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ABSTRACT 

The Taylor Weak Statement has been developed as a potential unified approach 

for approximate computation of fluid flows. It is  verified to contain a variety of numerical 

di ssipative methods developed for advection problems by specific identification of i ts 

expansion parameters . Generalized Fourier modal analysi s has been completed in one 

space dimension for both semi- and fully-discrete approximations, from which the f lux 

limiter method i s  herein developed and evaluated for fini te element computations. Its 

application to 1 - and 2-dimensional scalar models i s  investigated for continuous and 

di sconti nuous initi al value problems, and its use for the Euler equation system of gas 

dynamics in 1- and 2-dimensional cases i s  demonstrated. 
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CHAPTER 1 

INTRODUCTION 

In high speed flows such as transonic or super�onic aerodynamics, the most 
interesting and difficult to understand phenomena occurs , namely shock waves. Across 
the shock wave surface, there are sudden changes in the flow properties like density and 
pressure. In the application to aerodynamics, it is important to know at the design stage 
the shock position if it is present, and its strength, since the shock wave significantly alters 
flow properties hence pressure distributions around a body. 

Since the solution to the system of partial differential equation being solved is not 
analytic at the shock surface, its approximation is sought as a weak solution of the system 
of differential equations. Since the weak form of the governing partial differential equation 
is expressed in an integral form, solutions with discontinuities can be a part of weak 
solutions. Moreover, when conservative variables are chosen, the weak form of the integral 
relation reduces to the conservation laws, a feature of which contains the shock jump 
relations, the so-called Rankine-Hugoniot conditions, as the only relation at the shock to 
be satisfied. The mathematical description of such flows can be found in the hyperbolic 
system of conservation laws. According to Lax (1973), weak solutions from the integral 
relation of the conservation laws are called generalized solutions, and with the same initial 
data, only one of which has physical significance. A criterion for selecting the right one is 
termed an entropy condition. 

Consequently, there exist difficulties in the numerical solution of first order 
hyperbolic systems of conservation laws. Finite element theory provides conveniences to 
the construction of discrete and/or semi-discrete approximations of variational boundary 
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value problems in mechanics including reduced forms of the Navier-Stokes equations. 
However, it is now well recognized that the traditional error orthogonalization weak 
statement is not fully adequate at large Mach and Reynold numbers in computational fluid 
dynamics (CFD). Research on finite element analysis over the last decade has focused on 
the derivation and definition of suitable weak stateme�ts for the Navier-Stokes equations 
for high speed flows. Under the assumption of infinite Reynolds number, the Navier­
Stokes equations reduce to the inviscid hyperbolic system of conservation laws termed the 
Euler equations. 

Of importance to the current development and its formulational structure, Donea 
(1984) developed the Taylor- Galerkin finite element algorithm, a numerical procedure for 
the advection-diffusion equation wherein the weak statement was formed on a Taylor series 
expansion of the unsteady equation, with higher order derivatives reexpressed in terms of 
derivatives of the flux vector of the first order hyperbolic conservation law. Baker ( 1985) 
noted the richness of the interchanging of weak statement and Taylor series and derived a 
finite element CFD algorithm for problem classes ranging from transonic potential flow to 
high speed Navier-Stokes. The major frame of this formulational procedure has been 
expanded by Baker and Kim (1986) to derive and evaluate a generalized family of finite 
element functional forms, known as the Taylor Weak Statement (TWS), using the classical 
Galerkin test space constraint applied to a Taylor series restatement of the governing first 
order hyperbolic equation. The TWS algorithm is verified to contain as special cases 
over a dozen independently derived dissipative finite difference and finite element 
algorithms. 

This research is extended toward development and evaluation of a suitable method 
from the Taylor Weak Statement for the computation of shocked inviscid flow problems. 
To establish a sharp and monotone shock capturing Galerkin-type scheme, we followed 
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some precepts of finite difference flux methodology with a different perspective. The 
widely used technique in recent fmite difference methods is a controlling mechanism of the 
second order correction term of flux functions, known as flux limiters. 

The development of flux limiters in fmite difference methodology has emerged from 
van Leer's experiment (1974) on the Fromm's scheme and the diffusion I anti-diffusion 
step proposed by Boris and Book (1973). The Fromm scheme, being the 3rd order 
accurate four point scheme, needed to be modified to a three point scheme, as was noted by 
Roe ( 1982). In pursuit of a monotone and sharp shock capturing scheme, Roe chose two 
different schemes, Lax-Wendroff (1960) and Warming-Beam (1975), from which he 
devised a minmod b-function, i.e, 

b (x,y) = minimum modulus of ( x,y ) 
- { X if lXI � IYI - y if lXI > IYI 

to direct the anti-diffusion flux to a proper target. This idea of mixing the central and the 
upwind differencing was also mentioned by Leonard (1979). 

Harten (1983) proposed a sufficient condition, under which monotonicity can be 
preserved for a second order three point scheme, which is known as the Total Variation 
Diminishing (TVD) condition. The TVD condition requires that 

TV ( un+ 1) � TV ( un ) 
for TV ( u) = I. I Uj+l- Uj I 

where the superscripts n+1 and n denote the n+1st and nth time station respectively and the 
subscripts j+ 1 and j denote the j+ 1st and jth spatial positions respectively. Specifically, the 
TVD condition implies that if a 3-point or a· 5-point scheme can be written in the form 

n+l n C � n C � n uj = uj + j+l/2 u+ uj - j-1/2 u_ uj 
where Cj+l/2 = C ( Uj-1, Uj,Uj+l, Uj+2) 
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and Cj-1/2 = C ( Uj-2, Uj-l,Uj, Uj+l ) , 

then, sufficient conditions for the scheme to be TVD are 
Cj+l/2 � 0 , Cj-1/2 � 0 ,  Cj+l/2 + Cj-l/2 � 1 

Harten also developed a one parameter family of such schemes from a modified flux 
function approach. 

The development of these schemes preserving sharpness, and at the same time 
showing a smoothness, required a significant insight into the numerical behavior since they 
are intrinsically nonlinear schemes, and hence their analysis has not progressed as 
expected. However, it can be found that some explanation on numerical behavior is 
possible from the completion of the Fourier modal analysis on the Taylor Weak Statement 
in one space dimension, and from the analysis, a simple way to incorporate a flux limiting 
procedure into the standard and dissipative Galerkin methods is developed. Due to its 
simplicity, the multi-dimensional extension is also straightforward. 

�In Chapter 2, the Taylor Weak Statement is derived, and its utility is illustrated for 
the transonic full potential description in multi-dimensional space. 

In Chapter 3, a Fourier modal analysis is documented for characterization of the 
Taylor Weak Statement expansion coefficients. Also a reformulation of the Taylor Weak 
Statement is shown to establish a flux limiter type switching coefficient. 

In Chapter 4, Numerical verifications on the one- and two-dimensional 
discontinuous initial value problems for both linear and nonlinear cases are documented. 

In Chapter 5, the Taylor Weak Statement is applied to the Euler equation system 
and its numerical boundary treatment is described. Numerical results are presented for the 
one-dimensional Riemann shock tube problem, a quasi one-dimensional deLaval nozzle 
problem, a two-dimensional shock interaction problem and a two-dimensional steady state 
oblique shock problem. 
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In Chapter 6, a summary and future research directions for this work are stated. 

In Appendix A, a generalized formula of the semi-discrete error estimate is 

derived for the linear advection equation in one space dimension. 

In Appendix B, a generalized formula for dissipation and dispersion error estimates 

is derived for the linear advection equation in one space ?-imension. 

In Appendix C, the generalized formula for the dissipation and dispersion error 

estimates is extended to a parabolic case. 

In Appendix D, based on the papers by Chakravarthy (1983) and Thompson 

(1987), a new approach for the treatment on the boundary in connection with a first order 

hyperbolic system is shown. 

5 



CHAPTER 2 

THE TAYLOR WEAK STATEMENT 

(2.1) Formulation of the TWS 

We seek to formulate a numerically amenable restatement of conservation laws by 

means of a Taylor series expansion in time. Consider the following scalar equation in 

conservation law form. 

au ()fi au au -+ - = -+ a· - = 0 dt dXi dt 1 dXi (2. 1 )  

where ai = dfi I du is termed the Jacobian of the flux vector fi . The Taylor series 

expansion in time for u (x,t) is written as 

un+l_ un = aun + (&) a2un + (�6t2) a�u3 n + . . .  �t dt 2 dt2 OL 
(2.2) 

where the superscript n and n+ 1 denote the nth and n+ 1st time level and �t = tn+ 1 - tn . 

To restate the conservation law by use of eq.(2.2), the time derivatives are replaced 

in terms of the spatial derivatives expressed in eq. (2. 1 ). Specifically, 

Since 

au ()fi 
dt = - dXi (2.3) 

(2.4) 

()fi - ()fi au - . au - . �fj ""'"i:"" ""L"" � a� � a� the second derivative term can be written as at - au at - -:I at - - -:I Xj ' 

a linear combination of au I dt and ()fj !dxj . Hence, 

d2u = �J a· (a dU + dt2 dXi l 1 dt ()
f
. l � ax� ) (2.5) 
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where -a+ f3 = 1 yields the 2nd order time accurate expression for the above process. 

The third time derivative term can be similarly expressed as 

a3u -
at3 

= 

= 

::::: 
= 

a { a ar; ) 
- -( aidx;") at axi Xj 

a { a ar; ) 
ax i dt ( ai ax j 

) 

a { a af; au ) 
ax i ai ax j 

( au dt ) 

a [ a au ) 
axi ai axj 

( aj dt) 

a { a ark ) = - (£ ai dx. ( a ·� ) x . x . J xk 1 J 

aa .  for at
1 = 0 

(2.6) 

From the linear combination of the last two terms, the third order time derivative 

expression can be written in conservative law form as 

a3u a { a au ark ) - = - a· - a· (y- + �- ) ":1 3 ax. 1 ax . J at ax k ot 1 J · 

where y + � = 1 retains third order accuracy in time. 

(2.7) 

Hence, substitution of the eqs. (2.3),(2.5) and (2.7) into eq. (2.2) yields the 

following expression : 

(2.8) 

7 



The LHS of the eq.(2.8) is a time discrete forward approximation of du/dt on the 

interval .1t = tn+ 1 - tn. The RHS contains continuous expressions evaluated at tn . To 

establish the desired modified conservation statement, we accept the following continuous 

expression obtained from eq. (2.8) in the limit .1t --7 E � 0, 

(2.9) 

Introducing a set of weighting functions v�), and forcing the integral inner product 

between v�) and L(u) to vanish on the region n c Rn, one arrives at the weak statement 

or weighted residual formulation for L(u), which we term the Taylor Weak Statement 

TWS (u), as 

TWS (u) - Jn v WL(u) � = 0 (2. 10) 

(2.2) Finite Element Approximation 

Given a finite N-dimensional subspace sh c Ifill , where Hm denotes an 

admissible trial function space and m � 1 ,  an approximation to u (x,t) can be written as 

N 
u �.t) ""' uN �.t) = L 'VjW Uj(t)' for 'VjW E sh 

j=l 
(2. 1 1 ) 

where 'Vj(20, 1 � j � N is the set of trial functions upon which the approximation is 

supported. 

Due to the modified conservation law statement, eq.(2.9), we choose the weighting 

function approximation from the same space as the trial function space, the so-called 

Galerkin criteria, i.e., 
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(2. 1 2) 

Hence, the substitution of eqs. (2. 1 1 ) and (2. 12) into (2. 10) results in the finite element 

approximate form J �'I'}�)Vj L (u� d�::: 0 ,  
nJ 

for all Vj , j:;= 1 ,  . . .  ,N (2. 1 3) 

Seeking the null point of the Weak Statement, eq. (2.13), w.r.t. Vj, i.e., () I dVj = 0 for all 

j, the Taylor Weak Statement on a finite dimensional subspace sh becomes 

TWS (u� = f 'I'·W L(u� dx = 0 ,  Jn J 
(2. 14) 

The essence of a finite element computational method is to define a discretization 

Qh of Q as a union of subdomains ile, and to define the basis function set {Nk(�) }  on 

ile that contains all components of 'l'jW on ne. Hence, 

and the approximation of u (A,t) 

is replaced by a union of element approximations 

where { · } denotes a column matrix of element properties, { · }  T is the transpose, 

{ Nk(�) }  is the kth degree cardinal basis for 'l'j(A) on the element ile, and {U(t) }e 

contains the nodal values of uh(A,t) on the element ile at time t. 

For these restrictions, the Taylor Weak Statement eq.(2. 14) takes the specific form 
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(2. 15) 

where Se denotes assembly over elements !le of .Qh, which is a rowwise matrix 

summation process, cf. Baker ( 1983, Ch.2). 

Let 

� hi - a (!1t/2) ai 

li hi - � (!1t/2) ai 
2 :r h i  h j - y (!1t /6) ai aj 
2 l! hi hj = � (!1t /6) ai aj 

Then, the corresponding modification to eq.(2.9) is 

au a \ au a au ) L(u) = - - - Nh·- + -'Vh·h·-at ax . � 1 at ax. .... 1 J at 1 J 
(2. 1 6) 

In the definition of the new set of parameters !!, .. . ,u. , the nondimensional Courant 

number Cj for the ith direction can be introduced as 

Ci = ai !1t I hi , i not summed 

where hi is a measure of the mesh corresponding to an element span in the ith direction. 

With some loss of generality, by neglect of the boundary integral terms for the 

non-physical terms in eq.(2 . 16), the TWSe ( uh ) can be reexpressed as 

(2. 17) 
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a{Nk} [ f� - (A h. af� + a h · h · af� ) ] ctn 
dx;- 1 J,L 1 ax dX: J,! 1 J ax 1 m J k 

ne 

The traditional dissipative Galerkin procedure, cf., Dendy (1974), Raymond, et al. 

( 1976), requires the weighting function vW to be a perturbation of the trial space basis 

function 'lf{x) in such a way that 

v(x) = 'lf(X) + p · V''lf(x) 

where p is a perturbation parameter to be determined In the present formulation, and for a 

scalar equation, this leads to the condition 

� = 13. 
1. = 0 =  1! 

Remark : The second time derivative term in eq. (2.2) of the Taylor series expansion 

constitutes a damping term. For both the a -term and the� -term to yield a 

damping, 

a � 0, � > 0 for a > 0 
and a ;;::: 0, � < 0 for a < 0. 

This formulation leads to a first order accurate scheme in space (see Sec.3.2). 

In a dissipative Galerkin method, then, the� -term is used as an anti-damping 

term to yield at least second order accuracy in space. Thus, the sign of the 

coefficient a in the methods of Dendy or Raymond and Garder is different from 

that of the Taylor series expansion. 

In Dendy's second method (1974), the test function v(x) is chosen to be 

1 1  



v(x) = 'JI(X) + u S(a) d'Jfldx 

where S (a) is the sign of a, the convection velocity, and u is a constant chosen so that 

This formulation leads to a spatial second-order accuracy, i.e., .!X=  a, with a damping at 

the fourth order. 

In Raymond and Garder (1974), !! = a  and the parameter u is chosen as ( 1 5)-1/2. 

This yields a fourth-order damping, with coefficient equal to 1/ 12ill, and the numerical 

speed is accurate to fifth-order in the sense of semi-discrete Fourier modal analysis. It was 

suggested for use on a variable measure grid to minimize reflections or noise produced at 

the interface of different grid sizes. 

In Baker and Soliman ( 1983), a penalty -Galerkin method is developed by 

introducing test functions for the time derivative term different from those for the spatial 

derivative term. The penalty-Galerkin method can be considered as an extension of the 

Raymond-Garder method for an equation system, since the coefficient u of the Raymond-

Garder is adjusted for improved solutions for a nonlinear system. The test function thus 

has two forms, which corresponds to !! :=:: 0 and !! '# J3., hence unique values for the time 

derivative term and the spatial derivative term. Specifically, the test function is written for 

the time derivative term as, 

v(x) = 'JI(x) + S(a) 'Ui d'Jf/dx, 

and for the spatial derivative term as, 

v(x) = 'Jf(X) + S(a) 'Ud d'Jf/dx, 

Ui = c1 ( ls-1!2), 0 � CI � 2 for the Euler system 

'Ud = c2 ( ls-112), 0 < c2 � 2 for the Euler system 

(2.3) Transonic Full Potential Equation 

In this section, I show that the artificial density method, cf. Hafez,et al. ( 1979), a 

theoretical unification for finite difference/finite volume CFD methods for transonic full 
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potential computations, can be generalized to tensor invariant form using the Taylor series 

approach in Sec (2. 1). The major requirement of the artificial density method is to introduce 

a dissipation mechanism, accomplished via modification of the density definition in the 

continuity equation, which yields a modified elliptic-like character for the potential 

assumption within the range of appropriate transonic Mach number. 

where 

The artificial density governing equation, Hafez, et al. ( 1979), is defined as 

.-v ap 
p = p - Jl-�s 

as 

The thermodynamic isentropic density p is 

where 

1 
2 J (1- 1 ) 2 ( ))Y- 1 

p = (Mooc) y- 1 = l 1- -
2

- Moo q2- 1 

q2 = v <I> . v <I> 
V <1> = ui + vj 

c is the speed of sound, where for isentropic flows, c2 = dp/dp. 

