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Abstract

Let R be a commutative ring with nonzero identity and I an ideal of R. The focus

of this research is on a generalization of the zero-divisor graph called the ideal-based

zero-divisor graph for commutative rings with nonzero identity. We consider such a

graph to be nontrivial when it is nonempty and distinct from the zero-divisor graph

of R. We begin by classifying all rings which have nontrivial ideal-based zero-divisor

graph complete on fewer than 5 vertices. We also classify when such graphs are

complete on a prime number of vertices. In addition we classify all rings which admit

nontrivial planar ideal-based zero-divisor graph. The ideas of complemented and

uniquely complemented are considered for such graphs, and we classify when they

are uniquely complemented. The relationship between graph isomorphisms of the

ideal-based zero divisor graph with respect to I and graph isomorphisms of the zero-

divisor graph of R/I [R mod I] is also considered. In the later chapters, we consider

properties of ideal-based zero-divisor graphs when the corresponding factor rings are

Boolean or reduced. We conclude by giving all nontrivial ideal based zero-divisor

graphs on less than 8 vertices, a few miscellaneous results, and some questions for

future research.
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Chapter 1

Preliminaries

Let us begin by stating our set theory notation. Given a set X, we denote the

cardinality of X by |X|. We write A ⊆ B if A is a subset of B. We consider A to be

a proper subset of B if A ⊆ B and A 6= B. We will write A ( B to denote that A

is a proper subset of B. The notation A \ B means the set-theoretic difference of B

from A. For example, R \Q is the set of irrational real numbers.

Throughout this paper, by a graph we mean a simple graph. A simple graph is an

undirected graph without multiple edges or loops. A graph G is a pair of sets V and

E, of vertices and edges respectively, where E consists of sets {a, b} and a, b ∈ V .

Graphs are often visualized by drawing the vertices as dots and the edges by lines

connecting the dots.

Example 1.1. Let G be defined by the vertex set V = {a, b, c, d, e} and E =

{{a, b}, {b, c}, {a, c}, {d, e}}. We can visualize the graph as in Figure 1.1.

In graph theory, it is of no interest what the vertices are named or how the edges

are drawn. This is formalized by the concept of a graph isomorphism.

Definition 1.2. Let the graph G be defined by vertex set V and edge set E. Let H

be the graph defined by vertex set V ′ and edge set E ′. A graph isomorphism from G

to H is a bijection φ : V → V ′ such that {φ(a), φ(b)} ∈ E ′ if and only if {a, b} ∈ E.

1



Figure 1.1: Graph defined as in Example 1.1

G H

Figure 1.2: Isomorphic Graphs

In other words, a graph isomorphism is a bijection between the vertex sets which

preserves edges.

The following example gives an isomorphism between two graphs.

Example 1.3. The two graphs G and H in Figure 1.2 are isomorphic by the following

isomorphism: a→ a, b→ c, c→ e, d→ d, e→ b.

Before proceeding, we define some basic descriptive terminology for graphs. We

say that two edges are incident if they share a common vertex, and we say that

two vertices are adjacent if there is an edge between them. A path in graph is a

sequence of incident edges or adjacent vertices. For example, a − b − c is a path in

Figure 1.1. One can say that the latter is a path from vertex a to vertex c. The

length of a path is the number of edges traversed during the path. We define the

distance between two distinct vertices x and y, denoted d(x, y), to be the length

of a shortest path from x to y provided a path exists, and we define d(x, y) = ∞

otherwise. Moreover, we set d(x, x) = 0. For example, the graph in Figure 1.1 has

d(a, c) = 1 and d(a, d) = ∞. The diameter of a graph G, denoted diam(G), is

2



defined as sup{d(x, y) | x and y are distinct vertices of G} provided G has at least

two vertices and 0 otherwise. A cycle in a graph is a path that begins and ends at

the same vertex. For example, a − b − c − a is a cycle in the graph in Figure 1.1.

The girth of a graph G, denoted gr(G), is defined to the length of a shortest cycle in

G provided a cycle exists and ∞ otherwise. The graph in Figure 1.1 has girth 3. A

graph G is connected provided there is a path between any two distinct vertices. We

will consider a graph on one vertex to be connected. The graph in Figure 1.1 is not

connected. At times, we will let V (G) denote the vertex set of G and E(G) denote

the edge set of G.

A graph H is a subgraph of G, denoted H ⊆ G, if the V (H) ⊆ V (G) and E(H) ⊆

E(G). A subgraph generated by a subset of vertices W is the subgraph consisting of

those vertices together with all edges of the original graph between the vertices of

the subset W ; this is denoted 〈W 〉. We say that H is an induced subgraph of G, if

〈V (H)〉 = H. A complete graph on n vertices is a graph consisting of n vertices where

every pair of distinct vertices is adjacent; we denote such a graph by Kn. A complete

bipartite graph G is a graph for which there exists disjoint non-empty subsets A,B of

vertices such that two vertices of G are adjacent if and only if one vertex is in A and

and the other vertex is B (we sometimes write this as G = A∪B); we denote such a

graph by Km,n, where m = |A| and n = |B|. A well-known complete bipartite graph

is K3,3; it is often referred to as the utility graph. The utility graph and K5 will be

important subgraphs to look for when considering the concept of planarity (which will

be defined later in this introduction). The graphs K1,n are often called star graphs

because of their resemblence to a star shape. Another special graph that will arise is

K
1,3

. In general, we let K
m,3

be the graph defined by joining G = Km,3(= A ∪ B,

where |A| = m and |B| = 3) to the star graph H = K1,m by identifying the center of

H with a point of B [3, p 2]. In particular, K
1,3

is the graph in Figure 1.3.

Let R be a commutative ring with nonzero identity. We call x ∈ R a zero-divisor

of R if there exists 0 6= r ∈ R such that rx = 0. In the 1980’s, Beck used the idea

of zero-divisors to produce a simple graph given a ring R [12]. This was called the

3



Figure 1.3: K
1,3

zero-divisor graph of R. Beck was interested in colorings of these graphs. Given a

graph G, a coloring is an assignment of “colors” to vertices in such a way that no two

adjacent vertices have the same assigned “color.” When considering colorings, the

most common questions deal with a graph’s chromatic number. A graph’s chromatic

number is the fewest number of colors required to “color” the graph. In the late

1990s, David F. Anderson and Philip S. Livingston modified Beck’s definition to be

the following [7, 23]:

Definition 1.4. Let R be a commutative ring with nonzero identity. Let Z(R) be

the zero-divisors of R and set Z(R)∗ = Z(R) \ {0}. Then the zero-divisor graph of

R, denoted Γ(R), is the graph on the vertex set Z(R)∗, where two distinct vertices x

and y are adjacent if and only if xy = 0.

While Beck was primarily interested in colorings of a ring’s associated graph,

Anderson and Livingston shifted the focus to the interplay between ring-theoretic

properties and graph-theoretic properties. That is, if the ringR has certain properties,

does this then induce certain graph-theoretic properties on its associated graph (and

vice-versa). Anderson and Livingston’s modified definition soon became the accepted

“modern” definition of the zero-divisor graph of a ring R. This definition can be

extended to non-commutative rings rather easily in several different ways (i.e., we

could consider the left-sided zero-divisor graph of a given ring R) [27, 28, 29]. Beck’s

definition of the zero-divisor graph differed from the current definition in that it was

a graph on the vertex set R. With Beck’s definition, every graph contained a star

subgraph where 0 was adjacent to every other vertex.

4



Many authors have considered properties of the zero-divisor graph. The following

theorem encapsulates the basic properties of zero-divisor graphs. For a survey of

research done on the zero-divisor graph, we recommend the recent article by Anderson

et al. [3].

Theorem 1.5. (Basic Properties of the Zero-divisor Graph) Let R be a commutative

ring with nonzero identity and let Γ(R) be the zero-divisor graph of R.

1. Γ(R) is connected [23, Theorem 8], [7, Theorem 2.3].

2. Γ(R) is empty if and only if R is an integral domain.

3. Γ(R) has finitely many vertices if and only if R is finite or an integral domain

[7, Theorem 2.2].

4. diam(Γ(R)) ∈ {0, 1, 2, 3} [7, Theorem 2.3].

5. gr(Γ(R)) ∈ {3, 4,∞}.

Property 5 in Theorem 1.5 has an interesting history as described in [3]. The

proof was first shown only for Artinian rings in [7]. The result was proven for general

commutative rings independently by several authors [11, 17, 25, 37].

The primary focus of this dissertation is a generalization of the zero-divisor graph

called the ideal-based zero-divisor graph. In 2001, S. P. Redmond gave the following

definition ([27] and [30]).

Definition 1.6. Let R be a commutative ring with nonzero identity and I an ideal of

R. Define ΓI(R) to be the graph on vertices {x ∈ R \ I | xy ∈ I for some y ∈ R \ I},

where distinct vertices x and y are adjacent if and only if xy ∈ I. This is called the

ideal-based zero-divisor graph of R with respect to the ideal I.

This turns out to be a very natural generalization of the zero-divisor graph. This

can be seen in the following theorem. Property (7) of the following will be of great

use throughout this work.

5



Theorem 1.7. [30] Let R be a commutative ring with nonzero identity and I an ideal

of R.

1. If I = {0}, then ΓI(R) = Γ(R).

2. ΓI(R) = ∅ if and only if I is a prime ideal of R.

3. ΓI(R) is connected.

4. diam(ΓI(R)) ∈ {0, 1, 2, 3}.

5. gr(ΓI(R)) ∈ {3, 4,∞}.

6. ΓI(R) contains |I| disjoint subgraphs each isomorphic to Γ(R/I).

7. |V (ΓI(R))| = |I||V (Γ(R/I))|.

Proof. Properties (1) and (2) are [30, Proposition 2.2]. Properties (3) and (4) are

[30, Theorem 2.4]. Property (5) is [30, Theorem 5.5]. Finally, Property (6) is [30,

Corollary 2.7]. Property (7) is an easy consequence of (6).

Properties of the ideal-based zero-divisor graph have been studied by various

authors. In both [27, 30], Redmond notes a strong connection between ΓI(R) and

Γ(R/I). Redmond describes a three step construction method for ΓI(R) based

on Γ(R/I). The method is described below. Notice that the key factors in the

construction method are Γ(R/I), |I|, and the concept of connected columns.

Redmond’s Three Step Construction for Building ΓI(R)

1. Let {aλ}λ∈Λ be a set of coset representatives of V (Γ(R/I)). For each i ∈ I,

define a graph Gi with vertices {aλ + i}λ∈Λ, where aλ + i is adjacent to aβ + i if

and only if aλ + I is adjacent to aβ + I in Γ(R/I). To generate ΓI(R), define G

to have vertices ∪i∈IGi. To draw the graph, draw each Gi (each are isomorphic)

in successive rows including the edges contained in each Gi.

6



2. For distinct λ, β ∈ Λ and for each i, j ∈ I, aλ + i is adjacent to aβ + j if and

only if aλ + I is adjacent to aβ + I in Γ(R/I). (At this stage, we are connecting

the rows together (avoiding connecting along a column)).

3. For each λ ∈ Λ and distinct i, j ∈ I, aλ + i is adjacent to aλ + j if and only if

a2
λ ∈ I. In this step, we are connecting the columns as necessary (i.e., if and

only if a2
λ ∈ I). Such columns are called connected columns.

Example 1.8. Example (A): Let R = Z2 × Z2 × Z2 and I = 0 × 0 × Z2. Then

R/I ∼= Z2 × Z2. Whence Γ(R/I) is as in the first row of Step 1 of (A) from Figure

1.4. Since |I| = 2, we draw 2 rows of this graph in Step 1. Notice that for R/I, no

zero-divisor has the property that its square is zero. Therefore there are no connected

columns in Step 3.

Example (B): Let S = Z9 × Z2 and J = 0 × Z2. Then S/J ∼= Z9. Notice that

Γ(R/I) ∼= Γ(S/J) (both are line graphs on two vertices, i.e., K2) and |I| = |J | = 2;

hence Steps 1 and 2 are the same as in part (A). However, here Z(S/J)∗ = {3, 6} and

32 = 0 and 62 = 0. Thus both “columns” are connected. This requires connections

to be made in Step 3.

This example shows that Γ(R/I) ∼= Γ(S/J) and |I| = |J | does not imply ΓI(R) ∼=

ΓJ(S).

Redmond studied the relationship between ΓI(R) and Γ(R/I), and this study was

continued by other authors. An example of this continued investigation is [9]. Notice

that in [9], most results are considered in light of two separate cases: whether or

not I is a radical ideal of R. When I is not a radical ideal, then ΓI(R) will have

connected columns. On the other hand, when I is a radical ideal, then ΓI(R) will not

have connected columns. Hence considering the properties of ΓI(R) under each case

(I radical or non-radical) separately is of great aide.

A graph G is planar if it can drawn in a plane such that no edges cross. In this

paper, one of our goals is to classify when an ideal-based zero-divisor graph is planar.

We consider ΓI(R) to be nontrivial if I is a nonzero, proper, non-prime ideal of R.

7



Figure 1.4: Graph defined as in Example 1.8

The latter requirements forces ΓI(R) to be distinct from Γ(R) and to be nonempty.

In order to achieve this goal, we will use the celebrated Kurtowski’s Theorem from

Graph Theory [14, Theorem 6.13]. To state the theorem, we need to define a graph

subdivision.

Definition 1.9. Let G and H be graphs. Then H is a subdivision of G if H can be

derived from G by applying the following operations:

1. Adding a vertex on an edge, that is, replacing v−w (vertices v, w are adjacent)

by v − a− w, where a is a new vertex.

2. Replacing a vertex adjacent to only two vertices by only an edge (undoing item

1).

Theorem 1.10. (Kuratowski’s Theorem) A graph G is planar if and only if it does

not contain a subgraph which is a subdivision of K5 or K3,3.

Example 1.11. Consider the graphs G and H as in Figure 1.5. Notice that G is a

subdivision of H. Moreover, H = K3,3, and therefore G has a subgraph (the graph

itself) that is a subdivision of K3,3. Hence G is not planar by Kuratowski’s Theorem.

8



Figure 1.5: Graphs G and H are subdivisions of each other. (Example 1.11)

In Chapter 2, we begin by classifying which finite commutative rings have zero-

divisor graphs isomorphic to Kn for small values of n. Using this information and

Kuratowski’s Theorem, we will determine, in Chapter 3, all rings up to isomorphism

with non-trivial planar ideal-based zero-divisor graph. This will be accomplished by

first finding what restraints planarity forces on |I| and the girth of Γ(R/I).

Before proceeding, we recall some definitions and facts from Abstract Algebra.

Let R be a commutative ring with nonzero identity. We say that e ∈ R is idempotent

if e2 = e, and we denote the set of all idempotent elements by Idem(R). A ring R

is called a Boolean ring if Idem(R) = R. This is a special case of what is called a

it von Neumann regular ring. A ring R is a von Neumann regular ring if for every

x ∈ R, there exists a y ∈ R such that x = xyx. A good reference for properties of

von Neumann regular rings can be found in [4]. Let X be an indeterminate; then

R[X] is the polynomial ring with coefficients in R and indeterminate X. If I is an

ideal of R[X], we will often write R[X]/I = R[x], where x = X + I (the image of the

indeterminate X). We define a ring R to be local if it has a unique maximal ideal. We

let N, Z, Zn, and Fq denote the natural numbers, the integers, the integers modulo

n, and the field of q elements, respectively. We will denote the ideal of nilpotent

elements of a ring R by nil(R). We say that ring R is reduced if nil(R) = 0. Given

an ideal I of R, we define
√
I = {r ∈ R | rk ∈ I for some k ∈ N}. Notice that R/I

is reduced if and only if I =
√
I. We say that an ideal I is a radical ideal if I =

√
I.

For all other undefined algebra concepts, we direct the reader to [19].

We will use a special case of the following result throughout this paper. If R is an

Artinian commutative ring, then R is isomorphic to a finite direct product of local

9



Artinian rings [10, Theorem 8.7]. In particular, if R is a finite commutative ring, then

R is isomorphic to a finite direct product of finite local rings. We will also use that

local rings have only the trivial idempotents (i.e., {0, 1}). To see this, note that if R

has a non-trivial idempotent e then R ∼= Re× R(1− e), where Re and R(1− e) are

both non-zero. It is clear then that R has at least two maximal ideals.

Another standard result we will use from Abstract Algebra is that the ideals of

the ring
∏

λ∈ΛRλ (where each Rλ is a ring and Λ is finite) are of the form
∏

λ∈Λ Iλ

where each Iλ is an ideal of Rλ for all λ ∈ Λ.

It has been seen in [6] that a ring being von Neumann regular is closely related

to its zero-divisor graph being complemented (this will be defined at the beginning

of Chapter 4). A generalization of the latter relationship to ΓI(R) is considered in

Chapter 4. In Chapter 5, we consider how isomorphisms on the level of the ideal-

based zero-divisor graph relate to isomorphisms on the level of the factor graph (i.e.,

Γ(R/I)). We consider properties induced on ΓI(R) when either R or R/I is Boolean

in Chapter 6. Inspired by research on isomorphisms of ideal-based zero-divisor graphs,

we turn to the consideration of the number of vertices and edges of Γ(R) when R

is reduced. In Chapter 7, a computer program is given to determine if assuming

two reduced rings have zero-divisor graphs with the same number of vertices and

same number of edges forces the two rings to be isomorphic. The answer turns

out to be negative, but the example is not as small as one might expect. In the

penultimate chapter, we determine all possible graphs for ΓI(R) on a small number

of vertices. Finally, we close with a few miscellaneous results and some questions for

future research.
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Chapter 2

When ΓI(R) is Complete on up to

Five Vertices

Our first goal is to determine when ΓI(R) is planar. In order to do this, we will need

to consider local rings of order 4, 8, and 16. We will also need to consider when ΓI(R)

is complete on up to 5 vertices. In researching the previous question, we found that

we can classify up to isomorphism all commutative rings with ΓI(R) isomorphic to

Kp, where p is an odd, non-Mersenne prime. This chapter consists of the work on

classifying when ΓI(R) is complete.

2.1 When |Z(R)| = 2

We begin this section with a well-known result.

Lemma 2.1. Let R be a commutative local ring with nonzero identity and |R| = 4.

Then

R ∼= Z4, Z2[X]/(X2), or F4.

Proof. Since |R| = 4, char(R) ∈ {2, 4}. If char(R) = 4, then it is evident that

R ∼= Z4. Otherwise, assume char(R) = 2. Let M be the unique maximal ideal of

R. Then we must have |M | = 1 or |M | = 2. If |M | = 1, then R must be a field

11



with four elements. Since finite fields are determined up to isomorphism by their

cardinality, R ∼= F4. If |M | = 2, then M = {0, x}. Since R is local, R has no

nontrivial idempotents, and thus x2 = 0. Consider the evaluation homomorphism

φ : Z2[X]→ R given by sending X to x. Notice that X2 ∈ ker(φ) since x2 = 0. It is

clear that φ is onto; so Z2[X]/ker(φ) ∼= R by the First Isomorphism Theorem. But

|Z2[X]/(X2)| = 4 = |R|; thus ker(φ) = (X2), and therefore R ∼= Z2[X]/(X2).

The following result is also a well-known. But for completeness, we again provide

a detailed proof.

Proposition 2.2. Let R be a commutative ring with nonzero identity. Then |Z(R)| =

2 if and only if R ∼= Z4 or Z2[X]/(X2). Moreover, |V (Γ(R))| = 1 if and only if R ∼= Z4

or Z2[X]/(X2).

Proof. Since |Z(R)| = 2, there exists a 0 6= x ∈ Z(R). Consider the map φ : R →

Z(R) by φ(r) = xr. It is evident that this map is an onto (module) homomorphism

with ker(φ) = Z(R); so it follows from the First Isomorphism Theorem that |R| =

|Z(R)|2 = 4. Writing R as product of local rings, we then have either that R is local

or isomorphic to Z2 × Z2. Now Z2 × Z2 has 3 zero-divisors and thus R must be a

local ring of order 4. The desired result then follows from Lemma 2.1. The “moreover

statement” follows from the fact that |V (Γ(R))| = |Z(R)∗|.

The following result may be deduced using Theorem 1.7 and Redmond’s Construc-

tion Method for ΓI(R) from Γ(R/I). We will prove it as a corollary to the preceeding

result.

Corollary 2.3. Let R be a commutative ring with nonzero identity and I an ideal of

R. If Γ(R/I) ∼= K1, then ΓI(R) ∼= K |I|.

Proof. By Proposition 2.2, R/I ∼= Z4 or Z2[X]/(X2). Thus V (Γ(R/I)) = {a + I},

where a2 ∈ I. Then V (ΓI(R)) = {a+i}i∈I . Notice that (a+i)(a+j) ∈ I for all i, j ∈ I.

Moreover |V (ΓI(R))| = |I||V (Γ(R/I))| = |I| · 1 = |I|. Thus ΓI(R) ∼= K |I|.
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We note that the content of the preceding lemma appears in [17] and [18] as a

lemma used for proving a result about cycles in zero-divisor graphs.

2.2 When ΓI(R) ∼= K2

We wish to classify all rings R and nonzero ideals I for which ΓI(R) is isomorphic to

K2. Recall from Property (7) of Theorem 1.7 that |V (ΓI(R))| = |I||V (Γ(R/I))|. So

in this case, 2 = |I||V (Γ(R/I))|. Since we are interested in the case when I is nonzero,

the latter forces |I| = 2 and |V (Γ(R/I)| = 1. Under these hypotheses, |Z(R/I)| = 2

and thus R/I ∼= Z4 or Z2[X]/(X2) by Proposition 2.2. We begin by classifying all

such rings R up to isomorphism. Throughout this section, keep in mind that R/I

must be isomorphic to Z4 or Z2[X]/(X2).

This question has previously been answered (in a variety of forms) and published

in several papers [2, 9, 7, 12]; however the details of the classification are not given

due to the length of the calculation. Since this situation has arisen as a special case

of many results, we prove the result in somewhat excruciating detail below.

