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Abstract

The region around 100Sn [100Sn] is important because of the close proximity to the

N=Z=50 magic numbers, the rp process, and the proton drip-line. Alpha decay

measurements show a reversal in the spin-parity assignments of the ground and first

excited states in 101Sn [101Sn] compared to 105Te [105Te]. However, the lightest odd-

mass tin isotope with a firm spin-parity assignment is 109Sn [109Sn]. The d5/2 [d5/2]

and g7/2 [g7/2] single-particle states above N=50 are near degenerate, evidenced by

the excitation energy of the first excited state in 101Sn at only 172 keV. The correct

ordering of these single-particle states and the degree of neutron configuration mixing

has been the subject of debate.

Spectroscopic studies have been performed close to 100Sn [100Sn], utilizing the

S800 and CAESAR at the NSCL. These studies make use of a single neutron knockout

reaction on beams of 108Sn [108Sn] and 106Sn [106Sn]. The momentum distributions of

the resulting residues reflect the ℓ-value [l-value] of the removed neutron. Additionally,

γ-rays [gamma-rays] were measured in coincidence with the momentum distributions

allowing for the separation of the knockout channel where the residue is left in an

excited state from the channel to the ground state. The odd-mass residue can then be

characterized in terms of a hole in the d- or g- orbital with reference to the even-mass

nucleus. The relative population of final states in the odd-mass residue are indicative

of the mixing in the ground state of 108,106Sn [108,106Sn].
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Comparing the momentum distributions with reaction calculations shows that

both 105Sn [105Sn]and 107Sn [107Sn] have a Jπ [J pi] = 5/2+ ground state and a Jπ

[J pi]= 7/2+ first excited state at 200 keV and 151 keV respectively. The exclusive

cross sections for one-neutron knockout from 106Sn [106Sn] and 108Sn [108Sn] show

that the ground state are dominated by the d5/2 [d5/2] single-particle state.
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Chapter 1

Introduction

The region around doubly-magic 100Sn is a rich area of study for testing nuclear

models. Measuring the properties of these nuclei provides insight into shell structure

in the region. In addition to the N=Z=50 closed shells, these nuclei also have a close

proximity to the proton drip-line. In fact, 100Sn is the heaviest N=Z doubly magic

nucleus bound against ground state proton decay.

The 100Sn region is also important to astrophysical calculations. The rapid proton

capture process (rp process) proceeds along the tin isotopic chain, via a series of β

decays and proton captures, from 99Sn to 105Sn. This process ends in the SnSbTe

cycle shown in Fig 1.1. The properties of nuclei involved in the rp process are vital

to the understanding of X-ray bursts and the synthesis of proton-rich nuclei.

Recent experiments have lead to conflicting assignments of the single-particle

states in 101Sn. Previous to this study, the lightest odd-mass tin nucleus with a firm

spin-parity assignment was 109Sn. The experiment discussed here not only provides

insight into the spin-parity assignments of light odd-mass tin isotopes, but also helps

determine the degree of configuration mixing present in the ground state of the even-

mass isotopes 108,106Sn. Measurements probing the nature of ground states in the

light tin region are crucial to determining the structure of these nuclei, and for testing

theoretical models in this region where experimental data are scarce.
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Figure 1.1: The SnSbTe cycle which serves as an end point to the rp process. Figure
taken from Schatz et al. (2001)

1.1 Previous experimental studies on light tins

Many of the qualities which make the light tin isotopes interesting, also makes

them difficult to probe experimentally. Far from stability, production rates via

fragmentation decrease due to the increase in the number of neutrons which must

be removed while preserving the proton number. In addition to fragmentation, fusion

evaporation reactions and α-decay techniques have been used to study this region.

The first observation of 100Sn was reported in 1994 by Schneider et al. (1994).

A beryllium target was bombarded with a 124Xe beam at GSI using the heavy-ion

synchroton SIS. The products were then separated using the fragment separator FRS

and in-flight isotope identification was performed using magnetic rigidity, time of

flight, and energy measurements. After 277 hours of beam time, seven 100Sn nuclei

were detected. Shortly after, 100Sn was also identified at GANIL using a stable 112Sn

beam and a natural 58Ni target. Approximately five nuclei were detected per day

Lewitowicz et al. (1994).

Half-lives, decay spectra, cross sections, and excited-state energy levels have been

probed by experiments on light tin isotopes. The interpretation of two experiments

2



have lead to conflicting assignments of the single-particle states in 101Sn although

there is no conflict in the data themselves. Examining these experiments provides

insight into the causes of the conflict and how a spin-parity assignment for 107Sn and

105Sn can help.

1.1.1 Overview of 46Ti(58Ni,3n)101Sn experiment

At the Argonne Tandem-Linac Accelerator System (ATLAS) facility of Argonne

National Laboratory, a 46Ti(58Ni,3n)101Sn reaction was used to produce 101Sn nuclei.

The Gammasphere germanium-detector array was used to detect in-beam γ rays.

The reaction products were separated by the Fragment Mass Analyzer and sent to

a Parallel Grid Avalanche Counter (PGAC)-ionization chamber (IC) combination.

The PGAC was used to provide a measurement of position and the IC measured the

energy loss of the fragments. Mass slits were used to accept recoils with a mass of

A=101 and 23+ and 24+ charge states. These recoils were implanted into a Double-

sided Silicon Strip Detector (DSSD) where the β-decays were observed. Silicon (Si)

detectors surrounding the DSSD detected β particles escaping through the front of

the DSSD.

The recoil-decay tagging (RDT) method was used to correlate prompt γ-rays

associated with the production of 101Sn with β-delayed protons from the decay of

101Sn. In order to isolate γ rays associated with 101Sn, decay events were required

to have a decay time less than 5 s, deposit an energy in the DSSD between 1 and

5 MeV, and be coincident with a β particle in the surrounding Si detectors or scattered

between two neighboring strips in the DSSD. In the resulting γ ray spectrum, shown

in Fig 1.2, peaks are clearly visible at 172 and 248 keV. For comparison, γ-rays

randomly correlated with β particles are shown in panel b of Fig 1.2. The 248 keV

peak present in both spectra is associated with the decay of 101Ag which was a beam

contaminant produced after the evaporation of 3 protons. Protons gated on the

3



Figure 1.2: Spectra from the 46Ti(58Ni, 3n)101Sn experiment (a)γ rays correlated with
decays which have decay times of less than 5 s, an energy between 1.5 and 4.5 MeV,
and coincident with betas or scattering between neighboring DSSD strips. (b) γ rays
correlated with β decays from outside the 5 s window. Seweryniak et al. (2007)

172 keV γ rays had a decay time consistent with the half-life of 101Sn obtained from

previous measurements. The 172 keV γ-ray was therefore interpreted as the transition

from an excited state to the ground state in 101Sn.

The g7/2 - d5/2 energy gap in the N=51 isotones decreases from 2.2 MeV in 91Zr

to 441 keV in 99Cd. A linear extrapolation of this energy gap leads to the assumption

of the 101Sn g7/2 state being 190 keV above the d5/2 ground state. As a result, the

172 keV γ-ray was interpreted as the transition from a g7/2 excited state to the d5/2

4



Figure 1.3: The energy splitting between the 7/2+ and the 5/2+ states, obtained
via shell-model calculations, for light tin nuclei. The squares represent measured
excitation energies, triangles represent shell model calculations obtained using matrix
elements from Hjorth-Jensen et al. (1995). The circles represent the same shell model
calculations performed with the (g7/2)

2
0+ matrix element reduced by 30% Seweryniak

et al. (2007)
.

ground state. The energies of multi-particle configurations were calculated, using the

shell model, to support this interpretation. The calculations yield an energy difference

between the two states that is about 200 keV too large but has a pattern similar to

experimental data. As shown in Fig 1.3, a reduction of about 30% in the (g7/2)
2
0+

matrix element provides better agreement with experimental data Seweryniak et al.

(2007).

1.1.2 Overview of Alpha Decay of 109Xe→105Te→101Sn exper-

iments

At the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National

Laboratory, the two lowest states of 101Sn were observed via the double-alpha decay
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Figure 1.4: Proposed 109Xe→105Te→101Sn α decay chain. Figure from Darby et al.
(2010) produced with results for 103Sn chain from Schardt et al. (1979), Sewerniak
et al. (2002), and Fahlander et al. (2001).

Figure 1.5: The energy splitting between the 7/2+ and the 5/2+ states. Figure from
Darby et al. (2010).

of 109Xe in two experiments Darby et al. (2010). The A = 109 fusion evaporation

products of 54Fe and 58Ni were resolved by mass to charge ratio and separated from

the unreacted primary beam using the recoil mass spectrometer (RMS). At the focal

plane of the RMS, the fusion evaporation residues were implanted into a double-sided
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silicon strip detector (DSSD) and the α decay chain 109Xe→105Te→101Sn was studied.

In the second experiment, the setup was augmented with High Purity Germanium

(HPGe) clover detectors, placed around the DSSD, for γ-ray detection. This allowed

for the detection of α-γ coincidences.

For the 109Xe→105Te transition, two α decays of 3910(10) keV and 4063(4) keV

were observed. The 105Te→101Sn transition resulted in two more α decays of

4711(3) keV and 4880(20) keV. The first three decays are consistent with values from

previous experiments. The final α decay was previously unknown. The differences

in the energy of the alpha decays result in excitation energies of 153(11) keV and

170(20) keV, for the first excited states in 105Te and 101Sn, respectively. The 170 keV

is consistent with the excitation energy measured in the ATLAS experiment discussed

in Section 1.1.1.

