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ABSTRACT 

Mixed model assembly has been widely used in many industries.  It is applied in 

order to effectively deal with increasing product complexity.  Sequencing and 

resequencing on a mixed-model assembly line is also complicated by high product 

complexity.  To improve the performance of a mixed-model assembly system and the 

supply chain, one can develop efficient sequencing rules to address sequencing problems, 

and manage product complexity to reduce its negative impact on the production system.  

This research addresses aspects of sequence alteration and restoration on a mixed-model 

assembly line for the purpose of improving the performance of a manufacturing system 

and its supply chain, and addresses product complexity analysis.  This dissertation is 

organized into Parts 1, 2, and 3 based on three submitted journal papers.  

Part 1.  On a mixed-model assembly line, sequence alteration is generally used to 

intentionally change the sequence to the one desired by the downstream department; and 

sequence restoration is generally applied to achieve sequence compliance by restoring to 

the original sequence that has been unintentionally changed due to unexpected reasons 

such as rework.  Rules and methods for sequence alteration using shuffling lines or 

sorting lines were developed to accommodate the sequence considerations of the 

downstream department.  A spare units system based on queuing analysis was proposed 

to restore the unintentionally altered sequence in order to facilitate sequenced parts 

delivery.  A queuing model for the repairs of defective units in the spare units system was 

developed to estimate the number of spare units needed in this system. 

Part 2.  Research was conducted on product complexity analysis.  Data envelopment 

analysis (DEA) was first applied to compare product complexity related to product 
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variety among similar products in the same market, two DEA models including their 

respective illustrative models considering various product complexity factors and 

different comparison objectives were developed.  One of these models compared the 

product complexity factors in conjunction with sales volume.  The third DEA model was 

developed to identify product complexity reduction opportunities by ranking various 

product attributes.  A further incremental economic analysis considering the changes in 

costs and market impact by an intended complexity change was presented in order to 

justify a product complexity reduction opportunity identified by the DEA model.    

Part 3.  Two extended DEA models were developed to compare the relative complexity 

levels of similar products specifically in automobile manufacturing companies.  Some 

automobile product attributes that have significant cost impact on manufacturing and the 

supply chain were considered as inputs in the two extended DEA models.  An 

incremental cost estimation approach was developed to estimate the specific cost change 

in various categories of production activities associated with a product complexity 

change.  A computational tool was developed to accomplish the cost estimation.   

 In each of the above stated parts, a case study was included to demonstrate how 

these developed rules, models, or methods could be applied at an automobile assembly 

plant.  These case studies showed that the methodologies developed in this research were 

useful for better managing mixed-model assembly and product complexity in an 

automobile manufacturing system and supply chain. 
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NOMENCLATURE 

 
Part 1 
Notation in 3.2. and Appendix A. 
L the number of sorting lines 
b the number of spaces in each sorting line 
c the number of attribute codes 
B1 the average block size before sorting 
B2 the average block size after release 
B3 the ideal average block size  
r1 the percentage increase in the average block size after release 
r2 the average percentage difference between the average block size after release and 

the ideal average block size 
Notation in 4.1. 
W the average system time to repair a defective unit in a M/M/1 queuing system 
Notation in 4.2. 
si the number of spare units for vehicle model i 
p the average percentage of defective units 
mi the number of units of model i produced in a day 
α the service level or rate of sequence compliance 
h the number of work hours per day 
λi the arrival rate of defective units of model i 
N the number of units of all vehicle models produced per day 
λ the arrival rate of all defective vehicles arriving at the inspection point 
µ the repair rate in a shared repair facility 
ρ λ/µ 
ωi mi/N 
di ρ(1-ωi) 
µi µ(1-di) 
Pn the probability of having n vehicles of any model in the queuing system for a 

spare units system 
pi(n) the probability of having n units of other models in front of a unit of model i 

joining the queue 
pi′(n) the probability of n units of other models in the queue of n units 
pi′′(n) the probability of having n consecutive units of other models after an existing unit 

of model i for the last n+1 units in the queue of more than n units of any models 
Sn+1 the time to repair a joining unit of model i and n units of the other models that are 

already in the queue 
Tn the service time of unit n 
Vi the total virtual service time due to servicing the other models prior to a unit of 

model i and a unit of model i 
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gi(t) the probability density function of the virtual service time of a unit of model i due 
to its service requirement and serving units of other models before an existing unit 
of model i 

Gi(t) the distribution function of virtual service time Vi 
i
nP  the probability of n defective units of model i in the queuing system for a spare 

units system  
ri the regularly produced units of model i in a spare units system 
R Σri, the total number of units produced regularly 
Notation in Appendix B. 
Xij binary variable, 1 if unit at position i before sorting is assigned to position j after 

sorting; otherwise 0 
Y1j one of the two binary variables to indicate whether the attribute codes of two 

adjacent units are different in positions j and j+1 or not 
Y2j one of the two binary variables to indicate whether the attribute codes of two 

adjacent units are different in positions j and j+1 or not 
Ci the attribute code of unit i in the sequence before sorting 
M a very large positive number 
 
Part 2 
Notation in 3.2. 
Nv the number of product variants 
NA the number of product attributes 
Ai the collection of the values of attribute i 
|Ai| the number of values of product attribute i 
Notation in 4.1. 
h0 the efficiency score for DMU j0 
yrj the amount of output r of DMU j 
xij the amount of input i of DMU j 
ur the weight assigned to output r 
vi the weight assigned to input i 
ε a very small positive number 
m the number of inputs 
t the number of outputs 
n the number of DMUs 
Notation in 4.2. and 5.1. 
Nv the number of product variants 
NA the number of product attributes 

aN  the weighted average number of attribute values 
MS market share 
Notation in 4.3. and 5.2. 
Na the number of attribute values 
MC impact of a product attribute on manufacturing costs 

pN  the weighted average number of unique parts for producing an attribute 
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SD the standard deviation of the percentages of demands of the various values of a 
product attribute 

Notation in Appendix A. 
L the number of levels of product variety structures 

   the number of attributes in level i of a product variety structure i
AN

]N,N),N,...,(N:[L VA
L
A

1
A   
the numeric index of a basic product variety structure information, where NA the 

total number of attributes, and NV the number of variants 
 

Part 3 
Notation in 4. 
θ the efficiency score for DMU j0 
xij the amount of input i from DMU j 
yrj the amount of output r from DMU j 
λj the multiplier for DMU j 
ε a very small positive number 
+
is  the slack variable with respect to input i 
−
rs  the slack variable with respect to output r
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INTRODUCTION 

This research is aimed at developing production systems and analysis for 

improving the performance of a manufacturing system and the supply chain of an 

automobile assembly plant by addressing two aspects: 1) resequencing mixed-model 

assembly lines for downstream considerations and restoration of sequences for sequenced 

parts delivery, 2) product-complexity analysis and product-complexity related cost 

estimation.  Product complexity is a significant contributor to assembly line complexity.  

Sequencing attempts to optimize the effect of mixed models resulted from product 

complexity.  This research has been motivated by some major U.S. automobile 

manufacturers, who are interested in improving their performances by better addressing 

sequencing on mixed-model assembly lines and analyzing product complexity. 

Sequencing mixed-model assembly lines with different goals such as workload 

balancing and part-usage leveling has been studied by many researchers (e.g., 

Miltenburg, 1989; Inman and Bulfin, 1991; Monden, 1998; Zhu and Ding, 2000; see 

references in Part 1), while accommodating different sequence considerations of various 

departments on a mixed-model assembly line is addressed very little in the literature.  On 

the other hand, some practice of intentional sequence alteration considering different 

production requirements of the downstream department and sequence restoration to deal 

with unintentional sequence alterations to facilitate sequenced parts delivery can be seen 

in industry.  In this research, first, rolling sequencing is used in sequence alteration.  To 

perform sequencing, shuffling lines are considered to physically change the sequence of 

vehicles and release vehicles in the sequence desired by the downstream department.  

Thus, effective rules to facilitate the vehicle placement and release operations on the 
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shuffling lines need to be studied.  Second, increasing the block size of vehicles of the 

same attribute is also desired in some operations, e.g., a large block size of same color 

vehicles for painting.  Sorting lines can be used to increase the block sizes.  Models and 

rules with an objective of obtaining the largest block size are needed.  Third, to 

accomplish sequence restoration, the existing practice include using substitution or a 

reservoir system, which generally will lead to delay in the delivery of vehicles later in the 

sequence or a high inventory.  A more efficient way that requires a lower inventory, for 

example, using spare units to replace defective units, can be developed.    

In Part 1 of this dissertation, research will be conducted in the following aspects: 

1) Developing effective rules to address the placement and releasing of vehicle units on 

the shuffling lines to enable achieving the altered sequence using a rolling sequencing 

method.  2) Modeling the resequencing process using sorting lines in order to obtain the 

optimal block size.  Mathematical programming will be considered in this modeling.   

Heuristic rules will also be developed to allow solutions for sorting.  3) Developing a 

spare units system that can be used to effectively restore the unintentionally altered 

sequence due to defects to the original sequence to keep sequence compliance using a 

low inventory.  Queuing analysis will be used to model the repair process of defective 

units of various vehicle models.  A case study will be conducted based on the practice at 

an automobile assembly plant.  Recommendations to address different requirements by 

applying the developed rules and methods to improve the performance of this plant will 

be presented.  

The complexity encountered by sequencing can be better understood by a product 

complexity analysis.  Product complexity generally has a negative impact on the 
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performance of a manufacturing system and the supply chain (MacDuffie, 1996; Fisher 

and Ittner, 1999; see references in Part 2).  Good product complexity management can 

help reduce the negative impact and improve the overall performance of a production 

system.  A benchmarking effort can help better understanding the relative complexity 

level of a product and provide insight in decision making on product complexity.  It is 

also desirable to prioritize complexity reduction opportunities.  Some manufacturers 

would also desire to know the cost impact of product complexity on their manufacturing 

systems and supply chains.     

Part 2 of the dissertation is mainly focused on analyzing product complexity 

related to product variety.  To perform a comparison of product complexity of similar 

products in the same market, data envelopment analysis (DEA) will be applied to 

multiple factors (Ulrich et al., 1998; MacDuffie et al., 1996; Fisher and Ittner, 1999; see 

references in Part 2) in measuring the product complexity related to product variety 

within a single product.  DEA is a linear-programming-based technique that has been 

developed to compare the relative efficiencies of multiple homogenous decision making 

units.  DEA models will be developed according to different comparison objectives to 

compare the product complexities of similar products in the same market.  DEA can also 

be applied to prioritize various product-complexity reduction opportunities related to 

product attributes.  Further economic analysis will be presented attempting to justify a 

product-complexity reduction opportunity identified from DEA ranking.  The 

applications of these developed DEA models and an economic analysis will be illustrated 

in a case study. 
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Part 3 of the dissertation presents two DEA models extended from the DEA 

models 1 and 2 in Part 2 to compare product complexities of similar products specifically 

in automobile industry.  Considering that some product attributes can have significant 

impact on automobile manufacturing (MacDuffie et al., 1996; see references in Part 3), in 

these two extended DEA models, the numbers of attribute values of these significant 

product attributes will be included as inputs.  Also, an incremental cost estimation 

approach will be proposed to calculate the cost impact of a product complexity change in 

various categories of production activities.  A case study will be given to compare 

product complexity levels of similar vehicles in some major U.S. automobile 

manufacturing companies by applying the two extended DEA models.  A computation 

tool will be included to implement the incremental cost estimation approach in an 

automobile company. 
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PART 1 
SEQUENCE ALTERATION AND RESTORATION RELATED TO SEQUENCED 
PARTS DELIVERY ON AN AUTOMOBILE MIXED-MODEL ASSEMBLY LINE 
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This part is a paper published in the journal International Journal of Production 
Research in 2004 by Fong-Yuen Ding and Hui Sun: 

Ding, F. and Sun, H. (2004)  Sequence alteration and restoration related to sequenced 
parts delivery on an automobile mixed-model assembly line with multiple departments.  
International Journal of Production Research, 42(8), 1525-1543. 

My primary contributions to this paper include (1) part of the gathering and interpretation 
of literature, (2) part of development of heuristic sorting and releasing rules, (3) computer 
programming for the computational experimentation to test the heuristic sorting and 
releasing rules, (4) part of development of the integer programming model, (5) 
calculation for the number of units needed for the reservoir and spare units system under 
different defective rates, (6) part of development of the calculation procedure used to 
determine the number of units as produced on the assembly line regularly or as spare 
units for a spare units system, and (7) part of draft writing and editing. 

1.  Abstract 

A mixed-model assembly line is commonly used in the automobile industry.  

When there are multiple departments on an assembly line, there are usually different 

sequencing considerations from various departments.  Intentional sequence alteration to 

accommodate a different sequencing consideration can be needed for a downstream 

department.  Unintentional sequence alteration may also take place due to rework or 

equipment breakdowns.  There is also an increasingly common practice in automobile 

assembly to have parts sequenced before delivering to the final assembly line.  To 

achieve sequenced parts delivery, the sequence needs to be known in advance.  Thus, 

addressing sequence alteration and restoration becomes more relevant for an automobile 

mixed-model assembly line.  In this paper, a number of sequence alteration methods to 

accommodate a downstream department’s sequencing considerations are presented.  One 

of these methods easily supports sequence restoration of the sequence altered by the 

method.  Two sequence restoration methods for restoring the sequence altered by 

unintentional reasons are discussed; and the proper sizing of the two restoration methods 
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are addressed.  These sequence alteration and restoration approaches mainly address the 

design and control aspects of the mixed-model assembly line.  A case study based on an 

automobile assembly plant is presented to demonstrate the use of these methods. 

2.  Introduction 

The automobile industry involves a large supply chain.  Automobile 

manufacturing includes a wide variety of manufacturing activities including casting, 

stamping, part manufacturing, welding, painting, and assembly.  A typical automobile 

assembly plant consists of a body, a painting, and a final assembly department.  A final 

assembly department usually has several subassembly lines for items such as engine, 

frame, and instrument panel, and a main assembly line for trim and finish assembly.  

Mixed-model assembly is commonly used in automobile manufacturing.  It has 

the benefit of reducing facility and inventory costs, and a potential of achieving a better 

balance in workload and part usage (Monden, 1998).  When mixed-model assembly is 

applied in an automobile assembly plant, a linear flow can pass through the whole 

assembly system, and the model sequence can thus, affect the production efficiency of 

various departments.  However, production considerations for the sequence in various 

departments are generally different.  For example, the body department may need to 

follow a repetitive pattern of models due to the machine setup consideration, while the 

painting department may need to have larger paint color blocks.   

The sequence of the linear flow of models on a mixed-model assembly line can 

often be altered intentionally or unintentionally in an automobile assembly plant.  In 

some cases, the sequence can be altered intentionally to achieve a better efficiency in a 

downstream department such as having larger paint blocks for the painting department.  
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The sequence can also be altered unintentionally due to unavoidable reasons such as 

equipment breakdowns and defective products.  

When the initial model sequence is intentionally or unintentionally revised before 

reaching the final assembly department, it becomes difficult for the final assembly 

department to anticipate the exact sequence.  At the final assembly department, where a 

significant number of parts are used, both operators and suppliers can benefit from 

knowing the model sequence in advance.  One important reason for needing to know the 

sequence in advance is due to the manufacturer’s desire to have parts delivered to the 

final assembly line according to the sequence.  “Sequenced parts delivery” has become an 

increasingly popular practice in automotive assembly operations (Bukey and Davies, 

1991), such as with Toyota (Monden, 1998), Ford (Sawyer, 1994; Vasilash, 1996; Voller 

and Kistler, 1997), and BMW (Automotive News, 2001).  By sequenced parts delivery, 

parts needed at many assembly stations on the line can be organized and delivered 

according to the mixed-model sequence.  The benefits of this practice include reduced 

inventory level, reduced space requirement, and ease of material retrieval for assembly 

operations.   

