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ABSTRACT 

 
 With the advent of whole genome sequencing, a new era of biology was ushered 

in allowing for “systems-biology” approaches to characterizing microbial systems.  The 

field of systems biology aims to catalogue and understand all of the biological 

components, their functions, and all of their interactions in a living system as well as 

communities of living systems.  Systems biology can be considered an attempt to 

measure all of the components of a living system and then produce a data-driven model 

of the system.  This model can then be used to generate hypotheses about how the system 

will respond to perturbations, which can be tested experimentally.  The first step in the 

process is the determination of a microbial genome.  This process has, to a large extent, 

been fully developed, with hundreds of microbial genome sequences completed and 

hundreds more being characterized at a breathtaking pace.  The developments of 

technologies to use this information and to further probe the functional components of 

microbes at a global level are currently being developed.  The field of gene expression 

analysis at the transcript level is one example; it is now possible to simultaneously 

measure and compare the expression of thousands of mRNA products in a single 

experiment.  The natural extension of these experiments is to simultaneously measure and 

compare the expression of all the proteins present in a microbial system.  This is the field 

of proteomics.   

 With the development of electrospray ionization, rapid tandem mass spectrometry 

and database-searching algorithms, mass spectrometry (MS) has become the leader in the 

attempts to decipher proteomes.  This research effort is very young and many challenges 

still exist.  The goal of the work described here was to build a state-of-the-art robust MS-

based proteomics platform for the characterization of microbial proteomes from isolates 

to communities.  The research presented here describes the successes and challenges of 

this objective.  Proteome analyses of the metal-reducing bacteria Shewanella oneidensis 

and the metabolically versatile bacteria Rhodopseudomonas palustris are given as 

examples of the power of this technology to elucidate proteins important to different 

metabolic states at a global level.  The analysis of microbial proteomes from isolates is 
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only the first step of the challenge.  In nature, microbial species do not act alone but are 

always found in mixtures with other species where their intricate interactions are critical 

for survival.  These studies conclude with some of the first efforts to develop 

methodologies to measure proteomes of simple controlled mixtures of microbial species 

and then present the first attempt at measuring the proteome of a natural microbial 

community, a biofilm from an acid mine drainage system.  This microbial system 

illustrates life at the extreme of nature where life not only exists but flourishes in very 

acidic conditions with high metal concentrations and high temperatures.  The 

technologies developed through these studies were applied to the first deep 

characterization of a microbial community proteome, the deciphering of the expressed 

proteome of the acid mine drainage biofilm. 

The research presented here has led to development of a state-of-the-art robust 

proteome pipeline, which can now be applied to the proteome analysis of any microbial 

isolate for a sequenced species.  The first steps have also been made toward developing 

methodologies to characterize microbial proteomes in their natural environments.  These 

developments are key to integrating proteome technologies with genome and 

transcriptome technologies for global characterizations of microbial species at the 

systems level.  This will lead to understanding of microbial physiology from a global 

view where instead of analyzing one gene or protein at a time, hundreds of genes/proteins 

will be interrogated in microbial species as the adapt and survive in the environment.           
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Chapter 1 

Introduction to Mass Spectrometry-Based  

Proteome Analysis of Microbial Systems 
Some of the text presented below has been published as Nathan C. VerBerkmoes, Heather 
Connelly, Chongle Pan, and Robert L. Hettich, Mass Spectrometric Approaches to 
Characterizing Bacterial Proteomes. Expert Review in Proteomics (2004), 1, 433-445. & 
Nathan C. VerBerkmoes, Joshua Sharp, and Robert L. Hettich, Mass Spectrometry.  
Book Chapter in Microbial Functional Genomics by J. Zhou, D.K. Thompson, Ying Xu, 
and James M. Tiedje, 2004, John Wiley & Sons, Inc. 241-283. 
 

Of all the life forms on planet Earth, bacteria and archaea are often the most 

overlooked, even though they are the most abundant by far.  These single-celled 

organisms represent some of the most simplistic forms of life, teaching us how life can 

survive and even thrive at the very basic level.  The adaptability of these organisms to 

extreme growth conditions, a process which still is very poorly understood, is a testimony 

to their viability and resilience.  Within the last ten years, a revolution in the biological 

studies of microbial species has occurred, fueled primarily by the availability of complete 

genome sequences for many microbial species.  This genetic information reveals the 

blueprint for life in that it includes all information about the genes and gene products 

used by the organism for all of its life functions.  This level of global genome information 

about an organism now makes it possible to begin to pursue a “systems-biology” 

approach to understanding how these organisms live and function by cataloging and 

understanding all of the biological components, their functions and all of their 

interactions in a living system and communities of living systems (reviewed Ideker, 

2001).  Systems biology can be considered as an attempt to measure all of the 

components of a living system and then trying to produce a data-driven model of the 

system (Figure 1.1), which can then generate hypothesis about how the system will 

respond to perturbations, which can be tested experimentally.  For microbial systems, that 

generally means measurements of the genome (the genetic blueprint of the species), the 

transcriptome (the mRNA transcripts being produced at any given time point), the 

proteome (the proteins being produced at any given time point, which are the machinery 

of a cell involving structural, catalytic and signaling processes), and the metabolome (the  
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Figure 1.1:  Major components of systems biology. 
The goal of systems biology is to integrate whole genome, transcriptome, proteome, and 
metabolome measurements of a microbial system into a data-driven model of that system.    
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large collection of small molecules, which act as energy sources, building blocks, 

signaling molecules and many other diverse functions).  While this may be simply stated 

in practice, it is a very daunting challenge.  Only because of major technological 

advances in molecular biology, computing, physics, chemistry and high-end 

instrumentation have such measurements became possible over the last ten years.  

Furthermore, the biggest challenge is the integration of the technologies and the people 

with the expertise in the field.  As shown in Figure 1.2, the challenge is the seamless 

integration of biology, analytical technologies and computational tools in single 

laboratories as well as coalitions of laboratories and collaborators.  This dissertation will 

detail the development of only one of the measurement types, mass-spectrometry based 

proteomics for the measurement of microbial isolates to microbial communities.       

The field of systems biology as it relates to microbial systems can be considered 

to have gotten its start with the sequencing of whole genomes such as Haemophilus 

influenzae (Fleishmann, 1995), Mycoplasma genitalium (Fraser, 1995), Saccharomyces 

cerevisiae (Dujon, 1996), Methanococcus jannaschii (Bult, 1996), and Escherichia coli 

K-12 (Blattner, 1997).  Since then, microbial species genomes are sequenced at a massive 

pace at large-scale sequencing facilities such as the Department of Energy’s Joint 

Genome Institute (http://www.jgi.doe.gov/) and The Institute for Genomic Research 

(http://www.tigr.org/).  Over 200 microbial species have been sequenced and annotated to 

date and strains of microbes are being sequenced for comparative analysis to the original 

sequenced strain.  Furthermore, over 600 microbial sequencing projects are currently 

under way.  Recently, whole genome sequencing of microbial communities have been 

attempted (Tyson, 2004; Venter, 2004) paving the way for systems biology studies of 

microbial systems where they matter most, in their natural habitats (see Chapters 6 and 

7).     

A natural extension of genomics (the study of the complete set of genes for an 

organism) research is the characterization of the gene products, most of which are 

proteins.  This latter research area is defined as proteomics (the study of the entire suite 

of proteins from a genome).  Proteome analyses, whether in simple microbes, yeast, or 

higher organisms, present a much greater challenge than the genomics sequencing efforts.   
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Figure 1.2:  Integration of three main branches of science in systems biology. 
For systems biology studies to be effective it is necessary to integrate three diverse fields 
of science:  Biology, specifically biochemistry and molecular biology; Analytical 
Technologies, specifically high-end instrumentation such as DNA sequencing, electron 
microscopy, x-ray crystallography, nuclear magnetic resonance, mass spectrometry, and 
many others; Computational Biology, all systems biology studies create large datasets 
that need to be processed, filtered, sorted, and compared.     
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While the genome is relatively static, the proteome is very dynamic.  The genome 

generally contains a set number of copies of every gene; however, proteins in the 

proteome can be expressed in a wide concentration range, varying from only a few copies 

per cell for regulatory proteins to many thousands per cell for ribosomal subunits.  The 

genome for microbes is generally the same under any given metabolic state and 

environmental situation.  Microbes are continually changing and modifying their 

proteome to adapt to their surroundings, thus a true understanding of a microbial 

proteome requires many measurements under many metabolic states and environmental 

conditions.  Furthermore, proteins can be highly decorated with any number of post-

translational modifications (PTMs); more than three hundred have been recorded  (James, 

2001).  These modifications can be static or dynamic, and may be present in multiple 

places on a protein.  Finally, in the current state of proteomics technologies, there is no 

amplification technique for proteins similar to the polymerase chain reaction (PCR) that 

has become so important for oligonucleotide studies.  Thus, the proteome of even simple 

microbes presents a much greater analytical challenge than the corresponding genome (or 

even transcriptome) analysis.  Even in light of these difficulties, a complete 

understanding of microbes and microbial communities necessitates the development of 

analytical techniques for rapid and accurate analysis of whole proteomes and protein 

complexes.   

 The field of proteomics as it currently exists is diversified and complex with no 

single measurement platform, experimental approach or desired result.  Figure 1.3 

illustrates the major objectives in proteomics today.  These include: 

1) Protein cataloging: the major goal in these studies is to simply measure as many 

proteins that are being expressed in a given organism at a given point in time.   

2) Differential analysis: the major goal of these studies is to compare one or more 

metabolic states and to determine those proteins that are differentially expressed.  

3) Protein localization: the goal of these studies is to determine where proteins are 

located within a cell, for example, the cytoplasm, the membrane, or the 

periplasmic space. 
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Figure 1.3:  Major applications of proteomics. 
Currently, proteomics can be broken down into five major objectives.  They are all 
fundamentally different in the way the measurements are made and the type of 
information that is obtained.    
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4) PTM analysis: the goal of these studies is to determine what post translational 

modifications are on proteins and where their specific locations are. 

5) Interaction analysis: proteins generally do not function as individual units,       

rather they function in conjunction with other proteins as macromolecular 

machines or protein complexes. 

The methodologies and the information obtained from these diverse experimental 

objectives are unique adding to the challenges and the excitement found in proteomics 

today. 

The start of proteomics can probably be most accurately tied to the invention of 

2D-PAGE or two-dimensional polyacrylamide gel electrophoresis (O’Farrell, 1975; 

Klose, 1975).  This technique allows for the separation and visualization of 1,000-2,000 

proteins on a single gel.  Proteins are first separated by their isoelectric point in the first 

dimension and then by their molecular weight (MW) in the second dimension.  While 

most abundant proteins from a simple bacterium such as E. coli can be visualized on a 

2D-PAGE gel, the identification of the proteins proved to be much more difficult.  At the 

time, the only technique that had consistent results for protein identification was N-

terminal Edman sequencing developed in 1950 (Edman, 1950) and improved upon in 

1957 (Edman and Begg, 1957).  The development of stable membranes, which the 

proteins could be transferred to, helped to automate the process (Aebersold, 1986).  Still, 

the evaluations of entire proteomes were massive projects, taking many years with many 

collaborators.  One of the first major efforts in the bacterial world was the Neidhardt E. 

coli gene-protein index, which attempted to define all the proteins visualized on 2D-

PAGE gels of E. coli grown under numerous conditions (reviewed Neidhardt, 1987).  

Developments in a seemingly completely unrelated field, termed mass spectrometry, in 

the 1980’s and the 1990’s would revolutionize the field of proteomics, creating a 

completely new approach to the field termed MS-based proteomics.  

Mass spectrometry (MS) is a family of structural biology tools that have in 

common the measurement of ions of intact and fragmented molecules.  A common 

misconception about MS is that it only provides molecular mass information.  In reality, 

MS is not only powerful for molecular mass measurement, but also provides ion 
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manipulation capabilities for obtaining detailed structural information at the isomeric 

level.  Mass spectrometry is a well-established technique that historically was first 

important in particle physics.  Mass spectrometry made its commercial impact in the 

petroleum and pharmaceutical industry where the main emphasis was measurements of 

small molecules.  In the 1980’s, the potential for MS for the characterization of biological 

molecules (especially peptides and proteins) began to be realized.   

In the laboratories of Dr. Donald Hunt and Dr. Klaus Biemann a new idea was 

developing that mass spectrometers might be able to sequence peptides at a much faster 

rate, at higher sensitivities and from more complex mixtures than was possible by 

common Edman sequencing techniques (Hunt, 1981; Hunt, 1986, Biemann, 1986; 

Biemann, 1988).  This was accomplished by a process called tandem mass spectrometry 

or mass spectrometry/mass spectrometry (MS/MS) or collisional activated dissociation 

(CAD).  In this process, a sample of peptides or proteins of similar m/z are isolated in the 

gas phase inside the mass spectrometer; generally collisional energy is added to the 

peptide which causes breaks along the peptide backbone in a uniform and predictable 

manner.  Fragment ions are created which correspond to the partial breaking of the 

peptides from both the N- and C-terminus (Figure 1.4).  The fragment ions are then 

measured by the MS and the sequence information can be reconstructed (though not 

directly) through database searching or other methods (see discussions below).  Because 

the cleavage can occur at multiple sites, a systematic alphabetic code is used, as shown in 

Figure 1.4.  Fragment ions, which retain the charge on the N-terminus end of the original 

peptide are designated as “a, b, or c” type ions, depending on the cleavage site.  Fragment 

ions that retain the charge on the C-terminus end of the original peptide are designated as 

“x, y, or z” type ions, depending on their cleavage site (Roepstorff, 1984; Biemann, 

1988).  The most common fragment ions observed for peptides and proteins are usually 

b- and y-type ions.  It should be noted that a fragment must retain a charge for it to be 

detected by the mass spectrometer.  This ability to fragment peptides in mass 

spectrometers to obtain sequence information has become the heart of many proteomic 

efforts and is central to this entire dissertation.  After 1986, MS started to become the 

dominant method for sequencing peptides and thus identifying proteins.      
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Figure 1.4:  Nomenclature for the fragmentation of peptides by MS/MS. 
Illustrates the typical fragmentation of a peptide or protein by low energy CAD.  The 
most common fragment ions observed for peptides and proteins are usually b- and y-type 
ions.    
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While the advent of MS/MS for obtaining peptide sequence information was a 

tremendous step, there were still some major fundamental limitations to analyzing 

peptides and proteins with mass spectrometry.  The biggest fundamental challenge was 

the desorption and ionization of peptides and proteins into the gas phase, which is 

required for any MS analysis.  At that time, the ionization sources, such as fast atom 

bombardment (FAB), were not very sensitive or robust.  The development of two new 

ionization methods was key; electrospray ionization (ESI or ES) allowed for the direct 

desorption and ionization of peptides and proteins into the gas phase from a liquid matrix 

(Fenn, 1989), matrix assisted laser desorption ionization (MALDI) allowed for the direct 

desorption and ionization of peptides and proteins into the gas phase from a solid matrix 

(Hillenkamp, 1991; Nakanishi, 1994).  Electrospray ionization utilizes a high voltage 

needle (typically about 2,000-4,000 V) to transfer preformed peptide or protein ions from 

a flowing liquid solution phase into the gas phase.  The resulting mass spectrum usually 

consists of a range of multiply-charged ions, such as (M+nH)n+.  The range of multiply-

charged ions will depend on the length, basicity and higher order structure of the peptide 

or protein.  In MALDI, the experiment is conducted by using a pulsed laser to desorb 

peptides and proteins that have been imbedded in a spectrally-absorbing matrix 

compound (typically a small organic acid).  The resulting mass spectrum consists 

primarily of singly-charged species, such as (M+H)+, although some higher charged 

species, especially doubly-charged ions, are observed in some cases.  Typical matrix 

compounds for proteins and peptides include sinapinic acid and alpha-cyano-4-

hydroxycinnamic acid.  Both of these techniques have revolutionized the analysis of 

peptides and proteins by mass spectrometry allowing for sensitive, reproducible and 

robust methods for their desorption and ionization into the gas phase.    

Currently, there are two major methods for analyzing proteins, protein complexes 

and proteomes by mass spectrometry.  The top-down method involves measuring intact 

proteins, either with or without MS/MS of these intact proteins.  This method was first 

introduced with electrospray ionization Fourier transform ion cyclotron resonance mass 

spectrometry or ES-FT-ICR-MS (Little, 1994; Mortz, 1996; Kelleher, 1998) and 

expanded to ion traps with novel ion-ion reactions (McLuckey, 1998).  In the bottom-up, 
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or shotgun method, intact proteins, protein complexes or proteomes are digested with a 

protease such as trypsin, Glu-C or chemical such as cyanogen bromide (CNBr), and the 

resulting peptide mixtures are analyzed by MS or MS/MS.  It should be noted that in this 

definition it does not matter whether the initial separations are performed on intact 

proteins or peptides; rather, the experiment type is defined by the species measured by 

the MS.  Thus, 2D-PAGE of intact proteins followed by in-gel digestion and MS analysis 

is considered a bottom-up approach.  The actual development of the bottom-up 

methodology cannot be traced to a single lab, but rather evolved from multiple labs using 

very different techniques including gel-based (Hess, 1993; Mortz, 1994; Shevchenko, 

1996; Wilm, 1996; Gatlin, 1998)  and solution-based separations (McCormack, 1997; 

Martin, 2000; Shen, 2001) followed by MS or MS/MS for peptide identifications.  These 

two general approaches can be summarized as follows: 

Bottom-up proteomics:  Complex protein mixtures (from cell lysate or protein 

complexes) are proteolytically digested (usually with trypsin), and the resulting peptide 

mixture is examined by mass spectrometry.  The MS data are used to query a peptide 

database from the specific organism to identify the protein components of the original 

mixture.  This method is excellent for determining protein identities, but provides very 

limited information about the molecular form of the intact proteins. 

Top-down proteomics:  Complex protein mixtures from cell lysates or protein 

complexes are examined directly by on-line or off-line MS.  No digest is conducted; 

rather the intact proteins are measured with MS and MS/MS.  This method provides fewer 

protein identities, but does give detailed information about the intact molecular forms of 

the proteins, including post-translational processing [small molecule additions (PTMs), 

truncation, mutations, and signal peptides]. 

Both techniques have advantages and disadvantages.  Bottom-up proteomics is by 

far the more widely-used method, mainly because it is much simpler to conduct and does 

not require high performance MS instrumentation.  The progress in the field of bottom-up 

proteomics has been staggering.  It has now become possible (if not routine) to measure 

~1000-1500 proteins from a microbe under a given growth condition with a high degree 

of confidence in a 1-3 day period, depending on the technology used.  Furthermore, if 



 12

enough mass spectrometers are assembled, this analysis can be rapidly repeated for 

protein identification for an organism under a variety of different growth conditions. 

On the other hand, top-down proteomics has moved along at a slower pace.  This 

is primarily due to the following factors:  liquid-based separations of intact proteins are 

more difficult than peptides, MS and MS/MS analyses of intact proteins are more 

difficult to conduct and interpret than peptides, the high performance MS instruments 

capable of adequate analysis of intact proteins from complex mixtures are fairly 

expensive and have not been designed for routine operation in most cases, and the 

algorithms to analyze MS/MS of intact proteins are not as well developed or 

commercially available.  Even with these experimental challenges, top-down proteomics 

provides a level of information that the bottom-up technique does not, which is the intact 

state of the protein.  This is critical, as proteins function as intact molecular species, not 

as a combination of simple, small peptides.  Thus, a full understanding of the intact state 

of proteins (PTMs, truncation, mutations, signal peptides) is necessary, suggesting that an 

integrated top-down, bottom-up proteomics method would be the most comprehensive 

(this method is discussed in detail in Chapter 3, the rest of this dissertation focuses on 

bottom-up or “shotgun” proteomics methodologies). 

Protein analysis by MS-based methodologies can be broken down into the 

following three general areas.  While each is unique, they all can be addressed with 

similar MS technology. 

Individual Protein Analysis:  This involves the analysis of purified proteins for 

quality control in structural or biochemical experiments as a means of studying post-

translational processing, or in structural analysis of individual proteins by techniques 

such as H/D exchange (Dharmasiri, 1996), cross-linking (Young, 2000) and surface 

labeling (Bennett, 2000; Sharp, 2003; Sharp, 2004).  While these methods of structural 

analysis by MS all show great promise for the future, a detailed discussion is beyond the 

scope of this chapter.  Protein detection over a wide dynamic range is not much of an 

issue here, but sensitivity may be, for example, if the goal is to purify a low-copy number 

protein with a transient modification. 
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Protein Complex Analysis:  This involves the analysis of purified protein 

complexes or protein machines, which may also include the analysis of signaling 

pathways in which the protein complexes are generally more transient and difficult to 

analyze.  Protein complexes are typically purified by centrifugation/sucrose gradient 

techniques, although more recent approaches employ immunoprecipitation or tandem 

affinity purification tags (TAP) (Puig, 2001).  The greatest challenge is in the 

biochemical purification and the sensitivity required in the analysis, since typically 100-

1000 ng of the complex can be prepared, although preparation of protein complexes from 

microbes can often yield much greater quantities.  Dynamic range in the MS detection is 

not as much of a problem but may be important if a transient protein is associating with a 

large complex or if one is searching for PTMs on this complex.  A key element of these 

measurements is the need to purify these complexes from cell lysates.  This field is 

developing rapidly at present, as evidenced by attempts to characterize protein-protein 

interactions at the proteome level (Gavin, 2002; Ho, 2002). 

Whole Proteome Analysis:  This typically refers to the analysis of whole cell 

lysate, organelle preparations, or crude fractions obtained by affinity chromatography or 

centrifugation, such as membrane preps, cleared serum, etc.  The greatest challenge in 

this analysis is dynamic range because medium to high abundance proteins mask most 

low abundance proteins.  Sensitivity is generally not as much of a problem for whole cell 

lysates due to large quantities of starting material, but may be an issue for organelle 

preparations, affinity purified/cleaned fractions or microbial proteomes from the natural 

environment. 

The focus of this dissertation is the analysis of whole microbial proteomes and 

proteome fractions, though Chapter 3 will contain discussion on all three sub-disciplines.  

The most complex of these procedures is the examination of a whole proteome.  The 

experimental approach for such a measurement can be broken down into four separate 

steps.  The first step of sample preparation (i.e., cell growth or sample isolation) is 

followed by the second step of protein fractionation or separation.  This leads to the third 

step of MS characterization, which is followed by the final step of computational analysis 

of the data (proteome informatics).  For the analyses of protein complexes and whole 
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proteomes, the most important aspect is the dynamic range of the measurement.  The 

demands on the MS can be relaxed somewhat by incorporating separation technologies 

(such as either off-line or on-line fractionations of proteins/peptides) prior to mass 

spectrometric detection.  These fractionations can be very crude or highly specific, 

depending on the nature of the application.  Methodologies for rapid, deep, sensitive and 

reproducible characterization of whole microbial proteomes are the central focus of this 

dissertation.   

In the 1990’s, the coupling of 2D-PAGE with mass spectrometry (2D-PAGE-MS) 

was the dominant methodology for analyzing microbial proteomes (Shevchenko, 1996; 

Wasinger, 2000; Langen, 2000; Fulda, 2000; Grunenfelder, 2001; Hernechova, 2001; 

Bumann, 2001; Molloy, 2001; Wagner, 2002).  The detailed process of 2D-PAGE-MS is 

beyond the scope of this chapter but has been reviewed in great depth (Jungblut, 1997; 

Jensen, 1998).  The basic process involves separating the proteins by their isoelectric 

point followed by their molecular weight in a SDS-PAGE gel.  Proteins are then excised 

from the gel, in-gel digested with trypsin, de-salted, and analyzed by a variety of MS 

techniques.  The review by Jungblut et al. (1997), gives a very detailed schematic of all 

the possible modes of protein identification, and how they are related.  The most common 

is a technique called peptide mass fingerprinting (PMF), where the peptides from the 

excised spots are measured for their intact masses by MALDI-TOF.  The masses are 

searched against a database of proteins to find the best candidate protein that matches the 

largest amount of measured peptide masses.  For most cases where this methodology 

does not work, the peptides will be loaded into a nanospray needle and analyzed by static 

nanospray-MS/MS where sequence information can be obtained from the individual 

peptides for a more robust search.  2D-PAGE followed by MS analysis has been 

established as the gold standard for proteome analysis, especially for microbial species.  

But within the last few years, there has been a noticeable migration away from this 

methodology toward pure liquid-based approaches.  This movement is mainly due to the 

inherent weaknesses in the 2D-PAGE-MS methodology.  The advantages and 

disadvantages of 2D-PAGE-MS as they relate to the liquid-based methods are 

highlighted below.  Some of these inherent weaknesses are currently being addressed 
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with new techniques; however, the fundamental fact remains that at the current time, the 

depth of analysis of protein complexes or whole proteomes by 2D-PAGE does not 

compare well with the emerging liquid-based methodologies.  2D-PAGE is still routinely 

used in many labs around the world and undoubtedly will continue. 

 

Advantages of 2D-PAGE for proteome analysis: 
i)  Gold standard, widely used and understood 
ii)  Very high resolving power 
iii)  Sensitive staining methodologies available 
iv)  Commercial software is available for automated quantitation  
 

Disadvantages of 2D-PAGE for proteome analysis: 
 i)  Poor reproducibility 
 ii)  Limited recovery of low abundance proteins 
 iii)  Limited pI and MW ranges 
 iv)  Time consuming 
 v)  Membrane proteins do not enter the second dimension effectively 

vi)  Coupling with MS is an indirect process 
vii)  Intact protein analysis is very difficult  

 

The coupling of liquid chromatography with mass spectrometry (LC-MS) is one 

of the most promising approaches to overcoming some of the limitations of 2D-PAGE-

MS discussed above.  The advent of ES has provided a natural way to interface liquid 

chromatography directly to MS, since ES involves dynamic introduction of a flowing 

liquid stream directly into a mass spectrometer.  It is reasonable to propose to connect a 

liquid chromatography system to the electrospray source, so that the benefits of liquid-

based separation can be combined with high-resolution molecular mass (and MS/MS) 

measurements.  While some work has been done on chromatography of intact proteins in 

conjunction with mass spectrometry, the majority of effort has focused on 

chromatography of enzymatically-generated peptides in conjunction with mass 

spectrometry (bottom-up or “shotgun” method for proteomics).  This is primarily due to 

the fact that peptides are much easier to handle, separate, and analyze than intact proteins.  

It is somewhat counterintuitive that it is desirable to take a complex protein mixture and 

make it more complex by digesting the proteins into representative peptides.  For 
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example, each averaged size protein can generate ~20 peptide fragments.  So, proteolytic 

digestion of a sample containing 1,000 proteins will generate a new sample that contains 

~20,000 peptides.  While this appears to be a poor choice, in practice liquid 

chromatography and mass spectrometry of peptides are currently well-developed and 

robust, even for very complex peptide mixtures.  The advantages of coupling liquid 

chromatography with mass spectrometry are obvious when one considers some of the 

necessities of proteomics, as highlighted below: 

 

1) Dynamic Range.  The need for multiple dimensions of separation has become 

most apparent in the use of LC-MS for proteome analysis, due to the large 

dynamic range necessary for measuring a whole proteome.  While 2D-PAGE 

offers a very high resolving power for proteins, this methodology is currently 

limited with respect to the types of proteins it can analyze and the number of 

quality identifications that can be made from any one gel.  The coupling of 

multiple dimensions of chromatography with mass spectrometry offers a solution 

to this problem.  This can be easily noted from the fact that while ~1,000 proteins 

have been visualized on a 2D-PAGE gel, there have been no published reports of 

more than a few hundred proteins being identified from a single gel.  It has now 

become routine for the accurate identification of 500-1,500 proteins from a single 

sample in 20-30 hours on a LC-MS/MS system operated in automated mode.   

2) Sensitivity.  While 2D-PAGE gels have very sensitive staining methodologies for 

observing spots, the ability to identify proteins from these spots by mass 

spectrometry has not matched this level.  This is primarily due to the large sample 

losses in the in-gel digestion step.  Pure LC-MS methodologies promise to be 

more sensitive, due to the reduced overall sample handling while keeping the 

sample in the liquid phase.    

3) Quantitation.  Differential analysis between two or more sample types is a 

primary need for successful proteome applications.  One of the reasons that 2D-

PAGE-MS has remained the gold standard is that it currently is inherently better 

at quantitation than liquid-based methodologies, due to the fact that LC-MS 
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suffers from matrix effects that make comparison of run-to-run peak intensities 

very difficult.  This is primarily due to the electrospray ionization methodology 

and not the mass spectrometry.  Furthermore, the apparent accuracy of 2D-PAGE 

for quantitation became questionable when it was realized that many spots on any 

2D-PAGE gels contained more than one protein.  The use of stable isotopes for 

peptide labeling (see quantitation discussion below) and methods in semi-

quantitation (see chapters 4 and 5) have proven that quantitation can be 

accomplished by LC-MS.        

4) Protein Diversity.  A major advantage of liquid-based methodologies in 

comparison with 2D-PAGE-MS is the diversity of proteins that can be analyzed.  

Virtually any protein that can be subjected to either chemical or enzymatic 

digestion can be analyzed.  This includes membrane proteins, proteins of high and 

low pI values, and proteins of high and low molecular mass. 

5) Throughput.  In the field of proteomics, one of the biggest concerns is sample 

throughput, including not only how fast samples are analyzed, but how well they 

can be characterized in a short period of time.  This is just as important in 

bacterial proteomics as mammalian or plant proteomics.  Currently, at least 200 

microbes have been fully sequenced and annotated and hundreds more are under 

way.  Researchers need to be able to analyze the proteomes from these organisms 

under many different growth conditions and with many different mutants for a 

systems biology approach to be truly effective.  For sample throughput, LC-MS 

has already been well-developed in the pharmaceutical industry, where thousands 

of samples are processed by large numbers of mass spectrometers in hundreds of 

laboratories every year.   

 

The trend towards liquid chromatography methods for proteome analysis can be 

made clear by examination of Table 1.1.  Over the last few years, all of the large-scale 

proteome analyses have been accomplished with some form of LC-MS methodology.  

The analysis of Oryza sativa provides the best example for a direct comparison of 2D-

PAGE analysis and LC/LC-MS/MS analysis for whole proteomes (Koller, 2002).  In this  
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Table 1.1:  Landmark papers in large-scale proteome analysis by MS. 
Author Year Species Separation Methods MS Methods # of IDs 

Shevchenko et al. 1996 S. cerevisiae 2D-PAGE Nano-ES-MS/MS 150 

Wasinger et al. 2000 M. genitalium 2D-PAGE MALDI PMF 158 

Langen et al. 2000 H. influenzae 2D-PAGE MALDI PMF 502 

Washburn et al. 2001 S. cerevisiae MudPIT Nano-ES-MS/MS 1484 

VerBerkmoes et al. 2002 S. oneidensis 2D SCX-RP/1D MMS Capp-ES-MS/MS 868 

Lipton et al. 2002 D. radiodurans 2D SCX-RP MMS Nano-ES-MS AMT 1910 

Koller et al. 2002 O. Sativa 2D-PAGE-RP/MudPIT Nano-ES-MS/MS 2528 

Mawuenyega et al. 2002 C. elegans 2D SAX-RP Capp-ES-MS/MS 1616 

Peng et al. 2002 S. cerevisiae Offline 2D SCX-RP Nano-ES-MS/MS 1504 
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study, the rice plant was broken into three fractions - leaves, roots, and seed tissues.  

Proteins were isolated from each fraction and analyzed by 2D-PAGE, followed by 

automated Nano-LC-MS/MS or by multidimensional protein identification technology, or 

“MudPIT” (Washburn, 2001).  The analysis of all three fractions by 2D-PAGE-MS 

resulted in 556 non-redundant identifications, while the analysis of all three fractions by 

MudPIT resulted in 2,363 non-redundant identifications.  There was no mention from the 

authors about the length of time each analysis consumed, but we estimate the MudPIT 

analysis could have been accomplished in 5 days on a single mass spectrometer once the 

system was optimized.  This throughput, as well as the enhanced dynamic range, is why 

the liquid-based methodologies are having the greatest impact on proteome analysis.  For 

further reading on the advancement of LC-MS in proteomics, see these excellent reviews 

(Peng, 2001; Mann, 2001; Liu, 2002). 

 The entire process of an LC-MS/MS experiment for shotgun proteomics is 

detailed in Figure 1.5.  Sample preparation, different versions of LC-MS procedures, and 

quantitation will then be explained in detail below and in Chapter 2.  The shotgun 

proteomics technique begins with enzymatic digestion of a microbial proteome sample 

and analysis of the resulting peptide mixture by automated LC-MS/MS or LC/LC-

MS/MS in a data-dependent manner (top, Figure 1.5 details this process).  Bear in mind 

that the sample that is injected onto the chromatographic system consists of a mixture of 

thousands of distinct peptides.  These peptides are separated physically over a period of 

time by their hydrophobicity or net charge, and are sequentially ionized by ES and 

injected into the mass spectrometer.  At any given point in time, 20-200 peptides can be 

entering the MS depending on sample complexity and length of separation.  By using the 

mass spectrometer to record the overall ion intensity as a function of time, it is possible to 

obtain a Total Ion Chromatogram (TIC) much like a UV chromatogram (top left, Figure 

1.5).  During the entire chromatographic run, the mass spectrometer is oscillating 

between full scan mode, where it is acquiring m/z values of peptides entering the mass 

spectrometer at that time point (top right, Figure 1.5), and subsequent MS/MS mode, 

which examines the fragmentation of the most abundant peptides (generally 3-5) as they 

elute from the column (bottom left, Figure 1.5).  This latter mode is accomplished  
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Figure 1.5:  Flow diagram for typical LC-MS/MS experiment.   
Depicts the typical flow path of a LC-MS/MS experiment from LC-MS/MS analysis, to 
database searching, to data filtering and comparison and final biological output. TIC-total 
ion chromatogram.   
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by gas-phase isolation of individual peptides, followed by collisional activated 

dissociation and detection of fragment ions.  The mass spectrometer records the fragment 

ions and the mass of the precursor ion.  To increase dynamic range, most methodologies 

employ some type of dynamic exclusion so that peptides that have already been 

fragmented are not fragmented again.  The precursor masses and the fragmentation 

patterns are then submitted to search algorithms such as SEQUEST (Eng, 1994) and 

MASCOT (Perkins, 1999), which can query thousands of MS/MS spectra against protein 

or nucleotide databases (bottom right, Figure 1.5).  It should be noted that sequence 

information cannot easily be directly interpreted from the MS/MS spectrum due to the 

complexity of the fragmentation processes.  Instead, the search algorithms perform cross-

correlation (SEQUEST) or probability (MASCOT) comparisons between the observed 

spectrum and computationally derived spectra from protein and nucleotide databases.  

The parent mass of the peptide provides a look-up function to find candidate peptide 

sequences within the potential mass window of the observed parent peptide.  The 

observed MS/MS spectrum is then directly compared to hundreds of potential candidate 

MS/MS spectra and a best scoring candidate match is made.  This by no means 

guarantees the peptide is the correct identification; it is just the best match to that given 

spectrum from that given database.    

The final stage of the process is illustrated in the bottom of Figure 1.5.  Typically, 

a single LC-MS/MS experiment produces tens of thousands of MS/MS spectra.  The 

identification from these spectra must be filtered and sorted in order to extract useful 

information from them.  Filtering and sorting software, such as DTASelect (Tabb, 2002), 

are used to extract and sort positive identifications, whereas the program Contrast (Tabb, 

2002) is used to compare run-to-run variations and sample-to-sample changes.  Correct 

filtering of MS/MS identifications from SEQUEST and MASCOT outputs is critical and 

discussed in detail in Chapter 2.  The protein identifications can then be compiled into 

KEGG maps and functional categories for rapid viewing of metabolic and signaling 

pathways that are activated.  This information allows targets to be designed for 

mutations, gene knockouts, and protein-protein interaction studies (see Chapters 4 and 5). 
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The analysis of whole proteomes and protein complexes by mass spectrometry 

can provide very useful qualitative information, but one of the most interesting areas of 

proteomics is the quantitative comparison between different growth conditions, or 

mutants, for a given organism.  For example, quantitative analysis of microbial 

proteomes has been dominated by 2D-PAGE-MS, but this is shifting towards pure liquid-

based methods due to the deficiencies in the 2D-PAGE methodology described above.  

This is primarily due to the fact that the pure liquid-based methods are inherently higher 

throughput, and are not biased against any protein type.  There are difficulties with the 

liquid-based methods for quantitation, and technologies to address these are only now 

being developed and implemented.  Due to matrix effects associated with both ES and 

MALDI, direct comparisons of ion peak heights or area for given peptides or proteins 

eluting from LC columns into the MS should only be used as approximations for 

abundance levels, and are most likely not accurate for absolute quantitation.  Recent 

developments in stable isotope labeling has allowed for accurate, relative quantitation of 

proteins in two different samples, such as E. coli grown under high salt and low salt 

conditions.  In these experiments, a given protein(s) can be compared with its counterpart 

from a different growth condition to obtain a relative expression level of up- or down-

regulation, but an absolute level of protein expression is still very difficult to determine.  

Three main methodologies that employ stable isotopes for relative quantitation have 

developed over the last few years.  Each has advantages and disadvantages, which are 

highlighted below: 

Isotope Coded Affinity Tags (ICAT):  ICAT was originally developed in 1999 

(Gygi, 1999), and has become commercially available through Applied Biosystems.  The 

methodology has since been applied to the analysis of protein expression and comparison 

with microarray data in Saccharomyces cerevisiae (Ideker, 2001; Griffin, 2002), as well 

as the analysis of human cell line HL-60 microsomal proteins (Han, 2001).  This 

technique entails the use of an isotope encoded affinity tag.  The proteins in a sample are 

mixed with the ICAT reagent, which specifically reacts with cysteine residues.  The 

reagent has an isotopic label (either a “light” version containing either hydrogen atoms on 

the aliphatic chain or a “heavy” version containing eight deuterium atoms in the same 
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location) and a biotin affinity tag for isolation of cysteine-containing peptides.  This 

technique is applied to protein samples by labeling one sample with the light reagent and 

the other sample with the heavy reagent.  The samples are then combined, digested with 

trypsin, and passed over an avidin column to enrich the cysteine-containing peptides.  

LC-MS/MS methodologies described above can then be used to analyze the complex 

peptide samples to obtain peptide identifications as well as quantitative information by 

comparing the peak heights of heavy and light versions of the same peptides.  The major 

disadvantages of this technique are the commercial price of the reagent and the fact that 

the current version of the commercial reagent only labels cysteine residues.  This latter 

point presents a serious problem for some bacterial species.  The average number of 

cysteines per protein is much lower in bacterial species, as compared with some common 

eukaryotic species.  Furthermore, a large percentage (50-60%) of proteins in bacterial 

species contain either 0, 1, or 2 cysteine residues, as shown in Table 1.2, which either 

prevents quantitation, or requires that the quantitation be based on one or two data points.        
18O Water Labeling:  This methodology was recently introduced as an alternative 

to ICAT for accurate protein quantification (Yao, 2001).  In this technique, one protein 

sample is digested with trypsin in the presence of ultrapure 18O water, while the other 

sample is digested in normal water.  The samples are then pooled and analyzed by LC- 

MS/MS or MALDI methodologies on high-resolution mass spectrometers.  The results 

clearly demonstrated that the carboxy termini of the tryptic fragments digested in 18O 

water are fully labeled with 18O, and this label is stable.  Thus, all tryptic peptides from 

the H2
18O sample have an increase in mass of 4 Daltons (two incorporated oxygen atoms 

on the C-terminus of each peptide).  The peptides can then be quantitated by comparing 

peak areas of co-eluting peptides separated by 4 Daltons.  The main disadvantage of this 

technique is the price and availability of H2
18O, the fact that the labeling process is so far 

down stream in the methodology (allows for errors to be introduced) and the need for a 

high-resolution mass spectrometer to analyze the peptides with such small mass 

differences. 

Nitrogen Labeling:  In this methodology, the microbe of interest is grown under a 

defined media with either normal media (containing naturally-occurring isotopic 
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Table 1.2:  Average number of cysteines per protein for typical prokaryotic and 
eukaryotic species. 

S. oneidnesis (bacterium) S. cerevisiae (yeast)
Average # Cysteine residues per protein= 3.159 Average # Cysteine residues per protein=6.268

Cysteines per protein Proteins % Cysteines per protein Proteins %
0 1000 19% 0 627 9%
1 950 18% 1 663 9%
2 830 16% 2 668 10%
3 646 12% 3 645 9%

4 or more 1751 31% 4 or more 4332 62%
Total Proteins 5177 Total Proteins 6935

R. palustris (bacterium) A. Thaliana (plant)
Average # Cysteine residues per protein=2.795 Average # Cysteine residues per protein=7.892

Cysteines per protein Proteins % Cysteines per protein Proteins %
0 946 20% 0 1328 5%
1 904 19% 1 1794 7%
2 854 18% 2 2080 8%
3 614 13% 3 2188 8%

4 or more 1489 31% 4 or more 18426 71%
Total Proteins 4807 Total Proteins 25816
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abundances) or isotopically enriched or depleted media (Oda, 1999; Pasa-Tolic, 1999).  

The most common method is to grow the microbe in defined media without amino acids 

with only ammonium sulfate as a nitrogen source.  The ammonium sulfate can then be 

either ammonium-15N sulfate or normal ammonium sulfate.  The microbe will 

incorporate the stable heavy isotope into its proteins.  The normal and heavy-labeled 

samples can then be grown under the desired conditions, combined, lysed and digested 

with a protease.  The peptides will have heavy and light pairs that should elute at the 

same time in a LC-MS/MS experiment, and again the peptides can be quantified by 

comparing peak areas.  This methodology has recently been employed for the largest 

quantitative proteome analysis to date of the yeast proteome by nitrogen labeling, 

followed by MudPIT analysis (Washburn, 2002).  The major advantages of this 

technology are the low cost and the ability to quantitate any type of protein that can be 

digested with either chemical or enzymatic methods.  Furthermore, the samples are mixed 

immediately after growth so that any changes in sample preparation affect both samples 

in the same manner.  The major disadvantage is that this technique can only be used for 

species whose growth conditions can be exquisitely controlled.  This is a severe 

limitation for many microbial systems and completely impossible for experiments 

involving microbial systems analyzed directly from their natural environments (see 

Chapter 7). 

All of the above listed techniques for accurate relative quantification have 

shortcomings and none are very useful for comparing large numbers of metabolic states.  

There has been recent effort in the field to analyze proteome samples by semi-

quantitative techniques both in microbial systems (Gao, 2003) and in human proteome 

projects (Chelius, 2002; Wiener, 2004).  It has been shown that semi-quantitative 

comparisons of proteome datasets based on the % sequence coverage, # of identified 

peptides, and the repeat count for a protein (how many MS/MS sequencing events are 

acquired per protein) are all indicators of protein abundance (Liu, 2004).  One of the 

major goals of this dissertation was to develop and test methods for semi-quantitation of 

microbial species with gene knockouts (Chapter 4) and microbial species grown under 

various metabolic states (Chapter 5).   
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Our main focus for these studies was microbes with potential for carbon 

sequestration, bioremediation, long-term energy production and potential to survive at the 

extremes of the natural environment (extremophiles).  The bacteria we choose to study in 

this dissertation clearly fall into those categories.  The individual bacteria and the natural 

community that were the focus of these studies are shown in Figure 1.6.  S. oneidensis is 

a facultatively anaerobic γ-proteobacterium which possesses remarkably diverse 

respiratory capacities that have important implications with regard to the potential for 

bioremediation of metal contaminants in the environment.  In addition to utilizing oxygen 

as a terminal electron acceptor during aerobic respiration, S. oneidensis can anaerobically 

respire various organic and inorganic substrates [i.e., fumarate, nitrate, chromium, 

thiosulfate, trimethylamine N-oxide (TMAO), Fe(III), and Mn(III)].  Rhodopseudomonas 

palustris is a purple nonsulfur anoxygenic phototrophic bacterium in the α-proteobacteria 

family.  R. palustris is of great interest due to its high metabolic diversity and ability to 

degrade simple aromatic hydrocarbons (lignin monomers).  It has exceptional metabolic 

versatility in its modes of energy generation and carbon metabolism.  R. palustris is 

capable of producing hydrogen gas as a by-product of nitrogen fixation making it a 

potential biofuel producer.  R. palustris also has the potential to act as a greenhouse gas 

sink by converting CO2 into cellular material.  Since most of these metabolic states can 

easily be produced in laboratory settings, it makes R. palustris a model system for the 

study of diverse metabolic modes and their control.  The acid mine drainage (AMD) 

communities provide an excellent model system for studying life at the extremes of the 

natural environment.  These communities of bacteria not only survive but thrive in acidic 

streams (pH <1.0), with molar metal concentrations and high temperatures.  The goal was 

to determine the cellular localization of expressed proteins, provided clues to protein 

function, and yielded information about the physiological challenges faced by a self-

sustaining, chemolithoautotrophic microbial community.  These three microbial systems 

were the core test subjects for the application of MS-based proteomics to attempt and 

gain better understanding of microbial systems with potential for carbon sequestration, 

bioremediation, long-term energy production and potential to survive at the extremes of 

the natural environment.  
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Figure 1.6:  The microbial systems which were the focus of this research.   
The three microbial systems which were the focus of this dissertation.  Shewanella 
oneidensis a bacteria with great potential for bioremediation.  Rhodopseudomonas 
palustris a metabolically versatile bacterium with potential for energy production, carbon 
sequestration and bioremediation.  The acid mine drainage community a model system 
for studying a microbial community which can survive at the extreme of nature 
(extremenly low pH, high metal concentrations and high temperatures).  

 

 

 

 

 

 

 

 

 

 

Glausser et al. Science 2002
295, 117-119.

Shewanella oneidensis Rhodopseudomonas palustris

Acid Mine Drainage Community
Life at pH less than 1.0
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The major goal of this dissertation was to build a robust high-throughput platform 

for the analysis of complex protein mixtures, and then evaluate and extend this platform 

to the characterization of microbial isolates and microbial community proteomes 

discussed above with the goal of gaining greater biological insight into their complex 

systems.  At the start of this dissertation, proteomics was only beginning to be developed 

in numerous laboratories.  Thus a major effort was needed to develop the necessary 

biological, analytical, and computational tools to addresses this daunting technical 

challenge.  Hopefully the research presented here has helped to bring us one step closer to 

achieving that goal.   

