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Abstract 

 
The objective of the present research is to investigate the recent development of 

the vorticity confinement method. First, a new formulation of the vorticity confinement 

term is studied. Advantages of the new formulation over the original one include the 

ability to conserve the momentum, and the ability to preserve the centroid motion of 

some flow properties such as the vorticity magnitude. Next, new difference schemes, 

which are simpler and more efficient than the old schemes, are discussed. At last, two 

computational models based on the vorticity confinement method are investigated. One 

of the models is devised to simulate inviscid flows over bodies with surfaces not aligned 

with the grid. The other is a surface boundary layer model, which is intended for 

efficiently simulating viscous flows with separations from the body surfaces.  

 

To validate the computational models, numerical simulations of three-

dimensional flows over a 6:1 ellipsoid at incidence are performed. Comparisons have 

been made with exact solutions for inviscid simulations or experimental data for viscous 

simulations, and data obtained with conventional CFD methods. It is observed that both 

the inviscid and the viscous solutions with the new models exhibit good agreement with 

the exact solutions or the experiment data. The new models can have much higher 

efficiency than conventional CFD methods, and are able to obtain solutions with 

comparable accuracy.  

 

 

 

 

 

 

 



 v

 
Table of Contents 

 
 

1.   Introduction                                                                                                                1 

1.1   Background                                                                                                                     1 
1.2   Objectives and Structure                                                                                            4 

1.2.1   Study of the new confinement formulation and new  

           computational schemes                                                                                  4 

1.2.2   The surface boundary layer model             5 

1.2.3   The structure of the dissertation                         5 
 

2.   The Vorticity Confinement Method                                         7 

2.1   The Theory of the Vorticity Confinement Method                                  8 

2.1.1   The vorticity confinement method                                                      8 

2.1.2   The non-conservative vorticity confinement formulation                              8 

2.1.3   The conservative vorticity confinement formulation                                   10 

2.1.4   Analytical solutions of zero convection formulations                                  13 

2.1.5   Properties with convection, preservation of centroid              18    

2.1.6   Fast and slow variables              21 

2.2   Discretization of the Confinement Formulation and the Fractional  

        Step Method                                                                                 21 

2.2.1   The fractional step method                                  22 

2.2.2   New formulations for the vorticity confinement method                             25 

2.2.3   Boundary conditions              29 

2.3   Numerical Experiments              31 

2.3.1   A single vortex convecting in a weak free stream           33 

2.3.2   A vortex pair convecting in mutually induced velocity field            36 

2.3.3   Grid dependence study and variation of parameters                                    38 

2.4   Discussion                43 
 



 vi

 

3.   The Surface Boundary Layer Model           45 

3.1   The Inviscid Surface Model               46 

3.1.1   Extrapolation scheme for the surface model            47 

3.1.2   Test case: inviscid flow over a flat plate             50 

3.2   The Surface Boundary Layer Model             51 

3.2.1   The body fitted coordinate               51 

3.2.2   Inner grid generation                51 

3.2.3   Model equations for the surface boundary layer model           52 

3.2.4   The metrics of the coordinate transformation          54 

3.2.5   The transformed equations and numerical implementations          55 

3.2.6   Boundary conditions: the coupling algorithm             59 
 

4.   Numerical Simulations of Flow over 6:1 Ellipsoid at Incidence        63 

4.1   Flow over 6:1 Ellipsoid at Incidence             63 

4.1.1   The cross flow separation               63 

4.1.2   Experimental results, description of the devices          64 

4.1.3   Numerical results for comparison             64 

4.2   Numerical Simulations Using the Inviscid Surface Model            66 

4.2.1   Pressure coefficient on the surface: exact inviscid solution           66 

4.2.2   Numerical simulation and the results              67 

4.3   Numerical Simulations Using the Surface Boundary Layer Model             69 

4.3.1   Problem setup                  69 

4.3.2   Discussions of the results                71 

4.4 Discussion of the Surface Models               76 
 

5.  Conclusion                                                                                                                78 
 

LIST OF REFERENCES                             80 

 

 



 vii

APPENDIX                        87 

Appendix  I:  Figures              88 

Appendix II:  The Centroid Motion of a Convecting Scalar Field      217 
 

Vita               223 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 viii

 
List of Figures 

 
2- 1. Harmonic mean on discrete lattice             89 

2- 2. Analytical solution for an axisymmetric vortex           89 

2- 3. The analytical solution of a one-dimensional pulse          90 

2- 4. Initial velocity field of a single convecting vortex           91 

2- 5. Initial velocity distribution of a single convecting vortex          92 

2- 6. Velocity field of a single convecting vortex after 1000 time steps, without  

        vorticity confinement                                                        93 

2- 7. Velocity distribution of a single convecting vortex after 1000 time steps,  

        without vorticity confinement                94 

2- 8. Velocity field of a single convecting vortex after 5000 time steps, without  

        vorticity confinement                           95 

2- 9. Velocity distribution of a single convecting vortex after 5000 time steps,  

        without vorticity confinement                          96 

2-10. Velocity field of a single convecting vortex after 1000 time steps, with 

         non-conservative vorticity confinement              97 

2-11. Velocity distribution of a single convecting vortex after 1000 time steps,  

         with non-conservative vorticity confinement           98 

2-12. Velocity field of a single convecting vortex after 5000 time steps, with 

         non-conservative vorticity confinement                                                                  99 

2-13. Velocity distribution of a single convecting vortex after 5000 time steps,  

         with non-conservative vorticity confinement          100 

2-14. Velocity field of a single convecting vortex after 1000 time steps, with 

         conservative vorticity confinement                             101 

2-15. Velocity distribution of a single convecting vortex after 1000 time steps,  

         with conservative vorticity confinement          102 

2-16. Velocity field of a single convecting vortex after 5000 time steps, with 

         conservative vorticity confinement                                                                         103 



 ix

2-17. Velocity distribution of a single convecting vortex after 5000 time steps,  

         with conservative vorticity confinement          104 

2-18. Velocity field of a single convecting vortex after 1000 time steps, with 

         old confinement scheme                                   105 

2-19. Velocity distribution of a single convecting vortex after 1000 time steps,  

         with  old confinement scheme                                   106 

2-20. Velocity field of a single convecting vortex after 5000 time steps, with 

          old confinement scheme                                                                         107 

2-21. Velocity distribution of a single convecting vortex after 5000 time steps,  

         with old confinement  scheme                108 

2-22. Contour plots for a single convecting vortex, with non-conservative  

         vorticity confinement                                                                                             109 

2-23. Contour plots for a single convecting vortex, with conservative vorticity    

confinement                                 110 

2-24. Contour plots for a single convecting vortex, with old vorticity confinement    

scheme.                                111 

2-25. The trajectories of a single convecting vortex computed by  

various methods                                 112   

2-26.  Initial velocity field induced by a vortex pair with opposite rotation                   113 

2-27. Velocity field of a vortex pair after 1000 time steps, without vorticity  

         confinement                                            114 

2-28. Velocity field of a vortex pair after 5000 time steps, without vorticity  

         confinement                115 

2-29. Velocity field of a vortex pair after 1000 time steps, with non-conservative 

          vorticity confinement                                                116 

2-30. Velocity field of a vortex pair after 5000 time steps, with non-conservative  

          vorticity confinement                         117 

2-31. Velocity field of a vortex pair after 1000 time steps, with conservative 

          vorticity confinement                                                118 

2-32. Velocity field of a vortex pair after 5000 time steps, with conservative  



 x

         vorticity confinement                         119 

2-33. Velocity field of a vortex pair after 1000 time steps, with old 

          confinement scheme                                              120 

2-34. Velocity field of a vortex pair after 5000 time steps, with old 

          confinement scheme                         121 

2-35. Contour plots for a vortex pair, with non-conservative vorticity confinement      122 

2-36. Contour plots for a vortex pair, with conservative vorticity confinement       123 

2-37. Contour plots for a vortex pair, with old vorticity confinement scheme         124 

2-38. Contour plots for a vortex pair, 5 cell apart                                125 

2-39. Contour plots for a vortex pair, 10 cell apart                                                         126 

2-40. Contour plots for a vortex pair, 20 cell apart                                                         127 

2-41. Contour plots for a vortex pair, 40 cell apart                                                         128 

2-42. Convergence history of a vortex pair                                                                     129 

2-43. Evolution of the maximum velocity and vorticity, different c1                             130 

2-44. Evolution of the maximum velocity and vorticity, different c2                             131 

2-45. Evolution of the maximum velocity and vorticity, different α                              132 

2-46. Equivalent physical vector field, comparison between N = 20 and N = 40          133 

2-47. Scaled vector field merged, comparison between N = 20 and N = 40                  134 

2-48. Flow field of a stationary single vortex, with grid dimension 128 x 128               135 

2-49. Flow field of a stationary single vortex, with grid dimension 256 x 256               136 

2-50. Flow field of a stationary single vortex, with grid dimension 512 x 512               137 

2-51. Velocity distribution of a stationary single vortex                                                 138 

2-52. Flow field of a single vortex after scaling, with grid dimension 128 x 128           139 

2-53. Flow field of a single vortex after scaling, with grid dimension 256 x 256           140 

2-54. Flow field of a single vortex after scaling, with grid dimension 512 x 512           141 

2-55. Merged Flow field of a stationary single vortex after scaling                                142 

2-56. Velocity distribution of a stationary single vortex after scaling                            143 

3- 1. The initial surface boundary layer model             144 

3- 2. The projection from outer grid onto the surface           145 

3- 3. Flow over a flat plate             146 



 xi

3- 4. Lift coefficient for flow over flat plat, inviscid surface model            147 

3- 5. Body-conforming grid generation             148 

3- 6. Inner grid around a 6:1 ellipsoid            149 

3- 7. Detailed view of the inlet/outlet of the inner grid           150 

3- 8. Inner grid around a 6:1 ellipsoid, crop of y=0 symmetry plane        151 

3- 9. Inner grid around a 6:1 ellipsoid, cuts at the middle and the inlet/outlet                152 

3-10. Inner grid around a 6:1 ellipsoid, details of the two planes in figure 3-9       153 

3-11. Overlapped grid systems, view of a cross plane           154 

3-12. Enlarged view of the overlapped grid systems, view of a cross plane        155 

4- 1. Cross plane separation               156 

4- 2. The 6:1 ellipsoid configuration, data planes           157 

4- 3. Pressure Coefficient, symmetry plane (theta=0), inviscid surface model       158 

4- 4. Velocity of the symmetry plane, 0° incidence, inviscid surface model       159 

4- 5. Velocity of the symmetry plane, 15° incidence, inviscid surface model      160 

4- 6. Velocity of the symmetry plane, 30° incidence, inviscid surface model       161 

4- 7. Velocity of the symmetry plane, 45° incidence, inviscid surface model       162 

4- 8. Velocity of the symmetry plane, 60° incidence, inviscid surface model       163 

4- 9. Velocity of the symmetry plane, 90° incidence, inviscid surface model       164 

4-10. Cross plane velocity, X/L=0.5, inviscid surface model        165 

4-11. Pressure Coefficient, cross planes, 90° incidence, inviscid surface model            166 

4-12. Cross plane velocity, 30° incidence, inviscid surface model           167 

4-13.  The uniform Cartesian grid             168 

4-14. The structured grid used by Tsai et al           169 

4-15. Pressure coefficient, X/L = 0.77, 10° to 30° incidence, without surface model    170 

4-16. Pressure coefficient, X/L = 0.77, 30° incidence, without surface model       171 

4-17. Variation of the solutions, X/L = 0.77, 20° incidence          172 

4-18. Pressure coefficient, X/L = 0.77, 10° incidence, with surface model                    173 

4-19. Pressure coefficient, X/L = 0.77, 15° incidence, with surface model                    174 

4-20. Pressure coefficient, X/L = 0.77, 20° incidence, with surface model        175 

4-21. Pressure coefficient, X/L = 0.77, 25° incidence, with surface model        176 



 xii

4-22. Pressure coefficient, X/L = 0.77, 30° incidence, with surface model        177 

4-23. Pressure coefficient, X/L = 0.11, 10° incidence, with surface model        178 

4-24. Pressure coefficient, X/L = 0.23, 10° incidence, with surface model        179 

4-25. Pressure coefficient, X/L = 0.31, 10° incidence, with surface model        180 

4-26. Pressure coefficient, X/L = 0.44, 10° incidence, with surface model        181 

4-27. Pressure coefficient, X/L = 0.56, 10° incidence, with surface model        182 

4-28. Pressure coefficient, X/L = 0.69, 10° incidence, with surface model        183 

4-29. Pressure coefficient, X/L = 0.7725, 10° incidence, with surface model       184 

4-30. Pressure coefficient, X/L = 0.90, 10° incidence, with surface model        185 

4-31. Pressure coefficient, X/L = 0.11, 30° incidence, with surface model        186 

4-32. Pressure coefficient, X/L = 0.23, 30° incidence, with surface model        187 

4-33. Pressure coefficient, X/L = 0.31, 30° incidence, with surface model        188 

4-34. Pressure coefficient, X/L = 0.44, 30° incidence, with surface model        189 

4-35. Pressure coefficient, X/L = 0.56, 30° incidence, with surface model        190 

4-36. Pressure coefficient, X/L = 0.69, 30° incidence, with surface model        191 

4-37. Pressure coefficient, X/L = 0.7725, 30° incidence, with surface model       192 

4-38. Pressure coefficient, X/L = 0.90, 30° incidence, with surface model        193 

4-39. Jagged definition of the ellipsoid surface for uniform Cartesian grid          194 

4-40. Vorticity iso-surface, 10° incidence, without surface model         195 

4-41. Vorticity iso-surface, 20° incidence, without surface model           195 

4-42. Vorticity iso-surface, 30° incidence, without surface model         196 

4-43. Vorticity iso-surface, 45° incidence, without surface model         196 

4-44. Vorticity iso-surface, 90° incidence, without surface model         197 

4-45. Cross flow separation on a 6:1 ellipsoid, X/L = 0.6 and 0.77, 20° incidence        198  

4-46. Vorticity contours, X/L = 0.6 and 0.77, 20° incidence, with surface model         199 

4-47. Cross plane vorticity contours, 30° incidence, with surface model        200 

4-48. Cross-flow separation, 30° incidence, with surface model        201 

4-49. Front view of cross-flow separation, 30° incidence, with surface model       202 

4-50. Side view of cross-flow separation, 30° incidence, with surface model       203 

4-51. Rear view of cross-flow separation, 30° incidence, with surface model       204 



 xiii

4-52. Overhead view of cross-flow separation, 30° incidence, with surface model       205 

4-53. Vorticity iso-surface, 10° incidence, with surface model         206 

4-54. Vorticity iso-surface, 20° incidence, with surface model         206 

4-55. Vorticity iso-surface, 30° incidence, with surface model         207 

4-56. Vorticity iso-surface, 45° incidence, with surface model        207 

4-57. Overlapping vector field, X/L = 0.77, 10° incidence, with surface model       208 

4-58. Details of overlapping vector field, X/L = 0.77, 10° incidence                   209 

4-59. Overlapping vector field, X/L = 0.77, 20° incidence, with surface model       210 

4-60. Details of overlapping vector field, X/L = 0.77, 20° incidence        211 

4-61. Overlapping vector field, X/L = 0.77, 30° incidence, with surface model       212 

4-62. Details of overlapping vector field, X/L = 0.77, 30° incidence        213 

4-63. Cross Plane streamlines, X/L = 0.60, 20° incidence, with surface model       214 

4-64. Details of cross Plane streamlines, X/L = 0.60, 20° incidence        215 

4-65. Cross plane streamlines, 20° incidence, compared to data          216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv

 

Nomenclature 

 
 a                        Vorticity confinement length scale 

 CFL                           Courant-Friedriches-Lewy number 

pC                               Pressure coefficient 

, ,E F G                       Flux vectors 

 h                Distance to the surface 

 i,j,k               Indices of inner grid 

 I,J,K             Indices of outer grid 

n                                Unit vector  

 N                               Total number of surrounding grid points 

 P                               Pressure 

P∞                              Pressure at infinity 

q                               Velocity vector 

q∞                              Free stream velocity 

Q                               Primary transport variable 

Q< >                        Centroid of velocity 

s                               Confinement vector 

 s                               Confinement scalar 

 t                                Time 

 u                              Velocity component in x direction 

 v                              Velocity component in y direction 

 w                             Velocity component in z direction 

W                              Harmonic mean of the vorticity 

 x,y,z                         Coordinates of a Cartesian grid 

, ,ξ η ζ                       Coordinates of a curvilinear grid 



 xv

x̂                               Coordinate of a grid point 

X̂< >                        Centroid of variables 

 X/L                            Position of a cross plane 

 ε                                Confinement coefficient 

 µ                               Artificial diffusion coefficient 

φ                                Scalar field 

ψ< >                        Total scalar value 

 Φ                              Harmonic mean of a scalar variable 

 φ                              Pressure variable 

ϕ∞                             Pressure value at infinity 

 ρ                              Density 

 Γ                             Circulation 

 λ                              Aspect ratio of an ellipsoid 

t∆                             Time step 

ω                             Vorticity vector 

, ,x y z∆ ∆ ∆                Grid spacing for Cartesian grid 

∇                             Gradient operator 

 

 

 

 

 
 

 

 



 1

 

1.   Introduction 

 
1.1   Background 

 
Over the last forty years, Computational Fluid Dynamics (CFD) has evolved from 

the specialty of a small band of enthusiasts into a vast and industrially oriented enterprise. 

Resources committed to CFD research are increasing rapidly, at the same time new areas 

of application continue to open up. The applications of CFD nowadays have already 

spread over a considerable variety of disciplines and specializations, ranging from 

aerodynamics to environmental preservation and from shore protection to biological 

science [22]. Regarding the state of diversity and the fragmentation CFD currently carries, 

it is very important to develop methods that are cost effective and easy to adapt for 

various problems across different areas. Unfortunately, this is not always the case for 

most of the modern CFD methods. The situation is almost opposite to what is hoped.  

These methods normally are highly customized and awkward to adapt to new 

configurations, not to mention the usability for areas outside the one they are originally 

designed for. Further more, most of the existing methods are resource intensive for 

complicated modern flow problems such as flow over a whole aircraft body, flow over a 

block of buildings, etc.  