There is a rich body of literature dealing with sequencing mixed-model assembly 

lines (e.g., Milturburg, 1989; Inman and Bulfin, 1991; Hindi and Ploszajski, 1994; 

Duplaga et al., 1996; Monden, 1998; Zhu and Ding, 2000; Yan et al., 2003).  These 

various sequencing procedures are aimed at leveling work loads on the stations, 

smoothing part usage on the line, or minimizing the variation of production rates of the 

finished products for a mixed-model assembly line.  Various sequencing considerations 

of different departments on a mixed-model assembly line are generally not addressed.  
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Many rescheduling methods were developed to deal with dynamic production 

environments (e.g., Jain and Elmaraghy, 1997; Wu and Li, 1995; Hohzaki et al., 1995).  

These methods are mainly concerned with rescheduling in a manufacturing system; 

various assembly line considerations are not considered.  

Lahmar et al. (2003) noted that different departments usually do not share one 

optimal sequence on a moving assembly line, which raises the need to resequence jobs 

upon leaving a department and before entering the next one.  They developed an 

integrated model to solve the resequencing problem for the downstream department with 

the objective of minimizing changeover costs incurred whenever two consecutive jobs do 

not have the same feature such as vehicle color.  Limited offline buffers, or pull-off tables 

were suggested for the proposed vehicle resequencing operation.  Sequence restoration 

was not explicitly considered.  Choi and Shin (1997) presented a sequence control 

algorithm to perform resequencing at a multi-line buffer for the downstream assembly 

department considerations, i.e., spacing constraints of various options.  Inman (2003) 

presented a sizing methodology for an AS/RS in performing sequence restoration in an 

automobile assembly system.  An exact method and approximation method were 

presented under the cases with and without decoupling orders. 

This paper presents methodologies in sequence alteration and restoration related 

to gaining advance knowledge of the model sequence so that sequenced parts delivery 

can be achieved.  The methods presented in this paper address the design and control 

aspects of resequencing and sequence restoration on an automobile mixed-model 

assembly line.  Two problem scenarios are discussed.  First, considering that two 

consecutive departments on a mixed-model assembly line usually do not share the same 
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sequencing consideration, the case of altering the sequence to satisfy the special 

consideration of the downstream department is presented.  Secondly, considering that the 

sequence desired by the downstream department is the original sequence, the case of 

restoring a revised sequence to its initial model sequence is discussed.  A case example 

based on an existing automobile assembly operation is presented to demonstrate the use 

of these methodologies.  

3.  Sequence Alteration 

3.1.  Alteration on the line 

When two consecutive departments require different mixed-model sequences, the 

model sequence after leaving the upstream department can be intentionally altered so that 

it can be more suitable for the downstream department.  This kind of sequence alteration 

can be done on the line followed by a shuffling area to ensure that the altered sequence is 

followed later in the sequence.  A common configuration for a shuffling area consists of 

several lines as depicted in Figure 1.  This kind of sequence alteration generally does not 

consider restoration at a later point.  However, the altered sequence by the following 

resequencing and shuffling methods can be restored later with a configuration similar to 

 (         :  Vehicles of the same row ) Shuffling area

Downstream department 

The feeding line from the upstream department 

BA

Figure 1.  A simple configuration for sequence alteration on the line 
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the initial shuffling lines.  The following sequence alteration method can also be 

performed at a further upstream location to allow for a longer lead time for the advance 

knowledge of the sequence.  This sequence alteration can be performed in three steps: 1) 

resequencing on the line, 2) placing vehicles in the shuffling area, and 3) releasing 

vehicles. 

1)  Resequencing on the line 

In this step, each vehicle coming out of the upstream department is reassigned a 

new “rotation number” (the order of a vehicle in the sequence) before entering the 

shuffling area in order to accommodate the production consideration of the downstream 

department.  Based on the number of vehicles to be resequenced each time, there can be 

two categories of resequencing methods for sequence alteration on the line.  In a block 

sequencing method, all units within a block of vehicles are resequenced in the same 

iteration.  In a rolling sequencing method, the range of units to be selected for 

resequencing is kept constant, but not all units in the range have to be selected in each 

iteration.   

For each iteration of resequencing in block sequencing, k consecutive rotation 

numbers are assigned to the units within a block of k vehicles according to the 

sequencing consideration of the downstream department.  Once all vehicles are assigned 

the new rotation numbers, the sequence of the whole block of units can be broadcast to 

the downstream department. 

The rolling sequencing method will select the next suitable unit, based on the 

sequencing consideration of the downstream department, within a given selection range 

of k units (from point A to B, as depicted in Figure 1).  New rotation numbers are 
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consecutively assigned to selected vehicles until the unit at point B is assigned a new 

rotation number.  Point B is the point of the last assigned vehicle within the current 

selection range before the assembly line moves one unit forward.  Once the vehicle 

number at Point B is broadcast to the downstream departments, the assembly line moves 

forward by one unit; and the selection range is kept constant by adding the new unit at 

point A into the range.  Thus, rolling sequencing increases sequencing flexibility as 

compared to block sequencing.   

2)   Placing vehicles in the shuffling area 

Each vehicle with a new rotation number is placed on a line in the shuffling area 

to ensure that the vehicles can be released according to the order of the new rotation 

numbers.  When a unit joins the shuffling lines, the unit must be able to find a line with at 

least one open space, and the last unit of the line must have a smaller rotation number 

than that of the joining unit; otherwise, there can be “blocking” with which a unit can not 

be released sequentially according to the rotation number.  Another consideration of 

placement is to achieve “even release,” that is, to release units by turns from various 

lines.  Even release has a benefit of keeping roughly an equal number of open spaces in 

various lines.  Thus, when a unit is joining the shuffling lines, there is a widest choice for 

lines, and the chance of blocking is reduced.   

When block sequencing of a block size k is applied, there needs to be k shuffling 

lines to avoid blocking.  This is because a sequence of k consecutive rotation numbers in 

backward order needs k shuffling lines to avoid blocking.  To achieve even release, each 

unit in a block of k consecutive rotation numbers is to be placed on a different line in the 

shuffling area; and a vehicle of a certain block can be placed behind a unit of the previous 

  12



block in such a way that the difference between the rotation numbers of two consecutive 

units in each line is k.  

While applying rolling sequencing of a selection range k, the following placing 

and stacking rules for joining the shuffling lines will give the most even release and will 

not have blocking.  These placing and stacking rules attempt to place vehicles of a group 

of k consecutive rotation numbers in the same row (see Figure 1 regarding the term 

“row”), and stack the vehicles of the next group of k rotation numbers.  The term “row” 

refers to the spaces of the same position in different shuffling lines.  It can also be shown, 

as stated in “Result,” that, with k shuffling lines, there will be no blocking under these 

placing and stacking rules.  

Placing rule. Place the current group of k vehicles of consecutive rotation numbers in the 

k available positions in the “first open row” of the shuffling area as the units arrive.  The 

“current group of k vehicles” is the first group of k consecutive rotation numbers that has 

not been completely placed in the shuffling area.  A row is “closed” if all k units of the 

associated rotation-number group have been placed.  

Stacking rule. Stack any unit that is not one of the current group of k consecutive rotation 

numbers in the row next to the first open row.  When a unit is stacked, it will be stacked 

behind a unit so that the difference between their rotation numbers is the closest to k.  

It can be shown that all the units of a k-rotation-number group would have arrived 

and be placed in the shuffling area before units of the third group of consecutive numbers 

start to arrive.  Moreover, as will be shown in Result, there are always less vehicles of the 

next rotation-number group than those of a given rotation-number group before any point 

in the resultant sequence from rolling sequencing.  This guarantees stacking to be always 
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feasible.  Therefore, the above placing and stacking rules will place units of various 

groups row by row without blocking. 

Result   The rolling sequenced vehicles based on a selection range of k can be placed on 

k shuffling lines without blocking using the above stated placing and stacking rules.  

(Proof)  

Assume that the sequence from rolling sequencing consists of multiple k-unit 

sections of which units are assigned numbers from multiple rotation-number groups.  Due 

to the nature of the rolling sequencing method, a rotation number of a group of k 

consecutive rotation numbers (say, group q) is assigned to the next section (i.e., section 

q+1) of k vehicles only if a smaller rotation number within this group has been assigned 

to the unit at point “B” (see Figure 1) in the last iteration of the assignment.  Thus, for 

each rotation number of the current rotation-number group (q) assigned to the next 

section (q+1), there must be a smaller rotation number of the current rotation-number 

group (q) assigned before the position of a rotation number of the next rotation-number 

group (q+1) assigned to the current section (q).  Therefore, before any point in the 

resultant sequence from rolling sequence, there are always no less units of the current 

rotation-number group than those of the next rotation-number group.  This guarantees the 

above placing and stacking rules to work effectively without causing blocking.  (It can 

also be shown that there will be at least k/2 rotation numbers of the current rotation-

number group in the current and previous sections, where k/2 represents the smallest 

integer that is greater than or equal to k/2.)   

3)  Releasing Vehicles 
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Vehicles placed in the shuffling area are released according to the newly formed 

sequence to the downstream assembly department.  Since a block of units is evenly 

distributed among the k shuffling lines, even release is achieved.  Also, the vehicles 

coming out of the shuffling area follow the new sequence for the downstream 

department’s production considerations.    

Based on the above discussion, it can be seen that the selection range of k vehicles 

to which resequencing is applied can be shifted further upstream as long as the selection 

range (k) remains to be equal to the number of shuffling lines.  To allow for a longer lead 

time of having the advance knowledge of the downstream sequence, the selection range 

can therefore, be shifted upstream if the conditions of the manufacturing system permit. 

Based on the above discussion, it can also be seen that, given that the input and 

output rates at the shuffling area are equal, only 2 rows of k shuffling lines are needed for 

releasing an altered sequence from rolling sequencing.  Moreover, it can be shown that, 

given that the input and output rates are equal, such an altered sequence can be restored 

by 2 rows of k shuffling lines at a later point of the assembly line system.  This can be 

accomplished by using the same pattern placed in the earlier shuffling area. 

An example  

Consider a system with a feeding line into a shuffling area of 13 lines with 4 

spaces on each line.   Thus, the selection range for the rolling sequencing approach is 13 

vehicles.  Assume 52 vehicles coming from the feeding line are resequenced in a rolling 

manner based on a certain downstream assembly line consideration, and the resultant 

sequence of rotation numbers is as follows: 48-52-49-41-51-47-50-40-43-44-37-36-34-

33-45-38-39-42-46-35-31-23-29-27-22-26-21-30-24-28-20-25-32-18-17-12-11-8-9-7-3-
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15-13-1-16-19-2-14-4-10-6-5 (moving in the forward direction).  These units can be 

placed on the 13 shuffling lines according to the above placing and stacking rules.  The 

placement result is shown in Figure 2.  These vehicles can be released evenly according 

to the new rotation numbers without causing blocking. 

3.2.  Resequencing to batch a single attribute by using sorting lines 

Resequencing can be performed by using sorting lines in order to accumulate 

vehicles with the same attribute code to a larger block.  For example, this can be applied 

for a painting department to accumulate units of the same color before the painting 

operation.  It is noted that physically there is no difference between the “shuffling lines” 

stated earlier and “sorting lines” stated here, but different names are used to highlight the 

difference in their objectives.  Two cases can be addressed in this resequencing approach; 

one is to require restoring the revised sequence at a later point on the line, and the other is 

not to require restoration.  

Case 1.  Resequencing to batch a single attribute intended for later restoration 

51   38   25   12
50   37   24   11
47   34   21   08
48   35   22   09
44   33   20   07
43   30   17   03
52   39   26   13
41   28   15   01
42   29   16   02
40   27   14   04
49   36   23   10
46   32   19   06
45   31   18   05

Feeding units from the 
upstream department  

Releasing units to the 
downstream department  

 

Figure 2.  Placement of 52 units in the example 
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The accumulation of units of a certain attribute, such as color, can be performed 

by using a sorting area of multiple lines.  This can be illustrated in Figure 3. 

The above figure shows a sorting area with 4 sorting lines and 6 spaces on each 

line.  In general, the number of sorting lines, L, and the number of spaces in each line, b, 

can be determined based on considerations in the available floor space, inventory cost, 

and desired sorting capability.  Each L⋅b consecutive vehicles will be considered as a 

“section.”  As the units of a section enter the sorting lines, each unit will join a certain 

line for possible connection with another unit of the same attribute code.  In this way, the 

downstream department can benefit from having vehicles of a common attribute code 

grouped into a longer string (a larger block).  The same configuration of L lines of b 

spaces in each line at a later point on the assembly line can also ensure complete 

restoration to the sequence before the resequencing. 

A 0-1 integer programming formulation as given in Appendix A can be developed 

for determining the selection of the sorting lines for a block of vehicles.  Since real-time 

decision making is needed for the system, solving the 0-1 integer program repeatedly will 

generally not be practical.  To allow quicker decision making, the following heuristic 

sorting rules are developed for sorting each section of vehicles: 

From previous operation To next operation 

Figure 3.  A sorting area 
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Rule 1.  Place an incoming vehicle on a sorting line of which the last unit has the 

same attribute code as the incoming vehicle; otherwise place the unit on an empty line.  If 

an empty line is not available, apply Rule 2 if an inactive line exists; otherwise apply 

Rule 3.  (An “inactive” line is a sorting line of which the last unit does not have another 

unit of its attribute code among the unsorted units.) 

Rule 2.  Place the incoming unit on the inactive line that has the closest number of 

spaces (v) to the number of unsorted units (u) of the same attribute code as the incoming 

unit.   In this step, the sorting line with a positive difference (v-u) of these numbers has a 

priority to be selected over ones with a negative difference. 

Rule 3.  Place the vehicle on a line that is waiting for the minimal number of 

unsorted units of the same attribute code as that of the last unit on this line.  If several 

lines have the same minimal number, choose the line that has the closest number of 

spaces (v) to that of unsorted units (u) of the same attribute code as the incoming unit; 

and the line with a positive difference (v-u) is given a priority over ones with a negative 

difference.  If there is still a tie, choose the line so that the next unit of the same attribute 

code as the last unit on that line will arrive the latest at the sorting area.  

After all vehicles are placed, the sorted vehicles can then be released from the 

sorting area line by line according to the following releasing rule:   

Releasing rule.  First, release a pair of sorting lines with the longest positive 

“connecting length.”  The “connecting length” between a pair of lines is the total number 

of the units with the same attribute code at the front end of one line and the rear end of 

another line.  (If a pair with a positive connecting length does not exist, use any order for 

these lines.)  Then, release the next line that has the longest positive connecting length 
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with the last released line.  However, if a line with a positive connecting length does not 

exist, release a pair of lines that have the longest positive connecting length.  If there still 

isn’t a pair of lines with a positive connecting length, use any order for the remaining 

lines.  Continue releasing a line or a pair of lines according to the above steps.  

An example  

Consider an unsorted section of 24 vehicles as follows: C24  A23  C22  A21  C20  A19 

D18  A17  D16  A15  D14  A13  B12  A11  B10  A9  C8  A7  B6  A5  D4  A3  C2  A1, where A, B, C, and 

D represent 4 different colors, and the subscripts are positions in the section before 

sorting.  The initial average block size is 1.  To obtain larger paint color blocks, a sorting 

area of 6 lines with 4 spaces on each line is assumed.  By applying the heuristic rules to 

sort these vehicles, the result on the 6 lines is depicted in Figure 4. 

The units can be released line by line in the order of lines 1, 5, 6, 4, 2, and 3.  In 

this way, the average size of the same color blocks is 24/4 = 6 with 4 blocks.  In order to 

restore the changed sequence in the downstream department, a shuffling area of 6 lines 

each with 4 spaces will be needed.  

(line 1): A7     A5   A3   A1 
(line 2): C22   C20  C8     C2 
(line 3): D18    D16   D14  D4 
(line 4): C24   B12  B10  B6 
(line 5): A15   A13   A11  A9 
(line 6): A23    A21   A19   A17

To next operation   From previous operation   

Figure 4.  Enlarged paint blocks using 6 sorting lines in the example 
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Computational experimentation 

In order to test the above heuristic sorting and releasing rules, various sorting line 

configurations with different number (L) of lines and line length (b), and number (c) of 

attribute codes are assumed in a computational experimentation.  A Basic program is 

coded for the experiment and run on a PC.  In this experimentation, the attribute under 

consideration will be the color of a vehicle.  Assume that the ratios of the numbers of 

units of vehicles of the high, medium, and low quantities are roughly 3:2:1.  Also assume 

the number of colors of the vehicles of high, medium, or low quantities accounts for 

approximately one third of the total number (c) of colors.  For each L, b, c configuration 

(with 12, 24, or 36 vehicles), ten sequences based on the above ratios are randomly 

generated.  The sorting and releasing rules are applied to these sequences and the average 

paint block size before sorting (B1) and that after release (B2) are calculated.  The results 

are given in Table 2 in Appendix A.   

