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ABSTRACT 

 

Part I: Quantifying peak temperatures achieved during metamorphism is critical 

for understanding the thermal histories of ordinary chondrite parent asteroids. I 

performed two-pyroxene geothermometry, using QUILF95, on the same Type 6 

chondrites for which peak temperatures were estimated using the plagioclase 

geothermometer. Pyroxenes record a narrow, overlapping range of temperatures in H6 

(865-926°C), L6 (812-934°C), and LL6 (874-945°C) chondrites. Lower plagioclase 

temperature estimates may not reflect peak metamorphic temperatures because chondrule 

glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The 

average temperature for H, L, and LL chondrites (~900°C) is at least 50°C lower than 

peak temperatures used in current asteroid thermal evolution models, which may require 

minor adjustments. 

 

Part II: The light lithophile elements lithium, beryllium, and boron have been 

used successfully to indicate recycled crust or fluids derived from recycled crust in the 

source regions of island arc lavas. Radiogenic isotopes and other geochemistry of Mauna 

Kea lavas and Martian basalts (basaltic shergottites) suggest their source regions may 

contain a crustal component. The goal of this study is to determine whether Li, Be, and B 

indicate the presence of a crustal component in the source regions of Mauna Kea and 

Martian basalts and whether it was altered at low temperatures.  

Mauna Kea: Although several samples show effects of alteration, our results 

suggest Li (3.9±0.9 ppm) and Be (0.47±0.09 ppm) preserve mantle compositions. In 

contrast, highly variable B/K ratios (0.0002-0.008) and B/Be ratios (1-25) suggest post-

magmatic alteration has destroyed the mantle B signature. When examined with depth, Li 

and Be abundances increase in the uppermost portion of the core, in late main shield and 

post-shield samples, and correspond to decreasing degrees of partial melting as the 

volcano moved off the plume’s center. Li and Be appear to be well mixed in the 

Hawaiian source region as evidenced by the lack of correlation between Li/Yb or Be/Nd 
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ratios and Pb isotopes or Nb/Zr ratios, which were previously used to identify 

geochemically distinct Mauna Kea lava groups. Such mixing probably also accounts for 

the lack of any crustal signature when Li/Yb or Be/Nd are compared with O isotopes. 

These elements do not appear to vary on the timescale of Hawaiian shield development, 

possibly reflecting the efficiency with which these elements are homogenized in the 

mantle. 

Martian basalts: Although terrestrial alteration minerals (caliche) in Dhofar 019 

apparently affected the primary Li and Be concentrations, the remaining basaltic 

shergottites contain Be (0.09-0.77 ppm) abundances similar to mid-ocean ridge basalts or 

ocean island basalts, whereas Li abundances (2.7-9.9 ppm) are slightly higher compared 

to these reservoirs. On diagrams of Li/Yb vs. Dy/Yb and K/Li vs. La/Yb, basaltic 

shergottites define trends similar to IAB, which are attributed to altered oceanic crust in 

the IAB source regions. However, the correlation between Li or Be and δ18O for basaltic 

shergottites is weak, and δ7Li values measured in two geochemically distinct basaltic 

shergottites, Zagami (+3.97‰) and EETA79001 (+4.37‰), are identical within error. 

Therefore, although the Martian assimilant appears to be enriched in Li and possibly Be, 

it either was not altered at low temperatures or the proportion of altered material in 

basaltic shergottite magmas is too small to be resolved using these crustal indicators. 
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PART I 

Introduction 
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This dissertation is divided into Parts that describe each component of my 

research. Part II summarizes my work on peak metamorphic temperatures recorded by 

ordinary chondrites. Chondrite meteorites are named for their most abundant component, 

chondrules, which are spherical in their unaltered state and consist primarily of 

magnesian olivine and low-calcium pyroxene with interstitial feldspathic glass. 

Chondrules are set in a mineralogically similar matrix that also contains Fe-Ni metal 

(kamacite and taenite), sulfides, and refractory (calcium-aluminum) inclusions. 

Chondrules contain some of the oldest and most primitive material from the solar system, 

and although their origin is complex, they appear to have experienced at least one melting 

event (and therefore display igneous textures) that occurred after nebular condensation 

(Wasson, 1993). Chondrites are divided into three Classes, one of which is the ordinary 

chondrites, which are identified by their unique oxygen isotope and bulk compositions 

(Clayton, 1993). Ordinary chondrites are further subdivided into three Groups (H, L, and 

LL) based primarily on variations in oxidation state (Rubin et al., 1988). The most 

reduced group is the H-chondrites, which contains the highest bulk Fe/FeO ratio and the 

highest Fe/Fe+Mg ratios in olivines and pyroxenes. LL-chondrites are the most oxidized 

group as evidenced by the lowest bulk Fe/FeO ratio and lower Fe/Fe+Mg ratios in 

olivines and pyroxenes. L-chondrites are between these two end-members. The 

differences among these groups suggest the H, L, and LL chondrites originated from 

three separate parent asteroids. Each of these groups is further divided into petrologic 

Types based on the type and degree of secondary processing that occurred after asteroid 

accretion (Van Schmus and Wood, 1967). Type 3 ordinary chondrites are unaltered and 

represent primary mineral compositions and textures. The effects of aqueous alteration 

observed in carbonaceous chondrites increase from Type 2 to Type 1. Ordinary 

chondrites did not experience aqueous alteration, but the heat produced by the decay of 

short-lived radionuclides (e.g. Al26) resulted in a range of metamorphic conditions that 

are preserved in Type 4 through Type 6 chondrites.  
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The ordinary chondrite parent bodies, like most asteroids, are probably loosely 

consolidated and fragmented. There are two models, however, that have been proposed to 

explain the internal structure of these fragmented parent bodies. In the layered internal 

structure (i.e. onion shell) model, an asteroid initially concentrically zoned from unaltered 

(Type 3) material on the surface to highly metamorphosed (Type 6) material in the 

interior was bombarded and fragmented, but retained its primary metamorphic structure 

(Pellas and Fieni, 1988; Lipschutz et al., 1989). The fragmentation and assembly (i.e. 

rubble pile) model suggests that asteroids with an initial concentrically zoned structure 

fragmented and reassembled, which resulted in a disrupted metamorphic profile (Taylor 

et al., 1987). In H chondrites, Pu fission track densities in whitlockite were observed to 

increase with increasing metamorphic grade (Pellas and Fieni, 1988), and in unshocked H 

chondrites, metallographic cooling rates were observed to increase with decreasing 

metamorphic type (Lipschutz et al., 1989). Both of these observations support the layered 

internal structure model, which will be the framework for this study. 

 

Ordinary chondrites that experienced the highest metamorphic grade (Type 6) are 

useful indicators of the peak temperatures reached in the interiors of asteroids during 

metamorphism, and the time interval over which these temperatures were maintained. 

However, the simple mineralogy of ordinary chondrites limits the applicability of many 

geothermometers commonly used in terrestrial metamorphic rocks. Therefore, this 

manuscript provides an assessment of previous peak temperature estimates and provides 

new estimates for peak metamorphic conditions experienced by the parent asteroids of 

Type 6 H, L, and LL chondrites.  

 

Part III of this dissertation discusses how the light lithophile elements lithium, 

beryllium, and boron behave in basalts from Earth (i.e. the Mauna Kea volcano). Most 

active volcanoes on Earth are located at divergent or convergent lithospheric plate 

boundaries where regions of the mantle melt to produce mid-ocean ridge or arc basalts. 

Hawaiian volcanoes are known as intra-plate, or ocean island, volcanoes because they are 
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located within the interior of the Pacific plate, thousands of miles from the nearest plate 

boundary. Hawaiian volcanoes form on the Pacific plate as it passes over a stationary 

magma source (i.e. mantle plume or hot spot) that originates at the core-mantle boundary 

(Perfit and Davidson, 2000). As the plume ascends through the mantle, surrounding 

lower and upper mantle material becomes entrained in the outer portions of the plume, 

whereas the interior of the plume retains its primitive geochemical signature (Griffiths 

and Campbell, 1990, 1991; Griffiths, 1991; Hauri et al., 1994). As a result, the 

compositions of Hawaiian lavas vary as the volcano passes over and samples different 

regions of the underlying, compositionally zoned mantle plume (Kurz et al., 1996; 

Lassiter et al., 1996).  

 

The recently acquired drill core from Phase 2 of the Hawaii Scientific Drilling 

Project consists of approximately 3,000 meters of continuous lava flows from the Mauna 

Kea volcano, which is located on the main island of Hawaii. Preserved as the most 

complete sample collection from any single intra-plate volcano, the HSDP-2 Mauna Kea 

lava flows represent ~400 kyr of eruptive history, nearly half of the volcano’s lifespan of 

~1 Myr (Stolper et al., 1996). The HSDP-2 drill core provides the first opportunity to 

study spatial heterogeneities of the Hawaiian mantle plume via geochemical variations of 

Mauna Kea lavas. In this chapter, we summarize the geochemical structure of the 

Hawaiian plume and examine how the light lithophile elements lithium, beryllium, and 

boron vary within Mauna Kea lavas. We also address whether these elements can be used 

to identify geochemically distinct components in the source region for Mauna Kea 

magmas. 

 

Part IV of this dissertation compares the behavior of lithium, beryllium, and boron 

in basalts from Mars (i.e. basaltic shergottites) to those from Mauna Kea and other 

terrestrial oceanic magmatic environments. Basaltic shergottites are a subgroup of 

achondritic (i.e. without chondrules) meteorites of Martian origin known as the 

Shergottite-Nakhlite-Chassignite, or SNC, meteorites. The majority of SNC meteorites 
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are shergottites, which are divided into basalts containing pyroxene and plagioclase and 

lherzolites containing pyroxene-olivine cumulates. Nakhlites consist of clinopyroxene 

cumulates, and the Chassignite group was defined by only one dunite (Chassigny) until 

another dunite, Northwest Africa 2737, was found in 2000. The meteorite Allan Hills 

84001 is an orthopyroxene cumulate that does not fit into the “SNC” classification 

scheme. As a result, the term “Martian” has been proposed to replace “SNC” 

(Mittlefehldt, 1994). 

 

SNC meteorites were first identified as a unique group by their oxygen isotopic 

compositions and young crystallization ages. Although Allan Hills 84001 has a 

crystallization age similar to most meteorites (~4.5 Gyr), the remaining SNC meteorites 

are much younger (1.3 Ga to 0.17 Gyr) (Clayton, 1989; McSween, 2002 and references 

therein). Such young crystallization ages require a parent body large enough to retain the 

amount of heat necessary to support igneous activity for an extended time period. Mars 

became the most likely candidate as the parent body for the SNC meteorites because it 

was large enough to sustain igneous activity to ≤1.3 Ga, and Martian soils measured by 

the Viking lander were compositionally similar to the type shergottite, Shergotty (Wood 

and Ashwal, 1981). Definitive evidence for a Martian origin for the SNC meteorites, 

however, was provided by Bogard and Johnson (1985) who measured trapped noble 

gases in shock-produced glass in the basaltic shergottite Elephant Morraine (EETA) 

79001. Gas compositions measured in EETA79001 were nearly identical to Martian 

atmospheric compositions measured by the Viking lander. These authors suggested the 

gas could have been implanted into the meteorite during the impact event that ejected this 

sample from Mars.  

 

Since the general acceptance of their Martian origin, the SNC meteorites have 

endured decades of meticulous scrutiny for any information related to interior 

(lithospheric) or surficial (atmospheric, hydrospheric, or biologic) processes on Mars. 

Systematic geochemical relationships observed among the basaltic shergottites suggest 
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they represent mixtures of at least two compositionally distinct components. However, 

the source for one of these components is disputable. In this chapter, we summarize the 

characteristics and possible source regions of each component. We also examine how the 

light lithophile elements lithium, beryllium, and boron are distributed among the basaltic 

shergottites. Finally, we compare the signatures of these elements in basaltic shergottites 

to those in terrestrial oceanic magmatic systems and discuss the implications these data 

have for the components’ source regions.  
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PART II 

 

Peak Metamorphic Temperatures in Type 6 Ordinary Chondrites: An Evaluation of 

Pyroxene and Plagioclase Geothermometry 



 8

This Part is revised from the manuscript with same title published in the journal 

Meteoritics & Planetary Science in 2005 by Valerie Slater-Reynolds and Harry Y. 

McSween, Jr. My responsibilities were data collection and interpretation as well as 

organization and presentation of the data in manuscript form. McSween provided support 

during data interpretation and suggested organization revisions for the finished 

manuscript. 

 

Slater-Reynolds V. and McSween H. Y., Jr. (2005) Peak metamorphic temperatures in 

type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. 

Meteoritics & Planetary Science (in print).  

 

ABSTRACT 

 

 Quantifying peak temperatures achieved during metamorphism is critical for 

understanding the thermal histories of ordinary chondrite parent asteroids. Various 

geothermometers have been used to estimate equilibration temperatures for chondrites of 

the highest metamorphic grade (Type 6), but results are inconsistent and span hundreds of 

degrees. Because different geothermometers and calibration models were used with 

different meteorites, it is unclear whether variations in peak temperatures represent actual 

ranges of metamorphic conditions within Type 6 chondrites or differences in model 

calibrations. We addressed this problem by performing two-pyroxene geothermometry, 

using QUILF95, on the same Type 6 chondrites for which peak temperatures were 

estimated using the plagioclase geothermometer (Nakamuta and Motomura, 1999). We 

also calculated temperatures for published pyroxene analyses from other Type 6 H, L, 

and LL chondrites to determine the most representative peak metamorphic temperatures 

for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in 

H6 (865-926°C), L6 (812-934°C), and LL6 (874-945°C) chondrites. Plagioclase 

temperature estimates are 96-179°C lower than pyroxenes in the same Type 6 meteorites. 

Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule 
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glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The 

average temperature for H, L, and LL chondrites (~900°C), which agrees with previously 

published oxygen isotope geothermometry, is at least 50°C lower than peak temperatures 

used in current asteroid thermal evolution models. This difference may require minor 

adjustments to thermal model calculations. 

 

1. INTRODUCTION 

 

Peak metamorphic temperatures reached within the interiors of ordinary chondrite 

parent bodies, as well as chronology and cooling rates, are critical input parameters for 

asteroid thermal evolution models (McSween et al., 2002). Peak temperatures are 

measured by applying geothermometers to chondrites that experienced the highest 

metamorphic grade (Petrologic Type 6), as deduced from their re-crystallized textures 

and mineral equilibration (Van Schmus and Wood, 1967). Current peak temperature 

estimates for Type 6 H, L, and LL chondrites, based on a variety of geothermometers, 

span ranges of several hundred degrees, and temperature estimates for lower petrologic 

types are even less certain. These ranges are probably real, at least in part, because each 

petrologic type is gradational and includes chondrites metamorphosed over some 

temperature interval. McSween et al. (1988) attempted to estimate the upper and lower 

temperature limits for each petrologic type, but such estimates are poorly constrained 

because of the simple mineral assemblage in metamorphosed ordinary chondrites. 

Another factor is that the temperature ranges reflect the use of different geothermometers, 

many of which record blocking temperatures during cooling rather than peak 

metamorphism. 

 

The most widely used geothermometer for ordinary chondrites is based on Ca 

exchange between coexisting clinopyroxene and orthopyroxene. The interpretation of 

pyroxene thermometry is complicated by differing results depending on the calibration 

used and by apparent disequilibrium between coexisting pyroxenes in many ordinary 
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chondrites (McSween and Patchen, 1989; Jones, 1997; Gastineau-Lyons et al., 2002). 

More recently, plagioclase geothermometry, based on Si-Al ordering, has been applied to 

ordinary chondrites (Nakamuta and Motomura, 1999). This method gives peak 

metamorphic temperature estimates that differ significantly from pyroxene thermometry. 

However, pyroxene thermometry and plagioclase thermometry have not been applied to 

the same specific chondrites, so the measured temperature differences might reflect real 

variations among Type 6 chondrites. To resolve this problem, we performed two-

pyroxene geothermometry (using an improved numerical solution model of Andersen et 

al., 1993) on the same meteorites previously studied using plagioclase geothermometry. 

