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ABSTRACT 

Sml1 is a small protein in Saccharomyces cerevisiae that inhibits the activity of 

ribonucleotide reductase (RNR) through its interactions with the large subunit of RNR. 

RNR catalyzes the reduction of nucleotide diphosphates (NDPs) to deoxynucleotide 

diphosphates (dNDPs) that is the rate-limiting step of de novo deoxynucleotide 

triphosphate (dNTP) synthesis. The cellular level of Sml1 is regulated by DNA damage 

and replication block response through its phosphorylation by the Dun1 kinase. The goal 

of this dissertation research is to elucidate structure-function and regulation of Sml1. 

First, biochemical characterization of recombinant Sml1 was conducted using mass 

spectrometry and gel filtration chromatography (Chapter 3 and 4). The data shows that a 

disulfide bond and non-covalent interactions mediate Sml1 oligomerization. Furthermore, 

alkali metal adducts (Na+/K+) that bind strongly with Sml1 were found. Second, the 

phosphorylation of Sml1 by the Dun1 kinase was studied by a combination of mass 

spectrometry, site directed mutagenesis, and P32 incorporation (Chapter 5). Three 

phosphorylation sites of Sml1 (Ser56, Ser58 and Ser60) were identified. The data also 

reveals that the Dun1 kinase requires an acidic residue at the +3 position and there is 

cooperativity between the phosphorylation sites. Third, the relationship between Sml1 

phosphorylation and the Sml1-Rnr1 interactions were investigated based on P32 

incorporation, fluorescence spectroscopy, and a RNR activity assay (Chapter 6). We 

demonstrated that the Sml1-Rnr1 interactions reduced the phosphorylation levels of Sml1 

by making the phosphorylation sites less accessible. Our data also suggest that 
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phosphorylation of Sml1 weakens the ability of Sml1 to inhibit RNR. Taken together, 

this work has provided in-depth insights of Sml1’s structure-function and regulation. 
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Chapter 1. Background and significance 

Introduction 

Sml1 is a small protein in Saccharomyces cerevisiae that inhibits the activity of 

ribonucleotide reductase (RNR). RNR catalyzes reduction of nucleotide diphosphate 

(NDP) to deoxynucleotide diphosphate (dNDP), which is the rate-limiting step of de novo 

deoxynucleotide triphosphate (dNTP) synthesis. The cellular level of Sml1 is regulated 

by DNA damage and replication block response through its phosphorylation.  

The goal of this chapter is to discuss the role of Sml1 during DNA damage and 

replication block responses. First, it is important to define DNA damage and replication 

block responses along with the historical background of the field. Second, a description 

of the major upstream components of DNA damage and replication pathways, namely 

phosphoinositide 3 kinase like kinase (PIKK) and checkpoint kinase (CHK), which 

control most of the biological processes involving the DNA damage response, will be 

given. Because Sml1 is found in yeast, S. cerevisiae, and yeast has been most commonly 

used as a model organism to study DNA damage and replication block, the discussion 

will be mainly based on discoveries made in yeast. Thirdly, the Dun1 kinase will be 

described in detail, as cellular levels of Sml1 is controlled by Dun1. Fourth, the 

regulation of RNR at multiple levels will be described. Finally, the biochemical 

properties of Sml1 and the possible mechanism of its degradation will be discussed. 
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DNA damage and replication block responses  

Cells can be potentially exposed to genotoxic stresses that alter the chemical structure of 

DNA. DNA damage can cause serious problems in DNA replication, chromosome 

segregation and gene transcription (Elledge 1996; Weinert 1998; Wilson 2004). If DNA 

damage persists, it can lead to mutations that will be passed onto daughter cells. Such 

mutations are potentially deleterious or even lethal to the organism; thus, it is necessary 

for the cell to detect and repair DNA damage promptly. From earlier days, it has been 

observed that cell cycle progression is halted at certain time points after exposure of the 

cells to ionizing radiation that causes DNA damage (Wilson 2004). Initially the radiation 

induced cell cycle arrest was considered a passive cellular consequence of DNA damage 

(Wilson 2004). However, after discoveries of mutations leading to the absence of the cell 

cycle arrest after radiation damage, it became obvious that cell cycle arrest was an 

integral part of the progression of the cell cycle (Terasima and Tolmach 1963; Weinert 

and Hartwell 1988; Hartwell and Weinert 1989; Weinert and Hartwell 1990; Hartwell, 

Weinert et al. 1994).  

