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Abstract

A fundamental computational methodology was investigated to extract quantita-

tive local structure information from single crystal di�use scattering data. The

principles of a highly e�cient, parallelizable local structure analysis using mas-

sively parallel computing resources at Oak Ridge National Laboratory (ORNL)

are demonstrated on an organic hydrocarbon compound containing stacking faults,

Tris(bicyclo[2.1.1]hexeno)benzene. A probabilistic model of the stacking variations

with a �ve layer interaction depth was developed. The �nal model structure

motif statistics are veri�ed using the steady state distribution of Markov matrix

representing the four to �ve layer transitions. The computations revealed that highly

parallelizable �structure-clones� could replace less computationally e�cient �structure

lots�. Further testing of the method is under way, using a new comprehensive modeling

software suite ZODS (Zürich Oak Ridge Disorder Simulations) developed in Zürich,

on synchrotron and lab X-Ray data of a highly e�cient light-upconversion member

of the NaLnF4 [Sodium Lanthanide tetra �uoride] family. Initially, a synchrotron

data set was collected at the high resolution Swiss-Norwegian Beam Line at the

European Synchrotron Radiation Facility and is being analyzed. High resolution

neutron di�raction data were recently collected at the time-of-�ight Laue single

crystal di�ractometer TOPAZ at the Spallation Neutron Source at ORNL using

the newly available event-mode processing. Currently, exploration of the event-

mode data treatment and event based corrections for data preparation are under

way. Simultaneous massively parallel local structure simulations of NaLaF4 [Sodium

viii



Lanthanum tetra �uoride] using ZODS on the National Energy Research Scienti�c

Computing Center are in progress. A step-wise modeling approach was adopted.

The largest contributors to the X-Ray di�use scattering, La2 [Lanthanum 2] and

Na2 [Sodium 2] column neighbor interactions were modeled �rst, followed by F1

[Fluorine 1] shift from its average position toward La [Lanthanum] and away from

Na [Sodium]. This work provides a basis for streamlining di�use scattering analysis

and yields a quantitative interpretation of the local atomic arrangement of crystalline

materials, which may provide valuable information for interpreting their structure

property relationships.
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Chapter 1

Introduction

A crystalline material is de�ned as a 3-D periodic, approximately in�nite, ordered

array of point scatterers. Bragg di�raction, from crystals, is a consequence of the

interference of di�racted radiation waves from the point scatterers (atoms) [7]. The

di�racted Bragg intensities of the scattering object (crystal) are used to re�ne the time

and space averaged atomic positions. The resulting crystal structure de�nes the long

range order or governing (Bragg) structure. Advances in X-Ray di�raction experimen-

tal techniques and instrumentation and a corresponding increase in computing power

and software development over the past few decades of crystallography have given rise

to a high level of automation in structure determination for well-ordered structures

[8]. However, many technologically interesting materials owe their functionality to

local inconsistencies in the crystal structure [4, 9]. Their crystal structures are no

longer represented by a regular periodic function but are more delocalized resulting

in a di�use di�raction pattern [10, 11].

Evidence of local disturbances are revealed in direct space as un-chemical features

such as partial atoms (occupancy < 1) and elongated anisotropic Atomic Displace-

ment Parameters (ADPs) (magnitude in one or more Uij direction signi�cantly larger

than the others). ADPs are an ellipsoidal description of temperature dependent

atomic motion on the lattice site. Partial occupation means that a given site is
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occupied by one atom type in some unit cells, and other types of atoms or possibly

vacant in other unit cells. Highly anisotropic ADPs usually indicate that a given

atom occupies a slightly shifted position for each crystallographic site. The distance

between these positions is lost in the average structure as the local atomic shifts are

smaller than the resolution limit of the Bragg data. To extract the important structure

details analysis of the di�use part of the di�raction pattern becomes necessary.

However, the analysis and interpretation of di�use scattering is far from routine,

requiring careful experimental set-up, appropriate data correction and reduction and

detailed, structure speci�c models.

Local structure variations are propagated in real space and the resulting di�use

intensities are often orders of magnitude weaker than Bragg intensities and distributed

through extensive volumes of reciprocal space. Protocols to extract di�use data

for local structure modeling and the availability of software that interprets these

data is largely lacking [8]. Up to now, the data for only a limited number of such

compounds has been qualitatively interpreted. The few that have been interpreted

utilized elaborate, often ad hoc structural models, which are tested and optimized

with the help of Monte-Carlo simulations, genetic algorithms and numerical least-

squares calculations [12, 13].

Qualitative descriptions of the local structure and simple modeling techniques can

sometimes yield important structural information [14, 15, 16]. However, this work

will show an example of the use of large-scale computational modeling employing

new approaches to extract a quantitative description of the local structural and

capture chemically interesting details (chapter 5 section 5.1). To quantify the

intricate interplay between the local structure and the overall governing structure,

new computational methods are needed. Extracting a quantitative description of

the local structure from the di�use part of the di�raction pattern is complex and

computationally intensive for two primary reasons; (1) only the local structural

disturbances contribute to the di�use scattering in the di�raction pattern and are

often distributed over extensive volumes of reciprocal space making data preparation
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for computational modeling challenging and (2) the model relies on building a

representative set of virtual crystals to simulate the array of local ordering options

and global optimization of the structure speci�c model parameters. Both of these

challenges are addressed in this work.

The dissertation is organized as follows. Background details describing single

crystal di�raction and current computational methodologies are contained in chapters

2 and 3 respectively. A full reciprocal scattering volume including Bragg and di�use

neutron data of β[beta]-NaLaF4 from a series of rare earth doped β[beta]-NaLnF4

(Ln= Y-Lu) of highly e�cient light up-conversion materials, commonly used in LED

display devices and as labels for immunoassays [17] was collected for the �rst time at

100K. Beam time was awarded on the time of �ight Laue single crystal di�ractometer

TOPAZ at the Spallation Neutron Source. The β[beta] phase of NaLaF4 has a

hexagonal average structure [4]. Due to local Na2/La2 column neighbor interactions,

2-D �honey comb� di�use planes between Bragg layers were observed. It was observed

by [4] through single crystal absorption spectroscopy that the local site symmetry of

one of the optically active sites responsible for the upconversion properties of NaGdF4

is of lower symmetry than that of single crystal average structure. This means the

local ordering options need to be examined [4]. Di�use X-Ray data has been collected

and processed for computational modeling however, the availability of complementary

neutron data will permit better modeling as the more similar scattering lengths of F,

Na and La allow a better determination of the shifted F1 position. A path for neutron

data corrections (Lorentz, absorption, spectrum and background) was explored using

MANTID (Manipulation and Analysis Toolkit for Instrument Data) [5] and compared

to conventional post integration correction. This is described in chapter 4.

A new computational method providing a quantitative description of the local

structure of crystalline materials is described in this work. Tris(bicyclo[2.1.1]hexeno)benzene

that crystallizes in three fold, symmetric, coplanar layers, each with multiple stacking

options [18] was selected as a test model. The stacking options were represented using

a probabilistic model with up to �ve layer interaction depth. The layer stacking
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probabilities along with anisotropic displacement parameters (ADPs) and a layer

tilt comprised the local structure model. Three global optimization algorithms were

tested in optimizing the model parameters. These optimization algorithms iteratively

improved the parameter values until the best �t to the experimental di�use intensities

was achieved. Clones (copies of parameter sets) were found to reduce the statistical

modeling noise, serve as an e�ective mechanism for parallelization and can replace

lots (chapter 5). A comparison of the percentages of the possible structural motif

types, calculated from a probabilistic layer growth model, showed a close match to the

reference data. A C++ code was written to calculate the motif statistics from the �nal

generation of optimized crystals, including their clones (Appendix A. 2). The results

were subsequently veri�ed theoretically using the steady-state distribution of the four-

to �ve-layer Markov transition matrix (chapter 7 section 5.1). The parallelization

mechanism using clones was incorporated into a new comprehensive modeling tool

called ZODS (Zürich Oak Ridge Disorder Simulations). Results and veri�cation are

discussed in chapter 7.

Finally, the local structure of NaLaF4 was modeled using ZODS (Zürich Oak

Ridge Disorder Simulations) against lab X-Ray di�use intensity data using a step-

wise approach. The biggest contributors to the di�use intensity were identi�ed �rst

then more aspects of the disorder were incorporated (chapter 6). Additional details

along with ZODS program input and a C++ and python codes used in this work

are contained in the Appendix. A code written in C++ (Appendix A. 1) modeling

local occupational disorder on a 2-D hexagonal lattice provides a glimpse into the

modeling complexity that a seemingly limited example of deviation from average

structure requires.
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Chapter 2

Experimental techniques

2.1 Single crystal di�raction fundamentals

The fundamentals of single crystal di�raction experiments and experimental setup

are brie�y detailed in the following sections. Further information can be found in

fundamental textbooks on X-Ray and neutron scattering such as [1, 3, 19, 20, 21].

2.1.1 Interference

The interaction of an incident wave with an array of point scatterers generates

a spherical wave at each point scatterer. The sum of these di�racted waves

produces a di�raction pattern through constructive and destructive interference. The

path di�erence (phase shift) between point scatterers determines if constructive or

destructive interference occurs (�gure 2.1).

A path di�erence of odd integer multiple of λ/2 relative to the �rst di�racted

wave, corresponds to a phase shift of π and results in waves with equal amplitude

and opposite phase. The resultant wave is the sum of the di�racted waves from each

point scatterer, therefore the waves will cancel each other out resulting in a wave of

zero amplitude (destructive interference). A path di�erence of an even multiple of

λ results in a phase shift of 2π. The two waves are in phase with one another and
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Figure 2.1: Examples of interference of waves. The left hand side depicts two
waves with di�erent phase shifts and/or amplitudes. The right hand side shows the
resultant wave.
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the resultant wave has double the amplitude (sum of both wave's amplitude). This

is constructive interference. The magnitude of the resultant wave can be anywhere

between these two extremes as illustrated in the bottom two plots of �gure 2.1.

Consider each point scatterer as a single atom (scattering center) situated at a

lattice point. The 3-D crystal can then be thought of as consisting of rows of atoms

with spacing a,b and c along x, y and z respectively. The condition required for

constructive interference of a single row of scatterers as shown in �gure 2.2(a) along

the x axis is found by examining the path di�erences between the scattered waves

of adjacent atoms (with spacing a). The path di�erence must be a whole number

(integer) multiple of the wavelength, λ, therefore

(AB − CD) = a(cosαn − cosα0) = nxλ (2.1)

where nx is the di�raction order (number of integer multiples) of λ and αn and α0

correspond to the incident and di�racted beam angles respectively; relative to the x

axis.

Equation 2.1 can be expressed in vector notation. If s0 and s represent the

direction of the incident and di�racted beams respectively and a is the vector between

atoms A and B (each at lattice points) along x (Figure 2.2(b)) then the path di�erence

a(cosαn − cosα0) can be expressed as

a · s− a · s0 = a · (s− s0) = nxλ. (2.2)

All di�racted beams with the same path di�erence occur at the same angle αn to the

atom row.
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Figure 2.2: Figure (a) depicts di�raction of a row of point scatterers along the x
axis. The incident beam angle is α0 and the di�racted beam is at angle αn. The
path di�erence between the incident and di�racted beams is given by: (AB − CD)
and a is the length of AB. In (b) the incident beam direction is s0 and di�racted
beam direction is s. The path di�erence between the di�racted beams is shown as
the di�erence between the projection of a (vector between A and B from �gure 2.2)
onto s0 and a onto s, i.e.; a · (s− s0). Figure taken from [1].

Analogously, this same analysis when performed for atoms along y and z at spacing

b and c respectively, produces the resulting Laue equations below;

b(cos βn − cos β0) = b · (s− s0) = nyλ (2.3)

c(cos γn − cos γ0) = c · (s− s0) = nzλ. (2.4)

The values of nx, ny and nz correspond to indexes h, k and l described in section 2.1.3.

The conditions for the incident beam to produce constructive interference from a row

of equally spaced point scatterers is known as Laue di�raction [22]. Laue formulated

the di�raction conditions based on the reciprocal lattice (section 2.1.3).

2.1.2 Bragg's Law

The scatterers described in section 2.1 were oriented in a straight line and required

six angles; αn, βn, γn, α0, β0 and γ0; three lattices spacings; a, b and c and three

integers; nx, ny and nz to calculate the directions of the di�racted beams. Now
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considering the displacement, dhkl, of two point scatterers between planes instead

of rows, maximum constructive interference can be achieved at every integer nλ

wavelength. The distance of the crystal to the detector (cm or m) is orders of

magnitude greater than the distance between atoms making up the crystal (nm or

Å) that the approximation of parallel paths for each resultant wave can be applied

(�gure 2.3). The angle between the incident and di�racted beams is 2θ. From �gure

2.3 in the triangle the length of side AB is equal to

AB = dhkl sin θ (2.5)

The total path length is (AB + CD) and since AB = CD;

(AB + CD) = 2AB = nλ (2.6)

then substituting equation 2.5 into the path length expression, Bragg's law is

obtained,

2dhkl sin θ = nλ. (2.7)

Assume the distance between lattice planes, dhkl is the magnitude of the vector

that connects two point scatterers according to the �gure 2.3. The scatterers are in

phase if the angle between their incident and scattered waves is π/2− θ. This type of

di�raction is also called Bragg di�raction and is named for the father and son team,

William Henry Bragg and William Laurence Bragg who developed the di�raction

conditions based on lattice planes in direct space [7]. They found that crystals, at

certain speci�c wavelengths and incident angles, produced intense peaks of re�ected

radiation called Bragg peaks. The concept of Bragg di�raction applies equally to

neutron di�raction and electron di�raction processes.
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Bragg’s Law

2dhklsinθ=nλ

hkl lattice plane

θ θ
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θ

Figure 2.3: A geometric depiction of Bragg's law; the incident radiation (green)
and re�ected (red) from adjacent parallel hkl planes with spacing dhkl and a shift of
an integer multiple (n) of λ/2 for constructive interference.
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2.1.3 Reciprocal space

There is a reciprocal relationship between the location of the di�raction maxima in

the di�raction pattern and the location of the point scatterers in the crystal lattice.

The occurrence of the intensity maxima is determined by the di�raction angle. The

maxima occur every 2 sin θ/λ = n/dhkl, where n is an integer. Thus, the maxima are

an integral multiple of the reciprocal of the dhkl distance between scattering planes.

The distance between scattering planes is given as dhkl in direct space and 1/dhkl in

reciprocal space. Given a spacing of 1/dhkl, a maxima is observed for every n/dhkl

where n = 1, 2, 3, . . .. The lattice that corresponds to 1/dhkl spacing is called the

reciprocal lattice and is de�ned in terms of di�raction pattern (reciprocal space).

In order to understand the relationship between real and reciprocal space the

construct developed by Paul Peter Ewald called the Ewald sphere [23] in three

dimensions is used. This sphere is constructed around a single point scatterer serving

as the origin of both the real and reciprocal lattice, with the incident beam through

the origin and a radius of 1/λ. The conditions of di�raction are met when the sphere

intersects the reciprocal lattice at one of its lattice points (�gure 2.4).

Suppose there are two lines of point scatterers, one with spacing a and the other

spacing b, perpendicular to the incident beam but at angle γ with respect to each

other. As the plane of scatterers is rotated through the Ewald construction di�raction

maxima occur that are perpendicular to the line spaced a distance of K/b (K/a)

in reciprocal space (�gure 2.6). If these two lines are combined into a single two

dimensional lattice array, the resulting di�raction pattern has maxima when both

lines of scatterers produce waves that constructively interfere. This occurs at the

intersection of the di�raction points produced by each line of scatterers and these

intersections of mutual constructive interference are called di�raction nodes. The

resulting two dimensional lattice of di�raction maxima de�nes the reciprocal lattice

in two dimensions.
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Figure 2.4: A representation of the Ewald sphere. When the reciprocal lattice point,
given by P∗(hkl), is in contact with the sphere constructive interference occurs. The
di�racted beam passes through the origin of the reciprocal lattice, O∗ and coincides
with the crystal position and the origin of the di�racted beam. By changing the
orientation of the reciprocal lattice all di�raction through reciprocal lattice points
can be measured. The radius of the sphere is given by 1/λ and the phase shift is
(s− s0)/λ. Figure from [2].
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Figure 2.5: In (a) a direct unit cell is shown with blue vertices and in (b) the
reciprocal unit cell with a common origin is shown with green vertices. Figure from
[3].

The unit cell de�ned as the smallest unit containing the overall crystal symmetry

that can be translated to build the entire crystal lattice. The unit cell in direct space

is de�ned by vectors a, b and c (for two dimensions only a and b). In reciprocal

space the unit cell is de�ned by vectors a∗, b∗ and c∗ (�gure 2.5).

The reciprocal unit cell is readily identi�ed in the di�raction pattern and has

reciprocal axial lengths a∗ and b∗ scaled by K and the angle between the reciprocal

axis, a∗ and b∗ is γ∗. The (1, 0) in the direct lattice containing the b axis produces

a set of perpendicular lines (0∗, 1∗) containing the a∗ axis and similarly the (0, 1)

containing the a axis produces a set of perpendicular lines (1̄∗, 0∗) containing the b∗

axis. The a∗ axis is perpendicular to the b axis (and c axis when extended to three

dimensions) in the direct lattice and the b∗ axis is perpendicular to the a axis in the

direct lattice. In general a set of lines, (h, k) in the two dimensional direct lattice will

produce a set of perpendicular lines (k̄∗, h∗) in the reciprocal lattice. Upon scaling

K = 1, the (h, k) parallel lattice lines are separated by a reciprocal distance of 1/dhkl

with dhkl de�ning the distance between direct lattice lines.

Extending the reciprocal lattice relationship to the direct lattice in three

dimensions is done by adding equidistant, parallel ab planes along the c axis. The

volume of the direct cell is the area of the base, the bc plane times the height,
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Figure 2.6: In (a) a 2-D direct lattice is shown with point scatterers at the origin
and in (b) the corresponding di�raction pattern. Figure from [3].

d100 (distance between bc planes). The volume of the unit cell is then given by;

V = Abcd100 = |b × c|d100. The a∗ axis is the h100 vector in the reciprocal lattice

and has length |h100| = 1/d100. Solving for the relationship between a∗ and the axial

vectors of the direct unit cell:

V = Abcd100 = |b× c|d100

d100 =
V

|b× c|
=

a · b× c

|b× c|

h100 = a∗ =
|b× c|

a · b× c
.

Since a∗ is perpendicular to the bc plane, it is parallel to b × c and has magnitude

h100. Therefore;

a∗ =
b× c

a · b× c
=

b× c

V
. (2.8)

It then follows that b∗ and c∗ are given by;

b∗ =
c× a

a · b× c
=

c× a

V
. (2.9)

c∗ =
a× b

a · b× c
=

a× b

V
. (2.10)
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The direct cell in terms of reciprocal lattice vectors is given below;

V ∗ = a∗ · b∗ × c∗ (2.11)

= a∗b∗c∗(1− cos2 α∗ − cos2 β∗ − cos2 γ∗ + 2 cosα∗ cos β∗ cos γ∗)

1

2 . (2.12)

The spacing between the a∗b∗ planes is 1/a therefore:

V ∗ = A∗b∗c∗
1

a
= |b∗ × c∗|1

a

a =
|b∗ × c∗|

a∗ · b∗ × c∗
.

Since a is perpendicular to the a∗b∗ plane and parallel to b∗× c∗, the resulting direct

lattice vector relations to reciprocal lattice vectors are given by;

a =
b∗ × c∗

a∗ · b∗ × c∗
=

b∗ × c∗

V ∗
, (2.13)

b =
c∗ × a∗

a∗ · b∗ × c∗
=

c∗ × a∗

V ∗
(2.14)

and

c =
a∗ × b∗

a∗ · b∗ × c
=

a∗ × b∗

V ∗
. (2.15)

From these relations it follows that;

a · a∗ = 1 (2.16)

b · b∗ = 1 (2.17)

c · c∗ = 1 (2.18)

a · b∗ = 0 (2.19)

a · c∗ = 0 (2.20)

b · c∗ = 0. (2.21)
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In the two dimensional lattice, reciprocal lattice vectors to coordinates (h, k) were

perpendicular to the lattice lines in the direct lattice. The length of the reciprocal

lattice vectors with indexes (h, k) was the reciprocal length of the distance between

(h, k) lines. A general vector in a three dimensional reciprocal lattice with fractional

coordinates x∗f , y
∗
f , z
∗
f is given as:

v∗ = x∗fa
∗ + y∗fb

∗ + z∗fc
∗ (2.22)

A vector to a lattice node (h, k, l) is given by;

hhkl = ha∗ + kb∗ + lc∗ (2.23)

and it holds for the three dimensional case that hhkl =
1

dhkl
and hhkl = d∗hkl . The

reciprocal lattice vector from a common origin to a reciprocal lattice point (h, k, l) is

perpendicular to the hkl planes and has a length (magnitude) equal to the reciprocal

of plane spacing (as in �gure 2.3).

In a real crystal there are many planes of scatterers that interact with one another,

incident radiation will result in the interference of scatterers that are not in the same

plane a�ecting the resulting di�raction maxima. The path di�erence between two

sets of point scatterers will a�ect the phase shift of the di�racted waves and this

e�ect will be di�erent at each di�raction angle and therefore will not alter each

di�raction maxima in the same manner. The relative locations of two sets of point

scatterers determine the phase di�erences and resulting intensities of the waves for

each location in the di�raction pattern. Therefore, using the measured intensities

which are compared to the calculated phase- shifts from the scatterers placed in the

crystal lattice and iteratively re�ning the calculated to the measured is one path to

determine the relative location of the scatterers within the crystal lattice [24].
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Figure 2.7: Incident radiation in direction s0 from the source, represented by large
circle, is shown interacting with two point scatterers (electron or nucleus) and is
represented by the black �lled circles, one positioned at the origin and the other at
r. The secondary di�racted waves travel R distance to the detector (large square) at
position s.

2.1.4 Electron density and structure factor

The two scatterers of �gure 2.7, one at the origin and the other at position r and

vector r between each emit a scattered wave upon interaction with radiation. The

phase di�erence between the �rst and second scatterers is the projection of r onto s0

given by; s0 · r/λ. The detector is at distance R and position s and is 2θ relative to

s0. The di�racted wave of the �rst point scatterer is s · r/λ relative to the second

point scatterer. The total phase di�erence for the second point scatterer is

(s− s0) · r
λ

. (2.24)

The vector representation of the di�racted waves allows a convenient way to keep

vector components separate by representing them as a complex number. Thus, the

superposition of the two waves resulting from the two point scatterers is given by

εr = [1 + exp 2πi(
(s− s0) · r

λ
)]. (2.25)
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Equation 2.25 gives the phase and amplitude of the superposition wave for the

detector position s. At di�erent detector positions s the phase and amplitude will

change. If we consider n scatterers at di�erent ri positions then the superposition

wave becomes

εr =
n∑
i=1

exp[2πi
(s− s0) · ri

λ
]. (2.26)

In the case of X-Ray scattering the distribution of electron density ρ(r) is

calculated from the measured intensities. A similar concept applies for neutron

scattering experiments except the density measured is not based on the electron

distribution but the nuclei distribution.

The electron density of a molecule is approximated in structure analysis as the

sum of atomic densities located at the atomic positions ri and given by

ρ(r) =

q∑
i=1

ρi(r− ri) =

q∑
i=1

ρi(r)∗ δ(r− ri). (2.27)

The convolution of the electron density ρi(r) with δ(r − ri) displaces the electron

density function from the origin to the position ri.

The scattering from a single atom (called scattering factor), f [(s−s0)/λ)], is given

in section 2.1.5. The scattering from atoms with �xed positions and orientations is

the Fourier transform of its electron density.

F [(s− s0)/λ] =

∫ q∑
i=1

ρi(r− ri) exp[2πi
(s− s0) · ri

λ
]d3r

=

q∑
i=1

∫
ρi(r− ri) exp[2πi

(s− s0) · (r− ri)

λ
]d3r · exp[2πi

(s− s0) · ri
λ

]

=

q∑
i=1

fi[(s− s0)/λ] exp[2πi
(s− s0) · ri

λ
]

Given a 3-D periodic arrangement (crystal) of a single atom per unit cell, the

electron density and scattering can be derived. The number of unit cells in a, b

and c directions are M , N and P , respectively and the atomic positions are rmnp =
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ma + nb + pc where m, n and p are integers. The atomic position in one dimension

with period a and number of unit cells M , would be ri = a(i− (M −1)/2). Therefore

extrapolating to a 3-D arrangement, it is simple to restrict M , N and P to be odd.

The electron density is then

ρ(r) =

m=(M−1)/2∑
m=−(M−1)/2

n=(N−1)/2∑
n=−(N−1)/2

p=(P−1)/2∑
p=−(P−1)/2

ρ(r− rmnp). (2.28)

The scattering from this crystal is given by

G[(s− s0)/λ] =

m=(M−1)/2∑
m=−(M−1)/2

n=(N−1)/2∑
n=−(N−1)/2

p=(P−1)/2∑
p=−(P−1)/2

f [(s− s0)/λ] exp[2πi(s− s0)/λ].

(2.29)

The function G is the result of a superposition of waves coming from each atom

in the crystal. The conditions for constructive interference described in section

2.1.3 imply that constructive interference will only be observed when (s − s0)/λ

coincides with the reciprocal lattice vector r∗. Using Euler's formula for the complex

exponential and evaluating the resulting geometric series where r∗ = (s − s0)/λ the

scattering from a crystal with q atoms per unit cell becomes

G(r∗) =
sin πMa · r∗

sin πa · r∗
sinπNb · r∗

sin πb · r∗
sin πPc · r∗

sinπc · r∗
q∑
i=1

fi(r
∗) exp 2πi(hxi + kyi + lzi),

(2.30)

where a phase factor, 2πi(hxi + kyi + lzi) is introduced that describes the position of

atoms away from the origin. The structure factor describing the amplitude and phase

of a wave di�racted from lattice planes indexed by hkl is

F (hkl) =

q∑
i=1

fi(r
∗) exp 2πi(hxi + kyi + lzi). (2.31)
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Notice that r∗ = hhkl = ha∗ + kb∗ + lc∗. From this relationship the lattice function

L(hkl) is obtained;

L(hkl) =
sin πnxh

sin πh

sin πnyk

sin πk

sin πnzl

sin πl
, (2.32)

where nx, ny and nz are the number of unit cells in the x, y and z dimensions of the

crystal.

The electron density of the crystal can be found from a Fourier back transform of

the structure factor if both the modulus, |F (hkl)|, and phase, Φ(hkl), are known;

ρ(r) =
∞∑

h=−∞

∞∑
k=−∞

∞∑
l=−∞

|F (hkl)| exp 2πiΦ(hkl) exp[−2πi(hx+ ky + lz)]. (2.33)

Given fi(r∗) is written in terms of atomic electron density then F (hkl) =
∫
ρ(r) exp 2πi(hx+

ky + lz)d3r.

In a real scattering experiment (neutron or X-Ray) the scattered intensities,

not the structure factor, are measured. These intensities are proportional to the

amplitudes of the secondary waves, I(hkl) ∝ F (hkl)F ∗(hkl). The complex conjugate

of the structure factor (given in equation 2.31) when multiplied by F (hkl) results in

loss of the phase information since the exponential factors cancel and the real quantity

|F (hkl)|2 is obtained. There are several methods for estimating the phases including

Patterson methods [25], direct methods [26, 27, 28, 29], molecular replacement [30]

and charge �ipping [31, 32, 33]. These are incorporated in general structure analysis

software such as SHELX [24] and GSAS [34, 35].

Atomic motion, as it depends on temperature weakens the scattered intensities,

especially at high angles, and must be taken into account in the structure factor

using a correction factor for atomic motion called the Debye-Waller factor. Atomic

oscillations are on the order of tens of femtoseconds, therefore the observed

di�raction experiment only provides a time-averaged distribution of the atom about

its equilibrium position, p(r). The time averaged atomic electron density is the
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convolution of the atom's static density with a probability distribution (generally a 3-

D Gaussian). The Fourier transform of the convolution is the product of the individual

function's Fourier transforms. Therefore the static atomic scattering factor (Fourier

transform of atomic density) is multiplied by a temperature dependent factor yielding

the thermally averaged scattering factor. The probability distribution function is a

Gaussian, if the atomic oscillation is approximated by a free harmonic oscillator and

is given by

p(r) =
1

(2π)

3

2 ||V||
1

2

exp(
−rTV−1r

2
). (2.34)

The V matrix elements are the mean square expectations of the atomic deviations

from equilibrium (variance co-variance) along x, y, z, xy, yz and xz in dimensionless

fractional coordinates. The Fourier transform of p(r) yields the Debye-Waller factor,

q(h) = exp(−hTβh). (2.35)

The Debye-Waller factor multiplies the static atomic scattering factor to give the

time-averaged scattering of an oscillating atom. The h term is the reciprocal lattice

vector with hkl indexes and β (atomic displacement parameter matrix) is related to

V by 2π2G∗VG∗ where G∗ is the reciprocal metric tensor. Finally the structure

factor which now includes the correction for atomic motion is

F (h) =

q∑
i=1

fi(h) exp(−hTβh) exp(2πh · ri). (2.36)

2.1.5 Scattering factors and scattering length

To calculate the X-Ray scattering factor of an atom, the volume is divided into

small elements d3r and for very small volume elements the summation is replaced by

integration;

f [(s− s0)/λ)] =

∫
ρ(r) exp[2πi

(s− s0) · ri
λ

]d3r. (2.37)
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The spherical atom approximation is used to estimate the density, ρ(r), and does

not vary with θ linearly since 1/d = h = 2 sin θ/λ. This is because the electrons are

spread out over the atomic diameter. The scattering from the electron density at the

top of an atom is slightly out of phase with the electron density at the bottom; this

becomes more pronounced as the angle θ increases. The values of the elements have

been calculated and are contained in [36]. Structure re�nement programs use these

values for X-Ray structure analysis. See Appendix section A. 1 for an example and

further details.

Neutrons scatter from the nuclei of atoms, therefore there is no sin θ/λ dependence.

The scattering potential of a given atomic nucleus depends on its scattering cross

section. The scattering cross section (σ) is the e�ective area of the nucleus that

interacts with the neutron and is measured in barns (1 barn = 10−28 square meters).

The strength (amplitude) of the scattered wave depends on the nuclear scattering

length b (section 2.2.2). This means the scattering length of a given atom depends

on the interaction between the neutron and the scattering nucleus. The relationship

between b and the cross section is σ = 4πb2. Therefore, the scattering length is

half the radius of the nucleus that interacts with the neutron. The values of b have

been determined experimentally for each nuclear isotope [37]. The nuclei of certain

elements (e.g. H and Ti) interact with incident neutrons with an attractive rather

than repulsive nuclear potential. The means the scattered waves are out of phase

with respect to the incident neutron beam, resulting in a negative scattering length.

2.2 Di�raction experiment

2.2.1 X-Ray

X-Rays interact with the charged part of the atom as an electromagnetic wave.

The electrons produce scattered waves that are in phase. The interaction of the

electromagnetic radiation with the atom is dependent on the number of electrons (Z)
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and is represented in the scattering factor. The dimensions of the electron cloud are

comparable to the wavelength of X-radiation.

Heavy elements (e.g. Ti, Pb and Po etc.) scatter X-Rays more e�ciently than

the lighter elements (e.g. H, O and Ni etc.) and as a result dominate the intensities

of the di�raction pattern. If a crystal contains a mixture of heavy and light elements

the contribution of the lighter elements is relatively small and after deconvolution of

the superimposed wave functions is more di�cult to determine.

The radius of the Ewald sphere is 1/λ, therefore shorter radiation wavelengths

mean more re�ections are measured, yielding a better ratio of re�ections to re�ned

parameters. For reliable statistics and a representative model the number of

re�ections should be at least 10 times the number of parameters in the least squares

model.

General set-up

An X-ray di�ractometer consists of three basic elements; (1) an X-ray source, (2) a

sample holder, and (3) a detector. X-rays are generated by a cathode ray tube and

�ltered to produce monochromatic radiation which is then collimated and directed

toward the sample. High intensity X-Rays are also generated at light source facilities

using a synchrotron. A synchrotron uses bending magnets and undulators to produce

high intensity and broad spectrum beam [28].

In a single-crystal experiment the crystal is mounted on a thin glass �ber (or

loop) attached to a brass pin, using oil or glue to attach the crystal to the �ber tip

or loop. The mounted crystal is placed on a conventional goniometer. There are 3

(or possibly 4) angles 2θ, χ, φ and ω. The angles de�ne the relationship between

the crystal lattice, the incident X-Ray beam and detector. The orthogonal X, Y

and Z directions are adjusted to allow centering of the crystal within the X-Ray

beam. X-Rays leave the collimator in a concentrated beam toward the sample and

are either transmitted through the crystal or di�racted. A beam stop is located

directly opposite the collimator and blocks the transmitted X-Rays to prevent the
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detector from being over radiated and destroyed. Di�racted X-Rays at the correct

orientation are measured by the detector. Modern single-crystal di�ractometers use

2-D area detectors for fast data collection of multiple re�ections simultaneously.

Data integration and corrections

Intensity data for structure solution is collected in a re�ection data �le called the

hkl �le that contains hkl indexes, their associated square structure factors and

standard uncertainties for each measured intensity. This �le is generated for X-Ray

experiments through data reduction software. It is important to understand how the

peak integrated intensities are extracted from the measured raw data. Individual

di�raction �frames� are collected by rotating the crystal through the di�raction

condition (across the Ewald sphere) while being exposed to X-Rays and collecting

the di�racted intensity.

In any di�raction experiment it is essential to use a �good� crystal. The 3-D

repeating arrangement of atoms acts as a tiny di�raction grating and therefore a

crystal without defects, impurities and that is single (not multiple crystals fused

together) and has regular faces (smooth without a large degree mosaicity) is important

to produce the best possible data. The background is measured and subtracted from

the peak. If the background is noisy and the peak is weak (low intensity) it is possible

to generate negative peak intensities.

A polarization correction is also applied. Unpolarized X-Ray radiation is a one-

to-one mixture of waves that are polarized parallel and perpendicular to the re�ection

plane. The incident radiation waves polarized parallel to the re�ection plane and those

perpendicular to the re�ection plane produce di�erent di�racted intensities and this

e�ect must be taken into account. The angle between the parallel and perpendicular

wave vectors is π/2 and (π/2−2θ) for the scattered wave. The intensity is proportional

to the square magnitude of the scattered wave, therefore, the resulting polarization
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factor is

sin2

(
π

2

)
+ sin2

(
π

2
− 2θ

)
=

1 + cos2(2θ)

2
.

If the X-Ray beam is polarized, such as that emanating from a synchrotron source the

polarization factor is more complicated and includes the angle between the di�raction

planes.

The Lorentz e�ect also needs to be taken into consideration and relates to the

time the reciprocal lattice node takes to rotate in and out of the Ewald sphere. Since

the crystal is rotated at a constant rate, the time each lattice node is in contact with

the surface of the Ewald sphere depends on the location of the node in reciprocal

space and the length of the scattering vector in real space. The following correction

factor is applied L =
1

sin 2θ
.

The incident beam diminishes as it passes through the crystal. This a�ects the

magnitude of the di�racted intensities in the experiment. The intensity loss is referred

to as absorption and must be taken into account. These e�ects are represented by a

linear absorption coe�cient, µ (mm−1 or cm−1):

I = Io exp(−µx)

The intensity Io is the observed intensity and exp(−µx) is the factor by which the

X-Ray beam is weakened as it passes through the crystal. Programs like SADABS

[24] calculate a factor for each re�ection dependent path length.

2.2.2 Neutron

Neutrons are complimentary to X-Rays. For both radiations the treatment as a wave

and wave function is applicable. An advantage mentioned in section 2.1.5 is the

neutron cross section is sensitive to isotopes of the same element and independent of

the number of electrons. Therefore, mixtures of heavy and light atoms in the same
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crystal structures have similar scattering lengths and as a result the atomic position

of the lighter elements can be determined with neutron data.

Since neutrons do not carry a charge they are able to penetrate materials far better

than charged particles (or waves). Neutrons are weakly interacting or gentle probes

as they do not interfere with or destroy the sample. However, large sample volumes

are generally required. Despite recent developments, available neutron beams are a

�ux limited technique. Generally, neutron di�raction is still a specialized technique

and it is used when it can provide information on the material's structure that cannot

be obtained via other techniques.

General set-up

The scattered neutron wave is isotropic and its wave function can be written as

(−b/r) exp(ikr) when the point scatterer (nucleus) is at the origin. The scattering

interaction is assumed to be elastic, therefore, the wave vector remains unchanged,

therefore, k0, the incident wave vector is the same as ki, the scattered wave vector.

Scattering experiments are done for static structure determination. This means

the incident neutron wave interacts with nuclei coherently therefore the nuclei have

relative phases and interfere with one another. The same di�raction principals

apply to single crystal X-Ray and neutron experiments. The di�raction conditions,

structure factor and nuclear number (electron) density functions are equivalent. In

a structure analysis the X-Ray scattering factor is replaced by the scattering length

and the electron density is calculated from the measured intensities.

In neutron experiments using a monochromatic or polychromatic beam incident

to a single-crystal sample the scattered neutrons are collected as a function of neutron

time-of-�ight (TOF). TOF is the time the neutron takes to reach the detectors from

the target and through the sample. In this way, a given re�ection and all harmonics of

a re�ection are collected at the same location on the detector at di�erent TOFs= λs.

This is time resolved Laue di�raction, whose individual re�ection is separated and

collected at a time of �ight. The de Broglie equation gives the relationship between
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the neuron wavelength, λ, to its momentum, mnv, is

λ(m) =
h

mnv
,

where h is plank's constant (6.62610−34 Js or kg m2/s), mn (1.67510−27 kg) is the

mass of a neutron and v is the velocity. The velocity is inversely proportional to

the wavelength λ. Replacing the velocity, v (meters per second) with the total path

length L divided by time in seconds and relating to Bragg's law yields;

λ =
ht

mnL
= 2dhkl sinQ.

Solving this relationship for time of �ight dependence; t = 505.56Ld sinQ [38] where

505.56 = 2∗mn/h (s/m). The number of Bragg re�ections that can be measured with

one crystal orientation depends on the characteristics of the source and the detector

positions around the sample and unit cell size and symmetry.

Data integration and corrections

Polychromatic, TOF experiments require similar corrections to those required by

X-Ray experiments with the exception of the polarization correction. In a TOF

single crystal experiment many re�ections are being collected simultaneously and

are measured at di�erent wavelengths (a white beam) and angles. The measured

intensities vary according to

Ihkl =
i0(λ)V N2|Fhkl|2λ4

hklε(λ, α)Ahkl(λ)Ehkl(λ)

2 sin2 θhkl
, (2.38)

where Ihkl is the measured intensity of re�ection hkl, i0(λ) is the incident �ux, V is

the volume of the unit cell, N is the number of unit cells, Fhkl is the structure factor,

λ4 represents the scattering power of the sample, ε(λ, α) is the detector e�ciency as a

function of the wavelength and detector coordinate and θhkl is the Bragg angle of the

re�ection. The Lorentz (1/ sin 2θhkl) and absorption corrections are also included.
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The Lorentz correction for X-Ray intensity data (section 2.2.1) is the length of

time a Bragg re�ection node takes to pass through the Ewald sphere. In TOF the

crystal is not �moving� but the Ewald sphere contracts (since its radius is 1/λ) through

the di�raction condition as the wavelength λ increases during the pulse time frame.

Most TOF Laue data corrections (detector e�ciency, Lorentz, background) are

applied during the data reduction phase on the value of the integrated Bragg peak

with the exception of the extinction correction. As part of Bragg peak integration,

the background is subtracted from each Bragg peak. Newly available techniques

for integrating TOF Bragg data in reciprocal space are described in section 4.5.

The integrated intensities are scaled by the number of monitor counts during each

measurement. The isotropic scattering data from Vanadium is used to correct the

detector response per λ. The Bragg re�ections for each crystal setting are now

normalized and can be combined and re�ned as a single data set.

The absorption correction for neutron Laue TOF data is similar to X-Ray

absorption. In the case of neutron experiments there are two factors to consider

in the reduction of the primary beam intensity; (1) the decrease in intensity as the

incident beam passes through the material (true absorption), which is represented by

the cross section σa and (2) the reduction of beam intensity by incoherent scattering

σinc (a result of randomly distributed isotopes and nuclear spins). The transmission

factor is the ratio of the absorption-e�ected intensity to the absorption free intensity:

T =
Iµ
Io

= A/V (2.39)

where V is the crystal volume and A =
∫

exp(−µL)dV is the absorption factor. For

a given re�ection µ is wavelength dependent and calculated in cm−1. The mean free

path L depends on the size and shape of crystal.