The following is an outline of that effort.  Chapter 2 details the current ORNL 

“shotgun” proteomics pipeline for microbial proteomics, which was developed primarily 

through efforts of this dissertation.  Chapter 3 details a new methodology of integration 

of the top-down and bottom-up techniques for the analysis of individual proteins, protein 

complexes and whole proteomes.  Chapter 4 illustrates our first major report on 

qualitative comparisons between a global regulator knockout and the wild-type (WT) 

strain in the bacterium Shewanella oneidensis.  Chapter 5 further illustrates the 

effectiveness of semi-qualitative comparisons with a large-scale analysis of the major 

metabolic modes of the bacterium Rhodopseudomonas palustris.  Chapter 6 introduces 

methodology development and testing for characterizing microbial communities focusing 

on artificially prepared microbial mixtures and Chapter 7 concludes with the application 

of “shotgun” proteomics for the first characterization of a natural microbial proteome 

with the global characterization of the proteome from an acid mine drainage biofilm.  

This dissertation is the culmination of years of effort to develop a global proteomics 

platform for the characterization of microbial proteomes from isolates to communities.     
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Chapter 2 

Experimental Platform for Global Analysis of Microbial Proteomes 
 
Introduction 

 This chapter describes the experimental platform for global analysis of microbial 

proteomes extracted from either microbial isolates or natural communities that was 

developed through the course of this dissertation.  While a common experimental thread 

of analyzing bacterial proteome by liquid chromatography in conjunction with tandem 

mass spectrometry (LC-MS/MS or “shotgun” proteomics) can be found in all following 

chapters, the exact methods vary to some degree.  This chapter breaks each part of the 

process down and explains variations and advantages and disadvantages of the various 

methods.  The ORNL proteomics platform is illustrated in Figure 2.1.  The major parts 

include cell growth, protein extraction/sample preparation, liquid chromatography, mass 

spectrometry, proteome informatics and biological information extraction.  Each of these 

subtasks is detailed below. 

 

Cell Growth 

 For all studies presented in this dissertation (except Chapter 7) bacteria were 

grown from stock solutions in batch format.  Generally, glycerol stock solutions of the 

WT strain or a mutant strain are kept at -80oC.  For the S. oneidensis studies presented in 

Chapter 4, the strains were obtained from Dr. Dorothea Thompson in the Environmental 

Science Division at ORNL.  For the R. palustris studies in Chapter 5, the wild-type (WT) 

strain CGA0010 and LhaA knockout mutant were gifts from Dr. Caroline Harwood at the 

University of Washington and can be obtained from Dr. Dale Pelletier in the Life Science 

Division at ORNL.  The Escherichia coli and Saccharomyces cerevisiae strains that were 

used as background samples in Chapter 6 were supplied by Dr. Brian Davison in the Life 

Science Division at ORNL.  The acid mine drainage (AMD) biofilm samples discussed in 

Chapter 7 were the only samples that were not grown from isolates.  These are naturally 

occurring microbial biofilms that were collected from the Iron Mountain Mine, Redding, 

California, and were supplied by Dr. Jillian Banfield, University of California, Berkeley.          
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Figure 2.1:  Major steps in ORNL proteomics pipeline. 
Illustrates each major step in the ORNL proteomics pipeline for the analysis of single 
microbial isolates, mixtures of isolates, and natural community samples.  It should be 
noted that natural community samples are not grown from stocks but rather collected 
directly from the environment.   
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Generally, for growth of isolates, the stock solution was aliquoted into a 1 L 

solution of growth media, which is generally in a 2 L flask.  The choice of growth media 

was different for each microbial system and dependent upon the metabolic state required.  

For aerobic growth (growth in the presence of oxygen), the flask was agitated on a shaker 

to allow for full aeration.  Sometimes, oxygen or air can also be sparged through the 

system.  For anaerobic growth, the entire flask was completely closed.  For growth 

requiring photosynthesis, cells were fully illuminated with a light source.  Figure 2.2 

illustrates R. palustris growing anaerobically with a light source.   

  For most studies in this dissertation (unless otherwise noted), microbial growth 

was run into mid-log phase.  For comparative studies, this is generally the best place to 

harvest cells, since most cells in the culture will be at an equal state of metabolism.  

Figure 2.3 illustrates the general growth pattern of a microbial system in culture.  

Immediately after inoculation, the system is in lag phase, where the microbes are 

adapting to their new environment and exponential growth has not yet begun.  Individual 

cell mass increases, but the cells are not dividing rapidly.  The microbial system then 

moves into log phase, where exponential growth is occurring; there are plenty of nutrients 

and the cells are not overly stressed.  During this interval of growth, cell numbers are 

doubling at some regular interval, which is determined by the species type, its doubling 

time, available nutrients and environmental factors.  Once nutrients start to become 

limiting, the cell culture will enter a stationary phase where cell death and new cell 

development is relatively equal, and there will be no great changes in overall cell 

concentrations.  Cells are starting to become stressed in this situation as nutrients have 

become limiting, toxins build up and environmental changes such as pH shifts occur.  

After stationary phase, some microbial systems will enter a decline, or death phase, 

where nutrients are very limiting and cell death is much greater than generation of new 

cells.  Overall viable cell numbers start a rapid decline and cells are very stressed and 

major morphological changes can occur.  The length of times for each of these stages 

varies from microbe to microbe and from metabolic state to metabolic state.  Thus, very 

careful initial experiments must be performed to determine the general rate of cell growth 

and progression through this cycle.  It is very important when comparing two metabolic 
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Figure 2.2:  R. palustris under batch photoheterotrophic growth. 
Illustrates a standard growth chamber for R. palustris, in this case the bacteria is growing 
under the photoheterotrophic state, where it is fully anaerobic and light is provided as the 
energy source.   
Figure courtesy of Dale Pelletier.  
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Figure 2.3:  Standard bacterial growth curve. 
Illustrates a standard bacterial growth curve in batch culture where the microbial system 
moves from lag to log phase, then into stationary phase and finally a death or decline 
phase as nutrients become severely limiting.   
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states, that the cells are harvested at close to the same point in the growth curves as 

possible, otherwise one is not only comparing the metabolic state but also the point in the 

growth states which can have very dramatic effects on the expressed proteome.  Once the 

microbial culture has reached its desired state, it is rapidly harvested by low-speed 

centrifugation (5000 g  x 10 min).  The cell pellet is then resuspended in 50 mM Tris (pH 

7.5) and centrifuged a second time.  This is done to remove residual media from the cell 

pellet.  This is always done on ice as rapid as possible to minimize metabolic changes to 

the proteome.  Care should be taken to treat the cells gently to avoid mechanical lyses.  

After the second centrifugation step, the cell pellet can either immediately be processed 

as below or stored indefinitely at -800C.         

 

Protein Extraction/Sample Preparation 

 The next stage of the proteomics pipeline involves proteome extraction and 

sample preparation.  The microbial cell pellet was resuspended in 50 mM Tris/10 mM 

EDTA (pH 7.5).  The EDTA was kept in all buffers from this point forward to help 

inhibit metalloproteases, by chelating away the necessary metal ion co-factors.  From this 

point forward, all steps should be done as rapidly as possible and kept on ice.  This was 

extremely important since after cell lysis, endogenous protease activity will no longer be 

controlled by the cell and protein degradation will occur.  It should be noted that for 

bottom-up or “shotgun” proteomics experiments, protease inhibitor cocktails were not 

used.  The reason for this is two-fold; first the protease inhibitor cocktails all contain 

trypsin-like serine proteases inhibitors and since the proteome will be digested with 

trypsin, adding an inhibitor is not a good idea.  Second, most protease inhibitor cocktails 

contain small peptides/protein inhibitors, such as Aprotinin.  These inhibitors generally 

co-purify with the tryptic peptides through the sample preparation scheme and thus cause 

major problems in the LC-MS/MS experiment in that they are very concentrated and can 

mask large portions of the LC-MS analysis.  The volume of buffer used depends on the 

amount of cell pellet to be lysed.  Generally, we used 2 g of wet cell pellet and 10 ml of 

buffer for cell resuspension prior to lyses.  While there are many ways to lyse microbial 

cells, such as bead beating, French press and sonication, all of the experiments in this 
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dissertation used sonication.  The main reason for this is the simplicity and speed of the 

sonication processes.  The resuspended cell material was homogenized and transferred 

into a large test tube (25-50 ml).  The tube was packed into a beaker full of ice and put 

into the sonicator.  Sonication was typically conducted for 5 minutes, with 20 second 

bursts followed by 20 second cooling periods.  It is important not to go too long in either 

the burst time or the total length of time because thermal denaturation and degradation of 

proteins can occur.  While all cells will not be lysed by this method, the majority is, and 

for proteomic applications, usually much more protein is extracted from a 1 L culture of 

cells than is ever needed for the proteome experiments.   

 After cell lyses, the resultant protein solution was centrifuged at low speed (5000 

g x 15 min) to remove unbroken cells and cellular debris.  At this point, the proteome can 

be processed directly but in many cases further fractionation by centrifugation was 

applied.  The choice of centrifugation steps is dependent on the amount of finer 

fractionation needed and the type of information that is sought.  The main reason for 

fractionation is to increase the dynamic range of the proteome measurement.  The 

proteome of even a simple microbe is very complex and beyond the current analytical 

capabilities of even the best LC-MS/MS systems.  Centrifugation techniques are the 

simplest and quickest methods to simplify the proteome, and information about cellular 

localization can sometimes be inferred.  Figure 2.4 illustrates the common centrifugation 

techniques used for the studies in this dissertation.  The first centrifugation step was at 

100,000 g for 1 hour and creates a first pellet and a soluble proteome.  This first pellet 

loosely termed the membrane fraction, was enriched in membrane-bound proteins but 

should not be considered a complete membrane preparation.  This pellet was then washed 

once with the lyses buffer and sonicated briefly to help get the proteins back into 

solution.  For many experiments, this was the only level of centrifugation that is applied 

and it was the most important.  The observed proteomes for the crude supernatant and the 

first pellet were very different as illustrated in Table 2.1 for a representative S. oneidensis 

proteome.  Only 23.3% of the observed proteome was redundant between the two 

fractions, while 32.3% of the total proteins were only found in the membrane proteome  
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Figure 2.4:  General fractionation scheme by ultracentrifugation. 
Illustrates the different levels of fractionation possible by centrifugation techniques.  
Proteome analysis can be conducted after any step of this process; at the very top on a 
suspension of soluble and insoluble proteins, after the first centrifugation step on the 
crude supernatant and the 1st pellet or after finer separation on all four fractions including 
the cleared supernatant and 2nd pellet.     
 

 

 

 

 

 

 

 

 

 

Establishing TAP targets
Cells in  lysis buffer

Sonication

Suspension of soluble and insoluble proteins

crude supernatant Pellet

Pellet
cleared  
supernatant

Centrifugatio n (100,000g, 60 minutes)

Centrifugatio n (100,000g, overnight)

Fractions likely
to con tain  comp lexes



 37

Table 2.1:  Proteome fractionation of Shewanella oneidensis. 

Soluble Membrane Percent of Total Total Proteins  
X X 23.3 172  

 X 32.3 239  

X  44.4 328  

500 411  739 NR Totals
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and 44.4% were only found in the soluble proteome.  This level of difference was 

definitively due to the fractionation and not to the lack of replication between two runs 

since that is known to run at 70-80% for replicate analyses (see below and Chapter 5).   

For the R. palustris proteome study in Chapter 5, a finer level of fractionation was 

attempted.  The main reason for this was previous findings of differential fractionation of 

protein complexes and an increased dynamic range afforded by the extra centrifugation 

step.  For this study, the crude soluble proteome from the first high-speed spin was split 

in half; half was aliquoted and frozen at -800C and the other half was centrifuged at 

100,000 g for 16 hours to create a second pellet and a cleared fraction.  The cleared 

fraction was generally found to be devoid of proteins known to be found in protein 

complexes.  Many soluble low-abundance proteins, such as periplasmic binding proteins 

and transcription factors, can be observed that were masked by other high-abundance 

proteins in the first soluble fraction.  It should be noted that this level of fractionation 

creates two more samples for analysis, while not providing the massive increase in 

dynamic range found in the first fractionation.  Table 2.2 illustrates the differences and 

overlaps between each fraction from a typical analysis of an R. palustris proteome.  

For all cases, after the fractionation process, the protein solutions were aliquoted 

into 1 ml aliquots and immediately frozen at -800C.  One aliquot from each fraction was 

then quantitated with the BCA protein assay reagent (Pierce Biotechnology, Inc., 

Rockford, IL) to determine approximate total protein quantity.  For most proteome 

fractions in our studies, the protein concentration falls between 1 mg/ml and 10 mg/ml. 

This is an important step because it gives the necessary information for the amount of 

trypsin to be added and roughly how much to concentrate the peptides after digestion to 

achieve an optimal working concentration (discussed below).  In some cases (Chapter 7 

AMD study), there was not enough protein available to do the BCA assay (generally this 

takes ~1-2 mg of total protein).  In these cases, the amount of total protein was roughly 

estimated. 

The next step involves protein denaturation and reduction.  This step was 

necessary to completely denature and reduce the proteins, making them completely 

accessible for protein digestion.  There are many variations of how to accomplish this.   
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Table 2.2:  Deeper proteome fractionation of R. palustris proteome. 

Cleared Soluble Pellet 2 Pellet 1 Percent Total Proteins  

X X X X 6.10 % 58  

 X X X 3.60 % 34  

X  X X 2.00 % 2  

X X  X 0.70 % 7  

X X X  25.90 % 247  

  X X 1.40 % 13  

 X  X 0.30 % 3  

X   X 0.20 % 2  

 X X  9.50 % 91  

X  X  1.20 % 11  

X X   12.70 % 121  

   X 17.50 % 167  

  X  7.50 % 72  

 X   2.70 % 26  

X    10.60 % 101  

549 587 528 286  955 NR Totals
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We have found that denaturation with 6 M Guanidine and reduction with 10 mM DTT at    

600C for 1 hour was a very effective method.  For most cases, 2-5 mg of total protein was 

diluted in 2 ml of 50 mM Tris/10 mM CaCl2 (pH 7.6) with 6 M Guanidine-HCl/10 mM 

DTT.  We have also found that it is essential to rotate the proteome fractions end over 

end to avoid protein settling during this process.  Many protocols call for the labeling of 

cysteine residues with a reagent such as iodoacetamide (IAA).  This reagent permanently 

labels cysteine residues so disulfide bonds cannot reform.  For all our studies, we have 

omitted this step.  This is due to two major reasons: 1) bacterial species in general do not 

have a large number of cysteine residues [see Chapter 1]; and 2) if the reagent is not used 

with the utmost care and at the exact concentration for the exact amount of time, non-

specific labeling of other residues is possible.  We have found through work on protein 

standards (mainly bovine serum albumin) that this step can be skipped if the peptide 

solution after digestion is again fully reduced before sample clean-up (VerBerkmoes, 

unpublished work)   

After the denaturation/reduction step, individual fractions were digested with 

trypsin.  For all studies, Promega Modified Sequencing Grade Trypsin (Promega, 

Madison, WI) was used.  The rational for using trypsin is multi-fold.  First, it is an 

inexpensive, high quality enzyme that is easy to obtain in very large quantities.  Second, 

it is very specific, cleaving on the C-terminal side of lysine and arginine residues (except 

when proline is the next residue), which are very prevalent in most proteins.  Third, since 

it cleaves C-terminal to lysine and arginine residues, it creates peptides that can carry a 

positive charge on the N-terminus and C-terminus, giving a large abundance of peptides 

that can carry a +2 charge.  These peptides electrospray very well and fragment well via 

the MS/MS processes.  The denatured proteome fractions were diluted 6-fold with 50 

mM Tris/10 mM CaCl2 (pH 7.6) and sequencing grade trypsin was added at 1:100 

(wt:wt).  It is important to at least dilute the guanidine by 6-fold from 6 M to 1 M 

guanidine.  Trypsin is effective up to ~1 M guanidine concentrations.  The addition of 

CaCl2 is thought to be an essential co-factor for trypsin activity.  The correct pH of the 

solution is also an important consideration.  Trypsin as an optimal activity between 7-8 

pH, and its activity dramatically decreases at lower pH.  The pH of the proteome solution 
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should be checked after dilution and before addition of trypsin by pipetting a small 

aliquot onto pH paper.  After addition of trypsin, the solution was incubated with gentle 

end-over-end rocking for overnight or at least 4-5 hours at 370C.  After the first digestion 

period, a second aliquot of trypsin was added again at 1:100 (wt:wt) and digestion should 

proceed another 4-5 hours.  This is necessary because trypsin loses activity after 4-5 

hours and the second addition helps to obtain complete digestion.  After the final 

digestion step, solid DTT was added to the solution to obtain a final concentration of 20 

mM DTT.  The final reduction step is allowed to proceed for 1 hour with gentle end-

over-end rocking at 370C.  This step is absolutely essential to break disulfide bonds that 

have randomly reformed during the digestion process.  The peptide solution was then 

spun at 5000 g x 5 min to remove undigested protein material and aggregated 

DNA/lipids.  This is essential to avoid clogging of the extraction cartridges in the next 

step.  At this point the peptide solutions can be stored at -800C or one can proceed 

directly to sample clean up.            

 The next step is sample clean up.  This is necessary to remove the excess salts and 

guanidine before sample analysis.  While this step can be done directly on-line or off-line 

on the actual chromatographic columns, we have found the processes to be more 

reproducible and robust to de-salt samples prior to loading onto LC-MS systems or 

columns.  If total protein sample is limited, then this step should be omitted and some 

method of on-line clean up should be attempted.  For all studies presented in this 

dissertation, the total protein quantity was not limiting, so sample clean up was done by 

the described procedure.  C18 Sep-Pak (Waters, Milford, MA) were used to de-salt all 

samples.  Briefly, the Sep-Pak was conditioned with an organic such as acetonitrile and 

washed with H2O/0.1% FA before sample loading.  The proteome fraction was loaded 

onto the Sep-Pak and washed with ~10 ml of H2O/0.1% FA.  The sample was then eluted 

with 4-5 ml of acetonitrile/0.1% FA.  The peptide solution was now de-salted but was too 

dilute and remains in an incompatible high organic solvent for most chromatographic 

loading purposes.  The peptide sample was concentrated using a centrifugal evaporator 

(Savant Instruments, Holbrook, NY) to ~10 µg/µl starting material and solvent 

exchanged by the addition of at least 1 ml of H2O/0.1% FA.  It is very important in this 
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process to never completely dry the sample, since major peptide loss will occur.  After 

the proteome sample reaches ~10 µg/µl starting material, the sample should be filtered 

through 45 µm filters (Millipore, Bedford, MA) to remove any particulates.  We have 

found that ~10 µg/µl is an optimal concentration for loading onto any of the LC-MS/MS 

systems described below.  Lower concentrations require much larger sample injections 

which are sometimes impractical and high concentrations cannot be obtained without 

major peptide loss through aggregation.  Samples were then aliquoted and frozen at -800C 

until LC-MS/MS analysis.  

      

Liquid Chromatography/Mass Spectrometry 

 The studies presented in this dissertation employed a variety of LC-MS/MS 

methodologies, which are discussed in detail below.  Each has advantages and 

disadvantages, which will also be discussed below.  One general theme was that all 

“shotgun” studies employed liquid chromatography in conjunction with an electrospray 

ion trap mass spectrometer operated in data-dependent mode, as described in chapter 1.  

Three major forms of LC-MS/MS were employed: 1-dimensional LC-MS/MS with 

multiple mass range scanning, 2-dimensional switching LC/LC-MS/MS, and 2-

dimensional MudPIT LC/LC-MS/MS.  Two types of ion trap mass spectrometers were 

employed-the quadrupole ion trap mass spectrometer (reviewed Stafford, 2002) and the 

linear ion trap mass spectrometer (Schwartz, 2002).  These two ion trap mass 

spectrometers will be explained in detail and contrasted below. 

 

1-dimensional LC-MS/MS with multiple mass range scanning   

Of the three methodologies, this is the simplest and easiest to implement.  It 

requires only three major instruments, a low-flow HPLC pump, an autosampler, and the 

ES-MS (Figure 2.5).  As stated repeatedly, the biggest challenge in MS-based proteomics 

is dynamic range.  The peptide mixtures obtained from the digestions of proteome 

fractions are very complex with thousands of peptides.  Current mass spectrometers are 

simply not fast enough perform MS/MS on that many peptides in the general time of 

normal separation space (2-4 hours for a single dimension).  This can be addressed by  
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Figure 2.5:  System for 1-D LC-MS/MS with multiple mass range scanning. 
Basic system for 1D LC-MS/MS with multiple mass range scanning.  Consists of low-
flow HPLC pump (back left with red solvent bottles), connected to autosampler (front-
left) which makes automated injections onto the capillary column (middle with yellow 
tape) which is connected to electrospray source on an ion trap mass spectrometer (right 
side of photo).       
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two possible methods: 1) peptides can be resolved by multi-dimensional techniques to 

relax the complexity of peptides the MS sees at any point or time, 2) the MS can be used 

as a separation device to minimize the number of peptides it sees at any given point in 

time.  This latter technique is termed multiple mass range scanning or gas phase 

fractionation and was concurrently developed and optimized at numerous laboratories 

and institutes, including ORNL, Amgen, Celera, and University of Colorado (Spahr, 

2001; Davis, 2001; VerBerkmoes, 2002).  For this technique, peptides are generally 

separated by a one-dimensional HPLC but multiple injections and separations of the same 

sample are made.  For each subsequent injection and separation, the MS is set to scan a 

narrow m/z region, thus limiting the number of peptides the instrument sees and is 

required to attempt MS/MS scans on (Figure 2.6).  In our experience, we have found that 

eight overlapping m/z regions are sufficient to obtain quality MS/MS spectra on most 

detectable peptides in a complex proteome mixture.  As shown in Figure 2.6, the use of 

large overlapping m/z regions was found to be more useful than many very small m/z 

regions.  While not completely understood, we have found the performance of ion trap 

mass spectrometers to diminish significantly when regions of less than 100-150 m/z units 

are scanned (VerBerkmoes, unpublished data).  We have also found that this technique is 

most effective with electrospray (2-5 µL/min), where the observed peptides are spread 

over the entire m/z window of 400-2000 m/z, while in nanospray applications (100-300 

nL/min) peptides are mainly observed between 400-1,200 m/z.   

The complete experimental procedure involves loading an autosampler with 

enough material to make the 8 necessary injections.  For our studies, each injection 

required 60 µL of sample, so a total of 500 µL of peptide solution was needed at a 

concentration of ~10 µg/µL starting material, thus requiring ~5 mg of starting protein 

material for each analysis.  The autosampler makes automated injections onto a C18 

column (300 μm id × 25 cm, 300 Å with 5 μm particles) at a flow rate of 4 µl/min and 

peptides were separated over 240 minutes with a gradient separation of 95% H2O/ 5% 

ACN/ 0.5% FA to 30% H2O/ 70% ACN/ 0.5% FA.  Peptides were eluted directly into an 

electrospray source (Thermo Finnigan) with 100 μm i.d. fused silica.  During the entire 

separation process, the mass spectrometer oscillates between full scans and MS/MS scans  
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Figure 2.6:  Multiple mass range scanning. 
The general concept of multiple mass range scanning-the full scan spectra is divided into 
seven narrow overlapping m/z regions reducing the complexity the MS sees for any given 
analysis.  The designations, Full, 1st, 1stc, 2nd, etc. indicate the segment of the m/z range 
being scanned in the file names.  
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in a data-dependent mode as discussed in Chapter 1.  After the separation and MS 

analysis, the column was re-equilibrated to 95% H2O/ 5% ACN/ 0.5% formic acid and 

the next injection and m/z range was applied.  This entire process is repeated until all m/z 

ranges have been analyzed.  The process was completely automated under the control of 

the Xcalibur software (Thermo Finnigan) and the user only needs to add more sample to 

the autosampler daily and add solvents to the HPLC.  We have run the LC-MS/MS 

system in this mode for two weeks straight many times.  Every two-three weeks, the MS 

must be vented and the source region cleaned.  This methodology was employed for 

months straight on a single LC-MS/MS system for the large-scale analysis of the R. 

palustris proteome under major metabolic states as described in Chapter 5. 

The major advantages of this methodology are simplicity, robustness, and ease of 

use.  Once the system is operational, it can be kept running with very minimal human 

intervention (~15 minutes per day is all that is needed).  We have also found the system 

to have very good reproducibility with very little downtime due to system failures.  The 

major disadvantage of the system is primarily the sensitivity regarding the total amount 

of sample that is needed.  Since it is most effective with electrospray sources, it 

inherently needs much more starting material than the other methods described below 

which employ nanospray sources.  Furthermore, since multiple injections are being made 

of the same sample but only part of the mass range is being scanned, much of the 

observable peptides are lost.  Generally, at least 5 mg of each proteome fraction is needed 

to obtain quality proteome fraction coverage (300-800 proteins depending on the 

fraction) while the two alternative techniques listed below can obtain the same results 

from 200-500 µg starting material.  This technique is best used when a large number of 

samples need to be analyzed with minimal user involvement and when plenty of protein 

material is available.   

 

2-dimensional switching LC/LC-MS/MS  

After the development of the 1D-multiple mass range scanning technique 

discussed above, it became clear that a 2-dimensional separation platform was needed to 

address the shortcomings of the 1D method, especially the lack of sensitivity.  The main 
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difficulties in designing a 2D separation methodology for peptides are the choice of 

separation phases, the ability to couple the phases together and the ease in automating the 

analysis.  Most all 1D separation techniques use C18 reverse phase (RP) separations as 

the major mode of peptide separation.  There are multiple reasons for this but mainly that 

this separation technique is very robust with high resolution for peptides and it can be 

directly connected with electrospray or nanospray source (the solvent systems are 

completely compatible).  At the time, only three successful papers had been written 

illustrating functional 2D systems (Washburn, 2001; VerBerkmoes, 2002; Peng, 2002).  

We had tested two methodologies at the time, including strong anion exchange (SAX) of 

the intact proteins followed by digestion of the fractions and reverse phase separation 

LC-MS/MS.  This methodology was found to be less than adequate for global “shotgun” 

proteomics due to the difficulties in separating intact proteins by SAX.  This technique is 

useful in the combined top-down bottom-up analysis discussed in Chapter 3 and will 

continue to be employed in those experiments.  The second method we attempted was 

direct connection of a commercial strong cation exchange (SCX) and a C18 RP column.  

Separation was achieved by similar method as Washburn et al. 2001 and described 

below.  This method was found to have limited reproducibility, low robustness and was 

abandoned.  Methodologies proposed by Washburn and Peng both relied on the 

capability to pack HPLC columns in-house, a capability which ORNL did not have at the 

time.   

At that time, LC Packings (a division of Dionex, San Francisco, CA) introduced a 

new 2D LC system they designed based on switching column technology.  We initiated a 

collaboration for testing, fully integration with the Thermo Finnigan LCQs and 

established working protocols for the analysis of bacterial, yeast and plant proteomes 

(http://www.lcpackings.com/, application notes, proteomics #10).  The system layout for 

the columns is illustrated in Figure 2.7.  It consists of three separate functional units: the 

Famos autosampler, the Switchos loading pump/column switching unit, and the UltiMate 

low flow HPLC (all LC Packings).  The basic operational methodology is as follows:  a 

peptide solution from a proteome fraction (generally 50 µL of a 10 µg/µL solution) was 

injected by the Famos autosampler onto the SCX cartridge (500 µm x 15 mm) on the  
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Figure 2.7:  2D switching LC/LC-MS/MS system. 
The  column layout for the switching 2D LC system which includes an SCX column for 
the 1st dimension (far left), an RP trapping cartridge (middle), and an RP nano-resolving 
column (far left) which is directly connected to the nanospray source on an ion trap MS. 
Figure courtesy of LC Packings. 
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Switchos valve one.  This injection was made at a high flow rate of 30 µL/minute (100% 

H2O/ 0.1% FA) allowing for complete sample loading in under 10 minutes.  The peptides 

which are not caught by the SCX cartridge are caught by an RP trap (C18, 300 µm x 5 

mm) which resides on valve 2.  After loading of the sample, the SCX cartridge was 

moved out of line so no flow is going over the SCX cartridge and the RP cartridge is 

moved in-line with the nano resolving column (C18, 75 µm x 15 cm) which rests 

between the Switchos valve 2 and the nanospray source on an LCQ.  A linear gradient of 

95% H2O/ 5% ACN/ 0.1% FA to 30% H2O/ 70% ACN/ 0.1% FA provided by the 

UltiMate low flow HPLC (~200 nL/min) was back-flushed over the RP cartridge eluting 

peptides onto the nano resolving column where they are resolved by a 2-hour RP gradient 

into the nanospray source, ionized, and analyzed by data-dependent MS/MS on the ion 

trap MS.  After the completion of the reverse phase gradient and the analysis of the 

unbound injection peptides, all the trap cartridges on the Switchos system were flipped 

back in line with the Switchos high flow and equilibrated to 100% H2O/ 0.1% FA.  The 

Famos autosampler then made an injection of 20 mM ammonium acetate from 

autosampler vials onto the SCX cartridge, which elutes peptides from this cartridge to the 

RP cartridge.  The peptides are caught on this cartridge and completely de-salted for 10 

minutes.  Again, the RP cartridge was flipped in line with the nano-resolving column and 

peptides are again eluted by an RP gradient for 2 hours into the nanospray source and ion 

trap MS.  This entire processes was repeated with injections of 50 mM, 100 mM, 200 

mM, 400 mM, 600 mM, 800 mM, 1000 mM, and 2000 mM from autosampler vials 

giving a 10-cycle (including injection cycle) 2-dimensional analysis which takes ~24 

hours.  The entire process was fully automated and under control of the Xcalibur software 

system.  The user only needs to put sample vials and vials with correct ammonium 

acetate concentrations into the autosampler, prepare the method in Xcalibur and start the 

system.  After the 24-hour analysis, the columns can be thoroughly cleaned (high organic 

wash) and the next sample started.    

This methodology was found to be fairly robust and sensitive and provides good 

dynamic range for protein complexes and proteomes.  It was widely-used in our 

laboratory for two years, resulting in numerous publications (Strader, 2004; Wan, 2004; 



 50

VerBerkmoes, 2005).  The main advantage of this system is a complete commercial 2D 

system which was fully automated and easy to implement.  The system offers great 

flexibility in potential separation modes, though this has not been fully explored.  The 

nano-resolving columns and the nano-spray tips never see the ammonium acetate, which 

increases their lifetimes.  The main disadvantages of the system, compared with the 2-

dimensional system described below, are the loss of sample on switching valves (overall 

sensitivity), overall dynamic range and lack of long-term stability of the system (the 

system required large amounts of maintenance and had extended down times due to 

component failures).  In the end, this system has been entirely replaced in our laboratories 

for 2D separations of proteomes by the system described below but a modification of the 

system is routinely used for 1D analysis of protein complexes.  Modifications are planned 

for the future to test and improve upon the system for 2D separations of proteomes.   

 

2-dimensional MudPIT LC/LC-MS/MS 

 The integrated nano 2-dimensional LC system or multidimensional protein 

identification technology (MudPIT) technique was developed in the laboratory of Dr. 

John Yates Jr., Scripps Institute, San Diego, CA in 2001-2002 (Washburn, 2001; Wolter, 

2001) and has since been applied by many laboratories for “shotgun” proteomics 

applications.  The main principle of this methodology is an integrated nanocolumn of 

SCX and RP material.  The main reason this technique was not immediately employed at 

ORNL was the expertise needed for the procedure and the long load times required for 

loading whole proteomes onto the system.  The load time problem was solved with the 

development of the split-phase MudPIT columns in 2002 (McDonald, 2002).  Dr. Hayes 

McDonald brought the technology to ORNL in spring of 2004.  This technology, for 

reasons discussed below, has been found to be superior to the two methods listed above 

and has completely replaced them in the proteomics pipeline for the analysis of microbial 

proteomes.   

The basic concept of the integrated split-phase biphasic nano column is illustrated 

in Figure 2.8.  The split-phase columns were generally constructed as follows: the back 

column was packed with approximately 3.5 cm of strong cation exchange resin (Luna  
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Figure 2.8:  Split-phase MudPIT column. 
The design of the split-phase MudPIT column (McDonald, 2002).  Top is the back 
column which is packed with SCX followed by C18 RP material and then loaded with 
sample.  Back column is then positioned behind C18 front column which is packed with 
C18 resin.   
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SCX 5 µm 100A Phenomenex, Torrance, CA) into a 100 µm fused silica via a pressure 

cell followed by 3.5 cm of C-18 reverse phase (RP) resin (Aqua C18 5 µm 200A 

Phenomenex) (top, Figure 2.8).  The filter union acts as a frit to hold the packing material 

in the fused silica.  The sample was then loaded off-line onto the dual phase column via 

the pressure cell.  For most applications, ~200-500 µg of starting protein material was 

loaded onto the back dual phase column.  Since there was no major impediment to flow 

in this design, samples can be loaded in ~30 minutes.  Furthermore, samples can be 

directly de-salted on this system since most peptides are first caught by the RP material 

even in the presence of high salt.    

The loaded RP-SCX columns were then directly connected behind a ~15 cm C18 

RP column (Jupiter C18 5 µm 300A Phenomenex) also packed via pressure cell into Pico 

Frit tip (100 µm with 15 µm tip New Objective, Woburn, MA) (bottom, Figure 2.8).  In 

this case, the tip acts as the frit holding the C18 resin in the fused silica column.  The 

entire column system was then positioned into the nanospray source (Thermo Finnigan) 

on an ion trap mass spectrometer.  The proteome samples were analyzed via a 2-

dimensional separation of ammonium acetate pulses followed by reverse phase gradients 

(Washburn, 2001; Wolter, 2001; and Table 2.3).  Cycle one was just a reverse phase 

gradient which moves peptides from the RP to the SCX material and elutes all peptides 

which do not bind to the SCX material into the nanospray source and ion trap MS.  In the 

next cycle, the HPLC pump delivers a small pulse of ammonium acetate (7% of 500 mM 

ammonium acetate for 2 minutes).  This moves another batch of peptides from the SCX 

material to the RP material.  After a brief wash period, another RP gradient was run to 

elute peptides from the RP resin into the nanospray source and ion trap MS.  This process 

was repeated as detailed in Table 2.3 for 24 hours until 100% of 500 mM ammonium 

acetate was reached and the run is finished.  The back column was then disposed of and 

another column with loaded sample can be put onto the system. 

This system has the best overall sensitivity of any of the systems and is the least 

expensive to implement once the necessary components have been purchased (pressure 

cell, packing material, fused silica, laser puller, etc.).  Indeed, columns can be packed for 

less than $1 each, compared with $400-500 for the commercial columns used in the  
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Table 2.3:  Cycles for typical 24-hour MudPIT experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Concentration is the percent of 500 mM ammonium acetate delivered by the HPLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cycle Duration Concentration

1 100 0 

2 120 7 

3 120 10 

4 120 12 

5 120 15 

6 120 20 

7 120 25 

8 120 30 

9 120 40 

10 120 50 

11 120 60 

12 140 100 
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above systems.  Since the columns are so inexpensive, they can be disposed of after each 

analysis, eliminating the chance for cross-contamination between samples.  The system 

also has better dynamic range than the above two systems, routinely identifying more 

proteins in 24 hours with less sample than is possible with either of the above two 

systems.  The main disadvantage of this system is that some expertise is required in day 

to day operation of the systems and much more user input is needed (~1-2 hours is 

needed depending on user experience).  We have observed similar reproducibility with 

this system as with the above two systems (~70-80% reproducibility in protein 

identification between replicate runs is common).  For these reasons, we have primarily 

adopted the split-phase MudPIT technique for the characterization of microbial isolates 

or natural community proteomes (see examples in Chapters 6 and 7).     

 

Mass Spectrometry 

 With the exception of Chapter 3, this entire dissertation employed the use of 

electrospray ion trap mass spectrometers for all MS analysis of “shotgun” proteomics 

experiments.  The main reason for the use of electrospray ionization instead of MALDI is 

multifold.  First, ES is straightforward to directly couple with liquid chromatography 

separations which were the core separation application for the studies presented here.  For 

MALDI, this is not the case.  While many efforts have been put forth to couple MALDI 

with LC separations, the process is not straightforward or routine.  Second, ES provides 

better dynamic range for the analysis of mixtures than MALDI does.  While all studies 

employed liquid separations prior to ES-MS analysis, the MS is very often scanning 20-

200 peptides at any given point in time.  ES is much more amenable to handling such 

complex mixtures than MALDI.  Finally, ES produces more multiple charged peptide 

ions such as +2 and +3 parent ions.  These ions are more amenable to sequencing by 

MS/MS than the +1 parent ions produced by MALDI. 

    Two types of ion trap mass spectrometers were employed for all studies-the 

quadrupole ion trap mass spectrometer (reviewed Stafford, 2002) and the linear ion trap 

mass spectrometer (Schwartz, 2002).  The reason for primarily employing ion trap mass 

spectrometers instead of the myriad of other potential MS instruments is also multifold.  
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First, the ion traps are the most rugged instruments available for routine analysis of very 

complex mixtures.  They routinely are used for 24/7 operations with very high up time 

and little down time for major maintenance.  The ion trap mass spectrometers have been 

directly coupled to ES sources since the early 1990’s, and the methodology for this 

coupling has been further optimized by the instrument companies.  Ion trap mass 

spectrometers have good sensitivity and excellent dynamic range in the MS/MS mode.  

Finally, the Thermo Finnigan ion traps used in these studies have an excellent operating 

system (Xcalibur) that is best in its class for routine around the clock operations.   

 The quadrupole ion trap mass spectrometer is illustrated in Figure 2.9.  At the 

start of this dissertation, this was the only major design for ion traps commercially 

available.  While changes have been made in operating systems, electronics and ion 

transfer, the same basic design principle has been in use since the 1980’s (reviewed, 

Stafford, 2002).  As depicted in Figure 2.9, preformed solution phase peptide ions are 

sprayed through an electrospray or nanospray source on the front of the instrument into a 

heated capillary.  The heated capillary is generally set at 150-2500C and aids in the 

desolvation of the ions.  The ions are then directed through a tube lens and through a 

skimmer.  The skimmer acts to focus the ion beam and remove neutrals.  The quadrupole 

(note the first octopole in the figure is actually a quadrupole on the LCQ MS) and 

octopole act strictly as ion beam guides to focus the ions into the ion trap.  They are not 

used as storage devices or mass filters, as in some MS instruments.  The ion beam enters 

the ion trap mass spectrometer through the end cap and is trapped inside by RF and DC 

potentials applied on the end caps and ring electrodes.  All scan functions and ion 

manipulations occur inside the end cap and ring electrodes (this is the functional ion 

trap).  Here, peptide ions are first trapped and scanned out by selectively destabilizing 

their orbital motion inside the ion trap.  This is the full scan, and peptide ions are ejected 

from low m/z to high m/z from the ion trap out the back end cap and detected by the 

electron multiplier (EM).  After the full scan, observed ions are selected by their m/z 

values for isolation and subsequent fragmentation.  The ion of interest is selected by 

destabilizing and ejecting all other ions with a lower and higher m/z values essentially 

gas phase purifying the ion inside the mass spectrometer.  The ion is then excited by 
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Figure 2.9:  Quadrupole ion trap mass spectrometer (LCQ design). 
Depicts the basic design of the Thermo Finnigan LCQ, a quadrupole ion trap mass 
spectrometer.  EM-Electron multiplier. 
Figure courtesy of Thermo Finnigan. 
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increasing its orbital frequency, which causes it to collide with the Helium bath gas 

which is always in the ion trap MS.  These collisions cause collisional induced 

fragmentation.  The fragment ions are still trapped within the ion trap MS.  As above in 

the full scan, the fragment ions are selectively destabilized from low m/z to high m/z and 

injected through the end cap and detected by the EM.  This process is repeated for three 

to four more ions and the MS returns to a full scan.  This entire process is repeated 

through an entire chromatographic run, creating thousand of MS/MS spectra with full 

scan associated parent m/z measurements. 

 The linear ion trap mass spectrometer (Schwartz, 2002) was developed and 

commercially released in 2002.  We obtained our first linear ion trap at ORNL in 

summer, 2004.  This instrument is a major design improvement over the conventional 

quadrupole ion trap mass spectrometer and is depicted in Figure 2.10.  The front-end 

instrumental design is very similar to the quadrupole ion trap mass spectrometer with an 

ion transfer tube replacing the heated capillary but performing the exact same function.  

A tube lens and skimmer still perform the same function of focusing the ion beam and 

removing neutrals.  A small square quadrupole has been added for initial focus of the ion 

beam leaving the skimmer.  The quadrupole and octopole still serve to focus the beam 

into the ion trap mass spectrometer.  At this point, the major difference between the two 

instruments becomes apparent.  While the quadrupole ion trap provides for trapping of 

ions in a three-dimensional field between two end caps and a ring electrode, the linear 

trap is much different.  The linear trap is basically a long quadrupole with two lenses (the 

front lens and the back lens) which act to trap the ion packet in a two-dimensional field.  

The details of trapping and mass selective instability and resonance injections are outside 

the scope of this dissertation (see Schwartz, 2002 for details).  Basically, the linear trap 

works the same as the quadrupole ion trap above except that the ions are ejected radially 

through slots in the rod by mass selective instability instead of axially through the end 

cap.  Furthermore, two electron multipliers are positioned to detect ions on either side of 

the linear ion trap.  The main advantage of the linear ion trap, when compared with the 

quadrupole ion trap, is that it can trap 10 times the number of ions without experiencing 

space charging effects.  This leads to much better sensitivity and dynamic range,  
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Figure 2.10:  Linear ion trap mass spectrometer (LTQ design). 
Depicts the basic design of the Thermo Finnigan LTQ, a linear ion trap mass 
spectrometer.   
Figure courtesy of Thermo Finnigan. 
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especially in the MS/MS mode of operation.  Also, the scan speed of this instrument is ~5 

times faster than the quadrupole ion trap, as discussed above.  The scan speed of the 

instrument is a critical parameter in analyzing the complexity of proteomes.  In Chapter 

7, the two instruments are compared with a similar complex proteome, illustrating the 

major enhancement for proteome analysis afforded by the linear ion trap mass 

spectrometer.                     

 

Proteome Informatics 

 One of the largest challenges in developing a proteomics platform was the 

development of a functional proteome informatics capability.  At the start of this 

dissertation, the SEQUEST algorithm had been available for many years (Eng, 1994) for 

the analysis of MS/MS spectra against protein databases.  But no major effort had been 

made to handle massive outputs generated from analyzing large datasets with SEQUEST.  

The SEQUEST algorithm had primarily been used to analyze individual MS/MS spectra 

from smaller experiments and not thousands of MS/MS spectra that are generated by a 

24-hour “shotgun” proteomics experiment.  At the time, the Finnigan Bioworks software 

package would generate an html output of the top identifications of all MS/MS spectra 

from a single individual LC-MS/MS analysis (2-4 hours worth of data).  This output was 

not sorted by proteins’ identifications and could only be filtered in a rudimentary way.  

Furthermore, there was no way to analyze the 8-12 LC-MS/MS files that generally make 

up a “shotgun” proteomics experiment.  Thus it was necessary to export all identifications 

from all LC-MS/MS analyses into Excel, manually sort and filter, and then prepare lists 

of identifications.  This method was very time-consuming, requiring hours to days of 

manual work for each “shotgun” proteomics experiment.    

 The development of DTASelect by Dr. David Tabb at Scripps Institute, San 

Diego, CA (Tabb, 2002) solved the major problems of data sorting and filtering.  This 

software was provided as freeware to non-profit institutes and was immediately obtained 

and tested by ORNL.  This software can take any number of LC-MS/MS analyses and 

sort and filter peptide identifications to provide hmtl and text output files of identified 

proteins.  These files can be re-filtered at any time after analysis.  Examples of 
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DTASelect file outputs from “shotgun” experiments can be found at 

(http://compbio.ornl.gov/biofilm_amd/analysis/analysis_lcq/) and at 

(http://compbio.ornl.gov/rpal_proteome/analysis/sequest_tryptic/).  The DTASelect 

algorithm can perform the required sorting and filtering processes for thousands of 

MS/MS spectra in seconds to minutes, compared with hours required with the original 

methods we used.   

 At the same time, Dr. David Tabb introduced the Contrast software (Tabb, 2002).  

This software had the capability of comparing outputs from DTASelect files from 

multiple “shotgun” proteomics experiments.  This software formed the basis for all 

comparative studies discussed in Chapters 4 and 5.  Example Contrast output files can 

also be found at the websites given above.  The SEQUEST algorithm, along with the 

DTASelect and Contrast software packages, has become the central core of the 

proteomics pipeline discussed below. 

 While the DTASelect and Contrast software packages solved many of the 

problems encountered early in our proteomics efforts, they did not solve the major 

problems that existed as we moved to high-throughput characterization of large numbers 

of microbial proteome samples (Chapters 5-7).  The first of the main problems 

encountered was the speed of analysis.  At the time, all SEQUEST analyses were done on 

a single PC processor which could not handle the massive load of data generated by the 

mass spectrometers.  Second, we had no efficient way to release datasets to our 

collaborators or to the scientific community as a whole after publication.  The latter is an 

especially important point.  Currently, proteomics suffers since, for the most part, large 

proteomics publications are only accompanied with a list of identified proteins but there 

has been little effort to establish open access web-based proteomic results which contain 

more information than just a simple list of proteins.  This is absolutely necessary for the 

field of proteomics to mature and flourish, as pointed out in Carr et al. 2004 and Pedrioli 

et al. 2004.  