Our new data and an assessment of the various geothermometers used for chondrites 

suggest that temperatures recorded by pyroxene pairs, as calculated using QUILF95, 

provide the most accurate estimate of peak metamorphic temperatures. We also 

recalculated temperatures for published pyroxene analyses of other Type 6 chondrites to 

obtain the most representative peak metamorphic temperature estimates for the H, L, and 

LL chondrite parent bodies. 

 

2. EVALUATION OF PREVIOUS PEAK TEMPERATURE ESTIMATES 

 

2.1. Two-Pyroxene Geothermometry 

 

The basis for pyroxene geothermometry is Ca partitioning between co-existing 

low-Ca (pigeonite or orthopyroxene) and high-Ca (augite) pyroxene. As temperature 

increases, the Ca content of high-Ca pyroxene decreases while the Ca content of low-Ca 

pyroxene increases until equilibrium compositions are established. Because 

geothermometers are thermodynamically based, a fundamental assumption is that both 

pyroxenes achieved equilibrium. Kretz (1982) constructed a geothermometer using only 

clinopyroxene because the slope of the solvus in the orthopyroxene region is steep, 

making it difficult to discern temperature differences graphically. The effect of non-

quadrilateral components (i.e. minor elements) on temperature was assumed to be small, 
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and therefore was not considered. Lindsley’s (1983) geothermometer was developed for 

both orthopyroxenes and clinopyroxenes and incorporated the effects of minor elements. 

Depending on the model used or the meteorite examined, estimates for peak metamorphic 

conditions in Type 6 ordinary chondrites vary considerably (Table A-1, all tables in 

Appendix A). 

 

Olsen and Bunch (1984) estimated peak temperatures for clinopyroxenes in nine 

H6, eleven L6, and four LL6 chondrites using the Kretz (1982) and Lindsley (1983) two-

pyroxene geothermometers. Both models predicted the same peak equilibration 

temperature for H6 meteorites. Although L6 and LL6 chondrites appear to have 

equilibrated at similar temperatures, the Kretz (1982) model predicted a higher 

temperature than the Lindsley (1983) model.  

 

McSween and Patchen (1989) applied the same geothermometers to 

orthopyroxene-clinopyroxene pairs in three LL6 chondrites. Their results for 

clinopyroxene were higher than those calculated by Olsen and Bunch (1984) using both 

models. The Kretz (1982) data were dismissed because estimates exceeded the metal-

sulfide eutectic melting temperature. McSween and Patchen (1989) also observed that 

temperatures estimated by the Lindsley (1983) model for orthopyroxene are 100-200°C 

lower than those for clinopyroxene in the same meteorite. The cause for such discrepancy 

is not known, but McSween and Patchen (1989) suggested that, following equilibration of 

both pyroxenes at peak metamorphic conditions, orthopyroxene may have re-equilibrated 

to a lower blocking temperature during cooling (Figure B-1a, all figures in Appendix B). 

As a result, these authors recommended clinopyroxene as a more reliable indicator of 

peak metamorphic conditions for LL chondrites.  

 

Langenhorst et al. (1995) examined one H6 chondrite for evidence of shock and 

thermal metamorphism. These authors used the Lindsley (1983) geothermometer to 

calculate average temperatures for orthopyroxene and clinopyroxene. Although this study  
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did not focus on geothermometry of ordinary chondrites, it provided the only available 

orthopyroxene temperature estimate for H6 chondrites.  

 

Jones (1997) measured temperatures recorded by orthopyroxene-clinopyroxene 

pairs in one LL6 chondrite using the Lindsley (1983) model. Temperatures estimated for 

orthopyroxenes were generally higher than associated clinopyroxene temperatures, which 

ranged significantly within the same meteorite. Jones (1997) observed greater variation in 

minor element abundances in and temperature estimates for clinopyroxenes, and 

concluded that orthopyroxenes equilibrated faster during prograde metamorphism (Figure 

B-1b). It is not obvious why clinopyroxenes record lower temperatures in this study, but 

the unvarying orthopyroxene temperatures estimated by Jones (1997) for Type 4-6 

chondrites suggest these could be blocking temperatures rather than peak metamorphic 

temperatures.  

 

2.2. Oxygen Isotope Thermometry 

 

 Oxygen diffusion between olivine, pyroxene, and plagioclase is the basis for 

oxygen isotope geothermometry in ordinary chondrites. Clayton (1993) used oxygen 

isotope thermometry to calculate peak temperature estimates for Type 6 H, L, and LL 

chondrites (Table A-1). Oxygen isotopes record an average peak metamorphic 

temperature similar to clinopyroxene estimates of McSween and Patchen (1989). The 

lack of hydrous phases in ordinary chondrites indicates thermal metamorphism occurred 

under relatively dry conditions. As a result, equilibration temperatures recorded by 

oxygen isotopes are not susceptible to exchange during retrograde reactions and thus 

provide potentially robust estimates of peak metamorphic conditions. Unfortunately, 

isotopic fractionation between these minerals is limited, thereby decreasing their 

sensitivity to temperature. 
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2.3. Olivine-Spinel Thermometry 

 

Kessel et al. (2002) applied improved estimates of activities in multicomponent 

spinels to the thermodynamic model of Sack and Ghiorso (1991) to calculate 

equilibration temperatures using olivine-spinel pairs in four Type 4, four Type 5, and 

three Type 6 chondrites (Table A-1). The estimated temperatures are low, reflecting 

continued Fe-Mg exchange between olivine and spinel during cooling. According to 

these authors, the limited temperature variation between Types 4-6 chondrites could 

indicate that metamorphic type is not a function of peak temperature. However, we 

suspect that the similar (low) equilibration temperatures reflect blocking conditions of 

Fe-Mg exchange between olivine and spinel on cooling.  

 

2.4. Plagioclase Geothermometry 

 

Disagreement between McSween and Patchen (1989) and Jones (1997), two 

studies that used the same geothermometer for LL6 chondrites, exemplifies the problem 

with current pyroxene temperature estimates. Nakamuta and Motomura (1999) avoided 

this problem by applying a plagioclase geothermometer to six weakly shocked or 

unshocked Type 6 H, L, and LL chondrites. The plagioclase geothermometer is based on 

Si-Al ordering within the four tetrahedral sites of the crystal lattice. When plagioclase 

begins to crystallize from chondrule glass at low temperatures, during prograde 

metamorphism, Al is concentrated in only one of the four tetrahedral sites. This 

plagioclase is highly ordered. In plagioclase that crystallizes at progressively higher 

temperatures, Al is distributed more randomly among the four sites, and Si-Al 

partitioning becomes progressively more disordered. Slow diffusion rates of Si-Al in 

plagioclase, especially under dry conditions relevant to ordinary chondrites (Grove et al., 

1984), suggest that the degree of order/disorder is locked in at the temperature at which a 

plagioclase grain crystallizes. Therefore, during prograde metamorphism, a range of 
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temperatures is recorded by different plagioclase grains in a single meteorite (Figure B-

1c).  

 

Nakamuta and Motomura (1999) estimated temperatures for several plagioclase 

crystals separated from each meteorite. They found that each chondrite contained 

plagioclase crystals recording a range of temperatures, and they assumed that the highest 

temperature crystals formed at peak metamorphic conditions. Results for plagioclase are 

closer to temperatures estimated previously for orthopyroxene in other Type 6 chondrites 

(McSween and Patchen, 1989; Langenhorst et al., 1995; Jones, 1997), leading Nakamuta 

and Motomura (1999) to conclude that the lower (orthopyroxene) temperatures are more 

representative of peak metamorphic conditions. Presumably, the higher clinopyroxene 

temperatures would be relics of igneous (chondrule melt) conditions. 

 

The validity of plagioclase peak temperatures for Type 6 chondrites rests on an 

assumption that plagioclase continued to crystallize from chondrule glass through Type 6 

conditions. Petrographic observations used to develop the current chondrite classification 

scheme suggest all chondrule glass crystallized to plagioclase by temperatures associated 

with Type 5 conditions (Van Schmus and Wood, 1967; Sears et al., 1980). This 

conclusion is supported by Gastineau-Lyons et al. (2002), who compared the normative 

and modal abundances of plagioclase in L4-L6 and LL4-LL6 chondrites. They assumed 

that normative plagioclase abundances predicted for ordinary chondrites represent the 

maximum amount of plagioclase that could crystallize from available chondrule glass. 

With progressive metamorphism, the actual (i.e. modal) abundance of plagioclase should 

increase, eventually approaching the normative abundance. When the modal and 

normative abundances converge, no further plagioclase crystallization can occur because 

all available plagioclase components in chondrule glass have recrystallized. These 

authors observed that the modal and normative abundances of plagioclase converged by 

Type 5 conditions for LL chondrites and by Type 6 for L chondrites. A similar study by 

Chamot (2000) did not observe a convergence for H chondrites. Presumably, this 
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indicates that plagioclase continued to crystallize through Type 6 conditions for H 

chondrites, suggesting plagioclase temperatures should be representative of peak 

metamorphic conditions for H6 chondrites. However, the lowest plagioclase temperatures 

are observed for H6 chondrites, and are the same or less than the minimum temperature 

predicted by olivine-spinel thermometry. If Si-Al ordering is locked in at the plagioclase 

crystallization temperature and plagioclase crystallization was complete before Type 6 

conditions, then the lower temperatures recorded by plagioclase in Type 6 meteorites 

may not represent peak metamorphic conditions. 

 

3. ANALYTICAL METHODS 

 

Pyroxene geothermometry was performed on the same six chondrites (Table A-2) 

for which peak temperatures were estimated for plagioclase by Nakamuta and Motomura 

(1999). Pyroxene chemical analyses were collected using a Cameca SX-50 electron 

microprobe at the University of Tennessee. An accelerating voltage of 15 kV was used 

with a beam current of 30 nA, a beam size of 1 µm, and a counting time of 20 sec for all 

elements. Average pyroxene compositions for each meteorite were projected onto a 

temperature-contoured pyroxene quadrilateral (Lindsley 1983) so that temperatures could 

be compared directly with results from earlier studies. Temperatures were also estimated 

using QUILF95 (Andersen et al., 1993, modified for Windows in 1995), an updated 

computer solution model based on Lindsley’s (1983) graphical approach. QUILF95 is 

superior to the Lindsley (1983) graphical method because it eliminates error associated 

with converting and plotting chemical analyses onto the pyroxene quadrilateral. 

QUILF95 also incorporates an improved experimental data set for pyroxene equilibrium, 

and eliminates difficulties associated with discerning temperature differences for 

orthopyroxene on the quadrilateral due to narrow temperature contours. The error 

associated with QUILF95 is ±50°C for single temperatures calculated for orthopyroxene-

clinopyroxene pairs, but the error can be quite large if the pyroxenes are not in 

equilibrium. Therefore, we also calculated temperatures for individual pyroxenes by 
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fixing one pyroxene’s composition and allowing the solution model to select an 

equilibrium composition for the other. The result is a temperature estimate for each 

pyroxene with no apparent uncertainty because the pyroxene composition chosen by the 

solution model fits exactly. This process was repeated for the other pyroxene to assess the 

true temperature difference between orthopyroxenes and clinopyroxenes. All temperature 

estimates assume a pressure of 1 bar.  

 

4. RESULTS AND DISCUSSION 

 

 Average pyroxene analyses are presented in Table A-3, and peak temperature 

estimates for average pyroxene compositions using Lindsley (1983) and QUILF95 are 

shown in Table A-4. Plagioclase temperature estimates for the same meteorites 

(Nakamuta and Motomura, 1999) are shown in Table A-4 for comparison.  

 

The graphical approach of Lindsley (1983) yields temperatures comparable to 

those determined previously for other Type 6 ordinary chondrites with narrower 

temperature differences between orthopyroxene and clinopyroxene (25-175°C) within the 

same meteorite. Using QUILF95, pyroxene pairs provide generally higher temperature 

estimates than the Lindsley (1983) model with reasonable errors (≤ ±75°C). When 

temperatures were calculated for individual pyroxenes, the difference between 

orthopyroxene and clinopyroxene (15-75°C) is even less than that determined 

graphically, reflecting the improved calibration of QUILF95. Our results for pyroxene 

pairs are 96-179°C higher than those for plagioclase Si-Al ordering in the same Type 6 

meteorites (Nakamuta and Motomura, 1999). Results are summarized in Figure B-2.  

 

4.1 Effect of Analytical Uncertainty on Temperature Estimates 

 

Temperatures calculated for Type 6 chondrites using average pyroxene analyses 

provide reliable estimates with reasonable errors. However, the calculated error reflects 
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how well the pyroxene compositions fit the model, and does not account for error 

introduced by analytical uncertainty. To determine the maximum temperature range 

expected due to analytical uncertainty, we calculated two temperatures for each 

meteorite. Minimum temperatures were determined by increasing and decreasing the 

CaO content (the calibration is most sensitive to this component) an amount equal to 1 

sigma (σ) standard deviation in clinopyroxene and orthopyroxene, respectively. 

Maximum temperatures were calculated by decreasing and increasing the CaO content 

1σ standard deviation in clinopyroxene and orthopyroxene, respectively. The temperature 

range associated with analytical uncertainty was then compared with the temperature 

range calculated for each meteorite using average pyroxene compositions (Table A-4). 

The calculated temperature range using average pyroxene analyses encompasses the 

temperature range expected due to analytical uncertainty for all meteorites. 

 

4.2. Pyroxene Equilibrium in Type 6 Chondrites 

 

Peak metamorphic temperatures determined by two-pyroxene thermometry are 

reliable only if both pyroxenes attained chemical equilibrium during metamorphism. 

Previous studies concluded that pyroxene compositions in Type 6 chondrites represent 

disequilibrium conditions because temperatures recorded by orthopyroxene and 

clinopyroxene within the same meteorite differ by 100-200°C using Lindsley’s (1983) 

graphical method. The narrower range of temperatures recorded by orthopyroxenes and 

clinopyroxenes in this study using both the Lindsley (1983) and QUILF95 models 

suggest pyroxenes in these meteorites are closer to equilibrium assemblages. However, 

rare clinopyroxenes in Holbrook and Dhurmsala contain a jadeite component that 

influences the estimated temperatures for these meteorites. If these analyses are 

considered, the individual clinopyroxene temperatures increase to 1017°C for Holbrook 

and 1012°C for Dhurmsala. The effect of these clinopyroxenes on pyroxene pair 

estimates is minimal (Holbrook 922°C; Dhurmsala 925°C). The effect of high alumina 

contents in pyroxenes on temperature estimates is consistent with that observed by 
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Lindsley (1983). Despite these rare clinopyroxenes, peak temperatures estimated using 

both pyroxenes are reliable and suggest that near-equilibrium assemblages are preserved 

in Type 6 ordinary chondrites.  

 

4.3. Evaluation of Temperatures above the Metal-Sulfide Eutectic Melting Point 

 

The jadeite-rich clinopyroxenes in Holbrook and Dhurmsala record temperatures 

that exceed the metal-sulfide eutectic melting temperature (988°C). As a test of the 

plausibility of peak temperatures greater than 988°C, we examined Holbrook (L6/S2) and 

Dhurmsala (LL6/S3) petrographically for evidence of metal-sulfide eutectic melting. We 

also examined Peekskill (H6/S2), in which clinopyroxene does not record temperatures 

higher than the metal-sulfide eutectic, for reference. If melting occurred, metal-sulfide 

melt veins, melt droplets, or plessite should be present. None of these textures were 

observed in any of these meteorites, suggesting eutectic melting has not occurred (Figure 

B-3). We suggest the jadeite component observed in rare clinopyroxenes in Holbrook and 

Dhurmsala is the cause for the higher temperature estimates in these meteorites. 

 

4.4. Comparisons to Other Type 6 Meteorites 

 

Our results demonstrate that orthopyroxene-clinopyroxene pairs and the QUILF95 

calibration provide the best estimate of peak metamorphic conditions and suggest that 

plagioclase geothermometry records lower temperatures prior to the metamorphic peak. 

To determine the most representative estimate for Type 6 peak metamorphic conditions, 

we calculated temperatures for published pyroxene analyses of other chondrites in the 

literature (9 H6, 19 L6, and 9 LL6) using QUILF95 (Table A-5). Including analyses from 

this study, peak metamorphic temperatures for H6, L6, and LL6 chondrites overlap and 

comprise a narrow range from 812-945°C. We do not observe lower peak temperatures 

for H6 chondrites than for L6 or LL6 chondrites, as has been suggested previously (Olsen 
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and Bunch 1984; Nakamuta and Motomura 1999). Our results are consistent with those 

previously determined by Clayton (1993) using oxygen isotopes (900±50°C). 