The extinction correction is applied to compensate for the weakening of the

di�racted beam that occurs as a result of repeated re�ections from multiple crystallite

domains. The crystallite domains are not aligned with one another and have a mosaic
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spread. There are two main factors that govern this e�ect; (1) the radii of the

crystallite domains and (2) the range of their angular distribution throughout the

crystal. The crystal is characterized by one of two types: type I, the particle size

is the dominant e�ect (small particle size, large mosaic spread), type II, the mosaic

distribution is the dominant e�ect (large particle size, small mosaic spread). The

angular distributions can be represented by a Gaussian or Lorentzian model and have

been incorporated into the least squares structure re�nement of SHELX and GSAS.

2.3 Di�use data

Analysis and interpretation of di�use di�raction data, including its measurement and

appropriate application of corrections in order to prepare the data for integration

and computational modeling are more complex than for Bragg data. In the case of

local structure resulting from static disorder as described in chapter 1 the size of the

distortion in real space, L, a�ects the size of the scattering distribution in reciprocal

space, δq, as

δq ∼ 2π

L
(2.40)

[39]. The inverse relationship implies that for small local disturbances in direct space

the resulting di�use scattering is distributed over larger regions of reciprocal space.

The governing structure is represented by an �average� unit cell that is translated in

the three crystallographic dimensions and de�nes the long range order in direct space.

As a consequence, the di�racted intensities of the long range order are bright, sharp,

discrete Bragg peaks. The local distortions in real space cannot be described in terms

of a single unit cell that represents the structure but are only locally correlated over

a �nite number of unit cells. The structure variations produce di�racted intensities

that are not localized to a single, discrete peak but rather di�use in reciprocal space

with intensities that are generally orders of magnitude weaker than those of Bragg
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scattering. The di�use intensities, which depend on the nature of the local structure,

may be distributed in one, two or three dimensions of reciprocal space.

Measuring di�use intensities with a monochromatic radiation source means that

each intensity point is measured using a single Ewald sphere of radius 1/λ. The

crystal is continuously rotated in the beam resulting in a 2-D slice of reciprocal space

measured per data collection interval. The 2-D slices are reconstructed to form a full

3-D volume of reciprocal space. Di�use data are often collected using highly e�cient

2-D area detectors. The reconstructed data are corrected and the di�use intensities

extracted for modeling.

In neutron TOF Laue experiments, the use of a polychromatic beam means that

there are multiple di�raction conditions (Ewald spheres). These intensity points are

wave length resolved, therefore each intensity is separated according to the incident

�ux and the resulting coverage of reciprocal space is a volume de�ned by the Ewald

spheres of radii 1/λmax − 1/λmin per orientation. This means the reciprocal space

volumes from each orientation are reconstructed to form the full measured reciprocal

space volume.

Each Bragg peak is approximated as measured at a single wavelength, therefore

the previously described data correction methods can be applied after integration. In

the case of TOF Laue di�use data, since it occupies large volumes (or larger than that

of a single Bragg peak) of reciprocal space it cannot be corrected for incident �ux in

the same manner as individual Bragg peaks but must be corrected for each intensity

point. Using the newly available event mode data processing it is possible to apply

the corrections to the neutron events prior to integration. In this work we expand

the correction protocol from post-integration to pre-integration correction taking the

wavelength variations of TOF into account. A �rst step in this process of testing and

developing the pre-integration corrections is described in Chapter 4.

Modeling di�use data follows the same principle as modeling a Bragg structure.

As in Bragg structure re�nement, the data corrections are applied to the di�use

data before modeling, since only the contribution to the structure is modeled. The
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examples discussed in this work produced 1-D and 2-D di�use scattering. Di�use

data in one dimension is integrated as a �rectangle� with a certain width and length

based on the reconstructed layers. The intensities are summed along the direction

of length of the rectangle. The background is calculated by summing the along

the length of the rectangles de�ned by the width ±∆ and subtracting it from the

intensities calculated at each point along the length of the rectangle containing the

di�use data. In two dimensions a layer thickness is determined and the intensities are

integrated on a two dimensional grid (chapter 3). The background ±∆ of the layer

thickness is calculated and subtracted from the di�use intensities at each point of

the grid. Separating the background from the di�use intensity, which may be on the

same order of magnitude, presents a challenge that must be addressed on a case by

case basis. Determining appropriate integration and correction protocols for di�use

TOF data with each intensity point possessing a di�erent TOF and wavelength still

remains a challenge.
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Chapter 3

Computational techniques

3.1 Quick overview of average structure re�nement

Modeling modulated di�use scattering of any compound begins with an average

structure re�ned from the Bragg intensities. The Bragg re�nement is the optimized

time and space averaged structure and describes the long range order that provides

the necessary framework for modeling the local structure arrangement. Detailed

analysis of the average structure gives �rst indications that a local structural

arrangement might be present. Possible structural alternatives can be represented

in the average structure by the presence of one or more of the following; partial

occupancies, mean square displacement parameters that contain Uij element(s) that

are enlarged (elongated ADPs) and/or unchemical bond distances and intermolecular

short contacts (chapter 6).

Single crystal structure re�nement is done via a least squares optimization of

atomic positions through a comparison of the measured and calculated intensities.

The atomic positions are assigned based on electron density peaks and previous

knowledge of the chemical composition of the crystal. The R1 value is given as;

R1 =
σ||Fo| − |Fc||

σ|Fo|
, (3.1)
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where Fo is the observed and Fc is the calculated structure factor. The R1 value is

minimized during re�nement.

The result is the �crystal structure� which is a �le containing a list of atomic

positions, site symmetry, atomic displacement parameters (ADPs), bond distances

and angles called a crystallographic information �le (CIF). Shelx [24] and GSAS [35]

are commonly used single crystal structure re�nement packages.

3.2 Brief description of ZODS-Zürich Oak Ridge

Disorder Simulations

The ZODS (Zürich Oak Ridge Disorder Simulations) [40, 41] software package is

designed to extract quantitative structural information from the di�use part of

the di�raction pattern [41]. A disorder model is constructed starting with the

�disentanglement� of the average structure. This means virtual crystals are built using

this local structure model parameters via Monte Carlo (MC). The number of virtual

crystals must be large enough to encompass the full range of disorder possibilities

building one model crystal per option. The crystal must also contain enough unit

cells to contain the full correlation length of the local structure. The computational

resources required to build enough crystals of su�cient size to represent the local

structure ordering options can be signi�cant.

The di�use scattering intensities of the simulated crystals are calculated and

compared with measured intensities. The model parameters producing simulated

crystals that yield the best intensity matches to the measured data are selected and

continue to be re�ned using a generational algorithm, called di�erential evolution

(DE) (section 5.3.1). DE is computationally demanding but e�ciently parallelized

(chapter 5). ZODS takes advantage of this parallelization and is capable of running

on large super computers, smaller clusters and desktop computers.
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From the model parameters ZODS builds the crystals using MC (in direct space)

and calculates the intensities (reciprocal space) of the model crystals. These results

can be visualized and analyzed in freely available external software. For the analysis

of crystals in direct space Accelerys Discovery Studio 3.5 [42] can be used and for

the intensities ParaView [43] is suggested. ZODS provides statistical analysis of

the simulated crystals, convergence plots and statistics of the model parameters,

MC crystal energy data, R-value, background and the scale factor for calculated

intensities.

3.2.1 Measured di�use data preparation

In Bragg di�raction the re�ections are at integer hkl in reciprocal space. In the case

of di�use scattering this is no longer true. Only the local structure contributes to

the di�use scattering. Since the local structure cannot be represented as a single unit

cell but is distributed throughout the governing structure the resulting di�raction

pattern shows di�use intensities distributed throughout large volumes of reciprocal

space (chapter 5 section 5.1). The measured di�use intensities are corrected and

integrated over their distributions in reciprocal space (layers, streaks etc.). The di�use

intensities are placed on a regular grid for computational modeling. Depending on

how the di�use scattering is distributed in reciprocal space it is placed in a regular

1- 2- or 3-D array. The model intensities are calculated by stepping along the grid

using a step size commensurate with the measured intensity data array.

The calculation grid speci�es the location of the measured data points in reciprocal

space (�gure 3.1) and can be de�ned in fractional or Cartesian coordinates. The grid

consists of an origin vector o and three directions vectors d1, d2 and d3 and the

dimensions in each direction nx, ny and nz. Each ri,j,k grid point can be written as

ri,j,k = o + id1 + jd2 + kd3 where the ijk indices are (0 ≤ i ≤ nx, 0 ≤ j ≤ ny, 0 ≤

k ≤ nz).
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r0,0 r1,0 r2,0 r3,0 r4,0 r5,0 r6,0

r0,1 r1,1 r2,1 r3,1 r4,1 r5,1 r6,1

r0,2 r1,2 r2,2 r3,2 r4,2 r5,2 r6,2

r0,3 r1,3 r2,3 r3,3 r4,3 r5,3 r6,3

r0,4 r1,4 r2,4 r3,4 r4,4 r5,4 r6,4

r0,5 r1,5 r2,5 r3,5 r4,5 r5,5 r6,5

r0,6 r1,6 r2,6 r3,6 r4,6 r5,6 r6,6

Figure 3.1: An example of a 2-D calculation grid for the calculation of intensity
points in reciprocal space, depicting the variation of ri,j where index i is in the d1

direction, index j is in direction d2 and the origin is at r0,0. The step size is the
spacing between consecutive ri,j points.
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If Cartesian coordinates (units of Å−1) are used in ZODS the coordinate system

is de�ned so that a is collinear with (1, 0, 0) and c∗ is collinear with (0, 0, 1) and the

transformation from fractional coordinates to Cartesian coordinates in direct space

is:

vC =


a b cos γ c cos β

0 b sin γ c
cosα− cos β cos γ

sin γ

0 0
V

ab sin γ

 ∗ vf

where vC corresponds to a vector in Cartesian coordinates and vf is a vector in

fractional coordinates and V is the volume of the unit cell. The step length of the

intensity data in Å−1 is multiplied by the normalized reciprocal lattice vector that is

collinear with x,y or z in the data. Then the step must be de�ned according to the

di�use data grid in x, y and z (an example is given in chapter 6).

3.2.2 MC crystal building

Using the long range structure allows the creation of a �super cell�. The �super cell�

is a larger unit cell that fully resolves the atomic positions contributing to the local

structure, which are only averages of the atomic options in the average structure. In

our case, partially occupied positions are separated into fully occupied, alternating

positions (chapter 6). This results in a larger unit cell and it becomes necessary

to adjust the unit cell parameters accordingly. The unit cell parameters, symmetry

operations, atomic positions and occupancy factors are adjusted in the CIF �le. ZODS

uses the adjusted CIF �le as input for the average structure to build the crystal model.

Once the larger �super cell� has been de�ned the local structure ordering options

are disentangled through a chemical unit (CU) representation, each with one or

more sets of alternatives based on the total number of options that belong to

a given chemical unit. The CUs serve as the building blocks representing one

disorder option at a time and are part of the crystal that contributes to the

di�use intensities. Generally many crystals are possible and need to be modeled
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simultaneously. Each chemical unit and its associated alternatives are assigned a

probability. Interactions between chemical units are de�ned and a corresponding

interaction energy is assigned to each CU interaction. The interaction(s) between the

chemical unit(s) are parameterized and then used by the ZODS Monte Carlo crystal

builder to construct model crystals. The interaction between CUs is de�ned as a

discrete, Ising interaction and de�ned between a CU at one site in a crystal with a

CU at another site.

Monte Carlo (MC) adjusts the initial guesses by randomly swapping pairs of

chemical units between the sites they occupy. This swap results in a crystal with

an overall lower MC energy if ∆E = Ei − Ei+1 ≤ 0 and if ∆E = Ei − Ei+1 > 0 then

the swap is accepted with a probability of,

P (E) = e
−∆E

kβ

T ,

where (T =
1

kβ
). This probability, P (E), is calculated and compared to a random

number generated between 0 and 1. If P (E) is less than the random number the

swap is accepted otherwise it is not. Each attempted swap is a MC step. A MC cycle

means that every site in the crystal has had at least one attempted change, whether

or not it was accepted. The MC process is repeated until the crystal energy shows no

improvement (equilibration). Appendix A. 1 describes the MC crystal building for a

speci�c example.

3.2.3 Model calculations and optimization

The equilibrated crystal structure intensities are calculated by �rst dividing the

crystal into smaller crystals (lots) [15, 44], Fourier transformed, squared and

incoherently summed to obtain the simulated crystal intensity. The lot size needs to

be large enough to include all correlated neighbor interactions. The correlation length

is indicated by the systematic change in the conditional probabilities of neighbors.
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The number of lots is chosen so that the entire simulated crystal is sampled at least

once; the number of lots multiplied by the lot dimensions should be greater than or

equal to the simulated crystal dimensions.

The model parameters are then optimized through a generational algorithm called

di�erential evolution (DE) [45] that re�nes the model parameters through an iterative

process that minimizes the di�erence between the observed (measured) and calculated

intensities, called the objective function (chapter 5 section 5.3.1) or R value in this

case. Multiple crystals are built with the same parameter set (clones) to sample a

representative area of the �tness distribution of crystals. The model crystal intensities

are calculated by incoherently summing over lots and averaging the individual crystal

intensities over clones. DE optimization continues until convergence is achieved with

a speci�ed stopping criterion, such as the number of optimization cycles.

The objective function (R value) [15] minimized by DE is given by,

R = (A
∑
k

σ−2(hk)[Iobs(hk)− sIcalc(hk)− b]2)
−

1

2 (3.2)

where R is summed over all reciprocal data points hk with corresponding standard

deviation σk. The observed and calculated intensities are given by Iobs(hk) and

Icalc(hk). The s term is the scale factor, b is the background and A given by

A =
1∑

k σ
−2(hk)I2

obs(hk)

is the normalization constant. The scale factor, s, and background, b, are calculated

using linear least squares which solves a system of linear equations

∂R

∂s
=
∂R

∂b
= 0
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for the optimized objective function at each Icalc(hk). If the solution of

∂R

∂b
< 0

a penalty is assigned by setting the objective function to one. If the solution of

∂R

∂s
< 0,

∂R

∂b
> 0

for s and b then b is set to zero and only s is optimized. If solutions of

∂R

∂b
> 0,

∂R

∂s
> 0

for s and b, both are retained without change.

The model results can be analyzed in direct and reciprocal space. The di�erences

between calculated and observed intensities can be calculated using a ZODS utility

program, �compare intensities� and can then be visualized in Paraview [43]. The direct

space results can be analyzed by calculating chemical unit neighbor pair correlations

(see Appendix A. 1 for a short 4 neighbor example). A principal component analysis

can be done (section 7.2.5) on parameters [46] using the ZODS �analyse� utility.

Parameter convergence statistics can be calculated and graphically analyzed in the

plotting utility program �plot tools� (Appendix A. 4.2 and chapter 6). The general

concepts of MC crystal building and equilibration, lots, neutron and X-Ray intensity

calculation on a grid and neighbor pair correlation statistics are incorporated into an

exemplary 2-D crystal modeling code written to demonstrate occupational disorder

on a 2-D hexagonal lattice (Appendix A. 1). Details of the use of the ZODS program

and utilities are demonstrated in chapter 6.
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Chapter 4

Neutron data of β[beta]-NaLaF4

4.1 Introduction

Er3+ doped β(hexagonal phase) NaLaF4 from a series of β-NaLaF4 (Ln=Y-Lu)

belongs to a family of light emitting Sodium Lanthanide tetra �uorides. Some of

the rare earth doped compounds are e�cient upconversion phosphors. They are

currently heavily studied as luminescence host matrices [17]. Owing to their biological

compatibility [47, 48, 49, 50], deep tissue penetration [51] and virtually zero auto

�uorescent background [52] upconversion nanocrystals (UCNCs) have been developed

for cell-labeling and tracking [53], small animal imaging [48], delivery of drugs [54],

photodynamic therapy [55], and photothermal therapy [56]. UCNCs also have a

variety of non-biological applications including lasers [57, 58, 59], solar cells [60],

wave guides [61, 62] and display devices [63].

As the internal make-up of UCNs is crystalline, the upconversion process is

supported by the crystal structure [64]. The host matrix (crystal lattice) combined

with a dopant (usually Lanthanide ions) in low concentrations form the upconversion

phosphor [4]. The crystal structure of the host matrix provides a framework that

brings the luminescent centers, triggered by the dopant, into optimal position

[4, 65, 66]. Thus, the inherent properties of the crystalline host matrix and
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its interaction with the dopant ions dramatically a�ect the ability to support an

upconversion process. To date the most e�cient upconversion phosphor, introduced

in 1972 by Menyuk et al. [67] and Kano et al. in 1973 [68] is Yb3+ and Er3+ doped

NaYF4.

To understand the interplay between the dopant ions and the crystalline host an

unambiguous characterization of the local spectroscopic site symmetry is essential.

There have been several con�icting crystal structural descriptions of NaLaF4 [4,

65, 69], from X-Ray single crystal di�raction data [4], polarized Raman, infrared

spectroscopic techniques and piezoelectric resonance spectra [9]; however all of these

methods con�rmed P6̄ symmetry, which is a non centrosymmetric space group.

Polarized single-crystal absorption spectroscopy studies revealed that La3+ oc-

cupies an optically active site lacking mirror symmetry (C1), whereas the crystallo-

graphic structural symmetry indicated a higher C3h symmetry for all La3+ [4]. Closer

examination of the average structure revealed that local structure must account for

this apparent discrepancy in the two results [4]. This is also supported by di�use

scattering observed in the di�raction pattern. Only a qualitative estimate of di�use

X-Ray data was attempted, which described the general correlations of a frustrated

local arrangement of the Na2/La2 cation columns in β-NaLaF4 [4].

X-Ray di�raction yields a good average structure and provides adequate data,

however the availability of neutron data would provide a complementary data set

to verify the predicted local structure. Complementary neutron TOF Laue single

crystal di�raction data was collected providing the opportunity to study the structure

characteristics and validity of the models from both data sets. The combination of

heavy and light elements present in β-NaLaF4 make the use of neutron di�raction

particularly useful due to the more similar scattering powers of Na, La and F than

X-Rays. The X-Ray di�raction pattern is dominated by La3+(57 electrons) since it

has a large scattering factor relative to the other elements, F and Na, which only

have 9 and 11 electrons respectively. With the availability of high �ux and intensity

neutron sources it is feasible to better determine the Na and F positions via neutron
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di�raction. The coherent scattering length for F is 5.654 fm, for Na it is 3.63 fm while

for La it is 8.24 fm, values that are more similar than the X-Ray scattering factors [37].

In our study we focus �rst on developing and testing variable wavelength TOF Bragg

data correction and integration techniques. For this work, 100K TOF Bragg data

was collected from large β-NaLaF4 single crystals on the single crystal di�ractometer

TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory. Two

TOF data integration techniques are tested and compared. Complementary 100K

single crystal X-Ray data was collected, integrated and re�ned as P6̄. The anisotropic

displacement parameters for both the neutron and X-Ray data were compared and

their di�erences discussed.

4.2 Bragg scattering: neutron TOF data

A large single crystal of β-NaLaF4 (approximately 1 cubic millimeter) was selected

from a batch of crystals grown using the Bridgeman technique by collaborators at the

University of Bern. The crystal was mounted on an aluminum pin using super glue and

placed on the goniometer equipped with a 100K nitrogen cryostream. Neutron event

data were collected and viewed live using ISAWEV [70]. The �rst Bragg re�ections

appeared in a matter of minutes. The quality of the single crystal was determined by

examining the initial Bragg peaks. After three attempts a single crystal was found

with only single Bragg peaks without splitting or multiples.

The UB matrix is found using the strongest Bragg peaks to determine the smallest

primitive cell (Niggli cell). The Niggli cell and its orientation in the instrument de�ne

the UB matrix. The Niggli cell and its corresponding UB matrix is calculated using

a fast Fourier transform (FFT) algorithm and re�ned using least squares. The Bragg

peaks are projected on possible vectors generated from the range of values for each

a, b and c. Fast Fourier transforms (FFT) of the projected peaks are calculated and

regular patterns are found in the collection of peaks identi�ed. The magnitudes

and directions of the a, b and c vectors are optimized through a least squares
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algorithm which maximizes the number of peaks indexed. The three shortest, linearly

independent vectors are used to form a unit cell with a volume whose corresponding

UB matrix indexes at minimum of 80% of the maximum number of Bragg peaks

indexed by any other three vector combination tested. The best three vectors are

used to form a new UB matrix that is again optimized using least squares. Finally,

starting with the optimized UB matrix, a new UB matrix corresponding to the Niggli

reduced cell is calculated. This is the UB matrix that is used to index the Bragg

peaks in the measured data within the speci�ed tolerance in this case (0.12 deviation

from h,k or l).

The peaks indexed using the UB matrix were used to plan the experiment using

the Crystal Plan software [71] to maximize the coverage per orientation. Twelve

crystal settings were collected for approximately 2 hours per setting. This resulted

in a Bragg data set with completeness greater than 90%. The Bragg data were

integrated, corrected for Lorentz, spectrum and absorption e�ects and re�ned with

the single crystal re�nement software program GSAS, which allows for Laue time-of-

�ight extinction correction and scaling. 2125 independent measured re�ections were

re�ned to an overall R = 0.0557, Goof = 1.025 (CIF �le Appendix A. 3.2). Di�use

data was also collected for 12 crystal settings for approximately 11 hours per setting.

4.3 TOF data correction

Background and spectrum corrections for di�use single crystal neutron TOF data

in reciprocal space have not to date been developed. Aspects of a new protocol

for correcting the multiple wavelength data on a neutron by neutron basis have been

studied and tested for validity on Bragg data in MANTID [5], where the results can be

�rst compared to the common post-integration reduction and then to the di�use data.

A common TOF data correction process of Bragg peaks to subtract the background

and divide the isotropic scatterer by Vanadium spectrum is used (equation 4.1)[21].

The sample data is loaded with the prompt pulse range [1500, 15666] counts. The
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detector calibration is included for the sample data. Next these data are normalized to

the monitor counts. Monitor counts are integrated over the range [1000,12500] and the

sample data is divided by this value. The background is measured without a sample

and the detector calibration is also normalized to monitor counts and subtracted from

the sample. Any resulting values of zero along with detector edges (16 pixels) are

masked. After masking the Vanadium (isotropic scatterer) is normalized to monitor

counts and the normalized background is subtracted. Any values of this di�erence

resulting in zero are masked along with the edges. Finally the normalized di�erences

are divided as shown in relation 4.1 below.

S∫
mSdTOF

− B∫
mBdTOF

V∫
mV dTOF

− B∫
mBdTOF

(4.1)

The correction to adjust for the e�ects of spectrum, which is not �at, is applied

to the sample data. The raw data corrections are done on all intensity data in

reciprocal space (Bragg and di�use). The spectrum correction is simpli�ed for the

post-integration Bragg peaks [21]. In the case of Bragg intensities, they are assumed to

be at a single point in reciprocal space and not distributed over volumes of reciprocal

space as in the case of di�use scattering, so only individual points on the spectrum are

used and not a continuous spectrum. In the case of di�use scattering the spectrum

correction is applied to the di�use intensities (see �gure 4.1) over the entire di�use

pattern. This means that each measured neutron event is corrected for its associated

wavelength.

4.4 Experimental details

The crystal structure determination for β-NaLaF4 is described in the following text.

A crystal of globular shape with size of 1.4× 1.4× 1.0 mm3 and space group P6̄ was

re�ned with unit cell dimensions a = b = 6.1520(14)Å, c = 3.8210(8)Å. The unit
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Figure 4.1: The HK4.5L layer of NaLaF4 collected on single crystal TOF
di�ractometer TOPAZ reveals the same di�use �honeycomb� pattern observed in X-
Ray experiments [4]. This is a view generated using MANTID with data corrections
applied.

cell volume was calculated as V = 125.43(5)Å
3
and the density, ρcalc = 4.724 gm−3.

The number of chemical units per unit cell was Z = 1. The data was measured at

T = 100K with incident neutron radiation wavelength range of λ = [0.5�3.5]Å. A

total of 2125 re�ections were measured resulting in 2042 unique re�ections with angle

2θmax = 162◦. A spherical absorption correction was done in the TOF data correction

and integration software written by A. Schultz called anvred2x [72]. The calculated

absorption correction was µ = 0.04 cm−1 at 1.8Å and the transmission minimum and

maximum were Tmin = 0.9631 and Tmax = 0.9788, respectively. A secondary type

1 Lorentzian extinction correction was modeled in GSAS resulting in an extinction

coe�cient of 1.3560 × 10−4. The �nal re�nement to generate the CIF �le was done

with a full-matrix least squares re�nement against F 2 in SHELX97 [24] using 2042

re�ections (I > 2σ(I)) and 20 parameters. The resulting �tness parameters were;

R1 = 0.0534 (I > 2σ(I)), wR2 = 0.1354 (all data). The residual neutron number

density was +1.530 and −1.558 for dmin = 0.4Å high resolution data.
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4.5 TOF data integration methods

Discrete single crystal Bragg peaks were integrated using two di�erent peak inte-

gration methods in reciprocal space; (1) spherical integration and (2) elliptical peak

�tting (see �gure 4.2). Both integration algorithms begin with the same peaks found

and indexed using the fast Fourier transform found UB matrix. The events are

detected in x− y TOF detector space and mapped to reciprocal space. Integration is

performed by summing all neutron events inside a chosen radius (in Å−1) around each

peak position. Since the error associated with each event is assumed to be random

and independent they are summed in quadrature.

If the chosen radius results in an integration volume that is either partially or

entirely o� the detector edge, the peak is discarded. The background is estimated by

de�ning a second �shell� of a speci�ed thickness around the peak. This de�nes a shell

around the volume containing the peak, which is used to calculate the background.

The background density (intensity) within a given peak radius is calculated by scaling

the shell intensity to the volume of the peak as

Ibg = Ishell
Vpeak
Vshell

;

and the square error is given by,

σI2
bg = Ishell

Vpeak
Vshell

σI2
shell.

The integrated intensity is corrected (background subtracted) as Icorr = Ipeak − Ibg
and the errors (σ(I)) are summed in quadrature.

4.5.1 Spherical

The general integration method described above is applied to a sphere de�ned by a

single peak. Neutron events are weighted by their standard uncertainties. Events in
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the de�ned spherical region of the indexed peaks are summed and the event standard

uncertainties (errors) are summed in quadrature. The background intensity is scaled

and calculated as above and the �nal integrated peak intensity is also calculated as

described above.

4.5.2 Elliptical

The elliptical integration algorithm integrates discrete single crystal Bragg peaks by

summing all raw, unweighted events contained in a 3-D elliptical region of reciprocal

space and subtracting the background estimated from an ellipsoidal shell that is

derived from the peak radius (�gure 4.2). The inner and outer background sizes as

described above de�ne the ellipsoidal background shell that is subtracted from the

peak. The length of the major axis of the ellipse is �xed and kept the same for all

peaks; the other two axes de�ning the 3-D ellipse are adjusted based on the standard

deviation of the events in their directions. The major axis is de�ned to be in the

direction of the principal axis, which is the direction whose standard deviation is the

largest. The other two ellipsoidal axes are in the direction of other axes and scaled

according to the major axes in proportion to their standard deviations. In addition to

the ellipsoidal radii a region radius must also be speci�ed. This de�nes the maximum

distance from the peak center that is considered for integration in reciprocal space.

An event is assigned to at most one peak with the closest hkl value. The region radius

should be slightly larger than the expected peak region in order to ensure that the

entire peak is integrated (�gure 4.2).

4.6 X-Ray data collection

An X-Ray data set was collected as a basis of comparison to the neutron data using

a crystal from the same batch. All data were measured at 100K, using a nitrogen

cryostream. The re�nement and data collection details of NaLaF4 are given here.
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Figure 4.2: Depiction of the ellipsoidal region generated in the peak integration
algorithm around each found Bragg peak. The event region is indicated by the dashed
line surrounding ellipse. Figure from MANTID [5] project website.

Crystals of globular shape with size 0.12×0.1×0.09 mm3 were used for data collection.

The crystal structure had hexagonal symmetry with space group P6̄ and was re�ned

with unit cell dimensions a = b = 6.1520(14)Å, c = 3.8191(9)Å and unit cell volume,

V = 125.18(6)Å
3
with density ρcalc = 4.734 gcm−3. A Bruker Smart 1 K area detector

di�ractometer with graphite-monochromated MoKα radiation and wavelength λ =

0.71013Å using 0.3◦ ω-scans and SMART and SAINT software were used. A total

of 816 re�ections were measured resulting in 239 unique re�ections at angle 2θmax =

56.37◦. An empirical absorption correction with SADABS [24] was done with µ =

12.848 mm−1 and the minimum and maximum transmission were Tmin = 0.5704 and

Tmax = 0.7457, respectively. A least squares, full-matrix re�nement against F 2 with

SHELX97 [24] using all 816 re�ections (I > 2σ(I)) and 22 parameters resulted in an

of R1 = 0.0138 (I > 2σ(I)) and wR2 = 0.0346 (all data). The inversion twinning

ratio was 0.43 and re�ned as a two component inversion twin. The residual electron

density was +0.43/− 0.51Å
−3
.
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Chapter 5

New computational method for

analysing di�use scattering

The results in this chapter are an expanded version of the paper:

Michels-Clark, T.M.*, Lynch, V.E., Ho�mann, C.M., Hauser, J., Weber, T.,

Harrison, R., Bürgi, H. B. Analyzing di�use scattering with Supercomputers. J.

Appl. Crystallogr., 46, 1616-1625

I was lead and corresponding author and my primary contributions to this paper

include (i) testing and development of method and analysis (ii) running of computa-

tions (iii) writing manuscript and preparing all �gures for publication (iv) writing of

results analysis code (v) corresponding with editor and referees (vi) �nal submission.

5.1 Introduction

Interesting and exploitable macroscopic material properties of functional single

crystals are often related to microscopic local deviations from a periodic average

structure. These deviations may take the form of static or dynamic disorder and

manifest themselves as di�use scattering (DS) in one, two, or three dimensions

(rods, layers, clouds) concomitant with Bragg scattering [12]. Phonon related
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scattering resulting in thermal di�use scattering (TDS) [73] is not the focus of

this investigation. Here we focus on static disorder associated with local structural

variations. Qualitative DS analysis can show general aspects of disorder, but only a

quantitative analysis can reveal details of the deviations from the average (or Bragg)

structure and provide a basis for explaining the origin of the functional properties

[4, 74]. Only the disordered atoms or molecules within the overall structure contribute

to di�use scattering, which, being distributed over extensive volumes of reciprocal

space, is usually orders of magnitude weaker per unit volume of scattering space

than Bragg di�raction. This means that measuring the di�raction of structurally

disordered materials requires a careful experimental set-up at powerful neutron

and synchrotron sources and careful discrimination of the experimental noise from

scattering introduced by the sample environment and not by the crystal itself. Better

radiation sources, detectors, and data reduction routines make the acquisition of

reliable di�use scattering data increasingly tractable.

Usually, preliminary knowledge of the structural disorder is vague and consists

mainly of chemical or geometric rules that are violated in the average structure. The

measured, quantitative information requires quantitative modeling, which necessitates

iterative optimization of empirical disorder parameters. Growth or Monte Carlo (MC)

models are most e�ective for estimating an initial disorder model and equilibrating

it [15]. Lattice energy minimizations have also been used to qualitatively verify

the local structural disorder, and the energy-minimized structures were found to

qualitatively reproduce the observed di�use di�raction pattern well [14]. Intrinsic

issues with these techniques are twofold: Firstly, the size of the constructed model

crystals needs to be su�ciently large to encompass the observed disorder (short-

range-ordered) motifs, but is generally still small compared to the scattering volume

of the actual sample. Secondly, a global optimization procedure is needed to �nd

the best empirical parameters for describing the disorder and their numerical values.

The substantial computational resources needed to resolve these issues are becoming

increasingly available with advances in computer technology.
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In this work three aspects of computationally modeling stacking disorder are

investigated with the help of growth models [75]. 1) We compare the e�ciency of

di�erent algorithms for global optimization of model parameters, namely, Di�erential

Evolution (DE) [45], Genetic Algorithm (GA) [76], and Particle Swarm Optimization

(PSO) [77]. 2) We analyze the speckle-type intensity variations inherent in all

procedures for modeling disorder using the concept of �clones�, i.e., model crystals

that are independently built from a single set of model parameters. 3) The concept

of clones lends itself to parallelization on super or grid-computers. Here we report on

the scalability of such parallelization.

In section 5.2 the chemical model system is described and growth modeling of

stacking disorder is sketched. Section 5.3 describes three global optimization methods

for the parameters of the growth model and ways to parallelize the computations.

Section 7.2 compares the performance of the optimization methods and of the

parallelization. It also summarizes the structural results obtained.

5.2 Chemical model system, growth modeling, and

reference data

Tris(bicyclo[2.1.1]hexeno)benzene (TBHB) crystallizes in multiple stacking variants of

threefold symmetric layers consisting of coplanar, three-pointed star-shaped molecules

(Figure 5.1). The polymorph with space group P63/mmc and Bragg lattice

parameters a
′

= b
′

= 5.2145(5)Å and c
′

= 8.9429(8)Å shows di�use streaks of

scattering intensity at non-integral values of (−h′ + k
′
)/3 (with h

′
, k
′

= integer)

[18]. The streaks indicate faulted layer stacking [78]. The unit cell of a single layer

is a = a
′ − b

′
, b = a

′
+ 2b

′
with lengths a = b =

√
3a
′
. Correspondingly the di�use

streaks are indexed as h k L with −h+k 6= 3 and L the continuous variable along the

streaks. The unit along L was chosen as c = 2c
′
. The observed di�use lines are no

wider than the Bragg re�ections which allow the collapse of the di�use intensities into
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Figure 5.1: Left: Tris(bicyclo[2.1.1]hexeno)benzene molecule (TBHB), black atoms
are carbon, white atoms are hydrogen. Center: A skeletal formula representation
of TBHB where all atoms on a given dotted circle were assigned the same isotropic
atomic displacement parameter (U1, U2, U3). Right: schematic tri-star representation
of TBHB (used in Fig. 5.2).

a 1-d pro�le. A total of 14 h k L lines were extracted by de�ning a rectangular box

over the full length L of the di�use intensity rod. The box is one pixel deep in l and

includes the full extent of di�use intensity in h. At each value of L, h and k intensities

are summed and corrected for background, thus resulting in a line pro�le along L. The

process is described in detail elsewhere [78]. The disorder has been described with

growth modeling, a procedure in which a new layer is added onto the preceding layers

of a crystal. Addition in di�erent positions is associated with di�erent probabilities.

The probability of each added layer depends on the arrangement of the preceding

layers [78], four of them in the present case. Selected growth sequences labeled with

a shorthand and the symbols of the associated stacking probabilities are shown in

Figure 5.2.

The symbols of the shorthand refer to three layers: the symbol e (for eclipsed)

implies that layer n + 2 sits exactly on top of layer n; bL(bR) means that layers n

(lowest), n+1, and n+2 (highest) spiral in a clockwise (anti-clockwise) fashion when

looking onto the growing crystal face. Figure 5.2 uses this nomenclature to describe

transitions from four- to �ve-layer stacking sequences. The full Markov matrix of
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Table 5.1: The transition matrix T of probabilities for extending the left-hand
column of four-layer motifs into the top row of new four-layer motifs. Once a new
motif is formed by adding a new �fth layer, the �rst layer and thus the �rst motif are
dropped. The meaning of the symbols is described in the text.

from
to

...ebL ...ebR ...ee ...bLbR ...bLbL ...bLe ...bRbL ...bRbR ...bRe

ebL 0 0 0 t− ∆
2

c− ∆
2

e1 + ∆ 0 0 0
ebR 0 0 0 0 0 0 t− ∆

2
c− ∆

2
e1 + ∆

ee 1−e2
2

1−e2
2

e2 0 0 0 0 0 0
bLbR 0 0 0 0 0 0 t−∆ c+ ∆ e1

bLbL 0 0 0 t+ ∆ c−∆ e1 0 0 0
bLe

1−e2
2
−∆ 1−e2

2
+ ∆ e2 0 0 0 0 0 0

bRbL 0 0 0 t−∆ c+ ∆ e1 0 0 0
bRbR 0 0 0 0 0 0 t+ ∆ c−∆ e1

bRe
1−e2

2
+ ∆ 1−e2

2
−∆ e2 0 0 0 0 0 0

transition probabilities is given in Table 5.1. Adding a new layer on the right-hand

side of the column vector �from� generates the sequence in the top row vector �to� of

the transition matrix; in short p
′

= pT, where p and p
′
are row vectors describing

the probabilities of �nding a given four-layer sequence before and a �ve-layer sequence

after adding a new layer, respectively; T is the matrix of transition probabilities. For

the sequences bR and bL, the molecules in layer n + 1 are tilted out of the trigonal

plane, but not for the sequence e. Chemically equivalent atoms are assigned the same

isotropic mean-square displacement parameter (Figure 5.1).

Nearly noise-free di�use intensity data were obtained from 1280 clones, generated

with a disorder model derived from an experimental study of a crystal of TBHB

[79]. The parameters of the model used in this work are the stacking probabilities,

a molecular tilt angle, and isotropic atomic displacement parameters. A total of

1280 virtual model crystals (clones), each consisting of 0.96 · 105 layers, were grown

from a single set of parameters that best �t the 14 experimentally determined hkL

lines [79](Table 5.2). Each clone was divided into 1600 randomly chosen lots [15, 44]

encompassing 60 layers. Di�use intensities were calculated by Fourier transformation

of each lot. The calculated 2.048 · 106 sets of intensities were then incoherently

averaged to create a reference data set of 14 hkL lines including 0kL (k = 1, 2, 4, 5, 7),
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1kL (k = 3, 5, 6), 2kL (k = 3, 4, 6), 3kL (k = 4, 5), and 0 < L < 5 for all lines. As an

example the reference and optimized model intensities of the 01L line are compared

in Figure 5.3.

5.3 Computations

5.3.1 Methods for optimizing model parameters

In general, the initial values of the parameters chosen for modeling disorder are

�educated guesses� at best, usually far from their real value. Therefore a global

optimization technique that is not based on sophisticated a priori knowledge but is

able to optimize sets of random initial model parameters is needed. Population-based,

metaheuristic algorithms are well suited for the purpose of optimization without

preliminary assumptions of the solution.

We selected three representative algorithms for numerical optimization: a Genetic

Algorithm (GA), a Di�erential Evolution (DE), and a Particle Swarm Optimization

(PSO). GA and DE are population-based search algorithms that implement principles

of genetics. Each individual gene set k in a population is evaluated according to its

�tness Rk (high �tness = low Rk).

Rk =

√√√√∑i[(
∑

j(
Iji,k
J

))− Ii,ref )]2 · wi∑
i(Ii,ref )

2 · wi
, (5.1)

where the sum over i includes all I data points Iji,k from 14 di�use lines (I = 301·14 =

4214; weight wi = 1), and the sum over j includes all J clones. All intensities are

given unit weight in the calculations.

The resulting population of R-values, Rk (corresponding to K model parameter sets),

54



Figure 5.2: Examples of unique �ve-layer stackings and associated motifs: layers
1,2,3 in solid black, layer 4 (green) and layer 5 (red); respective transition probabilities
from four- to �ve-layer stackings at the bottom of the motif. The symbols above the
motif describe the four- and �ve-layer stacks. The symbols bL, bR, e (bent left, bent
right, eclipsed) characterize the three possible three layer stacks. A four-layer stack
is de�ned by two symbols, and a �ve layer stack by three symbols.
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Figure 5.3: Reference intensity and calculated intensity (averaged over 40 clones)
for the 01L line are shown overlaid. The di�erence (calculated - reference) is shown
in the plot below. (see Table 7.7, R̄ = 0.0077)

is characterized by its mean and standard deviation.

R̄ =
∑
k

Rk

K
; s =

√∑
k(Rk − R̄)2

K − 1
. (5.2)

The individuals yielding the lower Rk values in a comparison between parents and

children survive and form the parents for the next generation. This process is

repeated until a stopping criterion is reached, in our case a set number of generations.

Population convergence to a solution is signaled by a low overall R̄ accompanied by

a low s value, which remains essentially constant over many generations.

