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Abstract 
 

This dissertation presents a method that can be used to identify the 

parameters of a class of systems whose regressor models are nonlinear in the 

parameters.  

The technique is based on classical elimination theory, and it guarantees 

that the solution for the parameters which minimize a least-squares criterion can 

be found in a finite number of steps. The proposed methodology begins with an 

input-output linear overparameterized model whose parameters are rationally 

related. After making appropriate substitutions that account for the 

overparameterization, the problem is transformed into a nonlinear least-squares 

problem that is not overparameterized. The extrema equations are computed, and 

a nonlinear transformation is carried out to convert them to polynomial equations 

in the unknown parameters. It is then show how these polynomial equations can 

be solved using elimination theory using resultants. The optimization problem 

reduces to a numerical computation of the roots of a polynomial in a single 

variable. 

  This nonlinear least-squares method is applied to the identification of the 

parameters of an induction motor. A major difficulty with the induction motor is 

that the rotor’s state variables are not available measurements so that the system 

identification model cannot be made linear in the parameters without 

overparameterizing the model. Previous work in the literature has avoided this 



 vi

issue by making simplifying assumptions such as a “slowly varying speed”. Here, 

no such simplifying assumptions are made. This method is implemented online to 

continuously update the parameter values. Experimental results are presented to 

verify this method. 

The application of this nonlinear least-squares method can be extended to 

many research areas such as the parameter identification for Hammerstein 

models. In principle, as long as the regressor model is such that the system 

parameters are rationally related, the proposed method is applicable.  
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Chapter 1

INTRODUCTION

Parameter and state estimation continue to be important areas of research because

they are used in many practical engineering problems. The parameters of a physical

system are not always available for direct measurement and therefore must be found

indirectly as a parameter estimation problem. In addition to the parameters not

being directly measured, often only a few of the state variables are measurable.

Systems of nonlinear equations arise inevitably from nonlinear identification and

estimation problems. In solving a system of nonlinear equations, we seek a vector

x ∈ Rn such that f(x) = 0. With the aid of the modern computer, the solutions

are obtained by various numerical methods such as bracketing, Newton’s, modified

Newton’s, and homotopy (continuation).

The technique presented in this dissertation is based on classical elimination the-

ory, and it guarantees that the solution for the parameters which minimize a least-

squares criterion can be found in a finite number of steps. This works despite the

regressor model being nonlinear in the parameters.
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1.1 Induction Machines

Electric machines play an important role in energy conversion. The transport of

energy to points of consumption is often done using electricity as it can be transported

with low losses over long distances and distributed at an acceptable cost. The end

user of this power is often electric motors, though it could be lighting or heat.

Hybrid electric vehicles (HEVs), which combine the internal combustion engine

of a conventional vehicle with the electric motor of an electric vehicle, are fuel effi-

cient and environmentally friendly. The development of modern technology, including

power electronic components, electric machines, computer control and software makes

switching power between the gasoline engine and electric drive motor appear to be

seamless to the driver. In comparison to the internal combustion engine, an electric

motor is a relatively simple and far more efficient machine. The moving parts consist

primarily of the armature (DC) or rotor (AC) and bearings, and the motoring effi-

ciency is typically on the order of 80% to 95%. In addition, the electric motor torque

characteristics are much more suited to the torque demand curve of a vehicle.

Modern electrical drives should be reliable, controllable, energy efficient and cost-

effective. Currently, modern drives consist of an electronic power converter, a motor

and a controller. The converter, manipulating the power flow between the grid and

the motor, generates the proper voltage or current applied to the motor. The motor

transforms the electrical power into mechanical power and the controller controls the

drive system by means of measurements of electrical and/or mechanical quantities.

In many cases an induction machine is an appropriate choice for the motor in the

drive.
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In the 70’s and 80’s, most of the electrical drives were of the constant speed

type which allowed small changes in speed due to load changes. These drives did

not require much control, and induction machines were often used. Because of their

simple and robust construction, they were and continue to be the appropriate choice

for many applications such as fans, pumps, and conveyor belts.

However, there is now an expanded group of controlled drives in which the torque

and/or speed must be matched to the needs of the mechanical load. The motivation

could be energy savings, or the varying demands in production processes and in

transportation, where the mechanical load is required to accurately follow a specific

trajectory. Examples of these applications are elevators, cranes, robotics, and traction

drives in trains as well as electric and hybrid cars.

In the past, DC motors were used for variable speed applications. The control

principle and the required converter are simple, but the mechanical commutator and

brushes result in the DC motor requiring much more maintenance than an AC ma-

chine. With the rapid development of both power electronics and real time processors,

the capacity to perform complex control functions are now available. This develop-

ment has led to AC motors, especially squirrel cage induction machines, becoming

increasingly common in variable speed drives. The absence of sliding electrical con-

tacts in an induction machine results in a very simple and cheap construction and

makes the motor nearly maintenance free. The induction machine can also run at

higher speed, accepts high overload for a short time duration, and has a smaller weight

to power ratio than the DC machine.

Induction machines have a nonlinear, highly interacting multivariable control

structure due to the electromagnetic interaction. High-performance control of an

electrical drive demands that the torque can be manipulated independently of the
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mechanical speed. The difficulty in attaining torque control is that the torque is

a nonlinear function of fluxes and current. Field-oriented control is an important

control approach for AC drives, in that it allows one to achieve high-performance

control.

Although the principle of field-oriented control was already established in the

early 1970s, its implementation was only possible after the development of power

electronics and fast microcomputers in the 1980s and 1990s [2] [3]. Field-oriented

control theory has been extensively researched in the past decades, but a few general

problems still remain. In particular, the motor parameters inevitably vary during

the drive operation, making it desirable to improve the performance of the drive by

tracking the parameter variation online. It is possible to derive a physical model of the

induction machine describing the most dominant dynamic behavior of the machine.

These models can be used to reconstruct machine quantities, such as torque, flux and

angular speed from easily measurable quantities such as voltages and currents. In

general it is not possible to accurately predict the values of the physical parameters

in the model based on prior physical information. The machine parameters can be

estimated, either offline or online, from measured signals such as voltages, currents,

mechanical speed and/or mechanical position. The focus of this thesis is the online

identification of the parameters.

1.2 System Identification

Higher quality standards, economic motives, and environmental constraints impose

more stringent demands on productivity, accuracy, and flexibility of production processes

and products. To meet these demands, control theory has become increasingly more
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important. Modern controllers are model based, i.e., they are designed based on a

mathematical model of the process to be controlled. The achievable performance is

limited, amongst other things, by the fidelity of the model.

In order to design a control system, we need to model the behavior of the system

being controlled. A model must capture the dynamic behavior, and this is often

accomplished using differential or difference equations. "Black-box" modelling from

data, without trying to model internal physical mechanisms, is also referred to as

"system identification" (or "time series analysis"). Another way to come up with

models is based on rigorous mathematical deduction and a prior knowledge of the

process [4]. This route is referred to simply as modelling [5].

System identification techniques are applied in, e.g., the process industry to find

reliable models for control design [6]. The input-output data is collected from ex-

periments that are designed to make the data maximally informative on the system

properties that are of interest. The model set specifies a set of candidate models in

which the "best" model according to a well-defined criterion will be searched for. In

prediction error methods, the sum of the square of prediction errors, i.e., the mis-

match between the real measured output and the model output, is often used as

a criterion [7]. Selecting the three entities, data, model set, and criterion are very

important steps in an identification procedure.

When the data is available, the model set is chosen, and a criterion is selected,

the model in the model set that best fits the data according to the specified criterion

has to be found. In general, a model set is parametrized and a parameter estimation

algorithm is used to find the parameter values such that the model behavior fits best

to the data according to the criterion. Finally, model validation tests are performed.
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These tests should investigate how well the model relates to the observed data and a

prior knowledge about the plant.

1.3 Goals of the Research

The goal of the research reported here was to develop an online efficient method

to identify the induction machine parameters. A nonlinear least-squares criterion is

specified and the optimal parameter values can be found in a finite number of steps.

This method is applicable to online tracking of the machine parameters.

In practice, field-oriented control requires accurate information on the machine pa-

rameters. Research on the influence of machine parameter deviations in field-oriented

controlled drives, indicates that parameter errors result in performance degradation

of the controller [8] [9]. The overall effect of this detuning is the incorrect calculation

of the rotor flux angle and magnitude. In general, this causes the commanded stator

current components to be incorrect with the result that

• the flux level is not properly maintained,

• the resulting steady state torque is not the command value,

• the torque response is sluggish, and

• the power efficiency decreases.

Traditional identification methods are performed before a drive is installed and

require extensive testing by well-trained staff. To simplify these tests, automatic

identification procedures are used to determine the electrical parameters during com-

missioning and to set the control parameters accordingly. However, it is not sufficient
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to identify the parameters only during commissioning because the parameters may

change during the operation of the drives. The resistance of the stator and rotor wind-

ings change with temperature while magnetic saturation affects the inductance values

when the machine is operated under varying flux levels. The machine parameters do

vary with time, and there should be methods to estimate them "continuously", i.e.,

online when the machine is in normal operation.

Knowledge of induction machine parameters is important for purposes other than

torque or speed control. When the machine parameters are accurately known, the

most efficient operating points can be calculated and power losses can be minimized.

It is also necessary to know the machine parameters for various simulation purposes

when the interaction of a machine with, e.g., a mechanical load or converter is to be

studied. Furthermore, changes in certain machine parameters can also indicate the

existence of certain types of malfunctions, and hence parameter estimation can be a

part of a condition monitoring system.

1.4 Outline of the Dissertation

The dissertation is arranged as follows:

Chapter 2 presents a summary of the existing literature in induction machine

parameter identification.

Chapter 3 explains the principle of the nonlinear least-squares approach and how

it is applied to the induction machine parameter identification.

Chapter 4 presents some offline experimental results.

Chapter 5 extends the proposed approach for online parameter estimation.

Chapter 6 concludes the dissertation’s work and gives future research directions.

7



Chapter 2

A REVIEW OF THE

INDUCTION MACHINE

IDENTIFICATION

LITERATURE

2.1 Introduction

For the induction machine, identification can be performed either during normal

operation (online) or during specially designed identification runs (offline). In the

latter case, the operating condition and input signals can be manipulated such that it

is easier to estimate one or more machine parameters. Specially designed experiments

of this kind are mostly applied before the machine is actually used for its normal duty

and are therefore referred to as commissioning tests. The classical no-load and locked-

rotor tests, are examples of offline identification experiments and have been used

8



for decades to identify electrical machine parameters. These tests require testing by

trained staff with special equipment and therefore, prevent the quick and easy update

of changing parameter values to, e.g., a field oriented controller.

2.2 Offline Parameter Identification Techniques

2.2.1 Conventional offline technique

Traditionally, the electrical parameters of an induction machine model are calculated

from data of the following three experiments:

• DC measurements of stator currents and voltages

• AC measurements with a locked rotor of stator currents and voltages

• AC measurements under no-load operation of stator currents and voltages

2.2.2 Self-commissioning methods

Several authors (e.g., [10] and [11]) have proposed and developed self-commissioning

procedures, automatically yielding estimates of the machine parameters. There are

some basic requirements that should be met by a modern self-commissioning identi-

fication system.

• All tests must be feasible at the place where the machine is installed with a
minimum amount of additional hardware. This implies that the inverter of the

drive itself should be utilized to generate the signals required for parameter

estimation.
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• In an industrial application it is undesirable or even impossible to start a drive
without knowing the machine parameters. Therefore, it is best to perform all

measurements at standstill.

2.2.3 Commissioning methods

There are some commissioning methods which either require some special conditions

to be satisfied during the commissioning (for example, the machine is allowed to

rotate) or require substantially more complicated mathematical processing of the

measurement results, when compared to the self-commissioning ones. For example,

procedures described in [12], [13], and [14] are all based on tests with only a single-

phase supply to the machine. However, the method described in [12] involves appli-

cation of pseudo-random binary-sequence voltage excitation and requires an adaptive

observer. The procedure of [13] relies on maximum likelihood method to obtain trans-

fer function parameters. A step voltage is applied at the stator terminals and the

stator voltage and stator current responses are recorded. The Laplace transformation

is used to obtain the transfer function along with the maximum likelihood estima-

tion algorithm. The method of [14] requires application of the recursive least squares

algorithm, this being the same as for the procedure of [15].

The second possible excitation for parameter identification at standstill is single-

phase AC. Standstill frequency response test forms the basis for the parameter iden-

tification in this case( [16], [17], [18], and [19]). A particularly interesting procedure

based on single-phase AC excitation is the rotor time constant identification method

of [20]. It is based on trial-and-error and essentially does not require any computa-

tions.
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If the conditions of the commissioning are less stringent, the drive may be allowed

to rotate for the purposes of parameter identification. A whole array of additional

parameter determination methods opens up in this case. For example, an extremely

simple procedure for rotor time constant tuning is based on the tests performed while

the machine is rotating [21]. Further important works describing various approaches

to self-commissioning and commissioning are those of [22], [23], [24], [25], [26], [27],

and [28].

