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Abstract 

 

The main focus of this study is related to the Failure Amplification Method 

(FAMe) proposed by Joseph and Wu (2004). They suggested the use of an “amplification 

factor” to increase the information from experiments with a binary response variable. In 

addition to the amplification factor having a known effect, Joseph and Wu recommended 

that, for convenience of experimentation, this factor be taken as an easy to change, split 

unit factor. In such cases, the analysis ought to take into account the possibility of both 

whole unit and split unit error variation. I present such an analysis here, where the 

Bayesian approach not only permits proper accounting of the error structure, but also 

facilitates the subsequent optimization step. 

FAMe can also be extended to categorical data with more than two categories. I 

helped design an experiment that was conducted at Huhtamaki Consumer Packaging 

West Inc., Los Angeles, CA, where the response variable was an ordinal variable 

characterizing the quality of the Tri Web Taco Bell Disk seal. An amplification factor – 

speed of the production line - was a whole-unit factor that was hard to change. Therefore 

an application of FAMe to ordinal data is presented here as well. 

It is crucial to plan an experiment carefully, particularly with categorical 

responses. Levels of the split-unit factor can be chosen sequentially or set in advance. In 

the case of the sequential design, a rule for choosing a split-unit factor level will affect 

consistency and bias of the parameter estimates. Theory-based sequential rules often are 

impractical in real life situations. Properties of sequential ad hoc designs are studied and 

compared to fixed designs using complete enumeration and simulation techniques. 

 

Key words: Binary Response, Ordinal Response, Generalized Linear Model, Mixed 

Model, Model Selection, Split Unit, Sequential Design, Optimization. 
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CHAPTER I 

Introduction 

 

When an experimenter wishes to study the effect of certain factors on a response 

where only attribute data are available, traditional methods of experimentation can be 

inefficient. Consider an experiment with a paper feeder where the probability of two 

types of defects - misfeeds and multifeeds - is very small. Very large sample sizes are 

needed in order to discriminate between the small differences in probability of defects 

and to find the corresponding optimum factor levels. A novel engineering-statistical 

approach - failure amplification method (FAMe) - was recently articulated by Joseph and 

Wu (2004). It allows parameter estimation and optimization with categorical responses in 

situations where some amplification of defects is available. The basic idea of FAMe, as 

stated by Joseph and Wu, is "to select a factor with a known effect on the response and 

use it to amplify the failure probability so as to maximize the information in the 

experiment."  

FAMe was motivated by the operating window (OW) method proposed by Don 

Clausing (1994, 2004). This method is designed to assist engineers at the development 

stage of the process in order to improve reliability and robustness of engineering systems. 

The operating window metric is a range of threshold values of the operating window 

factor. A threshold value setting is associated with a certain probability of failure. These 

probabilities are set in advance and depend on an application. For the sake of simplicity, 

we will use 50% threshold values henceforth. The factor stack force of a paper feeder has 

a known effect on both misfeeds and multifeeds - small stack force will increase the 

probability of misfeed, and large force will induce multifeeds. Therefore stack force is 

chosen as an operating window factor. Other control factors such as wrap angle, belt 

tension and width of feed belt might affect the failure rates. At each control factor 

combination the threshold values of the stack force, l and u, are determined, where l (u) is 

the force at which there is a 50% chance of a misfeed (multifeed). Joseph and Wu (2002) 
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provide a comprehensive modeling and optimization strategy for the OW method. At 

each control factor combination a signal-to-noise ratio (or some kind of performance 

measure) is calculated and used for further analysis. The main drawback of this approach 

is the loss of information when estimating the upper and lower threshold values. Joseph 

and Wu (2002) emphasized the need of incorporating complete data for a more 

informative analysis. FAMe is an extension of the operation window method that utilizes 

the raw data. In FAMe, the OW factor is called an amplification factor. 

Another field that is closely related to FAMe is accelerated life testing (ALT). 

The main difference between the two methods is the response - FAMe handles 

categorical data, and ALT - continuous. Also FAMe is less applicable to time-related 

failures because it deals with sudden failures, failures that occur instantaneously at time 

zero. On the contrary, in the ALT experiments the response is observed over some period 

of time or a similar characteristic. Both FAMe and ALT require acceleration or 

amplification in order to induce failures, and an adequate model for extrapolation. A 

description of ALT and issues associated with it can be found in Nelson (1982, 1990), 

Meeker and Escobar (1993, 1998, 2004) and Meeker and Hamada (1995). 

Recently there have been some advances in the use of design of experiments for 

reliability applications: Condra (2001), Hamada (1995a&b), Hamada and Wu (1995). In 

this literature, the response is mostly time to failure with either exact failure times or 

censored data, or amount of degradation. With censored data and fractional factorial 

designs, unique maximum likelihood estimates might not exist. Bayesian estimation 

provides an attractive alternative in such situations. The same problem of estimability of 

parameters may be encountered with a categorical response. Chipman and Hamada 

(1996) show that the difficulties of infinite maximum likelihood estimates can be avoided 

with Bayesian estimation. Another important advantage is that Bayesian estimates are 

more informative since they account for uncertainty of the parameter estimates in the 

model and facilitate obtaining meaningful summaries of the quantities of interest. This 

property can be utilized in the optimization step by checking sensitivity of the quantity of 

interest (e.g., expected loss) to the optimal factor levels.  
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Joseph and Wu (2004) based their choice of an amplification factor in part on the 

ease of experimentation with this factor. In their implementation of FAMe 

experimentation, an investigation of different levels of the amplification factor was 

performed at each combination of the control factors to be studied. That is, to facilitate 

data collection, the amplification variable was always taken as a split unit factor. 

However, Joseph and Wu (2004) failed to take the whole unit / split unit error structure 

into account in their analysis. I provide an alternative analysis to properly account for 

both whole-unit and split-unit variance components. 

Generalized linear models (GLM) are widely used for analysis of binary data 

(McCullagh & Nelder 1989). With the presence of the random effects, traditional 

likelihood methods for fitting generalized linear mixed models (GLMM) pose a 

computational challenge in high-dimensional problems because of the numerical 

integration. There exist computational methods that overcome this problem, such as a 

Gibbs sampling approach (Zeger and Karim 1991), penalized quasilikelihood (Breslow 

and Clayton 1993), empirical Bayes (Stiratelli et al 1984), etc. Recently SAS Inc. 

released a production version of GLIMMIX that allows fitting GLMM’s. The free 

Bayesian estimation software WinBUGS (Lunn et al, 2000) also allows fitting GLMM’s 

and is available from www.mrc-bsu.cam.ac.uk/bugs. MLn and Stata can also be used for 

fitting GLMM’s. 

FAMe is a comprehensive approach to categorical response optimization. It 

consists of several stages: design, modeling, analysis, and optimization. A method of 

analysis and optimization of the FAMe experiments is illustrated in the next chapter. This 

is demonstrated on two examples from Joseph and Wu (2004). We will see how design 

issues affect the model fit and inference about the parameters. These issues are addressed 

in Chapter III. An extension of FAMe to ordinal data is presented in Chapter IV for an 

experiment that I helped plan and conduct. 
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CHAPTER II 

Analysis of Split Unit Failure Amplification Experiments 

A Brief Overview of Generalized Linear Mixed Models for Binary Data 

 

In this chapter analysis and optimization for the printed circuit board and paper 

feeder examples from Joseph and Wu (JW, 2004) is presented. Both examples have a 

binary response with a split-unit structure of the designs. Therefore a brief overview of 

GLMM is needed.  

A mixed model refers to a model with both fixed and random effects. Among 

other applications, such models are useful to describe data from experiments with 

restrictions on randomization, for example, randomized block and split-unit designs. 

Observations sharing the same experimental unit share a common value of a random 

effect and so are positively correlated.  

Assume that the response vector Y follows a Binomial(n, p) distribution. A 

general form of a conditional GLMM with one random factor can defined as follows 

(McCulloch and Searle, 2001, Chapter 8): 

µ=)|/( unYE  

ug ZX ++= βαµ)( , 
(1) 

where µ is a conditional mean of Y/n, g(·) is a link function, α is the intercept, β is a 

vector of fixed effects and u is a vector of identically distributed random effects with 

variance 2
uσ . X and Z correspond to the model matrices of the fixed and random effects, 

respectively. In split-unit experimentation, 2
uσ  corresponds to variation due to whole 

units.  

The most common link functions are the logit, probit and complementary log-log 

functions: 

• logit(µ) 
µ

µ
−

=
1

log  
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• )()( 1 µµ −Φ=probit , where Φ is the standard normal cumulative density function 

• cloglog(µ) ( ))1log(log µ−−= . 

These link functions provide similar fit when 0.1 ≤ µ ≤ 0.9; the primary differences are in 

the tails of the distributions.  

The conditional model in (1) can be fit either in SAS with Proc GLIMMIX 

procedure or with the Bayesian software WinBUGS. By default, GLIMMIX estimation is 

based on pseudo-likelihood techniques - see Wolfinger and O’Connell (1993) and 

Breslow and Clayton (1993). The GLIMMIX procedure can only fit models with normal 

random effects, i.e. )2
uN(0,~ u σ . WinBUGS estimates the parameters by applying a 

Monte Carlo method, the Gibbs sampler (Zeger and Karim 1991). The Bayesian method 

of estimation does not have a restriction on the distribution of random effects. However, 

convergence properties are better with conjugate priors. For the binomial data, beta and 

normal distributions belong to the class of conjugate priors. 

Another form of a GLMM is a marginal, or unconditional model. A detailed 

description and differences between the conditional and marginal specification of the 

model can be found in McCulloch and Searle (2001, Chapter 8) and Dobson (2001, 

Chapter 11). In the marginal model the expected value of µ is computed by integrating 

with respect to the probability distribution for the random effects u: 

)]([)( 1 ugEE uu ZX ++= − βαµ . 

Estimation of the unconditional GLMM can be done via GLIMMIX as well as 

GENMOD procedures in SAS. One of the available methods for fitting the marginal 

model is generalized estimating equation (GEE) method of Liang and Zeger (1986). 

Further discussion of conditional and marginal GLMM’s is given in Robinson et 

al (2004). They denote the conditional model as a batch-specific model, or random-

effects GLMM, and the marginal model as a population-averaged model, or covariance-

pattern GLMM. They give an example of a split-unit industrial experiment from film 

manufacturing and illustrate the implications of fitting conditional and unconditional 

GLMM. The main difference between the conditional and marginal specifications is that 
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the former models random effects together with the fixed effects and the latter models 

only fixed effects and specifies a covariance matrix for the response. 

Printed Circuit Board Example 

 

A detailed description of the printed circuit board (PCB) example can be found in 

Maruthi and Joseph (1999) and JW(2004). There are two types of conflicting defects in 

the circuits – opens and shorts. One candidate for the amplification factor was exposure 

energy, with high levels leading to shorts and low levels – to opens. However, it was 

inconvenient to use exposure energy as an amplification factor due to budget constraints, 

a slow measurement process and production issues. Therefore it was decided to use line 

width (C1) and spacing between a pair of conductors (C2) as amplification factors. The 

levels for both C1 and C2 were 3, 4, 5, 6, 7 mil, where C2 = 10 – C1. Five pairs of 

conductors with the levels of C1 and C2 used in the experiment are shown in Figure 1. 

(All figures and tables are located in the Appendix.) The opportunity for opens increases 

from left to right due to the decreasing line width, whereas the opportunity for shorts 

decreases due to the wider distance between the pairs. The specifications for the levels of 

these factors are not in the control of a manufacturer and are dictated by the customer; 

hence they characterize complexity of PCB production. JW (2004) label such 

applications as the ‘complexity factor’ amplification method. In the normal production 

only 5, 6 and 7 mil were used for both line width and spacing.  

In addition to complexity factors C1 and C2, there were eight control factors. 

These are listed in Table 1 with their levels. An 18-run orthogonal array (L18) was used as 

the whole unit design for the eight control factors, crossed with a 52-1 design for the split 

unit factors (C1, C2), with C2 = 10 – C1. At each treatment combination of control factors 

X and (C1, C2), the number of defects was recorded from a test pattern of 160 single 

conductors, or 80 pairs. We may assume that the data on opens and shorts follow 

Binomial (160, p1(X, C1)) and Binomial (80, p2(X, C2)), respectively. The data and L18 are 

given in Table 2. 
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Joseph and Wu (2004) fit the following fixed effects models to the PCB data 

using forward variable selection based on the Akaike information criterion (AIC): 

165125
1

log06.5log768.227.33.73.72.10
1

1loglog Cxxxxx
p qlll −−−−−=

−
, 

265141
2

log664.7log70.415.20.48.66.6
1

1loglog Cxxxxx
p qlll −+−++−=

−
,

where the p1 and p2 correspond to probabilities of failure for opens and shorts, 

respectively. The linear contrasts xil are coded as (-1, 0, 1) and (-1, 1) for three-level and 

two-level factors, respectively. The quadratic contrast xiq is coded as (1, -2, 1) for the 

three-level factor. The levels of x6 are on the original scale - 14, 17 and 20. Note that 

their models are not hierarchical and they include up to third-order effects. The exposure 

energy and complexity factors are on the log scale. The reason for transforming 

amplification and complexity factors is the following. JW (2004) assume that the number 

of opens in a conductor and the number of shorts between a pair of conductors follow the 

Poisson distribution with means ),( 11 CXλ  and ),( 22 CXλ . For a Poisson random 

variable with mean λ, a probability that the number of defects is greater than zero is 1-

exp(-λ). Then )),(exp(1),( 1111 CCp XX λ−−= , )),(exp(1),( 2222 CCp XX λ−−= , where 

JW assume the following models for the Poisson means:  

11
61

87543211
11

),,,,,,(
),( γα

λ
λ

xC
xxxxxxx

C =X , 

2

2

1

687543212
22

),,,,,,(
),( α

γλ
λ

C
xxxxxxxx

C =X ,

where α1, α2, γ1 and γ2 are some positive constants. From the formulas above it can be 

derived that the probabilities of defects p1 and p2 follow a cloglog link: 

116187543211
1

log)log(),,,,,,(log
1

1loglog Cxxxxxxxx
p

αγλ −−=
−

, 

226287543212
2

log)log(),,,,,,(log
1

1loglog Cxxxxxxxx
p

αγλ −+=
−

. 
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JW factor out exposure factor x6 in order to emphasize its reverse effect on opens and 

shorts and for optimization purposes. The loss is assumed to be proportional to the 

expected number of defects: 

),(),( 222111 CCL XX λωλω += . 

Next they minimize the expected loss, where expectation is taken over production levels 

of the complexity factors – 5, 6 and 7 mil. Thus the expected loss is 

   [ ] [ ]),(),( 222111 21
CECEEL CC XX λωλω +=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

2

11
2

6875432122
16

875432111 1),,,,,,(1),,,,,,(
α

γ
αγ λω

λω
C

Exxxxxxxx
C

E
x

xxxxxxx
. 

A two-step procedure is utilized for minimizing EL. First, JW find a performance 

measure independent of adjustment [PerMIA, Leon et al (1987), Leon and Wu (1992)] 

and minimize it with respect to the control factors excluding x6: 

),,,,,,( 8754321 xxxxxxxPM  

),,,,,,(log1),,,,,,(log1
87543212

2
87543211

1

xxxxxxxxxxxxxx λ
γ

λ
γ

+= . 

The second step involves finding the setting of x6 that would result in the smallest 

expected loss: 
)/(1

87543212222

87543211111*
6

21

2

1

),,,,,,()/1(
),,,,,,()/1(

γγ

α

α

λωγ
λωγ

+

⎥
⎦

⎤
⎢
⎣

⎡
=

xxxxxxxCE
xxxxxxxCE

x . 

The above optimization procedure depends on the specific form of the model for 

its derivation of the optimal factor levels. We will take a different approach that is 

simpler conceptually and easy to implement with complete enumeration techniques. 

Since JW’s models do not properly account for the correlation structure of the 

data, I will reanalyze the data with both SAS and WinBUGS and compare the results. 

Failure to recognize the split-unit nature of the data will make the standard errors of the 

whole-unit effect estimates smaller and will most likely lead to overfitting. Bayesian 

models in WinBUGS were fit for a single long chain of 10,000 MCMC updates 

discarding the first 1,000 samples and storing every 5th value of the chain. The random 
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whole unit effects u were sampled from a normal distribution N(0, 2
uσ ), where 

τ
σ 1

=u  

(with the hyperparameter τ denoting the precision) and τ ~ Gamma(v1, v2). The random 

effects were assumed to follow the normal distribution in order to facilitate comparison 

of pseudo-likelihood estimation in GLIMMIX and Bayesian estimation in WinBUGS 

(GLIMMIX does not fit models with non-normal random effects). The parameters of the 

hyperparameter τ were taken to be v1 = v2 = 0.001, i.e. E(τ) = v1/v2 = 1 and Var(τ) = 

v1/(v2)2 = 1000. This assumes a vague prior for the whole-unit error. At each simulation 

of the Markov chain the sum of the 18 random effects was constrained to be zero. 

The fitted conditional models are given below in (2). Fixed effects were chosen 

according to the ad hoc variable selection procedure which will be discussed later in this 

chapter. The results from fitting GLLM’s for opens using marginal models with SAS, a 

conditional model with SAS, and a Bayesian model with WinBUGS are shown in Tables 

3, 4 and 5. Covariance pattern analysis estimates of the fixed effects have smaller 

standard errors. The exchangeable working correlation parameter was estimated to be -

0.08, which is a measure of correlation within each whole unit. This result is doubtful 

since we do not expect a negative correlation within the same run. Note that the estimates 

from mixed models in SAS and WinBUGS closely agree, as well as 95% confidence 

intervals and posterior intervals. The estimate of the variance of the random effects 2
uσ  

was 0.1109 (standard error = 0.0752) and 0.1396 (standard deviation = 0.1083) from SAS 

and WinBUGS, respectively. The Bayesian estimate of between run variation is slightly 

larger. Note that all of the 95% posterior intervals for the random effects encompass zero. 

Since the models fit in GLIMMIX and WinBUGS are essentially the same, we can use 

GLIMMIX for model selection and WinBUGS for optimization.  

Similarly a model was obtained for shorts and the final models fitted in 

WinBUGS are as follows: 

,log447.3441.0458.0

476.0877.0572.0429.0446.0034.5
ˆ1

1loglog
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65432
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,log213.5335.1396.0665.0464.5
ˆ1

1loglog 22641
2

uCxxx
p lll +−+++−=

−
 

 

where xil and xiq denote scaled linear and quadratic contrasts, respectively. For a three-

level factor, xil = (-1, 0, 1)/√2 and xiq = (1, -2, 1)/ √6. The log Ci contrasts correspond to 

log Ci = (ln Ci – 1.57)/0.68, where 1.57 is the mean of (ln 3,…, ln 7) and 0.68 = 

2)57.1(ln −∑
i

iC . The codes of model fitting and optimization are given in the 

Appendix. 

Once the model is identified, optimization can be done more easily utilizing the 

Bayesian estimates. The optimization stage requires choice of a loss function. A catalog 

of loss functions for nonnegative variables can be found in Joseph (2004). Once this 

choice is made, the loss is averaged over the noise factors, if any, and the expected loss is 

minimized with respect to control factors. With the complexity factor amplification 

method, expectation is taken over the noise and complexity factors, since they can not be 

controlled by a manufacturer.  

In JW's procedure, optimization was based on an appropriate PerMIA, which is 

dependent on both the loss function and the assumed models for the two types of defects. 

We consider a different approach where there is no need to base the model choice on 

simplicity of theoretical form for optimization.  

When there is no preference for the form of the loss function, it can be taken to be 

proportional to the probability of failures, since the latter are incorporated in the models 

through the link function. The loss for the PCB data is evaluated at each treatment 

combination: 

,...1],,[ˆ],[ˆ],[ 2211 =+= iCipCipC ,CiL 2121 ωω ,   (3) 

where ω1 and ω2 are the penalties associated with the two types of defects, and index i 

refers to a combination of control factor levels. The line width and spacing of Ci = 3 and 4 

mils were not used in the actual production and were introduced in the experiment simply 

for amplification. Therefore the loss was averaged over the production appropriate levels 

of the complexity factors (5, 6 and 7 mils) assuming a uniform discrete distribution for C1 

and C2: 
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,...1],,[ˆ],[ˆ]},,[{][ 22211121, 2121
=+== iCipECipECCiLEiEL CCCC ωω .            (4) 

Note that the models in (2) suggest that {x1, x2, x3, x4, x5, x6, x7} = {1, 3, 1, 1, 3, ?, 

3} is preferred, assuming equal ωi’s. For x6, some trade-off is required since 1p̂  is 

minimized at x6 = 2.3 and 2p̂  is minimized at the lowest level of x6. However, it provides 

no information concerning sensitivity of the expected loss to the levels of the control 

factors and random effects. For this, we need more than point estimates. 

WinBUGS will allow fitting two models for the two defects simultaneously and 

estimating the expected loss at each run of the Markov chain, thus taking into account 

variation of the parameter estimates. The optimum settings can be found by computing 

the expected loss at all possible treatment combinations. Since there were one 2-level and 

six 3-level factors for our model, we need 2ּ36 = 1458 treatment combinations (t.c.) for a 

full factorial grid. Two more t.c.’s were added that correspond to the settings similar to 

JW’s recommendations and they were compared with our optimal settings in Table 6.  

The expected loss statistics are shown in Table 6 sorted by the 97.5% column. 

