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Abstract 

 Fundamental understanding of the various electronic and structural properties 

at surfaces is a prerequisite for improved control of nanometer-scale patterning of 

surfaces for potential technological applications. In this dissertation, we have used 

multi-scale theoretical approaches to investigate the thermodynamic and kinetic 

properties of a few elemental types of surface defects. The multi-scale approaches 

range from first-principles calculations within density functional theory to empirical 

embedded atom method (EAM) to statistical analysis to kinetic Monte Carlo 

simulations. In studying the thermodynamic properties of intrinsic line defects on a 

vicinal TaC(910) surface, our Monte Carlo simulations in comparison with scanning 

tuning microscope (STM) images have established the existence of long-range 

attractive interaction between the steps. For extrinsic point defects underneath a GaAs 

surface, we have established through our theoretical analysis in comparison with 

STM observations that many-body effects in a system with purely repulsive 

interactions can give rise to an effective attractive interaction between the dopants at 

high dopant densities. In the study of the morphological evolution of monatomic-

layer-high islands grown on metal surfaces, we have carried out Kinetic Monte Carlo 

simulations to demonstrate the importance of the island corner barriers. Our study has 

shown that if the island corner barrier effect is operational in preventing adatoms 
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located at an island edge to reach a neighboring edge defining the island corner, the 

islands thus formed must be non-compact, and develop fractal or dendritic shapes. 

Based on our EAM calculations of the diffusion barriers for various atomic processes 

and rate equation analysis, we have explained why fractal islands have rarely been 

observed on metal fcc(100) surfaces. For ideal surfaces, we have investigated the 

various driving forces for lattice relaxation based on first-principles calculations, and 

have proposed a new approach that has the promise to predict the direction of 

relaxation of the atoms in the surface layer strictly based on bulk properties of the 

given system. Finally, our fist-principles based interpretation of STM images within 

the framework of the Tersoff-Hamann theory has resulted in good agreement with 

STM experiments in revealing the anisotropy of electron density corrugations on 

several open metallic surfaces. 
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Chapter 1 Introduction 

 

The overall trend in device miniaturization has been a persistent driving force for 

fundamental research. Recent progress in nanotechnologies has increased the 

likelihood of eventual mass production of nanometer-scale devices with atomic-scale 

precision. As such devices become smaller and smaller, their surface-to-volume ratios 

keep increasing accordingly, making it more stringent to fully understand and control 

the various properties of the surfaces and interfaces involved. In particular, the 

structural properties of the surfaces, interfaces, and thin films will greatly influence 

the overall performance and stability of the devices.  It is therefore scientifically 

intriguing and technologically significant to study on a fundamental level various 

structural properties of surfaces, interfaces, and thin films. 

A surface is created when one half of the volume of an ideal and infinitely large 

solid is removed in a Gedanken experiment. Such an ideal surface thus created is of 

course energetically unstable, and various electronic and atomic relaxations are bound 

to take place. As a simple form of relaxation, the atomic positions in the surface 

region preserve their registry as in the bulk in the directions parallel to the surface, 

but adjust the interlayer spacings in the direction perpendicular to the surface. To 

reliably determine the directions and magnitudes of the interlayer relaxations at a 

surface is by no means a trivial exercise, as we will demonstrate in the present thesis 
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for the cases of metallic systems.  It is also quite common that the atoms in the top 

few layers lose their registry in the parallel directions, as manifested in various 

fascinating forms of surface reconstruction. One well-known example of symmetry 

reduction via surface reconstruction is the (7x7) reconstruction of Si(111) as observed 

by Binnig et. al. using the scanning tunneling microscopy (STM) [1]. The structure of 

Si(111)-(7x7) reconstruction was later theoretically clarified by Takayanagi and 

coworkers [2](see Figure 1.1). As it turned out, the invention of STM is perhaps the 

most important development in surface science over the past few decades, enabling 

dramatic advances in microscopic understanding of various structural, 

thermodynamic, dynamic, and kinetic properties and processes at the surfaces of a 

wide variety of systems. Furthermore, STM has also been proven to be a powerful 

tool for nanopatterning and nanofabrication at surfaces [3].  As an important 

preparation step of the present thesis project, we will use specific examples to 

demonstrate the working principles and important applications of the STM in 

characterizing surface electronic properties. 

If understanding the structural and electronic properties of an infinitely flat 

surface is challenging, the physics involved is further greatly enriched by the fact that 

in the real world, any surface unavoidably contains many defects. Such defects can be 

classified into different kinds following the classic work of Burton, Cabrera and 

Frank (BCF) [4].  In the BCF model, a surface contains terraces, ledges (or steps), 
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Figure 1.1 Reconstructed Si(111)-(7x7) surfaces. (a) First observation with the STM 

[1]; (b) the proposed theoretical model for the 7x7 reconstruction [2]. 

(b) 

(a) 



 

4 

 

 

 

 and kinks.  The ledges or steps are one kind of line defects, and the kinks along the 

ledges are viewed as point defects along the line defects. Atoms adsorbed on the 

terraces (or adatoms), and vacancies are other common types of point defects. 

Furthermore, in many cases point defects on surfaces are actually in thermal 

equilibrium with point defects in the bulk, and for this reason a complete 

understanding of surface properties also require knowledge about defect properties 

underneath a surface. An example of understanding point defects inside a compound 

semiconductor will be demonstrated, together with its connection with corresponding 

defect properties on the surface.    

The central theme of the thesis is to investigate, using multi-scale theoretical 

approaches, the thermodynamic, kinetic, and dynamic properties of surface defects in 

a few representative model systems. The thermodynamic properties include the 

equilibrium distribution of steps on a vicinal surface of an ionic metal substrate under 

the influence of long-range step-step interactions, and many-body effects in dopant 

clustering inside a compound semiconductor.  As examples of kinetic and dynamic 

properties, we elucidate the importance of certain atomic rate processes in 

determining the morphological evolution of monatomic-layer-high islands on metal 

surfaces. The multi-scale approaches invoked range from first-principles calculations 

within density functional theory to empirical embedded atom method to statistical 

analysis to kinetic Monte Carlo simulations.  

The scientific rationals behind such studies are twofold. First, a precise understanding 
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of the properties of such intrinsic and external line and point defects in principle 

should offer us potential new opportunities in the drive for nanopattening of surfaces. 

In this regard, we refer to two recent examples. The first is the formation of Ag 

nanoclusters with a narrow size distribution on a strain-induced network of surface 

superstructure formed when 2 monolayers (ML) of Ag are deposited on a Pt(111) 

substrate [5] (Figure 1.2(a)). Here the narrow size distribution is achieved because 

atoms deposited within one unit cell of the superstructure cannot escape from the cell 

if the growth kinetics are carefully controlled, making them self-assembled into a 

single cluster. In the second example, beautiful arrays of metal nanoclusters with 

identical size and equal spacing have been achieved most recently, again taking 

advantage of self-assembly of adatoms induced by the surface reconstruction together 

with a fine tuning of the growth kinetics [6] (Figure 1.2(b)). It is anticipated that, 

atomic steps on a vicinal surface bunched together can significantly suppress the 

meandering of the steps and the populations of kinks, making such systems ideal 

templates for growth of low-dimensional structures such as quantum well 

superlattices [7], quantum wires [8], and quantum dots [9].  Needless to say, the point 

defects may also significantly influence the structures to be formed on a surface. 

These considerations illustrate at least partially the underlying motivations of the 

research projects to be presented in the thesis. 

Another major theme of the thesis is to identify the ultimately important atomic 

rate processes determining the compactness of monatomic-layer-high islands formed  
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Figure 1.2 Nanoclusters formed on reconstructed substrates. (a) STM image of Ag 

nanoclusters formed on the reconstructed substrate of 2MLAg/Pt(111)[5]. (b) STM 

image of In nanoclusters formed on Si(111)-(7x7) surface. Each nanocluster contains 

precisely six In atoms, and at higher coverages the magic In clusters form spatially 

ordered arrays [6]. 

(a) (b) 
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on a surface in the initial stages of epitaxial growth.  As mentioned in the two 

examples of nanocluster formation on 2MLAg/Pt(111) and Si(111)-(7x7), even in the 

cases where the surface superstructures played essential roles in leading to the self-

assembly of the adatoms, proper controls of the growth kinetics (deposition rate, 

substrate temperature, etc.) was still essential.  In the case of nanopatterning via 

island formation on an elemental surface without reconstruction, proper control of the 

atomic rate processes involved would be ever more crucial. 

 The dissertation is organized as follows. First, in Chapter 2, I present brief 

coverage of the theoretical methodologies employed in carrying out the studies 

presented in the rest of the thesis. Then as preparation efforts, I present in Appendix 

A some generic discussions about lattice relaxation of an ideal surface, and propose a 

new method that has the promise to predict the direction of relaxation of the atoms in 

the surface layer strictly based on bulk properties of the given system.  These studies 

are carried out using first-principles calculations within density functional theory.  

Also presented as a preparation step, in Appendix B we show how to interpret the 

STM images as taken on a few representative metal surfaces. Here the calculations 

are again first-principles based, within the framework of the Tersoff-Hamann theory 

[10].  

After those preparation studies, we move on to the three major chapters of the 

thesis, all of which motivated by intriguing experimental observations using the STM. 

In Chapter 3, I present the results from a study of the thermodynamics of the intrinsic 
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line defects in surfaces. Specifically, I will consider the step-step interactions on a 

vicinal surface of TaC(910), and use Monte Carlo simulations in comparison with 

STM results to establish the existence of long-range attractions [11].  

Chapter 4 is focused on studies of one type of extrinsic point defects 

underneath surfaces. Here we use statistical mechanics and Monte Carlo simulations 

to explain the STM observation of the clustering of charged Zn dopants in GaAs. 

Through our theoretical analysis, it is established that many-body effects in a system 

with purely repulsive interactions can give rise to an effective attractive interaction at 

high dopant densities [12]. The present study may have an important impact on better 

understanding and possibly overcoming the fundamental solubility limits in doping of 

semiconductors. 

 In Chapter 5, we study the morphological evolution of island grown on 

surfaces. Here we first carry out Kinetic Monte Carlo simulations to study the effect 

of island corner barrier on island morphologies. We will show that, if the island 

corner barrier effect is operational in preventing adatoms located at an island edge to 

reach a neighboring edge defining the island corner, then the islands thus formed 

must be non-compact, in the form of fractal or dendrite. We will further explain why 

fractal islands have rarely been observed on fcc(100) surfaces, based on  embedded 

atom method (EAM) calculations and rate equation analysis [13].  

Finally, Chapter 6 presents a summary of the main findings of the thesis. 
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Chapter 2 Methodologies 

 

As mentioned in Chapter 1, typical surfaces contain many defects. Studies of 

surface defects are usually carried out using both first-principle and semi-classical 

approaches, corresponding to different degrees of approximation. In our research, we 

mainly use Monte Carlo (MC) simulations [14] to study thermodynamic properties of 

defects, such as the intrinsic step-step interactions on a vicinal TaC(910) surface [11] 

and extrinsic dopant-dopant interactions underneath GaAs surfaces with Zn as the 

dopant [12]. In the study of the nucleation mechanisms in initial stages of epitaxial 

growth [13], we use Kinetic Monte Carlo (KMC) simulations [15]. The difference 

between MC and KMC will be explained later. We also use Embedded Atom Method 

(EAM) [16] to calculate the essential adatom diffusion barriers on fcc(100) surfaces. 

These EAM results serve as good estimates for the diffusion barriers used in the 

KMC simulations of morphological evolution of the two-dimensional (2D) islands 

[13]. For more accurate calculations of the diffusion barriers, ab initio calculation is 

the direction to pursue. Nevertheless, when the system of interest has very low 

symmetry, such as the motion of adatom around a fractal island on a surface, it is still 

beyond the scope of ab initio calculation, which makes EAM a plausibly 

compromised alternative. In our calculation of surface relaxation [17] and STM 

image [18], ab initio calculation is the main method. In the following, we give a short 
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description for each of the three main methods used: ab initio, EAM, and MC/KMC. 

Descriptions of many other analytic approaches employed, such as rate equation, 

distribution function, pair correlation function, Green function, and tensor analysis, 

will be scattered in the respective chapters. 

 

2.1 Ab Initio Method 

In 1964, Hohenberg and Kohn rigorously proved that the ground state energy 

of an interacting inhomogeneous electron gas in a static potential v(r) can be written 

as: 

  (1) 

where n(r) is the electron density, and G[n] is a universal functional of the electron 

density [19].  However, in their original work, there is no suggestion on an explicit 

form of the functional that links the energy and the electron density.  

One year later, Kohn and Sham proposed the local density approximation 

(LDA) of the exchange-correlation energy and made it possible to accurately 

calculate the total energy of systems with “slowly varying or high density” [20]. 

Within the Kohn-Sham theory, we have  

  (2) 

where Ts[n] is the kinetic energy of a non-interacting system with electron density n. 
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Exc[n] is defined as the exchange-correlation energy of an interacting system with 

electron density n. For a system where its Wigner-Seitz radius (rs) is much shorter 

than the typical length (r0) over which there is appreciable change in electron density, 

namely, a system with slowly varying density, Exc[n] can be approximated by the 

exchange-correlation energy per electron εxc(n) of a uniform electron gas with density 

n : 

  (3) 

The error involved is of the order of (rs/r0)4. In the high-density regime where rs is 

much smaller than the Bohr radius a0, Exc is in the order of rs/a0 smaller than the 

kinetic energy Ts, and the error in the above local density approximation is negligible.  

Within the above framework, they established a procedure to self-consistently 

calculate the total energy of a system by taking an initial electron density distribution 

as the beginning of the iteration. In regions where the above approximations do not 

apply, such as adatoms on surfaces or the overlapping regions in molecules [20], non-

local correction is needed, which is the subject of the more recent development of the 

generalized gradient approximation (GGA) [21].  

In our calculations of surface relaxation and STM images, we use the 

WIEN97 [22] code. It is a full-potential method with linear augmented plane wave 

(LAPW) basis, and has GGA build-in [22].   
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2.2 The EAM Approach 

For physically realistic systems, there are many defects with no or severely 

reduced symmetry, and ab initio calculations would demand construction of huge unit 

cells. However, self-consistent determination of the electron densities of such systems 

with huge unit cells is very slow and computationally expensive. Therefore, to 

determine the structure and properties of such large systems, coarser approximations 

often become unavoidable, with the input of some essential parameters derived from 

experiments or ab initio calculations of smaller or idealized systems.  

One typical example along this line of the approach is the embedded atom method 

(EAM). According to density function theory [19], the total electronic energy for an 

arbitrary arrangement of nuclei can be written as a unique functional of the total 

electron density. EAM [16] is based on the fact that usually the total-electron density 

in a metal can be well represented by the linear superposition of the contributions 

from the individual atoms. The electron density in the vicinity of each atom can then 

be expressed as a sum of the density contributed by the atom in question plus the 

electron density from all the surrounding atoms. As this latter part is a slowly varying 

function in space, within the EAM it is assumed to be a constant. This defines an 

embedding energy as a function of the background electron density and the atomic 

species, which is given in the following formula: 
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 (4) 

Here, ρh,i is the host electron density at atom i due to the remaining atoms of the 

system, Fi(r) is the energy to embed atom i into the background electron density ρ, 

and φi,j(Rij) is the core-core pair repulsion between atoms i and j separated by distance 

Rij. (Note that Fi only depends on the elements of atoms i and j.) The electron density 

is, as stated above, approximated by the superposition of the atomic densities. Details 

about how to construct these quantities are given in Chapter 5. 

In our study of the essential diffusion barriers against adatom motion on metal 

surfaces, we have used EAM to calculate the energy of a given configuration along 

the diffusion path. The results from such EAM calculations enable us to establish 

certain qualitative understanding of the trends of island formation on various metal 

surfaces. 

   

2.3 (Kinetic) Monte Carlo Simulations 

Since the introduction of Metropolis walk [14], Monte Carlo simulations has 

been frequently employed to study both the dynamic and the static behaviors of large 

systems. The reason is because of the fact that for large systems, the energetically 

most favorable configuration is usually extremely difficult to determine reliably from 

analytic approach and the ensemble of the possible configurations is simply too large 



 

14 

 

 

 

to do calculations configuration by configuration.  

In systems where thermal equilibrium is established, the simulation is used to 

generate the statistically most important configurations. The Metropolis walk [14] 

samples the configuration space to find the states of the lowest free energy. The 

sequence of the configurations generated during the simulation does not necessarily 

correspond to the real evolution of the system towards the states of the lowest free 

energy. But because the intermediate transient states are statistically unimportant, MC 

simulations provide an efficient way to reach the equilibrium state. 

In studying the kinetics of non-equilibrium phenomena such as those taking 

place during epitaxy, the sequence of configurations generated by the Monte Carlo 

procedures becomes important. Therefore, one must invoke kinetic Monte Carlo 

simulations in order to avoid missing the metastable but physically important 

configurations. 

In general, the execution of Monte Carlo simulations can be described by the 

following stochastic process [23]:  

 (5) 

Here P(f,t) is the probability distribution of configuration f at time t, and w(i,f) 

is the probability of a successful hop from the configuration i to f. 1/τ can be taken as 

the attempt frequency. In most practical applications, w(i,f) takes the following form 

[14,15]: 
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  (6) 

 

For MC simulations, δE =E(ci)-E(cf); while for KMC simulations, δE=E(cb)-

E(ci). (See Figure 2.1). 
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Figure 2.1 Configuration changes in (Kinetic) Monte Carlo simulations. 

 

 

Configuration 



 

17 

 

 

 

 

Chapter 3 Step-Step Interactions on Vicinal Surfaces 

 

3.1 Introduction 

  In this chapter, we describe the properties of intrinsic line defects existing on 

the surfaces. When we create some new surface structure, there is always some 

vicinality away from an ideal crystalline index. On a vicinal surface, its macroscopic 

surface index forms small angle to a low index crystal face. In the ideal case, a vicinal 

surface consists of terraces of the low index plane, separated by regularly spaced 

monatomic steps. In reality, the spacing is never perfectly regular, as the surface 

reconstructs to form thermodynamically more stable structures. The step height can 

vary from one step to another. The width of step separation also has a broad 

distribution instead of some sharp peaks. Furthermore, atoms may meander along the 

steps.  

The existence of steps on a surface is not necessarily a bad thing. As stated by 

Lagally [24], "a surface may actually be 'too good' for the best film growth because it 

contains too few steps". There have been studies of the stability of vicinal surfaces 

because of their technological importance in serving as templates for epitaxial growth 

of well-ordered thin film systems and nano devices [7,8,9,25,26].  

Because the spatial distribution of these line defects is defined on a scale 
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much larger than the atomic distance, there has been a long tradition of utilizing 

macroscopic concepts such as surface stress, surface strain and surface energy to 

analyze their properties. As STM becomes popular in observing surface 

morphologies, it is now possible to verify the validity of classical models and the step 

dynamics from microscopic results. For example, recent quantitative studies of the 

terrace width distribution have allowed determination of the nature of step-step 

interactions [26-33]. 

 Theoretical determination of step-step interaction and its dependence on the 

distance between steps can be obtained in two ways. One involves simulations, as to 

be demonstrated in our analysis of the step-step interaction on a TaC(910) surface. 

The other employs theory of elasticity and thermodynamics, as demonstrated in the 

classical works of Marchenko and Parshin [34] and Andreev and Kosevich [35]. 

In the following, we will review some basic concepts used in the continuous 

theory of elasticity, such as strain and stress tensors. Based on these, we will deduct 

in detail the step-step interactions on vicinal surfaces. Afterwards, we will explore the 

microscopic interactions that have been included in such a macroscopic description. 

Beyond this microscopic origin, we will consider other possible step-step interactions 

on vicinal surfaces. For the purpose of clarity and completeness, we have used these 

literature as our major references: Landau and Lifshitz [36], Marchenko and Parshin 

[34], Andreev and Kosevich [35], Steward, Poland, and Gibson [37], Ibach [25], 

Redfield and Zangwill [25].  In the end, we will give our studies of step-step 
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interaction on TaC(910) surfaces.  

 

3.2 Description of Surfaces within Continuous Theory of Elasticity 

 In this section, our derivation mainly follows that of Landau and Lifshitz 

[36]. 