2.3 Online Rotor Time Constant Estimation Tech-

niques

For a summary of the various techniques for tracking the rotor time constant, the

reader is referred to the recent survey [29], the recent paper [30] and to the book [31].

Below, techniques are summarized.

2.3.1 Least-squares method

Least-squares method is a basic technique for system identification. Standard least-

squares methods for parameter estimation are based on equalities where known signals

depend linearly on unknown parameters. In [32], a recursive least-squares method was

proposed for both parameters and speed estimation. Because the measurement of the

rotor fluxes is unavailable most of the time, an approximate model of the induction

machine is introduced in [33], which does not depend on measuring the rotor fluxes.

If the speed of the motor varies slowly, the need for flux measurement can be avoided.
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The algorithm is fast and simple and may be easily implemented in real-time with

existing hardware.

Least-squares methods are applicable for the design of self-tuning AC drives (i.e.,

drives that can adjust controller parameters in response to a range of motors and

loads) to optimize their performance. Additionally, in its recursive form, the scheme

can provide real-time tracking of variations in motor parameters and can be used to

adapt controllers of induction motors.

One of the challenges of the method involves the reconstruction of the derivatives

from the measured signals. The parameter estimates depend on derivatives of the

current signals, which may be very noisy. Therefore, it is necessary to use high-order

filters and careful filter design to eliminate such noise.

2.3.2 Spectral analysis method

Spectral analysis is a powerful tool in signal processing. Methods based upon spectral

analysis analyze voltages and currents in the frequency domain by using algorithms

such as the Fast Fourier Transform (FFT). Online identification is based on the

measured response to a deliberately injected test signal or an existing characteristic

harmonic in the voltage/current spectrum. Stator currents and/or voltages of the

motor are sampled, and the parameters are derived from the spectra of these sam-

ples. A perturbation signal is used because under no-load conditions of the induction

motor, the rotor induced currents and voltages become zero, so slip frequency be-

comes zero, and hence, the rotor parameters cannot be estimated. In [34] and [35],

the disturbance to the system is provided by injecting negative sequence components.

An online technique for determining the value of the rotor resistance by detecting the

12



negative sequence voltage is proposed in [34]. Special precautions need to be taken

to circumvent the torque-producing action when an induction motor, equipped with

this system, is used as a torque drive; otherwise, the outer loop might prevent the

perturbation from being injected into the system. The main drawback of this method

is that a strong second harmonic torque pulsation is induced due to the interaction

of positive and negative rotating components of Magnetic Motive Force(MMF).

In [35], an online estimation technique is proposed, based on the d − q model

in the frequency domain. The q-axis component of the injected negative sequence

component is kept at zero, so that machine torque is undisturbed. The d-axis com-

ponent affects the flux of the machine. The FFT is used to analyze the currents and

voltages, and the fundamental components of the sampled spectral values are used to

determine the parameters. Average speed is used for the identification of parameters.

In [36], an attempt to create online tests similar to the no-load and full-load tests

is made. In [37], a pseudo-random binary sequence signal is used for perturbation of

the system by injecting it into the d-axis and correlating with q-axis stator current

response. The sign of the correlation gives the direction for rotor time constant

updating. This method, however, does not work satisfactorily under light loads due

to the drawback of the algorithm. In [38], a sinusoidal perturbation is injected into

the flux producing stator current component channel. Though rotor resistance can be

estimated under any load and speed condition, the cost is high due to the installation

of two flux search coils.

The algorithms described in [39], [40], [41] and [42] all belong to the category of

spectral analysis method.
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2.3.3 Observer-based method

The standard Kalman filter is a robust and efficient state estimator for a linear system.

This observer uses knowledge about the system dynamics and the statistical properties

of the system andmeasurement noise sources to produce an optimal estimation. These

noise sources define the model uncertainties, and the main difficulty in the Kalman

filter implementation is setting of its covariance matrix.

The extended Kalman filter allows simultaneous estimation of states and parame-

ters. These parameters are considered as extra state variables in an augmented state

vector. This augmented model is nonlinear involving multiplication of state variables.

Thus, it must be linearized along the state trajectory to give a linear perturbation

model.

In [43], Loron and Laliberté describe the motor model and the development and

tuning of an extended Kalman filter (EKF) for parameter estimation during normal

operating conditions without introducing any test signals. The proposed method re-

quires terminal and rotor speed measurements and is useful for auto tuning an indirect

field-oriented controller or an adaptive direct field-oriented controller. In [44], Zai,

DeMarco, and Lipo propose a method for detection of the inverse rotor time constant

using the EKF by treating the rotor time constant as the fifth state variable along

with the stator and rotor currents. This is similar to a previously mentioned method

that injected perturbation in the system, except that in this case, the perturbation is

not provided externally. Instead, the wide-band harmonics contained in a pulse width

modulated (PWM) inverter output voltage serve as an excitation. This method works

on the assumption that when the motor speed changes, the machine model becomes

a two-input/two output time-varying system with superimposed noise input. The
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drawbacks are that this method assumes that all other parameters are known, and

variation in the magnetizing inductance can introduce large errors into the rotor time

constant estimation. The application of the EKF for slip calculation for tuning an

indirect field oriented drive is proposed in [45]. Using the property that in the steady

state the Kalman gains are asymptotically constant for constant speeds, the Riccati

difference equation is replaced by a look-up table that makes the system much sim-

pler. The disadvantage is that, although the complexity of the Riccati equation is

reduced, the full-order EKF is computationally intense as compared to the reduced

order-based systems. Other solutions, based on the Kalman filter, are those described

in [46], [47], [48] and [49].

In [50], [51], and [52], an extended Luenberger observer (ELO) for joint state and

parameter estimation was developed. According to these authors, the preference for

an EKF observer in AC drives appears doubtful for the following reasons:

• The induction motor drive is in essence a deterministic rather than stochastic
system no matter whether it is driven by normal sinusoidal supply or by a PWM

inverter.

• An estimate produced by an EKF is not necessarily optimal even if the motor
system were stochastic.

Therefore an ELO is considered for the joint state and parameter estimation. It

is believed that an observer which has the same set of input excitation signals and

output measurements as the plant motor, should be able to generate more reasonable

estimates than the EKF.
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The major problems related to EKF and ELO applications are computational

intensity and the fact that all the inductances are treated as constants in the mo-

tor equations. In order to improve the accuracy of the EKF-based rotor resistance

identification, it is suggested in [44], [48], and [49] that the magnetizing inductance

be simultaneously identified. Another possibility of improving the accuracy is the

inclusion of the iron loss into the model [47].

2.3.4 Model reference adaptive system-based method

A third major group of online rotor resistance adaptation methods is based on prin-

ciples of model reference adaptive control. The basic idea is that one quantity can be

calculated in two different ways. The first value is calculated from references inside

the control system. The second value is calculated from measured signals. One of

the two values is independent of the rotor resistance (rotor time constant). The dif-

ference between the two is an error signal, which is assigned entirely to the error in

rotor resistance used in the control system. The error signal is used to drive an adap-

tive mechanism (PI or I controller) which provides correction of the rotor resistance

(Figure 2.1). Any method that belongs to this group utilizes the machine’s model,

so its accuracy is heavily dependent on the accuracy of the applied model. This is

the approach that has attracted most of the attention due to its relatively simple

implementation requirements.

In [53], four different reference models were proposed. According to the different

physical quantities which are selected for adaptation purposes, this group of meth-

ods can be divided into several categories. The reactive power-based method is not

dependent on stator resistance at all and is probably the most frequently applied
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Figure 2.1: The structure of model reference adaptive system-based method
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approach (see [54], [55], [56], [53] and [57]). Other possibilities include selection of

torque [53], [58], rotor back emf [59], [60], rotor flux magnitude [53], rotor flux d-,

and q-components [61], stored magnetic energy [62], product of stator q-axis current

and rotor flux [63], stator fundamental RMS voltage [64], stator d-axis or q-axis volt-

age components [63], or stator q-axis current component [65]. There are a couple of

common features that all of the methods of this group share. First, rotor resistance

adaptation is usually operational in steady-states only and is then disabled during

transients. Thus, the adaptation can be based on steady-state model of the machine.

Second, in the vast majority of cases, stator voltages are required for calculation of

the adaptive quantity, and they have to be either measured or reconstructed from the

inverter firing signals and measured DC link voltage. Third, in most cases, identifi-

cation does not work at zero speed and at zero load torque. Finally, identification

heavily relies on the model of the machine, in which, most frequently, all of the other

parameters are treated as constants. This is at the same time the major drawback

of this group of methods. Indeed, an analysis of the influence of parameter variation

on the accuracy of rotor resistance adaptation [66] shows that when rotor flux mag-

nitude method is applied and actual leakage inductances deviate by 40% from the

values used in the adaptation, rotor resistance is estimated with such an error that

the response of the drive becomes worse than with no adaptation at all. A similar

study, with very much the same conclusions, is described in [67] where parameter sen-

sitivity is examined for d-axis stator voltage method, q-axis stator voltage method,

air gap power method, and reactive power method.

The different reference model algorithms have certain advantages and limitations

if they are compared in the areas of convergence, load dependency and sensitivity

to detuning. Thus, depending on the application, any one of them may be the most
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suitable. On the other hand, none of them will provide a total solution to the detuning

problem.

2.3.5 Other methods

There exist a number of other possibilities for online rotor resistance (rotor time

constant) adaptation, such as those described in [68], [69] and [70]. For example,

the method of [70] does not require either a special test signal or complex compu-

tations. It is based on a special switching technique of the current regulated PWM

inverter, which allows measurement of the induced voltage across the disconnected

stator phase. The rotor time constant is then identified directly from this measured

voltage and measured stator currents. The technique provides up to six windows

within one electric cycle to update the rotor time constant, which is sufficient for all

practical purposes.

Another possibility, opened up by the recent developments in the area of artificial

intelligence (AI), is the application of artificial neural networks for the online rotor

time constant (rotor resistance) adaptation (Figure 2.2). Such a possibility is explored

in [71], [72], [73], [74], [75]. The other AI technique that can be utilized for online

rotor time constant adaptation is fuzzy logic [76], [77], [78].

Recent emphasis on sensorless vector control has led to a development of a number

of schemes for simultaneous rotor speed and rotor time constant online estimation,

that are applicable in conjunction with the appropriate speed estimation model-based

algorithms [79], [80], [81]. These methods of rotor time constant estimation mostly

belong to one of the groups already reviewed in this section.
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2.4 Online Estimation of Stator Resistance

An industrially accepted standard for sensored rotor flux oriented control has become

the indirect rotor flux oriented control (IRFOC), which does not require the knowledge

of the stator resistance. Since the rotor time constant is of crucial importance for

decoupled flux and torque control in IRFOC, the major effort was directed toward

development of online techniques for rotor time constant identification. The situation

has however dramatically changed with the advent of sensorless vector control, which

involves rotor speed estimation. A vast majority of speed estimation techniques are

based on the induction machine model and involve the stator resistance as a parameter

in the process of speed estimation. An accurate value of the stator resistance is of

utmost importance in this case for correct operation of the speed estimator in the

low speed region. If stator resistance is detuned, large speed estimation errors and

even instability at very low speeds result. It is for this reason that online estimation

of stator resistance has received considerable attention during the last decade. There

are a large number of publications devoted to this subject, [82], [83], [84]. The other

driving force behind the increased interest in online stator resistance estimation was

the introduction of direct torque control (DTC), which in its basic form relies on

estimation of stator flux from measured stator voltages and currents. The accuracy

of DTC, especially in the low frequency region, therefore heavily depends on the

knowledge of the correct stator resistance value.

In general, methods of stator resistance estimation are similar to those utilized for

rotor time constant (rotor resistance) estimation and include application of observers,

extended Kalman filters, model reference adaptive systems, and artificial intelligence.
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2.5 Combination of Parameter Identification and

Velocity Estimation

A combined parameter identification and velocity estimation problem is discussed

in [32], [85] and [86]. The methodology in [86] requires a constant or slowly varying

speed. In this thesis, the velocity estimation problem is not considered, but the

velocity is allowed to vary.

2.6 Summary

This chapter reviews various techniques for tracking the rotor time constant. They can

be divided into four main categories: (1) least-squares method, (2) spectral analysis

method, (3) observer-based method, and (4) model reference adaptive system-based

method.
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Chapter 3

NONLINEAR LEAST-SQUARES

APPROACH FOR PARAMETER

IDENTIFICATION

3.1 Introduction

This work is concerned with the identification of the induction motor parameters.

The induction motor is usually modeled as a set of five coupled nonlinear equations

and there are such representations for which the model is linear in the parameters. In

such a case, a standard least-squares criteria leads to a minimization of a quadratic

cost function whose extrema equations are linear in the parameters. However, the

rotor state-variables are not usually available measurements so that this standard

linear least-squares approach does not apply.

Here, the model of the machine is first written as a linear overparameterized system

in which the rotor state-variables are not used. Next, the nonlinear relationships
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between the parameters in the overparameterized model are taken into account in the

expression for the residual error. The extrema equations for the residual error are then

computed, which are nonlinear rational functions of the unknown parameters. Next,

these rational (in the parameters) extrema equations are converted into equivalent

polynomial equations by multiplying them through by their least common multiple.

