
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2014

Particle Modeling of Fuel Plate Melting during
Coolant Flow Blockage in HFIR
Hiraku Nakamura
University of Tennessee - Knoxville, hiraku@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Nakamura, Hiraku, "Particle Modeling of Fuel Plate Melting during Coolant Flow Blockage in HFIR. " PhD diss., University of
Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/2719

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Hiraku Nakamura entitled "Particle Modeling of Fuel
Plate Melting during Coolant Flow Blockage in HFIR." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering.

Arthur E. Ruggles, Major Professor

We have read this dissertation and recommend its acceptance:

David H. Cook, Lawrence W. Townsend, Michael W. Guidry

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Particle Modeling of Fuel Plate Melting

during Coolant Flow Blockage in HFIR

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Hiraku Nakamura

May 2014

Copyright c© 2014 by Hiraku Nakamura
All rights reserved

ii

Dedication

Dedicated in memory of my grandmother, aunt, and uncle:

Eiko Toyama, Ayako Toyama, and Mitsuru Toyama

iii

Acknowledgements

This dissertation was made possible through the support of many. I would like to express
my profound gratitude here.

I would like to thank my advisor, Dr. Ruggles for his patient guidance and all his hard
work.

I would like to thank my supervisor, Dr. Cook for always taking his time to answer my
questions and his constant willingness to help.

I would like to thank Dr. Townsend for his generous guidance and interest.

I would like to thank Dr. Guidry for his encouragements and helpful suggestions.

I would also like to thank my friends and my family for their continuous support and
encouragement.

I am grateful for the �nancial support of the GTRI to the LEU Conversion Program for
the HFIR.

iv

Abstract

Cooling channel inlet �ow blockage has damaged fuel in plate fueled reactors and
contributes signi�cantly to the probability of fuel damage based on Probabilistic Risk
Assessment. A Smoothed Particle Hydrodynamics (SPH) model for fuel melt from inlet
�ow blockage for the High Flux Isotope Reactor is created. The model is coded for high
throughput graphics processing unit (GPU) calculations. This modeling approach allows
movement toward quanti�cation of the uncertainty in fuel coolant �ow blockage
consequence assessment. The SPH modeling approach is convenient for following
movement of fuel and coolant during melt progression and provides a tool for capturing the
interactions of fuel melting into the coolant. The development of this new model is
presented. The implementation of the model for GPU simulation is described. The model
is compared against analytical solutions. Modeling of a scaled fuel melt progression is
simulated for di�erent conditions showing the sensitivities of melting fuel to conditions in
the coolant channel.

v

Table of Contents

1 Introduction 1
1.1 High Flux Isotope Reactor . 1

1.1.1 Flow Blockage . 3
1.1.2 Flow Blockage studies . 5
1.1.3 Fuel Melts . 7
1.1.4 Current Fuel Melt Progression Hypothesis and Consequence 10

1.2 Fuel Melt Progression Model . 12
1.3 Contributions . 14
1.4 Structure of the Dissertation . 14

2 Melting Model 16
2.1 Eulerian and Lagrangian Flow . 16
2.2 Introduction to Smoothed Particle Hydrodynamics 18

2.2.1 Mathematical Basis . 19
2.2.2 Di�erentiation . 22
2.2.3 Kernel functions . 24

2.3 Fluid Mechanics in SPH . 28
2.3.1 Standard Form . 29
2.3.2 Multi-�uid . 32
2.3.3 Equation of State . 34
2.3.4 Stability . 35

2.4 Energy Transport . 36
2.4.1 SPH . 36
2.4.2 MPS . 37

2.5 Phase Change . 40
2.6 Boundary Conditions . 41

2.6.1 Fluid . 41
2.6.2 Heat . 43

2.7 Limitation . 44

3 Implementation 45
3.1 Ascent of GPU . 45
3.2 CUDA . 47

vi

3.2.1 Introduction to CUDA . 47
3.2.2 CUDA Framework . 48

3.3 SPH on GPU . 50
3.4 Model Algorithm . 51
3.5 Model in CUDA . 53

3.5.1 Neighbor Search . 55
3.5.2 Particle Interaction . 59
3.5.3 Time stepping . 60
3.5.4 Boundary . 62

4 Model Test Cases 67
4.1 Flow . 67
4.2 Heat Transfer . 70
4.3 Phase Change . 74

5 Fuel Plate Melting 79
5.1 Model Scaling . 79
5.2 Simulation Cases . 86

5.2.1 Case 1: low power, slow �ow, low temperature 87
5.2.2 Case 2: low power, slow �ow, high temperature 90
5.2.3 Case 3: low power, fast �ow, high temperature 93
5.2.4 Case 4: high power, slow �ow, low temperature 96
5.2.5 Case 5: high power, slow �ow, high temperature 99
5.2.6 Case 6: low power, fast �ow, low temperature 102

5.3 Temperature pro�les and Melt fraction . 105

6 Conclusions 113

References 116

Appendix 124

A SPH Heat Conduction 125

B SPH Heat Conduction Error 127

C SPH Phase Change Error 130

D Code Structure 134

Vita 137

vii

List of Tables

1.1 Flow Blockage Studies . 5

3.1 NVIDIA GTX 680 speci�cations [61] . 46
3.2 AMD Radeon 7970 speci�cations [62] . 46

4.1 Flow parameters . 69
4.2 Conduction Parameters . 71
4.3 Phase change parameters . 76

5.1 Material properties. 84
5.2 Dimensions [m]. 85
5.3 Initial number of particles. 86
5.4 Study case conditions. 87
5.5 Heat transfer coe�cient between fuel plate and coolant before �rst melt. . . 111

viii

List of Figures

1.1 HFIR dimensions [2] . 2
1.2 HFIR Core [3] . 3
1.3 Top view of HFIR core to scale [6]. 4
1.4 Convex (left) and concave (right) side of the fuel plates from ORR [18]. . . . 9
1.5 The BR2 melt [14]. Reproduced here with permission from Elsevier. 9
1.6 The BR2 relocated melt [15]. 10
1.7 Event sequence following �ow blockage [19]. 11
1.8 Cut plane (left) and schematic fuel plate melting (right) of half the plate. . 13

2.1 Mesh-based Eulerian (top and bottom left) and meshless Lagrangian method
(bottom right). 17

2.2 Kernel and its interaction in 2D. 21
2.3 Gaussian kernel . 25
2.4 Cubic spline . 26
2.5 Wendland kernel . 27
2.6 MPS kernels . 38
2.7 Kernels of virtual particles (×), boundary wall(�) and �uid particle (•). . . 42

3.1 A typical CPU and GPU schematic . 46
3.2 CUDA kernel execution model . 50
3.3 Time step . 52
3.4 Neighbor search in 2D . 55
3.5 Singly linked list . 56
3.6 Tree Search . 57
3.7 In�ow and out�ow boundary . 64

4.1 Poiseuille �ow problem. 68
4.2 Velocity Field at t = 0.2. 69
4.3 Velocity pro�le of the Poiseuille �ow . 70
4.4 Internal slice of 3D unit cube. 72
4.5 Comparison of exact and simulation result along y-axis. 73
4.6 Error of conduction model. 74
4.7 The freezing of liquid in the Stefan problem. 75
4.8 Exact and numerical solution to Stefan problem. 77

ix

4.9 Exact and numerical solution to Stefan problem along the center (y=0.5). . 78
4.10 Phase Change Error . 78

5.1 Relative Power density distribution in the HFIR fuel annuli. 82
5.2 Model relative rower density distribution. 83
5.3 Model problem. Left �gure is not to scale. 85
5.4 Case 1 temperature [K]. 88
5.5 Case 1 particle types. 89
5.6 Case 2 temperature [K]. 91
5.7 Case 2 particle types. 92
5.8 Case 3 temperature [K]. 94
5.9 Case 3 particle types. 95
5.10 Case 4 temperature [K]. 97
5.11 Case 4 particle types. 98
5.12 Case 5 temperature [K]. 100
5.13 Case 5 particle types. 101
5.14 Case 6 temperature [K]. 103
5.15 Case 6 particle types. 104
5.16 Case 1: Average temperature by material. 105
5.17 Case 2: Average temperature by material. 106
5.18 Case 3: Average temperature by material. 107
5.19 Case 4: Average temperature by material. 108
5.20 Case 5: Average temperature by material. 109
5.21 Case 6: Average temperature by material. 110
5.22 Melt fraction vs time of the di�erent cases. The legend shows the parameters

v(velocity), p(power), and t(temperature) of Table 5.4 for each case. 112

A.1 2D SPH conduction solution of isothermal boundary 126

B.1 Error 0.15 . 127
B.2 Error 0.1 . 127
B.3 Error 0.05 . 128
B.4 Error 0.04 . 128
B.5 Error 0.02 . 129

C.1 Error 0.2 . 130
C.2 Error 0.1 . 131
C.3 Error 0.08 . 131
C.4 Error 0.02 . 132
C.5 Error 0.01 . 132
C.6 Error 0.008 . 133
C.7 Error 0.003 . 133

D.1 Code structure for melt . 135

x

D.2 Code structure . 136

xi

List of Algorithms

2.1 Phase change . 41
3.1 Detailed Fuel Melt Algorithm . 54
3.2 Neighbor Search . 59
3.3 Interaction per thread . 60
3.4 Dynamic Boundary . 63
3.5 In�ow . 65

xii

List of Acronyms

ANS Advanced Neutron Source

API Application Programming Interface

BR2 Belgian Reactor 2

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CUDA Compute Uni�ed Device Architecture

FCI Fuel Coolant Interaction

GPU Graphics Processing Unit

HEU Highly Enriched Uranium

HFIR High Flux Isotope Reactor

IAEA International Atomic Energy Agency

LEU Low-Enriched Uranium

LOFA Loss of Flow Accident

MPS Moving Particle Semi-implicit

MTR Materials Testing Reactor

ORNL Oak Ridge National Laboratory

ORR Oak Ridge Reactor

PDE Partial Di�erential Equation

PRA Probabilistic Risk Assessment

SAR Safety Analysis Report

SCK·CEN Belgian Nuclear Research Centre

SPH Smoothed Particle Hydrodynamics

VTK Visualization Toolkit

xiii

List of Attachments

Case1 . Case1.avi

Case2 . Case2.avi

Case3 . Case3.avi

Case4 . Case4.avi

Case5 . Case5.avi

Case6 . Case6.avi

xiv

Chapter 1

Introduction

1.1 High Flux Isotope Reactor

The High Flux Isotope Reactor (HFIR) is a research reactor for neutron scattering research

and isotope production at Oak Ridge National Laboratory (ORNL). The HFIR is a

pressurized reactor moderated and cooled by light water. Figure 1.1 shows the reactor

vessel, which is located inside a pool of water. The reactor was designed for 100 MW

operation but currently operates at 85 MW. Water cools the reactor �owing at nominally

16,000 gal/min (1009 L/s) where approximately 13,500 gal/min �ows through the core.

The core, shown in Figure 1.2, is composed of two concentric annuli with 171 involute fuel

plates in the inner annulus and 369 involute fuel plates in the outer annulus. Each fuel

plate is 24 in. long, of which 20 in. contains the active fuel U3O8. The fuel plate is 0.050

in. thick and separated by a coolant channel that is also 0.050 in. in thickness. This high

performance reactor has a power density that is about 17 times that of a commercial

nuclear power plant [1]. A typical fuel operational cycle is 23 to 26 days at 85 MW.

1

Figure 1.1: HFIR dimensions [2]

2

Figure 1.2: HFIR Core [3]

1.1.1 Flow Blockage

Flow blockage occurs when there is an obstruction at the entrance to the coolant channel,

which may be in the form of broken internal reactor component parts or foreign objects

introduced during maintenance, which impede �ow along the coolant channel. The degree

of inlet blockage may vary from partial to total for a single channel and could also span

multiple channels. Blockage can occur at the inlet or downstream, but inlet �ow blockages

are the most likely because of the downward core �ow direction and are the focus of safety

analysis e�orts.

3

A Probabilistic Risk Assessment (PRA) study of HFIR concluded core damage due to �ow

blockage accounts for 20% of the combined internal and external-events induced core

damage frequency [4]. For internal events, �ow blockage core damage frequency accounts

for 49% [5] of the fuel damage risk. Materials Testing Reactor (MTR) type reactors are

usually designed with down�ow and material test experiments and refueling o�ers

opportunity for foreign objects to enter the primary �ow circuit just upstream of the core

several times during each year of operation. The relatively high power density of MTR

reactors makes inlet �ow blockage a likely precursor to fuel damage. Two fuel damage

events caused by inlet �ow blockage have occurred in MTR reactors as will be presented in

some detail in Section 1.1.3.

Figure 1.3: Top view of HFIR core to scale [6].

4

1.1.2 Flow Blockage studies

Several �ow blockage studies have been performed for MTR [7, 8, 9]. Some of the �ow

blockage studies are shown in Table 1.1. All studies listed in Table 1.1 are numerical,

mostly using RELAP or the commercial CFD software Fluent. Only the last study, the

Advanced Neutron Source �ow blockage study compares numerical results to experimental

data.

Table 1.1: Flow Blockage Studies

Studies What was studied Result Summary

MTR LOFA [10, 11] Various codes compared
Two hotspots present, �ow
inversion by natural convection

MTR LOFA [12] Fluent 12 2D
Clad temp. below melting, �ow
reversal seen

MTR FB [7]
9 channel, partial and full
blockage using RELAP5

No boiling with total blockage,
adjacent channels remove heat

MTR FB [8]
2D Fluent 6.2 comparison to
MTRTHA 1D

Hot channel at 90% blockage
predicts boiling

MTR FB [9] 95% blockage single channel 8sec., clad melting temp. reached

ANS [13]
E�ect of blockage shape and
position on downstream �ow
property using Fluent

Shape has e�ect on �ow,
reattachment length

The �rst study [10] is a CFD analysis of a fast loss of �ow accident (LOFA) in the IAEA

generic 10 MW MTR using Fluent 6.2.16. This study compares Fluent results to RTRTH,

RELAP5/3.2, PARET, PETRAC-PC, COSTAX, EUREKA, COBRA and NSTRI for

benchmarking loss of �ow transients. It models a down �ow reactor initially operating at

steady state followed by a pump coast down. Control rods scram when exponentially

decaying �ow rate with a time constant of one second is 85% of the nominal value. When

the �ow reaches 85% nominal, the power drops due to the scram. At around three seconds

it is thought that the �ow transitions into laminar �ow thus decreasing heat transfer

resulting in increasing temperature. In a similar study [11] of slow LOFA (time constant of

5

25 s) the result is nearly identical to the fast loss of �ow transient.

The work described in Ref. [12] uses Fluent 12 to analyze the fast loss-of-�ow accident in

the IAEA 10 MW generic research reactor under a hot channel condition with one channel

subject to inlet area contractions up to 80%. All loss of �ow accidents simulations in [12]

predict clad temperature below melting. Past studies considered 2D steady state and this

study considers 2D transients. The channel conditions assumed a constant pressure drop

and constant temperature at the channel exit. This assumption had little e�ect on peak

temperature for short term runs. Mass �ow rates increase in adjacent channels as blockage

ratio increases and showed little impact on channels further away. Flow reversal occurs in

all three channels simultaneously. Boiling was found to be inevitable for blockage ratios

above 20%.

A RELAP mod 3.3 study [7], investigated partial (95%) and full blockage of a channel in

an IAEA 10 MW MTR assembly without scram. Nine channels were modeled with one

channel using valve component model (for restricting �ow) to simulate blockage.

Symmetrically cooled fuel showed almost no di�erence in temperature distribution between

partial and full blockage. Under asymmetric cooling, the temperature in the blocked

channel was similar to the outer clad temperature of the neighboring fuel plate. The

analysis showed no boiling occurs during total blockage due to heat transfer to adjacent

channels. However, a similar study [8] looking at �ow blockage for the generic MTR found

boiling occurring in the blocked channel. It used Fluent 6.2.16 in 2D for �ow blockage

analysis of a hot and average power channel. The hot channel at 90% blockage predicted

boiling, whereas the average channel shows no boiling at full blockage.

Another study [9] of the IAEA 10 MW MTR �ow blockage of a single assembly found

cladding melting temperatures. Results were obtained using the RELAP5/mod3.3 valve

component to simulate inlet �ow blockage for 95% and full closure. All transients started

6

50 seconds after the simulation reached steady state. For 95% blockage, negative void

reactivity feed-back lowered the power to a �su�cient� level in about 200 seconds to

preserve fuel integrity. For full blockage, the calculation is stopped after eight seconds of

transient when the cladding reaches melting temperature. The paper [9] states this result

to be �unrealistic and highly conservative� as the point kinetics reactivity model does not

take into account the local power change due to void distribution in the channel.