  

3.2.1 Strain tensor 

  Let us put a solid in an abstract space S. Different parts of the solid are 

measured and represented in this virtual space. Under the action of external forces, 

because of the lack of strict rigidity, the solid bodies exhibit deformation to some 

extent, i.e., they change in shape and volume. All measures of length, area and 

volume are still carried out in this virtual space S. Before and after the deformation, 

the extensions of the same body in the space may be different. When measured within 

this space, its density can be different as well. Here we only consider external forces 

that cause no movement of the center of mass of the solid.  

The deformation of a body is described mathematically in the following way. 

Before the deformation, let vector r (with components x1,x2,x3) represents the position 

of one point in the body as located in the space S. In the neighboring region of this 

point, we assign a small volume dV to it. After the deformation, this point will make 

small shift; we use r' to denote the new position, which is a function of r. The mass 
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inside the volume dV is also likely to occupy a different amount of space dV'. The 

displacement of this point due to the deformation is denoted as: 

 (1)  

If u is known as a function of r, the deformation of the body is completely 

determined.  

Under the condition that the deformation is small, which means that there is 

no mass flow and neighboring atoms are still neighboring atoms, we can take the 

differential form of Eq. (1) and get  

 (2)  

After the deformation, the change of distance l between two points has the following 

relation: 

  (3) 

Here . In a simplified and symmetric form, Eq (3) can be 

written as   (4)  

where  

  (5)  

The tensor uik is called strain tensor, which is symmetric. Like any symmetrical 

tensor[36], we can diagnolize this tensor by choosing its principal axes.  

If we further assume that the deformation is so small that we can neglect the 
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second or higher order contributions of the deformation in measuring the dimensions, 

the volume change under the deformation is  

 (6) 

In obtaining the above term, we have also taken into account the fact that the sum of 

the principal values of a tensor is invariant. 

 

3.2.2 Stress tensor 

  Suppose that before the application of the external force, the solid we 

considered above is in such a state that the arrangement of the atoms leads all parts of 

the solid in mechanical equilibrium. Here the mechanic equilibrium has statistical 

meaning, in the sense that physical quatities are measured in a reasonably long time t 

so that the time average of the position 

 (7)  

is a constant independent of t and a longer t gives the same constant. Displacements 

or vibrations within a time scale shorter than τ gives the thermal energies of the solid.  

Upon the application of the external force , the atoms respond by 

displacements, leading to a macroscopic deformation of the solid. After certain time, 

atoms arrive at their new mechanic equilibrium. In this state, there exists internal 

force at each point such that 

=0 (8)  
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Next, we assume that the atomic forces have a very short range of action, 

such that the effect of these atomic forces extends only to the neighborhood of the 

atom exerting them, over a distance of the same order as that between the atoms [36]. 

This restriction implies that we exclude cases such as pyroelectic and piezoelectric 

materials where the deformation of the solid results in macroscopic electric fields 

[36]. Under these restrictions, we have a well-defined mathematical problem in which 

the resultant force on a tiny volume dV of the solid is an infinitesimal quantity and is 

proportional to the volume dV. Under this condition, fi(r) has the physical meaning of 

force density at position r. 

Next we consider the virtual work done by the internal force. Given a tiny 

deformation δu(r) of the solid, the work done by the internal forces is 

  (9) 

 Next we introduce a symmetric tensor σik such that  

  (10)  

Then Eq. (9) becomes  

 (11) 

 Let us further assume that the external force does not cause deformation at 

the infinite boundary of the solid, then the first term representing the surface 

integration at the infinity of the solid is zero. Taking the symmetric form of the tensor 
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σik and the definition of strain tensor in Eq. (5), we get:  

 (12)  

This indicates that the tensor σik is a conjugate quantity associated with the 

strain tensor, therefore it is called stress tensor. It is essential to notice that the stress 

tensor is not uniquely defined. Any transformation of the following form is 

acceptable since it gives the same force:  

 (13) 

A proper choice of χikl can make it symmetric [36]. 

 

 3.2.3 Thermodynamics of the deformation [36]  

Now we consider the recovery process after the removal of the external force. 

Suppose this process is reversible. In unit volume, the change of internal energy U 

can be related to the absorption of heat Q and the work done by the solid W as:  

 (14)  

The change of the free energy per volume F is 

 (15) 

 The stress tensor can be expressed as 

  (16)  
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For a small deformation, the free energy of the system can be expanded as a function 

of the strain tensor. In general, 

 (17)  

For an isotropic system, it can be further simplified as  

(18)  

in which K and µ are the bulk and shear modulus respectively. 

The stress tensor for an isotropic system then becomes 

 (19)  

 

3.2.4 Differential equation for the deformation field u(r) of an isotropic solid [36] 

Here we look at the distribution of the displacement field caused by the 

external force. If the deformation is very small and is elastic [36], after substituting 

(19) and the symmetric form of the strain tensor (5) into the mechanical equilibrium 

equation (8), we get 

 (20)  

or  

  (21) 

 In the following, the method adopted in Ref. [36] is used. Also we suppose 
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the external force only exists on the surface. We seek a solution in the following form 

 (22)  

in which ϕ is a scalar, and the vector ξ fulfills the Laplace equation: 

  (23)  

Then we get the following equation 

  (24)  

in which σ is defined as 

  (25)  

In the case of simple extension or compression of a rod, the above quantity has the 

meaning of Poisson's ratio [36]. We can further simplify Eq.(24) after we integrate it 

and neglect the integration constant,  which leads to 

 (26)  

 

3.2.5 Green's function for the displacement field on the surface 

 In the following, we consider a system occupying the half space z>0. The 

force distribution is concentrated at the origin (x,y,z = 0,0,0), 

 (27)  

For z>0, we need to solve the equation (26). First, let us look at the boundary 

condition. Integrating Eq.(8) and using the force given in Eq.(27), we get  
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 (28) 

 Because we assume that the effect of the force disappears at infinity, the above 

equation is simplified to 

  (29) 

 The left deduction follows that in [36] and is omitted here. For the specific force 

given in Eq (27), the distribution of the displacement field is 

  (30)  

where Gik takes the role of the Green's function and is given by the following matrix 

 

(31)  

Here  

 (32)  

and it has the physical meaning of Young’s modulus [36]. For an arbitrary surface 

force fi(x,y), the displacement field is given by 

  (33) 
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3.3 Elastic Theory of Step-Step Interactions on Vicinal Surfaces 

3.3.1 General derivation of the step-step interactions 

  On the surface of a crystal, there are many steps. Her we deduct the 

interaction between two steps. The influence of the step atoms on the surface is 

illustrated in Figure 3.1 [37]. All the actions and influence of the atoms of the two 

steps on the properties of the substrate are included in the forces acting on the flat 

surface, which are  and  per area respectively. Here the two steps 

run along the y-axis and are separated by d. The induced displacement fields by these 

two steps are  

 (34) 

Now let us consider the work done by these two forces. This work should be 

equal to the change of energy in the surface. Because these forces are limited in the 

surface, i.e. z=0, we can write the work per unit length along the y axis as  

 (35)  

The interaction part then becomes 

 (36) 

Here, how to choose or justify a reasonable force distribution because of the presence 

of the step is a matter of controversy [34-35,37,81,39-40]. Let us first obtain the 

integration of the Green's function to learn about how far the interaction can 

propagate through the substrate,  
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Figure 3.1 Illustration on how to treat the effect of a step. It assumes that the plane 

AB communicates all the influence of the step atoms on the substrate [37]. 
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   (37)  

First let us suppose the step runs from y’=-L to y’=L. y is a point between the 

two ends and far away from the boundary. The integrated result is  

         (38)  

Because of the divergence with L, we do not take the infinite limitation of L at this 

moment. 

 

3.3.2 Step-step interaction with the force distribution proposed by Marchenko and 

Parshin 

 Next let us suppose that indeed the stepped surface is subjected to a force 

distribution as proposed by Marchenko and Parshin [34]. We put it in a more general 

form as: 

  

In the above equations, i =1,2. and represent the strength of force components 

tangential ( along the x direction) and normal ( along the z direction) to the surface, 

(39)



 

30 

 

 

 

respectively. They lie in the x-z plane with the x component (z component) equal to 

the σxx (σzz) element of the surface stress tensor associated with the step [35]. There 

is no force along the steps since these steps are supposed to run freely (along the y 

direction). Substituting Eqs. (39) and (38) into Eq. (36) and taking the infinite limit of 

L, we get the following results  

 (40)  

We note that this is twice as large as in [34]. The discrepancy may be due to 

that in their original definition, Marchenko and Parshin only took into account one 

half of the total interaction energy. 

Blakely and Schwoebel [39] also demonstrated long ago that surface stress 

[40] can drive atomic relaxation in the vicinity of steps, which in turn induces elastic 

distortions in the bulk. Therefore, the elastic interaction between steps is caused by 

the displacements of the step atoms relative to the positions these atoms would 

assume in the bulk.  

We can understand the above origin of step-step interaction from the 

following microscopic argument proposed by Ibach [25], namely, step atoms do not 

have as many bonds with others as terrace atoms have.  According to our studies of 

the surface relaxation (Appendix 1) taking into accounting the difference of bond 

numbers, it is not unusual that the step atoms should be displaced relative to the 

positions of the normal terrace atoms. These displacements cause elastic deformation 
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of the material around the steps. Based on Eq.(36), the overlapping of the 

displacements due to neighboring steps causes the step-step interaction. The 

perpendicular and parallel components of the displacement vectors have different 

orientation and spatial distributions, as sketched in Figure 3.2. (a) and (b) respectively 

[25]. The interaction from perpendicular components can be repulsive or attractive, 

depending on their relative orientations. The parallel components always lead to 

repulsive interaction, regardless of the relative orientation of the steps.   

From Eq. (39) we note that the displacement field is calculated by assuming a pair of 

line dipole forces at the position of the step, as in the original work of Marchenko and 

Parshin [34] and Andreev and Kosevich [35]. This is justified as long as the distance 

between the steps is large compared to the inter-atomic distances [25,43,37]. The 1/d2 

-dependence given in Eq.(40) has been confirmed experimentally on surfaces vicinal 

to Si(111) [31], hcp He4 [44], Cu(1,1,11) [45] and Cu(1,1,13) [33], and by general 

EAM calculations of Tian et al on Cu(11n) surfaces [33]. However, the strength of 

the interaction is a matter of controversy. The theoretical and experimental agreement 

on vicinal Si(111) surfaces is good [31,33,25]. The study on hcp He4 [44] also agrees 

well with the result from the estimate of the surface stress [46]. In contrast, on vicinal 

Cu(11n) surfaces, the theoretical interaction strength is an order of magnitude 

stronger than experiment values [33]. It is worth to note that the contribution arising 

from the parallel components is neglected [25] in Si(111) [31]. 
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Figure 3.2 Displacements of the step atoms. Displacements are separated into 

components (a) perpendicular and (b) parallel to the terrace [25]. 



 

33 

 

 

 

  From Eq. (39), we need more information about the force dipoles in order to 

have a quantitative value of the interaction strength. Marchenko and Parshin [34] set 

the perpendicular force dipole F3
(i) equal to the product of the surface stress and the 

step height, which was confirmed later by considering the torque balance on a stepped 

surface [37]. However, EAM calculations by Shilkrot et al indicated that Eq. (40) 

overestimates the perpendicular force dipoles by more than a factor of 2 [40], (or a 

factor of 4 using our Eq.(40)).  

The parallel force dipole F1
(i) was calculated by Andreev and Kosevich [35] to 

be equal to the first derivative of the step energy with respect to the strain 

perpendicular to the surface, suggesting that F1
(i) were a quantity that is 

microscopically unrelated to F3
(i) [25]. However, Shilkrot et al [40] showed that the 

ratio of F1
(i) and F3

(i) is determined by the elastic constants. For the special geometry 

they considered, F1
(i) and F3

(i) are about equal. The estimation of the repulsion by this 

method made the discrepancy between the theory and experiment even larger [25].  

From Eq. (40) and Figure 3.2, the constraint of the surface orientation by the 

substrate makes it very likely that the elastic interaction is purely repulsive [38]. 

Redfield and Zanwill [38] suggested that it is possible to imagine a symmetry 

breaking situation in which the atomic distortions near alternative steps differ in such 

a way that the elastic force becomes attractive. They sketched a scenario on a 

semiconductor surface [47] where the reconstruction occurs in such a way that the 

surface stress of the terrace between two closely spaced steps switched from 
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compressive to tensile (or vice versa). For metal surfaces, since reconstruction is 

difficult, they excluded such a possibility [38]. 

 It is essential to notice that so far our discussions of the 1/d2 elastic interaction 

is based on the assumption of the force density as indicated in Eq. (39). If we have a 

successive array of steps with an alternating force density along x direction given by 

the force monopoles ±F0δ(x-xi) [81,39,48], the following form of step-step interaction 

energy per length can be obtained: 

 (41)  

Here a is a microscopic cutoff length, introduced via Lorentzian broadening of the 

delta function [81]. The intensity of F0 is the constant to justify the monopole nature 

of the above force distribution [81,17]. 

 

3.4 Other Possible Step-Step Interactions on Vicinal Surfaces 

  So far we have focussed on effective step-step interaction arising from elastic 

interactions mediated by the substrate. In the following, we discuss other possible 

step-step interactions in the literature. 

  One important type of step-step interaction considered is of entropy nature 

[49-55]. It was measured on He4 vicinal surface as well [44]. At high temperatures, 

steps have many kinks and meander in space. However, the meandering behavior is 

constrained by neighboring steps, which is the source of the entropic repulsion. It has 
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been thought that the entropic repulsion is rather weak and the terrace width 

distribution resulting from entropic repulsion alone is rather broad [25]. It takes the 

form [53]: 

   (41)  

Here a⊥ and a|| represent the microscopic kink protrusion perpendicular to the step and 

the flatness parallel to the step respectively, and ε is the kink excitation energy. 

A 1/d2-interaction is also found for the interaction of steps via the electric 

dipole moment [51] associated with the steps [56-57]. For ionic crystal surfaces, the 

existence of attractive electrostatic interaction between steps was recognized long 

long ago in the work of Kossel [58] and Stranski [59] based on the terrace-step-kink 

model of vicinal surfaces. For metal surfaces, steps do not exhibit net charge but a 

dipole moment can occur due to the spillout of the electrons in the vicinity of the step 

[60-61]. The energy of interaction per unit length between two steps is [62] 

   (43)  

Here, p1 and p2 are the dipole moments of the step-charge distributions, and n is a 

unit vector defined by p1 and p2. The perpendicular components of the dipole 

moments cause repulsion, while the parallel components cause an attraction. So far, 

people have little knowledge about the magnitude of the dipole moment at steps. 

Evidence that such dipole moments exist is from measurements of the work function 
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as a function of the step density and the energy contribution of the electric dipole 

moments appears to be much smaller than the repulsion arising from the elastic strain 

field as given in Eq. (40) [25]. Given that experimental values for the step-step 

interaction on Cu(11n) are much smaller than that from Eq. (40) [33] as well, we can 

not exclude that a possible contribution from the electric dipole moment indeed exists 

[25]. 

On metal surfaces it has been suggested that step-step interaction can also be 

originated from the electronic screening associated with the presence of each step, 

which is an oscillatory Friedel type of interaction and can be attractive at some 

distances [28,32,38]. The interaction energy between two adatoms weakly adsorbed 

onto a flat substrate separated by a large distance d is given as [63-64]: 

   (44)  

The exponent m is equal to 5 for the simplest case where the Fermi energy does not 

lie in a surface band [38]. Now consider the case where we have two parallel rows of 

atoms weakly adsorbed on a flat substrate and separated by a distance d. As an 

approximation, the interaction energy between the rows can be computed by simply 

adding the above atom-atom interaction over all atoms in each row. For small kF, one 

finds the asymptotic (large d) result  [38] 

 (45)  

Note that the interaction falls off with separation more slowly than the atom-atom 
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interaction given in Eq.(44). Also, it is important to note that Eq.(45) is the energy of 

two rows, not two steps. The interaction between two steps is given by summing over 

all rows in the half planes that constitute the terraces bounded by the steps, which is 

an oscillatory interaction energy that decays as 1/d9/2 [38].  

 

3.5 Attractive Step-Step Interactions Observed on TaC(910) Surfaces 

 In the following, we present our study [11] of the step-step interactions on 

TaC(910) using scanning tunneling microscopy  and Monte Carlo simulations. In 

particular, we show that a weak, long-range, attractive step-step interaction must be 

combined with a strong, medium-range, repulsive step-step interaction in order to 

interpret the measured step separation distribution. The likely physical origin of the 

atomic-range attractive interaction that leads to the formation of multi-height steps is 

also discussed. 

Generally, when cooled below a roughening temperature TR, a vicinal surface 

can undergo a step-bunching (or faceting) transition in which a number of steps 

bunch closely or coalesce to become a multi-height step [30,65-70]. Based on x-ray 

scattering data from the vicinal Si(310) surface [30], Song and Mochrie speculated 

that such step bunching could involve step-step attraction. This speculation has 

stimulated much theoretical interest, and the faceting has been predicted to arise from 

a competition between short-range attraction and long-range repulsion between the 
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steps [70-73], where the short-range is about one atomic spacing. Earlier, in a paper 

by Frohn et al. [31], scanning tunneling microscopy images of a sequence of carefully 

prepared and equilibrated Cu(1,1,19) surfaces vicinal to (100) were presented. A 

short-range repulsion (1-2 atomic rows) in combination with a medium-range 

attraction (3-5 atomic rows) has also been used to explain the measured step 

separation distribution. If such forces exist, it would have important implication for 

theories of surface phase transitions [47,74], thermal meandering of steps [53], and 

the kinetics of step motion [75-77,39] as well as the stability of vicinal surfaces [78]. 

However, despite these observations, the existence of an attractive interaction still 

remains speculative because there is no clear understanding on how the combination 

of attractive and repulsive interactions can lead to the experimentally observed step 

separation distributions. The microscopic origin for the atomic range step-step 

attraction as assumed in theories [71-73] to explain step bunching remains unknown. 

 

3.5.1 Experimental results  

Experiments by Zuo et al were performed in an ultrahigh vacuum chamber 

with a base pressure ~ 1.0 x 10-10 Torr. The chamber was equipped with an STM 

system, low-energy electron diffraction (LEED) optics, a cylindrical mirror analyzer 

for Auger electron spectroscopy (AES), and an ion-sputter gun. TaC is an ionic 

crystal with the sodium chloride structure and has an extremely high melting point, ~ 

3983 °C. TaC(910), vicinal to the (100) plane, was cut 6.34° from the [100] direction 



 

39 

 

 

 

towards [010], and polished to the desired orientation to within 0.25°. The surface 

was routinely cleaned by heating to ~ 2000 °C using electron bombardment. During 

the heating, the sample housing was cooled by liquid nitrogen to maintain good 

vacuum. After cleaning, no impurities were detected with AES, and a LEED pattern 

with spot splitting energy dependence indicative of dominant double-height steps was 

observed. Note that the high-temperature heating also served as an activation process 

for faceting. All STM images were taken at room temperature (RT) in the constant 

current mode with a typical sample bias of 1-2 V and a tunneling current of ~ 1.0 nA.  

First, we determine a minimum annealing temperature (Tmin) at which obvious mass 

transport occurs on the surface. Below Tmin the morphology is essentially frozen as 

the sample is cooled slowly from higher annealing temperatures towars RT. 

Therefore, the morphology imaged at RT reflects the same morphology at Tmin. A 

slow cooling is required in order to get the well-ordered faceting phase below TR. 

Figure 3.3 shows the STM images obtained after annealing the sample at different 

temperatures (T). The dwell time during each annealing process is ~ 60 seconds for T 

< 1500 °C and ~ 30 seconds for T >1500 °C. (Note that for T ~ 2000°C, 30-second 

annealing is long enough for the surface to reach a steady state). The lowest annealing 

temperature at which there is indication of single-height steps is about 1000 °C 

(Figure 3.3(a)), which also indicates obvious mass transport on the surface at this 

annealing temperature. The morphology imaged at RT after annealing at T ~ 2000 °C 

(Figure 3.3(d)) represents an equilibrium morphology frozen in around 1000 °C as the 
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Figure 3.3 STM images of TaC(910) annealed at different temperatures. (a) T = 1000 

ºC, (b) T = 1500 ºC, (c) T = 1750 ºC and (d) T = 2100 ºC). The size in (a) - (c) is 1000 

x 500 Å2 and in (d) is 3000 Å2. 
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sample cools slowly, which was confirmed by repeated experiments at T ~ 2000 °C 

with various cooling time.  

