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Abstract

A q-generalization Gn(q) of a combinatorial sequence Gn which reduces
to that sequence when q = 1 is obtained by q-counting a statistic defined on
a sequence of finite discrete structures enumerated by Gn. In what follows,
we evaluate Gn(−1) for statistics on several classes of discrete structures,
giving both algebraic and combinatorial proofs. For the latter, we define
appropriate sign-reversing involutions on the associated structures. We shall
call the actual algebraic result of such an evaluation at q = −1 a parity
theorem (for the statistic on the associated class of discrete structures).

Among the structures we study are permutations, binary sequences, La-
guerre configurations, derangements, Catalan words, and finite set partitions.
As a consequence of our results, we obtain bijective proofs of congruences in-
volving Stirling, Catalan, and Bell numbers. In addition, we modify the ideas
used to construct the aforementioned sign-reversing involutions to furnish
bijective proofs of combinatorial identities involving sums with alternating
signs.
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Notation

N nonnegative integers

P positive integers

[n] the set {1, 2, . . . , n}, for n ∈ N (so [0] = ∅)

⊆ containment (perhaps improper) of sets

⊂ proper containment of sets

|S| the cardinality (number of elements) of a finite set S

:= equals by definition

00 by convention, 00 = 1 throughout

	x
 greatest integer � x
�x� least integer � x
δi,j the Kronecker delta, equal to 1 if i = j and 0 otherwise

xn the product x(x− 1) · · · (x− n + 1), for n ∈ N (so x0 = 1)

nq the number qn−1 + qn−2 + · · ·+ 1, for n ∈ N (so 0q = 0)

n!q the number nq(n− 1)q · · · 1q, for n ∈ N (so 0!q = 1)(
n
k

)
q

a q-binomial coefficient of order n(
n

n1,...,nk

)
q

a q-multinomial coefficient of order n

Fq the finite field of q elements (q implicitly a power of a prime)

F n
q the finite n-dimensional vector space over Fq of qn elements

2s the power set (set of all subsets) of a set S

[k][n] the set of functions from [n] to [k]

Sn the symmetric group on n objects

Sn,k the subset of Sn whose members contain k cycles
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Introduction

We’ll use the following notational conventions: N := {0, 1, 2, . . .}, P :=
{1, 2, . . .}, [0] := ∅, and [n] := {1, . . . , n} for n ∈ P. Empty sums take the
value 0 and empty products the value 1, with 00 := 1. The letter q denotes

an indeterminate, with 0q := 0, nq := 1 + q + · · ·+ qn−1 for n ∈ P, 0!q := 1,

n!q := 1q2q · · ·nq for n ∈ P, and

(
n

k

)
q

:=




n!q

k!q(n− k)!q
, if 0 � k � n;

0, if k < 0 or 0 � n < k.
(1)

Let ∆ be a finite set of discrete structures and I : ∆ → N, with generating
function

G (I,∆; q) :=
∑
δ∈∆
qI(δ) =

∑
k

|{δ ∈ ∆ : I(δ) = k}| qk. (2)

Of course, G(I,∆; 1) = |∆|. If ∆i := {δ ∈ ∆ : I(δ) ≡ i (mod 2)}, then
G (I,∆;−1) = |∆0|−|∆1|. Hence if G(I,∆;−1) = 0, the set ∆ is “balanced”
with respect to the parity of I. For example, setting q = −1 in the binomial
theorem,

(1 + q)n =
∑
S⊆[n]

q|S| =
n∑

k=0

(
n

k

)
qk, (3)

yields the familiar result that a finite nonempty set has as many subsets of
odd cardinality as it has subsets of even cardinality.

When G(I,∆;−1) = 0 and hence |∆0| = |∆1|, it is instructive to identify
an I-parity changing involution of ∆. (In what follows, we call the parity
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of I(δ) the I-parity of δ, and an involution δ �→ δ′ for which δ and δ′ have
opposite I-parities an I-parity changing involution.) For the statistic |S| in
(3), the map

S �→
{
S ∪ {1}, if 1 �∈ S;
S − {1}, if 1 ∈ S,

furnishes such an involution. More generally, if G(I,∆;−1) = |∆0|−|∆1| = c,
it suffices to identify a subset ∆∗ of ∆ of cardinality |c| contained completely
within ∆0 or ∆1 (depending upon the sign of c) and then to define an I-parity
changing involution on ∆−∆∗. The subset ∆∗ thus captures both the sign
and magnitude of G(I,∆;−1).

Since each member of ∆−∆∗ is paired with another of opposite I-parity,
we have |∆| ≡ |∆∗| (mod 2). Thus, the I-parity changing involutions de-
scribed above, in addition to conveying a visceral understanding of why
G(I,∆;−1) takes a particular value, also supply combinatorial proofs of con-
gruences of the form an ≡ bn (mod 2). Shattuck [18] has, for example, given
such a combinatorial proof of the congruence

S(n, k) ≡
(
n− 	k/2
 − 1

n− k
)

(mod 2) (4)

for Stirling numbers of the second kind, answering a question posed by Stan-
ley [23, p. 46, Exercise 17b].

In what follows, we undergo a systematic study of the special case q = −1,
giving both algebraic and combinatorial treatments. In Chapter 1, we estab-
lish parity theorems for statistics on multiset permutations and Laguerre con-
figurations, i.e., distributions of labeled balls to unlabeled, contents-ordered
urns, algebraically by evaluating q-generating functions at q = −1 and combi-
natorially by identifying appropriate parity changing involutions. In Chapter
2, we perform a similar task for statistics on permutations and Catalan words,
i.e., binary sequences with an equal number of 1’s and 0’s in which no initial
segment contains more 1’s and 0’s. In Chapter 3, we examine the parity of
four closely related statistics on partitions of finite sets. As a consequence
of our results, we obtain bijective proofs of congruences involving Stirling,
Catalan, and Bell numbers.

For a word w = w1w2 · · ·wm in some alphabet consisting of integers, the
inversion and major index statistics are given by

inv (w) := |{(i, j) : i < j and wi > wj}|
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and

maj (w) :=
∑

i∈D(w)

i, where D(w) := {1 � i � m− 1 : wi > wi+1} .

Most of the statistics of the first two chapters involve counting inversions or
finding the major index of words used to encode various discrete structures.
For the partition statistics studied in the third chapter, one first canonically
orders the blocks of a finite partition and then computes various weighted
sums involving block cardinalities.
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Chapter 1

Parity Theorems for Statistics
on Multiset Permutations and
Laguerre Configurations

1.1 Introduction

We analyze the parity of two well known statistics on multiset permu-
tations, thereby generalizing results found in [21] for binary words. We
also examine the parity of two statistics on what Garsia and Remmel [11]
term Laguerre configurations, i.e., distributions of labeled balls to unlabeled,
contents-ordered urns. The generating functions for the statistics on multiset
permutations involve q-multinomial coefficients, while those for the statistics
on binary words and Laguerre configurations all involve q-binomial coeffi-
cients.

In 1.2, we evaluate q-multinomial coefficients and their sums, when q =
−1, giving both algebraic and bijective proofs. We also give a bijective proof
of a recurrence for sums of q-binomial coefficients, known as Galois numbers,
furnishing an elementary alternative to Goldman and Rota’s proof by the
method of linear functionals [12]. In 1.3, we carry out a similar evaluation
of the two types of q-Lah numbers that arise as generating functions for the
aforementioned Laguerre configuration statistics. In 1.4, we refine a result
of the second section by looking at the restriction of one of the statistics to
binary words with a fixed number of descents.
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1.2 Parity Theorems for Multiset

Permutations

We will use the notation {1n1, 2n2, . . . , knk} for the multiset consisting
of ni copies of i for all i ∈ [k]. A permutation of a multiset is just a way
of listing all of its elements. The number of permutations of the multiset
{1n1, 2n2, . . . , knk} is the multinomial coefficient(

n

n1, n2, . . . , nk

)
:=

n!

n1!n2! · · ·nk!
,

where n = n1 + n2 + · · ·+ nk.

Given a permutation p = p1p2 · · · pn of a multiset, define the statistics inv
and maj by

inv (p) := |{(i, j) : i < j and pi > pj}|

and

maj (p) :=
∑

i∈D(p)

i, where D(p) := {1 � i � n− 1 : pi > pi+1} .

The statistics inv and maj record the number of inversions and the major
index, respectively, of a multiset permutation p. The set D(p) is referred to
as the down set or the set of descents of p.

If (n1, . . . , nk) is a sequence of nonnegative integers summing to n, then
define the q-multinomial coefficient by

(
n

n1, . . . , nk

)
q

:=
n!q

n1!q · · ·nk
!
q

,

where j!q := 1q2q · · · jq and rq := 1 + q + · · ·+ qr−1 for j, r ∈ N.

If K = {1n1, 2n2, . . . , knk} and SK is the set of multiset permutations of
K, then

∑
p∈SK

qinv (p) =

(
n

n1, . . . , nk

)
q

=
∑
p∈SK

qmaj (p). (1.1)
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See [23] and [1]. Let

G(k)
q (n) :=

∑
n1+···+nk=n

ni∈N

(
n

n1, . . . , nk

)
q

. (1.2)

Then ∑
λ∈[k][n]

qinv (λ) = G(k)
q (n) =

∑
λ∈[k][n]

qmaj (λ), (1.3)

by (1.1), where members of [k][n] are expressed as words.

Theorem 1.1. For all n ∈ N and sequences (n1, . . . , nk) in N with n =
n1 + · · ·+ nk,(

n

n1, . . . , nk

)
−1

=

{( �n/2	
�n1/2	,...,�nk/2	

)
, if at most one ni is odd, i ∈ [k];

0, otherwise,
(1.4)

and

G
(k)
−1(n) :=

∑
n1+···+nk=n

ni∈N

(
n

n1, . . . , nk

)
−1

= k
n/2�. (1.5)

Proof. Formula (1.5) follows from (1.4) and the multinomial theorem. To
prove (1.4), first assume n is even and take k = 2 for simplicity. If n1 is even,
then

(
n

n1, n2

)
−1

= lim
q→−1

(
n

n1, n2

)
q

= lim
q→−1

n1−1∏
i=0

(n− i)q
(n1 − i)q =

n1−2∏
i=0

i even

lim
q→−1

(
qn−i − 1

qn1−i − 1

)
=

n1−2∏
i=0

i even

n− i
n1 − i =

n1−2∏
i=0

i even

n/2− i/2
n1/2− i/2 =

(
n/2

n1/2, n2/2

)
.

If n1 is odd, then q = −1 is a zero of multiplicity one more in the numerator
than in the denominator and hence

(
n

n1,n2

)
−1

= 0 in that case. The case for
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n odd is handled similarly or is gotten from the even case by taking limits
as q → −1 in the recurrence

(
n

n1, n2

)
q

=

(
n− 1

n1 − 1, n2

)
q

+ qn1

(
n− 1

n1, n2 − 1

)
q

.

The preceding readily generalizes to the case k � 3.

We now give bijective proofs of formulas (1.5) and (1.4). By (1.3), formula
(1.5) asserts that

|Λ0(n)| − |Λ1(n)| = k
n/2�, (1.6)

where Λi(n) := {λ ∈ Λ(n) : inv(λ) ≡ i (mod 2)} and Λ(n) := [k][n]. Our
strategy for proving (1.6) is to identify a subset Λ+

0 (n) of Λ0(n) having cardi-
nality k
n/2�, along with an inv -parity changing involution of Λ(n)− Λ+

0 (n).

The set Λ+
0 (n) comprises those λ = λ1λ2 · · ·λn ∈ Λ(n) such that

λ2j−1 = λ2j, 1 � j � 	n/2
. (1.7)

Clearly, Λ+
0 (n) ⊆ Λ0(n) and |Λ+

0 (n)| = k
n/2�. If λ ∈ Λ(n) − Λ+
0 (n), let j0

be the smallest j for which (1.7) fails to hold and let λ′ be the result of
switching λ2j0−1 and λ2j0 in λ. The map λ �→ λ′ is clearly an involution of
Λ(n) − Λ+

0 (n), and the parity of the number of inversions in λ′ is opposite
the parity of the number of inversions in λ. This establishes (1.6), and hence
(1.5).

Let Λ(n;K) denote the set of rearrangements of the multiset K = {1n1,
2n2, . . . , knk}, where n1 + n2 + · · ·+ nk = n. By (1.1), formula (1.4) asserts
that

|Λ0(n;K)|−|Λ1(n;K)|=
{( �n/2	

�n1/2	,...,�nk/2	
)
, if at most one ni is odd, i∈ [k];

0, otherwise,
(1.8)

where Λi(n;K) := Λi(n) ∩ Λ(n;K). To show (1.8), let Λ+
0 (n;K) := Λ+

0 (n) ∩
Λ(n;K). The cardinality of Λ+

0 (n;K) is given by the right-hand side of (1.8),
and the restriction of the above map λ �→ λ′ to Λ(n;K)− Λ+

0 (n;K) is again
an involution and inherits the parity changing property. This establishes
(1.8), and hence (1.4).
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Note that the preceding combinatorial arguments would have worked with
the maj statistic in place of the inv statistic. Thus formulas (1.4) and (1.5)
are parity theorems for both the inv and maj statistics.

Letting k = n and ni = 1 for all i ∈ [k] in (1.1) yields the well known
fact that inv and maj are equally distributed on the symmetric group Sn.
Formula (1.4) then reveals that the inv and maj statistics are balanced on
Sn if n � 2. The bijection for (1.4) in this case amounts to merely switching
the first two positions of a permutation of [n].