The weights ωi were set to 1, so EL is simply the sum of the expected probabilities for 

opens and shorts, respectively, averaging over production levels 5, 6 and 7 of the 

complexity factors. Since these defects are not mutually exclusive, EL can exceed 1. The 

last column indicates the criterion that resulted in the lowest expected loss. For example, 

treatment combination 510 has the lowest mean and smallest 97.5 percentile of the 

expected loss. The best setting under the main effects models contemplated earlier {x1, 

x2, x3, x4, x5, x6, x7} = {1, 3, 1, 1, 3, ?, 3} with x6 = 1 has the smallest median and 2.5 

percentile. This setting differs from the smallest mean only in x6. Since the best settings 

in the first six rows of Table 6 are not appreciably different, an optimal setting can be 

chosen based on other considerations such as cost. The last eight rows of Table 6 

correspond to the worst EL. The 97.5 percentile for the worst setting EL[946] is almost 

50 times bigger than EL[510]. JW (2004) suggested {x1, x2, x4, x5, x6} = {1, 3, 1, 2.34, 

1.57}. EL[1459] has {x3, x7} = {1, 3} in addition to the settings above and EL[1460] has 

nominal settings for {x3, x7} - {2, 2}. JW optimal settings with the levels of x3 and x7 set 

to minimize the loss under our assumed models are not drastically different from our 

recommended settings.  



 12

Summary statistics for the expected loss provide a useful tool for assessing 

sensitivity of the factor levels. The predicted values of the probabilities p1 and p2 are 

marginal since they are averaged over the random effects. Variation of the random effects 

will increase variance of the predicted probabilities and hence the expected loss. In the 

PCB example we can infer that the process is fairly insensitive with the following range 

of the control factor settings {x1, x2, x3, x4, x5, x6, x7}: {1, 2-3, 1-2, 1-2, 2-3, 1-2, 2-3}.  

Next we contrast and compare our fitted models with those of JW. Bayesian 

measures of model fit and residual diagnostics may also be obtained for frequentist 

estimates in order to assess the goodness of fit. The Bayes p-value (Gelman et al, 2004, 

p.162) for a test statistic T(y) is defined as follows: 

( )yyT |),(),T(yPrvalue-p Bayes rep θθ ≥= , 

where the probability is taken over the posterior distribution of the parameter vector θ 

and the posterior predictive distribution of the replicated data. The test statistic T(y) can 

be defined in a variety of ways depending on the goals of an experimenter. We have 

chosen T(y) as a measure of how far y deviates from the predicted value: 

( )∑ −
=

i

ii

N
yy

yT
2ˆ

)( , 

where the summation is over the sample observations and yi is the number of defects in 

the ith sample. The raw residuals ( )ii yy ˆ−  are not standardized by the corresponding 

estimate of the standard deviation of the binomial data )ˆ1(ˆ ii ppn −  since there exist 

predicted probabilities very close to 0 and 1, or exactly 1 to the working precision. 

Standardizing the residuals would cause infinite values of T(y). 

Small values of T(y) indicate that the model fits the data well, while small values 

of T(yrep) indicate that the data generated under the assumed model are close to the 

predicted values. The p-value is the proportion for which T(yrep) ≥ T(y). A p-value close 

to 0 or 1 implies inappropriateness of the model – the observed data would not likely be 

seen under the assumed model. Plots of the T(y, θ) versus T(yrep, θ) are shown in Figures 

2-4.  
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As can be seen in the Figure 2 plots, 1000 points from MCMC simulation are 

spread evenly around a 45° line and the p-values are not extreme, indicating no apparent 

lack of fit. Figure 3 shows the scatterplots of T(y) versus T(yrep) for the model without the 

random effects. The average residual sum of squares with the actual data is larger than 

the average residual sum of squares with the replicated data, meaning that some of the 

variation in the data is unaccounted for and the model fit is not appropriate. Similarly in 

Figure 4 the scatterplots are obtained for the GLM models fitted by JW and points are 

even further from the 45° line indicating lack of fit.  

We can also use Deviance Information Criterion (DIC, Spiegelhalter et al, 2002) 

to compare the models. DIC can be viewed as a Bayesian analogue to AIC and is defined 

as a "plug-in" estimate of fit, plus the effective number of parameters Dp : 

DpDDIC 2)( += θ  

where θ is a vector of parameters, D(θ) is the Bayesian deviance, 

)(log2)|(log2)( YfYpD +−= θθ  and )()( θθ DDpD −= . )|( θYp  is the conditional 

likelihood of Y, and the bar operation corresponds to the posterior mean. For members of 

exponential family with )()( θµ=YE , ))(|()( YYpYf == θµ . The rule of thumb 

contemplated by Burnham and Anderson (1998) for AIC suggests that models within 1-2 

of the “best” deserve consideration, and 3-7 considerably less support. According to 

Spiegelhalter et al. (2002), this rule works reasonably well for DIC. 

Table 7 lists DIC values for the mixed models in (1), models without the random 

effects and JW’s fixed effects models. The first two sets of models are superior to the 

models fitted by JW, particularly for the opens. Comparison of the first two sets of 

models once again suggests that the mixed model for both opens and shorts is more 

appropriate.  

Our models and analysis differ from JW models in the following aspects: 

• Our mixed models properly account for the split-unit structure of the data. 

• Our models are hierarchical with only main effects and one quadratic term. JW 

models are not hierarchical and include third-order terms that are aliased with lower-

order effects in the orthogonal array. Joseph and Wu based their variable selection 
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procedure on AIC values, which can lead to overfitting when ignoring the split-unit 

error. Our method of variable selection is given in more detail later. 

• JW’s PerMIA approach required certain model assumptions, including, e.g., that there 

were no interactions between x6 and {x1-x5, x7, x8, Ci}. If such interaction had been 

needed, this would have substantially complicated their derivation, while the 

Bayesian calculation of the expected loss would have been no more complex. 

• We tried different link functions (cloglog, logit and probit) and observed that this 

choice did not appreciably affect variable selection and optimum settings, but DIC 

was the smallest for the complementary log-log link function.  

• The optimization step can be integrated with estimation of the model parameters for 

the two defects and the best settings can be chosen according to different criteria – 

mean, median, standard deviation, percentiles of the expected loss etc. It is also easy 

to see the degree to which EL is sensitive to the optimum settings.  

 

Paper Feeder Example 

 

JW’s (2004) paper feeder example is an illustration of control factor 

amplification. Stack force M was chosen as an amplification factor with lesser force 

leading to misfeeds and greater force – to multifeeds. In addition to M, there were eight 

control factors and one two-level noise factor N, amount of paper. A complete description 

of this example is also in JW (2004). An orthogonal array in 18 runs was used with 

sequential choice of the levels of M within each run. The L18 from the PCB experiment in 

Table 2 was modified by changing level 3 to level 1 in x4. Control and noise factor levels 

are given in Table 8. At each treatment combination a paper feeder was fed paper five 

times and the number of times a misfeed or multifeed occurred was recorded. The data 

are exhibited in Table 9. Two rows correspond to each of the 18 runs, with the first row 

indicating the level of the stack force M and the second row – number of failures out of 5 

tries. The experiment appears to have been run as a split-split unit with the noise factor as 

a split unit factor and M as a split-split unit factor. For the sake of simplicity, we ignore 
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the possible split-split unit structure of the experiment and treat it as a split-unit 

experiment with both M and N being split-unit factors. This simplification can be justified 

by the observation that changing the level of N (the amount of paper) should induce little 

error.  

It was assumed that misfeeds and multifeeds follow Binomial(5, p1(X, M, N)) and 

Binomial(5, p2(X, M, N)) distributions, respectively. Mixed models were fit to the paper 

feeder data, with the probit link found to provide the best fit: 
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(5) 

The prior for the whole unit random errors ui was the same as with the PCB data.  

The posterior summaries of the coefficients are given in Table 10. The subscript 

M corresponds to the centered effect of log M. The coefficient for N*M interaction was 

mostly negative for the misfeeds; therefore it was included in the model. The two-factor 

interaction x4lx6l had the largest standard deviation. However, omitting this term has an 

enormous effect on the expected loss of the optimum factor settings (97.5 percentile of 

EL becomes more than 10 times larger). 

We make several summary observations about the model fit: 

• From Table 11 we can see that the total DIC value is the smallest for the mixed 

models. For misfeeds our mixed model was clearly preferred over JW’s fixed effects 

model. For multifeeds, JW’s nonhierarchical model has the smallest DIC value; 

however, if one adds terms required to make the JW model hierarchical, its DIC 

increases to 451.9, which is comparable to 451.6 for our model.  

• An examination of the misfeed data reveals that 71% of the data were collected at 

the extremes of the distribution with either 0 or 5 misfeeds (see Table 12) and only 

29% in the middle. The opposite is true for the multifeed data – 27% of the data were 

collected at the extremes and 73% - in the middle. This preponderance of extreme 
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outcomes for misfeeds results in bias and poor precision for the parameter estimates 

(see column 3 of Table 10).  

• Plots of the average residual sums of squares (RSS) for the mixed and JW models 

are shown in Figures 5 and 6. Based on these plots, we cannot ascertain superiority of 

our models over JW models. Clearly, both models for misfeeds have poor fit, and 

T(y) values are less variable for their fixed effects models due to smaller standard 

errors of the parameter estimates. Both models do not provide an adequate fit with a 

significant Bayes p-value of zero. The average RSS for the actual data is higher than 

the average RSS for the bootstrap data, meaning that the actual data are not likely to 

be observed under these models. Unfortunately, we were not able to find a better 

model for misfeeds due to the deficiencies of the data set. If an experimenter does not 

observe at least two counts that are not 0 or n for a certain treatment combination of 

the control array, then the degree of freedom associated with this t.c. is lost. (A 

Bayesian analysis is able to extract some limited information.) For example, run 15 

has only one observed count not 0 or n for both levels of the noise factor N. There 

were also four other runs with only one count not in the extremes for level 2 of the 

noise factor – runs 1, 6, 10 and 18. For multifeed data, only runs 12 and 13 with N = 2 

had this pattern. 

• Due to the small sample size and sparseness of the data, both methods of 

estimation in GLIMMIX (pseudo-likelihood based and GEE based) did not converge 

with the probit link even for a main effects model with misfeed data. They did 

converge for simple models with the logit link though. The probit model in 

WinBUGS converged, but was sensitive to the initial values of the parameter 

estimates. Even though we were able to obtain parameter estimates for misfeeds with 

Bayesian estimation, we observed significant lack of fit for the model. 

As with the previous example, we take the sum of probabilities of the two types of 

defects as our loss function. The expected loss function was estimated at 2235 = 972 

control factor combinations over the grid of M changing from 5 to 20 with a step of 2.5. 

The higher levels of M were considered prior to this step and it was verified that they do 
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not produce the smallest expected loss. The loss was averaged over the noise factor N. 

Several comments can be made about the optimization step of the paper feeder example: 

• The best settings from our analysis of the paper feeder data are listed in the first row 

of Table 13. These settings have the smallest mean, as well as 97.5 percentile of the 

posterior distribution of the expected loss. The median of EL is not a reliable criterion 

in this example due to the severe skewness of the posterior distribution (second row 

of Table 13). The mean of the expected loss at JW optimum settings (row 3) is 16 

times bigger than the expected loss with our recommended levels. A 97.5 percentile 

criterion appears to be the best because it insures small values of EL on average even 

under more pessimistic parameter vectors. 

• A histogram of 972·7 = 6804 values of 97.5 percentile of the posterior distribution of 

EL is displayed in Figure 7. The first bin from 0 to 0.1 contains 13 treatment 

combinations with {x1, x2, x3, x4, x6, x7, x8, M} = {2, 3, any, 1, 3, 2, any, 10-15}. The 

worst 25 values of EL ranging from 1.6 to 1.7 have {x1, x2, x3, x4, x6, x7, x8, M} = {1, 

1, 1, 2, 3, 1 or 3, any, 7.5-17.5}. It seems that EL is more sensitive to control factor 

settings than to the levels of the amplification factor in the region under 

consideration. 

• The fact that EL takes values greater than 1 tells us that either the models do not fit 

well or it is possible to have both types of defects simultaneously. There are a few 

instances in the data when misfeeds and multifeeds occur together, for example run 7, 

N = high, M = 35.  

• Given the data, there is enormous variability with posterior distributions of 

parameters, and hence of the expected loss. Thus, if we run MCMC again, results 

may vary. This is a deficiency primarily due to the sample size of five and the choice 

of the amplification factor levels, especially for misfeeds, producing less informative 

data. 

Our conclusions from the analysis of the paper feeder data are considerably 

different from those of JW, as reflected by the very poor performance of their 

recommended optimum under our chosen model. A follow-up experiment is required to 

verify the results. A bigger sample size within each treatment combination would 
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improve precision of the parameter estimates and should have been used since it would 

have added negligible extra cost. Design and sample size issues will be addressed in the 

next chapter. 

 

Model Selection with FAME 

 

FAMe as presented by JW (2004) can be described with the following features: 

1. Two conflicting types of failure modes 

2. Opportunity to induce more failures by changing the levels of an 

amplification factor 

3. Categorical response data with small probability of failure at nominal 

levels of the factors 

4. Split-unit structure with the amplification, complexity and/or noise factors 

as split-unit factor(s) 

5. Low resolution fractional factorial design for the control factors 

6. Little or no replication of control factor treatment combinations 

Categorical data requires the use of GLM’s, and the presence of random effects 

due to the split-unit structure requires fitting GLMM’s. Features 4-6 are not essential to 

FAMe, but will make experimentation more efficient and economical. If the set of control 

factors X is a mixed level orthogonal array or nonregular array, an additional issue of 

complex aliasing of the effects arises.  

Even without the split-unit structure of the data, variable selection with 

unreplicated fractional factorial designs (FFD) of low resolution and aliasing of effects is 

not a trivial task. George and McCulloch (1993) propose a stochastic search variable 

selection (SSVS) procedure for a multiple regression problem. Chipman, Hamada and 

Wu (1997) adopted SSVS to FFD’s with complex aliasing structure and showed how the 

effect heredity principle can easily be incorporated with this procedure. The problem 

becomes even more challenging with categorical response and sparse data. Other 

methods for variable selection exist, but we were not able to find literature suitable for 
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our case – mixed models with competition for explaining variation in the whole units as 

due to the whole unit error versus due to the fixed effects that are estimable for the 

orthogonal array. Hence we consider the following ad hoc method for overcoming these 

difficulties. A general description of this method is given below and it is illustrated on the 

paper feeder example following the description. With a small number of potential effects 

and the absence of aliasing of effects, variable selection can be done easily in GLIMMIX 

by specifying competing models manually. Automatic variable selection procedures such 

as forward, backward and stepwise are not available in GLIMMIX.  

Our ad hoc method begins by fitting mixed models with split-unit effects (for 

example, N, M, their interaction and the random effects in the paper feeder example), 

without the whole-unit effects (X).  

1
1

1111 ),()|ˆ( uMNfupg Z+= , 

2
1

2222 ),()|ˆ( uMNfupg Z+= , 
(6)

where gi(·) is a link function. Note that the link function does not have to be the same for 

type I and type II defects. This step allows the predicted ui values to retain differences 

due to fixed effects as well as whole unit error. The next step is to choose a set of active 

fixed factors by fitting a model for the posterior means (or medians) of the random 

coefficients ui  with X as predictors: 

)(ˆ 2
11 Xfu = , 

)(ˆ 2
22 Xfu = . 

(7)

This procedure is straightforward with orthogonal arrays of strength 4 or higher. 

However, when the number of degrees of freedom is only slightly larger than the number 

of factors, and main effects are aliased with two-factor interactions, this becomes a 

demanding task, unless interactions are assumed away. To circumvent the problem, an 

iterative stepwise variable selection procedure according to method I in Wu and Hamada 

(2000, p.356) may be utilized. This method is supposed to work well “when there are 

only a few significant interactions that are partially aliased with the main effects”.  
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The final step in the analysis of the FAMe data is to fit mixed models with the 

whole-unit and split-unit effects identified previously. Their interactions can also be 

entertained with a forward selection procedure. 
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In conclusion, low resolution FFD’s with complex aliasing are not recommended unless 

there is a strong belief that only main effects are active. The advantage of the above 

method is apparent in an experiment where each whole-unit corresponds to a single 

control factor combination, as in the case with both examples from JW (2004). The 

control factors do not change within each whole unit; therefore the variation due to the 

whole units is captured by the random effects. The use of the random effect as a response 

allows moving variable selection for the whole-unit factors from the GLMM realm for 

categorical data to a linear continuous realm. Under the assumption of normal random 

effects, standard methods of variable selection may be utilized. 

I will now demonstrate the above procedure on the paper feeder example. Mixed 

models with split-unit effects in (6) were fit to the data in WinBUGS with probit links, 

log-linear transformation to M, linear effect of N and their interaction. The posterior 

summaries of the coefficients are given in Table 14. Neither N nor its interaction with M 

appeared to be important for multifeeds; hence it was dropped from the model. As before, 

the subscript M corresponds to the effect of log M. The coefficient for NּM interaction 

was mostly negative for the misfeeds, and so it was left in the model. Note that quite a 

few 95% posterior intervals for the coefficients of the random effects are either entirely 

negative or positive. This is an illustration of competition for explaining variation in the 

whole units between random effects and fixed effects from L18. Later we will see how 

inclusion of fixed effects from the orthogonal array shrinks the random effects toward 

zero, since estimation of fixed and prediction of random effects are not independent of 

one another. 

The results of the iterative stepwise variable selection procedure are summarized 

in Table 15. For the misfeeds, x1, x2, x6, x4x6 and x7ּx7 were identified as useful with an 

R2 of 0.87. The main effects x4 and x7 were not significant, but will be kept in a 
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subsequent analysis in order to preserve the hierarchy of the model. For the multifeeds, 

only two main effects were identified with an R2 of 0.66. This estimation was done via 

JMP. 

The final step in the analysis of the paper feeder data is to identify XּN and XּM 

interactions by utilizing a forward selection procedure, which was performed manually in 

WinBUGS. Only interactions of N and M with the main effects were considered. For the 

misfeeds, Mּx2, Nּx2, Nּx3 and Nּx8 appeared to be useful in addition to the whole-unit 

and split-unit effects, and Mּx2, Mּx3, Nּx3 – for the multifeeds. The final model was 

represented earlier in equation (5) and Table 10.  

We followed the same model selection method with the PCB data. When using a 

stepwise variable selection for opens according to Wu and Hamada (2000), a complicated 

model with the following whole-unit effects was found: x3, x4, x2x4, x2x6, and x3x4, where 

x2 is a three-level categorical factor with two degrees of freedom. Note that this model 

does not include x5, which was the largest effect in the model by JW(2004). A simpler 

model with main effects and one quadratic term has slightly lower generalized df/2χ  

statistic – 1.47 for the latter model in (2) and 1.49 for the model with 3 two-factor 

interactions. Evidently, the method of Wu and Hamada does not work well in this case. It 

is quite possible that there are several significant two-factor interaction for opens. 

However, we are not able to differentiate between the two models due to the partial 

aliasing and therefore a parsimonious model was preferred. 

I have shown that Bayesian analysis of FAMe data has definite advantages and is 

straightforwardly accomplished with free software WinBUGS. The examples shown in 

this chapter were more difficult due to the low resolution FFD for the control factors with 

no replication. In the absence of the above features, model selection can be done simply 

by fitting a set of relevant effects with SAS GLIMMIX or WinBUGS and selecting the 

most prominent ones. 
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CHAPTER III 

Properties of Ad Hoc Sequential Designs with Small Sample Sizes 

Introduction 

 
It is known that the maximum likelihood estimators (MLE’s) of the generalized 

linear models are generally biased, especially with small sample sizes n, even when a 

fixed design is used. As stated by McCullaugh and Nelder (1989, Chapter 15), “in large 

samples the bias of maximum-likelihood estimators is O(n-1), and hence is negligible 

compared with standard errors. For samples of more modest size, or for problems in 

which the number of parameters is appreciable compared with n, the bias may not be 

entirely negligible.” Since the Failure Amplification Method involves estimation from 

GLM’s and GLMM’s from both fixed and sequential designs, it is important to study the 

potential bias.  

The aim of this study is to assess an increase in bias when a sequential design is 

used. It is also of interest to investigate when a sequential design is more appropriate than 

a fixed one due to decreased variance. In the PCB example from Joseph and Wu (2004) 

the levels of the complexity factors (line width and spacing) were fixed in advance, while 

in the paper feeder example the levels of the amplification factor (stack force) were 

presumably chosen sequentially. It was not practical to choose the levels of line width 

and spacing sequentially since the panels with 160 conductors were produced under the 

combination of the complexity and control factor levels. In a more general setting, we 

assume that the levels of the split-unit factor can be chosen sequentially and explore the 

conditions under which a sequential design is preferred. 

There exists extensive literature for estimating parameters of interest on quantal 

response curves sequentially. When the response is binary, these types of experiments are 

called sensitivity experiments. A general statistical model with one factor can be 

formulated as follows:  

xxpg 10)]([ ββ += , 
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where g(·) is a link function and p is the probability of failure for a Binomial response Y, 

Y ~ Bin(n, p).  

Voelkel (1999) lists the most common objectives for sensitivity experiments as 

follows: 

1. Estimate the setting Lp of x that corresponds to a user-specified probability px: 

P(x ≤ Lp) = F(Lp) = px. The goal of this type of experiment is to estimate Lp 

with minimum variance. The most frequently encountered values of Lp are 

L0.50 and L0.10.  

2. Obtain a good estimate of the quantal response curve in general. The levels of 

x are chosen in order to minimize the variance-covariance matrix of the 

estimates for (β0, β1). One such criterion is the D-optimality criterion. 

3. Estimate the slope parameter β1 of the quantal response curve. The goal is to 

minimize )ˆ( 1βVar . 

In FAMe experiments, several factors are investigated and it is essential to learn 

about the effects of the control factors as well as the split-unit factor. A split-unit factor 

experiment at each control factor combination may be viewed as a sensitivity experiment. 

An experimenter would need a good estimate of the quantal response curve in general at 

each control factor combination, since the location parameter of each split-unit 

experiment would affect precision of the control factor effects.  