Recall that |R/I| = 4 and |I| = 2; therefore |R| = |R/I||I| = 8. Hence char(R) ∈

{2, 4, 8}. Since R is finite, it is a product of finite local rings. Because |R| = 8, we

must have that R is isomorphic to a product of either 1, 2, or 3 local rings. If R is

isomorphic to a product of 3 local rings, we have that R ∼= Z2 × Z2 × Z2; this will

give R/I ∼= Z2×Z2 which is a contradiction of our choices for R/I. Thus either R is

a finite local ring or a product of two finite local rings.

Assume that R ∼= R1 × R2, where R1, R2 are finite local rings. Since |R| = 8,

these local rings have cardinality 2 and 4. Without loss of generality, say |R1| = 4

and |R2| = 2. Then R2
∼= Z2. Notice that I cannot be of the form I1 × 0, where I1

is an ideal of R1 of order 2, as then we would have R/I ∼= Z2 × Z2 (which as before

can not occur). Thus I must be of the form 0×Z2, and hence R/I ∼= R1. Using that

R/I is isomorphic to Z4 or Z2[X]/(X2), R must be isomorphic to either Z4 × Z2 or

Z2[X]/(X2)× Z2 with I = 0× Z2.
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Otherwise, R must be a finite local ring. If char(R) = 8, then R ∼= Z8. In this

case, we can see that I = (4) satisfies our requirements. Otherwise, char(R) ∈ {2, 4}.

Let M be the maximal ideal of R. Since R/I is not a field (it has a nonzero zero-

divisor), we must have that I ( M ( R. Since |I| = 2 and |M | | 8, we must have

|M | = 4.

Case: char(R)=4

Since char(R) = 4, we have 2 ∈ Z(R)∗, and thus 2 ∈ M . Since |M | = 4, there

exists an a ∈ M \ {0, 2}. Then notice that a + 2 ∈ M . If a + 2 ∈ {0, 2, a}, we get a

contradiction in each case (recall that −2 = 2 since the ring has characteristic 4).

Thus M = {0, 2, a, a + 2}. We can see that 2a 6= a and 2a 6= 2 + a (if either

2a = a or 2a = 2 + a, we have in the first case that a = 0, and in the second case

that a = 2; both are contradictions to the choice of a). Thus either 2a = 0 or 2a = 2,

since 2a ∈M .

We now show that the 2a = 2 case cannot hold. Assume to the contrary, that is,

2a = 2. Note that we must have a2 ∈M . Since in a local ring there are no nontrivial

idempotents, we must have a2 = 0, 2, or a+ 2.

If either a2 = 0 or a2 = 2, then 2a = 2 ⇒ 0 = 2a2 = 2a = 2, which is a

contradiction as char(R) = 4.

Assume 2a = 2 and a2 = a + 2. Then 2a = 2 ⇒ 2a2 = 2a ⇒ 2a2 − 2a = 0.

Thus 2a(a − 1) = 0 and 2a = 2 6= 0; therefore a − 1 ∈ Z(R) ⊆ M . But a ∈ M and

a− 1 ∈M implies −1 ∈M , which is a contradiction.

In all the preceding cases, we derived a contradiction. Thus we must have 2a = 0.

As before, R being local eliminates the case that a2 = a. Thus we must have 2a = 0

and a2 ∈ {0, 2, a+ 2}.

If a2 = a+ 2 and 2a = 0, then multiplying both sides by a yields a3 = a2 + 2a =

a2 + 0 = a2, and hence a4 = a3. Thus a2 = a4 = (a2)2. Again, using that local rings

only have trivial idempotents, we have a2 ∈ {0, 1}. Since M is a maximal (hence

proper) ideal of R, we have a2 6= 1. Hence a2 = 0. Whence 0 = a2 = a+ 2⇒ a = 2,

which is a contradiction.
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Thus we have reduced to two cases when R is local with maximal ideal M =

{0, 2, a, a+ 2} and char(R) = 4:

1. 2a = 0 and a2 = 0, or

2. 2a = 0 and a2 = 2.

Consider the evaluation homomorphism φ : Z4[X] → R given by X 7→ a. Notice

that φ(Z4[X]) has cardinality at least 5. Since the cardinality of the image of φ must

divide 8, it follows that the cardinality of the image must be 8; thus the map is onto.

We now must compute ker(φ) in the above two cases.

Case 1: 2a = 0 and a2 = 0.

Notice that X2, 2X ∈ ker(φ). Moreover, Z4[X]/(X2, 2X) consists of precisely 8

elements. Thus ker(φ) = (X2, 2X). Therefore by the First Isomorphism Theorem,

R ∼= Z4[X]/(X2, 2X).

Case 2: 2a = 0 and a2 = 2.

We must have 2X,X2 − 2 ∈ ker(φ). Again, Z4[X]/(2X,X2 − 2) has 8 elements;

whence ker(φ) = (2X,X2 − 2). Therefore by the First Isomorphism Theorem, R ∼=

Z4[X]/(2X,X2 − 2).

Case: char(R)=2

Recall that M has 4 elements. We consider the situation under two sub-cases:

either M contains a nonzero element whose square is nonzero OR x2 = 0 for every

x ∈M .

Assume there exists an a ∈ M such that a2 6= 0. Then since R is local, we also

have a2 6= a. Thus {0, a, a2} (M . We claim the fourth element of M must be a+a2.

Certainly the latter must be an element of M ; we must establish that it is not in

the set {0, a, a2}. It is evident that a + a2 6∈ {a, a2} because in both cases we get a

contradiction with the facts a 6= 0 and a2 6= 0. If a + a2 = 0, then a2 = −a = a

(because char(R) = 2), which is a contradiction as R has no nontrivial idempotents.

Thus M = {0, a, a2, a+ a2}. We know that a3 ∈ {0, a, a2, a+ a2}.
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If a3 = a, then (a2)2 = a4 = a3a = aa = a2; whence a2 ∈ Idem(R) \ {0, 1}, which

is a contradiction as R is local. If a3 = a2, then a4 = a3a = a2a = a3 = a2, which

yields the same contradiction as before. If a3 = a+a2, then a4 = (a+a2)a = a2 +a3 =

a2 + (a + a2) = 2a2 + a = 0 + a = a (using that char(R) = 2). Thus a4 = a which

implies that a6 = a3. Therefore a3 ∈ Idem(R) \ {0, 1}, again a contradiction. Thus

a3 = 0.

Thus in the case that M contains a nonzero element a such that a2 6= 0, it follows

that M = {0, a, a2, a+ a2}, where a3 = 0.

Now assume that the square of every element of M is 0. Then we must have

M = {0, a, b, a + b}. We claim that ab = 0. If ab = a, then ab− a = 0⇒ a(b− 1) =

0⇒ b−1 ∈ Z(R) ⊆M (since a 6= 0); whence 1 ∈M , which is a contradiction. We get

a similar contradiction if ab = b. If ab = a+b, then 0 = a2b = a(a+b) = a2 +ab = ab;

thus b = 0, which is a contradiction.

Thus in the case that M consists of elements whose square is zero, we must have

that M = {0, a, b, a+ b}, where ab = 0 (that is, M2 = 0).

Therefore if char(R) = 2, we have the following two cases:

1. M = {0, a, a2, a+ a2}, where a3 = 0, or

2. M = {0, a, b, a+ b}, where a2 = b2 = ab = 0 (that is, M2 = 0).

If M = {0, a, a2, a + a2}, where a3 = 0, consider the evaluation homomorphism

φ : Z2[X]→ R given by X 7→ a. Then im(φ) consists of at least the 5 elements

{0, 1, a, a2, a + a2}; whence this map must be onto as R has 8 elements. Since a3 =

0, we have X3 ∈ ker(φ). Notice that Z2[X]/(X3) consists of 8 elements, whence

ker(φ) = (X3). Therefore R ∼= Z2[X]/(X3) by the First Isomorphism Theorem.

If M = {0, a, b, a + b}, where ab = 0 (that is, M2 = 0), then consider the

evaluation homomorphism φ : Z2[X, Y ] → R given by X 7→ a and Y 7→ b. As

before, this map must be onto. Since M2 = 0, we see that (X2, XY, Y 2) ⊆ ker(φ).

As before, Z2[X, Y ]/(X2, XY, Y 2) consists of 8 elements; thus ker(φ) = (X2, XY, Y 2).

Therefore, R ∼= Z2[X, Y ]/(X2, XY, Y 2) by the First Isomorphism Theorem.
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Notice that in the local cases, choosing any ideal consisting of two elements will

give that R/I is a local ring (not a field) consisting of four elements. Thus by

Proposition 2.1, R/I will be isomorphic to Z4 or Z2[X]/(X2). In conclusion, we

have the following result. Recall our following convention: if I is an ideal of R[X],

we will often write R[X]/I = R[x], where x = X + I (the image of the indeterminate

X).

Proposition 2.4. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R. Then ΓI(R) ∼= K2 if and only if R is isomorphic to one of the 7 rings

with corresponding ideal I from Table 2.1.

Table 2.1: When ΓI(R) ∼= K2 and I 6= 0.

Ring Ideal (s)

Z8 (4) = {0, 4}
Z4 × Z2 0× Z2

Z2[X]/(X2)× Z2 0× Z2

Z4[X]/(X2, 2X) (x), (2), or (x+ 2)
Z4[X]/(2X,X2 − 2) (2)
Z2[X]/(X3) (x2)
Z2[X, Y ]/(X2, XY, Y 2) (x), (y), or (x+ y)

During our search for when ΓI(R) ∼= K2, we showed the following result. This

lemma will be useful for the work on when ΓI(R) is planar.

Lemma 2.5. Let R be a commutative local ring of order 8 with nonzero identity

and a maximal ideal consisting of 4 elements. Then R is isomorphic to one of the

following five rings: Z8, Z2[X]/(X3), Z2[X, Y ]/(X2, XY, Y 2), Z4[X]/(X2, 2X), or

Z4[X]/(2X,X2 − 2).

2.3 When ΓI(R) ∼= K3

We now investigate when a nontrivial ΓI(R) is the complete graph on 3 vertices.

Using |V (ΓI(R))| = |I||V (Γ(R/I))| and |I| ≥ 2, we must have |V (Γ(R/I))| = 1 and
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|I| = 3. By Proposition 2.2, |V (Γ(R/I))| = 1 implies that R/I ∼= Z4 or Z2[X]/(X2).

Thus |R/I| = |R|/|I| gives |R| = 12. We express R as a product of finite local rings.

Using that finite local rings have cardinality a power of a prime, the only possibilities

(up to isomorphism) for the factorization are as follows:

1. R1 ×R2 ×R3, where |R1| = |R2| = 2 and |R3| = 3,

2. R1 ×R2, where |R1| = 3 and |R2| = 4.

In the first possible factorization, |R1| = |R2| = 2 and |R3| = 3 ⇒ R1
∼= R2

∼= Z2

and R3
∼= Z3. Thus R ∼= Z2 ×Z2 ×Z3. The only ideal of this ring consisting of three

elements is 0 × 0 × Z3; thus R/I ∼= Z2 × Z2. But this fails to meet the hypothesis

that |Z(R/I)∗| = 1.

In the second factorization, |R1| = 3 ⇒ R1
∼= Z3. Then R ∼= Z3 × R2, where

|R2| = 4. Since the only ideal of Z3 × R2 consisting of three elements is Z3 × 0, it

follows that R/I ∼= R2. Using that R/I must be isomorphic to Z4 or Z2[X]/(X2), we

have R2
∼= Z4 or Z2[X]/(X2).

Therefore we have the following result.

Proposition 2.6. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R. Then ΓI(R) ∼= K3 if and only if R is isomorphic to one of the 2 rings

with respective ideal I from Table 2.2.

Table 2.2: When ΓI(R) ∼= K3 and I 6= 0

Ring Ideal

Z3 × Z4 Z3 × 0
Z3 × Z2[X]/(X2) Z3 × 0
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2.4 When ΓI(R) ∼= K4

We now consider when a nontrivial ΓI(R) is the complete graph on 4 vertices (K4).

When 4 = |V (ΓI(R))| = |I||V (Γ(R/I))| and |I| ≥ 2, we have two possibilities:

1. |I| = 4 and |V (Γ(R/I))| = 1, or

2. |I| = 2 and |V (Γ(R/I))| = 2.

Case 1. |I| = 4 and |V (Γ(R/I))| = 1 Recall that |V (Γ(R/I))| = 1 implies that

R/I is isomorphic to Z4 or Z2[X]/(X2) by Proposition 2.2 . So |I| = 4 and |R/I| = 4,

and therefore |R| = 16. Again, we will proceed by writing R as a product of finite

local rings. Using that |S| = 2⇒ S ∼= Z2, we see that R must be isomorphic to one

of the following products, where each Ri is a finite local ring.

1. Z2 × Z2 × Z2 × Z2,

2. Z2 × Z2 ×R1, where |R1| = 4,

3. Z2 ×R1, where |R1| = 8,

4. R1 ×R2, where |R1| = |R2| = 4, or

5. R1, where |R1| = 16.

Factorization 1)

It is evident (since |I| = 4) that I will be a product of 2 Z2’s and 2 zero’s.

Thus R/I ∼= Z2 × Z2 which (as several times before) violates the hypothesis that

1 = |V (Γ(R/I))| = |Z(R/I)∗|.

Factorization 2)

Since |I| = 4, I must be of one of the following types.

I =


Z2 × Z2 × 0,

0× 0×R1, or

0× Z2 × I1 or Z2 × 0× I1.
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In the above, I1 is an ideal of R1 with |I1| = 2. Then in each respective case, we

have that

R/I ∼=


R1,

Z2 × Z2, or

Z2 × 0× Z2 or 0× Z2 × Z2
∼= Z2 × Z2.

As before, we can not have R/I ∼= Z2 × Z2; whence we must have that R ∼=

Z2 × Z2 × R1, I = Z2 × Z2 × 0, and R/I ∼= R1. Since R/I ∼= Z4 or Z2[X]/(X2), it

follows that the only possibilities are as follows:

1. Z2 × Z2 × Z4, I = Z2 × Z2 × 0, or

2. Z2 × Z2 × Z2[X]/(X2), I = Z2 × Z2 × 0.

Factorization 3)

We have R ∼= Z2 × R1, where R1 is a local ring with 8 elements. Then since

|I| = 4, we must have that (a) I = Z2 × I1, where |I1| = 2 OR (b) I = 0× I2, where

|I2| = 4.

One can see that case (b) will not occur, since as before, R/I ∼= Z2×Z2 under such

circumstances. In the case of (a), R/I ∼= 0× R1/I1. Thus we must have R1/I1
∼= Z4

or Z2[X]/(X2). Since R1 is a local ring of order 8, it must be isomorphic to one of the

5 rings from Lemma 2.5. Notice that each of these rings contain a non-maximal ideal

I1 of order 2. Hence each R1/II will be isomorphic to either Z4 or Z2[X]/(X2) by

Lemma 2.1. Thus in the case of the third possible factorization, R must be isomorphic

to one of the following rings with corresponding ideal I:

1. Z2 × Z8, I = Z2 × (4),

2. Z2 × Z4[X]/(X2, 2X), I = Z2 × I1, I1 = {0, x}, {0, 2}, or {0, x+ 2},

3. Z2 × Z4[X]/(2X,X2 − 2), I = Z2 × {0, 2},

4. Z2 × Z2[X]/(X3), I = Z2 × {0, x2}, or

5. Z2 × Z2[X, Y ]/(X2, XY, Y 2), I = Z2 × I1, I1 = {0, x}, {0, y}, or {0, x+ y}.
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Factorization 4)

In this case, R is isomorphic to a product of two local rings each of order 4. By

Lemma 2.1, R is isomorphic to one of the following rings:

R ∼=



Z4 × Z4,

Z4 × Z2[X]/(X2),

Z4 × F4,

Z2[X]/(X2)× Z2[X]/(X2),

Z2[X]/(X2)× F4, or

F4 × F4.

It now suffices to find all ideals of order 4 in the preceding rings such that R/I ∼= Z4

or Z2[X]/(X2). Notice that F4×F4 only has ideals 0×F4 and F4×0 of order 4; but in

both cases R/I ∼= F4 which does not meet our hypothesis. Using that ideals of R×S

are of the form I × J , where I is an ideal of R and J is an ideal of S, we can rather

easily consider all ideals of order 4 from the remaining possible rings. By inspection,

we get that R must be isomorphic to one of the following rings with corresponding

ideal I:

R ∼=



Z4 × Z4, I = Z4 × 0 or 0× Z4,

Z4 × Z2[X]/(X2), I = Z4 × 0 or 0× Z2[X]/(X2),

Z4 × F4, I = 0× F4

Z2[X]/(X2)× Z2[X]/(X2), I = Z2[X]/(X2)× 0 or 0× Z2[X]/(X2), or

Z2[X]/(X2)× F4, I = 0× F4.

Factorization 5)

We have now arrived at the final possible factorization: where R is a finite local

ring with 16 elements. For this case, we turn to a pair of papers by Corbas and

Williams ([15] and [16]). In the paper “Planar zero-divisor graphs” ([13]), the authors

use Corbas’ and Williams’ paper to conclude there are 21 commutative local rings
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with identity of order 16, up to isomorphism. Since the rings we are interested in

must have a non-maximal ideal with 4 elements (because R/I is not a field since

it has 2 zero-divisors), we must have |M | = 8. Below, we give each ring and their

corresponding maximal ideal. We use the facts that Z(R) = M and |M | ∈ {1, 2, 4, 8}

to find each maximal ideal. The calculations are fairly easy when the indeterminates

are zero-divisors, and hence in the maximal ideal. Recall our following convention: if

I is an ideal of R[X], we will often write R[X]/I = R[x], where x = X+ I (the image

of the indeterminate X).

1. F16, M = 0.

2. F4[X]/(X2), M = {0, x, ax, bx} (adding any other element to this ideal yields

1 ∈M), where F4 = {0, a, b, c}.

3. Z2[X]/(X4), M = {0, x, x2, x3, x2 + x, x3 + x, x3 + x2, x3 + x2 + x}.

4. Z2[X, Y ]/(X3, XY, Y 2), M = {0, x, y, x+ y, x2, x2 + x, x2 + y, x2 + x+ y}.

5. Z2[X, Y ]/(X2 − Y 2, XY ), M = {0, x, y, x+ y, x2, x2 + x, x2 + y, x2 + x+ y}.

6. Z2[X, Y ]/(X2, Y 2), M = {0, x, y, x+ y, xy, x+ xy, y + xy, x+ y + xy}.

7. Z2[X, Y, Z]/(X, Y, Z)2. Here (X, Y, Z)2 = (X2, Y 2, Z2, XY, Y Z,XZ) and M =

{0, x, y, z, x+ y, x+ z, y + z, x+ y + z}.

8. Z4[X]/(X2 +X + 1). Here x2 = −x− 1 = 3x+ 3.

Notice that in this case x 6∈ M . As otherwise, x2 = 3x + 3, but

2 ∈ Z(R)⇒ x+ 2 and 3x + 3 ∈ M . Whence 1 = (x + 2) + (3x + 3) ∈ M ,

which is impossible.

Since 2 is a zero-divisor, we see that {0, 2, 2x, 2 + 2x} ⊆M .

Notice in this ring that x is a unit with inverse x2 = 3x + 3 since xx2 =

x(3x + 3) = 3x2 + 3x = 3(3 + 3x) + 3x = 1 + x + 3x = 1. This, along with
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the fact that 3 is a unit in this ring, gives 3, x, 3 + 3x, 3x are all units of the

ring. Using this, we can see that adjoining any additional elements to the set

{0, 2, 2x, 2+2x} will produce a unit in the ideal, whence M = {0, 2, 2x, 2x+2}.

9. Z4[X]/(2X,X3 − 2), M = {0, 2, x, x+ 2, x2, x2 + 2, x2 + x, x2 + x+ 2}.

10. Z4[X]/(X2− 2). Here x2 = 2, whence 2x(x) = 2x2 = 0. Thus M = {0, x, 2, x+

2, 2x, 3x, 2x+ 2, 3x+ 2}.

11. Z4[X]/(X2 − 2X − 2). Here x2 = 2x+ 2, and thus 2x2 = 0⇒ (2x)(x) = 0. So

M = {0, 2, x, 2x, x+ 2, 3x, 2x+ 2, 3x+ 2}.

12. Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

13. Z4[X, Y ]/(X2 − 2, XY, Y 2 − 2, 2X).

In this case, M = {0, 2, x, y, x+ y, x+ 2, y+ 2, x+ y+ 2} as before. Notice that

the multiplication structure is different for this ring.

14. Z4[X, Y ]/(X2, XY − 2, Y 2), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

15. Z4[X]/(2X,X3), M = {0, x, 2, x2, x+ 2, x2 + 2, x2 + x, x2 + x+ 2}.

16. Z4[X]/(X2), M = {0, 2, x, x+ 2, 2x, 2x+ 2, 3x, 3x+ 2}.

17. Z4[X]/(X2 − 2X), M = {0, 2, x, 2x, x+ 2, 2x+ 2, 3x, 3x+ 2}.

18. Z4[X, Y ]/(2, X, Y )2, M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

19. Z8[X]/(2X,X2), M = {0, 2, 4, 6, x, x+ 2, x+ 4, x+ 6}.

20. Z8[X]/(2X,X2 − 4) This ring has the “same” maximal ideal as the preceding

case, M = {0, 2, 4, 6, x, 2 + x, 4 + x, 6 + x}. Notice that the multiplication

structure is different for this ring.

21. Z16, M = (2) = {0, 2, 4, 6, 8, 10, 12, 14}.
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In the preceding 21 cases, we see that only cases 1, 2, and 8 are local rings with

maximal ideals of cardinality not equal to 8. Thus there are 18 local rings with 16

elements and maximal ideal consisting of 8 elements. Notice that in each of these

cases, it suffices simply to find an ideal consisting of 4 elements from M . This is the

case since |R/I| = 4 and R/I will be a local ring which is not a field. We have seen

that the local rings of order 4 which are not fields are precisely those with |Z(R)∗| = 1

(Lemma 2.1).

We now proceed to investigate the ideals of four elements from the 18 afore-

mentioned rings.

In the ring Z4[X]/(2X,X3− 2), we notice that for any element a ∈M \ {0, 2}, we

have (a) = M . Moreover, (2) = {0, 2}. From this, we see that the ring has no ideal

I such that |I| = 4. The rest of the rings have at least one ideal consisting of four

elements. We list each ring below and all corresponding ideals of order 4. To find

all ideals of order 4 for each ring, we found all possible subsets of the maximal ideal

consisting of zero and three other elements. In each case, we had
(

7
5

)
= 35 possible

subsets. For each, we found those which were ideals of R.