 

4.5. Peak Metamorphic Temperatures Applied to Asteroid Thermal Evolution 

Models 

 

 Current asteroid thermal evolution models (summarized in McSween et al., 2002; 

Ghosh et al., 2003) limit peak internal temperatures either to the metal-sulfide eutectic 

(988°C) or the peak temperature (950°C) estimated for Type 6 chondrites by McSween et 

al. (1988). The average peak temperatures estimated using pyroxene pairs for Type 6 H, 

L, and LL chondrites from this study (Table A-5) are 894°C, 877°C, and 908°C, 

respectively. Using this slightly lower peak temperature estimate (~900°C) may influence 

the results obtained for thermal evolution histories for ordinary chondrite parent 

asteroids, although the differences are expected to be minor. 

 

5. SUMMARY AND CONCLUSIONS 

 

We estimated peak metamorphic temperatures, using the QUILF95 pyroxene 

geothermometer, for the same six Type 6 chondrites for which plagioclase temperatures 

were previously determined by Nakamuta and Motomura (1999). We also calculated 

temperatures for published pyroxene analyses in other Type 6 meteorites to obtain a more 

representative estimate of peak metamorphic conditions experienced by ordinary 

chondrites. We conclude the following: 

• Pyroxene pairs record similar, overlapping temperatures for H6 (865-926°C), L6 

(812-934°C), and LL6 (874-945°C) chondrites.  

• No evidence of metal-sulfide eutectic melting was observed in three of the studied 

meteorites, placing an upper limit of <988°C on the peak temperatures.  
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• Pyroxenes in Type 6 ordinary chondrites represent near-equilibrium assemblages. 

Previous suggestions for disequilibrium (McSween and Patchen, 1989; Jones, 

1997) may be an artifact of the Lindsley (1983) graphical method. 

• Two-pyroxene temperature estimates are 96-179°C higher than plagioclase in the 

same meteorite. We suspect the lower plagioclase temperatures reflect 

crystallization prior to the metamorphic peak.  

• Our revised peak temperature estimates for ordinary chondrites (~900°C) are 

50°C lower than current estimates used in asteroid thermal evolution models and 

may influence thermal model calculations for the parent asteroids.  
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ABSTRACT 

 

 Determining mantle compositions of the light lithophile elements lithium, 

beryllium, and boron is important for understanding how these elements are processed 

and homogenized after subduction. The abundances of these elements in mid-ocean ridge 

basalts are assumed to represent mantle concentrations, but ocean island basalts are 

potential indicators of Li, Be, and B in the deeper mantle. Existing Li, Be, and B data for 

ocean islands are limited to exposed subaerial or dredged submarine samples, which 

represent only the last 5% to 10% of the volcano’s total volume. The main drill core 

collected during the Hawaii Scientific Drilling Project (HSDP-2) provides the most 

complete collection of continuous lava flows from a hot spot volcano, representing 

approximately 400,000 years of Mauna Kea’s volcanic history. We analyzed Li, Be, and 

B abundances in Mauna Kea basalts from the HSDP drill core to determine how these 

elements vary as the volcano passes over and samples different regions of the underlying 

mantle plume. Although several samples show effects of alteration, our results suggest Li 

(3.9±0.9 ppm) and Be (0.47±0.09 ppm) preserve mantle compositions. In contrast, highly 

variable B/K ratios (0.0002-0.008) and B/Be ratios (1-25) suggest post-magmatic 

alteration has destroyed the mantle B signature. When examined with depth, Li and Be 

abundances increase in the uppermost portion of the core, in late main shield and post-

shield samples, and correspond to decreasing degrees of partial melting as the volcano 

moved off the plume’s center. Li and Be appear to be well mixed in the Hawaiian source 

region as evidenced by the lack of correlation between Li/Yb or Be/Nd ratios and Pb 
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isotopes or Nb/Zr ratios, which were previously used to identify geochemically distinct 

Mauna Kea lava groups. Such mixing probably also accounts for the lack of any crustal 

signature when Li/Yb or Be/Nd are compared with O isotopes. These elements do not 

appear to vary on the timescale of Hawaiian shield development, possibly reflecting the 

efficiency with which these elements are homogenized in the mantle.  

 

1. INTRODUCTION 

 

 The ability for the light lithophile elements lithium, beryllium, and boron to track 

crustal involvement in subduction zones has sparked interest in the role these elements 

assume in other volcanic environments. Upper mantle compositions are typically inferred 

from mid-ocean ridge basalts, but ocean island basalts provide invaluable insight into 

deeper mantle compositions and heterogeneity. Characterizing Li, Be, and B in ocean 

island volcanoes, however, is challenging because the greatest proportion of lavas 

produced by a single volcano are buried by younger lavas or are inaccessible due to 

subsidence accompanying volcano formation. As a result, the dataset for light lithophile 

elements in ocean island basalts is limited.  

 

The recently acquired drill core from Phase 2 of the Hawaii Scientific Drilling 

Project (HSDP-2) provides the most comprehensive sampling of a hot spot volcano, 

representing 400,000 years of continuous lava flows from Mauna Kea. We analyzed Li, 

Be, and B abundances in selected Mauna Kea reference samples from the drill core and 

these data allow us to determine how these elements vary as the magmas sampled 

different regions of the underlying mantle plume. We examine the effects of seawater or 

(fresh) ground water interaction, mantle melting and heterogeneity, and the influence of a 

crustal component in the source region.  
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1.1. Formation and Geochemical Evolution of Hawaiian Hot Spot Volcanoes 

 

Hawaiian volcanoes form as the Pacific plate passes over and samples different 

regions of the underlying mantle plume, producing compositionally distinct lavas (Figure 

B-4). Variations in the degree of partial melting and geochemical zonation of the plume 

cause the observed geochemical heterogeneity, and are attributed to a superimposed 

temperature gradient (Hauri et al., 1994). Heat generated from a point-source within the 

mantle forms an upwelling plume that is hotter and less viscous than surrounding mantle. 

As the plume ascends, it increases the temperature and decreases the viscosity of the 

surrounding mantle, which becomes entrained in the outer regions of the plume. The 

result is a zoned plume with a hot core of primitive plume material that is surrounded by 

cooler regions with entrained lower mantle and depleted upper mantle (Griffiths and 

Campbell, 1990, 1991; Griffiths, 1991; Hauri et al., 1994). The higher temperature of the 

plume’s core allows for greater degrees of partial melting at shallower depths whereas the 

cooler peripheral regions experience lower degrees of partial melting at greater depths.  

 

The geochemistry of hot spot lavas indicates the region of the plume over which 

the volcano is positioned, and corresponds to three stages of volcano growth (Figure B-

4). During the pre-shield building stage, the youngest lavas originate from low degrees of 

partial melting at significant depths and typically comprise only 5% of the volcano’s total 

volume. These lavas tend to be alkaline basalts, basanites, nephelinites, and other evolved 

compositions with a depleted geochemical signature typical of the upper mantle. As the 

young volcano passes over the core of the plume, the greatest volume of lavas (90%) are 

produced by higher degrees of partial melting at shallower depths. Main shield lavas are 

tholeiitic basalts characterized by a primitive geochemical signature indicative of the 

plume’s source region. As the volcano moves away from the plume’s center, magma 

production rates decline, and localized alkaline basalts and other evolved compositions 

(commonly ~5%) are produced by lower degrees of partial melting at greater depths 

during the final post-shield building stage. In addition to geochemical variations caused 
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by melting and temperature gradients in the Hawaiian plume, Mauna Kea lavas are 

further complicated by the potential for assimilated young oceanic crust or ancient 

subducted crustal components in the entrained mantle. Complications in light lithophile 

elements can also arise because of the fluid-mobile character of Li and B. Earlier flows 

are submarine and thus may have interacted with seawater. Also, the possibility of 

groundwater interactions after solidification must be considered. 

 

Prior to the HSDP, samples collected from any hot spot volcano were limited to 

subaerially exposed or dredged submarine lavas, which represent only brief intermittent 

time intervals in the volcano’s eruptive history (5% to 10%) (Stolper et al., 1996). The 

HSDP was designed to drill into the flank of a hot spot volcano and collect continuous 

core samples that represent its entire eruptive history. The HSDP-2 core consists of 245 

m (~100 kyr) of main shield Mauna Loa lavas overlying 2853 m (~400 kyr) of Mauna 

Kea post-shield and main shield lavas, representing nearly 400,000 years of eruptive 

history (Hawaii Scientific Drilling Project-2, 2000; Sharp and Renne, 2005). Drilling 

efforts continue in hopes of reaching Mauna Kea’s pre-shield lavas. Because it is the 

most complete evolutionary record of a hot spot volcano, the HSDP core provides the 

first opportunity to study the structure of a mantle plume via temporal trends of erupting 

lavas. The goal of the HSDP is to achieve a better understanding of the geochemistry of a 

hot spot volcano as it passes progressively over an upwelling mantle plume (Stolper et 

al., 1996; DePaolo et al., 2001). 

 

1.2. Petrography and Geochemistry of Mauna Kea Lavas 

 

Petrographically, Mauna Kea basalts are similar to those retrieved from the HSDP 

pilot hole (HSDP-1) (Baker et al., 1996; Garcia, 1996), and variations are not systematic 

with depth. The transition from subaerial to submarine lavas occurs at 1078 meters below 

sea level (mbsl) (Table A-6). Submarine samples consist of massive and pillow basalts, 

hyaloclastites, and intrusive units (Rhodes and Vollinger, 2004). Crystallinity ranges 
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from holocrystalline to vitrophyric, and vesicularity ranges from 0% to 25%. Texturally, 

samples can be subophitic or trachytic and contain quench features, such as skeletal 

plagioclase. Samples are typically porphyritic, with olivine as the dominant phenocryst, 

but clinopyroxene and plagioclase are common in the groundmass and are rare 

phenocrysts in several samples. Strained olivine phenocrysts, similar to those observed 

by Baker et al. (1996) in HSDP-1 lavas, are uncommon. Several olivine phenocrysts 

display resorption features, such as embayed borders. Although samples from the HSDP-

2 drill core are relatively fresh, serpentine or iddingsite alteration of olivine is apparent in 

several samples, and completely replaces the mineral in some cases. Secondary 

mineralization is also apparent in vesicles of a few samples near the bottom of the drill 

core. Alteration appears to be localized within the core, and represents at least one known 

freshwater aquifer near the submarine/subaerial transition (Thomas et al., 1996). 

 

Figure B-5 is a total alkalis-silica classification diagram (Le Bas et al., 1986) 

showing the compositions of samples analyzed in this study (data from Rhodes and 

Vollinger, 2004). Mauna Kea lavas are dominantly tholeiitic basalts, except for 

interlayered transitional and alkaline basalts in the uppermost region of the drill core 

(Rhodes and Vollinger, 2004). Several samples are picritic, reflecting the MgO-rich 

nature of Mauna Kea lavas. MgO contents range from 7% to 30%, but samples with MgO 

contents greater than approximately 14% to 18% contain olivine phenocrysts with 

forsterite contents too low to be in chemical equilibrium with their host melts (Figure B-

6). Baker et al. (1996) observed the same correlation in Mauna Kea lavas from HSDP-1, 

and concluded that lavas with >12% MgO contain accumulated olivine.  

 

The effects of olivine control in Hawaiian lavas are well-documented (Wright, 

1971), and are apparent when major elements are compared with MgO (Figure B-7; 

Rhodes and Vollinger, 2004). However, trace element variations suggest Mauna Kea 

compositions were also affected by other processes, such as magma mixing (Figure B-7; 

Rhodes and Vollinger, 2004). Rhodes and Vollinger (2004) used SiO2 contents and Zr/Nb 



 27

ratios to identify five geochemically distinct groups within the Mauna Kea samples. In 

addition to these geochemical discriminants, Huang and Frey (2003) used radiogenic 

isotopes and other incompatible element ratios to narrow the groups to three (Figure B-8, 

adapted from Huang and Frey, 2003).  

 

The Postshield Group (Type 2 magmas of Rhodes and Vollinger (2004)) includes 

the uppermost Mauna Kea lavas (246-396 mbsl)) and is defined by low-SiO2 contents, 

low 3He/4He and 206Pb/204Pb ratios, and a trend to high incompatible element abundance 

ratios. The geochemical signature of the Postshield Group indicates the degree of partial 

melting was decreasing and the proportions of source components changing from that of 

main shield lavas (Huang and Frey, 2003). Lassiter et al. (1996) attributed the same 

signature (i.e. low 87Sr/86Sr and low 3He/4He) observed in HSDP-1 post-shield lavas to an 

increasing proportion of depleted upper mantle entrained in the outer region of the plume. 

The other two lava types are intercalated throughout the remaining core. Volumetrically, 

the core is dominated by the High-SiO2 Shield Group (Type 1 magmas of Rhodes and 

Vollinger (2004)). These lavas (353-3068 mbsl) are distinguished by higher SiO2 

contents at a given MgO content, similar to Kilauea lavas. The Low-SiO2 Shield Group 

(Type 3 magmas of Rhodes and Vollinger (2004)) includes low-SiO2 lavas in the 

submarine portion of the core as well as one subaerial sample (834-2968 mbsl). Although 

both the Postshield Group and the Low-SiO2 Shield Group have similar SiO2 contents, 

the Low-SiO2 Shield Group has higher 3He/4He ratios in addition to higher Ti/Zr and 

Nb/Zr ratios, similar to Loihi seamount lavas. The petrogenesis of the main shield lavas 

appears to be complex, requiring variations in degree of melting in addition to melting of 

different source regions or mixing of geochemically distinct magmas (Huang and Frey, 

2003; Rhodes and Vollinger, 2004).  

 

Figure B-9, adapted from Huang and Frey (2003), demonstrates that three 

admixed components are required to explain the Sm/Yb and Pb isotope (expressed as 

∆208Pb/204Pb (((208Pb/204Pb) SAMPLE - ( 208Pb/204Pb)NHRL) x 100 where NHRL is northern 
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hemisphere reference line (Hart, 1984)) values in Mauna Kea lavas. The sources for the 

three components are disputable, but lower than normal δ18O values, negative Th and U 

anomalies, positive Sr anomalies, and high 187Os/188Os ratios support ancient recycled 

hydrothermally altered (crustal) gabbros as one (or part of one) component (Eiler et al., 

1996; Hauri et al., 1996; Hofmann and Jochum, 1996; Wang et al., 2003).  

 

2. LITHIUM, BERYLLIUM, AND BORON AS CRUSTAL INDICATORS 

 

 The abundances and isotopic values of Li, Be, and B in island arc lavas are 

indicators of subducted crust or fluids derived from subducted crust and/or pelagic 

sediments in the source region. Whole-rock Li and B abundances and isotopic 

concentrations are enriched and isotopically heavier in oceanic crust altered by seawater 

at low temperatures (Seyfried et al., 1984; Spivack and Edmond, 1987). Although Be 

concentrations in oceanic crust are unaffected by seawater interaction, pelagic sediments 

have high 10Be/Be ratios because the cosmogenic isotope 10Be is present in pelagic 

sediments, but not in altered oceanic crust (Tera et al., 1986; Morris, 1991). As oceanic 

crust and sediments are subducted, dehydration reactions transport the fluid-mobile B and 

Li (heavy isotopes preferred) into the overlying mantle wedge where melting occurs 

(Moran et al., 1992; Bebout et al., 1993). Beryllium is not soluble in H2O-rich fluids and 

therefore remains in the subducted slab. However, if the sediment component itself melts, 

arc lavas will contain high 10Be/Be values. Isotopic fractionation does not occur during 

igneous melting or crystallization, thereby preserving the crustal signature imposed on 

the region of the mantle that melts to produce the erupted lavas (Tomascak et al., 1999). 

