The Use of Capacity and Inventory in a Rate-Based Planning and Scheduling System to Achieve Strategic Goals in Industrial Applications

Chad Aaron Toney
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss
Part of the Industrial Engineering Commons

Recommended Citation

Toney, Chad Aaron, "The Use of Capacity and Inventory in a Rate-Based Planning and Scheduling System to Achieve Strategic Goals in Industrial Applications. " PhD diss., University of Tennessee, 2005.
https://trace.tennessee.edu/utk_graddiss/2323

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:
I am submitting herewith a dissertation written by Chad Aaron Toney entitled "The Use of Capacity and Inventory in a Rate-Based Planning and Scheduling System to Achieve Strategic Goals in Industrial Applications." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Industrial Engineering.

Kenneth E. Kirby, Major Professor
We have read this dissertation and recommend its acceptance:
Charles H. Aikens, Kenneth Gilbert, Dukwon Kim, Robert Mee
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School
(Original signatures are on file with official student records.)

To the Graduate Council:
I am submitting herewith a dissertation written by Chad Aaron Toney entitled "The Use of Capacity and Inventory in a Rate-Based Planning and Scheduling System to Achieve Strategic Goals in Industrial Applications." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Industrial Engineering.

Kenneth E. Kirby
Major Professor

We have read this dissertation and recommend its acceptance:

Charles H. Aikens

Kenneth Gilbert

Dukwon Kim

Robert Mee

Acceptance for the Council:
Anne Mayhew
Vice Chancellor and
Dean of Graduate Studies
(Original signatures are on file with official student records.)

The Use of Capacity and Inventory in a Rate-Based Planning and Scheduling System to Achieve Strategic Goals in Industrial Applications

A Dissertation
Presented for the
Doctor of Philosophy
Degree
The University of Tennessee, Knoxville

Chad Aaron Toney
August 2005

Copyright © 2005 by Chad Aaron Toney All rights reserved.

Dedication

This dissertation is dedicated to my wife Kim, for being loving, supporting, encouraging, considerate, and very patient. To my newborn daughter who has taught me about what is really important in life.

Acknowledgments

When looking back on a research project such as this dissertation, I came to the realization that this research could not have been completed without the effort of many people. I would first like to thank Dr. Kenneth E. Kirby for opening the door to the PhD program for me. Throughout this collaborative work, I valued his expertise, insight, and constant encouragement. Dr. Kirby taught me about the Lean Enterprise and provided me with an education saturated with not only theory, but applicable experience. During the dissertation process, I appreciated his attention to detail, his astuteness, his honesty, and his willingness to provide time to talk when I required it. Dr. Kirby has provided me with an education that most could not comprehend.

I would like to thank Dr. Kenneth Gilbert who has also provided his support throughout my doctoral career. He always amazed me with his ability to apply theory to practice which greatly helped me to develop my research. I also appreciate his introducing me to the concept of Rate-Based Planning and Scheduling and his insight while developing the technique. Dr. Robert Mee's effort during my research is also appreciated. We spent hours in his office working through a multitude of information to ensure that the results are statistically conclusive. I valued Dr. Mee's time, knowledge, openness, and patience. I would also like to thank Dr. Hal Aikens, Dr. Hampton Liggett, and Dr. Dukwon Kim for their time, knowledge, and support and for complimenting my dissertation committee with a wealth of expertise.

I would also like to acknowledge everyone affiliated with the Center for

Executive Education at The University of Tennessee for providing a nurturing environment where a student can learn and grow. Everyone at the Center had an impact on my education, but I would like to single out a few. Rhonda Barton hired me to work during my PhD program and gave me an opportunity to work with many companies during my tenure; it was a unique and beneficial experience from which few students are able to benefit. She provided her trust and support which enabled an unparalleled education in an academic environment. Judy Snow's friendship and reinforcement provided a foundation that every student needs and that I cherished. Dr. Mandyam Srinivasan ("Srini") has been a great friend with whom I have enjoyed working. He can count on me whenever he is in need of help. Dr. Alex Miller has been one of my greatest teachers, not only academically, but also in life. I admire his relentless passion for everything he does. And to the rest of the professors for allowing an undeveloped student to train, advance, and benefit from the wealth of experience provided by themselves, and by associates in industry.

My friends and family have been patient, cooperative, and supportive through this enduring process. The doctoral education forces decisions that place a burden on those around the student. My family and friends have been very tolerant as I have not been able to help in all of the times that I should. I appreciate all of the jokes and jabs over the years regarding my education that in turn, provided motivation through the program.

But there has been no motivation throughout my program like that from my wife Kim. She has provided me with the enthusiasm, encouragement, support,
and love to maintain the desire to complete my PhD. To her I am the most thankful. There are not words to express

Abstract

In pull or lean manufacturing, the final production schedule is in the form of takt time (drumbeat). All internal and external suppliers are driven by pull signals to feed the production rate. However, variability can be a problem for this drumbeat as the plan should not change more than the ability of the suppliers' capability to respond. The supply chain should have sufficient flexibility to react quickly to changes in demand, while minimizing week-to-week production variability.

Current planning and scheduling systems do not produce a plan that minimizes fluctuations. If the schedule is frozen for several periods, they are slow to react to changes in demand, which eventually produces many changes in production and inventory (the bullwhip effect). When these systems do not freeze the schedule, variation in the forecast and demand yield nervousness, making the planning difficult.

Rate-Based Planning and Scheduling (RPBS) has been proposed as an alternative to current scheduling techniques. But for the most part, it has remained a concept rather than a method that can be implemented. The philosophy behind RBPS is to allow flexibility to adjust the schedule gradually for the near future, and more for periods farther into the future. If flexibility boundaries are defined strategically, the manufacturer will have the ability to respond to changes in demand, yet the schedule will be smooth and long term forecasts for the production rate will anticipate requirements from external suppliers.

This dissertation consolidates previous material on RBPS for the first time.

In addition, it introduces two algorithms (Retailer Smoothing and Production Smoothing) for RBPS. The Production Smoothing technique focuses on leveling production. Whereas, the Retailer Smoothing model allows the customer to create forecasted orders and then limits how much these orders may change. Through statistical experiments and simulations, the impact of the factors such as the standard deviation of demand, the length of the planning period, and the amount of flexibility in the plan are investigated. Irrelevant factors were eliminated as data from further simulations were compiled into tables. The goal of the tables is to allow practitioners to use one of the RBPS strategies with the appropriate levels of the RBPS factors by weighing the impact of capacity and inventory.

For the Retailer Smoothing technique, the closer production follows demand and the shorter the flex fences, less inventory is needed as production will shift more. But as demand varies more, production changes and inventory level will increase significantly. On the other hand, Production Smoothing minimizes production changes by constraining flexibility and lengthening the planning period. This will, in turn, increase inventory. Also, as companies update their plan more frequently, more variation is added to the system which will vastly increase the inventory needed to buffer the production swings.

Table of Contents

Chapter 1 Research Overview 1
1.1 Introduction 1
1.2 Background Information 1
1.3 Problem Statement and Objectives 4
1.4 Experimental Procedure 5
Chapter 2 Literature Review 6
2.1 Introduction 6
2.2 Bullwhip Effect 6
2.2.1 Incentive Obstacles 10
2.2.2 Information Processing Obstacles 12
2.2.3 Operational Obstacles 17
2.2.4 Pricing Obstacles 20
2.2.5 Behavioral Obstacles 22
2.3 Rate-Based Planning and Scheduling 24
2.3.1 Definition of RBPS 24
2.3.2 Objective and Goal of RBPS 29
2.3.3 Capacity Buffer 30
2.3.4 Benefits of RBPS 32
2.3.5 Steps to Implement Kanban 33
2.3.6 Flex Fences and Flex Limits 34
2.3.7 Safety Stock, Customer Service Level, and Flexibility 47
2.3.8 Impact of Demand 51
2.3.8.1 Repetitive Demand 53
2.3.8.2 Seasonal Environment 55
2.3.8.3 Variable Demand Environment 64
2.3.9 Information Flow 66
2.3.10 Implementation of RBPS 67
2.3.10.1 Explode BOM 68
2.3.10.2 Blanket Orders 70
2.3.10.3 Lean and Finite Capacity Scheduling 72
2.3.10.4 Management Commitment 73
2.3.10.5 Small Batches 74
2.3.10.6 Daily Deliveries 76
2.3.10.7 Forecast 76
2.3.10.8 Integrate with Supply-Base 78
2.3.11 Production Strategies 80
2.3.11.1 BTS 81
2.3.11.2 BTO 82
2.3.12 Benefits 82
2.4 Lead Time 85
2.4.1 Strategic Use of Inventory with Lead Times 85
2.4.2 Lead Time Behavior 90
2.4.3 Trade-offs 92
2.5 Contracts 96
2.5.1 Quantity Flexibility Contracts 100
2.6 Conclusion 103
Chapter 3 Research Conceptualization 104
3.1 Introduction 104
3.2 Description 105
3.3 Demand Strategy 105
3.4 Model and Examples 120
3.5 Assumptions 166
3.6 Experiment 173
3.7 Experimentation Procedure 177
3.8 Anticipated Results 178
Chapter 4 Results 183
4.1 Introduction 183
4.2 Initial Test 183
4.3 Further Results with Transformations 191
4.4 Final Synopsis and Trends 193
4.4.1 Retailer Smoothing Results and Trends 195
4.4.2 Production Smoothing Results and Trends 206
4.5 How to Use the Tables 241
4.5.1 Using the Tables to Understand Retailer Smoothing Trends 245
4.5.2 Using the Tables to Understand Production Smoothing Trends 251
Chapter 5 Contributions and Conclusions 261
5.1 Contributions of this Research 261
5.2 Conclusions 262
5.3 Limitations and Directions for Future Research 264
Bibliography 267
Appendix 279
Vita 328

List of Tables

Tables Page
2.1 Example 1 Demand Data with Flex Limits. 44
2.2 Example 1 of Smoothing the Demand Inside the Flex Limits. 44
2.3 Example 2 Demand Data with Flex Limits. 46
2.4 Example 2 of Smoothing the Demand Inside the Flex Limits. 46
3.1 Significance of Factors in the Demand Strategies. 121
3.2 Illustration of Nonstationary Demand Information. 126
3.3 Example of Interaction of Time and the Iterations. 129
3.4 Initial Iteration of RBPS Example. 131
3.5 First Iteration of RBPS Example. 139
3.6 Second Iteration of RBPS Example. 152
3.7 Third Iteration of RBPS Example. 154
3.8 Initial Iteration Utilizing the Retailer Smoothing Strategy. 157
3.9 First Iteration Utilizing the Retailer Smoothing Strategy. 159
3.10 Second Iteration Utilizing the Retailer Smoothing Strategy. 162
3.11 Third Iteration Utilizing the Retailer Smoothing Strategy. 164
3.12 Factors and Levels for the Research. 174
3.13 Full Factorial for 2^{5} Design. 179
3.14 Example of Output Table. 180
3.15 Anticipated Results from the Research. 182
4.1 Inventory Summary of Fit for the Initial Production Smoothing Analysis. 184
4.2 Initial ANOVA for Inventory using Production Smoothing. 184
4.3 Initial Lack of Fit for the Inventory Model using Production Smoothing. 184
4.4 Initial Parameter Estimates for Inventory using Production Smoothing. 185
4.5 Inventory Summary of Fit for the Initial Retailer Smoothing Analysis. 186
4.6 Initial ANOVA for Inventory using Retailer Smoothing. 186
4.7 Initial Lack of Fit for the Inventory Model using Retailer Smoothing. 186
4.8 Initial Parameter Estimates for Inventory using Retailer Smoothing. 188
4.9 Comparison of the Maximum and Minimum Response Variables Before and After the Transformation. 192
4.10 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=2$. 196
4.11 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=4$. 197
4.12 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=6$. 198
4.13 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=8$. 199
4.14 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=10$. 200
4.15 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=12$. 201
4.16 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=14$. 202
4.17 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=16$. 203
4.18 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=18$. 204
4.19 Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=20$. 205
4.20 Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=100$ Periods. 209
4.21 Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=100$ Periods. 210
4.22 Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=100$ Periods. 211
4.23 Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=100$ Periods. 212
4.24 Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=100$ Periods. 213
4.25 Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=100$ Periods. 214
4.26 Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=100$ Periods. 215
4.27 Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=100$ Periods 216
4.28 Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=50$ Periods. 217
4.29 Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=50$ Periods. 218
4.30 Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=50$ Periods. 219
4.31 Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=50$ Periods. 220
4.32 Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=50$ Periods. 221
4.33 Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=50$ Periods. 222
4.34 Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=50$ Periods. 223
4.35 Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=50$ Periods. 224
4.36 Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=25$ Periods. 225
4.37 Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=25$ Periods. 226
4.38 Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=25$ Periods. 227
4.39 Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=25$ Periods. 228
4.40 Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=25$ Periods. 229
4.41 Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=25$ Periods.230
$\begin{array}{ll}4.42 & \begin{array}{l}\text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=30 \% \text { and Time }=25 \text { Periods. }\end{array}\end{array}$
$\begin{array}{ll}4.43 & \begin{array}{l}\text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=35 \% \text { and Time }=25 \text { Periods. }\end{array}\end{array}$
$\begin{array}{ll}4.44 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=2 \% \text { and Time }=12 \text { Periods. }\end{array}$
$\begin{array}{ll}4.45 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=5 \% \text { and Time }=12 \text { Periods. }\end{array}$
$\begin{array}{ll}4.46 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=10 \% \text { and Time }=12 \text { Periods. }\end{array}$
$\begin{array}{ll}4.47 & \begin{array}{l}\text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=15 \% \text { and Time }=12 \text { Periods. }\end{array}\end{array}$
$\begin{array}{ll}4.48 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=20 \% \text { and Time }=12 \text { Periods. }\end{array}$
$\begin{array}{lll}4.49 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=25 \% \text { and Time }=12 \text { Periods. }\end{array}$
4.50 Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=12$ Periods.239
$\begin{array}{lll}4.51 & \text { Table for Production Smoothing Analysis with Standard } \\ \text { Deviation }=35 \% \text { and Time }=12 \text { Periods. }\end{array}$

List of Figures

Figure Page
1.1 Three Flex Fences Increasing by 5\% Each. 3
2.1 Seasonality and Variance Increases as the Bullwhip Effect Moves Upstream (Lee et. al. Spring 1997). 8
2.2 Bullwhip Effect Shown by Sales vs. Demand (Lee et. al. April 1997). 14
2.3 Features of Detailed Material Planning Approaches (Vollmann, Berry, Whybark 1992, 1997). 26
2.4 Material Planning Approach for Market Requirements and Manufacturing Strategy (Vollmann, Berry, Whybark 1997). 27
2.5 Conventional MPS vs. Rate-Based MPS (Woodhead, Feb/Mar 1992). 31
2.6 Demand and Planning Flex Fences (Costanza 1996, 93). 36
2.7 Top Level Flowchart for Determining Flexible Demand (Costanza 1995). 38
2.8 Flowchart to Determine the Flex Limits (Costanza 1995). 39
2.9 Flowchart of the Smoothing Method (Costanza 1995). 41
2.10 Flowchart of the Smoothing Method for a Single Day (Costanza 1995). 42
2.11 Example 1 of Demand Outside the Flex Limits. 44
2.12 Example 1 of Smoothing the Demand Inside the Flex Limits. 44
2.13 Example 2 of Demand Outside the Flex Limits. 46
2.14 Example 2 of Smoothing the Demand Inside the Flex Limits. 46
2.15 Time Fences in Relation to Product Delivery Strategy (Friedman 2002). 50
2.16 Rate-based plan for demand without much variability (Kirby and Toney September 2002 and October 2002). 54
2.17 Linearity of demand with the rate-based plan over time (Kirby and Toney September 2002 and October 2002). 54
2.18 Rate-Based Plan in a Seasonal Environment (Kirby and Toney 2002). 58
2.19 Cumulative Data Displays the Ability to Meet the Peak Demand (Kirby and Toney 2002). 58
2.20 Adjustment in the Level of the Rate-Based Schedule (Kirby and Toney, 2002). 59
2.21 Change in Level to Achieve Demand (Kirby and Toney 2002). 59
2.22 Adjusting the Level of the Schedule to Delay Production Decisions (Kirby and Toney 2002). 60
2.23 Ability to Meet Demand By Adjusting the Level of Production (Kirby and Toney 2002). 60
2.24 Lower Rate of Production for Level-Chase Strategy. 61
2.25 Rate-Based Schedule Does Not Meet Demand, Capacity Does. 63
2.26 Rate-Based Plan for Volatile Demand (Kirby and Toney 2002). 65
2.27 Higher Rate-Based Plan to Buffer Against Variation (Kirby and Toney 2002). 65
2.28 The Phases of Supply Chain Management (Knight May 1996). 69
2.29 Delaying the Point of Product Differentiating. 83
2.30 How Service Level and Lead Time Impact Inventory (Grossman and Jones 2002). 93
2.31 Demand Points with Upper and Lower Limits. 101
3.1 Flex Limits and Values Based on the Total Demand of 1000. 106
3.2 Using the Retailer Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 1). 108
3.3 Using the Retailer Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 2). 110
3.4 Using the Retailer Smoothing Strategy for Developing New Flex 112 Bounds (Current Period is Period 3).
3.5 Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 1). 114
3.6 Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 2). 115
3.7 Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 3). 117
3.8 Current and Phantom Flex Fences. 119
3.9 Beginning of the RBPS Algorithm. 122
3.10 Illustration of Nonstationary Demand Information. 126
3.11 Start Rate-Based Planning and Scheduling. 133
3.12 Initial Iteration of the RBPS Example. 136
3.13 Start Iterations. 137
3.14 Find Production and Inventory. 141
3.15 Flex Fences with Zones. 145
3.16 First Iteration of the RBPS Example. 146
3.17 Find Zone One Bounds. 148
3.18 Find Zone Three Bounds. 148
3.19 Find Zone Two Bounds. 150
3.20 Second Iteration of the RBPS Example. 153
3.21 Third Iteration of the RBPS Example. 156
3.22 Illustration of Initial Iteration Utilizing the Retailer Smoothing Strategy. 158
3.23 Illustration of First Iteration Utilizing the Retailer Smoothing Strategy. 161
3.24 Illustration of Second Iteration Utilizing the Retailer Smoothing Strategy. 163
3.25 Illustration of Third Iteration Utilizing the Retailer Smoothing Strategy. 165
3.26 Six Week vs. One Week Lead Time Flex Requirement Profile. 171
3.27 Four Period Long Flex Fences with 20\% Flex Limits. 176
3.28 Three Period Long Flex Fences with 10\% Flex Limits. 176
4.1 Initial Pareto for Inventory using Production Smoothing. 185
4.2 Initial Pareto for Inventory using Retailer Smoothing. 188
4.3 Initial Residual versus Prediction for Production Smoothing. 189
4.4 Initial Residual versus Prediction for Retailer Smoothing. 189
4.5 Actual Inventory Versus Predicted for the Initial Production Smoothing Analysis. 190
4.6 Actual Inventory Versus Predicted for the Initial Retailer Smoothing Analysis. 190
4.7 Residual versus Predicted Values for Average Inventory After the Transformation. 194
4.8 Actual vs. Predicted Values for Standard Deviation of Inventory with More Data for the Extreme Points.
4.9 Increasing Amount of Inventory Required Over Time for the 207 Production Smoothing Strategy.
4.10 Impact on the Response Variable Increases as the Number of 208 Periods Increase for Production Smoothing.
4.11 Type of Production Strategies Used (Oke 2003). 244
4.12 Retailer Smoothing Production Shift Comparison of Standard Deviation Levels for Flex Bound Length of 2. 246
4.13 Retailer Smoothing Production Shift Comparison of Alpha Levels for Flex Bound Length of 2. 246
4.14 Retailer Smoothing Inventory Comparison of Standard Deviation Levels for Flex Bound Length of 2. 247
4.15 Retailer Smoothing Inventory Comparison of Alpha Levels for Flex Bound Length of 2. 249
4.16 Retailer Smoothing Inventory Levels Needed to Achieve Customer Service Levels for Flex Bound Length of 2. 249
4.17 Retailer Smoothing Production Shift Comparison of Standard Deviation Levels for Flex Bound Length of 20. 250
4.18 Retailer Smoothing Production Shift Comparison of Alpha Levels for Flex Bound Length of 20. 252
4.19 Retailer Smoothing Inventory Comparison of Standard Deviation Levels for Flex Bound Length of 20. 252
4.20 Retailer Smoothing Inventory Comparison of Alpha Levels for Flex Bound Length of 20. 253
4.21 Retailer Smoothing Inventory Levels Needed to Achieve Customer Service Levels for Flex Bound Length of 20. 253
4.22 Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 100. 254
4.23 Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 100. 254
4.24 Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 50. 256
4.25 Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 50. 256
4.26 Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 25. 257
4.27 Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 25. 257
4.28 Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 12. 258
4.29 Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 12. 258
4.30 Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 100. 259
4.31 Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 50. 259
4.32 Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 25. 260
4.33 Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 12. 260

Chapter 1

Research Overview

1.1 Introduction

Rate-Based Planning and Scheduling has seldom been documented, and researched even less, with no defined procedure. The purpose of this dissertation is to provide a methodology for Rate-Based Planning and Scheduling, and to understand the impact of the most significant factors: lead time, flexibility, and demand variation. This chapter will provide a summary of the research in the dissertation. First, some background information is supplied to provide a foundation for the research. Then, the purpose of the dissertation is reviewed in the problem statement and objectives. This is followed by the experimental procedure of the research and some anticipated results.

1.2 Background Information

Companies are constantly trying to increase market share by reducing cost. One method is to gain a strategic advantage by importing their product from overseas and take advantage of cheaper labor (Grossman and Jones 2002). However, many did not estimate all of the costs incurred with this strategy. More inventory is necessary to flood the supply chain due to long lead times. Also, forecasts are more erratic with the long lead times as companies are forced to project their demand further into the future. Therefore, companies
are compelled to order in large batches to buffer against the uncertainty and long lead times. Quickly, the bullwhip effect forms in the supply chain as the fluctuations in order sizes and frequency grow as the information is passed upstream to suppliers. Companies then put incentives in place which forces more expediting and inefficiencies.

A technique called Rate-Based Planning and Scheduling (RBPS) is introduced in this research. The goal of RBPS is to smooth production and the flow of the product through the supply chain to reduce the bullwhip effect, while still meeting the demand requirements with minimal inventory. The purpose of this research is to locate the equilibrium between limiting production and holding inventory to buffer against demand variation. This technique will support lean initiatives, as a flow or pull environment works better in a more repetitive environment.

The procedure, to limit the production flexibility, involves creating flex boundaries around the forecast. These bounds constrict production to protect the company from large oscillations in demand. Limits are calculated around the forecast, and narrow as the time frame approaches. For example, the customer may be allowed 15% flexibility 6 weeks out, 10% flexibility 4 weeks in the future, and 5% for the first two weeks as shown in Figure 1.1. Therefore, the manufacturer knows that production will not vary more than 15% from the forecast values 5 and 6 weeks ahead and they may plan accordingly. As the time nears, the projected demand will narrow, and so will the requirements on the production system. Implications for this technique

Figure 1.1 Three Flex Fences Increasing by 5\% Each.
change as the lead time and the demand variation grow.

1.3 Problem Statement and Objectives

The major motivation for this study is the ramification of the bullwhip effect in the supply chain. As companies try to implement lean strategies within their company, a customer-focused strategy must be created as the basis for the implementation. However, companies often fail as a result of the variability in the supply chain. The overarching goal of this research is to develop a technique that will limit the burden on the manufacturer while meeting the customers' demands.

Very few authors have written about the RBPS technique, and no one has attempted to consolidate the RBPS ideas into a single discussion. As a result, this dissertation will attempt to unite all of these authors' views.

Finally, a simulation study will analyze the several factors in a RBPS system. The resultant significant factors will be simulated at many levels and accumulated into a reference table. The objective of this table is to provide the practitioner with a tool to understand the implications of the given factors in the study. As a result of the table, companies may perform a cost-based sensitivity analysis to understand the implications of lead time, flexibility constraints, and inventory on their system with the RBPS procedures.

1.4 Experimental Procedure

This study will simulate the scenario described in Figure 1.1 to test all possible factors that may influence a one demand fence and one flex fence system. The five factors that have been chosen are the standard deviation of demand, alpha used in the exponential smoothing model to develop the forecast, length of the flex fence, width of the flex limits or bounds, and RBPS demand strategy.

The initial goal of the research is to understand which of these factors should be considered when implementing RBPS through preliminary simulation runs. Statistical analysis will determine which factors are significant. Then, using the significant factors, tables will be built to provide guidelines for practitioners implementing the model. For instance, a page will provide all of the data to achieve a 99% customer service level, given a certain standard deviation for demand and alpha for the exponential smoothing model. This page will have a table listing the inventory required to buffer against demand for each set of flex limits and length of the flex fence. From this table, the practitioner may perform a cost-based sensitivity analysis for various levels of inventory and capacity changes.

Chapter 2

Literature Review

2.1 Introduction

This chapter will review research related to this dissertation. The concept of the bullwhip effect is explained since this concept is the motivation for this research. Next, the concept of Rate-Based Planning and Scheduling is reviewed to minimize the bullwhip effect and as a basis for the methodology in chapter 3. Lead times are discussed since they are such an important attribute of RBPS. And the last chapter primarily discusses Quantity Flexibility Contracts given that this is the most relevant literature for this dissertation.

2.2 Bullwhip Effect

Typically in a supply chain, the end consumer will purchase products from retailers. This forces the retailer to replenish their stock, and therefore, must order from the supplier. The supplier receives the order, processes it, schedules it, manufacturers the order, and then ships it to the retailer. However, there is often a lead time associated with this process. Therefore, the retailer must hold safety stock to ensure that when the consumer arrives to purchase the product, the merchandise will always be on the shelf. Hence, the retailer does not order according to the consumer demand. Instead, the retailer waits until the safety stock level is reached and then orders a larger or smaller amount than the consumer is actually purchasing to achieve the
targeted inventory level. Meanwhile, the supplier receives these large and volatile orders and then requests even bigger shipments from the tier-2 supplier to buffer against the volatile demand. As the demand information is passed upstream, it will become more volatile and erratic as it is passed through each upstream stage as shown in Figure 2.1. This characteristic of supply chains is named the bullwhip, whipsaw, or whiplash effect (Simchi-Levi et. al. 2000, Lee et. al. April 1997, Metters 1997, Lummus et. al. 1998, Logic Tools 2003, Chen et. al. 2000, Reddy 2001, Lee et. al. Spring 1997). This phenomenon will have a significant impact on inventory, production scheduling, and delivery of product within the supply chain (Lee et. al. April 1997).

There are many cost implications associated with this occurrence.
First, there are unwanted raw material costs to buffer against the customers' unpredictable demand. There are also manufacturing expenses from unused capacity while waiting for orders, followed by overtime to hurry and supply the order when it arrives as a result of the large, batched requisition. Extra costs are also incurred in warehousing and transportation costs from unplanned production and expedited shipping and the labor associated with these activities. Regardless of all of these expenses to buffer against the bullwhip effect, the most important cost is a result of stockouts and missed sales due to the inventory being in the wrong location at the wrong time. Poor product availability causes degradation in the relationship and trust between two stages in the supply chain (Lee et. al. April 1997, Chopra and Meindl 2001,

Figure 2.1. Seasonality and Variance Increases as the Bullwhip Effect Moves Upstream (Lee et. al. Spring 1997).

Donovan January 2002, Donovan 2002/2003). According to Metters (1997), if the bullwhip is causing seasonality and forecast errors, costs may increase by 15-30\%. Also, the costs associated with monthly seasonality patterns far outweigh that of weekly seasonality shifts, especially in a capacitated environment.

There are many symptoms of the variation in the process that create the bullwhip effect. Excessive inventory is a result of erratic ordering and inconsistency in the sizes of the order. Inventory is also used to buffer against long lead times (Lee et. al. Spring 1997, Reddy 2001). Poor product forecasts also instigate the bullwhip phenomenon since a company is not able to accurately anticipate demand. Deficient forecasts cause uncertain production planning as the company is unable to predict demand. This often leads to excessive or insufficient capacity. During a lull in demand, a facility will appear to have unused capacity. However, when a large order suddenly arrives, the plant will not have enough capacity and will be forced into overtime while expediting shipments. These fluctuations result in poor customer service levels as the supplier is not able to predict the retailer's demand (Lee et. al. Spring 1997). The volatility also results in procurement cost overruns and additional warehousing and shipping costs as the supplier orders large batches of inventory, just to wait until the next order. Most importantly though, quality problems are often caused by the bullwhip effect. To expedite orders through the process, manufacturers often have to become lenient in their quality standards to ensure that the product will ship on time
(Reddy 2001). All of the before-mentioned symptoms have been attributed to incentive, information processing, operational, pricing, and behavioral obstacles in the supply chain (Lee et. al. April 1997, Chopra and Meindl 2001, Donovan January 2002, Donovan 2002/2003, Chen et. al. 2000). These sources of the bullwhip effect, and how to mitigate their effects, are discussed in the following sections.

2.2.1 Incentive Obstacles

There are two sources of incentive obstacles within supply chains. The first is a result of sales incentives. The sales force often changes the quantity of the forecast before the end of the planning period. One reason for this is the customer may forecast more than they actually need because they do not trust the sales force. Also, the sales force may skew the numbers on purpose for their own benefit. If they will not meet quota for the period, they may hold sales until the next period to guarantee themselves a lofty bonus (Donovan January 2002, Donovan 2002/2003). Conversely, when the sales personnel will run short of their target, they may rely on a retailer to increase their order when it actually is not needed downstream. The retailer will provide this order to ensure that the suppliers' sales personnel will reserve product for them during times of short supply. Incentives previously discussed often result in the "hockey stick phenomenon" as 70% of the orders arrive at the end of the incentive period (Lee et. al. April 1997). This fluctuation is enough to cause more significant ramifications upstream due to a disparity between planned
production and the updated sales information (Reddy 2001). Thus, the sales incentives quickly distort the independent demand information to immediately start the whiplash within their own company. Then the fluctuations grow even more quickly as they are passed upstream (Chopra and Meindl 2001, Donovan January 2002, Donovan 2002/2003, Lee et. al. April 1997).

To alleviate the sales incentive problem, the incentives may be based on a rolling horizon program. Therefore, the sales force is not driven to increase the numbers at the end of a given period, which changes demand and burdens production. Another technique would be to measure the sales force over a longer time frame so they are incentivized on longer-term revenue generation (Chopra and Meindl 2001). Viewing this problem the opposite way, quota periods may be dramatically reduced. Therefore, the sales force is critiqued more often, which forces them to smooth the orders over time (Donovan January 2002, Donovan 2002/2003).

Another way to eliminate the problem is to reduce the fluctuations by forcing coordination through pricing. Lot size-based discounts may be used to incentivize longer-term relationships. This would be advantageous when selling commodity products since they may be purchased from a number of suppliers at any time. Lot-based discounts also help reduce the overall cost if both parties have large fixed costs associated with each batch. In addition, the use of buyback contracts and quantity flexibility contracts that provide the customer with pre-determined levels of product availability may be used. This technique provides an accurate inventory level for sales to market, which may
improve the supply chain profits over time (Chopra and Meindl 2001).
The second incentive obstacle is from trying to optimize within a single stage of the supply chain. When controlling one area, without looking at the big picture, adjustments may be made that will impair the effectiveness of the whole supply chain. This is often a result of trying to minimize cost in one company. For instance, when a customer pushes the inventory back on the supplier to reduce inventory carrying costs, they are simply adding the burden on the supplier instead of trying to minimize the inventory between their two stages in the supply chain. This problem may be resolved by aligning incentives across the functions. Before one stage in the supply chain shifts their costs to a different stage, both parties must agree on the decision and compensate each other with the gained savings (Chopra and Meindl 2001).

2.2.2 Information Processing Obstacles

Lack of information sharing, demand forecasting, and demand signal processing are all causes of information processing obstacles. The problem with demand signal processing is that companies often use historical demand information to update forecasts. However, the demand may be nonstationary. Therefore, the historical demand is no longer relevant. Then, the incorrect forecast is sent upstream to suppliers making it so they cannot anticipate the independent demand. If long lead times are added to this supply chain, the demand information is distorted even more. With this warped information, the suppliers will never be able to anticipate the market implications on consumer
demand causing inventory control and customer service levels to suffer. Note that in Figure 2.2, the volatility in the size of the orders varies greatly from the actual sales. Hence, the supplier makes their own forecast to anticipate production needs. This results in "double forecasting," which sends an even greater shockwave rippling through the supply chain. Meanwhile, suppliers know that the forecast is inevitably wrong. Therefore, they use their own intuition to drive production. Again, this rational decision making skews the demand even more to create greater oscillations in the dependent demand (Lee et. al. Spring 1997, Simchi-Levi et. al. 2000).

To mitigate the effects of demand signal processing, a single member of the supply chain may be designated to develop the forecasts for the entire value stream. This way, everyone in the supply chain has the same information and may plan accordingly. Also, by eliminating channel intermediaries, there are fewer sources of variation (Lee et. al. April 1997, Chen et. al. 2000). One method to eliminate intermediaries would be to have the demand information bypass the retailer and deliver it directly to the supplier from the consumer. This option would remove one channel from distorting the information before it is passed upstream (Lee et. al. Spring 1997, Lee 2000). Another possibility, to reduce demand distortion, is to reduce the lead time in the supply chain. As the lead time is reduced, forecasting becomes much easier (Lee et. al. April 1997, Ryu and Lee 2003). These changes may require a great deal of effort. However, an easier solution would be to simply allow everyone in the supply chain to simply see

Figure 2.2. Bullwhip Effect Shown by Sales vs. Demand (Lee et. al. April 1997).
the consumer demand information from the retailer level. This way, all stages are assured that they are updating their forecasts with the same information as everyone else. However, they must ensure that every stage is using the same forecasting methods. If they are not, then the various techniques could again lead to the bullwhip effect (Lee et. al. April 1997, Lee et. al. Spring 1997, Chen et. al. 2000). One method to share this information would be the use of EDI (Electronic Data Interchange). Going a step further, the supplier may take on the activity of replenishment to the retailer. In order for this to work, the supplier must have access to all demand and inventory information from the retailer. The supplier would then be able to update the forecasts and resupply the retailer as needed. By using this technique, the retailer would become a passive partner (Lee et. al. Spring 1997, Lee 2000). Then, by using inventory to buffer against the demand volatility, the demand may be rationalized to reduce the bullwhip effect before being distributed to the upper stage (Reddy 2001).

The second information processing obstacle is a result of demand forecasting, which may be attributed to a lack of information sharing. Typically, companies forecast based on orders, not the independent demand. Part of the problem is that each stage in the supply chain views their role as to simply supply what is ordered without understanding the supply chain implications. Therefore, as orders are received, each stage will update their forecasts accordingly. Then as the forecasts are passed upstream, their magnitude in projections will increase dramatically (Chopra and Meindl 2001).

The more layers in the supply chain, the more that the demand information will be skewed, causing excess inventory, idle capacity, and higher manufacturing and transportation costs and resulting in upset customers (Lee 2000).

To diminish the demand forecasting issue, channels may share point-of-sale demand information. The supply chain must understand that the only demand that must be fulfilled is for the end consumer. With this in mind, passing the actual consumers' information would reduce errors in the data as it is passed upstream. However, passing along this information will only reduce the bullwhip effect, not eliminate it (Chen et. al. 2000). Another way to mitigate the demand forecasting problem is to implement collaborative forecasting and replenishment. If this technique is not used, the upstream stages will not be able to anticipate marketing initiatives such as sales and promotions, thus making point-of-sale data useless. Every stage must be able to anticipate the fluctuations in demand and understand why it occurred (Chopra and Meindl 2001). The last method to reduce the demand forecasting problem is by allowing one stage to control all replenishment decisions. Typically, these decisions would be controlled by the channel closest to the end consumer. Having one stage control all replenishment eliminates the need for multiple forecasts and provides coordination in the supply chain. By having one stage responsible, it is easier for supply chain performance measures to be formulated and used to control the system (Chopra and Meindl 2001, Chen et. al. 2000, Lee 2000). In summary, Logic

Tools (2003) claims that the only way to tame the bullwhip effect is by coordinating information and orders.

2.2.3 Operational Obstacles

There are many operational obstacles including long replenishment lead times, the rationing game, order batching, product proliferation, and product life cycles. Long replenishment lead times force companies to hold more inventory to buffer against the demand during the lead time. Therefore, suppliers produce in batches, since the orders are in batches, to replenish large amounts of safety stock at once. The obvious way to reduce the impact is to reduce batch sizes, which in turn will reduce the replenishment lead times. Managers would then be able to reduce the demand uncertainty in the shorter time frame (Chopra and Meindl 2001, Ryu and Lee 2003). Also, the lead time may be reduced by receiving advanced demand information. Basically, the earlier the supplier receives demand information, the sooner they can start producing the goods. Therefore, advanced demand information provides a substitute for inventory, and production and transportation lead times (Hariharan and Zipkin 1995, Ozer 2003).

Another operational obstacle is the rationing or shortage game. This refers to the ordering behavior of buyers when it is believed that suppliers will not be able to provide what is ordered. The shortage may be a result of supply problems or a deficiency in production yield. The rationing game may also be caused by a retailer anticipating peak demand periods. If they use
the same supplier the competition uses, the retailer may order more to guarantee a production slot in the supplier's capacity. Increases in demand normally cause the rationing game (Lee et. al. April 1997, Lee et. al. Spring 1997, Chopra and Meindl 2001). Finally, from the rationing game, the retailer will probably order more than they need. If they receive the entire shipment, the retailer may want to return some of the product back to the supplier. A return policy simply aggravates the bullwhip effect (Lee et. al. Spring 1997).

To lessen the impact of the rationing or shortage game, suppliers may create different rules across the retailers. One method may be to allocate capacity to retailers based on their market share in previous periods. Therefore, the retailers may not skew demand with excessive orders. However, this technique does not anticipate the retailers' market share in the future. Therefore, suppliers may also allocate capacity as a percentage of the volume of the orders placed by the retailers when capacity is in short supply. However, the retailers will still overstate their orders to guarantee availability of the product. As a result, the supplier may increase capacity to achieve these heightened, but phantom, orders. The excess capacity will result in excess costs and risk for the supplier (Lee et. al. April 1997, Lee et. al. Spring 1997, Chopra and Meindl 2001). If the supplier simply communicates their capacity with the retailer, the retailer will have less anxiety given that they know exactly what will be produced and when (Lee et. al. Spring 1997). Also, by signing retailers into a contract to limit their ordering flexibility is another way to reduce the rationing game. The buyer may only be allowed to adjust
their forecast by a given percentage over the planning interval. As the time nears, the buyer must narrow the range of potential orders (Lee et. al. April 1997, Lee et. al. Spring 1997). Also, stiff penalties must be agreed upon to ensure that the retailer does not return products unless they absolutely must in order to reduce their inventory (Lee et. al. Spring 1997). In the end, companies may smooth their orders by changing commission and incentive plans and by simply training the marketing and finance functions of the company regarding the costs of the bullwhip effect (Reddy 2001).