Studies have shown that such active processes either arrest or slow down cell 

cycle progression at specific periods in G1, S, and G2 phases of the cell cycle (Hartwell, 

Culotti et al. 1974; Elledge 1996; Weinert 1998; Zhou and Elledge 2000; Wilson 2004); 

today such periods of cell cycle arrest or slowdown are referred to as DNA damage 

checkpoints (Weinert and Hartwell 1988). The mutations that cause defects in the cell 

cycle arrest result in higher sensitivity (less resistance) to agents that create DNA 
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damages (Weinert and Hartwell 1988; Zhou and Elledge 1993; Elledge 1996; Weinert 

1998; Zhao, Muller et al. 1998; Wilson 2004). The exact mechanism and role of the cell 

cycle arrest or slowdown is not yet fully understood. In the conventional paradigm, cell 

cycle arrest or slowdown is considered to be a process that allows enough time for the 

cells to repair DNA (Weinert and Hartwell 1988; Hartwell, Weinert et al. 1994; Elledge 

1996; Wilson 2004). However, at least in the case of S phase cell cycle slowdown, the 

DNA repair process is the major DNA damage response, which consequently causes 

delay in DNA replication, and the defect of the cell cycle slowdown in some mutant cells 

is due to a defect of the DNA repair process (Rhind and Russell 2000).  

During the study of the pathways responsible for cell cycle arrest, it was 

discovered that the same pathways not only induce cell cycle arrest, but also up-regulate 

the DNA repair process and transcription of genes responsible for DNA repair (Elledge 

1996; Rhind and Russell 2000). Furthermore, these pathways up-regulate ribonucleotide 

reductase (RNR) activity in multiple fashions that lead to increased levels of cellular 

deoxynucleotide triphosphate pools (Zhou and Elledge 1993; Zhao, Muller et al. 1998; 

Ouspenski, Elledge et al. 1999). Today, cell cycle arrest, up-regulation of DNA repair, 

transcriptional activation of repair genes, and up-regulation of RNR are considered to be 

components of a cellular response to DNA damage that increases the cell’s ability to 

repair DNA. The whole process is termed the DNA damage response.   

    DNA damage in the S-phase causes an additional problem that is not encountered 

in other phases of the cell cycle termed the replication block (Loeb and Kunkel 1982; 

Rhind and Russell 2000; Osborn, Elledge et al. 2002). If DNA damage is present during 
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the S-phase, progression of the replication fork is stalled at the point of the DNA damage. 

The stalled replication forks activate the DNA damage response pathways to repair the 

damage, and the repair process prohibits replication origin firing1 (Rhind and Russell 

2000). In addition to DNA damage, the replication block response can be elicited by 

other stimuli that stop progression of replication forks, such as reduced levels of dNTP 

pools induced by inhibition of ribonucleotide reductase with hydroxyurea (HU) (Elledge 

and Davis 1989; Lopes, Cotta-Ramusino et al. 2001) and mutation of proteins responsible 

for DNA replication such as DNA polymerases (Bhaumik and Wang 1998; Liu, Bhaumik 

et al. 1999).  