The modification to the true density involves a switch 

Jl = max ( 0, 1 - Mx-2 ) 

(2. 1 8) 

where x is parallel to the freestream, and a discrete statement of density increment along a 

streamline is 

Osher, et .al. ( 1984) show that this type of density biasing scheme satisfies the entropy 

condition through analysis of the hyperbolic system for unsteady isentropic flow. 

1 3  



The continuity equation of the Euler equation set is 

ap _ ap a� 
-+ V·pU = 0 = -+ -
at at axj 

The flux vector f, with scalar components�· and its jacobian a can be written as 

f = p ii 

a= dl 1 dp = u + p au 1 ap 

From the steady momentum equations in 2-D, 

au au ap 
p ( uax + v ay ) + ax = 0 

av av ap 
p ( udx + vdy ) + dy = 0 

and from the isentropic relation between p and p, 

dp = c2 dp 

one can (md expressions for aplax and aplay such as 

�p
x = -p ( u 

au 
+ v 

au ) u c2 ax ay 

��= :, ( u�: + v�� ) 
With the irrotational condition, 

au av dy=dx 
apl()x and aplay can be reexpressed as 

�� = :. ( u �: + v� ) = :. Jx!'i2) 
*= :, ( u� + v � ) = 

Then from eq. (2.24), 

14 

(2. 19- 1 )  

(2. 19-2) 

(2.20- 1 )  

(2.20-2) 

(2.2 1 )  

(2.22- 1 )  

(2.22-2) 

(2.23) 

(2.24- 1 )  

(2.24-2) 



where q = q(p) only. Hence, 

au: au!' av-:-
ap = ap 1 + ap J 

- pq 
-dq 
c2 

= � (cos8) i + � (sinS) j 

(2.25) 

(2.26) 

Substituting eqs. (2.26) into (2. 19-2) verifies that the jacobian of the flux vector is 

- -
au: ( 1 M-2 ) -a = u +Pap = - u 

Therefore, the modified flux r for the TWS, eq.(2.8), can be written as follows: 

�m � � 
f = f - p (�t I 2) a (V·f ) 

Let the streamline have an angle e with a local x-coordinate. Then, from 

u = q cos e 

v = q sin e 

& = �s cos e 

�y = �s sin e, 

the jacobian a of the flux vector f can be written for 2-D as 

a ill = (a l �t / &) �s cose i + (a2 �t / �y) �s sine j 

�s ( � -:- ) 
= q C1 ui+C2 vJ 

where C1 = non-dimensional Courant number in the x-direction, and 
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C2 = non-dimensional Courant number in the y-direction. 

Substitution of eq.(2.29) into (2.28) results in 

.. m 
f = J p - (�) C1 (I - M-� �s (!!. ap + Yap ) ) u i l 2 q ax q ay 

+ J p- (�) C2 (I- M-� �s ( !!.ap +
·
yaP ) ) v j  l 2 q ax q ay 

(2.30) 

= { p - (�) C1 (J - M-� �� <1s ) ui + { p- (�) C2 (J - M-� �� <1s ) vi 

By introducing an artificial density p, the modified flux fn may be written conveniently as 

where 

.. m -
f = p V<j> 

- 2 ap p = p - Jl. ( I - M- ) --s- �s 
1 us 

ji. = �CJ2 
1 

and .l3i is the controlling factor of the artificial viscosity term in the ith direction. 

(2.3I) 

Hence, it is verified that the Taylor series expression of the original conservative 

form, eq.(2.8), can generate a proper damping mechanism for this type of flow. 

I6 



CHAPTER 3 

ANALYSIS OF THE TWS IN ONE DIMENSION 

(3.1) Recovery of Various Algorithms 

The finite element discretization of the TWS · in the one dimensional case Is 

developed for the linear advection equation 

au af(u) au au 
- + -- = - + a- = 0 
at ax at ax 

where a= df I du =constant. By definition, eq. (2. 17) written for eq. (3. 1 )  is 

J a{N} � - --t dx + 
ax 

ne 

where he is the element mesh measure. For the linear basis, 

and X: is a local cartesian coordinate with origin at the left end of Oe. 

(3. 1 )  

(3.2) 

Note that the linear basis function cannot support the third derivative term with 

coefficient u in eq. (3.2). For convenience, the following definitions are employed. 
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� f. f. - f. 1 u_ J - J J-
11;-

= 
he 

, for a> 0 
(3 .3) 

-8 f. f. - f. 1 + J - J j+ 
� 

= he 
, for a< 0 

The assembly of element matrices for the linear basis function on a uniform mesh then 

corresponds to familiar finite difference formulae as follows: 

J (){N}{ }T 1 [- 1  1 ] 
Se d'X N dx = Se 2 - 1  1 

ne 

=> :1 0 0 h + -

(3.4) 

(3.5) 

(3.6) 

The assembly over neighboring elements of a uniform mesh sharing node Xj 
yields the corresponding TWS nodal finite difference form L(Uj). 

(3.7) 

where 

, for a> 0 

, for a< 0 
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To compute an approximation solution, eq.(3.2) or (3.7) are employed to evaluate 

derivatives in the 8-time integration method, i .e., 

I a n a n+ l } un+ l = un + .1!: l ( 1 - e) � + e i + ... 

A linearization of the flux fll+l at the new time from the flux fl1 at the old time yields 

fn+ l - fn + afn 
( n+ l n\ 

= 
au U - U"1 

Substitution of eq.(3.9) into (3.8) shows that, 

or 

(3.8) 

(3.9) 

(3 . 10- 1) 

(3. 10-2) 

where an = af11 I au. With a constant coefficient an, or a locally frozen coefficient 

assumption, eq.(3. 10-2) can be written as 

(3. 1 1 ) 

To recover various algorithms from the TWS expansion parameters, a review on 

some methods in comparison to eq.(3.7) is pertinent: 

The Donor-cell method was proposed by Courant, et al. (1952) and is also known 

as the upstream-differencing method (see Harten, et al. ( 1983)). For the constant 

coefficient scalar equation, 

au au 
dt + a dx = 0 ,  a = constant, 
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the Donor-cell method is written as 
n n for a> 0 

u�+ l = u� - A a { uj - uj -1' 
J J n n 

c 0 uj+ l - uj , 10r a< 

which can be rewritten as 

u�+ l = u� - A ( a+()u� + a- 8 u� ) J J -J +J 

where a+ = max(a,O) = ( a + lal ) I 2 

a- = min(a,O) = ( a - lal ) I 2 

Hence, by reference to eq.(3.7), the Donor-cell method corresponds to 

(3. 12) 

(3 . 13) 

!! = 0 = 11, 'Y. = 1/6 (a diagonal mass matrix, see eq.(3.4)), and j1 = S(a)l2 . 

The Lax-Wendroff (1960) method can be recovered as a one step method from the 

TWS eq.(2.8) as 

!! = 0 = J,!, -:t = 1!6 (a diagonal mass matrix), and J3. = A/2 

where A =  a11t/� = Courant number. 

The Warming and Beam 0975) method is viewed as an upwinding correction to the 

Lax-Wendroff (L-W) method. From eq.(3.7), the L-W method is written as 

,for a> 0 

The central differenced diffusion term is corrected by the upwinding (U-) term as 

dUj ( 1 -A 1 -A ) (fj ) L(U .'\ = - + 8 +- (8 - 8 ) + - ( 8 8 - 8 8 ) -y dt - 2 + - 2 -- +- h 

which is the Warming-Beam method. Hence, for either a> 0 or a< 0, 

!! = 0, j3 = A/2, -:t = 116 and J,! = S(a) ( 1 - IAI) I 2 .  

,for a> 0 

Godunov ( 1959) made a three point scheme for solution of a Riemann initial value 

problem by considering piecewise constant data on the interval (xj-l/2,Xj+l/2). The 
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Godunov scheme, discussed in van Leer ( 1984) for a scalar equation and in Holt ( 1984) 

for the Euler equation system, approximates solution of eq.(3 . 1 )  by the integral 

0 = _1 Jt+-1t i X j+l/l (au + af ) dx dt me t at dx" 
X j-1/l 

This procedure can be written in the finite difference operator form as 

u�+ l = u� -
.1t (f� - f� \ J J me J J·lJ for a = df /du > 0 

for a = df /du < 0 

Across a sonic point ( aj-1 S 0 S aj+1 ), the flux fj at node j is evaluated as 

fj = f(uo), uo =the sonic value of u between Uj-1 and Uj+1· 

Across a shock point ( aj;;::: 0;;::: aj+1 ), depending on the shock speed Sj+1/2• 

_ f(uj+ 1) - f(u) 
s .+1/2 -J U · 1 - U· j+ J 

the flux at node j is evaluated as 

fj = f (Uj) if Sj+ 1/2 > 0 

= f (Uj+I) if Sj+1/2 < 0 

(3. 14) 

Therefore, except for the sonic and the shock point special cases, the Godunov scheme is 

identified by the 1WS parameter defmitions 

!! = 0 = 11, J3. = S(a) I 2, ':1. = 1/6. 

In the MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) 

differencing, van Leer (1979) replaced the Godunov piecewise constant function Uj in the 

interval ( xj-112, xj+l/2 ) by the piecewise linear function v(x,t), 

v(x,t) = Uj + Sj (x - Xj) for X E (Xj- 1/2,Xj+l/2) (3. 15) 
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where Sj is a slope function monitoring smoothness. The original scheme of van Leer 

( 1979) was applied to the Lagrangi an flow equations and it is not possible for the TWS to 

reproduce it for a scalar equation. However, in Anderson, et al. ( 1985), a simplified 

version of the MUSCL scheme is developed for steady state problems in a flux vector 

splitting algorithm. In flux vector splitting methods, th7 flux vector is split into a positive 
·flux p+ and a negative flux F- according to the eigenvalue signs of the flux vector jacobian 

matrix A of the Euler equations. Then, the Euler equation system approximate solution in 

lD  can be written as, 

where 

au aF+ aF 
at+Tx+Tx=O 

F+ = A+u 

F-- A-U 

F = F+ + F-
The spatial differencing of aF+ fdx at node j for a uniform grid is written as 

Az (1) = (Fj-F;1) + ;j (Fj- F;1) - <1>�-l (F;1- F;� 
= 8 p7 + 

(8+- 8_) "-
. F

7
-
(8+- 8_)<> "'

. F
: 

- J 2 "'J J 2 - "'J J 

(3. 1 6) 

where <l>j is a switch controlling the spatial accuracy between first-order and second-order 

and 0 � <l>j � 1 .  Similarly, the spatial differencing of aF-(dx at node j is written as 

Then, for a scalar model equation, the flux vector splitting algorithm can be written as 

where 
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, for a positive flux r+ 

, for a negative flux r 

Hence, � = 0 = ji, ':J. = 1/6 and J! = <l>j (flux limiter) i� the TWS, eq.(3.7). 

The Euler Taylor-Galerkin CETG) method of Donea ( 1984) is based on an explicit 

Taylor series expansion as shown in Sec (2. 1) .  From eq.(2.8) and (2. 17), thus 
2 

· A A 
�=O=Jl, li=2, 'J.=6, 

A = a ill I� = Courant number. 

The Crank-Nicolson Taylor-Galerkin (CN-TG) method of Donea (1984) is based 

on the following Taylor series expansions : 

-:� n A .. 2 -::�2 n A 3 -:�3 n n+l n A oU Ll1 o U Llt o U u = u + Llt Tt + 2 at2 
+ 

6 at3 
+ . . .  

Subtracting eq.(3. 17-2) from (3. 17-1), one can write 

un+l_ un = 1 (aun + aun+l) + ill (a2un- a2un+l) + ill2 (a3un- a3un+l) 
ill 2 Tt � 4 at2 at2 12 at3 at3 

(3. 17- 1 )  

(3. 17-2) 

(3. 1 8) 

Replacing the time derivatives with spatial derivatives by means of eqs.(2.3- 1) and (2.3-2), 
(3 . 19) 

Posing that, 

(3.20) 

eq.(3. 19) takes the form 
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(3.21 )  

To interpret the above equation within the TWS parameter set a, .. . ,!J:., the 

linearization of the flux at the new time level in eq.(3.9) is taken as 

Simalarly, 

Hence, eq. (3.21 )  is converted to 

1 + � h2� au + ()f = 0 
( 2 2 ) n 

12  ax2 dt dx ' for 8 = 0.5 

Then, within the TWS, 

� = 0 = li = lJ. and y = /...2/ 12. 

(3.22- 1 )  

(3.22-2) 

(3.23) 

The Euler Characteristic-Galerkin CECG) method of Morton ( 1985) uses a test 

function which widens its nodal support as the Courant number A. is increased. This 

scheme is considered as a Taylor series restatement for a= 0 = y, � = 1 = J.l in eq.(2.9). If 

the Courant number is less than 1 ,  the ECG scheme is written as 

( o+- o-) duj ( ( 1 - A.) ( . J A.( )) 0 = 1 + 
6 Cit + 0_ + -2- 0+ - 0 + 

6 0_0_ - 0+0-
from which � = 0 = y, li = A./2 and U = A,2J6. 

u� J (3.24) 

The Streamline Upwind Petrov-Galerkin CSUPG) method by Hughes and Brooks 

(1979) uses a test function for the convection term which is different from the test function 
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for the diffusion term. Its development i s  based on the steady-state convection-diffusion 

equation 

where 

aT a1' 
u-- k - = 0, ax ax2 

u = flow velocity, 

k = thermal conductivity 

T = Temperature. 

Specifically, the test function v(x) is  written 

where 

v(x) = 'JI(x) + u �;ax 

u = b uh I 2 for the convection term 

= 0 for the conduction term 

b = coth a - · 11a 

a = uh I 2k = cell Peclet number 

Hence, as u >> k, b � 1 .  
In thi s steady-state case, !l and l are thus undefmed, while Ji = � + ! and U = 0 · 

(3 .25) 

Another form of a Taylor-Galerkin algorithm, the Swansea-Taylor-Galerkin C STG) 

method, was developed by the CFD group at Swansea. Originally conceived as a Galerkin 

algorithm with added (Lapidus) dissipation, cf., Lohner, Morgan and Zienkiewicz ( 1984), 

a recent reformulation has identified the underlying Taylor seri es conservation law 

statement, cf. ,  Lohner, et al. ( 1986). The STG finite element algorithm i s  an explicit two-

step procedure, akin to Lax-Wendroff, that constitutes retention of a second-order term in 

the Taylor series. The STG method is  identified by the TWS as a Lax-Wendroff method 

with a mass matrix. Hence, 

!l = 0 = l = � and Ji = A/2. 
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In Table (3. 1 ) ,  these algorithms as well as several well known dissipative discrete 

methods are illustrated for their corresponding rederivation via TWS parameters. 

(3.2) Fourier Modal Analysis 

The Fourier series representation of the analytical solution u(x,t) to eq. (3. 1 )  is 

written as 

where i = ..f-1 

u(x,t) = L QP exp [ iroP (x - at) ] 
p=-eo 

rop = 21t I Lp = wave number 

Lp = wave length of the pth Fourier mode. 

(3 .26) 

Due to spatial discretization, wave lengths can be resolved only by an integer multiple of 

· mesh length and the minimum wave length L1 is 2Llx. Hence, any numerical solution 

uh(x,t) on nh cannot avoid discretization error. Assuming the numerical solution behaves 

similarly to the analytical one, its form at node j of nh, i.e., uh(xj,t), for a typical mode is 

written as 

(3 .27) 

where 

r = a* + i D 

a* = numerical wave speed 

D = damping coefficient 

The damping coefficient D and the numerical speed a* yield a potential error since the semi­

discrete nodal value can be expressed as 

Uj (t) = exp[ iro ( jh- at) ] exp[ roDt ] exp[ iro (a- a* ) t ]  (3.28) 
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Table (3. 1 )  

Taylor Weak Statement Parameters 

Method 

Bubnov-Galerkin 0 

Dissipative Galerkin '\) 

Raymond-Garder S(a)u 

ETG 0 

CN-TG 0 

ECG 0 

STG* 0 

Donor-cell 0 

Lax-Wendroff 0 

Warming-Beam 0 

Flux Vector Splitting 

SUPG 

S(a) = Sign of a 
A = Courant number 
*two-step method 

0 

'\) 

S(a)u 

A/2 

0 

A./2 

A./2 

S(a)/2 

A/2 

A./2 

0 

S(u)/2 + k/uh 
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';/. 

0 

0 

0 

A2J 6  

A2/ 12 

0 

0 

1/6 

1/6 

1/6 

1/6 

0 

0 

0 

0 

0 

A2J 6  

0 

0 

0 

comment 

o � 8 � 1 

a = u = Jl ,  o � 8 � 1 

0 � 8 � l;u=( 15)-l/2 

8 = 0 

8 = o.s 

o � A � 1 ,  8 = o 

8 = 0  

8 = 0  

8 = 0  

S(a) ( 1- IAI )/2 8 = 0  

<l>j <l>j = flux limiter,8 = 1 

0 k = conductivity 



For a scheme to be stable, the damping coefficient D must be non-positive, i.e. ,  D � 0. 

The coefficients of damping and numerical speed can be expressed in terms of the 

(uniform) mesh measure h as 

• ( 2 4 ) a = a  M1- M3(roh) +Ms(roh) - . . .  