As stated earlier, order batching is another common operational obstacle. Order batching usually occurs as companies try to minimize their transportation and order transaction costs while improving the economies of scale by accumulating orders before making the batch (Lee et. al. April 1997, Lee et. al. Spring 1997, Chopra and Meindl 2001, Donovan January 2002, Donovan 2002/2003). These transaction costs could be minimized by reducing paperwork and the processing requirement for the order. An example would be to eliminate the need for purchase orders and the cost associated with this task. Also, transportation costs could be reduced by filling a truckload with various products rather than a batch of a single product, coordinating delivery schedules with the retailer, utilizing milk runs, or by using a third party logistics provider. Reducing these costs allows for ordering in smaller and more frequent batches which will more closely mimic the actual demand. However, the small lots create more pressure on the suppliers. Since there is less inventory at the customer, they rely on the
supplier to provide accurate sizes of small batches in a consistent and repetitive manner (Lee et. al. April 1997, Lee et. al. Spring 1997, Chopra and Meindl 2001, Lummus et. al. 1998). Batching is also caused by the periodic review process. The periodic review process allows more demand variability as the timeframe lengthens. This issue may be mitigated by allowing direct access to all sales and inventory information (Lee et. al. April 1997, Lee et. al. Spring 1997).

As competition increases in a market, companies try to offer new and advanced products. These products typically have more options for the end user so consumers may purchase exactly what they want. However, there are supply chain issues associated with the wealth of new products. Forecasting, production planning, inventory management, and sales support become much more difficult as options are increased (Lee 2000).

Also, product life cycles are constantly becoming shorter. Technology innovations are a reason for the rapid life cycle. This causes significant supply chain concerns as more products are in the supply chain since the timeline of the product life cycles overlap (Lee 2000).

2.2.4 Pricing Obstacles

Intuitively, price variations skew the demand information. If prices are down, sales will increase. On the other hand, when prices increase, sales may decrease. It is the constant battle of varying price depending on supply and demand. When prices are down, buyers will normally purchase larger
quantities to take advantage of the reduced cost. Also, companies use promotions such as price and quantity discounts, coupons, and rebates to increase demand without understanding the impact on the supply chain. These discounts cause rapid fluctuations in demand and cloud other factors that impact demand. Additionally, customers become trained to only buy when items are on sale, creating larger lumps in demand (Chopra and Meindl 2001, Donovan January 2002, Donovan 2002/2003, Lee et. al. April 1997, Lee et. al. Spring 1997, Reddy 2001, Lummus et. al. 1998). Many forward orders will be submitted during the incentive period, followed by a lull in buying (Chopra and Meindl 2001). Large amounts of overtime are also forced on the company as they try to catch up to the volatile demand created by the pricing benefits. If capacity may not be increased through overtime, the company may have to hold large stockpiles of inventory. Surges in premium freight could be forced on the company to ensure product availability for the customer. With the escalation in inventory and shipping, a growth in damage is likely to occur. It is evident that companies who cause price fluctuations end up hurting their value stream probably as much as the discounts help. (Lee et. al. April 1997, Lee et. al. Spring 1997, Reddy 2001)

To remedy the problem of pricing variations, companies may offer an Every Day Low Price (EDLP) to smooth demand. EDLP provides the customer with a constant reduction in price rather than sporadic discounts and promotions (Chopra and Meindl 2001, Lee et. al. Spring 1997, Lee et. al. April 1997). Also, limits may be placed on the amount that the customer may
purchase. These limits are typically set for individual customers and are based on historical information (Chopra and Meindl 2001). Activity-Based Costing (ABC) systems are used in determining the actual cost of promotions. ABC takes into account all inventory, transportation, and other costs associated with discount campaigns to fully understand the implications of this activity. Using this technique, companies often realize that the costs outweigh the benefits of promotions (Lee et. al. Spring 1997, Lee et. al. April 1997). By also combining vendor managed inventory programs with a "rationalized wholesale pricing policy," suppliers can reduce the forwardbuying benefits as most of the customers' costs are already reduced in this scenario (Lee et. al. April 1997, Donovan January 2002, Donovan 2002/2003).

2.2.5 Behavioral Obstacles

Typically, companies are only focused on their stage of the supply chain since they are measured on the goals of their own portion of the channel. They do not bother to understand why the value stream acts like a bullwhip. They are simply concerned with their local measures, especially since many of the measures in the channel conflict with each other. Usually, companies accuse the inefficiencies on others in the supply chain. The blame game then fosters negativity and ill-will between channels rather than a cooperative partnership. A vicious circle ensues where a company resolves a situation by creating a problem for another supply chain stage. Then that stage adapts by creating
problems for someone else. This cycle will continue until the chain collaborates to solve their problems. The behavioral obstacle is one of the hardest to overcome since the chain has traditionally been antagonistic. All trust has been diminished as has all hope for shared responsibility to solve issues. Instead, all channels duplicate each others' efforts since they do not believe the information that they have received from each other (Chopra and Meindl 2001, Donovan January 2002, Donovan 2002/2003, Metters 1997).

The only way to solve the behavior issue is by creating trust within the supply chain. This is not easy to do. Companies will have to allow access to their proprietary demand information. They must share the demand information, inventory status, and forecast analyses so that every stage is in agreement regarding the status of the supply chain. Slowly, confidence will form as companies benefit from reduced costs. And vice versa, costs will decrease as companies start depending on each other (Chopra and Meindl 2001).

As stated earlier, a method to reduce the bullwhip effect is by smoothing production and the demands on the supplier. The technique of Rate-Based Planning and Scheduling is designed to use these benefits. The technique is thoroughly discussed in the next section, and is the primary basis for this dissertation.

2.3 Rate-Based Planning and Scheduling

Rate-Based Scheduling (RBS) and Rate-Based Planning (RBP) are techniques that have been discussed by several researchers such as Behera (1992), Woodhead (1992), Maskell (1994), Wei and Kern (1999), Reeve (2002), and Vollmann, Berry, and Whybark (1997). However, few of these researchers have presented a consistent methodology for this practice. This section will integrate the concepts of RBP and RBS into a common methodology of Rate-Based Planning and Scheduling (RBPS), and will discuss how to implement these concepts in Build-to-Stock (BTS) or Build-toOrder (BTO) environments. Also, this section will explain how RBPS may be implemented in a repetitive and stable environment, a repetitive environment with variation, and a seasonal environment.

2.3.1 Definition of RBPS

The Rate-Based Planning and Scheduling (RBPS) technique changes the plan, production requirements, and/or schedule into a rate rather than orders (NDS 2002). This rate will then allow a company to meet the customers' demands through changes in the rate and by utilizing the inventory to buffer against uncertainty.

Vollmann, Berry, and Whybark (1997) introduced the concept of RateBased Planning as they separated planning into two phases: time-phased, and rate-based. Time-phased planning refers to production preparation, which is based on orders. These orders are sent to the shop floor in batches
to minimize changeovers, as discussed in Figure 2.3. The Rate-Based method develops a rate for each part that will be used. Rates are then passed through the planning bill of materials so they will be ready for execution when pulled by the customer. The assumption with this scenario is that the supply base is flexible and able to provide the parts in a short lead time.

Figure 2.4 helps explain how these planning approaches fit into manufacturing strategy and market requirements. The time-phased method is preferred for low volume, customized products that allow a wide variety of options. On the other hand, RBPS is for higher volume, standardized products (Vollmann, Berry, Whybark 1997).

Rating the production process is similar to using takt time. Takt time (also known as tackt or tact) is a German word that represents an interval of time and will designate how quickly a product must be produced to meet demand. The demand is simply converted into a demand or production rate for the day. For instance, suppose that demand is 100 units per day and there are 400 available work minutes in the day. Therefore, one unit must be produced at least every 4 minutes in order to satisfy demand. And if the demand rose to 200 units per day, the takt time decreases to a rate of one unit every 2 minutes. Likewise, as demand decreases, the takt time will increase (Henderson and Larco 1999).

The purpose of changing the demand to takt is simply to convert the demand into a rate that everyone in the production facility may identify. For

Material planning approach

Basis for planning and control	Time-phased Control point Control unit Product level	Rate-based Planning bills
	Material explosion of time-phased net requirements for product components	Material explosion of rate-b requirements for prod components
Material planning features	No	
Fixed schedules	High	Yes
Use of WIP to aid planning	Daily/weekly	Low
Updating	Performed	Weekly/monthly
Inventory netting	Performed	None
Lead time offsetting	Performed	None
Lot sizing	Considered	None
Safety stock/safety lead time	Not considered	Not considered
Container size	Many levels	Considered
Bill of material		Single level

Figure 2.3. Features of Detailed Material Planning Approaches (Vollmann, Berry, Whybark 1992, 1997).

Strategic Variables			Detailed material planning approach	
			Time phased	Rate based
Market requirements	Product	Design	Custom	Standard
		Variety	Wide	Narrow
	Individual product volume per period		Low	High
	Ability to cope with changes in product mix		High potential	Limited
	Delivery	Speed	Through scheduling/ excess capacity	Through inventory
		Schedule changes	Difficult	Straightforward
Manufacturing	Process choice		Batch	Line
	Source of cost reduction	Overhead	No	Yes
		Inventory	No	Yes
		Capacity utilization	Yes	No

Figure 2.4. Material Planning Approach for Market Requirements and Manufacturing Strategy (Vollmann, Berry, Whybark 1997).
instance, shop floor workers understand the quantity that remains to be produced in a day because the information is visual and easy to understand. Managers and workers have a common language with which they may discuss the status of the system. Suppliers know how many components to provide due to the simple rate. However, management discussing the capacity and status of the production system is probably the most important aspect.

In the RBPS environment, the rated schedule must be faster than the takt time. Even though the organization has implemented lean concepts to reduce the variation, there may always exist certain defects, design issues, and other reasons for variation in the process. Therefore, the plan must always be for a rate faster than the takt time to allow for reserve capacity and to ensure that the product will be able to flow through the process by the required due date. The difference between the rate and the takt time may be minimized as preventive and predictive maintenance techniques are implemented and as changeover times are reduced.

But how is this rate used in industry? An initial assumption is made that the Master Production Schedule (MPS) is fairly level (Nicholas 1998). Stemming from this hypothesis, the monthly production schedule is changed into a rated schedule so products may be repetitively made every day or week (Behera 1992, Knight 1996, and Schonberger 1997, Silver and Smith 1981). The MRP designates the rate that operators follow until the MRP develops a new Rate-Based MPS. More recent orders may cause the rate to
deviate daily to meet customer demand (Nicholas 1998). Companies will be able to maximize their yield by holding the production rate level for at least a review cycle (Silver and Smith 1981).

Ptak and Schragenheim (2000) agree with Nicholas when stating that the production schedule should be changed to daily or even per-shift rates. This rate should remain constant over a period of time. However, the production rate may be changed at any time with little effort when the demand changes. A new rate simply replaces the old rate. This is a vast improvement over adding and subtracting orders from the process to control production. Even then, expeditors would have to push the orders along to ensure that they were finished on time.

The positive aspect of producing to a rate is that production is repetitive. Suppose our rate is 50 units a day for Product A and 100 units a day for Product B for a 400 minutes work day. This means that a unit of Product A will be made every 8 minutes and Product B will be produced every 4 minutes. There are no surprises in this information. The same amount will be made every day.

2.3.2 Objective and Goal of RBPS

As stated in the literature on RBPS by Behera (1992), Woodhead (1992) and Maskell (1994), the goal is to smooth production. Rate-Based Planning will smooth the plan so that pull execution systems may produce according to the customer demand. Schonberger (1986) stated the idea best - "Make the
same family of parts over and over again, hence the term 'family repetitive' production."

2.3.3 Capacity Buffer

According to James Reeve in "The Financial Advantages of the Lean Supply Chain," "Lean supply chains create growth by matching capacity to actual demand through Rate-Based Planning and Execution (RBPE)." The end consumer does not buy goods in batches. Products are purchased one or two at a time. Therefore, products should be manufactured as they are consumed. However, there is often volatility in the demand quantities over time. In RBPS, capacity will buffer against this variation rather than the traditional methodology of using inventory. Rather than trying to chase demand with production, the goal is to smooth production, understand the true demand, and use RBPS to create capacity that may be used for growth of the company (Reeve 2002).

To further understand the difference between traditional planning and scheduling versus RBPS, refer to Figure 2.5. Conventional MPS vary production as it tries to chase demand. The focus is to maintain the quantity of safety stock. On the other hand, Rate-Based MPS tries to smooth production over several periods to minimize fluctuations within the facility. The inventory buffer will fluctuate as demand oscillates around the rate of production. Then, by passing this schedule on to suppliers, the smoothed production rate of the MPS reduces the volatility typically seen by the tier 1

Figure 2.5. Conventional MPS vs. Rate-Based MPS (Woodhead, Feb/Mar 1992).
and 2 suppliers.
For instance, notice in Figure 2.5 that the goal of the conventional approach is to maintain a level amount of safety stock. As demand fluctuates in this environment, so does the rate of production. The facility may produce 50 units one week and then 300 the next. In this scenario, the demand volatility is buffered using inventory. However, the Rate-Based method levels the rate of production. Capacity is then used to buffer against the uncertainty in demand rather than using inventory as the buffer. As demand changes over time, the rate is adjusted to minimize the number of stock outs and improve the customer service level.

The planner must understand the effects of changing the rates and how it impacts the production system. Hopefully an increase in the rate of product A will cancel out the decrease in rate of product B. But the planner must pay attention to times of peak demand and ensure that the capacity plan does not exceed the capability of the production system (Woodhead 1992).

2.3.4 Benefits of RBPS

Limited amounts of research have been performed regarding RBPS. Even fewer people have written about implementation of the Rate-Based concepts. However, some conclusions may be made regarding the benefits of implementing RBPS.

Peter Knight (1996) believes the primary benefit of RBPS is it reduces the administrative overhead by performing the basic job control tasks "(i.e.
costing, backflushing, labour costs)", by eliminating complexity caused by job numbers and other paperwork (Knight 1996). Schonberger (1997) supports this belief by stating that RBPS causes a reduction in administrative overhead, decline of work in process, elimination of work orders and other production control documents, and the eradication of overhead linking with suppliers. By reducing the overhead costs, a company is eliminating the "dominant component of their cost structure" (Schonberger 1997). Knight supports this theory even further by explaining the focus of RBPS is "to achieve optimum productivity and efficiency, using a paper-less, rate based, customer-driven process" (Knight 1996). The common thread is that the Rate-Based methodology will drastically reduce the number of transactions required, and therefore, cost (Reed 2002).

2.3.5 Steps to Implement Kanban

A philosophy exists that RBPS is simply a stepping stone to transition from MRP to kanban. Kanban is a signal to pull inventory or to start production for a particular product. Dan Reed (Feb 2002) states that "in order to evolve to Kanban, a plan must be developed to migrate from a work order environment to a rate flow environment." Therefore, the MRP system must change from a work order system to a Rate-Based system. Reed states that the main purpose of the transition is to ensure an accurate inventory tracking system. In this rated environment, the required components per product are subtracted from the on-hand inventory count by utilizing the backflushing
technique.
Kirt Behera believes that lean concepts may not be implemented without a repetitive environment. When a company changes to a Rate-Based philosophy, the production process inherently becomes more repetitive. Therefore, Behera (1992) agrees that RBPS is not only a stepping stone, but is a requirement in order to implement pull execution systems.

2.3.6 Flex Fences and Flex Limits

Even though the concept of Rate-Based declares that production will manufacture products at a given rate, practice shows that production will still vary as demand fluctuates. A method to limit the flexibility in the production environment while maintaining stability is by using flex fences to place bounds on the production level. Companies may still increase or decrease their production and/or requirements, but only within the allowed limits.

Costanza (1996) uses a technique with maximum and minimum limits in The Quantum Leap... In Speed-To-Market. He utilizes demand time fences and flex fences to allow the marketing department to change the demand information only a given amount (flex limit) for a certain period of time (flex fence). Once the demand time fence is reached, the forecast is frozen. However, during the flex fence periods, marketing may vary the demand information up to the specified limits. For instance, the company may determine that marketing and/or sales may change the demand information $\pm 5 \%$ for the next two weeks, $\pm 15 \%$ for the following two weeks,
and $\pm 30 \%$ for the last two weeks of the 6 week planning horizon (Costanza 1996).

The limits inform marketing how much they may sell over a time horizon further in the future as shown in Figure 2.6. These time horizons may change in length depending on the company and the negotiated agreements between production and marketing. The purpose of the flex fences is to minimize the amount of variation in demand for production to ensure that the planning process is simplified and that the facility is capable of meeting the demand targets. Therefore, even though Costanza's method is not named RBPS, this technique forces a constant repetitiveness in the manufacturing system, which is the focus of RBPS (Costanza 1996).

Costanza discusses how to determine flexible demand more explicitly in his patent that was accepted in 1995. The patent regarding demand and flex fences flowcharts the decision criteria for a computer system to support production. The purpose of the patent is to explain how to establish the demand for the production system and also how to project this demand daily. Costanza's schedule is frozen up to the demand fence as displayed in Figure 2.6. However, the demand may vary within the flex limits up to each flex fence. The flex limits are defined by the user, and the flex periods may be of varying lengths. If demand is greater than the upper flex limit, the software will try to spread the order over earlier dates up to the demand fence. However, if demand is less than the lower flex limit, the company will go ahead and manufacture the quantity of products as defined by the lower limit.

Figure 2.6. Demand and Planning Flex Fences (Costanza 1996, 93).

This occurrence will increase the inventory, which will hopefully be consumed in the future. The following discussion will explain these ideas in more detail. The planner and/or scheduler must first understand how to incorporate sales with the flex fences methodology. Marketing takes orders over four time periods (or time fences). The first interval is the demand fence, under which all orders are frozen. These orders consist of customer orders or orders from marketing, which will be kept in inventory. None of the numbers may be changed during this time. The user defines the length of the demand fence. However, this frozen time period is normally longer than the manufacturing lead time or the time required to obtain raw materials, whichever is longer.

After the demand fence, the larger of the customer orders or the marketing forecast is chosen as the total demand for each day, as shown in the first few blocks of Figure 2.7. Next, the flex limits are determined from Equation 2.1, and the system determines if the demand is within the flex limits

$$
D_{r \cdot \int L}=D_{r} \times(1+X / 100)^{N}
$$

$D_{r \iint_{L}}$ is the Flex Fence Limit Value
D_{r} is the rate of demand
X is the flex percentage
N is the flex period
(Figure 2.8). If so, the order quantity is acceptable, and the quantities are sent to purchasing to guarantee that the needed materials are available. However, if the demand is outside the limits, the information is smoothed, as

Figure 2.7. Top Level Flowchart for Determining Flexible Demand (Costanza 1995).

Figure 2.8. Flowchart to Determine the Flex Limits (Costanza 1995).
later discussed in Figure 2.9. The demand is accumulated, and the system determines the size of the flex limits. Then, the computer system begins with the first flex period to determine the flex limit. The next few blocks in Figure 2.8 define the multiplier for the flex fence and the quantity that it represents. This procedure is repeated until all limits for the three flex periods are defined.

If the flex limits were breached, then the methodology from Figure 2.9 is put into play to smooth the demand. If demand is greater than the upper flex limit, the system smoothes the demand by moving some of the demand to earlier periods before the due date. Likewise, if the demand is below the lower flex limit, the schedule is equal to the lower flex limit. Similar to the instance with the upper flex limit, production will be sustained at this lower limit in previous periods until the minimal amount desired is achieved. However, the demand information may not be adjusted inside the demand fence.

When the demand needs smoothing, the methodology from Figure 2.10 is retrieved. First, the smooth amount is identified by subtracting the total demand for the day from the upper flex limit. The remaining amount is the demand that exceeded the limit, called the smooth amount. Then, the system tries to fill in the remaining capacity for each previous day with the smoothing amount. If the previous day will accept the total smooth amount without exceeding the flex limit, the process is finished. On the other hand, if a fraction is left on the previous day, then that amount is added to the day's demand, and the remaining quantity is the new smoothing amount. This

Figure 2.9. Flowchart of the Smoothing Method (Costanza 1995).

Figure 2.10. Flowchart of the Smoothing Method for a Single Day (Costanza 1995).
process is repeated until all demand is within the limits, or until the demand fence is reached without using the entire smoothing amount. If more capacity is needed when the demand fence is reached, a signal is sent to the planner that the schedule may not be achieved.

For example, suppose the average demand is 100 units, and the flex limits are calculated to be 95 and 105 for flex fence 1, 90 and 110 for flex fence 2, and 85 and 115 for flex fence 3. Management has decided to have three time periods per flex fence. The project demand data is also known for the next nine, periods as shown in Table 2.1. As depicted by Figure 2.11, the demand in period 6 does not fit within the flex limits.

The demand point beyond the limits must be smoothed over the previous time periods. The methodology in Figure 2.9 acknowledges that the demand is outside the limits, and therefore, the technique used in Figure 2.10 is initiated. The demand data is brought down to 110 units for period 6 and 11 units must be smoothed over the previous periods as depicted in Table 2.2 and Figure 2.12. In period 5, the difference between the flex limit (110) and the demand of 108 is 2 . Therefore, two units are added to period five, and the remaining nine will be smoothed over the previous periods. Likewise, five units may be added to period four before the limit is reached, which leaves an excess of four units. Now the flex limit for period three has shrunk to 105, but there is room to add three units to meet the flex limit. The one unit left over may be added to period two. The result is a schedule that is maintained within the limits designated by the organization.

Table 2.1. Example 1 Demand Data with Flex Limits.

Period	0	1	2	3	4	5	6	7	8	9
Upper Flex Limit		105	105	105	110	110	110	115	115	115
Lower Flex Limit		95	95	95	90	90	90	85	85	85
Demand		103	98	102	105	108	121	112	111	109

Figure 2.11. Example 1 of Demand Outside the Flex Limits.

Table 2.2. Example 1 of Smoothing the Demand Inside the Flex Limits.

Period	0	1	2	3	4	5	6	7	8	9
Upper Flex Limit		105	105	105	110	110	110	115	115	115
Lower Flex Limit		95	95	95	90	90	90	85	85	85
Average Demand	100	100	100	100	100	100	100	100	100	100
Demand		103	99	105	110	110	110	112	111	109
Excess				1	4	9	11			

Figure 2.12. Example 1 of Smoothing the Demand Inside the Flex Limits.

If there is not room for the excess demand in the previous periods, then the schedule will result in an error. For instance, if the demand in period six was for 132 units as shown in Table 2.3 and Figure 2.13, the demand would need to be smoothed again. However, as shown in Table 2.4 and Figure 2.14, there are still three units of excess when the frozen demand fence is reached. Therefore, an alert is given to the scheduler who then needs to make some adjustments to the schedule or tell marketing that the sold units may not be produced on time.

The main idea of Costanza's methodology is to keep the demand within certain constraints. These boundaries are formed by the scheduler to minimize the amount of variation in the demand. This methodology of Costanza most closely parallels the research in this dissertation.

One unknown in the procedure is how to determine the length of the flex fences. The company must determine the length of each planning flex fence relative to their strategic objectives. If the company would like to be more flexible, the planning fence may be shorter. On the other hand, if the company wants to reduce variations in the plan, the planning flex fence may be lengthened to deter these fluctuations.

How do we determine the flex limits for the production system? James Reeve (2002) suggests that two factors influence the limits. First, the amount of flexibility allowed is a function of the planning horizon. Usually, companies have more flexibility as they look further into the future. However, as the time approaches, the limits should narrow, which will define the scope of

Table 2.3. Example 2 Demand Data with Flex Limits.

Period	0	1	2	3	4	5	6	7	8	9
Upper Flex Limit		105	105	105	110	110	110	115	115	115
Lower Flex Limit		95	95	95	90	90	90	85	85	85
Average Demand	100	100	100	100	100	100	100	100	100	100
Demand		103	98	102	105	108	132	112	111	109

Figure 2.13. Example 2 of Demand Outside the Flex Limits.

Table 2.4. Example 2 of Smoothing the Demand Inside the Flex Limits

Period	0	1	2	3	4	5	6	7	8	9
Upper Flex Limit		105	105	105	110	110	110	115	115	115
Lower Flex Limit		95	95	95	90	90	90	85	85	85
Average Demand	100	100	100	100	100	100	100	100	100	100
Demand	103	105	105	105	110	110	110	112	111	109
Excess		3	5	12	15	20	22			

Figure 2.14. Example 2 of Smoothing the Demand Inside the Flex Limits.
production by reducing the demand variation. Also, fluctuations in demand will help determine the bounds set on the capacity. Companies may use historical information to predict demand fluctuations, and hence, place the flex limits around the variation (Reeve 2002).

NDS Systems agrees with the concept of setting minimum and maximum limits for the production quantity to maintain the Rate-Based Schedule. The order quantity should always fit within these limits. If demand is greater than the maximum limit, hopefully the excess demand may be rolled back to the previous time period. If demand is less than the minimum agreed production rate, inventory will be accumulated and will hopefully be consumed in the next time period. However, NDS states that if the limits are not definable, then the manufacturer should produce in Lot-for-Lot sizes. Lot-for-Lot means the production lot size equals the amount of the demand quantity (NDS 2002).

2.3.7 Safety Stock, Customer Service Level, and Flexibility

In RBPS, the production plan and schedule will be kept fairly constant. But in the meantime, demand will fluctuate and may cause the Customer Service Level (CSL) to deteriorate. For this reason, safety stock will be used to ensure that good CSLs are maintained. When the safety stock runs low or when marketing anticipates changes in the market, changes are allowed in the RBPS to meet these needs. This section will discuss the impact of safety stock on CSL and how to improve flexibility and reduce inventory by the
strategic placement of the safety stock.
Woodhead declares that the benefits of balanced production and finished goods inventory more than offset the loss of customer service levels (Woodhead 1992). While this is an intriguing look at the reasons for smoothing production, most researchers and practitioners would agree that customer service levels should not be affected by this new initiative. Instead, safety stocks should be allocated for specific products or modules to ensure good customer service levels. However, with this strategy in place, a company may realize that a customer is costing so much money that the manufacturer is not profiting from the relationship. This futile relationship might force the manufacturer to eliminate their affiliation with this customer. Instead, the manufacturer may focus on other customers that will boost the profitability of the company.

Woodhead also claims that capital should be moved from the high volume products to the lower volume products. The reason for this is to provide more safety stocks for the low volume items to ensure good customer service levels (Woodhead 1992). However, the manufacturer may want to pre-build the high volume products because these products are almost certain to sell in the market. Therefore, the company may reserve capacity to produce the lower demanded items when they are ordered, similar to a make-to-order environment. This is especially true when a company is capacity constrained, such as in a seasonal or highly variable demand environment. However, if the low volume products have high profit margins, there probably
is sufficient reasoning to hold inventory of these items to buffer against demand variation. Even with high profit margins, a company still might not want to hold inventory when the buffer stock requires a large capital investment, such as the expenditure required for an extra airplane.

Inventory may be reduced while increasing flexibility by the strategic placement of the inventory. Sanford Friedman (2002) provided an insightful assessment of where inventory should be placed depending on the product delivery strategy, as shown in Figure 2.15. The strategic inventory should be placed at the designated time fence for each strategy. For instance, if a company assembles each product to-order, they should keep inventory before final assembly and then build the product according to specifications when ordered. This allows the company to reduce their inventory while increasing flexibility by delaying the point of product differentiation. The delay of product differentiation linked with strategic inventory allows the company to minimize inventory while still achieving promised customer lead times. For the make-to-stock strategy, inventory should be held in finished goods. When the customer places an order, the purchased amount is pulled from finished goods. The scheduler then arranges for the purchased amount to be replenished.

A company must maintain the safety stock levels as the demand fluctuates and as the rate of production increases or decreases. With the safety stock in mind, the company may then analyze the capacity plan with the change in rate per product group, product line, or assembly area. The

Figure 2.15. Time Fences in Relation to Product Delivery Strategy (Friedman 2002).

[^0]change in rate may either increase or decrease inventory. The decisions are based on flexibility, demand volatility, supplied component shortages or surplus, and potential market changes.

2.3.8 Impact of Demand

In order to develop a RBPS, the company must first understand its demand information. Conclusions should be based on whether the demand data is dependent or independent. Historical information is also used to make assumptions regarding demand. Also, the company must understand how the demand information is generated and whether the method is an appropriate technique.

Independent demand is information obtained directly from the endconsumer. The company may develop many assumptions regarding trends in the information, but also must be cognizant whether certain marketing strategies caused trends in the information. For instance, many retailers such as Home Depot and Sears receive independent demand information because the end-customers purchase products directly from them. Dependent demand is obtained from a customer who is not the end-consumer. The demand information may be skewed due to purchasing decisions from the customer. These companies are often considered tier-1, tier-2, etc. suppliers. For instance, Craftsman tools are sold through Sears. Therefore, Craftsman receives dependent demand from Sears. The dependent demand may be more volatile than the independent demand for Sears since Sears purchases
in quantities deemed from economic studies rather than true demand (Mentzer and Bienstock 1998).

When Maskell discussed the implementation of RBPS, he stated that the demand information must be in fairly consistent quantities. During the analysis period, whether it is week-to-week, month-to-month, or year-to-year, the quantities are to remain rather stable and constant. Even though demand may be influenced by seasonal and market factors, the demand will not fluctuate very much over the analysis period (Maskell 1994). This assumption explains the RBPS's dependency on consistent demand because to maintain a repetitive production schedule, the demand must be predictable.

The manufacturer must also understand the demand, its origins, and how it translates into a production schedule. Two questions should be asked: Does the production information result from historical averages, sales forecasts, or actual customer orders? Are these orders forward orders (orders received before actual demand) or backlog? Once there is an understanding of the demand, the manufacturer may prioritize the information. Priority should be given first to the actual customer orders, then forecasts, which are then followed by projected averages (Woodhead 1992).

Once the company understands where the demand information originates, they should analyze the characteristics of demand. Three patterns of demand will be discussed in the following sections: repetitive, seasonal, and variable demand.

2.3.8.1 Repetitive Demand

The main idea of RBPS is to produce in a repetitive manner so a company may make every product every day, week, month, etc. as deemed necessary. Of course, this environment is more easily implemented in a repetitive demand environment. The RBPS may be limited in a low volume or "lumpy demand" environment (Woodhead 1992). Demand quantities may deviate a small amount from the average or trend, but the quantities remain fairly stable.

The RBPS will take the repetitive demand and level the schedule across the supply chain as shown in Figure 2.16. The goal of this system is to produce a similar amount of product as required by the customer over time, as shown in Figure 2.17. This plan is permeated through the supply chain with plenty of time to plan for products with longer lead times. Then the lean execution system will pull from the quantities developed in the Rate-Based Plan to provide good customer service levels.

OPW Fueling Components actually implemented these ideas with the help of Dr. Richard Schonberger with very little effort. Schonberger agreed that any company that has repetitive demand may implement RBPS. The main idea is to eliminate the lumpy and irregular orders and create a smooth production schedule. In this case study, OPW Fueling Components chose to produce two erratic products to a rate, but sold some units every day. One product is to be made every day, and the other is to be produced once a week due to large setup times (Schonberger 1997).

Figure 2.16. Rate-based plan for demand without much variability (Kirby and Toney September 2002 and October 2002).

Figure 2.17. Linearity of demand with the rate-based plan over time (Kirby and Toney September 2002 and October 2002).

2.3.8.2 Seasonal Environment

Demand is not always level. Products such as air conditioners (Sutton 1995) and toys (Mullins 2001) have seasonality that does not allow for repetitive supply to the customer. Usually, companies prebuild products trying to anticipate demand. Therefore, seasonal environments require accurate forecasts so the manufacturer is not stuck with large amounts of excess inventory.

In the case of seasonality, the manufacturer may choose one of several options. First, production may chase the demand. As the demand increases and decreases, a company varies the production schedule by the same amount. In most industries, enabling production to vary this much is often a costly decision. A less costly option is to level production by determining a balanced Rate-Based Plan to meet the peak demand. However, some people do not care for this option because it forces the company to hold large amounts of inventory. Another option is smoothing production at a level below the peak demand volume (Brandolese et. al. 2001), which will be called level-chase. Once the peak period arrives, the company will use the prebuilt inventory to fulfill orders and then use capacity to chase the remaining demand quantities. Another option is the prebuild and chase (prebuild-chase) strategy. The difference between prebuild-chase and level-chase is that the former ramps up to build inventory a few time periods before the peak demand. This is an intuitive method and is seen the most in industry.

Chasing demand would be the preferred strategy in a seasonal environment if capacity is not too costly. However, maintaining enough capacity to achieve the peak demand period often requires a large investment in machines, space, temporary operators, and training. Most companies cannot afford to invest this amount of capital in facilities to operate fully for only one or two months. Therefore, this option is not used too often even though it is probably preferred. If a company could utilize this strategy, they could operate in a make-to-order environment even during peak periods.

Leveling the plan during the year is a way to maintain production and smooth the order requirements on the supply chain. The Rate-Based Plan may be utilized for this strategy in the seasonal environment. However, the RBPS also becomes a Rate-Based Schedule because the plan will manipulate what products are built before the peak demand period. Some companies do not prefer this option because their inventory may be costly. However, some companies change the corporate mindset by producing the goods during the entire year. The level schedule helps facilitate implementation of lean execution concepts to become more flexible.

The RBPS strategy requires good forecasts to plan for the proposed seasonal demand. One option here is to pre-build components early and then only add the differentiating characteristic when ordered. For instance, candy may be pre-made and stocked. But when the peak demand period comes before Halloween, the manufacturer may fill the appropriate sized packages with the necessary graphics that differentiate between the
customers. Figure 2.18 shows the mentality of building early before the peak, and Figure 2.19 displays the ability to meet the peak demand.

Future demand may not always be accurately predicted. Therefore, the production level may need to shift sometime before the sales peak, as shown in Figures 2.20 and 2.21. If the projected sales are believed to be higher than predicted, the level will increase in slope on Figure 2.21 as the rate of production is increased. On the other hand, if sales will be less than predicted, the production rate will be reduced. It is important to minimize the number of changes to the rate to reduce the bullwhip effect on the downstream suppliers.

However, sometimes the planning cycle does not match the seasonal sales cycle. In this case, the company must manufacture at a level to meet the earlier peak. Then once the peak has passed, production may be reduced to lessen the risk of overproducing for the next sales peak, as shown in Figures 2.22 and 2.23. Some companies are not able to estimate potential sales accurately for the next sales peak. Therefore, they will reduce the rate of production after the peak period, which will decrease their risk. When they are able to predict future sales accurately, production will be ramped up to meet the projected demand.

The level-chase strategy brings the previous two ideas together to benefit from the positive aspects of both. The manufacturer develops a level production rate for the year. However, this rate is less than the necessary amount to meet the peak demand. As shown in Figure 2.24, the Rate-Based

Figure 2.18. Rate-Based Plan in a Seasonal Environment (Kirby and Toney 2002).

Figure 2.19. Cumulative Data Displays the Ability to Meet the Peak Demand (Kirby and Toney 2002).

Figure 2.20. Adjustment in the Level of the Rate-Based Schedule (Kirby and Toney, 2002).

Figure 2.21. Change in Level to Achieve Demand (Kirby and Toney 2002).

Figure 2.22. Adjusting the Level of the Schedule to Delay Production Decisions (Kirby and Toney 2002).

Figure 2.23. Ability to Meet Demand By Adjusting the Level of Production (Kirby and Toney 2002).

Figure 2.24. Lower Rate of Production for Level-Chase Strategy.

Schedule is below the average demand where the schedule would normally be. Instead, the organization strives for a rate that will produce enough inventory so they may utilize the remaining capacity to produce the remainder of the orders during the peak period (Brandolese et. al. 2001). Figure 2.25 shows that the final demand is much more than the amount scheduled for the Rate-Based Schedule. The difference will be produced with excess capacity during the peak period. The supply chain benefits from a predictable schedule through the year. Also, the manufacturer benefits by not holding as much inventory in stock and instead utilizing capacity to buffer against uncertainty in the seasonal demand quantities.

The final strategy is the prebuild-chase. In this case, the manufacturer ramps up production a couple of time periods before peak demand. Operators must be hired and trained, and materials must be accumulated to ensure that production is possible. As the peak period arrives, manufacturing may ramp up or down depending on sales. This strategy is called prebuildchase because products are prebuilt just before the peak demand period to develop some prebuilt inventory, and then demand is chased during the peak period. Often, not much planning is involved with this scenario, which is frequently more costly as a result of training new employees, dealing with quality issues, and holding massive amounts of inventory due to poor planning.

Figure 2.25. Rate-Based Schedule Does Not Meet Demand, Capacity Does.

2.3.8.3 Variable Demand Environment

Sometimes demand is very volatile. Many companies try to chase the demand with little success. Others try to hold large amounts of inventory to buffer against the variation, but often find that they are holding large amounts of the wrong kind of inventory. RBPS may be used once again to try to smooth out the demand requirements on the supply chain.

A level rate of production is maintained to try to balance the supply chain. Excess capacity is utilized to meet the fluctuations in demand. However, the level of production will change based on the amount of capacity needed to achieve the fluctuations in demand. For instance, Figure 2.26 shows that a rate-based plan may be developed to produce what is known to be ordered. In the figure, 15,000 units will be ordered most every period. As a result, a Rate-Based Plan is set at this level so a large amount of inventory is not built. This assumes that the remaining fluctuations will be fulfilled by utilizing the remaining capacity in the production system.

However, there usually is not enough capacity to fulfill all of the variation in demand. Therefore, the Rate-Based Plan is increased to a level determined by the company. The factors involved in the study are capacity of operators and machines, and the amount of materials that may be supplied in each period. As shown in Figure 2.27, the rate was increased to around 17,000 units per period. This rate will allow for some inventory to accumulate over time. However, the inventory will help buffer against the variation. The remaining quantities of orders are built when ordered. This example is

Figure 2.26. Rate-Based Plan for Volatile Demand (Kirby and Toney 2002).

Figure 2.27. Higher Rate-Based Plan to Buffer Against Variation (Kirby and Toney 2002).
assuming that there is enough capacity to produce an extra 7,000 units $(24,000-17,000)$ represented in the fluctuations. Usually, this quantity will not be produced due to the excess inventory that is assembled during the periods of low demand.

The Rate-Based Plan in this environment is optimal because there is little risk in producing ahead. As shown in the examples, even if the plan is greater than the amount required, the excess inventory will soon be depleted due to the sudden increases in demand. Once again, this plan should reduce costs due to a decline in variation of the plan through the supply chain, which will reduce the inventory in the supply chain.