Voelkel (1999) also gives a review of the most common sequential methods such 

as the Robbins-Munro procedure (1951), Wu’s sequential method (1985), Dixon and 

Mood’s up-and-down method (1948), as well as Bayesian methods. With the exception of 

the up-and-down rule, the above methods utilize updating the parameter estimates by 

fitting a model after observing a Bernoulli response (n=1) at level xi and choosing the 

next level xi+1 based on these updated estimates. The up-and-down rule starts with an 

initial value x1 and the subsequent trials are made at a lower or upper level depending on 

the previous response until r trials are completed. Let d denote a change in the absolute 

value of x between two consecutive trials. This differential amount is fixed in advance. 

The up-and-down method was primarily designed to estimate the level of x at which 50% 

of observations fail (L0.50). This method works best if the starting value x1 is reasonably 
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close to L0.50 and if dβ1 is chosen properly, e.g., dβ1∈[0.5, 2.0] for the probit link. 

However, the up-and-down rule has poor precision for the slope of the quantal response 

curve, as well as percentiles Lp for small p. Furthermore, “measures of reliability may 

very well be misleading if the sample size is less than forty or fifty” as stated by Dixon 

and Mood (1948).  

The remaining sequential methods mentioned above require updating of the 

parameter estimates after each trial and the distributional form of a model is assumed to 

be known in advance, for example, logit, probit or complementary log-log models. These 

methods are not practical with the use of designed experiments when there are many 

factors of interest and there is only limited time available for experimentation. For 

example, a fractional factorial design with N runs and r levels of the split-unit factor at 

each run would involve N·(r-1) updates of the assumed model and a reasonable guess of 

the location and slope parameters at each run. 

An alternative to a sequential choice of factor levels with two-level fractional 

factorial designs is inverse binomial sampling as described by Bisgaard and Gertsbakh 

(2000). They provide a methodology for determining the number of defective units to 

detect a given change in the probability of producing a defective unit with fixed levels of 

Type I and Type II errors. They assume that the center of the design space is positioned at 

the optimal factor levels and the variability arises only due to variability of the process 

parameters around the nominal values. Their method can be applied to ongoing 

production processes where instantaneous testing of the product is possible. They argue 

that inverse binomial sampling is advantageous over the fixed sample size since it 

ensures only a certain number of defects is produced. However, their method is not 

practical when only a limited time is available for experimentation and the defect rate is 

small. For example, with 16 runs, 5% and 10% for Type I and Type II errors, 

respectively, 4% probability of failure at the center of the design and a change of 1% in 

the probability of failure when an active factor changes from -1 to 1, the required number 

of defectives is 4. Therefore the expected sample size at each control factor combination 

is 100 and the total sample size is 1600.  
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In light of the above discussion, an experimenter might consider an ad hoc 

sequential design that does not involve intermediate model fitting. Next a limited review 

of the bias of the fixed designs is presented, followed by the sequential ad hoc design 

study. 

Bias of a Fixed Design with Small Sample Sizes 

 

As already mentioned, with small sample sizes, the maximum likelihood 

estimates (MLE’s) of the generalized linear models may be substantially biased. There 

exist several methods for approximating this bias. Cordeiro and McCullagh (1991) give 

an overview of these methods and provide general formulae for first-order approximation 

of biases of the maximum likelihood estimators for distributions from the exponential 

family, as well as an approximate formula for the bias of the parameter estimates in 

logistic models. In case of models with canonical link, the first-order asymptotic bias can 

be calculated as follows (McCullagh and Nelder, 1989, Chapter 15). Let Y1, …Yr be the 

set of r independent observations from Binomial(n, pi), i = 1,…,r and X be a r×(m+1) 

model matrix with m covariates. Then the logit model is  
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where W is a diagonal matrix of weights. Finally, the first-order asymptotic bias Bf is  
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fB 1)( −= , 
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where iiiii kkQ 23 /
2
1

−=ξ , TT XWXXXQ 1)( −= , and k2 and k3 are the second and third 

cumulants, respectively. For the logit link W reduces to )}1({ ii pnpdiag −=W , 

)1(2 iii pnpk −= , )21)(1(3 iiii ppnpk −−=  and so )5.0( −= iiii pQξ .  

Under conditions of approximate quadratic balance (Qii = constant), a very rough 

approximation of the bias for small |β| is •+= nmBa /)1( β , where •n  is the total sample 

size. The approximate bias vector Ba and the parameter vector β are approximately co-

linear. We will now examine empirically the bias and variance of β for a fixed design 

with one two-level factor with n = 10. 
 

Fixed Two-Level Designs with One Factor 

 

We will only consider logit models without the whole-unit error in this study in 

order to keep the discussion simple. A plot of the logistic curve with β0 = 3 and β1 = 2 is 

shown in Figure 8. The probability of failure is 50% when xc = – β0/β1. A D-optimal 

design for the logistic model is to place an equal number of trials at two points around the 

L0.50: 
11

0 5434.1
ββ

β
±−  (Atkinson and Donev, 1996, p. 293). The corresponding 

probabilities of failure at these two design points are 0.176 and 0.824, respectively. 

The problem with fixed designs is that an experimenter will need to guess 

reasonable values of β prior to conducting the experiment. If these estimates are not close 

to the actual values, the design will be poor. Even if the guess values of β are correct, the 

D-optimal design might not be the best one with small sample sizes, which will be 

illustrated later in this chapter. The choice of levels of x is crucial with sensitivity 

experiments. If the levels are in the tails of a quantal response curve, the observed counts 

will most likely be 0 or n for a binomial response when n is small, resulting in non-

convergence of the fitting algorithm for certain models. For example, if Y = (0, n)T for 

some levels of x, MLE’s do not exist. The existence of the unique MLE estimates is 

highly sensitive to the center of the design xc, the distance from the center, d, and the 
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sample size n. As mentioned earlier, the optimum xc = -β0/β1, d=1.5434/β1 and the equal 

number of samples is placed at xc ± d. The percent bias and probability that unique 

MLE’s exist depend solely on the sample size n, dβ1 and F(xc). Bias, variance and MSE 

were calculated by completely enumerating all the possibilities of observed counts at xc ± 

d with n = 10. There are 112 = 121 possible combinations of the observed counts vector Y 

= (Y1, Y2)T for a two-level design. When at least one of the Yi is 0 or n, unique MLE’s do 

not exist (40 cases). Each combination of Y has a probability pY associated with it:  
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The exact bias is βββββ
Y

Y −=−= ∑ ˆ)ˆ()ˆ( pEB , where β̂  is the MLE of β. 

(Obviously β̂  depends on Y. For simplicity of notation, this dependency is not shown 

explicitly.) The variance is ( )2
)ˆ(ˆ)ˆ( βββ

Y
Y EpVar −= ∑ and the mean squared error 

[ ] )ˆ()ˆ()ˆ(
2

βββ VarBMSE += . When β̂  does not exist for certain combinations of Y, the 

above quantities are computed conditionally on uniqueness of the MLE’s. Denote the 

sum of pY for which β̂  exist uniquely as Pr(MLE). 

The results for β0 = 3, β1 =2, n=10, F(xc) = F(-β0/β1) = 0.50 and dβ1 from 0.1 to 

1.9 are shown in Table 16. The probability that unique MLE’s exist decreases when dβ1 

increases. The near optimal design corresponds to a row with dβ1 = 1.5 with only 75% 

chance of the unique parameter estimates. The asymptotic variance is a square of the 

standard errors of the parameter estimates weighted by probability of the observed counts 

at fixed levels of x. The last column in Table 16 is the percentage of the first-order bias 

Bf.  

When a two-level design is centered, a condition of approximate quadratic 

balance is satisfied and the approximate bias is nnBa /2/2 ββ == . Hence the relative 

bias is nBa /1/ =β  for one-factor two-level fixed centered design, or 10% with n = 10. 

When Pr(MLE) is 1, bias represents the true bias and we can see that all three biases (bias 
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B, the first-order bias Bf and an approximation of bias Ba) are the same – 10%. When 

Pr(MLE) is not 1, bias, variance, MSE and asymptotic variance are conditional on 

existence of unique MLE’s and therefore are biased themselves. Excluding the extreme 

cases has an effect of shrinking the true bias and variance towards zero. For example, out 

of the 40 outcomes when MLE’s do not exist, the most likely outcome is Y = (1, 10)T 

with a probability of 0.092. Had the estimate of the slope existed, it would have been 

very large with large variance. This explains negative bias when dβ1 ≥ 1.3. Note that % 

bias is the same for the intercept and the slope.  

If the levels of x are poorly centered, the probability of the existence of MLE 

estimates is even lower. For example, with the same parameter vector, sample size, dβ1 = 

0.5 and F(xc) = F(- β0/β1 + 0.5) = 0.73, Pr(MLE) = 0.86 compared to 0.98 when F(xc) 

=0.50.  

With a sequential design, one would hope to experiment with more than just two 

levels. Otherwise, there is no real advantage in using a sequential design. Next we will 

compare fixed and sequential designs in the context of designed experiments. 

 

Comparison of Fixed and Ad Hoc Sequential Rules with Designed 

Experiments and Small n 

 

I will now describe an ad hoc sequential rule that one may use with experiments 

similar to the paper feeder example. As in that example, we will use sample size of n = 5 

at each treatment combination. The number of levels for the split-unit factor at each 

control factor combination is restricted to four. In cases such as this with small sample 

sizes and a small number of levels, it is possible to enumerate all the possibilities. The 

number of all combinations of Y is (n+1)r, where r is the number of levels. One such rule 

with n = 5 and r = 4 is shown in Table 17. The design starts at an initial level x1 and the 

next sample is taken at (x1 + d) or (x1 - d) depending on the outcome Y1. In choosing to 

increase or decrease the level, we assume only that we know the sign of the slope of the 

sequential factor. Without loss of generality, we can take it to be positive. For example, 
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the first row of Table 17 corresponds to the following rule. If Y1 = 0, we take the next 

sample at x2 = x1 + d. If Y2 is 0 again, we increase the step and take the next sample at x3 

= x2 + 2d. Finally, if Y3 =0, x4 = x3 + 2d. Without knowledge of the sign of the slope, 

after getting Y1 = 0 an unbiased rule would be to choose the next level x2 = x1 + d or x2 = 

x1 - d randomly. Note that the spacing among the four levels is not necessarily a fixed 

differential amount d. It can be a fraction, as well as a multiple of d. The main idea of this 

sequential design is to obtain observed counts both in the middle and close to the tails of 

the distribution. More data in the middle of the probability distribution will provide more 

precise estimation of β0/β1. More data toward the tails of the distribution will provide 

more precise estimation of the slope β1.  

This rule is applied to a sequential factor M crossed with a control array D. In 

other words, at each factor level combination of the control array we choose four levels 

of the sequential factor according to the rule in Table 17. The starting point of the design 

is the same for each run - x1. Suppose we have three control factors and one sequential 

factor. Then D can be chosen as a full factorial design in eight runs. Denote the parameter 

vector β = (β0, β1, β2, β3, γ)T, where γ is the slope of the sequential factor. That is, we 

assume a first order model. 

With eight runs, sample size of five, and four levels for a sequential factor, a 

complete enumeration of all possible outcomes would provide (n+1)r·N = 7.96·1024 

possibilities. Therefore a simulation was performed with 10,000 random draws of the Y.  

In order to compare the sequential rule from Table 17 with a fixed design, we 

need to construct such a design. If the main effects are different from zero, a D-optimal 

design would place the design points at different levels of M from run to run. For this to 

be efficient with small sample sizes, accurate guess values of the control and sequential 

factor effects are necessary. Unfortunately, such knowledge is rarely available and 

therefore some protection against varying F(x1) is needed. Here we assume that we do not 

have such knowledge about the control factor effects and the levels of the split-unit factor 

are restricted to four. A proposed design is 

]ˆ3/ˆ3/ˆˆ[ 50.050.050.050.0 dLdLdLdL ++−−×D , where 50.0L̂  is a guess value of the 

L0.50 = - β0/γ. Table 18 compares different values of dγ for βT = (-3, 1, -2, 0.3, 2), n = 5 
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and F(x1) = 0.50. The percentage of the bias vector B was nearly the same for all the main 

effects, and only the largest % bias is shown. The same is true for the estimate of the first 

order bias fB̂ . Variances of 1β̂  and 3β̂  were not affected significantly by dγ and were 

not included in the table. The existence of unique MLE’s is rather insensitive to dγ and is 

not a major concern as opposed to the example in Table 16. The percent of bias varied 

from 6.8% to 9.9% and fB̂  provided a good estimate of B. The approximate bias Ba was 

%100
160

5
×  = 3.125% and it is clearly underestimating the true bias. Note that variances 

of two largest effects β2 and γ varied greatly with dγ in opposite directions, i.e. Var[ 2β̂ ] 

(Var[ γ̂ ]) increased (decreased) with larger dγ. They become close to one another when 

dγ = 3. Asymptotic variance is also close to the actual variance of β̂ .  

The same simulation was done for a design with the choice of levels of the 

sequential factor according to Table 17. The results are shown in Table 19. The same 

value of d does not result in the same levels of the split-unit factor M in fixed and 

sequential designs. In the fixed design, the data are collected on ]ˆˆ[ 50.050.0 dLdL +−  for 

M. In a sequential design, the spread of the levels of M depends on the observed counts. 

Here the probability of existence of unique MLE’s [Pr(MLE)] is 1 for all rows. The 

percentage of the true bias B was similar for the common intercept β0 and γ, as well as for 

the control factors. The latter is almost double % fB̂ . Variances of 2β̂  and γ̂  are similar 

when dγ = 1. The fixed design with dγ = 3 and the sequential design with dγ = 1 are 

almost identical with the difference of 2% in the maximum of the bias vector.  

Fixed and sequential designs with various β are contrasted in Table 20. The value 

of dγ was chosen such that the standard errors of β2 and γ are comparable. The fixed 

design was extremely sensitive to the value of dγ. For example, for the third design with 

β = (-3, 3,-3, 0.3, 3) probability of unique MLE’s was only 0.69 with dγ = 3. Larger |β| 

causes lack of convergence more often: when β = (-3, 5,-5, 0.3, 6) and dγ = 5, 

P(MLE)=0.13. Bias and variance reported for the last row in Table 20 for the fixed 

design are not meaningful since unique MLE’s existed only 40% of the time. The 
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sequential designs were quite robust to the choice of dγ and they performed better with 

the presence of strong effects in the model. 

Next we will consider a saturated model with 3 df for main effects, 3 df for two-

factor interactions and 1 df for three-factor interaction for a full factorial design in three 

factors with N = 8 runs, βT = (β0, β1, β2, β3, β12, β13, β23, β123, γ) . In general one would 

expect that the true model is simpler and does not involve high-order interactions. For the 

purpose of model selection though, often the first step is to fit a saturated model with all 

degrees of freedom from the control factor array. The results for βT = (0, 1, -1, 0.5, 1.2, -

0.7, 0.2, -0.1, 3), dγ = 2 and F(x1) = 0.95 are shown in Table 21. fB̂  is a good 

approximation of the true bias except for the three-factor interaction.  

Maximum likelihood estimates for a saturated model will exist only when we can 

estimate a location parameter from each run. For example, in the paper feeder example 

run 15 for misfeed data (Table 9) had only one observed count not 0 or n, and the 

location parameter cannot be estimated from this run. In such cases, Bayesian analysis is 

an alternative since it will provide a finite parameter estimate. When the number of 

parameters to be estimated is less than N, one may still be able to estimate the model 

given all the data, even with some individually non-informative treatment combinations. 

In conclusion, the advantages and disadvantages of the sequential designs with 

GLM’s are as follows: 

• The main advantage of sequential design is that we can continue collecting the data 

until satisfactory results are obtained, time and resources permitting. General advice 

is to obtain at least two samples with observed counts not 0 or n.  

• Sequential designs are robust to misspecification of the guess values of the parameter 

vector β. In fact, even with no prior information about β, it is still possible to obtain 

meaningful data sequentially. When using a fixed design, an experimenter might be 

left with completely non-informative data. 

• Bias from a sequential design is generally higher than bias from a fixed design. 

I have only considered logistic models without split-unit effects in this study. It 

would be useful to examine properties of sequential designs with other link functions and 

with the presence of the whole-unit effects. Simulation studies of GLMM’s in WinBUGS 
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would require calling WinBUGS from other programs (SAS, R, etc.) since the analysis of 

each simulation itself involves iterative solution. This would require significant 

computing resources and can be an area for further research. 
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CHAPTER IV 

Composite Disc Experiment 

Introduction 

 
In their discussion of Joseph and Wu (2004), Leitnaker and Mee (2004) list two 

examples with a categorical response variable and the existence of a possible 

amplification factor. One of the examples involves composite disc production at 

Huhtamaki Consumer Packaging West Inc., Los Angeles, CA. This division of 

Huhtamaki manufactures packaging to quick service restaurants and beverage vendors, 

institutional caterers, airline caterers, etc. The composite disc is a component of the 

Quickspread® container that restaurants use to dispense sauces. The main consumer of 

this product is McDonalds (MD). Recently Huhtamaki have launched a new product – 

composite discs to be used in sour cream containers for Taco Bell (TB). The design of 

these discs is similar to the MD discs, but there are important differences. Figure 9 shows 

a completed TB disc that has three layers of laminated material: PET (transparent film), 

bleached paperboard and a triangular blue tab stock material. Figure 10 shows a disc with 

a blue tab partially split from the paperboard and PET. The only differences between TB 

and MD discs are the shape of the tab (triangular versus rectangular, respectively) and the 

position of the seal. The blue tabstock material is sealed to the paperboard for the MD 

discs and to the film for TB discs. The same machine is used for production of both types 

of discs. 

The filling of a container flows through a valve cut in the center of the disc which 

is attached to the bottom of a container. One of the characteristics of the finished product 

that is critical to the customers of Huhtamaki is seal integrity. If a container is not sealed 

properly, it can cause leakage of sauce or cream into the shipping container.  

The company was predominantly interested in whether it was possible to increase 

the speed of a production line without sacrificing the quality of the product. Currently 

they run two shifts with a machine operating at 70 feet per minute (FPM). If they were to 
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increase production volume with this speed, they would have to run a third shift and hire 

and train additional operators. At 70 FPM, the tab sealing process for MD disks is 

meeting specifications and a very low percent of defects is detected. They have 

experimented with MD discs and found that indeed the bond degrades with increased 

speed. An experiment was conducted under the supervision of a project manager for his 

Six Sigma Black Belt Certification Project (Pettigrew, 2003). At 110 FPM, they 

experienced problems with the delivery end of the press. Due to the high speed, the discs 

were not stacked properly and were difficult to collect. A final recommendation was to 

increase the speed to 90 FPM and invest in improving the delivery end of the press.  

Only one type of defect was encountered with MD discs – a weak seal. When the 

company started the production of the TB discs, they received complaints from their 

customers regarding a new type of defect – a very tight seal. If the bond of the seal is too 

strong, a blue tabstock material would not tear off completely and could potentially 

contaminate the food product. They have also experienced weak seals with the TB disks. 

Therefore TB production appears to be a good candidate for FAMe experimentation with 

two types of defects and speed as an amplification factor.  

 

Design of the Taco Bell Disc Experiment 

 

I helped design and conduct an experiment at the manufacturing facility of 

Huhtamaki under the supervision of the project manager Mark Bond. Due to the 

differences in design of TB and MD discs and limited experience with the TB product, 

only a modest amount of information was available about the factors that affect the 

sealing process. The Triweb Design Team identified eight control factors to be 

potentially influential. An experiment was planned with speed at three levels and the 

other seven factors at two levels. Factor levels and notation are given in Table 22.  

A blue tab stock material type was known to affect the variability of MD discs. 

An operator of the TB production line was not certain whether the issue of variability of 

the tabstock changing from splice to splice was applicable to TB discs production since 
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this material laminates to the film, not paper. I suggested including this factor with two 

levels. A “bad” splice of the blue tabstock paper was known to cause problems with MD 

discs. This factor is a “noise” factor and cannot be controlled during the actual 

production. However, for the purposes of experimentation it was controlled as a factor. 

In order to construct a design with one 3-level and seven 2-level factors, a 492 −
IV  

design from Montgomery (2001, p. 671) was used as a starting point. The design 

generators were F = BCDE, G = ACDE, H = ABDE, J = ABCE. Thirty-one degrees of 

freedom for this design are distributed among 9 main effects, 21 two-factor interactions 

and 1 three-factor interaction. A and B factors were used to construct a 3-level factor 

speed (S): (-1, -1) factor combination in (A, B) corresponds to low speed, (-1, 1) and (1, -

1) - to medium speed and (1, 1) – to high speed. The speed was a difficult-to-change 

factor. Therefore the experiment was run with eight whole units each containing four split 

units.  A, B and CD were used to generate the whole units. The whole and split unit 

contrasts with aliasing are shown in Table 23.  

As can be seen from the factor relation diagram in Figures 11-13, there were four 

production lanes from which a finished product was collected. Sixty-six samples were 

taken from each of the 32×4 treatment combinations and tested by three different 

measurement techniques, which will be described in the next section. 

 

Measurement Process 

 

During the preparation stage of the experiment we decided which characteristics 

of the sealing process to measure. A continuous response was used in the experiment 

with MD disks. A special machine was available at the end of the production line for 

measuring the force required to separate a tab from a paperboard – Imada peel-off tester 

(Figure 14). As described by Pettigrew (2003), “this device clamps the disc in a vise, 

grips the folded tab with an effecter and applies a steady pull at 12 inches per minute to 

remove the tab from the paperboard. A software program captures the amount of force 

required to peel the tab at preset intervals and averages them to deliver a single result.” 
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There are 360 measurements of peel force available for each disc. The program can be set 

to provide summary statistics such as mean, median, standard deviation etc.  

A lower specification limit for the minimum peel force of the MD discs was set at 

0.4. There was no need to establish an upper specification limit since they have never 

received any complaints about seals that are too tight. A distribution of the minimum peel 

force for MD discs with the machine running at 70 FPM is approximately normal with 

the mean of 0.87 and standard deviation of 0.068. A three-sigma lower limit is 0.666, 

well above the lower spec limit. With the TB discs, the opportunity for a strong bond is 

much greater since the tab laminates to the film and the temperature of the film and a 

surlyn poly layer on the tab surface can be quite high resulting in a very sticky seal. The 

Triweb team was not certain whether the same lower spec limit applies to the TB discs 

and it was required to develop upper spec limit because of the complaints with tight seals. 