A thesis [13] experimentally studied the e�ect of shape and position of the object blocking

a channel in ANS MTR type reactor. The results were also compared with Fluent

simulations under the same �ow conditions in 2D. The study found that the shape of the

object blocking the �ow impacted the heat transfer recovery length downstream.

1.1.3 Fuel Melts

Flow blockage(s) reduce �ow which lowers the fuel-to-coolant heat transfer coe�cient and

elevates the coolant bulk temperature. During the short period of time when �ssion power

is maintained at 100% or near 100%, both of these e�ects cause an elevation in the clad

and coolant temperature. As the clad surface temperature increases beyond saturation,

water bubbles will start to form on the surface and start boiling. The bubbles can further

elevate resistance to coolant �ow, contributing to further degradation in heat transfer from

the fuel plates and transition to steam cooling or �lm boiling. Eventually, section(s) of the

fuel with the highest power density, which is usually near the center, reach the melting

point of the aluminum used in the fuel matrix material. When the clad surface

temperature reaches the melting temperature, the molten fuel will start to �ow out into the

coolant. The molten fuel may travel along the coolant channel and cool in the unfueled

section of the fuel plate. More melting downstream of the initial melt location can be

caused by the molten fuel if it further blocks �ow of the coolant. This feedback mechanism

7

will likely continue until the abnormal activity caused by melted fuel in the primary

coolant is detected and the reactor is scrammed.

Flow blockages have resulted in fuel melt in high performance plate fueled reactors. In

1963, a 24 MW material testing reactor, the Oak Ridge Reactor (ORR) at ORNL,

experienced �ow blockage by a neoprene gasket material and melted fuel as shown in

Figure 1.4. In 1975, the BR2 reactor at SCK·CEN in Belgium melted fuel after a

screwdriver blocked a fuel channel [14]. The BR2 reactor fuel plates melted at high power

density/heat �ux locations in a manner that appears similar to the ORR case as shown in

Figure 1.5. Figure 1.6 shows the melted fuel plates and blocked coolant channel. The

reactor operated for a few hours at 48 MW before stopping due to high �ssion product

activity [15]. It was estimated that 40 - 120 cm2 of the fuel plate melted and 6 g of

uranium was lost to the coolant [14].

Partial core coolant inlet �ow blockage is unique in that it is an accident that may progress

signi�cantly before detection and reactor scram. The initial �ow blockage has the potential

to melt fuel that will migrate to cooling channels, thus blocking �ow to additional plates

and causing more damage. In reactor designs such as the HFIR, fuel melting due to a small

blockage can go undetected by the safety system. Further, initial void production caused

by a blockage of �ow will depress power, but the reactor control system will move to

restore full power until activated coolant passes radiation monitors and causes an

emergency shut down. In the case of the HFIR, the transport time for radionuclides to

reach the coolant radiation monitors is about two seconds.

There are two predicted core melt fractions for the HFIR, 14% [16] and 24% [17]. The 14%

core melt prediction assumes that an initial blockage causes a melting plate that will slump

against the neighboring plate in a domino manner, causing melting of the adjacent plate.

This process proceeds for three seconds until the melting is detected and the reactor

8

scrams [16]. It assumes a heat transfer coe�cient of zero which result in 77 fuel plates

melting before the reactor scrams. This conclusion is a time based melting calculation with

no credit for partial heat transfer from the unblocked cooling channel. The 24% core melt

is based on the fraction of the core that must melt to override a one dollar (maximum

available) reactivity addition from reactor control system-driven servo response. The servo

response is motivated by vapor production from the �ow blockage [17]. Large �ow

blockages may result in less fuel damage due to reactor shutdown by safety system �ow and

pressure sensors, which are expected to initiate a reactor scram in a more prompt timescale.

Figure 1.4: Convex (left) and concave (right) side of the fuel plates from ORR [18].

Figure 1.5: The BR2 melt [14]. Reproduced here with permission from Elsevier.

9

Figure 1.6: The BR2 relocated melt [15].

1.1.4 Current Fuel Melt Progression Hypothesis and Consequence

This section summarizes the progression and consequence of fuel melting as taken from a

recent review of this topic [19]. The initial concern during �ow blockage is whether fuel

melting occurs. For low probability events some degree of melting is allowed by the safety

basis. For those cases, the consequence analysis may credit integrity of the reactor vessel or

the reactor con�nement to limit o� site dose levels.

Figure 1.7 shows the di�erent event paths following �ow blockage. The most benign

outcome following �ow blockage is no melting. In this case, inlet blockage will likely go

undetected until refueling. The conservative assumption taken in the current safety

analysis report (SAR) is for fuel melting to take place. Molten fuel may relocate, continue

melting or mix with coolant. The event path of concern is melt propagation and premixing

of fuel and coolant leading to a steam explosion, as it is the outcome most likely to cause

10

vessel failure and o� site release of radiation. The SAR assumes a �ow blockage will lead to

melting fuel that then results in Fuel Coolant Interaction (FCI). FCI occurs when hot

molten fuel mixes with sub-cooled coolant leading to a steam explosion. A more detailed

description of FCI and steam explosion follows.

Figure 1.7: Event sequence following �ow blockage [19].

Under �ow blockage conditions, the decrease (or loss) of heat removal capacity results in

rapid fuel heat up. For high performance reactors like HFIR, the adiabatic heat up rate is

over ∼1300 oC/s. The aluminum melts at 660 oC and is initially near 164 oC, so fuel melt

occurs rapidly following a complete loss of cooling.

As molten fuel downstream of a blockage transfers heat, a stable vapor �lm is formed

between the melt and surrounding coolant which limits the rate of heat transfer. However,

the molten fuel continues to generate power and heat up. The stable vapor �lm

surrounding the melt can become unstable allowing the water to contact the molten

aluminum, creating high heat transfer rates and a correspondingly large volume production

of steam. This can lead to the formation of shock waves [20]. Aluminum will strip oxygen

away from water at high temperatures, leading to exothermic chemical energy release, and

production of free hydrogen. The expanding shock wave could damage additional fuel and

11

create �ne fuel fragments which could promote further energy release and chemical reaction

between Aluminum cladding and water [20]. This increase in interfacial area contributes

positive feedback to the FCI process. The shock wave and rapid expansion of high pressure

vapor could stress the reactor vessel and could lead to o� site release of radioactive

material if the pressure vessel fails.

The ORR and the BR2 both melted fuel but did not experience a steam explosion. At

present, a mechanistic tool for simulating melt conditions from �ow blockage to the early

fuel interaction with the coolant is not available for MTR fueled reactors. Therefore, the

current HFIR SAR conservatively assumes �ow blockage will lead to melting followed by a

steam explosion [21] (Figure 1.7 red). The energy release of the steam explosion is used in

a structural code to determine the potential vessel damage.

1.2 Fuel Melt Progression Model

Figure 1.8 shows a single fuel plate along with its 2D representation. The schematic shows

the melting of the fuel matrix (red) and Aluminum cladding (gray) into the coolant

channel (blue). The inlet �ow is downward in the direction of gravity. As the materials

heat up, their boundaries deform. Some of the molten material may separate and disperse.

The introduction of melt material will a�ect the �ow �eld in the channel which in turn

a�ects the heat transfer. The relevant physics are:

• Neutronics: The rate of heat generation due to �ssion deposited inside the plate and

carried along with the molten fuel. The production of vapor reduces moderator

density and also impacts local power production.

• Chemistry: The build up of Aluminum oxide which a�ects heat transfer and

potential ignition of Aluminum during FCI.

12

• Microstructure: Formation of �ssion gas bubbles and their release beginning at the

fuel plate blistering temperature.

• Structural mechanics: The internal stresses caused by the thermal expansion, �ssion

gas and external stress caused by �uid �ow.

• Fluid mechanics: Flow of coolant, bubbles, and melt and their interactions.

• Phase changes: The boiling of coolant, the melting and solidi�cation of fuel.

• Heat Transfer: The transfer of heat from the �ssion source and the e�ect on phase

change.

Figure 1.8: Cut plane (left) and schematic fuel plate melting (right) of half the plate.

13

1.3 Contributions

The Smoothed Particle Hydrodynamics (SPH) model developed herein addresses �uid

mechanics, phase change, and heat transfer, the last three of the phenomena listed in the

previous section. This model formulates a mechanistic multicomponent melt model based

on SPH. The model is tested and used to simulate fuel plate melt during �ow blockage.

The original contributions of this work follow:

• �ow blockage is modeled mechanistically through fuel melt for MTR reactor fuel.

• multicomponent SPH model is developed and implemented on GPU. Multi�uid SPH

works have been theoretical and no algorithms are discussed. Most prior SPH

implementations are single phase, or involve one free surface.

• multicomponent Smoothed Particle Hydrodynamics is combined with heat transfer

and phase change. No prior treatment of this multiphysics case exists in SPH.

• in�ow/out�ow computational �domain� boundary created in SPH.

1.4 Structure of the Dissertation

• Chapter 2 discusses the theory of SPH and the discretization for �uid mechanics and

heat transfer. A phase change model is combined with the �uid and heat transfer

model to create a multicomponent melt model, the �rst of its kind for SPH.

• Chapter 3 describes the implementation of the SPH model for Compute Uni�ed

Device Architecture (CUDA), the programming language for NVIDIA GPU.

• Chapter 4 compares the model against analytical solutions. This provides validation

of the new SPH model implementation.

14

• Chapter 5 presents the simulation of fuel melting.

• Chapter 6 presents a summary of this work, reiteration of original contributions, and

suggested future improvements.

15

Chapter 2

Melting Model

2.1 Eulerian and Lagrangian Flow

In computational �uid dynamics (CFD) and structural codes, the predominate

computational approach is to discretize the domain and approximate the governing partial

di�erential equation(s). Solutions based on a mesh �xed in space through which the �uid

moves are Eulerian. The Eulerian approach to CFD is well developed and robust for many

applications.

Typically, traditional mesh-based computational methods struggle with moving boundary

problems (e.g. melting fuel). In Figure 2.1, the three left �gures show mesh-based Eulerian

methods and the right-most �gure shows a meshless Lagrangian method. The �gures

represent two material properties with the region in blue moving towards the white region

to the right. In the context of melting fuel plates, the molten fuel (blue) is moving into the

coolant (white). In order to understand the e�ects of molten fuel, the understanding of the

interface between the two materials is crucial. One must predict where this interface is

located in time.

16

Figure 2.1: Mesh-based Eulerian (top and bottom left) and meshless Lagrangian method
(bottom right).

In the top left most �gure, the interface lies within the width of one mesh. This rather

coarse mesh is not su�cient to resolve the interface and is also likely to be numerically

unstable for large di�erences in material properties. The interface may be resolved by

interface capture or tracking methods as the top left �gure. This is the most common

approach for mesh-based methods. These methods, such as volume of �uid or level set,

require solving additional partial di�erential equations (PDE) describing the convection at

17

the interface, plus mass, energy, and momentum transport equations across the interface.

For problems with two phases of a single component, the interface tracking approach is

acceptable. But for the simulation of melting fuel plates, a model of two materials with two

phases each (solid and liquid fuel, liquid and vapor coolant) interface tracking becomes

impractical for Eulerian methods.

Instead of computing extra PDEs, the interface can be explicitly tracked by moving the

mesh to follow the material as shown in the bottom right. This method is suitable for

structural problems where small displacements can be accurately tracked. However, for

large material deformation during melts, the mesh will eventually entangle and fail. In

addition, moving meshes is computationally expensive, especially for �nite element

methods because a system of linear equations must be reformulated with every time step.

All these methods arise to handle convective �ow of the �uid and the moving �uid

boundary in a �xed computational mesh. Moving boundary problems are very di�cult for

mesh-based methods.

An alternative is to take a meshless Lagrangian scheme as shown in Figure 2.1 (bottom

right). In contrast to the previous methods, the material properties reside with particles

which move with the �ow. The moving boundary problem that challenges mesh-based

Eulerian methods is then handled naturally. The Lagrangian method explicitly moves the

material with the �ow, which makes schemes for interface tracking unnecessary.

2.2 Introduction to Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is one of the �rst meshless methods and was

originally introduced independently by Lucy [22] and Gingold and Monaghan [23] in 1977.

Most Lagrangian particle methods originate from SPH. SPH has attracted considerable

interest and has wide engineering application. Some applications of SPH include free

18

surface problems(e.g. wave breaking, sloshing), elasticity and fracture, high explosive

detonation, underwater explosions, �uid-structure interaction, multiphase �ow, and

freezing of alloys [24]. It is also commonly used in physics based visual simulation for

games and �lms [25].

Kernel approximations and particle approximation are the two key aspects of SPH. The

SPH method transforms the di�erential equation of �uid dynamics into particle

summations. Field variables and their derivatives for the governing equations are

represented by smoothing functions called kernels.

2.2.1 Mathematical Basis

The basic idea of SPH is to approximate the �eld function by an integral representation at

a position. The continuous SPH is based on the integral representing an arbitrary function

A(r) as

A(r) =

ˆ
Ω

A(r′)δ(r − r′, h)dr′ (2.1)

where δ is the Dirac delta function. In order to apply SPH using �oating-point arithmetic,

the Dirac delta function is replaced by a smoothing function W , such that the arbitrary

function A(r) becomes

〈A(r)〉 =

ˆ
Ω

A(r′)W (r − r′, h)dr′ (2.2)

where h is a measure of support on W and W is the weighting function. In the context of

particle i, h represents the sphere of in�uence of A in Ωi. The h is called the smoothing

length and W is known as the kernel.

19

The kernel function is constructed such that

ˆ
Ω

W (r, h)dr = 1, (2.3)

this is the normalization condition.

The kernel satis�es the Delta function property as the kernel support length h approaches

zero.

lim
h→0

W (r − r′, h) = δ(r − r′) (2.4)

The kernel function is radially symmetric and only locally supported in that,

W (r, h) = C(n)

f(r)

0

if 0 ≤ r ≤ h

otherwise

(2.5)

where C(n) is a coe�cient that depends on the dimension Rn. By equation (2.5), the

kernel is de�ned to have only local interaction.

Figure 2.2 shows a kernel function W for a particle at the center. The interaction is limited

to neighboring particles within |~r| < re. Like the Delta function, the kernel is a positive

and monotonically decreasing function. Monotonicity guarantees that the strength of the

interaction diminishes with increasing distance.

Furthermore, the derivative of the kernel W

∇W = −∇W (2.6)

20

is symmetric. This implies that interaction of particles i and j are such that, i→ j is

equivalent to i← j .

W(r,re)

r
re

Figure 2.2: Kernel and its interaction in 2D.

A �eld quantity A(r) (scalar or vector) by Taylor-series expansion is approximated as [26]:

A(r) =

ˆ
Ω

A(r′)W (r − r′, h)dr′ +O(h2) (2.7)

It is also possible to construct higher order approximations by adding more terms to the

expansion. However, doing so can be problematic where the nth derivative of the kernel

takes a negative value (e.g. negative density evaluation). This condition will be discussed

in Section 2.3.4. In practice, more terms also increase computational requirement. Hence,

second-order accurate SPH is common.

The domain of the problem is approximated by particles. The particle represents �eld

properties and material properties. Interactions that many occur such as heat transfer and

momentum transfer between di�erent materials is explicitly calculated as particle

interactions. The di�erent particle colors represented in Figure 2.2 interact within the

21

region of in�uence of the kernel W . In SPH all particles have at least the property of

position r, mass m, and density ρ. The �eld A is then written by dropping the error term

in equation (2.7).

A(r) ∼= 〈A(r)〉 =

ˆ
Ω

A(r′)W (r − r′, h)dr′

=

ˆ
Ω

A(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′ (2.8)

In equation (2.8) the ρdr is the mass of the particle. The integral is the summation over all

the particles in the domain Ω.

〈Ai〉 =
∑
j

AjWij
mj

ρj
(2.9)

where Wij = W (ri − rj, h)

2.2.2 Di�erentiation

The derivative of �eld A(r) is

∇A(r) ∼= 〈∇A(r)〉 =

ˆ
Ω

∇A(r′)W (r − r′, h)dr′ (2.10)

Taking equation (2.10) and integrating by parts

〈∇A(r)〉 =

ˆ
∂Ω

A(r′)W (r − r′, h)n̂dS −
ˆ

Ω

A(r′)∇W (r − r′, h)dr′ (2.11)

where n̂ is the unit vector normal on the surface S. The smoothing function W by

de�nition has compact support (equation (2.5)). Therefore, integrating over the domain

outside h makes the �rst term on the right hand side of equation (2.11) zero. Near the

domain boundary this term is not zero and therefore requires special consideration.

22

The above equation (2.11) simpli�es to

〈∇A(r)〉 = −
ˆ

Ω

A(r′)∇W (r − r′, h)dr′ (2.12)

=

ˆ
Ω

A(r′)∇W (r − r′, h)dr′ (2.13)

By the symmetry of the kernel W the two right hand side terms above are equal.