It can be seen in Table 2, that the average block size increases from applying the 

sorting and releasing rules can be quite significant.  It is noticed that for configurations 

with the same line number and line length, the percentage increase (r1) in the average 

block size after release generally increases as the number of color decreases.  This is 

likely due to the fact that, with a smaller number of colors, paint blocks can be 

accumulated more easily.  In Table 2, the average block size after release is also 

compared to the ideal average block size (B3), which represents a sequence using the 

same number of blocks as the number of colors.  The average percentage differences (r2) 

between the average block size after release and the ideal average block size are under 

40%.  Since the ideal average block size is larger than or equal to the optimal average 
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block size for randomly generated initial sequences, the heuristic solutions could be 

closer to the optimal solutions than indicated by these percentage differences (r2).  All 

CPU times of different runs are well under 1 second and thus, negligible. 

Case 2.  Resequencing to batch a single attribute not intended for later restoration 

If the original sequence doesn’t need to be restored at a later point, the sorting 

lines can be used to accumulate units until a desirable block size of the same attribute 

code is formed, while units of a unique attribute code can bypass the sorting area.  

3.3.  Resequencing by substitution 

Resequencing by substitution for an attribute can be performed on the line by 

substituting a vehicle later in the sequence for a unit with a different attribute code earlier 

in the sequence.  These two units usually are two identical units in terms of the other 

attributes.  Substitution doesn’t physically interchange the two vehicles on the line, 

instead it switches their vehicle identification numbers.  By switching the vehicle 

identification numbers, the desired attribute code of the unit later in the sequence is 

moved up in the sequence, while the attribute code of the unit earlier in the sequence is 

placed in the back.  An example of this practice can take place in the painting operation.  

A vehicle of a desirable color later in the sequence can substitute for a unit earlier in the 

sequence in order to obtain larger paint blocks.  A drawback of this practice is to cause 

delay in the final delivery of the unit placed in the back during the substitution if the 

distance between the two vehicles on the line is long.  Another drawback is the difficulty 

to restore the changed sequence to the original sequence at a later point on the assembly 

line.      
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4.  Sequence Restoration 

When a downstream department on the assembly line needs to know the sequence 

much earlier in advance, and if the upstream sequence is altered during its process for 

intentional or unintentional reasons, the sequence may need to be restored to the original 

one before vehicles enter the downstream department.  Advance knowledge of sequence 

makes it possible for suppliers to deliver parts to the downstream department 

accordingly.  Another possible reason for needing to restore the sequence is that the 

original sequence may have been intended for downstream production considerations.  

Knowing the incoming sequence to a department in advance may also enable the 

prediction of the resultant sequence possibly further altered by the department.   

There are various possible ways to restore the sequence after intentional or 

unintentional sequence alterations.  A way to restore the sequence is by using sorting 

lines after intentional sequence alteration by sorting lines as described in the previous 

section.  For restoring the sequence with unintentional sequence alterations, one way is to 

use a “reservoir system” to hold sufficient units in a bank in order to release the next 

needed unit to the assembly line according to the original sequence.  A plant can also use 

“spare units” to restore unintentional sequence alterations.  Since the sorting line 

approach has been discussed, the following sections will address the reservoir and spare 

units systems considering defective units that occur randomly. 

It is noted that a reservoir system or spare units system needs to use a storage and 

retrieval system.  The configuration of the storage and retrieval system depends on the 

required storage capacity.  If the required storage capacity is high, an automated 

storage/retrieval system (AS/RS) may be required with a significant investment.  When 
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the required storage capacity is low, a smaller AS/RS is needed or a less expensive 

sorting line system may suffice. 

4.1.  Reservoir system 

A reservoir system (Sawyer, 1994; Voller and Kistler, 1997; Inman, 2003) is used 

to hold a stream of vehicles in order to restore the altered sequence before releasing these 

vehicles.  By holding a stream of vehicles in the bank, an out-of-sequence unit can join 

the bank and be released according to the originally intended sequence.  The critical 

parameter of such a system is the needed holding capacity, or the maximum number of 

vehicles needing to be stored in the reservoir.  Inman (2003) presented an AS/RS sizing 

methodology for sequence restoration based on a given service level and an input 

sequence altered by various reasons.  When AS/RS sizing is determined in this paper, 

only repairs for the painting operation are considered as the cause for sequence alteration.  

For a system that considers sequence alteration only due to defective units, the holding 

capacity depends on the distribution of the repair time for a defective unit, production 

rate during a day, defective rate, and required service level.  That is, the holding capacity 

needs to be large enough to give a sufficient chance (service level) for a repaired unit to 

join the reservoir before the units behind the repaired unit in the original sequence are 

released.   

Assume that there is one repair facility to repair all defective units, arrivals of 

defective units follow a Poisson process, and the repair time for each defective unit is 

exponentially distributed, an M/M/1 queue can be used to calculate the average system 

time (W) to repair a defective unit.  Since W is also exponentially distributed, the 

capacity of the reservoir system can be calculated accordingly to achieve a certain service 
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level for the defective units to rejoin the AS/RS, so that the composite service rate of the 

defective and nondefective units exceeds a certain required level.    

4.2.  Spare units system 

When a defective unit is identified for needing to be repaired off line, it is 

removed from the assembly line, repaired, and then inserted back to the line.  In order to 

restore the sequence from unpredictable sequence alterations caused by rework, using 

spare units to replace the defective vehicles can be a viable method.  At the beginning of 

each shift or day, spare units of various models can be produced first based on calculated 

quantities.  These vehicles will act as spare units to replace the defective units during the 

shift or day, and a repaired unit will become a spare unit.  All spare units will rejoin the 

line at the end of the shift or day according to the production schedule.  To successfully 

run a spare units system, there needs to be an adequate storage space for storing the spare 

units, and equipment to retrieve the needed units from the spare units bank.  To estimate 

the needed quantities of the spare units, a queuing model is presented here.   

A queuing model 

The system assumes si spare vehicles for model i of which mi units are produced 

in a day; and the parameter si is determined so that a certain service level (α) is achieved.  

It is assumed that each defective vehicle needs to be repaired only once.  Defective units 

are repaired in the order of arrival.  The interarrival times of defective units of model i are 

assumed to be exponentially distributed with a rate λi = mip/h, where p is the average 

percentage of defective units, and h the number of work hours per day.  It follows that the 

interarrival times of all defective vehicles arriving at the inspection point are also 
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exponentially distributed with a rate λ = Np/h, where N = .  The repair time of each 

unit in a shared repair facility is exponentially distributed with a repair rate µ.  It can be 

seen that, if units of various models are not differentiated, the vehicle rework process is 

an M/M/1 queue, and the average system time of each unit in the repair system is thus, W 

= 

∑ im

λµ −
1 .   

With respect to a certain model i, it can be shown that the system of repairing 

defective units of model i behaves exactly as an M/M/1 queue with a “virtual repair rate” 

µi that is lower than µ.  This is due to the fact that a defective unit of model i needs to 

wait for units of other models to be repaired; that is, it is as if that the repair of a unit of 

model i takes longer time.  The fact that the repair system of model i behaves exactly as 

an M/M/1 queue can be shown below.   

Theorem 

With an exponential overall service rate µ for any model, the repair process of the 

defective units of each model i that has an exponential arrival rate λi behaves exactly as 

an M/M/1 queue with a service rate of µi = µ(1−di), where di = ρ(1−ωi), ρ = λ/µ, and ωi = 

mi/N.  

(Proof)   

Note that the probability, Pn, of having n vehicles of any model in the queuing 

system is ρn(1−ρ).  Also the probability, P(X > n), of having more than n units of any 

model in the queuing system, is: 

 P(X > n) = 1 − ( P0 + P1 + … + Pn) 

  25



      = 1 − [(1 − ρ) + ρ(1 − ρ) + ρ2(1 − ρ)+ … + ρn(1 − ρ)] = ρn+1.   

When a unit of model i joins the queue, either it finds that all units in the queue 

are of the other models (Case 1), or a number of units of the other models are after an 

existing unit of model i (Case 2).  The probability, pi(n), of having n units of other 

models in front of a unit of model i joining the line can be determined as follows. 

(Case 1)  The probability that n units of other models are in the queue of n units = Pn ⋅ P 

(all units are of the other models | there are n units of any models in queue) is pi′(n) = 

ρn(1−ρ)(1− ωi)n. 

(Case 2)  The probability of having n consecutive units of other models after an existing 

unit of model i for the last n+1 units in the queue of more than n units of any models = 

P(X > n) ⋅ P(n units of other models are after an existing unit of model i | X > n) is  pi′′(n) 

=  ρn+1ωi(1− ωi)n. 

Therefore, the probability that n consecutive units of other models in the queue 

are in front of an arriving unit of model i is:  

pi(n) = pi′(n) + pi′′(n)= ρn(1−ωi)n[1−ρ+ρωi] = (di)n[1−ρ+ρωi)] = (di)n[(1−ρ(1−ωi)] 

        = (di)n(1 − di),                                                                                               (1)  

where di = ρ(1−ωi). 

Let Sn+1 denote the time to repair a joining unit of model i and n units of the other 

models that are already in the queue.  Thus, the total repair time of the n+1 units is the 

sum of T1, T2, …, Tn, and Tn+1 which are independent service times following an 

exponential distribution with a service rate µ.  Thus,   

Sn+1 = T1 + T2 + … + Tn+1                                                                                                                                 (2) 
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follows an Erlang distribution with parameters µ/(n+1) and n+1.  From (1), pi(n), the 

probability of having n consecutive units of other models in front of an arriving unit of 

model i, is (1-di)(di)n.  The probability of having the total “virtual service time,” Vi, due 

to servicing the other models prior to a unit of model i and a unit of model i greater than t 

is thus,  

P{Vi>t} =              ∑
∞

=
+ >
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Differentiating (3) (representing 1−Gi(t), where Gi(t) is the distribution function) with 

respect to t gives -gi(t), where gi(t) is the probability density function of the virtual 

service time of a unit of model i due to its service requirement and servicing units of 

other models before an existing unit of model i.  Thus, 
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∞
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Therefore, Vi follows an exponential distribution with a parameter )1( id−µ ; that is, the 

average “virtual service rate” µi is equal to )1( id−µ . 

(Q.E.D.) 
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  Based on the above discussion, the probability of n defective units of model i in 

the system can be calculated as  = (ρi
nP i)n(1−ρi), where ρi = λi/µi.  Thus, si can be 

determined to have  greater than a certain service level α, so that the system 

achieves a satisfactory composite service rate (say, 99%) that is equal to the percentage 

(p%) of defective units times α plus the percentage ((100-p)%) of nondefective units 

times 1.  Since the spare vehicles will rejoin the line at the end of the shift or day, it 

should be noted that actually there are r

∑
=

is

n

i
nP

0

i+si units of model i produced totally, where ri 

denotes the regularly produced units of model i one the line.  The calculation procedure 

must ensure that ri+si equals the total production requirement, mi.   

A calculation procedure can be applied by initially setting ri = mi and calculating 

si, for all models.  The (ri, si) values for all models are then readjusted in each iteration.  

In each iteration, for all models, reset ri = mi−si; then for all models, recalculate si values 

based on the updated λi and µi values, that is λi= ωiλ, µi = µ(1−di), where ωi = ri/R, R = 

, and d∑ ir i = ρ(1−ωi) (note that λ and µ are constant).  The procedure is repeated until ri 

+ si = mi holds for all models.  In some rare cases, before and after an adjustment of ri by 

1 unit, ri+si>mi but ri′+si′<mi, or vice versa; to obtain a correct (ri, si) pair in this case, a 

higher-than-necessary si value can usually be adopted to ensure ri+si=mi.  By following 

this calculation procedure, the total number of units produced can be determined whether 

produced on the assembly line regularly or as spare units.  

Two-stage repair operation 
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Based on the above repair system, another stage of the repair operation can be 

included in the model.  In a painting department, for example, the second stage can 

represent painting and paint curing, while the first stage can be a repair operation.  It is 

assumed here that the second stage operation is a fixed-time-interval operation.  To deal 

with such a two-stage repair system, “additional spare units” are needed.  Based on the 

assumptions for the first-stage operation as described in the previous section, the arrival 

process to the second stage is also an exponential (Poisson) one.  Thus, the additional 

number of spare units for a model is equal to the number of units of the model present in 

the second stage operation based on a service level (i.e., at a given probability value), 

such that the multiple of the service levels of the two stages will exceed a specified 

service level for the defective units.  

An example 

Assume an automobile plant with 16 work hours per day and a daily schedule of 

960 units of 50 models.  Also assume 10%, 20%, 30%, and 40% of the 50 models have, 

on the average, 40%, 30%, 20%, and 10% of the 960 units, respectively.  The number of 

units of each model of each case is then randomly generated following a uniform 

distribution within a range of ±50% of the mean number of units as stated above; 

however, the total number of all models will be equal to 960.  At the inspection point the 

average percentage of defective units is 10%.  The repair time for each defective vehicle 

is exponentially distributed with a mean of 5 minutes plus a second-stage operation of 1 

hour.   

In the case of applying a reservoir system, the average system time (W) to repair a 

defective unit is 10 minutes according to an M/M/1 queue.  Thus, according to the 
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exponential distribution of W, a defective unit can be repaired in 23 minutes plus 60 

minutes from painting at a service level of 0.9.  Notice that the service level of 

nondefective units is 1.0.  This gives a composite service rate ((10%)(0.9) + (90%)(1.0)) 

of 99%.  Therefore, approximately 83 vehicles need to be held in the reservoir system.  

While a spare units system requires 24 spare vehicles to achieve a composite service level 

of 99% based on the above queuing model and the second stage requirement.  Further 

comparison for the defective rates ranging from 1-10% is made; and Table 1 gives the 

number of units needed to achieve a 99% composite service level.  

In Table 1, it can be seen at a defective rate of 1%, that the number of needed 

units for either a reservoir system or spare units system is 0.  This is because the 99% 

service level is achieved without either system.  However, when the defective rate is 

higher than 1%, the number of units for the reservoir system is at least 60 because at least 

1 hour of repainting time is required for a defective unit in the repair process.  It also can 

be seen that under the given system parameters, the spare units system uses a much 

smaller inventory to address sequence restoration, and the inventory size of the spare 

units system reduces quite noticeably as the defective rate decreases.  Such an analysis 

also helps motivate continuous improvement to reduce the defective rates.  

Table 1.  Number of units needed for the reservoir and spare units system under different 
defective rates 

Defective Rate 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Reservoir System 0 64 66 69 71 73 75 77 80 83 

Spare Units System 0 0 0 0 3 5 10 13 19 24 
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5.  A Case Example 

A case example is presented here to demonstrate the concepts and methods of the 

sequence alteration and restoration methods presented in this paper.  An automobile 

assembly plant in North America is used as the case example.  Recommendations made 

to the plant have not been implemented, but are given here as examples to help clarify the 

concepts presented.  The assembly plant produces various models of pickup trucks at a 

rate of about a thousand vehicles each day.  The assembly system consists of a Body 

Department, a Painting Department, and a Final Assembly Department. The plant applies 

mixed-model assembly throughout the plant, and a linear flow of vehicles starts from the 

Body Department and moves through the plant.  Figure 5 shows the linear flow of 

vehicles in this plant with points A through F representing the entry or departure points in 

various departments, and G, H representing the transit sections between departments.  

The sequence considerations for mixed models are different from department to 

department.  For the Body Department, the main consideration is to follow a 

predetermined production pattern to have minimum setups for the welding equipment.  

For the Painting Department, the main consideration is to have larger paint blocks of 

vehicles of the same color in order to lower cost.  The Final Assembly Department has a 

main sequencing consideration of keeping balanced workloads in several assembly areas. 

