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Poncaré, Julies Henry (1854-1912)

Mathematicians do not study objects, but relations between objects. Thus they are free

to replace some objects by others so long as the relations remain unchanged. Content

to them is irrelevant: they are interested in form only.

Thought is only a flash between two long nights, but this flash is everything.

In J.R.Newman (ed.) The World of Mathematics, New York: Simon and Schuster,

1956.
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ABSTRACT

In the early 90s, R.Daverman defined the concept of the PL fibrator ([12]).

PL fibrators, by definition, provide detection of PL approximate fibrations. Daver-

man defines a closed, connected, orientable PL n-manifold to be a codimension-k PL

orientable fibrator if for all closed, connected, orientable PL (n+k)-manifolds M and

PL maps p : M → B, where B is a polyhedron, such that each fiber collapses to an

n-complex homotopy equivalent to Nn, p is always an approximate fibration.

If N is a codimension-k PL orientable fibrator for all k > 0, N is called a PL

orientable fibrator.

Until now only a few classes of manifolds are known not to be PL fibrators.

Following this concept of Daverman, in this dissertation we attempt to find

to what extent such results can be obtained for PL maps p : Mn+k → B between

manifolds, such that each fiber has the homotopy type (or more generally the shape)

of N , but does not necessarily collapse to an n-complex, which is a severe restriction.

Here we use the following slightly changed PL setting: M is a closed, con-

nected, orientable PL (n + k)-manifold, B is a simplicial triangulated manifold (not

necessarily PL), p : Mn+k → B a PL proper, surjective map, and N a fixed closed,

connected, orientable PL n-manifold.

We call N a codimension-k shape msimplo-fibrator if for all orientable, PL (n+

k)-manifolds Mn+k and PL maps p : Mn+k → B, such that each fiber is homotopy

equivalent to Nn, p is always an approximate fibration. If N is a codimension-k shape

msimplo-fibrator for all k > 0, N is a shape msimplo-fibrator.

We are interested in PL manifolds N with π1(N) 6= 1, that force every map

vi



f : N → N , with 1 6= f](π1(N)) C π1(N), to be a homotopy equivalence. We

call PL manifolds N with this property special manifolds. There is a similar group

theoretic term: a group G is super Hopfian if every homomorphism φ : G → G with

1 6= φ(G) C G is an automorphism.

In the first part of the dissertation we study which groups posses this property

of being super Hopfian. We find that every non-abelian group of the order pq where

p, q are distinct primes is super Hopfian. Also, a free product of non-trivial, finitely

generated, residually finite groups at least one of which is not Z2 is super Hopfian.

Then we give an example of special manifolds to which we apply our main

results in the second part of this dissertation.

First we prove that all orientable, special manifolds N with non-cyclic fun-

damental groups are codimension-2 shape msimplo-fibrators. Then we find which 3-

manifolds have this property.

Next we prove which manifolds are codimension-4 shape msimplo-fibrators.

Our main result gives that an orientable, special PL n-manifold N with a

non-trivial first homology group is a shape msimplo-fibrators if N is a codimension-2

shape msimplo-fibrator. The condition ofN being a codimension-2 PL shape orientable

fibrator can be replaced with N having a non-cyclic fundamental group.

In the last section we list some open questions.
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Chapter 0

Introduction

Topology is the geometric study of continuity; beginning with the continuity

of space, or shapes, it generalizes, and then by analogy leads into other kind of

continuity. One of the main “tools” used by topologists in this kind of study is that

of continuous function. Familiar classes of these continuous maps are fibrations and

cell-like maps.

In 1977, Coram and Duvall ([6]) introduced the concept of approximate fibra-

tions as a generalization of both Hurewicz fibrations and cell-like maps. Approximate

fibrations are proper mappings that satisfy an approximate version of the homotopy

lifting property - the defining property for fibrations. Why study approximate fibra-

tions? Coram and Duvall showed that approximate fibrations have shape theoretic

properties analogous to the homotopy theoretic properties of Hurewicz fibrations.

For each approximate fibration p : M → B, they showed that all fibers of p are

fundamental absolute neighborhood retracts, and moreover that if B is path con-

nected, then any two fibers have the same shape. The most useful property is the

existence of an exact sequence involving the homotopy groups of domain, target and
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shape-theoretical homotopy groups of any point inverse of p. Moreover, Daverman

and Husch ([17]) showed that if M is a manifold and B is finite dimensional, B is a

generalized manifold. A question that arises is this: how can we detect approximate

fibration so we can use these nice properties? Sometimes a proper map defined on

an arbitrary manifold of a specific dimension can be recognized as an approximate

fibration due to having point inverses all of a certain homotopy type (or shape). So

the above question that has been addressed for more than two decades can be restated

in a different form:

Which manifolds can detect and recognize approximate fibrations? Or more

explicitly: Which manifolds that appear as the point inverses of a map force the map

to be an approximate fibration?

For addressing these kinds of questions, in 1989, Daverman introduced the

concept of codimension-k (orientable) fibrator and later the concept of PL (orientable)

fibrator. Here we introduce a closed, orientable n-manifold, N , called a codimension-k

shape msimplo-fibrator, that automatically induces approximate fibration, in the sense

that all proper, surjective, PL maps p : M → B from any closed, orientable (n + k)-

manifold to a triangulated manifold B, such that each point inverse has the same

homotopy type (or more generally, the same shape) as N , are approximate fibrations.

If this is true for all k, call the manifold N a shape msimplo-fibrator. In chapter 2 we

discuss more of these concepts, and their relations.

The difference between the two concepts of PL orientable fibrators and shape

msimplo-fibrators is the following: in the first PL setting the point inverses (fibers)

collapse to an n-complex homotopy equivalent to N , while in our PL shape setting

we are just asking fibers to have the homotopy type of N but not necessarily to

collapse to an n-complex. This property of collapsibility of the fibers in the first

2



category forces the target space of an approximate fibration to be a nice manifold.

Since we don’t have that in the PL shape category, by definition we take B to be a

triangulated (simplicial) manifold.

The main question that we address in this thesis is: Which manifolds are shape

msimplo-fibrators?

Generally, analysis of fibrator properties applies mostly to Hopfian manifolds

N with Hopfian fundamental groups, simply because a map f : N → N is a homotopy

equivalence if and only if the (absolute) degree of f equals 1. A Hopfian manifold is

a closed, orientable manifold, such that every degree one self map which induces a

π1-isomorphism is a homotopy equivalence.

The idea of introducing a new concept of a fibrator was motivated by the fact

that Daverman showed that most homology n-spheres are codimension-n fibrators,

but no homology n-sphere is a codimension-(n+1) fibrator. He also showed that in the

PL setting some homology 3-spheres are PL o-fibrators. Here we will change the PL

setting slightly, to understand that these homology spheres are NOT shape msimplo-

fibrators, our new category, since they fail to have this property in codimension-5.

In order to address the last question, we introduce first a group theoretical

term; we call a group super Hopfian if all self homomorphisms with non-trivial normal

image are isomorphisms. Super Hopfian groups are introduced in chapter 3. We

show that every non-abelian group of order pq where p, q are distinct primes is super

Hopfian. Also the group of rational numbers is a super Hopfian group. In the last

section, we discuss which free products of finitely generated groups are super Hopfian,

and show that the free product of non-trivial, finitely generated, residually finite

groups (6= Z2 ∗Z2) are super Hopfian. As a consequence, a free product (6= Z2 ∗Z2) of

non-trivial, finitely generated, super Hopfian groups is super Hopfian provided that
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the free product is a Hopfian group. This property is very useful for the problem that

we are addressing.

In chapter 4, we introduce a particular type of Hopfian manifold that we call a

special manifold: a closed, orientable manifold with a non-trivial fundamental group,

for which all self maps with non-trivial normal images on π1-level are homotopy

equivalences. We prove that all closed, orientable surfaces with negative Euler char-

acteristics are special manifolds. Then we address the question: Which connected

sums are special manifolds? It turns out that all connected sums that are homo-

topically determined by their fundamental groups, when super Hopfian, are special

manifolds.

Special manifolds are of our main interest in the last chapter since the shape

msimplo-fibrator property can be easily applied to them. First we show that every

special n-manifold with a non-cyclic fundamental group is a codimension-2 shape

msimplo-fibrator. All closed, orientable 3-manifolds whose fundamental group is a

non-trivial free product of finitely generated, residually finite groups, which are not

all either free or finite groups, are codimension-2 shape msimplo-fibrators. Next we

show that a closed, connected, orientable PL n-manifold homotopically determined

by π1 with a non-trivial Hopfian fundamental group is a codimension-4 shape msimplo-

fibrator if it is a codimension-2 fibrator. In the last section we prove our main re-

sult: all connected, special PL n-manifolds with non-trivial first homology groups are

shape msimplo-fibrators if they are codimension-2 shape msimplo-fibrators. If the spe-

cial PL n-manifold has also a non-cyclic fundamental group, the hypothesis of being

a codimension-2 shape msimplo-fibrator can be omitted. Low-dimensional examples of

shape msimplo-fibrators are all closed, orientable surfaces with negative Euler charac-

teristics. Next we discuss which connected sums are shape msimplo-fibrators and prove
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that all special manifolds that are connected sums of closed, aspherical, orientable

n-manifolds, with a non-trivial first homology group, are shape msimplo-fibrators.

At the end we list some open and unsettled problems.
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Chapter 1

Approximate Fibrations

In this chapter we will mostly discuss approximate fibrations. First, in section

1, we review several relevant definitions and establish some standard notations used in

the thesis. Next, in section 2, we will review the definition of approximate fibration,

and then give some of its properties. In section 3, we will discuss a movability

condition of maps and see how approximate fibrations can be characterized in terms

of movability conditions. In the last section, we will prove a lemma which plays a big

role in proving our main results in chapter 5.

1.1 Some definitions and notations

The terminology and definitions that we will use follow standard textbooks

such as Munkres’ books ([49] and [50]), used for standard material on general and

algebraic topology, and Rourke-Sanderson’s book ([52]) used for the material on piece-

wise linear topology.

Symbols ', ≈, ∼=, χ and βi denote homotopy, homeomorphism, isomorphism,
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Euler characteristic and the i-th Betti number in that order, and homology and coho-

mology groups will be computed with integer coefficients unless otherwise specified.

As usual, space means topological space and maps are continuous functions.

A (topological) n-manifold M is a separable, metric space whose points

each have a neighborhood homeomorphic to an open subset in Rn. M is called an n-

manifold with boundary if each of its points has a neighborhood homeomorphic to

an open subset of either Rn or Rn
+ = {(x1, x2, ..., xn) ∈ Rn | xn ≥ 0}. The boundary

of an n -manifold M , denoted ∂M , is the set of points of M corresponding to Rn−1×

{0} ⊂ Rn
+; the interior of M , denoted IntM , is M\∂M . By invariance of domain,

∂M is either empty or an (n − 1)-manifold and ∂∂M = ∅. A manifold is said to

be closed if it is compact and has an empty boundary and is open if it has no

compact component and has an empty boundary. A manifold M is aspherical if

πi(M) = 0 for all i > 1. Superscripted capital letter (e.g. Mn) will denote a manifold

of dimension represented by the superscript.

A generalized k-manifold is a finite dimensional, locally contractible metric

space X, such that H∗(X,X\{x}) ∼= H∗(Rk,Rk\{0}) for all x ∈ X. A simplicial

homotopy k-manifold is a triangulated polyhedron K in which the link of each i-

simplex has the homotopy type of the (k−i−1)-sphere. Unlike polyhedral generalized

manifolds, in which vertices possibly fail to have a Euclidean neighborhood, simplicial

homotopy manifolds are genuine topological manifolds.

A separable, metric space X is an absolute neighborhood retract (ANR)

if for any separable, metric space Y , for any closed subset A of Y , and for any map

f : A→ X there exists an open set U containing A and an extension map F : U → X

such that F |A = f . If there exists an extension map over all of Y , then X is called

an absolute retract (AR). All CW complexes and manifolds are ANR’s.
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A map p : M → B is proper provided p−1(C) is compact for any compact

subset C of B. Note that p is proper if and only if p is closed and each point inverse

is compact.

A subset V ⊂ Rn is a polyhedron if each point a ∈ A has a cone (or stellar)

neighborhood S = v ∗ L = {λv + µl | l ∈ L, λ, µ ∈ R, λ, µ ≥ 0 andλ + µ = 1} in V ,

where L is compact. S is called a star of v in V and L a link of v in V . All finite

simplicial complexes are polyhedra.

A map f : V → Y between polyhedra is piecewise-linear (abbreviated PL)

if each point v ∈ V has a stellar neighborhood S = v ∗ L, such that f(λv + µl) =

λf(v)+µf(l), where l ∈ L and λ, µ ≥ 0, λ+µ = 1. A PL n-manifold is a polyhedron

whose points each have a neighborhood PL homeomorphic to an open subset in Rn.

If B is a simplicial complex, then B(j) denotes the j-skeleton of B and Bj

denotes the j-th derived subdivision of B.

A map f : X → Y is a shape equivalence provided for each ANR P ,

f̃ : [Y, P ]→ [X,P ] is a bijection of sets, where each [Y, P ] and [X,P ] denotes the set

of homotopy classes of maps and f̃([α]) = [αf ] for [α] ∈ [Y, P ].

A map f : N → N ′ between closed, orientable n-manifolds is said to have a

(absolute) degree d if there are choices of generators γ ∈ Hn(N) ∼= Z, γ′ ∈ Hn(N
′) ∼=

Z, such that f∗(γ) = dγ′, where d ≥ 0 is an integer.