Like GA and DE, PSO is a population-based, stochastic search technique; however,

it does not use genetic operators. Instead the position and movement of each particle

in a swarm is adjusted with respect to the overall trend of velocity and direction for

the swarm. Convergence to a solution is achieved when all particles have a small

displacement and have clustered together.
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Genetic algorithm

The genetic algorithm (GA) is a widely used evolutionary algorithm and is described

in detail in Refs. [76, 80, 81, 82, 83, 84]. The initial generation is randomly

generated within a set range for each parameter (Table 5.2). Cycling through

crossover, mutation, and selection sequentially creates the subsequent generations.

The control parameters of the algorithm are crossover rate, and mutation rate (Table

5.3). During a GA optimization, new individuals are generated from two randomly

chosen individuals (genotypes) of a generation, crossover is applied by recombining

the parameter vectors at a random point, and then a mutation is applied by

randomly selecting and changing parameters. Since GA uses a bit-wise representation

of the parameters (genes) during numerical optimization, so-called Hamming cli�s

occur when �ipping a randomly chosen bit in the binary representation. This may

change parameter values drastically. In order to avoid Hamming cli�s, the genes

are represented by so-called `Gray codes' [85]. Once the genetic procedure for the

population is complete, the �tness of the individuals in the new generation and the

parent generation are compared with the objective function Rk. The individual with

the better �tness, either the parent or the new candidate, survives to serve as parent

for the next generation. This process is repeated until a stopping criterion is reached,

in our case a maximum number of generations (Table 5.3).

Di�erential evolution

Di�erential Evolution (DE) is a vector-based method successfully used for numerical

optimization problems and problems that are parameterized with real numbers [45].

Application of DE to disorder modeling and the interpretation of di�use scattering

has been described in detail by Weber and Bürgi [86].

DE forms a child, an individual of the subsequent generation, by picking genes

from a target individual (t) with gene vector dt in the parent generation and from a

mate d
′
c created from three randomly chosen parent individuals a, b, and c. The three
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Table 5.2: Comparison of the reference parameters de�ning the reference data with
mean model parameters and their standard deviations obtained by optimizations
with a genetic algorithm (GA), di�erential evolution (DE), and particle swarm
optimization (PSO) using 40 individuals. The parameter values at the start of
the optimizations are generated for each member in the population using the
range of values listed in the third column for each parameter. The minimum and
maximum values are the world size or absolute limits of the parameter values during
optimization.

par. reference min.,max. GA DE PSO
c 0.48877 0, 0.5 0.49697(3) 0.4885(4) 0.488(2)
∆a 0.49336 -0.5, 0.5 0.45(1) 0.484(6) 0.486(7)
e2 0.006748 0, 1.0 0.7372(6) 0.008(4) 0.02(3)
tiltb 2.2723 -5.0, 5.0 2.251(8) 2.27(1) 2.3(1)
U c

1 2.6284 0, 5.0 2.67(1) 2.63(3) 2.7(1)
U c

2 2.2734 0, 5.0 2.026(5) 2.28(4) 2.2(2)
U c

3 3.0005 0, 5.0 2.982(9) 2.97(6) 3.0(2)
ta 0.48877 0, 0.5 0.49697(3) 0.4885(4) 0.488(2)
ea1 0.022452 0, 1.0 0.0061(7) 0.0230(8) 0.02(3)
Rd - - 0.0338(3) 0.0090(4) 0.02(1)

aConstrained parameters: c = t, (c±∆) + (t∓∆) + e1 = 1
b units of tilt in degrees
c units of Ui in 10−2Å

2

d R-factor measures �tness after 150 generations
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Table 5.3: The control and run parameters for DE, GA, and PSO.

Algorithm Control Parameters
GA DE PSO
mutation rate = 0.005 fm = 0.70 w = 0.95
crossover = 0.95 fr = 0.50 c1 = 1.0

c2 = 1.0
Vmax = 0.25·(limitsa)

Run Parameters
num. generations b 150
population size c 40
num. of clones d 10− 40

a see Table 5.2 min. and max.
b user speci�ed
cindividuals(genotypes) included in the population or swarm
dcopies of each genotype included in the calculation

vectors da, db, and dc are combined to create d
′
c, according to d

′
c = dc +fm(da−db),

where fm is a scalar mutation constant, a control parameter of the algorithm. If any

gene of a mate d
′
c is outside the set search range, the mate is rejected and a new

mate calculated. To create the child, one randomly selected parameter (gene) in t

is replaced by the corresponding gene from d
′
c, and the remaining genes of the child

are inherited from d
′
c with a probability given by the crossover constant fr, another

control parameter of the algorithm. The control parameters used for DE are listed in

Table 5.3.

The survival of either the target individual or the child to the next generation is

determined by which of the two has the higher �tness. DE is repeated until a stopping

criterion is reached, here a maximum number of generations (Table 5.3).

Particle swarm optimization

Particle Swarm Optimization (PSO) is modeled after the behavior of swarms such

as birds or insects in nature [77]. A vector xi of parameters de�nes each individual

or particle i within the swarm. Each particle is guided to the optimal solution by
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the best solution it has seen plus the best solution seen by the population. The

initial population for PSO is randomly generated as for the GA and DE algorithms.

Unlike GA and DE, PSO does not operate on the principles of genetics; instead,

each particle or candidate solution xi is assigned a displacement per unit of time (t),

generally referred to as velocity vi, by which the particle travels the search space.

Each variable in xi is updated from one generation to the next with v
′
i according to

x
′
i = xi+v

′
i ·t. The velocity v

′
i modifying the current parameter vector xi is in�uenced

by the best solutions seen by the particle, bi, and the population, bP . It is updated

according to

v
′

i = w · vi + c1r1(bP − xi) + c2r2(bi − xi). (5.3)

The algorithm depends on the following control parameters:

- inertia parameter w (generally < 1);

- acceleration constants c1 and c2 (indicating how much the particle vector xi is

directed toward the best solution that is seen by the swarm, bP , and the particle, bi,

respectively);

- random numbers r1 and r2 generated within the range (−Vmax, Vmax).

The control parameters for PSO used in this work are listed in Table 5.3. Any

parameter of xi that is outside of the search space is reset to its limit.

5.3.2 Clones and parallelization

In previous DE optimizations it was observed that the �tness of certain individuals

(intensities) was so high that their genes survived many generations. For reasons

of computational e�ciency, the disordered crystals, their intensities, and the �tness

of such individuals were not recalculated in subsequent generations. On calculating

many individuals and their �tness with the same gene set, it was found that the

�tness values covered a distribution of R-values. The �tness of individuals surviving

many generations was invariably found at the high �tness-end of such distributions.

Conversely, the �tness of individuals whose gene sets were frequently replaced was
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often found at the low �tness-end even though the average �tness of the distribution

might have been quite reasonable. These two phenomena lead to the conclusion that

a reliable estimate of �tness requires multiple intensity calculations with the same

gene set, subsequent averaging of the intensities, and calculating a �tness from the

averaged intensities [87]. Crystals originating from the same parameter or gene set

are referred to as clones.

The phenomenon of ultra-stable individuals may be understood in terms of the

physical background of a di�use scattering experiment. Coherent scattering of an

object lacking translational symmetry results in a speckle pattern. Locally the

scattering intensity in such a pattern may change rapidly. Small di�erences in the

object produce slightly di�erent speckle patterns. The coherence length of X-rays

used in di�use scattering experiments on disordered crystals is typically smaller

than the sample size. The experimentally observed signal is thus an incoherent

superposition of di�erent speckle patterns originating from slightly o�set regions

within the sample. Apart from experimental noise, such signals usually look quite

smooth. The phenomenon of incoherent superposition is simulated in our disorder

modeling with clones, albeit at a much smaller scale. While the real sample may

contain on the order of 1018 (slightly di�ering) unit cells, a typical clone consists

of a mere 104 − 106 unit cells which are divided up into lots of dimensions that

are chosen to match the correlation length de�ning the short range order [74, 88].

The lots are Fourier transformed and averaged incoherently. If the variations of

the resulting averaged, simulated pattern, also called MC noise, are of the same

order as the experimental noise, MC noise may or may not match the experimental

noise, thus giving the false impression of unusually high or unusually low �tness of

the model. Simulating di�use scattering patterns with model crystals of inadequate

size and insu�cient numbers of lots hence runs the risk of mistaking noise in the

experimental pattern as being the result of disorder, thus explaining the phenomenon

of the unjusti�ed survival of some of the model crystals as described above. To
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reduce this risk, the volume of simulated crystals must be large enough and thus the

calculated di�use pattern must be smooth enough to minimize bias due to MC noise.

Random number bias is another problem. Disorder modeling usually starts from

a randomly seeded crystal that is grown into a full-sized model crystal or equilibrated

by using a MC process. Such crystals may be biased by the starting con�guration.

Building several crystals, each starting from a di�erent random seed, minimizes the

risk of random number bias and reduces the probability of ultra-stable individuals.

A disadvantage of clones is the increase of computational cost and a corresponding

slow-down of the structure determination process. The latter can be compensated

e�ectively by parallel computation of the clones, one per processor of a supercomputer

or a grid computing facility, as will be discussed in section 7.2.2. In the present case

of nearly noise-free data, the use of clones serves to analyse and control the inherent

dispersion of results characteristic for crystal growth and MC models (Section 7.2.7).

There is an additional dimension to parallelization. The global optimization

methods discussed above explore parameter space by calculating individuals and their

clones with many di�erent gene sets or swarm particles. Thus, the computation of J

clones for K gene sets is easily distributed over J ·K compute nodes. The e�ciency of

parallelization is limited only by the amount of communication necessary between the

nodes. In the present case this corresponds essentially to the transfer and averaging

of the J clone intensities for each of the K individuals. Unless speci�cally mentioned,

optimizations were performed with 40 gene sets, and �tness was calculated from

averaging over 20 clones.

Computing resources were provided for the project by the Spallation Neutron

Source (SNS) at Oak Ridge National Laboratory (ORNL) and the US National

Science Foundation's TeraGrid cyber infrastructure project. The Oak Ridge

Institutional Cluster (OIC) at ORNL is a combined 3136 core shared cluster with a

29Tera-�op peak performance. This work was run on the SNS data analysis share of

the OIC consisting of unrestricted parallel use of up to 192 cores, grouped in clusters

of 8 cores per node. The Extreme Science and Engineering Digital Environment
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(XSEDE), previously TeraGrid, is a national shared cluster for US NSF users. It

encompasses over 20 di�erent computational resources with over 2686 Tera-�ops of

combined performance. An allocation of 195,000 core hours with access to 5 di�erent

supercomputers within TeraGrid was granted and used for this work.
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Chapter 6

Local structure of analysis of

β[beta]-NaLaF4

6.1 Introduction

In this chapter the general computational modeling protocol described in chapter 5

for quantitative modeling is applied using ZODS to analyze the di�use scattering

of NaLaF4, a highly e�cient light upconversion material (chapter 4). A detailed

quantitative description of the local structure of the spectroscopic sites is essential in

order to understand the mechanism of the energy-transfer processes which underpin

the high light upconversion e�ciency of this family of materials [4, 9].

Aebischer et al. performed a polarized single crystal absorption spectra of the

highly ordered LaCl3:Er3+ and β−NaGdF4:Er3+ (both of structure type UCl3). The

study revealed a doubling of the Er3+ absorption lines for in β−NaGdF4 relative

to the ordered LaCl3. The allowed transitions indicated by the C3h selection rules

are violated in the β−NaGdF4:Er3+ spectra indicating a lower site symmetry of the

Ln3+ ion than in the single crystal average structure. This discrepancy is resolved by

examining the local ordering options of the structure.
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The variations in the local structure show in the average structure as partial

occupancies of the Na2/La2 and Na1/void positions (�gure 6.1(a)) and as an

elongated anisotropic displacement parameter in the c direction for the F1 and Na1

atoms (�gure 6.1(b)). Translational order is preserved within a column, meaning that

the Na2. . . La2 or La2. . . Na2 strictly alternate in each column [4]. The third column

is fully occupied by La1 and is centered along the column between the Na2/La2 and

Na1/void positions. However, the three neighboring Na2/La2 columns surrounding

the La1 column do not alternate in phase. This produces the �honeycomb� di�use

2-D di�raction pattern at half integer L as shown in the background of �gure

6.1(a). Based on previous simulations it was found that La2. . . Na2 prefers three

negatively correlated neighbors of Na2. . . La2, which cannot be fully satis�ed resulting

in occupational disorder around the ordered La1 column [4]. This occupational

disorder implies that the alternation (Na2/La2 or La2/Na2) and correlation of the

cation columns causes the F1 atoms to be shifted out of plane breaking the C3h

symmetry of the La1 column, due to the greater charge attraction of the F− to La3+

than Na+; thereby providing a structural basis for resolving the discrepancy between

the average single crystal structure and polarized single crystal absorption [4].

In this work a quantitative description of two aspects of the structural disorder

is provided; (1) the shift of the planar F atoms coordinated to the ordered high

symmetry spectroscopic site and (2) the neighbor correlations of the Na2/La2

columns.

6.2 Super cell

Modeling the di�use scattering of any compound begins with an average structure

re�ned from the Bragg intensities only. The Bragg re�nement is the best possible

time and space averaged real structure. Detailed analysis of the average structure

gives indicators of the structural disorder not represented in the Bragg intensities.
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Figure 6.1: The super cell of β−NaLaF4 illustrates occupational structural
disorder by showing the neighbor preferences of the Na2 . . . La2 and the Na1 . . . void
columns. The central green La column is fully ordered and the three disordered
Na(yellow)/La(red) columns surrounding are not all oriented the same way (negative
correlation). The Na/La columns prefer La/Na columns as neighbors. The Na
(orange)/void (open blue dashed circles) are also not all oriented the same way. These
neighbor preferences are impossible to satisfy over the whole 2-D range and lead to
the di�use �honeycomb� di�raction pattern (shown behind the direct space structure)
at (H,K, 0.5L). Figure from ACS COMP image award [6]. (b) Average structure of
β−NaLnF4 (Ln=Y, La Lu) showing the three di�erent columns of metal sites along
c: Na2/La2 is a 1:1 mixture of Na2 and Ln2 (pink), the Ln1 column (blue), both
with C3h symmetric, tricapped trigonal prismatic coordination geometry, and the
half occupied Na1 site (red) with C3 symmetric, distorted octahedral coordination
geometry. Local distortions owing to the disorder in the crystal are indicated by
arrows. Figure taken from [4].
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A Bragg re�nement of NaLnF4 yields an average structure with space group P6̄

and contains the following symmetry equivalent positions:(x, y, z), (−y, x−y, z), (−x+

y,−x, z), (x, y,−z), (−y, x − y,−z), (−x + y,−x,−z). The average structure of

NaLnF4 contains columns of half occupied Na2/La2 cations at (2/3, 1/3, 1/2), half

occupied Na1/void at (1/3, 2/3, 0.3365), fully occupied La1 at (0, 0, 0), fully occupied

F1 and F2 at (0.62900, 0.03670, 0.0) and (0.73220, 0.75310, 1/2), respectively. The

mean square displacement amplitudes of F1 contain a U33 , (0.00483(24)) that is

almost twice as large as the next largest mean square displacement parameter U22

(0.002804). The elongated ADPs in the U33 direction correspond to a positional

disorder of F1 along c. F1 was re�ned as a single rather than a split position yielding

the elongated ADP for each of its respective positions. It is possible to re�ne F1 each

with two half occupied positions. This would result in mean square displacement

amplitudes with more similar Uiis for each of the two partially occupied F1 positions.

The partial occupancies and elongated ADPs are indicators of occupational and

positional disorder, respectively.

Extraction of the full real structure requires, in addition to the Bragg re�nement,

modeling the di�use intensities. The �rst step in constructing an appropriate disorder

model is to modify its average structure CIF so that the unit cell is rede�ned as a

�super cell�, which contains all structural alternatives found in the Bragg re�nement.

The modi�cations necessary to de�ne the super cell of NaLnF4 are based on the

experimental observations of the di�use intensities that can be ascribed to elements

of the disorder in the average structure CIF.

Aebischer et. al [4] conclude based on the sharpness of the honeycomb layers along

c∗ there is translational order along c, which implies that the Na2 and La2 must be

ordered in the column along c meaning that they strictly alternate Na2. . . La2 or

La2. . . Na2. However, the Na2. . . La2 in its three neighboring unit cells does not

necessarily alternate in the same fashion. Based on simulations of 100 × 100 × 1

unit cells Aebischer et. al [4] found that La2. . . Na2 prefers neighbors of Na2. . . La2

(negative correlation). However, it is impossible for all neighbors of any given column
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to alternate in opposite phase relative to one another over the whole 2-D range. This

aspect of the local structure creates the continuous di�use honeycomb pattern.

In order to describe the disordered part of the structure, the Na2/La2 columns

are used to recreate the structural disorder in a,b by modeling the possible neighbors

of Na2/La2. The average structure CIF lists Na2, La2 as the same position with

occupancy of 0.5 and Na1 position with occupancy of 0.5. Based on the alternation

of these atoms Na2. . . La2 and Na1. . . void along c then doubling the length of c

would give fully occupied positions for each atom. For example if Na2 is at the

average position in the CIF �le of (2/3, 1/3, 1/2) and c is doubled, then this position

becomes (2/3, 1/3, 1/4) and La2 is then at (2/3, 1/3, 3/4) (�gure 6.1(b)). This means

that doubling the unit cell in the c direction adds extra symmetry operations. The

new �super cell� CIF �le should have the adjusted atomic positions (z coordinate is

divided by 2) for the doubled c and the new symmetry operations for the z + 1/2

shift are; [(x, y, z + 1/2), (−y, x− y, z + 1/2), (−x+ y,−x, z + 1/2), (−y, x− y,−z +

1/2), (−x+ y,−x,−z + 1/2)].

6.3 Disentanglement

The new super cell contains the fully occupied positions for Na2, La2 and Na1.

This disentanglement of atomic positions allows the modeling of structural disorder

composed of complete structural units each representing a local ordering option called

a chemical unit (CU). These CUs are then used to construct the disordered a,b plane

of the crystal.

To model the occupational disorder of Na2/La2 the Na2. . . La2 columns, have to

be speci�ed. The chemical unit is de�ned using the same atom labels as the CIF �le.

This CU is speci�ed using the positions in the CIF �le, (X, Y, Z) for Na2 and a La2

at (X, Y, Z + 1/2). This de�nes a La2/Na2 column.

All possible orientations of the chemical unit need to be described. The

orientations of the CU that are not symmetrically equivalent are called �sets of
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alternatives� (soas) and are de�ned in the ZODS input �le. In the case of modeling

the occupational disorder of Na2/La2, the possibilities are La2. . . Na2 (de�ned as the

original CU) or Na2. . . La2. The alternative is de�ned in the input using a mirror

operation on the original CU as CU1, (X, Y,−Z + 1). Since each orientation of the

CU is equally likely the probability is set to 0.5.

The next local structure element is the F1 out-of-plane shift. The U33 element of

the F1 ADP was nearly twice as large as any other Uii component, an indication of

positional disorder along c. This corresponds to a shift in the z direction in the direct

space structure. The previous work of [4] estimated a 0.07Å shift toward the La3+ in

direct space, although no quantitative modeling of this shift has been done.

To model this positional disorder the CU needs to contain the F1 atoms with the

modi�ed z coordinate. The estimated 0.07Å shift in z position of F1 is converted

to the hexagonal fractional coordinates of the CIF �le (see 3.1). Since only the

z coordinate is changed, converting from hexagonal fractional coordinates means

dividing the z value of 0.07Å by |c| (7.667Å) and corresponds to +0.00923 shift

of the z coordinate in fractional coordinates. This shifts F1 from its special position

at z = 0 and produces a split position when the 6̄ symmetry operation is applied.

The value of this shift will be re�ned and the proposed direction of the shift toward

La3+ and away from Na+ will be tested during optimization.

The CU incorporates the F1 positional disorder, incorporating the F1 atoms that

are coordinated to La2 and Na2. The CU is the repeatable structural unit along the

c axis such that Na2 and La2 strictly alternate. There are six F1 atoms, three above

and three below the La2. The CU is repeated within the column so it is only necessary

to de�ne either the three F1 atoms above or below the La2. This gives the three F1

atom positions as (X, Y, Z + 1/2), (−Y,X − Y, Z + 1/2) and (−X + Y,−X,Z + 1/2)

(�gure 6.2).
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Figure 6.2: CU1 shown (left) with the alternative (right). Either CU1 or its
alternative is repeated along c to produce the F1 coordinated to Na2 and La2 in the
2-D crystal. The question marks indicate the direction of the F1 shift which will be
tested in the optimization.

6.4 Model parameterization

The interaction between the CU and the out-of-plane shift of F1 are parameterized

and used by the ZODS MC crystal builder to construct model crystals. The

interaction between CUs is de�ned as a discrete, Ising type interaction and de�ned

between a CU at one site in the crystal with a CU at another site.

In the Na2/La2 column model only non-symmetry equivalent �rst neighbor

interactions are parameterized. For the Na2/La2 neighbor interaction it is only

necessary to de�ne one parameter (p1) as the interaction between CU1 and CU1.

Since MC operates on relative energy di�erences in the parameters to build and

equilibrate the crystal, not de�ning the alternative interaction (CU1 with its soa)

is equivalent to setting the interaction energy to zero. In the construction of this

model the interactions of the CUs were de�ned so that chemical units of opposite

orientations preferred to be neighbors. This assumption was based on the negative
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Figure 6.3: Two dimensional illustration of the symmetric CU �rst neighbor
interactions de�ned in the model. The −z elements are at z = −1/2 below the
plane shown.

correlation calculated in the simulation of the Na2/La2 columns done in [4]. This

assumption is tested by adjusting the limits of the search space for global optimization

which allow the model to build crystals with positive correlation and calculate their

�tness.

The parameter p1 is de�ned as the interaction of CU1 with another CU in the

same orientation. If this parameter is independent then the interaction of the CU

with its alternative is de�ned as a dependent parameter. The model parameters are

randomly generated from de�ned search limits.

In order to check that the model has the correct symmetry, ZODS generates a

�le called model.xml which lists all of the symmetry equivalent interactions for the

model parameters (�gure 6.3). This �le should be checked for the correct symmetry

and interactions. The NaLnF4 model parameter p1 shows the expected 6̄ symmetry.

The interactions are between CUs in neighboring unit cells. The �rst interaction is

between a CU at (X, Y, Z) and another CU at (X+1, Y, Z). The second interaction is

described between CUs at (X−1, Y, Z) and (X−1, Y +1, Z) and the third interaction

is between CUs at (X−1, Y −1, Z) and (X−2, Y −2, Z). The same interactions are

listed in model.xml for the −Z component of these three positions but not shown in

�gure 6.3.
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Figure 6.4: Plot of the crystal energy as a function of MC cycles. After 100 cycles
it has equilibrated to about -5650 in crystal energy.

The z shift of the F1 atoms is an element of the average structure CIF and is not

an Ising parameter. It is a structural parameter and is de�ned under the average_

structure node in the XML input �le (see ZODS input A. 4.1).

6.5 Crystal building and model re�nement

The 2-D crystal is constructed from the chemical units using the model parameters

that de�ne the interactions between them. Crystals of su�cient size (10,000 unit

cells) are built from the disorder model parameters and their energy equilibrated

using MC (described in chapter 3 section 3.2.2). The crystal energy can be visualized

as a function of MC cycles using the ZODS plot tools (Appendix A. 4.2). The crystal

energy as a function of the number of cycles for the 2-D model crystal containing

CUs modeling the F1 shift and the Na2/La2 column correlation is shown in �gure

6.4. The number of MC cycles was set to 100. The crystal energy is between -5688

and -5649.93 in crystal energy for the last 10 cycles.
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The model parameters are then optimized through a generational algorithm called

di�erential evolution (DE) [45] that re�nes the model parameters to best �t the

experimental di�use intensities (section 3.2.3). Multiple crystals are built with

the same parameter set (clones, see chapter 5 section 5.3.2) to sample a greater

representative area of the �tness distribution of crystals. The model crystal intensities

are calculated by incoherently summing over lots and averaging the individual crystal

intensities over clones. Optimization continues until convergence is achieved with a

speci�ed stopping criterion, such as the number of optimization cycles, 36 in this case.

Crystals of 100 × 100 unit cells and 25 lots of size 20 × 20 and 48 gene sets with 20

clones each in the calculations (see ZODS input in A. 4.1).

The model �tness is based on comparison of the calculated intensities to the

measured intensities. This is done in a systematic way (on a grid) for each layer of

the 2-D di�use �honey comb� (as described in 3.1). The di�use X-Ray intensities

for HK0.5L, HK1.5L, HK2.5L, HK3.5L and HK4.5L layers are used in these

calculations. The step size is 0.004 and the step directions were converted to Cartesian

coordinates from fractional coordinates on a γ = 120◦ lattice. Since a is collinear with

x, the resulting transformation (from the transformation matrix in section 3.2.1) to

Cartesian coordinates in direct space is given by;

a = [a, 0, 0] (6.1)

b = [b cos γ, b sin γ, 0] (6.2)

Now, the reciprocal space direction x is along a∗ (for this data) and normalized is
a∗

|a∗|
=

1

2
[
√

3, 1, 0] and along y is
1

2
[−1,
√

3, 0]. Note in chapter 3 the ZODS convention

de�nes x to be along a but in this case the data is de�ned with x along a∗. The

intensities are calculated on each 2-D layer so the z coordinate is �xed at 0. The step

size is multiplied by x and y to give the point on the grid to calculate the intensity

and compare to the measured data. In this example x is the d1 direction and y is
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in the d2 direction. The points where intensity is calculated must be commensurate

with the measured di�use intensity data points.
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Chapter 7

Results

7.1 β[beta]-NaLaF4 neutron data analysis results

The following are the preliminary results of analysis of the 100K NaLaF4 X-Ray and

Neutron data.

7.1.1 TOF data integration and re�nement comparison

The neutron Bragg data were integrated using both spherical and ellipsoidal

integration methods and compared systematically with increasing integration radius.

The peak radius is given in table 7.1 where the inside radius is 0.002+ peak radius and

outside radius is peak radius +0.02. The region radius for the ellipsoidal integration

is 0.20 for all radii tested.

The data were integrated the absorption and spectrum corrections were applied

and hkl �le generated using Anvred [72]. The structure was re�ned using GSAS [34]

and EXPGUI [35] (user friendly GUI environment) for each radius starting at 0.13 to

0.18 Å−1. The re�nement �gure of merit (R -factor) for single crystal data re�nement

is given in GSAS as;

R =

∑
|F 2
o − SF 2

calc|∑
|F 2
o |

(7.1)
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Table 7.1: The �tness values and number of re�ections for each integration radius
are given for spherical and elliptical integration methods all re�nements were done
using GSAS. The d-spacing is 0.5.

Spherical Integration
Int. Radius R(Fo)

a R(Fo)
b # Observations

0.13 0.058 0.053 1856
0.14 0.058 0.053 1799
0.15 0.059 0.055 1756
0.16 0.061 0.055 1705
0.17 0.062 0.055 1659
0.18 0.063 0.055 1475

Elliptical Integration
Int. Radius R(Fo)

a R(Fo)
b # Observations

0.13 0.061 0.54 2196
0.14 0.060 0.54 2191
0.15 0.058 0.54 2179
0.16 0.058 0.052 2181
0.17 0.060 0.052 2171
0.18 0.062 0.054 2164

a for I > 0
b for I > 3σ(I)
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where S is the scale factor. The �tness values R(Fo) remained essentially equivalent,

within 1% , over the whole radii range. The �tness of the spherical and elliptical

integration methods were very similar (approximately 5%), however re�nements using

the spherical integration method with radius 0.15 Å−1 yielded ADPs that were in best

agreement with the X-Ray re�nement (see section 7.1.2). The number of observed

re�ections generally decreases with increasing integration radii, however the decrease

is not substantial and the number of observed re�ections is su�cient to yield good

statistics relative to the number of re�nement parameters (greater than 10 times the

number of parameters), 20 in this model. If the integration radius is too small to

encompass the entire peak the intensity is underestimated; if the integration radius

is too large more peaks are outside of the detector region and rejected leading to the

rejection of quality data. The choice of appropriate integration method and radius

is important for the �nal quality of the structure. After integration re�ections that

were most disagreeable:
|F 2
o − F 2

calc|
σ(F 2

o )
≥ 10

were removed; about (30�40) re�ections in each case. The re�nement results in terms

of R value between the two methods are virtually equivalent. The best choice of radii

seems to be between 0.15 and 0.17.

Di�erent d-spacings (between 0.4�0.7 in increments of 0.1) were compared for

both methods to determine the optimal spacing for the TOF neutron Bragg data. In

general, there is an inverse relationship between the number of re�ections and the

size of the d-spacing. The d-spacing that yielded the best re�nement with enough

re�ections to satisfy the requirement for a good model was 0.5 (see table 7.2). These

re�nements were done in SHELX [24]. The R1 �gure of merit in SHELX is given by;

R1 =

σ

∣∣∣∣|Fo| − |Fcalc|∣∣∣∣
σ|Fo|

. (7.2)
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Table 7.2: The �tness values and number of re�ections for each d-spacing are given
for spherical and elliptical integration methods (all re�nements were done in SHELX).
The radius of integration was 0.15.

Spherical Integration
d-spacing R1(Fo)

a R1(Fo)
b merged R1 all data data > 4σ(Fo) merged data

0.4 0.0681 0.0721 0.0534 3255 3036 719
0.5 0.0531 0.0547 0.0381 1831 1768 376
0.6 0.0450 0.0457 0.0317 1076 1059 221
0.7 0.0428 0.0429 0.0304 697 694 145

Elliptical Integration
d-spacing R1(Fo)

a R(Fo)
b merged R1 all data data > 4σ(Fo) merged data

0.4 0.0668 0.0718 0.0532 3601 3315 722
0.5 0.0534 0.0556 0.0384 2127 2044 380
0.6 0.0478 0.0491 0.0384 1313 1289 225
0.7 0.0454 0.0461 0.0315 873 864 147

a for Fo > 4σ(Fo)
b for all data

7.1.2 Comparison to X-Ray re�nement

Since the results had similar model �tness over all radii tested for both integration

methods, the structural results should be investigated. The atomic positions for

the neutron and X-Ray re�nements are given in table 7.3. The neutron re�nement

positions are for a d-spacing 0.5 and a spherical integration radius of 0.15Å. The

positions are the same within standard uncertainties for all atomic positions.

Given the very close values of the atomic positions from the neutron and X-

Ray data structure re�nements, a next important comparison is the anisotropic

displacement parameters (ADPs). The ADPs re�ect the uncertainty of the atomic

position on the crystallographic site and are important characteristics of the model,

as the model �tness can be improved by adjusting the Uij values. The results in

tables 7.4 and 7.5 reveal that the ADP values generally tend to decrease as a function

of integration radii. In the elliptical integration method the biggest decrease occurs

between 0.14 and 0.15 integration radii. The trend is not quite as clear for the

spherical integration method, however the 0.15 integration radii gives reasonable
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Table 7.3: The atomic positions in fractional coordinates of the X-Ray and neutron
data structure re�nements. For the neutron data the radius of integration was 0.15
and d-spacing was 0.5. The standard uncertainties are given in parenthesis.

X-Ray data structure re�nement atomic positions
atom label x y z occupancy site symmetry multiplicity
La2 0.6667 0.3333 0.5000 0.5001 6
Na2 0.6667 0.3333 0.5000 0.5001 6
La1 0.0000 0.0000 0.0000 1 6
Na1 0.3333 0.6667 0.313(3) 0.5 3
F1 0.4103(11) 0.3706(9) 0.0000 1 2
F2 0.0239(8) 0.7307(8) 0.5000 1 2

Neutron data structure re�nement atomic positions
atom label x y z occupancy site symmetry multiplicity
La2 0.6667 0.3333 0.5000 0.5001 6
Na2 0.6667 0.3333 0.5000 0.5001 6
La1 0.0000 0.0000 0.0000 1 6
Na1 0.3333 0.6667 0.325(3) 0.5 3
F1 0.4092(3) 0.3718(4) 0.0000 1 2
F2 0.0234(3) 0.7306(3) 0.5000 1 2

re�nement results for both methods. The spherical integration method with d-spacing

0.5 and integration radii was re�ned in SHELX and the ADP values are compared

to the X-Ray re�nement results in table 7.6 (X-Ray CIF �le in Appendix A. 3.1 and

neutron re�nement CIF Appendix A. 3.2).

The ADP results of the 100K TOF neutron data re�nement produced similar

values to those of the X-Ray re�nement (see table 7.6). The relative scattering lengths

of F and La allow the position of the F atoms to be better distinguished with neutrons

than with X-Ray intensity data dominated by the heavy La. Therefore, the disordered

F1 position has more variation in the U33 neutron APD than in the X-Ray and the

ordered F2 position has more similar Uij values (more spherical ADP) than the X-Ray

F2 ADP.

If a simple linear correlation is assumed between the neutron and X-Ray ADPs

a regression calculation reveals a correlation of about 91% with an intercept of

approximately 0.002 and slope of approximately 0.74 (see �gure 7.1 below). Removing

the F ADPs that are less well determined in the X-Ray re�nement improves the
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Table 7.4: ADP values of NaLaF4 for spherical integration methods at integration
radii 0.13�0.18.

Spherical Integration
int. radii atom U11 U22 U33 U12 U13 U23

0.13 La1 0.005269 0.005269 0.002609 0.002635 0 0
0.14 La1 0.005026 0.005026 0.002523 0.002513 0 0
0.15 La1 0.004740 0.004740 0.002434 0.002369 0 0
0.16 La1 0.004890 0.004890 0.002126 0.002445 0 0
0.17 La1 0.004652 0.004652 0.001757 0.002325 0 0
0.18 La1 0.004357 0.004357 0.002061 0.002179 0 0

0.13 La2/Na2 0.006352 0.006352 0.013258 0.003176 0 0
0.14 La2/Na2 0.006336 0.006336 0.013454 0.003167 0 0
0.15 La2/Na2 0.006558 0.006558 0.013317 0.003279 0 0
0.16 La2/Na2 0.006264 0.006264 0.013357 0.003131 0 0
0.17 La2/Na2 0.006119 0.006119 0.013559 0.003060 0 0
0.18 La2/Na2 0.006452 0.006452 0.012737 0.003226 0 0

0.13 Na1 0.015796 0.015796 0.033635 0.007898 0 0
0.14 Na1 0.015745 0.015745 0.033691 0.007872 0 0
0.15 Na1 0.015716 0.015716 0.033931 0.007857 0 0
0.16 Na1 0.015525 0.015525 0.034877 0.007762 0 0
0.17 Na1 0.015722 0.015722 0.034448 0.007861 0 0
0.18 Na1 0.015154 0.015154 0.035667 0.007577 0 0

0.13 F1 0.008703 0.012763 0.043519 0.006977 0 0
0.14 F1 0.008616 0.012624 0.043063 0.006843 0 0
0.15 F1 0.008474 0.012371 0.042911 0.006640 0 0
0.16 F1 0.008348 0.012198 0.042255 0.006435 0 0
0.17 F1 0.008398 0.012180 0.041872 0.006520 0 0
0.18 F1 0.008267 0.012058 0.042812 0.006680 0 0

0.13 F2 0.008141 0.007083 0.006349 0.001317 0 0
0.14 F2 0.008212 0.006857 0.006311 0.001276 0 0
0.15 F2 0.008339 0.006834 0.006297 0.001365 0 0
0.16 F2 0.008162 0.006812 0.006520 0.001353 0 0
0.17 F2 0.007989 0.006758 0.006813 0.001320 0 0
0.18 F2 0.008049 0.006563 0.006285 0.001264 0 0
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Table 7.5: ADP values of NaLaF4 for elliptical integration methods at integration
radii 0.13�0.18.

Elliptical Integration
int. radii atom U11 U22 U33 U12 U13 U23

0.13 La1 0.005283 0.005283 0.002543 0.002643 0 0
0.14 La1 0.005236 0.005236 0.002403 0.002617 0 0
0.15 La1 0.004991 0.004991 0.002348 0.002496 0 0
0.16 La1 0.004822 0.004822 0.002055 0.002410 0 0
0.17 La1 0.004680 0.004680 0.001886 0.002341 0 0
0.18 La1 0.004662 0.004662 0.001658 0.002331 0 0

0.13 La2/Na2 0.006500 0.006500 0.002543 0.002643 0 0
0.14 La2/Na2 0.006465 0.006465 0.002403 0.002617 0 0
0.15 La2/Na2 0.006394 0.006394 0.002348 0.002496 0 0
0.16 La2/Na2 0.006227 0.006227 0.002055 0.002410 0 0
0.17 La2/Na2 0.006301 0.006301 0.001886 0.002341 0 0
0.18 La2/Na2 0.006291 0.006291 0.001658 0.002331 0 0

0.13 Na1 0.015437 0.015437 0.033626 0.007718 0 0
0.14 Na1 0.015752 0.015752 0.033777 0.007875 0 0
0.15 Na1 0.015496 0.015496 0.032849 0.007748 0 0
0.16 Na1 0.015564 0.015564 0.032228 0.007782 0 0
0.17 Na1 0.015441 0.015441 0.032574 0.007721 0 0
0.18 Na1 0.015462 0.015462 0.032483 0.007732 0 0

0.13 F1 0.008491 0.012418 0.042991 0.006648 0 0
0.14 F1 0.008430 0.012458 0.043344 0.006648 0 0
0.15 F1 0.008180 0.012200 0.043815 0.006471 0 0
0.16 F1 0.008098 0.011984 0.043539 0.006372 0 0
0.17 F1 0.007907 0.011859 0.043312 0.006244 0 0
0.18 F1 0.007873 0.011786 0.043344 0.006219 0 0

0.13 F2 0.008560 0.007136 0.006461 0.001395 0 0
0.14 F2 0.008531 0.006979 0.006345 0.001354 0 0
0.15 F2 0.008288 0.006820 0.006115 0.001255 0 0
0.16 F2 0.008285 0.006784 0.006183 0.001213 0 0
0.17 F2 0.008187 0.006718 0.006132 0.001206 0 0
0.18 F2 0.007924 0.006628 0.006216 0.001187 0 0
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Table 7.6: ADP values of NaLaF4 100K neutron and X-Ray SHELX re�nement;
standard uncertainties are given in parenthesis. The neutron data were integrated
using spherical integration method and integration radii 0.15.

radiation type atom U11 U22 U33 U12 U13 U23

X-Ray La1 0.0065(3) 0.0065(3) 0.0027(4) 0.00326(17) 0 0
Neutron La1 0.0053(3) 0.0053(3) 0.0024(4) 0.00263(15) 0 0

X-Ray La2/Na2 0.0046(5) 0.0046(5) 0.0142(9) 0.0023(3) 0 0
Neutron La2/Na2 0.0062(5) 0.0062(5) 0.0137(9) 0.0031(2) 0 0

X-Ray Na1 0.014(2) 0.014(2) 0.021(4) 0.0070(12) 0 0
Neutron Na1 0.0156(13) 0.0156(13) 0.034(4) 0.0078(7) 0 0

X-Ray F1 0.008(2) 0.007(2) 0.037(3) 0.0045(16) 0 0
Neutron F1 0.0083(5) 0.0125(6) 0.0429(13) 0.0067(5) 0 0

X-Ray F2 0.009(2) 0.012(2) 0.0046(19) 0.003(2) 0 0
Neutron F2 0.0084(5) 0.0070(4) 0.0066(4) 0.0014(4) 0 0

correlation slightly. This result is a veri�cation of the neutron TOF Bragg data

correction and integration protocol and provides a basis for development of an event

mode data correction and integration protocol necessary for di�use scattering.

7.2 New quantitative method veri�cation

The results in this section are an expanded version of the paper:

Michels-Clark, T.M.*, Lynch, V.E., Ho�mann, C.M., Hauser, J., Weber, T.,

Harrison, R., Bürgi, H. B. Analyzing di�use scattering with Supercomputers. J.

Appl. Crystallogr., 46, 1616-1625

I was lead and corresponding author and my primary contributions to this paper

include (i) testing and development of method and analysis (ii) running of computa-

tions (iii) writing manuscript and preparing all �gures for publication (iv) writing of

results analysis code (v) corresponding with editor and referees (vi) �nal submission.
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Figure 7.1: Linear regression of 100K X-Ray ADPs plotted against the 100K
neutron ADPs a general linear correlation is observed.