Indeed, there was a problem on both sides of the peel strength distribution with minimum 

peel strength ranging from 0 to 2.4 (as will be seen later). 

The degree to which continuous measurements of seal integrity correlate with 

actual sealing characteristics was not well known for the TB discs. Therefore we believed 

that it was necessary to create a categorical response variable that would allow us to 

ascertain the relationship between continuous and categorical responses. Based on the 

previous experience, an ordinal measure of the quality of the seal was developed. It is a 

composite measure of visual characteristics of the seal and the amount of tab paper left 

after the tab is removed. This categorization was assumed to correlate with the amount of 

peel force required to remove the tab. The seven categories are defined below: 

• Category 1 – a very tight seal, with the seal area completely covered 

by the tab paper 

• Category 2 – a tight seal, with some of the tab paper inside the seal 

area 

• Category 3 – a tight seal, with little paper on the sealing edge and/or 

outside the sealing area 

• Category 4 – a perfect seal with a consistent pattern and all the tab 

paper removed 
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• Category 5 – a consistent seal with a weak pull (little force was 

required to remove the tab), weak seal 

• Category 6 – a seal with an inconsistent pattern, weak seal 

• Category 7 – almost no seal or no seal at all, very weak seal 

One sleeve of approximately 300 discs was collected at each treatment 

combination. There were 32×4 = 128 sleeves stored after the completion of the 

experiment. The measurement process required a substantial amount of time and it was 

not feasible to perform it during the actual experiment. Randomization of the discs from 

each sleeve would require taking all 300 discs out of the sleeve and picking random 

samples, which was considered to be an unnecessary task due to the absence of 

autocorrelation. Sixty-six samples were taken from the top of each sleeve and 

measurements were obtained in the following order: 

1. Six samples were tested with the Imada peel tester. It takes 

approximately one minute to obtain a complete profile data on each 

sample. Summary statistics such as mean, min, max, variance and 

standard deviation were also recorded. 

2. Forty samples were tested according to the categorical scale above 

with a slow peel speed.  

3. Twenty samples were tested according to the categorical scale above 

with a fast peel speed. 

The rationale for testing samples with slow and fast peel speed was that the 

company did not have control over the way customers remove the tab and it was 

desirable to make the process robust to this type of user variation. A smaller sample size 

for fast peeling was deemed to be suitable due to the increased probability of not 

removing the tab paper completely. 

In the next two sections the analysis of both continuous and categorical responses 

will be presented and the data issues will be discussed. 
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Analysis of the Continuous Response 

Analysis of the Mean Peel Strength 

 
The minimum peel force was determined to be an adequate measurement of seal 

integrity of the MD discs owing to the process exhibiting only one type of defect – a 

weak seal. Since there are issues with seal integrity on both extremes of the peel strength, 

mean peel force appears to be more appropriate for the TB discs. Residual variation for 

the 32×4×6 means was only 2.7%, after accounting for variability due to 32 runs and 

lanes nested within runs (see Table 24). Hence we can average the six continuous 

measurements and proceed with the analysis. Similarly for power transformation of the 

mean standard deviation residual variation was 6.7% (Table 25). Transformations were 

applied to both responses to alleviate unequal variance problems. Note also that variation 

due to the lane effect is 4.5% and 5.9% of the total variation for the transformed mean 

and standard deviation, respectively, and is negligible compared to variation due to the 

fixed effects combined with random block effects from the orthogonal 32-run array. The 

mean of the means and standard deviations of the 6 measurements are shown in Table 26 

together with the levels of the control factors and the ordinal data that will be discussed 

later. 

The next step is to choose a set of active fixed effects taking into account the 

split-unit structure of the data. Statistical software such as JMP and SAS does not allow 

estimating fixed and random effects simultaneously when the random effects are aliased 

with the whole-unit effects and there are no degrees of freedom for whole-unit error. SAS 

procedure GLIMMIX gives a warning: “Mixed model has saturated mean and profiled 

variance. Fit does not proceed.” Hence I will use a procedure based on Lenth’s PSE 

method. 

A model with all 31 factorial effects was fit with an R2 of 96.2% and 127-31 = 96 

degrees of freedom for the error term (variation due to lanes). RMSE for the above model 

was 0.106789. Speed, CD, EF, EG, FG, CEH and CGH are the seven whole-unit effects. 

Only Speed and CGH are partially aliased with each other. Hence CGH was replaced 

with the (CGH-Speed) column, making a set of orthogonal whole-unit contrasts. 
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Table 27 lists seven whole-unit and twenty four split-unit naïve and corrected t-

ratios. When a model has error degrees of freedom, JMP calculates Lenth’s PSE from the 

t-ratios rather than from the parameter estimates themselves. Calculated in this way, 

Lenth’s PSE reported by JMP is actually the ratio of Lenth’s estimate for σ versus the 

RMSE. For instance, from the seven whole-unit t-ratios in Table 27, we obtain 

31.52/)26.382.3(5.1PSE =+⋅= . Thus, the whole-unit error mean square is much larger 

than the naïve mean square error. The correct t-ratios are obtained by dividing by 5.31.  

We could compute Lenth’s PSE for the split-unit effects in an analogous manner 

if they were uncorrelated. (This would be 3.55.) Instead we use JMP’s calculation of the 

PSE from orthogonalized estimates from the model with just 24 split-unit effects 

⎟
⎠
⎞

⎜
⎝
⎛ === 27.1

2858.0
3632.0ˆ

PSE
RMSE

σ . This ratio must be multiplied by 
1068.0
2858.0  to account 

for the different RMSE used for the naïve t-ratios in Table 27. Thus, for split-unit effects, 

we divide the naïve t-ratios by 3.40 [= 1.27(0.2858/0.1068)]. 

In order to evaluate significance of the effects, we can assess p-values based on 

the critical values from Ye and Hamada (2000). The corrected t-ratios are compared to 

simulation-based critical values for the individual error rate. I reported p-values for the 

largest effects. Three effects are significant at α = 0.05 – speed, material type J, and die 

pressure D. I will also include CD interaction because its p-value is only slightly higher 

than 0.05. In order to make a model hierarchical, the effect C needs to be included as 

well. Hence my final model for the square root of the mean (averaging across 6 

measurements) of the mean response contains speed, blue tab material type (J), top 

preheat (C), die pressure (D) and CD interaction. The R2 for this model is 86.6% with 

RMSE of 0.179 and the mean response of 1.04. The residual by predicted plot (Figure 15) 

indicates the residuals do not seem to follow random pattern at the left-hand side of the 

plot. The red points above the zero line are observations with lanes 2, 3 and 4. The actual 

response values for these points were higher than predicted by the model and therefore 

they ought to be closer to the middle values of strength where the target is. The blue 

points in the lower left quadrant of the plot correspond to the runs where the actual mean 

peel strength was zero or very close to zero (runs 13, 14 and 21). The lack of fit with the 
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blue points is not a concern since we are not interested in running the process with such 

low peel strength. In order to investigate inadequacy of the fit with the red points, I will 

refit a model with the lane main effect added.  

JMP output for the above model is shown on Figure 16. The R2 increased slightly 

to 87.6%, and the means for the four lanes show an increasing trend from 0.97 to 1.10. 

The p-values in the parameter estimates section of the output are not correct, since the 

standard errors for the split-unit effects C, D and J and whole-unit Speed and CD are 

underestimated in this analysis. However, the p-value for the lane effect is correct, since 

it uses an estimate of within lane variation. The lane effect is significant at α = 0.05. 

When I performed the variable selection procedure using Lenth’s PSE method for each 

lane separately, the same set of effects manifested themselves and the parameter 

estimates for the reduced models were virtually the same, except for the speed effect. 

This effect was decreasing from lane 1 to 4, with the values in the range of -0.34 to -0.23. 

However, speed by lane interaction proved to be unimportant with the data from all four 

lanes (p-value = 0.27).  

The parameter estimates are not affected by the invalid standard errors and are 

correct. For the general linear model εβ += XY , where ε is distributed as ),0( ΣN , the 

uniformly minimum variance unbiased (UMVU) estimator of β is given by the ordinary 

least squares (OLS) estimator YXXX ')'( 1−  if and only if there exists a q×q nonsingular 

matrix F such that XFX =Σ  [Theorem 6.8.1, Graybill (1976)] where q is the number of 

parameters in β. Consider a mixed linear model εβ ++= ZUXY , where X is a n×q 

design matrix of the fixed effects, Z is a n×m design matrix of the random effects, U ~ 

),0( GN , ε ~ ),0( RN . Assuming that mmu IG ×= 2σ  and nnIR ×= 2
εσ , 

XFXXZZXIZZXRZGZX u
u =+=+=+=Σ )'()'()'( 2

2
222

ε
εε σ

σ
σσσ . Let 21 FFF += . Then 

IF =2  and 1
2 ' XFXZZu =σ . Hence 1

2 ''' XFXXZZX u =σ  and XZZXXXF u '')'( 12
1

−= σ . 

As long as the design matrix X is nonsingular, F1 is also nonsingular. Therefore F is 

nonsingular and the OLS estimate of β is also a UMVU estimator.  
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We can see that the largest effects are speed and blue tab paper type, both with a 

negative estimate. Increasing the speed will weaken the bond, as well as switching from 

“good” (J = -1) to “bad” (J = 1) type of paper. The response is nominal-the-best type, 

though at this point the target value is not available to us. The optimal setting of the 

factors will be discussed after we examine the relationship between continuous and 

ordinal responses.  

From table 23 we can see that CD interaction is aliased with HJ. It is unfortunate 

that the only significant interaction happened to be aliased with another two-factor 

interaction. The project manager favors interpreting the marginally significant contrast as 

a CD interaction based on his expert opinion. However, in subsequent experiments it 

would be advantageous to make sure that both interactions are estimable. 

 

Analysis of the Within Standard Deviation of the Peel Strength 

 
The same steps as with the analysis of the peel strength were followed for the 

analysis of the within piece standard deviation. Final results are shown in the output from 

JMP in Figure 17. Somewhat surprisingly, the same set of effects proved to be active for 

the square root of the mean of each set of the standard deviations. The R2 for the model 

with speed, C, D, J and CD interaction was 85.7%. The lane effect was not significant (p-

value = 0.43). Even the signs of the parameter estimates were the same, meaning that 

pieces with stronger bonds have more within variability. 

Categorical Data Analysis 

Data Screening 

 
Recall that seven categories were created which were believed to represent the 

strength of the bond with a perfect category in the middle. Ordinal data are encountered 

in industrial application frequently and often they are an alternative to unobtainable or 

expensive continuous measurements. This was not the case with the TB experiment. 

Continuous data were as easy to obtain as categorical since the Imada peel tester was 

already available. Actually it took longer to obtain categorical data since there were 
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(40+20)×32×4 = 7,680 tabs to be removed. A single technician accomplished this 

enormous task. 

The analysis of the categorical data with slow peel (columns 14-24 in Table 26) is 

presented next. A close examination of the data reveals that for the majority of runs, 

samples from different lanes reside in the adjacent categories, except for several outlying 

runs. For instance, in run 16 samples from lanes 1 and 2 were predominantly in category 

6, while samples from lanes 3 and 4 were on the other side of the scale. It is unexpected 

that samples produced within a short period of time under the same conditions would be 

so disparate. While collecting the ordinal data, the technician found that an additional 

category is needed. Originally the category 6 was defined as “a seal with an inconsistent 

pattern, weak seal”. The technician discovered that samples with an inconsistent seal 

pattern could differ in terms of the amount of pull required to remove the tab. Therefore 

we need to redefine the categories and split the original category 6 into two categories. 

Fortunately, the technician took notes while collecting the data and was able to split the 

data in category 6.  

The description of the redefined categories and their correspondence with the 

original categories is presented in Table 28. The original categories 1-4 were left 

unchanged, the category 6 was split into categories 5 and 7, and the original categories 5 

and 7 became 6 and 8, respectively. The new categories are ordered by the amount of pull 

required to remove the tab, from the strongest to the weakest. However, the categorical 

response in this study is on a two-dimensional scale, which is illustrated in Figure 18. 

The amount of pull is on a horizontal axis and consistency of the seal – on a vertical axis. 

Vertical arrows represent variation in consistency of the seal; presumably strong seals are 

more consistent, but this postulation was not verified for categories with seals completely 

or partially covered by the tab paper. Therefore we do not have enough information to 

order the categories by consistency of the seal. Ordering by the amount of pull is 

somewhat subjective because originally categories were defined primarily based on the 

visual characteristics of the discs which were thought to correlate with pull strength. The 

underlying assumptions with pull strength ordering are that seals with more paper left 

after removing tabs have stronger pull (categories 1-3), a consistent seal with a good pull 
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(perfect category 4) is stronger than a slightly inconsistent seal with a good pull (category 

5) and that an inconsistent seal in category 7 involves less pull than a consistent seal in 

category 6. It appears from the discussion above that the combined categories 1-3, 4-5, 6-

7 and 8 have less ambiguity as far as pull strength, but it would be beneficial to analyze 

both cases and compare the results. The data on slow peel with 8 redefined categories is 

given in Table 29. The number of samples in each category was as follows: 478, 1404, 

675, 758, 334, 189, 464 and 818 for categories 1 to 8, respectively. Note that category 6 

(C6) is the least populated one and often the data have a gap between categories 4 and 6, 

i.e., part of the data falls into C4 and C6 without any samples in C5. 

 

Proportional Odds Model 

 

One of the goals of this experiment is to identify the relationship between the 

ordinal and continuous responses. Let Y be an observed ordinal response and Y* - an 

underlying unobservable (latent) continuous variable corresponding to Y. Then Y falls 

into category k if kk Y αα ≤<−
*

1 , where kα  denote cutpoints, k = 1,…,K. Typically, 

−∞=0α  and +∞=kα , while 11 ..., −kαα  are parameters to be estimated. A general form 

of a cumulative link model (Agresti, 2002) is of the form: 

)'()|()|( * XgXYPXkYP kk βαα −=≤=≤ , 

where g(·) is a link function. If the latent continuous response is modeled as 

εβ += XY '* , then normality of the error term implies a probit link for cumulative 

probabilities. If ε follows a logistic distribution, the cumulative logit model, or 

proportional odds model results.  

Fitting ordinal logistic regression in the context of design of experiments with 

many factors presents numerous challenges. The data in Table 29 are sparse with a 

majority of the cells being empty. This problem is common for contingency tables with 

many variables and categories. Agresti (2002, p. 395) remarks that “although empty cells 

and sparse tables need not affect parameter estimates of interest, they can cause sampling 

distributions of goodness-of-fit statistics to be far from chi-squared.” In this study we will 
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not rely on the Pearson chi-squared and likelihood-ratio chi-squared statistics to assess 

goodness-of-fit but apply a modification of ad hoc variable selection procedure from 

Chapter II.  

The structure of the design in this experiment differs from JW examples in the 

following aspect: each whole unit is a block consisting of 4 runs while in JW examples 

each whole unit was a single control factor combination from L18. Therefore the 

following procedure is deemed appropriate. First I fit a mixed effects model with the lane 

effect omitting any effects from the 32-run design:  

ik uLLL
XkYP

XkYP
++−−=

≤−
≤ 379.0203.0127.1

)|(1
)|(log α  

where k = 1,…7, i = 1,…32 and L1-L3 correspond to the dummy variables for the lane 

effect. The random effects ui correspond to random run effects and contain combined 

variation from the whole-unit and split-unit errors. Treating the fitted random effects ui as 

a response variable in the next step would allow using the same variable selection method 

based on Lenth’s PSE as in the continuous case. The effects chosen under the above 

procedure are the same as with the mean peel strength – Speed, C, D, J and CD. 

Interestingly, correlation between the mean peel strength and the fitted random run 

effects ui was 84%. The final mixed model was fit using both GLIMMIX and WinBUGS. 

The results were practically the same, and only the latter are reported since we will need 

Bayesian analysis for optimization purposes. Details on parameter estimates and posterior 

intervals are given in Table 30. 

j

k

bLLL

CDJDCS
XkYP

XkYP

++−−

+−++−=
≤−

≤

363.0203.0103.1

80.051.367.032.006.3
)|(1

)|(log α
, 

where, k = 1,…7, and bj correspond to eight random block effects. 

The cumulative probabilities were parameterized as 

)'()|()|( * XgXYPXkYP kk βαα +=≤=≤ . The sign of β has the opposite meaning 

with this parameterization, i.e., if the elements of β are positive, Y tends to be smaller at 

higher values of X. The negative effect estimate for speed suggests that the cumulative 

probability of Y increases as speed increases, i.e. weaker bonds are more likely with 
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higher speed. Similarly weaker bonds are more likely with “bad” tab paper and less likely 

with high levels of C and D. The negative effect estimate for lane 1 means that on 

average lane 1 produces weaker bonds. The effect estimate for lane 4 is positive, and is 

equal to (0.93+0.04-0.57) = 0.40.  

 

Optimization 

 
A loss function for the TB experiment is not known at present and the data are 

being collected to evaluate customer dissatisfaction with the product. I propose an ad hoc 

loss function in order to show the optimal factor settings. I consider a loss function of the 

form ∑∑
= =

=
4

1

8

14
1)(

i k
ikk pLE ω , where index i refers to lanes 1 through 4 and ωk are the 

penalties associated with the probability of belonging to category k. Table 31 lists one set 

of possible ωk, where positive values increase the loss function and negative values 

correspond to categories with the amount of pull close to the target.  

Even though the type of tab paper (J) is a noise factor, its effect is the largest and 

it is not evident how to make a process robust to J. The project manager at Huhtamaki is 

working on resolving this issue in collaboration with the supplier of the tab paper and 

they plan to experiment with this factor by taking rolls that the supplier will produce with 

a varied composition of chemicals.  

The expected loss statistics sorted by S, J and C levels are shown in Table 32. The 

loss is minimized with low speed, bad material and {C, D} = {-1, 1} (run 8). The next 

best combination corresponds to high speed, good material and {C, D} = {1, -1} (run 16). 

There were 24 distinct treatment combinations for a full factorial design in S, C, D and J. 

I have shown all 32 runs in order to see how the expected loss is affected by the random 

block effect. Variation due to this effect is quite large. For example, run 26 and 18 have 

the same levels of S, C, D and J. The mean expected loss is quite different though, -2.22 

for run compared to 1.62 for run 18.  

The above recommendations are of limited usefulness to the Triweb crew since 

they do not have control over the tab material factor and whether a new roll of material 
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would behave as “good” or “bad”. Ideally they would like to have no or little variability 

in the incoming material, set speed at the high level, adjust the control factors to some 

fixed levels and run the machine without having to worry about quality of the product. 

Unfortunately, this goal is not achievable with the current variability of supplier’s 

material.  

 

Correlation between the continuous and ordinal response 

 
A bivariate analysis of the square root of the mean peel strength versus the 

average sample category score is shown in Figure 19. The average sample category score 

for each of the 128 factor-lane combinations refers to ∑
=

⋅
8

140
1

k
kmk , where km  

represents the number of samples in category k. A simple linear model has an R2 of 85% 

and the regression plot indicates that there is a considerable amount of variation in mean 

peel strength in the neighborhood of category 4. Another way of modeling a relationship 

between the continuous and ordinal response is to discretize the average sample category 

score to the nearest category and perform an analysis of means (Figure 20). The perfect 

category has the mean of 0.9682 and a 95% confidence interval is (0.8842, 1.0522). This 

range is too narrow, since it simply estimates the mean and so does not account for the 

variation of individual disks. In order to set the specification limits for the mean peel 

strength, we can take the 95% lower and upper quantiles of the data with the average 

score of 4 – (0.8862, 1.0502), or (0.785, 1.103). This range of values overlaps with all but 

the extreme categories, and the issue is more serious at the weaker end of the peel 

strength distribution. It appears that a lower specification limit for the TB discs needs to 

be much higher than the lower specification limit of the MD discs of 0.4. However, the 

problem appears to be more complex with TB discs. That is, the problem with defective 

units cannot me managed by simply imposing tighter specification limits on peel 

strength. 
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CHAPTER V 

Conclusions 

 

An integrated approach to the design, analysis and optimization of generalized 

mixed linear models with FAMe experiments is presented in this dissertation. This 

analysis and optimization of FAMe experiments differs from JW’s proposed approach in 

the following aspects: 

• These models properly account for the split-unit structure of the data with 

the use of generalized linear mixed models. 

• A model choice does not depend on a subsequent optimization step and is 

more flexible. Different link functions and interactions between an 

amplification and control factors may be considered. 

• Variable selection is performed via an ad hoc procedure described in 

Chapter II. The advantage of this method is clear when the number of 

parameters under consideration is comparable to the available degrees of 

freedom, which is common in designed experiments. An intermediate step 

in our variable selection procedure with normal random effects as a 

response variable allows application of standard variable selection 

techniques with a linear normal response.  

• Bayesian analysis in WinBUGS permits simultaneous model specification 

of two types of defects. Thus variation of the parameter estimates can be 

incorporated in quantities of interest, such as the expected loss function. 

Sensitivity of the optimum factor levels to the uncertainty of the parameter 

estimates may be assessed as well. 

Data collection is crucial with FAMe experiments as with any categorical data. I 

have explored some of the design issues with an ad hoc sequential design with small n in 

Chapter III. There I have only considered fixed effects logistic models. Through this 

limited comparison of small sequential and fixed designs, it is evident that sequential 
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designs that do not require estimation of parameters between runs can outperform fixed 

designs of similar size. 

Spiess and Hamerle (2000) compare three different estimation techniques for the 

correlated binary response with a probit link with respect to small sample properties. 