The perturbation of replication can lead to a number of deleterious events 

including increased mutagenesis and chromosomal aberration (Loeb and Kunkel 1982). If 

the damage is not repaired or replication forks cannot progress after a certain period of 

time, the cells resume replication, skipping the point of the damage (Sandell and Zakian 

1993; Toczyski, Galgoczy et al. 1997). This resumption of DNA replication is called 

adaptation. In such cases, the DNA damage persists as mutations or double strand breaks 

that can lead to chromosome loss (Sandell and Zakian 1993) or genomic instability 

(Toczyski, Galgoczy et al. 1997). For multi-cellular organisms, DNA damage can 

potentially give rise to cancer. The advantage of adaptation to a organism’s survival has 

 

1 Replication origin firing is the initiation of the replication process at an origin of replication. At the origin 
of replication, several proteins including DNA polymerase are assembled, and DNA double strand is 
unwound upon the origin firing. Note that Eukaryotes have multiple origins of replication, and initiation of 
replication (firing) at some of them occurs in early stage of S-phase while firing at some of them occurs in 
a later stage.   
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not been demonstrated (Toczyski, Galgoczy et al. 1997; Weinert 1998). However, 

adaptation is likely to be an advantage for unicellular organisms.  

Much of the knowledge about the organization of the DNA damage response 

came from studies involving yeasts S. cerevisiae and S. pombe, while studies vertebrate 

systems such as mammalian cells have made significant progress in recent years (Weinert 

1998; Osborn, Elledge et al. 2002). The overall molecular anatomy of the DNA damage 

response is shared among all eukaryotes (Zhou and Elledge 2000). Essentially, the DNA 

damage response consists of three types of components; DNA damage sensors, signal 

transducers, and effectors (Elledge 1996; Zhou and Elledge 2000) (Figure1). DNA 

damage sensors are responsible for detecting DNA damage and trigger the signals that 

activate the transducers. The transducers in turn activate multiple pathways leading to the 

effectors. Effectors are the components that are responsible for cell cycle arrest and DNA 

damage repair.  

 

PIKK and CHK: Major upstream components of DNA damage and replication 

block responses 

Recently the focus of DNA damage response research has been shifting towards 

understanding the mechanisms by which individual components play their roles in the 

pathway. However, numerous components in the pathway are yet to be identified. The 

molecular nature of the sensors in the DNA damage response pathway is least well 

understood, but some proteins have been identified as candidates for damage sensors 

based on their ability to bind naked DNA and activate the DNA damage response 



 
 

Figure 1. Current view of DNA damage response.  
(The image was taken from Zhou and Elledge 2000) Arrowheads represent activating 
events and perpendicular ends represent inhibitory events. Replication stress is caused by 
stalled replication forks, DNA damage, low levels of dNTPs, and mutation/inhibition of 
components in replication machinery. The stop sign indicates cell cycle arrest and 
tombstone indicates activation of apoptosis leading to cell death. 
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(Elledge 1996; Zhou and Elledge 2000; Osborn, Elledge et al. 2002). One class of 

candidate sensor is distinct subfamily of phosphoinositide 3 kinase (PI3 kinase), “PI3 

kinase like kinase” (PIKK) (Table 1). PIKK acts as both a DNA damage sensor and a 

signal transducer upstream of the DNA damage and replication block responses (Yang, 

Xu et al. 2004). Although they have sequence homology to other PI3 kinases, these 

proteins have protein kinase activities specific for their biological functions (Zakian 

1995; Yang, Xu et al. 2004). In S. cerevisiae, Mec12 is the PIKK that induces all DNA 

damage (i.e. damage during G1, S and G2) and replication block responses (Elledge 

1996; Weinert 1998; Abraham 2004). Furthermore, deletion or mutation in the MEC1 

gene3 is lethal even in the absence of DNA damage, suggesting that MEC1 is responsible 

for not only the DNA damage response but also regulation of the cell cycle in 

unperturbed cells (Zheng, Fay et al. 1993; Kato and Ogawa 1994). In mammals, ATM 

and ATR are responsible for response to DNA double strand break (Elledge 1996; 

Weinert 1998; Osborn, Elledge et al. 2002; Wilson 2004). In humans, mutations in the 