The subducted slab returns to the mantle depleted and isotopically light with respect to Li 

and B, whereas Be contents remain relatively unchanged. Ratios of elements with similar 

partitioning coefficients (B/K, B/Nb, Be/Nd, Li/V, and Li/Yb) are not fractionated during 

magma generation and crystallization and therefore can be useful indicators of 

contributions by slab-derived components in the source region (Tera et al., 1986; Ryan 

and Langmuir, 1987, 1988, 1993; Morris et al., 1990; Ryan et al., 1996).  
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3. SAMPLING AND ANALYTICAL METHODS 

  

Powdered samples of 14 subaerial Mauna Kea alkaline and tholeiitic basalts and 

22 submarine Mauna Kea tholeiitic basalts were selected from the HSDP-2 geochemical 

reference suite (Table A-6). Sample numbers (e.g. SR121-4.40) represent the core run 

number (SR121) and the depth, in feet, below the top of the run (4.40). Here samples are 

discussed using only the run number (SR121). Sample crushing techniques are described 

in Rhodes (1996). Whole-rock Li, Be, and B data were acquired using an ARL model 

SpectraSpan 7 direct coupled plasma atomic emission spectrometer (DCP-AES) at the 

University of South Florida. The DCP-AES was tuned to 670.7 nm for Li, 313.04 nm for 

Be, and 249.77 nm for B. Analytical precision for the techniques is ±5% or less for Be 

and Li and ±20% for B concentrations <10 ppm (Ryan and Langmuir, 1987; 1988; Ryan 

et al., 1996).  

 

Samples were prepared using methods detailed in Ryan and Langmuir (1987). For 

B analysis, 0.5g of sample was mixed with 2g of Na2CO3 flux in Pt crucibles, which were 

covered and placed in a cold muffle furnace. The furnace was heated gradually to 

1000°C, turned off, and the crucibles were allowed to cool in the furnace. The cooled 

crucibles were immersed in B-free water, sealed in Teflon beakers, and placed on a 

hotplate at 100-120°C for 12 hours. The fusion cakes were scraped from the crucibles 

into the B-free water and returned to the hotplate at 150° to dry. The dry samples were 

resuspended in B-free water, placed in centrifuge tubes and centrifuged three times, 

decanting the clear solutions after each centrifuge. The clear solutions were allowed to 

dry, then resuspended in 20 ml of B-free water and 5-10 ml of Ultra pure HNO3 was 

added until solutions were neutralized. Samples were diluted to 50 ml with B-free water. 

For Li and Be analysis, 0.5g of sample was combined with 5 ml HF and 1.5 ml HClO4 in 

Teflon beakers, which were sealed and placed on a 130° hotplate for at least 12 hours. 

The samples were allowed to dry, and then resuspended in HNO3 to obtain clear 
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solutions. Once clear solutions were obtained, 10 ml HNO3 was added and solutions were 

diluted to 50 ml with deionized (DI) water. Whole-rock Li, Be, and B concentrations for 

Mauna Kea basalts and standards are presented in Tables A-6 and A-7, respectively. 

 

4. OLIVINE CORRECTION 

 

Olivine accumulation and fractionation played a significant role in the formation 

of HSDP lavas (Baker et al., 1996; Huang and Frey, 2003; Rhodes and Vollinger, 2004). 

To correct for these processes, olivine (Fo85) was added or subtracted until whole-rock 

compositions (Rhodes and Vollinger, 2004) were in equilibrium with Fo85. For trace 

element corrections, distribution coefficients (Dmin-melt) were assumed to be 0 for all 

incompatible elements except Li. To test this correction, we compared Be vs. Zr for 

uncorrected and corrected compositions (Figure B-10). Because Be and Zr are 

incompatible, they should vary similarly with olivine correction. Main shield lavas show 

minimal effects of olivine correction, but post-shield lavas change substantially. During 

Mauna Kea’s post-shield stage, magma production rates were declining. As a result, 

magmas resided longer in crustal reservoirs where they interacted with crustal materials 

and evolved beyond olivine control (i.e. fractionated clinopyroxene and/or plagioclase). 

Therefore, correcting only for olivine may be too simplistic an approach for these 

samples.  

 

Corrections for Li required a partitioning coefficient (DLi
ol-melt) because Li 

partitions into olivine. The value for DLi in olivine ranges significantly. Experimentally 

determined DLi values by Brenan et al. (1998) range from 0.13 to 0.35. Chan and Frey 

(2003) measured Li concentrations in olivine/matrix pairs in two Koolau samples and 

calculated an average DLi value of 0.45. We evaluated the effects of varying DLi from 

0.2-0.45 and determined the difference is minimal (Figure B-11). Increasing the DLi value 

from 0.2 to 0.35 to 0.45 increases the average Li concentration from 3.86 ppm to 3.88 

ppm to 3.90 ppm, respectively. Results from this study are reported using a value of 



 31

DLi=0.35. All other major and trace element data are from Rhodes and Vollinger (2004) 

unless stated otherwise. 

 

5. RESULTS AND DISCUSSION 

  

5.1. Influence of Seawater and/or Groundwater 

 

Assessing sample preservation is essential when studying the fluid-mobile 

elements Li and B. These elements are enriched in basalt altered by seawater, but leached 

when altered by fresh ground- or rainwater (Seyfried et al., 1984). Beryllium is insoluble 

in H2O-rich fluids, and the consistent values (0.47±0.09 ppm) throughout the HSDP-2 

core suggest igneous abundances were preserved. 

 

All post-shield samples in this study, except SR121, have low K2O/P2O5 values 

(0.55-1.2) and high K/Rb values (600-2594), suggestive of post magmatic alteration. 

However, Li correlates well with Zr, Nb, and Yb (Figure B-12), suggesting Li was not 

substantially mobilized with alteration in this interval. However, Li does not show a 

strong correlation with incompatible elements in Mauna Kea main shield lavas (Figure B-

12), indicating post-magmatic Li modification. The average Li concentration for Mauna 

Kea lavas is 3.9±0.9 ppm, but selected samples from ~1000 to 2000 mbsl (SR413, 

SR472, SR531, SR664, and SR723) have higher than average Li concentrations (Figure 

B-13). Samples SR413 and SR723 appear unaltered, whereas the remaining samples have 

iddingsite or serpentine alteration of olivine and may or may not have anomalously high 

K/Rb or low K2O/P2O5 ratios. The altered samples are all submarine and may have 

interacted with Li-rich seawater. Samples SR413 and SR472 straddle the 

submarine/subaerial transition, where a freshwater aquifer has been identified (Thomas et 

al., 1996). However, Li in basalts altered by freshwater tends to be unaffected or lowered. 

Two samples that have lower Li contents are SR916 and SR939 and are visibly altered 

with secondary mineralization in vesicles. A freshwater aquifer has not been identified at 
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this depth interval, but we suggest this may be the cause for such alteration. Sample 

SR850 has a slightly higher Li content, but it is unaltered and was described by Huang 

and Frey (2003) as having anomalously high abundances of many other incompatible 

elements. 

 

Boron abundances in Mauna Kea lavas are highly variable (0.6-9.1), resulting in 

anomalous B/Be ratios (1-25) and B/K ratios (0.0002-0.008) (Figure B-14). Optical and 

geochemical evidence suggest many HSDP-2 lavas have been altered. B and Nb are not 

fractionated during melting and crystallization, and are good indicators of possible 

alteration-induced variation of B because B is easily mobilized in H2O-rich fluids 

whereas Nb is not (Ryan and Langmuir, 1993). When examined with depth (Figure B-

15), B/Nb ratios mimic B abundances, suggesting alteration is the cause for variable B 

values rather than source region heterogeneity. Variations in B abundances do not 

necessarily correlate with other alteration indicators, and probably reflect the highly 

fluid-mobile nature of this element. 

 

5.2. Variations in Li, Be, and B with Mantle Melting and Heterogeneity 

 

Differences in element abundances or element ratios within the HSDP-2 core 

potentially record changes in degree of melting and source region heterogeneity within 

the Hawaiian mantle plume. Alteration appears to have influenced B concentrations in 

Mauna Kea lavas to such an extent that mantle compositions are no longer preserved. 

Although the range in B is similar to other ocean islands, the lack of correlations of B 

with Be, K, or Nb (Figure B-14) render the B values unreliable. 

 

The trend to higher Li abundances in post-shield lavas (Figure B-13) is similar to 

that observed for other incompatible elements, reflecting Mauna Kea’s gradual shift from 

the shield building to post-shield stages (Huang and Frey, 2003). Ryan and Langmuir 

(1987) determined that Li behaves similarly to V and Dy during melting and to Yb during 
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low-pressure fractionation. With depth, Li/Dy, Li/V, and Li/Yb (Figure B-16) follow 

similar trends as Li abundance (Figure B-11), suggesting the anomalous Li abundances 

are a result of alteration and not source region variation.  

 

Beryllium behaves incompatibly in Mauna Kea lavas, as indicated by regular 

correlations of Be with MgO, Zr and Nd (Figure B-17). Be concentrations are constant 

(0.45 ppm) from the bottom of the core to approximately 800 mbsl where values 

gradually increase to 0.55 ppm in the high-SiO2 and post-shield lavas (Figure B-18). The 

shift to higher Be values corresponds to a similar shift in other incompatible element 

ratios (i.e. La/Yb), interpreted to represent the transition from Mauna Kea’s main shield 

to post-shield stages (Lassiter et al., 1996; Huang and Frey, 2003; Rhodes and Vollinger, 

2004). During this transition, Mauna Kea magmas were generated by lower degrees of 

partial melting at greater depths and these magmas resided longer in shallower reservoirs 

where they were influenced by a depleted (upper mantle?) source. To test whether Be 

variations reflect changing melting conditions, we compared Be with Nd and Zr, two 

elements with similar partitioning behaviors as Be during melting and crystallization 

(Figure B-18) (Ryan, 2002). Constant Be/Nd (0.03±0.006) and Be/Zr (0.0035±0.0007) 

values with depth suggest variations in the conditions of melt segregation, rather than 

source region compositional variation, caused the increase in Be values in the uppermost 

high-SiO2 and post-shield lavas.  

 

Three geochemically distinct components in the source region for Mauna Kea 

lavas were identified by Huang and Frey (2003) based on SiO2 contents, radiogenic 

isotopes, and incompatible element ratios. We examined how Li and Be vary with respect 

to these geochemical groups by comparing Li/Yb and Be/Nd to Nb/Zr, 208Pb/204Pb, and 
206Pb/204Pb (Figure B-19). Be/Nd and Li/Yb ratios overlap and do not define distinct 

compositional groups. The light lithophile elements appear to be homogeneous with 

respect to the source components identified by other geochemical indicators.  
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5.3. Evidence for a Crustal Component in the Hawaiian Mantle Plume 

 

Mauna Loa and Mauna Kea lavas retrieved from both HSDP-1 and HSDP-2 

display geochemical signatures indicative of a crustal influence. Elevated 187Os/188Os 

ratios in Mauna Loa lavas and negative Th and U anomalies in Mauna Kea and Mauna 

Loa lavas suggest the Hawaiian plume contains entrained recycled oceanic gabbros 

(Hauri et al., 1996; Hofmann and Jochum, 1996). Unusually low δ18O values in Mauna 

Kea lavas also support entrained recycled (hydrothermally altered) oceanic crust in the 

source region, but other interpretations are possible. Olivine phenocrysts in Mauna Kea 

lavas indicate distinctly lower δ18O values in subaerial lavas (4.7‰) when compared to 

submarine lavas (5.0‰). However, smaller olivine phenocrysts (termed 

microphenocrysts by Wang et al., 2003) that crystallized after the larger olivine 

phenocrysts in the submarine section of the core record similarly low δ18O values as 

subaerial samples. Wang et al. (2003) suggested the subaerial lavas could have sampled 

portions of the volcanic edifice that were hydrothermally altered, but the lower values of 

the submarine microphenocrysts point to addition of an 18O depleted component (i.e. 

assimilated or entrained hydrothermally altered crust) over time. The means for creating a 

low 18O component, regardless of the mechanism for incorporating it into the plume, 

must be high temperature alteration (Gregory and Taylor, 1981).  

 

Chan and Frey (2003) measured Li isotopes in HSDP-2 lavas and concluded that 

low-SiO2 and post-shield lavas have similarly low δ7Li values of 4‰ (similar to mid-

ocean ridge basalts (MORB)), whereas high-SiO2 lavas have slightly higher δ7Li values 

of 5‰ to 6‰, indicating the presence of recycled oceanic crust. These authors noted the 

small variation in δ7Li values and suggested only a small proportion of recycled crust is 

in the Hawaiian plume. The higher δ7Li values reported by Chan and Frey (2003) are not 

limited to the submarine high-SiO2 lavas. Subaerial high-SiO2 and post-shield lavas 

(~1000-500 mbsl) show similar enrichments in δ7Li, within analytical error. Because 

isotopic fractionation of Li is temperature dependent, higher δ7Li values indicate the 
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crustal component must have experienced low-temperature alteration (Seyfried et al., 

1984). This conclusion is in contrast to oxygen isotope data, however, which require a 

deeper gabbroic crustal component altered at high temperatures (Eiler et al., 1996; Wang 

et al., 2003). Although it is possible that both shallow and deep portions of the crust were 

recycled into the mantle, Li and O isotopes should correlate because their fractionation 

behaviors are similar at high and low temperatures. The depth interval where heavier Li 

isotopes were reported (~1700-1200 mbsl) does not correlate with heavier O isotopes. In 

fact, higher than normal (i.e. mantle) δ18O values are not observed throughout the core, 

suggesting the oceanic crust present in the Hawaiian mantle plume was not altered at low 

temperatures.  

 

 Variations in Li, Be, and B abundance data from this study are minimal with 

depth within the HSDP-2 core, suggesting these elements are well homogenized among 

the geochemical groups defined by SiO2 contents, He and Pb isotopes, and Nb/Zr and 

Ti/Zr ratios. If Be and Li preserve a signature of oceanic crust altered by seawater at low 

temperatures, Be/Nd and Li/Yb ratios should correlate with O isotopes. The lack of 

correlation for any of the identified geochemical groups (Figure B-20) suggests Li and Be 

abundances do not record a crustal signature. The efficiency with which Li is stripped 

from the subducting slab, and the lower fluid-melt partition coefficient for Be, most 

likely limits their sensitivity as crustal indicators in ocean island environments. Despite 

the greater potential Li isotopes have as an indicator of subducted oceanic crust altered at 

low temperatures, variations in ocean island settings may be too small (i.e. within error of 

current analytical methods) to be detected.  

 

5.4. Comparisons to Other Oceanic Magmatic Environments 

 

As discussed in previous sections, B in Mauna Kea lavas probably reflects 

variable degrees of alteration rather than primary magmatic compositions. Our results for 

Li abundances (3.8 ppm) compare well with Li concentrations determined by Chan and 
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Frey (2003) for Mauna Kea (3.6 ppm) and are similar to results for other ocean island 

basalts reported by Ryan and Langmuir (1987), who characterized Li contents of basalts 

and more evolved compositions from mid-ocean ridges, ocean islands, and island arcs. 

These authors determined that basalts from all of these environments have similar Li 

abundances of 3-10 ppm. The more fractionated compositions (i.e. dacites, andesites, and 

trachytes) from mid-ocean ridges and ocean islands have similar, but slightly higher Li 

contents of ~8-15 ppm. Silica-rich compositions in island arc environments can contain 

in excess of 60 ppm Li. Li/Yb ratios for Mauna Kea lavas (2.3) fall into the previously 

reported range for ocean islands, which are higher than MORB (1.7), and similar to arc 

tholeiitic basalts (Figure B-12) (Ryan and Langmuir, 1987). Higher Li/Yb ratios in OIB 

compared to MORB probably reflects the presence of garnet in the source region. The 

higher Li/Yb ratios observed in IAB are attributed to additional Li in the source region 

from devolatilized subducted slabs (Ryan and Langmuir, 1987).  

 

Beryllium contents of Mauna Kea basalts (0.47±0.09 ppm) are at the low end of 

the OIB range reported by Ryan (2002) (0.5-1 ppm), but are higher than primitive MORB 

glasses (~0.15 ppm). Fe-Ti basalts from mid-ocean ridges and alkaline basalts from ocean 

islands contain higher Be abundances (1-10 ppm), which correlate with higher 

abundances of the light rare earth elements (i.e. Nd) and high field strength elements (i.e. 

