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ABSTRACT 

Among living tetrapod vertebrates, snakes exhibit the most radical shifts in feeding 

biology and among limbless squamate reptiles, only snakes have undergone a 

substantial adaptive radiation.  The behavioral innovation, constriction, has been 

associated with the success of this clade.  Constriction is a prey restraint behavior that 

enabled snakes to immobilize and subdue extremely large prey items relative to their 

own body mass.  This behavior pattern is associated with the incredible shifts observed 

in snake feeding biology from consuming small meals frequently to less frequent 

feeding on large prey.  Although constriction is an ethological homology for the 

majority of snakes, variations of constriction postures have been documented in many 

derived snake lineages.  Nevertheless, the mechanisms driving behavioral variation are 

not well understood.  In this dissertation, I attempt to use a comparative hierarchical 

approach to examine constriction behavior at both the ethological and physiological 

levels in order to better understand the behavioral variation of this key innovation. 

  As reviewed in Part 1, derived snake lineages seem to have several methods with 

which to restrain prey.  Prey restraint methods appear to vary with respect to prey 

characteristics (size, shape, activity level).  On the other hand, intermediate taxa (boas 

and pythons) are thought to be less variable in the prey restraint phase of feeding.  The 

kinematics of loop application pattern also appears to differ between intermediate and 

derived snake groups.  Derived snakes use the lateral part of their body to wind prey 

whereas boas tend to bend ventrally around prey.  The polarity for variable prey 

restraint behavior and loop application patterns have not been determined as 

observations on feeding behavior for basal snake taxa are lacking. 
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I report on stimulus control studies evaluating prey restraint behavior and loop 

application pattern for basal and intermediate snake taxa in Part 2.  Testing for the 

effects of prey size and status on the prey restraint behavior enabled me to polarize 

variable prey restraint behavior and loop application pattern.  Prey size and status had 

varying effects on the capture position, prey restraint method, prey restraint time and 

swallowing time for basal and semi-fossorial boas while individuals of B. constrictor 

only constricted prey.  Looping one or more times around prey was observed during the 

intraoral transport (swallowing) phase of feeding in the majority of trials for L. bicolor 

and Erycine snakes (Eryx muelleri, Charina bottae, Lichanura triviragata).  Loop 

application patterns varied across snake taxa with basal and semi-fossorial boas 

applying loops laterally around prey.  Individuals of B. constrictor bent ventrally around 

prey.  The ability to vary prey restraint behavior, in response to prey characteristics and 

applying loops laterally around prey is probably the ancestral condition in snakes.  

Intermediate taxa, such a boas exhibit a derived simplified behavioral repertoire.  

Examining the underlying physiology of a complex motor pattern, such as 

constriction behavior, can provide a better understanding of the hierarchical structure of 

organisms in nature.  As an ethological homology, constriction behavior provides us 

with the opportunity to trace evolutionary change at other levels of biological 

organization and to examine how various levels within a hierarchy relate to one another. 

Although constriction is an important key innovation associated with the adaptive 

radiation of snakes, few studies have examined the underlying physiological patterns of 

this complex motor pattern that may account for the kinematic variability of constriction 

postures among snakes.  In Parts 3 & 4, I comparatively examine the muscle activity 
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patterns during constriction for basal and intermediate snake lineages.  I specifically 

investigated how the underlying physiological mechanisms of constriction correspond to 

the postural changes observed at the behavioral level using electromyography.  Lateral 

bending and unilateral muscle activity patterns were predominant in the basal taxon, 

Loxocemus bicolor.  Lateral bending and unilateral muscle activity patterns were also 

observed in derived snake taxa previously documented.  Ventral bending and bilateral 

epaxial muscle activity patterns were predominant in intermediate lineages and present in 

derived snake lineages.  Therefore, similar to prey restraint behaviors, three epaxial 

muscle activity patterns were observed: 1) mostly lateral bending with unilateral epaxial 

muscle activity, 2) mostly ventral bending with bilateral muscle activity and 3) mostly 

lateral and some bilateral bends associated with both unilateral and bilateral epaxial 

muscle activity, “mixed”.  The kinematic and muscle activity patterns correspond with 

the ethological data in Part 2. 

Lateral bending and unilateral epaxial muscle activity support the more variable prey 

restraint behaviors observed in basal and derived snake taxa.  Ventral bending and 

bilateral activity supports the highly stereotyped behavior patterns observed in 

intermediate snake taxa.  A ‘mixed’ kinematic and epaxial activity pattern supports 

highly variable prey restraint methods as observed from previous research on gopher 

snakes and kingsnakes.  Thus the patterns of epaxial muscle activity underlying 

constriction behavior can be correlated with the variability in prey restraint postures.  

In Part 5, I integrate the behavioral, physiological, and ecological differences reported 

for L. bicolor and Boid snakes, from the stimulus control data and the physiological 
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data collected in this study, to further discuss the origin and evolution of feeding 

behavior among basal, intermediate and derived snake taxa.
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BEHAVIORAL VARIATION AND HIERARCHY OF ORGANISMAL DESIGN 

The idea that a particular trait or a suite of characters may be correlated with an 

increase in species diversification has a long tradition in evolutionary biology (Simpson, 

1953; Mayr, 1969).  Evolutionary novelties, otherwise known as key innovations, are 

adaptations enabling a clade to utilize a resource from which the ancestors of the clade 

were previously excluded (Liem, 1974; Futuyma, 1998).  Traditionally, key innovations 

were viewed as newly acquired physical structures that potentially permitted a new 

function.  However, recent attention has been directed to other types of key innovations, 

such as novel dietary habits and behavior patterns (Wainwright et al., 2002; Alfaro et al. 

2001).  Although these behavioral innovations are dependent upon underlying 

physiological traits involving, but not limited to, the musculoskeletal system, sensory 

systems, and the brain, the phylogenetic analysis of these traits has been little used in 

comparative behavior studies (Lauder & Reilly, 1996).  Physiological traits may be 

especially important in examining behavioral innovations within a clade when they can 

be associated with the clade’s success. 

The re-evaluation of the key innovation concept is reflected in recently proposed 

definitions (for review see Muller and Wagner, 1991).  According to Hunter (1998), key 

innovations are aspects of organismal phenotypes important to the origin or subsequent 

success of a taxonomic group.  This definition highlights the idea that specific attributes 

of organisms have been especially important and relatively stable over evolutionary 

time.  I interpret Hunter’s definition to include behavioral, morphological, and 

physiological characters.  By extending the key innovation concept to traits that are not 

just structural helps further integrate the concepts of ecology and macroevolution to 
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better understand the differential performance among clades.  When investigated from a 

hierarchy of levels, key innovations can potentially provide a better understanding of 

the evolutionary processes acting on different aspects of the organism (Lauder & 

Schaffer, 1993; Lauder & Reilly, 1996; Hunter 1998).   

Understanding the mechanisms that drive behavioral similarities and differences 

among animals has long inspired ethologists and evolutionary biologists (Tinbergen, 

1963; Mayr, 1969).  Current views in evolutionary biology strongly suggest that thorough 

comparative analysis of behavioral variation among species requires that the character 

traits under examination be broken down and then reassembled into a hierarchy of levels 

(Lauder, 1994).  In other words, behavioral differences among closely related taxa within 

a clade may be sorted into the functional interrelationships between morphology, muscle 

topology and central nervous system output.  This hierarchy of data, which incorporates 

characters grouped into structural or functional classes, reflects proximate causes for 

variation at the behavioral level (Lauder and Reilly, 1996; Lauder, 1991).  The study of 

the proximate mechanisms that may drive behavioral differences across groups of 

organisms is especially important when clades exhibit differential success (species 

diversity) as measured by number of species or new adaptive zones as defined by their set 

of related ecological niches. 

The study of the evolutionary patterns of congruence among functional classes of 

characters at different hierarchical levels raises several general questions (Lauder, 

1994): 1) do traits at some levels tend to be more conservative and show relatively little 

interspecific variation?, 2) do traits at some levels tend to be more interspecifically 

labile?, and 3) is variation at one level correlated with variation at another level?  For 
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example, taxa may reveal homologous patterns of muscle activity but divergent 

behavior patterns due to changes that may have occurred in musculoskeletal topology 

(Lauder, 1991).  These patterns of discordance among levels present interesting 

problems in the evolution of organismal design.  The phylogenetic perspective 

combined with the analysis of organismal traits at several hierarchical levels allows 

these questions to be addressed (Striedter & Northcutt, 1991; Lauder 1991, 1994). 

Although studies of a single species are valuable, they only address questions 

concerning character maintenance of that species (McLennan, 1991).  In order to reveal 

the processes involved in character transformation, information from at least two other 

species, preferably the closest extant taxon to our focal group and an outgroup, are 

necessary.  Phylogenetic comparative methods (PCM) can be used to infer the ancestral 

states of characters and to suggest patterns of character transformation.  Specifically, 

PCM enables researchers to infer patterns and processes of character evolution from the 

patterns observed in extant species (Martins & Hansen, 1996).   

In this dissertation, I comparatively examine constriction behavior, a key behavioral 

innovation in snakes.  Snakes have inspired studies in an array of fields such as 

evolutionary biology (Greene, 1983; 1997; Cundall & Greene, 2000), comparative 

psychology (Burghardt, 1991; Chiszar et al., 1992), functional morphology, and 

physiology (Cundall, 1987; Kardong, 1998).  This undoubtedly reflects the considerable 

biological diversity encompassed in these externally simplified vertebrates.  Some of 

the most fascinating characteristics of this group of reptiles centers around their unique 

feeding behaviors.  Among living tetrapod vertebrates, snakes exhibit the most radical 

shifts in feeding biology and among limbless squamate reptiles (lizards and snakes) 



 5

only snakes have achieved substantial adaptive radiation and high species richness 

(Cundall & Greene, 2000).   

I use a hierarchical perspective to examine constriction behavior at both the 

ethological and physiological levels.  Constriction, a complex feeding behavior in 

snakes, serves as an ideal topic for interesting comparative evolutionary studies since it 

1) is a key behavioral innovation that has been correlated with the success of a 

vertebrate clade, 2) consists of a readily defined sequential modal action pattern 

(Burghardt, 1973; Barlow, 1977), 3) varies interspecifically, and 4) reveals great 

diversity in ecological and morphologic adaptations for assessment of similarities and 

differences (Greene, 1977).  Since Greene & Burghardt’s (1978) study on the homology 

of constriction behavior in snakes, little research has focused on the biomechanics or 

physiology of this behavior pattern.  The overall goal of this dissertation is to trace the 

transformation of constriction, a key behavioral innovation, across ethological and 

physiological levels.  My aims are to:  

1) comparatively examine the effects of prey characteristics (prey size and status) on the 

constriction behavior of basal and intermediate snakes, 2) document the kinematics and 

epaxial muscle activity patterns during constriction in a basal snake, and 3) examine the 

kinematics and epaxial muscle activity patterns during constriction in two intermediate 

snake lineages and compare the patterns to those of basal and derived snakes.  In the 

following pages, I provide a brief summary of the work on constriction behavior in 

snakes that led to the aims of this study and present a summary of my dissertation 

experiments for Parts 2-4.   
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CONSTRICTION BEHAVIOR IN SNAKES 

A Brief Overview 

Accounts of snake feeding behavior, particularly descriptions of prey handling/ 

restraint, can be found in the literature as early as the late1800’s (Hopley, 1882; Wall, 

1911; Boulenger, 1912; Mole, 1924).  Ditmars (1914) must have been one of the first 

reptile enthusiasts to separate snakes into, “constrictors, semi-constrictors, and non-

constrictors.”  Constrictors were defined as, “serpents of all sizes that kill their prey by 

coiling about it and squeezing it to death” (p.199).  According to Ditmars (1914), 

constrictors could be found within the families Boidae and Colubridae.  Semi-

constrictors were those snakes that subdued prey by holding it within a single coil or 

pressing it firmly against the ground by a fold of the body while attempting to swallow 

it.  Since Ditmar’s review on the feeding habits of serpents, several short descriptions of 

snakes constricting prey appeared in the literature (Loveridge, 1928; Pope, 1935; Axtell, 

1951; Myers, 1965).  However, it was not until the contributions of Pope (1961), 

Frazzetta (1966) and Shrewsbury (1969), that constriction was recognized as an 

innovation worthy of comparative behavioral (Willard, 1977) and  kinematic 

(Greenwald, 1978) analyses.   

Shortly after, constriction was not only identified as a key behavioral innovation in 

snakes, but was recognized as the first behavioral homology documented at the familial 

level (Greene, 1977; Greene & Burghardt, 1978).  Greene (1977) was the first to 

examine constriction behavior from a phylogenetic perspective, which led to a better 

understanding of the distribution and evolution of the behavior pattern.  Constriction 
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behavior, and the role of prey handling in snake feeding biology, would soon be 

recognized as a worthy topic for comparative evolutionary studies.   

One of the most interesting observations about constriction feeding behavior that 

stemmed from the work of Greene (1977) is the diversity of loop application patterns 

that can be observed while snakes form a constriction coil.  Greene (1977) documented 

slight individual variability and no interspecific and intergeneric variability in coil 

application movements for intermediate snake taxa (Boas and pythons) but highly 

variable coil application patterns in derived snake taxa. Although Greene’s initial 

assessment of constriction behavior was superimposed onto a phylogeny that is no 

longer supported, current views on the evolutionary relationship of snakes support 

Greene’s findings that constriction is a shared modal action pattern for the majority of 

snake taxa (Greene, 1994).  This variation in constriction behavior is reflected in the 

definition of constriction posed by Greene & Burghardt (1978).  Constriction was 

defined as, “a behavior pattern in which prey is immobilized by pressure exerted by two 

or more points on a snake’s body” (p. 74).  This definition is broad and general, 

encompassing the great variability in constriction postures, and remains the accepted 

definition for this unique prey restraint behavior today.   

Greene (1977) reported that 19 out of the 27 possible permutations of constriction 

postures could be observed in colubroid snakes.  Since then, studies have attempted to 

examine how different stimuli may contribute to the variability of constriction across 

colubroid snake taxa.  Specifically, prey size (Mori, 1991, 1994; Mehta, 2003), prey 

type (Mori, 1991) and prey activity level (de Queiroz, 1984) have been correlated with 

the incredible diversity in prey handling behavior observed in colubroid lineages.  Much 
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work has also focused on the interspecific variation of constriction patterns (de Queiroz 

& Groen, 2001, Milostan, 1989; Mori, 1994; Rudolph et al., 2003) and the ontogeny of 

constriction (Milostan, 1989; Mori, 1991, 1993 a, b; Waters, 2000; Mehta, 2001).   

The ontogeny of constriction has encouraged interesting questions related to innate 

and learned behavior patterns, and the role of maturation in learning (Mori, 1993 a,b, 

1994, 1995; Milostan, 1989; Mehta, 2001).  Subsequent experience with prey is said to 

affect prey restraint behavior in snakes as well as overall response to prey items (Fuchs 

& Burghardt, 1971).  Mori (1993a) documented how feeding experience with different 

sized prey can influence subsequent prey restraint behavior in Elaphe climacophora, a 

derived snake.  Mehta (2001) documented how experience and maturation can affect 

prey restraint behavior in young trinket snakes, Elaphe helena.  

In addition to the studies dealing with the ontogeny of constriction, the recent 

contributions in the herpetological literature on prey handling observations for derived 

snake taxa (Gregory et al., 1980; Waters, 2000; de Queiroz & Groen, 2001; Rudolph et 

al., 2003) further support the importance of phylogenetic history in behavioral variation.  

Intermediate snake taxa, such as boas and pythons, do not exhibit considerable variation 

in their constriction postures throughout ontogeny, and are observed to be highly 

stereotyped as adults (Greene, 1977; Greene & Burghardt, 1978; Milostan, 1989).  In 

fact, boas and pythons constrict with the same prowess as the adults of their species on 

their first encounter with prey (Greene, 1977; pers. obs.).  On the other hand, colubroid 

lineages exhibit variation in their prey handling repertoire throughout ontogeny 

(Milostan, 1989; Mori, 1991; Mehta, 2001, 2003) and evidence suggests that strong 

selection pressures for prey immobilization can lead to the evolution of constriction 
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behavior in non-constricting lineages (Gregory et al., 1980; de Queiroz & Groen, 2001).  

Eventually, these newly selected behaviors can be refined over evolutionary time.  

Thus, in a habitat in which one must specialize on a particular prey item, it might be 

expected that neonate snakes have an innate prey-handling behavior, whereas a more 

unpredictable environment may favor more flexible and plastic behavior. 

Today, there is still a major need for the assessment of constriction coil application 

pattern for many species of snakes (neonates and adults), primarily basal 

alethinophidian taxa and highly derived snake species that are members of colubroid 

lineages.  Whether the colubroid coil application pattern and variable prey handling 

behavior is derived remains unknown.  In fact, assessment of the polarity of variable 

prey restraint methods is not possible without the examination of basal snake taxa that 

are known to constrict prey and a reexamination of basal and intermediate 

macrostomate constriction behavior.  Although Greene (1977) examined the 

constriction postures of boas and pythons on various substrates and with various prey 

items, a stimulus control design was not used.  Stimulus control studies consist of a 

series of experiments in which the stimulus expected to elicit or control the behavior 

under investigation is varied by a single parameter.  This not only allows for close 

examination of any variability in behavior, but this standard experimental design is 

ideal for comparative studies.  

As the literature on prey handling behavior increases, the terminology used to 

describe constriction postures needs to be evaluated.  Assessment of loop application 

with the current terminology is becoming increasingly challenging.  This challenge may 

be partially due to the fact that as more descriptions of constriction behavior are 
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obtained, particularly from derived snake lineages, some loop application patterns will 

not easily or neatly fit into the categories of descriptors proposed.  This is especially 

true if constriction patterns are continuous rather than discrete patterns, particularly in 

derived snake taxa that re-evolved constriction (de Queiroz & Groen, 2001).  Also, as 

different researchers contribute to our understanding of constriction behavior, some of 

the terminology can potentially be misinterpreted.  This phenomenon has already been 

documented in the antipredator literature but fortunately, newly proposed terminology 

will help clarify behaviors observed for future antipredator studies (Mori & Burghardt, 

2004).  Thus, it is becoming more evident that we need to do the following: 1) 

streamline characters and character states, and identify only the crucial characters 

important for comparative studies, 2) agree on simple descriptors that are easily 

understood in the absence of diagrams or photos and 3) continue to provide diagrams, 

photos and video of constriction behavior whenever possible.   

Willard (1977) examined the constriction behavior for 43 species of snakes. In his 

analyses three methods of loop application were recognized: 1) those with venter 

(stomach scales) facing forward, 2) those with venter facing backward, and 3) irregular 

coils with no consistent surface against the prey.  Greene (1977) adopted the first two 

character states but renamed them as (twist [1] and no twist [2]) which is less 

descriptive but is clear when photos or diagrams are available.  Although studies have 

adopted the terminology proposed by Greene (1977) and Willard (1977), I argue that if 

constriction is to be studied from other levels, other than the ethological level, the 

‘twist’ may not be as crucial of a character state in understanding constriction but 

rather, which part of the snake’s surface is in contact with the prey.  The terminology I 
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use (ventral and lateral) that should replace descriptors that are commonly associated 

with the character state ‘twist,’ (venter facing forward and venter facing backward) was 

suggested and applied earlier by Moon (2000).   

Moon (2000), the first to examine constriction from a physiological perspective, 

described constriction postures in terms of the axial skeleton and musculature.  The 

axial musculature is separated into two parts, the epaxial (dorsal) and hypaxial (ventral) 

regions, and these regions play important roles in constriction behavior (Cundall, 1987).  

The elongate Bauplan of snakes enables them to form small arcs in their body by 

bending laterally and ventrally.  In relation to the definition of constriction (Greene & 

Burghardt, 1978), I describe a bend to be lateral when the side of the snake comes in 

contact with the prey.  During lateral bending, one can easily see not only the dorsal 

part of the snake but also the ventral part (Fig. A-1; photos also available in Greene & 

Burghardt, 1978; Shine & Schwaner, 1985)1. During a ventral bend, the ventral side of 

the snake is pressed against the prey so one can see mostly the dorsal side of the snake.  

These bending postures that correlate with the underlying muscle activity patterns 

observed during constriction (Moon, 2000), are less elusive than presence or absence of 

a ‘twist,’ proposed by Greene (1977), and will be used throughout this dissertation.  

 

OBJECTIVE AND SUMMARY OF PARTS 

Part 2: A Re-examination of the Evolution of Constriction Patterns in Snakes 
      
Snakes comprise a monophyletic group of obligate predators.  Behavioral, structural, 

and physiological innovations enabled snakes to achieve an exceptionally speciose and 

                                                 
1 All figures are located in the Appendix. 
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diverse adaptive radiation (Cundall and Greene, 2000).  Constriction of prey appears to 

have been the key behavioral innovation behind the success of this reptilian group 

(Greene, 1983, 1994).  Snakes can be categorized into seven major groups with respect to 

their feeding biology (Fig A-2):  Group I- those that feed on very small prey and 

frequently, Group II-VI-those that feed relatively infrequently on large prey items, and 

Group VII- (Colubroidea) reflects many feeding shifts from piscivorous snakes to snakes 

that feed on prey that can exceed their own body mass by as much as 50% (Viperidae) 

and snakes that approach lizards in feeding biology (some lineages in the Colubridae). 

As shown in Fig. A-2, the earliest snakes, blind snakes (Scolecophdia), are Group I 

snakes. Blind snakes are restricted to eating small invertebrates, such as termites, and 

have a heavily ossified skull for burrowing (Kley, 2001).  All other snakes belong to the 

Alethinophidia and can be classified in one of the six feeding groups.  Alethinophidians 

contain three major snake groupings: Basal Alethinophidia, Macrostomata and 

Colubroidea. Basal alethinophidians are the least studied of all snake lineages (Cundall 

& Greene, 2000).  Within the Family Loxocemidae (one species), is the oldest extant 

taxon capable of consuming and immobilizing mammalian prey matching or slightly 

exceeding its own head width.  Only one study (Greene, 1977) has documented 

constriction behavior in Loxocemus bicolor. 

The next group of snakes, the Macrostomata (i.e., Boines - next four families in Fig. 

A-2, are characterized by a morphological key innovation, the streptostylic quadrate. 

This change in the lower jaw allowed snakes to swallow prey much larger in diameter 

than their own heads.  Several studies have shown that constriction in the macrostomata 

is highly stereotyped (Greene, 1977; Willard, 1977; Milostan, 1989).  Moreover, 
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constriction patterns of boas and pythons do not appear to be affected by varying prey 

characteristics, although more empirical evidence is necessary (Greene, 1977; Milostan, 

1989).  

Colubroid snakes (last four families in Fig. A-2), comprising over 90% of all extant 

snake taxa, represent such a diversity of shapes, sizes, habitats, diets, and behavior that 

generalizations of the group are difficult (Greene, 1997).  Constriction evolved multiple 

times in the colubroid snakes, although it seems completely absent from the Viperidae 

(Greene, 1994).  Unlike boas and pythons, colubroid constriction is more variable in 

form and deployed selectively in response to prey characteristics (type: Mori, 1991, 

1993 a, b; size: Mori, 1991, 1993 a, b; Mehta, 2003; and activity level: De Queiroz, 

1984).  At least five different prey restraint behaviors have been described for colubroid 

snakes (Greene, 1977; Greenwald, 1978; Mori, 1994; De Queiroz & Groen, 2001; 

Mehta, 2003).  Although it has been assumed that the colubroid constriction pattern is 

derived, and the boine pattern ancestral, this has not been confirmed through careful 

study of basal snakes. 