In the HPGe detector experiment, γ rays were observed at 150(3) keV and

172(2) keV. These values are comparable to the excitation energies calculated from

the alpha decays and represent the depopulation of the first excited states in 105Te and

101Sn. After taking the intensities of each transition into account, the decay scheme

illustrated at the top of Fig 1.4 was proposed. Interpretation of the proposed decay

scheme within the standard model of α decay led to the conclusion that the ground

state spins of 105Te and 101Sn differ from each other, while the spin of the ground

state of 105Te is equal to the spin of first excited state of 101Sn. Comparison with the

proposed decay scheme of neighboring 111Xe→107Te→103Sn, shown at the bottom of

Fig 1.4 , reveals an unexpected level inversion occurring between 101Sn and 103Sn.

Shell model calculations using realistic interactions as described in Hjorth-

Jensen et al. (1995) were used to lend further support to the interpretation of

the experimental results. These calculations were performed using a 100Sn core,

with residual interactions based on AV18 Wiringa et al. (1995) or N3LO Entem

and Machleidt (2003) nucleon-nucleon potentials, and a 88Sr core, with residual
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interactions derived from the CD-Bonn potential Machleidt (2001). The calculations

were performed with the g7/2 single particle state below the d5/2 and with the d5/2

single particle state below the g7/2 then the results were compared to experimental

data, as shown in Fig 1.5. The results obtained assuming the g7/2 level is below the

d5/2 level, naturally leading to a 7/2+ ground state for 101Sn, agree with experiment

much better than those assuming a lower d5/2 level, which does not accurately

reproduce the trend in the g7/2-d5/2 splitting over the 103Sn to 111Sn isotopes. Both

scenarios result in a 5/2+ ground state for 103Sn and predict the change from a 5/2+

to 7/2+ ground state occurring from 109Sn to 111Sn Darby et al. (2010).

1.1.3 Experimental Conclusions

Although the conclusions drawn from the two experiments conflict, the data are not

incompatible. The observation of a 172 keV γ ray in the 109Xe decay chain Darby

et al. (2010) reaffirms the excited state energy obtained from the 46Ti(58Ni,3n)101Sn

reaction Seweryniak et al. (2007). Furthermore, the results obtained from the ATLAS

experiment do not exclude the possibility of a 7/2+ ground state. Instead, it was the

extrapolation from heavier tin nuclei, and of the g7/2 - d5/2 energy gap in N=51

isotones, as well as the absence of higher energy γ rays that lead to the 5/2+ ground

state assignment. As noted in Darby et al. (2010), it is also possible that the level

inversion seen in the 109Xe decay chain could occur between the 109Xe and 105Te,

although no evidence is seen.

Calculations using realistic interactions, as prescribed by Hjorth-Jensen et al.

(1995), predict highly mixed ground states for the even mass light tins. As seen in

Fig 1.6, the g7/2 configuration is calculated to dominate the 102Sn and 104Sn isotopes

while the d5/2 configuration dominates the 106Sn and 108Sn isotopes. In contrast, the

surface delta interaction (SDI) calculations predict that all light tin nuclei will have
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Figure 1.6: The neutron d5/2 ground state spectroscopic factors normalized to 1.
Calculated using SDI and V18 interactions.

neutron occupations of 100% for the d5/2 state. Additional spectroscopic data will

make it possible to resolve the controversy.

1.2 Scope

The goals of this study are to measure ℓ-values of the valence neutrons in 108Sn

and 106Sn via a one neutron knockout reaction. The momentum distribution of the

resulting residue is dependent on the ℓ-value of the removed neutron. Coincident

γ-rays were measured such that knockout to excited states could be separated from

knockout to the ground state. By being able to separate these knockout channels, it is

possible to characterize the odd-mass residue in terms of a hole in the d- or g- orbital

with respect to the ground state of the even-mass beam nucleus. This differentiates

between the possible 5/2+ and 7/2+ ground states of the odd-mass residues. The

ℓ-values for the nuclei are determined from the measured momentum distributions

and cross sections are extracted for each knockout channel. The ratios of the cross

sections for each knockout channel probe the degree of configuration mixing of the

(d5/2)
N and (g7/2)

N neutron states for the 108Sn and 106Sn nuclei.
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Chapter 2

Theoretical Considerations

In this work we use a direct nuclear reaction to study the structure of nuclei above

the doubly-magic 100Sn. Therefore, we need to discuss nuclear shell model origin of

magic numbers as well as the direct reaction theory user for moementum distribution

calculations.

2.1 Nuclear Shell Model

The nuclear shell model describes the structure of the atomic nucleus in an analogous

way to how the atomic shell model describes the electron configuration of an atom.

In the atomic shell model, the electron shells are filled in order of increasing energy in

a manner consistent with the Pauli principle, which states that identical fermions can

not occupy the same quantum state. This creates a core of filled shells and an outer

shell which may be partially occupied by any remaining valence electrons. Atomic

properties are determined primarily by these valence electrons and change smoothly

within a shell but drastically between them.

A similar pattern of smoothly changing properties followed by abrupt disconti-

nuities is seen in nuclei, leading to the concept of a nuclear shell model. The total

number of nucleons required to completely fill a shell is known as a magic number.
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The experimental evidence supporting the existence of nuclear shells includes: proton

and neutron separation energies, increased abundance of nuclei with a N or Z magic

number, and a larger excitation energy for the first excited state of magic nuclei

compared to those in the surrounding region. Experimentally, the magic numbers

have been determined for stable nuclei to be: 2, 8, 20, 28, 50, 82, 126 (for neutrons).

In this model, it is assumed that each nucleon moves in a central potential well

created by the nucleon-nucleon interactions of the other A-1 nucleons. Therefore, the

model uses a one-body Hamiltonian of the form:

h(r) = −
~
2

2µ
∇2 + v(r) (2.1)

where µ is the reduced mass of the nucleon.

The potential is commonly estimated using the three-dimensional harmonic

oscillator potential:

v(r) =
1

2
µω2

or
2 (2.2)

where ωo is the frequency. All states in each shell, N, are degenerate with energy:

εN = (N +
3

2
)~ωo. (2.3)

The maximum number of nucleons that a harmonic oscillator shell can hold is given

by:

DN = 2
∑

(2ℓ+ 1) = (N + 1)(N + 2). (2.4)

Accordingly, the total number of nucleons that can be accommodated within a

maximum shell, Nmax, is:

Dmax =
Nmax
∑

N=0

DN =
1

3
(NMax + 1)(NMax + 2)(NMax + 3). (2.5)

11



Solving for NMax = 0, 1, 2,... gives values for Dmax = 2, 8, 20, 40, 70, 112. This

successfully reproduces the first three magic numbers but not the later ones Wong

(1998).

As explained by Mayer and Jensen (1955), accurately reproducing the magic

numbers can be accomplished by adding a spin-orbit interaction to the central

potential. The spin-orbit interaction is dependent upon the intrinsic spin, s

and orbital angular momentum, ℓ, of a nucleon. Leading to the single-particle

Hamiltonian:

h(r) = −
~
2

2µ
∇2 +

1

2
µω2

or
2 + as · ℓ+ bℓ2 (2.6)

where a is a parameter representing the strength of the spin-orbit term and may

depend on the nucleon number and the ℓ2 is required to lower the centroid energy of

states with large ℓ-values. Developing this new Hamiltonian in a similar way to the

Hamiltonian associated with the three-dimensional harmonic oscillator results in the

magic numbers: 2, 8, 20, 28, 50, 82, 126. Thus, the addition of a spin-orbit interaction

to the three dimensional harmonic oscillator potential successfully reproduces the

magic numbers which were determined experimentally for stable nuclei. The effect

that the spin-orbit interaction has on the splitting of the degeneracy can be seen in

Fig 2.1.

As discussed in Sec 1.1.2, Darby et al. (2010) used shell model calculations with

100Sn (Z=N=50) and 88Sr (N=50) cores. Both calculations had N=50 closed neutron

core with valence neutrons in the d5/2, g7/2, d3/2, s1/2, and h11/2 orbitals. Their

results support the interpretation of a 7/2+ ground state for 101Sn. The shell model

calculations by Darby et al. (2010) also predict highly mixed ground states for the

even-mass neutron deficient tin isotopes with the valence neutrons occupying the d5/2

and g7/2 orbitals. The degree of mixing in 108Sn and 106Sn has been probed in this

work and is discussed in Sec 6.2.
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Figure 2.1: The nuclear shell model with magic numbers. The orbital angular
momentum ℓ is denoted on the left. The degeneracy splitting resulting from adding
the spin-orbit term to the potential is indicated on the right. The magic numbers on
the far right are the total number of nucleons required for a closed shell. Figure from
Padgett (2011).
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2.2 Spectator Core Eikonal Reaction Model

The reaction used in this study was modeled using the Spectator Core Eikonal

Reaction Model. The Spectator Core Eikonal model assumes that there are pre-

formed components in the ground state wave function. The reaction is treated as a

three-body problem comprised of a target, nucleon, and core. This greatly reduces

the complexity over dealing with the 108 nucleons in the projectile and 9 in the target.

The core, the knockout residue (as opposed to the 100Sn core of the shell model), is

a spectator and is only permited in the calculation to interact elastically with the

target Hussein and McVoy (1985).