 

Most high Reynolds number separated flows are turbulent. In the area of 

mathematics, tools for non-linear types of problems are still very limited. Unfortunately, 

being one of the most challenging subjects of modern science, turbulence is a phenomena 

caused by the non-linear characteristics intrinsic to the dynamics of fluid flows. Due to 

the lack of mathematical tools, turbulence presents difficult challenges for CFD 
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applications. The well-known Navier-Stokes equations are able to describe the dynamics 

of fluid flows under most conditions. The simulation of fluid flows thus becomes mainly 

a task of numerically solving or modeling the Navier-Stokes equations. The existence of 

a wide range of length scales makes Direct Numerical Simulation (DNS) of turbulence 

flow extremely resource demanding, and unrealistic for most real world applications [30]. 

In most of the existing methods dealing with turbulent flows, turbulence is modeled by 

solving model equations rather than simulated by solving the exact Navier-Stokes 

equations [3][22][39]. 

 

A large number of approaches have been proposed during the last 30 years. These 

methods can be roughly categorized into two major methodologies: time-averaging and 

space-averaging methods [21][22][47]. The time averaging methods are based on the 

Reynolds averaged Navier-Stokes (RANS) equations. Since the Navier-Stokes equations 

are nonlinear, this leads to a situation in which there are more unknowns than equations, 

which is the so-called "closure" problem of turbulence modeling [39]. Constraints must be 

devised to make the number of independent equations equal the number of unknown 

variables. The time-averaged model thus can be classified by the number of constraints 

used for turbulence quantities, ranging from the zero equation model (better known as the 

mixing length model) to stress-flux models with as many as six constraints [21][22][47]. 

Among all these models, the two equation k-ε and k-ω models [47][48] seem to be the 

most popular, where two constraint equations are devised to solve for the turbulence 

quantities introduced in the Reynolds averaged equation: the turbulence kinetic energy 

and turbulent energy dissipation [22]. Space averaged methods, mainly the Large Eddy 

Simulation (LES) method, simulate the larger scales of motion while accepting that the 

smaller scales will not be properly represented [21]. Larger scales are solved directly 

without modeling and the smaller scales are filtered out and need to be modeled. There 

certainly are crossovers between these two types of methods. RANS methods are also 

"space-averaged" over small eddies, while the LES methods typically require time-

averaging turbulence models for solving sub-scale eddies [28][47]. There are also hybrid 

methods such as Detached Eddy Simulations (DES), which attempt to use RANS models 
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in predicating boundary layer growth and separation, and to use LES away from solid 

surfaces to model the typically geometry-dependent and unsteady scale of motion in 

separated regions [26][27][36][45]. 

 

For both of these approaches, higher order methods are necessary to minimize the 

amount of artificial diffusion introduced by discretization [3][16][35][37]. The grid 

normally must be very fine for regions around the surface, to minimize the numerical 

dissipation introduced by the turbulence model [3][18][35]. For unsteady flows with large 

regions of vortical features, to successfully capture the flow properties, the grid may need 

to be updated according to the flow situations. Otherwise the vortical features will 

disappear rapidly due to the numerical diffusion, since the grid away from the surface in 

most cases is very coarse. To deal with this situation, adaptive grids are used in many 

applications [16][28][37]. As a result, although conventional methods may be efficient for 

some flows with relatively low Reynolds numbers or simple body geometries, they are 

inefficient and sometimes not even feasible for flows with multiple thin vortices 

convecting over long distances and high Reynolds number flows over complicated bodies 
[1][3][35][22]. 
 

The vorticity confinement Method, originally developed in early 1990s [50][51], 

introduces a very different way to simulate vortical features in fluid flows. This new 

method is based on a set of new model equations. The discretized model equations 

generate solutions that can represent a vortical feature with very few grid points. The grid 

for the computation thus can be made coarser compared to conventional methods, for 

which sufficient number of grid points are needed across vortical features in order to 

approximately solve the conventional model equations. 

 

One of the salient features of the new models is the introduction of a nonlinear 

negative diffusion term, which plays a critical role in areas with concentrated vorticity. 

These new difference equations can capture a vortical feature with only two to three grid 

cells and the resulting vortical structure behaves like a solitary wave, which can convect 
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with the main flow for indefinite durations without spreading or changing its main 

features.  

 

The solutions of the new models approximate those of the Navier-Stokes 

equations in most parts of the flow field, where the flow is nearly irrotational. In the 

vortical regions, the solutions are not good approximation but preserve many of the 

integral properties of the flows [2][3]. In many practical flow problems, such as flows with 

very thin vortex features, only these integral properties are important. Thus the solutions 

can be very accurate globally even if the internal structures of the vortical regions are not 

exactly solved [1][3].  

 

 The advantage of the method is that computational schemes can be devised based 

on the confinement method that require orders of magnitude smaller computational 

resources and simpler numerical procedures than typical conventional methods while 

achieving comparable accuracy. The usefulness of the confinement method is not limited 

to fluid dynamics applications. It can be applied to a large range of scientific problems 

where the numerical spreading of flow features is one of the major concerns. It is not 

surprising that the confinement method has already been applied to many other areas 

such as computational acoustics and even some graphics applications in the movie 

industry, etc [2][12][15][58].  

 

1.2   Objectives and Structure 

 
1.2.1   Study of the new confinement formulation and new 

computational schemes 

 
In the past, most of the confinement methods have used a non-conservative 

formulation for the confinement terms [1][13][14][16-20][38][49-58]. Recently, a new 

conservative confinement formulation has been developed [2]. The new confinement 
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formulation has many advantages over the old one, such as it explicitly conserves the 

momentum and preserves the centroid motion of vortical features, etc. The new 

confinement is one of the main topics of this dissertation. 

 

The numerical schemes are also revised in this thesis, both for the conservative 

and non-conservative confinement formulations. These new schemes are simpler than 

those used in the past applications of the confinement methods, and at the same time, are 

able to achieve higher efficiency and better accuracy. 

 

1.2.2   The surface boundary layer model 

 
Using vorticity confinement as a rough boundary layer model on non-body 

conforming grids can yield good results for massively separated flows [1][14][17][18][20].  

However, for flows where the internal structures of the boundary layer are very important 

in determining the separation point, the thick artificial boundary layer obtained from this 

model may prevent it from being able to accurately model the dynamics of the separation 

process [3]. 

 

A new boundary layer model is developed and studied in this dissertation. In 

addition to the existing vorticity confinement method, the surface boundary layer model 

is able to 

1) use a body-conforming grid to explicitly define the surface, 

2) treat small features that have less thickness, 

3) provide better capability to predict the separation process, 

4) provide better resolution. 

 

1.2.3   The structure of the dissertation 
 

The dissertation is organized into three main parts. The first main part is dedicated 

to the study of the vorticity confinement method. Many new developments of the method 
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that have not been previously covered in the literature are discussed, followed by the 

newly revised numerical scheme. After that, some simple test cases are performed using 

the newly described methods. The last part of this section summarizes some of the main 

features of the vorticity confinement methods. 

 

The second main part is concentrated on discussing newly designed surface 

boundary models. An inviscid surface model and a viscous surface boundary layer model 

are presented, followed by some simple numerical demonstrations. 

 

In the last main part, full three-dimensional flows are computed to demonstrate 

the capability of the discussed models. Flows over a 6:1 ellipsoid with various incidence 

angles are simulated, first using the inviscid model, next using the conservative 

confinement on a uniform Cartesian grid without the surface model, and last, using the 

viscous surface boundary layer model coupled with the conservative confinement 

method.  The results are presented and discussed in detail. 

 

A brief conclusion and recommendations for future studies conclude the 

dissertation. 
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2.   The Vorticity Confinement Method 

 
In this chapter, the theory of vorticity confinement is presented. There is a lot of 

existing literature dedicated to vorticity confinement [1][2][13][14][16-20][38][49-58], in 

which one can find many successful applications of the methods. However, an organized 

presentation of the theory still needs to be created, especially the inclusion of some of the 

important developments in recent studies. The theory and numerical scheme presented in 

this context is in many parts different from those involving the original confinement 

method, and includes the descriptions of the new confinement method that have not been 

fully described in previous studies [2]. The new method involves a better-founded 

mathematical and physical basis, using simpler but more accurate numerical schemes. 

The context in this section is set with the intention of documenting the most classical 

aspects as well as the newest developments of the vorticity confinement theory. It is 

hoped that this thesis can provide some useful information for people who are interested 

in utilizing the method. 

  

The mathematical models are presented first, followed by detailed studies of the 

mathematical and physical properties of the model equations. Due to the vast possible 

variation of the vorticity confinement formulation, many of the results may vary from the 

existing literature. The formulations described here are the ones used to obtain results 

presented in the thesis and are proved to be successful. Following the discussion of the 

theory are the computational schemes for adapting the method to numerical 

computations. Compared to past studies, major changes are made to the numerical 

schemes, especially the numerical formulation of the vorticity confinement term. Next 

some classic simple flows are studied to illustrate some important features of the newly 

presented methods. The final section is dedicated to the discussion of the salient features 
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of the vorticity confinement method. This section serves to summarize the topics and 

problems raised in the previous three sections.  
 

2.1  The Theory of the Vorticity Confinement Method 
 

2.1.1   The vorticity confinement method 

 
The governing equations for vorticity confinement methods are based on the 

continuity equation and the momentum equations for unsteady inviscid incompressible 

flow, with two added terms 

 0q∇ ⋅ =  (2.1) 

 21( )t q q q p q sµ ε
ρ

∂ = − ⋅∇ − ∇ + ∇ +  (2.2) 

where q , p and ρ  are the velocity vector, the pressure and the density, respectively 

[2][50].  
 

The third term on the right hand side of equation (2.2) is a diffusion term, in 

whichµ  is a diffusion coefficient. The last term on the right hand side of equation (2.2) is 

the confinement term, in which ε is the confinement coefficient. The confinement term 

can take different forms according to the specific set up of a flow problem. The 

confinement term can confine the vortical region and keep it from numerical spreading, 

which is the reason why it is referred to as "vorticity confinement". 

 

2.1.2   The non-conservative vorticity confinement formulation 

 
In the early applications of the vorticity confinement method, a non-conservative 

confinement formulation was developed [50][51]. The formulation for this non-

conservative confinement term is 
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 s n ω= ×  (2.3) 

where 

 qω = ∇ ×  (2.4) 

 n ω ω= ∇ ∇  (2.5) 

from which it can be observed that n  is a unit vector pointing towards the local 

maximum of the vorticity magnitude.  

 

This confinement term alters the total momentum of the flow field, thus it is 

called "non-conservative vorticity confinement".  

 

An alternative way to look at the non-conservative confinement term is to look at 

the corresponding vorticity equation. By taking the curl of both sides of equation (2.2), 

assuming ε is constant and using equation (2.3), it yields 

 2 ( )q q n
t
ω ω ω µ ω ε ω∂ + ⋅∇ − ⋅∇ − ∇ = ∇× × ∂ 

 (2.6) 

in which the confinement term is isolated to the right hand side for easier identification. 

Notice that the pressure term disappears due to the nature of the pressure field, i.e., it acts 

on the centroid of a mass without generating rotation, thus does not contribute directly to 

the vorticity dynamics.  

 

Equation (2.6) illustrates a very important property: Although the non-

conservative vorticity confinement term does not conserve the total momentum, it 

conserves the total vorticity.  

 

The confinement term can be split in the following way: 

 ( ) ( )ˆn n n n nω ω ω ω ω∇× × = − ⋅∇ + ∇ ⋅ + ⋅∇ − ∇ ⋅  (2.7) 

The first term convects the vorticity towards the centroid of the vorticity field. The 

second term vanishes since all curls are solenoidal.  
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The physical meaning of the remaining two terms are not as clear as the first two. 

The third term, which is zero for two-dimensional flows, resembles a stretching effect if 

the n vector and the vorticity vector are not perpendicular. As to the last term, since 

 n ω→∇  (2.8) 

where "→" means "relate to", it can have 

 2n ω∇ ⋅ →∇  (2.9) 

which is related to the Laplacian of ω  or the smoothness level of the vorticity magnitude 

field. It can be expected the last two terms to have some effect on the shape of the 

resulting vortical region. 
 

2.1.3   The conservative vorticity confinement formulation 

 
The most recent development of vorticity confinement method highlights a new 

conservative formulation [2]. The introduction of the new confinement formulation is 

based on a mathematical concept called " harmonic mean", on discrete lattices. 

 

The harmonic mean 

 
For a scalar φ, the function on a discrete lattice 

 

11( )l
l

l
l

C
H

C

φ
−− 

 =  
  

∑
∑

 (2.10) 

where ( )
l

⋅∑  represents the sum over the lattice nodes surrounding a given lattice nodes 

and lC  is a weight factor, is called the harmonic mean of φ  [2].  

 

For a scalar field on a computational grid, the conservative confinement term can 

be formed based on the harmonic mean of the scalar field  

 2
dsε ε= − ∇ Φ  (2.11) 
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where the subscript d means the corresponding difference form to a continuous spatial 

derivative and 

 
( )

( )

1
1

1

1

1

N

l l
l

N

l
l

d

d

φ
−

−

=

−

=

 
 
 Φ =
 
  

∑

∑
 (2.12) 

in which ld  is the distance from a grid node to its lth surrounding node (figure 2-1), 

which has a scalar value lφ . N is the total number of surrounding nodes. For a uniform 

Cartesian grid, ld  is set the same for all surrounding nodes (ignoring the corner nodes), 

thus equation (2.12) can be simplified as 

 
( )

1
1

1

N

l
l

N

φ
−

−

=

 
 
 Φ =
 
  

∑
 (2.13) 

in which N can be set as six for three-dimensional grid and four for two-dimensional grid, 

resulting in the following index form: 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1, , 1, , , 1,
, ,

1 1 1

, 1, , , 1 , , 1

6

6

i j k i j k i j k
i j k

i j k i j k i j k

φ φ φ

φ φ φ

− − −

+ − +

− − −

− + −

 + +
Φ = +



+ +




 (2.14) 

for a three dimensional uniform Cartesian grid, and 

 
( ) ( ) ( ) ( )

11 1 1 1

1, 1, , 1 , 1
, 4

i j i j i j i j
i j

φ φ φ φ
−− − − −

+ − + −
 + + +
 Φ =
 
 

 (2.15) 

for a two-dimensional uniform Cartesian grid. 

 

Start with the convection equation for a scalar field in difference form 

 ( )d q
t
φ φ∂
= −∇ ⋅

∂
 (2.16) 
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Adding the conservative confinement term and a numerical diffusion term to equation 

(2.16) yields  

 2 2( )d d dq
t
φ φ µ φ ε∂
= −∇ ⋅ + ∇ − ∇ Φ

∂
 (2.17) 

where µ and ε are two numerical coefficients for the diffusion term and the confinement 

term, respectively. Next a similar idea is extended to the vorticity vector field. First apply 

the harmonic mean to the magnitude of the vorticity field ω  

 
( )

( )

1
1

1

1

1

N

l l
l

N

l
l

d
W

d

ω
−

−

=

−

=

 
 
 =
 
  

∑

∑
 (2.18) 

next the computed mean magnitude is vectorized by 

 W Wω
ω

=  (2.19) 

next a vorticity confinement term is defined as 

 ds W= ∇ ×  (2.20) 

substituting into equation (2.17) and transforming it into difference form yields 

 21( )t d d d dq q q p q Wµ ε
ρ

∂ = − ⋅∇ − ∇ + ∇ + ∇ ×  (2.21) 

 

It can be observed from equations (2.17) and (2.21) that the conservative 

confinement term does not alter the total momentum (or total magnitude for scalar field). 

Later in this section, it is proved that the conservative confinement term also preserves 

the motion of the centroids of several important flow features such as mass and vorticity 

magnitude. 
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2.1.4   Analytical solutions of zero convection formulations 
 

Analytical solution for the non-conservative vorticity confinement equation  

 

Analytical solution of the non-conservative vorticity confinement equation for a 

two dimensional axisymmetric vortex (figure 2-2) in uniform free steam is derived 

below. Brief derivation can also be found in [51]. 

 

Using polar coordinates, the momentum equations for inviscid incompressible 

flow with added numerical diffusion terms can be written as  

( )

( )

2 22

2 2 2

2 2

2 2 2

1 1 2( )

1 1 2 1( )

r r r r
r r

r r
r

q q qq q q q pq rq
t r r r r r r rr r

q q q q q q q q pq rq
t r r r r r r rr r

θ θ θ

θ θ θ θ θ θ
θ

ρ µ
θ θθ

ρ µ
θ θ θθ

 ∂∂ ∂ ∂ ∂∂ ∂ ∂ + + − = + − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
 ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ + + − = + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  

(2.22) 

Selecting a reference frame moving with the uniform free stream speed, for a two-

dimensional axisymmetric concentrated vortex, the following conditions can be imposed 

 

0

0

0

rq
q

p

θ

θ

θ

=
∂

=
∂
∂

=
∂

 (2.23) 

substituting into (2.22), it yields 

 
( )

2

1

q p
r r

q rq
t r r r

θ

θ
θ

ρ

ρ µ

∂
− = −

∂
∂ ∂ ∂ =  ∂ ∂ ∂ 

 (2.24) 

The solution of the second equation of can be easily derived to be 

 ( )2 41
2

r tq e
r

µ
θ π

−Γ
= −  (2.25) 

where Γ is the circulation of the vortex flow. The only possible steady solution is 

0qθ =  
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thus there is no non-trivial steady solution for equation (2.24). Next add in the non-

conservative vorticity confinement term. Since 

 
{ } { }

{ } { }
ˆ , 1, 0
ˆ , 0,

r

z r z z

n n n

n n n
θ

θω ω ω ω

= =

× = − = −
 (2.26) 

substituting into equation (2.24) yields the momentum equation with the non-

conservative confinement term added: 

 
( ) ( )

2

1 1

q p
r r

q rq rq
t r r r r r

θ

θ
θ θ

ρ

ρ µ ε

∂
− = −

∂
∂ ∂ ∂ ∂ = + ∂ ∂ ∂ ∂ 

 (2.27) 

Since the pressure is decoupled from the second equation, it enables us to solve for the 

velocity independently from it. The solution for pressure thus can be derived by 

substituting the velocity into the first equation. If one is seeking for steady solution, i.e. 