 Other more important features in Figure 3.3 are: (1) single-height steps appear 

first and are dominant after the lower temperature annealing (T <1500 ºC) and these 

single-height steps merge from off-[001] directions to become multi-height steps 

along the [001] direction as T increases. At T > 2000 ºC (Figure 3.3(d)), the step 

distribution is stabilized and consists of 12% single-, 56% double-, 31% triple-, and 

1% quadruple-height steps. (2) These multi-height steps along [001] are very straight, 

which implies a high kink excitation energy (or very strong bonding) and the step 

meandering is suppressed. 

 

3.5.2 Short range interaction  

Multi-height steps can be regarded as an extreme case of step bunching and the step-

wall represents the (010) facet. This phenomenon has also been observed on 

TaC(n10) (n = 1, 2, 3), where even higher multi-height steps are formed [66,68-69]. 

The fact that these multi-height steps are only activated at high temperatures is 

consistent with the existence of the atomic-range attraction between steps as 

suggested in theories [71-73]. We suggest that an attraction of such a short range can 

originate from the orbital affinity between broken bonds or electron-density spillout 

at steps [60-62]. It is important to notice that Lennard-Jones potential is also of short-

range type and can be important here since the existence of multi-height step is a 
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phenomenon in the range of atomic distance. Our calculations of two parallel ionic 

chains of Ta(+)C(-) indicate that the step-step interaction potential can be well fitted 

by a Lenard-Jones type function. When the charge center has a relative shift of one 

atomic distance, it is attractive; when there is no shift, the interaction is repulsive. 

When a sample is cooled from above TR where step fluctuations can cause single-

height neighboring steps to randomly move together, this short-range attraction can 

overcome a medium-range repulsion (2 < x < 13 atomic rows, see the discussion 

below) to make neighboring steps coalesce. The formation of multi-height steps 

reduces the repulsive interaction energies among the single-height steps [66,68-69] 

because the average step separation must be increased to preserve the net surface 

orientation. Also, the step-edge energy is lowered by creation of a low-index step-

wall facet due to a reduction in the number of broken bonds at steps. Thus the total 

energy of the multi-height steps is more energetically favorable than the collection of 

purely single-height steps. This picture is not only consistent with the trend observed 

for vicinal Si [65,67,30,70,27,79] and TaC surfaces [66,68-69], where steps with 

larger heights form with increasing miscut angle, but also supports the conclusion of a 

very recent effective-medium-theory calculation by Frenken and Stoltze [78]. They 

predicted that due to a very short-range step-step attraction, many metallic vicinal 

surfaces should be faceted into low-index planes, but due to the entropic contribution 

of step vibrations (even at RT) to the surface free energy, the faceting of these 

surfaces is not usually observed. However, for TaC surfaces, the step meandering is 
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small (as can be observed from the straightness of the steps in Figs. 3.3(c) and (d)) 

due to very strong ionic bonding (as indicated by the extremely high melting point of 

3983 °C). In addition, the orbital affinity responsible for this atomic-range attraction 

is strongly orientation-dependent, which is the general nature of ionic bonding. 

Because of these special properties, the entropic contribution to the free energy of 

TaC surfaces may be neglected; thus it is possible that the multi-height step facets can 

be stabilized by the atomic-range step-step attractions. 

  

3.5.3 Long-range attraction  

Next, we focus on the step-separation distribution for the steady-state images 

for the sample annealed at T > 2000 °C for 30 seconds (Figure 3.3(d)). We can see a 

landscape of alternating step bunches and relatively wide terraces with irregular size. 

The step-step separation ((100)-terrace width) within these step bunches is measured 

to be 13 atomic rows on average, where the atomic row spacing a = 2.228 Å. With the 

measured configuration of 12% single-, 56% double-, 31% triple-, and 1% quadruple-

height steps, the facet formed by a step bunch has an average orientation close to 

(610), which is different from the overall orientation (910) of the surface. A line-cut 

profile from Figure 3.3(d) in the [010] direction is shown in Figure 3.4. From 

systematic measurements of the step separations along the [010] direction, the 

probability distribution P(x) is plotted in Figure 5(b) (labeled as Tac910). This 

distribution has a highly skewed shape with a very sharp peak at xp ~13 atomic rows
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Figure 3.4 Cross-section profile of the step configuration. It was obtained from STM 

images shown in Figure 3.3(d). 
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and a mean step separation at xm ~18.6 atomic rows. This is quite different from those 

reported for vicinal silicon surfaces [27,79] and even for the TaC(n10) surfaces (n = 

1, 2, 3) [66,68-69], where the observed Gaussian-like step-step separation 

distributions result from a strong step-step repulsion varying as d-2. The sharp peak 

position xp represents the most probable step separation within the step bunches, and 

the mean step separation xm is close to the mean (100) terrace width of 18 rows 

expected for dominant double-height steps with the (910) orientation. More 

interestingly, the rapid decay for x < xp and the approach to zero for x < 5 indicate the 

existence of a strong step-step repulsion in this range, so that the distribution of 

narrow terraces within step bunches is highly restricted. The slow decay for x > xp 

indicates a large variation in the width of the relatively wide (100) terraces between 

the (610) facets. The skewed shape of the distribution indicates that only a medium-

range repulsive potential between the steps is unlikely to account for the observation, 

which is confirmed by our Monte Carlo simulations to be discussed below. A weak 

but longer-range attractive potential must be included. One can expect that, if we cut 

a vicinal surface with the (100) terrace much smaller than that of the (910) surface, 

the step-separation distribution will be determined predominantly by the repulsive 

step-step interaction, so that the distribution will be Gaussian when the repulsive 

interaction varies as d-2 [27]. This is exactly what has been previously observed on 

the TaC(310) surface [66,69]. The origin of the repulsive interaction is believed to 

come from the elastic dipolar effect because from a LEED I-V study [80], the 
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TaC(100) terrace is slightly buckled with the C atoms displaced outward (~ 0.2 Å) 

relative to the Ta atoms. This obvious surface strain may be relieved at steps, 

resulting in a force dipole at steps.  

To see quantitatively how the competition between the medium-range 

repulsion and long-range attraction between the steps leads to such a skewed step-

separation distribution, we have performed Monte Carlo simulations of 5the step 

thermodynamics. In the simulation, a one-dimensional (1D) array of 300 sites is 

initially given a uniform distribution. The system starts to approach equilibrium as the 

simulation time proceeds under the influence of a step-step interaction potential, 

  (47)  

in which A, B, and α are positive parameters. The first term represents medium-range 

repulsion, and the second term long-range attraction. The 1D approximation is 

justified by the observation of straight steps along [001] due to very high kink 

excitation energy. In order to reduce the fitting parameters, the first repulsive term in 

Eq. (47) is determined from the Gaussian distribution of step separations observed for 

the TaC(310) surface because in this case the step-step repulsion dominates. The 

fitting result is indicated in Figure 3.5(a), where T is the dimensionless temperature. 

T=0.005 gives the best parameters to be used in fitting TaC(910). 

In Figure 3.5(b) we present the best simulation results for α=0.5, 1 and 1.5. In 

these three cases only B is the adjustable parameter. We also present the result for  
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Figure 3.5 Step distributions from STM and Monte Carlo simulations. (a) Step 

distributions on TaC(310) from STM (as indicated by Tac310) and that from three 

Monte Carlo simulations at different temperatures. (b) Step distributions on TaC(910) 

from STM (as indicated by Tac910) and that from four Monte Carlo simulations with 

different power index α (1.5, 1, 0.5) and the case where no attraction is included. 

(a) 

(b) 
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B=0, which means no attraction. In this case, there is no free parameter. Note that a 

repulsive term alone cannot produce the observed skewed distribution. The skewed 

distribution obtained with no attraction in Figure 5(b) is because the value of A that 

gives the best fit for TaC(310) can not give the best for TaC(910). Using free 

parameters as that for Figure 5(a), the shape is Gaussian-like as well. To obtain the 

skewed shape of distribution found on TaC(910), it is necessary to include an 

attractive step-step interaction. 

  

3.5.4 Summary  

Using scanning tunneling microscopy, we have studied the step configuration 

on TaC(910), which is vicinal to the (100) plane, miscut 6.34º towards [010]. After 

annealing at ~ 2000 ºC, the surface is dominated by double-height steps which are 

bunched between relatively long intervening (100) terraces. The step-separation 

distribution is very skewed and sharply peaked at xp ~ 13 atomic rows, which 

represents the most probable step separation within step bunches. Monte Carlo 

simulations show that besides the short-range repulsion, a long-range, attractive 

interaction must be included to interpret the measured distribution. Here we should 

also note on the limitation of our analysis. First, from the STM images, it is clear that 

there are complicated atomic movements at high temperature. This should be 

accompanied by the breaking of the chemical bonds. This fact casts doubt on the 

approach of using the concept of step-step interaction while ignoring the breaking and 
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rearrangement of the atomic rows. Second, here we have supposed that the short-

range interaction and the long-range interaction act independently. It is very possible 

that the formation of multi-height steps and the skewed distribution of the step 

separations are intertwined. Thirdly, our experiment and previous study [28] indicate 

that the non-equilibrium nature of system can strongly influence the distribution of 

the step separations. All these would weaken the suitability of extracting the physical 

interaction by adopting rigid step-step simulations to fit the step separations. 
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Chapter 4 Dopant-Dopant Interactions underneath 

Surfaces 

 

4.1 Introduction 

 The ability to incorporate reproducibly dopant atoms with precisely 

controlled concentrations and spatial distributions is essential in various technological 

applications of semiconductor materials. As the effort for device miniaturization 

continues to intensify, to achieve this goal is becoming increasingly difficult. In 

particular, the fabrication of nanometer-scale devices, the distributions of dopants 

underneath the surfaces may significantly influence the performance of these devices.  

Dopant incorporation in submicrometer- and nanometer-scale systems is 

ultimately governed by the intrinsic interactions between the dopant atoms. The 

generally accepted view is that the charge of a dopant atom is screened by the charge 

carriers in a given semiconductor, which results in a repulsive screened Coulomb 

interaction between the dopants [12]. Such repulsion in turn leads to a rather 

homogeneous distribution of the dopant atoms in the semiconductor. In this chapter, 

we will show that cross-sectional scanning tunneling microscopy (XSTM) 

experiments actually indicate that negatively charged Zn dopant atoms in GaAs are 

inhomogeneously distributed and form clusters of dopant atoms. At first sight, the 
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clustering behavior seems to suggest the existence of a possible attractive interaction 

in addition to the screened Coulomb repulsion between the dopants. But our 

quantitative analysis of the dopant distributions by Monte Carlo simulations 

convincingly shows that the effective attraction actually results from strong many-

body effects in the repulsive dopant-dopant interactions. We also illustrate the 

methodology to determine quantitatively the intrinsic screening length of point 

charges in the semiconductors based on XSTM images [82]. 

 

4.2 Experimental Results  

Ebert et al investigated Zn-doped GaAs crystals with different carrier 

concentrations (n) ranging between 2.5 x10 18 and 2.5 x 10 20 cm - 3 [12]. The Zn 

dopant atoms were introduced into the crystals during growth (n<10 20 cm - 3) or by 

Zn diffusion at ~1180 K (n>1020 cm-3). The crystals were slowly cooled down to 

room temperature after growth with the exception of Zn-diffused crystals, which were 

quenched to room temperature. Thus the dopant atoms reached an equilibrium at a 

freeze-in temperature of GaAs or in the case of Zn-diffused material at ~1180K. 

Samples cut from the different crystals were cleaved in ultrahigh vacuum (5 x 10 - 9 

Pa) and the isolated dopant atoms exposed on the (110) cleavage surfaces were 

imaged with atomic resolution by XSTM.  

Figure 4.1(a) shows a typical STM image of such a cleaved surface of a GaAs  
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Figure 4.1. STM images of the clustering of dopant atoms. (a) STM image of a (110) 

cleavage surface of Zn-doped GaAs acquired at -2.4 V. A long-range contrast 

variation is superposed onto the atomic-scale corrugation of the atomic rows along 

the [110] direction. The bright and dark contrast features are dopant atoms and 

vacancies, respectively. (b) Positions of the dopant atoms in (a). (c) Local 

concentration of the dopant atoms. A high concentration is shown as white contrast.  
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crystal doped with 2.5 x 10 20 Zn cm - 3. The image shows the occupied density of 

states above the As atoms acquired at negative sample voltage [83]. The atomic-scale 

corrugation arising from the atomic rows along the [110] direction can be recognized 

as rows from the upper right to the lower left corner. Localized bright contrast 

features arise from isolated dopant atoms [84]. The few localized dark contrasts are 

due to vacancies formed mostly after cleavage [85]. The localized contrast of the 

dopant atoms and vacancies arises from the imaging of the local screening potential 

around the isolated defects or dopants [86]. 

One of the most distinctive features in the STM images is the long-range 

contrast change (on the scale of about 5 to 10 nm) superposed on the localized 

features of the dopant atoms. The long-range contrast becomes more pronounced at 

lower magnitudes of the voltage, indicating that it is the signature of variations of the 

local band bending, namely, the position of the valence band edge changes locally 

relative to the Fermi level [85]. In order to unravel the origin of this effect, we 

deduced from Figure 4.1(a) the positions of all the dopant atoms based on their local 

contrast discussed in Ref. [84] [Figure 4.1(b)] and calculated the local concentrations 

[Figure 4.1(c)]. High concentration of dopant atoms is displayed as white areas; in 

contrast, the local concentration of dopants is a factor of 8 lower in the dark areas. 

Figure 4.1(c) demonstrates that the concentration of the dopant atoms varies by nearly 

1 order of magnitude on the scale of about 10 nm and all the bright areas in Figure 

4.1(c) correspond to the bright areas in Figure 4.1(a). Thus local fluctuations of the 
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dopant concentration on the scale of about 10 nm by nearly 1 order of magnitude 

cause fluctuations of the Fermi level on the same scale imaged as long-range contrast 

in Figure 4.1(a). Figure 4.1 also demonstrates that the dopant atoms tend to cluster. 

We have observed the clustering of dopants in all the samples investigated, including 

those grown by different methods, doped by diffusion and during crystal growth, and 

in different materials (GaAs and InP). Thus the observed effect is not simply due to 

sample preparation, but rather an intrinsic nature of the dopants.  

As mentioned earlier, all the dopant atoms are negatively charged and should 

therefore mutually interact with the repulsive screened Coulomb potential. 

Nevertheless, the clustering behavior suggests the possible existence of a long-range 

attractive interaction between the dopants. In trying to identify the physical origin of 

the attraction, several candidates may come to mind, such as stress effects associated 

with the dopants [87], attractive forces caused by the oscillatory nature of the 

screening charge surrounding each dopant, or just a statistical distribution. In the 

following, we will show that, rather than any of those possibilities, the effective 

attraction is most simply accounted for by considering the many-body (or correlation) 

effects in the otherwise strictly repulsive screened Coulomb interaction. As described 

below, consideration of the correlation effects also naturally resolves another puzzle 

related to the apparent screening length of the repulsive potential in the 

semiconductor. 
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4.3 Extract Interaction through Pair Correlation Function 

 We proceed by first studying the effects of the short-range repulsion on the 

dopant distribution. The existence of the short-range repulsion is clearly indicated by 

the fact that although clustering occurs the probability of finding a very close pair of 

dopant atoms is negligible. In order to quantify the repulsive interaction we deduced 

from the XSTM images the positions of all the dopant atoms and calculated the 

distances r between all possible pairs of dopants [88-90]. This gives us the measured 

probability distribution of pair distances. Dividing the measured probability 

distribution of pair distances by the one for noninteraction, randomly distributed 

dopant atoms results in the pair correlation function c(r), which is related to the mean 

force potential, W (r), through [91]  

  (1)  

It should be noted that only if the extension of the interaction is smaller than the 

average separation of the dopants, correlation effects can be neglected and the mean 

force potential equals the interaction energy. On the other hand, the deviation of the 

mean force potential as derived from Eq.(1) away from the true interaction energy at 

low particle density limit should indicate the existence of correlation or many-body 

effect. 

 Figure 4.2(a) shows the values –ln[c(r)] for three carrier concentrations as a 

function of the distance r. First, we observed in all cases a repulsive interaction, 
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Figure 4.2. Pair correlation functions from STM and comparison of screening lengths.

(a) Negative logarithm of the pair correlation function for three carrier concentrations 

and (b) values for screening lengths Rs determined in (a) as a function of the carrier 

concentration (filled squares). The solid line represents the theoretical screening 

length calculated according to Eq. (3). The open squares show the screening length 

corrected for many-body interactions. 
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whose extension increases from 2 to 5 nm if the carrier concentration decreases from 

2.5 x 1020 to 2.5 x1018 cm- 3. This reflects the repulsive screened Coulomb interaction 

between two equal charges and the carrier concentration dependence of the screening. 

It is well known that the charge carriers screen charges of dopants in semiconductor, 

which leads to a screened Coulomb potential surrounding each dopant [82]  

  (2)  

with Rs being the screening length 

   (3)  

Fk{h} are the Fermi-Dirac integrals with the reduced Fermi energy h=EF/kT. If we 

assume the low dopant density limit, we can fit the data shown in Figure 4.2(a) with a 

Yukawa potential and determine the screening length as a function of the carrier 

concentration [filled squares in Figure 4.2(b)]. As expected, the screening length 

increases with decreasing carrier concentration. However, the data do not agree 

quantitatively with the theoretical values for the screening length [solid line in Figure 

4.2(b)] determined according to Eq. (3) for a freeze-in temperature of 900 K. 

  

4.4 Many-Body Effect Discovered from Monte Carlo Simulations 

  The effective attraction between the dopants and the substantial discrepancy in 

the screening lengths described above both strongly suggest the importance of many-
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body effects in the otherwise repulsive interaction between the dopants. As known 

previously, for a collection of mutually repelling particles, strong many-body effects 

can result in oscillatory features in the pair correlation function, with the minima 

indicating effective attractive interactions [88,91]. Furthermore, if the repulsion is a 

screened one such as that described by Eq. (2), many-body effects can also result in a 

shorter apparent screening length than the true one. To demonstrate that this is indeed 

the case for the present system, we have performed Monte Carlo simulations of the 

experiment. In the simulations, we positioned randomly 8000 dopant atoms 

surrounded by a screened Coulomb potential in a three-dimensional model crystal and 

allowed them to migrate to reach an equilibrium configuration. We took the boundary 

effects into account. In a real crystal the dopant atoms have to overcome some 

migration barrier in order to change their lattice position. It is rather difficult to 

implement this in our calculation, because the exact diffusion mechanism of Zn 

dopant atoms in GaAs is very complex. It is usually assumed that the dopant atoms 

diffuse in interstitial sites rather fast until they retake a substitutional lattice site by 

kicking out the Ga atom on that site [92]. This process occurs at elevated temperature 

and freezes in during the slow cooling process of the crystal growth procedure. From 

the data about Zn diffusion [92] we estimate the freeze-in temperature to be about 900 

K. Because the electrostatic screened Coulomb potential affects the energy of a 

specific lattice site induced by neighboring dopants, we can assume that the effect of 

Coulomb interactions is felt by the dopants independent of the details of the migration 
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path. This consideration allows us to simulate the effect of the pair screened Coulomb 

interactions on the final spatial configuration of the dopant atoms without specifying 

the exact diffusion path. Specifically, we assume that the dopant interaction leads to 

an additional potential added to the trapping potential at a substitutional site. 

Therefore we allowed the dopant atoms to migrate with an energy equivalent to a 

temperature of about 50 K only within the screened Coulomb pair interaction 

potentials. In the real crystal this simulates the case where the diffusion occurs at 

freeze-in temperature plus 50 K. Simulations with different temperatures showed that 

within a reasonable temperature range the exact choice of the temperature does not 

change the results significantly. 