The cross section for populating a core state c is:

σ(c) =
∑

C2S(c, nℓj)σsp(Sn, nℓj) (2.7)

where n, l, and j are their respective quantum numbers, C2S is the spectroscopic

factor for the removal of a nucleon with those quantum numbers, Sn is the nucleon

separation energy, and σsp is the single particle cross section from the stripping and

diffraction mechanism such that σsp = σstr
sp + σdiff

sp Tostevin (2001). The reaction

model is discussed in detail in Tostevin (2001) and is based on the sudden and

Eikonal approximations. The sudden approximation assumes that the projectile is

at a high enough kinetic energy and the interaction time between the projectile and

target is assumed to be short such that the probability of a multi-step process is

negligible. Thus, the relative motion of the residue and removed nucleon can be

ignored. The Eikonal approximation assumes that the deflection of the projectile

due to the interaction with the target is also negligible. Therefore, the trajectory of

the projectile can be taken to be a straight line. The momentum distributions are

calculated from the differential cross sections via a black-disc approximation as in

Hansen (1996), which reduces the 3D nucleus to a 2D 100% absorptive disc. Any
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Figure 2.2: Calculated parallel momentum distributions for 107Sn. Black solid line
is the momentum distribution for a ℓ = 2 state and red solid line is a ℓ = 4 state.
Calculations courtesy of Jeff Tostevin.Tostevin (2013)

nucleon incident on disc is assumed to be absorbed. The calculated momentum

distribution for 107Sn is shown in Fig 2.2. Here, the black line is the momentum

distribution for removing a d5/2 neutron from a 108Sn core and the red line is the

distribution for removing a g7/2 neutron from a 108Sn core. In Chapter 6, these

calculated momentum distributions are compared to the momentum distributions

obtained experimentally to make spin-pairity assignments.
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Chapter 3

Experimental Approach

The one-neutron knockout reactions 9Be(108Sn, 107Sn + γ)n and 9Be(106Sn, 105Sn +

γ)n were performed at the National Superconducting Cyclotron Laboratory (NSCL)

in February 2011. One-neutron knockout reactions are powerful spectroscopic tools

even at low beam rate, down to a few particles per second.

A primary beam of 124Xe was accelerated in the coupled cyclotron to 140

MeV/nucleon before being fragmented on a 9Be target. The reaction products were

separated using the A1900 fragment separator, which produced the required 108Sn

and 106Sn secondary beams. These beams were directed to a 9Be target in the target

chamber of the S800. The reaction products were identified and their momentum

distributions measured using the S800. The γ-ray detector array CAESAR was used

to measure the γ-rays that were in coincidence with the knockout reaction. This

chapter will describe the primary and secondary beams, the one neutron knockout,

and the equipment used for the experiment.

3.1 Neutron Knockout

A one-neutron knockout reaction has been used for this work to measure the orbital

angular momentum (ℓ-value) so that spin-parity assignments can be made of the
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resulting reaction residue. A nucleon knockout reaction occurs when a projectile

nucleus makes a peripheral collision with a target nucleus. The collision results in

one or two nucleons being removed from the projectile in a direct reaction with

no intermediate state. The longitudinal, or parallel, momentum distribution of the

knockout residue is dependent upon the orbital angular momentum of the knocked

out nucleon. The ℓ-value of the removed nucleon is deduced from the shape of the

longitudinal momentum distribution. Performing γ-ray spectroscopy in coincidence

with a knockout reaction makes it possible to disinguish knockout to the ground

state of the residue from knockout to an excited state. Spectroscopic factors can be

extracted by measuring the cross sections of knockout to the individual states.

Experimental momentum distributions are compared with reaction calculations

(Sec 2.2 and Fig 2.2) in order to determine the ℓ-value of the removed nucleon. The

beam energies used for the neutron knockout experiment described here are high

enough that eikonal and sudden approximation theoretical framework can be applied

Gade and Glasmacher (2008). For this work, a spectator core eikonal model is used

to caclulate the momentum distributions Tostevin (2001).

3.2 Primary Beam Production

A stable primary ion beam of 124Xe48+ was provided at 140 MeV/nucleon by the

coupled cyclotrons at the NSCL. The first step in preparing a stable primary beam

is to obtain ions from a stable material, typically a gas or solid metal. This is

accomplished at the NSCL in an electron cyclotron resonance (ECR) ion source. The

stable gas is injected into the ECR ion source, if the source material is solid then it

is first heated in an oven. Once in the ECR, the gas is bombarded by electrons. The

electrons collide with and ionize the atoms. After this initial ionization, the gas is

injected into the K500 cyclotron.
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Figure 3.1: A schematic of the Coupled Cyclotron Facility and the A1900 fragment
separator at the NSCL. The beam path is shown in red from the ion source to the
A1900 focal plane. Figure is from Stolz et al. (2005).

The K500 cyclotron serves as the injector cyclotron for the coupled system. The

K500 accelerates the beam to an energy of 12.27 MeV/nucleon before injecting it into

the K1200 (see Fig 3.2). In order to further ionize the beam, a carbon stripper foil is

placed in the middle of the K1200. The beam exits the K1200 cyclotron as a 124Xe48+

140 MeV/nucleon beam at an intensity of 10 pnA. The cyclotrons accomplish the

beam acceleration by constraining the beam to a circular path within the cyclotron

using a magnetic field. Each cyclotron has three sets of “dees” and “hills” with a

strong RF field applied across the gap. As the beam passes over these gaps it is

accelerated by the field. The accelertion increases the gyroradius ρ of the beam such

that:

ρ =
p

qB
=

γmv

qB
(3.1)

where γ, m, v, and q are the Lorentz factor, mass, velocity, and charge of the particles

and B is the strength of the magnetic field see Stolz et al. (2005) for example.
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3.3 Secondary Beam Selection

Radioactive ions are produced from the primary beam fragmentation as it impinges

on a thick 9Be production target. Some of the primary beam collides with the nuclei

in the production target, this collision breaks the beam nucleus and produces exotic

isotopes moving at approximately the same veolocity as the projectile. Immediately

following the production target is the A1900 fragment separator, shown in Fig 3.2.

The A1900 fragment separator is composed of four dipole magnets and eight

quadrupole triplets. The magnets have a maximum magnetic rigidity of 6 Tm Stolz

et al. (2005). Dipole magnets are dispersive, separating isotopes based on magnetic

rigidity, and are used to bend the beam. Quadrupole magnets are used to focus the

beam. A single quadrupole magnet can focus the beam in only one direction and

defocuses it in the perpendicular direction. Therefore, a doublet is required to focus

the beam in both directions. Using a quadrupole triplet provides an additional degree

of freedom and allows for better performance than can be achieved with a doublet.

The magnetic field of the dipoles can be tuned to separate isotopes by their mass-to-

charge ratio but eq. 3.1 shows that a magnetic field cannot separate isotopes with a

different charge but the same mass-to-charge ratio and velocity.

To achieve unambiguous particle selection, a degrader is located at image 2, the

mid-acceptance position of the A1900. The degrader is a piece of aluminum that

the beam passes through. The isotopes slow down roughly proportional to Z2/v2,

resulting in a different velocity for isotopes with a different Z. This change in velocity

allows for the remaining dipole magnets to separate nuclei with the same mass-to-

charge ratio but different Z. Since each isotope has a small velocity spread and the

energy loss in the wedge is inversely proportional to v2, the result of passing through

a uniformly thick degrader would be to increase the velocity spread of an isotope.

Therefore, the degrader is wedge shaped, so that faster particles will pass through
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more of the degrader than the slower particles. The shape of the wedge is matched to

the dispersion of a selected isotope. The result is that all particles of a given isotope

will have the same velocity change Baumann (2011).

The effect a magnetic field has on a charged particle is dependent upon the

magnetic rigidity of the particle. As a result, beam particles are dispersed by the

A1900 magnetic dipoles based on their mass-to-charge ratio. Particles with a larger

mass-to-charge ratio experience a longer flight path through the A1900. Therefore,

the time of flight measurement can be used to distinguish between isotopes of

different magnetic rigidity. A thin plastic scintillator is located at the end of the

A1900. During beam development, this scintillator provides a time measurement

that is used to calculate the time of flight. This time of flight, along with an

energy loss measurement, allows for the unambiguous identification of the secondary

beam. During the experiment, the time measurement from this scintillator is used to

calculate the time of flight for reaction products (discussed in detail in Sec 3.5.3).

3.4 The S800 Spectrograph

The S800 Spectrograph is a high acceptance, high resolution spectrograph. As shown

in Fig 3.2, there are two segments of the S800: the analysis line, which includes a

plastic scintillator and the intermediate image detectors, and the spectrograph.

The analysis line of the S800 is used to characterize the incoming beam and tune

it to the reaction target. The analysis line begins at the object box and ends at the

target. It has two modes of operation: focused and dispersion matching mode. For

this experiment, the analysis line was operated in dispersion matching mode where

the analysis line is tuned so that the momentum spread of the beam at the object

is cancelled at the focal plane. As a result, the beam is momentum dispersed on

the target at about 10cm/%. The momentum dispersion on the target limits the
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Figure 3.2: A schematic of the S800 Spectrograph. Figure is from Bazin et al. (1993).

maximum momentum acceptance of the analysis line. The momentum acceptance is

generally limted to ±0.25% to accommodate 2” targets Bazin (2012). This mode of

operation does not require measuring the momentum of incoming particles prior to

the reaction, resulting in the maximum energy resolution of the S800.

Although not used for this work, the S800 can also be operated in focused mode

where the analysis line is tuned so that the beam is focused at the target and the

momentum spread of the beam is not cancelled at the focal plane. Since the beam

is focused at the target, it allows for the largest momentum acceptance of ±2%

in the analysis line Bazin (2012). Since the momentum spread of the beam is not

canceled at the focal plane, this mode requires the momentum of incoming particles

to be measured prior to the reaction. The detectors used for tracking the incoming

particles are two Parallel Plate Avalanche Counters (PPAC) with individual strip

readouts. These detectors were not required for this work and will not be discussed

in detail.