These three methods (marginal ML estimation using Gauss-Hermite quadrature, GEE, 

and ‘mean and covariance structure analysis’ approach) do not include pseudo-likelihood 

or MCMC methods used for the analysis of FAMe examples. They study convergence, 

bias and efficiency of the estimation approaches via simulation. Similar study for other 

link functions and estimation methods can be an area for further research. 

In the final chapter, I describe my experience in designing a failure amplification 

experiment with noise factors, and analyzing the resulting categorical and continuous 

data. This practical example illustrates the complexities of experimentation and data 

analysis. 
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MODEL 
model { 
 for (i in 1:N) { 
 x1l[i] <- (2*x1[i]-3)/sqrt(2) 
 x21l[i] <- x21[i]/sqrt(2) 
 x22l[i] <- x22[i]/sqrt(2) 
 x2l[i] <- (x2[i]-2)/sqrt(2) 
 x3l[i] <- (x3[i]-2)/sqrt(2) 
 x4l[i] <- (x4[i]-2)/sqrt(2) 
 x5l[i] <- (x5[i]-2)/sqrt(2) 
 x5q[i] <- (3*(x5[i]-2)*(x5[i]-2)-2)/sqrt(6) 
 x6l[i] <- (x6[i]-2)/sqrt(2) 
 x6q[i] <- (3*(x6[i]-2)*(x6[i]-2)-2)/sqrt(6) 
 x7l[i] <- (x7[i]-2)/sqrt(2) 
 x8l[i] <- (x8[i]-2)/sqrt(2) 
  } 
for (j in 1:K) { 
 C[j] <- (log(M[j])-1.5664)/0.6765 
  }    
for (i in 1:N) { 
 b1[i] ~ dnorm(0, tau1) 
 b10[i] <- b1[i] - mean(b1[]) 
 b2[i] ~ dnorm(0, tau2) 
 b20[i] <- b2[i] - mean(b2[]) 
 for (j in 1:K) { 
# Opens   
 S1[i,j] ~ dbin(p1[i,j], 160) 
 cloglog(p1[i,j]) <- o[1] + o[2]*x2l[i] + o[3]*x3l[i] + o[4]*x4l[i] 
    + o[5]*x5l[i] + o[6]*x6l[i] + o[7]*x7l[i] 
   + o[8]*C[j]  + oq[1]*x6q[i]  + b10[i] 

Orep[i,j] ~ dbin(p1[i,j],160) 
 or2[i,j] <- pow((S1[i,j]-160*p1[i,j]),2)   
 or2rep[i,j] <- pow((Orep[i,j]-160*p1[i,j]),2)  
# Shorts 
 S2[i,j] ~ dbin(p2[i,j], 80) 
 cloglog(p2[i,j]) <- s[1] + s[2]*x1l[i] + s[3]*x4l[i]+ s[4]*x6l[i] 
   + s[5]*C[j]  + b20[i] 
 Srep[i,j] ~ dbin(p2[i,j],80) 
 sr2[i,j] <- pow((S2[i,j]-80*p2[i,j]),2)  
 sr2rep[i,j] <- pow((Srep[i,j]-80*p2[i,j]),2)   
   } 
 orr[i] <- mean(or2[i,]) 
 orrep[i] <- mean(or2rep[i,]) 
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 srr[i] <- mean(sr2[i,]) 
 srrep[i] <- mean(sr2rep[i,]) 
   } 
# Optimization 
 for (i in 1:1460) { 
  x1lo[i] <- FF7[i,1]/sqrt(2) 
  x2lo[i] <- FF7[i,2]/sqrt(2) 
  x3lo[i] <- FF7[i,3]/sqrt(2) 
  x4lo[i] <- FF7[i,4]/sqrt(2) 
  x5lo[i] <- FF7[i,5]/sqrt(2) 
  x6lo[i] <- FF7[i,6]/sqrt(2) 
  x7lo[i] <- FF7[i,7]/sqrt(2) 
  x6qo[i] <- (3*pow(FF7[i,6],2)-2)/sqrt(6) 
    } 
 for (i in 1:1460) { 
 bb1[i] ~ dnorm(0, tau1) 
 bb2[i] ~ dnorm(0, tau2) 
 for (j in 1:K) { 
  cloglog(pp1[i,j]) <- o[1] + o[2]*x2lo[i] + o[3]*x3lo[i] + o[4]*x4lo[i] 
     + o[5]*x5lo[i] + o[6]*x6lo[i] + o[7]*x7lo[i] 
     + o[8]*C[j]  + oq[1]*x6qo[i]  + bb1[i] 
  cloglog(pp2[i,j]) <- s[1] + s[2]*x1lo[i] + s[3]*x4lo[i] + s[4]*x6lo[i] 
      + s[5]*C[j]  + bb2[i] 
   } 
 EL[i] <- (pp1[i,3]+pp1[i,4]+pp1[i,5]+pp2[i,3]+pp2[i,4]+pp2[i,5])/3 
    } 
# Model checking 
 Tyo <- sqrt(mean(orr[])) 
 Tyrepo <- sqrt(mean(orrep[])) 
 Tys <- sqrt(mean(srr[])) 
 Tyreps <- sqrt(mean(srrep[])) 
# Priors 
 for (i in 1:8) { o[i] ~ dnorm(0, 1.0E-6)} 
 for (i in 1:1) { oq[i] ~ dnorm(0, 1.0E-6)} 
 for (i in 1:5) { s[i] ~ dnorm(0, 1.0E-6)} 
 tau1 ~ dgamma(0.001, 0.001) 
 sigma1 <-1 / sqrt(tau1) 
 tau2 ~ dgamma(0.001, 0.001) 
 sigma2 <- 1 / sqrt(tau2) 
} 
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DATA 
list( 
M=c(3,4,5,6,7),  
x1=c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2), 
x21=c(1,1,1,0,0,0,-1,-1,-1,1,1,1,0,0,0,-1,-1,-1), 
 x22=c(0,0,0,1,1,1,-1,-1,-1,0,0,0,1,1,1,-1,-1,-1), 
x2 = c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3), 
x3=c(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3), 
x4=c(1,2,3,1,2,3,2,3,1,3,1,2,2,3,1,3,1,2), 
x5=c(1,2,3,2,3,1,1,2,3,3,1,2,3,1,2,2,3,1), 
x6=c(1,2,3,2,3,1,3,1,2,2,3,1,1,2,3,3,1,2), 
x7=c(1,2,3,3,1,2,2,3,1,2,3,1,3,1,2,1,2,3), 
x8=c(1,2,3,3,1,2,3,1,2,1,2,3,2,3,1,2,3,1), 
 
N=18,  
K=5, 
S1 = structure( 
 .Data = c( 

33,7,4,0,1, 
7,9,1,0,0, 
... 
12,2,0,0,1), 

.Dim = c(18, 5)), 
S2 = structure( 
 .Data = c( 
  1,0,0,0,0, 
  ... 
  7,2,0,0,0), 
  .Dim = c(18, 5)), 
FF7=structure( 

.Data = c( 
-1,-1,-1,-1,-1,-1,-1, 
... 
1,1,1,1,1,1,1, 
-1,1,-1, -1,0.34,-0.43,1, 
-1,1,0,-1,0.34,-0.43,0), 
.Dim = c(1460, 7))) 
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INITIALS 
list( 
o =c( 0,0,0,0,0,0,0,0),  
oq=c(0), 
tau1 = 1, 
b1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
s =c( 0,0,0,0,0),  
tau2 =1, 
b2 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
Orep=structure( 
 .Data = c( 

0,0,0,0,0, 
... 
0,0,0,0,0), 

 .Dim = c(18, 5)), 
Srep=structure( 
 .Data = c( 

0,0,0,0,0, 
... 
0,0,0,0,0), 

 .Dim = c(18, 5)), 
bb1=c(0,0,...,0), 
bb2=c(0,0,...,0) 
) 
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Table 1. Factors and levels for the PCB experiment. 

Control factors Notation Levels 

  1 2 3 

Preheat X1 No Yes - 

Surface preparation X2 Scrub Pumice Chemical 

Lamination speed X3 1.2 mpm 1.5 mpm 1.8 mpm 

Lamination pressure X4 20 psi 40 psi 60 psi 

Lamination temperature X5 95 0C 105 0C 115 0C 

Exposure energy X6 (m) 14 17 20 

Developer speed X7 3 fpm 4 fpm 5 fpm 

ORP X8 500 530 560 
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Table 2. OA(18, 21 × 37) and data from PCB experiment. 
         Opens Shorts 

         Line width C1 Spacing C2 

Run X1 X2 X3 X4 X5 X6 X7 X8 3 4 5 6 7 3 4 5 6 7 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 33 7 4 0 1 

2 1 1 2 2 2 2 2 2 4 1 0 0 0 7 9 1 0 0 

3 1 1 3 3 3 3 3 3 19 2 0 0 0 14 3 1 0 0 

4 1 2 1 1 2 2 3 3 9 0 0 0 0 2 0 2 0 0 

5 1 2 2 2 3 3 1 1 22 1 1 1 0 7 1 2 1 0 

6 1 2 3 3 1 1 2 2 8 0 0 0 0 78 30 7 1 1 

7 1 3 1 2 1 3 2 3 19 1 0 0 0 9 1 3 0 0 

8 1 3 2 3 2 1 3 1 4 0 1 0 0 7 0 1 0 1 

9 1 3 3 1 3 2 1 2 7 0 0 0 0 4 3 0 0 0 

10 2 1 1 3 3 2 2 1 22 1 0 0 1 6 0 0 0 0 

11 2 1 2 1 1 3 3 2 34 2 2 0 0 13 2 0 0 0 

12 2 1 3 2 2 1 1 3 13 4 1 0 0 34 5 0 1 3 

13 2 2 1 2 3 1 3 2 7 0 1 0 0 8 3 0 0 0 

14 2 2 2 3 1 2 1 3 25 1 0 0 0 25 8 0 2 1 

15 2 2 3 1 2 3 2 1 41 1 0 0 1 7 0 0 0 0 

16 2 3 1 3 2 3 1 2 45 9 5 0 1 10 6 0 0 0 

17 2 3 2 1 3 1 2 3 3 0 0 0 0 8 0 0 0 0 

18 2 3 3 2 1 2 3 1 7 2 0 0 0 12 2 0 0 1 
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Table 3. Covariance pattern analysis for opens using GEE. 

Parameter Estimate Standard Error Lower Upper Z Pr > |Z| 
Intercept -5.040 0.112 -5.259 -4.820 -45.04 <.0001 

x2l -0.445 0.134 -0.707 -0.183 -3.33 0.0009 
x3l 0.436 0.137 0.167 0.705 3.18 0.0015 
x4l 0.689 0.121 0.451 0.927 5.68 <.0001 
x5l -1.045 0.147 -1.333 -0.758 -7.12 <.0001 
x6l -0.498 0.136 -0.766 -0.231 -3.65 0.0003 
x7l -0.387 0.147 -0.675 -0.100 -2.64 0.0083 
x6q 0.495 0.100 0.299 0.691 4.95 <.0001 

ln C1 -3.420 0.120 -3.654 -3.185 -28.56 <.0001 
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Table 4. Conditional GLMM analysis for opens. 

(a) Fixed effects estimates 
95% C.I. 

Parameter Estimate Standard Error 
Lower Upper 

t-value Pr > |t| 

Intercept -5.014 0.140 -5.326 -4.703 -35.84 <.0001 
x2l -0.441 0.177 -0.794 -0.088 -2.49 0.015 
x3l 0.426 0.178 0.071 0.780 2.39 0.0193 
x4l 0.561 0.179 0.204 0.918 3.13 0.0025 
x5l -0.856 0.177 -1.208 -0.504 -4.85 <.0001 
x6l -0.477 0.173 -0.821 -0.133 -2.76 0.0073 
x7l -0.458 0.177 -0.811 -0.105 -2.59 0.0117 
x6q 0.431 0.181 0.069 0.792 2.38 0.0202 

ln C1 -3.436 0.173 -3.781 -3.092 -19.88 <.0001 
(b) Random effect predictions 

Run1 0.068 0.279 -0.488 0.625 0.24 0.8075 
Run2 0.090 0.246 -0.400 0.580 0.37 0.7146 
Run3 0.165 0.286 -0.405 0.736 0.58 0.5652 
Run4 0.003 0.293 -0.581 0.587 0.01 0.9926 
Run5 0.056 0.265 -0.473 0.585 0.21 0.8327 
Run6 0.406 0.248 -0.088 0.900 1.64 0.1057 
Run7 0.001 0.268 -0.533 0.534 0.00 0.9977 
Run8 -0.446 0.268 -0.981 0.089 -1.66 0.1010 
Run9 0.102 0.298 -0.492 0.696 0.34 0.7332 
Run10 -0.171 0.287 -0.744 0.402 -0.6 0.5537 
Run11 -0.032 0.280 -0.591 0.527 -0.11 0.9097 
Run12 -0.295 0.249 -0.792 0.201 -1.19 0.2398 
Run13 0.201 0.279 -0.356 0.757 0.72 0.4746 
Run14 -0.063 0.257 -0.575 0.448 -0.25 0.8055 
Run15 -0.253 0.269 -0.789 0.283 -0.94 0.3492 
Run16 0.063 0.278 -0.491 0.616 0.23 0.8214 
Run17 0.066 0.282 -0.497 0.629 0.23 0.8152 
Run18 0.040 0.278 -0.515 0.595 0.14 0.8873 
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Table 5. Bayesian analysis for opens. 

(a) Fixed effect estimates 
Posterior Interval 

Parameter Mean Standard 
Deviation 2.50% 97.50% 

Intercept -5.034 0.117 -5.266 -4.809 
x2l -0.446 0.187 -0.816 -0.069 
x3l 0.429 0.188 0.053 0.802 
x4l 0.572 0.193 0.175 0.942 
x5l -0.877 0.194 -1.246 -0.479 
x6l -0.476 0.186 -0.835 -0.093 
x7l -0.458 0.195 -0.852 -0.064 
x6q 0.441 0.195 0.049 0.822 

ln C1 -3.447 0.175 -3.794 -3.113 
(b) Random effect predictions 

Run1 0.074 0.298 -0.515 0.687 
Run2 0.097 0.246 -0.369 0.616 
Run3 0.163 0.303 -0.408 0.810 
Run4 -0.005 0.301 -0.614 0.585 
Run5 0.052 0.269 -0.487 0.597 
Run6 0.400 0.266 -0.068 0.964 
Run7 -0.006 0.275 -0.558 0.535 
Run8 -0.437 0.299 -1.098 0.081 
Run9 0.097 0.311 -0.505 0.746 

Run10 -0.173 0.304 -0.826 0.390 
Run11 -0.034 0.285 -0.622 0.528 
Run12 -0.274 0.256 -0.800 0.212 
Run13 0.193 0.293 -0.342 0.816 
Run14 -0.055 0.262 -0.578 0.466 
Run15 -0.255 0.289 -0.888 0.246 
Run16 0.058 0.293 -0.514 0.651 
Run17 0.064 0.288 -0.507 0.656 
Run18 0.041 0.291 -0.519 0.636 
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Table 6. Expected loss statistics and factor levels for the PCB data. 

Expected 
Loss x1 x2 x3 x4 x5 x6 x7 mean sd 2.50% median 97.50% Minimum 

Value 
EL[510] 1 3 1 1 3 2 3 0.00102 0.00042 0.00045 0.00094 0.00198 mean, 97.5% 
EL[509] 1 3 1 1 3 2 2 0.00114 0.00045 0.00052 0.00106 0.00218  
EL[591] 1 3 2 1 3 2 3 0.00113 0.00047 0.00051 0.00105 0.00219  
EL[267] 1 2 1 1 3 2 3 0.00114 0.00045 0.00051 0.00106 0.00222  
EL[1459] 1 3 1 2 2.34 1.57 3 0.00112 0.00051 0.00051 0.00102 0.00235 JW settings 
EL[507] 1 3 1 1 3 1 3 0.00104 0.00057 0.00040 0.00092 0.00243 median, 2.5% 

… … … … … … … … … … … … …  
EL[1460] 1 3 2 2 2.34 1.57 2 0.00164 0.00081 0.00071 0.00148 0.00346 JW settings 

… … … … … … … … … … … … …  
EL[460] 1 2 3 3 1 1 1 0.02774 0.01630 0.00831 0.02427 0.06778  
EL[218] 1 1 3 3 1 1 2 0.02769 0.01669 0.00832 0.02415 0.06883  
EL[1189] 2 2 3 3 1 1 1 0.02869 0.01661 0.00921 0.02516 0.06976  
EL[947] 2 1 3 3 1 1 2 0.02851 0.01745 0.00904 0.02483 0.07089  
EL[136] 1 1 2 3 1 1 1 0.02852 0.01753 0.00849 0.02478 0.07129  
EL[865] 2 1 2 3 1 1 1 0.02906 0.01685 0.00917 0.02534 0.07144  
EL[217] 1 1 3 3 1 1 1 0.03823 0.02317 0.01126 0.03336 0.09491  
EL[946] 2 1 3 3 1 1 1 0.03905 0.02356 0.01217 0.03378 0.09844  
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Table 7. DIC values for mixed and fixed models for the PCB data. Models without 
the random effects have the same set of fixed effects as mixed models. JW models have a 
different set of fixed effects. 

 Response Dbar Dhat pD DIC 

Mixed models       
 Opens 274.996 259.693 15.303 290.299 
 Shorts 208.549 195.751 12.798 221.347 
 Total 483.545 455.444 28.101 511.646 
Models w/o random effects      

 Opens 297.600 288.626 8.974 306.574 
 Shorts 223.134 218.124 5.010 228.144 
 Total 520.735 506.751 13.984 534.719 

JW models      
 Opens 367.891 362.174 5.717 373.607 
 Shorts 216.495 210.700 5.795 222.290 
 Total 584.385 572.874 11.512 595.897 

 

 

Table 8. Factors and levels for the paper feeder experiment. 

Control factors Notation Levels 

  1 2 3 

Feed belt material X1 Type A Type B  

Speed X2 288 mm/s 240 mm/s 192 mm/s 

Drop height X3 3 mm 2 mm 1 mm 

Center roll X4 Absent Present - 

Belt width X5 10 mm 20 mm 30 mm 

Tray guidance angle X6 0 14 28 

Tip angle X7 0 3.5 7 

Turf X8 None 1 sheet 2 sheets 

Noise factor     

Stack quantity N High Low - 
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Table 9. Data from the paper feeder experiment. 
  Misfeed Multifeed 

Run  N1 N2 N1 N2 
1 M 20 40 42.5 45 50 60 20 30 40 50 60 70 80 82.5 85 90 120 160 60 62.5 65 70 80 90 
 #  failures 5 5 1 0 0 0 5 0 0 0 0 0 0 2 2 2 2 2 0 1 1 3 2 3 
2 M 0 10 15 20 30 40 0 10 15 20 40 60 30 35 40 50 60  30 40 60 70 75 80 
 #  failures 5 3 0 0 0 0 5 3 0 0 0 0 0 1 3 3 3  0 1 1 1 2 2 
3 M 0 10 15 20 25  0 10 15 20 30 40 20 25 30 40   20 30 35 40 50  
 #  failures 5 5 1 1 0  5 3 2 0 0 0 0 2 2 2   0 1 1 3 3  
4 M 20 25 30 40 60  0 20 25 30 40  50 60 65 70 80  40 50 55 60   
 #  failures 5 3 1 0 0  5 5 1 0 0  0 1 2 2 2  0 0 2 2   
5 M 20 25 30 40 50  20 25 30 40 50  30 40 45 50 60  40 50 55 60   
 #  failures 4 1 0 0 0  4 1 0 0 0  0 1 3 3 3  0 0 2 2   
6 M 10 15 20 30 40  10 15 20 30 40  30 40 45 50   30 40 50 55 60  
 #  failures 4 2 1 0 0  3 0 0 0 0  0 1 2 3   0 1 2 2 3  
7 M 10 20 30 35 40  10 20 25 30 40  20 30 35 40 50  20 30 40 60 70 80 
 #  failures 5 4 2 1 0  5 3 0 0 0  0 1 2 2 3  0 1 1 1 2 2 
8 M 15 20 30 35 40  20 30 35 40 60 70 70 80 100 110 120  60 70 75 80 100  
 #  failures 3 2 2 3 0  5 2 4 1 1 0 0 1 1 2 2  0 1 2 2 2  
9 M 10 15 20 30 40  10 15 20 25 30 40 40 60 65 70 80  40 50 55 60 70  
 #  failures 5 4 1 0 0  5 5 5 4 0 0 0 1 1 2 3  0 0 1 2 3  

10 M 0 5 10 15 20  0 5 10 15 20  5 10 15 20 30  0 5 15 20 30  
 #  failures 5 1 0 0 0  5 0 0 0 0  0 1 1 3 3  0 1 0 2 2  

11 M 0 5 10 15 20  0 5 10 15 20  5 10 15 20 30  0 5 10 15 20 30 
 #  failures 5 2 0 0 0  5 1 0 0 0  0 1 1 4 3  0 1 1 0 2 2 

12 M 0 10 15 20   0 10 15 20   30 40 50 55 60  40 45 50    
 #  failures 5 4 0 0   5 4 0 0   0 1 1 2 5  0 0 1    

13 M 0 10 15 20   0 10 15 20   30 40 80 85 90 100 55 60     
 #  failures 5 5 1 0   5 4 2 0   0 1 1 4 3 2 0 2     

14 M 10 20 25 30 35 40 10 20 25 30 35 40 20 30 35 40 45  20 25 30 35 40 50 
 #  failures 5 3 2 2 0 0 5 4 0 0 0 0 0 0 0 2 2  0 0 1 1 4 3 

15 M 0 5 10 15   0 5 10 15 20  20 30 35 40 50  10 15 20 30   
 #  failures 1 0 0 0   4 0 0 0 0  0 1 3 2 4  0 1 4 4   

16 M 5 10 20 30 35  5 10 20 30 40  20 30 35 40 50 60 30 40 50 55 60  
 #  failures 5 1 0 0 0  5 1 0 0 0  0 1 0 2 3 5 0 1 1 2 2  

17 M 10 20 30 40 45 50 10 20 25 30 40  80 90 95 100   100 105 110    
 #  failures 5 4 5 2 0 0 5 3 0 0 0  0 1 1 1   0 1 1    

18 M 10 15 20 30   10 20 30 35 40  60 65 70 80 90 120 60 70 75 80 90  
 #  failures 5 5 1 0   5 5 5 0 0  0 1 2 2 2 3 0 1 2 2 3  
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Table 10. Posterior summaries for the final models with the paper feeder data. 