1. Z2[X]/(X4), M = {0, x, x2, x3, x+ x2, x+ x3, x2 + x3, x+ x2 + x3};

I = {0, x2, x3, x2 + x3}.

2. Z2[X, Y ]/(X3, XY, Y 2), M = {0, x, y, x+ y, x2, x+ x2, y + x2, x+ y + x2};

I = {0, x, x2, x+ x2}, {0, y, x2, y + x2}, or {0, x+ y, x2, x+ y + x2}

3. Z2[X, Y ]/(X2 − Y 2, XY ), M = {0, x, y, x2, x+ y, y + x2, x+ y + x2, x+ x2};

I = {0, x, x2, x+ x2}, {0, y, x2, y + x2}, or {0, x2, x+ y, x+ y + x2}.

4. Z2[X, Y ]/(X2, Y 2), M = {0, x, y, x+ y, xy, x+ xy, y + xy, x+ y + xy};

I = {0, x, xy, x+ xy}, {0, y, xy, y + xy}, or {0, x+ y, xy, x+ y + xy}.

5. Z2[X, Y, Z]/(X, Y, Z)2, M = {0, x, y, z, x+ y, x+ z, y + z, x+ y + z};
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I = {0, z, x+y, x+y+ z}, {0, x, y+ z, x+y+ z}, {0, x, z, x+ z}, {0, y, z, y+ z},

{0, x, y, x+ y}, {0, x+ y, x+ z, y + z}, or {0, y, x+ z, x+ y + z}.

6. Z4[X]/(X2 − 2), M = {0, 2, x, 2 + x, 2x, 3x, 2x+ 2, 3x+ 2};

I = {0, 2, 2x, 2 + 2x}.

7. Z4[X]/(X2 − 2X − 2), M = {0, 2, x, 2x, x+ 2, 3x, 2x+ 2, 3x+ 2};

I = {0, 2, 2x, 2 + 2x} (notice that (x) = M , from this one can see this is the

only ideal with four elements).

8. Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2};

I = {0, 2, x, 2 + x}, {0, 2, y, y + 2}, or {0, 2, x+ y, x+ y + 2}.

9. Z4[X, Y ]/(X2−2, XY, Y 2−2, 2X), M = {0, 2, x, y, x+y, x+2, y+2, x+y+2};

I = {0, 2, x, 2 + x}, {0, 2, y, y + 2}, or {0, 2, x+ y, x+ y + 2}.

10. Z4[X, Y ]/(X2, XY − 2, Y 2), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2};

I = {0, 2, x, x + 2}, {0, 2, y, y + 2}, or {0, 2, x + y, x + y + 2} (notice that

(x, y) = M).

11. Z4[X]/(2X,X3), M = {0, 2, x, x2, x+ 2, x2 + 2, x+ x2, x+ x2 + 2};

I = {0, 2, x2, x2 + 2}, {0, x, x2, x+ x2}, or {0, x2, x+ 2, x+ x2 + 2} (notice that

(x, 2) = M).

12. Z4[X]/(X2) = {0, 2, x, x+ 2, 2x, 2x+ 2, 3x, 3x+ 2};

I = {0, 2, 2x, 2x+ 2}, {0, 2x, 3x+ 2, x+ 2}, or {0, x+ 2, 2x, 3x+ 2}.

13. Z4[X]/(X2 − 2X), M = {0, x, 2, 2x, x+ 2, 2x+ 2, 3x, 3x+ 2};

I = {0, x, 2x, 3x}, {0, 2, 2x, 2x+ 2}, or {0, 2x, x+ 2, 3x+ 2}.

14. Z4[X, Y ]/(2, X, Y )2, M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2};
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I = {0, 2, x, x + 2}, {0, 2, y, y + 2}, {0, 2, x + y, x + y + 2}, {0, x, y, x + y},

{0, x, y + 2, x+ y + 2}, {0, y, x+ 2, x+ y + 2}, or {0, x+ y, x+ 2, y + 2}.

15. Z8[X]/(2X,X2), M = {0, 2, 4, 6, x, x+ 2, x+ 4, x+ 6};

I = {0, 2, 4, 6}, {0, 4, x, x+ 4}, or {0, 4, x+ 2, x+ 6}.

16. Z8[X]/(2X,X2 − 4), M = {0, 2, 4, 6, x, x+ 2, x+ 4, x+ 6};

I = {0, 2, 4, 6}, {0, 4, x, x+ 4}, or {0, 4, x+ 2, x+ 6}.

17. Z16, M = (2) = {0, 2, 4, 6, 8, 10, 12, 14};

I = {0, 4, 8, 12}.

Thus there are 17 possible rings up to isomorphism which contain an ideal I of

order 4 such that ΓI(R) ∼= K4.

This concludes the first case (|I| = 4 and |V (Γ(R/I))| = 1). We now proceed to

the second case for ΓI(R) ∼= K4.

Case 2. |I| = 2 and |V (Γ(R/I))| = 2.

We begin by noticing that R/I has the zero-divisor graph K2 and both vertices

must be nilpotent (in order for both to be connected columns). Thus we must have

that R/I is not reduced. From [5, Example 2.1(a)], we have that Γ(R/I) ∼= K2 ⇔

R/I ∼= Z9, Z2 × Z2, or Z3[X]/(X2). Notice that Z2 × Z2 is reduced; thus ΓI(R) will

not be a complete graph if R/I ∼= Z2×Z2. So we have that R/I ∼= Z9 or Z3[X]/(X2).

Thus |R| = 18 since |Z9| = |Z3[X]/(X2)| = 9 and |R| = |I||R/I|.

Using that R will be isomorphic to a product of finite local rings and that finite

local rings must have cardinality a power of a prime, we have that one of the following

two cases must hold:

1. R ∼= Z2 ×R1, where |R1| = 9 and R1 is local, or

2. R ∼= Z2 × Z3 × Z3.

26



Notice that the second case can not happen as then |I| = 2⇒ R/I ∼= Z3×Z3. But

Γ(Z3 × Z3) ∼= K2,2 6∼= K2. In the first case, the only ideal consisting of two elements

is Z2 × 0; whence R/I ∼= R1. Therefore, R1
∼= Z9 or Z3[X]/(X2). This concludes the

investigation of when ΓI(R) ∼= K4. The latter work gives the following proposition.

Proposition 2.7. Let R be a commutative ring with nonzero identity and I a

nonzero ideal of R. Then ΓI(R) ∼= K4 if and only if R is isomorphic to one of

the 31 rings with corresponding ideal I from Table 2.3.
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Table 2.3: When ΓI(R) ∼= K4 and I 6= 0

Ring Ideal(s)

Z2 × Z2 × Z4 Z2 × Z2 × 0
Z2 × Z2 × Z2[X]/(X2) Z2 × Z2 × 0
Z2 × Z8 Z2 × (4)
Z2 × Z4[X]/(X2, 2X) Z2 × I1, I1 = (x), (2), or (x+ 2)
Z2 × Z4[X]/(2X,X2 − 2) Z2 × (2)
Z2 × Z2[X]/(X3) Z2 × (x2)
Z2 × Z2[X, Y ]/(X2, XY, Y 2) Z2 × I1, I1 = (x) or I1 = (y)
Z4 × Z4 0× Z4 or Z4 × 0
Z4 × Z2[X]/(X2) 0× Z2[X]/(X2) or Z4 × 0
Z2[X]/(X2)× Z2[X]/(X2) 0× Z2[X]/(X2) or Z2[X]/(X2)× 0
Z4 × F4 0× F4

Z2[X]/(X2)× F4 0× F4

Z2[X]/(X4) {0, x2, x3, x2 + x3}
Z2[X, Y ]/(X3, XY, Y 2) {0, x, x2, x+ x2}, {0, y, x2, y + x2},

or {0, x+ y, x2, x+ y + x2}
Z2[X, Y ]/(X2 − Y 2, XY ) {0, x, x2, x+ x2}, {0, y, x2, y + x2},

or {0, x2, x+ y, x+ y + x2}
Z2[X, Y ]/(X2, Y 2) {0, x, xy, x+ xy}, {0, y, xy, y + xy},

or {0, x+ y, xy, x+ y + xy}
Z2[X, Y, Z]/(X, Y, Z)2 I = {0, z, x+ y, x+ y + z}, {0, x, y + z, x+ y + z},

{0, x, z, x+ z}, {0, y, z, y + z}, {0, x, y, x+ y},
{0, x+ y, x+ z, y + z}, or {0, y, x+ z, x+ y + z}

Z4[X]/(X2 − 2) {0, 2, 2x, 2 + 2x}
Z4[X]/(X2 − 2X − 2) {0, 2, 2x, 2 + 2x}
Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X) {0, 2, x, 2 + x}, {0, 2, y, y + 2},

or {0, 2, x+ y, x+ y + 2}
Z4[X, Y ]/(X2 − 2, XY, Y 2 − 2, 2X) {0, 2, x, 2 + x}, {0, 2, y, y + 2},

or {0, 2, x+ y, x+ y + 2}
Z4[X, Y ]/(X2, XY − 2, Y 2) {0, 2, x, x+ 2}, {0, 2, y, y + 2},

or {0, 2, x+ y, x+ y + 2}
Z4[X]/(2X,X3) {0, 2, x2, x2 + 2}, {0, x, x2, x+ x2},

or {0, x2, x+ 2, x+ x2 + 2}
Z4[X]/(X2) {0, 2, 2x, 2x+ 2}, {0, 2x, 3x+ 2, x+ 2},

or {0, x+ 2, 2x, 3x+ 2}
Z4[X]/(X2 − 2X) {0, x, 2x, 3x}, {0, 2, 2x, 2x+ 2},

or {0, 2x, x+ 2, 3x+ 2}
Z4[X, Y ]/(2, X, Y )2 {0, 2, x, x+ 2}, {0, 2, y, y + 2},

{0, 2, x+ y, x+ y + 2}, {0, x, y, x+ y},
{0, x, y + 2, x+ y + 2}, {0, y, x+ 2, x+ y + 2},
or {0, x+ y, x+ 2, y + 2}

Z8[X]/(2X,X2) {0, 2, 4, 6}, {0, 4, x, x+ 4},
or {0, 4, x+ 2, x+ 6}

Z8[X]/(2X,X2 − 4) {0, 2, 4, 6}, {0, 4, x, x+ 4},
or {0, 4, x+ 2, x+ 6}

Z16 (4) = {0, 4, 8, 16}
Z2 × Z9 Z2 × 0
Z2 × Z3[X]/(X2) Z2 × 0
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2.5 Summary and Kp

We summarize the work in the preceding three sections as follows:

Proposition 2.8. Let R be a commutative ring with nonzero identity and I a

nonzero ideal of R. Then ΓI(R) is a complete graph on fewer than five vertices

if and only if R is isomorphic to one of the 38 rings with corresponding ideal as

found in Table 2.1, Table 2.2, or Table 2.3.

One might ask where Z18 appears in these tables when |R| = 18. This ring is

listed; note that Z18
∼= Z2 ×Z9. To see the preceding, we have 92 = 9 in Z18; whence

Z18
∼= 9Z18 × (1− 9)Z18

∼= Z2 × Z9.

The next natural question is when do we have a nontrivial ΓI(R) which is complete

on 5 vertices. In researching the latter, we quickly saw a pattern and produced a more

general result.

Proposition 2.9. Let R be a commutative ring with nonzero identity and p an odd

prime. Then ΓI(R) ∼= Kp for I a nonzero ideal of R if and only if R is isomorphic to

one of the following rings with corresponding ideal I: Zp × Z4 or Zp × Z2[X]/(X2),

where I = Zp × 0.

Proof. The reverse implication is evident. Assume that ΓI(R) ∼= Kp. Since |I| ≥

2, p = |V (Γ(R))| = |I||V (Γ(R/I))|, and p is prime, it follows that |I| = p and

|V (Γ(R/I))| = 1. By Proposition 2.2, |V (Γ(R/I))| = 1⇒ R/I ∼= Z4 or Z2[X]/(X2).

Thus |R| = 4|I| = 4p.

We now use that R is isomorphic to a finite product of finite local rings. Since p

is an odd prime, we have that the only possible factorizations are as follows (where

R1 is a local ring with four elements):

R ∼=

 Zp ×R1,

Zp × Z2 × Z2.
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Notice that in the above we are using that a finite local ring must have cardinality

a power of prime (since p is an odd prime, neither 2p nor 4p is a power of prime).

It is evident that the only ideal of the second factorization consisting of p elements

is Zp × 0× 0, but then R/I ∼= Z2 × Z2 which has |V (Γ(R/I))| = 2. Thus the second

factorization can not occur. Whence we must have that R ∼= Zp ×R1, where R1 is a

local ring with 4 elements. Again we must have I = Zp× 0; whence R/I ∼= R1. Thus

R1
∼= Z4 or Z2[X]/(X2). The desired result then follows.

Recall that a prime is called a Mersenne prime if and only if it is of the form

2k − 1, where k ∈ N. By considering odd primes that are not Mersenne primes, we

may remove the nonzero ideal hypothesis in the previous proposition.

Corollary 2.10. Let R be a commutative ring with nonzero identity and I an ideal

of R (possibly the zero ideal). Let p be an odd prime number that is not a Mersenne

prime. Then ΓI(R) ∼= Kp if and only if R is isomorphic to one of the following rings

with corresponding ideal I: Zp × Z4 or Zp × Z2[X]/(X2), where I = Zp × 0.

Proof. In [7, Theorem 2.10 and Example 2.11(a)], the authors showed that there is

a ring R such that Γ(R) is complete on p vertices if and only if p = qn − 1 for some

prime q. Now qn − 1 is prime implies that q = 2 or n = 1. If n = 1, then q − 1 is

prime if and only if q = 3. In this case, we must have p = 2 which does not meet

the hypothesis. Hence q = 2; so it follows that the only odd primes p for which there

is a ring R that has Γ(R) complete on p vertices are Mersenne primes. Thus for all

primes p that are not Mersenne, in order for ΓI(R) to be complete on p vertices, we

must have I 6= 0. The result then follows from Proposition 2.9.
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Chapter 3

When ΓI(R) is Planar

Now that the classification work is out of the way, we will continue with the

investigation of when ideal-based zero-divisor graphs are planar. Recall that we

consider ΓI(R) to be a nontrivial ideal-based zero divisor graph provided I is a

nonzero, proper, non-prime ideal of R. The latter requirements force ΓI(R) to be

distinct from Γ(R) and to be nonempty.

Recall that a graph G is planar if it can be drawn in a plane so that no two edges

cross. Research on classifying all finite commutative rings with nonzero identity

having nonempty planar zero-divisor graph has been done in [1, 5, 13, 33, 34, 36].

Work has also be done regarding when infinite commutative rings have planar zero-

divisor graphs [35].

This chapter will utilize the well-known Kuratowski’s Theorem from graph-theory.

The statement of this theorem is included in the Introduction (Theorem 1.10).

Example 1.11 shows an application of Kuratowski’s Theorem.

3.1 Restraints on |I| and gr(Γ(R/I))

We begin by investigating what restraints planarity forces on the graphs of Γ(R/I)

and ΓI(R).
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Proposition 3.1. Let R be a commutative ring with nonzero identity and I an ideal

of R. If ΓI(R) is planar, then |I| ≤ 2 or |V (Γ(R/I))| ≤ 1.

Proof. (By Contrapositive) Assume |I| ≥ 3 and |V (Γ(R/I))| ≥ 2. Then there are

distinct adjacent vertices x + I, y + I in Γ(R/I). Since |I| ≥ 3, there are distinct

elements 0, i, j of I. Note that the subgraph of ΓI(R) generated by {x, y, x + i, y +

i, x + j, y + j} = {x, x + i, x + j} ∪ {y, y + i, y + j} contains a subgraph isomorphic

to K3,3. Thus ΓI(R) is nonplanar by Kuratowski’s Theorem.

Remark 3.2. In the proof of Proposition 3.1, we considered the subgraph of ΓI(R)

generated by {x, y, x + i, y + i, x + j, y + j}; call this subgraph G. We noted that G

contained a subgraph isomorphic to K3,3. It is possible that G contains more edges

than K3,3 (this would be the case when either x2 ∈ I or y2 ∈ I).

Proposition 3.3. Let R be a commutative ring with nonzero identity and I an ideal

of R. If |V (Γ(R/I))| = 1, then ΓI(R) is planar if and only if 1 ≤ |I| ≤ 4.

Proof. By Proposition 2.2, |Γ(R/I)| = 1 ⇔ |Z(R/I)∗| = 1 ⇔ R/I ∼= Z4 or

Z2[X]/(X2) . In both cases, I is not a radical ideal. Thus by Redmond’s construction

method of ΓI(R), ΓI(R) = K |I|. The result then follows since K |I| is planar if and

only if 1 ≤ |I| ≤ 4 (by Kuratowski’s Theorem).

It now suffices to consider the case when |I| = 2 and Γ(R/I) has at least

two distinct vertices. We will approach the problem by considering the different

possibilities for gr(Γ(R/I)). The girth of a graph G, denoted gr(G), is defined to the

length of a shortest cycle in G provided a cycle exists and ∞ otherwise. Recall that

gr(Γ(R/I)) ∈ {3, 4,∞} [11, 17, 25, 37].

Proposition 3.4. Let R be a commutative ring with nonzero identity and I an ideal

of R. If |I| = 2 and gr(Γ(R/I)) = 4, then ΓI(R) is nonplanar. Moreover, if I is

nonzero and gr(Γ(R/I)) = 4, then ΓI(R) is nonplanar.
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Figure 3.1: Subgraph when gr(Γ(R/I)) = 4

Proof. Since gr(Γ(R/I)) = 4, there exists vertices a+I, b+I, c+I, d+I of Γ(R/I) that

form a 4-cycle. Moreover, since |I| = 2, there exists 0 6= i ∈ I. Thus by Redmond’s

construction of ΓI(R) based on Γ(R/I), we see that ΓI(R) will have a subgraph as in

Figure 3.1.

Notice that the vertex sets A = {a, a + i, c} and B = {b, b + i, d + i} induce a

subgraph isomorphic to K3,3. Whence by Kuratowski’s Theorem, ΓI(R) is nonplanar.

The “moreover statement” follows by combining Proposition 3.1 and this result.

The following is [30, Theorem 7.2]:

Let I be a proper, nonzero ideal of a ring R that is not a prime ideal. Then ΓI(R)

is planar if and only if ω(Γ(R/I)) ≤ 2 (i.e., Γ(R/I) has no cycles) and either (a)

|I| = 2 or (b) Γ(R/I) consists of a single vertex and |I| ≤ 4.

Here ω(G) is the clique number of a graph G. A clique of a graph G is a subgraph

of G such that G ∼= Kn for some n ∈ N. If a graph has no cliques, we set the clique

number of G to be zero; otherwise we set the clique number to the sup{n | Kn is

isomorphic to a subgraph of G}. Notice that the clique number of a graph can be

infinity.

If Γ(R/I) consists solely of a four-cycle (as the subgraph in our previous proof),

then ω(Γ(R/I)) = 2. So Redmond’s Theorem 7.2 would imply that the induced

subgraph from the preceding proof would be planar. However, we exhibited that this

was not the case. For a concrete counterexample, consider R = Z3 × Z3 × Z2 and

I = 0 × 0 × Z2 (See Figure 3.1 for an isomorphic copy of ΓI(R)) . We note that in
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ΓI(R) Re-drawn ΓI(R)

Figure 3.2: Subgraph when gr(Γ(R/I)) = 3 and I radical

Redmond’s statement of the theorem, Redmond wrote “ω(Γ(R/I)) ≤ 2 (i.e., Γ(R/I)

has no cycles)”. Although this statement is invalid, the theorem holds if we replace

the clique number hypothesis with “Γ(R/I) has no cycles” (i.e., gr(Γ(R/I) =∞).

We continue our investigation of the problem by now considering the girth 3 case.

Proposition 3.5. Let R be a commutative ring with nonzero identity and I an ideal

of R. If |I| = 2, I =
√
I, and Γ(R/I) = K3, then ΓI(R) is planar.

Proof. Under these assumptions, we have that I = {0, i} and Γ(R/I) is a 3-cycle on

vertices a+ I, b+ I, and c+ I. Since I =
√
I, ΓI(R) will be isomorphic to the graph

in Figure 3.2. We can then see by inspection that this graph can be re-drawn so that

edges do not cross. Thus ΓI(R) is planar.

It turns out the preceding result is rendered mute. In Example 2.1 of [5, pp. 2,3],

it was shown that Γ(R) ∼= K3 if and only R is isomorphic to one of the following four

rings: F4[X]/(X2),Z4[X]/(X2 + X + 1),Z4[X]/(2, X)2, or Z2[X, Y ]/(X, Y )2. Thus

in the preceding proposition, Γ(R/I) ∼= K3 if and only if R/I is isomorphic to one

of the four previously mentioned rings. Since these rings are non-reduced, it follows

that R/I is non-reduced. Since R/I is non-reduced if and only if I is not a radical

ideal of R, it follows that the hypothesis of the preceding proposition is vacuous.

This observation lends light to Redmond’s argument in [30, Theorem 7.2] in the

following manner. He argues in his proof that if Γ(R/I) ∼= K3, then one can verify
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Figure 3.3: Subgraph of ΓI(R) when gr(R/I) = 3 and |I| ≥ 2

that ΓI(R) is nonplanar by exhibiting a subgraph of ΓI(R) isomorphic to K3,3. This

is the case if one takes into consideration that I must be a non-radical ideal of R,

and hence ΓI(R) has a connected column.

In light of this observation, we come to the following proposition.

Proposition 3.6. Let R be a commutative ring with nonzero identity and I an

ideal of R. If gr(Γ(R/I)) = 3 and |I| = 2, then ΓI(R) is nonplanar. Moreover,

if gr(Γ(R/I)) = 3 and I is nonzero, then ΓI(R) is nonplanar.

Proof. First assume that Γ(R/I) ∼= K3. By the preceding observations, it follows

that I is not a radical ideal. Since Γ(R/I) ∼= K3, we have that Γ(R/I) consists solely

of a three-cycle, say a+ I − b+ I − c+ I − a+ I. Since I 6=
√
I, at least one of the

elements a, b, c is in
√
I. Without loss of generality, assume that c2 ∈ I. Then using

Redmond’s Construction Method, ΓI(R) will have a subgraph as in Figure 3.3.