Proposition 1.1.1. ([27]) If θ : X̃ → X is a d-fold covering map, d > 0, then the

degree of θ is d and χ(X̃) = dχ(X).
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1.2 Properties of Approximate Fibrations

Approximate fibrations were introduced and studied by Coram and Duvall

([6], [7]) as a generalization of Hurewitcz fibrations and cell-like maps. The defining

property of a fibration, called the homotopy lifting property (HLP), is a valuable

property for a map to have. The next property, which is generalization of HLP, is

almost as valuable as the HLP while applying to a larger class of maps.

Definition 1.2.1. ([7]) A surjective map p : E → B between metric spaces has

the approximate homotopy lifting property (AHLP) with respect to a space X

provided that, given a cover U of B and maps g : X → E and H : X × [0, 1] → B,

such that pg = H0, there exists a map H̃ : X × [0, 1] → E, such that H̃0 = g and

pH̃ and H are U-close (i.e. for each z ∈ X × [0, 1], there exists an Uz ∈ U such that

{H(z), pH̃(z)} ⊂ Uz).

From the definition, we can see that AHLP generalizes the usual HLP, whose

definition is the same except that pH̃ = H is required rather than pH̃, H being

U-close.

Definition 1.2.2. The proper, surjective map p : E → B between locally compact

ANR’s is an approximate fibration if p satisfies the approximate homotopy lifting

property with respect to all spaces.

By definition, fibrations are approximate fibrations. The next example shows

that the set of approximate fibrations is larger than the set of fibrations.

Example 1.2.3. ([6]) Let W = W1 ∪ B, where W1 = {(0, t) | − 1 ≤ t ≤ 1} ∪

{
(
x, sin(π

x
)
)
| 0 < x ≤ 1} and B is an arc which meets W1 only in the endpoints (0, 0)

and (1, 0). Let x0 be a base point in the 1-sphere S1, and let π2 : S1 × S1 → S1 be

9



the projection map onto the second factor. There is a compactum A ⊂ S1× S1, such

that A ≈ W and such that there is a homeomorphism

h : (S1 × S1)\A→ S1 × (S1\{x0}).

Then the map given by

p(x) =





π2h(x) x ∈ (S1 × S1)\A

x0 x ∈ A

is continuous, and has a property that p−1(x0) = A and p−1(y) is a copy of S1 for each

y 6= x0. Moreover, it is an approximate fibration which is not even a weak fibration.

Proposition 1.2.4. ([11] Lemma 2.5) Suppose that p : M → B is a proper map

defined on an (n+ k)-manifold M and q : M̃ →M is a finite covering. Then p is an

approximate fibration if and only if pq : M̃ → B is.

A few of the useful consequences of a map p : E → B being a fibration are:

(1) ([55]) the property that point inverses are ANR, when E and B are ANR;

(2) ([55] Corollary 2.8.13) the homotopy equivalence of point inverses when

the base space is path connected; and

(3) ([55] Theorem 7.2.10) the exact homotopy sequence of fibration, which

relates the homotopy groups of the total space E, the base space B and its fibers:

· · · → πn+1(B, b)→ πn
(
p−1(b), e

)
→ πn(E, e)→ πn(B, b)→ · · ·

where e ∈ p−1(b).

Next we will give some reasons why the study of approximate fibrations is

important. Approximate fibrations form a particularly useful collection, partially

due to the fact that much of the theory of Hurewitcz fibrations carries over to the
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set of approximate fibrations. Coram and Duvall proved analogous theorems about

approximate fibrations to the above theorems about fibrations: If p : E → B is an

approximate fibration then:

(1) ([6] Corollary 2.5) each fiber is a fundamental absolute neighborhood re-

tract (FANR) (that is, fibers are ANR in the sense of shape theory, [2]);

(2) ([6] Theorem 2.12) any two fibers have the same shape, provided that B

is path connected, ([47] provides the definition of shape);

(3) ([6] Corollary 3.5) there exists an exact sequence:

· · · → πn+1(B, b)→ πn
(
p−1(b), e

)
→ πn(E, e)→ πn(B, b)→ · · · ,

where b ∈ B, e ∈ p−1(b), and

πn(p
−1(b), e) = lim←−

j

πn(Uj, e)

where (Uj, α
j) is an inverse ANR sequence associated with p−1(b) by inclusion.

The last property (3) of approximate fibration, the existence of an exact se-

quence involving the homotopy groups of domain, target and the shape-theoretic

homotopy groups of any point inverse of p, is the most useful property, which we will

use frequently. When we work with the PL approximate fibration these properties

of an approximate fibration reduce to the usual properties of Hurewicz fibration be-

cause the fibers are ANRs, so the ith shape homotopy groups are isomorphic to ith

homotopy groups.
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1.3 Characterization of Approximate Fibrations in

Terms of Movability Conditions

In the late ’70s, Coram and Duvall ([7]) studied a movability condition of a

map and used it to give a characterization of approximate fibrations. This section

will reveal some of the material about characterizing approximate fibrations in terms

of this movability condition.

Definition 1.3.1. ([7]) A proper map p : E → B between ANR’s is completely

movable if for each b ∈ B and each neighborhood U of the fiber p−1(b), there exists

a neighborhood V of p−1(b) in U , such that if p−1(c) is any fiber in V and W is any

neighborhood of p−1(c) in V , then there exists a homotopy H : V × [0, 1]→ U , such

that H(x, 0) = x and H(x, 1) ∈ W for each x ∈ V and H(x, t) = x for all x ∈ p−1(c)

and t ∈ [0, 1].

The following example shows the existence of non-movable maps.

Example 1.3.2. ([7]) Define a map f : S1 ×D2 → D2 by f(x, y) = ‖y‖x, where D2

is a 2-disk, x ∈ S1, y ∈ D2, and ‖‖ is the Euclidean norm. Then the fibers consist of

all meridional circles of various radii and the center circle of the solid torus S1 ×D2,

an exceptional fiber which is mapped to the center of D2. f fails to be completely

movable at the origin of the disk fiber.

Coram and Duvall proved the following characterization theorem in terms of

completely movable maps.

Theorem 1.3.3. ([7] Proposition 3.6) Let p : E → B be a proper map. Then p is an

approximate fibration if and only if p is completely movable.
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The following theorem is the main tool for efficiently detecting approximate

fibrations among proper PL maps.

Theorem 1.3.4. ([12] Lemma 5.1) A proper, surjective PL map p : M → B, (where

M is a (n + k)-manifold, and B is a polyhedron), is an approximate fibration if and

only if each v ∈ B has a stellar neighborhood S = v ∗ L whose preimage collapses to

p−1(v) via a map R : p−1S → p−1(v) (the final stage of the collapse), such that, for

all x ∈ L, R|p−1(x) : p−1(x)→ p−1(v) is a homotopy equivalence.

The theorem says that we only need to check the homotopy equivalence con-

dition for the link L rather than the whole star S to see whether a PL map p is a

completely movable map, i.e, an approximate fibration according to Theorem 1.3.3.

1.4 Basic Lemma

In this section we will prove the basic lemma which we will use in the last

chapter for proving our main results.

Lemma 1.4.1. Let p : M → B be a given surjective map and T ⊂ B closed, such

that dimT = l and for every t ∈ T , Hi(M,M\p−1(t)) ∼= 0 (i = 0, 1, ..., r), l ≤ r.

Then Hj(M,M\p−1T ) ∼= 0 whenever j ∈ {0, ..., r − l}.

Proof. Clearly, Lemma 1.4.1 is valid when dimT = −1. Assume it to be true for

all closed subsets of B of dimension < l. Given an l−dimensional closed subset T ,

consider z ∈ Hj(M,M\p−1T ), where 0 ≤ j ≤ r − l. We shall show that z = 0.

Fix a compact pair (C ′, C ′′) ⊂ (M,M\p−1T ) carrying a representative of z.

Since Hj(M,M\p−1(t)) ∼= 0 for every t ∈ T , Theorem 30.5 ([50]) implies that each
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t ∈ T has a neighborhood Nt in T for which the image of z in Hj(M,M\p−1(Nt)) is

trivial.

Elementary dimension theory properties give a cover {C ′
i | i = 1, ..., m} of

p(C ′) ∩ T by closed sets, such that {C ′
i} refines the cover {Nt | t ∈ p(C ′) ∩ T}, the

interior (relT ) of ∪C ′
i contains p(C ′)∩T , and the frontier of each C ′

i has the dimension

≤ l− 1. Now take the cover {Ci|i = 1, ..., m}, such that Ci = C ′
i\(∪j<iint C ′

j), for all

i. Define Ei as p−1
(
T\ ∪mj=i+1 Cj

)
, (i = 0, ..., m). Since E0 doesn’t intersect C ′, the

image of z in Hj(M,M\E0) is trivial. Inductively, for E ′ = Ei−1 and E ′′ = p−1(Ci),

we presume that the image of z in Hj(M,M\E ′) is trivial and we know it is trivial

in Hj(M,M\E ′′); by construction

dim
(
T\ ∪mj=i Cj ∩ Ci

)
≤ dim

(
FrCi

)
≤ l − 1.

Since E ′ and E ′′ are closed subsets of M for which dim
(
T\ ∪mj=i Cj ∩Ci

)
≤ l− 1, the

Mayer-Vietoris sequence for the “excisive couple of pairs”
{
(M,M\E ′), (M,M\E ′′)

}

(see [55], p.189) yields an inclusion-induced isomorphism α

Hj+1

(
M,M\(E ′ ∩ E ′′)

)
→ Hj

(
M,M\(E ′ ∪ E ′′)

) α
−→

α
−→ Hj(M,M\E ′)⊕Hj(M,M\E ′′) → Hj

(
M,M\(E ′ ∩ E ′′)

)

because of the inductive assumption that Hs

(
M,M\(E ′ ∩ E ′′)

)
= 0, (s = j, j + 1).

Therefore, the image of z in Hj

(
M,M\(E ′ ∪ E ′′)

)
= Hj(M,M\Ei) is trivial. In

particular, when i = m, this proves that z itself is trivial.
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Chapter 2

Shape Fibrators

Since the late ’80s, R. J. Daverman has been addressing the following question:

Which homotopy types of (PL) manifolds, when appearing as the homotopy

type of all point inverses of (PL) maps, force these maps to be approximate fibrations?

This chapter will give a short overview of what is answered in terms of this

question and will present a new class of manifolds that has the property of detecting

approximate fibrations among maps between manifolds. In the first two sections of

this chapter we will review concepts of codimension-k (orientable) fibrators and PL

fibrators, include examples of them, and in section 3 will introduce the new definition

of shape msimplo-fibrators.

Note: The concepts of Hopfian groups and Hopfian manifolds that are used

in several occasions during this chapter are discussed in the next two chapters.
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2.1 Codimension-k (orientable) Fibrators

Throughout this chapter, N is a fixed closed, connected (PL) n-manifold.

A proper, surjective (PL) map p : M → B defined on a closed, connected,

(PL) (n + k)-manifold is said to be an N-shaped (PL) map if each fiber p−1(b),

b ∈ B, (where B is a polyhedron), has the homotopy type (or more generally the

shape) of N .

The following lemma gives a useful property of N -shaped PL maps that we

use in proving our main results in chapter 5.

Lemma 2.1.1. ([12] Codimension Reduction Lemma 3.1) Let p : M → B be an

N-shaped PL map defined on the PL (n + k)-manifold M . Then each b ∈ B has a

PL neighborhood S = b ∗ L ⊂ B, such that p−1S is a regular neighborhood of p−1(b)

in M and p−1L = ∂(p−1S) is a PL (n + k − 1)-manifold.

In the late ’80s, Daverman introduced the following definition ([11]): N is

called a codimension-k (orientable) fibrator if, for every N -shaped map p : M →

B, where M is a closed, connected (respectively, orientable) (n+ k)-manifold, and B

is finite dimensional, p is an approximate fibration.

The specific requirement of B being finitely dimensional cannot be omitted

since an N -shaped map might raise the dimension to infinity ([24]). But if B is finite

dimensional the next theorem shows that it must be k-dimensional:

Theorem 2.1.2. ([17] Corollary 1.3 and Theorem 2.1) Let p : M → B be an N-

shaped map from an (n + k)-manifold M onto a finite dimensional space B. Then

dimB = k. Furthermore, if p is an approximate fibration, then B is a generalized

k-manifold.
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Codimension-1 fibrators are well-understood ([10]; [17]).

A lot about codimension-2 fibrators is also known. Daverman, Chinen, Im

and Kim gave a rich list of manifolds that are codimension-2 fibrators ([16]; [4]; [5];

[36]; [37]; [41]; [42]; [43]). In his paper [11], Daverman showed that (1) all closed,

simply connected manifolds (Corollary 2.4), (2) closed surfaces with a negative Euler

characteristic (Theorem 3.1) and (3) real projective n-spaces RP n (n > 1) (Theorem

5.1), are codimension-2 fibrators. Moreover, Im and Kim proved that any finite

product of closed, orientable surfaces with a genus of at least 2 is a codimension-2

fibrator (Main result, [35]).

Remark 2.1.3. The torus, T = S1 × S1, is the only closed, connected, orientable

surface which is not a codimension-2 fibrator. The Klein bottle also fails to be a

codimension-2 fibrator. S1 is a codimension-1 o-fibrator but fails to be a codimension-

2 o-fibrator ([8]). Daverman also proved that any closed manifold that regularly

cyclically covers itself (non-trivially) fails to be a codimension-2 fibrator (Theorem

4.2, [11]).