 Coefficient Mean St.Dev. 2.50% median 97.50% 
Misfeeds       

 α0 -1.651 0.230 -2.121 -1.645 -1.213 
 α1 -1.926 0.739 -3.783 -1.901 -0.530 
 α2 2.027 0.732 0.526 2.030 3.391 
 α3 0.049 0.827 -1.584 0.020 1.773 
 α4 0.517 0.669 -0.795 0.539 1.882 
 α46 4.415 1.515 1.390 4.428 7.336 
 α6 -3.654 0.868 -5.268 -3.633 -1.922 
 α7 0.190 0.793 -1.342 0.196 1.881 
 α7q 2.735 0.834 1.131 2.717 4.496 
 α8 0.901 0.858 -0.770 0.923 2.452 
 M -4.366 0.379 -5.106 -4.349 -3.693 
 α2M 1.695 0.558 0.669 1.673 2.848 
 NM -0.280 0.117 -0.505 -0.280 -0.050 
 N -0.176 0.077 -0.327 -0.175 -0.031 
 α2Ν 0.542 0.145 0.266 0.542 0.831 
 α3N 0.366 0.128 0.118 0.365 0.618 
 α8N -0.425 0.120 -0.657 -0.427 -0.192 
 σ1 1.720 0.541 0.981 1.616 3.083 
       
 u1[1] 0.642 1.542 -2.468 0.634 3.728 
 u1[2] 0.608 0.965 -1.438 0.628 2.548 
 u1[3] -1.502 1.482 -4.635 -1.467 1.413 
 u1[4] 0.089 1.234 -2.338 0.097 2.693 
 u1[5] 0.896 1.124 -1.348 0.886 3.169 
 u1[6] 0.122 1.180 -2.369 0.171 2.435 
 u1[7] 0.944 1.338 -1.626 0.927 3.688 
 u1[8] -0.902 1.290 -3.479 -0.910 1.679 
 u1[9] -1.165 1.268 -3.705 -1.101 1.138 
 u1[10] -1.118 1.250 -3.796 -1.067 1.231 
 u1[11] 0.738 1.284 -1.860 0.749 3.320 
 u1[12] -0.512 1.492 -3.719 -0.481 2.407 
 u1[13] -0.224 1.084 -2.376 -0.242 2.027 
 u1[14] 1.765 1.036 -0.202 1.732 3.958 
 u1[15] -0.505 1.385 -3.385 -0.479 2.169 
 u1[16] -1.691 1.216 -4.059 -1.724 0.881 
 u1[17] 0.037 1.674 -3.184 -0.010 3.241 
 u1[18] 1.779 1.291 -0.716 1.728 4.462 
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Table 10 continued. Multifeeds. 

 Coefficient Mean St.Dev. 2.50% median 97.50% 
Multifeeds       

 α0 -0.770 0.068 -0.905 -0.769 -0.637 
 α2 -0.875 0.242 -1.386 -0.864 -0.432 
 α3 0.004 0.229 -0.468 0.007 0.444 
 α6 0.903 0.241 0.444 0.899 1.391 
 M 1.558 0.189 1.191 1.555 1.926 
 α2M 0.509 0.239 0.057 0.510 0.984 
 α3M 0.530 0.254 0.044 0.525 1.033 
 N -0.072 0.048 -0.166 -0.072 0.026 
 α3N -0.211 0.085 -0.379 -0.210 -0.044 
 σ2 0.494 0.134 0.277 0.480 0.804 
       
 u2[1] -0.185 0.312 -0.822 -0.177 0.436 
 u2[2] -0.484 0.233 -0.964 -0.473 -0.043 
 u2[3] -0.467 0.309 -1.098 -0.461 0.113 
 u2[4] -0.273 0.234 -0.752 -0.268 0.173 
 u2[5] -0.473 0.240 -0.970 -0.465 -0.025 
 u2[6] 0.682 0.293 0.134 0.670 1.298 
 u2[7] 0.129 0.301 -0.462 0.126 0.730 
 u2[8] 0.013 0.273 -0.519 0.012 0.557 
 u2[9] -0.028 0.264 -0.555 -0.023 0.499 
 u2[10] 0.298 0.321 -0.334 0.298 0.933 
 u2[11] 0.178 0.286 -0.374 0.172 0.759 
 u2[12] -0.017 0.306 -0.620 -0.014 0.589 
 u2[13] 0.287 0.277 -0.238 0.276 0.862 
 u2[14] 0.321 0.195 -0.065 0.322 0.709 
 u2[15] 0.711 0.301 0.157 0.696 1.334 
 u2[16] 0.202 0.297 -0.369 0.195 0.809 
 u2[17] -0.488 0.300 -1.109 -0.478 0.066 
 u2[18] -0.406 0.279 -0.983 -0.397 0.121 
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Table 11. DIC values for mixed and fixed models for the paper feeder data. Models 
without the random effects have the same set of fixed effects as mixed models. JW 
models have a different set of fixed effects. 

 Response Dbar Dhat pD DIC 

Mixed models       
 Misfeeds 276.2 251.5 24.8 301.0 
 Multifeeds 430.5 409.5 21.1 451.6 
 Total 706.8 660.9 45.8 752.6 
Models w/o random effects      

 Misfeeds 401.4 384.5 16.9 418.2 
 Multifeeds 477.0 467.8 9.2 486.2 
 Total 878.3 852.3 26.1 904.4 

JW models      
 Misfeeds 334.8 323.9 10.9 345.7 
 Multifeeds 437.9 427.9 10.0 447.9 
 Total 772.7 751.8 20.9 793.6 

 

 

Table 12. Frequency of defects for the paper feeder data. 

% data Number of defects Misfeed Multifeed
0 0.50 0.26 
1 0.10 0.27 
2 0.06 0.28 
3 0.05 0.14 
4 0.07 0.03 
5 0.21 0.01 

 

 

Table 13. Expected loss statistics and factor levels for the paper feeder data. 

Order  mean  sd 2.5% median 97.50% x1 x2 x3 x4 x6 x7 x8 M 
Minimum 

value 

EL[886] 0.010 0.064 0.000 0.00041 0.0532 2 3 2 1 3 2 1 10 
Mean, 
97.5% 

EL[940] 0.023 0.111 0.000 0.00003 0.2987 2 3 3 1 3 2 1 7.5 Median 
EL[697] 0.160 0.223 0.003 0.08355 0.9807 2 2 1 2 3 2 1 12.5 JW 
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Table 14. Posterior summaries for mixed models with split-unit effects in (6) with 
the paper feeder data. 

 Coefficient Mean Std.Dev. 2.5% Median 97.5% 
Misfeeds       
 α1,0 -0.962 0.084 -1.137 -0.962 -0.796 
 α1,Μ -3.115 0.223 -3.558 -3.115 -2.683 
 α1,ΜΝ -0.159 0.094 -0.339 -0.160 0.024 
 α1,Ν -0.059 0.064 -0.188 -0.059 0.067 
 σ1 2.761 0.557 1.890 2.689 4.043 
       
 u1[1] 2.663 0.306 2.069 2.656 3.270 
 u1[2] -0.856 0.307 -1.464 -0.850 -0.293 
 u1[3] 0.005 0.255 -0.503 0.006 0.504 
 u1[4] 1.945 0.264 1.433 1.945 2.466 
 u1[5] 1.458 0.269 0.925 1.458 1.983 
 u1[6] -0.231 0.264 -0.755 -0.227 0.283 
 u1[7] 1.647 0.270 1.132 1.645 2.177 
 u1[8] 2.521 0.258 2.031 2.514 3.050 
 u1[9] 1.696 0.242 1.240 1.691 2.176 
 u1[10] -4.098 0.525 -5.156 -4.089 -3.093 
 u1[11] -3.439 0.444 -4.345 -3.438 -2.600 
 u1[12] -0.555 0.291 -1.140 -0.550 0.009 
 u1[13] 0.008 0.273 -0.535 0.016 0.525 
 u1[14] 1.533 0.250 1.051 1.537 2.026 
 u1[15] -7.089 0.657 -8.416 -7.083 -5.846 
 u1[16] -1.358 0.354 -2.044 -1.351 -0.684 
 u1[17] 2.086 0.270 1.558 2.081 2.630 
 u1[18] 2.063 0.273 1.531 2.062 2.597 
       
Multifeeds       
 α2,0 -0.656 0.050 -0.755 -0.656 -0.558 
 α2,Μ 1.178 0.170 0.845 1.177 1.511 
 σ2 0.702 0.172 0.427 0.682 1.093 
       
 u2[1] -0.559 0.195 -0.957 -0.553 -0.183 
 u2[2] -0.054 0.171 -0.391 -0.053 0.274 
 u2[3] 0.453 0.201 0.063 0.452 0.843 
 u2[4] -0.396 0.197 -0.795 -0.387 -0.020 
 u2[5] 0.019 0.183 -0.340 0.021 0.385 
 u2[6] 0.093 0.187 -0.276 0.089 0.457 
 u2[7] 0.053 0.178 -0.301 0.054 0.416 
 u2[8] -0.774 0.215 -1.196 -0.769 -0.359 
 u2[9] -0.362 0.191 -0.730 -0.361 0.015 
 u2[10] 1.138 0.274 0.592 1.140 1.661 
 u2[11] 1.239 0.280 0.673 1.237 1.787 
 u2[12] -0.130 0.206 -0.545 -0.125 0.273 
 u2[13] -0.297 0.208 -0.716 -0.297 0.107 
 u2[14] 0.178 0.188 -0.191 0.173 0.555 
 u2[15] 0.949 0.217 0.522 0.952 1.384 
 u2[16] 0.139 0.176 -0.207 0.142 0.475 
 u2[17] -1.222 0.279 -1.775 -1.219 -0.674 
 u2[18] -0.467 0.197 -0.859 -0.464 -0.090 
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Table 15. Fixed effects tests with the posterior means of the random effects as a 
response variable for the paper feeder data. 

 Source Nparm DF Sum of Squares F Ratio Prob > F 
Misfeeds X1 1 1 12.19 8.08 0.017 

 X2 1 1 11.30 7.50 0.021 
 X4 1 1 1.16 0.77 0.401 
 X6 1 1 32.49 21.55 0.001 
 X4*X6 1 1 18.57 12.32 0.006 
 X7 1 1 0.99 0.66 0.437 
 X7*X7 1 1 18.19 12.07 0.006 
       

Multifeeds       
 X2 1 1 1.85 11.60 0.004 
 X6 1 1 2.74 17.14 0.001 

 

 

Table 16. Bias, variance and MSE for the fixed two-level design with β0 = 3, β1 =2, 
n=10, xc = -β0/β1 and dβ1 from 0.1 to 1.9. The approximate bias Ba = 10% for all rows. 

dβ1 Pr(MLE) Bias*, % Variance* MSE* Asymptotic 
Variance * Bf, % 

       β0   β1  β0   β1  β0   β1   
0.1 1.00 10% 225.45 100.09 225.54 100.13 207.30 92.03 10% 
0.3 0.99 10% 25.47 11.21 25.56 11.25 23.91 10.52 10% 
0.5 0.98 9% 9.42 4.07 9.49 4.10 9.24 3.99 10% 
0.7 0.96 7% 4.94 2.08 4.99 2.10 5.19 2.19 11% 
0.9 0.94 5% 3.04 1.24 3.07 1.25 3.52 1.44 11% 
1.1 0.89 3% 2.04 0.80 2.05 0.80 2.67 1.05 12% 
1.3 0.83 -1% 1.44 0.54 1.44 0.54 2.17 0.81 13% 
1.5 0.75 -4% 1.04 0.37 1.06 0.38 1.85 0.66 14% 
1.7 0.66 -8% 0.77 0.26 0.83 0.29 1.62 0.55 16% 
1.9 0.57 -12% 0.58 0.18 0.71 0.24 1.46 0.46 17% 

* - conditional on existence of MLE’s 
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Table 17. An ad hoc rule for a sequential design (with positive slope) and n = 5 at 
each of four levels of x.  

Y1  x2 Y2  x3 Y3  x4 
   0   x3+2d 
   1   x3+2d 
   2   x3+2d 
   3   x3+d 
   4   x3+d 
 

0 

  

x2+2d 

5   x3-d 
             
   0   x3+2d 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

1 

  

x2+d 

5   x2 
             
   0   x3+2d 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

2 

  

x2+d 

5   x2 
             
   0   x3+d 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

3 

  

x2+d 

5   x2 
             
   0   x3+d 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

4 

  

x2+d 

5   x2 
             
   0   x3+d/4 
   1   x3 
   2   x3 
   3   x3 
   4   x3 

0 

 

x1+d 

5 

  

x2-d/2 

5   x3-d/4 
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Table 17. Continued. 

Y1  x2 Y2  x3 Y3  x4 

   0   x3+2d 
   1   x3+2d 
   2   x3+2d 
   3   x3+d 
   4   x3+d 
 

0 

  

x2+2d 

5   (x2+x3)/2 
             
   0   x3+2d 
   1   x3+2d 
   2   x3+2d 
   3   x3+d 
   4   x3+d 
 

1 

  

x2+d 

5   x2 
             
   0   x3+2d 
   1   x3+2d 
   2   x3+2d 
   3   x3+d 
   4   x3+d 
 

2 

  

x2+d 

5   x2 
             
   0   x3 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

3 

  

x2+d 

5   x2 
             
   0   x3 
   1   x3+d 
   2   x3+d 
   3   x3+d 
   4   x3+d 
 

4 

  

x2+d 

5   x2 
             
   0   (x2+x3)/2 
   1   (x2+x3)/2 
   2   (x2+x3)/2 
   3   (x1+x3)/2 
   4   (x1+x3)/2 

1 

 

x1+d 

5 

  

(x1+x2)/2 

5   (x1+x3)/2 
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Table 17. Continued. 
Y1  x2 Y2  x3 Y3  x4 

    0   x3+2d 
    1   x3+d 
    2   x3+d 
    3   x3+d 
    4   x3+d 
  

0 

  

x2+d 

5   (x2+x3)/2 
              
    0   x3+d 
    1   x3+d 
    2   x3+d 
    3   x1 
    4   x1 
  

1 

  

x2+d 

5   x2 
              
    0   x3 
    1   x3+d 
    2   x3+d 
    3   x1 
    4   x1 
  

2 

  

x2+d 

5   x1 
              
    0   x2+d 
    1   x3+d 
    2   x3+d 
    3   x1 
    4   x1 
  

3 

  

x1-d 

5   x1 
              
    0   x2+d 
    1   x3-d 
    2   x3-d 
    3   x3 
    4   x3 
  

4 

  

x1-d 

5   x3 
              
    0   x1 
    1   x3-d 
    2   x3-d 
    3   x3 
    4   x3 

2 

  

x1+d 

5 

  

x1-d 

5   x3 
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Table 17. Continued. 
Y1  x2 Y2  x3 Y3  x4 

    0   x1 
    1   x3 
    2   x3 
    3   x1 
    4   x1 
  

0 

  

x1+d 

5   (x1+x2)/2 
              
    0   x3 
    1   x3 
    2   x3 
    3   x3+d 
    4   x3+d 
  

1 

  

x1+d 

5   x2-d 
              
    0   x1+d 
    1   x1+d 
    2   x1+d 
    3   x3-d 
    4   x3-d 
  

2 

  

x2-d 

5   x3 
              
    0   x1+d 
    1   x3-d 
    2   x3-d 
    3   x3-d 
    4   x3-d 
  

3 

  

x2-d 

5   x3 
              
    0   x2 
    1   x2 
    2   x2 
    3   x3-d 
    4   x3-d 
  

4 

  

x2-d 

5   x3 
              
    0   x2 
    1   x2 
    2   x2 
    3   x3-d 
    4   x3-d 

3 

  

x1-d 

5 

  

x2-d 

5   x3-2d 
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Table 17. Continued. 
Y1  x2 Y2  x3 Y3  x4 

    0   (x1+x3)/2 
    1   x1+d/2 
    2   x1+d/2 
    3   (x2+x3)/2 
    4   (x2+x3)/2 
  

0 

  

x2+.5d 

5     
              
    0   (x1+x2)/2 
    1   x2-d 
    2   x2-d 
    3   x2-d 
    4   x2-d 
  

1 

  

x2 

5   x2-2d 
              
    0   x2 
    1   x3-d 
    2   x3-d 
    3   x3-d 
    4   x3-d 
  

2 

  

x2-d 

5   x3-2d 
              
    0   x1 
    1   x3-d 
    2   x3-d 
    3   x3-d 
    4   x3-d 
  

3 

  

x2-d 

5   x3-2d 
              
    0   x3+d 
    1   x3-d 
    2   x3-d 
    3   x3-2d 
    4   x3-2d 
  

4 

  

x2-2d 

5   x3-2d 
              
    0   x2-d 
    1   x2-d 
    2   x2-d 
    3   x3-d 
    4   x3-d 

4 

  

x1-d 

5 

  

x2-2d 

5   x3-2d 
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Table 17. Continued. 
Y1  x2 Y2  x3 Y3  x4 

    0   x1-d/4 
    1   x1-d/4 
    2   x1-d/4 
    3   (x2+x3)/2 
    4   (x2+x3)/2 
  

0 

  

x1-d/2 

5   (x2+x3)/2 
              
    0   x2 
    1   (x1+x3)/2 
    2   (x1+x3)/2 
    3   x2-d 
    4   x2-d 
  

1 

  

x1-d/2 

5   (x2+x3)/2 
              
    0   x1-d/2 
    1   x2 
    2   x2 
    3   x2 
    4   x2 
  

2 

  

x2-d 

5   x2 
              
    0   x3+d/2 
    1   x3-d 
    2   x3-d 
    3   x3-d 
    4   x3-d 
  

3 

  

x2-d 

5   x3-2d 
              
    0   x3+d 
    1   x3-d 
    2   x3-d 
    3   x3-2d 
    4   x3-2d 
  

4 

  

x2-2d 

5   x3-3d 
              
    0   x3+d 
    1   x3+d 
    2   x3+d 
    3   x3-2d 
    4   x3-2d 

5 

  

x1-d 

5 

  

x2-2d 

5   x3-3d 
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Table 18. Fixed design with 4 levels and βT = (-3, 1, -2, 0.3, 2). n = 5, F(x1) = 0.50, 
and Ba = 3.125%. 

dγ Pr(MLE) Max(B)*, 
% Variance* MSE* Asymptotic 

Variance * 
Max( fB̂ ), 

% 
      β2 γ β2 γ β2 γ   

0.3 0.9859 8.4 0.11 4.91 0.12 4.93 0.11 4.55 9.1 
0.5 0.9859 6.8 0.11 1.85 0.13 1.86 0.11 1.70 8.9 
1 0.9948 7.4 0.12 0.54 0.14 0.55 0.11 0.50 8.3 

1.5 0.9987 7.1 0.13 0.30 0.15 0.32 0.12 0.27 7.6 
2 0.9997 7.1 0.14 0.22 0.15 0.24 0.12 0.20 7.2 

2.5 0.9999 7.5 0.16 0.19 0.18 0.22 0.14 0.17 7.5 
3 0.9996 7.9 0.19 0.18 0.21 0.20 0.16 0.15 8.1 

3.5 0.9997 8.6 0.21 0.17 0.24 0.20 0.19 0.15 8.7 
4 0.9994 9.9 0.24 0.18 0.28 0.21 0.21 0.15 9.5 

4.5 0.9984 9.8 0.26 0.17 0.30 0.21 0.24 0.15 10.6 
* - conditional on convergence 

 

 

Table 19. Sequential design with 4 levels and βT = (-3, 1, -2, 0.3, 2). n = 5, F(x1) = 
0.50, P(MLE) = 1, and Ba = 3.125% for all rows . 

dγ Max(B), % Variance MSE Asymptotic 
Variance  Max( fB̂ ), % 

 β0, γ β1, β2, β3 β2 γ β2 γ β2 γ   
0.3 22.2 11.2 0.20 1.00 0.25 1.20 0.18 0.98 6.7 
0.5 14.2 10.2 0.17 0.38 0.22 0.46 0.17 0.36 5.8 
1 10.1 9.9 0.17 0.16 0.21 0.20 0.15 0.15 5.7 

1.5 9.5 10.8 0.18 0.13 0.22 0.17 0.16 0.12 6.0 
2 9.7 10.4 0.19 0.14 0.23 0.17 0.17 0.12 6.5 

2.5 10.4 12.0 0.22 0.15 0.27 0.19 0.18 0.13 7.2 
3 11.7 13.8 0.23 0.17 0.29 0.22 0.20 0.14 7.6 

3.5 11.8 13.0 0.26 0.18 0.32 0.23 0.22 0.15 8.1 
4 12.0 13.8 0.26 0.18 0.32 0.23 0.23 0.15 8.6 

4.5 12.7 14.9 0.26 0.18 0.33 0.24 0.23 0.15 8.8 
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Table 20. Comparison of fixed and sequential designs. B, fB̂  and Variance are conditional on convergence. 