Following equation (2.13), the derivatives of an arbitrary �eld A(r) in SPH is the derivative

on the kernel. The kernel is de�ned to have the form,

W =
C

hd
f(r, h) (2.14)

where C is the normalization constant, the superscript d is the dimension, and f is some

function. The normalization term, C
hd

is explicitly represented. This term ensures the

condition in equation (2.3) is met. This term is obtained by integrating over the domain Ω

as ˆ
Ω

f(r, h)dΩ = khd (2.15)

Then the normalization term for the kernel is 1/khd and rewritten as C/hd. The kernel W

must at least be the same order as the di�erential operator in order to express the

operation. For example, the �rst derivative is

∇W =
C

hd+1
f ′(r, h) (2.16)

There are various formulations of the gradient. One such form for the gradient of a �eld A

is:

23

〈∇A(r)〉i =
∑
j

mj

ρj
Aj(r)∇iW (rij, h) (2.17)

=
∑
j

mj

ρj
Aj(r)W

′(rij, h)r̂ij (2.18)

where m is the mass and ρ is the density of a point (particle). However, if A is a constant

this form may not vanish. To correct this [27]

∇Ai =
1

Φi

∑
j

mj
Φj

ρj
(Aj − Ai)∇Wij (2.19)

where Φ is a di�erentiable function. This is the common �rst derivative form.

The Laplacian is written as

〈
∇2A(r)

〉
i

=
∑
j

mj

ρj
Aj(r)∇2

iW (rij, h) (2.20)

=
∑
j

mj

ρj
Aj(r)W

′′(rij, h) (2.21)

2.2.3 Kernel functions

Any choice of kernel functions meeting the requirements discussed in the previous section

can be used. Indeed, there are many kernel functions in SPH. The choice of the kernel

function will in�uence accuracy, stability, and cost as a function of attributes of the

simulation. High order kernels require more computational resources. Piecewise kernels

have branching by conditional statements that are costly for GPU computation. Some

example kernel functions are described in this section.

24

Gaussian

The Gaussian function lacks compact support. This means that interactions between every

particle in the domain must be evaluated. Obviously, such computation is undesirable and

to circumvent this a cut-o� distance is used. The modi�ed form is known to have the best

stability properties [28]. The Gaussian kernel is

W =
C

hd
exp(−q2) (2.22)

where C = 1/π in 2D and 1/π3/2 in 3D, d is the dimension, q = rij/h and rij = |ri − rj| the

distance between particle i and j .

0.0 0.5 1.0 1.5 2.0
q

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

W

kernel
gradient

Figure 2.3: Gaussian kernel

25

Piecewise Cubic spline

The cubic spline introduced by Monaghan and Lattanzio (1985) [29] is one of the most

popular kernels.

W =
C

hd

4− 6q2 + 3q3

(2− q2)3

0

if 0 ≤ q ≤ 1

if 1 ≤ q ≤ 2

otherwise

(2.23)

where the constant C = 10/28π in 2D and 1/4π in 3D. This kernel has a cut-o� distance of

2h. Higher order kernels of this class are also possible choices and may improve stability

[28].

0.0 0.5 1.0 1.5 2.0
q

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

W

kernel
gradient

Figure 2.4: Cubic spline

26

Wendland

Another common kernel is the Wendland (1995) [30]. Unlike the cubic spline, this kernel is

not a piecewise function, making it more computationally appealing for GPU application

since no branching is possible. The Wendland kernel follows as,

W =
C

hd

(
1− q

2

)4

(2q + 1) for 0 ≤ q ≤ 2 (2.24)

where the constant C = 7/4π in 2D and 21/16π in 3D. This kernel is used in the �uid

momentum and continuity equations in this dissertation as the default choice. The

Wendland kernel reduces particle clumping; the unphysical and undesirable grouping of

particles [31].

0.0 0.5 1.0 1.5 2.0
q

−0.4

−0.2

0.0

0.2

0.4

W

kernel
gradient

Figure 2.5: Wendland kernel

27

2.3 Fluid Mechanics in SPH

This section describes the governing �uid equation for SPH. The momentum and

continuity equations of the Navier-Stokes equations for incompressible �ow are introduced.

First the commonly used �Standard form� in SPH for single phase �ow is presented. The

application of the Standard form is commonly used in free-surface �ows.

The conservation of mass equation in the Eulerian frame is

∂ρ

∂t
+∇ · (ρu) = 0 (2.25)

where u is the particle velocity and ρ is the density.

The conservation of momentum equation in the Eulerian frame is

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + f (2.26)

where p is the pressure, ν is the kinematic viscosity, and f is the body forces.

The material derivative relates the Eulerian and Lagrangian frames.

D(·)
Dt

=
∂(·)
∂t

+ u · ∇(·) (2.27)

Rewriting the conservation of mass, equation (2.25), in Lagrangian view

Dρ

Dt
+ ρ∇ · u = 0 (2.28)

For particle methods the Lagrangian view of acceleration is written as:

28

∂u

∂t
+ u · ∇u =

Du

Dt
= a (2.29)

Then the momentum equation for a particle is :

Du

Dt
= −1

ρ
∇p+ ν∇2u + f (2.30)

2.3.1 Standard Form

Continuity

Setting �eld A in equation (2.9) to ρ, the simplest density approximation becomes

ρi =
∑
j

mjWij (2.31)

A quasi-compressible formulation is commonly used for incompressible �ow in SPH. The

variation in density is around 1%. This weak compressibility is calculated by integrating

equation (2.28) instead of the direction summation. This alternative form is obtained from

equation (2.28) where

∇ · uj =
1

ρi

∑
j

mj(ui − uj) · ∇Wij (2.32)

Then,

dρi
dt

=
∑
j

mj(ui − uj) · ∇Wij (2.33)

29

For particles near a discontinuous boundary, such as a free-surface or the interface between

di�erent �uids, this form tends to maintain density. For example, in free-surface �ow

problems the surface may not have su�cient particles. Thus, equation (2.31) will result in

the smoothing of the density at the surface. This smoothing will also occur at the interface

between di�erent �uids. However, integrating equation (2.33) (dρ/dt) preserves the

discontinuity, leading to a better density representation.

Momentum

The pressure and viscosity terms in the momentum equation are discretized in SPH. The

pressure term in equation (2.30) can be written as

1

ρ
∇p =

1

ρi

∑
j

mj

ρj
pj∇Wij (2.34)

The above form has an asymmetric force and cannot be used. The symmetric form is

derived by

1

ρ
∇p ≈ ∇

(
p

ρ

)
+

p

ρ2
∇ρ (2.35)

Discretized in SPH, the �rst term becomes

∇
(
pi
ρi

)
=
∑
j

mjpj
ρ2
j

∇Wij (2.36)

The second term is

∇ρi =
∑
j

mj∇Wij (2.37)

30

Combining the �rst and second terms

1

ρi
∇pi =

∑
j

mjpj
ρ2
j

∇Wij +
pi
ρ2
i

∑
j

mj∇Wij (2.38)

=
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij (2.39)

This form is known to conserve linear and angular momentum [32].

The viscous term ν∇2u of equation (2.30) can also be written into SPH form. This results

in the second derivative of the kernel. In practice, this form is uncommon as it is known to

be sensitive to error for low resolution (low order spline kernels) [33]. Many viscosity terms

without the second derivative term have been proposed [34, 35, 27]. The arti�cial viscosity

proposed by Monaghan [36] is popular for its simplicity.

Πij =

−αc̄ijµij

ρ̄ij
if uij · rij < 0

0 otherwise

(2.40)

where uij = ui − uj, rij = ri − rj, c̄ij = (ci + cj)/2, ρ̄ij = (ρi + ρj)/2,

µij = huij · rij/(r2
ij + δ2), generally δ2 = 0.01h2 to avoid singularity and α is a simulation

dependent parameter (generally, α = 7).

The full SPH momentum equation is

dui
dt

= −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

+ Πij

)
∇Wij + gi (2.41)

31

2.3.2 Multi-�uid

Continuity

Early theoretical developments in multi-phase and multi-component modeling using SPH

were �rst introduced in 2007 [37, 38].

Recently, Monaghan (2013) proposed a simple approach [39]. The continuity equation is

dρi
dt

= ρi
∑
j

mj

ρj
(vi − vj) · ∇iWij (2.42)

The continuity equation above is slightly di�erent from equation (2.33). For single �uid

cases both equations are identical. However, when large density ratios exist, then the above

form is more accurate [40].

Momentum

The momentum equation is

dvi
dt

= −
∑
j

mj

(
Pi + Pj
ρiρj

+Rij + Πij

)
∇iWij

+
∑
b

[mbribf (|rib|)−mbΠib∇iWib] + gi (2.43)

The last summation term in the momentum equation is for the boundary conditions. The

�rst term is the wall boundary to repel particles from passing through the wall. The second

term is the viscous term between the wall and the �uid. This boundary summation term

will be dropped and will be discussed in Section 2.6.1. This simpli�es the equation to

32

dvi
dt

= −
∑
j

mj

(
Pi + Pj
ρiρj

+Rij + Πij

)
∇iWij + gi (2.44)

In the �rst summation, the �rst term arises from the pressure gradient in the Navier-Stokes

equation, the second term Rij is a repulsion force that acts between di�erent particle types

and the last term Π is the viscous term. The repulsion force Rij is necessary to prevent an

unphysical particle mixing at the interface and follows the approach of Grenier et al. [38]

Rij = C

∣∣∣∣ρ0i − ρ0j

ρ0i + ρ0j

∣∣∣∣ ∣∣∣∣Pi + Pj
ρiρj

∣∣∣∣ (2.45)

where the constant C is 0.01− 0.1 and ρ0 is the rest density of the particle. It is worth

noting that this repulsion force is only activated between di�erent �uids.

The viscosity term for a single �uid is [27]

Π = −8ν̄u · r
ρ̄|r|h̄

(2.46)

where the overbar denotes mean values, e.g. ρ̄ = (ρi + ρj)/2.

A replacement is made for �uid particles with di�erent viscosities, following [41],

ν̄

ρ̄
→ 2νiνj

νiρi + νjρj
(2.47)

The viscous term for multi-�uid SPH becomes,

Πij = − 16νiνj
(νiρi + νjρj)

vij · rij
h̄ij |rij|

(2.48)

33

2.3.3 Equation of State

The pressure is generally explicitly modeled in SPH by directly relating it to density. The

simulation of �uid is therefore weakly compressible. Alternatively, an implicit method can

be used to model pressure by directly solving the Poisson equation every time-step. For

Lagrangian method like SPH, this is costly since the system of equations must be

assembled every time and solved.

In this work the equation of state used is

P = B

[(
ρ

ρ0

)γ
− 1

]
(2.49)

where γ = 7, B = c2
0ρ/γ, ρ = 1000 for water and c2

0 = c2(ρ0) = ∂P
∂ρ

∣∣∣∣
ρ0

is the speed of sound

squared at the reference density. This explicit formulation may lead to large pressure

variation for small changes in density. The error in pressure is proportional to error in

density and depending on γ this error is ampli�ed. This has lead to another relationship

through linearization that has been shown to produce satisfactory results [42]

P = c2(ρ− ρ0) (2.50)

If the actual speed of sound is used, the Courant�Friedrichs�Lewy (CFL) condition

requires the time step to be prohibitively small. For example, taking the HFIR coolant

channel to be approximately 1 mm and with 10 particles across the channel. The

smoothing length h ≈ 10−4 m and the speed of sound for water is c ≈ 1500 m/s, which

makes the time step ∆t = C min(h/c) ∼ 10−4/c = 10−7 [43]. In order to keep a reasonable

time-step, the speed of sound is de�ned in practice to c0 = 10umax. This arti�cial speed of

sound is a practical requirement for using SPH. The speed of sound is not usually

important to the accuracy of low Mach number simulations.

34

2.3.4 Stability

Due to the particle formulation of �ow, particles may not �ow in a ordered fashion. A

reoccurring problem that requires careful consideration in SPH is particle clumping. Under

certain conditions, particles form a group (i.e. clump) which increases the error and causes

stability issues. Particle clumping is a non-physical instability that can spread and break

the simulation if it is not controlled. Uncertainty and error analysis in SPH is an area

requiring further work. In a stationary �ow �eld Swegle et al. [44] did a one dimensional

analysis and found the condition for instability as

W ′′σ > 0 (2.51)

where σ is the stress. The instabilities arises both for compression and tension. However,

in general, SPH kernels lead to an instability when the material is under tension and

therefore this instability is referred to as tensile instability.

A 2D SPH turbulence thesis by Robinson [31] used the Wendland kernel. The Wendland

kernel was found to be stable but the Cubic spline kernel caused instabilities. The stability

criteria o�ered by Swegle [44] would suggest similar kernels should exhibit similar stability

behavior. The work [31] concludes that it is unclear if clumping in �ow is caused by tensile

instability alone, suggesting other causes.

Methods to control tensile instability were o�ered by Randles et al. [45, 46] and Dyka et al.

[47]. It was shown that tensile instability is prevented by the introduction of an arti�cial

pressure repulsion [48],

fij = R
W (rij)

W (∆x0)
(2.52)

35

where ∆x0 is the initial particle spacing and R is a factor that is a function of pressure.

R = ε

(
pi
ρ2
i

+
pj
ρ2
j

)
if pi, pj > 0 (2.53)

where typically ε = 0.01. This repulsion force is included in the momentum equation (last

term) which is,

Pi + Pj
ρiρj

+ Πij +Rfij (2.54)

2.4 Energy Transport

2.4.1 SPH

The energy transport equation is

ρcp

(
∂T

∂t
+∇ · (uT)

)
= ∇k · ∇T in Ω (2.55)

where ρ is the density, cp is the speci�c heat capacity, T is the temperature, u is the

velocity of the �ow, and k is the thermal conductivity. Since SPH is in the moving particle

frame of reference, it simpli�es to a di�usion equation

ρcp
dT

dt
= ∇k · ∇T (2.56)

Heat conduction in SPH is [41]

cp,i
dTi
dt

=
∑
j

4mj

ρiρj

kikj
ki + kj

(ρi + ρj)Tij
rij · ∇Wij

|rij|
(2.57)

36

where |rij| = |ri − rj| the distance between particle i and j. This model was coded and

comparison to an analytical solution was made. For unknown reasons this model showed

the expected behavior of di�usion but failed to produce acceptable results. For details see

Appendix A.

2.4.2 MPS

Because of the results of heat conduction using SPH, a di�erent method of solving the

energy equation in a compatible frame work as the SPH for �uid �ow is necessary. An

alternative discretization method similar to SPH is the MPS (Moving Particle

Semi-Implicit) [49]. The MPS method is used for �ow problems similar to those found in

SPH. Like SPH, MPS also interpolates by kernels. A notable di�erence between MPS and

SPH is that an implicit pressure calculation is performed for MPS. Instead of calculating

pressure using density as in SPH, MPS solves the Poisson equation. This approach has a

clear advantage of ensuring incompressibility ∇ · u = 0 and does not su�er from tensile

instability. To address the heat conduction issue with SPH, MPS discretization can be

applied to just the energy equation.

In [50, 51] the discretization for the Laplacian is presented but does not show the MPS

conduction equation used nor discuss their algorithm. It appears the topic of heat transfer

using MPS is not represented in the literature.

Here, the necessary aspects of MPS in the context of conduction are presented. Numerous

kernel functions W have been proposed for MPS, one such kernel is (Koshizuka 1998) [52]

W (r, h) =

h

r
− 1 if 0 ≤ r ≤ h

0 otherwise

(2.58)

37

If particles become very close such that a division by zero takes place. This may lead to

erroneous heat transfer. This problem is exacerbated by particle clumping caused by the

�uid momentum equation.

In contrast, the kernel o�ered by Shakibaeinia and Jin (2010) [53],

W (r, h) =

(1− r

h
)3 if 0 ≤ r

h
≤ 1

0 otherwise

(2.59)

does not have the singularity problem.

MPS kernels conform to similar kernel properties as do SPH kernels. For example, they

have compact support and vanish beyond h = 2 . Four MPS kernels are show in Figure 2.6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W

Koshizuka95
Koshizuka98
Shakibaeinia-Jin10
Shao-Lo03

Figure 2.6: MPS kernels

38

The interaction of particles is local and is determined by the kernel. SPH de�nes density as

a sum of locally weighted mass. MPS instead uses particle number density, de�ned as

ni =
∑
j 6=i

W (rij, re) (2.60)

where rij = |rj − ri| is the distance between particles i and j.