When k = 2, the q-multinomial coefficients are q-binomial coefficients and

the numbers G
(2)
q (n) are the Galois numbers Gq(n) :=

n∑
i=0

(
n
i

)
q
of Goldman

and Rota [12]. We record the k = 2 case of Theorem 1.1.

Corollary 1.2. If 0 � i � n, then

(
n

i

)
−1

=

{
0, if n is even and i is odd;(�n/2	
�i/2	

)
, otherwise,

(1.9)

and

G−1(n) :=
n∑

i=0

(
n
i

)
−1

= 2
n/2�. (1.10)

Note that (1.9) also follows upon substituting q = −1 into the well known
identity [25, pp. 201–202]

∑
n>0

(
n

i

)
q

xn =
xi

(1− x)(1− qx) · · · (1− qix) , i ∈ N, (1.11)

and considering even and odd cases for i.

Formula (1.9) is a parity theorem for both inv and maj on the set of
sequential arrangements of the multiset {1i, 2n−i}. Each such sequential
arrangement corresponds, geometrically, to a (minimal) lattice path from
(0, 0) to (i, n−i), with 1 representing a horizontal and 2 a vertical step. Since
the number of inversions of a sequential arrangement of {1i, 2n−i} equals the
area subtended by the corresponding lattice path [23], one may also view
(1.9) and (1.10) as parity theorems for area under lattice paths [21]. For-
mula (1.10) also follows by induction from the case q = −1 of the following
recurrence for Gq(n):
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Theorem 1.3. For all n � 1,

Gq(n+ 1) = 2Gq(n) + (qn − 1)Gq(n− 1), (1.12)

with Gq(0) = 1 and Gq(1) = 2.

Proof. Let a(n, i) :=
∣∣∣{λ ∈ [2][n] : inv(λ) = i

}∣∣∣ . By (1.3), showing (1.12)

is equivalent to showing that

a(n + 1, i)= 2a(n, i) + a(n− 1, i− n)− a(n− 1, i)

= a(n, i) + (a (n, i)− a (n− 1, i)) + a (n− 1, i− n) , (1.13)
for all i ∈ N, where a(m, j) = 0 if m ∈ N and j < 0.

The term a(n + 1, i) counts all λ = λ1λ2 · · ·λn+1 ∈ [2][n+1] with i inver-
sions. The term a(n, i) counts the subclass of such words for which λn+1 = 2.
The term a(n, i) − a(n − 1, i) counts the subclass of such words for which
λ1 = λn+1 = 1. For deletion of λ1 is a bijection from this subclass to the
class of words u1u2 · · ·un with i inversions and un = 1, and there are clearly
a(n, i)− a(n− 1, i) words of the latter type. Finally, the term a(n− 1, i−n)
counts the subclass of words for which λ1 = 2 and λn+1 = 1. For deletion of
λ1 and λn+1 is a bijection from this subclass to the class of words v1v2 · · · vn−1

with i− n inversions (both classes being empty if i < n).

The above proof provides an elementary alternative to Goldman and
Rota’s proof of (1.12) using the method of linear functionals [12]. It doesn’t

appear though that the numbers G
(k)
q (n) satisfy a nice recurrence as in (1.12)

in general for k � 3.

1.3 Two Statistics on Laguerre Configurations

Let L(n, k) denote the set of distributions of n balls, labeled 1, 2, . . . , n,
among k unlabeled, contents-ordered urns with no urn left empty. Garsia
and Remmel [11] call such distributions Laguerre configurations. Members
of L(n, k) will be regarded as partitions of [n] into k blocks, where members
of each block are ordered.

If L(n, k) := |L (n, k)|, then L(n, 0) = δn,0 ∀n ∈ N, L(n, k) = 0 if 0 �
n < k, and

L(n, k) =
n!

k!

(
n− 1

k − 1

)
, 1 � k � n. (1.14)
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The numbers L(n, k), called Lah numbers , were introduced by Ivo Lah [14]
as connection constants in the polynomial identities

x(x+1) · · · (x+ n− 1)=
n∑

k=0

L(n, k)x(x− 1) · · · (x− k+ 1), ∀n ∈ N. (1.15)

In what follows, we analyze the parity of two statistics on Laguerre con-
figurations. The main results of this section (namely Theorems 1.4 and 1.6)
appear in [21]. Recall the well known summation formula [23, p. 29],(

n

k

)
q

=
∑

d0+d1+···+dk=n−k

di∈N

q0d0+1d1+···+kdk , 0 � k � n. (1.16)

1.3.1 The Statistic invρ

Given δ ∈ L(n, k), represent each ordered block by a word in [n] and
then arrange these words in a sequence W1, . . . ,Wk, by decreasing order of
their least elements. Replace the commas in this sequence by zeros and count
inversions in the resulting single word to obtain the value invρ(δ), i.e.,

invρ(δ) = inv (W10W20 · · ·0Wk−10Wk) . (1.17)

As an illustration, for δ = {3, 2, 5}, {7, 6, 8}, {1, 4} ∈ L(8, 3), we have
invρ(δ) = 30, the number of inversions in the word 7680325014.

The statistic inv ρ is due to Garsia and Remmel [11], who show that the
generating function

Lq(n, k) :=
∑

δ∈L(n,k)

qinvρ(δ) = qk(k−1)
n!q

k!q

(
n− 1

k − 1

)
q

, 1 � k � n, (1.18)

which generalizes (1.14). Garsia and Remmel also show that

xq(x+ 1)q · · · (x+ n− 1)q =

n∑
k=1

Lq(n, k)xq(x− 1)q · · · (x− k + 1)q, (1.19)

where n ∈ P and xq := (qx − 1) / (q − 1). Identity (1.19) has a polynomial
version which doesn’t seem to have been previously noted:
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x(qx+ 1q) · · · (qn−1x+ (n− 1)q)

=
n∑

k=1

Lq(n, k)x

(
x− 1q

q

)
· · ·
(
x− (k − 1)q
qk−1

)
, (1.20)

which generalizes (1.15).

Theorem 1.4. If 1 � k � n, then

L−1(n, k) = δn,k . (1.21)

Proof. It is obvious from (1.18) that L−1(n, n) = 1. If 1 � k < n with n

even or k odd, the factor n!q/k
!
q = nq · · · (k+1)q in (1.18) is zero since j−1 = 0

if j is even. In the remaining case, where n is odd and k is even, the factor(
n−1
k−1

)
−1

= 0 by (1.9).

For a bijective proof of (1.21), let Li(n, k) := {δ ∈ L(n, k) : invρ(δ) ≡ i
(mod 2)} so that L−1(n, k) = |L0(n, k)| − |L1(n, k)|. Then L−1(n, n) = 1
since L(n, n) consists of a single distribution whose invρ value is n(n − 1).
If 1 � k < n and δ ∈ L(n, k) has the associated sequence W1, . . . ,Wk, locate
the leftmost word Wi containing at least two letters and interchange its first
two letters. The resulting map is a parity changing involution of L(n, k),
whence |L0(n, k)| − |L1(n, k)| = 0.

Note that L(n, 1) = Sn, the set of permutations of [n], and so (1.18)
generalizes the well known result that∑

π∈Sn

qinv(π) = n!q.

Formula (1.21) then reflects the fact that among the permutations of [n], if
n � 2, there are as many with an odd number of inversions as there are with
an even number of inversions. When n � 2 and k = 1 in Theorem 1.4 above,
the bijection then amounts to switching the first two letters of σ ∈ Sn, just
as the bijection of Theorem 1.1 did when n � 2 and ni = 1 for all i.

1.3.2 The Statistic w̃

As before, we represent each ordered block of δ ∈ L(n, k) by a word in
[n]. Having now arranged these words in a sequenceW1, . . . ,Wk by increasing
order of their initial elements, we define w̃(δ) by the formula
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w̃(δ) =
k∑

i=1

(i− 1) (|Wi| − 1) , (1.22)

where |Wi| denotes the length of the word Wi. As an illustration, for δ =
{3, 2, 5}, {7, 6, 8}, {1, 4} ∈ L(8, 3), we have W1, W2, W3 = 14, 325, 768 and
w̃(δ) = 6. The statistic w̃ is an analogue (see [25]) of a now well known
partition statistic first introduced by Carlitz [2].

Theorem 1.5. The generating function

L̃q(n, k) :=
∑

δ∈L(n,k)

qw̃(δ) =
n!

k!

(
n− 1

k − 1

)
q

, 1 � k � n. (1.23)

Proof. Given n1, . . . , nk in P with
∑
ni = n, there are

(
n
k

)
(n− k)! members

of L(n, k) whose corresponding words W1, . . . ,Wk, arranged by increasing
order of initial elements, satisfy |Wi| = ni for all i ∈ [k], as there are

(
n
k

)
ways to choose and place the initial elements and (n− k)! ways to place the
remaining elements. By (1.22) and (1.16), it follows that

∑
δ∈L(n,k)

qw̃(δ) =

(
n

k

)
(n− k)!

∑
n1+···+nk=n

ni∈P

q0(n1−1)+1(n2−1)+···+(k−1)(nk−1)

=
n!

k!

(
n− 1

k − 1

)
q

.

Theorem 1.6. If 1 � k � n, then

L̃−1(n, k) =

{
0, if n is odd and k is even;
n!
k!

(�(n−1)/2	
�(k−1)/2	

)
, otherwise.

(1.24)

Proof. Formula (1.24) is an immediate consequence of (1.23) and (1.9).
Alternatively, with Li(n, k) := {δ ∈ L(n, k) : w̃(δ) ≡ i (mod 2)}, we have
L̃−1(n, k) = |L0(n, k)| − |L1(n, k)|. To prove (1.24), it thus suffices to iden-
tify a subset L+

0 (n, k) of L0(n, k) whose cardinality agrees with the right-hand
side of (1.24), along with a w̃-parity changing involution of L(n, k)−L+

0 (n, k).
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The set L+
0 (n, k) consists of those distributions whose associated se-

quences W1,W2, . . . ,Wk satisfy

|W2i−1| is odd and |W2i| = 1, 1 � i � 	k/2
. (1.25)

Clearly, L+
0 (n, k) = ∅ if n is odd and k is even. In the remaining cases, the

factor n!/k! arises just as in the proof of Theorem 1.5, and

(	(n− 1)/2

	(k − 1)/2


)
=
∣∣∣{(n1, . . . , nk) :

∑
ni = n, n2i−1 is odd,

and n2i = 1, 1 � i � 	k/2

}∣∣∣ . (1.26)

Suppose now that δ ∈ L(n, k) − L+
0 (n, k) has the associated sequence

W1, . . . ,Wk and that i0 is the smallest index for which (1.25) fails to hold.
If |W2i0−1| is even, take the last member of W2i0−1 and place it at the end of
W2i0 . If |W2i0−1| is odd, whence |W2i0−1| � 2, take the last member of W2i0

and place it at the end of W2i0−1. The resulting map is a parity changing
involution of L(n, k)− L+

0 (n, k).

1.4 A Refinement of a Previous Result

Recall that for a multiset permutation w = w1 · · ·wn, the major index
statistic is given by

maj (w) :=
∑

i∈D(w)

i, where D(w) := {1 � i � n− 1 : wi > wi+1} .

Let

S(a, b; k) := {w ∈ S(a, b) : |D (w)| = k} ,
where S(a, b) is the set of binary words of length a+ b with a 0’s.

Given w ∈ S(a, b), we shall call a (maximal) consecutive sequence of 0’s
or 1’s in w a run (of 0’s or 1’s). So a member of S(a, b; k) will have k + 1 or
k runs of 0’s depending on whether or not it starts with a 0 and will have
k + 1 or k runs of 1’s depending on whether or not it ends with a 1.

Given w ∈ S(a, b), associate the sequences wa = (a1, a2, . . . ) and wb =
(b1, b2, . . . ), where ai records the number of 0’s in the ith run of 0’s and bi
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records the number of 1’s in the ith run of 1’s. For members of S(a, b; k), it
will be convenient to think of the words wa and wb as sequences of length
k + 1, where the last entry is 0 if there is no (k + 1)st run. The members of
S(a, b; k) are then characterized by sequences wa and wb such that

(i) a1 + · · ·+ ak+1 = a, ai ∈ P, 1 � i � k, ak+1 ∈ N;
(ii) b1 + · · ·+ bk+1 = b, bi ∈ P, 1 � i � k, bk+1 ∈ N.

(1.27)

From (1.27), it follows that

|S (a, b; k)| =
(
a

k

)(
b

k

)
. (1.28)

The “problem of the runs” occurring in [8, p. 42] and [17, p. 47] is a closely
related problem.

Fürlinger and Hofbauer [10] show that

Mq(a, b; k) :=
∑

w∈S(a,b;k)

qmaj (w) = qk
2

(
a

k

)
q

(
b

k

)
q

, (1.29)

which is a q-generalization of (1.28).

Theorem 1.7. For all a, b, k ∈ N,

M−1(a, b; k) =

{
0, if a or b is even and k is odd;

(−1)k
(�a/2	
�k/2	

)(�b/2	
�k/2	

)
, otherwise.

(1.30)

Proof. Formula (1.30) is an immediate consequence of (1.29) and (1.9). Al-
ternatively, let S±(a, b; k) consist of those members of S(a, b; k) with even or
odd major index value, respectively. In each case, we shall identify a subset
S∗(a, b; k) of S(a, b; k) whose net weight matches the right-hand side of (1.30)
as well as a maj -parity changing involution of S(a, b; k)− S∗(a, b; k).