Fixed Sequential 
Variance Variance β P(MLE) max 

B,% 
max fB̂ , 

% β1 γ d γ P(MLE) max 
B,% 

max fB̂ , 
% β1 γ d γ 

(-3,1,-1,0.3,2) 1 7.1 7.1 0.086 0.131 3 1 12.8 5.5 0.095 0.151 2 
(-3,2,-2,0.3,2) 0.9991 9 9.1 0.194 0.203 3 1 13.7 6.8 0.206 0.19 1 
(-3,3,-3,0.3,3) 0.9644 11.6 15.1 0.514 0.542 5 0.9999 15.2 9 0.594 0.523 2 
(-3,4,-1,0.3,4) 0.9682 10.8 13.8 0.895 0.859 5 0.9997 10 8.4 0.67 0.606 2.5 
(-3,5,-5,0.3,6) 0.4047 6.6 18.5 0.462 0.586 9 0.9994 18.4 12.8 2.227 2.835 2.5 
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Table 21. Sequential design for a saturated model βT = (0, 1, -1, 0.5, 1.2, -0.7, 0.2, -0.1, 
3). n = 5.  

 β0 β1 β2 β3 β12 β13 β23 β123 γ 

β 0 1 -1 0.5 1.2 -0.7 0.2 -0.1 3 
B 0.02 0.15 -0.16 0.08 0.18 -0.10 0.03 -0.02 0.43 

B, % - 0.15 0.16 0.16 0.15 0.14 0.16 0.22 0.14 

fB̂ , % - 0.13 0.13 0.13 0.13 0.13 0.14 0.15 0.13 
Var 0.07 0.11 0.12 0.08 0.13 0.10 0.08 0.07 0.37 

MSE 0.08 0.13 0.14 0.09 0.17 0.11 0.08 0.07 0.55 
Asymp. Var 0.07 0.10 0.10 0.07 0.11 0.08 0.07 0.07 0.31 

 

 

Table 22. Factors and levels for the TB discs experiment. 

Control factors Notation Levels 

  -1 0 1 

Speed  S 70 FPM 90 FPM 110 FPM 

Top preheat C 155 oF - 175 oF 

Tokuden die pressure D 200 psi - 325 psi 

Tokuden die temperature E 435 oF - 455 oF 

Corona treater for paperboard 
(CTT) 

F 3 kW - 18 kW 

Corona treater for tab stock 
(CTP) 

G 0 kW - 6 kW 

Bottom preheat H 150 oF - 170 oF 

Blue tab stock material type J Good - Bad 
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Table 23. Aliasing of the 31 whole and split unit effects for the TB experiment. 

 Effect Aliasing 
Whole unit S = 0.5(A+B) 
 CD = HJ 
 EF  
 EG  
 FG = S2  
 CEH  
 CGH = B 
   
Split unit C = DHJ 
 D = CHJ 
 E  
 F  
 G  
 H  
 J  
 SC = 0.5(FH+GH) 
 SD = 0.5(FJ+GJ) 
 SE  
 SF = SG 
 SH = 0.5(CF+CG) 
 SJ = 0.5(DF+DG) 
 CE  
 CG  
 CH = DJ 
 CJ = DH 
 DE  
 DG  
 EH  
 EJ  
 FJ  
 GH  
 CDF  
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Table 24. Variance components for the square root of the mean peel strength. R2 = 
0.97. 
Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total
Run&Random 34.267407 0.2250047 0.0592687 0.1425379 0.4074661 92.772
Lane[Run]&Random 1.6698299 0.0109643 0.0018665 0.0080608 0.0157855 4.521
Residual 0.0065661   2.707
Total 0.2425351   100.000
 

 

Table 25. Variance components for the ¼ power transformation of the mean within 
piece standard deviation. R2 = 0.93. 
Random Effect Var Ratio Var Component Std Error 95% Lower 95% Upper Pct of Total
Run&Random 13.053969 0.0612208 0.0162303 0.0386819 0.1113564 87.360
Lane[Run]&Random 0.8886931 0.0041678 0.0007661 0.002996 0.0061955 5.947
Residual 0.0046898   6.692
Total 0.0700785   100.000
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Table 26. Continuous and ordinal data for the TB experiment with control factor levels and run order. Runs 1 - 6. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

1 1 1 1.32 0.39 0 1 -1 1 -1 1 1 -1 0 15 25 0 0 0 0 0 10 10 0 0 0 0 

1 2 1 1.51 0.45 0 1 -1 1 -1 1 1 -1 2 25 13 0 0 0 0 1 17 2 0 0 0 0 

1 3 1 1.46 0.44 0 1 -1 1 -1 1 1 -1 0 20 20 0 0 0 0 0 17 3 0 0 0 0 

1 4 1 1.58 0.38 0 1 -1 1 -1 1 1 -1 0 20 20 0 0 0 0 0 14 6 0 0 0 0 

2 1 1 0.27 0.04 0 -1 1 1 -1 1 -1 1 0 0 0 0 0 5 35 0 0 0 0 0 7 13 

2 2 1 0.31 0.05 0 -1 1 1 -1 1 -1 1 0 0 0 0 0 6 34 0 0 1 0 0 18 1 

2 3 1 0.32 0.07 0 -1 1 1 -1 1 -1 1 0 0 0 0 0 5 35 0 0 0 0 0 9 11 

2 4 1 0.34 0.13 0 -1 1 1 -1 1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 11 9 

3 1 1 1.82 0.58 0 -1 1 -1 1 -1 1 -1 5 29 6 0 0 0 0 8 12 0 0 0 0 0 

3 2 1 2.18 0.87 0 -1 1 -1 1 -1 1 -1 4 31 5 0 0 0 0 1 18 1 0 0 0 0 

3 3 1 2.29 0.83 0 -1 1 -1 1 -1 1 -1 8 29 3 0 0 0 0 7 13 0 0 0 0 0 

3 4 1 2.01 0.50 0 -1 1 -1 1 -1 1 -1 2 34 4 0 0 0 0 0 20 0 0 0 0 0 

4 1 1 0.24 0.04 0 1 -1 -1 1 -1 -1 1 0 0 0 0 0 8 32 0 0 1 0 0 6 13 

4 2 1 0.37 0.09 0 1 -1 -1 1 -1 -1 1 0 0 0 0 3 19 18 0 0 0 0 0 18 2 

4 3 1 0.31 0.05 0 1 -1 -1 1 -1 -1 1 0 0 0 8 2 20 10 0 0 0 2 0 12 6 

4 4 1 0.36 0.08 0 1 -1 -1 1 -1 -1 1 0 0 0 2 1 14 23 0 0 0 0 0 14 6 

5 1 2 3.27 0.99 -1 -1 1 1 1 1 1 -1 31 9 0 0 0 0 0 19 1 0 0 0 0 0 

5 2 2 3.17 0.75 -1 -1 1 1 1 1 1 -1 30 10 0 0 0 0 0 18 2 0 0 0 0 0 

5 3 2 3.07 0.65 -1 -1 1 1 1 1 1 -1 39 1 0 0 0 0 0 20 0 0 0 0 0 0 

5 4 2 2.63 0.46 -1 -1 1 1 1 1 1 -1 36 4 0 0 0 0 0 18 2 0 0 0 0 0 

6 1 2 0.43 0.20 -1 1 -1 1 1 1 -1 1 0 0 0 29 11 0 0 0 0 0 8 5 7 0 

6 2 2 0.52 0.10 -1 1 -1 1 1 1 -1 1 0 0 0 34 6 0 0 0 0 1 6 12 1 0 

6 3 2 0.48 0.10 -1 1 -1 1 1 1 -1 1 0 0 0 29 11 0 0 0 1 1 6 3 8 1 

6 4 2 0.48 0.09 -1 1 -1 1 1 1 -1 1 0 1 14 16 9 0 0 0 5 1 0 1 13 0 
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Table 26 continued. Runs 7 -12. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

7 1 2 1.76 0.54 -1 1 -1 -1 -1 -1 1 -1 5 34 1 0 0 0 0 4 16 0 0 0 0 0 

7 2 2 2.13 0.57 -1 1 -1 -1 -1 -1 1 -1 2 26 12 0 0 0 0 4 16 0 0 0 0 0 

7 3 2 2.07 0.46 -1 1 -1 -1 -1 -1 1 -1 9 16 15 0 0 0 0 1 18 1 0 0 0 0 

7 4 2 1.85 0.43 -1 1 -1 -1 -1 -1 1 -1 8 32 0 0 0 0 0 9 11 0 0 0 0 0 

8 1 2 0.67 0.18 -1 -1 1 -1 -1 -1 -1 1 0 0 0 33 7 0 0 0 0 8 4 0 8 0 

8 2 2 0.70 0.16 -1 -1 1 -1 -1 -1 -1 1 0 0 1 34 5 0 0 0 1 4 12 0 3 0 

8 3 2 0.73 0.15 -1 -1 1 -1 -1 -1 -1 1 0 0 11 17 11 1 0 0 0 10 1 2 7 0 

8 4 2 0.63 0.19 -1 -1 1 -1 -1 -1 -1 1 2 3 23 5 3 4 0 0 1 6 0 0 13 0 

9 1 3 0.44 0.06 0 1 -1 -1 -1 1 -1 1 0 0 0 0 1 25 14 0 0 0 0 0 10 10 

9 2 3 0.51 0.11 0 1 -1 -1 -1 1 -1 1 0 0 0 4 1 35 0 0 0 0 0 0 19 1 

9 3 3 0.77 0.15 0 1 -1 -1 -1 1 -1 1 0 0 0 17 19 4 0 0 0 1 1 0 17 1 

9 4 3 0.74 0.19 0 1 -1 -1 -1 1 -1 1 0 0 0 9 3 28 0 0 0 2 0 0 12 6 

10 1 3 0.36 0.04 0 -1 1 1 1 -1 -1 1 0 0 0 0 0 19 21 0 0 0 0 0 7 13 

10 2 3 0.47 0.08 0 -1 1 1 1 -1 -1 1 0 0 0 14 4 22 0 0 0 1 1 1 15 2 

10 3 3 0.65 0.13 0 -1 1 1 1 -1 -1 1 0 0 1 11 10 18 0 0 2 1 2 0 15 0 

10 4 3 0.64 0.17 0 -1 1 1 1 -1 -1 1 0 0 7 0 0 33 0 0 1 11 0 0 8 0 

11 1 3 1.41 0.34 0 -1 1 -1 -1 1 1 -1 0 7 20 13 0 0 0 0 20 0 0 0 0 0 

11 2 3 1.53 0.36 0 -1 1 -1 -1 1 1 -1 0 7 32 1 0 0 0 0 19 1 0 0 0 0 

11 3 3 1.61 0.42 0 -1 1 -1 -1 1 1 -1 0 11 21 8 0 0 0 0 16 4 0 0 0 0 

11 4 3 1.75 0.50 0 -1 1 -1 -1 1 1 -1 0 23 17 0 0 0 0 7 8 5 0 0 0 0 

12 1 3 1.34 0.34 0 1 -1 1 1 -1 1 -1 0 2 10 28 0 0 0 0 16 4 0 0 0 0 

12 2 3 1.65 0.46 0 1 -1 1 1 -1 1 -1 0 33 7 0 0 0 0 1 19 0 0 0 0 0 

12 3 3 1.79 0.51 0 1 -1 1 1 -1 1 -1 1 20 19 0 0 0 0 1 19 0 0 0 0 0 

12 4 3 2.13 0.46 0 1 -1 1 1 -1 1 -1 1 14 25 0 0 0 0 0 20 0 0 0 0 0 
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Table 26 continued. Runs 13 -18. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

13 1 4 0.00 0.00 1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

13 2 4 0.00 0.00 1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

13 3 4 0.00 0.00 1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

13 4 4 0.00 0.00 1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

14 1 4 0.00 0.00 1 1 -1 1 -1 -1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

14 2 4 0.00 0.00 1 1 -1 1 -1 -1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

14 3 4 0.00 0.00 1 1 -1 1 -1 -1 -1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

14 4 4 0.24 0.07 1 1 -1 1 -1 -1 -1 1 0 0 0 0 0 6 34 0 0 0 0 0 0 20 

15 1 4 0.96 0.33 1 -1 1 1 -1 -1 1 -1 0 1 6 0 0 31 2 0 0 19 0 0 1 0 

15 2 4 1.44 0.34 1 -1 1 1 -1 -1 1 -1 1 31 3 3 0 2 0 0 19 1 0 0 0 0 

15 3 4 1.58 0.38 1 -1 1 1 -1 -1 1 -1 0 36 4 0 0 0 0 0 19 1 0 0 0 0 

15 4 4 1.49 0.41 1 -1 1 1 -1 -1 1 -1 1 34 4 0 0 1 0 0 3 17 0 0 0 0 

16 1 4 0.71 0.23 1 1 -1 -1 1 1 1 -1 0 0 0 1 0 39 0 0 0 1 0 0 19 0 

16 2 4 1.22 0.34 1 1 -1 -1 1 1 1 -1 0 5 3 14 0 18 0 0 7 12 0 0 1 0 

16 3 4 1.53 0.45 1 1 -1 -1 1 1 1 -1 0 27 13 0 0 0 0 0 20 0 0 0 0 0 

16 4 4 1.63 0.47 1 1 -1 -1 1 1 1 -1 0 20 10 10 0 0 0 0 20 0 0 0 0 0 

17 1 5 1.76 0.47 0 1 1 1 -1 1 -1 -1 1 36 3 0 0 0 0 1 19 0 0 0 0 0 

17 2 5 2.13 0.57 0 1 1 1 -1 1 -1 -1 6 34 0 0 0 0 0 5 15 0 0 0 0 0 

17 3 5 2.01 0.76 0 1 1 1 -1 1 -1 -1 4 36 0 0 0 0 0 10 10 0 0 0 0 0 

17 4 5 2.58 0.71 0 1 1 1 -1 1 -1 -1 6 34 0 0 0 0 0 11 9 0 0 0 0 0 

18 1 5 0.53 0.13 0 1 1 -1 1 -1 1 1 0 0 0 1 0 39 0 0 0 0 0 0 20 0 

18 2 5 0.58 0.11 0 1 1 -1 1 -1 1 1 0 0 0 20 3 17 0 0 0 0 1 8 11 0 

18 3 5 0.63 0.09 0 1 1 -1 1 -1 1 1 0 0 0 18 4 18 0 0 0 3 1 5 11 0 

18 4 5 0.82 0.18 0 1 1 -1 1 -1 1 1 0 0 2 0 0 38 0 0 2 8 0 0 10 0 
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Table 26 continued. Runs 19 -24. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

19 1 5 0.06 0.02 0 -1 -1 1 -1 1 1 1 0 0 0 0 0 4 36 0 0 0 0 0 1 19 

19 2 5 0.34 0.04 0 -1 -1 1 -1 1 1 1 0 0 0 0 0 32 8 0 0 0 0 0 9 11 

19 3 5 0.63 0.15 0 -1 -1 1 -1 1 1 1 0 0 0 3 0 37 0 0 0 2 0 0 17 1 

19 4 5 0.80 0.19 0 -1 -1 1 -1 1 1 1 0 0 0 1 0 39 0 0 0 2 0 0 18 0 

20 1 5 1.09 0.32 0 -1 -1 -1 1 -1 -1 -1 0 0 0 31 0 9 0 0 0 2 11 0 7 0 

20 2 5 1.61 0.51 0 -1 -1 -1 1 -1 -1 -1 0 12 23 4 0 1 0 1 13 6 0 0 0 0 

20 3 5 1.59 0.41 0 -1 -1 -1 1 -1 -1 -1 0 29 11 0 0 0 0 0 19 1 0 0 0 0 

20 4 5 1.75 0.47 0 -1 -1 -1 1 -1 -1 -1 0 7 31 2 0 0 0 0 20 0 0 0 0 0 

21 1 6 0.00 0.00 1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

21 2 6 0.00 0.00 1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

21 3 6 0.00 0.00 1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

21 4 6 0.00 0.00 1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 0 40 0 0 0 0 0 0 20 

22 1 6 1.47 0.42 1 -1 -1 1 1 1 -1 -1 0 0 16 23 0 1 0 0 14 6 0 0 0 0 

22 2 6 0.94 0.27 1 -1 -1 1 1 1 -1 -1 0 0 1 30 0 9 0 0 2 2 10 0 6 0 

22 3 6 1.68 0.49 1 -1 -1 1 1 1 -1 -1 11 20 9 0 0 0 0 0 8 12 0 0 0 0 

22 4 6 1.72 0.47 1 -1 -1 1 1 1 -1 -1 0 32 8 0 0 0 0 0 19 1 0 0 0 0 

23 1 6 1.73 0.51 1 1 1 -1 -1 -1 -1 -1 0 19 21 0 0 0 0 0 19 1 0 0 0 0 

23 2 6 2.14 0.51 1 1 1 -1 -1 -1 -1 -1 0 22 18 0 0 0 0 0 20 0 0 0 0 0 

23 3 6 2.11 0.57 1 1 1 -1 -1 -1 -1 -1 0 38 2 0 0 0 0 1 19 0 0 0 0 0 

23 4 6 2.14 0.48 1 1 1 -1 -1 -1 -1 -1 0 40 0 0 0 0 0 1 18 1 0 0 0 0 

24 1 6 0.63 0.16 1 1 1 1 1 1 1 1 0 0 0 0 0 6 34 0 0 0 0 0 7 13 

24 2 6 0.97 0.26 1 1 1 1 1 1 1 1 0 0 0 12 7 19 2 0 0 2 5 3 10 0 

24 3 6 0.95 0.23 1 1 1 1 1 1 1 1 0 0 1 9 27 3 0 0 0 1 7 7 5 0 

24 4 6 0.82 0.18 1 1 1 1 1 1 1 1 0 0 0 13 27 0 0 0 0 1 0 0 18 1 
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Table 26 continued. Runs 25 -30. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

25 1 7 2.68 0.95 0 1 1 1 1 -1 -1 -1 0 40 0 0 0 0 0 8 12 0 0 0 0 0 

25 2 7 2.80 0.45 0 1 1 1 1 -1 -1 -1 5 27 8 0 0 0 0 14 6 0 0 0 0 0 

25 3 7 2.68 0.55 0 1 1 1 1 -1 -1 -1 4 33 3 0 0 0 0 17 3 0 0 0 0 0 

25 4 7 3.04 0.66 0 1 1 1 1 -1 -1 -1 4 34 2 0 0 0 0 16 4 0 0 0 0 0 

26 1 7 0.94 0.26 0 1 1 -1 -1 1 1 1 0 0 1 0 0 39 0 0 0 4 0 0 16 0 

26 2 7 1.04 0.24 0 1 1 -1 -1 1 1 1 0 0 1 26 0 13 0 0 0 5 12 0 3 0 

26 3 7 0.94 0.21 0 1 1 -1 -1 1 1 1 0 0 1 19 5 15 0 0 0 4 13 0 3 0 

26 4 7 1.04 0.23 0 1 1 -1 -1 1 1 1 0 0 2 1 0 37 0 0 3 4 0 0 13 0 

27 1 7 2.00 0.54 0 -1 -1 -1 -1 1 -1 -1 0 40 0 0 0 0 0 2 18 0 0 0 0 0 

27 2 7 1.61 0.41 0 -1 -1 -1 -1 1 -1 -1 1 34 5 0 0 0 0 3 17 0 0 0 0 0 

27 3 7 1.98 0.72 0 -1 -1 -1 -1 1 -1 -1 0 26 14 0 0 0 0 2 16 2 0 0 0 0 

27 4 7 1.70 0.50 0 -1 -1 -1 -1 1 -1 -1 0 18 20 2 0 0 0 0 19 1 0 0 0 0 

28 1 7 0.60 0.14 0 -1 -1 1 1 -1 1 1 0 0 0 5 1 34 0 0 0 1 3 0 16 0 

28 2 7 0.71 0.15 0 -1 -1 1 1 -1 1 1 0 0 0 37 3 0 0 0 0 0 18 0 2 0 

28 3 7 0.74 0.14 0 -1 -1 1 1 -1 1 1 0 0 0 30 5 5 0 0 0 1 17 0 2 0 

28 4 7 0.96 0.24 0 -1 -1 1 1 -1 1 1 0 0 2 19 0 19 0 0 0 4 4 0 12 0 

29 1 8 1.13 0.34 -1 -1 -1 -1 1 1 1 1 0 0 9 30 0 1 0 0 1 17 1 0 1 0 

29 2 8 1.30 0.29 -1 -1 -1 -1 1 1 1 1 0 0 3 37 0 0 0 0 0 9 8 0 3 0 

29 3 8 1.29 0.31 -1 -1 -1 -1 1 1 1 1 0 0 17 23 0 0 0 0 5 12 3 0 0 0 

29 4 8 1.30 0.33 -1 -1 -1 -1 1 1 1 1 7 8 10 15 0 0 0 2 8 10 0 0 0 0 

30 1 8 1.46 0.41 -1 1 1 1 -1 -1 1 1 2 13 20 5 0 0 0 1 17 2 0 0 0 0 

30 2 8 1.29 0.31 -1 1 1 1 -1 -1 1 1 3 22 15 0 0 0 0 5 13 2 0 0 0 0 

30 3 8 1.34 0.32 -1 1 1 1 -1 -1 1 1 13 21 5 1 0 0 0 4 15 1 0 0 0 0 

30 4 8 1.66 0.33 -1 1 1 1 -1 -1 1 1 6 24 10 0 0 0 0 7 11 2 0 0 0 0 

 



 90

Table 26 continued. Runs 31 -32. 
Slow Peel Fast Peel 

Run Lane Block Mean 
(mean) 

Mean 
(StD) Speed C D E F G H J 

C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C7 

31 1 8 3.18 0.72 -1 -1 -1 1 -1 -1 -1 -1 17 22 1 0 0 0 0 8 12 0 0 0 0 0 

31 2 8 3.00 0.94 -1 -1 -1 1 -1 -1 -1 -1 14 23 3 0 0 0 0 18 2 0 0 0 0 0 

31 3 8 2.78 0.70 -1 -1 -1 1 -1 -1 -1 -1 31 9 0 0 0 0 0 19 1 0 0 0 0 0 

31 4 8 2.39 0.55 -1 -1 -1 1 -1 -1 -1 -1 19 21 0 0 0 0 0 19 1 0 0 0 0 0 

32 1 8 3.64 1.04 -1 1 1 -1 1 1 -1 -1 24 14 2 0 0 0 0 15 5 0 0 0 0 0 

32 2 8 3.69 1.06 -1 1 1 -1 1 1 -1 -1 36 3 1 0 0 0 0 17 3 0 0 0 0 0 

32 3 8 3.21 0.93 -1 1 1 -1 1 1 -1 -1 39 1 0 0 0 0 0 20 0 0 0 0 0 0 

32 4 8 3.41 1.02 -1 1 1 -1 1 1 -1 -1 39 1 0 0 0 0 0 19 1 0 0 0 0 0 
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Table 27. t-ratios of the factorial effects for the square root of the mean of the mean 
for the TB disc experiment. 