 Through a collaborative effort between experimental and computational 

researches at ORNL a high-throughput proteome informatics pipeline has been developed 

and fully implemented at ORNL.  This pipeline automatically takes LC-MS/MS raw 
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output files, generates the necessary input text files for SEQUEST, processes the MS/MS 

spectra with SEQUEST on a multi-processor cluster, concatenates the output files and 

automatically runs DTASelect and Contrast by user-defined settings.  The resultant 

DTASelect and Contrast files are then posted to a secure website for viewing by 

collaborators.  Upon publication, these websites are made publicly available giving the 

scientific community open access to all the results files including directly linkable 

MS/MS spectra output files for every identified peptide.  The ORNL - UC, Berkeley 

AMD (Acid Mine Drainage) Community Proteome Study 

(http://compbio.ornl.gov/biofilm_amd/) and the ORNL Rhodopseudomonas Palustris 

Proteome Study (http://compbio.ornl.gov/rpal_proteome/) are, to our knowledge, the first 

examples of completely open access proteome results websites with detailed result files 

and explanation files.            

 

Biological Data Mining 

 The extraction of confident and clear biological information from proteomics 

datasets is a challenge for all laboratories involved in proteomics efforts.  The first and 

most straightforward task is to extract the proteins confidently identified from a given 

proteome dataset.  While this is generally straightforward, there is no set standard on how 

the identified proteins should be filtered.  The need to filter peptide and protein 

identifications from SEQUEST or any other search algorithm output should not be 

overlooked.  This is a key step in quality proteomic experiments and often is not done 

correctly by the community as a whole.  For all studies presented here, we filtered 

SEQUEST individual MS/MS identifications at the following cross-correlation (Xcorr) 

values [Xcorrs of at least 1.8 (+1), 2.5 (+2), 3.5 (+3)].  We then filtered the protein 

identifications at 2 unique peptides per protein identification.  We have found these filter 

levels to be conservative, generally giving less than 1-5% false positive rates depending 

on the data sample size and the database size.  By extracting protein identifications based 

on confident filtering levels, the analytical chemists can be certain the protein lists that 

are provided to the biologists are as accurate as possible. 
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 The next major challenge is comparing the proteins identified under two or more 

metabolic states and determining proteins exhibiting major changes in abundance.  This 

is a challenge for quantitative data but even more so for semi-quantitative data.  

Currently, we accomplished this task by comparing replicate analyses of metabolic states 

with the Contrast software.  The identified proteins are manually inspected for major 

differences in % sequence coverage and number of peptides identified.  Table 2.4 

illustrates an unknown protein showing a major difference between an aerobic state and 

anaerobic state in R. palustris (see Chapter 5).  For this case, it was easy to determine that 

the protein was up-regulated in one state compared to the other but in many cases the 

results are not so obvious.  Currently, we use a basic rule of a replicated difference of at 

least 30% sequence coverage and/or 4 or more unique peptides between two metabolic 

states to indicate a potential difference in expression (see detailed discussions in Chapters 

4 and 5).  This current process is very time-consuming, requiring manual analysis of over 

1,000 protein identifications for any given proteome comparison.           

 Another potential avenue for making large-scale comparisons between proteome 

datasets is mapping the identifications onto metabolic pathway maps such as KEGG 

maps (Kyoto Encyclopedia of Genes and Genomes) (Figure 2.11).  This methodology has 

some shortcomings since many proteins do not directly map onto metabolic pathways and 

we have not completely figured out how to incorporate indicators of abundance such as 

% sequence coverage and number of unique peptides into the metabolic maps.  Examples 

of some of our first attempts to map large proteome datasets onto metabolic maps can be 

found at http://compbio.ornl.gov/rpal_proteome/analysis/keggmaps/html/map01100.html. 

 The extraction of biological information from proteomics datasets is clearly one 

of the great challenges facing proteomic endeavors in the future and will be an active area 

of research.  While much progress was made on this in this dissertation, it is by no means 

a completed research effort.  Another major challenge is developing models of the system 

and proposing hypotheses that can be tested based on proteomic results.  This is clearly a 

challenge since many of the proteins identified are of unknown function.  Chapters 4, 5, 

and 7 illustrate potential hypotheses and models developed from proteomic data but 

clearly this is also an area of much needed active research. 
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Table 2.4:  Unknown protein identified as up-regulated in R. palustris study. 

Aerob1 Aerob2 Anaerob1 Anaerob2
RPA3501 91.3 89.1
K.TSVSLEEAFWNGMK.E +1 2.9888 3.4893
K.TSVSLEEAFWNGMK.E +2 2.9401 3.9379
K.TSVSLEEAFWNGMKEISSVR.D +2 4.371 4.4753
K.TSVSLEEAFWNGMKEISSVR.D +3 4.1719 4.9396
R.ALQAQQQAVADTK.T +1 2.8616 2.9495
R.ALQAQQQAVADTK.T +2 4.5562 4.4718
R.ALQAQQQAVADTKTESSLTAH.- +2 5.0691 5.2418
R.ALQAQQQAVADTKTESSLTAH.- +3 4.163
R.DMTLSELVGEIDSNR.Q +1 2.5702 2.8333
R.DMTLSELVGEIDSNR.Q +2 4.2027 4.0589
R.DMTLSELVGEIDSNR.Q +3 4.2024
R.DMTLSELVGEIDSNRQQGNLSSAIR.L +3 5.0664 5.1391
R.LFVLDYFR.S +1 2.233 2.045
R.LFVLDYFR.S +2 3.3294 3.2622
R.SIVVAGHK.T +1 1.8586 1.8177
R.SIVVAGHKTSVSLEEAFWNGMK.E +2 2.9167
R.SIVVAGHKTSVSLEEAFWNGMKEISSVR.D +3 6.0787
R.SRALQAQQQAVADTK.T +2 3.5345  
Numbers in row with RPA3501 are total % coverage. 
Numbers next to sequences are charge states. 
Numbers in columns under growth state are Xcorr values. 
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Figure 2.11:  KEGG map of pyrimidine metabolism from S. oneidensis proteome. 
A KEGG map from the S. oneidensis MR-1 WT global proteome analysis (VerBerkmoes, 
2002).  Proteins highlighted in red were confidently identified.   
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Chapter 3 

Application of the Integrated Top-Down Bottom-Up Methodology for 

the Characterization of Protein Complexes and Proteomes 
 
All of the data presented below has been published as  
 
Strader, M.B.; VerBerkmoes, N.C.; Tabb, D.L.; Connelly, H.M.; Barton, J.W.; Bruce, 
B.D.; Pelletier, D.A.; Davison, B.H.; Hettich, R.L.; Larimer, F.W.; and G.B. Hurst.  
Characterization of the 70S Ribosome from Rhodopseudomonas palustris using an 
Integrated “Top-Down” and “Bottom-Up” Mass Spectrometric Approach.  Journal of 
Proteome Research, 2004; 3, 965-978. 
 
VerBerkmoes, N.C.; Bundy, J.L.; Hauser, L.; Asano, K.G.; Razumovskaya, J.; Larimer, 
F.W.; Hettich, R.L.; and J.L. Stephenson Jr.  Integrating “Top-Down” and “Bottom-Up” 
Mass Spectrometric Approaches for Proteomic Analysis of Shewanella oneidensis.  
Journal of Proteome Research, 2002; 1, 239-252. 
 
All MS, sample preparation, experiments and data analysis on Rhodopseudomonas 
ribosomal complex were performed as a joint effort between Nathan C. VerBerkmoes, 
Brad Strader,and David Tabb, with assistance from Robert Hettich on top-down analysis.    
 
All MS, sample preparation, experiments and data analysis on Shewanella proteome was 
performed by Nathan C. VerBerkmoes with assistance from Robert Hettich on top-down 
analysis. 
 

Introduction 

 In the rapidly evolving field of proteomics, there is considerable interest in 

developing methods for large-scale, rapid, and robust analyses of proteins from complex 

biological samples.  One of the major goals of these techniques is to obtain rapid 

identification of proteins as well as complete characterization of their intact molecular 

forms.  Two major methods, or approaches, are currently employed for the analyses of 

complex protein mixtures.  The most common method, often called bottom-up or 

“shotgun” proteomics, involves the digestion of a single protein, protein complexes, or 

proteomes with an enzymatic or chemical protease which creates small peptides of ~7-30 

amino acids from the intact protein.  These small peptides are very amenable to liquid 

chromatography separation and mass spectrometry analysis, usually through the method 

of tandem mass spectrometry, to obtain sequence information.  The identification and 
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molecular form of the intact protein is literally built back up from the detection and 

identification of the resultant peptides.  While this bottom-up proteomics approach is 

excellent for identifying a large number of proteins, it provides very limited molecular 

information about the intact proteins because rarely are peptides encompassing the entire 

protein sequence recovered from this methodology.  While this may be a limitation, the 

bottom-up technique is the most widely applied to MS-based proteomics applications due 

to the straightforward nature of the methodologies.    

An alternative strategy for proteome analysis, introduced by McLafferty et al. 

(Mortz, 1996; Kelleher, 1998), the top-down method, identifies proteins using accurate 

mass measurement and/or tandem mass spectrometry of intact proteins in order to 

generate sequence information.  Since an intact mass is measured, this method may be 

advantageous for the detection of post-translational modifications, amino acid 

substitutions, and N-terminal processing.  Such modifications to the intact protein may be 

overlooked in analyses by proteolysis-based (bottom-up) approaches, where only a 

fraction of the total theoretical peptide population of a given protein may be detected.  

Although means exist to include such modifications and potential amino acid changes in 

peptide-based searching algorithms, each possible modification introduced into a search 

increases the complexity and analysis time.  Furthermore, without prior knowledge of the 

potential position of N-terminal processing (see Chapter 7), it is very difficult to identify 

cleavage positions on a large scale.  The top-down approach also facilitates the detection 

of incorrectly predicted translational start sites.  This approach is excellent for providing 

molecular level information for the intact proteins, but is limited in the numbers of 

proteins that may be detected from a given organism due to limited dynamic range, as 

well as the relative scarcity of bioinformatic tools to efficiently analyze this type of data. 

We have developed a comprehensive method for protein characterization from 

complex mixtures that integrates features of both the top-down and the bottom-up 

approaches, capitalizing on the unique capabilities of each method.  To our knowledge, 

we were the first group to develop detailed methodologies for the combination of these 

two techniques.  This chapter describes the evolution of those methods and illustrates 

examples of the characterization of a protein complex and a whole proteome.  The 
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analysis of single proteins to protein complexes to whole proteomes represents an 

increasing complexity which further challenges the analytical method.  This chapter 

discusses advantages and disadvantages for the integrated methodology for the analysis 

of each of these, and discusses how the methodology should best be applied with its 

current level of technical development.     

Our first attempt of the integrated top-down bottom up methodology was the 

characterization of an isolated single protein and a single protein in a complex mixture.  

We developed the technology on a series of protein variants (I68M, I68Q, Y69F, and 

Q67Y) from plasmid encoded R67 dihydrofolate reductase (DHFR) from Escherichia 

coli.  The goal of these experiments was to develop rapid methodology for the 

characterization of recombinant over-expressed protein products as either isolated 

proteins or the over-expressed protein product in the initial cellular lysate.  The analytical 

goal was to verify the position of the point mutation as well as verify the intact state of 

the over-expressed protein.  The results from these initial experiments are not discussed 

in this chapter, but can be found in VerBerkmoes et al. 2002.  These experiments 

represent our first attempts to develop and apply the integrated top-down bottom-up 

platform and resulted in a successful demonstration of the combined technology for rapid 

characterization of over-expressed recombinant proteins from either purified protein 

isolates or crude proteome mixtures. 

The next step up in the level of complexity was the application of the 

methodology to the characterization of a protein complex.  For these studies, we chose 

the 70S Ribosome from Rhodopseudomonas palustris.  The ribosome has been a model 

protein complex for the development of MS-based proteomics techniques due to the ease 

of purification, the limited complexity and the presence of numerous post-translational 

modifications (Link, 1999).  The ribosome is the universal macromolecular machine 

involved in translating the genetic code into proteins.  Bacterial ribosomes are composed 

of a small subunit (30S) containing about 20 proteins and a single rRNA (16S), and a 

large subunit (50S) consisting of over 30 proteins and two rRNAs (23S and 5S).  The 

ribosome from Escherichia coli is the most extensively characterized of the bacterial 

ribosomes.  Ribosomes from bacterial species studied so far exhibit most, if not all, of the 
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homologues to ribosomal proteins found in E. coli.  Furthermore, PTMs of ribosomal 

proteins from other bacteria tend to be similar to PTMs of E. coli proteins, with some 

variations in the corresponding modification positions.  Thus, the purified ribosome from 

Rhodopseudomonas palustris made in excellent test case for the development of the 

integrated approach for characterizing protein complexes.  For this study, the bottom-up 

approach was expanded to the use of 1D and 2D LC-MS/MS methodologies for the 

analysis of the enzymatically digested protein complex.  This was necessary due to the 

increased complexity of the protein complex.  The top-down methodology was moved 

from the ES-ion trap with ion-ion capabilities to the high resolution and high mass 

accuracy FT-ICR instrument.  For these experiments, we performed LC-ES-FT-ICR for 

intact protein measurements.  We have found this instrument to be superior in 

comparison with the ES-ion trap with ion-ion capabilities for the measurement of 

complex protein mixtures such as protein complexes and whole proteomes. 

    The next step up in the level of complexity was the attempted application of the 

methodology to the characterization of proteins directly from whole proteomes.  For this 

study, we chose the Shewanella oneidensis MR-1 WT proteome.  Concurrent analysis of 

the whole proteome by “shotgun” proteomics techniques provided in-depth knowledge of 

this proteome (VerBerkmoes, 2002).  Here, we will limit discussion to the integrated top-

down bottom-up characterization of the proteome.  Detailed discussion on the entire 

proteome analysis by “shotgun” proteomics can be found in VerBerkmoes et al. 2002.  

For these studies, the proteome soluble fraction was separated at the intact protein level 

by strong anion exchange (SAX), the individual fractions were split in half with one half 

digested with trypsin and analyzed by 1D-LC-MS/MS and the other half analyzed by 

direct infusion ES-FT-ICR for the top-down application.  We will illustrate the 

characterization of N-terminal processing with this example and point to advantages of 

the integrated approach for proteome analysis and the large challenges that still exist.    
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Materials and Methods 

 

Chemicals and reagents 

All salts, buffers, dithiothreitol (DTT), Bacterial Protease Inhibitor Cocktail, 

diethyl pyrocarbonate (DEPC), guanidine HCl, trifluoroacetic acid, glacial acetic acid, 

sucrose and RNase-free DNase I, were obtained from Sigma Chemical Co. (St. Louis, 

MO).  In addition to using DEPC treated water to make buffers, RNase Away® 

(Molecular BioProducts, San Diego, CA) was also used to treat labware and bench-top 

surfaces to minimize RNase activity during the ribosome purification procedure.  

Sequencing-grade trypsin was purchased from Promega (Madison, WI).  Formic acid was 

obtained from EM Science (Gibbstown, NJ).  HPLC grade acetonitrile and water were 

used for all LC-MS analysis (Burdick & Jackson, Muskegon, MI).  Ultrapure water used 

for sample buffers was obtained from a Milli-Q system (Millipore, Bedford, MA).  BCA 

assay reagent and standards were obtained from Pierce Chemical Co. (Rockford, IL).  

Fused silica was purchased from Polymicro Technologies (Phoenix, AZ).   

 

Methodologies for characterization of the ribosomal protein complex 

Cell growth and preparation of 70S ribosomes 

The wild-type strain, Rhodopseudomonas palustris CGA009 (a gift from Caroline 

Harwood, Dept. of Microbiology, University of Iowa), was grown either aerobically or 

anaerobically in a glass-walled fermentation vessel.  Briefly, aerobic growth conditions, 

with air injected through the bottom of fermentation vessel, required media supplemented 

with 10 mM succinate (carbon source) without illumination (to eliminate photosynthesis).  

Anaerobic growth conditions required 10 mM succinate with the additional requirement 

of illumination and exclusion of air.  All fermentations were run at 300C at pH 6.8.  Cells 

were harvested at mid-log growth phase (O.D660 of ~0.8), and washed twice in ice-cold 

French Press buffer (100 mM ammonium chloride, 50 mM magnesium acetate, 20 mM 

Tris-HCl (pH 7.5), 1.0 mM DTT, 0.5 mM EDTA).  After resuspending cells in the same 

buffer, a French Pressure cell (Thermo Spectronic, Madison, WI) was used to disrupt 

cells by applying 16,000 psi three times for 1 minute.  DNase I was added to the resultant 
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suspension to degrade contaminant DNA for subsequent removal.  Cellular debris was 

removed by centrifuging the lysate twice at 30,000 g in a SS-34 Sorval rotor for 30 

minutes at 40C.  The collected supernatant was then quick-frozen with liquid nitrogen and 

stored at -800C. 

To separate 70S ribosomes initially from the remaining cellular components, the 

supernatant was layered at a 1:1 ratio (wt/wt) over a high salt sucrose cushion (20 mM 

Tris-HCl, pH 7.5, 50 mM magnesium acetate, 100 mM ammonium chloride, 1 mM DTT, 

0.5 mM EDTA, 1.1 M sucrose) and centrifuged at 100,000 g in a Ti60 Beckman rotor for 

16 hours at 40C.  The ribosomal pellet was resuspended in a small volume (1-3 mL) of 

French Press buffer, aliquoted and stored at -800C for further use. 

70S ribosomes were further purified and fractionated using sucrose density 

fractionation.  Briefly, samples were layered on top of a 7%-30% linear sucrose gradient 

(10 mM Tris-HCl, pH 7.5, 6 mM magnesium acetate, 50 mM ammonium chloride, 1 mM 

DTT, 0.5 mM EDTA) and centrifuged at 85,000 g for 4 hours.  After centrifugation, the 

gradients were fractionated and the absorbance at 260 nm was used to identify fractions 

containing ribosomes.  Fractionated ribosomes were then pooled and recovered by 

centrifugation at 100,000 g for 16 hours. 

Ribosomal protein extraction and the removal of contaminant rRNA was 

performed using the acid extraction method.  The resuspended ribosomes were combined 

with 0.1 volume of 1 M magnesium chloride, then with 2 volumes of glacial acetic acid, 

and mixed by inversion for 2 hours at 40C.  The insoluble fraction containing the 

contaminant rRNA was removed by centrifugation at 17,000 g for 30 minutes at 40C.  

After overnight dialysis in a 3,500 MWCO dialysis cassette (Slide-A-Lyzer, Pierce, 

Rockford, IL) against Ultrapure water, the protein samples were quantitated using the 

BCA assay. 

 

LC-MS-MS for bottom-up proteomic analysis 

All samples to be analyzed by the bottom-up approach were first digested with 

trypsin following the manufacturer’s protocol and then desalted using C18 reverse-phase 

extraction (Sep-Pak, Waters, Milford, MA).  Samples were then concentrated to ~0.1-1 
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μg/μl in a vacuum centrifuge (Savant Instruments, Holbrook, NY) and filtered with a 0.45 

μm Ultrafree-MC filter (Millipore, Bedford, MA).  Final peptide samples to be injected 

were in 100% H2O with either 0.1% TFA (1D LC-MS-MS) or 0.1% formic acid (2D LC-

MS-MS). 

One-dimensional (1D) capillary LC-MS-MS experiments were performed with an 

UltiMate HPLC coupled to an LCQ-DECA or LCQ-DECA XP Plus quadrupole ion trap 

mass spectrometer (Thermo Finnigan, San Jose, CA), equipped with an electrospray 

source.  Injections of typically 10-20 μg peptide digest were made using a Famos (LC 

Packings) autosampler with a 50 μl loop directly onto the column.  The flow rate was 4 

μl/min with a 160 min linear gradient from 100% solvent A (95% H2O/ 5% ACN/ 0.5% 

formic acid) to 100% solvent B (30% H2O/ 70% ACN/ 0.5% formic acid).  The C18 

column (300 μm i.d. x 25 cm, 300Å pore size, 5 μm particles; Vydac 218MS5.325 or 

Vydac 238EV5.325) was connected to the electrospray source with 100 μm i.d. fused 

silica tubing.  Typical electrospray (ES) voltage was 4.5 kV and typical heated capillary 

temperature was 200-225oC.  The mass spectrometer was operated in the data-dependent 

MS-MS mode with dynamic exclusion enabled and a repeat count of 1.  In this mode, 

four parent ions from each mass spectrum were chosen automatically for MS-MS 

analysis based on an ion’s (1) abundance in the mass spectrum, and (2) absence from an 

“exclusion list” of parent ions that had, more times than the “repeat count” setting, been 

subjected to MS-MS analysis in the previous 1 minute time window.  Data-dependent 

LC-MS-MS was performed over a parent ion m/z range of 400-2000.  In some 

experiments, to increase dynamic range, separate injections were made while scanning 

several narrower parent ion ranges (m/z 400-1000, m/z 980-1500, and m/z 1480-2000) in 

addition to the full m/z range of 400-2000 (multiple mass range scanning, see Chapter 2 

for details). 

Two dimensional (2D) LC-MS-MS experiments were performed using a similar 

setup, with the following changes.  Injections of 10 to 30 μg sample were made with the 

Famos autosampler onto a strong cation exchange column (LC Packings SCX, 500 μm 

i.d. x 15 mm), located on 10-port switching valve A of a Switchos system (LC Packings).  

The first dimension separation consisted of a series of step gradient elutions from the 
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SCX column affected by 9-12 subsequent injections, using the Famos autosampler, of 

ammonium acetate salt at concentrations of 25 mM, 50 mM, 100 mM, 200 mM, 400 mM, 

600 mM, 800 mM, 1 M, and one to four injections of 2 M.  Peptides eluting from the 

SCX column after each salt injection were captured on an LC Packings reverse-phase 

precolumn (300 μm i.d. x 5 mm, 300Å PepMap) on Switchos valve B.  After washing salt 

from the precolumn, Valve B was switched to direct flow from the reverse-phase 

precolumn in back flush mode onto a nano-scale Vydac 218MS5.07515 C18 analytical 

column (75 μm i.d. x 15 cm, 300Å pore size, 5 μm particles).  This second dimension 

separation employed a 150 min gradient, going from solvent A (95% H2O/ 5% ACN/ 

0.1% formic acid) to solvent B (30% H2O/ 70% ACN/ 0.1% formic acid) at 200 nl/min to 

elute peptides into the mass spectrometer via a Thermo Finnigan nanospray source.  The 

LCQ was run in the data-dependent mode with dynamic exclusion enabled and a repeat 

count of 2. 

 

Protein identification from bottom-up data analysis 

The entire published R. palustris database (Larimer, 2004) was used initially to 

analyze MS-MS spectra from bottom-up experiments using the SEQUEST algorithm 

(Thermo Finnigan).  Initial searches were configured to include only tryptic peptides.  

Data representing the best 1D and 2D runs from the preliminary results were then re-

analyzed using SEQUEST by searching against all predicted peptides, without specifying 

tryptic cleavages.  For SEQUEST post-translational modification searches, a subset of the 

R. palustris sequence database was used.  This database contained all ribosomal proteins 

and other proteins for which at least one peptide was observed in either the best 1D run or 

the best 2D run.  For PTMs, we specified the following: The first search allowed mass 

shifts of 14 Da to detect methylation on lysine and arginine residues, and 16 Da to detect 

oxidations on methionine, cysteine, and tryptophan residues.  The second search 

permitted mass shifts of 28 Da to detect dimethylations on lysines and arginines and 16 

Da for methionine, cysteine and tryptophan residues.  The third search permitted mass 

shifts of 42 Da to detect acetylations and trimethylations on lysine and arginine and 16 

Da for methionine, cysteine, and tryptophan residues.  The fourth search permitted 46 Da 
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to detect β methylthiolation on aspartic acid and 16 Da for methionine, cysteine, and 

tryptophan residues.  Two more searches aimed at identifying N-terminal modifications 

were performed to identify methylations (14 Da) and acetylation/trimethylation (42 Da) 

at the N-termini of peptides.  Note that the PTMs specified for the bottom-up vs. the top-

down searches differ.  Particular amino acid residues or termini can be specified for the 

bottom-up search, but not for the top-down search; furthermore, the tools for performing 

the searches differ in their natures and limitations. 

The programs, DTASelect and Contrast (Tabb, 2002), were used to assemble, 

filter, and compare the identifications from SEQUEST searches on various experimental 

datasets.  DTASelect’s default SEQUEST score cutoffs were used; spectra from singly-

charged peptides were required to exceed 1.8 in Xcorr, while Xcorr values for doubly- 

and triply-charged peptides were required to exceed 2.5 and 3.5, respectively.  Contrast 

combines DTASelect results from several different bottom-up experiments to summarize 

numbers of peptides identified and other parameters, grouped by protein (see chapter 2 

for detailed discussion of proteome informatics). 

 

Electrospray FT-ICR for top-down proteomic analysis 

High resolution mass spectra were acquired using an UltiMate HPLC (LC 

Packings/Dionex, Sunnyvale, CA) coupled to a 9.4 T HiRes electrospray Fourier 

transform ion cyclotron resonance mass spectrometer, ESI-FTICR MS (IonSpec, Lake 

Forest, CA).  The HPLC flow rate was 4 μl/min with a 60 min linear gradient from 100% 

solvent A (95% H2O/ 5% acetonitrile [CAN]/ 0.5% formic acid) to 100% solvent B (5% 

H2O/ 95% ACN/ 0.5% formic acid).  A C4 reverse-phase column (model 214MS5.325, 

300 μm i.d. x 15 cm, 300Å pore size, 5 μm particles, Grace-Vydac, Hesperia, CA) was 

directly connected to the Analytica electrospray source with 100 μm i.d. fused silica 

capillary tubing.  Ions were generated with a 3,700 V potential between a grounded 

needle and heated transfer capillary, accumulated in an external hexapole for 2 seconds, 

transferred into a high-vacuum region using a quadrupole lens system, and then detected 

in the mass analyzer.  A broadband mass resolution of at least 50,000 (full width at half 

maximum) at m/z 1,000 was possible because ion detection was achieved in an ultra high 
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vacuum regime (~2 x 10-10 Torr).  Standard proteins (ubiquitin, myoglobin) and peptides 

(leucine enkephalin, gramicidin S) were used for mass calibration.  The high-resolution 

mass measurement enabled isotopic resolution of multiply-charged ions.  The charge 

state of a multiply-charged ion could, therefore, be determined by directly measuring its 

isotopic spacing.  Deconvoluted molecular mass spectra were generated with the IonSpec 

software.  By calibrating on the calculated values of the most abundant isotopic peaks for 

the six different charge states (7+ to 12+) of the protein standard ubiquitin, the 

deconvoluted mass spectrum yielded a measured molecular mass that was within 0.025 

Da (3 ppm) of the calculated value.  The external calibration procedure enabled 

molecular measurement accuracy of ≤ 10 ppm for most proteins with molecular masses 

up to 40 kDa, although the mass errors were slightly larger for the more minor abundance 

proteins, for which the isotopic packets are somewhat distorted. 

Because the mass resolution was at least 50,000 for the intact protein 

measurements, the molecular masses of these proteins could be measured with isotopic 

resolution.  The measured most abundant isotopic mass (MAIM) of each molecular ion 

region was used as an approximation of the protein’s isotopically-averaged molecular 

mass in order to query a database of all possible R. palustris proteins.  This database 

query with the MAIM values was conducted with a reasonably large molecular mass 

tolerance window (+ 5 Da) to accommodate the fact that the abundances (but not the 

mass values) of the ions in the measured isotopic packet may vary somewhat from their 

calculated values.  This is especially noticeable in the larger proteins, where the 

abundances of the isotopes around the average molecular mass are very similar.  Even 

slight variations in the mass spectrometric measurements can result in peak abundance 

variations of a few percent, which can alter the most abundant isotope observed in these 

cases.  This search usually revealed between 1 and 4 possible protein matches within the 

“crude” 5-Da window, with a close match to at least one protein in the database.  

Calculated masses for both intact proteins and proteins with N-terminal methionine 

truncation for all possible R. palustris proteins were searched in this initial screen.  To 

refine a tentative protein match, the isotopically-resolved molecular mass region of the 

suspected protein was calculated, based on its sequence, and compared to the measured 
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data from the FT-ICR-MS experiment.  Because these experiments were conducted under 

external calibration conditions, the mass of the most abundant isotopic peak for each 

matched protein from the database was required to be within 10 ppm (i.e., a few 

millidaltons) of the measured value for the more abundant signals, with somewhat lower 

mass accuracy (less than 30 ppm) permitted for more minor species.  For the entire suite 

of 54 possible ribosomal proteins, an intact protein look-up table was extracted from the 

full R. palustris protein database;  this intact protein table contained intact molecular 

masses, methionine-truncated molecular masses, and all possible combinations of 

methionine truncation with single acetylation and multiple methylations (up to 9).  The 

experimental FT-ICR-MS data were used to query this look-up table for tentative PTM 

protein forms.  All possible matches were compared against the results obtained from the 

bottom-up data. 

 

Methodologies for characterization of the Shewanella oneidensis proteome by the 

combined top-down bottom-up technique 

Cell growth and pre-fractionation 

S. oneidensis MR-1 cells (4 L culture in LB Broth) were grown aerobically, 

harvested in mid-log growth phase (OD600= 1.0) and washed twice with 50 mM Tris pH 

7.5.  Cells were resuspended in ice-cold lysis buffer (50 mM Tris, pH 7.5 with 1% 

Bacterial Protease Inhibitor Cocktail) and disrupted by sonication (Misonix, Farmingdale, 

NY) on ice with a microtip probe using 5 s bursts with a 5 s rest period for 5 min.  

Unbroken cells were pelleted by centrifugation at 5000 g for 30 minutes and discarded.  

The first fractionation was prepared by pelleting insoluble material at 20,000 g for 1 hour.  

The supernatant was collected and frozen at -800C until a later fractionation was 

performed (“crude lysate”).  For these studies, only the crude lysate was used.  “Shotgun” 

proteome characterization of the entire proteome can be found in VerBerkmoes et al. 

2002.  The crude fraction was analyzed by the BCA assay (Pierce, Rockford, IL) to 

determine protein concentrations.   
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Anion exchange fractionation 

 Samples of the crude lysate (2.0 mL) were fractionated on a Pharmacia 

(Piscataway, NJ) Source 15Q PE 4.6/100 quaternary ammonium strong anion exchange 

column attached to an Akta FPLC® (fast protein liquid chromatography) system using a 

linear gradient of 1 M NaCl in 20 mM Tris, pH 8.0 in 30 column volumes (approx. 51 

mL) at a flow rate of 2.0 mL/min. Fractions (1 mL) were automatically collected for 

analyses by both the bottom-up and top-down approaches and stored at –80°C until 

needed.  Fractions were split in half, with one half analyzed by the bottom up technique 

and the other half by the top-down technique.   

          

 LC-MS/MS for bottom-up proteomics 

All fractions destined for bottom-up analysis were digested with trypsin following 

the manufacturer’s protocol (Promega, Madison, WI).  The samples were then de-salted 

with a C18 Sep-Pak (Waters, Milford, MA), dried to completion in a centrifugal 

evaporator (Savant Instruments, Holbrook, NY), resuspended in 5% TFA, and filtered 

through a 0.2 µm filter (Schleicher & Schuell, Keene, NH).  Samples were resuspended 

in the appropriate amount of solvent for the number of necessary injections, depending 

upon the experiment. 

All LC-MS/MS experiments were performed on an UltiMate HPLC (LC 

Packings, a division of Dionex, San Francisco, CA) coupled to an LCQ-DECA ion trap 

mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with an electrospray 

source.  The HPLC was operated in the capillary flow rate mode (4.0 μL/min), using a 

plug-in to the Xcalibur software provided by LC Packings.  Two columns were used for 

1D experiments, a VYDAC (Hesperia, CA) C18 column (218MS5.315, 300 μm i.d. x 15 

cm, 300Å with 5 μm particles) and an LC Packings C18 column (300 μm i.d. x 15 cm, 

100Å with 3 μm particles).  The solvents used for chromatography were as follows: A: 

95% H2O/ 5% acetonitrile/ 0.5% formic acid, and B: 30% H2O/ 70% acetonitrile/ 0.5% 

formic acid. 

For all LC-MS data acquisition, the LCQ was operated in the data-dependent 

mode, where the top four peaks in every full MS scan were subjected to MS/MS analysis. 
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The settings for MS/MS were as follows: default charge state: 3; default isolation width: 

3; normalized collision energy: 35%; activation q: 0.250; activation time: 30.00 ms.  Five 

microscans were acquired for every full and MS/MS scan.  The dynamic exclusion 

feature of the Xcalibur software was also enabled, with the following settings used: 

exclusion mass width: +/- 2.5 m/z; repeat count: 1; repeat duration: 0.5 min; exclusion 

duration: 1.00 min. 

The 15 fractions obtained from the anion exchange separation were analyzed via a 

1D-LC-ES-MS/MS with multiple mass range scanning experiment employing two mass 

range scans.  For each experiment, approximately 200-800 µg of starting material was 

used, depending on the protein concentration of the fraction.  After digestion and clean 

up, the samples were diluted to a total volume of 30 µl to allow for two injections over 

two mass ranges: 400-1000 m/z and 980-2000 m/z.  The gradient for each of the 

injections was as follows: 0-10 min 100% A, 10-130 min 40% B, balance A, 130-145 

min 50% B, balance A, 145-165 min 100% B.  The entire half of the fraction was used 

for each digest.  To aid in the top-down analysis and show reproducibility, other fractions 

from multiple anion exchange runs were analyzed (the whole fraction was not used and a 

single mass range was employed). 

 

Protein identification from bottom-up data analysis 

A Shewanella oneidensis MR-1 protein database was created from the preliminary 

genome sequence obtained from The Institute for Genomic Research website at 

http://www.tigr.org.   For the bottom-up approach, all MS/MS data was searched off-line 

on a dual processor (1.7 GHz Pentium Xeon) workstation (Dell, Round Rock, TX) with 

the SEQUEST algorithm (Thermo Finnigan) against the annotated S. oneidensis protein 

database.  The global SEQUEST settings used were as follows: threshold: 100,000; 

enzyme: trypsin; number of internal missed cleavage points: 4; Peptide mass tolerance: 

+/- 3.0 (average mass); fragment ion mass tolerance: +/-0.4 (monoisotopic mass); parent 

mass range 300-5000 daltons; filters 4 of 5: Xcorr 1.0; DelCN 0.1; sp 500; Rsp 5.0; 30% 

fragment ions.  The output data from this search was first stored in Microsoft Excel for 

later use and then filtered further and sorted by gene locus number with DTASelect 
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software (Tabb, 2004).  The default settings of DTASelect were used for all searches, 

which include a minimum cross-correlation (Xcorr) of 1.8 for +1 peptides, 2.5 for +2 

peptides, and 3.5 for +3 peptides.  We required a minimum of two unique peptides with 

the above qualifications for any given gene locus to be accepted as a positive hit.        

 

ES-FT-ICR for top-down proteomics 

A portion (about 500 μL) of each FPLC fraction was prepared for the top-down 

proteomics approach by dialysis against 4 L of H2O for 10 hours in a 3500 MWCO 

dialysis microtube (Pierce, Rockford, IL).  The procedure was repeated, with the second 

dialysis run for 4 hours.  Samples were stored at -800C until analysis.  Samples were 

prepared for MS by mixing 60 μL of sample with 40 μL of acetonitrile and 2 μL of acetic 

acid. 

All mass spectra were acquired with an IonSpec (Irvine, CA) 9.4-Tesla HiRes 

electrospray Fourier transform ion cyclotron resonance mass spectrometer (ES-FT-ICR-

MS), essentially as described above.  The S. oneidensis MR-1 protein database was 

created from the preliminary genome sequence obtained from The Institute for Genomic 

Research website at http://www.tigr.org.  From this data, an S. oneidensis intact protein 

database search tool was created to provide a means to search both intact average 

molecular mass and molecular mass minus N-terminal methionine.  The most abundant 

molecular masses, as calculated from the ES-FT-ICR-MS data, were used to search this 

database.  For confirmation of mass assignments in top-down experiments, the theoretical 

most abundant molecular mass for intact protein ions was calculated with IsoPro.   

 

Results 

 

Top-down and bottom-up characterization of the 70S ribosome 

 The 70S ribosome from R. palustris was characterized with the integrated top-

down and bottom-up technique.  Figure 3.1 illustrates the strategy for the top-down and 

bottom-up approach adopted in this study.  Integration of results was achieved, as shown 

by the dotted-line arrows in Figure 3.1, by using protein identifications from analysis of  
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Figure 3.1:  Strategy for top-down, bottom-up MS analysis of ribosomal proteins. 
Integration of results from the two approaches was achieved, as the dashed and dot-dash 
arrows show, by iteratively using the results from each approach to augment and expand 
the results of the other. 
Figure provided by Dr. Greg Hurst and Dr. Brad Strader.
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top-down data to refine analysis of bottom-up data, and vice versa, in an iterative manner 

to increase the number of characterizations of ribosomal proteins obtained.  For example, 

identification of a methylated protein by the top-down approach could provide motivation 

to examine more closely the bottom-up results for the presence of a methylated peptide 

from that protein.  The combined top-down bottom-up MS analysis identified a total of 

53 of the predicted 54 ribosomal proteins.  The data indicated the presence of 21 proteins 

for the small subunit and 33 for the large subunit (S20 and L26 are identical).  No 

orthologue of E. coli S22 was identified for R. palustris ribosomes.  We also identified 

isoforms for L7/L12 from the large subunit.  The traditional nomenclature for ribosomal 

proteins was adopted from studies of E. coli, where L1-L36 represents ribosomal proteins 

of the large subunit and S1-S22 denote proteins from the small subunit.  In this paper, 

each of the R. palustris ribosomal proteins (RRP) is named after the corresponding 

ribosomal protein in E. coli.  The L7/L12 isoforms were therefore named RRP-L7/L12A 

and RRP-L7/L12B (discussed later).   

 

HPLC separation strategies for bottom-up analysis 

The mixture complexity of a tryptic digest from purified ribosomes is 

intermediate between that of a single protein digest and a digest from a whole proteome.  

Therefore, we compared several chromatographic strategies for the peptide separation in 

the bottom-up approach, including one dimensional (1D) reverse phase liquid 

chromatography (RPLC), and two dimensional (2D) separations employing both strong 

cation exchange (SCX) and RPLC (2-dimensional switching LC/LC-MS/MS; see 

Chapter 2 for details).  The criterion for this comparison was maximum sequence 

coverage of ribosomal proteins, which would be necessary for a comprehensive 

examination of post-translational modifications.   

After optimizing both separation and MS protocols, and examining sequence 

coverage obtained from initial SEQUEST searches, we selected the best 1D and 2D data 

sets for further SEQUEST analysis tailored for identifying PTMs.  Table 3.1 compares 

the results obtained using the various separation strategies.  A simple 1D RPLC 

separation required the least measurement time, but provided the smallest number of  
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Table 3.1:  Summary of bottom-up analyses of ribosomal proteinsa. 

Run 
# 

LC 
Method 

Mass 
Rangesb 

Sample 
Amount

Spectra 
Producedc

Proteins 
Identifiedd

High-
Scoring 
Spectrae

Identified 
Peptides 

Average 
Sequence 
Coverage 

1 1D 1 10 µg 4402 41 338 186 31% 
2 1D 4 72 µg 10845 52 1071 604 51% 
3a 1D 4 48 µg 12906 51 1198 610 57% 
4a 2D 1 10 µg 46033 51 3737 821 60% 
5 2D 1 30 µg 54712 50 5199 672 56% 

 

a)  Data from Runs 3 and 4 (shown in bold) subjected to more detailed SEQUEST 
analysis (see text for details). 
b)  Number of mass ranges for MS measurement (see Materials and Methods). 
c)  Total MS-MS spectra acquired. 
d)  Search considered all possible R. palustris proteins, peptides resulting from trypsin 
digestion, and no PTMs. 
e)  Spectra that met the default Xcorr cutoffs (see Materials and Methods). 
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protein and peptide identifications.  The same 1D RPLC separation, repeated four times, 

each time targeting a different m/z range (multiple mass range scanning, see Chapter 2 

for details), yielded a 3-fold larger number of peptide identifications.  This four m/z range 

1D experiment was performed twice, identifying 604 different peptides in the first run 

and 610 in the second; the second run was selected for more extensive SEQUEST 

analysis due to slightly higher average sequence coverage per ribosomal protein and 

overall number of peptides identified, despite the use of less sample.  Both the four m/z 

range 1D and the 2D strategies resulted in similar numbers of identified ribosomal 

proteins and overall sequence coverage from the initial SEQUEST searches.  Of the two 

2D experiments, the run using 10 µg of sample produced a significantly larger number of 

peptide identifications than the 30 µg run, and so the former was chosen for further 

SEQUEST analysis.  Although requiring the longest measurement time, the 2D method 

required less starting material than the multiple-mass-range 1D measurement, and 

produced the most  confidently identified spectra, probably by decreasing the complexity 

of the peptide mixture introduced into the mass spectrometer at any particular time.  

Loading three times the sample amount on the 2D system resulted in a slight decrease in 

the mean sequence coverage of ribosomal proteins, while the sequence coverage on 

common contaminants was increased.  This is a common observation of overloading 2D 

systems.  This comparison suggests that 1D separations with multiple mass range 

scanning and 2-dimensional switching LC/LC-MS/MS are complementary in regards to 

quality of results obtained, amount of sample required, and time requirements.  Indeed, if 

time and sample permits, the use of both techniques is advantageous since some peptides 

from some proteins will be more readily identified by one technique over the other. 

 

Protein sequence coverage and protein identifications from bottom-up analysis 

All but two ribosomal proteins were observed in the bottom-up analyses that were 

chosen for SEQUEST analysis tailored for PTM identification (see Table 3.2).  The 1D, 

four mass-range analysis failed to observe RRP-L34, and the 2D analysis did not identify 

RRP-L34 or RRP-L36.  These two proteins both have a high percentage of basic residues.  

RRP-L34 has five lysines and twelve arginines in its sequence of 44 residues, for an  



 83

Table 3.2:  Sequence coverage and peptide identifications for (bottom-up) 1D and 
2D analysis. 

Name 
Sequence 
Coverage 

# Peptide 
Identifications*

 1D 2D 1D 2D 
RRP-L1 66.0% 80.0% 25 43 
RRP-L2 46.0% 58.0% 12 19 
RRP-L3 79.0% 92.0% 23 45 
RRP-L4 68.0% 78.0% 22 19 
RRP-L5 54.0% 45.0% 10 14 
RRP-L6 36.0% 50.0% 9 19 
RRP-L7 51.0% 60.0% 16 18 
RRP-L9 90.0% 56.0% 13 17 
RRP-L10 91.0% 91.0% 27 45 
RRP-L11 61.0% 69.0% 10 20 
RRP-L13 81.0% 87.0% 17 24 
RRP-L14 80.0% 84.0% 11 16 
RRP-L15 78.0% 85.0% 20 24 
RRP-L16 65.0% 77.0% 14 26 
RRP-L17 66.0% 76.0% 13 22 
RRP-L18 73.0% 73.0% 12 27 
RRP-L19 78.0% 72.0% 18 24 
RRP-L20 51.0% 57.0% 10 11 
RRP-L21 58.0% 22.0% 5 4 
RRP-L22 63.0% 57.0% 12 18 
RRP-L23 44.0% 86.0% 5 13 
RRP-L24 89.0% 89.0% 11 14 
RRP-L25 74.0% 62.0% 20 30 
RRP-L27 63.0% 87.0% 8 15 
RRP-L28 77.0% 55.0% 13 13 
RRP-L29 45.0% 32.0% 5 5 
RRP-L30 91.0% 91.0% 6 6 
RRP-L31 80.0% 100.0% 6 9 
RRP-L32 58.0% 58% 2 2 
RRP-L33 56.0% 66.0% 4 9 
RRP-L34 0 0 0 0 
RRP-L35 27.0% 49.0% 3 5 
RRP-L36 22.0% 0  1 0 
RRP-S1 37.0% 39.0% 12 16 
RRP-S2 72.0% 87.0% 29 41 
RRP-S3 57.0% 68.0% 16 26 
RRP-S4 78.0% 85.0% 20 29 
RRP-S5 72.0% 70.0% 22 25 
RRP-S6 63.0% 69.0% 19 21 
RRP-S7 72.0% 82.0% 22 28 
RRP-S8 87.0% 71.0% 17 21 
RRP-S9 84.0% 74.0% 18 27 
RRP-S10 39.0% 66.0% 4 5 
RRP-S11 86.0% 33.0% 10 13 
RRP-S12 67.0% 63.0% 11 11 
RRP-S13 33.0% 72.0% 6 21 
RRP-S14 36.0% 50.0% 6 7 
RRP-S15 87.0% 99.0% 14 17 
RRP-S16 44.0% 56.0% 8 16 
RRP-S17 83.0% 79.0% 12 10 
RRP-S18 58.0% 61.0% 7 11 
RRP-S19 98.0% 84.0% 12 19 
RRP-S20 36.0% 23.0% 5 3 
RRP-S21 23.0% 51.0% 3 9 

* # of different peptide Ids including +1, +2 and +3 charges states for identical peptides. 
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average of 2.6 residues between trypsin cut sites; RRP-L36 averages 2.7 residues 

between trypsin cut sites.  Because these sequences are so rich in trypsin cleavage sites, 

many of the resulting peptides fall below the lower m/z limit for isolation and 

fragmentation.  Interestingly, we identified the intact mass of RRP-L36 but not RRP-L34 

from the FT-ICR analysis (discussed in more detail later). 

 

Top-down characterization 

Intact proteins from three separate aerobically grown ribosome samples were 

examined by LC-FT-ICR-MS, and the resulting data were pooled.  From this top-down 

analysis, we identified 42 intact R. palustris ribosomal proteins.  The four largest 

ribosomal proteins (RRP-S2 at 36 kDa, RRP-S1 at 62.8 kDa, RRP-L2 at 31.6 kDa, and 

RRP-S3 at 26.3 kDa) were not observed.  Even though the FT-ICR-MS has sufficient 

mass range to observe these species, prior experience with intact proteins suggests that 

larger species, such as these, are difficult to elute from the C4 reverse-phase column 

under the experimental conditions employed for the top-down liquid chromatography.  It 

is likely that the increased hydrophobicity of these larger proteins results in irreversible 

binding on the reverse-phase column, making these proteins difficult, if not impossible, 

to elute from the column.  