2.3.9 Information Flow

As the RBPS is developed, the information must be passed through the supply chain. If the RBPS is kept within the company, the improvements in efficiency and cost may be minimal. To benefit the most from these efforts, the Rate-Based information must be passed on to the company's tier-1 and tier-2 suppliers so everyone in the supply chain understands the objective of the company. Only then may the suppliers also build to a RBPS to improve customer service levels while minimizing cost. If the information is not passed upstream to suppliers, they may still utilize batching methods to meet demand and will still result in the bullwhip effect discussed in section 2.2.

2.3.10 Implementation of RBPS

The purpose of this section is to accumulate many ideas that are necessary to implement RBPS. First, a method for the implementation is provided from Behera and Knight. This will lead to a discussion of many concepts currently used in lean execution systems and how they must be utilized to implement the RBPS.

Kirt Behera (1992) was the first author to provide an implementation approach for RBPS. He asserts that the implementation should follow the following procedure:

1. "Design an approach for JIT and Master Production Scheduling (MPS) systems;
2. Create an Implementation Organization;
3. Implement JIT on two product lines;
4. Implement the JIT pilot quickly using discrete MPS techniques;
5. Implement JIT on the rest of the product lines;
6. Implement Rate-Based Scheduling System; and,
7. Ensure that the system allows for simplicity, flexibility, and visibility" (Behera 1992).

The main point of this procedure is to understand that many methods have to be put in place before a Rate-Based schedule may be implemented. The JIT concepts must first be applied to a couple of lines to train the workforce and to prove to them that JIT technique works. Once the lines have become flexible utilizing JIT, then the RBPS method may be implemented.

Knight confirms the ideology that a plan may be developed into a RBPS by converting the plan into a rate "production line, by day and by product." The MRP (Material Requirements Plan) is used to plan the process. A rate is then developed to provide to the shop-floor. Then, manufacturing executes the rated plan by using a pull execution system as shown in Figure 2.28 (Knight 1996).

One way these two methods differentiate is that Knight uses the help of MRP systems to develop the rated plan and schedule. Knight's figure provides the assumption that the RBPS must be implemented first before the lean execution system may be realized, which is supported by Maskell (2001) and Reed (2002). On the other hand, Behera does not discuss MRP at all. Also, Behera proclaims that the pull execution systems should be developed before the RBPS may be achieved.

Even though the concept of RBPS is very simple, Schonberger believes that not many companies have implemented the idea. One reason may be that the benefits are not as tangible as other improvements. Also, people might be hesitant to produce according to a rate rather than orders (Schonberger 1997).

2.3.10.1 Explode BOM

One aspect of the MRP system is still applicable to the Rate-Based Plan. MRP is good at exploding the demand requirements through the Bill-ofMaterial (BOM) to communicate customers' needs to their suppliers. RBPS

The Phases of Supply Chain Management

ABC Motors Ltd. XYZ Components Ltd.
Phase 1. Phase 2. Phase 3.

Figure 2.28. The Phases of Supply Chain Management (Knight May 1996).
may still use this concept to convey the demand requirements to the suppliers. The difference is that the RBPS will not use the lead time offsets that MRP does (Reeve 2002). A company must determine how often the RBPS will distribute the requirements. But when the rate changes, the new mix of component parts required for production must be sent to the suppliers to help the end supplier maintain their high customer service levels (Maskell 1994).

The key question is how many suppliers need this demand information. The goal is to communicate this information to as many suppliers as possible so that everyone has the same objective in the product delivery system, which will reduce the bullwhip effect described earlier. In fact, the goal of the RBPS may even be to smooth the requirements on the supplied components rather than on the Original Equipment Manufacturer (OEM) in order to ensure level planning and cost reduction at the suppliers. Smoothing the requirements on the suppliers becomes much easier if the OEM is very flexible and in tune with the customers' demand. The optimal situation is when the OEM produces according to the customers' need, not according to what the OEM thinks the customers want.

2.3.10.2 Blanket Orders

To fully utilize the benefits of RBPS, companies should develop blanket orders with their suppliers. A blanket order is a contract for a given amount of time that declares that a company will purchase a certain amount of products
from the supplier for a set price. The idea is to reduce the purchasing burden on the company (Anderson 1994). Blanket orders are preferred because it reduces administration overhead, hassling with quotes, and the supplier may better anticipate production and inventory needs (Industrial Distribution 1989). With the blanket order, these purchases have already been approved and the quantity needed from the supplier is deemed by the RBPS, pull execution system, or the Finite Capacity Scheduling (FCS) system used to execute to demand.

Brian Maskell uses blanket orders to eliminate work orders. Maskell proclaims that work orders should be eliminated and then replaced by a RBPS system or no scheduling at all. In the RBPS environment, cells are scheduled by demand rates rather than work orders. The assumption is that the production rate is synchronized with the demand rate. The repetitive rate will help the manufacturer smooth production of each product. Then over time, the scheduling process will be eliminated as the manufacturer becomes more flexible. Instead, the customer orders pull the product through the process to ensure what is made is what the customer wants today. Maskell further explains that the demand and RBPS may be run against the MRP instead of tracking production orders (Maskell 2001).

However, Behera still believes that the workorders are needed in a RBPS system. The workorders are still initiated by MRP, which also instigates material orders from suppliers while utilizing a blanket order. Then, MRP may replicate the rate-based system by initiating "weekly net rate
production schedules," which pull from each sub-assembly workcell (Behera 1992).

2.3.10.3 Lean and Finite Capacity Scheduling

Lean and Finite Capacity Scheduling (FCS) are the two most efficient methods for executing schedules today. Lean uses the help of fast changeovers to reduce batch sizes and therefore lead times of production. This allows increased flexibility that may fulfill the customer's needs by pulling products through the system. FCS, on the other hand, uses batching techniques but always has real-time information to stay up-to-date. If a machine fails, the FCS system realizes the fault and reschedules the facility to ensure that the orders remain on time (Plenert and Kirchmier 2000).

Researchers agree that JIT and lean execution systems ${ }^{3}$ must be implemented in a repetitive environment. Therefore, the RBPS environment will provide a better atmosphere for lean execution systems. The predictability and stability of the demand offers great advantages in promoting better efficiency of the production system (Monden 1998, Behera 1992).

Also, lean is very flexible as it holds inventory in strategic locations. When the inventory is needed, it pulls the inventory to build according to demand. This adds flexibility by not specifying certain components for a given order.

The lean concepts of kanbans and mixed model sequencing also drive

[^1]the repetition of the production system. Behera (1992) states that the success of the kanbans in a lean system is dependent on repetitiveness of the production. Luckily, mixed model sequences often promote the uniformity and repetition of production schedules in lean systems. Mixed model schedules attempt to level the demand requirements on the component parts and therefore, the suppliers (Monden 1998).

FCS does produce according to orders, and alienates the concept of producing to a rate as discussed in Schonberger (1997). However, FCS schedules according to the status of the system, not according to assumed lead times. Therefore, the FCS system may allocate these orders to the timetable to maintain the rated plan and schedule.

2.3.10.4 Management Commitment

RBPS is a strategic initiative that will require many changes in the organization. Management must commit the organization to implement the ideals of RBPS or the initiative will fail. Tactical changes with production strategy and incentive systems may only be performed at high levels of management. Also, "what if" scenarios may be analyzed very easily from this high-level view of the system to ensure the feasibility of the project (Ptak and Schragenheim 2000).

Schonberger attributed much of this success of his implementation at OPW Fueling Components to the cross-functional managers that helped develop the RBPS. Management's commitment to the success of the project
was necessary to push the project to completion. However, in hindsight, Schonberger wished that he had included the front-line workers in the analysis so they would have understood what the company was trying to accomplish (Schonberger 1997).

On a more positive note, Woodhead declares that the production system is much easier to manage when production does not vary. The rated goal of production is easy to understand and employees quickly recognize when problems will not sustain the rate. Also, the rate may be easily changed as demand shifts over time. Rather than following orders to predict when the units will be shipped, the rate allows everyone in the organization to take the appropriate actions to ensure good customer service levels (Woodhead 1992).

2.3.10.5 Small Batches

Companies should produce in smaller batches to increase flexibility while decreasing lead time. Production is often erratic when companies manufacture products in large quantities that do not replicate demand. As the batch sizes are reduced, production may emulate demand better and the production requirements on the facility become fairly stable (Maskell 1994, 83-91). Manufacturing in small batches leads to the same products being made every day or every other day, which is closer to a rate and the ideals of RBPS.

RBPS is utilized to smooth the flow of production and to orchestrate
production with actual demand. If a company has demand of 100, 200, and 50 units a month for products A, B, and C respectively, then the company needs to always produce in this ratio. The goal of RBPS is to reduce the batch size as much as possible by making the production process more flexible through setup time reduction, point-of-use materials storage, visual controls, increased asset reliability, and other lean tools. At first, a company may reduce the ratio to 50:100:25 and repeat this production schedule twice per month. The main idea is to change from a monthly schedule to a weekly, or half-week, and then to a daily schedule (Garg 2002). The ultimate achievement would be to reduce the ratio to 2:4:1 and repeat this sequence fifty times a month or more than two times per day (assuming a 25 day month) (Maskell 1994).

Producing in smaller batches will also minimize inventory. Stemming from the previous example, originally, a company would have to hold enough inventory to buffer for over a month. As the batch size is reduced and products are produced more often, inventory may also be reduced. If a company achieves the ability to produce in the ratio $2: 4: 1$ two times a day as shown in the example, they would only have to hold roughly enough buffer for that day. This is a major factor that will allow companies to implement lean execution systems that feed off of RBPS.

2.3.10.6 Daily Deliveries

As batch sizes are reduced and production increases flexibility, companies should begin using daily deliveries. Manufacturing traditionally filled a truck with a large batch of a particular item to achieve economical transportation rates. Now with the small batch sizes, a company may fill a truck with many items that are being shipped to a particular customer.

With the daily demand deliveries, companies are able to satisfy demand within a quicker timeframe. For instance, Toyota develops a schedule and expects their suppliers to meet the schedule in a short lead time (Minahan 1998). Gerald Braga, corporate manager of procurement and supply chain management of Toyota Motor Sales USA Inc., stated, "As the demand occurs, the information will transmit on a daily basis to our suppliers, and they will respond to that demand with daily deliveries to our distribution points in North America" (Teresko 2001). Without these daily deliveries, Toyota's supply chain would never be able to improve their flexibility while minimizing the inventory in the supply chain.

2.3.10.7 Forecast

The RBPS environment requires good forecasts. A company must understand what will be consumed, and when it will be consumed. Many people say that forecasts are always wrong (Wiersema 1997, Purchasing 2002). This is often because the customer analyzes the demand data and adjusts the forecast with inaccurate information. Then, a schedule is made
based on the inaccurate information and the component requirements are sent to the suppliers. These suppliers then try to develop a forecast off of a skewed schedule, which causes more errors in the forecast. The more companies in the supply chain that change the forecast and schedule, the higher the probability that the resulting forecasts will be wrong.

Forecasts are used for planning and are essential to RBPS. Several functional units of the organization should work together to ensure that the forecast is accurate and may be achieved by production. The forecasts will predict increases or decreases in the demand so a company may make appropriate adjustments to the rate (Reeve 2002).

Then, the forecasted demand will allow creation of the plan for the end items at the Original Equipment Manufacturer (OEM) and then explode the demand information for the required materials through the Bill of Materials (BOM). The goal is to create a level production plan for the suppliers because the end item schedule is level. From this plan, the lean execution system will pull what is required. Therefore, the production schedule is based on real demand, not what the sales department thinks the customer needs. Also, the RBPS has helped the suppliers forecast what the OEM will need.

Jerry Wei and Gary Kern (1999) evaluated the impact of forecasting on scheduling in the production process. The reason for this study is to understand the impact of long-term forecasts on strategic decisions like budgeting, facility investment, capacity, and workforce planning. The authors agree that forecasts are usually incorrect, but may be very helpful in the
strategic planning of a company. The basis of the study is that JIT environments rely on a level master production schedule that developed a Rate-Based MPS. Therefore, the paper was to determine if better forecasting models improve the performance of JIT systems when Rate-Based MPS are used.

2.3.10.8 Integrate with Supply-Base

As the suppliers become more flexible and are able to provide their customers with better service levels, the customers start to trust the manufacturer more. Hence, a new relationship and partnership between the two companies is developed. The customer will then trust the supplier better and may then share the projected demand information. Once the trust has been established and information is shared, suppliers receive actual demand patterns from the end consumer, which therefore allows them to create better forecasts.

The benefit of the RBPS is to ensure that even the slightest of changes will not flow through the supply chain and cause the bullwhip effect as discussed in Section 2.2. Instead, the RBPS will ensure that the schedule is maintained through its own production system and also the suppliers' systems. With this visual plan permeating the supply chain, suppliers may tell the OEM whether or not they will be able to meet the schedule. The newly enabled communication between the OEM and the supplier is probably the greatest benefit of RBPS.

The RBPS also helps with the long range forecast and plans for the supply chain. Since communication has increased through this process, the suppliers are always aware of special causes regarding changes in the demand information. These causes may be sales, new marketing schemes, holidays, etc. Regardless, everyone must be on board and understand why there are fluctuations in demand.

Simplification of production may be passed along through the supply base. Once the rate is declared, it is sent to the suppliers by exploding the rate through the BOM. For instance, an automotive manufacturer is going to make 1,000 units per day. Since there are five tires on each car (four tires plus the full-size spare), the consumption rate of tires is 5,000 units per day. The supply chain may then build to the rates determined for their component rather than building to a production schedule with lead time offsets (Reeve 2002).

Also, the forecast may help the logistical portion of the supply chain. The rate is used by supply chain managers to reduce the distribution costs. As the rate is cyclically sent to the distribution centers or warehouses for restocking, a repetitive pattern develops. Hence, transportation planning becomes much more predictable with these rhythmic shipments.

JLG Industries in McConnellsburg, Pennsylvania adopted the RBPS policy. From the Best Manufacturing Practices (2001) article, JLG focuses more along the area of purchasing rather than production. JLG communicates with their suppliers utilizing a moving forecast. The suppliers
then ship components to JLG in small quantities. To ensure that costs are minimized, JLG has contracted a truck service to make milk-runs to their suppliers, which allows JLG to maintain control of its repetitive supply. Therefore, JLG was forced to minimize and certify the number of suppliers that are used. This has created a partnering relationship between JLG and its suppliers. An MRP system still generates quantities for the suppliers based on usage rates and replenishment times. A 52-week rolling schedule is developed and sent to the suppliers every other week. However, material releases are faxed to suppliers every week that designate the quantities that will be picked up on the milk-runs.

2.3.11 Production Strategies

RBPS may be used differently depending on the type of production strategy that is used to meet customer demand. The first scenario discussed allows a company to build their finished goods inventory before the products are ordered. The customer may then pull from the finished goods when needed, which will be referred to as Build-To-Stock (BTS). Another method is called Build-To-Order (BTO). Companies may hold inventory of component parts in their facility. When a customer submits an order, the production system assembles the product according to the customers' expectations. The following sections will elaborate on how to implement RBPS in BTS and BTO environments.

2.3.11.1 BTS

Schonberger (1997) and Woodhead (1992) visualize RBPS as a make-tostock ${ }^{4}$ strategy. Manufacturing will produce to a given rate that will fill a buffer stock of finished goods inventory, as shown in Figure 2.15. Then the customer may pull from this inventory as needed. Therefore, if sudden spikes in demand occur, production will not react to fluctuations in demand to fill the orders because the inventory will buffer against this demand variation (Schonberger 1997).

However, if there are many end-item SKUs, then the company may produce as a build-to-stock environment to a certain point in the process. This point is determined by the lead times promised to the customer and the point of product differentiation in the process. As discussed by Srinkanth and Umble (1997), companies may reduce the amount of inventory in the production system by maintaining a level of WIP as early in the process as possible as shown in Figure 2.29. This point of strategic WIP may be determined by customer service lead times. If the quoted lead time for the customer is 1 week, the WIP must be held before operation 4. However, if the lead time is 2 weeks, we may hold inventory before operation 3 , which may allow a decrease in WIP by 50\% and changes the production philosophy to be similar to BTO.

[^2]
2.3.11.2 ВTO

As the point of product differentiation is pushed back toward the beginning of the process as explained in Figure 2.29, the RBPS will arrange for the number of component parts made in the facility and waiting in WIP. Also, an RBPS will be developed for the component parts or subassemblies that may be added to the product to distinguish between end-item SKUs. Because the RBPS is developed for the components, the requirements are smoothed on the value stream. Then, the components are assembled by using a customer order to identify each added feature.

However, if the company builds-to-order and the promised lead time is shorter than the manufacturing lead time, the RBPS may be established further upstream in the subassembly area or at the component level. Then actual customer orders will pull the appropriate subassemblies or components based on the customers' requirements. When the manufacturing lead times are shorter than the promised lead times, the manufacturer may simply order materials from the supplier as needed.

2.3.12 Benefits

The RBPS results in many benefits listed by authors. Some of these include reduction of inventory, minimizing overhead, and better control of the facility and supply chain. This section will discuss these benefits in more detail.

By implementing RBPS, JLG has reduced its inventory by more than \$12 million while production has increased five-fold. Therefore, there is less

Figure 2.29. Delaying the Point of Product Differentiating.
handling of inventory, less damage, shorter lead times, and more flexibility. Annual purchase orders with the help of faxed order releases have also minimized the clerical overhead. In the meantime, suppliers have reduced their inventory and overhead costs. They have also benefited from more accurate planning due to fewer schedule changes. Overall, the business of supply to JLG has become much easier, which has helped relations between JLG and its suppliers (Best Manufacturing Practices 2001).

Schonberger was pleasantly surprised by the results of his RBPS implementation at OPW Fueling Components. Unexpectedly, the amount of finished goods inventory did not increase, which some people feared might happen. There was also an improvement in on-time performance. Most importantly, the customer service level had risen 40\%. Schonberger supports this effort by stating the benefits are incurred by eliminating the inventory through the supply chain due to the smooth production schedule. (Schonberger 1997)

Woodhead proclaims that several benefits may result from stable plans and balanced inventory levels. The capacity planning process becomes onedimensional since a company may now discuss production in terms of load per standard time period. The simplification allows easy management of the system since supervisors may easily determine if the rate is within capacity (Ptak and Schragenheim 2000).

Also, Woodhead declares that the benefits of balanced production and finished goods inventory more than offsets the loss of customer service levels
(Woodhead 1992). This may be true theoretically, but practitioners would probably state that customer service levels should not be diminished by RBPS. When stating these benefits, Woodhead is only looking within the walls of the production facility without understanding the effect on the customers and suppliers. This assumption should be supported by understanding the effect on the costs in the supply base before coming to these conclusions. However, the decision may be made to cease doing business with a customer if costs increase dramatically due to a large amount of volatility in the customer's demand patterns.

2.4 Lead Time

The concept of Rate-Based Planning and Scheduling will work well in the marketplace. However, the impact of lead times must be understood. Often when utilizing RBPS while lead times occur, the schedule is frozen to account for variables such as transport time on a ship or by rail. With the decrease in flexibility, inventory must be held to buffer against the demand variation. This section will review the current literature regarding lead times to provide a basis for implementing RBPS in this environment.

2.4.1 Strategic Use of Inventory with Lead Times

Research has been performed to understand the impact of increasing lead times on inventory to buffer against demand variation. This is a real scenario as companies are moving production overseas to reduce labor costs
(Grossman and Jones 2002). As a result, more inventory is held in the supply chain to ensure desired customer service levels, which decreases the flexibility and competitive capability of the company (Pan and Yang 2002, Harding 1995). The problem is that companies try to increase their gross margin by awarding the cheapest source with the contract. Buffering supply chains with long lead times may result in extremes of 33 percent of products being marked-down or stores stocking out, while only a third of consumers are able to find what they actually want on the shelves (Fisher et. al. 2000, Mattila et. al. 2002). To justify using the cheaper supplier, a company must make sure that the additional logistics and inventory costs, with increases in stock outs and markdowns, will still cost less than an expensive supplier with a good performance record (Mattila et. al. 2002). This section will review studies analyzing the strategic use of inventory to buffer against lead time.

In an article by Stalk (1998), he describes the order process that causes lead times. The goal is to achieve a lead time of zero. In a provocative statement, Stalk asserts that if zero lead time is achieved, a company only has to forecast for the next day. Traditionally, companies were content with producing to a forecast. Now, companies are trying to reduce the lead time so they don't have to rely on forecasts and may produce only what is ordered. To reduce the lead time, manufacturing usually corrects their lead time issues, and then sales and distribution align their processes accordingly. Reducing lead times and increasing flexibility has to be a company's overarching strategy.

Lead time between stages in the value stream is of great concern. The longer the lead times, the less flexible a supplier can be to meet the needs of the customer. The customer may want quicker lead times than the supplier may provide. The only way to support these demands is to protect against the lead time through the use of buffer inventory (Muckstadt et. al. 2001, Kekre and Udayabhanu 1988). This strategy to achieve these commanded short times is very common in today's marketplace. Brandolese et. al. (2001) studied a three stage system with two warehouses to better grasp the amount of inventory needed in this situation. However, this is only possible in a Build-to-Stock (BTS) environment.

When products are built using the Make-to-Order (MTO) strategy, it is harder to anticipate future demand and hold inventory for that demand. The inventory could be expensive and risky since the customer may not choose to order a particular configuration again. Use of reliable forecasting techniques is mandatory to develop accurate production schedules (Enns 2002).

Realistically, companies may not be able to develop anticipatory production schedules. Therefore, they must wait for the order to be received before production on that item is initiated.

Oke (2003) explains that in an MTO environment, demand may be adjusted by varying the lead times. If demand is high, longer lead times are quoted. Conversely, shorter lead times are quoted when demand is low. This strategy would allow a company to match its set capacity with the current demand levels. However, even Oke admits that this strategy is not conducive
for today's customer friendly environment.
In the environment of building only to received orders, the promised lead time must always be greater than the assembly flow time (Brandolese and Cigolini 1999). The due date quoted to the customer will have a significant impact on whether the customer submits an order to the supplier (Duenyas and Hopp 1995). Weng (1996) devised a methodology that exploits lead time and order-acceptance rates to improve the utilization of manufacturing while also increasing profits. A technique that is used more often employs the theory of postponement. Inventories are held earlier in the process which reduces their value and the cost of carrying these parts. More importantly, the manufacturing lead time is reduced since some of the assembly has been performed. Then, when an order is placed, the final configuration is determined and produced. This ensures lower inventory levels while providing shorter quoted lead times (Rabinovich et. al. 2003, Srinkanth and Umble 1997, Enns 2002).

Hopp and Roof Sturgis (2000) developed a tool to quote the shortest possible lead times as a function of inventory. This technique is also dependent on flow time, as flow time is directly proportional to inventory. The technique uses a control chart method to adjust the parameters over time.

Harvey and Snyder (1990) also analyzed a situation with lead times. They studied the impact of factors like short-term growth, seasonality, and the consequences of business cycles. The results showed that the traditional lead time variance formula underestimates the variation in the process. This
underestimation occurs when the demand is nonstationary and simple exponential smoothing is used (Snyder et. al. 1999). Only after taking into account the demand model and the lead time distribution can we understand the significance of the underestimation (Harvey and Snyder 1990). Chatfield and Koehler (1991) also discussed the inadequacies of previous research. They found that others were employing the forecast of the total demand over the next h periods. However, these researchers should have used the singleperiod forecast for h-steps in the future. A later study worked to rectify the underestimation of the uncertainty of the total lead time demand.

Traditionally, the standard deviation of lead time demand was computed by multiplying the standard deviation of the one-period-ahead forecast error times the square root of the number of lead time periods $(\sigma \sqrt{L})$. This technique is only accurate when the demand is stationary, meaning that the average demand will not change over time. The result was a formula that incorporated the magnitude of the smoothing constant in simple exponential smoothing and the length of the lead time (Snyder et. al. 1999).

The goal in today's economy should be to minimize the lead times. By reducing lead times, the bullwhip effect and finished goods inventory may be reduced significantly (Ryu and Lee 2003). Through the use of JIT and lean techniques, companies may reduce the lead times to attain a competitive advantage (Rabinovich et. al. 2003). Also, customers may reduce the lead time to receive product by paying extra for the product (Pan and Yang 2002). According to Wu (2001), reducing lead time is the core factor to improve
productivity. The benefit of less inventory and quicker products to the consumer more than pays for the extra expense incurred (Goldratt 1997). A question may be posed as to where is the greatest benefit for reducing lead times. According to Graves (1999), a greater impact may result from reducing the lead time of the downstream systems first. Reducing the lead time upstream does not minimize the bullwhip effect at all since the varying demand is still received from the customer. In order to reduce the impact of the bullwhip effect from downstream, the customer may reduce lead times or change their ordering policy to smooth its response to changes in the forecast.

2.4.2 Lead Time Behavior

As stated previously, companies are trying to reduce costs and burden by moving production overseas. However, there are three key issues with this mentality. First, companies may not be able to benefit beyond the initial savings gained from moving. Second, there is no guarantee that the savings will be the same in the future. And lastly, companies often overlook the additional costs incurred with this strategy such as procurement, verification, and inventory costs (Grossman and Jones 2002).

As described by Ouyang and Wu (1997), lead time consists of the subsequent components: order preparation, order transit, supplier lead time, delivery time, and setup time. Variations in these components may vary the
lead time. However, lead time is controllable. By utilizing a crashing cost ${ }^{5}$, lead time may be reduced. The objective when eliminating lead time is to minimize the total expected cost by weighing the ordering cost, holding cost, and the crashing cost while maintaining a given service level.

When lead times exist, customer service level is highly dependent on the forecast. However, the forecast accuracy will decline as the lead time grows (Stalk 1998, Vendemia et. al. 1995). The magnitude of the forecast error increases exponentially as lead times increase (Harding 1995). It is increasingly hard as many industries develop their purchasing strategies seven to eight months before the peak season. The uncertainty increases the potential for risk and increases the chance of a rapid supply chain stealing market share (Mattila et. al. 2002).

As the uncertainty in demand increases, companies buffer against such variability with either safety stock or safety lead times. Safety stock will shield the company against the demand fluctuations around the mean.

Safety lead time, on the other hand, guards against uncertainty in completion time. The hope is that with an increase in safety lead time, production has more time to finish the product to ensure that it is on time (Buzacott and Shanthikumar 1994, Enns 2002, Huge 1979, Kekre and Udayabhanu 1988). In summary, it is harder to forecast when lead times are longer because demand is uncertain. To buffer against a wrong forecast, safety stock is used

[^3]which reduces flexibility and safety lead times are added which will cause even more doubt in the forecast. Enns (2002) recommends diminishing the forecast error first, and then using lead times and safety stock to manage the timing and quantity uncertainty. He also states that safety stock is the best approach to buffer against uncertainty. Regardless, with long lead times, there is an increasing need for flexibility to meet the customers' requirements (Milner and Kouvelis 2002). To better understand how lead times impact other factors, the next section will discuss the trade-offs.

2.4.3 Trade-offs

In business, companies often have to give in order to receive. For instance, investment in a facility may be required to improve the flexibility of the production process. Likewise, there are many trade-offs while working with lead time, as will be discussed in this section.

In industry, there is a balance between quality, cost, speed, dependability, and flexibility as displayed in Figure 2.30 (Grossman and Jones 2002). With long lead time, quality is bound to deteriorate and schedulers will have a harder time matching parts for demand (Kekre and Udayabhanu 1988).

When a supply chain is geographically dispersed and lead times are defined, one way to increase customer service levels is by increasing inventory (Grossman and Jones 2002). However, inventory carrying costs will rise (Kekre and Udayabhanu 1988). As the lead times increase, more

Figure 2.30. How Service Level and Lead Time Impact Inventory (Grossman and Jones 2002).
variation will arise in the marketplace, and hence the need for more inventory (Towill 1997).

There are two reasons for safety stocks to increase as a result of increased lead times. The first reason is for protection against the long lead times during variable demand. Secondly, as the lead time increases, uncertainty in the forecast also increases (Kekre and Udayabhanu 1988). Buzacott and Shanthikumar (1994) concur that large inventories are used to minimize the risk of stock outs as lead times and safety stocks increase. They also state that when lead time and safety stocks are reduced, inventory is decreased which increases the risk of shortages. However, others disagree as they believe that by reducing the lead times, stock out loss will be reduced as flexibility increases, which improves customer service level while also reducing inventory and production costs (Ouyang and Chuang 2000, Ouyang and Wu 1997, Huge 1979, Rabinovich et. al. 2003, Stalk 1998, Harding 1995). This increases the flexibility of the business and improves its competitiveness.

There is an intangible benefit to reducing lead times. With long lead times, customers order product before it is needed in order to guarantee that they will have a spot on the production schedule. Therefore, the longer the lead time, the more false orders are placed. This scenario will appear encouraging for the supplier as they may have a couple of months of backorders; seen as job security. Also, they will be able to maximize capacity utilization of the facility with the backlog (Helo 2000). And the long lead times
provide time to guide planning and reallocate resources so various projects do not conflict. However, customer responsiveness declines rapidly in this environment. With an increase in forecast errors, the production schedule will not be accurate, and unscheduled jobs will have to be expedited through the process (Stalk 1998).

One problem is that marketing and production often have competing objectives. Marketing wants to provide flexibility and fast response times for their customers. The problem is that marketing's desires create volatile schedules, which inherently increases overhead and supply-base costs. Meanwhile, manufacturing wants minimal and gradual changes in the schedule to reduce inventory and overhead burden while maximizing output (Huge 1979).

Are lead times always detrimental to the organization? This answer depends on the state of the economy and the resulting objectives of the company. When demand is high, the company often emphasizes the schedule objectives. However, when demand is low and interest rates are up, companies focus on their inventory objectives (Huge 1979). Therefore, a company may not be as concerned about lead times when the demand is high as the facility is flooded with inventory to maintain schedules. However, lead time is more important when demand is low and the goal is to minimize inventory, especially when accountable for inventory in the supply chain.

These issues are very real. As Grossman and Jones (2002) discussed, Sony moved production of camcorders from Japan to China to
benefit from lower wages. However, the production of camcorders that were bound for the United States, were brought back to Japan. Sony realized that the high value-add products are produced better in Japan. Also, the supply chain issues from Japan are much simpler. Luckily for Sony, they were able to use the capacity in China for items in demand locally.

2.5 Contracts

In the past, customers wanted to delay orders as much as possible. The longer they postpone ordering, the more flexibility they have and the less inventory they had to hold. This mentality pushes much of the risk and responsibility onto the supplier. Since the customer wants to delay purchases, suppliers often have to prebuild product in anticipation of demand. The supplier is compromised because they have additional risk by holding excessive inventory or capacity (Barnes-Schuster et. al. 2002).

The best case scenario for the customer is to only order from the supplier when an order is received from the end consumer. However, this may create volatile demand based on the end consumers' ordering patterns. Therefore, to minimize the risk, suppliers should limit the ordering flexibility of the customer (Barnes-Schuster et. al. 2002).

The objective is a compromise between the customer's and supplier's needs by signing a long-term contractual agreement. A resulting benefit is the supplier will reserve an agreed amount of capacity for the customer. The vendor is willing to do this to ensure security of demand over the period of the
contract (Huge 1979, Xie 1998). Likewise, the customer is guaranteed product at agreed times, ensuring the receipt of product as forecasted. Another objective of long-term contractual agreements is to disperse the agreed purchase volume in small and frequent batches. These smaller deliveries will minimize the inventory carrying cost for the customer while creating a more repetitive demand for the supplier (Pan and Yang, 2002). The RBPS concepts may be integrated by using limits or bounds to restrict the demand variability.

The motivation to use contracts properly is to maximize the profit in the supply chain. The tradeoff is between flexibility and price. Often, customers will pay more to the supplier in exchange for purchasing flexibility (Tsay et. al. 1999). By sharing all of the necessary information between the two parties, the profit is maximized for both organizations; not just the customer or the supplier.

The literature defines eight common characteristics between contracts:

1. Specification of decision rights;
2. Pricing;
3. Minimum purchase commitments;
4. Quantity flexibility;
5. Buyback or return policies;
6. Allocation rules;
7. Lead time; and,
8. Quality.

Specification of decision rights assigns responsibility to one individual to control the decision variables in order to accomplish the goals set by the contract. Pricing identifies the financial agreements between two parties in the supply chain. The minimum amount to be ordered at a given time or over a longer period is declared by the minimum purchase commitments. And when the order is placed, the quantity flexibility sets bounds on the amount that may be ordered by the customer unless the customer accepts financial repercussions. Some contracts even have a buyback or return policy that states how much of the product may be returned and the amount of credit that will be received when this is done. Another characteristic that may be added is the allocation rule, which states capacity or financial options to use other resources if stock outs occur. Lead times may be defined and are also accepted as being fixed or dynamic. And finally, quality requirements may be set to ensure that quality product is passed through the supply chain (Tsay et. al. 1999, Ertogral and Wu 2001).

A key conclusion resulting from the research of Tsay et. al. (1999) is that by using either pricing or constraints, efficiency may be gained in the supply chain. A compromise must exist between how much flexibility and how much inventory are allowed in the system. If the customer is willing to pay for more flexibility, the supplier will have to invest in extra capacity. If the supplier is able to reduce the ordering fluctuations with the contract, the customer will pay less for the component, but will also have to hold more inventory to buffer against stock outs from demand variability (Burnetas and

Ritchken 2002, Cachon and Lariviere 2001).
Then again, there may not be a mediation point between the customer and supplier. If the customer demands that the supplier assume all of the risk with capacity and inventory, the supplier may need to ascertain if the partnership is worthwhile. If an agreement cannot be made, then the supplier may need to reject the orders. Similarly, the supplier may push the burden upon the customer, in which case, the customer may want to back out of the deal. Corbett et. al. (2003) found that most suppliers should reject over twenty-five percent of their customers due to an unsuccessful relationship.

If contracts have been agreed upon by the customer and supplier, the question may be posed regarding how to interface with second-tier, third-tier, and other suppliers. As stated by Kumar et. al. (1991), the overall objectives must facilitate all production decisions, meaning that the contractual settlement should be agreed upon and followed by the upstream suppliers.

On the intangible side, one of the most important factors in a contractual agreement is trust. If suppliers cannot depend on accurate information being passed up the supply chain, decisions will be made independently of other businesses. Skewed forecasts and phantom orders will easily deteriorate any confidence that has been developed. Credible information must be shared for a contractual partnership to succeed (Cachon and Lariviere 2001). For this to work, customers should purge their supplybase when creating trust with long-term contracts. It is not wise to sign contracts with multiple suppliers for one component (Wikner et. al. 1991).

The only way to build the trust is to concentrate on one supplier for each part and hold them accountable for the delivery schedule.

2.5.1 Quantity Flexibility Contracts

The research for this dissertation is most closely aligned with the Quantity Flexibility (QF) contracts. In the past, customers would overstate their forecasted orders to ensure that they could purchase product when needed. However, as the forecasted point draws nearer, the customer would decrease the order and leave the supplier with an excess of inventory. Quantity Flexibility contracts will mediate between the two sides to compromise on their objectives of price and delivery so they may both benefit (Tsay et. al. 1999, Kumar et. al. 1991, Kekre and Udayabhanu 1988). Price is determined by the manufacturing costs, overhead costs, and profit margin. Estimates of the lead time establish when the product will be delivered. But both internal and external variability should be considered when mutually deciding on price and delivery (Kekre and Udayabhanu 1988). The purpose of this section is to educate about the QF concept.

The main idea is to provide constraints to motivate both the supplier and customer to limit orders and production, which will inherently reduce costs. In QF contracts, the production level is to remain between the upper and lower limits while trying to maintain the objective safety stock level (Xie 1998, Tsay et. al. 1999, Kumar et. al. 1991). When the demand is below the lower limit like point A in Figure 2.31, the production rate will equal the lower

Figure 2.31. Demand Points with Upper and Lower Limits.
limit of 900 and some excess inventory will accumulate above the desired safety stock level. In the next period, point B is within the bounds, so production will be less to use some of the excess inventory. Again, the lowest level that may be produced is 900 . Point C is above the upper limit in the final period shown. Therefore, the production rate will equal the upper limit of 1100 and the safety stock level will recede as inventory is used to maintain customer service levels.

The limits should take into account the capacity of the supplier. And to ensure that inventory is minimized, delivery batch sizes should be reduced to increase the frequency of orders placed by the customer (Xie 1998). With erratic orders, the volume of the order is likely to be volatile. However, the more frequent the orders, the more likely that the production rate will imitate the demand. These more frequent and less volatile orders will reduce the demand variation from the customer, and the supplier's capacity is more likely to be sufficient.

The limits will guarantee the production will remain smooth and stable. The schedule may then be passed along through the supply chain. With the limited production schedule, suppliers have an easier time meeting the plan since it is now more predictable (Xie 1998). If the customer must have a quantity outside the allowable range, he will have to pay extra to the supplier since the order deviates from the contract (Tsay et. al. 1999).

What determines the level of the upper and lower limits? According to Barnes-Schuster et. al. (2002), the customer distributes the forecast to the
supplier. In successive periods, the customer may place orders for the product. However, the amount must be within a predetermined range from the original forecast for that period. The range is determined by a prearranged percentage above $\left(\alpha_{u}\right)$ and below $\left(\alpha_{d}\right)$ a given quantity as shown in Equation 2.2. The customer may order anywhere within the given range. This allows the customer to respond to fluctuations from the forecast and also protects the supplier from a large amount of variation in demand (Kumar et. al. 1991).

$$
\begin{align*}
& U F L=Q\left(1+\alpha_{u}\right) \\
& L F L=Q\left(1-\alpha_{d}\right) \tag{Equation2.2}
\end{align*}
$$

2.6 Conclusion

The motivation for this research is the bullwhip effect. It causes great inefficiencies and costs in the supply chain. One technique to reduce this phenomenon is Rate-Based Planning and Scheduling. To implement this technique, the concepts of lead time and contracts must be understood. The purpose of this chapter was to conceptually understand RBPS and contracts, and to consolidate the discussions of many authors. Through the rest of this research, the impact of lead time and flexibility will be scrutinized on a RBPS system with contractual limits. Nevertheless, the main philosophy of RBPS and this research is summarized best when Maskell stated, "It synchronizes production, allows for uniform plant loading, and provides a repetitive cycle of events that lends itself to quality and productivity" (Maskell 1994).