The MPS Laplacian discretization of �eld φ (e.g. conduction= T) is given by

〈
∇2φ

〉
i

=
2d

λn0

∑
j 6=i

[(φj − φi)W (rij, re)] (2.61)

where

λ =

∑
j 6=i
r2
ijW (rij, re)∑

j 6=i
W (rij, re)

, (2.62)

where d is the dimension of space and n0 is the mean number density at t = 0. The above

form is noted to be inaccurate in conduction problems. Over-estimation of conduction is

reported [51], and the stated cause is the inconsistency of λ near the boundary. This

problem seems to be similar to the problem encountered in conduction using SPH.

Modi�ed MPS for Conduction

An additional problem in applying MPS for heat conduction exists. The above Laplacian

discretization does not account for any material properties other than thermal

di�usivity= 1. No discretization method in MPS is available except for the form used in

the viscosity term of the Navier-Stokes equation, which is

39

〈
µ∇2u

〉
i

=
2d

λn0

∑
j 6=i

[µij(uj − ui)W (rij, re)] (2.63)

However this form cannot be used since the discretization su�ers from the same problem

with the de�nition of λ near the boundaries mentioned earlier. Also, for di�ering particle

properties, the interface condition is approximated by the arithmetic mean. However, the

correct averaging is the harmonic mean. Here the discontinuous thermal conductivity

result from SPH [41],

2kikj
ki + kj

(2.64)

is applied to the discretization of the energy equation in MPS. Using the correct

discretization, the �nal energy equation for multi-material property using MPS is

〈∇k · ∇φ〉i =
4d

n0

∑
j 6=i

kikj
ki + kj

φj − φi
|rj − ri|2

Wij (2.65)

Equation 2.65 is substituted for the SPH heat equation because both forms are in the

particle frame of reference. Equation 2.65 is used for this work, and work partially

borrowed from MPS literature.

2.5 Phase Change

The same conduction model can be used to solve for the heat transfer during phase change.

The conduction solver was extended to incorporate phase change using the scheme

described in the Section 2.4. The phase change is modeled by the enthalpy method shown

in Algorithm 2.1. The rate of change of enthalpy is calculated based on the temperature of

particles, which is then integrated in time. Then the temperature is updated from the

enthalpy value. The temperature boundary condition is applied.

40

Algorithm 2.1 Phase change

dH

dt
← ∇k · ∇T +Q

Hn+1 = Hn + ∆t
dH

dt

T ← (1− f)

ˆ T

Tref

ρcsdT + f

ˆ T

Tref

ρcldT + fρL = H

T ← apply BC

2.6 Boundary Conditions

2.6.1 Fluid

Wall

A �uid particle approaching the wall boundary experiences the pressure exerted by the wall

due to the increase in local density. However, the de�ciency of particles near the wall

boundary weakens the necessary force to contain the particles inside the domain. This

often results in the particles passing through the walls or becoming embedded in walls.

There are many methods for treating solid wall boundaries and this is an area of active

research [54, 55, 56, 57]. A brief overview of the boundary condition between the wall and

the �uid is described here. In particular, the focus will be on repelling particles from the

wall so as to model no �ow across the wall. Wall boundaries can be classi�ed into

• Force

• Ghost Particles

• Dynamic Boundary

41

• Hybrid

There are mainly two models of force boundaries, Lennard-Jones type [54] and Repulsion

Force [58]. The repulsion by force is very e�ective at preventing particles from penetrating

the wall. In the Ghost particle method [43], the lack of particle interaction is

accommodated by adding layers of stationary particles past the wall which exist to increase

particle number density. In general, the wall boundary has two additional layers of virtual

particles as shown in Figure 2.7.

Figure 2.7: Kernels of virtual particles (×), boundary wall(�) and �uid particle (•).

The Dynamic boundary condition imposes the governing �uid equations of momentum and

continuity to walls [55]. Therefore the modeled boundary term in equation (2.43) is

removed, resulting in equation (2.44). Finally, some combination of the above methods is a

hybrid method [59]. The Dynamic boundary condition is implemented in the melt model

for this dissertation.

42

In�ow/Out�ow

Particles entering and exiting the computational domain must be explicitly tracked and

controlled. In general, it is desirable to maintain some controlled mass �ux (or velocity) at

the inlet and conserve the governing �uid equations inside the domain. Prior applications

of SPH model simple problems where this boundary is not necessary, therefore this area of

research is new. In�ow and out�ow are modeled for free-surface channel �ow in the work

by Shakibaeinia and Jin (2010) [53] and Federico et al. (2012) [60]. The basic idea is to

have an inlet and outlet region. Particles are set to some regular structure and given some

set velocity, density, and pressure condition in the inlet region. After it has moved some

distance it is simulated as an internal �uid. The particles are purged and no longer part of

the simulation as the �uid passes into some outlet region. The complexity arises in tracking

how many particles of each type have moved out of the domain and implementing the

appropriate calculation. The details of this algorithm are discussed in Section 3.5.4.

2.6.2 Heat

The Dirichlet condition or �xed boundary condition is directly applied to the particles by

setting the value of boundary particles at every iteration. This boundary condition is used

to set the inlet temperature. For discontinuities, such as the boundaries of the domains of

the simulation, special attention is necessary to account for the de�ciency of particles near

the edge of domains [35]. The heat �ux across di�erent materials is handled without the

need to explicitly determine the interface. Some regions may generate heat such as heat

from �ssion. The source term is added to the particle in each time step in a manner similar

to the Dirichlet condition.

43

2.7 Limitation

Apart from the previously discussed limitations of the model and the method, the current

model does not take into account radiative heat transfer, turbulence and rigid-body motion

of re-solidi�ed melt material. Phase change is limited to melting and solidi�cation due to

limitations in allowable density ratio. High density ratios require modifying the interface

boundary to handle non-physical mixing. This complication worsens for higher density

ratios as in the case of gas against metal with the density ratio of steam over aluminum

near 1/10000.

There are instabilities in the SPH method as discussed which can cause the simulation to

fail. The most common instability is caused by particles clumping too close together and

this is corrected by the addition of repulsion and/or using a modi�ed kernel. In the context

of this work, this instability is further complicated by the use of the dynamic boundary

condition, the heat conduction, and phase change.

44

Chapter 3

Implementation

3.1 Ascent of GPU

The gaming industry's quest for realistic visual experience requires fast computationally

rendering of graphics. This has driven rapid development of graphics hardware. The

computational power of GPUs continues to rise faster than CPUs. A GPU o�ers high

FLOPS and high bandwidth, opening up new possibilities in high performance computing

(HPC). Traditionally, even a medium-sized HPC installation required a large investment.

Because of the high cost, computing time on a HPC platform is out of reach for most users.

On the other hand, GPUs are relatively cheap, at few hundred dollars each, and are

generally found on every computer. The availability of the inexpensive GPUs, with huge

computing power is opening HPC to the masses.

GPUs are distinctly di�erent from CPUs, but both share similar components. Figure 3.1

shows a typical computer hosting a GPU device. The basic components common to both

hardware are memory (orange), core (green), and control unit (yellow). The latest

generation of GPUs typically have speci�cations as shown in Table 3.1 and Table 3.2.

45

DRAM

cache

control

D
R
A
M

CPU

GPU
Host Device

Figure 3.1: A typical CPU and GPU schematic

Table 3.1: NVIDIA GTX 680 speci�cations [61]
CUDA Cores 1536

Clock 1006 MHz
Bandwidth 192.2 GB/s
Memory 2/4 GB

Table 3.2: AMD Radeon 7970 speci�cations [62]
Streaming Processors 2048

Clock 925 MHz
Bandwidth 264 GB/s
Memory 3 GB

One of the clear di�erences from a CPU is that GPUs have a few hundred to thousands of

�processor cores� compared to four or even eight cores on a CPU. A GPU core is relatively

simple compared to a CPU core and they do not include branch prediction1. A CPU core

is generally two times faster than a GPU, clocking at around 2 GHz or more. GPUs are

designed to perform operations necessary for rendering images to be displayed on screen(s).

The more demanding games require that a three-dimensional scene be transformed into

1Flow control instruction (if-else, switch, do, while) for threads of the same warp taking di�erent execution
paths. This divergence forces the serialization of the di�erent paths.

46

pixels on a two-dimensional screen. To achieve reasonable refresh rates, GPUs must be

fast. Such operations are repetitive and have independent data structures suited to a

massively parallel computational hardware like the GPU.

The GPU is connected to its host by a bus called the Peripheral Component Interconnect

Express (PCIe). Data transfer between the device GPU and host CPU is a high latency2

and low bandwidth process3. The current, PCIe 3.0 standard has a bandwidth of 16GB/s.

Recall, the internal memory bandwidth of a typical GPU is at least 10 times this (e.g.

192GB/s of GTX 680 Table 3.1). Hence, it is more e�cient to minimized host-to-device

data transfer by leaving data within the device. GPUs are suited for computation local to

the device with low data transfer to the host.

The attractive performance of the GPU has led to attempts to perform computations other

than graphics. Some of the early GPU computations were linear algebra, image processing,

and SPH [63]. The specialized architecture of early GPU require expert knowledge and use

a low level programming language. Many high level languages for GPU programing are

now developed to ease coding for modern GPU.

3.2 CUDA

3.2.1 Introduction to CUDA

In 2007 NVIDIA released Compute Uni�ed Device Architecture (CUDA). The accessibility

of CUDA made general purpose GPU computing widespread. CUDA is a platform made of

software and hardware. It is an application programming interface (API) for programing

NVIDIA GPUs. The CUDA toolkit provides a high-level C-like language and a low-level

2The duration of time between the messaging of the instruction and execution of the instruction.
3Typical host-to-device data transfer is around 6 GB/s, whereas device-to-device is over 150 GB/s (as of

this writing).

47

API for general programming. CUDA is the framework for the implementation of the

model described in this work.

3.2.2 CUDA Framework

The basic unit of parallelism of CUDA is a C function called the kernel. The word kernel

used in this chapter refers to the CUDA kernel and not the SPH kernel W , unless otherwise

stated. Each kernel function is executed as a thread N times in parallel. In contrast, such a

C function is executed once on a CPU or the number of CPU cores available. The CUDA

kernels are massively parallel, often executed thousands to millions of times.

Multiple threads make a block(s) which may have up to three dimensions. Block(s) then

create a grid, also with up to three dimensions. The size of blocks and grids are set by the

programmer within the limits of the hardware's architecture.

Concurrency4 between kernels is guaranteed for a group of 32 threads called a warp. A

Warp is a hardware implementation and is not necessary for writing CUDA kernels, but is

an important aspect of performance. For example, if the 1536 + 1 threads are executed on

the GTX 680 (Table 3.1), 1536 threads will �rst execute then followed by a �nal batch to

compute the last thread. Processing the last thread with a separate batch negatively

a�ects the computational performance.

Additional consideration is the conditional statements in a kernel, which may cause branch

divergence. As an example, let there be N threads, where N = NA +NB. If all threads

have the same condition then no divergence occurs. However, if at least one thread is a

di�erent condition, then all threads NA are computed, then followed by the next condition.

This branching makes an otherwise parallel execution into a serial operation. Since 32

4Simultaneous execution of instruction.

48

threads group together into a warp, a single thread branching from the rest will make the

rest wait for this single thread to complete.

The GPU device has several kinds of memory, they are:

• global: main memory of a device (2/4 GB), which is accessible by all threads, but

access is very slow.

• texture: cached Read-Only memory, which may be bene�cial for certain uses.

• registers: very fast memory that is unaccessible to the programmer and is optimized

by the compiler.

• constant: cached Read-Only memory limited to 64 KB. It can be as fast as registers if

all threads access the same address.

• shared: memory that is accessible only by the kernels on the same streaming multiprocessor

(SM). Shared memory has faster access than global memory.

For the device to compute data, it must be transfered by the host CPU to the global memory.

This process is controlled by the host and the device can only access its own memory. A

typical CUDA program may be structured like Figure 3.2.

1. The host CPU allocates memory on the GPU which is then transfered by the CPU to

the GPU.

2. The CPU calls the kernel to be executed on the GPU. The data is partitioned into

grid, blocks, and threads.

3. Once the GPU starts running, the CPU is free to do other work.

4. When the kernel has completed work, the result is transfered from the GPU to the

CPU.

49

5. All allocated memory in the GPU is then freed.

Thread

GPU

Kernel0

copy
data

copy
data

Grid

CPU Block0

Block1

Block n

Thread

Thread

Figure 3.2: CUDA kernel execution model

Computational problems requiring complex algorithms rely on libraries for data primitives

such as sorting, counting, and reduction. Such functions are commonly used and as such

are available in many libraries. However, for specialized hardwares like the GPU, there are

only a few libraries available.

CUDA Thrust [64] is used in this work. It is a high-level library for parallel algorithms for

both CPUs and GPUs based on CUDA. The template library is like the Standard

Template Library (STL) of C++. Thrust allows rapid development of complex codes that

are both portable and concise. However, this high level interface to low level CUDA can

cause slower execution time and higher memory usage.

3.3 SPH on GPU

SPH is computationally costly compared to mesh-based methods such as FEM for most

standard �uid �ow evaluations. This is due to the many calculation of interactions (i.e.

50

sampling) surrounding each particle. The computational cost is addressed by using a high

performance parallel computing environment using Message Passing Interface (MPI)5. Such

resources are limited, partly due to high capital cost, which has limited the use of SPH to

small academic problems. The identi�cation of GPUs as computing platforms for SPH

increased interest in the method.

One of the �rst SPH works to exploit GPU computing used OpenGL [63]. OpenGL was

not designed for generic programming but for graphics output. The release of CUDA made

GPU programming more accessible. SPH on GPUs developed with CUDA showed

performance gains of up to two orders of magnitude faster than CPU code [65].

In �uid dynamics, some areas of GPU SPH application are coastal wave�structure

interaction [66], lava �ow [67], and avalanche �ow [68], with focus on real-time visual

simulation. More recently, work on SPH for free-surface �ow was extended from a single

GPU to multiple GPUs [69]. The major SPH code at present is DualSPHysics [70, 71, 72]

which is collaborative work of several university groups released under open source licenses.

It allows a choice of running on CPUs using MPI or GPUs. Recently, DualSPHysics

application showing a billion particles splashing onto an o�-shore oil rig was published [73].

As of the writing of this work, the only SPH code with development activity appears to be

DualSPHysics.

3.4 Model Algorithm

The basic SPH algorithm is an iteration with three components as described in Figure 3.3.

The three components are a neighbor search, interaction calculation, and integration. All

three components have subcomponents. All particle properties such as position, velocity,

and temperature are restructured in the neighbor search section. Then pressure is

5Standard for parallel computing in distributed memory systems.

51

calculated based on density. With pressure known, the force acting on the particle is

calculated. Heat transfer is then calculated. This step is absent for most SPH codes, which

only simulate �uid �ow. The �nal component is integrating the position and velocity using

the force. The particles are prescribed by the set boundary parameters. The data is then

updated for the next time step and the iteration repeats until termination.

Figure 3.3: Time step

The interaction calculation of the SPH method is simple. The algorithm for the SPH

method involves iterating on the three components. In contrast to the apparently simple

SPH method, the neighbor search algorithm is a complex part of the implementation. A

practical SPH code requires a fast and e�cient neighbor search algorithm. Due to the

specialized architecture of the GPUs, careful consideration must be given to neighbor

search algorithms for SPH. A small number of SPH source codes are available publically.

The only code with source code and documentation are the serial, parallel and GPU codes

by the group SPHysics. Another SPH algorithm documented for GPUs is o�ered by Krog

52

[68]. The rest of this chapter will describe in detail the SPH algorithm for GPUs.

3.5 Model in CUDA

The fuel melting model developed in CUDA is shown in Algorithm 3.1. The three major

components broadly described in Section 3.4 are expanded in the iteration section. First,

the in�ow boundary condition is executed. Due to the constraint of no global memory

resizing and the parallelism of the algorithm, this section involves more than prescribing

particles and their properties at the boundary. The data in memory of particles for

inlet/outlet boundaries are reordered since they are handled di�erently than the �uid. The

reordering makes this section more complex and the details will be shown in Section 3.5.4.

Second, particles are reordered and neighboring particles are marked. Then pressure is

explicitly calculated by the state equation based on density ratio. The interaction for each

and every particle with its surrounding N particles is calculated. It is worth noting that

the set of neighboring N particles does not include the ith particle itself since the

evaluation of the distance rij = |ri − rj| where i = j is zero will corrupt the computation

since rij occurs as a denominator in the SPH equations. The governing equations are then

integrated for �ow and heat. The change of phase is computed before integrating particle

position to identify particle types. Solid particles will stay �xed in the original position,

where as a �uid particle will �ow. Solid particles that have melted are �uid particles and

will �ow. Then boundary conditions and particles are checked to ascertain if they are

within the boundary. The results are occasionally copied back to host and written out as a

�le for that time step. Data transfer between host and device is limited since the device

will wait on the transfer to complete before the computation continues. Finally, the

allocated resources in the device and host are freed.