 0q
t
θ∂
=

∂
 (2.28) 

The steady solution for the velocity, if exists, should satisfy the following equation 

 ( ) ( )1 1 0rq rq
r r r r rθ θµ ε∂ ∂ ∂  + = ∂ ∂ ∂ 

 (2.29) 

The solution of equation (2.29) can be obtained by solving the following equations  

 
( )1

Q Q
r

Q rq
r r θ

µ ε∂
= −

∂
∂

=
∂

 (2.30) 

The first equation has a solution of the form 

 /
0

rQ Q e ε µ−=  (2.31) 

where 0Q  is an arbitrary constant. Substituting into the second equation of (2.30) yields 

 ( )/
0

1rQ e rq
r r

ε µ
θ

− ∂
=

∂
 (2.32) 

which has the general solution  

 ( )
2

0
11 r aa Q aq r a e Q

r rθ
−−

= + +  (2.33) 
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where 1Q  is another arbitrary constant that needs to be determined by boundary 

conditions, and 

 /a µ ε=  (2.34) 

The solution can be simplified further as 

 ( )( )1
21 1 r aCq C r a e

rθ
−= − +  (2.35) 

where 1C  and 2C  are constants to be determined by the flow conditions. For flow 

induced by a concentrated vortex with circulation Γ  

 
r

q drθ
→∞

= Γ∫  (2.36) 

substituting into equation (2.35) gives 

 1 2
C

π
Γ

=  (2.37) 

Also it requires the vorticity magnitude be finite when 0r → , which gives 

 2 1C =  (2.38) 

Finally the exact solution can be written as 

 ( )( )1 1
2

r aq r a e
rθ π

−Γ
= − +  (2.39) 

which defines an axisymmetric vortex, whose core size is determined by the ratio   

 /a µ ε=  (2.40) 

 

Non-convection solution for the conservative vorticity confinement equation 

 

As a simple first step, the diffusion term and confinement term are isolated from 

equation (2.17) and a solution of the following equation 

 2 ( ) 0d µφ ε∇ − Φ =  (2.41) 

is derived in a uniform Cartesian grid. It is assumed that µ and ε are constant. 

 

At the end of this chapter, the topic of fast and slow varying variables is 

addressed. Equation (2.41) describes the dynamics of variables whose convergence rate is 



 16

much faster than other variables in the momentum equation, thus the solution derived 

here can represent the solution of the dynamical behavior of the fast variables. This 

argument follows that of reference [2]. 

  

For Laplace equation 

 2 0φ∇ =  (2.42) 

the maximum principle implies:  

If the Laplacian of a function vanishes everywhere in a region and the function is zero on 

the boundary, then it is zero everywhere.   

 

Approximating this property in a discretized way, if one has 

 2 ( ) 0d µφ ε∇ − Φ =  (2.43) 

and 

 0µφ ε− Φ =  (2.44) 

on the boundary, it gives 

 0µφ ε− Φ =  (2.45) 

everywhere. 

 

Assuming the boundary conditions stated in equation (2.44), and one can seek for 

the solution of 

 0µφ ε− Φ =  (2.46) 

as a valid solution for equation (2.41). 

 

The simplest solution would be a 1-D solution for a pulse, for which 

 
1

1 1

1 12i
i iφ φ

−

− +

 
Φ = + 

 
 (2.47) 

substituting this into equation (2.46) and after some rearrangement of terms, it yields 
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 1 1

1 1 1
2i i i

a

a

φ φ φ
µ
ε

− +

 
= + 

 

=

 (2.48) 

Defining 

 1( )i
i

f x
φ

=  (2.49) 

where ix  is the coordinate of the grid point with index number i. Substituting equation 

(2.49) into equation (2.48) gives 

 ( )1 1( ) ( ) ( )
2i i i
af x f x f x+ −= +  (2.50) 

Denote the grid spacing as x∆ , the coordinate can be written as 

 0 ( 1)ix x i x= + − ∆  (2.51) 

where 0x  is the coordinate for the grid node with index 1. To make it simple, it is 

supposed that  

 0 0x =  (2.52) 

 

The following function satisfies equation (2.50): 

 1 2( ) i x i x
if x c e c eβ β− ∆ ∆= +  (2.53) 

where β must satisfy the following relation 

 1sec ( )h aβ −=  (2.54) 

and c1 and c2 are constants to be determined by the boundary conditions. Finally the 

general solution for equation (2.48) is 

 ( ) 1

1 2
i x i x

i c e c eβ βφ
−− ∆ ∆= +  (2.55) 

For a one-dimensional pulse with a maximum scalar value of 1 with symmetric boundary 

conditions (figure 2-3), one has 

 
1 2C C=  (2.56) 

and 
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 ( ) ( )1

0
1

1 seci x i x
i e e h i x

c
β βφ β β

−− ∆ ∆= + = ∆ −  (2.57) 

where 0β  is the centroid of the pulse. Look back to equation (2.54), which can be 

rewritten as 

sec h aβ =  

So the solution of the form (2.57) exists for  

1a ≤  

which requires 
ε µ≥  

For 
ε µ=  

the solution degenerates into a constant, which is trivial, thus the condition for nontrivial 

solution of equation (2.46) is 
ε µ>  

Again, similar to the solution for concentrated vortex, the width of the resulting pulse is 

determined by the ratio of 

 /a µ ε=  (2.58) 

 

Unlike the previously discussed analytical solution for the non-conservative 

formulation, other than being an analytical solution to a continuous equation, this solution 

is an exact solution to the difference equation (2.41).  

 

2.1.5   Properties with convection, preservation of centroid  
 

It can be proved that for the conservative confinement formulation, the motion of 

the centroids of many flow properties is preserved. In reference [2], the preservation of 

the centroid of a convecting scalar field is discussed, although a detailed derivation is not 

presented. 
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For a difference equation 

 2( )d dL A
t
φ φ δ∂
= +

∂
 (2.59) 

where 2
dδ  represent second derivative difference operator in space. φ  can be a scalar or a 

component of a vector. A is an arbitrary scalar. dL  is a function that can take both 

derivatives and vectors as operators. For example, for the a scalar convection equation 

(2.17) 

 ( ) ( )d dL qφ φ= ∇ ⋅  (2.60) 

 

 Define cL and 2
cδ  to be central difference formulae for dL  and 2

dδ , respectively. 

Equation (2.59) can be written in central difference form as 

 2( )n n
c cL A

t
φ φ δ∂
= +

∂
 (2.61) 

Define 

 ψ φ
Ω

< >≡ ∑  (2.62) 

and 

 ( )ˆ ˆ /n nX xφ ψ
Ω

< > ≡ < >∑  (2.63) 

where 
Ω
∑ represents the sum over all the grid nodes of a computational grid, and x̂  is 

the physical coordinate of a given node. Multiplying both sides of (2.61) by x̂
< >ψ

 and 

taking the sum over the whole field gives 

 21 1 1ˆ ˆ ˆ( )c cx xL x A
t
φ φ δ

ψ ψ ψΩ Ω Ω

∂
= +

< > ∂ < > < >∑ ∑ ∑  (2.64) 

The following property can be proved: 

 2ˆ 0cx Aδ
Ω

=∑  (2.65) 

The detailed derivation of this property is placed in appendix II. The last term in equation 
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(2.64) is zero according to the property (2.65). 

 

For a conservative variable φ , the following property can be assumed: 

 constψ< >=  (2.66) 

Using (2.65) and (2.66), equation (2.64) is simplified into 

 
ˆ ˆ

( )c
x x L

t
φ φ

ψ ψΩ Ω

∂
=

∂ < > < >∑ ∑  (2.67) 

or 

 
ˆˆ ( )c
xX L

t
φ

ψΩ

∂
< >=

∂ < >∑  (2.68) 

The left hand side of equation (2.68) represents the evolution of the centroid. It can be 

observed that adding a second spatial derivative in central difference form does not 

change the centroid motion of a scalar or a vector component. The scalar confinement 

equation (2.17) and the vorticity confinement equation (2.18) in component forms belong 

to the class of equations represented by equation (2.59). Since the confinement terms are 

all second spatial derivatives, the centroid motion of a scalar field or a velocity field is 

not altered by adding either the scalar confinement term or the vorticity confinement 

term. 

 

Define the weighted mean velocity as 

 
( )n n

n
q I

Q
φ

ψ
Ω

⋅
< > =

< >

∑
 (2.69) 

The centroid motion of the scalar confinement equation (2.17) can be derived to be 

 
1ˆ ˆn n nX X t Q
+
= +  (2.70) 

where ( )1,1,1I =  is an identity vector. Detailed derivation of equation (2.70) can be 

found in appendix II. 
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2.1.6   Fast and slow variables 

 
There is a very important property associated with the confinement terms. The 

two confinement parameters, ε  and µ , are determined by the two small scales of the 

computation, the cell size and the time step. The flow can relax to a converged vortical 

structure in a small number of time steps and involve only a small number of grid cells 

surrounding the vortical region [2]. The time scale and the length scale thus are of a 

"computational" type, which is much smaller than the real corresponding physical time 

and length scales in most numerical simulations. The variation rate of the “outer” 

irrotational flow field by contrast is in accordance with the much larger physical scales. 

This forms a two-scale problem: a fast dynamical process for the internal structure of the 

convecting vortical region, which is governed by the following dynamical equation: 

 2 0q sµ ε∇ + ≈  (2.71)             

and a slower dynamical system that can be approximated by the inviscid Euler Equation 

 1( )t q q q p
ρ

∂ = − ⋅∇ − ∇  (2.72) 

 

2.2   Discretization of the Confinement Formulation and the 

Fractional Step Method 

 
To make the description concise, a list of difference operators is defined here first. 

In this section, only uniform Cartesian grid is considered. Unless specified otherwise, all 

the discussion in this section is subject to computations on uniform Cartesian grid. 

 

1) First order forward difference operator for time derivative: 

 ( ) ( ) ( )1n n

t t
δ

+⋅ − ⋅
⋅ =

∆
 (2.73) 
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2) Central difference formulae for first order spatial derivatives: 

 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

1, , 1, ,

, 1, , 1,

, , 1 , , 1

2

2

2

i j k i j k
i

i j k i j k
j

i j k i j k
k

x

y

y

δ

δ

δ

+ −

+ −

+ −

⋅ − ⋅
⋅ =

∆
⋅ − ⋅

⋅ =
∆

⋅ − ⋅
⋅ =

∆

 (2.74) 

 

3) Central difference formulae for second order spatial derivatives: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, , , , 1, ,2
2

, 1, , , , 1,2
2

, , 1 , , , , 12
2

2
( )

2
( )

2
( )

i j k i j k i j k
i

i j k i j k i j k
j

i j k i j k i j k
k

x

y

z

δ

δ

δ

+ −

+ −

+ −

⋅ − ⋅ + ⋅
⋅ =

∆
⋅ − ⋅ + ⋅

⋅ =
∆

⋅ − ⋅ + ⋅
⋅ =

∆

 (2.75) 

which apply to both scalar and vector variables. 

 

2.2.1   The fractional step method 

 
Typical applications of Confinement method to incompressible flow on uniform 

Cartesian grid have been solved with a completely explicit fractional-step scheme [18][32], 

which is described below. 

 

Starting with the governing confinement model equation 

 21( ) [ ]t q q q p q sµ ε
ρ

∂ = − ⋅∇ − ∇ + ∇ +  (2.76) 

The first order forward difference operator for time derivative is used for time 

discretization.  
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1n n

t
q qq

t
δ

+ −
=

∆
 (2.77) 

substituting this into equation (2.76) leads to  

 ( )1 2n n n n n n ntq q t q q p t q t sµ ε
ρ

+ ∇
= − ∆ ⋅∇ − ∇ +∇ ∇ + ∆  (2.78) 

To eliminate pressure and density from the equation (2.78), a pressure function is 

introduced as 

 
( )p p

ϕ
ρ

∞−
= −  (2.79) 

so that p and ρ do not occur explicitly. It follows that 

 1 pϕ
ρ

∇ = − ∇  (2.80) 

Thus the final equation to perform the fractional step scheme is 

 ( )1 2n n n n n n nq q t q q t t q t sϕ µ ε+ = − ∆ ⋅∇ + ∆ ∇ + ∆ ∇ + ∆  (2.81) 

A fractional step method which approximately solves the above equation can be 

described as a five-step scheme as below [18][32]. 

 

Convection step 

 

The computation based on the following space discretized formulation is 

performed to simulate the convection step 

 ( )' n n nq q t q q= − ∆ ⋅∇  (2.82) 

 
Artificial diffusion step 

 

 2" ' 'q q t qµ= + ∆ ∇  (2.83) 

Normally maximum diffusion allowed by instability limit can be added in this step. This 

is very different from traditional methods, where excessive artificial diffusion should be 

avoided by all means.  
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Confinement step 

 

 "' " ''q q t sε= + ∆  (2.84) 

where ''s  is the confinement term calculated based on ''q . This is the heart of the 

confinement method. A nonlinear confinement term is added to keep the vortical region 

from spreading due to the artificial diffusion introduced by the previous step, while at the 

same time trying to simulate the dynamics of the vortical region. 

 

Poisson solver for the pressure  

 

Next step is to solve for the pressure function φ. The conservation of mass 

requires 

 1 0nq +∇ ⋅ =  (2.85) 

thus φ must be computed such that 

 ( )1 "' ''' 0nq q t ϕ+∇ ⋅ = ∇ ⋅ + ∆ ∇ =  (2.86) 

which yields the Poisson equation  

 2 1''' '''q
t

ϕ∇ = − ∇ ⋅
∆

 (2.87) 

 

Any properly selected Poisson solver can be used to derive the pressure from 

equation (2.87). In most of the past applications of the confinement method on uniform 

Cartesian grids [1][2][13][14][17][18][19][54], a direct Cartesian grid Poisson solver, 

FORTRAN subprograms HW3CRT and HWSCRT of "FISHPACK" [59], is used for 

three-dimensional and two-dimensional Poisson equation solutions respectively. This fast 

direct solver is also used in present study. Since it requires that both the equation and the 

boundary conditions be separable, this solver may not apply to complex geometries or to 

complicated boundary conditions that lead to non-separable equations. More information 

about "FISHPACK" can be found in reference [59]. 
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Mass and momentum conservation step 

 

 1 ''' '''nq q t ϕ+ = + ∆ ∇  (2.88) 

The gradient of the pressure derived from the last step is added to the velocity field. This 

step completes the momentum equation. Mass conservation is also enforced, since 

 ( )1 2"' ''' ''' "' 0nq q t t qϕ φ+∇ ⋅ = ∇ ⋅ + ∆ ∇ = ∆ ∇ +∇ ⋅ =  (2.89) 

 

2.2.2   New formulations for the vorticity confinement method 

 
In the existing literature [1][2][13][14][17][18][19], a large part of the difference 

scheme is based on staggered grids, where two types of grids are used for different parts 

of the fractional step scheme: a velocity grid and a pressure grid. Typically the velocity 

grid is based on grid nodes, while the pressure grid uses grid centers. The "FISHPACK" 

Poisson solver is performed on the pressure grid. The vorticity confinement term requires 

the use of both grids. Other parts of the computation are based solely on the velocity grid. 

One can refer to the literature for more details. 

 

In the new scheme described in this context, only the grid nodes are used for all 

parts of the computation. By eliminating the usage of a staggered grid, the numerical 

scheme can be greatly simplified. The complex algorithms for calculating the 

confinement term are avoided in the new scheme. 

 

Convection step 

 

Central difference and conservative forms should be used for the convection step.  

This addresses two problems. First it is important to have full control over when and how 

to add the artificial diffusion, so central difference scheme is used to avoid introducing 

the non-homogenous diffusion by a biased convection scheme. Second, the conservation 

of momentum and the preservation of the centroids of many flow properties are essential 
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for accurately simulating the dynamics of the vortical features. 

 

The momentum equation for 3-D incompressible flow can be written in 

conservative forms as 

 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

1

u uu uv uw p u u u
t x y z x x y z

v uv vv vw p v v v
t x y z y x y z

w uw vw ww p w w w
t x y z z x y z

µ
ρ

µ
ρ

µ
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (2.90) 

in which constant µ is assumed. For the convection step, the following difference 

equations are used 

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

'

'

'

n n n n n n n
i j k

n n n n n n n
i j k

n n n n n n n
i j k

u u t u u u v u w

v v t u v v v v w

w w t u w v w w w

δ δ δ

δ δ δ

δ δ δ

= − ∆ + +

= − ∆ + +

= − ∆ + +

 (2.91) 

where the difference operators are the central difference operators defined earlier in 

formulae (2.74). 

 

Diffusion step 

 

A standard central difference scheme (2.75) is used for the second spatial 

derivatives  

 ( )2 2 2'' ' ' ' 'i j kq q t q q qµ δ δ δ= + ∆ + +  (2.92) 

According to the past experience, this type of homogenous diffusion is the optimum type 

of numerical diffusion for the confinement method. Maximum diffusion could be added 

as long as it does not exceed the instability limit. But for better accuracy, maximum 

diffusion is not recommended, which will be discussed later in detail. The detailed 

stability analysis is also discussed later when selecting the numerical coefficients for the 

computations. 
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Vorticity confinement step 

 

a) Non-conservative confinement formulation  

Unlike the past applications, the vorticity field is calculated directly at each grid 

node using the previously defined standard difference operators (2.74) for first order 

derivatives 

 
( )

( ) ( ) ( ) ( ) ( ) ( )( )
'' '' , '' , ''

'' '' , '' '' , '' ''

T
x y z

T

j k k i i jw v u w v u

ω ω ω ω

δ δ δ δ δ δ

=

= − − −
 (2.93) 

The  n̂ vector is also calculated on the grid nodes, by directly calculating the gradient of 

the vorticity magnitude 

 ( ) ''
ˆ , ,

''
T

x y zn n n n
ω
ω

∇
= =

∇
 (2.94) 

which is a unit vector pointing towards the local centroid of the vortical region. The 

difference schemes for calculating the gradient are 

 
( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( )1/ 22 2 2

'' '' , '' , ''

'' '' '' ''

T

i j k

i j k

ω δ ω δ ω δ ω

ω δ ω δ ω δ ω

∇ =

∇ = + +
 (2.95) 

The vorticity confinement term thus can be calculated at each grid node by  

 ( )ˆ''' '' '' '' , '' '' , '' ''
T

y z z y z x x z x y y xq s n n n n n n nδ ε ε ω ε ω ω ω ω ω ω= = × = − − −  (2.96) 

The confinement term is applied directly to the velocity field on the grid nodes by 

 ''' '' '''q q t qδ= + ∆  (2.97) 

 

b) Conservative confinement formulation 

The same vorticity vector field calculated by equation (2.93) is used for 

conservative formulation of the vorticity confinement term. 