F D H EA B G C

Final Assembly 
Department 

Body Department Painting Department 

Figure 5.  Assembly plant in the case study 
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Due to the presence of the linear flow, the consideration of the Body Department 

is currently given the highest priority when deciding the initial sequence.  Having large 

painting block sizes as desired by the Painting Department is thus, not fully considered in 

the original sequence.  Presently, the Painting Department uses the substitution method 

(at Point C) to obtain larger paint blocks, and this significantly changes the initial 

sequence.  Moreover, vehicles with defects in the Body and Painting Departments usually 

need to be repaired (reworked) off line.  After the repair is completed, the vehicles rejoin 

the assembly line.  In this way, repair causes significant sequence alteration.  

As the initial model sequence is changed in the upstream production process, the 

final sequence does not guarantee adequate workload balance in the Final Assembly 

Department.  To meet the workload balance requirement for some downstream work 

areas, there is a “Selectivity Bank” area (at Point H, after the Painting Department) of 13 

shuffling lines to resequence vehicles for the Final Assembly Department.  The plant 

applies sequenced parts delivery for a number of parts.  These parts are organized in the 

warehouse and delivered to the final assembly line according to the sequence broadcast 

from the Selectivity Bank area.  The automobile assembly plant desires to know in 

advance the sequence in the Final Assembly Department to enable sequenced parts 

delivery directly from suppliers.   

Based on the results presented in this paper, recommended improvements are 

given here to demonstrate the use of concepts and methods presented in this paper.  

1.  To prolong the time of knowing the final sequence in advance   

Resequencing and broadcasting of the resequenced vehicles are currently 

performed at point H, the Selectivity Bank.  This can be started about an hour earlier at 
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the point right after vehicles are inspected in the Painting Department (Point D).  This 

will result in an earlier time in knowing the downstream sequence, and consequently, 

give the warehouse and nearby suppliers more time to arrange parts in sequence 

accordingly.  The rolling sequencing, placing, and stacking rules for resequencing 

presented in Section 2.1 can be applied using a selection range of 13 lines which is equal 

to the number of shuffling lines in the system.    

2.   To restore the final sequence to the original sequence for final assembly  

To allow suppliers to directly deliver parts in sequence, the assembly plant can 

restore the final sequence to the originally intended one.  Three efforts can be proposed to 

restore the final sequence to the original one:  

i. Increase the paint block sizes by using sorting lines which allows further 

restoration as stated in Section 2.2.  In this way, the average paint block size can be 

increased.  Such a revised sequence can also be easily restored to the original sequence 

owing to the nature of the sorting approach as stated in Section 2.2.  The current 

substitution practice can then be discontinued.      

ii. Based on the assembly system parameters (not stated here due to 

confidentiality), 56 models (from 4 colors) per day are assumed.  The number of units of 

each model was randomly generated based on the assignment of 40/30/20/10% of all 

units to 10/20/30/40% of the models.  It is computed that 76 and 10 vehicles for the 

reservoir and spare units systems, respectively, are needed to restore the altered sequence 

due to rework at a desired composite service level of 98%.  Similarly, when 112 models 

(from 8 colors) of vehicles per day are assumed, only 6 units are needed for the spare 

units system while the needed capacity of the reservoir system remains to be 76.  
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Therefore, it is suggested to use spare units to address the sequence alteration due to 

rework in the painting process.  The procedure presented in Section 3.2 was used to 

calculate the quantities of the needed spare units for a spare units system.  A shuffling 

system or small AS/RS may be used.  Further reduction in the defective rate would also 

reduce the required capacity. 

iii. Include the sequencing consideration for the Final Assembly Department in the 

original sequence.  This will make the completely restored sequence to be suitable for the 

Final Assembly Department, and resequencing will not be needed at its entry point.  An 

alternative approach to address the sequencing consideration of Final Assembly is to 

perform resequencing using a rolling or block sequencing method at a point before the 

Final Assembly Department with a prediction of the resequencing outcome based on an 

input sequence that is restored to the original assembly line sequence.  

6.  Conclusions 

On an automobile assembly line, different sequencing requirements in various 

departments can lead to the need for intentional sequence alterations. There are also 

unintentional sequence alterations due to reasons such as rework and equipment 

breakdowns.  An increasingly popular practice in sequenced parts delivery makes 

sequence alteration and restoration relevant topics in order to know the sequence in 

advance on a mixed-model assembly line. 

This paper addressed sequence alteration and sequence restoration on a mixed-

assembly line related to sequenced parts delivery in an automobile assembly environment 

primarily from its control and design aspects.  Sequence alteration methods for the 

purposes of meeting downstream production considerations were presented.  The 
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presented methods included alteration on the line, using sorting lines, and by substitution.  

For the method of using sorting lines, it considered the case of either needing further 

restoration or not.  Sequence restoration by using a reservoir system or spare units was 

also presented.  A queuing model was presented to estimate the number of spare units in 

the spare units system.  A spare units system performed noticeably better than a reservoir 

system under the considered parameters. 

A case example based on an automobile assembly plant was used to demonstrate 

the use of these sequence alteration and restoration approaches.  The methods presented 

in sequence alteration and sequence restoration in this paper can be useful to an assembly 

plant where different sequencing considerations are required in different departments, 

and advance knowledge of the final sequence is needed. 
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Appendix A. Computational Results of the Heuristic Sorting and Releasing Rules 

Table 2.  Computational results of the heuristic sorting and releasing rules 

Prob. 
Set 

Configuration 
(L×b×c) 

Avg. block size
 before sorting 

(B1) 

Avg. block size
 after release  

(B2) 

% Increase 
 in avg. block size 

r1=(B2-B1)/B1 

Ideal average 
block size  

(B3) 

% Difference btw. 
 B2 and B3  

r2=(B3-B2)/B3 

1 6×4×8 1.102 2.720 147% 3.0    9%
2 6×4×6 1.166 3.476 198% 4.0   13% 
3 6×4×4 1.356 4.880 260% 6.0   19% 
4 4×6×8 1.174 1.962 67% 3.0   35%
5 4×6×6 1.164 2.892 148% 4.0   28% 
6 4×6×4 1.264 3.909 209% 6.0   35% 
7 8×3×8 1.088 2.720 150% 3.0   9% 
8 8×3×6 1.141 3.340 193% 4.0   17% 
9 8×3×4 1.275 4.643 264% 6.0   23% 

      10 12×2×8 1.134 2.415 113% 3.0   20%
      11 12×2×6 1.154 4.000 247% 4.0   0% 
      12 12×2×4 1.314 4.600 250% 6.0   23% 
      13 9×4×8 1.137 3.381 197% 4.5   25%
      14 9×4×6 1.197 4.154 247% 6.0   31% 
      15 9×4×4 1.337 9.000 573% 9.0   0% 
      16 6×6×8 1.116 2.737 145% 4.5   39%
      17 6×6×6 1.203 4.392 265% 6.0   27% 
      18 6×6×4 1.333 5.629 322% 9.0   37% 
      19 12×3×8 1.203 3.542 194% 4.5   21%
      20 12×3×6 1.181 6.000 408% 6.0   0% 
      21 12×3×4 1.361 7.380 442% 9.0   18%
      22 6×2×8 1.084 1.437 33% 1.5   4% 
      23 6×2×6 1.142 1.893 66% 2.0   5% 
      24 6×2×4 1.200 2.580 115% 3.0   14% 
      25 4×3×8 1.200 1.420 18% 1.5   5% 
      26 4×3×6 1.130 1.807 60% 2.0  10%
      27 4×3×4 1.202 2.520 110% 3.0  16%
      28 3×4×8 1.072 1.366 27% 1.5  9% 
      29 3×4×6 1.099 1.571 43% 2.0  21%
      30 3×4×4 1.322 2.640 100% 3.0  12%
      31         2×6×8 1.076 1.232 14% 1.5  18%
      32 2×6×6 1.075 1.207 12% 2.0  40%
      33 2×6×4 1.295 1.916 48% 3.0  36%

 
Note: 
L: the number of sorting lines 
b: line length 
c: the number of attribute codes 
B1: average block size before sorting 
B2: average block size after release 
B3: ideal average block size 
r1: percentage increase in average block size after release 
r2: percentage difference between average block size after release and ideal average block 
size 
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Appendix B. An Integer Programming Formulation of the Sorting Problem to 

Batch a Single Attribute 

For each section of L⋅b units, there are L⋅b positions indicating the order of these 

units before entering the sorting area.  Similarly, there are L⋅b positions after the units 

leave the sorting lines.  Let Xij be 0 or 1 to indicate whether or not the unit at position i 

before sorting is assigned to position j after sorting, the sum of Y1j and Y2j denote 

whether the attribute codes of the two units are different in positions j and j+1 after 

sorting.   Also let the parameter Ci denote the attribute code of unit i in the sequence 

before sorting.  This integer program is as follows:  

Minimize                                                                                         (5) ∑
−
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                    = {0, 1},                                     ∀i, j ijX
                   = {0, 1}, Y = {0, 1},                 ∀j, j≠L⋅b jY 1 j2

The first two constraints (6) and (7) ensure that the vehicle occupying position i 

before sorting is assigned to a position j after sorting.  Constraint (8) guarantees that in 

each sorting line of length b, vehicles are placed in ascending order of their original 

position indexes.  Constraints (9) and (10) use two 0-1variables, Y1j and Y2j, for each 

position j to ensure one of them equal to 1 if the adjacent units j and j+1 have different 
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attribute codes.  The objective function (5) seeks to minimize the number of attribute-

code changes in the sequence. 
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ANALYZING PRODUCT COMPLEXITY RELATED TO PRODUCT VARIETY 
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This part is a paper submitted to the journal International Journal of Logistics Systems 
and Management in 2005 by Fong-Yuen Ding, Hui Sun, and John Kallaus: 

 
Ding, F., Sun, H., and Kallaus., J.  (2005)  Analyzing product complexity related to 
product variety in a manufacturing firm with a case study at an automobile assembly 
plant.  International Journal of Logistics Systems and Management.  

My primary contribution to this paper include (1) most of gathering and interpretation of 
literature, (2) part of development of data envelopment analysis models, (3) data 
collection and calculation for the case study, and (4) part of draft writing and editing. 

1.  Abstract 

Due to technological advances and consumer interests, product variety can become 

significantly high.  In this paper, product variety refers to product complexity due to 

various customer choices within a product, while product complexity involves all factors 

that make a product complex.  Product variety can be a major contributing factor to 

product complexity of a manufactured product.  High product complexity can have a 

significant impact on many cost areas including material, manufacturing, inventory, and 

distribution.  Motivated by a desire to better understand its product complexity and to 

identify product complexity reduction opportunities in a U.S. automobile plant, a number 

of tools are applied in this paper to analyze product complexity related to product variety 

and identify product complexity reduction opportunities associated with product 

attributes.  Measures of product variety are discussed.  Two data envelopment analysis 

(DEA) models for comparing the relative product complexities related to product variety 

among similar products, and a DEA model for ranking various attributes of a product for 

complexity reduction consideration are proposed.  An economic analysis template is 

suggested.  A case study based on the considerations of a U.S. automobile plant is also 

presented to illustrate the applications of these tools. 
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2.  Introduction 

Due to increasing technological sophistication and market competition, product 

variety and complexity of various manufactured products can become significantly high.  

Some companies view that high product variety gives customers more choices and 

consequently, a chance for the company to gain market share.  For an industry that 

depends on economies of scale to reduce production costs, however, product variety can 

have a negative impact.  High product complexity can have a significant impact on costs 

of product design, manufacturing, and distribution.  This paper attempts to apply a 

number of analytical tools for better understanding and managing product variety.   

The term “product variety” in this paper refers to product variations due to 

choices by customers within a single product.  “Product complexity” refers to the level of 

product sophistication from all factors.  Product variety can be a major contributing factor 

to product complexity, but there are usually other non-customer-choice factors 

contributing to product complexity.  For example, an automobile manufacturer can use 

many kinds of wire harnesses or bolts on a car; and this is an aspect of product 

complexity that is not product-variety related.  The relationship between product 

complexity and product variety factors can be depicted in a simple Venn diagram in 

Figure 1.  The scope of this paper will be limited to dealing with product complexity 

related to product variety.  Although how much product variety contributes to product 

complexity is not easily quantifiable, product variety’s cost impact on the production 

system can be seen in automobile (MacDuffie et al., 1996; Fisher and Ittner, 1999; Kim 

and Chhajed, 2000), computer (Swaminathan and Tayur, 1999), and other industries 

(Martin et al., 1998; Randall and Ulrich, 2001). 
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Product variety factors 

Product complexity factors   
 

 

 

 

Figure 1.  Relationship between product complexity and product variety 

2.1.  Relevant literature  

Many factors such as quality and price (Marquez, 2004) contribute to gaining 

market share of a product.  Product variety also plays an important role in gaining market 

share.  Kekre and Srinivasan (1990) concluded positive relationships among product line 

breadth, market share, and profit margin based on empirical studies.  It is generally 

viewed that both the market influence and customer behavior lead to the growth of 

product variety; and the ultimate feasibility constraint on product variety is technological 

(Lancaster, 1998; Kahn, 1998).  Fader and Hardie (1996) presented a statistical choice 

model to show that customer choice is often made on the basis of a set of attributes of 

stock keeping units (SKUs).  Chong et al. (1998) presented empirical models to examine 

how different brand width measures affect the brand share based on measures of brand 

width in terms of the number of SKUs, the number of “distinct SKUs” (after similar 

products of the same salient product attributes are combined into one SKU), and the 

number of distinct sizes and flavors (considered as salient attributes) of ice cream.  It was 

stated that a company must assess the level of product complexity to keep both the 

company’s low costs and high product attraction to consumers (Child et al., 1991; 

Rommel et al., 1995; Desai et al., 2001).     
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Many manufacturing firms view offering more variety as an advantage in gaining 

market share but as a disadvantage to economies of scale.  Some researchers attempted to 

model the impact of product complexity on manufacturing.  Banker et al. (1990) directly 

traced overhead costs for areas including supervision, quality control, and tool 

maintenance, in the presence of product and process complexity of individual automobile 

lamps, for complexity factors such as the number of moving parts in a mold and number 

of functions.  They developed several regression models which identified the impact of 

several complexity factors on overhead costs; and it was found that certain product 

complexity factors had a significant impact on the studied cost areas.  Child et al. (1991) 

observed that the costs of complexity constitute 10 to 40 percent of the total costs 

including material, manufacturing, logistics, and inventory in some manufacturing 

companies.  Benjaafar et al. (2004) presented a model to study the effect of product 

variety on inventory costs in a production-inventory system and showed that inventory 

costs increased linearly with the number of products, and the rate of increase was 

sensitive to system parameters such as the demand rate and setup time.  Kekre and 

Srinivasan (1990) concluded that there was no negative impact on production costs from 

an increase in product line breadth based on self-reported survey data from a sample of 

U.S. manufacturers.  They conjectured that this was due to companies’ adopting 

managing strategies such as just-in-time practices or flexible manufacturing technologies 

to lessen any possible adverse impact.  In this paper, we assume that there is no 

immediate improvement on the manufacturing system along with changes in product 

variety. 

MacDuffie et al. (1996) examined the effects of four measures (model mix 
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complexity, parts complexity, option content, and option variability) of product 

complexity on productivity and product quality, and discovered that parts complexity has 

a persistent negative impact on productivity.  Fisher and Ittner (1999) performed an 

empirical study and simulation analysis to investigate the impact of product variety in 

terms of option content and option variability on automobile assembly operations.  They 

showed that option variability has a more negative impact on productivity than option 

content in automobile assembly.  In addition, they showed that option variability causes 

increases in overhead hours, rework, inventory, and the excess labor capacity assigned to 

a work station to buffer against variability.  Regarding managing product variety for 

reducing manufacturing costs, Martin et al. (1998) developed three indices to indicate the 

levels of the manufacturing costs for providing variety, and a process sequence graph to 

assist in reducing manufacturing cost associated with variety on a production line.     

Research efforts were made in the area of product-line design for a company 

considering the market, price, and costs with an intent to optimize profit (e.g., Chen et al., 

1998; Yano and Dobson, 1998; Chen and Hausman, 2000; Kim and Chhajed, 2002).  