Daverman also showed that every closed, (k − 1)-connected n-manifold N

(k > 1) (Theorem 2.3, [11]) is a codimension-k fibrator. As an immediate consequence

it follows that Sn, n > 1 is a codimension-n fibrator (Theorem 4.1, [9]). The next

corollary that follows from Theorem 5.12 ([9]) shows that homology n-spheres (i.e.

n-manifolds Σn for which H∗(Σ
n) ∼= H∗(S

n)) are essentially as effective as Sn at

inducing approximate fibrations.

Corollary 2.1.4. If the homology n-sphere Σn is a Hopfian manifold and has a

Hopfian fundamental group, then Σn is a codimension-n fibrator.
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The following example shows that no homology n-sphere Σn is a codimension-

(n+ 1) fibrator.

Example 2.1.5. Let W be the open cone on Σn. There is a proper Σn-shaped map

p : W × Σn →W whose point preimages are either {c} × Σn, c being the cone point

of W , or rΣn × {s}, rΣn ⊂ W being one of the cone levels and s ∈ Σn. Clearly, p

is not an approximate fibration, since every retraction W × Σn → {c} × Σn restricts

to a degree zero map on all other fibers p−1(w) = rΣn × {s}. Note that W is NOT

necessarily an (n + 1)-manifold: namely, W\{c} ≈ Σn × (0, 1), and the link of c is a

homology n-sphere. When Σn is a homology n-sphere with a non-trivial fundamental

group, then the link of c cannot have the homotopy type of an n-sphere, so W cannot

be a topological (n+ 1)-manifold.

2.2 PL Fibrators

Now we restrict our interest to the following PL setting: let N be a fixed

closed, connected PL n-manifold, M a closed, connected, PL (n + k)-manifold, B a

polyhedron and p : M → B a proper, surjective PL map.

Then p is an N-like map ([12]) if each fiber collapses to an n-complex homo-

topy equivalent to N . By definition, everything provable about N -shaped PL maps

is provable for N -like maps.

One of the advantages of N -like PL maps over N -shaped PL maps is given in

the next theorem. It shows that N -like approximate fibrations force the base space

to be nice space.

Theorem 2.2.1. ([12] Theorem 5.4) If the N-like map p : M → B is an approximate

fibration, then B is a simplicial homotopy k-manifold.
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Theorem 2.1.2 might not guarantee that the weaker condition of being an

N -shaped PL approximate fibration forces the base space to be as nice as an N -like

approximate fibration does. The next example will illustrate an approximate fibration

whose base is not a manifold, giving a distinction between N -like and N -shaped PL

maps.

Example 2.2.2. (Daverman) Let Σ3 be a non-simply connected homology 3-sphere

that bounds a contractible, but not a collapsible PL 4-manifold W 4. Construct a

manifold M =
(
Σ3 ×W 4

)
∪∂

(
Σ3 × ∂W 4 × [1,∞)

)
, where the attaching is done via

the identification (x, y) ∼ (x, y, 1) for y ∈ ∂W 4. Consider a map p : M 7 → B4 with

p−1(b0) =
(
Σ3×W 4

)
∪∂

(
Σ3×∂W 4×{1}

)
≈

(
Σ3×W 4

)
and p−1(b) = Σ3×{q}×{t},

where q ∈ ∂W 4 and t ∈ (1,∞). p is a Σ3-shaped approximate fibration. Also,

B\{b0} ≈ ∂W 4 × (1,∞) (i.e. B is the open cone on Σ3), and b0 is a non-manifold

point since its link is not simply connected. So p is not a Σ3-like approximate fibration

since the base space of any N -like approximate fibration is necessarily a manifold.

Also, the concept of N -like maps offers the significant homotopy-theoretical

relationships given in the next lemma, which are not possessed by a more general

N -shaped map.

Lemma 2.2.3. ([14] Lemma 2.4) Let p : M → B be an N-like map and b ∈ B. Then,

for the PL neighborhood S = b ∗ L ⊂ B of Lemma 2.1.1, incl] : πi(p
−1L)→ πi(p

−1S)

is an isomorphism for 1 ≤ i ≤ k − 2 and an epimorphism for i = k − 1.

In the early ’90s Daverman defined another concept: N is a codimension-k

(orientable) PL fibrator if, for every N -like map p : M → B, where M is an

(respectively, orientable) PL (n + k)-manifold, p is an approximate fibration. More-

over, N is a PL (orientable) fibrator if it is a codimension-k (orientable) fibrator
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for all k > 0. In the orientable setting we abbreviate by writing simply that N is a

codimension-k PL o-fibrator, or in the extreme case, a PL o-fibrator.

PL fibrators do exist–a large collection within the class of aspherical manifolds.

Without being mathematically precise, we can say that “most” manifolds are PL

fibrators. But we don’t know if a similar statement is true about codimension-k

fibrators, k > 2, without the PL restriction. For k = 2, among PL manifolds there is

no known distinction between the sets of codimension-2 fibrators and of codimension-

2 PL fibrators. But there are manifolds that are codimension-2 fibrators which fail

to be PL fibrators: Sm; RPm; the orientable Sm-bundle over RPm; those 3-manifolds

N3 covered by S3 that arise as coset spaces with respect to the quaternionic group

structure of S3; and Cartesian products involving any of the above as a factor. Among

closed surfaces, both the 2-sphere and the projective plane are codimension-2 fibrators

but NOT codimension-3 PL fibrators. Excluding the torus, Klein bottle (see Remark

2.1.3), S2, and RP 2, all other closed surfaces are both codimension-2 fibrators and

PL fibrators (Theorem 5.9, [12] and Proposition 4.1, [20]).

In this PL setting, some homology 3-spheres turn out to be PL o-fibrators

even though they are not codimension 4-fibrators (example 2.1.5).

Theorem 2.2.4. ([12] Theorem 5.10) Let Σ3 denote an aspherical homology 3-sphere,

such that π1(Σ
3) is Hopfian and Σ3 admits no (non-trivial) regular covering by another

homology 3-sphere. Then Σ3 is a PL o-fibrator.

Another big benefit of this PL setting is the opportunity for induction on

the codimension. Namely, suppose N is a codimension-(k − 1) PL o-fibrator. Take

an N -like map p : Mn+k → B. To show that N is a codimension-k PL o-fibrator,

we need to show that B is a manifold and p is an approximate fibration. As a
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consequence of the Codimension Reduction Lemma 2.1.1, p| : p−1Lb → Lb is an

approximate fibration and Lb is a closed (k − 1)-manifold for each vertex b ∈ B. To

show that B is a manifold, we must compute homotopy groups of Lb for each vertex

b ∈ B using the homotopy exact sequence of the approximate fibration p|p−1Lb
. So

we need to prove that all links of vertices of B are homotopy (k − 1)-spheres, and

then we can do induction. To prove that p is an approximate fibration, we need to

prove that the retraction R : p−1Sb → p−1(b), restricts to homotopy equivalences

R| : p−1(c) → p−1(b) for all c ∈ Lb, (Theorem 1.3.4). In this case, we can split the

restricted retraction R| : p−1(c)→ p−1(b) as:

p−1(c)→ p−1Lb → p−1Sb → p−1(b)

where the first two maps are inclusion and the last one is a strong deformation re-

traction. We consider two parts. For the first part we can look at the the approx-

imate fibration p| : p−1Lb → Lb, and for the other, the composition of the inclu-

sion incl : p−1Lb → p−1Sb and the homotopy equivalence (deformation retraction)

R : p−1Sb → p−1(b). When studying the induced homomorphisms on the homotopy

groups, dealing with N -like maps allows the results from Lemma 2.2.3, which are not

true when we work with N -shaped maps.

2.3 Shape msimplo-Fibrators

We already pointed out that when dealing with N -shaped maps we do not

have a nice target space, which means that we will have difficulties when looking at

the restricted retraction over links (in this case they need not be manifolds) to do

induction. Nam ([51]) solved this problem by working with a PL2 setting, i.e. taking
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the target space B to be also a PL manifold. In this case links are actual spheres.

Nam introduced the following concept (under a slightly different name):

N is a codimension-k PL2 shape m-fibrator (codimension-k PL2 shape

mo-fibrator) if for every an N-shaped PL map between PL manifolds, p : M → B,

where M is an (respectively, orientable) PL (n+ k)-manifold. If N is a codimension-

k PL2 shape m-fibrator (codimension-k PL2 shape mo-fibrator) for all k, then N is

called a PL2 shape m-fibrator (PL2 shape mo-fibrator).

In his doctoral thesis ([51]), Nam proved that (1) an aspherical n-manifold

with a Hopfian fundamental group that is a codimension-2 PL2 shape mo-fibrator

(Theorem 3.4.2), (2) QP n and CP n, n > 1, (Theorem 3.4.4), and (3) CP 2]CP 2

(Theorem 4.2.1), are all PL2 shape mo-fibrators.

Our main interest in Chapter 5 will be manifolds that can detect approximate

fibration in a slightly changed PL setting. Namely, N and M are as before, p is an

N -shaped PL map, but B is a triangulated manifold (that is not necessarily a PL

manifold). In this case we don’t have the collapsibility of fiber to a complex and we

don’t have a “nice” PL manifold as a target. So in this case we will need different

results that will help us solve this problem. We introduce the following concept:

Definition 2.3.1. N is called a codimension-k shape msimpl-fibrator if for every

PL (n + k)-manifold M and N -shaped PL map p : M → B, where B is a simplicial

triangulated manifold, p is an approximate fibration.

The abbreviation msimpl tells us that we have a simplicial triangulated manifold

as a target space.

Definition 2.3.2. Similarly, we call N a codimension-k shape orientable msimpl-

fibrator if for every PL orientable (n + k)-manifold M and N -shaped PL map p :
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M → B, where B is a simplicial triangulated manifold, p is an approximate fibration.

We abbreviate this by writing that N is a codimension-k shape msimplo-fibrator.

If N is a codimension-k shape msimpl-fibrator (codimension-k shape msimplo-

fibrator) for all k, then N is called a shape msimpl-fibrator, (shape msimplo-

fibrator).

It is easy to prove that codimension-k (PL, shape msimpl) fibrators are neces-

sarily codimension-(k − 1) (respectively, PL, shape msimpl) fibrators as well.

Since the image spaces B in codimension-2 are always manifolds (Theorem

3.6, [22]), there cannot be much difference between codimension-2 PL fibrators and

codimension-2 PL shape msimpl-fibrators. The two classes are precisely the same

among Hopfian manifolds with Hopfian fundamental groups.

The main results in the last chapter will provide us with a list of manifolds

that are shape msimplo-fibrators.
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Chapter 3

Super Hopfian Groups

In this chapter we discuss some group theoretical concepts. We list some

algebraic results on Hopfian and hyperhopfian groups that we will need for our later

reference, then we present the new concept of super Hopfian groups.

In section 1, we recall definitions of Hopfian and hyperhopfian groups and

give examples of them. We also list some results on finitely generated groups and

residually finite groups. Then, in section 2, we introduce the term super Hopfian

group and give examples of it. In section 3, we prove that any free product of non-

trivial, finitely generated, residually finite groups, at least one of which is not Z2, is

a super Hopfian group. We give two immediate corollaries of this result.

3.1 Some Results on Finitely Generated, Hopfian

and Hyperhopfian Groups

Finitely generated groups are of main interest in the next section, so here we

list some results about them that we’ll use later. Kurosh proved that every finitely
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generated group can be written as a free product of indecomposable factors, unique

up to isomorphism and the order of factors.

Theorem 3.1.1. (Grushko) Let F be a finitely generated free group, G = G1 ∗ G2

and let φ : F → G be an epimorphism. Then there are subgroups F1 and F2 of F ,

such that F = F1 ∗ F2 and φ(Fi) = Gi.

We recall three results from the work of P. Scott and T. Wall ([53]). For a

finitely generated group G, ρ(G) denotes the minimal number of generators, i.e. the

rank of G. The first result, which we frequently use in section 3, is a consequence of

Grushko’s theorem:

Corollary 3.1.2. ([53] Corollary 2.1) If G = G1 ∗G2, then ρ(G) = ρ(G1) + ρ(G2).

Corollary 3.1.3. ([53] Corollary 2.2) If G is a finitely generated group, then G =

G1 ∗ · · · ∗Gn for some n, where each Gi is freely indecomposable (i.e. if Gi = A ∗ B

then A or B is trivial).

Theorem 3.1.4. ([53] Theorem 3.11) If G = A ∗B, where A, B are non-trivial and

H is a finitely generated, normal subgroup of G, then H is trivial or has a finite index

in G.

Following P. Hall, we shall say that a group G is residually finite if to each

non-unit element g in G, there corresponds a homomorphism taking G onto a finite

group and g onto a non-unit element of this image group. In other words, G is a

residually finite group if every non-trivial element of G is mapped non-trivially in

some finite quotient group of G.

All subgroups of residually finite groups also have this property. Also, the

direct product of any two residually finite groups, again, is residually finite. Finite
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groups, free groups ([29]), and fundamental groups of closed surfaces ([32]) are resid-

ually finite. Every finitely generated group G with an abelian, normal subgroup N

and nilpotent quotient group G/N is residually finite (Theorem 1, [30]). Of course,

not all groups have this property. For instance, G.Higman ([34]) gave an example of

an infinite group with 4 generators and 4 defining relators, the only finite quotient

group of which is the trivial one.

