomite, NF 1 8.6 m 35.406 39.877 56.327 53 .444 0.282 

Saddle dolomite, NF 1 8.6 m 34.87 39. 121  57.332 54. 1 88 0.356 

Saddle dolomite, NF 1 8.6 m 32.762 37.204 60.2 13  57.604 0.225 

0. 179 7.205 

0. 17  5.259 

0.249 5.847 

0. 1 1 8 6.065 

0. 1 83 5.863 

0. 179 2.204 

0.244 7.212  

0. 178 6.44 

0.246 5 .507 

0. 1 57 5.968 

0. 167 5.416 

0.233 7.865 

0.293 7.836 

0. 1 87 6.055 

5.968 

4.304 

4.79 

4.981 

4 .816 

1 .801 

5.971 

5.404 

4.492 

4.884 

4.438 

6.447 

6.398 

5.004 

13 .567 

9.939 

l l . l 87 

1 1 .306 

1 1 .083 

4.401 

1 3.719 

12.232 

10.544 

1 1 . 199 

10.223 

14.827 

14.883 

1 1 .471 

...... 
v. 
\0 



160 

APPENDIX D 

STABLE ISOTOPE DATA 



Table: Isotopic analysis of blocky clear calcite spar 

Sample No: Petrographic features d 1 80 d 1 3C 

W.G. 31 .8mab Clear coarse calc.spar , intergranular pore space -8.9 0. 1 6  

28.8 mab Clear coarse calc.spars in oncoids -9.1  0.27 

1 2. 1  mab Clear calc.spar, intergranular pore space -9.2 0.1 5  

1 4. 1  mab Clear calc spar, intergranular porosity -9.5 -0. 1 

1 7.8mab Clear spar, pore central -8.6 0.36 

25 mab Clear spar from girvanella oncoids -9.2 0.38 

W.G. 1 9.6m Clear , coarse calcite spar, intergranular porosity -8.6 0.01 

lntergranular, clear calc.spar -9.5 -1 .4 

W.G. 33.8m l ntragranular, clear calc.spar, coarse -9.5 0 . 1  

W.G 30.2m do -9.7 -0.39 

W.G 21 . 1 m  -9.1  -0.92 

W.G. 8.0m lntergranular, clear calc.spar -9.4 0.72 

Date: 06/04/91 

W.G. 34.6m lntragranular, clear, blocky calcite spar -9.6 -0.03 

W.G. 26.2m do -9.4 0.24 

W.G. 27.6m l ntragranular clear blocky calcite spar -9.3 0. 1 

W.G. 24. 1 m  lntergranular, clear blocky calcite spar -9.6 0. 1 5  

W.G. 45.8m do -9.7 0.06 

Date: 06-06-91 

GS 30.8m lntragranular, clear, blocky calcite spar -9.24 -0.04 

W.G. 20.4m l ntragranular, clear, blocky calcite -8.95 0.3 

W.G. 1 5.2m ? -9.9 -0.04 
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Table: Isotopic analysis of turbid calcite spar 

Sample No: Petrographic features d 1 80 d 1 3C 

1 4. 1  mab Cloudy calc spar -7.5 0.303 

W.G. 1 8.9m lntergranular turbid calcite spar -8.2 0.65 

lntergranular turbid calcite spar -8.43 -0. 1 6  

G.S.  1 9.4  -7.8 0.22 

G .S. 20.0mab lntergranular, turbid calcite spar -7.83 0.71 

G.S. 21 .6m do -7.7 -0.32 

G.S.  25.6m do -7.8 0.36 

G.S.  29.3 do -8.5 0.65 

G.S.  29.6m do -7.9 0.42 

W.G 1 4.0m do -7.27 0.46 

W.G. 31 . 8m do -7.3 0.5 

W.G. 31 .8m do -7. 1  0.48 

GS 22.7m do -8.5 0.036 

GS 25.6m do -8.5 0.35 

W.G.  1 5.3m do -8.2 0.53 

W.G. 1 2 . 1 m do -8.6 0.01 2 

GS 27.0m lntergranular turbid calcite spar -7.5 0.9 

GS21 m lntergranular turbid calcite spar -8.7 -0.82 

N . F. 1 8.5m do -8.6 0. 1 95 

G.S.  1 8.6m do -9.05 -0.62 

W.G 21 . 1 m  -9. 1 -0.92 

W.G. 1 1 .2m do -8.9 0.22 

W.G. 1 2. 1  mab do -8.8 -0.7 



Table: Stable isotope values for Baroque dolomite (Type IV) and stylolite dolomite (Type I l l) 