Zr). Ryan and Langmuir (1988) originally suggested OIB and MORB had similar Be/Nd 

ratios of ~0.05, but Ryan (2002) observed slightly lower ratios for OIB (0.045) when 

compared to MORB (0.05) using an expanded dataset. Results from this study further 

lower the Be/Nd ratio, at least for Mauna Kea lavas, to 0.03 (Figure B-17). Similarly, 

Be/Zr ratios for Mauna Kea lavas from this study (0.003) are lower than MORB (0.0047), 

in contrast to data presented by Ryan (2002) for ocean island lavas (Be/Zr=0.006). 

However, the Be/Zr ratio determined for OIB by Ryan (2002) includes MORB 

differentiates (i.e. andesites and FeTi basalts) and alkaline basalts, which were not 

analyzed in this study. Therefore, our lower Be/Nd and Be/Zr ratios are better estimates 
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for tholeiitic basalts from ocean islands. Clearly, more data are necessary to constrain the 

ratios for more fractionated compositions.  

 

6. SUMMARY AND CONCLUSIONS 

 

Thirty-six Mauna Kea basalts from the HSDP-2 drill core, representing 400,000 

years of Mauna Kea post-shield and main shield lavas, were analyzed for whole-rock Li, 

Be, and B abundances to determine how these elements vary within the underlying 

Hawaiian mantle plume. Although material retrieved from the drill core appears fresh, 

interaction with seawater and groundwater is apparent in several samples. Highly variable 

B abundances (0.6-9.1 ppm), B/K ratios (0.0002-0.008) and B/Be ratios (1-25) suggest 

this highly fluid-mobile element was influenced by alteration to such a degree that mantle 

compositions were not preserved. Average Li contents (3.9±0.9 ppm) and Li/Yb ratios 

(2.3) are typical for ocean island basalts, but alteration has resulted in anomalously low 

(2.4 ppm) and high (5.9 ppm) values in some samples. Beryllium abundances (0.47±0.09 

ppm) are slightly lower than previously reported values for OIB, resulting in lower Be/Nd 

ratios (0.03) and Be/Zr ratios (0.0035). However, differentiated compositions analyzed in 

previous studies probably account for the higher reported Be measurements, and the 

larger dataset from this study places firmer constraints on Be/Nd and Be/Zr ratios for 

tholeiitic OIB. 

 

Using SiO2 contents, radiogenic isotopes, and incompatible element ratios, Huang 

and Frey (2003) identified three geochemical groups in the Mauna Kea lavas. Low-SiO2 

subaerial lavas (i.e. post-shield) have low 3He/4He and 206Pb/204Pb ratios, and were 

generated by lower degrees of partial melting at greater depths as Mauna Kea moved off 

the plume’s center. High-SiO2 lavas are most voluminous in the core and, with higher 

SiO2 contents at a given MgO content, they are similar to Kilauea lavas and represent the 

“Kea” component of the plume. Low-SiO2 submarine lavas have higher 3He/4He ratios 

and Ti/Zr and Nb/Zr ratios than low-SiO2 subaerial lavas, similar to lavas produced at the 
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Loihi seamount. These geochemical groups are indistinguishable when Li/Yb and Be/Nd 

are compared with Pb isotopes and Nb/Zr ratios, suggesting mantle compositions of Li 

and Be do not vary on the time scale of Hawaiian shield development.  

 

In addition to the groups identified by Huang and Frey (2003), lower than normal 

δ18O values, negative Th and U anomalies, positive Sr anomalies, and high 187Os/188Os 

ratios suggest a component of hydrothermally altered oceanic gabbros (i.e. crust) is 

present in the Hawaiian plume (Eiler et al., 1996; Hauri et al., 1996; Hofmann and 

Jochum, 1996; Wang et al., 2003). Li isotopes were used to identify a component of 

recycled crust altered at low temperatures in the Hawaiian plume (Chan and Frey, 2003). 

When Li/Yb and Be/Nd ratios were compared with O isotopes, no correlation was 

observed. Therefore, despite the ability for Li, Be, and B to identify crustal signatures in 

in IAB source regions, these elements do not record a low-temperature altered crustal 

component in the Hawaiian mantle plume. Recycling processes have probably served to 

homogenize these elements too well to be useful identifiers in ocean island settings. 
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PART IV 

 

Using Lithium and Beryllium to Evaluate the Enriched and Depleted Components 

in Basaltic Shergottites 
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ABSTRACT 

 

Geochemically depleted and enriched reservoirs, formed early in Mars’ history, 

have been preserved in the absence of plate tectonics, the mechanism responsible for 

mixing primitive and evolved compositions on Earth. The depleted reservoir is reduced 

and light rare earth element depleted, with high ε143Nd and low initial 87Sr/86Sr values, 

similar to the terrestrial mantle. The enriched reservoir is oxidized, enriched in light rare 

earth elements, with low ε143Nd and high initial 87Sr/86Sr values, similar to the terrestrial 

crust or to metasomatised mantle. Geochemical trends among the basaltic shergottites, a 

subgroup of Martian meteorites, suggest mixing occurred between these two 

compositionally distinct end-members. On Earth, crust-mantle interactions are recorded 

at subduction zones, where the light lithophile element lithium and beryllium (and boron) 

record a component of altered oceanic crust in the source regions of island arc basalts. 

We analyzed Li and Be abundances and Li isotopes in selected Martian meteorites to 

determine whether the enriched Martian assimilant was altered at low-temperatures, 

similar to the oceanic crust. Although terrestrial alteration minerals (caliche) in Dhofar 

019 apparently affected the primary Li and Be concentrations, the remaining shergottites 

contain Be (0.09-0.77 ppm) abundances similar to mid-ocean ridge basalts or ocean 

island basalts, whereas Li abundances (2.7-9.9 ppm) are slightly higher compared to 

these reservoirs. On diagrams of Li/Yb vs. Dy/Yb and K/Li vs. La/Yb, basaltic 

shergottites define trends similar to arc basalts, which are attributed to altered oceanic 

crust in their source regions. However, the correlation between Li or Be and δ18O for 
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basaltic shergottites is weak, and δ7Li values measured in two geochemically distinct 

basaltic shergottites, Zagami (+3.97‰) and EETA79001 (+4.37‰), are identical within 

error. Therefore, although the Martian assimilant appears to be enriched in Li and 

possibly Be, it either was not altered at low temperatures or the proportion of altered 

material in basaltic shergottite magmas is too small to be resolved using these crustal 

indicators. It is not obvious, using Li and Be, whether the enriched assimilant on Mars 

originated as crust or metasomatised mantle. 

 

1. INTRODUCTION 

 

Planetary-scale melting and differentiation early in Mars’ history resulted in the 

formation of both depleted (mantle) and enriched (crustal) reservoirs (McLennan, 2003). 

Igneous activity continued on Mars for at least 2 Gy, but primitive isotopic signatures in 

Martian meteorites suggest rigorous mantle convection did not occur after the initial 

fractionation event, preserving the geochemical distinctions of these reservoirs (Lee and 

Halliday, 1997; Spohn et al., 2001). Radiogenic isotopes, light rare earth element 

partitioning, and oxidation states of basaltic shergottites, a subgroup of Martian 

meteorites, suggest these meteorites experienced mixing between at least two 

components (Jones, 1989; Longhi, 1991; Wadhwa, 2001; Borg, 2002; Herd et al., 2002). 

One component is reduced, depleted in light rare earth elements, and contains a high 

ε143Nd value and a low initial 87Sr/86Sr ratio, similar to the terrestrial mantle. The other 

component is oxidized, enriched in light rare earth elements, and contains a low ε143Nd 

value and a high initial 87Sr/86Sr ratio. Although this component is similar to the 

terrestrial crust, it may also represent an enriched mantle source (e.g. Borg, 2002). The 

basaltic shergottites Shergotty/Los Angeles and Queen Alexandra Range (QUE) 94201 

represent the enriched and depleted end-members, respectively, and the remaining 

basaltic shergottites define a mixing trend between them (Figure B-21). The depleted 

component is normally assumed to represent the post-differentiation mantle source for 
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shergottites, and the enriched component represents material assimilated by these 

magmas. 

 

On Earth, the light lithophile elements lithium, beryllium, and boron record crust-

mantle interactions at subduction zones. As altered, hydrous oceanic crust enriched in Li 

and B is subducted, dehydration reactions transport these fluid mobile elements (heavy 

isotopes preferred) into the overlying mantle wedge where melting occurs, leaving Be 

relatively unchanged (Moran et al., 1992; Bebout et al., 1993). The lack of isotopic 

fractionation during melting and crystallization preserves this crustal signature as higher 

δ7Li and δ11B in island arc basalts (IAB) compared to mid-ocean ridge basalts (MORB) 

(Moriguti and Nakamura, 1998; Tomascak et al., 1999a; Straub and Layne, 2002).  

 

The oxidized nature of the assimilant in basaltic shergottites (Figure B-21c) 

suggests it may have been hydrated, introducing the possibility that it may have 

experienced low-temperature alteration. Oxygen and hydrogen isotopes measured in 

alteration minerals in Martian meteorites indicate that surface/crustal water reservoirs 

once present on Mars were enriched in δ18O and δD (Karlsson et al., 1992; Leshin 

Watson et al., 1994; Boctor et al., 2003). Oxygen isotope variations in bulk basaltic 

shergottites provide a hint that the enriched component was hydrated (McSween, 2002), 

but the variations are not as systematic as for radiogenic isotopes. The presence of 

isotopically heavy oxygen and hydrogen isotopes suggests a reservoir may also have been 

enriched in Li and/or δ7Li, potentially providing a Li-enriched component as an 

assimilant.  

 

Previous studies of light lithophile elements in Martian meteorites focused on in- 

situ analyses of pyroxenes in basaltic shergottites and nakhlites (Lentz et al., 2001; Beck 

et al., 2004; Herd et al., 2005). The results from these studies reached similar 

conclusions, invoking magma degassing to explain lower Li and B abundances and 

higher δ7Li in shergottite pyroxene rims versus pyroxene cores. Whole-rock Li, Be, and 
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B data for Martian meteorites are limited due to the difficulty associated with measuring 

these elements in such low abundances. Our goal is to examine bulk Li and Be 

abundances and Li isotopes in selected Martian meteorites to determine how they relate 

to the assimilant. We also re-evaluate the degassing theory proposed for basaltic 

shergottites in the context of these new data.  

 

2. REVIEW OF LIGHT LITHOPHILE ELEMENT BEHAVIOR AND PREVIOUS 

STUDIES ON LI, BE, B IN MARTIAN METEORITES  

 

2.1. How Lithium, Beryllium, and Boron Develop a Crustal Signature 

 

 The success of Li, Be, and B as crustal indicators in terrestrial island arc 

environments is based on the “crustal” signature that develops in oceanic crust altered by 

seawater at low temperatures. Fresh basalt generated at mid-ocean ridges (MORB) 

contains low concentrations and isotopic compositions of these incompatible elements 

(Ryan and Langmuir, 1987; Spivack and Edmond, 1987; Ryan, 2002). Seawater is 

enriched in Li and B and, at low temperatures, these elements fractionate into the crust, 

resulting in noticeably higher concentrations and heavy isotopic abundances (Seyfried et 

al., 1984; Spivack and Edmond, 1987; Chan et al., 1992). Beryllium concentrations 

remain relatively constant, but the cosmogenic isotope 10Be is present in pelagic 

sediments, which may play a role during subduction (Tera et al., 1986; Morris, 1991). As 

altered oceanic crust (and sediment) is subducted, metamorphic reactions dehydrate the 

slab, and soluble Li and B are carried with the fluid into the overlying mantle wedge that 

melts to produce the erupted lavas (Moran et al., 1992; Bebout et al., 1993). Beryllium is 

insoluble in H2O-rich fluids and remains in the subducted slab. The lack of isotopic 

fractionation during igneous melting and crystallization preserves this crustal signature 

(Tomascak et al., 1999a). Ryan and Langmuir (1987, 1988, 1993) determined that ratios 

of elements with similar partitioning behavior (e.g. Li/Yb, Be/Nd, and B/Nb) do not vary 
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with magma generation and crystallization, and therefore can be used to identify source 

region heterogeneity, which may result from the addition of subducted oceanic crust.  

 

2.2. Previous Li, Be, and B Studies on Martian Meteorites 

 

The current database for Li and Be in basaltic shergottites is presented in Table A-

8. Although bulk Li and Be analyses are available for several meteorites, whole-rock B 

data is limited to Nakhla and Chassigny, and previous studies using these elements 

focused on variations measured by ion microprobe between pyroxene cores and rims. 

Lentz et al. (2001) measured Li, Be, and B abundances in pyroxene cores and rims and in 

plagioclase in two basaltic shergottites (Shergotty and Zagami) and two nakhlites 

(Nakhla and Lafayette) using secondary ionization mass spectrometry (SIMS). These 

authors observed that abundances of all three elements increase, as expected for 

incompatible elements, from pyroxene cores to rims in Nakhla and Lafayette. In 

Shergotty and Zagami, however, Be behaved as an incompatible element, but B and Li 

decreased from core to rim. These authors suggested the higher solubility of Li and B 

may have resulted in the loss of these elements during devolatilization upon ascent or 

eruption of the shergottite lavas.  

 

Herd et al. (2005) also performed in-situ analyses of Li, Be, and B in pyroxenes in 

Shergotty and Zagami, and although these authors observed a similar decrease in Li from 

pyroxene cores to rims, a decrease in B was not apparent. Using mineral-melt partitioning 

coefficients for Li in pyroxene, Herd et al. (2005) determined that Li in pyroxene cores is 

too high to be in equilibrium with bulk Li compositions. This discrepancy can not occur 

solely as a result of igneous processes, and implicates a role for a fluid phase during 

crystallization.  

 

Beck et al. (2004) analyzed Li isotopes in pyroxenes from the basaltic shergottite 

Northwest Africa (NWA) 480 using SIMS and observed an increase from -17‰ 
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(compared to L-SVEC standard) in pyroxene cores to +10‰ in pyroxene rims with little 

or no change in Li concentration (~3.5 ppm). These authors attributed the variable 

isotopic compositions to magmatic degassing. 

 

3. SAMPLE SELECTION AND ANALYTICAL METHODS 

 

Martian meteorites were selected to represent the range of reported geochemical 

heterogeneity in basaltic shergottites. For Li isotope analyses, the enriched end-member 

is represented by Zagami and, although the Antarctic find QUE 94201 was the preferred 

depleted end-member, limited sample quantity precluded its availability for analysis. 

Therefore, we selected the dunite Chassigny to represent the mantle end-member. We 

also selected an intermediate composition, Elephant Morraine (EETA) 79001, for 

comparison. Whole-rock Li and Be abundance data were collected for these meteorites in 

addition to Shergotty, Los Angeles, and the Oman desert find Dhofar (Dho) 019, despite 

known terrestrial alteration in the latter (Taylor et al., 2002).  

 

Samples were digested and analyzed at University of Maryland’s Geochemistry 

Laboratory using techniques described by Tomascak et al. (1999b). Rock chips of 

Zagami, EET A79001, Dhofar 019, and Chassigny were ground to powders using an 

agate mortar and pestle. Approximately 25 mg of sample were combined with 1 mL each 

HF and HNO3  in Teflon beakers, which were sealed and placed on a hotplate at ~120°C 

for at least 12 hours. Once samples were digested, the solutions were allowed to dry, and 

then resuspended in 1 mL high purity 2% HNO3. Clear solutions were returned to the 

hotplate to dry, and then resuspended in concentrated HCl. Clear solutions were dried 

again on the hotplate and either resuspended in 1 mL high purity 2% HNO3 for Li and Be 

analyses or resuspended in 1 mL 4M HCl for Li isotope column chromatography. 

Column procedures are modified from Tomascak et al. (1999b) and serve to separate Li 

from remaining ions in the solution. Samples were run through three cation exchange 

columns that were equilibrated with either Milli-Q H2O or HCl. Samples were added to 
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first columns (12 mL columns of BioRad AG50W-x12) in 1 mL 4M HCl, and Li was 

eluted with 9 mL 2.5M HCl. Samples were dried, resuspended in 1.5 mL 0.15M HCl, run 

through second columns, and Li was eluted with 30 mL 0.15 HCl. Samples were dried, 

resuspended in 1 mL 0.15M HCl, added to third columns, and Li was eluted with 16 mL 

of 4M HCl mixed with 30% ethanol (CH3OH). Samples were dried and resuspended in 

1.5 mL 0.15M HCl for analysis. 