7.2.1 Comparison of global optimization methods

Comparison of global parameter optimization by GA, DE, and PSO was performed

using 20 clones for each calculation. All three methods show a rapid decrease of

R̄, within the �rst 60 generations. Further decrease of R̄ in following generations is

gradual. GA, DE, and PSO start with an average �tness R̄ of 0.75, 0.75, and 0.69,

respectively, in generation zero. R̄ of PSO drops fastest, followed by GA. While PSO

and GA are seemingly leveled, R̄ of DE keeps reducing. At generation 63, GA is

surpassed by DE, which shows an R̄(s) of 0.03(1). Finally, DE outperforms PSO in

generation 82 with an R̄(s) of 0.019(4). The log scale in Figure 7.2 emphasizes the

di�erences in convergence. The uncertainty s(R̄) also decreases. The distributions of

R̄ become narrower by a factor of ∼ 2 between generations 64 and 82. DE converges

to a population with R̄ = 0.0090(4), compared to the starting range of R̄ = 0.76(23).

The distribution of uncertainties of R̄-values for GA (0.0338(6)) and PSO (0.02 (1))

are more than an order of magnitude greater for PSO than for GA.

Both PSO and DE converged to essentially the same parameter values, but for

PSO the uncertainties in the �nal generation are larger than for DE and accompanied

by inferior overall population �tness. GA converged to similar parameter values

as DE and PSO with the exception of e2 (Table 5.2). We hypothesized that GA
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Figure 7.2: Evolution of population �tness R̄ for three global optimization
algorithms: general genetic algorithm (GA) and di�erential evolution (DE) and
particle swarm (PSO) as a function of generation number.

converged into a local rather than the global minimum, which is supported by a

higher R̄-value in the �nal generation. This hypothesis was tested by changing the

pathological parameter in small steps while keeping the remaining parameters �xed

at their re�ned values. The R̄-value was expected to cross a �tness barrier to arrive

at the real solution; however, R̄ decreased continuously without going through a

maximum. Thus, GA possesses similar global optimization power to DE and PSO,

but the local optimization power of GA seems inherently weaker than that of PSO or

DE.

As illustrated in Figures 7.3a-g for DE optimization, the convergence behavior of

the di�erent model parameters varies considerably.

Figures 7.3a-h show the maximum, average, and minimum parameter values

(�lled circles) and the standard deviation of the population (vertical lines) for every

parameter in every generation. The average R̄ is cut in half after 5 generations,

then again after 7, 9, and ∼ 20 generations, showing the decrease in e�ciency as

the optimization progresses (Figure 7.3h). Parameter c converges at the same rate

as R̄ (Figure 7.3a), while the other parameters trail behind. Parameters c and t
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Figure 7.3: Behavior of the model parameters c, ∆, e2, tilt, U1, U2, U3(plots a-g),
and �tness R̄(plot h) during DE optimization with 40 individuals and 20 clones each.
The population mean is indicated by the middle points, and the population standard
deviation by the vertical lines. The dots above and below the lines represent the
largest and the smallest parameter values in the population.
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(constrained to be numerically equal) represent the probability of the bent stacking,

which is energetically favorable compared to eclipsed stacking (bR, bL vs. e), the

former being prevalent in the structure. Thus parameters c and t contribute more

than the other model parameters toward modeling the reference intensity and the

overall �t.

In contrast to c, e2 is slower to converge (Figure 7.3c). The e2 parameter is de�ned

as the probability of continuing an energetically unfavorable eclipsed arrangement.

Since this stacking option has a low probability, it is infrequently present in the local

structure and therefore contributes modestly toward �tting the reference intensity.

The ∆ parameter (Figure 7.3b), which distinguishes between the layer stacking

to either continue in the same direction (+∆) or to change direction (−∆), begins

to converge approximately at generation 60 and continues to converge within a small

uncertainty in the �nal generation (Table 5.2, column 4). Since ∆ determines the

details of bent motifs, it is associated with c and represents a signi�cant determinant

of the model intensities.

The tilt parameter, which de�nes the degree of molecular out-of-plane tilt allowed

in layer n + 1 of a bR or bL (but not an e) motif, re�nes to its optimal value

in approximately 80 generations (Figure 7.3d and Table 5.2, column 4). The U
′
is

representing the atomic displacement parameters of TBHB all converge at the same

rate, settling to an optimal value in approximately 100 generations (Figure 7.3e-g and

Table 5.2, column 4).

Generally, small standard deviations of the parameters indicate that the originally

quite di�erent 40 gene sets have converged to a single solution. The ratio between

the standard deviations and the mean parameter values after 150 generations of DE

optimization is in the range of 0.003% for c and 2% for U3 (Table 5.2), indicating

convergence of the optimization to a single solution.

To summarize this section, we tentatively conclude that PSO can initially navigate

the search space most e�ciently since all of the variables change simultaneously

toward the best solution seen by bi and bp: PSO outperforms DE and GA in
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the �rst 20 cycles of optimization (�gure 7.3). However, towards the end of the

optimization process, the collective �tness of the models obtained by DE is better

than that from GA and PSO. Initializing an optimization with several generations of

PSO followed by DE will most likely make the best use of computational resources.

When the parameters are fairly well clustered, convergence tends to slow down;

it may then be advantageous to conclude the optimization by a numerical least-

squares calculation[12]. In the present case, least-squares optimization could start

after 50 generations when considering the rapidly converging parameters, or after 100

generations with regard to the slowly converging parameters.

7.2.2 In�uence of clones

The dependence of the model �tness on speckle-type intensity variations has been

tested for DE only. The results after 150 generations of DE optimization with di�erent

crystal sizes and di�erent numbers of clones are reported in Table 7.7. As expected

R̄ decreases with either increasing the crystal size or increasing the number of clones.

The decrease in R̄ shows a linear trend with the square root of the reciprocal product

of the number of clones and the number of lots per clone, i.e., the total number of

lots included in the calculation (Figure 7.4).

This behavior indicates that the speckled nature associated with the intensity of

individual lots behaves analogously to noise in an experiment [89].The incorporation

of clones reduces the statistical noise inherent in the MC process. On average the

standard deviations of the simulated parameters also decrease roughly with the inverse

square root of the number of clones (sample size) as expected if the mean parameter

values are normally distributed (Table 7.7). The averages of the parameters over the

di�erent gene sets are mostly within one standard deviation of the reference values

used to construct the data set (see Section 5.2, Chemical Model System, Growth

Modeling, and Reference Data, and Table 7.7).
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Figure 7.4: Decrease of R̄ with increasing number of lots. R̄ depends linearly on
the reciprocal square root of the number of lots (#lots).

Two additional conclusions considering computational e�ciency are worth men-

tioning. Firstly, in columns 6-8 of Table 7.7, R̄ remains approximately constant,

showing that decreasing the crystal size can be compensated by increasing the number

of clones, thereby allowing a higher degree of parallelization. Secondly, 40 clones for

each individual consisting of 96'000 layers achieved a good, but not perfect, agreement

with the reference data with R̄ = 0.0077(3) in the 150th generation (Table 7.7, column

3). In contrast, the R̄-values that can be achieved from state-of-the-art experiments by

state-of-the-art structure re�nement of disorder models against di�use scattering data

are about 0.1 in favorable cases. As columns 9-10 of Table 7.7 indicate, a trustworthy

estimate of the model parameters may be obtained from crystals of modest size, albeit

with relatively large uncertainties.
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Table 7.7: Summary of results after 150 generations of DE optimization with 40 gene sets that have di�erent numbers
of layers, lots per crystal, and numbers of clones. The number of cores used, wall clock time and the cpu hours are also
reported for each calculation.

size\layers 96,000 96,000 96,000 96,000 6,000 600 600 600
num. Lots 1600 1600 1600 1600 100 10 10 10
num.
clones

40 20 10 1 16 160 40 10

par. reference
c 0.48877 0.4884(3) 0.4883(4) 0.4883(5) 0.487(1) 0.488(2) 0.487(2) 0.488(2) 0.487(8)
∆a 0.49336 0.486(6) 0.482(7) 0.479(8) 0.45(2) 0.452(22) 0.444(23) 0.41(5) 0.25(11)
e2 0.006748 0.005(4) 0.008(4) 0.014(10) 0.003(21) 0.036(4) 0.0343(25) 0.057(7) 0.2(2)
tilt 2.2723 2.27(1) 2.27(2) 2.27(3) 2.28(13) 2.29(7) 2.27(8) 2.27(8) 2.28(40)
U1 2.6284 2.651(13) 2.65(2) 2.63(4) 2.61(13) 2.65(10) 2.63(10) 2.6(2) 2.8(5)
U2 2.2734 2.27(2) 2.27(4) 2.27(6) 2.34(14) 2.31(20) 2.28(13) 2.3(3) 2.5(6)
U3 3.0005 2.97(3) 2.97(6) 2.99(8) 3.0(3) 3.02(19) 3.01(22) 3.0(4) 3.1(8)
ta 0.48877 0.4884(3) 0.4883(4) 0.4883(5) 0.487(1) 0.488(2) 0.487(2) 0.488(2) 0.487(8)
ea1 0.022452 0.0231(6) 0.0235(7) 0.023(1) 0.026(2) 0.025(3) 0.024(3) 0.024(4) 0.03(2)
Rb - 0.0077(3) 0.0091(5) 0.011(9) 0.029(3) 0.0297(3) 0.0288(3) 0.051(6) 0.12(3)
Cores - 160 160 160 40 160 160 160 160
wall clock
time
(hours)

136 63 27 8 6 57 30 9

CPU
hours =
Cores
∗ Wall
Clock
time

21760 10080 4320 320 960 9120 4800 1440

aConstrained parameters: c = t, (c±∆) + (t∓∆) + e1 = 1
b R-factor measures �tness



The most important consequence of replacing large crystals by clones is the

possibility to parallelize computations. The calculation time for 40 individuals

(without clones) sums up to about 8 hours on 40 cores for 150 generations. This

corresponds to a total cpu time of 40 ∗ 8 = 320 hours. As more clones are added,

the total cpu time increases from 320, to 4'320, to 10'080, to 21'760 hours for 1, 10,

20, and 40 clones, respectively (Table 7.7, columns 3-6). However, if enough cores

are available to calculate the �tness of one clone per core, the wall clock time stays

approximately the same as the calculations are performed in parallel. In our case, the

predicted scaled numbers, found by dividing the wall clock time by the total number

of gene sets and their clones per processor, expand slightly from 8 to 10.8 to 12.6 and

13.6 hours. This corresponds to an increase in simulation time by a factor of 1.7 for

a calculation that is 40 times larger. The modestly expanded wall clock time is due

to increased communication between nodes required for averaging the intensities of

the clones. The wall clock time in columns 8-10 of Table 7.7 follow the same trend as

columns 3-6 as more clones are added.

7.2.3 Polynomial �tting to eight dimensional �tness surface

In order to estimate which parameters of the TBHB test model best determine the

model �tness of the di�use scattering intensity data, a second order polynomial was

�t to the �tness and parameters values of the converged population (150th generation)

of 40 individuals averaged over 10 clones. These individuals form a constellation of

parameter vectors each de�ning a single point on the eight dimensional �tness surface.

The model �tness surface is de�ned by 7 model parameters plus the surface height

(�tness). If these points are clustered about the minimal solution then the hypothesis

is that these points should approximate a parabolic function whose coe�cients are

determined by a least squares �t.

The origin of the function is shifted relative to the constellation of points to the

center. The eight dimensional function is de�ned by the Taylor series expansion of
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parameters about their mean values, given by:

Mµ= c+
7∑
i=1

gi(pµ − p̄)i +
1

2

7∑
i,j=1

hi,j(pµ − p̄)i(pµ − p̄)j, (7.3)

where p̄ is the average parameter value over all individuals µ and c is the model

�tness of p̄. The di�erence from p̄ for each parameter vector element pi and pj are

calculated for every individual, pµ in the population. Linear and quadratic coe�cients

of the second order polynomial are given by gi and hi,j respectively. The second order

coe�cient matrix, hi,j is symmetric.

The least squares �tting procedure minimizes the sum of the residuals resulting

from the �tness of each individual F (pµ) and the approximation of the �tness surface

function (7.3) squared. This function is given by:

L =
40∑
µ=1

[F (pµ)− {c+
7∑
i=1

gi(pµ − p̄)i +
1

2

7∑
i,j=1

hi,j(pµ − p̄)i(pµ − p̄)j}]2. (7.4)

Since
1

2

∑7
i,j=1 hi,j(pµ − p̄)i(pµ − p̄)j results in a 7X7 symmetric matrix there are 28

unique second order �tting terms,
∑7

i=1 gi(pµ − p̄)i gives 7 linear �tting terms and c

corresponds to the constant term of the second order polynomial approximation to

the �tness surface resulting in 36 total �tting terms. 7.4 is written in matrix equation

form, collecting c and the �rst and second order polynomial coe�cients together:

L =
40∑
µ=1

[F (pµ)−
36∑
k=1

zkq
sk
k,µ]2. (7.5)
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zk =


c

gi

hi,j

 and qskk,µ corresponds to the zero, �rst and second order (pµ− p̄) terms

in 7.4. The index sk is given by

sk =


0, k = 1

1, 2 ≤ k ≤ 8

2, 9 ≤ k ≤ 36

The residual is minimized by calculating the zeros of the �rst derivative. This provides

estimating equations to determine the �tting coe�cients.

∂L

∂zk
= 2

40∑
µ=1

[F (pµ)−
36∑
k=1

zkq
sk
k,µ](−

36∑
l=1

qsll,µ) = 0 (7.6)

Simplifying 7.6 yields

40∑
µ=1

36∑
k=1

zkq
sk
k,µ(qskk,µ)T =

40∑
µ=1

36∑
k=1

F (pµ)(qskk,µ)T . (7.7)

Solving for the �tness surface height and the �rst and second order �tting coe�cients

of zk is now a matter of solving the associated normal equations in the form Ax = b

where A =
∑40

µ=1

∑36
k=1 qskk,µ(qskk,µ)T , x =

∑36
k=1 zk and b =

∑40
µ=1

∑36
k=1 F (pµ)(qskk,µ)T .

The second order parameters hi,j correspond to the variance/co-variance of the

parameters of forty individuals after a hundred and �fty generations. This gives

us valuable information about the contributions of the individual parameters to the

�tness. The eigenvalues of the quadratic coe�cient matrix indicate the curvature of

the �tness surface. Negative eigenvalues indicate negative curvature, which would

mean a non-parabolic surface (i.e. a saddle point).

Unfortunately, the condition number of the least squares matrix is quite large,

which indicates poor �tting precision and a poorly conditioned problem. The

eigenvalues of the coe�cient matrix (zk) were small with many equivalent to machine
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noise (approximately 10−14), yielding a condition number of about 1015. The number

of �tting terms is 36 and we are �tting this with 40 data points randomly distributed,

so this result is not entirely surprising.

Solving the normal equations using the singular value decomposition was at-

tempted to improve the condition of the problem, this method eliminates the smaller

eigenvalues but this did not signi�cantly improve the condition number of the �tting

coe�cient matrix. Some of the diagonal second order coe�cients were negative

indicating that the MC noise in the converged population of 40 individuals is too

large to determine the expected parabolic dependence of the �tness on the deviations

of the parameters from their best value. One possible way to resolve this issue would

be to include more �tting points. These points should represent areas that would be

further away from the minimum and thus farther from the vertex of the parabolic

�tness surface. So, one would need to consider incorporating the discarded children

of the previous generations in the least squares �tting procedure.

7.2.4 Sensitivity analysis

The sensitivity of R on an individual parameter was tested by varying each

independent parameter separately [90] and calculating the resulting model �tness

(table 7.8). As only the sensitivity relative to the point estimates chosen and not

the entire parameter distribution was taken into account, this is a local sensitivity

analysis. Testing the sensitivity of the converged (150th generation) of DE optimized

parameters (table 5.2, column 5) allows examining the e�ect of each individual

parameter on the �tness of the model.

The goal of this study was twofold: (1) to investigate which re�nement parameters

are most and least in�uential in the model calculation and optimization with a

sensitivity and principal component analysis (section 7.2.5), and (2) to adapt the

parameter choice most e�ciently for large, parallelized, multi core, super computer

usage. The independent model parameters were individually displaced by ±4σ from
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Table 7.8: The decrease in the average model �tness (incorporating 20 clones) is
given as a percent change from optimized population model �tness. A positive value
percent change indicates an increase in R and thus a poorer model �tness when the
given parameter is shifted.

Parameter shift
+4σ −4σ

c 0.95 19.51
∆ 3.73a 7.12
e2 0.70 3.73b

tilt 8.83 3.72
U1 2.34 1.87
U2 4.95 4.61
U3 5.74 5.56

acorresponds to +1.82σ parameter change placing parameter at its maximum limit (0.5)

see table 5.2.
bcorresponds to −1.875σ parameter change placing parameter at its minimum limit (0.0)

see table 5.2.

their DE optimized values, when this value was within the parameter limits table 5.2,

column 3. The exceptions were the ∆ and e2 parameters; their limits permitted

them to be varied +1.82σ and −1.875σ at the high and low ends of each of their

value ranges, respectively. Table 7.8 shows the largest changes occur at 8.83 for

tilt in the positive direction (+4σ) and 19.51 for c in the negative direction (−4σ).

The c parameter is more sensitive in the −4σ direction, changing the overall model

�tness by 19.51% versus the positive displacement which decreases the model �tness

by 0.95. This is not unexpected as c accounts for the greatest percentage of layer

stacking preferences which comprise a large portion of the structure. Decreasing c

would imply that bent stacking has a diminished probability of occurrence therefore

the local structure would then contain a smaller percentage of bent motifs and a larger

percentage of eclipsed motifs. This change in the structure would then contribute to

the calculated intensity and ultimately the model �tness (see discussion on parameter

convergence 7.2).
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The ±4σ shifts in the Tilt and ∆ parameters result in an asymmetric shift

in the model �tness. A greater change in the model �tness (approximately 9%)

corresponding to decreasing the ∆ parameter value by 4σ than for increasing the

parameter value by 4σ. The opposite trend was observed for the Tilt parameter. The

model �tness shifts are 3.73/7.12 and 8.83/3.72 for Tilt and ∆, respectively.

The ∆ parameter de�nes the preference of the stacking direction either to continue

stacking in the same direction (+∆) or change direction (−∆). The asymmetric shift

in the model �tness shift as a result of adjusting the ∆ parameter is a consequence of

the parameter's limits (table 5.2). The maximum value of ∆ is 0.5, which corresponds

to a deviation of +1.82σ and a resulting smaller shift in model �tness than when ∆

is shifted by −4σ.

The asymmetric model �tness changes in the ±4σ of tilt must be explained in

terms of the parameter's e�ect on the structure and the nature of the layer stacking.

The greater sensitivity in the positive direction is a result of the implications of a

larger tilt as this in�uences the structure to stack in a more ordered fashion and

cause the layers to organize much like shingles on a roof as in the monoclinic ordered

polymorph [18]. Thus, the local structure variation is minimized (more bent motifs

and fewer eclipsed variations) ultimately e�ecting the match between the model and

reference intensities.

The isotropic displacement parameters are fairly symmetric in their �tness shifts.

The shift from 2.34/1.87(+/−) for U1, 4.95/4.61 for U2 to 5.74/5.56 for U3. The Ui

parameters de�ne the average isotropic atomic displacement parameters of the carbon

atoms of TBHB. The atomic displacement of the carbons in the central benzene ring is

de�ned by U1. The middle �bridged� atomic displacement of the carbons in the three

�ve member rings surrounding the benzene is de�ned as U2. Finally, U3 is de�ned as

the atomic displacement of the outermost carbons of the three �ve member rings (as

described in �gure 5.1 center). Based on this physical description, understanding the

increasing changes in the average model �tness from U1 to U2 to U3 implies the atomic
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displacement of the outermost carbons (U3), which allow the greatest displacement,

most e�ect the model intensities.

The e2 parameter is restricted to a minimum value of zero (meaning no eclipsed

stacking), which corresponds to a parameter value change of −1.875σ and a model

�tness shift of 3.73 percent. The smaller change in model �tness (0.70 percent)

corresponds to an increase in the percentage of eclipsed motifs in the overall structure

and parameter value change of +4σ. The e2 parameter is less sensitive in the positive

direction (+4σ), indicating that in spite of an increased probability of stacking in an

eclipsed fashion, the eclipsed arrangements still account for only a small portion of

the overall structure as compared to the bent arrangements and therefore contribute

minimally to the model intensity.

In order to understand the structural parameters e�ect on the model �tness, a

corresponding direct space sensitivity analysis was done to determine the structural

changes in the crystal. The C++ code to calculate the percentages of each motif

type is given in Appendix A section A. 2. Each structural parameter (c, ∆, e2)

was varied by ±4σ (table 7.9), as the parameter limits (table 5.2) allow. The motif

percent changes are given relative to the percent of the structure motifs calculated

from crystals generated with the optimal model parameters (c, ∆, e2) averaged over 20

clones. The changes in the c parameter e�ects the structure most in the −4σ direction

with new structural statistics of 0.0395%, 45.014%, 44.94% and 5.0% for eclipsed(ee),

bent(bLb), bent (bRb), and mixed eb and be, respectively. The percentage of the

ee motifs increases by 0.0075 while the bLb and bRb percentages decrease by 0.596

and 0.58, respectively, as compared to the optimal model parameter layer stacking

statistics for 20 clones table 7.9, column 2. For the mixed eb and be cases a −4σ shift

in c corresponded to an increase in the percentage (0.58) of these motifs relative to the

20 clone case. However, adjusting c by +4σ shifts the structural statistics to 0.0285%,

46.19%, 46.09% and 3.843% for percentages of ee, bLb, bRb and both mixed eb and be,

respectively. The percentage of ee statistics decreases by 0.0035, bLb and bRb increase

by 0.58 and 0.574, respectively, while the percentage of mixed motifs both decrease
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Table 7.9: Changes in structural motif composition based on changes in the
independent model parameters de�ning the various stacking options; c, ∆ and e2 are
shown below. Column 2 corresponds to the structural statistics of the DE optimized
parameters averaged over 20 clones.

c ∆ e2

20 clones +4σ −4σ +1.82σa −4σ +4σ −1.875b

eclipsed (ee) 0.032(7) 0.0285(57) 0.0395(08) 0.032(08) 0.032(07) 0.106(08) 0.0(0)
Bent (bLb) 45.61(21) 46.19(21) 45.014(20) 45.52(21) 45.83(23) 45.58(21) 45.63(22)
Bent (bRb) 45.52(18) 46.09(17) 44.94(18) 45.42(18) 45.74(17) 45.49(17) 45.53((17)
Mixed eclipsed & bent (eb) 4.42(9) 3.843(79) 5.00(10) 4.51(09) 4.20(09) 4.41(08) 4.42(09)
Mixed eclipsed & bent (be) 4.42(9) 3.843(80) 5.00(10) 4.51(09) 4.20(09) 4.41(08) 4.42(09)

acorresponds to +1.82σ parameter change placing parameter at its maximum limit (0.5)

see table 5.2.
bcorresponds to −1.875σ parameter change placing parameter at minimum limit (0.0) see

table 5.2.

by 0.577 all relative to the optimal 20 clone case. In general, the percentage of bent

stacks increases while the number of eclipsed and mixed stacks decreases when the c

parameter is adjusted in the +4σ direction the converse is true for a −4σ shift in c.

Since c represents stacking in a bent manner the results for −4σ shift correspond to

the greatest structural and model �tness shifts observed. These results are physically

reasonable as c describes the greatest percentage of motifs composing the structure.

The shifts in the ∆ parameter (±0.007 ∗ 4 ) e�ected the bent and disordered

motifs only. Adjusting ∆ by +4σ (0.028) would place ∆ outside of the parameter

limit (table 5.2) therefore adjusting ∆ to the limit (0.50) corresponded to a shift of

+1.82σ. A shift in ∆ of +1.82σ results in new motif structural statistics; 0.032%,

45.52%, 45.42% and 4.51% for ee, bLb, bRb and both mixed eb and be, respectively.

There is no change in the ee motif percentage from the optimal parameter case and

for bLb and bRb there is an increase of 0.10% and 0.09% respectively. The number

of disordered motifs does increase by 0.09% from the optimal case. In contrast when

∆ is decreased the percentage of disordered motifs (eb and be) decreases by 0.22%,

the bent motifs (bLb and bRb) both increased by 0.22%. The structural statistics

are 0.032%, 45.83%, 45.74% and 4.20% for ee, bLb, bRb and both mixed eb and be

respectively. The ∆ parameter most signi�cantly e�ects the bent arrangements within

the structure. The changes for ∆ however, are less signi�cant since this parameter
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accounts for a smaller amount of the structure description. Similarly this is seen in

the sensitivity analysis for the reciprocal space, where shifts in ∆ a�ect the overall

model �tness much less than shifts in c.

The shifts in the e2 parameter (±0.004 ∗ 4) e�ected the eclipsed motif ee most.

Adjusting e2 by −4σ (0.016) would place e2 outside of the parameter limit (table 5.2,

column 3) therefore adjusting e2 to the limit (0.0) corresponded to a shift of −1.875σ.

A shift in e2 by +4σ produced the following structural statistics: 0.106% ee, 45.58%

bLb, 45.49% bRb and 4.41% mixed eb and be. This corresponds to an increase in ee

by 0.074% and decreases in bLb and bRb of 0.03%. The disordered motifs essentially

remained the same (within statistical noise). When e2 is increased this increases

the probability of getting more eclipsed layers since e2 represents the probability of

continuing layer stacking sequence in an eclipsed fashion this would correspond to an

increase in ee or eclipsed motifs in direct space. Similarly adjusting e2 by −1.875σ

make the e2 parameter 0.0 and thus the percentage of eclipsed motifs in direct space

is 0.0. The bent motifs bLb and bRb remain the same (within statistical noise) as the

optimal parameter structural statistics with values of 45.63% and 45.53% respectively.

The percentages of the disordered motifs remain the same as those for the optimal

parameters of the 20-clone case.

The direct space sensitivity analysis reveals the e�ect of varying structural

parameters (c, ∆, e2) on the various motif statistics in the resulting crystal. The

resulting structural changes directly correlate with the reciprocal space sensitivity

analysis for these same parameters (c, ∆, e2) on the overall model �tness, meaning

bigger changes in structure resulted in larger changes in the model �tness. This

is most signi�cantly observed in the c parameter, when c is decreased by −4σ the

model �tness decreases by 19.51% and correspondingly the largest changes in the

motif statistics are also observed. The ∆ parameter revealed the least structural

statistical change and model �tness change. Therefore, the results of both the direct

and reciprocal space sensitivity analysis are complementary.
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7.2.5 Principal component analysis

To determine if parameters are correlated a principal component (PCA) analysis was

performed. PCA is a mathematical procedure that uses an orthogonal transformation

to determine the directions of maximum variance and reveals if parameters are

correlated [46]. Since PCA is sensitive to the scaling of each parameter, the

parameters are transformed so that the converged parameter population has a mean

of zero and variance of one. The �rst or principal component of the parameter

distribution accounts for the maximum amount of the total population variance and

is correlated with some of the parameters and possibly all of them. The second

principal component will account for the maximum amount of the total variance not

associated with the �rst component and will be correlated with the parameters that

were not strongly correlated with the �rst. In the TBHB model de�ned by seven

independent �tting parameters there are seven principal components. The principal

components of the 0, 10, 20 and 40 clone in the converged population of the 150th

generation were calculated. Each principal component is a combination of all seven

independent parameters. The eigenvalues of the 7 parameter variance/covariance

matrix are the magnitude of the 7 principal components (eigenvectors); these values

for the 40 clone results were 1.4118799, 1.2762547, 1.0724140, 0.9237576, 0.8576303,

0.6659907 and 0.4419231 for each of the seven principal components respectively. The

direction of principal change (1.412) is not signi�cantly larger than that of the other

principal components, indicating that the primary direction in the data distribution

is not dissimilar to the less signi�cant directions. Therefore, in the TBHB model each

principal component contains signi�cant data relationships.

7.2.6 Examination of e2 parameter

Based on the results of the sensitivity analysis described in 7.2.4 the interdependence

of our model parameters was considered to determine if there exist correlations among

them. The e2 parameter was determined the most insensitive in the model results.
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The e2 was decreased to 0.0 and the model �tness did not change signi�cantly (0.70%);

for a +4σ increase the model �tness in table 7.8 and the structural motif statistics 7.9

for bent motifs did not change signi�cantly from those of the 20 clone results. The

correlation of the e2 parameter with the other structural parameters was tested.

In the model de�nition the tilt is 0 when the layers are eclipsed. A scan over tilt

slowly varying e2 and calculating the �tness in the third dimension was done using

twenty clones and keeping the other parameters �xed at their optimal values. Tilt

was varied in increments of 0.5 between the values of 0 and 3.0 and e2 was varied in

the range of 0.0015 and 0.2575. In general, as e2 and tilt get closer to the optimal

values found in the 150th generation, the the �tness gets better as the parameters get

closer to their optimal values and worse when the parameters are farther from the

optimal values. In the contour plot of e2 versus tilt (�gure 7.5) the �tness is better

at the optimal parameter values for both e2 and tilt. Between the e2 parameter

values of 0.00150 and 0.05750 and with tilt �xed at optimal value of 2.2734, the

�tnesses are indistinguishable for 20 clones within a standard deviation in χ[chi].

When tilt = 2.2734 and e2 is between 0.00150 and 0.05750 the model �tnesses shift

+2σ from the optimal solution, indicating that the e2 parameter does not signi�cantly

a�ect the model over this relatively wide range. The contour plot reveals how the

�tness changes as a function e2 and tilt and remains uncorrelated until close to the

global minimum.

Continuing our investigation a contour plot of e2 and ∆ as a function of �tness

was done (�gure 7.6). Delta was scanned in increments of 0.1 between the values of 0

and 0.6 and e2 was varied between the values of 0.0015 and 0.2575. The ∆ parameter

was chosen because it represents the continuation of layer stacking to the next layer

and considering the interaction depth to another layer could a�ect the value of the

e2 parameter. Since e2 is so relatively undetermined between values of 0 and 0.0750

we wanted to test if this parameter could possibly be correlated with other structural

parameters such as tilt and delta. The investigation seen in the contour plots of
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Figure 7.5: Contour plot depicting correlation of e2 and tilt and �tness (given as
χ[chi]) in the third dimension. The parameters remain uncorrelated until close to the
global minimum.

�gures 7.5 and 7.6 show no correlation between these parameters and e2 until close

to the global minimum, indicating the model parameters are not correlated.

7.2.7 Motif statistics and comparison with reference model

The purpose of modeling di�use scattering is to gain insight into the structural motifs

composing the crystal, in our case, the types of stacking sequences of TBHB and

their lengths. Due to the probabilistic growth or MC procedures for building and

equilibrating crystals, a model is not expected to be a one-to-one image of the sample

investigated. However, it must show the same statistical distribution of structural

motifs. To test this, the occurrence of the nine structural motifs: ebL, ebR, ee, bLbR,

bLbL, bLe, bRbL, bRbR, and bRe in the 1280 virtual reference crystals is compared to

that found for the best individual in the 150th (�nal) generation of a DE optimization

and with that calculated from the transition matrix T.
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Figure 7.6: Contour plot depicting correlation of e2 and ∆ and �tness (given as
χ[chi]) in the third dimension. The parameters remain uncorrelated until close to the
global minimum.

The limiting values of the structural motif probabilities may be found from pn =

pTn, as the number n of layers added approaches in�nity. It corresponds to the

steady state distribution p̄ where

p̄ =
[
p̄(ebL) p̄(ebR) p̄(ee) p̄(bLbR) p̄(bLbL) p̄(bLe) p̄(bRbL) p̄(bRbR) p̄(bRe)

]
=
[
0.02194 0.02194 0.00033 0.22797 0.22797 0.02194 0.22797 0.22797 0.02194

]
.

The numerical values of the components of p̄ are obtained from the normalized

eigenvector of T with unit eigenvalue. Table 7.10 gives the four-layer bent left (bLb),

bent right (bRb), mixed eclipsed-bent (eb, be), and eclipsed (ee) motif counts in the

crystal as percentages (see Section 5.2, Chemical Modeling System, Growth Modeling,

and Reference Data). The b without subscript stands for bL or bR.

The statistical distribution of the four-layer motifs in the modeled crystal was

also obtained by counting, after 150 generations of DE optimization, the motifs in
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Table 7.10: Motif statistics of the reference crystals compared with those from the
Markov steady-state distribution and those of the best individual in the 150th (�nal)
generation of a DE optimization averaged over 20 and 300 clones (reported as percent
of the full crystal). The b without a subscript indicates that either bL or bR stacking
is allowed.

Motif
Types

Motif Statistics [%]

ref. Markova 20 clones 300 clones
eclipsed (ee) 0.0284(63) 0.033 0.032(7) 0.033(7)
Bent (bLb) 45.75(18) 45.594 45.61(21) 45.61(19)
Bent (bRb) 45.74(18) 45.594 45.52(18) 45.68(20)
Mixed
eclipsed
& bent (eb)

4.24(11) 4.388 4.42(9) 4.39(10)

Mixed bent
& eclipsed
(be)

4.24(11) 4.388 4.42(9) 4.39(10)

a steady-state distribution from Markov transition matrix (table 5.1)

the best individual averaged over 20 and 300 clones. The motif uncertainties were

obtained by calculating the standard deviation of each motif count among its clones.

Comparing the results for 20 and 300 clones, it is evident that 20 clones are su�cient

to obtain reliable values. The four-layer motifs containing only bent arrangements

were divided into two categories, bLb and bRb. For symmetry reasons, the frequency of

the two motifs should be the same. For the same reason, the frequency of the motifs

eb and be should also be the same. This is shown in Table 7.10. The eclipsed-only

motifs, eclipsed in both the second and third layer, accounted for only 0.033% of the

total crystal.

The counts from the growth models agree to within standard errors with the

counts from the reference crystals and the limiting values from the Markov model

(Table 7.10 column 3). This shows that the optimized models truly represent the

structural motifs in the crystals from which the reference data set was obtained.
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Knowledge of the lengths of repeating motifs (correlation length) is important to

ensure that the lot size was chosen appropriately [44]. The correlation length for the

eclipsed case is

〈ne〉 =
1

1− p̄(ee)
=

1

(1− 0.00033)
= 1.00033 (7.8)

layers; for the bent case 〈nb〉 is given by

〈nb〉 =
1

1− (p̄(bLbR) + p̄(bLbL) + p̄(bRbL) + p̄(bRbR))

=
1

(1− 0.9119)
∼= 11.35 (7.9)

layers [78].

Continuing an eclipsed stack is of low probability, with a calculated value of 0.008±

0.004 (Table 5.2 column 4). The low probability, e2 only 2σ above 0, is responsible

for the very short average correlation length 〈ne〉. In contrast the average length 〈nb〉

is about 11.35 layers. Both values indicate that a lot size of 60 layers is su�cient to

represent the short-range order in crystals of TBHB.

7.3 β[beta]-NaLaF4 local structure modeling

The direct and reciprocal space results are described for the Na/La2 column

interactions and the F1 shift model.

7.3.1 Parameter convergence and model �tness

The model parameters are optimized within speci�ed constraints, an initial minimum

and maximum and an absolute minimum and maximum that de�ne the world size for

the DE optimization. In order to determine the best constraints to use in optimizing

the model parameter(s), it is best to try a small test run specifying only an absolute

minimum and maximum and examine the parameter convergence to determine if

the convergence runs up against either the minimum or maximum value. Then the
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model can be rerun with more speci�c constraints. The constraints for the F1 shift

were speci�ed so that shifts both toward and away from La3+ were tested in the

optimization. The Na2/La2 CU interaction parameter (p1) was de�ned so that both

negative correlation (oppositely oriented neighbors) and positive correlation (same

oriented neighbors) were tried during optimization.

Once the appropriate parameter constraints are found the next step is to optimize

the model and examine its convergence. In the optimization of this model the limit

of the R value is 0.3378(3) (see �gure 7.7). The Ising model parameter (p1) has

converged to a value of 0.441(18) in 35 generations (see �gure 7.8). The positive value

for the Na2/La2 interaction parameter with Na2/La2 indicates that like neighbors

produce a less favorable MC crystal energy. Continuing to run for more generations

would yield little improvement. Since the parameter has such a small standard

deviation the model �tness would not improve signi�cantly. The F1 shift parameter

has converged to 0.0074(5) in 35 generations (see �gure 7.8). Converting 0.007464

shift in +z from fractional coordinates to angstroms corresponds to a 0.06Å shift

toward La3+, similar to the 0.07Å shift predicted in [4].

The F1 shift adjusts the bond lengths of Na-F and La-F in the average structure

(2.582Å) to 2.654Å and 2.561Å, respectively. The bond valence calculations simply

estimate the oxidation state of each ion type within the unit cell. The bond valence

of a particular ion is calculated using the atomic positions and distances between

its neighbors. Bond valence calculations were done using VaList [91] for the average

structure using the F1 original position and the shifted position. The oxidation state

of La2 is 2.949 for the shifted F1 bond length versus 2.574 for the average position.

7.3.2 Direct space analysis

The 2-D direct space structure generated by the optimized structural parameters is

visualized in Microsoft discovery studio. The direct space structure is built from the

CU(s) de�ned in the model. Looking at the direct space 2-D structure gives an overall
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Figure 7.7: The convergence of the �tness function R as a function of generation
number.

Figure 7.8: Behavior of the model parameters, p1, which de�nes the Na2/La2
CU interaction with another Na2/La2 CU in the neighboring unit cell and the F1
shift (plots a and b)during DE optimization with 24 individuals and 20 clones each.
The population mean is indicated by the middle points, and the population standard
deviation by the vertical lines. The dots above and below the lines represent the
largest and the smallest parameter values in the population.
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Figure 7.9: A 2-D crystal composed of CUs illustrating the preference for oppositely
oriented CUs. The Na2. . . La2 column prefers La2. . . Na2 columns as neighbors. The
top view of the crystal shows Na2 (orange) and La2 (green) atoms, each with 6
neighbors.

impression of the arrangement of the CUs in the a,b plane and assists in determining

if the crystal has been built according the structural preferences de�ned in the model

(see �gure 7.9).

The structure of the crystal is analyzed by examining the conditional probabilities

of the neighbors to determine if they show the preference in the model for oppositely

oriented CUs as �rst neighbors. In the preferences for second neighbors the opposite

trend is observed. The neighbor preference begins to fall o� by the time the third

neighbors are considered (table 7.11). The neighbor coordinates for a 120◦ lattice are

given in �gure 7.11.

First neighbors have a probability of CUs in the same orientation of approximately

38�39% and for oppositely oriented CU neighbors the probability was between

approximately 61% and 62%. In looking at the preferences for second neighbors this

preference the opposite is trend is observed. This indicates that the �rst neighbor's

neighbors (second neighbors) prefer CUs in the same orientation as the CU at the

(0, 0, 0) shift but opposite to their �rst neighbors. This is expected, since the majority

of the �rst neighbors are now oppositely oriented to the CU at (0, 0, 0) then it follows
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Figure 7.10: 2-D 120 degree lattice showing �rst neighbors (red), second (blue),
third (orange) and fourth (green) with their corresponding coordinates relative to the
central atom (black) at the origin (0,0).

that the majority of the second neighbors are now oriented in the same way as the

CU at (0, 0, 0).

The second neighbor preference is then the same orientation as the CU at the

(0, 0, 0) shift with a probability of approximately 56% and the opposite orientation

with a probability of around 44%. The correlation for third neighbors is approximately

50% for each orientation, indicating the neighbor correlation does not continue past

the third neighbors (table 7.11).

7.3.3 Intensity comparison

The intensities calculated from the fully optimized crystal structures, when compared

to the measured intensities reveal how well the local structural disorder has been

represented. Moreover, the contribution of a particular element of the structural

disorder to the di�use features in the di�raction pattern is revealed in the optimized

structure's calculated intensities.

The systematic di�erences in the plot of Iobs − Icalc reveal that aspects of the

disorder are not represented in the current model. The intensity modulations not

represented in the calculated intensity plot are revealed by the systematic high and

low intensities in the di�erence plot (see �gure 7.11). The �nal average layer R value
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Table 7.11: The �rst, second and third conditional neighbor probabilities using the
relative shift vectors (x, y, z) relative to the CU with no shift (0, 0, 0). For example
P (CU, (0, 0, 0)|CU, (2, 1, 0)) means that given a CU in its original position (x, y, z)
the probability of the CU at (x+2, y+1, z) being in the same or opposite orientation
is given.