53

Algorithm 3.1 Detailed Fuel Melt Algorithm

1. initialization (check input, read simulation parameter, and material properties)

2. construct problem (position, velocity, type, temperature, ... etc.)

3. allocate memory and transfer data from host to device (GPU)

4. iterate

(a) in�ow BC, see Section 3.5.4

(b) neighbor search (hash, sort, reorder), see Section 3.5.1

(c) pressure p = equation of state(ρ)

(d) �ow dvi =
∑
j∈N

, see Section 3.5.2

where N = {j ∈ ∀ neighbor, i 6= j}
(e) energy dh =

∑
j∈N

, see Section 3.5.2

(f) integrate energy

(g) calculate phase change

(h) integrate �ow

(i) apply boundary conditions, check

transfer results from device (GPU) to host (occasionally)

Output results from host

5. clean up memory on both host and device

Data analysis and visualization is post-processed using the ParaView software [74].

ParaView is an open source scienti�c visualization software with an interactive graphical

user interface. ParaView reads many data formats, many of which are CFD related.

ParaView is built on Visualization Toolkit (VTK) for data processing and graphics

rendering. Therefore it naturally follows to adopt a data �le format compatible within this

framework. VTK has many �le formats for di�erent data structures categorized into

structured, unstructured, serial, and parallel for Extensible Markup Language (XML)

formats and also legacy formats [75].

54

VTK's API is not used to write data; instead, the data is written out by the code directly.

This code was written to reduce the library dependency necessary for execution. For this

reason the data format uses the legacy VTK �le format for unstructured data for its

relatively simple �le structure. Large simulation results can create large �les and if written

out in ASCII, it can be an order of magnitude larger than binary.

3.5.1 Neighbor Search

The number of neighboring particles is �nite since the kernel W has compact support6.

Figure 3.4 shows particles in a domain with the circle of radius r representing the compact

support of the particle at the center, which will be called particle i. Looking at Figure 3.4,

it is obvious which particles are inside the radius r of particle i. However, it is not

immediately clear how to e�ciently determine these particles given the list of coordinates

for all the particles. The problem of determining local neighbors is a common problem in

many �elds and is referred to as nearest neighbor search. There are many neighbor search

algorithms used for di�erent applications. There are a few common algorithms used in

SPH.

Figure 3.4: Neighbor search in 2D

6See equation (2.5)

55

One method is to check, given the positions of particle i and particle j , whether particle j

is

inside if rij 5 re

outside if rij > re

(3.1)

where the distance between particles is rij = |ri − rj|. This naive algorithm requires that

every particle checks every other particle. The computational complexity of this approach

is of order O(n2) where n is the number of particles. For a large number of particles, this

all-pair search algorithm would be computationally very expensive.

There are a few algorithms to better address this neighbor search problem. One method is

to use a linked list7 [76]. For example, Figure 3.5 shows three linked lists. A simple linked

list is a pair of data and reference �pointing� to the next pair. For a neighbor list, this data

structure can hold the index to the array with particle data. The reference points to the

next index value of the neighbor particle. This list continues until no neighboring particles

exist. Each particle will have its own linked list. In this approach, the linked list must be

constructed and updated as particles move, changing the neighboring particles.

Consequently, the changing number of neighboring particles means the length of the list

also changes.

x1,y1,z1x0,y0,z0 x2,y2,z2 xn,yn,zn

x1,y1,z1x0,y0,z0 x2,y2,z2 xm,ym,zm

x1,y1,z1x0,y0,z0 x2,y2,z2 xl,yl,zl

Figure 3.5: Singly linked list

7A sequence of elements with a data structure containing the data and the address of the next element.

56

Instead of uniformly partitioning the domain into equal cells as in Figure 3.4 or with linked

lists, an adaptive hierarchical tree is another approach that has been used to identify

neighboring particles [77]. Figure 3.6 (left) shows a domain of nine particles divided into

quadrants of di�erent levels. Figure 3.6 (right) shows the tree structure of representing the

hierarchy. The �rst level divides the domain into two particles four and �ve, and two

quadrants each with more levels. In the top left quadrant, particle i is surrounded by

particles two, six, seven, and eight. The list of possible neighbor particles is obtained by

going up the tree. In the case of this example for particle i, these particles are

8, (2, 6, 7), (4, 5). Hence, particles 1 and 3 cannot be neighbors.

The hierarchical nature of a tree search is suited for variable smoothing length [43]. The

di�erent levels of tree allow di�erent smoothing lengths to be used. In the tree search

algorithm described above the domain was recursively split; repeatedly subdividing the

divisions. This algorithm adapts the computation to regions where particle concentration is

high, improving the computational e�ciency. A tree search is computationally e�cient for

a large number of particles where the algorithm is of order O(n log n) [77].

5

4

1

3

6

7

2

i

8

Figure 3.6: Tree Search

57

The two algorithms, linked list and tree search algorithms, work well in CPU platforms.

However, without signi�cant development the use of these algorithms is not practical for

GPU architecture. In the case of a linked list, the changing number of particles means the

list size also changes. This is problematic since it corresponds to resizing the global

memory on the GPU device, which only the host CPU can perform. It is a time consuming

process for the GPU to resize its memory.

In the case of a tree search, the same issue of memory resizing occurs. A Tree branches into

many levels with each level having its own branch. As discussed earlier, on GPUs

divergence by a conditional if-else statement is expensive. A tree search will have many

branches that require the evaluation of this conditional expression.

There is a more simple approach, which is the use of hash functions8 to map particles. A

hash algorithm [78] is used in this work. Recall, Figure 3.4 shows two di�erent particles

inside a domain composed of 12 cells in 2D. The cell with the particle encircled by a dotted

ring has eight neighboring cells marked by the red line. The domain is divided into equally

spaced cells. Then the position of any particle within the domain is uniquely identi�ed to a

cell by

idx,y,z =

⌊
x− x0

cellsizex
,

y − y0

cellsizey
,

z − z0

cellsizez

⌋
(3.2)

where x, y, z are the coordinate values of the particle and the subscript 0 designates the

reference point. For a 2D case, e.g. z = 0, the dimension is not used. It is clear that all

particles in the same cell will have the same id. To assign a unique value to each particle a

hash function is used. A Hash function may use large prime numbers. The hash function

that is used in this work is

8An algorithm for mapping data(s) to constant data. For example, in SPH, given the coordinates (x, y, z)
a direct relationship in the form, u← f(x, y, z) can be determined.

58

idz · cellsizex · cellsizey + idy · cellsizex + idx (3.3)

The neighbor search algorithm for this work is Algorithm 3.2.

Algorithm 3.2 Neighbor Search

1. Hash by equation (3.2) and equation (3.3)

2. sort index by hash value using radix sort

3. reorder data by index

For sorting, radix sort9 from the CUDA Thrust library is used. Any sorting algorithm can

be used. Radix sort is chosen because it is fast, having a worst case performance of O(kn),

where k is some constant and n is the number of items. The hash value is sorted, which is

paired to an index. Using this index all data structure (e.g. temperature, velocity,

density...) is reordered. Consequently, the data structure is consecutive in the memory

address. Now the data structure in memory is localized to the actual position of particles

in the problem. Finding all the neighboring particles is simply a matter of iterating

through all the cells and all the particles inside each cell.

3.5.2 Particle Interaction

All interaction calculations share the same basic Algorithm 3.3, shown below. The

algorithm starts by fetching particle i's position and any material property data. Then the

algorithm iterates through all cells surrounding the cell of the ith particle. In each cell, any

particle inside the cell is checked to determine if the distance from this particle to particle i

is less than a distance re. If the particle is inside the smoothing length, then the interaction

9An sorting algorithm that groups by least/most signi�cant digit, repeating this step for the next
signi�cant digit. For details see http://en.wikipedia.org/wiki/Radix_sort

59

http://en.wikipedia.org/wiki/Radix_sort

term is calculated. This operation is done for all particles in this cell and all particles

inside all the other neighboring cells.

In CUDA, each thread computes the interaction summation on particle i due to all its

neighboring particles j that are within the support radius. From an optimization point of

view, the symmetry of the interaction between two particles can be exploited. However, in

this work the symmetry is not adopted because doing so increases algorithmic complexity

for GPU platforms. Additionally, the read-write operation to the global memory address

on a GPU is a few hundred clock cycles, whereas arithmetic operations to compute the

interaction term for a particle is at least an order of magnitude lower.

Algorithm 3.3 Interaction per thread
Input: particle i and its data
• For all cells between [(x− 1, x+ 1), (y − 1, y + 1), (z − 1, z + 1)]

� For all particles in this cell

1. get data, e.g. position of particle j, rj

2. calculate distance rij

3. if rij ≤ re, calculate contribution

Output: sum of contribution

3.5.3 Time stepping

The governing partial di�erential equations are reduced to ordinary di�erential equations

in SPH. Various integration methods have been proposed. This work uses the Verlet

integration scheme [79]. The derivative of velocity by the central di�erence method is

F n =
vn+1 − vn−1

2∆t
(3.4)

where F is the acceleration of the particle. Then, the future velocity is

60

vn+1 = vn−1 + 2∆tF n (3.5)

To obtain the position of the particle, the central di�erence method is used again. The

second derivative of position, which is the acceleration, is

d2r

dt2
=
rn+1 + rn−1 − 2rn

∆t2
, (3.6)

which rewritten in terms of the future position is

rn+1 = 2rn − rn−1 + ∆t2F (3.7)

The Taylor series expansion of rn−1 is

rn−1 = rn −∆tvn +
∆t2

2
F (3.8)

Substituting equation (3.8) into equation (3.7), the position of the particle is updated by

rn+1 = rn + ∆tvn +
1

2
∆t2F n (3.9)

Both equation (3.10) and equation (3.11) are obtained in a similar manner as the velocity.

The density of the particle e�ects pressure, which in turn e�ects the particle �ow. The

density is updated by

ρn+1 = ρn−1 + 2∆tDn (3.10)

where D = ρ̇ is the rate of change of density.

61

hn+1 = hn−1 + 2∆tHn (3.11)

where H = ḣ is the rate of change of enthalpy.

To prohibit the integration from diverging due to the uncoupled equations, it is suggested

[71] that every n (n ≈ 30) time steps, that the integration be

vn+1 = vn−1 + ∆tF n (3.12)

ρn+1 = ρn−1 + ∆tDn (3.13)

hn+1 = hn−1 + ∆tHn (3.14)

The equations (3.12), (3.13), and (3.14) are optional in the code. In general, enabling this

option results in longer stable simulations.

3.5.4 Boundary

Dynamic Boundary

The Dynamic boundary condition is used to maintain separation between the �uid and the

wall particles. Algorithm 3.4 describes the method. Particle separation occurs due the

change in density, which then e�ects pressure and ultimately in�uences the position of the

particle through the implementation of the Navier Stokes momentum balance in SPH. For

example, a particle approaching a wall will experience a repulsive force due to the increase

in apparent density as the distance between the particles diminishes. This is because the

SPH kernel has more weight with diminishing distance. The increase in density from the

62

reference density corresponds to an increase in pressure. This pressure acts on both

particles, exerting a repulsive force between the particles, thus maintaining particle and

wall separation. Unlike �uid particles, wall particles are not moved, forcing only the �uid

particles to update position.

Algorithm 3.4 Dynamic Boundary

Pall ← ρ

dv

dt fluid
← ∇Pall + Πfluid + g

dρ

dt all
← all

update :

v, r if fluid

unchangedv, r if boundary

ρ ∀particles

In�ow and Out�ow

Particles �ow in from the top and �ow out the bottom in Figure 3.7. The di�erent colored

sections represent the inlet, normal region, outlet, �xed walls, and particles not part of the

simulation. In this example, particles in each section share the same identi�cation tag

except those in the �normal� region, which can contain material that depends on the

particles. Particles crossing into a threshold are considered to have exited the outlet and

are no longer available to interact with other particles. The particles at the bottom of

Figure 3.7 are �xed, these particles exert pressure on to the particles �owing out, ensuring

that the outgoing particles do not free fall under gravity.

63

outlet
fixed

normal
flow

inlet

free

Figure 3.7: In�ow and out�ow boundary

Particles that have �owed out are bu�ered in memory until they are reassigned as in�ow

particles. Let N be the total number of particles in a domain of which f is the number of

free particles not presently part of the simulation and n is the number of particles at the

inlet. The number of particles is such that N � f ≥ n.

For a single thread running on a CPU this problem is straightforward, looping through an

array to set inlet particles until n particles are set. In contrast, this approach is very

ine�cient for GPU environment. Here a new method for inlet boundary condition is

presented. Algorithm 3.5 is the scheme for applying inlet boundary condition for GPUs in

parallel without global memory resizing.

The basic idea is to remove particles at the outlet and move them to the inlet with the

proper properties set. Before new inlet particles can be created two conditions must be

met, they are

• number of particles that have exited the outlet is greater than or equal to the number

of particles required for the inlet

• time has passed tnewInflow = dinlet/Uinlet ≥ elapsed time

64

The �rst condition ensures that the number of free particles at least matches the number of

particles required to create new inlet particles. The second condition ensures that the new

inlet particles being created are not placed too close to existing particles.

Algorithm 3.5 In�ow

1. save a copy of particle type pt← pt0

2. create sequence s = {0, 1, 2, ..., N − 1}

3. stable sort by key (radix sort) the particle type pt with sequence s

4. �ll array of size N with tag, index← tag

5. alter index = {0, 1, 2, ..., ninlet, tag, ... tagN−1}, where n is the number of inlet particles

6. stable sort by sequence s (key) with index

7. replace position, velocity, temperature, enthalpy, density for inlet particle data using
index

8. copy back particle type pt0 ← pt

First, it is necessary to preserve the original particle type since the ordering will be lost in

the sorting. Then a sequence having the size of the total number of particles N is created.

This array is the ordering of the array in memory and will be used to restore to the original

ordering. Next, the particle types are paired with the sequence s. This forms a key-value

pair, where the key is the particle type and the value is the sequence. This pair is sorted by

particle type (key) and the sequence s is also reordered to match the original pairing. The

parallel sorting function, the function for creating the sequence, and the function for �lling

an array is from the CUDA Thrust library. For this example, free particles f have pt value

less than normal particles. The sorted arrays pt′ are now ascending

pt′ = {pt0 < pt1 < · · · < ptN−1} (3.15)

65

The free particles now are at the beginning of the array. The sorted sequence s′

corresponds to pt′ such that

{(pt0, s0), (pt1, s1), (pt2, s2), ... , (ptN−1, sN−1)} (3.16)

An array index of size N is created all with the same value of tag. The �rst n values are

assigned a new sequential value. For instance, this array will be

index = {0, 1, 2, ... , ninlet, tag, tag, ... , tagN−1} (3.17)

To obtain the particles which are inlet particles a �nal sort is done on s paired with index.

Since s was ordering sequentially, the new sorted array sfinal is reordered back to its

original sequence along with index. Consequently, index with values other than tag are the

particles set to be inlet particles. Finally, using index, all data for the identi�ed free

particles are set to inlet data using the tag. Lastly, the original copy of the particle type is

restored.

66

Chapter 4

Model Test Cases

In this chapter the implemented model is tested. First the �ow model is investigated,

comparing it to the analytical solution of Poiseuille �ow. Secondly, the heat transfer model

is applied to a thermal di�usion problem and the numerical solution is compared to the

exact solution. SPH solutions are compared for di�erent particle spacings. Lastly, a phase

change problem is described and solved by the phase change model implemented in SPH.

The numerical solution is also compared with the analytical solution.

4.1 Flow

An incompressible �uid �ows between two in�nitively long parallel plates as represented in

Figure 4.1. Initially the �uid is at rest and at time t > 0, experiences a body force F . The

walls are distanced L apart and stationary.

67

L F

wall

wall

Figure 4.1: Poiseuille �ow problem.

The exact solution to this unsteady Poiseuille �ow is [80]

ux(y, t) =
F

2ν
y(y − L)

+
∞∑
n=0

4FL2

νπ3(2n+ 1)3
sin
(
π
y

L
(2n+ 1)

)
exp

(
−ν
(
π

2n+ 1

L

)2

t

)
(4.1)

where F is a constant acceleration, L is the channel thickness, and ν is the kinematic

viscosity. All the particles are subject to the acceleration F . Here, ux is the horizontal

velocity, parallel to the wall, as a function of the distance perpendicular to the wall. The

parameters for this test are shown in Table 4.1. Based on the parameters the asymptotic

�ow is laminar with a Reynolds number Re = u0L/ν = 45.125.