  After reaching the equilibrium configuration we analyzed the spatial 

distribution as we did for the XSTM images. We determined the (output) screening 

length from the simulated pair correlation function for different (input) screening 

lengths of the Yukawa potential. The results show that for very low dopant 

concentrations the input and output screening lengths are equal. At the experimental 

dopant concentrations the output screening lengths are considerably smaller than the 

input screening lengths due to many-body effects, i.e., interactions between more than 

two dopant atoms. Using these simulations we determined the intrinsic screening 

length in the GaAs crystals as a function of the carrier concentration by comparing 

the measured screening length with the output screening length of the simulation. The 

corresponding input screening length is the intrinsic one. The input screening lengths 
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[empty squares in Figure 4.2(b)] agree very well with the theoretical calculations 

according to Eq. (3) at 900 K (solid line). (The data obtained on Zn-diffused GaAs at 

1180 K agree too, because at n >1020 cm -3 the screening length is only very weakly 

dependent on the temperature.) The error bars of the corrected values arise from the 

error bars of the measurement and the error estimation of the simulation. We note that 

Figure 4.2(b) shows the first quantitative microscopic measurement of the screening 

length in semiconductors. 

The good agreement in the screening length with consideration of many-body 

effects and that from the classical screening theory indicates that the present system 

can be well described by the classical screening. The importance of many-body 

effects is further corroborated by the simulated pair correlation function in Figure 4.3, 

which shows a clear attractive part beyond a short-range repulsive core. We note that 

an attractive part becomes most pronounced in the experimentally determined pair 

correlation function for the highest doped sample. The effective attractive interaction 

potential is the result of many-body effects [91] and leads to the clustering of dopant 

atoms observed experimentally. This conclusion is consistent with the observation 

that clustering of dopant atoms occurs independent of the semiconductor material, 

growth conditions, dopant element, and the technique of dopant incorporation. The 

model used is based only on the presence of charges in a material with a limited 

carrier concentration. 

At this stage we discuss other possible sources of attractive dopant  
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Figure 4.3. Pair correlation function from simulation, indicating many-body effect. 

Simulated negative logarithm of the pair correlation function with many-body 

interactions for a dopant concentration of 1.5 x1020 cm -3. 
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interactions. Stress-related forces induced by substitional Zn atoms can be excluded, 

because Zn atoms have nearly the same covalent radius as Ga atoms, which they 

substitute. Friedel oscillations can also be ruled out, because they should be too weak 

in strength at the elevated temperatures, and we found no indication of them in STM 

images. Van der Waals forces induced by fluctuations of the screening cloud can 

result in attractions, which are, however, also too weak compared to the direct 

Coulomb interactions. The simulations and the measured data also excluded statistical 

variations of dopant concentrations with no many-body interactions to be the origin of 

the clustering. Thus there are so far only many-body effects of the screened Coulomb 

interactions of dopant atoms, which are consistent with the experimental data.  

In conclusion, we have used cross-sectional scanning tunneling microscopy to 

demonstrate that negatively charged Zn dopant atoms in GaAs are inhomogeneously 

distributed and form clusters of dopant atoms. The clustering behavior suggests the 

existence of a possible attractive interaction in addition to the screened Coulomb 

repulsion between the dopants. Our quantitative analysis of the dopant distributions 

by Monte Carlo simulations leads to the conclusion that the effective attraction 

actually results from strong many-body effects in the otherwise repulsive dopant-

dopant interactions. Many-body effects are also shown to be important in extracting 

the intrinsic screening length of the Yukawa potential as a function of the carrier 

concentration in the system. Our study reveals a basic physical origin limiting the 

homogeneity of dopant atoms achievable in semiconductors. 
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Chapter 5 Kinetics of Extrinsic Defects: 2D Growth 

Mechanisms 

 

5.1 Introduction  

In this chapter, I present the studies of growth phenomena during the early 

stages of epitaxy. Unlike the studies presented in chapters 3 and 4, in epitaxial thin 

film growth, non-equilibrium kinetic processes play important roles, as many atomic 

diffusion processes required to achieve thermal equilibrium are significantly limited 

by the continuous deposition of new atoms on the surface [93]. However, 

thermodynamics provides the guidance on the stability of the thin films obtained. 

There are three classes of growth modes for thin film growth: Frank-van der Merwe 

(two-dimentional, 2D) growth, Volmer- Weber (three-dimensional, 3D) growth, and 

Stranski-Krastanov growth (2D followed by 3D). Under equilibrium conditions, the 

growth modes are determined by the specific surface free energy of the substrate (γs), 

that of the deposited material (γa) and the specific free energy of the interface (γi). If 

γs>γa +γi, adatoms prefer to form bondings with the substrate and the growth proceeds 

in smooth layer-by-layer mode (Franck-van der Merme growth); otherwise, adatoms 

prefer to form bonding among themselves and the growth proceeds in rough 3D 

growth. Stranski-Krastanov growth is the intermediate case, where the growth first 
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proceeds in the 2D mode, but beyond certain critical thickness the growth proceeds in 

the 3D mode [94-95].  

In reality, realization of any of the above growth modes based on 

thermodynamic free energy arguments is through the various complicated kinetic 

processes taking place during the growth. And how to obtain an epitaxial growth 

morphology in the desired mode is usually a challenge. As demonstrated by examples 

presented in Chapter 1, a good control and understanding of the growth conditions is 

important in growing high quality surface structures. Especially, the high demand in 

improving 2D growth capabilities requires that people can have the flexibility in 

choosing the properties of adatom and substrate materials, so that the devices made 

can adapt to various physical environment. In the design of certain systems, the 

intrinsic properties of adatoms simply do not allow them to wet the substrate (for 

example, the interaction strength among adatoms themselves is stronger than that 

between adatoms and substrate atoms [94]). In this case, artificial effects such as 

strains or various defect structures are usually introduced to achieve the goal [93-

94,25,96]. In molecular beam epitaxy (MBE), high growth temperature is utilized to 

achieve both a saturated adatom vapor and a high adatom surface diffusion so that the 

growth can proceed rapidly. How to avoid side effects such as intermixing becomes 

important and an intimate knowledge of the atomic diffusion mechanisms is critical in 

improving the product quality [93]. In this aspect, one important contribution is the 

microscopic observation that the size of the Schwoebel- Ehrlich barrier [97-98] 
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encountered by adatoms at the step edges can significantly determine whether the 

growth mode is 2D or 3D. If the barrier is small, adatoms can easily jump down at the 

steps before being trapped by arriving adatom, leading to the formation of layer-by-

layer flat growth.  

In the growth of thin films or nano devices from the vapor phase, single atom 

diffusion on the surface is the most fundamental process. It gives rise to nucleation of 

islands on substrate terraces or to step flow growth at elevated temperatures. 

Rigorously speaking, the adatoms navigate on an energetic landscape that has many 

local minima. In our below studies of surface diffusion presented below, we generally 

assume that a diffusion barrier can characterize the diffusion process. When atoms are 

in the local minima, they have enough time to establish thermal equilibrium with the 

substrate. Once they are thermally activated out of the local minima, they diffuse into 

other local minima. 

The kinetics in semiconductor MBE [99-100,24] can be quite different from 

that of metallic systems [93]. This is due to the fundamental difference between the 

localized bonding nature for semiconductors and the delocalized electron nature on 

metal surfaces. Recently there has been significant progress in the understanding of 

electrons in determining the growth mechanism [101], which allows us to go beyond 

the classical atomic picture and explore the quantum origin of the different growth 

behaviors.  
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5.2 Mean-Field Nucleation Theory of Surface Diffusions 

Let us suppose that during epitaxy, atoms from the vapor hit the solid 

substrate with a rate F (in monolayer per second, i.e. MLs-1). These atoms make 

random diffusion on the surface until they meet other adatoms to create dimers and 

islands of larger sizes. For simplicity, let us assume that dimers are stable against 

splitting and immobile. As the deposition proceeds, the population of dimers 

increases about linearly with the time until their mean separations become 

comparable to the mean diffusion length of a single atom. Thereafter, the probability 

for a diffusing monomer to meet another monomer or a dimer becomes comparable 

and the growth of larger islands competes with the creation of more dimers. After the 

density of stable nuclei nx (in number of islands per monolayer, x standing for any 

size that is stable) has increased sufficiently, any further deposition would exclusively 

lead to island growth, which means the saturation of the island density. Further 

deposition of atoms can cause coalescence of the existing islands to form larger ones.  

Theoretical analysis of the above phenomena dated back to the work by 

Frenkel and many others [102,58]. Later Zinsmeister [103] used rate equations to 

describe the above growth process quantitatively. In the following, we take the simple 

case of 2D island growth, with the further assumption of no evaporation and no 

mobility or splitting of the dimers. A more general description can be found in the 

classic work of Venable [104]. The rate equations for the density of monomers and 
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stable islands can be written as  

 (1)  

   (2) 

Here D represents the diffusion constant of the adatoms. σx and kx represent 

respectively the capture area of diffusing atoms and impingement area of the atoms 

being deposited for an island of size x. The terms on the right-hand side of Eq.(1) 

denote, respectively, the increase of monomer density due to deposition with flux F, 

the decrease due to the creation of a dimer when two diffusing adatoms encounter, the 

decrease when a monomer is captured by a stable islands, and the decrease due to 

impingement on stable islands or monomers. In Eq. (2), the first two terms account 

for the increase of stable island density, nx, due to the creation of dimers when two 

monomers meet by diffusion and direct impingement onto a monomer. The last term 

represents the coalescence of islands, which is neglected in the low coverage regime 

[95].  

It is important to note that in the above we essentially have neglected the 

distinct characters of islands with different size (x) or configurations. The capture 

areas σ1 and σx only reflect the local geometries statistically. Equation (1) and (2) 

only describe the general time evolution of the average values of n1 and nx. The 

capture areas can be evaluated from the following diffusion equation [105]  



 

68 

 

 

 

   (3)  

with  

    

Here the spatial variation of the monomer density N1(r,t) is related to n1 by requiring 

that  . r is the position of a monomer as measured away from the 

island under consideration. ξ is the average distance traveled by a monomer before 

being captured by an island or another monomer and α represents the fraction of the 

flux hitting the bare substrate. Usually we are interested in the saturated island density 

( ) as it reflects the mean free path for monomer diffusion. Under this 

condition, the capture area σx can take the simple constant value of σ1=3, σx=7, 

[104,106], which agree well with the above self-consistent calculation.  

If we also neglect the effect of impingement (α=1), in the regime of complete 

condensation with negligible evaporation, the saturated island density can be obtained 

as [106-107],  

  (5)  

θ is the saturation coverage, η is a dimensionless nucleation density and its 

calculation is given in [108,95]. The scaling factor λ is evaluated as  

(4) 
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 (6)  

Here i denotes the critical island cluster size, defined by the condition that 

incorporating one more atom (i+1) would make the cluster stable. Ei is the critical 

cluster binding energy (E1=0).  

The temperature dependence of the saturated island density as given in Eq.(5) 

allows the extraction of information on surface diffusion, which is the underlying 

principle of using STM to detect diffusion mechanism.  

The above nucleation theory can be applied to predict the relative importance 

of various processes involved in nucleation and the average island densities can be 

estimated reasonably accurate. However, the estimated distribution of island size is 

far from being realistic [109,105]. It also can not describe coalescence very accurately 

[93,110-111].  

Studies of island growth in Ag/Pt(111) [93,111] and Cu/Ni(100) [112] 

suggested that the scaling laws of classical nucleation theory are valid only when 

nucleation takes place solely during deposition. When the ratio D/F is low, during the 

deposition adatoms would not have sufficient time to diffuse. After the completion of 

deposition, due to the existence of largely unsaturated bonding, there are still finite 

mobilities. However, their contributions to final island densities and size distributions 

are not determined by the competition between flux and monomer diffusion, but 

solely by the monomer distributions at the end of the deposition process [93]. 
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5.3 Microscopic View of Nucleation Using FIM and STM  

In this section, we give an introduction of the essential experimental apparatus 

that have been used to study surface diffusion and nucleation. However, I will limit 

my scope to FIM and STM. Other experimental designs such as utilizing field 

emission microscope [113], helilium-beam-atom scattering [114] or high-resolution 

low-energy electron diffraction [115] to carry out similar studies are not covered here.  

 

5.3.1 Detection of the diffusion mechanisms using FIM [116] 

In early 1950’s, Müller [117] introduced the important apparatus Field Ion 

Microscopy (FIM). The use of FIM to view an individual atom has constantly 

provided us detailed information about atomic processes [118,116]. Some of these 

important contributions include the discoveries of the existence of step-edge barrier 

[97] and exchange diffusion [119-120].  

In FIM, the image obtained is from protruding atoms of the tip itself. In such 

experiments, a high positive voltage (3-20kV) [116] is applied between the tip and the 

detector. In the chamber, there is a background imaging gas, which is usually He or 

Ne because of their chemical stability and easiness to be purified [116]. These 

imaging gas atoms are ionized at a few Å away from the surface and accelerated 

toward the detector where image spots are formed. The different levels of protrusion 

of the tip atom give rise to the non-uniform distribution of the electric field at the 
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surface, which is the origin of the imaging contrast in FIM [116].  

In the cleaning procedure of FIM, it has a unique field evaporation process, 

which removes surface atoms as ions by a high electric field [118]. It occurs when the 

applied voltage to the tip is increased to a value beyond that required for field ion 

imaging. This process can generate well-defined substrate surfaces for precise study 

of atomic features [116]. The evaporation process from a (111)-oriented Ir tip is 

illustrated in Figure 5.1 [116].  

In FIM, we can obtain the activation barrier of surface diffusion through the 

following equation,    

  (7)  

Here ν0 is commonly referred to as the attempt frequency, which is about 1012 s-1. t is 

the observation time. l is the average distance during each jump, which is about the 

surface lattice constant. Ed and kB are the diffusion barrier and Boltzman constant, 

respectively. <r2> is the mean-square distance as determined from the site-mapping 

procedure [116] used in FIM. T is the substrate temperature. The temperature range is 

limited by the onset of adatom motion in a reasonable observation period (lower 

limit) and the loss of adatom from the terrace because of its small size (upper limit). 

Usually it is possible to collect data at 4 to 8 temperatures over a range from 20 to 50 

K [116]. The above equation can be derived from 2D random walk with Einstein 

equation. 
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Figure 5.1. Determination of diffusion barrier from FIM. With the increase of electric 

field, atoms in the most protruding layer are torn off gradually. The circular planes in 

the images are (111) oriented. According to the experiment, the decrease in diameter 

of the (111) plane from (a) to (b) indicates that atoms are removed from the surface at 

4.0kV. Further removal of atoms results in a heptemer indicated in (c). In (d) the 

evaporation reveals a new (111) surface. We can see from (c) that FIM can have 

atomic resolution [116].  
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Because of the high electric fields in the evaporation and imaging processes, 

FIM is limited to study adatoms which are stable under such high fields. For example, 

it is difficult to study adsorbates of non-metallic elements since these atoms are easy 

to be desorbed by the high imaging field [113]. The diameter of a typical plane on a 

field ion tip ranges from 25 to 100 Å, which may become comparable with the 

effective diffusion length of the surface atoms, therefore limiting the statistics, and 

placing an upper limit on the tip temperature. 

 

5.3.2 Detecting microscopic information using STM  

The extension of STM to variable substrate temperatures [121,1] provides an 

unprecedented microscopic view of activated atomic processes taking place on 

surfaces. By tuning the temperature, each process can be slowed down to the time 

scale that makes real-time observation possible. The working principle of STM for 

detecting diffusion mechanisms is mainly based on the observation of island densities 

at variable temperatures, as given by Eq.(5). From simple random walk analysis, the 

diffusion constant D can be written in the following form: 

 (8)  

where d is the dimensionality of the diffusion. For the simple case where dimers are 

stable and immobile islands on the terrace (i=1 in Eq.(6)), after substituting Eq.(8) 
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into Eq.(5), we can express the diffusion barrier according to the form: 

    (9) 

In Figure 5.2, we reproduce the earlier STM images taken by Stroscio et al in 

identifying stable cluster sizes based on the observed island density distributions for 

the case of Fe/Fe(100) [122]. The growth temperatures in (a-c) are 20°C, 108°C and 

163°C respectively. The plot in (d) shows that the island density follows an Arrhenius 

dependence with temperature until about 250°C. Above 250°C, the island density 

decreases more sharply, indicating the activation of other diffusion process(es). They 

obtained the adatom diffusion barrier by assuming that dimers are stable. Despite the 

relatively high temperature, this assumption was later verified to be valid [123]. The 

derived diffusion barrier is 0.45±0.08eV.  

On close-packed surfaces, because the surface is flat and the activation 

energies, such as the dimer dissociation barrier, are generally small, it requires low 

substrate temperature to guarantee i=1. For heteroepitaxy of Ag on Pt(111), it was 

verified that dimers constitute stable nuclei up to 110K [124].  

The above determination of the diffusion barriers of various processes relied 

on the dependence of saturated island density obtained at different growth 

temperature. There have been STM studies of adatom diffusion based on the onset of 

Ostwald ripening [124,111,125-127]. Initially the experiment starts from an island 

population predominantly consisting of dimers. Afterwards, the annealing  
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Figure 5.2 STM determination of diffusion barrier based on nucleation theory. Shown 

here are experiments on Fe/ Fe(100) [122].  
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temperature is increased gradually and the island density is monitored by STM during 

the annealing. One generally observes that the island size stays constant until 

reaching a well-defined temperature where it suddenly increases, indicating the onset 

of Ostwald ripening [93].  

There are also STM studies of diffusion mechanisms without invoking 

nucleation theory. For example, Bott et al [128] deposited small amount of atoms on 

the terrace and measured the onset temperature of nucleation arising from the onset of 

diffusion. The diffusion barrier is derived by comparing the dependence of the island 

density on the temperature with that obtained from Kinetic Monte Carlo simulations. 

It is essential to notice that in all the above STM-based measurements of the 

diffusion barriers, one central assumption is that a dimer is stable and immobile and 

the activation of dimer diffusion is well separated from that of monomer. There exists 

indications that whether dimer diffusion sets in before dissociation strongly depends 

on lattice geometry. On hexigonal lattices, the experiments for Ag/Pt(111) [124,129] 

suggest that dimers in this system dissociate before they could start to diffuse. On 

square lattices, ab initio calculations for Al/Al(100) [130,131] and FIM measurements 

for Pt/Pt(100)[132] and Pt/Rh(100) [133]  all indicate that dimer diffusion via 

exchange may have an even lower activation barrier than monomer diffusion. From 

our EAM calculations (E2 in Table 5.2), it is also clear that through a shear splitting 

process, dimers can diffuse with a barrier very close to that for monomer diffusion. 

On anisotropic substrates, the effect of dimer mobility may be more difficult to assess 
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because of the different diffusion barriers encountered along different directions.  

 

5.4 Calculation of Diffusion Barriers  

Purely from experiment, it is usually not possible to determine the 

microscopic mechanism of a diffusion process. This can be due to the limitation of 

experimental apparatus. For example, the high voltage requirement in FIM prevents 

the observation of Cu diffusion on Cu surfaces. It can also be due to the fact that the 

theoretical principles that these apparatus rely on are too rough for experiments to 

check some subtle problems, such as the asymmetric diffusion on fcc(111) surface. 

As we can notice from the above, nucleation theory generally neglects the local 

environments of the morphologies on the surface, which can be important in reality. 

In kinetic Monte Carlo simulations, it is also necessary to have inputs of diffusion 

barriers for certain processes, which may be difficult to obtain from the experiment. 

All these point to the importance of theoretical calculations of the microscopic 

diffusion processes. Because of the broken symmetry on surfaces, usually a large 

number of inequivalent particles are required to be included in the calculations, which 

puts serious limitations on the size of systems that can be treated in ab initio 

calculations. Some semi-empirical methods, such as the Embedded Atom Method 

(EAM)[16], are good compromises between ease of computation and incorporation of 

the essential physics. EAM method has received considerable attention from 
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researchers involved with classical atomic computer simulations. It has been applied 

to treat many surface problems such as diffusion [134-142], shapes of the adsorbed 

islands [143], reconstruction [144], surface phonons [145], and relaxations [146]. 

EAM has also been utilized to estimate inter-atomic forces in the simulations of 

adhesive and frictional interactions between an STM tip and a surface [147,148]. 

However, as to be noted below, EAM also has serious problems because of its 

deficiency in accuracy. In the following we also introduce some of the recent 

developments in first principles approach.  

 

5.4.1 EAM calculation   

In Chapter 2, we briefly described the principles of EAM calculation. In this 

section, we will present some more details on how to set up an EAM calculation.  