The vertex sets {a, c, a+ i} and {b, b+ i, c+ i} induce a subgraph of the preceding

graph isomorphic to K3,3. Thus ΓI(R) is nonplanar by Kuratowski’s Theorem.

If Γ(R/I) 6∼= K3, then since gr(Γ(R/I)) = 3, we have that Γ(R/I) does not consist

solely of a three-cycle. Thus it follows that Γ(R/I) would have a subgraph as in Figure

3.4 (A). Therefore, again using Redmond’s construction method, ΓI(R) would have

the subgraph as in Figure 3.4 (B).
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(A) (B)

Figure 3.4: Subgraphs when gr(Γ(R/I)) = 3, |I| = 2, and ΓI(R) 6∼= K3

Taking a subdivision of this graph by replacing c− d− c+ i with c− c+ i, we get

a subdivision of ΓI(R) which contains a subgraph isomorphic to the graph in Figure

3.3. Thus ΓI(R) is nonplanar (since we have already shown that the graph in Figure

3.3 was nonplanar). The “moreover statement” follows from Proposition 3.1 and this

result.

It now remains only to investigate the case when gr(Γ(R/I)) = ∞ (i.e., Γ(R/I)

has no cycles) and |I| = 2. A natural question is whether or not I being a radical

ideal of R will affect the planarity of ΓI(R); in this case, it turns out that it does not.

Proposition 3.7. Let R be a finite commutative ring with nonzero identity and I

an ideal of R. If |I| = 2 and gr(Γ(R/I)) =∞, then ΓI(R) is planar.

Proof. If I is a prime ideal of R or I = R, then both Γ(R/I) and ΓI(R) are empty,

and hence planar. Assume that I is a proper, non-prime ideal of R.

Now Γ(R/I) is nonempty since I is a proper, non-prime ideal of R. We handled

the case when V (Γ(R/I)) is a singleton in Proposition 3.3; so we may assume that

|V (Γ(R/I))| ≥ 2. It then follows from [8, Theorems 2.4 and 2.5] that Γ(R/I) is

isomorphic to either K
1,3

or K1,n for some n ≥ 1.

We begin with the case that Γ(R/I) is a star graph (Γ(R/I) ∼= K1,n), say with

center c, ends ak, and I = {0, i}. Using Redmond’s construction method and the fact
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(A) (B)

Figure 3.5: Graphs for Proposition 3.7

that |I| = 2, we can draw ΓI(R) as in Figure 3.5 (A). The dotted or hash-mark lines

indicate lines that occur if and only if the vertex is in a connected column (recall

connected columns exist if and only if I is a non-radical ideal). As drawn, we see that

ΓI(R) is planar. It is important to note that we are using the finite hypothesis here.

In order for the drawing of Figure 3.5 (A) to be make sense, there needs to be some

constraints on the cardinality of vertices of Γ(R/I).

If Γ(R/I) ∼= K
1,3

, then one can see (regardless of whether or not I =
√
I) that

ΓI(R) is planar. Using dotted or hash-mark lines as before, we can draw ΓI(R) as in

Figure 3.5 (B).

Thus in all cases, ΓI(R) is planar as desired.

We hypothesize that that the preceding result holds provided n is either finite or

ℵ0.

Combining all these results, we get a theorem which turns out to be only a

slight modification of Redmond’s Theorem 7.2. As previously mentioned, Redmond’s

statement of the theorem seems incorrect due to using the hypothesis ω(Γ(R/I)) ≤ 2

instead of gr(Γ(R/I)) = ∞. Moreover, it seems that in Redmond’s proof a key

observation (that appears to go unmentioned) was that Γ(R/I) ∼= K3 implies

that R/I is non-reduced. Combining the previous propositions (and noting that

Proposition 3.5 can not happen) yields the following theorem.
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Theorem 3.8. Let I be a nonzero, proper, non-prime ideal of a finite commutative

ring R with nonzero identity. Then ΓI(R) is planar if and only if gr(Γ(R/I)) = ∞

and either (a) |I| = 2 or (b) |V (Γ(R/I))| = 1 and |I| ∈ {2, 3, 4}.

Notice that the only place we required the finite hypothesis in the preceding

was when |I| = 2 and gr(R/I) = ∞. In the next section, we will classify all

commutative rings with nonzero identity satisfying the preceding theorem. During

this classification, the finite hypothesis will again only be required for the case when

|I| = 2 and gr(Γ(R/I)) = ∞. So this result and the classification (to follow)

can be generalized simply by handling the case when R is infinite, |I| = 2, and

gr(Γ(R/I)) =∞.

3.2 Classifying Commutative Rings with nontriv-

ial Planar ΓI(R)

We now proceed to use the the previous theorem to classify the finite commutative

rings R with nonzero identity such that R admits a nontrivial planar ΓI(R).

Proposition 3.9. Let I be a nonzero, proper, non-prime, radical ideal of a finite

ring commutative R with nonzero identity. Then gr(Γ(R/I)) =∞ and |I| = 2 if and

only if R is isomorphic to a ring with corresponding ideal from Table 3.1, where K is

a finite field.

Table 3.1: Rings for Proposition 3.9

Ring Ideal

Z4 ×K (2)× 0
Z2[X]/(X2)×K (x)× 0
Z2 × Z2 ×K Z2 × 0× 0, 0× Z2 × 0, or 0× 0×K (when K = Z2)

Proof. In the following argument, we use, without direct reference, that an ideal of∏n
i=1Ri is of the form

∏n
i=1 Ii, where Ii is an ideal of Ri. In the case of an ideal with
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only two elements, it must be of the form
∏n

i=1 Ii, where Ii = 0 for all i except a fixed

k ∈ {1, ..., n} and |Ik| = 2.

Since I is a radical ideal, we have that R/I is reduced. By [8, Theorem 2.4], we

have that T (R/I) ∼= Z2 × K, where K is a field. Since R is finite, and hence also

R/I, we have R/I ∼= T (R/I); whence R/I ∼= Z2×K. Since R is a finite commutative

ring, we have that R ∼=
∏n

i=1Ri, where each Ri is a finite local ring. If n ≥ 4, then

R/I will be isomorphic to a product of at least 3 nonzero local rings. But this is a

contradiction as R/I is a product of 2 local rings. Thus we must have that n ≤ 3.

If n = 1, then R is local. Thus R/I is also local; so R/I can be expressed as a

product of only one local ring. Thus n 6= 1 as R/I is a product of two local rings.

If n = 2, then R ∼= R1 × R2, where R1, R2 are local. Hence either I = I1 × 0 or

I = 0× I2, where |I1| = |I2| = 2. Thus R/I ∼= R1/I1 × R2 or R/I ∼= R1 × R2/I2. In

either case, we have that Ri is a local ring with ideal Ii such that |Ii| = 2 and Ri/Ii is

a field. Thus Ii is a maximal ideal of Ri. Notice that Z(Ri) is nonzero, since otherwise

Ri would be a finite integral domain, and hence a field (which contradicts the existence

of a proper ideal with 2 elements). Since 0 ( Z(Ri) ⊆ Ii and |Ii| = 2, it follows that

Z(Ri) = Ii. Therefore |Z(Ri)| = 2. Hence either |Z(R1)| = 2 or |Z(R2)| = 2. Thus

by Proposition 2.2, either R1 or R2 is isomorphic to Z4 or Z2[X]/(X2). The only

constraint on the remaining factor (the one which is neither Z4 nor Z2[X]/(X2)) is

that it must a field or Z2. Since Z2 is a field, the preceding requirement reduces to

simply being a field.

If n = 3, then since R/I is a product of 2 local rings, I is of the form one of the

three rings times 2 zero ideals. Thus we must have that R ∼= Z2 × K × Z2, where

I = Z2 × 0× 0, 0× 0× Z2, or 0×K × 0 (in the case that K = Z2).

Thus in conclusion, R is isomorphic to one of the rings in Table 3.1 with

corresponding ideal I. The converse is evident.

Notice that in each of the cases from Table 3.1, we have that R/I ∼= Z2 × K;

whence we have that Γ(R/I) is a star graph. So the graph of ΓI(R) in these cases
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corresponds to graph (A) in Figure 3.5, where the dotted edges are not present. We

now proceed to the case that I is not a radical ideal. Before we proceed, we prove

a couple of lemmas. These lemmas may seem unmotivated, but they will be used in

the classification of the non-radical ideal case.

Lemma 3.10. Let R ∼= R1 × Z2, where R1 is a local ring with 8 elements and

I is an ideal of R with 2 elements. Then R/I is isomorphic to Z8, Z2[X]/(X3),

Z4[X]/(2X,X2 − 2), Z2 × Z4, or Z2 × Z2[X]/(X2) if and only if R is isomorphic to

one of the 5 rings with corresponding ideal I as in Table 3.2.

Table 3.2: Rings for Lemma 3.10

Ring Ideal

Z8 × Z2 0× Z2 or (4)× 0
Z2[X]/(X3)× Z2 0× Z2 or (x2)× 0

Z4[X]/(2X,X2 − 2)× Z2 0× Z2 or (2)× 0
Z4[X]/(X2, 2X)× Z2 (x)× 0, (2)× 0, or (x+ 2)× 0

Z2[X, Y ]/(X2, XY, Y 2)× Z2 (x)× 0, (y)× 0, or (x+ y)× 0

Proof. Notice that I = I1 × 0 or 0 × Z2, where I1 is an ideal of R1 consisting of 2

elements.

We proceed to prove the forward implication. Assume that R/I is isomorphic to

Z8, Z2[X]/(X3), Z4[X]/(2X,X2 − 2), Z2 × Z4, or Z2 × Z2[X]/(X2).

If I = 0 × Z2, then R/I ∼= R1. Thus using that R1 is local, we must have

R1
∼= Z8, Z2[X]/(X3), or Z4[X]/(2X,X2 − 2) (these are the only rings for R/I, in

our forward hypothesis, that are local). Hence R ∼= Z8 × Z2, Z2[X]/(X3) × Z2, or

Z4[X]/(2X,X2 − 2)× Z2, where I = 0× Z2.

If I = I1 × 0, then R/I ∼= R1/I1 × Z2. Since R1 is local with 8 elements, R1/I1 is

a local ring with 4 elements. By Lemma 2.1, R1/I1 is isomorphic to Z4, Z2[X]/(X2),

or F4. But since R/I must be isomorphic to Z8, Z2[X]/(X3), Z4[X]/(2X,X2 − 2),

Z2 × Z4, or Z2 × Z2[X]/(X2), it follows that R1/I1
∼= Z4 or Z2[X]/(X2).
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Thus it suffices to find all local rings R1 with 8 elements that contain a non-

maximal ideal I, with 2 elements such that R1/I1 is isomorphic either Z4 or

Z2[X]/(X2). In Section 2.2, we showed that there are 7 rings R of order 8 which

contain an ideal of I of order 2 such that R/I ∼= Z4 or Z2[X]/(X2). These rings are

listed in Table 2.1, along with the possible choices of the ideal. Notice that 2 of these

rings are not local. Thus it follows that R1 must be isomorphic to Z8, Z4[X]/(X2, 2X),

Z4[X]/(2X,X2 − 2), Z2[X]/(X3), Z2[X, Y ]/(X2, XY, Y 2) (with ideal I1 as chosen in

Table 2.1).

The converse is evident.

Lemma 3.11. Let R be a local ring of order 16 and I be an ideal of R consisting of 2

elements. Then R/I is isomorphic to Z8, Z2[X]/(X3), or Z4[X]/(2X,X2− 2) if and

only if R is isomorphic to one of the 8 rings with corresponding ideal from Table 3.3.

Table 3.3: Rings for Lemma 3.11

Ring Ideal

Z2[X, Y ]/(X3, XY, Y 2) (y) or (y + x2)
Z4[X]/(2X,X3 − 2) (2)
Z4[X]/(X2 − 2) (2x)

Z4[X]/(X2 − 2X − 2) (2x)
Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X) (y) or (y + 2)

Z4[X]/(2X,X3) (2) or (x2 + 2)
Z8[X]/(2X,X2) (x) or (x+ 4)

Z16 (8)

Proof. “⇒” Given a local ring R of order 16 and I an ideal with 2 elements, then

R/I will be a local ring of order 8. All three possibilities for R/I have a maximal

ideal consisting of 4 elements. Thus R is a local ring of order 16 with a maximal ideal

consisting of 8 elements. By considering all local rings of order 16, as in Chapter 2,

we see that that such a ring R must be isomorphic to one of the following 18 rings

(we also include each ring’s maximal ideal below):
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1. Z2[X]/(X4), M = {0, x, x2, x3, x2 + x, x3 + x, x3 + x2, x3 + x2 + x}.

2. Z2[X, Y ]/(X3, XY, Y 2), M = {0, x, y, x+ y, x2, x2 + x, x2 + y, x2 + x+ y}.

3. Z2[X, Y ]/(X2 − Y 2, XY ), M = {0, x, y, x+ y, x2, x2 + x, x2 + y, x2 + x+ y}.

4. Z2[X, Y ]/(X2, Y 2), M = {0, x, y, x+ y, xy, x+ xy, y + xy, x+ y + xy}.

5. Z2[X, Y, Z]/(X, Y, Z)2, M = {0, x, y, z, x+ y, x+ z, y + z, x+ y + z}.

6. Z4[X]/(2X,X3 − 2), M = {0, 2, x, x+ 2, x2, x2 + 2, x2 + x, x2 + x+ 2}.

7. Z4[X]/(X2 − 2), M = {0, x, 2, x+ 2, 2x, 3x, 2x+ 2, 3x+ 2}.

8. Z4[X]/(X2 − 2X − 2), M = {0, 2, x, 2x, x+ 2, 3x, 2x+ 2, 3x+ 2}.

9. Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

10. Z4[X, Y ]/(X2−2, XY, Y 2−2, 2X), M = {0, 2, x, y, x+y, x+2, y+2, x+y+2}.

11. Z4[X, Y ]/(X2, XY − 2, Y 2), M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

12. Z4[X]/(2X,X3), M = {0, x, 2, x2, x+ 2, x2 + 2, x2 + x, x2 + x+ 2}.

13. Z4[X]/(X2), M = {0, 2, x, x+ 2, 2x, 2x+ 2, 3x, 3x+ 2}.

14. Z4[X]/(X2 − 2X), M = {0, 2, x, 2x, x+ 2, 2x+ 2, 3x, 3x+ 2}.

15. Z4[X, Y ]/(2, X, Y )2, M = {0, 2, x, y, x+ y, x+ 2, y + 2, x+ y + 2}.

16. Z8[X]/(2X,X2), M = {0, 2, 4, 6, x, x+ 2, x+ 4, x+ 6}.

17. Z8[X]/(2X,X2 − 4), M = {0, 2, 4, 6, x, 2 + x, 4 + x, 6 + x}.

18. Z16, M = (2) = {0, 2, 4, 6, 8, 10, 12, 14}.

For any of the above rings, if we choose an ideal I with two elements (provided one

exists), then R/I will be a local ring of order 8 with a maximal ideal consisting of 4

elements. Moreover, sinceR/I is a local ring of order 8 with a maximal ideal consisting
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of 4 elements, it must be isomorphic to Z8, Z2[X]/(X3), Z2[X, Y ]/(X2, XY, Y 2),

Z4[X]/(X2, 2X), or Z4[X]/(2X,X2 − 2) by Lemma 2.5. Then to ensure that R/I is

isomorphic to one of the three rings in the hypothesis, it suffices to ensure that it is

not isomorphic to Z2[X, Y ]/(X2, XY, Y 2) or Z4[X]/(X2, 2X). Notice that of the five

possible rings, these two are the only ones such that M2 = {α2 | α ∈M} = 0 (where

M is the maximal ideal of the ring). Thus it suffices to do the following calculations

for each of the 17 local rings of order 16 in question:

1. Find all the ideals of R with |I| = 2;

2. For each such ideal I, square each element of M and ensure that not all of the

squares lie in I.

The second calculation above ensures that the maximal ideal of R/I (namely

M/I) does not have the property that (M/I)2 = {α2 | α ∈ M/I} = {0 + I}. The

rings for which this holds will then have the property that R/I must be isomorphic

to one of the three rings in question.

In order to find all the ideals consisting of two elements, we note that such an

ideal must be principal of the form (α) = Rα, where α2 = 0 (local rings only have

trivial idempotents). In each calculation, we compute M2 (as defined above) and,

when necessary, compute Ω = {α ∈ M | α2 = 0 and α 6= 0} (these are potential

generators of ideals of order 2). We then list all ideals with two elements. Some

elements will not generate an ideal of two elements; this will be the case when {0, α}

(where α ∈ Ω) is not an ideal of R. Those ideals with M2 6⊆ I will produce R/I of

the appropriate form. The calculations are as follows.

1. Z2[X]/(X4), M = {0, x, x2, x3, x2 +x, x3 +x, x3 +x2, x3 +x2 +x}, M2 = {0, x2},

Ω = {x2, x3, x2 + x}. Notice that x(x2) = x3 6∈ {0, x2} and x(x2 + x) =

x3 + x2 6∈ {0, x2 + x}, whence neither x2 nor x2 + x generate an ideal consisting

of two elements. Although (x2) = {0, x2}, M2 ⊆ (x2) which does not meet our

requirements. So this ring does not meet our criteria.

43



2. Z2[X, Y ]/(X3, XY, Y 2), M = {0, x, y, x+y, x2, x2 +x, x2 +x, x2 +x+y}, M2 =

{0, x2}, Ω = {y, x2, x2 + y}. The only ideals of order 2 are (x2), (y), (x2 + y).

Moreover (y), (x2 + y) meet our requirements. So this ring does meet our

criteria.

3. Z2[X, Y ]/(X2 − Y 2, XY ), M = {0, x, y, x2, x + y, y + x2, x + y + x2, x + x2},

M2 = {0, x2 = y2}, Ω = {x2, x + y}. Notice that {0, x + y} is not an ideal as

(x+ y)x = x2 6∈ {0, x+ y}. So the only possible ideal of two elements is M2; so

this ring does not meet our criteria.

4. Z2[X, Y ]/(X2, Y 2), M = {0, x, y, x+ y, xy, x+ xy, y+ xy, x+ y+ xy}, M2 = 0.

For any ideal I, I ⊆ M2; so this ring can not meet our criteria. There is no

need to compute the ideals of cardinality two in this case.

5. Z2[X, Y, Z]/(X, Y, Z)2, M = {0, x, y, z, x+y, x+z, y+z, x+y+z}. Here M2 = 0

as before; so this ring does not meet our criteria.

6. Z4[X]/(2X,X3 − 2), M = {0, 2, x, x + 2, x2, x2 + 2, x2 + x, x2 + x + 2} , M2 =

{0, x2}, Ω = {2, x+ 2, x2, x2 + 2, x2 + x}. Notice (x2) won’t work even if (x2) =

{0, x2} since then it would contain M2. Notice that x(x2 +2) = x3 6∈ {0, x2 +2}

and x(x2 +x) = x2 + 2 6∈ {0, x2 +x}; whence neither {0, x2 + 2} nor {0, x2 +x}

are ideals. Moreover, {0, x+ 2} is not an ideal since x(x+ 2) = x2 6∈ {0, x+ 2}.

The only remaining possibility is (2) = {0, 2}, which does meet our criteria.

7. Z4[X]/(X2 − 2), M = {0, x, 2, x + 2, 2x, 3x, 2x + 2, 3x + 2}, M2 = {0, 2}, Ω =

{2, 2x, 2x+2}. Notice that x(2) = 2x 6∈ {0, 2} and x(2x+2) = 2x 6∈ {0, 2x+2};

whence neither {0, 2} nor {0, 2x + 2} are ideals of the ring. However, (2x) =

{0, 2x} and M2 6⊆ (2x). Thus this ring meets our criteria.

8. Z4[X]/(X2−2X−2), M = {0, 2, x, 2x, x+2, 3x, 2x+2, 3x+2}, M2 = {0, 2x+2},

Ω = {2, 2x, 2x+ 2}. Notice that M ⊆ (2x+ 2); so regardless of the cardinality

of (2x+ 2), it would not satisfy the criteria. Since x(2) = 2x 6∈ {0, 2}, {0, 2} is
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not an ideal of the ring. However, we have that (2x) = {0, 2x} does satisfy the

criteria.

9. Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X), M = {0, 2, x, y, x + y, x + 2, y + 2, x + y + 2},

M2 = {0, 2}, Ω = {2, y, y + 2}. Notice that each of these generate an ideal

with two elements. However, M2 ⊆ (2); so the ideals (y) and (y + 2) meet our

criteria.

10. Z4[X, Y ]/(X2−2, XY, Y 2−2, 2X), M = {0, 2, x, y, x+y, x+2, y+2, x+y+2},

M2 = {0, 2}, Ω = {2, x + y, x + y + 2}. The ideal (2) contains M2; so it does

not meet the criteria. Moreover, x(x+ y) = 2 6∈ {0, x+ y} and x(x+ y + 2) =

2 6∈ {0, x + y + 2}; whence neither of the other two elements of Ω generate an

ideal consisting of two elements. Thus this ring does not meet our criteria.

11. Z4[X, Y ]/(X2, XY − 2, Y 2), M = {0, 2, x, y, x+ y, x+ 2, y+ 2, x+ y+ 2}. Here

M2 = 0; so regardless of the choice of I, this ring does not meet our criteria.

12. Z4[X]/(2X,X3), M = {0, x, 2, x2, x+2, x2 +2, x2 +x, x2 +x+2}, M2 = {0, x2},

Ω = {2, x2, x2 + 2}. Notice even if {0, x2} is an ideal of the ring, it would not

meet our criteria as it would contain M2. Notice that both {0, 2} and {0, X2+2}

are ideals and meet our criteria.

13. Z4[X]/(X2), M = {0, 2, x, x + 2, 2x, 2x + 2, 3x, 3x + 2}, M2 = 0. So, again,

regardless of the choice of ideal, the criteria will not hold. Thus this ring does

not meet our criteria.