68

Table 4.1: Flow parameters
L [m] 0.19

F [m/s2] 9.8 (1G)
ν [m2/s] 0.008

particle spacing [m] 0.02
time step [s] 2× 10−5

The x(horizontal) component of the velocity �eld is shown in Figure 4.2 for t = 0.2. There

are about 40 �uid particles in a staggered arrangement between the walls. The �eld is

constructed by Delaunay triangulation based on the values of the particles. The wall

particles are in dark blue and the �uid velocity gradually increases towards the center.

Figure 4.2: Velocity Field at t = 0.2.

Figure 4.3 shows the x(horizontal) component of the velocity as a function of y(vertical)

position. These velocity pro�les are extracted from the same simulation as Figure 4.2. The

circles represent the model results and the solid lines are exact solutions of equation (4.1).

Because the velocity pro�le was interpolated from the Delaunay triangulation of velocity,

69

the circles do not exactly represent the 0.02 particle spacing. The results are color by time

for t = 0.01, 0.05, 0.1, and 0.2.

0.0 0.5 1.0 1.5 2.0
Velocity

0.00

0.05

0.10

0.15

Po
si
tio

n

0.01
0.05
0.1
0.2

Figure 4.3: Velocity pro�le of the Poiseuille �ow

4.2 Heat Transfer

Conductive heat transfer under the assumption of constant properties is described by the

governing equation

∂T

∂t
= α∇2T +Q (4.2)

where T is the temperature, α is the thermal di�usivity, and Q is the source term. For the

purpose of this comparison to an analytical solution Q = 0. Given an initial condition

70

T (t = 0) = sin(aπx)sin(bπy)sin(cπz) (4.3)

with the boundary condition along the surface ∂Ω as

T = 0, x on ∂Ω (4.4)

Then the exact solution is

T = e−λtsin(aπx)sin(bπy)sin(cπz) (4.5)

where

λ = απ2(a2 + b2 + c2) (4.6)

The numerical solver by design was developed for three dimension, but is capable of solving

lower dimensions. To test the full capability, a three dimensional problem is solved. The

Table 4.2 shows all the parameters used for the test problem. It is a unit cube with particle

spacing of 0.05 along all axes.

Table 4.2: Conduction Parameters
sides: a,b,c [m] 1

thermal di�usivity [m2/s] 0.038198983
particle spacing [m] 0.05

time step [s] 5× 10−5

The results are shown in Figure 4.4 and Figure 4.5. The Figure 4.4 shows a unit cube

showing the particles at the center section and a plane cut along the the x-y plane where

z = 0.5 at time t = 1.24985 . The spacing of the major and minor tick marks along the

71

axes are automatically set by ParaView and do not correspond to the particle spacing of

the simulation parameter. The plane surface is created based by Delaunay triangulation

using the particle result to help visualize the solution �eld. The Figure 4.5 shows the solver

results at x = z = 0.5, y ∈ (0, 1) and the exact solution. The solver results are the values

of the particles (i.e. not the interpolated values from the Delaunay triangulation).

Figure 4.4: Internal slice of 3D unit cube.

72

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25

T

exact
solver

Figure 4.5: Comparison of exact and simulation result along y-axis.

Tests on the e�ect of particle spacing were done using all the same conditions as described

except each having a di�erent particle spacing. The results of these tests are all consistent

with Figure 4.4 and Figure 4.5. These results can be seen in Appendix B.

The error of various particle spacing is shown in Figure 4.6. The same problem described

above is solved. The L2 error norm is used as a measure of the error, where the error is

de�ned as

‖error‖ =

√√√√ N∑
k

e2
k (4.7)

where error e = exact − approximate. The Figure 4.6 shows monotonically improving

accuracy as resolution increases. For the coarsest particle spacing, the error is higher than

the trend due to the e�ect of the boundary condition for particle methods.

73

10-2 10-1 100

particle spacing

10-3

10-2

10-1

Er
ro
r L

2

Figure 4.6: Error of conduction model.

4.3 Phase Change

Analytical solutions to phase change problems are few and limited to simple conditions.

Figure 4.7 shows a phase change problem in an in�nite domain with homogeneous material

with no temperature dependent properties. This Stefan problem is a one dimensional phase

change problem with the medium initially at T0. The medium changes phase at Tm for

t > 0.

74

∞

liquidsolid

interface

x

Figure 4.7: The freezing of liquid in the Stefan problem.

Initially the entire domain is liquid at a temperature T > Tm . At time t > 0 the

temperature at the origin is set to T (t > 0) = Ta, where Ta < Tm. As time progresses, the

liquid starts to freeze and grows, turning more liquid into solid. The heat transfer in the

Stefan problem is only by conduction and assumes the interface is sharp. The interface

condition is

k1

(
dT

dx

)
1

− k2

(
dT

dx

)
2

= ρL
dX

dt
(4.8)

where k is the thermal conductivity, T temperature, ρ density, L latent heat and dX/dt is

the speed of the interface. This interface condition is also known as the Stefan condition.

The exact solution is [81]

T (x) =

TB +

Tm − TB
erf(λ)

erf(η) solid

T0 +
Tm − T0

erfc(λ)
erfc(η) liquid

(4.9)

where

η = x
√
ρcp/4kt (4.10)

75

The interface position is,

x = 2λ
√
kt/ρcp (4.11)

The parameter λ is given by

Tm − TB = erf(λ)eλ
2

(
λL
√
π

C
+

(T0 − Tm)e−λ
2

erfc(λ)

)
(4.12)

Instead of solving the nonlinear equation for λ, variables T0, Tm, λ, L, C are speci�ed and

solved for TB instead. The boundary conditions for the numerical scheme are �xed with

T (x = 0, t) = TBand T (x = 1, t) = T0 for the duration of the simulation. The other

variables are T0 = 1.2, Tm = 1, λ = 0.5, L = 1, C = 1 which makes TB = 0.1906.

Table 4.3: Phase change parameters
dimension [m] 1.0x1.0

thermal di�usivity [m2/s] 1.0
particle spacing [m] 0.04

time step [s] 2× 10−5

The analytical solution to the Stefan problem is one dimensional. This solution is for a

medium of in�nite length. The numerical test is done on a unit length with the right side

having T0 = 1.2 for a small �nite time such that position of the interface is far from the

right boundary.

In Figure 4.8, the solution to the Stefan problem is tested in two dimensions. The points

on Figure 4.8 are the values of the particles and the background �eld was constructed to

show the values in between particles at time 0.04. The interpolated background �eld was

produced using a Delaunay triangulation based on the unit square of 25 by 25 particles.

The color along the vertical y-axis are the same and only vary along the horizontal x-axis.

The solution demonstrates the proper functioning of the solver.

76

Figure 4.8: Exact and numerical solution to Stefan problem.

The Figure 4.9 shows the exact and the numerical solution along the center (i.e. y = 0.5) of

the solution shown in Figure 4.8. The lines are exact solutions and the cross x is the �xed

particle. The empty © represents the exact location of the solid-liquid interface at x ∼ 0.2.

The interface is particularly challenging as it is a abrupt transition point requiring more

nodes to accurately resolve. This solver shows no noticeable deviation from the exact

solution, including at the interface.

As a part of the comparison other particle spacings were tested for the same conditions

described. The results of the other resolutions are shown in Appendix C. All results are

consistent with Figure 4.8 and Figure 4.9. The error response to the resolution is presented

in Figure 4.10, following the same procedure as presented in the heat transfer comparisons.

The L2 error used in Figure 4.10 was presented in equation (4.7).

77

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure 4.9: Exact and numerical solution to Stefan problem along the center (y=0.5).

10-3 10-2 10-1 100

particle spacing

10-3

10-2

10-1

Er
ro
r L

2

Figure 4.10: Phase Change Error

78

Chapter 5

Fuel Plate Melting

5.1 Model Scaling

HFIR fuel plate has a thickness of length of 0.050 in. (1.27 mm) with a length of 20 in.

(50.8 cm) of active fuel and an arc length (width) of 3.3005 in. (83.8 mm) for the inner fuel

plate and 2.944 in. (74.8 mm) for the outer fuel plate. The smallest scale is the thickness

which determines the minimum practical particle spacing for the simulation. For a problem

with large di�erence in length scale, the smallest length imposes a large cost to the

simulation. For example, placing 20 particles across the combined thickness of a fuel plate

and coolant channel will span 0.1 inches. At 20 particles per 0.1 in., there will be 4000

particles along the length of the active fuel, and 1780 along the width. In total there are

142.4 million particles in the domain, and this is for the coarsest particle spacing likely to

return accurate results. An additional consideration is the dependence of the time step on

particle spacing. The time step for this example is of order 10−7. Increasing the number of

particles further decreases the time step. These e�ects compound to make a direct SPH

simulation approach to the HFIR fuel geometry not practical with the available computing

resource.

79

The problem of scale is not unique to particle methods or even to computational methods

in general. Similar issues arise when designing large scale aircraft or commercial nuclear

power plants. To study the system response of such a structure and components scaled

down experiments are performed. These studies allow for modeling based on scaling and

similarity.

Scaling is applied to the HFIR fuel melting simulation to reduce the computing time while

preserving the relative importance of phenomena of interest. The short computational time

of the scale problem comes with the bene�t of running multiple cases with di�erent

parameters to study their e�ects. This work adopts a scaling following Zuber et al. [82]

where the scaling is based on time τ . The time ratio is

Πi =
τcv
τi

= ωτcv (5.1)

where τcv is the system response time in the control volume and ω is the frequency of the

process. The main interest of this study is the heat up and subsequent melt migration.

Using the scaling, the characteristic time ratio to preserve is

Π =
q′′A

ρHQ
(5.2)

where q′′ is the heat �ux, A the heat transfer area, Q the volumetric �ow rate, and ρH the

enthalpy per unit volume. Relating the model and the actual values is

[
q′′A

ρHV
τ

]
m

=

[
q′′A

ρHV
τ

]
a

(5.3)

In preserving time and using the same material, e.g. aluminum, the above equation (5.3)

reduces to

80

[
q′′A

V

]
m

=

[
q′′A

V

]
a

(5.4)

=
Power

volume
(5.5)

Equation 5.4 is the power density. All the terms are known for the HFIR core, which is

q′′/width = 9.594× 109 W/m3 [83], where width is taken to be the minimum channel width

of 40 mils (0.001016 m). Since modeling is done in two dimensions the length (radial) of

the fuel plate of 5.5 in. (0.1397 m) is taken into account. This then becomes 1.34 MW/L

for the two dimensional case. If the power density is taken to be 6× 109W/m3 [84], then

the power density for a 85 MW power is 0.711 MW/L.

In Figure 5.2, the relative power density distribution used in HFIR is shown [85]. This is a

radial cross section view of the inner and outer parts of the HFIR core. The original data

has 27 by 15 data points respectively along the vertical axis and radially. A quadratic

smoothing is applied in this �gure to improve the visual quality. This work uses the inner

side of the outer section as the pro�le for the two dimensional simulation model.

81

8 9 10 11 12

−20

−10

0

10

20

inner

16 17 18 19 20 21

−20

−10

0

10

20

outer

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5.1: Relative Power density distribution in the HFIR fuel annuli.

The relative power density at 15.15 cm radially from center of core will be used in this

model. To improve the number of data points for use in the model we seek a continuous

function for interpolation of the relative power density. A polynomial �t of 16 order is

created using a least-square �t based on the 27 data points. The polynomial function is

f = 8590814.17324x16 − 66659465.4541x15 + 235678601.952x14 − 503012634.021x13

+ 723896851.063x12 − 743217280.46x11 + 561816951.651x10 − 318190348.258x9 (5.6)

+ 136104072.138x8 − 43997519.643x7 + 10683755.3645x6 − 1923308.64945x5

+ 251149.846545x4 − 22982.0402251x3 + 1389.40687206x2 − 46.8307670106x1

+ 1.34198723057

82

The power density pro�le and the original data are shown in Figure 5.2. The vertical axis

has been normalized to a height of one. Di�erent polynomial order were tried and the

current 16 order �t was found as a practical choice for good �t. This polynomial power

density is applied to the fuel matrix.

Figure 5.2: Model relative rower density distribution.

The material properties used in this work are shown in Table 5.1 [86, 87]. In Table 5.1, the

row �phase change� is the temperature where the phase changes into another. The liquid

water boils at 373 K, the solidus temperature of solid Aluminum is 819 K, and the liquidus

temperature is 924 K.

Some of the properties where unavailable and these were replaced by the closest material

state value. The aluminum properties with asterisk * are the properties of Al 6061-O, the

actual cladding material used in the fuel. The aluminum properties without the asterisk *

83

are those of pure aluminum. All of molten aluminum properties are that of pure aluminum.

Heat capacity for liquid aluminum could not be found and the heat capacity of solid

aluminum is used.

Table 5.1: Material properties.
Al Coolant
solid liquid liquid

density [kg/m3] 2700* 2357 1000
phase change [K] 819* 924* 373
viscosity [kg/m-s] 0.012 0.001

thermal conductivity [W/m-K] 180* 100 0.58
heat capacity [J/kg-K] 902* 902 4200
latent heat [J/kg] 321000 334000

The dimensional size and the di�erent particle placements are shown in Figure 5.3. The

right image is the particle representation of the left side. In Figure 5.3 (right), initially

liquid water surrounds the solid aluminum at the center. No molten aluminum exists.

84

water

Al

g

1.8

0.04

Figure 5.3: Model problem. Left �gure is not to scale.

The dimensions of the model used in the simulation are in Table 5.2. Just like the actual

HFIR fuel matrix, the fuel matrix in this model is slightly biased to the left. The initial

number of particles by type is shown in Table 5.3, which corresponds to Figure 5.3 (right).

The reserve particles are not shown in Figure 5.3.

Table 5.2: Dimensions [m].
height thickness

fuel matrix 1.2 0.02
fuel 1.8 0.04

coolant channel 2.0 0.5

85

Table 5.3: Initial number of particles.
Particle Type Number of Particles

Inlet 672
Water (l) 17505
Al (s) 1074
Wall 3448
Al (l) 0
reserve 700

5.2 Simulation Cases

In the two dimensional computational domain, the particles are staggered with spacing of

0.02 m, which corresponds to over 23000 particles. The time step dt = 2E − 5 s for up to

eight seconds, which takes slightly more than half an hour (using GTX 680) writing out

400 solution steps.

Various factors a�ect the melting phenomena. For example, viscous melts �ow more

gradually and will remain more local to the initial position. The power and initial margin

to the melting temperature a�ects the time to melting. Conditions that could be

encountered during an actual �ow blockage for an aluminum plate fuel research reactor are

considered here.

Simulations were set to study the e�ect of power density, channel �ow after blockage, and

initial fuel plate temperature. Six cases with varying conditions for the channel �ow

velocity, power density, and initial coolant temperature were run as shown in Table 5.4.

The initial fuel plate temperature is set at 100 K above the coolant temperature. The last

two cases with an asterisk * did not properly complete the simulation. The cause of the

failure appears to be particle clumping.

86

Table 5.4: Study case conditions.
Case Channel Flow [m/s] Power density [MW/L] Coolant Temperature [K]
1 0.1 0.71 330
2 0.1 0.71 400
3 1.0 0.71 400
4 0.1 1.34 330
5* 0.1 1.34 400
6* 1.0 0.71 330

In the following sections the results of the runs are presented. The �gures use the same

four times for display, top left: 2 sec, top right: 4 sec, bottom left: 6 sec, bottom right: 8

sec. for the �rst four cases. Videos of the simulations are attached for a better

understanding of the melt sequence.

5.2.1 Case 1: low power, slow �ow, low temperature

This �rst case is characterized by the low power density and slow �ow, nearly resembling a

melting in a static channel with melt migrating due to the density di�erence and gravity.

Figure 5.4 shows the temperatures at four times during the simulation. The fuel

uneventfully heats up for up to t=4 seconds. Figure 5.5, shows the particle types for the

Case 1 simulation. The inner portion of the fuel has started melting at time 4 seconds.

Parts of the molten fuel melts and �ows downward at t=6 seconds. For much of the

simulation, most of the molten material has a temperature between 1000-1400 Kelvin.

With little �ow to mix and distort the molten material, the center of the melt heats up. By

the end of the run half of the center section of the fuel plate has melted away as seen in in

Figure 5.5 in the 8 second frame.

87

Figure 5.4: Case 1 temperature [K].

88

Figure 5.5: Case 1 particle types.

89

5.2.2 Case 2: low power, slow �ow, high temperature

The initial starting temperature of the simulation is elevated 70◦C for the second case, with

all other parameters consistent with Case 1. Figure 5.6 and Figure 5.7 show the

temperature and particle types, respectively. Case 2 events are similar to those of Case 1.

The higher initial temperature causes quicker melting.

90

Figure 5.6: Case 2 temperature [K].

91

Figure 5.7: Case 2 particle types.

92

5.2.3 Case 3: low power, fast �ow, high temperature

Case 3 is the same as Case 2 except the coolant velocity is elevated from 0.1 to 1.0 m/s.