The incoming beam from the A1900 is focused at the object position, Fig 3.2,

where there is a thin plastic scintillator, discussed in detail in Sec 3.5.3. The beam
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is then directed through the analysis line to the target chamber. Here, the high

efficiency CsI(Na) scintillator array, CAESAR, was used for detecting the γ-rays

resulting from the decay of reaction products and will be discussed in detail in Sec

3.6. A 47 mg/cm2 thick 9Be target was placed at the target position of the S800. The

spectrograph portion of the S800 follows the target. The spectrograph consists of two

dipole magnets and a quadrupole doublet. The dipole magnets disperse the beam

according to its mass-to-charge ratio and the quadrupole doublet refocuses the beam

in the x and y direction, similar to the A1900 described in Sec 3.3. The magnets

are tuned so that they guide the desired reaction products to the focal plane. The

momentum acceptance of the spectrograph is ±3% and it has a maximum rigidity of

4 Tm Bazin et al. (1993). The S800 terminates with the focal plane where an array of

detectors provide information on the charge, position, and time-of-flight of reaction

products.

3.5 S800 Focal Plane

The S800 focal plane, Fig 3.3, is the end point of the S800 where the charge, position,

energy, and time-of-flight of transmitted ions are measured. The reaction products

will first pass through two Cathode Readout Drift Chambers (CRDCs), followed by

an ionization chamber, a thin plastic scintillator, and finally end in a hodoscope.

The following sections will discuss these detectors in detail with the exception of the

hodoscope. In order to achieve suitable particle identification, the pressure in the

ionization chamber was increased so that the reaction products were slowed to such

a degree that they rarely penetrated more than a few segments of the hodoscope.

Consequently, the hodoscope was not used in the data analysis.
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Figure 3.3: A rare look at the S800 Focal Plane. The CRDCs, ionization chamber,
and hodoscope are labeled and clearly visible. The E1 scintillator is used as the exit
window for the ionization chamber.

3.5.1 Cathode Readout Drift Counters

Upon entering the S800 focal plane, the beam particles travel through a pair

of Cathode Readout Drift Counters (CRDC) separated by approximately 1 m.

Individually, each CRDC determines particle position in the S800 disperive (x) and
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Figure 3.4: Schematic of a CRDC in the focal plane of the S800. The x (dispersive),
y (non-dispersive), and z (beam direction) labeled. The x and y positions of the
interaction are determined using the segmented cathode and the anode respectively.

non-dispersive (y) directions. The detectors are 56 cm in the x direction by 26 cm

in the y direction and have a position resolution of .5 mm in both directions Bazin

(2012). These position measurements make it possible to reconstruct the trajectory

on an event-by-event basis back to the target position. The method for reconstructing

trajectories will be discussed in detail in Sec 5.3, where the calculation of momentum

distributions is covered.

The CRDCs are primarily composed of a drift chamber filled with a 80% CF4

(carbon tetrafluoride) and 20% C4H10 (isobutane) gas mixture, an anode wire, and

a cathode segmented into 224 pads, each 2.54 mm wide Bazin (2012). The drift

chamber has a negative bias voltage applied in the y-direction and the anode wire is

at positive voltage. As the positively charged beam particles pass through the drift

chamber they ionize the gas, creating free electrons. These electrons drift through
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the gas towards the positvely charged anode wire. The drift time of the electrons is

used to calculate the y position of the interaction between the beam particles and the

CRDC gas mixture. This drift time is determined using the difference of timing signals

from the E1 scintillator, discussed in 3.5.3, and the anode wire. As the electrons drift

towards the anode, image charges are induced on the cathode. The centroid of the

image charges are calculated and the pad position best matching the centroid is used

as the x position of the interaction. Drift times can take up to 20 µs, therefore, the

CRDCs can run at rates up to 5000 particles per second.

Changes in temperature and pressure can cause the electron drift time to vary

throughout the experiment. In order to determine the drift times, a tungsten

mask with holes in known positions is inserted in front of each CRDC periodically

throughout the experiment. These masks runs are used to calibrate the x and y

positioning of the CRDCs, as described in 4.3.

3.5.2 Ionization Chamber

Following the CRDC detectors, the beam particles pass through an ionization

chamber. The S800 ionization chamber was upgraded shortly before the start of this

experiment and is composed of 16 anode and cathode pairs aligned perpendicular to

the beam path and is operational at pressures of up to 600 Torr Bazin (2012). For this

work, the chamber was filled with P10 gas (90% argon and 10% methane) at a pressure

of 450 Torr. The ionization chamber functions similar to the CRDCs described in

3.5.1. As the positively charged isotopes pass through the chamber they ionize the

gas creating free electrons and positively charged gas ions. The free electrons drift to

the nearest anode while the gas ions drift to the nearest cathode. The amount of gas

ionized by a particle represents the energy loss of that particle, as given by the Bethe

formula:
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where c is the speed of light, ε0 the vacuum permittivity, β is v/c, e the electron

charge, me the electron rest mass, and n is the electron density of the gas. The

energy loss in the ionization chamber is dominated by charge of the particle squared.

Therefore, by measuring the energy loss in the ionization chamber it is possible to

distinguish between particles with different charges.

3.5.3 Time of Flight and Trigger Scintillator

The exit window of the ionization chamber is a large area thin plastic scintillator

with photomultiplier tubes located at the top and bottom of the scintillator Bazin

(2012). This scintillator is known as the e1 scintillator and is used primarily for

timing information and as the trigger for the S800. Aside from timing signals, the

scintillator can also provide energy signals. The ratio of the top energy signal to the

bottom energy signal can be used to provide a x position (the dispersive direction)

measurement.

The timing scintillator signal is measured against either the scintillator located at

the end of the A1900, known as the x focal plane (xfp) scintillator, or the one located

at the beginning of the S800, known as the object (obj) scintillator. The difference

of the e1 and the obj/xfp timing signals provides a measure of the time-of-flight of

a particle. As discussed in Sec 3.3, the effect a magnetic field has on a charged

particle is dependent upon the magnetic rigidity of the particle. As a result, beam

particle are dispersed by the S800 magnetic dipoles such that particles with a larger

mass-to-charge ratio experience a longer flight path through the S800. Therefore, the

time-of-flight measurement can be used to distinguish between isotopes of different

magnetic rigidity.
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Figure 3.5: Photo of CAESAR in position around the target chamber of the S800.

3.6 Gamma Ray Detector

The in-beam γ-ray spectroscopy was performed using the high-efficiency Caesium-

iodide scintillator array (CAESAR). CAESAR is composed of 192 CsI(Na) scintil-

lation crystals arranged in a ring formation, as shown in Fig 3.5, labeled A to J as

shown in Fig 3.6. The crystals making up the array come in two different sizes. The

44 larger crystals have a 3x3 inch face and are 3 inches long and are located in rings

A(10), B(14), I(14), and J(10). The smaller crystals have a 2x2 inch face and are 4
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Figure 3.6: Left: Cross-sectional view of J and F perpendicular to the beam axis.
Right: Cross-sectional view of all 10 rings parallel to the beam axis. Figure from
Weisshaar et al. (2010)

inches long. Rings C through H are composed of these crystals with 24 of them in

each ring Weisshaar et al. (2010).

There are three separate types of interactions that a γ-ray can have with a detector

material. For this work, the primary γ-rays of interest are under 200 keV and their

main interaction channel with the detector is through the photoelectric effect. When

this interaction occurs, the γ-ray is completely absorbed by an atom in the detector

which emits an electron. Other possible interaction channels are Compton scattering

and pair production. In Compton scattering, a γ-ray interacts with an electron in the

detection material depositing energy into the electron and scattering the γ-ray. The

scattered γ-ray may interact again with the same crystal or pass into a neighboring

detector. For γ-rays with energies in excess of 1.022 MeV, twice the mass-energy of

the electron, it is possible for the γ-ray to interact with a nucleus of the detector

material which absorbs part of the γ-ray energy and emits an electron-positron pair.
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The kinetic energy of the pair is:

KE = Eγ − 2mec
2. (3.3)

When the positron collides with an eletron both particles are annihilated and two

γ-rays are emmited, each at an energy of 511 MeV.

3.6.1 Nearest Neighbor Addback

Although the photoelectric effect deposits the full energy of the photon into a

single detector, Compton scattering and pair production interactions typically only

partially deposit the γ-ray energy into a single detector. Often, the γ-ray from a

Compton scattering interaction is scattered into a neighboring detector. Since random

coincidence in two neighboring detectors is unlikely, whenever neighboring detectors

simultaneously register events it is valid to assume that a single γ-ray was the cause.

A common method known as, nearest neighbor addback, has been implemented to

reconstruct the original γ-ray energy. For each event, the analysis code checks to see

if neighboring detectors had signals. Whenever this occurs, the energies are summed

together and the detector with the highest energy is used for Doppler reconstruction,

Sec 3.6.2. This method helps to increase the efficiency of CAESAR significantly at

energies greater than 1 MeV and can also help to improve the signal to background

ratio at lower energies.

3.6.2 Doppler Correction

When the source of a γ-ray is moving at relativistic speeds, the energy measured in

the lab frame will be Doppler shifted. These energies must be Doppler corrected into

the rest frame of the source according to the formula:
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Erest = Elab · γ(1− β cos θ) (3.4)

where γ is the lorentz factor, β is the ratio of v/c, θ is the angle between the direction

of the source and the location where the γ-ray was detected. The value of θ is taken to

be the angle between the beam trajectory at the target and the center of the detector

in which the γ-ray was detected. The doppler shift varies depending upon the value

of cos θ with the most extreme shift occuring at the most forward and backward

angles (rings A and J). There is some uncertainty in this value since the precise

location of the interaction can only be narrowed down to a specific detector. It is not

possible to know precisely where in the target the reaction occurred and the velocity

of the γ-ray source decreases in the reaction target. Therefore, the velocity used for

Doppler correction is the mid-target velocity. These sources of uncertainty result in

a broadening of the Doppler corrected energy peak known as Doppler broadening.