Chapter 3

Research Conceptualization

3.1 Introduction

Graves (1999) was quoted as saying, "Rather, to decrease the amplification of the demand process, there must be a reduction in the downstream leadtime, L, or an increase in the inertia in the demand process (smaller α), or a change in the downstream order policy that somehow smoothes the response to a forecast change." Likewise, Silver and Smith (1981) said that, "Given the current inventory level, the planned production during the frozen period (lead time) and the forecasts of demand, how does one choose the production rate in the period (review interval) now being scheduled, so as to provide a desired level of customer service?" This chapter will present a methodology to "smooth response(s) to a forecast change" and decide "the production rate in the period now being scheduled, so as to provide a desired level of customer service." Also, the chapter provides a detailed discussion of the research performed as the basis of this dissertation. First, a background will be presented, detailing the purpose of this research. Then a comprehensive framework explains how the RBPS system operates for this research and is followed by an example. Some assumptions are then discussed. Finally, the response variables for the experiment are provided with the expected outcome of the research.

3.2 Description

A goal of this research is to understand the impact that lead time, flex capacity, and variation in demand have on the inventory necessary to provide high service levels. This research will also compare the difference between the Retailer Smoothing and the Production Smoothing strategies, which will be discussed further in the next section. Another goal is to provide a simple algorithm that most companies may implement. In this section, a detailed model for the research will be discussed to achieve these primary goals.

3.3 Demand Strategy

As stated in the previous section, there are two strategies in this research. Some effort will now be used to examine the similarities and differences between the two strategies since they will likely impact the research significantly. The first necessity is to familiarize the reader with the information required to use these strategies. Then, the two strategies will be detailed. As shown in Figure 3.1, the production rate is frozen during the current period (period 0) and the next three periods at a level of 1000 units. Currently demand is 50 units higher than the production level. Therefore, inventory will be used to buffer against the deficiency to provide appropriate customer service levels. Estimates for the next three periods predict a continuation of the shortage since the forecasted plan is repeatedly above the frozen production levels for those periods. However, periods 4 through 7 are all well within the allowable limits (900 to 1100) and will probably be able to

Figure 3.1. Flex Limits and Values Based on the Total Demand of 1000.
replenish the desired safety stock level. The limits are set by using a percentage of the standard deviation to buffer against the variation in demand. For this example, the standard deviation is 500 and the percentage allowance is 20%. Therefore, the bounds are 100 units $(500 \times .2=100)$ above and below the plan. Now that the basis for the example has been developed, the two demand strategies will be explained with the help of illustrations. The first strategy is the Retailer Smoothing Strategy (RS). In this scenario, the flex limits are determined, for the period entering the flex fence, from the predicted plan at that time. For example, during the transition from Figure 3.1 to Figure 3.2, time 0 has passed and now period 1 is the current time. The limits for periods 5 through 7 have already been determined and simply shift one period closer to the current time frame. However, as period 8 enters the flex fence, its bounds must be defined. The flex limits are set around the estimated plan for period 8 by adding and subtracting a percentage of the standard deviation to the plan at that time. This strategy allows production to shift according to their customers' demands since the bounds are determined based on the predicted plan value. If some of the costs associated with fluctuations of capacity are placed upon the customer, it will force the customer to improve their forecast, since they may only obtain the given amount of volume between the two bounds. For instance, in Figure 3.2 when period 8 becomes the current period, the plan for production must be between 825 and 1025 units. To make the situation harder, in four periods, the production level will be frozen somewhere

Figure 3.2. Using the Retailer Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 1).
between 825 and 1025 units regardless of the estimated plan at that time. The plan could be well above 1025 or below 825 , but the demand strategy states that production must be within these bounds.

There are two more important pieces of information in Figure 3.2, demand versus production, and the new frozen production level. First, since the flex limits have been discussed, notice that the new frozen production level for period 4 is 980 units. This level is equal to the predicted plan since it is within the previous flex bounds. Remember that Figure 3.1 showed production for period 4 has to be between 900 and 1100. Since the estimated plan is within these limits, the bounds simply narrow to the plan. Also note that the demand for period 1 is about 1090 , or 90 greater than the frozen production level for the period. Since the actual demand is greater than production, inventory is needed to buffer against the difference.

Continuing through this example, another period advances as shown in Figure 3.3. The current period is now period 2. The demand is once again higher (1060) than the frozen production level of 1000. Therefore, inventory will again need to buffer against the shortfall. For periods 3 and 4, the frozen levels remain at 1000 and 980 units respectively. However, a new frozen level must be determined for period 5. Since the forecasted plan is again within the limits of 900 and 1100 , then the frozen level will equal the plan of 1030. In addition, the new flex limits must be determined for period 9. Since the forecasted plan is 975 units, the limits will be 100 units on either side of this point as explained earlier. A planner would be a little concerned at this

Figure 3.3. Using the Retailer Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 2).
point because all of the forecasted points are above the average, hence, showing an upward trend. Luckily, Figure 3.3 demonstrates that for period 6 through 9, the forecast is within the limits. Hopefully, future forecasts will remain within the limits which will allow production to replenish the safety stock level.

The anxiety of an increasing forecast was justified as shown in Figure 3.4. Given that another period has progressed, the forecast has been updated and increased significantly. The current period is 3 and the demand is again higher than the frozen production rate, resulting in another shortfall. Periods 4 and 5 in the demand fence are predicted to have deficits also. Once more, the frozen rate for period 6 must be defined as it enters the demand fence. The problem is that the forecasted plan for period 6 is greater than the upper limit. Consequently, the frozen level will equal the upper limit and a shortfall is predicted. Luckily, new flex limits are to be created for period 10. Since the forecasted plan is rising, our limits are rising around the latest plan to enter the flex fence. This will allow production to ramp up over time, but not fluctuate quickly as a result of rapid changes.

Another ordering strategy is called the Production Smoothing Strategy (PS). Instead of basing the new flex bounds on the last forecasted plan in the fence as RS does, PS will use the current production volume as the basis for developing the bounds. Each flex bound will be a percentage away from the current production quantity during the iteration. The example used while discussing RS will also be used to discuss the PS strategy to help explain the

Figure 3.4. Using the Retailer Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 3).
similarities and differences between the two strategies. Advancing one period from Figure 3.1, the point for period 1 represents the demand in relation to the frozen production interval (shown in Figure 3.5). The rest of the points are the forecast of the plan. Since period 8 is entering the flex fence, a new flex bound must be determined. This bound is calculated using the production level at period 1, not the actual demand. Since the 1000 units are being made in period 1, period 8's upper limit is 1100 and lower limit is 900 . The only remaining change is for the frozen production rate during period 4. As in the RS strategy, the plan for period 4 is within the previous limits shown in Figure 3.1. Therefore, the frozen production level will equal the plan of 980 units. Again, the frozen production level will always equal the plan when that plan is within the flex limits. Otherwise, if the plan is greater than the upper limit, the frozen level will equal the upper limit. Similarly, if the plan is less than the lower limit, the frozen production level will be the same as the lower limit.

Moving on to the next iteration in Figure 3.6, period 2 is the current period. The demand is 1060 and is higher than the frozen production level, forcing a shortfall that will be filled with the use of inventory. The frozen levels for periods 3 and 4 remain at 1000 and 980, in that order. As period five enters the demand fence, the estimated plan is again within the limits, so the frozen level will equal the plan of 1030. The limits remain for periods 6 through 8, but need to be developed for period 9. Again, the production level at period 2 is still 1000 units. Therefore, the flex limits will remain the same

Figure 3.5. Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 1).

Figure 3.6. Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 2).
as the previous periods, 900 and 1100. Luckily, the predicted plan will remain between these flex bounds.

As another period passes, period 3 is the current period as shown in Figure 3.7. The demand at period 3 is again above the production level. Therefore, inventory is again used to fill the void between the two points. The predicted plan has risen steadily for every period since the last iteration. Therefore, the frozen production levels for periods 4 and 5 will not suffice for the predicted demand at those times. As period 6 enters the demand fence, the estimated plan is greater than its flex limit. Therefore, the production level will match the upper flex limit and will not be able to achieve the predicted demand. The flex limits stay the same as they move closer for periods 7 through 9. Unfortunately for most of these periods, the updated plan will most likely exceed the capability limits previously set, and will probably result in a deficit between demand and production. Since the new flex bounds are again dependent on the production level, these limits will not alter from the previous limits of 900 and 1100.

Looking into the future for this example, the flex limits will decrease slightly to 880 and 1080 during the next iteration as a result of the frozen level of 980 . However, production levels will increase for periods 5 and 6 , which will force the flex limits to shift upward accordingly. This example clearly displays that the PS strategy does not react quickly to variation in demand, but will shift to increasing or decreasing trends.

Figure 3.7. Using the Production Smoothing Strategy for Developing New Flex Bounds (Current Period is Period 3).

A result of this strategy that is not intuitive is the amount that production may increase over time. Until now, the rigidity of the PS strategy has been discussed, but the flexibility has not. If the forecast exceeds either of the limits continuously, the allowable production levels will shift accordingly. The reason is that there were phantom flex fences in the future, meaning that there are invisible limits automatically created by the PS strategy. This results from a supplier signing a contract with their customer to allow an x percent increase or decrease over the next y periods. Inherently, this agreement allows the bounds to deviate by $2 x$ over the next $2 y$ periods, by $3 x$ over the next $3 y$ periods, and so on as shown in Figure 3.8. The only rigid fences currently are the Demand Time Fence and the Flex Fence. Beyond these fences are the phantom fences which are assumed by the contract. For example, if the contract states that production may only increase/decrease five percent every four periods, then period 9 may increase/decrease ten percent since it is four periods beyond period 5 .

The point of this strategy is to create a more stable production schedule by limiting the flexibility of the production schedule. By utilizing the flex bounds, the customers may change their requested amount, but only within the given percentage of the current production schedule. Instead, usually PS is a manufacturing technique and the supplier holds finished goods inventory to buffer against fluctuations in demand from the customer. The supplier must then debate between the width of the limits and the amount of inventory desired to maintain strategic goals while ensuring proper

Figure 3.8. Current and Phantom Flex Fences.
customer service levels. As explained in Table 3.1, capacity is significant and inventory is insignificant when using the PS strategy. Therefore, capacity is only allowed to vary slightly over time and inventory buffers against demand variability. On the other hand, inventory is minimized for the RS approach as capacity is used to buffer against demand. This strategy would probably be used in an environment with expensive stock.

Now that the demand strategies have been discussed in detail, the model will be explained thoroughly with the use of flow charts. For clarity, examples will be provided during the discussion to more easily convey the logic of the model.

3.4 Model and Examples

The RBPS model (Figure 3.9) begins with management determining the time frame of the model. The analysis could be in terms of days, weeks, or months. However, the longer the time frame, the less flexible the process. For example, if each period represents a month, the model is not as flexible compared to daily periods. Such as in Figure 3.1, if the time frame in the figure represents 9 days, then the model will be much more flexible than if the figure symbolized 9 months. In this example, the periods will represent weeks. Once the time has been decided, management must determine the planning horizon of the process. The planning horizon (ET) is the amount of time into the future that the company will attempt to anticipate demand. This is the time frame over which forecasts will be determined. In the example, the

Table 3.1. Significance of Factors in the Demand Strategies.

Figure 3.9. Beginning of the RBPS Algorithm.
planning horizon is 12 weeks.
Once the higher level issues of time are decided, planning and scheduling should understand the goals of management to make the next few decisions. The length of the flex fence (LFF) is the number of time periods within the demand fence and the flex fence. A constant length will be used in each run of this research. However, various levels will be tested to understand the impact of the length of the flex fence. Intuitively, the longer the flex fence, the longer the lead time to support the demand variation, which will force the producer to hold more finished goods inventory. In the example, management does not want to be too stringent on their customers. Therefore, the length of the flex fences has been set at the small value of three periods.

A check must then be made to ensure that the length of the flex fences multiplied by the number of fences is less than or equal to the planning horizon [LFF * $2 \leq E T]$. As shown in Figure 3.1, there are two fences with one being the demand fence and the other, the flex fence. In the figure, the forecast must at least extend to period seven. If this statement is false, then the scheduler must review the scenario and adjust the inputs to ensure that the flex fences are maintained within the planning horizon. This is an important step because it ensures the company's forecasting time frame is longer than the time consumed by the flex fences. But for the example in this section, the demand and flex fences will only represent six periods together, and the planning horizon extends well beyond that point. Therefore, the
company may continue with its analysis.
Continuing the initial phase of the RBPS algorithm, the analytic study will employ demand data that utilizes the past forecast added to a value from the Normal distribution that is generated from a mean (μ) of zero and a defined standard deviation (σ), as depicted in Equation 3.1. To develop the demand value, the research will include the standard deviation (σ). This value determines the volatility allowed in the demand. As the standard deviation increases, the volatility in demand will also increase. The mean is 1000 units with a standard deviation of 100 in the corresponding example.

The exponential smoothing model (Equation 3.1) will be used to characterize potential trends in demand (Chen et. al. 2000, Graves 1999, Snyder et. al. 1999, Eppen and Martin, 1988, Foote et. al., 1988). To use this model, the exponential smoothing constant, or alpha (α), must be determined. Alpha is the weighted fraction of the increase/decrease allowed in the demand and has to be greater than or equal to zero, and less than or equal to one ($0 \leq \alpha \leq 1$). For instance, if an increase of 100 units is anticipated and alpha is .2 , then the new forecast will only increase by 20 units instead of the original 100. However, if the Normal variable, a_{t}, forces demand below zero, the demand value will be truncated at zero. There cannot be a negative demand. For the example, management wants to provide good customer service without excessive inventory. Thus, the company has set alpha (α) to .3 , so the exponential smoothing model may follow the demand more closely.

$$
\begin{align*}
& D_{t}=F_{t-1}+a_{t} \quad a_{t} \text { is } \operatorname{Normal}(0, \sigma) \\
& F_{t}=\alpha D_{t}+(1-\alpha) F_{t-1} \\
& \text { so } \\
& \begin{aligned}
& F_{t}=\alpha\left(F_{t-1}+a_{t}\right)+(1-\alpha) F_{t-1} \\
&=(\alpha+1-\alpha) F_{t-1}+\alpha\left(a_{t}\right) \\
&=F_{t-1}+\alpha\left(a_{t}\right) \\
& \text { where } \\
& 0 \leq \alpha \leq 1 \\
& \text { which } \\
& F_{t}=\text { Forecast made at time } t \\
& D_{t}=\text { Demand value at time } t
\end{aligned}
\end{align*}
$$

The purpose for using this methodology stems from the fact that exponential smoothing is the most commonly used forecast model (Box and Jenkins 1970) and it is the foundation for most fixed-model time-series techniques (Mentzer and Bienstock 1998). Trends may occur since the demand point at $t+1$ is dependent on the previous forecast at time t plus a new random value. Therefore, the fact that demand is correlated is a likely assumption when relating the scenario to industry (King et. al. 2002, Ryan 2001). Also, the demand is nonstationary (does not assume the mean stays the same) which is also applicable (Ryan 2001, Snyder et. al. 1999).

To illustrate this point, refer to Table 3.2 and Figure 3.10 displaying the Normal variant, demand, forecast, and average values over time. The values in the upper left of the table are defined by the user. The values in the lower portion of the table result from the given values. The first quantity of the forecast equals the starting demand point given at the top of the table since it

Table 3.2. Illustration of Nonstationary Demand Information.

Mean	1200
Std Dev	300
Alpha	0.2

Period	0	1	2	3	4	5	6	7	8
a_{t}		304	204	-56	638	-125	77	110	115
D_{t}		1504	1465	1245	1929	1293	1470	1518	1545
$\mathrm{~F}_{\mathrm{t}}$	1200	1261	1302	1290	1418	1393	1408	1430	1453
Average F	1200	1230	1254	1263	1294	1311	1325	1338	1351

Figure 3.10. Illustration of Nonstationary Demand Information.
is the only sample to build the forecast. From this point, a_{t} is chosen from a random variant in the Normal distribution. The demand value, D_{t}, results from the previous demand point plus the error term, a_{t}. Then, exponential smoothing is used to provide a weighted average of the previous forecast and the demand value for the forecast beyond the current time period. As the table displays, the forecast average increases over time showing that the values are nonstationary.

Now that the exponential smoothing constant and the standard deviation have been defined, the demand strategy must be set. As discussed in the previous section, the PS strategy focuses on minimizing variability in production by constraining the fluctuations in the future by the current volume of production. Inventory is then used to buffer against the demand oscillations. On the other hand, RS strategy minimizes inventory by allowing production to buffer against the demand unpredictability. For the illustrative example, the PS strategy will be used to minimize needed changes in capacity.

Before continuing with the rest of the algorithm, the notation must be defined as to how the values are represented. In this research, iterations will be used to calculate the current demand and the forecast for future time periods. As each iteration is started, another time period has passed and the demand and forecast will be calculated again. Therefore, the iterations and time periods must be used in the notation to ensure the simulations run correctly. These values will be defined by a variable, which is identified by
the iteration and period as shown in Equation 3.2. For instance, the notation $D(3,5)$ means the research is discussing the demand value in the third iteration and fifth time period. The current demand value may be identified by examining when the iteration equals the time. For instance, as shown in Table 3.3, all of the gray boxes represent the current demand. Any values in the white boxes represent the forecast for the periods beyond the current time frame. In this example, the planning horizon is 7 periods. For example, in the fourth iteration, $D(4,4)$ is 994 units which represents the actual demand. Every time period following (e.g. demand $(4,5)=$ demand $(4,6)=1011$, etc.) will represent the forecast.
Var(Iteration,TimePeriod)

As discussed previously with the scheduling strategies, the percentage allowance (PA) must be given to establish the flex limits. If the scheduler defines the PA to be five percent, then the flex limits will be five percent of the standard deviation above and below the demand point as designated by the scheduling strategy. In Figure 3.1, the PA was set to twenty percent. This idea is stated more clearly in Equation 3.3. If FF equals 0 , then the data is within the frozen demand fence. Otherwise, the FLP equals the PA for the flex fence. For the example in this chapter, management has decided to only allow thirty percent flexibility in the production process. So, during the demand fence, no flexibility will be allowed. However, for the flex fence, production may vary thirty percent of the standard deviation above and below

Table 3.3. Example of Interaction of Time and the Iterations.

the origin.
FLP = FF * PA
where:
FLP = Flex Limit Percentage
(Equation 3.3)
FF $=0$ or 1

At this point in the model, the company must input their initial demand value $[\mathrm{D}(0,0)]$. The initial demand value is important because it will be the forecast for the entire initial iteration, and the basis for further forecasts. For the example, the initial demand is set at 1000 units as shown in Table 3.4. The plan $[\mathrm{PI}(0,0)]$ is set equal to the demand value (1000 units in the example). This plan will be used to buffer the demand with excess inventory, or add to the demand as a result of previous shortfalls. Then, the origin
 also 1000 units in the example. When a new flex limit is determined, it is based upon the origin. Production is the amount that will be created at a given time. The production level will not always equal the plan, because the plan could be outside the allowable flex limits. Also, the inventory is calculated from the production level minus the plan. If the inventory is negative, then the volume produced could not meet the plan. Likewise, if the inventory is positive, there will be an accumulation of inventory since the production level will be above the amount consumed. But at this time, therewill be no inventory because the plan will equal the production level.

Finally, the system is reset with the time and the flex fence both equal to zero.

Table 3.4. Initial Iteration of RBPS Example.

Iteration	0	0	0	1	1	1	0
Flex Fence	0	0%	0.0%	0.0%	30.0%	30.0%	30.0%
Percentage allowance for flex fence	0%	0.0%					
Period	Current Period	1	2	3	4	5	6
Demand	1000	1000	1000	1000	1000	1000	1000
Net Requirements	1000	1000	1000	1000	1000	1000	
Origin	1000	1000	1000	1000	1000	1000	
Upper Bound		1000	1000	1030	1030	1030	
Lower Bound		1000	1000	970	970	970	
Production	1000	1000	1000	1000	1000	1000	
Inventory	0	0	0	0	0	0	

The RBPS system begins by entering the forecasted demand values into the system for iteration zero as displayed in Figure 3.11. This iteration has been designated with time zero because it represents the initial development of the system with the flex fences. For the initial iteration, every forecasted point equals the demand value $[D(0,0)=D(0,1), D(0,2), D(0,3), \ldots]$ since there is no other data to build the forecast yet. In the example in Table 3.4 , the forecast for each period $(t=1,2,3, \ldots)$ in the initial iteration equals the demand $[D(0,0)=1000]$. When the points have been entered, the system determines if the time period is equal to the length of the planning horizon [Time = ET?]. If not, the system continues by adding another period to the time and setting another forecast point. When the time does equal the planning horizon, the system resets by setting the time to zero to build the flex fences. In the example, the planning horizon is 12 periods (beyond the data shown in Table 3.4). Once the demand information has reached the end of the planning horizon, time is set to zero to build the rest of the table.

Since the time has been reset, the time and counter need to be increased by one to finish the initial iteration. Then, the plan for the first time period is set to equal the demand in period 1 (a.k.a. forecast since time does not equal the iteration) minus the inventory of the previous period. In Table 3.4 , the period 1 plan is equal to the demand since there is no inventory to subtract. Also, the origin is set equal to the plan for the RS strategy, and equal to the production level for the PS strategy. Therefore, the origin also equals 1000 in the example.

Figure 3.11. Start Rate-Based Planning and Scheduling.

Next, the upper flex limit is calculated by adding the origin to the rounded product of the percent allowance, standard deviation, and the flex fence as shown in Equation 3.4. The lower flex limit is also determined with a similar equation, but the multiplied quantity is subtracted from the origin as shown in Equation 3.5. For period 1 in the illustration, both the upper and lower flex limits equal the origin since the flex fence number is zero and negates any additional values in Equations 3.4 and 3.5. Then, the production level is set equal to the plan (1000 in the example) which allows the inventory to be calculated by subtracting the plan from the production level. All inventory values will be zero for the initial iteration since the plan and production are equal.

UFL(0, Time $)=$ Origin $(0,0)+$ Round $[P A(S D)(F F)]$
where :
UFL(Iteration, Time) = Upper Flex Limit at given Iteration and Time
SD = Standard Deviation
LFL(0, Time) $=$ Origin(0,0) - Round[PA(SD)(FF)]
where:
LFL(Iteration, Time) = Lower Flex Limit at given Iteration and Time

The counter is checked to understand if the end of the flex fence has been reached. If not, another counter and time unit are added and the process is repeated. In this case study, period 1 is not the end of the flex fence. Therefore, a unit is added to the counter and the time to reference period 2. Once again, the plan, origin, upper flex limit, lower flex limit, and
production will all equal 1000. Inventory is still zero since production and the plan are equal.

If the time has reached the end of the flex fence, another flex fence is added and the process is repeated. In the illustration, period 2 is the end of the demand fence. So the counter, time, and also the flex fence are all increased by 1 to represent the period 3 and flex fence 1 . The plan and origin equal the demand again. However, now that the flex fence is 1 , the upper flex limit and lower flex limit will widen. For the upper flex limit, the origin is added to the standard deviation (100) times the percent allowance (30\%) times the flex fence number (1). This results in an upper flex limit of 1030 units. The lower flex limit equates to the origin subtracted by the extra quantity, which results in a boundary of 970 units. The production level is then set equal to the plan and no inventory is left over. This model is run again for periods 4 and 5, which are identical to the numbers calculated in Period 3 as shown in Figure 3.12. However, at the end of period 5, the last time fence is reached. Once the number of flex fences reaches the desired number $(F F=1)$ and the time has passed within the fence $($ Counter $=L F F)$, iteration zero is complete. All of the information has been fed into the system, and the flex fences and flex limits have been formed. The system then begins the first iteration of the RBPS model.

As shown in Figure 3.13, the next iteration is initiated by adding a unit to the iteration number. This corresponds with moving from iteration 0 to iteration 1 in the example. The time is set equal to the value of the iteration,

Figure 3.12. Initial Iteration of the RBPS Example.

Figure 3.13. Start Iterations.
and the flex fence and counter are reset to zero. Note again that the current demand will always be when the time equals the iteration number. In the illustration, the iteration begins during period 1 . The demand for the current period equals the last actual demand, in the previous iteration, plus the error term defined as a random value from the Normal distribution. For illustration, the error term is added to the previous demand of 1000 as shown in Table 3.5. The resulting demand is 861 for period 1 in iteration 1 (current period) due to the previous demand of 1000 added to the error value of -139 as defined by the normal distribution. The values for the flex fence and counter are reset and the counter is added by one.

Now, the algorithm must determine how to calculate the plan. When the current time period represents the actual demand, not the forecast, the inventory from the previous iteration is needed. Otherwise, the plan will use the forecast and inventory values from the current iteration. The demand in the current period represents the actual demand when the number of the period equals the number of iterations. If so, the plan is calculated by subtracting the current inventory (Inv), from the previous iteration and time period, from the demand at the current time. However, if the time is not equal to the iteration, the plan is found by subtracting the inventory of the previous time period from the current iteration. If the inventory value is negative, then a backlog exists. There is a surplus of inventory when the value is positive. In this illustration, the period equals the iteration number and hence, the demand during period 1 is the actual demand, not the forecast. Therefore,

Table 3.5. First Iteration of RBPS Example.

Iteration							
Flex Fence	0	0	0	1	1	1	0
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%
Period	1	2	3	4	5	6	7
Demand	861	958	958	958	958	958	958
Net Requirements	861	819	777	765	753	741	
Origin	1000	1000	1000	1000	1000	1000	
Upper Bound		1000	970	1030	1030	1030	
Lower Bound		1000	970	970	970	970	
Production	1000	1000	970	970	970	970	
Inventory	139	181	193	205	217	229	

the plan, $\mathrm{Pl}(1,1)$, is equal to the actual demand minus the inventory of the previous period, 0 , of the previous iteration, 0 . Since the inventory was zero, the plan is equal to the demand $[\mathrm{PI}(1,1)=\mathrm{D}(1,1)]$. Next, the production and inventory values must be established.

When determining the production and inventory values, the plan is the focal point as shown in Figure 3.14. First, the algorithm must determine if a new iteration is beginning. If this is the case, then production will equal the frozen value in the demand fence, which also equates to the upper and lower flex limits. For the rest of the time in the iteration, if the plan is less than the lower flex limit for the iteration [PI(Iter,Time) < LFL(Iter,Time)], then production is set at the lower limit of the same iteration $[\operatorname{Pr}($ Iter, Time $)=L F L($ Iter, Time $)]$. Similarly, if the plan is greater than the upper flex limit [PI(Iter,Time) > UFL(Iter,Time)], then production is set at this upper bound $[\operatorname{Pr}$ (Iter,Time $=$ UFL(Iter,Time)]. Otherwise, production will equal the forecasted plan $[\operatorname{Pr}($ Iter, Time $)=\mathrm{Pl}($ Iter, Time $)]$. Currently, in the example, time equals the iteration number, which means that the production level is equal to the frozen level (1000 units) set by the narrowed upper and lower flex limits. For the rest of the iteration, the logic Time $=$ Iter will be false in Figure 3.14 and the production level will either be at or between the flex limits.

Then the inventory is calculated by subtracting the production by the plan $[\operatorname{lnv}($ Iter, Time $)=\operatorname{Pr}($ Iter, Time $)-\mathrm{Pl}($ Iter, Time $)]$. If the value is greater than zero, there is an excess of inventory. However, there is a backlog when the inventory is negative. The goal is to keep this value stable and near zero

Figure 3.14. Find Production and Inventory.
inventory. For the illustration, production of 1000 units is subtracted by the plan of 861 units to finish the period with an excess of 139 units. Period 1 is now finished and the example will resume by starting period 2 in Figure 3.13.

The time period and counter are increased by one to define the next period. Since period 2 does not equal the iteration, it is not the current period. However, period $2, D(1,2)$, is the first period after the actual demand and is the basis for the forecast for the rest of the iteration. To calculate this value, (1- α) is multiplied by the previous forecast and is added to α times the actual demand for the iteration. The resulting forecast for period 2 is 958 units
$[D(1,1) \times \alpha+D(0,2) \times\{1-\alpha\}]=(861 \times .3)+(1000 *\{1-.3\})]$.
Continuing in Figure 3.13, the next step is to set the flex limits and ensure that production is within these limits. First, a decision is made to understand if the counter is equal to the LFF. If not, the period is inside the flex fence and everything (origin, UFL, LFL) is simply shifted forward one time period by making them equal to the previous values in the previous iteration. One unit is added to the time and the algorithm is repeated. In this illustration, the counter is not equal to the LFF during period 2, so the origin and flex limits equal the values from the same period, but previous iteration. The origin is 1000 units, and the flex limits are also 1000 units showing that the point is within the frozen demand fence.

The logic then jumps to Figure 3.14 again to determine the production and inventory. Since time does not equal the iteration, the logic checks if the plan is less than the lower flex limit. In the example, this query is true since
the plan is 819 units and the lower flex limit is 1000 units as shown in Table 3.5. Therefore, production is held at 1000 units and increases the inventory to 181 units.

Then another period is added as the logic jumps back to Figure 3.13 and the counter is reset to symbolize period 3 of iteration 1 . Time is not equal to the iteration, so period 3 represents the forecast. Also, period 3 is not the period after the actual demand, therefore, the forecast for period 3 equals the forecast for period 2, 958 units. The plan, $\mathrm{Pl}(3,1)$, is then equal to the demand (958 units) minus the previous inventory (181 units), which equates to 777 units.

For the first time in the logic, the counter is equal to the LFF, so a new flex limit must be identified. But first, the origin must be determined to set the limit. If the FF does not equal 1, then the flex fence is simply narrowing and developing into the demand fence. Therefore, the origin is simply the same as the origin in the earlier iteration for that time period. However, if the FF equals 1 , the algorithm is at the end of the flex fence and must determine the origin and the limits for the next point. If $R S$ is used, then the origin equals the plan for the same time period and iteration [Or(Iter,Time) $=\mathrm{Pl}($ Iter, Time $)]$. On the other hand, if PS is applied, then the origin is equal to the production level for the iteration $[\mathrm{Or}($ Iter, $\mathrm{Time}=\operatorname{Pr}($ Iter,Iter $)]$. Then the counter is set to zero to begin a new fence. For the illustration, period three is in flex fence 0 and the origin stays the same as period 3 in the previous iteration.

Since the origin has been accepted, it is time to determine the flex
limits and ensure that production is within the limits. Zones are used to determine how the flex limits will shift as they enter a new flex fence. A point is considered in zone one if the forecast is greater than the upper flex limit. When the point is within the existing flex limits, it is in zone two. And zone three is the area with forecasted values less than the lower flex limit. For instance, point X is within the second zone in Figure 3.15(a). Therefore, when the flex limits narrow to the frozen point in the demand fence, they will narrow to the point within the bounds. On the other hand, point Y will force the limits to shift higher in (b). In this case, the demand fence will be maintained at the current level of the upper flex limit. Finally, in Figure 3.15(c), point Z will force the production level to shift down toward the forecasted data. However, the lower limit will stop the decline of production from reaching point Z. Instead, production will commence at a level equal to the lower flex limit. In this scenario, production will exceed the forecast which results in excess inventory.

From this discussion, the algorithm will test the origin to understand the zone in which it is present. If the origin is in Zone 1, then the logic summons the computations for Zone 1 bounds. Likewise, computations for Zone 3 are used if the origin is below the limits. Otherwise, the Zone 2 calculations are utilized to locate the new levels. In period 3 of the example, the plan of 777 units is below the lower flex limit. Since the point is within Zone 3, the frozen production level will equal the lower limit of 970 units as shown in Figure 3.16.

Once the bounds or frozen levels are formed, the algorithm calculates

Figure 3.15. Flex Fences with Zones.

Figure 3.16. First Iteration of the RBPS Example.
the production and inventory levels. For period 3, production will be 970 units, which is higher than the plan of 777 , resulting in 193 units of inventory. The algorithm then checks again to see if the last flex fence has been finalized. If so, the computer stops. If the last flex fence has not been completely adjusted, then another flex fence and time period are added to begin the next flex fence. The iterations will run until the demand and time fence have been completed.

Further elaboration of the zones will now be provided. If the origin is within zone one, the time is tested to understand if a new flex boundary must be initiated. If a new boundary must be developed, Equations 3.6 and 3.7 calculate the bounds to be equidistant from the origin. On the other hand, the Equations 3.8 and 3.9 are used to shift the limits higher (Figure 3.17) if the forecast is equal to or beyond the upper flex limit. Equation 3.8 simply shifts the upper flex limit from an earlier iteration. However, the lower flex limit uses the upper limit minus an amount twice the standard deviation, percentage allowance, and flex fence number. Notice that if the demand fence is entered, the lower limit will equal the upper limit since the number of the flex fence equals zero and cancels out the later portion of the equation.

For the third zone (Figure 3.18), Equations 3.10 and 3.11 are utilized to maintain the lower limit while shifting the upper limit down. However, whenever a new forecasted value enters the last flex fence, Equations 3.6 and 3.7 are used to find the limits. The forecasted point will be called the origin and is used as the basis for building the new limits.

Figure 3.17. Find Zone One Bounds.

Figure 3.18. Find Zone Three Bounds.

When the forecasted value is between both the upper and lower flex limit, the bounds narrow around the point by using Equations 3.6 and 3.7 as shown in Figure 3.19 to generate the new flex limit. Explained differently, if the demand point is moving from the flex fence to the demand fence, the flex limits will move to the plan. Therefore, the flex limits are equal to the plan at the same point in time $[\mathrm{PI}($ Iter, Time $)=\mathrm{UFL}($ Iter, Time $)=\mathrm{LFL}($ Iter, Time $)]$. So, production will later equal this plan. If the plan exceeds the upper limit, the production level will equal the value of the limit and inventory will be reduced since the plan is not met. Similarly, if the plan sinks below the lower flex limit, production will equal the

$$
\begin{align*}
& \text { UFL(Iteraion, Time) } \\
& =\text { Origin(Time) }+ \text { Round[SD } \times \text { PA } \times \text { FF] } \tag{Equation3.6}\\
& \text { LFL(Iteration,Time) } \\
& =\text { Origin(Time)-Round[SD } \times \text { PA } \times \text { FF] } \tag{Equation3.7}\\
& \text { UFL(Iteration,Time) }=\text { UFL(Iteration-1,Time) } \tag{Equation3.8}\\
& \text { LFL(Iteration,Time) } \\
& =\text { UFL(Iteration,Time)-Round[SD } \times \text { PA } \times 2 \times F F)] \tag{Equation3.9}\\
& \text { UFL(Iteration,Time) } \\
& =\text { LFL(Iteration,Time) }+ \text { Round[SD } \times \text { PA } \times 2 \times F F)] \tag{Equation3.10}\\
& \text { LFL(Iteration,Time) }=\text { LFL(Iteration-1,Time) } \tag{Equation3.11}
\end{align*}
$$

lower limit and inventory will be accumulated.
Continuing the example, the forecasts for period $4,5,6,7$ and higher are equal to the forecast for period 2. The plan for each period depends on

Figure 3.19. Find Zone Two Bounds.
the forecast minus the previous inventory level. The origin and flex limits simply shift one period closer for periods 4 and 5 . However, period 6 is just entering the flex fence. Therefore, the flex limits must be defined for period 6. Since the PS strategy is being used, the limits are set 30 units on either side from the current production level (1000 units in period 1).

Once more, in Table 3.6, the plan is less than production and results in an excess of 115 units of inventory (1000 units of production - plan of 885). This is also easily observed in Figure 3.20 as the plan is less than the frozen level, and therefore, the rate of production. The initial demand of 1024 for iteration two is subtracted by the 139 units of leftover inventory from iteration one to provide a plan of 885 . The production rate is 1000 units again and leaves an excess of 115 units of inventory. The inventory declines during time three because the plan is 863 units, but production is frozen at 970 units. Therefore, the resulting inventory decreases to 107 units. In the fourth time period, the forecast is still 978 , which results in a plan of 871 units when the 107 units in inventory are subtracted. Again, new demand limits must be adjusted. Since the plan of 871 units is below the LFL of 970, the production decreases to 970 where the frozen demand flex limit will stay. This demonstrates that if demand remains low, then the schedule will change to accommodate. This time, 99 units are left. As the iteration continues, the RBPS system slowly reduces the inventory as the LFL is used during each period.

When iteration three begins in Table 3.7, the demand jumps to 1069.

Table 3.6. Second Iteration of RBPS Example.

Iteration								
Flex Fence	0	0	0	1	1	1	0	
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%	
Period	2	3	4	5	6	7	8	
Demand	1024	978	978	978	978	978	978	
Net Requirements	885	863	871	879	887	895		
Origin	1000	1000	1000	1000	1000	1000		
Upper Bound		970	970	1030	1030	1030		
Lower Bound		970	970	970	970	970		
Production	1000	970	970	970	970	970		
Inventory	115	107	99	91	83	75		

Figure 3.20. Second Iteration of the RBPS Example.

Table 3.7. Third Iteration of RBPS Example.

Iteration								
Flex Fence	0	0	0	1	1	1	0	
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%	
Period	3	4	5	6	7	8	9	
Demand	1069	1005	1005	1005	1005	1005	1005	
Net Requirements	954	989	1024	1005	1005	1005		
Origin	1000	1000	1000	1000	1000	970		
Upper Bound		970	1024	1030	1030	1000		
Lower Bound		970	1024	970	970	940		
Production	970	970	1024	1005	1005	1000		
Inventory	16	-19	0	0	0	-5		

After subtracting the 115 units of inventory from iteration 2, the resulting plan is 954,16 less than the production of 970 . The forecast for the rest of the iteration remains high at 1005. This time for period 4, the plan is greater than production and results in a backlog of 19 units as shown in Figure 3.21. However, in period five, the plan of 1024 units is within the bounds of 1030 and 970 . Therefore, the frozen schedule will equal the plan of 1024 which results in zero inventory.

The significance of this example is the forecast for the first and second iterations resulted in excess inventory. However, the third iteration achieved zero inventory when the flex limits narrowed around the demand point. Regardless, the overall plan for the system did not allow production to fluctuate much due to the bounds imposed by management.

Note that for PS, the new limits are based on the actual rate of production. Therefore, inventory or backlog may exist throughout the planning horizon for PS if the flex limits are not able to contain the variation in demand. However, for a RS system, the inventory for the last flex period is always zero. This is because the newest flex fence is created around the forecasted plan at that time. For instance, if this example used RS, the initial iteration would be the exact same to initialize the system as shown in Table 3.8 and Figure 3.22. Similarly, the first iteration is the same until period 6. When the new flex limits are created, they are based on the plan for that period, rather than the production rate. Shown in Table 3.9, the bounds for the last period in the flex

Figure 3.21. Third Iteration of the RBPS Example.

Table 3.8. Initial Iteration Utilizing the Retailer Smoothing Strategy.