As explained in Chapter 2, the embedding energy is given in the following 

formula: 

 (10) 

Here, ρh,i is the host electron density at atom i due to the remaining atoms of the 

system, Fi(r) is the energy to embed atom i into the background electron density ρ, 

and φi,j(Rij) is the core-core pair repulsion between atoms i and j separated by distance 

Rij. (Note that Fi only depends on the elements of atoms i and j.) The electron density 

is approximated by the superposition of the atomic densities: 
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  (11) 

Here is the electron density contributed by atom j. 

In the original development of EAM, the atomic densities were taken from 

Hartree-Fock calculations of free atoms [16]. However, using this configuration of 

free atoms to present the electron density in the solid may not be suitable. 

Considering the easy accessibility of bulk electron densities from LAPW calculations 

nowadays, it becomes possible to combine these bulk electron densities with free 

atom configurations to approximate the interested system.  

Approximate values of the embedding functions and pair interactions (Eq.(10) 

of Chapter 2) are usually determined by fitting the known bulk properties such as the 

sublimation energy, lattice constant, elastic constants, etc [16,149]. In cases where the 

empirical data are unavailable, it is possible to use first-principles calculations to 

determine these functions [150].  

Under the assumption that the atomic electron densities  (R) and the pair 

interaction F (R) are known, the embedding energy can be uniquely defined by 

requiring the total energy of the homogeneous fcc solid, computed using Eq. (10) to 

agree with the following universal equation of state [16],  

  (12)  

in which Esub is the absolute value of the sublimation energy at zero temperature and 

zero pressure. The quantity a* is a measure of the deviation from the equilibrium 
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lattice constant  

 (13)  

Here, B is the bulk modulus of the material, a is a length scale characteristic of the 

condensed phase such as the fccc lattice constant, a0 is the equilibrium lattice 

constant, and W is the equilibrium volume per atom.  

The pair interaction between atoms of types A and B is determined from their 

electrostatic origin: 

  (14) 

where the effective charges Z(R) is obtained by fitting to the bulk properties [16]. 

Shown in Figure 5.3 are fitted functions for the effective charges and embedding 

functions for Cu, Ag, Au, Ni, Pd, and Pt [16]. 

 

5.4.2 First-principle calculation of diffusion barriers  

Since the jellium calculation of surface electronic properties by Lang and 

Kohn [151], there has been a great deal of progress in reducing the computational 

cost while improving accuracy [152]. However, for systems with low or no 

symmetries, such as adatoms, islands, kinks or steps on surfaces, first-principles 

calculations are still computationally costly. Quantitative studies of phase transitions 

on surfaces are even more demanding. In the following, we present several novel 

approaches used in first-principles calculations of diffusion barriers. The brief review  
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Figure 5.3 Embedding functions and effective charges used in EAM. From [16]. 

(a) (b) 
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is not intended to be complete. 

Feibelman et al introduced the scattering-theory approach [153-154,130-

131,155] to the local-density functional energy minimization problem. Within this 

approach, it is possible to treat the low-symmetry problem of an isolated impurity or 

defect on an otherwise perfect metal crystal surface via a self-consistent 

determination of the one-electron Green’s function. In the calculation, the problem of 

a point defect (e.g. the adatom) in a perfect crystalline host is broken into two simpler 

self-consistentency problems. The first is a linear-combination-of-atomic-orbitals 

(LCAO) pseudopotential calculation of the Bloch waves of the host. In their study of 

Pt/Pt (111) [155], the Pt (111) surface was modeled as a slab and the localized 

orbitals (contracted Gaussians) were selected by requiring that they yield an excellent 

fit to the well-converged linearized augmented plane wave (LAPW) energy band 

dispersions for the same slab geometry. However, the selection of the basis is still 

based on experience instead of a standard process. The scattering of these Bloch 

waves by the point defect is evaluated in the same orbital basis.  

With the novel construction of the surface slab, Stumpf and Scheffler and 

coworkers [156-160] used standard ab initio calculations to study the adsorption and 

diffusion of adatoms on different surfaces.  

Especially, in their study of adatom diffusion along steps, they used grooved 

structures with the outmost layer partially occupied [156]. The step structures on 
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fcc(111) surfaces were realized by choosing suitable vicinal surface of (m,m,m-2) and 

of (m+2,m,m) orientation. The (m,m,m-2) surface consists of (111) orientation that 

are m atomic rows wide and separated by {111} faceted steps. The (m+2,m.m) 

surface has (111) terraces that have m+1 atomic rows in width, which are separated 

by {100}-faceted steps [161]. These properties are illustrated by vector 

decompositions:  

 

 After removing the common factor, Miller indices are (m/2,m/2,m/2-1) and 

(m/2+1,m/2,m/2). Through the above constructions, they studied the difference 

between {111}- and the {100}-faceted steps as shown in Figure 5.4. On Al(111), they 

set up isotriangular Al islands purely bounded by {111}- and the {100}-faceted steps. 

These islands are related to each other by 60° rotation on the terrace. Due to the finite 

size of islands, it is necessary to exclude the energy difference between edges and 

corners, which was disentangled by using islands of different sizes. Their calculations 

showed that the {111}-faceted step (or B step in Figure 5.4) is favored by 0.025eV 

per corner and 0.017eV per step atom over the {100}-faceted step (A step in Figure 

5.4). Diffusion along A step is via normal hopping with a barrier of 0.32eV, while 

along B step, the exchange mechanism is preferred, with a barrier of 0.42 eV.  

Using the scattering theory as introduced above, Feibelman et al [162-163] 

used the (331) surface to approximate these steps and obtained similar results. These 
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Figure 5.4 Ball model of A-type and B-type steps on fcc(111) surfaces. From [164].  
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 subtle energy differences are important in understanding the orientations of dentrites 

on fcc(111) surfaces. 

As a summary of our introductions of the various tools used to study surface 

diffusion mechanisms, in Table 5.1 we present some examples of single atom 

diffusion barriers obtained from these approaches [93]. 

 

5.5 Simulation of Island Growth at Surfaces 

Purely from experiment, it is usually difficult to assess the importance of 

certain diffusion process in determining the island morphologies. This is because 

diffusion on a surface is usually very complicated and there are many conditions to 

control. In determining the importance of certain diffusion channel, one usual method 

is the tuning of the growth temperature. However, the flexibility provided by tuning 

the temperature is very small. For example, on fcc(100) surfaces, the dimer splitting 

barrier is very close to that of adatom diffusion on the terrace. It would be very 

difficult to distinguish their roles by tuning the temperature. In simulations, however, 

we can increase or decrease the diffusion barriers of certain processes and to assess 

their roles. This recognition of the special roles of Kinetic Monte Carlo simulations 

has been widely accepted in the community of film growth [15]. We have introduced 

the principles of this method in Chapter 2. Here we outline the procedures on how to 

specifically carry out KMC simulations 
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Table 5.1 Energy barriers for adatom diffusion on isotropic metal surfaces. 

(simplified from [93] and with minor changes)   

System Experiment (eV) Exp.Technique Theory (eV) Type of calculation 

Fe/Fe(100) 0:45 [122] STM   

Cu/Cu(100) 0.40 [114] He-Scat. 0.51 [134] EAM 

Ag/Ag(100) 0.33 [165] STM 0.48 [134] 

0.50 [166] 

EAM 

FP-LMTO 

Cu/Ni(100) 0.36 [112] STM 0.47 [112] EMT 

Ag/Pt(111) 0.168 [129] STM 0.20 [167] 

0.15[168] 

FP-LDA 

DFT-LDA 

Pt/Pt(111) 0.26 

0.25 

STM 

FIM 

0.39 [169] 

0.38 [155] 

ab initio DFT 

ab initio scattering 

Ag/Ag(111) 0.097 STM 0.14/0.10 

[169] 

DFT-LDA/GGA 

Ag/Ag/Pt(111) 0.060 STM 0.060 [168] DFT-LDA 
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Consider the motion of adatoms on a crystal surface. This is often simulated 

with a discrete lattice model. In typical simulations of crystal growth, the interactions 

among atoms and between atoms and the substrate are simplified with the 

introduction of diffusion barriers the atoms have to overcome when attempting to 

move. In some cases, it may be necessary to use some empirical or the real interaction 

potential. Usually the atoms are only allowed to hop from their original sites to 

vacant, nearest-neighbor sites. The lattice-coordination number z is dictated by the 

symmetry of the crystal surface. During the simulation, each time one atom on the 

surface is selected randomly, and one of the z nearest-neighbor sites is randomly 

chosen to be the destination. If the chosen nearest-neighbor site is occupied, the 

procedure restarts. If it is vacant, the probability we
(i) is computed according to Eq. (6) 

of Chapter 2 and compared with a random number r (0<r<1). In simulations where 

realistic interactions are built into the energy difference between different 

configurations, the calculation of the energies would be the bottleneck in improving 

the speed of the simulation. The atom hops to the new position if we
(i)>r; otherwise, it 

remains at its original site. During the simulation, it is also possible to select many 

atoms [14,125] because the real physical process is parallel, which implies that every 

atom on the lattice tries its own fortune at every moment individually. If there are 

long range forces that do not decay in the vicinity of the chosen atom, it may be 

necessary to allow all the atoms in the range of the force to try their chances 

simultaneously. In this case we may need to introduce a normalized temperature to 
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reflect the difference in the degrees of freedom. By considering many particles and 

determining their fates collectively, this method allows the existence of local 

frustration and better chance to overcome local minima. To simulate the growth 

process, it is also necessary to specify how many steps the atoms on surface can make 

before the arrival of another atom. 

As pointed out in Chapter 2, it is important to note the difference when 

calculating the hopping probability between traditional Monte Carlo and Kinetic 

Monte Carlo simulations. 

 

5.6 Fractal (Dentrite) Surface Morphologies  

In nature, people have found that morphologies of different orders of spatial 

scales may have the same mathematical or scaling properties. From snowflakes, 

icicles hanging out of the window in cold weather, the shape of coastline, to the 

branches of Amazon River, all of them share the so-called self-similarity and 

hierarchic organization [93]. The correlation functions describing their morphologies 

have a scale-invariant (power law) form. The power appearing in these laws is a 

fractal number [93].  

In studies of epitaxial growth, islands with fractal morphologies have also 

been observed at low growth temperatures. By changing the growth conditions such 

as the substrate temperature, these morphologies can undergo shape transitions. 
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Usually at high temperatures, islands obtained are compact.   

The diffusion limited aggregation (DLA) model [170-172] was proposed long 

ago to explain fractal morphologies observed on crystal surfaces. In this model, it is 

assumed that whenever two atoms meet together, they can not diffuse or split any 

more. Other adatoms can diffuse randomly on the terrace and attach themselves to 

these immobile dimers or larger clusters following the hit-and-stick scheme. The 

classical DLA model always produces ramified fractal islands in which there is no 

preference of orientation. In reality there are many fractal systems having preferred 

directions. It has been found that anisotropy dominates the transition from ramified to 

dendrite patterns [93]. Dendritic growth with triangular geometry is commonly 

observed for low temperature aggregation with moderate deposition flux on 

hexagonal close-packed surfaces. Such patterns have the common feature that their 

branches are preferentially grown in three directions which are rotated 120º with 

respect to each other. In Figure 5.5 we show several dendrite islands observed on 

hexagonal surfaces. Asymmetric initial branching mechanisms have been explored to 

understand their origin [173,164]. 

 

5.7 Importance of Island Corner Barrier in 2D Growth 

5.7.1 Introduction  

As we have mentioned earlier, in three-dimensional growth, it is well  
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Figure 5.5 Dentrite islands observed on hexagonal surfaces. In this figure, the 

dendrites were observed on (a) Ag/Ag (111)[173,93]; (b) Ag/1MLAg/Pt (111) 

[173,93]; (c) Au/Pd (111)[174]; (d) Pt/Pt (111)[164] (e) Pt/Ru (0001)[175].  



 

91 

 

 

 

established that a weak Schowebal- Ehrlich barrier effect [97-98,176] can lead to the 

layer-by-layer growth mode. In 2D growth, a corresponding island corner barrier 

effect has been proposed to play the similar role in controlling the compactness of 

two-dimensional islands [177]. Atomic processes at island corners were considered in 

understanding the observation that it is easy to grow fractal islands on fcc (111) 

surfaces but difficult on fcc (100) surfaces  [178].  Consideration of such processes 

has also been invoked to provide the initial asymmetric branching mechanism for 

formation of dendrite islands on hexagonal surfaces [173,164]. However a clear 

recognition of the importance of island corner barriers in controlling the compactness 

of 2-D islands growth was not proposed until recently [177].  

The traditional belief was that a small edge diffusion barrier compared to that 

for terrace diffusion would be sufficient to obtain compact islands. This is partly 

correlated with the fact in both homoepitaxial and heteroepitaxial metal-on-metal 

growth, islands formed on substrates of triangular or hexagonal geometry are often 

noncompact if the growth temperature is sufficiently low, and become compact at 

higher temperatures [179,173,164,180-184]. For these surfaces, edge diffusion is 

typically slower than terrace diffusion. In contrast, islands formed on substrates of 

square geometry are mostly compact [122,185,125-127]; and for these systems, edge 

diffusion is typically faster than terrace diffusion. The few exceptional cases of Cu/Ni 

(100) [186] and Ag/Ni (100)[187] are due to strain energy and formation of a 

triangular lattice, respectively. This conventional view was not questioned until the 
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attempt to explain the triangular envelope of dendrite islands grown on hexagonal 

surfaces [173,164], where the importance of an independent corner diffusion process 

was considered. Recently, the role of edge diffusion is better recognized as the 

controlling factor for the broadening of the branch thickness in both analytic models 

[178,188-189] and KMC [190]. The basic idea underlying these studies is that the 

lateral impingement rate competes with the rate for an atom to diffuse along the edge 

of a compact seed island. The seed island stays compact until the edges reach a 

critical width (w) for which both rates become comparable. At that point nucleation 

of protrusions at the edge can no longer be flattened out and the aggregates become 

unstable against ramification through the Mullins-Sekerka instability [191]. This 

instability argument defines the critical size for ramification as well as the mean 

branch width of the clusters after ramification. Although this stability criterion can 

yield reasonable estimates for certain systems [190,189]), the drawback is that it 

neglects significant microscopic processes occurring at the island edges. For example, 

corner diffusion may require a higher activation energy than edge diffusion, and 

atoms can be trapped at the edges irrespective of how fast the edge diffusion is.  

 

5.7.2 Important time scales involved in rate equation analysis [13]  

Two time scales are important in the rate equation analysis. One is the average 

time separation, ta, for two consecutive adatoms on the terrace to arrive at a given 

island edge. The other is the average time, tr, for an adatom to reside at the edge 
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before it escapes via island-corner crossing. It is natural to expect that tr>>ta would 

lead to noncompact or fractal-like islands whereas tr<<ta would ensure compactness. 

The center of the crossover region is defined by R=tr/ta ~ 1.Here we are interested in 

the temperature ranges where direct adatom detachment from an island edge is 

negligible. Also we focus our attention on isotropic systems. On anisotropic surfaces, 

it is possible that detachment can set in easier than corner diffusion [192].  

The average residence time tr can be approximated by the sum of the average 

time, te, spent by an atom at the edge before it reaches the corner, and the average 

time, tc for the atom at the corner site to cross around. Let Na denote the length of the 

island edge, where a is the surface lattice constant of the substrate, and N the number 

of sites along the given edge. Adatoms randomly arrive at the island edges from the 

terrace and then diffuse along the edges to the island corners. It can be shown that  

  

Here De is the edge diffusion coefficient. νe the attempt frequency for an atom to hop 

along the edge. The average time tc is the product of the inverse of the probability for 

an adatom to be at either of the two corner sites and the time for the adatom to cross 

the corner,  

 (16)  

(15)
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where νc is the attempt frequency for an atom to cross the corner. We then have for 

the average residence time  

  (17) 

The successive arrival time ta is given by  

  (18) 

Here n is the island density and F is the deposition flux. We suppose that the 

distribution of monomer on the terrace in a state of dynamic equilibrium so that the 

net increase of monomers by deposition is transferred to the incorporation with the 

existing islands. n is given by [104,193,194]  

   (19)  

where θ is the coverage, and νt is the attempt frequency for an atom to hop on the 

terrace. Using   we have for the criterion  

   

where the first term Rc and the second term Re correspond to the contributions of 

corner crossing and edge diffusion, respectively, and γ~1 is a parameter that weakly 

depends on the island geometry. It is clear from Eq. (20) that large values of Vc and 

Ve are likely to result in R>>1 at low temperatures, leading to fractal growth. More 

(20)
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importantly, it should be emphasized that, even at temperatures where Re<<1 

(corresponding to high edge diffusion), the existence of the island corner barrier Vc 

can still lead to R~Rc>>1 and the formation of noncompact islands. Only when both 

Rc<<1 and Re<<1 can the system reach the compact-growth regime. Therefore, the 

island-corner crossing is the rate-limiting process dividing the noncompact and 

compact growth regimes.  

 

5.7.3 Kinetic Monte Carlo simulations  

5.7.3.1 Model  

Here we study the effect of island corner barrier on two-dimension square 

lattice [134,13] by Kinetic Monte Carlo simulations. The three most important atomic 

rate processes controlling island compactness are schematically shown in Figure 5.6 

for growth on fcc (100) surfaces. The first is the site-to-site hopping of an isolated 

adatom on a flat terrace, with an activation barrier Vt. The second is diffusion along 

island edges, with the barrier Ve. The third is corner crossing, with the barrier Vc. In 

general, we have Vc >Ve, because an adatom has to lower its coordination in crossing 

an island corner, in a manner similar to atom climbing down from an upper layer to a 

lower layer [97-98]. 

 

5.7.3.2 Change of morphologies due to variation of corner crossing barrier  

A direct demonstration of the importance of island corner barrier effect would  
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Figure 5.6 Illustration of terrace, edge and corner diffusions. Here we take a fcc (100) 

surface as an example. The gray circles refers to the substrate, while the red ones 

represent adatoms. Arrows indicate the potential diffusion directions of the atom(s). 

Terrace diffusion: Vt; edge diffusion: Ve; island-corner crossing: Vc  
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be the observation of the change of island morphologies with the change of the corner 

barrier height while keeping all other growth parameters the same. We demonstrate 

this by a set of such simulations. The results are demonstrated in Figure 5.7 (a-k). In 

these simulations, except the corner barrier, all other parameters are the same: size of 

the substrate 300x300, coverage θ=0.11ML, flux rate F= 41 MLs-1, T=300K, 

Vt=0.15eV, Ve=0.20eV. The corner barrier height varies from 0.15eV in (a) to 0.65eV 

in (k). In these simulations, we have also recorded the numbers of events for both 

edge diffusion and corner crossing. These numbers are plotted in Figure 5.7(l). It is 

obvious that frequent edge diffusion does not necessarily lead to compact islands. 

Only when corner diffusion becomes appreciable can the islands become compact. 

These non-compact islands are directional. The arms are extended along the 

directions of terrace diffusion. The branches of the arms are so few that these islands 

have no self-similarity. To certain extent, they are the corresponding dendritic islands 

we find on square lattices while on hexagonal islands they resemble a triangular 

shape as illustrated in Figure 5.5.  

 

5.7.3.3 Change of island morphologies due to variation of the growth temperature  

In real experiments, it is impossible to adjust the corner barrier height as 

easily as above. For a given system, the corner barrier is fixed by the properties of the 

system. For some system it is possible that these barriers are so favorably arranged 

that we can adjust the growth temperature to observe their effects one by one. We 
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Figure 5.7 Variation of morphologies with corner barriers 
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 define such a set of diffusion barriers to study the shape transitions induced by 

temperature change. Here Vt=0.15eV, and Ve=0.215eV. The size of the substrate is 

300x300, and θ = 0.11 ML. The corner barrier Vc is 0.32eV in Figure 5.8 from (a) to 

(e). The growth temperature increases from 50K in (a) to 500K in (e). Since in this 

series, both edge diffusion and corner diffusion are varied, we add (f) obtained with 

the condition that Vc=0.8eV while all other parameters are the same as that in (e).  