The Doppler broadening is largest whenever the uncertainty in the position has the

largest impact. This occurs at the side angles (rings E and F) where small changes

in θ have large impacts on the doppler shift.
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Chapter 4

Experimental Calibrations

4.1 Ionization Chamber Calibration

4.1.1 Gain Match

The 16 channels in the ionization chamber each provide an energy loss measurement

for a portion of the gas. The total energy lost in the ionization chamber is the sum

of the energy lost in each channel:

icsum =
16
∑

i=1

dei. (4.1)

As shown in the uncalibrated spectrum in Fig 4.1, the raw energy loss of each channel

differs. Since the total energy loss is the sum of the energy lost in each channel, the

channels must have their energy spectra gain matched to one of the channels. This

is best accomplished by selecting two isotopes with different charges and calculating

the centroid of the energy loss for each isotope in all 16 channels of the ionization

chamber. These centroids provide points for determing a linear function to gain match

each channel to the selected channel. Fig 4.1 shows the results of using this method

to match each channel to the first channel of the ionization chamber.
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Figure 4.1: The energy loss signal in each ion chamber must be matched. Plots of
the uncalibrated (left) and calibrated (right) energy loss measurements are shown
for each channel of the ionization chamber for two selected isotopes of the unreacted
beam. The channels have been gain matched to the first channel.

4.1.2 Position Correction

In addition to gain matching each segment of the ionization chamber, there is also a

small amount of variation in the energy loss signal depending on the position of the

particle. Fig 4.2 and Fig 4.3 show the energy lost in the chamber versus the x and

y positions measured in the CRDC. Five isotopes have been selected from a vertical

line in the particle identification (PID) plot such that each isotope has a different

energy loss in the chamber. The energy losses for these isotopes are plotted and the

variation with respect to position is obvious. The diagonal slant seen in Fig 4.2 causes

particles of an isotope that strike the edge of a CRDC to have the same energy loss

as a particle with a different charge striking the opposite edge of the CRDC. There

are three parameters used to minmize this energy loss spread and they are applied

using:

dE0 = Eic + yoEicy

dE = dEoe
mxox.

(4.2)
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Figure 4.2: The energy loss of five isotopes are plotted with respect to the x
(dispersive) position of the particles. The uncalibrated (left) shows that there is
a large deviation in the energy loss dependent upon the position. This spread causes
the energy loss of the isotopes to overlap. The calibrated (right) shows the result
after correcting the energy loss for the position of the particle.
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Figure 4.3: The energy loss of five isotopes are plotted with respect to the y (non-
dispersive) position of the particles. In the uncalibrated (left) spectrum, the isotopes
are not resolved in ∆E. The calibrated (right) spectrum clearly shows each one.

where x and y are the particle x and y position measured in the most upstream

CRDC. This correction becomes important for large mass isotopes such as those used

in this work. For lighter mass isotopes, the ionization chamber resolution is improved

and this correction is less important. For this work, optimal values were required

for accurate particle identification. A computer program was written to calculate the

parameters that provide the minimum energy spread. The results of these calibrations

can be seen in Fig 4.2 and Fig 4.3.
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4.2 Time of Flight

As discussed in Sec 3.5.3, plastic scintillators at the end of the A1900 (xfp scintillator)

and beginning of the S800 (obj scintillator) are used in conjuction with the large

area plastic scintillator that serves as the exit window of the ionization chamber (e1

scintillator) to provide a measurement of the time-of-flight (TOF) of a particle such

that isotopes of different magnetic rigidity can be distinguished. The TOF is used

in conjunction with the energy loss in the ionization chamber to allow unambiguous

particle identification.

It is important for ions of the same isotope to have the smallest TOF variation

possible to help avoid overlapping with ions of similar magnetic rigidities. The

differences in the energy loss in the target and scattering angle cause particles of

the same isotope to take slightly different paths through the S800. This variation in

flight path results in an increased TOF spread. The effects of this can be minimized

by adjusting the TOF according to the formula:

TOFcorrected = TOF +mαfp + nx (4.3)

where x is the x position of the particle in the most upstream crdc, m and n are fitting

parameters, and αfp (AFP) is the angle a particle makes in the dispersive direction

with respect to the CRDC (discussed in detail in Sec 5.3). Fig 4.4 and Fig 4.5 show

the TOF for neighboring isotopes in the PID plot (discussed in Sec 5.1.2). The TOF

has been plotted against the x position and AFP angle respectively. The goal of the

calibration is to find values for m and n that minimize the width of the TOF for each

isotope so that each can be clearly distinguished in the spectra. The results of this

correction can be seen in Fig 4.4 and Fig 4.5. The impact of these corrections and

the ones for the ionization chamber discussed in Sec 4.1 on the particle identification

can be seen in Fig 4.6.
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Figure 4.4: The TOF of five isotopes are plotted with respect to the x (dispersive)
position of the particles. The uncalibrated (left) shows that there is a large deviation
in the TOF dependent upon the position. This spread causes the TOF of the isotopes
to overlap. The calibrated (right) shows the result after adjusting the TOF for the
position of the particle.
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Figure 4.5: The TOF of five isotopes are plotted with respect to their trajectory
angle in the dispersive position of the particles. In the uncalibrated (left) spectrum,
it is impossible to distinguish between the isotopes. The calibrated (right) spectrum
shows them much more clearly.

4.3 Cathode Readout Drift Chamber

4.3.1 Gain Match

The Cathode Readout Drift Chambers (CRDC) provide measurements of the x and

y positions. The x position of the particle is taken to be the pad of the segmented

cathode associated with the centroid of the image charge produced by the electron
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Figure 4.6: The effects of the TOF and energy loss corrections on particle
identification are shown. In the uncorrected spectrum (a) it is not resolved between
different isotopes. Correcting the TOF (b) and the energy loss measured in the
ionization chamber (c) each have a noticeable effect on the PID. Once both corrections
are applied (d) the individual fragments are resolved.

drift. In order to properly calculate the centroid, all pads must be gain matched. This

is done by gating on unreacted incoming beam ions dispersed across the entire width

of the CRDCs. The uncalibrated spectrum in Fig 4.7 shows the rather large difference

in the pad readouts. Despite this difference, the uncalibrated data gives reasonable

results for the x position of a particle. Neighboring pads all have a similar readout and

the image charges all occur in neighboring pads. The centroid is then calculated from

these images charges to determine which pad to use as the position of the particle.

Since neighboring pads have a similar readout, the resulting centroid is more accurate
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Figure 4.7: The energy deposits into the CRDC pads must be gain matched. Plots of
the uncalibrated (left) and calibrated (right) energy deposits are shown for each pad
in CRDC1 for a selected isotope.

than Fig 4.7 would suggest. Therefore, this is a second order correction which becomes

important when maximum particle position resolution is required. The calibration of

the ionization chamber and time-of-flight can be done prior to the gain match of the

CRDC despite the fact that their calibration is dependent upon the x position. The

calibration is done in a similar way to the gain matching of the ionization chamber

(Sec 4.1). One of the 224 pads is chosen as the reference point, and then for each

other pad, a slope is calculated to match the readouts to the chosen point. The result

of the calibration is shown in Fig 4.7 and the effect that it has on the x position is

shown in Fig 4.8

4.3.2 Mask Calibration

The y position in the CRDCs is determined by the drift time of electrons. The

drift time is dependent upon the properties of the gas in each CRDC and has been

observed to change over time (3.5.1). Therefore, mask calibrations are performed

periodically throughout the experiment. These masks have holes in known positions

and are inserted directly in front of the CRDC. The mask runs are used to fit the

measured y positions to the known y positions in the mask using a linear function.
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Figure 4.8: The effect of the CRDC pad correction on the x position is shown. The
uncalibrated (left) and calibrated (right) spectra are very similar indicating that this
correction is of second order.

A spectrum from one of the mask calibrations is shown in Fig 4.9. Furthermore, it

is often necessary to examine the y position on a run-by-run basis. This shift can

be corrected by adjusting the slope so that the centroid is consistent throughout the

experiment (Fig 4.10).

4.4 CAESAR

4.4.1 Energy and Timing Calibrations

Prior to the experiment, each of the crystals of CAESAR were gain matched using a

1836 keV γ ray from an 88Y source. The voltages were set such that the 1836 keV γ

ray was around channel 400 in the raw energy spectrum. The energy calibration was

performed by measuring the γ ray spectra from a number of calibration sources (88Y,

137Cs, 22Na, 60Co, 133Ba, and 57 Co). The sources cover an energy range from about

100 kev to 2 MeV.

For each detector in CAESAR, each source run provides a uncalibrated energy

spectrum that is used to map the uncalibrated energies to the known peak energies

for that source. This is accomplished by calculating the centroids for each peak in
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Figure 4.9: The X versus Y positions recorded by the first CRDC are plotted for a
mask calibration run. The mask pattern is clearly visible.

multiple source runs. The values of these centroids are then fit to the known values

of the γ-ray energies for each peak. For this work, a second order polynomial fit is

used so that high energy γ-rays (above 3 MeV) can be examined. It is only at high

energies that the non-linearity of the detector crystals can become an issue, a linear

fit is adequate for lower energy γ-rays. The resulting energy calibration is shown in

Fig 4.11.

In addition to the energy signal, each detector also has a timing signal associated

with the event. After calibrating, it is possible to use the timing to reduce the γ ray

background by excluding all non-prompt γ rays. The calibration is made in a similar

way to the gain matching calibrations performed on the ionization chamber (Sec 4.1)

and the CRDCs (Sec 4.3). A detector is chosen to serve as the reference and all the
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Figure 4.10: The Y position recorded by the first CRDC is shown. For this work, the
drift time was consistent throughout the experiment and there was no need to make
run-by-run adjustments.

other detectors were matched to it (Fig 4.12). This is best done using one of the

source runs that was used for the energy calibration.