Figure 3.2 presents an example of data from the top-down approach.  Figure 3.2A 

shows a total ion chromatogram of the purified ribosome sample from the reverse-phase 

separation, and Figure 3.2B is the deconvoluted mass spectrum corresponding to the 

chromatographic peak at 1152 seconds.  At least ten different molecular species were 

observed in this spectrum, with molecular masses ranging from 7-11 kDa.  For each 

observed species, the most abundant isotopic mass (MAIM) peak was used to query the 

entire R. palustris protein database for tentative protein identifications.  This search was 

conducted by examining all intact and N-terminal methionine truncated proteins for 

possible matches.  Note that this search did not consider all possible post-translational 

modifications of all the possible proteins, as the number of such possibilities would 

preclude searching in a meaningful fashion.  Although more definitive information could 

be obtained by conducting tandem MS on the intact proteins, this is difficult on the  
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Figure 3.2:  LC-ES-FT-ICR measurement of intact masses for top-down analysis.   
(A) Total ion chromatogram.  (B) Deconvoluted mass spectrum corresponding to the 
chromatographic peak at 1152 seconds.  Inset illustrates the isotopic resolution of the 
component at nominal mass 8,567 Da. 
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timescale of our chromatography.  Our focus here was to compensate by correlating the 

top-down data with the bottom-up data for improved validation of tentative 

identifications.  This approach, while probably less feasible for entire proteomes as 

discussed below, is well suited to simpler systems such as the purified ribosome complex.  

An isotopically-resolved pattern was then calculated from the elemental composition of 

each tentatively identified intact protein, and compared with the measured isotopic packet 

for final validation.  The inset in Figure 3.2B illustrates the isotope pattern of the 

component at nominal mass 8,567 Da.  The measured isotopic packet of this species was 

consistent with the calculated isotopic packet of intact RRP-L31; the measured 

isotopically resolved peak at 8,566.334 Da is within 2 parts per million of the calculated 

isotopically averaged value for this protein (8,566.315 Da).  If this measured protein mass 

at 8566.334 Da is used to query the entire R. palustris proteome, the next closest match is 

a methionine-truncated hypothetical protein (gene RPA1934), which differs by 3 Da (360 

ppm error) from the measured mass.  In addition to the large mass error, RPA1934 is a 

hypothetical protein that was not measured in our bottom-up analysis.  The next nearest 

ribosomal protein match to this measured value would be the methionine-truncated S18, 

which differs by 396 Da (45,000 ppm error) from the measured mass.  This takes into 

account all possible ribosomal proteins, including intact, methionine truncated, or 

containing any variation of acetylation and/or methylation, to the extent specified in the 

experimental section.  Thus, within the constraints of our search, only RRP-L31 was 

found to be consistent with the measured mass of the 8,567 Da species.  Likewise, the 

component in Figure 3.2B at nominal mass 7849 Da had a MAIM of 7849.239 Da.  This 

value is within 3 ppm of the calculated MAIM of 7849.213 Da for the methionine 

truncated RRP-L29.  The RRP-L31 species is only present as the intact gene product, 

whereas the RRP-L29 is only present in the methionine truncated form.  By searching for 

intact gene products as well as methionine truncated forms, five ribosomal proteins could 

be identified in this mass spectrum.  The remaining 4-5 species observed in this mass 

spectrum could not be identified.  These may represent altered forms of ribosomal 

proteins that are not readily identifiable, such as other truncation products, or could be 

due to contaminant proteins isolated with the ribosome.        
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Table 3.3 is the summary of intact protein identifications by the high-resolution 

FT-ICR-MS top-down technique.  In total, 42 proteins were tentatively identified, with 

the majority (25) at better than 10 ppm mass accuracy, and only 3 differing by >30 ppm 

from the calculated value.  Of these 42, ten correspond directly to the predicted gene 

products, 21 are processed by only methionine truncation, and the remaining 11 appear to 

be modified by further acetylation and/or methylation.  Two proteins, RRP-L24 and 

RRP-S8, were found to be present in two different forms.  The most highly modified 

species identified was RRP-L11, which is methionine-truncated, and contains multiple 

methylations and/or acetylations.  About ten additional species were measured from the 

ribosome sample, but could not be identified.  It is likely that these species correspond to 

the other ribosomal proteins, but are altered substantially (possibly by combinations of 

other PTMs, oxidation, and more extensive truncation) such that they are beyond the 

scope of our simple look-up table or they could be common contaminants identified in 

the bottom-up analysis as well. 

As described above, RRP-L34 and RRP-L36 were either identified poorly or not 

at all by bottom-up analysis, most likely because of their high basic content.  Both 

proteins should, however, form positive ions quite readily in the ES source and therefore 

be detected by FT-ICR analysis.  While RRP-L36 could be matched to an isotopic packet 

from the FT-ICR analysis at 5063.952 Da, RRP-L34 was absent.  Crystallographic 

structures of the 70S ribosome from Thermus thermophilus indicate that L34 is located at 

the base of the large subunit surface (Yusupov, 2001).  Biochemical isolation of R. 

palustris 70S ribosomes may have resulted in stripping of this protein from the subunit 

surface.   

 

Post-translational modifications of R. palustris ribosomal proteins 

An important goal of this study was to search for PTMs of prokaryotic ribosomal 

proteins.  Assignment of a particular PTM by only one proteomic technique is certainly 

possible, but PTM assignments can be strengthened by using the integrated approach, 

especially when results from the two approaches corroborate one another.  The combined 

approach often allowed the identification of the modification positions and helped  
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Table 3.3:  Ribosomal protein identification by top-down ESI-FT-ICR-MS. 
 

Protein Modification Calc. Massa Meas. Massa Mass error 
(ppm) 

L1 loss of Met 23877.832 23877.449 16.0 
L3 plus Methyl 25622.463 25622.159 11.9 
L5 plus 2 Methyl 21064.992 21064.576 19.7 
L6 loss of Met 19272.408 19272.674 -13.8 

L7/L12 loss of Met + 3 Methyl 12754.070 12754.089 -1.5 
L9 none 21178.022 21178.268 -11.6 
L10 loss of Met 19067.739 19067.617 6.4 
L11 loss of Met+Acet+ 9 Methyl 15507.107 15507.246 -9.0 
L14 none 13488.498 13488.645 -10.9 
L15 none 16836.243 16836.259 -1.0 
L17 plus 3 Methyl 15716.353 15716.056 18.9 
L18 loss of Met 12904.93 12905.157 -17.6 
L19 none 14296.764 14296.899 -9.4 
L21 loss of Met 13358.081 13358.533 -33.8 
L22 loss of Met 13826.007 13825.644 26.2 
L23 none 10907.949 10908.021 -6.6 
L24 loss of Met 10998.226 10998.231 -0.5 
L24 loss of Met + Methyl 11012.241 11012.146 8.6 
L29 loss of Met 7849.213 7849.239 -3.3 
L30 loss of Met 7092.967 7092.988 -3.0 
L31 none 8566.315 8566.334 -2.2 
L32 loss of Met 6860.730 6860.636 13.7 
L33 loss of Met + Methyl 6248.504 6248.450 8.6 
L35 loss of Met 7415.278 7415.278 0.0 
L36 none 5063.971 5063.952 3.8 
S4 loss of Met + Methyl 23441.536 23441.690 -6.6 
S5 loss of Met 20522.086 20522.411 -15.8 
S7 loss of Met 17556.270 17556.629 -20.4 
S8 loss of Met 14477.631 14477.683 -3.6 
S8 loss of Met+Acet+4 Methyl 14575.704 14575.619 5.8 

S10 none 11667.363 11667.404 -3.5 
S11 loss of Met + Methyl 13760.215 13760.314 -7.2 
S12 none 13874.799 13875.167 -26.5 
S13 loss of Met 14313.985 14313.596 27.2 
S14 loss of Met 11331.399 11331.900 -44.2 
S15 loss of Met 10010.563 10010.562 0.1 
S16 loss of Met 12017.595 12017.575 1.7 
S17 loss of Met 9553.253 9553.316 -6.6 
S18 plus 6 Methyl 9178.219 9177.834 41.9 
S19 loss of Met 10087.371 10087.379 -0.8 
S20 loss of Met 9577.324 9577.387 -6.6 
S21 none 10062.669 10062.722 -5.3 

a) MAIM (most abundant isotopic mass) 
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identify the presence of isoforms.  For both analyses, we included in PTM searches the 

N-terminal modifications of methionine truncation, methylation, acetylation and β-

methylthiolation.  In addition, the search included β-methylthiolation of aspartic acids, 

single acetylations and mono-, di- and trimethylated lysines or arginines, all of which 

have been previously identified in ribosomal proteins from E. coli and eukaryotic-cell 

organellar ribosomes thought to have evolved from bacteria by endosymbiosis (Kowalak, 

1996; Arnold, 1999; Yamaguchi, 2000).  Phosphorylation, a common PTM in eukaryotic 

ribosomal proteins, has not been identified in prokaryotic ribosomal proteins, and was not 

included in the subset of modification searches. 

 

N-terminal methionine truncations 

The most common PTM identified by the integrated approach was truncation of 

the start methionine.  We identified this modification in 32 R. palustris ribosomal 

proteins.  The top-down technique identified an N-terminal truncation if the measured 

intact mass for a protein matched that obtained by subtracting the mass contributed by a 

methionine residue (131.0405 Da) from the mass calculated from the DNA-derived 

amino acid sequence.  Twenty seven ribosomal proteins met this criterion.  The bottom-

up technique validated N-terminal truncations by identifying N-terminal peptides without 

a methionine; 16 truncated proteins could be identified in this way, while 10 were 

identified with the N-terminal methionine intact.  For the proteins identified to have 

truncated N-termini, 10 were recognized by both techniques, 17 were identified by intact 

mass data alone and five were identified only by bottom-up data.  Although a majority of 

these truncations were only identified by one technique, the combination of two MS 

approaches allowed a larger proportion of the N-termini to be surveyed than would have 

been possible with either one of these strategies, and provided increased confidence in the 

assignment for those proteins for which N-terminal methionine truncation was identified 

by both approaches. 

Overall, the N-terminus truncation states of 45 proteins could be determined 

unambiguously.  We were unable to determine whether seven ribosomal proteins 

contained an N-terminal methionine.  For these species, it is possible that a longer 
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truncation than simple methionine loss could have occurred.  Among these, RRP-L16, 

RRP-L20, RRP-L27, RRP-L34, and RRP-S2 yielded neither bottom-up data for the N-

terminal peptide, nor top-down molecular mass information.  For RRP-L5 and RRP-S12, 

on the other hand, conflicting information resulted from the two techniques.  For these 

two proteins, the bottom-up data indicated a methionine truncation while the top-down 

data did not.  While this result was a bit puzzling, one possible explanation for the 

conflicting data was that these two proteins existed both with and without methionine 

truncations.  Since the relative abundances of this pair were unknown, as were their 

relative chromatographic behavior and mass spectrometric responses as intact proteins or 

as N-terminal peptides, there was no expectation that they necessarily would be observed 

to the same extent in the top-down vs. bottom-up experiments.   

 

Methylation, acetylation, and β-methythiolation PTMs 

In contrast to assigning N-terminal methionine truncations, identifying positions 

of acetylations, methylations, or β-methythiolation, is more complex because these 

modifications often result in isoforms; furthermore, acetylation and methylation can 

occur either on residue side chains or N-termini.  Table 3.4 summarizes the PTM 

assignments for ribosomal proteins determined from the integrated approach.  We 

assigned a particular PTM if at least one of the bottom-up data sets agreed with top-down 

data, or if bottom-up data from both the 1D and 2D separations were consistent.  A few 

examples are given below.  For more detailed descriptions, see Strader et al. 2004. 

 

RRP-L3 

A MAIM peak in the top-down data at 25,622.159 Da was consistent with singly 

methylated RRP-L3.  Bottom-up analysis by 1D LC-MS-MS identified one peptide on 

which either K155 or K158 was methylated.  In this spectrum, y-series ions containing 

K155, K158, K160 and K161 (y17, y18) exhibited a 14 Da shift corresponding to 

methylation.  Other y-series ions (y8, y10, y11, y12) showed no m/z shift relative to an 

unmethylated peptide; these unshifted y-series ions eliminated K160 and K161 as 

locations for the methylation.  The SEQUEST search identified no unmethylated peptides  
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Table 3.4:  Post-translational modifications of R. palustris ribosomal proteins. 
 

Protein Modification Residue(s) 

RRP-L3 methylation K155 or K158 

A: 2 methylations 
and 1 methylation K69, K86  

RRP-L7/L12a 
B: trimethylation 
or acetylation K86, K89 

RRP-L11 Acetylation or 
trimethylation K40 

RRP-L30 methylation N-terminus or K3b 

RRP-L33 methylation N-terminus or K3b 

RRP-S12c β-methylthiolation D88 

 

a) Present as two isoforms, A and B. 
b) Insufficient data to distinguish between methylation at the N-terminus or at K3. 
c) Present in both modified and unmodified forms. 
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covering this region of L3.  While SEQUEST identified another tryptic peptide from L3 

on which R170, R177 and R185 were all methylated, we assessed RRP-L3 to be singly 

methylated at either K155 or K158 because this scenario was supported by both the intact 

mass and the singly methylated peptide spectrum.  L3 has previously been reported to be 

singly methylated in E. coli at Q150 (Arnold, 1999).  While the amino acid that was 

modified differs between RRP-L3 and the E. coli homologue, the data suggested that this 

single methylation was conserved between these two species. 

 

RRP-L7/L12 

A molecular mass from the top-down data at 12,754.089 Da indicated that this 

protein was modified by methionine truncation, plus either multiple methylation (three 

methyl groups) or acetylation.  At low resolution, the latter two modifications are isobaric 

(i.e., 42 Da) and would not be resolved.  However, this relatively small protein was 

observed in high abundance in the FT-ICR mass spectra and could be measured with high 

resolution and high mass accuracy.  Thus, the measured MAIM of 12,754.089 Da 

suggested that this protein is trimethylated (calculated MAIM of 12,754.070 Da; 1.5 ppm 

less than measured value) rather than acetylated (calculated MAIM of 12,754.035; 4.2 

ppm less than measured value), as shown in Figure 3.3, although more extensive 

measurements would be required to definitively make this assignment solely from intact 

mass data.  1D LC-MS-MS analysis suggested that K69 is dimethylated and K86 is 

singly methylated, with both multiple overlapping peptides and spectra for different 

charge states of the same peptide in evidence for K86.  Also identified from 1D data were 

acetylation or trimethylation at K86 and K89.  The 2D LC-MS-MS analysis, on the other 

hand, identified K69 as dimethylated, and K6, K70, K86, and K100 as singly methylated 

(with K69 evidenced by two spectra representing multiple charge states of the same 

peptide, and K86 evidenced by multiple overlapping peptides), while other spectra 

indicated that K86 and K89 could be acetylated or trimethylated (on multiple overlapping 

peptides).  These results are consistent with the existence of two isoforms of this protein; 

an increased abundance of one isoform over the other may explain why only one form is 

observed in the top-down data. 
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Figure 3.3:  A comparison of top-down and bottom-up data for RRP-L7/L12.   
Fragmentation spectra from (A) peptide T57-R78 bearing 2 methylations at K69.  (B) 
peptide A79-K89 bearing a single methylation at K86.  (C) measured, and (D) calculated 
isotopic distributions for intact trimethylated RRP-L7.  The sequence with potential 
methylation modifications is shown at the top of the figure. 
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The isoform of RRP-L7/L12 for which an intact mass was observed is best 

explained by two methylations at K69 and a single methylation at K86.  Figure 3.3 shows 

MS-MS spectra representing peptides with di-methylated K69 and mono-methylated K86 

residues (Figure 3.3 A, B) and the measured and calculated isotopic distributions 

determined for the intact mass (Figure 3.3 C, D).  Both MS-MS spectra indicate that y or 

b ions containing the modified residue are shifted by the appropriate mass.  For example, 

in Figure 3.3A, y10-y17 and b13, b16 and b22
2+, containing modified K69, are shifted by 28 

Da (di-methylation), while y6-y9, and b11, which do not contain K69, appear at the same 

m/z values as for an unmodified peptide.  For these bottom-up data, the spectra from 

Figure 3.3A and B give information about the modified residues but not the number of 

isoforms that exist for RRP-L7/L12 with these modifications.  Without the top-down 

data, it would not be possible to definitively assign these two modified peptides to a 

single isoform.   

The second isoform of RRP-L7/L12 we assigned is acetylated or trimethylated at 

residues K86 and K89.  Evidence for this isoform is found in MS-MS spectra 

corresponding to peptides with modified K86 and K89 in both 1D and 2D separations.  

An MS-MS spectrum for this modified peptide shows b ions (b22
2+, b11, b12, b14, b16) 

containing K86 and K89 shifted by 84 Da, indicating two acetylations or six 

methylations, while the y ions (y5, y6, y9, y13-y17, y20
2+) that do not contain K89 or K86 

have no m/z shift.  The L7/L12 protein in E. coli and other bacteria is known to exist in 

two isoforms:  L7 is N-terminally truncated and acetylated, and L12 is N-terminally 

truncated and methylated at K81 (Arnold, 1999). 

 

RRP-S12   

A molecular mass of 13,875.167 Da corresponding to unmodified RRP-S12 was 

observed by the top-down approach.  Bottom-up data from both 1D and 2D analyses, 

however, indicated the presence of both modified and unmodified RRP-S12.  β-

methylthiolation was observed in multiple spectra representing the same charge state.  In 

an MS-MS spectrum assigned to peptide V86-R93, y6, y7 and b3 ions containing modified 

D88 are shifted by 46 Da corresponding to β-methylthiolation, while b2, y4, and y5 ions 
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not containing D88 are unshifted relative to an unmodified peptide.  This novel PTM also 

occurs at D88 of the E. coli S12 ribosomal protein (Kowalak, 1996). 

While some of our data suggest that other ribosomal proteins might possess 

PTMs, those reported in Table 3.4 include only cases for which supporting evidence from 

two or more different separation, or MS approaches, were found.  For example, not 

included in the robust PTM assignments listed in Table 3.4 are several modified proteins 

identified from top-down data only.  These include L5, L17, L24, S4, S8, S11, and S18.  

Similarly, although 2D LC-MS-MS provided bottom-up evidence for methylation at K6 

and K100 of RRP-L7/L12, lack of evidence for these two modifications in the 1D LC-

MS-MS data led to their exclusion from Table 3.4. 

 

Top-down and bottom-up characterization of the crude lysate from S. oneidensis 

 

Fractionation of the Intact Proteins by Anion-Exchange FPLC 

  For the characterization of the S. oneidensis proteome by the top-down and 

bottom-up approach we applied strong anion exchange fractionation to the intact proteins 

from the crude lysate.  The anion exchange FPLC separation of the S. oneidensis crude 

lysate was judged to be reproducible, based on the identities of the proteins detected from 

each fraction in successive identical separations (samples run in triplicate - data not 

shown).  SDS-PAGE analysis of the individual fractions revealed that each fraction 

typically contained a large number of proteins, although some fractions were enriched in 

a particular protein over another (data not shown).  The UV trace of the anion exchange 

run, along with the number of proteins that were identified per fraction, is shown as 

Figure 3.4.  Analysis of these fractions by 1D LC-MS/MS using two mass range scans 

identified 395 unique proteins, which is somewhat less than the analyses of the crude 

lysate by the shotgun approach (see VerBerkmoes, 2002, for discussion on “shotgun” 

analysis of the S. oneidensis proteome).  Possible reasons for this observation may be 

sample losses during separation or the limited number of m/z ranges that were employed 

in MS analysis.  However, data from this type of experiment is useful for correlation with 

top-down analyses of these same fractions.  This method is optimal when targeted  
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Figure 3.4:  Anion exchange fractionation of S. oneidensis crude lysate. 
The S. oneidensis crude lysate intact proteins were fractionated by strong anion exchange.  
Collected fractions were split in half, with one half used for top-down characterization 
and the other half for bottom-up characterization.  The purple trace indicates the UV 
absorbance; the grey bars indicate the number of proteins detected by the bottom-up 
analysis.  All fractions were collected 1 min after elution from column and detection by 
UV.  The beginning fractions (10-20) were found to be devoid of proteins as well as the 
later fractions (38-50 mainly DNA) by previous studies and thus not analyzed in this 
study.    
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analysis of a particular protein is desired, since a given protein is isolated in a given 

fraction or fractions.  The alternative of trying to compare large independent “shotgun” 

analysis with large independent top-down analysis, where fraction collection is not used, 

would be impractical. 

 

Top-down MS Proteomic Analysis of S. oneidensis 

The following protocol was employed to identify proteins by the top-down MS 

approach.  ES-FT-ICR-MS was used to measure the masses of the proteins for all of the 

fractions examined by the bottom-up method.  Although there was some variation 

between fractions, in general, between 5 and 20 proteins were observed in each fraction.  

Because the mass resolution was between 50,000 and 100,000, the molecular masses of 

these proteins could be measured with isotopic resolution (i.e., at the milli-Dalton level).  

The measured mass of the most abundant isotope of each molecular region was used to 

query a tabulated protein database for S. oneidensis.  For several of the proteins, this 

search resulted in a tentative identification based on a molecular mass match with a 

protein in the database.  Both intact proteins and proteins with N-terminal methionine 

truncation (the most common PTM for bacteria) were searched in this matter.  To 

examine the protein match, the isotopically-resolved molecular mass region of the 

suspected protein was calculated based on its sequence (using IsoPro or similar isotopic 

modeling tool) and compared to that measured in the high resolution FT-ICR-MS 

experiment.  Because these experiments were conducted with external calibration, the 

molecular masses of the matched proteins from the database were required to be within 

15 ppm of the measured values for the more abundant proteins, with the minor proteins 

matched with somewhat lower mass accuracy (less than 25 ppm).  For any tentative 

matches, the bottom-up MS data from the same fraction was examined to verify the 

identification of the same protein in that experiment.  Although this process was 

conducted manually, efforts are underway to automate the correlation searching between 

the top-down and bottom-up MS data.  For proteins that did not directly match the 

database query of intact protein molecular masses, the bottom-up data was examined for 

abundant candidate proteins that were within 3,000 Da of the measured protein.  
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Common protein modifications (such as acetylation or signal peptide cleavages) of the 

candidate proteins were evaluated in an attempt to match the measured molecular mass 

with the suspected proteins.  Tandem mass spectrometry experiments were also 

conducted on many of the intact proteins.  While additional structural information was 

observed, in most cases, the sequence coverage of the observed product ions was not 

extensive enough to provide a definitive identification.  Rather, this method was used to 

confirm a suspected protein match, or to differentiate between two proteins with very 

similar molecular masses. 

This general experimental approach is demonstrated in Figure 3.5a-b.  Figure 3.5a 

illustrates the ES-FT-ICR-MS of fraction #23 from the FPLC separation.  Note the 

complexity of the electrospray mass spectrum, with different charge states in close 

proximity.  This is where the capability for high resolution mass measurements becomes 

essential, as it is possible to directly measure the isotopic spacing and thereby determine 

the charge state for a majority of isotopic envelopes.  This feature helps resolve areas 

such as the m/z 922-926 region, as illustrated in the inset.  Figure 3.5b is the 

deconvoluted molecular mass spectrum derived from Figure 3.5a.  The electrospray mass 

spectrum simplifies into the dozen intact proteins detected in this fraction.  Each of the 

“nominal” molecular masses shown in this figure consists of a well-separated isotopic 

envelope, as shown in the insert for the 30,213 Da species.  For Figure 3.5b, four of the 

proteins were identified with the database search (as labeled on the figure), and were 

confirmed in the bottom-up data for this same fraction. 

The proteins identified via top-down analyses of the intact anion-exchange 

fractions of the S. oneidensis lysate are shown in Table 3.5.  All of these proteins were 

also detected in analyses of these fractions by the bottom-up approach. It is important to 

note that the accurate molecular mass measurements (even with an uncertainty of up to 

25 ppm) of the ES-FT-ICR-MS approach greatly simplifies the database searching of 

intact proteins.  For example, for any the proteins listed in Table 3.5, there were no more 

than three possible matches within 20 ppm of the input value.  This greatly limits the 

possible matches, which are then verified with the bottom-up data.  For about one-half of  
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Figure 3.5:  Mass spectra of FPLC fraction #23 (intact proteins) from S. oneidensis. 
a) ES-FTICR-MS revealing complex mixture of proteins (close up of m/z 925 region 
shown as an inset), b) deconvoluted molecular mass spectrum revealing the presence of 
about one dozen proteins detected in this sample.  In each case, an isotopically-resolved 
cluster was measured (as shown in the inset).  High resolution mass measurement was 
sufficient for identification of at least four proteins in this sample, as designated by the 
gene number labels. 
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Table 3.5:  Proteins identified from S. oneidensis via the top-down approach. 
 

Gene 
Number Putative Protein Function Modification 

Calculated  
Mr (Da) 

Measured 
Mr (Da) 

Delta 
(ppm) 

93 
Acyl Carrier/protein 

dehydratase None 18806.672 18806.196 25.3 
516 Fumarate Reductase Unknown 62446.931 61058.86 - 
591 Glutathione synthetase loss of Met 34830.028 34830.264 6.8 

796 Thioredoxin 
Start site change/loss of 

Met (ox) 11755.116 11755.306 16.2 
1445 Ribosomal protein L31 None 15742.351 15742.523 10.9 
1453 Ribosomal protein S6 loss of Met 14871.335 14871.251 5.6 
1456 Ribosomal protein L9 None 15661.524 15661.567 2.7 
1507 Conserved hypothetical loss of Met 18220.595 18220.755 8.2 
2697 Nucleoside diphosphate kinase loss of Met 15350.788 15350.993 13.4 
2839 Conserved hypothetical loss of Met 30212.644 30212.891 8.2 
3241 XTP pyrophosphatase loss of Met 22310.208 22310.737 23.7 
3552 Sigma 54 Modulation protein None 11041.774 11041.83 5.1 
3954 Putative periplasmic protein loss of signal peptide 26444.645 26444.688 1.7 
4128 Ribosomal protein L22 None 12070.668 12070.856 15.6 
4133 Ribosomal protein L14 None 13455.401 13455.598 14.6 
4137 Ribosomal protein S8 None 14038.516 14038.809 20.9 
4445 GroES None 10212.546 10212.655 10.7 
4479 Malate dehydrogenase None 32136.139 32136.534 12.3 
4989 Elongation factor TS Deamidation (-NH3)† 30395.759 30396.062 10.0 
5100 DNA Binding protein HU-beta None 9445.081 9445.13 5.2 
5152 Dihydrodipicolinate synthase None 30943.998 30943.659 11.0 
5249 Adenylate kinase None 23093.001 23093.026 1.1 
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the proteins listed in Table 3.5, there were no other possible matches within 30 ppm 

relative to the identified protein.  This implies that accurate molecular mass 

determination, at least for bacterial systems, is a useful tool for protein identification. 

  This list of identified proteins in Table 3.5 is much shorter than that obtained by 

the bottom-up approach, due in large part to the matrix ionization effects associated with 

direct ES-MS of these complex mixtures.  The LC-ES-FT-ICR methodologies discussed 

in the above section on the ribosomal complex were developed after this study.  The 

addition of RP chromatography after the SAX fractionation would have been a very 

useful additional technique.  The combination of SAX and RP separations for intact 

proteins is currently under investigation.  In all probability, most of the proteins in Table 

3.5 represent species that were detected in relatively high abundance in a particular 

fraction, as judged by the amount of sequence coverage observed using the bottom-up 

approach.  High-resolution molecular masses were determined for at least 70 discrete 

species from the FPLC fractions by FT-ICR-MS, but about 50 of these could not be 

matched readily to any protein located in our database.  There are at least three possible 

reasons for the difficulty in easily determining the identities of these species:  1) they 

may represent modified versions of the expressed proteins (signal peptides, other PTM, 

etc.); 2) the protein database may have errors in the predicted gene start sites; or 3) they 

may be due to proteolytic breakdown products.  To further support the protein 

identification procedure, MS/MS experiments were conducted in several cases to obtain 

fragment ions that could be used to verify (or in some cases determine) suspected protein 

identities.  As the rules for protein fragmentation and the methods for fragmentation 

become better developed, this additional piece of structural information will aid greatly in 

identifying “unknown” species.   

  As mentioned previously, one major advantage of using the top-down approach is 

that it provides information on the intact molecular mass of the protein, which may be 

useful in the detection of post-translational modifications or N-terminal processing.  As 

an example, the major component of anion exchange fraction #19 was found by the 

bottom-up approach to be a putative periplasmic protein from an ABC transport system.  

For this particular protein, the bottom-up MS technique was successful at identifying 
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tryptic peptides corresponding to 85% sequence coverage of the protein.  However, when 

a portion of this FPLC fraction containing the intact proteins was analyzed via ES-FT-

ICR-MS, no mass could be found that matched to the in silico average molecular mass of 

this predicted protein at 29,366.7 Da.  Rather, the major component of the fraction was 

found to have a most abundant isotopic molecular mass of 26,444.688 Da.  Inspection of 

the proteins in this FPLC fraction identified by the bottom-up method indicated that this 

putative periplasmic protein was the only species within 1,800 Da in molecular mass to 

this measured value.  Since periplasmic proteins typically are known to have signal 

sequences, the tryptic peptides identified for this protein were examined in more detail.  

Even though 85% of the sequence was identified, there were no peptides from the first 33 

amino acids of the N-terminal end, implying, but not proving, the removal of a signal 

peptide.  Amino acid residues were successively removed from the N-terminus of the 

predicted peptide sequence in an attempt to match the predicted and measured masses.  

When the first 28 amino acid residues (MLNVKSHMKSLLGLVVAASMLTVLPAQS) 

were eliminated, the resulting protein was found to have a theoretical molecular mass of 

26,444.645 Da (this is the most abundant isotope).  This is illustrated in Figure 3.6a-b, in 

which the measured isotopic molecular region (Figure 3.6a) is compared to the calculated 

isotopic molecular region of the truncated protein (Figure 3.6b), based on removal of the 

28-amino acid signal peptide from the protein discussed above.  Note that the expected 

most abundant peaks differ by only 0.043 Da (1.6 ppm).  Additionally, we performed 

MS/MS analysis on the intact protein using the FT-ICR-MS/MS.  An abundant y106 ion 

(charge retained on C-terminus fragment) and a minor b140 ion (charge retained on N-

terminus fragment) completely supported the proposed truncated version of the putative 

periplasmic protein.  Analysis of this putative sequence by the “SignalP” signal sequence 

prediction tool (Nielsen, 1997) predicted that the initial 28 residues corresponded to the 

signal peptide for this particular sequence, in exact agreement with the MS data.  This 

information, summarized in Figure 3.7, clearly illustrates the utility of using data from 

both bottom-up and top-down MS approaches.  

The top-down analyses were also useful in confirming the preliminary protein 

annotation of the S. oneidensis genome.  For example, thioredoxin, a major component of  
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Figure 3.6:  ES-FT-ICR spectra of putative periplasmic protein. 
Comparison of the measured molecular isotopic distribution of the measured ~26,444.7 
Da component (a) with the calculated molecular isotopic distribution of the truncated 
form of gene 3954 (b).  The three most abundant isotopic peaks are labeled in each case.  
The difference in the expected most abundant isotopic peak between the calculated and 
measured values is 0.043 Da (1.6 ppm). 
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Figure 3.7:  Combination of the bottom-up and top-down proteomic analysis. 
Extracts are first fractionated via anion exchange and are then split for proteolytic 
digestion and molecular weight determination.  Analysis of the proteolytic digestion 
products is performed using 1D or 2D LC-MS/MS techniques followed by database 
searching.  The undigested fractions undergo a dialysis step followed by analysis using 
ES-FT-ICR.  By simplifying the fractions via anion exchange and using a 9 tesla magnet, 
increased dynamic range is obtained for intact mass analysis.  In this example, a putative 
periplasmic protein (ABC transporter system) is identified using the bottom-up approach 
and its subsequent signal peptide confirmed via intact mass analysis, use of the SignalP 
program, and MS/MS of the intact protein. 
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anion exchange fraction #22, as determined by bottom-up analysis, was not observed at 

the predicted molecular mass 12789.9 Da in analysis of this fraction by FT-ICR-MS.  A 

major species in this fraction occurring at 11755.306 Da was found to match the 

predicted molecular mass of oxidized thioredoxin within 0.190 Da when the start site for 

translation was shifted to the second Met of the theoretical protein sequence (in the final 

protein mass, this second Met residue was also eliminated).  Clearly, when theoretical 

protein sequences based on genomic data are used for top-down analyses, the fidelity of 

the translational start site is a major issue, and future bioinformatics tools to analyze this 

type of data will need to take this factor into account.   

The largest intact protein for S. oneidensis observed by the top-down MS method 

was measured at 61,058.86 Da.  The most abundant protein (and the only one within 60 + 

10 kDa) in this particular FPLC fraction, as determined by the bottom-up method, was 

fumarate reductase, predicted to have an expressed molecular mass of 62,448.1 Da.  

Since the bottom-up MS technique revealed no other proteins close in mass to this value, 

it is suspected that the measured species corresponds to a truncated version of the 

fumarate reductase subunit.  The presence of multiple heme groups on this protein 

complicates the assignment of an accurate mass value.  Although the exact identity of this 

species has not yet been determined, this is one of the largest intact proteins determined 

to date in a bacterial proteomics approach by FT-ICR based methods.  Furthermore, this 

is one of the key proteins thought to be involved in the metal ion reduction process. 

 

Conclusion 

We have developed and demonstrated an integrated top-down and bottom-up 

technology for the analysis of single proteins (VerBerkmoes, 2002), protein complexes 

(Strader, 2004), and whole proteomes (VerBerkmoes, 2002).  This integrated technology 

has advantages that neither technology currently has on its own.  Namely, the bottom-up 

technique is very good at identifying the majority of proteins in a sample, but not 

providing detailed information on the intact state of those proteins.  The top-down 

technique is currently limited in the identification process, but can provide information 

on the intact state of the protein.  We have demonstrated that with the combination of the 
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two techniques, the data from one set can help guide data mining from the other, and vice 

versa. 

With the current state of technology, it is obvious that the integrated approach 

works well for simple mixtures such as purified proteins and protein complexes.  The 

detailed integrated characterization of the 70S ribosome as a model system is one of the 

most complex protein machines in bacteria as far as shear number of proteins and 

potential modifications.  The clear forward path for this methodology is to test its 

performance with a large number of protein complexes from microbes, such as proteins, 

in the oxidative phosphorylation chain, ATP synthase, the photosynthetic reaction center, 

the nitrogenase complex, and the RubisCO complex, to name just a few.  To fully 

validate the usefulness of the methodology for characterizing protein complexes, it will 

be necessary to test the methodology on a large number of known and unknown protein 

complexes.  The current enrichment of a large number of protein complexes through the 

ORNL Center for Molecular and Cellular Systems: A Research Program for 

Identification and Characterization of Protein Complexes 

(http://doegenomestolife.org/research/ornl.shtml) provides excellent starting materials for 

these types of studies.  While great promise was shown with the 70S ribosome, this 

complex is very easy to purify and many of the proteins are ideal for MS analysis through 

either the top-down or bottom-up approach.  Some of the protein complexes listed above, 

especially ones with a number of membrane embedded proteins, would be far more 

challenging. 

The application of the top-down and bottom-up approach to the characterization 

of whole proteomes is a much greater challenge.  It should be noted that our first 

experimental efforts on whole proteomes came when we were just developing the 

technology, but clearly, the results indicated much developmental work is needed.  While 

it was possible to make discoveries, such as the N-terminal processing point of the 

periplasmic protein, the depth of information was limited.  This is a major challenge for 

the integrated approach.  The first major challenge is the effective separations of intact 

proteins in at least two dimensions.  The first dimension separation must accommodate 

both soluble and insoluble proteins and provide high resolution.  The strong anion 
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exchange method we employed is not effective for separating insoluble proteins and was 

very low resolution.  A potential solution to this problem was introduced by Meng et al. 

2002.  In this study, they introduced the idea of dissolving the proteome in an acid labile 

surfactant and then separating the entire proteome in the first dimension with continuous 

elution electrophoresis.  The acid labile surfactant is then removed by the addition of high 

acid and the proteins are separated in a second dimension by reverse-phase.  As described 

in the characterization of the 70S ribosome, we have successfully integrated reverse-

phase on-line separations with ES-FT-ICR, overcoming this major limitation.   

The second major limitation for the integrated approach is the inability of FT-ICR 

instruments to apply data-dependent isolations and tandem mass spectrometry to intact 

proteins on liquid chromatography time scales.  If this limitation could be overcome, 

more detailed structural information could be obtained from the top-down analysis, 

allowing for more confident protein identifications and PTM analysis, especially for the 

many proteins detected by the top-down technique but not confidently assigned.  One 

potential instrumental advancement that could potentially overcome this problem is the 

recently developed integrated linear ion trap FT-ICR (Syka, 2004).  This instrument has 

been shown to provide rapid data-dependent MS/MS of peptides with high resolution FT-

ICR measurements, but has not been rigorously tested for the analysis of intact proteins.   

The final major limitation for the integrated approach is the necessary proteome 

informatic tools for the analysis of top-down data as well as the integration of the top-

down and bottom-up datasets.  While many laboratories are currently working on 

improving software for bottom-up analysis, very few are working on software for top-

down MS data and even less for integrating the two datasets.  While this is currently an 

active area of research in our laboratories, much work is still needed to develop robust 

and user-friendly algorithms. 

If all of the above limitations can be addressed in the next few years, the impact 

of this integrated top-down/bottom-up technology on the MS-based proteomics field 

could be immense.  This type of technology is absolutely necessary as proteomic 

applications move beyond simply attempting to identify proteins to completely 

characterizing their intact states, including all post-translational modifications, correct 
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start and stop sites, identifying amino acid substitutions, and identifying N-terminal 

processing.  While not important in prokaryotic systems, these techniques may also be 

applied to the very complex problem of accurately determining splice site variants in 

higher order eukaryotes.  
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Chapter 4 

Shotgun Proteomics for the Characterization of the 

Shewanella oneidensis Fur Regulon 
Some of the data presented below has been published as Xiu-Feng Wan, Nathan C. 
VerBerkmoes, Lee Ann McCue, Dawn Stanek, Heather Connelly, Loren J. Hauser, Liyou 
Wu, Xueduan Liu, Tingfen Yan, Adam Leaphart, Robert L. Hettich, Jizhong Zhou, and 
Dorothea K. Thompson.  Defining the Shewanella oneidensis FUR Regulon:  Integration 
of Genome-Wide Expression Analysis, Proteome Characterization, and Regulatory Motif 
Discovery. Journal of Bacteriology (2004), 186, 8385-8400.  All MS sample preparation, 
experiments and data analysis were performed by Nathan C. VerBerkmoes. 
 
*Complete datasets for the microarray and proteomic analyses and other supplementary 
material are available on the web site http://digbio.missouri.edu/~wanx/fur/fur.html 
 

Introduction 

Virtually all microbial systems require iron, which participates in many major 

cellular functions, including respiration, the trichloroacetic acid (TCA) cycle, enzyme 

catalysis, gene regulation, and DNA biosynthesis (for a review, see Andrews, 2003).  

Free Fe(II), however, can be detrimental because of its ability to catalyze Fenton 

reactions and the formation of highly reactive, damaging hydroxyl radicals (Touati, 

2000).  Consequently, the dynamics of intracellular iron concentrations must be precisely 

controlled and managed to prevent iron-induced toxicity due to excessive levels of free 

iron. 

 A diversity of prokaryotic organisms utilizes Fur (the ferric uptake regulator) to 

control iron homeostasis at the level of transcription.  With the large-scale sequencing 

and annotation of numerous microbial genomes, it is apparent that Fur is widely 

distributed throughout the Bacterial domain.  Fur homologs have been reported for a 

variety of bacteria, including Escherichia coli (Hantke, 1987), Vibrio cholerae (Litwin, 

1992), Vibrio anguillarum (Tolmasky, 1994), Neisseria species (Berish, 1993; Thomas 

and Sparling, 1994, 1996), Helicobacter pylori (Bereswill, 2000), Shewanella oneidensis 

MR-1 (formerly Shewanella putrefaciens strain MR-1; Thompson, 2002), to cite just a 

few. 

 In E. coli and other bacteria, Fur is an iron-responsive, homodimeric  
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metalloprotein that complexes with Fe(II) to repress the transcription of genes/operons 

determining siderophore biosynthesis and transport in response to high intracellular Fe(II) 

concentrations (reviewed in Andrews, 2003).  Fur accomplishes the repression of iron-

scavenging systems and genes involved in other iron-related functions by binding to a 

specific sequence element, often referred to as the Fur box, in the target promoters of 

iron-regulated genes, thus effectively blocking transcription by the RNA polymerase 

holoenzyme (Bagg and Neilands, 1987; de Lorenzo, 1987).  In response to iron 

limitation, Fur no longer binds to the operator site, and transcription from target 

promoters resumes (Figure 4.1).  

Thompson et al. have described previously the partial transcriptome analysis of a 

fur insertion mutant of the metal ion-reducing bacterium Shewanella oneidensis MR-1 

using DNA microarrays containing polymerase chain reaction (PCR)-generated 

amplicons corresponding to 691 predicted genes (Thompson, 2002).  Since the 

publication of this study, sequence determination and closure of the S. oneidensis 5-Mbp 

genome was completed by The Institute for Genomic Research (TIGR) (Heidelberg, 

2002), making it feasible to conduct a comprehensive microarray analysis of the 

dynamics of the MR-1 transcriptome in response to physiological perturbations or genetic 

mutations.  S. oneidensis, a facultatively anaerobic γ-proteobacterium, possesses 

remarkably diverse respiratory capacities that have important implications with regard to 

the potential for bioremediation of metal contaminants in the environment.  In addition to 

utilizing oxygen as a terminal electron acceptor during aerobic respiration, S. oneidensis 

can anaerobically respire various organic and inorganic substrates [i.e., fumarate, nitrate, 

chromium, thiosulfate, trimethylamine N-oxide (TMAO), Fe(III), and Mn(III)].  In 

contrast to other bacteria with well-characterized fur genes that utilize iron for 

assimilatory metabolism only, S. oneidensis uses iron for both the biosynthesis of cellular 

enzymes and macromolecules (assimilatory processes) and energy production 

(dissimilatory processes). 

The advent of advanced analytical technologies, in particular DNA microarrays 

and high performance liquid chromatography-tandem mass spectrometry, and 

sophisticated computational methods have enabled a detailed, global characterization of  
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Figure 4.1:  General operation of the ferric uptake regulator (fur) protein. 
Top panel indicates the situation where iron concentrations are high and not limiting.  
The fur protein binds to promoters of iron uptake genes and represses their expression.  
Bottom panel indicates the situation where iron concentrations are low and limiting.  The 
fur protein dissociates from the promoter and iron uptake genes are expressed.    
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microbial cellular processes that have previously been unattainable.  Microarray-based 

genomic technology is a powerful tool for studying gene functions and regulatory 

networks at the transcript level.  On the proteomic level, mass spectrometry has become 

an important tool for establishing the identity of proteins via peptide mass mapping or 

tandem mass spectrometry (see Chapters 1 and 2).  More recently, a “gel-less” method of 

proteome characterization has been developed that combines liquid-based peptide 

separation (liquid chromatography) with high-resolution molecular mass (MS) 

measurements.  This is one of the most promising approaches to overcome some of the 

limitations of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and has 

become quite successful for the identification of large-scale microbial proteomes 

(Washburn, 2001; Lipton, 2002; VerBerkmoes, 2002; Peng, 2003; Corbin, 2003 and 

Chapters 1 and 2).  Previous proteome studies of S. oneidensis with alternate electron 

acceptors such as fumarate, nitrate, or Fe(III) (Beliaev, 2003) and the fur mutant 

(Thompson, 2002) have failed to identify many of the Fe(III) transports and TonB-

dependent receptors/transporters that were predicted to be up-regulated under these 

conditions.  Furthermore, microarray analyses confirmed up-regulation of these genes at 

the transcript level.  The previous studies were all carried out with 2D-PAGE-MS, which 

has known limitations in identifying membrane-bound proteins such as transporters and 

receptors.  Thus, the major goal of the proteomics efforts discussed below is to determine 

if proteins predicted to be up-regulated by the microarray data could be confirmed 

through proteome analysis by LC-MS/MS (Figure 4.2).   

 A quantitative comparison of different microbial growth states is currently a 

serious challenge for MS-based proteomics efforts.  This is mainly due to detection 

biases, which can arise due to differential protein extraction, matrix effects in the 

ionization processes, and biases in digestion and sample clean up.  While great effort has 

been put forth into relative quantitation of proteins between different growth states using 

technologies such as isotope coding affinity tags (ICAT) (Gygi, 1999), metabolic labeling 

(Oda, 1999; Paša-Tolic, 1999), and 18O water labeling (Yao, 2001) none of these 

techniques clearly solve the problem of relative quantitation between two samples. 

Specifically, the ICAT technology requires the labeling of cysteine residues, which are  
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Figure 4.2:  Comparison of microarray and proteome data. 
Depicts general concept of comparing microarray and MS-based proteomics data.  In this 
study the WT and fur mutant strain of S. oneidensis were prepared under aerobic 
conditions and analyzed by the two separate methodologies and compared.     
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not very prevalent in microbial systems when compared with eukaryotic systems.  

Indeed, ~60% of the R. palustris predicted proteome contains 2 or less cysteines per 

protein and 20% contains no cysteines at all (Chapter 1).  Metabolic labeling with 15N has 

shown the most promise in microbial systems (Lipton, 2002; Washburn, 2002), but 

requires strict control of nitrogen intake.  Indeed, many microbial species cannot be 

cultivated under conditions where strict control of nitrogen intake is required.  We have 

not currently been able to grow S. oneidensis under strict metabolic conditions allowing 

for nitrogen labeling.  Labeling peptides during trypsin digestion with 18O water is a 

potential alternative approach (Yao, 2001) but the expense involved in labeling the 

number of samples used in this study and the need for high-resolution mass spectrometers 

limits its use for large-scale proteome comparisons (these types of instruments that are 

capable of high mass resolution measurements as well as data-dependent MS/MS 

analysis were not available to us for this study).  Below we will discuss a potential 

alternative to exact quantitation for determining proteins showing large-scale differences 

between the wild-type (WT) and fur mutant in aerobically grown S. oneidensis samples.     