The flux rate is chosen such that between the deposition of two consecutive 

adatoms, at different growth temperatures, each atom on the terrace always has a 

chance to be chosen to jump 1000 times.  This corresponds to F= 1.3x10-12, 4x10-4, 

0.28, 41, and 410 ML/s for T=50, 100, 200, 300 and 500K, respectively. By this way, 

we ensure to have comparable island densities at different growth temperatures. As to 

be pointed out later, a change in the flux rate does not change the island morphologies 

critically once the islands are large enough. We have the numbers of edge diffusion 

and corner crossing events given by (Ie,Ic)=(1.6x103,0), (5.0x105,1), (2.8x107, 

2.0x103), (4.2x107, 2.2x104), (2.6x107,1.7x105), and (2.2x108, 290) from Figure 5.8(a) 

to Figure 5.8(f) respectively. At 50K (Figure 5.8(a)), each island has many randomly 

extended arms without resemblance of the symmetry of the substrate. In this case, 

although both edge and corner diffusion events are effectively frozen, our simulations 

indicate that if edge diffusion is slow, corner barrier does not influence the island 

morphologies. So the islands in Figure 5.8 (a) are the traditional ramified fractals 

caused by slow edge diffusion [170-172]. We should note on the almost unrealistic  
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Figure 5.8 Variation of island morphologies with temperature. KMC simulations of 

two-dimensional island grown on a square lattice at temperature (a) 50K; (b) 100K; 

(c) 200K; (d) 300K; (e) and (f) 500K. The only difference between (e) and (f) is the 

higher corner barrier for the latter case. 
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slow flux rate. Here a smaller terrace diffusion barrier can result in a higher flux rate. 

Unfortunately on fcc (100) surfaces, the terrace diffusion barriers are usually even 

higher (~0.4eV). Let us suppose a realistic slow flux rate F~10-5 ML/s and obtain 

islands having similar sizes as Figure 5.8. For Vt=0.4eV, this would require the 

substrate temperature to be as high as 250K.  

  The crossover in island morphology from Figure5.8 (a) to Figure5.8 (e) is 

caused by the increase in temperature. A comparison between Figure5.8 (e) and (f) 

shows that, even though edge diffusion is very frequent in both cases (in fact more 

frequent in Figure 5.8(f)), the islands can still be noncompact if the events of corner 

crossing is too infrequent (as in Figure 5.8(f), corresponding to a higher corner 

barrier). This comparison also allows us to conclude that even before the temperature 

increases to 200K (Figure5.8 (c)), the effect of edge diffusion in influencing the 

island morphologies should have been saturated. All changes of morphologies 

thereafter are due to the activation of corner diffusion.  

We have also used the parameters employed in these simulations to 

crosscheck the validity of Eq. (32) quantitatively. For parameters corresponding to 

Figs.5.8 (a-f), we obtain (R, Re, Rc)= (2.3x1012, 130, 2.3x1012), (1.3x104, 0.11, 

1.3x104), (1.9, 5.2x10-3, 1.9), (0.014, 4.9x10-4, 0.014), (9.0x10-4, 1.5x10-4, 7.5x10-4), 

and (16, 6.9x10-5, 16) respectively. Based on these values, we should expect 

noncompact islands in Figs. 5.8(a), (b) and (f); compact islands in Figs. 5.8(d) and 

(e); and crossover behavior in Figure 5.8(c). These theoretical predictions are in 
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complete agreement with the simulation results.  

We have adopted many other different sets of diffusion barriers to study what 

specific roles these diffusion barriers play in sub-monolayer island growth. In these 

simulations, the standard for the choice of deposition rate is that enough terrace 

diffusion happens so that we can get an island large enough for us to discuss its 

shape. All these simulations suggest that if the corner barrier is slow while edge 

diffusion is fast, islands resemble dendrite morphologies as in Figure 5.7 (k); if the 

edge barrier is slow, islands resemble random fractal morphologies as in Figure 5.8 

(a); if both corner and edge diffusions are active, compact islands are obtained.  

 

5.7.3.4 Simulation of growth in real systems  

We first calculate the diffusion barriers on three fcc (100) metal surfaces with 

EAM (Embedded-Atom Method)[16]. Based on these parameters, 2-D kinetic Monte 

Carlo simulations are carried out for Cu/Cu (100) and Ag/Ag (100). Some more 

detailed processes are considered, which are illustrated in Figure 5.9, with 

corresponding barriers in Table 5.2.  

It is important to notice that for these fcc (100) surfaces, the shear splitting 

barrier of dimers or linear chains are very close or even smaller than that for adatom 

terrace diffusion, which seems to be contradictory to the assumption made in STM 

analysis that dimer is more stable than single adatom residing on a terrace. This 

assumption is important in the theoretical extraction of diffusion barrier from STM  
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Figure 5.9 More detailed diffusion processes. This figure is similar to Figure 5.6, 

except that we consider more complicated diffusion processesThe corresponding 

barriers for several metals are given in Table 5.3. Terrace diffusion, linear chain 

splitting, single atom edge diffusion, dimer edge diffusion, corner crossing, and dimer 

shearing are indicated by the label from “1” to "6" respectively.   
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Table 5.2 Diffusion barriers calculated with EAM  

Process Cu/Cu(100) (eV) Ag/Ag(100) (eV) Ni/Ni(100) (eV) 

E1  0.505  0.478  0.632 

E2  0.494  0.480  0.611 

E3  0.265  0.260  0.337 

E4  0.503  0.474  0.624 

E5  0.555  0.519  0.681 

E6  0.696  0.651  0.849 
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data of island density distributions. Since the effect of dimer or linear chain splitting 

is similar to corner crossing around a square site, we regard it as corner process as 

well.  

In the following, we analyze the effect of corner diffusions in determining the 

surface morphologies by switching on them one by one. The simulation is carried out 

for Ag/Ag(100), at the temperature of 280K and flux rate of 3x10-4 ML/s. In Figure 

5.10(a) no corner diffusion is allowed. The morphology is fractal, but not so well 

detached from each other as shown in Figure 5.8(a) because of the limited activation 

of adatom diffusion on terrace. In (b), the dimer and chain splitting are turned on. It is 

clear that the morphology is less fractal and becomes more compact. We further 

switch on dimer shearing in Figure 5.10(c). Since the temperature is relatively low 

(0.0241 eV) and the dimer shearing barrier is 0.17 eV higher than linear-splitting, the 

change of island morphologies compared to (b) is not dramatic.  

Real simulations with all diffusion processes shown in Figure5.9 and diffusion 

barriers as indicated in Table 5.2 are given in Figure 5.11. For copper in (a), the 

temperature is 335K and the deposition rate is 5x10-4 ML/s. The size is 70x70 and the 

coverage is 0.34 ML. For silver in (b), the temperature is 325K and the deposition 

rate is 3x10-4 ML/s. These islands are well-defined compact squares.  

For the fcc (100) systems of Cu/Cu, Ag/Ag, and Ni/Ni, taking our EAM 

results (Vt, Ve, Vc) = (0.505,0.265,0.555), (0.478,0.260,0.519), and 

(0.632,0.337,0.681), respectively (all in eV) and assuming νt=νe =νc =1012 s-1, F=10-4  
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Figure 5.10 Control of cross-corner barriers in Ag/Ag(100). (a) All cross-

corner mechanisms are prohibited. (b) Shearing of dimer and linear chains is allowed. 

(c) All processes including dimer shearing are activated.  
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Figure 5.11 Simulations of island formation for two realistic systems. These 

simulations of island formation in homoepitaxial growth on fcc (100) surface of (a) 

Cu and (b) Ag are based on EAM calculations of diffusion barriers as shown in Table 

5.2 
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MLs-1, θ=0.1 ML, T=300K, we have R~7.0x10-4 (Cu), 2.9x10-4 (Ag), and 7.8x10-3 

(Ni), indicating that only compact islands can be obtained in these systems at such 

typical growth conditions. This conclusion again agrees with existing experiments 

[122,185,125-127].  

 

 5.7.4 Discussion s 

5.7.4.1 Influence of the flux rate  

As we mentioned earlier, it has been a long-standing puzzle in the literature to 

explain the experimental observation that upon decreasing the flux rate 100 times, the 

Ag dentritic islands formed on Pt (111) change their morphologies and assume those 

of the ramified fractals [179,195]. The formation of the orientational dentritic islands 

was thought to be the result of the asymmetric diffusion of adatoms from corner sites 

to type "A" and type "B" [173,164]. We test the possibility within our model to 

observe this behavior. However, our simulations with a reduction of the flux rate by 

about 200 times indicate that the relative barrier relations between the terrace, corner 

and edge diffusion scaled by temperature are the sole factors governing the island 

morphologies. In the ramified fractal growthregime, a decrease of the deposition rate 

leads to formation of larger fractals; within dentritic region, a decrease of flux rate 

leads to formation of larger dentritic islands. Figure 5.12 represents the simulation 

results of island morphologies at different deposition rates. The barriers are same as 

that used in the earlier study of temperature effect (Figure 5.8 (a)). The simulation  
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Figure 5.12 Variation of island morphologies with deposition rate. The 

numbers in the panels indicate the frequency at which an atom can be chosen to jump 

between the deposition of two consecutive atoms.  
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temperature is 100 K, at which the edge diffusion is activated but the corner diffusion 

is frozen. With the decrease of flux rate from 6x10-3 to 3x10-5 ML/s, smaller dendrites 

will collapse together to form larger ones. What we observe at high flux seems to be 

immature morphologies of what we can obtain at the low flux. The dentritic arms 

extend longer and longer as the deposition becomes slower and slower.  

 

5.7.4.2 Growth of noncompact islands on square surfaces  

In reality, it is known that it is easy to obtain random or dendrite fractals on 

fcc (111) surfaces. In homoepitaxial growth on fcc (100) surfaces, so far only 

compact islands have been observed. There have been some explorations [178] on the 

underlying reasons but a clear answer is still missing. So far theoretical and 

experimental studies have shown that, in general, Vc> Ve >> Vt on hexagonal surfaces 

(fcc (111) or hcp (0001)), and Vc ~ Vt >> Ve on fcc (100) surfaces (Table 5.2) 

[173,116,137-138,156]. Also it is typical that on hexagonal surface, the terrace 

diffusion barrier Vt <0.1eV while on square lattices Vt >0.4eV. According to the 

simulations obtained above, these barrier relationships means that :  

(i) On fcc(100) surfaces, at temperatures ( higher than 250K, as estimated 

above from a realistically low limit flux) where the terrace diffusion is fast enough to 

obtain sizable islands, corner crossing can also be appreciably activated because of 

the comparable terrace and corner diffusion barriers. This makes it unlikely to obtain 

dentritic islands. Because the edge diffusion is much faster than terrace diffusion, we 
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can never expect to get random fractals if we can not reverse this relationship.  

(ii) On fcc(111) surfaces, at temperatures where terrace diffusion is activated 

to get sizable islands, edge diffusion is still frozen and it is possible to obtain random 

fractals. At higher temperatures where edge diffusion becomes active while corner 

diffusion is still slow, we have a chance to catch the shape transition from the random 

fractals to dendritic fractals. The distinction of edge diffusion on the "A" and "B" 

steps and corner diffusion toward the "A" step and the "B" step makes the shape 

transition on fcc(111) surfaces even more complicated [98-99]. Since the local 

tgeometries of hexagonal and square lattices are different while dendritic shapes 

resemble closely the symmetry of the substrate, it is reasonable to expect the dendritic 

shape is different from what is shown in Figs. 5.5 (a-f). Considering the differences in 

the barrier relations, we can also conclude from Eq.(20) that the temperature range for 

fractal growth on fcc(111) or hcp(0001) surfaces is much wider than it is on fcc(100) 

surfaces. Although Eq.(20) does not exclude the existence of the fractal growth 

regime on fcc(100) surfaces, the small difference between Vc and Vt makes it 

improbable under the growth condition to form sizable islands.   

 

5.7.5 Conclusion  

Our studies indicate that corner crossing can play an important role in 

influencing the island morphologies. Fast edge diffusion itself can not guarantee the 

formation of compact islands. Large corner barriers can lead to the formation of 
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dentritic islands, which are noncompact. Corner barrier is also tied with the 

appearance or disappearance of the symmetry of the substrate. These dentrite islands 

can be well defined by tuning the temperature and the flux rate, which may be useful 

in nano-technologies where the ability to form different types of islands with a 

narrow statistical distribution is important. In homoepitaxial growth on fcc(100) 

surfaces, the activation barrier for corner diffusion is comparable to that for terrace 

diffusion while edge diffusion is much faster than the first two, making it impossible 

to grow fractal patterns. On fcc(111) surfaces the subtle difference between the 

diffusion barriers allows a more complicated phase space for the island morphologies. 

It is possible that we can introduce some mechanisms such as strain [93,25] to tune 

these barriers. The importance of exchange [116] diffusion and detachment may 

complicate our model here. On anisotropic [129,93] surfaces, island morphologies 

can be quite different from what we have studied here. It is still difficult to understand 

the appearance of shape transition from dentritic to ramified fractals upon changing 

the flux from high rate to low rate. One possibility is to consider the dependence of 

diffusion temperature on the flux rate, which is related to the controversial problem of 

transient mobility [196].  
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Chapter 6 Summary 

 In the dissertation I have used multi-scale theoretical approaches to investigate 

the thermodynamic, kinetic, and dynamic properties of surface defects with various 

length scales. The multi-scale approaches range from first-principles calculation 

within density functional theory to empirical embedded atom method to statistical 

analysis to kinetic Monte Carlo simulations. 

As introductory efforts, we have studied the properties of ideal surfaces based 

on our first-principles calculations. First, we have proposed a new method that has the 

promise to predict the direction of relaxation of the atoms in the surface layer strictly 

based on the bulk properties of the given system. Our fist-principles based 

interpretation of STM images within the framework of the Tersoff-Hamann theory 

has also achieved good agreement with STM experiments in revealing the anisotropy 

of electron density corrugations on several open surfaces of metallic systems.  

In our study of the thermodynamic properties of intrinsic line defects on a 

vicinal TaC(910) surface, our Monte Carlo simulations in comparison with STM 

images have confirmed the existence of long-range attraction between steps.  

In our study of the properties of extrinsic point defects underneath a GaAs 

surface, we have established through our theoretical analysis that many-body effects 

in a system with purely repulsive interactions can give rise to an effective attractive 
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interaction at high dopant densities. This study may have an important impact on 

better understanding of and possibly overcoming the fundamental solubility limits in 

doping of semiconductors. 

In our study of the morphological evolution of monatomic-layer-height 

islands grown on surfaces, we have carried out Kinetic Monte Carlo simulations to 

illustrate the importance of island corner barriers. We have shown that if the island 

corner barrier effect is operational in preventing adatoms located at an island edge to 

reach a neighboring edge defining the island corner, the islands thus formed must be 

non-compact, in the form of fractal or dendrite islands. Furthermore, based on our 

embedded atom method (EAM) calculations and rate equation analysis, we have 

explained why fractal islands have rarely been observed on fcc(100) surfaces,  
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Appendix A Relaxation of Lattice Structure on Perfect 

Metallic Surfaces 

 

A.1 Introduction 

A.1.1 Charge smoothing and Finnis-Heine model  

There has been a long-standing interest in understanding the modification of 

ionic positions near metallic crystal surfaces, especially for the design of molecular 

devices and for the electrical connection of micro devices. After an infinite crystal is 

split into halves, the energy of the atoms close to the exposed surfaces increases 

sharply. These atoms move toward either the vacuum or the bulk. As early as 1941, 

Smoluchowsky [1] thought that, according to quantum theory, because of the sharp 

increase of electron density corrugation along the boundary, the kinetic energy of 

electrons near the surface would increase significantly. To decrease the energy, some 

of electrons should move toward the bulk. The weakening of binding potential field 

acting on surface electrons should also allow the spreading of some electrons toward 

the vacuum. This idea is demonstrated in Figure A.1. Later, Finnis and Heine (FH) 

[2] presented arguments that the elementary concepts governing the bulk total energy 

and crystal structure of sp bonded metals may be also relevant at the surface. They 

concluded that the dominant feature governing ionic relaxation at the surface of such  
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Figure A.1 Electron redistribution at surfaces. Smoluchowsky [1] thought that after 

the bulk is cut along the zigzag Wigner-Size boundary, charge smoothing leads to a 

flat electron density profile. Further charge spreading brings to a sinuous distribution.   
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a metal is the electrostatic force on a surface ion arising from a uniform background 

density of electrons filling the ion’s ‘surface-flattened’ Wigner-Seitz cell (Figure 

A.1). This simple surface-cell model is based on the above charge-smoothing 

concept. The application of this idea to the fcc (111), (001) and (110) surfaces of 

aluminum predicted ionic relaxations in qualitative agreement with reported low-

energy electron diffraction (LEED) determinations [3]. Later this model was widely 

used to investigate why contraction on open surfaces (such as fcc (110)) is larger than 

that on close surfaces ( such as fcc (111) ). 

Going beyond the study of Finnis and Heine, Alldredge and Kleinman [4] 

considered the importance of crystalline effect. Their self-consistent electronic 

structure calculations of the lithium bcc (001) surface and the initial forces of 

relaxation suggested that crystalline effects not considered by FH [2] are very 

important. Alldredge and Kleinman [4] had used Hellmann-Feynman theory to 

calculate the electrostatic force on the surface ions as a function of their 

displacements normal to the surface. In their treatment, ion positions, except the 

outmost layer, are kept fixed. This is based on their observation that the initial force 

of relaxation on deeper-layer ions is about 30 times smaller than that on a surface ion. 

However, due to their limited computation power in 1974, they only calculated the 

self-consistent electronic distribution for one set of ionic positions. The Hellmann-

Feynman forces at other significantly different position were based on the same 



 

134 

 

 

 

electronic distribution, which as noted by the authors is a violation of the adiabatic 

approximation.  

 

A.1.2 Abnormal expansion and contraction on closely packed surfaces  

Recently, quite a few LEED experiments [7-15] and ab initio calculations 

[8,13,16-28] indicated that for a given geometry of the metal surfaces, the relaxation 

behaviors can change drastically, from expansion in hcp (0001) Be [7-8, 17-19], Mg 

[9,20], fcc (111) Al [14,16], Pt [15,28] to contraction in hcp (0001) Ti [22-23], Zr 

[21-23], Ru [13,24](see Table A.1). In the traditional Finnis-Heine picture of surface 

relaxation [2], it was expected that every surface should contract. For closely packed 

surface, it is predicted that only a small contraction should happen, which is 

contradictory to the above observations. To explain the controversy, several pictures 

based on surface states and chemical bond characteristics have been proposed [16-

19,22]. 

Specifically, Feibelman [22] used the difference of hybridization energy gain 

vs promotion energy cost between Be and Zr (also Ti) to explain the phenomena that 

a hcp (0001) surface of Be shows extraordinary expansion. For Be, a large energy 

(2.7eV) is needed to promote the excitation to form chemical bonds, which is 

difficult. According to his argument, this energy can be gained only by significant 

hybridization. At the surface of (0001), since half of the neighbors have been 

removed, it is likely that surface atoms will not bond strongly with the second-layer  
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Table A.1 Surface relaxation of several close packed surfaces  

Surface  Experiment (LEED) (%) Theory (%)  

Be hcp(0001)  +3.1±0.7(110K) [8,7]  +2.5 [17-19,8]  

Mg hcp(0001)  +1.9±0.3 (100K) [9]  +1.5 [20]  

Al fcc(111)  +1.7±0.3 (160K) [14]  +1 [16]  

Pt fcc(111)  +1.1±0.4 (90K) [15]  +1.25 [28 ]  

Ti hcp(0001)  -2±2(300K) [10]  -7.7 [22-23]  

Zr hcp(0001)  -1.6±0.8(300K) [11]  -6.3 [21-23]  

Ru hcp(0001)  -2.1(100K) [13]  -4.0 [13,24]  
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atoms any more and the pz component in the bulk Be is demoted to the atomic Be. 

Demotion to px-py is difficult because intra-first-plane bonds can not get appreciable 

stronger since they can not get shorter. This leads to the expansion. This argument is 

corroborated partly by the fact that the dimer bond of Be is unusually 11% longer 

than the nearest-neighbor distance in the bulk. In contrast, promoting the 

1322 5454 sdsd →  in Zr ( 1322 4343 sdsd →  in Ti) costs only 0.5ev (0.8ev in Ti), 

which means that after removing one half of the neighbors, it is still possible to form 

strong chemical bonds with the second-layer atoms. And the bonds between inter- 

plane atoms become stronger and shorter, which is because that a d shell in Zr and Ti 

offers more orbital flexibility than a p shell in Be since there are three more d orbitals 

with significant inter-planar weight rather than one. This leads to contraction, which 

is also partially corroborated by their calculation that the dimer bond of Zr (Ti) is 

29% (33%) shorter than the nearest-neighbor distance in the bulk. This chemical 

picture is the same as the “inverse bond-order bond-length correlation” observed for 

the group II metals [29].   