Morgan et al. (2001) proposed a mathematical programming model for product-line 

selection with the objective of maximizing profits by considering marketing implications 

and manufacturing costs.  Ramdas and Sawhney (2001) presented a mixed-integer 

programming model to evaluate multiple new product lines of assembled products by 

considering both incremental revenues and life-cycle costs.  Ulrich et al. (1998) presented 

five criteria including the competitive distinctness of variety dimensions, cost 

effectiveness of product architecture and production/distribution system choices, and 

design/operations capabilities to support the dimensions of variety, for the selection of a 
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variety strategy based on the performance of four bicycle manufacturers with different 

product variety.  Assuming that customer demand for different product variants can be 

represented by a Bayesian logit model, Hopp and Xu (2005) showed that an increasing 

degree of modularity would result in the increase of optimal product-line length and 

optimal market share.  These research efforts developed product variety models, 

procedures, and strategies related to determining the variety level for a company.  In 

general, such models and procedures depend on having estimates for product variety’s 

impact on the market.       

2.2.  Specific objectives and outline of this paper   

Motivated by a desire to better understand its product complexity and to identify 

product complexity reduction opportunities in a U.S. automobile plant, a number of tools 

are applied in this paper to analyze product complexity related to product variety and 

identify product complexity reduction opportunities associated with product attributes.  

The first part is a horizontal comparison of similar products for complexity.  The second 

part is a horizontal comparison among various attributes within a product.  Performing an 

economic analysis for a complexity reduction action will also be addressed.   

This paper is organized as follows.  In Section 2, the notation for describing 

product variety is briefly introduced, and measures of product variety are discussed.  In 

Section 3, two data envelopment analysis (DEA) models for comparing the relative 

complexity levels related to product variety among similar products in the same market 

are proposed.  A DEA model for ranking various attributes for the purpose of identifying 

areas of complexity reduction is also proposed.  An economic analysis model is presented 

to review the economic impact of a change in product complexity.  In Section 4, a case 
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study based on the considerations of a U.S. automobile plant is presented to illustrate the 

applications of the proposed analytical tools and models.  

3.  Representation and Measures of Product Variety 

3.1.  Basic elements in describing product variety 

Product variety can be thought of as variation in many “attributes” from which 

product differentiation is made.  Various terms including dimension and characteristic 

(e.g., Yano et al., 1998; Ulrich et al., 1998) have been used for the same meaning as 

attribute.  Each attribute has multiple selections, which will be termed as “values” of an 

attribute.  An attribute of only one value will not be considered as an attribute throughout 

the paper.  Appendix A is included to use notation to represent a product-variety structure 

of the customization process shown on a company’s website to facilitate data collection 

regarding product variety. 

3.2.  Measures of product variety 

Measures of product variety may be considered by terms including Nv, the 

number of product variants, NA, the number of attributes, iA , the numbers of values of 

various attributes or certain significant product attributes, where Ai is the set of all values 

of attribute i.  Lancaster (1990) used the term product variety to refer to the number of 

variants within a specific product group.  Chong et al. (1998) introduced three measures 

of brand width for products within a brand: the number of SKUs, the number of distinct 

SKUs, the number of distinct attributes, and the numbers of values corresponding to these 

attributes.  Furthermore, certain product attributes have a stronger cost impact on 

manufacturing and the supply chain, and may be considered as product variety measures 
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(e.g., MacDuffie et al., 1996).  It can be seen that a single measure is usually not 

sufficient for comparing product variety.  Choice of measures of product complexity 

depends on the objectives of the analysis, the product and production system, and in some 

cases, accessibility of data.  

4.  Analyzing Product Complexity Related to Product Variety 

4.1.  Data envelopment analysis for analyzing product complexity 

Higher complexity generally results in a higher system cost; and it is desirable to 

reduce complexity whenever the benefit of complexity reduction surpasses cost.  In a 

complexity reduction effort, quantitative tools may be needed to analyze and compare 

product complexity, and identify complexity reduction opportunities.  To have a 

horizontal comparison of the product complexity related to product variety, noting that 

multiple factors exist, the data envelopment analysis (DEA) can be applied to products or 

attributes that can be considered homogenous.  A comparison of product complexities 

related to product variety among similar products in the market gives an opportunity to 

benchmark similar products and motivate improvement within a company.  An emphasis 

in this paper is to show that DEA is an adequate method for the proposed comparison.     

Data envelopment analysis      

Data envelopment analysis is a linear programming based methodology that has 

been widely used in evaluating and comparing the relative efficiencies of decision 

making units (DMUs) with multiple inputs and outputs.  It allows use of the most 

favorable weights for inputs and outputs in assigning an efficiency score for each DMU.  

This avoids the need to determine weights for multiple factors.  The initial fractional 

form of a DEA mathematical programming model (known as CCR model by Charnes, 
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Cooper, and Rhodes, 1978) for determining the efficiency score of DMU j0 is as follows: 
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∑
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where yrj represents the amount of output r of DMU j, and xij the amount of input i of 

DMU j; ur is the decision variable for the weight assigned to output r, and vi the weight 

assigned to input i;  ε is a very small positive number to ensure that ur and vi hold positive 

values.  It is assumed that there are t outputs, m inputs, and n DMUs. 

The above model (P1) can be easily transformed to a linear programming model 

by setting to 1 in (1) and converting the set of constraints (2) to linear inequalities 

by moving the denominator to the right hand side.  The linear program can also be 

transformed to a dual formulation.  A DMU is said to be efficient if and only if, the 

optimal solution value of the primal or dual equals 1.  Solving the dual formulation has 

the important benefit of giving the targets (based on the dual solution) for adjusting the 

inputs and outputs of an inefficient DMU to become efficient (Boussofiane et al., 1991).  

The hyperplanes (in a multi-dimensional case) through the efficient DMUs in the feasible 

region form efficient frontiers in the CCR model.  A reference set is the set of efficient 

DMUs that form a composite DMU on an efficient frontier to represent the target for 

improvement for an inefficient DMU.  The reference sets can be identified from the DEA 
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results.  An inefficient DMU can move toward this target composite DMU by a 

proportional decrease (or increase) of inputs (or outputs).     

An extension of the dual model is known as the BCC model (Banker, Charnes, 

and Cooper, 1984) which is formulated by adding a convexity constraint to the dual 

formulation of the CCR model.  The convexity constraint ensures that a BCC model 

gives an attainable composite unit of similar scale size as that of unit j0.  The BCC model 

(see Appendix E) will be applied in Case Study in Section 4. 

A rationale for using DEA in this paper:  By including all DMUs on efficient frontiers as 

efficient without using preset weights, DEA gives the most favorable evaluation to each 

DMU and therefore, enhances the classification of the inefficient units and results in a 

stronger rationale for improvement.   

4.2.  Applying DEA in comparing product complexities related to product variety  

   Two DEA models are proposed here to compare the complexity levels related to 

product variety among similar products of different companies.  Model 1 attempts to 

compare the complexity levels of various products related to the variety measures, while 

model 2 attempts to compare the efficiencies of offering product complexities in contrast 

to economic outputs.  An illustrative model is presented for each of models 1 and 2.  

Although such models would vary depending on system conditions and comparison 

objectives, the two illustrative models can be considered when data regarding product 

varieties of various products of different companies are attainable only through publicly 

accessible information sources such as company websites. 

Homogeneous DMUs consideration: Care must be given to ensure that the compared 

products are homogenous considering similarities in products, processes, resources, and 
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environments (Dyson et al., 2001).  For example, only products of similar vehicle lines 

produced in the same geographical area and sold in the same market should be compared. 

Model 1   

The main idea of model 1 is as follows: From the viewpoint of product 

complexity related to product variety, a product having smaller values in key product 

variety measures would be more efficient.  In this proposed DEA model, each product in 

the same market is considered as a DMU.  Key product variety measures are included as 

inputs and outputs.  Figure 2 depicts the conceptual model 1 and an illustrative model.  In 

the illustrative model 1, each DMU has two inputs, the number of attributes (ones with 

more than one code), NA, and the weighted average number of attribute values, aN , 

while weights can be based on estimated levels of cost impact on manufacturing of 

various attributes in the same industry.  For example, it is typical that painting is a major 

operation in the automobile industry, and color has a pervasive impact on parts variety; 

therefore, the color attribute would be assigned a high weight.  Both inputs of illustrative 

model 1 attempt to capture impact on the manufacturing system.  Another indicative 

product variety measure regarding the number of configurations of the finished products, 

aN

 
Product j0 

Product variety 
measure 3 

Product variety 
measure 2 

. 

. 
Input DMU Output 

.

.

Product variety 
measure 1 

Input DMU Output 

NA  
Product j0 Nv 

         (a)                                                                    (b) 

Figure 2.  Model 1 – (a) A conceptual DEA model, and (b) an illustrative model for 
complexity comparison 
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the number of product variants, Nv, which is affected by NA and aN , is considered as an 

output in the illustrative model 1.  These input and output factors are intended to 

represent important measures of product complexity related to product variety.  It is noted 

that in this illustrative model, Nv is an “undesirable” output, which is more desirable 

when it is smaller; and thus, there is a need to specially handle an undesirable output in 

its DEA computation.   

Through the DEA comparison, a benchmarking of the product variety structures 

may be achieved and insight gained for improvement.  For example, an automobile 

company may decide to reduce its relative complexity level by incorporating more option 

packages.  The illustrative model 1 attempts to compare the extents of complexity of 

various products in the same market without considering potential revenues associated 

with product complexity (see model 2 for improved consideration).  However, cost 

impact can be implicitly considered in selecting the product complexity measures for 

input factors.  

Undesirable output or input consideration: Scheel (2001) compared various methods for 

treating an undesirable output in DEA, and introduced a new radial measure which 

assumes that any change of the output level will involve both undesirable and desirable 

outputs.  Scheel showed that the “additive inverse” method for treating an undesirable 

output, which multiplies the undesirable output values by –1, was among the methods 

that generate a larger and more inclusive efficient DMU set.  The additive inverse method 

will be adopted in Case Study to treat the undesirable variable so that the compared 

products are more likely to be classified efficient in order to motivate the improvement of 
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a product classified as inefficient.   

Model 2 

The main idea of model 2 is as follows:  The lower the values in product variety 

measures, and the higher the economic output, the more “efficient” the product is; that is, 

a small variety that has a large economic output is preferred.  This is intended to be from 

the economic viewpoint of the manufacturer instead of customers.  The conceptual model 

2 and an illustrative model are presented for this purpose as depicted in Figure 3.  In the 

illustrative model 2, the market share is included as an output of each product, and the 

three inputs are the number of attributes, NA, the weighted average number of attribute 

values, aN , and the total number of product variants, Nv; these inputs represent three 

aspects of product-variety measures of a product.  Nv is considered as an input in this 

model to present a metric in product complexity related to product variety.  aN  is 

weighted because not all attributes have equal impact on production costs; and weights 

can be set to represent different levels of impact to the production system in the same 

industry.  This illustrative model attempts to compare complexity levels related to 

aNProduct variety 
measure 2

Economic 
output 

. 

.

Product variety 
measure 1  

Product j0

 
 

Nv 

NA 
 

Product j0 
 

MS 

DMU Input DMU Output 
         (a)                                                                         (b) 

Output Input 

Figure 3.  Model 2 – (a) A conceptual DEA model, and (b) an illustrative model for 
complexity comparison 
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product variety in contrast to sales, which represent economic outputs of products in the 

same market.  Moreover, it is generally perceived that an increase or decrease in product 

variety would affect market share (closely related to sales volume).  The intent of model 

2 is to include important complexity measures related to variety as inputs while economic 

justification as output, so that a simplest product that captures the highest market share is 

can 

orrelation exists 

 al., 2001) 

4.3.  Ra

considered the most successful product. 

Post-analysis consideration:  It is noted that the inputs and output in the proposed models 

do not necessarily have a cause-effect relationship, and that this analysis is intended for 

making a ranked-score comparison of various products instead of identifying the reasons 

for a high or low ranking.  An identified product (and company) in the reference set 

be further studied to determine the reasons of its success in achieving a high ranking. 

Correlation consideration: It is also necessary that within each model, correlations 

between any variable pairs be evaluated to see whether extremely high c

and whether elimination of a variable is justifiable (Nunamaker, 1985).   

Sufficient DMUs consideration: Care also needs to be given to ensure that a sufficient 

number of DMUs are compared based on the numbers of outputs and inputs (m and t).  A 

rule of thumb for the number of DMUs is at least [2m × t] DMUs (Dyson et

where m and t are the number of inputs and number of outputs, respectively.   

nking various attributes for product complexity reduction considerations 

If a company is interested in reducing the complexity of a certain product, many 

options, selections, parts, and various aspects of the manufacturing system can make it 

difficult to select certain areas of focus for this effort.  Since each attribute causes 

increased complexity by providing various selections, DEA may be performed to provide 
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a prioritized list of attributes for focusing the product complexity reduction effort on.  

Possible ways to reduce complexity (Child et al, 1991) can include reducing the number 

of values of an attribute, offering option packages, eliminating some available attributes, 

and increasing the number of common parts.  To rank various attributes, multiple factors 

can be considered in the proposed conceptual model 3 and its illustrative model as 

depicted in Figure 4.  The main idea of model 3 is as follows: The higher the cost impacts 

associated with attribute-related cost impact factors, and the lower the market impact, the 

more “efficient” the attribute is; that is, an attribute with higher cost impact and a lower 

market ration. 

pact on the manufacturing system in inventory, 

is generally difficult to quantify, a ranking based on a scale of say, 1 to 4 with 1 

 impact is preferred as a candidate for complexity reduction conside

The following factors are proposed for the illustrative model 3:     

Number of attribute values (Na).  An attribute that has a high number of attribute values 

will generally have a significant im

scheduling, and production costs.      

Impact on manufacturing costs (MC).  Various attributes have different impacts on the 

manufacturing costs.  Since the exact manufacturing cost impact from a certain attribute 
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Figure 4.  Model 3 – (a) A conceptual DEA model, and (b) an illustrative model for 
ranking attributes 
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representing the highest impact can be used.  Care needs to be given to properly deal with 

this categorical variable (Banker and Morey, 1986). 

A spread measure of the percentages of demands of various attribute values.  

Various attribute values of an attribute would have different percentages of customer 

demand.  In conjunction with Na, a small spread of these percentages can be an indicator 

for the negative effect of the market impact if there is a reduction of the number of 

attribute values.  The standard deviation (SD) of the percentages of demands of the 

various attribute values is proposed here as a spread measure for the percentages of 

demands of various values of an attribute; and a higher SD favors the attribute to be 

selected for improvement consideration by eliminating an attribute value that has the 

smallest demand to have a smaller market impact.  For example, assuming that there are 

two attributes, of which each has two attribute values, and the demand percentages of the 

two values of the two attributes are 80%:20% and 50%:50%, respectively.  The former 

has an SD score of 0.424 ( 22 %)50%20(%)50%80( −+− ) and the latter has an SD of 0.    

In this illustrative DEA model, each attribute (Ai) of the considered product is 

assumed to be a DMU.  The three inputs for each DMU are assumed to be the number of 

attribute values (Na), the weighted average number of unique parts ( pN ), and impact on 

manufacturing costs (MC).  The output of each DMU is the spread measure of 

percentages of sales volumes associated with various attribute values.  In this model, an 

attribute with a higher spread measure resulted from more attribute values, more unique 

parts, and higher impact on manufacturing would suggest a higher priority for complexity 

reduction consideration.  It is noted that the inputs Na and pN  are undesirable inputs, and 
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the impact on manufacturing cost (MC) is a desirable but uncontrollable categorical 

input.  

Categorical input consideration: Categorical variables generally cannot form a 

composite unit (a convex combination of some efficient DMUs) to represent the target of 

an inefficient DMU due to the fact that such a composite unit may not have a meaningful 

interpretation (Banker and Morey, 1986).  However, Banker and Morey also proposed 

that, if the DMUs (peer group) that form the composite DMU only consisted of DMUs of 

the same or lower values on the categorical input, the assessment could be considered fair 

(Banker and Morey, 1986; Boussofiane, 1991).   