The formula for calculating the harmonic mean is also based purely on grid nodes 
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( )

( ) ( ) ( )

( ) ( ) ( )

, ,

1 1 1, ,
1, , 1, , , 1,

, ,

11 1 1

, 1, , , 1 , , 1

'' '' , '' , ''

''
6 '' '' ''

''

'' '' ''

T

i j k x y z

i j k
i j k i j k i j k

i j k

i j k i j k i j k

W W W W

ω
ω ω ω

ω

ω ω ω

− − −

+ − +

−− − −

− + −

=

= + +

+ + + 

 (2.98) 

Next the curl of ''W  is computed by using the standard central difference formulae (2.74) 

for first derivatives 

 ( )'' '' '' , '' '' , '' ''
T

j z k y k x i z i y i xW W W W W W Wδ δ δ δ δ δ∇× = − − −  (2.99) 

The confinement correction to the velocity field is calculated by 

 ''' ''q Wδ ε= ∇×  (2.100) 

which is added to the velocity as 

 ''' '' '''q q t qδ= + ∆  (2.101) 

 

In the past, the vorticity vectors are first calculated on grid centers. The harmonic 

mean is performed purely on grid center and has to use an upwind-weighted averaging to 

avoid a numerical instability problem named "thin spreading"[2], which features a thin 

spreading of pulses in the direction normal to their motion (see reference [2] for more 

details). For a three- dimensional uniform Cartesian grid, the harmonic mean involves 27 

grid centers for each calculation [2]. By comparison, the new scheme uses only 6 grid 

nodes for calculating a harmonic mean. Also because the new scheme does not exhibit 

the "thin spreading" phenomena, no upwind weighting is needed. The numerical scheme 

for calculating the vorticity confinement term can be made much simpler than the old 

scheme. 

 

Both the conservative and non-conservative formulations of the vorticity 

confinement term require little additional numerical complication over the standard 

central difference schemes, which make them very easy to be adapted for non-uniform 

Cartesian grid or curvilinear grid systems. 
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Mass and Momentum conservation step 

 

First the right hand side of equation (2.87) is calculated using the standard central 

difference scheme for first order derivatives 

 "' ''' ''' '''i j kq u v wδ δ δ∇ ⋅ = + +  (2.102) 

The "FISHPACK" Poisson solver is used to solve equation (2.87), yielding a pressure 

field φ'''. The mass correction is calculated as 

 ( )'''' ''', ''', '''
T

i j kq tδ δ ϕ δ ϕ δ ϕ= ∆  (2.103) 

Finally the velocity field at the next time step is obtained by adding the mass correction 

to the velocity field 

 1 ''' ''''nq q qδ+ = +  (2.104) 

This finishes the entire process of updating the velocity field for one time step.  

 

2.2.3   Boundary conditions 

 
Definition of the surface, the F function  

 

A level set function F is defined at each grid node, which satisfies the following 

conditions: 

 
0, or points outside the body
0, or points on the surface
0, or points inside the body

F f
F f
F f

>
 =
 <

 (2.105) 

And a filter function is defined as 

 
1, 0

( )
0, 0

F
F

F
λ

>
=  ≤

 (2.106) 
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Surface boundary conditions 

 

a) No-slip surface boundary conditions for velocity field  

The no-slip boundary condition for the velocity field on a stationary surface can 

be applied using the filter function as 

 ( )uq F qλ=  (2.107) 

in which uq means the updated velocity vector. 

 

b) Surface condition for pressure field 

Due to the fact that no body conforming grid is used and the "FISHPACK" 

Poisson solver does not allow explicitly specified surface conditions, there are no explicit 

surface boundary conditions specified for the pressure. However, the no-slip velocity 

boundary condition can be approximately regarded as an implicitly enforced Neumann-

type pressure condition [22]. Apply the no-slip condition to the momentum equation 

without confinement 

 21q q q p q
t

µ
ρ

∂
+ ⋅∇ = − ∇ + ∇

∂
 (2.108) 

on the wall it gives 

 21 p qµ
ρ
∇ = ∇  (2.109) 

On the wall, all the derivatives of the velocity in the tangential direction disappear due to 

0q ≡ . So in the direction normal to the surface, one has 

 
2

2

1 nqp
n n

µ
ρ

∂∂
=

∂ ∂
 (2.110) 

As long as the flow does not separate from the wall, it turns out to be 

 0p
n
∂

≈
∂

 (2.111) 

However, for surface region where separation presents, additional explicit surface 

pressure condition may be necessary for reasonably accurate solutions. 
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Far field boundary conditions 

 

a) Far field pressure condition 

On the inlet boundaries, the pressure is specified to be the pressure at the infinity 

to ensure a correct free stream pressure input:  

 inp p∞=  (2.112) 

On all other far field boundaries, the following condition is imposed to insure that there is 

no pressure constraints enforced by the free boundaries: 

 0p
n
∂

=
∂

 (2.113) 

 

b) Far field velocity condition 

On the inlet boundaries, the velocity is specified to be the free stream velocity: 

 inq q∞=  (2.114) 

On all other far field boundaries, the velocity is extrapolated from the inner velocity field 

by specifying 

 0q
n
∂

=
∂

 (2.115) 

 

2.3   Numerical Experiments  

   
Numerical studies using the methods described in the previous sections are 

presented in this section to test the most basic and most important properties of the 

vorticity confinement method: to convect concentrated vortices accurately and without 

spreading of the vortex core. The method is tested for two cases: a single concentrated 

vortex convecting in a uniform free stream and a pair of concentrated vortices with 

opposite strengths convecting in their mutually induced velocity field. The translating 

velocity for both cases is set up to be much smaller than the maximum velocity around 

the vortex core, which is a strong case for testing the accuracy of the numerical method. 
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The induced velocity by the vortex is the dominant velocity component for a single 

convecting vortex, and for the vortex pair, the induced velocity is the only component of 

the velocity field. So the induced velocity must be accurately computed to ensure the 

correct trajectory of the vortices.  

 

Unless specified, for both cases, a 128 x 128 cell grid is used, the cell size is 

normalized to be 1. The circulation of the vortices is specified as Γ = 2π. The initial 

velocity magnitude induced by each single vortex is specified as  

 
1/ 1

1
r for r

r for r
>

 ≤
 (2.116) 

in which r is the distance from a given grid node to the vortex center. Thus the maximum 

induced velocity will be 1 for each single vortex.  

 

Assuming constant diffusion coefficient, the necessary and sufficient stability 

condition for a linearized Euler equation with diffusion term requires [21] 

 2
2

1

12 max , 1, 2,...,
N

m
n l

t l N
Nx

µσ
=

 ∆
≤ = ≤ 

∆ 
∑  (2.117) 

where N is the dimension of the space and  

 l
l

l

q t
x

σ
∆

=
∆

 (2.118) 

For the computation in the present study 

 1lx∆ ≡  (2.119) 

Substituting (2.118) and (2.119) into (2.117) yields 

 
2

1
2 2

q t
tN

µ
∆

≤ ≤
∆

 (2.120) 

The maximum velocity magnitude is 1 and N is 2 for the present study, the time step thus 

must satisfy 

( )1/ 20.5 0.707t∆ ≤ ≈  

For unsteady problems, a smaller time step should give better accuracy. The time step for 
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the present study is selected as 

0.2t∆ =  

which results a CFL number of 0.2 based on the maximum induced velocity. The 

diffusion coefficient is selected as 

0.1µ =  

which is close to the minimum required by relation (2.120). The confinement coefficient 

is selected as  

1.4 0.14ε µ= =  

 According to equation (2.39), it should result in a radius of 2 to 3 cells for the vortex 

core computed with the non-conservative confinement. 

 

It is observed in the computations that although maximum diffusion coefficient 

can be used, the accuracy of the solution may be affected by numerical errors. Using the 

minimum allowed diffusion coefficient seems to give the best results. 

 

 Vorticity contours are plotted from one third of the maximum value to the 

maximum value of the vorticity magnitude. The total number of time steps for each 

computation is 5000, and the total computation time is about one minute on an AMD 

1.7Ghz PC. The vorticity contours are plotted in one single figure for every 1000 time 

steps. The trajectories computed using an analytical solution are also incorporated using 

solid lines with markers indicating the exact positions of the vortices. Plots of velocity 

field around the vortex cores at the time steps 1000 and 5000 are also shown for each 

case. 
 

2.3.1   A single vortex convecting in a weak free stream 

 
In the first case, a single vortex is convecting in a uniform free stream with 

0.04u∞ =  and 0.03v∞ = , which is the velocity in x direction and y direction, 

respectively. With a time step 0.2, the vortex should have traveled 40 unit cells in the x 
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direction and 30 unit cells in y direction after 5000 time steps. Figure 2-4 shows the 

initial velocity field for the computation. Figure 2-5 shows the velocity distribution 

according to r. The horizontal axis denotes r, and the vertical axis denotes the velocity 

magnitude, which is normalized by  

 
( ) 1

1

q q r for r

q q for r
∞

∞

 − >


− ≤
 (2.121)  

After the normalization, the initial velocity field becomes 

 
1 1
1/ 1

for r
r for r

>
 ≤

 (2.122) 

 
The normalized velocities for all the grid points with r less than 40 are plotted as circles 

within a same plot.    

 

The radius r is obtained by calculating the centroid of the vorticity field: 

 

1/ 22 2

, , ,i j i j i j

x y
r x y

ω ω

ω ω
Ω Ω

Ω Ω

    
    = − + −            

∑ ∑
∑ ∑

 (2.123) 

 

 

Figures 2-6 and 2-8 show the velocity vector plots for computation without 

vorticity confinement after 1000 and 5000 time steps, respectively. As expected, the 

vortex spreads very quickly due to the artificial diffusion. From the normalized velocity 

distribution plots (figure 2-7 and figure 2-9), if the vortex radius of the vortex core is 

defined up to the points with normalized velocity value 0.9, it can be observed that the 

size of the vortex core has spread to a radius bigger than 13 grid cells after 1000 time 

steps, and bigger than 30 cells after 5000 time steps. The analytical solutions for the 

velocity distribution computed using equation (2.25) are also plotted in figure 2-7 and 

figure 2-9. According to equation (2.25), the vortex core should spread to a radius of 13.6 

cells after 1000 time steps and 30.3 cells after 5000 time steps. The computation agrees 

well with this analysis. There is some spreading of the velocity values, especially when 
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the radii get big, which may be caused by the error generated when calculating the radius 

using equation (2.123). 

 

Next the non-conservative confinement formulation is used. Since the non-

conservative formulation does not preserve the centroid motion, from the contour plot 

(figure 2-22) it can be observed that the vortex does not move correctly according to the 

analytical solution. At the time step 5000, the vortex center is off for about 7 cells 

compared to the analytical solution. The contours also exhibit some distortion of the 

vortex shape. Figure 2-10 and figure 2-12 show the velocity fields after 1000 time steps 

and 5000 time steps. Figure 2-11 and figure 2-13 show the corresponding normalized 

velocity distribution, from which the radius of the vortex core is hard to tell due to the 

large spreading of the values of grid nodes with similar radius. This spreading may be 

resulted because of the velocity fields are not very smooth. The other factor that may 

cause the spreading is the error generated in calculating the radius. Since the non-

conservative confinement term needs to calculate the n vector on a very coarse grid, the 

resulting n vector field may not be very smooth, especially near the vortex core. For the 

last term of equation (2.7), one can see that the smoothness of the n vector field may have 

effect on the shape of the vortex. 

 

 The results using the conservative formulation are plotted in figure 2-14, figure 

2-15, figure 2-16, figure 2-17 and figure 2-23. From figure 2-23, it can be observed that 

the movement of the vortex is in agreement with the analytical solution. The disparity is 

less than 1 grid cell, which is the resolution limit of the grid. What can also be observed 

in the figure 2-23 is that compared to the results from the non-conservative vorticity 

confinement, the contour of the vortex is more rounded. The vector plot (figure 2-14 and 

figure 2-16) also shows a smoother vector field obtained by the conservative confinement 

formulation. The velocity distributions after 1000 time steps and 5000 time steps can be 

found in figure 2-15 and 2-17, respectively. The radius of the vortex is about 3 cells 

according these plots. Much less spreading of the normalized velocities can be observed 

compared to the results from the non-conservative confinement. 
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Figure 2-24 shows the contour plot for the results obtained by the old numerical 

scheme using the non-conservative confinement [18][19]. The vortex moves much slower 

than that according to the exact solution. The velocity vector plots and vorticity contour 

plots are shown in figure 2-18, figure 2-19, figure 2-20 and figure 2-21. Compared to the 

results from the new numerical scheme with the non-conservative confinement, one can 

see some improvement of the new scheme over the old one on resolving the movement of 

the vortex. The trajectories of the vortex for the various computations are shown together 

in figure 2-25. 

 

It can be observed from the figures that the non-conservative confinement using 

the new numerical scheme results more compact vortex cores than those from the 

conservative confinement and the old confinement scheme. The maximum vorticity 

magnitude after 1000 time steps is around 0.8 for the former case and only 0.4 for the 

latter two cases. This is expected since the new scheme for the non-conservative 

confinement formulation does not involve averaging over the surrounding cells, while the 

conservative scheme requires calculating the harmonic mean and the old scheme applies 

several averaging processes to both the vorticity field and the n vector field. The 

drawback for not applying any averaging processes may be that the resulting velocity 

fields are not as smooth as those involve some averaging procedures. It should be 

mentioned that if it is necessary, one could also apply smoothing to the n vector for the 

new scheme. 

 

2.3.2 A vortex pair convecting in mutually induced velocity field  

 

In the second case, two vortices with opposite strength are set 20 unit cells apart, 

resulting in an induced convecting velocity 0.04u∞ =  and 0.03v∞ =  at both of the vortex 

centers. With a time step of 0.2, the expected movement of the vortex pair after 5000 

time steps should be 40 unit cells in x direction and 30 unit cells in y direction. The initial 

velocity field is shown in figure 2-26. 
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This simple case in fact is very difficult to simulate due to the large cancellation 

between the velocity fields induced by each individual vortex. For example, near each 

vortex core, the velocity induced by the vortex itself is much larger than that induced by 

the other vortex. Even a small error can result in inaccurate movement of the vortex. 

 

In figures 2-27 and 2-28, which are the velocity fields at the 1000 and 5000 time 

steps, respectively, for computation without vorticity confinement. The two vortices 

spread very fast due to the numerical diffusion.  

 

The contour plot for the non-conservative confinement computation is shown in 

figure 2-35. Again, the movement of the vortices is in disagreement with the analytical 

solution. Because the two vortices get closer as they move on, the induced velocities 

become bigger, the vortex pair thus moves faster than that expected from the exact 

solution. Figure 2-29 and 2-30 show the corresponding vector fields after 1000 and 5000 

time steps. The resulting vortex cores are more compact but less rounded than other 

computations because of the reason discussed before. 

 

Figures 2-31, 2-32 and 2-36 show the results obtained by using the conservative 

vorticity confinement.  The disparity between the numerical solution and analytical 

solution again falls within one grid cell. The shapes of the vortices are more rounded but 

more spread than those from the non-conservative confinement. The vector plots also 

show smoother velocity fields around the vortex cores. 

 

The results from the computation by the old non-conservative confinement 

scheme are shown in figures 2-33, 2-34, and 2-37. The computed movement of the vortex 

pair is much slower than that of the exact calculation. The vortex pair in fact turns 

downward, which may be caused by the averaging processes involved in the 

computation. The averaging process can introduce errors that bias toward either the x 

direction or the y direction in most cases.   
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2.3.3 Grid dependence study and variation of parameters 
 

The difference equation for a convecting scalar field in a uniform Cartesian grid 

with grid spacing x∆ can be written in the following way 

 ( ) ( )1 1 2n n t q
x x

µφ φ δ φ δ φ α+ − ∆  − = − ⋅ + − Φ ∆ ∆ 
 (2.124) 

where  
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1
2 i j k i j k

i j k i j k
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+ −
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 (2.125) 

and 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
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2
1, , 1, , , 1,

, 1, , , 1 , , 1

, ,
6

i j k i j k i j k

i j k i j k i j k

i j k

δ
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− + −

⋅ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

− ⋅

 (2.126) 

and 

 1
a

εα
µ

= =  

 
If the solution converges to a steady state in the moving frame, equation (2.124) 

degenerates into 

 ( ) ( )2 0q
x
µδ φ δ φ α− ⋅ + − Φ =
∆

 (2.127) 

 
 

Equation (2.127) shows that the converged solution should be independent of ∆t 

as long as it satisfies the stability condition (2.117), although the convergence rate is 

related to ∆t/∆x. Also, if one changes µ and ∆x simultaneously but does not change the 

ratio of  µ/∆x, the solution should be independent of the grid spacing under proper 

scaling. The scaling problem will be discussed later in this section. Similar analysis can 

be extended to the vector equation (2.81). Two ratios are defined as 
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1

2

tc
x

c
x
µ

∆
=
∆

=
∆

 

If the initial condition is properly scaled, these two ratios, together with the previously 

defined α, will determine the final solution of the difference equation.  

 

The following relation must be satisfied according to the stability condition  

 
2 2

1max
1 2

1
2 4

q c
c c≤ ≤  

The confinement method also introduces a length scale that is related to ∆x and α: 

xL
α
∆∼  

which is the same order of magnitude as the size of the vortex core. The maximum 

velocity of the resulting field thus can be estimated as 

( )max 2
q

xθ
α
π
Γ
∆

∼  

The CFL number based on this maximum velocity   

22
t

x
ασ
π
Γ∆
∆

∼  

which should be less than 1.0 for the computations. 