ATM gene result in an autosomal recessive disease, ataxia telangiectasia (AT), a multi-

system disorder associated with a high risk of cancer (Abraham 2003). In addition to 

response to DNA double strand breaks, ATR is also responsible for replication block 

responses (Osborn, Elledge et al. 2002; Yang, Xu et al. 2004).  PIKK exists in stable  

 

2 TEL1 is another PIKK in S.cerevisiae that has redundant role as MEC1, and it is the homolog of 
mammalian ATM. Elledge, S. J. (1996). "Cell cycle checkpoints: preventing an identity crisis." Science 
274(5293): 1664-72. 
3 By convention a yeast gene’s name is abbreviated in italic four capital letters (e.g. MEC1). The mutant of 
the gene is spelled with italic four lower case letters (e.g. mec1). Protein is spelled with four letters starting 
with capitals followed by lower case letters (e.g. Mec1). Although “p” is often added to the end of the 
protein name (e.g. Mec1p), I decided not to follow this convention throughout this thesis.  
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Table 1. Conservation of PIKK and CHK in Eukaryotes.   

Family Biochemical 
activity 

Budding yeast Fission yeast Vertebrates 

PIKK Protein kinase Mec1 
Tel1 

Rad3 
Tel1 

ATR 
ATM 

PIKK 
associated 
protein 

Recruit PIKK 
to site of DNA 
damage 

Ddc1 Rad26 ATRIP 

CHK Protein kinase 
Binds to 
phosphoprotein 

Rad53 
Chk1 
Dun1 

Cds1 
Chk1 

Chk2 
Chk1 
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complexes with other proteins that recognize DNA damage (Table 1). In S. cerevisiae, 

Ddc2 is a protein that forms a complex with Mec1 (Paciotti, Clerici et al. 2001).  The 

Mec1-Ddc2 complex is localized to a double strand breaks induced by HO endonuclease4 

(Kondo, Wakayama et al. 2001; Melo, Cohen et al. 2001) and to single stranded DNA at 

the teleomere caused by a mutation in the teleomere binding protein Cdc13 (Melo, Cohen 

et al. 2001). These studies suggest a possibility that the localization of Mec1 to the site of 

DNA damage brings about the activation of Mec1 kinase. The link between localization 

and activation of Mec1 is not well understood. Once activated, Mec1 phosphorylates 

several proteins in pathways responsible for cell cycle arrest, DNA repair, transcription of 

DNA repair genes, and up-regulation of RNR activity (Weinert 1998). Furthermore, in 

mammalian systems, ATM and ATR induce apoptosis by phosphorylating the tumor 

suppressor, p53 (Banin, Moyal et al. 1998; Canman, Lim et al. 1998; Yang, Xu et al. 

2004).  

 A downstream target of PIKK during DNA damage and replication block 

responses is CHK kinase (Table 1). CHK kinase consists of a serine/threonine protein 

kinase domain and an forkhead associated (FHA) domain, which recognizes specific 

phosphoproteins (Durocher, Henckel et al. 1999; Durocher and Jackson 2002) In S. 

cerevisiae, Rad53 is a CHK kinase responsible for majority of the signaling in radiation 

damage (RAD) pathways during DNA damage and replication block responses. 

(Sanchez, Desany et al. 1996; Sun, Fay et al. 1996). Rad53 is activated in a Mec1 

 

4 In haploid yeast cells in nature, HO nuclease creates a double strand break at the MAT locus for mating 
type switching. Many laboratory strains lack HO nuclease, and their mating type is fixed. However, by 
introducing inducible HO nuclease, it is possible to artificially induce a double strand break at MAT locus 
in a controlled manner.  
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dependent manner through its hyperphosphorylation. Rad9 is a protein that acts as a 

mediator between Mec1 and Rad53. It has been demonstrated that Mec1 phosphorylates 

Rad9, and the phosphorylation of Rad 9 is necessary for the Rad53 phosphorylation 

(Sanchez, Desany et al. 1996). Furthermore, Rad53 specifically interacts with 

phosphorylated Rad 9 via its FHA domain (Schwartz, Duong et al. 2002). Rad9 is also 

hyperphsphorylated after DNA damage by Mec1, and the phosphorylated Rad9 alone can 

catalyze the autophosphorylation of Rad535 (Gilbert, Green et al. 2001). The activation of 

Rad53 kinase results in the release of Rad53 from Rad9 (Gilbert, Green et al. 2001). 