Effect 
type Term Naïve 

t-ratio 
Corrected 

t-ratio p-value 

     
whole-unit Speed -21.44 -4.04 .01<p<.02 
whole-unit C*D 11.58 2.18 .05<p<.06 
whole-unit C*E*H 3.97 0.75 .30<p<.40 
whole-unit E*G -3.82 -0.72  
whole-unit E*F 3.26 0.61  
whole-unit CGH-Speed 2.26 0.43  
whole-unit F*G -1.20 -0.23  

     
split-unit J[-1] 38.80 11.41 p<.001 
split-unit D 9.17 2.70 .02<p<.03 
split-unit C 5.74 1.69 .09<p<.10 
split-unit C*E -5.67 -1.67  
split-unit Speed*C 5.66 1.66  
split-unit F 3.99 1.17  
split-unit H 3.39 1.00  
split-unit E 3.26 0.96  
split-unit C*J[-1] -3.13 -0.92  
split-unit Speed*E 2.86 0.84  
split-unit E*H 2.79 0.82  
split-unit C*G 2.58 0.76  
split-unit Speed*D 2.37 0.70  
split-unit C*H -2.28 -0.67  
split-unit Speed*G 2.27 0.67  
split-unit D*E 2.18 0.64  
split-unit Speed*J[-1] 2.08 0.61  
split-unit F*J[-1] 1.82 0.53  
split-unit D*G -1.79 -0.53  
split-unit Speed*H -1.62 -0.48  
split-unit G 1.55 0.46  
split-unit G*H -1.29 -0.38  
split-unit E*J[-1] -0.85 -0.25  
split-unit C*D*F -0.49 -0.14  
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Table 28. Redefined versus original categories. 

Redefined categories Original 
categories

# Description # 
1 very tight seal, with seal area completely covered by tab paper 1 
2 tight seal, with some of tab paper inside seal area 2 

3 
tight seal, with little paper on sealing edge and/or outside the sealing 
area 3 

4 perfect seal with consistent pattern and all tab paper removed 4 
5 seal with inconsistent pattern and good pull 6 
6 consistent seal with weak pull 5 
7 seal with inconsistent pattern and weak pull 6 
8 almost no seal or no seal at all, very weak seal 7 
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Table 29. Ordinal response data with 8 redefined categories (slow peel). 
Run Lane Block Speed C1 C2 C3 C4 C5 C6 C7 C8 

1 1 1 0 0 15 25 0 0 0 0 0 
1 2 1 0 2 25 13 0 0 0 0 0 
1 3 1 0 0 20 20 0 0 0 0 0 
1 4 1 0 0 20 20 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 0 5 35 
2 2 1 0 0 0 0 0 0 0 6 34 
2 3 1 0 0 0 0 0 0 0 5 35 
2 4 1 0 0 0 0 0 0 0 0 40 
3 1 1 0 5 29 6 0 0 0 0 0 
3 2 1 0 4 31 5 0 0 0 0 0 
3 3 1 0 8 29 3 0 0 0 0 0 
3 4 1 0 2 34 4 0 0 0 0 0 
4 1 1 0 0 0 0 0 0 0 8 32 
4 2 1 0 0 0 0 0 0 3 19 18 
4 3 1 0 0 0 0 8 0 2 20 10 
4 4 1 0 0 0 0 2 0 1 14 23 
5 1 2 -1 31 9 0 0 0 0 0 0 
5 2 2 -1 30 10 0 0 0 0 0 0 
5 3 2 -1 39 1 0 0 0 0 0 0 
5 4 2 -1 36 4 0 0 0 0 0 0 
6 1 2 -1 0 0 0 29 0 11 0 0 
6 2 2 -1 0 0 0 34 0 6 0 0 
6 3 2 -1 0 0 0 29 0 11 0 0 
6 4 2 -1 0 1 14 16 0 9 0 0 
7 1 2 -1 5 34 1 0 0 0 0 0 
7 2 2 -1 2 26 12 0 0 0 0 0 
7 3 2 -1 9 16 15 0 0 0 0 0 
7 4 2 -1 8 32 0 0 0 0 0 0 
8 1 2 -1 0 0 0 33 0 7 0 0 
8 2 2 -1 0 0 1 34 0 5 0 0 
8 3 2 -1 0 0 11 17 0 11 1 0 
8 4 2 -1 2 3 23 5 4 3 0 0 
9 1 3 0 0 0 0 0 0 1 25 14 
9 2 3 0 0 0 0 4 2 1 33 0 
9 3 3 0 0 0 0 17 0 19 4 0 
9 4 3 0 0 0 0 9 5 3 23 0 

10 1 3 0 0 0 0 0 12 0 7 21 
10 2 3 0 0 0 0 14 7 4 15 0 
10 3 3 0 0 0 1 11 13 10 5 0 
10 4 3 0 0 0 7 0 18 0 15 0 
11 1 3 0 0 7 20 13 0 0 0 0 
11 2 3 0 0 7 32 1 0 0 0 0 
11 3 3 0 0 11 21 8 0 0 0 0 
11 4 3 0 0 23 17 0 0 0 0 0 
12 1 3 0 0 2 10 28 0 0 0 0 
12 2 3 0 0 33 7 0 0 0 0 0 
12 3 3 0 1 20 19 0 0 0 0 0 
12 4 3 0 1 14 25 0 0 0 0 0 
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Table 29. Continued. 
 

Run Lane Block Speed C1 C2 C3 C4 C5 C6 C7 C8 
13 1 4 1 0 0 0 0 0 0 0 40 
13 2 4 1 0 0 0 0 0 0 0 40 
13 3 4 1 0 0 0 0 0 0 0 40 
13 4 4 1 0 0 0 0 0 0 0 40 
14 1 4 1 0 0 0 0 0 0 0 40 
14 2 4 1 0 0 0 0 0 0 0 40 
14 3 4 1 0 0 0 0 0 0 0 40 
14 4 4 1 0 0 0 0 0 0 6 34 
15 1 4 1 0 1 6 0 31 0 0 2 
15 2 4 1 1 31 3 3 2 0 0 0 
15 3 4 1 0 36 4 0 0 0 0 0 
15 4 4 1 1 34 4 0 1 0 0 0 
16 1 4 1 0 0 0 1 39 0 0 0 
16 2 4 1 0 5 3 14 18 0 0 0 
16 3 4 1 0 27 13 0 0 0 0 0 
16 4 4 1 0 20 10 10 0 0 0 0 
17 1 5 0 1 36 3 0 0 0 0 0 
17 2 5 0 6 34 0 0 0 0 0 0 
17 3 5 0 4 36 0 0 0 0 0 0 
17 4 5 0 6 34 0 0 0 0 0 0 
18 1 5 0 0 0 0 1 0 0 39 0 
18 2 5 0 0 0 0 20 0 3 17 0 
18 3 5 0 0 0 0 18 0 4 18 0 
18 4 5 0 0 0 2 0 0 0 38 0 
19 1 5 0 0 0 0 0 0 0 4 36 
19 2 5 0 0 0 0 0 0 0 32 8 
19 3 5 0 0 0 0 3 0 0 37 0 
19 4 5 0 0 0 0 1 0 0 39 0 
20 1 5 0 0 0 0 31 9 0 0 0 
20 2 5 0 0 12 23 4 1 0 0 0 
20 3 5 0 0 29 11 0 0 0 0 0 
20 4 5 0 0 7 30 3 0 0 0 0 
21 1 6 1 0 0 0 0 0 0 0 40 
21 2 6 1 0 0 0 0 0 0 0 40 
21 3 6 1 0 0 0 0 0 0 0 40 
21 4 6 1 0 0 0 0 0 0 0 40 
22 1 6 1 0 0 16 23 1 0 0 0 
22 2 6 1 0 0 1 30 9 0 0 0 
22 3 6 1 11 20 9 0 0 0 0 0 
22 4 6 1 0 32 8 0 0 0 0 0 
23 1 6 1 0 19 21 0 0 0 0 0 
23 2 6 1 0 22 18 0 0 0 0 0 
23 3 6 1 0 38 2 0 0 0 0 0 
23 4 6 1 0 40 0 0 0 0 0 0 
24 1 6 1 0 0 0 0 0 0 6 34 
24 2 6 1 0 0 0 12 0 7 19 2 
24 3 6 1 0 0 1 9 0 27 3 0 
24 4 6 1 0 0 0 13 0 27 0 0 
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Table 29. Continued. 
 

Run Lane Block Speed C1 C2 C3 C4 C5 C6 C7 C8 
25 1 7 0 0 40 0 0 0 0 0 0 
25 2 7 0 5 27 8 0 0 0 0 0 
25 3 7 0 4 33 3 0 0 0 0 0 
25 4 7 0 4 34 2 0 0 0 0 0 
26 1 7 0 0 0 1 0 39 0 0 0 
26 2 7 0 0 0 1 26 13 0 0 0 
26 3 7 0 0 0 1 19 15 5 0 0 
26 4 7 0 0 0 2 1 37 0 0 0 
27 1 7 0 0 40 0 0 0 0 0 0 
27 2 7 0 1 34 5 0 0 0 0 0 
27 3 7 0 0 26 14 0 0 0 0 0 
27 4 7 0 0 18 20 2 0 0 0 0 
28 1 7 0 0 0 0 5 34 1 0 0 
28 2 7 0 0 0 0 37 0 3 0 0 
28 3 7 0 0 0 0 30 5 5 0 0 
28 4 7 0 0 0 2 19 19 0 0 0 
29 1 8 -1 0 0 9 30 0 0 1 0 
29 2 8 -1 0 0 3 37 0 0 0 0 
29 3 8 -1 0 0 17 23 0 0 0 0 
29 4 8 -1 7 8 10 15 0 0 0 0 
30 1 8 -1 2 13 20 5 0 0 0 0 
30 2 8 -1 3 22 15 0 0 0 0 0 
30 3 8 -1 13 21 5 1 0 0 0 0 
30 4 8 -1 6 24 10 0 0 0 0 0 
31 1 8 -1 17 22 1 0 0 0 0 0 
31 2 8 -1 14 23 3 0 0 0 0 0 
31 3 8 -1 30 10 0 0 0 0 0 0 
31 4 8 -1 19 21 0 0 0 0 0 0 
32 1 8 -1 24 14 2 0 0 0 0 0 
32 2 8 -1 36 3 1 0 0 0 0 0 
32 3 8 -1 39 1 0 0 0 0 0 0 
32 4 8 -1 39 1 0 0 0 0 0 0 
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Table 30. Bayesian analysis of TB ordinal data. 

 (a) Fixed effect estimates 
Parameter Mean Standard Deviation 2.50% 97.50% 

α1 -6.369 0.114 -6.598 -6.145 
α2 -2.009 0.056 -2.120 -1.900 
α3 -0.246 0.053 -0.350 -0.144 
α4 2.054 0.063 1.931 2.178 
α5 3.049 0.071 2.912 3.189 
α6 3.697 0.077 3.546 3.850 
α7 5.254 0.092 5.074 5.434 
S -3.058 0.502 -4.099 -2.025 
C 0.316 0.029 0.260 0.372 
D 0.668 0.029 0.610 0.725 
J -3.511 0.058 -3.623 -3.396 

CD 0.796 0.324 0.153 1.379 
L1 -1.032 0.050 -1.128 -0.940 
L2 -0.033 0.050 -0.130 0.063 
L3 0.634 0.050 0.532 0.726 

(b) Random effect predictions 
block 1 -0.720 0.330 -1.387 -0.120 
block 2 0.313 0.566 -0.803 1.417 
block 3 -0.094 0.329 -0.758 0.505 
block 4 0.560 0.628 -0.711 1.781 
block 5 -1.629 0.330 -2.235 -0.964 
block 6 0.589 0.565 -0.509 1.710 
block 7 0.276 0.331 -0.329 0.941 
block 8 0.705 0.628 -0.510 1.986 
σb 1.039 0.326 0.592 1.872 

 

 

Table 31. Penalties associated with each category. 

Category Description Penalty 
C1 very tight seal, with seal area completely covered by tab paper 5 
C2 tight seal, with some of tab paper inside seal area 3 
C3 tight seal, with little paper on sealing edge and/or outside the sealing area -3 
C4 perfect seal with consistent pattern and all tab paper removed -5 
C5 seal with inconsistent pattern and good pull -3 
C6 consistent seal with weak pull 3 
C7 seal with inconsistent pattern and weak pull 5 
C8 almost no seal or no seal at all, very weak seal 10 
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Table 32. Expected loss statistics for TB experiment. 

Run S C D J mean sd 2.50% median 97.50% 
8 -1 -1 1 1 -2.74 0.07 -2.88 -2.74 -2.60 

16 1 1 -1 -1 -2.67 0.07 -2.82 -2.68 -2.53 
29 -1 -1 -1 1 -2.58 0.09 -2.74 -2.58 -2.40 
6 -1 1 -1 1 -2.39 0.11 -2.60 -2.39 -2.16 

26 0 1 1 1 -2.22 0.12 -2.44 -2.22 -1.99 
15 1 -1 1 -1 -2.17 0.12 -2.39 -2.17 -1.93 
22 1 -1 -1 -1 -1.85 0.12 -2.09 -1.85 -1.59 
1 0 1 -1 -1 -0.74 0.14 -1.01 -0.74 -0.47 

20 0 -1 -1 -1 -0.66 0.14 -0.94 -0.66 -0.38 
30 -1 1 1 1 -0.13 0.17 -0.46 -0.13 0.20 
12 0 1 -1 -1 0.22 0.14 -0.05 0.22 0.49 
3 0 -1 1 -1 0.35 0.15 0.06 0.35 0.63 

23 1 1 1 -1 1.02 0.13 0.77 1.02 1.26 
11 0 -1 1 -1 1.22 0.12 0.98 1.22 1.46 
18 0 1 1 1 1.62 0.24 1.16 1.62 2.11 
28 0 -1 -1 1 1.79 0.26 1.29 1.79 2.30 
27 0 -1 -1 -1 1.94 0.10 1.73 1.95 2.14 
17 0 1 1 -1 2.01 0.10 1.82 2.01 2.19 
25 0 1 1 -1 3.44 0.06 3.33 3.44 3.55 
10 0 -1 1 1 3.45 0.24 2.97 3.45 3.91 
7 -1 1 -1 -1 3.54 0.06 3.43 3.54 3.66 

24 1 1 1 1 3.84 0.23 3.39 3.84 4.30 
5 -1 -1 1 -1 3.95 0.05 3.84 3.95 4.05 

31 -1 -1 -1 -1 4.27 0.05 4.17 4.27 4.37 
32 -1 1 1 -1 4.84 0.02 4.81 4.84 4.87 
2 0 -1 1 1 5.03 0.24 4.56 5.03 5.49 
9 0 1 -1 1 5.23 0.21 4.81 5.23 5.65 

19 0 -1 -1 1 6.50 0.18 6.13 6.50 6.86 
4 0 1 -1 1 6.60 0.18 6.23 6.60 6.96 

21 1 -1 -1 1 7.97 0.14 7.68 7.97 8.25 
13 1 -1 1 1 8.36 0.13 8.09 8.36 8.61 
14 1 1 -1 1 9.07 0.09 8.90 9.08 9.24 
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Appendix C: Figures 
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Figure 1. Line width and spacing for 5 pairs of conductors in PCB experiment. 
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a) Opens. A p-value = 0.30   b) Shorts. A p-value = 0.24. 
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Figure 2. Realized versus posterior predictive distributions for the test quantity T(y) 
for the mixed PCB models (GLMM). 

 

 

a) Opens. A p-value = 0.016   b) Shorts. A p-value = 0.032. 
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Figure 3. Realized versus posterior predictive distributions for the test quantity T(y) 
for the PCB models without the random effects (GLM). 
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a) Opens. A p-value = 0   b) Shorts. A p-value = 0.044 

0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8
5.2

T(
y)

1 2 3 4 5
T(y_rep)

0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8
5.2

T(
y)

1 2 3 4 5
T(y_rep)

 

Figure 4. Realized versus posterior predictive distributions for the test quantity T(y) 
for the PCB models according to JW. 
 

 

 

a) Misfeeds. A p-value = 0.   b) Multifeeds. A p-value = 0.38. 
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Figure 5. Realized versus posterior predictive distributions for the test quantity T(y) 
for the mixed models in the paper feeder example. 
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a) Misfeeds. A p-value = 0.   b) Multifeeds. A p-value = 0.67. 

 

Figure 6. Realized versus posterior predictive distributions for the test quantity T(y) 
for JW models in the paper feeder example. 
 

 

 
Figure 7. Histogram of the 97.5 percentile of the expected loss for the paper feeder 
example. 
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Figure 8. Logistic curve with β0 = 3 and β1 = 2. Red lines correspond to the D-
optimal design levels of x. 
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Figure 9. Completed Taco Bell disc 
 

 

 
Figure 10. Taco Bell Disc with area under the tab. 
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Figure 11. Factor relation diagram for TB experiment with low level of speed. 
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Figure 12. Factor relation diagram for TB experiment with high level of speed. 
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Figure 13. Factor relation diagram for TB experiment with medium level of speed. 
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Figure 14.  Imada Peel Tester 
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Figure 15. Residual by predicted plot for the square root of the mean of means 
response. 
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Summary of Fit 
   
RSquare 0.875514
RSquare Adj 0.867145
Root Mean Square Error 0.174724
Mean of Response 1.040036
Observations (or Sum Wgts) 128
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 8 25.550180 3.19377 104.6165
Error 119 3.632876 0.03053 Prob > F
C. Total 127 29.183055 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  1.0400357 0.015444 67.34 <.0001
Speed  -0.286247 0.02184 -13.11 <.0001
C  0.0541485 0.015444 3.51 0.0006
D  0.0866005 0.015444 5.61 <.0001
J  -0.3661946 0.015444 23.71 <.0001
C*D  0.1093234 0.015444 7.08 <.0001
Lane[1]  -0.071501 0.026749 -2.67 0.0086
Lane[2]  -0.005305 0.026749 -0.20 0.8431
Lane[3]  0.0217959 0.026749 0.81 0.4168
 
Residual by Predicted Plot 
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Effect Details 
Lane 
Least Squares Means Table 
Level Least Sq Mean   Std Error Mean
1 0.9685350  0.03088708 0.96854
2 1.0347303  0.03088708 1.03473
3 1.0618316  0.03088708 1.06183
4 1.0950457  0.03088708 1.09505
 

Figure 16. Analysis of the square root of the mean(mean) with Speed, C, D, J, CD 
and lane effects. 
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Summary of Fit 
   
RSquare 0.857157
RSquare Adj 0.851303
Root Mean Square Error 0.099979
Mean of Response 0.526661
Observations (or Sum Wgts) 128
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 7.3178493 1.46357 146.4171
Error 122 1.2194992 0.01000 Prob > F
C. Total 127 8.5373485 <.0001
 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  0.5266613 0.008837 59.60 <.0001
Speed  -0.138649 0.012497 -11.09 <.0001
C  0.0248045 0.008837 2.81 0.0058
D  0.0407884 0.008837 4.62 <.0001
J  -0.2051652 0.008837 23.22 <.0001
C*D  0.0564553 0.008837 6.39 <.0001
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Figure 17. Analysis of the square root of the mean of the standard deviation with 
Speed, C, D, J and CD effects. 
 



 111

 
 
Figure 18. Redefined categories on a two-dimensional scale: consistency of the seal 
and amount of pull. 
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6 – good looking seal, but has weak pull 
7 – inconsistent seal, weak pull 
8 – almost no seal or no seal at all 
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Summary of Fit 
  
RSquare 0.850808
RSquare Adj 0.849624
Root Mean Square Error 0.185888
Mean of Response 1.040036
Observations (or Sum Wgts) 128
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 24.829184 24.8292 718.5507
Error 126 4.353871 0.0346 Prob > F
C. Total 127 29.183055 <.0001
 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  1.8284475 0.03369 54.27 <.0001
Yord  -0.192782 0.007192 -26.81 <.0001
 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   
Yord 1 1 24.829184 718.5507 <.0001  
 
Figure 19. Relationship between the ordinal and continuous responses. 
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Oneway Analysis of Sqrt(Mean) By discrete_Y 
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Oneway Anova 
Summary of Fit 
  
Rsquare 0.87436
Adj Rsquare 0.867032
Root Mean Square Error 0.174799
Mean of Response 1.040036
Observations (or Sum Wgts) 128
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F
discrete_Y 7 25.516510 3.64522 119.3019 <.0001
Error 120 3.666545 0.03055  
C. Total 127 29.183055  
Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 
1 9 1.78887 0.05827 1.6735 1.9042 
2 39 1.40798 0.02799 1.3526 1.4634 
3 15 1.22637 0.04513 1.1370 1.3157 
4 17 0.96796 0.04239 0.8840 1.0519 
5 13 0.85101 0.04848 0.7550 0.9470 
6 5 0.85977 0.07817 0.7050 1.0145 
7 11 0.69416 0.05270 0.5898 0.7985 
8 19 0.22447 0.04010 0.1451 0.3039 
Std Error uses a pooled estimate of error variance 
 
Figure 20. Relationship between the continuous response and the actual ordinal Y 
rounded to the nearest category. 
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