 

Unless otherwise specified, for all the following the computations in this section, 

the three ratios are selected as:  

 
1

2

0.1
0.6
1.4

c
c
α

=
=
=

 (2.128) 

The initial conditions are specified according to the following formula: 

0

0
0

2

2

r r
rq r r r
r

θ
π

π

Γ >=  Γ ≤
  

Γ is selected as 2π, so that the maximum velocity is 1.0 for the initial field. r0 is selected 
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as 2.0. It can be verified that these parameters satisfy the stability requirement. 

 

For the case of the convecting vortex pair, in addition to the three ratios, the solutions 

also depend on how many grid cells there are between the two vortices. It is important to 

understand that disregarding the overall grid dimension and the grid spacing, as long as 

the effect of the far field boundary is negligible, the final solution of the vortex pair 

should be determined by the three ratios and the number of cells between the two 

vortices, subjecting only to the initial scaling. However, for this to be true, it is necessary 

that the vortex cores remain small compare to the distance between them, which is one of 

the main point of the confinement method. To study the cases with different number of 

cells between the two vortices, it thus is sufficient to use only one grid with fixed grid 

spacing. A 256 x 256 grid with spacing 1.0 is selected. Four cases are studied, with the 

number of cells between the two vortices to be 5, 10, 20 and 40.   

 

Figures 2-38 to 2-41 are the vorticity contours for the solutions, with comparison 

to the movement predicted by the exact solutions. For the case that the two vortices are 

only five cells apart, there are not enough grid cells between the two vortices for the 

confinement method to accurately solve the flow field. The two vortices keep canceling 

each other and losing strength, which explains why the movement of the vortices is 

slower than that predicted by the exact solution. When the distance increases to 10 cells 

apart, the shapes of the vortices become smooth and round, the movement is already 

reasonably close to the exact solution. As the distance further increases, the accuracy of 

the solution enhances more. The evolution of the maximum vorticity magnitude of the 

flow field is plotted in figure 2-42, which also shows the convergence rate of the different 

configurations. When the distance between the vortices is only 5 cells apart, the 

convergence rate is much slower than the other three cases. The other three cases actually 

show very similar convergence rate and maximum vorticity, which means as long as the 

space between the two vortices is sufficient for the confinement method to solve the 

transition area between positive and negative vorticity regions, the resulting shapes of the 

vortices will have little dependence on the number of cells between the vortices. Also, as 
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long as the two vortices are far enough from each other, so that the induced convecting 

speed will be close to what predicted by the exact solutions, the detailed structures of the 

vortex cores is not important in determining the movement of the vortices.  

 

Some effort is put on studying the effect of varying the three previously defined 

ratios: C1, C2 and α. The grid and the initial configuration used are the same as the 

previous case with the two vortices 20 cells apart. Figure 2-43 shows the results for 

computations with different C1. As predicted, the convergence rate is heavily dependent 

on this ratio, though the converged solutions show little dependence on it. For the value 

0.2, the solution already converges at the time step around 60, while the solution is not 

converged until 500 time steps for the value 0.025. Figure 2-44 is the plot for 

computations with different C2, which shows that C2 can also affect the convergence rate 

but has little effect on the converged solution. As discussed before, the converged 

solution depends mainly on α, as shown in figure 2-45, which is the plot for the solutions 

with different α.  It can be observed from the figure that in order to get a converged 

solution, only a narrow range of α can be used. The maximum vorticity increases as α 

increases. As α reaches a certain value, the solution will become unstable and break into 

separate vortices, although it will not diverge.    

 

However, one needs to find a way to scale the initial configurations corresponding 

to the real physical configurations. We use the two vortices convecting in mutually 

induced field as an example. Assume the number of cells between the two vortices to be 

N, the circulation calculated based on the numerical variables to be Γ1 and the grid 

spacing to be x∆ . On the other hand, assume that the physical distance between the two 

vortices is L, and the actual circulation of the vortex is Γ. Two reference value for 

velocity and distance can be used for scaling: U0 and L0. To determine these two 

reference variable, the following formula should be used: 

 
0

0
1 1 0

LL
N x

N xU
L L

=
∆

Γ ∆ Γ
= =

Γ Γ

 (2.129) 
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The following relation can be used to convert between the numerical variables and 

physical variables: 

 
0

0 0

0

0

ˆ ˆ ˆ

Q U q

X X L x
L

T t
U

=

− =

=

 (2.130) 

where Q , X̂ and T are the physical velocity, the physical coordinate and the physical 

time, respectively. q  is the numerical velocity, x̂ is the numerical coordinate and t is the 

numerical time. 0X̂  is the physical coordinate for the origin of the numerical coordinate. 

To ensure the same physical time, the total time step for the two computations is 4000 

and 1000, respectively. The distance traveled is one quarter of the distance between the 

two vortices. The two scaled vector fields for N = 40 and N = 20 are shown in figure 2-

46, where N is the distance between the two vortices in the unit of the grid spacing. The 

combined field is plotted in figure 2-47. As predicted, the two resulting physical fields 

are different because the solution depends on the number of cell between the two vortices 

used for the computations. However, the vector fields match each other as the distance 

from the vortex center become sufficient large, which again has proved that the detailed 

structure is not important on solving the movement of the vortices. 

 

For the problem of the single vortex, the only length scale that can be used is the 

vortex core 0r . The reference length scale can be defined as 

0
0

r
L

x
=
∆  

The other scaling factors are the same as those in (2.129). Three different grids: 128 x 

128 with ∆x = 1.0, 256 x 256 with ∆x = 0.5, 512 x 512 with ∆x = 0.25 is used to simulate 

a stationary single vortex. To satisfy the stability condition for all three case, a smaller C1 

= 0.01 is used, other parameters are the same as those in (2.128). The two reference 

scales are calculated as 
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0 0

0 0

0 0

1.0, 1.00 128 128
2.0, 0.50 256 256
4.0, 0.25 512 512

L U for
L U for
L U for

= = ×
 = = ×
 = = ×

 

The total time step used for the three grids, starting from the coarsest grid, are 2000, 8000 

and 32000, which ensures the time consistency. The converged velocity fields and the 

corresponding vorticity fields are plotted in figure 2-48 to 2-50. Figure 2-51 shows the 

velocity distribution for the converged solutions, using the same normalization method 

used in 2.3.1. The three scaled fields and the scaled vorticity contours shown in figure 2-

52 to 2-54 are obtained by scaling the three different solutions using the previously 

calculated factors. The three fields are merged into a single plot that is shown in figure 2-

55. It can be observed that the difference among the three fields is small. The scaled 

velocity distribution can be found in figure 2-56, which again shows very similar 

distribution of the three differently computed velocity fields. 

   

2.4   Discussion 

 
Some of the important features of the vorticity confinement are studied in this 

chapter. The discussion below summarizes some of the topics in the previous sections. 

There are many other features of the method that are not covered previously but are 

discussed here based mostly on the past experience on using the method. Some of the 

features are well studied but many of them are not fully understand, such as the 

calibration of the numerical coefficients according to a given Reynolds number, etc. 

 

The most significant feature of the vorticity confinement method is the ability to 

capture thin vortical features such as convecting thin vortex sheets or thin boundary 

layers with a minimal number of grid cells, without numerical spreading. It automatically 

captures the global vortical features, while at the same time has no effect on flow outside 

vortical region. It can simulate the dynamics of the vortical features, and the convecting 

vortices can interact with each other, remerge, etc. The centroid can move with the 

correct speed and the total magnitude of the vorticity is conserved. Simple and very 
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coarse inviscid type grids can be used to get reasonably accurate flow solutions. 

 

The ability to confine vorticity towards the vortical core means that at the same 

time it can prevent the error from spreading outside the vortical region, while inside the 

vortical region, the solutions are able to preserve most of the important integral 

properties. The computational scheme thus can be very robust since the outer flow is free 

of pollution generated from the vortical area. The flow outside the vortical region can be 

computed accurately due to its ability to conserve the momentum and preserve the 

integral type of properties inside the vortical region. 

 

The confinement terms can rapidly converge to a solution for the internal structure 

of the vortical region, known as the previously discussed "fast variable" process, while 

the main flow is slowly varying compared to the fast relaxation of the vortical structure. 

In many flows, unsteady vortex shedding and flow separation indeed have much higher 

update rate than the otherwise slow changing outer irrotational flow. The fast converging 

rate of the "fast variables" thus can possibly be used to efficiently treat these kinds of 

unsteady vortical features. Even for steady flow, it will always be beneficial to have a 

converged vortical structure at minimal number of time steps. 

 

The nonlinear confinement term does not comply with traditional stability 

analysis, which is typically a linear type methodology. The confinement term introduces 

strong nonlinear negative diffusion but the numerical scheme is robust according to the 

past experience. A nonlinear solitary wave like behavior is observed in many 

applications.  

 

 

 

 



 45

 

3.   The Surface Boundary Layer Model 

 
The initial attempt at capturing a boundary layer in the present study used a simple 

model without applying a vorticity confinement term. The whole idea can be split into 

two parts  (see figure 3-1): The first part is an inviscid surface model that can be used to 

develop an inviscid solution for external flow, from which the pressure is extrapolated 

onto the surface. The second part is a model equation to be solved solely on the surface, 

using the extrapolated pressure from the outer flow as its pressure input and feeding back 

a normal velocity to the outer flow. The model equation has a simple friction term that 

can simulate the wall shear stress, while the extrapolated pressure drives the flow. If there 

is an adverse pressure gradient near the surface, coupling with the friction term, boundary 

eruption, i.e., a large velocity normal to the surface, will be generated with subsequent 

feed-back to the outer flow, which consequently will result in boundary layer separation 
[3]. 
 

This simple model was tried on several two-dimensional flows, and good results 

were obtained [3]. However, the attempts on three-dimensional flow were not successful. 

In two-dimensional flow, the point of flow separation from the surface coincides with the 

point at which the skin friction vanishes. Large regions of reverse flow typically 

accompany two-dimensional separation. However flow reversal and zero shear stress 

may not necessarily accompany separation in three-dimensional flows. Three-

dimensional separation actually is rarely associated with the vanishing of the wall shear 

stress except in a few very special cases [6][8]. Also for a two dimensional separation, the 

separation is generated from a separation point, which would be a separation line for a 

three dimensional separation. The simple surface model has difficulty in simulating the 

complicated three-dimensional separation process. However, the first part of the idea, i.e., 
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the inviscid model for developing inviscid flow solution, proves to be very successful, for 

both two-dimensional and three-dimensional flows. 

 

Later, a new surface boundary layer model based on vorticity confinement is 

developed and is able to produce very good solutions for flow over a 6:1 ellipsoid with 

various incidence angles. The main idea is to set up a secondary thin body conforming 

grid surrounding the surface. The main computation (the "outer" computation) is still 

performed on a uniform Cartesian grid as before, except that non-slip boundary condition 

is not applied on the surface. Instead, the surface velocity condition is extrapolated from 

the boundary model. A separate computation (the "inner" computation) is performed on 

the inner grid, using a boundary model based on the confinement method but on a body-

conforming grid. For its outer boundary, the inner computation retrieves boundary 

conditions from the outer flow, while using the non-slip velocity boundary condition for 

velocity on the surface. The resulting boundary layer using this later surface model is not 

as thin as it was hoped when attempting the initial model, but it is thinner than the 

computation without this model. 

 

3.1   The Inviscid Surface Model 

 
The outer computation is done using the same scheme described in chapter two, 

i.e., using vorticity confinement on uniform Cartesian grid, except that the non-slip 

surface condition is not applied. For grid nodes surrounding the surface, the tangential 

velocities are extrapolated from the outer flow, while the normal velocity is extrapolated 

from the inviscid surface model.   

 

The continuity equation for 2-D incompressible flow based on local surface 

coordinates can be written as 

 0s s n nq q∂ + ∂ =  (3.1) 

in which n and s refers to normal direction and tangential direction respectively. 
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Since the normal velocity should be zero on the surface, the equation can be 

written in integral form as 

 
0

0
h

s
n h

qq dh
s

∂
= −

∂∫  (3.2) 

where h is the distance from a given point to the surface and h denotes a point with a 

distance h to the surface.  Also, for inviscid flow, the vorticity is zero which gives 

 0n s s nq q∂ − ∂ =  (3.3) 

which similarly can be written as 

 
0

0

h
n

s s h

qq q dh
s

∂
= −

∂∫  (3.4) 

where 0 denotes a point with a distance zero to the surface, i.e., a point on the surface. 

Equation (3.2) and (3.4) provide well-posed model equations for all inviscid 

computations. The tangential velocity which is the only velocity component on the 

surface is derived according to equation (3.4), while the normal velocity for the outer 

flow, is computed according to equation (3.2). For first order accuracy, the model 

equation becomes 

 0

0

0 s
n h

n
s s h

h

qq h
s

qq q h
s

∂
= −

∂

∂
= −

∂

 (3.5) 

 

3.1.1   Extrapolation scheme for the surface model 

 
Equation (3.5) can be used to extrapolate the surface velocity boundary condition. 

For an outer two-dimensional uniform Cartesian grid, a grid point with the following 

properties is defined as a "boundary node": 

1) It must be outside the body, 

2) At least one of its 8 surrounding nodes is inside the body. 
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Also, a grid point in outer grid is considered as an "outer node" if it satisfies all of 

the following properties: 

1) It must be outside the body, 

2) All of its surrounding nodes must be outside the body. 

 

For each point on the surface, a normal direction n̂  and a tangential direction ŝ  

can be calculated. For each "boundary node", a line contains this node and perpendicular 

to the surface can be draw (see figure 3-2). The normal direction n̂  is defined as a unit 

vector on this line and pointing away from the surface. The tangential direction ŝ  thus 

can be defined as a unit vector normal to n̂ . 

 
The tangential velocity of a "boundary node" can be directly extrapolated from its 

surrounding grid points, using the second equation of equations (3.5). The following 

formula can be used 

 ( )
( ) ,

1

,

1

( )
N

n
l s l I Jl

l l
s NI J

l
l

qs q h h
s

q
s

=

=

 ∂ − −  ∂  =
∑

∑
 (3.6) 

in which ls  is the corresponding weighting factor 

 1( )l ls f l d −=  (3.7) 

where ld  is the distance from the lth of its N surrounding grid points to the given 

"boundary node". ( )f l is a filter function defined as 

 ( ) ( )1 , " "
,

0
if I J outer nodes

f I J
Otherwise

 ∈= 


 (3.8) 

 

For a given point P on the surface (figure 3-2), its surrounding grid points in the 

Cartesian grid are located first. Then an equation similar to (3.6) can be used to map the 

tangential velocity: 
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 ( )
( )

1

1

N
n

l s ll
l l

s Ni

l
l

qS q h
s

q
S

=

=

 ∂ −  ∂  =
∑

∑
 (3.9) 

in which the weighting factor lS  is defined as 

 1( )l lS F l d −=  (3.10) 

where ld  is the distance from its lth surrounding grid point to the point on the surface, 

and the filter function is defined as 

 ( ) ( )1 ,
,

0 ( , )
if I J outside the body

F I J
if I J inside the body

∈= 
∈

 (3.11) 

Subsequently, the gradient of the tangential velocity can be calculated on the surface as  

 
( ) ( )1 1

2
s ss i i

i

q qq
s s

+ −
−∂  = ∂ ∆ 

 (3.12) 

 

where s∆  is distance between two adjacent points on the surface. For a given "boundary 

node", projecting it onto the surface (figure 3-2), one can find its surrounding surface 

points. A normal velocity thus can be fed-back to the corresponding "boundary node" 

according to the first equation in equations (3.5)  

 ( )
( )

( )

1

1
1,

1

( 1)
N

s
l l

l l
n I J N

l
l

q
d h

s
q

d

−

=

−

=

 ∂ − ⋅  ∂  =
∑

∑
 (3.13) 

where l represents the index of the points on the surface, and all other parameters are 

defined the same as before. The slip surface boundary condition for inviscid flow thus is 

simulated. 

 

 

 

 



 50

3.1.2   Test case: inviscid flow over a flat plate 

 
To test the model, two-dimensional flows over a flat plate at incidence angles 

from 0° to 10° are computed (figure 3-3). The grid used in this computation is uniform 

Cartesian grid. Three different grid dimensions are used: 64 X 64, 128 X 128 and 256 x 

256. The "outer" computation uses the method described in chapter 2 of this dissertation. 

The length of the flat plate in this computation is 6 cells, 12 cells, and 24 cells for the 

three different grid setups, respectively. The grid spacing and the numerical coefficients 

are the same for all three cases. 

 

The exact solution for lift coefficient of the flow over a flat plate at incidence is 

known [41] as 

 2 sinLC π α=  (3.14) 

where α is the incidence angle. The pressure coefficient on the flat plate is calculated 

using Bernoulli relation: 

 
2

21p

q
C

q∞

= −  (3.15) 

 

The lift coefficient is obtained by integrating the pressure coefficient over the 

whole surface of the flat plate. The computed lift coefficient together with the exact 

solution is plotted in figure 3-4. As one can see from the figures, for angles smaller than 

7°, the results for all three grid setups are reasonably accurate. The accuracy of the 

simulation increases as the grid dimension increases. For angle great than 7°, the 

accuracy of the method lowers, and refining the grid is not able to enhance the results. 

 

Full three-dimensional flows over a 6:1 ellipsoid with incidence angles ranging 

from 0 to 90° are computed using the inviscid surface model, which will be presented in 

chapter 4 of this dissertation. 
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3.2   The Surface Boundary Layer Model 

 
3.2.1   The body fitted coordinate 

 
The new surface boundary layer model is implemented on a thin layer of body 

fitted grid. In conventional methods, generating a body fitted coordinate usually requires 

solving a set of elliptic equations. The complexity of the grid generation depends on the 

complexity of the body and boundary conditions. For multi-dimensional bodies such as a 

whole aircraft, the amount of work required to generate the grid system could be 

prohibitive. However, the new surface boundary layer model does not require a 

complicated grid, so that some simple algorithm other than a set of complicated elliptic 

equations can be used to generate the inner body conforming grid. 

 

3.2.2   Inner grid generation 

 
A simple algorithm is used to generating a simple type of body conforming grid 

near the surface to provide a basis for the proposed surface model. 