The following result about residually finite groups follows from Gruenberg’s

work on root properties ([28]):

Theorem 3.1.5. Every free product of residually finite groups is itself residually

finite.

A group G is called Hopfian (after Heinz Hopf, 1894-1971) if every epimor-

phism ϕ : G → G is an automorphism. In other words, G is Hopfian if it is not

isomorphic to a proper factor of itself. For if G is not isomorphic to a proper factor

of itself and f : G → G is onto, then Imf = G ∼= G/kerf , shows that kerf = 1,

which makes f an isomorphism. Conversely, if G is Hopfian and G/H is a factor

group of G, such that G/H ∼= G, then the natural map f : G→ G/H followed by an

isomorphism of G/H onto G, is an isomorphism of G onto G. Therefore, H = 1.

Every finite group, finitely generated abelian group, and simple group is Hop-

fian. Also, if G is finitely generated and H is a Hopfian subgroup of G of finite index,

then G is Hopfian (Corollary 1, [54]).

Theorem 3.1.6. ([46]) Any finitely generated, residually finite group is Hopfian.

In particular, fundamental groups of closed 2-manifolds are Hopfian groups.

Theorem 3.1.7. ([23] Theorem 3.1) A free product of finitely many, finitely generated

Hopfian groups is a Hopfian group.
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In some respects, the property of Hopficity is strange. For example, G. Baum-

slag and D.Solitar ([1]) have constructed a non-Hopfian group defined by two genera-

tors and a single defining relation G =< a, b |a−1bna = bl >, for n, l relatively prime.

The non-Hopfian property is preserved under the operation of taking free products;

if G is the free product of A and B, and A is a non-Hopfian group, then so is G.

For if G = A ∗ B, and A is a non-Hopfian group, then there exists an epimorphism

f : A → A, such that f is not an isomorphism. Then f ∗ 1B : G → G is an epimor-

phism but not an isomorphism. So if A ∗ B is a Hopfian group, then A and B are

also Hopfian.

Another group theoretical concept introduced by Daverman ([13]) is the con-

cept of a finitely presented group being hyperhopfian. Here we make a generalization

of the definition in the sense that we omit a condition of the group being finitely

presented. So we define a hyperhopfian property for any group. A group G is called

hyperhopfian if every homomorphism ϕ : G → G with ϕ(G) C G and G/ϕ(G)

cyclic is necessarily an automorphism.

By definition, hyperhopfian groups are Hopfian. Except Zp, p-prime, all other

simple groups are hyperhopfian. A finite fundamental group of a closed 3-manifold is

hyperhopfian if and only if it has no cyclic direct factor (Theorem 4.7, [13]). Examples

of hyperhopfian groups in the infinite case can be found in:

1. a nontrivial free product of finitely presented, residually finite groups, excluding

the anomalous Z2 ∗ Z2 (Theorem 4.11, [13]; Theorem 2.2, [26]);

2. fundamental groups of all compact surfaces with negative Euler characteristics

(a class which includes all finitely generated, non-abelian free groups) (Corollary

4.10, [13]);
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3. free groups with s generators, 1 < s <∞ (Corollary 4.9, [13]).

On the other hand, no group which splits off a cyclic direct factor has this property

(Theorem 4.3, [13]). So finitely generated (non-trivial) abelian groups (which are

Hopfian) are never hyperhopfian (e.g.: φ : Z → Z, given with φ(n) = 2n satisfies

φ(Z) = 2Z C Z and Z/φ(Z) ∼= Z2 but φ is not an isomorphism).

3.2 Super Hopfian Groups

Now we will define a new group theoretical property. In the next chapter we’ll

see that this property is very useful for a fundamental group of a manifold.

Definition 3.2.1. A group G is called super Hopfian if for all homomorphisms ϕ :

G→ G such that ϕ(G) is a non-trivial, normal subgroup of G, ϕ is an automorphism.

By definition, super Hopfian groups are Hopfian groups. All simple groups

are super Hopfian. Every super Hopfian group, except Zp, p-prime, is hyperhopfian.

First we list some examples of super Hopfian groups among finite groups.

Corollary 3.2.2. Every non-abelian group of the order pq where p, q are distinct

primes is super Hopfian.

Proof. Let G be a non-abelian group of the order pq, with p, q-distinct primes. Sup-

pose ϕ : G → G is a homomorphism such that 1 6= ϕ(G) C G and ϕ(G) 6= G.

Using the Lagrange Theorem and the First Isomorphism Theorem, it follows that

|G/kerϕ| = |G|
|kerϕ|

= |ϕ(G)|, i.e, pq = |G| = |kerϕ| |ϕ(G)|. Then |G/ϕ(G)| = |G|
|ϕ(G)|

=

p or q since p and q are distinct primes. So G/ϕ(G) is cyclic, and since G is hy-

perhopfian (Corollary 4.4, [13]), it follows that ϕ is an isomorphism and G is super

Hopfian.

28



Dihedral groups D2n+1 =< x, y | x2 = y2n+1 = 1, x−1yx = y−1 > of order

2(2n+ 1), where 2n+ 1 is prime, are super Hopfian by Corollary 3.2.2, but D2n =<

x, y | x2 = y2n = 1, x−1yx = y−1 > are not super Hopfian (since there exists a

homomorphism φ : D2n → D′
2n =< y >C D2n, defined with x 7−→ yn; y 7−→ yn, that

is not an isomorphism).

The quaternionic group Q =< c, d | c2 = (cd)2 = d2 >, of order 8, is a hy-

perhopfian group (Section 4, [13]), which is not super Hopfian (since there exists a

homomorphism φ : Q→ Q′ = {1, c2} C Q that is not an isomorphism). The following

groups fail to be super Hopfian since they are not hyperhopfian (Section 4, [13]):

1. The solvable group of order p4 (p-prime), < x, y | xp
2

= yp
2

= 1, y−1xy =

x1+p >;

2. Group < a, b | an = bn = 1, b−1ab = a−1 > of order 4n2, n > 1.

Now we shift the subject to infinite groups. The group of rational numbers,

Q, is an example of a super Hopfian group that is not finitely generated.

3.3 Free Products of Finitely Generated Groups

as Super Hopfian Groups

In this section we deal with free products of finitely generated groups. We

present some results for detecting instances when free products of finitely generated

groups are super Hopfian.

Theorem 3.3.1. Let G1, G2 be non-trivial, finitely generated, residually finite groups

and G2 6= Z2. Then G1 ∗G2 is a super Hopfian group.
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Proof. Note that the condition G2 6= Z2 is needed since Z2 ∗ Z2 is not hyperhopfian

(Theorem 2.2, [26]), and thus is not super Hopfian.

Consider G = G1 ∗G2, where Gi (i = 1, 2) has no further non-trivial decom-

position as a free product. The general case G = G1 ∗ · · · ∗ Gm, m > 2, is proved

by the same means as this special case. Let ψ : G → G be a homomorphism with

1 6= H = ψ(G) a normal subgroup of G. Here [G : H] = k <∞ by Theorem 3.1.4.

Construct connected 2-complexes Xi with π1(Xi) ∼= Gi, (i = 1, 2), (Corollary

1.28, [38]) join them with an edge e to form another complex X ⊃ X1 ∪ X2, and

examine the k-fold covering q : X∗ → X corresponding to the subgroup H. The

regularity of q ensures that the components of q−1(Xi) are pairwise homeomorphic.

Let Ki denote a component of q−1(Xi). Obviously q|Ki
gives a regular cover of Xi

having an order of ki, dividing k, with k1 6= 1 or k2 6= 1. For definiteness assume

k2 6= 1. Moreover, π1(X
∗) is a free product of k/k1 copies of π1(K1), k/k2 copies of

π1(K2) and a free group F .

Examination of certain first homology groups shows F to be trivial: the free

part of H1(X
∗) has a rank β1(X

∗) equal to the sum of k
k1
β1(K1),

k
k2
β1(K2) and the

rank of the abelianized free group, while similarly β1(X) = β1(X1)+β1(X2). Since ψ

induces an epimorphism from the abelianization of G to that of H, β1(X) ≥ β1(X
∗).

Being of a finite index in H1(Xi), q∗(H1(Ki)) has a free part isomorphic to H1(Xi),

so β1(Ki) ≥ β1(Xi) for i = 1, 2. Hence F = 1.

Geometrically, this implies that q|K1
is 1-1 (i.e. k1 = 1), for otherwise one

could produce a loop in X∗ as a composition of paths α1γ1α2γ2 . . . αmγm, m > 1,

where q(αi) is contained in one of X1, X2, q(αi+1) is contained in the other, q(γi) ⊂ e

and the various γj are pairwise disjoint. Such a loop would necessarily be carried by

the free part of the graph of groups used to describe π1(X
∗).
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The associated free product representation of π1(X
∗) has k = k

k1
copies of

π1(K1) and at least one copy of π1(K2). q] : π1(K1) → π1(X1) is an isomorphism

since q| : K1 → X1 is a bijection.

Clearly π1(X2) is generated by q]
(
π1(K2)

)
and G/H. Then we have

ρ
(
π1(K2)

)
≥ ρ

(
q]

(
π1(K2)

))
≥ ρ

(
π1(X2)

)
− ρ(G/H)

The first inequality follows from the fact that q|] : π1(K2) → q]
(
π1(K2)

)
is an epi-

morphism. Also ρ(G/H) < k − 1, for all k > 2 and ρ(G/H) = 1 if k = 2.

Case 1 : k ≥ 3. Since ψ : G → H is onto, this case can be ruled out immedi-

ately, for it leads to the impossibility:

ρ(H) = kρ
(
π1(K1)

)
+ (k/k2)ρ

(
π1(K2)

)

≥ kρ
(
π1(X1)

)
+ ρ

(
π1(K2)

)
since k/k2 ≥ 1

≥ kρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)
− ρ(G/H)

= ρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)
+ (k − 1)ρ

(
π1(X1)

)
− ρ(G/H)

> ρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)

= ρ(G)

Case 2 : k = 2 (Note that in this case k2 = 2). The same impossibility as in

Case 1 occurs if ρ
(
π1(K1)

)
> 1, since:

ρ(H) = 2ρ
(
π1(K1)

)
+ ρ

(
π1(K2)

)

= 2ρ
(
π1(X1)

)
+ ρ

(
π1(K2)

)

≥ 2ρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)
− ρ(G/H)

= ρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)
+ ρ

(
π1(X1)

)
− ρ(G/H)

> ρ
(
π1(X1)

)
+ ρ

(
π1(X2)

)
since ρ(G/H) = 1 and

ρ
(
π1(X1)

)
> 1

= ρ(G)
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Now suppose that ρ
(
π1(K1)

)
= 1. In this case we can identify π1(K1) with the cyclic

group Zp for the following reasoning (used previously to prove F trivial): suppose

π1(K1) = Z. The free part of H1(X
∗) in this case has a rank β1(X

∗) = 2β1(K1) +

β1(K2), while similarly β1(X) = β1(X1) + β1(X2). Since ψ induces an epimorphism

from the abelianization of G to that of H, β1(X) ≥ β1(X
∗). Being of a finite index

in H1(Xi), q∗(H1(Ki)) has a free part isomorphic to H1(Xi), so β1(Ki) ≥ β1(Xi)

for i = 1, 2. Since q|K1
is 1-1, it follows that π1(X1) ∼= π1(K1) ∼= Z Therefore,

β1(K1) = β1(X1) = 1. It follows that k = k1 = 1 which is a contradiction with k = 2.

Accordingly,

H1(X) ∼= Zp ⊕H1(X2) and H1(X
∗) ∼= Zp ⊕ Zp ⊕H1(K2). (3.3.2)

Hence β1(K2) = β1(X
∗) = β1(X) = β1(X2). The middle equality follows from

the fact that β1(X) ≥ β1(X
∗) and β1(K2) ≥ β1(X2). Since H1(K2) surjects to a

subgroup of index k2 = 2 in H1(X2),

∣∣torsionH1(X2)
∣∣ = 2

∣∣torsion q∗(H1(K2))
∣∣ ≤ 2

∣∣torsionH1(K2)
∣∣. (3.3.3)

Since H1(X) surjects to H1(X
∗), it follows that

∣∣torsionH1(X)
∣∣ ≥

∣∣torsionH1(X
∗)

∣∣. (3.3.4)

Using (3.3.2), (3.3.3) and (3.3.4)we get the following inequality:

∣∣torsionH1(X
∗)

∣∣ = p2
∣∣torsionH1(K2)

∣∣ ≤
∣∣torsionH1(X)

∣∣

= p
∣∣torsionH1(X2)

∣∣

≤ 2p
∣∣torsionH1(K2)

∣∣,

which reveals p = 2. Since q] is injective, ψ can be lifted to an homomorphism

ψ′ : G1 ∗G2
∼= Z2 ∗G2 → Z2 ∗ Z2 ∗ π1(K2) ∼= π1(X

∗),
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(defined with ψ′ = q−1
] ψ), and the composite ψ′q] provides a homomorphism

ψ′q] : Z2 ∗ Z2 ∗ π1(K2)→ Z2 ∗ Z2 ∗ π1(K2)

whose image has an index ≥ 1. Using the injectivity of q], we have Z2∗Z2∗π1(K2) ∼= H

and ψ′(H) ∼= q](ψ
′(H)) < H < G. Then

2 ≤ [G : q](ψ
′(H))] = [G : H] [H : q](ψ

′(H))].