(3 .29) 

(3.30) 

Algorithm accuracy, as controlled by the TWS parameters !X , ... ,lJ:., thus involves the 

coefficients Mi which are readily determined( see Appendix A) as 

M1 = 1 

M2 =!X-ft 

M3 = 1.- S(a)g + aM2 

!X .1l ll (1 ) M4 = 6- 12 + 2 - 6-:y M2 + !XM3 

- 1  S(a) J! :y !X M2 ( 1 J Ms = 180 - 4 + 12 + -6-- 6 - JJ M3 +iXM4 
where S (a) = Sign of a . 

(3.3 1 - 1 )  
(3 . 3 1 -2) 
(3. 3 1 -3) 

(3 .3 1 -4) 

(3. 3 1 -5) 

In Table (3.2), the damping coefficient D and the numerical speed a* are evaluated 

for several well-known methods. From this Table, it may be noted that the Lax-Wendroff 

and ETG methods have a second-order damping in space while the Galerkin types have a 

fourth-order damping coefficient. In Table (3.3), the fully discrete error modes( dissipation 

and dispersion) are shown. It is found that the error modes computed from the formulae 

in Appendix (A) and Appendix (B) correspond exactly to those reported in the literature 

using various alternative procedures. 

Noting the directional sensitivity within the choice of TWS expansion parameters 

a ,  . . .  g, eq.(2. 16) in Ch. 2 is now rewritten as 
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Table (3.2) 

Damping coefficient ( D )  and Numerical speed ( a* ) 
due to spatial discretization 

Method M2 M3 

Bubnov-Galerkin 0 0 0 

Dissipation Galerkin 0 0 �/24 

Raymond-Garder 0 0 S(a)/( 12..J15) 

ETG -A./2 /...2/6 A. (1 - 2 /...2)124 

Donor-cell - S(a)/2 1/6 

Lax-Wendroff -A./2 1/6 - A/24 

Warming-Beam -A./2 (3/... - 2)/6 (-7/... + 6 S(a))/24 

D = a [ M2 (co h ) - M4(co h )3 + . . . ] 
a• = a [ 1 - M3(coh )2 + M5(coh )4 - . . • ] 
S(a) = Sign of a 
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- 1/180 + �2/48 

0 
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w 0 

Table (3.3) 

Dissipation Error ( ro L\t D ) and Dispersion Error ( ro L\t ( a - a*)) 

Method b2 b3 

Bubnov-Galerkin A 012 - 8 )  A2 c 82- 8 + 1/3 ) 

8 = 112 0 A2 112 

Dissipation Galerkin A 012- 8 )  A2 c 82 - 8 + 113 ) 

8 = 112 0 A2/ 12 

ETG 0 0 

Donor-cell (A - S(a)) I 2 ( 1  - 2 A) ( 1  - A) I 6 

Lax-Wendroff 0 (1 - A2) I 6 

Warming-Beam 0 - ( 1  - A)(2 - A) I 6 

2 4 ro L\t D = A [ b2 (roh) + b4 (roh) + . . .  ] 

h4 

A 3 c 83 - 82 + 812 
- 118 ) 

0 

A3 < 83 _ 82 + 812 
- 1/8 ) - pI 24 

- Pl24 

- (A/24) ( 1  - A2 ) 

- A ( 1  - A2) I 8 

-S(a) ( 1  - A)2 (2 - A) I 8 

* 3 5 roL\t( a - a )  = A[b1(roh) + b3(roh) + b5(roh) + . . .  ] 

bs 

-A4 < e4- 83 + 82 12 
- 816 + 1136 ) 

-A4/144 

( 1-4 A2 ) (1-A2 ) I 180 



J a ( a 2 ) )  au L (u) = 
1

1 - dx" S(a) �� h + ax ill h ""dt 

a J �( 2 of ) ) + ox l f -
dX\ S(a) 113.1 h f + S(a) Ill! h ax 

From eqs. (3.3 1-1) through (3.3 1-5), the coefficients �i are now reevaluated as 

M1 = 1 
M2 = S(a) (!!XI- JllJ) 
M3 = � -IJ,!I + S(a) !!XI M2 

(�I 113.1 ��) ( 1 1\ M4 = S(a) 6-12 + 2 - 6-l:'tiJ-:Mz + S(a) 1�1 M3 

- 1  l!!l 1!1 lal Mz (1 ) Ms = 1 80 - 4 + 12 + S(a) 6 - 6- I!J M3 + S(a) Ia! M4 

From eqs.(3.33- 1) to (3.33-5), the following observations are now made : 
1 .  For a scheme to be spatially diffusive; 

I� < 113.1 
2. For a scheme to be spatially accurate to 2nd order, 

1�1 = 113.1 
3. For a scheme to be spatially accurate to 3rd order, 

�� = 113.1 and � = �I 
4. If l!ll = 113.1 ;e 0 and lli ;e �� , 

then the damping coefficient D and the numerical speed a* are 

_ J ( lal IJJ.I ) 3 j D - a l -S(a) TI + 2 + Ia I M3 (roh) + . . .  
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(3.32) 

(3.33-1) 
(3.33-2) 

(3.33-3) 

(3 .33-4) 

(3.33-5) 



5 .  If �� = o = Ill I and � "# �I , 
D = a [- S(a) (1�1) (roh)3 + ... ) 
a* = a { 1 - ( � - UJI) (coh)2 + . . .  } 

6 .  If �� = Ill I and � = �� , 
D = a { - S(a) ( � + �� ) (roh)3 + . . . ] 

a' = a { I- ( 1 +��� ��-1111 (1� + �1)) (roh)4 + ... } 
7 .  If �I = lUI "# 0 and � < llll , 

then from item number 4, the fourth order damping by the u-term of the 

TWS may not be effective. 

To expose the effect of the upwinding term ( j,!-term) on the dissipation error and 

the dispersion error, eqs.(B . 16) and (B. 17) from Appendix B are now rewrittem for 8 = 

0.0 and for 8 = 0.5. For 8 = 0.0, 

ro & D = 1.. { (� + M� (roh)2 - h' + �2
M2+ AM,+ M4) (roh)4 + ... ) (3.34- 1 )  

(J)6t (a-a') = 1.. ( (;2 
+ A.M2 + M3) (roh)3 (3.34-2) 

For 8 = 0.5, 
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2 A A 2 4 l 
( 2 

) ) ro �t D = A M2 (wh) - 4M2- 2M2 + M4 (roh) + ... 

Now consider the following three cases for the TWS with "i and ll as variables. 
( 1 ) .  Bubnov-Galerkin (8 = 0.5 ) 

1�1 = 0 = llll· thus 
M2 = 0, M3 = btj-!Yj, M4 = S(a) lui I 2 

w �t D = A [ - S(a) l�l ( roh ) 4 + . . .  ] 

ro ill (a- a 'l = A r( }: + bHll } ( rob )3 + 
· · · 1 

(2). Dissipative-Galerkin (8 = 0.5 ) 
1�1 = 113.1 ::t: 0 , thus 
M2 = 0, M,=j�- �' M4 = S(a) (1� + �� + lll.l (bll-llli)) 
roMD = A[- S(a) ( l� +�l +IJl.l(bil-��l ( roh )4 + . . . ] 

roM (a- a") = A r( }; + l:tHll } ( rob )3 + . . .  ] 

(3). Lax-Wendroff I ETG (8 = 0.0) 
1�1=0, l.lli=IAI/2 
M2 = - S(a) !AI I 2, M3 = � - �1, M4 = S(a) (� - � � + IYI ) 

24 2 2 
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(3.34-3) 

(3.34-4) 

(3.35- 1 )  

(3.35-2) 

(3.36-1 )  

(3.36-2) 



ro .1t D = A [ - S(a) (l� { I - 3IAI2) + llJ 1�1 + llll 1 �IAI) ( roh )4 + . . . ] (3.37- 1 )  

co M  (a- a') = A. d - 1�12 + llf - �� } ( rob  )3 + . . .  ] (3.37-2) 

From the frrst two cases, the Bubnov-Galerkin generalization can experience a more · 

effective damping than a dissipative-Galerkin methoq when using the upwind term (!,!.­

term). Further, for the Bubnov-Galerk:in case, the use of the coefficient l:yl can control the 

phase error without affecting the fourth-order damping if I� is chosen to be 
2 141 = llll - A 1 12 :2! 0 . 

This additional forth order damping is independent of time step for the Galerkin family. 

These observations are the basis of my fmite element flux limiting approach. In the 

Lax-Wendroff I ETG case, the ETG method can be considered the perturbation of Lax­

Wendroff for l:yl = A2 I 6 and IJ,ll = 0. Even though the ETG is accurate to 3rd order, the 

4th order damping is not effective since it is dependent on the Courant number A. 
However, the Lax-Wendroff I ETG can be modified to preserve 3rd order accuracy and to 

yield an effective damping at the 4th order for 

and llJ.I need not depend on the Courant number A. 

(3.3) Escape from Godunov 

It is stated in Holt (1984) that Godunov ( 1959) proposed three main 

requirements as an alternative to the method of characteristics for solution of the 

compressible Euler equations. One requirement is monotonic behavior of a predicted 

solution and a qualitative agreement with the analytical solution. On the search for a 

scheme to satisfy this requirement, Godunov found that no second order scheme with 
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fixed coefficients can satisfy the monotonic property for a first order linear wave 

equation using a three point difference scheme. 

The literature verifies that much of the recent effort has been devoted to the 

establishment of a sharper but still monotone solution for a discontinuous initial value 

problem. Recent techniques for such schemes introduce a controlling mechanism to the 

second order correction term, which is usually called an anti-diffusion flux term. Since 

this correction process controls the amount of anti-diffusion flux, depending on the 

underlying data, schemes developed this way are called non-linear and the coefficients of 

the second order process are defined by flux limiters. 

To expose the backbone of such techniques, consider the known diffusive Donor-

cell method. 

L (U ·' = U · - U · + - - U · 1 - U · 1 - - U · 1 - 2U · + U · 1 n+1 n .1t [ a ( ) n 1a1 ( )n l Y J J .1x 2 J+ J- 2 J+ J J- (3.38) 

From eq. (B. 15) in Appendix B, this is a second order accurate approximation to the 

viscous equation 

au + a au 
_ 

i_ .1x C 1 _ IA.I) l!l1 au 
at ax - ax 2 "'! ax (3.39) 

The RHS of the above equation is known as the artificial viscosity term with viscosity 

coefficient (.1x/2) ( 1  - IA.I) lal. To achieve a second order accurate approximation to the 

original equation, the artificial term must be eliminated. This is known as the anti-diffusion 

process. 

Hence, consider the following : 

L(U ·) = U�+1 - U� + (.1t ) [ � (U · 1 - U · 1)n - ®. (U · 1 - 2U · + U · 1)n ] J J J .1x 2 J+ j- 2 J+ J J- (3.40) 

( .1t) i_ [( 1  - IA.b au ] ( A •• )2 + 
.1x ax 2 Jal ax LlA 
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A proper differencing of the last term in eq. (3.40) will result in a second order accurate 

scheme. Central differencing results in the Lax-Wendroff ( 1960) method, while 

upwind differencing results in the Warming-Beam ( 1975) method, both of which are 

known to produce oscillatory solutions around discontinuities. However, a specific 

combination of the central and the upwind procedure can result in a sharp and monotonic 

solution that still preserves second order accuracy whenever possible. This is the basic 

reasoning of the flux limiter method proposed by Roe (1982). 

It can be verified that this combination can have more damping and less dispersion 

than the original scheme. To see this, choose the TWS coefficients as 

Then, 

where 

a > O  and O � e � 1 

dU · (f ·) 
L (U) = d/ + A2 h 

( 1 - E) ( ) ( n' A2 = o_ + -2- { 1 -2 a o+ - 1 -2 w o_ } 

+ I { ( 1 -2 Ji ) o_ - ( 1 -2 Ji ) o_2 } 

(3.41 )  

From Appendix (B), the dissipation error ro.1t D and the dispersion error ro.1t ( a - a* ) 

are 

* _ 1 -A. e ( 1 - A. ) 3 \ 
2 

l ro.1t ( a - a ) -A. -6- - 2 (roh) + . . .  

(3 .42- 1 )  

(3 .42-2) 

Hence, the inclusion of the !!-term this way results in more damping and less dispersive 

error than that of Lax-Wendroff while preserving second order accuracy. However, 

this property is restricted to a Courant number A. less than 1/2. If one converts this four 
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point scheme into a three point scheme, one then has a nonlinear scheme where the 

coefficient of the anti-diffusive flux varies according to the neighboring data. 

Sweby ( 1984) generalized various flux limiters into the following form 

n+ 1 n ( dt ) � ( 1 - 2 jl  ) ) 0 = U · - U · + - B f. + B m .  B f. J J � - J - 't"J 2 + J ' 

where <l'j is the flux limiter 

rj = B- fj I B+ fj 

<l'j = cpj( rj ) and 

.6 = A. ( Courant number ) for Lax-Wendroff 

a > 0 (3.43) 

and the region of <l'j has been selected to satisfy the TVD condition, see Figure 1. * 

Harten (1983) claims that the above three point flux limiter method is second order 

accurate by showing that the local Taylor series expansion of the flux term in space is 

identical to that of the Lax-Wendroff scheme to 0( �2 ). In this sense, one can achieve a 

second order accurate monotone solution, hence escape from Godunov's theorem. 

(3.4) Finite Element Implementation 

In the C0 fmite element method, one must accept at any point the discontinuity 

of a secondary variable, namely, the gradient of data. Also, one cannot avoid an oscillatory 

solution when one fails to control the discontinuity of the secondary variable. Flux 

limiters can be viewed as a controlling device of these unwanted jumps at node points of 

the mesh. In general, finite element methods based on the standard or a dissipative 

Galerkin method are spatially high order accurate schemes. The attendant lack of spatial 

damping would likely cause a stability problem since discontinuities lie in space not in 

time. Any scheme that could be used for a discontinuous solution should thus have enough 

* All figures may be found in Appendix E. 
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damping in the spatial discretization. Hence, the lack of spatial damping can be 
compensated by the flux limiting process when the gradients of data are not uniform. 

Following the previous analysis, the flux limiting process can be put into the Taylor 
Weak Statement as follows: let 

I I < 1 - 2 lal ) £ o <_ " <_ 1 ll. = 2 ' � 

Then from eq.(3.32), 

L(u) � { 1 - fx ( S(a) [&I h + fx:rh2 ) }  � 
a J a ( 2 af ) j + ax l f - ax 

S(a) llil h f - IJJ.I h ax 

+ i_ J S(al h ( 1 - 2 113.1 ) af - S (al ( 1 - 2 113.1 ) £ h2 a2f l 
ax l 2 ax 2 . ax 2 

+ � f S(ru h ( 1 - 2 l!il ) ( af - £ i_ h af ) ) ax l 2 ax ax ax 

(3.44) 

Since the coefficients S(a)h(l -2ljil)/2 and £h can be considered locally (nodally) constant, 

the last term in eq. (3.44) is written for a node j coefficient evaluation as 
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a J smJ h 0 _ 2 llil ) ( af _ £ a h af ) ) dx"l 2 dx dx dx (3.45) 

The third derivative term (alax) £h (a2flax2)j in eq.(3.45) may be expressed in difference 

form as 

( a a2f) 2 :c. 2 2 -a £ h - = (a f/ ax-,r (a f I ax )j-S(a) X ax2 . J 

Then, the last term in eq.(3.44) can be approximated as 

Remark : Since one wants to establish a nodally appropriate expression, a direct 

(3 .46) 

(3.47) 

application of a finite element weak statement to the last term of eq. (3.44) at 
this stage may not lead to the disired result. The derivation of the nodal 
equation with the differenced form of the coefficient should be completed before 
the weak statement is formed 

Since the nodal second derivative terms (a2f I ax�)j and (a2f I ax2)j-S(a) are the 
jumps in flux gradient at nodes "j" and "j-S(a)" respectively, I choose to compare the 
magnitudes of these jumps between node "j " and its upwind node (j - S(a)). If the 
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magnitude of the jump at the upwind node is smaller than that at node "j", one concludes 
that the flux at "j" may need some correction. Hence, defme 

/ 0 + fj-S(a) - 0 _ fj-S(a) / 
I 0 f. - 0 f. , + J - J 

With reference to Figure 2, choose rj as follows : 

(3.48) 

if rj � 1, which signals the jump in the flux gradient at the node "j" is correct, i.e., the 
jump at node "j" is less than that at the upwind node, then rj = 1 which yields a 
central differencing. 

if rj < 1 ,  the jump in the flux gradient at the node "j" needs correction, i.e., the jump 
at node "j" is greater than that at the upwind node, then let rj = rj which 
yields upwind differencing. 

The upwind flux jump correction is enforced by the parameter E, 0 :5 E :5 1 ,  as 
follows : 

for E = 1 ,  correction is done using only upwind information, 
for E = 1/2, correction is done using half upwind and half central information, 
for E = 0, no correction is done, 
for E > 1/2, correction is done by proportionally more upwind information, and 
for E < 1/2, correction is done by proportionally less upwind information. 