Figure 5.8 and Figure 5.9 show the temperature and particle types, respectively. The

number of separate molten aluminum particles are fewer for this case, and the molten

aluminum temperatures are lower. The �rst molten material leaves the channel more

quickly, convecting with the �ow, leaving little time to heat up in the channel and melt

adjacent material. Also the clad to coolant heat transfer is improved, allowing the clad to

avoid melting in the lower power density regions. Some of the cladding material, which has

no internal heat generation, remains relatively una�ected as seen in Figure 5.9 at time

equal to 8 seconds.

93

Figure 5.8: Case 3 temperature [K].

94

Figure 5.9: Case 3 particle types.

95

5.2.4 Case 4: high power, slow �ow, low temperature

Case 4 has the highest power density with slow channel �ow. Figure 5.10 shows the rapid

heating of the fuel compared to all the previous cases. By t=6, parts of the melt have reach

temperature exceeding 2300 Kelvin. This hot melt �ows out but also heats the bottom

portion of the still intact aluminum as seen in Figure 5.10 (t=8). At t=8 seconds, the

entire section containing fuel matrix is gone.

96

Figure 5.10: Case 4 temperature [K].

97

Figure 5.11: Case 4 particle types.

98

5.2.5 Case 5: high power, slow �ow, high temperature

Case 5 has the same conditions as Case 4 for power and �ow, but the coolant and fuel start

70 degrees hotter. The times for the �gures shown below are t=2 (top left), 4 (top right),

and 5 (bottom) seconds. The temperature �eld (Figure 5.12) of Case 5 follows Case 4

(Figure 5.10) for t=2 and 4 seconds. The simulation for Case 5 fails at t=5 seconds. The

cause of failure appears to be due to some particles near the hottest region clumping

together.

99

Figure 5.12: Case 5 temperature [K].

100

Figure 5.13: Case 5 particle types.

101

5.2.6 Case 6: low power, fast �ow, low temperature

The �nal case has a low power density, fast channel �ow, and low initial temperature. The

times for the �gures shown below are t=2(top left), 4(top right), 6(bottom left), and

7.2(bottom right) seconds. Case 6 shows larger melting (Figure 5.15) than Case 3

(Figure 5.9). The center section of the fuel is mostly melted away with some cladding.

Case 3 has signi�cant fuel and cladding remaining at time equal 6 seconds. The simulation

fails at 7.2 seconds. The region where this occurs is at the melt location with the highest

temperature. This hot spot does not have a temperature gradient indicating an abnormal

value.

102

Figure 5.14: Case 6 temperature [K].

103

Figure 5.15: Case 6 particle types.

104

5.3 Temperature pro�les and Melt fraction

The �rst case is low power and low �ow. This is re�ected by the gradual increase in

temperature of the aluminum in Figure 5.16. Once the melting temperature of the

aluminum is reached at 2.7 seconds, the �rst occurrence of liquid aluminum is apparent,

with an average temperature of 1000 K. Since the initial molten aluminum may also have

the power term, the melt continues to heat up. The average temperature of the solid falls

as the particles continue to transition phase and the molten fuel becomes disconnected

from the solid fuel plate.

Figure 5.16: Case 1: Average temperature by material.

Figure 5.17 shows Case 2 where the initial temperature is elevated 70◦C from that in Case

1. The occurrence of the �rst melt is evident at around 2.3 seconds, roughly 0.4 seconds

sooner than Case 1.

105

Figure 5.17: Case 2: Average temperature by material.

Figure 5.18 shows the results of Case 3 which is identical to Case 2 except the coolant �ow

is elevated from 0.1 to 1.0 m/s. Case 3, having the same initial temperature and power

density as Case 2, melts aluminum at identical times to Case 2 (2.3 sec). However, because

the channel �ow is faster, the rate of temperature increase for melted fuel is not as high as

Case 1 or 2. Also, since molten material leaves the domain much more quickly than the

slow �ow conditions of Case 1 and Case 2, the average temperature of the melt does not

continue to rise.

106

Figure 5.18: Case 3: Average temperature by material.

Case 4 shown in Figure 5.19, has nearly double the power density of Cases 1, 2, 3, and 6.

The �rst melt is seen at 1.2 seconds into the simulation. The high power density drives the

rapid increase in the molten aluminum temperature, reaching up to 1800 Kelvin. The

molten fuel temperature falls in steps after 5 seconds as parts of the hot initial melt leave

the computational domain in groups.

107

Figure 5.19: Case 4: Average temperature by material.

The Case 5 shown in Figure 5.20 show a similar trend to Case 4 (Figure 5.19). Due to the

higher initial temperature of Case 5, the �rst appearance of molten aluminum occurs 0.2

seconds sooner than Case 4. However, Case 5 fails at 5 seconds into the simulation.

108

Figure 5.20: Case 5: Average temperature by material.

Case 6 shown in Figure 5.21 Slightly after t=6 seconds a spike in the molten aluminum

temperature indicates that at least one particle has an abnormal temperature. This

develops into the hot spot seen in Figure 5.14 at t=7.2 seconds.

109

Figure 5.21: Case 6: Average temperature by material.

The simulation captures the complex behavior of molten fuel and molten material

migration. Due to the lack of a model for the forced convective heat transfer between the

fuel wall and the coolant water, the average coolant temperature pro�le in all cases above

does not heat up. The initial heat transfer coe�cient between the surface of the fuel plate

and the coolant is the same for all cases. Note also that the initial temperature di�erence is

set to 100 K for all cases. Table 5.5 shows the approximate heat transfer coe�cient at the

surface near the center of the fuel plate. It is calculated for all six cases right before the

onset of melting. To obtained these values, the temperature �eld is constructed by

Delaunay triangulation, then the gradient of temperature is calculated, followed by

interpolating the points to obtain the gradient normal to the fuel plate surface. The

calculation of the gradient is approximate. Case 3 and 6 have higher channel �ow and Case

110

4 and 5 have higher power density, both conditions contributing to a higher heat transfer

coe�cient than the �rst two cases.

Table 5.5: Heat transfer coe�cient between fuel plate and coolant before �rst melt.
Case heat transfer coe�cient[W/m2K]
1 2768
2 2735
3 3426
4 3015
5* 3181
6* 3238

Figure 5.22 shows the melt fraction of all the cases as a function of time. The melt fraction

is de�ned as

melt% =
Al(l)t
Al(s)t=0

(5.7)

The fraction is calculated based on the number of particles in each phase. Figure 5.22

shows the melt fraction for all the cases. Case 4 has an early development of melting and

continues melting until more than half the material has melted. Case 6 also follows the

same trend as Case 4. The melt fraction of Case 4 peaks at around 5 seconds and decreases

due to the movement of the melt out of the computational domain. The factor

di�erentiating the second and the third case is the channel �ow contributing to the

migration of the molten aluminum to melt more material down stream. The slower �ow in

Case 1 and Case 2 allow more time for molten aluminum to interact with the solid

aluminum. In contrast, the faster �ow of Case 3 and Case 6 remove molten aluminum from

the channel. The two major factors contributing to high melt fraction are high power

density and the duration of molten fuel interacting with the solid fuel.

111

Figure 5.22: Melt fraction vs time of the di�erent cases. The legend shows the parameters
v(velocity), p(power), and t(temperature) of Table 5.4 for each case.

The fuel melt behavior of Case 3, with high coolant velocity, low power density, and higher

initial temperature, and Case 6, with low coolant velocity, low power density, and low

initial temperature are close in melt fraction. The Case 6 melt fraction is initially higher

perhaps because less material is swept out of the computational domain due to the onset of

particle clumping before the failure. Case 3 and Case 6 have nearly converged at the time

of failure for the Case 6 run.

112

Chapter 6

Conclusions

The objective of this research was to develop simulation tools suited to assessment of fuel

melting following inlet coolant blockage in the HFIR and other MTR-type reactors.

Available computational methods for modeling fuel melting in coolant were reviewed, along

with the history of fuel melting events in MTR reactor designs. Particle based methods

were selected for the fuel simulation and are presented in this work. This fuel melt

progression model is composed of a multi-�uid SPH formulation combined with a heat

transfer and phase change model. The model was implemented in a graphics processing

unit (GPU) using CUDA. An overview of the code structure is shown in Appendix D. A

user guide will be available describing how to create, simulate, and post-process custom

simulations.

The new model is tested against analytical solutions for �ow, conduction and 1-D melt

progression and shows good agreement. The new model is applied to a scaled MTR fuel

melt progression. Four di�erent cases are presented with varying power density, initial fuel

temperature and coolant �ow velocity. Elevated power density accelerates melt progression.

Increased coolant �ow preserves some cladding integrity and rapidly sweeps melted fuel out

of the computational domain.

113

The current work shows the particle method is useful in modeling the complex geometric

evolution of fuel melting in coolant. This work is the �rst implementation of SPH with

three material components and two phases. The GPU implementation of SPH is

completely custom to the MTR fuel melt application.

In summary, this work presented the following:

• �ow blockage is modeled mechanistically through fuel melt for MTR reactor fuel.

• multicomponent SPH model is developed and implemented on GPU. Multi�uid SPH

works have been theoretical and no algorithms are discussed. Most prior SPH

implementations are single phase, or involve one free surface.

• multicomponent Smoothed Particle Hydrodynamics is combined with heat transfer

and phase change. No prior treatment of this multiphysics case in SPH exists.

• in�ow/out�ow computational �domain� boundary created in SPH.

This work will bene�t from improved modeling of convective heat transfer between fuel and

coolant, and the addition of radiative heat transfer models for high temperature conditions.

The scaled fuel melting used in this work can be moved to a more direct unscaled

simulation with additional computational resources. Further work into better modeling the

heat transfer between the di�erent interfaces after melting is also needed. The swelling of

the fuel plates due to the release and migration of �ssion gases with increasing temperature

is another physical phenomenon not currently modeled that may signi�cantly in�uence

simulation outcomes.

Though it was not a focus of this work, future work could include optimization of the code

to improve run times. The use of a distributed GPU structure with MPI could allow

114

escalation of the simulation size and increase in the level of detail in the model. SPH

method is established, in certain applications, but it is not as mature as traditional

mesh-based computational �uid dynamics tools. Particle based methods require further

understanding of stability limits, and higher level programming tools to improve

accessibility of the method to engineers not expert in GPU programming. However, the

SPH method is compatible with parallel computing architectures and promises to rapidly

gain in utility as these computing architectures are more commonly used.

115

References

116

[1] Research Reactor Division. 4.4 thermal and Hydraulic Design. Technical Report
ORNL/SAR-2344 rev.8, ORNL, 2011.

[2] Oak Ridge National Laboratory. Reactor Technical Parameters: Overview.
http://neutrons.ornl.gov/facilities/HFIR/techparameters.shtml.

[3] Oak Ridge National Laboratory. HFIR fuel element dimensions.
http://neutrons.ornl.gov/facilities/HFIR/reactorassembly.shtml.

[4] Research Reactor Division. Executive Summary. In Probabilistic Risk Assessment.
2004. ORNL/RRD/INT-36/Rev.2.

[5] D. H. Johnson. Appendix B. Probabilistic Risk Assessment of Flow Blockage Events
on the HFIR. In Probabilistic Risk Assessment. 2004. ORNL/RRD/INT-36/Rev.2.

[6] Oak Ridge National Laboratory. High Flux Isotope Reactor Fuel Assembly Photo,
January 2013. http://en.wikipedia.org/wiki/File:
High_Flux_Isotope_Reactor_Fuel_Assembly_Photo.jpg.

[7] Qing Lu, Suizheng Qiu, and G.H. Su. Flow blockage analysis of a channel in a typical
material test reactor core. Nuclear Engineering and Design, 239(1):45 � 50, 2009.

[8] Amgad Salama and Salah El-Din El-Morshedy. CFD simulation of �ow blockage
through a coolant channel of a typical material testing reactor core. Annals of Nuclear
Energy, 41(0):26 � 39, 2012.

[9] Martina Adorni, Anis Bousbia-Salah, Tew�k Hamidouche, Beniamino Di Maro, Franco
Pierro, and Francesco D'Auria. Analysis of partial and total �ow blockage of a single
fuel assembly of an MTR research reactor core. Annals of Nuclear Energy, 32(15):1679
� 1692, 2005.

[10] Amgad Salama. CFD investigation of �ow inversion in typical MTR research reactor
undergoing thermal-hydraulic transients. Annals of Nuclear Energy, 38(7):1578 �
1592, 2011.

[11] Amgad Salama and Salah El-Din El-Morshedy. CFD simulation of the IAEA 10 MW
generic MTR reactor under loss of �ow transient. Annals of Nuclear Energy,
38(2-3):564 � 577, 2011.

[12] Amgad Salama and Salah El-Din El-Morshedy. CFD analysis of �ow blockage in MTR
coolant channel under loss-of-�ow transient: Hot channel scenario. Progress in Nuclear
Energy, 55(0):78 � 92, 2012.

[13] Jerry A. Crabtree. The E�ect of Inlet Blockage Con�guration on Flow Behavior in
Rectangular Channels. Master's thesis, University of Tennessee, Aug 1997.

117

http://neutrons.ornl.gov/facilities/HFIR/techparameters.shtml
http://neutrons.ornl.gov/facilities/HFIR/reactorassembly.shtml
http://en.wikipedia.org/wiki/File:High_Flux_Isotope_Reactor_Fuel_Assembly_Photo.jpg
http://en.wikipedia.org/wiki/File:High_Flux_Isotope_Reactor_Fuel_Assembly_Photo.jpg

[14] A. Leenaers, F. Joppen, and S. Van den Berghe. Microstructural analysis of MTR fuel
plates damaged by a coolant �ow blockage. Journal of Nuclear Materials, 394(1):87 �
94, 2009.

[15] F. Joppen. Review of the accident source terms for aluminide fuel: Application to the
BR2 reactor. In Proc. 9th International Topical Meeting on Research Reactor Fuel
Management,(Budapest, Hungary, April 2005). SCK-CEN, Belgium, 2005.

[16] J. R Kirkpatrick. Estimate of Propagation of Melting in HFIR Fuel Plates Initiated
by Blockage of Two Adjacent Channels. Technical Report HFIR-CTD-91-JRK-15-2,
ORNL, 1991.

[17] F. T. Binford, T. E. Cole, and E. N Cramer. The High Flux Isotope Reactor Accident
Analysis. Technical Report ORNL-3573, ORNL, 1967.

[18] T. M. Sims and W. H. Tabon. Report on Fuel-Plate Melting at the Oak Ridge
Research Reactor July 1. 1963. Technical Report ORNL/TM-627, ORNL, 1964.

[19] H. Nakamura. Review of Fuel Cooling Channel Flow Blockage for HFIR and Related
Aluminum Clad Plate Fuel Reactor Designs. Technical Report ORNL/TM-2012/291,
ORNL, 2013.

[20] Georges Berthoud. Vapor Explosions. Annual Review of Fluid Mechanics,
32(1):573�611, 2000.

[21] Research Reactor Division. 15.3.3 Decrease in Primary System Flow Rate. Technical
Report ORNL/SAR-2344 rev.8, ORNL, 2011.

[22] L. B. Lucy. A numerical approach to the testing of the �ssion hypothesis.
Astronomical Journal, 82:1013�1024, 1977.

[23] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: Theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society,
181:375, 1977.

[24] M. B. Liu and G. R. Liu. Smoothed Particle Hydrodynamics SPH: an Overview and
Recent Developments. Archives of Computational Methods in Engineering, 17:25�76,
2010.

[25] K. Iwasaki, H. Uchida, Y. Dobashi, and T. Nishita. Fast particle-based visual
simulation of ice melting. Computer Graphics Forum, 29(7):2215�2223, 2010.

[26] J. J. Monaghan. Extrapolating B splines for interpolation. Journal of Computational
Physics, 60(2):253�262, 1985.

[27] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics,
68(8):1703�1759, 2005.

118

[28] J. P. Morris. Analysis of Smoothed Particle Hydrodynamics with Applications. PhD
thesis, Monash University, 1996.

[29] J. J. Monaghan and J. C. Lattanzio. A re�ned particle method for astrophysical
problems. Astronomy and Astrophysics, 149:135�143, August 1985.

[30] Holger Wendland. Piecewise polynomial, positive de�nite and compactly supported
radial functions of minimal degree. Advances in Computational Mathematics,
4(1):389�396, 1995.

[31] Martin Robinson. Turbulence and Viscous Mixing using Smoothed Particle
Hydrodynamics. PhD thesis, Monash University, 2009.

[32] J. J. Monaghan. An introduction to SPH. Computer Physics Communications,
48(1):89�96, 1988.

[33] Joseph P. Morris, Patrick J. Fox, and Yi Zhu. Modeling low reynolds number
incompressible �ows using SPH. Journal of Computational Physics, 136(1):214�226,
1997.