4.4.2 Energy Resolution and Efficiency

In order to accurately fit the γ-ray spectra, the resolution of CAESAR must be

determined. This is accomplished by fitting a Gaussian distribution to the γ ray

spectra from the source runs, as shown in Fig 4.13. The maximum-likelihood

estimation (Appendix A) was used to fit the data. The extracted energy resolutions

are used as inputs for the GEANT4 simulation (Sec 4.4.3).

Many of the sources used for the energy calibration are calibrated sources which

have had their radioactivity measured. The expected number of counts in a peak is
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Figure 4.11: (left) Uncalibrated energy plotted as a function of detector numbers.
(right) Energy spectrum calibrated using a second order polynomial fit to standard
calibration sources. The γ-ray spectra are of a 88Y source run.
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Figure 4.12: (left) Uncalibrated time plotted as a function of detector numbers.
(right) Timing spectrum calibrated by shifting the times reported by each detector.
The timing spectra are of a 88Y source run.
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Figure 4.13: The full energy spectrum of a 88Y source run. The spectrum has been
fitted using the maximum likelihood estimation method (Appendix A).
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calculated. Then the number of counts in the peak area is extrapolated by fitting each

spectra with a linear background and using a gaussian the each peak. The ratio of the

observed counts to the expected number of counts provides the absolute full-energy

peak efficiency for CAESAR at that energy. The observed efficiency of CAESAR is

shown in Fig 4.14, where it is compared to the efficiency determined by simulation.

4.4.3 GEANT4 Simulations

For the analysis, it is necessary to know the efficiency of CAESAR between the

energies provided by the source run and how the doppler shift will effect the resolution

and efficiency of CAESAR. A GEANT4 simulation Baugher (2012) was used to

determine the in-beam efficiency and resolution of CAESAR. The simulation models

the effects of energy thresholds, energy resolution, γ-ray energy, velocity, addback,

Doppler shift, Compton scattering, and pair production. Furthermore, certain aspects

of the experimental setup are included such as the beam pipe, detector housing, and

energy loss of the projectile in the target. As shown in Fig 4.14, the simulated

source efficiencies are in good agreement to the efficiencies measured with source

runs during the experiment. In addition to using the simulation for efficiency values,

the γ rays fit in the measured data were compared to simulated spectra. This was

particularly useful at high energies where pair production and Compton scattering

become significant.
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Figure 4.14: The efficiency of CAESAR at detecting γ rays at a variety of energies
is shown. The efficiency shown represents the efficiency for a stationary source using
the addback routine discussed in Sec 3.6.1.
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Chapter 5

Analysis

The analysis of the 108Sn and 106Sn data are discussed in detail. This includes

identifying the reaction fragments, distinguishing between knockout channels to

the ground state versus excited states, extracting momentum distributions, and

calculating cross sections. Discussion of the results will be reserved for Chapter 6.

5.1 Incoming Beam and Particle Identification

Particles were detected in the focal plane of the S800 spectrograph on an event-by-

event basis. The particles were identified using their time-of-flight (TOF) and energy

loss measurements. As discussed in Sec 3.5.3, the TOF is the difference between

the e1 and xfp scintillator timing signals and provides a measure of the magnetic

rigidity. The energy loss was measured in the ionization chamber (Sec 3.5.2) and

allows for the discrimination of particles by charge. By utilizing the TOF and energy

loss measurements, unambiguous particle identification can be achieved.

5.1.1 Unreacted Secondary Beam

Prior to the experiment, the secondary beam is directed to the S800 focal plane

without a target present in the target chamber. This beam is called the unreacted
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Figure 5.1: The unreacted beams for the 108Sn, (a) and (b), and 106Sn, (c) and (d),
experiment are shown. (a) The TOF using the xfp scintillator is plotted against the
TOF from the obj scintillator. This plot demonstrates that the incoming beam is
made up of four discernible magnetic rigidities. (b) The xfp TOF is plotted against
the energy loss to provide particle identification (PID). Here, charge states are clearly
visible that cannot be resolved by magnetic rigidity alone. (c) and (d) The 106Sn beam
has more isotopes and charge states than the 108Sn beam.

beam and is used to configure the magnet settings for the S800. The unreacted

beam provided to the 108Sn and 106Sn experiment can be seen in Fig 5.1. The TOF

vs TOF spectra provide a way to isolate reaction products based on the incoming

isotope from which it came. As shown, the unreacted beam contains isotopes of tin,

indium, cadmium, and silver. In addition, the PID spectra show that there are ions in

dfferent charge states, but with a similar TOF (rigidity). These charge states cannot

be resolved in the TOF vs TOF spectra.
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5.1.2 Reacted Secondary Beam

The reacted beams can be seen in Fig 5.2. As expected, the target introduces a

noticeable TOF spread compared to what was seen in Fig 5.1. Due to energy loss in

the target, the reaction products will take different paths through the spectrograph

portion of the S800 (after the target) dependent on their magnetic rigidity. This path

difference introduces a smearing effect in the TOF. It is important to note that the

TOF is dependent on the rigidity of both the projectile and reaction product. This

makes it possible to distinguish between events where different projectile isotopes

result in the same reaction product.

Beam particles often pass through the target without colliding. This results in a

significant portion of the PID being made up of unreacted particles. As seen in panels

(b) and (d) of Fig 5.2, these unreacted particles make it difficult to resolve the reaction

isotope of interest. Since unreacted particles do not have nuclear interactions with

the target, these particles are far less likely to be in coincidence with γ-rays. Taking

advantage of this, Fig 5.3 is the result of plotting the PID for 108Sn and requiring

a coincident γ-ray. The number of unreacted beam particles is greatly reduced and

each isotope is clearly visible. The coincidence requirement is used only for producing

the plot to show more clearly the location of the reaction products. It is useful for

visual purposes and knowing where to place gates. It cannot be used to clean up or

eliminate data from the rest of the analysis because reaction products are not always

in coincidence with a γ-ray. Often, the reaction product is in the ground state and

no γ-ray is produced. The γ-ray detectors are also not 100% efficient at detecting the

γ-rays (see Sec 4.4.2). This means that even if the reaction product is in an excited

state, the γ-ray can simply be missed by the detectors.
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Figure 5.2: The reacted beams for the 108Sn, (a) and (b), and 106Sn, (c) and (d)
experiment are shown. (a) The TOF vs TOF spectra has been significantly smeared
as a result of the target but the incoming beams can still be resolved. (b) The
unreacted particles of the beam dominate the PID and make it difficult to resolve the
isotopes of interest. Despite this, many reaction products are still visible. (c) Again,
the TOF vs TOF spectra has been smeared due to the target. The contaminants
seen at 1400 and 1450 do not interfere with the analysis because their TOF does not
overlap the area of interest. (d) The unreacted particles are again dominant but do
not pose as large of a problem as in the 108Sn. The reaction products of interest are
resolved.

5.2 Gamma Spectroscopy

The in-beam γ-ray spectroscopy was performed using CAESAR (Sec 3.6). By

measuring γ-rays, isotopes can be identified according to their γ spectra. Plotting

γ-rays in coincidence with the particles in an isotope gate of the PID (Fig 5.2) results
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Figure 5.3: The PID for the incoming 108Sn beam is shown with a γ-ray coincidence
requirement. The result is that the contribution from unreacted particles is greatly
reduced and the reaction isotopes are easily resolved. Isotopes in white can be
identified by γ-ray spectroscopy as described in Sec 5.2.

in a γ-ray spectrum for that reaction. This spectrum is then compared to the known

γ-ray transtitions of isotopes until a match is found.

Fig 5.4 shows the γ-ray spectra for 107Sn and 105Sn. The data has been fit using

the Maximum Likelihood method described in Appendix A. The 107Sn and 105Sn

isotopes are identified by their 150 keV and 200 keV transitions associated with their

respective first excited states. In addition to the data points and the fit, simulated

γ-ray peaks (Sec 4.4.3) are shown on the horizontal axis. The resolution and shape

of the simulated peaks are compared to the fits to aid the interpretation of the data.

The consistency between the simulation and experimental data was checked with the

source runs.
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Figure 5.4: Low-energy γ-ray spectra gated on 107Sn (top) and 105Sn (bottom)
fragments following reactions on 108Sn and 106Sn beams respectively. On the x-axis,
simulated spectra have been plotted for specific γ-ray transitions. The data have been
fit using the Maximum Likelihood method.
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Figure 5.5: The γ-ray spectrum in coincidence with the 150 keV peak in 107Sn is
plotted. A strong coincidence can be seen with a 1220 keV γ-ray.

5.2.1 Coincident Gamma Rays

In order to determine the cross section for knockout to the first excited state, it

was necessary to quantify the feeding from higher states, by accounting for the γ-

rays in coincidence with the first excited state. Fig 5.5 shows that there is a strong

1220 keV peak in coincidence with the 150 keV first excited state in 107Sn. This

implies that there is strong feeding which must be accounted for when looking at the

momentum distribution and calculating the cross sections. Examination of the 107Sn

γ-ray spectrum (Fig 5.4) revealed that all of the 1220 keV peak fed into the 150 keV

first excited state. The number of events in the 1220 keV peak was corrected for the

efficiency of CAESAR and subtracted from the number of events in the first excited

state.
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5.3 Momentum Distribution

5.3.1 Momentum Distribution Reconstruction

As described in Sec. 3.5.1, the CRDCs provide a particle position measurement in

the x (dispersive) and y (non-dispersive) directions at two positions along the beam

axis. The corresponding dispersive (afp) and non-disperive (bfp) angles are given by:

afp =
tan−1 (x2 − x1)

1073

bfp =
tan−1 (y2 − y1)

1073

(5.1)

where x1 (x2) and y1 (y2) are the positions provided by CRDC1 (CRDC2), and 1073

is the distance in millimeters between the two CRDCs.