 

For a given point on the surface, its position can be represented by a position 

vector 0r . Since the surface has a unit normal at each point, one can denote the normal for 

this point to be n̂ (figure 3-5). The starting point of generating the inner grid is to make 

the direction of the n̂ vector the same as the gradient of one of the coordinate variable, 

i.e., 

 n̂ξ
ξ

∇
=

∇
 (3.16) 

Thus each point on one of the iso-surface of ξ (i.e. surface of constant ξ) will have equal 

distance to the surface (body conforming).  
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The grid system thus can be generated using the following algorithm: 

 ( )0 1ir r i dr= + −  (3.17) 

where dr  is the grid increment in the ξ direction. After applying the same algorithm to 

all the surface points, the whole inner grid system is generated. The grid generated by this 

algorithm has the following properties: 

1) Inviscid type, 

2) Body Conforming. 

 

Application to a 6:1 ellipsoid  

 

An inner grid (figure 3-6) surrounding a 6:1 ellipsoid is generated using the 

method described above.  

 

Figure 3-8 shows a symmetry plane of the grid. The whole surface can be 

generated by rotating this symmetry plane along the long axis of the ellipse. 

 

Two cross plane sections are shown in figure 3-9 and 3-10. Notice that the grid is 

clipped near both ends of the ellipsoid (see figure 3-7), to avoid overly dense grid cells. 

 

3.2.3   Model equations for the surface boundary layer model 

 
Start with the following basic equations: 

 21( ) [ ]t q q q p q sµ ε
ρ

∂ = − ⋅∇ − ∇ + ∇ +  (3.18) 

A similar fractional step method described in Chapter 2 is used here. First a convection 

step is conducted 

 ' n n nq q tq q= − ∆ ⋅∇  (3.19) 

followed by a diffusion step 

 2" 'q q t qµ= + ∆ ∇  (3.20) 
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Confinement step is then performed to convect the diffused vorticity back towards the 

centroid or surface 

 "' "q q t sε= + ∆  (3.21) 

Last step is the mass conservation step. Unlike what it is done for the outer flow, where a 

Poisson equation was solved for the pressure function, in the inner grid, an unsteady 

diffusion equation is solved by "time-marching". The model used to solve for the 

pressure is 

 2 1 "'c q
t t
ϕ ϕ∂  = ∇ + ∇ ⋅ ∂ ∆ 

 (3.22) 

A steady state solution of the above equation is sought, so that it will converge to the 

solution of the same Poisson equation as before, i.e. 

 2 1 "'q
t

ϕ∇ = − ∇ ⋅
∆

 (3.23) 

A point relaxation method referred as the "Point Jacobi" iteration [21][22] is used for this 

computation. This point relaxation method usually is not very effective for a grid with 

large dimensions. The number of iterations for convergence typically has an order of 

O(N2) [2][21], where N is the number of grid points in a grid dimension. The inner grid is 

very thin and has only 5 grid points in the direction normal to the surface, the iteration 

thus converges very fast in this direction. The flow varies the most in the thickness 

direction of the boundary layer, while in the other two directions the flow is relatively 

smooth. The convergence rate can be very fast as long as the grid is kept very thin. Next 

the momentum is corrected using the gradient of the pressure field 

 1 "'nq q t ϕ+ = + ∆ ∇  (3.24) 

After this step, the continuity equation is satisfied: 

 ( )1 2"' "' 0nq q t t qϕ φ+∇ ⋅ = ∇ ⋅ + ∆ ∇ = ∆ ∇ +∇ ⋅ =  (3.25) 
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3.2.4   The metrics of the coordinate transformation 

 
The metrics for coordinate transformation in three-dimensional space [37] between 

two time-independent grid systems (x, y, z) and (ξ, η, ζ) are 
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 (3.26) 

where J is the Jacobian given by the determinant 
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( , , )
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x y z

x y z

J
x y z

ξ ξ ξ
ξ η ζ η η η

ζ ζ ζ

∂
= =
∂

 (3.27) 

The inverse relations are given by 
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 (3.28) 
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3.2.5   The transformed equations and numerical implementations 

 
Because the conservative vorticity confinement term for a given grid point 

requires calculating harmonic mean over its surrounding grid points, which would 

introduce difficulty for the inner grid since it has only several grid points across the 

thickness direction, the non-conservative vorticity confinement formulation is used for 

the inner grid. For simplicity, non-conservative forms are used in all the difference 

equations on the inner grid.  

 

The momentum equation without confinement term, with constant diffusion 

coefficient can be written as [37] 

 
2 2 2

2 2 2

Q Q QQ E F G
t x y z x y z

µ
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+ + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (3.29) 

where 
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The following difference operators are defined first 
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where 
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Also define 
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 (3.34) 
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 (3.35) 

where 
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 (3.36) 

 

The convection step can be written as 

 '

c c c

E F GQ Q t
x y z

     ∂ ∂ ∂
= −∆ + +      ∂ ∂ ∂      

 (3.37) 

Next the diffusion step 

 
2 2 2

'' '
2 2 2

c c c

Q Q QQ Q t
x y z

µ
      ∂ ∂ ∂

= + ∆ + +       ∂ ∂ ∂      
 (3.38) 

 

Define the vorticity  

 ( ), ,x y z Qω ω ω ω= = ∇×  (3.39) 

which can be calculated by  
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x
cc

y
c c

z
c c

w vJ
y z

u wJ
z x

v uJ
x y

ω

ω

ω

  ∂ ∂ = −     ∂ ∂   
 ∂ ∂   = −    ∂ ∂    
  ∂ ∂ = −    ∂ ∂    

 (3.40) 

For non-conservative vorticity confinement formulation, the n̂  vector can be calculated 

by 

 ( )ˆ , , , ,
T

T
x y z

c c c

n n n n
x y z
ω ω ω  ∂   ∂   ∂ 

= =        ∂ ∂ ∂      
 (3.41) 

The confinement term turns out to be  

 ( ) ( )ˆ , ,
T

y z z y z x x z x y y xc
n n w n n w n n w nω ω ω ω× = − − −  (3.42) 

adding which to the velocity field 

 ( )''' ˆ''
c

Q Q t nε ω= + ∆ ×  (3.43) 

 

For pressure correction, begin with the pressure equation 

 ( ) ( )( )2 '''
c c

c t Q
t
ϕ ϕ∂
= ∆ ∇ + ∇ ⋅

∂
 (3.44) 

where c is a numerical coefficient. This step can be split into two steps 

 ( )'''

c
c cc

u v wQ
x y z

 ∂ ∂ ∂   ∇ ⋅ = + +    ∂ ∂ ∂    
 (3.45) 

 ( )
2 2 2

1 '''
2 2 2

m m

c
c c c

c t t t Q
x y z
ϕ ϕ ϕϕ ϕ+

      ∂ ∂ ∂
= + ∆ + ∆ + ∆ + ∇ ⋅       ∂ ∂ ∂      

 .(3.46) 

Repeat the above iteration until the specified convergence condition satisfied. Finally the 

mass correction step 

 ( ) , ,c
c ccx y z

ϕ ϕ ϕϕ
  ∂ ∂ ∂   ∇ =       ∂ ∂ ∂     

 (3.47) 

 ( )1 "'n
c

Q Q t ϕ+ = + ∆ ∇  (3.48) 
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3.2.6   Boundary conditions: the coupling algorithm 

 
The coupling algorithm between main grid and inner grid is discussed in this 

section. Here a 6:1 ellipsoid is used as an example. 

 

The index of a grid point in main grid is denoted in uppercase (for example (I ,J, 

K)), while for inner grid it will be denoted in lowercase (for example (i, j, k))(See figure 

3-12). Three regions are defined as region I, region II and region III (figure 3-11). Region 

I encloses all grid points inside the surface, and no computation should be involved here. 

Region II is the domain enclosed by the inner grid. Region III includes all the points that 

are not included in either region III or region II. 

 

Mapping for boundaries of inner grid 

 
First look at the boundaries of the inner grid. Three types of boundaries are 

defined for the inner grid: the surface boundary, the outer boundary and the inlet/outlet 

(figure 3-7 and 3-10). 

 

a) Surface boundary 

Both velocity and pressure boundary condition are required for the surface 

boundary due to the characteristics of the problem.  

 

Non-slip velocity boundary condition is imposed on the surface boundary for 

viscous flow computation 

 . . 0b cq =  (3.49) 

where . .b cq  is the velocity vector on the boundary. 

 

The pressure surface boundary condition is imposed as 
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 0p
n
∂

=
∂

 (3.50) 

where n is the normal direction of a given point on the surface. 

 

b) The outer boundary 

For the outer boundary, careful consideration is required for a well-behaved 

solution. For each inner grid point (i , j, k) on the outer boundary of the inner grid, the 

first step is to locate the grid points in the outer grid surrounding this inner point.  

 

The algorithm for locating the enclosing outer grid points is simple in this case. A 

formula can be used to identify the outer surrounding point with the smallest index 

number 

 
int( ( , , ) ( max 1) / 2)
int( ( , , ) ( max 1) / 2)
int( ( , , ) ( max 1) / 2)

I x i j k h i
J y i j k h j
K z i j k h k

= + ∆ ⋅ +
= + ∆ ⋅ +
= + ∆ ⋅ +

 (3.51) 

suppose the origin of the coordinate system (x,y,z) is located at the outer grid point 

((imax+1)/2, (jmax+1)/2, (kmax+1)/2) and the cell size of the outer uniform Cartesian 

grid is ∆h. 

 

Only points in region III should be used to map the velocity boundary values for 

inner grid. A filter function is defined 

 , ,

1, ( , , )
0,I J K

if I J K III
f

otherwise
∈

= 


 (3.52) 

The final formula used to map the velocity values from the outer grid onto the outer 

boundary of the inner grid is 

 

(
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s f Q s f Q
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+ + + + + + + + + +

+ + + + + + + + + +
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+ + +
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 (3.53) 
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where ls , 1,...,8l = are the weighting factors defined as 

 ( ) ( ) ( )( ) 1/ 22 2 2

, , , , , ,l l i j k l i j k l i j ks X x Y y Z z
−

= − + − + −  (3.54) 

 

Similar mapping is performed for the pressure outer boundary, except that no 

filter function is needed since the outer pressure field resulted by the Poisson solver is 

smooth near the surface. The formula for mapping the pressure thus is simpler 

 

(
)

( )

, , 1 , , 2 1, , 3 , 1, 4 1, 1,

5 , , 1 6 1, , 1 7 , 1, 1 8 1, 1, 1

1 2 3 4 5 6 7 8

i j k I J K I J K I J K I J K

I J K I J K I J K I J K

p s P s P s P s P

s P s P s P s P

s s s s s s s s

+ + + +

+ + + + + + + +

= + + +

+ + + +

+ + + + + + +

 (3.55) 

where ls  are the same as those used in velocity boundary mapping. 

 

c) Inlet/outlet 

For the inlet of the inner grid (figure 3-7), the velocity and pressure are 

extrapolated from the outer grid using the same formulae as (3.53) and (3.55), 

respectively. For the outlet of the inner grid, the pressure is extrapolated from the outer 

grid using formula (3.55). The velocity of the outlet is extrapolated from the inside of the 

inner grid using a box scheme interpolation method [18][19]. 
8

1
, , 8

1

l l
l

i j k

l l
l

a q
q

a q

=

=

=
∑

∑
 

in which lq  (l = 1, ... , 8) are the velocities of the grid nodes of a grid cell, which contains 

the point (with coordinate 0 0 0( , , )x y z ) where a flow particle currently at the grid node (i, 

j, k) was located at one time step earlier, and 

( )( )( ) 1
0 0 0l l l la x x y y z z

−
= − − −  

 
 
 
 
 



 62

Mapping for outer grid boundary 

 
The far field boundary conditions are the same as those described in chapter 2. 

Only the surface conditions are different. 

 

First a "boundary node" of a three-dimensional outer grid is defined as: 

1) It must be outside the body, 

2) At least one of its 26 surrounding nodes is inside the surface. 

For a "boundary node" identified by this definition, its velocity is extrapolated from the 

inner grid.  

 

One must locate the grid cells of the inner grid that encloses the point (I , J, K). 

First the distance d from a "boundary node" to the surface is calculated, the i index of the 

surrounding surface node point with the smallest indices can be identified as 

i = int ( d / dξ ) + 1 

where dξ is the grid increment in ξ direction. Similar to what is used in the inviscid 

model, the projection of a boundary point on the surface can be used to locate the other 

two indices. Next a similar weighting function is calculated by  

 ( ) ( ) ( )( ) 1/ 22 2 2
, , , , , ,l l I J K l I J K l I J KS x X y Y z Z

−

= − + − + −  (3.56) 

and the velocity can be calculated by 

 

(
)

( )

, , 1 , , 2 1, , 3 , 1, 4 1, 1,

5 , , 1 6 1, , 1 7 , 1, 1 8 1, 1, 1

1 2 3 4 5 6 7 8

i j k i j k i j k i j k i j k

i j k i j k i j k i j k

Q S q S q S q S q

S q S q S q S q

S S S S S S S S

+ + + +

+ + + + + + + +

= + + +

+ + + +

+ + + + + + +

 (3.57) 

 

There is no pressure information is extrapolated from the inner grid to the outer 

grid. The pressure for a "boundary node" is obtained from the outer Poisson solver. 
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4.   Numerical Simulations of Flow over 

6:1 Ellipsoid at Incidence 

 
4.1   Flow over 6:1 Ellipsoid at Incidence 

 
High Reynolds number flow over a 6:1 ellipsoid at incidence is selected to test the 

previously described models. Flow over a 6:1 ellipsoid at incidence is a well-defined, 

relatively simple 3-D flow which exhibits all the fundamental separation phenomena of 

3-D flow, such as the complicated cross plane separation [4][6][7][10]. Most importantly, 

there are well-documented and very consistent experimental data available from different 

sources [6][7][8][9][10][11]. Numerical results obtained using various advanced numerical 

methods are also available for comparison [4][5][19][27]. All of these make the flow over 

6:1 ellipsoid an excellent test case for the new computational models described in the 

previous chapters. 

 

4.1.1   The cross flow separation  

 
The separations that typically form on bodies at angles of attack are called cross 

flow separation [4][7] due to the dominance of the circumferential pressure gradient in the 

separation process. These separations typically develop from the rear of the body at very 

low angle of attack and move forward as the angle of attack increases. 

 

Figure 4-1 (a) contains a sketch of the cross plane separation behavior of the flow. 

The primary separation happens at point P on the lee-side of the ellipsoid, rolling up into 
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a strong vortex on both sides of the body. Secondary vortices are generated at the same 

time, which separate from the surface at the points T1 and T2. The flow reattaches at 

point R1 and R2. From figure 4-1 (b), one can see the primary separation line as well as 

the secondary vortex located underneath the primary vortex. The existence of the 

secondary separation depends on flow conditions.  The cross plane separation variations 

along the length of the body, together with complex interactions between the various 

types of vortex structures, result in a highly complicated three-dimensional separated 

flow. 

 

4.1.2   Experimental results, description of the devices 

 
The experimental results used for comparison include those of Ahn and Simpson 

[6][8][9]. The experiments were conducted at the Virginia Polytechnic Institute and State 

University 6'x6' Stability Wind Tunnel. The test model was a 6:1 ellipsoid, which had a 

54-inch long major axis. The surface of the testing model was made of fiberglass 

reinforced plastic. The Reynolds number for the tests was 64.2 10× . The pressure data 

were measured by pressure transducers mounted through pinhole cover adaptor bonded to 

the inside surface of the fiberglass skin of the model. Experimental data from Mier and 

Kreplin [11] on a 2.4 meter long 6:1 ellipsoid are also used for some of the comparisons. 

 

4.1.3   Numerical results for comparisons 
 

Most recent CFD simulations of the flow over a 6:1 ellipsoid include those of Tsai 

et al [4], Constantinecu et all [27], Kim et al [5], and Carsten Braun [19]. Their results are 

used later for comparison purpose.  

 

Tsai et al [4] used a three-dimensional incompressible finite volume RANS solver 

for the computation, and applied a standard k-ε model, using a multi-block structured 

body fitted grid (figure 4-14). They performed the computations for incidence angles 
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from 10° to 30°, which are the most extensive numerical results available. However, the 

results of the pressure coefficient included in their paper [4] are limited to only the cross 

plane X/L=0.77.  

 

Constantinecu et all [27] performed their simulations using both the Detached 

Eddy Simulation (DES) method and RANS method with Spalart-Allmaras (SA) one-

equation turbulence model. DES is a hybrid approach which attempts to capitalize on the 

often adequate performance of RANS models in predicting boundary layer growth and 

separation, and to use LES away from solid surfaces to model the typically geometry-

dependent and unsteady scales of motion in separated regions [45]. The DES formulation 

they used was based on a modification to the SA RANS model such that the model 

reduced to its RANS formulation near solid surfaces and to a subgrid Smagorinsky model 

away from the wall. They also performed a computation using a method named 

Monotone Integrated Large Eddy Simulation (MILES), which simply speaking is LES 

without an explicit turbulence model [46]. The results for pressure coefficient shown in 

their paper [27] are limited to 20° and at only the cross plane X/L= 0.77. 

 

Kim and Rhee [5] also used a finite volume RANS solver, but applied several 

different turbulence models for there computations, including a one-equation SA model, 

and three two-equation k-ω models, denoted as KO-1, KO-2 and SST. KO-1 and KO-2 

refer to the revised Wilcox' models without and with the low Reynolds number 

modification, respectively [47]. SST refers to Shear Stress Transport k-ω model [48]. They 

performed the computation for 20° incidence angle and showed the pressure coefficient 

plots for cross planes X/L=0.60 and 0.77. 

 

In his master thesis, Carsten Braun [19] computed the same flow using the non-

conservative vorticity confinement on uniform Cartesian grid with and without refined 

surface conditions. The computation without refined surface condition uses simple non-

slip boundary condition near the surface (equation (2.107)). The refined surface condition 

refers to a so-called "reflection" condition, which applies a linear type extrapolation to 
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obtain a velocity for the point just inside the body (details can be found in  [19]). The 

computations covered the incidence angles from 10 to 30°. He also made comparisons 

with experimental data and solution from Tsai et al [4]. 

 
4.2   Numerical Simulations Using the Inviscid Surface Model 

 
Inviscid flow over a 6:1 ellipsoid is first studied before advancing to the 

computation of viscous three-dimensional separated flows.  

 

Fortunately, flow over an ellipsoid is the one of the rare fully three-dimensional 

flows whose exact inviscid solution is derivable. The numerical solution thus can be 

verified by comparing it to the analytical solution. 