Given w ∈ S(a, b; k), consider the two sequences wa and wb of length
k + 1 as described above (see (1.27)). First assume k is even. Let S∗(a, b; k)
consist of those words w whose associated sequences wa and wb satisfy

(a) a2i−1 = 1, a2i odd, 1 � i � k/2;
(b) b2i−1 = 1, b2i odd, 1 � i � k/2. (1.31)
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Checking separately the four cases with regard to the parity of a and b shows
that |S∗(a, b; k)| = (�a/2	

k/2

)(�b/2	
k/2

)
in each case with S∗(a, b; k) ⊆ S+(a, b; k).

Suppose now that w ∈ S(a, b; k) − S∗(a, b; k) and that i0 is the smallest
index i for which (a) or (b) fails to hold in (1.31). If both (a) and (b) fail
when i = i0, consider only (a). In any event, we’ll refer to the appropriate
pair of disqualifying runs of the same type simply as run 2i0−1 and run 2i0.
If run 2i0 is of even length, move a single character forward to run 2i0−1. If
run 2i0 is of odd length, whence run 2i0 − 1 has length of at least two, move
a single character from run 2i0 − 1 to run 2i0.

Next assume k is odd. Let S∗(a, b; k) consist of those words w whose
associated sequences wa and wb satisfy

(a) a2i−1 = 1, a2i odd, 1 � i � (k − 1)/2;
(b) b2i−1 = 1, b2i odd, 1 � i � (k − 1)/2;
(c) bk odd, bk+1 = 0 with either ak+1 = 0 or

ak = 1, ak+1 odd.

(1.32)

If b is even, then S∗(a, b; k) = ∅ as (b) and (c) in (1.32) cannot hold simulta-
neously. If b is odd and a is even, then S∗(a, b; k) contains

(
a/2−1
(k−1)/2

)(
(b−1)/2
(k−1)/2

)
positive and negative members which we pair as follows:

(i) first switch the ith run of 1’s with the ith run of 0’s for 1 � i � k − 1,

(ii) if ak = 1, ak+1 odd, merge the two runs and place after the kth run of
1’s; if ak+1 = 0, whence ak is even, take one of the 0’s of the kth run
and place it directly in front of the kth run of 1’s.

If a and b are both odd, then S∗(a, b; k) contains
(
(a−1)/2
(k−1)/2

)(
(b−1)/2
(k−1)/2

)
negative

numbers.

Suppose now w ∈ S(a, b; k)− S∗(a, b; k). First assume wa fails to satisfy
(1.32)(a) or wb fails to satisfy (1.32)(b). Pair w with another member of
S(a, b; k) − S∗(a, b; k) of opposite parity exactly as described above when k
was even. So assume wa satisfies (1.32)(a) and wb satisfies (1.32)(b). Then
(1.32)(c) fails to hold for wa or wb. We’ll consider two subcases: (I) wa fails
(1.32)(c); (II) wa satisfies (1.32)(c), while wb fails (1.32)(c). Under (I), either
ak+1 � 2 even or ak+1 odd, ak � 2, while under (II), either bk even or bk odd,
bk+1 � 1. For (I), move a single 0 forward from the (k + 1)st run to the kth

run of 0’s if ak+1 � 2 even or move a single 0 from the kth run to the (k+1)st

run if ak+1 odd with ak � 2. For (II), move a single 1 forward from the
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(k + 1)st run to the kth run of 1’s if bk is odd or take a single 1 from the kth

run and place it at the end of the entire sequence if bk is even. In all cases, the
resulting map is a parity changing involution of S(a, b; k)− S∗(a, b; k).

Remark. Note that Theorem 1.7 is a refinement of Corollary 1.2. Indeed,
summing (1.29) over k � 0 and using the q-Vandermonde identity yields the
q-binomial coefficient

(
a+b
a

)
q
.
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Chapter 2

Parity Theorems for Statistics
on Permutations and Catalan
Words

2.1 Introduction

Recall that the inversion and major index statistics for a word w =
w1w2 · · ·wm in some alphabet consisting of integers are given by

inv(w) := |{(i, j) : i < j and wi > wj}| ,

and

maj (w) :=
∑

i∈D(w)

i, where D(w) := {1 � i � m− 1 : wi > wi+1}.

We establish parity theorems for statistics on the symmetric group Sn, the
derangements Dn, and the Catalan words Cn, giving both algebraic and
bijective proofs. Most of the statistics involve counting inversions or finding
the major index of various words.

In 2.2, we establish parity theorems for several permutation statistics
defined on all of Sn, algebraically by evaluating q-generating functions at
q = −1 and combinatorially by identifying appropriate parity changing in-
volutions. In 2.3, we analyze the parity of some statistics on Dn, the set of
derangements of [n] (i.e., permutations of [n] having no fixed points).
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In Chapter 1, we derived parity theorems for the inversion and major
index statistics on binary words of length n with k 1’s. In 2.4, we obtain
comparable results for Cn, the set of binary words of length 2n with n 1’s
and with no initial segment containing more 1’s than 0’s (termed Catalan
words).

Most of the material in this chapter appears in [19] in revised form.

2.2 Permutation Statistics

2.2.1 Some Balanced Permutation Statistics

Let Sn be the set of permutations of [n]. A function f : Sn → N is
called a permutation statistic. Two important permutation statistics are
inv and maj , which record the number of inversions and the major index,
respectively, of a permutation σ = σ1σ2 · · ·σn, expressed as a word. The
statistics inv and maj have the same q-generating function over Sn:∑

σ∈Sn

qinv(σ) = n!q =
∑
σ∈Sn

qmaj (σ), (2.1)

[23, Corollary 1.3.10] and [1, Corollary 3.8].

Substituting q = −1 into (2.1) reveals that n!−1 = 0 if n � 2, and hence
inv and maj are both balanced if n � 2. Interchanging σ1 and σ2 in σ =
σ1σ2 · · ·σn ∈ Sn changes both the inv and maj values by one and thus
furnishes an appropriate involution. Note that switching the elements 1 and
2 in σ changes the inv -parity, but not necessarily the maj-parity.

Now express σ ∈ Sn in the standard cycle form

σ = (α1)(α2) · · · ,
where α1, α2, . . . are the cycles of σ, ordered by increasing smallest elements
with each cycle (αi) written with its smallest element in the first position. Let
Sn,k denote the set of permutations of [n] with k cycles and c(n, k) := |Sn,k|,
the signless Stirling number of the first kind. The c(n, k) are connection
constants in the polynomial identities

q(q + 1) · · · (q + n− 1) =

n∑
k=0

c(n, k)qk. (2.2)
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Setting q = −1 in (2.2) reveals that there are as many permutations of [n]
with an even number of cycles as there are with an odd number of cycles if
n � 2. Alternatively, breaking apart or merging α1 and α2 as shown below,
leaving the other cycles undisturbed, changes the parity of the number of
cycles:

α1 = (1 · · ·2 · · · ), . . . ↔ α1 = (1 · · · ), α2 = (2 · · · ), . . . .

This involution also shows that the statistic recording the number of cycles
of σ with even cardinality is balanced if n � 2.

Given σ = (α1)(α2) · · · , expressed in standard cycle form, let

w(σ) :=
∑

i

(i− 1)|αi|.

Edelman, Simion, and White [6] show that

∑
σ∈Sn

x|σ|qw(σ) =
n−1∏
i=0

(xqi + i), (2.3)

where |σ| denotes the number of cycles. Setting x = 1 in (2.3) yields

∑
σ∈Sn

qw(σ) =
n−1∏
i=0

(qi + i), (2.4)

another q-generalization of n!.

Setting q = −1 in (2.4) shows that the w statistic is balanced if n � 2.
Alternatively, if the last cycle has cardinality greater than one, break off the
last member and form a 1-cycle with it; if the last cycle contains a single
member, place it at the end of the penultimate cycle.

2.2.2 An Unbalanced Permutation Statistic

Carlitz [2] defines the statistic inv c on Sn as follows: express σ ∈ Sn in
standard cycle form; then remove parentheses and count inversions in the
resulting word to obtain inv c(σ). As an illustration, for the permutation
σ ∈ S7 given by 3241756, we have inv c(σ) = 3, the number of inversions in
the word 1342576.
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Let

cq(n, k) :=
∑

σ∈Sn,k

qinvc(σ), (2.5)

where Sn,k is the set of permutations of [n] with k cycles. Then cq(n, 0) =
δn,0, cq(0, k) = δ0,k, and

cq(n, k) = cq(n− 1, k − 1) + (n− 1)qcq(n− 1, k), ∀n, k ∈ P, (2.6)

since n may go in a cycle by itself or come directly after any member of [n−1]
within a cycle.

Using (2.6), it is easy to show that

x(x+ 1q) · · · (x+ (n− 1)q) =

n∑
k=0

cq(n, k)x
k. (2.7)

Setting x = 1 in (2.7) gives

cq(n) :=

n∑
k=0

cq(n, k) =
∑
σ∈Sn

qinvc(σ) =

n−1∏
j=0

(1 + jq). (2.8)

Theorem 2.1. For all n ∈ N,

c−1(n) :=
∑
σ∈Sn

(−1)invc(σ) = 2�n/2	. (2.9)

Proof. Put q = −1 in (2.8) and note that

jq|q=−1 =

{
0, if j is even;

1, if j is odd.

Alternatively, with S+n , S
−
n denoting the members of Sn with even or odd inv c

values, respectively, we have c−1(n) = |S+n | − |S−
n |. To prove (2.9), it thus

suffices to identify a subset S∗
n of S+n such that |S∗

n| = 2�n/2	, along with an
inv c-parity changing involution of Sn − S∗

n.

First assume n is even. In this case, the set S∗
n consists of those permu-

tations expressible in standard cycle form as a product of 1-cycles and the
transpositions (2i − 1, 2i), 1 � i � n/2. Note that S∗

n ⊆ S+n with zero inv c

value for each of its 2n/2 members.
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Before giving the involution on Sn − S∗
n, we make a definition: given

σ = (α1)(α2) · · · ∈ Sm in standard cycle form and j, 1 � j � m, let σ[j]
be the permutation of [j] (in standard cycle form) obtained by writing the
members of [j] in the order as they appear within the cycles of σ (e.g., if
σ = (163)(25)(4)(7) ∈ S7 and j = 4, then σ[4] = (13)(2)(4) and σ[7] = σ).

Suppose now σ ∈ Sn − S∗
n is expressed in standard cycle form and that

i0 is the smallest integer i, 1 � i � n/2, for which σ[2i] ∈ S2i − S∗
2i. Then it

must be the case for σ that

(i) neither 2i0 − 1 nor 2i0 starts a cycle, or

(ii) exactly one of 2i0 − 1, 2i0 starts a cycle with 2i0 − 1 and 2i0 not
belonging to the same cycle.

Switching 2i0−1 and 2i0 within σ, written in standard cycle form, changes the
inv c value by one, and the resulting map is thus a parity changing involution
of Sn − S∗

n.

If n is odd, let S∗
n ⊆ S+n consist of those permutations expressible as a

product of 1-cycles and the transpositions (2i, 2i + 1), 1 � i � n−1
2
. Switch

2i0 and 2i0 + 1 within σ ∈ Sn − S∗
n, where i0 is the smallest i, 1 � i � n−1

2
,

for which σ[2i+1] ∈ S2i+1 − S∗
2i+1.

The preceding parity theorem has the refinement

Theorem 2.2. For all n ∈ N,

c−1(n, k) :=
∑

σ∈Sn,k

(−1)invc(σ) =

(	n/2

n− k

)
, 0 � k � n. (2.10)

Proof. Set q = −1 in (2.7) to get

n∑
k=0

c−1(n, k)x
k = x
n/2�(x+ 1)�n/2	 =

n∑
k=
n/2�

(	n/2

n− k

)
xk.

Or let S±
n,k := Sn,k ∩ S±

n and S∗
n,k := Sn,k ∩ S∗

n. Then S∗
n,k ⊆ S+n,k and its

cardinality agrees with the right-hand side of (2.10). The restriction of the
map used for Theorem 2.1 to Sn,k − S∗

n,k is again an involution and inherits
the parity changing property.
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Remark. The bijection of Theorem 2.2 also proves combinatorially that

c(n, k) ≡
(	n/2

n− k

)
(mod 2), 0 � k � n, (2.11)

since off of a set of cardinality
(�n/2	

n−k

)
, each permutation σ ∈ Sn,k is paired

with another of opposite inv c-parity. The congruences in (2.11) can also be
obtained by taking mod 2 the polynomial identities in (2.2) (cf. [23, p. 46,
Exercise 17c]).

2.3 Some Statistics for Derangements

A permutation σ of [n] having no fixed points (i.e., i ∈ [n] such that
σ(i) = i) is called a derangement. Let Dn denote the set of derangements
of [n] and dn := |Dn|. A typical inclusion-exclusion argument gives the well
known formula

dn = n!
n∑

k=0

(−1)k

k!
, ∀n ∈ N. (2.12)

Given σ ∈ Dn, express it in the form

σ = (α1)(α2) · · · ,

where α1, α2, . . . are the cycles of σ arranged as follows:

(i) the cycles α1, α2, . . . are ordered by increasing second smallest ele-
ments;

(ii) each cycle (αi) is written with the second smallest element in the last
position.

Garsia and Remmel [11] term this the ordered cycle factorization (OCF for
brief) of σ.