The goal of my experiment in Part 2 is to describe in detail the prey restraint 

behavior and loop application pattern for Loxocemus bicolor, Boa constrictor, and four 

species of Erycine snakes and to test for the effects of prey size and status on their 

feeding behaviors.  The phylogenetic position of L. bicolor, sister taxon to boas and 

pythons, and the morphological data that suggests L. bicolor has some boid–like 

characteristics, lead me to hypothesize that constriction behavior for L. bicolor will be 

highly stereotyped and that prey characteristics will not affect the prey restraint 

behavior for any of these three lineages.  
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Part 3: The Kinematics and Epaxial Muscle Activity Patterns During Constriction in the  
 
Neotropical Sunbeam Snake (Loxocemus bicolor) 
 

Bilateral and unilateral muscle activity patterns are common across vertebrates, 

especially in those taxa that have undergone limb reduction or limb loss.  A recent study 

examining the role of the epaxial musculature during constriction in derived snake taxa 

revealed mostly unilateral patterns of epaxial muscle activity during constriction (Moon, 

2000).  Whether epaxial muscle activity patterns are homologous across snake lineages 

is unknown, as only derived species have been examined.  The purpose of this 

experiment is to examine the epaxial muscle activity pattern of a basal alethinophidian 

snake, Loxocemus bicolor.  This experiment, along with the behavioral studies for L. 

bicolor I present in Part 2 of this dissertation, will help polarize constriction postures in 

snakes as well as muscle activity patterns during constriction.  From morphological data 

L. bicolor has been regarded as either a primitive boid, (Frazzetta, 1966,1970; Rieppel, 

1978) or as a member of a distinct family intermediate between basal and derived 

snakes.  As current taxonomy suggests L. bicolor is the sister taxon to intermediate 

lineages (boas and pythons), I hypothesize that L. bicolor will exhibit highly stereotyped 

constriction postures.  Constriction with high stereotypy seems to be associated with 

ventral bending rather than lateral bending.  Ventral bending, unlike lateral bending, 

requires that the ventral scales of the snake be in contact with the prey.  In lateral 

bending, one side of the snake is in contact with the prey, and epaxial muscles are active 

on the side of the body that comes in contact with the prey.  Therefore, I hypothesized 

that L. bicolor will exhibit bilateral epaxial muscle activity patterns during constriction.  
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This implies that unilateral epaxial muscle activity is the derived condition in snakes that 

constrict prey.   

Part 4: The Evolution of Constriction Patterns in Snakes: A Physiological Homology 

Constriction, a prey restraint behavior in which prey is immobilized and subdued via 

pressure, was the first behavioral homology to be identified at the familial level (Greene 

& Burghardt, 1978; Greene, 1994).  However, only recently have the underlying muscle 

activity patterns and kinematics been assessed for this key behavioral innovation 

(Moon, 2000).  The purpose of this study is to examine whether constriction behavior is 

homologous at the physiological and kinematic levels across snake taxa.  Moon (2000) 

and Mehta, in collaboration with Moon (Part 3), examined the epaxial motor patterns 

for two derived and one basal snake taxa.  In order to use the comparative method to 

assess homology across the Serpentes, a third taxon, intermediate in phylogenetic 

position, must be examined.  I examine constriction at the physiological and 

biomechanical levels for two intermediate taxa, Python molurus and Boa constrictor.  

Python molurus and B. constrictor are basal macrostomate snakes that are known to 

constrict prey items comprising significant portions of their own body mass.  Earlier 

studies suggested that the kinematics of intermediate snake taxa differed from highly 

derived snake lineages (Frazzetta, 1970).  More recent behavioral and 

electromyographic studies (Parts 2 & 3) revealed that an intermediate snake taxon, Boa 

constrictor, exhibited highly stereotyped feeding patterns and did not vary constriction 

behavior in response to prey size or status.  Basal snake lineages, on the other hand, 

appear to share similar behavior and epaxial motor patterns with highly derived snake 

lineages.  Based on my experiments that analyzed constriction behavior in intermediate 
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snake taxa, I hypothesize that boas and pythons will exhibit derived constriction 

patterns at the behavioral, biomechanical, and physiological levels. Comparisons of 

epaxial muscle activity patterns in behaviorally homologous characters across three 

major lineages of snakes will help reveal whether numerous functional specializations 

have occurred in muscle activity patterns and how these transformations relate to 

variability in constriction postures.  

Part 5:  How Deep Is Constriction Behavior? 

 In this dissertation I explore the levels of homology for a key behavioral 

innovation, constriction.  This phylogenetic concept of homology has important 

implications for evolutionary biology and can help address proximate as well as 

ultimate causation of character variability (Lauder, 1990, 1994).  Restricting the use of 

the term homology to monophyletic clades enables a better understanding of the 

covariation that may take place between several characters.  Many interesting trends in 

the evolution of organismal design appear when characters are examined from a 

hierarchy of levels (Lauder, 1994).  In particular, multilevel studies illustrate the 

complexity of the relationship between structure, function and behavior.  Several 

studies to date have illustrated that the reorganization at one level of organismal design 

may not necessarily lead to changes at other levels of design (Lauder, 1990, 1991; 

Wainwright & Lauder, 1992).  Traits that are homologous at one level of organismal 

design need not be homologous at other levels.  In Part 5, I summarize the findings of 

my study and discuss the implications of my work to the understanding of the evolution 

of feeding behavior in snakes.  I also discuss how the ideas in this study can be used to 

better understand character transformation and organismal design.
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Figure A-1  Bending patterns of snakes during the prey restraint phase of feeding.  An 

adult Loxocemus bicolor constricts large live prey by using the lateral (side) of its body to 

apply loops to form a coil (A).  A juvenile Eunectes murinus uses ventral bending to 

apply loops around a small dead prey item (B).  In ventral bending the snake bends 

forward so the belly scales of the snake are pressed up against the prey.  
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Figure A-2  Phylogeny of the Serpentes compiled from morphological (Cundall et al., 

1993; Kluge, 1991, 1993; Rieppel, 1978, 1988) and molecular data (Cadle, 1994; Cadle 

et al., 1990).  Families in bold are the focus of my dissertation. 
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ABSTRACT 

The selection for multiple prey restraint methods helped snakes shift from feeding on 

small prey items to relatively larger prey.  Derived snake taxa exhibit more than one prey 

restraint method and empirical studies reveal that prey characteristics (size, status, type 

and activity level) influence which prey restraint behavior is employed.  Intermediate 

taxa are presumed to have fewer restraint behaviors that are highly stereotyped, although 

empirical evidence is lacking.  Whether variable or stereotyped prey restraint behavior is 

the derived condition is unknown as data for basal lineages are lacking.  I provide 

empirical evidence for the feeding stereotypy of intermediate snake taxa and examine the 

polarity of prey restraint behaviors.  I also attempt to polarize another behavior pattern 

that may be directly related to a snake’s ability to vary prey restraint behavior during 

feeding, loop application pattern.  I comparatively examined the effects of prey size and  

status (dead and live), using laboratory mice (Mus musculus), on the predatory cycle of 

Loxocemus bicolor, Boa constrictor and three species of Erycine snakes (sand boas).  

Prey size and status affected capture position, prey restraint method, prey restraint time 

and swallowing (intraoral transport) time for L. bicolor and Erycines.  Individuals of B. 

constrictor exhibited very few changes in feeding behavior.  Loxocemus bicolor and 

Erycine snakes employed three restraint methods:  Simple seizing, constriction, and 

looping behavior while individuals of Boa constrictor were only observed coiling prey.  

During looping and coiling, L. bicolor and Erycines applied loops laterally around prey 

while B. constrictor wound around prey using ventral and ventral-lateral bends of the 

body.  These comparative differences in prey restraint behaviors and loop application 
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pattern may represent different selection regimes related to the transition from feeding on 

small prey items frequently to larger prey items less frequently. 

 

INTRODUCTION 

Snakes are a monophyletic group of obligate predators that exhibit tremendous 

ecological and evolutionary diversity.  The diversity, in part, is related to behavioral and 

morphological key innovations that allowed snakes to evolve specialized prey acquisition 

behaviors. Specialization of prey acquisition behaviors such as prey capture, 

immobilization and consumption techniques enabled snakes to shift from consuming tiny 

prey items frequently to feeding infrequently upon larger prey.  The multiple shifts in 

foraging strategies accompanied with the ability to feed on prey items as diverse as 

insects, vertebrate eggs and large mammals, contributed to the substantial adaptive 

radiation of snakes and enabled snakes to be the most successful among limbless 

squamate reptiles (Cundall & Greene, 2000; Fig A-1)1.  

Unlike most tetrapods, the snake predatory cycle alone reflects incredible 

physiological, morphological and behavioral innovations.  Four phases have been 

identified: 1) prey capture, 2) prey restraint, 3) prey manipulation, and 4) intraoral 

transport and swallowing (Cundall & Greene, 2000).  Prey capture in many species 

consists of extremely fast striking movements with the anterior portion of the trunk 

(Cundall & Deufel, 1999; Kardong, 1998; Frazzetta, 1966).  Prey restraint includes three 

main strategies: simply seizing prey with the jaws, constriction, and envenomation.  Prey 

manipulation involves orienting prey in preparation for intraoral transport.  Intraoral 

                                                 
1 All figures and tables are located in the Appendix. 



 29

transport and swallowing involves moving entire prey items through the oral cavity using 

alternating movements of the left and right jaw elements and pushing the prey further 

down the trunk using concertina-like trunk movements (Moon and Gans, 1998).  

Of the four phases of the predatory cycle, the prey restraint phase seems to best 

exemplify evolutionary and ecological adaptations, illustrating the transition between 

lizard-like feeding habits (Group I) to consuming much larger prey but less frequently 

(Groups II-VII; Fig.A-1).  In simple seizing, a restraint technique that may be indicative 

of more basal snakes, the snake holds the prey item in its jaws until the struggling of the 

prey diminishes.  This is mostly performed with smaller prey items.  Constriction and 

envenomation, not always mutually exclusive, are strategies that are used for restraint of 

relatively large prey (Savitzky, 1980; Shine & Schwaner, 1985).   

Constriction, defined as a prey-handling method in which pressure is exerted from two 

or more points on a snake’s body, evolved early in snake evolution and is an ethological 

homology for the majority of snake taxa (Greene & Burghardt, 1978; Fig. A-1).  

Constriction behavior provides material for comparative evolutionary studies since 

constriction 1) is a readily defined sequential behavior pattern (Burghardt, 1973; Barlow, 

1977), 2) varies interspecifically, and 3) reveals great diversity in ecological and 

morphologic adaptations for assessment of similarities and differences (Greene 1977).  

Since Greene & Burghardt’s (1978) study on the homology of constriction, much work 

has focused on the interspecific variation of constriction patterns (de Queiroz & Groen, 

2001; Milostan, 1989; Mori, 1994) and the ontogeny of constriction (Milostan, 1989; 

Mori, 1991, 1993a, b).   
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For example, early macrostomate snakes (Group V; Fig. A-1), specifically boas and 

pythons, that are able to consume prey items weighing more than their own body mass 

have been documented using one main constriction pattern (Greene, 1977; Greene & 

Burghardt, 1978).  In colubroid snakes (last four families in Fig. A-1), comprising over 

90% of all extant snake taxa, (Greene, 1997), constriction was lost and regained multiple 

times independently in many lineages (Greene, 1994).  Colubroid lineages that constrict 

prey exhibit variability in constriction behavior.  Greene (1977) observed that the 

majority of variation in constriction postures could be observed in colubroid snakes.  

Others have documented the incredible variability in colubroid prey restraint behavior 

with respect to prey size (Mori, 1991, 1993a, 1995; Mehta, 2003), type (Mori, 1991) and 

activity level (de Queiroz, 1984).  Studies on the ontogeny of constriction have revealed 

that juvenile boas constrict with the same prowess as adults (Greene, 1977; Milostan, 

1989) whereas hatchlings of some colubroid genera exhibit more variability in 

constriction postures that may be linked to development, muscle maturation and 

experience (Mori, 1994, 1995; Mehta, 2003).  

 Another variable behavior state of the prey restraint phase that necessitates further 

attention is loop application pattern during constriction.  In the first analyses of loop 

application, three behavioral states were recognized: 1) loops with venter facing forward, 

2) loops with venter facing backward, and 3) irregular coils with no consistent surface 

against the prey (Willard, 1977).  Greene (1977) adopted the first two character states but 

renamed them as (twist [1] and no twist [2]).  The above terms are purely descriptive and  

if constriction is to be studied from other levels, other than the ethological level, the 

‘twist’ may not be as crucial of a character state in understanding constriction but rather, 
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which part of the snake’s surface is in contact with the prey.  The terms used in this paper 

(ventral and lateral) that replace descriptors commonly associated with the character state 

‘twist and no twist’ (venter facing forward and venter facing backward) was applied 

earlier by Moon (2000).   

Moon (2000), examined the colubroid loop application pattern and found that gopher 

snakes (Pituophis melanoleucus) and a king snake (Lampropeltis getulus) used the lateral 

portion of their body to loop around prey.  Both of these species, similar to many other 

colubroids, have been documented exhibiting variable prey restraint behavior.  Whether 

lateral bending during loop application and variable prey restraint behavior are derived 

conditions remains unknown.  Assessment of the polarity of these two character states is 

not possible without the examination of basal snake taxa that are known to constrict prey 

as well as a re-examination of basal macrostomate constriction behavior.  Although 

Greene (1977) examined the constriction postures of boas and pythons on various 

substrates using diverse prey items, a stimulus control design was not used.  Stimulus 

control studies consist of a series of trials in which the stimulus expected to release the 

behavior under investigation is varied by a single parameter.  This standard experimental 

design is ideal for comparative studies and allows for close examination of variability in 

behavior.  

In this paper I perform a comparative analysis of constriction behavior to further 

examine and polarize variable prey restraint behavior and loop application pattern.  The 

main subjects of my study are Loxocemus bicolor, Erycine snakes (Eryx muelleri, 

Charina triviragata and Charina bottae) and Boa constrictor (Fig.2).  Loxocemus bicolor 

is the most basal extant taxon capable of constricting large endothermic prey slightly 
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exceeding its own head width (Mehta, unpublished data).  Although the phylogenetic 

position of Loxocemus is argued (Frazzetta, 1970; McDowell, 1975; Rieppel, 1978, 1988; 

Pough et al., 1998), the most accepted view is that it is the sister taxon to the 

macrostomata, the large mouth snakes (Cundall et al. 1993; Cundall & Greene, 2000; 

Fig.A-2).  

The family, Boidae, an early lineage of macrostomates, is characterized by 

morphological innovations of the skull enabling increased gape size (Rieppel, 1988). 

Boidae includes two subfamilies, Boinae and Erycinae (Kluge, 1991).  The species Boa 

constrictor (Boinae) is examined in this study because it is both terrestrial and semi-

arboreal.  Thus the behavior patterns that will be revealed from stimulus control studies 

may be driven by proximate mechanisms such as variable ecology.  The Erycinae, both 

Old and New World forms, are semi-fossorial and terrestrial species with macrostomate 

skull characteristics that enable them to consume large prey items.  In general, Erycines 

are smaller boas that are typically <1 m in total length (Stebbins, 1985; Greene, 1997).  

Collectively, Erycines appear to share feeding habits that are more similar to basal 

alethinophidian snakes (Rodriguez-Robles et al., 1999).  Therefore, examining the effects 

of prey characteristics on the predatory cycle of L. bicolor, Boa constrictor, and Erycine 

snakes will add to the understanding of the feeding transitions that may have taken place 

in the evolution of snakes.   

Specifically, my goals are to: 1) examine the effects of prey size and status on the 

predatory cycle in these three phylogenetically important snake lineages, 2) polarize the 

character variable prey restraint behavior and 3) polarize loop application behavior 

during constriction.  Based on the phylogenetic relationship of L. bicolor to the Boidae, I 
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predict that the three lineages will not vary prey restraint behaviors with respect to prey 

size and status and that coiling will be the most commonly observed prey restraint 

behavior.  Based on my preliminary observations, loop application pattern will differ 

across the three lineages examined. 

 
MATERIALS AND METHODS 

 
General Methods 

 
Subjects and maintenance- Twelve adult Loxocemus bicolor, six subadult Eryx 

muelleri, two neonate Charina bottae, two adult Charina triviragata, and five adult Boa 

constrictor imperator, obtained from commercial breeders or private collectors, were 

housed in the Ethology Lab at the University of Tennessee, Knoxville.  Measurements of 

all snakes are shown in Table A-1.  Snakes were maintained individually in plastic 

containers (ranging from 260 x 180 to 460 x 240 mm).  Larger animals were housed in 

larger containers.  All containers were lined with 10 cm of shredded aspen substrate. 

Water was available ad libitum.  Snakes were fed laboratory mice biweekly.  Mice (live 

and dead) comprised anywhere from 6 - 30% of an individual snake’s body mass (BM).  

Room temperature was maintained at 28°C with minimal variation and photoperiod was 

on a 14L:10D cycle. 

Experimental design - To examine the effects of prey characteristics on the predatory 

cycle, I varied prey characteristics which served as the stimuli, in a controlled fashion. 

The general testing method was as follows:  Large snakes ( > 600mm, N = 17), were 

placed in a 1206mm x 584 mm x 457 mm plexiglass terrarium which served as the 

feeding arena.  Smaller snakes (< 600mm, N = 10) were placed in a 914 mm x 457 mm x 



 34

457 mm plexiglass feeding arena.  I varied two aspects of mammalian prey (Mus 

musculus) that have been shown to affect prey restraint behavior in snakes: size (Mehta, 

2003) and status (de Queiroz, 1984).  I used a 2x2 factorial design (small prey versus 

large prey x live versus dead) where prey were administered using a latin square cyclic 

matrix.  The latin square cycle consisted of an 8 x 8 matrix because each individual snake 

received two trials in each of the four categories.  Trials were initiated by introducing live 

prey or positioning dead prey into the terrarium.  After a 5 minute period, an individual 

snake was introduced into the feeding arena.  Prey items were placed into the arena first 

since pilot observations revealed that snakes tended to explore the new terrarium more 

when prey were absent.  In fact, snakes would take as long as 6 hours to begin the 

predatory cycle when introduced first.  A 10 -14 day interval between feeding trials was 

maintained for the majority of snakes.  However, based on pilot observations, individuals 

of E. muelleri fed less frequently compared to the other snake species used in this study 

especially when feeding upon large prey.   

  Relative prey size- Although snakes are gape-limited predators, they are capable of 

consuming individual prey items that comprise anywhere from 20% to 100% of their own 

body mass (Cundall & Greene, 2000).  In the reptile literature it is standard practice to 

express prey size relative to size of the predator.  Two measurements are used to express 

this relationship:  Weight Ratio (WR) and Ingestion Ration (IR).  WRs are calculated by 

dividing the weight of the prey by the weight of the predator whereas IRs are determined 

by dividing the prey’s largest diameter by the head width of the snake.  It is generally 

thought that both WR and IR give relatively similar results because as weight increases, 

head width or gape increases.  I specifically use IR in this study because I was interested 
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in the effects of size on the predatory behavior of snakes and using WRs may be 

misleading when studying the prey: predator relationship.  This is because WR can be 

quite large, regardless of IR (Greene, 1983a) as exemplified in snakes that consume 

elongate organisms such as eels and also with regard to neonate and hatchling snakes. 

However, when feeding on mammalian prey or some reptilian prey (e.g. birds), the WRs 

must be very large to approach even 10% of a predator’s body mass (BM) for adult 

snakes.  This may not just pertain to snakes.  Taking mass into consideration is especially 

complex when dealing with elongate organisms, because predators such as snakes have 

their mass spread across a greater length than most vertebrates with comparable weights.  

This definitely has substantial implications from a sensory feedback perspective and 

estimating prey size becomes more complex.  For example a large rat may take up a 

greater area along the trunk of a snake, but may have a WR of only 3% for an adult 

snake.  However, the IR would be 70%.  Therefore, IRs would have greater implications 

for feeding and are used as a measure of prey in this study.  Prey were considered small if 

their IRs were between 40-60% and large when IRs approached 80-100%.  The large 

prey category increased the possibility of observing and evaluating constriction, 

especially with live prey. 

Behaviors recorded- All feeding trials were recorded behind one-way glass 

with an 8-mm Sharp video recorder VL-E43U (30 fps) until the mouse was 

completely swallowed. The feeding behaviors recorded were modified from 

Greene, (1977), de Queiroz (1984), Milostan, (1989), and Mori (1991, 1994):   

1) Capture position:  the part of the prey’s body first grasped by the snake.  Three  
 
states were recorded: a) anterior (head and shoulder), b) middle (abdomen and  
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forelegs), or c) posterior (pelvic region, hind legs, and tail). 

 
2) Prey restraint method:  based on pilot observations of feeding for L. bicolor, 

Erycine snakes and Boa constrictor, four states were recorded: a) Simple Seizing (SS): 

grasping the prey in its jaws without subduing it with the body; b) Loop (L): winding one 

encircling loop around prey, c) Coiling (C): using two or more fully encircling loops 

around a prey, and d) Pinion (P): one or more non-encircling loops that push prey against 

some surface of the feeding arena or the prey can be wedged between non-encircling 

loops.  Each of these behaviors can be performed immediately (I) after capture, or 

delayed (D), 1 or more seconds after prey capture.  The behaviors, L, C, and P, are shown 

in Fig. A-3. 

3) Loop orientation:  Greene (1977) described loop orientation in terms of passing an 

imaginary line through the long axis of a loop or coil and the relationship of this line to 

the substrate.  Three states could be observed: a) Horizontal (H): the imaginary line runs 

relatively parallel to the substrate; b) Vertical (V): the imaginary line runs relatively 

perpendicular through the long axis of the prey and the substrate; c) Mixed (M): there are 

two imaginary lines.  One line runs parallel to the substrate and the other runs 

perpendicular to the substrate.  Loop orientation is shown in Fig. A-4. 

4) Loop application pattern:  the method by which a loop was applied around prey 

during loop and coil.  Three states were observed: a) Lateral (L): only one side of the 

body was used press up against prey; b) Ventral (V): the belly scales of the snake were 

pressed up against the prey; c) Ventral- lateral (VL): in the first loop the belly of the 
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snake was pressed up against the prey and in the 2nd loop the side of the snake was 

pressed against the prey. 

5) Condition of prey before ingestion:  after the prey restraint phase and just before  
 
swallowing, two states were observed: a) Dead (D) or b) Live (L).  

 
6) Swallowing Position:  there were two directions in which prey could be swallowed. 

Either the head and neck region of the prey could enter the mouth of the snake first: a) 

Anterior (A) or the tail end could be ingested first: b) Posterior (P). 

7) Whether a loop is present during swallowing:  one or more loops are wound around 

the prey and act to stabilize the prey while the snake is swallowing.  Only two possible 

states were recognized: a) Presence of loop or b) Absence of loop 

     8) Prey restraint time:  the elapsed time from the moment the prey was struck or 

seized to the commencement of swallowing. 

9) Swallowing (Intraoral transport) time:  the period from the commencement of 

swallowing to the point at which the snake began pushing the prey down toward its mid 

body and the snake’s mouth could completely close. 

10) Total feeding time:  the time from when the snake captured or seized the prey until 

the snake finished swallowing. 

Analyses 

I report the effects of prey size and status on the predatory cycle of snakes and 

implications (if any) of these analyses in association with the between species 

comparison for each variable.  Since all species were subject to the same feeding regime 

before the experiment and the same stimulus control experiments during this study, the 

summary values obtained from each species group are comparable.  
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I present percentages of trials in which particular behaviors are shown and means for 

continuous data, so overall trends can be observed.  It has been shown that experience 

with one trial can play a role in subsequent trials (Fuchs & Burghardt, 1971).  Therefore,  

I used the McNemar Test of Significant Changes for categorical data to test for whether 

individuals changed behaviors within a prey category across trials 1 and 2 (Sokal & 

Rohlf, 1995).  If trials 1 & 2 did not differ, I presented Chi-squared results for trial 1.  If 

there were significant differences between trials 1 & 2, I present the Chi-squared results 

for both trials.  For species in which certain behaviors were observed 80% or more, the 

McNemar test was not used.  The 80% cut-off was chosen because when a particular 

behavior was observed 80% of the time, more than 2/3 of the individuals were observed 

performing the behavior. Therefore, although there may have been some variation, it was 

slight.   

This experiment was designed to examine the effects of prey size and status on the 

various phases of the feeding cycle.  Individuals were subject to only two trials across the 

four prey categories, therefore individual variation could not be examined.  If one or 

more individuals appear to consistently exhibit differences from the majority in their 

response to the different prey categories, I discuss the variations observed.  