The equivalent polynomial equations are solved for all of their zeros using elimination

theory (via resultants) and the roots that result in the minimum residual error are

used to obtain the parameter values of the machine.

3.2 Induction Motor Model

The work here is based on standard models of induction machines available in the

literature [87]. These models neglect parasitic effects such as hysteresis, eddy currents

and magnetic saturation. The particular model formulation used here is the state

space model of the system given by (cf. [88] [89])

dω

dt
=

npM

JLR
(iSbψRa − iSaψRb)−

τL
J

dψRa

dt
= − 1

TR
ψRa − npωψRb +

M

TR
iSa

dψRb

dt
= − 1

TR
ψRb + npωψRa +

M

TR
iSb (3.1)

diSa
dt

=
β

TR
ψRa + βnpωψRb − γiSa +

1

σLS
uSa

diSb
dt

=
β

TR
ψRb − βnpωψRa − γiSb +

1

σLS
uSb
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where ω = dθ/dt with θ the position of the rotor, np is the number of pole pairs,

iSa, iSb are the (two phase equivalent) stator currents and ψRa, ψRb are the (two phase

equivalent) rotor flux linkages.

The induction motor parameters are the five electrical parameters, RS and RR

(the stator and rotor resistances),M (the mutual inductance), LS and LR (the stator

and rotor inductances), and the two mechanical parameters, J (the inertia of the

rotor) and τL (the load torque). The symbols

TR =
LR

RR
σ = 1− M2

LSLR

β =
M

σLSLR
γ =

RS

σLS
+

1

σLS

1

TR

M2

LR

have been used to simplify the expressions. TR is referred to as the rotor time constant

while σ is called the total leakage factor.

This model is then transformed into a coordinate system attached to the rotor.

For example, the current variables are transformed according to

 iSx

iSy

 =
 cos(npθ) sin(npθ)

− sin(npθ) cos(npθ)


 iSa

iSb

 . (3.2)

The transformation simply projects the vectors in the (a, b) frame onto the axes of

the moving coordinate frame. An advantage of this transformation is that the signals

in the moving frame (i.e., the (x, y) frame) typically vary slower than those in the

(a, b) frame (they vary at the slip frequency rather than at the stator frequency). At

the same time, the transformation does not depend on any unknown parameter in

contrast to the field-oriented d/q transformation. The stator voltages and the rotor
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fluxes are transformed with the same method as the currents resulting in the following

model ( [90])

diSx
dt

=
1

σLS
uSx − γiSx +

β

TR
ψRx + npβωψRy + npωiSy (3.3)

diSy
dt

=
1

σLS
uSy − γiSy +

β

TR
ψRy − npβωψRx − npωiSx (3.4)

dψRx

dt
=

M

TR
iSx − 1

TR
ψRx (3.5)

dψRy

dt
=

M

TR
iSy − 1

TR
ψRy (3.6)

dω

dt
=

npM

JLR
(iSyψRx − iSxψRy)−

τL
J
. (3.7)

3.3 Linear Overparameterized Model

Measurements of the stator currents iSa, iSb and voltages uSa, uSb as well as the posi-

tion θ of the rotor are assumed to be available (velocity may then be reconstructed

from position measurements). However, the rotor flux linkages ψRx, ψRy are not as-

sumed to be measured. Standard methods for parameter estimation are based on

equalities where known signals depend linearly on unknown parameters. However,

the induction motor model described above does not fit in this category unless the

rotor flux linkages are measured. The first step is to eliminate the fluxes ψRx, ψRy

and their derivatives dψRx/dt, dψRy/dt. The four equations (3.3), (3.4), (3.5), (3.6)

can be used to solve for ψRx, ψRy, dψRx/dt, dψRy/dt, but one is left without another

independent equation(s) to set up a regressor system for the identification algorithm.

A new set of independent equations are found by differentiating equations (3.3) and
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(3.4) to obtain

1

σLS

duSx
dt

=
d2iSx
dt2

+ γ
diSx
dt
− β

TR

dψRx

dt
− npβω

dψRy

dt
− npβψRy

dω

dt

−npωdiSy
dt
− npiSy

dω

dt
(3.8)

1

σLS

duSy
dt

=
d2iSy
dt2

+ γ
diSy
dt
− β

TR

dψRy

dt
+ npβω

dψRx

dt
+ npβψRx

dω

dt

+npω
diSx
dt

+ npiSx
dω

dt
. (3.9)

Next, equations (3.3), (3.4), (3.5), (3.6) are solved for ψRx, ψRy, dψRx/dt, dψRy/dt

and substituted into equations (3.8) and (3.9) to obtain

0 = −d
2iSx
dt2

+
diSy
dt

npω +
1

σLS

duSx
dt
− (γ + 1

TR
)
diSx
dt
− iSx(−βM

T 2R
+

γ

TR
)

+ iSynpω(
1

TR
+

βM

TR
) +

uSx
σLSTR

+ np
dω

dt
iSy − np

dω

dt

1

σLS(1 + n2pω
2T 2R)

×µ
−σLSTR

diSy
dt
− γiSyσLSTR − iSxnpωσLSTR − diSx

dt
npωσLST

2
R

−γiSxnpωσLST
2
R + iSyn

2
pω

2σLST
2
R + npωT

2
RuSx + TRuSy

´
(3.10)

and

0 = −d
2iSy
dt2
− diSx

dt
npω +

1

σLS

duSy
dt
− (γ + 1

TR
)
diSy
dt
− iSy(−βM

T 2R
+

γ

TR
)

− iSxnpω(
1

TR
+

βM

TR
) +

uSy
σLSTR

− np
dω

dt
iSx + np

dω

dt

1

σLS(1 + n2pω
2T 2R)

×µ
−σLSTR

diSx
dt
− γiSxσLSTR + iSynpωσLSTR +

diSy
dt

npωσLST
2
R

+γiSynpωσLST
2
R + iSxn

2
pω

2σLST
2
R − npωT

2
RuSy + TRuSx

´
(3.11)
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The set of equations (3.10) and (3.11) may be rewritten in regressor form as

y(t) =W (t)K (3.12)

where K ∈ R15,W ∈ R2×15 and y ∈ R2 are given by

K ,
·
γ βM

1

σLS

βM

T 2R

1

TR

γ

TR

βM

TR
TR γTR βMTR

T 2R γT 2R
T 2R
σLS

1

σLSTR

TR
σLS

¸T

W (t) ,

 −diSxdt
n2pω

2iSx
duSx
dt

iSx npωiSy − diSx
dt

−iSx npωiSy

−diSy
dt

n2pω
2iSy

duSy
dt

iSy −npωiSx − diSy
dt

−iSy −npωiSx

−n2pω2
diSx
dt

+ n3pω
3iSy +

dω

dt
(np

diSy
dt

+ n2pωiSx) npiSy
dω

dt
− n2pω

2iSx n3pω
3iSy

−n2pω2
diSy
dt
− n3pω

3iSx +
dω

dt
(−npdiSx

dt
+ n2pωiSy) −npiSx

dω

dt
− n2pω

2iSy −n3pω3iSx

n2p(ω
diSx
dt

dω

dt
− ω2

d2iSx
dt2

) + n3pω
3diSy
dt

n2p(ωiSx
dω

dt
− ω2

diSx
dt
) n2p(ω

2duSx
dt
− uSxω

dω

dt
)

n2p(ω
diSy
dt

dω

dt
− ω2

d2iSy
dt2

)− n3pω
3diSx
dt

n2p(ωiSy
dω

dt
− ω2

diSy
dt
) n2p(ω

2duSy
dt
− uSyω

dω

dt
)

uSx n2pω
2uSx − npuSy

dω

dt

uSy n2pω
2uSy + npuSx

dω

dt


and

y(t) ,


d2iSx
dt2

− npiSy
dω

dt
− npω

diSy
dt

d2iSy
dt2

+ npiSx
dω

dt
+ npω

diSx
dt

 .
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Though the system (3.12) is linear in the parameters, it is overparameterized re-

sulting in poor numerical conditioning if standard least-squares techniques are used.

Specifically,

K1 = K6K8,K2 = K4K
2
8 , K3 = K8K14, K5 = 1/K8, K7 = K4K8,K9 = K6K

2
8

K10 = K4K
3
8 ,K11 = K2

8 , K12 = K6K
3
8 ,K13 = K14K

3
8 ,K15 = K14K

2
8 (3.13)

so that only the four parameters K4,K6, K8,K14 are independent. Also, not all five

electrical parameters RS, LS, RR, LR and M can be retrieved from the Ki’s. The

four parameters K4,K6,K8, K14 determine only the four independent parameters RS,

LS, σ and TR by

RS =
K6 −K4

K14
, TR = K8, LS =

1 +K4K
2
8

K14K8
, σ =

1

1 +K4K2
8

. (3.14)

As TR = LR/RR and σ = 1 − M2/ (LSLR), only LR/RR and M2/LR can be

obtained, and not M , LR, and RR independently. This situation is inherent to the

identification problem when rotor flux linkages are unknown and is not specific to the

proposed method. If the rotor flux linkages are not measured, machines with different

RR, LR, and M , but identical LR/RR and M2/LR will have the same input/output

(i.e., voltage to current and speed) characteristics. Specifically, the transformation

ratio from stator to rotor cannot be determined unless rotor measurements are taken.

However, machines with different Ki parameters, yet satisfying the nonlinear rela-

tionships (3.13), will be distinguishable. For a related discussion of this issue, see

Bellini et al [91] where parameter identification is performed using torque-speed and

stator current-speed characteristics.
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3.4 Least-Squares Identification

Equation (3.12) can be rewritten in discrete time as

y(n) =W (n)K (3.15)

where n is the time instant at which a measurement is taken and K is the vector

of unknown parameters. If the constraint (3.13) is ignored, then the system is a

linear least-squares problem. To find a solution for such a system, the least-squares

algorithm is used. Specifically, given y(n) and W (n) where y(n) = W (n)K, one

defines

E2(K) ,
NX
n=1

¯̄̄
y(n) −W (n)K

¯̄̄2
(3.16)

as the residual error associated to a vector K. Then, the least-squares estimate K∗ is

chosen such that E2(K) is minimized for K = K∗. The function E2(K) is quadratic

and therefore has a unique minimum at the point where ∂E2(K)/∂K = 0. Solving

this expression for K∗ yields the standard least-squares solution to y(n) = W (n)K

given by

K∗ =

"
NX
n=1

W T (n)W (n)

#−1 " NX
n=1

W T (n)y(n)

#
. (3.17)

Define

RW =
NX
n=1

W T (n)W (n), RWy =
NX
n=1

W T (n)y(n), Ry =
NX
n=1

yT (n)y(n).

so that

K∗ = R−1W RWy.
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For our identification problem, it is to minimize

E2(K) =
NX
n=1

¯̄̄
y(n)−W (n)K

¯̄̄2
= Ry − 2RT

WyK +KTRWK (3.18)

subject to the constraints

K1 = K6K8,K2 = K4K
2
8 , K3 = K8K14, K5 = 1/K8, K7 = K4K8,K9 = K6K

2
8

K10 = K4K
3
8 ,K11 = K2

8 , K12 = K6K
3
8 ,K13 = K14K

3
8 ,K15 = K14K

2
8 . (3.19)

On physical grounds, the parameters K4,K6,K8, K14 are constrained to

0 < Ki <∞ for i = 4, 6, 8, 14. (3.20)

Also, based on physical grounds, the squared error E2(K) will be minimized in the

interior of this region. Let

E2(Kp) ,
NX
n=1

¯̄̄
y(n) −W (n)K

¯̄̄2
K1=K6K8

K2=K4K2
8

...

= Ry− 2RT
WyK

¯̄̄
K1=K6K8

K2=K4K2
8

...

+
¡
KTRWK

¢¯̄̄
K1=K6K8

K2=K4K2
8

...
(3.21)

where

Kp ,
·
K4 K6 K8 K14

¸T
.

As just explained, the minimum of (3.21) must occur in the interior of the region

and therefore at an extremum point.
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This then entails solving the four equations

r1(Kp) , ∂E2(Kp)

∂K4
= 0 (3.22)

r2(Kp) , ∂E2(Kp)

∂K6
= 0 (3.23)

r3(Kp) , ∂E2(Kp)

∂K8
= 0 (3.24)

r4(Kp) , ∂E2(Kp)

∂K14
= 0. (3.25)

The partial derivatives in (3.22)-(3.25) are rational functions in the parameters K4,

K6, K8, K14. Defining

p1(Kp) , K8r1(Kp) = K8
∂E2(Kp)

∂K4
(3.26)

p2(Kp) , K8r2(Kp) = K8
∂E2(Kp)

∂K6
(3.27)

p3(Kp) , K3
8r3(Kp) = K3

8

∂E2(Kp)

∂K8
(3.28)

p4(Kp) , K8r4(Kp) = K8
∂E2(Kp)

∂K14
(3.29)

results in the pi(Kp) being polynomials in the parameters K4, K6,K8,K14 and having

the same positive zero set (i.e., the same roots satisfying Ki > 0) as the system

(3.22)-(3.25). The degrees of the polynomials pi are given in Table 3.1.