 

4.2.1   Pressure coefficient on the surface: exact inviscid solution 
 

For an ellipsoid with semi-axes along the x, y, z coordinate axes. If free stream 

velocity is parallel to y plane, and the free velocity components are (U0, 0, W0), the 

solution of the surface pressure (Ahn [8]) on the surface takes the simple form of  

 ( ) ( )2 21 cos cos sin sin sin sinpC A B Bα β α β α θ = − − +   (4.1) 

where α is the incidence angle, β is the angle between the tangent plane of  a point on the 

ellipsoid surface and the x axis, which is positive for x
l

 less than 0.5 and negative 

otherwise 

 

( )

2

2
2

21 1
cos

21 1 1

x
l

x
l

β
λ

 − − 
 =
 + − − 
 

 (4.2) 

where λ is the thickness ratio. For 6:1 ellipsoid 
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 1
6

λ =  (4.3) 

and θ is the rotation angle within a cross plane. A and B are parameters calculated by the 

following formulae 

 

2 3 2

2
2 1 2 2

2

(1 )

1 1 1(1 ) log
2 1 1

2
2 1

A

AB
A

λ

λλ λ
λ

−
=

 + −
− −   − − 

=
−

 (4.4) 

 

4.2.2   Numerical simulation and the results 

 
First, inviscid flows over a 6:1 ellipsoid at various incidence angles were 

computed using the inviscid model previously described. A uniform Cartesian grid with 

dimension 180 x 70 x 100 was used for all the computation. The free stream speed was 

set to be 1, with a time step 0.4. The CFL number was expected to be close to 0.8 based 

on the maximum velocity which typically located somewhere on the surface. The long 

major axis of the ellipsoid is 120 grid cells. The confinement parameters used were 

0.25
0.375

µ
ε
=
=

 

The solution converged typically after 100 time steps. 200 time steps were performed for 

each computation. The computations were done for incidence angle 0°, 5°, 15°, 30°, 45°, 

60°, 75° and 90°. Plots made include vector plots from the output velocity field and 

pressure coefficient at various cross plane calculated from the output pressure field.  

 

The pressure coefficient was calculated by two ways: the first one uses the 

Bernoulli relation 

 
2

21p

q
C

q∞

= −  (4.5) 

and the other one uses the pressure field output from the "FISHPACK" solver 
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, 2

2
p fishpackC

t q
ϕ ϕ∞

∞

−
= −

∆
 (4.6) 

 

Equation (4.5) can be considered as the exact formula for inviscid flow. The 

reason to look at the results derived by  "FISHPACK" is to check the accuracy of the 

"FISHPACK" solver on resolving the pressure field, which is very important because for 

viscous computations discussed later, there is no explicit way to calculate the pressure 

and one must rely on the "FISHPACK" solver to provide output for the pressure 

information, and for the input pressure boundary condition of the viscous surface model. 

Since no explicit boundary condition is specified on the surface in this case, and the grid 

is not aligned with the surface, the "FISHPACK" may introduce errors near the surface. 

The pressure coefficient calculated using the "FISHPACK" output thus might not 

represent the correct pressure coefficient near the surface. 

  

The planes on which the data were extracted are shown in figure 4-2. The 

pressure coefficient distributions at the symmetry plane (theta = 0) is shown in figure 4-3. 

From this figures, one can see that the results computed by the inviscid model match very 

well with the analytical solution, in the whole range of the incidence angles from 0° to 

90°.  

 

From the vector plots (figure 4-4 to 4-9) at the symmetry plane for various 

incidence angles, one can see how the stagnation point shifts from X/L = 0 (0° incidence) 

to X/L = 0.5 (90° incidence). The velocity of the cross plane X/L = 0.5 for 90° incidence 

is plotted in figure 4-10. 

 

The pressure coefficients of various cross planes for 90° incidence are plotted in 

figure 4-11. However, it is observed that the "FISHPACK" solver has difficulty in 

computing the lower pressure, especially near the low-pressure peaks. The influence of 

this property will be discussed later after the solutions for the viscous cases are presented.  
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Figure 4-12 shows the vector plots on various cross planes for incidence angle 

30°. These plots are made to show the shift of the maximum cross plane velocity along 

the body. At X/L = 0.11, the maximum velocity is located approximately at 75°, and 

gradually shifts to 105° at the end of the ellipsoid near position X/L = 0.9.  

 

The study of the inviscid flow over the 6:1 ellipsoid reveals very import 

information about the basic flow structure. Although the real viscous flow is very 

different from the inviscid case, the similarity between them is important, especially for 

regions of attached flow, which are present even at large angle of attack. For regions 

where the flow is separated from the surface, the inviscid study can serve as the starting 

point for understanding the formation of the separation. It reveals some basic 

information, such as the flow structure before the onset of separation, and provides better 

capability for understanding the separation process. Another fact that is very important is 

that from inviscid flow, one can calculate the pressure coefficient using the exact formula 

and thus can test the accuracy of the Poisson solver, which is used for all the 

computations on uniform Cartesian grid of the present study.  

 

4.3 Numerical Simulations Using the Surface Boundary Layer 

Model  

 
4.3.1   Problem setup 
 

The outer uniform Cartesian grid is shown in figure 4-13, whose dimensions are 

244 x 46 x 130, with unit cell size. Because of the symmetry of the flow set up, the 

computation was performed only on half of the space, as shown in figure 4-13. The long 

major axis of the ellipsoid is 156 grid cells. The velocity magnitude of the free stream 

was set to 1, with a time step 0.2 and a corresponding CFL number 0.4 (based on the 

maximum velocity). The conservative vorticity confinement was used for outer grid. The 

stability condition 
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2
1

2 2
q t

tN
µ

∆
≤ ≤

∆
 

 requires 0.4 0.83µ≤ ≤ . The numerical coefficients for the outer computation were 

selected as 

0.75
1.3 0.975

µ
ε µ
=
= =

 

Computations are performed both with and without the surface boundary layer model. 

For the computations without the surface boundary layer model, all the calculations were 

performed on the outer uniform Cartesian grid. For computations with the surface model, 

separate computations were performed on the inner grid shown in figure 3-6. The inner 

grid was generated using the method described in 3.2.2. The dimension of the inner grid 

was 270 in the axial direction, 78 in the circumferential direction and 5 in the direction 

normal to the surface. To avoid making the grid cell overly dense at both ends of the 

ellipsoid, the grid was clipped at 4 cells from the ends of the ellipsoid. Since the flow 

near the two ends has limited effect on the separation process, the computational 

resources saved by making this compromise can be expected to outweigh the minimal 

loss of the accuracy.  

 

The computations for inner grid were performed on half of the ellipsoid and the 

corresponding computational space. The thickness of the inner grid in the direction 

normal to the ellipsoid surface was about 2 outer grid cells. The time step for the inner 

grid was 0.2. One time step on the outer grid was followed by two time steps on the 

subgrid, since the time step for the outer grid is two times of that for the inner grid. Non-

conservative confinement was used on the inner grid, for the reason that was discussed in 

3.2.5. The numerical coefficients used on subgrid were 

0.06
1.6 0.096

µ
ε µ
=
= =

 

The diffusion coefficient is smaller compared to that of the outer computation, because 

the minimum grid space is only 0.1. The stability condition (equation (2.117)) requires 

0.04 0.083µ≤ ≤ . For each computation, the results were output after 400 time steps. To 
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ensure that the flow was fully converged, a computation of 1500 time steps was 

performed for 30° incidence angle, from which the flow change from 400 to 1500 time 

step was verified to be negligible.  

 

The pressure coefficient was calculated using the pressure field ϕ from the 

"FISHPACK" Poisson solver 

 ( )
2

2
pC

t q
ϕ ϕ∞

∞

−
= −

∆
 (4.7) 

Computations were done for incidence angles from 10° to 30°, with 5° intervals. The 

main output from the computation were the velocity field, the vorticity field and the 

pressure coefficient. 

 

For computation without the surface model, the total running time for 400 time 

steps was about 1 hour. For computation with the surface model, total running time for 

400 time steps was two and a half hours. All the computations were done on a PC with 

1.7 GHZ AMD Atholon XP processor and 512 MB system memory. 
 

4.3.2   Discussions of the results 

 
Computations with uniform Cartesian grid without the boundary layer model 

 

a) Pressure distribution 

1) Pressure distribution in the cross plane at X/L=0.77 at various incidence angles 

Figure 4-15 shows the surface pressure distribution on the cross plane located at 

x/L=0.77 for various incidence angle from 10° to 30°. CFD result retained by Tsai et al 

[4] and the experimental result by Simpson et al [6][10] are also plotted together for 

comparison. 
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2) Comparison with solution using non-conservative vorticity confinement 

Figure 4-15 shows the comparison between the non-conservative vorticity 

confinement and conservative confinement, at cross plane x/L=0.77 and 30° incidence 

angle. The results of non-conservative confinement are those of Braun [19], in which 

separate computations were done using a simple non-slip surface boundary condition as 

well as a refined surface boundary condition. The comparison shows the dramatic 

enhancement made by changing the non-conservative confinement to the conservative 

formulation. For both of the solutions of the non-conservative confinement, the low-

pressure peak induced by the streamwise vortex is indiscernible, while in the result using 

the conservative confinement, it is well defined and has good agreement with the 

experimental data. The primary and secondary separation line can be clearly seen from 

the curves of the conservative confinement, which is not the case for either of the results 

from the non-conservative confinement. 

 

3) Comparison with MILES solution 

Figure 4-17 incorporates the many results from various CFD methods for 

incidence angle 20° and at the cross plane X/L=0.77, including that from Constantinecu 

et al [27] using MILES method for comparison, which is very interesting since MILES is 

similar to the confinement method, in a manner that both apply no explicit turbulence 

model on the surface. The solutions from the vorticity confinement are better than those 

of MILES in this comparison. From the results of MILES, one cannot tell any distinct 

characteristics of the flow separation. By comparison, the results obtained by using 

vorticity confinement are well behaved, with clearly defined separation feature and 

comparing well with the experiment. 

 

Using the new confinement without an explicitly defined surface gives good 

results near the middle. However, the resolutions deteriorate towards the front and rear 

end of the body. Figure 4-39 shows the jagged definition of the surface at cross plane 

x/L=0.2. Poor resolution at the cross plane near the two end is expected since there are 
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only very few grid points to define the surface. 

 

b) Vorticity iso-surface 

Iso-surface for computation without the surface model are plotted in figure 4-40 

to 4-44. The incidence angles range from 10° to 90°. The vorticity magnitude of the 

displayed iso-surfaces is one third of the maximum vorticity magnitude. 

 

Computations with the boundary layer model 

 

 a) Pressure distribution 

1) Comparison with CFD data, solutions without the surface model and experimental data 

The pressure coefficient at cross plane X/L=0.77 for incidence angles 10°, 15°, 

20°, 25°, and 30° are plotted in 4-20 to 4-24.  Incorporated in the same plots are the CFD 

data from Whitney et al [4], data from the computation without the surface model, and 

experimental data from Simpson et al [6][10]. One can see enhancement on the resolution 

by applying the surface model over that of the computation without the model. The 

results are qualitatively correct, and reasonably close to the experimental data.  

 

In section 4.2.2, the difficulty for the "FISHPACK" Poisson solver to derive the 

lower pressure peaks has been discussed. Similar behavior can be observed from the 

results from the computations with or without the surface model. Because the 

"FISHPACK" Poisson solver used in the computation does not allow explicit pressure 

boundary condition on the surface, the pressure field must be smoothly extended into the 

surface. The solution near the surface thus is "smeared", which causes the difficulty in 

getting the lower pressure peaks.  

 

What is interesting is that the results from the k-ε method, in the contrary to those 

from the confinement method, tend to exhibit lower low-pressure peaks than the 

experiment data. 
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2) Comparison with various results from different methods 

Figure 4-17 shows the results from different CFD methods. The plots is for the 

pressure coefficient at the incidence angle of 20° in the cross plane at X/L = 0.77. The 

methods used for these computations are those discussed in 4.1.3. The first thing to notice 

is these results are very different quantitatively. Compare to the experimental data, all the 

CFD results are qualitatively good except for that of MILES [27]. Other than the difficulty 

on getting the lower pressure peak, the result from the surface boundary layer is very 

close to the results obtained by the DES [27] and the SA [5] methods. The results from the 

three k-ω models (KO1, KO2 and SST) [5] yield better results especially for the pressure 

drop induced by the streamwise vortex. Considering its simplicity and high efficiency, 

and no efforts have been engaged in refining the pressure solver, this comparison shows 

the great potential of the new method.  

 

3) Detailed comparison for 10° and 30° incidence angles  

In figure 4-23 to 4-38, the results for cross planes covering the whole range of the 

body are plotted. Comparisons are limited to only 10° and 30° incidence angles, due to 

the availability of the experimental data. The experimental data used are from Meier et al 

[11]. Unfortunately, none of the numerical results in the literature covered more than one 

(typically X/L=0.77) or at most two cross planes. 

 

One can see from these figures that the results agree reasonably well with the 

experiment for the computation with the surface model. The result from the computation 

without the surface model however is not acceptable for small incidence angle, and for all 

incidence angles near the front end and the rear end of the ellipsoid.  

 

Accurate simulation along the whole ellipsoid body is very important for 

accurately simulating the separation lines and stream-wise vortex, which proposes a real 

challenge for CFD methods. However, most of the simulations found in the literature 

seem to focus on the X/L=0.77 cross plane only. Though the result could be very good 

for one cross plane, it could be totally wrong for other cross planes. Conservative 
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confinement coupled with the simple boundary model seems to be able to globally 

achieve reasonably accurate results. 

 

b) Flow pattern  

1) The overlapping velocity field 

Figure 4-57 to 4-62 show the cross plane velocity of the overlapped grids near the 

surface for different incidence angles.  In all these charts, the velocity matches very well 

between the outer grid and the inner grid inside the whole domain of the inner grid. This 

means the coupling algorithm is successful for the computation.  

 

2) Compare to the experiment data 

In figure 4-65, the streamlines obtained by using the surface model are compared 

to the experiment data from Simpson et al [9]. One can see that the separation point and 

the streamline patterns are similar between the computation results and the experimental 

data. The computed boundary layer is thicker than the experimental result, which can be 

expected due to the coarse grid used. It is very difficult for the plotting software to deal 

with the velocity vectors forming the secondary vortex since there are only several grid 

nodes involved. The plotted streamlines just point inwards and it should not have much 

meaning about those inward-pointing streamlines. 

 

3) Compare to CFD results of Whitney and Tsai [4] 

In figure 4-49 to 4-51, the flow patterns by using the surface model and those by 

Tsai et al are compared. The similarities between these two different simulations are 

visible.  Since the simulation using the surface boundary model uses much coarser grid 

near the surface, much higher efficiency is expected. 

 

4) Vorticity contour on cross planes 

For the vorticity contour plots, the contour levels are from the maximum to one 

third of the maximum vorticity magnitude. Figure 4-46 shows the vorticity contour at 

cross plane 0.6 and 0.77 for an  incidence angle of 20°, which are similar to the 
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experiment result from Wetzel et al [10](figure 4-45). Figure 4-47 shows the vorticity 

contours of several cross planes for 30° incidence angle.  

 

c) Vorticity iso-surface 

Iso-surfaces of vorticity magnitude for computation with model are plotted in 

figure 4-53 to 4-56. The vorticity magnitude of the displayed iso-surfaces is one third of 

the maximum vorticity magnitude. At 10°, vortex shedding is minimal, and the 

streamwise vortex is very close to the surface. As the incidence angle increases, the 

amount of shedding increases, also the separation stretches forward and the shedding 

vortex goes further away from the surface. 
 

4.4 Discussion of the Surface Models 

 
Qualitatively reasonable results are obtained for flow over a 6:1 ellipsoid at 

various incidence angles, from viscous computations with or without the surface model. 

The computational models used are simple and efficient.  

 

However, the vorticity confinement methods are not complete and future 

enhancement is needed but should be well worth the endeavor. Currently, one of the main 

concerns on applying it to incompressible flow problems would be find a better way to 

solve the lower pressure peaks near the body. Further application of the method to 

compressible flows still needs to be explored. 

 

The inviscid surface model, which is based on a solid mathematical model, 

worked well considering its minimal requirement of additional complexity, though its 

usage still needs to be explored. 

 

The incorporation of the surface boundary model is successful, though the use of 

two sets of grid systems increases the complexity of the confinement method. The 
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enhancement gained after applying the model is appreciable and is indispensable for 

some flow problems. The surface model studied in this section is one of the simplest 

models that can be used with vorticity confinement. One can certainly devise other more 

sophisticated surface models and incorporate them into the vorticity confinement method. 

The most important thing is not the form of the model, but the essence of the vorticity 

confinement concepts. 
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5.  Conclusion 

 
New developments in vorticity confinement methods are covered in the present 

study. The newly developed conservative confinement method is studied and tested. A 

new surface boundary layer model, which intends to incorporate the explicitly defined 

surface boundary condition and resolve a thin artificial boundary layer near the surface, is 

devised and demonstrated by applying it to flow over a 6:1 ellipsoid. Results show that 

the conservative confinement give better result than the non-conservative scheme, from 

simple flows such as a convecting vortex to a complicated three-dimensional separated 

flow. The addition of the surface model further enhances the accuracy of the existing 

method. 

 

To demonstrate the capability of the methods, comparisons have been made with 

experimental data or the exact solutions, and data obtained with conventional CFD 

methods. The computational results from the new models show good comparison with 

either experimental data or exact solutions (for inviscid computation). The new methods 

use simpler grid than conventional methods and are considerably  more efficient, while 

the solutions are reasonably accurate compared to other conventional CFD methods. 

Although the details within very small features cannot be solved due to the limitation of 

the grid resolution, the dominant properties of the flow can be predicted reliably. The 

main characteristics of the flow problems can be resolved economically and efficiently by 

using these new methods.  

 

The addition of surface boundary layer model adds the capability of applying 

accurate surface boundary conditions for the confinement method. Enhancement is 

observed from the solutions by applying this surface model to full three-dimensional 
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separated flows.  

 

The methods may be applied to flows with complicated body configurations, 

because of the easy grid setup, simple numerical model and standard central difference 

discretization scheme. 