So [Z2 ∗ Z2 ∗ π1(K2) : ψ′q](Z2 ∗ Z2 ∗ π1(K2))] = [H : q](ψ
′(H))] ≥ 1. Repeating the

preceding sort of rank arguments of case 1 and case 2 (with ρ
(
π1(K1)

)
> 1) (regard

G1 as Z2 ∗ Z2), we see that the index cannot be greater or equal to 2. This means

that ψ′q] is an epimorphism. Theorems 3.1.5 and 3.1.6 imply that Z2 ∗Z2 ∗ π1(K2) is

Hopfian and ψ′q] is an automorphism, so ψ′ is onto. As a result, the sequence

kerψ′ → Z2 ∗G2
ψ′

−→ Z2 ∗ Z2 ∗ π1(K2)

has a direct product splitting. However, this is impossible, since free products are

never direct products (Exercises 4.1.13, 4.1.23 and 4.1.24, [45]).

Consequently, k = 1. As above, using Theorems 3.1.5 and 3.1.6, G1 ∗ G2 is

Hopfian, implying that ψ : G1∗G2 → H ∼= G1∗G2 is an isomorphism, as required.

Note that in the conclusion of Case 2 regarding Z2 ∗ Z2 ∗ π1(K2) being Hop-

fian, we might have used Theorems 3.1.6 and 3.1.7. The argument of the theorems

establishes variations such as the following.

Corollary 3.3.5. If G1, G2 are non-trivial, finitely generated groups such that G1 is

non-cyclic, and G1 ∗G2 is Hopfian, then G1 ∗G2 is super Hopfian.
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Corollary 3.3.6. If G1, G2 are non-trivial, finitely generated, super Hopfian groups,

with G1 being non-cyclic and G1 ∗G2 (6= Z2 ∗Z2) being Hopfian, then G1 ∗G2 is super

Hopfian.

So, in principle, the super Hopfian property is closed with respect to free

products.
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Chapter 4

Special Manifolds

In this chapter, we introduce a new concept of the special manifold. As we

will see in the next chapter, shape msimplo-fibrators can be found among these special

PL manifolds.

In section 1, we discuss the concepts of Hopfian manifolds and manifolds de-

termined by π1, then give examples of them and list some results. In section 2, we

present the concept of special manifolds and give examples of them. Finally, in section

3, we see which connected sums are special manifolds.

4.1 Hopfian Manifolds and Manifolds Determined

by π1

In this section we give a list of examples of Hopfian manifolds and manifolds

determined by π1.

A closed, orientable n-manifold N is Hopfian ([14]) if every degree one map

f : N → N inducing a π1-isomorphism is a homotopy equivalence. In what follows
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we exhibit examples of Hopfian manifolds. The following two propositions present

results that are well known:

Proposition 4.1.1. A closed, simply connected, orientable n-manifold N is Hopfian.

Proof. Let f : N → N be a degree one map, which induces a π1-isomorphism (in

this case trivially). Since f has a degree one, Theorem 67.2 ([50]), implies that

f∗ : Hj(N) → Hj(N) is an epimorphism for 1 ≤ j ≤ n. Since N is a compact

manifold, Theorem 6.9.11 ([55]), gives that each Hj(N) is a finitely generated abelian

group and hence is a Hopfian group. Thus f∗ is an isomorphism for all j. Since N

is simply connected, the Whitehead Theorem (Theorem 7.5.9, [55]) implies that f] :

πj(N)→ πj(N) is an isomorphism for all j, and thus, f is a homotopy equivalence.

Proposition 4.1.2. A closed, connected, orientable n-manifold N is Hopfian if either

1. π1(N) is finite, or

2. n ≤ 4 and π1(N) is Hopfian.

Proof. 1. Let f : N → N be a degree one map that induces a π1-isomorphism.

Because of the previous proposition we only need to check the result for manifolds N

with a non-trivial finite fundamental group. Look at a universal cover p : Ñ → N .

Since Ñ is simply connected, there exists a lift f̃ : Ñ → Ñ to the composite map

fp : Ñ → N , such that pf̃ = fp. The degree of p is a nonzero finite integer since

π1(N) is finite non-trivial group and p is a finite cover. Then we have

(degp)(degf̃) = deg(pf̃) = deg(pf) = (degp)(degf).

It follows that degf̃ = degf = 1. Using the previous proposition and the fact that

Ñ is simply connected, we can conclude that f̃ : Ñ → Ñ is a homotopy equivalence.
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This means that f̃] : πj(Ñ) → πj(Ñ) is an isomorphism for all j. Since p is a

universal covering map, Corollary 7.2.11 ([55]) implies that p] : πj(Ñ) ∼= πi(N) for

all j ≥ 2. Then f] : πj(N)→ πj(N) is an isomorphism for any j ≥ 2, since f̃], p] are

isomorphisms. Combining the last conclusion with the hypotheses, we conclude that

f] : πj(N)→ πj(N) is an isomorphism for all j, i.e. that f is a homotopy equivalence.

2. That this conditions implies N Hopfian was shown by Hausmann ([31]).

The next result implies that if the fundamental group of a manifold N is

Hopfian, then every degree one self map induces an isomorphism on its fundamental

group.

Proposition 4.1.3. ([33] Lemma 15.12) Let f : M → N be a degree one map

of closed, connected, orientable n-manifolds M,N . Then f] : π1(M) → π1(N) is

surjective.

Proof. Consider a covering map p : N ∗ → N corresponding to the subgroup f](π1(M)).

Note that N ∗ is a closed, orientable n-manifold and p has degree k = [π1(N), Imf]].

Since Imf] ⊂ p](π1(N
∗)) = f](π1(N)), we can lift f to a map f̃ : M → N∗, such that

f = pf̃ . Now consider two cases:

Case 1: k <∞: Then 1 = degf = deg(pf̃) = (degp) (degf̃). This implies that

degp = ±1 and degf̃ = ±1. On the other hand (absolute) degp = k; therefore, k = 1,

i.e. π1(N) = Imf]. This implies that f] is onto.

Case 2: [π1(N), Imf]] =∞: In this case degp = 0. Then degf = (degp) (degf̃)

= 0. This is a contradiction with degf = 1. So this case is impossible.

Analysis of fibrator properties applies most readily to Hopfian manifolds with

Hopfian fundamental groups. The reason for this is given in the next proposition.
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Proposition 4.1.4. Let N be a closed, connected, orientable manifold with a Hopfian

fundamental group. Then N is Hopfian if and only if all degree one maps f : N → N

are homotopy equivalences.

Proof. The sufficient part is obvious. Necessity follows from Proposition 4.1.3.

The following theorem of Swarup indicates that any closed, orientable n-

manifold N with πi(N) ∼= 0 for 1 < i < n− 1 is Hopfian.

Theorem 4.1.5. ([56] Lemma 1.1) Let f : (M,x)→ (N, f(x)) be a map of closed, ori-

entable n-manifolds which induces an isomorphism of the fundamental groups. Sup-

pose that πi(M) and πi(N) are trivial for 1 < i < n − 1. Then f is a homotopy

equivalence if and only if the (absolute) degree of f is one.

As a consequence, it follows that any aspherical manifold is Hopfian.

A manifoldN is homotopically determined by π1 if every self map f : N →

N that induces a π1-isomorphism is a homotopy equivalence. Aspherical manifolds

are common examples of manifolds determined by π1. Moreover, an indecomposable

connected sum of closed, orientable 3-manifolds is homotopically determined by π1 if

and only if at least one of the summands is aspherical.

Theorem 4.1.6. ([39] Theorem 3.3.1) The closed, orientable 3-manifold N is homo-

topically determined by π1 if π1(N) is not a free product of free and finite groups.

The next observation follows immediately from the definitions.

Lemma 4.1.7. ([21] Lemma 2.1) Every closed, orientable manifold homotopically

determined by π1 is Hopfian.
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Theorem 4.1.8. Suppose N is a Hopfian n-manifold such that Hn(N) is in the

subring of H∗(N), generated by H1(N). Then N is homotopically determined by π1.

Proof. Let f : N → N be a self map that induces a π1-isomorphism. Since N is a

compact manifold, H1(N) is finitely generated. By the given hypothesis, there exist

α1, . . . , αn in H1(N) such that α1∪· · ·∪αn generates Hn(N) ∼= Z. We need to prove

that the degree of f is one.

Since f] : π1(N) → π1(N) is an isomorphism, it follows that f∗ : H1(N) →

H1(N) is onto. Since H1(N) = a free part of H1(N), it follows that f ∗ : H1(N) →

H1(N) is also onto. Then for each αi in H1(N), there exists γi in H1(N), such that

f ∗(γi) = αi. Therefore, f ∗(γ1 ∪ · · · ∪ γn) = f ∗(γ1)∪ · · · ∪ f
∗(γn) = α1 ∪ · · · ∪αn. That

is, there exists an element γ1 ∪ · · · ∪ γn in Hn(N), which is mapped into a generator

α1 ∪ · · · ∪ αn of Hn(N). Thus, f ∗ : Hn(N) → Hn(N) is an epimorphism between

copies of Z. We conclude that f ∗ is an isomorphism. Then f∗ : Hn(N) → Hn(N) is

an isomorphism, and degf = 1. Since N is a Hopfian manifold, we can conclude that

f is a homotopy equivalence.

The main results of R.J.Daverman and Y.Kim ([21]) assure that a connected

sum N1]N2 of closed, orientable, PL n-manifolds is homotopically determined by π1

if π1(Ni) doesn’t have a “factor” Z, i = 1, 2 and either

1. N1 is homotopically determined by π1, πn−1(N1) ∼= 0, β1(N1) > 0 and N1]N2 is

a Hopfian manifold (Theorem 3.1); or

2. N1 is aspherical and N1]N2 is a Hopfian manifold (Theorem 3.4).
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4.2 Special PL Manifolds

From now on our main interest will be pointed toward a particular class of

Hopfian manifolds called special manifolds.

Definition 4.2.1. A closed manifoldN is special if π1(N) 6= 1 and for all f : N → N ,

such that 1 6= f]
(
π1(N)

)
C π1(N), f is a homotopy equivalence.

Note that every orientable, special manifold is homotopically determined by

π1, and so is Hopfian.

Remark 4.2.2. Every closed, manifold N which is homotopically determined by

π1(N), where π1(N) is super Hopfian, is special.

Proof. Let f : N → N be a self map such that 1 6= f]
(
π1(N)

)
� π1(N). Since π1(N)

is super Hopfian, it follows that f] is an isomorphism, and N being homotopicaly

determined by π1 implies that f is a homotopy equivalence.

In the next chapter we’ll describe some special manifolds that are shape

msimplo-fibrators.

Theorem 4.2.3. Closed, orientable surfaces S with χ(S) < 0 are special manifolds.

Proof. Suppose f : S → S is such that 1 6= f]
(
π1(S)

)
C π1(S).

First note that π1(S) =< a1, b1, ..., ag, bg | [a1, b1][a2, b2]...[ag, bg] >, where g is a

genus of S and g > 1, (since χ(S) = 2−2g < 0). Thus S has a cell structure with one

0-cell, 2g 1-cells and one 2-cell. The 1-skeleton is a wedge sum of 2g circles, with a

fundamental group free on 2g generators. The 2-cell is attached along the loop given

by the product of the commutators of these generators, [a1, b1][a2, b2]...[ag, bg]. Form

the covering p : S∗ → S corresponding to f]
(
π1(S)

)
. Now we will consider two cases:
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Case 1:
[
π1(S), f]

(
π1(S)

)]
= k <∞. This is impossible if k > 1; in this case

χ(S∗) = kχ(S), i.e. 1− β1(S
∗) + β2(S

∗) = k(2− 2g). So

β1(S
∗) = 1 + β2(S

∗)− k(2− 2g)

> 1 + β2(S
∗)− (2− 2g) since k > 1 and g > 1

= 1 + β2(S)− (2− 2g) since β2(S
∗) = β2(S) = 1

= β1(S)

So we have β1(S
∗) > β1(S), which precludes the existence of any epimorphism

π1(S) → f]
(
π1(S)

)
, as the induced homomorphism on abelianizations would yield

β1(S
∗) ≤ β1(S).

Case 2:
[
π1(S), f]

(
π1(S)

)]
=∞. This case is also impossible. Namely, we will

get a contradiction by constructing a group G, such that f]
(
π1(S)

)
C G < π1(S),

where G is free, in the following way:

Since rank
(
f∗

(
H1(S)

))
≤ 1

2
β1(S) (Claim 4.2.5 below), we can choose z ∈

H1(S), such that nz /∈ f∗(H1(S)). Now choose γ ∈ π1(S), such that γ 7→ z under

the Hurewicz homomorphism. Let G be a group generated with γ and f]
(
π1(S)

)
.

f](π1(S)) is free, because π1(S
∗) is free (Claim 4.2.4 below).

[
π1(S), G

]
= ∞, since

rank
(
f∗

(
H1(S)

))
≤ 1

2
β1(S) and g > 1. Then G is also free (Claim 4.2.4 below).

Also,
[
G, f](π1(S))

]
= ∞, since |G/f](π1(S))| = | < γ > | and γ has infinite order.

This is a contradiction with Theorem 3.1.4, since f]
(
π1(S)

)
is a finitely generated,

normal subgroup of the finitely generated, free group G.

Claim 4.2.4. If S∗ is an ∞− 1 cover of S, then π1(S
∗) is free.

Proof. Since S∗ is a non-closed surface and non-closed surfaces deformation retract

onto graphs, it follows that S∗ retracts to a graph X with π1(S
∗) = π1(X). But for
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a connected graph X with a maximal tree T , π1(X) is a free group with a basis the

classes [fα] corresponding to the edges eα of X\T . So π1(S
∗) is free.