Hence, introducing the defmition for a limiter <J>j as 

where 
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eq.(3.44) can be written as 

{ a ( a 2 ) )  au L(u) = 1 - dx S(a> l<!l h + dx ':t h dt 

+ a ( S(ru h < 1 - 2 lli l ) 
<J> .  af j 

dx 2 j dx 

(3.50) 

The prime difference between the present approach and others, as shown in Sweby 
( 1984), is use of a different signal to establish the flux limiter function. That is, the 
present formulation uses the amount of the discontinuity in the flux gradient while the 
others use the flux gradient only. In the context of CO fmite element methods, the gradient 
of flux may not exist at a nodal point, and this fact leads to use of the jump in flux 
gradient. In this way, only one limiter is needed to write a nodal difference form while 
others need two, one coming from the left cell and the other from the right cell. Hence, 
this scheme requires less effort in programming and still leaves room to work on the 
parameter E which controls the imposition of the g-term in the Taylor Weak Statement. 

41 



CHAPTER 4 

LINEAR AND NONLINEAR MODEL PROBLEMS 

(4.1) Computational Form of the TWS for Model Problems 

In the form of eq.(2. 17), the TWS written with properly signed coefficients is, 

f a!Nl  { h ( I I aff a af� ) } - - fi - S(ai) D. h i- +- S(ai) l!!l hih · - d� .Q dX · - dX · dX · - l dXk 
• 1 J J 

(4. 1 )  

where the underbar on subscripts i and j denotes indexes not elegible for a summation. 
However, it is not practical to work with eq.( 4. 1) directly. Instead, a multi-dimensional 
version of L(u) from eq.(3.50) is now written as 

L(u) = { 1 - a:; 
( S(a;) la.l h; + a: i S(a;) S(ajl tlj hJl;) } � (4.2) 

where IJ.!I = { ( 1 -21j3.1)/2} £. The flux limiter cp12 is defined at a node point 12 for an ith-

coordinate direction as 
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and the ratio rp is defmed at a pth node in the ith-coordinate direction as 

for ai at the p th node > 0 

for ai at the p th node < 0 

Then, the TWS for eq.(4.2) is written as 
(4.3) 

TWS ( uh ) = S e [ I., ;N l  { I -fx; ( S(a,) Ia I hi + � S(a;)S(a;) j:)j hihi ) } a;;,
h 

d;; 

- f (){NJ (f� - S(aJ hi 
()ff) dx 

r. � 1 2 dX · -u .  1 J 

f a!Nl ( 1 - 2J1il ) aff - - S(aJ h · q> - dx 
r. dX · ! 2 i dX · -
u .  1 J 

Defme the following element matrices : 

(M1 = J n { N }  { N }  T d� 
e 

(Cf ) = f { N }  () { N }  T elK 
n. axi 

T 
(D�· ) = f () { N } () { N } dx 1J n � ax . -e 1 J 
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(4.4-2) 

(4.4-3) 
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With these defmitions, eq. (4.3) can be rewritten as 

1WS(u"} = S , [ [ IM� + S(a)l!&l h; (ci )T + S(a)S(a) � h;h; (D�; ) j d [� } , 

+ [ - (en Tb ij + S(au�i (Dfj ) ) {fj } e 

where 

( (1 -2 Ift ! ) e ) - S(a-) h ·  - en . (D· · ) { f. } I ! 2 'I' J. IJ J e 

Bij = 1 if i = j and bij = 0 if i =t: j .  

(4.4-5) 

(4.5) 

. More sophisticated forms of element matrix construction may be implemented by 
use of hypermatrices (see Baker, 1983). In this study, a group approximation is employed, 
wherein flux functions are evaluated nodally before finite element interpolations are used. 
Also, the following assumptions are imposed. 

I� = 0 if S(ai) S(aj) < 0 

By introducing the assembly notation, 

[M] = S e (M, 
[C[] = S e (C�1 

[D . .  l = S (D�- ) IJI - e IJ 
[oca = s e (ac� ) 
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then, 

where 

[M] = [M] + S e  [ S(aJ �� hdCf }T + ti1 hihi (Dfj ) ] 
[Ci] = [C� - [CJ + [aCJ 

[C� = s e [ - (Cf )T + S(aJ �i (Dij) ] 

(4.6) 

Eq.(4.6) is used to evaluate the 8-implicit time integration algorithm. The resultant 

residual is, 

and the Newton iteration method yields, 

a { } n+(p) �U} {�U} n+(p) = - { R} n+(p; 

{U } n+(p) = { U } n + { �U} n+(p; 

where (p) is the iteration index. The Newton iteration matrix a{R}/d {U} is 

(4. 8) 

and the solution {U}n+ l is obtained when a norm of {�U} is less than a specified 

tolerance. In forming the Newton iteration matrix a {R}/d{U} , the upwind correction non­

linearity in <l>j is ignored to avoid a penta-diagonal matrix structure. For time dependent 

problems, 8 = 0.5 is assumed unless otherwise specified. 
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To illustrate the construction of the Newton iteration matrix, consider the following 

residual { Rd } , 

Then, the Newton matrix contribution from the residual {Rd} is, 

- f a {N } (a� - S(ai) h · aaf) dx ax . 1 2 1 ax . -1 J 
n e 

= S 
_ f a {N } ( {N } T _ 

SCaD h · a {N }� dx r a · J e ax · 2 l ax · - I 1 1 J 
n c 

= S , [ [ (- (C? )  T + S(a;) �i (Djj_)) f a; J] 
= [C�] a {fJ - 1 dTDT 

where the nodal values of a� are denoted by a diagonal matrix r ai J and are multiplied by 

the element matrix. 

For a two-domensional problem, the Newton iteration matrix is split, i.e., 

approximately factored, into two one-dimensional matrices as 

a {R } [ - - a {fd j [ - - a {f2} j a {U } ""' [M1] + 8 !1t [C 1] a {U } [Mz] + 8 !1t [Cz] a {U } 
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where 
[MI] - [Ml] + S e [ S(a l) �l h 1 (C� )T + � (h 1) 2 (D� 1 ) j 
[Mi] = [Mv + s e  [ S(a� �I h2 (c� )T + I� (h�2 (D�2 ) ] 

and subscrtpts 1 and 2 indicate the 1st and the 2nd coordinate directions respectively. 

(4.2) Numerical Experiments 

To verify the new Galerkin-type flux-limited formulation for the Taylor Weak 
Statement, one- and two-dimensional step initial data have been chosen for both linear and 
nonlinear scalar equations. To quantify the anticipated effect of the upwinding(IJll) term in 

the TWS, the analytical form for the fourth-order spatial damping coefficient is derived for 
three Galerkin-type finite element methods. Spatially second-order accurate Galerkin-type 
methods require lal = lfil. From the corresponding Fourier modal analysis in Sec.(3.2), 

D = a { -S(a) D4 (wh)3 + . . . } 
a* = a { 1 + A3 (wh)2 + . . . } 

where D4 = 1131/12 + IJJJ/2 + 1131 ( 1:¥1 - IJ.!I ) and A3 = - (1:¥1 - IJJJ). 

(4. 10- 1 )  

(4. 10-2) 

For lj.!l = { ( 1 - 2 1fil)/2} E, 0 $ E $ 1 ,  and 1:¥1 = 0, the terms in eq.(4. 10) become 
D4 = 1fil/12 + { ( 1 - 2 1fii)/2} 2 E (4. 1 1-1) 

A3 = { (1 - 2 1j31)/2} E (4. 1 1-2) 

Hence, the fourth order damping coefficient D4 varies linearly with E. Specifically, for E =  
0.0, 0. 125, 0.25, 0.50, 0.75 and 1 .0, the fourth-order damping coefficients D4 are : 
for Bubnov-Galerkin ( lfil = 0.0), 

D4 = 0.0, 0.03 125, 0.06250, 0.1250, 0. 1875 and 0.25, 

for a dissipative Galerkin(l�l = 0. 1), 
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D4 = 0.0, 0.03 125, 0.06250, 0. 1250, 0. 1 875 and 0.25, 

for a dissipative Galerkin(l�l = 0. 1) , 

D4 = 0.00833, 0.02833, 0.04833, 0.08833, 0. 12833 and 0. 16833, 

for Raymond-Garder (1�1 = ( 15)-1/2 = 0.2582 ), 

D4 = 0.02152, 0.02883, 0.03614, 0.05076, 0.06537 and 0.07999. 

Thus, the Bubnov-Galerkin damping is most affected by varying E. 

1-D linear test case. The linear advection equation 

au
+ 

au = 0 1 0 at ax ' a = . 

with step initial data (shown on Figure 3 as dashed line) 

u = 1 .5 

u = 0.5 

, 0.0 s; X s; 0.2 

, 0.2 s; X s; 1 .0 

is chosen for the one-dimensional test case. The exact solution (shown on Figure 3 as the 

solid line) at t = 0.375 = (37.5) 1Q-2 is 

u = 1 .5 

u = 0.5 

0.0 s; X s; 0.575 

0.575 s; X s; 1 .0. 

For the test case executions, the selected Courant number (a.1t/�) is 0.25 as results for �t 

= (0.5) 10-2. The solutions at time t - to = 75 �t = (37.5) 10-2 sec are shown in Figure 5 for 

(a) Bubnov-Galerkin (8=0.5), (b) Raymond-Garder (8=0.5), (c) Donor-cell finite 

difference (8=0.0), and (d) a dissipative Galerkin for lal = 0. 1 = l.{il, l:yl = 0 = lyJ (8=0.5), 

respectively. None of these represent a satisfactory solution for the test problem. 

To remove the oscillations present in Figure 5 (a), (b) and (d), and/or the excessive 

diffusion in (c), upwind information may be imposed by choosing E > 0. Figure 6 (a) to 

(d) shows the numerical results obtained for flux-limited TWS definitions for the Bubnov-
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Galerkin method� = 0.0 = ID for E = 0. 1 ,  0.3, 0.5 and 1 .0 respectively. Figures 7 and 8 

show the results obtained for the flux-limited TWS definition for Raymond-Garder ( a =  

(15)-1/2 = .Jl )  and a dissipative Galerkin form ( � = 0. 1 = J3., chosen arbitrarily), each with 

the additional fourth-order upwind flux correction modulated by choosing values of E. All 

results with the upwind correction show monotonic behavior and sharper solutions than the 

non-flux corrected TWS algorithm, Figure 5. Moreover, as E is increased, the solutions 

get smoother as expected, since the fourth-order damping increases with E, eq.(4. 1 1- 1 ). 

When there is no upwind correction, as in Figure 5, the Bubnov-Galerkin method 

shows the wildest oscillatory solution. Hence, one might expect that the upwind corrected 

Bubnov-Galerkin solution would be the sharpest. ',
However, the computed results are 

quite opposite. The Raymond-Garder method, which has a fourth-order damping 

coefficient of 0.02 152, shows the sharpest result. The fourth-order damping coefficients 

for the Bubnov-Galerkin and the dissipative Galerkin� = 0.-1 = J3.) are 0.0 and 0.00833 

respectively. From eq.(4. 1 1 ), one sees that the Bubnov-Galerkin method has the most 

damping, when treated by the upwind information, hence produces the relatively diffused 

solution. 

An additional experiment was conducted by further reducing the value of E to 0.01 , 

see Figure 9. The fourth-order damping coefficients in this case are 0.0025, 0.00993, and 

0.02381 ,  for Bubnov-Galerkin, dissipative Galerkin and Raymond-Garder respectively. 

If the foregoing arguments are true, the Bubnov-Galerkin must show the sharpest result. 

But the solution in Figure 9 (d), which is from flux-limited Raymond-Garder, is again the 

best. Further, the data in Figure 9 (a), which is a first-order method with a =  0.0 = "i. = y,_ 

and J3. = 0. 125, shows a slight wiggle near the discontinuity. 

Hence, for these data the following conjectures are made : 
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( 1 ). Nodes with high damping in second-order influence adjacent nodes with a 

damping in fourth-order, hence make the solution even smoother. Due to the 

present construction of the flux limiter <l'j• a node between opposite slopes in the 

flux gradient degenerates to a node with Donor-cell type second-order damping. 

(2). The selected dissipative Galerkin (g = 0.1 = ID. with fourth-order damping 

coefficient 0.00993 for E = 0.01, already shows smoothing behavior (see 

Fig.9(b)) when used with the flux limiter. This fact suggests that a scheme 

with a base fourth-order damping is affected least by nodes with locally 

second-order damping under the present flux limiter. 

Thus, the relatively larger smoothing behavior of the Bubnov-Galerkin form with 

upwind correction by E = 0.01 can be explained as the contamination by damping at 

second-order near the discontinuity. For this test case, the solutions obtained from the 

flux limited Bubnov-Galerkin, dissipative Galerkin and Raymond-Garder methods with E =  

0. 1 are considered acceptable since they all show monotone smoothness with relative 

sharpness. 

1-D nonlinear test case. The nonlinear test case is the inviscid Burgers 

equation, 

au + � (u 2) = au + u au = 0 at ax 2 dt ax 

with step initial data (shown in Figure 4 as dashed line) given by 

u = - 0.2 

u = 1 .2 

, 0.0 S: X S: 0.2 

, 0.2 < X S: 1 .0 

The resultant shock speed S is computed as, 
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and the average shock speed is 0.5. The exact solution at time t - to = 0.5 sec is shown on 

Figure 4 as the solid line and is 

u = - 0.2 

u = 1 .2 

, 0.0 s; X s; 0.45 

, 0.45 < X s; 1 .0 

Figure 10 shows nodal solutions obtained for (a) Bubnov-Galerkin for 9 = 1 .0, 

(b) Raymond-Garder (� = (15)-112 = ID for e = 0.5, (c) Donor-cell for e =  0.0, and (d) a 

dissipative Galerkin � = 0. 1 = ji) for 9 = 0.5, for �t = (0.5) 10-2, hence Courant number 

= 0. 125. Figure 1 1  shows results for a first-order dissipative Galerkin method for (a) a =  

0.0, li = 0.25 for e = 0.5, (b) � =  0.0, li = 0.75 for e = 0.5, (c) � =  0.0, li = 0.25 with 

the lumped mass matrix (':/. = 1/6, eq.(3.7)) for 9 = 0.5, and (d) !! =  0.0, J3. = 0.375 with 

lumped mass matrix for 9 = 0.5. Figures 12, 13 and 14 show corresponding solutions as 

obtained using the upwind correction scheme applied to the Bubnov-Galerkin, Raymond­

Garder, and dissipative Galerkin formulations, respectively, for (a) E = 0.25, (b) E = 0.50 

with lumped mass matrix, and (c) E = 0.25, (d) E = 0.5 with consistent mass matrix. 

The first thing to note is the distinct differences in solutions obtained using the 

lumped mass matrix (':/. = 1/6) and the finite element consistent mass matrix forms. 

Solutions without use of the lumped mass matrix always exhibit oscillations ahead of a 

shock, while solutions using the lumped mass matrix exhibit oscillations behind the shock 

if at all. For this nonlinear case, it is difficult to apply the linear Fourier analysis. 

However, it is known that wiggles behind a shock, which occur for use of the lumped 

mass matrix, are associated with a relatively larger lagging phase error (see Baker, 

1983,p.226). To verify this, eq. (3.36-2) is invoked, hence 

ro�t (a - a*) =  A. [ { A,2f12 + 1'1.1 - IJ.ll } (roh)3 + . . .  ] (3.36-2) 
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and I� = 1/6 yields the lumped mass matrix while I� = 0 corresponds to the finite element 

mass matrix form. Then, 

ro�t a*11ump = ro�t a - A. [ (A.2f12 + 1/6 - IJJJ) (roh)3 + . . . ] 

< ro�t a - A. [ (A.2/12 - IJJ.I) (roh)3 + . .. ] = ro�t a*IFEM 

* * and if 1!!1 = 0.0, then ro�t a l1ump < ro�t a IFEM < ro�t a . 

Hence, for JJ. = 0, the phase lagging of the lumped matrix form is always greater 

than that of the finite element mass matrix. But, the better numerical results in general are 

obtained with use of the lumped matrix, which may be associated with its more diagonally 

dominant property especially near the region of the shock. Among the solutions obtained 

using the finite element mass matrix, i.e., Figure 12 (c),(d) by Bubnov-Galerkin with flux 

limiter, Figure 13 (c),(d) by Raymond-Garder with flux limiter, and Figure 14 (c),(d) by 

dissipative Galerkin with flux limiter, the solution in Figure 13 (c), which is Raymond­

Garder with E =  0.25, is the best while that in Figure 13 (d) from Raymond-Garder with E 

= 0.50 is next best. Since the fourth-order damping in Raymond-Garder with E = 0.25 is 

the least among them, this behavior can only be explained by the phase accuracy of a 

scheme. The Raymond-Garder method is known to be phase accurate to fifth-order from 

the semi-discrete Fourier analysis. This may suggest that as a nonlinear error control, semi-

discrete phase accuracy optimazation may be useful. 

The second item to note is that the amount of E has very little influence on solution 

behavior for this nonlinear problem. Across the shock, all schemes degenerate to a first­

order Donor-cell type, i.e., damping at second-order. Thus, second-order damping seems 

to override the nearby fourth-order damping. If the initial oscillations are severe, then the 

fourth-order upwinding also has little influence. 
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The third feature of note is the danger of central differenced diffusion near the 

shock, which is likely to cause oscillations due to acceptance of different types of signals . 