Define the statistic invo on Dn as follows: write out the cycles of σ ∈ Dn

in OCF form; then remove parentheses and count inversions in the resulting
word to obtain invo(σ). As an illustration, for the derangement σ ∈ D7

given by 4321756, we have invo(σ) = 3, the number of inversions in the word
2314576.



23

The statistic invo is due to Garsia and Remmel [11], who show that the
generating function

Dq(n) :=
∑
σ∈Dn

qinvo(σ) = n!q

n∑
k=0

(−1)k

k!q
, ∀n ∈ N, (2.13)

which generalizes (2.12).

Theorem 2.3. For all n ∈ N,

D−1(n) =

{
1, if n is even;

0, if n is odd.
(2.14)

Proof. Formula (2.14) is an immediate consequence of (2.13), for

n∑
k=0

(−1)kn!q

k!q

∣∣∣∣∣
q=−1

=

n∑
k=0

(−1)k
n∏

i=k+1

iq

∣∣∣∣∣
q=−1

= (−1)n−1n−1 + (−1)n,

as

j−1 =

{
0, if j is even;

1, if j is odd.

Alternatively, let σ = (α1)(α2) · · · ∈ Dn be expressed in OCF form, first
assuming n is odd. Locate the leftmost cycle of σ containing at least three
members and interchange the first two members of this cycle. Now assume
n is even. If σ has a cycle of length greater than two, proceed as in the odd
case. If all cycles of σ are transpositions and σ �= (1, 2)(3, 4) · · · (n − 1, n),
let i0 be the smallest integer i for which the transposition (2i − 1, 2i) fails
to occur in σ. Switch 2i0 − 1 and 2i0 in σ, noting that 2i0 − 1 and 2i0 must
both start cycles. Thus whenever n is even, every σ ∈ Dn is paired with
another of opposite invo-parity except for (1, 2)(3, 4) · · · (n−1, n), which has
invo value zero.

Now consider the generating function dq(n) resulting when one restricts
inv to Dn, i.e.,

dq(n) :=
∑
σ∈Dn

qinv(σ). (2.15)

We have been unable to find a simple formula for dq(n) that generalizes (2.12)
or a recurrence satisfied by dq(n) that generalizes one for dn. However, we
do have the following parity result.
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Theorem 2.4. For all n ∈ N,

d−1(n) = (−1)n−1(n− 1). (2.16)

Proof. Equivalently, we show that the numbers d−1(n) satisfy

d−1(n) = −d−1(n− 1) + (−1)n−1, ∀n ∈ P, (2.17)

with d−1(0) = 1. Let n � 2, σ = σ1σ2 · · ·σn ∈ Dn, and D
∗
n ⊆ Dn consist

of those derangements σ for which σ1 = 2 and σ2 � 3. Define an inv -parity
changing involution f on Dn −D∗

n − {n12 · · ·n− 1} as follows:

(i) if σ2 � 3, whence σ1 � 3, switch 1 and 2 in σ to obtain f(σ);

(ii) if σ2 = 1, let k0 be the smallest integer k, 1 � k �
⌊

n−1
2

⌋
, such that

σ2kσ2k+1 �= (2k − 1)(2k); switch 2k0 and 2k0 + 1 if σ2k0 = 2k0 − 1 or
switch 2k0 − 1 and 2k0 if σ2k0 � 2k0 + 1 to obtain f(σ).

Thus,

d−1(n) :=
∑
σ∈Dn

(−1)inv(σ) =
∑

σ∈D∗
n∪{n12···n−1}

(−1)inv(σ). (2.18)

One can regard members σ of D∗
n as 2 followed by a derangement of [n− 1]

since within the terminal segment σ′ := σ2σ3 · · ·σn, we must have σ2 �= 1
and σk �= k for all k � 3. Thus,∑

σ′:σ∈D∗
n

(−1)inv(σ′) = d−1(n− 1),

from which ∑
σ∈D∗

n

(−1)inv(σ) = −d−1(n− 1), (2.19)

since the initial 2 adds an inversion. The recurrence (2.17) follows immedi-
ately from (2.18) and (2.19) upon adding the contribution of (−1)n−1 from
the singleton {n12 · · ·n− 1}.

Now consider the generating function rq(n) resulting when one restricts
maj to Dn, i.e.,

rq(n) :=
∑
σ∈Dn

qmaj (σ). (2.20)

We were unable to find a simple formula for rq(n) which generalizes (2.12).
Yet when q = −1 we have
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Theorem 2.5. For all n ∈ N,

r−1(n) =

{
(−1)n/2, if n is even;

0, if n is odd.
(2.21)

Proof. First verify (2.21) for 0 � n � 3. Let n � 4 and D∗
n ⊆ Dn consist

of those derangements starting with 2143 when expressed as a word. We
define a maj -parity changing involution of Dn − D∗

n below. Note that for
derangements of the form σ = 2143σ5 · · ·σn, the subword σ5 · · ·σn is itself a
derangement on n− 4 elements. Thus for n � 4,

r−1(n) :=
∑
σ∈Dn

(−1)maj (σ) =
∑
σ∈D∗

n

(−1)maj (σ) = r−1(n− 4),

which proves (2.21).

We now define a maj -parity changing involution f ofDn−D∗
n when n � 4.

Let σ = σ1σ2 · · ·σn ∈ Dn − D∗
n be expressed as a word. If possible, pair σ

with σ′ = f(σ) according to (I) and (II) below:

(I) first, if both σ1 �= 2 and σ2 �= 1, then switch σ1 and σ2 within σ to
obtain σ′;

(II) if (I) cannot be implemented (i.e., σ1 = 2 or σ2 = 1) but σ3 �= 4 and
σ4 �= 3, then switch σ3 and σ4 within σ to obtain σ′.

We now define f for the cases that remain. To do so, consider Sσ :=
σ1σ2σ3σ4 ∩ [4], where σ = σ1σ2 · · ·σn ∈ Dn −D∗

n is of a form not covered by
rules (I) and (II) above. We consider cases depending upon |Sσ|. If |Sσ| = 2
or if |Sσ| = 4, first multiply σ by the transposition (34) and then exchange
the letters in the third and fourth positions to obtain σ′. This corresponds
to the pairings

i) σ = a1b3 . . . 4 . . . ↔ σ′ = a14b . . . 3 . . . ;

ii) σ = 2ab3 . . . 4 . . . ↔ σ′ = 2a4b . . . 3 . . . ;

iii) σ = 2341 . . . ↔ σ′ = 2413 . . . ;

iv) σ = 4123 . . . ↔ σ′ = 3142 . . . ,

where a, b � 5.
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If |Sσ| = 3, then pair according to one of six cases shown below where
a � 5, leaving the other letters undisturbed:

i) σ = 314a . . . ↔ σ′ = 41a3 . . . ;

ii) σ = 234a . . . ↔ σ′ = 24a3 . . . ;

iii) σ = a123 . . . ↔ σ′ = 2a13 . . . ;

iv) σ = a142 . . . ↔ σ′ = 2a41 . . . ;

v) σ = 21a3 . . . 4 . . . ↔ σ′ = 214a . . . 3 . . . ;

vi) σ = a143 . . . 2 . . . ↔ σ′ = 2a43 . . . 1 . . . .

It is easy to verify that σ and σ′ have opposite maj -parity in all cases.

2.4 Statistics for Catalan Words

The Catalan numbers cn are defined by the closed form

cn =
1

n+ 1

(
2n

n

)
, n ∈ N, (2.22)

as well as by the recurrence

cn+1 =
n∑

j=0

cjcn−j, c0 = 1. (2.23)

If one defines the generating function

f(x) =
∑
n>0
cnx

n, (2.24)

then (2.23) is equivalent to

f(x) = 1 + xf(x)2. (2.25)

Due to (2.23), the Catalan numbers enumerate many combinatorial struc-
tures, among them the set Cn consisting of words w = w1w2 · · ·w2n of n 1’s
and n 0’s for which no initial segment contains more 1’s than 0’s (termed
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Catalan words). In this section, we’ll look at two q-analogues of the Catalan
numbers, one of Carlitz which generalizes (2.25) and another of MacMahon
which generalizes (2.22), when q = −1. These q-analogues arise as generating
functions for statistics on Cn.

If

C̃q(n) :=
∑
w∈Cn

qinv(w), (2.26)

then

C̃q(n + 1) =
n∑

k=0

q(k+1)(n−k)C̃q(k)C̃q(n− k), C̃q(0) = 1, (2.27)

upon decomposing a Catalan word w ∈ Cn+1 into w = 0w11w2 with w1 ∈ Ck,
w2 ∈ Cn−k for some k, 0 � k � n, and noting that the number of inversions
of w is given by

inv(w) = inv(w1) + inv(w2) + (k + 1)(n− k).

Taking reciprocal polynomials of both sides of (2.27) and writing

Cq(n) = q
(n

2)C̃q−1(n) (2.28)

yields the recurrence [10]

Cq(n + 1) =
n∑

k=0

qkCq(k)Cq(n− k), Cq(0) = 1. (2.29)

If one defines the generating function

f(x) =
∑
n>0
Cq(n)x

n, (2.30)

then (2.29) is equivalent to the functional equation [3, 10]

f(x) = 1 + xf(x)f(qx), (2.31)

which generalizes (2.25).
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Theorem 2.6. For all n ∈ N,

C−1(n) =

{
δn,0, if n is even;

(−1)
n−1

2 cn−1
2
, if n is odd.

(2.32)

Proof. Setting q = −1 in (2.31) gives

f(x) = 1 + xf(x)f(−x). (2.33)

Putting −x for x in (2.33), solving the resulting system in f(x) and f(−x),
and noting f(0) = 1 yields

f(x) =
∑
n>0
C−1(n)x

n

=
(2x− 1) +

√
4x2 + 1

2x
= 1 +

∑
n>1

(−1)n−1 1

n

(
2n− 2

n− 1

)
x2n−1,

which implies (2.32).

Alternatively, note that

C−1(n) = (−1)(
n
2)
∑
w∈Cn

(−1)inv(w),

by (2.26) and (2.28). So (2.32) is equivalent to

∑
w∈Cn

(−1)inv(w) =

{
δn,0, if n is even;

cn−1
2
, if n is odd.

(2.34)

To prove (2.34), let C+
n , C

−
n ⊆ Cn consist of the Catalan words with even

or odd inv values, respectively, and C∗
n ⊆ Cn consist of those words w =

w1w2 · · ·w2n for which

w2iw2i+1 = 00 or 11, 1 � i � n− 1. (2.35)

Clearly, C∗
n ⊆ C+

n with cardinality matching the right-hand side of (2.34).
Suppose w ∈ Cn −C∗

n and that i0 is the smallest index for which (2.35) fails
to hold. Switch w2i0 and w2i0+1 in w. The resulting map is a parity changing
involution of Cn − C∗

n, which proves (2.34) and hence (2.32).
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Another q-Catalan number arises as the generating function for the major
index statistic on Cn [15]. If

c̃q(n) :=
∑
w∈Cn

qmaj (w), (2.36)

then there is the closed form (see [10], [15, p. 215])

c̃q(n) =
1

(n+ 1)q

(
2n

n

)
q

, ∀n ∈ N, (2.37)

which generalizes (2.22).

Theorem 2.7. For all n ∈ N,

c̃−1(n) =

(
n

	n/2

)
. (2.38)

Proof. If n is even, then by (2.37),

c̃−1(n) = lim
q→−1

c̃q(n) = lim
q→−1

1

(n+ 1)q

n−1∏
i=0

(2n− i)q
(n− i)q

=

n−2∏
i=0

i even

lim
q→−1

(
q2n−i − 1

qn−i − 1

)
=

n−2∏
i=0

i even

2n− i
n− i =

n−2∏
i=0

i even

n− i/2
n/2− i/2 =

(
n

n/2

)
,

with the odd case handled similarly.

Alternatively, let C+
n , C

−
n ⊆ Cn consist of the Catalan words with even

or odd major index value, respectively, and C∗
n ⊆ Cn consist of those words

w = w1w2 · · ·w2n which satisfy the following two requirements:

(i) one can express w as w = x1x2 · · ·xn, where xi = 00, 11, or 01, 1 �
i � n;

(ii) for each i, xi = 01 only if the number of 00’s in the initial segment
x1x2 · · ·xi−1 equals the number of 11’s. (A word in C∗

n may start with
either 01 or 00.)

Clearly, C∗
n ⊆ C+

n and below it is shown that |C∗
n| =

(
n

�n/2	
)
. Suppose w =

w1w2 · · ·w2n ∈ Cn − C∗
n and that i0 is the smallest integer i, 1 � i � n, such

that one of the following two conditions holds:
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(i) w2i−1w2i = 10, or

(ii) w2i−1w2i = 01 and the number of 0’s in the initial segment w1w2 · · ·w2i−2

is strictly greater than the number of 1’s.

Switching w2i0−1 and w2i0 in w changes the major index by an odd amount
and the resulting map is a parity changing involution of Cn − C∗

n.

We now show |C∗
n| =

(
n

�n/2	
)
by defining a bijection between C∗

n and the

set Λ(n) of (minimal) lattice paths from (0, 0) to (	n/2
, n− 	n/2
). Given
w = x1x2 · · ·xn ∈ C∗

n as described in (i) and (ii) above, we construct a lattice
path λw ∈ Λ(n) as follows. Let j1 < j2 < . . . be the set of indices j, possibly
empty and denoted S(w), for which xj = 01, with j0 := 0. For s � 1, let
step js in λw be a V (vertical step) if s is odd and an H (horizontal step) if
s is even.