4.4.  Economic analysis for a product complexity reduction 

A further economic analysis is needed after a product complexity reduction area is 

identified.  A reduction in complexity regarding a certain product aspect can lead to cost 

changes (increase or decrease), and an impact on sales volume and/or price.  Thus, the 

cash flows associated with this product complexity reduction can be classified into two 

categories: cost changes and “nominal profit changes.”  Here “nominal profit changes” 

refers to a change in profit without considering the concurrent cost changes in order to 

apply an incremental comparison in the economic analysis. 

Regarding cost changes, the product complexity reduction may reduce (or 

increase) its associated costs including materials, manufacturing, and distribution costs.  

The cost changes related to materials costs can include those for warehouse storage, 

inventory carrying, and material handling.  The changes in manufacturing costs can 

include those in labor, equipment, and facility rearrangement.  Similarly, the changes in 

distribution costs (for finished goods) can be estimated.  A complexity reduction may 
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also lead to an increase (or decrease) in the part unit cost in some cases; for example, by 

using more versatile parts, the part unit cost may increase while product complexity 

reduces.   

Regarding nominal profit changes, two areas need to be included.  One is the lost 

(gained) sales associated with a loss (gain) in market share after the complexity 

reduction.  This can be calculated by multiplying the “nominal profit per unit,” which is 

the estimated profit per unit without considering the concurrent cost changes, by the 

estimated number of units of the lost (or gained) sales.  The other area is the nominal 

profit change associated with a price change with the retained sales.    

The overall cash flows after a complexity reduction effort can be the basis for 

making a decision regarding a change in product complexity.  A common spreadsheet 

format may be used to perform an economic analysis for various complexity reduction 

areas.  (Although this paper addresses product complexity reduction related to product 

variety, the above economic analysis framework is applicable to general product 

complexity reduction considerations.)  Such an economic analysis also helps the firm 

develop a better understanding of the costs and benefits involved in offering a certain 

aspect of complexity.  It should be noted that deriving accurate estimates for various 

costs can be very tedious.  (An example is provided in Appendix D.) 

5.  A Case Study 

A case study was conducted for providing an analysis in product complexity for a 

U.S. automobile assembly plant based on the methodology presented in this paper.  The 

automobile assembly plant produces about a thousand pickup trucks daily.  Due to market 

considerations the plant offers many vehicle options that can be selected by dealers and 
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customers.  It has been estimated by the company that there are more than 180,000 

vehicle variants as a result of the possible selections of various options.  The assembly 

plant has experienced a high level of complexity in sequencing and scheduling, a high 

number of inventory items, a high level of manufacturing complexity, and a noticeable 

level of undesirable manufacturing conditions including misbuilt assemblies.  The 

company is therefore, interested in being able to reduce their product complexity.  The 

first analysis conducted was to compare similar products in the U.S. market. 

5.1. Comparison of product complexities related to product variety among seven 

similar products in the U.S. market 

In the U.S. market, there are six other vehicles of the similar size as compared to 

the one manufactured by the studied plant.  These products can be considered generally 

homogeneous due to the same market (mainly sold in the U.S.), similar product lines 

(same size trucks), and similar manufacturing environments (all U.S. plants).  Due to a 

data accessibility consideration, product complexity data were collected from the 

company websites.  The “product variety structure” of each product offered to a common 

geographical location according to the customer selection process provided on each 

company’s website was first represented using the notation described in Appendix A.  

The results are given in Table 4 in Appendix B.  Due to data collection for the models is 

from the company websites, illustrative DEA models 1 and 2 described in Section 3.2 

were applied.  The values of NA and the numbers of attribute values are obtained from the 

product feature list.  Specifically, aN  is a weighted average (weights are based on 

estimated impact on manufacturing costs, ranging from 1 to 4, as estimated by the 

company conducting the analysis) of the numbers of values of all attributes for each 
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product.  The total number (Nv) of vehicle variants of each product is calculated 

considering available combinations of the values of various attributes.  It represents the 

total number of vehicles that are available to customers.  The sales volumes of the seven 

companies in the first season of the year were collected to represent the market shares.   

For a small set of DMUs such as in this case problem, it might be possible for one 

to identify an efficient DMU by observation.  However, DEA ensures that all efficient 

units can be identified, a ranking by scores representing the proportions of reduction (or 

increase) of input (or output) in order to become efficient can be obtained for all DMUs, 

and a reference set and improvement targets for each inefficient DMU can be obtained. 

The correlation coefficients are 0.22 between Nv and aN , and 0.55 between Nv 

and NA, respectively, based on the data of the seven companies.  These relatively low 

correlations suggest that none of these factors (Nunamaker, 1985) should be omitted.  

Because the only output is an undesirable one in model 1, the undesirable output is first 

multiplied by –1 (termed as “additive inverse transformation”); and the undesirable-

output-oriented efficiency measure introduced by Scheel (2001) based on the output-

oriented BCC model is employed.  For model 2, the input-oriented BCC formulation is 

used considering the fact that improvement can be more easily made for the input than 

the output (market share).  The ε value used in the experiment is 10-8.  In general, a 

higher score indicates a more desirable (lower) product complexity related to product 

variety in model 1, and a better overall efficiency considering the market share in relation 

to product complexity related to product variety in model 2.  Table 1 gives the results 

from DEA illustrative models 1 and 2.  The identities of the companies are not shown.    
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Table 1.  The complexity comparison scores by using DEA models 1 and 2 

Company  NA aN  Nv MS Model 1 
DEA Score 

Model 2 
DEA Score 

Alternative 
Model 1 DEA 

Score 
1 49 2.567 4,609,440 31,527 0.00199 0.963 0.948 
2 59 2.735 43,417,360 27,980 0.00019 0.841 0.829 
3 46 2.883 908,468 55,832 0.01316 1.000 0.857 
4 43 2.533 3,571,488 7,307 0.00412 0.975 0.975 
5 41 2.701 75,174 3,742 0.22034 0.953 0.953 
6 50 2.443 8,266 13,794 1.00000 1.000 1.000 
7 33 2.563 23,940 34,388 1.00000 1.000 1.000 

Based on the model 1 scores, It can be seen that Companies 6 and 7 have the best 

(lowest) complexity level, followed by Companies 5, 3, 4, 1, and 2.  It is noted that 

Company 6 has the smallest Nv and  and Company 7 has the smallest NA.  These two 

companies provide benchmarks regarding product simplification for other companies 

according to model 1.  It is noted that Companies 6 and 7 use a significant number of 

“option packages” to reduce Nv.  Model 2, which considers the additional factor of 

market share, gives products of Companies 3, 6, and 7 a score of 1.  An alternative score 

for model 1 is also given in the last column of Table 1.  These alternative DEA scores are 

based on a “multiplicative inverse” transformation, i.e., by using the inverse of the 

undesirable output Nv.  It can be seen that the set of efficient DMUs turns out to be the 

same as that based on the additive inverse transformation. 

aN

In order to improve inputs or outputs to become an efficient DMU in model 1, the 

output-oriented improvements (based on the additive inverse transformation of the 

undesirable output) are calculated; this is because it is generally easier to reduce Nv 

(through using option packages, for example) than to reduce NA and aN .  With model 2, 

the input-oriented improvements are calculated since it is generally more difficult to 
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change the market share.  The sets of improvement targets are given in Table 2.  The 

reference set for each inefficient product is also given; and the products and their 

companies in the reference set of an inefficient product can be studied for improvement 

purposes.  

5.2. Attribute ranking within a company 

The assembly plant under study has a total of 43 attributes that are practical to 

change.  The plant is interested in prioritizing the complexity reduction opportunities.  

One way of choosing areas to focus their complexity reduction effort on is to rank 

attributes so that a plan of addressing product complexity reduction can be further 

developed accordingly.  The attributes that have the most impact on manufacturing and 

inventory costs, and the least market impact prospect from a reduction in complexity may 

be considered the most favorable attributes for complexity reduction considerations.  An 

input-oriented BCC formulation for the DEA illustrative model 3 for attribute ranking as 

stated in Section 3.3 is applied based on the data from the company.  The 43 attributes are 

considered as 43 DMUs.  Each time a DMU is computed for the efficiency score, only 

Table 2.  Improvement targets and reference sets from models 1 and 2 
for inefficient companies 

Original Values Target from model 
1 (Output-oriented)

Reference 
set 

Target from model 2 
(Input-oriented) 

Reference 
set Company 

NA aN  Nv MS NA aN  Nv  NA aN  Nv MS  

1 49 2.567 4,609,440 31,527 49 2.481 9,173 6,7 35 2.472 23,578 31,527 6,7 
2 59 2.735 43,417,360 27,980 50 2.477 8,249 6 38 2.300 20,896 27,980 6,7 
3 46 2.883 908,468 55,832 46 2.491 11,955 6,7 (Not associated) 
4 43 2.533 3,571,488 7,307 43 2.501 14,714 6,7 42 2.504 14,084 23,553 6,7 
5 41 2.701 75,174 3,742 41 2.508 16,563 6,7 39 2.514 18,304 27,015 6,7 
6 50 2.443 8,266 13,794 (Not associated) (Not associated) 
7 33 2.563 23,940 34,388 (Not associated) (Not associated) 
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the DMUs with the same or lower MC values (a categorical input) are compared to.  The 

data and efficiency score based on undesirable-input-oriented efficiency measure 

proposed by Scheel (2001) for each attribute from this DEA computation are included in 

Appendix C.  It is noted that, due to the additive inverse transformation and use of the 

efficiency measure by Scheel, DEA scores are all ≥ 1 with a score of 1 indicating an 

efficient DMU.   

Some attributes having high DEA efficiency scores were considered for 

complexity reduction.  One of these considered attributes is the option for the length of 

the cargo box.  An economic analysis was conducted to compare the cost savings and 

nominal profit reduction from a complexity reduction of 2 values to 1 for the lengths of 

the cargo box.  The results show that there is a slight overall cost increase.  The company 

is carefully considering this complexity reduction option.  The spreadsheet used to 

calculate this product complexity cost impact is included in Appendix D.       

6.  Conclusions 

Offering more product variety can help a company gain market share; however, it 

can also result in higher costs in manufacturing, inventory, and distribution.  Product 

variety can be a major contributing factor to product complexity.  Properly analyzing 

product complexity related to product variety can develop a better understanding of the 

product complexity of a firm, and help develop a product complexity reduction plan.  In 

this paper, measures of product variety considering multiple attributes were discussed.  

Three data envelopment analysis models and their illustrative models were proposed to 

compare relative complexity levels related to product variety among similar products and 

to prioritize attributes for complexity reduction considerations.  Economic analysis was 
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proposed to determine whether a product complexity reduction effort is economically 

justifiable.   

A case study based on the presented analytical tools can be performed to analyze 

the product complexity of an automobile assembly plant.  Seven similar products were 

compared based on two proposed DEA models.  It was interesting that a product that was 

considered inefficient by considering only product variety related factors, can be 

considered efficient when the market share was included in the comparison.  DEA results 

also suggested improvement targets for complexity reduction related to product variety 

and a reference set for an inefficient product.  The product attributes were ranked for 

complexity reduction considerations.  An economic analysis was applied to evaluate 

complexity reduction opportunities.  The case study showed that applying the proposed 

tools to analyze product complexity can help a company compare product complexity 

related to product variety, identify product complexity reduction areas, and justify 

complexity reduction actions.  While a tool such as DEA was shown to be useful in 

analyzing complexity related to product variety in this paper, other tools, such as AHP, 

may also be instrumental for such analysis.   
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Appendix A.  Representation of a product variety structure as structured on a 

website 

In this paper, a “product variety structure” refers to the organization of various 

attributes associated with the product variety of a certain product for customer selection 
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on a company website.  The description of product variety by notation based on the 

structure provided on a company website becomes useful when product varieties of 

various products are compared for benchmarking purposes.   

First, a product variety structure based on the customer selection process can be 

described in multi levels.  Each level has one or more attributes that can be customized 

mutually independently possibly with some conditions.  An attribute belongs to a lower 

level if the value selection of this attribute depends on the value selection of a higher 

level attribute.  Among the same level of attributes defined independently of each other, 

there can be certain preclusion conditions to preclude some combinations of attribute 

values due to the nature of the product.  An override condition may also replace the 

selected attribute value of an attribute of another level.  For example, for an automobile, a 

specific kind of radio selected at a level can take the place of the radio selected at an 

earlier level.  An “option package” used often in the automobile industry can be 

represented as a combination of attribute values from a set of attributes.  The product 

variety structure of a certain product can be more easily compared using notation as given 

in Table 3. 

A numeric index can also be used to include the basic structure information for a 

quantitative comparison of various product variety structures; for example, a numeric 

index can be [L , where L is the number of levels, are 

the numbers of attributes in levels 1, …, L; N

]N,N),N,...,(N: VA
L
A

1
A

L
A

1
A N,...,N

A the total number of attributes, and NV the 

number of variants.   

Example 

An example of the variety structure is as follows: 
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A1⊗A2⊗ (A3→{ , } − [C1
5

1
4 AA ⊗ 2

5
2
4 AA ⊗ d, Ce])− [Ca, Cb, Cc] 

This expression represents a product variety structure with three attributes (A1, 

A2, A3) and three combinations [Ca, Cb, Cc] precluded at the first level, two attributes (A4, 

A5) whose value combinations are determined by the two value selections of attribute A3, 

with two combinations [Cd, Ce] precluded at the second level.  

Table 3.  Notation for the description of a product variety structure 
Notation Explanation 
{a, b, c, …} A set of items a, b, c, … of which one is selected. 
[x, y, z, …] A collection of items x, y, z, … of which all are selected. 
A1⊗A2⊗…⊗Aa The set of all possible combinations of values from attributes A1, A2 , …,Aa, 

respectively, where Ai={ci1, ci2, …}, i.e., the  set of all values of attribute i. 
k
iA  i

k
i AA ⊂ , that is, is the subset k of Ak

iA i. 

Ai→{ } ,...A,A,A 3
j

2

j

1

j Branching; that is, the choice { } of the lower level depends on the 
value selection of attribute A

,...A,A,A 3
j

2

j

1

j

i of the higher level in a corresponding manner. 
Ca A combination of attribute values from a set of attributes. 
Bk= {Ca, Cb, …, φ} An attribute that consists of various combinations (packages) of attribute values 

from attributes i, j, …, where Ca = [cia, cja, …], Cb = [cib, cjb,…], etc. 
−[Ck, Ce, …] Preclusion of attribute value combinations Ck, Ce, … 
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Appendix B.  Product variety structures of seven pickup trucks in the U.S. market 

based on the customer selection process 

Table 4.  Product structures represented by the proposed notation 

Product Basic structure 
information Level 1 Level 2 

           

1 [2: (4, 45), 49, 4609440] 
 

 

 

2 [2: (3, 56), 59, 43417360] 
 

 

 

3 [2: (6, 40), 46, 908468]  
 

 

           

4 [2: (4, 39), 43, 3571488] 
 

 

 

5 [2: (6,35), 41, 75174] 
 

 

 

 6 [1: (50), 50, 8266] 

 

 

 

 7 [2: (4, 29), 33, 23940]  
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Note: 1.  In basic structure information,  is used.   ]N,N),N,...,(N:[L VA
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A

1
A

4

Ai→{ ,1
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i=7 

33 

,...,2
iA

i=7 

33 
c
iA } − ,...],[ 7

32
7
31 CC   

i=7

33

1i=

  2.        Ai is equivalent to A1⊗A2…⊗An.  
1i=

n 

          3.   c is the number of corresponding attribute value combinations at level 1 in branching to level 2. 
          4.  Some Ai’s are actually packages in some cases. 

Table 5.  Correspondence of attributes at level 1 of each product 
No. Attribute Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 
1 A1 Cab Cab Box Cab Series Cab Drive 
2 A2 Drive Drive Drive Box Trim level Series Cab 
3 A3 Box Box Cab Series Transmission Engine Engine 
4 A4 Series n/a Doors Drive Engine Transmission Transmission 
5 A5 n/a  Engine n/a Drive Drive n/a 
6 A6   Series  Cab etc.  
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Appendix C.  Results for ranking various attributes in the case study 

Table 6.  Results of ranking attributes in the case study 

Attribute 
No. 