14. Z4[X]/(X2 − 2X), M = {0, x, 2, 2x, x + 2, 2x + 2, 3x, 3x + 2}, M2 = {0, 2x},

Ω = {2, 2x, 2x + 2}. Notice that x(2) = 2x 6∈ {0, 2} and x(2x + 2) = 2x 6∈

{0, 2x + 2}; hence 2, 2x + 2 do not generate ideals consisting of two elements.

Even though 2x does generate an ideal of two elements, we have M2 ⊆ (2x).

Thus this ring does not meet our criteria.
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15. Z4[X, Y ]/(2, X, Y )2, M = {0, x, y, 2, x + y, x + 2, y + 2, x + y + 2}, M2 = 0.

Therefore this ring will not meet our criteria regardless of the choice of ideal.

16. Z8[X]/(2X,X2), M = {0, 2, 4, 6, x, x + 2, x + 4, x + 6}, M2 = {0, 4}, Ω =

{4, x, x + 4}. Regardless of whether or not {0, 4} is an ideal, it will not meet

our criteria. However, notice that x and x+4 do generate ideals of two elements

meeting the criteria.

17. Z8[X]/(2X,X2 − 4), M = {0, 2, 4, 6, x, x + 2, x + 4, x + 6}, M2 = {0, 4}, Ω =

{4, x + 2, x + 6}. Notice that x(x + 2) = 4 6∈ {0, x + 2} and 2(x + 6) = 12 =

4 6∈ {0, x+ 6}; whence neither x+ 2 nor x+ 6 generate ideals of two elements.

Moreover, M2 ⊆ {0, 4} ⊆ (4); whence (4) would not meet our criteria. Thus

this ring does not meet our criteria.

18. Z16, M = (2) = {0, 2, 4, 6, 8, 10, 12, 14}, M2 = {0, 4}. Here the only ideal of

the ring consisting of two elements is {0, 8}. This ideal does indeed satisfy our

criteria.

The forward direction then follows.

”⇐” This direction is evident from the observations made during the proof of the

forward direction.

Proposition 3.12. Let R be a finite commutative ring with nonzero identity and let

I be a nonzero, proper, non-radical ideal of R. Then gr(Γ(R/I)) =∞ and |I| = 2 if

and only if R is isomorphic to one of the 27 rings from Table 3.4 (with appropriately

chosen ideal I).

Proof. For the reader’s ease, each ring appears in Table 3.4 in the order it is adressed

in this proof.

Note that I non-radical implies that I is non-prime. Thus ΓI(R) is nonempty.

Recall that I is not a radical ideal of R if and only if R/I is not reduced. So we

begin our search by considering which non-reduced rings have corresponding zero-

divisor graph with infinite girth. By [8, Theorem 2.5], we have that a non-reduced
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Table 3.4: Non-radical case: gr(Γ(R/I)) =∞ and |I| = 2

Ring Ideal

Z9 × Z2 Z2 × 0
Z2 × Z3[X]/(X2) Z2 × 0
Z2 × Z2 × Z4 Z2 × 0× 0 or 0× Z2 × 0

Z2 × Z2 × Z2[X]/(X2) Z2 × 0× 0 or 0× Z2 × 0
Z2 × Z8 Z2 × 0 or 0× Z4

Z2 × Z4[X]/(2X,X2) 0× (x), 0× (2), or 0× (x+ 2)
Z2 × Z4[X]/(2X,X2 − 2) Z2 × 0 or 0× (2)

Z2 × Z2[X]/(X3) Z2 × 0 or 0× (x2)
Z2 × Z2[X, Y ]/(X2, XY, Y 2) Z2 × 0, 0× (x), 0× (y), or 0× (x+ y)

Z4 × Z4 (2)× 0 or 0× (2)
Z2[X]/(X2)× Z2[X]/(X2) (x)× 0 or (x)× 0

Z4 × Z2[X]/(X2) (2)× 0 or 0× (x)
Z2[X, Y ]/(X3, XY, Y 2) (y) or (y + x2)
Z4[X]/(2X,X3 − 2) (2)
Z4[X]/(X2 − 2) (2x)

Z4[X]/(X2 − 2X − 2) (2x)
Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X) (y) or (y + 2)

Z4[X]/(2X,X3) (2) or (x2 + 2)
Z8[X]/(2X,X2) (x) or (x+ 4)

Z16 (8)
Z2 × Z4 Z2 × 0

Z2 × Z2[X]/(X2) Z2 × 0
Z8 (4)

Z4[X]/(X2, 2X) (x), (2), or (x+ 2)
Z4[X]/(2X,X2 − 2) (2)

Z2[X]/(X3) (x2)
Z2[X, Y ]/(X2, XY, Y 2) (x), (y), or (x+ y)

ring A has gr(Γ(A)) = ∞ if and only if A ∼= B or A ∼= B × Z2, where B ∼= Z4

or Z2[X]/(X2), or Γ(A) is a star graph. In the proof of the proceeding result, the

authors show that Γ(A) is complemented when nil(R) 6= 0 and gr(Γ(R)) =∞. They

then split the situation into two cases: when the graph is uniquely complemented

or not. The uniquely complemented case is when Γ(A) is a star graph. But using

[6, Theorem 3.9], we have that Γ(A) uniquely complemented with nil(R) nonzero

implies that either Γ(A) is a star graph on at most two edges or an infinite star
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graph. However, since we are considering finite rings, Γ(A) must be a star graph

on at most 2 edges. Again from [6, Remark 3.12 (a)], we have that if Γ(A) is a

star graph on at most two edges, then A is isomorphic to one of the following rings:

Z2 × Z2,Z9,Z3[X]/(X2),Z6,Z8,Z2[X]/(X3),Z4[X]/(2X,X2 − 2). However, among

the preceding rings, only Z2×Z2 and Z6 are reduced. Thus R/I must be isomorphic

to one of the following rings: Z9,Z3[X]/(X2),Z8,Z2[X]/(X3),Z4[X]/(2X,X2 − 2),

Z4, Z2[X]/(X2), Z2 × Z4, Z2 × Z2[X]/(X2). Using that |I||R/I| = |R| and |I| = 2,

we have that |R| ∈ {8, 16, 18}.

If |R| = 18, then R/I ∼= Z9 or Z3[X]/(X2) . Since 18 = 3 · 3 · 2, using that R can

be written as a product of finite local rings and that a local ring has cardinality a

power of a prime, we have that R ∼= Z3×Z3×Z2 or R1×Z2, where R1 is a local ring

of cardinality 9. The only ideal consisting of 2 elements in Z3×Z3×Z2 is 0× 0×Z2,

but in this case, we have R/I ∼= Z3×Z3 which is not isomorphic to Z9 or Z3[X]/(X2).

Thus R ∼= R1 × Z2, where R1 is local and |R1| = 9. In this ring, the only ideal of

order 2 is 0× Z2, whence R/I ∼= R1. Thus R ∼= Z9 × Z2 or Z3[X]/(X2)× Z2, where

I = 0×Z2. Hence when |R| = 18, there are only 2 possible rings up to isomorphism.

If |R| = 16, then R/I is isomorphic to one of the following rings:

Z8,Z2[X]/(X3),Z4[X]/(2X,X2 − 2),Z2 × Z4,Z2 × Z2[X]/(X2). (3.1)

Again, by writing R as a product of finite local rings, R must be isomorphic to

one of the following types, where Ri are local rings:

R ∼=



Z2 × Z2 × Z2 × Z2

R1 × Z2 × Z2, where |R1| = 4

R2 × Z2, where |R2| = 8

R1 ×R2, where |R1| = |R2| = 4

R, where |R| = 16

(3.2)
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Notice that the first case can not occur as then R/I ∼= Z2 × Z2 × Z2 which is not

isomorphic to any of four rings from 3.1. In the second factorization, we must have

that I = I1×0×0, 0×Z2×0, or 0×0×Z2, where I1 is an ideal of R1 of order 2. Then

either R/I ∼= Z2×Z2×Z2 (when I = I1× 0× 0) or R1×Z2 (when I = 0×Z2× 0, or

0× 0×Z2). Thus I is of the form of the second two possibilities and R/I ∼= R1×Z2,

where R1 is a local ring of order 4. It is then evident that R1
∼= Z4 or Z2[X]/(X2)

(by Lemma 2.1 and the fact that R is not reduced). Thus in the second factorization

of 3.2, we must have that R ∼= Z2[X]/(X2) × Z2 × Z2 or Z4 × Z2 × Z2, where I is

either 0 × Z2 × 0 or 0 × 0 × Z2. Thus among the first and second factorizations in

3.2, we have only 2 possible rings.

The third factorization in 3.2 requires a bit more work. We have done the

considerations of the third possible factorization in Lemma 3.10; in the third

factorization we get 8 possible rings.

Finally by Lemma 2.1, we have that in the fourth case of 3.2, Ri is isomorphic to

Z4, Z2[X]/(X2), or F4. Thus R1 ×R2 is isomorphic to one of the following:

1. Z4 × Z4,

2. Z4 × Z2[X]/(X2),

3. Z4 × F4,

4. Z2[X]/(X2)× Z2[X]/(X2),

5. Z2[X]/(X2)× F4, or

6. F4 × F4.

Notice that (6) above has no ideals of order 2. Possibility (3) above has only one

ideal of order 2 namely (2)× 0; but then R/I ∼= Z2 × F4 (which is not isomorphic to

a ring in 3.1) A similar argument rules out possibility (5). The remaining possiblities

each contain ideals of order 2 with R/I isomorphic to one of the rings in 3.1 (notice
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all ideals of order 2 from the remaining rings meet the hypothesis). This case yeilds

3 rings.

All that remains in the case when |R| = 16 and R is a local ring (that is the

last factorization in 3.2). We must have that R contains an ideal consisting of two

elements such that R/I is isomorphic to one of the five ring from 3.1. In Chapter 2,

we noted that there are 21 local rings of order 16; so the task at hands seems a bit

unruly. We considered this case separately in Lemma 3.11. So in the local case when

|R| = 16, we have that R is isomorphic to one of the 8 rings from Lemma 3.11.

If |R| = 8, then R/I is isomorphic to either Z4 or Z2[X]/(X2). Then again by

writing R as a product of finite local rings, R must be isomorphic to one of the

following types, where Ri are local rings:

R ∼=


R1, where |R1| = 8

R1 × Z2, where |R1| = 4

Z2 × Z2 × Z2.

The last factorization does not occur as |I| = 2 implies that R/I ∼= Z2×Z2. In the

second case, we must have that I is of the form 0×Z2 (as otherwise R/I ∼= Z2×Z2).

Hence in the second possible factorization, R1
∼= R/I which must be isomorphic

to Z4 or Z2[X]/(X2) (by Lemma 2.1 and the fact that R is not reduced). Thus

in the second factorization, R is isomorphic to Z4 × Z2 or Z2[X]/(X2) × Z2 with

I = 0 × Z2. The only remaining case is when R is a local ring of order 8. Since R

must have an ideal with two elements which is not prime, it follows that R is a local

ring with 8 elements and a maximal ideal consisting of 4 elements. Such rings are

classified in Lemma 2.5. Thus R is isomorphic to one of the following 5 rings: Z8,

Z4[X]/(X2, 2X), Z4[X]/(2X,X2 − 2), Z2[X]/(X3), Z2[X, Y ]/(X2, XY, Y 2). Possible

choices for the ideal I are also given in Section 2.1.
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Proposition 3.13. Let I be an ideal of a commutative ring R with nonzero identity.

Then |V (Γ(R/I))| = 1 and |I| ∈ {2, 3, 4} if and only if R is isomorphic to one the

40 rings with corresponding ideal as found in Table 2.1, Table 2.2, or Table 2.3.

Proof. We know that |V (Γ(R/I))| = 1 if and only if R/I ∼= Z4 or Z2[X]/(X2). The

desired result then follows from Proposition 2.8.

By combining Propositions 3.9, 3.12, and 3.13, we have classified up to isomor-

phism all such finite commutative rings with nonzero identity such that ΓI(R) is

planar. Notice in the reduced case, we get three infinite classes of rings, and in the

non-reduced case we get 41 different finite rings as listed in Table 3.5.

The restriction of finite graphs only prevented us from considering the following

situation:

Γ(R/I) is an infinite star graph and I 6=
√
I. (3.3)

Other than the preceding case, we have found up to isomorphism all rings with

ΓI(R) planar with I nonzero. Currently, we leave the classification of 3.3 open, but

plan to return to it in later research.

3.3 Graphs of Finite Planar Non-trivial ΓI(R) with

I 6=
√
I

We can now draw all finite planar graphs corresponding to non-empty ΓI(R) with I

a non-radical, nonzero ideal of a ring R. One way is to tread through our 39 rings

and their ideals, graphing each possibility. However using some observations made in

Proposition 3.12, we can make short work of determining these graphs.

Proposition 3.14. Let R be a commutative ring with nonzero identity and I a non-

radical, nonzero ideal of R. Then ΓI(R) is planar if and only if ΓI(R) is isomorphic

to one of the 5 graphs in Figure 3.6.

51



(A) (B) (C) 

(D) (E) 

Figure 3.6: The 5 finite planar graphs with I non-radical and nonzero.

Proof. The converse is evident.

For the forward direction, by Theorem 3.8 we have that gr(Γ(R/I)) = ∞ and

either (a) |I| = 2 or (b) |V (Γ(R/I))| = 1 and |I| ∈ {2, 3, 4}. In case (b), ΓI(R)

is isomorphic to K2, K3, or K4. Assume case (a) holds. Recall that in Proposition

3.12, we noted that under these conditions that R/I ∼= B, Z2 ×B (where B = Z4 or

Z2[X]/(X2)), or Γ(R/I) is a star graph on at most two vertices (i.e., K1,1 or K1,2,

here we are using the finite hypothesis). Now using Redmond’s construction of ΓI(R)

from Γ(R/I), we can deduce the possible graphs for ΓI(R).

If R/I ∼= Z4 or Z2[X]/(X2), then |V (Γ(R/I))| = 1. Hence |I| = 2 gives that

ΓI(R) ∼= K2.

If R/I ∼= Z2×B (where B is as before), then R/I is K
1,3

. Notice that the vertex

of degree 3 is the only element whose square is zero, thus |I| = 2 implies that ΓI(R)

is isomorphic to (E) in Figure 3.6.
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Figure 3.7: Finite planar graphs with I radical and nonzero.

If Γ(R/I) ∼= K1,1, then R/I ∼= Z9 or Z3[X]/(X2) [6, pp. 2-3], and whence each

vertex of the graph has the property that its square is zero. So with |I| = 2, we get

ΓI(R) ∼= K4.

If Γ(R/I) ∼= K1,2 and I 6=
√
I, then R/I ∼= Z8, Z2[X]/(X3), or Z4[X]/(2X,X2−2)

[6, pp. 2-3]. In each of the latter cases, the only vertex whose square is zero is the

center vertex. Thus with |I| = 2, we have that ΓI(R) will be isomorphic to (D) of

Figure 3.6.

We now consider when ΓI(R) is a finite, planar graph and I is a radical ideal. In

this case, we can see by Proposition 3.9 that Γ(R/I) will be a star graph and |I| = 2.

It then follows that ΓI(R) will be isomorphic to the graph in Figure 3.7.
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Table 3.5: When ΓI(R) is planar for nonzero, non-radical ideal I

Ring Ideal(s) when gr(Γ(R/I)) =∞ Ideal(s) when ΓI(R) = K |I|

and |I| = 2 and |I| ∈ {3, 4}
Z3 × Z4 Z3 × 0

Z3 × Z2[X]/(X2) Z3 × 0
Z2 × Z9 Z2 × 0 Z2 × 0

Z2 × Z3[X]/(X2) Z2 × 0 Z2 × 0
Z2 × Z2 × Z4 Z2 × 0× 0 or 0× Z2 × 0 Z2 × Z2 × 0

Z2 × Z2 × Z2[X]/(X2) Z2 × 0× 0 or 0× Z2 × 0 Z2 × Z2 × 0
Z2 × Z8 Z2 × 0 or 0× Z4 Z2 × (4)

Z2 × Z4[X]/(2X,X2) 0× (x), 0× (2), or 0× (x+ 2) Z2 × (x), Z2 × (2), or Z2 × (x+ 2)
Z2 × Z4[X]/(2X,X2 − 2) Z2 × 0 or 0× (2) Z2 × (2)

Z2 × Z2[X]/(X3) Z2 × 0 or 0× (x2) Z2 × (x2)
Z2 × Z2[X, Y ]/(X2, XY, Y 2) Z2 × 0, 0× (x), 0× (y), or 0× (x+ y) Z2 × (x) or Z2 × (y)

Z4 × Z4 (2)× 0 or 0× (2) Z4 × 0 or 0× Z4

Z2[X]/(X2)× Z2[X]/(X2) (x)× 0 or (x)× 0 Z2[X]/(X2)× 0 or 0× Z2[X]/(X2)
Z4 × Z2[X]/(X2) (2)× 0 or 0× (x) Z4 × 0 or 0× Z2[X]/(X2)

Z2[X, Y ]/(X3, XY, Y 2) (y) or (y + x2) {0, x, x2, x+ x2}, {0, y, x2, y + x2},
or {0, x+ y, x2, x+ y + x2}

Z4[X]/(2X,X3 − 2) (2)
Z4[X]/(X2 − 2) (2x) {0, 2, 2x, 2 + 2x}

Z4[X]/(X2 − 2X − 2) (2x) {0, 2, 2x, 2 + 2x}
Z4[X, Y ]/(X2 − 2, XY, Y 2, 2X) (y) or (y + 2) {0, 2, x, 2 + x}, {0, 2, y, y + 2},

or {0, 2, x+ y, x+ y + 2}
Z4[X]/(2X,X3) (2) or (x2 + 2) {0, 2, x2, x2 + 2}, {0, x, x2, x+ x2},

or {0, x2, x+ 2, x+ x2 + 2}
Z8[X]/(2X,X2) (x) or (x+ 4) {0, 2, 4, 6}, {0, 4, x, x+ 4},

or {0, 4, x+ 2, x+ 6}
Z16 (8) (4)

Z2 × Z4 Z2 × 0
Z2 × Z2[X]/(X2) Z2 × 0

Z8 (4)
Z4[X]/(X2, 2X) (x), (2), or (x+ 2)

Z4[X]/(2X,X2 − 2) (2)
Z2[X]/(X3) (x2)

Z2[X, Y ]/(X2, XY, Y 2) (x), (y), or (x+ y)
Z4 × F4 0× F4

Z2[X]/(X2)× F4 0× F4

Z2[X]/(X4) {0, x2, x3, x2 + x3}
Z2[X, Y ]/(X2 − Y 2, XY ) {0, x, x2, x+ x2}, {0, y, x2, y + x2},

or {0, x2, x+ y, x+ y + x2}
Z2[X, Y ]/(X2, Y 2) {0, x, xy, x+ xy}, {0, y, xy, y + xy},

or {0, x+ y, xy, x+ y + xy}
Z2[X, Y, Z]/(X, Y, Z)2 I = {0, z, x+ y, x+ y + z}, {0, x, y + z, x+ y + z},

{0, x, z, x+ z}, {0, y, z, y + z}, {0, x, y, x+ y},
{0, x+ y, x+ z, y + z}, or {0, y, x+ z, x+ y + z}

Z4[X, Y ]/(X2 − 2, XY, Y 2 − 2, 2X) {0, 2, x, 2 + x}, {0, 2, y, y + 2},
or {0, 2, x+ y, x+ y + 2}

Z4[X, Y ]/(X2, XY − 2, Y 2) {0, 2, x, x+ 2}, {0, 2, y, y + 2},
or {0, 2, x+ y, x+ y + 2}

Z4[X]/(X2) {0, 2, 2x, 2x+ 2}, {0, 2x, 3x+ 2, x+ 2},
or {0, x+ 2, 2x, 3x+ 2}

Z4[X]/(X2 − 2X) {0, x, 2x, 3x}, {0, 2, 2x, 2x+ 2},
or {0, 2x, x+ 2, 3x+ 2}

Z4[X, Y ]/(2, X, Y )2 {0, 2, x, x+ 2}, {0, 2, y, y + 2},
{0, 2, x+ y, x+ y + 2}, {0, x, y, x+ y},

{0, x, y + 2, x+ y + 2}, {0, y, x+ 2, x+ y + 2},
or {0, x+ y, x+ 2, y + 2}

Z8[X]/(2X,X2 − 4) {0, 2, 4, 6}, {0, 4, x, x+ 4},
or {0, 4, x+ 2, x+ 6}
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Chapter 4

When ΓI(R) is Complemented

In this chapter, we investigate the concepts of complemented and uniquely comple-

mented graphs as considered in [27], [22], and [6]. In the following, there is some

overlap with results from [27]. The primary overlap is in Lemma 4.6.

Recall that a ring R is von Neumann regular if for every x ∈ R, there exists y ∈ R

such that x = xyx. In [6], the authors find a connection between a ring being von

Neumann regular and a graph property called complemented. Given vertices a and b

of a graph G, we define a relation a ≤ b if and only a and b are not adjacent and each

vertex of G adjacent to b is also adjacent to a. We define a ∼ b if a ≤ b and b ≤ a.

Here we have that a ∼ b if and only if a and b are not adjacent, yet they are adjacent

to exactly the same vertices of G. Given two vertices a and b of G, we say that the

vertices are orthogonal, denoted a ⊥ b, if a and b are adjacent and there is no vertex

adjacent to both a and b. Notice that a ⊥ b if and only if a and b are adjacent and the

edge a− b is not part of triangle (a 3-cycle) in G. A graph G is called complemented

if given any vertex a of G, there exists a vertex b of G such that a ⊥ b. A graph G is

uniquely complemented if it is complemented and a ⊥ b and a ⊥ c imply that a ∼ c.

The preceding relations and definitions are from [6] and [22]. In [6, Theorem 3.5], the

authors show for a reduced ring that Γ(R) is uniquely complemented if and only if
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Γ(R) is complemented, if and only if T (R) is von Neumann regular. It is the goal of

this chapter to extend this result to ΓI(R).

Proposition 4.1. Let R be a commutative ring with nonzero identity and I a nonzero,

proper ideal of R. If I is a non-radical ideal of R and |V (Γ(R/I))| ≥ 2, then ΓI(R)

is not complemented.

Proof. Since I 6=
√
I, there exists an r ∈ R \ I such that r2 ∈ I. Then r ∈ V (ΓI(R)).