Suppose now i ∈ [n]−S(w) and that t, t � 0, is the greatest integer such
that jt < i. If t is even, put a V (resp., H) for the ith step of λw if xi = 11
(resp., 00). If t is odd, put a V (resp., H) for the ith step of λw if xi = 00
(resp., 11), which now specifies λw completely. The map w �→ λw is seen to
be a bijection between C∗

n and Λ(n); note that S(w) corresponds to the steps
of λw in which it either rises above the line y = x or returns to y = x from
above.

Note that the preceding supplies a combinatorial proof of the congruence
1

n+1

(
2n
n

) ≡ ( n
�n/2	

)
(mod 2) for n ∈ N since off of a set of cardinality

(
n

�n/2	
)
,

each Catalan word w ∈ Cn is paired with another of opposite maj -parity.
We also have for n ∈ P that cn is even if n is even and cn ≡ cn−1

2
(mod 2)

if n is odd, by (2.34). Repeated use of this yields the well known fact [22]
that the nth Catalan number cn is odd if and only if n = 2m − 1 for some
m ∈ N. By the first congruence noted, the same is true for the middle
binomial coefficient

(
n

�n/2	
)
.

Let Pn ⊆ Sn consist of those permutations σ = σ1σ2 · · ·σn avoiding the
pattern 312, i.e., there are no indices i < j < k such that σj < σk < σi
(termed Catalan permutations). Knuth [13, p. 238] describes a bijection g
between Pn and Cn in which

inv(σ) =

(
n

2

)
− inv(g(σ)), ∀σ ∈ Pn,
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and hence

Cq(n) :=
∑
w∈Cn

q(
n
2)−inv(w) =

∑
σ∈Pn

qinv(σ). (2.39)

By (2.32) and (2.39), we then have the parity result

∑
σ∈Pn

(−1)inv(σ) =

{
δn,0, if n is even;

(−1)
n−1

2 cn−1
2
, if n is odd.

(2.40)

The composite map g−1 ◦ h ◦ g, where h is the involution establishing (2.34),
furnishes an appropriate involution for (2.40).
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Chapter 3

Parity Theorems for Partition
Statistics

3.1 Introduction

3.1.1 The Partition Statistics w̃, ŵ, w∗, w

Let Π(n, k) denote the set of all partitions of [n] with k blocks and Π(n)
the set of all partitions of [n]. For all n, k ∈ N, let S(n, k) := |Π(n, k)|
and B(n) := |Π(n)| = ∑

k S(n, k). The numbers S(n, k) are called Stirling
numbers of the second kind and the numbers B(n) are called Bell numbers.
Then S(0, 0) = 1, S(n, 0) = S(0, k) = 0 ∀n, k ∈ P, and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), ∀n, k ∈ P, (3.1)

upon considering whether or not n goes in a block by itself. Then B(0) = 1
and

B(n+ 1) =
n∑

k=0

(
n

k

)
B(k), ∀n ∈ N, (3.2)

since
(
n
k

)
B(k) counts the partitions of [n+ 1] for which the size of the block

containing n+ 1 is n− k + 1.

Associate to each π ∈ Π(n, k) the unique ordered partition (E1, . . . , Ek)
of [n] comprising the same blocks as Π, arranged in increasing order of their
smallest elements, and define statistics w̃, ŵ, w∗, and w by
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w̃(π) :=

k∑
i=1

(i− 1)(|Ei| − 1), (3.3)

ŵ(π) :=

k∑
i=1

i(|Ei| − 1) = w̃(π) + n− k, (3.4)

w∗(π) :=

k∑
i=1

i|Ei| = w̃(π) + n +
(
k

2

)
, (3.5)

and

w(π) :=
k∑

i=1

(i− 1)|Ei| = w̃(π) +
(
k

2

)
. (3.6)

Consider the generating functions (see [2], [16], [24], and [25])

S̃q(n, k) :=
∑

π∈Π(n,k)

qw̃(π), (3.7)

Ŝq(n, k) :=
∑

π∈Π(n,k)

qŵ(π) = qn−kS̃q(n, k), (3.8)

S∗
q (n, k) :=

∑
π∈Π(n,k)

qw
∗(π) = q(

k
2)+nS̃q(n, k), (3.9)

and

Sq(n, k) :=
∑

π∈Π(n,k)

qw(π) = q(
k
2)S̃q(n, k). (3.10)

Summing the q-Stirling numbers, S̃q(n, k), Ŝq(n, k), S
∗
q (n, k), and Sq(n, k),

over k yields the respective q-Bell numbers, B̃q(n), B̂q(n), B
∗
q (n), and Bq(n).

These polynomials reduce to the classical Stirling and Bell numbers when
q = 1.

In section 3.2, we evaluate these polynomials when q = −1, giving both
algebraic and bijective proofs. Our algebraic arguments parallel the general
scheme presented in [26], though several of our proofs are different. Our bi-
jective proofs are those given in [18]. In 3.3, we carry out a similar evaluation
for the polynomials resulting when one restricts the w and w∗ statistics to
the partitions of [n] whose blocks have cardinality at most two.
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3.1.2 Algebraic Preliminaries

In this section, we establish some algebraic properties of the q-Stirling
numbers which we’ll need in the next section. We first recall a theorem, due
to Comtet [5], which greatly facilitates the analysis of many combinatorial
arrays.

Theorem 3.1. Let D be an integral domain. If (un)n>0 is a sequence in D
and x is an indeterminate over D, then the following are equivalent charac-
terizations of an array (U(n, k))n,k>0:

U(n, k) = U(n− 1, k − 1) + ukU(n− 1, k), ∀n, k ∈ P, (3.11)

with U(n, 0) = un
0 and U(0, k) = δ0,k ∀n, k ∈ N,

U(n, k) =
∑

d0+d1+···+dk=n−k
di∈N

ud0
0 u

d1
1 · · ·udk

k , ∀n, k ∈ N, (3.12)

∑
n>0
U(n, k)xn =

xk

(1− u0x)(1− u1x) · · · (1− ukx)
, ∀k ∈ N, (3.13)

and

xn =

n∑
k=0

U(n, k)pk(x), ∀n ∈ N, (3.14)

where p0(x) := 1 and pk(x) := (x− u0) · · · (x− uk−1) for k ∈ P.

Proof. Straightforward algebraic exercise.

We shall call the numbers U(n, k) the Comtet numbers associated with the
sequence (un)n>0, as in [25]. By (3.1), the S(n, k) are the Comtet numbers
associated with the sequence (0, 1, 2, . . . ).

Theorem 3.2. The q-Stirling numbers, S̃q(n, k), are generated by the recur-
rence relation

S̃q(n, k) = S̃q(n− 1, k − 1) + kqS̃q(n− 1, k), ∀n, k ∈ P, (3.15)

with S̃q(0, 0) = 1 and S̃q(n, 0) = S̃q(0, k) = 0, ∀n, k ∈ P.
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Proof. The boundary conditions are obvious. To establish the recurrence
(3.15), consider the contribution of the element n to the overall w̃-weight
of a member π = (E1, . . . , Ek) ∈ Π(n, k). The sum of the weights of all
members of Π(n, k) for which n goes in a block by itself is S̃q(n− 1, k − 1),
while the sum of the weights of all members of Π(n, k) for which n goes in
the ith block Ei, 1 � i � k, together with at least one member of [n− 1], is
qi−1S̃q(n−1, k). Summing over i, 1 � i � k, and noting kq = 1+q+· · ·+qk−1

yields (3.15).

Recurrence (3.15) reveals that the numbers S̃q(n, k) are the Comtet num-
bers associated with the sequence (nq)n>0. By Theorem 3.1, it follows imme-
diately that

S̃q(n, k) =
∑

d1+···+dk=n−k
di∈N

(1q)
d1(2q)

d2 · · · (kq)dk , ∀n, k ∈ N, (3.16)

∑
n>0
S̃q(n, k)x

n =
xk

(1− 1qx)(1− 2qx) · · · (1− kqx) , ∀k ∈ N, (3.17)

and

xn =

n∑
k=0

S̃q(n, k)φk(x), ∀n ∈ N, (3.18)

where φ0(x) := 1 and φk(x) := x(x− 1q) · · · (x− (k − 1)q), ∀k ∈ P.

Variants of (3.15)–(3.18) hold for the other q-Stirling numbers and follow
from relations (3.7)–(3.10). For example, we have

S∗
q (n, k) = q

kS∗
q (n− 1, k − 1) + qkqS

∗
q (n− 1, k), ∀n, k ∈ P, (3.19)

and∑
n>0
S∗

q (n, k)x
n =

q(
k+1
2 )xk

(1− qx)(1− qx− q2x) · · · (1− qx− · · · − qkx) , ∀k ∈ N.

(3.20)

3.2 Parity Theorems for Partition Statistics

In this section, we derive simple expressions for the foregoing q-Stirling
and q-Bell numbers when q = −1, giving both algebraic and bijective proofs.
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Theorem 3.3. For all n ∈ N,

S̃−1(n, k) =

(
n− 	k/2
 − 1

n− k
)
, 0 � k � n. (3.21)

Proof. Substituting q = −1 into (3.17) and noting

iq|q=−1 =

{
1, if i is odd;

0, if i is even,

yields

∑
n>0
S̃−1(n, k)x

n =
xk

(1− x)
k/2�

=
∑
n>k

(
n− 	k/2
 − 1

n− k
)
xn.

Note that (3.21) can also be obtained by letting q = −1 in (3.16).

Substituting (3.21) into (3.18) at q = −1 and applying the binomial
theorem yields the orthogonality relation

min{n,2m}∑
k=m

(−1)k−m

(
n− 	k/2
 − 1

n− k
)(	k/2

k −m

)
= δn,m, 0 � m � n. (3.22)

Let F0 = F1 = 1 with Fn = Fn−1 + Fn−2 if n � 2. As is well known,

Fn =

�n/2	∑
i=0

(
n− i
i

)
, ∀n ∈ N. (3.23)

Theorem 3.4. For all n ∈ N,

B̃−1(n) :=

n∑
k=0

S̃−1(n, k) = Fn. (3.24)
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Proof. Clearly, (3.24) holds for n = 0, 1. If n � 2, then by (3.21) and (3.23),

B̃−1(n) =

n∑
k=0

(
n− 	k/2
 − 1

n− k
)

=

�(n−1)/2	∑
i=0

(
n− i− 1

i

)
+

�n/2	∑
i=1

(
n− i− 1

i− 1

)

=

�(n−1)/2	∑
i=0

(
n− 1− i
i

)
+

�(n−2)/2	∑
i=0

(
n− 2− i
i

)

= Fn−1 + Fn−2 = Fn,

proving the theorem.

Throughout, we’ll represent π ∈ Π(n) by (E1, E2, . . . ), the unique ordered
partition of [n] comprising the same blocks as π, arranged in increasing order
of their smallest elements.

Combinatorial Proof of Theorem 3.4.

Let Πi(n) := {π ∈ Π(n) : w̃(π) ≡ i (mod 2)} so that B̃−1(n) = |Π0(n)|−
|Π1(n)|. To prove (3.24), we’ll identify a subset Π̃(n) of Π0(n) such that
|Π̃(n)| = Fn, along with a w̃-parity changing involution of Π(n)− Π̃(n).

The set Π̃(n) consists of those partitions π = (E1, E2, . . . ) whose blocks
satisfy the two conditions:

each block of odd index comprises a set of consecutive integers; (3.25a)

each block of even index is a singleton. (3.25b)

Now |Π̃(n)| = Fn, as |Π̃(n)| is seen to satisfy the Fibonacci recurrence, upon
considering whether or not {n} is a block. For if {n} is not a block and
n − 2 belongs to an odd-numbered (respectively, even-numbered) block of
π ∈ Π̃(n), then {n− 1, n} constitutes a proper subset of (respectively, all of)
the last block of π.

Suppose now that π = (E1, E2, . . . ) belongs to Π(n) − Π̃(n) and that i0
is the smallest of the integers i for which E2i−1 fails to satisfy (3.25a) or E2i

fails to satisfy (3.25b). Let M be the largest member of E2i0−1 ∪ E2i0 . If
M belongs to E2i0−1, move it to E2i0 , while if M belongs to E2i0 , move it to
E2i0−1 (note that if |E2i0 | = 1, then necessarily M ∈ E2i0−1). The resulting
map is a parity changing involution of Π(n)− Π̃(n).
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Below, we illustrate the fixed point set Π̃(n) and the pairings of Π(n) −
Π̃(n) when n = 4, wherein the first two members of each row are paired.

Π0(n)− Π̃(n) Π1(n) Π̃(n)

{1, 2, 4}, {3} {1, 2}, {3, 4} {1, 2, 3, 4}
{1, 3, 4}, {2} {1, 3}, {2, 4} {1, 2, 3}, {4}
{1}, {2, 3, 4} {1, 4}, {2, 3} {1}, {2}, {3, 4}
{1, 3}, {2}, {4} {1}, {2, 3}, {4} {1, 2}, {3}, {4}
{1, 4}, {2}, {3} {1}, {2, 4}, {3} {1}, {2}, {3}, {4}

Note that the above bijection preserves the number of blocks of π ∈ Π(n).
We’ll use its restriction to Π(n, k) to supply a

Combinatorial Proof of Theorem 3.3.