  

Materials and Methods 
 

Chemicals and reagents 

Unless otherwise stated, chemical reagents were obtained from Sigma Chemical 

Co. (St. Louis, MO).  Modified sequencing grade trypsin from Promega (Madison, WI), 

was used for all protein digestion reactions.  The water and acetonitrile used in all sample 

clean up and HPLC applications was HPLC grade from Burdick & Jackson (Muskegon, 

MI) and the 98% formic acid used was purchased from EM Science (Darmstadt, 

Germany).  

 

Microarray analysis 

All experimental details of the microarray analysis were conducted by the 

Thompson group and can be found in Wan et al. 2004.  While the microarray work is 
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referred to in the comparison to the proteome data below, this was not the focus of this 

section of this dissertation and thus, is not included. 

 

Preparation of whole cell lysates and protein extraction for proteome analysis 

  For HPLC-MS/MS analysis, S. oneidensis parental and FUR2 strains were grown 

in 1 L cultures (a total of 2 L/strain) under aerobic conditions, pelleted by centrifugation, 

washed twice in ice-cold 50 mM Tris pH 7.5, and stored at  –80°C until analysis.  For 

protein extraction, cell pellets were resuspended in ice-cold 50 mM Tris pH 7.5 and 

disrupted by sonication.  Unbroken cells were pelleted by centrifugation (5,000 g × 15 

min) and the suspension of membrane and soluble proteins was aliquoted into 1 ml tubes 

and frozen at –80oC until analyzed.  For all LC-MS/MS analyses, aliquots of wild-type 

and FUR2 samples were quantitated for total protein amount using the BCA protein assay 

reagent (Pierce Biotechnology, Inc., Rockford, IL).  Equal protein quantities of each 

sample were denatured with 6 M guanidine and 5 mM DTT at 60°C for 1 h and then 

diluted in 50 mM Tris (pH 7.5)/ 5 mM CaCl2 to obtain a final guanidine concentration of 

1 M.  Sequencing grade trypsin (Promega, Madison, WI) was added at 1:100, and 

digestion reactions were run for 16 hours.  Trypsin was added a second time at 1:100 and 

digestion was run for another 6 hours, followed by a final reduction step with 10 mM 

DTT for 1 h.  Samples were immediately desalted with a C18 Sep-Pak (Waters, Milford, 

MA) and concentrated using a centrifugal evaporator (Savant Instruments, Holbrook, 

NY) to ~10 µg/µl and filtered to remove insoluble material.  For equivalent LC-MS/MS 

analysis (see below), great care was taken to load equal quantities of wild-type and 

mutant samples onto the LC-MS/MS system. 

 

LC-MS/MS and data analysis 

Proteomes of WT and fur mutant were analyzed by three different shotgun LC-

MS/MS techniques: 1D LC-MS/MS with 5 injections and 5 m/z ranges scanned, 2D LC-

MS/MS with 1 injection and 1 m/z range scanned, and 2D LC-MS/MS with 2 injections 

and 2 m/z ranges scanned (as explained below).  Although the use of multiple injections 

consumes more sample and more instrument time, this technique permits a more detailed 
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measurement of each portion of the mass spectrum, thereby enhancing the detection 

capabilities of the mass spectrometer due to relaxed dynamic range considerations (see 

chapter 2 for details).  For example, the 1D LC-MS/MS with 5 injections and 5 m/z 

ranges scanned provides a significantly larger number of peptides detected than a 1D LC-

MS/MS experiment involving 1 injection and 1 m/z range scanned (or in fact 5 injections 

and 1 m/z range scanned in each run).  

One-dimensional LC-MS/MS experiments were performed with an UltiMate 

HPLC (LC Packings, a division of Dionex, San Francisco, CA) coupled to an LCQ-

DECA ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with an 

electrospray source.  Injections were made with a Famos (LC Packings) autosampler onto 

a 50 µl loop.  Peptides were injected onto a VYDAC 218MS5.325 (Grace-Vydac, 

Hesperia, CA) C18 column (300 μm i.d. × 25 cm, 300 Å with 5 μm particles) at a flow 

rate of 4 µl/min and separated over 240 minutes from 95% H2O/ 5% ACN/ 0.5% formic 

acid to 30% H2O/ 70% ACN/ 0.5% formic acid.  Peptides were eluted directly into an 

electrospray source (Thermo Finnigan) with 100 μm i.d. fused silica.  For all 1D 

LC/MS/MS data acquisition, the LCQ was operated in the data-dependent mode, where 

the top four peaks in every full MS scan were subjected to MS/MS analysis.  Dynamic 

exclusion was enabled with a repeat count of 1 and exclusion duration of 1 minute.  Five 

separate 50 µl injections of each sample were made and five segmented m/z ranges were 

scanned to increase total proteome coverage.   

Two-dimensional LC-MS/MS experiments were performed on a 2D HPLC 

system (LC Packings) coupled to an LCQ-DECA ion trap MS equipped with a Finnigan 

nanospray source.  Sample and salt (ammonium acetate) injections are made with the 

Famos autosampler onto a LC Packings SCX column (500 μm i.d. × 15 mm), which sits 

on Valve A of the Switchos system.  Peptides that elute from the SCX column are 

captured on an LC Packings precolumn (300 μm i.d. × 5 mm, 300 Å PepMap) on valve 

B.  After desalting on the precolumn, the precolumn flow was switched in-line with a 

nano resolving column VYDAC 218MS5.07515 C18 (75 μm i.d. × 15 cm, 300Å with 5 

μm particles) connected directly to a nanospray source (Thermo Finnigan).  After the 

injection and each subsequent salt step, a reverse-phase gradient was run for 160 minutes 
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to elute peptides into the mass spectrometer (same solvent system as above).  The mass 

spectrometer was operated as described above except a dynamic exclusion repeat count 

of 2 was employed.  For the 1 m/z range experiment, one 50 µl injection of each sample 

was made with 1 m/z range scanned (400-2000 m/z) and 11 salt steps ranging from 20 

mM ammonium acetate to 2 M ammonium acetate.  For the 2 m/z range experiment, a 50 

µl injection was made followed by 8 salt bumps with the mass spectrometer scanning 

from 400-1000 m/z.  A second 50 µl injection was then made followed by 8 salt bumps 

with the MS scanning from 990m/z-2000 m/z. 

The resultant MS/MS spectra from each LC-MS/MS analysis were searched with 

SEQUEST (Thermo Finnigan) against all predicted proteins from the S. oneidensis TIGR 

annotation (Heidelberg, 2002) plus predicted proteins from the ORNL annotation.  

ORNL annotation methods use three different genome modeling programs:  Glimmer 

(Delcher, 1999; Salzberg, 1998), Critica (Badger and Olsen, 1999), and Generation 

(http://compbio.ornl.gov/generation/).  The results from all three algorithms are 

combined, followed by an automated resolving of overlapping genes, creating a final 

gene list.  The database for proteome analysis was prepared by identifying those protein 

sequences identified by the ORNL team which were not included in the published TIGR 

protein translation files and appending these proteins to the TIGR database (M. Land, L. 

Hauser, and F.W. Larimer, personal communication).  The raw output files were filtered 

and sorted with DTASelect (Tabb, 2002) (DelCN of at least 0.8 and Xcorrs of at least 1.8 

[+1], 2.5 [+2], and 3.5 [+3]) and the three WT and FUR2 analyses were compared with 

Contrast (Tabb, 2002).  A list was made of all proteins showing significant change of at 

least 30% sequence coverage and/or 4 or more unique peptides between the WT and Fur 

sample in all three replicate analyses. 

 

Results 

 

Transcriptome analysis 

All experimental results of the microarray analysis were conducted by the 

Thompson group and can be found in Wan et al. 2004.  While the microarray work is 
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referred to in the comparison to the proteome data below, this was not the focus of this 

section of this dissertation and thus is not included. 

 

Proteome analysis of a fur deletion mutant 

Whole-cell lysates of the S. oneidensis wild-type and FUR2 strains were digested 

with trypsin and analyzed by three similar “shotgun” LC-MS/MS methodologies: 1-

dimensional LC-MS/MS with multiple mass range scanning (VerBerkmoes, 2002), 2-

dimensional LC-MS/MS with a single m/z range, and 2-dimensional LC-MS/MS with 

two m/z ranges.  The proteomes of the wild-type and FUR2 strains were compared by 

using qualitative analysis of percent (%) sequence coverage and the number of peptides 

identified in replicate “shotgun” LC-MS/MS analyses.  To determine the level of 

variation in a single sample, the wild-type S. oneidensis proteome was analyzed in four 

separate experiments using 1D-LC-ES-MS/MS with multiple mass range scanning.  It 

was determined that a change of sequence coverage of 30% and/or 4 or more unique 

peptides was an appropriate cut-off to determine if a protein had a significant change in 

concentration between two samples above general experimental variation (N. 

VerBerkmoes, unpublished data).  The resultant MS/MS spectra were then searched with 

SEQUEST (Eng, 1994) and filtered with DTASelect (Tabb, 2002) using a conservative 

filtering technique (fully tryptic ends with cross-correlations [Xcorrs] of 1.8 for singly-

charged ions [+1], 2.5 for doubly-charged ions [+2], and 3.5 for triply-charged ions [+3]).  

Conservative filters were selected for unambiguous protein identification; however, it is 

important to note that some true proteins are not identified in this scheme.  

Table 4.1 presents the number of proteins identified from each experiment, the 

total amount of protein loaded onto the system, and the average % sequence coverage per 

protein.  While the total number of proteins identified per analysis changed dramatically, 

the average % sequence coverage did not.  We found this variation was due mainly to a 

large number of proteins identified with 1-2 peptides per protein; variations of this type 

were not considered in the final analysis.  The three analyses for the wild-type and mutant 

were compared with the Contrast software, and the protein table was manually evaluated 

to determine proteins that showed reproducible changes above the stated cutoffs.  The  
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Table 4.1:  Total proteins identified by experiment. 

Proteome Methoda Total protein 
loaded 

No. of proteins 
identifiedb 

Average sequence 
coverage (%) 

      1D_5m/z 5.0 mg 490 19.78 
2D_1m/z 0.5 mg 765 17.95 FUR2 
2D_2m/z 1.0 mg 807 18.39 
1D_5m/z 5.0 mg 555 21.90 
2D_1m/z 0.5 mg 611 18.13 WT 
2D_2m/z 1.0 mg 673 18.20 

         Total N/A 1104c 19.06d 
 

aThree different methods were used to analyze the proteomes of the fur deletion mutant 
(FUR2) and wild-type S. oneidensis strains:  (i) 5 m/z refers to a five-part 1D-LC-MS/MS 
experiment, which involved 5 injections with 4 segmented m/z ranges and 1 full m/z 
range; (ii) 1 m/z refers to a single 2D-LC-MS/MS experiment that involved one injection 
and 11 subsequent salt steps analyzed by MS; and (iii) 2 m/z refers to two 2D-LC-
MS/MS experiments, which included two injections each with 8 subsequent salt steps 
analyzed by MS over two m/z ranges.  
bAt least 1 peptide per protein was detected with an Xcorrs of at least 1.8 (+1), 2.5 (+2), 
and 3.5 (+3). 
cSum of the number of non-redundant proteins identified for both WT and FUR2 
samples. 
dAverage of sequence coverage per protein detected. 
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entire proteome dataset is provided in Supplementary Table S2 

(http://digbio.missouri.edu/~wanx/fur/fur.html).  We then compiled the list of proteins 

and compared it with the transcriptome data (Table 4.2).  In general, the results showed 

that the microarray expression data correlated well with the proteomics data for genes 

showing large-scale differences at the level of transcription. 

 

Correlation between transcriptome and proteome data 

A total of 30 proteins from the 1,104 proteins comprising the proteome dataset 

passed the base criteria of a reproducible change of at least 30% sequence coverage 

and/or 4 unique peptides.  Of those 30 proteins, the expression patterns for 13 protein 

species correlated very well with the gene expression data, while 12 proteins determined 

to have large-scale changes in abundance by LC-MS/MS analysis did not show any 

significant change at the mRNA level, and 2 proteins showed an inverse correlation 

between microarray data and proteome data.  Two proteins (encoded by SO2304 and 

SO4422) identified by proteomic analysis as showing significant changes in abundance 

were originally annotated as pseudogenes and thus not included on the microarray slides.   

 

Genes showing strong correlation between microarray and LC-MS/MS analysis   

Of the 13 proteins showing good correlation between proteome data and 

microarray data, 11 were up-regulated and 2 were down-regulated in the fur deletion 

mutant relative to the parental strain.  Of the 11 up-regulated proteins, 7 proteins 

(SO1482, SO1580, SO3669, SO3914, SO4516, SO4523, and SO4743) were annotated as  

transporters or receptors involved in siderophore-mediated iron uptake.  This is 

significant because none of these proteins were identified in the previous study 

employing 2D-PAGE analysis (Thompson, 2002) and points to the advantage of LC-

MS/MS techniques for detecting transport/binding proteins.  Furthermore, this subset of 

proteins showed the largest fold changes in expression, with many being represented by 

10 or more unique peptides in FUR2 and either 0 or 1 peptide in the wild-type.  The 

genes encoding these 7 proteins also displayed large-scale differences (>5-fold 

induction) in expression, with the exception of two genes (SO1580 and SO3914), which  
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Table 4.2:  Comparison of transcriptome and proteomics data. 

Proteomics Microarray 
Fur WT Mean ORF  Gene Product 

Peptides Peptides (FUR2/WT) 
UP-Regulated in Fur 

SO0314 ornithine decarboxylase, inducible 20 8 0.41 
SO0401 alcohol dehydrogenase, zinc-containing 14 1 N/A 

SO0442 phosphoribosylaminoimidazolecarboxamide 
formyltransferase/IMP cyclohydrolase 9 1 0.92 

SO0453 peptidyl-prolyl cis-trans isomerase FkbP 4 0 1.17 
SO0520 heavy metal efflux pump, CzcA family 6 1 0.77 
SO0798 conserved hypothetical protein 9 0 26.7 
SO0958 alkyl hydroperoxide reductase, C subunit 10 1 0.5 
SO1190 conserved hypothetical protein 13 3 15.47 
SO1482 TonB-dependent receptor, putative 22 0 26.81 
SO1580 TonB-dependent heme receptor 12 1 2.48 
SO2001 5'-nucleotidase (ushA) 8 2 1.11 
SO3667 conserved hypothetical protein 10 1 59.66 
SO3668 conserved hypothetical protein 3 0 37.5 
SO3669 heme transport protein (hugA) 30 7 25.45 
SO3914 TonB-dependent receptor, putative 16 4 2.83 
SO4133 uridine phosphorylase (udp) 6 3 0.75 
SO4516 ferric vibriobactin receptor (viuA) 8 0 8.21 
SO4523 iron-regulated outer membrane virulence protein 34 4 5.61 
SO4743 TonB-dependent receptor, putative 19 1 26.2 
SO2304 alanine dehydrogenase 9 1 N/A 
SO4422 TonB-dependent receptor, iron-siderophore 11 2 N/A 
SO4422 Similar to ferric aerobactin receptor 8 0 N/A 
SO1377 conserved hypothetical protein 0 15 1.47 

Down-Regulated in Fur 
SO1778 decaheme cytochrome c (omcB) 0 11 0.19 
SO1779 decaheme cytochrome c (omcA) 0 6 0.17 
SO2363 cytochrome c oxidase, cbb3-type, subunit II 2 8 0.94 
SO2907 TonB-dependent receptor domain protein 4 28 1.32 
SO3733 hypothetical protein 0 12 0.94 
SO4077 TonB-dependent receptor, putative 0 8 0.97 

SOA0048 prolyl oligopeptidase family protein 0 7 1.24 
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exhibited only a 2- to 3-fold increase in mRNA abundance. 

Three conserved hypothetical proteins (SO1190, SO3667, and SO3668) were 

highly up-regulated in the fur deletion mutant and found to have good correlation 

between the gene and protein expression data.  SO3667 and SO3668 appear to be 

organized in an operon with SO3669 (heme transport protein, hugA), which was also 

identified as being up-regulated in FUR2 by both microarray and LC-MS/MS analysis.  It 

should be noted that the protein species encoded by gene SO3668 was only detected with 

3 peptides in the FUR2 strain compared with 0 in the wild-type and thus did not meet our 

criteria for acceptance for the proteome data.  However, this protein was included in 

Table 4.2 because of its location in a probable operon with SO3367 and SO3669 and its 

apparent co-regulated expression (37.5-fold change) as identified by microarray analysis.  

Sequence analysis of gene product SO3668 revealed that the first half of the protein 

contains no trypsin cleavage sites, which possibly explains why fewer than 4 unique 

peptides were detected for this protein by the LC-MS/MS method.   

Gene SO0798 was clearly identified as being up-regulated in the fur deletion 

mutant.  A total of 9 peptides were detected in FUR2 compared with no peptides 

identified in the WT sample.  Microarray analysis indicated the same up-regulation with 

an expression ratio (FUR2/WT) of 26.7.  The public annotation (Heidelberg, 2002) for 

this gene is a conserved hypothetical but an alternative annotation performed at Oak 

Ridge National Laboratory (ORNL; see discussion below) identified this gene as having 

sequence similarity to a TonB-dependent receptor.  The proteomic data provide 

preliminary evidence that this gene may indeed be a TonB-dependent receptor related to 

iron or other heavy metal uptake. 

Two proteins (SO1778 and SO1779) showed substantial down-regulated 

expression in the fur mutant as identified by both DNA microarray and LC-MS/MS 

analysis.  The genes omcA (SO1779) and omcB (SO1778) encode decaheme c-type 

cytochromes that are putative outer membrane lipoproteins and are likely involved in the 

complex multicomponent branched electron transport system of S. oneidensis. Previous 

studies suggest a role of OmcA and OmcB in the reduction of Mn(IV) by S. oneidensis 

(Myers and Myers, 2001). 
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Genes showing significant expression changes by proteomic analysis but not by 

microarray analysis 

  Of the 30 proteins identified as changing by proteomic analysis, 12 showed no 

substantial differences in mRNA levels by microarray hybridization.  Six of these 

proteins were up-regulated in the FUR2 strain and 6 were down-regulated as determined 

by LC-MS/MS analysis.  SO0520, annotated as a heavy metal efflux pump protein, was 

identified with 6 peptides in the fur mutant sample with only 1 peptide in the wild-type 

sample, but the sequence coverage in both cases was very low due to the large size of the 

protein.  Both SO2907 and SO4077 encode putative TonB-dependent receptors and 

showed a significant decrease in protein abundance in FUR2 compared with the WT.  For 

SO2907, 28 peptides were detected in the wild-type sample compared to only 4 in the fur 

mutant, whereas 8 peptides for SO4077 were detected in the WT compared with 0 in 

FUR2.  In both cases, the microarray data did not correspond to the proteomics data.  The 

other 8 proteins showed significant changes at the protein level and were of unknown 

function or had putative functions in energy metabolism, protein folding and 

stabilization, or the biosynthesis of purines, pyrimidines, nucleosides, or nucleotides.  For 

example, SO1377 (conserved hypothetical protein) had 15 peptides detected in the wild-

type sample with none detected in the FUR2 analysis.  Furthermore, this protein was 

repeatedly detected in our baseline proteome analysis of S. oneidensis in a previous study 

(VerBerkmoes, 2002).  Another hypothetical protein, SO3733, was detected repeatedly in 

the WT with a total of 12 unique peptides but was never detected in the FUR2 strain.  

This protein was also repeatedly detected in our previous study of the WT strain 

(VerBerkmoes, 2002).  While the protein and mRNA levels do not seem to correlate for 

these two genes, their unknown function and the fact that they are not expressed at a 

detectable level in the protein samples for the fur mutant make them interesting cases for 

further study.               

     

Genes showing inverse correlation between proteome data and microarray analysis 

 Of the 30 genes identified by LC-MS/MS as showing significant change in 

protein abundance, only two had inverse correlation with the microarray data.  Proteins 
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encoded by SO0314 (ornithine decarboxylase) and SO0958 (alkyl hydroperoxide 

reductase, C subunit) were both found to be significantly up-regulated in the proteome of 

FUR2.  Both, though, were found to be down-regulated in the fur mutant sample by 

microarray analysis with FUR2/WT ratio values of 0.41 (SO0314) and 0.50 (SO0958). 

 

Verified expression of proteins from pseudogenes 

A protein sequence database based on the S. oneidensis MR-1 genome was 

constructed from two sources for our proteomic studies.  This database included 4,778 

protein sequences from the TIGR annotation (http://www.tigr.org/; Heidelberg, 2002), 

plus an additional 355 protein sequences provided by the Genome Analysis and System 

Modeling Group in the Life Sciences Division at ORNL.  These 355 additional sequences 

consisted largely of the protein translations of ORFs annotated as pseudogenes by TIGR; 

putative or partial translations of pseudogenes are not typically included in protein 

databases released by genome projects.  

Proteome analysis of the S. oneidensis FUR2 and WT strains revealed that 9 

ORFs (see Supplementary Table S3 online) previously annotated as pseudogenes were 

expressed and detected with high confidence (i.e., at least two unique peptides identified 

per protein).  However, many more proteins were detected with single-peptide 

identifications.  Of particular interest were the following two genes that were found to be 

highly expressed in the fur mutant but not in the wild-type strain:  SO2304, annotated as 

an alanine dehydrogenase with an authentic point mutation; and SO4422, annotated as a 

siderophore receptor gene with one or more frameshifts (Table 4.2).  Interestingly, the 

ORNL annotation predicted two ORFs in place of SO4422:  a TonB-dependent 

receptor/iron siderophore receptor and a ferric aerobactin receptor.  The protein products 

for these genes were easily identified in FUR2 (8 or more peptides) but were either 

detected at very low levels or not at all in the wild-type strain (2 or fewer peptides).   

Transcript expression data were not generated for these genes because pseudogenes were 

not included in the fabrication of S. oneidensis whole-genome microarrays.  

The remaining 7 proteins identified showed no significant difference in sequence 

coverage or the number of peptides detected between the FUR2 and WT strains.  These 



 125

genes are still of interest due to the fact that the proteomics data verify their expression 

despite the apparent frameshifts and/or point mutations identified in the genome sequence 

that resulted in their annotation as pseudogenes.  These 7 proteins are encoded by 

SO0590, annotated as a phosphatidylserine decarboxylase (ORNL gene 700, identified 

with a total of 41.2% sequence coverage and 5 unique peptides); SO3130, a glutamate 

tRNA synthetase catalytic subunit (ORNL genes 1951 and 1952, 16.9% coverage with 2 

peptides, and 24% coverage with 2 peptides, respectively); SO2937, a putative ribosomal 

large subunit pseudouridine synthase (ORNL gene 2085, 9.6% coverage and 2 peptides); 

SO2756, a probable peroxidase (ORNL gene 2202, 81.4% coverage and 12 peptides); 

SO3798, a hypothetical protein (ORNL gene 3461, 18.7% coverage and 2 peptides); 

SO1211, peptide chain release factor 3 (ORNL gene 4738, 12% coverage and 2 

peptides); and SO1900, a putative acyl-CoA synthetase (ORNL gene 5161, 11.8% 

coverage and 3 peptides).  In light of these findings, we examined these genes in more 

detail.  Of primary interest is SO4422, initially identified as a pseudogene by TIGR, and 

as two proteins in the ORNL annotation due to a frameshift in the middle of the gene.  

Proteome analysis clearly revealed the expression of the intact gene product, since 

numerous peptides were detected from before and after the frameshift.  The question this 

poses for SO4422, as well as others in this list, is how these genes are being expressed 

when sequence data indicate that they are likely pseudogenes with premature stops or 

frameshifts.  SO1900 and SO3789 seem to be intact, despite their original annotation as 

pseudogenes; while for the remaining genes listed above the most likely explanation may 

be sequencing errors in the final compiled genome DNA sequence or differences between 

the sequenced strain and individual laboratory strains.  These new findings emphasize the 

value of using proteomic analyses to verify genome annotations and suggest that it may 

be useful to provide, in some form, potential protein translations of pseudogenes for 

proteome analyses.  While proteome methodologies do not generally give a definitive 

reason for a difference, they are very good at identifying potential differences between a 

published genome and the actual genome of the strain the individual laboratory is using. 
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Conclusions 

 With the complete sequencing of numerous microbial genomes, the next 

challenge is to verify the annotated functions and to determine the biological roles of 

functionally undefined genes by using integrative experimental approaches.  In this study, 

we used targeted mutagenesis, genome-wide expression profiling, and MS-based 

proteome analysis to characterize the S. oneidensis Fur regulon.  This present study 

builds upon and substantially expands a previous investigation of an S. oneidensis fur 

homolog (Thompson, 2002) by providing a comprehensive description of the Fur 

regulon.  In addition, proteomic verification of the recent genome-wide prediction of 

proteins in S. oneidensis was provided for a large number of genes and led to the 

identification of protein products of previously annotated pseudogenes. 

 In addition to genomic structural analysis and transcriptomic viewing through 

array technologies, proteomic analyses constitute an important component of functional 

genomic studies because they enable the most essential level of gene expression to be 

visualized.  Recently, S. oneidensis has been the focus of a number of proteome studies of 

different magnitudes that employed various technologies (Beliaev, 2002b; Devresse et al, 

2001; Giometti, 2003; Mohan, 2003; Thompson, 2002; Vanrobaeys, 2003; VerBerkmoes, 

2002).  In one of our previous studies, a fur insertional mutant (FUR1) of S. oneidensis 

was compared with the wild-type strain using two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE), followed by micro-liquid chromatography-electrospray 

ionization tandem mass spectrometry (micro-LC-ESI-MS/MS) (Thompson, 2002).  While 

this analysis revealed 11 major protein species exhibiting significant changes in 

abundance between the wild-type and fur mutant, only two of these proteins were from 

the expected class of transport/binding proteins, and many of the proteins showing large-

scale differences in expression at the mRNA level by DNA microarray analysis were not 

identified.  This may be due to the fact that typical 2D-PAGE methods have difficulty in 

capturing small proteins, proteins with widely ranging isoelectric points, and a large 

proportion of membrane-associated proteins.  To extend the protein identification to a 

more comprehensive level, we analyzed whole proteomes of aerobically grown wild-type 

and fur deletion strains by gel-less qualitative “shotgun” MS proteomics.  This method is 
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very useful in rapidly determining large-scale protein differences between two samples 

but cannot identify exact fold changes and is insufficient at detecting small changes in 

protein abundance.  Variations of this qualitative methodology to determine changes in 

protein expression without isotopic labels have recently been proposed (Chelius, 2002; 

Gao, 2003).  While these newer methodologies may show the potential of giving more 

exact quantification, this was not the major point of our study.  Rather, we were 

interested in identifying proteins (mainly transporters, receptors and binding proteins) 

predicted to be up-regulated in the fur deletion mutant by microarray analysis but yet to 

be clearly identified by proteome analysis.  Thus, we employed a very simple method to 

screen for proteins showing large differences in protein amounts between the two 

samples by percentage sequence coverage and number of peptides found across a 

triplicate measurement using three similar LC-MS/MS techniques. 

 While it would have been preferable to analyze the two S. oneidensis strains with 

a more quantitative technique such as isotope-coded affinity tags (ICAT) (Gygi, 1999) or 
15N metabolic labeling (Oda, 1999; Pasa-Tolic, 1999) this was not possible due to the 

limitations of these technologies.  For example, ICAT technology involves labeling 

cysteine residues in proteins with either a heavy or light label, which then allows for 

accurate quantification of the peptides/proteins by “shotgun” LC-MS/MS.  While this 

methodology is very useful for proteomic analysis of eukaryotic systems, it becomes less 

global for prokaryotic systems, where the average number of cysteine residues per 

protein is approximately half that found in eukaryotic systems.  In S. oneidensis, the 

average number of cysteine residues per protein is 3.1 compared with 6.2 in the yeast 

Saccharomyces cerevisiae.  Furthermore, 19% of the S. oneidensis predicted proteome 

contains 0 cysteine residues, 18% have 1 cysteine residue, and 16% have 2 cysteine 

residues, making it impossible to obtain multiple (three or more) quantitative tryptic 

peptide measurements of ~50% of the predicted proteome. While metabolic labeling via 
15N can be very effective for quantitation in microbial species since every peptide will be 

labeled, in this study, the microarray experiments were conducted with cells grown in LB 

media.  To coordinate with the microarray data, the proteome studies were conducted 

with the same samples, which precluded the use of a defined growth media.   
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Replicate whole-proteome analysis of aerobically grown WT and FUR2 strains 

resulted in the identification of a total of 1,104 proteins from both.  Proteins showing 

dramatic changes in abundance (4 or more unique peptides and/or 30% sequence 

coverage) were highlighted for comparison with the microarray data (Table 4.2).  Of 

those induced genes likely to be members of the Fur regulon based on microarray and 

motif identification data, proteins encoded by SO0798 (conserved hypothetical protein), 

SO1190 (conserved hypothetical protein encoded by the SO1188-89-90 operon), SO1482 

(putative TonB-dependent receptor), SO1580 (TonB-dependent heme receptor), SO3669 

(heme transport protein, HugA, part of the SO3669-68-67 operon), SO4516 (ferric 

vibriobactin receptor, ViuA), SO4523 (iron-regulated outer membrane virulence protein, 

IrgA), and SO4743 were identified by LC-MS/MS and showed significantly greater 

abundance levels in FUR2.  Expression of two conserved hypothetical proteins, encoded 

by genes SO3667 and SO3668, was also up-regulated in the FUR2 strain as demonstrated 

by LC-MS/MS analysis.  Genes SO3667 and SO3668 are arranged together in a probable 

operon with hugA (SO3669) and their deduced protein products are predicted to be 

soluble based on the complete absence of transmembrane helices.  In this case as well, 

the in vivo abundance levels of these conserved hypothetical proteins were consistent 

with the observed increases in mRNA expression for the corresponding genes.  

 Other proteins detected in the large-scale proteome analysis had abundance levels 

that inversely correlated with the transcriptome data (Table 5).  An ornithine 

decarboxylase (SO0314), a heavy metal efflux pump (SO0520), alkyl hydroperoxidase 

reductase (SO0958), and uridine phosphorylase (SO4133), for example, showed 

increased abundance in FUR2, while their corresponding transcript levels were slightly 

down-regulated as identified by microarray hybridization.  While this lack of one-to-one 

correlation between the proteomics and microarray data may be somewhat surprising, it 

is important to keep in mind that protein stability, modifications, and/or turnover may 

alter the protein abundances expected from the microarray data (Pratt, 2002; Eymann, 

2002; Corbin, 2003).  In addition, it is not clear why the expression of these proteins 

would be affected by a fur deletion, although differences in their expression may be 

related more to the cell’s attempt to cope with high intracellular iron levels in the absence 
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of a functional Fur regulator.  The inconsistencies between the transcriptome and 

proteome datasets emphasize the importance of investigating gene expression from the 

perspectives of both transcription and translation to account for the different levels of 

regulation possible in prokaryotes.  A significant finding to emerge from the proteomic 

analysis was the identification of protein products encoded by genes originally annotated 

in the S. oneidensis MR-1 genome published by Heidelberg et al. 2002, as having 

authentic point mutations or frame shifts, (i.e., as pseudogenes).  The direct identification 

of these genes at the protein level confirms their existence. 

A noteworthy observation was the significant repression of OmcA (SO1779) and 

OmcB (SO1778) in the fur deletion mutant by DNA microarray analysis and proteome 

analysis.  Both genes encode a decaheme cytochrome c.  Cytochromes OmcA and OmcB 

contain c-type hemes and are localized to the outer membrane of S. oneidensis (Myers 

and Myers, 1992).  A study by Myers and Myers 2001, indicated a role for OmcA and 

OmcB in the anaerobic reduction of MnO2 by S. oneidensis.  Recently, evidence that 

these outer membrane cytochromes are cell-surface exposed suggests that OmcA and 

OmcB may directly contact extracellular metal oxides at the cell surface (Myers and 

Myers, 2003).  In cells harboring a fur deletion mutation, expression of omcA was 

repressed 5.9-fold and 4.8-fold under aerobic and anaerobic respiratory conditions, 

respectively (Wan, 2004).  Similarly, OmcB, which resides immediately downstream of 

OmcA on the genome, exhibited a 5.3-fold and 4.0-fold reduction in mRNA abundance 

under the two growth conditions tested.  The decrease in omcA and omcB expression at 

the transcript level positively correlated with the apparent absence of the OmcA and 

OmcB proteins in FUR2 under aerobic growth conditions.  Other than cytochrome c 

oxidase (SO2363), these were the only cytochromes showing significant changes in 

protein abundance based on LC-MS/MS analysis.  Very little is known about the 

expression and regulation of OmcA and OmcB, with the exception that OmcA showed 

increased expression in S. oneidensis cells exposed to a shift from aerobic growth to 

anaerobic growth in the presence of fumarate, Fe(III), or nitrate (Beliaev, 2002b). 

In conclusion, we have used a combination of genomic expression profiling and 

high-resolution proteomic analysis using LC-MS/MS to define the Fur regulon in the 
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dissimilatory metal-reducing bacterium S. oneidensis.  Fur functions primarily as a 

negative regulator of siderophore/receptor-mediated iron transport in S. oneidensis, 

although a deletion mutation in fur had pleiotropic effects on gene expression.  The 

proteome analysis clearly indicated the up-regulation of numerous transporters and 

receptors with potential function in heavy metal and siderophore uptake under the fur 

deletion mutant.  The up-regulation of these proteins corresponded well with microarray 

data.  Four conserved hypotheticals were clearly up-regulated in the fur deletion mutant 

and their up-regulation was confirmed at the transcript level.  The proteins are high 

quality candidates for future functional studies such as gene knockouts, interaction 

analysis, and metal transport uptake assays.  Finally, our studies implicate Fur as an 

activator of omcA and possibly omcB transcription and translation, although further 

experiments are needed to confirm this hypothesis and to determine the exact function of 

these proteins. 

    

 

 

 

 

 

 



 131

Chapter 5 

Determination of the Baseline Proteome of the Versatile Microbe 

Rhodopseudomonas Palustris Under its Major Metabolic States 

 
All of the data presented below is in preparation for submission Nathan C. VerBerkmoes, 
Manesh Shah, Patricia Lankford, Dale Pelletier, Michael B. Strader, David L. Tabb, 
William. H. McDonald, John. W. Barton, Gregory B. Hurst, Loren Hauser, Brian H. 
Davison, J.T. Beatty, Caroline S. Harwood, Robert F. Tabita, Robert L. Hettich, and 
Frank W. Larimer.  Determination of the Baseline Proteome of the Versatile Microbe 
Rhodopseudomonas Palustris under its Major Metabolic States. Journal of Bacteriology 
(2005).  All MS sample preparation, experiments and data analysis were performed by 
Nathan C. VerBerkmoes 
 
*Complete datasets for the proteomic analyses and other supplementary material are 
available on the web site http://compbio.ornl.gov/rpal_proteome/ 
 

Introduction 

Rhodopseudomonas palustris is a purple nonsulfur anoxygenic phototrophic 

bacterium in the α-proteobacteria family.  It is found widely distributed in the 

environment preferring soil and water samples.  R. palustris is of great interest due to its 

high metabolic diversity and ability to degrade simple aromatic hydrocarbons (lignin 

monomers).  It has exceptional metabolic versatility in its modes of energy generation 

and carbon metabolism.  Specifically, this microbe is capable of four major metabolic 

modes: photoheterotrophic (energy from light and carbon from organic carbon sources) 

and photoautotrophic growth (energy from light and carbon from carbon dioxide), as well 

as chemoheterotrophic (carbon and energy from organic compounds) and 

chemoautotrophic growth (energy from inorganic compounds and carbon from carbon 

dioxide).  It can degrade complex aromatic hydrocarbons and chlorinated pollutants.  

Furthermore, R. palustris is capable of producing hydrogen gas as a by-product of 

nitrogen fixation making it a potential biofuel producer.  R. palustris also has the 

potential to act as a greenhouse gas sink by converting CO2 into cells.  Since most of 

these metabolic states can easily be produced in laboratory settings, it makes R. palustris 

a model system for the study of diverse metabolic modes and their control.  The genome 
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of this microbe had recently been completed and annotated revealing 4,836 potential 

protein encoding genes in a 5.459 Mb genome (Larimer, 2004).  The genome sequencing 

effort has paved the way for detailed system biology studies such as transcriptomics, 

proteomics and protein-protein interactions studies.   

Our goal is to use multi-level systems biology studies such as the proteomics 

technologies of proteome profiling and protein-protein interaction studies (Buchanan, 

2002) as well global gene knockouts and transcriptome profiling to obtain a greater 

understanding of the diverse metabolic states of this microbe and the proteins important 

to the individual metabolic states.  For the initial foundation of this project, we have 

characterized the baseline proteome of R. palustris wild-type strain grown under six 

conditions including photoheterotrophic, chemoheterotrophic, nitrogen fixation, 

photoautotrophic, stationary phase, as well as with benzoate as an alternate carbon 

source.  The basic methodology for baseline proteome analysis involves fractionating 

cells grown under each condition by centrifugation techniques into four major fractions 

(crude, membrane, pellet and cleared), followed by digestion with trypsin and analysis by 

liquid chromatography coupled with electrospray (ES)-tandem mass spectrometry 

(MS/MS) (“shotgun” proteomics Washburn, 2001; VerBerkmoes, 2002; Lipton, 2002; 

Peng, 2002; Corbin, 2003).  This proteome study resulted in the overall identification of 

1,664 proteins with conservative filtering constraints.  This is the first proteome analysis 

of R. palustris to date providing a deep characterization into the diverse metabolic 

function of this microbe. 

Qualitative analyses of these growth conditions have revealed 311 proteins 

exhibiting large-scale differences between conditions, many of these being hypothetical 

or conserved hypothetical proteins showing strong correlations with different metabolic 

modes.  In total, 325 pure hypothetical and conserved hypothetical proteins were 

identified representing 20% of the identified proteins.  A completely novel operon of five 

proteins was found to be expressed only under the anaerobic states with no evidence of 

expression under aerobic states.  Proteins known to be associated with given growth 

states such as nitrogen fixation, photoautotrophic and growth on benzoate were up-

regulated under those states illustrating the effectiveness of the methodology.  The results 
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of this study are being integrated with other large-scale system studies of R. palustris.  

Notably, the identified proteins, fractionation information and their corresponding growth 

states have been cataloged in a database.  From this database, we have extracted 965 high 

quality targets for tandem affinity purification for the analysis of protein-protein 

interactions (Buchanan, 2002).  This study illustrates how baseline proteome analysis can 

be directly coupled with other systems biology studies.  By providing all of the datasets 

as open access, clearly defined and for direct download, we hope these datasets can be 

used by the scientific community as a whole and provide an example on how large-scale 

proteome datasets can easily be shared with others in the community. 

 

Materials and Methods 

 

Chemicals and reagents 

All salts, DTT, trifluoroacetic acid (TFA), and guanidine used in this work were 

obtained from Sigma Chemical Co. (St. Louis, MO).  Protein concentrations were 

determined with BCA reagents from Pierce Chemical Co. (Rockford, IL).  Modified 

sequencing grade trypsin, from Promega (Madison, WI), was used for all protein 

digestion reactions.  The water and acetonitrile used in all sample clean up and HPLC 

applications was HPLC grade from Burdick & Jackson (Muskegon, MI) and the 98% 

formic acid used in these applications was purchased from EM Science (an affiliate of 

MERCK KgaA, Darmstadt, Germany).   

 

Cell growth and production of protein fractions  

R. palustris strain CGA010, a hydrogen-utilizing derivative of the sequenced 

strain (obtained from C.S. Harwood) was grown under 6 major conditions for this study:  

chemoheterotrophic-aerobically in the dark with succinate, photoheterotrophic-

anaerobically in the light with succinate or benzoate, photoautotrophic-anaerobically in 

the light with sodium bicarbonate and H2, photoheterotrophic stationary phase with 

succinate, and photoheterotrophic N2 fixing.  A LhaA (light harvesting apparatus 

assembly protein) mutant (Young, 1998) was grown as a secondary control for 
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chemoheterotrophic growth.  All cultures were grown anaerobically in the light or 

aerobically in the dark with shaking in defined mineral medium at 30°C to mid-log phase 

(except the stationary sample) (Kim, 1991).  All anaerobic cultures were illuminated with 

40 or 60 W incandescent light bulbs.  Carbon sources were added to final concentration 

of 10 mM succinate (all metabolic states except benzoate and photoautotrophic), 3 mM 

benzoate (benzoate growth) or 10 mM sodium bicarbonate (photoautotrophic and 

benzoate growth).  Growth was monitored spectrophotometrically at 660 nm.  For the 

photoheterotrophic N2 fixing cultures, ammonium sulfate was replaced by sodium sulfate 

in the culture medium and N2 gas was supplied in the head space.  For the 

photoautotrophic growth, H2 was supplied in the head space.  The photoheterotrophic 

stationary phase culture was grown exactly as the photoheterotrophic log phase state 

except the culture was allowed to proceed into stationary phase (OD660 nm >2.0).  Cell 

extracts were prepared as follows:  cells were harvested by centrifugation, washed twice 

with ice-cold wash buffer (50 mM Tris buffer [pH 7.5] with 10 mM EDTA) and 

resuspended in ice-cold wash buffer.  Cells were then lysed with sonication and unbroken 

cells were removed with low-speed centrifugation (5,000 g x 15 min).  Four proteome 

fractions were created from the cellular extract by ultracentrifugation (100,000 g for 1 

hour creates membrane and crude fractions and then 100,000 g for 18 hours creates pellet 

and cleared fractions).  All four proteome fractions were quantified with BCA analysis, 

aliquoted and frozen at -800C until digestion.  

 

Digestion of proteome fractions   

All proteome fractions from all growth states were processed in exactly the same 

way.  Briefly, 5 mg of each proteome fraction was diluted in 6 M guanidine and 5 mM 

DTT then heated at 60°C for 1 hour.  The guanidine and DTT were diluted 6-fold with 50 

mM Tris/10 mM CaCl2 (pH 7.8) and sequencing grade trypsin was added at 1:100 

(wt/wt).  The digestions were run with gentle shaking at 37°C for 18 hours followed by a 

second addition of trypsin at 1:100 and additional 5-hour incubation.  The samples were 

then treated with 10 mM DTT for 1 hour at 60 °C as a final reduction step.  Samples were 

immediately de-salted with Sep-Pak Plus C18 solid phase extraction (Waters, Milford, 
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MA).  All samples were concentrated and solvent exchanged into 0.1% TFA in water by 

centrifugal evaporation to ~10 μg/μL starting material, filtered, aliquoted and frozen at  

-80°C until LC-MS/MS analysis. 

 

LC-MS/MS analysis 

The four proteome fractions from all growth states discussed above were analyzed 

in duplicate via one-dimensional LC-MS/MS experiments performed with an Ultimate 

HPLC (LC Packings, a division of Dionex, San Francisco, CA) coupled to an LCQ-

DECA or LCQ-DECAXPplus quadrupole ion trap mass spectrometer (Thermo Finnigan, 

San Jose, CA).  Automated 50 μL injections were made with a Famos autosampler (LC 

Packings) onto the HPLC column.  Flow rate was set at 4 μL/min with a 240-min 

gradient for each LC-MS/MS run.  A VYDAC 218MS5.325 (Grace-Vydac, Hesperia, 

CA) C18 column (300 μm i.d. x 25 cm, 300Å with 5 μm particles) was used for all 

separations.  The column was directly connected to the Finnigan electrospray source with 

100 μm i.d. fused silica.  For each new growth state, a new HPLC column was used to 

prevent cross-contamination.  For all LC-MS/MS data acquisition, the LCQ was operated 

in the data dependent mode with dynamic exclusion enabled (repeat count 1), where the 

top four peaks in every full MS scan were subjected to MS/MS analysis.  For all 

experiments, the mass spectrometer was operated with the following parameters:  ES 

voltage 4.5 kV, heated capillary 200°C, 5 microscans averaged for full scans and MS/MS 

scans, 5 m/z isolation widths for MS/MS isolations and 35% collision energy for 

collision-induced dissociation.  To increase dynamic range in the 1D-LC-MS/MS 

analysis, separate injections were made with a total of 8 overlapping segmented m/z 

ranges scanned (referred to as gas phase fractionation or multiple mass range scanning).   

 

Data analysis  

The resultant ~450 LC-MS/MS runs were all processed as follows.  The MS/MS 

spectra from all files were first searched with SEQUEST (Thermo Finnigan) with two 

modes:  tryptic only (only fully tryptic peptides were considered) and non-tryptic (fully 

tryptic, partially tryptic and fully-non tryptic peptides were considered).  The MS/MS 
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spectra from all files were then searched with DBDigger (Tabb, 2005) with only the fully 

tryptic option.  For all database searches, an R. palustris proteome database was used, 

which contained 4,833 proteins and 36 common contaminants 

(http://compbio.ornl.gov/rpal_proteome/databases).  All resultant output files from 

SEQUEST and DBDigger were organized by growth state and run number (all fractions 

from a single proteome analysis were combined) and then filtered by DTASelect (Tabb, 

2002) at the 1-peptide, 2-peptides and 3-peptides level with the following parameters:  

SEQUEST, delCN of at least 0.08 and cross-correlation scores (Xcorrs) of at least 1.8 

(+1), 2.5 (+2) and 3.5 (+3); DBDigger, delCN of at least 0.08 and MASPIC scores of at 

least 25 (+1), 30 (+2) and 45 (+3).  The filtered DTASelect files from proteome replicates 

were compared with Contrast (Tabb, 2002) to ensure quality reproducibility (at least 70% 

similar protein identifications at the 2-peptide filter level between replicates were 

required).  Contrast was then used to create pairwise comparisons of growth states as well 

as a global comparison of all growth conditions 

(http://compbio.ornl.gov/rpal_proteome/analysis).  For the evaluation of protein 

fractionation and the creation of tandem affinity purification targets, the fractions from 

individual proteome analysis were not concatenated but rather analyzed individually by 

DTASelect and then compared with Contrast (this was only done with the SEQUEST 

fully tryptic dataset).   