We claim that r has no complement in ΓI(R). Let s be any vertex of ΓI(R) adjacent

to r; so rs ∈ I. Notice that r 6= s as they are distinict adjacent vertices of ΓI(R).

Then there are two possibilities: (1) there exists an i ∈ I such that s = r + i or (2)

s 6= r + i for all i ∈ I.

Case (1): Assume there exists an i ∈ I such that s = r+ i. Then r+ I = s+ I in

R/I. Since |V (Γ(R/I))| ≥ 2, there exists a vertex t+ I adjacent to r + I = s+ I in

Γ(R/I). Notice that t, r, s = r+ i are all distinct vertices of ΓI(R) that are mutually

adjacent. Thus the edge r− s is part of a triangle in ΓI(R); so s is not a complement

of r in ΓI(R).

Case (2): Assume s 6= r + i for all i ∈ I. Since I is non-zero, choose 0 6= i ∈ I.

Then the vertices s, r, r+ i are distinct mutually adjacent vertices of ΓI(R). Thus the

edge r − s is part of a triangle in ΓI(R); so, as before, s is not a complement of r in

ΓI(R).

Thus we have shown that no vertex adjacent to r is a complement of r; so ΓI(R)

is not complemented.

Theorem 4.2. Let R be a commutative ring with nonzero identity and I a non-

radical, nonzero, proper ideal of R. Then the following statements are equivalent.

1. ΓI(R) is uniquely complemented.

2. ΓI(R) is complemented.

3. ΓI(R) ∼= K2.
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Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) are clear. It suffices to prove

(2)⇒ (3).

Assume that ΓI(R) is complemented. Then by the contrapositive of the previous

proposition, it follows that |V (Γ(R/I))| ≤ 1. Since I is not prime (as it is non-

radical), it follows that |V (Γ(R/I))| = 1. Thus ΓI(R) ∼= K |I| by Corollary 2.3. Since

the only complete graph which is complemented is K2, it follows that |I| = 2 and

ΓI(R) ∼= K2.

Notice that if |V (Γ(R/I))| = 1, then I 6=
√
I. Moreover, in this case, ΓI(R) is

complemented if and only if |I| = 2 by the preceding theorem. Thus it remains to

investigate the case when |V (Γ(R/I))| ≥ 2.

Theorem 4.3. Let R be a commutative ring with nonzero identity and I a nonzero,

proper ideal of R. Then ΓI(R) is complemented and |V (Γ(R/I))| ≥ 2 if and only if

Γ(R/I) is complemented and I =
√
I.

Proof. “⇒” Assume that ΓI(R) is complemented and |V (Γ(R/I))| ≥ 2. Since ΓI(R)

is complemented and |V (Γ(R/I))| ≥ 2, it follows from Proposition 4.1 that I =
√
I.

So it remains to show that Γ(R/I) is complemented. Let r+ I be a vertex of Γ(R/I).

Then r is a vertex of ΓI(R). By assumption, ΓI(R) is complemented; so there exists

a vertex s of ΓI(R) such that r ⊥ s. We first show that r+ I 6= s+ I. Assume to the

contrary, then r− s = i ∈ I. Thus r(r− s) = ri ∈ I. Since r ⊥ s, then rs ∈ I. Hence

r2 = ri+rs ∈ I, and thus r ∈ I since I =
√
I. This is a contradiction since r+I 6= I,

and hence r 6∈ I. Thus r + I 6= s + I. Since r ⊥ s in ΓI(R) and r + I 6= s + I,

it follows that r + I is adjacent to s + I in Γ(R/I). It now remains only to show

there is no other vertex in Γ(R/I) adjacent to both of these. Assume to the contrary;

then there exists a vertex t+ I adjacent to both r + I and s+ I (hence t+ I, r + I,

and s+ I are distinct elements of R/I). Then notice that r, t, s are distinct mutually

adjacent vertices of ΓI(R). But this is a contradiction as r ⊥ s in ΓI(R). Therefore

r+ I ⊥ s+ I. Since r+ I ∈ V (Γ(R/I)) was chosen arbitrarily, it follows that Γ(R/I)

is complemented.

57



“⇐” Assume that Γ(R/I) is complemented and I =
√
I. Since Γ(R/I) is

complemented, it follows that |V (Γ(R/I)| ≥ 2. Let r ∈ V (ΓI(R)); then r + I ∈

V (Γ(R/I)). Since Γ(R/I) is complemented, there exists a vertex s + I in Γ(R/I)

such that r + I ⊥ s+ I. Since these are vertices in Γ(R/I), it follows that neither is

zero in R/I; hence r, s 6∈ I, but rs ∈ I. Thus r and s are adjacent vertices in ΓI(R).

We claim that r ⊥ s in ΓI(R). Assume to the contrary, then there exists a t ∈ R \ I,

such that r, s, and t are distinct and mutually adjacent in ΓI(R). Using that I =
√
I,

a similar argument to that in the forward implication shows that r+I, s+I, and t+I

are distinct vertices of Γ(R/I). It then follows that r+ I, s+ I, and t+ I are distinct,

mutually adjacent vertices of Γ(R/I); but this is a contradiction as r + I ⊥ s + I.

Therefore r ⊥ s in ΓI(R). Since r ∈ ΓI(R) was chosen arbitrarily, it follows that

ΓI(R) is complemented.

Corollary 4.4. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R that is proper and not prime. Then ΓI(R) is complemented if and only if

exactly one of the following statements holds.

1. R/I ∼= Z4 or R/I ∼= Z2[X]/(X2), and |I| = 2.

2. Γ(R/I) is complemented and I is a radical ideal of R.

Proof. In case (1), R/I is nonreduced and hence I is non-radical. Therefore (1) and

(2) can not happen simultaneously.

“⇒” If I is a radical ideal of R, then we must have that |V (Γ(R/I))| ≥ 2. Then

(2) holds by Theorem 4.3. If I is not a radical ideal of R, then (1) holds by Theorem

4.2 and the proof of Propostion 2.4.

“⇐” In case (1), ΓI(R) = K2 and is therefore complemented. In case (2), ΓI(R)

is complemented by Theorem 4.3.

Using the fact that R/I is reduced if and only if I =
√
I, we can extend the

previous theorem to the following corollary using [6, Theorem 3.5]. In the following,
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note that if I is a prime ideal of the ring, then all of the graphs in question are

empty. We will consider the empty graph to be vacuously complemented and uniquely

complemented.

Corollary 4.5. Let I an ideal of a commutative ring R. If I is a proper radical ideal

of R, then the following statements are equivalent.

1. ΓI(R) is complemented.

2. Γ(R/I) is complemented.

3. Γ(R/I) is uniquely complemented.

4. T (R/I) is von Neumann regular.

We proceed to consider when ΓI(R) is uniquely complemented. Based on the

preceding results, we are led to conjecture that when I is a radical ideal, we will have

ΓI(R) uniquely complemented if and only ΓI(R) is complemented. The following

results are similar to those found in [27, pp. 55-56]. It was after working on the

following lemmas that the results from [27, pp. 55-56] were noticed by this author.

Lemma 4.6. Let R be a commutative ring with nonzero identity and I a nonzero ideal

of R. If I is a proper radical ideal, then x ⊥ y in ΓI(R) if and only if x+ I ⊥ y + I

in Γ(R/I).

Proof. “⇒” First notice that I =
√
I and xy ∈ I implies that x + I 6= y + I. As

otherwise, y = x + i for some i ∈ I. Then x2 = x(x + i) − xi = xy − xi ∈ I. But

x ∈ V (ΓI(R)) implies that x 6∈ I. Hence x ∈
√
I and x 6∈ I, but this is a contradiction

as I =
√
I.

Also, (x + I)(y + I) = 0 + I, so that x + I and y + I are adjacent vertices of

Γ(R/I). Assume to the contrary, that there exists z + I ∈ V (Γ(R/I)) such that

x+I−y+I−z+I−x+I is a triangle in Γ(R/I). But then x−y−z−x is a triangle

in ΓI(R), which is a contradiction as x ⊥ y in ΓI(R). Therefore, x + I ⊥ y + I in

Γ(R/I) as desired.
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“⇐” Assume that x + I ⊥ y + I in Γ(R/I). Then xy ∈ I; whence x and y are

adjacent in ΓI(R). Assume that x 6⊥ y. Then there exists a vertex c adjacent to both

x and y in ΓI(R). We claim that then c+ I is distinct from x+ I and y+ I and each

of these three is adjacent. To see that c+ I is distinct from x+ I and y + I, assume

to the contrary. Without loss of generality, assume c+ I = x+ I. Then c = x+ i for

some i ∈ I. Then cx ∈ I implies that x2 ∈ I, which is a contradiction as I =
√
I and

x+ I is nonzero. Since x+ I, y + I, and c+ I are distinct and xy, yc, and xc are all

in I, it follows that x + I, y + I, and c + I is a three-cycle in Γ(R/I). But this is a

contradiction as x+ I ⊥ y + I in Γ(R/I).

Lemma 4.7. Let R be a commutative ring with nonzero identity and I a nonzero

proper radical ideal of R. If Γ(R/I) is uniquely complemented, x ⊥ y and x ⊥ z in

ΓI(R), and α ∈ R \ I, then

αy ∈ I if and only if αz ∈ I.

Proof. The statement is symmetric in terms of y and z; so it suffices to show that

αy ∈ I ⇒ αz ∈ I.

By Lemma 4.6, x+I ⊥ y+I and x+I ⊥ z+I in Γ(R/I). Since Γ(R/I) is uniquely

complemented, it follows that annR/I(y + I) = annR/I(z + I) (here we also using the

fact annR/I(y+I)\{y+I} = annR/I(y+I) and annR/I(x+I)\{x+I} = annR/I(x+I)

since I =
√
I ).

Assume αy ∈ I. Then α+I ∈ annR/I(y+I) = annR/I(z+I). Hence (α+I)(z+I) =

0 + I, and therefore αz ∈ I as desired.

Theorem 4.8. Let R be a commutative ring with nonzero identity and I a

radical ideal of R. Then ΓI(R) is complemented if and only if ΓI(R) is uniquely

complemented.

Proof. If I = (0), then the result follows from [6, Theorem 3.5]. If ΓI(R) is the empty

graph, the statement holds vacuously.
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Assume then that I 6= (0) and that ΓI(R) is not the empty graph.

The reverse implication is by definition.

Assume ΓI(R) is complemented. Then ΓI(R) has at least two elements, and

thus V (Γ(R/I)) must be non-empty. Since I is a radical ideal, it follows that

|V (Γ(R/I))| 6= 1 (since there are only two rings up to isomorphism with exactly

2 zero-divisors, and they are both non-reduced rings). Thus |V (Γ(R/I))| ≥ 2,

and hence Γ(R/I) is complemented by Theorem 4.3. Moreover, Γ(R/I) is uniquely

complemented by Corollary 4.5. The desired result then follows from Lemma 4.7.

Theorem 4.9. Let R be a commutative ring with nonzero identity and I a non-prime,

proper, radical ideal of R. Then the following statements are equivalent.

1. ΓI(R) is complemented.

2. ΓI(R) is uniquely complemented.

3. Γ(R/I) is complemented.

4. Γ(R/I) is uniquely complemented.

5. T (R/I) is von Neumann regular.

Moreover, if I is a non-prime, proper ideal of R then ΓI(R) is complemented if and

only if ΓI(R) is uniquely complemented.

Proof. Assume that I is a nonzero, proper, non-prime, radical ideal of R. The

equivalences follow from Corollary 4.5 and Theorem 4.8. For the “moreover

statement,” recall that if I is not a radical ideal, then ΓI(R) is complemented if

and only if ΓI(R) ∼= K2 by Theorem 4.2. However, K2 is uniquely complemented.

Thus, regardless of whether or not I is a radical ideal of R, we have ΓI(R) is uniquely

complemented if and only if ΓI(R) is complemented.

If I = 0 and radical, then ΓI(R) = Γ(R/I) = Γ(R) and the result holds by [6,

Theorem 3.5].
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Remarks: The hypothesis that I is proper is necessary in the preceding result in

order for the statement T (R/I) to make sense. Thus we can modify the hypothesis

to yield the following result. Moreover, if I is prime, then all the graphs in question

are empty and R/I is a field, so that all of the conditions hold.
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Chapter 5

Isomorphisms of ΓI(R)

We begin by considering the following result from [24, Theorem 2.2]. It was stated

as follows:

Let I be a finite ideal of R and J be a finite ideal of S such that I =
√
I and

J =
√
J . Then the following hold:

(a) If |I| = |J | and Γ(R/I) ∼= Γ(S/J), then ΓI(R) ∼= ΓJ(S).

(b) If ΓI(R) ∼= ΓJ(S), then Γ(R/I) ∼= Γ(S/J).

Remark 5.1. We first note that (b) of the preceding result does not hold. Consider

the following example. Let R = Z3 × Z3 and I = 0. Let S = Z2 × Z2 × Z2 and

J = Z2 × 0× 0. Then ΓI(R) and ΓJ(S) are both 4-cycles, and hence isomorphic. In

both cases, I and J are finite radical ideals of their respective rings. However, Γ(R/I)

is a 4-cycle and Γ(S/J) is a line graph on 2 vertices; thus Γ(R/I) 6∼= Γ(S/J). This

example also provides a counterexample to [9, Theorem 5.3] as both I and J are also

non-maximal ideals.

Figure 5.1: Γ(S/J), where S = Z2 × Z2 × Z2 and J = Z2 × 0× 0
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Figure 5.2: ΓJ(S), where S = Z2 × Z2 × Z2 and J = Z2 × 0× 0

Figure 5.3: Γ(Z3 × Z3)

The proof of [24, Theorem 2.2(b)] seems to have two shortcomings. The first is

in the line: “Now if a, b ∈ V (K ′), then a + J 6= b + J ; otherwise, a2 ∈ J =
√
J , and

hence a ∈ J , which is a contradiction.” It appears that the authors are using the

assumption (which does not necessarily hold) that a and b are adjacent in K ′. It is a

common argument in proofs regarding ideal-based zero-divisor graphs, that if a, b are

adjacent vertices of ΓJ(S) and J =
√
J , then a+J 6= b+J . However, we do not have

here that the two vertices in the argument are necessarily adjacent. By considering

the example in the above remark, one can see that two different coset representatives

in Γ(R/I) may map to equivalent coset representatives in Γ(S/J).

The second shortcoming of the attempted proof of [24, Theorem 2.2(b)] can be

seen in the following example. The example shows that the the restriction of a graph

isomorphism between ΓI(R) and ΓJ(S) to a set of coset representatives for V (Γ(R/I))

may not map to a set of distinct coset representatives of V (Γ(S/J)).

Example 5.2. Let R = S = Z2 × Z2 × F4 and I = J = Z2 × 0 × 0, where F4 =

{0, 1, a, b} is the field with 4 elements. For a graph of Γ(R/I), see Figure 5.4. For a

graph of ΓI(R), see Figure 5.5. We may choose a complete set of coset representatives

for Γ(R/I) to be K = {(0, 0, 1), (0, 1, 0), (0, 0, a), (0, 0, b)}. Then consider the graph

isomorphism given by Table 5.1
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Figure 5.4: Γ(R/I), where R = Z2 × Z2 × F4 and I = Z2 × 0× 0

Figure 5.5: ΓI(R), where R = Z2 × Z2 × F4 and I = Z2 × 0× 0

We then have that K ′ = φ(K) = {(1, 0, 1), (0, 1, 0), (0, 0, a), (1, 0, a)}. But K ′ is

not a set of distinct coset representatives for Γ(S/J) as (0, 0, a) + J = (1, 0, a) + J

since (1, 0, 0) ∈ J .

We believe that the proposition in question will hold if we assume beforehand

that |I| = |J |. That is, changing [24, Theorem 2.2(b)] to be “If |I| = |J | and

ΓI(R) ∼= ΓJ(S), then Γ(R/I) ∼= Γ(S/J).”

Table 5.1: A Graph Isomorphism

x ∈ ΓI(R) φ(x)
(0,0,1) (1,0,1)
(0,1,0) (0,1,0)
(0,0,a) (0,0,a)
(0,0,b) (1,0,a)
(1,0,1) (0,0,1)
(1,1,0) (1,1,0)
(1,0,a) (1,0,b)
(1,0,b) (0,0,b)
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Because of the shortcomings in the proof of [24, Theorem 2.2(b)] and reservations

of this author regarding the statement “Part (a) is an easy consequence of Theorem

2.1” [24], we seek to first give a direct proof of part (a) of [24, Theorem 2.2]. We should

note that the following results should be fairly intuitive from Redmond’s three step

construction method for ΓI(R). In this proof, notice the subtle use of the radical ideal

hypothesis. It would not be hard for one to construct an incorrect proof overlooking

the requirement that the ideals must be radical.

Theorem 5.3. Let R and S be commutative rings with nonzero identity and I and

J radical ideals of R and S, respectively. If Γ(R/I) ∼= Γ(S/J) and |I| = |J |, then

ΓI(R) ∼= ΓJ(S).

Proof. Since Γ(R/I) ∼= Γ(S/J), there exists a graph isomorphism φ : Γ(R/I) →

Γ(S/J). Let K = {aλ}λ∈Λ be a complete set of distinct coset representatives of

V (Γ(R/I)). Consider φ(K) = {φ(aλ)}λ∈Λ; this will be a complete set of distinct

coset representatives of V (Γ(S/J)) as φ : V (Γ(R/I)) → V (Γ(S/J)) is a bijection.

For ease of notation, set φ(aλ) = bλ and φ(K) = {bλ}λ∈Λ. Since |I| = |J |, there exists

a bijection f : I → J . Consider the correspondence ψ : V (ΓI(R))→ V (ΓJ(S)) given

by ψ(aλ+i) = φ(aλ)+f(i) = bλ+f(i). This correspondence is a well-defined function

by [30, Corollary 2.7]; the fact that ψ is onto follows from [30, Corollary 2.7] and that

both φ and f are onto. Assume that bλ1+f(i1) = φ(aλ1+i1) = φ(aλ2+i2) = bλ2+f(i2).

Then bλ1 − bλ2 ∈ J , and hence bλ1 + J = bλ2 + J . But φ(K) is a set of distinct coset

representatives of V (Γ(S/J)), and therefore λ1 = λ2. It is then evident that i1 = i2

as f is injective. Therefore ψ is also injective.

We now show that ψ preserves edges. Let r and s be adjacent in V (ΓI(R)). Then

since I is a radical ideal, r+I 6= s+I and r+I is adjacent to s+I [30, Theorem 2.5].

Since r + I 6= s+ I, there exist distinct λ1, λ2 ∈ Λ and i, j ∈ I such that r = aλ1 + i

and s = aλ1 + j. Since φ is a graph isomorphism, φ(r + I) = φ(aλ1 + I) = bλ1 + J is

adjacent to φ(s + I) = φ(aλ2 + I) = bλ2 + J . In other words, bλ1bλ2 ∈ J . Therefore,

ψ(r) = bλ1 + f(i) is adjacent to ψ(s) = bλ2 + f(j) in ΓJ(S). The proof of the reverse
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direction for edge preservation is similar. Thus, ψ : ΓI(R) → ΓJ(S) is a graph

isomorphism.

Notice the subtle use of the radical ideal hypothesis in the preceding proof. If we

leave out the radical ideal hypothesis, we know the result does not hold (e.g., Example

1.8). For the non-radical case, the proof fails when we try to prove that edges are

preserved. In particular, if we had an edge created by a connected column, we would

not be guaranteed that a corresponding edge exists in the second graph.

We return our focus to finding a converse of this result; we begin by proving a

weaker result. Instead of assuming that R/I and S/J are reduced, let us assume that

they are Boolean rings. We then quickly get that the desired implication holds.

Lemma 5.4. Let R and S be finite commutative rings with nonzero identity and

I and J ideals of R and S respectively. If |I| = |J | and ΓI(R) ∼= ΓJ(S), then

|V (Γ(R/I))| = |V (Γ(S/J))|.

Proof. This follows from the fact that |V (ΓI(R))| = |I||V (Γ(R/I))| (Theorem 1.7).

Lemma 5.5. Let R and S be finite Boolean rings. Then R ∼= S if and only if

|Z(R)| = |Z(S)|.

Proof. “⇐” It is well known that for finite Boolean rings R and S, we have R ∼=∏m
i=1 Z2 and S ∼=

∏n
i=1 Z2, for m,n ∈ Z+. It suffices to show that m = n. Assume to

the contrary, that is m 6= n. Without loss of generality, m < n. Then R can be viewed

as a subring of S in the natural way, namely R ∼= R′ =
∏m

i=1 Z2×
∏n

j=m+1 0 ⊆ S. Let

x = (1, 1, 1, ..., 1, 0). Then x ∈ Z(S) \ Z(R′) since m < n. Hence |Z(R)| = |Z(R′)| <

|Z(S)|. But this is a contradiction of the hypothesis, and therefore we must have that

m = n, and hence R ∼= S. The “⇒” direction is trivial.
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Alternative Proof

Proof. Since R and S are finite Boolean rings, they are isomorphic to a product of

Z2’s. Thus |R| = 2m and |S| = 2n. Notice then that R ∼= S if and only if m = n.

Thus R ∼= S if and only if |R| = |S|. Notice that if 1 6= x ∈ R, then 1 − x 6= 0

and x(1 − x) = 0. Thus x ∈ Z(R). Since 1 6= x ∈ R was arbitrary, it follows that

R = Z(R) ∪ {1}. Hence |R| = |S| if and only if |Z(R)| = |Z(S)|.

Notice that the argument in the Alternative Proof gives the following result.

Lemma 5.6. Let R be a Boolean ring. Then R = Z(R) ∪ {1}.

Proposition 5.7. Let R and S be finite commutative rings with nonzero identities

and ideals I and J , respectively. Moreover, assume that R/I and S/J are Boolean

and |I| = |J |. Then ΓI(R) ∼= ΓJ(S) implies that Γ(R/I) ∼= Γ(S/J).

Proof. By the Lemma 5.4, |V (Γ(R/I))| = |V (Γ(S/J))|. Hence |Z(R/I)| =

|V (Γ(R/I))| + 1 = |V (Γ(S/J))| + 1 = |Z(S/J)|. Thus R/I ∼= S/J by Lemma 5.5,

and hence Γ(R/I) ∼= Γ(S/J).