These observations can be formulated as follows: 1) Mec1 kinase directly phosphorylates 

Rad9; 2) phosphorylated Rad9 acts as scaffold to bring two Rad53 molecules to a 

proximity and catalyze trans-autophosphorylation of Rad53; 3) autophosphorylation of 

Rad53 causes activation of Rad53 to phosphorylate other proteins as well as the release 

of Rad53 from Rad9 (Toh and Lowndes 2003). Once activated, Rad53 phosphorylates 

proteins in the RAD pathway that induce G1 and G2/M cell cycle arrest, escape from the 

DNA damage response, up-regulation of DNA repair gene transcriptions and up-

regulation of RNR (Elledge 1996; Weinert 1998; Osborn, Elledge et al. 2002; Wilson 

2004).  

DNA damage and replication block response is a large-scale cellular process 

composed of sensors, signal transducers, and effectors. PIKK and CHK play central roles 
 

5 Rad9 extracted from the yeast cells that are irradiated by UV exists as two forms, a hypophosphorylated 
form of ≥850kDa oligomer and hyperphosphorylated form of 560kDa tetramer. These two forms can be 
separated by gel filtration chromatography. When recombinant Rad53 expressed in E.coli is incubated with 
the hyperphosphorylated Rad9 and ATP, Rad53 is autophosphorylated, while incubation of Rad53 with 
hypophosphorylated Rad9 (and ATP) does not cause Rad53 phosphorylation (Gilbert, C. S., C. M. Green, 
et al. (2001). "Budding yeast Rad9 is an ATP-dependent Rad53 activating machine." Mol Cell 8(1): 129-
36. 
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in the activation of RAD pathways that lead to elevation of the cell’s capacity to repair 

damaged DNA and to cause replication blocks. It should be noted that both PIKK and 

CHK are protein kinases, and the activation of the pathways is achieved by 

phosphorylation of other proteins on the pathway. Mec1 and Rad53 are the homologues 

of PIKK and CHK in yeast S. cerevisiae.  One of the targets for Rad53 is the Dun1 

kinase, which is involved in the up-regulation of the transcription and the activity of 

ribonucleotide reductase (Figure 2).  

 

The DUN1 kinase 

Cellular levels of deoxynucleotides are elevated both in the presence of DNA damage 

and during S-phase, reflecting up-regulation of ribonucleotide reductase (RNR) (Reichard 

1988; Chabes, Georgieva et al. 2003). Regulation of RNR is an essential6 function of 

Mec1 and Rad53 in S.cerevisiae (Elledge, Zhou et al. 1993). For example, over-

expression of the genes for the large subunit of RNR, RNR1 and RNR3, rescues lethality 

caused by deletion of MEC1 or RAD53, although it does not rescue deletion-induced 

defects in cell cycle arrest (Desany, Alcasabas et al. 1998). Dun17 acts a mediator for 

Mec1 and Rad53 to up-regulate RNR. In S.cerevisiae, transcription of all RNR genes 

(RNR1, RNR2, RNR3 and RNR4) is up-regulated by DNA damage and replication blocks 

in a MEC1 / RAD53 dependent manner 

 

6 “Essential” in this context means that the function (regulation of RNR) is indispensable for survival of the 
organism.  
7 Although Dun1 is important for regulation of RNR by Mec1 and Rad53, deletion of the DUN1 gene is not 
lethal indicating that there are other pathways that partially mediate regulation of RNR by Mec1 and 
Rad53.  