All possible solutions to this set may be found using elimination theory as is now

summarized.
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Table 3.1: The degrees of the polynomials pi
degK4 degK6 degK8 degK14

p1(Kp) 1 1 7 1
p2(Kp) 1 1 7 1
p3(Kp) 2 2 8 2
p4(Kp) 1 1 7 1
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3.4.1 Solving systems of polynomial equations

The question at hand is “Given two polynomial equations a(K1,K2) = 0 and b(K1,K2) =

0, how does one solve them simultaneously to eliminate (say) K2?". A systematic

procedure to do this is known as elimination theory and uses the notion of resultants.

Briefly, one considers a(K1,K2) and b(K1, K2) as polynomials in K2 whose coeffi-

cients are polynomials in K1. Then, for example, letting a(K1,K2) and b(K1,K2)

have degrees 3 and 2, respectively in K2, they may be written in the form

a(K1,K2) = a3(K1)K
3
2 + a2(K1)K

2
2 + a1(K1)K2 + a0(K1)

b(K1,K2) = b2(K1)K
2
2 + b1(K1)K2 + b0(K1).

The n × n Sylvester matrix, where n = degK2
{a(K1,K2)} + degK2

{b(K1, K2)} =
3 + 2 = 5, is defined by

Sa,b(K1) ,



a0(K1) 0 b0(K1) 0 0

a1(K1) a0(K1) b1(K1) b0(K1) 0

a2(K1) a1(K1) b2(K1) b1(K1) b0(K1)

a3(K1) a2(K1) 0 b2(K1) b1(K1)

0 a3(K1) 0 0 b2(K1)


. (3.30)

The resultant polynomial is then defined by

r(K1) = Res
³
a(K1,K2), b(K1,K2),K2

´
, detSa,b(K1) (3.31)

and is the result of eliminating the variable K2 from a(K1, K2) and b(K1, K2). In

fact, the following is true.
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Theorem 1 [92] [93] Any solution (K10, K20) of a(K1, K2) = 0 and b(K1,K2) = 0

must have r(K10) = 0.

Though the converse of this theorem is not necessarily true, the finite number

of solutions of r(K1) = 0 are the only possible candidates for the first coordinate

(partial solutions) of the common zeros of a(K1, K2) and b(K1,K2). Whether or not

such a partial solution extends to a full solution is easily determined by back solving

and checking the solution (See the Appendix).

Using the polynomials (3.26)-(3.29) and the computer algebra software program

Mathematica [94], the variable K4 is eliminated first to obtain three polynomials

in three unknowns as

rp1p2(K6,K8,K14) , Res
³
p1(K4,K6,K8, K14), p2(K4,K6, K8, K14),K4

´
rp1p3(K6,K8,K14) , Res

³
p1(K4,K6,K8, K14), p3(K4,K6, K8, K14),K4

´
rp1p4(K6,K8,K14) , Res

³
p1(K4,K6,K8, K14), p4(K4,K6, K8, K14),K4

´

and the degrees of the polynomials are given in Table 3.2.

Next K6 is eliminated to obtain two polynomials in two unknowns as

rp1p2p3(K8, K14) , Res
³
rp1p2(K6,K8,K14), rp1p3(K6, K8, K14), K6

´
rp1p2p4(K8, K14) , Res

³
rp1p2(K6,K8,K14), rp1p4(K6, K8, K14), K6

´

and the degrees of these two polynomials are given in the Table 3.3.

Finally K14 is eliminated to obtain a single polynomial in K8 as

r(K8) , Res
³
rp1p2p3(K8, K14), rp1p2p4(K8, K14),K14

´
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Table 3.2: The degrees of the polynomials rp1p2, rp1p3, rp1p4
degK6 degK8 degK14

rp1p2 1 14 1
rp1p3 2 22 2
rp1p4 1 14 1

Table 3.3: The degrees of the polynomials rp1p2p3, rp1p2p4
degK8 degK14

rp1p2p3 50 2
rp1p2p4 28 1
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where

degK8 = 104.

The parameter K8 was chosen as the variable not eliminated because its degree was

the highest at each step meaning it would have a larger (in dimension) Sylvester ma-

trix than using any other variable. The positive roots of r(K8) = 0 are found which

are then substituted into rp1p2p3 = 0 (or rp1p2p4 = 0) which in turn are solved to obtain

the partial solutions (K8,K14). The partial solutions (K8,K14) are then substituted

into rp1p2 = 0 (or rp1p3 = 0 or rp1p4 = 0) which are solved to obtain the partial solu-

tions (K6, K8,K14) so that they in turn may be substituted into p1 = 0 (or p2 = 0 or

p3 = 0 or p4 = 0) which are solved to obtain the solutions (K4, K6,K8,K14). These

solutions are then checked to see which ones satisfy the complete system of polynomi-

als equations (3.26)-(3.29), and those that do constitute the candidate solutions for

the minimization. Based on physical considerations, the set of candidate solutions

is non empty. From the set of candidate solutions, the one that gives the smallest

squared error is chosen.

Computational issues

Due to the high degrees of the resultant polynomials, care must be taken to compute

their roots. The data is collected and brought intoMathematica [94]. The matrices

Ry, RW , RWy are then computed and their entries converted to rational form. Finally

the roots of the resultant polynomials are computed inMathematica using rational

arithmetic with 16 digits of precision.
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Numerical conditioning of the nonlinear least-squares solution

After finding the solution that gives the minimal value for E2(Kp), one needs to know

if the solution makes sense. For example, in the linear least-squares problem, there is a

unique well defined solution provided that the regressor matrix RW is nonsingular (or

in practical terms, its condition number is not too large). In the nonlinear case here, a

Taylor series expansion about the computed minimum pointK∗
p = [K

∗
4 ,K

∗
6 , K

∗
8 ,K

∗
14]

T

to obtain (i, j = 4, 6, 8, 14)

E2(Kp) = E2(K∗
p) +

1

2

£
Kp −K∗

p

¤T ∂2E2(K∗
p)

∂Ki∂Kj

£
Kp −K∗

p

¤
+ · · · . (3.32)

One then checks that the Hessian matrix ∂2E2(K∗
p)/∂Ki∂Kj is positive definite as

well as its condition number to ensure that the data is sufficiently rich to identify the

parameters.

3.4.2 Error estimates

Residual error index

To develop a measure of how well the data y(n) fitsW T (n)K∗, one defines the residual

error at K∗ as

E2(K∗) =
NX
n=1

¯̄̄
y(n) −W T (n)K∗

¯̄̄2
= Ry − 2RT

WyK
∗ +K∗TRWK∗ (3.33)
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Note that 0 ≤ E2(K∗) ≤ Ry. Next, define the residual error index to be (see [33])

EI =

s
E2(K∗)
Ry

(3.34)

which is zero when E2(K∗) = 0 (or y(n) = W T (n)K∗ for all n), and 1 when K∗ = 0

(or E2(K∗) = Ry). Therefore, the residual error index EI ranges from 0 to 1, where

EI = 0 indicates that y(n) fits the relationshipW T (n)K∗ perfectly. The residual error

index EI is usually nonzero due to noise, unmodeled dynamics and nonlinearities. In

the worst case, EI = 1, which would mean that the residual error has a magnitude

comparable to that of the measurement y(n).

Parametric error indices

In addressing the issue of sensitivity of K∗ to errors, recall that at K = K∗

·
∂E2(K)

∂K

¸
K=K∗

= 0.

Therefore, it is not possible to use the derivative of the residual error as a measure

of how sensitive the error is with respect to K. An alternative is to define δK as the

variation in K such that the increase of error is equal to some times, say, two times

the residual error E2(K∗) (see Figure 3.1). Recalling (3.33),

E2(K∗ + δK) = Ry − 2RT
Wy (K

∗ + δK) + (K∗ + δK)T RW (K
∗ + δK) (3.35)
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Figure 3.1: E2(K∗ + δK) versus δK
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The parametric error index δK1 associated with the parameter K1, is defined as the

maximum value of δK1 such that

E2(K∗
p + δKp) = CE2(K∗

p), where C is a constant

is satisfied.

In our problem, the parametric error index is chosen as the maximum value of

δKi for i = 4, 6, 8, 14 such that

E2(K∗
p + δKp) = 1.25E

2(K∗
p) (3.36)

where δKp ,
·
δK4 δK6 δK8 δK14

¸T
. In words, for all δKp that result in a

25% increase in the residual error, find the maximum value of δKi for i = 4, 6, 8, 14.

Mathematically, one maximizes

δKi where i = 4, 6, 8, or 14

subject to (3.36). This is straightforwardly setup as an unconstrained optimization

using Lagrange multipliers by maximizing

δKi + λ
³
E2(K∗

p + δKp)− 1.25E2(K∗
p)
´

(3.37)

over all possible δKp ,
·
δK4 δK6 δK8 δK14

¸T
and λ. For example, with i = 4,

the extrema are solutions to
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1 + λ
∂
¡
E2(K∗

p + δKp)− 1.25E2(K∗
p)
¢

∂δK4
= 0 (3.38)

λ
∂
¡
E2(K∗

p + δKp)− 1.25E2(K∗
p)
¢

∂δK6
= 0 (3.39)

λ
∂
¡
E2(K∗

p + δKp)− 1.25E2(K∗
p)
¢

∂δK8
= 0 (3.40)

λ
∂
¡
E2(K∗

p + δKp)− 1.25E2(K∗
p)
¢

∂δK14
= 0 (3.41)

E2(K∗
p + δKp)− 1.25E2(K∗

p) = 0. (3.42)

The equations (3.38) through (3.42) are transformed to five polynomial equations in

the five unknowns δK4, δK6, δK8, δK14, and λ, and elimination theory is used to solve

this system.

A large parametric error index indicates that the parameter estimate could vary

greatly without a large change in the residual error. Thus, the accuracy of the pa-

rameter estimates would be in doubt. Likewise, a small parametric error indicates

that the residual error is very sensitive to changes in the parameter estimates. In

such cases, the parameter estimates may be considered more accurate. In any case,

the error indices should not be considered as actual errors, but rather as orders of

magnitude of the errors to be expected, to guide the identification process and to

warn about unreliable results.

Obviously, the choice of a parametric error index is somewhat subjective. A

different level of residual error would lead to a scaling of all the components of the

parametric error index by a common factor. An alternative would be to select a

residual error level corresponding to a known bound on the measurement noise (thus

the algorithm of [95]). While such an assumption leads to rigorous bounds on the
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parametric errors, the noise bound itself would still be highly subjective as it would

have to account for modelling errors as well as measurement noise.

3.4.3 Mechanical parameters

Once the electrical parameters have been found, the two mechanical parameters J, f

(τL = −fω) can be found using a linear least-squares algorithm. To do so, equations
(3.8) and (3.9) are solved for MψRx/LR,MψRy/LR resulting in

 MψRx/LR

MψRy/LR

 = σLS
1

(1/TR)
2 + n2pω

2

 1/TR −ω
ω 1/TR


×

 diSx/dt− uSx/ (σLS) + γiSx − npωiSy

diSy/dt− uSy/ (σLS) + γiSy + npωiSx

 . (3.43)

Noting that

γ =
RS

σLS
+

1

σLS

1

TR

M2

LR
=

RS

σLS
+

1

σLS

1

TR
(1− σ)LS, (3.44)

it is seen that the quantities on the right hand side of (3.43) are all known once the

electrical parameters have been computed. With K16 , np/J,K17 , f/J , equation

(3.7) may be rewritten as

dω

dt
=

·
MψRx

LR
iSy −

MψRy

LR
iSx −ω

¸
K16

K17
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so that the standard linear squares approach of Section 3.4 is directly applicable.

Then

J , np/K16, f , npK17/K16. (3.45)

3.5 Simulation Results

The algorithm was first applied to simulated “data” to see how it performs under ideal

conditions. In particular, the simulations are helpful in evaluating the usefulness of

the parametric error indices. Here, a two pole-pair (np = 2), three-phase induction

motor model was simulated using Simulink with parameter values chosen to be

RS = 9.7 Ω, RR = 8.6 Ω, LS = LR = 0.67 H,

M = 0.64 H, σ = 0.088, J = 0.011 kgm2, τL = 3.7 Nm.

A 2048 pulse/rev position encoder and 12 bit A/D converters were included in the

simulation model in order to more accurately represent the physical system. These

values correspond to a 1/2 kWmachine with a synchronous frequency of 50 Hz. These

machine parameter values correspond to the following K values

K1 = 299.15,K2 = 10.42,K3 = 17.05,K4 = 1717.18,K5 = 12.84

K6 = 3839.8,K7 = 133.78, K8 = 0.0779,K9 = 23.31,K10 = 0.8120

K11 = 0.0061,K12 = 1.82,K13 = 0.1035,K14 = 218.83,K15 = 1.328
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for the electrical parameters and to

K16 = 181.82, K17 = 336.36

for the mechanical parameters.

Figure 3.2 shows the simulated speed response (from standstill) of the induction

motor when a balanced (open loop) set of three phase voltages of amplitude 466.7

Volts (line-line) and frequency 50 Hz were applied to the machine. The constant load

torque causes the machine to rotate in the opposite direction at the beginning of the

operation.