In Figure 1 3  (a) and (b), the Raymond-Garder solutions show oscillations, and in Figure 

14 (a) and (b), the dissipative Galerkin (g = 0. 1 = D_) solutions show slight overshoot. 

These are the consequence of the fourth-order damping by central differenced diffusion. 

However, in Figure 12  (a) and (b), the Bubnov-Galerkin does not show any wiggles. 

From eq.(4. 1 1-1) ,  the amount of fourth-order damping in the dissipative Galerkin method 

is 0.08833 for £ = 0.5, while the fourth-order damping in the Bubnov-Galerkin is 0.0625 

for £ =  0.25. This wiggle-free solution for the upwind corrected Bubnov-Galerkin with 

less damping coefficient might support the foregoing second argument. 

In conclusion, these data for the 1 -D nonlinear (inviscid Burgers problem) 

experiment indicate that dispersion error control becomes relatively more important. Use of 

the lumped mass matrix form ("J,=l/6) may be viewed as one TWS option for dispersion 

error control. Due to existence of a shock wave, the algorithm designer requires selective 

use of upwind and/or central differencing. Such non-linear schemes are not a priori known. 

However, solutions obtained using the upwind corrected Bubnov-Galerkin form with 

lumped mass matrix show overall acceptable results. 

2-D linear case. To evaluate the new flux-corrected Galerkin scheme in 

two dimensions, two discontinuous data definitions are considered for the linear model 

equation. First, the discontinuities are aligned with grid lines, while the second is skewed 

to the mesh by 45 degrees. For the first case, the model advection equation is, 

au au au 
at + 0.3 ax + 0. 1 ay = 0 

and the initial data, depicted in Figure 15, is 
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u = 2.0 

u = - 1 .0 

, 0 $ X $ 0.2, 0 $ y :5 0.2 

, elsewhere 

For the second case, the equation is 

au au au dt + 0.2 ax + 0.2 dy = 0 

and the initial data, depicted in Figure 16, is 

u =  2.0 , 0 $ y :5 0.2 - X 

u = - 1 .0 , elsewhere 

In both cases, the results were taken at time t = 150 �t. with �t = 10-2 (see Fig. 17) and �x 

= �y = 1/32. The resulting Courant numbers are Cx = 0.096, Cy = 0.032 for the first case, 

and Cx = 0.064 = Cy for the second case. 

For the first case, the flux limited Bubnov-Galerkin solution is compared with the 

standard Raymond-Garder form in Figures 17 (a) and (b). One can immediately notice the 

much improved behavior of the new method for this 2-D linear problem. In Figure 17(a), 

the flux limited Bubnov-Galerkin solution, a slight oscillation behind the discontinuity 

running along the y-direction is just noticable. The reason could be the rather narrow 

spatial domain available to damp out wiggles behind the discontinuity running in the y­

direction. In the standard Raymond-Garder solution, these wiggles propagate to the 

boundary while those behind the interaction of discontinuities spread over much of the 

domain. The fourth-order damping coefficients for the upwind corrected Bubnov-Galerkin 

and the standard Raymond-Garder forms are 0.04167 and 0.02152 respectively. 

For the second test case, shown in Figure 1 8, most noticable are the wild 

oscillations present in the standard Raymond-Garder solution (the vertical axis span is zero 

to 40). From Figure 16, the initial maximum number of elements behind the discontinuity 

along the direction of propagation is only four. This lack of enough region to damp out 
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wiggles may be the primary cause of the wild oscillations. Conversely, the flux limited 

Bubnov-Galerkin solution, which has a larger fourth-order damping coefficient, does not 

show any sign of wiggles and at the same time preserves a sharpness. The solution from 

the flux limited Galerkin method is quite acceptable, and also shows the advantage of a flux 

limiter method. 

2-D nonlinear case. Here I also consider two cases. The first has the 

discontinuities aligned with the grid while the latter is skewed by 45 degrees. The 

equation used for the first case is, 

au au au dt + 0.3u dx + 0. 1 u ay = 0 

and the initial data shown in Figure 15 is 

U =  2.0 , 0 s; X s; 0.2, 0 s; y s; 0.2 

u = - 1 .0 , elsewhere 

The results shown in Figures 19 (a) and (b) are taken from the standard Raymond-Garder 

and the flux limited Bubnov-Galerkin respectively at time t =  (400) �t for �t = l Q-2, 

which yields a maximum Courant number Cmax = 0. 15. 

As in the corresponding 1-D test case, a lumped mass matrix is employed for both 

methods due to the inherent stability problem with use of the finite element consistent mass 

matrix. Notice that for the Raymond-Garder solution, Figure 19 (a), the region behind the 

shock interaction is smoother than in the linear case (Figure 17(a)). This is due to use of the 

lumped mass matrix (':/. = 1/6) for a more diagonally dominant matrix. Also, the solution 

behind the shock running in the y-direction is contaminated because the region is of limited 

extent. In the flux limited Bubnov-Galerkin solution (Figure 19(b)), there are some very 

modest oscillations behind the shock interaction. This indicates that the shock interaction of 
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the inviscid Burgers problem is of strong nonlinear behavior. However, the flux limited 

Bubnov-Galerkin solution looks quite acceptable in general. 

For the second test case, the equation used is 

au au au Cit + 0.2u dx + 0.2u ay = 0 

and the initial data, shown in Figure 16, is 

u =  2.0 , 0.0 � y � -X + 0.2 

u = - 1 .0 , elsewhere 

The result shown in Figures 20 (a) and (b) are taken from the same situation as in the first 

case, i.e., at time t =  (400)�t for �t = 10-2, but the consistent mass matrix is used in this 

case. The maximum Courant numbers are Cx = 0.032 = Cy. 
In comparison, the flux limited Bubnov-Galerkin solution is not more crosswind 

diffusive than is the standard Raymond-Garder solution. The exact solution is propagation 

of the initial shock along the domain diagonal. Since the initial data along the shock is saw-

tooth, and the grid is not aligned with the discontinuity, one may expect the shock to 

diffuse laterally in this nonlinear problem. In the Raymond-Garder solution (Fig.20(a)), 

one can notice milder oscillations than those in the linear case (Fig. l 8(a)). This is also due 

to the lateral diffusion of flux in this problem. Considering all aspects, the solution from 

the flux limited Bubnov-Galerkin method is again quiet acceptable. 

As a whole, the flux limited Bubnov-Galerkin method shows a robustness for all 

model test cases. In the linear cases, the smoothness/oscillation character can be traced to 

be the fourth-order damping coefficient. In the nonlinear case, mass lumping appears an 

appropriate choice, and can be viewed as a dispersion error control mechanism. For the 

nonlinear shock, a central differencing for the anti-diffusion flux may cause oscillations 
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near the shock due to a transfer of inappropriate information. Also, a more sophisticated 

flux limiter could be helpful to improve solution behavior near a discontinuity. 

57 



CHAPTER 5 

THE EULER SYSTEM 

(5.1) Governing Equations 

Let U · be a vector of conservative variables satisfying 

(5. 1 )  

where Fi is the flux vector and Ci i s  the non-homogeneous term that does not contain 

derivatives. Then, for the system definitions, 

where, 

U =  [ p ,  m1, m2, E ] l 

0 
p .  = ui1m1 

u p l + oi l P 
1 u i 0:2 o i2P 

u i p h 0 

m 1 = p u 1 = momentum in x rdirection 

m2 = p u2 = momentum in xrdirection 

y P 
h = ( y - 1 ) p + uiu i  _ E + P - - -- = specific enthalpy 

2 p 

y = cp I cv = specific heat ratio 

( p ) Y- 1 ( h _ 
u
2
iui ) 

P = ( y- 1) E - 2 uiu i = (-1- )  p 

( U ·U · ) 
E = p E + 2 1 = Total energy 

E = specific internal energy 
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eq.(5 . 1 )  expresses the two-dimensional Euler equations of gas dynamics. 

An alternative quasi-linear form of eq.(5 . 1 )  is 

(5.2) 

where Ai = d.Fi /dU is the jacobian(matrix) of the flu� vector Fi. For the Euler system, it 

is readily determined that 

Ai = 

where 

0 oi l 

U ·  2 1 
-u iu 1 + oi 1<1> - o i l ('y-2) u 1 

2 oi 1u2 -uiu2 + oi:z<l> - oi2 c r - 2) u 1 

2 oi 1h -ui ( h - <1> ) - ( y -1) uiu 1 

2 (y- 1 ) yP <1> = -
2
- uiui = ( y- 1)h - p 

(5.3) 

oi2 0 

oi2 u 1 
- o i 1 ("f-1) u2 o i 1 C y - 1 ) 

U · 1 oil.. r - 1 )  
- oi2(y - 2) u2 

o iil 
- ( y -1 ) uiu2 

y ui 

The eigenvalues of Ai are ui - c, ui, ui and ui + c, which are all real, hence the Euler 

system is hyperbolic. The eigenvalue matrices Ai of Ai are 

Ai = Diag [ Ui - c , Ui , Ui , Ui + c ] , 1 ::;; i ::;; 2 (5.4) 
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where 

c = c( p,p ) = speed of sound 

ro = A.J p for an ideal gas 

The right and left eigenvector matrices Ri and Li , such that Lj_ Ai Rj_ = Ai, 

where the underbar denotes a direction indicator (no summation), can be determined using 

hi-orthogonality between the right and left eigenvector matrices, as 

a 1 0 a 

a (u l - coi J u l 8 i2P a (u l + coiJ (5.5) Ri = 
a (u2 - coJ u2 - oi lp a (u2 + coJ 

a (h - cuJ upj p (u loi2- u28i l) a (h + cuJ 2 

� (<I> 2 + cuJ -� (oi lc + ru 1) -� (oit: + ru2) N � 'Y 
2 

1 - <I> c -2 Yu lc -2 Yu2c-2 - yc-2 
Li = 

- ( oi2u 1 - oi lu2) - 18 - 1 (5 .6) p i2 -p oil 0 p 
� (<I> 2 - cuJ � (oi lc - Yu 1) � (8i£ - Yu� � y  

where a =  p c- 1 I ../2 

� = p-
1 c- 1 I ../2 

IV 

y= y- 1 
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Should one choose a preferred coordinate direction, for example when a 

discontinuity is not aligned with the mesh, it may be necessary (or desirable) to rotate the 

coordinate system to resolve the flux vector into normal and tangential components to avoid 

excessive smoothing. This was first suggested by Davis ( 1984). The Euler equation 

system written in the local rotated (x'i) coordinate system (see Fig. 21 )  is 

where u
' 

= [ p ,  pu �, pu�, E ]1  

' ' 
F . = u . 1 1 

p 

pu l 

pu2 

ph 

U .  = T- · U ·  1 1J J 

0 
Pai l + 
Poiz 
0 

= 

111 = T- . = [ cose , sine l 
1J -sine, cose 

for 2-D 

Defme the transformation matrix Q between the primed and the unprimed variables as 

1 ' 0, 0, 0 ' au 0 , cose, sine , 0 Q = dU = 0 , -sine, cose, 0 
0, 0, 0, 1 

Then, eq.(5.7) written in the rotated coordinate system yields 
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au - 1  a ( , = dt + Q dxi" cose F 1 sine F� } 
Q-1 a ( . F

, 
F

, ) + dXz 
sme 1 + Cose z 

Comparing to eq.(5.2), the fluxes F1 and F2 in the Xi coordinate system are 

F2 = Q-1 ( sine F � + cose F� ) 
Similarly, the jacobians At and A2 in the Xi coordinate system are 

(5.8) 

(5.9- 1 )  

(5.9-2) 

(5. 10- 1 )  

(5 . 10-2) 

Since Ai' = Ri' Ai' Li'· the corresponding Jacobian matrices A1 and A2 can be written in 

terms of local properties as 
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(5.2) Taylor Weak Statement for the Euler System 

The Taylor series modified conservation law, recall eq. (2.9), is extended to the 

multi-dimensional system case by replacing the scalar flux vector jacobian ai by the matrix 

flux vector jacobian Ai. Then eq.(2.9) reads as 

L (U) = 1 - � Ail (a.1t ) + .4- ('Y ru_2 ) A l ax .  2 OX : 6 J 1 J 
au 
dt (5 . 12) 

Since Ai = Ri Ai Li and aFy'axj = Aj au1axj, where Ri = L( 1 , then eq.(5 . 12) can be 

rewritten as 

L (U) [ 1 - J_R· A· l (a.1t ) L· + L - J-R - A . (y.1
t2 ) L· l l - ax : 1 1 2 1 lax :  J. J 6 J. 1 J 

+ -::-.ax i 
[ F�· - R· J A· (�.1t ) L· R · A - L ·� a 1 l 1 2 1 J. J J. OX j 

au 
dt (5. 1 3) 

where underbar denotes the direction indicator (no summation). By using the following 

assumptions, 

( 1 )  a locally frozen coefficient is used to evaluate the y- and J.l-terms, and 

(2) The y- and J.l-terms are added only along the ith-direction, then 

eq.(5. 1 3) is simplified to the form 
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(�t2 ) a au j + o . ;() .kA· A· Ak -6- -a Lk a-lJ J 1 J xj - xk 

The one-dimensional homogenous Euler equation system is 

a� + RAL �� = 0  

Defining a new set of variables W = { w(k) } by 

dW = L dU 

eq.(5. 1 5) is then transformed into, 

aw (k) (k) aw (k) 
-at + A. dX = O ,  k=1 ,2,3 

(5 . 14) 

(5 . 1 5) 

(5. 16) 

(5 . 1 7) 

where A,(l) = u - c, A,(2) = u and A,(3) = u + c. Each A,(k) is thus the wave velocity of the kth 

wave equation for the Euler system, and it equals the slope of a curve Ck defined in the 

(x,t) plane by dx/dt = A,(k). The curve Ck is a kth characteristic curve of the wave system 

of eq.(5 . 17) along which the amplitude w(k) is constant. Equation (5 . 17) is called the 

characteristic equation form of the Euler system. In two dimensions, the Euler equation 

system may be written as 

(5. 1 8) 

Since the right eigenvector matrices R1 and R2 are not identical, the Euler system in 2-D 

cannot be simultaneously diagonalized. 
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To express eq.(5. 14) in a form similar to eq.(2. 16), define a new set of TWS 

coefficients by 

S(Ai) [1,�1] hi = Ai (a �t l 2) 

(j] hi hj = Ai Aj ( y �t2 I 6 ) 

S(Ai) [ IJil] hi IAj l = Ai Aj ( ��t I 2) 

S(Ai) [IUJl hi hj IAkl = Ai Aj Ak ( �t216 ) 

(5. 19- 1 )  

(5. 19-2) 

(5. 19-3) 

(5 . 19-4) 

where IAil = Diag [ . . .  , IA.(k)l, ... ] for the ith-coordinate direction, the subscript k denotes 

the kth wave field, and S(Ai) is the sign of the eigenvalue Ai. 

The formulation of eq.(5. 14), and the definition in eq.(5 . 19), allow the higher 

order terms in the Taylor series restatement of conservation laws to be directly added 

through the characteristic equation form for the Euler system. Hence, the diagonal elements 

of the TWS coefficient matrices need not be the same for all wave fields, specifically, they 

may vary depending on the character of each wave equation. Lax(1973) states that the kth 

characteristic field is genuinely nonlinear if r(k). Vu A,(k) = 1 ,  and is linear if r(k) . Vu A,(k) 

= 0, where r_(k) is the kth right eigenvector and V u is a differentiation with respect to the 

vector U. Hence, in the Euler system, the wave equations with wave speed A,(k) = u ± c are 

nonlinear and the wave equation with A,(k) = u is linear. 