The preceding arguments gave rise to the following conjecture and its proof. Here

we find that if we assume that R and S are finite Boolean rings, then ΓI(R) ∼=

ΓJ(S)⇒ Γ(R/I) ∼= Γ(S/J) and |I| = |J |.

Proposition 5.8. Let R and S be finite Boolean rings with I and J proper non-

prime ideals of R and S, respectively. Then ΓI(R) ∼= ΓJ(S) if and only if R ∼= S and

|I| = |J |.

Proof. Assume that ΓI(R) ∼= ΓJ(S). Then |I||V (Γ(R/I))| = |J ||V (Γ(S/J))| (by

Theorem 1.7(7)). Since R and S are isomorphic to a direct product of Z2’s, we have

|R| = 2m and |S| = 2n for some positive integers m,n.

If either m = 1 or n = 1, then the corresponding ring(s) will be isomorphic to

Z2, and hence will not contain a proper non-prime ideal; the only proper ideal of Z2
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is {0}, which is maximal, and hence prime. Thus m ≥ 2 and n ≥ 2, and therefore

m− 2 ≥ 0 and n− 2 ≥ 0.

Moreover, we know that I will be isomorphic to a product of Z2’s and {0}’s,

whence |I| = 2i for some 0 ≤ i < m. Similarly, |J | = 2j for some 0 ≤ j < n.

Note that if i = m − 1, then R/I will be an integral domain, and hence I a prime

ideal. But this is contrary to the hypothesis. Hence 0 ≤ i ≤ m − 2; similarly,

0 ≤ j ≤ m − 2. Since the number of zero-divisors of a Boolean ring is one less

than the cardinality of the ring, we have |Z(R/I)| = |R/I| − 1 = 2m−i − 1 and

|Z(S/J)| = 2n−j − 1. Hence |V (Γ(R/I))| = 2m−i − 2 and |V (Γ(S/J))| = 2n−j − 2

with 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ n− 2 (using that |Z∗(R)| = |Z(R)| − 1). Therefore,

|I||V (Γ(R/I))| = |J ||V (Γ(S/J))| implies that 2m − 2i+1 = 2n − 2j+1.

We claim that m = n and i = j. It is evident that m = n ⇔ i = j; hence it

suffices to show that m 6= n and i 6= j (along with 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ n− 2)

implies that 2m − 2i+1 6= 2n − 2j+1.

Assume that m 6= n, i 6= j, 0 ≤ i ≤ m − 2m and 0 ≤ j ≤ n − 2. Without loss

of generality, we may assume that m < n. First notice that for all 0 ≤ j ≤ n − 2,

we have that 2n − 2j+1 ≥ 2n − 2n−1 (since f(x) = 2n − 2x is decreasing). Now

2n−2n−1 = 2n(1−2−1) = 2n(2−1) = 2n−1; thus 2n−2j+1 ≥ 2n−1 for all 0 ≤ j ≤ n−2.

Since m < n, we have 2m < 2n, and hence 2m ≤ 2n−1. Thus m < n implies that

2m − 2 < 2m ≤ 2n−1. Hence

2n − 2j+1 ≥ 2n−1 > 2m − 2 for all 0 ≤ j ≤ m− 2.

But 2m − 2 ≥ 2m − 2i+1 for all 0 ≤ i ≤ n− 2. Thus:

2n − 2j+1 > 2m − 2 ≥ 2m − 2i+1 for 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ n− 2.

Hence 2n − 2j+1 6= 2m − 2i+1 for all 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ n− 2, as desired.
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Thus we must have m = n and i = j, whence |R| = |S| and |I| = |J |. Since R

and S are finite Boolean rings, |R| = |S| ⇒ R ∼= S. Therefore, R ∼= S and |I| = |J |,

as desired.

For the converse, note that Boolean rings are reduced, and thus I and J are radical

ideals. The result then follows by Theorem 5.3.

Remark 5.9. If we simply assume that at least one of the ideals in the preceding

proposition is non-prime, it follows that the ideal-based zero-divisor graph relative to

the non-prime ideal will be non-empty. Thus in the forward implication, the other

graph is non-empty; therefore we also have the remaining ideal is non-prime. In the

reverse implication, Spec(R) = Max(R) and Spec(S) = Max(S). Thus the prime

ideals are those that are maximal. By viewing R and S as a product of Z2’s, it is

evident that an ideal I is prime if and only if maximal, if and only if |I| = |R|/2.

Thus the conditions |I| = |J | and R ∼= S ensure that if at least one of the two ideals

is prime, then so is the other.

Therefore, although the theorem is true if we only assume that one of the ideals

is non-prime, we are not losing generality by assuming both are non-prime.

If both of the ideals are prime, then the theorem does not hold. Consider R =

Z2 ×Z2 ×Z2, I = 0×Z2 ×Z2 and S = Z2 ×Z2, J = 0×Z2. Then ΓI(R) and ΓJ(S)

are empty, hence isomorphic; however, R 6∼= S and |I| 6= |J |.

Remark 5.10. The converse of Proposition 5.8 does not hold for infinite Boolean

rings. Consider R = S =
∏∞

i=1 Z2, where I = 0 × 0 ×
∏∞

i=3 Z2 and J = 0 × 0 × 0 ×∏∞
i=4 Z2. Then S/J ∼= Z2 × Z2 × Z2, whence gr(Γ(S/J)) = 3 = gr(ΓJ(S)). However

ΓI(R) ∼= Kℵ0,ℵ0 ; to see this, consider the vertex sets V = {(ai)i∈N ∈ R | a1 = 0, a2 =

1} and W = {(ai)i∈N ∈ R | a1 = 1, a2 = 0}. Thus we have that gr(ΓI(R)) = 4 and

gr(ΓJ(S)) = 3. Therefore ΓI(R) 6∼= ΓJ(S); however R ∼= S and |I| = |J |.

Recall that one of our goals is to determine when the following implication holds:

ΓI(R) ∼= ΓJ(S)⇒ Γ(R/I) ∼= Γ(S/J).
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We have seen that even in the finite radical case that the above implication does

not hold. We then assumed that we need the ideals to have the same cardinality.

That is, we hoped to prove the following implication (at least in the reduced case):

ΓI(R) ∼= ΓJ(S) and |I| = |J | ⇒ Γ(R/I) ∼= Γ(S/J).

However, the following example dashes the hopes of this holding in the case the

ideals are infinite.

Example 5.11. Let R = Z2 × Z2 × Z, S = Z3 × Z3 × Z, I = 0 × 0 × Z, and

J = 0 × 0 × Z. Then |I| = |J |. Notice that Γ(R/I) ∼= K2 and Γ(S/J) is a 4-cycle;

hence Γ(R/I) 6∼= Γ(S/J). However, ΓI(R) ∼= ΓJ(S) since both graphs are a Kℵ0,ℵ0 .

To see the that ΓJ(S) = Kℵ0,ℵ0 , consider the sets V = {(0, 1, k) | k ∈ Z} ∪

{(0, 2, k) | k ∈ Z} and W = {(1, 0, k) | k ∈ Z} ∪ {(2, 0, k) | k ∈ Z}. Notice

that no vertex of V is adjacent to any other vertex of V . The same is true of W .

However, every vertex of V is adjacent to every vertex of W (and vice-versa). Thus

ΓJ(S) = Kℵ0,ℵ0 .

Similarly, ΓI(R) = Kℵ0,ℵ0 .

In this example, we have commutative rings R and S with radical ideals I and J ,

respectively, such that ΓI(R) ∼= ΓJ(S) and |I| = |J |, but Γ(R/I) 6∼= Γ(S/J) .
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Chapter 6

When R or R/I is Boolean

When looking at the research on Γ(R) when R is Boolean, one of the graph-theoretic

concepts considered is that of an end. An end in a graph G is a vertex v that is

adjacent to exactly one other vertex in G. We begin by considering for non-zero

ideals I, when ΓI(R) has ends.

Lemma 6.1. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R. If |V (Γ(R/I))| ≥ 2, then ΓI(R) has no ends.

Proof. Let x ∈ V (ΓI(R)). Since |V (ΓI(R))| = |I||V (Γ(R/I))| ≥ 2 and ΓI(R) is

connected (Theorem 1.7(3)), there exists y ∈ V (ΓI(R)) adjacent to x. Then either

y = x+ i for some 0 6= i ∈ I or y 6= x+ i for all i ∈ I.

If y = x+ i for some 0 6= i ∈ I, then x+ I = y+ I in R/I. Since |V (Γ(R/I))| ≥ 2

and Γ(R/I) is connected (Theorem 1.5(1)), there exists a z+I adjacent to x+I = y+I

in Γ(R/I). It then follows that y, z are adjacent to x in ΓI(R).

If y 6= x + i for all i ∈ I, then choose 0 6= i ∈ I (here we use that I is non-zero).

Then y, y + i are both adjacent to x in ΓI(R).

In both cases, we have shown that x was not an end in ΓI(R). Since x ∈ V (ΓI(R))

was arbitrary, the desired result follows.

Lemma 6.2. Let R be a commutative ring with nonzero identity and I an ideal of

R. If |V (Γ(R/I))| = 1, then ΓI(R) has an end if and only if |I| = 2.
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Proof. Recall that |V (Γ(R/I))| = 1 implies that ΓI(R) = K |I| (this follows from

[9, Theorem 4.7]). The desired result then follows since Kn has ends if and only if

n = 2.

Proposition 6.3. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R. Then ΓI(R) has ends if and only if |I| = 2 and R/I ∼= Z4 or Z2[X]/(X2).

Proof. If I is a prime ideal, then V (Γ(R/I)) = ∅, and hence ΓI(R) = ∅. Thus ΓI(R)

has no ends.

Assume then that I is not a prime ideal of R. Thus |V (Γ(R/I))| ≥ 1. If

|V (Γ(R/I))| ≥ 2, it follows from Lemma 6.1 that ΓI(R) has no ends. Hence

|V (Γ(R/I))| = 1. So by Lemma 6.2, it follows that ΓI(R) has ends if and only if

|I| = 2 and |V (Γ(R/I))| = 1. Recall that |V (Γ(R/I))| = 1 if and only if R/I ∼= Z4

or Z2[X]/(X2) by Proposition 2.2. Thus the desired result holds.

In the preceding proposition, notice that a non-trivial ΓI(R) has ends if and only

if it is isomorphic to K2. By Proposition 2.4, we have the following result.

Proposition 6.4. Let R be a commutative ring with nonzero identity and I a nonzero

ideal of R.Then ΓI(R) has ends if and only if R is isomorphic to one of the seven

rings with the appropriately chosen ideal I from Table 2.1.

Notice that for nonzero ideals I, the graph ΓI(R) rarely has ends (this follows

because of the many connections we get in ΓI(R) when I is non-zero).

Recall from the section on complemented and uniquely complemented, that we

had the following lemma. (Lemma 4.6) Let R be a commutative ring with nonzero

identity and I a nonzero ideal of R. If I is a radical ideal, the x ⊥ y in ΓI(R) if and

only if x+ I ⊥ y + I in Γ(R/I).

Proposition 6.5. Let R be a commutative ring with nonzero identity and I an ideal

of R such that R/I is a Boolean ring. If R/I 6∼= Z2, then every element of V (ΓI(R))

has |I| complements.
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Proof. By Lemma 2.3 from [20], each element of V (Γ(R/I)) has a unique complement

in Γ(R/I). Since R/I is a Boolean ring (hence reduced), I is a radical ideal of R.

Hence the result follows from Lemma 4.6.

Corollary 6.6. Let R be a Boolean ring and I an ideal of R with ΓI(R) 6= ∅ (i.e., I

is not a prime ideal). If each vertex of ΓI(R) has a unique complement, then I is the

zero ideal and R/I 6∼= Z2.

Proof. If R/I ∼= Z2, then ΓI(R) = ∅. Therefore R/I 6∼= Z2. Thus by Proposition

6.5, each vertex of ΓI(R) has |I| complements. Whence each element has a unique

complement if and only if |I| = 1, if and only if I = 0.

Let v be a vertex of a graph G, and let N(v) = {a ∈ V (G) | a is a adjacent to v}.

Recall from the introduction, that if A ⊆ V (G), then < A > is the subgraph of G

generated (or induced) by A.

Definition 6.7. Let R be a commutative ring and I an ideal of R. We say that

v ∈ ΓI(R) is a core of ΓI(R) if < {v} ∪N(v) > = K1,|I|.

Note that if v is a core of ΓI(R), then it is the center of a star subgraph. The idea

behind a core is to be a generalization of the concept of an end for the ideal-based

zero-divisor graph. Recall that when I is nonzero, ΓI(R) rarely has ends. Thus we

created the concept of a core in hopes of generalizing the idea of an end when ΓI(R)

is nontrivial. Notice that when I = 0, the definition of a vertex v being a core yields

that < {v} ∪ N(v) >= K1,1. Therefore |N(v)| = 1, and hence v is an end. The

following lemmas show that when I is a finite radical ideal, the concept of core is an

appropriate generalization of end.

Lemma 6.8. Let R be a commutative ring with nonzero identity and I a radical ideal

of R. Assume that v+ I is adjacent to exactly one vertex in Γ(R/I), say r+ I. Then

a vertex s is a adjacent to v in ΓI(R) if and only if s = r + i for some i ∈ I.
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Proof. It is evident that the vertices of the form r+ i are adjacent to v. Assume that

some other vertex w is adjacent to v, where w is not of the form r+ i for some i ∈ I.

Then r + I 6= w + I. But then since v + I is adjacent to only r + I in Γ(R/I), we

must have that w+ I = v + I. Therefore w− v ∈ I and wv ∈ I; but then w2, v2 ∈ I,

which is a contradiction as I is a radical ideal of R.

Lemma 6.9. Let R be a commutative ring R with nonzero idenity and I a finite

radical ideal of R. Then v is a core of ΓI(R) if and only if v+ I is an end in Γ(R/I).

Proof. We prove the forward direction by contrapositive. Assume that v+I is not an

end in Γ(R/I). Then there exists distinct vertices r+I, s+I both adjacent to v+I in

Γ(R/I). Then for each i ∈ I, r+ i, s+ i will be distinct vertices both adjacent to v in

ΓI(R). Since r+I 6= s+I, no r+i = s+j, where i, j ∈ I. Also, no r+i, s+i equals v,

as otherwise r+I, s+I, v+I would not be distinct vertices of Γ(R/I). Hence v will be

adjacent to at least 2|I| distinct elements in ΓI(R). Therefore {v}∪N(v) will have at

least 2|I|+1 elements. Thus < {v}∪N(v) >6= K1,|I| as |V (K1,|I|)| = |I|+1 < 2|I|+1

(this is true for all |I| ≥ 1 since |I| is finite).

For the reverse implication, assume that v+ I is an end in Γ(R/I). Then v+ I is

adjacent to exactly one vertex in Γ(R/I), say r + I. Using that I =
√
I, by Lemma

6.8, a vertex s is adjacent to v in ΓI(R) if and only if s = r + i for some s ∈ I. Thus

N(v) = {r + i | i ∈ I}, whence |N(v)| = |I|. Since I =
√
I, we have that r + i is not

adjacent to r + j for i, j ∈ I. Thus < {v} ∪N(v) >= K1,|N(v)| = K1,|I|; so v is a core

of ΓI(R).

Example 6.10. Notice that the “⇒” implication in Lemma 6.9 did not require the

radical ideal hypothesis. Thus a core always comes from an end when |I| <∞. The

reverse direction utilizes the radical ideal hypothesis. The following example shows

that the radical ideal hypothesis is necessary.

Let R = Z3[X]/(X2) × Z2 and I = 0 × Z2. Then ΓI(R) = K4. Notice that the

ends of Γ(R/I) do not become cores in ΓI(R) (in fact, there are no cores). Notice

that in this example, |I| = 2. In fact, if I 6=
√
I, then any end of Γ(R/I) whose
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representative is in
√
I will be a core if and only if |I| = 1. This follows since the

subgraph in question will always have a 3-cycle if |I| ≥ 2.

Remark 6.11. In Lemma 6.9, the finite hypothesis is necessary. Consider R = Z6×Z

and I = 0×Z. Then the vertex (3, 0) will be a core of ΓI(R). Here N((3, 0)) = {(2, k) |

k ∈ Z}∪{(4, k) | k ∈ Z}, where no vertex in N((3, 0)) is adjacent to any other vertex

in that set. Thus < {(3, 0)}∪N((3, 0)) >= K1,|N((3,0))|, where |N((0, 3))| = |I| = |Z|;

thus (3, 0) is a core of ΓI(R), but (3, 0) + I is not an end of Γ(R/I). Perhaps more

interestingly, every vertex of ΓI(R) is a core. This example not only shows that that

the finite hypothesis is required in Lemma 6.9, but also that the concept of core (at

least with its current definition) is most likely not very useful in the infinite setting.

We can construct a Boolean algebra on the set of idempotents of a ring R in the

following way ([20]). The relation “≤” defined on the set of idempotents of R given

by a ≤ b if and only ab = a partially orders B(R) = Idem(R). This relation makes

B(R) into a Boolean algebra with inf defined as multiplication in R, 1 as the largest

element, 0 as the smallest element, and complementation given by a′ = 1 − a. Also

a∨b = (a′∧b′)′ = a+b−ab. An atom in a Boolean algebra B is an element 0 6= a ∈ B

such that 0 6= b ∈ B with b ≤ a implies b = a. Thus given a ring R, we can define a

Boolean algebra on the set of idempotents; this will be called the Boolean algebra of

idempotents and will be denoted B(R). For more on the definition of Boolean algebra

and properties of B(R) see [21]. Recall that in B(R), 0 6= a ∈ B(R) is an atom if and

only if b = a whenever 0 6= b ∈ B(R) with ba = b.

Proposition 6.12. Let R be a commutative ring with nonzero identity and I a finite

ideal of R such that R/I be a Boolean ring with R/I 6∼= Z2. Then v+ I is an atom of

B(R/I) if and only if v is adjacent to a core in ΓI(R).

Proof. Since R/I is Boolean, R/I is reduced, and hence I is a radical ideal of R.

Let v + I be an atom of B(R/I). Then by [20, Theorem 2.2], v + I is an atom of

B(R/I) if and only if v + I is adjacent to an end, say w + I, in Γ(R/I). By Lemma
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6.9, w+ I is an end in Γ(R/I) if and only w is a core of ΓI(R). Thus v+ I is an atom

in B(R/I) if and only if v is adjacent to a core in ΓI(R).

Lemma 6.13. Let R be a commutative ring with nonzero identity and I a finite ideal

of R such that R/I 6∼= Z2 is a Boolean ring. Then v is adjacent to a core in ΓI(R) if

and only if v is adjacent to exactly |I| cores of ΓI(R).

Proof. The reverse implication is clear. To prove the “⇒” implication, let v be

adjacent to a core w of ΓI(R). Then v is adjacent to w + i for all i ∈ I and N(w) =

N(w + i) for all i ∈ I. Thus < {w} ∪N(w) >=< {w + i} ∪N(w + i) > for all i ∈ I.

Therefore w+ i is a core of ΓI(R) adjacent to v for all i ∈ I. Assume to the contrary

that there exists a x ∈ V (ΓI(R)) such that x is a core of ΓI(R) adjacent to v, but

x 6= w+ i for any i ∈ I. Then x+ I 6= w+ I. Furthermore, since I is a radical ideal of

R (this is since R/I is Boolean and hence reduced), v+ I, x+ I are distinct elements

of R/I.

Since x,w are cores of ΓI(R), the vertices x+ I and w + I are ends of Γ(R/I) by

Lemma 6.9. Since v is adjacent to a core, v+ I is an atom of B(R/I) by Proposition

6.12. Thus the atom v + I is adjacent to two distinct ends of Γ(R/I) (namely w +

I, x + I). But this contradicts [20, Lemma 1.2]. Thus the cores adjacent to v are

precisely those of the form w + i, where i ∈ I. Hence v is adjacent to exactly |I|

cores.

Theorem 6.14. Let R be a commutative ring with nonzero identity and I a finite

ideal of R such that R/I be a Boolean ring with R/I 6∼= Z2. Then the following

statements are equivalent.

1. v + I is an atom of B(R/I).

2. v + I is adjacent to an end in Γ(R/I).

3. v is adjacent to a core in ΓI(R).

4. v is adjacent to exactly |I| cores in ΓI(R).
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Proof. The theorem follows from [20, Theorem 2.2], Proposition 6.12, and Lemma

6.13.
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Chapter 7

The Number of Vertices and Edges

of Γ(R) when R is Reduced

We begin by proving a lemma about prime numbers.

Lemma 7.1. Let p, q, x, y be prime numbers and r, s, a, b ∈ N. Assume that the

following conditions hold.

1. prqs = xayb.

2. pr + qs = xa + yb.

Then there exists a permutation π such that π((x, y)) = (p, q) and π((a, b)) = (r, s)

(as ordered pairs).

Proof. We proceed in two cases.

Case 1: First assume that p = q. Then prqs = pr+s = xayb. Thus x = y = p; so

pr+s = pa+b. Therefore r + s = a+ b.

Assume that a, b, r, s are all distinct. Without loss of generality, assume that a is

the smallest among a, b, r, s. Then dividing the equation pa + pb = pr + ps by pa gives

1 + pb−a = pr−a + ps−a, where all the exponents are natural numbers. Then p divides

the right-hand side; so p | 1 + pb−a. But this is impossible as then p | 1.
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Hence the values a, b, r, s are not distinct. If a = r, a = s, b = r, or b = s, the

result follows from the equation r + s = a + b. If a = b and r = s, then the desired

result follows from a+ b = r + s. Without loss of generality, the only remaining case

is when r = s and a 6= b. Then 2pr = pa + pb. If r < a, r < b, then 2 = pa−r + pb−r,

which implies that a− r = 0 = b− r. Thus a = r, b = r, which is a contradiction to

the current hypothesis. Otherwise, either a is the smallest or b is the smallest (among

the values in question). Both cases are analogous. If a is smaller than r, s, and b, it

then follows that 2pr−a = 1 + pb−a. This implies that p | 1, hence a contradiction as

p is prime. Thus the desired result follows in the case that p = q.