The data {uSa, uSb, iSa, iSb, θ} was collected between 0 sec and 0.2 sec. The quan-
tities uSx, uSy, duSx/dt, duSy/dt, iSx, iSy diSx/dt, diSy/dt, d

2iSx/dt
2, d2iSy/dt

2, ω =

dθ/dt, dω/dt were calculated, and the regressor matrices RW , Ry and RWy were com-

puted. The procedure explained in Section 3.4.1 was then carried out to compute

K4,K6, K8, K14. In this case, there was only one extremum point that had positive

values for all the Ki. Table 3.4 compares the electrical parameter values determined

from the nonlinear least-squares procedure to their actual values (which are known

only because this is simulation data). Also given in the table are the corresponding

parametric error indices. The residual error index for the parameters K4,K6,K8, K14

was computed to be 3.15%, and it is small.

Using these values, the scaled flux linkages MψRx/LR,MψRy/LR were recon-

structed according to (3.43) to estimate the mechanical parameters K16,K17. Table

3.5 compares the mechanical parameter values determined from the least-squares pro-

cedure to their actual values along with the corresponding parametric error indices.
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Figure 3.2: Rotor speed versus time.
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Table 3.4: The electrical parameter values
Parameter True Value Estimated Value Parametric Error Index with 1.25E2(K∗

p)

K4 1717.2 1743.4 13.23
K6 3839.8 3917.5 24.59
K8 0.0779 0.0780 0.00031
K14 218.8 222.2 8.27

Table 3.5: The mechanical parameter values
Parameter True Value Estimated Value Parametric Error Index with 1.25E2(K∗

p)

K16 181.8 195.3 4.29
K17 336.4 359.3 9.78
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The residual error index for the mechanical parameters K16,K17 was computed to be

4.26%, and it is small.

The Hessian matrix for the identification of the parameters K4,K6, K8,K14 was

calculated at the minimum point according to (3.32) resulting in

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=



7.534 0.2175 40.33 −89.39
0.2175 18.04 10.17 −44.35
40.33 10.17 5.308× 104 1.112× 103

−89.39 −44.35 1.112× 103 1.876× 103


which is positive definite and has a condition number of 1.88 × 104. The Hessian
matrix is well-conditioned, and it ensures numerical reliability of the computations.

There are four positive eigenvalues for this Hessian matrix. The direction where the

error function is most sensitive to the parameter change is given by the eigenvector

corresponding to the biggest eigenvalue, whereas the direction where the error func-

tion is least sensitive is given by the eigenvector corresponding to the smallest value.

Table 3.6 compares the estimated machine parameters to their actual values.

Table 3.6: The machine parameter values
Parameter True Value Estimated Value

TR 0.0779 sec 0.0780 sec
σ 0.088 0.086
LS 0.67 H 0.6698 H
RS 9.7 Ohms 9.8 Ohms
J 0.011 kgm2 0.010 kgm2

τL 3.7 Nm 3.68 Nm
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3.6 Estimation of TR and RS for Online Update

During normal operation of the induction machine, the field oriented control requires

knowledge of the rotor time constant TR = LR/RR (which varies significantly due

to Ohmic heating) in order to estimate the rotor flux linkages. The interest here is

in tracking the value of TR as it changes due to Ohmic heating so that an accurate

value is available to estimate the flux for a field oriented controller. However, the

stator resistance value RS will also vary due to Ohmic heating so that it must also

be taken into account. The electrical parameters M,LS, σ are assumed to be known

and not varying. Measurements of the stator currents iSa, iSb and voltages uSa, uSb

as well as the position θ of the rotor are assumed to be available (velocity may then

be reconstructed from position measurements). However, the rotor flux linkages are

not assumed to be measured.

From equations (3.10) and (3.11), if we assume the electrical parametersM,LS, σ

are known, this set of equations may be rewritten in regressor form as

y(t) =W (t)K (3.46)

where y ∈ R2,W ∈ R2×8 and K ∈ R8 are given by

y ,

 d2iSx
dt2

− npiSy
dω

dt
− npω

diSy
dt
− n2pω

2MβiSx − duSx/dt

σLs
d2iSy
dt2

+ npiSx
dω

dt
+ npω

diSx
dt
− n2pω

2MβiSy − dvSy/dt

σLs
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W =

 −diSxdt
−diSx

dt
+ npωiSy + npωMβiSy +

uSx
σLs

MβiSx −iSx
−diSy

dt
−diSy

dt
− npωiSx − npωMβiSx +

uSy
σLs

MβiSy −iSy

np
diSy
dt

dω

dt
+ n2p(ωiSx

dω

dt
− ω2

diSx
dt
) + n3pω

3iSy(1 +Mβ) +
1

σLs
(n2pω

2uSx − npuSy
dω

dt
)

−npdiSx
dt

dω

dt
+ n2p(ωiSy

dω

dt
− ω2

diSy
dt
)− n3pω

3iSx(1 +Mβ) +
1

σLs
(n2pω

2uSy + npuSx
dω

dt
)

npiSy
dω

dt
− n2pω

2iSx n2p(isxω
dω

dt
− ω2

diSx
dt
)

−npiSxdω
dt
− n2pω

2iSy n2p(isyω
dω

dt
− ω2

diSy
dt
)

(3.47)

n2p(ω
diSx
dt

dω

dt
− ω2

d2iSx
dt2

) +
diSy
dt

n3pω
3 − n2p

σLs
(ωuSx

dω

dt
− ω2

duSx
dt

)

n2p(ω
diSy
dt

dω

dt
− ω2

d2iSy
dt2

)− diSx
dt

n3pω
3 − n2p

σLs
(ωuSy

dω

dt
− ω2

duSy
dt
)


and

K ,
·
γ

1

TR

1

T 2R

γ

TR
TR γTR γT 2R T 2R

¸T
. (3.48)

As

M2

LR
= (1− σ)LS,Mβ = (1− σ)/σ

γ =
RS

σLS
+

1

σLS

1

TR

M2

LR
=

RS

σLS
+

1

σLS

1

TR
(1− σ)LS

it is seen that y and W depend only on known quantities, while the unknowns RS

and TR are contained only within K.

Though the system regressor is linear in the parameters, one cannot use standard

least-squares techniques because the system is overparameterized. Specifically,

K3 = K2
2 ,K4 = K1K2, K5 = 1/K2,K6 = K1/K2,K7 = K1/K

2
2 , K8 = 1/K

2
2 (3.49)

50



so that only the two parameters K1 and K2 are independent. These two parameters

determine RS and TR by

TR = 1/K2

RS = σLSK1 − (1− σ)LSK2. (3.50)

Based on the same analysis as before, an expression (3.51) only including K1 and

K2 can be obtained

E2(Kp) ,
NX
n=1

¯̄̄
y(n) −W (n)K

¯̄̄2
K3=K2

2
K4=K1K2

...

= Ry − 2RT
WyK

¯̄̄
K3=K2

2
K4=K1K2

...

+
¡
KTRWK

¢¯̄̄
K3=K2

2
K4=K1K2

...

(3.51)

where

Kp ,
·
K1 K2

¸T
.

The minimum of (3.51) must occur in the interior of the region and therefore at

an extremum point. This then entails solving the two equations

r1(Kp) , ∂E2(Kp)

∂K1
= 0 (3.52)

r2(Kp) , ∂E2(Kp)

∂K2
= 0. (3.53)
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The partial derivatives in (3.52)-(3.53) are rational functions in the parameters

K1,K2. Defining

p1(Kp) , K4
2r1(Kp) = K4

2

∂E2(Kp)

∂K1
(3.54)

p2(Kp) , K5
2r2(Kp) = K5

2

∂E2(Kp)

∂K2
(3.55)

results in the pi(Kp) being polynomials in the parametersK1,K2 and having the same

positive zero set (i.e., the same roots satisfying Ki > 0) as the system (3.52)-(3.53).

The degrees of the polynomials pi are given in Table 3.7.

Using the polynomials (3.54)-(3.55), the variable K1 is eliminated to obtain

r(K2) , Res
³
p1(K1,K2), p2(K1,K2), K1

´
(3.56)

where degK2
{r(K2)} = 20. The parameter K2 was chosen as the variable not elimi-

nated because its degree is much higher than K1, meaning it would have a larger (in

dimension) Sylvester matrix. The positive roots of r(K2) = 0 are found which are

then substituted into p1 = 0 (or p2 = 0) to find the positive roots in K1, etc.

The previous machine model was tested here again. The parameter values corre-

spond to the following K values

K1 = 297.56, K2 = 12.84.

Table 3.7: The degrees of the ploynomials p1, p2
degK1 degK2

p1(Kp) 1 7
p2(Kp) 2 8
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Table 3.8 compares K1 and K2 values determined from the nonlinear least-squares

procedure to their actual values from the simulation model. Also given in the table

are the corresponding parametric error indices. The residual error index for the

parameters K1, K2 was computed to be 2.83%, which shows the estimation is good.

The Hessian matrix for the identification of the parameters K1 and K2 was cal-

culated at the minimum point according to (3.32) resulting in

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=

 ∂2E2(K∗p )
∂K2

1

∂2E2(K∗p )
∂K1∂K2

∂2E2(K∗p )
∂K1∂K2

∂2E2(K∗p )
∂K2

2

 =
 0.4213 0.00589

0.00589 113.8

 (3.57)

which is positive definite and has a condition number of 276. This shows the Hessian

matrix is well-conditioned, and it ensures numerical reliability of the computations.

The eigenvalues of the Hessian matrix are 113.8 and 0.42. As we mentioned before, the

eigenvector corresponding to the biggest eigenvalue 113.8 gives the direction where

the error function is most sensitive, whereas the eigenvector corresponding to the

smallest value 0.42 gives the direction where the function is least sensitive. Table 3.9

compares the estimated machine parameters (TR and RS) to their actual values.

3.7 Summary

This chapter presents the proposed approach for identifying the induction machine

parameters. The methodology begins with an input-output linear overparameterized

model whose parameters are rationally related. After making appropriate substitu-

tions that account for the overparameterization, the problem is transformed into a

nonlinear least-squares problem that is not overparameterized. The extrema equa-

tions can be solved using elimination theory.
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Table 3.8: The estimated values and true values of K1 and K2

Parameter True Value Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K1 297.56 298.06 3.46
K2 12.84 12.82 0.85

Table 3.9: The estimated values and true values of TR and RS

Parameter True Value Estimated Value
TR 0.0779 sec 0.0780 sec
RS 9.70 Ohms 9.74 Ohms
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Chapter 4

OFFLINE EXPERIMENTAL

RESULTS

4.1 Introduction

In the previous chapter, the simulation results show the algorithm generates correct

estimate for the induction machine parameters. The next step is to setup the equip-

ment and run the induction machine with open loop control. This chapter will present

the offline experimental results.

4.2 Experiment Setup

The data acquisition and control algorithms were implemented on the RT-LAB real-

time platform. RT-LAB is a software package that allows the user to readily convert

Simulink models to real-time simulations, via Real-Time Workshop (RTW), and run

them over one or more processors. This is used particularly for Hardware-in-the-loop
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(HIL) and rapid control prototyping applications. In our experiment configuration,

there is one target computer running the control logic and one command station

connecting to the target via Ethernet link. The target runs QNX, the real-time

operating system software, and it has dual CPUs on the motherboard. The HIL I/O

interface is installed on the target machine. It includes a 16-channel A/D module, an

8-channel D/A module, a quad-decoder module for shaft position measurement and

a hardware clock. (Figure 4.1-Figure 4.5)

4.3 Identification with Utility Source Input

A three phase, 0.5 hp, 1735 rpm (np = 2 pole-pair) induction machine was used

for the experiments. A 4096 pulse/rev optical encoder was attached to the motor

for position measurements. The motor was connected to a 60 Hz, 208 V, three-

phase source through a switch with no load on the machine. When the switch was

closed, the stator currents and voltages along with the rotor position were sampled

at 4 kHz. Filtered differentiation (using digital filters) was used for calculating the

acceleration and the derivatives of the voltages and currents. Specifically, the signals

were filtered with a lowpass digital Butterworth filter followed by reconstruction of the

derivatives using dx(t)/dt = (x(t)− x(t− T )) /T where T is the sampling interval.

The voltages and currents were put through a 3− 2 transformation to obtain the two
phase equivalent voltages uSa, uSb which are plotted in Figure 4.6. The sampled two

phase equivalent current iSa and its simulated response iSa_sim are shown in Figure 4.7

(The simulated current will be discussed below). The phase b current iSb is similar,

but shifted by π/(2np). The calculated speed ω (from the position measurements)

and the simulated speed ωsim are shown in Figure 4.8 (the simulated speed ωsim will
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Figure 4.1: Experiment setup
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Figure 4.2: The induction machine and the DC machine load

Figure 4.3: The current and voltage sensor
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Figure 4.4: The Opal-RT machine

Figure 4.5: The Allen-Bradley inverter
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Figure 4.6: Sampled two-phase equivalent voltages uSa and uSb.
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be discussed below). Using the data {uSa, uSb, iSa, iSb, θ} collected between 5.57 sec to
5.8 sec, the quantities uSx, uSy, duSx/dt, duSy/dt, iSx, iSy diSx/dt, diSy/dt, d2iSx/dt2,

d2iSy/dt
2, ω = dθ/dt, dω/dt were calculated and the regressor matrices RW , Ry and

RWy were computed. The procedure explained in Section 3.4.1 was then carried out

to compute K4, K6,K8,K14. In this case, there was only one extremum point that

had positive values for all the Ki.