Conditional Probabilities

�rst neighbor same opposite
P (CU, (0, 0, 0)|CU, (1, 0, 0)) 0.380205 0.619795
P (CU, (0, 0, 0)|CU, (0, 1, 0)) 0.393683 0.606317
P (CU, (0, 0, 0)|CU, (1, 1, 0)) 0.392678 0.607322

second neighbor same opposite
P (CU, (0, 0, 0)|CU, (1, 2, 0)) 0.559445 0.44055
P (CU, (0, 0, 0)|CU, (2, 1, 0)) 0.561054 0.438946
P (CU, (0, 0, 0)|CU, (−1, 1, 0)) 0.558037 0.441963

third neighbor same opposite
P (CU, (0, 0, 0)|CU, (0, 2, 0)) 0.495675 0.504325
P (CU, (0, 0, 0)|CU, (2, 2, 0)) 0.501509 0.498491
P (CU, (0, 0, 0)|CU, (2, 0, 0)) 0.506136 0.493864
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Figure 7.11: From left to right, measured, calculated and di�erence intensities for
the (H,K, 0.5L) layer.

was approximately 0.341, the scale factor was 5.6777 × 10−7 and the background

−0.166286 (calculated according to 3.2.3).

The calculated, measured and di�erence intensities of the (H,K, 0.5L) layer are

shown in �gure 7.11, the other layers (H,K, 1.5L), (H,K, 2.5L), (H,K, 3.5L) and

(H,K, 4.5L) show similar results. In comparing the measured data to the calculated

intensities the honey comb pattern of the di�use layer has clearly been reproduced.

The modulation of the di�use rings does get weaker farther from the origin but is still

too high. The bright �nodes� in the hexagonal ring are much sharper in the calculated

pattern than the di�use pattern, however the intensities of the nodes in the hexagonal

ring are in the correct position. Examining the di�erence intensity reveals systematic

di�erences in the calculated and measured intensities. The intensities in the calculated

layer are too high at the nodes of the honey comb. The modulation of weaker and

stronger intensities is absent in model intensities they are all similar in magnitude.

To capture this modulation more correlations need to be taken into account in the

model.
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Chapter 8

Conclusions and outlook

The results in this section are an expanded version of the paper:

Michels-Clark, T.M.*, Lynch, V.E., Ho�mann, C.M., Hauser, J., Weber, T.,

Harrison, R., Bürgi, H. B. Analyzing di�use scattering with Supercomputers. J.

Appl. Crystallogr., 46, 1616-1625

I was lead and corresponding author and my primary contributions to this paper

include (i) testing and development of method and analysis (ii) running of computa-

tions (iii) writing manuscript and preparing all �gures for publication (iv) writing of

results analysis code (v) corresponding with editor and referees (vi) �nal submission.

8.1 Conclusions

A quantitative description of local structure arrangement of single crystals through

the interpretation of the di�use scattering is essential for elucidating the processes

that underpin the functionality of many materials with important industrial and

biomedical applications. The analysis of di�use scattering is complex and requires

development in two primary areas: (1) di�use data processing for computations and

(2) computational techniques that take full advantage of computational resources.

Both aspects were addressed in this work.
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Preliminary results analyzing di�use neutron data through comparison with X-

Ray data were described. The initial integration methods were tested for the 100K

neutron Bragg structure. The Bragg structure of the neutron and X-Ray data were

in agreement.

New ways were presented to quantitatively analyze di�use scattering and these

were applied to the one dimensional stacking disorder described earlier for the organic

compound TBHB [18]. Three global optimization algorithms were tested: di�erential

evolution, a general genetic algorithm, and particle swarm optimization. All three

algorithms converged to similar parameter values, except for one parameter in the

genetic algorithm calculations. Particle swarm optimization was found to be most

e�cient in the initial stages of optimization. After 150 generations of optimization,

the parameter values from di�erential evolution showed the narrowest range and the

best agreement between model and reference di�use intensities. The testing of many

sets of parameters is required in all three global optimization algorithms, but can be

signi�cantly accelerated by parallelization: for each parameter set model crystals are

calculated on separate compute nodes.

In order to reduce the speckle-type intensity variations inherent in the modeling

process, intensities may be calculated either from a single large crystal subdivided into

many lots or from several smaller crystals consisting of fewer lots, but constructed

from a single set of modeling parameters (clones). Clones are preferred over a large

crystal as they allow further parallelization of the calculation. The use of clones

also minimizes any bias that might be associated with the random initial layer

con�guration that seeds the growth of the model crystal in the modeling process.

The dependence of the �tness R on the reciprocal square root of the total number

of lots (= number of clones times number of lots per clone) was found to be linear,

indicating that the behavior of speckle-type intensity variations is analogous to that

of experimental noise.

Finally, it was shown that the statistical distribution of four-layer stacking motifs

found in the computer simulations was the same within statistical error as that
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in the reference crystal. These results were veri�ed theoretically using the steady-

state probability distribution resulting from the four- to �ve-layer Markov transition

matrix. The chosen lot size of 60 layers was shown to be su�cient, as the largest

correlation length was approximately 11.35 layers for a bent arrangement.

The quantitative analysis protocols reported here for analyzing 1-d di�use

scattering are applicable not only to crystals with stacking disorder but also to 2-

d and 3-d types of structural disorder. A more complex disorder might require more

model parameters and thus more individuals as well as larger model crystals that

encompass the full range of local structure correlations. However, the parallelized

global optimization techniques described in this work will also make such structure

determinations feasible if the necessary computing resources are available. The

calculation of the di�use intensities could be further optimized by using GPU

processors to Fourier transform the scattering density of the disordered crystals as

shown by Gutmann [92]. In addition, they may be combined with other modeling

techniques, MC modeling [15] and 3D-PDF techniques [93] in particular. The

resulting local structure variations may then provide a basis for explaining structure

property relationships of disordered materials.

The new computational protocol was tested in the newly developed ZODS

modeling and analysis package on β−NaLaF4 and the results of Aebeischer et al.

[4] were quanti�ed.

113



Bibliography

114



[1] C. Hammond, The Basics of Crystallography and Di�raction. Oxford University

Press, third ed., 2009. xvi, 5, 8

[2] M. M. Ripoll and F. H. Cano, �Cristalogra�a,� 2014. xvii, 12

[3] D. W. Bennett, Understanding single-crystal X-Ray crystallography. Wiley-VCH

Verlag GmbH & Co. KGaA, 2010. xvii, 5, 13, 14

[4] A. Aebischer, M. Hostettler, J. Hauser, K. Krämer, T. Weber, H. U. Güdel, and

H. B. Bürgi, �Structural and spectroscopic characterization of active sites in a

family of light-emitting sodium lanthanide tetra�uorides,� Angew. Chem. Int.

Ed., vol. 45, no. 17, pp. 2802�2806, 2006. xvii, xix, 1, 3, 40, 41, 45, 50, 64, 65,

66, 67, 69, 71, 105, 113

[5] J. Taylor, O. Arnold, J. Bilheaux, A. Buts, S. Campbell, M. Doucet, N. Draper,

R. Fowler, M. Gigg, V. Lynch, A. Markvardsen, K. Palmen, P. Parker,

P. Peterson, S. Ren, M. Reuter, A. Savici, R. Taylor, R. Tolchenov, R. Whitely,

W. Zhou, and J. Zikovsky, �Mantid, a high performance framework for reduction

and analysis of neutron scattering data,� Bulletin of the American Physical

Society, vol. 57, 2012. xviii, 3, 43, 48

[6] T. M. Michels-Clark, �American chemistry society computers in chemistry

division image award,� January 2013. xix, 66

[7] W. L. Bragg, �The structure of some crystals as indicated by their di�raction of

X-rays,� Proc. Roy. Soc. Lond., vol. A89, p. 248, 1913. 1, 9

[8] Trans. Am. Cryst. Assoc., Beyond Single-Crystal Strucutre Determination

Interpretation of 3D Disorder Di�use Scattering, 2010. 1, 2

[9] D. Tu, Y. Lui, H. Zhu, R. Li, L. Lui, and X. Chen, �Breakdown of crystallographic

site symmetery in lanthanide-doped NaYF4 crystals,� Angew. Chem. Int. Ed.,

vol. 52, pp. 1128�1133, 2013. 1, 41, 64

115



[10] K. Lonsdale, �X-ray study of crystal dynamics: An historical and critical survey

of experiment and theory,� Proc. Phys. Soc., vol. 54, no. 4, p. 314, 1942. 1

[11] G. Honjo, S. Kodera, and N. Kitamura, �Di�use streak di�raction patterns from

single crystals i. general discussion and aspects of electron di�raction di�use

streak patterns,� Journal of the Physical Society of Japan, vol. 19, no. 3, pp. 351�

367. 1

[12] T. R. Welberry, Di�use X-Ray Scattering and Models of Disorder. New York:

Oxford University Press, 2004. 2, 49, 87

[13] R. B. Neder and T. Pro�en, Di�use scattering and defect structure simulations:

a cook book using the program DISCUSS. Oxford University Press, 2008. 2

[14] M. U. Schmidt and J. Glinnemann, �Explanation for the stacking disorder

in tris(bicyclo[2.1.1]hexeno)benzene using lattice-energy minimisations,� Z.

Kristallogr., vol. 227, pp. 805�817, 2012. 2, 50

[15] T. Pro�en and T. R. Welberry, �Analysis of di�use scattering of single crystals

using monte carlo methods,� Phase Transit., vol. 67, no. 1, pp. 373�397, 1998.

2, 37, 38, 50, 53, 113

[16] A. K. Wolf, S. Bruhne, J. Glinnemann, C. Hu, M. T. Kirchner, and M. U.

Schmidt, �Local atomic order in sodium p-chlorobenzenesulfonate monohydrate

studied by pair distribution function analyses and lattice-energy minimisations,�

Z. Kristallogr., vol. 227, no. 2, pp. 113�121, 2012. 2

[17] M. Haase and H. Schafer, �Upconverting nanoparticles,� Angew. Chem. Int. Ed.,

vol. 50, no. 26, pp. 5808�5829, 2011. 3, 40

[18] H. Birkedal, H. B. Bürgi, K. Komatsu, and D. Schwarzenbach, �Polymorphism

and stacking disorder in tris(bicyclo 2.1.1 hexeno)benzene,� J. Mol. Struct.,

vol. 647, no. 1-3, pp. 233�242, 2003. 3, 51, 95, 112

116



[19] R. Pynn, �Neutron scattering: A primer,� 1990. 5

[20] C. Giacavazzo, H. L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. Zanotti, and

M. Catti, Fundamentals of Crystallography, IUCr texts on crystallography No.

2. Oxford: Oxford University Press, 1992. 5

[21] C. C. Wilson, Single crystal neutron di�raction from molecular materials. Series

on Neutron Techniques and Applications , Vol 2, London: World Scienti�c

Publishing Co. Ptc. Ltd., 1st ed. ed., 2000. 5, 43, 44

[22] M. von Laue, �Röntgenstrahlinterferenzen,� Phys. Z., vol. 14, no. 22/23, p. 1075,

1913. 8

[23] P. P. Ewald, �Zur theorie der interferenzen der röntgenstrahlen in kristallen,�

Phys. Z., vol. 14, p. 465, 1913. 11

[24] G. M. Sheldrick, �A short history of SHELX,� Acta Cryst. A, vol. 64, no. 1,

pp. 112�122, 2008. 16, 20, 25, 33, 45, 48, 77

[25] A. L. Patterson, �A direct method for the determination of the components of

interatomic distances in crystals,� Z. Kristallogr., vol. 90, pp. 517�542, 1935. 20

[26] D. Harker and J. S. Kasper, �Phases of fourier coe�cients directly from crystal

di�raction data,� Acta Cryst., vol. 1, no. 2, pp. 70�75, 1948. 20

[27] D. Sayre, �The squaring method: a new method for phase determination,� Acta

Cryst., vol. 5, no. 1, pp. 60�65, 1952. 20

[28] V. Elser, �Solution of the crystallographic phase problem by iterated projections,�

Phys. Rev., vol. A59, no. 3, pp. 201�209, 2003. 20, 23

[29] M. Shiono and M. M. Woolfson, �Direct-space methods in phase extension and

phase determination. i. low-density elimination,� Acta Cryst. A, vol. A48, no. 4,

pp. 451�456, 1992. 20

117



[30] C. M. Weeks, G. T. DeTitta, R. Miller, and H. A. Hauptman, �Application of

the minimal principle to peptide structures,� Acta Cryst. D, vol. D49, no. 1,

pp. 179�181, 1993. 20

[31] G. Oszlányi and A. Süto, �Ab initio structure solution by charge �ipping,� Acta

Cryst. A, vol. A60, pp. 134�141, 2004. 20

[32] G. Oszlányi and A. Süto, �Ab initio structure solution by charge �ipping. ii. use

of weak re�ections,� Acta Cryst. A, vol. A61, no. 1, pp. 147�152, 2005. 20

[33] G. Oszlányi and A. Süto, �Ab initio neutron crystallography by the charge

�ipping method,� Acta Cryst. A, vol. A63, pp. 156�163, 2006. 20

[34] A. C. Larson and R. B. V. Dreele, �General structure analysis system (GSAS),�

Tech. Rep. LAUR 86-748, Los Alamos National Laboratory, 2000. 20, 75

[35] B. H. Toby, �EXPGUI, a graphical user interface for gsas,� J. Appl. Crystallogr.,

vol. 34, no. 2, pp. 210�213, 2001. 20, 33, 75

[36] International tables for X-ray crystallography, vol. IV. Birmingham: Kynoch

Press, 1974. 22, 129

[37] V. F. Sears, �Neutron scattering lengths and cross sections,� Neutron News, vol. 3,

no. 3, pp. 29�37, 1992. 22, 42

[38] B. M. T. Willis, �Crystallography with a pulsed neutron source,� Z. Kristallogr.,

vol. 209, p. 385, 1994. 27

[39] V. M. Neild and D. A. Keen, Di�use Neutron Scattering from Crystalline

Materials. Oxford Series on Neutron Scattering in Condensed Matter, vol. 14,

New York: Oxford University Press Inc., 2001. 29

[40] M. Chodkiewicz, �Zods-Zürich Oak Ridge disorder simulations.� 2014. 33

118



[41] M. Chodkiewicz, L. Ahrenberg, T. Michels-Clark, T. Weber, and H. B. Bürgi,

�Zods manual,� 2013. 33

[42] A. S. Inc., �Discovery studio modeling environment, release 3.5,� 2007. 34

[43] A. Henderson, The ParaView Guide, A Parallel Visualization Application.

Kitware Inc., 2007. 34, 39

[44] T. R. Welberry and B. D. Butler, �Interpretation of di�use-x-ray scattering via

models of disorder,� J. Appl. Crystallogr., vol. 27, pp. 205�231, 1994. 37, 53, 104

[45] R. Storn and K. Price, �Di�erential evolution - a simple and e�cient heuristic

for global optimization over continuous spaces,� J. Global Optim., vol. 11, no. 4,

pp. 341�359, 1997. 38, 51, 57, 73

[46] S. Wold, K. Esbensen, and P. Geladi, �Principal component analysis,�

Chemometr. Intell. Lab., vol. 2, no. 1�3, pp. 37�52, 1987. 39, 99

[47] R. A. Jalil and Y. Zhang, �Biocompatibility of silica coated NaYF4 upconversion

�uorescent nanocrystals,� Biomaterials, vol. 29, no. 30, pp. 4122�4128, 2008. 40

[48] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, �High

contrast in vitro and in vivo photoluminescence bioimaging using near infrared to

near infrared up-conversion in Tm3+ and Yb3+ doped �uoride nanophosphors,�

Nano Lett., vol. 8, no. 11, pp. 3834�3838, 2008. 40

[49] J. Shan, J. Chen, J. Meng, J. Collins, W. Soboyejo, J. S. Friedberg, and

Y. Ju, �Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped

hydrophobically ligated NaYF4 upconversion nanophosphors,� J. Appl. Phys.,

vol. 104, no. 9, p. 094308, 2008. 40

[50] F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, �Synthesis

of polyethylenimine NaYF4 nanoparticles with upconversion �uorescence,�

Nanotechnology, vol. 17, no. 23, p. 5786, 2006. 40

119



[51] L. C. Ong, M. K. Gnanasammandhan, S. Nagarajan, and Y. Zhang,

�Upconversion: road to el dorado of the �uorescence world,� Luminescence,

vol. 25, no. 4, pp. 290�293, 2010. 40

[52] S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen,

P. J. Schuck, and A. P. Alivisatos, �Non-blinking and photostable upconverted

luminescence from single lanthanide doped nanocrystals,� P. Natl. Acad. Sci.

USA, vol. 106, no. 27, pp. 10917�10921, 2009. 40

[53] S. H. Nam, Y. M. Bae, Y. I. Park, J. H. Kim, H. M. Kim, J. S. Choi, K. T.

Lee, T. Hyeon, and Y. D. Suh, �Long-term real-time tracking of lanthanide ion

doped upconverting nanoparticles in living cells,� Angew. Chem. Int. Ed., vol. 50,

no. 27, pp. 6093�6097, 2011. 40

[54] C. Wang, L. Cheng, and Z. Liu, �Drug delivery with upconversion nanoparticles

for multi-functional targeted cancer cell imaging and therapy,� Biomaterials,

vol. 32, no. 4, pp. 1110 � 1120, 2011. 40

[55] J. Shan, S. J. Budijono, G. Hu, N. Yao, Y. Kang, Y. Ju, and R. K. Prud′homme,

�Pegylated composite nanoparticles containing upconverting phosphors and

meso-tetraphenyl porphine (tpp) for photodynamic therapy,� Adv. Funct. Mater.,

vol. 21, no. 13, pp. 2488�2495, 2011. 40

[56] L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao, S.-T. Lee, and Z. Liu,

�Facile preparation of multifunctional upconversion nanoprobes for multimodal

imaging and dual-targeted photothermal therapy,� Angew. Chem. Int. Ed.,

vol. 50, no. 32, 2011. 40

[57] R. Scheps, �Upconversion laser processes,� Prog. Quant. Electron., vol. 20, no. 4,

pp. 271 � 358, 1996. 40

[58] W. Lenth and R. M. Macfarlane, �Excitation mechanisms for upconversion

lasers,� J. Lumin., vol. 45, no. 1�6, pp. 346 � 350, 1990. 40

120



[59] M. F. Joubert, S. Guy, and B. Jacquier, �Model of the photon-avalanche e�ect,�

Phys. Rev. B, vol. 48, pp. 10031�10037, 1993. 40

[60] A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel,

�Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared

silicon solar cell response,� Appl. Phys. Lett., vol. 86, no. 1, p. 013505, 2005. 40

[61] P. G. Kik and A. Polman, �Cooperative upconversion as the gain-limiting factor

in Er doped miniature Al2O3 optical waveguide ampli�ers,� J. Appl. Phys.,

vol. 93, no. 9, pp. 5008�5012, 2003. 40

[62] C. Strohhöfer and A. Polman, �Relationship between gain and Yb3+

concentration in Er3+−Yb3+ doped waveguide ampli�ers,� J. Appl. Phys., vol. 90,

no. 9, pp. 4314�4320, 2001. 40

[63] E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, �A three-color, solid-

state, three-dimensional display,� Science, vol. 273, no. 5279, pp. 1185�1189,

1996. 40

[64] F. Auzel, �Upconversion and anti-stokes processes with f and d ions in solids,�

Chem. Rev., vol. 104, no. 1, pp. 139�174, 2004. 40

[65] K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi,

�Hexagonal sodium yttrium �uoride based green and blue emitting upconversion

phosphors,� Chem. Mat., vol. 16, no. 7, pp. 1244�1251, 2004. 40, 41

[66] A. Aebischer, S. Heer, D. Biner, K. Krämer, M. Haase, and H. U. Güdel,

�Visible light emission upon near-infrared excitation in a transparent solution

of nanocrystalline β-NaGdF4:Yb3+, Er3+,� Chem. Phys. Lett., vol. 407, no. 1 �

3, pp. 124 � 128, 2005. 40

[67] N. Menyuk, K. Dwight, and J. Pierce, �NaYF4:Yb,Er�an e�cient upconversion

phosphor,� Appl. Phys. Lett., vol. 21, no. 4, pp. 159�161, 1972. 41

121



[68] T. Kano, T. Suzuki, A. Suzuki, and S. Minagawa, �Fabrication of e�cient up-

conversion type green LED using NaYF4-Yb,Er phosphor,� J. Electrochem. Soc.,

vol. 120, no. 3, p. C87, 1973. 41

[69] J. H. Burns, �Crystal structure of hexagonal sodium neodymium �uoride and

related compounds,� Inorg. Chem., vol. 4, no. 6, pp. 881�886, 1965. 41

[70] T. Worlton, A. Chatterjee, J. Hammonds, C. Bouzek, D. Mikkelson,

R. Mikkelson, M. Miller, B. Serum, and P. Peterson, �Scienti�c review: New

software for neutron scattering data visualization,� Neutron News, vol. 15, no. 3,

pp. 14�15, 2004. 42

[71] J. Zikovsky, P. F. Peterson, X. P. Wang, M. Frost, and C. Ho�mann,

�Crystalplan: an experiment-planning tool for crystallography,� J. Appl. Cryst.,

vol. 44, no. 2, pp. 418�423, 2011. 43

[72] A. J. Schultz, K. Srinivasan, R. G. Teller, J. M. Williams, and C. M. Lukehart,

�Single-crystal, time-of-�ight, neutron-di�raction structure of hydrogen cis-

diacetyltetracarbonylrhenate, [cis-(OC)4Re(CH3CO)2]H: a metallaacetylacetone

molecule,� J. Am. Chem. Soc., vol. 106, no. 4, pp. 999 � 1003, 1984. 45, 75

[73] B. M. T. Willis and A. W. Pryor, Thermal vibrations in crystallography.

Cambridge University Press, 1975. 50

[74] T. R. Welberry and D. J. Goossens, �The interpretation and analysis of di�use

scattering using monte carlo simulation methods,� Acta Crystallogr. A, vol. 64,

pp. 23�32, 2008. 50, 61

[75] A. J. C. Wilson, X-ray Optics: the di�raction of X-rays by �nite and imperfect

crystals. Methuen's monographs on physical subjects, London: Methuen, 2nd

ed. ed., 1962. 51

[76] J. H. Holland, Adaptation in natural and arti�cial systems. The University of

Michigan Press, 1975. 51, 57

122



[77] J. Kennedy and R. Eberhart, �Particle swarm optimization,� in Proc. IEEE Int.

Conf. Neural Net., 1995. 51, 59

[78] H. B. Bürgi, M. Hostettler, H. Birkedal, and D. Schwarzenbach, �Stacking

disorder: the hexagonal polymorph of tris(bicyclo[2.1.1]hexeno)benzene and

related examples,� Z. Kristallogr., vol. 220, no. 12, pp. 1066�1075, 2005. 51,

52, 104

[79] J. Hauser, T. Weber, and H. B. Bürgi, �private communication.� 2009. 53

[80] D. E. Goldberg, �Genetic and evolutionary algorithms come of age,� Commun.

ACM, vol. 37, no. 3, pp. 113�119, 1994. 57

[81] C. B. Lucasius and G. Kateman, �Understanding and using genetic algorithms

.1. concepts, properties and context,� Chemometr. Intell. Lab., vol. 19, no. 1,

pp. 1�33, 1993. 57

[82] M. Srinivas and L. M. Patnaik, �Genetic algorithms - a survey,� Computer,

vol. 27, no. 6, pp. 17�26, 1994. 57

[83] K. Gallagher and M. Sambridge, �Genetic algorithms�a powerful tool for large-

scale nonlinear optimization problems,� Comput. Geosci., vol. 20, no. 7�8,

pp. 1229�1236, 1994. 57

[84] S. Forrest, �Genetic algortihms�principles of natural-selection applied to

computation,� Science, vol. 261, no. 5123, pp. 872�878, 1993. 57

[85] F. Gray, �Pulse code communication,� 1953. 57

[86] T. Weber and H. B. Bürgi, �Determination and re�nement of disordered

crystal structures using evolutionary algorithms in combination with monte carlo

methods,� Acta Crystallogr. A, vol. 58, pp. 526�540, 2002. 57

123



[87] H. B. Bürgi, J. Hauser, T. Weber, and R. B. Neder, �Supramolecular architecture

in a disordered perhydrotriphenylene inclusion compound from di�use x-ray

di�raction data,� Cryst. Growth Des., vol. 5, no. 6, pp. 2073�2083, 2005. 61

[88] T. Pro�en and T. R. Welberry, �Analysis of di�use scattering via the reverse

monte carlo technique: A systematic investigation,� Acta Crystallogr. A, vol. 53,

pp. 202�216, 1997. 61

[89] M. Sutton, S. G. J. Mochrie, T. Greytak, S. E. Nagler, L. E. Berman, G. A. Held,

and G. B. Stephenson, �Observation of speckle by di�raction with coherent x-

rays,� Nature, vol. 352, no. 6336, pp. 608�610, 1991. 87

[90] H. D. Hamby, �A review of techniques for parameter sensitivity analysis of

environmental-models,� Environ. Monit. Assess., vol. 32, no. 2, pp. 135�154,

1994. 93

[91] A. S. Wills, �Valist.� 105

[92] M. J. Gutmann, �Accelerated computation of di�use scattering patterns and

application to magnetic neutron scattering,� J. Appl. Crystallogr., vol. 43,

pp. 250�255, 2010. 113

[93] T. Weber and A. Simonov, �The three dimensional pair distribution function

analysis of disordered single crystals: basic concepts,� Z. Kristallogr., vol. 227,

pp. 238�247, 2012. 113

124



Appendix

125



A. 1 Two dimensional occupational disorder analysis

A. 1.1 General concepts

A program to simulate occupational disorder of two atoms (type A and B) on a 2

dimensional hexagonal lattice was written in C++. This disorder example provides

a valuable understanding for the concepts of disorder simulation. A 2-D crystal of

user de�ned size is randomly generated and then optimized using MC algorithm. The

crystal is a randomly generated matrix of A type atoms (0) and B type atoms (1)

of user de�ned dimension n×m. First neighbors de�ned on a γ = 60 ◦ lattice given

as x[6, 2] = [(1,−1), (0, 1), (1, 0), (0,−1), (−1, 0), (−1, 1)] and the second neighbors;

y[6, 2] = [(1, 1), (−1, 2), (−2, 1), (−1,−1), (1,−2), (2,−1)] (�gure A.1). The crystal

energy is given as the sum of all �rst and second neighbor interaction energies between

the two atoms A and B and x[6, 2] and y[6, 2] are arrays of �rst and second neighbor

relative position coordinates;

E =
n∑
k=1

m∑
l=1

6∑
i=1

(ak,lak+xi,0,l+xi,1 + bk,lbk+xi,0,l+xi,1 + ak,lbk+xi,0,l+xi,1 + bk,lak+xi,0,l+xi,1)

+
n∑
k=1

m∑
l=1

6∑
i=1

(ak,lak+yi,0,l+yi,1 + bk,lbk+yi,0,l+yi,1 + ak,lbk+yi,0,l+yi,1 + bk,lak+yi,0,l+yi,1)

The given atom type and the type of its �rst and second neighbor is determined by a

set of conditional statements. The above crystal energy equation gives the formulation

for �nding the crystal energy given user de�ned �rst and second neighbor interaction

energies; AA,BB and AB where the energy of BA = AB. Boundary conditions are

applied so that if a given atom's neighbor is outside the de�ned crystal (index outside

randomly generated crystal matrix) then its position is re�ected into the same relative

position inside the crystal. The relative position is de�ned in terms of the �rst and

second neighbor coordinates relative to an atom at the origin for γ = 60 ◦ as shown

in (�gure A.1).
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Figure A.1: 2-D sixty degree lattice showing �rst neighbors (red), second (blue),
third (orange) and fourth (green) with their corresponding coordinates relative to the
central atom (black) at the origin (0,0).
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The crystal energy is calculated and the contents are optimized via a Monte Carlo

(MC) process which minimizes the crystal energy through swaps from a randomly

generated reservoir (a 1-D vector of A and B type atoms) of user de�ned size. Each

swap is de�ned as a Monte Carlo step. The change in energy is given by ∆E =

Ei−Ei+1, where i is the ith MC step and i+ 1 is the subsequent MC step. The swap

is accepted if ∆E = Ei − Ei+1 ≤ 0. If ∆E = Ei − Ei+1 > 0 then the Bolztmann

probability,

P (E) = e
−∆E

kβ

T (1)

where (T =
1

kβ
) is calculated and compared to a random number generated between

0 and 1. If P (E) is less than the random number the swap is accepted; otherwise it

is rejected. This process is repeated for a user de�ned number of MC steps and the

�nal MC optimized 2-D crystal made of A (0) and B (1) atoms and user de�ned nxm

dimension is printed in a 2-D, 60 ◦ grid of 0, 1 (shown in output print out below).

The pair correlation statistics of the crystal before and after optimization are

calculated for �rst, second, third and fourth neighbors using the de�nition of

conditional probability

P (A|B) =

∑n
i=1Ai∑

i=1(Ai +Bi)
. (2)

This means that given an atom of type A (or B) the number of �rst, second, third

or fourth neighbors that are of type A (or B, depending the condition calculated)

divided by the total number of �rst, second, third or fourth neighbors determine the

associated pair correlation. For example, P (A1|B) means that given an atom of type

B the total number of �rst neighbors that are of type A divided by the total number

of �rst neighbors yields the pair correlation of B with �rst neighbor atoms of type

A. All of the conditional probabilities are listed in the output �le below calculated

on both the optimized and unoptimized crystal. This provides a sanity check for the

expected structural output based on the interaction energies. The smaller interaction

energies between two atoms should result in a greater probability of atoms of this
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type being neighbors. The correlation for this preference should get weaker by the

fourth neighbors. For example, in the output �le below the interaction energies

for AA = 1, BB = 3 and AB = 0.5 and all second neighbor interaction energies

are set to 0. The conditional probabilities of the optimized crystal correspond to

a greater percentage of P (A1|B) ≈ 72% and P (B1|A) ≈ 52.3% as compared to

P (A1|A) ≈ 47.2% and P (B1|B) ≈ 27%. The same condition probabilities before

optimization are all approximately equivalent. The probabilities for second, third and

fourth neighbors show the interaction is almost nonexistent past the second neighbors

and the third and fourth neighbor probabilities are almost the same.

Once the crystal is optimized the optimized crystal �le is read and the x-ray or

neutron intensities are calculated on a grid of user de�ned size. Each intensity is

calculated at the grid positions determined by the input origin and step size. The

neutron scattering lengths are input by the user. The x-ray scattering factors are

calculated using normalized scattering curves �tted to a 9 coe�cient equation that

parameterizes the non-dispersive part of the atomic scattering factor for neutral atoms

as a function of sin θ
λ

by Cromer, D. T. and Waber, J. T. using the unpublished wave

functions of J. B. Mann described in [36] page 71. This code takes the user entered

atoms types for A and B and �ts these in the scattering factor function below.

f 0(
sin θ

λ
) =

4∑
i=1

ai ∗ e−bi(
sin θ
λ

)2 + c (3)

given the �tting coe�cients ai, bi and c with known wavelength λ, the scattering factor

for a given atom can be calculated for any sin θ
λ

= |xa∗+yb∗|
2

, where a∗ and b∗ are the

2-D reciprocal hexagonal lattice vectors and x and y de�ne the grid position. The

grid position (x, y) is determined by (x0 +h∗s, y0 +k ∗s), where s is the step size and

(x0, y0) de�nes the grid origin and h, k are integer indices in the x and y dimension

of the crystal (or lot). Finally, to calculate the grid position on a hexagonal lattice

with γ = 60 ◦ the (x, y), the fractional coordinates position is converted to Cartesian
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coordinates. The new Cartesian coordinates, (u, v)are given by

(u, v) = (x0 + h ∗ s)a∗
 cos(π

6
)

cos(π
3
)

+ (y0 + k ∗ s)b∗
 cos(π

2
)

cos(0)

 (4)

using a∗ =
b× c

V
=
b · c sin(π

2
)

V
î and b∗ =

a× c

V
=
a · c sin(π

2
)

V
ĵ, which yields;

u = (x0 + h ∗ s)b · c
V

cos(
π

6
) (5)

v = (x0 + h ∗ s)b · c
V

cos(
π

3
) + (y0 + k ∗ s)a · c

V
(6)

where a, b and c are the lattice parameters of the crystal. In the case of NaLaF4 these

values are a = b = 6.18639Å and c = 3.83388Å, when calculated from the ambient

X-Ray intensity data.

Using the above equations for (u, v), sin θ
λ

can easily be calculated as
√
u2+v2

2
. This

value is then used to calculate the scattering factor for atoms A and B in the function

3 at each grid position for all atoms in the crystal. These X-ray scattering factors are

then used to calculate the structure factor at each step on the grid.

The structure factor is given as;

F =
n∑
i

n∑
j

2π ∗ ı(fA + fB) ∗ e(x0+h∗s)∗i+(y0+k∗s)∗j (7)

where fA and fB are the x-ray scattering factor or neutron scattering length. The

neutron scattering lengths are constant and do not depend on sin θ
λ
. The structure

Factor is calculated for each lot and summed over all lots. The user inputs the lot size

and number of lots. Each lot is randomly selected from the larger optimized crystal.

Boundary conditions are applied to the lots so that the entire lot is contained within

the crystal. An example output �le is shown below for neutron intensities with and

without lots.

Output �le: This �le contains the original randomly generated crystal, optimized
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crystal, the pair correlation probabilities for �rst through fourth neighbors before and

after optimization, the MC energy before and after optimization, the number of A and

B atoms before and after optimization, �rst and second neighbor interaction energies

(AA, BB and AB), reservoir size, reservoir contents before and after optimization, grid

dimensions, grid step size, crystal dimensions, number of lots and lot size, intensities

(neutron or X-ray) with and without lots.

Optimized Crystal for 50000 steps and first neighbor interaction energies of: 1 3 0.5

second neighbor interaction energies of: 0 0 0

crystal dimensions are: 50 by 50

Reservoir size is: 500

The Starting Crystal is:

+ 0 + + + + + 0 + + 0 + 0 + + 0 + 0 + + 0 0 0 0 + + + + 0 + + 0 0 0 0 + 0 0 + + 0 + + 0 + + + 0 0 0
+ 0 0 + 0 + + 0 0 + + 0 + + 0 0 0 0 + + + 0 0 + 0 + + 0 + + 0 + 0 + 0 + 0 0 0 0 0 + + 0 0 + + 0 0 +
+ 0 0 + + + 0 + 0 + + 0 0 + + + 0 0 + + + + 0 + 0 + + + + 0 0 0 0 + + 0 + + 0 0 0 0 0 + + 0 + 0 0 0
+ + + 0 0 + 0 + + 0 + + + + + + 0 0 0 0 + + + + + + 0 + + + + 0 + + + + + + + 0 0 0 + + 0 0 0 0 + 0
0 0 0 + + 0 0 0 + 0 0 + + + 0 + + 0 0 + 0 0 + 0 0 0 0 0 0 0 + + + + 0 0 0 0 + + + + + 0 0 0 + + 0 0
0 + 0 + + + 0 0 0 + + 0 0 + 0 0 0 0 + 0 + + 0 + 0 + 0 + + 0 0 + + 0 + + + + 0 0 + + + 0 + + + 0 0 0
0 0 + 0 + 0 0 + + + 0 + + + + + 0 + 0 + 0 + 0 0 + + + 0 + + + 0 + 0 + + 0 + 0 0 + 0 + + + + 0 + + 0
+ + 0 + + + 0 + + 0 + + 0 0 0 + 0 + 0 0 + + 0 0 0 + 0 + 0 0 0 0 + 0 0 0 + 0 0 0 0 0 0 0 0 0 + + 0 +
0 + 0 + + 0 0 + 0 + 0 + + + 0 + 0 + 0 + 0 + + 0 + 0 0 + 0 0 + + 0 + + 0 0 0 + + + 0 0 0 0 0 + 0 0 0
0 0 0 0 + 0 0 0 + + + + + + + 0 + + + 0 0 0 + 0 + + + + 0 + 0 + 0 0 0 0 0 + 0 + 0 + 0 0 + 0 + + 0 0
0 0 0 + 0 0 0 0 0 0 0 + + + + 0 0 + + + + + 0 0 + + + + + 0 + 0 + + 0 + + 0 0 0 0 + + 0 + 0 + + 0 +
0 0 0 0 + + + + 0 0 + + 0 0 0 0 + 0 0 0 0 + + + + 0 0 0 0 + 0 + 0 0 + 0 0 0 0 + 0 0 0 + 0 0 + + + 0
+ + + + + + 0 + 0 0 + 0 0 + + 0 + 0 + + 0 0 0 0 + 0 0 + 0 0 + + 0 + 0 + 0 + + 0 + 0 0 + 0 + + + 0 0
0 0 + + + 0 + 0 + + 0 + + + + + 0 0 0 + 0 + + 0 0 + + 0 + + + 0 0 + + + 0 + + 0 0 + + + + 0 + + + 0
+ + 0 + 0 + 0 0 + 0 + 0 0 0 0 0 0 + 0 0 + 0 + 0 0 + 0 + + + 0 0 + 0 0 + 0 0 + + 0 + 0 0 0 0 0 + 0 0
0 + 0 0 + 0 0 + + + + 0 + 0 + + 0 0 0 + 0 + 0 0 0 0 + + + 0 0 + + + 0 + 0 0 + + 0 + 0 0 0 + 0 + 0 0
0 0 0 0 + + 0 0 0 0 + + 0 0 + 0 + + 0 + + + + + 0 + 0 0 0 + + + 0 0 0 + + + 0 0 + 0 + + 0 + + + 0 +
0 + + 0 + + + 0 0 + 0 0 0 + 0 + 0 + 0 0 0 + 0 + + + 0 0 + + 0 0 + + 0 0 0 0 + + 0 + 0 + + 0 0 + + 0
+ 0 0 0 + + 0 0 0 0 + 0 0 + + 0 0 + + + 0 0 + + 0 + 0 0 0 0 + + 0 0 0 + 0 + + 0 0 0 + + + 0 0 0 0 0
0 + 0 0 + + 0 + 0 + 0 + 0 + 0 0 + 0 0 + + + 0 0 + 0 + 0 + + 0 + + + + + + 0 + + + + + 0 + 0 + + + 0
0 + + 0 0 0 0 0 0 0 0 0 0 + + + 0 0 + + + + 0 0 + + + 0 0 + + + 0 0 + 0 0 0 + 0 + 0 0 0 0 + + + + +
0 0 + 0 0 + + 0 0 0 0 0 + + + 0 0 + + + + + 0 0 + 0 0 0 + 0 0 0 + 0 0 0 0 + + + 0 + + + 0 0 + 0 0 0
+ + 0 + + + + + 0 0 + + + 0 0 + 0 + + + 0 + 0 0 0 0 0 + 0 0 0 0 + 0 + 0 0 + + + 0 + 0 0 0 + 0 0 0 0
+ + 0 + 0 + + + + + 0 0 0 + 0 + + 0 + 0 0 0 + + 0 0 + + + 0 + + + + 0 0 + 0 0 + + 0 + + + 0 + + + +
0 + 0 + + + 0 0 0 + 0 + 0 0 + 0 0 0 + + 0 0 + + 0 + 0 0 + 0 0 + + 0 + + 0 0 + 0 0 0 + 0 0 0 0 + + +
0 0 + 0 + + + 0 + + 0 0 + + + + 0 0 0 + 0 0 0 0 + 0 + 0 0 + + 0 0 + + 0 0 0 + + + 0 + + + 0 0 + + +
+ 0 0 + 0 + + + 0 0 0 0 + + + 0 0 0 + + + 0 0 0 0 + 0 + 0 + + + + 0 + + + + 0 + + 0 + 0 + 0 0 + 0 +
0 0 + + + + 0 0 + 0 + + + 0 0 + 0 0 + 0 + + 0 0 + + + 0 0 0 0 + + 0 + + 0 + + 0 + + + + 0 + + + + 0
0 + + 0 + + + + + + + + + 0 0 0 + + 0 + 0 + + + 0 + + + + + + 0 0 + + + 0 + + 0 + 0 0 0 + + + 0 + +
0 0 0 + 0 + 0 + + 0 0 + 0 0 0 0 + + + 0 0 + 0 + + + + 0 + + 0 + + + + 0 + 0 + + + 0 + + + + 0 0 0 0
0 + 0 + + 0 0 + + 0 + + + + 0 + 0 + + 0 + + + 0 0 + + 0 + + + 0 + 0 0 + 0 0 0 + + + + + 0 + + 0 + +
+ 0 + 0 0 + + 0 + 0 + 0 + 0 + 0 + + 0 + 0 + + + 0 0 0 + + 0 + 0 + + + + + 0 0 + 0 + + 0 + + 0 + 0 0
+ + 0 0 + + 0 0 + + 0 0 0 0 0 + + + + 0 + 0 0 + + + 0 + + + 0 + + + + + 0 + + 0 + 0 + + + 0 0 + + 0
+ + + + 0 0 + + + + + + 0 0 0 0 + 0 0 + + + 0 + 0 + + 0 + + + 0 0 + 0 0 0 0 + 0 0 0 0 + + + 0 0 0 0
0 0 0 + 0 + 0 + 0 0 0 + + 0 + + + 0 0 + + + 0 0 0 0 + + + + + + 0 0 + + + 0 0 0 0 + 0 0 + + + 0 + 0
+ 0 0 + + 0 0 0 + + 0 + + 0 + + 0 0 0 + 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 + + + + + 0 + + 0 + 0 + 0 0 0
+ 0 + 0 0 0 0 + 0 0 + 0 0 0 + 0 + 0 + + + 0 + 0 + + 0 + 0 + 0 0 + + + 0 + + + + + 0 0 + + 0 0 0 0 +
0 + + + + + + + 0 0 + + 0 0 + + + + + 0 + + + + + + + + 0 + + + 0 + + 0 + 0 + 0 + 0 + 0 0 + + 0 + 0
+ 0 0 0 0 0 + + + + + + 0 + + 0 + 0 0 0 + 0 0 + 0 0 0 0 + 0 0 + + + + + 0 0 + 0 + 0 0 + + 0 0 + + +
0 0 + + + 0 + 0 0 + 0 + + + + + + 0 + + + 0 0 + + 0 + 0 + 0 + + 0 0 + 0 + + 0 0 + + + 0 + + 0 + + +
+ + 0 + 0 0 0 0 0 + + 0 + + 0 + 0 0 + + + + 0 + 0 0 + + 0 + 0 + 0 0 0 0 0 0 0 0 0 + 0 + 0 0 0 0 0 +
0 + 0 + + + 0 + + + 0 0 0 + + + 0 0 0 0 0 0 0 + 0 0 0 0 + + + + + + + 0 + + + + 0 + 0 0 0 + 0 0 0 0
0 + 0 + 0 0 0 0 0 + 0 + 0 0 0 0 0 + 0 0 + 0 0 + + + 0 0 + + + + + + 0 0 0 0 + 0 + + + 0 + + 0 0 + 0
0 + 0 + + + + 0 0 + 0 + 0 + + 0 + + 0 + + 0 + 0 0 0 0 0 + 0 0 + + + 0 + 0 + 0 + + 0 + + 0 0 + 0 + +
0 + 0 0 0 0 0 + + + 0 + 0 + + + + 0 0 + 0 0 0 0 0 + 0 + + 0 + + 0 + + + 0 + + 0 + + + 0 + 0 + + + 0
0 + + + 0 0 + + 0 + 0 + 0 + 0 + 0 0 + 0 0 + 0 + + + + 0 + + 0 + + + 0 + 0 0 + 0 + 0 0 0 + 0 + + 0 0
0 0 0 0 0 + + 0 0 0 0 0 + + + + + + 0 + 0 0 0 + + + + + + 0 0 + + 0 0 0 0 + + + 0 0 + + 0 + 0 + + +
0 + 0 + 0 + + + + 0 0 + + 0 0 0 + 0 0 + 0 0 + + 0 0 + 0 + 0 0 + + + + + + 0 0 0 0 + 0 0 0 0 + + 0 0
0 + 0 + + + + 0 0 0 0 + + 0 + 0 + + + + + 0 0 + + + + + 0 + 0 + 0 + 0 + + 0 0 0 + + 0 + 0 0 + 0 0 0
0 + 0 0 0 + + + + + + 0 0 0 0 + 0 + + + + 0 0 0 0 0 + + 0 0 0 0 0 0 + 0 + 0 0 0 0 + 0 + 0 + + + + 0