In the two-dimensional case, eq.(5 . 14) is expanded as 

(5 .20) 
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The flux limiter <pi, recall eq.(4.2), can now be inserted into this modified form of the 

Euler equations yielding 

where S (  A )  = Sign of an eigenvalue ( diagonal element of A ), and 

<pi = 1 - E ( 1-ri ) = flux limiter 

(5.2 1 )  

When it is preferred to rotate the local coordinate system, due to the discontinuity 

not being aligned with the mesh, the modified conservation equation can be written as 

follows: 

(5.22) 
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a { 1 • • 

- (sinS) ax2 h2 ( Q- R2 ) [ !X ]  ( L2Q ) 

a ( 1 
• ) + ( cosS) � Q- F2 ox2 

The Taylor Weak Statement for an Euler system is thus 

(5.23) 

Using the notations of eq.(4.4) for the element matrices, the TWS eq.(5.23) for L(U) in 

eq.(5.21 )  can be written as 

h [ - d {U}  e { e ) T  { e ) TWS(U ) = S e  [M]e dt - Ci { Fd e + aci { Fil e (5 .24) 
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where 

[M]e = (M� + h1 (Cf }
T Rd 1!!1 ] S(A� Li + 8ij h}ti (Dfj )  Rd :¥ ]  Lj (5 .25) 

and Oj_j = 1 if i = j 

= 0 if i :;e j 

The TWS eq.(5.24) is again employed for derivative evaluation in a 8-implicit 

integration algorithm, recall Sec.(4. 1) . The RHS residual {R}  thus becomes 

where 

[M] = S e [M]e 
The Newton iteration matrix a{R}/a{U}n+l is computed (in linearized form, recall 

eq.(4.8)) as 

a { RJ = [MJ + S.1t a {o  J 
a { u }  n+ 1 a { u }  n+ 1 

Then, the solution {U}n+l is obtained as described in Sec.(4. 1 ). 
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(5.3) Numerical Boundary Treatment 

For an approximate factorization scheme, as developed by Beam and Warming 

(1976), the Newton iteration matrix a {R}/(){U}n+l of eq. (5.28) is approximated as, 

where 

[M1] = S e [ (M4 + hdC�)T Rd�i] S(A 1) L 1 ] 
[Mil = S e [ (M4 + h2 (C� T R2 [�I] S(A� L2 ] 

(5.29) 

(5 .30) 

a {G d [ ( e )T ( e ) ( e ) I 1 1 - cpO - I!i l) l 
_ __::.._1 = S e S�t - C 1 A 1 + ac 1 A 1 + h 1 D 1 1  R 1 A 1 [ 2 ] 1 L 1 
a {U } n+ 

a {G2} [ ( e )T ( e ) ( e ) I 1 1 - cp(1 - IJi l) l ----=--1 = S e S�t - C2 A2 + ac2 A2 + h2 D22 R2 A2 [ 2 h L2 
a {U } n+ 

Then, the algebraic solution procedure becomes 

(5.3 1 - 1 )  

(5.3 1 -2) 

and 

(5.3 1 -3) 

The computational form of either eq.(5.31 - 1 )  or (5.31 -2) appears at each interior point as 

A �U· 1 + B · �U · + C- �U · 1 = D· 1 1- 1 1 1 1+ 1 (5.32) 
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where Ai , Bi and Ci are 4 x 4 matrices (for 2-D) evaluated with data known at time level 

n, Di on the right hand side is a vector of data at node point i and at time level n + (p), and 

.1Ui is the (vector) unknown to be found at node i. For a system of equations to be well-

posed, a proper number of boundary conditions must be given. In two dimensions, a 

characteristic analysis verifies that three conditions for subsonic inflow, one condition for 

subsonic outflow, four conditions for supersonic inflow and none for supersonic outflow 

are appropriate for the Euler equations. 

Subsonic inflow. Suppose p, ll i  and u2 are given, hence E may not be 

specified. The following extrapolation from the interior can then be used (Liou, et.al., 

1988) : 

Since 
p p ( ui + u� ) 

E = -1 + 2 ' y - ' 

then .1 E can be written as 

and .1 p = .1 pu 1 = .1 pu2 = 0 by definition at node column i = 1 .  Then, at node 

column i = 1 
( &: )  = .1P 1 

1 y- 1 

By linear extrapolation of .1P from the interior 

(5.33) 

(5.34) 

Hence, the constraint statement for .1U 1 on node column 1 is 

.1U1 = T .1U2 (5 .35) 
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where 

T = 

0 

0 

0 

u2 + u2 1 2 
2 

0 

0 

0 

- u l 

0 0 

0 0 

0 0 

- u2 1 

Substituting eq.(5.35) into (5.3 1 -3), the i= 1 column disappears and for i =  2, 

( A2 T + B2 ) �U2 + C2 �U3 = D2 (5 .36) 

Subsonic outflow. Suppose the static pressure P is given at node column i = 

I ;  hence, 
�I = O 

Then, from eq.(5.33), the change in the energy is 

( - C ui + u� ) 
) (&:)I = 2 ( �p) + u 1 ( �pu l) + u2 ( �pu� 1 

(5 .37) 

(5.38) 

Linear extrapolation of the remaining variables, �p , A pu1 and A pu2 from the interior 

yields 

( A P )I = ( � P )I -1 

( � pu1 )I = ( � pu1 )r-1 

(� pu2 )I = ( � PU2 )J-1 

and reduces the equation at node row i = I to 

7 1  

(5 .39) 
(5 .40) 

(5.4 1 )  

(5 .42) 



where 

B I = 

[- 1 ,  0, 0, 0 l 
0, - 1 ,  0, 0 
0 ,  0, - 1 ,  0 
0 ,  0, 0, 0 

1 

0 

0 

u2 + u2 1 2 
2 

0 

1 

0 

- u l , 

0 ,  0 

0 ,  0 

1 , 0 

- u2 , 1 

Substituting �U1 into the interior equation written at node row I- 1 then yields 
AI-l �U I-2 + ( BI-1 - CI-1 B i1 A1 ) �U I-1 = DI-1 

where 

B jl = 

1 

0 

0 

u2 + u2 1 2 
2 

0 ,  0 ,  0 

1 , 0 ,  0 

0 ,  1 , 0 

u l , u2 , 1 
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the XI 

Bjl AI = 

-1 

0 

0 

u2 + u2 1 2 
2 

0 ' 

-1 

0 ' 

- U t ' 

0 ' 0 

0 ' 0 

- 1  0 

- u2 ' 0 

Soli d  wall boundary. Let a solid wall segment have angle S with respect to 

global coordinate axis, see Fig.22. Define the axis tangent to the wall as x 1 ' and the wall 

normal as x2'· Then, the impervious solid wall boundary condition is u2' = 0. Under the 

local coordinate rotation, the Euler equation system at the solid wall is 

au - 1 a · . · - 1  a . · · 

0 = """"\:"""" + Q � ( cosS F 1 - smS F2 ) + Q � ( smS F 1 + cosS F2 ) (5.44) en ax 1 ox2 
where 

1 ' 0 ' 0 0 

Q-1 = 0,  cosS, - sinS, 0 
0 ,  sinS, cosS ' 0 
0 ,  0 ' 0 1 

p + ( �  p'l = u'l 
pu l 
0 

ph 

' I �I F2 = 
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U · = T- · U ·  1 lJ J 

T = [ c�s 9 , sin 9 l 
-sm e ,  cos e 

In summary, at the inflow/outflow boundary, the boundary conditions compatible 

with the characteristic analysis have been applied to the linear algebra procedure. For the 

solid wall boundary, the boundary condition has been applied to the governing equation. 

The boundary conditions described in this section are called an implicit extrapolation 

procedure, and are widely used for steady state problems (see Liou, et al., 1988). 

(5.4) Numerical Experiments with the Euler System 

To evaluate the accuracy hence utility of the developed flux-limited Galerkin-type 

TWS algorithm, several test cases have been conducted for the Euler system of gas 

dynamics. First is the Riemann shock tube problem as defined by Sod(1978). Second is a 

two-dimensional shock tube interaction problem on a rectangular mesh and on a non­

rectangular mesh. Third is the quasi-one dimensional Euler problem of the deLaval nozzle. 

The fourth definitions involve two-dimensional oblique shock problems. 

I again consider several forms for the TWS algorithm as follows : 

For the Donor-cell method, the TWS coefficients in eq.(5.20) are assigned as 

[l.a.l] = Diag.[ . . . ,0.0, . . . ] = [IJJJ] ,  [lj3J] = Diag. [ . . .  ,O.O, . . .  ] and 

[I�] = Diag. [ . . .  , l/6, . . .  ] .  

For the Euler Taylor-Galerkin (ETG) method, 

[l.a.l] = Diag.[ . . . ,O.O, . . . ] = [lyJ], [ljll] = Diag.[ lu-cl/2, lul/2, lul/2, lu+cl/2 ] and 

[I�] = Diag.[ (u-c)2/6, u2f6, u2/6, (u+c)2f6 ] .  

For the Raymond-Garder method, 
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[1�1] = Diag.[ . . . , ( 15)-112, . . .  ] = [l!il] and [I�] = Diag. [ . .. , 0.0, . . .  ] = [ I!JJ] 

For a dissipative Galerkin method chosen in this study, 

[1�1] = Diag.[ . . . , 0. 1 ,  . . .  ] = [l!il] and [I�] = Diag. [ . . .  , 0.0, .. . ] = [I!JJ] 

For the flux-limited Bubnov-Galerkin method, 

[1�1] = Diag. [ .. . , 0.0, . . . ] = [I�]. and l!il and ll!l are combined as 

In the last instances, the superscripts denote the corresponding wave fields and rj is defined 

in eq.(3.48). 

The Euler flux Fi in Sec.(5 . 1 )  can be decomposed into each (characteristic) wave 

component yielding, 

where 

F�l) = (ui - c) _£_ ( u 1
1
_ c ) 1 2y u2 - c 

h - U ·C 1 

F�3) = (u · + c) _£_ ( u 1 � c ) 
1 1 2y u2 + c 

h + UjC 

1 
U t 
u2 

h - yP/((y- 1)p) 

(5 .45) 

The use of the flux vector in eq.(5.45) allows one to use the scalar model of the TWS 

eq.(4.3) for the spatial derivative terms. In the Riemann shock tube problem, and the two­

dimensional shock interaction problem, the Euler fluxes as given in eq.(5.45) are used in 

the computational experiments. 
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Riemann shock tube problem. The exact solution at t = 0. 14 15  sec. for the 

Sod problem definition with initial conditions u = 0, P = 1 = p on 0 :::; x :::; 0.5, P = 0. 1 ,  p 

= 0. 125 on 0.5 < x :::; 1 .0, is shown in Figure 23 (a) for density and (b) for energy. The 

shock is centered at x=0.75, the contact discontinuity is centered at x = 0.625, and the 

rarefaction wave lies upstream of x = 0.5. Four TWS methods were tested and the results 

are summarized in Figirres 24 thru 27. The four selected TWS methods include Donor-cell 

explicit (Fig.24), Raymond-Garder for 8 = 0.5 (Fig.25), Euler Taylor-Galerkin (ETG) for 

e = 0.0 (Fig.26), and a dissipative Galerkin method (1.00 = 0. 1 = lliD for e = 0.5 (Fig.27). 

Even though the Donor-cell method showed a very good result for the one-dimensional 

Burgers problem, its excessive smoothness (as also shown in the one-dimensional linear 

test case) eliminates most of the contact discontinuity, which is a linear wave. The 

Raymond-Garder method shows a slight improvement over the Donor-cell solution at the 

contact discontinuity and in resolution of the shock with some undershoot ahead of the 

shock. Considering that the shock-is a nonlinear wave field, this undershoot may be 

related to the fmite element consistent mass matrix. The third order accurate ETG solution 

shows much improvement for resolution of the contact discontinuity and the rarefaction 

wave. However, the contact discontinuity still lies over several elements and the shock can 

not avoid a small undershoot. The dissipative Galerkin solution, with some oscillations 

across the shock (Fig.27), does not show better results than the ETG at the contact 

discontinuity and the rarefaction wave fields. 

However, the upwind information can be used to improve these results, as shown 

in Figure 28 for a dissipative Galerkin method, and in Figure 29 for the Bubnov-Galerkin 

algorithm. Since the upwind information is applied only to the nonlinear wave 

components, the oscillations present in the dissipative Galerkin (Fig.27) have been 

removed but the shape of the contact discontinuity (linear wave) has not been significantly 
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altered. In Figure 29, the flux limited Bubnov-Galerkin solution exhibits the best 

resolution of the contact discontinuity and the rarefaction wave field among the results 

shown. Even though there is a slight undershoot at the shock, the overall solution behavior 

is quite acceptable. The crispness shown in this method seems to stem from both the spatial 

and the temporal high order of the Bubnov-Galerkin method. 

Two-dimensional Shock Interaction problem. For the rectangular mesh 

case, the initial data and the domain are as defined in Figure 30 (a) where the pressure 

initial condition PrJ stands for a high pressure and Fr. a low pressure. The ETG solution 

for density and energy is shown in Figure 3 1 ,  and the flux limited Bubnov-Galerkin 

solution with E = 1/6 applied to nonlinear wave fields is given in Figure 32. The results 

were taken at time t = 95.1t sec with .1t = (0.25) 10-2, and the improvement over the ETG 

solution is quite apparent. 

For the non-rectangular mesh case, the domain and initial data are defined in Figure 

30(b ). The numerical results shown in Figure 33 are from the ETG method, while those 

shown in Figure 34 are from the flux limited Bubnov-Galerkin method with E = 1/6 applied 

to the nonlinear wave fields only. Both solutions are taken at time t = 75 .1t sec with .1t = 

(0.5) 1 0-2. With initial pressure ratio PHIPL = 10, which is the same as that of the one­

dimensional shock-tube problem, the ETG solution has wide spread 2.1x wiggles, while 

the flux limited Bubnov-Galerkin solution behaves monotonically with good shock 

capturing over about three elements. Also, on both the rectangular and the non-rectangular 

meshes, the Bubnov-Galerkin with upwind correction does not excessively smear the 

contact discontinuity, even in the 32 linear element discretization for each side. When the 

two shocks collide, a sudden rise in temperature occurs and hence, without a proper 
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damping mechanism, solutions might be contaminated by 2.1x wiggles or with too much 

damping, might lose necessary peaks. However, the present flux limited Bubnov-Galerkin 

method exhibits potential capabilities by overcoming these several difficulties. 

Ouasi-lP deLayal nozzle problem. The governing equation system in this 

case has an area-dependent inhomogeneous term in eq.( 4. 1 )  of the form 

C = <! ln A) ( : ) 
u ( E + P )  

The contribution by this term to the LHS matrix eq.(5.28) is, 

aci = c ..!L InA ) au . dx J 

0 

- u2 

u((y-1 )u2 - yp - 1E) 

1 

2u 

- 3(y- 1 )u2 _ 1 
2 + 'YP E 

0 

0 

For a subsonic inflow/outflow boundary, the implicit extrapolation procedure 

described in Sec (5.3) was employed. The time step .1t is varied according to the ratio of 

residuals between the previous and the present time as 

such that a steady-state solution can be rapidly achieved 

Two kinds of flow cross-sectional area distribution are chosen to establish a 

different shock Mach number(Ms). The first is that of Anderson, et al. ( 1985), where 

A 1 (x) = 1 - 0.8 x ( 1  - x) , 0  S x  S 1 
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By imposing the back pressure 11, = 0.78, the analytical solution shock Mach number (Ms) 

is equal to about 1 .3 and is located at x=0.75. The second area distribution is 

A2(x) = ( x - 0.5 )2 + 0.25 , 0 $; x $; l 

By imposing the back pressure Pb = 0.70, the exact solution shock Mach number (Ms) is 

about 1 .8 and is located at x=0.85. In both cases, a mesh containing fifty uniform 

elements measure are employed. The exact solutions for Mach number are depicted in 

Figures 35 (a) and (b) for Ms = 1 .3  and Ms = 1 .8  respectively. 

According to the mathematical theory of hyperbolic partial differential equations, 

one can have non-unique solutions due to the existence of a sonic region. To the left of the 

sonic region, one wave propagates to the left, while to the right this wave propagates to the 

right. Hence, no information can reach the sonic point for this wave and the solution may 

exhibit a non-physical jump at that point. This is known as the "dog-leg" phenomena, 

Goodman, et al. ( 1985). To remove this unphysical jump, a diffusion term must be added 

explicitly to the neighborhood of the sonic point, where aL < 0 < aR, in such a way that 

where 

a2 + p2 
lal $; 4p 

p = K max( aj - aj- 1 . 0 ) , K > 0 

This was first proposed by Harten(1983) and was also employed by Liou, et al.( 1988). In 

this study, K was chosen to be unity and this remedy is needed only for the nonlinear 

fields. 

Shown in Figure 36 are the Mach number solution distributions from the Donor-cell 

and Raymond-Garder methods both with and without sonic point treatment. It may be 

noticed that the sonic point jump is less pronounced in the Raymond-Garder solution 

without sonic treatment. Figure 37 shows the Mach number distributions for the Bubnov­

Galerkin and the Raymond-Garder methods with upwind correction by E = 1 .0 for all 
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fields. In this case, the sonic jump can be seen very clearly when not accompanied by the 

sonic treatment. In Figure 38, the results were produced using the upwind treatment for 

nonlinear fields only ; the Raymond-Garder solutions are an excellent approximation to the 

exact solution. Experiments conducted for Ms = 1 . 8  (see Fig.39,40 and 41)  confirm the 

outcome patterns as in the Ms=1 .3 case. Hence, one can conclude that in both transonic 

and low supersonic flow, damping by upwind differencing may be the major cause of the 

sonic jump, and its correction can be made via a central differenced diffusion term either 

locally or globally. Also, the addition of sonic point treatment can improve the solution 

behavior of any of the tested TWS methods. 

Steady oblique shock problems. The supersonic wedge flow and the 

shock reflection problems are chosen; the problem statements are shown in Figures 42 and 

43 respectively. To run these problems, eq.(5 .2 1 )  is employed as the Taylor series 
. 

restatement of the conservation laws. For the steady Euler equation system, ·discontinuities 

are caused by shocks which are nonlinear waves. When using the Bubnov-Galerkin with 

upwind correction, the upwind parameter E = 1 .0 is applied to the nonlinear fields only, 

i.e., fields with wave speed of u ± c. 

For the wedge flow problem, the spatial discretization is a 20 x 20 uniform mesh 

and the initial data are the known exact solution. The steady-state Mach number and flow 

direction are depicted in Figure 42, where, 

for region A, p = 1 .0, mt = 0.984808, m2 = -0. 173648 and E = 0.947393 

for region B, p = 1 .45336, m1 = 1 .28557, m2 = 0.0 and E = 1 .32828 
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For the reflection shock problem, the spatial discretization is a 40 x 20 uniform mesh and 

the initial data used are the known exact solution. The steady-state Mach number and flow 

direction are depicted in the Figure 43 where 

for region A, p = 1 .0, m1 = 2.9, m2 = 0.0 and E = 5.99 

for region B, p = 1 .7, m1 = 4.452868, m2 = -0.8607 1 and E = 9.8702 

for region C, p = 2.687284, m1 = 6.453509, m2 = 0.0 and E = 15 .0840 

The time step �t is imposed at each node for a fixed maximum Courant number crax such 

that 

c!llax h · 
�t .  = 1 ! 