 

Li and Be abundances were analyzed using the Element2 single collector 

inductively coupled plasma mass spectrometer (ICP-MS). Precision is ~5-10% for Li and 

Be. Li isotopes were analyzed using the NuPlasma multi-collector ICP-MS. Unknown 

samples were bracketed by analyses of the L-SVEC (Li2CO3) standard (Flesch et al., 

1973), and in-house standards (Li-UMD-1 and IRMM-016) were run at the beginning 

and end of the analytical session. The standard BCR-1 was also analyzed for comparison. 

δ7Li was calculated using {(7Li/6LiSAMPLE/(7Li/6LiL-SVEC(1) + 7Li/6LiL-SVEC(2))/2)-1}*1000. 

Analytical precision for δ7Li is ±1‰ 2σ, for n=100 over a two-year period. Results for 

samples and standards are presented in Tables A-9 and A-10, respectively.  

 

4. RESULTS AND DISCUSSION 

 

4.1. Li and Be in Martian Meteorites 

 

Beryllium concentrations for the analyzed meteorites range from 0.04 ppm to 0.77 

ppm. Our abundances are slightly higher than the previously measured value for Dho 019 

(0.03 ppm, Neal et al., 2001), the only sample previously analyzed for Be. Lithium 

compositions range from 1.8 ppm to 9.9 ppm, comparable to previous analyses for 

Chassigny and EETA79001. Our result for Li in Dho 019 is higher than previously 

reported (2.7 ppm, Neal et al., 2001), and we attribute the increased Li concentration to 

substantive amounts of alteration material (caliche) present in the sample. Lithium 

contents measured in Shergotty and Zagami are also higher than previous measurements. 
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Although both of these meteorites contain minor amounts of secondary alteration 

minerals (e.g. gypsum, Wentworth and Gooding, 2000), correlations between Li and Be 

(Figure B-22) suggest our estimates are representative of igneous conditions for these and 

other meteorites, except Dho 019. Li and Be values for Chassigny plot opposite the 

oxidized meteorites (Zagami, Shergotty, and Los Angeles), apparently representing 

Martian mantle Li and Be concentrations. Dho 019 plots in different regions of 

classification diagrams discussed in the following text, depending on the data source. 

Results for Li and Be from this study are higher in Dho 019 compared to Neal et al. 

(2001), and the Li vs. Be plot demonstrates this effect. Rather than explain the 

differences for Dho 019 in each comparison, we use the chemical data reported by Neal 

et al. (2001) in following sections. 

 

Results for δ7Li are identical for Zagami (+4‰) and EETA79001 (+4.4‰), within 

analytical error, whereas the value for Chassigny (+17‰) is significantly higher. Whole-

rock δ7Li values are comparable to the range of in-situ mineral analyses reported by 

Chaussidon (1999) for Zagami (+2.5‰ to +6.5‰) and EETA79001 (+2.5‰ to +3.8‰). 

Chaussidon (1999) measured a significantly lower δ7Li value for olivine in Chassigny 

(+10.5‰) compared to our whole-rock result. Although the Li concentration in 

Chassigny does not appear anomalous, the higher δ7Li value may be attributed to 

secondary gypsum and carbonates present in the sample (Wentworth and Gooding, 

1994).  

 

4.2. Evidence for Assimilation of a Li-Enriched Component 

 

4.2.1. Li and Be Compositions of Chondrites and Earth’s Mantle 

 

Earth’s primary (lower mantle) Li and Be concentrations are presumably 

represented by their concentrations in chondritic meteorites. Hanon et al. (1999) 

measured Li and Be abundances in chondrules from ordinary chondrites (LL3.0-LL3.1, 
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L3.7, and H3.6) and Allende (CV3.2) and determined average values of 0.83 ppm for Li 

and 0.043 ppm for Be. The concentration of Li calculated for mantle-derived peridotites 

(1-1.5 ppm), using Li concentrations and modal mineral abundances, is similar to 

chondritic values (Seitz and Woodland, 1999). Paquin et al. (2004) used a similar method 

to calculate Be abundances in mantle peridotite (~0.01 ppm) that are also similar to 

chondritic values.  

 

4.2.2 Martian Meteorites Compared to Terrestrial Basalts 

 

Lithium (1.8 ppm) and Be (0.04 ppm) concentrations in Chassigny are similar to 

chondrites and terrestrial (lower) mantle rocks. Terrestrial dunites typically show Li 

abundances in the range of 2.0±0.4 ppm (Lundstrom et al., 2005). Be is highly 

incompatible in olivine (DBe
ol-melt=0.001-0.003, Brenan et al., 1998) and therefore is not 

well characterized in dunites. The range of Be abundances in basaltic shergottites (0.18-

0.77 ppm) is similar to the range for MORB (0.1-1 ppm) and OIB (0.5-1 ppm) (Ryan, 

2002; Ryan and Langmuir, 1987). Lithium concentrations, however, appear to be 

elevated in basaltic shergottites (2.7-9.9 ppm) when compared to MORB and OIB 

reservoirs. The ranges for Li in MORB and OIB are both ~3-8 ppm, although 

differentiated compositions in all volcanic environments commonly have higher values 

for both Li and Be. Lavas produced above subduction zones, however, show the greatest 

variation in Li abundances due to incorporation of subducted, Li-enriched material in the 

source region. IAB lavas typically contain10-30 ppm Li, whereas Be values are similar to 

MORB (0.1-1 ppm).  

 

Ryan and Langmuir (1988) determined that Be behaves similarly to incompatible 

Nd and Zr during melting and crystallization, and Be/Nd and Be/Zr ratios can be used to 

define different terrestrial oceanic magmatic environments. Figure B-23 compares Be to 

Nd and Zr for the Martian meteorites analyzed in this study. Slopes representing 

terrestrial MORB (dashed), OIB (bold), and IAB (and differentiates) are shown for 
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comparison. Despite considerable scatter in the data, Be/Nd ratios in basaltic shergottites 

define a general trend similar to island arc calc-alkaline differentiates. When viewed 

individually, Dho 019 shows a slightly more MORB-like signature, whereas Zagami and 

Shergotty are similar to more differentiated compositions. Using Be/Zr ratios, the data as 

a whole cluster around OIB compositions. However, Dho 019 and EETA79001 appear 

more like MORB, whereas Zagami and Shergotty are similar to IAB.  

 

A similar comparison can be made using Li/Yb ratios, because Li behaves 

similarly to the heavy rare earth elements (HREE) during melting and crystallization 

(Ryan and Langmuir, 1987). Figure B-24 shows Li/Yb ratios for the Martian meteorites, 

with MORB (dashed), OIB (shaded region), and arc differentiates shown for comparison. 

Dho 019, EETA79001 and Los Angeles define a trend similar to terrestrial OIB. 

Shergotty and Zagami clearly plot in the IAB field. We further investigate the 

relationship between Li and other REE in the shergottite source regions by comparing 

Li/Yb ratios to Dy/Yb ratios (Figure B-25). Because Li behaves similarly to the REE, 

higher Li abundances due to igneous processes such as melting and differentiation should 

result in similar increases in the REE concentrations (i.e. Dy). This relationship is 

observed for OIB, which are represented on Figure B-25 by the shaded region. In 

contrast, IAB (arrow) show a linear increase in Li/Yb without a corresponding increase in 

Dy/Yb. This suggests that the IAB source region must contain a component enriched in 

Li but not REE. On this plot, basaltic shergottites define a trend nearly identical to that of 

IAB, but Shergotty and Zagami represent the highest Li/Yb ratios and Dho 019, 

EETA79001 and Los Angeles plot closer to OIB.  

 

Ryan and Langmuir (1987) evaluated the source for higher Li contents in arc 

volcanics using a plot of K/Li vs. La/Yb (Figure B-26). As in the Li/Yb vs. Dy/Yb plot, 

variations in K, Li, and REE due to igneous processes result in the trend defined by 

MORB (shaded region) and OIB (bold). Arc volcanics, however, define a steeper slope, 

indicating the presence of a component enriched in K, and to a lesser extent Li, but not 
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REE. On Earth, altered oceanic crust (box) is enriched in K compared to Li, but has 

limited La/Yb values. Adding a component of recycled altered oceanic crust to the IAB 

source region, therefore, results in the observed trend. Basaltic shergottites mimic the 

trend for IAB, extending from MORB-like compositions into the field for altered oceanic 

crust. The degree of K enrichment in Martian meteorites, however, is significantly less 

than that observed for arc lavas. The similar, near-vertical slope of the trend defined by 

basaltic shergottites suggests the K/Li and La/Yb ratios may have been influenced by a 

process similar to that observed in subduction zone environments. The lower K/Li ratios 

of basaltic shergottites compared to IAB probably reflect an overall lower abundance of 

K in the Martian reservoir available for assimilation.  

 

On Earth, unaltered terrestrial basalts have ~5000 ppm K (Mason and Moore, 

1982), which increases as secondary alteration phases enriched in K form in oceanic 

basalt weathered in a submarine environment (Pichler et al., 1999). Martian soils and 

rocks analyzed by Pathfinder have higher K contents compared to basaltic shergottites 

(Wänke et al., 2001), suggesting weathering may have caused similar enrichments in 

altered Martian basalts. Using soil and rock compositions from Pathfinder and Phobos-2 

orbital gamma-ray spectroscopy, McClennan (2001) estimated that approximately 0.5% 

(5000 ppm) K resides in the Martian crust. If unaltered crust was assimilated into 

shergottitic magmas, the lower K content compared to terrestrial altered basalts may 

explain the range of K/Li values in basaltic shergottites. However, it is uncertain how 

high the K content would be in altered Martian crust. 

 

4.3. Li and Be as Crustal Indicators on Mars 

 

If the assimilant in basaltic shergottites parent magmas was enriched in Li and Be, 

these elements should correlate with previously determined geochemical indicators of the 

assimilant. We compared Li and Be to ε143Nd, 87Sr/86Sr, and La/Yb ratios (Figure B-27). 

The correlations are not strong, and Li and Be abundances in Los Angeles appear 
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anomalous when compared to La/Yb ratios, but the general trends suggest Li and Be are 

concentrated in the assimilant. 

 

The similarities between basaltic shergottites and terrestrial arc lavas using Li/Yb, 

Be/Nd, and K/Li ratios suggest the assimilant may be similar in trace element 

composition to altered oceanic crust. The crustal signature identified in terrestrial arc 

source regions originates by alteration of oceanic crust by seawater at low-temperatures 

(<350°C, Seyfried et al., 1984). In addition to elevated Li contents, oceanic crust altered 

at low temperatures also carries an enriched δ7Li and δ18O signature (Gregory and 

Taylor, 1980; Chan et al., 1992). Bridges et al. (2001) suggested that the most likely 

environment of formation for the secondary alteration minerals (siderite, gypsum, calcite, 

magnesite, halite, and other chlorides and sulfates) identified in basaltic shergottites and 

other Martian meteorites was evaporation of brines at low temperatures (25-150°C). 

Although isotopically heavy surface waters most likely enriched the rocks with which 

they interacted, the depth of alteration was probably limited to the near surface. 

Alteration minerals in Martian meteorites are typically limited to fractures or shock-

induced cracks, suggesting large-scale replacement or secondary mineralization did not 

occur (Bridges et al., 2001 and references therein). The depth of hydrothermal alteration 

on Mars is unknown, but oxygen isotope studies on terrestrial ophiolite sequences 

indicate that high temperature (300-600°C) hydrothermal alteration occurs in the upper 4-

8 km of oceanic crust. However, low-temperature alteration (200-300°C) is limited to the 

upper 1-2 km (Gregory and Taylor, 1981; Cocker et al., 1982; Cartwright and Barnicoat, 

1999).  

 

We compared Li and Be abundances with oxygen isotope data for basaltic 

shergottites to determine whether these meteorites possess a low-temperature altered 

signature (Figure B-28). There is more scatter in the Li data compared to Be, and the 

trends are not distinct in either case. The δ18O value for Dho 019 appears exceptionally 

high and the Li and Be values for Los Angeles also appear anomalous (similar to 
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comparison to La/Yb). However, the remaining meteorites define a rough correlation 

with δ18O, as might be expected for low-temperature altered crust. As a second test for a 

low-temperature signature, we evaluated the Li isotopic data. Low-temperature altered 

oceanic crust has higher δ7Li and δ18O values compared to normal mantle (MORB) 

values. Although we analyzed δ7Li in only three meteorites, their geochemical 

heterogeneity is apparent in a variety of comparisons. The two basaltic shergottites 

analyzed in this study, Zagami (+3.97‰) and EETA79001 (+4.37‰), have Li isotopic 

compositions identical to each other and to MORB (+4‰). The higher δ7Li value 

measured for Chassigny (+17‰) suggests a hydrated reservoir on Mars was enriched in 

δ7Li, but this reservoir apparently did not interact with the Martian assimilant to an extent 

that it is recognizable in shergottitic lavas. This is not surprising, as the Martian crust is 

much thicker (~30-80 km) than Earth’s crust (Wieczorek and Zuber, 2004). As 

shergottite magmas ascend through the crust, the signature of the lower (unaltered) 

interval of this crust most likely overwhelms any signature imposed by the shallowest 

interval. 

 

4.4. Magmatic Degassing in the Context of New Li and Be Data 

 

Whole-rock Li and Be abundances for basaltic shergottites are consistent with an 

assimilant containing greater abundances of these incompatible elements compared to 

Martian mantle (Chassigny) values. In all geochemical comparisons, except K/Li vs. 

La/Yb, Shergotty and Zagami define more evolved compositions, presumably 

representing greater proportions of the assimilated component. However, these results are 

in contrast to in-situ pyroxene Li, Be, and B abundance data that suggest Li and B were 

lost from Shergotty and Zagami magmas during degassing upon ascent (Lentz et al., 

2001; Herd et al., 2005). Beck et al. (2004) also attributed the increase in Li isotopes 

measured in NWA 480 from core (-17‰) to rim (+10‰) to magmatic degassing.  

 



 53

Using pyroxene-melt partitioning data for Li (DLi
pyroxene-melt=0.20, Herd et al., 

2004), Herd et al. (2005) determined that the Li concentrations in Shergotty pyroxene 

cores (4.5 ppm) and rims (1.5 ppm) require melt compositions of 22 ppm and 7.5 ppm, 

respectively. Our revised results for Li in Shergotty (8 ppm) satisfy the requirement for 

melt compositions in equilibrium with pyroxene rims, but not pyroxene cores. Therefore, 

despite new Li and Be data for Shergotty and Zagami, the mechanism responsible for 

creating the observed Li, Be, and B trends in basaltic shergottite pyroxenes remains 

unclear. Detailed examination of light lithophile element behavior in basaltic shergottites 

is limited, and Shergotty and Zagami, two very similar meteorites, have received the most 

attention. The obvious difference between these and other basaltic shergottites is the 

presence of (Li-rich) cumulus pyroxene in both Shergotty and Zagami (Stolper and 

McSween, 1979; McCoy et al., 1992). If an amount of Li equal to that contained in 

cumulus pyroxene cores of Shergotty (4.5 ppm*13% cumulus pyroxene; Hale et al., 

1999) is subtracted from the bulk composition measured in this study (8 ppm), the Li 

concentration decreases slightly to 7.4 ppm. Although lower, this Li concentration 

remains enriched compared to the other basaltic shergottites and does not change the 

observed geochemical relationships previously discussed. Therefore, magmatic degassing 

remains the most plausible scenario to explain the in-situ Li data in basaltic shergottites. 

However, the conflicting trends for whole-rock and in-situ pyroxene Li data should not 

be ignored. 

 

4.5. What is the Source for the Enriched Component? 

 

Although the depleted end-member identified in basaltic shergottites appears to 

represent the Martian mantle, the origin of the enriched component is disputable. Borg 

and Draper (2003) successfully modeled the basaltic shergottites as mixtures of mafic 

cumulates and late-stage crystallization products of a Martian magma ocean to explain 

observed differences in major and trace element abundances and radiogenic isotopes. 

Treiman (2003) observed that highly incompatible elements and moderately incompatible 
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elements do not correlate in basaltic shergottites. Age relationships suggest these element 

groups were decoupled prior to melt generation. Therefore, the observed enrichment is 

better explained by mantle metasomatism prior to melt genesis rather than “crustal” 

assimilation after melt formation. 