Iteration								
Flex Fence	0	0	0	1	1	1	0	
Percentage allowance for flex fence	0%	0.0%	0.0%	30.0%	30.0%	30.0%	0.0%	
Period	Current Period	1	2	3	4	5	6	
Demand	1000	1000	1000	1000	1000	1000	1000	
Net Requirements	1000	1000	1000	1000	1000	1000		
Origin	1000	1000	1000	1000	1000	1000		
Upper Bound		1000	1000	1030	1030	1030		
Lower Bound		1000	1000	970	970	970		
Production	1000	1000	1000	1000	1000	1000		
Inventory	0	0	0	0	0	0		

Figure 3.22. Illustration of Initial Iteration Utilizing the Retailer Smoothing Strategy.

Table 3.9. First Iteration Utilizing the Retailer Smoothing Strategy.

Iteration	1								0	1	1	1	0
Flex Fence	0	0	0	1									
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%						
Period	1	2	3	4	5	6	7						
Demand	861	958	958	958	958	958	958						
Net Requirements	861	819	777	765	753	741							
Origin	1000	1000	1000	1000	1000	741							
Upper Bound		1000	970	1030	1030	771							
Lower Bound		1000	970	970	970	711							
Production	1000	1000	970	970	970	741							
Inventory	139	181	193	205	217	0							

fence will always be around the estimated plan. In this example, the plan, and therefore the origin, is 741 units. As in the previous example, the flex limits will be 30 units above and below the origin. Hence, the flex limits are set to 711 and 771 units. Notice for the RS strategy, the last period in the flex fence will always have zero inventory since the flex limits are created around the plan and origin. This technique causes a dramatic change in the flex bounds as shown in Figure 3.23.

Likewise, the second iteration for the RS strategy will mimic the second iteration for the PS strategy. This time, however, the last two periods will differ. Period 6 changed in iteration 1 and will shift one period closer. Also, period 7 will enter the flex fence and must have its limits set. This time, the inventory for period six will encounter a shortage as the flex limits have been set much lower than the PS example and are not able to fulfill the anticipated orders as shown in Table 3.10. Note in Figure 3.24 how much higher the plan is than the flex limits in period 6. But once again, period 7's inventory is zero again as the bounds are set around the plan. There is a difference of at least 300 units between periods 6 and 7. The PS technique would not have allowed this much variation in production.

During the third iteration of the RS strategy, periods 3 through 5 imitate the PS strategy. But once again, periods 6 through 8 differ. Period 6 is still short due to limits set at low levels as shown in Table 3.11. This shortfall causes period 7's production deficiency to be even larger. But as shown in Figure 3.25 , the bounds are created around the plan to zero the inventory

Figure 3.23. Illustration of First Iteration Utilizing the Retailer Smoothing Strategy.

Table 3.10. Second Iteration Utilizing the Retailer Smoothing Strategy.

Iteration								
Flex Fence	0	0	0	1	1	1	0	
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%	
Period	2	3	4	5	6	7	8	
Demand	1024	978	978	978	978	978	978	
Net Requirements	885	863	871	879	887	1094		
Origin	1000	1000	1000	1000	741	1094		
Upper Bound		970	970	1030	771	1124		
Lower Bound		970	970	970	711	1064		
Production	1000	970	970	970	771	1094		
Inventory	115	107	99	91	-116	0		

Figure 3.24. Illustration of Second Iteration Utilizing the Retailer Smoothing Strategy.

Table 3.11. Third Iteration Utilizing the Retailer Smoothing Strategy.

Iteration								
Flex Fence	0	0	0	1	1	1	0	
Percentage allowance for flex fence	0%	0%	0%	30%	30%	30%	0%	
Period	3	4	5	6	7	8	9	
Demand	1069	1005	1005	1005	1005	1005	1005	
Net Requirements	954	989	1024	1005	1239	1120		
Origin	1000	1000	1000	741	1094	1120		
Upper Bound		970	1024	771	1124	1150		
Lower Bound		970	1024	711	1064	1090		
Production	970	970	1024	771	1124	1120		
Inventory	16	-19	0	-234	-115	0		

Figure 3.25. Illustration of Third Iteration Utilizing the Retailer Smoothing Strategy.
for period 8. This time, there is almost a 550 unit production difference between periods 6 and 8 as a result of the shortfalls during periods 6 and 7 .

The purpose of this section was to elaborate on the model used in this research, and to understand the impacts of flex fences and flex limits on inventory and customer service level in a range of environments of varying demand. This section may be considered a roadmap to implementing the Rate-Based Planning and Scheduling concepts. Examples encompassing both the PS and the RS strategies were used to explain the similarities and differences between the two. The main difference incorporates the logic to create a new flex fence. The RS strategy is dependent on the forecasted plan which allows for more variability. The PS strategy is dependent on the current production level to smooth production over time while using inventory as a buffer.

3.5 Assumptions

As with any research, many assumptions are implicit in the methodology. However, this study tries to minimize the number of assumptions to ensure that companies from various industries may benefit from the discussion. The purpose of this section is to list the assumptions which will provide some detail that is missing in previous sections.

First of all, the orders have known and constant lead times (Brandolese and Cigolini 1999, Brandolese et. al. 2001, Melchiors 2003, Harvey and Snyder 1990, Hariharan and Zipkin 1995, Hill 1999, Ben-Daya
and Raouf 1994, Graves 1999, Song 2000, Hill and Dominey 2001, Hill 1999). One half of the lead time has flexible ordering constraints; the other half is the frozen schedule. Many researchers also study the effects of dynamic lead time. Past research has used stochastic lead times (Molinder 1997, Harvey and Snyder 1990, Hariharan and Zipkin 1995, Xie 1998) with normal (Wu 2001, Eppen and Martin 1988), erlang (Bagchi and Hayya 1984), gamma (Burgin 1972, Foote et. al. 1988, Weng 1996), and exponential (Ryu and Lee 2003, Palaka et. al. 1998) distributions. Realistically, lead times are variable, but Foote et. al. (1988) state that the optimal policy is not vulnerable to varying lead times. Plus, quoted lead times are often rigid which makes this research more applicable (Pang and Yang 2002) as long as the assembly lead time is less than the quoted lead time (Brandolese and Cigolini 1999). Also, even though lead times can vary, they may be controlled by adding extra expense to ensure shorter lead times with greater customer service levels (Liao and Shyu 1991). But for this research, having fixed lead time is a simplifying assumption (Hill 2000).

To understand how the fixed lead times impact customer service levels, Inventory will be used to buffer against demand that may not be filled by production. The goal will be to maintain zero inventory. As the amount of inventory increases, it is understood that demand is below production and inventory is accumulating. On the other hand, if inventory levels stay negative, then production cannot achieve the rate of demand, and inventory will deplete or a backlog situation will occur. After the simulations have been
completed, the range of inventory will be analyzed to understand how much a supplier must hold to provide the desired customer service levels to the customer.

The empirical analysis is made assuming a single product without considering multiple layers of Bills-of-Materials (Brandolese and Cigolini 1999, Silver and Smith 1981, Graves 1999, Kiesmuller and Scherer 2003, Song 2000, Vendemia et. al. 1995, Xie 1998). This assumption is sufficient as long as the demand is independent for all products in a company (Lin 1989). Also, this is applicable because typically in lean environments, only similar products are made in the same production cell. This ensures that manufacturing of various products is independent and will not affect the lead time of another product.

Demand in this experiment is unknown and stochastic (Eppen and Martin 1988, Vendemia et. al. 1995, Molinder 1997, Swaminathan and Tayur 1998, Ryan 2001). The use of exponential smoothing will allow variability in demand (Eppen and Martin 1988, Foote et. al. 1988, Snyder et. al. 1999, Enns 2002). Exponential smoothing has been used in many papers (Chen et. al. 2000, Graves 1999, Snyder et. al. 1999, Eppen and Martin, 1988, Foote et. al., 1988), and is the most commonly used forecast model (Box and Jenkins 1970). Also, most fixed-model time-series techniques are based on this technique (Mentzer and Bienstock 1998). Exponential smoothing is also applicable as Graves (1999) notes that demand histories perform like a random walk with repeated changes in the rate of growth or decline, and
direction. Additionally, forecasts are typically built from historical forecasts with the assumption that the latest demand points are the best predictors for the future demand. This is the basis of exponential smoothing, which emphasizes the assumption of applicability (Graves 1999, Bagchi et. al. 1986, Hayya 1979, Hayya March 1980, Hayya June 1980).

The demand, in the exponential smoothing model, is generated using the previous demand point with a percentage increase or decrease due to an error term. These error points are independent and identically distributed (i.i.d.) (Bagchi et. al. 1986, Hayya 1979, Hayya March 1980, Hayya June 1980) using the normal distribution based on an average demand with a given standard deviation (Liao and Shyu 1991, Bagchi and Hayya 1984, Burgin 1972, Federgruen and Zipkin 1984, Eppen and Martin 1988, Ouyang and Wu 1997, Ben-Daya and Raouf 1994). The normal distribution is justified as Bagchi et. al. (1986) note that when lead times are constant, the sum of i.i.d. random variables approaches normality. New values will emerge as each iteration of the experiment is tested. Since the newest value is dependent on the previous iteration, the demand values are correlated. The assumption of correlation is important since it is applicable to industry (Toktay and Wein 2001, Chen et. al. 2000, King et. al. 2002, Swaminathan and Tayur 1998, Ryan 2001). Also, the correlation in the exponential smoothing model causes the demand to be nonstationary which is also applicable (Ryan 2001) and an assumption in many papers (Gudum et. al. 2002, Graves 1999, Federgruen and Zipkin 1984, Vendemia et. al. 1995, Harvey and Snyder 1990, Enns
2002). Although, Hill (2000) warns that research must be careful when dealing with nonstationary demand since the aggregate demand may be highly dependent on when the lead time starts and ends. As stated by Snyder et. al. (1999), the use of exponential smoothing is used to acknowledge the impact of a changing mean in nonstationary demand.

When exponential smoothing models are used, the potential of variation in demand increases over time. Gilbert (2003) provided a means to predict the amount of variation with a given lead time. The purpose was to identify the target safety stock to ensure good service levels and to determine flex capacity requirements. Gilbert calculated the standard deviation of the inventory that is necessary to fulfill demand for items with lead times (Equation 3.12). As displayed in Figure 3.26, this calculation forces the flex requirements to widen as the lead times increase. As stated by Chen et. al. (2000), "It is clear that longer lead times lead to larger increases in variability. In addition, we see that the larger the smoothing parameter, the larger the increase in variability."

$$
\begin{equation*}
\sigma_{\mathrm{I}}=\sigma \sqrt{1+(1+\alpha)^{2}+(1+2 \alpha)^{2}+\ldots+(1+(L-1) \alpha)^{2}} \tag{3.12}
\end{equation*}
$$

Some models are based solely on the use of demand data, or a feedforward path. However, this research will base the production level on the plan for the system. The plan will consider the amount of demand minus the inventory or backlog (or lack of inventory) left from the previous period

Comparison of Flex Requirement Profile
for 6-Week vs. 1-Week Lead Times

$\cdots \cdots$ lower bound-6 $\cdots \cdots$ upper bound-6 $\quad \longrightarrow$ lower bound-1 \quad - upper bound-1

Figure 3.26. Six Week vs. One Week Lead Time Flex Requirement Profile.
(Gallego and Ozer 2001). "This control approach is based both on a feedforward path and on a feed-back one." The basis for this assumption is that the system will be much more robust to noise in demand data or production limitations. Even though the use of inventory makes the model more complex, it is much more realistic as the feed-back path, using inventory, is a best-practice in industry today (Brandolese and Cigolini 1999).

The demand environment would be considered a build-to-stock situation for the supplier. As orders are received, the supplier pulls the inventory from finished goods or uses the allotted production to meet the demand. The goal is to have enough inventory in finished goods to ensure that only the desired backlog exists. If demand may be met with production alone, then the environment may be considered a make-to-order situation. On the other hand, when the lead times are so long, the customer will never be able to receive items from the supplier to directly fill the consumers' orders. Therefore, the customer will always maintain the replenish-to-stock situation.

To meet the requirements in these demand environments, but yet restrict the volatility of production, limits are placed on the production level. This assumption is realistic for the fact that there is a delay between the time a shift in demand is planned, and the time in which the production rate may actually increase to meet the demand (Silver and Smith 1981). To facilitate the limitation, these bounds are a percentage of the standard deviation above and below the original point. Standard deviation is used because it provides
the only information regarding the volatility of demand. Therefore, as the standard deviation increases, the flex limits will also increase to buffer the variability. And vice versa, as the demand variation decreases, the width of the limits will also decline.

3.6 Experiment

The analysis will be made using simulation over several iterations with multiple replications (Geunes et. al. 2001, Ryan 2001, Ryan 1998, Molinder 1997, Hopp and Roof Sturgis 2000, Xie 1998). Simulation will be used to enhance the lessons from Gilbert (2003) since linear programming is unable to analyze the flexibility constraints. Also simulation allows the use of stochastic demand to test the model.

Five factors (independent variables) will be considered for this study (Moen et. al. 1999). The factors and their associated levels are shown in Table 3.12. Large values of standard deviation (or demand variability) will force the demand values to fluctuate more rapidly and inconsistently. The standard deviation, which is really standard error as the variation is created period to period, will allow many organizations to relate to this research depending on their variation in demand. As explained by the Poisson distribution, the demand is totally random when the standard deviation is equal to the square root of the mean (Montgomery 1997). However, issues such as batching and shifting of demand may create more volatility in the process. The concentration on the current demand is represented by the

Table 3.12. Factors and Levels for the Research.

Factors	Levels
Demand Variability or Standard Deviation (σ)	$2 \%, 20 \%$ of demand
Dependency on Demand (α)	$.1, .5$
Width of Flex Bounds	Multiple of $2.5 \%, 20 \%$
Length of Time Fence	2,20 periods
Demand Strategy	PS, RS

alpha value in the exponential smoothing model. The higher the value of alpha, the more emphasis is given to the current demand, which will add more noise and instability to the forecast. The width of the flex bounds is the percentage standard deviation away from the forecast for the period. The wider the flex bounds, the more production may shift to changes in demand. The length of the time fence refers to the amount of time each flex bound remains at the same level or may be characterized as the planning horizon. For instance, in Figure 3.27, the flex fences are four periods long and plus or minus 20% of the standard deviation around the origin. In Figure 3.28, the flex fences are three periods long and the flex limits are placed ten percent of the standard deviation around the origin. And the demand strategy factor defines whether the Production Smoothing Strategy or the Retailer Smoothing Strategy will be used in the experiment. As stated earlier, the new flex fences for the RS are determined based on the last forecasted plan within the flex fence. The purpose for RS is to allow the flexibility for the customer in their initial forecast, while minimizing the changes made to the forecast later. By maintaining the bounds around the initial plan, the supplier has time to plan for increases or decreases in production. On the other hand, PS develops the limits based on current production. This technique tries to minimize the variability to the production schedule which will also reduce the level of work-in-process needed to buffer the variation.

The factors and levels are examined using the following response (dependent) variables (Moen et. al. 1999):

Figure 3.27. Four Period Long Flex Fences with 20\% Flex Limits.

Figure 3.28. Three Period Long Flex Fences with 10\% Flex Limits.

- Inventory stability (Lummus et. al. 2002)
- Schedule Stability (Sridharan et. al. 1987, Sridharan et. al. 1988)
- Production
- Inventory
- Plan

Inventory stability will provide an understanding of how much the inventory varies around its target. The more volatile the inventory, the more likely that customer orders will not be met and could potentially mean lost business. Also, schedule stability is the amount that demand varies over time as described by Sridharan et. al. $(1987,1988)$. The research will compare the schedule stability to the actual demand values to understand how much the flex fences limit the demand values. The schedule stability will be compared to the standard deviation of the schedule to analyze the situation in terms often used by industry. Production and the plan will be compared to demand to understand the reduction in volatility. The inventory response variable will provide insight into the level of safety stock required for a given customer service level. These results will be analyzed using statistical analyses to determine whether each factor is significant and should be controlled in industry.

3.7 Experimentation Procedure

The experimentation procedure has a three step process. The first step will provide some basis for the simulations. The mean, standard deviation,
skewness, and kurtosis will be analyzed across iterations to confirm that the simulation has reached a steady state. The result of this procedure is the number of replications required for the rest of the experiment.

A factorial deisgn will be utilized in this research to understand the impact of the factors on the response variables. A total of $32\left(32=2^{5}\right)$ runs will be made for the full factorial experiment as shown in Table 3.13. The number of replications required (mentioned in the preceding paragraph) is run to identify the significant factors in the experiment. From the results, insignificant factors will be removed from the analysis and the remaining factors will be further tested.

The end result of the experiment will be a group of tables that practitioners may use to implement RBPS in their own company. Shown in Table 3.14 is an example of how the data will appear. For each page is a given standard deviation and desired customer service level. Then, practitioners may search through the table to justify whether they should hold more inventory with less flexibility, or vice versa. The point of the tables is to allow the practitioner to weigh the benefits and disadvantages of various levels of inventory and flex limits.

3.8 Anticipated Results

In this research, the simulation will not find an optimal solution for each set of factors. Instead, readers using this methodology will be able to weigh the costs in their company regarding customer service level, safety stock level,

Table 3.13. Full Factorial for 2^{5} Design.

Test	Standard Deviation	Alpha	Flex Bound Width	Flex Bound Length	Demand Strategy
1	0.02	0.1	0.025	2	PS
2	0.02	0.5	0.025	2	PS
3	0.02	0.1	0.2	2	PS
4	0.02	0.5	0.2	2	PS
5	0.02	0.1	0.025	20	PS
6	0.02	0.5	0.025	20	PS
7	0.02	0.1	0.2	20	PS
8	0.02	0.5	0.2	20	PS
9	0.02	0.1	0.025	2	RS
10	0.02	0.5	0.025	2	RS
11	0.02	0.1	0.2	2	RS
12	0.02	0.5	0.2	2	RS
13	0.02	0.1	0.025	20	RS
14	0.02	0.5	0.025	20	RS
15	0.02	0.1	0.2	20	RS
16	0.02	0.5	0.2	20	RS
17	0.2	0.1	0.025	2	PS
18	0.2	0.5	0.025	2	PS
19	0.2	0.1	0.2	2	PS
20	0.2	0.5	0.2	2	PS
21	0.2	0.1	0.025	20	PS
22	0.2	0.5	0.025	20	PS
23	0.2	0.1	0.2	20	PS
24	0.2	0.5	0.2	20	PS
25	0.2	0.1	0.025	2	RS
26	0.2	0.5	0.025	2	RS
27	0.2	0.1	0.2	2	RS
28	0.2	0.5	0.2	2	RS
29	0.2	0.1	0.025	20	RS
30	0.2	0.5	0.025	20	RS
31	0.2	0.1	0.2	20	RS
32	0.2	0.5	0.2	20	RS

Table 3.14 Example of Output Table.

		Flexible Capacity									
		5	10	15	20	25	30	35	40	45	50
	1										
	2										
	3										
	4					Inv					
	5										
	6										
	7										
	8										

and the allowed limits of flexibility. All of this information will be based on the standard deviation and the alpha for the exponential smoothing model.

However, trends are anticipated in this analysis. As shown in Table 3.15:

- If all of the factors stay the same except safety stock increases, then the customer service level will increase (row 1);
- If the safety stock increases in proportion to demand, the customer service level should stay about the same (row 2);
- If the flex limits increase with the demand variation, production will tend to shift more as the boundaries are further apart. This may cause customer service to diminish as production may not be able to change quick enough to meet demand (row 3);
- If only alpha and the standard deviation increase, the customer service level will definitely drop (row 4);
- When alpha and the standard deviation increase, the system may have to increase the flex boundaries to try to catch demand and help the customer service level (row 5); and,
- An environment with an increase of alpha, standard deviation, and flex limits must also have an increase in safety stock in order to combat the high variation in demand caused by the high standard deviation and the alpha (row 6).

Table 3.15. Anticipated Results from the Research.

Chapter 4

Results

4.1 Introduction

No study is conclusive without data. This chapter is dedicated to the results of the study. First, an initial test is performed and the results are summarized. The significance of factors is determined and irrelevant factors are eliminated from the study. A set of tables is then provided to understand how to implement either the Retailer Smoothing or Production Smoothing techniques. Finally, a summary of the trends is provided as a result of the tables.

4.2 Initial Test

The factorial design from Table 3.13 was run and the data were analyzed using the JMP statistical software. The main effects were consistently significant (or not significant) for all of the response variables and the reaction to changes in the levels was observed. As shown in Tables 4.1, 4.2, and 4.3, the statistical model represented the Production Smoothing technique well since RSquare and the ANOVA F-Ratio are both high and the lack of fit error is insignificant. By utilizing the Pareto chart and parameter estimates, the flex bound length, flex bound width, and standard deviation are significant for the Production Smoothing technique (Figure 4.1 and Table 4.4).

Similarly for the Retailer Smoothing strategy, Tables 4.5, 4.6, and 4.7,

Table 4.1. Inventory Summary of Fit for the Initial Production Smoothing Analysis.

RSquare	0.97868
RSquare Adj	0.968686
Root Mean Square Error	2926.153
Mean of Response	22799.77
Observations (or Sum Wgts)	48

Table 4.2. Initial ANOVA for Inventory using Production Smoothing.

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	15	1.25775 e 10	838501250	97.9286
Error	32	273995882	8562371.3	Prob $>$ F
C. Total	47	1.28515 e 10		$<.0001$

Table 4.3. Initial Lack of Fit for the Inventory Model using Production Smoothing.

Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	16	163056275	10191017	1.4698
Pure Error	16	110939607	6933725.4	Prob > F
Total Error	32	273995882		0.2248
				Max RSq
		0.9914		

Figure 4.1. Initial Pareto for Inventory using Production Smoothing.

Table 4.4. Initial Parameter Estimates for Inventory using Production Smoothing.

| Term | Estimate | Std Error | t
 Ratio | Prob>\|t| |
| :--- | :--- | :--- | :--- | :--- |
| Intercept | 2143.7569 | 1237.291 | 1.73 | 0.0928 |
| Standard Deviation | 191478.96 | 5135.446 | 37.29 | $<.0001$ |
| Alpha | -1155.954 | 2313.347 | -0.50 | 0.6207 |
| (Standard Deviation-0.10833)*(Alpha-0.3) | -15597.24 | 28702.12 | -0.54 | 0.5906 |
| Flex Bound Width | -19284.41 | 4826.901 | -4.00 | 0.0004 |
| Standard Deviation-0.10833)*
 (Flex Bound Width- | -199536.6 | 58690.81 | -3.40 | 0.0018 |
| (Al25) | | | | |

Table 4.5. Inventory Summary of Fit for the Initial Retailer Smoothing Analysis.

RSquare	0.995159
RSquare Adj	0.992889
Root Mean Square Error	714.9816
Mean of Response	6291.256
Observations (or Sum Wgts)	48

Table 4.6. Initial ANOVA for Inventory using Retailer Smoothing.

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	15	3362543188	224169546	438.5175
Error	32	16358357.4	511198.67	Prob $>$ F
C. Total	47	3378901546		$<.0001$

Table 4.7. Initial Lack of Fit for the Inventory Model using Retailer Smoothing.

Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	16	12815426	800964	3.6172
Pure Error	16	3542931	221433	Prob $>$ F
Total Error	32	16358357		0.0071
				Max RSq

the model explains the data well since RSquare and the F-Ratio for ANOVA are both high. Again, the lack of fit error does not describe much of the model. However, this time, the standard deviation, alpha, and flex bound length are significant, and flex bound width is not significant (Figure 4.2 and Table 4.8). Therefore, it is clear that flex bound width may be eliminated from the Retailer Smoothing study.

However, there were two issues with the analysis. The first problem may be seen in the residual of the variation versus the predicted values plots (Figures 4.3 and 4.4). The predicted variation grows as the residual increases. For a proper analysis, the residuals should have remained consistent. Due to this issue, a transformation of the data must be made in hope that the variation will be consistent. The transformation should also lead toward a more accurate statistical model that may predict values better than the points in Figures 4.5 and 4.6.

Also, the range between the minimum and the maximum values was too large. When the values vary this much, it is hard to create and quantify a model to understand changes in the factors. When the range is this large and the variation is not constant, a transformation is needed to review the information. Performing the transformation will not impact the results since every data point will be altered by the same nonlinear function.

The second issue is that there is not enough information in the data to statistically identify trends in the Retailer Smoothing study. As in Figure 4.6, there are very few points in the upper right-hand corner to derive a proper

Figure 4.2. Initial Pareto for Inventory using Retailer Smoothing.

Table 4.8. Initial Parameter Estimates for Inventory using Retailer Smoothing.

| Term | Estimate | Std Error | t
 Ratio | Prob>\|t| |
| :--- | :--- | :--- | :--- | :--- |
| Intercept | -6253.804 | 302.322 | - | $<.0001$ |
| Standard Deviation | 54686.288 | 1254.804 | 43.58 | $<.0001$ |
| Alpha | -1623.632 | 565.2474 | -2.87 | 0.0072 |
| (Standard Deviation-0.10833)*(Alpha-0.3) | -11311.37 | 7013.129 | -1.61 | 0.1166 |
| Flex Bound Width | 840.71858 | 1179.414 | 0.71 | 0.4811 |
| (Standard Deviation-0.10833)*(Flex Bound Width-
 $0.1125)$ | 11422.46 | 14340.62 | 0.80 | 0.4316 |
| (Alpha-0.3)*(Flex Bound Width-0.1125) | -5340.726 | 6459.97 | -0.83 | 0.4145 |
| (Standard Deviation-0.10833)*(Alpha-0.3)*(Flex
 Bound Width-0.1125) | -50560.75 | 80150.05 | -0.63 | 0.5326 |
| Flex Bound Length | 637.5655 | 11.46652 | 55.60 | $<.0001$ |
| (Standard Deviation-0.10833)*(Flex Bound
 Length-11) | 5521.3774 | 139.4227 | 39.60 | $<.0001$ |
| (Alpha-0.3)*(Flex Bound Length-11) | -102.4138 | 62.80527 | -1.63 | 0.1128 |
| (Standard Deviation-0.10833)*(Alpha-0.3)*(Flex
 Bound Length-11) | -583.0313 | 779.2366 | -0.75 | 0.4598 |
| (Flex Bound Width-0.1125)*(Flex Bound Length-
 11) | 99.465255 | 131.046 | 0.76 | 0.4534 |
| (Standard Deviation-0.10833)*(Flex Bound Width-
 0.1125)*(Flex Bound Length-11) | 1301.8676 | 1593.402 | 0.82 | 0.4199 |
| (Alpha-0.3)*(Flex Bound Width-0.1125)*(Flex
 Bound Length-11) | -575.4818 | 717.7745 | -0.80 | 0.4286 |
| (Standard Deviation-0.10833)*(Alpha-0.3)*(Flex
 Bound Width-0.1125)*(Flex Bound Length-11) | -5429.834 | 8905.561 | -0.61 | 0.5464 |

Figure 4.3. Initial Residual versus Prediction for Production Smoothing.

Figure 4.4. Initial Residual versus Prediction for Retailer Smoothing.

Figure 4.5. Actual Inventory Versus Predicted for the Initial Production Smoothing Analysis.

Figure 4.6. Actual Inventory Versus Predicted for the Initial Retailer Smoothing Analysis.
model. To resolve this issue, more data points are necessary to provide a sound analysis. Therefore, the number of replications will be increased for the next series of analyses for the RS method.

4.3 Further Results with Transformations

As discussed by Box and Cox (1964), there are normally four assumptions supporting the examination techniques of linear models using analysis of variance and regression: 1) simplicity of structure for the expected response variable; 2) consistent error variance; 3) normal distribution for errors; and 4) independent errors. Any time that the first three assumptions are not followed, a non-linear transformation is considered to improve the model fit and to ensure a constant variance. Box and Cox continue to explain that the transformations may not be used to validate the assumptions, but rather to express the model in terms of its input factors. As stated by Box and Cox, the purpose of the transformation is to provide a "more efficient and valid analysis." The most popular transformation is the log transformation, which will be used in this research. The goal is to develop a predictable model with constant variance. However, Box and Cox wrote that the transformation is strictly to be used for the analysis. The concluding statistics must use the original and untransformed scale to explain the results.

Therefore, the log of each response was used to identify the statistical significance of each factor. As shown in Table 4.9, the maximum value

Table 4.9. Comparison of the Maximum and Minimum Response Variables
Before and After the Transformation.

	Standard Deviation	Alpha	Flex Bound Width	Flex Bound Length	s of all samples of Inventory	log(s of all samples of Inventory)
Maximum	0.2	0.1	0.2	20	24019.94	10.09
Minimum	0.02	0.5	0.2	2	77.74	4.35

divided by the minimum was almost 309 in the original study; thus showing that the difference between these two values was too large to expect constant error variance over this range of conditions. However, after the transformation, the ratio between the max and min was just 2.32. The resulting data will be much easier to model since the ratio is much smaller. Also, as may be seen in Figure 4.7, the resulting Residual vs. Predicted plot for average inventory displays a more constant variance. In addition, the model is better defined due to an increase in replication data points as shown in Figure 4.8. These changes in the research have improved the statistical analysis (see Appendix) to achieve the results in the next section.

4.4 Final Synopsis and Trends

As stated earlier in the analysis, but solidified from the transformation, there are consistent results in the research. For the Production Smoothing technique, the alpha variable had a negligible effect. Therefore, the analysis was only performed with the standard deviation, flex bound length, and flex bound width factors. On the other hand, flex bound width was not significant for Retailer Smoothing. Hence, the analysis was performed using the alpha, standard deviation, and the flex bound length factors. The statistical analyses that lead to these results may be found in the Appendix. The next two sections will describe in detail the results from the Retailer Smoothing analysis and the Production Smoothing analysis.

Figure 4.7. Residual versus Predicted Values for Average Inventory After the Transformation.

Figure 4.8. Actual vs. Predicted Values for Standard Deviation of Inventory with More Data for the Extreme Points.

4.4.1 Retailer Smoothing Results and Trends

The average inventory is mostly dependent on the interactions between the standard deviation, alpha, and flex bound length factors. However, these individual factors have a significant impact on the variation of inventory. The larger the standard deviation and the longer the flex bound length, the more variable the inventory will be. Though, as alpha is set larger, the variation of inventory is reduced since the alpha allows production to follow the demand more closely.

Standard deviation is the most significant factor on the average shift in production. As the standard deviation increases, the shift will also increase. Additionally, standard deviation, alpha, and the flex bound length are all significant in regards to the volatility of the shift in production. The interaction between alpha and flex bound length is also significant. As all of the factors increase, the production shift variation will also increase.

As may be seen in Tables 4.10 through 4.19, as alpha increases, the necessary inventory to buffer the demand will lessen since production will more closely follow demand. Conversely, as standard deviation increases, the inventory buffer must also increase to buffer the demand variation. Also, as the flex bound length increases, a significantly larger amount of inventory must be stored as the system is constrained from following changes in demand requirements. The summary of the inventory necessary for RS is valid as the data represents a normal distribution and was found to be a good estimation of the actual inventory needed.

Table 4.10. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=2$.

Table 4.11. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=4$.

Table 4.12. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=6$.

									$\begin{array}{r} \text { Ret } \\ \text { Flex } \end{array}$	Smoothing und Length								
										Standar	eviation							
			Inventory	Prod. Snift	Inventory	Prod. Shift												
$\frac{\frac{\pi}{2}}{\frac{2}{4}}$	5\%	99.5\%	1.876	0.029022	4.881	0.072446	8.934	0.138026	12.952	0.198877	16.215	0.265421	19.299	0.330575	22.400	0.386048	27.151	0.456901
		99.0\%	1.695		4.411		8.073		11.705		14.653		17.440		20.243		24.536	
		97.5\%	1.428		3.715		6.800		9.859		12.342		14.690		17.050		20.667	
		95.0\%	1.198		3.118		5.707		8.274		10.359		12.329		14.310		17.345	
		90.0\%	0.933		2.428		4.444		6.443		8.066		9.601		11.144		13.507	
	10\%	99.5\%	1.529	0.039187	3.864	0.097635	7.525	0.184138	10.970	0.268878	14.294	0.351565	17.000	0.428704	19.694	0.516114	22.626	0.601822
		99.0\%	1.382		3.492		6.800		9.913		12.918		15.363		17.798		20.447	
		97.5\%	1.164		2.941		5.728		8.350		10.880		12.940		14.991		17.222	
		95.0\%	0.977		2.469		4.807		7.008		9.132		10.860		12.581		14.454	
		90.0\%	0.761		1.922		3.744		5.457		7.111		8.457		9.797		11.256	
	15\%	99.5\%	1.406	0.049910	3.536	0.124669	7.114	0.233568	9.858	0.341045	13.297	0.436583	16.220	0.537221	18.887	0.646171	22.042	0.755491
		99.0\%	1.271		3.195		6.429		8.909		12.016		14.658		17.068		19.919	
		97.5\%	1.070		2.691		5.415		7.504		10.121		12.346		14.376		16.777	
		95.0\%	0.898		2.259		4.545		6.298		8.494		10.362		12.065		14.081	
		90.0\%	0.699		1.759		3.539		4.904		6.615		8.069		9.396		10.965	
	20\%	99.5\%	1.329	0.060674	3.281	0.152468	6.577	0.279470	9.931	0.403754	12.537	0.540977	15.299	0.638618	17.775	0.768761	20.477	0.880434
		99.0\%	1.201		2.965		5.944		8.975		11.329		13.826		16.063		18.505	
		97.5\%	1.012		2.497		5.006		7.559		9.543		11.645		13.529		15.586	
		95.0\%	0.849		2.096		4.202		6.344		8.009		9.774		11.355		13.081	
		90.0\%	0.661		1.632		3.272		4.941		6.237		7.611		8.842		10.187	
	25\%	99.5\%	1.277	0.071824	3.188	0.180446	6.280	0.331105	9.049	0.467085	12.096	0.608680	14.169	0.734206	17.139	0.876800	19.793	1.025630
		99.0\%	1.154		2.881		5.675		8.177		10.931		12.804		15.488		17.887	
		97.5\%	0.972		2.427		4.780		6.888		9.207		10.785		13.045		15.066	
		95.0\%	0.816		2.037		4.012		5.781		7.728		9.051		10.949		12.645	
		90.0\%	0.636		1.586		3.124		4.502		6.018		7.049		8.526		9.847	
	30\%	99.5\%	1.193	0.082461	3.086	0.209264	6.211	0.376286	9.133	0.548361	11.964	0.705162	14.582	0.853651	16.837	1.014800	20.022	1.175105
		99.0\%	1.078		2.789		5.613		8.253		10.812		13.178		15.215		18.093	
		97.5\%	0.908		2.349		4.728		6.952		9.106		11.099		12.816		15.240	
		95.0\%	0.762		1.972		3.968		5.834		7.643		9.316		10.756		12.791	
		90.0\%	0.594		1.535		3.090		4.543		5.952		7.254		8.376		9.960	
	35\%	99.5\%	1.194	0.096363	3.098	0.239557	5.974	0.433733	9.207	0.602753	11.817	0.807172	14.025	0.973737	16.450	1.127718	19.596	1.285397
		99.0\%	1.079		2.800		5.399		8.320		10.679		12.674		14.865		17.708	
		97.5\%	0.909		2.358		4.547		7.008		8.995		10.675		12.521		14.916	
		95.0\%	0.763		1.979		3.816		5.882		7.549		8.959		10.509		12.518	
		90.0\%	0.594		1.541		2.972		4.580		5.879		6.977		8.183		9.748	
	40\%	99.5\%	1.194	0.107754	2.934	0.266173	6.000	0.486829	8.764	0.665484	11.177	0.849153	14.173	1.063668	16.796	1.284378	18.686	1.417054
		99.0\%	1.079		2.651		5.422		7.920		10.101		12.808		15.178		16.886	
		97.5\%	0.909		2.233		${ }^{4.567}$		${ }_{6}^{6.671}$		8.508		10.788		12.784		14.223	
		90.0\%	0.594		1.459		2.985		4.360		5.560		7.051		8.355		9.296	
	45\%	99.5\%	1.174	0.120288	2.972	0.300932	5.933	0.539903	8.726	0.741860	11.428	0.955038	14.085	1.178885	16.558	1.352923	18.511	1.566041
		99.0\%	1.061		2.686		5.362		7.885		10.327		12.729		14.964		16.729	
		97.5\%	0.894		2.262		4.516		6.642		8.698		10.721		12.604		14.090	
		95.0\%	0.750		1.899		3.790		5.574		7.300		8.998		10.578		11.826	
		90.0\%	0.584		1.479		2.952		4.341		5.685		7.007		8.237		9.209	
	50\%	99.5\%	1.131	0.133743	2.884	0.331817	5.806	0.588603	8.758	0.829166	11.547	1.055053	13.646	1.263553	16.476	1.500825	19.458	1.756493
		99.0\%	1.022		2.606		5.247		7.914		10.435		12.332 10387		14.889		17.584 14.810	
		97.5\%	0.861		2.195		4.419		${ }_{6}^{6.666}$		8.789		10.387		12.541		14.810	
		95.0\%	0.722 0.562		1.842		3.709		5.595 4.357		${ }^{7.3774}$		8.718 6.789		10.525 8.196		12.430 9.680	

Table 4.13. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=8$.