Let Πi(n, k) := Πi(n) ∩ Π(n, k) for i = 0, 1, Π̃(n, k) := Π̃(n) ∩ Π(n, k),
and π = (E1, . . . , Ek) ∈ Π̃(n, k). If k is even, identify each pair of blocks
(E2i−1, E2i), 1 � i � k/2, with summands xi in a composition x1+· · ·+xk/2 =
n, where each xi � 2. If k is odd, identify (E1, E2), . . . , (Ek−2, Ek−1), (Ek)
with summands xi in x1 + · · ·+ x(k+1)/2 = n, where xi � 2 for 1 � i � k−1

2

and x(k+1)/2 � 1. The cardinality of Π̃(n, k) is then given by the right-hand

side of (3.21), and the restriction of the prior bijection to Π(n, k)− Π̃(n, k) is
again an involution, and inherits the parity changing property, which proves
(3.21).

From (3.21) along with (3.8), (3.9), and (3.10), we have

Ŝ−1(n, k) = (−1)n−k

(
n− 	k/2
 − 1

n− k
)
, 0 � k � n, (3.26)

S∗
−1(n, k) = (−1)(

k
2)+n

(
n− 	k/2
 − 1

n− k
)
, 0 � k � n, (3.27)

and

S−1(n, k) = (−1)(
k
2)
(
n− 	k/2
 − 1

n− k
)
, 0 � k � n. (3.28)

The bijection establishing (3.21) clearly applies to (3.26)–(3.28) as well.
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The bijection of Theorem 3.3 also proves combinatorially that

S(n, k) ≡
(
n− 	k/2
 − 1

n− k
)

(mod 2), 0 � k � n, (3.29)

since off of a set of cardinality
(
n−�k/2	−1

n−k

)
, each partition π ∈ Π(n, k) is paired

with another of opposite w̃-parity. This furnishes an answer to a question
raised by Stanley [23, p. 46, Exercise 17b].

Theorem 3.5. For all n ∈ N,

B̂−1(n) :=
n∑

k=0

Ŝ−1(n, k) = (−1)n−1Fn−3, (3.30)

where F−3 = −1, F−2 = 1, and F−1 = 0.

Proof. Clearly, (3.30) holds for n = 0, 1. If n � 2, then by (3.23) and (3.26),

B̂−1(n) =

n∑
k=0

(−1)n−k

(
n− 	k/2
 − 1

n− k
)

= (−1)n−1


�(n−1)/2	∑

i=0

(
(n− 1)− i

i

)
−

�(n−2)/2	∑
i=0

(
(n− 2)− i

i

)
= (−1)n−1(Fn−1 − Fn−2) = (−1)n−1Fn−3.

Alternatively, let n � 3, Π̃(n) be as in the proof of Theorem 3.4, and
Π̂(n) ⊆ Π̃(n) consist of those partitions with an odd number of blocks and
whose last block is a singleton. First, |Π̂(n)| = |Π̃(n − 3)| = Fn−3 as the
removal of n − 2, n − 1, and n from π ∈ Π̂(n) is seen to be a bijection
between Π̂(n) and Π̃(n − 3). Since ŵ(π) = w̃(π) + n − k and since every
π ∈ Π̂(n) has an even w̃(π) value and an odd number of blocks, the ŵ-parity
of each π ∈ Π̂(n) is opposite the parity of n. Thus, Π̂(n) agrees with the
right-hand side of (3.30) in both sign and magnitude.

The w̃-parity changing involution of Theorem 3.4 defined on Π(n)− Π̃(n)
also changes the ŵ-parity. We now extend this involution to Π(n) − Π̂(n)
as follows: if the last block of π ∈ Π̃(n) − Π̂(n) is {n}, merge it with the
penultimate block; if the last block is not a singleton, take n from this block
and form the singleton {n}. The resulting extension is a ŵ-parity changing
involution of Π(n)− Π̂(n).
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The Bell numbers B∗
−1(n) are quite different from the numbers B̃−1(n)

and B̂−1(n), as demonstrated by the following theorem.

Theorem 3.6. For all n ∈ N,

B∗
−1(n) :=

n∑
k=0

S∗
−1(n, k) =



1, if n ≡ 0 (mod 3);

−1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3).

(3.31)

Proof. Using the generating function method and (3.27), we have

∑
n>0
B∗

−1(n)x
n =

∑
n>0

(
n∑

k=0

S∗
−1(n, k)

)
xn

=
∑
n>0

(
n∑

k=0

(−1)(
k
2)+n

(
n− ⌊k

2

⌋− 1

n− k
))
xn

=
∑
k>0

(−1)(
k
2)
∑
n>k

(−1)n
(
n− ⌊k

2

⌋− 1

n− k
)
xn

= 1−
∑

k even
k>2

x
k
2
+1

∑
n> k

2
−1

(
n

k
2
− 1

)
(−x)n

−
∑
k odd

x
k+1
2

∑
n> k−1

2

(
n

k−1
2

)
(−x)n

=
∑
k>0

(−1)kx2k

(1 + x)k
−
∑
k>0

(−1)kx2k+1

(1 + x)k+1
=

1

1 + x

∑
k>0

(−1)kx2k

(1 + x)k

=
1

1 + x+ x2
=

1− x
1− x3 =

∑
m>0

(x3m − x3m+1),

which proves (3.31).

Alternatively, let Πi(n) := {π ∈ Π(n) : w∗(π) ≡ i (mod 2)} and Π∗(n)
consist of those partitions π = (E1, E2, . . . ) whose blocks satisfy

E2i−1 = {3i− 2, 3i− 1}, E2i = {3i}, 1 � i � 	n/3
. (3.32)

Then Π∗(n) is a singleton contained in Π0(n) if n ≡ 0 (mod 3) or contained
in Π1(n) if n ≡ 1 (mod 3). If n ≡ 2 (mod 3), Π∗(n) is a doubleton containing
two partitions of opposite w∗-parity, which we pair.
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Suppose now that π = (E1, E2, . . . ) ∈ Π(n) − Π∗(n) and that i0 is the
smallest index for which condition (3.32) fails to hold. Let n1 = 3i0 − 2,
n2 = 3i0 − 1, n3 = 3i0 and V1 = E2i0−1, V2 = E2i0 , V3 = E2i0+1 (the latter
two if they occur). Consider the following four disjoint cases concerning the
relative positions of the ni within the Vi:

(I) n2 ∈ V2, n3 ∈ V3, and |V2 ∪ V3| � 3;

(II) Either (a) or (b) holds where (a) V2 = {n2} and V3 = {n3},
(b) n2, n3 ∈ V1;

(III) n2 ∈ V2 and n3 ∈ V1 ∪ V2;
(IV) n2 ∈ V1, n3 ∈ V2, and |V1 ∪ V2| � 4.

Within each case, we pair partitions of opposite parity as shown below, leav-
ing the other blocks undisturbed:

(i) V2 = {n2, . . . ,M}, V3 = {n3, . . .} ↔ V2 = {n2, . . . }, V3 = {n3, . . . ,M},
where M is the largest member of V2 ∪ V3;

(ii) V1 = {n1, . . .}, V2 = {n2}, V3 = {n3} ↔ V1 = {n1, n2, n3, . . .};
(iii) V1 = {n1, n3, . . . }, V2 = {n2, . . .} ↔ V1 = {n1, . . . }, V2 = {n2, n3, . . . };
(iv) V1 = {n1, n2, . . . , N}, V2 = {n3, . . .} ↔ V1 = {n1, n2, . . . },

V2 = {n3, . . . , N}, where N is the largest member of V1 ∪ V2.
The resulting map is a parity changing involution of Π(n) − Π∗(n), which
implies (3.31).

Below, we illustrate the fixed point set Π∗(n) along with the pairings of
Π(n)− Π∗(n) when n = 4.

Π0(n) Π1(n)− Π∗(n) Π∗(n)

{1, 2, 3, 4} {1, 4}, {2}, {3} {1, 2}, {3}, {4}
{1, 2}, {3, 4} {1, 2, 4}, {3}
{1, 3}, {2, 4} {1}, {2, 3, 4}
{1, 4}, {2, 3} {1, 3, 4}, {2}
{1}, {2, 3}, {4} {1, 3}, {2}, {4}
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{1}, {2, 4}, {3} {1}, {2}, {3, 4}
{1}, {2}, {3}, {4} {1, 2, 3}, {4}

Note that the bijection above, like the one used for Theorem 3.5, does not
always preserve the number of blocks and hence has no meaningful restriction
to Π(n, k), unlike the bijection of Theorem 3.4.

Remark. In [7], Ehrlich evaluates σ(n) := −∑π∈Π(n)(−1)α(π), where α(π) :=∑
i odd |Ei| for π = (E1, E2, . . . ) ∈ Π(n). The bijection of Theorem 3.6 estab-

lishing B∗
−1(n) also provides an alternative to Ehrlich’s iterative argument

establishing his σ(n) since

σ(n) = −
∑

π=(E1,E2,... )∈Π(n)

(−1)|E1|+|E3|+|E5|+···

= −
∑

π=(E1,E2,... )∈Π(n)

(−1)|E1|+2|E2|+3|E3|+···

= −B∗
−1(n).

It is easy to verify that one can write (3.31) more compactly as

B∗
−1(n) =

1

1− ww
n − w

1− ww
2n,

where w is a primitive cube root of unity, which yields the pleasing exponen-
tial generating function [26]

∑
n>0
B∗

−1(n)
xn

n!
=

1

1− w e
wx − w

1− w e
w2x. (3.33)

Since Sq(n, k) = q
−nS∗

q (n, k),

B−1(n) :=
n∑

k=0

S−1(n, k) = (−1)nB∗
−1(n),

and so by (3.31),

B−1(n) =



(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

(3.34)
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with the above bijection clearly showing this. The preceding also supplies
a combinatorial proof that B(n), the nth Bell number, is even if and only if
n ≡ 2 (mod 3) since every partition of [n] is paired with another of opposite
w∗-parity when n ≡ 2 (mod 3) and since all partitions are so paired except
for one otherwise (cf. Ehrlich [7, p. 512]).

3.3 A Notable Restriction

Let B(n, k) := {π ∈ Π(n, k) : all blocks of π have cardinality at most 2},
B(n) := ∪kB(n, k), A(n, k) := |B(n, k)|, and A(n) := |B(n)|. The numbers
A(n, k), known as Bessel numbers, are reparametrized coefficients of Bessel
polynomials [4]. By a fairly routine combinatorial argument,

A(n, k) =

(
n

2n− 2k

)
(2n− 2k)!

2n−k(n− k)! , �n/2� � k � n. (3.35)

Consider the q-generalizations of A(n, k) and A(n) obtained by restricting
the partition statistics w∗ and w to B(n, k) and to B(n):

A∗
q(n, k) :=

∑
π∈B(n,k)

qw
∗(π), (3.36)

Aq(n, k) :=
∑

π∈B(n,k)

qw(π) = q−nA∗
q(n, k), (3.37)

A∗
q(n) :=

∑
π∈B(n)

qw
∗(π), (3.38)

and

Aq(n) :=
∑

π∈B(n)
qw(π) = q−nA∗

q(n). (3.39)

The numbers A∗
q(n, k) satisfy the boundary conditions A∗

q(n, 0) = δn,0,
A∗

q(0, k) = δ0,k, and A
∗
q(1, 1) = q, along with the recurrence

A∗
q(n, k) = q

nA∗
q(n− 1, k − 1)

+ qn(n− 1)A∗
q(n− 2, k − 1), n � 2, k � 1, (3.40)

upon considering whether the first block is the singleton {1} or a doubleton
containing 1.
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The recurrence in (3.40) is not of a form covered by Comtet’s Theo-
rem. We were unable to find analogues of (3.16)–(3.18) for either A∗

q(n, k)
or Aq(n, k), nor were we able to find simple expressions for A∗

−1(n, k) or
A−1(n, k). However, we do have the following somewhat surprising parity
theorem for B(n).
Theorem 3.7. For all n ∈ P,

A∗
−1(4n) = A

∗
−1(4n− 1) =

n−1∏
i=0

(4i+ 1)(4i+ 2),

A∗
−1(4n− 2) = 0, (3.41)

and

A∗
−1(4n− 3) = −

n−1∏
i=1

(4i+ 1)(4i− 2).

Proof. Let am = A∗
−1(m) and bm = A−1(m). Conditioning on whether or

not the first block is a singleton yields

am = −bm−1 + (m− 1)bm−2, m � 2. (3.42)

Since bm = (−1)mam, we have, by (3.42), the second-order recurrence

am = (−1)m[am−1 + (m− 1)am−2], m � 2, (3.43)

with a0 = 1, a1 = −1.

To solve (3.43), write out the first several terms of the sequence am and
conjecture that a4m−2 = 0, along with a4m−1 = a4m if m � 1. Assuming this
conjecture to be true for the moment, let dm = a4m+1 and em = a4m+3 =
a4m+4 for m � 0 with e−1 := 1. Then (3.43) implies em = −(4m+ 2)dm and
dm = −(4m+ 1)em−1 for m � 0 so that

em = (4m+ 2)(4m+ 1)em−1, m � 0,

whence

em =

m∏
i=0

(4i+ 1)(4i+ 2) and dm = −
m∏

i=1

(4i+ 1)(4i− 2), m � 0.

The sequence am defined by a4n = a4n−1 =
∏n−1

i=0 (4i+ 1)(4i+ 2), a4n−2 = 0,
and a4n−3 = −∏n−1

i=1 (4i+ 1)(4i− 2), if n � 1 with a0 = 1, is easily shown to
satisfy (3.43), which completes the proof.
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Conclusion

The formulas of the first three chapters show that the case q = −1 is
an interesting special case which differs in many respects from the general
q-case. In several instances, these formulas arise when either a q-recurrence
or q-generating function assumes a particularly nice form for q = −1 (e.g.,
(3.24) in Ch. 3; (3.13) and (3.14) in [20]). The q = −1 case may have a
nice closed form whereas there is no such closed form known for q general,
as seen with (2.32). In a few instances, there seems to be no underlying
algebraic development behind a particular parity result (e.g., (2.16), (2.21),
and (3.41)). In addition, the author has encountered several instances in
which the case q = −1 appears to have no simple closed form at all.