1. Number of 
Attribute Values  

(Na) 

2. Number of 
Weighted Unique 

Parts ( pN )  

3. Impact on 
Manufacturing 

Cost (MC)  

4. Standard Deviation of 
the Percentages of Sales 

of Various Attribute 
Values 

DEA Efficiency 
Score  

1 2 5.574 2 61.943 1.047 
2 2 37.617 2 29.840 1.000 
3 6 25.180 3 8.965 1.000 
4 2 8.262 2 25.032 2.198 
5 2 8.459 2 3.253 2.386 
6 9 3.607 3 7.237 1.000 
7 3 22.951 3 38.727 1.000 
8 4 2.623 3 33.578 1.448 
9 6 12.459 2 11.959 1.000 

10 2 13.377 2 38.042 1.557 
11 2 1.311 3 65.337 1.108 
12 3 0.656 4 38.727 1.797 
13 3 2.623 2 16.848 2.062 
14 3 5.410 2 12.065 2.035 
15 3 0.328 3 25.586 2.296 
16 2 0.033 4 6.081 4.500 
17 2 10.557 2 45.679 1.435 
18 2 0.033 3 45.396 2.303 
19 2 0.328 4 33.658 2.986 
20 7 0.885 2 9.592 1.000 
21 7 0.164 2 11.230 1.000 
22 3 8.852 3 25.173 2.375 
23 2 0.492 3 68.024 1.000 
24 2 5.475 2 56.710 1.261 
25 2 0.656 4 18.526 3.853 
26 2 0.295 3 29.698 3.207 
27 4 7.607 2 44.406 1.000 
28 2 0.164 4 68.307 1.000 
29 4 1.443 3 49.311 1.037 
30 2 1.639 3 62.933 1.222 
31 2 0.016 4 68.024 1.016 
32 2 0.984 1 22.486 1.463 
33 3 0.656 4 26.212 2.275 
34 2 0.164 4 8.485 4.428 
35 2 1.967 1 3.536 1.500 
36 2 0.656 2 55.013 1.555 
37 3 1.967 2 19.785 2.027 
38 2 0.164 2 67.599 1.000 
39 2 8.623 1 48.083 1.000 
40 2 4.787 2 33.375 2.258 
41 3 10.656 1 20.438 1.000 
42 2 0.328 2 58.690 1.394 
43 2 0.656 2 18.385 3.165 

     *Attributes in alphabetical order are: 
Air conditioning Assist handle Axle ratio Bed extender Bed liner
Body side Box Bright appearance Package Bumper Door trim 
Doors Drive Engine size Entertainment system Exterior color
Floor covering Floor mats Fog lamp Grill Instrument panel
Interior color Leather wrapped steering wheel Limited slip rear axle Model Payload package
Power package Rear sliding window Rear stabilizer bar Seat Serial 1 package
Serial 2 appearance package Skid plate Spare tire Step bar Storage tray
Tilt steering wheel Tire Tonneau cover Tow hook Trailer tow
Transmission Wheel Wheel lip molding  
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Appendix D.  The economic analysis spreadsheet for a complexity reduction effort 

in the case study 

Table 7.  A sample economic analysis spreadsheet for a product complexity reduction 
effort 

Item Current Future Difference Unit cost per 
year 

Total Cost 
Per year 

Cost Changes           
1. Material cost           
          1) Materials handling 0   
          2) Inventory carrying $5,433.66 0 $5,433.66  $5,433.66
          3) Warehouse storage space 11,140 ft2 0 11,140 ft2 $12 per ft2 $1,604,160

     0  
2. Manufacturing cost (Values not shown here) $79,280

3. Distribution cost 
(Values not shown 

here) 9,126 units $8 per unit  $73,008
4. Part cost   0  0
Other cost changes      0    0
            
Subtotal 1         $1,761,882
            
Nominal-Profit Changes           
1. From estimated lost market share (Values not shown here)  -$1,785,000
2. From a price change in the retained 

sales      0    0
 Other nominal profit change      0   0
     
Subtotal 2          -$1,785,000
Net Profit Changes 
(Subtotal 1 + Subtotal 2)         -$23,118

 Note: A positive cost change indicates a cost reduction. 

Appendix E.  Data envelopment analysis (DEA) BCC model formulation 

The BCC model (Banker, Charnes, and Cooper, 1984) is an extension of the dual 

model from the initial fractional form of the CCR model (P1).  By adding a convexity 

constraint (8) to the dual formulation of the CCR model, the BCC model takes account of 

the input excesses and output shortfalls of the DMUs around the efficient DMUs of the 

CCR model.  The output-oriented BCC model is as follows. 
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(P2) Minimize  θ - ε        (5) 







+∑ ∑
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0

θλ
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λ

      ≥ 0.       (9) −+
rij ss ,,λ

In the above formulation, θ represents the efficiency score of DMU j0;  and s  

represent the slack variable of input i and output r, respectively.  The convexity constraint 

(8) requires the sum of multipliers λ

+
is −

r

j to be 1; and this ensures that this BCC model gives 

an attainable composite unit of similar scale size as that of unit j0. 
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This part is a paper submitted to the journal Supply Chain Management: An International 
Journal in 2005 by Hui Sun and Fong-Yuen Ding: 

Sun H., and Ding, F.  (2005)  Extended Models and a Practical Tool to Analyze Product 
Complexity Related to Product Variety for an Automobile Assembly Plant.  Supply 
Chain Management: An International Journal.    

My primary contribution to this paper include (1) most of gathering and interpretation of 
literature, (2) development of extended data envelopment analysis models, (3) 
development of a computational tool using Visual Basic and Microsoft Access for the 
cost estimation associated with a product complexity change, (4) data collection and 
calculation for the case study, and (5) part of draft writing and editing. 

1.  Abstract 

In this paper, two extended data envelopment analysis models are developed to 

compare product complexity levels of similar products of multiple automobile 

manufacturing firms.  The numbers of attribute values of some major product attributes 

that have significant cost impact on the manufacturing system and its supply chain are 

included as inputs in the proposed models.  This benchmarking effort can help 

automobile manufacturers evaluate their product complexity levels in comparison to 

competitors and motivate improvement in managing product complexity.  Furthermore, 

an incremental approach is presented to estimate the cost change associated with a certain 

product complexity change.  A computational tool can be developed to apply this 

approach.  By applying the above approach and tool, a firm can estimate the cost impact 

associated with a certain product complexity change to aid decision making in this area 

by considering costs and market impact.  A case study that applies the extended models 

and cost estimating tool at a U.S. automobile assembly plant is also presented in this 

paper. 

 74



2.  Introduction 

Product complexity is mainly resulted from product design and marketing 

influence, and can have a significant impact on the manufacturing system and supply 

chain.  Providing product complexity within a product can lead to higher costs in 

manufacturing and the supply chain.  A certain level of product complexity within a 

product is necessary in a competitive market to meet customer demand and win a market 

share.  Nevertheless, increasingly more automobile manufacturing companies are 

considering the cost and market impact aspects in setting product complexity.  It is 

important but generally difficult to evaluate the tradeoffs between winnning the market 

share and having high costs from product complexity.  The purpose of this paper is to 

provide some useful benchmarking models and a cost estimating tool for analyzing 

product complexity in the automobile industry. 

In this paper, product complexity refers to the extent of complexity associated 

with a single product.  It involves all factors that make a product complex, whether 

directly selectable or not by customers.  A closely-related term “product variety” used in 

this paper refers to the product complexity factors that are selectable to customers.  For 

example, the product complexity factors of a car include exterior color, body style, and 

engine size, that are selectable by customers; and the product complexity factors also 

include factors such as different kinds of wire harnesses, bolts and nuts, that are not 

customer selectable.  The scope of this paper is limited to product complexity related to 

product variety.   
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3.  Relevant Literature 

A product can be specified by a collection of various attributes with multiple 

selections that can be termed as attribute values (Ding et al., 2005); for example, a car 

that allows the selection of various attribute values of different engines; a computer that 

allows selection of various attribute values of CPUs.  Product complexity related to 

product variety of a manufacturing firm can be attributed to many factors.  Ramdas 

(2003) pointed out that product variety stems from differences in both physical product 

features, and augmenting product features such as brands, packaging, and marketing 

channels.  One or more measures have been considered in measuring product variety 

within a company; e.g., the number of product variants within a specific product group 

(Lancaster, 1990), the number of attributes, the number of attribute values and the 

number of end items (Ulrich et al., 1998).  The impact of product variety on the 

production system in the automobile industry was studied by MacDuffie et al. (1996) and 

Fisher and Ittner (1999).  Regression analyses were performed to show that different 

measures of product variety could have significantly negative impact on automobile 

assembly operations or total labor productivity.  In these analyses, product-complexity 

measures including model-mix complexity, parts complexity, option content, and option 

variability were considered.   

Some approaches of estimating the cost impact associated with product 

complexity or product variety can be found in the literature.  Considering the cost impact 

of product complexity on manufacturing overhead costs, Banker et al. (1990) developed 

linear regression models that can be used to estimate the absolute unit-overhead costs in 

three categories: supervision costs, indirect quality control and inspection costs, and tool 
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maintenance overhead costs.  In addition to direct labor and machine hours that are 

included in the conventional overhead-cost allocation method, six other product- and 

process-complexity factors are identified and also included in the regression models as 

independent variables.  The regression results indicated that these product-complexity 

and process-complexity factors are indispensable in explaining the overhead costs.     

To select new product lines that can result in maximal incremental profits, 

Ramdas and Sawhney (2001) developed a linear mixed-integer programming model 

considering the incremental revenues and costs from introducing new product lines.  It 

was stated that activity-based costing (ABC) was applied to estimate the life-cycle costs 

of new products or components in terms of new product development costs and life-cycle 

support costs.  Only the development cost of the product with the highest development 

intensity needs to be computed while the development costs of other products can be 

estimated by scaling down the calculated cost using their intensity levels.        

This research is motivated by a major automobile manufacturer in the U.S.  The 

company is interested in better understanding its product complexity.  They desire to 

know the complexity levels of their products in comparison to similar products of 

competitors in the U.S. market as a benchmarking effort can provide useful insight in this 

area.  They also desire to know the cost impact of product complexity.  Based on these 

interests of this automobile manufacturer and an existing methodology proposed by Ding 

et al. (2005), two extended models for an automobile plant and a practical tool are 

developed and presented in this paper.  Data envelopment analysis (DEA) is applied to 

compare levels of product complexity related to product variety among similar vehicles 

in the same market.  A cost estimation approach for a product complexity change is 
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presented.  A case study conducted at an assembly plant of this automobile manufacturer 

for applying these extended models and tool is presented.   

4.  Comparison of Product Complexity Related to Product Variety among Various 

Automobile Manufacturers 

While making decisions on product complexity related to product variety in a 

competitive environment, a manufacturing company may be interested in knowing its 

relative product complexity level in comparison to their competitors.  To accomplish 

benchmarking on the complexity levels, a viable analytical tool is the data envelopment 

analysis (DEA), a linear programming based tool that can be applied to measure relative 

efficiencies of a set of homogenous decision making units (DMUs) with multiple inputs 

and outputs.  In a DEA analysis, each product in the similar market sector can be 

considered as a DMU.  The most favorable weights are assigned to the input and output 

factors by solving the corresponding linear programming model so that a most favorable 

evaluation, in the form of efficiency score, can be given to each DMU.  By performing 

the data envelopment analysis, a decision making unit can be classified into efficient or 

inefficient.  Furthermore, improvement targets for an inefficient DMU can be computed 

based on the solutions of the DEA models.  A review of DEA was presented by 

Boussofiane et al. (1991).  A data envelopment analysis model known as the BCC model 

(Banker, Charnes, and Cooper, 1984), which was extended from the dual formulation of 

the original CCR model (Charnes et al., 1978), is one of the applicable formulations.  

This model formulation (output-oriented) is as follows: 

  Minimize   θ - ε       (1) 
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where xij is a parameter for the amount of input i from DMU j, yrj a parameter for the 

amount of output r from DMU j; θ is a decision variable representing the efficiency score 

for DMU j0; λj is a decision variable representing the multiplier for DMU j; ε is a 

constant of a very small positive number; and s  and s  are slack variables with respect 

to input i and output r, respectively. 

+
i

−
r

Ding et al. (2005) applied the data envelopment analysis in comparing the relative 

product complexity levels of similar products in the same market and in attempting to 

identify product complexity reduction opportunities.  Two DEA models including their 

respective illustrative models were proposed for a comparison of product complexity 

related to product variety.  These illustrative models have been developed for a product 

of any industry in general.  One of the input factors is the weighted average number of 

attribute values.  In this paper, two DEA models extended from these illustrative DEA 

models are proposed for automobile manufacturing applications to include numbers of 

attribute values of some attributes that have a significant cost impact in lieu of the 

weighted average number of attribute values.      

In order to compare product complexity among various automobile manufacturing 

firms or evaluate its impact on automobile manufacturing and its supply chain, numbers 
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of attribute values of certain significant product attributes such as numbers of engines, 

transmissions, and trim levels and exterior colors have been used (MacDuffie et al., 1996; 

Pil and Holweg, 2004) in representing product complexity.  A DEA model can be 

constructed to include as input factors the numbers of attribute values of such significant 

product attributes.  Other important product complexity factors can also be considered 

unless such information is unattainable; for example, the total number of parts and 

modules on a vehicle is usually not easily attainable.     

Two extended DEA models, Models A and B, that include as input factors the 

numbers of attribute values of significant automobile product attributes can be used in 

comparing the product complexity levels of similar products among automobile 

manufacturing companies in the same market.  Model A (see Figure 1) attempts to 

compare the complexity levels of multiple vehicles.  Specifically, the inputs of Model A 

consist of the numbers of bodies, power trains, paint-and-trim combinations, which are 

commonly-considered major attributes in describing automobile product complexity, and 

the number of options.  The number of product variants is considered as the output since 

it is affected by the input factors.  In this model, a vehicle with low numbers of variants, 

bodies, power trains, paint-and-trim combinations, and options is considered as an 

efficient product from the viewpoint of product complexity related to product variety.  

Since a high number of product variants is undesirable by an efficient DMU in Model A, 

this output factor is an undesirable output.  To solve this DEA model with an undesirable 

output, an appropriate transformation (Scheel, 2001) of the output factor is needed. 
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No. of options 

No. of paint-and-trim combinations 

No. of power trains

No. of bodies

 
Product j0 No. of variants 

Input DMU Output 

Figure 1.  Model A for complexity comparison 

In comparison to the DEA illustrative model 1 proposed by Ding et al. (2005), the 

numbers of significant product-complexity factors including the numbers of bodies, 

power trains, paint-and-trim combinations, and options take the place of the weighted 

number of attribute values used in the illustrative Model 1 by Ding et al.  This eliminates 

the requirement of assigning weights to calculate the weighted average number of 

attribute values.  Another advantage of Model A is to have specific improvement targets 

for the number of attribute values for the considered major attributes when calculating the 

improvement targets in DEA.  It is noted that a different set of product attributes other 

than body, power train, and color-trim combination may be used depending on system 

considerations.   

Model B depicted in Figure 2 attempts to compare the product complexity levels 

in conjunction with the sales volume.  In Model B, inputs include the number of bodies, 

number of power trains, number of paint-and-trim combinations, number of options, and 

number of product variants, and the output is sales volume, which can be considered as 

the economic output of the system.  In this model, a vehicle with high sales volume, low 

numbers of bodies, power trains, paint-and-trim combinations, options, and product 

variants is thus considered as efficient from the viewpoint of effectively offering a certain 

level of product complexity related to product variety in the market.  Depending on the 
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No. of variants 

No of options 

No. of power trains 
No. of paint-and-trim combinations 

No. of bodies  

 
Product j0 Sales amount 

Input DMU Output 

Figure 2.  Model B for complexity comparison 

 

comparison objective, Model A or Model B can be applied accordingly.  When the 

comparison is focused on product complexity factors related to product variety, Model A 

can be applied; when the comparison considering the economic effect of a product with a 

certain complexity level, Model B can be applied.   

It is noted that although benchmarking with other similar products in the same 

market using DEA provides a comparison of the relative product complexity and 

improvement directions associated with the considered complexity factors, it does not 

provide a cause-effect relationship, e.g., in how to increase sales or in economic 

justification for a certain action to be taken.  Thus, a cost analysis associated with a 

product complexity action can be further applied by estimating the cost impact in order to 

facilitate decision making in a complexity reduction action.  This is addressed in the 

following section.   