			Retailer Smoothing Flex Bound Length $=8$															
			2\%		5\%		10\%		15\%		20\%		25\%		30\%		35\%	
			Inventory	Prod. Shift	Inventory	Prod. Snift	Inventory	Prod. Snift	Inventory	Prod. Shift								
$\begin{aligned} & \frac{\pi}{2} \\ & \frac{0}{4} \end{aligned}$	5\%	99.5\%	2.660	0.031971	6.756	0.079122	12.362	0.152407	17.809	0.219443	22.348	0.284196	28.106	0.355247	30.623	0.417621	34.777	0.482550
		99.0\%	2.404		6.105		11.171		16.093		20.196		25.399		27.674		31.427	
		97.5\%	2.025		5.143		9.410		13.555		17.010		21.393		23.309		26.471	
		95.0\%	1.700		4.316		7.897		11.377		14.277		17.955		19.563		22.217	
		90.0\%	1.324		3.361		6.150		8.859		11.118		13.982		15.234		17.301	
	10\%	99.5\%	2.338	0.046018	5.760	0.114940	10.828	0.211697	15.488	0.306354	19.651	0.401803	24.391	0.491562	30.000	0.595433	31.323	0.664883
		99.0\%	2.113		5.205		9.785		13.996		17.758		22.042		27.110		28.306	
		97.5\%	1.779		4.384		8.242		11.789		14.957		18.566		22.835		23.842	
		95.0\%	1.493		3.680		6.917		9.894		12.554		15.582		19.165		20.010	
		90.0\%	1.163		2.865		5.387		7.705		9.776		12.134		14.924		15.582	
	15\%	99.5\%	2.039	0.060019	5.234	0.150902	10.265	0.272682	14.612	0.396222	18.783	0.512091	23.201	0.637669	28.138	0.770093	31.382	0.863628
		99.0\%	1.843		4.730		9.277		13.205		16.974		20.967		25.428		28.359	
		97.5\%	1.552		3.984		7.814		11.122		14.297		17.660		21.418		23.887	
		95.0\%	1.303		3.343		6.558		9.335		11.999		14.822		17.976		20.048	
		90.0\%	1.015		2.604		5.107		7.269		9.344		11.542		13.998		15.612	
	20\%	99.5\%	1.936	0.074577	5.131	0.184733	9.988	0.340485	14.463	0.478227	18.494	0.628652	21.859	0.761096	26.346	0.931834	30.186	1.057086
		99.0\%	1.749		4.637		9.026		13.070		16.713		19.753		23.808		27.279	
		97.5\%	1.473		3.906		7.603		11.009		14.077		16.638		20.054		22.977	
		95.0\%	1.237		3.278		6.381		9.239		11.814		13.964		16.831		19.284	
		90.0\%	0.963		2.553		4.969		7.195		9.200		10.874		13.106		15.017	
	25\%	99.5\%	1.870	0.089913	4.701	0.219303	9.756	0.393941	13.899	0.563537	17.998	0.722656	21.291	0.888297	24.530	1.037134	29.448	1.227208
		99.0\%	1.690		4.248		8.816		12.561		16.264		19.240		22.168		26.612	
		97.5\%	1.423		3.578		7.426		10.580		13.699		16.206		18.672		22.415	
		95.0\%	1.195		3.003		6.232		8.879		11.498		13.601		15.671		18.813	
		90.0\%	0.930		2.339		4.853		6.915		8.953		10.592		12.203		14.650	
	30\%	99.5\%	1.831	0.104389	4.715	0.258339	9.416	0.465752	13.983	0.645390	17.714	0.820199	21.250	1.017159	25.787	1.227751	29.610	1.438550
		99.0\%	1.654		4.261		8.509		12.636		16.008		19.204		23.303		26.758	
		97.5\%	1.393		3.589		7.167		10.643		13.483		16.175		19.628		22.538	
		95.0\%	1.169		3.012		6.015		8.933		11.316		13.575		16.473		18.916	
		90.0\%	0.911		2.346		4.684		6.956		8.812		10.572		12.828		14.730	
	35\%	99.5\%	1.830	0.122535	4.564	0.297775	9.426	0.519387	13.353	0.722674	17.220	0.953177	22.097	1.177617	25.200	1.391791	29.943	1.608552
		99.0\%	1.654		4.125		8.518		12.067		15.562		19.969		22.773		27.059	
		97.5\%	1.393		3.474		7.175		10.164		13.107		16.820		19.182		22.792	
		95.0\%	1.169		2.916		6.022		8.530		11.001		14.116		16.099		19.129	
		90.0\%	0.911		2.271		4.689		6.643		8.567		10.993		12.537		14.896	
	40\%	99.5\%	1.772	0.137112	4.456	0.340032	9.031	0.588950	13.783	0.813324	17.054	1.068987	21.374	1.260544	24.672	1.511717	28.626	1.772716
		99.0\%	1.601		4.026		8.161		12.455		15.411		19.315		22.296		25.869	
		97.5\%	1.349		3.391		6.874		10.491		12.981		16.269		18.779		21.789	
		95.0\%	1.132		2.846		5.769		8.805		10.894		13.654		15.761		18.288	
		90.0\%	0.881		2.217		4.493		6.857		8.484		10.633		12.274		14.241	
	45\%	99.5\%	1.786	0.156151	4.447	0.380069	9.284	0.650918	13.155	0.893445	17.650	1.162288	21.517	1.433361	24.630	1.651276	28.582	1.912456
		99.0\%	1.614		4.019		8.390		11.888		15.950		19.445		22.258		25.829	
		97.5\%	1.360		3.385		7.067		10.013		13.434		16.378		18.747		21.755	
		95.0\%	1.141		2.841		5.931		8.404		11.275		13.746 10704		15.734 12253		18.259 14.219	
		90.0\%	0.889		2.212		4.619		6.544		8.780		10.704		12.253		14.219	
	50\%	99.5\%	1.763	0.173194	4.394	0.419440	8.810	0.706003	13.265	0.978218	17.489	1.264126	20.723	1.504932	24.584	1.746231	28.346	2.109667
		99.0\%	1.593		3.971		7.962		11.987		15.805		18.727		22.216		25.616	
		97.5\%	1.342		3.344		6.706		10.097		13.312		15.774		18.712		21.576	
		95.0\%	1.126		2.807		5.628		8.474		11.173		13.238		15.705 12230		18.109 14.102	
		90.0\%	0.877		2.186		4.383		6.599		8.700		10.309		12.230		14.102	

Table 4.14. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=10$.

Table 4.15. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=12$.

Table 4.16. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=14$.

Table 4.17. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=16$.

Table 4.18. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=18$.

									$\begin{aligned} & \text { Rete } \\ & \text { Flex B } \end{aligned}$	Smoothing nd Length =								
			Standard Deviation															
			2\%		5\%		10\%		15\%		20\%		25\%		30\%		35\%	
			Inventory	Prod. Snift	Inventory	Prod. Snift	Inventory	Prod. Shift	Inventory	Prod. Snift	Inventory	Prod. Shift						
5\%		99.5\%	7.121	0.044875	16.366	0.109268	32.089	0.203387	44.141	0.282103	52.462	0.360836	68.421	0.466589	78.371	0.525221	89.981	0.626977
		99.0\%	6.435		14.790		28.999		39.890		47.410		61.832		70.823		81.314	
		97.5\%	5.420		12.457		24.425		33.599		39.933		52.080		59.653		68.490	
		95.0\%	4.549		10.455		20.500		28.199		33.515		43.710		50.066		57.483	
		90.0\%	3.542		8.142		15.964		21.959		26.099		34.038		38.988		44.763	
	10\%	99.5\%	6.094	0.073641	16.327	0.176833	29.576	0.309661	40.207	0.431964	49.818	0.563375	61.780	0.694188	68.080	0.833956	85.291	0.964425
		99.0\%	5.507		14.754		26.728		36.335		45.020		55.830		61.524		77.077	
		97.5\%	4.638		12.427		22.512		30.604		37.920		47.025		51.820		64.920	
		95.0\%	3.893		10.430		18.894		25.686		31.825		39.467		43.492		54.487	
		90.0\%	3.032		8.122		14.713		20.002		24.783		30.734		33.868		42.430	
	15\%	99.5\%	5.709	0.102693	15.030	0.240302	29.195	0.409132	40.688	0.597341	50.089	0.776145	57.983	0.918902	70.328	1.115574	82.604	1.326137
		99.0\%	5.159		13.583		26.384		36.770		45.265		52.399		63.554		74.649	
		97.5\%	4.345		11.440		22.223		30.971		38.126		44.135		53.531		62.875	
		95.0\%	3.647		9.602		18.651		25.993		31.999		37.042		44.928		52.770	
		90.0\%	2.840		7.477		14.524		20.241		24.918		28.845		34.986		41.094	
	20\%	99.5\%	5.579	0.133001	14.081	0.310723	28.260	0.522807	40.032	0.728975	50.150	0.959409	57.817	1.164554	68.979	1.388065	84.029	1.623626
		99.0\%	5.042		12.725		25.538		36.176		45.320		52.249		62.336		75.936	
		97.5\%	4.247		10.718		21.510		30.471		38.173		44.008		52.504		63.960	
		95.0\%	3.564		8.996		18.053		25.574		32.038		36.936		44.066		53.681	
		90.0\%	2.775		7.005		14.059		19.915		24.949		28.763		34.315		41.803	
	25\%	99.5\%	5.733	0.163846	14.639	0.374593	28.207	0.626221	37.207	0.875033	49.796	1.143034	56.718	1.323597	73.615	1.639399	79.958	1.931341
		99.0\%	5.181		13.229		25.491		33.624		45.000		51.256		66.525		72.257	
		97.5\%	4.364		11.143		21.471		28.321		37.903		43.172		56.033		60.861	
		95.0\%	3.662		9.352		18.020		23.769		31.812		36.234		47.028		51.080	
$\frac{\mathrm{x}}{\mathrm{a}}$		90.0\%	2.852		7.283		14.033		18.510		24.773		28.216		36.622		39.777	
$\frac{\overline{0}}{\mathbf{\alpha}}$	30\%	99.5\%	5.391	0.195379	13.025	0.448890	28.835	0.728194	40.063	1.038391	47.913	1.304949	57.091	1.594798	65.540	1.860970	79.991	2.235164
		99.0\%	4.872		11.770		26.058		36.205		43.299		51.592		59.228		72.287	
		97.5\%	4.104		9.914		21.948		30.495		36.470		43.456		49.887		60.887	
		95.0\%	3.444		8.321		18.421		25.594		30.609		36.472		41.869		51.101	
		90.0\%	2.682		6.480		14.345		19.930		23.836		28.401		32.605		39.794	
	35\%	99.5\%	5.402	0.227890	14.498	0.497741	27.582	0.816475	37.219	1.135793	49.558	1.476630	62.090	1.817206	72.351	2.136063	83.172	2.505882
		99.0\%	4.881		13.102		24.926		33.635		44.785		56.110		65.383		75.161	
		97.5\%	4.111		11.035		20.995		28.330		37.722		47.260		55.071		63.307	
		95.0\%	3.451		9.262		17.620		23.777		31.659		39.665		46.221		53.133	
		90.0\%	2.687		7.212		13.721		18.516		24.654		30.888		35.993		41.376	
	40\%	99.5\%	5.407	0.264050	14.688	0.572775	26.733	0.874838	41.142	1.304871	48.089	1.610948	59.407	2.003743	67.297	2.318619	76.595	2.797525
		99.0\%	4.887		13.273		24.158		37.180		43.458		53.686		60.815		69.218	
		97.5\%	4.116		11.180		20.348		31.316		36.604		45.219		51.224		58.301	
		95.0\%	3.454		${ }^{9} 9.383$		17.078		26.283		30.721		37.952		42.991		48.931	
		90.0\%	2.690		7.307		13.299		20.467		23.923		29.554		33.478		38.104	
	45\%	99.5\%	5.642	0.294617	14.375	0.616165	26.819	1.059979	37.263	1.392693	47.963	1.742626	59.991	2.223138	70.362	2.614946	81.136	3.144117
		99.0\%	5.099		12.990		24.236		33.675		43.344		54.213		63.585		73.321	
		97.5\%	4.294		10.942		20.414		28.364		36.508		45.663		53.557		61.758	
		95.0\%	3.604		9.183		17.133		23.805		30.640		38.324		44.950		51.832	
		90.0\%	2.807		7.151		13.342		18.538		23.860		29.844		35.003		40.363	
	50\%	99.5\%	5.496	0.333212	14.077	0.695555	27.559	1.110728	40.345	1.504891	47.998	1.925658	58.728	2.369040	69.868	2.829022	76.871	3.257378
		99.0\%	4.967		12.721		24.905		36.459		43.375		53.072		63.139		69.467	
		97.5\%	4.183 3.511		$\frac{10.715}{8.993}$		20.977		30.709 25.774		36.534 30.663		44.702 37.518		53.181 44.634		58.511 49.108	
		90.0\%	2.734		7.003		13.710		20.071		23.878		29.216		34.758		38.241	

Table 4.19. Resulting Table for Retailer Smoothing Analysis with Flex Bound Length $=20$.

4.4.2 Production Smoothing Results and Trends

There was a significant difference between the PS and RS techniques. The response variables change as the length of the analysis increases for the PS strategy. For instance, a company may use this technique in their facility during a year's time before refreshing the system. If the company uses the fences weekly to provide flexibility, then the variation of production will increase over time due to the bounds increasing every week as shown in Figure 4.9. As the desired customer service level increases, the amount of inventory required will increase. On the other hand, if the organization only changes the flex limits monthly, the fluctuations in production will be minimized due to only twelve updates a year, rather than the previous 52. The positive aspect of reducing the time periods is that changes in production are minimized. The negative position states that the more production is constrained, the more inventory is necessary to buffer against demand. Hence, the more periods in the study, the more flexibility that is allowed in the system as demonstrated in Figure 4.10 for Production Smoothing. The impact of standard deviation, flex bound width, and flex bound length on inventory and the production shift is displayed in Tables 4.20 through 4.51. However, the data in the PS tables do not represent a normal distribution due to a changing amount of variation in the process that is time dependent as shown in Figure 4.9. Therefore, the estimates in the tables are understating the necessary amount of inventory. Better estimates for inventory may be found through an exorbitant amount of simulations.

Figure 4.9. Increasing Amount of Inventory Required Over Time for the Production Smoothing Strategy.

Figure 4.10. Impact on the Response Variable Increases as the Number of Periods Increase for Production Smoothing.

Table 4.20. Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=100$ Periods.

Table 4.21. Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=100$ Periods.

Table 4.22. Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=100$ Periods.

Table 4.23. Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=100$ Periods.

Table 4.24. Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=100$ Periods.

Table 4.25. Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=100$ Periods.

Table 4.26. Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=100$ Periods.

Table 4.27. Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=100$ Periods.

Table 4.28. Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=50$ Periods.

Table 4.29. Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=50$ Periods.

			Production Smoothing Standard Deviation $=5 \%$, Time Frame $=50$ periods																	
			2\%							Flex Boun	Width									
			5\%	10\%		15\%		20\%		25\%		30\%		35\%						
			Inventory	Prod. Shift	Inventory	Prod. Snift	Inventory	Prod. Snift	Inventory	Prod. Shift	Inventory	Prod. Snift								
	2	99.5\%			10.862	0.001100	12.856	0.003152	12.004	0.005255	11.147	0.007856	11.619	0.010977	11.224	0.013569	9.210	0.017515	7.612	0.020381
		99.0\%	9.816	11.618	10.848		10.074		10.500		10.143		8.323		6.879					
		97.5\%	8.268	9.786	9.137		8.485		8.844		8.543		7.010		5.794					
		95.0\%	6.939	8.213	7.668		7.121		7.423		7.170		5.884		4.863					
		90.0\%	5.404	6.396	5.972		5.546		5.780		5.584		4.582		3.787					
	4	99.5\%	12.604	0.000833	13.824	0.002476	12.244	0.003895	12.405	0.005911	12.963	0.008483	10.035	0.011454	11.195	0.012365	10.796	0.015054		
		99.0\%	11.390		12.493		11.065		11.211		11.715		9.068		10.117		9.756			
		97.5\%	9.594		10.523		9.320		9.443		9.867		7.638		8.521		8.218			
		95.0\%	8.052		8.831		7.822		7.925		8.281		6.411		7.152		6.897			
		90.0\%	6.270		6.877		6.091		6.171		6.449		4.992		5.569		5.371			
	6	99.5\%	13.943	0.000678	13.297	0.002168	13.302	0.003177	13.024	0.005544	11.671	0.006969	13.073	0.009123	11.463	0.010541	10.321	0.012676		
		99.0\%	12.600		12.016		12.021		11.770		10.547		11.814		10.359		9.327			
		97.5\%	10.613		10.121		10.125		9.914		8.884		9.951		8.725		7.856			
		95.0\%	8.907		8.495		8.498		8.320		7.456		8.351		7.323		6.594			
		90.0\%	6.936		6.615		6.617		6.479		5.806		6.503		5.702		5.135			
	8	99.5\%	13.745	0.000557	13.071	0.001877	12.932	0.002922	12.817	0.004403	12.921	0.005728	12.929	0.007554	11.631	0.008623	11.461	0.010187		
		99.0\%	12.421		11.813		11.687		11.583		11.677		11.684		10.511		10.357			
		97.5\%	10.462		9.950		9.844		9.756		9.835		9.841		8.853		8.723			
		95.0\%	8.781		8.351		8.262		8.188		8.255		8.260		7.430		7.321			
		90.0\%	6.838		6.503		6.434		6.376		6.428		6.432		5.786		5.701			
	10	99.5\%	14.068	0.000554	14.066	0.001601	13.101	0.002765	13.990	0.004315	13.641	0.005023	13.059	0.006553	12.871	0.007890	12.506	0.010119		
		99.0\%	12.713		12.712		11.840		12.643		12.327		11.801		11.631		11.301			
		97.5\%	10.708		10.707		9.972		10.649		10.383		9.940		9.797		9.519			
		95.0\%	8.987		8.986		8.370		8.938		8.714		8.342		8.222		7.989			
		90.0\%	6.998		6.998		6.518		6.960		6.786		6.496		6.403		6.221			
	12	99.5\%	12.584	0.000472	13.412	0.001566	15.086	0.002281	13.434	0.003842	12.710	0.005076	13.583	0.006582	13.958	0.007148	13.313	0.009281		
		99.0\%	11.372		12.120		13.633		12.140		11.486		12.275		12.614		12.031			
		97.5\%	9.578		10.209		11.483		10.225		9.674		10.339		10.624		10.133			
		95.0\%	8.039		8.568		9.637		8.582		8.120		8.677		8.917		8.505			
		90.0\%	6.260		6.672		7.505		6.683		6.323		6.757		6.944		6.623			
	14	99.5\%	14.035	0.000457	14.481	0.001388	13.565	0.002292	11.612	0.003803	11.903	0.004445	13.318	0.006336	11.984	0.007461	13.229	0.008651		
		99.0\%	12.684		13.086		12.259		10.494		10.757		12.036		10.830		11.955			
		97.5\%	10.683		11.022		10.326		8.839		9.060		10.138		9.122		10.069			
		95.0\%	8.966		9.251		8.666		7.418		7.604		8.508		7.656		8.451			
		90.0\%	6.982		7.204		6.748		5.777		5.922		6.626		5.962		6.581			
	16	99.5\%	15.074	0.000432	12.471	0.001269	13.315	0.002341	12.726	0.003500	11.941	0.004518	13.386	0.006062	13.703	0.006282	12.939	0.008161		
		99.0\%	13.623		11.270		12.033		11.501		10.791		12.097		12.383		11.693			
		97.5\%	11.474		9.493		10.135		9.687		9.089		10.189		10.430		9.849			
		95.0\%	9.630		7.967		8.506		8.130		7.628		8.552		8.754		8.266			
		90.0\%	7.499		6.204		6.624		6.331		5.940		6.659		6.817		6.437			
	18	99.5\%	12.419	0.000386	12.420	0.001144	14.198	0.001817	13.748	0.002875	12.366	0.003795	14.181	0.004916	12.428	0.006292	12.757	0.006859		
		99.0\%	11.223		11.224		12.831		12.424		11.175		12.815		11.231		11.529			
		97.5\%	9.453		9.454		10.807		10.465		9.413		10.794		9.460		9.710			
		95.0\%	7.934		7.935		9.070		8.783		7.900		9.059		7.939		8.150			
		90.0\%	6.178		6.179		7.063		6.839		6.152		7.055		6.183		6.346			
	20	99.5\%	12.513	0.000376	14.712	0.001114	13.718	0.001969	14.323	0.002982	13.020	0.003915	11.569	0.005189	13.340	0.005783	12.712	0.006639		
		99.0\%	11.308		13.295		12.397		12.944		11.766		10.455		12.055		11.487			
		97.5\%	9.525		11.198		10.442		10.902		9.910		8.806		10.154		9.676			
		95.0\%	7.994		9.399		8.764		9.150		8.318		7.391		8.522		8.121			
		90.0\%	6.225		7.319		6.824		7.126		6.477		5.755		6.636		6.324			

Table 4.30. Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=50$ Periods.

Table 4.31. Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=50$ Periods.

Table 4.32. Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=50$ Periods.

Table 4.33. Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=50$ Periods.

Table 4.34. Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=50$ Periods.

Table 4.35. Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=50$ Periods.

Table 4.36. Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=25$ Periods.

Table 4.37. Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=25$ Periods.

Table 4.38. Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=25$ Periods.

Table 4.39. Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=25$ Periods.

Table 4.40. Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=25$ Periods.

Table 4.41. Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=25$ Periods.

Table 4.42. Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=25$ Periods.

			Production Smoothing Standard Deviation $=30 \%$, Time Frame $=25$ periods															
			2\%		5\%		10\%		15\%		20\%		25\%		30\%		35\%	
			Inventory	Prod. Shift														
	2	99.5\%	23.419	0.006355	23.578	0.014741	22.883	0.030226	19.256	0.040071	21.252	0.060704	18.811	0.069670	18.248	0.090387	20.221	0.105629
		99.0\%	21.163		21.308		20.679		17.401		19.205		16.999		16.491		18.273	
		97.5\%	17.826		17.947		17.418		14.657		16.176		14.318		13.890		15.391	
		95.0\%	14.961		15.063		14.618		12.301		13.576		12.017		11.658		12.918	
		90.0\%	11.650		11.730		11.384		9.579		10.572		9.358		9.078		10.059	
	4	99.5\%	23.663	0.004387	22.268	0.011402	20.342	0.021915	19.907	0.032186	23.497	0.044743	22.007	0.055531	23.359	0.066992	20.931	0.076199
		99.0\%	21.384		20.124		18.382		17.990		21.234		19.887		21.109		18.915	
		97.5\%	18.011		16.950		15.483		15.153		17.885		16.751		17.780		15.932	
		95.0\%	15.116		14.226		12.995		12.718		15.011		14.059		14.923		13.372	
		90.0\%	11.772		11.078		10.119		9.903		11.689		10.948		11.621		10.413	
	6	99.5\%	24.079	0.003632	25.446	0.008233	24.549	0.015594	25.218	0.024668	24.238	0.036878	19.682	0.043475	20.668	0.054369	23.486	0.064780
		99.0\%	21.760		22.995		22.185		22.789		21.903		17.786		18.678		21.224	
		97.5\%	18.328		19.368		18.686		19.195		18.449		14.981		15.732		17.877	
		95.0\%	15.383		16.256		15.683		16.110		15.484		12.574		13.204		15.004	
		90.0\%	11.979		12.659		12.213		12.545		12.058		9.791		10.282		11.684	
	8	99.5\%	25.458	0.003204	26.501	0.007683	22.493	0.016765	23.189	0.026024	23.600	0.032183	25.636	0.039341	23.863	0.051119	20.550	0.061136
		99.0\%	23.006		23.949		20.326		20.956		21.327		23.167		21.565		18.571	
		97.5\%	19.378		20.172		17.121		17.651		17.964		19.514		18.164		15.642	
		95.0\%	16.264		16.930		14.369		14.814		15.077		16.377		15.245		13.128	
		90.0\%	12.665		13.184		11.190		11.536		11.741		12.753		11.871		10.223	
	10	99.5\%	26.120	0.002676	24.564	0.007053	24.342	0.012776	24.093	0.020620	23.312	0.025511	24.255	0.032827	22.557	0.042028	23.324	0.048206
		99.0\%	23.604		22.198		21.998		21.772		21.066		21.919		20.385		21.078	
		97.5\%	19.882		18.697		18.528		18.338		17.744		18.462		17.170		17.753	
		95.0\%	16.686		15.692		15.551		15.391		14.892		15.495		14.410		14.900	
		90.0\%	12.994		12.220		12.110		11.985		11.597		12.066		11.222		11.603	
	12	99.5\%	23.553	0.002596	26.303	0.006932	24.398	0.013031	25.574	0.020028	21.433	0.025548	24.949	0.032986	24.084	0.039933	23.142	0.045218
		99.0\%	21.285		23.770		22.048		23.111		19.369		22.546		21.764		20.913	
		97.5\%	17.928		20.021		18.571		19.466		16.314		18.991		18.332		17.615	
		95.0\%	15.046		16.803		15.586		16.338		13.692		15.938		15.386		14.784	
		90.0\%	11.717		13.085		12.137		12.723		10.663		12.412		11.981		11.513	
	14	99.5\%	26.537	0.002470	21.798	0.006371	26.644	0.012301	22.485	0.017384	25.778	0.024009	24.139	0.029655	21.968	0.038235	22.449	0.046911
		99.0\%	23.982		19.699		24.078		20.320		23.296		21.814		19.853		20.287	
		97.5\%	20.199		16.592		20.281		17.115		19.621		18.374		16.722		17.088	
		95.0\%	16.953		13.925		17.021		14.364		16.468		15.421		14.034		14.342	
		90.0\%	13.202		10.844		13.255		11.186		12.824		12.009		10.929		11.168	
	16	99.5\%	21.358	0.002448	23.520	0.006150	24.302	0.012265	25.457	0.017232	25.396	0.023725	23.555	0.030049	26.275	0.033964	19.904	0.045148
		99.0\%	19.301		21.255		21.961		23.005		22.950		21.286		23.744		17.987	
		97.5\%	16.257		17.902		18.498		19.377		19.331		17.929		19.999		15.150	
		95.0\%	13.644		15.025		15.525		16.263		16.224		15.048		16.785		12.715	
		90.0\%	10.625		11.701		12.090		12.664		12.634		11.718		13.071		9.902	
	18	99.5\%	25.553	0.002423	21.860	0.006337	22.961	0.012212	26.619	0.018917	23.964	0.022428	25.766	0.029958	26.925	0.037127	22.471	0.039331
		99.0\%	23.092		19.755		20.750		24.056		21.656		23.285		24.331		20.306	
		97.5\%	19.450		16.639		17.477		20.262		18.240		19.612		20.494		17.104	
		95.0\%	16.324		13.965		14.668		17.005		15.309		16.460		17.200		14.355	
		90.0\%	12.712		10.875		11.423		13.242		11.921		12.818		13.394		11.179	
	20	99.5\%	24.066	0.002187	25.778	0.005265	22.194	0.010999	23.874	0.016980	24.885	0.021350	25.204	0.026675	21.583	0.034973	22.644	0.039087
		99.0\%	21.748		23.296		20.057		21.574		22.488		22.776		19.504		20.463	
		97.5\%	18.318		19.622		16.893		18.172		18.942		19.184		16.428		17.236	
		95.0\%	15.374		16.468		14.178		15.251		15.898		16.101		13.788		14.466	
		90.0\%	11.972		12.824		11.041		11.877		12.380		12.538		10.737		11.265	

Table 4.43. Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=25$ Periods.

Table 4.44. Table for Production Smoothing Analysis with Standard Deviation $=2 \%$ and Time $=12$ Periods.

Table 4.45. Table for Production Smoothing Analysis with Standard Deviation $=5 \%$ and Time $=12$ Periods.

Table 4.46. Table for Production Smoothing Analysis with Standard Deviation $=10 \%$ and Time $=12$ Periods.

Table 4.47. Table for Production Smoothing Analysis with Standard Deviation $=15 \%$ and Time $=12$ Periods.

Table 4.48. Table for Production Smoothing Analysis with Standard Deviation $=20 \%$ and Time $=12$ Periods.

Table 4.49. Table for Production Smoothing Analysis with Standard Deviation $=25 \%$ and Time $=12$ Periods.

Table 4.50. Table for Production Smoothing Analysis with Standard Deviation $=30 \%$ and Time $=12$ Periods.

Table 4.51. Table for Production Smoothing Analysis with Standard Deviation $=35 \%$ and Time $=12$ Periods.

4.5 How to Use the Tables

An important product of this research is the results that are shown in Tables 4.10 through 4.51. These tables are a result of many simulations to test the Retailer and Production Smoothing scenarios in authentic demand environments. To make the research applicable to industry, companies must have information that they may use to implement these techniques. Usually, research provides a single solution that requires so many assumptions that the answer is no longer applicable. Instead, this research provides two techniques that companies may choose between. Then, for each technique, there are a set of tables that display the tradeoffs between the significant factors.

The inventory is based on the coefficient of variation of the study. Coefficient of variation is the standard deviation divided by the mean. The goal of using this metric is to enable the user to utilize the tables regardless of the variation and average production. The columns of inventory values employ the standard deviation of inventory times a multiplier from the Z statistics tables to achieve the customer service level defined by the row. The inventory level is then multiplied by the average production to understand how much inventory is necessary in this environment.

For example, a company may want to use the flex bound length of 14 with an average production of 500 units to achieve a 99% customer service level while using the Retailer Smoothing method. They also note a standard deviation of 10% with alpha of 30% to follow demand. Therefore, the user
turns to Table 4.16 to follow the table for flex bound length of 14. By following the row with alpha of 30% and customer service level of 99% to the column of standard deviation of 10%, the inventory is 19.039 . This number must be multiplied by the average production to realize that inventory of 9520 units are necessary to buffer this environment. However, if the company wants to reduce its inventory, they may simply reduce the flex bound length to become more flexible. By reducing this lead time to 8 periods as shown in Table 4.13, the company only has to hold 4255 units in inventory to achieve a 99\% customer service level.

As shown in Tables 4.10 through 4.19, the alpha, standard deviation, and flex bound length factors are significant when using the Retailer Smoothing technique. Therefore, a person may scan across the table to understand the tradeoffs between setting alpha and standard deviation by comparing the inventory and production shift values.

Similarly, inventory levels for the Production Smoothing technique may be located in the tables. However, Production Smoothing is different in the fact that it is also dependent on time. The longer the process runs without being reset, the more likely that variation will increase in the system. Therefore, additional inventory is needed to buffer the variation. The values for Production Smoothing may be found in Tables 4.20 through 4.51 to understand the impact of standard deviation, flex bound width, flex bound length, and time.

There is also a column called Production Shift in these tables. The
purpose of this column is to provide the implementer with an understanding of how much the production levels may shift on average from period to period. All data values in this column represent the standard deviation between shifts in production. With this information, the user will be able to anticipate why the provided inventory levels are necessary. As before, the average production must be multiplied by the Production Shift value to interpret the information. For instance, using the Production Smoothing technique, a company may want a flex bound length of 8 , flex bound width of 10%, while having a 25% standard deviation with 200 units produced on average. If they want to run for 100 periods, then 19303 units need to be held in inventory to buffer potential shifts of 3 units per period. If the time frame is cut in half to 50 periods, the inventory is reduced to just fewer than 7000 units. Further, 2748 units are necessary for 25 periods, and 1059 units provide buffer during 12 time periods.

Oke (2003) uses the concept of volume flexibility, which states the volume of production and/or demand may vary without having an adverse impact on efficiency or quality. As shown in Figure 4.11, most companies wish to use production volume to buffer against variability. Also, most of those companies that currently use inventory as a buffer will opt to use production volume to buffer against the uncertainty. With this discussion in mind, companies would probably want to opt for changes in production rather than using inventory to safeguard against stocking out due to varying demand.

Figure 4.11. Type of Production Strategies Used (Oke 2003).

4.5.1 Using the Tables to Understand Retailer Smoothing Trends

Now that the tables have been presented and the technique to use the tables has been discussed, it is time to discuss the trends that occur. This section is devoted solely for the Retailer Smoothing technique. First, the impact of standard deviation, alpha, and customer service levels is discussed for short flex bound lengths. Then, these input variables are compared for long flex bound lengths. The results have been accumulated from the tables in section 4.4.1.

When observing Figure 4.12 for patterns at low flex bound lengths, the observed trend is that as alpha increases, the production shift increases also. However, the production shift increases more rapidly as the standard deviation increases. Figure 4.13 demonstrates the same trends, but the trends are clearer with the standard deviation on the x-axis. The pattern appears to be mostly linear as the input variables change. When the standard of deviation increases, there is more volatility in the demand. As alpha increases, the forecast, and hence the production schedule, will follow the demand information more closely. Therefore, the production amount will shift more as alpha and standard deviation both increase. Since standard deviation has a more dramatic impact, the user will want to reduce the unpredictability of demand to reduce the volatility of production.

A nonlinear trend is detected in Figure 4.14. As the alpha increases for the same level of standard deviation, the amount of inventory required to buffer against demand is decreased. This is an intuitive result because as

Figure 4.12. Retailer Smoothing Production Shift Comparison of Standard Deviation Levels for Flex Bound Length of 2.

Figure 4.13. Retailer Smoothing Production Shift Comparison of Alpha Levels for Flex Bound Length of 2.

Figure 4.14. Retailer Smoothing Inventory Comparison of Standard Deviation Levels for Flex Bound Length of 2.
alpha increases, the model will more closely follow the demand and less inventory is needed. The point that is not intuitive is when alpha decreases, the inventory increases at an expanding rate, making the trend nonlinear. The logic behind this phenomenon is that more inventory will be needed at an increasing rate as production does not follow demand. Figure 4.15 further demonstrates that standard deviation has a more profound effect than alpha on inventory.

The trends that have been discussed thus far are indicative of comparing values of standard deviation and alpha when the desired customer service level remains constant. However, as the chosen customer service level increases, the inventory needed to buffer demand increases as shown in Figure 4.16. As discussed earlier, the greater the standard deviation, the more inventory that is necessary to shield the system from demand volatility. Yet, if both alpha and the standard deviation both increase, the level of inventory increases dramatically to achieve high customer service levels.

Additionally, similar charts are reviewed utilizing longer flex bound lengths. Figure 4.17 shows that as alpha and standard deviation increase for long flex bound lengths, the more the production will shift. The reasoning behind this phenomenon is that since the flex bound length is long, production is constant for a longer period of time. During this time, demand oscillates, but the flex limits constrain the production system from meeting the customers' demands. Then, when a new flex fence is updated, production must shift more to catch up to the volatile demand. For the longer flex

Figure 4.15. Retailer Smoothing Inventory Comparison of Alpha Levels for Flex Bound Length of 2.

Figure 4.16. Retailer Smoothing Inventory Levels Needed to Achieve Customer Service Levels for Flex Bound Length of 2.

Figure 4.17. Retailer Smoothing Production Shift Comparison of Standard Deviation Levels for Flex Bound Length of 20.
bounds, standard deviation and alpha appear to have an equal impact on the production shift as also shown in Figure 4.18.

Not only did the production shift increase considerably for longer flex bounds, but the inventory increases even more. From Figures 4.19 and 4.20, the change in standard deviation has a greater impact on inventory than alpha. As the standard deviation increases, the inventory increases at an alarming rate. When flex bound length is long, production is maintained at a similar level for a longer period of time. Therefore, inventory is needed to buffer the demand variation. Then, when the flex fence is updated, production shifts significantly to try to return the system back to the target inventory level. Of course, as the desired customer service levels increase, a considerable amount of inventory is needed to achieve these service levels when standard deviation and alpha are large (Figure 4.21).

4.5.2 Using the Tables to Understand Production Smoothing Trends

 For the Production Smoothing technique, the factors of flex bound length, flex bound width, standard deviation, and time periods were analyzed for trends by utilizing the tables in section 4.4.2. Alpha was not analyzed as it was earlier determined to not be significant. One trend noticed was the flex bound width has a greater impact on production shifts than flex bound length, regardless of standard deviation (Figure 4.22 and 4.23). This makes sense as the wider the flex limits, the more that production may shift within these limits to imitate demand. However, as the flex bound length decrease, the

Figure 4.18. Retailer Smoothing Production Shift Comparison of Alpha Levels for Flex Bound Length of 20.

Figure 4.19. Retailer Smoothing Inventory Comparison of Standard Deviation Levels for Flex Bound Length of 20.

Figure 4.20. Retailer Smoothing Inventory Comparison of Alpha Levels for Flex Bound Length of 20.

Figure 4.21. Retailer Smoothing Inventory Levels Needed to Achieve Customer Service Levels for Flex Bound Length of 20.

Figure 4.22. Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 100.

Figure 4.23. Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 100.
production shifts increase at an escalating rate. And the wider the flex limits, the more the production shifts increase. Therefore, to minimize fluctuations in the schedule, a company would want to first reduce the width of the flex limits, and second, lengthen the flex bounds. Also, the greater the standard deviation, the more production would shift since demand varies more. Similar trends are demonstrated regardless of the amount of time periods as shown in Figures 4.24 through 4.29. However, when comparing these charts, a trend is noticed that production shifts less as the time periods decrease. This trend makes sense as companies are not renovating their schedule as frequently to jump to the customers' orders. As a result, companies may want to schedule monthly as opposed to weekly, or weekly as opposed to daily to minimize fluctuations. There is a difference in the lines in Figures 4.28 and 4.29 as they slope to zero. Since the flex bound length is longer than the number of periods analyzed, production will never shift. Therefore, the data for flex bound length of fourteen through 20 is inconclusive when the amount of time periods is 12 .

As seen in Figure 4.30, not much inventory is needed unless the standard deviation is high. When the standard deviation is excessive and the flex bound length is high, more inventory is needed regardless of flex bound width levels. Longer flex bounds impact inventory more since the flex bounds constrain production and inventory must increase to buffer the demand variation. Also, the fewer time periods used, the less inventory a company must utilize as noted when comparing Figures 4.30 through 4.33.

Figure 4.24. Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 50.

Figure 4.25. Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 50.

Figure 4.26. Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 25.

Figure 4.27. Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 25.

Figure 4.28. Production Smoothing Production Shift Comparison for Standard Deviation of 2 and Time Period of 12.

Figure 4.29. Production Smoothing Production Shift Comparison for Standard Deviation of 35 and Time Period of 12.

Figure 4.30. Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 100.

Figure 4.31. Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 50.

Figure 4.32. Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 25.

Figure 4.33. Production Smoothing Inventory Comparison to Achieve Customer Service Levels for Time Period of 12.

Chapter 5

Contributions and Conclusions

5.1 Contributions of this Research

The ideology and concepts of Rate Based Planning and Scheduling have been discussed for years. However, none of these pieces of literature brought the perspectives together into one paper. This research has consolidated the previous researchers' viewpoints to describe the theory of RBPS.

Also, this research provided two techniques to implement RBPS: Production Smoothing and Retailer Smoothing. Production Smoothing focuses on the manufacturing environment and seeks to minimize production fluctuations due to demand. However, the company may change factors such as the length and width of the flex limits to provide as much or little flexibility desired. On the other hand, Retailer Smoothing takes the customer's forecast, and limits the customer to changes within the flex period. The goal with RS is to minimize the fluctuations once the customer has made a commitment within the designated timeframe. Detailed flowcharts and explanations are provided for both techniques to develop the study and provide an implementation map for industry. The purpose is to limit the variability on the supplier while maintaining desired service levels with the minimum inventory levels possible.

Lastly, results of many simulations were compiled into tables so
anyone may sort through them to understand the implications of changing the factors in their RBPS system. The tables allow anyone to utilize their cost data from their industry to choose levels of each factor to support their strategic initiatives.

5.2 Conclusions

Any good product delivery strategy must encompass both the customers' requirements as well as manufacturing's needs. As stated by Grossman and Jones (2002), "the operations strategy should be developed from the market and business requirements and defines how the operations of the business are to be structured." With both the customer and supplier in mind, the purpose of this dissertation is to find a means of balancing the needs between the customer and supplier while accounting for lead times, safety stock, and order quantities (Herron 1987). The balancing objective is accomplished through the concept of Rate-Based Planning and Scheduling.