Sample ld Sample Description d 1 80 at 25 C d 1 3C at 25 C 

W.G. 1 7.0m Baroque dolo, intragra.pore -8.2 0.32 

G.S.  22.7mab Bare. dolo. intragranular pore -8.68 1 .24 

G .S. 20.0mab do -7.3 1 .41 

G.S. 1 8.6m do -8.68 0.73 

N F  1 8.5m Baroque dolomite in intragran -7.45 0.74 

W.G. 1 4.0m do -7.21 1 .25 

GS 27.0m do -7.7 1 .43 

NF 1 9.6m do -8.38 0.74 

W.G. 1 5.2m Baro.dolomite -7.59 0.86 

W.G. 1 7.0m do -7.32 1 .46 

W.G. 1 7.8m do -7.59 1 .42 

W.G. 1 5.3m do -8. 1 1 .58 

N . F. 1 9.0m do -6.68 0.82 

GS 20 Stylolite associated dolomite -8.5 1 .26 

NF 1 8.5m do -7.9  1 .31 

Thm 47.7a do -7.5 0.52 

Thm 27.5 do -7.8 0.33 

ThM 47.7 do -8.4 0.91 

NF 1 9.5 do -8.2 1 .28 

Isotopic values of Cambrian Intraclasts 

Sample ld # Description d 1 80 d 1 3C 

T-1 5 Chwy Peloidal laminated clast -8.6 0.02 

AA-4 do -8.85 -1 .45 

do do -8.7 -1 .5  

H-13 do -8.7 -1 .03 

Z-1 do -8.8 -0.96 

S-4 do -8.3 -0.34 

do do -9 0. 1 2  

X-5 do 8.8 -0.03 

H-6 Chwy do -8. 1 2  -1 . 1 4  I 

do do -8.7 -0.5 



X-5 Chwy do -8.6 -0.5 

AA-7a Calcareous siltstone -8.7 -0.7 

M-3 Chwy do -8.6 -0.04 

T-2 Chwy do -8.7 -0.45 

1 -3 Chwy do -9.7 -1 . 5 

P-4 Chwy do -8.5 -0.2 

do -8.6 -0.5 

A-3 Chwy Micrite intraclasts -7.9 -1 .7 

A-4 Chwy do -8.8 -1 .3  

E-5 do -7.7 -1 .01 
i 

E-7 Chwy do -8. 1  -0.3 

Thm 40.0 do -7.5 -0.4 

Thm 40.0 do -8.4 -1 . 1  

do -8.3 -0.8 

do -8 -1 

do -8.5 -1 . 1  

do -8.6 0.24 



Table: Carbon and oxygen isotopic values of ooids and fibrous cements 

Sample ld d 1 3C d1 80 Sample ld d 1 3C d 1 80 

Cambrian ooids -0. 1 -7.7 Cambrian fibrous cements -0. 6 -8.9 

do 0.3 -7.8 do -0 . 1  -9.4 

do -0. 1 -7.9 do -0.7 -9.5 

do 0.2 -7.6 do -0.2 -8 .4 

do 0 -8 do -0.2 -8.2 

do 0.2 -8. 1 do -0. 87 -8.8 

do -0.3 -9.2 

do -0.7 -1 0 

do -0.4 -9. 1  

do -0.8 -1 0.2 

do -0.4 -9 

do - 1 . 4 -8.9 

do -1 . 1  -8.8 

do -0. 1  -8.8 

do -1 .3 -8.5 

do -0.6 -9. 1  

do -0.2 -8.5 
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