Categorical data (capture position, restraint method, loop formation and swallowing 

position) were coded before analyses and I used the Pearson’s Chi-squared test to 

examine the effects of the four prey categories (LA, SA, LD, and SD) on these behaviors.  

I used the Kruskal-Wallis test to examine continuous variables (prey restraint time, 

swallowing time, total feeding time) because these data were demonstrably non-normal 

and the groups I compared had unequal sample sizes.  The means for continuous data 
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were ranked. Non-parametric Tukey-type multiple comparisons were used to determine 

significant differences between samples. 

I used SPSS version 12.0 (2003) to perform descriptive statistics and nonparametric 

tests.  All tests are two-tailed.  A Monte Carlo significance level was used to give a 

precise estimate since small sample sizes were used in this study.  Significance levels 

were set at P < 0.05.  Marginal significance refers to 0.05 < P < 0.08. 

 
RESULTS 

  
From July 2002 – September 2004, I recorded and analyzed 96 feeding trials for 

Loxocemus bicolor (N = 12), 16 trials for Charina triviragata (N = 2), 16 trials for 

Charina bottae (N = 2), 48 trials for Eryx muelleri (N = 6), and 40 trials for Boa 

constrictor (N = 5).  I examined the effects of prey category on specific feeding behaviors 

for the three lineages of snakes.  The following results are organized by dependent 

variables.  Dependent variables are presented in the order in which they would appear in 

the predatory cycle.  

Prey capture  
 
Capture behavior did not change significantly between trials 1 and 2 in any of the four 

prey categories (SA: Gadj = 1.18, df = 1, P >0.10; SD: Gadj = 1.31, df = 1, P >0.10; LA: 

Gadj = 0.89, df = 1, P >0.10; LD: Gadj = 1.46, df = 1, P >0.10 ).  A Pearson’s Chi-squared 

test revealed a difference in capture position between the four prey categories for all 27 

snakes (X2
 0.05, 3 = 25.142, P < 0.001).  Within prey categories there were significant 

differences in capture position.  With the exception of small live prey, the majority of 

prey were captured by the anterior (Table A-2).  The part of the prey item’s body initially 
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captured by L. bicolor was affected by prey category while the capture responses for B. 

constrictor and Erycines were not (Table A-3).  Individuals of L. bicolor mostly captured 

SA and LA prey by the posterior while SD and LD prey were captured by the anterior.  

The two boid lineages mostly captured prey by the anterior irrespective of size or status. 

Prey restraint method  
 
Out of the four possible prey restraint methods observed during pilot observations, 

three prey restraint behaviors were recorded during this experiment: simple-seizing (SS), 

coil (C) and loop (L).  Two behavioral states were possible for the C and L restraint 

methods: delayed coil (DC), and delayed loop (DL).  However, DC and DL occurred in 

fifteen or less trials out of the 216 trials.  Due to these low frequencies I collapsed DC 

with C and DL with L for the following analyses.  Snakes did not significantly change 

their prey restraint behavior between trials 1 and 2 across prey categories (SD: Gadj = 

0.065, df = 1, P >0.10; LA: Gadj = 0.152, df = 1, P > 0.10;LD: Gadj = 1.46, df = 1, P 

>0.10: Gadj = 0.28, df = 1, P > 0.10). 

The three lineages differed in their distribution of prey restraint behaviors (X2 0.05, 6 = 

18.273, P < 0.006).  Prey size and status affected the prey restraint responses observed for 

individuals of L. bicolor and Erycine snakes but these prey attributes did not seem to 

affect the prey restraint behavior for individuals of Boa constrictor (Fig. A-5).  

Individuals of L. bicolor exhibited significantly differed prey restraint behaviors across 

prey categories (X2 0.05, 6 = 39.79, P < 0.001).  Loxocemus bicolor mostly constricted SA 

and LA prey by looping or coiling.  SD prey were simply-seized or looped while the 

behaviors SS, C/DC, or L/DL were used to restrain LD prey.  Individuals of B. 

constrictor did not exhibit significantly differed prey restraint behaviors across prey 
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categories (X2 
0.05, 6 = 3.07, P < 0.380).  Boa constrictor, on the other hand, consistently 

coiled around prey irrespective of prey size and status.  Only once was an individual B. 

constrictor observed simply- seizing prey.  In this particular trial, the SD prey offered to 

the snake was just 40% of the snake’s head width and did not exceed the length of the 

snake’s jaw.  Erycine snakes exhibited significantly differed prey restraint behaviors 

across prey categories (X2 0.05, 6 = 24.204, P < 0.001).  Erycines mostly coiled SA and LA 

prey while SD and LD prey were either simply-seized or coiled.  The behaviors L/DL 

were also observed for SD and LD prey.  

Loop orientation during prey restraint 

Snakes did not significantly change loop orientation when performing the prey 

restraint behaviors L/DL and C/DC between trials 1 and 2 for all four prey categories 

(SA: Gadj = 0.02, df = 1, P >0.10; SD: Gadj = 0.82, df = 1, P >0.10; LA: Gadj = 1.41, df = 

1, P >0.10; LD: Gadj = 1.63, df = 1, P >0.10). 

Significant differences in loop orientation were observed across species (X2 
0.05, 2= 

32.75, P < 0.001) (Fig. A-6).  Individuals of L. bicolor used mostly horizontal loops 

while coiling or looping around SA, LA and LD prey.  Prey in the SD category were 

coiled using a combination of horizontal and vertical loops.  Individuals of B. constrictor 

only wound horizontal loops around SD, LA, and LD prey.  In the SA prey category, 

individuals of B. constrictor either wound horizontal (50%) or vertical (50%) loops 

around prey during coiling.  Erycine snakes mostly applied horizontal loops around SA, 

LA, and LD prey.  In trials with SD prey, Erycines mostly applied a mix of both 

horizontal and vertical coils (60%).  
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Loop application pattern 

Three different loop application patterns were observed: lateral, ventral, and a 

combination of ventral and lateral bending.  In 100% of the trials during which C/DC and 

L/DL behaviors were used to restrain prey, L. bicolor and Erycine snakes used lateral 

bends to loop around prey.  Individuals of B. constrictor used ventral bends and ventral-

lateral bends when applying loops around SA, LA and LD prey (Fig. A-7).   In all trials 

with SD prey, individuals of B. constrictor applied loops using the ventral part of their 

body.   

Condition of prey prior to ingestion in live trials 

Prey items were dead prior to ingestion for almost all live prey trials across species 

and prey categories (99.5%).  In all SA and LA trials, L. bicolor and B. constrictor 

successfully immobilized and killed live prey prior to ingestion.  Only in 1 out of the 40 

Erycine feeding trials with live prey was prey still alive prior to swallowing. During this 

trial Charina bottae was the predator and the prey was in the SA category with an IR of 

42%. This prey item was small but was not active at the beginning of the trial.  The C. 

bottae simply seized and consumed the live prey posterior first.  

Prey swallowing position 

 There were no significant differences observed in swallowing position between snake 

lineages (X2
0.05, 2 = 2.98, P < 0.001).  In 98% of feeding trials, all snakes consumed prey, 

irrespective of category, head first.  

Mean prey restraint time 

Mean prey restraint times demonstrated a non-normal distribution. The deviation from 

normality resulted from trials in which snakes immediately swallowed prey after seizing. 
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In these specific cases, prey restraint times were zero.  Therefore, only prey restraint 

times for the behaviors C/DC and L/DL were used in the following analysis.  The three 

lineages differed significantly in mean prey restraint times (SA: H0.05, 2 = 14.23, P < 

0.001; SD: H0.05, 2 = 12.16, P < 0.002; LA: H0.05, 2,= 11.82, P < 0.003; LD H0.05, 2,= 11.84, 

P < 0.003).  Mean prey restraint times for individuals of B. constrictor were significantly 

longer across prey categories compared to L. bicolor and Erycine snakes (Fig. A- 8) 

(Table A-4: A).  Mean prey restraint times did not differ across prey categories for Boa 

constrictor (H0.05, 3 = 3.8, P = 0.284) whereas mean restraint times significantly differed 

across prey categories for L. bicolor (H0.05, 3 = 20.19, P < 0.001) and Erycine snakes 

(H0.05, 3 = 20.15, P < 0.001). 

Presence of a loop while swallowing     

Prey restraint method did not affect whether snakes looped around prey while 

swallowing (L. bicolor: X2
0.05, 2

 = 3.556, P = 0.169; B. constrictor: X2
 0.05, 2 = 1.3888, P = 

0.425; Erycine snakes: X2 0.05, 2 = 0.081, P =0.624).  Individuals of L. bicolor looped 

around prey to facilitate swallowing during 98% of the feeding trials.  Looping while 

swallowing occurred in 91% of the trials in which constriction or a single loop was not 

used to immobilize prey.  Boas used loops during swallowing in 30% of their trials with 

LA and LD prey but in none of the trials with SA and SD prey.  In trials in which a loop 

was used during swallowing, loops were mostly maintained from the prey restraint phase. 

Occasionally, (15%) loops were wound around prey after constriction.  Erycine snakes 

used loops during swallowing in all four prey categories.  Loops were generally applied 

around SD and LD prey items. With SA and LA prey, Erycines maintained their coil 
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from the constriction posture and often changed looping behavior along the body of the 

prey during swallowing.  

Mean swallowing / intraoral transport time 

   The three lineages differed significantly in swallowing times in the SD (H0.05, 2 = 10.36, 

P = 0.006), LA (H0.05, 2 = 12.84, P = 0.002), and LD prey categories (H0.05, 2,= 8.68,  P = 

0.013).  Swallowing times significantly differed across prey categories for all three snake 

lineages (L. bicolor: H0.05, 3 = 26.7, P < 0.001; B. constrictor: H0.05, 3 = 10.15, P = 0.017; 

Erycine snakes: H0.05, 3 = 22.68, P < 0.001) (Figure A-9) (Table A-4:B). 

   Mean total feeding time 

In addition to prey restraint and swallowing times, total feeding time included other 

behaviors for which durations were recorded.  The time it took for some snakes to 

unwind around prey before swallowing and the time some snakes took to locate the 

anterior portion of the prey were included in the total feeding time.  Total feeding times 

marginally differed across prey categories for Boa constrictor (H0.05, 3 = 7.96, P = 0.06) 

whereas total feeding times were significantly different across prey categories for L. 

bicolor (H0.05, 3 = 25.90, P < 0.001) and Erycine snakes (H0.05, 3 = 18.36, P < 0.001) 

(Figure A-10) (Table A-4:C). 

 
DISCUSSION 

The effects of prey size and status 
 
This study suggests that prey size and status affects the predatory cycle for basal 

alethinophidian and basal macrostomate snakes. Variations in seven out of the ten 

characters examined were associated with at least one of the prey categories during 



 45

feeding for L. bicolor and the Erycines (Table A-5).  Individuals of B. constrictor 

revealed little change in feeding behavior with respect to prey size and status.  This 

stimulus control experiment supports the earlier claims that B. constrictor is highly 

stereotyped in feeding behavior irrespective of prey characteristics (Willard, 1977; 

Greene, 1977).  Broader evolutionary comparisons are discussed below. 

Prey restraint behavior and loop application pattern were of specific interest in this 

study.  My hypothesis, based on the phylogenetic relationship of L. bicolor to B. 

constrictor and Erycine snakes, was rejected.  Contrary to my predictions, this study 

demonstrated that prey category affected the prey restraint behaviors for L. bicolor and 

Erycine snakes and that coiling (C) was not the predominant restraint behavior in all prey 

categories.  Two handling behaviors other than C were observed: SS and L.  Individuals 

of L. bicolor and Erycine snakes restrained active prey using mostly coiling but also 

looping behavior.  Dead prey, irrespective of size, were restrained using any of the three 

restraint methods: SS, C, and L.  For the most part, B. constrictor only restrained prey via 

C.  Thus, the semi-fossorial snakes in this study were able to recognize when constriction 

or other behaviors may be appropriate to restrain prey.  The observation that individuals 

of L. bicolor and Erycines exhibited different prey restraint behaviors with respect to prey 

size and status has important evolutionary implications.   

Based on these data, the ability to vary prey restraint method appears to be a basal 

character for snakes.  This finding is supported by feeding observations for Xenopeltis 

unicolor, another semi-fossorial basal taxon which is the sister lineage to L. bicolor 

(Cundall & Greene, 2000).  During feeding observations of four adult X. unicolor I 

observed looping and coiling behavior with prey of varying size (Mehta, unpubl. data).  
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Not only does variable prey restraint behavior seem to be the basal condition, but these 

data suggest that variable prey restraint is especially important for semi-fossorial species 

and relatively small basal macrostomates.  More than one prey restraint behavior in the 

behavioral feeding repertoire for basal and intermediate semi-fossorial species as well as 

many derived colubroids may enable these snakes to take on a wider size range of prey.    

My second hypothesis, based on preliminary observations of feeding behavior, 

predicted that loop application pattern will differ across the three lineages examined.  The 

results of this study support my hypothesis.  Individuals of L. bicolor and Erycine snakes 

applied loops laterally around prey whereas B. constrictor applied loops by ventral 

bending and ventral-lateral bending around prey.   

In this study, semi-fossorial species, varied their prey restraint behaviors with respect 

to prey category and used lateral bending to apply loops around prey.  In a recent study 

(Rudolph et al., 2002), gopher snakes (Pituophis ruthveni) pinioned gophers (Geomys 

breviceps) in burrow systems but constricted prey during open situations (eg. laboratory 

arena).  Gopher snakes (Pituophis melanoleucus) use lateral bends when applying loops 

around prey (Moon, 2000).  Another semi-fossorial Old World Erycine snake, Calabaria 

reinhardtii, was observed applying lateral loops around prey and has also has been 

observed using the prey restraint behaviors loop and pinion (pers. obs.).  These studies 

and observations support the idea that lateral bending is associated with variable prey 

restraint behaviors which seem to be particularly useful for snakes inhabiting or hunting 

in subterranean or leaf litter environments.  

Lateral bending also appears to allow flexibility in which portion of the body can be 

used to restrain prey: anterior or posterior.  Individuals of L. bicolor mostly used the 
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anterior portion of their body to loop around prey but were also observed using the 

posterior portion of their body (Fig. A-11).  The ability to apply loops laterally with 

either the anterior or posterior portion of the body may be adaptive.  By releasing a 

portion of the body from engaging in prey restraint with a single prey, some snakes may 

be able to subdue a second or even third prey item with unoccupied parts of the trunk.  

Earlier accounts of snake feeding behavior support this idea (Hopley, 1882).  

Alternatively, looping around prey using the posterior portion of the body allows the 

snake to still be vigilant while restraining prey (Mehta, 2001, 2003).  Increased vigilance 

may be especially important for hatchlings or neonates since snakes predating upon prey 

are susceptible to their own predators.  Ventral bending or ventral-lateral bending does 

not seem to allow for the same behavioral flexibility as lateral bending.  On the other 

hand, ventral benders are usually much larger snakes and don’t seem to have the same 

predatory pressures as smaller snake species. 

Prey restraint times varied greatly between the different taxa studied and further 

reflect variations in prey restraint behavior in response to prey categories.  Loxocemus 

bicolor and Erycine snakes took longest to restrain SA and LA prey.  When controlling 

for relative prey diameter across species, overall mean restraint times for Boa constrictor 

were significantly longer and these mean prey restraint times did not differ across prey 

categories.  This suggests that regardless of prey size and status, prey restraint durations 

for B. constrictor are relatively constant, supporting the idea that boas do not greatly vary 

prey restraint behavior.  A recent study examining the aerobic metabolism of B. 

constrictor amarali during constriction revealed that neither time spent during 

constriction or metabolic rate was correlated with prey size (Cajani, et al., 2003). 
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SA prey seemed easier for L. bicolor to handle compared to Erycines, because 

individuals were longer and were able to use more of their body to initially position the 

prey before applying loops or a coil. During SA feeding trials, subadult Erycines often 

took longer to form a stable constriction posture and during four trials, SA prey which 

were very active, escaped while snakes were trying to position their loops.  On the other 

hand, once a stable constriction posture was maintained, Erycines spent less time coiling 

around prey compared to L. bicolor.   

In only one trial was prey swallowed alive posterior first.  This was a trial with SA 

prey in which a Charina bottae was the predator. The prey, 1-2 days old, had an anterior 

and posterior that was similar in size and was relatively inactive.  The C. bottae may have 

misjudged the SA prey for dead.  The prey was short in length and ½ of the prey was 

already in the snake’s mouth before any prey activity was observed.  Nestling mammals 

comprise a significant portion of the diet for adult C. bottae and the relative increase in 

the incidence of posterior-first ingestion reflects predation on relatively small prey items 

relative to snake head size (Rodriguez-Robles & Leal, 1993; Rodriguez-Robles et al., 

1999).  

I expected, large prey, irrespective of status, took longer to swallow than small prey 

for both L. bicolor and Erycine species.  Although relative prey size was controlled 

across these three snake lineages, individuals of Boa constrictor still exhibited the longest 

times to swallow prey across all categories compared to L. bicolor and Erycine snakes.  

The fact that individuals of Boa constrictor took a longer time to swallow prey is 

interesting.  Perhaps because boas are large in size, they may have less predators 

compared to these semi-fossorial species (i.e L. bicolor and the Erycines) and thus there 
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may not be strong selection for boas to swallow prey items rapidly.  Selection pressures, 

however, change throughout ontogeny.  Future studies examining the ontogeny of 

swallowing behavior while controlling for prey size are necessary.  Intraoral transport 

times may also be longer for B. constrictor because the swallowing phase of feeding 

proceeds a very energetically taxing phase, prey restraint.  As prey size increases, 

ingestion time increases, although metabolic effort remains constant (Cajani, et al., 2003).   

Prey manipulation in snakes 

Greene (1977) mentioned that the swallowing phase is sometimes accompanied by the 

application of “post-constriction” loops that help reduce the diameter of the prey prior to 

swallowing.  Gopher snakes and king snakes pull on prey with their jaws while prey is 

still in their loops or coil as if straightening or slightly stretching prey in preparation for 

swallowing (Moon, 2000).  Young rat snakes (Elaphe obsolete) and boas (Boa 

constrictor) sometimes hold prey within their coils as they attempt ingestion (Milostan, 

1989).  As far as I am aware, these are the only references of post prey restraint looping 

behavior as most studies document how loops are applied during the prey restraint phase 

(Ditmars, 1914; Greenwald, 1978; Willard, 1977; Greene & Burghardt, 1978; de Queiroz, 

1984; Gregory et al., 1980; Shine & Schwaner, 1985; Mori, 1991, 1993, 1994; de 

Queiroz & Groen, 2001; Mehta, 2003).   

In this study, I observed post constriction loops in many feeding trials. In half of the 

trials with B. constrictor a vertical or horizontal loop was maintained around prey while 

swallowing.  For L. bicolor and Erycine snakes, loops were present during swallowing 

even during trials when SS was employed.  In trials in which the snake’s body was not 



 50

used to restrain prey, loops were applied either during the beginning of the swallowing 

phase or shortly thereafter.  

The lack of data explaining the function of looping while swallowing may be due to 

the challenge of measuring prey during this feeding phase.  During preliminary 

observations with L. bicolor I took measurements of prey that snakes were in the process 

of swallowing in order to test the hypothesis that post constriction loops reduced prey 

diameter (Greene, 1977).  Two problems arose while taking measurements: 1) my 

disturbance confounded swallowing times and 2) snakes would drop or regurgitate their 

1/2 swallowed prey item which impacted future feedings.  

From this study and my previous observations on feeding behavior (Mehta, 2003), I 

provide some evidence that may help assess the function of post constriction loops during 

swallowing.  Firstly, although constriction during prey restraint is energetically expensive 

(Canjani et al., 2003), my data reveals that snakes take much longer to swallow prey than 

to restrain prey.  Secondly, in many feeding trials (L. bicolor: 92 %; Boa constrictor: 

58%; Erycine: 93%) loops were applied during swallowing, irrespective of prey restraint 

behavior.  Semi-fossorial species, L. bicolor and Erycine snakes, exhibited post 

constriction loops for small and large prey.  Individuals of Boa constrictor maintained 

loops around the majority of large prey items (90%).  Therefore, the frequency at which 

snakes were applying loops may be correlated with the degree of difficulty snakes may 

have had swallowing prey.  

Often, snakes were observed using a part of the loop, the substratum, or the side of the 

arena to anchor prey items while pulling their body over prey.  Although these 

observations took place under more or less unnatural conditions, the natural environment 
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is complex and multidimensional.  If snakes, in an open arena, use the substratum or the 

side of the arena to assist in intraoral transport, chances are that they probably use objects 

in their natural environment to aid in swallowing.  Unfortunately, detailed observations of 

snakes consuming prey in the wild are relatively rare.  

There may be three functional consequences of looping or coiling around prey while 

swallowing: 1) immobilization (if the prey is still alive), 2) reducing diameter of the prey 

so it is easier to swallow, and 3) anchoring prey so it does not slide while swallowing.  

Could looping while swallowing have been a protoadaptation for the evolution of 

constriction or is looping around prey while swallowing derived from constriction?   

Early alethinophidians consuming high WR but low IR prey, would have needed a 

way to stabilized prey while pulling their musculature over prey.  Without a way to 

stabilize prey, snakes may have spent a long time in the swallowing phase as prey would 

have slid while the snake pushed.  I did not find any significant differences in swallowing 

time between trials in which small prey were looped and those in which small prey were 

swallowed without loops for L. bicolor (P>0.05).  This lack of significance may be due to 

the low frequency of trials in which prey were not looped while swallowing (N = 8).  

Currently, constriction is recognized as serving two functions: immobilization and 

subduing prey.  For some snakes, constriction may serve a third function: anchoring the 

prey while swallowing.  In this study, snakes that did not employ constriction as a prey 

restraint technique applied loops around prey while swallowing (L. bicolor: 82%; 

Erycines: 95%).  
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Evolutionary implications 

  The ability to vary prey restraint behavior and laterally bend around prey appears to 

be the basal condition for snakes based on data for L. bicolor.  Early semi-fossorial 

snakes, that began shifting to prey with higher WRs but low IRs probably pinioned or 

looped prey by bending laterally.  How far back variable prey restraint behavior may 

have evolved is unknown as little behavioral data has been gathered for Group III snakes 

(Fig. A-1).  Based on these data, the first snakes able to consume high WR and IR prey, 

probably exhibited more than one prey restraint method and used the side of their body to 

immobilize prey.  Thus, variable prey restraint behavior and lateral bending may be two 

important character states in snake evolution that enabled semi-fossorial species to 

gradually shift their feeding biology from consuming small prey frequently to larger prey 

less frequently.  Xenopeltis unicolor and Loxocemus bicolor, the two most extant lineages 

capable of subduing relatively large prey slightly exceeding their own head width, vary 

prey restraint behaviors and bend laterally around prey. Erycines, basal macrostomates, 

vary prey restraint behavior and laterally bend around prey, further emphasizing the 

importance of variable restraint behavior and lateral bending for early semi-fossorial 

snake species.  The ability to vary prey restraint behaviors either re-evolved or was 

retained by Erycines and suggests that ecological pressures have played an important role 

in shaping the prey restraint phase of feeding.  

Large macrostomate snakes, such as boas and pythons, have one prey restraint 

behavior which was frequently used and over time, became highly stereotyped.  This 

stereotypy may have been more advantageous for capturing and constricting very large 

prey and may be associated with a more stable environment.  The colubroid prey restraint 
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pattern appears to exhibit the most variability.  The fact that colubroid snakes, the group 

to which 90% of all snake species belong, vary prey restraint behavior suggests that 

variable prey restraint behavior has played a significant role in snake evolution. 
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Table A-1  Measurements for 27 individual snakes used in this study.  Measurements 

were taken at the start of my study. Abbreviations: SVL = length of snake from rostrum 

to cloaca, TL = Tail length of snake measured from cloaca to tail tip, WT = weight of 

snake and HW = head width of snake. 