[34] J. J. Monaghan and R. A. Gingold. Shock simulation by the particle method SPH.
Journal of Computational Physics, 52(2):374�389, 1983.

[35] Paul W. Cleary. Modelling con�ned multi-material heat and mass �ows using SPH.
Applied Mathematical Modelling, 22(12):981�993, 1998.

[36] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy and
Astrophysics, 30(1):543�574, 1992.

[37] X. Y. Hu and N. A. Adams. An incompressible multi-phase SPH method. Journal of
Computational Physics, 227(1):264�278, 2007.

[38] N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini. An
Hamiltonian interface SPH formulation for multi-�uid and free surface �ows. Journal
of Computational Physics, 228(22):8380�8393, 2009.

[39] J. J. Monaghan and Ashkan Ra�ee. A simple SPH algorithm for multi-�uid �ow with
high density ratios. International Journal for Numerical Methods in Fluids,
71(5):537�561, 2013.

[40] Andrea Colagrossi and Maurizio Landrini. Numerical simulation of interfacial �ows by
smoothed particle hydrodynamics. Journal of Computational Physics, 191(2):448�475,
November 2003.

[41] Paul W. Cleary and Joseph J. Monaghan. Conduction Modelling using Smoothed
Particle Hydrodynamics. Journal of Computational Physics, 148(1):227�264, 1999.

119

[42] M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni. Free-surface �ows solved by
means of SPH schemes with numerical di�usive terms. Computer Physics
Communications, 181:532�549, March 2010.

[43] G. R. Liu and B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method.
World Scienti�c, 2003.

[44] J. W. Swegle, D. L. Hicks, and S. W. Attaway. Smoothed particle hydrodynamics
stability analysis. Journal of Computational Physics, 116(1):123�134, January 1995.

[45] P. Randles. Smoothed Particle Hydrodynamics: Some recent improvements and
applications. Computer Methods in Applied Mechanics and Engineering, 139:375�408,
December 1996.

[46] P. W. Randles and L. D. Libersky. Normalized sph with stress points. International
Journal for Numerical Methods in Engineering, 48(10):1445�1462, 2000.

[47] C. T. Dyka, P. W. Randles, and R. P. Ingel. Stress points for tension instability in sph.
International Journal for Numerical Methods in Engineering, 40(13):2325�2341, 1997.

[48] J. J. Monaghan and A. Kos. Scott russell's wave generator. Physics of Fluids,
12(3):622�630, 2000.

[49] S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for fragmentation of
incompressible �uid. Nuclear science and engineering, 123(3):421�434, 1996.

[50] Seiichi Koshizuka, Hirokazu Ikeda, and Yoshiaki Oka. Numerical analysis of
fragmentation mechanisms in vapor explosions. Nuclear Engineering and Design,
189(1-3):423�433, 1999.

[51] Shuai Zhang, Koji Morita, Kenji Fukuda, and Noriyuki Shirakawa. An improved MPS
method for numerical simulations of convective heat transfer problems. International
Journal for Numerical Methods in Fluids, 51(1):31�47, 2006.

[52] Seiichi Koshizuka, Atsushi Nobe, and Yoshiaki Oka. Numerical analysis of breaking
waves using the moving particle semi-implicit method. International Journal for
Numerical Methods in Fluids, 26(7):751�769, 1998.

[53] Ahmad Shakibaeinia and Yee-Chung Jin. A weakly compressible MPS method for
modeling of open-boundary free-surface �ow. International Journal for Numerical
Methods in Fluids, 63(10):1208�1232, 2010.

[54] J.J. Monaghan. Simulating free surface �ows with SPH. Journal of Computational
Physics, 110(2):399�406, 1994.

[55] A. J. C. Crespo, M. Gomez-Gesteira, and R. A. Dalrymple. Boundary Conditions
Generated by Dynamic Particles in SPH Methods. Computers, Materials, &
Continua, 5(3):173�184, 2007.

120

[56] R. Vacondio, B. Rogers, P. Stansby, and P. Mignosa. SPH Modeling of Shallow Flow
with Open Boundaries for Practical Flood Simulation. Journal of Hydraulic
Engineering, 138(6):530�541, 2012.

[57] S. Adami, X.Y. Hu, and N.A. Adams. A generalized wall boundary condition for
smoothed particle hydrodynamics. Journal of Computational Physics, 231(21):7057 �
7075, 2012.

[58] J. Monaghan and A. Kos. Solitary waves on a cretan beach. Journal of Waterway,
Port, Coastal, and Ocean Engineering, 125(3):145�155, 1999.

[59] Angela Ferrari, Michael Dumbser, Eleuterio F. Toro, and Aronne Armanini. A new 3D
parallel SPH scheme for free surface �ows. Computers & Fluids, 38(6):1203�1217,
2009.

[60] I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo, and M. Antuono. Simulating
2D open-channel �ows through an SPH model. European Journal of Mechanics -
B/Fluids, 34(0):35�46, 2012.

[61] NVIDIA. Geforce GTX 680 Speci�cations, May 2012. http:
//www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications.

[62] AMD. AMD Radeon HD 7970 Graphics, Sep 2013. http://www.amd.com/us/
products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3.

[63] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydrodynamics on
GPUs. In Computer Graphics International, pages 63�70, 2007.

[64] Thrust Parallel Algorithms Library, Nov 2012. http://thrust.github.io/.

[65] Alexis Hérault, Giuseppe Bilotta, and Robert A. Dalrymple. SPH on GPU with
CUDA. Journal of Hydraulic Research, 48(sup1):74�79, 2010.

[66] A. Barreiro, A.J.C. Crespo, J.M. Domínguez, and M. Gómez-Gesteira. Smoothed
Particle Hydrodynamics for coastal engineering problems. Computers & Structures,
120(0):96�106, 2013.

[67] Alexis Hérault, Giuseppe Bilotta, Annamaria Vicari, Eugenio Rustico, and Ciro Del
Negro. Numerical simulation of lava �ow using a GPU SPH model. Annals of
Geophysics, 54(5), 2011.

[68] Øystein Krog. GPU-based Real-Time Snow Avalanche Simulations. Master's thesis,
Norwegian University of Science and Technology, Jun 2010.

[69] E. Rustico, G. Bilotta, A. Hérault, C. Del Negro, and G. Gallo. Smoothed Particle
Hydrodynamics simulations on multi-GPU systems. In 20th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing.

121

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680/specifications
http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3
http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3
http://thrust.github.io/

[70] Alejandro C. Crespo, Jose M. Domínguez, Anxo Barreiro, Moncho Gómez-Gesteira,
and Benedict D. Rogers. GPUs, a New Tool of Acceleration in CFD: E�ciency and
Reliability on Smoothed Particle Hydrodynamics Methods. PLoS ONE, 6(6):e20685,
06 2011.

[71] M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo, R.A. Dalrymple, M. Narayanaswamy,
and J.M. Domínguez. SPHysics � development of a free-surface �uid solver � Part 1:
Theory and formulations. Computers & Geosciences, 48(0):289�299, 2012.

[72] M. Gómez-Gesteira, A.J.C. Crespo, B.D. Rogers, R.A. Dalrymple, J.M. Domínguez,
and A. Barreiro. SPHysics � development of a free-surface �uid solver � Part 2:
E�ciency and test cases. Computers & Geosciences, 48(0):300�307, 2012.

[73] J.M. Domínguez, A.J.C. Crespo, D. Valdez-Balderas, B.D. Rogers, and
M. Gómez-Gesteira. New multi-GPU implementation for smoothed particle
hydrodynamics on heterogeneous clusters. Computer Physics Communications,
184(8):1848�1860, 2013.

[74] Kitware. Paraview - open source scienti�c visualization, Jan 2013.
http://www.paraview.org/.

[75] Kitware. File Formats for VTK Version 4.2, January 2013.
http://www.vtk.org/VTK/img/file-formats.pdf.

[76] J. M. Domínguez, A. J. C. Crespo, M. Gómez-Gesteira, and J. C. Marongiu.
Neighbour lists in smoothed particle hydrodynamics. International Journal for
Numerical Methods in Fluids, 67(12):2026�2042, 2011.

[77] L. Hernquist and N. Katz. TREESPH - A uni�cation of SPH with the hierarchical
tree method. Astrophysical Journal Supplement Series, 70:419�446, June 1989.

[78] Simon Green. Particle Simulation using CUDA, Jul 2012. http://docs.nvidia.com/
cuda/samples/5_Simulations/particles/doc/particles.pdf.

[79] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules. Physical Review, 159:98�103, Jul 1967.

[80] Joseph P. Morris, Patrick J. Fox, and Yi Zhu. Modeling Low Reynolds Number
Incompressible Flows Using SPH. Journal of Computational Physics, 136(1):214 � 226,
1997.

[81] Joseph J. Monaghan, Herbert E. Huppert, and M. Grae Worster. Solidi�cation using
smoothed particle hydrodynamics. Journal of Computational Physics, 206(2):684�705,
July 2005.

122

http://www.paraview.org/
http://www.vtk.org/VTK/img/file-formats.pdf
http://docs.nvidia.com/cuda/samples/5_Simulations/particles/doc/particles.pdf
http://docs.nvidia.com/cuda/samples/5_Simulations/particles/doc/particles.pdf

[82] Novak Zuber, Gary E. Wilson, Mamoru Ishii, Wolfgang Wul�, B. E. Boyack, A. E.
Dukler, P. Gri�th, J. M. Healzer, R. E. Henry, J. R. Lehner, S. Levy, F. J. Moody,
M. Pilch, B. R. Sehgal, B.W Spencer, T.G Theofanous, and J. Valente. An integrated
structure and scaling methodology for severe accident technical issue resolution:
Development of methodology. Nuclear Engineering and Design, 186(1-2):1�21, 1998.

[83] Research Reactor Division. Table 4.4-3 heat transfer data for HFIR 85-mw operation.
Technical Report ORNL/SAR-2344 rev.8, ORNL, 2011.

[84] V. Khane, P. K. Jain, and J. D. Freels. Thermal Safety Assessment of LEU
Conversion of ORNL's High Flux Isotope Reactor. In ANS Winter Meeting, 2012.

[85] Research Reactor Division. Table 4.4-9 HFIR relative power-density distribution.
Technical Report ORNL/SAR-2344 rev.8, ORNL, 2011.

[86] John E. Hatch. Aluminum Properties and Physical Metallurgy. American Society for
Metals, 1984.

[87] MatWeb. Aluminum 6061-O, Feb 2012. http://www.matweb.com/search/
datasheet.aspx?MatGUID=626ec8cdca604f1994be4fc2bc6f7f63/.

123

http://www.matweb.com/search/datasheet.aspx?MatGUID=626ec8cdca604f1994be4fc2bc6f7f63/
http://www.matweb.com/search/datasheet.aspx?MatGUID=626ec8cdca604f1994be4fc2bc6f7f63/

Appendix

124

Appendix A

SPH Heat Conduction

The heat conduction equation is

ρcp
∂T

∂t
= ∇k · ∇T in Ω

Model of heat conduction based on SPH [41] is

cp,i
dTi
dt

=
∑
j

4mj

ρiρj

kikj
ki + kj

Tij
rij · ∇W
|rij|

+Qi

This conduction model was coded in CUDA for the GPU. This code only contained
conduction and no �uid motion is considered. The purpose of this approach was to
maintain simple and direct development of conduction in the GPU environment. This lead
to a coding time of a few days and after some debugging the solution produced the proper
behavior of di�usion on a square domain (though the code is 3D). An example solution of
this is shown in the left �gure below. The code worked but the comparison against an
exact solution showed the results were wrong as shown in the right �gure. For a problem
with isothermal boundary conditions T (t)

∣∣
∂Ω

= 0 and initial condition
T = sin(πx)sin(πy)sin(πz) the exact solution is

T = e−3π2αtsin(πx)sin(πy)sin(πz)

The magnitude of di�usion was often over/under estimated, depending on changes to the
variables. This problem was costing time such that changes were made to reduced the code
to a 2D version but this did not �x the situation. Furthermore, normalization constants for
the Wendland kernel were recalculated for all dimensions but no error was found between
the code and calculated constants. Then the kernel function was changed from Wendland
to cubic spline (a commonly used kernel) but this did not resolve the problem. None of the
e�orts changed the result nor showed signs of improvement.

125

0.0 0.2 0.4 0.6 0.8 1.0
x at y=0.5076

0.0

0.2

0.4

0.6

0.8

1.0

T

time: 0.0724928

sph
exact

Figure A.1: 2D SPH conduction solution of isothermal boundary

126

Appendix B

SPH Heat Conduction Error

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25

T

exact
solver

Figure B.1: Error 0.15

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25

T

exact
solver

Figure B.2: Error 0.1

127

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25

T

exact
solver

Figure B.3: Error 0.05

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25
T

exact
solver

Figure B.4: Error 0.04

128

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

0.20

0.25

T

exact
solver

Figure B.5: Error 0.02

129

Appendix C

SPH Phase Change Error

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2
T

exact
numerical
interface

Figure C.1: Error 0.2

130

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.2: Error 0.1

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.3: Error 0.08

131

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.4: Error 0.02

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.5: Error 0.01

132

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.6: Error 0.008

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

exact
numerical
interface

Figure C.7: Error 0.003

133

Appendix D

Code Structure

The current code (as of Nov. 2013) is 11398 lines of C/C++ and CUDA. Some parts of the
code can and in practice should use libraries beyond the C++ Standard Template Library.
Implementation of VTK can use VTK's API for handling the solution output. Large
aspects of parsing text �les can greatly bene�t from the use of the Boost library. The use
of these libraries puts the burden of maintaining these dependencies. As such, the current
code has implemented the basic necessary features.

An overview of the key code structure is shown in Figure D.1 and Figure D.2. These
represent the host and device interfaces. The host (CPU) side handles the initial problem
construction, input setting and material properties parsing, and data writing as shown in
Figure D.1. STL dependencies are not shown in Figure D.1. There are also other
supporting code necessary to achieve the main functions such as exception handling.
Similarly, the sphapi implements the melt model on the GPU and the numerous supporting
function and kernels.

134

melt_runtime.h
config.h

color.h

cudevice.cuh

setup.h

dataStruct.hhelper_math.h

parseInputFile.h

parseInput.h

sphapi.cuh

boundary.cuh

io.h

restart.h

pvd.h

pvtk.h

datacheck.h

cuda_helper.cuh

timing.h

Figure D.1: Code structure for melt

135

sphapi.cu

color.h

sphapi.cuh

dataStruct.h

helper_math.h

config.h

neighbors.cuh

flow.cuh

heatTransfer.cuh

common.inc

integrate.cuh

pressureCorrect.cuh

cuda_helper.cuh

applyBC.cuh

limiters.cuh

Figure D.2: Code structure

136

Vita

Hiraku Nakamura grew up in Japan. He went to Virginia Tech and completed a B.S. in
Aerospace Engineering in 2008. He then attended the University of Tennessee, Knoxville
majoring in Nuclear Engineering and received his M.S. in 2010. He then started his Ph.D.
work in 2012.

137

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2014

	Particle Modeling of Fuel Plate Melting during Coolant Flow Blockage in HFIR
	Hiraku Nakamura
	Recommended Citation

	Introduction
	High Flux Isotope Reactor
	Flow Blockage
	Flow Blockage studies
	Fuel Melts
	Current Fuel Melt Progression Hypothesis and Consequence

	Fuel Melt Progression Model
	Contributions
	Structure of the Dissertation

	Melting Model
	Eulerian and Lagrangian Flow
	Introduction to Smoothed Particle Hydrodynamics
	Mathematical Basis
	Differentiation
	Kernel functions

	Fluid Mechanics in SPH
	Standard Form
	Multi-fluid
	Equation of State
	Stability

	Energy Transport
	SPH
	MPS

	Phase Change
	Boundary Conditions
	Fluid
	Heat

	Limitation

	Implementation
	Ascent of GPU
	CUDA
	Introduction to CUDA
	CUDA Framework

	SPH on GPU
	Model Algorithm
	Model in CUDA
	Neighbor Search
	Particle Interaction
	Time stepping
	Boundary

	Model Test Cases
	Flow
	Heat Transfer
	Phase Change

	Fuel Plate Melting
	Model Scaling
	Simulation Cases
	Case 1: low power, slow flow, low temperature
	Case 2: low power, slow flow, high temperature
	Case 3: low power, fast flow, high temperature
	Case 4: high power, slow flow, low temperature
	Case 5: high power, slow flow, high temperature
	Case 6: low power, fast flow, low temperature

	Temperature profiles and Melt fraction

	Conclusions
	References
	Appendix
	SPH Heat Conduction
	SPH Heat Conduction Error
	SPH Phase Change Error
	Code Structure
	Vita