Initial crystal energy is: 9477

Number of A type atoms in unoptimized crystal is: 1220
The number of A atoms in starting reservoir is: 241
Number of B type atoms in unoptimized crystal is: 1280
The number of B atoms in starting reservoir is: 259

The pair correlation statistics of the starting crystal are:

The probability of an A type atom having an A type first neighbor is: 0.475487
The probability of an A type atom having a B type first neighbor is: 0.524513
The probability of a B type atom having an A type first neighbor is: 0.501862
The probability of a B type atom having a B type first neighbor is: 0.498138

The probability of an A type atom having an A type second neighbor is: 0.493315
The probability of an A type atom having a B type second neighbor is: 0.506685
The probability of a B type atom having an A type second neighbor is: 0.485357
The probability of a B type atom having a B type second neighbor is: 0.515708

The probability of an A type atom having an A type third neighbor is: 0.474391
The probability of an A type atom having a B type third neighbor is: 0.525609
The probability of a B type atom having an A type third neighbor is: 0.50278
The probability of a B type atom having a B type third neighbor is: 0.49722

The probability of an A type atom having an A type fourth neighbor is: 0.482864
The probability of an A type atom having a B type fourth neighbor is: 0.517136
The probability of a B type atom having an A type fourth neighbor is: 0.494862
The probability of a B type atom having a B type fourth neighbor is: 0.505138

The optimized Crystal is:

+ 0 + 0 0 + 0 0 0 + 0 + 0 0 0 + 0 0 0 + 0 + 0 0 0 + + + + 0 0 0 + 0 0 + 0 + + + 0 + + 0 + + 0 + 0 0
+ 0 0 + 0 0 + + 0 + 0 0 + + 0 0 + 0 + 0 0 0 + + 0 0 0 0 0 + 0 0 0 + 0 + 0 0 0 + 0 0 + 0 0 0 0 0 + +
0 + 0 0 0 + 0 0 0 + + 0 0 + + 0 0 + 0 + + 0 0 0 0 + + 0 + 0 + + 0 0 + 0 + + 0 0 + 0 0 + + 0 + 0 0 +
+ 0 + 0 0 + 0 0 + 0 + + + 0 0 + + 0 + 0 0 + + 0 + 0 0 + 0 + 0 0 + + + + + 0 + 0 0 + 0 0 0 0 + 0 0 0
0 0 0 + 0 + + 0 0 0 0 0 + + 0 + 0 0 0 + 0 0 0 0 0 + 0 0 0 0 + + + 0 + 0 + 0 + + 0 0 + 0 + 0 + + 0 +
+ + 0 + + 0 0 + 0 + + 0 0 + 0 0 0 0 + 0 + + + + 0 0 + + + 0 0 + 0 + 0 0 0 + 0 0 + 0 + 0 0 0 0 0 0 0
0 0 + 0 0 0 0 0 + + 0 + + 0 + + + + 0 0 0 0 0 0 + + 0 0 0 + 0 0 + 0 + + 0 + + 0 + 0 0 0 + 0 + 0 + 0
+ 0 0 0 + + 0 0 + 0 0 + 0 + 0 0 0 + + 0 0 + 0 0 0 + 0 + 0 0 + 0 + 0 0 0 + 0 + 0 0 + + 0 0 + + + 0 +
+ + 0 + 0 0 + 0 + + 0 + 0 + 0 0 0 + 0 + 0 + 0 0 0 + 0 0 + 0 0 + 0 0 + 0 0 + 0 + + 0 + + 0 + 0 + 0 0
0 0 0 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 0 0 0 0 + + + 0 + + 0 + 0 0 + 0 0 + 0 + 0 0 + 0 0 + 0 0 + 0 + 0
0 + + 0 + 0 + 0 + 0 0 0 0 + 0 + 0 + + 0 + 0 0 0 0 + + + + 0 + 0 + 0 0 + 0 0 + 0 0 + 0 + + 0 0 0 0 +
0 0 0 0 0 0 + 0 0 + + + 0 + 0 0 + 0 0 + 0 + + + + 0 0 0 0 + 0 0 0 + + 0 + 0 0 + 0 0 + 0 + 0 + 0 + 0
+ + + + + 0 + + 0 0 0 + 0 0 + 0 0 + 0 0 + 0 0 0 + 0 0 + 0 0 + + 0 0 0 + 0 + 0 0 + 0 0 + 0 + + 0 0 +
0 0 + 0 + 0 0 0 + + 0 0 + 0 0 0 0 + 0 + 0 0 + 0 0 + + 0 + 0 0 0 + + + 0 + 0 + 0 0 + 0 0 0 0 + 0 + 0
0 0 0 0 0 + + 0 + 0 + 0 0 + + + 0 0 + 0 + 0 + 0 0 + 0 + + 0 + 0 0 0 0 0 0 + 0 + 0 + 0 + + 0 0 + 0 +
0 + + + 0 0 0 0 + 0 + 0 + 0 0 + + + 0 + 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 + 0 0 0 + 0 + 0 0 0 + 0 + 0 +
+ 0 0 0 + + 0 0 0 0 0 + 0 + + 0 0 + 0 0 + 0 + + 0 + 0 + 0 + 0 + 0 0 0 + + + 0 + 0 + 0 0 0 0 + 0 + 0
0 + + 0 + + 0 + + + 0 0 + 0 0 + 0 + + 0 0 + 0 + 0 + 0 + 0 + 0 0 + + 0 + 0 0 0 + 0 + 0 + 0 0 + 0 + 0
+ 0 0 0 + + 0 0 0 0 + 0 0 + 0 + 0 0 + + 0 0 + 0 0 + 0 + 0 0 + 0 0 0 + 0 0 + + 0 0 + + + 0 0 + 0 0 +
0 + 0 + 0 0 0 + 0 + 0 + 0 + 0 + + + 0 0 0 + 0 + 0 0 + 0 + 0 0 0 + 0 + 0 + 0 0 + + 0 0 0 + 0 0 + 0 0
0 + 0 0 + + + 0 + 0 0 + 0 + 0 0 0 0 + + + + 0 0 + 0 + 0 + 0 + 0 0 0 0 0 0 + 0 0 + + + 0 0 + 0 0 + +
+ 0 + 0 0 0 + 0 0 + 0 0 + 0 + + + 0 0 0 0 0 + 0 + 0 0 0 0 + 0 + + 0 + + 0 + 0 0 0 0 0 + + 0 0 + 0 +
0 0 0 + + 0 0 + 0 + 0 + 0 + 0 0 0 + 0 0 + 0 0 0 + + + + 0 + 0 0 0 + 0 0 0 + + + 0 + 0 0 0 + 0 0 0 0
+ + 0 0 0 + 0 + 0 + 0 0 0 0 0 + + 0 0 + + 0 + 0 0 0 0 0 0 0 + + + 0 + 0 + 0 0 + + 0 + + + 0 + + 0 +
0 + 0 + + 0 0 0 0 + 0 + 0 + 0 0 0 + + 0 0 + 0 + 0 + 0 0 + 0 0 + + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 0 + 0
0 0 0 0 0 + + 0 0 0 0 + 0 + + 0 + 0 0 + 0 0 + 0 0 0 + 0 0 + + 0 0 + 0 0 0 0 + 0 + 0 0 + 0 0 + + 0 +
+ 0 + + 0 + 0 + 0 + + 0 0 + + 0 0 + 0 0 + 0 + + 0 + 0 + 0 + 0 + 0 0 0 + + 0 0 + 0 0 + 0 + 0 0 0 0 0
+ 0 0 + 0 0 0 0 + 0 + + + 0 0 + 0 0 + + 0 + 0 0 + 0 + 0 0 0 0 0 + + + 0 + 0 + 0 + 0 0 + 0 + + 0 + 0
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+ + 0 0 + + + 0 0 0 0 0 0 + 0 0 + 0 0 + + 0 + 0 0 + 0 + + 0 + 0 0 0 + + 0 0 + 0 + 0 + 0 0 0 0 0 + 0
0 0 + 0 0 0 0 + + 0 0 + 0 0 + 0 + + + 0 0 + 0 + 0 + + 0 0 0 0 + 0 0 + 0 + 0 0 + + 0 + + + + 0 + 0 0
0 + 0 + + 0 0 0 + + + 0 + + 0 + 0 0 + + 0 + + 0 0 0 + 0 + + 0 0 + 0 + + 0 0 + 0 + + + + 0 + 0 0 + +
+ 0 + 0 0 + 0 + 0 0 + 0 0 0 0 0 + 0 0 0 + 0 0 + + 0 + 0 0 0 + 0 + + 0 0 + 0 0 + 0 0 0 + 0 0 + 0 0 0
+ 0 0 + 0 + 0 0 + 0 + + + + 0 + + + + 0 0 + 0 0 0 0 0 + + + 0 0 + 0 + 0 + + 0 0 0 + 0 0 + 0 + 0 + 0
0 + + 0 0 0 + + + 0 0 0 0 + + 0 0 0 0 + 0 0 0 + 0 + 0 0 0 0 + 0 0 + 0 0 0 + + + + 0 + + + 0 0 0 + 0
0 0 0 + + 0 0 0 0 + 0 + 0 0 0 + + + 0 0 + + 0 0 + 0 0 + + 0 + + 0 + + + 0 0 0 0 0 + 0 0 + + + 0 + +
+ + 0 0 0 + 0 + 0 + 0 0 + 0 + 0 0 + + 0 0 + + + + 0 0 0 0 0 0 + 0 0 0 + 0 + 0 + 0 0 + 0 0 0 0 + 0 0
+ 0 + + 0 0 0 0 0 + + + 0 0 0 + 0 0 + 0 + 0 0 0 0 + 0 + 0 + 0 0 + + 0 0 + + 0 0 + 0 0 0 + + 0 + 0 +
+ 0 0 + + + 0 + 0 0 0 0 + 0 + 0 + 0 + 0 0 + + 0 + + 0 + 0 0 + 0 0 0 + 0 + 0 + 0 0 + + 0 0 + 0 0 + 0
0 + 0 0 0 + 0 0 + 0 + 0 0 + 0 0 + 0 0 + 0 0 0 + 0 0 + 0 + 0 0 + + 0 + + 0 0 + + 0 0 0 + 0 0 + 0 0 +
+ 0 + + 0 + 0 + 0 + 0 + 0 0 + + 0 + + 0 + 0 0 + + 0 0 0 + 0 + 0 + 0 + 0 + + 0 0 + + 0 0 + 0 + + 0 +
0 + 0 0 + 0 0 0 0 + 0 0 + 0 0 0 0 0 0 0 + + 0 0 0 + 0 + 0 + 0 + 0 + 0 + 0 0 + 0 0 0 0 + 0 + 0 + 0 0
+ 0 + + 0 + 0 + 0 0 0 + 0 + + + 0 + + + 0 + 0 + 0 0 + 0 0 0 + 0 0 + 0 0 + 0 0 + 0 + 0 + 0 0 0 0 + +
0 0 0 0 + 0 0 0 + + 0 0 + 0 0 0 + 0 0 0 0 0 + 0 + 0 0 + 0 + 0 + + + 0 + 0 0 0 + 0 + + 0 + 0 + 0 0 0
0 + 0 + 0 + + 0 0 0 + 0 0 + + 0 0 + 0 + + 0 0 0 0 + + 0 + 0 0 0 + 0 + 0 + + 0 + 0 0 + 0 0 + 0 0 + +
0 0 0 0 + 0 0 + + + 0 + 0 0 0 + + 0 0 0 0 0 + + 0 0 + 0 + 0 + 0 0 0 + 0 0 0 0 + 0 0 0 + 0 0 + 0 + +
+ 0 + 0 + 0 + 0 0 + 0 + + + 0 0 0 + + 0 + 0 0 0 + 0 0 0 + 0 0 + + 0 0 + 0 + + 0 + 0 + 0 + 0 + + 0 0
0 0 + 0 + 0 0 + 0 0 + 0 0 + + + 0 0 + + 0 + 0 + 0 + + + 0 + 0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 + 0 + + +
+ 0 + 0 0 + 0 + + 0 0 + 0 0 0 0 + 0 0 + 0 0 + + 0 0 0 0 + 0 0 0 + 0 + 0 + 0 0 0 0 + 0 + 0 0 + 0 0 0
0 + 0 + 0 + + 0 0 + 0 + 0 + + 0 + 0 + 0 + 0 0 0 + + 0 + 0 + 0 + 0 + 0 + + 0 + + + 0 0 + + 0 + 0 + 0
0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + + 0 + 0 + 0 0 0 + + 0 + + 0 + 0 + 0 0 + 0 0 0 + 0 0 0 0 + 0 + +

Final crystal energy is: 6936

Number of A type atoms in ptimized crystal is: 1444
The number of A atoms in the reservoir after Monte Carlo optimization is: 17
Number of B type atoms in optimized crystal is: 1056
The number of B atoms in the reservoir after Monte Carlo optimization is: 483

The optimized Crystal pair correlations Statistics are:
The probability of an A type atom having an A type first neighbor is: 0.472471
The probability of an A type atom having a B type first neighbor is: 0.527529
The probability of a B type atom having an A type first neighbor is: 0.720645
The probability of a B type atom having a B type first neighbor is: 0.279355

The probability of an A type atom having an A type second neighbor is: 0.65777
The probability of an A type atom having a B type second neighbor is: 0.34223
The probability of a B type atom having an A type second neighbor is: 0.46879
The probability of a B type atom having a B type second neighbor is: 0.533784

The probability of an A type atom having an A type third neighbor is: 0.565917
The probability of an A type atom having a B type third neighbor is: 0.434083
The probability of a B type atom having an A type third neighbor is: 0.59232
The probability of a B type atom having a B type third neighbor is: 0.40768

The probability of an A type atom having an A type fourth neighbor is: 0.566769
The probability of an A type atom having a B type fourth neighbor is: 0.433231
The probability of a B type atom having an A type fourth neighbor is: 0.591215
The probability of a B type atom having a B type fourth neighbor is: 0.408785
The scattering length of A is 5.2 and the scattering length of B is 12.7.

The neutron intensities of your crystal calculated without lots
on a square grid of size 10 with step size 0.2 and origin (0,0) are:
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12677.5
3443.86
1510.54
3482.6
23999.8
12677.5
3443.86

The neutron intensities of your crystal calculated with 5000 lots of size 10 are:

660156
8.20676
385.543
385.543
8.20676
660156
8.20676
385.543
385.543
8.20676
618.75
115.635
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3545.69
156.669
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618.75
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3797.25
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3049.58
1121.87
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156.669
3545.69
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660156
8.20676
385.543
385.543
8.20676
660156
8.20676
385.543
385.543
8.20676
618.75
115.635
1659
3545.69
156.669
618.75
115.635
1659
3545.69
156.669
618.75
1910.56
1121.87
3049.58
3797.25
618.75
1910.56
1121.87
3049.58
3797.25
618.75
3797.25
3049.58
1121.87
1910.56
618.75
3797.25
3049.58
1121.87
1910.56
618.75
156.669
3545.69
1659
115.635
618.75
156.669
3545.69
1659
115.635

A. 1.2 C++ code

/∗Created By: Tara Michels−Clark

∗ July 25, 2011

∗ Name: 2−DCode.cpp

∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Purpose of the Program:

Randomly places atoms of type A and B to origin of unit cells of crystal of user defined size .

The energy of the crystal is then calculated by summing over the user defined for first and
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second neighbor interaction energies. A randomly chosen unit cell 's atom is replaced by an atom

of in the reservoir and the new energy is calculated. If the change in energy is less than or equal

to 0 then then change is accepted. If the change in energy is greater than 0 then the Bolztman

probability P(E)=exp(−deltaE)(T=1/k∗Beta)is calculated and a random number generated between 0 and 1.

If this Boltzman probability is less than the random the change is accepted otherwise it is not.

This process is repeated for a user defined number of MC steps and the final "optimized" A and B

crystal is printed according to unit cell number in a and b. The neutron intensities are calculated

on a 2−D hexagonal grid , where the step size and grid size are defined by the user. Lots can also

be calculated , lot size and number of lots are defined by the user.

∗ INPUT: Number of Monte Carlo Steps; Crystal Size (2−D); first and second interaction energies,

neutron scattering lengths of atoms A and B, lot size , number of lots , grid size , grid step size .

∗ OUTPUT: MC Crystal energy before and after MC cycles ; crystal with atom types A and B; first

through fourth neighbor conditional probabilities before and after MC, Neutron intensities before

and after lot calculations

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <iostream>

#include<cstdlib>

#include<time.h>

#include <limits>

#include <fstream> //for I/O

#include <string>

#include <vector> //Vector class

#include <cstdlib> //to get Vector from c++ standard Library

#include<cmath> //for the Boltzman probability

#include<complex> //complex number for functions

#define _USE_MATH_DEFINES //to use transendental pi without having to calculate it

using namespace std ;

// matrix vector multiply using vectors from the STL

typedef vector<int> Vec; //define vector type

typedef vector<Vec> Mat; //define Matrix (vector of vectors)

typedef vector<double>V;

typedef vector <complex<double>> CD;

typedef vector <CD> CMat;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: DisplayCrystal()

∗ Input: Matrix

∗ output: void

∗ Description: Displays the Crystal one row at a time 0 for atom of type A and 1 for atom of

∗ type B.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void DisplayCrystal (Mat & in )

{

unsigned int i , j ,k;

cout << "Matrix: " << endl ;

for( i = 0; i < in . size () ; i++ )

{

for( j = 0; j < in [ i ] . size () ; j++ )

{

i f ( in [ i ] [ j]==0){

cout<< "+" << " ";

}else{

cout<< "0" <<" ";

}

}
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cout<<endl ;

//shifts view to the type of hexagonal crystal the program makes a,b angle is 60 degrees

for(k=0;k<i+1;k++){

cout<<" ";

}

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: RandomInput()

∗ Input: Matrix, unsigned int , unsigned int

∗ output: void

∗ Description: Generates random atoms of type A (0) and type B (1) in 2−D crystal (array)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

Mat RandomInput( Mat & a, int n, int m )

{

int i , j ;

int mmin = 0;

int mmax = 1;

// Allocate space for the vectors

Vec row1(n);

for( i = 0; i <m; i++)

{

for( j = 0; j <n; j++)

row1[ j ] = mmin + (rand() & mmax);

a.push_back(row1);

}

return(a);

}

void Count( Mat & a, int n, int m, int &A, int &B )

{

int i , j ;

Vec row1(n);

for( i = 0; i <m; i++)

{

for( j = 0; j <n; j++){

i f (a[ i ] [ j]==0){

B++;

}else{

A++;

}

}

}

}

void ReservoirCount(Vec & r , int & Ares , int & Bres){

unsigned int i ;

for( i=0; i<r . size () ; i++){

i f (r [ i]==0){

Bres++;

}else{

Ares++;

}

}

}
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void ReadOptimizedCrystalFile( ifstream &in , Mat &MC)

{

i f ( in .good() )

{

string temp;

in >> temp;

getline (in ,temp);

getline (in ,temp);

in >> temp >> temp >> temp;

int a,b; //crystal dimensions (axb)

in>> a >> temp >> b;

getline (in ,temp);

getline (in ,temp);

int i , j ;

MC. clear () ;

Vec row1(b);

for( i = 0; i < a; i++)

{

for( j = 0; j <b; j++){

in>>temp;

i f (temp=="+")

row1[ j ] = 0;

else

row1[ j ]=1;

}

MC.push_back(row1);

}

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: Reservoir()

∗ Input: Matrix, int

∗ output: Vec

∗ Description: Generates a vector of user defined size of random 0s and 1s for B and A

∗ these are kept in order to swap with atoms in the crystal

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

Vec Reservoir(int s)

{

int row1=0;

Vec r ;

int i ;

int nmin=0;

int nmax=1;

for ( i=0;i<s ; i++){

row1=nmin+(rand() & nmax);

r .push_back(row1);

}

return(r ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: BoundaryConditions()

∗ Input: Matrix, int , int , Mat, int , int
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∗ output: int

∗ Description: If specified neighbor is outside of crystal then it will shift to the relative

position inside the crystal . This is a general function which will work for any specified

neighbors. Returns the value of the neighbor at the new index.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int BoundaryConditions( int f , int _g, Mat a, int n, int m){

int g=_g;

i f ( f<0){

f=m+f ;

}

i f ( f>=m){

f=f−m;

}

i f ( f>=0&& f<m){

f=f ;

}

i f (g<0){

g=n+g;

}

i f (g>=n){

g=g−n;

}

i f (g>=0&& g<n){

g=g;

}

return(a[ f ] [ g ] ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: CalculateCrystalEnergy()

∗ Input: Matrix, Mat, int , int , double, double double, double, double, double

∗ output: double

∗ Description: Takes the crystal and crystal dimensions and all 6 interaction energies

for the first and second neighbors and calculates the crystal energy. This is returned

as a double.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double CalculateCrystalEnergy(Mat &a, int n, int m, double AA1,double BB1, double AB1,

double AA2,double BB2,double AB2){

double IE=0; //initialize interaction energy

double CE=0;//initialize crystal energy

int p=0;//First and second neighbor loop iterator

//relative positions of the first neighbors

int x[6][2]={{1,−1},{0,1},{1,0},{0,−1},{−1,0},{−1,1}};

//relative positions of the second neighbors

int y[6][2]={{1,1},{−1,2},{−2,1},{−1,−1},{1,−2},{2,−1}};

//loops through crystal and calculates interaction energies for all first and second neighbors

for( int i = 0; i < m; i++ )

{

for( int j = 0; j < n; j++ )

{

for(p=0;p<6;p++)

{

i f (a[ i ] [ j]==1 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

IE=AA1;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

IE=BB1;
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} i f (a[ i ] [ j]==1&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

IE=AB1;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

IE=AB1;

}CE+=IE;

i f (a[ i ] [ j]==1 && BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

IE=AA2;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

IE=BB2;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

IE=AB2;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

IE=AB2;

//Crystal energy is the sum of all first and second neighbor energies

}

CE+=IE;

}

}

}

return(CE/2);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: MakeChangei()

∗ Input: int , int

∗ output: int

∗ Description: randomly generates a new ith index to be selected to swap in the crystal

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int MakeChangei( int m){

unsigned int i_index;

i_index=rand()%m;

return(i_index);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: MakeChangej()

∗ Input: int , int

∗ output: int

∗ Description: randomly generates a new jth index to be selected to swap in the crystal

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int MakeChangej(int n){

unsigned int j_index;

j_index=rand()%n;

return(j_index);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: MakeChangeReservoir()

∗ Input: int

∗ output: int

∗ Description: randomly generates a new kth index in the reservoir to be selected for swap.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int MakeChangeReservoir(int s){

unsigned int k;

k=rand()%s ;

return(k);
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: swap()

∗ Input: int , int

∗ output: void

∗ Description: Makes the swap with atom at position [ i ] [ j ] in crystal with atom in reservoir

at position [k]. ∗note: positions are randomly chosen

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void swap(int &i_index , int & j_index, int &k, Mat &a, Vec &r)

{

int temp =a[ i_index ] [ j_index ] ;

a [ i_index ] [ j_index]=r [k ] ;

r [k]=temp;

Mat changed_a=a;

}

double LocalEnergy(Mat & a, int & i , int & j , int n, int m, double AA1,double BB1,

double AB1,double AA2,double BB2, double AB2 ){

double IE=0; //initialize interaction energy

double CE=0;//initialize local energy

int p=0;//First and second neighbor loop iterator

//relative positions of the first neighbors

int x[6][2]={{1,−1},{0,1},{1,0},{0,−1},{−1,0},{−1,1}};

//relative positions of the second neighbors

int y[6][2]={{1,1},{−1,2},{−2,1},{−1,−1},{1,−2},{2,−1}};

for(p=0;p<6;p++)

{

i f (a[ i ] [ j]==1 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

IE=AA1;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

IE=BB1;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

IE=AB1;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

IE=AB1;

}CE+=IE;

i f (a[ i ] [ j]==1 && BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

IE=AA2;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

IE=BB2;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

IE=AB2;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+x[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

IE=AB2;

}

CE+=IE; //Crystal energy is the sum of all first and second neighbor energies

}
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return(CE);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: MonteCarlo()

∗ Input: Mat, Vec, int , int , unsigned int , double, double, double, double, double, double

∗ output: double

∗ Description: Returns the calculated crystal energy for each MC step.

Calls MakeChangei(), MakeChangej, MakeChangeReservoir(), swap() and

CalculateCrystalEnergy().

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void MonteCarlo(Mat &a, Vec &r , int n, int m, unsigned int s , double & E, double AA1, double BB1,

double AB1,double AA2,double BB2,double AB2)

{

int ic , jc , rc ; //for random reservoir and Mat element swap

ic=MakeChangei(m);

jc=MakeChangej(n);

rc=MakeChangeReservoir(s ) ;

//Calculates local energy of A[ i ] [ j ] before change

double LE=LocalEnergy(a, ic , jc ,n,m,AA1,BB1,AB1,AA2,BB2,AB2);

swap( ic , jc , rc ,a, r ) ;

//Calculates local energy of A[ i ] [ j ] after change

double LEC=LocalEnergy(a, ic , jc ,n,m,AA1,BB1,AB1,AA2,BB2,AB2);

double DE=LEC−LE;

double prob=exp(−DE);

double Random=((double) rand() / (RAND_MAX+1)) ; //for random number between (0,1);

i f (DE<=0||prob>Random){ //keeps swaped atoms if delta is favorable

a=a;

r=r ;

E=E−LE+LEC;

}else{

swap( ic , jc , rc ,a, r ) ; //swaps back to original crystal and reservoir

}

}

void CountNeighbors(Mat &a, int &n, int &m, double &AA1_neigh, double &BB1_neigh, double &AB1_neigh,

double &BA1_neigh, double & AA2_neigh, double & BB2_neigh, double &AB2_neigh, double &BA2_neigh,

double &AA3_neigh, double &BB3_neigh, double &AB3_neigh, double &BA3_neigh, double &AA4_neigh,

double &BB4_neigh, double &AB4_neigh, double &BA4_neigh)

{

//relative positions of the first neighbors

int w[6][2]={{1,−1},{0,1},{1,0},{0,−1},{−1,0},{−1,1}};

//relative positions of the second neighbors

int x[6][2]={{1,1},{−1,2},{−2,1},{−1,−1},{1,−2},{2,−1}};

//relative positions of the third neighbors

int y[6][2]={{−2,0},{2,0},{0,−2},{−2,2},{2,−2},{0,2}};

//relative positions of the fourth neighbors

int z[12][2]={{−3,1},{2,−1},{−3,2},{−2,3},{−1,3},{1,2},{2,1},{3,−1},{3,−3},

{2,−3},{1,−3},{−1,−2}};

int p=0;

int k=0;

for( int i = 0; i < m; i++ )

{

for( int j = 0; j < n; j++ )

{
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i f ( i<j ){

for(p=0;p<6;p++)

{

i f (a[ i ] [ j]==1 && BoundaryConditions( i+w[p] [0 ] , j+w[p] [1 ] ,a ,n,m)==1){

AA1_neigh++;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+w[p] [0 ] , j+w[p] [1 ] ,a ,n,m)==0){

BB1_neigh++;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+w[p] [0 ] , j+w[p] [1 ] ,a ,n,m)==0){

AB1_neigh++;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+w[p] [0 ] , j+w[p] [1 ] ,a ,n,m)==1){

BA1_neigh++;

}

i f (a[ i ] [ j]==1 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

AA2_neigh++;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

BB2_neigh++;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==0){

AB2_neigh++;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+x[p] [0 ] , j+x[p] [1 ] ,a ,n,m)==1){

BA2_neigh++;

}

i f (a[ i ] [ j]==1 && BoundaryConditions( i+y[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

AA3_neigh++;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+y[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

BB3_neigh++;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+y[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==0){

AB3_neigh++;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+y[p] [0 ] , j+y[p] [1 ] ,a ,n,m)==1){

BA3_neigh++;

}

}

for(k=0;k<12;k++){

i f (a[ i ] [ j]==1 && BoundaryConditions( i+z [k] [0 ] , j+z [k] [1 ] ,a ,n,m)==1){

AA4_neigh++;

} i f (a[ i ] [ j]==0 && BoundaryConditions( i+z [k] [0 ] , j+z [k] [1 ] ,a ,n,m)==0){

BB4_neigh++;

} i f (a[ i ] [ j]==1&&BoundaryConditions( i+z [k] [0 ] , j+z [k] [1 ] ,a ,n,m)==0){

AB4_neigh++;

} i f (a[ i ] [ j]==0&&BoundaryConditions( i+z [k] [0 ] , j+z [k] [1 ] ,a ,n,m)==1){

BA4_neigh++;

}

}

}

}

}
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}

void CalcProb(double &aa1, double &bb1, double & ab1, double & ba1, double &aa2, double &bb2,

double &ab2, double &ba2, double &aa3, double &bb3, double &ab3, double &ba3, double &aa4,

double &bb4, double & ab4, double & ba4)

{

fstream res ;

//output fi le

res .open("c:\\temp\\CrystalReport . txt" , ios : : out | ios : :app );

//assuming A atom total number of first neighbors

double Tot_A1_neigh=aa1+ba1;

//assuming B atom total number of first neighbors

double Tot_B1_neigh=bb1+ab1;

double Tot_A2_neigh=aa2+ba2;

double Tot_B2_neigh=bb2+ba2;

double Tot_A3_neigh=aa3+ba3;

double Tot_B3_neigh=bb3+ab3;

double Tot_A4_neigh=aa4+ba4;

double Tot_B4_neigh=bb4+ab4;

//Calculates probabilities for first neighbors

double prob_A1_A=(aa1/Tot_A1_neigh);

double prob_A1_B=(ab1/Tot_B1_neigh);

double prob_B1_A=(ba1/Tot_A1_neigh);

double prob_B1_B=(bb1/Tot_B1_neigh);

//calculates probabilities for second neighbors

double prob_A2_A=(aa2/Tot_A2_neigh);

double prob_A2_B=(ab2/Tot_B2_neigh);

double prob_B2_A=(ba2/Tot_A2_neigh);

double prob_B2_B=(bb2/Tot_B2_neigh);

//calculates probabilities for third neighbors

double prob_A3_A=(aa3/Tot_A3_neigh);

double prob_A3_B=(ab3/Tot_B3_neigh);

double prob_B3_A=(ba3/Tot_A3_neigh);

double prob_B3_B=(bb3/Tot_B3_neigh);

//calculates probabilities for fourth neighbors

double prob_A4_A=(aa4/Tot_A4_neigh);

double prob_A4_B=(ab4/Tot_B4_neigh);

double prob_B4_A=(ba4/Tot_A4_neigh);

double prob_B4_B=(bb4/Tot_B4_neigh);

res<<"The probability of an A type atom having an A type f i r s t neighbor is : "

<<prob_A1_A<<endl ;

res<<"The probability of an A type atom having a B type f i r s t neighbor is : "

<<prob_B1_A<<endl ;

res<<"The probability of a B type atom having an A type f i r s t neighbor is : "

<<prob_A1_B<<endl ;

res<<"The probability of a B type atom having a B type f i r s t neighbor is : "

<<prob_B1_B<<endl ;

res<<endl ;

res<<"The probability of an A type atom having an A type second neighbor is : "

<<prob_A2_A<<endl ;

res<<"The probability of an A type atom having a B type second neighbor is : "

<<prob_B2_A<<endl ;

res<<"The probability of a B type atom having an A type second neighbor is : "

<<prob_A2_B<<endl ;
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res<<"The probability of a B type atom having a B type second neighbor is : "

<<prob_B2_B<<endl ;

res<<endl ;

res<<"The probability of an A type atom having an A type third neighbor is : "

<<prob_A3_A<<endl ;

res<<"The probability of an A type atom having a B type third neighbor is : "

<<prob_B3_A<<endl ;

res<<"The probability of a B type atom having an A type third neighbor is : "

<<prob_A3_B<<endl ;

res<<"The probability of a B type atom having a B type third neighbor is : "

<<prob_B3_B<<endl ;

res<<endl ;

res<<"The probability of an A type atom having an A type fourth neighbor is : "

<<prob_A4_A<<endl ;

res<<"The probability of an A type atom having a B type fourth neighbor is : "

<<prob_B4_A<<endl ;

res<<"The probability of a B type atom having an A type fourth neighbor is : "

<<prob_A4_B<<endl ;

res<<"The probability of a B type atom having a B type fourth neighbor is : "

<<prob_B4_B<<endl ;

res . close () ;

}

complex<double> Structure_Factor( Mat &MC, double a1, double b1, int x, int y, double x_0,

double y_0, double s , int h, int k )

{

//define i as square root of −1

complex<double>complex_i = sqrt(complex<double>(−1));

complex<double> f ;

complex<double> e;

complex<double> SF;

CD row(y);

for(int i=0; i<x; i++){

for (int j=0;j<y; j++){

e=2∗M_PI∗((x_0+h∗s)∗ i+(y_0+k∗s)∗ j ) ;

i f (MC[ i ] [ j]==1)

{

f=a1;

}

else if (MC[ i ] [ j]==0)

{

f=b1;

}

SF+=(f∗exp(e∗complex_i)) ;

}

}

return(SF);

}

complex<double> XRay_Structure_Factor( Mat &MC, double a, double b, int x, int y, double x_0,

double y_0, double s , int h, int k, scatFac &atom1, scatFac &atom2, double Ang)

{

complex<double>complex_i = sqrt(complex<double>(−1)); //define i as square root of −1

complex<double> f ;

complex<double> e;

complex<double> SF;

CD row(y);

for(int i=0; i<x; i++){

for (int j=0;j<y; j++){

e=2∗M_PI∗((x_0+h∗s)∗ i+(y_0+k∗s)∗ j ) ;
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i f (MC[ i ] [ j]==1)

{

f=atom1.calcSF(Ang);

}

else if (MC[ i ] [ j]==0)

{

f= atom2.calcSF(Ang);

}

SF+=(f∗exp(e∗complex_i)) ;

}

}

return(SF);

}

double Calc_rezAng(double x_0, double y_0, double s , int h, int k){

double A_Cell=6.18639;

double B_Cell=6.18639;

double C_Cell=3.83388;

double V=A_Cell∗B_Cell∗C_Cell∗cos(30.0);

double p=x_0+h∗s ;

double q=y_0∗k∗s ;

double u=p∗(B_Cell∗C_Cell∗sin(90.0))/V∗cos(30.0)+q∗(A_Cell∗B_Cell∗sin(90.0))/V∗cos(90.0);

double v=p∗(B_Cell∗C_Cell∗sin(90.0))/V∗cos(60.0)+q∗(A_Cell∗B_Cell∗sin(90.0))/V∗cos (0.0);

double rezAng=sqrt(pow(u,2)+pow(v,2))/2;

return(rezAng);

}

void Lot(Mat &MC, Mat &Lots , unsigned int size , int x, int y, unsigned int &i_index ,

unsigned int &j_index){

i_index=rand()%x;

j_index=rand()%y;

unsigned int i , j ;

Vec row( size ) ;

for( i=0;i<size ; i++){

for( j=0;j<size ; j++){

Lots [ i ] [ j]=BoundaryConditions( i+i_index , j+j_index,MC, x, y);

}

}

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: Main()

∗ Input:

∗ output: 0

∗ Description: Calls RandomInput(), Reservoir(), DisplayCrystal() and MonteCarlo().