 

Species SVL (cm) 
 

TL (cm) WT (g) HW (cm) 
______________________________________________________________________________ 

Loxocemus bicolor  (N = 12) 

Mean 66.79 10.37 400.62 1.51 

SE 114.00 3.98 112.74 0.02 

Boa constrictor  (N = 5) 

Mean 
1475 17.04 1792.79 2.78 

SE 
3670 0.93 60.31 0.12 

Erycines (N = 10)  

Charina bottae (N = 2) 

Mean 
426.83 60 30.72 8.92 

SE 
9.83 5.014 1.26 0.41 

Charina triviragata (N = 2) 

Mean 
557.5 87.5 114.23 9.89 

SE 
44.33 1.77 13.41 1.017 

Eryx muelleri (N = 6) 

Mean 
180 33.6 102.61 9.71 

SE 
13.52 2.698 6.32 0.73 
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Table A-2  The results of Chi-square analysis for capture behavior within each prey 

category across all snakes (Table A-1). Chi-square tests were performed on frequency 

data. Abbreviations: SA = small alive, SD = small dead, LA = large alive, LD = large 

dead.  

 

44.0% 24.0% 35.0% 11.0% 42.2%
44.0% 76.0% 59.0% 83.0% 44.2%
12.0% .0% 6.0% 6.0% 8.3%

Posterior
Anterior
Middle

SAa SDb LAc LDd
Prey Categories Expected

Value

Chi-square = 12.23, df =2, P < 0.05a. 

Chi-square = 14.52, df = 1, P < 0.001b. 

Chi-square = 23.44, df = 2, P < 0.001c. 

Chi-square = 61.44, df = 2, P < 0.001d. 
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Table A-3  The percentage of prey captured by the anterior, posterior, and middle  
 

across the four prey categories for the three snake lineages examined.  Each animal was 

tested twice in all four conditions.  Chi-square tests reveal significant differences in 

capture position across prey categories only for L. bicolor.  Tests were performed on 

frequency data.  Abbreviations: SA = small alive, SD = small dead, LA = large alive, LD 

= large dead. 

 

79.2% 33.3% 62.5% 16.7% 47.9%
8.3% 66.7% 33.3% 75.0% 45.8%

12.5% .0% 4.2% 8.3% 6.3%
.0% 10.0% 20.0% 10.0% 10.0%

90.0% 90.0% 80.0% 80.0% 85.0%
10.0% .0% .0% 10.0% 5.0%
25.0% 20.0% 10.0% 5.0% 15.0%
65.0% 80.0% 80.0% 95.0% 80.0%
10.0% .0% 10.0% .0% 5.0%

Posterior
Anterior
Middle
Posterior
Anterior
Middle
Posterior
Anterior
Middle

Species
 Loxocemus bicolor
(N = 12)

a

Boa constrictor        
(N = 5)

b

Erycine Snakes         
(N = 10)

c

SA SD LA LD
Prey Categories Expected

Value

Chi-square = 30.16, df = 6, P < 0.001a. 

Chi-square = 4.12, df = 6, P = 0.661b. 

Chi-square = 8.46, df = 6, P = 0.206c. 
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Table A-4  Post hoc non-parametric Tukey-type multiple comparisons between 

three different lineages following Kruskall-Wallis analyses for prey restraint time 

(A), swallowing time (B), and total feeding time (C) within each prey category.  

Pairwise differences between rank sums were tabulated for each of the dependent 

variables.
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A.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 C. 
 
 
 

 Prey Category Species Comparisons P -values 
__________________________________________________________ 

SA L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

SD L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

LA L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

LD L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

Prey Category Species Comparisons P –values 
__________________________________________________________ 

SA L. bicolor x B. constrictor P > 0.05 
 B. constrictor x Erycine Snakes P > 0.05 
 L. bicolor x Erycine Snakes P > 0.05 

SD L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

LA L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

LD L. bicolor x B. constrictor P < 0.001* 
 B. constrictor x Erycine Snakes P < 0.001* 
 L. bicolor x Erycine Snakes P > 0.05 

Prey Category Species Comparisons P –values 
__________________________________________________________ 

SA L. bicolor x B. constrictor P < 0.05* 
 B. constrictor x Erycine Snakes P < 0.05* 
 L. bicolor x Erycine Snakes P > 0.05 

SD L. bicolor x B. constrictor P < 0.05* 
 B. constrictor x Erycine Snakes P < 0.05* 
 L. bicolor x Erycine Snakes P < 0.05* 

LA L. bicolor x B. constrictor P < 0.05* 
 B. constrictor x Erycine Snakes P < 0.05* 
 L. bicolor x Erycine Snakes P < 0.05* 

LD L. bicolor x B. constrictor P <0.05* 
 B. constrictor x Erycine Snakes P > 0.05 
 L. bicolor x Erycine Snakes P < 0.05* 
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Table A-5  The effects of prey characteristics (size and status) on various aspects of the  
 
predatory cycle for Loxocemus bicolor (N = 12, 96 feedings), Boa constrictor (N= 5, 40  
 
feedings), and Erycine snakes (N = 10, 80 feedings).  (*) Changes in Behavior, (-) No  
 
detectable changes in behavior.   

 
 

Snake Species Examined 
__________________________________________________________________________ 

 
     
 

Prey Category 

 
Loxocemus bicolor 

 
Boa constrictor 

 
Erycine snakes 
 
 

 
          Prey Size 

 
Capture Position      - - - 

Prey Restraint Method - - - 
Loop Orientation - - * 
Condition Before   

Ingestion 
- - - 

Restraint Time * - * 
Swallowing Position - - - 

Loop Present - - * 
Swallowing Time * - * 

          
         Prey Status 
 

Capture Position * - - 

Prey Restraint Method * * 
(small sample size) 

- 

Loop Orientation * - - 
Condition Before 

Ingestion 
- - - 

Restraint Time * - * 
Swallowing Position - - - 

Loop Present - - - 
Swallowing Time * - * 
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Figure A-1  Phylogeny of the Serpentes compiled from morphological (Cundall et al., 

1993; Kluge, 1991, 1993; Rieppel, 1978, 1988) and molecular data (Cadle, 1994; Cadle 

et al., 1990).  Loxocemus bicolor (Loxocemidae) is the sister taxon to boas and pythons. 

The lineages Boinae (Boa constrictor) and Erycinae (Charina bottae, C. triviragata, and 

Eryx muelleri) are in the Boidae.  Families in bold (Loxocemidae, Boidae, Pythonidae, 

and Colubridae) are discussed in this study.  Groups I –VII refer to shifts in feeding 

behavior during snake evolution (Cundall & Greene, 2000).  Groups I-V reveal the 

transition from feeding often on lots of small prey items (Scolecophidia: blind snakes) to 

feeding on prey items that comprise at least 50% of a snake’s own body mass (Boidae & 

Pythonidae). Group VI snakes feed on both relatively small and large prey.  Group VII 

(Colubroidea) reflects many feeding shifts from piscivorous snakes to snakes that feed on 

prey that can exceed their own body mass by as much as 50% (Viperidae) and snakes that 

approach lizards in feeding biology (some lineages in the Colubridae).
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Figure A-2  Snake taxa of interest in this study and their phylogenetic relationship.  
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A. Constriction 

 
B. Looping 

.  
 

C. Pinion 
 

 

 

 

 

 

 

Figure A-3  Three out of the four different prey restraint behaviors (simple seizing (SS), 

constriction (C), loop (L), and pinion (P)) exhibited during pilot observations and 

stimulus control experiments.  Adult L. bicolor constricts large live prey (1.A), loops 

(1.B), and pinions (1.C) small live prey. 
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  A. 
 

 
 
      B. 
 

   
 
 

 
Figure A-4  These photos exhibit the two loop orientation patterns observed during 

constriction behavior.  In 4A, horizontal loops are applied around prey while in 4B, 

vertical loops are wound around prey during constriction. The loop orientation patterns 

correspond to the relationship between the substrate and an imaginary axis running 

through the loops of the snake. 
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Figure A-5  The percentage of trials in which prey from each of the four prey categories 

were restrained using SS, C/DC, L/DL for the three lineages examined. A: Loxocemus 

bicolor, B: Boa constrictor and C: Erycine snakes.  Abbreviations for restraint behaviors 

are: SS = simple seizing, C = coil, DC = delayed constriction, L = loop, and DL = 

delayed loop.  Abbreviations for prey categories are: SA = small live; SD = small dead, 

LA = large alive, and LD = large dead. 

 

 

 



 72

A

P < 0.001

SS C/DC L/DL

%
 T

ria
ls

0

20

40

60

80

100

Loxocemus bicolor

 

B

P > 0.05

SS C/DC L/DL

%
 T

ria
ls

0

20

40

60

80

100 Boa constrictor

 

C

P < 0.001

Prey Restraint Behaviors

SS C/DC L/DL

%
 T

ria
ls

0

20

40

60

80

100

SA 
SD 
LA 
LD 

Erycine snakes

 



 73

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure A-6  The percentage of trials in which prey from each of the four prey categories 

were restrained using either horizontal, vertical, or mixed loops when performing the 

behaviors C/DC and L/DL. A: Loxocemus bicolor, B: Boa constrictor and C: Erycine 

snakes.  Abbreviations for prey categories are: SA = small live; SD = small dead, LA = 

large live, and LD = large dead. 
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Figure A-7  The percentage of trials in which lateral, ventral, and ventral-lateral loop 

application patterns was observed in each of the four prey categories for the three 

lineages examined. A: Loxocemus bicolor, B: Boa constrictor and C: Erycine snakes.  

Abbreviations for prey categories are: SA = small live; SD = small dead, LA = large live, 

and LD = large dead. 
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Figure A-8  Mean prey restraint times across prey categories for each of the three 

lineages examined.  P-values indicate significant differences across prey categories 

within species. 
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Figure A-9  Mean swallowing times across prey categories for each of the three lineages  
 
examined.  P-values indicate significant differences across prey categories within species. 
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Figure A-10.  Mean total feeding times across prey categories for each of the three 

lineages examined.  P-values indicate significant differences across prey categories 

within species. 

 



 80

 
 
                               (A) 

 
       (B) 
 

 
 

 

Figure A-11  Coiling behaviors observed for Loxocemus bicolor.  Coiling with the 

anterior portion of the body (A) and coiling with the posterior portion of the body (B). 
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PART 3 
 

The Kinematics and Epaxial Muscle Activity Patterns During 
Constriction in the Neotropical Sunbeam Snake 

 (Loxocemus bicolor)
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ABSTRACT 
 
Constriction, a prey restraint method, is an important key innovation associated with the 

adaptive radiation of snakes and is homologous for the majority of snake taxa.  Although 

studies have documented the variability of constriction patterns among snakes, how the 

underlying physiological mechanisms of constriction correspond to variation observed at the 

behavioral level remains poorly studied.  I describe the kinematics and epaxial muscle 

activity patterns of constriction in a basal snake, Loxocemus bicolor.  I also quantify pressure 

exerted on small mammalian prey during constriction. Loops wound or wrapped around prey 

during a constriction coil were formed using the lateral portion of the snake’s trunk.  Lateral 

bending around live and dead prey corresponded with unilateral epaxial activity.  

Constriction postures, the duration of epaxial muscle activity and pressure exertion were 

variable in feeding trials with both live and dead mice (Mus musculus) comprising 8-18.3% 

of the snake’s body mass.  Although snakes maintained constriction postures for several 

minutes, epaxial muscle activity and force exerted on prey were intermittent.  Epaxial 

muscles, specifically the LD and IL, were highly active during initial coil formation and in 

response to prey movements.  Pressure exerted on prey ranged from 6-54 kPa.  Epaxial 

muscle activity patterns of L. bicolor appear similar to derived snake species suggesting that 

epaxial muscle activity patterns may be homologous across the diverse lineages of 

constricting snakes. 

 
INTRODUCTION 

 
Tracing the transformation of character traits and determining the mechanisms 

responsible for present day phenotypes are current challenges for those interested in 
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evolutionary patterns.  As organismal design is hierarchical in nature, it is critical to not only 

recognize that distinct levels of biological design exist, but to understand how these levels 

may be causally interrelated (Striedter & Northcutt, 1991; Lauder, 1994).  For example, it is 

recognized that complex characters such as behavioral traits are dependent upon diverse 

anatomical and physiological traits such as the musculoskeletal system, sensory systems, and 

the brain.  However, to understand evolutionary change as well as the conservation of 

specific behavioral phenotypes, an examination of the behavioral character along with 

underlying anatomical and physiological mechanisms is necessary. A phylogenetic concept 

of homology provides us with the opportunity to trace evolutionary change at various levels 

of organization and to examine how these levels relate to one another (Patterson, 1982; 

Striedter & Northcutt, 1991; Lauder, 1986, 1994).  Behavioral traits, subject to selection, are 

correlated with specific functional units or character complexes, which, in turn, are 

susceptible to their own evolutionary pressures and constraints (Schwenk and Wagner, 

2001).  

Constriction is an ancient behavioral homology that is shared across the majority of snake 

taxa, and is associated with the adaptive radiation of snakes (Greene & Burghardt, 1978; 

Greene, 1983, 1994). During constriction, a snake restrains prey by looping around it, thus 

limiting the ability of the prey to escape or retaliate against the predator (Cundall & Greene, 

2000).  Looping during prey restraint is a highly coordinated behavior pattern which requires 

small-radius bends of the axial skeleton.  Similar to other types of bending in vertebrates, the 

bends in the axial skeleton during constriction are produced by the axial musculature.  

The axial musculature is divided into the epaxial (dorsal) and hypaxial (lateral and 

ventral) muscles.  The epaxial muscles produce the broad lateral bends observed during 



 84

locomotion in fishes (Williams et al., 1989), amphibians (Frolich and Biewener, 1992) and 

snakes (Jayne, 1988 a, b; Moon and Gans, 1998).  In snakes, the epaxial musculature 

includes the (muscles) Mm. spinalis-semispinalis (SP-SSP), longissiums dorsi (LD), and 

iliocostalis (IL).  Collectively, the epaxials consist of overlapping segments that are bound 

by connective tissue into longitudinal columns along the body (Gans, 1962).  These three 

muscles (SP-SSP, LD, IL) are interconnected and form a chain of muscle-tendon segments.  

Specifically, the large superficial epaxial muscles are thought to support the exertion of large 

forces during axial bending (Gasc, 1981) and have been hypothesized to produce large bends 

in the snake’s trunk during locomotion and constriction (Mosauer, 1932 a, b; Ruben, 1977).  

A recent electromyography study confirmed that the epaxial muscles are highly active during 

striking and coil formation and intermittently active during sustained constriction (Moon, 

2000).  

Although constriction is homologous for the majority of snake taxa, the behavior pattern 

was lost and then re-evolved multiple times independently in derived snake lineages, 

collectively termed the colubroidea (Greene, 1994; Fig A-1)1. Unlike intermediate snake taxa 

(i.e, boas and pythons), constriction behaviors observed in colubroid lineages vary through 

ontogeny (Greene, 1977; Milostan, 1989; Mehta, 2001) as well as in response to prey 

characteristics (type: Mori, 1991, 1993; size: Mori, 1991, 1993; Mehta, 2003; and activity 

level: de Queiroz, 1984).  At least three different prey restraint postures that directly exert 

pressure on prey have been described for colubroid snakes (Greene, 1977; Greenwald, 1978; 

Mori, 1994; de Queiroz & Groen, 2001; Mehta, 2003).     

                                                 
1 All figures and tables are located in the Appendix. 
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Two hypotheses for the differences in prey restraint behaviors between intermediate and 

derived snake taxa have been suggested.  Ruben (1977) documented that the epaxial muscles 

for derived taxa span more vertebrae and are not able to produce the small radius bends 

necessary for the constriction postures observed in intermediate snakes.  Three lines of 

evidence refute this hypothesis.  Firstly, there are many derived snake lineages that exhibit 

constriction behavior and are capable of forming constriction postures similar to intermediate 

snake groups (Shine & Schwaner, 1985).  Another comparative study documenting 

differences in epaxial musculature noted that epaxial muscles and tendon lengths did not 

differ between constrictors and highly derived non-constrictors (Jayne, 1982).  Lastly, it has 

been shown that the epaxial muscles of gopher snakes, Pituophis melanoleucus and king 

snakes, Lampropeltis getula, two highly derived snake species, are intermittently active 

during constriction (Moon, 2000).  Therefore, the underlying mechanisms driving behavioral 

variation in prey restraint behaviors for intermediate and derived snakes remains largely 

unknown. 

Loop formation during constriction behavior also seems to vary between basal,   

intermediate and derived snake taxa, as indicated in Part 2.  Boas and pythons appear to form 

loops around prey using the ventral portion of their body while derived constrictors seem to 

loop prey using the lateral portion of their trunk.  Lateral bending, in which only one side of 

the body is pressed up against the prey, is associated with unilateral muscle activity patterns 

during constriction.  Unilateral lateral epaxial muscle activity, alternating activity between 

the left-and right-side, is common during undulatory locomotion in fishes, amphibians and 

snakes, and is considered to be the ancestral pattern of locomotor control (Ritter, 1995).  In 

snakes that use ventral bending to loop around prey, we would expect to observe bilateral 
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muscle activity patterns.  Bilateral epaxial activity, which is synchronous activation of both 

left and right muscles, is characteristic of birds and mammals and has been proposed to 

provide postural stability of the trunk (Gatesy and Dial, 1993; English, 1980).  Therefore, 

two epaxial muscle activation patterns have been documented within diverse vertebrate 

clades but how these two patterns relate to a major behavioral innovation in snake feeding 

behavior has not been examined.  

Ventral bending may be correlated with the high stereotypy documented for constriction 

in intermediate taxa while lateral bending may be associated with variable prey restraint 

postures.  Whether lateral bending and variable prey restraint behaviors or ventral bending 

and high stereotypy during constriction is the derived or ancestral condition is unknown, as 

constriction kinematics has not been examined for basal snake groups.   

For understanding the physiology underlying constriction behavior in snakes, only two 

species have been tested for underlying muscle activity patterns.  However, two taxa and an 

outgroup taxon that represents the ancestral condition of the traits under investigation are 

minimal for making evolutionary inferences.  At least one outgroup comparison is necessary 

for detecting which aspects of this key behavioral innovation are ancestral and which are 

derived.  Sampling from basal and intermediate lineages is necessary for making inferences 

about the evolution and diversification of constriction postures and their corresponding 

motor patterns.  

In addition to examining the effects of prey characteristics on constriction (Part 2), I 

examined the kinematics and epaxial muscle activity of constriction in the neotropical 

sunbeam snake, Loxocemus bicolor.  Loxocemus bicolor can contribute important 

information from ethological and physiological perspectives because as the sister taxon to 
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boas and pythons (Fig. A-1), it represents the oldest extant taxon capable of both constricting 

and ingesting endothermic prey that matches or slightly exceeds its own head width.  

Loxocemus bicolor represents an important outgroup to most of the other constricting snakes 

species, and by studying this basal snake I will be able to make sound evolutionary 

inferences about constriction, its epaxial muscle activity patterns, and its homology among 

the diverse lineages of snakes.  To my best understanding, no experimental data to date have 

been gathered on L. bicolor, and only a few natural history accounts have been published on 

this species (Merchan & Mora, 2001; Mora, 1991, 1987).   

In this paper, I documented the kinematics and epaxial muscle activity patterns during 

constriction subsequent to the strike and initial formation of a coil.  Based on earlier 

observations of constriction behavior for this species in a laboratory setting, I hypothesize 

that L. bicolor will exhibit variable prey restraint behavior which will be reflected in changes 

in epaxial muscle activity patterns and pressure exerted on prey.  I tested the following 

predictions: (1) Loxocemus bicolor bends laterally when forming a loop or coil around the 

body of the prey. (2) Epaxial muscles exhibit unilateral activity during lateral looping around 

prey. (3) Epaxial muscle activity and pressure exertion are intermittent during a sustained 

constriction event even though the coils during constriction are continuously maintained. (4) 

Epaxial muscle contraction contributes to pressure exertion during constriction. (5) During a 

constriction event, peak pressure exertion will be elicited in response to struggling 

movements by prey.  I manipulated some prey movements during constriction in attempt to 

elicit maximal pressures; hence, the data allow comparisons of the effects of different kinds 

of prey movements on constriction pressures and duration.   
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MATERIALS AND METHODS 

      General Methods 

Subjects and maintenance-I recorded the kinematics, epaxial muscle activity patterns and 

pressure exerted on prey during constriction for 5 adult neotropical sunbeam snakes 

(Loxocemus bicolor). All snakes were housed individually in plastic containers with water ad 

libitum and maintained on a 14L:10D cycle. Temperature ranged from 23-26º. Laboratory 

mice (Mus musculus) of various size ranges were offered to snakes weekly.  

General experimental design-Snakes were fasted for 10 days before use in feeding trials. 

For all trials, I placed an individual snake in a 30 x 50 cm lidless glass terrarium. Electrode 

leads and pressure tubing exited through the top of the terrarium, allowing free movement of 

snakes that were attached to wire and tubing.  I maintained the ambient and surface 

temperatures under the video spotlights at 23ºC over the course of the experiments.   

In all experiments I offered mice to the snakes using 30 cm long forceps, and recordings 

were made of constriction prior to swallowing.  Dead and live mice offered as prey ranged 

from 8–18.3 % of the snakes body mass (BM) and 32-41 % of the snakes head width (IR). 

Pre-killed mice, maintained at body temperatures of 38-40°C, were used to control for cues 

produced by the constricted prey.  In roughly half of the feeding trials with dead prey, a 

small rubber bulb connected to a pressure transducer (described below) was attached to a 

mouse.  To simulate prey movements, I tugged on mouse limbs protruding from the snake’s 

coil with forceps once the snake had formed a stable coil during the beginning of 

constriction.  Live mice were offered to snakes to elicit constriction in response to natural 

movements by the prey.  To record constriction pressures in these trials, the rubber bulb was 

lightly taped to the mouse’s fur.  
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To describe constriction postures for L. bicolor, I adopted three behavioral states from 

Greene (1977), Greene & Burghardt (1978), de Queiroz (1984), and Mori (1991): 

 Loop- winding one encircling loop around prey 

Coil- winding more than one loop around the prey  

Pinion- one or more non-encircling loops that push prey against some surface of the   

feeding arena or the prey can be wedged between non-encircling loops 

During the initial constriction posture, two discrete movements were used to apply a 

loop or coil around the prey: 

Winding-prey were turned about their long axis while loops were applied like a rope  

on a windlass (Shrewsbury, 1969) 

Wrapping- consisted of one to several loops applied over, under, and around the  

stationary prey  

Three states of loop application/ bending patterns were observed for each of these 

behaviors.  The terminology used here is modified from Greene (1977) and follows Moon 

(2000):  

Lateral-only one side of the body was used to press against prey 

Ventral- the belly scales of the snake were pressed against the prey 

Ventral- lateral- in the first loop the belly of the snake was pressed against the prey  

and in the 2nd loop the side of the snake was pressed against the prey. 

Videography and electromyography-All feeding trials were videotaped (30 fps) using a 

standard Hi- 8mm Sharp video camera VL-E43U positioned approximately 1.5 m from the 

terrarium containing the snake.  The terrarium was lined with a 2-cm grid for scale and 

contained a mirror angled at 45º from the horizontal to reflect a dorsal view into the video 

camera.   
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I used liquid paper to paint a horizontal mark on snakes at every 10 vertebrae.  The number 

of vertebrae were determined using ventral scale counts (Alexander & Gans, 1966).  At 

every 25 vertebrae, a mark was painted on the snake’s midline.  These markings served as 

landmarks on the video and enabled me to determine the number of vertebrae used in loops 

during constriction and average loop radius.  For video data acquisition, Pinnacle Software 

and Peak Motus were used to digitize selected images to evaluate whether ventral or lateral 

bending occurred directly after the snake seized the prey.  By slowing down the digital 

images to < 20 (fps), I could also determine whether there was a side bias during lateral 

bending.  Peak Motus software uses the horizontal and vertical scales in the video field to 

correct for camera angle and adjust the image shape to acquire a 3-D position of the subject 

when making measurements.  In order to measure vertebral bending angles, I used the 

vertebral midline of the animal as the starting point and measured the distance between 

adjacent ventral scales from the midline using Image J.  I then divided the total degree of 

bending by the number of vertebrae used in the loop to get an estimate of bending angle per 

vertebral joint.  Vertebral bending angles were calculated from 1-2 digitized frames for all 5 

individuals.  