1 IUij + C  , i is a directional indicator. 

where hi = element length in the ith_coordinate direction, and 

�ti = time step in the direction of xi-coordinate. 

The temporal contribution to damping is maximized by setting the time integration 

parameter 8 = 1 .  Hence, to rapidly reach a steady state, 8 = 1 and the stability is not 

affected by time step size. But it was found that the Bubnov-Galerkin with flux limiter 

encountered a stability problem for crax = 1 .0 for the shock reflection problem. This 

problem may have been caused by the exact initial data, since the initially steep gradient in 

the data may not allow such a large time step. For the comparisons shown in Figure 44, the 

maximum Courant number was limited to 0.5, and the number of time steps taken from the 

exact initial condition was 250 for both problems. As a surface tangency condition, the one 

described in Sec. (5.3) is applied for both cases. In the shock reflection problem, the �­

norms of the residual eq.(5.26) for the Donor-cell method was (2.56) 10-2 after one time 

step and (3 .27) 10-3 after 250 time steps. For the flux-limited Bubnov-Galerkin method, 

residual was ( 1 .24) 10-2 after one time step and ( 1 .27) 10-3 after 250 time steps. 
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For the wedge flow problem, the Donor-cell solution (Fig.44 a) shows a very 

smeared shock and an oscillation near the tip of the wedge. The flux-limited Bubnov­

Galerkin solution does not show the expected sharp and monotone character, Fig. 44 (b). 

Instead, it shows a severely oscillatory behavior, and both solutions are not acceptable. It 

seems that ignorance of the orientation of the shock for the flux correction procedure, and 

the presence of a singularity at the surface leading edge, both contribute significantly to the 

non-monotone solution character. 

For the shock reflection case, the generated solutions (Fig.45) look as expected, 

and the flux limited Bubnov-Galerkin solution exhibits an improved result over that of the 

Donor-cell solution. However, it is smoother than that reported by Davis ( 1984). The 

usual discretization of the shock reflection problem is 6 1x2 1  nodes. Considering the 

significantly reduced number of nodal points employed in the major flow direction, and the 

much improved solution over the Donor-cell method, the solution by the present Bubnov­

Galerkin method with upwind correction is quite acceptable. 

These two test problems show that to capture oblique shocks, the flux-corrected 

Bubnov-Galerkin TWS method will require additional techniques such as a rotated 

correction flux difference and/or adaptive grid method to generate acceptable solutions. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

A quantization of the Taylor Weak Statement has emerged as a general structure for 

Computational Fluid Dynamics. It has enabled us to interpret and implement modern fmite 

difference shock capturing schemes, namely flux limiters. The use of flux limiters so far 

has to be accompanied by some form of compression schemes, that is, the artificial 

compression method of Harten (1983) or the highly compressive limiter such as the hyper 

b-function of Roe ( 1985). However, our results show that, in the one-dimensional shock 
,,_ 

tube problem, and in the two-dimensional shock interaction problems, the TWS theory 

seems to be adequate for this type of problem. The principal reason appears to be that our 

method is based on the spatially high order Galerkin method. 

An item of comfort in this study is the general agreement of numerical results with 

the Fourier modal analyses done on the Taylor Weak Statement, hence the explanation 

and the prediction of numerical behavior can be possible to some extent. The comparison 

between the standard and the upwind correction schemes in 1 - and 2-dimensional scalar 

model problems shows a promising future for the new method. 

With regard to the sonic jump behavior, and from the experiment on the quasi-one-

dimensional Euler equations, we found that the major cause of this problem is the lack of a 

central difference-type diffusion across the sonic region, and with this type diffusion term, 

the sonic treatment in Sec. (3.4) can be effective. 

In the two-dimensional shock interaction problems, the good feature of the upwind 

corrected Bubnov-Galerkin method has demonstrated its potential. During the shock 

interaction, a significant amount of energy is dissipated and hence this type of problem 
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involves a nonlinear shock interaction. Due to the sudden rise of temperature near the 

shock interaction, numerical solutions are apt to exhibit wiggles if the method fails to 

dissipate the temperature rise within a few mesh intervals. 

The results shown in the oblique shock cases are smoother than those in the 

literature. This is probably due to the neglect of a preferred direction. Not to mention the 

obscurity in the choice of a preferred direction, one fundamental question arises: can a 

scheme satisfy the conservation of flux around a nodal point when grids are not aligned 

with the line of discontinuity ? In this regard, we did not pursue the rotated difference 

scheme. The usual practice in this type of problem is to use an adaptive grid method, as in 

Lohner, et al. (1986) and Oden, et al. ( 1986). 

Even though there is room for improvement in our present scheme, its extension to 

a higher dimension appears appropriate. In two space dimensions, LeVeque and Goodman 

( 1985) showed that any TVD scheme in 2D is at most first order accurate. Also, as was 

stated in Sec (3.3), even in one space dimension, the available argument is that the 

modified flux is as accurate as the Lax-Wendroff flux up to 0 ( �x2), using a local Taylor 

series expansion in space. Since there are still unresolved problems in two-dimensional 

cases, the extension of the modal analysis on the TWS to two space dimensions would be a 

first choice for future work. 

The next thing to consider is an approximate factorization solution procedure 

scheme for high speed flows. In the early 1970's, convergence difficulties were reported 

for a transonic potential flow problem by Murman and Cole ( 197 1) .  The main cause has 

been found in the ill-treatment (central differencing) inside the supersonic dome, and it has 

been resolved by use of one-sided (upwind) differencing and an iterative line-relaxation 

solver. Interesting enough, in their report, for other than the relaxation solver, they 

couldn't obtain a solution for this type of flow. Later it was found in Hafez, et al. ( 1979) 

84 



that the iterative solution procedure actually possesses a damping term in its time-like 

direction which in our context is the TWS a-term. Since then the time dependent term has 

been introduced explicitly whether it be a transient or a steady state problem. In this way, 

approximate factorization via dimensional splitting has emerged as one major stream in 

CFD due to its efficiency and the ease of parallel processing. Wornom ( 1984) and 

Womom, et al. ( 1986) reported a new strategy wherein the characteristic wave behavior 

has been explicitly employed in their implicit Euler solver. Whether the characteristic 

modelling is a drawback or an advancement, the convergence results shown are noticeable. 

With those reasons, a revisit to the elliptic solution procedure could be a worthwhile 

exercise. 

The next topic to consider is the use of an adaptive grid method. The scope of this 

technique is not restricted to the problems presented herein. As the engineering demand 

grows, the degree of complexity tends to increase. In many cases, this can be overcome by 

putting more nodes around the difficult regions. Also it would be interesting to consider 

some relation between the flux limiter idea and the adaptive grid 

Upon completion of these subjects, more realistic problems can be studied such as 

shock-boundary layer intraction, separation and turbulence. The numerical solution of 

these problems can only be validated when the theoretical assurance of the basic method is 

at hand. In this context, I hope this study can be a milestone for future problems. 
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APPENDICES 



APPENDIX A 

SEMI-DISCRETE FOURIER MODAL ANALYSIS OF 

THE LINEAR ADVECTION EQUATION IN 1-D 

Given the following linear scalar advection equation 

(A. 1 )  

where a =  df I du = constant, the semi-discrete form for a spatially uniform discretization 

(of uniform mesh h) can be written as 

where 

dUj a A1 - + - A2U · = 0  dt h J 

Uj = Semi-discrete approximation of u at a node j 

Kl 
Al = 1 + L ( p _k O-k+ Pk Ok ) 

k=l 

K2 
A2 = I < q_k o-k+ qk ok ) 

k=l 

K1 = number of discrete interval in A1 

K2 = number of discrete interval in A2 

Pk , qk = coefficients corresponding to the kth interval from node j to 

the right (see Figure A-1). 

P-k , q_k = coefficients corresponding to the kth interval from node j to 

the left (see Figure A-1). 

0-k Uj = Uj-k+l - Uj-k , 
k = 1 ,2, ... 
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(A.2) 



0_2 

j-2 j-1 

A2 = q -2 

0_ 1 

] 

' 
k = 1 ,2, . . .  

0 1 

j+1 

P 2 ----- cqefficients in A 1 

02 dif ference operator 

j+2 n odal index 

q2 ----- coefficients in A2 

A1 = 
· · ·  + P -P-2 + P - 1o- 1 + P 1o 1 + P2°2 + · · · 

A2 = · · · + q_:z0-2 + q_10- 1 + q 1o 1 + q2o2 + · · · 

Figure A-1 .  Coefficients Pk and qk in A1 and A2 of eq. (A.2). 

The exact solution for this linear advection equation can be expressed as a 

superposition of elementary solutions from the Fourier series expansion. The pth 

Fourier mode of the exact solution, Up ( x,t ), is written as 

up (x,t ) = exp[ i ( ro'p t + rop x )] 

where ro'p = temporal frequency of pth component of the Fourier series 

solution 
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(A.3- 1) 



COp = spatial frequency of pth component of the Fourier series 

solution 

= 21t I Lp = wave number 

Lp = wave length of pth component 

i = ri 

Substitution of the eq. (A.3- 1) into the eq. (A. 1 )  yields the following relation between 

temporal and spatial frequency. 

c.o'p = - a COp 
Hence, the exact solution for a pth Fourier mode is written as 

up (x,t) = exp [ i COp ( x - at ) ] (A.3-2) 

In the following, we omit subscript p for eq. (A.3-2) for notational simplicity. Then, the 

discrete solution Uj (t) can be written as 

Uj ( t ) = u Gh,t ) 

= exp[ ic.o ( jh - n ) ] 
= exp[ ic.o ( jh - at ) + ro D t + ic.o ( a - a* ) t ] 

where r = a* + i D  

D = damping coefficient 

a - a* = wave speed error. 

Substitution of Uj ( t )  into the eq.(A-2), and using the following relations, 

O-k Uj = Uj { 1 - exp ( -i roh ) } exp( i roh ) exp( -i k c.oh ) 

Ok Uj = Uj { 1 - exp ( -i c.oh ) } exp( i k c.oh ) 
dU · 
_J = - i c.o r u . dt J 

yields the following equation, 
...... ...... 

- i c.o r A 1(c.o) + � A 2(c.o) = 0 
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(A.5) 



where 

Kl 
A1(c.o) = 1 + I (P -k exp[ -ik(c.oh)] exp[i(c.oh)] + pk exp[ik(c.oh)l) ( 1 - exp[ -i(c.oh)l) 

k=l 

K2 
A2(c.o) = I ( q_k exp[ -ik(c.oh)] exp[i(c.oh)] + <:lk exp[ik(c.oh)l) ( 1 - exp[-i(c.oh)l) 

k=l 

From eq.(A.5), the error due to the spatial discretization can be written as 

D · * _ - a ( 
A2 ) - t a  - - =-c.oh A1 

(A.6) 

The real part of the RHS of the eq.(A.6) then constitutes the damping coefficient D, while 

the imaginary part yields the numerical speed a*. Let 

where 
r-1 

Mr = dr - I gr-kMk 
k=l 

go = 0 

Then the damping coefficient D and the numerical speed a* can be written as 

D = a [ M2 (c.oh) - � (c.oh)3 + . . .  ] 

a* = a [ M1 - M3 (c.oh)2 + Ms (c.oh)4 - . . . ] 

where 

M1 = d1 = 1 

M2 = d2 - gl Mt 

M3 = d3 - g2 M1 - gl M2 

M4 = � - g3 M 1 - g2 M2 - gl M3 

Ms = ds - � M1 - g3 M2 - g2 M3 - g1 M4 
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(A.8) 

(A.9) 

(A. 10) 



"' 

etc. 

and 

dl 

d2 

d3 

d4 

ds 

etc. 

gl 

g2 

g3 

g4 

gs 

etc. 

= L, qi 

= ( 1/2) [ ( ql - q_l ) + 3 ( q2 - q_2 ) + ... ] 

= ( dt l 6 ) + ( q2 + q_2 ) + ... 

= ( d2 1 12 ) + ( 1/2 ) ( � - q_2 ) + . . .  

= ( d3 I 20 ) + ( 1/5 ) ( q2 + q_2 ) + . . .  

= L Pi 

= ( 112) [ ( PI - P-1 ) + 3 ( P2 - P-2 ) + · · ·  ] 

= ( gl I 6 )  

= ( g2 I 12 ) 

= ( g3 I 20 ) 

+ 

+ 

+ 

( P2 + P-2 ) + · · ·  

( 112 ) ( P2 - P-2 ) + · · ·  

( 1/5 ) ( P2 + P-2 ) + . . .  

where qi and Pi are coefficients in A1 and A2, see Fig. A-1 .  

(A. l l) 

(A. 1 2) 

As an example of showing how to work with the above formulae, a TWS eq.(3.2) 

is chosen. From eq.(3.7), 

A1 = 1 - (! + � - =::) o_ + (! - � - =z:) o+ 

(1 + 213. ) (1 - 213. ) 
- l! 8-2 + 2 + 21,! 8- + -2- - l! 8 + ' (1 + 213. ) (1 - 213. ) 

2 + l! 8_ + -2- - 21,! 8+ + 1,!0+2 ' 

a > O  

a < O  

Then, with reference to Figure A- 1 ,  Pk and �. - 2 :S k :S 2, are determined as 

P-2 = 0 = P2 

P- 1 = - (gfl) - ( 116 - y), and PI = - (QJ2) + (116 - y) 
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for a >  0, 

q_2 = - u.. Q2 = 0, 

q_1 = ( 1 + 213.)/2 + 2J,J., and q1 = ( 1  - 213.)/2 - u 

for a <  0, 

q_2 = - u.. Q2 = 0, 

q_1 = ( 1 + 213.)/2 + 2J,J., and q1 = ( 1  - 2Ji)/2 - u 

From eq. (A. 1 1 ), 

d1 = q- 1 + q1 = 1 ,  d2 = - U 

Then, d3, d4 and d5 are found easily as 

d3 = ( 1/6) - S(a) U , d4 = (- J3/12) + ( ll/2), and 

d5 = 1/120 - S(a) ll/4 

Also, from eq. (A. 12), 

Then, 

g1 = P- 1 + P 1  = - � and g2 = ( P1 - P- 1 ) I 2 = 116 - '1 

g3 = - f:!/6, g4 = ( 1/6 - "J.)/12 and g5 = - f:!/120 

Hence, from eq. (A. lO) which is a recursion relation for Mi, 

M1 = 1 

M2 = d2 - g 1M 1 = � - Ji 

M3 = d3 - g2M1 - g1M2 = '1 - S(a)U + � M2 

M4 = f:!/6 - j3/12 + ll/2 - (1/6 - "j)M2 + �M3 

M5 = - 1/180 - S(a)y/4 + y/12 + !!M2/6 - ( 1/6 - :y)M3 + !!M4 

which are eqs.(3.3 1 - 1 )  thru (3.3 1 -5). 
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APPENDIX B 

FULLY -DISCRETE FOURIER MODAL ANALYSIS 

OF THE ADVECTION EQUATION IN 1-D 

For integrating eq.(A.2) in time, a variable-implicit(9), single step method is 

considered. Then, the fully discrete equation resulting from eq.(A.2) can be written as 

(B. 1 )  

where A. = a �t I h = Courant number and e = 0 and 0.5 � e � 1 .0 yields stable integration 

procedures. From eq.(A.4), a single Fourier component of the numerical solution at time 

t+�t is written as 

Uj( t+�t ) = exp[ iro Gh - r(t+�t) ) ] (B.2) 

= exp[ iro Gh - n )  l exp[ -iro r�t 1 
= Uj (t) exp[ -iro r�t ] 

where Ul+l = Uj( t+�t ) and Ul = Uj(t). If a method is stable, the amplification factor G 

G = exp[ -iror �t ] (B.3) 

during a time step �t must satisfy 

IGI � 1 

Substituting Ujn+l = G Ul into eq.(B. 1 ), eq.(B . 1 )  becomes 

Since 

0-k Uj = Uj { 1 - exp [ -i ( ro h )] } exp [ i ( ro h )] exp [ - i k (ro h )] 

Ok Uj = Uj { 1 - exp [ -i ( ro h )] } exp [ i k (ro h )] 

the amplification factor G is written as 
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(B.5) 



G = 1 - A --
A2 

--At + e A.  A2 

where At and A2 are as defmed in the Appendix A, eq. (A.5). 