 

For future work, further refinement of the surface model is recommended, 

especially the development of a better method that enables explicit surface pressure 

conditions. The confinement method has already been successfully applied in solving 

compressible flows [20][57][58], although they are not covered in this context. However, 

the surface model still needs to be extended to solve full compressible flows. A thorough 

study of the conservative confinement on curvilinear grids is also encouraged for the 

future studies. 
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Figure 2-1. Harmonic mean on discrete lattice. 

 

 

 
 
 
 
 
 

 
 

Figure 2-2. Analytical solution for an axisymmetric vortex. 
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Figure 2-3. The analytical solution of a one-dimensional pulse. 
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Figure 2-4. Initial velocity field of a single convecting vortex. 
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Figure 2-5. Initial velocity distribution of a single convecting vortex.  

( 0( ) *q q r− denotes the normalized velocity defined by equation (2.121).) 
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Figure 2-6. Velocity field of a single convecting vortex after 1000 time steps, without 

vorticity confinement. 
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Figure 2-7. Velocity distribution of a single convecting vortex after 1000 time steps, 

without vorticity confinement. 
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Figure 2-8. Velocity field of a single convecting vortex after 5000 time steps, without 

vorticity confinement 
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Figure 2-9. Velocity distribution of a single convecting vortex after 5000 time steps, 

without vorticity confinement. 
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Figure 2-10. Velocity field of a single convecting vortex after 1000 time steps, with non-

conservative vorticity confinement. 
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Figure 2-11. Velocity distribution of a single convecting vortex after 1000 time steps, 

with non-conservative vorticity confinement. 
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Figure 2-12. Velocity field of a single convecting vortex after 5000 time steps, with non-

conservative vorticity confinement. 
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Figure 2-13. Velocity distribution of a single convecting vortex after 5000 time steps, 

with non-conservative vorticity confinement. 
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Figure 2-14. Velocity field of a single convecting vortex after 1000 time steps, with 

conservative vorticity confinement. 

 

 

 

 

 

 



 102

 
 

Figure 2-15. Velocity distribution of a single convecting vortex after 1000 time steps, 

with conservative vorticity confinement. 
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Figure 2-16. Velocity field of a single convecting vortex after 5000 time steps, with 

conservative vorticity confinement. 
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Figure 2-17. Velocity distribution of a single convecting vortex after 5000 time steps, 

with conservative vorticity confinement. 
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Figure 2-18. Velocity field of a single convecting vortex after 1000 time steps, with old 

confinement scheme. 
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Figure 2-19. Velocity distribution of a single convecting vortex after 1000 time steps, 

with old confinement scheme. 
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Figure 2-20. Velocity field of a single convecting vortex after 5000 time steps, with old 

confinement scheme. 
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Figure 2-21. Velocity distribution of a single convecting vortex after 5000 time steps, 

with old confinement scheme. 
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Figure 2-22. Contour plots for a single convecting vortex, with non-conservative vorticity 

confinement. 
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Figure 2-23. Contour plots for a single convecting vortex, with conservative vorticity 

confinement. 
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Figure 2-24. Contour plots for a single convecting vortex, with old vorticity confinement 

scheme. 
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Figure 2-25. The trajectories of a single convecting vortex computed by various methods. 
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Figure 2-26.  Initial velocity field induced by a vortex pair with opposite rotation. 
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Figure 2-27. Velocity field of a vortex pair after 1000 time steps, without vorticity 

confinement. 
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Figure 2-28. Velocity field of a vortex pair after 5000 time steps, without vorticity 

confinement. 
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Figure 2-29. Velocity field of a vortex pair after 1000 time steps, with non-conservative 

vorticity confinement. 
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Figure 2-30. Velocity field of a vortex pair after 5000 time steps, with non-conservative 

vorticity confinement. 
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Figure 2-31. Velocity field of a vortex pair after 1000 time steps, with conservative 

vorticity confinement. 

 

 



 119

 
 

Figure 2-32. Velocity field of a vortex pair after 5000 time steps, with conservative 

vorticity confinement. 
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Figure 2-33. Velocity field of a vortex pair after 1000 time steps, with old confinement 

scheme. 
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Figure 2-34. Velocity field of a vortex pair after 5000 time steps, with old confinement 

scheme. 
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Figure 2-35. Contour plots for a vortex pair, with non-conservative vorticity confinement. 
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Figure 2-36. Contour plots for a vortex pair, with conservative vorticity confinement. 
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Figure 2-37. Contour plots for a vortex pair, with old vorticity confinement scheme. 
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Figure 2-38. Contour plots for a vortex pair, 5 cell apart. 
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Figure 2-39. Contour plots for a vortex pair, 10 cell apart. 
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Figure 2-40. Contour plots for a vortex pair, 20 cell apart. 
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Figure 2-41. Contour plots for a vortex pair, 40 cell apart. 
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Figure 2-42. Convergence history of a vortex pair. 
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Figure 2-43. Evolution of the maximum velocity and vorticity, different c1. 
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Figure 2-44. Evolution of the maximum velocity and vorticity, different c2. 
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Figure 2-45. Evolution of the maximum velocity and vorticity, different α. 
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Figure 2-46. Equivalent physical vector field, comparison between N = 20 and N = 40. 
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Figure 2-47. Scaled vector field merged, comparison between N = 20 and N = 40. 
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Figure 2-48. Flow field of a stationary single vortex, with grid dimension 128 x 128. 



 136

 
 

 

Figure 2-49. Flow field of a stationary single vortex, with grid dimension 256 x 256. 
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Figure 2-50. Flow field of a stationary single vortex, with grid dimension 512 x 512. 
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Figure 2-51. Velocity distribution of a stationary single vortex. 
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Figure 2-52. Flow field of a single vortex after scaling, with grid dimension 128 x 128. 
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Figure 2-53. Flow field of a single vortex after scaling, with grid dimension 256 x 256. 
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Figure 2-54. Flow field of a single vortex after scaling, with grid dimension 512 x 512. 
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Figure 2-55. Merged Flow field of a stationary single vortex after scaling. 
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Figure 2-56. Velocity distribution of a stationary single vortex after scaling. 
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Figure 3-1. The initial surface boundary layer model [3]. 
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Figure 3-2. The projection from outer grid onto the surface. 
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Figure 3-3. Flow over a flat plate 
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Figure 3-4. Lift coefficient for flow over flat plat, inviscid surface model. 

(Grid dimension: (a) 64 x 64, (b) 128 x 128, (c) 256 x 256. ) 
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Figure 3-5. Body-conforming grid generation. 
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Figure 3-6. Inner grid around a 6:1 ellipsoid. 
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Figure 3-7. Detailed view of the inlet/outlet of the inner grid. 
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Figure 3-8. Inner grid around a 6:1 ellipsoid, crop of y=0 symmetry plane. 
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Figure 3-9. Inner grid around a 6:1 ellipsoid, cuts at the middle and the inlet/outlet. 
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Figure 3-10.  Inner grid around a 6:1 ellipsoid, details of the two planes in figure 3-9. 
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Figure 3-11. Overlapped grid systems, view of a cross plane. 

 

 

 

 

 

 

 

 



 155

 

 
 

 

Figure 3-12.  Enlarged view of the overlapped grid systems, view of a cross plane. 
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(a) 

 
(b) 

 

Figure 4-1. Cross plane separation.  

(Figures from Simpson et al [6].) 
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Figure 4-2.   The 6:1 ellipsoid configuration, data planes. 
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Figure 4-3. Pressure Coefficient, symmetry plane (theta = 0), inviscid surface model. 
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Figure 4-4. Velocity of the symmetry plane, 0° incidence, inviscid surface model. 
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Figure 4-5. Velocity of the symmetry plane, 15° incidence, inviscid surface model. 
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Figure 4-6. Velocity of the symmetry plane, 30° incidence, inviscid surface model. 
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Figure 4-7. Velocity of the symmetry plane, 45° incidence, inviscid surface model. 
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Figure 4-8. Velocity of the symmetry plane, 60° incidence, inviscid surface model. 
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Figure 4-9. Velocity of the symmetry plane, 90° incidence, inviscid surface model. 
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Figure 4-10. Cross plane velocity, X/L = 0.5, 90° incidence, inviscid surface model. 
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Figure 4-11. Pressure Coefficient, cross planes, 90° incidence, inviscid surface model. 
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Figure 4-12. Cross plane velocity, 30° incidence, inviscid surface model. 
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Figure 4-13.  The uniform Cartesian grid 
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Figure 4-14.  The structured grid used by Tsai et al [4]. 
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Figure 4-15. Pressure coefficient, X/L = 0.77, 10° to 30° incidence, without surface 

model.  
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Figure 4-16. Pressure coefficient, X/L = 0.77, 30° incidence, without surface model. 

 (Compared to non-conservative vorticity confinement solution (Carsten Braun [19]).) 
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Figure 4-17. Variation of the solutions, X/L = 0.77, 20° incidence. 
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Figure 4-18. Pressure coefficient, X/L = 0.77, 10° incidence, with surface model. 
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Figure 4-19. Pressure coefficient, X/L = 0.77, 15° incidence, with surface model. 
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Figure 4-20. Pressure coefficient, X/L = 0.77, 20° incidence, with surface model. 
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Figure 4-21. Pressure coefficient, X/L = 0.77, 25° incidence, with surface model. 
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Figure 4-22. Pressure coefficient, X/L = 0.77, 30° incidence, with surface model. 
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Figure 4-23. Pressure coefficient, X/L = 0.11, 10° incidence, with surface model. 
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Figure 4-24. Pressure coefficient, X/L = 0.23, 10° incidence, with surface model. 
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Figure 4-25. Pressure coefficient, X/L = 0.31, 10° incidence, with surface model. 
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Figure 4-26. Pressure coefficient, X/L = 0.44, 10° incidence, with surface model. 
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Figure 4-27. Pressure coefficient, X/L = 0.56, 10° incidence, with surface model. 
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Figure 4-28. Pressure coefficient, X/L = 0.69, 10° incidence, with surface model. 
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Figure 4-29. Pressure coefficient, X/L = 0.7725, 10° incidence, with surface model. 
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Figure 4-30. Pressure coefficient, X/L = 0.90, 10° incidence, with surface model. 

 

 

 

 

 

 

 



 186

 
 

 

Figure 4-31. Pressure coefficient, X/L = 0.11, 30° incidence, with surface model. 
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Figure 4-32. Pressure coefficient, X/L = 0.23, 30° incidence, with surface model. 

 

 

 

 

 

 

 



 188

 
 

 

Figure 4-33. Pressure coefficient, X/L = 0.31, 30° incidence, with surface model. 
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Figure 4-34. Pressure coefficient, X/L = 0.44, 30° incidence, with surface model. 
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Figure 4-35. Pressure coefficient, X/L = 0.56, 30° incidence, with surface model. 
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Figure 4-36. Pressure coefficient, X/L = 0.69, 30° incidence, with surface model. 
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Figure 4-37. Pressure coefficient, X/L = 0.7725, 30° incidence, with surface model. 
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Figure 4-38. Pressure coefficient, X/L = 0.90, 30° incidence, with surface model. 
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Figure 4-39. Jagged definition of the ellipsoid surface for uniform Cartesian grid 

 

 

 

 

 

 

 

 

 

 

 

 

 



 195

 

 
 

 

Figure 4-40. Vorticity iso-surface, 10° incidence, without surface model. 

 

 

 

 

 

 
 

 

Figure 4-41. Vorticity iso-surface, 20° incidence, without surface model. 
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Figure 4-42.  Vorticity iso-surface, 30° incidence, without surface model. 

 

 

 

 

 

 
 

 

Figure 4-43. Vorticity iso-surface, 45° incidence, without surface model. 
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Figure 4-44.  Vorticity iso-surface, 90° incidence, without surface model. 
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Figure 4-45.  Cross flow separation on a 6:1 ellipsoid, X/L = 0.6 and 0.77, 20° incidence. 

(From Wetzel et al [10].) 
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Figure 4-46. Vorticity contours, X/L = 0.6 and 0.77, 20° incidence, with surface model. 

 

 

 

 

 

 



 200

 
 

 

Figure 4-47. Cross plane vorticity contours, 30° incidence, with surface model. 
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Figure 4-48. Cross-flow separation, 30° incidence, with surface model.  

(Compared to plots (top) from S. Kim&S. Rhee [5].) 
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Figure 4-49. Front view of cross-flow separation, 30° incidence, with surface model. 

(Compared to plots (left) from Tsai & Whitney [4].) 
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Figure 4-50. Side view of cross-flow separation, 30° incidence, with surface model. 

(Compared to plots (top) from Tsai & Whitney [4].) 
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Figure 4-51. Rear view of cross-flow separation, 30° incidence, with surface model. 

(Compared to plots (left) from Tsai & Whitney [4].) 
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Figure 4-52. Overhead view of cross-flow separation, 30° incidence, with surface model. 
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Figure 4-53. Vorticity iso-surface, 10° incidence, with surface model.  

 

 

 

 

 

 

 
 

 

Figure 4-54. Vorticity iso-surface, 20° incidence, with surface model. 
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Figure 4-55. Vorticity iso-surface, 30° incidence, with surface model. 

 

 

 

 

 
 

 

Figure 4-56. Vorticity iso-surface, 45° incidence, with surface model. 
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Figure 4-57. Overlapping vector field, X/L = 0.77, 10° incidence, with surface model.  

 

 

 

 

 

 

 



 209

 
 

 

Figure 4-58. Details of overlapping vector field, X/L = 0.77, 10° incidence. 
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Figure 4-59. Overlapping vector field, X/L = 0.77, 20° incidence, with surface model. 
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Figure 4-60. Details of overlapping vector field, X/L = 0.77, 20° incidence. 
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Figure 4-61. Overlapping vector field, X/L = 0.77, 30° incidence, with surface model. 
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Figure 4-62. Details of overlapping vector field, X/L = 0.77, 30° incidence. 

 

 

 

 

 

 

 



 214

 
 

 

Figure 4-63. Cross Plane streamlines, X/L = 0.60, 20° incidence, with surface model.  
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Figure 4-64. Details of cross Plane streamlines, X/L = 0.60, 20° incidence. 
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Figure 4-65. Cross plane streamlines, 20° incidence, compared to data (Simpson [6]).  
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Appendix II:  The Centroid Motion of a Convecting Scalar 

Field 
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It was proved in 2.1.5 that the confinement term does not alter the centroid motion 

of a convecting scalar field. The evolution of the centroid of a convecting scalar field is 

derived next. The discussion in this context is limited to uniform Cartesian grid only, 

although similar results can be extended to general curvilinear grid. 

 

For a scalar field φ , the following property can be proved if the contribution from 

the boundary values can be neglected 

 2ˆ 0cx φ
Ω

∇ =∑  (6.1) 

where 
Ω
∑ represents the sum over all the grid nodes of a computational grid, and x̂  is 

the physical coordinate of a given node. 2
c∇  represent the central difference formula for 

the Laplace operator. 

 

For a three dimensional uniform Cartesian grid with grid spacing h∆ , the left 

hand side of equation (6.1) can be written as 

 
(

)

max 1max 1 max 1
2

, , 1, , , 1,1, ,
2 2 2

2
, 1, , , 1 , , 1 , ,

ˆ ˆ
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φ φ φ φ

φ φ φ φ
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− ++
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− + −
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+ + + − ∆

∑ ∑ ∑ ∑
 (6.2) 

which can be split into three terms by the following way 
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x 1− 




∑

 (6.3) 

The first term in the outer bracket can be transformed to 
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Since 
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and at the same time if the boundary contribution is neglected, i.e. 

 ( )
max 1 max 1
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substituting (6.5) and (6.6) into (6.4) yields 
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Similarly, we have 
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Substituting (6.7) and (6.8) into (6.3) yields 

 2ˆ 0cx φ
Ω

∇ =∑  (6.9) 

 

For a vector field ( ), , TA a b c= , if neglecting the boundary effect, the following 

properties can be derived 
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 ˆ cx A A I
Ω Ω

∇ ⋅ = − ⋅∑ ∑  (6.10) 

where c∇ ⋅  represents the central difference formula for the divergence operator, and is 

I the identity vector 

 ( )1,1,1 TI =  (6.11) 

 

For a three dimensional uniform Cartesian grid, the left hand side of (6.10) can be 

written as 
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The first term in the outer bracket can be transformed as 
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Neglecting the boundary effect yields 
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Similarly it can be derived that 
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Substituting (6.14) and (6.15) into (6.12) yields 
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max 1max 1 max 1
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The equation governing a convecting scalar field with confinement term added 

was derived in 2.1.3 (equation (2.17)): 

 2 2( )d d dq
t
φ φ µ φ ε∂
= −∇ ⋅ + ∇ − ∇ Φ

∂
 (6.17) 

The corresponding difference equation using central spatial difference formulae can be 

written as 

 ( )2 21 ( )n n n n n n
c c ct q tφ φ φ µ φ ε+ = − ∆ ∇ ⋅ + ∆ ∇ − ∇ Φ  (6.18) 

Multiplying both side of the above equation by x̂  and sum over the whole computational 

grid yields 

 ( )2 21ˆ ˆ ˆ ˆ( )n n n n n n
c c cx x t x q t xφ φ φ µ φ ε+

Ω Ω Ω Ω

= − ∆ ∇ ⋅ + ∆ ∇ − ∇ Φ∑ ∑ ∑ ∑  (6.19) 

According to (6.1), the two terms involving second derivatives on the right hand sides of 

equation (6.19) vanish, which gives 
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= − ∆ ∇ ⋅∑ ∑ ∑  (6.20) 

Define the sum of the scalar as 

 ψ φ
Ω

< >= ∑  (6.21) 

which is constant in this case if neglecting the boundary effect, and the centroid of the 

scalar field as 
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 (6.22) 

Also define the weighted mean velocity as 
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Dividing both side of equation (6.20) by ψ< > gives 

 

1ˆ ˆ ˆ ( )n n n n
cx x x q

t
φ φ φ

ψ ψ ψ

+

Ω Ω Ω
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= − ∆

< > < > < >
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 (6.24) 

Applying (6.10), (6.22) and (6.23) to (6.24) yields 

 1ˆ ˆn n nX X t Q+< > =< > +∆ < >  (6.25) 

which is the equation governing the centroid motion of the convecting scalar field. 
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