To record epaxial muscle activity patterns, I implanted bipolar hook electrodes (Loeb & 

Gans, 1986) into the semispinalis portion (SSP) of the Mm. spinalis-semispinalis, the M. 

longissimus dorsi (LD), and the M. iliocostalis (IL) in all five individuals.  I implanted the 

electrodes bilaterally in the epaxial muscles at vertebrae 50 and 80.  This vertebral spacing 

enabled me to detect any bilateral differences in muscle activity and any longitudinal 

propagation of muscle activity.  Table A-1 depicts snake size and electrode placements for 

individuals of Loxocemus bicolor from which epaxial muscle activity was recorded.  
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I made bipolar-hook electrodes out of polyimide-coated (H-ML) stainless-steel wire (316   

LVM, California Wire Co.) with a bipole spacing of 1.0 mm and bare recordings tips of 0.5 

mm.  Because the animals were on loan, with some restrictions on use, from a private 

breeder, I was unable to implant electrodes surgically and to kill specimens after the 

experiments for determining electrode placement.  Therefore, I dissected a preserved museum 

specimen and practiced inserting a needle into the target muscles.  This practice allowed me 

to determine the proper sites and depths of electrode implantation for each muscle by 

counting scale rows from the dorsal midline and inserting the needle to depths that worked 

for the preserved specimen.  Furthermore, the epaxial muscles of Loxocemus form clearly 

visible bulges along the body while contracting during handling, which allowed me to 

confirm the intended implantation sites on each individual prior to implantation.  

To implant electrodes, I made short (1-mm) longitudinal incisions in the skin with a scalpel,  

and then inserted the electrodes using a 23-gauge hypodermic needle.  The incisions were 

kept very shallow and were intended only to ease the needle insertion through the thick, 

keratinous outer scales. I used tiny droplets of cyanoacrylate surgical glue to seal each 

implantation site.  I bundled together the electrode leads from each implantation site and 

fixed them to the skin with small patches of tape so that all leads could exit as one bundle in 

the middle of the two implantation sites.  Once each electrode was implanted, a gentle pull on 

the leads produced a slight bulge under the scales that indicated that the electrode was in the 

correct position.  

To remove the electrodes at the end of each experiment, I confirmed electrode placement as 

closely as possible using a microscope and visual inspection of electrode position and depth.  

Although it was possible that the electrode tips may have spanned more than one serial 
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segment of each muscle, this was not problematic because the measurements were intended 

only to reveal gross timing of muscle activity throughout constriction; thus, potential errors of 

a few milliseconds were highly unlikely to bias my measurements of EMG bursts lasting 

several seconds or longer. 

During the experiments, I recorded the EMG signals in real time at 10,000 Hz using a 

BIOPAC MP150 data acquisition system.  I set the EMG 100C differential amplifiers to a gain 

of 1000 and a band pass of 100-5000 Hz. After data acquisition, I digitally filtered the data 

using a Finite Impulse Response (FIR) filter created using 200 filter coefficients and set to a 

band pass of 100-1000 Hz.  Thus, the analog to digital sampling rate was 10 times higher than 

the highest frequencies analyzed, which gave accurate digital reproduction of the EMG signals 

without aliasing.  I then analyzed the EMG signals using Acqknowledge (version 3.7.1) 

software. 

Plethysmography-To measure constriction pressure, I used a Harvard Apparatus 

physiological blood pressure transducer connected to a small water-filled rubber bulb.  The 

bulb was lightly taped to fur of live mice or implanted in the body cavity of dead mice.  The 

pressure signals were digitized simultaneously with the EMG signals. I recorded constriction 

pressures from 5 snakes and 8 readings (Table 2).   

During feeding trials, the transducer was connected to the BIOPAC150 EMG system.  The 

transducer outputs were calibrated at 32-40kPa (4-300 mmHg) above atmospheric pressure, 

which encompassed the pressures recorded during the constriction events.  Pressure signals 

were recorded and analyzed together with the EMG signals.  I synchronized the video, EMG, 

and pressure recordings by simultaneously video taping a flashing LED (10 Hz) and recording 

the LED voltage spikes along with the EMG and pressure signals.   



 93

Analysis 

I examined kinematic (N =17), electromyographic (N = 17), and pressure (N = 8) data for 

17 constriction events from 5 neotropical sunbeam snakes (Table 2).  From video data, I was 

able to describe how L. bicolor captured live and dead prey. I also measured the duration of 

three stages of prey restraint, including (1) the time from capture/contact to the initiation of 

coiling, (2) the time required to form a stable coil posture, and (3) the duration of coiling from 

the beginning of the stable coil posture to the visible loosening of the loops wound around the 

prey.  I tested the effects of prey condition (live vs dead) on these components of prey restraint 

time using paired T-tests with significant values set at P < 0.05.  I also recorded whether the 

snakes looped around the prey using ventral or lateral bending.  If the snakes bent laterally, I 

recorded whether the right or left side of the body was used to contact the prey.  Kinematic 

measurements were made from digitized video. Vertebral curvature was calculated while 

snakes formed constriction coils as well as average number of vertebrae used to form a loop. 

From EMG data I measured mean duration (ms) of epaxial muscle activity, timing (ms) of 

epaxial muscle activity (the on-set/off-set of the left and right Ssp, LD and IL in relation to 

one another), mean intensity (mV) of each burst of activity, and rectified area.  Although 

electrode construction and implantation were standardized as much as possible, comparison of 

signal amplitudes or rectified areas between muscles and between individuals is confounded 

by potential variation in electrode structure and EMG implant position.  

From pressure data, I recorded the following variables: (1) maximum pressures (kPa) 

exerted on the prey at any point during constriction, (2) changes in pressure (kPa) during a 

constriction event, and (3) changes in pressure in relation to epaxial muscle activity.   
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RESULTS 

Prey capture and coil formation 

In a previous study, mice that were offered to snakes via forceps precluded the need for 

snakes to extend the anterior portions of their body to strike at prey (Moon, 2000).  However, 

the snakes used in this study do not usually extend their bodies to capture prey from any major 

distances (pers. obs., RSM).  Therefore, descriptions of the initial capture behavior are 

mentioned.  Seizing prey involved the anterior neck region (before vertebrae 25), which did 

not contain electrodes.  The head was elevated above the substratum (N = 17) before capture 

and snakes would make 2-3 open-mouth sweeps towards the prey. Immediately after seizing 

prey, the head of the snake would bend ventrally and then turn laterally.  

 Individual snakes used two strategies for capturing prey: 1) the snake would stop ~2 cm 

from the prey item and tongue-flick.  After tongue-flicking, a snake would slowly move 

towards the prey and seize the prey with its jaws.  2) If the snake had already detected the prey 

item, then it would move quickly towards the prey, stopping abruptly once the rostrum 

touched the prey.  Then, the snake would either quickly grasp the prey with its jaws or the 

snake would burrow under the prey using its rostrum to slowly lifting the prey up off the 

substratum to seize it.  In 9 trials, snakes missed the prey on the first (N = 9) or second (N = 

12) attempt but eventually captured prey.  

Coil duration, from the beginning of the stable coil posture to visible loosening, lasted from 

49- 830s for live prey and 130-568.17s for dead prey (Table A-3).  Coil durations for dead 

prey were confounded by manipulations during a constriction event that were intended to both 

elicit maximal pressures and epaxial muscle activity.  Prey restraint times did not differ when 
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immobilizing dead and live prey (paired samples t – tests: capture-coil delay, t16 = 1.48, P > 

0.05; coil formation time, t16 = -0.53, P > 0.05 and coil duration: t16 = 0.14, P > 0.05).   

Kinematics 

Upon capturing live mice, snakes formed one to three loops around prey (N = 17) (Fig A-

2).  Loop formation was relatively variable and on several occasions (N = 9), coils would 

overlap one another.  Overlapping coils were often unstable and snakes changed restraint 

posture when coils overlapped in order to exert necessary pressures on the prey.  Snakes 

immediately wound (N = 11) or wrapped (N = 6) prey and loops were applied by lateral 

bending (N = 17).  During lateral bending, snakes either bent to the right or left side when 

applying loops.  No individual snake revealed a side bias while bending (Table A-4). Initial 

tightening of coils was observed during coil formation and occurred by reducing coil diameter.  

This patterns was occasionally visible (N = 5) in digitized video.  Due to the nature of their 

variable constriction patterns, individuals of L. bicolor often changed handling postures during 

a single feeding event.  This made it difficult to obtain more than two still frames that revealed 

a clear dorsal and lateral view of constriction postures for each individual.  The average 

number of vertebrae used in a coil ranged from 37-59 (Table A-4).  

Muscle activity patterns 

The dominant muscles active during constriction were the left and right LD and IL at v50 

and v80.  These are the most lateral muscles of the epaxial complex and are mechanically 

suited to produce sinusoidal waves along the body in lateral undulation as well as during 

constriction.  The LD and IL muscles were active for longer durations compared to the Ssp. 

muscles at v50, and the LD and IL muscles also exhibited higher rectified areas (Table A-5).  
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Muscle activity pattern was unilateral which correlates with the lateral bending in 

constriction postures observed for this species. 

Muscle activity and pressure exertion 

Epaxial muscle activity and pressure exertion were pronounced during coil formation and 

in response to natural and simulated struggling movement by the prey.  Muscle activity 

during coil formation was typically unilateral.  Although snakes maintained coil postures for 

up to several minutes, epaxial muscles ceased activity after initial coil formation in all 17 

trials.  This muscle activity pattern indicates that epaxial muscles contract intermittently 

during constriction.  

I observed gradual as well as abrupt changes in pressure throughout the 8 constriction 

events for which pressure data were acquired.  Epaxial muscle contractions were associated 

with increases in pressure.  However, pressure increases were not correlated with the 

rectified integrated area of EMG bursts during coil formation (r = 0.20, P > 0.05, N = 8, Fig 

A-4) and during prey struggles (r = -0.13, P > 0.05, N = 8; Fig A-5).  When muscle activity 

ceased after coil formation or after responding to prey movements, moderate to high 

pressures were nonetheless sustained.  The timing and magnitude of pressure exertion varied 

considerably within and among constriction events.  Constriction pressures ranged from 6-54 

kPa in live and dead mice.  

 
DISCUSSION 

Prey capture and coil formation – Loxocemus bicolor has a slow and relatively imprecise 

capture behavior.  Individuals often missed prey more than once even though the prey item 

may have been roughly 2 cm from the snake’s rostrum.  Once captured, the capture-coil phase 
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was very quick for live prey (x < 2.00 s).  The coil formation phase, which entailed looping 

around the prey until a stable coil was formed took much longer (live prey : = 44.3 + 28.29 s; 

dead prey:  = 32.50 + 14.77 s).  The length of time it took the snakes to form a stable coil 

may have been affected by a few variables such as 1) how or where the prey was originally 

seized, 2) whether the snakes wound or wrapped the prey, 3) how motivated the snake was to 

consume the prey, and 4) how much the mouse struggled once seized.  Regardless, the more 

erratic the loops, the more time the snake had to spend readjusting the coil. Coil duration was 

the longest phase of prey restraint ( = 530.8 + 244 s).  None of the three prey restraint stages: 

capture-coil, coil formation and coil duration were significantly affected by prey status (live vs 

dead).   

In an earlier study (Moon, 2000), coil duration phase for gopher snakes and king snakes 

was directly correlated with relative prey mass.  Due to a limited number of animals, I chose 

to examine feeding behavior with a narrow size range of prey items in order to maximize the 

number of feeding trials per individual.  Based on my behavioral observations in Part 2, I 

would expect coil duration to also increase with relative prey mass for L. bicolor.   

Kinematics- Loxocemus bicolor applied coils to the prey item by either winding or 

wrapping movements as described by Greene (1977).  In some trials overlapping coils were 

observed.  Overlapping coils are usually not observed in boas and pythons, but have been 

observed in derived snake lineages (Willard, 1977; Greenwald, 1978; Mori, 1991; Mehta, 

2003). 

Snakes bent laterally when forming loops around prey items, which supported earlier 

findings in Part 2.  Lateral bending was also observed in two derived snake taxa, gopher 

snakes and king snakes, during constriction with live and dead mice (Moon, 2000).  Lateral 
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bending is most probably the ancestral bending pattern in snakes and boas and pythons may 

exhibit a derived posture, although further kinematic studies for intermediate snake taxa are 

necessary.  

The majority of prey restraint postures involve some vertebral curvature.  The vertebral 

curvature for L. bicolor ranged from 5.8-8.6° which is relatively small compared to some of 

the bending angles reported in the literature ( 44°: Cundall, 1995; 33°: Moon, 2000). Degree 

of vertebral curvature appears to vary across different snake groups (Mosauer, 1932 a, b; 

Gasc, 1974, 1976; Jayne, 1988a; Cundall, 1995; Moon, 2000) and may be due to the 

morphological variation that has been documented along the vertebral column (Gasc, 1974, 

1976; Moon, 1999).   

Muscle activity patterns – Although prey restraint postures for L. bicolor were relatively 

variable, the epaxial muscle activity patterns during snake movement were consistent.  The 

epaxial muscles revealed discrete phases of activity during a constriction event.  Muscles 

activity was present during coil formation and then again in response to natural and artificial 

struggling movements of the prey.  

I observed unilateral epaxial muscle activity during constriction in all feeding trials. 

Unilateral epaxial muscle activity corresponded to left and right lateral bending on the side of 

the snake that was directly pressed against the prey.  This pattern was similar to epaxial 

muscle activity patterns observed for derived snake taxa (Moon, 2000).  The unilateral muscle 

activity patterns for both L. bicolor and derived snake taxa, which also correspond to lateral 

bending suggests that lateral bending, unilateral muscle activity patterns and variable 

constriction behavior may be more indicative of ancestral prey restraint methods and supports 

the stimulus control studies I performed in Part 2.  Examining intermediate taxa will help 
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determine whether muscle activity patterns during constriction are conserved across snake 

taxa although variable prey restraint behavior and lateral bending are not.    

Muscle activity and pressure exertion-Pressure changes were abrupt during the initial coil 

formation phase while gradual increases and decreases were observed throughout the feeding 

trial.  Epaxial muscles appeared to be active when pressure increased during coil formation 

and in response to natural and artificial struggling movement of prey.  However, pressure 

increases were not correlated with the rectified integrated area of EMG bursts during coil 

formation and during prey struggles.  Closer examination of epaxial activity indicated that 

when muscle activity ceased moderate to high pressures were sustained.  One interesting 

observation was that in trials in which reduction of coil diameters were observed, the epaxial 

muscles were active.  This may imply that the epaxial muscles play a role in tightening the 

coils which may directly or indirectly affect pressure exertion.  It was also apparent that 

snakes were not exerting maximum pressure on small prey.  Artificial manipulations of the 

prey with forceps while the prey was in the snakes’ coil did elicit higher pressures however 

these still may not reflect maximum pressure exertion against prey. 

On the basis of my kinematic, electromyographic and pressure data, I can draw the 

following conclusions concerning the kinematics and epaxial muscle activity during 

constriction behavior in Loxocemus bicolor.  First, the kinematics of prey restraint behavior 

for this basal taxon exhibited variability but not as much variability as observed in 

physiological (Moon, 2000) and behavioral studies (Greenwald, 1978; Mori, 1991, 1993) with 

derived snakes.  The variation in constriction postures and the range of overall prey restraint 

times supports earlier observations of feeding behavior reported for L. bicolor (Part 2).   
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Loxocemus bicolor bends laterally when forming a loop or coil around the body of the prey 

and the underlying epaxial muscles exhibit unilateral activity during lateral bending. Thus 

lateral bending and epaxial muscle activity patterns for L. bicolor were similar to those of 

gopher snakes and king snake, two derived snake taxa studied by Moon (2000).  These 

similarities suggest that the basal L. bicolor and the two highly derived snake species employ 

similar mechanisms of bending and epaxial muscle activity when handling small endothermic 

prey.  Lateral bending appears to be associated with variable pretty restraint behavior.  

Variability in prey restraint behavior is thought to have functional significance and may be a 

way snakes minimize handling prey and decrease overall feeding duration.  

Epaxial muscle activity and pressure exertion for L. bicolor are intermittent during a 

sustained constriction event even though the coils during constriction are continuously 

maintained.  Three lines of evidence suggest that the epaxial muscle may not be the only 

muscle involved during constriction.  Firstly, although the coil posture was maintained for 

several minutes, the epaxial muscles ceased firing directly after coil formation.  Secondly, 

during two observations with two different individual snakes, loops were applied around dead 

prey by wrapping.  Wrapping movements resulted in overlapping, unstable coils that snakes 

readjusted throughout the feeding trials.  During these postural adjustments the epaxials were 

not active.  Thirdly, although epaxial muscles were active during slight increases in pressure, 

epaxials ceased activity while pressures were still sustained.   

This is the first physiological study documenting variable constriction behavior in a basal 

snake taxon and comparisons with derived taxa can be discussed.  In derived snakes, prey 

restraint behavior will vary with respect to prey characteristics, particularly prey size and 

status (Milostan, 1989; Mehta, 2003).  In this study, I tested the effects of prey status on prey 



 101

restraint durations while keeping prey size relatively constant.  Prey status may not have 

affected the duration of the three prey-handling stages because of the manipulations I 

performed on dead prey while in the snakes coils.  Larger prey would probably influence any 

one of the three handling durations.  Overall mouse size is probably more influential on 

constriction behavior since the snake’s trunk is in direct contact with the surface of the mouse.  

Snakes are able to respond to movement cues by the prey once the prey is in the snakes’ coil 

as exhibited by both epaxial muscle activity and increases in pressure exertion. Prey restraint 

method, specifically in species that exhibit both winding and wrapping motions around prey 

may be in response to struggles elicited by prey upon capture.  Prey items in this study were 

relatively small in relation to the snakes.  Therefore, snakes may have had a difficult time 

initially immobilizing prey and employed overlapping coils in order to properly hold prey and 

keep the prey in one position.  This work contributes to an understanding of constriction at the 

physiological level and helps shed light on the underlying mechanisms driving variation at the 

behavioral level.  Sampling additional taxa will help document the diversity of epaxial muscle 

activity patterns within a successful monophyletic group of obligate predators.  Within the 

clade Serpentes, a more indepth examination of epaxial muscle activity and further 

examination of how motor patterns correlate with constriction postures will allow us to assess 

the homology of constriction behavior at the physiological level.            
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Table A-1  Sizes and electrode placements for individuals of Loxocemus bicolor (L) 

from which epaxial muscle activity was recorded.  SVL = snout to vent length, TL = tail 

length, BV = body (trunk) vertebrae from snout to vent, TV = number of tail vertebrae,  

SSP = M. semispinalis, LD = M. longissimus dorsi, IL = M. iliocostalis, V = vertebrae. 

 

Snake Mass SVL + TL BV + TV Muscles Electrode 
 (g) (mm) (number)   
________________________________________________________________________
L-01   571.2    975 +  87 268 +  46 SSP,LD,IL Bilateral V50, V80 
L-03   388.9 1035 +129 190 +  46 SSP,LD,IL Bilateral V50, V80 
L-04   530.9 1025 +125 235 +  47 SSP,LD,IL Bilateral V50, V80 
L-07   402.6   833 +  80 238 +  50 SSP,LD,IL Bilateral V50, V80 
L-16 1169.0 1311 +149 266 +  51 SSP,LD,IL Bilateral V50, V80 
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Table A-2: Number of snakes and feeding events used in quantitative analysis of  
 
electromyographic (EMG), pressure, and handling times. Loxocemus bicolor = L. 
 
The complete data column indicates the number of feeding trials for which combined  
 
EMG, pressure, and handling time data were available for each snake.  The bottom  
 
row indicates the total number of snakes and constriction events represented in each  
 
data set. 
 
 
Snake Total No. 

of Feedings 
EMG Pressure Restraint 

Time 
Complete 

Data 
________________________________________________________________ 

L-01 5 (3D, 2L) 5 1 5 1(0D, 1L) 
L-03 4 (2D,2L) 4 2 4 2(2D, 0L) 
L-04 2 (2D, 0L) 2 2 2 2(2D, 0L) 
L-07 1 (0D, 1L) 1 1 1 1(0D,1L) 
L-16      5 (2D, 3L) 5 2 5 2(2D, 0L) 
Total      17 17 8 17 8(6D, 2L) 
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Table A-3  Prey handling times for five adult Loxocemus bicolor.  Values given are  

+ SD and range in s (N = number of constriction events); degrees of freedom were 

obtained by paired student t- tests.  See text for details. 

 

Prey Capture-coil 
(s) 

Coil 
Formation 

(s) 

Coil Duration 
(s) 

Peak Pressure 
(kPa) 

________________________________________________________________________

1.41 + 0.52  44.3 + 28.29 530.58 + 244 38.22 + 11.68 

0.15-1.45 3.3-177.2 49-829.55 8-50 

Live 

(N = 8) (N = 8) (N = 8) (N = 2) 

     

Dead 11.17 + 9.92  32.50 + 14.77 557.74 + 177 40.02 + 9.11 
 

 0.8-28.5 4.75-47.85 130-568.17 6-56 

 (N = 9) (N = 9) (N = 9) (N = 6) 

 P = 0.19 P = 0.61 P = 0.89  
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Table A-4  Kinematic measurements for constriction loops taken from five adult  

Loxocemus bicolor during constriction with live and dead prey (Mus musculus).  Coil 

direction refers to whether snakes turned to the left (L) or right (R) to make a lateral 

bend. Number of loops in a coil refers to how many loops were applied around the prey 

item. Average Number of vertebrae in loop refers to how many vertebrae were used to 

form 1 loop around a prey item.  Vertebral curvature refers to the average degree of 

vertebral bending that occurs in 1 loop.  

 

Snake 
# 

Total 
Number of 
Feedings 

Coil 
Direction 
Left/Right

Number 
of Loops in 

a Coil 

Range of 
Vertebrae in 
a Loop for 
each snake 

Vertebral 
Bending Angle per 

Joint in a Single 
Loop (º) 

________________________________________________________________________ 
L-01 5 (3L/2R) 1-2 37-42 8.6 
L-03 4 (3L/1R) 2 38-40 8.2 
L-04 1 (1L/0R) 2 40 7.9 
L-07 2 (1L/1R) 2 37-39 8.2 
L-16 5 (2L/3R) 1-2 53-59 5.8 
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Table A-5  Mean, standard deviation, minimum, and maximum of EMG variables:  
 
duration of muscle activity (ms), amplitude (mV) of each burst of activity, and area  
 
under the rectified (absolute value) EMG trace (mV) calculated for five adult  
 
Loxocemus bicolor. 
 