 

Lithium and Be further support the presence of enriched and depleted Martian 

reservoirs, which were mixed in various proportions to form the basaltic shergottites. 

However, these elements do not provide definitive evidence that the enriched component 

is crust or metasomatised mantle. The similarities basaltic shergottites share with IAB 

suggest the scenario of Borg and Draper (2003) may be more appropriate, at least for 

these elements. The absence of isotopically heavy Li or O suggests the assimilant was not 

altered at low temperatures. However, alteration at the high temperatures expected for 

mantle metasomatism typically liberates Li from basalt compositions and results in 

isotopically light δ18O and δ7Li (Gregory and Taylor, 1981; Cocker et al., 1982; Chan et 

al., 1992, 2002; Cartwright and Barnicoat, 1999; Foustoukos et al., 2004; Seyfried et al., 

1998). In contrast, we observe a positive correlation between Li (and Be) and other 

indicators of the enriched component (Figure B-27). Although the δ18O values for 

basaltic shergottites are slightly below Earth’s mantle average (+5.7±0.4‰, Gregory and 

Taylor, 1981), the consistent δ18O and δ7Li values for basaltic shergottites (+4.7 ±0.4‰ 

and +4.2 ±0.3‰, respectively) suggest the O and Li isotopic signatures of the enriched 

component did not differ significantly from Earth’s (and presumably Mars’) mantle.  

 

5. SUMMARY AND CONCLUSIONS 

 

Geochemical relationships among basaltic shergottites, a subgroup of meteorites 

from Mars, suggest variable amounts of an enriched (crust-like) component were 

assimilated into mantle derived (depleted) magmas (Jones, 1989; Longhi, 1991; Wadhwa, 

2001; Borg, 2002; Herd et al., 2002). On Earth, the light lithophile elements Li, Be, and 

B preserve a component of altered oceanic crust in the source regions of OIB lavas (Ryan 
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and Langmuir, 1987, 1988, 1993). The crustal signature develops in oceanic crust altered 

at low temperatures, and differences in fluid-rock partitioning behavior of Li, Be, and B 

result in higher abundances and heavier isotopic concentrations of Li and B, whereas Be 

is unchanged. During subduction, dehydration reactions transfer the crustal signature 

recorded by fluid-mobile Li and B to the overlying mantle wedge where melting occurs.  

 

The enriched component in basaltic shergottites may have been hydrated 

(McSween, 2002), and isotopically heavy oxygen and hydrogen measured in alteration 

minerals in Martian meteorites (Karlsson et al., 1992; Leshin Watson et al., 1994; Boctor 

et al., 2003) suggests this reservoir may also have been enriched in Li. We measured Li 

and Be abundances and Li isotopes in basaltic shergottites that encompass the reported 

range of geochemical heterogeneity. Shergotty, Zagami, and Los Angeles represent the 

enriched end-member, EETA79001 is an intermediate composition, and Dho 019 and 

Chassigny represent the depleted end-member.  

 

Chassigny appears to represent Martian mantle Li (1.8 ppm) and Be (0.04 ppm) 

abundances, which are similar to values measured in chondrites and terrestrial mantle 

rocks. Terrestrial alteration minerals in the sample of Dho 019 analyzed in this study 

apparently modified the primary bulk Li and Be concentrations. Beryllium concentrations 

in the remaining basaltic shergottites (0.09-0.77 ppm) are similar to MORB and OIB, but 

Li concentrations (2.7-9.9 ppm) are enriched compared to these reservoirs. Using Be/Nd, 

Be/Zr, and La/Yb ratios, Shergotty and Zagami are similar to IAB compositions whereas 

the remaining shergottites resemble MORB or OIB. Basaltic shergottites define trends 

similar to IAB when Li/Yb is compared to Dy/Yb and K/Li is compared to La/Yb. In 

IAB source regions, subducted altered oceanic crust is responsible for increasing K and 

Li while maintaining relatively constant REE values (Ryan and Langmuir, 1987). 

Although the assimilant in basaltic shergottites appears to be enriched in Li (and possibly 

Be), the weak correlation when Li and Be are compared to δ18O suggests the assimilant 

was not altered at low temperatures. Furthermore, Li isotopes in two meteorites with 
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presumably different amounts of assimilated material, Zagami (+3.97‰) and 

EETA79001 (+4.37‰), are identical within analytical error and are also similar to 

average MORB (+4‰). Therefore, it is not clear, using Li and Be, whether the enriched 

component observed in basaltic shergottites originated as metasomatised mantle or was 

assimilated as evolved crust. 

 

 Our results for Shergotty and Zagami suggest these two meteorites assimilated a 

greater proportion of the enriched component. However, these data are in contrast to 

previous studies using in-situ pyroxene analyses, which suggest Li and B were lost during 

magmatic degassing (Lentz et al., 2001; Beck et al., 2004; Herd et al., 2005). Although 

these meteorites contain cumulus pyroxene, adjusting the bulk composition by an amount 

equal to that represented by the cumulus pyroxene does not change the observed 

correlations among basaltic shergottites.  
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APPENDIX A 

 



Cpx Opx Cpx Opx Cpx Opx Cpx Opx Plag-Ol Ol-Spinel
H6 820-830 a,b - - - 870 b 810 b - - 900±50 740

920-930 a

860-870 b

920-930 a

860-870 b

a Estimates using the Kretz (1982) geothermometer.
b Estimates using the Lindsley (1983) geothermometer.

Olsen and Bunch (1984) McSween and Patchen 
(1989) Jones (1997) Langenhorst et al. (1995)

LL6 - 1040-1112 a 

900-960 b 790-900 b 900±50 720

900±50

- - 650-800 b 800 b

- - -

Table A-1. Previously determined peak temperatures (°C) for Type 6 ordinary chondrites.

Clayton 
(1993)

Kessel et al. 
(2002)

700-L6 - - -
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Table A-2. Meteorites examined in this study. 

 

  

Shock 
Classification 
(Nakamuta and 

Motomura, 1999) 

Source Section Number 

Peekskill H6 S2 USNMNH 6543-1 

Mulga (north) H6 S2 USNMNH 3414 

Great Bend H6 S1-S2 
Field Museum/ 

Naturhistorisches 
Museum Vienna 

Me3017/L8853 

Holbrook L6 S2 USNMNH 437-1 

Owasco L6 S3 
Field Museum/ 

Naturhistorisches 
Museum Vienna 

Me3039/1153a 

Dhurmsala LL6 S3 USNMNH 82-1 
 

 



Oxide Wt. 
% Cpx [8]a Opx [5] Cpx [7] Opx [12] Cpx [6] Opx [16] Cpx [3] Opx [2] Cpx [6] Opx [16] Cpx [6] Opx [4]
SiO2 53.8 (4) 56.2 (2) 54.0 (1) 56.0 (6) 53.7 (3) 55.6 (2) 53.6 (4) 55.0 (1) 53.6 (2) 55.1 (9) 53.8 (5) 54.9 (8)
TiO2 0.48 (4) 0.19 (3) 0.47 (3) 0.19 (2) 0.43 (3) 0.17 (1) 0.39 (3) 0.14 (0) 0.42 (2) 0.17 (2) 0.37 (4) 0.16 (2)
Al2O3 0.53 (3) 0.18 (3) 0.54 (2) 0.19 (3) 0.49 (3) 0.15 (1) 1.01 (102) 0.13 (1) 0.47 (2) 0.19 (2) 1.17 (102) 0.15 (2)
Cr2O3 0.86 (11) 0.14 (4) 0.77 (6) 0.11 (3) 0.73 (6) 0.12 (2) 0.76 (4) 0.11 (0) 0.68 (4) 0.21 (5) 0.60 (4) 0.08 (3)
MgO 16.9 (2) 30.0 (1) 17.1 (1) 31.1 (2) 16.6 (2) 29.0 (2) 16.1 (7) 28.4 (1) 16.8 (1) 28.8 (5) 16.2 (10) 28.0 (5)
CaO 22.0 (3) 0.81 (8) 22.6 (2) 0.68 (11) 22.3 (3) 0.89 (14 ) 21.2 (5) 0.90 (10) 22.0 (2) 1.03 (19) 21.2 (11) 0.93 (3)
MnO 0.22 (4) 0.46 (4) 0.24 (3) 0.48 (3) 0.21 (2) 0.44 (3) 0.22 (3) 0.43 (3) 0.21 (4) 0.44 (3) 0.21 (3) 0.47 (4)
FeO 4.05 (64) 11.5 (3) 3.70 (24) 11.7 (9) 4.90 (41) 13.6 (2) 4.87 (48) 14.0 (1) 4.97 (22) 14.0 (10) 5.15 (72) 15.4 (8)
Na2O 0.56 (5) 0.01 (1) 0.55 (3) 0.04 (1) 0.51 (4) 0.02 (1) 0.80 (47) 0.04 (0) 0.45 (3) 0.03 (1) 0.74 (41) 0.02 (1)
Total 99.4 99.5 99.98 100.5 99.9 100 98.9 99.1 99.6 100 99.4 100.1

Si 1.98 2 1.98 1.98 1.97 1.99 1.98 1.99 1.97 1.98 1.98 1.98
Ti 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0
Al 0.02 0.01 0.02 0.01 0.02 0.01 0.04 0 0.02 0.01 0.05 0.01
Cr 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0.01 0.02 0
Mg 0.93 1.59 0.93 1.63 0.91 1.54 0.89 1.53 0.92 1.54 0.89 1.5
Ca 0.87 0.03 0.88 0.02 0.88 0.03 0.84 0.03 0.87 0.04 0.84 0.03
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Fe 0.12 0.34 0.11 0.34 0.15 0.41 0.15 0.42 0.15 0.42 0.16 0.46
Na 0.04 0 0.04 0 0.04 0 0.06 0 0.03 0 0.05 0
Sum 4 3.98 4 3.99 4.01 3.99 4 3.98 4 4.01 4.01 3.99
a [ ] Number of grains averaged.

a.f.u./6 oxygens

Owasco 
L6

Dhurmsala 
LL6

Great Bend 
H6

Holbrook 
L6

Table A-3. Average compositions for pyroxenes analyzed in this study (1 sigma standard deviation).

Peekskill
H6

Mulga (north) 
H6
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Nakamuta and 
Motomura 

(1999)
Maximum T Minimum T
Cpx-1σ CaO
Opx+1σ CaO

Cpx+1σ CaO
Opx-1σ CaO

Peekskill H6 988 913 914±47 943±39 880±59 975 800 735
Mulga (north) H6 901 881 865±57 900±52 826±60 850 800 725
Great Bend H6 878 901 874±57 909±57 836±64 750 800 740
Holbrook L6 984 916 918±37 936±41 898±34 850 750 810
Owasco L6 910 982 934±73 960±64 879±64 875 900 820
Dhurmsala LL6 937 922 896±75 933±58 859±120 850 900 800

Plagioclase

Table A-4. Temperatures (°C) calculated for average pyroxene compositions using QUILF95 and Lindsley (1983) 
compared with peak temperatures recorded by plagioclase. Maximum and minimum temperatures were determined 
by adjusting CaO contents in pyroxene pairs ±1 sigma (σ) standard deviation.

QUILF95 Lindsley (1983)

Cpx Opx Pyroxene 
Pairs Cpx Opx
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Meteorite Type
Two-

Pyroxenes Cpx Opx Reference
Canon City H6 918±29 980 914 Chamot (2000)
Canyonlands H6 926±47 895 919 Lange et al. (1974)
Chiang Khan H6 876±64 977 876 Chamot (2000)
Great Bend H6 874±57 878 901 This Study
Guarena H6 893±38 988 878 Slater and McSween (2001)
Ijopega H6 889±24 1000 871 Jaques et al. (1975)
Mulga (north) H6 865±57 901 881 This Study
Peekskill H6 914±47 988 913 This Study
Seoni H6 887±20 996 867 Bunch et al. (1972)
Aumale L6 865±42 954 860 Dodd and Jarosewich (1981)
Chantonnay L6 873±48 1028 855 Dodd and Jarosewich (1981)
Girgenti L6 904±36 991 896 Gastineau-Lyons et al. (2002)
Guangnan L6 - - 932 Wang and Rubin (1987)
Holbrook L6 918±37 984 916 This Study
Kyushu L6 812±150 891 887 Baryshnikova et al. (1985)
L'Aigle L6 881±50 996 872 Dodd and Jarosewich (1981)
Maryville L6 - - 797 Shervais et al. (1986)
Nan Yang Pao L6 - - 895 Wang and Rubin (1987)
Owasco L6 934±73 910 982 This Study
Putinga L6 - - 894 Keil et al. (1978)
Raoyang L6 - - 931 Wang and Rubin (1987)
Sheyang L6 - - 908 Wang and Rubin (1987)
Suizhou L6 - - 907 Wang and Rubin (1987)
Tourinnes-la-Grosse L6 869±52 1013 854 Dodd and Jarosewich (1981)
Tuan Tuc L6 861±39 1026 839 Dodd and Jarosewich (1981)
Vouille L6 858±57 975 852 Dodd and Jarosewich (1981)
Willowbar L5/L6 879±80 940 902 Lange et al. (1973)
Zhaodong L6 - - 712 Wang and Rubin (1987)
Appley Bridge LL6 - 1001 - McSween and Patchen (1989)
Chicora LL6 934±68 936 968 Heyse (1978)
Dhurmsala LL6 896±75 937 922 This Study
Jolomba LL6 - - 969 Sighinolfi et al. (1991)
Mangwendi LL6 - - 916 McSween and Patchen (1989)
Mangwendi LL6 930±41 1010 926 Heyse (1978)
Nyirabrany LL6 945±42 984 952 Heyse (1978)
Saint Mesmin A LL6 910±43 964 914 Heyse (1978)
Saint Mesmin B LL6 877±24 1011 856 Heyse (1978)
Saint-Severin A LL6 897±104 1037 904 Heyse (1978)
Saint-Severin B LL6 874±32 882 885 Heyse (1978)
Saint-Severin LL6 888±42 945 891 Gastineau-Lyons et al. (2002)
Varvik LL6 925±106 987 962 Heyse (1978)

Table A-5. Temperatures (°C) calculated for published chondrite pyroxene analyses.
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Geochemical 
Groupa Rock Typeb

Top 
Depth 
(mbsl)