 

Results 

The goal of this study was to obtain baseline proteome analysis of R. palustris 

under major metabolic states.  This is possible since R. palustris can easily be grown 

under all metabolic states listed above except chemoautotrophic growth.  Furthermore, 

variations of these major metabolic modes, such as nitrogen fixation, can also be readily 

accomplished.  For this study, 7 major growth states were investigated.  These can be 

broken down into two major categories: aerobic growth in the dark and anaerobic growth 

in the light (Figure 5.1).  For aerobic growth, two states were evaluated: wild-type 

chemoheterotrophic, in which succinate was used as a carbon and energy source and the  

samples were fully aerated in the dark.  A LhaA mutant (light harvesting assembly   
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Figure 5.1:  Major metabolic states interrogated in this study.   
Top states are all anaerobic grown in the light without oxygen.  Bottom states are all 
aerobic grown in the dark with oxygen present. 
Figure adopted from Larimer, 2004 and modified. 
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mutant) was grown under the same conditions as a secondary control for aerobic growth 

(the mutation is thought to only effect the assembly of the light harvesting complex and 

should not have a major effect on aerobic growth in the dark).  For anaerobic growth, five 

states were characterized; all were wild-type strain and all were kept anoxygenic with 

light as the energy source.  The core state was photoheterotrophic where succinate was 

provided as a carbon source and ammonium sulfate as the nitrogen source, 

photoautotrophic had CO2 and solid sodium bicarbonate substituted as the carbon source, 

photoheterotrophic nitrogen fixation had N2 substituted as the nitrogen source, 

photoheterotrophic benzoate had benzoate substituted as the carbon source and 

photoheterotrophic stationary phase was grown into stationary phase while all other states 

were harvested in mid-log phase. 

All growth states were prepared with the exact same protocol.  Cells were 

harvested, washed and lysed by sonication.  Four proteome fractions were created by 

ultracentrifugation, digested with trypsin and then analyzed in duplicate by an automated 

1D-LC-ES-MS/MS technique which employed multiple mass range scanning.  Multiple 

mass range scanning is a simple technique to increase dynamic range for proteome 

measurements, which involves injecting the same sample repeatedly with overlapping 

narrow mass ranges scanned by the mass spectrometer (VerBerkmoes, 2002).  We have 

found this technique to be very reproducible and simple to implement for a large-scale 

study of many samples.  Its main disadvantage is the large amount of sample needed 

since multiple injections must be made; this was not a concern for this study since plenty 

of protein could be obtained from a single 2 L culture of R. palustris.  A total of ~450 

LC-ES-MS/MS runs were created from this study (7 growth states, 4 proteome fractions, 

8 runs per fraction, 2 duplicates of each growth state), all were searched individually with  

SEQUEST (Eng, 1994) and DBDigger (Tabb, 2005), filtered with DTASelect and 

compared with Contrast (Tabb, 2002).  All resultant DTASelect files and Contrast files 

used in this study, as well as the protein database, can be downloaded from the 

Rhodopseudomonas Palustris Proteome Study Website 

(http://compbio.ornl.gov/rpal_proteome/).  This site also contains directly linkable 
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spectra for all identified peptides, a step towards open access proteome results (Carr, 

2004; Pedrioli 2004).  

The entire dataset was processed three separate ways: SEQUEST fully tryptic, 

SEQUEST non-tryptic, and DBDigger fully tryptic.  DBDigger is a new search algorithm 

developed at Oak Ridge National Laboratory (ORNL), which provides better accuracy 

and sensitivity than SEQUEST.  The results from each of these searches filtered at 1-

peptide, 2-peptides and 3-peptides are shown in Table 5.1 (the numbers in these tables 

also include some common contaminants, thus numbers listed below have these removed 

and are smaller).  Clearly, non-specific searches identify many more proteins than fully 

tryptic SEQUEST searches do but with a greater level of false positives.  There is 

currently controversy in the proteomics field over the use of non-specific searches for 

data generated from trypsin digestions, thus we will confine our discussions to the fully 

tryptic datasets, but we provide the non-specific dataset for comparison.  DBDigger has 

just recently been published and has not been tested by the community as a whole and 

this is the first large-scale use of the algorithm for MS/MS data analysis.  From the fully 

tryptic dataset of proteins identified by at least two peptides, 1,691 proteins were 

identified by DBDigger and 1,664 proteins were identified by SEQUEST.  The combined 

list from these two algorithms resulted in the overall identification of 1,805 proteins; 

1,549 are shared between the lists, with 140 proteins identified only by DBDigger and 

116 identified only by SEQUEST.  Table S1 contains all proteins identified by each 

algorithm as well as corresponding sequence coverage for each protein.  Figure 5.2 shows 

the scatter plot of % sequence coverage for each protein and for each algorithm plotted 

against each other.  This scatter plot clearly shows that each algorithm is providing very 

similar results with few outliers.  Proteins found on the x-axis or y-axis were only 

identified by one of the two algorithms.  Those with very high sequence coverage found 

by only one of the programs are the most significant outliers and should be investigated 

in more detail in a future study.  Since DBDigger is a new search algorithm, which has 

not been fully tested, we will focus our biological analysis below on those proteins 

confidently identified from the SEQUEST fully tryptic dataset.  The dataset is provided 

as the first major comparison between the two algorithms. 
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Table 5.1:  Total identified proteis by search algorithm and filtering level. 

 

 

 

 

 
a) Filters for SEQUEST Xcorrs of at least 1.8 (+1), 2.5 (+2) and 3.5 (+3) 
b) Filters for DBDigger MASPIC scores of at least 25 (+1), 30 (+2) and 45 (+3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filtering Level SEQUEST fully 
tryptica 

SEQUEST non-
tryptica 

DBDigger fully 
trypticb 

1-peptide 2752 4482 2785 
2-peptides 1670 2888 1698 
3-peptides 1317 1833 1338 
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Figure 5.2:  Scatter plot of SEQUEST vs. DBDigger % sequence coverage per 
protein. 
Illustrates the correspondence of SEQUEST % sequence coverage (y-axis) to DBDigger 
% sequence coverage (x-axis) for every protein identified by one or both algorithms at 
the 2-peptide level with filters shown in Table 5.1.   
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Major features of the proteome 

 The identified protein totals from fully tryptic SEQUEST searches of each growth 

state analysis filtered at 1-peptide, 2-peptides and 3-peptides are shown in Table 5.2  

Statistical analysis of a single growth state by the peptide/protein prophet software 

(Keller, 2002; Nesvizhskii, 2003) indicated a 5% false positive rate at the 1-peptide level, 

a 1% false positive rate at the 2-peptides level and virtually no false positives at the 3-

peptides level (personal communication A. Nesvizhskii).  We felt that 1% false positive 

was acceptable so we accepted all proteins identified with at least two fully tryptic 

peptides for further analysis.  After the removal of common contaminants (trypsin, 

keratin, etc.) from the final protein list, a total of 1,664 proteins were identified.  The 

entire list of identified proteins with predicted functions, % sequence coverage, 

functional categories, pIs and molecular weights (MW) can be found in Supplemental 

Table 2.  The identified proteins with sequence coverage from individual growth states 

can be found in Supplemental Table 3.  To determine if this methodology had any major 

biases against certain protein forms, we compared the identified proteins’ pI and MW 

ranges with those predicted from the entire genome (Figure 5.3).  We found no major 

biases against the MW or pI of the proteins identified in this study.  The protein with the 

lowest pI detected was RPA0060 (pI 3.82, MW 14.4 kDa), a conserved unknown protein, 

which was detected with ~50% sequence coverage from every growth state in this study.  

The protein with the highest pI detected was RPA4197 (pI 12.37, MW 5065.6 kDa), 

ribosomal protein L36, which was detected with an average of 29% sequence coverage in 

three of the seven growth states.  Ribosomal protein L36 was also the smallest protein 

detected as well.  The largest protein detected was RPA3958 (pI 4.87, MW 215.1 kDa), a 

conserved unknown protein, which was detected with an average of ~11% sequence 

coverage from every growth state in this study.  

The functional categories for the identified proteins are shown in Table 5.3 (these 

functional categories are based on the ORNL annotation scheme for all bacteria 

(http://genome.ornl.gov/microbial/).  We also mapped all of the identified proteins onto  

KEGG pathways (Kyoto Encyclopedia of Genes and Genomes) and indicated which 
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Table 5.2:  Identified proteins by growth state and filtering level. 
 

Growth Condition: 3-Peptide 2-Peptide 1-Peptide
LhaA mutant Chemoheterotrophic Run 1 714 931 1287 
LhaA mutant Chemoheterotrophic Run 2 722 930 1322 
WT Chemoheterotrophic Run 1 721 941 1350 
WT Chemoheterotrophic Run 2 631 809 1235 
WT Photoheterotrophic Run 1 692 884 1263 
WT Photoheterotrophic Run 2 724 891 1251 
WT Photoheterotrophic Stationary Phase Run 1 725 921 1369 
WT Photoheterotrophic Stationary Phase Run 2 746 930 1405 
WT Photoautotrophic Run 1 764 961 1455 
WT Photoautotrophic Run 2 695 900 1391 
WT Photoheterotrophic Nitrogen Fixation Run1 768 995 1441 
WT Photoheterotrophic Nitrogen Fixation Run2 807 1018 1508 
WT Benzoate Photoheterotrophic Run1 624 814 1273 
WT Benzoate Photoheterotrophic Run2 686 884 1285 
Total Proteins Identified 1320 1670 2752 
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Figure 5.3:  MW and pI comparisons for genome and proteome. 
Comparison between predicted MW and pI distribution from all proteins predicted from 
the genome (top) with those identified from the proteome with at least two unique 
peptides (bottom).     
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Table 5.3:  Functional categories. 
 

Category Proteins Genome 
Prediction 

% Identified 

Unknowns and Unclassified 325 1407 23.10 
Replication and Repair 22 126 17.46 
Energy Metabolism 142 306 46.41 
Carbon and Carbohydrate Metabolism 67 107 62.62 
Lipid Metabolism 98 158 62.03 
Transcription 59 283 20.85 
Translation 122 168 72.62 
Cellular Processes 207 524 39.69 
Amino Acid Metabolism 104 181 57.46 
General Function Prediction 157 420 37.38 
Metabolism of Cofactors and Vitamins 80 150 53.33 
Transport 168 699 24.03 
Signal Transduction 73 231 31.60 
Purine and Pyrimidine Metabolism 40 56 71.43 
Total 1664 4816 34.57 
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metabolic states they were detected under (note this was only done for those proteins 

which were found in pathways predicted by KEGG, the entire pathways can be found at 

http://compbio.ornl.gov/rpal_proteome/analysis/).  The proteome was dominated with 

hypothetical and conserved hypothetical proteins, 325 in total being confidently 

identified.  This represents 23% of the predicted hypothetical proteins from the genome.  

In our classification scheme, proteins’ names are changed from hypothetical and 

conserved hypothetical to unknown and conserved unknown when they are confidently 

identified with at least two unique peptides.  A total of 107 unknown proteins and 218 

conserved unknown proteins were identified.  The proteomes’ second most dominant 

category was proteins involved in general cellular processes such as chaperones, 

proteases, flagella proteins, stress proteins and some general enzymatic proteins.  A total 

of 207 proteins were identified in this category representing 40% of those predicted from 

the genome.  The R. palustris genome contains two separate copies of GroEL (RPA 1140 

and RPA 2164) and GroES (RPA1141 and RPA2165).  Proteomics clearly identified 

each copy of each subunit with a number of unique peptides.  Both copies were expressed 

under all growth states interrogated in this study.  The proteomes’ third most dominant 

category was the transport proteins.  A total of 168 proteins were detected from this 

category representing 24% of those predicted from the genome.  The genome sequencing 

and annotation effort predicted widespread use of transport systems in this microbe with 

325 complete transport systems representing almost 15% of the predicted genome 

(Larimer, 2004).  This is larger than most microbes where transport is generally predicted 

at 5-6%.  Approximately 10% of the detected proteome were proteins involved in 

transport.  Many of the detected transport proteins were the ATP-binding cassette (ABC) 

systems.  In many cases only part of the entire operon was detected, generally the 

periplasmic binding proteins were detected at the highest sequence coverage, while the 

embedded membrane transporter and related ATPases were detected with lower sequence 

coverage or not at all.  This may account for part of the difference between the larger 

number of predicted transport proteins and the actual number detected.  Eleven tonB-

dependent receptors/iron transporters were detected suggesting iron acquisition is 
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important for R. palustris as also indicated by the genome annotation.  A number of these 

were found to be up-regulated under aerobic growth as discussed below.   

The categories which were identified with the highest percentage of those proteins 

from the genome included translation (72%), purine/pyrimidine metabolism (71%), 

carbon and carbohydrate metabolism (62%), lipid metabolism (62%), and amino acid 

metabolism (57%).  This is to be expected since many of the proteins in these categories 

are necessary under all metabolic modes.  In a previous study of the purified 70S 

ribosome from R. palustris, we clearly identified 53 of the 54 predicted ribosomal 

proteins (Strader, 2004).  From this study, we clearly identified 50 of the 54 predicted 

ribosomal proteins directly from the proteome.  The missed ribosomal proteins are all 

small and highly rich in lysine residues.  Digestion of such proteins results in small 

peptides, which are not readily amenable to LC-MS/MS.  A total of 18 of the potential 20 

tRNA synthetases were confidently identified.  Most of the ribosomal proteins and tRNA 

synthetases were found under every growth state characterized (Table S3).  While only 

40 proteins were detected from purine and pyrimidine metabolism, this represented most 

of the predicted proteins from this group.  As was the case with many of the translation 

proteins, many of the purine/pyrimidine metabolism proteins were found under most of 

the metabolic states.  Carbon and carbohydrate metabolism was dominated by 

glycolysis/gluconeogensis and TCA proteins.  The entire pathway for each was detected 

with most proteins detected under every metabolic state.  A total of 98 of the predicted 

158 proteins involved in lipid metabolism were detected. 

The proteome categories of replication and repair, energy metabolism, 

transcription, general function prediction, metabolism of co-factors and vitamins, and 

signal transduction were all identified but many with less than 50% of that predicted from 

the genome.  Replication and repair was detected with the smallest percentage and 

smallest numbers of proteins with only 22 proteins and 17% of the predicted proteome.  

This may be due to the low abundance of these proteins and their rapid turnover; they 

may only be used during DNA replication and repair and then quickly degraded.  Proteins 

involved in transcription were also not detected in large quantities, with only 59 total 

proteins detected representing 21% of those predicted from the genome.   The proteins 



 148

involved in signal transduction are also generally considered to be of lower abundance.  

A total of 73 proteins representing 31% of those predicted from the genome were 

confidently detected.  Many of these were methyl-accepting chemotaxis proteins, two-

component response regulators, and two-component sensor histidine kinases.  The 

detection of these proteins clearly indicates the increased dynamic range of LC-MS/MS 

techniques over 2D-PAGE-MS techniques where such low abundance proteins are rarely 

detected.     

A total of 142 proteins, which is nearly 50% of the proteins, predicted to be 

involved in energy metabolism were confidently detected.  These include many of the 

proteins involved in photosynthesis and the oxidative phosphorylation chain.  As with the 

ABC transporters, it was found that very often only part of the entire known protein 

complexes in these pathways were confidently identified.  For example, ATP synthase is 

encoded by two operons, the complex consists of proteins RPA0175-RPA0179 and 

RPA0843-RPA0846 (see KEGG map at: 

http://compbio.ornl.gov/rpal_proteome/analysis/keggmaps/html/map00193.html).  For 

this case, all of the proteins encoded by the first operon are predicted to be connected to 

the membrane but not directly embedded and were detected with high sequence coverage 

under every metabolic state.  The second operon encodes two proteins, which are 

associated with the membrane (RPA0843 ATP synthase B chain and RPA0844 ATP 

synthase, subunit B') but not directly embedded.  These proteins were also readily 

detected under all metabolic states.  The final two proteins of this operon, RPA0845 

(ATP synthase subunit C transmembrane protein) and RPA0846 (ATP synthase subunit 

A) are both small membrane embedded proteins.  Neither RPA0845 nor RPA0846 were 

detected in any of the metabolic states even though they are expressed at high abundance 

with the rest of the complex.  This illustrates a common problem in “shotgun” proteomics 

applications in that small proteins embedded in the membrane of membrane associated 

complexes are very difficult to routinely detect.  The routine detection of such proteins is 

a current area of research and will be addressed in a future manuscript.  This same 

problem was also encountered for proteins involved in photosynthesis, the cytochrome-c 

oxidase complex and the NADH-ubiquinone dehydrogenase complex.  The NADH-
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ubiquinone dehydrogenase complex is another example of gene duplication in R. 

palustris.  Two operons (RPA2937-RPA2952 and RPA4252-RPA4264) are predicted to 

encode proteins for this complex.  A total of 6 proteins were identified from the first 

operon and 4 proteins from the second operon indicating both operons are indeed 

expressed.  These proteins were observed across all metabolic states indicating 

expression under all metabolic states.      

 

Metabolic state comparisons 

One of the goals of this study was to identify the major differences at the protein 

level between the major metabolic states of R. palustris.  A quantitative comparison of 

many different growth states is currently a serious challenge for MS-based proteomics 

efforts.  While great effort has been put forth into relative quantitation of proteins 

between different growth states using technologies such as isotope coding affinity tags 

(ICAT) (Gygi, 1999), metabolic labeling (Oda, 1999; Pasa-Tolic, 1999) and 18O water 

labeling (Yao, 2001) none of these techniques have been clearly shown to be effective for 

large-scale studies of many growth states in microbial systems.  Specifically, the ICAT 

technology requires the labeling of cysteine residues, which are not very prevalent in 

microbial systems when compared with eukaryotic systems.  Indeed, ~60% of the R. 

palustris predicted proteome contains 2 or less cysteines per protein and 20% contains no 

cysteines at all.  Metabolic labeling with 15N has shown the most promise in microbial 

systems (Lipton, 2002; Washburn, 2002) but requires strict control of nitrogen intake, a 

serious concern in bacterial species that can fix nitrogen.  Indeed, many microbial species 

cannot be cultivated under conditions where strict control of nitrogen intake is required.  

Labeling peptides during trypsin digestion with 18O water is a potential alternative 

approach but the expense involved in labeling the number of samples used in this study 

and the need for high-resolution mass spectrometers limits its use for large-scale 

proteome comparisons.  A more practical problem with quantitative comparisons of many 

growth states is that the necessary informatic tools are still under development.  The 

Contrast program was used in this study to compare the many different growth states and 
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replicates in this study.  No such global comparison program for quantitative proteomics 

datasets has been developed at this point.   

It has been shown that semi-quantitative comparisons of proteome datasets based 

on the % sequence coverage, # of identified peptides, and the repeat count for a protein 

(how many MS/MS sequencing events are acquired per protein) are all indicators of 

protein abundance (Liu, 2004).  In a previous study of Shewanella oneidensis, we used 

the % sequence coverage and number of unique peptides per protein identified in 

triplicate analysis of a control and a fur mutant to compare relative protein abundances 

(Wan, 2004).  We found this technique to be very indicative of proteins showing major 

differences between the two growth states and the results compared favorably with 

microarray data from the same samples.  Below we used the same technique of 

comparing the % sequence coverage and the number of unique peptides per protein 

between different metabolic states to identify those proteins showing large-scale 

differences between compared states.  We used the general rule that a protein must have a 

replicated difference of at least four peptides and/or 30% sequence coverage between the 

two states being compared to be called a major difference (Wan, 2004).  It is very 

important in such comparisons to process and analyze samples under the same conditions 

to achieve the best reproducibility possible.  Table 5.4 illustrates the reproducibility of 

proteins detected between duplicate runs for each metabolic state.  At the two peptides 

filtering level, between 70-80% reproducibility was achieved for each metabolic state.  In 

our experience, that is the best that can be achieved with current “shotgun” proteomics 

technologies.  Most of the proteins which did not replicate between runs were identified 

with less than three to four peptides.  None of these were considered in the comparison of 

the metabolic states.  Proteins identified as showing major differences were then 

compared across all growth states to determine if trends in expression could be 

determined.  In total we found 311 proteins exhibiting major differences between growth 

states.  The entire list of proteins sorted by compared metabolic states can be found in 

supplemental table S4.  It should be noted that this technique is only useful in 

determining proteins exhibiting large-scale differences in expression between growth 

states and generating hypothesis about these proteins, which can be tested in future  
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Table 5.4:  Reproducibility of identified proteins by growth state. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth Condition 1 peptide 2 peptide 
LhaA mutant Chemoheterotrophic 71.7% 75.7% 

WT Chemoheterotrophic 68.1% 70.8% 
WT Photoheterotrophic 70.5% 77.7% 

WT Photoheterotrophic Stationary 70.1% 79.1% 
WT Photoheterotrophic Nitrogen Fixation 69.8% 75.7% 

WT Photoautotrophic 70.3% 77.3% 
WT Photoheterotrophic Benzoate 67.7% 73.7% 
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studies.  Exact quantification of the protein differences cannot be established with this 

technique.  

 

Chemoheterotrophic WT vs. chemoheterotrophic LhaA mutant 

The chemoheterotrophic LhaA mutant (Young, 1998) was analyzed as a 

secondary control for aerobic growth.  It was used in the global comparison of aerobic 

and anaerobic states (Figure 5.1) since this mutation is not believed to have any major 

effect on aerobic growth in the dark.  For this to be effective, very few differences should 

be seen between the chemoheterotrophic wild-type and chemoheterotrophic LhaA 

mutant.  This was indeed the case, as only 6 proteins were found to have significant 

difference between the WT and LhaA mutant (Table S4, 1st tab).  Thus we concluded that 

this mutant could be used as a secondary control for aerobic growth and directly 

compared with the anaerobic states as discussed below. 

 

Chemoheterotrophic vs. photoheterotrophic 

The chemoheterotrophic vs. the photoheterotrophic states are the base states, 

which all other states are compared against in this study, as shown in Figure 5.1.  In 

theory, these two states should be very different with chemoheterotrophic obtaining 

energy from carbon compounds (succinate) and the photoheterotrophic obtaining energy 

from light.  In reality, many of the genes involved in photosynthesis were found under 

every state studied whether the samples were grown in the dark or light.  For example, 

gene RPA1548, which encodes for the H subunit of the photosynthetic reaction center, 

was found under every metabolic state, though with slightly lower sequence coverage 

under the aerobic states, which were grown in the dark.  It seems that no matter what the 

condition, R. palustris attempts to gain energy through photosynthesis by expressing 

proteins involved in photosynthesis.  Indeed, the hallmark phenotype of photosynthesis, 

the red coloring of the cell membranes was observed for every metabolic state, though 

the red coloring was much more pronounced under photo states.  Nonetheless, many 

differences were found at the protein level between these two states.  In total, 31 proteins 

were found to be clearly up-regulated under the chemoheterotrophic state and 56 proteins 
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were found to be up-regulated under the photoheterotrophic state (Table S4, 2nd tab).  A 

total of 8 unknown and conserved unknown proteins were found to be up-regulated under 

the chemoheterotrophic state.  The unknown proteins RPA2269, RPA2471, RPA3930 all 

showed strong correlation with the aerobic states with very little expression under any of 

the anaerobic states.  The conserved unknown protein RPA4179 was found with ~90% 

sequence coverage under both the WT and LhaA mutant under aerobic conditions and 

was not found under any anaerobic states except nitrogen fixation and benzoate growth 

where it was also found with high sequence coverage (>50%).  Additionally, proteins 

involved in iron uptake and utilization such as RPA1876 (putative TonB-dependent iron 

siderophore receptor), RPA2120 (putative hemin binding protein), RPA3480 (fiu putative 

outer membrane receptor for iron transport), and RPA4152 (fbpA periplasmic iron 

binding protein FbpA precursor) were all up-regulated under the aerobic state.   

A total of 17 unknown and conserved unknown proteins were found to be up-

regulated under the photoheterotrophic state.  The unknown proteins RPA1494, 

RPA1495, RPA1620, RPA2333, RPA2334, RPA2335, RPA2336, RPA2338, and 

RPA3786 all showed strong correlation with the anaerobic states with very little 

expression under any of the aerobic states.  The unknown protein RPA3011 was only 

found with high sequence coverage under photoheterotrophic growth; with all other 

anaerobic states it was found with less than 10% coverage or not at all.  The operon of 

unknown proteins from RPA2333-2338 is an especially interesting case; this entire 

operon, except RPA2337, was found to show strong expression under anaerobic states 

but no expression in the aerobic states (Table 5.5).  The lack of detection of RPA2337 

cannot be explained; the protein has no predicted transmembrane domains and predicted 

cleavage by trypsin indicates 5-6 peptides that should easily be detected.  None of the 

proteins in this operon have been found to have strong similarity to any genes in 

sequenced microbial genomes to date except RPA2333.  RPA2333 does have strong 

similarity to a putative cation transport ATPase but does not have the predicted 

transmembrane domains generally associated with such a transport ATPase.  This 

coupled with the fact that the rest of the proteins in the operon do not show any similarity 

to any other know protein indicates we have no strong evidence for the function of  
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Table 5.5:  Unknown operon identified in the anaerobic metabolic states. 

Locus lhaa Aerob Anaerob Stat Auto N2 Benz Functional Assignement
RPA2333 0 0 18 19 4 24 13 unknown protein
RPA2334 0 0 45 52 12 42 42 unknown protein
RPA2335 0 0 14 20 0 14 14 unknown protein
RPA2336 0 0 79 74 74 74 69 unknown protein
RPA2337 0 0 0 0 0 0 0 unknown protein
RPA2338 0 0 28 42 14 37 33 unknown protein  

*Numbers in table report the percentage of residues in protein sequences that were 
identified by at least two peptides passing the filtering criteria, numbers are averages of 
two runs. 
#Cells highlighted in grey are anaerobic states. 
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RPA2333.  Thus we have detected a completely novel, expressed operon with potential 

function under anaerobic growth.  The entire operon was mainly detected in the 

membrane fraction with some detection in crude and pellet fractions (see discussion 

below), suggesting a potential membrane embedded protein complex or large protein 

complex.  The lack of predicted transmembrane domains (RPA2335 has 2, RPA2338 has 

2 and the rest have 0) suggests the possibility of a large protein complex which is 

fractionating with the membrane fraction.  Further evidence came from a separate study 

of the purification of the 70S ribosome (Strader, 2004).  In screening of the fractions 

from the first sucrose gradient enrichment of the 70S ribosome from the 

photoheterotrophic state, we detected the entire operon in one fraction (except 

RPA2337).  Upon further purification of the ribosome, the operon was not detected.  

Most proteins found in the fractions of the sucrose gradient were indeed proteins 

involved in large multimeric protein complexes.  While this evidence is anecdotal, this 

operon is clearly a good target for future functional studies such as gene knockouts and 

protein interaction studies through tagging protocols or biochemical enrichment.   

The conserved unknown proteins RPA0932 and RPA0934 along with the putative 

protease RPA0933 also make up an operon that shows expression only under the 

anaerobic states.  RPA0933 can be speculated to be involved in processing of protein(s) 

necessary for anaerobic growth, which are not required under aerobic growth.  The 

functions of the two adjacent proteins from the operon are clearly unknown.  The 

conserved unknown proteins RPA1659, RPA3501, RPA4127 all showed strong 

correlation will the anaerobic states with very little expression under any of the aerobic 

states.  The conserved unknown protein RPA3501 is an interesting case, showing 80-90% 

sequence coverage  with a high repeat count and a high number of peptides under all 

anaerobic states (suggesting high expression), yet it was undetected in the aerobic states. 

Thus, all indicators of abundance point to this protein being highly expressed under 

anaerobic states yet we have no clue to its function.  Again, this gene is a good candidate 

for future functional studies.  Some other highlights of the photoheterotrophic state 

include the expression of a universal stress protein (RPA1260).  This protein was found 

to be expressed only under the anaerobic states with no expression under the aerobic 
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states indicating a potential function in the stress response during anaerobic growth.  The 

expression of the cbb operon (RPA4641-RPA4645) is up-regulated in the 

photoheterotrophic state and this trend was also observed across all anaerobic states with 

less expression found in the aerobic states. 

  

Photoheterotrophic vs. nitrogen fixation   

The photoheterotrophic state vs. the photoheterotrophic nitrogen fixation state 

was an ideal test for the effectiveness of this methodology since many of the proteins 

associated with nitrogen fixation are known and should primarily be expressed under the 

nitrogen fixation condition.  This was indeed found to be the case.  In total, 12 proteins 

were found to be clearly up-regulated under the photoheterotrophic state and 40 proteins 

were found to be up-regulated under the photoheterotrophic nitrogen fixation state (Table 

S4, 3rd tab).  Most of the proteins thought to be involved in nitrogen fixation were found 

to be clearly up-regulated under the nitrogen fixation condition and not detected to any 

great extent under any of the other conditions.  These include RPA0274, a nitrogen 

regulatory protein; RPA2593 and RPA2595, nitrogen assimilation regulatory proteins; 

RPA4209, glutamine synthetases; and the entire nif regulon RPA4602-4632 (RPA4633 is 

also part of this regulon but was barely detected).  The nif regulon contains the functional 

protein complex for nitrogen fixation (RPA4618-4620) which was clearly up-regulated.  

The major nitrogen fixation proteins, as well as some other proteins showing expression 

only under nitrogen fixation conditions, are compared with expression levels for all other 

metabolic states in Table 5.6.  The clear identification of these proteins under the 

nitrogen fixation states and not under other states indicates the effectiveness of this 

qualitative technique for comparing large numbers of metabolic states in microbial 

systems without exact quantitation.  As indicated in Table 5.6, a number of proteins not 

directly predicted to be involved in nitrogen fixation were also identified only under 

nitrogen fixation conditions.  A few examples include RPA0761, a possible oligopeptide 

transporter and RPA3669, a putative urea short-chain amide/branched-chain amino acid 

uptake ABC transporter periplasmic solute-binding protein precursor.  The expression of 

these two proteins could be involved with the bacteria attempting to gain nitrogen by the  
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Table 5.6:  Some proteins identified only under nitrogen fixation. 
 

Locus lhaa1 Aerob Anaerob Stat Auto N2 Benz Functional Assignement
RPA0274 0 0 0 0 0 90 15 GlnK, nitrogen regulatory protein P-II 
RPA0761 0 0 0 0 0 25 0 possible oligopeptide ABC transporter,
RPA1206 0 0 0 0 0 20 0 aldehyde dehydrogenase 
RPA1927 0 0 0 0 0 54 0 unknown protein
RPA1928 0 0 0 0 0 67 0 ferredoxin-like protein [2Fe-2S]
RPA2156 0 0 0 0 0 41 0 unknown protein
RPA2593 0 3 0 0 0 14 2 nitrogen assimilation regulatory protein ntrC
RPA3669 0 0 0 0 0 74 0 amino acid uptake ABC transporter
RPA4209 0 0 0 0 0 43 0 glutamine synthetase II
RPA4602 0 0 0 0 0 42 0 ferredoxin like protein, fixX
RPA4603 0 0 0 0 0 38 0 nitrogen fixation protein,fixC 
RPA4604 0 0 0 0 0 34 0 electron transfer flavoprotein alpha chain
RPA4605 0 0 0 0 0 40 0 electron transfer flavoprotein beta chain fixA 
RPA4608 0 0 0 0 0 9 0 nitrogenase cofactor synthesis protein nifS 
RPA4610 0 0 0 0 0 16 0 Protein of unknown function, HesB/YadR/YfhF
RPA4612 0 0 0 0 0 17 0 ferredoxin 2[4Fe-4S] III, fdxB 
RPA4613 0 0 0 0 0 59 0 DUF683
RPA4614 0 0 0 0 0 41 0 DUF269
RPA4615 0 0 0 0 0 76 0 nitrogenase molybdenum-iron protein nifX 
RPA4618 0 0 0 0 0 69 0 nitrogenase molybdenum-iron protein beta chain,
RPA4619 0 0 0 0 0 72 0 nitrogenase molybdenum-iron protein alpha chain,
RPA4620 0 0 0 0 0 63 0 nitrogenase iron protein, nifH 
RPA4623 0 0 0 0 0 87 0 fixU, nifT 
RPA4631 0 0 0 0 0 55 0 ferredoxin 2[4Fe-4S], fdxN 
RPA4632 0 0 0 0 0 16 0 NIFA, NIF-SPECIFIC REGULATORY protein
RPA4714 0 0 0 0 0 42 0 unknown protein  

 
*Numbers in table report the percentage of residues in protein sequences that were 
identified by at least two peptides passing the filtering criteria, numbers are averages of 
two runs. 
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uptake of amino acids or peptides from the media (while amino acids/peptides were not 

directly added to the media, the cells may have been scavenging them from broken-down 

dead cells and broken-down excreted proteins).  Three unknown proteins (RPA1422, 

RPA2126, and RPA4717) were also only detected under nitrogen fixation, suggesting a 

potential unknown role in the nitrogen fixation process.  These are good future targets for 

functional studies such as gene knockouts.   

 

Photoheterotrophic vs. photoautotrophic  

The photoheterotrophic state was compared with the photoautotrophic state to 

determine proteins important to the carbon fixation process.  In total, 18 proteins were 

found to be clearly up-regulated under the photoheterotrophic state and 37 proteins were 

found to be up-regulated under the photoautotrophic state (Table S4, 4th tab).  Three 

unknown proteins and 1 conserved unknown protein were found to be down-regulated in 

the photoautotrophic state.  The glutamate synthase complex, as well as the 

protochlorophyllide reductase complex, was found to be down-regulated.  As expected, 

the ribulose-bisphosphate carboxylase large chain (RPA1559) and small chain 

(RPA1560) (RubisCO form I) were clearly up-regulated under autotrophic growth.  The 

only growth states that RubisCO form I was detected with high sequence coverage was 

autotrophic and benzoate growth (see discussion on benzoate growth below).  This is 

expected since this is the key enzyme involved in carbon fixation.  The RubisCO form II 

protein (RPA4641) was detected under all growth states.  Interestingly, RPA1561, a 

cbbX protein homolog part of the RubisCO form I operon, was clearly up-regulated 

under autotrophic growth.  It was also detected under benzoate growth indicating a clear 

co-expression with RubisCO form I.  A total of 10 conserved unknown proteins and 3 

unknown proteins were also indicated as up-regulated under autotrophic growth.  A 

number of these unknown proteins such as RPA1114, RPA1243, RPA1244, RPA2786, 

RPA3309, RPA3568, and RPA4704 showed a strong expression pattern under 

autotrophic, stationary and benzoate growth.  In those three metabolic states, carbon is a 

limiting factor in growth suggesting a potential function of carbon uptake or scavenging 

for the unknown proteins.   
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Photoheterotrophic log vs. photoheterotrophic stationary 

The photoheterotrophic log phase was compared to stationary phase to determine 

proteins induced by the stress response of growth late into stationary phase.  In total, 13 

proteins were found to be down-regulated under the photoheterotrophic stationary state 

and 25 proteins were found to be up-regulated under the photoheterotrophic stationary 

phase (Table S4, 5th tab).  Of the 13 proteins detected as down-regulated in stationary 

phase, five were also found down-regulated in the photoautotrophic state.  These include 

RPA1542 and 1545 components of the protochlorophyllide reductase complex, RPA1975 

a periplasmic mannitol binding protein, RPA2977 a ribonucleotide reductase, and two 

unknown proteins RPA2297 and RPA3011.  While previous work in our laboratories in 

the Escherichia coli K12 strain comparing mid-log and stationary phase clearly indicated 

many proteins involved in protein turnover, folding and stress response up-regulated in 

the stationary phase (VerBerkmoes unpublished data), this was not found to be the case 

for R. palustris.  Not a single protein annotated as involved in stress response, protein 

turnover or protein folding was detected up-regulated in the stationary phase.  This may 

be due to a lack of knowledge of the function of proteins involved in this stress response 

process in R. palustris.  Indeed, 9 conserved unknown proteins and 2 unknown proteins 

were identified as up-regulated in the stationary phase samples.  Seven of these, 

RPA1114, RPA1243, RPA1244, RPA2786, RPA3309, RPA3568, and RPA4704, were 

also detected in the autotrophic phase as up-regulated.  Thus, these proteins could be 

involved in attempting to assimilate carbon or the general stress response. 

 

Photoheterotrophic succinate vs. Photoheterotrophic benzoate 

The photoheterotrophic state with succinate as a carbon source was compared 

with the photoheterotrophic state with benzoate as a carbon source to determine proteins 

important to benzoate degradation.  In total, 29 proteins were found to be clearly up-

regulated under the photoheterotrophic succinate state and 44 proteins were found to be 

up-regulated under the photoheterotrophic benzoate state (Table S4, 6th tab).  Only one 

unknown protein and 1 conserved unknown protein were found to be up-regulated in the 

photoheterotrophic succinate state.  The photoheterotrophic succinate state had a greater 
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expression of many ABC transport systems periplasmic proteins such as RPA0580, a 

putative branched chain amino acid transporter, RPA3093, possible urea/short-chain 

binding protein, as well as RPA3725, RPA4019, RPA4029, RPA4648.  The entire carbon 

monoxide dehydrogenase operon (RPA4666-4668) was found to be up-regulated under 

the photoheterotrophic succinate state.  As expected, the photoheterotrophic benzoate 

state had many proteins expected to be involved in benzoate degradation up-regulated.  

The entire benzoate degradation regulon from RPA0650-RPA0662 was clearly up-

regulated and not detected to any significant level under any other metabolic states.  This 

is another clear example of the methodology detecting changes in expression in expected 

proteins (see highlighted proteins in Table S4, 6th tab).  The only protein from this 

regulon not detected was the transcription factor RPA0663.  A 4-hydroxybenzoyl-CoA 

reductase complex (RPA0670, RPA0671, note RPA0672 was detected with only two 

peptides and thus not listed in table) and the 4-hydroxybenzoyl-CoA ligase (RPA0669) 

were only confidently detected under benzoate growth.  One protein of the associated 

transporter was detected under all conditions and the regulator was not detected at all.  

The RubisCO operon, including the cbbX protein, was confidently detected with high 

sequence coverage as was the case in photoautotrophic growth.  In this case, the microbe 

is fixing carbon as a means of balancing its redox potential from the oxidation of 

benzoate.  While not large-scale differences, some proteins of the pim operon (RPA3713, 

RPA3714, RPA3715, and RPA3717) were detected at elevated levels in comparison with 

the photoheterotrophic succinate state.  These proteins are annotated as being involved in 

lipid metabolism but actually function at the bottom of the benzoate degradation 

pathway.  Two unknown proteins (RPA1422 and RPA2786) were clearly up-regulated.  

RPA1422 was also found to be up-regulated under the nitrogen fixation state.  RPA2786 

was also found to be up-regulated under the photoautotrophic state and the stationary 

phase state suggesting possible unknown related function between the two states.  Three 

conserved unknown proteins (RPA1777, RPA3309, and RPA4137) were up-regulated.  

RPA1777 was only confidently detected under benzoate growth except for a single two 

peptide identification under the LhaA mutant aerobic state.  RPA3309 showed the similar 

pattern of detection as RPA2786 with high sequence coverage under the photoautotrophic 
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state and the stationary state.  RPA4137 was detected under all anaerobic states but was 

not detected at all under the aerobic states; it had the highest sequence coverage under 

autotrophic and benzoate growth.                        

 

Tandem affinity targets 

One goal of this project was to determine the abundant proteins expressed under 

the major metabolic states and provide targets for large-scale tandem affinity purification 

(TAP) of protein complexes (Puig, 2001; Buchanan, 2002; Ho, 2002; Gavin, 2002) thus 

integrating baseline proteome analysis with an ongoing large-scale analysis of protein 

complexes (Buchanan, 2002).  The reason this is necessary is that the correct 

determination of high quality targets and the metabolic state to express such targets 

cannot be directly inferred from the genome.  While a protein may be predicted to be 

involved in a complex from the genome annotation or association in an operon with other 

known proteins, its expression cannot be verified from the genome information.  

Furthermore, as illustrated above many proteins are only expressed at a high level under 

certain metabolic states.  Thus, the protein target should be grown under the correct 

metabolic state to provide the most optimal conditions for affinity purification of the 

target and potential interacting proteins.  Previous large-scale studies of protein 

complexes and protein-protein interactions have not taken this type of information into 

account (Ho, 2002; Gavin, 2002).  We have determined through this study and other 

previous studies that many known proteins involved in protein complexes will pellet 

during centrifugation process.  In the case of this study, we applied two high speed 

centrifugation steps.  The first was for 1 hour at 100,000 g to create an enriched 

membrane fraction.  The second was for 18 hours at 100,000 g to create a pellet and 

cleared fraction.  We have found most known protein complexes to pellet during the first 

or second spin and the cleared fraction is nearly devoid of known protein complexes.  We 

then extracted the entire dataset for those proteins with at least four unique peptides 

found in either the crude membrane, or pellet fraction in any given metabolic state.  Table 

S5 contains the entire list of proteins, functional categories and a pie chart (2nd tab) with 

the distribution of each.  In total, 965 proteins were identified as potential targets for 
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affinity purification.  The metabolic states and fraction each protein was found in can be 

accessed on the R. palustris proteome website 

(http://compbio.ornl.gov/rpal_proteome/analysis/) allowing for rapid look-up of targets in 

choosing the correct metabolic state for target growth.  The distribution of TAP targets 

shows the exact same distribution as the identified proteome (Figure 5.4).  Many known 

protein complexes are in the list including, ribosomal proteins, ATP synthase complex, 

succinyl-CoA synthetases, cytochrome C oxidase, pyruvate dehydrogenase, nitrogenase 

proteins, RubisCO, GroEL/GroES, and RNA polymerase subunits, as just a few 

examples.  In addition, 107 conserved unknown and 50 unknown proteins were identified 

as high quality targets.  These make excellent candidates in attempting to identify 

potential functions for unknown proteins.  If they can be isolated with known protein 

complexes, their functions may be inferred. 

 

Conclusions 

In this study we have characterized the R. palustris proteome under 6 major 

metabolic states.  We have confidently identified 1,664 proteins representing 34% of the 

predicted proteome.  Over 300 proteins were identified as exhibiting large-scale 

differences between metabolic states many of these being conserved unknown or 

unknown proteins.  The proteome analysis of a large number of metabolic states is clearly 

necessary to begin to understand how microbes change their proteome to adapt to the 

resources present.  Since exact quantitation of a large number of metabolic states is not 

currently straightforward with “shotgun” proteomics, other methods of semi- quantitative 

approaches must be applied.  This study presents a first step towards that goal and 

illustrates how this can be accomplished with semi-quantitative indicators of abundance 

such as percent sequence coverage and number of unique proteins.  The clear up-

regulation of proteins known to be involved in nitrogen fixation, autotrophic carbon 

assimilation and benzoate degradation illustrates the effectiveness of this technique.  The 

conserved unknown and unknown proteins that were identified as up-regulated under 

given metabolic states make excellent targets for future studies since they may have 

essential functions under those states.    
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Figure 5.4:  Functional categories of TAP targets and proteome. 
Comparison between functional categories of tandem affinity purification targets and 
observed proteome. 
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We have demonstrated why proteome analysis of many metabolic states should be 

undertaken before large-scale analysis of protein complexes from a microbe.  By creating 

a database of potential affinity targets and their expression patterns, logical choices for 

target expression can be made.  It is absolutely necessary to express a target protein under 

the same conditions as the potential interacting partners are expressed, to have the 

optimal chance for success.  If a target protein is expressed under a condition where the 

potential interacting proteins are not expressed then the potential for false negative results 

are guaranteed.  This information cannot always be directly inferred from the genome 

annotation.  In some cases, the predicted function of a target protein and thus the 

metabolic state it should be expressed under can be inferred from the genome annotation.  

However, this will not always be the case.  This is clearly true for conserved hypothetical 

and hypothetical proteins where no information on potential function or metabolic state 

expression exists.   

 We are currently investigating the potential of proteomics to study microbial 

species directly from natural samples (Chapters 6 and 7).  R. palustris is a perfect target 

for such studies since its genome has been sequenced, it is ubiquitous, and it can change 

its metabolic state to optimally survive with whatever source of energy and biological 

building blocks are present.  By characterizing the proteome under the major metabolic 

states, we have observed the potential proteins which may be expressed in the community 

settings.  More importantly, we have created a databank of MS/MS spectra from 

observed peptides, which can act much as synthetic peptides, for the verification of 

detection of proteins from R. palustris in the environment.   

 In this study, we have compared two search algorithms for processing MS/MS 

spectra.  SEQUEST is considered by many to be the gold standard search algorithm for 

“shotgun” proteomics applications.  DBDigger was recently developed at ORNL and 

provides more flexibility and speed than SEQUEST with the same accuracy and precision 

(Tabb, 2005).  This was the first large-scale comparison of the two algorithms on a 

bacteria proteome dataset.  The results clearly indicated that both algorithms gave very 

similar results adding confidence to the overall identifications as well as advancing the 

usefulness of the new search engine.  The lack of open access to the results of large-scale 
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proteome datasets generated from “shotgun” proteomics is clearly a hindrance to future 

progress in this field (Carr, 2004; Pedrioli 2004).  For this study, we created a completely 

open access website (ORNL Rhodopseudomonas Palustris Proteome Study Website) for 

the repository of all the results from the different search methods and search engines for 

direct download.  We have made all identified MS/MS spectra directly accessible and 

have provided clear descriptions of all the data files.  For the future directions of this 

endeavor, we hope to create a fully interactive website where researchers can access the 

datasets, re-search the datasets, re-filter the datasets and compare the datasets as they 

choose.  While we were not able to accomplish this lofty goal for this study, we believe 

the steps we have taken are further than any other study to this point and bring us much 

closer to truly open access proteome results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 166

Chapter 6 

Evaluations of “Shotgun” Proteomics for Characterizing the Complex 

Metaproteomes of Microbial Communities 
 

Introduction 

The previous chapters have demonstrated the application of “shotgun” proteomics 

to the characterization of microbial isolates grown in batch cultures.  Microbial 

physiology, biochemistry, evolution and ecology have been studied in great detail due to 

the importance of microbes in industry, human health, agriculture and the environment.  