Case 2: Now assume that p 6= q. The desired result follows from properties

of Unique Factorization in Z. (Notice that Property (2) was not required in Case

(2).)

Let R ∼= K1 ×K2 for finite fields K1, K2. Then from [5, Theorem 3.11], we have

that

1. |E(Γ(R))| = 1
2

[(2|K1| − 1)(2|K2| − 1)− 2|K1||K2|+ 1], and

2. |V (Γ(R))| = (|K1| − 1) + (|K2| − 1).

The right-hand side of the first equation simplifies to |K1||K2|− (|K1|+ |K2|) + 1.

Proposition 7.2. Let R and S be finite reduced commutative rings with nonzero

identity whose zero divisor graphs are complete bipartite. Then the following

statements are equivalent.

1. |V (Γ(R))| = |V (Γ(S))| and |E(Γ(R))| = |E(Γ(S))|.

2. Γ(R) ∼= Γ(S).

3. R ∼= S.

Proof. Notice that (3) ⇒ (2) and (2) ⇒ (1) are clear. Thus it suffices to show

(1)⇒ (3).
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Assume (1) holds, that is, |V (Γ(R))| = |V (Γ(S))| and |E(Γ(R))| = |E(Γ(S))|.

Since the graphs are complete bipartite, we have by [18, Theorem 1.14] that R ∼=

K1 ×K2 and S ∼= F1 × F2, where Ki, Fi are finite fields.

Without loss of generality, let R = K1 × K2 and S = F1 × F2, where Ki, Fi are

finite fields. Then we have the following two equalities.

1. |K1||K2| − (|K1|+ |K2|) + 1 = |F1||F2| − (|F1|+ |F2|) + 1.

2. (|K1| − 1) + (|K2| − 1) = (|F1| − 1) + (|F2| − 1).

Equality 2 above implies that |K1| + |K2| = |F1| + |F2|. Combining the previous

equality with Equality 1 implies that |K1||K2| = |F1||F2|. Thus the following two

conditions hold.

1. |K1||K2| = |F1||F2|.

2. |K1|+ |K2| = |F1|+ |F2|.

Now, using that the cardinality of a finite field is a power of prime, it follows

from Lemma 7.1 that either |F1| = |K2| and |F2| = |K2|, or |F1| = |K2| and |F2| =

|K1|. Moreover, since finite fields are isomorphic if and only if they have the same

cardinality, it follows that R ∼= K1 ×K2
∼= F1 × F2

∼= S. Thus (1)⇒ (3).

We note that in Propostion 7.2, (2) if and only if (3) is a special case of [5, Theorem

4.1].

Thus we have that the finite complete bipartite graphs arising as zero-divisor

graphs (from reduced rings) can be classified by their number of edges and number

of vertices. This holds for finite complete bipartite graphs in general. The following

argument shows this:

Consider the set of complete bipartite graphs Km,n with a fixed number of vertices

v. Then v = m + n. The number of edges for such a graph will be e = mn. Using

that v = m+ n, we have m = v− n, and therefore e = (v− n)n = vn− n2. Consider

this as a function of n. Then notice that this is a parabola increasing on the interval
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(−∞, v/2) and decreasing on the interval (v/2,∞) (if we extend the domain to all

real numbers).

Let us assume we have two graphs Kn1,m1 and Kn2,m2 , both on v vertices. Then

from the fact that |V (Km,n)| = m+ n, n1 = n2 implies that m1 = m2, and therefore

the two graphs are isomorphic. Assume n1 6= n2 Using that e(n) is a parabola, we have

that e(n1) = e(n2) if and only if |n1 − v/2| = |n2 − v/2|. Without losss of generality,

assume that n1 < v/2. Then |n1 − v/2| = v/2 − n1 and |n2 − v/2| = n2 − v/2.

Thus n1 + n2 = v = n1 + m1 ⇒ n2 = m1. It then follows that m2 = n1. Hence

Kn1,m1 ∼= Km2,n2 ∼= Kn2,m2 .

Hence, if two complete bipartite graphs have the same number of edges and the

same number of vertices, they must be isomorphic. This gives another proof of the

first proposition of this section.

The above argument does not show (in the complete bipartite case) that solely

the number of vertices of a zero-divisor graph for a reduced ring determines the graph

or ring (neither does the number of edges). Consider the following examples.

Example 7.3. This example shows that if the number of vertices of two zero-divisor

graphs for reduced rings are the same, they need not have the same number of edges.

Let R = Z2 × F4 and S = Z3 × Z3. Then |V (Γ(R))| = 4 = |V (Γ(S))|, but

|E(Γ(R))| = 3 and |E(Γ(S))| = 4.

Example 7.4. This example shows that if the number of edges of two zero-divisor

graphs for reduced rings are the same, they need not have the same number of vertices.

Let R = Z2 × Z7 and S = Z3 × F4. Then |E(Γ(R))| = 6 = |E(Γ(S))|, but

|V (Γ(R))| = 7 and |V (Γ(S))| = 5.

The preceding examples show that the number of vertices (or the number of edges)

alone does not determine when two reduced rings have isomorphic zero-divisor graphs.

We conjectured that if two reduced rings have zero-divisor graphs with the same

number of edges and the same number of vertices, then their graphs would have to be

isomorphic. We have seen that this holds if both rings are isomorphic to a product of
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two fields. In order to check the conjecture for the products of more than two fields,

we wrote a Matlab program to compute the number of vertices and edges for a given

product of fields. We use the equations from [5] for the number of vertices and edges

based on the cardinality of the fields. Using that the cardinality of a finite field is a

power of a prime (and that for every power of a prime there is a corresponding field

with that cardinality), we check the equations for various powers of primes up to a

fixed bound.

The Matlab program has two parts. One is called ‘powerofprimes.’ This function

takes a postive integer n and returns an array in ascending order, consisting of all

powers of primes from 2 up to the postive integer n. The Matlab code is as follows:

function list = powerofprimes(n)

plist=primes(n); %Matlab function giving primes from 2 to n

list=[];

for i=1:length(plist)

a=plist(i);

p=plist(i);

while a<= n

list=[list,a];

a=a*p;

end

end

list=sort(list);

end

The main part of the program is called ‘productfields.’ It takes 3 inputs:‘number’,

‘upperbound’, and ‘vBound’. The variable ‘number’ is the number of fields in

the product, ‘upperbound’ is the highest cardinality of any field we consider (this

inequality is not strict), and ‘vBound’ is the largest number of vertices we wish to
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consider (this inequality is strict). For example, ‘productfields(2,8,1000)’ will check all

products of two fields where the field cardinalities range over the values 2,3,4,5,7, and

8, and only rings whose zero-divisor graphs have less than 1000 edges will make the

list. The output is a matrix, where each row represents a different possible product

of fields. The first ‘number’ of columns will list the powers of primes used in the

calculation. The second to last column will contain the number of vertices, while the

last column gives the number of edges. The Matlab code is as follows:

function Results=productfields(number,upperbound,vBound)

primes=powerofprimes(upperbound);

temp=[];

for i=1:number %Allow repeated fields

temp=[temp,primes];

end

primes=temp;

field=combntns(primes,number); %Get All Possible Choices (Order Matters (i))

tempsize=size(field);

for i=1: tempsize(1) %Sort Row Entries

field(i,:)=sort(field(i,:));

end

field=union(field,field,’rows’); % Remove duplicate rows (Fixing (i))

RC=size(field); %Number of Rows and Columns of Field Matrix

Results=[];

for i=1:RC(1)

A=1; B=1; C=1; D=1;

for j=1:RC(2)

A=A*(2*field(i,j)-1);

B=B*field(i,j);
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D=D*(field(i,j)-1);

end

V=B-D-1;

B=2*B;

E=(1/2)*(A-B+1);

if V< vBound

Results=[Results; field(i,:), V, E];

end

end

end

We begin by checking if a product of 2 finite fields could yield a zero-divisor graph

with the same number of edges and vertices as a product of 3 finite fields. The answer

was yes. We found such an example after 56,543 data points within the tables given

by ‘productfields(2,1000,2147483647)’ and ‘productfields(3,1000,2147483647)’. The

number of edges and vertices in question being V = 64 and E = 240.

Example 7.5. Let R = Z5×Z61 and S = F4×F4×F8. Then using the equations for

the number of edges and vertices, we see that both of these two rings have zero-divisor

graphs with the same number of vertices and same number of edges (64 and 240,

respectively). It is evident that the two graphs are not isomorphic (one is complete

bipartite and the other is not). Another way of seeing that Γ(R) 6∼= Γ(S) is that

gr(Γ(R)) = 4, while gr(Γ(S)) = 3.

The next obvious question would be: is the number of vertices being 64 minimal?

That is, does there exist a counterexample to the conjecture where the number of

vertices is less than 64. The answer is no. We notice that for a product of 7 fields,

the smallest number of possible vertices will correspond to the graph of (Z2)7, which

will have 27− 2 = 126 > 64 vertices. So it suffices to check up to products of 6 fields,

where the number of vertices is less than 65.

85



Thus we need only check powers of primes less than 65 (because if any factor

exceeds 64, then so will the number of vertices). Thus it suffices to check all

possible products of fields (2 up to 6 factors) with cardinalities among the set A =

{2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64}.

Hence in Matlab, it will suffice to compare the vertices and edges entries of the

following tables:

1. productfields(2,65,65),

2. productfields(3,65,65),

3. productfields(4,65,65),

4. productfields(5,65,65), and

5. productfields(6,65,65).

Because of the number of iterations required to get all possible field combinations,

the execution of the last three function calls fail because of insufficient memory. In

order to avoid this problem, we notice that for 4 and 5 factors, we can reduce the set

A to just considering powers of primes up to 11.

If we have 4 factors, then the smallest number of vertices where 11 appears in a

factor will be of the form (Z2)3×Z11. But this will have 23 ·11−10−1 = 77 vertices.

(Notice that if any field has more than 11 elements, then the total number of vertices

must exceed 77.)

Also, if we have 5 factors, then the smallest number of vertices where 11 appears

in a factor will be of the form (Z2)4 × Z11. But this will have 24 · 11− 10− 1 = 165

vertices. (Notice that if any field has more than 11 elements, then the total number

of vertices must exceed 165.)

Similarly, for 6 factors, if a field F1 in the factorization has more than 3 elements,

then |V (
∏6

i=1 Fi)| ≥ |V (Z3 × (Z2)5)| = 3 · 25 − 2 − 1 = 93 > 64. So in the case of 6

fields, we can drop the list A down to {2}.
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Thus it suffices to check productfields(4,11,65), productfields(5,11,65), and pro-

ductfields(6,3,65). Hence we need only compare the number of vertices and edges

given from the following tables in Matlab:

1. productfields(2,65,65),

2. productfields(3,65,65),

3. productfields(4,11,65),

4. productfields(5,11,65),

5. productfields(6,3,65) (notice there is only one to check here: (Z2)6).

We compared the preceding tables using the Matlab command “intersect(...).”

In each comparison, there was no overlap. Thus it follows that 64 is a minimal

counterexample.

To summarize: Let Γ(R) and Γ(S) be the zero-divisor graphs of finite reduced

rings R and S, where |V (Γ(R))|, |V (Γ(S))| < 64. Then Γ(R) ∼= Γ(S) if and only if

|V (Γ(R))| = |V (Γ(S))| and |E(Γ(R))| = |E(Γ(S))|.

We would provide the output for all 5 commands above, but each table consists

of 256, 52, 14, 3, and 1 row(s), respectively.

We note that a program from [26] influenced how this author handled enumerating

the different possible products of fields.
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Chapter 8

ΓI(R) of Small Finite Commutative

Rings

Inspired by work in [31] and [32], here we extend some of our work from Chapters

1 and 2 to classify the graphs of all nontrivial ΓI(R) on fewer than 7 vertices. We

proceed by the means of the equation: |V (ΓI(R)| = |I||ΓI(R)| (Theorem 1.7 (7)).

When |I| = 1 (if and only if I = 0), we would be considering the case of zero-divisor

graphs on n vertices. This has already been investigated. So we will consider only

the cases when |I| ≥ 2.

In the case of n = 2, 3, 5, 7, we must have that |I| = n and |V (Γ(R/I))| = 1. This

has already been considered in Chapter 2 (Proposition 2.9).

So it suffices to consider the cases when n = 1, 4, 6. Notice the case n = 1 does

not occur when I 6= 0. Hence we may consider only the cases of n = 4 and n = 6.

If n = 4, then |I| = 2 or |I| = 4. We will consider each case separately.

Assume n = 4 and |I| = 2. Then we must have |V (Γ(R/I))| = 2. Using that

Γ(R/I) must be connected, we have Γ(R/I) ∼= K2. By [5, Example 2.1], R/I ∼= Z9,

Z2 × Z2, or Z3[X]/(X2). From this observation, we can quickly see that ΓI(R) is

isomorphic to either a 4-cycle or K4, by taking note of connected columns and using

Redmond’s construction method for ΓI(R) from Γ(R/I).
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Note that both Z9 and Z3[X]/(X2) give rise to K4. It has already been discussed

for which rings non-trivial ΓI(R) yield K4 in Chapter 2. Thus it suffices to discuss

when R/I ∼= Z2 × Z2. We must have |R| = 8. Since R/I ∼= Z2 × Z2 is not local,

it follows that R is not local. So by writing R as a product of finite local rings,

it follows that either (1) R ∼= Z2 × R1 (where R1 is a local ring of order 4) or (2)

R ∼= Z2 × Z2 × Z2. By Lemma 2.1, it follows that R is isomorphic to one of the

following four rings: Z2 × Z4, Z2 × Z2[X]/(X2), Z2 × F4, or Z2 × Z2 × Z2. By

examination, we see that R/I will be isomorphic to Z2 × Z2 provided we pick R to

be one of the following rings with corresponding ideal I:

1. Z2 × Z4, I = 0× (2),

2. Z2 × Z2[X]/(X2), I = 0× (x),

3. Z2 × Z2 × Z2, I = 0× 0× Z2, 0× Z2 × 0, or Z2 × 0× 0.

Notice that that the preceding three rings are not in rings for K4 in Table 2.3.

We also note that the above argument is similar to that of [9, Example 4.14(c)].

Now when |I| = 4, it must be that |V (Γ(R/I))| = 1. From which it will follow

that ΓI(R) ∼= K4. This case was already consider in Chapter 2.

Combining the previous observations, yields the following:

Proposition 8.1. Let R be a commutative ring with nonzero identity and I a proper,

non-prime, non-zero ideal of R. Then ΓI(R) is a graph on 4 vertices if and only if

exactly one of the following two statements hold.

1. ΓI(R) is a 4-cycle; in which case, R is isomorphic to Z2×Z4, Z2×Z2[X]/(X2),

or Z2 × Z2 × Z2 with appropriately chosen ideal I.

2. ΓI(R) = K4; in which case, R is isomorphic to one of the 29 rings from Table

2.3 with appropriately chosen ideal I.
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(A) (B) 

(C) (D) 

Figure 8.1: ΓI(R) on 6 vertices

We now consider the case when n = 6. It follows that |I| = 2, 3, or 6. In the case

that |I| = 2, we have |V (Γ(R/I))| = 3. We see quickly that classifying the rings up

to isomorphism will become unruly as we will have to consider all local rings with 32

elements. In light of the preceding, we will be satisfied simply to classify the graphs

of ΓI(R) on 6 vertices up to isomorphism.When n = 6, we have |V (Γ(R/I))| = 1, 2,

or 3. Again, using that we know all zero-divisor graphs on 1,2, and 3 vertices, we may

deduce all possible ΓI(R) graphs on 6 vertices using Redmond’s construction method.

We get the following result.

Proposition 8.2. Let R be a commutative ring with nonzero identity and I a proper,

non-prime, non-zero ideal of R. Then ΓI(R) is a graph on 6 vertices if and only if it

is isomorphic to one of the following 4 graphs in Figure 8.1.

Combining this with results from the first chapter, we have classified all possible

ideal-based zero-divisor graphs on fewer than 8 vertices. (Notice that the work is done

for 7 vertices in Proposition 2.9.) By using [31] and [32], we notice that is possible
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to give all possible ideal-based zero-divisor graphs on up to 29 vertices. When we

consider graphs on 30 vertices, if |I| = 2, then Γ(R/I) will be a zero-divisor graph on

15 vertices which is not classified in the two papers by Redmond.

91



Chapter 9

Miscellaneous Results and Future

Research

In this chapter, we begin by giving a few small results which do not seem to fit well

elsewhere in this dissertation.

Proposition 9.1. Let R and S be commutative rings with nonzero identity and I a

nonzero ideal of R. Then ΓI(R) is complete bipartite if and only if exactly one of the

following hold:

1. R/I ∼= Z4 or Z2[X]/(X2), and |I| = 2.

2. I = P1 ∩ P2, where P1 and P2 are prime ideals of R.

Proof. We begin by proving that (1) and (2) cannot both hold. Assume to the

contrary. Then Z(R/I)∗ = {a+I} and a2 ∈ I = P1∩P2 for prime ideals P1 and P2 of

R. Thus a2 ∈ P1 and a2 ∈ P2. But since P1 and P2 are prime ideals, a ∈ P1 ∩P2 = I.

However, this is a contradiction as a+I ∈ Z(R/I)∗. Note that the preceding argument

shows that (2) implies that R/I is reduced (which is not the case in (1)). (Another

way of seeing this is that (2) implies that I is a radical ideal since it is an intersection

of prime ideals.) But (1) forces I to be a non-radical ideal as both possibilities for

R/I are non-reduced.
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We consider two cases: R/I is reduced or non-reduced. If R/I is reduced, then I

is a radical ideal. The result then holds by [24, Theorem 3.1(b)].

If R/I is not reduced, then there exists a nonzero a + I in Z(R/I) such that

a2 + I = 0 + I. We first claim ΓI(R) complete bipartite implies Z(R/I)∗ = {a + I}.

Assume to the contrary. Then there exists a b + I ∈ Z(R/I)∗ such that a + I and

b+ I are adjacent since zero-divisor graphs are connected. Since I is nonzero, choose

0 6= i ∈ I and note that a− a+ i− b− a is a 3-cycle in ΓI(R). This is impossible as

ΓI(R) was assumed to be complete bipartite. Thus in the non-reduced case, ΓI(R)

complete bipartite implies that Γ(R/I) is a singleton. Therefore ΓI(R) ∼= K |I| (by

Corollary 2.1) , which is complete bipartite if and only if |I| = 2. Thus in the non-

reduced case, ΓI(R) is complete bipartite if and only |Z∗(R/I)| = 1 and |I| = 2, if

and only if R/I ∼= Z4 or Z2[X]/(X2), and |I| = 2 (by Proposition 2.2).

Proposition 9.2. Let R be a commutative ring with nonzero identity, I an ideal of

R, and X an indeterminate.

1. V (ΓI[X](R[X])) has infinite girth if and only if V (ΓI(R)) is empty.

2. If V (ΓI[X](R[X])) is nonempty, then gr(ΓI[X](R[X])) ∈ {3, 4}.

Proof. We prove the forward direction of (1) by contrapositive. Assume that

V (ΓI(R)) is non-empty. There are two possibilities: |V (Γ(R/I))| = 1 or |V (Γ(R/I))| ≥

2. In the first case, we must have there exists a ∈ V (Γ(R/I) such that a2 ∈ I. Then

notice that the vertices a, aX, aX2 are mutually adjacent in ΓI[X](R[X]), whence

gr(ΓI[X](R[X])) = 3. In the second case, since zero-divisor graphs are connected

(Theorem 1.5), there exists distinct vertices a, b in Γ(R/I) that are adjacent. Then

a− b− aX − bX − a is a cycle of length 4; hence gr(ΓI[X](R[X])) ≤ 4. Thus, in both

cases, we have that the girth of V (ΓI[X](R[X])) is not infinity as desired.

Property (2) follows from the proof of Property (1).
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Proposition 9.3. Let R be a commutative ring with nonzero identity, I a radical ideal

of R, and X an indeterminate. Then gr(ΓI[X](R[X])) = 3 if and only if gr(ΓI(R)) =

3.

Proof. “⇒” Say that p(X)− q(X)− r(X)− p(X) is a cycle in ΓI[X](R[X]). Choose

p(X) ∈ ((R \ I ∪ {0}))[X] such that p(X) + I[X] = p(X) + I[X]. Define q(X) and

r(X) similarly. Notice that the p(X),q(X),r(X) are nonzero. Moreover p(X), q(X),

r(X) are mutually distnict as I =
√
I ⇔ I[X] =

√
I[X]. To see this, assume two of

p(X),q(X),r(X) are equal in R[X]. Without loss of generality, assume p(X) = q(X),

then pq ∈ I[X] implies that p(X)2 ∈ I[X]; the latter is impossible as I[X] =
√
I[X]

and p(X) 6∈ I[X].

Let p, q, r be the leading coefficients of each p(X),q(X),r(X), respectively. Since

p(X) ∈ ((R \ I ∪ {0}))[X] and is nonzero, p ∈ R \ I. Similarly r, s ∈ R \ I. Now

p(X)− q(X)− r(X)− p(X) is a cycle implies that p− q− r− p is a cycle in Γ(R/I),

provided they are distinct. Let us assume that two of the latter are equal; without

loss of generality, assume that p = q. Then we have that p2 = pq ∈ I and p ∈ R \ I.

But this is impossible as
√
I = I. Therefore gr(ΓI(R)) = 3.

“⇐” This implication is evident as a cycle in ΓI(R) will also be a cycle in

ΓI[X](R[X]).

We conclude this dissertation by listing a few open questions. We hope to return

to these questions in future research.

• When is ΓI(R) an infinite planar graph?

• Assume ΓI(R) ∼= ΓJ(S), I and J radical ideals of R and S, respectively, with

|I| = |J |. When do the latter assumptions imply Γ(R/I) ∼= Γ(S/J)?

• What relationship exists between ΓI(R) and ΓI[X](R[X])? In particular, what

can be said about the girth of ΓI[X](R[X])?
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• Some equivalences for ΓI(R) to be complete bipartite have been explored. What

other ring-theoretic properties give complete bipartite ideal-based zero-divisor

graphs?

• The concept of the compressed zero-divisor graph has been consider by several

authors. Is there a natural way to extend this to ΓI(R)?

• What are natural topologies that can be placed on ideal-based zero-divisor

graphs and what properties would they have?
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