Table 4.1 presents the parameter values determined using the nonlinear least-

squares methodology along with their corresponding parametric error indices. The

residual error index was calculated to be 13.43% and the estimation was acceptable.

The motor’s electrical parameters are computed using (3.14) to obtain

RS = 5.12 Ohms (4.1)

TR = 0.1311 sec (4.2)

LS = 0.2919 H (4.3)

σ = 0.1007 (4.4)

Table 4.1: The estimated values and the parametric error indices for electrical para-
meters

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K4 519.7 185.8
K6 1848.3 796.4
K8 0.1311 0.0103
K14 259.5 59.4
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By way of comparison, the stator resistance was measured using an Ohmmeter giving

the value of 4.9 Ohms and a no load test was also run to compute the value of LS

resulting in 0.33 H.

The Hessian matrix for the identification of the parameters K4,K6, K8,K14 was

calculated at the minimum point according to (3.32) resulting in

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=



0.0574 0.1943 −0.0034 −0.7655
0.1943 2.584 10.17 −44.35
−0.0034 10.17 631.4 193.8

−0.7655 −44.35 193.8 3012


which is positive definite and has a condition number of 8.24 × 104. The number
is bigger than the simulation result but still reasonably small to ensure numerical

reliability.

Using the electrical parameters, the rotor flux linkages (M/LR)ψRx and (M/LR)ψRy

were reconstructed and used to identify the mechanical parameters. Table 4.2 gives

the estimated values and the parametric error indices. The corresponding values for

Table 4.2: The estimated values and the parametric error indices for mechanical
parameters

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K16 952.38 126.92
K17 0.5714 0.1528
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the motor parameters J and f are then computed using (3.45) to obtain

J = np/K16 = 0.0021 kgm2 (4.5)

f = npK17/K16 = 0.0012 Nm/(rad/sec). (4.6)

4.3.1 Simulation of the experimental motor

Another useful way to evaluate the identified parameters (4.1)-(4.4) and (4.5)-(4.6)

is to simulate the motor using these values with the measured voltages as input. One

then compares the simulation’s output (stator currents) with the measured outputs.

To proceed in this manner, recall that only RS, TR, LS and σ can be identified, but

this is all that is needed for the simulation. Specifically, defining

φRa ,
M

LR
ψRa, φRb ,

M

LR
ψRb

the model (3.1) may be rewritten as

dω

dt
=

np
J
(iSbφRa − iSaφRb)−

τL
J

dφRa
dt

= − 1

TR
φRa − npωφRb +

1

TR

M2

LR
iSa

dφRb
dt

= − 1

TR
φRb + npωφRa +

1

TR

M2

LR
iSb (4.7)

diSa
dt

=
1

σLSTR
φRa +

1

σLS
npωφRb − γiSa +

1

σLS
uSa

diSb
dt

=
1

σLSTR
φRb −

1

σLS
npωφRa − γiSb +

1

σLS
uSb

where
M2

LR
= (1− σ)LS, γ =

RS

σLS
+

1

σLS

1

TR

M2

LR
.
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The model (4.7) uses only parameters that can be estimated. The experimental

voltages shown in Figure 4.6 were then used as input to a simulation of the model

(4.7) using the parameter values from (4.1)-(4.4) and (4.5)-(4.6). The resulting phase

a current iSa_sim from the simulation is shown in Figure 4.7 and corresponds well

with the actual measured current iSa. Similarly, the resulting speed ωsim from the

simulation is shown in Figure 4.8 where it is seen that the simulated speed is somewhat

more oscillatory than the measured speed ω.

4.3.2 Estimation of TR and RS

If the electrical parametersM,LS and σ are assumed to be known and not varying, the

algorithm for estimation of TR and RS (Section 3.6) was tested with the experiment

data. In this case, there were three extrema points that had positive values for K1

and K2. The parameter values that resulted in the minimum least-squares error and

their corresponding parametric error indices are shown in Table 4.3. Using (3.50), it

follows that

TR = 0.1316 sec

RS = 5.0923 Ω

Table 4.3: The estimated values and the parametric error indices of K1 and K2

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K1 241.1024 95.4750
K2 7.5988 1.9208
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The Hessian matrix was calculated at the minimum point according to (3.57) resulting

in

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=

 1.9123 0.00412

0.00412 570.0418


which is positive definite and has a condition number of 298. The Hessian matrix is

well-conditioned.

4.4 Identification with the Input of PWM Inverter

Since the induction machines used in variable speed applications are fed by a PWM

(Pulse Width Modulated) inverter, the voltage input not only comprises sinusoidal

fundamental components, but also has higher order harmonics. In order to test the

capability of the identification algorithm, the motor was connected to an 380-460

V Allen-Bradley PWM inverter (cat no. 1305) used as a three-phase 60 Hz source.

The stator currents and voltages along with the rotor position were still sampled at 4

kHz. The voltages, currents and their derivatives were filtered through a lowpass (500

Hz cutoff) digital Butterworth filter (3nd order). The two phase equivalent voltages

uSa, uSb are plotted in Figure 4.9

The sampled two phase equivalent current iSa and its simulated response iSa_sim

are shown in Figure 4.10. The phase b current iSb is similar, but shifted by π/(2np).

The calculated speed ω (from the position measurements) and the simulated speed

ωsim are shown in Figure 4.11.

Table 4.4 presents the parameter values determined using the nonlinear least-

squares methodology along with their corresponding parametric error indices. The
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Figure 4.9: Sampled two phase equivalent voltages uSa and uSb.
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Figure 4.10: Phase a current iSa and its simulated response iSa_sim
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Figure 4.11: Calculated speed ω and simulated speed ωsim
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Table 4.4: The estimated values and the parametric error indices for electrical para-
meters

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K4 646.48 191.5
K6 2169.27 805.13
K8 0.121 0.017
K14 297.42 64.8
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motor’s parameters are computed using (3.14) to obtain

RS = 5.12 Ohms

TR = 0.121 sec

LS = 0.2908 H

σ = 0.096.

The Hessian matrix for the identification of the parameters K4,K6, K8,K14 was

calculated at the minimum point according to (3.32) resulting in

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=



0.1072 0.3189 −0.0067 −0.9877
0.3189 3.171 20.65 −50.18
−0.0067 20.65 849.2 205.7

−0.9877 −50.18 205.7 5174


which is positive definite and has a condition number of 8.67 × 104 and it is in
acceptable region.

Table 4.5 gives the estimated values and the parametric error indices for mechan-

ical parameters. The residual error index was calculated to be 19.1%. The 2 × 2
regressor matrix RW for these two parameters had a condition number of 1.12× 103.
Both these values are reasonable. The corresponding values for the motor parameters

Table 4.5: The estimated values and the parametric error indices of K16 and K17

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K16 952.40 129.71
K17 0.5698 0.1641
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J and f are then computed using (3.45) to obtain

J = np/K16 = 0.0021 kgm2

f = npK17/K16 = 0.0012 Nm/(rad/sec).

4.4.1 Estimation of TR and RS

In this case, the parameter values that resulted in the minimum least-squares error

and their corresponding parametric error indices are shown in Table 4.6. Using (3.50),

it follows that

TR = 0.12 sec

RS = 5.04 Ω

The Hessian matrix at the minimum point, calculated using (3.57), is

½
∂2E2(K∗

p)

∂Ki∂Kj

¾
=

 0.3105 0.000411

0.000411 104.95



Table 4.6: The estimated values and the parametric error indices of K1 and K2

Parameter Estimated Value Parametric Error Index with 1.25E2(K∗
p)

K1 243.51 100.17
K2 8.06 2.21
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which is positive definite and has a condition number of 338, and it is in acceptable

region.

4.5 Summary

This chapter presents the offline experimental results implemented with the proposed

method. The induction machine was connected to both utility source and PWM

inverter to test the algorithm. The resulting currents and speed in simulation using

the estimated values are compared with the measured currents and speed.
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Chapter 5

ONLINE IMPLEMENTATION OF

A ROTOR TIME CONSTANT

ESTIMATOR

5.1 Introduction

In this chapter, it will be shown how the algorithm was implemented online to track

the variation of rotor time constant. The hardware setup is the same as in the offline

experiment. Software implementation is the biggest issue during online implementa-

tion.
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5.2 Software Implementation

5.2.1 S-function

In order to add our own blocks to Simulink models, the S-function capability in

Simulink was used for the online implementation of the identification algorithm. An

S-function is a computer language description of a Simulink block. An S-function

can be written in MATLAB, C, C++, or Fortran. S-functions use a special calling

method that enables users to interact with Simulink equation solvers. The form of

an S-function is very general and can accommodate continuous and discrete systems.

The most common use of S-functions is to create custom Simulink blocks. S-

function can usually be used in the following applications:

• Adding new general purpose blocks to Simulink

• Adding blocks that represent hardware device drivers

• Incorporating existing C code into a simulation

• Describing a system as a set of mathematical equations

An advantage of using S-functions is that a general purpose block can be built so

that it can be used many times in a model, varying parameters with each instance of

the block.

An S-function includes a set of S-function callback methods that perform tasks

required at each simulation stage (Figure 5.1). During simulation of a model, at each

simulation stage, Simulink calls the appropriate methods for each S-function block

in the model. The basic tasks involve
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Figure 5.1: Stages of a simulation ( [1])
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• Initialization — This stage is before the first simulation loop. During this period,
Simulink

— Initializes the SimStruct, which is a structure defined in the S-function

including the basic information for the simulation.

— Sets the number and dimensions of input and output ports.

— Sets the block sample time.

— Allocates storage areas and the array sizes.

• Calculation of next sample hit — If the Simulink block is a variable sample
time block, this stage calculates the time of the next sample hit, i.e., the next

step size.

• Calculation of outputs in the major time step — After this call is complete, all
the output values of the blocks are established for the current time step.

• Update of discrete states in the major time step — In this call, all blocks per-
form once-per-time-step activities such as updating discrete states for next time

around the simulation loop.

• Integration — This stage is also known as the minor time step and it applies
to models with continuous states. If the S-function has continuous states,

Simulink calls the output and derivative portions of this S-function during

this period.

An S-function can be implemented as either an M-file or a MEX file. An M-file

S-function consists of a MATLAB function of the following form
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[sys, x0, str, ts] = f(t, x, u, flag, p1, p2, ...)

where f is the S-function’s name, t is the current time, x is the state vector of the

corresponding S-function block, u is the block’s input, flag indicates a task to be

performed, and p1, p2,...are the block’s parameters. During simulation of a model,

Simulink repeatedly invokes f , using flag to indicate the task to be performed for a

particular invocation.

Because the OPAL system cannot compile the M-file S-function, the S-function

used here is written in MEX-file. Like an M-file S-function, a MEX-file function

consists of a set of callback routines that Simulink invokes to perform various block-

related tasks during a simulation. MEX-file functions are implemented in a differ-

ent programming language: C, C++, or Fortran. Also, Simulink invokes MEX

S-function routines directly instead of via a flag value as with M-file S-functions.

Because Simulink invokes the functions directly, MEX-file functions must follow

standard naming conventions specified by Simulink.

The set of callback functions that MEX functions can implement is much larger

than can be implemented by M-file functions. A MEX function also has direct access

to the internal data structure, called the SimStruct, that Simulink uses to maintain

information about the S-function. MEX-file functions can also use the MATLAB

MEX-file API to access the MATLAB workspace directly. Our S-function contains

the callback methods shown in Figure 5.2.

The primary advantage of MEX-file functions is versatility. The larger number

of callbacks and access to the SimStruct enable MEX-file functions to implement

functionality not accessible to M-file S-functions. Such functionality includes the
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Figure 5.2: Callback methods used in the S-function
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ability to handle data types other than double, complex inputs, matrix inputs, and

so on.

In our S-function, all the calculation algorithms such as polynomial root finding

and condition number computation reside in a separated module from the S-function

itself. A S-function wrapper technology was used here so that little or no change

to the original C code is needed while these algorithms is called by the S-function.

The S-function serves as an interface between the Simulink and the user’s C/C++

algorithms.

5.2.2 Calculation of the resultant polynomial online

In order to estimate the rotor time constant online, the computation speed for the

resultant polynomial is crucial since it is the most time-consuming part in the whole

calculation. Three different approaches to implementing the algorithm online are

discussed.

The first approach consists of storing the program that calculates all the coef-

ficients of the final resultant polynomial (3.56) in memory. These coefficients are

functions of the entries of the data matrices Ry ∈ R, RWy ∈ R8×1 and RW ∈ R8×8,
and the stored program calculates these coefficients. In the online implementation,

the data is collected, the matrices Ry, RWy and RW are computed, and the resulting

numerical values of these entries are substituted by the program into the expressions

for coefficients of (3.56). In this way, one need not compute the resultant polynomial

online.