The greatest effort to date in molecular level studies of microbes has mostly focused on 

cultured species grown to large densities in laboratory settings.  While this methodology 

of study is very useful in understanding the fundamental physiology and biochemistry of 

microbes, it does not truly study the microbes under their natural settings and many 

microbes cannot be isolated and cultured for these types of studies.  Microbes in nature 

always exist in communities with other microbes, under a constant struggle for nutrients 

and space, where their existence is very often dependent upon metabolites from other 

microbes in the community for survival.  By definition, microbial communities are 

composed of mixed cultures of interacting populations of microbes and their 

environments.   

While these communities have been studied in the past by many different 

methodologies, they have not been studied in detail by system level molecular biology 

techniques such as genomics, transcriptomics, proteomics or metabolomics.  While these 

techniques could offer system level information on the molecular level of the physiology 

and biochemistry of the community, they have been slow to develop for communities due 

to the complexity of natural microbial communities and the limits of the current 

technologies.  Researchers have begun to explore genomic DNA-based analysis 

techniques for these microbial communities (Smalla and Sobecky, 2002; Tyson, 2004; 

Venter, 2004).  This area of work is often characterized as “whole community genomics.”  

Early work in this field has shown that the biggest technical challenges will be found in 

communities, which are very diverse.  Indeed, deep sequencing of microbial communities 
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will probably be limited to simpler communities dominated by a few species in the near 

future.  Recent research and discussion have suggested that microarrays may be used to 

study microbial communities at the transcriptome level, but have also highlighted the 

difficulty involved with diverse communities and the advantages of working in simpler 

communities (Wu, 2001; Zhou, 2003).  Genome sequencing forms the core database for 

any systems level analysis of a living species or a community, but it only provides the 

blueprint for the metabolic possibilities a species or community possesses.  Currently, 

microarray analysis provides the most detailed analysis of transcript levels, which relate 

to protein expression levels, but the measurement is based on the intermediate between 

DNA and protein.  Proteins and proteomes are the actual functioning units of cells and 

communities of cells.   

  Over the last decade, the emerging field of proteomics has now evolved to the 

point of being able to provide detailed, diverse and precise information for proteomes for 

sequenced organisms from batch isolates (see Chapters 4 and 5).  While not as fully-

developed as the genomics and transcriptomics technologies, MS-based proteomics offers 

a diversity of techniques for the direct measurement, at a molecular level, of the essential 

and functional components of any living system, proteins.  With the advent of community 

genome sequencing projects, it may now be possible to make direct proteome 

measurements on simple and stable microbial communities that have been sequenced at 

the whole genome level.  

Our first efforts in this field were not for deep proteome coverage but for simple 

microbial identification.  In VerBerkmoes et al. 2004, we examined the potential of 

“shotgun” proteomics to analyze a target species in a background of 3 microbial species 

and 1 plant species.  We tested the capability of a common commercial MS-based 

“shotgun” proteomics platform for the detection of the target species (E. coli) at four 

different concentrations and four different time points of analysis.  We also tested the 

effect of database size on positive identification of the four microbes used in this study by 

testing a small (13-species) database and a large (261-species) database.  The results 

clearly indicated that this technology could easily identify the target species at 20% in the 

background mixture at 60, 120, 180 or 240 minutes analysis time with the small database.  
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The results also indicated that the target species could easily be identified at 20% or 6% 

but could not be identified at 0.6% or 0.06% in either a 240-minute analysis or a 30-hour 

analysis with the small database.  Recent efforts, illustrated below, suggested that not 

only can identifications be made at less than 1% target species, but small coverage of the 

proteome could be achieved as well.  The effects of the large database were severe on the 

target species where detection of unique peptides above background at any concentration 

used in this study was impossible, though the three other microbes used in this study were 

clearly identified above background when analyzed with the large database.  These 

results were confirmed with the below test for E. coli while, again, the other species were 

not effected as much.  The reason for this will be discussed.  This initial study pointed to 

the potential application of this technology for microbial detection but highlighted many 

areas of needed research before the technology would be useful in real world samples.    

The primary goal of this chapter is to demonstrate initial testing and developments 

we have done with simple mixtures of microbial species as simulants for microbial 

communities to obtain deep proteome characterization rather than just identification.  

These types of tests are absolutely necessary to determine the current state of proteomics 

technologies and to develop new technologies.  It is more logical to work with known 

mixtures of microbes simulating microbial communities than to try and develop these 

technologies on undefined precious samples from real communities.  Current proteomic 

techniques have not been shown to probe ‘deep’ into community systems to infer 

biochemical and physiological function; however, proteomics are predicted to be applied 

into this area (Sauer, 2003; Macarthur and Jacques, 2003; Casado, 2004). 

The proteome analysis of any microbial community would be difficult with any 

current technology.  The primary theoretical and practical concerns are: 

 

1) The level of sequence information available on the community.  Current 

proteomic methodologies are heavily reliant on existing genome sequence 

information.  If a large number of microbes present in the community are 

unsequenced or not related to sequenced organism, current technology will be 
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very limited in its application.  The best situation is if the actual environmental 

sample has been sequenced to the fullest extent possible.  

 

2) The level of diversity and dynamic range associated with the species of interest in 

the community.  Preliminary work in our laboratories (discussed below) has 

suggested practical limitations in studying a microbe, which is less than 1% in the 

community.  The total number of species and their relative concentrations will be 

very important in the ability of current technologies to make any useful 

measurements of community proteomes.   

 

3) The quantity of biomass available for study.  While MS-based proteomic 

measurements continue to become more and more sensitive, practical applications 

of sample preparation and LC-MS/MS require at least 100 ug-1 mg of crude 

proteome starting material for effective analysis. 

 

4) The level of interrelatedness and/or diversity at the base pair level amongst 

members of the same species in the community and between species in the 

community.  Since MS-based proteomics relies on molecular level sequence 

dependent measurements on either enzymatically prepared peptides or whole 

proteins, the diversity at the amino acid level for individual peptides or proteins 

from the same species or between species will be very important. 

 

When all of these facts are considered, it is clear that, with current technology, the 

direct measurement of complicated environmental samples such as a typical soil or water 

sample, which may contain tens of thousands of species at different concentrations with 

very little sequence information, will be difficult, if not impossible.  A possible starting 

place for community proteomics is environmental samples, which may contain a much 

simpler microbial community of 10-100 species, but which is dominated by 5-10 

microbes.  It should be theoretically possible to extend current MS-based proteomic 

methodologies to make biologically relevant measurement from such microbial 
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communities.  Natural communities that might be a promising area of initial research are 

extremophile niches. These communities are found in hostile environments such as very 

high salt, high or low pH, and very high or low temperatures.  The communities are 

generally thought to contain a simpler mixture of species with a few predominant species 

due to the harsh living conditions.  One such system, which theoretically fulfills all the 

requirements for an initial community proteome study (community must have sequence 

information available, be fairly simple in total number of species, and have plenty of 

biomass available), is the recently sequenced community populating the Acid Mine 

Drainage (AMD) at the Richmond Mine in Iron Mountain, CA (Tyson , 2004).  The 

proteome characterization of this community is discussed in Chapter 7.  This chapter 

focuses on methodology testing and development with an artificial mixture of microbial 

isolates made up of Shewanella oneidensis MR-1, Escherichia coli K-12, 

Rhodopseudomonas palustris CGA010, and Saccharomyces cerevisiae.  We tested the 

effects of concentration and database size on the depth of coverage that could be obtained 

with current “shotgun” proteomics techniques.  Hopefully, the methodologies used here 

and the lessons learned can be applied in the characterization of real microbial 

communities.     

 

Materials and Methods 

 

Chemicals and reagents 

All salts, DTT, trifluoroacetic acid (TFA), and guanidine used in this work were 

obtained from Sigma Chemical Co. (St. Louis, MO).  Protein concentrations were 

determined with BCA reagents from Pierce Chemical Co. (Rockford, IL).  Modified 

sequencing grade trypsin, from Promega (Madison, WI), was used for all protein 

digestion reactions.  The water and acetonitrile used in all sample clean up and HPLC 

applications was HPLC grade from Burdick & Jackson (Muskegon, MI) and the 98% 

formic acid used in these applications was purchased from EM Science (an affiliate of 

MERCK KgaA, Darmstadt, Germany).   
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Cell growth and production of protein fractions  

The four microbes used in this study (E. coli K-12, R. palustris CGA010, S. 

cerevisiae, and S. oneidensis MR-1) were all grown individually to mid-log phase and 

mixed after cell harvesting at appropriate concentrations based on wet-cell weight.  Table 

6.1 illustrates the different mixture concentrations used in this study.  R. palustris was 

designated as the target species.  Cell extracts were prepared as follows:  cells were 

harvested by centrifugation, washed twice with ice-cold wash buffer (50 mM Tris buffer 

[pH 7.5] with 10 mM EDTA) and resuspended in ice-cold wash buffer.  Cells were then 

mixed at the indicated concentrations in Table 6.1 by wet-cell weight.  Cells were then 

lysed with sonication and unbroken cells were removed with low-speed centrifugation 

(5,000 g x 15 min).  Two proteome fractions were created from the cellular extract by 

ultracentrifugation (100,000 g for 1 hour).  The soluble fraction is referred to as crude 

soluble; the pellet is referred to as the membrane fraction.  The membrane fraction was 

washed once with wash buffer and pelleted again by ultracentrifugation.  The pellet was 

then resuspended in wash buffer with the aid of gentle sonication.  Both proteome 

fractions were quantified with BCA analysis, aliquoted and frozen at -80 0C until 

digestion.  

 

Digestion of proteome fractions   

Both proteome fractions from all concentrations were processed in exactly the 

same manner.  Briefly, 5 mg of each proteome fraction was diluted in 6 M guanidine and 

10 mM DTT then heated at 60°C for 1 hour.  The guanidine and DTT were diluted 6-fold 

with 50 mM Tris/10 mM CaCl2 (pH 7.8) and sequencing grade trypsin was added at 

1:100 (wt/wt).  The digestions were run with gentle shaking at 37°C for 18 hours, 

followed by a second addition of trypsin at 1:100 and additional 5-hour incubation.  The 

samples were then treated with 20 mM DTT for 1 hour at 37°C as a final reduction step.  

Samples were immediately desalted with Sep-Pak Plus C18 solid phase extraction 

(Waters, Milford, MA).  All samples were concentrated and solvent exchanged into 0.1%  

FA in water by centrifugal evaporation to ~10 μg/μL starting material, filtered, aliquoted 

and frozen at -80°C until LC-MS/MS analysis. 



 172

Table 6.1:  Concentrations of 4 test microbes in artificial mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organism Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

E. coli 25% 32% 33% 33% 33.3%

S. cerevisiae 25% 32% 33% 33% 33.3%

S. oneidensis 25% 32% 33% 33% 33.3%

R. palustris 25% 5% 1% 0.2% 0% 
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LC-MS/MS analysis 

All samples were analyzed by 2-dimensional MudPIT LC/LC-MS/MS (described 

in Chapter 2).  An UltiMate HPLC (LC Packings, a division of Dionex, San Francisco, 

CA) was used for the separation process.  The pump provided a flow rate of  ~100 

µL/min, which was split pre-column to provide an approximate flow of ~200-300 nL/min 

at the nanospray tip.  The split-phase columns were constructed as follows: the back 

column was packed with approximately 3.5 cm of strong cation exchange material (Luna 

SCX 5 µm 100A Phenomenex, Torrance, CA) into a 100 µm fused silica via a pressure 

cell followed by 3.5 cm of C-18 reverse phase (RP) material (Aqua C-18 5 µm 200A 

Phenomenex).  The sample was then loaded off-line onto the dual phase column.  For all 

samples, ~500 µg of protein was loaded onto the back dual phase column.  The loaded 

RP-SCX column was then positioned on the instrument behind a ~15 cm C18 RP column 

(Jupiter C18 5 µm 300A Phenomenex) also packed via pressure cell into Pico Frit tip 

(100 µm with 15 µm tip New Objective, Woburn, MA).  The entire column system was 

positioned into the nanospray source (Thermo Finnigan) on either the LCQ or LTQ mass 

spectrometers.   

All samples were analyzed via a 24-hr 12-step MudPIT analysis consisting of 

increasing concentration (0-500 mM) salt pulses of ammonium acetate followed by 2-

hour reverse phase gradients from 100% aqueous solvent (95% H2O/ 5% ACN/ 0.1% 

formic acid) to 50% organic solvent (30% H2O/ 70% ACN/ 0.1% formic acid).  During 

the entire chromatographic process, the LCQ mass spectrometer operated in a data-

dependent MS/MS mode detailed below.  The chromatographic methods and HPLC 

columns were virtually identical for all analyses.  The LC-MS system was fully 

automated and under direct control of the Xcalibur software system (Thermo Finnigan).   

The LCQ MS was operated with the following parameters: nanospray voltage (2.4 

kV), heated capillary temp 2000C, full scan m/z range (400-1700).  The data-dependent 

MS/MS mode was set up with the following parameters: 4 MS/MS spectra for every full 

scan, 5 microscans averaged for full scans and MS/MS scans, 5 m/z isolation widths for 

MS/MS isolations and 35% collision energy for collision-induced dissociation.  To 
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prevent repetitive analysis of the same abundant peptides, dynamic exclusion was 

enabled with a repeat count of 1 and an exclusion duration of 1 min.   

 

Data analysis  

The resultant LC-MS/MS files were all processed as follows.  The MS/MS spectra 

from all files were searched with SEQUEST (Thermo Finnigan) against three databases 

DB4, DB13 and DB large.  DB4 contained the four species contained in the mixtures, E. 

coli K-12, R. palustris CGA010, S. cerevisiae, and S. oneidensis MR-1, with a total of 

20,595 proteins.  DB13 contained the four species contained in the mixture plus 8 other 

bacteria and 1 plant (Arabidopsis thaliana), with a total of 84,606 proteins.  DB 261 

contained the four species in the mixture plus most sequenced microbes to date and both 

sequenced plant species (Arabidopsis thaliana and Oryza sativa).  The different E. coli 

species that have been sequenced were removed from the database.  This database had a 

total of 261 species and 1,011,612 protein entries.  The alternative databases were used to 

test the ability to detect the species contained in the database against the background of 

all other sequenced species.  All resultant output files from SEQUEST were filtered by 

DTASelect (Tabb, 2002) with the following parameters:  SEQUEST, delCN of at least 

0.08 and cross-correlation scores (Xcorrs) of at least 1.8 (+1), 2.5 (+2) and 3.5 (+3).   The 

filtered DTASelect files were then extracted with in-house developed Perl scripts to 

obtain the numbers of unique and non-unique peptides presented below. 

 

Results 

 The initial experiments for this study have focused on testing current 2D-LC-

MS/MS methodologies to analyze an artificial 4-microbe mixture with E. coli, R. 

palustris, S. cerevisiae and S. oneidensis.  Two aspects of community proteomics were 

analyzed in this initial study:  the first was to determine at what level functionally 

meaningful results could be obtained from a target species (R. palustris) whose 

concentration was decreased over a range of concentrations from 25% to 0.2%.  All 

experiments were conducted with current 2D-LC-MS/MS technologies.  The second was 

to test the effects of database size on the identification of unique peptides from the four 
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microbial species in the sample.  Though peptides may be identified above a certain 

filtering level, in a large database of many proteins (and especially if that database 

contains many related species with many conserved proteins), there will exist a large 

number of replicate tryptic peptides with the exact same sequence.  If a specific peptide is 

found in multiple species, then it cannot be used as a unique peptide for identification 

purposes.  This issue was handled with the DTASelect algorithm since it labels all unique 

peptide identifications with an asterisk; non-unique peptides are listed under all possible 

originating proteins and do not contain an asterisk.  Unique peptides are defined as those 

peptides from a given protein that are unique to a specific species in a given database.  

Non-unique peptides refer to those peptides that were not unique across a given database, 

meaning the same exact peptide is found in multiple proteins.  Non-unique cannot be 

used for confident assignment of protein identification.  We used in-house designed Perl 

scripts to extract the number of uniquely identified peptides and proteins from any given 

analysis and database search. 

 The first experimental test was to test the ability of 2D LC-MS/MS on an ES-

quadrupole ion trap to detect peptides and proteins from R. palustris at decreasing 

concentrations from 25% to 0% in the mixture of the other three microbes which were 

kept at the same concentration.  Figure 6.1 illustrates these results against the DB4 

database.  At the 25% concentration, all bacterial species were readily identified with at 

least 2,000 unique peptides.  S. oneidensis was the highest with nearly 3,500 peptides, 

while E. coli was found at nearly 3,200 peptides, and R. palustris at nearly 2,000 

peptides.  The differences in the number of unique peptides are most likely due to 

differential lyses and slight variations in mixing concentrations (this cannot be exactly 

determined since it is just an estimation on wet cell pellet weight).  The massive 

difference in the number of S. cerevisiae is not due to small errors in mixing, but rather 

due to differential lysing.  It is known that S. cerevisiae does not lyse as well by 

sonication as bacterial samples but we wanted to test the results with our current 

proteomics pipeline (Chapter 2).  We are currently investigating alternative lyses  

procedures for mixtures to attempt to develop optimal lyses processes for the multitude of  

cell types that might be encountered in the natural environment.
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Figure 6.1:  Number of unique peptides identified with the DB4 database. 
Illustrates the number of unique peptide identifications against the DB4 database.  At the 
25% concentration, all bacterial species were readily identified with at least 2,000 unique 
peptides.  As the R. palustris target is diluted, its number of unique peptides identified 
rapidly drops and peptides from the other microbes are detected at a higher level. 
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 As expected, the number of detected peptides from R. palustris dropped 

dramatically from the 25% concentration to the lower concentrations with ~500 peptides 

detected at the 5% level and less than one hundred peptides at the 1% and the 0.2%.  The 

number of detected peptides at the 1% and 0.2% could not be distinguished from the level 

of false positive hits to R. palustris at the 0% level, suggesting no useful results can be 

obtained at less than 1% (this was not actually the case, as described below).  We then 

compared the identified proteins’ functional categories from R. palustris to determine if 

we were just detecting abundant ribosomal proteins at the lower percentages or if we 

were actually still getting a representative overview of the proteome.  Figure 6.2 (top left, 

1,695 total proteins) compares the functional categories of the proteins identified from 

the global characterization of the R. palustris proteome (see chapter 5) with the functional 

categories of the identified proteins at 25% (610 total proteins), 5% (227 total proteins) 

and 1% (70 total proteins).  Interestingly, while the numbers of proteins dropped 

significantly, the functional categories were not significantly affected, even at the 1% 

level.  This suggested that, while deep proteome measurements were not being made at 

the lower percentage, the methodology was still able to take a representative snapshot of 

the proteome. 

 The next question addressed was to determine if any of the peptides/proteins 

identified at the 1% and 0.2% were actually real peptide and protein identifications or 

simply false positives, as with the 0%.  This was done by manual validation of the 

identifications.  Table 6.2 illustrates the number of peptides identified from an abundant 

protein from R. palustris, the H subunit of the photosynthetic reaction center complex 

(PuhA).  This protein was found to be detected under every growth state in R. palustris 

global proteome characterization (Chapter 5) with high sequence coverage, high number 

numbers of peptides and a high repeat count suggesting high abundance (Liu, 2004).  

Thus, it was a good candidate to determine if identifications were made at low 

percentages since we had sequencing spectra from virtually all potential detected peptides 

from this protein, which can act like synthetic peptides for MS/MS verification (note the 

same peptide sequence always gave the exact same MS/MS spectra under similar CAD 

energy regimes).  Table 6.2 indicates that a unique peptide was identified from this 
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Figure 6.2:  Functional categories of R. palustris proteins at different concentrations. 
Compares the functional categories of the proteins identified from the global 
characterization of the R. palustris proteome (1,695 total proteins, top left) with the 
functional categories of the identified proteins at 25% (610 total proteins, top right), 5% 
(227 total proteins, bottom left) and 1% (70 total proteins, bottom right). 
 

 

 

 

 

 

 

 

 

 

 

 

R. palustis proteome
1695 Total Proteins

Unknowns and Unclassified

Replication and Repair

Energy Metabolism

Carbon and Carbohydrate Metabolism

Lipid Metabolism

Transcription

Translation

Cellular Processes

Amino Acid Metabolism

General function prediction

Metabolism of Cofactors and Vitamins

Transport

Signal Transduction

Purine and Pyrimidine Metabolism

Mix 1 R. Palustris  25% 
610 total proteins

Mix 2 R. Palustris  5%
227 Total Proteins

Mix 3 R. Palustris  1%
70 total Proteins



 179

Table 6.2:  Identified peptides from PuhA at each concentration of R. palustris. 

Mixture % Coverage Protein 
Mix 1 44.70% puhA H subunit of photosynthetic reaction center complex 

rpal:RPA1548 Charge State Xcorr DelCN Peptide
* 3 4.1787 0.5624 K.TVPSTSNDRPNVALTPAAPWPGAPFVPTGNPFADGVGPGSYAQR.A
* 3 5.8592 0.4355 R.ADVPELGLDNLPIIVPLR.A
* 2 5.6884 0.5109 R.ADVPELGLDNLPIIVPLR.A
* 2 3.788 0.4484 R.ADVPELGLDNLPIIVPLRAAK.G
* 1 2.7334 0.2724 R.YLEVEVAK.S
* 2 4.0343 0.5105 R.VLLPVPFALINDPFGK.V
* 3 5.8444 0.5249 R.VLLPVPFALINDPFGK.V
* 2 3.2296 0.6166 R.VLLPVPFALINDPFGKVSVDAIR.G
* 2 4.5225 0.5718 K.VSVDAIRGDQFAGVPTTSKGDQVSK.L
* 3 3.8473 0.3707 K.VSVDAIRGDQFAGVPTTSKGDQVSK.L

Mix 2 42.70% puhA H subunit of photosynthetic reaction center complex 
rpal:RPA1548 Charge State Xcorr DelCN Peptide

* 2 2.5409 0.3636 K.IGVPAPPDPK.T
* 3 3.5846 0.4472 K.TVPSTSNDRPNVALTPAAPWPGAPFVPTGNPFADGVGPGSYAQR.A
* 3 5.8143 0.4663 R.ADVPELGLDNLPIIVPLR.A
* 2 5.6008 0.4809 R.ADVPELGLDNLPIIVPLR.A
* 2 4.1629 0.369 R.ADVPELGLDNLPIIVPLRAAK.G
* 2 2.9884 0.485 R.VLLPVPFALINDPFGK.V
* 2 3.7545 0.4465 R.GDQFAGVPTTSKGDQVSK.L

Mix 3 17.30% puhA H subunit of photosynthetic reaction center complex 
rpal:RPA1548 Charge State Xcorr DelCN Peptide

* 3 5.1517 0.583 K.TVPSTSNDRPNVALTPAAPWPGAPFVPTGNPFADGVGPGSYAQR.A

Mix 4 7.10% puhA H subunit of photosynthetic reaction center complex 
rpal:RPA1548 Charge State Xcorr DelCN Peptide

* 2 4.4881 0.4467 R.ADVPELGLDNLPIIVPLR.A

Mix 5 N/A

 
 

 

 

 

 

 

 

 

 

 



 180

protein at the 1% and the 0.2% levels, with good cross-correlation scores.  Furthermore, 

both peptides were identified at the 25%, 5%, and in the global proteome analysis, 

allowing for direct comparisons of the resultant MS/MS spectra. 

Figure 6.3 illustrates the MS/MS spectra for the identified peptide at 25% and 1% 

and Figure 6.4 illustrates the MS/MS spectra for the identified peptide at the 25% and the 

0.2%.  Clearly, these MS/MS spectra are almost identical, indicating true identifications 

can be made at the 1% and 0.2% level.  Furthermore, the identification of this protein 

also tells us that R. palustris is actively producing a protein involved in a metabolic 

function that is photosynthesis.  This illustrates why it is useful, if possible, to have 

global characterizations of a microbial proteome isolate before attempting to characterize 

that microbial proteome in the environment.  This is because the MS/MS spectra obtained 

from the isolates can be used as virtual synthetic peptide MS/MS spectra to verify low 

level identifications that might be made by only one or two peptides from environmental 

samples.                  

The next parameter investigated was the effects of database size.  The reason for 

this was that research planned for the future will include attempting to characterize R. 

palustris in unknown mixtures of other microbes such as soil and water samples.  Could a 

microbe, or a mixture of microbes, be characterized against a database of all other 

sequenced microbial species?  Would there be enough unique peptides identified to 

confidently tell the microbe of interest apart from an unknown background of other 

species?  Could useful measurements be made in large mixtures of microbes against large 

databases of potential microbes?  While the simulations we employed did not lead to the 

final answers, they did make initial steps towards solving these problems and questions.  

To test this, we compared the levels of unique peptide identifications against a smaller 

database of just 13 species (DB13) and against a very larger database of 261 species (DB 

261).  The same proteome analysis shown in Figure 6.1 was searched against the DB13 

database and the results are shown in Figure 6.5.  The small database search did not have 

major effects on the results.  The same basic trends of identified unique peptides were 

seen with ~250-400 peptides uniquely matching peptides from the other databases.  It 

should be noted this was a conglomerate of all peptides matching to the other databases. 
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Figure 6.3:  Diagnostic peptide identified from PuhA at 1% R. palustris. 
Compares the MS/MS spectra of diagnostic peptide from PuhA detected at 25% and 1% 
R. palustris concentration.   
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Figure 6.4:  Diagnostic peptide identified from PuhA at 0.2% R. palustris. 
Compares the MS/MS spectra of diagnostic peptide from PuhA detected at 25% and 
0.2% R. palustris concentration.   
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Figure 6.5:  Number of unique peptides identified with the DB13 database. 
Illustrates the number of unique peptide identifications against the DB13 database.  At 
the 25% concentration, all bacterial species were readily identified with at least 2,000 
unique peptides.  The same trends are seen as in Figure 6.1, with slightly lower peptide 
values showing that the small database does not have drastic effects on the # of unique 
peptide identifications.   
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It should be noted that this was a conglomerate of all peptides matching to the other 9 

species in the database, with no more than 30-50 peptides from any given species.  

Clearly, the identifications of R. palustris at 1.0% and 0.2% were not above the average 

number of false positive hits to background species.       

 The dataset from just the Mixture 1 (25% all species) was then searched against 

the large database (DB 261).  The results are shown in Figure 6.6 for the DB4 database 

search, the DB13 database search and the DB261 database search.  Clearly, a major 

difference can now be seen.  The number of unique peptides from R. palustris, S. 

oneidensis and S. cerevisiae were not affected in a major way.  But the number of unique 

peptides from E. coli went from ~3,100 peptides with DB4 to ~2,550 peptides with DB13 

to less than two hundred peptides with DB261.  This was most likely due to the fact that a 

large number of closely related microbes to E. coli had been sequenced in comparison 

with the other three microbes in this study.  These results illustrated two major points:  1) 

in the planned future experiments, it might be feasible to attempt to analyze R. palustris 

in a mixture of many other species against a very large database, assuming the 

concentration of R. palustris is relatively high; and 2) the ability to do this would highly 

depend on the species type and the database used.  Without taking into account the 

uniqueness of species against the database one would be searching, it would be possible 

to conclude that the species was not present, even though it was present at high 

concentrations as was the case in this example with E. coli.  Clearly, the best option 

would be to obtain whole genome sequencing of the environmental sample of interest if 

at all possible, as shown in Chapter 7.          

 

Conclusions 

 This chapter demonstrated initial testing of proteome analysis of simple microbial 

mixtures.  Initial studies have focused on evaluating the standard 24-hour 2D-LC-MS/MS 

experiment for the analysis of 4-component artificial microbial mixtures.  R. palustris 

was designated as the target species, and its concentration in the samples were set to 

20%, 5%, 1%, 0.2% and 0%, while all other species were kept constant.  Significant R.  

palustris proteome measurements could be made at 25% and 5%, with 1% borderline.  A 
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Figure 6.6:   # of unique peptides identified from Mix 1 against all three databases. 
Illustrates the number of unique peptide identifications against all three databases with 
Mix 1 (25% of each microbe).  While the # of peptide identifications was not severely 
affected by the increase in database size for R. palustris, S. oneidensis and S. cerevisiae, 
the increase database size dramatically affected E. coli. 
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few peptides could be detected confidently at the 0.2% level.  Analysis of the expressed 

functional categories demonstrated that even at the 1% level an un-biased snapshot of the 

proteome was taken albeit at a very shallow level.  

These initial tests illustrated that significant research development would be 

necessary to apply community proteomics to complex microbial mixtures where many 

components may be present at less than 5%.  One potential improvement would be the 

implementations of the linear ion trap recently introduced (Schwartz, 2002).  This 

instrument provides much better scan speed, dynamic range and sensitivity, as discussed 

in Chapter 2 and illustrated in Chapter 7.  While this may help to identify more proteins 

at the 25% and 5%, it most likely would not allow for the needed increase in dynamic 

range necessary for detailed analysis of proteomes at less than 5%.  A potential 

alternative that is currently being explored is the development of three-dimensional 

separation platform for community proteomes.  The difficulty in creating such a platform 

would be the robust coupling of all three dimensions of separation.  Another difficulty 

would be that peptides have a limited number of chemical properties to exploit in the 

separation process.   

Current research has explored the use of RP-SCX-RP separations of peptides.  

While not truly orthogonal, this was straightforward in the coupling processes working 

around the first problem, but had shown serious limitations with the second problem.  A 

second methodology being explored is the initial separation of the intact proteins by 

SDS-PAGE, followed by cutting the entire gel into district bands and in-gel digestions of 

the bands.  The peptides were then eluted and analyzed by SCX-RP-ES-MS/MS.  This 

showed great potential of working around the second problem by first separating the 

intact proteins, but we had found the coupling process to the second dimension, as well as 

the large in-gel digestions, to be experimentally difficult.  The development of an 

effective 3D separation for complex microbial mixtures is still an area of active research. 

While the use of additional separation space may increase the dynamic range, the 

best potential would be to increase the dynamic range of the mass spectrometers 

employed.  While the quadrupole ion trap and the linear ion trap have very good dynamic 

range in the MS/MS mode, the dynamic range in full scan, where peptides are picked for 
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MS/MS, is not so good.  The clear solution to this would be the use of the new linear ion 

trap FT-ICR which has recently become available (Syka, 2004).  The proposed platform            

would include the coupling of a high resolution three-dimensional separation with the 

high dynamic range LTQ-FT-ICR (Figure 6.7). 

We also explored the effects of database size on unique peptide identifications.  

While smaller databases would not have a dramatic effect on the number of identified 

peptides, larger databases would diminish the identification of unique peptides for any 

given species, but species such as E. coli, with many closely-related species in the 

database, are dramatically affected.  The correct choice of database components will be 

of primary importance when working in unknown microbial communities.  Clearly, the 

best situation would be to have the community of interest whole genome sequence. 

To our knowledge, this was the first example of testing current “shotgun” 

proteomics techniques to characterize mixtures of microbial species.  Quality results were 

obtained for the bacteria of a simple mixture of microbes, where all components were at 

equal concentrations.  But the proteome coverage severely diminished as the target’s 

species concentration was decreased.  Currently, we are investigating alternatives in 

separation methodologies, MS methodologies, and cell lyses techniques.  We are also 

investigating the potential for differential, or comparative, proteomics in mixtures by 

mixing R. palustris grown under different metabolic states into the 25% mixture with the 

other microbes.  The goal here is to determine if the metabolic state of R. palustris can be 

accurately determined in a mixture of microbial species.  Initial results from these studies 

are very promising.  While significant progress has been made through this work and the 

work on a real microbial community presented in Chapter 7, clearly much research and 

development is needed to develop a robust and reproducible platform for the 

characterization of a diversity of microbial communities.         
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Figure 6.7:  A potential solution for achieving high dynamic range measurements of         
microbial proteome mixtures. 
The coupling of a high resolving three-dimensional separation with the high dynamic 
range potential of the LTQ-FT-MS instrument may allow for deep proteome 
characterization of microbial species less than 5% in a mixture, with more abundant 
microbial species.   
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Chapter 7 

Mass Spectrometry-Based Proteome Analysis of  

the Acid Mine Drainage Community  
Some of the data presented below has been submitted as Rachna J. Ram, Nathan C. 
VerBerkmoes, Michael P. Thelen, Gene W. Tyson, Brett J. Baker, Robert C. Blake II, 
Manesh Shah, Robert L. Hettich, and Jillian F. Banfield.  Community proteomics of a 
natural microbial biofilm. Science (2004), in review.  All MS sample preparation, 
experiments and data analysis were performed by Nathan C. VerBerkmoes. 
 
Complete datasets for proteomic analyses and other supplementary materials are 
available on the web site http://compbio.ornl.gov/biofilm_amd/ 
 
Introduction 

Microbial communities play key roles in the Earth’s biogeochemical cycles.  Our 

knowledge of the structure and function of these communities is limited because analyses 

of microbial physiology and genetics have been largely confined to studies of organisms 

from the few lineages for which cultivation conditions have been determined.  An 

additional limitation of pure culture-based studies is that potentially critical community 

and environmental interactions are not sampled.  Recent acquisition of genomic data 

directly from natural samples has begun to reveal the genetic potential of communities 

(Tyson, 2004) and environments (Venter, 2004).  Typically, more than 40% of the 

recovered genes in any genome are hypothetical, meaning that their predicted products 

share no significant sequence similarity to characterized proteins.   

Acid Mine Drainage (AMD) has become a serious environmental problem since 

the advent of modern mining technologies.  During deep mining projects, large quantities 

of the sulfide mineral in most rocks (pyrite FeS2) become exposed to weathering and 

erosion by air and water.  Mining increases the surface area of the sulfide ores exposed to 

air and water, thus increasing the acid generation.  In mining areas where the rocks have 

very low buffering capacity, the buildup of acid and heavy metals in the water can 

become so great that the streams are actually toxic acidic heavy metal solutions called 

AMD.  The generation of AMD sites can theoretically occur by just geochemical events, 

but it is hypothesized that the unique microbial communities found to populate these 

harsh environments may actually be greatly increasing the generation of AMD (reviewed 
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by Baker and Banfield, 2003).  Thus, a greater understanding of the basic biology of the 

microbial communities populating such sites may allow for methods to slow the AMD 

process down or to apply such process in industrial applications.  The microbial 

communities populating the AMD site at the Iron Mountain Mine in California is one of 

the most widely studied AMD communities to date (Schrenk, 1998; Edwards, 2000; 

Bond, 2000; Baker and Banfield, 2003).  The location and pictures of general AMD 

biofilms can be found in Figure 7.1.  While all the communities studied to date live in 

either very acidic conditions (0-1 pH) or mildly acidic conditions (1-3 pH), they all seem 

to be dominated by a few primary archaea or bacteria.  The surface biofilm growing 

directly on the AMD stream (Figure 7.1) has been studied in great detail and several 

samples were collected from various places in the Richmond mine over the last few 

years.  One of these samples was used for first attempt at community genome sequencing 

(Tyson, 2004) and location of its collection is near the entrance of the mine as illustrated 

in Figure 7.2.  The random shotgun sequencing of the acidophilic biofilm allowed for 

near complete reconstruction of the genomes from two dominant organisms designated 

Leptospirillum group II and group III and Ferroplasma type II and type III and partial 

recovery of three other minor genomes.  The remaining samples, while not exactly the 

same as the sample that was sequenced, provided excellent starting material for initial 

studies into methodology development for integrated genomic and proteome studies of 

microbial communities.  This study is the first combination of cultivation-independent 

genomic and proteomic analyses to validate predicted genes, determine relative 

abundance and cellular localization of expressed proteins, and provide clues to protein 

function.  The approach also enabled identification of the major investments of cellular 

resources and the physiological challenges faced by a self-sustaining, chemoautotrophic 

microbial community.  The results from these studies, when coupled with the large 

amount of ecological and genomic information already available, will provide for even 

greater insight into the biology of the AMD community. 
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Figure 7.1:  The acid mine drainage community of Iron Mountain, California. 
Top left panel shows the location of the mine in California.  Top right panel shows an 
AMD biofilm on top of an AMD stream.  The bottom panel shows a close up look at an 
AMD stream. 
Figure courtesy of Dr. Jillian Banfield. 
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Figure 7.2:  Map of biofilm sampling sites within Iron Mountain Mine, near 
Redding, California. 
The original collection for genome sequencing was near the entrance to the mine noted as 
Tyson et al, 2004.  The collection area for this study was near the AB drift, and was 
collected in 2004. 
Figure courtesy of Dr. Jillian Banfield and Dr. Rachna Ram. 
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Materials and Methods 
 
Chemicals and reagents 

Unless otherwise stated, chemical reagents were obtained from Sigma Chemical 

Co. (St. Louis, MO).  Modified sequencing grade trypsin, from Promega (Madison, WI), 

was used for all protein digestion reactions.  The water and acetonitrile used in all sample 

clean up and HPLC applications was HPLC grade from Burdick & Jackson (Muskegon, 

MI) and the 98% formic acid used in these applications was purchased from EM Science 

(Darmstadt, Germany).  

 

Collection of biofilm samples 

Several hundred grams of biofilm suspension were collected from the Richmond 

mine, near the downstream confluence of drifts A and B (Figure 7.2 January and June 

2004).  A portion was fixed on-site (see below), while the rest was transported within the 

mine at ambient temperature and put on dry ice within an hour of collection, transported 

back to the laboratory, and then stored at -80°C.  For this study, the samples collected in 

January, 2004, were the only ones used. 

 

Whole-cell rRNA fluorescent in-situ hybridization (FISH) analysis 

Samples were twice washed with 10 mM phosphate buffered saline (NaH2PO4, 

anhydrous, 1.9 mM phosphate, and 150 mM NaCl, adjusted to pH 1.2 with H2SO4), fixed 

overnight with 3 volumes of 4% paraformaldehyde to 1 volume of sample, and stored at  

-20°C within 8 hrs of collection.  Hybridizations were performed on fixed samples, with 

incubation at 46°C and washing at 48°C for 15 min.  Probe ARC915 was used for 

archaea, probe LF655 for all Leptospirillum groups, LF1253 for Leptospirillum group III, 

and EUB338 were used to visualize all bacteria members of the community. 

 

Preparation of biofilm protein fractions for mass spectrometry  

To prepare protein fractions, a sample of biofilm was thawed and cells from about 

8 ml were processed at 4°C.  Cells were suspended in 3 volumes H2SO4 (pH 1.1), washed 

by rotation for 30 min, and recovered by centrifugation at 12,000 x g for 20 min.  This 
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wash was repeated once by resuspending the cell pellet in the same volume of sulfuric 

acid solution, and the two reddish-yellow supernatants were combined to form the 

extracellular fraction.  Cells were resuspended in 20 ml 0.1 M sodium acetate (pH 5.0), 

placed on ice, and lysed by sonication using a micro-probe at high power with 30 sec 

pulses for 10 min.  The suspension was centrifuged at 5,000 x g for 20 min, and the pellet 

containing cells and debris was re-extracted in the same manner.  The combined 

supernatants constituted the cellular fraction.  Centrifugation of the cellular fraction at 

100,000 x g for 1 hr yielded a clear, yellowish supernatant enriched in soluble, 

cytoplasmic proteins.  The reddish, translucent pellet resulting from ultracentrifugation 

was washed once by resuspension in sodium acetate buffer, the ultracentrifugation step 

was repeated, and the membrane pellet was resuspended in 1 ml of water.  Fractions 

enriched for extracellular, whole cellular, and soluble proteins were precipitated with ice-

cold 10% trichloroacetic acid, and the pellets were rinsed with cold methanol and air-

dried.  Membrane fractions were frozen on dry ice and later processed without 

precipitation.   

For comparison of membrane treatments, cells from 8 ml biofilm were washed as 

described above, resuspended and split into two tubes.  Cells recovered by centrifugation 

were then resuspended into either 12 ml of H2SO4 (pH 1.1) (for membrane sample 

“M1”), or 20 mM Tris-SO4 (pH 8.0) (for the membrane sample “M2”).  These were 

placed on ice and lysed by sonication as described above.  After centrifugation, 

supernatants were diluted with either 40 ml of H2SO4 (pH 1.1) (“M1”) or 0.1 M sodium 

carbonate (pH 11.0) (“M2”) and mixed by rotation for 30 min at 4°C.  These were 

centrifuged at 6000 x g to remove precipitates, and the supernatants were centrifuged at 

100,000 x g for 1 hr.  The membrane pellets were washed once by resuspension in the 

appropriate buffer, the ultracentrifugation step repeated, and each membrane pellet 

resuspended in 1 ml of the same buffer. 

Each of the fractions described above were denatured and reduced in 6 M 

guanidine-HCl, 10 mM DTT, at 600C for 1 hr.  Samples were diluted 6-fold in 50 mM 

Tris-HCl (pH 7.8) with 10 mM CaCl2.  Sequencing grade trypsin was added at ~1:100 

(w/w) and digestions were run with gentle shaking at 370C for 18 hrs.  This was followed 
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by a second addition of trypsin at 1:100 and additional 5-hr incubation.  The samples 

were then treated with 20 mM DTT for 1 hr at 370C as a final reduction step, and 

immediately de-salted using Sep-Pak Plus C18 (Waters, Milford, MA).  All samples were 

concentrated and solvent exchanged into 0.1% formic acid in water by centrifugal 

evaporation to ~10 μg/μL starting material, filtered, aliquoted and frozen at -800C until 

LC-MS/MS analysis. 

 

Mass spectrometry  

All samples were analyzed by 2-dimensional MudPIT LC/LC-MS/MS (described 

in Chapter 2).  For the LCQ dataset, an Ultimate HPLC (LC Packings, a division of 

Dionex, San Francisco, CA) was used; for the LTQ dataset, a Surveyor HPLC (Thermo 

Finnigan, San Jose, CA) was used.  Each pump provided a flow rate of ~100 µL/min, 

which was split pre-column to provide an approximate flow of ~200-300 nL/min at the 

nanospray tip.  The split-phase columns were constructed as follows: the back column 

was packed with approximately 3.5 cm of strong cation exchange material (Luna SCX 5 

µm 100A Phenomenex, Torrance, CA) into a 100 µm fused silica via a pressure cell 

followed by 3.5 cm of C-18 reverse phase (RP) material (Aqua C-18 5 µm 200A 

Phenomenex).  The sample was then loaded off-line onto the dual phase column.  For all 

samples, ~200-500 µg of protein was loaded onto the back dual phase column.  The 

loaded RP-SCX column was then positioned on the instrument behind a ~15 cm C18 RP 

column (Jupiter C18 5 µm 300A Phenomenex) also packed via pressure cell into Pico 

Frit tip (100 µm with 15 µm tip New Objective, Woburn, MA).  The entire column 

system was positioned into the nanospray source (Thermo Finnigan) on either the LCQ or 

LTQ mass spectrometers.   

All samples were analyzed via a 24-hr 12-step MudPIT analysis consisting of 

increasing concentration (0-500 mM) salt pulses of ammonium acetate followed by 2-

hour reverse phase gradients from 100% aqueous solvent (95% H2O/ 5% ACN/ 0.1% 

formic acid) to 50% organic solvent (30% H2O/ 70% ACN/ 0.1% formic acid).  During 

the entire chromatographic processes, the LCQ or LTQ mass spectrometers operated in a 

data-dependent MS/MS mode detailed below.  The chromatographic methods and HPLC 
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columns were virtually identical for all analyses.  The LC-MS system was fully 

automated and under direct control of the Xcalibur software system (Thermo Finnigan).   

The LCQ and LTQ mass spectrometers were both operated with the following 

parameters: nanospray voltage (2.4 kV), heated capillary temp 2000C, full scan m/z range 

(400-1700).  The LCQ data-dependent MS/MS mode was set up with the following 

parameters: 4 MS/MS spectra for every full scan, 5 microscans averaged for full scans 

and MS/MS scans, 5 m/z isolation widths for MS/MS isolations and 35% collision energy 

for collision-induced dissociation.  The LTQ data-dependent MS/MS mode was set up 

with the following parameters: 5 MS/MS spectra for every full scan, 2 microscans 

averaged for full scans and MS/MS scans, 3 m/z isolation widths for MS/MS isolations 

and 35% collision energy for collision-induced dissociation.  To prevent repetitive 

analysis of the same abundant peptides, dynamic exclusion was enabled with a repeat 

count of 1 and an exclusion duration of 1 min on the LCQ and 3 min on the LTQ.  All 

samples (5 biofilm fractions) were analyzed in triplicate on the LCQ with a single m/z 

range.  In addition, the NaCO3–treated membranes (M1) and the whole cell fraction were 

analyzed with a single 3 m/z range experiment which consisted of 3 individual 24-hr 

MudPIT analyses with three segmented m/z ranges (400-900, 850-1300, 1200-1700) on 

the LCQ.  All samples (5 biofilm fractions) were analyzed in triplicate on the LTQ with a 

single m/z range except the crude soluble fraction, which was analyzed a single time due 

to lack of available sample. 

 

Proteome informatics 

Four protein databases were used for this study and each can be found at 

(http://compbio.ornl.gov/biofilm_amd/databases/).  The first database (Biofilm_db1) 

contained all predicted proteins based on the community genomic analysis (Tyson, 2004) 

plus the Ferroplasma acidarmanus fer1 isolate genome.  This database contained 12,148 

entries and was the primary database used in all data analyses of the LCQ and LTQ 

datasets.  A subset of LCQ and LTQ data was searched against two alternative databases.  

Biofilm_db2 was created by adding to Biofilm_db1 all proteins ≥100 amino acids 

encoded in regions of hypothetical genes after six-frame translation and consideration of 
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alternative start and stop sites, resulting in 15,646 protein entries.  Biofilm_db3 was 

created by adding Shewanella oneidensis MR-1, Rhodopseudomonas palustris CGA009, 

Escherichia coli K-12, and Saccharomyces cerevisiae public protein databases to 

Biofilm_db1.  The purpose of this database search was to determine the level of false 

positive identifications using microbial species known not to be in the sample.  The 

results from these alternative database searches can be found in the analysis webpage 

(http://compbio.ornl.gov/biofilm_amd/analysis/).  A final database (Biofilm_db1_snps_1) 

was created from the PCR information discussed below.  This database was exactly the 

same as Biofilm_db1 except for two amino acid changes and removal of the N-terminus 

of the protein LeptoII_scaff_14_GENE_20.  The new name for this protein is 

LeptoII_scaff_14_GENE_20_SNP1 in this database.  This new database was used for 

searching the extracellular proteome LTQ data in order to test the hypothesis of two 

amino acid changes and N-terminal processing of the protein.      