(B.6) 

One can evaluate the RHS of eq.(B.6), using an approach similar to that used for 

the semi-discrete case. Let 

where 
r-t 

Mr = dr - Lgr-k Mk . 
k=t 

the dr are as defined in Appendix A, eq.(A. 1 1) 

i = 1 ,2 ,  . . .  

and gi's are as defined in Appendix A ,  eq.(A. 12) 

Then, the amplification factor G can be written as 

G = 1 - A L Mr ( i  C.O h / 
r = 1 

where, for Mi as defined in Appendix A, eq.(A. lO), 

Mt = M1 = 1 

M2 = M2 - A e 

M3 = M3 - 2( A. S ) M2 + ( A 8) 2 

M4 = M4 - ( A. 8 ) (2 M3 + M� ) + 3 ( A. 8) 2 ( M� + M3 ) 

(B .7) 

(B.8) 

Ms = Ms - 2 ( A. S ) (M2 M3 + M4 ) + 3 ( A. 8) 2 ( M� + M3 ) - 4 ( A. 8) 2 + ( A. S) 4 

etc. 

To establish the dissipation and dispersion error functional forms . for the fully 

discrete approximation, eq.(B.3) is invoked. 
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exp[ -iro r�t ] = exp[ -iro (a* + iD) �t ] = G (B.9) 

Then, eq.(B.9) is divided by the analytical amplification to obtain the error in the numerical 
amplification factor in one time step �t. Since the analytical amplitude of the pure advection 
case is exp[ -i ro a �t ] , eq.(B.9) is rewritten as 

exp[ ro�t D + iro �t (a - a*) ] = G exp[ iro a �t ] (B. lO) 
Taking the natural logarithm for both sides of eq.(B. 10), one arrives at an expression for 
the errors as, 

ro �t D + lnlro�t (a - a*)l + Arg(ro�t (a - a*)) = In IGI + Arg(G) (B. 1 1 ) 

+ In l�tl + Arg(ro�t ) 

where G is expressed in (B.8). However, eq.(B. 1 1) does not yield a workable formula. 
Hence, to estimate the dissipation and dispersion errors, the LHS of eq.(B . lO) is 
approximated to the first-order by a Maclaurin series in �t as 

LHS of eq.(B. lO) .., 1 + ro �t D + iro �t (a - a*) 

and the RHS of eq.(B. lO) is expanded as 

RHS of eq.(B. 10) = ( I - A. '�1 M, ( i ro h ) ') exp[ iro a �t] 

= ( I - A. 
, 
�

1 
M, ( i ro h ) 

'
) exp[ (iroh) A. ] 

= ( 1 - A I Mr ( i  CO h ) r) I (iro�!P AP r = 1 p=O 

.(B . 12) 

(B. 1 3) 

Then, after a lengthy algebra sequence from eqs.(B . 12) and (B. 1 3), formulae for the 
dispersion error ro �t ( a - a* ) and the dissipation error ro �t D estimates are obtained as 

follows : 
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{ oo ( r-1 r r-k ) } 
c.o �t D = Re A L �! - L A 1 Mk ( i c.o h )r 

r=l k=l (r - k) . 

c.o ill ( a - a* ) = I m  
{ 
A i ( A;,� l - ± A'�k

, 
Mk) ( i c.o h )r } 

r=l k=l (r - k). 

Hence, let 
c.o �t D = A [ b2 ( c.oh )2 + b4 ( roh )4 + . . . ] 

c.o �t ( a* - a ) = A [ b1 ( c.oh ) + b3 ( c.oh )3 + bs ( roh )5 + . . . ] 
where 

b 1 = 1 - Ml 
A -

b2 = 2 + M2 
2 A - -

b3 = 3 + A M2 + M3 

In terms of A, 8 and Mi's, we have 

c.o �t D = A [ { - A (8 - 1/2) + M2 } ( c.oh )2 

+ { A 3 (8 - 1/2) ( (8 - 1/4)2 + 3/16 ) 
- 3A2 ( <8 - 1/3)2 + 111 8 ) M2 

+ A ( 8 M� + (28 - 1 )  M3 ) - M4 } ( c.oh )4 + . . . ] 
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(B. 17) 

(B. 1 8) 

(B . 19) 



ro M (a - a*) = A.  [ ( 1 - M1) ( roh ) (B.20) 

+ { A. 
2 ( (8 - 1/2)2 + 1/12 ) - 2A. (8 - 1/2) M2 + M3 } (coh)3 

4 2 3 4 - { A. c 1130 - 8/6 + 8 12 - 8 + 8 ) 

3 2 3 
+ A. c 1/6 - 8 + 38  : 48 ) M2 

+ A. 
2 ( 8(38 - 1 )  M� + ( 1/2 - 28 + 38 

2
) M3 ) 

+ A. ( ( 1  - 28) M4 - 28 M2 M3 ) 
+ M5 } ( roh ) 

5 
+ . . .  ] 

Also, it can be found from the finite difference literature, cf., Anderson et.al. ( 1984), that 

the coefficients bi· in eqs.(B. 16) and (B. 17) correspond to the coefficients of an artificial 

viscosity equation as 

3 a\ 4 a� + a L\x  (-b� - + a L\x  (-b5) - + . . .  ax4 ax5 
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APPENDIX C 

A PARABOLIC EQUATION IN 1-D 

Consider the following time dependent advection-diffusion equation 

(C. l )  

where a and E are constants and E > 0. The exact solution to the above equation can be 

represented by the Fourier series 

00 

u( x ,t ) = L An exp[ i ron (x - at)] exp[- E co� t] 
n=-eo 

(C.2) 

Following the same procedure as in Appendix B, the numerical solution Uj(t+ L1t) at time 

t+L1t is written as 
Uj ( t + L1t ) = Uj ( t ) exp[ - i co r L1t ] (C.3) 

or 

Uj ( t + L1t ) = Uj ( t ) G (C.4) 

Since the amplification factor G can be found from eq.(B.8), no more difficulties arise than 

in the pure advection case. Write the amplification factor from eq.(B.9) as 

exp[ -iro rL1t ] = exp[ -iro (a* + iD) L1t ] = G (B.9) 

Also, the analytical amplitude in one time step L1t for the parabolic equation (D.l)  is 

exp[ -ico aL1t ] exp[ - ero2 L1t] 

For a single Fourier mode, eq.(B.9) is reduced to 

exp[ co L1t D + i co L1t (a - a*) ]  = G exp[ i co a L1t] exp[ E ro2 L1t] (C.5) 

Following the same procedure as in Appendix B,  the LHS of eq. (C.5) is 

approximated to first-order by the Maclaurin series in L1t and the RHS is expanded using 
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the amplification factor G as expressed in eq.(B.8). Hence, one can obtain the dissipation 
error and the dispersion error estimates as follows : 

(C.6) 

+ ( b• + (.�) 1- ( �  + Mz )  - (.�)>(�)) < roh l4 + . . . l 
roilt ( a - a* ) = t.. [ ( b3 - { a� ) /.. ( 1 - M1 )) ( ro h )3 + . . . ] (C.7) 

where M1 = 1 and the coefficients bi are as expressed in eq.(B . 18). 
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APPENDIX D 

SOME ASPECTS ON THE BOUNDARY 

Since the Euler system is a first order hyperbolic partial differential equation, some 

aspect on the treatment at the boundary point is considered by resorting to a first order 

hyperbolic system. In the computation of a wave system, one must define a computational 

domain. However, a wave cannot be confined in a domain, since some information going 

out of the domain may be coming back into the domain. Hence, the governing equations 

that describe interior points are not appropriate at the boundaries. To remove this 

deficiency, consider the following equation system 

au au -
= dt + Ai dX: + H 

1 
Define an equation set at x 1-boundary points (see Fig. D- 1 )  as 

and at x2-boundary points (see Fig. D-1 )  as 

Then, the eq.(D. 1 )  can be written at an xrboundary point as, 

and at an x2-boundary point as, 

105 

(D. 1 )  

(D.2) 

(D.3) 

(D.4) 

(D.5) 



Hence, the functional form of dU/dt1 is required on the x1-boundary, dU/dt2 on the x2-

boundary. 

�-boundary 

�----------�------�--------�xl 

Figure D-1 .  Definition of x 1-boundary and x2-boundary. 

Consider an x 1-boundary such that 

(D.6) 

Let 
(D.7) 

be the boundary condition corresponding to the ith incoming wave. Then, a set of 

equations for a non-reflecting boundary condition can be written as 
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OU · OU · 1 · · -J + ).. . 1 · · -J + l · · h · = 0 lJ ot 1 1 lJ ax 1 lJ J (D.8) 

where lij is a component of left eigenvector matrix, A.i is outgoing, i is a free index, j is 

summed and 

for A. i incoming. (D.9) 

In terms of the original variables, eqs.(D.8) and (D.9) can be combined into the convenient 

form 

where 

L (t) oU L (s) A oU L (s) H = O 1 "di7 + 1 1 � + 1 1 

the row of L�t) = { 
lij for outgoing wave 
oBi fi . . au or mcommg wave 

the row of L (1s) = { lij for outgoing wave 
0 for incoming wave 

Hence, the new equation for oU/ot1 can be determined as 

Then, at x1-boundary points a proper set of equations can be written as 

au [L<t>r 1 
L<s> ( oF 1 H ) oF2 H _ 0 -=;:- + 11 1 � + 1 + � + 2 -0{ OX 1 oX2 

Similarly, at x2-boundary points, 

au oF 1 [L<tr1 
L<s> ( oF2 H ) = 0 d"t + � + H 1 + 2 l  2 dx2 + 2 
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APPENDIX E 

FIGURES 

q>.  = rj (Warming-Beam) J 

1 2 rj 
Figure 1 .  Region of TVD (shaded area) selected by Sweby ( 1984). 
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Figure 2. Discontinuity of flux gradient in CO finite element method. 
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u 

l .J- - - - - -r------, 

0.5 

�------�----------+--------------+� X 
0.2 0.575 1 .0 

Figure 3. Initial data (dashed line) and exact solution (solid line) at t - to =  0.375 sec 
for linear step problem. 

u 

1 .2 - - - - - - ,....-------, 

- 0.2 - - - - - - - �-----------------

0.2 1 .0 

Figure 4. Initial data (dashed line) and exact solution (solid line) at t - to =  0.5 sec 
for nonlinear Burgers step problem. 
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Figure 14. TWS Nodal Solutions for Burgers Step using 
Dissipative Galerkin ( � = 0. 1 = jl, 9 = 0.5). 

(a) y = 1/6 (lumped mass matrix), E = 0.25 

(b) "J. =  1/6 (lumped mass matrix), E = 0.50 

(c) y = 0.0 (consistent mass matrix), E = 0.25 
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Figure 15 .  Initial data for discontinuity aligned with grid. 
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Figure 16. Initial data for the discontinuity skewed to the grid by 45 degrees. 
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(a.) 

(b) 

Figure 17 . "f\VS Field Solutions for -rwo-&roensional Linear case 

( discontinuity aligned with grid), Cx "' 0.096, Cy "' o.Q32. 

(a) Bubnov-Galerkin. £ "' l/6 (II "' 0.5) (b) Rayrnond-Garder (II "' 0.5) 
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Figure 1 8. TWS Field Solutions for Two-dimensional Linear case 
(45 degrees skewed with grid), Cx = 0.064 = Cy. 
(a) Raymond-Garder ( 6 = 0.5 ) (b) Bubnov-Galerkin, E = 1/6 ( 6 = 0.5 ) 
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Figure 19. TWS Field Solutions for Two-dimensional Burgers case 

(discontinuity aligned with grid). 

(a) Raymond-Garder ( 6 = 0.5 ) (b) Bubnov-Galerkin. E = 1 .0 ( 6 � 0.5 ) 
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(a) 

(b) 

l ,g 

Figure 20. TWS Field Solutions for Two-dimensional Burgers case 
(45 degree skewed with grid). 
(a) Raymond-Garder ( 8 = 0.5 ) (b) Galerkin, E = 1 .0 ( 8 = 0.5 ) 
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Figure 21 .  Local coordinate axes rotated by angle e. 

' ' 

Figure 22. Tangential (x 1 ) and Normal (x2 ) axes at a surface. 
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Figure 23. Exact solution for One-dimensional Riemann shock tube problem. 
(a) Density (b) Energy 
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Figure 24. Riemann shock tube solution by Donor-cell (9 = 0.0). 

0 

(a) Density (b) Energy 

...; .,..::.. =--..., 
c 0 

en 
z ... 
w o 
0 

N 0 

A 
6. 
A 
A 
6 
6 
6 
6 
6 
6 
6 

~ 
6 
6 

0 0 +-----,-----,-----,-----,---� 
O . D  0 . 2  0 . 4  0 . 6  o . e  I . D  

(a) 

"' ,.,: .. -.:===-, .. 

6 0 ... 

,... ., t!l .:  
cr 
w 
z :: 
w 

"' 
.. 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

\...._ 
6 

0 
0��--�----------.-----.---� 

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0 

(b) 

Figure 25 .  Riemann shock tube solution by Raymond-Garder ( 9 = 0.5 ). 

(a) Density (b) Energy 
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Figure 26. Riemann shock tube solution by Euler Taylor-Galerkin. 
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Figure 27. Riemann shock tube solution by dissipative Galerkin ( � = 0.1 = Jl ). 
(a) Density (b) Energy 
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Figure 28. Riemann shock tube solution by diss. Galerkin ( � = � = 0. 1 ) with 

E = 0. 1 for non-linear fields only. (a) Density (b) Energy 
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Figure 29. Riemann shock tube solution by Bubnov-Galerkin with E = 0.1 for non-linear 
fields only. (a) Density (b) Energy 
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Figure 30. Domain and initial data for two-dimensional shock interaction problem. 
(a) Initial discontinuities are aligned with grid lines. 
(b) Initial discontinuities are not aligned with grid lines. 
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Figure 3 1 .  ETG solution for two-dimensional shock interaction problem on a rectangular 
grid. (a) Density (b) Energy 
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Figure 32. Bubnov-Galerkin solution for two-dimensional shock interaction problem on a 
rectangular grid with E = 1/6 for non-linear field only. 
(a) Density (b) Energy 
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Figure 33. ETG solution for two-dimensional shock interaction problem on a 
nonrectangular grid. (a) Density (b) Energy 
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Figure 34. Bubnov-Galerkin solution for two-dimensional shock interaction problem on a 
nonrectangular grid with £ = 1/6 for non-linear field only. 
(a) Density (b) Energy 
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Figure 35. Exact solution for Mach number for Quasi One-dimensional deLaval nozzle 
problem. 
(a) Ms ( shock mach number) = 1 .3  (b) Ms = 1 .8  
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Figure 36. Mach number for QlD deLaval nozzle problem by Donor-cell and Raymond­
Garder methods for Ms = 1 .3. 
(a) Donor-cell without sonic treatment 
(b) Donor-cell with sonic treatment 
(c) Raymond-Garder without sonic treatment 
(d) Raymond-Garder with sonic treatment 

136 



N 

• 

"' u ·  c 

II: 

N 

• 

"' U c::i 
cr 

o . c  C . 2  0 . 4  0 . 6  o . e  l . ti 

(a) 

.., C +-----,----,-----,----,---� 
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0 

(c) 

o . o  0 . 2  0 . 4  0 . 6  o . e  

(b) 

(d) 

Figure 37. Mach number for QlD deLaval nozzle problem by Bubnov-Galerkin and 
Raymond-Garder methods with £ = 1 .0 for all field ( Ms = 1 .3 ). 

(a) Bubnov-Galerkin without sonic treatment 
(b) Bubnov-Galerkin with sonic treatment 
(c) Raymond-Garder without sonic treaunent 
(d) Raymond-Garder with sonic treatment 
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Figure 38. Mach number for QlD deLaval nozzle problem by Bubnov-Galerkin and 
Raymond-Garder methods with E = 1.0 for non-linear field only ( Ms = 1 .3 ) . 

(a) Bubnov-Galerkin without sonic treatment 
(b) Bubnov-Galerkin with sonic treatment 
(c) Raymond-Garder without sonic treatment 
(d) Raymond-Garder with sonic treatment 
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Figure 39. Mach number for QlD deLaval nozzle problem by Donor-cell and Raymond­
Garder methods for Ms = 1 .8. 
(a) Donor-cell without sonic treatment 
(b) Donor-cell with sonic treatment 
(c) Raymond-Garder without sonic treatment 
(d) Raymond-Garder with sonic treatment 
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Figure 40. Mach number for QlD deLaval nozzle problem by Bubnov-Galerkin and 
Raymond-Garder methods with E = 1 .0 for all field ( Ms = 1 .8). 
(a) Bubnov-Galerkin without sonic treatment 
(b) Bubnov-Galerkin with sonic treatment 
(c) Raymond-Garder without sonic treatment 
(d) Raymond-Garder with sonic treatment 
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Figure 4 1 .  Mach number for QlD deLaval nozzle problem by Bubnov-Galerkin and 
Raymond-Garder methods with E = 1 .0 for non-linear field only ( Ms = 1 .8 ). 
(a) Bubnov-Galerkin without sonic treatment 
(b) Bubnov-Galerkin with sonic treatment 
(c) Raymond-Garder without sonic treatment 
(d) Raymond-Garder with sonic treatment 

141 



y 
( 1 .0, 1 .0) �--------------�� 

A 

� 
M = 2.0 

B 

Figure 42. Wedge flow problem statement. 
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Figure 43. Shock reflection problem statement. 
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Figure 44. Density solution for Wedge flow problem. 
(a) Donor-cell (b) Bubnov-Galerkin (E = 1 .0) 
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Figure 45. Density solution for Shock reflection problem. 
(a) Donor-cell (b) Bubnov-Galerkin (E = 1 .0) 
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