Claim 4.2.5. rank
(
f∗

(
H1(S)

))
≤ 1

2
β1(S).

Proof. Note that f∗
(
H1(S)

)
has the same rank as f ∗

(
H1(S)

)
, since Hom(f∗) = f ∗

by duality and H1(S) ∼= Z⊕ Z⊕ ...⊕ Z︸ ︷︷ ︸
2g

. Also note that degf = 0 since S∗ is ∞− 1

covering.

Now suppose that rank
(
f∗

(
H1(S)

))
> 1

2
β1(S) and look at the following com-

mutative diagram:

H1(S)
�

∩Γ
∼=

// H1(S)

f∗
��

H1(S)

f∗

OO

∩dΓ
// H1(S)

where Γ is the orientation class for S and d = degf = 0.

It follows that rank
(
(f∗)(∩Γ)(f ∗)

)(
H1(S)

)
is at least 1. On the other hand,

since d = 0, it follows that H1(S)
∩dΓ

// H1(S) is the trivial map, which is a contra-

diction.

4.3 Connected Sums as Special PL Manifolds

We describe some connected sums which are special in order to derive conclu-

sions about shape fibrators.

Theorem 4.3.1. Suppose N1 is an orientable, special PL n-manifold, such that

πn−1(N1) ∼= 0 and β1(N1) 6= 0, N2 is a closed, orientable PL n-manifold, such that

π1(N2) 6= 1 and suppose that N1]N2 is Hopfian with a Hopfian fundamental group.

Also, assume that π1(Ni) doesn’t have a “factor” Z, i = 1, 2. Then N1]N2 is a special.
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Proof. N1]N2 is homotopically determined by π1(N) by Theorem 3.1 ([21]), and

π1(N1]N2) is super Hopfian (Theorem 3.3.5), so the previous remark implies that

N1]N2 is special.

Also, the following improvement of Theorem 4.3.1 is true, in which θ : πn−1(N1)

→ Hn−1(N1) denotes the Hurewicz homomorphism.

Theorem 4.3.2. Suppose N1 is a special PL n-manifold, such that β1(N1) 6= 0 and

ker
[
θ : πn−1(N1) → Hn−1(N1)

]
∼= 0, and suppose N2 is a closed, orientable PL n-

manifold, such that π1(N2) 6= 1, and N1]N2 is Hopfian with a Hopfian fundamental

group. Also, assume that π1(Ni) doesn’t have a “factor” Z, i = 1, 2. Then N1]N2 is

special.

Proof. Use Theorem 3.3 ([21]), Theorem 3.3.5 and Remark 4.2.2.

Theorem 4.3.3. Suppose N1 is an aspherical, closed, orientable n-manifold, and N2

is a closed, orientable n-manifold with π1(N2) 6= 1, such that N1]N2 is Hopfian with

a Hopfian fundamental group. Then N1]N2 is special.

Proof. Use Theorem 3.4 ([21]), Theorem 3.3.5 and Remark 4.2.2.

Corollary 4.3.4. If N1, N2 are closed, connected, orientable n-manifolds with non-

trivial, residually finite groups, such that N2 is a Hopfian manifold and Hn(N2) is in

the subring of H∗(N2) generated by H1(N2), and N1]N2 is a Hopfian manifold, then

N1]N2 is special manifold.

Proof. We only need to prove that (1) N1]N2 is homotopically determined by π1, and

(2) has a super Hopfian fundamental group, since then Remark 4.2.2 will give the

result.
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(1) N1]N2 is homotopically determined by π1 by Theorem 4.1.8, since Hn(N1]

N2) ∼= Hn(N2) = Z is in the subring of H∗(N1]N2) generated by H1(N1]N2) =

H1(N1) ⊕H
1(N2). The latter is true since, by hypothesis, Hn(N2) is in the subring

of H∗(N2) generated by H1(N2). Then since N2 is compact, i.e. H1(N2) is finitely

generated, there exist α1, . . . , αn inH1(N2), such that α1∪· · ·∪αn generates Hn(N2) =

Z. Then (0, α1) ∪ · · · ∪ (0, αn) generates Hn(N1]N2) as required (see [14]).

(2) Using Theorem 3.3.1 we can conclude that π1(N1]N2) is super Hopfian

since π1(N1), π1(N2) are non-trivial, finitely generated (since N1, N2 are compact

manifolds), residually finite groups, and π1(N2) 6= Z2 (otherwise β1(N2) = 0 meaning

that H1(N2) is trivial, so the subring that it generates is trivial which is in contra-

diction with the hypothesis that Hn(N2) ∼= Z is in that subring).

Therefore, N1]N2 is a special manifold.
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Chapter 5

Special PL Manifolds as Shape

msimplo-Fibrators

In this chapter we identify special manifolds that are shape msimplo-fibrators.

First we state and prove a Fundamental Theorem, which is a useful tool in proving

the later results. In section 2, we see which special manifolds are codimension-2 shape

msimplo-fibrators and give a list of examples, and in section 3 we present results about

codimension-4 shape msimplo-fibrators.

Next, in section 4, using the Fundamental Theorem we prove the main result,

which states that every connected, special PL n-manifold N with a non-trivial first

homology group is a shape msimplo-fibrator if it is a codimension-2 shape msimplo-

fibrator. The requirement of N being a codimension-2 shape msimplo-fibrator can be

omitted if π1(N) is non-cyclic. We give some examples of special PL manifolds that

are shape msimplo-fibrators.At the end we present results about connected sums being

shape msimplo-fibrators.

In the last section we list some open questions.
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5.1 The Fundamental Theorem

In order to prove the Fundamental Theorem we need several facts.

The continuity set of a proper PL map p : M → B, usually denoted as C,

consists of all points b ∈ B, such that under any retraction R : p−1U → p−1b defined

over a neighborhood U ⊂ B of b, b has another neighborhood Vb ⊂ U , such that for

all x ∈ Vb, R| : p
−1x→ p−1b is a degree one map.

The following claim will be used frequently without notice.

Claim 5.1.1. Suppose N is special and p−1(b) ' N , for all b ∈ B. Then: C = B if

and only if p is an approximate fibration over B.

Proof. Take x ∈ C = B. It means that under any retraction R : p−1U → p−1(x) de-

fined over a neighborhood U ⊂ B of x, x has another neighborhood Vx ⊂ U , such that

for all b ∈ Vx, R| : p
−1(b) → p−1(x) is a degree-one map. Then

(
R|

)
]
: π1(p

−1(b)) →

π1(p
−1(x)) is an epimorphism (Proposition 4.1.3), and

(
R|

)
]

(
π1(p

−1(b))
)
�π1(p

−1(x)).

Since N is special and p−1(b) ' N , for all b ∈ B, it follows that R|p−1(b) is a homotopy

equivalence. Now Coram and Duvall’s characterization ([7]) of approximate fibrations

in terms of movability properties gives that p is an approximate fibration.

Conversely, if p is an approximate fibration, then Theorem 1.3.3 implies that

p is a completely movable map. Take b ∈ B and any retraction R : p−1U → p−1(b)

defined over a neighborhood U ⊂ B of b. Since p is completely movable there exists

a neighborhood V of b in U such that for every x ∈ V , R| : p−1(x) → p−1(b) is a

homotopy equivalence, and so has a degree one. This implies that b ∈ C. Since b was

arbitrary element of B, it follows that B ⊂ C. Therefore, B = C.

Claim 5.1.2. ([17]) Let p : M → B be a (not necessarily PL) N-shaped map and

T closed in B. Then there exists an open set U , such that U ∩ T 6= ∅ and for all
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t ∈ U ∩T , restrictions R : V → p−1(t), (where V is a neighborhood of p−1(t)), restrict

to homotopy equivalences R| : p−1(t′)→ p−1(t) for all t′ ∈ p(V ) ∩ T .

Before proving the Fundamental Theorem we will prove a lemma that will be

used throughout the remainder of this work.

Lemma 5.1.3. Let p : M → Rk, k ≥ 2, be an N-shaped PL map, M a closed, con-

nected, orientable (n+k)-manifold, and N an orientable, special n-manifold. Suppose

T ⊂ Rk is a closed set, with dimT ≤ k − 2. Then j] : π1

(
p−1(Rk\T )

)
→ π1

(
p−1(Rk)

)

is surjective, where j : p−1(Rk\T )→ p−1(Rk) is an inclusion map.

Proof. First look at the following diagram, where θ : p̃−1Rk → p−1Rk is the universal

covering of p−1Rk:

p̃−1Rk\θ−1(p−1T ) −→ p̃−1Rk

yθ|

yθ

p−1Rk\p−1T
j
−→ p−1Rk

Take any non-identity element [α] ∈ π1

(
p−1Rk, x0

)
, where the base point x0, without

loss of generality, can be chosen not to belong in p−1T , since p−1Rk is path connected.

The loop α in p−1Rk based at x0 has a lifted path α̃ in p̃−1Rk such that

α̃(0) = x̃0, and α̃(1) = x̃′0.

We need to prove that p̃−1Rk\θ−1
(
p−1T

)
is path connected: Since the universal

cover p̃−1Rk is not necessarily compact, we will use Alexander duality ([55], p.342).

Note that p̃−1Rk is an open manifold.

Let y ∈ T and f : p−1(y) → N be the given homotopy equivalence. So f |] :

π1

(
p−1(y)

)
→ π1(N) is an isomorphism. Look at θ]

(
π1

(
θ−1p−1(y)

))
< π1

(
p−1(y)

)
.

Let N̂ be a covering ofN corresponding toG < π1(N), such thatG = f]

(
θ]

(
π1

(
θ−1p−1

(y)
)))

, and Ψ : N̂ → N be the corresponding covering map.
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To prove that j] is onto we will consider the following long exact homology

sequence of the pair
(
p̃−1Rk, p̃−1Rk\θ−1(p−1T )

)
.

−→ Hi

(
p̃−1Rk, p̃−1Rk\θ−1(p−1T )

)
−→ Hi−1

(
p̃−1Rk\θ−1(p−1T )

)
−→

−→ Hi−1

(
p̃−1Rk

)
−→ Hi−1

(
p̃−1Rk, p̃−1Rk\θ−1(p−1T )

)

By Alexander duality, Hi

(
p̃−1Rk, p̃−1Rk\θ−1p−1(y)

)
∼= Hn+k−i

c

(
θ−1p−1(y)

)
.

Since N̂ and θ−1p−1(y) belong to the same proper homotopy class by Claim 5.1.4 be-

low, the homotopy axiom of Alexander cohomology implies thatHn+k−i
c

(
θ−1p−1(y)

)
∼=

Hn+k−i
c (N̂). But Hn+k−i

c (N̂) ∼= 0 for i < k since dimN̂ = n and k ≥ 2.

Since y is an arbitrary element of T (closed subset of Rk), it follows that

Hi

(
p̃−1Rk, p̃−1Rk\θ−1p−1(y)

)
∼= 0, for i < k and all y ∈ T . Then Lemma 1.4.1

implies that Hj

(
p̃−1Rk, p̃−1Rk\θ−1p−1T

)
∼= 0 for j = 0, r − l, where r = k − 1 and

dimT = l ≤ k − 2. Since r − l ≥ 1, it follows that H0

(
p̃−1Rk, p̃−1Rk\θ−1p−1T

)
∼= 0

and H1

(
p̃−1Rk, p̃−1Rk\θ−1p−1T

)
∼= 0. The exactness of the above sequence shows

that H0

(
p̃−1Rk\θ−1p−1T

)
∼= H0(p

−1Rk) ∼= Z, which proves that p̃−1Rk\θ−1p−1T is

path connected.

By our choice of x0, {x0}∩p
−1T = ∅ and we have that θ−1(x0)∩θ

−1(p−1T ) = ∅

so that θ−1(x0) ⊂ p̃−1Rk\θ−1p−1T , and x̃0, x̃
′
0 ∈ p̃

−1Rk\θ−1p−1T . Since p̃−1Rk\θ−1p−1T

is path connected, there exists a path β̃ in p̃−1Rk\θ−1p−1T such that β̃(x0) = x̃0 and

β̃(x1) = x̃′0. Then β̃ is homotopic to α̃ in p̃−1Rk, since p̃−1Rk is simply connected as

a universal cover of p−1Rk. Hence θβ̃ is a loop homotopic to α = θα̃ in p−1Rk.

Then θβ̃ ⊂ p−1Rk\p−1T , i.e. [θβ̃] ∈ π1

(
p−1Rk\p−1T

)
and θβ̃ ' α, so j] :

π1

(
p−1Rk\p−1T

)
→ π1(p

−1Rk) is an epimorphism.

Claim 5.1.4. θ−1(p−1(y)) 'p N̂ .
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Proof. Let g : N → p−1(y) be the homotopy inverse of f . By construction of N̂ and

Lemma 79.1 ([49]), it follows that the map fθ| : θ−1p−1(y) → N has a unique lift

f̃ θ| : θ−1p−1(y)→ N̂ , such that Ψf̃ θ| = fθ|. Similarly, the map gΨ : N̂ → p−1(y) has

the unique lift g̃Ψ : N̂ → θ−1p−1(y), such that θg̃Ψ = gΨ. Take f̃ = f̃ θ| and g̃ = g̃Ψ.

We assert that f̃ g̃ ' 1 �N
and g̃f̃ ' 1θ−1p−1(y).