For all database searches, MS/MS spectra RAW files were first converted to 

mzXML format using ReAdW software program developed at the Institute for Systems 

Biology, Seattle, WA (http://www.systemsbiology.org), and available from SourceForge 

repository at (http://sashimi.sourceforge.net).  The individual spectra for each RAW file 

were extracted from the mzXML file into corresponding DTA files (required as input to 

SEQUEST), using another software program from ISB, mzXML2Other.  The spectra 

were then searched using SEQUEST, with the following parameters: enzyme type 

trypsin; Parent Mass Tolerance, 3.0; Fragment Ion Tolerance, 0.5; up to 4 missed 

cleavages allowed.  Only fully tryptic peptide candidates were searched, non-specific 

cleavage was ignored due to potential false positive rates in large databases searched with 

the SEQUEST algorithm.  The output data files were then filtered and sorted with the 

DTASelect algorithm (Tabb, 2002) using the following parameters: fully tryptic peptides 

only, with delCN of at least 0.08 and cross-correlation scores (Xcorrs) of at least 1.8 (+1), 

2.5 (+2) and 3.5 (+3).  DTASelect files from all proteome fractions analyzed by the LCQ 

and LTQ can be found in the analysis page 

(http://compbio.ornl.gov/biofilm_amd/analysis/) under the corresponding dataset.  All 

DTASelect files were filtered at 1 peptide and 2 peptides per protein and are available for 
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download in a text format or a viewable html version where every identified spectrum 

can be viewed by clicking on the spectral number (first column, labeled by filename).  

The DTASelect results from all proteome fractions were then compared with the Contrast 

program (Tabb, 2002).  The analysis page contains global contrast files (all the proteome 

fractions) filtered at 1 peptide, 2 peptides and 3 peptides per protein.  The global analysis 

file filtered at 2 peptides from the LCQ dataset and the LTQ dataset were combined to 

give the final identified protein list.  The analysis page also contains inter-fraction 

contrast files (compares multiple runs on same sample with same instrument platform) 

filtered at 1 peptide and 2 peptides, as well as pair wise comparisons (compare replicates 

runs of different proteome fractions) at 1 peptide and 2 peptides.     

 

Results 

We used mass spectrometry (MS)-based “shotgun” proteomics to characterize the 

protein complement of a relatively low complexity, natural microbial biofilm.  Proteins 

could be identified because they were extracted from a sample similar to one for which 

genomic sequence is available (Tyson, 2004).  The biofilm samples used in this study and 

prior work were collected from the underground regions of the Richmond Mine at Iron 

Mountain, near Redding, California (USA).  These pink biofilms grew on the surface of 

very acidic (pH ~0.8) sulfuric acid-rich, hot (~42°C), metal-contaminated solutions.  The 

previously characterized biofilm was collected from a location known as the ‘5-way’ near 

the entrance to the mine (Figure 7.2, Tyson, 2004).  In contrast, the samples used in this 

study were collected from ~42 m deeper into the mine near the confluence of the AB and 

B tunnels in January, 2004 (Figure 7.2).  The biofilm formed a continuous, paper-thin 

film on the surface of a pool of slowly flowing acid mine drainage (Figure 7.3, top left 

and top right).  This biofilm was much thinner than the biofilm present at the same 

location six months later (Figure 7.3, bottom right), indicating that it comprised an 

actively growing community.  FISH analysis demonstrated that Leptospirillum group II 

dominated the sample, but it also contained Leptospirillum group III, Sulfobacillus, and 

archaea related to Ferroplasma acidarmanus (Figure 7.4).  This is very similar in 

structure and composition to the community sequenced previously (Tyson, 2004).  
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Figure 7.3:  Biofilm sample collection. 
Top left: photograph of the biofilm from the AB end location (Figure 2) during collection 
in January 2004.  The biofilm occurs as a continuous sheet over the surface of the AMD 
pool; lines are wrinkles that form due to movement of the solution.  Top right: close-up 
photograph during sample collection showing that the biofilm is very thin and apparently 
homogeneous.  Bottom right: image of the biofilm in the same location six months later. 
Figure courtesy of Dr. Jillian Banfield and Dr. Rachna Ram. 
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Figure 7.4:  AMD biofilm composition from FISH analysis. 
Fluorescence in-situ hybridization analysis of the biofilm collected from AB end in 
January 2004.  In this image, Leptospirillum group II is yellow, Leptospirillum group III 
is white, Sulfobacillus sp. are red and archaea are blue.   
Figure courtesy of Dr. Jillian Banfield and Dr. Rachna Ram. 
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For typical proteomic analyses, ~8 ml of biofilm was fractionated by washing, 

sonication, and centrifugation to yield extracellular proteins and samples enriched in 

proteins from whole cells, membranes (two different preparations), and cytoplasm 

(Figure 7.5).  We combined two proteomic datasets (LCQ and LTQ) that were generated 

by triplicate analyses of the samples listed above.  The LCQ dataset was generated on a 

3-dimensional quadrupole ion trap mass spectrometer (LCQ-DECA XP plus, Thermo 

Finnigan, San Jose, CA).  The LTQ dataset was generated on a 2-dimensional linear ion 

trap mass spectrometer (LTQ Thermo Finnigan).  Both analyses used an identical 

“shotgun” proteomics approach via a two-dimensional (2D) nano-LC MS/MS system 

with a split-phase column as described in Chapter 2.  

 

Genomic databases and protein detection 

 Proteins could be identified because comprehensive genomic data was available 

(Tyson, 2004).  The environmentally-derived Leptospirillum group II and Ferroplasma 

type II composite genomes are near complete and Leptospirillum group III and Gplasma 

genomes are partially reconstructed.  A partial environmentally-derived Ferroplasma 

type I genome is available, in addition to a complete genome of the closely related 

Ferroplasma acidarmanus isolate.  In general, proteins could be assigned to organisms 

because the genes that encode them are on scaffolds that have been assigned to different 

organism types.  From the genomic dataset, we created a database of 12,148 proteins 

(Biofilm_db1) that was used to identify MS/MS spectra. 

All MS/MS spectra from the LCQ and LTQ datasets were searched with the 

SEQUEST algorithm (Eng, 1994) and filtered with DTASelect (Tabb, 2002) at the 

peptide level.  Results of all replicate runs were compared with the Contrast program 

(Tabb, 2002) and evaluated based on matching of one peptide, two or more peptides, or 

three or more peptides per protein.  All DTASelect files and Contrast files used in this 

study, as well as databases and resulting identifications, can be downloaded from the 

AMD Proteome Website Analysis Page (http://compbio.ornl.gov/biofilm_amd/).  This 

website also contains directly linkable spectra for all identified peptides which are also 

downloadable, a step towards open access proteome results (Pedrioli, 2004; Carr 2004).   
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Figure 7.5:  Fractionation of the AMD biofilm prior to MS-based proteomics. 
The biofilm sample (top left) is processed into four major fractions: an extracellular 
fraction, a whole cellular fraction, a soluble enriched protein fraction and a membrane 
enriched protein fraction.  All fractions were analyzed in triplicate by LC/LC-MS/MS on 
LCQ and LTQ ion trap mass spectrometers.     
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One or more peptides from the combined LCQ and LTQ datasets were assigned to 

~5,994 proteins (Table 7.1).  This corresponds to ~49% of all proteins encoded by the 

genomes of the five dominant organisms.  The entire list of identified proteins can be 

found at http://compbio.ornl.gov/biofilm_amd/supplemental (Table S1.pdf).  Because of 

the anticipated false positive rate for identifications based on matching of only one 

peptide, we required matching of two or more peptides to a protein for confident 

detection (2,146 proteins were identified with this criterion).  After removal of proteins 

duplicated in the genomic dataset (i.e., produced by the same gene but on different 

scaffolds separated due to strain heterogeneity), we detected 2,036 different proteins in 

the biofilm.  All of the analyses below rely exclusively on proteins detected at the two 

peptide level from the combined dataset.  The distributions of isoelectric points and 

molecular weights of these proteins were similar to those of all proteins predicted from 

genome data (Figure 7.6), indicating that there was no strong sampling or detection bias 

with this technique. 

We detected 1,387 proteins from Leptospirillum group II, representing 48% of the 

estimated 2,877 genes in this organism (Table S2.pdf at 

http://compbio.ornl.gov/biofilm_amd/supplemental/).  The dominance of Leptospirillum 

group II proteins in the biofilm was anticipated, based on the abundance of this organism 

type in the community (Figure 7.4).  The fraction of proteins detected from 

Leptospirillum group II exceeds those of some prior proteomic studies of other microbial 

organisms.  In part, the large number of detected proteins could reflect the presence of 

cells in many different growth stages, as well as microniches within the biofilm.  The 

extensive  sampling enabled analyses of the proteome of Leptospirillum group II in its 

natural context that are comparable to those achieved previously for pure cultures of 

other organisms.  From the other species in the biofilm, 268 Leptospirillum group III, 84 

Ferroplasma type I, 99 Ferroplasma type II, and 120 Gplasma proteins were detected.  In 

addition, 34 proteins were detected on unassigned archaeal scaffolds and 39 on 

unassigned bacterial scaffolds.  The low level of detection of other species in this 

community is not surprising in light of the dominance of Leptospirillum group II. 

We performed a separate analysis to test the likelihood of matching unique 
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Table 7.1:  Number of proteins detected at different filtering levels, derived from 
redundant protein counts from global Contrast files of the entire LCQ and LTQ 
datasets. 

 

Filtering Level LCQ dataset LTQ dataset Combined datasets 
Liberal filters* 3127 5534 5994 
Conservative filters**  1160 2077 2146 
Ultra-conservative filters*** 837 1419 1435 

 
*Liberal filters requiring at least 1 peptide per gene; 
**Conservative filters requiring at least 2 peptides per gene; 
 ***Ultra-conservative filters requiring at least 3 peptides per gene.  
Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5 (+3) were used in all cases. 
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Figure 7.6:  Genome and proteome MW and pI distributions.   
Molecular weight (A) and isoelectric point (pI) distributions (B) of all proteins predicted 
from genomic analysis compared to those confidently detected by proteomic analysis.  
This analysis is based on predicted proteins from the biofilm_db1.  The top panels are 
results for all proteins predicted in the genomic dataset and the bottom panels are the 
results for all proteins detected by proteomic analysis.   
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peptides from proteins not present in the samples (“false positives”).  For this analysis, 

we supplemented the database with protein sequences derived from the genomes of 

Escherichia coli, Shewanella oneidensis, Rhodopseudomonas palustris, and 

Saccharomyces cerevisiae.  This new database (Biofilm_db3) contained 31,900 proteins, 

causing a decrease in the number of unique peptides derived from mine organisms.    

Nonetheless, of the 6,605 unique peptides identified by LCQ analysis of the five biofilm 

fractions using this new database, 12% were false positives.  Analysis of the 5,397 unique 

peptides that were derived from proteins for which at least two peptides were recovered 

revealed a false positive rate of only 2.8%.  A similar analysis of the data from the LTQ 

analysis revealed a false positive rate of 16% at the one unique peptide level and 6.2% 

after considering only unique peptides from proteins matched by at least two peptides.  

This indicates that the likelihood of spuriously matching peptides in the MS/MS data is 

very low, especially after filtering at the two peptide level, and taking into consideration 

that some of the false positives could have derived from mine organisms for which we 

have incomplete or no genomic information.  The increase incidence of false positives in 

the linear ion trap dataset was expected due to the faster scan speed of this instrument 

(~five times faster than the 3-dimensional ion traps).  This illustrates the need to 

reconsider common proteome informatics practices as MS instrumentation evolves over 

time.     

It is expected that concentrations of proteins from very low abundance members 

will be too low to be detected by community proteomics analysis with current technology 

(~1%, see chapter 6).  Furthermore, we are unable to identify proteins from organisms 

such as Sulfobacillus, for which there is no genome sequence available.  It is likely that 

the dominant strains present in this biofilm slightly differ from those in the previously 

characterized biofilm (Tyson, 2004).  In most cases, a single amino acid substitution will 

prevent peptide detection.  However, if amino acid-level divergence between strain 

populations in the biofilm is comparable to that observed previously (average <2%), 

matching of at least two peptides to most proteins should be possible.  Numerous high 

quality spectra for unidentified peptides are available for further analysis once additional 
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genomic data becomes available.  All MS raw files from this study are archived at ORNL 

and available for future analysis. 

 

Abundant biofilm proteins 

The most abundant proteins are likely to be critical to the biofilm community. 

Determining relative or absolute abundance of individual proteins is a recognized 

challenge in MS-based proteomics.  Detection biases can arise due to differential protein 

extraction, matrix effects in the ionization processes, and biases in the digestion and 

sample clean up processes.  Nonetheless, sequence coverage, the number of unique 

peptide hits (number of unique spectra detected per protein), and MS/MS spectral counts 

(the number of times a peptide is detected from a protein) are all indicators for protein 

abundance (Liu, 2004).  We assume that potential detection biases will not be so large as 

to obscure general trends, or inferences about the relative abundance of broad functional 

categories.  

We used peptide count, spectral count, and percent coverage to infer the 10 most 

abundant proteins in each fraction (full list can be found at 

http://compbio.ornl.gov/biofilm_amd/supplemental/, Peptide & MS/MS Spectra Counts, 

Sequence Coverage).  All three measures gave generally similar results.  Overall, the 

biofilm is dominated by hypothetical proteins.  We defined hypothetical proteins as those 

lacking a significant BLAST match (<e-10) to a protein with a functional assignment.  By 

this definition, 42% of the predicted proteins encoded by the genomes of community 

members were hypothetical.  Since many functionally annotated proteins have not been 

biochemically characterized, this approach is likely to underestimate the number of truly 

novel proteins.  Predicted proteins with no significant similarity to any known protein are 

referred to as “unique”.  Those with similarity to predicted proteins but no close 

similarity to characterized proteins are described as “conserved”.  Unique and conserved 

novel proteins represented 15% and 2% of the abundant proteins, respectively. 

 The biofilm was also dominated by ribosomal proteins (13%), chaperones (11%), 

thioredoxins (9%), and proteins involved in radical defense (8%).  Thioredoxins are 

involved in redox reactions in which proteins containing disulfide bonds are refolded. 



 208

There were at least four different and abundant disulfide isomerases detected in the 

extracellular fraction and ten in the entire proteomic dataset.  This indicates that protein 

stability in pH <1 solutions is achieved in part by refolding carried out by abundant pH 

tolerant enzymes.  Peroxiredoxin and some other highly detected proteins (i.e., 

rubrerythrin, catalase) are involved in defense against oxidative stress, suggesting that 

byproducts of aerobic respiration are an important challenge in the AMD environment.   

Based on percent sequence coverage, the complement of proteins enriched in the 

extracellular fraction (>10% coverage and more than twice as abundant in the 

extracellular fraction as any other fraction) is dominated by unique novel proteins (64%), 

and contains only ~1% conserved novel proteins.  The presumably metal and acid 

tolerant unique proteins are future research targets, as they likely play key roles in 

adaptation.  We detected all predicted proteins for 9 putative operons composed only of 

hypothetical genes.  For example, one operon encodes five Leptospirillum-specific 

proteins and another encodes three Leptospirillum group II-specific proteins, all of which 

were detected in the membrane and extracellular fractions. 

 

Functional analysis of an abundant hypothetical protein 

Of the proteins enriched in the extracellular fraction, the one with the highest 

sequence coverage is encoded by a hypothetical gene from Leptospirillum group II.  67% 

of the protein sequence from the community genomics dataset could be reconstructed 

from multiple overlapping peptides.  No peptides were recovered from three discrete 

regions of the protein (Figure 7.7).  The first is a 23 amino acid region predicted to be a 

signal peptide.  Sequences for the gene determined by PCR amplification differed from 

that in the community genome dataset by ~3% at the nucleotide level and resulted in 

substitutions of one glutamate for aspartate at position 76 and one serine for glycine at 

position 139.  

Using DNA sequence for the variant, peptide sequences were re-analyzed with a 

database containing the corrected amino acids.  The protein was fully recovered after this 

modification, except for the predicted signal peptide (Figure 7.7).  This example 

illustrates a more general approach, in which regions of proteins not detected by MS due  
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Figure 7.7:  Recovery of peptides spanning the entire sequence of a natural variant 
of cytochrome 579.   
The predicted sequence for cytochrome 579, based on the community genomic data 
(Tyson, 2004), is represented by a large black bar.  Below, smaller black bars represent 
tryptic peptides identified through proteomic analysis that correspond to regions of 
cytochrome 579.  Grey bars represent regions of the mature protein recovered by mass 
spectrometry after consideration of cleavage of an N-terminal signal peptide and two 
amino acid differences due to strain variation.   
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to post translational modification or strain variation can be resolved by PCR (either the 

full gene or just across variable regions).  Thus, genomic data for a sequenced strain can 

enable proteome analysis and discovery of abundant protein variants in environmental 

samples for which no sequence data are available. 

The abundant protein in the extracellular fraction is only weakly similar (e-6 by 

BLASTp) to previously studied c-type cytochromes and Fe/Pb permeases.  This, and the 

presence of a heme-binding consensus sequence, suggested a role in electron transport.  

We verified that the predicted N-terminal sequence of this protein almost exactly matches 

that of an abundant heme-staining protein identified by SDS-PAGE analysis of the 

extracellular fraction.  Interestingly, the peptide sequence differs in that it contains 

leucine in place of isoleucine encoded by the codon ATC, suggesting codon usage that 

differs from E. coli.  However, the proteomic analysis is blind to this substitution because 

isoleucine and leucine share the same mass. 

Abundant iron-oxidizing cytochromes with absorption peaks around 579 nm had 

previously been detected in Leptospirillum ferrooxidans (Leptospirillum group I) and 

Leptospirillum ferriphilum (very closely related to Leptospirillum group II) isolates (Hart, 

1991, Blake, 1993).  Amino acid sequences for these cytochromes had not been reported.  

Spectroscopic analysis of the purified L. ferriphilum cytochrome (cyt579) showed that the 

heme group in this protein is unusual and not of the typical a, b or c-type.  At pH 2, this 

protein has an unusually high reduction potential (615 mV), appropriate for catalyzing iron 

oxidation.  The first 40 amino acids of the iron-oxidizing cytochrome purified from the 

periplasm of L. ferriphilum match amino acid positions 24 to 64 of the putative 

cytochrome in Leptospirillum group II from the natural biofilm.  This confirms that the 

mature protein lacks a 23 amino acid leader sequence.  Thus, we reconstructed 100% of 

the mature protein via MS-based proteomics.  The cleavage of a leader sequence from the 

N-terminus indicates that the mature protein is exported across the cytoplasmic 

membrane.  The partitioning of cyt579 into the extracellular fraction of Leptospirillum 

group II corroborates its localization in the acid-exposed periplasm.  Based on its 

distribution, its abundance, and the ability of its L. ferriphilum homolog to oxidize iron, 

we conclude that cyt579 may be central to iron oxidation by Leptospirillum group II. 
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We detected eight other membrane and periplasmic c-type cytochromes, and 

components of NADH dehydrogenase, succinate dehydrogenase, and the cytochrome bc 

complex.  In addition, three hypothetical proteins with heme-binding motifs were 

detected.  Using this information, we developed a working model for the iron oxidation 

pathway in Leptospirillum group II (Figure 7.8) in which cyt579 is the first step. 

Elucidating the roles of the other c-type cytochromes in this electron transport chain is an 

important objective for further study, as iron oxidation is central to energy generation in 

the AMD ecosystem.  As the supply of ferric iron is the rate-limiting step for pyrite 

oxidation, the metabolic activity of iron-oxidizing microorganisms largely determines the 

rate of AMD formation.  Leptospirillum group II dominates most biofilms from the 

Richmond Mine and is frequently detected at other mining sites and bioleaching plants.  

Thus, cyt579 is potentially the key enzyme that connects the biology and geochemistry of 

metal-rich acidic environments.  

 

Functional categories of detected proteins in Leptospirillum group II 

From the combined 2 peptide proteome dataset, 69% of the detected 

Leptospirillum group II ORFs encode proteins that could be assigned a function (required 

BLAST match of <e-10 to proteins of known function).  We assigned all detected 

Leptospirillum group II proteins to functional categories based on clusters of orthologous 

genes (COG) (Tatusov, 1997) in order to evaluate the degree of expression of 

hypothetical proteins and to estimate the relative investments by this organism in 

different metabolic activities.  The most commonly detected proteins were unique and 

conserved hypotheticals (Figure 7.9).  Proteins involved in amino acid metabolism, 

translation, and energy production and conversion were the next most commonly 

detected, followed by cell envelope biogenesis, coenzyme metabolism, and protein 

folding and modification.  Within the category of coenzyme metabolism, proteins 

involved in cobalamin and heme biosynthesis were abundant.  Heme is essential for 

manufacturing cytochromes such as cyt579.  A high demand for cyt579 is consistent with 

the relatively low energy yield associated iron oxidation. 

Heme is also required for construction of abundant proteins such as catalase and 
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Figure 7.8:  Potential mechanism for Fe2+ oxidation in Leptospirillum group II. 
Based on detected proteins, we inferred a possible arrangement of electron transport 
components associated with the cell wall of Leptospirillum group II.  Quinones are 
inferred based on detection of UbiC, UbiB, and UbiE proteins.  Iron oxidation by soluble, 
acid-stable cyt579 localized in the periplasm is coupled to oxygen reduction and the 
generation of ATP.  Some electrochemical energy is siphoned towards producing NADH 
for use in biosynthetic pathways (arrows pointing to the left).  Expressed proteins related 
to c-type cytochromes (possibly including cyt 551, 553, and four other distinct types) 
could be involved in the production of NADH and/or serve as intermediates in the 
transfer of electrons from cytochrome 579 to the terminal oxidase complex. 
Figure courtesy of Dr. Jillian Banfield and Dr. Rachna Ram. 
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Figure 7.9:  Functional categories of AMD proteome. 
Functional categories of Leptospirillum group II proteins predicted from the genome 
dataset, and Leptospirillum groups II and III detected in the proteome.  Depicted are the 
percent of total proteins in each functional category, based on the corresponding genome 
and proteome datasets. 
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peroxidase, important for peroxide and radical detoxification.  Similarly, the abundance 

of enzymes involved in protein refolding may reflect the challenge associated with 

maintaining protein integrity in the hot, acid environment.  The abundant disulfide 

isomerases may also construct and maintain the conformation of the abundant acid-

exposed heme-based proteins localized in the periplasm.  Proteins from COG families 

involved in secondary metabolite biosynthesis/transport/catabolism, cell 

division/chromosome partitioning and inorganic ion transport/metabolism contained the 

smallest numbers of detected proteins.  In part, this may reflect our inability to assign 

these metabolic roles to novel environment- and lineage-specific proteins. 

Despite the predominance of hypothetical proteins, it is notable that only 38% of 

the predicted “conserved hypothetical” and 35% of the predicted “unique hypothetical” 

proteins were detected.  In contrast, we detected 86% of proteins involved in amino acid 

metabolism and 86% of those involved in translation.  This suggests that many of the 

predicted hypothetical proteins are either non-functional, low abundance or are expressed 

under conditions different to those at the time of sampling.  Relative to the genome, the 

proteome is enriched in proteins required for amino acid metabolism, translation, 

nucleotide metabolism, protein refolding and modification.  In all other categories 

(except transposases), representation in the genome was similar to that in the proteome 

(Figure 7.9).   This suggests that the diversity of genes for a particular function is a 

relatively good predictor of diversity in the proteins associated with that function in the 

proteome.  The deviations may be clues to the demands placed on the organism at the 

time of sampling.  

 

Conclusions 

This description of the protein complement of a natural biofilm utilized relatively 

comprehensive genome sequence data from a closely related microbial community.  

Although the samples were different from those previously characterized by genomics, it 

was possible to confidently detect 2,036 proteins.  This represents the first large-scale 

proteome characterization of a natural microbial community.  The large number of 

detected unique and conserved novel proteins underscores the importance of proteins of 
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unknown function in the community.  Novel proteins that were detected and abundant 

may be targeted for purification from biofilm samples and subsequent functional analysis.  

While the combined genomics and proteomics approach can validate the existence of 

such genes the methodology does not verify function of the gene products.  Rather, it 

provides the information for directed purification and characterization of potential 

important unknown proteins from the community.  The validation and subsequent 

characterization of identified proteins is the next step in understanding the function of the 

fascinating communities populating acid mines.   

Even slight variations in protein sequence could be detected by the mass 

spectrometry methods used here, making possible future ecological studies in which 

dominant strain variants are followed in their natural environment over time.  As the 

sensitivity and dynamic range of mass spectrometry methods improves, analysis of 

smaller samples will enable studies with higher spatial resolution and make it possible to 

differentiate peptides from closely related coexisting strains.  Mass spectrometry-based 

de novo sequencing approaches on the horizon (Standing, 2003) and the potential for MS3 

analysis (Olsen, 2004) should reduce the requirement for exact gene sequence data, 

broadening the applicability of genome sequence information.  The proteomic data 

presented here provides insights into the major challenges faced by life in an extreme 

environment.  A similar combination of cultivation-independent genomic and proteomic 

methods could be extended to other communities containing uncultivated organisms of 

environmental, medical, or industrial importance.  The main challenge for future studies 

will be the complexity and dynamic range of the communities.  Clearly this was a very 

simple community and a good starting point for developing the necessary tools for 

characterizing the complex proteome of microbial communities.  But much work is 

needed to improve upon the methodologies discussed here to tackle the complexity likely 

to be found in other natural microbial communities. 
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Chapter 8 

Conclusion 
 
 In the studies presented here, we have attempted to build a high performance MS-

based proteomics platform for the analysis of microbial proteomes from isolates to 

communities.  We first discussed the methodologies of microbial growth, proteome 

extractions, and sample preparation and then moved into discussions of the evolution of 

LC-MS/MS methodologies used in these studies.  Emphasis was placed on the 

development of the proteome informatics pipeline and the challenges faced in the 

extraction of relevant biological information from large proteome datasets.  We then 

illustrated how these technologies can be applied to the analysis of microbial proteomes.  

Clearly, although great progress has been made through these studies, much work still 

needs to be done in technology development to bring proteomics to the level of whole 

genome sequencing and transcriptome analysis.  Some potential avenues of research are 

discussed below.    

 The combination of the top-down and bottom-up MS methodologies for the 

characterization of individual proteins, protein complexes and whole proteomes was first 

conceived in our laboratories.  While many proteomics groups were focusing on either 

top-down or bottom-up techniques, very few have tried to integrate the two technologies.  

Our initial efforts have demonstrated great promise for this integrated technology for 

individual proteins and protein complexes to obtain a detailed level of information not 

possible by either technique alone.  This includes the determination of the position and 

number of post-translational modifications on the final intact protein product, as well as 

the determination of the number and position of amino acid changes (mutations) within 

intact proteins for most potential substations (Ile-Leu can’t be resolved).  The exact 

position of N-terminal cleavage positions of processed proteins was also demonstrated.  

The analysis of individual protein and protein complexes is somewhat straightforward 

with the combined technology with certain limitations, but the analysis of whole 

proteomes is currently beyond the analytical capability.  This is primarily due to 

limitations in the top-down technology and limitations in software to integrate the 
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datasets.  Top-down technology in its current form has difficulties with the complex 

mixtures found in whole proteome analysis.  Potential 2D separations of intact proteins 

may overcome this limitation.  Also, some protein types, such as proteins larger than 40-

50 kDa, are not directly amenable to top-down analysis in complex mixtures.  The 

primary technological advances needed for this combined technology include methods 

for data-dependent MS/MS on intact proteins on liquid chromatography time scales and 

improved MS methods for characterizing large proteins, that is >50 kDa proteins from 

complex mixtures.  Another primary limitation of top-down analysis is the bioinformatic 

tools for querying protein databases.  The isotopic packets of intact proteins and the 

MS/MS spectra of intact proteins are both much more complicated than those derived 

from peptide measurements.  Improvements in proteome informatics for top-down data 

and informatics tools for combining top-down and bottom-up datasets to search for 

PTMs, amino acid substitutions, and N-terminal truncations are all necessary.      

 We introduced the first attempt to use semi-quantitative proteomics data to 

compare a WT and mutant strain of Shewanella oneidensis.  The mutant was a gene 

knockout to the global regulator of iron uptake, the ferric uptake regulator.  Microarray 

analysis of the transcriptome of the WT vs. the fur mutant indicated many proteins 

thought to be involved in heavy metal transport and utilization up-regulated in the fur 

knockout.  This was expected since fur is an active repressor of the expression of these 

proteins under conditions where iron is not limiting.  Previous proteome studies of the fur 

knockout by 2D-PAGE-MS had not identified many of the proteins predicted to be over-

expressed by the microarray analysis.   We employed a pure liquid-based LC-MS/MS 

approach using two varieties of “shotgun” LC-MS/MS techniques for a semi-quantitative 

comparison between the WT and fur mutant strain.  We clearly identified many proteins 

thought to be involved in heavy metal transport and utilization as well as conserved 

unknown and unknown proteins up-regulated in the fur mutant strain.  These results had 

very good correlation with the microarray data on the same samples, with only two 

proteins showing an inverse correlation.   

 While many membrane proteins, including transporters and receptors, were 

identified in the S. oneidensis study, the identification of such proteins, especially with 
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high sequence coverage, is still a major challenge in proteomics.  As discussed in Chapter 

5, many small hydrophobic proteins involved in multi-protein membrane complexes are 

very difficult to routinely detect, thus making comparative proteomics of such proteins a 

difficult process.  While not highlighted to a great extent in this dissertation, much work 

has been done on developing alternative methods for digesting membrane proteins from 

microbial systems in our laboratories.  Alternative digestions methods, such as dual 

CNBr/trypsin digestions, digestions with Proteinase K, and digestions with trypsin in the 

presence of high organic (80% Acetonitrile or 100% methanol), were all evaluated.  None 

of these techniques proved to be reproducible or effective at routinely identifying small 

embedded hydrophobic membrane proteins.  Of the three above mentioned techniques, 

we found only the CNBr/trypsin method to be effective, while the other two methods 

were actually found to be less effective than the normal trypsin digest.  The CNBr/trypsin 

method has some major shortcomings, including the toxicity of CNBr, the difficulty and 

time-consuming sample preparation process and the difficulty with processing the data 

generated from these digests with SEQUEST.  Clearly, this area of research needs much 

attention but a straightforward solution is not evident.  Even if it is possible to digest the 

protein, it becomes very difficult to keep the resulting hydrophobic peptides in solution 

through sample preparation and liquid chromatography.  Furthermore, their lack of basic 

residues, which are required for pre-forming protonated peptide ions in solution prior to 

electrospray ionization, creates another major problem.            

 We extended the semi-quantitative approach to the first large-scale proteome 

characterization of Rhodopseudomonas palustris under its major metabolic states.  All 6 

growth states, along with one mutant, were characterized in duplicate by “shotgun” 

proteomics.  This study, along with Lipton et al. 2002, are the only two studies to date to 

use “shotgun” proteomics to characterize and compare a large number of metabolic states 

from a microbial system.  This study demonstrated how important such large scale multi-

metabolic state proteome studies are and demonstrated how the data, if made publicly 

available, can be integrated with other system level studies such as global gene knockouts 

and large scale analysis of protein complexes.  Theses types of studies are absolutely 

essential to obtain a greater understanding of the function of microbial systems at a global 
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level and many more such studies should be pursued at the proteome level with other 

microbial species.  We were clearly able to show the differential expression of many 

known, conserved unknown and unknown proteins across the metabolic states, including 

the detection of a completely novel operon expressed only under the anaerobic growth 

states.  These types of experiments become most useful when they can be done under 

many different growth states with many replicates to build statistical confidence in the 

results, as well as textual understanding of protein expression patterns.  Most current 

proteomics efforts in microbial systems involve the characterization of a proteome only 

under a single metabolic state or the comparison of two states or a mutant and a wild-

type.  While such studies are informative, all initial proteomics efforts for isolated 

microbes should first begin with a baseline analysis of that microbial proteome under as 

many metabolic states as possible with as many replicates as possible.  Our landmark 

work with R. palustris has generated a proteome database than can be directly referenced 

by all in the community who are currently, and in future studies, carrying out more 

detailed studies with this bacterium. 

As an example, we decided not to pursue such large-scale baseline studies of the 

S. oneidensis proteome because such experiments were thought to be underway at other 

laboratories.  This data is still not available, which has impeded our progress on more 

detailed proteome studies that we are currently undertaking on S. oneidensis chromium 

utilization.  The needed future experimental project in S. oneidensis is a baseline analysis 

of the S. oneidensis proteome under anaerobic and aerobic conditions, with a large 

number of alternative electron acceptors.  This dataset then must be made available in an 

open access format to the community as a whole as a reference point for future 

experiments.           

The study genomes, transcriptomes and proteomes, of microbial isolates, is the 

obvious first step in attempting to understand microbial processes at a systems level.  But 

this is only the first step.  Eventually, these studies must be conducted with the natural 

communities in which these microbes live and have to cope with their natural 

surroundings.  The reason for this is three-fold: 



 220

1) Many microbes cannot be cultured from their natural habitats.  Indeed, it has been 

estimated that less than 1% of all microbes present on earth can be cultured in the 

laboratory. 

2) Microbes in the natural environment are continually interacting with one another 

and these interactions, whether for providing each other with essential nutrients 

for survival or for the transmission of genetic information and thus genetic 

potential, are essential.  The precise nature of these intricate interactions cannot be 

reproduced in a laboratory; thus they cannot fully be understood by the analysis of 

isolates or mixtures of isolates grown in the laboratory. 

3) The metabolic responses of microbes to their natural environments are the key to 

understanding their survival mechanisms but the complexity of a natural 

environment can never really be fully simulated in the laboratory.   

For these reasons, it is necessary to develop systems biology techniques to study 

microbial species directly from the natural environment.  The three main reasons to study 

microbial systems from the environment discussed above are the main reasons these 

studies will be so difficult.  The communities of interest can have hundreds to thousands 

of individual species, the community can be continually changing, and the natural 

environment can be continually changing.  To date, two studies of employing whole 

genome sequencing of microbial communities have been accomplished (Tyson, 2004; 

Venter, 2004).  To date, no major measurement of transcript levels from an 

environmental sample has been accomplished.  Even with these daunting challenges, we 

decided to develop and evaluate methodologies to measure mixtures of microbial 

proteomes and, hopefully, natural community proteomes. 

 We demonstrated our first attempts at measuring proteomes of artificial microbial 

mixtures.  Very simple mixtures of four microbial species (S. oneidensis, R. palustris, E. 

coli, and S. cerevisiae) were made with altering concentrations of R. palustris.  These 

types of tests are absolutely necessary to determine the current state of proteomics 

technologies and to develop new technologies.  It is more logical to work with known 

mixtures of microbes simulating microbial communities than to try and develop these 

technologies on undefined precious samples from real communities.  We tested the 
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effects of concentration to determine how well we could measure a proteome of a minor 

species in the presence of more abundant species.  While species identification and 

protein identifications could be made with high confidence at 1% and as low as 0.2%, the 

level of proteome coverage was insufficient at less than 25% target species. 

This is clearly a limitation to the application of current proteomics to the analysis 

of microbial communities, since many of the species in a natural community will be 

present at less than 1%.  The major challenge here as with any proteomics experiment is 

dynamic range.  The potential methodology necessary to obtain the necessary dynamic 

range is the development of 3-dimensional separation techniques (see discussion in 

Chapter 6).  While still under development, the addition of an extra dimension might 

provide some of the needed dynamic range.  It will also be helpful to move all tests from 

the quadrupole ion trap to the linear ion trap.  While this will have a dramatic increase in 

the number of proteins identified, we are not optimistic that this change alone will allow 

for deep proteome coverage of species less than 1%.  Another potential avenue is rapid 

enrichment of certain microbial species from the environmental sample by cell sorting 

techniques.  Potential collaborations with instrument manufacturers on this methodology 

could be critical.  It will be important for any such experiments to be done rapidly so as 

not to introduce major changes to the microbial proteome.  

  From the mass spectrometry perspective, the most logical solution is the 

implementation of FT-ICR mass spectrometers.  While these instruments were not 

capable of rapid data-dependent MS/MS during the course of this work, such an 

instrument, which combines a linear ion trap with an FT-ICR (Syka, 2004) has recently 

become available.  The FT-ICR provides the best dynamic range of any mass 

spectrometer available in full scan mode, with ~100-1,000 times better performance in 

dynamic range than ion trap mass spectrometers.  This is absolutely essential for 

obtaining deep coverage of low-abundance proteins or, in this case, low-abundance 

proteomes.  This can be accomplished since the FT-MS allows for the detection of low 

level peptides in the full scan mode and the linear ion trap can then easily isolate and 

fragment those ions (the ion trap has excellent dynamic range in MS/MS mode but is 

somewhat more limited in full scan MS mode).  The combined LTQ-FT-ICR provides a 
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potential solution to obtain quality proteome coverage of microbial species less than 1% 

in a mixture.    

While methodologies for characterizing the proteome of complex microbial 

mixtures were still under development, we were provided the opportunity to test our 

techniques on a natural microbial community.  The microbial communities populating the 

Acid Mine Drainage (AMD) streams of Iron Mountain, California, were a unique and 

perfect opportunity.  The self-sustaining, chemoautotrophic microbial communities found 

in the AMD streams survive in the harshest of environments with very acidic conditions 

(pH <1.0), high metal concentrations, high temperatures, and a lack of fixed nutrients.  

The fact that these conditions are so hostile to life made these microbial communities 

perfect model systems for a combined genomic/proteomic approach.  This is because 

very few microbial species are capable of surviving in the environment, so the mixtures 

obtained contain predominantly 4-5 dominant species.  Previous characterization of a 

microbial biofilm from this community by whole genome sequencing (Tyson, 2004) 

paved the way for proteome initiative.  We applied “shotgun” proteomics to a sample 

similar to the community characterized by whole genome sequencing.  Although the 

samples were different from those previously characterized by genomics, it was possible 

to confidently detect 2,036 proteins.  A large number of detected unique and conserved 

novel proteins underscored the importance of proteins of unknown function in the 

community.  To our knowledge, this was the first large-scale characterization of natural 

microbial proteomes. 

While our first characterization of a microbial community could be considered a 

great success, we also learned many technical areas that need to be addressed with future 

research in order to better characterize the AMD communities as well as other 

communities.  As discussed above, the first biggest concern is extending the dynamic 

range.  For the community we characterized, one microbe was dominant with 4 others 

less dominant.  Very good coverage was obtained for the dominant microbe (~48% of the 

predicted proteome) but the other bacteria and archae were all only covered at 10% or 

less.  FISH analysis clearly indicated the presences of the other bacteria and archae but all 

were at a very low percentage in comparison with the dominant bacterium. 
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The second major challenge is strain variation from the original sequenced 

genomes.  It will rarely be the case that it will be possible to do the proteome 

characterization on the exact same sample as the genome characterization.  It will be 

necessary to characterize the proteomes of many different microbial communities within 

an environmental niche to obtain spatial and temporal resolution of the communities.  

Proteome technologies allow for the analysis of many samples, but the time and monetary 

restraints of whole genome sequencing limits its application to a few representative 

samples.  The problem with this is that genomes of communities will gradually change at 

the base pair level over time and space (strain variation).  Since MS-based proteomics 

relies on exact correspondence between the predicted peptides and those for which mass 

spectra are collected, a single amino acid substitution is likely to prevent assignment of a 

peptide to a protein.  Thus, the divergence of protein sequence away from the original 

sequence from the whole genome sequencing project can have grave consequences in the 

ability of MS techniques to identify given proteins.   

We illustrated this divergence for two amino acids in an abundant protein in the 

biofilm sample and illustrated how a combined approach of PCR and MS analysis could 

verify the amino acid substitution.  While this method worked for an individual protein, it 

is not practical on a whole proteome level.  Clearly, higher throughput methods for 

characterizing strain variations must be developed.  The first challenge is to determine 

which peptides have been modified; the second involves determining what the correct 

sequence is for the strain variant peptide.  Research is needed for the combination of two 

potential methods.   

A potential solution is the combination of MS3 of fragment ions and high mass 

accuracy parent peptide measurements with a de-novo sequencing algorithm (reviewed 

by Standing, 2003) to detect and verify peptides and proteins amino acid changes from 

the community.  The high mass accuracy measurement of parent peptide ions is necessary 

to validate predicted sequences from the de-novo sequencing algorithm.  The high mass 

accuracy measurement could be accomplished with the LTQ-FT-MS instrument.  This 

instrument allows for accurate measurement of peptides within 3 ppm from LC-MS 

analyses.  This level of mass accuracy allows for good discrimination between potential 
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peptide sequences predicted from a de-novo sequencing attempt.  If the mass of the 

predicted peptide is not within ~5 ppm of the measured mass, then the candidate 

sequence can be rejected and others can be considered.  The MS3 experiment offers 

another confirmation of predicted peptide sequences, as recently described in Olsen 2004.  

The concept introduced in this paper is that all major fragment ions from an MS3 

experiment should readily be assigned to the partial sequence of the original parent 

peptide.  If they cannot be assigned, then the original predicted sequence may be 

incorrect.  If all major ions can be assigned, then the predicted sequence is most likely 

correct.  While MS3 experiments are theoretically possible on ion traps and FT-MS 

instruments, they found no real application in “shotgun” proteomics because older 

versions of these instruments did not trap enough ions in the MS/MS experiment to make 

MS3 a viable option in real-time LC-MS experiments.  The new linear ion trap (Schwartz, 

2002) has much greater ion storage capacity, making MS3 experiments in real-time LC-

MS a possibility.  The Olsen 2004 work used the LTQ-FT-MS instrument for such an 

experiment, by conducting all the MS3 experiments in the linear trap of the instrument.  

We also immediately verified this was possible on our own linear ion trap for peptides 

from the AMD sample (Figure 8.1).  A potential research avenue would be to optimize 

this methodology for the analyses of large numbers of peptides from protein standard 

mixtures and then a representative AMD community proteome sample.  The basic 

experimental plan for an MS3 experiment follows three major steps: 1) parent peptide 

mass measurement [will be high mass accuracy on LTQ-FT-MS]; 2) parent mass 

isolation and fragmentation; and 3) isolation and fragmentation of the top three fragment 

ions from the MS/MS spectra resulting in three MS3 experiments.  The high mass 

accuracy of the parent ion, as well as the three MS3 experiments, can each be used to 

independently verify the peptide sequence.  The combination of high mass accuracy 

peptide measurements, MS3, and the development of a robust de-novo sequencing 

algorithm that takes into account all experimental information is a potential avenue for 

determining strain level variants at a high-throughput level.     

   The final major technological advances needed for the characterization of natural 

microbial communities is in the area of proteome extraction and sample preparation.   
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Figure 8.1:  An MS3 experiment on an LIT on a peptide from the AMD community. 
An MS3 experiment on an unidentified peptide from the AMD community.  The MS/MS 
spectra (top right) was of high quality yet no identification was made, suggesting the 
possibility of a strain variant.  The steps in the process include a full MS scan (top left), 
followed by an MS/MS scan of abundant parent ions from the full scan.  The three top 
abundant ions from each MS/MS scan are then subjected to further fragmentation in the 
MS3 scans.      
 

 

 

 

 

 

 

 

 

 

 

Sample_N_2D_MP_LTQ_MSn_test1_120704_08 #4821 RT: 51.76 AV: 1 NL: 1.77E5
T: ITMS + c NSI Full ms [ 400.00-1700.00]
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Probably, the most notable is the amount of starting material needed.  The final goal 

should always be to reach techniques to measure proteomes directly from single cells, but 

that will probably not be accomplished for years to come.  For the studies of isolates 

presented in the dissertation, the amount of starting cell mass is not as much of an issue 

since large quantities can always be cultured.  For community samples, this is not always 

the case.  While we were able to obtain large quantities of the AMD biofilm, one area of 

research we would like to explore is spatial diversity within a single biofilm.  The goal of 

these studies will be to obtain cm3 samples, extract the proteomes, analyze and compare.  

Our current sample preparation techniques are not optimized for these small types of 

proteome samples.  Much research is needed to develop automated sample preparation 

techniques for such small starting materials. 

 While many technical challenges were overcome in the course of this dissertation, 

many more were realized.  The field of proteomics is an exciting area with many 

opportunities for technological advances.  In the next few years the rapid, reproducible 

and routine analysis of entire proteome from isolates can be expected.  This will allow for 

global views of microbial physiology not attainable before.  It will be necessary for MS-

based proteomics to reach the level of whole genome sequencing where hundreds of 

microbial isolate proteomes under many different metabolic conditions are characterized 

every year.  One of the greatest shortcomings of the field right now is the lack of 

dissemination of the dataset to the scientific community.  This is mainly due to the 

competitive nature of the field right now.  As discussed at great length in this dissertation 

this must be overcome and proteome datasets must be openly shared for the field to 

continue to mature. 

The technology has already allowed for the characterization of hundreds of 

conserved unknown and unknown proteins at a rapid pace.  One of the clearest challenges 

is the integration of the field of proteomics with rapid structural analysis, functional 

assays and genetic methods to develop rapid integrated methods to determine not only the 

identity of conserved unknown and unknown proteins but also their function.  For 
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proteomics to become truly useful, at gaining insight into the function of the many 

unknown proteins present in any microbial species, this must be accomplished  

 The final major challenge is the application of this technology to natural 

communities.  While small steps were taken in the course of this dissertation, much work 

is still needed.  The complexity of natural communities is truly daunting but unless initial 

steps are taking to attack this important issue no progress will be made.  Hopefully, the 

work presented in this dissertation brings us one step closer to the ultimate goals of 

comprehensive, reproducible and rapid characterizations of microbial proteomes from 

isolates to communities.          
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