The problem with this method is that the program itself requires a large amount

of memory.
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A second approach to online estimation is to actually compute the resultant poly-

nomial online. As the degrees of the polynomials to be solved increase, the dimension

of the corresponding Sylvester matrices increase, and therefore the symbolic compu-

tation of their determinants becomes more intensive. The recent work of [96] [97] is

promising for the efficient symbolic computation of the determinants of large Sylvester

matrices. The idea of this algorithm is based on polynomial methods in control and

the discrete Fourier transform. To summarize, recall that the problem is to symboli-

cally compute the determinant of the Sylvester matrix (3.30) to obtain the resultant

polynomial (3.31). Another way to look at this problem is to write (3.31) as

r(K1) =
NX
i=0

piK
i
1 (5.1)

where the unknowns pi and N are to be found. Any upper bound of the actual degree

of r(K1) can be used for N . Such an upper bound is easily computed by finding

the minimum of the sum of either the row or the column degrees of the Sylvester

matrix [98]. Let K1k = e−j
2πk
N+1 for k = 0, 1, ..., N be N + 1 different values of K1.

Then the Discrete Fourier Transform (DFT) of the set of numbers [p0, p1, ..., pN ] is

yk =
NX
i=0

pie
−j 2πk

N+1
i =

NX
i=0

pi
³
e−j

2πk
N+1

´i
with the inverse transform given by

pi ,
1

N + 1

NX
k=0

yke
j 2πi
N+1

k.

Here yk is just (5.1) evaluated at K1k = e−j
2πk
N+1 . That is, one computes the numerical

determinant of (3.30) at the N + 1 points K1k (this is fast) and obtains the DFT
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of the coefficients of (5.1). Then the pi are computed using the inverse DFT. That

is, the symbolic calculation of the determinant is reduced to a finite number of fast

numerical calculations. Such an approach has been shown to be as much as 500 times

faster than existing methods [96].

There are some numerical problems when this DFT method was implemented.

In our case, after computing the inverse DFT, the coefficients pi of the resultant

polynomial are not as accurate as those obtained from the first method. This method

introduces error into the final estimation. It was found that this problem was caused

by floating point arithmetic since there was no error when the computation was done

using rational number arithmetic (carried out in the software Mathematica).

The third method computes the coefficients of the resultant polynomial directly

since the two polynomials in our case are both of low degree in K1. These two poly-

nomials can be written in the form

p1(K1, K2) = a1(K2)K1 + a0(K2) (5.2)

p2(K1, K2) = b2(K2)K
2
1 + b1(K2)K1 + b0(K2), (5.3)

so the 3× 3 Sylvester matrix is

S(K2) =


a0(K2) 0 b0(K2)

a1(K2) a0(K2) b1(K2)

0 a1(K2) b2(K2)
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and the resultant polynomial is

r(K2) = a20(K2)b2(K2) + a21(K2)b0(K2)− a0(K2)a1(K2)b1(K2).

The coefficients of this polynomial can be easily found by vector convolution,

addition, and subtraction.

5.2.3 Finding roots of a polynomial

A polynomial of degree n will have n roots. The roots can be real or complex, and

they might not be distinct. If the coefficients of the polynomial are real, then complex

roots will occur in pairs that are conjugate, i.e., if x1 = a+bi is a root, then x2 = a−bi
will also be a root. When the coefficients are complex, the complex roots need not

be in complex conjugate pairs.

Various storage forms for polynomials

Any N th degree polynomial

fN [a, z] = a0 + a1z + a2z
2 + · · ·+ aNz

N (5.4)

can be written in a nested form as:

fN [a, z] = a0 + z(a1 + z(a2 + ...+ z(aN−1 + z(aN))) · · · ), (5.5)

or nested in a different order as:

fN [a, z] = z(· · · z(z(z(aN) + aN−1) + aN−2) + · · · ) + a0, (5.6)

84



and in a factored form as:

fN [a, z] = aN

NY
r=1

(z − zr) = aN

DY
d=1

(z − zd)
Qd

where Qd is the multiplicity of the dth zero, D is the number of distinct zeros, andP
dQd = N . The polynomial can be written in a first order remainder form as:

fN [a, z] = qN−1[b, z](z − z0) +R, (5.7)

where

qN−1[b, z] = b0 + b1z + b2z
2 + · · ·+ bN−1zN−1 (5.8)

is the quotient polynomial obtained when fN [a, z] is divided by (z − z0) and the

remainder is a constant easily seen to be the value of

R = fN [a, z0]

If z0 is a zero of fN(z), then R = 0 and qN−1(z) contains the same zeros as fN(z)

expect for the one at z0. A more general formulation of (5.7) is:

fN [a, z] = qN−M [b, z]dM [c, z] +R(z). (5.9)

Evaluate the polynomial and its derivatives

From the structure of the nested forms in (5.5) and (5.6), one can formulate a recursive

relation which is also a linear first-order difference equation:
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xk+1 = zxk + aN−1−k, x0 = aN , (5.10)

for k = 0, 1, ..., N − 1 with the value of the polynomial at z given by fN [a, z] = xN .

Here the xk are the values of the successively evaluated bracketed expressions in (5.5).

Pseudo code to evaluate fN [a, z0] with coefficients a is given by:

m = length(a); %poly degree plus one :N+1

f = a(1); %initial condition

for k = 2:m %iterative algorithm

f = z∗f + a(k); %recursive evaluation of f(z)

end

Program 1. Forward Evaluation of Polynomial [99]

The nested forms of (5.5) and (5.6), the remainder form of (5.7), and the recursive

form of (5.10) are all versions of Horner’s method [100], [101], [102] or synthetic

division.

Differentiating (5.7), one obtain

f 0N [a, z] = qN−1[b, z] + q0N−1[b, z](z − z0)

which, if evaluated at z = z0, gives

f 0N(a, z0) = qN−1[b, z0]. (5.11)

which can be evaluated by a minor variation of (5.10). Thus Horner’s method can

evaluate an N th degree polynomial with N multiplications and additions or evaluate
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it and its derivative with 2N multiplications and additions. The pseudo code for this

is:

m = length(a); % N+1

f = a(1); fp = 0; % initial conditions

for i = 2:m % iterative Horner’s algorithm

fp = z∗fp + f; % recursive evaluation of f’(z)

f = z∗f + a(i); % recursive evaluation of f(z)

end

Program 2. Forward Evaluation of Polynomial and Its Derivative [99]

Polynomial deflation

In the process of seeking several or all roots of a polynomial, the total effort can be

significantly reduced by the use of deflation. As each root r is found, the polynomial

is factored into a product involving the root and a reduced polynomial of degree one

less than the original, i.e., P (z) = (z − r)Q(z). Since the roots of Q are exactly

the remaining roots of P , the effort of finding additional roots decreases, because

one works with polynomials of lower and lower degree as successive roots are found.

Even more important, with deflation one can avoid the blunder of having the iterative

method converge twice to the same (nonmultiple) root instead of separately to two

different roots.

"Deflation, which amounts to synthetic division, is a simple operation that acts

on the array of polynomial coefficients." [103] One can deflate complex roots either by

converting that code to complex data type, or else–in the case of a polynomial with

real coefficients but possibly complex roots – by deflating by a quadratic factor,
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[z − (a+ ib)][z − (a− ib)] = z2 − 2az + (a2 + b2)

Deflation must be utilized with care. Because each new root is known with only fi-

nite accuracy, errors creep into the determination of the coefficients of the successively

deflated polynomial. Consequently, the roots can become more and more inaccurate.

To minimize the impact of increasing errors when using deflation, it is advisable

to treat roots of the successively deflated polynomials as only tentative roots of the

original polynomial. One then polishes these tentative roots by taking them as initial

guesses that are to be re-solved for, using the nondeflated original polynomial.

If z0 is a zero of the polynomial fN [a, z], then R = 0 in (5.7) and (5.7) becomes

fN [a, z] = qN−1[b, z](z − z0)

with qN−1 being the N−1 degree polynomial (5.8) having the same zeros at fN except
for the one at z = z0. A program that will deflate fN [a, z] is given by:

m = length(a); % order + one: N+1

b = zeros(1,m-1); % b=[0...0]

b(1) = a(1); % initial condition

for k = 1:m-2 % iterative Horner’s algorithm

b(k+1) = z0∗b(k) + a(k+1); % recursive deflation of f(z)

end

Program 3. Forward Deflation of Polynomial [99]

Because multiplication of two polynomials is the same operation as the convolution

of their coefficients, one can get the same results by multiplying the discrete Fourier
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transform (DFT)’s of the polynomial coefficients and taking the inverse DFT of the

product. This gives an alternative to Horner’s algorithm for deflating polynomials.

A more general formulation of the deflation problem is of the form

fN [a, z] = qN−M [b, z]dM [c, z] +R(z). (5.12)

If the factors of dM(z) are all roots of fN(z), then qN−M contains the others when

R(z) = 0. This allows the easy deflation by quadratic factors or other factors that

are already known.

Stability

Given an algorithm f(x), with x the input data and ε the error in the input data,

the algorithm is called numerically stable if

x− (x+ ε) ' f(x)− f(x+ ε).

An algorithm is numerically unstable if

x− (x+ ε)¿ f(x)− f(x+ ε).

The recursive equation (5.10) is seen to be a linear first order constant coefficient

difference equation. There is a considerable literature on the stability of linear dif-

ferential and difference equations [104], and an equation of this form is known to be

stable for |z| < 1 and unstable for |z| > 1.
To reduce error accumulation when |z| > 1 one nests (5.4) and (5.5) as
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fN [a, z] = zN [z−1(· · · z−1(z−1(z−1(a0) + a1) + · · · ) + aN−1) + aN ],

to give an alternate recursive relationship to (5.10), which is the following difference

equation

xk+1 = z−1xk + ak+1, x0 = a0,

For k = 0, 1, ..., N−1, the value of the polynomial at z is given by fN [a, z] = zNxN .

This equation is stable for |z| > 1 [104].
The program for this form of Horner’s algorithm is:

m = length(a); % N+1

f = a(m); % initial condition

for k = 1:m-1 % iterative Horner’s algorithm

f = f/z + a(m-k); % recursive evaluation of f(z)

end

f = (zˆ(m-1))*f; % remove the factor of z^{-m+1}

Program 4. Evaluation of Polynomial for |z| > 1 [99]

Modified Newton-Raphson method by Madsen

The modified Newton-Raphson method by Madsen was used in the identification

algorithm to find polynomial roots.

The main problem with Newton’s method is to find an approximation to the zero,

close enough to make Newton’s iteration converge. This modified method divides

the root finding process into two stages. At the first stage, a sequence of points

giving decreasing function values is obtained. After a certain condition is fulfilled,
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Newton’s iteration is started at the second stage. In [105], the procedure searching

for polynomial roots was described in detail.

The HVKS numerical web site (www.hvks.com) provides implementation of New-

ton’s method byMadsen for finding polynomial roots; however, the program is written

in C++. Since RT-LAB cannot work well with C++ codes, this program is rewritten

in C language and employed in our identification algorithm.

5.3 Simulation Results

The results of an online simulation is shown in Figure 5.3. In the simulation, the

rotor time constant TR in the motor model was changed abruptly from TR = 0.067

sec to TR = 0.078 sec at t = 5 seconds; the estimation algorithm was then able to

update the value of TR one second later.

5.4 Experimental Results

The induction machine used in the previous experiments was tested in this online

experiment (3 phase, 230 V, 0.5 Hp, 1735 rpm). The motor was connected to an

380-460 V Allen-Bradley PWM inverter used as a three-phase source. The stator

currents and voltages along with the rotor position were sampled at 4 kHz. Filtered

differentiation was used for calculating the speed and acceleration as well as the

derivatives of the voltages and currents.

The computation of the roots of the resultant polynomial was programmed in C

and embedded in a S-function model in Simulink. After collecting the data for one

second, the S-function evaluated the resultant polynomial, computed its roots, and
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Figure 5.3: Actual TR versus estimated TR.
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then completed the estimation algorithm to obtain TR (so the parameter update is

every second). The induction machine was coupled with a DC machine used to load

the induction motor.

The induction machine was run with full rated load on it for about 1 hour where

the temperature of the case of the induction machine changed from a room temper-

ature of 22 ◦C to 44 ◦C as measured with an infrared thermometer. The estimated

value TR was recorded and ploted in Figure 5.4. There is noticeable oscillation for

TR value updated at every second, but it still can be seen that the average value

decreases while the temperature increases. One can average estimation values over

longer periods of time to discern the tendency. For example, if the time interval is 30

seconds, with the equation

TR_30(kT30) =
1

30

30X
n=1

TR([30(k − 1) + n]T1)

k = 1, 2, 3..., T30 = 30T1, T1 = 1sec,

the average value was calculated and ploted in Figure 5.5. One also can average

estimation values over 120 seconds with the equation

TR_120(kT120) =
1

120

120X
n=1

TR([120(k − 1) + n]T1)

k = 1, 2, 3..., T120 = 120T1, T1 = 1 sec.