Let H : p−1(y)× I → p−1(y) be the homotopy between 1p−1(y) and gf . Define

a map (θ|×1I) : θ−1p−1(y)×I → p−1(y)×I. Then construct a homotopy H(θ|×1I) :

θ−1p−1(y)× I → p−1(y). Note
(
H(θ × 1I)

)
0

= θ| = (θ|)1θ−1p−1(y). Now we can view

this as a homotopy lifting problem for the covering map θ| : θ−1p−1(y)→ p−1(y), and

we have a lifted homotopy H̃ = ˜H
(
θ| × 1I

)
: θ−1p−1(y)× I → θ−1p−1(y), such that

H̃0 = 1θ−1p−1(y) and (θ|)H̃ = H
(
θ| × 1I

)
.

Then H̃1 = g̃f̃ . Namely, since (θ|)H̃ = H
(
θ| × 1I

)
, it follows that θH̃(x, 1) =

H
(
θ| × 1I

)
(x, 1) = H

(
θ(x), 1

)
= (gf)(θ(x)) = g(fθ)(x) = g(Ψf̃)(x) = (gΨ)f̃(x) =

(θg̃)f̃(y) = θ(g̃f̃)(x). This shows that both g̃f̃ and H̃1 are the lifts of the map
(
H

(
θ × 1I

))
1
. Because of the uniqueness of lifts, we conclude that H̃1 = g̃f̃ . Thus

H̃ is a homotopy between 1θ−1p−1(y) and g̃f̃ .

Similarly, the lift G̃ = ˜G
(
Ψ× 1I

)
of G : N × I → N (where G is a homotopy

between 1N and fg) can be proved to be a homotopy between 1 �N and f̃ g̃.

Thus g̃f̃ ' 1θ−1p−1(y) and f̃ g̃ ' 1 �N so that f̃ : θ−1p−1(y) → N̂ is a homotopy

equivalence, i.e. θ−1p−1(y) ' N̂ . Moreover, H̃ is a proper homotopy (proof of Claim

2 to the Proposition 3.2.9, [51]).

The following is the promised Fundamental Theorem that we will use in prov-

ing our main result in the next section.

Theorem 5.1.5. Let p : M → Rk , k > 2, be an N-shaped PL map, M a closed,
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connected, orientable PL (n + k)-manifold, and N a connected, orientable, special

manifold, such that H1(N) 6= 0. Suppose T ⊂ Rk is closed, with dimT < k − 2, and

such that p|
p−1

(
�

k\T
) is an approximate fibration. Then p is an approximate fibration.

Proof. First take T = {0}. We claim that p−1(0) is a strong deformation retract of M .

Properties of ANR’s ensure that p−1(0) is a strong deformation retract in M of some

neighborhood Rk. An appropriate deformation retraction of Rk into a neighborhood

of 0, fixing a smaller neighborhood of 0 by Proposition 1.5 ([6]), can be lifted to a

deformation of M into Rk while fixing a neighborhood of p−1(0) throughout (first

restrict to M\p−1(0); after obtaining the desired lift on the deleted space fill in across

p−1(0) with the inclusion). Name this retraction R : M → p−1(0).

We need to prove that R|p−1(y) is a homotopy equivalence, for all y ∈ Rk\0.

Let y ∈ Rk\0. Since p is an approximate fibration over the homotopy (k − 1)

-sphere Rk\0, the homotopy exact sequence

π1

(
p−1(y)

)
∼= π1(N)

i]
−→ π1

(
M\p−1(0)

) p|]
−→ π1

(
Rk\0

)
∼= 1

gives that i] is an epimorphism, so

i]
(
π1(N)

)
= π1

(
M\p−1(0)

)
. (5.1.6)

From the exact sequence of a pair
(
M,M\p−1(0)

)
:

π1

(
M\p−1(0)

) j]
−→ π1(M)

k]
−→ π1

(
M,M\p−1(0)

)

it follows that Imj] = kerk]. So

Imj] � π1(M). (5.1.7)

Now we have:

π1

(
p−1(y)

)
∼= π1(N)

i]
−→ π1

(
M\p−1(0)

) j]
−→ π1(M)

R]
−→ π1(p

−1(0)) ∼= π1(N).
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Using (5.1.6) and (5.1.7), we can conclude that: j]
(
i]
(
π1(N)

))
= j]

(
π1

(
M\p−1(0)

))
�

π1(M). Since R](normal subgroup) = normal subgroup (being onto), it follows that

R|]
(
π1

(
p−1(y)

))
= R]

(
j]

(
i]
(
π1(N)

)))
� π1(p

−1(0)). Also R]j]i]
(
π1(N)

)
6= 1, since j]

is onto (Lemma 5.1.3) and R] is an isomorphism (being a strong deformation retract).

The special property of N implies that R|p−1(y) is a homotopy equivalence, so Coram

and Duvall’s characterization ([7]) of approximate fibrations in terms of movability

properties gives that p is an approximate fibration.

Now suppose that T ⊂ Rk is closed, with dimT < k−2. We only need to prove

the case when T is the minimal closed set such that p|
p−1

(
�

k\T
) is an approximate

fibration. Suppose that T 6= ∅.

By Claim 5.1.2, there exists an open set U , such that U ∩ T 6= ∅ and for all

t ∈ U ∩T , a retraction R : V → p−1(t), (where V is a neighborhood of p−1(t)), which

restricts to a homotopy equivalence R| : p−1(t′)→ p−1(t) for all t′ ∈ p(V ) ∩ T .

Take t ∈ U ∩ T . Let R : V → p−1(t) be such a retraction. p| : V → p(V )

is an N -shaped PL map. Take a connected neighborhood W of t in p(V ), such that

W ≈ Rk. Then R| : p−1W → p−1(t) is also a retraction, which restricts to a homotopy

equivalence R| : p−1(t′) → p−1(t) for all t′ ∈ W ∩ T . We will show in Claim 5.1.8

below, that R|p−1(x) is a homotopy equivalence for all x ∈ W\T , and then U ∩T ⊂ C.

Using Coram and Duvall’s characterization ([7]) of approximate fibrations in terms

of movability properties, it follows that p|
p−1

(
�

k\(T\U)
) is an approximate fibration,

which is a contradiction to the minimality of T (T\U is a closed subset of Rk). This

implies that T ∩ U = T , i.e. U ∩ T = ∅ which is contradiction with U ∩ T 6= ∅. Then

T = ∅ and the result follows.

Claim 5.1.8. R|p−1(x) is a homotopy equivalence for all x ∈ W\T .
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Proof. Since p is an approximate fibration over W\T , the homotopy exact sequence

π1

(
p−1(x)

)
∼= π1(N)

i]
−→ π1

(
p−1(W\T )

) p|]
−→ π1

(
W\T

)
−→ 1 ∼= π0(N)

for all x ∈ W\T , gives i]
(
π1(N)

)
� π1

(
p−1(W\T )

)
.

From the exact sequence of a pair
(
p−1W, p−1(W\T )

)
:

π1

(
p−1(W\T )

) j]
−→ π1(p

−1W )
k]
−→ π1

(
p−1W, p−1(W\T )

)

it follows that j]
(
π1(p

−1(W\T ))
)

� π1(p
−1W ). Moreover by Lemma 5.1.3 it follows

that j] is onto.

The long exact homology sequence of the pair
(
W,W\T

)
gives:

· · · → H2(W ) −→ H2

(
W,W\T

)
−→ H1

(
W\T

)
−→ H1(W ) → · · ·

y∼=

y∼=

H2(Rk) H1(Rk)

Since the end groups of the above exact sequence are trivial, it follows thatH2(W,W\T )

∼= H1(W\T ). By Alexander duality ([55], p. 342), H2(W,W\T ) ∼= Hk−2
c (T ∩W ).

Hence, H1(W\T ) ∼= Hk−2
c (T ∩W ). Since Hk−2

c (T ∩W ) ∼= 0 (dim(T ∩W ) ≤ dimT <

k − 2 and k > 2), it follows that H1(W\T ) ∼= 0, so π1(W\T ) is perfect.

Now we can look at this diagram:

π1(N)

∼=
��

i] //

i′

""E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

π1

(
p−1(W\T )

) p|] //

j]

��

π1(W\T ) //

s

||

1

π1(p
−1(x)) π1(p

−1W )

R]

��
π1(N) ∼= π1(p

−1(t))

where t ∈ T ∩ U .
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We only need to prove that i′ = R]j]i] is not trivial (Claim 5.1.9 below), since

then 1 6= i′(π1(N)) = R]j]i]
(
π1(N)

)
C π1(p

−1N). Now N being special forces R| to

be a homotopy equivalence.

Claim 5.1.9. i′ = R]j]i] is non-trivial.

Proof. Suppose that i′ is trivial. We claim that s = R]j](p|])
−1 : π1(W\T ) →

π1(p
−1W ) is a well-defined surjection.

s is well defined: Let s(a1) = y1 6= y2 = s(a2). Then there exist b1, b2 such

that p|](b1) = a1 and p|](b2) = a2. Suppose a1 = a2. Then p|](b1) = p|](b2), i.e.

p|](b1 − b2) = 0. Since b1 − b2 ∈ kerp|] = Imi], it follows that R]j](b1 − b2) = 0 (since

i′ = R]j]i] is trivial), so R]j](b1) = y1 = y2 = R]j](b2), which is a contradiction. It

follows that a1 6= a2. So s is well defined.

s is onto: Let y ∈ π1(p
−1(t)). Since R]j] is onto, there exists b ∈ π1

(
p−1(W\T )

)
,

such that R]j](b) = y. Then s(p|](b)) = y. So s is onto.

Since π1(W\T ) is perfect and s
(
π1

(
W\T )

)
= π1(N), it follows that π1(N) is

perfect, which is a contradiction to H1(N) 6= 0.

So i′ is not trivial.

5.2 Codimension-2 Shape msimplo-Fibrators

In this section we present results about special manifolds being codimension-2

shape msimplo-fibrators.

Let p : Mn+1 → B be an N -shaped PL map, where Mn+1 is a connected

orientable PL (n + 1)-manifold, B a polyhedron, and N a closed, connected PL n-

manifold. We will recall two results that we will need to prove Theorem 5.2.1.
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Theorem 5.2.1. Suppose p : Mn+k → B is an N-shaped PL map, for k = 1, 2, where

M is a closed, connected, orientable PL (n+ k)-manifold, N a connected, orientable,

special n-manifold, such that π1(N) is non-cyclic, and B is a polyhedron. Then p is

an approximate fibration.

Proof. Case 1: Let k = 1. By Theorem 3.3’ ([10]), it follows that B is a 1-manifold

(without boundary) (so B is S1 or R). Take b ∈ B and look at the retraction

R : U → p−1(b), where U is a neighborhood of p−1(b) in M . For all x ∈ U we look at

the restriction R| : p−1([x, b])→ p−1(b), which is a retraction.

Then the inclusion-induced homomorphism j∗ : Hi(p
−1(x)) → Hi

(
p−1([x, b])

)

is an isomorphism for all i (Corollary 6.3, [10]), and in particular, j∗ : Hn(p
−1(x))→

Hn

(
p−1([x, b])

)
is an isomorphism. Since R|∗ : Hn(p

−1([x, b])→ Hn(p
−1(b)) is also an

isomorphism (R being deformation retraction), the (absolute) degree ofR|p−1(x) = jR|

is one and Proposition 4.1.3 implies that
(
R|p−1(x)

)
]
is onto.

Now the composite map R|] : π1(p
−1(x))

j]
−→ π1

(
p−1([x, b])

) R]
−→ π1(p

−1(b)) is

an epimorphism for all x ∈ U , and the special property of N implies that R|p−1(x) is a

homotopy equivalence. So Coram and Duvall’s characterization ([7]) of approximate

fibrations in terms of movability properties gives that p is an approximate fibration.

Case 2: Let k = 2. By Theorem 3.6 ([22]), it follows that B is 2-manifold

(without boundary). In this case, we will use the straightforward observation that for

every simplex σ in a complex B, over which p is simplicial, and every x ∈ intσ, there

exists a PL homeomorphism Ψσ : p−1(intσ)→ p−1x× intσ with π2Ψσ = p, where π2

is a projection map onto the second factor (Proposition 2.1.2, [51]). Consequently,

C ∩ intσ 6= ∅ implies that intσ ⊂ C. (5.2.2)

Take x ∈ B0 and a stellar neighborhood S = x ∗ L in the expected first
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derived subdivision as in Lemma 2.1.1. Then p−1(L) = L′ is a (n + 1)-manifold and

p| : L′ → L is an approximate fibration by case 1 (since L is a 1-dimensional manifold

by Theorem 3.3’ ([10]). So the continuity set C|L of p|L′ contains a point of L ∩ intσ

for all σ such that x is a vertex of σ. Properties of the various Ψσ and (5.2.2) imply

that C ⊃ C|L and yield C ⊃ B\B0.

To see that C ⊃ C|L, take v ∈ C|L = L and any retraction R : p−1U → p−1(v),

where U is a neighbourhood of v in B. Then U ∩ L = UL is a neighbourhood of v

in L and R| : p−1UL → p−1(v) is a retraction. Since v ∈ C|L, it follows that R|

restricts to a degree one map for all y ∈ UL. Now take y ∈ UL\{v}. There exists a

unique simplex β in B, such that y ∈ intβ. Now, look at the PL homeomorphism

Ψβ : p−1(intβ) → p−1(x) × intβ. The restriction Ψβ| : p
−1(x) → p−1(y) × {x} is a

homeomorphism, so has a degree one. Then the composite map

p−1(x)
Ψβ |
−→ p−1(y)

R|
−→ p−1(v)

is a degree one map. This is true for all x in intβ, and all β in B, such that U |L∩intβ 6=.