In order to reconstruct the momentum distribution, the fragment positions at the

focal plane must be related to the corresponding positions and angles at the target

position. An inverted matrix map of the dipole and quadrupole magnets is generated

using the COSY INFINITY code Makino and Berz. (1999) and used to reconstruct

the trajectory of a particle through the S800 Spectrometer.

The energy of a particle traversing the central trajectory of the S800 is calculated

using the formula:

E0 = (m)(u)





√

(

Bρ0
3.107

q

m

)2

+ 1− 1



 (5.2)

where m is the mass and q the charge of the particle, u is the atomic mass, Bρ0 is

the magnetic rigidity of the spectrometer along the central trajectory, and 3.107 is a

unit conversion factor. The trajectory reconstruction with the inverse map results in

the new variables ata, yta, bta, and dta, where ata is the dispersive angle at the target,
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yta is the non-dispersive position at the target, bta is the non-dispersive angle at the

target, and

dta =
E − E0

E0

(5.3)

where E is the energy of the event particle.

The dta and E0 are used to calculate E using Eq. 5.3. The linear momentum is

calculated according to the equation:

p = E

√

1 + 2

(

(m)(u)

E

)

(5.4)

and the scattering angle is calculated according to the equation:

θ = sin−1
√

(sin ata)2 + (sin bta)2. (5.5)

Finally, the parallel momentum can be calculated using the formula:

ppar = p cos θ (5.6)

5.3.2 Momentum Distribution Corrections

The PID does not provide absolute isotope identification. This can be seen clearly

in Fig 5.2 where neighboring isotopes intrude on the 107Sn and 105Sn isotopes. After

calculating the momentum distribution for an isotope, it is necessary to correct for

the intrusion of the neighboring isotopes. The largest contribution comes from the

unreacted 108Sn and 106Sn beams. This is due to their relatively large number of events

and that they are distinguished between the 107Sn and 105Sn isotopes by the TOF

of the particles which has a much larger deviation than the ∆E measurement in the

ionization chamber. It is necessary to calculate the momentum distribution for these

neighboring isotopes and subtract a scaled amount of the momentum distribution
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representative of the amount of that isotope in the 107,105Sn PID gate. The process is

shown in Fig. 5.6 and makes it possible to remove the contributions from neighboring

isotopes.

The momentum distribution of for each state must also take into account the

feeding from any higher-lying coincident γ-ray peaks. As shown in Sec 5.2.1, the 150

keV first excited state of 107Sn is in coincidence with a 1220 keV γ-ray. Therefore,

to get the first excited momentum distribution it is necessary to subtract the feeding

from this higher excited state. Similarly, the momentum distribution for the ground

state can be determined by subtracting the momentum distribution of all excited

states from the total momentum distribution of the isotope. The contributions from

all excited states must be adjusted for the effieicency of CAESAR at that energy.

The final ground state and first excited state momentum distributions for 107Sn and

105Sn, once all other contributions have been removed, are shown in Fig 5.7 and Fig

5.8.

5.4 Cross Sections

In order to calculate the cross sections, it is necessary to know how many 108Sn and

106Sn particles were supplied to the experiment. This was calculated by first finding

the beam purity. For an unreacted run, the total number of 108Sn and 106Sn particles

was divided by the total beam count in the xfp scintillator. This provided a beam

purity which was multiplied by the sum of the beam counts in the xfp scintillator

across all experiment runs. The result is the total number of 108Sn and 106Sn particles

supplied to the experiment.

The cross sections are then calculated according to the equation:

σ(mb) =
106

0.602

A

ρ

c

t
(5.7)
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Figure 5.6: (a) The momentum distribution of 107Sn ground state. (b) The same
momentum distribution plotted with the scaled neighboring isotopes 108Sn, 106In, and
105In also plotted. (c) The final momentum distribution of 107Sn after subtracting the
contributions from the neighboring isotopes.
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Table 5.1: Experimentally determined cross sections for 107Sn and 105Sn are shown.
107Sn Ex σ (mb) 105Sn Ex σ (mb)

Inclusive 57 ± 5 31 ± 10
Ground State 14 ± 6 < 39
First Excited 4 ± 2 3 ± 1
Through States at 1300 keV 40 ± 5

where the leading numbers are unit correction factors, A is the mass of the target, ρ

is the density of the target in mg/cm2, t is the total number of particles previously

discussed, and c is the number of counts in the corresponding final state. Cross

sections were calculated for the ground state, first excited state, higher excited states,

and the inclusive cross sections (all one-neutron knockout channels regardless of

resulting state). An upper limit on the direct population of each state was taken

from the singles γ-ray spectra. In order to take into account the feeding from higher

states, the coincident γ-rays were examined closely. The calorimeter, the energy sum

of all gamma-rays in an event, is shown in Fig 5.9 and was used to place a lower

limit on the direct population of the first excited states. These spectra do not show

signficant direct population of higher excited states. This may indicate feeding from

higher unseen states. The results are shown in Table 5.1
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Figure 5.7: (top) The final momentum distribution for the ground state of
107Sn fragment following reaction on 108Sn beam. (bottom) The final momentum
distribution for the first excited state of 107Sn fragment following reaction on 108Sn
beam.
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Figure 5.8: (top) The final momentum distribution for the ground state of
105Sn fragment following reaction on 106Sn beam. (bottom) The final momentum
distribution for the first excited state of 105Sn fragment following reaction on 106Sn
beam.
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Figure 5.9: The calorimeter is the sum of all γ-rays in a single event. The 107Sn
(top) and 105Sn (bottom) calorimeters provide a lower limit on the cross section for
knockout to the first excited state.
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Chapter 6

Interpretation

In Chapter 5, the γ-ray spectra and momentum distributions associated with the

one-neutron knockout reaction on beams of 108,106Sn were presented. Here, the

interpretation of the γ-ray spectra is discussed, the momentum distributions are

compared to theoretical calculations to make spin-parity assignments, and measured

cross sections are presented for the various knockout channels.

6.1 Gamma Rays

The shell model discussed in Sec 2.1 can be simplified in the tin region above N=50.

The near degeneracy of the d5/2 and g7/2 orbitals and large separation energy between

these and the higher states allows us, in a simple picture, to assume that the valence

neutrons will fill only the d5/2 and g7/2 orbitals. These neutrons are more weakly

bound for light tins than those in the closed core. Thus, in a naive view of the

one-neutron knockout reaction, the removed neutron will always be one of these

valence neutrons. If this were the case, the reaction residue following a one-neutron

knockout would always be in either the ground or first excited state. However, the

measured γ-ray spectra in Sec 5.2 contain γ-ray peaks other than the first excited

peak. Additionally, Sec 5.2.1 shows that γ-rays from the first excited state are seen
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in coincidence with other γ-ray peaks. Indicating that this state is sometimes fed

from higher states. The high energy γ-ray spectra are examined for possible sources

of this feeding.

The first escape peak (Sec 3.6) in the high energy γ-ray spectra of 107Sn and

105Sn becomes significant and the Doppler broadening is large. The result is that the

large Doppler broadening causes the full energy and first escape peaks to overlap.

Therefore, γ-ray transitions have a complex shape in this region. Here, the GEANT4

simulation is a valuable tool for interpreting the high energy γ-rays. Fig 6.1 shows the

high energy γ-ray spectra that is fit using the simulated shape. The 107Sn spectrum

shows a hint of a high energy γ-ray, but too little to make further interpretation on

this alone. However, the coincidences with 1220 keV γ-rays, coupled with the hint of

a high energy γ-ray, provides strong evidence that the naive view of the one-neutron

knockout reaction is incorrect. The presence of these additional γ-ray peaks and

feeding is interpreted here to be the result of knocking a neutron out of the 100Sn

core, below N=50, instead of removing a valence neutron. The removal of a neutron

from the 100Sn core leaves the residue in a highly excited state. This highly excited

state decays to the state associated with the 1220 keV γ-ray which subsequently

decays to the first excited state. This interpretation adequately explains the possible

high energy γ-ray, the 1220 keV γ peak, and the coincidences seen with the first

excited state.

6.2 Momentum Distributions and Cross Sections

In order to make spin-parity assignments, the momentum distributions in Sec 5.3

are compared to the momentum distributions calculated from the eikonal model by

Tostevin (2013) (Sec 3.1). The calculated distributions provided do not take into

account the resolution of the S800 CRDCs. Therefore, it was necessary to determine
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Figure 6.1: The high energy γ-rays are plotted for 107Sn (top) and 105Sn (bottom).
The 107Sn shows hints of a high energy γ-ray transition. The 105Sn suffers from low
statistics and makes fitting unreliable.
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the resolution using the unreacted 108Sn and 106Sn beams then fold this resolution

into the calculations with a convolution. These convoluted calculations are compared

to the experimental momentum distributions in Figs 6.2-6.5.

In Fig 6.2, the momentum distribution for the ground state of the 107Sn following

a one-neutron knockout from 108Sn is compared to the calculated distributions for

∆ℓ = 2 (top) and ∆ℓ = 4 (bottom) neutron knockout. Here, there is an asymmetry

of the experimental peak which gives rise to a tail on the lower momentum side.