B 
(ppm) 1sc Be 

(ppm) 1s Li 
(ppm) 1s

SR0121-4.40 post shield subaerial 246.2 7.9 0.9 4.9
SR0125-6.25 post shield subaerial 256.5 3.6 0.42 (2) 0.7 4.7
SR0129-5.20 post shield subaerial 267.5 1.1 0.70 (3) 0.7 3.6 0.35 (2)
SR0133-8.20 post shield subaerial 281.3 3.8 0.5 2.7
SR0141-7.90 high SiO2 subaerial 305.8 2.0 1.0 4.1
SR0193-0.00 high SiO2 subaerial 443.6 0.6 0.6 3.2
SR0240-3.30 high SiO2 subaerial 563.5 2.8 0.5 0.05 (2) 4.0
SR0256-0.95 high SiO2 subaerial 589 2.3 0.36 (3) 0.7 4.0
SR0276-7.85 high SiO2 subaerial 636 6.9 0.4 4.9 0.07 (2)
SR0300-6.50 high SiO2 subaerial 695.9 3.5 1.06 (2) 0.6 4.5
SR0340-1.00 high SiO2 subaerial 793.6 5.5 1.00 (3) 0.3 3.7
SR0354-7.75 low SiO2 subaerial 833.9 0.7 0.4 3.5
SR0372-2.80 high SiO2 subaerial 871.2 5.1 0.6 3.3
SR0413-3.10 high SiO2 subaerial 984.2 5.2 0.4 5.1
(submarine transition at 1078 mbsl)
SR0472-1.00 high SiO2 massive 1123.2 3.4 0.5 5.0 0.21 (2)
SR0490-1.50 high SiO2 hyaloclastite 1229.6 2.9 0.4 3.2
SR0531-4.40 low SiO2 hyaloclastite 1352.6 6.5 0.3 5.3
SR0545-8.35 low SiO2 hyaloclastite 1395 3.6 0.99 (2) 0.4 3.5
SR0574-1.90 high SiO2 hyaloclastite 1474.7 1.0 1.27(2) 0.4 3.8 0.14 (2)
SR0603-8.90 high SiO2 hyaloclastite 1548.2 2.8 1.15 (3) 0.5 3.5
SR0655-4.00 high SiO2 hyaloclastite 1678.7 2.5 0.4 3.5
SR0664-5.10 high SiO2 hyaloclastite 1705.5 5.1 0.5 0.09 (2) 6.1
SR0694-9.00 high SiO2 massive 1794.8 6.1 1.38 (3) 0.5 3.1
SR0723-13.70 high SiO2 hyaloclastite 1933.8 3.0 0.89 (3) 4.8
SR0732-1.10 low SiO2 hyaloclastite 1973.8 1.7 0.6 0.01 (2) 3.6
SR0741-7.90 low SiO2 pillow 2009.8 3.1 0.2 3.6
SR0768-11.20 high SiO2 hyaloclastite 2157.4 1.9 0.5 3.2
SR0776-17.70 high SiO2 hyaloclastite 2209.5 6.3 2.65 (3) 0.4 3.4
SR0826-20.60 high SiO2 pillow 2414.1 3.2 1.56 (3) 0.6 3.4
SR0850-5.95 high SiO2 hyaloclastite 2550.9 6.1 0.5 4.4
SR0860-8.10 high SiO2 pillow 2615 2.3 0.5 3.4
SR0871-13.00 low SiO2 pillow 2654.1 3.0 1.06 (2) 0.5 0.01 (2) 4.4
SR0907-1.65 high SiO2 pillow 2789.9 3.9 0.14 (2) 0.5 3.2
SR0916-1.15 high SiO2 pillow 2837.6 1.9 0.4 0.04 (2) 2.5
SR0939-18.10 high SiO2 pillow 2961 2.6 0.4 2.6
SR0956-18.35 high SiO2 intrusive 3019 4.1 0.07 (2) 0.7 3.3
SR0967-2.75 high SiO2 pillow 3068.9 3.7 0.53 (3) 0.4 3.2
a Huang and Frey (2003)
b descriptions from Rhodes and Vollinger (2004)
c ( ) number of analyses

Table A-6. Sample description and results for Li, Be, and B from this study.
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Measured 
Concentration

Actual 
Concentrationa

Li (ppm) (ppm)
BHVO-1 4.2 4.6 (1.5)
BCR-2 8.0 9.0 (2)

Be
BIR-1 0.5 0.6

B (ppm)
BHVO-1 2.4
BHVO-1 2.8
a USGS recommended and information values

2.5 (0.6)

Table A-7. Results for standards analyzed in this study and their reported 
concentrations.
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Meteorite Li ppm Be ppm
Chassignya 1.4 (0.2) naa

DaG 476 na na 
DaG 489b 2.6 <0.04
Dho 019c 2.7 0.03
Dho 378 na na 
EETA79001a 4.5 na 
EETB79001a 2.2 na 
Los Angeles na na 
NWA 1068d 4.3 0.35
NWA 1195 na na 
NWA 1669 na na 
NWA 2046 na na 
NWA 480e 2.9 0.21
NWA 856f 4.1 0.36
QUE 94201 na na 
SAU 005 na na 
Shergottya 4.5 (0.9) na 
Y 980459 na na 
Zagamia 2.9 (1.3) na 
* ( ) 1 sigma precision
a Lodders (1998)
b Folco et al. (2000)
c Neal et al. (2001)
d Barrat et al. (2002a)
e Barrat et al. (2002b)
f Jambon et al. (2002)

Table A-8. Previously determined bulk Li and Be data for basaltic shergottites 
and Chassigny.
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Table A-9. Results for Li and Be analyses from this study.

Meteorite δ7Li (‰) Li (ppm) Be (ppm)
Chassigny 17.8 1.8 (0.11)b 0.04 (0.007)
Dhofar 019 naa 8.3 (0.14) 0.18 (0.006)
EETA79001 4.37 2.7 (0.20) 0.09 (0.008)
Los Angeles na 9.9 (0.24) 0.77 (0.020)
Shergotty na 8.0 (0.36) 0.46 (0.020)
Zagami 3.97 6.7 (0.38) 0.42 (0.018)
a na=not analyzed
b 2σ standard deviation
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APPENDIX B 



Figure B-1. Cartoons illustrating the difference between 
clinopyroxene, orthopyroxene, and plagioclase as peak 
metamorphic temperature indicators. Clinopyroxene and 
orthopyroxene identify the ultimate phases, even though 
orthopyroxene inverted from other structural states (e.g. 
protoenstatite, clinoenstatite) on cooling (Folco and Mellini, 
2000; Ferraris et al., 2002). In (a), clinopyroxene and 
orthopyroxene achieved equilibrium at peak metamorphic 
conditions (Teq), but only clinopyroxene records Teq because 
orthopyroxene re-equilibrated to a lower temperature during 
cooling. In (b), neither pyroxene necessarily records peak 
metamorphic conditions because both pyroxenes did not 
equilibrate, although several authors have suggested that 
orthopyroxene compositions were reset at the metamorphic 
peak (Teq). In (c), plagioclase crystals record crystallization 
(from chondrule glass) temperatures up to the metamorphic 
peak (Teq). 
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Figure B-2. Peak temperature estimates for pyroxenes (this 
study) and plagioclase (Nakamuta and Motomura, 1999) 
determined for the same Type 6 ordinary chondrites. Filled, 
shaded, and open circles represent two-pyroxene (with error 
bars), clinopyroxene, and orthopyroxene temperatures, 
respectively. Open squares indicate peak plagioclase 
temperatures, and descending bars represent the range of 
plagioclase temperatures for each meteorite.
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Figure B-3. Reflected light photomicrographs of (a) Peekskill-
H6, (b) Holbrook-L6, and (c) Dhurmsala-LL6. Fe metal-
sulfide boundaries are smooth in every meteorite, suggesting 
eutectic melting has not occurred. The darker silicate matrix 
surrounding the Fe metal and sulfide is composed primarily of 
orthopyroxene and olivine. Sulfide in Dhurmsala appears 
mottled due to shock.
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Figure B-4. The geochemistry of Mauna Kea lavas varies as the 
Pacific plate moves over the underlying mantle plume. During 
the pre-shield and post-shield stages, lavas are produced from 
low degrees of partial melting as the volcano samples the 
peripheral regions of the plume that contain entrained depleted 
upper mantle. Main shield stage lavas are generated when the 
volcano is above the region of the plume where a higher degree 
of partial melting taps a more primitive plume source.
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Post shield

High SiO2

Low SiO2

Figure B-5. Total alkalis-silica diagram showing Mauna Kea 
basalts analyzed in this study. Fields for common rock types 
are labeled according to Le Bas et al. (1986), and the alkali 
and tholeiitic boundary determined by Macdonald and 
Katsura (1964) is also shown. In this and following figures, 
diamonds represent post-shield lavas, squares represent low-
SiO2 lavas, and triangles represent high-SiO2 lavas.
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Figure B-6. Bulk Mg# (100*Mg/Mg+Fe2+) compared to the 
range of olivine forsterite (Fo) contents in selected samples 
from this study. Diagonal lines represent equilibrium olivine 
compositions for a given bulk Mg# using a Fe2+/Mg 
partitioning coefficient of 0.3 (Gee and Sack, 1988). Similar to
HSDP-1 lavas examined by Baker et al. (1996), the lack of 
equilibrium between olivine and host melt in samples with 
Mg#≥75 suggest they contain accumulated olivine. The 
observation that the most Fo-rich olivine in SR741 falls below 
the equilibrium Fo composition suggests the most Fo-rich 
olivine in SR741 was not analyzed.
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Figure B-7. Strong correlations of MgO with (a) CaO and (b) 
Al2O3 indicate the influence of olivine control in Mauna Kea 
lavas, except at low MgO values where lower CaO and 
higher Al2O3 indicate fractionation beyond olivine control. 
Deviations from olivine control are more obvious for post-
shield samples when Nb is compared to (c) Ni and (d) Zr. 
Arrows indicate change in slope from main to post-shield 
lavas. Symbols as in Figure B-5.
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Figure B-8. Based on SiO2 contents adjusted to 13% MgO
(Huang and Frey, 2003), Mauna Kea lavas are divided into 
low- SiO2 and high-SiO2 groups. Subaerial low-SiO2 samples 
have higher incompatible element ratios than submarine low-
SiO2 lavas, and represent Mauna Kea’s transition from main to 
post-shield building stages.
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Figure B-9. Mauna Kea lavas define a range of Sm/Yb and 
∆208Pb/204Pb (see text for definition) values that requires three 
admixed components (from Huang and Frey, 2003). High-
SiO2 lavas (gray) represent “Kea-type” compositions similar 
to Kilauea, and low-SiO2 lavas (black) appear to sample a 
greater proportion of a Loihi-like component. Post-shield lavas 
(unfilled) sample a more depleted (upper mantle?) component.
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Figure B-10. Be vs. Zr for Mauna Kea samples before (filled) 
and after (unfilled) correcting for olivine accumulation and 
fractionation. Main shield lavas (squares) show little change, as 
expected for incompatible elements. Post-shield lavas 
(triangles) show significant changes, reflecting fractionation 
beyond olivine control.
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Figure B-11. Li concentrations (ppm) with depth in the HSDP-2 
core demonstrate the minimal effect of using variable DLi

ol-melt

values of (a) 0.2, (b) 0.35, and (c) 0.45 when correcting for 
olivine accumulation and fractionation. Li and (d) uncorrected 
MgO contents follow separate trends, suggesting this correction 
accounts for the effects of olivine control. Symbols as in Figure 
B-5.
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Figure B-12. Li vs. incompatible elements (a) Zr, (b) Nb, 
and (c) Yb. Correlations observed in post-shield samples 
(diamonds) are absent in low-SiO2 (squares) and high-SiO2
(triangles) lavas, indicating Li modification in the latter two 
lava types. Sample SR850 has anomalously high 
abundances of most trace elements. Li/Yb ratios for MORB 
(1.7) and other ocean island basalts (OIB) (gray regions) are 
shown for comparison, and the arrow defines the general 
trend for the large range reported for island arc lavas. Yb
data from Feigenson et al. (2003).
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Figure B-13. Variation of Li abundances (ppm) with depth in 
the HSDP-2 drill core. Bold arrow indicates the 
submarine/subaerial transition. Individual samples with 
anomalous Li contents are labeled and described in the text. 
Symbols are the same as Figure B-5.
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Figure B-14. B vs. (a) Be, (b) K, and (c) Nb for Mauna Kea 
lavas (symbols as described in previous figures). The lack of 
correlation between these incompatible elements suggests B has 
been modified so that mantle compositions are no longer 
represented. B/Be, B/K, and B/Nb ratios for MORB are shown 
for comparison (bold lines). Other OIB typically have values 
less than MORB and IAB have values greater than MORB 
(Ryan and Langmuir, 1993).
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Figure B-15. Depth profiles for (a) B abundances and (b) 
B/Nb ratios in Mauna Kea lavas (symbols as in Figure B-5). 
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Figure B-16. Ratios of (a) Li/Dy, (b) Li/V, and (c) Li/Yb with 
depth in the HSDP-2 core follow similar trends as Li 
abundances. In low-SiO2 (squares) and high-SiO2 (triangles) 
lavas, Li variations reflect effects alteration whereas variations 
in post-shield lavas (diamonds) reflect decreasing degrees of 
partial melting. Dy and Yb data from Feigenson et al. (2003).
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Figure B-17. Beryllium vs. (a) MgO, (b) Zr, and (c) Nd in post-
shield (diamonds), low-SiO2 (squares), and high-SiO2
(triangles) lavas. Be/Zr and Be/Nd ratios for other OIB (solid 
lines), MORB (bold lines), and island arc basalts (IAB) (dashed 
lines) are shown for comparison (Ryan, 2002). Nd data from 
Huang and Frey (2003).
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Figure B-18. Variations in (a) Be abundances, (b) Be/Nd
ratios, and (c) Be/Zr ratios with depth in the HSDP-2 core. 
Although Be increases in the uppermost late main and post-
shield samples (arrow), constant Be/Nd and Be/Zr ratios 
indicate the variation is a result of decreasing degrees of 
melting rather than source region variation.
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Figure B-19. Li/Yb and Be/Nd compared to (a, d) Nb/Zr, (b, e) 
208Pb/206Pb, and (c, f) 206Pb/204Pb for Mauna Kea lavas. Li/Yb
and Be/Nd values overlap, and do not identify distinct lava 
types described by Huang and Frey (2003). Pb data from 
Blichert-Toft et al. (2003).
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Figure B-20. (a) Li/Yb and (b) Be/Nd compared to δ18O (data 
from Wang et al., 2003) for post-shield (diamonds), low-SiO2
lavas (squares), and high-SiO2 lavas (triangles). The lack of 
correlation for any of the geochemical groups suggests Li and 
Be do not record a crustal component altered at low 
temperatures in Mauna Kea’s source region.
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Figure B-21. Correlations between ε143Nd and (a) initial 
87Sr/86Sr, (b) La/Yb, and (c) oxidation states for basaltic 
shergottites suggest mixing of primitive (QUE 94201-like) and 
enriched (Shergotty-like) components (data from Nyquist et al., 
1979; Wooden et al., 1982; Borg et al., 1997; Lodders, 1998; 
Borg et al., 2000; Herd and Papike, 2000; Nyquist et al., 2000; 
Rubin et al., 2000; Taylor et al., 2002; Borg et al., 2001; 
Nyquist et al., 2001; Herd et al., 2002). Figure key includes 
additional meteorites plotted in following figures.
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Figure B-22. The linear array defined by Martian meteorites 
when Li is compared to Be suggests these elements preserve 
igneous compositions. The elevated Li abundance in Dhofar
019 is attributed to terrestrial alteration minerals (caliche) 
present in the sample. Symbols as in Figure B-21.
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Figure B-23. Lavas generated in different terrestrial oceanic 
magmatic environments (MORB-dashed, OIB-bold, IAB-
arrow) define different slopes when Be is compared to (a) Nd
and (b) Zr (Ryan and Langmuir, 1987). Symbols as in Figure B-
21. Data for Dhofar 019 from Neal et al. (2001).
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Figure B-24. Li vs. Yb for meteorites in this study. Symbols as 
in Figure B-21. Li/Yb ratios for MORB (dashed), OIB (shaded 
region), and IAB (arrow) are shown for comparison (Ryan and 
Langmuir, 1987). Data for Dhofar 019 from Neal et al. (2001).
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Figure B-25. Li/Yb vs. Dy/Yb for meteorites analyzed in this 
study. Symbols as in Figure B-21. Values for OIB (shaded), 
MORB (box), and IAB (arrow) are shown for comparison 
(Ryan and Langmuir, 1987). Data for Dhofar 019 from Neal et 
al. (2001).
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Figure B-26. On a plot of K/Li vs. La/Yb, OIB (bold) and 
MORB (shaded region) define similar slopes, but arc lavas 
(arrow) define a distinctly different trend (Ryan and Langmuir, 
1987). The steeper slope of arc lavas results from the 
contribution of altered oceanic crust (box) in the source region. 
Symbols as in Figure B-21. Data for oceanic crust from 
Donnely et al. (1980). Data for Dhofar 019 from Neal et al. 
(2001).
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Figure B-27. Li and Be compared to (a,d) ε143Nd, (b,e) initial 
87Sr/86Sr, and (c,f) La/Yb ratios (data references as in Figure B-
21). Arrows indicate apparent trends despite greater scatter in 
some of the data. Li and Be in Los Angeles seem anomalous 
when compared to La/Yb. Symbols same as Figure B-21. Data 
for NWA 480 from Barrat et al. (2002b). Data for NWA 856 
from Jambon et al. (2002). Data for EETB79001 from Lodders
(1998). 
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Figure B-28. Oxygen isotopes (δ18O) compared to (a) Li and (b) 
Be data for basaltic shergottites. Be data show a stronger 
correlation except for the seemingly anomalous δ18O 
composition of Dhofar 019 and Be composition of Los Angeles. 
Symbols as in Figure B-21. Data for NWA 480 from Barrat et 
al. (2002b). Data for NWA 856 from Jambon et al. (2002). Data 
for EETB79001 from Lodders (1998). 
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