 

Variable   N Mean SD Min. Max. 
_____________________________________________________________________ 
                                                 Duration of Muscle Activity (ms) 

LILv50 14 14.21 12.44 1.2 23.45 
LLDv50 16 16.33 10.45 1.6 31.22 
LSspv50 17 10.11 3.4 2.2 16.21 
RSspv50 17 12.43 6.5 1.3 19.3 
RLDv50 17 18.13 17.31 2.2 40.2 
RILv50 17 12.44 12.3 3.1 26.3 
LILv80 17 16.12 8.2 2.4 36.1 
RILv80 16 10.41 9.1 1.2 25.1 

                                                Amplitude of Muscle Activity (mV) 
LILv50 14 0.03 0.01 0.002 0.04 
LLDv50 16 0.04 0.01 0.002 0.06 
LSsp v50 17 0.01 0.01 0.002 0.06 
RSsp v50 17 0.06 0.02 0.001 0.10 
RLD v50 17 1.12 0.01 0.002 1.63 
RIL v50 17 0.02 0.02 0.003 0.05 
LIL v80 17 0.03 0.01 0.002 0.10 
RIL v80 16 0.02 0.01 0.001 0.05 

                                                      Rectified Area (mV) 
LILv50 14 2.27 0.88 0.09 2.39 

LLD v50 16 3.43 0.74 0.22 4.28 
LSsp v50 17 1.12 0.56 0.32 1.37 
RSsp v50 17 2.33 0.35 0.35 2.43 
RLD v50 17 2.62 0.33 0.51 3.03 
RIL v50 17 2.11 0.43 0.56 2.63 
LIL v80 17 1.41 0.59 0.19 2.22 
RIL v80 16 1.33 0.31 0.44 1.94 
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Figure A-1  Phylogeny of the Serpentes compiled from morphological (Cundall et al., 

1993; Kluge, 1991, 1993; Rieppel, 1978, 1988) and molecular data (Cadle, 1994; Cadle 

et al., 1990).  Loxocemidae (in italics) represents the sister taxon to boas and pythons and 

is the focus of this study. 
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Figure A-2  Image of Loxocemus bicolor bending laterally to apply loops around a 

small live mouse.  Top:  Two lateral loops are applied to large live prey during a 

behavioral experiment.  Bottom:  Three lateral loops are applied to small dead prey 

during an EMG trial.  
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Figure A-3  Epaxial muscle activity of lateral bending during the initial coil formation  
 
phase of constriction for Loxocemus bicolor (L-03) with live prey. 
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Figure A-4  This figure depicts the relationship between total epaxial area active (total 
 
rectified area) and pressure exerted on prey during the initial coil formation phase for  
 
prey trials (live and dead) for Loxocemus bicolor.  Live prey trials are indicated in  
 
parenthesis.  



 117

Total Rectified Integrated Area (mV)

0 1 2 3 4 5 6 7

Pr
es

su
re

 E
xe

rte
d 

on
 P

re
y 

(k
Pa

)

1

2

3

4

5

6

7

8

9

L07 (live)
L04

L04
L03

L03

L01 (live)

L16

L16
r = -0.13, P > 0.05

 
 
Figure A-5.  This figure depicts the relationship between epaxial area active (total 

rectified area) and pressure exerted on prey in response to prey movements for prey trials 

(live and dead) for Loxocemus bicolor.  Live prey trials are indicated in parenthesis.  
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PART 4 
 

THE EVOLUTION OF CONSTRICTION MOTOR PATTERNS IN 
SNAKES: A PHYSIOLOGICAL HOMOLOGY
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ABSTRACT 
 

Constriction is a prey restraint behavior that enabled snakes to immobilize and subdue 

extremely large prey items relative to their own body mass.  This behavior pattern is 

associated with major shifts observed in snake feeding biology from consuming small 

meals frequently to less frequent feeding on large prey. Although constriction is an 

ethological homology for at least eight lineages within the basal Alethinophidia, the 

underlying physiological patterns of this complex motor pattern have yet to be examined 

from a comparative perspective. The epaxial motor patterns during constriction behavior 

were investigated in two species of snakes (Boa constrictor and Python molurus) 

belonging to two intermediate snake lineages.  Kinematic data revealed that P. molurus 

bent the long axis of the body ventrally when winding two or more loops around a prey 

item while B. constrictor bent ventrally to wind the first loop around the prey but would 

either bend ventrally or laterally to apply the second loop around prey.  EMGs recorded 

bilaterally from the epaxial muscles, semi-spinalis spinalis (SSP), longissimus dorsi (LD) 

and iliocostalis (IL) for both snake species revealed an intermittent muscle activity 

pattern. The epaxial muscles exhibited the most activity during the brief coil-formation 

phase of constriction. Bursts of epaxial muscle activity were also present in response to 

the struggling of the prey while in the coil of the snake. During a constriction event, the 

timing of the epaxial muscles observed in these two species is similar to previous EMG 

recordings for one basal and two derived snake taxa. However, the epaxial muscle 

activity patterns of constriction behavior differ. The epaxial muscle activity patterns, 

unilateral activity, are homologous across snake taxa and seem to correlate with lateral 
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bending around prey. Boas and pythons appear to exhibit bilateral muscle activity which 

is related to ventral bending around prey.  

 
INTRODUCTION 

 
The term homology pervades the scientific literature well before the 18th century 

(Panchen, 1994).  Character traits that can be traced back to a common ancestor are 

termed homologous (Mayr, 1982).  The delineation of homology from analogy, similar 

function in convergent characters, is credited to Owens (1843), although Owen based his 

ideas of relationships only on external characters.  The idea that homologous features are 

primarily structural has a long pedigree in biology (Owens, 1843; de Beer, 1971).  More 

recently, as whole organisms are considered to comprise a hierarchy of characters, some 

have questioned whether the property of homology resides at any one hierarchical level 

(Roth, 1991).  Current views of homologous traits abandon the idea that structures or any 

other specific class of data (i.e. genetic, developmental, behavioral) serve as the locus of 

homology (Lauder, 1990, 1991).  These perspectives consider a monophyletic multilevel 

view of homology.  In a monophyletic view of homology, all classes of data are 

considered equally important as the organization of biological systems is hierarchical by 

nature (Salthe, 1994; Striedter & Northcutt, 1991).  The study of the depth of homology 

between classes of characters permits proximate analyses of underlying mechanisms 

driving character variability within clades.  In this paper, I use the hierarchical approach 

to further examine variability in a behavioral character that has been correlated with the 

success of the vertebrate clade: the Serpentes. 
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     Snakes are a monophyletic group of obligate predators that have achieved substantial 

adaptive radiation and high species richness.  There are over 2500 species of snakes and 

the majority of these species are capable of consuming individual prey weighing 20% or 

more of their own mass (Cundall & Greene, 2000).  This exceptional feeding biology is 

correlated with the appearance of two key innovations that evolved early on in the history 

of snakes.  The first innovation is behavioral and the second is a suite of morphological 

characters that include elongation of the quadrate, moveable suspension of the 

supratemporal, and greater mobility of the snout complex (Franzetta, 1970).  Although 

the morphological characters enabled intermediate snake taxa to consume prey items 

exceeding their own head width, it is the behavioral innovation, constriction, which 

revolutionized the dietary habits of snakes (Fig A-1)1.  Greene (1983) pointed out that 

although extant basal alethinophidian snakes may feed exclusively on vertebrates with 

small diameters, the prey are relatively heavy in relation to the snake.  Therefore the diet 

of extinct basal snakes was probably taxonomically diverse, but narrow in terms of prey 

shape, as indicated by extant basal snake groups.  Basal snakes would have been 

behaviorally capable of restraining heavy prey.  This would have led to profound shifts in 

feeding biology as functional innovations can provide a new selective advantage for 

subsequent structural changes during the origins of adaptive radiations (Gans, 1974). 

Constriction is a prey handling method in which a relatively large prey is immobilized 

using pressure exerted from two or more points on a snake’s body (Fig A-2).  

Constriction as a prey restraining technique is a behavioral innovation that is shared 

                                                 
1 All figures and tables are located in the Appemdix. 
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among the majority of snake lineages (Green & Burghardt, 1978).  Greene (1977) 

documented 27 possible state combinations for constriction behavior.  Of these, nineteen 

were observed in taxa belonging to the derived family colubridae.  Colubrids exhibited 

intergeneric and interspecific variability in constriction behavior.  In contrast, 

intermediate taxa, boas and pythons, exhibited very little variability in the behavior 

pattern, as their constriction posture was described by a single coil application pattern and 

9 out of 27 possible state combinations (Greene, 1977; Mehta, Part 2).  Since Greene’s 

seminal work on constriction behavior, more empirical evidence of prey-handling 

behavior has been gathered for different snake taxa and currently broad generalizations of 

constriction motor patterns can be found in the literature (see de Queiroz & Groen, 2001). 

     Although constriction is homologous among major snake taxa and has been correlated 

with the success of the Serpentes, behavioral variations of the behavior pattern and the 

underlying physiology are not well understood.  Interspecific and intraspecific variation 

in constriction postures can be observed among different lineages of snakes.  

Comparative studies examining the underlying physiological mechanisms of complex 

behavior patterns can be especially informative for behaviors exhibiting variability within 

lineages of a clade.  As shown in Part 2, basal snake taxa (early Alethiniphidia) constrict 

in a relatively variable pattern whereas intermediate snakes constrict in a highly 

stereotyped pattern.  Constriction behavior was lost and then revolved multiple times 

independently in colubroid lineages.  The colubroids that do constrict have evolved 

multiple ways of restraining prey items (Mori, 1991, 1994; Mehta, 2003).  

     This variability in constriction patterns represents a unique challenge in the realm of 

evolutionary biology and biomechanics.  Ethological innovations, especially complex 
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movement patterns, are dependent upon physiological traits such as the musculoskeletal 

system, sensory systems, and the brain.  Although constriction as a motor pattern has 

been established as an ethological homology for the majority of snake taxa, there are 

other levels of homology that necessitate consideration.  The most interesting patterns of 

form and function are revealed when examining homologous traits across a hierarchy of 

levels (Lauder, 1994).  Variability in constriction postures may be driven by variation in 

muscle activity patterns across different taxonomic groups.    

The elongate limbless Bauplan of snakes precludes the use of the body for motion 

other than various bends and twists.  Nevertheless, although externally simplified, snakes 

exhibit extremely complex axial musculature (Mosaur, 1935; Auffenberg, 1958, 1961, 

1962; Gasc, 1974, 1981; Pregill, 1977).  The axial musculature, separated into the epaxial 

(dorsal) and hypaxial (ventral) muscle groups, support a variety of movements (Moon &  

Gans, 1998).  The epaxial muscles, specifically the muscles (mm.) of the semispinalis-

spinalis (Ssp), longissimus dorsi (LD), and iliocostalis (IL), are the most well-studied 

muscles in snakes.  This is because the epaxials are superficial muscles with large cross-

sectional areas.  These muscles span many vertebrae and are mechanically suited to 

produce small radius bends and control lateral flexion of the vertebral column in snakes. 

Most studies of motor control in snakes have focused on the mechanics and underlying 

epaxial muscle activity of locomotor behaviors (Jayne, 1988; Gans, 1986, 1994; Moon 

and Gans, 1998).  Only recently, has the role of the epaxial muscles during constriction 

been of interest (Moon, 2000; Mehta, see Chapter 3).  Moon (2000) documented 

intermittent epaxial muscle activity patterns and both unilateral and bilateral epaxial 

muscle activity in two derived snake taxa: gopher snakes (Pituophis melanoleucus and 
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Lampropeltus getulus).  In Part 3 of this dissertation, I recorded epaxial muscle activity 

during constriction for a basal snake, Loxocemus bicolor. I described epaxial muscle 

activity as intermittent and variable.  The epaxial muscles exhibited strong unilateral 

muscle activity during initial coil formation and in response to prey movements, 

suggesting that epaxial muscle activity patterns may be homologous across the diverse 

lineages of constricting snakes.  In order to determine whether the underlying muscle 

activity patterns of constriction behavior are homologous at the physiological level, the 

epaxial muscle activity patterns of intermediate snake taxa are in need of examination.                 

Members of the families Boidae and Pythonidae are excellent snakes with which to 

further examine epaxial muscle activity patterns during constriction.  Boas and pythons, 

heavy-bodied snakes with strong feeding responses, exhibit high stereotypy in their 

constriction behavior compared to the proboids (Mehta, Part 2) and derived snakes 

(Greene, 1977).  Specifically, boas are said to wind anterior, using horizontal coils with 

an initial twist (Greene & Burghardt, 1978).  The character state, initial twist, means that 

during the first loop, snake bends ventrally.  This character state looks like ½ of a loop.  

The next full loop encircling the prey may either be achieved by ventral bending or 

lateral bending (Franzetta, 1970).  Colubrid snakes sometimes exhibit ventral bending 

during prey capture and the initiation of prey coiling (Moon, 2000). Loxocemus bicolor, a 

basal snake, exhibits lateral bending and unilateral epaxial activity (Mehta, Part 3).  

Moon (2000) described bilateral epaxial activity during the initial coil formation when 

gopher snakes bent ventrally.  In Part 3, I described some capture postures for L. bicolor 

that looked like ventral bending above vertebrae 25 but were not.  These bends that 

appeared to be ventral would quickly turn lateral, and since I did not inject electrodes 
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before v25, I was unable to trace muscle activity during this quick postural change.  In 

Loxocemus bicolor the looping around the prey is accomplished by bending laterally 

around prey.  During lateral bending, the epaxial muscles exhibit unilateral activity.  

The purpose of this study is to determine whether the variation in constriction 

postures observed at the behavioral level correspond to underlying muscle activity 

patterns.  These results will allow me to evaluate whether epaxial muscle activity 

patterns are homologous across the diverse groups of snakes that use constriction as a 

means to restrain prey during feeding.  Specifically, I examined the mechanics and 

epaxial muscle activity patterns during constriction for four subadult Python molurus 

and three subadult Boa constrictor imperator.  Because striking (Cundall & Deufel, 

1999) and the effects of prey characteristics on constriction behavior (Mehta, Part 2) has 

been addressed previously, I emphasized the kinematics, epaxial muscle activity in 

relation to constriction postures, and whether muscle activity is sustained during 

constriction.  The following hypotheses were tested: 1) Bending patterns when forming 

loops around prey and epaxial muscle activity patterns for boas and pythons differ from 

those of basal and advanced snakes and 2) The epaxial muscle activity patterns for boas 

and pythons correspond with the high stereotypy observed during the prey restraint 

phase.  

MATERIALS AND METHODS 

    General Methods 

    Subjects and maintenance-I recorded the kinematics and epaxial muscle activity 

patterns during constriction for 4 subadult burmese pythons (Python molurus) and 3 
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adult boa constrictors (Boa constrictor imperator) (refer to Table A-1).  Whenever 

possible, I also measured pressure exerted on both live and dead prey items during 

constriction.  Before experiments commenced, snakes were housed individually in 

plastic containers lined with corrugated cardboard for substrate.  Water was available ad 

libitum and live and dead laboratory mice (Mus musculus), of varying relative prey 

mass, were offered to snakes bi-weekly. Photoperiod was maintained on a 14L: 10D 

cycle and room temperature was maintained at 24° C.  

General experimental design-Snakes were fasted for 10 days before use in experiments.  

For all experiments, I placed an individual snake in a 300 x 500 mm lidless glass 

terrarium.  Electrode leads and pressure tubing exited through the top of the terrarium, 

allowing free movement of snakes that were attached to wire and tubing.  I maintained 

ambient and surface temperatures under the video spotlights at 23ºC over the course of 

the experiments.   

 In all experiments I offered mice or rats to the snakes using forceps.  I recorded muscle 

activity patterns during constriction and other movement patterns prior to swallowing. 

Dead and live mice and rats offered as prey ranged from 2–12% of the snake’s body mass 

and 32-61% of the snakes head width.  Pre-killed mice and rats were used to control for 

cues produced by the constricted prey.  In half of the feeding trials with dead prey, prey 

were instrumented with a small pressure transducer in the body cavity.  To simulate prey 

movements, I tugged on the limbs of the prey that protruded from the snake’s coil with 

forceps during the course of a constriction event.  In order to compare my results between 

the two snake species and to ensure consistency during simulating natural prey 
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movements, I waited at least 15 seconds after the initial coil application to simulate prey 

movements. 

Live mice were offered to snakes to elicit constriction in response to natural movements 

by the prey.  To record constriction pressures in these trials, the rubber bulb was lightly 

taped to the mouse’s fur (see Part 3 for details). 

Coil Application/ Terminology: To describe constriction postures for snakes, I adopted 

standard terminology from Greene (1977), Greene & Burghardt (1978), Mori (1991) and 

Shrewsbury (1969).  I also adopt terminology used by Moon (2000) to describe the 

movement patterns of the axial skeleton during constriction:  

Loop: a bend of the body pressed against the prey. 

Pinion: 1 or more loops that push the prey against the surface but do not encircle 

the prey (de Queiroz, 1984). 

Non-overlapping loop: a loop that partially encircles the prey (Mori, 1991). 

Coil: 1 or more loops that fully encircle the prey (Greene & Burghardt, 1978). 

  In forming loops, Greene (1977) recognized three character states that described the 

way loops could be applied around a prey item.  Loops could be wound around prey.  

During winding movements the prey is turned along its axis as the loops are applied in 1 

direction.  Loops could also be wrapped around prey.  During wrapping, loops could be 

placed from more than 2 directions around prey.  The resulting coils could be vertical or 

horizontal relative to the substratum, resulting in the lateral or ventral surface of the 

snake pressed against the prey. 

Lateral bend: A bend is considered lateral when only one side of the snake’s body  

is in contact with the prey.  
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 Therefore only the right or left side of the snake can form an encircling loop around 

prey.  When the axial skeleton bends laterally to form a coil, the dorsal as well as part of 

the ventral scales are visible. 

Ventral bend: A bend is considered ventral when the ventral or belly scales of the  

snake make full contact with the prey.   

When the axial skeleton bends ventrally to form a coil, only the dorsal scales of the snake 

are visible as the ventral side of the snake is facing the prey. 

Ventral-lateral bend: When two loops are wound around the prey, the first loop  

can be applied by ventral bending and the second loop can be applied by 

lateral bending. 

Videography and Electromyography 

All feeding trials were videotaped (30 fps) using an 8-mm Sharp video camera VL-

E43U positioned approximately 1.5 m from the terrarium containing the snake.  The 

terrarium was lined with a 2-cm grid for scale and contained a mirror angled at 45º from 

the horizontal to reflect a dorsal view into the video camera.  Experiments were 

recorded at 30 fps. 

For video data acquisition, Pinnacle Software was used to digitize selected images to 

determine the number of vertebrae used in loops during constriction and average loop 

radius.  Snakes were marked every 10 vertebra (indicated by ventral scale counts; 

Alexander and Gans, 1966) with tape in order to count vertebrae on video.  The vertebral 

midline and a cross-bar at every tenth vertebra were painted on the snake to aid in 

measuring average loop radius.  Measurements were made using Image J which uses the 
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horizontal and vertical scales in the video field to correct for camera angle and adjust the 

image shape.  

To record epaxial muscle activity patterns, I implanted bipolar hook electrodes (Loeb 

& Gans, 1986) into the semispinalis portion (SSP) of the muscles (mm). spinalis-

semispinalis, the m. longissimus dorsi (LD), and the m. iliocostalis (IL) in all five 

individuals.  I implanted the electrodes bilaterally in the epaxial muscles at two points 

along the snake’s trunk (Table A-1).  Electrode spacing was between 30-40 vertebrae.  

This vertebral spacing enables detection of any bilateral differences in muscle activity 

and any longitudinal propagation of muscle activity.  Table A-1 depicts snake size and 

electrode placements for individuals of Python molurus (P) and Boa constrictor (B) from 

which epaxial muscle activity was recorded.  

Electrodes were constructed from polyimide-coated (H-ML) stainless-steel wire 

(California Wire Co., 316LMG) with a bipole spacing of 1.0 mm and bare recordings tips 

of 0.5 mm. I injected electrodes with a 23-gauge hypodermic needle into the target 

muscle.  Entry wounds were sealed with small amounts of cyanoacrylate glue and a 

surgical wound dressing.  Electrode leads were fixed to the snake’s skin with tape.  Small 

patches of tape were placed at intervals along the trunk.  The leads were bound into one 

bundle and loose ends were connected to the amplifiers beyond the posterior electrode 

insertion site.  Electrodes remained in place for 48 hours.  Upon removal of electrodes, I 

used a microscope for visual inspection of electrode position and depth to confirm 

electrode placement.  

During the experiments, I recorded the EMG signals in real time at 10,000 Hz using a 

BIOPAC MP150 data acquisition system.  I set the EMG 100C differential amplifiers to a 
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gain of 1000 and a band pass of 100-5000 Hz.  After data acquisition, I digitally filtered 

the data using a Finite Impulse Response (FIR) filter created using 200 filter coefficients 

and set to a band pass of 100-1000 Hz.  Thus, the analog to digital sampling rate was 10 

times higher than the highest frequencies analyzed, which gave accurate digital 

reproduction of the EMG signals without aliasing.  I then analyzed the EMG signals 

using Acqknowledge (version 3.8.1) software. 

Plethysmography-To measure constriction pressure, I used a Harvard Apparatus 

physiological blood pressure transducer connected to a small water-filled rubber bulb.  

The bulb was lightly taped to fur of live mice or implanted in the body cavity of dead 

mice.  The pressure signals were digitized simultaneously with the EMG signals. I 

recorded constriction pressures from 4 snakes and 11 readings (Table A-2).   

During feeding trials, the transducer was connected to the BIOPAC150 EMG system.  

The transducer outputs were calibrated at 32-40kPa (4-300 mmHg) above atmospheric 

pressure, which encompassed the pressures recorded during the constriction events.  

Pressure signals were recorded and analyzed together with the EMG signals.  I 

synchronized the video, EMG, and pressure recordings by simultaneously video taping a 

flashing LED (10 Hz) and recording the LED voltage spikes along with the EMG and 

pressure signals.   

   Analysis 

I examined the kinematic (N = 22), electromyographic (N = 22), and pressure (N = 11) 

data for 22 constriction trials from 7 individuals representing two intermediate snake taxa 

(4 Python molurus: 3 Boa constrictor imperator) (Table A-2).  From video data, I was able 

to describe how P. molurus and B. constrictor handled live and dead prey.  I measured the 
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duration of three stages of prey handling, including (1) the time from capture/contact to the 

initiation of coiling, (2) the time required to form a stable coil posture, (3) the duration of 

coiling from the beginning of the stable coil posture to the visible loosening of the loops 

wound around the prey.  I tested the effects of prey condition (live vs dead) on these 

components of handling time using paired T-tests.  I also recorded whether the snakes 

looped around the prey using ventral or lateral bending.  If the snakes bent laterally, I 

recorded whether the right or left side of the body was used to contact the prey.  Kinematic 

measurements were made from digitized video.  Vertebral curvature was calculated while 

snakes formed constriction coils as well as average number of vertebrae used to form a 

loop. 

From EMG data I measured mean duration (ms) of muscle activity, timing (ms) of 

epaxial muscle activity (on-set/off-set) in relation to one another, mean intensity (mV) of 

each burst of activity, and area under the rectified (absolute value) EMG trace in mV·ms 

(computed by multiplying the mean signal amplitude of the rectified spikes by the duration 

of the burst).  Although electrode construction and implantation were standardized as much 

as possible, comparison of signal amplitudes or rectified areas between muscles and 

between individuals is confounded by potential variation in electrode structure and EMG 

implant position.  

From pressure data, I recorded the following variables:  (1) maximum pressures (kPa) 

exerted on the prey at any point during constriction, (2) changes in pressure (kPa) during a 

constriction event, and (3) changes in pressure in relation to epaxial muscle activity during 

the initial coil formation phase and in response to prey struggles.   
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RESULTS 

Capture and coil formation  

Mice were offered to snakes via forceps, precluding the need for snakes to extend the 

anterior portions of their body to strike at prey, as previously observed by Moon (2000).  

Therefore, snakes did not demonstrate the driving scissors striking behavior indicative of 

pythons and boas (Cundall & Deufel, 1999).  Rather than strike, all individuals simply 

seized prey.  Although seizing behavior was much slower than strikes, snakes seized prey 

in less than 2 s.  Seizing involved the anterior neck region (before vertebrae 25) or just 

the head of the snake, neither of which contained electrodes.  

Python molurus:  After seizing prey, individual pythons would bend the anterior 

portion (up to vertebrae 77) of their bodies ventrally so that once a coil was formed, it 

was difficult to see the ventral scales of the snake because they were up against the prey 

item.  From video frames, ventral bending was initiated by the head of the snake rolling 

forward towards the substrate.  If pythons formed a coil, two or more encircling loops 

wound around prey; the second loop of the coil would also be wound ventrally. 