Writes optimized crystal after specified number of MC steps to fi le . prompts user

for input values of crystal size , reservoir size , interaction energies and number of

MC steps.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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int main(){

srand ( time(NULL) ); //seeds random number generator to change every time program is run

fstream res ;

Mat a,CM;

Vec r ;

int m,n;

int A=0;//for counting number of A type atoms and B type atoms

int B=0;

int Ares=0;

int Bres=0;

unsigned int MC, i , j ,k;

unsigned int s ; //user defined number of Monte Carlo cycles to calculate

double AA1_neigh=0;

double AA2_neigh=0;

double AA3_neigh=0;

double AA4_neigh=0;

double BB1_neigh=0;

double BB2_neigh=0;

double BB3_neigh=0;

double BB4_neigh=0;

double AB1_neigh=0;

double AB2_neigh=0;

double AB3_neigh=0;

double AB4_neigh=0;

double BA1_neigh=0;

double BA2_neigh=0;

double BA3_neigh=0;

double BA4_neigh=0;

cout << "Enter the x dimension of your crystal :" << endl ;

cin >> m;

cout<<"Enter the y dimension of your crystal :"<<endl ;

cin>>n;

cout<<"How many elements would you like in your reservoir"<<endl ;

cin>>s ;

cout<<"How many Monte Carlo steps would you like to run?"<<endl ;

cin>>MC;

double AA1,AA2,AB1,AB2,BB1,BB2;

cout<<"please enter interaction energies for for f i r s t neighbor

interactions : AA, BB, AB respectively"<<endl ;

cin>>AA1;

cin>>BB1;

cin>>AB1;

cout<<"please enter interaction energies for the second neighbor

interactions : AA, BB, AB respectively"<<endl ;

cin>>AA2;

cin>>BB2;

cin>>AB2;

CM=RandomInput( a, n, m );

Count(CM, n, m, A, B);

r=Reservoir(s ) ;

ReservoirCount(r ,Ares ,Bres) ;

V result (MC);

res .open("c:\\temp\\CrystalReport . txt" , ios : : out ) ; //output fi le
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i f ( ! res .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

res<<"Optimized Crystal for "<<MC<< " steps and f i r s t neighbor

interaction energies of : "<<AA1<<" "<<BB1<<" "<<AB1<<endl ;

res<<endl ;

res<<"second neighbor interaction energies of : "

<<AA2<<" "<<BB2<<" "<<AB2<<endl ;

res<<endl ;

res<<"crystal dimensions are : "<< m<<" by "<< n <<endl ;

res<<endl ;

res<<"Reservoir size is : "<<s<<endl ;

res<<endl ;

res<<"The Starting Crystal is : "<<endl ;

res<<endl ;

for( i = 0; i < CM. size () ; i++ )

{

for( j = 0; j < CM[ i ] . size () ; j++ )

{

i f (CM[ i ] [ j]==0){

res<< "+" << " ";

}else{

res<< "0" <<" ";

}

}

res<<endl ;

//shifts view to the type of hexagonal crystal the program makes a,b angle is 60 degrees

for(k=0;k<i+1;k++){

res<<" ";

}

}

res<<endl ;

double E=CalculateCrystalEnergy(a,n,m,AA1,BB1,AB1,AA2,BB2,AB2);

res<<"Init ial crystal energy is : "<<E<<endl ;

res<<endl ;

res<<"Number of A type atoms in unoptimized crystal is : "

<<A<<

res<<endl ;

res<<"The number of A atoms in starting reservoir is : "

<< A

res<<endl ;

res<<"Number of B type atoms in unoptimized crystal is : "

<<B

res<<"The number of B atoms in starting reservoir is : "

<< B

res<<endl ;

res<<endl ;

res<<" The pair correlation statistics of the starting crystal are : "

<<endl ;

res<<endl ;

res . close () ;

CountNeighbors(CM, n, m, AA1_neigh, BB1_neigh, AB1_neigh, BA1_neigh, AA2_neigh, BB2_neigh,

AB2_neigh, BA2_neigh, AA3_neigh, BB3_neigh, AB3_neigh, BA3_neigh, AA4_neigh, BB4_neigh,

AB4_neigh, BA4_neigh );
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CalcProb(AA1_neigh, BB1_neigh, AB1_neigh,BA1_neigh,AA2_neigh, BB2_neigh, AB2_neigh,

BA2_neigh, AA3_neigh, BB3_neigh, AB3_neigh, BA3_neigh, AA4_neigh, BB4_neigh, AB4_neigh,

BA4_neigh );

res .open("c:\\temp\\CrystalReport . txt" , ios : : out | ios : :app ); //output fi le

i f ( ! res .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

for( i=0;i<MC; i++){

MonteCarlo(CM, r ,n,m, s ,E,AA1,BB1,AB1,AA2,BB2,AB2);

cout<<"Crystal Energies are :"<< E<<endl ;

}

int X=0;

int Y=0;

int Xres=0;

int Yres=0;

Count(CM, n, m, X, Y);

ReservoirCount(r ,Xres ,Yres) ;

res<<endl ;

res<<"The optimized Crystal is : "<<endl ;

res<<endl ;

for( i = 0; i < CM. size () ; i++ )

{

for( j = 0; j < CM[ i ] . size () ; j++ )

{

i f (CM[ i ] [ j]==0){

res<< "+" << " ";

}else{

res<< "0" <<" ";

}

}

res<<endl ;

//shifts view to the type of hexagonal crystal the program makes a,b angle is 60 degrees

for(k=0;k<i+1;k++){

res<<" ";

}

}

res<<endl ;

res<<"Final crystal energy is : "<<E<<endl ;

res<<endl ;

res<<"Number of A type atoms in optimized crystal is : "

<<X<<

res<<"The number of A atoms in the reservoir after Monte Carlo optimization is : "

<< Xres<<endl ;

res<<"Number of B type atoms in optimized crystal is : "

<<Y<<

res<<"The number of B atoms in the reservoir after Monte Carlo

optimization is : "<< Yres<<endl ;

res<<endl ;

res . close () ;

fstream f ;

//output fi le
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f .open("c:\\temp\\CrystalContents . txt" , ios : : out ) ;

i f ( ! f .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

f<<"Optimized Crystal for "<<MC<< " steps and f i r s t neighbor interaction

energies of : "<<AA1<<" "<<BB1<<" "<<AB1<<endl ;

f<<"second neighbor interaction energies of : "

<<AA2<<" "<<BB2<<" "<<AB2<<endl ;

f<<"crystal dimensions are : "<< m<<" by "<< n <<endl ;

f<<"The Optimized Crystal is : "<<endl ;

for( i = 0; i < CM. size () ; i++ )

{

for( j = 0; j < CM[ i ] . size () ; j++ )

{

i f (CM[ i ] [ j]==0){

f<< "+" << " ";

}else{

f<< "0" <<" ";

}

}

f<<endl ;

//shifts view to the type of hexagonal crystal the program makes a,b angle is 60 degrees

for(k=0;k<i+1;k++){

f<<" ";

}

}

f<<endl ;

f . close () ;

ifstream in("c://temp//CrystalContents . txt");

ReadOptimizedCrystalFile(in ,CM);

int y=0;

int x=CM. size () ;

i f (CM.empty())

y=0;

else

y=CM[0 ] . size () ;

double aa1_neigh=0;

double aa2_neigh=0;

double aa3_neigh=0;

double aa4_neigh=0;

double bb1_neigh=0;

double bb2_neigh=0;

double bb3_neigh=0;

double bb4_neigh=0;

double ab1_neigh=0;

double ab2_neigh=0;

double ab3_neigh=0;

double ab4_neigh=0;

double ba1_neigh=0;

double ba2_neigh=0;

double ba3_neigh=0;

double ba4_neigh=0;

//output fi le
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res .open("c:\\temp\\CrystalReport . txt" , ios : : out | ios : :app );

i f ( ! res .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

res<<"The optimized Crystal pair correlations Statistics are : "<<endl ;

res . close () ;

CountNeighbors(CM, y, x, aa1_neigh, bb1_neigh, ab1_neigh, ba1_neigh,

aa2_neigh, bb2_neigh, ab2_neigh, ba2_neigh, aa3_neigh, bb3_neigh,

ab3_neigh, ba3_neigh, aa4_neigh, bb4_neigh,ab4_neigh, ba4_neigh );

CalcProb(aa1_neigh, bb1_neigh, ab1_neigh,ba1_neigh,aa2_neigh, bb2_neigh,

ab2_neigh, ba2_neigh, aa3_neigh, bb3_neigh, ab3_neigh, ba3_neigh, aa4_neigh,

bb4_neigh, ab4_neigh, ba4_neigh );

res<<endl ;

res . close () ;

//output fi le

res .open("c:\\temp\\CrystalReport . txt" , ios : : out | ios : :app );

i f ( ! res .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

Mat Lots ;

complex<double> F, I ;

complex<double> LF, LI ;

double a1,b1; //scattering lengths of A and B atoms

double st , x_0, y_0;

unsigned int g;

unsigned int h;

unsigned int i_index , j_index;

cout<<endl ;

cout<<"Please enter the scattering length of A atom.

"<<endl ;

cin>>a1;

cout<<"Please enter the scattering length of B atom.

"<<endl ;

cin>>b1;

cout<<"please enter size of the 2−D square grid you would like to calculate the

intensity for the optimized crystal ."<<endl ;

cin>>g;

cout<<"please enter the 2−D origin (starting point) of the intensity calculation

( i . e x coordinate then y coordinate ) ."<<endl ;

cin>>x_0;

cin>>y_0;

cout<<"Please enter the step size on the 2−D grid which you would like to

calculate the intensities ."<<endl ;

cin>>st ;

res<<"The scattering length of A is "<<a1<<" and the scattering length of B is "

<<b1<<"."<<endl ;

res<<"The neutron intensities of your crystal calculated without lots on a square

grid of size " <<g<< " with step size "<<st<< "

149



and origin "<<"("<<x_0<<" ,"<<y_0<<") "<<"are : "<<endl ;

res<<endl ;

for(h=0;h<g;h++){

for(k=0;k<g;k++){

F=Structure_Factor(CM,a1,b1,x,y,x_0,y_0, st ,h,k) ;

res<<norm(F)<<endl ;

}

}

unsigned int size , num_lots;

cout <<"Please enter the lot size which you would like to use . "<<endl ;

cin>>size ;

cout<<"Please enter the number of lots which you would like to use ."<<endl ;

cin>>num_lots;

Lots . resize ( size , vector<int>(size )) ;

res<<endl ;

res<<endl ;

res<<"The neutron intensities of your crystal calculated with "

<<num_lots<< " lots of size " <<size<< " are :"<<endl ;

res<<endl ;

for( i=0;i<num_lots; i++){

Lot(CM, Lots , size , x, y, i_index , j_index);

}

for(h=0;h<g;h++){

for(k=0;k<g;k++){

LF=Structure_Factor(Lots ,a1,b1, size , size ,x_0,y_0, st ,h,k);

res<<norm(LF)<<endl ;

}

}

\\For x−ray intensities :

for(m=0;m<num_lots;m++){

Lot(MC, Lots , size , x, y, i_index , j_index);

DisplayCrystal(Lots ) ;

}

for(h=0;h<n;h++){

for(k=0;k<n;k++){

LF=Structure_Factor(Lots ,a,b, size , size ,x_0,y_0, s ,h,k) ;

cout<<norm(LF)<<endl ;

}

}

\\uses scattering factors from f i l e with a table of atoms and their x−ray scattering factors

\\in this example atom A is Na and atom B is La

scatFac atom1("Na");

scatFac atom2("La");

double Ang;

for(h=0;h<n;h++){

for(k=0;k<n;k++){

Ang=Calc_rezAng(x_0,y_0, s ,h,k);
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LF=XRay_Structure_Factor(Lots ,a,b, size , size ,x_0,y_0, s ,h,k,atom1, atom2, Ang);

cout<<"X−Ray intensities are : "<<norm(LF)<<endl ;

}

}

res . close () ;

cout<<"finished"<<endl ;

return(0);

}

A. 2 Motif percentage calculation

A C++ code was written (below) to calculate the statistics of each motif type as a

percentage of the 96,000 layer crystal. The output of the optimization for the best

individual and its clones is parsed and the mean and standard deviation is calculated

for each layer motif. This code was used to calculate the results described in chapter

7 section 7.10 and to calculate the structural changes described in the sensitivity

analysis of section 7.2.4. The user de�nes the number of crystals (external variable)

as NUMCRYST=individuals*clones.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ MotiffAve.cpp

∗

∗ Created on: Jun 6, 2011

∗ Author: Tara Michels−Clark

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Purpose of the Program: Takes input fi les of type . txt and parses them to read into a vector.

∗ The average of the motif count and motif stats for each generation is calculated for each motif

∗ type and output to a results f i le with the generation number included in fi le name.

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

//header fi le with external fi les for user input of gen # and crystal number = individuals ∗ clones

#include "MotiffAve.h"

#include <iostream>

#include <sstream> //fi le strings for reading in multiple fi les with indexed

#include <fstream> //for I/O

#include <string>

#include <vector> //Vector class (probably don't need in this case)

#include <cstdlib> //to get Vector from c++ standard Library

#include <cmath> //for the distance formula
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using namespace std ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ CLASS: Particle

∗ Data elements: double x, double y, double occupancy, string particle type

∗METHODS: get_particle_type(), get_x(), get_y(), get_occupancy(), Display(), translate()

∗ FRIENDS: istream() for input fi les used with class member functions

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

class Motif

{

private :

double stats ;

int motifcount ;

string Motif_type;

public :

string get_Motif_type() ;

int get_motifcount() ;

double get_stats () ;

void Display();

Motif () ;

~Motif () ;

friend istream& operator>>( istream&, Motif& );

};

//for reading in the input fi le called in. txt .

istream& operator>>( istream& in , Motif& m )

{

i f ( in .good() )

{

string temp;

in >> temp;

i f ( temp == "statistics :" )

{

in >> temp;

in >> temp;

// one more read to get the proper value

in >> temp;

}

// Read the first string , if the value is one that expects a

// second string , read it as well

i f ( temp == "disord" )

{

in>>m.Motif_type;

m.Motif_type = temp + " " +m.Motif_type;

}

else

{

m.Motif_type = temp;

}

in>>m. stats ;

in>>m.motifcount ;
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}

return in ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Method Name: get_Motif_type()

∗ Input: none

∗ output: string

∗ Description: Returns the String of motif type MDO1, MDO2, MDO3, disord e1, disord e2

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

string Motif : : get_Motif_type(){

return(Motif_type);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Method Name: get_motifcount()

∗ Input: none

∗ output: int

∗ Description: Returns the motif count of each motif type.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int Motif : : get_motifcount(){

return(motifcount);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Method Name: get_stats()

∗ Input: none

∗ output: double

∗ Description: Returns the % of crystals with those motif types

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double Motif : : get_stats()

{

return( stats ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Method Name: Display()

∗ Input: none

∗ output: void

∗ Description: Displays the motif type, motif count and motif stats for the user.

∗ Mainly for testing to make sure fi les are read in correctly)

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void Motif : : Display(){

cout<<"Motif type "<<Motif_type<<endl ;

cout<<"Motif count = "<<motifcount<<endl ;

cout<<"Motif Statistics = "<<stats<<endl ;

}

//Constructor for the Motif class .

Motif : :Motif(){

}

//Destructor for the Motif class .

Motif ::~Motif(){
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}

typedef vector<Motif> Vec;

typedef vector<double> V;

typedef vector<int> v;

typedef vector<string> sv ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: Motif_Stats

∗ Input: vector

∗ output: vector

∗ Description: takes an input vector of the motif statistics and loops through

∗ and sorts out each motif type and averages them and outputs

∗ their average into a vector.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void Motif_Stats( V &MS, V &av, V & stdev , sv M)

{

double MDO1_sum=0;

double MDO2_sum=0;

double MDO3_sum=0;

double disord_e1_sum=0;

double disord_e2_sum=0;

double MDO1_ave,MDO2_ave,MDO3_ave,disord_e1_ave,disord_e2_ave;

double MDO1_std,MDO2_std,MDO3_std,disord_e1_std,disord_e2_std;

unsigned int j ;

vector<double>result ;

for( j=0;j<MS. size () ; j++){

i f (M[ j]=="MDO1"){

MDO1_sum+=MS[ j ] ;

}else if (M[ j]=="MDO2"){

MDO2_sum+=MS[ j ] ;

}else if (M[ j]=="MDO3"){

MDO3_sum+=MS[ j ] ;

}else if (M[ j]=="disord e1"){

disord_e1_sum+=MS[ j ] ;

}else if (M[ j]=="disord e2"){

disord_e2_sum+=MS[ j ] ;

}

}

MDO1_ave=MDO1_sum/NUMCRYST;

MDO2_ave=MDO2_sum/NUMCRYST;

MDO3_ave=MDO3_sum/NUMCRYST;

disord_e1_ave=disord_e1_sum/NUMCRYST;

disord_e2_ave=disord_e2_sum/NUMCRYST;

av.push_back(MDO1_ave);

av.push_back(MDO2_ave);

av.push_back(MDO3_ave);

av.push_back(disord_e1_ave);

av.push_back(disord_e2_ave);

double MDO1_sqdiff=0;

double MDO2_sqdiff=0;

double MDO3_sqdiff=0;

double disord_e1_sqdiff=0;

double disord_e2_sqdiff=0;

for( j=0;j<MS. size () ; j++){

i f (M[ j]=="MDO1"){

MDO1_sqdiff+=pow((MS[ j]−MDO1_ave) ,2);
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}else if (M[ j]=="MDO2"){

MDO2_sqdiff+=pow((MS[ j]−MDO2_ave) ,2);

}else if (M[ j]=="MDO3"){

MDO3_sqdiff+=pow((MS[ j]−MDO3_ave) ,2);

}else if (M[ j]=="disord e1"){

disord_e1_sqdiff+=pow((MS[ j]−disord_e1_ave) ,2);

}else if (M[ j]=="disord e2"){

disord_e2_sqdiff+=pow((MS[ j]−disord_e2_ave) ,2);

}

}

MDO1_std=sqrt(MDO1_sqdiff/NUMCRYST);

MDO2_std=sqrt(MDO2_sqdiff/NUMCRYST);

MDO3_std=sqrt(MDO3_sqdiff/NUMCRYST);

disord_e1_std=sqrt(disord_e1_sqdiff/NUMCRYST);

disord_e2_std=sqrt(disord_e2_sqdiff/NUMCRYST);

stdev .push_back(MDO1_std);

stdev .push_back(MDO2_std);

stdev .push_back(MDO3_std);

stdev .push_back(disord_e1_std);

stdev .push_back(disord_e2_std);

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Function Name: main()

∗ Input: none

∗ output: none

∗ Description: opens and reads input fi les in loop. Calls Motif_Stats() Writes

∗ to result f i le with user input generation number in the fi le name.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int main()

{

fstream f ; //input fi les f

Vec m; //motif vector

stringstream ss , os ; //fi le input and output streams

string s , rs ; //string name for fi les

unsigned int x; //index for individual number in fi le name

//Vectors of string , int , double and Motif vector type deff

V Motif_StatResults ;

V MS;

V stdev ,ave;

VMC;

V RC;

sv M;

//Loops through input fi les

for( x = 0; x < 2; x++ )

{

ss . clear () ;

ss << "c://temp//growth_cal.out_"<< x << ". txt";

ss >> s ;

f .open( s . c_str() ) ;

i f ( f .good() )
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{

while( ! f . eof () )

{

Motif m1;

f >> m1;

m.push_back(m1);

MS.push_back(m1.get_stats ()) ; //stat vector

M.push_back(m1.get_Motif_type()) ; //Motif type vector

}

f . close () ; //closes the fi le after reading

}

else

{

//error message to user if f i le cannot be opened

cout << "ERROR: f i l e could not be opened" << endl ;

return( −1 );

}

f . close () ;

}

Motif_Stats( MS, ave , stdev , M);

//writing output fi le

fstream fout ;

os . clear () ; //output stream for fi le with user input index

os << "c://temp//growth_cal. res .out_" << gennum << ". txt";

os >> rs ;

fout .open( rs . c_str() , ios : : out ) ;

/opening . txt f i l e for output results

//test to see if output fi le opened

i f ( ! fout .good() )

{

cout << "ERROR: could not open output f i l e " << endl ;

return( −1 );

}

//writing to output fi le

for(unsigned int z=0; z<stdev . size () ; z++)

{

fout <<M[z]<<" "<<ave[ z]<<" "<<stdev [ z]<<endl ;

cout<<M[z]<<" "<<ave[ z]<<" "<<stdev [ z]<<endl ;

}

//closes input and output fi les

f . close () ;

fout . close () ;

return(0);

}
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A. 3 CIF �les

A. 3.1 X-ray CIF

data_shelxl

_audit_creation_method SHELXL-2013
_chemical_name_systematic
;
?

;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
'F6 La1.50 Na1.50'

_chemical_formula_weight 356.85

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'F' 'F' 0.0171 0.0103
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Na' 'Na' 0.0362 0.0249
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'La' 'La' -0.2871 2.4523
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_space_group_crystal_system hexagonal
_space_group_IT_number 174
_space_group_name_H-M_alt 'P -6'
_space_group_name_Hall 'P -6'

_shelx_space_group_comment
;
The symmetry employed for this shelxl refinement is uniquely defined
by the following loop, which should always be used as a source of
symmetry information in preference to the above space-group names.
They are only intended as comments.
;

loop_
_space_group_symop_operation_xyz
'x, y, z'
'-y, x-y, z'
'-x+y, -x, z'
'x, y, -z'
'-y, x-y, -z'
'-x+y, -x, -z'

_cell_length_a 6.1520(14)
_cell_length_b 6.1520(14)
_cell_length_c 3.8191(9)
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 120
_cell_volume 125.18(6)
_cell_formula_units_Z 1
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?

_exptl_crystal_description plate
_exptl_crystal_colour colorless
_exptl_crystal_density_meas ?
_exptl_crystal_density_method ?
_exptl_crystal_density_diffrn 4.734
_exptl_crystal_F_000 156
_exptl_transmission_factor_min ?
_exptl_transmission_factor_max ?
_exptl_crystal_size_max 0.120
_exptl_crystal_size_mid 0.100
_exptl_crystal_size_min 0.090
_exptl_absorpt_coefficient_mu 12.848
_shelx_estimated_absorpt_T_min 0.308
_shelx_estimated_absorpt_T_max 0.391
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.5704
_exptl_absorpt_correction_T_max 0.7457
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_exptl_absorpt_process_details ?

_exptl_special_details
;
?

;

_diffrn_ambient_temperature 100(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_source ?
_diffrn_measurement_device_type ?
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
_diffrn_reflns_number 816
_diffrn_reflns_av_unetI/netI 0.0311
_diffrn_reflns_av_R_equivalents ?
_diffrn_reflns_limit_h_min -8
_diffrn_reflns_limit_h_max 8
_diffrn_reflns_limit_k_min -8
_diffrn_reflns_limit_k_max 8
_diffrn_reflns_limit_l_min -5
_diffrn_reflns_limit_l_max 5
_diffrn_reflns_theta_min 3.824
_diffrn_reflns_theta_max 28.183
_diffrn_reflns_theta_full 25.242
_diffrn_measured_fraction_theta_max 1.000
_diffrn_measured_fraction_theta_full 0.989
_diffrn_reflns_Laue_measured_fraction_max 1.000
_diffrn_reflns_Laue_measured_fraction_full 0.989
_diffrn_reflns_point_group_measured_fraction_max 1.000
_diffrn_reflns_point_group_measured_fraction_full 0.994
_reflns_number_total 816
_reflns_number_gt 816
_reflns_threshold_expression 'I > 2\s(I)'
_reflns_Friedel_coverage 0.959
_reflns_Friedel_fraction_max 1.000
_reflns_Friedel_fraction_full 1.000

_reflns_special_details
;
_reflns_Friedel_fraction is defined as the number of unique
Friedel pairs measured divided by the number that would be
possible theoretically, ignoring centric projections and
systematic absences.

;

_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution ?
_computing_structure_refinement 'SHELXL-2013 (Sheldrick, 2013)'
_computing_molecular_graphics ?
_computing_publication_material ?

_refine_special_details
;
Refined as a 2-component inversion twin.

;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'w=1/[\s^2^(Fo^2^)] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary ?
_atom_sites_solution_secondary ?
_atom_sites_solution_hydrogens .
_refine_ls_hydrogen_treatment undef
_refine_ls_extinction_method SHELXL
_refine_ls_extinction_coef 0.33(3)
_refine_ls_extinction_expression
'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

_refine_ls_abs_structure_details
;
Refined as an inversion twin.

;
_refine_ls_abs_structure_Flack 0.43(6)
_chemical_absolute_configuration ?
_refine_ls_number_reflns 816
_refine_ls_number_parameters 22
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0138
_refine_ls_R_factor_gt 0.0138
_refine_ls_wR_factor_ref 0.0346
_refine_ls_wR_factor_gt 0.0346
_refine_ls_goodness_of_fit_ref 1.107
_refine_ls_restrained_S_all 1.107
_refine_ls_shift/su_max 0.000
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_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_site_symmetry_order
_atom_site_calc_flag
_atom_site_refinement_flags_posn
_atom_site_refinement_flags_adp
_atom_site_refinement_flags_occupancy
_atom_site_disorder_assembly
_atom_site_disorder_group

La2 La -0.3333 0.3333 -0.5000 0.0078(4) Uani 0.5001 6 d S T P . .
Na2 Na -0.3333 0.3333 -0.5000 0.0078(4) Uani 0.5001 6 d S T P . .
La1 La 0.0000 0.0000 0.0000 0.0052(3) Uani 1 6 d S T P . .
Na1 Na -0.6667 0.6667 -0.687(3) 0.016(2) Uani 0.5 3 d S T P . .
F1 F -0.0397(11) 0.3706(9) 0.0000 0.0171(12) Uani 1 2 d S T P . .
F2 F -0.7546(8) 0.2693(8) -0.5000 0.0091(8) Uani 1 2 d S T P . .

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12

La2 0.0046(5) 0.0046(5) 0.0142(9) 0.000 0.000 0.0023(3)
Na2 0.0046(5) 0.0046(5) 0.0142(9) 0.000 0.000 0.0023(3)
La1 0.0065(3) 0.0065(3) 0.0027(5) 0.000 0.000 0.00326(17)
Na1 0.014(2) 0.014(2) 0.021(6) 0.000 0.000 0.0070(12)
F1 0.008(2) 0.007(2) 0.037(3) 0.000 0.000 0.0045(16)
F2 0.009(2) 0.012(2) 0.0046(19) 0.000 0.000 0.003(2)

_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag

La2 F2 2.419(5) 2_565 ?
La2 F2 2.419(5) . ?
La2 F2 2.419(5) 3_455 ?
La2 F1 2.559(4) 3_454 ?
La2 F1 2.559(4) 1_554 ?
La2 F1 2.559(4) . ?
La2 F1 2.559(4) 3_455 ?
La2 F1 2.559(4) 2_565 ?
La2 F1 2.559(4) 2_564 ?
La2 Na1 3.623(2) 4_554 ?
La2 Na1 3.623(2) . ?
La2 Na1 3.623(2) 4_654 ?
La1 F1 2.411(5) 2 ?
La1 F1 2.411(5) 3 ?
La1 F1 2.411(5) . ?
La1 F2 2.484(3) 3_445 ?
La1 F2 2.484(3) 3_446 ?
La1 F2 2.484(3) 1_656 ?
La1 F2 2.484(3) 1_655 ?
La1 F2 2.484(3) 2_565 ?
La1 F2 2.484(3) 2_566 ?
La1 Na1 3.748(4) 4_544 ?
La1 Na1 3.748(4) 1_656 ?
La1 Na1 3.748(4) 1_546 ?
Na1 Na1 1.43(2) 4_554 ?
Na1 F2 2.336(6) 2_575 ?
Na1 F2 2.336(6) . ?
Na1 F2 2.336(6) 3_355 ?
Na1 Na1 2.39(2) 4_553 ?
Na1 F1 2.416(8) 1_454 ?
Na1 F1 2.416(8) 3_464 ?
Na1 F1 2.416(8) 2_564 ?
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Na1 Na2 3.623(2) 1_565 ?
Na1 La2 3.623(2) 1_565 ?
F1 Na1 2.416(8) 1_656 ?
F1 Na1 2.416(8) 4_654 ?
F1 La2 2.559(4) 1_556 ?
F1 Na2 2.559(4) 1_556 ?
F2 Na1 2.336(6) 4_554 ?
F2 La1 2.484(3) 1_454 ?
F2 La1 2.484(3) 1_455 ?

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag

F2 La2 F2 120.0 2_565 . ?
F2 La2 F2 120.0 2_565 3_455 ?
F2 La2 F2 120.0 . 3_455 ?
F2 La2 F1 71.43(12) 2_565 3_454 ?
F2 La2 F1 69.69(11) . 3_454 ?
F2 La2 F1 131.72(10) 3_455 3_454 ?
F2 La2 F1 69.69(11) 2_565 1_554 ?
F2 La2 F1 131.72(10) . 1_554 ?
F2 La2 F1 71.43(12) 3_455 1_554 ?
F1 La2 F1 70.42(16) 3_454 1_554 ?
F2 La2 F1 69.69(11) 2_565 . ?
F2 La2 F1 131.72(10) . . ?
F2 La2 F1 71.43(12) 3_455 . ?
F1 La2 F1 141.11(8) 3_454 . ?
F1 La2 F1 96.5(2) 1_554 . ?
F2 La2 F1 71.43(12) 2_565 3_455 ?
F2 La2 F1 69.69(11) . 3_455 ?
F2 La2 F1 131.72(10) 3_455 3_455 ?
F1 La2 F1 96.5(2) 3_454 3_455 ?
F1 La2 F1 141.11(8) 1_554 3_455 ?
F1 La2 F1 70.42(16) . 3_455 ?
F2 La2 F1 131.72(10) 2_565 2_565 ?
F2 La2 F1 71.43(12) . 2_565 ?
F2 La2 F1 69.69(11) 3_455 2_565 ?
F1 La2 F1 141.11(8) 3_454 2_565 ?
F1 La2 F1 141.11(8) 1_554 2_565 ?
F1 La2 F1 70.42(16) . 2_565 ?
F1 La2 F1 70.42(16) 3_455 2_565 ?
F2 La2 F1 131.72(10) 2_565 2_564 ?
F2 La2 F1 71.43(12) . 2_564 ?
F2 La2 F1 69.69(11) 3_455 2_564 ?
F1 La2 F1 70.42(16) 3_454 2_564 ?
F1 La2 F1 70.42(16) 1_554 2_564 ?
F1 La2 F1 141.11(8) . 2_564 ?
F1 La2 F1 141.11(8) 3_455 2_564 ?
F1 La2 F1 96.5(2) 2_565 2_564 ?
F2 La2 Na1 155.47(11) 2_565 4_554 ?
F2 La2 Na1 39.52(11) . 4_554 ?
F2 La2 Na1 82.04(10) 3_455 4_554 ?
F1 La2 Na1 102.88(18) 3_454 4_554 ?
F1 La2 Na1 132.09(17) 1_554 4_554 ?
F1 La2 Na1 112.1(2) . 4_554 ?
F1 La2 Na1 85.94(17) 3_455 4_554 ?
F1 La2 Na1 41.7(2) 2_565 4_554 ?
F1 La2 Na1 63.1(2) 2_564 4_554 ?
F2 La2 Na1 155.47(11) 2_565 . ?
F2 La2 Na1 39.52(11) . . ?
F2 La2 Na1 82.04(10) 3_455 . ?
F1 La2 Na1 85.94(17) 3_454 . ?
F1 La2 Na1 112.1(2) 1_554 . ?
F1 La2 Na1 132.09(17) . . ?
F1 La2 Na1 102.88(18) 3_455 . ?
F1 La2 Na1 63.1(2) 2_565 . ?
F1 La2 Na1 41.7(2) 2_564 . ?
Na1 La2 Na1 22.7(4) 4_554 . ?
F2 La2 Na1 82.05(10) 2_565 4_654 ?
F2 La2 Na1 155.47(11) . 4_654 ?
F2 La2 Na1 39.52(11) 3_455 4_654 ?
F1 La2 Na1 132.09(17) 3_454 4_654 ?
F1 La2 Na1 63.1(2) 1_554 4_654 ?
F1 La2 Na1 41.7(2) . 4_654 ?
F1 La2 Na1 112.1(2) 3_455 4_654 ?
F1 La2 Na1 85.94(17) 2_565 4_654 ?
F1 La2 Na1 102.88(18) 2_564 4_654 ?
Na1 La2 Na1 116.22(12) 4_554 4_654 ?
Na1 La2 Na1 121.29(4) . 4_654 ?
F1 La1 F1 120.0 2 3 ?
F1 La1 F1 120.0 2 . ?
F1 La1 F1 120.0 3 . ?
F1 La1 F2 71.09(10) 2 3_445 ?
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F1 La1 F2 71.61(11) 3 3_445 ?
F1 La1 F2 129.75(7) . 3_445 ?
F1 La1 F2 71.09(10) 2 3_446 ?
F1 La1 F2 71.61(11) 3 3_446 ?
F1 La1 F2 129.75(7) . 3_446 ?
F2 La1 F2 100.50(15) 3_445 3_446 ?
F1 La1 F2 129.75(7) 2 1_656 ?
F1 La1 F2 71.09(10) 3 1_656 ?
F1 La1 F2 71.61(11) . 1_656 ?
F2 La1 F2 142.71(6) 3_445 1_656 ?
F2 La1 F2 67.26(12) 3_446 1_656 ?
F1 La1 F2 129.75(7) 2 1_655 ?
F1 La1 F2 71.09(10) 3 1_655 ?
F1 La1 F2 71.61(11) . 1_655 ?
F2 La1 F2 67.26(12) 3_445 1_655 ?
F2 La1 F2 142.71(6) 3_446 1_655 ?
F2 La1 F2 100.50(15) 1_656 1_655 ?
F1 La1 F2 71.61(11) 2 2_565 ?
F1 La1 F2 129.75(7) 3 2_565 ?
F1 La1 F2 71.09(10) . 2_565 ?
F2 La1 F2 67.26(12) 3_445 2_565 ?
F2 La1 F2 142.71(6) 3_446 2_565 ?
F2 La1 F2 142.71(6) 1_656 2_565 ?
F2 La1 F2 67.26(12) 1_655 2_565 ?
F1 La1 F2 71.61(11) 2 2_566 ?
F1 La1 F2 129.75(7) 3 2_566 ?
F1 La1 F2 71.09(10) . 2_566 ?
F2 La1 F2 142.71(6) 3_445 2_566 ?
F2 La1 F2 67.26(12) 3_446 2_566 ?
F2 La1 F2 67.26(12) 1_656 2_566 ?
F2 La1 F2 142.71(6) 1_655 2_566 ?
F2 La1 F2 100.49(15) 2_565 2_566 ?
F1 La1 Na1 39.10(14) 2 4_544 ?
F1 La1 Na1 149.21(14) 3 4_544 ?
F1 La1 Na1 85.24(13) . 4_544 ?
F2 La1 Na1 78.64(16) 3_445 4_544 ?
F2 La1 Na1 107.09(17) 3_446 4_544 ?
F2 La1 Na1 138.10(17) 1_656 4_544 ?
F2 La1 Na1 104.68(17) 1_655 4_544 ?
F2 La1 Na1 37.55(18) 2_565 4_544 ?
F2 La1 Na1 72.43(17) 2_566 4_544 ?
F1 La1 Na1 149.21(14) 2 1_656 ?
F1 La1 Na1 85.23(13) 3 1_656 ?
F1 La1 Na1 39.10(14) . 1_656 ?
F2 La1 Na1 138.10(17) 3_445 1_656 ?
F2 La1 Na1 104.68(17) 3_446 1_656 ?
F2 La1 Na1 37.55(18) 1_656 1_656 ?
F2 La1 Na1 72.43(17) 1_655 1_656 ?
F2 La1 Na1 107.09(17) 2_565 1_656 ?
F2 La1 Na1 78.64(16) 2_566 1_656 ?
Na1 La1 Na1 123.43(6) 4_544 1_656 ?
F1 La1 Na1 39.10(14) 2 1_546 ?
F1 La1 Na1 149.21(14) 3 1_546 ?
F1 La1 Na1 85.24(13) . 1_546 ?
F2 La1 Na1 107.09(17) 3_445 1_546 ?
F2 La1 Na1 78.64(16) 3_446 1_546 ?
F2 La1 Na1 104.68(17) 1_656 1_546 ?
F2 La1 Na1 138.10(17) 1_655 1_546 ?
F2 La1 Na1 72.43(17) 2_565 1_546 ?
F2 La1 Na1 37.55(18) 2_566 1_546 ?
Na1 La1 Na1 37.2(3) 4_544 1_546 ?
Na1 La1 Na1 110.31(16) 1_656 1_546 ?
Na1 Na1 F2 72.2(3) 4_554 2_575 ?
Na1 Na1 F2 72.2(3) 4_554 . ?
F2 Na1 F2 111.1(3) 2_575 . ?
Na1 Na1 F2 72.2(3) 4_554 3_355 ?
F2 Na1 F2 111.1(3) 2_575 3_355 ?
F2 Na1 F2 111.1(3) . 3_355 ?
Na1 Na1 Na1 180.0 4_554 4_553 ?
F2 Na1 Na1 107.8(3) 2_575 4_553 ?
F2 Na1 Na1 107.8(3) . 4_553 ?
F2 Na1 Na1 107.8(3) 3_355 4_553 ?
Na1 Na1 F1 119.7(2) 4_554 1_454 ?
F2 Na1 F1 168.1(5) 2_575 1_454 ?
F2 Na1 F1 74.12(13) . 1_454 ?
F2 Na1 F1 75.45(12) 3_355 1_454 ?
Na1 Na1 F1 60.3(2) 4_553 1_454 ?
Na1 Na1 F1 119.7(2) 4_554 3_464 ?
F2 Na1 F1 75.45(12) 2_575 3_464 ?
F2 Na1 F1 168.1(5) . 3_464 ?
F2 Na1 F1 74.12(13) 3_355 3_464 ?
Na1 Na1 F1 60.3(2) 4_553 3_464 ?
F1 Na1 F1 97.6(3) 1_454 3_464 ?
Na1 Na1 F1 119.7(2) 4_554 2_564 ?
F2 Na1 F1 74.12(13) 2_575 2_564 ?
F2 Na1 F1 75.45(12) . 2_564 ?
F2 Na1 F1 168.1(5) 3_355 2_564 ?
Na1 Na1 F1 60.3(2) 4_553 2_564 ?
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F1 Na1 F1 97.6(3) 1_454 2_564 ?
F1 Na1 F1 97.6(3) 3_464 2_564 ?
Na1 Na1 La2 78.65(18) 4_554 . ?
F2 Na1 La2 75.13(14) 2_575 . ?
F2 Na1 La2 41.22(11) . . ?
F2 Na1 La2 146.0(4) 3_355 . ?
Na1 Na1 La2 101.35(18) 4_553 . ?
F1 Na1 La2 105.30(15) 1_454 . ?
F1 Na1 La2 137.54(19) 3_464 . ?
F1 Na1 La2 44.84(10) 2_564 . ?
Na1 Na1 Na2 78.65(18) 4_554 1_565 ?
F2 Na1 Na2 41.22(11) 2_575 1_565 ?
F2 Na1 Na2 146.0(4) . 1_565 ?
F2 Na1 Na2 75.13(14) 3_355 1_565 ?
Na1 Na1 Na2 101.35(18) 4_553 1_565 ?
F1 Na1 Na2 137.54(19) 1_454 1_565 ?
F1 Na1 Na2 44.84(10) 3_464 1_565 ?
F1 Na1 Na2 105.30(15) 2_564 1_565 ?
La2 Na1 Na2 116.22(12) . 1_565 ?
Na1 Na1 La2 78.65(18) 4_554 1_565 ?
F2 Na1 La2 41.22(11) 2_575 1_565 ?
F2 Na1 La2 146.0(4) . 1_565 ?
F2 Na1 La2 75.13(14) 3_355 1_565 ?
Na1 Na1 La2 101.35(18) 4_553 1_565 ?
F1 Na1 La2 137.54(19) 1_454 1_565 ?
F1 Na1 La2 44.84(10) 3_464 1_565 ?
F1 Na1 La2 105.30(15) 2_564 1_565 ?
La2 Na1 La2 116.22(12) . 1_565 ?
Na2 Na1 La2 0.0 1_565 1_565 ?
Na1 F1 Na1 59.4(5) 1_656 4_654 ?
Na1 F1 La1 101.88(19) 1_656 . ?
Na1 F1 La1 101.88(19) 4_654 . ?
Na1 F1 La2 143.0(2) 1_656 . ?
Na1 F1 La2 93.4(2) 4_654 . ?
La1 F1 La2 108.42(15) . . ?
Na1 F1 La2 93.4(2) 1_656 1_556 ?
Na1 F1 La2 143.0(2) 4_654 1_556 ?
La1 F1 La2 108.42(15) . 1_556 ?
La2 F1 La2 96.5(2) . 1_556 ?
Na1 F1 Na2 93.4(2) 1_656 1_556 ?
Na1 F1 Na2 143.0(2) 4_654 1_556 ?
La1 F1 Na2 108.42(15) . 1_556 ?
La2 F1 Na2 96.5(2) . 1_556 ?
La2 F1 Na2 0.0 1_556 1_556 ?
Na1 F2 Na1 35.5(5) 4_554 . ?
Na1 F2 La2 99.26(15) 4_554 . ?
Na1 F2 La2 99.26(15) . . ?
Na1 F2 La1 132.7(3) 4_554 1_454 ?
Na1 F2 La1 102.0(3) . 1_454 ?
La2 F2 La1 110.69(13) . 1_454 ?
Na1 F2 La1 102.0(3) 4_554 1_455 ?
Na1 F2 La1 132.7(3) . 1_455 ?
La2 F2 La1 110.69(13) . 1_455 ?
La1 F2 La1 100.50(15) 1_454 1_455 ?