In this chapter, I present our study of surface relaxation based on a conjecture 

about the very dynamic process of the surface atoms’ response from the moment the 

bulk is split. More attention is paid on a qualitative understanding of the direction of 

relaxation than a quantitative agreement of the relaxation scale with experimental 

results. By this way, we seek to know whether it is possible to predict the direction of 

surface relaxation from the electron density distribution of the bulk crystal. In 



 

137 

 

 

 

previous ab initio studies of surface relaxations, even for the same crystal, if we want 

to know the relaxation of the material along different surface orientations, it will be 

necessary to construct different surface unit cells and carry out intensive self-

consistent minimization.  

 

A.2 Conjecture of Surface Relaxation Dynamics  

The ideal emulation of the physical relaxation process can be divided into four 

major steps:  

(1) An infinite crystal is split along certain boundary into halves.  

(2) Under new circumstances, electrons close to the exposed surfaces respond 

immediately and find their ground states within the freeze-in lattice frame (also called 

as charge smoothing or redistribution).  

(3) Net forces acting on surface nuclei drive them to relax to the configuration 

of lowest energy.  

(4) Step (2) and (3) repeated once and again until the system arrives at the 

final configuration where both the electrons and the lattice are fully relaxed.  

Here we assume that the initial steps (1), (2) and (3) are dominant processes and their 

contributions determine whether the first inter-layer space should contract or expand 

while the step (4) would only change the scale of the final result. Three different 

terminology will be used to describe the surface during the relaxation: fresh-cut 
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surface (neither electrons nor nuclei relaxed, as in step 1); ideal surface (electrons 

fully relaxed while nuclei not relaxed, as in step 2); optimized surface (both electrons 

and lattice fully relaxed, as in step 3 or 4).  

In general, the force acting on an atom in the bulk crystal can be written as:  

l
bulk

u
bulkbulk FFF +=   (1)  

in which the first and second terms in the right are attributed to the force contribution 

from the upper and lower part of materials as divided by the boundary (Figure A.2). 

Despite that their sum is zero, in general these two terms separately are not equal to 

zero. In each part, the force contribution can be subdivided into that due to electrons 

and nuclei, respectively. For the lower part, it can be written as:  

l
n

l
e

l
bulk FFF +=  (2)  

After we cut the bulk along the boundary, we throw away the upper part. 

According to our definition of fresh-cut surface, the force represented by Eq. (2) is 

also that felt by atoms on fresh-cut surfaces. For the ideal surface, the electrons are 

redistributed and the force acting on a surface atom can be written as:  

l
e

l
bulkideal FFF δ+=   (3)  

in which the second part is the force contribution due to the net change of electron 

density distributions. This part is also called as contribution from Friedel oscillation. 

If we can find such a cutting boundary so that l
eFδ  is negligible,  
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Figure A.2 Sketch of fresh-cut surfaces. The zigzag curve is along the Wigner-Seitz 

(W-S) boundary; the flat line is the Finnis-Heine (F-H) cut as represented by the 

shaded plane cutting the hcp lattice in the bottom. The Finnis-Heine plane is the 

middle plane of two continuous layers parallel to (0001). Atoms 1, 2 and 3 are part of 

the first layer of the hcp (0001) surface. The projections of 1,2,3 onto the second layer 

are located at the triangular centers bound by (4,6,9), (5,6,10), and (6,7,8) 

respectively.  
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l
bulkideal FF ≈   (4)  

it will be possible for us to predict the direction of the relaxation purely from the bulk 

information.  

In step (1), it is necessary to define how the bulk is cut. As to the bulk itself, 

usually people in solid state physics would like to adopt the Wigner-Seitz cell and 

suppose that it is a natural boundary between atoms. It is essential to recognize that 

this is based on a point charge concept and local symmetry arguments. A more 

physical boundary is likely to follow where the electron density is minimal, because 

there the bonds between atoms along this boundary should be the weakest. However, 

constructing such a physical boundary is much more complicated than the Wigner-

Seitz boundary. It is unknown whether there can be some analytic deduction besides 

brute determination from ab initio calculations. In the present study, we choose two 

simpler profiles. One is called Finnis-Heine cut as adopted in Finnis and Heine’s 

paper [2]. It is important to notice that in their original paper, this boundary is taken 

as the ideal surface, i.e., after charge smoothing. Here we choose it as a starting 

boundary of the fresh-cut surface. The next one is the Wigner-Seitz cut along the 

Wigner-Seitz boundary, which was also used by Smoluchowsky [1] as the starting 

boundary.  

In the following calculation of the force on the fresh-cut surface, we do not 

use a corresponding planar summation technique similar to that of [4]. It is because 
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LAPW methods expand the wave functions inside the muffin-tin using the atomic 

orbitals, which makes it difficult to express them in the plane wave basis again. 

Instead, we just make the clumsy summation of the Coulomb force cell by cell. The 

charge neutrality is maintained within 0.2% when cutting boundaries are constructed.   

 

A.3 Prediction of Surface Relaxation on Hcp (0001) Be and Zr  

A.3.1 Calculation of fresh-cut surfaces  

The following numerical analysis is based on full-potential LAPW calculation 

using WIEN97 software [31]. We choose hcp (0001) Be and Zr as examples (Table 

A.1). It is observed that for Be, the first inter-layer space is expanded [7-8, 17-19] 

while for Zr it is contracted [11,21-23], which provide a reliable standard to test our 

ideas. The improved generalized gradient approximation (GGA) [32] of the 

exchange-correlation function is used. The charge density and potential cut-off is 196 

Ry. In the bulk calculation, the irreducible Brillioun Zone is sampled with 240 k 

points. The calculated lattice constants by total energy minimization (a, c (in Å): Be, 

2.26, 3.56; Zr, 3.23, 5.19) agree well with previous studies [33-34, 17-19].  

First, we consider the Finnis-Heine (F-H) cut (Figure 2). The bulk is truncated 

along a hcp (0001) plane in the middle of neighboring layers. The force calculated 

consists of ion-ion repulsion and ion-electron attraction (Eq. (2)). The size of the 

summation is the stacking of 14 layers along c axis with 2929 atoms in each layer.   
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The directions of forces on the first layer atoms indicate that both for Be and 

Zr, the first inter-layer space should contract. This is the net result. The effect due to 

the force on the second layer atoms is also taken into consideration. The indication 

that the surface atoms should move toward the bulk is consistent with Finnis and 

Heine’s work [2]. In their study, a uniform electron distribution was used to 

approximate the ideal surface, and the calculation demonstrated that the first inter-

layer space of Al fcc (111) should contract. Since the force on the second-layer atoms 

is much smaller, our calculation in some sense is a more accurate LAPW version of 

the force I indicated in [4]. 

From Table A.1, both hcp (0001) Be [7-8, 17-19] and fcc (111) Al [6,14,26] 

expand actually, which simply suggests that Finnis and Heine’s approximation of 

charge smoothing on closely packed surface is too simplified to give reliable 

directions of relaxation as noticed in the literature [14,7,22]. Until this stage our 

calculation has not yet included charge-smoothing processes. Still Finnis-Heine’s 

picture predicted the trends that open surface contracts much more than close surface. 

These cross-checks may suggest that the capability of Finnis-Heine’s picture in 

predicting the trends is more likely due to the topological similarity of this flat FH 

cutting boundary to that of the atoms near the surface than to the approximation of 

charge smoothing physically sound.   

In the second type of fresh-cut surface (Figure A.2), the boundary is replaced 

by Wigner-Seitz cell as assumed in [1]. Now there are some electron convex outside 
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of the Finnis-Heine plane and some concave left inside. Our calculation indicated that 

for both Be and Zr, the forces point toward the vacuum, leading the surface atoms to 

expand away from the bulk. A test calculation adopting a uniform electron 

distribution also gave the similar result.  

Since we know that the surface relaxation behaviors of Zr and Be are very 

different, comparing the above two different considerations of the surface density 

profiles may allow us to draw the conclusion that for hcp (0001) surface, it is possible 

to be a universal result that for F-H cutting the first inter-layer spacing should 

contract while for W-S cutting it should expand. Given that the force on the second 

layer atoms is quite small, this conclusion may be applicable to fcc(111) surfaces as 

well. This suggests that stopping at these two types of fresh-cut surfaces, we can not 

obtain an unambiguous understanding of the direction of surface relaxation. Some 

more physically sound density profiles taking into account the inherent difference of 

the bulk would be needed to give meaningful results.  

 

A.3.2 Charge smoothing of ideal surfaces   

Next, we compare the difference between hcp Be and Zr and look at their 

different trends of charge smoothing.   

Shown in the top panels of Figure A.3 is how electrons are distributed in the 

fresh-cut hcp (0001) surfaces of Be and Zr. The valence electron density contour is 

obtained in the F-H plane. Since these regions are relatively far away from the nuclei  



 

144 

 

 

 

 

Figure A.3 Charge density profiles of Be and Zr. These density contour plots are 

along the Finnis-Heine plane. The upper two are the bulk distribution of Zr (left) and 

Be (right). Corresponding to the structure in Figure A.1, in each panel the four 

corners and the center represent the images of (4,5,7,8,6) while the other three 

maxima refer to those of (1,2,3). In Be, regions along the maximum points are called 

ridges, which indicate the formation of bonds. The bottom plots are the density 

difference between the first inter-layer F-H plane of the ideal surface and the bulk. In 

Zr (left), density right above (4,5,6,7,8) is decreased (-. 001), while that below (1,2,3) 

is maintained (.000). In between there’s accumulation of charges (++) where the 

density is increased about .001. In Be (right), above (4,5,6,7,8) there is little change 

(.000) while below the first layer (1,2,3) the density is decreased (-. 003).  
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and are less bounded by the lattice potential, it is likely that after we split the bulk, 

electrons located there are severely disturbed. Although Zr has 4 valence electrons 

(4d25s2, in the calculation, the core states 4s2 4p6 are also counted as valence 

electrons), its average density (0.025 electron per au3) is smaller than that of Be (2s2) 

(0.037 electron per au3). In both cases, the maxima are located right above the nuclei 

(0.036 electron per au3 for Zr; 0.043 electron per au3 for Be). It is clear that Zr has a 

ion core more densely packed than Be does. In Be, although the interstitial charge 

density is minimal in the plane (0.031 electron per au3), its magnitude is still 

comparable with regions above the nuclei. These electrons are restricted by 

directional distribution of electrons along the ridges between neighboring maxima. 

These characteristics agree with previous study that in Be there is hybridization of s 

electrons with p orbital while its bulk property is semi-metallic and anisotropic 

[35,33-34]. For Zr, the interstitial space has fewer electrons, largely forming hollow  

regions. This is consistent with the general observation that electrons in d metals are 

more localized.  

In the following, we analyze how charge smoothing occurs from the above 

fresh-cut surface. For charge smoothing to happen, the following two prequisites 

should be fulfilled: (1) there exist valence electrons to be smoothed and (2) there exist 

hollow regions energetically favorable to accommodate incoming extra electrons. As 

in Smoluchowsky’s work [1], we adopt Weizsäcker’s expression for the kinetic 

energy per volume of electron [36]:  
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above formula itself and if we only consider the importance of kinetic energy part in 

charge smoothing, we would draw the conclusion that electrons would more likely 

flow from bulk toward the vacuum space to decrease the corrugation and electron 

density. However, the lattice energy due to electron-ion attraction and the exchange 

energy due to the Pauli Principle favor a higher density distribution of electrons 

localized around the nuclei [37]. Theoretical calculation [38] shows that in metals of 

high valence electron density (Be, Al, Mg), the bulk kinetic energy is so high that it 

overcomes the exchange-correlation energy and leads to the formation of a large 

dipole layer near the surface, which contributes significantly to the work function. At 

low density, under the influence of a strong ion potential, the exchange-correlation 

effect becomes dominant, the spreading of charge toward vacuum is small, and the 

contribution of dipole layer to work function can be neglected.  

Next we carry out self-consistent calculations to obtain the information of the ideal 

surfaces of hcp (0001) Be and Zr. For Be, the super cell of the surface is composed of 

10 layers of atoms and the vacuum is 7 layers thick. The 
12
1  irreducible Brillioun 

Zone is sampled with 44 k points. For Zr, the super cell is composed of 10 layers of 
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atoms and 4.3 layers of the vacuum while the number of k points is 33. The other 

parameters are the same as that in the bulk calculations. Calculation of the cohesive 

energy and comparison of electron density in the middle region with the above bulk 

calculation show that the choice of these parameters is accurate enough for our 

purposes. Forces acting on surface atoms are obtained automatically by the WIEN97 

software [39]. From the result given in Table A.2, it is clear that after the electrons 

are fully relaxed, the directions of forces acting the first layer atoms of the ideal 

surface are consistent with the results of the fully relaxed surface (Table A.1). For Be, 

the direction of force is the same as that of the W-S fresh-cut surface but the 

magnitude is decreased significantly. For Zr, the direction of force is the same as that 

of the F-H type and the scale is also decreased. For the comparison to be meaningful, 

we take the basic assumption that from either F-H or W-S fresh-cut surface, the ideal 

surface obtained after charge smoothing is the same. It is clear from Table A.2 that 

for these two types of fresh-cur surfaces, the force due to charge smoothing ( l
eFδ  in 

formula (1)) is too large to be negligible.  

We compare the electron distribution of F-H fresh-cut surface with the ideal 

surface. Figure A.4 shows that for both Be and Zr, part of electrons spread out toward 

the vacuum; however the magnitude and extension of spreading in Be is much larger 

and longer than that in Zr. In the interstitial space between the first and second layer 

atoms, Be and Zr have dramatic difference (Figure A.3). In the middle region parallel  
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Table A.2 Forces on surface atoms with different boundary profiles     

Be   Be   Zr  

Finnis-Heine Cut   -37 mRy/a.u.  -229 mRy/a.u.  

Wigner-Seitz Cut  38mRy/a.u.   254 mRy/a.u.  

Ideal Surface  8.2 mRy/a.u.  -24 mRy/a.u.  

 

Here negative number means the force direction is toward the bulk, leading to 

contraction; others mean expansion.  



 

149 

 

 

 

 

 

 

Figure A.4 Variation of interstitial charges near surfaces. This is the dispersion along 

[0001] of the density distribution in a plane which is parallel to [0001] while passing 

through the line connecting the triangular center of (6,7,9) and (6,8,10). The origin is 

the center of the super cell. The vertical axis (electron per au3) refers to the dispersion 

of the electron density along the direction perpendicular to [0001] in this plane. “x”s 

are where the nearby atom 6 or 1 located. For Zr (left), this plane is close to the ion 

core and the variation is too large and we truncate the top to accommodate the 

illustration. Both for Be and Zr, the electron distribution near the surface becomes 

more uniform and the density is increased. The decay of charge in Zr is much sharper 

than that in Be. The “a” in Zr refers to the accumulation of charge in this region. The 

“d” refers to the depletion in Be.  
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to F-H plane, on average the charge density (electron per au3) is decreased 0.0006 in 

Be and increased 0.0004 in Zr respectively. For Zr, it corresponds to the chemical 

picture of strengthening back bonding [22,29] near the surface for d metals. For Be, it 

suggests that even part of electrons in this region have rushed out into the vacuum.   

The above difference is consistent with our knowledge of the difference of 

band structures between Be and Zr. In the band structure of crystal Be, the lowest 

vacant states on average are about 1 ev above the Fermi surface [33-34], which makes 

the bulk-like interstitial space energetically unfavorable to accommodate any extra 

electrons. Between these vacant states and Fermi level, there can exist many surface 

states. In the bulk band structure of Zr, the vacant states are very close to the Fermi 

surface, on average about 0.2 eV above the Fermi level [40]. These band structure 

characters are given from our bulk calculations as presented in Figure A.5. 

Energetically, when electrons smooth into the interstitial space between the first and 

second layer atoms, these states are possible to hold electrons coming from the region 

exposed to the vacuum. This agrees with Feibelman’s chemical picture that in Zr 

there are extra d orbitals to hold demoted electrons, which does not exist in Be [22].  

 

A.4 Summary   

Based on full potential LAPW calculations we considered several possible 

ways to predict and explain the abnormal difference of surface relaxation between Be 
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Figure A.5 Band structures of bulk Be and Zr. Here we can notice that at the region 

close to the surface, there exist many empty low energy states for Zr. For Be, 

however, such states are few.  

Be 

Zr 
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and Zr from their respective bulk information. Beginning with the fresh cut of the 

bulk, we tracked the problem of surface relaxation by emulating the process of 

dynamic response. How the electrons smooth from fresh-cut surface to ideal surface 

is closely related to the properties of the crystal. For Be, the overall high valence 

charge density, delocalized distribution, and a large band gap provide the mechanism 

that during charge smoothing, electrons are more likely to spread out into the vacuum 

to form a layer of free electrons floating above the surface. This depletes electrons 

between the first and second layers and leads the first inter-layer spacing to expand. 

For Zr, the strong ion potential, the trends of localized distribution of valence charge, 

and the abundance of low lying vacant states above the Fermi level make it favorable 

for part of electrons to shift inside. This increases the bonding between the first and 

second layers and leads the first inter-layer space to contract. Besides Finnis-Heine 

and Wigner-Seitz boundaries, it may be possible to construct other types of cutting 

boundary between atoms so that the effect of the charge smoothing would be smaller. 

If it exists, the prediction of the direction of surface relaxation from the bulk 

information as indicated in Eq. (4) will be more reliable. Despite that the relaxation 

behaviors of (0001) Be and Zr surfaces are quite different, our test of Finnis-Heine 

and Wigner-Seitz boundaries give the same direction. It is possible that following the 

interstitial region where the electron density is minimal there may be a choice. Along 

this minimal contour, the bonding is weak and the charge smoothing of fresh-cut 

surfaces could be small. So far our test of this minimal contour is disappointing 
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because of the demanding of the computational details and highly accurate electron 

density distributions.  

 

A.5 Discussion  

A.5.1 Multilayer relaxation  

So far our discussions are limited to the relaxation behaviors on close-packed 

surface structures, in which the forces on deeper layers are quite small. It is possible 

that surface relaxation is not limited in the first layer and can propagate deeper into 

the bulk. In Table A.3 we give our multilayer relaxations results on several metallic 

surfaces. These are calculated using the WIEN97 code as mentioned previously. The 

details are to be presented in Appendix B. It is clear that on open surfaces the 

relaxation has oscillatory behaviors. On closely packed surface (Be (0001)), the 

relaxation essentially limited to the first layer. Experimentally, Davis and co-workers 

used LEED to determine the possible importance of multi-layer relaxation as early as 

1978[41]. As mentioned in the introduction, Alldrege and Kleinman predicted a 

contraction of 20% on Li (001) [4]. In the theoretical investigation of the importance  

of multi-layer in 1980 [42], Landman et al also noted that on Li (001) the multi-layer 

relaxation could be important. Barnett et al [43] found that multi-layer relaxations can 

have some oscillatory behavior with a periodicity equal to the bulk layer stacking 

period. Later Jiang et al [44] and Adams et al [45] showed that the qualitative trends
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Table A.3 Multi-layer relaxation    

Results  Be(1010)  Mg(1010) Al(110)  Cu(110) Be(0001)  

Dd12 / d12  -22.80%  -13.88%  -9.43%  -10.04% 2.2%  

Dd23 / d23  5.63%  6.90%  3.88%  4.09%  0.5%  

Dd34 / d34  -13.10%  -7.25%  -3.13%  -0.89%  0.4%  

Dd45 / d45  3.67%  3.59%  -0.08%    

Dd56 / d56  -4.94%  -1.93%     

 

Here we have calculated the multi-layer relaxations on Be hcp (1000), (1010), 

fcc (110), Mg hcp (1010), Al fcc(110) and Cu fcc(110). Details of the calculation are 

described in Appendix B.  
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of the multilayer relaxation of open metal surfaces can even be predicted by 

calculating the electrostatic forces on the layers of the unrelaxed structures. They 

simply used uniform electronic background and point ions. This was also confirmed 

by our test on Mg (1010). First principles calculations by Ho et al [46] also suggested 

the correlation of the stacking sequence with the oscillation of the multi-layer 

relaxation. In the calculation of force, it is important to represent the three-

dimensional nature of the electron density [43, 46] instead of the one-dimensional 

profile as originally used by Lang and Kohn [6]. Eguiluz [47] studied the multi-layer 

relaxation of Al (110) within the frame of perturbation theory, which suggested that 

the screening of the ions by mobile sp electrons play an significant role. This study 

also suggested that the convergence of the relaxation be very slow with the thickness 

of the slab. Increasing the thickness of the slab is accompanied by decreasing of the 

scale of the relaxation. The predicted scale is smaller than that from other theories 

and LEED experiments. However, other theoretical calculations and experiments 

have never gone as deep as the ninth layer to check the convergence. It is unclear 

whether this slow convergence is due to the limitation of the perturbation frame or it 

does be the nature. It is possible that Al is not a simple sp-bonded metal and the 

coupling can not be treated in a perturbation approach. Recently Cho et al [48] 

suggested that Friedel oscillation can make a significant contribution to multi-layer 

relaxation. In their study, there indeed exists an agreement of the oscillatory change 

of the electronic density and the oscillatory variation of the sign of the total force on 
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the ideal surface ions. According to Eq. (3), to judge whether the charge redistribution 

is dominant in the relaxation process, it is necessary to deduct the part of force 

contributions from the fresh-cut surface. As observed in [44-46] and our own test, a 

simple uniform electronic background would give an oscillatory force as well. To 

further complicate the answer to the question of whether electrostatic effect (Eq (2)) 

or Friedel oscillation (Eq. (4)) is dominant, in these studies the choice of the fresh-cut 

boundary is not physically defined. The jellium edge usually adopted is the Finnis-

Heine cut of the fresh-cut surface. Changing a boundary will give different 

redistribution behavior. However, it is likely that the periodicity of the oscillation 

would remain.   