5.  Estimating Cost-change Associated with a Complexity Change  

It is generally not possible to calculate the absolute cost related to a certain 

product complexity factor, e.g., the cost of offering 20 wire harnesses, or the cost of 

offering 7 exterior colors.  This is due to the fact that many cost items associated with 

multiple attributes are blended together and not practically separable for individual 
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attribute values.  In this paper, we propose to estimate the cost change from increasing or 

decreasing the complexity level of a certain complexity factor to provide input for 

managing product complexity.  To calculate the cost change associated with a certain 

complexity change, an approach is to estimate the cost impact on various departments, or 

various categories of production activities.  Moreover, a change in product complexity 

related to product variety usually affects the associated costs for a set of parts in various 

departments, or categories of production activities.  At a U.S. automobile manufacturing 

plant, for example, most of cost areas related to manufacturing and the supply chain 

management are affected by product complexity change in terms of parts as shown in 

Table 1.  Thus, to calculate the total cost difference associated with a complexity change, 

one can usually consider the cost changes of the affected parts for each department or 

each category of production activities.  However, if a cost area is not affected directly by 

parts, it can also be calculated according to the appropriate factor. 

A cost-estimation procedure can be depicted in Figure 3.  The cost changes in 

most cost areas or activity categories can be calculated by considering every cost element 

of each affected part due to a complexity change, and then the total cost change in all 

              Table 1.  Cost base for various cost areas or production activities at an automobile plant 
Cost Area or Production Activity Category Cost base 

Inventory control Parts 
Material storage Parts 
Material handling Parts 
Parts ordering Parts 
BOM maintenance Number of part numbers 
Misbuilt parts repair Parts 
Inbound transportation Parts 
Production scheduling Number of buildable vehicles 
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Cost change in cost element n.1 

Cost change in cost element n.2 

Cost change in cost element n.3 

Cost change in cost element 2.2 

Cost change in cost element 2.3 

Cost change in cost element 2.1 

Cost change in cost element 1.3 

Cost change in cost element 1.2 

Part by part or 
other ways 

. 

. 

. 

. 

. 

Total cost 
change 

Cost change in 
Cost Area n 

Cost change in 
Cost Area 2 

Cost change in cost element 1.1 

Cost change in 
Cost Area 1 

Figure 3.  Computation of cost change associated with a product complexity change

 

cost areas can be obtained.  For example, the cost items of a certain part affected by a 

certain complexity change can include the inventory-control cost area that has the cost 

elements of inventory carrying, cycle count, obsolescence, and part-loss costs.  As 

another example, due to much part variety, a wire harness can be misassembled to incur a 

retrofit cost after inspection or a warranty-claim cost after sales as various possible cost 

elements of misbuilt parts; and each of these cost elements could be estimated for each 

affected part.  Since a great deal of part data are needed in such calculation and a 

significant amount of part data can be retrieved from the company database, a 

computational tool can be developed to make use of available data and to automate the 

calculation.   
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The associated cost areas or parameters in cost calculation would generally be 

different from part to part and from case to case.  This necessitates calculation for various 

categories of production activities for the affected parts.  In some cases, the total demands 

before and after the complexity change may be different, and affect the cost-change 

calculation.  In making a product-complexity related decision, using the cost-change 

estimates in conjunction with the market impact factors including a potential profit 

change and demand change can be carefully considered.   

In comparison, Banker et al. (1990) used regression models to estimate overhead 

costs that were dependent on various factors for measuring the extent of complexity of 

multiple products instead of the product variety within a product as considered in this 

research.  The overhead costs in three categories (supervision, indirect quality control and 

inspection, and tool maintenance) were allocated directly to individual products by 

interviewing with supervisors and inspectors or collecting labor costs of repairing each 

tool associated with each part.  Using an incremental cost estimation approach in 

selecting production lines was used by Ramdas and Sawhney (2001).  The activity-based 

costing (ABC) was applied for the cost calculation of the product (or component) with 

the highest development intensity.  The costs of other products (or components) were 

estimated by scaling down the calculated cost by their intensity levels. 

6.  A Case Study 

A major automobile assembly plant in the U.S. is interested in conducting a 

complexity study for benchmarking and for estimating the complexity costs.  This plant 

has two assembly lines for the daily production of multiple vehicle lines.  The plant 

consists of a stamping, body, painting department, and a final assembly department, 
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which has a trim and chassis line.  To support these production departments, there are 

various departments including inventory control, transportation, material handling, parts 

ordering, and scheduling to provide needed support in various production activity areas.  

The plant has many domestic and overseas suppliers for parts used on the assembly line.  

Parts from domestic suppliers are delivered to the plant as frequent as 4 times a day.  

Parts are delivered to the assembly stations in three different ways: some parts are 

sequenced by suppliers in a predetermined sequence of vehicle assembly order and 

delivered directly to the assembly line; some parts are sequenced in the plant warehouse 

and then delivered to the assembly line; and other parts are delivered to the assembly line 

in batches from the plant warehouse.   

The plant is interested in knowing its relative product complexity level in 

comparison to its competitors.  The product complexity levels of the best practice 

competitor may become a good reference for this plant in product complexity.  To 

perform a benchmarking study, the DEA Models A and B for an automobile 

manufacturer presented in Section 3 are applied.  Twelve full-size cars manufactured by 

12 companies and sold in North America are considered as 12 decision making units.  

The values for product-complexity input and output factors are collected or calculated 

from the website information of these companies.  The DEA scores and ranking results 

from the two DEA models are given in Table 2.  The total number of variants is the 

number of buildable cars, which is calculated based on the number of options and 

exclusions shown on the websites.  The sales volumes of a recent month of these cars 

were used as the sales volumes used in DEA Model B.  The number of options in the 

computation is the number of individually selectable options other than bodies, power 
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   Table 2.  Data envelopment analysis for comparison of product complexity of full size 
cars in the U.S. market 

 
Car 

No. of 
bodies 

No. of 
power 
trains 

No. of paint-
and-trim 
combinations 

No. of 
options 

Total 
number of 
variants 

Sales 
volume 

DEA 
Model A 
score 

DEA 
Model B 
score 

1 1 6 91 36 28,200 18,819 0.0010 0.977 
2 3 4 128 23 202,880 35,887 0.0001 1.000 
3 1 1 92 16 19,136 2,637 0.0014 1.000 
4 2 5 75 18 192,768 27,489 0.0001 0.892 
5 2 7 68 31 33,344 7,941 0.0008 0.484 
6 1 3 51 17 9,232 22,939 0.0029 1.000 
7 2 2 30 14 14,696 23,030 0.0018 1.000 
8 2 3 38 20 91,932 16,710 0.0003 0.716 
9 1 2 43 10 1,464 3,102 1.000 1.000 

10 2 4 56 16 645,120 5,940 0.00004 0.242 
11 1 1 18 11 27 1,681 1.0000 1.000 
12 1 3 33 21 264 8,589 0.1023 1.000 

 

trains, and paint-and-trim.  Also, individual options within a package are included in the 

counting of the number of options.  In Table 2, the identities of the compared automobile 

companies are not shown. 

For Model A, an output-oriented BCC model is employed after applying an 

additive transformation on the undesirable output, the number of variants, and the 

efficiency scores are represented by output-oriented efficiency measures proposed by 

Scheel (2001); for Model B, due to the fact that it is relatively difficult to increase the 

sales volume, the input-oriented BCC model is applied and the efficiency scores 

calculated.     

According to the results from DEA Model A, 2 cars are classified as efficient; 

while in Model B, 7 cars are classified as efficient.  This difference in ranking and 

efficiency classification is due to the different models and objectives in Models A and B.  

Model A focuses on a comparison of product complexity factors related to product 

variety, while sales volume is incorporated in the comparison of product complexity in 
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Model B.  It can be seen that the efficiency score of the car (car no. 1 in bold face) of the 

automobile company that initiated this study is 0.001 in Model A, in which only product 

complexity factors are considered; while its efficiency score is 0.997 in Model B, in 

which product complexity factors are considered in contrast to the sales volume.  Even 

though car no. 1 is ranked to be relatively complex in Model A as compared to other cars, 

it is ranked close to being efficient in Model B due to its relatively high sales volume.  In 

Model B, car no. 6 is the only vehicle included in the reference set of car no. 1, and it 

provides improvement targets from the input-oriented DEA Model B for car no. 1.  

Specifically, the improvement targets are to decrease the number of options to 17, the 

number of paint-and-trim combinations to 51, the number of power trains to 3, the 

number of variants to 9,232, and increase the sales volume to 22,939.  Furthermore, the 

company practice of car no. 6 in manufacturing and the supply chain, and managing 

product complexity can be further studied.   

By performing this complexity analysis, the company that initiated the study 

gained a better understanding of its relative product complexity.  Based on the analysis, 

even though the company has a relatively complex product, with a relatively high sales 

volume, it can be considered economically close to being efficient; moreover, the 

analysis enabled the company to identify that car no. 6 and its company as a benchmark 

for improvement purposes.  An interesting practice of the manufacturer of car no. 4 came 

to the company’s attention; that is, the manufacturer of car no. 4 had most of its options 

installed at dealers instead of on its assembly line.  Car no. 4 had a good sales volume and 

would have been ranked as efficient in both Models A and B if the number of options 

installed at the dealers were excluded in the DEA models.         
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The plant also desires to know the cost impact of a certain product complexity 

factor on its manufacturing system and the supply chain.  This understanding can be used 

in managing product complexity in conjunction with market considerations.   The cost 

areas related to product-complexity at this plant include categories of production 

activities in inventory control, material handling, material storage, inbound 

transportation, misassembled-part repair, bill of materials (BOM) maintenance, parts 

ordering, and production scheduling.   

Regarding the cost-change estimation associated with a product complexity 

change, a computational tool using Visual Basic (VB) 6.0 and Microsoft Access was 

developed.  The Access database contains part information downloaded from the plant 

database for use in the cost-change estimation.  VB uses three major forms for the cost 

change computation process.  To launch a new project, a user enters on the first VB form 

basic project information including the part numbers used before and after the complexity 

change.  Each time a part number is entered, the data associated with this part are 

extracted from the Access database and placed in the cost-change computation tables of 

each cost area considered in this study, and the data can be further modified by the user 

on the second form.  After the costs associated with each cost area are calculated in the 

program, the user can view the cost-change calculation results and other related 

information on the third VB form.  These three major VB forms are included in the 

Appendix. 

Using the VB computation tool, the company conducted complexity studies 

including one that estimates the cost impact of a complexity reduction effort for engine 

wire harnesses.  In this study, 29 and 23 parts are used before and after the complexity 
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change, respectively.  All parts belong to the same commodity, and are delivered in 

sequence from the supplier.  The cost-change estimation results indicated that this 

product complexity reduction effort would incur an annual cost saving.  The company is 

considering this product complexity change option.  There is no market impact in this 

product complexity change option.     

In this case study, using the computational tool is analogous to a simulation run in 

this regard.  Through the cost estimation using this computational tool, it can be seen that 

with more part numbers, there are generally more safety stocks, more floor space, cycle 

counts, part losses, and misassembled parts if the total demand remains unchanged.  This 

in turn results in a higher cost in cost areas including inventory control, material storage, 

and misassembled-part repair.  In the cost areas of parts ordering and BOM maintenance, 

more part numbers also lead to a higher cost for these areas roughly proportionally.  Such 

observations would likely be different from plant to plant and from case to case; and a 

cost-change estimation needs to be carefully compared to the market impact.  

7.  Summary and Conclusions 

In this paper, two extended DEA models and a tool for analyzing product 

complexity related to product variety are proposed to evaluate relative product 

complexity and to consider cost impact on a manufacturing system and the supply chain.    

The two extended DEA models are for the comparison of product complexity levels 

among similar automobiles in the same market.  The numbers of several attribute values 

of product attributes that have a significant impact on automobile manufacturing and the 

supply chain are included as inputs in these two DEA models.  An incremental cost 

estimation approach is proposed to calculate the cost change associated with a product 
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complexity change.  This approach attempts to estimate the cost impact of a product 

complexity change on various departments or categories of production activities.  The 

estimated total cost impact of the affected parts by a product complexity change can be 

used as valuable input in understanding tradeoffs in product complexity.   

A case study at a U.S. automobile assembly plant using the proposed models and 

tool is presented.  The case study demonstrated that applying these extended models and 

cost estimation tool can provide insight in better understanding product complexity in a 

company and help make better decisions regarding product complexity related to product 

variety.  A decision process in product complexity for a firm should incorporate 

considerations in complexity costs and market impact, while being aided by an 

understanding of its relative product complexity and related practice in the industry.   
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Appendix A.  Visual Basic forms for the case study 

 

Figure 4.  Visual Basic form 1 
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Figure 5.  Visual Basic form 2 
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Figure 6.  Visual Basic form 3 
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SUMMARY AND CONCLUSIONS  
 

Sequencing mixed-model assembly lines is complicated by significant product 

complexity in the automobile industry.  In this regard, this research presented some rules 

and methods to deal with intentional and unintentional sequence alterations considering 

production requirements of the downstream department and sequenced parts delivery.  A 

rolling sequencing method is applied in conjunction with the developed placing and 

stacking rules to enable placing and releasing vehicles evenly for shuffling lines to 

prevent blocking.  Further developed heuristic rules can increase the average block size 

using sorting lines when a larger block size is desirable by a downstream department.  

The spare units system developed in this research can be applied to restore 

unintentionally altered sequence due to defective units to the original order to facilitate 

sequenced parts delivery.  The number of spare units needed by this spare units system 

can be estimated using the developed queuing model for the repair process of defective 

units in the system.  Compared to a reservoir system, a spare units system generally needs 

a smaller inventory at a given sequence-consistency level.   

High product complexity generally has a negative impact on a manufacturing 

system and the supply chain.  Effectively managing product complexity can help improve 

the production system performance.  This research also focuses on studying product 

complexity related to product variety regarding its impact on manufacturing and the 

supply chain system.  To compare product complexity levels of similar products in the 

same market, data envelopment analysis (DEA) is applied by considering multiple factors 
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related to product complexity to classify similar products treated as multiple decision 

making units (DMUs).  The DEA analysis can provide a better understanding of the 

relative product complexity level of a manufacturing firm in relation to its competitors.  

Improvement targets for an inefficient DMU can also be obtained from its reference set 

from the DEA results.  DEA can also be applied to identify product complexity reduction 

opportunities as product attributes are considered for product complexity reduction.  A 

further incremental economic analysis considering the changes in costs, sales volume, 

and/or price affected by a complexity change can be performed to justify the identified 

opportunities identified by the third DEA model.   

Two extended DEA models were presented specifically for the comparison of the 

product complexity levels of similar automobiles.  Significant product features that have 

significant cost impact on automobile manufacturing and the supply chain are included in 

the extended DEA models.  The cost impact of product complexity on an automobile 

manufacturing system and supply chain can be estimated by applying an incremental cost 

estimation approach by estimating various categories of production activities.  A 

computational tool can aide in conducting repetitive cost estimations.   

The models and methods presented in this research were developed for improving 

the assembly operations and the supply chain system of a manufacturing firm while the 

major focus has been on applications in automobile assembly plants.   A case study was 

included in each part of the dissertation to provide some empirical examples regarding 

how these methods and models could be applied to real production systems.          
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Possible future research can be conducted in the following areas: 1) Developing a 

mixed-model assembly sequencing algorithm which uses various sequences to address 

different requirements by various departments on the assembly line.  This may eliminate 

the requirement of intentional sequence alterations.  2) Improving the heuristic sorting 

rules.  This may further improve color blocking since there exists an improvement 

opportunity between the average block sizes using the heuristic rules and the optimal 

block size.  3) Considering other significant product complexity factors in DEA.  For 

example, the number of parts was not used due to lack of such data, but could be used in 

DEA.  4) Analyzing the cost impact of a product complexity change associated with 

multiple commodities of parts.  Currently the computational tool developed in Part 3 

implicitly assumes that the parts of the same commodity are considered even though 

multiple commodities of parts are allowed.  
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