_refine_diff_density_max 0.430
_refine_diff_density_min -0.512
_refine_diff_density_rms 0.099

_shelxl_version_number 2013-3

_shelx_res_file
;
TITL 558s in P-6
CELL 0.71073 6.1520 6.1520 3.8191 90.000 90.000 120.000
ZERR 1.00 0.0014 0.0014 0.0009 0.000 0.000 0.000
LATT -1
SYMM -Y, X-Y, Z
SYMM -X+Y, -X, Z
SYMM X, Y, -Z
SYMM -Y, X-Y, -Z
SYMM -X+Y, -X, -Z
SFAC F NA LA
UNIT 6 1.5 1.5
TEMP -173
SIZE 0.09 0.10 0.12
MERG 0
TWIN -1 0 0 0 -1 0 0 0 -1
EADP LA2 NA2
EXYZ LA2 NA2
FMAP 2
ACTA
PLAN 20
L.S. 15
WGHT 0.000000
EXTI 0.326174
BASF 0.42846
FVAR 0.47897
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LA2 3 -0.333333 0.333333 -0.500000 10.08335 0.00457 0.00457 =
0.01421 0.00000 0.00000 0.00228

NA2 2 -0.333333 0.333333 -0.500000 10.08335 0.00457 0.00457 =
0.01421 0.00000 0.00000 0.00228

LA1 3 0.000000 0.000000 0.000000 10.16667 0.00652 0.00652 =
0.00270 0.00000 0.00000 0.00326

NA1 2 -0.666667 0.666667 -0.686706 10.16667 0.01404 0.01404 =
0.02134 0.00000 0.00000 0.00702

F1 1 -0.039665 0.370575 0.000000 10.50000 0.00787 0.00696 =
0.03742 0.00000 0.00000 0.00447

F2 1 -0.754562 0.269261 -0.500000 10.50000 0.00851 0.01157 =
0.00464 0.00000 0.00000 0.00317

HKLF 4

REM 558s in P-6
REM R1 = 0.0138 for 816 Fo > 4sig(Fo) and 0.0138 for all 816 data
REM 22 parameters refined using 0 restraints

END

WGHT 0.0000 0.0000

REM Highest difference peak 0.430, deepest hole -0.512, 1-sigma level 0.099
Q1 1 -0.0381 -0.1750 0.0000 10.50000 0.05 0.43
Q2 1 0.0346 0.1800 0.0000 10.50000 0.05 0.37
Q3 1 0.2056 0.3326 0.0000 10.50000 0.05 0.30
Q4 1 -0.0647 0.2485 0.0000 10.50000 0.05 0.29
Q5 1 -0.5485 0.4276 -0.5000 10.50000 0.05 0.24
Q6 1 -0.6667 0.6667 -1.0000 10.16667 0.05 0.23
Q7 1 -0.1487 0.2479 0.3202 11.00000 0.05 0.21
Q8 1 -0.2872 0.2460 0.0000 10.50000 0.05 0.21
Q9 1 -0.5228 0.1826 -0.5000 10.50000 0.05 0.20
Q10 1 -0.8804 0.0635 -0.5000 10.50000 0.05 0.20
Q11 1 -0.0169 0.5042 0.3484 11.00000 0.05 0.20
Q12 1 -0.4611 0.5421 -0.5000 10.50000 0.05 0.19
Q13 1 -0.7353 0.4046 -0.7047 11.00000 0.05 0.19
Q14 1 -0.6667 0.6667 -0.5000 10.16667 0.05 0.19
Q15 1 -0.1726 0.1521 0.0000 10.50000 0.05 0.19
Q16 1 -0.9078 0.1105 -0.5000 10.50000 0.05 0.19
Q17 1 -0.2704 0.1044 0.0000 10.50000 0.05 0.18
Q18 1 -0.7213 0.1943 -0.8454 11.00000 0.05 0.18
Q19 1 -0.3455 0.1305 -0.5000 10.50000 0.05 0.15
Q20 1 -0.6474 0.2698 -0.5000 10.50000 0.05 0.14
;

A. 3.2 Neutron CIF

data_shelxl

_audit_creation_method SHELXL-2013
_chemical_name_systematic
;
?

;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
'F6 La1.5 Na1.5'

_chemical_formula_weight 356.83

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'F' 'F' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'La' 'La' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Na' 'Na' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_space_group_crystal_system hexagonal
_space_group_IT_number 174
_space_group_name_H-M_alt 'P -6'
_space_group_name_Hall 'P -6'

_shelx_space_group_comment
;
The symmetry employed for this shelxl refinement is uniquely defined
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by the following loop, which should always be used as a source of
symmetry information in preference to the above space-group names.
They are only intended as comments.
;

loop_
_space_group_symop_operation_xyz
'x, y, z'
'-y, x-y, z'
'-x+y, -x, z'
'x, y, -z'
'-y, x-y, -z'
'-x+y, -x, -z'

_cell_length_a 6.1568(9)
_cell_length_b 6.1568(9)
_cell_length_c 3.8210(8)
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 120
_cell_volume 125.43(5)
_cell_formula_units_Z 1
_cell_measurement_temperature 100(2)
_cell_measurement_reflns_used 2127
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description irregular
_exptl_crystal_colour colorless
_exptl_crystal_density_meas ?
_exptl_crystal_density_method none
_exptl_crystal_density_diffrn 4.724
_exptl_crystal_F_000 34
_exptl_transmission_factor_min ?
_exptl_transmission_factor_max ?
_exptl_crystal_size_max 1.4
_exptl_crystal_size_mid 1.4
_exptl_crystal_size_min 1.0
_exptl_absorpt_coefficient_mu '0.04, at 1.8 Angstom'
_shelx_estimated_absorpt_T_min ?
_shelx_estimated_absorpt_T_max ?
_exptl_absorpt_correction_type Sphere
_exptl_absorpt_correction_T_min 0.9631
_exptl_absorpt_correction_T_max 0.9788
_exptl_absorpt_process_details anvred2x

_exptl_special_details
;
?

;

_diffrn_ambient_temperature 100(2)
_diffrn_radiation_type 'neutron'
_diffrn_radiation_wavelength 0.4-3.5
_diffrn_measurement_device 'SNS single crystal diffractometer, TOPAZ'
_diffrn_measurement_method 'time of flight laue'
_diffrn_source ?
_diffrn_measurement_device_type ?
_diffrn_detector_area_resol_mean ?
_diffrn_reflns_number 2125
_diffrn_reflns_av_unetI/netI 0.0624
_diffrn_reflns_av_R_equivalents ?
_diffrn_reflns_limit_h_min -12
_diffrn_reflns_limit_h_max 12
_diffrn_reflns_limit_k_min -11
_diffrn_reflns_limit_k_max 12
_diffrn_reflns_limit_l_min -7
_diffrn_reflns_limit_l_max 7
_diffrn_reflns_theta_min 2.768
_diffrn_reflns_theta_max 17.409
_diffrn_reflns_theta_full 10.370
_diffrn_measured_fraction_theta_max 0.967
_diffrn_measured_fraction_theta_full 0.957
_diffrn_reflns_Laue_measured_fraction_max 0.967
_diffrn_reflns_Laue_measured_fraction_full 0.957
_diffrn_reflns_point_group_measured_fraction_max 0.913
_diffrn_reflns_point_group_measured_fraction_full 0.894
_reflns_number_total 2125
_reflns_number_gt 2042
_reflns_threshold_expression 'I > 2\s(I)'
_reflns_Friedel_coverage 0.871
_reflns_Friedel_fraction_max 0.858
_reflns_Friedel_fraction_full 0.830

_reflns_special_details
;
_reflns_Friedel_fraction is defined as the number of unique
Friedel pairs measured divided by the number that would be
possible theoretically, ignoring centric projections and
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systematic absences.
;

_computing_data_collection ?
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution ?
_computing_structure_refinement 'SHELXL-2013 (Sheldrick, 2013)'
_computing_molecular_graphics ?
_computing_publication_material ?

_refine_special_details
;
?

;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'w=1/[\s^2^(Fo^2^)+(0.1000P)^2^] where P=(Fo^2^+2Fc^2^)/3'
_refine_ls_extinction_coef '1.3560 x 10^-04^'
_refine_ls_extinction_method 'GSAS Secondary Type I Lorentzian model'
_atom_sites_solution_primary ?
_atom_sites_solution_secondary ?
_atom_sites_solution_hydrogens .
_refine_ls_hydrogen_treatment undef
_refine_ls_abs_structure_details
;
All f" are zero, so absolute structure could not be determined

;
_refine_ls_abs_structure_Flack ?
_chemical_absolute_configuration ?
_refine_ls_number_reflns 2125
_refine_ls_number_parameters 20
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0557
_refine_ls_R_factor_gt 0.0534
_refine_ls_wR_factor_ref 0.1354
_refine_ls_wR_factor_gt 0.1335
_refine_ls_goodness_of_fit_ref 1.025
_refine_ls_restrained_S_all 1.025
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_site_symmetry_order
_atom_site_calc_flag
_atom_site_refinement_flags_posn
_atom_site_refinement_flags_adp
_atom_site_refinement_flags_occupancy
_atom_site_disorder_assembly
_atom_site_disorder_group

La1 La 0.0000 0.0000 0.0000 0.0043(2) Uani 1 6 d S T P . .
La2 La 0.6667 0.3333 0.5000 0.0087(4) Uani 0.5001 6 d S T P . .
Na2 Na 0.6667 0.3333 0.5000 0.0087(4) Uani 0.5001 6 d S T P . .
Na1 Na 0.3333 0.6667 0.675(3) 0.0215(14) Uani 0.5 3 d S T P . .
F1 F 0.6282(3) 0.0374(4) 0.0000 0.0205(5) Uani 1 2 d S T P . .
F2 F 0.7306(3) 0.7540(3) 0.5000 0.0084(2) Uani 1 2 d S T P . .

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12

La1 0.0053(3) 0.0053(3) 0.0024(4) 0.000 0.000 0.00263(15)
La2 0.0062(5) 0.0062(5) 0.0137(9) 0.000 0.000 0.0031(2)
Na2 0.0062(5) 0.0062(5) 0.0137(9) 0.000 0.000 0.0031(2)
Na1 0.0156(13) 0.0156(13) 0.034(4) 0.000 0.000 0.0078(7)
F1 0.0083(5) 0.0125(6) 0.0427(13) 0.000 0.000 0.0067(5)
F2 0.0084(5) 0.0070(4) 0.0066(4) 0.000 0.000 0.0014(4)

_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
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used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag

La1 F1 2.4126(18) 3_665 ?
La1 F1 2.4126(18) 2_545 ?
La1 F1 2.4126(18) 1_455 ?
La1 F2 2.4866(10) 3_565 ?
La1 F2 2.4866(10) 3_564 ?
La1 F2 2.4866(10) 1_444 ?
La1 F2 2.4866(10) 1_445 ?
La1 F2 2.4866(10) 2_655 ?
La1 F2 2.4866(10) 2_654 ?
La1 Na1 3.766(3) 4_556 ?
La1 Na1 3.766(3) 1_444 ?
La1 Na1 3.766(3) 4_446 ?
La2 F2 2.4174(15) 2_655 ?
La2 F2 2.4174(15) . ?
La2 F2 2.4175(15) 3_665 ?
La2 F1 2.5678(13) . ?
La2 F1 2.5678(13) 2_656 ?
La2 F1 2.5678(13) 1_556 ?
La2 F1 2.5678(13) 2_655 ?
La2 F1 2.5678(13) 3_665 ?
La2 F1 2.5678(13) 3_666 ?
La2 Na1 3.6167(19) 4_556 ?
La2 Na1 3.6167(19) . ?
La2 Na1 3.6167(19) 4_546 ?
Na1 Na1 1.33(2) 4_556 ?
Na1 F2 2.324(3) 2_665 ?
Na1 F2 2.324(3) 3_565 ?
Na1 F2 2.324(3) . ?
Na1 F1 2.431(5) 1_566 ?
Na1 F1 2.431(5) 2_556 ?
Na1 F1 2.431(5) 3_666 ?
Na1 Na1 2.49(2) 4_557 ?
Na1 Na2 3.6167(19) 1_455 ?
Na1 La2 3.6167(19) 1_455 ?
F1 La1 2.4126(18) 1_655 ?
F1 Na1 2.431(5) 1_544 ?
F1 Na1 2.431(5) 4_546 ?
F1 La2 2.5678(13) 1_554 ?
F1 Na2 2.5678(13) 1_554 ?
F2 Na1 2.324(3) 4_556 ?
F2 La1 2.4866(10) 1_666 ?
F2 La1 2.4866(10) 1_665 ?

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag

F1 La1 F1 120.0 3_665 2_545 ?
F1 La1 F1 120.0 3_665 1_455 ?
F1 La1 F1 120.0 2_545 1_455 ?
F1 La1 F2 71.48(4) 3_665 3_565 ?
F1 La1 F2 129.80(3) 2_545 3_565 ?
F1 La1 F2 71.19(4) 1_455 3_565 ?
F1 La1 F2 71.48(4) 3_665 3_564 ?
F1 La1 F2 129.80(3) 2_545 3_564 ?
F1 La1 F2 71.19(4) 1_455 3_564 ?
F2 La1 F2 100.41(5) 3_565 3_564 ?
F1 La1 F2 129.80(3) 3_665 1_444 ?
F1 La1 F2 71.19(4) 2_545 1_444 ?
F1 La1 F2 71.48(4) 1_455 1_444 ?
F2 La1 F2 142.67(2) 3_565 1_444 ?
F2 La1 F2 67.33(4) 3_564 1_444 ?
F1 La1 F2 129.80(3) 3_665 1_445 ?
F1 La1 F2 71.19(4) 2_545 1_445 ?
F1 La1 F2 71.48(4) 1_455 1_445 ?
F2 La1 F2 67.33(4) 3_565 1_445 ?
F2 La1 F2 142.67(2) 3_564 1_445 ?
F2 La1 F2 100.41(5) 1_444 1_445 ?
F1 La1 F2 71.19(4) 3_665 2_655 ?
F1 La1 F2 71.48(4) 2_545 2_655 ?
F1 La1 F2 129.80(3) 1_455 2_655 ?
F2 La1 F2 67.33(4) 3_565 2_655 ?
F2 La1 F2 142.67(2) 3_564 2_655 ?
F2 La1 F2 142.67(2) 1_444 2_655 ?
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F2 La1 F2 67.33(4) 1_445 2_655 ?
F1 La1 F2 71.19(4) 3_665 2_654 ?
F1 La1 F2 71.48(4) 2_545 2_654 ?
F1 La1 F2 129.80(3) 1_455 2_654 ?
F2 La1 F2 142.67(2) 3_565 2_654 ?
F2 La1 F2 67.33(4) 3_564 2_654 ?
F2 La1 F2 67.33(4) 1_444 2_654 ?
F2 La1 F2 142.67(2) 1_445 2_654 ?
F2 La1 F2 100.41(5) 2_655 2_654 ?
F1 La1 Na1 39.14(7) 3_665 4_556 ?
F1 La1 Na1 148.62(9) 2_545 4_556 ?
F1 La1 Na1 85.52(4) 1_455 4_556 ?
F2 La1 Na1 36.97(13) 3_565 4_556 ?
F2 La1 Na1 73.04(14) 3_564 4_556 ?
F2 La1 Na1 138.73(12) 1_444 4_556 ?
F2 La1 Na1 104.14(14) 1_445 4_556 ?
F2 La1 Na1 78.10(11) 2_655 4_556 ?
F2 La1 Na1 107.52(11) 2_654 4_556 ?
F1 La1 Na1 148.62(9) 3_665 1_444 ?
F1 La1 Na1 85.52(4) 2_545 1_444 ?
F1 La1 Na1 39.14(7) 1_455 1_444 ?
F2 La1 Na1 107.52(11) 3_565 1_444 ?
F2 La1 Na1 78.10(11) 3_564 1_444 ?
F2 La1 Na1 36.97(13) 1_444 1_444 ?
F2 La1 Na1 73.04(14) 1_445 1_444 ?
F2 La1 Na1 138.73(12) 2_655 1_444 ?
F2 La1 Na1 104.14(14) 2_654 1_444 ?
Na1 La1 Na1 123.68(5) 4_556 1_444 ?
F1 La1 Na1 148.62(9) 3_665 4_446 ?
F1 La1 Na1 85.52(4) 2_545 4_446 ?
F1 La1 Na1 39.14(7) 1_455 4_446 ?
F2 La1 Na1 78.10(11) 3_565 4_446 ?
F2 La1 Na1 107.52(11) 3_564 4_446 ?
F2 La1 Na1 73.04(14) 1_444 4_446 ?
F2 La1 Na1 36.97(13) 1_445 4_446 ?
F2 La1 Na1 104.14(14) 2_655 4_446 ?
F2 La1 Na1 138.72(12) 2_654 4_446 ?
Na1 La1 Na1 109.66(14) 4_556 4_446 ?
Na1 La1 Na1 38.6(3) 1_444 4_446 ?
F2 La2 F2 120.0 2_655 . ?
F2 La2 F2 120.0 2_655 3_665 ?
F2 La2 F2 120.0 . 3_665 ?
F2 La2 F1 71.25(4) 2_655 . ?
F2 La2 F1 131.91(3) . . ?
F2 La2 F1 69.73(4) 3_665 . ?
F2 La2 F1 131.91(3) 2_655 2_656 ?
F2 La2 F1 69.73(4) . 2_656 ?
F2 La2 F1 71.25(4) 3_665 2_656 ?
F1 La2 F1 140.97(3) . 2_656 ?
F2 La2 F1 71.25(4) 2_655 1_556 ?
F2 La2 F1 131.91(3) . 1_556 ?
F2 La2 F1 69.73(4) 3_665 1_556 ?
F1 La2 F1 96.15(7) . 1_556 ?
F1 La2 F1 70.71(5) 2_656 1_556 ?
F2 La2 F1 131.91(3) 2_655 2_655 ?
F2 La2 F1 69.73(4) . 2_655 ?
F2 La2 F1 71.25(4) 3_665 2_655 ?
F1 La2 F1 70.71(5) . 2_655 ?
F1 La2 F1 96.15(7) 2_656 2_655 ?
F1 La2 F1 140.97(3) 1_556 2_655 ?
F2 La2 F1 69.73(4) 2_655 3_665 ?
F2 La2 F1 71.25(4) . 3_665 ?
F2 La2 F1 131.91(3) 3_665 3_665 ?
F1 La2 F1 70.71(5) . 3_665 ?
F1 La2 F1 140.97(3) 2_656 3_665 ?
F1 La2 F1 140.97(3) 1_556 3_665 ?
F1 La2 F1 70.71(5) 2_655 3_665 ?
F2 La2 F1 69.73(4) 2_655 3_666 ?
F2 La2 F1 71.25(4) . 3_666 ?
F2 La2 F1 131.91(3) 3_665 3_666 ?
F1 La2 F1 140.97(3) . 3_666 ?
F1 La2 F1 70.71(5) 2_656 3_666 ?
F1 La2 F1 70.71(5) 1_556 3_666 ?
F1 La2 F1 140.97(3) 2_655 3_666 ?
F1 La2 F1 96.15(7) 3_665 3_666 ?
F2 La2 Na1 82.04(3) 2_655 4_556 ?
F2 La2 Na1 39.34(5) . 4_556 ?
F2 La2 Na1 155.77(7) 3_665 4_556 ?
F1 La2 Na1 112.84(14) . 4_556 ?
F1 La2 Na1 102.46(12) 2_656 4_556 ?
F1 La2 Na1 131.50(14) 1_556 4_556 ?
F1 La2 Na1 86.63(12) 2_655 4_556 ?
F1 La2 Na1 42.17(15) 3_665 4_556 ?
F1 La2 Na1 62.18(15) 3_666 4_556 ?
F2 La2 Na1 82.04(3) 2_655 . ?
F2 La2 Na1 39.34(5) . . ?
F2 La2 Na1 155.77(7) 3_665 . ?
F1 La2 Na1 131.50(14) . . ?
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F1 La2 Na1 86.63(12) 2_656 . ?
F1 La2 Na1 112.84(14) 1_556 . ?
F1 La2 Na1 102.46(12) 2_655 . ?
F1 La2 Na1 62.18(15) 3_665 . ?
F1 La2 Na1 42.17(15) 3_666 . ?
Na1 La2 Na1 21.3(3) 4_556 . ?
F2 La2 Na1 39.34(5) 2_655 4_546 ?
F2 La2 Na1 155.77(7) . 4_546 ?
F2 La2 Na1 82.04(3) 3_665 4_546 ?
F1 La2 Na1 42.17(15) . 4_546 ?
F1 La2 Na1 131.50(14) 2_656 4_546 ?
F1 La2 Na1 62.18(15) 1_556 4_546 ?
F1 La2 Na1 112.84(14) 2_655 4_546 ?
F1 La2 Na1 86.63(12) 3_665 4_546 ?
F1 La2 Na1 102.46(12) 3_666 4_546 ?
Na1 La2 Na1 116.68(10) 4_556 4_546 ?
Na1 La2 Na1 121.13(4) . 4_546 ?
Na1 Na1 F2 73.3(2) 4_556 2_665 ?
Na1 Na1 F2 73.3(2) 4_556 3_565 ?
F2 Na1 F2 112.1(2) 2_665 3_565 ?
Na1 Na1 F2 73.3(2) 4_556 . ?
F2 Na1 F2 112.1(2) 2_665 . ?
F2 Na1 F2 112.1(2) 3_565 . ?
Na1 Na1 F1 120.8(2) 4_556 1_566 ?
F2 Na1 F1 75.32(7) 2_665 1_566 ?
F2 Na1 F1 165.9(4) 3_565 1_566 ?
F2 Na1 F1 73.98(7) . 1_566 ?
Na1 Na1 F1 120.8(2) 4_556 2_556 ?
F2 Na1 F1 73.98(7) 2_665 2_556 ?
F2 Na1 F1 75.32(7) 3_565 2_556 ?
F2 Na1 F1 165.9(4) . 2_556 ?
F1 Na1 F1 96.2(3) 1_566 2_556 ?
Na1 Na1 F1 120.8(2) 4_556 3_666 ?
F2 Na1 F1 165.9(4) 2_665 3_666 ?
F2 Na1 F1 73.98(7) 3_565 3_666 ?
F2 Na1 F1 75.32(7) . 3_666 ?
F1 Na1 F1 96.2(3) 1_566 3_666 ?
F1 Na1 F1 96.2(3) 2_556 3_666 ?
Na1 Na1 Na1 180.0 4_556 4_557 ?
F2 Na1 Na1 106.7(2) 2_665 4_557 ?
F2 Na1 Na1 106.7(2) 3_565 4_557 ?
F2 Na1 Na1 106.7(2) . 4_557 ?
F1 Na1 Na1 59.2(2) 1_566 4_557 ?
F1 Na1 Na1 59.2(2) 2_556 4_557 ?
F1 Na1 Na1 59.2(2) 3_666 4_557 ?
Na1 Na1 La2 79.37(15) 4_556 . ?
F2 Na1 La2 147.4(3) 2_665 . ?
F2 Na1 La2 75.53(8) 3_565 . ?
F2 Na1 La2 41.26(4) . . ?
F1 Na1 La2 104.95(8) 1_566 . ?
F1 Na1 La2 136.89(16) 2_556 . ?
F1 Na1 La2 45.17(5) 3_666 . ?
Na1 Na1 La2 100.63(15) 4_557 . ?
Na1 Na1 Na2 79.37(16) 4_556 1_455 ?
F2 Na1 Na2 75.53(8) 2_665 1_455 ?
F2 Na1 Na2 41.26(4) 3_565 1_455 ?
F2 Na1 Na2 147.4(3) . 1_455 ?
F1 Na1 Na2 136.89(16) 1_566 1_455 ?
F1 Na1 Na2 45.17(5) 2_556 1_455 ?
F1 Na1 Na2 104.95(8) 3_666 1_455 ?
Na1 Na1 Na2 100.63(15) 4_557 1_455 ?
La2 Na1 Na2 116.68(9) . 1_455 ?
Na1 Na1 La2 79.37(16) 4_556 1_455 ?
F2 Na1 La2 75.53(8) 2_665 1_455 ?
F2 Na1 La2 41.26(4) 3_565 1_455 ?
F2 Na1 La2 147.4(3) . 1_455 ?
F1 Na1 La2 136.89(16) 1_566 1_455 ?
F1 Na1 La2 45.17(5) 2_556 1_455 ?
F1 Na1 La2 104.95(8) 3_666 1_455 ?
Na1 Na1 La2 100.63(15) 4_557 1_455 ?
La2 Na1 La2 116.68(9) . 1_455 ?
Na2 Na1 La2 0.0 1_455 1_455 ?
La1 F1 Na1 102.07(7) 1_655 1_544 ?
La1 F1 Na1 102.07(7) 1_655 4_546 ?
Na1 F1 Na1 61.5(4) 1_544 4_546 ?
La1 F1 La2 108.21(5) 1_655 . ?
Na1 F1 La2 143.85(15) 1_544 . ?
Na1 F1 La2 92.66(18) 4_546 . ?
La1 F1 La2 108.21(5) 1_655 1_554 ?
Na1 F1 La2 92.66(18) 1_544 1_554 ?
Na1 F1 La2 143.85(15) 4_546 1_554 ?
La2 F1 La2 96.15(7) . 1_554 ?
La1 F1 Na2 108.21(5) 1_655 1_554 ?
Na1 F1 Na2 92.66(18) 1_544 1_554 ?
Na1 F1 Na2 143.85(15) 4_546 1_554 ?
La2 F1 Na2 96.15(7) . 1_554 ?
La2 F1 Na2 0.0 1_554 1_554 ?
Na1 F2 Na1 33.4(5) 4_556 . ?
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Na1 F2 La2 99.40(5) 4_556 . ?
Na1 F2 La2 99.40(5) . . ?
Na1 F2 La1 131.8(2) 4_556 1_666 ?
Na1 F2 La1 103.0(2) . 1_666 ?
La2 F2 La1 110.74(4) . 1_666 ?
Na1 F2 La1 103.0(2) 4_556 1_665 ?
Na1 F2 La1 131.8(2) . 1_665 ?
La2 F2 La1 110.74(4) . 1_665 ?
La1 F2 La1 100.41(5) 1_666 1_665 ?

_refine_diff_density_max 1.530
_refine_diff_density_min -1.558
_refine_diff_density_rms 0.277

_shelxl_version_number 2013-3

_shelx_res_file
;
TITL turned in space group P-6
CELL 0.3000 6.1568 6.1568 3.8210 90.000 90.000 120.000
ZERR 1 0.0009 0.0009 0.0008 0.000 0.000 0.000
LATT -1
SYMM - Y, + X - Y, + Z
SYMM - X + Y, - X, + Z
SYMM + X, + Y, - Z
SYMM - Y, + X - Y, - Z
SYMM - X + Y, - X, - Z
SFAC F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 =

0.00000 0.00000 5.65400 0.000 0.000 0.005 0.640 18.998
SFAC La 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 =

0.00000 0.00000 8.24000 0.000 0.000 4.676 1.880 138.906
SFAC Na 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 =

0.00000 0.00000 3.63000 0.000 0.000 1.830 1.860 22.990
UNIT 4.0 1.0 1.0
TEMP -173
EADP La2 Na2
EXYZ La2 Na2
merg 0
REM sump 12 0.001 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13
L.S. 25
ACTA
FMAP 2
PLAN 10
OMIT -2 2 -1
OMIT 7 -8 0
REM EXTI 40.107571
REM BASF 1.07008 1.04449 0.95501 0.96325 1.02096 1.04133 1.01059
REM BASF 0.98323 0.87672 0.93149 0.93786 0.97558 0.97210
WGHT 0.100000
FVAR 0.10118
LA1 2 0.000000 0.000000 0.000000 10.16667 0.00525 0.00525 =

0.00241 0.00000 0.00000 0.00263
LA2 2 0.666667 0.333333 0.500000 10.08335 0.00615 0.00615 =

0.01372 0.00000 0.00000 0.00308
NA2 3 0.666667 0.333333 0.500000 10.08335 0.00615 0.00615 =

0.01372 0.00000 0.00000 0.00308
NA1 3 0.333333 0.666667 0.674616 10.16667 0.01556 0.01556 =

0.03351 0.00000 0.00000 0.00778
F1 1 0.628204 0.037435 0.000000 10.50000 0.00833 0.01246 =

0.04267 0.00000 0.00000 0.00667
F2 1 0.730573 0.754013 0.500000 10.50000 0.00842 0.00698 =

0.00658 0.00000 0.00000 0.00135
HKLF 4

REM turned in space group P-6
REM R1 = 0.0534 for 2042 Fo > 4sig(Fo) and 0.0557 for all 2125 data
REM 20 parameters refined using 0 restraints

END

WGHT 0.0796 0.2175

REM Highest difference peak 1.530, deepest hole -1.558, 1-sigma level 0.277
Q1 1 0.6667 0.3333 0.3495 10.33333 0.05 1.12
Q2 1 0.6453 0.7238 0.4100 11.00000 0.05 1.11
Q3 1 -0.0968 0.0120 0.0900 11.00000 0.05 1.03
Q4 1 0.4697 0.5381 0.5000 10.50000 0.05 0.94
Q5 1 0.0949 0.0074 0.0829 11.00000 0.05 0.86
Q6 1 0.6470 0.8174 0.5000 10.50000 0.05 0.81
Q7 1 0.6836 0.1415 0.1243 11.00000 0.05 0.77
Q8 1 0.6894 0.5320 0.5000 10.50000 0.05 0.76
Q9 1 0.0000 0.0000 0.1532 10.33333 0.05 0.73
Q10 1 0.4015 0.7207 0.5000 10.50000 0.05 0.70
;
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A. 4 ZODS details

A. 4.1 xml input

ZODS xml input �le for local structure model of NaLaF4 below:

<?xml version="1.0" encoding="UTF-8"?>
<input xsi:noNamespaceSchemaLocation="simulator.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" print_level="3">

<reference_intensities file_format="xml" file_name="nalaf4_small_mirrored_noneg.xml"/>
<average_structure>
<file name="nalaf4_F(splitpositions).cif" format="cif"/>
<refinable_parameters>

<coordinate atom="F1" coordinate="c" parameterized_with="z_shift"/>
</refinable_parameters>

</average_structure>
<disentanglement translational_symmetry_directions="c">
<user_defined>

<chemical_units_list>
<chemical_unit label="cu1" probability="0.5" atom_list="Na2,(X,Y,Z+1/2);F1,(1-X+Y,1-X,Z);F1;F1,(X,Y,1/2-Z);
F1,(1-Y,X-Y,Z);F1,(1-Y,X-Y,1/2-Z);F1,(1-X+Y,1-X,1/2-Z);La2"/>

</chemical_units_list>
<sets_of_alternatives_list>

<set_of_alternatives label="soa" chemical_units_list="cu1;cu1,(X,Y,-Z+1)"/>
</sets_of_alternatives_list>

</user_defined>
</disentanglement>
<independent_parameters>
<parameter label="p1" value="0.273"/>
<parameter label="z_shift" value="0.008078"/>

</independent_parameters>
<interactions>
<interaction>

<discrete parameters="p1">
<chemical_units>cu1;cu1,(1,0,0)</chemical_units>

</discrete>
</interaction>

</interactions>
<disordered_crystal_simulation>
<default_crystal_builder crystal_dimensions="100,100,1" n_MC_cycles="100"/>

</disordered_crystal_simulation>
<intensity_calculation form_factor_type="x-ray" lot_dimensions="20,20,1" n_lots="25"/>
<run_type>
<optimize_model n_clones="20">

<output>
<crystals output_file_formats="xml,pdb,xyz" only_winner="true"/>
<intensities output_file_formats="xml,vtk" print_clone_intensities="false" only_winner="false"/>

</output>
<optimization_method>

<differential_evolution n_gene_sets="48" n_generations="36">
<constraints>

<parameter name="z_shift" min="-0.02" max="0.025" initial_max="0.02" initial_min="0.007"/>
<parameter name="p1" min="-0.1" max="1.4" initial_max="1.0" initial_min="0.4"/>

</constraints>
</differential_evolution>

</optimization_method>
</optimize_model>

</run_type>
</input>

A. 4.2 Plotting tools in ZODS

A short python 3.2.3 code was written to parse ZODS output (di�_ev) containing the

model �tness and parameter results averaged over clones for each individual for every

generation and calculate the statistics for the objective function and each parameter.

The mean, minimum, maximum and standard deviation over all individuals for each

generation are output into individual text �les corresponding to each parameter.

A gnu plot script plots the statistics from the text �le(s) as a function of generation

number and outputs the plot as a postscript �le. A shell script is available that

170



generates the appropriate gnu script to plot the individual parameters. The gnu

script to plot the parameters then outputs plots of each parameter's convergence as

a function of generation number. The postscript plots can be converted by the user

to pdf �les (half the size) by using a pdf shell script converter program.

General python statistics code, reads in di�_ev �le and calculates the objective

function and parameter convergence statistics:

#!/usr/bin/env python3

#Program purpose: To parse diff_ev fi le output from ZODS and calculate the mean,

#standard deviation of each parameter and objective function over individuals for

#each generation. Final goal is to plot the convergence of each parameter and the

#objective function as a function of generation.

#File must be in the format of ZODS_01

import sys

import math

import numpy

import statistics

#takes user defined fi le name (designed to read diff_ev (txt) from ZODS_01)

print( "Reading f i l e %s" % (sys .argv [1] ) )

f = open(sys .argv [1])

## Data struct for holding information

de={}

gennum = "unknown"

for rline in f :

## remove extra newline at the end of the raw line

line = rline [:−1]

cols = line . split () #splits reading line at first white space

i f line!="" and cols [0] == "Generation":

# print( "%s" % ( line ) )

gennum = int( cols [1] )

de[ gennum ] = {}

parse=True

#gets all the generation numbers to index the dictionary

elif parse and line != "" and cols [0 ] [0 ] == "#":

## we have an individual (starts getting information for each individual)

#gets objective function values

res1=line . split ( "objective function = " )

#splits again to start getting each parameter

res2 = res1 [1 ] . split ( "parameters = " )

value = float (res2 [0])

res3 = res2 [1]
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params =res3 . split () #start parsing out the parameters

total = len(params) #find out how many parameters are in the fi le

#create l ist for parameter values

p=[]

for i in range(total ) : # goes over all parameters

i f i % 2 != 0: #Skips strings and gets parameter values only

p.append( float (params[ i ]))

#puts however many parameters are in the fi le into the l ist and converts them to a float

value = (value , p ) #builds the parameter l ist

de[ gennum ] [ int(cols [0] [1: ]) ]=value

#dictionary constructed with generation

# as first type and individual number as the second type

#containing objective function and parameters

#stops parsing at "WINNER" (don't need the intermediate trial individuals)

elif line != "" and line [ : 6 ] == "WINNER":

parse=False

f . close ()

f_out=open("Objective_function_stats . txt" , "w")

ob_min=[]

ob_max=[]

ob_mean=[]

ob_stddev=[]

ob_stats={}

## iterate over the generations

for i in de:

sum = 0

count = 0

obj_values=[]

## iterate over the individuals

for j in de[ i ] :

## count the number of iterations

obj_values .append(de[ i ] [ j ] [ 0 ] )

count += 1

ob_max.append(max(obj_values))

ob_stddev.append(numpy. std(obj_values))

ob_min.append(min(obj_values))

ob_mean.append( statistics .mean(obj_values))

ob_stats [ i]=""

ob_stats [ i ] += "%s %f %f %f %f\n" % (str ( i ) , ob_min[ i ] , ob_max[ i ] , ob_mean[ i ] , ob_stddev[ i ] )

f_out.write(ob_stats [ i ] )

f_out.write("%s" % "# Min Max Mean\tstandard deviation")

f_out. close ()

#next we need to do generate the same statistics for each parameter contained in diff_ev

params=len(p)

param={}

p_minimum={}

p_maximum={}

p_mean={}
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p_values={}

p_stddev={}

P_values={}

p_info=[]

output={}

for i in de:

sum2 = 0

count2 = 0

## iterate over the iterations

p_values={}

for j in de[ i ] :

count2+=1

for k in range( len(de[ i ] [ j ] [ 1 ] ) ) :

i f k not in p_values:

p_values[k] = [ ]

p_values[k ] .append(de[ i ] [ j ] [ 1 ] [ k])

## processing for one generation is complete

for q in p_values:

p_mean = statistics .mean( p_values[q] )

p_min = min( p_values[q] )

p_max = max( p_values[q] )

p_stddev = numpy. std(p_values[q])

i f q not in output :

output [q]=""

output [q] += "%s %f %f %f %f \n" % (str ( i ) ,p_min, p_max,p_mean,p_stddev)

for i in output :

with open( 'parameter_stats%i . txt ' %i , 'w' ) as f_out_p:

## iterate over the generations

f_out_p.write("#For parameter p %d: \n" % ( i+1))

f_out_p.write("%s" % "# Min\tMax Mean\tstandard deviation\n")

f_out_p.write(output [ i ] )

f_out_p. close ()

The output �le containing the statistics of the objective function:
0 0.306293 0.313222 0.308943 0.001775
1 0.306293 0.311586 0.308124 0.001157
2 0.306293 0.308700 0.307631 0.000595
3 0.306212 0.308700 0.307291 0.000548
4 0.306212 0.308694 0.307268 0.000522
5 0.306212 0.308435 0.307099 0.000481
6 0.306212 0.308435 0.307061 0.000464
7 0.306212 0.308435 0.307054 0.000462
8 0.306212 0.308435 0.306976 0.000419
9 0.306212 0.307838 0.306936 0.000355
10 0.306212 0.307838 0.306912 0.000361
11 0.306212 0.307733 0.306881 0.000349
12 0.306212 0.307733 0.306845 0.000337
13 0.306212 0.307733 0.306839 0.000337
14 0.306212 0.307733 0.306825 0.000334
15 0.306212 0.307733 0.306816 0.000333
16 0.306212 0.307466 0.306796 0.000316
17 0.306212 0.307398 0.306772 0.000295
18 0.306212 0.307310 0.306729 0.000271
19 0.306212 0.307310 0.306711 0.000273
20 0.306212 0.307310 0.306706 0.000273
# Min Max Mean standard deviation

Parameter 0 (p1 parameter de�ning the ising interaction parameter between

chemical units)
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#For parameter p 1:
# Min Max Mean standard deviation
0 0.871592 0.947877 0.914785 0.020877
1 0.817536 0.976510 0.916859 0.024779
2 0.876745 0.988153 0.919943 0.023589
3 0.866409 0.978720 0.915913 0.023552
4 0.867344 0.978720 0.916835 0.023709
5 0.867344 0.978720 0.919562 0.024088
6 0.867344 0.978720 0.920443 0.023773
7 0.867344 0.978720 0.919482 0.025263
8 0.867124 0.976510 0.915579 0.023266
9 0.867124 0.976510 0.914189 0.022796
10 0.867124 0.976510 0.913743 0.023257
11 0.867124 0.976510 0.914067 0.022737
12 0.867124 0.957225 0.912683 0.020367
13 0.867124 0.957225 0.912736 0.020304
14 0.867124 0.956781 0.911299 0.019552
15 0.867124 0.956781 0.911940 0.019799
16 0.867124 0.956781 0.909032 0.019600
17 0.867124 0.956781 0.911238 0.019751
18 0.867124 0.956781 0.912057 0.019264
19 0.867124 0.956781 0.912943 0.018349
20 0.867124 0.956781 0.914691 0.018208

Parameter 1 (F1 shift):
#For parameter p 2:
# Min Max Mean standard deviation
0 0.007708 0.008944 0.008302 0.000372
1 0.007444 0.009397 0.008381 0.000460
2 0.007070 0.009688 0.008411 0.000557
3 0.007444 0.009707 0.008475 0.000586
4 0.007444 0.009688 0.008496 0.000558
5 0.007184 0.009778 0.008436 0.000600
6 0.007184 0.009778 0.008421 0.000594
7 0.007184 0.009778 0.008476 0.000591
8 0.007184 0.009778 0.008428 0.000603
9 0.007202 0.009688 0.008453 0.000596
10 0.007202 0.009786 0.008541 0.000610
11 0.007030 0.009786 0.008483 0.000652
12 0.007030 0.010445 0.008662 0.000695
13 0.007030 0.010445 0.008658 0.000681
14 0.007030 0.010445 0.008656 0.000687
15 0.007030 0.010445 0.008621 0.000674
16 0.007030 0.010445 0.008688 0.000650
17 0.007030 0.010551 0.008680 0.000708
18 0.007030 0.010551 0.008743 0.000688
19 0.007030 0.010551 0.008778 0.000716
20 0.007030 0.010551 0.008790 0.000750
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