Boa constrictor:  Individual boas would also bend ventrally after seizing prey.  Video 

analysis for boas also revealed the head of the snake rolling forward and toward the 

substrate to initiate a ventral bend.  If boas formed a coil around prey, the second loop of 

the coil would either be ventral or lateral.  During a lateral bend to form a loop only one 

side (left/right) of the snake would be in contact with the prey.  For trials in which boas 

bent laterally (N = 7 trials, 3 individuals), individuals alternated between the right and left 

sides.  The data for the kinematics of loop application for both species are given in Table 

A-4. 
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Prey restraint times – I used mean capture-coil time, mean coil formation time, and 

mean coil duration time for individuals with more than one trial for dead prey in order to 

examine prey restraint times between species.  An ANOVA revealed no significant 

differences between capture-coil time (F (1, 4) = 1.114, P = 0.351), coil formation time 

(F(1,4) = 1.156, P = 0.343) and coil duration (F(1,4) = 2.40, P = 0.196) between boas and 

pythons when restraining dead prey.  Interspecific handling differences with live prey 

could not be assessed.  Only one boa received a trial with a live prey item. 

Python molurus: Prey restraint times, specifically the initial coil formation time and 

time to form a stable coil, did not differ significantly when pythons immobilized dead 

and live prey (capture-coil delay, t2 = -8.05, P = 0.51; coil formation time, t2 = 8.41, P = 

0.48).  There were significant differences (t2 = 3.02; P<0.001) in average coil duration 

between dead and alive mice.  On average, coil duration was longer when handling dead 

mice (N =3).  Coil duration, from the beginning of the stable coil posture to visible 

loosening, lasted from 30-238s for live prey and 118-188s for dead prey (Table A-3).   

Boa constrictor:   Boas were subject to more trials with dead prey and only one 

individual boa was offered live prey for a single feeding trial.  This was mainly due to the 

difficulty I had in finding live prey that would not be too small for the boas to handle. 

Although boas exhibit high stereotypy during the prey restraint phase (Greene, 1977; 

Mehta, Part 2), prey needs to be long enough to extend beyond the jaws to be constricted 

(Cundall & Greene, 2000).  Due to the single trial with live prey for Boa constrictor, the 

effects of prey status on handling times could not be examined.  

Constriction postures-  I describe constriction postures for snakes using standard 

terminology from Shrewsbury (1969), Greene (1977), Greene & Burghardt (1978), Mori 
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(1991), and Moon (2000).  In all 22 trials, patterns of loop formation were relatively 

stereotyped and coils did not overlap for P. molurus and B. constrictor (Fig. A-3).  I 

measured the number of vertebrae used in a coil from 1 frame for each individual in each 

trial (N =22).  The average number of vertebrae used in a coil was 96.  The kinematic 

measurements of constriction loops can be found in Table A-4.   

Python molurus:  Upon capturing mice, pythons formed 1.5 to 2 encircling loops 

around prey (N = 11).  Pythons usually wound prey immediately after seizing it (N = 10). 

During winding movements, mice were turned about their long axis.  Due to the short 

length of many of the prey items, loops that were formed past vertebrae 50 were not 

around the mouse.  All individual pythons applied loops around the prey by bending 

ventrally (N = 11).   

Boa constrictor:  Boas formed 1.5 to 2 encircling loops around prey (N = 11).  Similar 

to pythons, all prey were encircled using winding movements.  Boas mostly exhibited 

ventral bending (N = 8).  In two trials with two B. constrictor, the second encircling loop 

in a coil was formed laterally.  

Epaxial muscle activity 

In general, the muscle activity patterns for boas and pythons exhibited great similarity 

in this study so I state the general patterns I found for both of these species in a combined 

fashion.  The epaxial muscles of boas and pythons were active during the initial coil 

formation phase of constriction.  For all trials (N = 22), epaxial muscle activity ceased 

directly after snakes formed a stable coil.  Bilateral biphasic activity, in which both sides 

of epaxial muscles are active, was observed during the initial coil formation phase for 

pythons handling both live and dead prey (Figs. A-4 & A-5).  Boas exhibited both, 
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uniphasic lateral activity, where only one side of the epaxial muscles are active, and 

biphasic bilateral activity patterns during initial coil formation (Figs. A-6 & A-7).  

Muscle activity ceased directly after coil formation in both boas and pythons and 

epaxial muscle activity was not observed unless the prey struggled in the snake’s coils 

(Figs. A-8 & A-9). Muscle activity was present in response to both natural prey 

movements and artificially induced prey movements for both species.  Some muscle 

activity patterns in response to prey movements were unilateral for boas. In trials in 

which ventral-lateral bending was used to initially wind loops around the prey (N = 11), 

the right and left IL v25 would exhibit bilateral activity while the right or left LD and IL 

v50 would be unilaterally active.  Ventral-lateral bending with bilateral-unilateral muscle 

activity patterns was observed during 6 trials.  In the lateral loop, v25 and v50 were 

almost always active, a pattern mostly exemplified in Boa constrictor (Fig. A-10).   

Relationship between epaxial muscle activity and pressure exertion 

Epaxial muscle activity and pressure exertion were pronounced during coil formation 

and in response to natural and simulated struggling movement by the prey.  Bilateral and 

unilateral muscle activity during coil formation was synchronous with pressure exertion, 

although in 8 out of the 11 pressure trials, peak pressures were maintained when epaxials 

ceased actvity.  Although boas and pythons maintained coil postures for up to several 

minutes, epaxial muscles ceased activity directly after initial coil formation (N =22; Figs. 

A-6, A-7 & A-10) and in relation to prey struggles.  This pattern indicates that epaxial 

muscles contract intermittently during constriction.         

Epaxial muscle contractions were associated with increases in pressure during coil  

formation and in response to prey movements.  I did not analyze two out of the eleven 
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pressure trials due to odd pressure readings that became apparent after the initial coil 

formation phase.  These odd pressure recording were observed in trials with P. molurus.  

Of the nine trials I did examine, pressure increases were not correlated with the rectified 

integrated area of EMG bursts during the initial coil formation phase (r = 0.193, P > 

0.620; Fig. A-11) and during prey struggles (r = 0.269, P > 0.49; Fig. A-12).  When 

muscle activity ceased quickly after coil formation or after responding to prey 

movements, moderate to high pressures were sustained.  These high pressures (30-56) 

would last anywhere from 5-12.36 s after epaxial muscles ceased activity.  The timing 

and magnitude of pressure exertion varied considerably within and among constriction 

events.  Pythons exerted pressures which ranged from 23-69 kPa for alive mice and 15-45 

kPa for dead mice.  Boas exerted pressures that ranged from 24.5 -70 kPa during the 

single constriction event with alive prey and 23-52 kPa for dead mice (Table A-3; Figs. 

A-11 & A-12). 

DISCUSSION 

On the basis of electromyographic and kinematic data, Python molurus and Boa 

constrictor exhibit similar patterns of muscle activity during constriction.  The initial 

capture-coil and initial coil formation phases were quicker for boas compared to pythons. 

Although I controlled for relative prey mass, boas exhibited longer durations of coiling 

during constriction.  Both species wound loops around prey items and coiling consisted of 

1.5-2 loops.  Both species bent ventrally when initiating the first loop.  When a second 

loop was wound around the prey, the loop could either be lateral or ventral.  In two trials, 

with two boas the second encircling loop was formed using a lateral bend.  Franzetta 
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(1966) described coil formation for Python molurus and Python sebae based on film 

analysis and concluded that the ventral side is pressed against the victim, seldom the lateral 

side.  My reports support this observation, however boas seem to also be able to wind 

laterally around prey.  Lateral looping in boas was mostly performed with the second loop 

while ventral bending was observed in the first 1.5 loops, a continuation of the capture-coil 

phase. 

Three major conclusions can be drawn from examining the epaxial muscle activity 

patterns of boas and pythons during constriction.  Firstly, during the capture-coil phase, 

boas and pythons bend ventrally and the epaxial muscles exhibit bilateral muscle activity 

patterns.  These activity patterns are usually strong bursts of muscle activation that last 

anywhere from 2.5 – 6.8 s.  Secondly, epaxial muscles cease activity when the coil is fully 

formed.  Although snakes maintain their constriction posture, epaxial muscles are not 

active.  Thirdly, epaxial muscles become active in response to prey struggles.  Epaxial 

muscle activity patterns in response to natural or simulated prey movement were mostly 

bilateral for boas and pythons.  However, in 2 trials with Boa constrictor no.2 and no 4, 

epaxial muscles exhibited unilateral muscle activity.  In these two trials the epaxial muscle 

activity was unilateral because the second loop of the coil was laterally placed (Fig.A-10).  

The epaxial muscles responded to prey movements as natural and artifical prey struggles 

were followed by bursts in epaxial muscle activity.  This was particularly interesting 

because no changes in constriction posture were observed.  Prey characteristics such as 

size and activity level are considered to have very little affects on the constriction postures 

for intermediate snake taxa (Greene, 1977; Greene & Burghardt, 1978; Milostan, 1989).  

My data in Part 2 support these observations.  As the epaxial muscles become active the 
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muscular contraction reduces the diameter of the coil.  Unfortunately, the contraction for 

some of these trials was so subtle that coil diameter reduction was not easily observed. 

Canjani et al. (2003) examined the aerobic metabolism of constriction and revealed that 

metabolic rate did not correspond to the size of prey constricted.  It appears that boas have 

highly specialized physiological mechanisms that enable them to constrict extremely large 

prey without undergoing too many observable postural shifts as exhibited by highly 

derived snakes.  

Lastly, all snakes exerted high pressures during the initial coil formation phase of 

constriction and pressure recordings continued to remain steady throughout constriction 

although epaxial muscles ceased activity.  This finding suggests two things: 1) boas and 

pythons squeeze prey hard during the initial capture phase that leads into the formation of 

the first loop via ventral bending and 2) other muscles are contributing to holding the 

stable coil posture as well as contributing to pressure exertion.  The musculature of snakes 

is highly complex and any one of the estimated 15 muscles comprising the axial 

musculature in snakes could be active during constriction (Cundall, 1987).  However, from 

my study, I can only describe the epaxial musculature activity patterns. 

Physiological homology 

Moon (2000) was the first to examine the highly complex three dimensional 

movement pattern, constriction, from a physiological perspective.  Specifically, the 

muscle activity patterns in relation to constriction kinematics was described using two 

derived snake taxa, gopher snakes (Pituophis melanoleucus) and king snakes 

(Lampropeltis getula).  In Part 3 of this dissertation I examined the epaxial muscle 

activity patterns for a basal snake taxon, Loxocemus bicolor.  These studies, along with 
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the research just described, enables a phylogenetic approach to the analysis of 

homology for constriction behavior at the physiological level.  

In all three studies, four general trends were observed: 1) snakes exhibited 

intermittent epaxial muscle activity, 2) during the initial coil formation phase of 

constriction, epaxial activity was strong but abrupt in duration, 3) epaxial muscle 

activity always ceased after the coil was formed, and 4) epaxial muscles were active in 

response to natural and artificial prey movements.  The derived snakes, gopher snakes 

and king snakes used lateral bends to wind around prey as did the basal taxon, 

Loxocemus bicolor.  This suggests that the ancestral constriction posture involved 

lateral bending and unilateral muscle activity.  Boas and pythons, as discussed earlier in 

this chapter, primarily wound around prey by ventral bending of the trunk.  These 

results suggest that ventral bending with bilateral muscle activity is a derived 

constriction pattern.  

The amount of pressure exerted on prey during constriction varied between the four 

lineages examined.  Derived snake taxa exerted 6.1- 30.9 kPa (Moon, 2000) while the  

basal snake, Loxocemus bicolor exerted anywhere from 8-50 kPa for alive prey and 6-56  

kPa for dead prey.  Higher pressures appear to have been exerted on dead prey items. 

These trials with dead prey, however, were compromised by the need to artificially 

manipulate prey movements in an attempt to elicit maximal pressures by snakes.  Boas 

and pythons exhibited similar pressures for live prey 23-70 kPa.  Trials with dead prey 

exhibited more variability.  Boas can consume large meals in the wild; although the 

variability of prey struggling while prey is in the coils of a snake has never been studied, 

I speculate that larger prey may struggle more vigorously than smaller prey.  I also 
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speculate that snakes perceive the struggles of larger prey more easily and have ways to 

incorporate these struggles into their muscle activity patterns.  

In general, these pressure trials did not reveal maximal pressures for any of the species 

examined.  This statement is based on the fact that small prey items were primarily used 

in this study and that larger pressures would be necessary to immobilize and kill larger 

prey. Also, natural as well as manipulated prey movements elicited increases in pressure 

for all three taxa I examined.  Further examination of the effects of prey activity and prey 

size would be useful in determining whether some taxa are capable of exerting more 

force on prey than others.  Future studies should also consider the relationship between 

snake diameter and force exerted on large prey. 

Structural and functional classes of data reflect proximate causes for variation at the 

behavioral level (Lauder, 1991, Lauder & Reilly, 1996).  The study of the proximate 

mechanisms that may drive behavioral differences across groups of organisms is 

especially important when monophyletic groups exhibit differential success (i.e. species 

diversity and richness).  The underlying epaxial muscle patterns, bilateral and lateral 

activity, in basal, intermediate and derived snake taxa exemplify the variability in 

constriction postures.  My data in Parts 2 & 3 of this dissertation reveal that basal snakes 

such as Loxocemus bicolor vary prey restraint methods with respect to prey size and 

status and use the lateral portion of their body to apply encircling loops around prey.  

This behavior pattern is reflected in the underlying epaxial muscle patterns, which reveal 

unilateral muscle activity during constriction.  Intermediate taxa, boas and pythons, 

constrict in a highly stereotyped manner which corresponds with ventral bending around 

prey.  Ventral bending is controlled by bilateral epaxial activity.  Derived snake taxa 
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exhibit the greatest variability in prey restraint postures which is reflected in variable 

epaxial muscle activity patterns.  Moon (2000) documented that gopher snakes and king 

snakes exhibit both bilateral and unilateral muscle activity patterns when handling prey. 

From these studies, I can conclude that the epaxial muscle activity patterns are 

homologous across snake taxa.  Unilateral muscle activity is most probably the basal 

condition while intermediate and advanced snake lineages exhibit a more derived epaxial 

muscle pattern.  These different muscle patterns suggest that numerous functional 

specializations have occurred in the underlying activity of homologous behaviors, a topic 

that has been gaining more attention (Schwenk & Wagner, 2001).   

Moon (1998) studied the interrelationships of locomotion, constriction, and 

swallowing in snakes.  Each of these behaviors is subject to their own selection pressures 

and the underlying axial skeleton is subject to internal selection which most probably 

helps to support these diverse behaviors.  This illustrates that all levels of organismal 

design can be subject to extensive transformation. 
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Table A-1  Sizes and electrode placements for individuals of Python molurus (P) and 

Boa constrictor (B) from which epaxial muscle activity was recorded.  SVL = snout to 

vent length, TL = tail length, BV = body (trunk) vertebrae from snout to vent, TV = 

number of tail vertebrae, SSP = M. semispinalis, LD = M. longissimus dorsi, IL = M. 

iliocostalis, V = vertebrae. All snakes were measured at the start of the experiment. 

 

Snake Mass 
(g) 

SVL + TL 
(mm) 

Muscles Electrode 

______________________________________________________________ 
P-01 585.3 1135 + 143 SSP, LD, IL Bilateral V50,V80 
P-02 589.0 1035 + 139 SSP, LD, IL Bilateral V50,V80 
P-03 647.2 1058 + 149 SSP, LD, IL Bilateral V50,V80 
P-05 591.1 1025 + 125 SSP, LD, IL Bilateral V50,V80 
B-01 722.1 1237 + 180 SSP, LD, IL Bilateral V25,V75 
B-02 812.4 1305 + 167 SSP, LD, IL Bilateral V25,V75 
B-04 592.9 1024 + 096 SSP, LD, IL Bilateral V25,V75 
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Table A-2  Number of snakes and feeding events used in quantitative analysis of  

electromyographic (EMG), pressure, and handling times for Python molurus (P) and Boa 

constrictor (B).  The complete data column indicates the number of feeding trials for 

which combined EMG, pressure, and handling time data were available for each snake.  

The bottom row indicates the total number of snakes and constriction events represented 

in each data set. 

 

 
Snake Total No. of 

Feedings 
EMG Pressure Handling Time Complete Data 

___________________________________________________________________ 
P-01 3(1D, 2L) 3 2 3 2(1D, 1L) 
P-02 1(0D, 1L ) 1 0 1 0(0D, 0L) 
P-03 5(1D, 4L) 5 4 5 4(0D, 4L) 
P-05 2(1D, 1L) 2 1 2 1(1D, 0L) 
B-01 3(3D, 0L) 3 0 3 0(0D,0L) 
B-02 3(3D, 0L) 3 0 3 0(0D,0L) 
B-04 5(4D, 1L) 5 4 5 4(3D,1L) 

7 22 22 11 22 11 
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Table A-3  Prey handling times for a) four subadult Python molurus and b) three Boa 

constrictor imperator.  Values given are mean  +  SD and range in s (N = number of 

constriction events); Degrees of freedom were obtained by paired student t- tests. See text 

for details. 

 
a) Python molurus 

Prey Capture-coil 
(s) 

Coil 
Formation 

(s) 

Coil Duration 
(s) 

Peak Pressure 
(kPa) 

________________________________________________________________________
1.59 + 1.45 10.19 + 0.08 1.00-3.32 3.0 - 8.62 

 
138.63 + 71.50 40.64 + 18.83 

 
30- 238 23-69  

 

Live 

(N = 8) (N = 8) (N = 8) (N=5) 
 

1.88 + 1.24 
 

9.11 + 6.98 161.00 + 41.72 25.33 + 11.50 

1.00- 3.20 4.75 – 47.85 118-188 15 -45 
 

Dead 

(N = 3) (N = 3) (N = 3) (N=2) 
 

 P = 0.57 P = 0.48 P < 0.001 
 

 

b) Boa constrictor imperator 
Prey Capture-coil 

(s) 
Coil 

Formation 
(s) 

Coil Duration 
(s) 

Peak Pressure 
(kPa) 

________________________________________________________________________
Live 2.3 12  120 70  

 
 - - - - 
 (N = 1) (N = 1) (N = 1) (N = 1) 
     
Dead 1.092 + 0.07 5.45 + 0.16 282.5 + 164.76 40.14 + 5.56 

 
 0.2 - 2.24 0.03 – 54.5 111 -652 23-52  

 
 (N = 10) (N = 10) (N = 10) (N=3) 
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Table A-4  Kinematic measurements for constriction loops taken from four subadult 

Python molurus and three subadult Boa constrictor with live and dead prey (Mus 

musculus).  Initial Bend/1st loop and 2nd loop, refers to whether the loop was applied by 

bending ventrally (V) or laterally (L). Average Number of vertebrae in loop refers to how 

many vertebrae were used to form 1 loop around a prey item.  Vertebral curvature refers 

to the average degree of vertebral bending that occurs in 1 loop.  

 

 
Snake # Number of 

Feedings 
Analyzed 

Initial 
Bend/ 
1st loop 

2nd loop 
V/L  

Average 
Number of 
Vertebrae in 
Loop 

Vertebral 
Curvature for 
a single loop 
(°) 

___________________________________________________________________
P-01 3 3V:0L 3V:0L 103 +  5 3.42 
P-02 1 1V:0L 1V:0L 100 +  0 3.91 
P-03 5 5V:0L 5V:0L   89 +  1 2.86 
P-05 2 2V:0L 1V:1L   96 + 13 4.21 
B-01 3 3V:0L 1V:2L 108 + 11 4.32 
B-02 3 3V:0L 2V:1L 111 +   6 5.21 
B-04 5 3V:2L 0V:5L  104 +  7 5.87 
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Table A-5  Mean, standard deviation, minimum, and maximum of EMG variables: 

duration of muscle activity (ms), intensity (mV) of each burst of activity, and area under 

the rectified (absolute value) EMG trace (mV) calculated for four subadult Python 

molurus. 

 

Variable N Mean SD Min. Max. 
________________________________________________________________________

Duration of Muscle Activity (ms) 
LILv50 11 16.51 8.32 11.2 25.65 
LLDv50 11 14.23 4.13 6.6 19.32 
LSspv50 11 10.41 1.4 4.7 12.08 
RSspv50 11 10.84 3.5 2.1 15.27 
RLDv50 11 15.04 4.24 11.2 20.82 
RILv50 11 6.51 2.3 3.1 9.3 
LILv25 11 11.24 7.4 6.4 19.3 
RILv25 11 10.01 5.4 5.8 20.6 

                                                  Amplitude of Muscle Activity (mV) 
LILv50 11 0.06 0.01 0.006 0.09 

LLD v50 11 0.04 0.01 0.004 0.06 
LSsp v50 11 0.02 0.01 0.002 0.06 
RSsp v50 11 0.15 0.02 0.001 0.20 
RLD v50 11 2.31 0.06 0.002 3.02 
RIL v50 11 0.12 0.02 0.08 0.16 
LIL v25 11 0.43 0.01 0.22 0.50 
RIL v25 11 0.42 0.01 0.01 0.45 

                                                         Rectified Area (mV) 
LILv50 11 2.27 0.21 0.19 2.51 

LLD v50 11 1.08 0.29 0.35 2.01 
LSsp v50 11 1.62 0.10 0.43 1.79 
RSsp v50 11 2.88 0.72 0.85 3.93 
RLD v50 11 5.01 0.11 0.51 5.27 
RIL v50 11 3.66 0.15 0.32 3.88 
LIL v25 11 4.11 0.23 0.71 5.22 
RIL v25 11 1.34 0.11 1.06 1.67 
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Table A-6: Mean, standard deviation, minimum, and maximum of EMG variables: 

duration of muscle activity (ms), intensity (mV) of each burst of activity, and area under 

the rectified (absolute value) EMG trace (mV) calculated for three subadult Boa 

constrictor. 

 
 
Variable N     Mean SD Min. Max. 
________________________________________________________________________

Duration of Muscle Activity (ms) 
LILv50 11 12.34 11.22 1.8 33.67 
LLDv50 11 18.40 09.15 3.2 42.09 
LSspv50 11 12.22 4.3 2.8 28.11 
RSspv50 11 10.13 7.4 3.4 22.41 
RLDv50 11 19.54 19.21 3.4 26.06 
RILv50 11 15.62 13.12 3.5 27.67 
LILv25 11 17.42 11.13 3.2 26.7 
RILv25 11 11.21 10.21 3.1 22.8 

Amplitude of Muscle Activity (mV) 
LILv50 11 0.011 0.02 0.03 0.06 

LLD v50 11 0.08 0.11 0.034 0.02 
LSsp v50 11 0.07 0.23 0.001 0.09 
RSsp v50 11 0.05 0.03 0.001 0.07 
RLD v50 11 2.43 0.41 0.32 0.45 
RIL v50 11 0.05 0.03 0.005 0.08 
LIL v25 11 0.07 0.01 0.001 0.12 
RIL v25 11 0.07 0.01 0.002 0.05 

Integrated Rectified Area (mV) 
LILv50 11 3.48 1.10 1.33 1.49 

LLD v50 11 3.63 0.82 2.29 4.11 
LSsp v50 11 1.42 0.76 0.42 2.87 
RSsp v50 11 2.04 0.15 2.09 2.19 
RLD v50 11 2.53 0.11 2.42 2.64 
RIL v50 11 2.41 0.23 2.18 2.64 
LIL v25 11 0.41 0.39 0.12 0.69 
RIL v25 11 1.08 0.41 0.67 1.49 
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Figure A-1  Phylogeny of the Serpentes compiled from morphological (Cundall et al., 

1993; Kluge, 1991, 1993; Rieppel, 1978, 1988) and molecular data (Cadle, 1994; Cadle 

et al., 1993).  Loxocemidae (in italics) represents the sister taxon to boas and pythons.  