One possible way to algebraically extend previous results for q = −1
would be to allow q to be an arbitrary complex root of unity. Though in
many instances such a generalization doesn’t seem possible, in a few, the
generalization is straightforward. For example, when m � 2 and q = e2πi/m,

then n!q = 0 if n � m since mq = 1 + q + · · · + qm−1 = 0 if q = e2πi/m.
To realize this combinatorially, it suffices to show, by (2.1), that the inv (or
maj ) statistic on Sn is balanced in the following sense whenever n � m: the
number of permutations of [n] whose inv (or maj ) value is congruent to i
(mod m) is equal to the number whose value is congruent to j (mod m) for
all i and j, where 0 � i < j � m− 1.

If n � m, then locate the largest member occurring in the first m po-
sitions of σ ∈ Sn, expressed as a word, and cyclicly shift it through these
positions, leaving the relative order of the other letters undisturbed. The m
members of Sn so obtained have different inv and maj values mod m. Since
Sn is partitioned into m-member equivalence classes by this procedure, it
follows that inv and maj are both balanced as described. Note that for inv ,
but not maj , this can also be realized by locating the positions occupied by
the members of [m] within σ ∈ Sn, expressed as a word, and shifting m in a
cyclic fashion within these m positions, leaving the rest of σ undisturbed.
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For another example, we let q = ρ = −1+
√
3i

2
, a third root of unity, in the

q-binomial coefficient
(
n
k

)
q
. By a calculation similar to the one in Theorem

1.1 or by substituting q = ρ into (1.11) and considering cases mod 3, we have
the formula

(
n

k

)
ρ

=



−ρ2

(	n/3

	k/3


)
, if n ≡ k (mod 3) or k ≡ 0 (mod 3);(	n/3


	k/3

)
, if n ≡ 2 (mod 3) and k ≡ 1 (mod 3);

0, otherwise.

(1)

The combinatorial arguments of the first chapter used to evaluate
(
n
k

)
−1

=∑
w∈Λn,k

(−1)inv(w) can be modified to evaluate
(
n
k

)
ρ
=

∑
w∈Λn,k

ρinv(w), where Λn,k

denotes the set of binary words of length n with k 0’s. Instead of pairing
members of Λn,k of opposite inv -parity, we partition a portion of Λn,k into
tripletons each of whose members have different inv values mod 3. For each
such tripleton {λ1, λ2, λ3}, we have that ρinv(λ1) + ρinv(λ2) + ρinv(λ3) = 0 since
1 + ρ+ ρ2 = 0.

Let Λ′
n,k consist of those words w = w1w2 · · ·wn in Λn,k satisfying

w3i−2 = w3i−1 = w3i, 1 � i � 	n/3
. (2)

In all cases, the right-hand side of (1) above gives the net contribution of Λ′
n,k

towards the sum
(
n
k

)
ρ
=

∑
w∈Λn,k

ρinv(w); note that members of Λ′
n,k may end in

either 01 or 10 if n ≡ 2 (mod 3) and k ≡ 1 (mod 3), hence the 1 + ρ = −ρ2
factor in this case.

Suppose now that w = w1w2 · · ·wn ∈ Λn,k−Λ′
n,k, with i0 being the small-

est i for which (2) fails to hold. Group the three members of Λn,k−Λ′
n,k gotten

by circularly permuting w3i0−2, w3i0−1, and w3i0 within w = w1w2 · · ·wn, leav-
ing the rest of w undisturbed. Note that these three members of Λn,k −Λ′

n,k

have different inv values mod 3. The preceding argument works equally well
with maj in place of inv . See also formulas (4.1)–(4.6) in [20] for similar
behavior when q is a third root of unity.
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Appendix A

A Combinatorial Proof of a q-
Binomial Coefficient Identity

Recall the q-binomial theorem [23]

(1 + x)(1 + qx) · · · (1 + qn−1x) =

n∑
k=0

q(
k
2)
(
n

k

)
q

xk, (1)

originally due to Euler. Substituting − 1
x
for x in (1), multiplying both sides

by xn, and reindexing yields the variant [27]

(x− 1)(x− q) · · · (x− qn−1) =
n∑

k=0

(−1)n−kq(
n−k

2 )
(
n

k

)
q

xk. (2)

Our aim here is to give a direct combinatorial proof of (2). It suffices to
prove equality whenever x = qm, m ∈ P, and q is a power of some prime.
We’ll argue that, when x = qm, both sides of (2) count the injective linear
transformations from F

n
q to F

m
q , the left-hand side clearly doing so, where F

r
q

denotes the finite r-dimensional vector space of qr elements over the finite
field Fq of q elements. To show that the right-hand side of (2) also achieves
this, we’ll use a weighted, sieve argument described below which starts with
the set of all linear transformations.

Let A denote the set of all ordered pairs α = (U , T ), where T is a linear
transformation from F

n
q to F

m
q and U is a subspace of the null space of T .

Assign to each α ∈ A the weight (−1)kq(
k
2), where k is the dimension of U .
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The right-hand side of (2) at x = qm, written in the form

n∑
k=0

(−1)kq(
k
2)
(
n

k

)
q

qm(n−k), (3)

then gives the total weight of all the members of A, according to the dimen-
sion of U .

Now let R be a linear transformation from F
n
q to F

m
q , with null space W

and dim(W) = j. Then the net weight of all the members of A with second
coordinate R is given by

j∑
i=0

∑
U⊆W

dim(U)=i

(−1)iq(
i
2) =

j∑
i=0

(−1)iq(
i
2)
(
j

i

)
q

= δj,0, (4)

the latter equality upon substituting x = 0 in the well known identity [25,
pp. 201–202]

xn =
n∑

k=0

(
n

k

)
q

(x− 1) · · · (x− qk−1), n � 0. (5)

Thus by (4), the net weight of all the members of A with second coordinate
R is zero when dim(W) is positive and one when dim(W) is zero. Therefore,
the total weight of A equals the number of injective linear transformations,
which completes the proof.
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Appendix B

Bijective Proofs of Alternating
Sum Identities

The ideas used to construct the involutions of the first three chapters
can be adapted to furnish bijective proofs of various identities involving sums
with alternating signs, such as orthogonality relations, connection constant
relations, and binomial coefficient identities, which are typically proven us-
ing algebraic methods. In this section, we look at some specific identities
illustrating how these combinatorial ideas can be applied. As far as pro-
viding bijective proofs for these identities, constructing appropriate sign-
reversing involutions seems to be more effective than other combinatorial
proof techniques, such as direct argument or inclusion-exclusion. The author
has used similar sign-reversing involutions in providing bijective proofs for
several other combinatorial identities involving sums with alternating signs.

The first identities we’ll look at are the well known orthogonality relations
for Stirling numbers [23, Proposition 1.4.1],

n∑
j=k

S(n, j)s(j, k) = δn,k, 0 � k � n, (1)

and

n∑
j=k

s(n, j)S(j, k) = δn,k, 0 � k � n, (2)

where S(n, k) is the Stirling number of the second kind, s(n, k) = (−1)n−k

c(n, k) is the Stirling number of the first kind, and c(n, k) is the signless
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Stirling number of the first kind. We rewrite these relations in the more
suggestive form

n∑
j=k

(−1)jS(n, j)c(j, k) = (−1)kδn,k, 0 � k � n, (3)

and

n∑
j=k

(−1)jc(n, j)S(j, k) = (−1)nδn,k, 0 � k � n. (4)

We first give a bijective proof of (3). Partition [n] into j blocks, where
k � j � n, writing the members of [n] within a block in ascending order. Now
permute these j blocks, ordered lexicographically, according to a permutation
on j elements with k cycles in standard cycle form. Let the resulting block
arrangement have weight (−1)j , where j is the number of individual blocks.
The left-hand side of (3) then gives the total weight of all block arrangements
with j individual blocks as j ranges from k to n.

We now pair block arrangements of opposite sign as follows. Letm denote
the number of the first cycle encountered, going from left to right within a
block arrangement, possessing at least two members of [n] in all and 8 denote
the first, hence the smallest, member of [n] encountered in cycle m. If {8} is
not a block, split off 8 and start cycle m with the block {8}. If {8} is the first
block of cycle m, hence not the last block, place 8 at the front of the second
block of cycle m. All block arrangements are so paired except when k = n,
in which case there is a single block arrangement of sign (−1)k.

Similarly for (4), take the j cycles, ordered lexicographically, of σ ∈ Sn,j,
expressed in standard cycle form, and arrange them according to a canonical
ordered partition of [j] with k blocks, writing the cycles occurring within a
block in ascending order. Let the resulting cycle arrangement have weight
(−1)j, where j is the number of individual cycles. Let c1, . . . , cr be the cycles
in order which comprise the first block possessing at least two members of
[n] in all. If cr is a 1-cycle, whence r � 2, place the sole member of cr at the
end of cr−1. If |cr| � 2, break off the last member of cr and form a 1-cycle
within the block.
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The s(n, k) (= (−1)n−kc(n, k)) are the connection constants in the poly-
nomial identities [23, p. 35]

xn =

n∑
k=0

s(n, k)xk, n ∈ N, (5)

where xn := x(x− 1) · · · (x− n + 1). Equivalently,

mn =

n∑
k=0

(−1)n−kc(n, k)mk, n ∈ N, (6)

for each m ∈ N.

To prove (6), place the k cycles of σ ∈ Sn,k, expressed in standard cycle
form, into m labeled urns in one of mk ways, ordering the cycles within an
urn lexicographically. Let A denote the set of all possible arrangements as
k varies, 0 � k � n, and J ⊆ A those which consist of 1-cycles placed in
distinct urns. Let sign(α) = (−1)n−k, where k is the number of cycles in
α ∈ A. Note that |J | = mn, with each member of J having positive sign.
Pair members of A−J of opposite sign by identifying the first urn possessing
at least two members of [n] in all and then either merging or breaking off
the last member t of [n] occurring within a cycle in this urn, depending upon
whether or not t itself is a 1-cycle.

Next, we generalize a well known orthogonality relation for binomial co-
efficients (upon taking m = n in (7) below):

m∑
k=r

(−1)k
(
n

m− k
)(
k

r

)
= (−1)r

(
n− r − 1

m− r
)
, 0 � r � m � n. (7)

Proof of (7). Note that both sides of (7) give the coefficient of xm in the
convolution

(1 + x)n · (−x)r
(1 + x)r+1

= (−1)rxr(1 + x)n−r−1.

Alternatively, mark m− k members of [n] with red in one of
(

n
m−k

)
ways

and consider the first k members of [n] not marked red, where r � k � m.
Choose r of these numbers to be marked blue in one of

(
k
r

)
ways and mark

the remaining k − r numbers green. Any remaining members of [n] will be
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unmarked. Let such a coloring α of [n] have sign (−1)k. The left-hand side
of (7) clearly gives the total weight of all possible colorings α.

Now consider the smallest number marked either red or green. Switching
to the other option changes the sign of α. This change can be effected
provided that the first red or green number does not come later than the last
blue number with at least one unmarked number in between. But this can
occur only if the smallest red number is greater than r + 1 with k = r, of
which there are

(
n−r−1
m−r

)
possibilities each with sign (−1)r.

We close with a bijective proof of the orthogonality relation (3.22):

min{n,2m}∑
k=m

(−1)k−m

(
n− 	k/2
 − 1

n− k
)(	k/2

k −m

)
= δn,m, 0 � m � n. (8)

Let An,m be the set of “marked compositions” x = (x1, x2, . . . ) of n
satisfying: (a) x itself is a composition of n with xi = 1 for every even index
i; (b) x has at least m parts and at most 2m parts altogether; (c) if x has k
parts, where m � k � 2m, then k−m pairs of parts of the form (x2i−1, x2i),
i � 1, are marked. We’ll assign the weight of (−1)k−m to x ∈ An,m possessing
k −m designated pairs. Note that the left-hand side of (8) then gives the
net weight of all members of An,m.

If n = m, then An,m is a singleton with positive sign. So suppose n > m
and x ∈ An,m, with i0 the largest index i � 1 such that one of the following
holds:

(i) (x2i−1, x2i) is marked;

(ii) x2i−1 � 2 with x2i−1 not part of marked pair.

Note that xj = 1 for all j � 2i0 + 1 and that the last part of a marked
composition with an odd number of parts is, by definition, unmarked. Define
a sign-reversing involution of An,m by:

(I) if (i) holds, remove the designation and replace (x2i0−1, x2i0) with the
single part (x2i0−1 + 1);

(II) if (ii) holds, replace x2i0−1 with the two parts (x2i0−1 − 1, 1) and desig-
nate the pair (x2i0−1 − 1, 1).
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Appendix C

Asymptotics

1 Introduction

Suppose we have a sequence of statistics In : ∆n → N, with uniform
probability measure on each finite discrete structure ∆n. The random vari-
able sequence (In)n>1 is said to be asymptotically normal if, with E(In) = µn

and Var(In) = σ
2
n,

lim
n→∞

P

(
In − µn

σn
� z
)

= Φ(z), (1)

for all z, where Φ(z) = 1√
2π

∫ z

−∞ e
−t2/2 dt. For example, this is clearly true if

∆n = 2[n] and In(A) = |A|, by the classical central limit theorem.