Figure 5.6 shows the calculated average value. The estimated TR begins with the

average value about 0.115 sec when machine is turned on and seems to settle out at

0.09 sec after the machine is heated up.
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Figure 5.4: TR estimation recorded each second over one hour
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Figure 5.6: TR value averaged over previous 120 seconds
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Some possible reasons which cause the oscillation may be due to the derivatives of

the signals and measurement bias in the current and voltage sensors. Figure 5.7, 5.8,

and 5.9 show the RS estimation and average value over one hour. The average value

increases from 5 Ω to 5.9 Ω approximately. Figure 5.8 and 5.9 show the average RS

value over 30 seconds and 120 seconds. Figure 5.10 displays the condition number of

the Hessian matrix. It can be found that the condition number is between 345 and

415.

5.5 Summary

In this chapter, the online implementation of a rotor time constant estimator is de-

scribed. The algorithm is written in C and embedded in an S-function module. The

online experiments verify that the procedure can continuously update the machine

parameters during regular operation.
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Figure 5.8: RS value averaged over previous 30 seconds
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Figure 5.9: RS value averaged over previous 120 seconds
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

In this dissertation, a method for estimating the rotor time constant and stator resis-

tance of an induction machine was presented. The parameter model was formulated

as a nonlinear least-squares problem and then solved using elimination theory. Offline

experimental results showed a close correlation with simulations based on the iden-

tified parameters. The experiment also verified that the procedure can continuously

update the machine parameters during regular operation. The method does not have

any "slowly varying speed" assumption and the resultant method guarantees that a

solution is found in a finite number of steps unlike numerical iterative methods where

no such guarantee exists.

However, since the derivatives of the signals (currents, voltages and position)

were used for calculating TR, our estimation procedure is sensitive to the noise and
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distortions which exist in the experimental measurements due to the PWM voltage

signal. Nevertheless, experimental results show that averaging the estimated values

over long periods of time results in reliable estimates.

6.2 Future Work

In order to minimize the ohmic losses, the estimated TR value must be provided to

the optimal field oriented controller. In this way, the rotor fluxes can be accurately

estimated for use in the field oriented controller so that the minimum amount of

current is required to produce the torque. Further experiments could be carried out

to test the influence of TR value on the variation of ohmic losses during constant

load operation. For example, after the machine is heated up, the optimal working

point must adapt its characteristics to the changing TR value in order to maintain

the minimal ohmic losses.

The nonlinear least-squares method is computationally intensive. Future work

could consider improved formulations of the regressor system (3.46) that simplify

the computations. For example, in equation (3.47), W is a 2 × 8 matrix. Some
alternative regressor forms can be obtained by combining rows of W . Define Wa ,

iSy ×W (1) − iSx ×W (2), ya , iSy × y(1) − iSx × y(2), and W (1), W (2), y(1) and

y(2) denotes each row of the matrix W and y respectively. Explicitly, Wa and ya are

given by
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Wa =·
iSx

diSy
dt
− iSy

diSx
dt

iSx
diSy
dt
− iSy

diSx
dt

+npω(1 +Mβ)(i2Sx + i2Sy) +
1

LSσ
(iSyuSx − iSxuSy)

np
dω

dt
(iSx

diSx
dt

+ iSy
diSy
dt
) + n2pω

2(iSx
diSy
dt
− iSy

diSx
dt
)

+n3pω
3(1 + βM)(i2Sx + i2Sy)−

np
LSσ

dω

dt
(uSxiSx + uSyiSy)

+
n2pω

2

LSσ
(uSxiSy − uSyiSx) np

dω

dt
(i2Sx + i2Sy)

n2pω
2(iSx

diSy
dt
− iSy

diSx
dt
) n2pω

dω

dt
(iSy

diSx
dt
− iSx

diSy
dt
)

+n2pω
2(iSx

d2iSy
dt2
− iSy

d2iSx
dt

) + n3pω
3(iSx

diSx
dt

+ iSy
diSy
dt
)

+
n2pω

2

LSσ
(iSy

duSx
dt
− iSx

duSy
dt
) +

n2pω

LSσ

dω

dt
(uSyiSx − uSxiSy)

¸
,

ya = iSy
d2iSx
dt2

− iSx
d2iSy
dt2
− np

dω

dt
(i2Sx + i2Sy) +

1

σLs
(iSx

duSy
dt
− iSy

duSx
dt

)

−npω(iSxdiSx
dt

+ iSy
diSy
dt
)

and

Ka =

·
γ

1

TR
TR γTR γT 2R T 2R

¸
NoticeWa ∈ R1×6, Ka ∈ R6 and ya ∈ R1 because columns 3 and 4 inW are eliminated

in the combination. Further calculations show that the degree of equation r(K1) will

decrease from 20 to 14.
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One also can define Wb = iSx ×W (1) + iSy ×W (2), yb = iSx × y(1) + iSy × y(2).

Wb =·
−1
2

d(i2Sx + i2Sy)

dt
−1
2

d(i2Sx + i2Sy)

dt
+

uSxiSx + uSyiSy
σLs

Mβ(i2Sx + i2Sy) −(i2Sx + i2Sy) np
dω

dt
(iSx

diSy
dt
− iSy

diSx
dt
)

+n2pω
dω

dt
(i2Sx + i2Sy)−

1

2
n2pω

2
d(i2Sx + i2Sy)

dt

+
n2pω

2(uSxiSx + uSyiSy)

σLs
+

np(uSxiSy − uSyiSx)

σLs

dω

dt

−n2pω2(i2Sx + i2Sy) n2pω
dω

dt
(i2Sx + i2Sy)−

1

2
n2pω

2
d(i2Sx + i2Sy)

dt
1

2
n2pω

dω

dt

d(i2Sx + i2Sy)

dt
− n2pω

2(iSx
d2iSx
dt2

+ iSy
d2iSy
dt2

)

+n3pω
3(iSx

diSy
dt
− iSy

diSx
dt
)− n2pω(uSxiSx + uSyiSy)

σLs

dω

dt

+
n2pω

2

σLs
(
duSx
dt

iSx +
duSy
dt

iSy)

¸
,

yb = iSx
d2iSx
dt2

+ iSy
d2iSy
dt2

+ npω(iSy
diSx
dt
− iSx

diSy
dt
)− n2pω

2Mβ(i2Sx + i2Sy)

− 1

σLs
(iSx

duSx
dt

+ iSy
duSy
dt
)

and in this case it follows that

Kb = K

where K is given by (3.48). Notice Wb ∈ R1×8, Kb ∈ R8 and yb ∈ R1. The terms
i2Sx + i2Sy are put together because the variation is relatively slower compared to the

i2Sx or i
2
Sy separately.
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The drawback of these two methods is that it turns out that neither of them can

identify the machine parameters during constant speed operation, that is, the data is

not sufficiently rich to identify the parameters. On the other hand, choosing W as in

(3.47) it turns out that the machine parameters are identifiable even during constant

speed operation provided there is a load on the motor.

The third possible combination is to make

yc =

 ya

yb


and

Wc =

 Wa1 Wa2 0 0 Wa3 Wa4 Wa5 Wa6

Wb1 Wb2 Wb3 Wb4 Wb5 Wb6 Wb7 Wb8

 ,
in which

·
Wa1 Wa2 Wa3 Wa4 Wa5 Wa6

¸
=Wa

and

·
Wb1 Wb2 Wb3 Wb4 Wb5 Wb6 Wb7 Wb8

¸
=Wb.

It follows that

Kc = K.
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It is not clear if this combination can lessen the computational load or not. Further

research could be carried out to test if it can identify machine parameters during

constant speed operation.

6.3 Summary

This chapter concludes the dissertation and proposes some future work. This dis-

sertation presents a method that can be used for the parameter identification of a

class of systems whose regressor models are nonlinear in the parameters. Future work

includes testing the influence of TR value on the variation of ohmic losses and finding

improved formulations to simplify the computations.
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Resultant Polynomial

Given two polynomials a(x1, x2) and b(x1, x2) how does one find their common

zeros? That is, the values (x10, x20) such that

a(x10, x20) = b(x10, x20) = 0.

Consider a(x1, x2) and b(x1, x2) as polynomials in x2 whose coefficients are polynomi-

als in x1. For example, let a(x1, x2) and b(x1, x2) have degrees 3 and 2, respectively,

in x2 so that they may be written in the form

a(x1, x2) = a3(x1)x
3
2 + a2(x1)x

2
2 + a1(x1)x2 + a0(x1)

b(x1, x2) = b2(x1)x
2
2 + b1(x1)x2 + b0(x1).

Then there exists polynomials α(x1, x2) and β(x1, x2) of the form

α(x1, x2) = α1(x1)x2 + α0(x1)

β(x1, x2) = β2(x1)x
2
2 + β1(x1)x2 + β0(x1)

i.e., satisfying

degx2 {α(x1, x2)} = degx2 {b(x1, x2)}− 1

degx2 {β(x1, x2)} = degx2 {a(x1, x2)}− 1
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and a polynomial r(x1) in one variable such that

α(x1, x2)a(x1, x2) + β(x1, x2)b(x1, x2) = r(x1).

The polynomial r(x1) is called the resultant polynomial. So if a(x10, x20) = b(x10, x20) =

0, then r(x10) = 0. That is, if (x10, x20) is a common zero of the pair {a(x1, x2), b(x1, x2)},
then the first coordinate x10 is a zero of r(x1) = 0. The roots of r(x1) are easy to

find (numerically) as it is a polynomial in one variable. To find the common zeros of

{a(x1, x2), b(x1, x2)}, one computes all roots x1i i = 1, ..., n1 of r(x1). Next, for each
such x1i, one (numerically) computes the roots of

a(x1i, x2) = 0 (6.1)

and the roots of

b(x1i, x2) = 0. (6.2)

Any root x2j that is in the solution set of both (6.1) and (6.2) for a given x1i results

in the pair (x1i, x2j) being a common zero of a(x1, x2) and b(x1, x2). Thus, this gives

a method of solving polynomials in one variable to compute the common zeros of

{a(x1, x2), b(x1, x2)}.
To see how one obtains r(x1), let

a(x1, x2) = a3(x1)x
3
2 + a2(x1)x

2
2 + a1(x1)x2 + a0(x1)

(6.3)

b(x1, x2) = b2(x1)x
2
2 + b1(x1)x2 + b0(x1).
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Next, see if polynomials of the form

α(x1, x2) = α1(x1)x2 + α0(x1)

(6.4)

β(x1, x2) = β2(x1)x
2
2 + β1(x1)x2 + β0(x1)

can be found such that

α(x1, x2)a(x1, x2) + β(x1, x2)b(x1, x2) = r(x1). (6.5)

Substituting the expressions (6.3) for a(x1, x2), b(x1, x2) and (6.4) for α(x1, x2), β(x1, x2)

into (6.5) and equating powers of x2, equation (6.5) may be represented in matrix

form as



a0(x1) 0 b0(x1) 0 0

a1(x1) a0(x1) b1(x1) b0(x1) 0

a2(x1) a1(x1) b2(x1) b1(x1) b0(x1)

a3(x1) a2(x1) 0 b2(x1) b1(x1)

0 a3(x1) 0 0 b2(x1)





α0(x1)

α1(x1)

β0(x1)

β1(x1)

β2(x1)


=



r(x1)

0

0

0

0


.

The 5× 5 matrix on the left-hand side is called the Sylvester matrix and is denoted
here by Sa,b(x1). The inverse of Sa,b(x1) has the form

S−1a,b (x1) =
1

detSa,b(x1)
adj
³
Sa,b(x1)

´
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where adj(Sa,b(x1)) is the adjugate matrix and is a 5 × 5 polynomial matrix in x1.

Solving for αi(x1), βi(x1) gives



α0(x1)

α1(x1)

β0(x1)

β1(x1)

β2(x1)


=
adjSa,b(x1)
detSa,b(x1)



r(x1)

0

0

0

0


or



α0(x1)

α1(x1)

β0(x1)

β1(x1)

β2(x1)


= adjSa,b(x1)



1

0

0

0

0


if r(x1) is chosen as r(x1) = detSa,b(x1). This then guarantees that

α0(x1), α1(x1), β0(x1), β1(x1), β2(x1)

are polynomials in x1. That is, the resultant polynomial is defined by r(x1) ,

detSa,b(x1) and is the polynomial required for (6.5) to hold.

In short, the polynomials {a(x1, x2), b(x1, x2)} have a common zero at (x10, x20)
only if r(x10) , detSa,b(x10) = 0. For an arbitrary pair of polynomials {a(x), b(x)} of
degrees na, nb in x respectively, the Sylvester matrix Sa,b is of dimension (na + nb)×
(na + nb) (see [92] [93] [106]).

Remark

It was just shown that if a(x10, x20) = b(x10, x20) = 0, then r(x10) , detSa,b(x10) =

0 as a simple consequence of (6.5). Does r(x10) , detSa,b(x10) = 0 imply that there

exists x20 such that

a(x10, x20) = b(x10, x20) = 0?
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Not necessarily. However, the answer is yes if either of the leading coefficients in x2

of a(x1, x2), b(x1, x2) are not zero at x10, i.e., a3(x10) 6= 0 or b2(x10) 6= 0 (See [92] [93]
[106] for a detailed explanation).
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