The goal of this research was first to study Rate-Based Planning and Scheduling. Then a methodology was created for RBPS. As a result, two methods were developed, Retailer Smoothing and Production Smoothing. The Retailer Smoothing technique allows the customer to have more flexibility in their requirements. On the other hand, Production Smoothing minimizes changes to the production environment. Statistical analyses were performed and significant factors were utilized to evaluate both techniques. The end goal was to provide a set of tables for practitioners to use in industry. Every
objective was met and exceeded as the methodology matured and more was learned about the techniques. I present this research as a tool and change in mindset for companies to try to reduce customer and/or production variation in the system.

An initial analysis was created with pilot simulations to achieve some preliminary results. Such a wide range of data resulted that a transformation was used to condense the data and translate the results. The transformation was successful and statistical hypotheses were substantiated. Retailer Smoothing required many more replications to perform statistical analyses due to the variation in the process. The Retailer Smoothing technique only used the significant factors of alpha, standard deviation, and flex bound length. So realistically, the user only influences the RS method by changing the length of the time fence, and changing alpha or the amount a company will follow spikes in the demand. Eight hundred scenarios were required with 250 replications to develop 10 tables to present the relationships between the three factors. On the other hand, Production Smoothing incorporates the standard deviation, flex bound length, and flex bound width factors. A time frame factor was added to Production Smoothing because the amount of inventory has to increase over time to buffer the system against demand variation. As a result, 640 scenarios were simulated with one hundred replications per situation to develop 32 tables.

As stated by Molinder (1997), "A high level of lead time variability and demand variability has a strong effect both on the level of optimal safety lead
times and optimal safety stocks." This is true that variability has a large impact on lead time and inventory buffer. However, not all of the factors have been taken into account. First, a company must determine what type of product delivery strategy they will use. Will they produce to customer orders, produce to refill a buffer stock, or produce to their forecast? Another issue is how closely a company will follow demand. Do they choose to follow demand closely, or level production? How the company decides to follow demand with production is a significant factor in the Retailer Smoothing Strategy. An additional factor is the amount of flexibility allowed in production. Should a company allow extreme flexibility or a minimal amount? Flexibility is an important factor while using the Production Smoothing Strategy.

As discussed in section 4.5, this research assumes that as the volume of demand and production vary, the resulting inventory and production shifts will change by the same amount. Assuming the quantity changes by the same multiple is supported by Oke (2003) and Suarez et. al. (1996) as they discussed the concept of volume flexibility. As the volume changes, the theory of volume flexibility states there will not be an unfavorable consequence on efficiency or quality.

5.3 Limitations and Directions for Future Research

The purpose of this research is to be applicable to industry for a wide array of situations. As shown in the dissertation, the RBPS techniques cover a range of possibilities for industry. However, this study does have its limitations as
any piece of research would. This section will focus on the limits of this research which will provide ideas for future research.

This dissertation uses the exponential smoothing model to develop the demand data. This model was used since many companies utilize exponential smoothing to anticipate demand. Even if companies do not use exponential smoothing, most models utilize the basic core assumptions of exponential smoothing. So if companies choose to use another tool to predict sales, the results of this research may not properly interpret the needs of the supply chain. Future research may compare the use of other demand generating models against exponential smoothing to anticipate any changes in the resulting tables.

Another potential limitation is the research only takes into account a single product. As stated in section 3.5, the single product assumption will suffice as long as all of a company's products have independent demand (Lin 1989). As stated earlier, the independent assumption is applicable for lean environments since only similar products are produced on a given line. However, future research may account for multiple products (Swaminathan and Tayur 1998) with demand correlation as may be the case in real demand environments (Liu and Yuan 2000).

The fact that there is only one flex fence in the study could be another limitation. The intention of the singular fence is to simplify the research and provide an applicable scenario for industries. Also, the production smoothing technique acts as if there are multiple fences as shown in Figure 3.8. In real-
world situations, several flex fences may be hard to manage and might not be applicable. However, future research is needed to support the assumption that several flex fences are not necessary or feasible.

The flex fences in this study are assumed to be of constant length. This may not be realistic as the demand fence may be a different length than the flex fence. Once again, this assumption was made to simplify the input factors and to make reasonable conclusions from them. However, future research could analyze demand and flex fences of varying lengths to support or negate the fixed length assumption made in this research.

Finally, Song's (2000) study conveyed that lead time variability could be more important than investigating the effect of demand variability. Song even suggests accounting for lead time variability even if we may only do so "approximately or heuristically." This dissertation only accounts for lead time as a result of the flex fences causing potential stockouts. Further research could perform an in-depth investigation regarding the impact of lead time variability.

Bibliography

Bibliography

Anderson Jr., Ernest L. "Releasing Blanket Orders." Purchasing. Vol. 116, No. 2, (February 17, 1994), 23-24.

Bagchi, Uttarayan, and Jack C. Hayya. "Demand During Lead Time for Normal Unit Demand and Erlang Lead Time." The Journal of the Operational Research Society. Vol. 35, No. 2, (February 1984), 131-135.

Bagchi, Uttarayan, Jack C. Hayya, and Chao-Hsien Chu. "The Effect of Lead Time Variability: The Case of Independent Demand." Journal of Operations Management. Vol. 6, No. 2, (February 1986), 159-177.

Barnes-Schuster, Dawn, Yehuda Bassok, and Ravi Anupindi. "Coordination and Flexibility in Supply Contracts with Options." Manufacturing \& Service Operations Management. Vol. 4, No. 3, (Summer 2002), 171-207.

Behera, Kirt B., "Rate-Based Mixed-Model Scheduling for Hybrid JIT Production." in Proceedings of the 1992 Conference of the American Production \& Inventory Control Society. (1992).

Ben-Daya, M., and Abdul Raouf. "Invnetory Models Involving Lead Time as a Decision Variable." The Journal of the Operational Research Society. Vol. 45, No. 5, (May 1994), 579-582.
"Best Practice: Rate Based Purchasing, JLG Industries, Inc. - McConnellsburg, PA." Best Manufacturing Practices. http://www.bmpcoe.org/bestpractices/internal/jlg/jlg_9.html (June 29, 2001).

Box, George E. P., and Gwilym M. Jenkins. Time Series Analysis; Forecasting and Control. (San Fransicso: Holden-Day, 1970).

Brandolese, A and R. Cigolini. "A new model for the strategic management of inventories subject to peaks in market demand." International Journal of Production Research. Vol. 37, No. 8, (1999), 1859-1880.

Brandolese, R., E. Cartegni, and R. Cigolini. "Improving Productivity by Using Strategic Inventories: Theoretical Issues and Field Results." International Journal of Production Research. Vol. 39, No. 18, (2001), 4179-4196.

Burgin, T. A., "Inventory Control with Normal Demand and Gamma Lead Times." Operational Research Quarterly. Vol. 23, No. 1, (March 1972), 73-80.

Burnetas, Apostolos, and Peter Ritchken. "Option Contracts in Supply Chains." Working Paper (March 2002).

Buzacott, J. A., and J. G. Shanthikumar. "Safety Stock versus Safety Time in MRP Controlled Production Systems." Management Science. Vol. 40, No. 12, (December 1994), 1678-1869.

Cachon, Gerard P., and Martin A. Lariviere. "Contracting to Assure Supply: How to Share Demand Forecasts in a Supply Chain." Management Science. Vol. 47, No. 5, (May 2001), 629-646.

Chatfield, Christopher, and Anne B. Koehler. "On Confusing Lead Time Demand with H-Period-Ahead Forecasts." International Journal of Forecasting. Vol. 7, No. 2, (1991), 239-240.

Chen, Frank, Jennifer K. Ryan, and David Simchi-Levi. "The Impact of Exponential Smoothing Forecasts on the Bullwhip Effect." Naval Research Logistics. Vol. 45, (2000), 269-286.

Chen, Frank; Zvi Drezner; Jennifer K. Ryan; David Simchi-Levi. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting Lead Times, and Information." Management Science, Vol. 46, No. 3, March 2000, 436-443.

Chopra, Sunil and Peter Meindl. Supply Chain Management: Strategy, Planning, and Operation. (Upper Saddle River, New Jersey: Prentice Hall, 2001).

Corbett, Charles J., Deming Zhou, and Christopher S. Tang. "Designing Supply Contracts: Contract Type and Information Asymmetry." being reviewed by Management Science. (June 2003).

Costanza, John R. Method for Determining Flexible Demand in a Manufacturing Process. Patent Number: 5,440,480 (August 8, 1995).

Costanza, John R., The Quantum Lean... In Speed-To-Market (Denver: John Costanza Institute of Technology, Inc., 1996).

Donovan, Michael R. "Supply Chain Management: Cracking the Bullwhip Effect." http://www.rmdonovan.com/pdf/SCM_PartllI.pdf. (January 2002).

Donovan, Michael R. "Supply Chain Management: Cracking the Bullwhip Effect." Material Handling Management (2002/2003), 44-45.

Duenyas, Izak, and Wallace J. Hopp. "Quoting Customer Lead Times." Management Science. Vol. 41, No. 1, (January 1995), 43-57.
"EMS Buyers Deal with Uncertain Forecasts, Supply." Purchasing. Vol. 131, No. 17, (October 24, 2002), 26.

Eppen, Gary D., and R. Kipp Martin. "Determining Safety Stock in the Presence of Stocastic Lead Time and Demand." Management Science. Vol. 34, No. 11, (November 1988), 1380-1390.

Ertogral, Kadir, and S. David Wu. "A Bargaining Game for Supply Chain Contracting." Working Paper, Lehigh University, (2001).

Federgruen, Awi, and Paul Zipkin. "Approximations of Dynamic, Multilocation Production and Inventory Problems." Management Science. Vol. 30, No. 1, (January 1984), 69-84.

Fisher, Marshall L.., Ananth Raman, and Anna Sheen McClelland. "Rocket Science is Almost Here, Are You Ready?" Harvard Business Review. Vol. 78, No. 4, (July-August 2000), 115-124.

Foote, Bob, Naghi Kebriaei, and Hillel Kumin. "Heuristic Policies for Inventory Ordering Problems with Long and Randomly Varying Lead Times." Journal of Operations Management. Vol. 7, No. 4, (December 1988), 115-124.

Friedman, Sanford. "Master Planning Your Supply Chain: The Next Generation." presented at the 2002 APICS International Conference \& Exposition. Nashville, TN. (October 27, 2002).

Gallego, Guillermo, and Özalp Özer. "Integrating Replenishment Decisions with Advance Demand Information." Management Science. Vol. 47, No. 10, (October 2001), 1344-1360.

Garg, V.K. "ERP." India Infoline. http://www.indiainfoline.com/cyva/erpb/c0105.html (2002).

Geunes, Joseph P., Ranga V. Ramasesh, and Jack C. Hayya. "Adapting the Newsvendor Model for Infinite-Horizon Inventory Systems." International Journal of Production Economics. Vol. 27, (2001), 237-250.

Gilbert, Kenneth. "A Method for Establishing Safety Stock Levels and Flex Requirements for Long Lead-Time Items." to be published in Management Science. (2003).

Goldratt, Eliyahu M. Critical Chain. (Great Barrington, MA: The North River Press, 1997).

Graves, Stephen C. "A Single-Item Inventory Model for a Nonstationary Demand Process." Manufacturing \& Service Operations Management. Vol. 1, No. 1, (1999), 50-61.

Grossman, Steve, and Mark Jones. "Low-Cost Manufacturing: Making it Work For You." Logistics \& Transport Focus: The Journal of the Institute of Logistics and Transport. Vol. 4, No. 8, (October 2002), 44-50.

Gudum, Connie Kohler and Ton G. de Kok. "A Safety Stock Adjustment Procedure to Enable Target Service Levels in Simulation of Generic Systems", Preprint No. 1/2002, Department of Management Science and Statistics, Copenhagen Business School. (sent to European Journal of Operational Research for review), (2002).

Harding, Michael. "Cut Supplier Lead Times by 50 Percent - No Mirrors, No Kidding." Hospital Materiel Management Quarterly. Vol. 16, (November 1995), 21-24.

Hariharan, Rema, and Paul Zipkin. "Customer-Order Information, Leadtimes, and Inventories." Management Science. Vol. 41, No. 10, (October 1995), 15991607.

Harvey, Andrew, and Ralph D. Snyder. "Structural Time Series Models in Inventory Control." International Journal of Forecasting. Vol. 6, (1990), 187198.

Hayya, J.C. "Leadtime Variability in Inventory Re-Moving Items." Paper presented at the 15th Annual quirement Projections: Final Technical Report and Meeting, American Institute of Decision Sciences, Summary." Air Force Contract F 33615-79-C-5 143, 1983. (June 1980).

Hayya, J.C. "Leadtime Variability in Inventory Re-quirement Projections: Simulation Report." Air Force Contract F 33615-79-C-5 143, (March 1980).

Hayya, J.C. "Leadtime Variability in Inventory Re-quirement Projections: Statistical Distribution Re-port." Air Force Contract F 336 15-79-C-5 143, (December 1979).

Helo, P. T. "Dynamic modelling of surge effect and capacity limitation in supply chains." International Journal of Production Research. Vol. 38, No. 17, (2000), 4521-4533.

Henderson, Bruce A. and Jorge L. Larco. Lean Transformation: How to Change Your Business Into a Lean Enterprise. (Richmond: The Oaklea Press, 1999).

Herron, David P., "Integrated Inventory Management." Journal of Business Logistics. Vol. 8, No. 1, (1987), 96-116.

Hill, R. M. "Lead Time Behaviour in Inventory Modelling." Inventory Modelling: A selection of research papers presented at the fourth ISIR Summer School. (Hill R.M. and Smith D.K. Eds.). International Society for Inventory Research (Budapest) and University of Exeter, (2000), 119-125.

Hill, Roger M. "On the Suboptimality of (S-1, S) Lost Sales Inventory Policies." International Journal of Production Economics. Vol. 59, (1999), 387-393.

Hill, Roger M., and Matthew J. Dominey. "Inventory Policies For All-or-Nothing Demand Processes." International Journal of Production Economics. Vol. 71, (2001), 365-371.

Hopp, Wallace J., and Melanie L Roof Sturgis. "Quoting Manufacturing Due Dates Subject to a Service Level Constraint." IIE Transactions. Vol. 32, (2000), 771-784.

Huge, Ernest C. "Managing Manufacturing Lead Times." Harvard Business Review. Vol. 57, No. 5, (September-October, 1979), 116-123.

Kekre, Sunder, and V. Udayabhanu. "Customer Priorities and Lead Times in Long-Term Supply Contracts." Journal of Manufacturing and Operations Management. Vol. 1, (1988), 44-66.
Kiesmuller, Gudrun P., and Carsten W. Scherer. "Computational Issues in a Stochastic Finite Horizon One Product Recovery Inventory Model." European Journal of Operational Research. Vol. 146, (2003), 553-579.
King, Russell E., Leigh Ann C. Brain, Kristin A. Thoney. "Demand correlation among different inventory items is common in real-life multi-item inventory systems." Journal of Textile and Apparel Technology and Management. vol. 2, no. 2, (Spring 2002), 1-7.

Kirby, Ken and Chad Toney, "Implementing a Lean Rate-Based Plan in a Seasonal Environment," Proceedings of the 2002 Lean Management Solutions Conference (Seattle: September 22-25, 2002).

Kirby, Ken and Chad Toney, "Implementing a Lean Rate-Based Plan to Counter Demand Variation," Proceedings of the 2002 E\&R Foundation at the International APICS Conference \& Exposition (Nashville, TN: October 27-30, 2002).

Knight, Peter. "Customer Focused Planning and Scheduling Through Enterprise Level Integrated Systems." Control (May 1996): 19-22.

Kumar, Anant, Ram Akella, and Gerard Cornuejols, "Supply Contracts Under Bounded Order Quantities," Graduate School of Industrial Administration, Carnegie Mellon University. Working Paper WP 1992-42, (November, 1991).

Lee, Hau L. "Creating Value Through Supply Chain Integration." Supply Chain Management Review. (September 2000).

Lee, Hau L.; V. Padmanabhan, and Seungjin Whang. "Information Distortion in a Supply Chain: The Bullwhip Effect." Management Science. Vol. 43, No. 4, (April 1997), 546-558.

Lee, Hau L.; V. Padmanabhan, and Seungjin Whang. "The Bullwhip Effect in Supply Chains." Sloan Management Review. Vol. 38, No. 3, (Spring 1997), 93102.

Liao, Ching-Jong, and Chih-Hsiung Shyu. "An Analytical Determination of Lead Time with Normal Demand." International Journal of Operations \& Production Management. Vol. 11, No. 9, (1991), 72-78.

Lin, N. P. Master Production Scheduling in Uncertain Environments. Unpublished doctoral dissertation, The Ohio State University, (1989).

Liu, Liming, and Xue-Ming Yuan. "Coordinated Replenishments in Inventory Systems with Correlated Demands." European Journal of Operational Research. vol. 123, (2000), 490-503.

Logic Tools. "Is Better Forecasting a Solution to the Bullwhip Effect?" http://www.logic-tools.com/resources/articles/bullwhip.html. (2003).

Lummus, Rhonda R., Leslie K. Duclos, and Robert J. Vokurka. "Improving Supply Chain Performance by Eliminating Demand Distortion: A Simulation Study of the Bullwhip Effect." 1998 Proceedings of Decision Sciences Meeting (1998): 1187-1189.

Lummus, Rhonda R., Leslie K. Duclos, and Robert J. Vokurka. "Improving Supply Chain Performance by Eliminating Demand Distortion: A Simulation Study of the Bullwhip Effect." Under review by Under review by International Journal of Physical Distribution and Logistics Management. (2002).

Maskell, Brian H., Software and the Agile Manufacturer: Computer Systems and World Class Manufacturing. (Portland: Productivity Press, 1994).

Maskell, Brian, "The Good Oil II." CFO Magazine (2001).

Mattila, Heikki, Russell King, and Nina Ojala. "Retail Performance Measures for Seasonal Fashion." Journal of Fashion Marketing and Management. Vol. 6, No. 4, (2002), 340-351.

Melchiors, Philip. "Restricted Time-Remembering Policies for the Inventory Rationing Problem." International Journal of Production Economics. Vol. 81-82, (2003), 461-468.

Mentzer, John T. and Carol C. Bienstock. Sales Forecasting Management : Understanding the Techniques, Systems and Management of the Sales Forecasting Process. (Thousand Oaks, CA: Sage Publications, 1998).

Metters, Richard. "Quantifying the Bullwhip Effect in Supply Chains." Journal of Operations Management vol. 15, no. 2 (May 1997), 89-100.

Milner, Joseph M., and Panos Kouvelis. "On the Complementary Value of Accurate Demand Information and Production and Supplier Flexibility." Manufacturing \& Service Operations Management. Vol. 4, No. 2, (Spring 2002), 99-113.

Minahan, Tim. "JIT Moves Up the Supply Chain." Purchasing. Vol. 125, No. 3, (September 1, 1998), 46-54.

Moen, Ronald D., Thomas W. Nolan, and Lloyd P. Provost. Qualtiy Improvement Through Planning Experimentation, $2^{\text {nd }}$ Edition. (New York: McGraw-Hill, 1999).

Molinder, A. "Joint Optimization of Lot-Sizes, Safety Stocks and Safety Lead Times in an MRP System." International Journal of Production Research. Vol. 35, No. 4, (1997), 983-994.

Monden, Yasuhiro, Toyota Production System: An Integrated Approach to Just-In-Time. (Norcross: Engineering \& Management Press, 1998).

Montgomery, Douglas C. Introduction to Statistical Quality Control, Third Edition. (New York: John Wiley \& Sons, Inc., 1997).

Muckstadt, John A., David H. Murray, and James A. Rappold. "Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy." Technical Report: School of Operations Research and Industrial Engineering, Cornell University. (2001).

Mullins, Robert. "Toy Story: No Big Deal." Silicon Valley / San Jose Business Journal. Vol. 19, No. 32 (December 7, 2001), 32-.

NDS Systems. http://www.ndsapps.com/ (2002).
Nicholas, John M., Competitive Manufacturing Management: Continuous Imporvement, Lean Production, and Customer-Focused Quality. (Boston: Irwin/McGraw Hill, 1998).

Oke, Adegoke. "You May Not Use Inventory Levels to Fill Orders if: Evidence From a Survey of UK Manufacturing Plants." International Journal of Production Economics. Vol. 81-82. (2003), 85-94.

Olney, Martha L. "Credit as a Production-Smoothing Device: The Case of Automobiles, 1913-1938." The Journal of Economic History. Vol. 49, No. 2, (June 1989), 377-391.
"Other Bondings: Blanket Orders Create Win-Win Relationships." Industrial Distribution. (January 1989), 25CT.

Ouyang, Liang-Yuh, and Bor-Ren Chuang. "A Periodic Review Inventory Model Involving Variable Lead Time with a Service Level Constraint." International Journal of Systems Science. Vol. 31, No. 10, (2000), 1209-1215.

Ouyang, Liang-Yuh, and Kun-Shan Wu. "Mixture Invnetory Model Involving Variable Lead Time with a Service Level Constraint." Computers and Operations Research. Vol. 24, No. 9, (1997), 875-882.

Ozer, Ozalp. "Replenishment Strategies for Distribution Systems Under Advance Demand Information." Management Science. Vol. 49, No. 3, (March 2003), 255-272.

Palaka, Kondalarao, Steven Erlebacher, and Dean H. Kropp. "Lead-Time Setting, Capacity Utilization, and Pricing Decisions Under Lead-Time Dependent Demand." IIE Transactions. Vol. 30, No. 2, (February 1998), 151163.

Pan, Jason Chao-Hsien, and Jin-Shan Yang. "A Study of an Integrated Inventory with Controllable Lead Time." International Journal of Production Research. Vol. 40, No. 5, (2002), 1263-1273.

Plenert, Gerhard and Bill Kirchmier. Finite Capacity Scheduling: Management, Selection, and Implementation. (New York: John Wiley \& Sons, Inc. 2000).

Ptak, Carol A. and Eli Schragenheim. ERP: Tools, Techniques, and Applications for Integrating the Supply Chain. (Boca Raton: St. Lucie Press, 2000).

Rabinovich, Elliot, Martin E. Dresner, and Philip T. Evers. "Assessing the Effects of Operational Processes and Information Systems on Inventory Performance." Journal of Operations Management. Vol. 21, (2003), 63-80.

Reddy, Ram. "Taming the Bullwhip Effect." Intelligent Enterprise vol. 4, no. 9 (June 13, 2001): 58-60.

Reed, Dan. "Enterprise Resource Planning (ERP)." http://www.leanmeanmanufacturing.com/erp2.MatIFlowTrack.html. (February 24, 2002).

Reeve, James M., "The Financial Advantages of the Lean Supply Chain." Supply Chain Management Review. (March/April 2002), 42-49.

Ryan, Sarah M. "Capacity Expansion with Lead Times and Correlated Random Demand." Working Paper (October 2001).

Ryan, Sarah M. "Forecast Frequency in Rolling Horizon Hedging Heuristics for Capacity Expansion." European Journal of Operational Research. Vol. 109, (1998), 550-558.

Ryu, Si Wook, and Kyung Keun Lee. "A Stochastic Inventory Model of Dual Sources Supply Chain with Lead-Time Reduction." International Journal of Production Economics. Vol. 81-82, (2003), 513-524.

Schonberger, Richard J. "Rate-Based Scheduling at OPW Fueling Components." Production and Inventory Management Journal. Vol. 38, No. 3, (Third Quarter 1997), 6-9.

Schonberger, Richard J., 1986. World Class Manufacturing: The Lessons of Simplicity Applied. New York: The Free Press.

Silver, Edward A. and DeAlton J. Smith. "Setting Individual Item Production Rates Under Significant Lead Time Conditions." INFOR. Vol. 19, No. 1, (February 1981), 1-19.

Simchi-Levi, David, Philip Kaminsky, and Edith Simchi-Levi. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies. (Boston, Massachusetts, 2000).

Snyder, R. D., A. B. Koehler, and J. K. Ord. "Lead Time Demand for Simple Exponential Smoothing: An Adjustment Factor for the Standard Deviation." Journal of the Operational Research Society. Vol. 50, No. 10, (October, 1999), 1079-1082.

Song, Jing-Sheng, Candace A. Yano, and Panupol Lerssrisuriya. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty." Manufacturing \& Service Operations Management. Vol. 2, No. 3, (Summer 2000), 287-296.

Sridharan, V., W. L. Berry, V. Udayabhanu. "Freezing the Master Production Schedule Under Rolling Planning Horizons." Management Science. Vol. 33, No. 9, (1987), 1137-1149.

Sridharan, V., W. L. Berry, V. Udayabhanu. "Measuring Master Production Schedule Stability Under Rolling Planning Horizons." Decision Sciences. Vol. 19, No. 2, (1988), 147-166.

Stalk Jr., George. "Time - The Next Source of Competitive Advantage." Harvard Business Review. Vol. 66, No. 4, (July-August, 1998), 41-51.

Sutton, Judy. "Planning for Summer Shortages." Dealerscope Merchandising, Vol. 37, No. 3, (March 1995), 69.

Swaminathan, Jayashankar M. and Sridhar R. Tayur. "Managing Broader Product Lines through Delayed Differentiation Using Vanilla Boxes." Management Science. Vol. 44, No. 12, (December 1998), S161-S172.

Teresko, John. "Toyota's New Challenge." Industry Week. Vol. 250, No. 1, (January 15, 2001), 71-74.

Toktay, L. Beril, and Lawrence M. Wein. "Analysis of a Forecasting-ProductionInventory System with Stationary Demand." Management Science. Vol. 47, No. 9, (September 2001), 1268-1281.

Towill, Denis R. "FORRIDGE - Principles of Good Practice in Material Flow." Production Planning \& Control. Vol. 8, No. 7, (1997), 622-632.

Tsay, Andy A., Steven Nahmias, and Narendra Agrawal. Chapter 10 - Modeling Supply Chain Contracts: A Review. In Tayur, S., R. Ganeshan, and M. Magazine (eds.) Quantitative Models for Supply Chain Management. (Boston, MA: Kluwer Academic Publishers, 1999, 299-336).

Vendemia, William G., B. Eddy Patuwo, and Ming S. Hung. "Evaluation of Lead Time in Production/Inventory Systems with Non-Stationary Stochastic Demand." The Journal of the Operational Research Society. Vol. 46, No. 2, (February 1995), 221-233.

Vollmann, Thomas E., William L. Berry, and D. Clay Whybark. Manufacturing Planning and Control Systems, 4th edition. (New York: The McGraw-Hill Companies, Inc., 1997).

Wei, Jerry and Gary M. Kern, "The Effect of Forecasting Accuracy on RateBased Master Production Reschedules." Proceedings of the 1999 National Meeting of the Decision Sciences Institute. (New Orleans, LA: November 2023, 1999), 1144-1146.

Weng, Z. Kevin. "Manufacturing Lead Times, System Utilization Rates and Lead-Time-Related Demand." European Journal of Operational Research. Vol. 89, (1996), 259-268.

Wiersema, William H. "'Just-In-Time' Inventory Management." Electrical Apparatus. Vol. 50, No. 1, (January 1997), 40-41, 44.

Wikner, J., D.R. Towill, and M. Naim. "Smoothing Supply Chain Dynamics." International Journal of Production Economics. Vol. 22, No. 3, (December 1991), 231-248.

Woodhead, Ralph. "Rate-Based Master Production Scheduling for Repetitive, Make-to-Stock Manufacturing." BPICS Control. (February/March 1992), 33-34.

Wu, Kun-Shan. "A mixed Inventory Model With Variable Lead Time and Random Supplier Capacity." Production Planning \& Control. Vol. 12, No. 4, (2001), 353-361.

Xie, Xiaolan. "Stability Analysis and Optimization of an Inventory System with Bounded Orders." European Journal of Operational Research. Vol. 110, (1998), 126-149.

Appendix

Retailer Smoothing Analysis

Demand Strategy=RS
Response μ Production
Weight: wgt for u Production
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.972701
RSquare Adj	0.969936
Root Mean Square Error	0.944395
Mean of Response	1037.59
Observations (or Sum Wgts)	0.191424

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	8	2510.5081	313.814	351.8551		
Error	79	70.4587	0.892	Prob $>$ F		
C. Total	87	250.9668		$<.0001$		
Lack Of Fit						
Source		DF	Sum of Squares	Mean Square	\quad	F Ratio
:---						
Lack Of Fit						

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob>\|t		
Intercept	1011.9771	10.20977	99.12	$<.0001$		
Standard Deviation	-532.2288	439.0869	-1.21	0.2291		
Alpha	-21.57546	13.24522	-1.63	0.1073		
(Standard Deviation-0.04213)*	(Alpha-0.31453)	-93.52189	325.8789	-0.29	0.7749	
Flex Bound Length	-0.341599	0.274317	-1.25	0.2167		
(Standard Deviation-0.04213) $)^{*}$ (Flex Bound Length-12.3925)	-1.379558	7.480134	-0.18	0.8541		
(Alpha-0.31453)*(Flex Bound Length-12.3925)	3.6647173	1.518198	2.41	0.0181		
(Standard Deviation-0.04213)* (Alpha-0.31453)*	(Flex Bound Length-	131.58613	40.74199	3.23	0.0018	
12.3925)						
Standard Deviation2	11492.149	2056.37	5.59	$<.0001$		

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length
Nparm

Standard Deviation2
Sum of Squares
1.310399
2.366518
0.073455
1.383041
0.030337
5.196748
9.303440
27.855296
F Ratio
1.4693
2.6534
0.0824
1.5507
0.0340
5.8267
10.4312
31.2320
Prob $>F$
0.2291
0.1073
0.7749
0.2167
0.8541
0.0181
0.0018
$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	2.1083344
Coded Scale	4.5508723

Pareto Plot of Estimates

Demand Strategy=RS
 Least Squares Fit
 Response $\log (u$ of s Production)
 Whole Model
 Actual by Predicted Plot

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)
Analysis of Variance

Source	DF	Sum of Squares
Model	8	95.390964
Error	79	0.209287
C. Total	87	95.600251
Lack Of Fit		
Source	DF	Sum of Squares
Lack Of Fit	7	0.13269533
Pure Error	72	0.07659147
Total Error	79	0.20928679

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: |
| Intercept | 3.7246891 | 0.023855 | 156.14 | $<.0001$ |
| Standard Deviation | 24.5848 | 0.560963 | 43.83 | $<.0001$ |
| Alpha | 1.0689414 | 0.033774 | 31.65 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818) | -2.034634 | 0.444042 | -4.58 | $<.0001$ |
| Flex Bound Length | 0.0482374 | 0.000759 | 63.55 | $<.0001$ |
| (Standard Deviation-0.15)*(Flex Bound Length-15.0909) | -0.081918 | 0.00895 | -9.15 | $<.0001$ |
| (Alpha-0.31818)*(Flex Bound Length-15.0909) | 0.0715702 | 0.004222 | 16.95 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length- | -0.149983 | 0.050027 | -3.00 | 0.0036 |
| 15.0909) | | | | |
| Standard Deviation2 | -62.93432 | 2.460823 | -25.57 | $<.0001$ |

Effect Tests

Source

Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares	F Ratio
5.088378	1920.723
2.653689	1001.694
0.055621	20.9954
10.699900	4038.918
0.221949	83.7796
0.761295	287.3680
0.023812	8.9883
1.732722	654.0550

[^4]Standard Deviation2
1.732722

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	27.605617
Coded Scale	0.1514654

Pareto Plot of Estimates

Response log(s of all samples of Production) Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare
RSquare Adj
0.99784
0.997621

Rquare Error 0.046539

Mean of Response
6.932053

Observations (or Sum Wgts)
Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	8	79.029343	9.87867	4561.065
Error	79	0.171104	0.00217	Prob $>$ F
C. Total	87	79.200447		$<.0001$
Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	7	0.07509108	0.010727	8.0444
Pure Error	72	0.09601254	0.001334	Prob $>$ F
Total Error	79	0.17110361		$<.0001$
				Max RSq
			0.9988	

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$
Intercept	4.2739355	0.02157	198.14	$<.0001$
Standard Deviation	24.901065	0.507216	49.09	$<.0001$
Alpha	0.8143768	0.030538	26.67	$<.0001$
(Standard Deviation-0.15)*(Alpha-0.31818)	-1.461865	0.401497	-3.64	0.0005
Flex Bound Length	0.0316526	0.000686	46.12	$<.0001$
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)	-0.03937	0.008092	-4.87	$<.0001$
(Alpha-0.31818)*(Flex Bound Length-15.0909)	0.0659485	0.003817	17.28	$<.0001$
(Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length-	-0.070372	0.045234	-1.56	0.1238
15.0909)				
Standard Deviation2	-64.0292	2.225046	-28.78	$<.0001$

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length
Standard Deviation2

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares	F Ratio
5.22011667	2410.182
1.5402560	711.1494
0.0287132	13.2571
4.6071279	2127.15
0.0512654	23.6697
0.6463963	298.4467
0.0052421	2.4203
1.7935363	828.0910

[^5]Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	27.446893
Coded Scale	0.1361658

Pareto Plot of Estimates

Term	t Ratio					
Standard Deviation	49.09360		\bigcirc			
Flex Bound Length	46.12104					
Standard Deviation2	-28.77657					
Alpha	26.66738					
(Alpha-0.31818)*(Flex Bound Length-15.0909)	17.27561					
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)	-4.86515					
(Standard Deviation-0.15)*(Alpha-0.31818)	-3.64103					
(Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length-15.0909)	-1.55574					

Response $\boldsymbol{\mu}$ Inventory

Weight: wgt for u Inventory

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare	0.736443
RSquare Adj	0.709754
Root Mean Square Error	1.173638
Mean of Response	1.638334
Observations (or Sum Wgts)	1.835723

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	8	304.06029	38.0075	27.5932
Error	79	108.81665	1.3774	Prob $>$ F
C. Total	87	412.87694		$<.0001$
Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	7	44.86596	6.40942	7.2162
Pure Error	72	63.95070	0.88820	Prob $>$ F
Total Error	79	108.81665		$<.0001$
				Max RSq
				0.8451

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>\|t\|$
Intercept	-25.20439	8.166435	-3.09	0.0028
Standard Deviation	28.095113	201.5277	0.14	0.8895
Alpha	17.626433	7.560723	2.33	0.0223
(Standard Deviation-0.02312)*(Alpha-0.44162)	2539.5027	319.1162	7.96	$<.0001$
Flex Bound Length	9.2487773	3.200747	2.89	0.0050
(Standard Deviation-0.02312)*(Flex Bound Length-2.00565)	447.28884	54.04636	8.28	$<.0001$
(Alpha-0.44162)*(Flex Bound Length-2.00565)	22.630877	17.09336	1.32	0.1893
(Standard Deviation-0.02312)*(Alpha-0.44162)*(Flex Bound Length-	2980.4544	306.6362	9.72	$<.0001$
2.00565)				
Standard Deviation2	-51.92435	1001.889	-0.05	0.9588

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares 0.02677 7.48636 87.23041 11.50097 94.34339 2.41444
130.13271 0.00370

F Ratio	Prob $>$ F
0.0194	0.8895
5.4350	0.0223
63.3286	$<.0001$
8.3496	0.0050
68.4925	$<.0001$
1.7529	0.1893
94.4753	$<.0001$
0.0027	0.9588

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	5.6856425
Coded Scale	4.9250438

Pareto Plot of Estimates

Least Squares Fit

Response log(u of s Inventory)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.999499	
RSquare Adj	0.999448	
Root Mean Square Error	0.042261	
Mean of Response	8.335679	
Observations (or Sum Wgts)	88	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	281.33907
Error	79	0.14109
C. Total	87	281.48017
Lack Of Fit		
Source	DF	Sum of Squares
Lack Of Fit	7	0.04901744
Pure Error	72	0.09207720
Total Error	79	0.14109464

Mean Square	F Ratio
35.1674	19690.5
0.0018	Prob F
	$<.0001$

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: |
| Intercept | 3.8743412 | 0.019587 | 197.80 | $<.0001$ |
| Standard Deviation | 28.061262 | 0.460594 | 60.92 | $<.0001$ |
| Alpha | -0.313424 | 0.027731 | -11.30 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818) | 0.7432061 | 0.364593 | 2.04 | 0.0449 |
| Flex Bound Length | 0.1608885 | 0.000623 | 258.16 | $<.0001$ |
| (Standard Deviation-0.15)*(Flex Bound Length-15.0909) | -0.052854 | 0.007348 | -7.19 | $<.0001$ |
| (Alpha-0.31818)*(Flex Bound Length-15.0909) | 0.0613425 | 0.003467 | 17.70 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length- | 0.031323 | 0.041076 | 0.76 | 0.4480 |
| 15.0909) | | | | |
| Standard Deviation2 | -73.26644 | 2.020527 | -36.26 | $<.0001$ |

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length
Nparm
1
1
1
1
1
1
1
1
DF
1
1
1
1
1
1
1
1
Sum of Squares
6.62919
0.22814
0.00742
119.03162
0.09239
0.55926
0.00104
2.34836

Standard Deviation2

F Ratio	Prob $>$ F
3711.735	$<.0001$
127.7393	$<.0001$
4.1553	0.0449
66646.74	$<.0001$
51.7322	$<.0001$
313.1327	$<.0001$
0.5815	0.4480
1314.864	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	19.476145
Coded Scale	0.0877412

Pareto Plot of Estimates

Response log(s of all samples of Inventory) Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.999511
RSquare Adj	0.999461
Root Mean Square Error	0.044028
Mean of Response	8.578355
Observations (or Sum Wgts)	88
Analysis of Variance	

Analysis Of	DF	Sum of Squares	Mean Square	F Ratio
Source	8	312.90255	39.1128	20177.39
Model	79	0.15314	0.0019	Prob $>$ F
Error	87	313.05569		$<.0001$
C. Total				
Lack Of Fit		Sum of Squares	Mean Square	F Ratio
Source	7	0.07494972	0.010707	9.8598
Lack Of Fit	72	0.07818767	0.001086	Prob $>$ F
Pure Error	79	0.15313739		$<.0001$
Total Error				Max RSq
			0.9998	

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t	
Intercept	3.9254809	0.020406	192.37	$<.0001$	
Standard Deviation	29.170168	0.479848	60.79	$<.0001$	
Alpha	-0.498031	0.028891	-17.24	$<.0001$	
(Standard Deviation-0.15)*(Alpha-0.31818)	1.5646831	0.379834	4.12	$<.0001$	
Flex Bound Length	0.1745872	0.000649	268.90	$<.0001$	
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)	-0.037547	0.007656	-4.90	$<.0001$	
(Alpha-0.31818)*(Flex Bound Length-15.0909)	0.0596872	0.003611	16.53	$<.0001$	
(Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length-	0.0489089	0.042793	1.14	0.2565	
15.0909)					
Standard Deviation2	-77.7418	2.10499	-36.93	$<.0001$	