Then, v ∈ C.

Therefore p|p−1(B\B0) is an approximate fibration by Claim 5.1.1. We need to

prove that B0 ⊂ C, i.e, p is an approximate fibration over the vertices of B.

If every x ∈ B0 belongs to C, then we are done. So suppose that there exists a

vertex not in C. Since B\C ⊂ B0, we can reduce immediately to the situation where

B is identical to R2 and p is an approximate fibration over the complement of the

origin, 0.

In this setting, p−1(0) is a strong deformation retract of p−1(R2) = M (as in

the proof of Theorem 5.1.5). Let R : M → p−1(0) be this strong deformation retract.

So π1(M) = π1

(
p−1(R2)

)
∼= π1(p

−1(0)) ∼= π1(N).

55



Since p| is an approximate fibration over R2\0, the homotopy exact sequence

gives

π1(N)
i]
−→ π1

(
Mn+2\p−1(0)

) p|]
−→ π1(R2\0) −→ π0(N)

y∼= ‖
y∼= ‖

π1(p
−1(y)) π1

(
p−1(R2\0)

)
π1(S

1) ∼= Z 1

(where y ∈ R2\0). Then we have Imi] = kerp|], i.e. i](π1(N))�π1(p
−1

(
R2\0)

)
. From

the exact sequence of the pair
(
M,M\p−1(0)

)
:

· · · → π1

(
M\p−1(0)

) j]
−→ π1(M)

k]
−→ π1

(
M,M\p−1(0)

)
→ · · ·

it follows that j]

(
π1

(
M\p−1(0)

))
� π1(M). Now we can look at this diagram:

π1(N)
i] //

i′ ))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

∼=
��

π1

(
p−1(R2\0)

) p|] //

j]

��

π1(R2\0)

∼=

��

//

s
vv

1

π1(p
−1(y)) 6= 0 π1(p

−1(R2))

∼=
��

Z

π1(N) ∼= π1(p
−1(0))

Lemma 5.1.3 implies that j] is onto. We want to prove that i′ is not trivial. Suppose

i′ is trivial. Then similar arguments to the proof of Claim 5.1.9 will provide that s is

a well defined epimorphism.

Then s(Z) = π1(p
−1(R2)), so the last group is cyclic, which contradicts the

assumption that π1(N) is not cyclic. Therefore i′ is a non-trivial map and 1 6=

i′(π1(N) = j](i](π1(N)) � π1(M) ∼= π1(N) (since j](normal subgroup) = normal sub-

group). The special property of N implies that R| is a homotopy equivalence. So

Coram and Duvall’s characterization ([7]) of approximate fibrations in terms of mov-

ability properties gives that p is an approximate fibration over the vertices of B, and

it follows that p is an approximate fibration over B.
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The next Corollary immediately follows from Theorem 5.2.1.

Corollary 5.2.3. All orientable, special manifolds N with non-cyclic fundamental

groups are codimension-2 shape msimplo-fibrators.

All closed, orientable surfaces S with χ(S) < 0 are codimension-2 shape

msimplo-fibrators.

Corollary 5.2.4. Suppose that the group G is a free product of non-trivial, finitely

generated, residually finite groups, which are not all either free or finite groups, and

suppose N 3 is a closed, orientable 3-manifold with π1(N
3) ∼= G. Then N3 is a

codimension-2 shape msimplo-fibrator.

Proof. By Theorem 4.1.6, Theorem 3.3.1 and Remark 4.2.2, it follows thatN is special

and Corollary 5.2.3 gives the result.

5.3 Codimension-4 Shape msimplo-Fibrators

In this section we will list several results about manifolds that are codimension-

4 msimplo-fibrators.

Theorem 5.3.1. Suppose N is a closed, connected, orientable PL n-manifold homo-

topically determined by π1 with a non-trivial, Hopfian fundamental group, which is a

codimension-2 fibrator. Then N is a codimension-4 shape msimplo-fibrator.

Proof. We consider first the case k = 3. Let p : Mn+3 → B be an N -shaped PL map,

where M is a closed, connected, orientable PL (n+k)-manifold, and B a triangulated

manifold. Take any v ∈ B. Specify a star S of v in B, as well as the corresponding
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link L of v bounding S as in the Lemma 2.1.1. Set S ′ = p−1S and L′ = p−1L. Name

a strong deformation retraction R : S ′ → p−1(v).

By hypothesis p|L′ : L′ → L is an approximate fibration since L is a 2-manifold

(in particular L is an actual 2-sphere being a homotopy 2-sphere). This approximate

fibration yields an exact sequence:

π1

(
p−1(c)

)
∼= π1(N)

i]
−→ π1(L

′)
p|]
−→ π1(L) ∼= π1(S

2) ∼= 1

for all c ∈ L. So i] is onto.

Since L′ = p−1L ∼= p−1(S2) = p−1(R3\0), we can use Lemma 5.1.3 to conclude

that j] : π1(L
′) ∼= π1(p

−1(R3\0)→ π1(S
′) ∼= π1(R3) is onto.

Then we have

π1

(
p−1(c)

)
∼= π1(N)

i]
−→ π1(L

′)
j]
−→ π1(S

′)
R]
−→ π1(p

−1(v)) ∼= π1(N).

Therefore R|] = R]j]i] : π(N) → π1(N) is onto. π1(N) being Hopfian forces

R|] to be an isomorphism. Since N is homotopically determined by π1 we can conclude

that R|p−1(c) is a homotopy equivalence, for all c ∈ L. By Theorem 1.3.4, it follows

that p is an approximate fibration. So N is a codimension-3 msimplo-fibrator.

For k = 4, we can proceed with the same argument as for case k = 3, since

in this case L is a homotopy 3-sphere, and hence a triangulated PL 3-manifold, and

S ′\p−1(v) ' L′, since S ′\p−1(v) collapses to L′.

Corollary 5.3.2. Orientable, special manifolds with Hopfian fundamental groups are

codimension-4 shape msimplo-fibrators if they are codimension-2 fibrators.

Corollary 5.3.3. Aspherical, closed, connected, orientable PL n-manifolds with Hop-

fian fundamental groups are codimension-4 shape msimplo-fibrators if they are codimen-

sion-2 fibrators.
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5.4 Special Manifolds as Shape msimplo -Fibrators

Next we present our main result about special manifolds being shape msimplo-

fibrators.

Theorem 5.4.1. Let N be a connected, orientable, special PL n-manifold, such that

H1(N) 6= 0. If N is codimension-2 shape msimplo-fibrator, then N is a shape msimplo-

fibrator.

Proof. Proceed by induction. Suppose N is a codimension-(k − 1) shape msimplo-

fibrator. We need to prove that N is a codimension-k shape msimplo-fibrator.

Suppose p : Mn+k → B is an N -shaped PL map, where M is a closed, con-

nected, orientable, PL (n + k)-manifold and B a triangulated manifold. We need to

prove that p is an approximate fibration. Actually, we only need to prove that p is

an approximate fibration over B\B(k−3) (Claim 5.4.2 below). Then Theorem 5.1.5

implies that p is an approximate fibration.

Therefore, N is a codimension-k shape msimplo-fibrator.

Claim 5.4.2. p is an approximate fibration over B\B(k−3), i.e, B\B(k−3) ⊂ C.

Proof. We know that C ⊃ B\B(k−2) (Theorem 3.3, [12]). Thus we only need to show

that for arbitrary σ, with dim σ = k − 2, intσ ⊂ C. Take x ∈ intσ. Find S = x ∗ L,

such that x ∈ B1 and S in B2 (as in Lemma 2.1.1). By construction, S ∩B(k−3) = ∅,

so S ⊂ B\B(k−3), which is a PL manifold by Theorem 3.2 ([12]). Then L is an (k−1)-

sphere and induction gives that p : L′ = p−1L→ L is an approximate fibration (since

L′ is (n + k − 1)-manifold by Lemma 3.1, [12]).

Then the continuity set C|L of p|L′ contains a point of L∩ int σ, so by (5.2.2)

intσ ⊂ C. Furthermore, properties of various Ψσ (as in the proof of Theorem 5.2.1)
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imply that C ⊃ C|L. So B\B(k−3) ⊂ C.

The following example shows that the hypothesis of N having a non-trivial

first homology group can’t be omitted.

Example 5.4.3. An aspherical, homology 3-sphere Σ3 that admits no (non-trivial)

regular covering by another homology 3-sphere is a special manifold but not a shape

msimplo-fibrator. Namely, Lemma 5.11 ([12]) gives that Σ3 has a super Hopfian fun-

damental group, and Σ3 is homotopically determined by π1 (since aspherical), and

then Remark 4.2.2 gives that Σ3 is a special manifold. Also Σ3 is a codimension-

2 shape msimplo-fibrator, but it is not a shape msimplo-fibrator (since example 5.4.4

below shows that it is not a codimension-5 shape msimplo-fibrator).

Example 5.4.4. (Daverman) Here we will generalize the construction from example

2.2.2. Let Σn be a non-simply connected homology n-sphere that bounds a con-

tractible but not collapsible PL (n+1)-manifold W n+1. This is always true for n ≥ 4

(Theorem 3, [40]). Note that, while all homology n-spheres DO bound contractible

(n+1)-manifolds ([25]), certain homology 3-spheres do NOT bound contractible PL 4-

manifolds ([48] provides an example of a PL contractible 4-manifold whose boundary

is not simply connected homology 3-sphere that is known to be aspherical). Construct

a manifoldM =
(
Σn×W n+1

)
∪∂

(
Σn×∂W n+1×[1,∞)

)
, where the attaching is done via

the identification (x, y) ∼ (x, y, 1) for y ∈ ∂W n+1. Note that M is a PL manifold since

W is PL manifold. Consider a PL map p : M 2n+1 → Bn+1 (defined as a PL approxi-

mation to the abstract quotient map M → B = M/
((

Σn×W n+1
)
∪∂

(
Σn×∂W n+1×

{1}
))

, see Example 2.1, [12]), with p−1(b0) =
(
Σn×W n+1

)
∪∂

(
Σn×∂W n+1×{1}

)
≈

(
Σn × W n+1

)
and p−1(b) = {q} × ∂W n+1 × {t}, where q ∈ Σn and t ∈ (1,∞). p

is a Σn-shaped PL map. Also, B\{b0} ≈ ∂W n+1 × (1,∞) (i.e. B is the open cone
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of Σn), and b0 is a non-manifold point since its link is not simply connected. Look

at the map p × 1 : M × R → B × R. It is an Σn-shaped map, which fails to be an

approximate fibration. Note that Bn+1 × R is a manifold ([3]).

The hypothesis of N being a codimension-2 shape msimplo-fibrator in Theorem

5.4.1 can be replaced with the condition of π1(N) being a non-cyclic group by Theorem

5.2.1.

Theorem 5.4.5. Every connected, orientable, special PL n-manifold N with a non-

trivial first homology group and a non-cyclic fundamental group is a shape msimplo-

fibrator.

Theorem 5.4.6. Suppose N1 is a connected, orientable, special, PL n-manifold, such

that πn−1(N1) ∼= 0 and β1(N1) 6= 0, and suppose N2 is a closed, connected, orientable,

PL n-manifold with a non-trivial fundamental group, such that N1]N2 is Hopfian and

π1(N1]N2) is Hopfian. Also, assume that π1(Ni) has no free “factor” Z, i = 1, 2.

Then N1]N2 is a shape msimplo-fibrator.

Proof. It follows that N1]N2 is special from Theorem 4.3.1. Since π1

(
N1]N2

)
is not

cyclic, it follows that N1]N2 is a shape msimplo-fibrator by Theorem 5.4.5.

Theorem 5.4.7. Suppose N1 is an aspherical, closed, orientable n-manifold, and N2

is a closed, orientable n-manifold with π1(N2) 6= 1, such that N1]N2 is Hopfian with

a Hopfian fundamental group and a non-trivial first homology group. Then N1]N2 is

a shape msimplo-fibrator.

Examples of shape msimplo-fibrators:

1. Closed, orientable surfaces S with χ(S) < 0;
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2. N1]N2, where N1, N2 are aspherical, closed, orientable n-manifolds, such that

N1]N2 is Hopfian with a Hopfian fundamental group, and H1(N1]N2) 6= 0.

5.5 Open problems

In conclusion, we list several open and unsettled problems:

1. Is there any difference between codimension-2 PL fibrators and codimension-2

PL shape fibrators?

2. Which closed 3-manifolds are shape msimpl-fibrators? Which aspherical man-

ifolds are? (Daverman ([15]) has given a fairly penetrating analysis of which

geometric 3-manifolds are PL fibrators.)

3. What are the shape msimpl-fibrator properties of 4-manifolds that are non-trivial

connected sums? (see [19] for related results about the PL fibrator properties.)

4. Which Hopfian manifolds with super Hopfian fundamental groups are shape

msimplo-fibrators?

5. What are the shape msimpl-fibrator properties of manifolds (S1×Sn−1)]N , where

N is non-trivially covered by Sn? (Here (S1×Sn−1)]N is not a special manifold,

but π1

(
S1 × Sn−1)]N

)
is super Hopfian.)

6. Does there exist a homology n-sphere Σn which is not a codimension-(n + 1)

shape msimplo-fibrator?

7. Generalize the idea of shape msimplo-fibrators to a less restrictive PL setting

(e.g., when M is a triangulated manifold).
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8. Is the super Hopfian property closed with respect to amalgamated free products?
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