In the next section, we’ll examine the asymptotic normality of some sta-
tistics on discrete structures using a more generalized central limit theorem.
The statistics we’ll look at all have probability generating functions (pgf’s)
which factor completely into a product of simpler pgf’s. In the last section,
we’ll briefly look at the asymptotics of the ratio rn := Gn(−1)/Gn(1), where

Gn(q) :=
∑
δ∈∆n

qIn(δ). (2)

In most of the cases we look at, this ratio tends to zero exponentially fast
(whenever Gn(1) itself increases exponentially). Thus, it appears that large
imbalances for unbalanced statistics are usually rather short lived.
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2 Asymptotic Normality

For each n � 1, let Xn,1, Xn,2, . . . , Xn,n be n mutually independent ran-
dom variables, which we’ll refer to as X1, X2, . . . , Xn by a slight abuse of
notation. We assume that the means and variances are finite and put

µi = E(Xi), σ2i = Var(Xi), 1 � i � n. (3)

The sum Yn = X1 + · · ·+Xn then has mean mn and variance s2n given by

mn = µ1 + · · ·+ µn, s2n = σ21 + · · ·+ σ2n. (4)

The array ((Xn,i)
n
i=1)n>1 is said to obey the central limit theorem if for

all z,

P

(
Yn −mn

sn
� z
)

→ Φ(z). (5)

The following theorem, a feat of early modern probability theory, gives nec-
essary and sufficient conditions for the central limit theorem to hold (see
[9, p. 322]):

Theorem 1 (Lindeberg-Feller). Suppose that

lim
n→∞

max {σ2k : 1 � k � n}
s2n

= 0. (6)

Then the central limit theorem holds if and only if for every ε > 0, the
truncated random variables Ui, 1 � i � n, defined by

Ui =

{
Xi − µi, if |Xi − µi| � εsn;
0, if |Xi − µi| > εsn,

(7)

satisfy

1

s2n

n∑
i=1

E(U2
i ) → 1. (8)

Note that (8) easily implies (6).

Feller [8] uses the sufficiency in Theorem 1 to establish the asymptotic
normality for the statistics recording the number of cycles and the number
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of inversions of a randomly chosen member of Sn. We first outline Feller’s
proof of asymptotic normality for the number of inversions.

Let n � 1 and Xi, 1 � i � n, be the random variable recording the
number of inversions produced by i in σ ∈ Sn, expressed as a word. Then
Yn = X1 + · · · + Xn records the total number of inversions (i.e., the inv
value) of σ ∈ Sn. The number of inversions produced by i does not depend
on the relative order of 1, 2, . . . , i − 1 within σ ∈ Sn, which implies the Xi

are mutually independent. The Xi assume the values of 0, 1, . . . , i− 1, each
with probability 1

i
and therefore µi =

i−1
2

and σ2i = i2−1
12

, 1 � i � n, from
which one gets mn = n(n−1)

4
and s2n = n(n−1)(2n+5)

72
.

For large n, we have Ui = Xi−µi, 1 � i � n, in (7) as |Xi−µi| � n � εsn,
which ensures that (8) is satisfied. Theorem 1 then gives the asymptotic
normality for the inv statistic on Sn. Since mn ∼ n2

4
and s2n ∼ n3

36
, one

can conclude, for example, that the number, Nn, of members of Sn whose

inv value lies between the limits of n2

4
± βn3/2

6
is asymptotically given by

n!(Φ(β)− Φ(−β)) for each β > 0.

From the generating function (2.1),

∑
σ∈Sn

qinv(σ) =
n∏

i=1

iq,

one sees that the probability generating function (pgf) for inv can be factored
into a product of simpler pgf’s,

1

n!

∑
σ∈Sn

qinv(σ) =
1

1

(
1 + q

2

)
· · ·
(
1 + q + · · ·+ qn−1

n

)
, (9)

hence the decomposition of inv into the simple independent components
given above.

We now apply similar reasoning to other combinatorial statistics. For ex-
ample, recall that the Carlitz statistic, inv c, of Section 2.2 has the generating
function ∑

σ∈Sn

qinvc(σ) =
n−1∏
i=0

(1 + iq),

so that the pgf for inv c on Sn factors as

1

n!

∑
σ∈Sn

qinvc(σ) =
1

1
· 2
2
·
(
2 + q

3

)
· · ·
(
2 + q + · · ·+ qn−2

n

)
. (10)
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For n � 2, let (Xi)
n
i=1 be independent and given by P (Xi = 0) = 2

i
, P (Xi =

j) = 1
i
, 1 � j � i− 2, if i � 2, with X1 = 0. If Yn records the inv c value of a

randomly chosen member of Sn, then one can express Yn as Yn = X1+· · ·+Xn,
where the Xi are as given, by (10). Asymptotic normality for inv c then
follows in much the same way as for inv .

If m(σ) denotes the number of left-to-right maxima (i.e., record highs) of
σ ∈ Sn, expressed as a word, then there is the joint generating function [23,
p. 49, Exercise 31]

∑
σ∈Sn

xm(σ)qinv(σ) =

n−1∏
i=0

(x+ qiq). (11)

Setting x = q in (11) and dividing by n! gives the pgf for Yn recording the
value of m(σ) + inv(σ) for σ ∈ Sn, chosen at random:

1

n!

∑
σ∈Sn

qm(σ)+inv (σ) =
q

1
· 2q
2

·
(
2q + q2

3

)
· · ·
(
2q + q2 + · · ·+ qn−1

n

)
. (12)

For n � 2, define the independent sequence (Xi)
n
i=1 by P (Xi = 1) = 2

i
,

P (Xi = j) =
1
i
, 2 � j � i−1, if i � 2, with X1 = 1. Then Yn = X1+· · ·+Xn

records the m + inv value by (12), and the asymptotic normality follows
much as before. Even though m and the number of cycles, π, are identically
distributed on Sn, we cannot conclude from this that π+inv is asymptotically
normal since m and π behave differently when considered jointly with inv .

Next, we consider the statistic, denoted σ(S), recording the sum of the
elements of S ⊂ N finite. If n � 1, let Yn record the subset sum σ(S) for a
randomly chosen subset S of {0, 1, . . . , n−1}. If Xi records the contribution
of i towards σ(S), 0 � i � n−1, then Yn = X0+ · · ·+Xn−1, where the Xi are
independent and given by P (Xi = 0) = 1

2
= P (Xi = i) if i � 1, with X0 = 0.

The asymptotic normality of σ(S) then follows from Theorem 1 since s2n is
of order n3 with 0 � Xi � n.

Setting x = 1 in the q-binomial theorem [23]

n−1∏
i=0

(1 + qix) =
n∑

k=0

q(
k
2)
(
n

k

)
q

xk

gives

∑
S⊆{0,...,n−1}

qσ(S) =
n−1∏
i=0

(1 + qi) =
n∑

k=0

q(
k
2)
(
n

k

)
q

. (13)
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Hence, the statistic on lattice paths given by α(λ)+
(
k
2

)
, where α(λ) is the area

subtended by a (minimal) lattice path λ of length n starting from the origin
and k denotes the number of vertical steps, is asymptotically normal as σ(S)
is. We were unable to determine whether or not α itself is asymptotically
normal.

Recall that the w statistic on permutations (Section 2.2) has the gener-
ating function

∑
σ∈Sn

qw(σ) =
n−1∏
i=0

(i+ qi). (14)

If Yn records the w value of a randomly chosen member of Sn, then, by
(14), Yn = X1 + · · · + Xn, where the Xi are independent and given by
P (Xi = 0) = i−1

i
, P (Xi = i − 1) = 1

i
, if i � 2, with X1 = 0. The Xi fail

condition (8) as Var(Yn) has order only n
2. As (6) clearly holds, the necessity

of Theorem 1 implies that the w statistic on Sn fails to be asymptotically
normal. This leaves open the questions of the existence and possible identity
of a limiting distribution for w on Sn.

3 The Ratio Gn(−1)
Gn(1)

In this section, we’ll briefly look at the ratio rn := Gn(−1)
Gn(1)

for n large,
where

Gn(q) :=
∑
δ∈∆n

qIn(δ) (15)

and In = I is some statistic. Here, we’ll choose ∆n to be the larger discrete
structures (indexed by n) of Chapters 1–3 (e.g., Π(n), Sn, 2

[n], Cn, Dn). For
the statistics I we’ve looked at in Chapters 1–3, the ratio rn tends to zero
exponentially (i.e., |rn| � rn for some r, 0 < r < 1, and all n sufficiently
large) in almost all cases for these larger structures.

In many cases, this is either obvious or follows from a short calculation.
For instance, take ∆n = Cn, the set of Catalan words of length 2n, and
I = maj . By Theorem 2.7, we have for n ∈ N,

1

2n
=

2n/(n+ 1)

22n/(n+ 1)
�
(

n
�n/2	

)
/ cn= rn
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� 2n

22n/(n+ 1)(2n+ 1)
=

(n + 1)(2n+ 1)

2n
,

as 2m/(m + 1) �
(

m
�m/2	

)
� 2m, m ∈ N, so that any r in the interval (1/2, 1)

will suffice. From Stirling’s formula for n! [8, p. 52], we have in fact rn ∼
√
2n
2n .

For another example, we take ∆n = Π(n), the set of partitions of [n], and
I = w̃.

Proposition 1. B̃−1(n)

B̃1(n)
tends to zero exponentially.

Proof. Note that B(n) > 2n−1 for n � 3 since Π(n) contains a proper subset
which is in 1-1 correspondence with the compositions of n in the obvious

way whenever n � 3. Since Fn ∼ c1
(
1+

√
5

2

)n

for large n, we then have,

by Theorem 3.4, B̃−1(n)

B̃1(n)
= Fn

B(n)
� 4c1

(
1+

√
5

4

)n

for n sufficiently large, with

1+
√
5

4
< 1 and c1 a positive constant.

Next, take I = w∗ and ∆n = B(n), the partitions of [n] whose blocks
have cardinality at most 2. Recall that

A∗
q(n) :=

∑
π∈B(n)

qw
∗(π), n � 0. (16)

Proposition 2.
A∗

−1(n)

A∗
1(n)

tends to zero.

Proof. Let n � 5 and first suppose 4|n. Consider the class of partitions
B∗(n) ⊆ B(n) consisting of 4 singletons, with the rest of the elements of [n]
partitioned into doubletons such that the members of [n] starting doubletons
2i− 1 and 2i are the smallest numbers that haven’t been used in doubletons
1, 2, . . . , 2i− 2, 1 � i � n−4

4
, or in any of the singletons. Note that

|B∗(n)| = (n
4

) n
4
−2∏

i=0

(4i+ 1)(4i+ 2),

so that by Theorem 3.7,

A∗
−1(n)

A1(n)
� A

∗
−1(n)

|B∗(n)| =
(n− 2)(n− 3)(

n
4

) =
24

n(n− 1)
.

If n ≡ 1 (mod 4) or if n ≡ 3 (mod 4), let B∗(n) be as above except that
it now contains 5 singletons or 3 singletons, respectively. If n ≡ 2 (mod 4),
then A∗

−1(n) = 0.
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By allowing the members of B∗(n) to contain arbitrarily many singletons,
one can show that the ratio A∗

−1(n)
/
A∗

1(n) tends to zero faster than the
reciprocal of any polynomial. Yet it still isn’t clear, upon elementary consid-
erations, whether or not this ratio tends to zero exponentially. For example,
note that n− logn tends to zero faster than the reciprocal of any polynomial,
yet fails to tend to zero exponentially.

We were able to find an instance in which Gn(1) increases exponentially
(i.e., Gn(1) � rn for some r > 1 and all n sufficiently large), with rn failing
to tend to zero exponentially. Letting x = q = −1 in (2.3) and noting
w∗(σ) = w(σ) + n for σ ∈ Sn reveals that

∑
σ∈Sn

(−1)w
∗(σ)−|σ| =

{
(n− 1)!, if n is odd;

− ((n− 1)! + (n− 2)!) , if n is even,
(17)

where n � 1. Thus, rn ∼ 1
n
for large n when I = w∗ − |σ| and ∆n = Sn.

This imbalance for w∗− |σ| is then numerically more significant and persists
longer than the imbalances for the other statistics we’ve studied.

We close with a bijective proof of (17). Let S±
n consist of those per-

mutations with even or odd w∗ − |σ| values, respectively, where members
σ = (E1, E2, . . . , Er) are expressed in the standard cycle form. First suppose
n is odd and let S∗

n ⊆ S+n consist of those permutations with a single cycle.
Define a parity changing involution of Sn − S∗

n as follows:

(i) If |Er| is even, place the last member of Er after the last member of
Er−1.

(ii) If |Er| is odd and |Er−1| � 2 with the last member of Er−1 greater than
the first member of Er, place the last member of Er−1 at the end of Er.

(iii) If |Er| is odd and |Er−1| � 2 with the last member of Er−1 less than the
first member of Er, take the last member of Er−1 and form a 1-cycle
with it.

(iv) If |Er| is odd and |Er−1| = 1, place the singleton Er−1 at the end of
Er−2.

Note that r � 3 in (iv) since n is assumed odd. If n is even, let
S∗

n ⊆ S−
n consist of those permutations with a single cycle or of the form

(1)(2i1 · · · in−2); note that |S∗
n| = (n−1)!+ (n−2)!. Use the same involution

given by (i)–(iv) above, noting that r � 3 in (iv) since (1)(2i1 · · · in−2) is now
disallowed.
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