Note the evolution of the key behavioral innovation in snakes, constriction. 
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Figure A-2  An example of constriction behavior performed by Eunectes murinus. 
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Figure A-3  Examples of Python molurus (top) and Boa constrictor (bottom) bending  
 
ventrally during EMG experiments. 
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Figure A-4  Epaxial muscle activity of ventral bending during the initial coil formation 

phase of constriction for Python molurus no.1 with live prey. 
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Figure A-5  Epaxial muscle activity of ventral bending during the initial coil formation 

phase of constriction for Python molurus no.1 with dead prey. 
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Figure A-6  Epaxial muscle activity of ventral bending during the initial coil formation 

phase of constriction for Boa constrictor no. 4 with live prey. 
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Figure A-7  Epaxial muscle activity o ventral bending during the initial coil formation 

phase of constriction for Boa constrictor no. 4 with dead prey. 
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Figure A-8  Intermittent epaxial muscle activity of ventral bending during constriction 

for Python molurus no.5 with dead prey. 
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Figure A-9  Intermittent unilateral epaxial activity during response to prey struggles by  
 
Boa constrictor no. 2. 
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Figure A-10  Intermittent unilateral epaxial activity during response to prey struggles by  
 
Boa constrictor no. 4. 
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Figure A-11  Relationship between  epaxial area active (total rectified area) and pressure 

during the initial coil formation phase for combined trials with boas and pythons.  Trials 

with dead prey are noted in parenthesis. 
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Figure A-12  Relationship between  epaxial area active (total rectified area) and pressure 

during prey struggles for combined trials with boas and pythons.  Trials with dead prey 

are noted in parenthesis. 
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PART 5 
 

HOW DEEP IS CONSTRICTION BEHAVIOR?
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HOMOLOGY FROM A HIERARCHICAL PERSPECTIVE 

The concept of homology has long helped biologists describe and compare 

morphological features across a variety of organisms (Owen, 1843; Moment, 1945). 

Nonetheless, among concepts in evolutionary biology, the term homology “has a firm 

reputation as an elusive concept” (Wagner, 1989: 51). 

Current understanding of the concept of homology seems to revolve around four major 

points. Firstly, homologous characters are those that are shared by two or more taxa and 

can be traced back to a common ancestor (Wiley, 1981; Mayr, 1982; Gans, 1985; Lauder, 

1986; Striedter & Northcutt, 1991). Secondly, similarity is not a sufficient criterion of 

homology, as divergent evolution can produce homologous characters that appear 

dissimilar (Patterson, 1982).  Also, independent transformations from the same ancestral 

character may produce non-homologous characters that are quite similar (Northcutt, 

1984; Wiley, 1981).  Thirdly, the evolutionary relationship among taxa is estimated by 

multiple lines of evidence: this is the core idea behind a phylogenetic approach to the 

concept of homology (Lauder, 1991, 1994).  Lastly, homologous traits of organisms can 

be genetic, developmental, structural, functional, and behavioral, since whole organisms 

are comprised of a multitude of characters which can be sorted into a hierarchy of parts.   

The points mentioned above help form a hierarchical phylogenetic concept of 

homology which can be applied to all types of data.  In fact, the more levels or classes of 

that are examined within an organism, the deeper the understanding of character 

transformation as well as the organism as a whole (Brooks & McLennan, 1991; Vrba & 

Eldredge, 1984; Lauder, 1981).   
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PHYLOGENETIC PATTERNS 

In this dissertation, I applied a hierarchical phylogenetic concept of homology to 

examine constriction behavior.  The overall goal of my study was to examine the 

phylogenetic pattern of congruence for constriction behavior at different hierarchical 

levels.  As described earlier, constriction, a key behavioral innovation in snakes, is a 

specialized prey restraint method.  Constriction was the first behavioral homology to be 

recognized at the familial level and remains an excellent example of how behavior can 

change over evolutionary time and the importance of historical processes (Greene & 

Burghardt, 1978).  Although constriction is homologous across the majority of snake 

lineages, there is variation in constriction patterns among basal, intermediate, and derived 

snake taxa, along with differences in their coil application pattern.  The mechanisms of 

this variation for constriction pattern and coil application have yet to be examined.  I 

hypothesized that the variability in prey restraint behavior and coil application may be 

linked to different levels of organization.  I tested how prey restraint behavior and coil 

application differed between basal and intermediate snake taxa and whether the 

underlying physiology could be linked to behavioral variation.  Using ethological 

methods, kinematics and electromyography, I revealed that behavioral variation across 

snake taxa was concordant with epaxial muscle activity patterns.   

In Part 2, I polarized variable prey restraint behavior and coil application pattern by 

examining one basal and two intermediate snake lineages.  Specifically, I found that 

Loxocemus  bicolor, a basal snake taxon, is able to employ three different prey restraint 

behaviors (simple seizing, constriction and looping) in response to prey size and status.  

These responses are more diverse than intermediate snake lineages but are less diverse 
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compared to prey restraint responses documented for derived snake lineages.  Therefore, 

the ability to vary prey restraint behavior was most likely the basal pattern for snake 

lineages that constrict prey.  The more consistent response to prey evolved in 

intermediate snake taxa (early macrostomates).  Boas and pythons usually capture prey 

by the anterior and restrain prey by coiling around them, irrespective of prey 

characteristics.   

In Part 3, I documented the kinematics and underlying epaxial muscle activity patterns 

during constriction for the basal snake Loxocemus bicolor.  Loxocemus bicolor used 

lateral bends to coil around prey items in a manner similar to colubroid taxa (Greene, 

1977; Milostan, 1989).  Lateral bending corresponds with unilateral epaxial muscle 

activity patterns during constriction.  In general, epaxial muscle activity was observed in 

a short burst during the initial coil formation phase of feeding.  Two observations suggest 

that other axial muscles are contributing to the constriction posture: 1) epaxial muscles 

were not active although constriction postures were maintained, and 2) Pressures exerted 

on the prey items steadily increased or decreased while the epaxials were not active.  

Intermittent pressure increases also suggest that snakes only exert as much force as 

necessary to subdue prey. 

In Part 4, I comparatively examined epaxial muscle activity patterns for two 

intermediate snake lineages, Boa constrictor and Python molurus and compared these 

results with my results in Part 3 as well as to the EMG study performed by Moon (2000).  

Boas and pythons exhibited mostly ventral bending when coiling around prey items.  

Ventral bending corresponded with bilateral epaxial muscle activity patterns.  Sometimes 

bilateral and unilateral activity patterns were observed during constriction trials with Boa 



 170

constrictor.  Although boas did not vary their prey restraint behavior with respect to prey 

size or status in Part 2 of my study, epaxial muscles fired in response to prey struggles.  

Therefore, boas and pythons can incorporate some sensory feedback into their 

constriction coils at the physiological level.   

From these data, I can draw the following conclusions about the evolution of epaxial 

muscle activity patterns during constriction: 1) Epaxial muscle activity patterns exhibit 

intermittent activity patterns during constriction behavior for a basal species, two 

intermediate snake species and two highly derived snake species suggesting that 

intermittent epaxial activity is a homologous activity pattern across snakes. 2) Unilateral 

muscle activity patterns were predominant in the basal taxon, L. bicolor and were 

common in derived snake taxa documented by Moon (2000).  Bilateral epaxial muscle 

activity patterns were predominant in intermediate lineages and present in derived snake 

lineages.  Therefore, similar to prey restraint behaviors, three epaxial muscle activity 

patterns were observed: mostly unilateral, mostly bilateral and mixed.  Lateral bending 

and unilateral epaxial muscle activity support the more variable prey restraint behaviors 

observed in basal and derived snake taxa.  Ventral bending and bilateral activity support 

the highly stereotyped behavior patterns observed in intermediate snake taxa.  A ‘mixed’ 

epaxial activity pattern supports highly variable prey restraining methods as observed in 

gopher snakes and kingsnakes (Moon, 2000; Greenwald, 1978).  Thus the diversity of 

muscle activity underlying prey restraint behavior can be correlated with variability in 

prey restraint postures.  

With these data along with additional observations I have made throughout my studies 

of feeding behavior, I can piece together a historical scenario for the evolution of prey 
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restraint behavior in snakes.  Firstly, I try to emphasize the diversity of prey restraint 

patterns across the different taxonomic groups of constrictors from an ontogenetic 

perspective.  

Few studies have examined the ontogeny of constriction behavior but those that have, 

examined intermediate (Greene, 1977; Milostan, 1989) and derived snake groups (Mori, 

1991, 1993 a, b, 1994, 1995; Mehta, 2003).  From these studies, it is apparent that 

intermediate snakes, neonate boas and hatchling pythons, constrict prey similar to the 

adults of the species.  On the other hand, new born snakes from derived lineages can 

exhibit similar constriction patterns to the adults as well as very different prey restraint 

postures from the adults of the species.  Studies that have examined the ontogeny of 

constriction behavior in derived snakes also reveal that there is a certain amount of 

variation in hatchling feeding behavior even within the same genus as exhibited in the 

genus Elaphe (Mori, 1991, 1993, 1994, 1995; Mehta, 2003).  Thus, young, inexperienced 

snakes, mostly from derived snake lineages reveal that specialized motor patterns 

exhibited in adults can have distinct developmental histories in different taxa (Burghardt, 

1978; 1993).   

From first-hand observations of Loxocemus bicolor and Xenopeltis unicolor 

hatchlings, those that coil prey during their first feeding encounter, constrict with the 

same prowess as the adults (Mehta, unpubl. data).  This suggests there are also distinct 

differences in the ontogeny of constriction behavior between basal, intermediate, and 

derived snake lineages. 
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In Figure A-11, I separate snake prey restraint behavior into three responses.  In Mode 

I, basal snake lineages (Loxocemus bicolor and Xenopeltis unicolor) vary prey restraint 

behavior with respect to prey size and status.  Hatchlings and neonates of these basal taxa 

can constrict prey during their first encounter, and if constriction is employed, the loop 

application pattern is similar to adults of the species.  Snakes that exhibit Mode II are 

intermediate snake taxa.  In Mode II, coiling around prey is the predominant prey 

restraint pattern, although simple seizing can be observed infrequently (see Part 2).  

Hatchlings and neonates of these intermediate lineages constrict prey similar to the adults 

of the species.  

Derived snake taxa fall into the Mode III category.  In Mode III, snakes exhibit a 

relatively large prey restraint repertoire that is highly correlated with prey characteristics 

(size, activity level, status (live vs dead), and prey type (i.e, mouse, frog, lizard).  

Neonates and hatchlings of Mode III snakes can exhibit similar prey restraint behaviors 

as the adult or exhibit highly erratic prey restraint behaviors that gradually become more 

consistent over time through experience and maturation.   

    Ecological selection for the evolution of constriction patterns-The prey restraint 

behavior, constriction, is thought to have evolved prior to the origin of rodents (Greene, 

1994).  Greene (1983) suggested that early snakes were capable of subduing prey of 

relatively large weight rations (WR) irrespective of ingestion ration (IR).  This is 

exemplified in snakes that consume elongate organisms such as eels.  Early snake 

lineages that were not insect specialists probably preyed on a variety of heavy bodied 

prey items that exhibited relatively low IRs or that could be manipulated enough so that 

                                                 
1 All figures are located in the Appendix. 
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the snake’s skull could pass over the prey.  Salamanders, lizards, small fishes and frogs 

could have easily represented the prey of earlier snake lineages.  These prey items, 

however, vary in shape, length, and activity level, among other characteristics.  Thus, it 

would have been beneficial for earlier snake lineages to develop a relatively diverse 

repertoire for restraining prey as some prey presumably necessitated more restraint than 

others.  Having a large repertoire of prey restraint techniques may have presumably saved 

time and energy, although much empirical evidence is necessary to support this idea.  A 

relatively diverse prey restraint repertoire may also have enabled semi-fossorial snakes to 

feed in the confined spaces that may have been good sources for prey such as burrows, 

spaces in decaying logs or low crevices found near or in the buttresses of trees.   

Early macrostomate snakes, boas and pythons, are characterized by extremely kinetic 

skulls, fast strikes, a sedentary nature, ambush hunting techniques, and an ability to reach 

lengths longer than any other snake as well as a maximum mass many times heavier than 

other snakes.  With the evolution of the streptostylic quadrate, a key morphological 

synapomorphy for the macrostomata, boas as a group are able to consume very large 

mammalian prey.  Although the additional cranial kinesis allows macrostomates to ‘eat 

big’, immobilizing and subduing relatively large prey poses a different challenge.  Prey 

size, specifically with adult prey, can be correlated with an increase in prey activity.  This 

in turn, increases the chance of prey retaliation on the predator.  Since boas and pythons 

can attain considerable weights and lengths, and are in need of relatively large meals in 

order to maintain such mass, there may have been increased selection for a more rigorous 

and almost ‘reflexive’ feeding pattern.  In fact, the feeding behavior of extant boas and 

pythons reflect times that appear energetically expensive when consuming very small and 
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very large prey, suggesting that there may be an optimal prey size for these large snakes 

(Shine, 1991).  Thus, fast strikes and vigorous constriction may be responses to a 

selection regime favoring a life history tactic for feeding on large prey.  These larger 

snakes tend to drop smaller prey from their diets as average energy content of smaller 

prey for these large animals are marginal.  

Data from Part 2 reveal that mean prey restraint times and total feeding times for 

subadult boas are longer compared to those of L. bicolor and Erycine snakes.  Boas did 

not vary dramatically in prey restraint time across individual prey categories compared to 

L. bicolor and Erycine snakes.  When search, capture, and swallowing are energetically 

costly and time consuming, it is better to choose prey whose profit will outweigh any 

energy expenditure (Arnold, 1993).  Thus, since boas have a narrow size foraging niche, 

it would be more beneficial to always coil around prey to reduce the risk of getting 

injured. A consistent constriction response is presumably correlated with physiological 

specializations such as oxygen capacity and anaerobic muscle output but necessitated 

further investigation.   

Lastly, 80% of all extant taxa are members of the derived snake group, Colubroidea 

(Greene, 1997; Pough et al., 1998).  Colubroids as a group are difficult to generalize as 

they reflect a diversity of sizes, behaviors, and can be found in a wide array of ecological 

habitats. Members of this broad group are relatively fast compared to Anilids and Boids 

and exhibit a large repertoire of feeding tactics.  Most colubroid families tend to prey 

frequently (relative to basal macrostomates) on low WR items.  This shift in feeding 

behavior may be correlated with faster locomotion, more stamina, and diverse locomotor 
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abilities. In contrast to boas and other basal snakes, colubroids have specialized maxillary 

dentition for coping with a wide array of prey.   

More types of prey probably played a role in diversifying the prey restraint repertoire 

of colubroid snakes.  Colubroid snakes arose some time during the Miocene.  This epoch 

is characterized by expansion of grassland habitats.  Increased amounts of open habits in 

concurrence with the fragmentation of forests provided coverage for different types of 

rodents, birds, and other small organisms (Janis et al., 2000).  These grassland inhabitants 

may have been included in the ancestral colubroid diet.  Open grasslands and an increase 

of grazing mammals may have provided challenges as well as dietary opportunities for 

Miocene snakes.  In fact, extant colubroid snakes that constrict prey may have needed to 

be hyper vigilant when constricting prey.  Constriction in boas and pythons is so reflexive 

that gradations of external disturbance while these snakes are feeding have little affect on 

constriction behavior, although more controlled studies are necessary (Mehta, unpubl. 

data).   

Colubroid snakes and some basal species appear to be very sensitive to disturbance 

while feeding.  In fact, it has been suggested, from observations of the prey restraint 

behavior of a derived hatchling snake, that erratic looping behavior (to form a coil) may 

be advantageous.  Hatchling trinket snakes were observed looping around prey with the 

posterior portion of their body, thus allowing the hatchling to maintain some vigilance 

while subduing and immobilizing prey (Mehta, 2001, 2003).  Experience with prey has 

been shown to affect feeding behavior in colubroid snakes, suggesting that learning plays 

an important role in prey restraint behavior as well as other behaviors related to feeding. 

A learned response can be more valuable than an automatic/ reflexive response when 
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prey items or prey quantities vary.  Derived snake species also exhibit prey restraint 

patterns that may include many of what may be intermediate forms or precursors to 

constriction (de Queiroz & Groen, 2001; Gregory et al., 1980).   

The erycine paradox-In this dissertation, the ability to vary prey restraint behavior and 

coil laterally around prey was shown for two basal lineages, Loxocemidae and the 

Erycinae.  Why is the feeding behavior of Erycine snakes more similar to those of L. 

bicolor than to Boa constrictor?  In general, Erycine snakes, both old and new world 

forms show specializations for burrowing and are perhaps not closely related to boas 

(Kluge, 1991, 1993; Greene, 1997).  These snakes feed on mainly mammalian prey 

(Rodriguez-Robles et al, 1999) and possess the key innovation, the streptostylic quadrate 

which enables them to consume prey greater than their head diameter (Kluge, 1991, 

1993), however, these prey items do not seem to approach the IRs for the prey of boas 

and pythons. 

Many smaller macrostomate snakes, about which very little is known, are found in the 

families Tropidophiidae and Bolyeriidae.  Although species in these families are thought 

to have evolved more recently, they seem to consume smaller prey items (Greene, 1997) 

which may be attributed to their semi-fossorial nature.  Thus selection pressures for 

subterranean or semi-fossorial lifestyles, may be correlated with a larger prey restraint 

repertoire in snakes.  This has been shown with derived snake lineages such as gopher 

snakes (Rudolph et al. 2002) as gopher snakes can be observed restraining prey with 

more than one prey restraint method while foraging in pocket gopher (Geomys breviceps) 

holes.  
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Phylogenetically meaningful taxa in comparative studies-In Parts 2-4, I studied 

phylogenetically relevant taxa in order to examine the homology of constriction behavior.  

My experiments centered around Loxocemus bicolor, a basal alethinophidian snake, Old 

and New World sand boas, the Erycines and two intermediate macrostomate lineages, 

boas and pythons.  The many feeding observations observed under a controlled setting 

not only shed light on the evolution of constriction behavior but on the prey capture 

phases of the snake predatory cycle as well as other previously unstudied behavior 

patterns.   

Prey size and status affected the capture behavior for L. bicolor suggesting that 

individuals belonging to this basal lineage can detect differences in prey before capturing 

and restraining prey.  This was easily observed on video, especially with dead prey.  

Individual L. bicolor would come in close contact with prey (~ 2cm in distance) and wait 

while tongue-flicking.  If the prey moved, individuals would retract their head and wait.  

If no movement was detected, the snakes would approach the prey very slowly and 

tongue flick so that the tips or tines of their forked tongues touched the prey.  If the prey 

continued to be motionless, snakes would tongue-flick up and down the body of the prey 

item and then seize the head of the prey.  When prey items suddenly became active when 

snakes were in reaching distance, snakes would employ one of the following two 

strategies.  In the first strategy, snakes would retract their heads and wait in the ambush 

posture to capture prey as mentioned above.  During the second strategy, snakes would 

circle the arena and try to re-approach the prey using an active searching technique in 

which the snake would open its mouth and try to grasp the prey when the prey came in 

reaching distance of the snake (Fig A-2: A).  The former of these two strategies seemed 
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more successful. As with the latter technique the snake would miss the prey three or more 

times.   

Regardless of prey size and status, boas and erycines captured mice by the head and 

shoulders using the fast strikes described by Cundall & Deufel (1999).  Both snake 

lineages would employ an ambush strategy for SA and LA prey, however, Erycines 

would switch between an actively foraging strategy and an ambush strategy for SA, SD 

and LD prey (Fig A-2: B & C).  

As far as I know, capture behaviors have never been reported for Erycines or L. 

bicolor.  Details of these behavior patterns will be addressed elsewhere.  In short, Erycine 

snakes seem to exhibit Driving Scissors Strike (DSC) as described by Cundall and Deufel 

(1999).  Loxocemus bicolor does not appear to strike prey but rather, grab prey using a 

small gape angle compared to macrostomates (Cundall & Deufel, 1999).  Striking 

behavior may not have arisen until the Macrostomata along with the evolution of large 

the streptostylic quadrate which may allow for the mandibular depression seen in 

mandibular (MAN) strikes and the gape angles measured in driving scissors strikes 

(DSC) and palatomaxillary strikes (PMX).  My observations suggest that striking may 

have been a behavioral key innovation in the evolution of macrostomate snakes and 

probably evolved with the key morphological innovation, the streptostylic quadrate.   

Another interesting behavior pattern was observed during feeding in Loxocemus 

bicolor.  In April 2002, I observed one of my larger L. bicolor individuals hold its tail up 

in the air and wave it back and forth while attempting to locate the SA prey item in the 

arena.  This behavior was performed 141 s into the feeding trial.  The first time the 

behavior was observed the lower half of the body along with the tail whipped to one side 
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when the prey scampered past the snake.  Around 180s into the trial the snake curled its 

tail in the air and slowly waved it side to side as the mouse approached the lower 1/3 of 

the snake’s body.  Around 262 s the snake waved its tail several times.  During this set of 

waves, the mouse could not be seen in the video frame.  At 338 s the snake waved its tail 

before capturing the mouse.  The prey was restrained via constriction.  Two horizontal 

loops were wound around the prey and the snake’s tail, outside of the coil, was elevated. 

Since then, six other individuals have been observed performing a similar tail waving 

behavior.  This movement pattern, which was only observed during feeding, was not part 

of the antipredator repertoire observed for L. bicolor (Mehta, unpubl. data).  Many 

species of snakes have been known to caudal lure during feeding (Schuett et al. 1984; 

Rabatsky & Farrell, 1996; Mullin, 1999; Paralleada, 2002).  Prey attraction by luring that 

is performed only by the caudal portion of the body of some snake species is thought to 

be an example of feeding mimicry (Neill, 1960; Heatwole & Davidson, 1976; Greene & 

Campbell, 1972; Schuett et al., 1984).  This hypothesis serves well when the prey of the 

snake consumes worms.  However, when the prey item of the snake is a mouse, mimicry 

seems less feasible.  Very little is known about the natural history of L. bicolor.  Mora 

(1987, 1991; Mora & Robinson, 1984) documented lizard, lizard eggs and sea turtle eggs 

to be in the diet of L. bicolor.  Lizards may very well feed upon insects and other 

invertebrates, however, the caudal movements were not as slow and steady as the 

movements described for vipers (Schuett et al., 1984).  If anything, the behavior observed 

in L. bicolor seems to be a type of intention movement or displacement behavior (Danje, 

1950).  An intention movement to displace excitatory behavior during feeding, especially 

at the crux of the capture phase, may have been the precursor to caudal distraction. 
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Snakes that exhibited this intention movement when feeding upon prey that consumed 

invertebrates such as worms may have had increased capture success. 

 
CONCLUSIONS 

 Constriction behavior provides good material for evolutionary studies and as I have 

just outlined in this chapter, the behavior itself reflects morphological and ecological 

adaptations specific to each major snake group as indicated by the three modes (I, II, and 

III). Ecological variation seems to have historically played an important role in forming 

the prey restraint repertoire of snakes and continues to play an important role in the 

feeding behavior of extant snakes (de Queiroz & Groen, 2001; Mori, 1994).  Although 

studies have shown that homologous traits at the morphological or physiological levels 

need not be homologous at the functional level (Lauder, 1983, 1993), my study revealed 

how variation of a homologous behavior at the ethological level is concordant with the 

underlying muscle physiology.  As the prey restraint behaviors and coil application 

patterns changed under different selection regimes, the underlying epaxial muscle activity 

patterns changed across snake lineages as well.   

The key innovation, constriction, is tightly coupled to its underlying physiology.  This 

study illustrates that one possible mechanism driving the differences in constriction 

postures across snake taxa is underlying muscle activity pattern.  When examining 

epaxial muscle activity across snake lineages, muscle activity appears to also be 

homologous.  Thus constriction is homologous at both the ethological, functional, and 

physiological levels.  
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Figure A-1  Phylogeny of the Serpentes compiled from morphological (Cundall et al., 

1993; Kluge, 1991, 1993; Rieppel, 1978, 1988) and molecular data (Cadle, 1994; Cadle 

et al., 1990). The lineage Loxocemidae (in bold) represents the sister taxon to boas and 

pythons.  The three modes (I, II, and III) indicate feeding patterns in snakes. See text for 

details. *I observed the effects of prey size and status on prey restraint behavior of four 

Asian sunbeam snakes, Xenopeltis unicolor. Asian sunbeam snakes restrain prey using 

the behaviors: loop, pinion and coil. These prey restraint behaviors are affected by prey 

size and status.
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Figure A-2  Schematic of the capture strategies for Loxocemus bicolor, Boa constrictor, 

and Erycine snakes from stimulus control studies with small (live and dead) and large 

(live and dead) prey items 
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