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length
Standard Deviation2

Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
1	1	7.16348	3695.47	$<.0001$
1	1	0.57604	297.1673	$<.0001$
1	1	0.03289	16.9694	$<.0001$
1	1	140.16426	72307.47	$<.0001$
1	1	0.04663	24.0541	$<.0001$
1	1	0.52948	273.1479	$<.0001$
1	1	0.00253	1.3063	0.2565
1	1	2.64401	1363.983	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	18.674919
Coded Scale	0.0876485

Pareto Plot of Estimates

Response μ Prod Shift

Weight: wgt u Prod Shift

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)
Analysis of Variance

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Effect Screening
 ening

	Lenth PSE
t-Test Scale	2.2579433
Coded Scale	0.1322109

Sum of Squares 0.267935 1.395757 5.267945 0.001641 0.018651 2.468029 3.434173 19.705838

F Ratio
0.2339
1.2185 4.5991 0.0014 0.0163 2.1547 2.9981 17.2038

Prob > F 0.6300 0.2730 0.0351 0.9699 0.8988 0.1461 0.0873

Residual by Predicted Plot

0.1322109

Pareto Plot of Estimates

Demand Strategy=RS

Least Squares Fit
Response log(u of s Prod Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare		0.995045		
RSquare Adj		0.994543		
Root Mean Square Error		0.096181		
Mean of Response		6.196514		
Observations (or Sum Wgts)		88		
Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	8	146.74930	18.3437	1982.921
Error	79	0.73082	0.0093	Prob > F
C. Total	87	147.48012		<. 0001
Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	7	0.63231045	0.090330	66.0247
Pure Error	72	0.09850507	0.001368	Prob > F
Total Error	79	0.73081552		<. 0001
				Max RSq

Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>\|t	
Intercept	2.3142351	0.044578	51.91	$<.0001$	
Standard Deviation	24.154981	1.048256	23.04	$<.0001$	
Alpha	2.7249722	0.063113	43.18	$<.0001$	
(Standard Deviation-0.15)*(Alpha-0.31818)	-3.452105	0.829768	-4.16	$<.0001$	
Flex Bound Length	0.0738569	0.001418	52.07	$<.0001$	
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)	-0.110843	0.016724	-6.63	$<.0001$	
(Alpha-0.31818)*(Flex Bound Length-15.0909)	0.0826244	0.007889	10.47	$<.0001$	
(Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length-	-0.224608	0.093484	-2.40	0.0186	
15.0909)					
Standard Deviation2	-60.26902	4.59847	-13.11	$<.0001$	

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares

of Squares	F Ratio
4.912012	530.9807
17.245124	1864.171
0.160116	17.3083
25.083889	2711.529
0.406360	43.9268
1.014625	109.6794
0.053402	5.7727
1.589067	171.7756

[^6]Standard Deviation2

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	14.197004
Coded Scale	0.1455612

Pareto Plot of Estimates

Response log(s of all samples of Prod Shift) Whole Model
Actual by Predicted Plot

Summary of Fit

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares	F Ratio
5.116009	559.7626
17.579471	1923.439
0.144848	15.8484
26.751674	2927.006
0.291310	31.8734
1.062041	116.2020
0.049222	5.3856
1.650700	180.6095

[^7]Standard Deviation2
Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	13.697849
Coded Scale	0.1395966

Pareto Plot of Estimates

Response μ Inv Shift
Weight: wgt for u Inv Shift

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare		0.735138	
RSquare Adj		0.708316	
Root Mean Square Error	1.074255		
Mean of Response	-0.01055		
Observations (or Sum Wgts)	1116.943		
Analysis of Variance		Mean Square	F Ratio
Source	DF	Sum of Squares	31.6301
Model	8	253.04058	27.4085
Error	79	91.16783	
C. Total	87	344.20841	
Lack Of Fit			
Source	DF	Sum of Squares	Mean Square

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: |
| Intercept | -0.08825 | 0.20174 | -0.44 | 0.6630 |
| Standard Deviation | 0.0930538 | 7.754069 | 0.01 | 0.9905 |
| Alpha | 0.1573445 | 0.20218 | 0.78 | 0.4388 |
| (Standard Deviation-0.023)*(Alpha-0.37057) | 21.161189 | 9.884316 | 2.14 | 0.0354 |
| Flex Bound Length | 0.0133854 | 0.058851 | 0.23 | 0.8207 |
| (Standard Deviation-0.023)*(Flex Bound Length-2.01981) | 10.398202 | 0.919589 | 11.31 | $<.0001$ |
| (Alpha-0.37057)*(Flex Bound Length-2.01981) | 0.3222279 | 0.325831 | 0.99 | 0.3257 |
| (Standard Deviation-0.023)*(Alpha-0.37057)*(Flex Bound Length- | 55.319954 | 5.815249 | 9.51 | $<.0001$ |
| 2.01981) | | | | |
| Standard Deviation2 | -15.31016 | 38.15351 | -0.40 | 0.6893 |

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Sourd Deviation	1	1	0.00017	0.0001	0.9905
Standard	1	1	0.6994	0.6057	0.4388
Alpha	1	1	5.28934	4.5834	0.0354
Standard Deviation*Alpha	1	1	0.05970	0.0517	0.8207
Flex Bound Length	1	1	147.55139	127.8583	$<.0001$
Standard Deviation*Flex Bound Length	1	1	1.12864	0.9780	0.3257
Alpha*Flex Bound Length	1	1	104.43889	90.4955	$<.0001$
Standard DeviationAlpha*Flex Bound Length	1	1	0.18583	0.1610	0.6893
Standard Deviation2					

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	4.6125077
Coded Scale	0.1482617

Pareto Plot of Estimates

Term t Ratio						
(Standard Deviation-0.023)* ${ }^{*}$ (Flex Bound Length-2.01981)	11.30744					
(Standard Deviation-0.023)*(Alpha-0.37057)*(Flex Bound Length-2.01981)	9.51291					
(Standard Deviation-0.023)*(Alpha-0.37057)	2.14089					,
(Alpha-0.37057)*(Flex Bound Length-2.01981)	0.98894					,
Alpha	0.77824					
Standard Deviation2	-0.40128					
Flex Bound Length	0.22744					
Standard Deviation	0.01200					

Response log(u of s Inv Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.998868	
RSquare Adj	0.998753	
Root Mean Square Error	0.045936	
Mean of Response	6.525293	
Observations (or Sum Wgts)	88	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	147.09227
Error	79	0.16670
C. Total	87	147.25897
Lack Of Fit		
Source	DF	Sum of Squares
Lack Of Fit	7	0.10203247
Pure Error	72	0.06466408
Total Error	79	0.16669655

Mean Square	F Ratio
18.3865	8713.654
0.0021	Prob $>$ F
	<0001

Parameter Estimates
Term
Intercept
Standard Deviation
Alpha
(Standard Deviation-0.15)*(Alpha-0.31818)
Flex Bound Length
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)
(Alpha-0.31818)*(Flex Bound Length-15.0909)
(Standard Deviation-0.15)* (Alpha-0.31818)* ${ }^{*}$ (Flex Bound Length-
15.0909)
$\begin{array}{llllll}\text { Standard Deviation2 } & -64.24488 & 2.196205 & -29.25 & <.0001\end{array}$

Effect Tests

Source
Standard Deviation
Alpha
Standard Deviation*Alpha
Flex Bound Length
Standard Deviation*Flex Bound Length
Alpha*Flex Bound Length
Standard Deviation*Alpha*Flex Bound Length

Nparm	DF
1	1
1	1
1	1
1	1
1	1
1	1
1	1
1	1

Sum of Squares	F Ratio
5.372728	2546.216
2.953631	1399.77
0.090657	42.9636
34.857479	16519.48
0.352691	167.1457
0.269371	127.6592
0.031353	14.8585
1.805639	855.7196

[^8]Standard Deviation2

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	20.78449
Coded Scale	0.1017766

Pareto Plot of Estimates

Term	t Ratio					
Flex Bound Length	128.5281			\checkmark		
Standard Deviation	50.4600				-	
Alpha	37.4135					
Standard Deviation2	-29.2527					
(Standard Deviation-0.15)*(Flex Bound Length-15.0909)	-12.9285					人
(Alpha-0.31818)*(Flex Bound Length-15.0909)	11.2986					
(Standard Deviation-0.15)*(Alpha-0.31818)	-6.5547					
(Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length-15.0909)	-3.8547					

Response log(s of all samples of Inv Shift)

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare	0.999031
RSquare Adj	0.998933
Root Mean Square Error	0.043328
Mean of Response	6.568352
Observations (or Sum Wgts)	88

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio Model
Error	8	152.89304	19.1116	10180.47
C. Total	79	0.14831	0.0019	Prob $>$ F
Lack Of Fit	87	153.04135		$<.0001$
Source				
Lack Of Fit	DF	Sum of Squares	Mean Square	F Ratio
Pure Error	7	0.08755678	0.012508	14.8248
Total Error	72	0.06074860	0.000844	Prob $>$ F
	79	0.14830537		$<.0001$
				Max RSq
				0.9996

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>\|t| |
| :--- | ---: | ---: | ---: | ---: |
| Intercept | 2.8760399 | 0.020081 | 143.22 | $<.0001$ |
| Standard Deviation | 25.517909 | 0.472217 | 54.04 | $<.0001$ |
| Alpha | 1.0958875 | 0.028431 | 38.55 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818) | -2.313634 | 0.373793 | -6.19 | $<.0001$ |
| Flex Bound Length | 0.0900229 | 0.000639 | 140.89 | $<.0001$ |
| (Standard Deviation-0.15)*(Flex Bound Length-15.0909) | -0.090218 | 0.007534 | -11.97 | $<.0001$ |
| (Alpha-0.31818)*(Flex Bound Length-15.0909) | 0.0401671 | 0.003554 | 11.30 | $<.0001$ |
| (Standard Deviation-0.15)*(Alpha-0.31818)*(Flex Bound Length- | -0.150977 | 0.042112 | -3.59 | 0.0006 |
| 15.0909) | | | | |
| Standard Deviation2 | -64.56788 | 2.071514 | -31.17 | $<.0001$ |

Effect Tests

	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Source	1	1	5.481964	2920.158	$<.0001$
Standard Deviation	1	1	2.789164	1485.745	$<.0001$
Alpha	1	1	0.071921	38.3113	$<.0001$
Standard Deviation*Alpha	1	1	37.266515	19851.3	$<.0001$
Flex Bound Length	1	1	0.269199	143.3983	$<.0001$
Standard Deviation*Flex Bound Length	1	1	0.239790	127.7324	$<.0001$
Alpha*Flex Bound Length	1	1	0.024129	12.8530	0.0006
Standard Deviation*Alpha*Flex Bound Length	1	1	1.823841	971.5323	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	20.140564
Coded Scale	0.093024

Pareto Plot of Estimates

Production Smoothing Analysis

Response μ Production
Weight: wgt for u Production
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.192037	
RSquare Adj	0.026301	
Root Mean Square Error	1.12048	
Mean of Response	999.9806	
Observations (or Sum Wgts)	607.0924	
Analysis of Variance		Mean Square
Source	DF	Sum of Squares
Model	8	11.637676
Error	48.963541	1.45471
C. Total	39	60.601217
Lack Of Fit	47	
Source		
Lack Of Fit	DF	Sum of Squares
Pure Error	3	4.673906

F Ratio
1.1587
Prob $>$ F
0.3481

Parameter Estimates

Term
Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.03024)*(Flex Bound Width-0.03542)
Flex Bound Length
(Standard Deviation-0.03024)*(Flex Bound Length-19.8947)
(Flex Bound Width-0.03542)*(Flex Bound Length-19.8947)
(Standard Deviation-0.03024)*(Flex Bound Width-0.03542)*(Flex Bound
Length-19.8947)
Standard Deviation2

Estimate	Std Error	t Ratio	Prob $>\|t\|$
1000.1606	0.676716	1478	$<.0001$
-14.58928	6.598987	-2.21	0.0330
0.379337	1.16066	0.33	0.7455
45.224611	52.60424	0.86	0.3952
0.0041552	0.033243	0.12	0.9012
-0.817895	0.956817	-0.85	0.3979
-1.13814	0.801366	-1.42	0.1635
-49.38951	34.93858	-1.41	0.1654
71.906967	31.66833	2.27	0.0288

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Standard Deviation	1	1	6.1365133	4.8878	0.0330
Flex Bound Width	1	1	0.1341061	0.1068	0.7455
Standard Deviation*Flex Bound Width	1	1	0.9279324	0.7391	0.3952
Flex Bound Length	1	1	0.0196155	0.0156	0.9012
Standard Deviation*Flex Bound Length	1	1	0.9173713	0.7307	0.3979
Flex Bound Width*Flex Bound Length	1	1	2.5324327	2.0171	0.1635
Standard Deviation*Flex Bound Width*Flex Bound	1	1	2.5088063	1.9983	0.1654
Length					
Standard Deviation2	1	1	6.4729144	5.1557	0.0288

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	0.9887422
Coded Scale	0.0449635

Pareto Plot of Estimates

Demand Strategy=PS

Response log(u of s Production)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.999191	
RSquare Adj	0.999025	
Root Mean Square Error	0.052566	
Mean of Response	2.705673	
Observations (or Sum Wgts)	48	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	133.60018
Error	39	0.10814
C. Total	47	133.70832
Lack Of Fit		
Source		
Lack Of Fit	3	Sum of Squares
Pure Error	36	0.0905981
Total Error	39	0.01755521

Mean Square	F Ratio
16.7000	6023.034
0.0028	Prob $>$ F
	$<.0001$

Parameter Estimates
Term
Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)
Flex Bound Length
(Standard Deviation-0.10833)*(Flex Bound Length-11)
(Flex Bound Width-0.1125)*(Flex Bound Length-11)
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)*(Flex Bound
Length-11)
Standard Deviation2

Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
1.4573127	0.023185	62.85	$<.0001$
24.243573	0.573096	42.30	$<.0001$
9.7908264	0.08686	112.72	$<.0001$
19.89358	1.056146	18.84	$<.0001$
-0.122702	0.000844	-145.3	$<.0001$
0.0111036	0.010268	1.08	0.2862
0.0314129	0.009651	3.25	0.0023
0.1302229	0.11735	1.11	0.2739
-61.06897	2.551837	-23.93	$<.0001$

Effect Tests

Source
Standard Deviation
Flex Bound Width

Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
1	1	4.961813	1789.528	$<.0001$
1	1	35.228654	12705.57	$<.0001$
1	1	0.983739	354.7954	$<.0001$
1	1	58.536559	21111.81	$<.0001$
1	1	0.003242	1.1694	0.2862
1	1	0.029374	10.5939	0.0023
1	1	0.003414	1.2314	0.2739
1	1	1.587951	572.7109	$<.0001$

Standard Deviation*Flex Bound Width
Flex Bound Length
Standard Deviation*Flex Bound Length $1 \quad 1$
$1.587951 \quad 572.7109$ $<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	4.8822435
Coded Scale	0.0371065

Pareto Plot of Estimates

Term t Ratio						
Flex Bound Length	-145.2990					
Flex Bound Width	112.7190					
Standard Deviation	42.3028					
Standard Deviation2	-23.9314					
(Standard Deviation-0.10833)**(Flex Bound Width-0.1125)	18.8360					
(Flex Bound Width-0.1125)*(Flex Bound Length-11)	3.2548					
(Standard Deviation-0.10833)* (Flex Bound Width-0.1125)* (Flex Bound Length-11)	1.1097					
(Standard Deviation-0.10833)* ${ }^{*}$ (Flex Bound Length-11)	1.0814					

Response log(s of all samples of Production)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.999268
RSquare Adj	0.999118
Root Mean Square Error	0.052097
Mean of Response	3.204948
Observations (or Sum Wgts)	48
Analysis of Variance	

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	8	144.46874	18.0586	6653.666
Error	39	0.10585	0.0027	Prob $>$ F
C. Total	47	144.57459		$<.0001$
Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	3	0.08689053	0.028964	54.9979
Pure Error	36	0.01895866	0.000527	Prob $>$ F
Total Error	39	0.10584919		$<.0001$
				Max RSq
			0.9999	

Parameter Estimates

Term

Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)
Flex Bound Length
(Standard Deviation-0.10833)*(Flex Bound Length-11)
(Flex Bound Width-0.1125)*(Flex Bound Length-11)
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)*(Flex Bound Length-11)
Standard Deviation2

Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
2.0978782	0.022939	91.45	$<.0001$
24.485987	0.567006	43.18	$<.0001$
9.7074039	0.085938	112.96	$<.0001$
20.353269	1.044924	19.48	$<.0001$
-0.13461	0.000836	-161.1	$<.0001$
0.0045424	0.010159	0.45	0.6573
0.0334134	0.009549	3.50	0.0012
0.1899311	0.116103	1.64	0.1099
-62.53773	2.524721	-24.77	$<.0001$

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Standard Deviation	1	1	5.061536	1864.917	$<.0001$
Flex Bound Width	1	1	34.630882	12759.7	$<.0001$
Standard Deviation*Flex Bound Width	1	1	1.029727	379.4017	$<.0001$
Flex Bound Length	1	1	70.450335	25957.34	$<.0001$
Standard Deviation*Flex Bound Length	1	1	0.000543	0.1999	0.6573
Flex Bound Width*Flex Bound Length	1	1	0.033234	12.2451	0.0012
Standard Deviation*Flex Bound Width*Flex Bound	1	1	0.007263	2.6761	0.1099
Length					
Standard Deviation2	1	1	1.665253	613.5605	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	5.2489444
Coded Scale	0.0394696

Pareto Plot of Estimates

Term \quad Flex Bound Length

Response $\boldsymbol{\mu}$ Inventory

Weight: wgt for u Inventory

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance
 Source

Model	8
Error	39
C. Total	47

Lack Of Fit
Source Lack Of Fit
Pure Error
Total Error
0.847952
0.816763
1.148193
-234.988
0.000139

Sum of Squares

286.73866
51.41554
338.15420

Sum of Squares
5.381307
46.034232
51.415539
51.415539

Mean Square	F Ratio
35.8423	27.1873
1.3183	Prob $>$ F
	$<.0001$

Mean Square
1.79377
1.27873

$$
\begin{array}{r}
\text { F Ratio } \\
1.4028 \\
\text { Prob }>\mathrm{F} \\
0.2578 \\
\text { Max RSq } \\
0.8639
\end{array}
$$

| Estimate | Std Error | t Ratio | Prob>\|t| |
| ---: | ---: | ---: | ---: |
| -556.8008 | 442.8118 | -1.26 | 0.2161 |
| 41047.449 | 21320.36 | 1.93 | 0.0615 |
| -891.6318 | 1123.94 | -0.79 | 0.4324 |
| -12070.74 | 44795.15 | -0.27 | 0.7890 |
| 0.8038489 | 11.23133 | 0.07 | 0.9433 |
| 164.26462 | 435.2971 | 0.38 | 0.7080 |
| 18.652052 | 128.6816 | 0.14 | 0.8855 |
| -3177.124 | 5040.875 | -0.63 | 0.5322 |
| | | | |
| -457277.4 | 102499.9 | -4.46 | $<.0001$ |

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Standard Deviation	1	1	4.886672	3.7067	0.0615
Flex Bound Width	1	1	0.829687	0.6293	0.4324
Standard Deviation*Flex Bound Width	1	1	0.095727	0.0726	0.7890
Flex Bound Length	1	1	0.006753	0.0051	0.9433
Standard Deviation*Flex Bound Length	1	1	0.187735	0.1424	0.7080
Flex Bound Width*Flex Bound Length	1	1	0.027698	0.0210	0.8855
Standard Deviation*Flex Bound Width*Flex Bound	1	1	0.523704	0.3972	0.5322
Length					
Standard Deviation2	1	1	26.238703	19.9027	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	0.7027409
Coded Scale	68.46626

Pareto Plot of Estimates

Response Predicted log(u of s Inventory)
Whole Model
Actual by Predicted Plot

Summary of Fit

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Standard Deviation	1	1	1.0158411		
Flex Bound Width	1	1	0.1752581		
Standard Deviation*Flex Bound Width	1	1	0.0081095		
Flex Bound Length	1	1	0.4206967		
Standard Deviation*Flex Bound Length	1	1	0.0537067		
Flex Bound Width*Flex Bound Length	1	1	0.0768152		
Standard Deviation*Flex Bound Width*Flex Bound	1	1	0.0007584		
Length					
Standard Deviation2	1	1	$7.3454 \mathrm{e}-26$		

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	0.3476204
Coded Scale	0.0501747

Pareto Plot of Estimates
Term \quad Standard Deviation

Response log(s of all samples of Inventory)
Whole Model
Actual by Predicted Plot

Summary of Fit

Effect Tests

	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Source	1	1	7.0673880	1157.796	$<.0001$
Standard Deviation	1	1	0.2089182	34.2255	$<.0001$
Flex Bound Width	1	1	0.0227758	3.7312	0.0607
Standard Deviation*Flex Bound Width	1	1	0.5153947	84.4332	$<.0001$
Flex Bound Length	1	1	0.0101961	1.6703	0.2038
Standard Deviation*Flex Bound Length	1	1	0.1231909	20.1814	$<.0001$
Flex Bound Width*Flex Bound Length	1	1	0.0165796	2.7161	0.1074
Standard Deviation*Flex Bound Width*Flex Bound					
Length	1	1	2.7391047	448.7267	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	4.8180013
Coded Scale	0.0543325

Pareto Plot of Estimates

Response μ Prod Shift
Weight: wgt u Prod Shift

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

Source	DF	Sum of Squares	Mean Square
Model	8	43.292327	5.41154
Error	39	55.113662	1.41317
C. Total	47	98.405989	
Lack Of Fit			
Source	DF	Sum of Squares	Mean Square
Lack Of Fit	3	7.039290	2.34643
Pure Error	36	48.074372	1.33540
Total Error	39	55.113662	

Parameter Estimates

Term
Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.03031)*(Flex Bound Width-0.03546)
Flex Bound Length
(Standard Deviation-0.03031)*(Flex Bound Length-19.8626)
(Flex Bound Width-0.03546)*(Flex Bound Length-19.8626)
(Standard Deviation-0.03031)*(Flex Bound Width-0.03546)*(Flex Bound Length-19.8626)
Standard Deviation2
0.439936
0.325051
1.188769
-0.00002
1101804
F Ratio
3.8294
Prob $>$
0.0021

F Ratio
1.7571
Prob $>$
0.1728
Max RSq
0.5115

Estimate	Std Error	t Ratio	Prob $>\|t\|$
0.0115551	0.014827	0.78	0.4405
-0.291272	0.162816	-1.79	0.0814
0.0225991	0.029041	0.78	0.4412
2.6040138	1.342267	1.94	0.0596
-0.000372	0.000725	-0.51	0.6103
-0.051427	0.020472	-2.51	0.0163
-0.039222	0.017135	-2.29	0.0276
-2.637625	0.692114	-3.81	0.0005
1.7207787	0.781895	2.20	0.0337

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Standard Deviation	1	1	4.522711	3.2004	0.0814
Flex Bound Width	1	1	0.855753	0.6056	0.4412
Standard Deviation*Flex Bound Width	1	1	5.318673	3.7636	0.0596
Flex Bound Length	1	1	0.373067	0.2640	0.6103
Standard Deviation*Flex Bound Length	1	1	8.917750	6.3105	0.0163
Flex Bound Width*Flex Bound Length	1	1	7.403798	5.2391	0.0276
Standard Deviation*Flex Bound Width*Flex Bound	1	1	20.524134	14.5235	0.0005
Length					
Standard Deviation2	1	1	6.844591	4.8434	0.0337

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	2.3579428
Coded Scale	0.0026704

Pareto Plot of Estimates

Response log(u of s Prod Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.996881	
RSquare Adj	0.996242	
Root Mean Square Error	0.08672	
Mean of Response	1.241315	
Observations (or Sum Wgts)	48	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	93.431360
Error	39	0.292296
C. Total	47	93.723656
Lack Of Fit		
Source		
Lack Of Fit	3	Sum of Squares
Pure Error	36	0.0667642
Total Error	39	0.22551956
		0.29229598

Mean Square	F Ratio
11.6789	1558.276
0.0075	Prob $>$ F
	$<.0001$

Mean Square F Ratio

an Square	F Ratio
0.022259	3.5532
0.006264	Prob > F

$\begin{array}{lll}\text { Total Error } & 39 & 0.29229598\end{array}$

Parameter Estimates

Term
Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)
Flex Bound Length
(Standard Deviation-0.10833)*(Flex Bound Length-11)
(Flex Bound Width-0.1125)*(Fle Bound Length-11)
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)*(Flex Bound
Length-11)
Standard Deviation2

Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
-0.811113	0.038119	-21.28	$<.0001$
23.461632	0.94227	24.90	$<.0001$
10.367064	0.142807	72.59	$<.0001$
21.94288	1.73641	12.64	$<.0001$
-0.055875	0.001388	-40.24	$<.0001$
0.0087476	0.016882	0.52	0.6073
-0.02908	0.015867	-1.83	0.0745
-0.156717	0.192934	-0.81	0.4216
-56.26577	4.195475	-13.41	$<.0001$

Effect Tests

	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
Source	1	1	4.646902	620.0195	$<.0001$
Standard Deviation	1	1	39.497433	5270	$<.0001$
Flex Bound Width	1	1	1.196854	159.6919	$<.0001$
Standard Deviation*Flex Bound Width	1	1	12.138448	1619.589	$<.0001$
Flex Bound Length	1	1	0.002012	0.2685	0.6073
Standard Deviation*Flex Bound Length	1	1	0.025173	3.3587	0.0745
Flex Bound Width*Flex Bound Length	1	1	0.004945	0.6598	0.4216
Standard Deviation*Flex Bound Width*Flex Bound					
Length	1	1	1.347984	179.8566	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t-Test Scale	10.852198
Coded Scale	0.1356052

Pareto Plot of Estimates

Response log(s of all samples of Prod Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.996639	
RSquare Adj	0.995949	
Root Mean Square Error	0.090224	
Mean of Response	1.353627	48
Observations (or Sum Wgts)		
Analysis of Variance		
Source	DF	Sum of Squares

[^9]0.996639
0.995949
1.353627

Observations (or Sum Wgts)
Mean Square
11.7671
0.0081
F Ratio
1445.52
Prob > F
$<.0001$

Lack Of Fit				
Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	3	0.07452878	0.024843	3.6813
Pure Error	36	0.24294571	0.006748	Prob $>$ F
Total Error	39	0.31747449		0.0207
				Max RSq
				0.9974

Estimate	Std Error	t Ratio	Prob $>\|t\|$
-0.649562	0.039727	-16.35	$<.0001$
23.654837	0.981971	24.09	$<.0001$
10.285444	0.148831	69.11	$<.0001$
22.072065	1.809653	12.20	$<.0001$
-0.059551	0.001447	-41.16	$<.0001$
0.0082816	0.017594	0.47	0.6405
-0.01925	0.016537	-1.16	0.2515
-0.132569	0.201073	-0.66	0.5136
-57.37654	4.372442	-13.12	$<.0001$

Effect Tests

Source
Standard Deviation
Flex Bound Width
Standard Deviation*Flex Bound Width
Flex Bound Length
Standard Deviation*Flex Bound Length
Flex Bound Width*Flex Bound Length
Standard Deviation*Flex Bound Width*Flex Bound
Length
Standard Deviation2 1

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	10.020685
Coded Scale	0.1304965

Pareto Plot of Estimates

Response $\boldsymbol{\mu}$ Inv Shift
Weight: wgt for u Inv Shift

Whole Model

Actual by Predicted Plot

Summary of Fit

RSquare		0.909421
RSquare Adj	0.890841	
Root Mean Square Error	1.106984	
Mean of Response	-8.11736	
Observations (or Sum Wgts)	0.217808	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	479.82816
Error	49	527.79114
C. Total	47	
Lack Of Fit		
Source	DF	
Lack Of Fit	3	Sum of Squares
Pure Error	36	5.839990
Total Error	39	41.951150

Parameter Estimates

Term
Intercept
Standard Deviation
Flex Bound Width
(Standard Deviation-0.02507)*(Flex Bound Width-0.12327)
Flex Bound Length
(Standard Deviation-0.02507)*(Flex Bound Length-8.51126)
(Flex Bound Width-0.12327)*(Flex Bound Length-8.51126)
(Standard Deviation-0.02507)*(Flex Bound Width-0.12327)*(Flex Bound
Length-8.51126)
Standard Deviation2

$$
\begin{array}{r}
\text { F Ratio } \\
48.9455 \\
\text { Prob }>\text { F } \\
<.0001
\end{array}
$$

F Ratio
1.6705
Prob $>$ F
0.1906
Max RSq
0.9205

| Estimate | Std Error | t Ratio | Prob>\|t| |
| ---: | ---: | ---: | ---: |
| -9.02988 | 10.41855 | -0.87 | 0.3914 |
| 770.94552 | 495.5679 | 1.56 | 0.1279 |
| -13.37304 | 27.41311 | -0.49 | 0.6284 |
| -93.81735 | 1036.055 | -0.09 | 0.9283 |
| -0.058655 | 0.275417 | -0.21 | 0.8325 |
| -2.07472 | 10.07001 | -0.21 | 0.8378 |
| -0.548597 | 3.154636 | -0.17 | 0.8628 |
| -78.66942 | 116.6521 | -0.67 | 0.5040 |
| | | | |
| -11918.28 | 2379.644 | -5.01 | $<.0001$ |

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Standard Deviation	1	1	2.965676	2.4201	0.1279
Flex Bound Width	1	1	0.291626	0.2380	0.6284
Standard Deviation*Flex Bound Width	1	1	0.010048	0.0082	0.9283
Flex Bound Length	1	1	0.055580	0.0454	0.8325
Standard Deviation*Flex Bound Length	1	1	0.052017	0.0424	0.8378
Flex Bound Width*Flex Bound Length	1	1	0.037059	0.0302	0.8628
Standard Deviation*Flex Bound Width*Flex Bound	1	1	0.557326	0.4548	0.5040
Length					
Standard Deviation2	1	1	30.738750	25.0844	$<.0001$

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	0.3612949
Coded Scale	0.8569716

Pareto Plot of Estimates

Term t Ratio					
Standard Deviation2	-5.008431				
Standard Deviation	1.555681				
(Standard Deviation-0.02507)*(Flex Bound Width-0.12327)*(Flex Bound Length-8.51126)	-0.674394				
Flex Bound Width	-0.487834				,
Flex Bound Length	-0.212969				,
(Standard Deviation-0.02507)*(Flex Bound Length-8.51126)	-0.206030				
(Flex Bound Width-0.12327)*(Flex Bound Length-8.51126)	-0.173902				
(Standard Deviation-0.02507)*(Flex Bound Width-0.12327)	-0.090552				

Response log(u of s Inv Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.998657
RSquare Adj	0.998381
Root Mean Square Error	0.040626
Mean of Response	5.461866
Observations (or Sum Wgts)	48
Analysis of Variance	
Source	DF
Model	8
Error	Sum of Squares
C. Total	39
Lack Of Fit	47
Source	
Lack Of Fit	DF

Mean Square	F Ratio
5.98255	3624.791
0.00165	Prob $>$ F
	$<.0001$

Mean Square	F Ratio
0.001236	0.7333
0.001685	Prob $>\mathrm{F}$

Prob $>$ F 0.5390 Max RSq 0.9987

Parameter Estimates

Term

Estimate	Std Error	t Ratio	Prob $>\|t\|$
3.7655683	0.017888	210.51	$<.0001$
27.890307	0.442158	63.08	$<.0001$
0.0312206	0.067015	0.47	0.6439
0.949028	0.814844	1.16	0.2512
0.0009024	0.000652	1.39	0.1739
-0.013324	0.007922	-1.68	0.1006
-0.010107	0.007446	-1.36	0.1825
-0.133939	0.090538	-1.48	0.1471
-72.35628	1.968809	-36.75	$<.0001$

Effect Tests

| Source | Nparm | DF | Sum of Squares | F Ratio | Prob $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Standard Deviation | 1 | 1 | 6.5667985 | 3978.787 | $<.0001$ |
| Flex Bound Width | 1 | 1 | 0.0003582 | 0.2170 | 0.6439 |
| Standard Deviation*Flex Bound Width | 1 | 1 | 0.0022388 | 1.3565 | 0.2512 |
| Flex Bound Length | 1 | 1 | 0.0031661 | 1.9183 | 0.1739 |
| Standard Deviation*Flex Bound Length | 1 | 1 | 0.0046686 | 2.8287 | 0.1006 |
| Flex Bound Width*Flex Bound Length | 1 | 1 | 0.0030410 | 1.8425 | 0.1825 |
| Standard Deviation*Flex Bound Width*Flex Bound | 1 | 1 | 0.0036120 | 2.1885 | 0.1471 |
| Length | | | | | |
| Standard Deviation2 | 1 | 1 | 2.2291973 | 1350.658 | $<.0001$ |

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	2.0568252
Coded Scale	0.0120609

Pareto Plot of Estimates

Term	t Ratio			
Standard Deviation	63.07762	\square		-
Standard Deviation2	-36.75130			
(Standard Deviation-0.10833)** ${ }^{*}$ (Flex Bound Length-11)	-1.68186			
(Standard Deviation-0.10833)* (Flex Bound Width-0.1125)**(Flex Bound Length-11)	-1.47936			
Flex Bound Length	1.38504			
(Flex Bound Width-0.1125)**(Flex Bound Length-11)	-1.35739			
(Standard Deviation-0.10833)*(Flex Bound Width-0.1125)	1.16467			
Flex Bound Width	0.46587			

Response log(s of all samples of Inv Shift)
Whole Model
Actual by Predicted Plot

Summary of Fit

RSquare	0.996797	
RSquare Adj	0.99614	
Root Mean Square Error	0.060146	
Mean of Response	5.961087	
Observations (or Sum Wgts)	48	
Analysis of Variance		
Source	DF	Sum of Squares
Model	8	43.902922
Error	39	0.141082
C. Total	47	44.044005
Lack Of Fit		
Source		
Lack Of Fit	3	Sum of Squares
Pure Error	36	0.00376039
Total Error	39	0.13732196
		0.14108235

Mean Square	F Ratio
5.48787	1517.034
0.00362	Prob $>\mathrm{F}$
	$<.0001$

Mean Square	F Ratio
0.001253	0.3286
0.003814	Prob $>$ F
	0.8047

Max RSq 0.9969

Parameter Estimates

Term

Estimate	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
4.2865474	0.026483	161.86	$<.0001$
28.083149	0.654607	42.90	$<.0001$
-0.431686	0.099215	-4.35	$<.0001$
-0.970945	1.206361	-0.80	0.4258
0.0077909	0.000965	8.08	$<.0001$
-0.023152	0.011729	-1.97	0.0555
0.0307196	0.011024	2.79	0.0082
0.0105953	0.13404	0.08	0.9374
-75.94252	2.914782	-26.05	$<.0001$

Effect Tests

| | Nparm | DF | Sum of Squares | F Ratio | Prob $>$ F |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | 1 | 1 | 6.6579221 | 1840.478 | $<.0001$ |
| Standard Deviation | 1 | 1 | 0.0684847 | 18.9315 | $<.0001$ |
| Flex Bound Width | 1 | 1 | 0.0023434 | 0.6478 | 0.4258 |
| Standard Deviation*Flex Bound Width | 1 | 1 | 0.2359958 | 65.2373 | $<.0001$ |
| Flex Bound Length | 1 | 1 | 0.0140958 | 3.8966 | 0.0555 |
| Standard Deviation*Flex Bound Length | 1 | 1 | 0.0280914 | 7.7654 | 0.0082 |
| Flex Bound Width*Flex Bound Length | 1 | 1 | 0.0000226 | 0.0062 | 0.9374 |
| Standard Deviation*Flex Bound Width*Flex Bound | | | | | |
| Length | 1 | 1 | 2.4556476 | 678.8252 | $<.0001$ |

Residual by Predicted Plot

Effect Screening

	Lenth PSE
t -Test Scale	3.5704676
Coded Scale	0.0309962

Pareto Plot of Estimates

Vita

Chad Toney received his Bachelors of Science and Masters of Science degrees in Industrial Engineering at the University of Tennessee. For the first two years of his graduate education, Chad worked in the department of Industrial Engineering and Center for Industrial Services consulting with companies, developing training material, and performing research in the area of flow. During his doctoral program, Chad has been associated with the Center for Executive Education at the University of Tennessee, primarily working with the Lean Enterprise Systems Design Institute. Also at this time, he assisted with the development of the Systems Simulation Design Institute, a program for the continuous processing industry, and the Aerospace Executive MBA program at UT. His current interests are in the areas of the pull execution systems, rate based planning and scheduling, demand management, and supply chain management. Chad completed the requirements for the Ph.D. in Engineering with a major in Industrial Engineering at the University of Tennessee in the summer of 2005.

[^0]: ${ }^{1}$ DTF is a Demand Time Fence where strategic inventory is usually held for a particular delivery strategy.
 ${ }^{2}$ PTF is a Planning Time Fence where many decisions like flexibility, capacity, inventory, and delivery is determined.

[^1]: ${ }^{3}$ JIT and lean execution systems will be referred in general as lean execution systems.

[^2]: ${ }^{4}$ Build-To-Stock is also known as Make-To-Stock (MTS).

[^3]: ${ }^{5}$ Crashing cost is a cost to reduce the lead time for a product. With the use of the crashing cost, the lead time is controllable. Assumptions are often made that if the crashing cost is raised, the resulting lead time will decrease. Crashing costs appears to be synonymous with expediting cost. Past research has sought the equilibrium point to balance the trade offs between lead time and the crashing cost.

[^4]: Prob > F <. 0001 <. 0001 <. 0001 <. 0001 <. 0001 <. 0001 0.0036 <. 0001

[^5]: Prob > F <. 0001 <. 00001 0.0005 <. 0001 <. 0001 <. 0001 0.1238

[^6]: Prob $>$ F <. 0001 <. 0001 <. 0001 <. 0001 <. 0001 $<.0001$ 0.0186 <. 0001

[^7]: Prob $>$ F <. 0001 <. 0001 0.0002 <. 0001 <. 0001 <. 0001 0.0229

[^8]: Prob $>\mathrm{F}$ <. 0001 <. 0001 <. 0001 <. 0001 <. 0001 <. 0001 0.0002 <. 0001

[^9]: Parameter Estimates
 Term
 Intercept
 Standard Deviation
 Flex Bound Width
 (Standard Deviation-0.10833)* ${ }^{*}$ (Flex Bound Width-0.1125)
 Flex Bound Length
 (Standard Deviation-0.10833)* (Flex Bound Length-11)
 (Flex Bound Width-0.1125)* (Flex Bound Length-11)
 (Standard Deviation-0.10833)*(Flex Bound Width-0.1125)* ${ }^{\star}$ (Flex Bound Length-11)
 Standard Deviation2