 

A.5.2 Thermal expansion of surface relaxation.  

Usually ab initio calculations are carried out at 0K while experiments at 

temperatures much higher. Our previous discussion of the surface relaxation is used 

at 0K. Generally, it is expected that due to the entropy effect, the lattice constant 

should be expanded upon increasing the temperature. However, this is for systems of 

homogeneous lattice atoms and simple lattice structures. In systems where the 

homogeneity of the lattice atoms disappears, it is likely that the thermal expansion of 

the system is not uniform any more, which can lead to the fact that some inter-atomic 

space contracts upon the increase of the temperature. For bulk systems negative 

thermal expansions have been found in systems such as ZrW2O8 [49,57,58], HfW2O8 
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[58], and some semiconductors [50]. On surfaces, due to the broken of symmetry 

perpendicular to the surface, the inhomogenity of lattice atoms increases significantly. 

We can understand the occurrence of thermal expansion through the change of 

anharmonicity and/or the softening of the vibration frequency. On Al(110)[51], 

Be(1010) [56], Mg(1010)[52], Cu(100)[53] there have been observations of negative 

thermal expansion in certain temperature regime in LEED experiment. Study of 

Al(110) using molecular dynamics [54] indicated that a localized vibration mode 

perpendicular to the surface in the second layer is responsible for the negative thermal 

expansion. (See Figure A.6). However, they obtained the information through the 

mean square displacement of atoms, which is not the right quantity to justify their 

claim that the underlying reason was anharmonicity. Here it is essential to notice that 

due to the symmetry breaking perpendicular to the surface, it is possible that the 

asymmetry can even influence the harmonic coefficient of each layer. Let us take a 

mean field approximation and assume that along the direction perpendicular to 

surface, each layer of atoms are vibrating independently in the mean field provided by 

other atoms. We may expand the total energy of the system as   

∑ −−=
i

iiiiii zfzgzcE 432    (6) 

Here zi is the displacement of atoms in the layer i around its equilibrium state 

perpendicular to the surface. In the terminology of Kittel [55], the cubic term 

represents the asymmetry of the mutual repulsion of the atoms and the fourth-order  
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Figure A.6 Layer-resolved mean square displacements on Al(110). The shaded area 

corresponds to the bulk experimental values of Ref.19 there. ([54]). 
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term represents the softening of the vibration at large amplitudes. Also he regarded all  

terms higher than the second order as the anharmonic term. The mean displacement 

<zi> and mean square displacement<zi
2> can be evaluated from 
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It is clear from above that analysis of the mean square displacement misses the 

contribution from the lower order contributions such as the cubic term. The result 

from [54] is given in Figure 6. In the framework of Eq.(9), it does indicate that the 

fourth-order term is important in the outmost two layers. One more significant point 

from Eq.s (8) and (9) is that, given the strong reliance of deviation (<zi >and <zi
2 >, it 

is essential to recognize that to each layer, it can assume a different harmonic 

coefficient ci. This difference can also give significant contribution to the expansion 

or contraction of the inter-layer spaces.  

We have performed LAPW calculations (T=0K) to check this possibility. The details 

of the calculation of the ground state are given in Appendix B. In calculating the 
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difference of the harmonic term, we allow the atoms in each specific layer to shift 

above or below their positions in the ground state. The positions of atoms in other 

layers are fixed. Due to the limitation of computation power, we only have 7 points to 

fit. To decrease the error due to the limitation of data point, we only fit the energy to 

the harmonic term. Calculations are carried out on Al(110), Cu(110), Mg (1010) and 

Be(0001) surfaces. Table A.4 list the result in terms of the vibration frequency wi= 

m
ci . Figure A.7 gives the fitting of the outmost four layers for Al(110). The bottom 

point in the well indicates the position of the ground state. Since the sample points are   

From Table A.4 we can notice that the softening of the vibration frequency is 

different between Be(0001) and other open surfaces. For the open surfaces Al(110), 

Cu(110), Mg (1010), they indicate somehow the formation of double layers, in the 

sense that the frequency of the outmost layer w1 are only slightly different from ω2 

while ω2 is significantly smaller than ω3. According to Eqs. (8) and/or (9), this 

inhomogeneous softening of the vibration frequencies has the chance to give 

inhomogeneous thermal expansions with some interlayer spaces indicating negative 

thermal expansion while others with positive thermal expansion. Table A.4 also 

indicate that ω4 of Al(110) and Mg(1010) is smaller than ω3. It is not clear whether 

this is a physical fact or an artificial result due to the limitation of the thickness of the 

slab calculations.  For Be(0001), the situation is different. ω1 is about 30% smaller  



 

161 

 

 

 

Table A.4.Layer-by-layer variation of vibration frequencies. (Unit is  in Hz).  

 Be(0001) Al(110) Mg(1010) Cu(110) 

w1 1.921x1012 1.088x1012 7.325x1011 8.701x1011 

w2 2.847x1012 1.163x1012 7.711x1011  

8.680x1011 

w3 2.994x1012 1.615x1012 1.032x1012 1.083x1012 

w4  1.428x1012 9.795x1011  
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Figure A.7 Mean-field study of inter-layer coupling on Al(110). Shown is the 

variation of total energy with the shift of each layer perpendicular to the surface. The 

curves are obtained with parabolic fitting to the data as indicated by the points in each 

panel.chosen to be equally displaced away from the optimal position, the asymmetric 

distribution of energies does indicate the existence of anharmonicity terms.  
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than ω2. It is also much smaller than that expected from the simple count of the loss 

of nearest-neighbors, which gives a softening of 13.4%. This is consistent with the 

experimental observation of unusually large thermal expansion of the outmost inter-

layer space [8].  
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Appendix B Electronic Corrugation on Perfect Metallic 

Surfaces 

 

In the studies that we have presented in chapters 3-5, the experimental data 

provided by STM are significant in helping our understanding. A significant part of 

our effort has been on the interpretation of STM images. As real surface structures 

always have defects, it will be very helpful in our understandings if we can have some 

knowledge of the surface morphologies of perfect surfaces without any defects. In 

this Appendix, we present our ab initio calculation results of the electronic 

corrugations on several perfect metallic surfaces. These calculations indicate that the 

partial electronic density profiles comparable to experimentally obtained STM images 

can have non-trivial features independent of the substrates even on open surfaces.  

 

B.1 Theory for the Calculation of STM images  

A full simulation of STM imaging system using ab inito calculation is still a 

computational challenge. The ab initio calculation carried out here is of an half-

infinite defect-free surface structure. To make the comparison with STM image, we 

need some analytic approach to model the tunneling behavior between the STM tip 

and the surface electrons. Here we choose the model used by Tersoff and Hamann 
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[2]. The analysis is along the line of Bardeen’s perturbation theory [22] for 

interpreting tunneling phenomena through metal-insulator-metal junction [23].  

In the framework of perturbation theory and long-time approximation as 

implied in the Fermi golden rule, the tunneling current can be written as  

∑ −+−=
µν

νµµννµ δπ )()](1)[(2 2
EEMeVEfEf

h
eI  (1)  

where f(E) is the fermi-Dirac distribution function and V the applied voltage. The 

matrix M represents the integration of the perturbation term Hst between tip states and 

sample states. This is defined as  

dVHM st∫= µνµν ψφ *  (2) 

where φ,ψ are unperturbed wave functions of the tip and sample. The tip and sample 

are assumed to be independent and unperturbed systems. Bardeen proved [22] that the 

tunneling matrix element can be evaluated by integrating a current-like operator over 

a plane lying in the insulator slab. In one-particle form, it takes  

∫ ∇−∇−= Sd
m
hiM

e

].[
2

**
2

νµµνµν φψψφ  (3) 

Tersoff and Hamann [2] simplified the tip as a spherical potential well of radius R. 

Using the s-wave to represent the tip state and assuming a low voltage, they obtained 

a linear dependence of the current with the electronic density of the sample at the tip 

position r0 at Fermi level EF [2].  
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 ∑ −∝
µ

µµ δψ )()(
2

0 FEEI r   (4)  

This above formula has been used successfully to understand the topological 

image of gold [24]. Later Chen [6] extended this approach to tip states of higher 

angular moment. He showed that the tunneling current involves the first (second) 

derivative of the surface wave functions in the case of p (d) tip states. In the case of 

short tip-sample distance, the perturbation approach is not valid any more. Green’s 

function method [5] and scattering theory [8,9] have been applied to understand these 

phenomena.  

Our calculations presented here are limited in the framework of Tersoff and 

Hamann. The calculations are based on Eq. (4). Since we are solely interested in the 

change of electron density in a constant height mode, the linear constant is neglected.  

 

B.2 Preparation of the Calculation  

Calculations are performed in the following way. At first, the bulk lattice 

constants are obtained through the minimization of the total energy. Next, fully 

relaxed double-side slab calculations are carried out to obtain the information of the 

surfaces. The final step involves extracting the electron density distribution at a 

certain distance away from the surface in a narrow energy window around the Fermi 

energy. The choice of distance and energy window should be comparable with what 

are used in a typical STM experiment setup. These calculations are carried out with 
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WIEN97 code [19] as used in Appendix A. After the surface charge distribution in 

the real space becomes available, Fourier transformation (FT) is performed to obtain 

the distribution in the reciprocal space. Six surface structures are considered: hcp 

Be(0001), Be(1010), Mg(1010), fcc Al(110), Cu(110), and artificial fcc Be(110). The 

related input parameters are listed in Table B.1. The calculated bulk lattice constants 

and surface energies are given in Table B.2. The bulk lattice constants agree well with 

the results listed in the textbook [25]. The results of surface relaxation have been 

included in Table A.3. As discussed in Appendix A, the inter-layer distances of hcp 

Be(1010), hcp Mg(1010), fcc Al(110), fcc Cu(110), and artificial fcc Be(110) have 

oscillatory behavior as widely observed on open metal surfaces.  

 When calculating the STM image, we considered two energy windows, which 

involves the integration of the electron density contributions from Fermi energy to 

340mev (wide) or 68mev (narrow) below. We also considered the empty state images 

and the characters are very similar to the results presented here. The tip-surface 

distance is also considered of two categories, 3.0Å (far) or 1.5 Å (close). This 

distance is considerably closer than what is generally assumed in experiments, which 

is about 4-5 Å. About this, we note the recognition of previous studies that LDA 

calculations can not reproduce physics well in the region faraway from the surface. In 

combination, each surface has 4 theoretical STM images under different situations. 

When the tip-surface distance is as close as 1.5 Å, it is very possible that the 

perturbation approach assuming negligible tip-sample interaction should fail to work 
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Table B.1 Parameters used in the calculation.  

Parameters  Be(1010)  Mg(1010)  Al(110)  Cu(110) 

Exchange-Correlation function   LDA LDA  LDA  GGA 

Mode Non-relativity Non-relativity Non-relativity Relativity 

K points in reduced BZ  54 54 54 48 

Max L for basis inside sphere 11 11 11 11 

Max L for non-muffin-tin matrix 5 5 5 5 

Plane wave cut-off  9 8.1 8.3 9.8 

Potential and charge cut-off 13 13 13 17 

Layers of atoms in surface slab  12 12 11 9 

Vacuum space (Å)  10.6 14.5 14.4 10.5 
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Table B.2 Lattice constants and surface energies.  

Results  Be(1010)  Mg(1010) Al(110)  Cu(110) 

Lattice Constant(Å) 2.22 ( 2.27)  

3.52 ( 3.59) 

3.13 ( 3.21) 

5.10 (5.21) 

4.00 (4.05)  3.63  (3.61) 

Surface Energy( ev/ Å2 ) 0.132 0.07 0.08 0.111 

Values inside parenthesis are taken from [25]. 
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any more. However, as a pure comparison of the reliance of partial electron density 

on the distance away from the surface, it is still meaningful.  

 

B.3 Results of the Calculation  

For the calculation with the condition of narrow energy window (65meV) and 

far tip-sample distance (3Å), which is closer to the experimental conditions, the 

charge distributions in the area of one surface rectangular unit cell and the Fourier 

Transform of the STM image for hcp(1010) Be and Mg and fcc(110) Al and Cu are 

presented in Figure B.1. Experimental STM images for Be hcp(1010) [14-15] and Cu 

fcc(110) [16] are presented in Figure B.2. All images are highly corrugated along ΓA 

(across atomic row); along ΓA (along atomic row), these materials show important 

difference. For Be, it is essentially flat and there is no corrugation along the atomic 

row. For Cu, there is slight corrugation along the atomic row. For Mg, the corrugation 

is a little larger. Of these metals, Al is the most corrugated along the atomic row, 

which is comparable to that across the atomic row. Images obtained for the other 

three conditions are qualitatively similar to the result shown in Figure B.1, despite 

that there is some quantitative difference. Somehow, the difference between Be 

hcp(1010) and Cu fcc(110) is not as dramatic as that indicated in Figure B.2. On the 

FT of STM for Be hcp (1010) in Figure B.2(c), essentially there is no indication of 

corrugation along M direction at all.  
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Figure B.1 Calculated (FT) STM images.  

Al(110)
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Figure B.2 Electronic corrugation on Be(1010) and Cu(110) surfaces. Shown here are 

STM images for (a) Be(1010) [13-14] (b) Cu(110) [15]. The tunneling current I (nA), 

bias V(mv) and temperature(K) T are (I, V, T) = (0.1, -50, 4), (1.1, 66, 237). Their 

corresponding FT-STM are shown in (c), (d). 

dc c 
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  For a quantitative comparison, the numerical results for the calculated FT of 

STM images are given in Table B.3. The intensity at the center of the reciprocal space 

(00) is defined to be 1; intensities at other points are relative to it. It indicates that the 

corrugation along the atomic row for Cu (110) is 2-20 times larger than that for Be 

(1010). However, the corrugation across the atomic row for Cu(110) is 2-10 times 

smaller than that for Be (1010). If we define anisotropy as the ratio of the intensity at 

A (across the atomic row) to that at M (along the atomic row), the above analysis 

means that the anisotropy of corrugation in Be (1010) (13-1000) is much larger than 

that in Cu (3-10), which explains the significant difference between STM images of 

Cu(110) and Be(1010) in Figure B.2. The unusual anisotropy of Be (1010) has been 

reported in [15]. This quantitative information also indicates the importance of 

quantificating image intensities in the data analysis, which can in certain degree 

exclude the ambiguity due to the resolution of the apparatus as indicated in Figure 

B.1.  

 To test whether the stacking sequence is the physical reason in bringing out 

the difference in the STM images, we constructed an artificial Be fcc(110) surface. 

The total energy per atom for bulk fcc Be is 0.04ev higher than that for hcp structure, 

which is consistent with the fact that Be assumes hcp structure. The quantitative 

information of calculated images for Be fcc(110) is given in Table B.4. It has some 

difference from that of (1010) structure, but the main feature is the same. This 

excludes stacking sequence as the (main) reason. However, it is still possible that the  

a ba 
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Table B.3 Relative intensity of the Fourier-transformed electron density distributions 

on hcp (1010) of Be, Mg and fcc (110) of Al and Cu.  

 Be(1010) Mg1010) Al(110) Cu(110) 

Narrow 

& 

close 

1        (00)

0.5     (01)

0.03   (10)

1      (00) 

0.3    (01)

0.04  (10)

1     (00)

0.3  (01)

0.2  (10)

1    (00) 

0.3 (01) 

0.1 (10) 

Narrow 

& 

far 

1 

0.5 

3.0*10-3 

1 

0.3 

0.01 

1 

0.1 

0.06 

1 

0.1 

0.01 

Wide 

& 

close 

1 

0.4 

0.03 

1 

0.2 

0.03 

1 

0.3 

0.2 

1 

0.2 

0.06 

Wide 

& 

far 

1 

0.4 

4.0*10-4 

1 

0.2 

0.01 

1 

0.1 

0.04 

1 

0.05 

7*10-3 
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influence of stacking sequence is different in different materials, which we can not be  

excluded as I have not carried out the corresponding calculation on the artificial hcp 

Cu(1010). In Table B.4 we compared the relative intensity of the charge corrugation 

on different surfaces of Be. It clearly indicates that the electron distribution on Be 

hcp(0001) is the least corrugated , which agrees with STM experiment [17].  

 

B.4 Discussion and Summary  

Based on tables B.3 and B.4, we make some discussion about the dependence 

of corrugation on voltage and the tip-sample separation. It is very clear that the closer 

the tip to the sample, more corrugated is the charge density distribution. The 

dependence of the corrugation with the bias is very weak, with a slight tendency that 

the larger the bias, the less corrugated the surface. This is different from recent 

calculations for Cr and Mn on Fe (001) [12] and bcc (110) surfaces of W, Ta and Fe 

[13], where strong dependence of corrugation amplitudes on the applied bias voltage 

is observed. 

It is important to notice that so far we have utilized the simplicity of Eq. (4) to 

calculate the STM image. The comparison is also based on this formula. However, it 

is possible that (a) the tip-sample interaction is large, which leads to the distortion of 

the sample and/or the tip wave functions (b) the state of tip is not of s-wave nature. 

Both of these two factors can complicate the understanding of sample properties 



 

180 

 

 

 

Table B.4 Relative coefficient of the Fourier-transformed electron density 

distributions on different Be surfaces.  

Be Hcp(1010) Fcc(110) hcp (0001) 

Narrow 

& 

close 

1 (00) 

0.5 (01) 

0.03(10) 

(00) 

0.4 (01) 

0.05 (10) 

1 (00) 

4.0*10-3 (01) 

Narrow 

& 

far 

1 

0.5 

3.0*10-3 

1 

0.2 

1.0*10-3 

1 

8.0*10-4 

Wide 

& 

close 

1 

0.4 

0.03 

1 

0.4 

0.01 

1 

4.0*10-3 

Wide 

& 

far 

1 

0.4 

4.0*10-4 

1 

0.2 

1.0*10-4 

1 

5.0*10-4 
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based on STM images. In understanding the electronic corrugation obtained from 

STM experiment, it is essential to distinguish the enhanced corrugation due to the tip 

state [6] and the variation of tip-sample coupling strength with the tip-sample 

separation from the intrinsic corrugation of the surface [26]. 

In summary, we have carried out ab initio calculations of STM images of 

several perfect metallic surfaces within the framework of Tersoff-Hamman 

approximation. The quantitative analysis of the electron density corrugation has 

achieved good agreement with experiment results.   
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