This is the result of the reaction residue elastically scattering on the target. The

scattering transfers momentum from the residue to the target and gives rise to the

low momentum tail Bertulani and Hansen (2004). Therefore comparisons are made

to the central and high momentum portions of the distributions. This interaction

is not taken into account in the eikonal model calculations. When comparing the

experimental to the calculated momentum distributions, the width of the peak is of

primary importance. The calculation assuming knockout of a d5/2 neutron provides

a good fit to the experimental data for 108Sn to the ground state of 107Sn with the

exception of the previously mentioned tail. When compared to the g7/2 calculation,

the experimental distribution is much too narrow. Therefore, the ground state of 107Sn

has been assigned a spin-parity of 5/2+. In Fig 6.3, the momentum distribution from

108Sn going to the first excited state of the 107Sn following a one-neutron knockout

reaction has been compared to the same calculated momentum distributions as in

Fig 6.2. The ℓ = 2 (top) calculation provides a poor fit to the data. When scaled

to correctly match the width of the data, it is much too large and does not have

the proper shape. However, the ℓ = 4 calculation fits the experimental distribution

excellently. Thus, the first excited state of 107Sn has been assigned a spin-parity of

7/2+.

In Fig 6.4, the momentum distribution for the ground state of 105Sn following a

one-neutron knockout from 106Sn is compared to the calculated distributions assuming
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∆ℓ = 2 (top) and ∆ℓ = 4 (bottom) neutron knockout. Here the high momentum

residues were outside the range of the S800 focal plane which resulted in a very sudden

drop off in the experimental data. For this reason, the comparison is made using the

visible left side of the peak. This makes comparison more difficult than for the 107Sn,

however there is slight preference to the ℓ = 2 calculation as the ℓ = 4 calculation

is too wide. Therefore, the ground state of 105Sn has been assigned a spin-parity of

5/2+. A comparison between the momentum distribution going to the first excited

state of 105Sn, following a one-neutron knockout, and the same calculations are made

in Fig 6.5. The statistics here are much lower than in the previous comparisons and

the high momentum particles are out of the S800 focal plane. However, the γ-ray tag

creates cleaner experimental data and comparison with calculation is easier than for

the ground state. The ℓ = 2 calculation does not accurately fit the data as it is too

narrow. The g7/2 calculation provides a good fit to the data. The first excited state

of 105Sn has been assigned a spin-parity of 7/2+, supporting the interpretation of a

5/2+ ground state for 105Sn.

A summary of the spin-parity assignments are given in Tab 6.1. These assignments

are in agreement with the shell model calculations which were discussed in Sec 2.1

and Darby et al. (2010).

The experimentally determined cross sections are shown in Tables 6.2 and 6.3

alongside those provided by the spectator core eikonal model discussed in Sec 2.2.

The presence of the first excited state knockout channels indicate a mixed d5/2

and g7/2 neutron configuration for the 108,106Sn nuclei. For 107Sn, the experimental

inclusive cross section is larger than expected by the theoretical calculation. The

experimental and theoretical ground state cross sections agree within the large

uncertainty on the experimental cross section. The first excited state is much lower

than the theoretical calculation. The experimental cross section for the higher excited

states is approximately a factor of 4 larger than the theoretical calculation. These
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Table 6.1: The spin-parity values deduced from one-neutron knockout on beams of
108,106Sn are given for ground and first excited states.

107Sn 105Sn
Ground State 5/2+ 5/2+

First Excited 7/2+ 7/2+

Table 6.2: Experimentally determined cross sections for 107Sn are shown alongside
those provided by theory. The inclusive cross section is the total cross section of the
reaction, regardless of the knockout channel. Uncertainties are statistical.

107Sn Ex σ(mb) 107Sn Th σ(mb) Th Sp Factor
Inclusive 57 ± 5 46
Ground State 14 ± 6 19 2.5
First Excited 4 ± 2 16 3.4
Through States at 1300 keV 40 ± 5
All States Above First Excited 11

discrepancies probably come from the theoretical calculation using a limited model

space. The ground state and first excited state cross sections assume that there is no

significant unseen high-energy transitions directly to these states. If there is significant

unseen feeding to these states then this should be seen as an upper limit for the cross

section. In the case of 105Sn, there is good agreement between the experimental and

theoretical inclusive cross sections. Low statistics prevent the analysis of the feeding

to the ground state. Therefore, only an upper limit for the cross section of the ground

state can be determined. Similar to the 107Sn case, the first excited state cross section

is much lower than expected from the theoretical calculation. The possibility of direct

feeding into the ground state from an unseen high excited state makes comparison

between the ground state and first excited state cross sections unreliable. Therefore,

little can be said about the degree of neutron configuration mixing in the ground

states of 108,106Sn.
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Figure 6.2: The final momentum distribution of 107Sn residues in the ground state
following the one-neutron knockout from 108Sn is compared to theoretical calculations
assuming ℓ = 2(top) and ℓ = 4(bottom) knockout.
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Figure 6.3: The final momentum distribution of 107Sn residues in the first excited state
following the one-neutron knockout from 108Sn is compared to theoretical calculations
assuming ℓ = 2(top) and ℓ = 4(bottom) knockout.
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Figure 6.4: The final momentum distribution of 105Sn residues in the ground state
following the one-neutron knockout from 106Sn is compared to theoretical calculations
assuming ℓ = 2(top) and ℓ = 4(bottom) knockout.
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Figure 6.5: The final momentum distribution of 105Sn residues in the first excited state
following the one-neutron knockout from 106Sn is compared to theoretical calculations
assuming ℓ = 2(top) and ℓ = 4(bottom) knockout.
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Table 6.3: Experimentally determined cross sections for 105Sn are shown alongside
those provided by theory. The inclusive cross section is the total cross section of the
reaction, regardless of the knockout channel.

105Sn Ex σ(mb) 105Sn Th σ(mb) Th Sp Factor
Inclusive 31 ± 10 34
Ground State < 39 14 1.9
First Excited 3 ± 1 13 2.8
Higher Excited 7
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Chapter 7

Conclusion

The study was motivated by the need to probe the nuclear structure in the regions

close to doubly magic 100Sn. In February 2011, an experiment was conducted at the

National Superconducting Cylotron Laboratory at Michigan State University where

the one-neutron knockout reactions 9Be(108Sn, 107Sn + γ)n and 9Be(106Sn, 105Sn +

γ)n were used to study the structure of 107Sn and 105Sn respectively. A primary beam

of 124Xe was used to produce secondary beams of 108Sn and 106Sn. These were reacted

on a 9Be target at the front of the S800 spectrograph at 140 MeV/nucleon. CAESAR

was used to measure γ-rays in coincidence with the neutron knockout, allowing us

to differentiate between the ground state and first excited state knockout channels.

The reaction residues were then directed to the S800 focal plane. The residues were

identified using the ∆E-TOF method. The x and y positions of each particle were

measured using CRDCs

These positions were used to reconstruct the momentum distributions of the 107Sn

and 105Sn reaction residues at the target. These momentum distributions were used

to determine the ℓ-values of the ground state and first excited state for 107Sn and

105Sn. These assignments were made by comparing the experimental momentum

distributions with theoretical distributions calculated from a spectator core eikonal

model. This lead to a spin-parity assignment of 5/2+ for the ground state and 7/2+
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for the excited state of 107,105Sn. The presence of the first excited state γ-ray indicates

that the configuration space of 108,106Sn isotopes are mixed between the d5/2 and g7/2

single-particle states.

The cross sections for the knockout to the ground state are compared to those

for the knockout to the first excited state. In the case of both 107,105Sn, the cross

section for knockout to the ground state is significantly larger than the cross section

for knockout to the first excited state. This indicates that the wavefunctions for

the ground state of 108,106Sn are dominated by the d5/2 single-particle state. These

cross sections are also compared to reaction calculations which used as input the

neutron configuration that was calculated in the shell model. In both 107,105Sn,

the experimental ground state cross sections are between 50% more than and twice

those predicted by theory, while the experimental first excited state cross sections

are significantly less than those predicted by theory. This could indicate that the

d5/2 dominates the neutron configuration more than predicted by the shell model

calculations.

7.1 Future Outlook

This experiment was used to gauge the feasibility of a future one-neutron knockout

experiment on 102Sn and 104Sn. This study has been proposed and accepted at

RIKEN using the high-efficiency γ-ray detector array DALI2 in conjunction with

the Zero Degree Spectrometer. The proposed experiment uses a 124Xe primary beam

to produce the 102Sn and 104Sn secondary beams. The momentum distribution of

the resulting 101Sn and 103Sn residues reflect the ℓ-value of the removed neutron and

will be measured. By measuring γ-rays in coincidence with the knockout reaction,

it is possible to differentiate between knockout to the ground state from knockout

to the first excited state. The momentum distributions for each knockout channel
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will be compared with reaction calculations. These will be used to make spin-parity

assignments to the ground and first excited states of 101Sn and 103Sn.
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Appendix A

Maximum Likelihood

The Maximum Likelihood estimation (MLE) is a fitting procedure used to estimate

the parameters of a statistical model. This is accomplished by using probability

density functions (PDFs) to determine the parameters which are most likely to

produce the provided data.

PDFs are typically constructed from common functions (Gaussian, exponential,

etc) but can be any continuous differentiable function. When fitting the high-energy

γ-rays discussed in Sec 6.1, the PDF partially consisted of the probability distribution

produced by GEANT4 simulation.

The PDF models the distribution of the observed data. Since the task is to

determine the PDF from the observed data and not to predict the data from a given

PDF, a new function must be defined. The likelihood function is defined by reversing

the roles of the data vector y and the parameter vector w for a PDF such that:

L(w|y) = f(y|w) (A.1)

where f(y—w) is the PDF Myung (2003).
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The MLE is found by maximizing the likihood equation with respect to wi,

∂lnL(w|y)

∂wi

= 0 (A.2)

where the natural log of the likelihood function is used to make the problem less

computationally expensive.
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