 

Figure 2. Mec1 / Rad53 / Dun1 dependent pathways in S.cerevisiae in DNA damage 
and replication block responses.  
Arrowheads represent activating events and perpendicular ends represent inhibitory 
events. Lines without arrowheads or perpendicular ends represent pathways that are not 
studied in depth. It is not known whether these pathways are operated by inhibitory or 
activating mechanism. This figure focuses on pathways regulated by the Dun1 kinase, 
and most other pathways regulated by Mec1 and Rad53 are omitted.   
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(Elledge and Davis 1987; Elledge and Davis 1990; Zhou and Elledge 1993; Huang and 

Elledge 1997). Elledge and coworkers (Zhou and Elledge 1993) isolated “damage un-

inducible” (dun) mutants that are incapable of inducing RNR3 transcription in the 

replication blocks caused by hydroxyurea (HU). These mutants are recessive and 

segregate as a single gene mutation named dun1. The dun1 mutant is more sensitive to 

DNA damage induced by methyl methane sulfonate (MMS) and UV or replication blocks 

induced by HU. The dun1 mutant strains are also incapable of induction of other RNR 

genes (RNR1, RNR2 and RNR4) in response to replication blocks and DNA damage 

(Zhou and Elledge 1993; Huang and Elledge 1997; Huang, Zhou et al. 1998). 

Furthermore dun1 mutant strains show defects during G2 cell cycle arrest (Zhou and 

Elledge 1993), indicating that Dun1 has a function besides transcriptional regulation of 

RNR genes since over-expression of RNR genes does not have an apparent role in cell 

cycle arrest. The DUN1 gene was cloned by complementation of the dun1 mutant and 

identified as an ORF encoding a protein of 513 amino acid residues. The C terminus of 

the Dun1 amino acid sequence displays significant homology with the catalytic domains 

of Serine/ Threonine kinases (Zhou and Elledge 1993), while its N terminus shows 

homology to FHA domain, a module that recognizes specific phosphoproteins 

(Bashkirov, Bashkirova et al. 2003). The kinase activity of Dun1 is essential for its 

function to activate transcription of RNR genes, and a mutation that abolishes kinase 

activity of Dun1 causes a defect in the induction of RNR genes (Zhou and Elledge 1993).  

On the other hand, the FHA domain of Dun1 is important for the activation of the 

Dun1 kinase in response to DNA damage. Dun1 is hyper-phosphorylated after DNA 
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damage in a MEC1 and RAD53 dependent manner (Huang, Zhou et al. 1998; Bashkirov, 

Bashkirova et al. 2003). A direct trans-phosphorylation of Dun1 by Rad53 in vitro and 

physical interaction of Dun1 and Rad53 in vivo has been demonstrated (Bashkirov, 

Bashkirova et al. 2003). Furthermore, this study demonstrated that interaction of Rad53 

and Dun1 can be abolished by deletion of Dun1’s FHA domain. In addition, Dun1’s FHA 

domain is required for the in vivo function of Dun1 in RNR gene transcription, G2/M cell 

cycle arrest and phosphorylation of a DNA repair protein Rad55 (Bashkirov, King et al. 

2000; Bashkirov, Bashkirova et al. 2003). Based on these observations, Heyer and 

coworkers (Bashkirov, Bashkirova et al. 2003) proposed the following model; 1) Upon 

DNA damage, Rad53 is phosphorylated; 2) Dun1 specifically binds to phosphorylated 

form of Rad53 via its FHA domain; 3) The interaction between Rad53 and Dun1 triggers 

the trans phosphorylation of Dun1 by Rad53, which up-regulates the Dun1 kinase 

activity. After its activation, Dun1 phosphorylates its substrates on the pathways leading 

to DNA repair, G2/M cell cycle arrest, and up-regulation of RNR.  

By screening mutants that constitutively induce RNR transcription (constitutive 

RNR transcription [CRT]), Elledge and co-workers (Huang, Zhou et al. 1998) isolated 

the CRT1 gene. The crt1 mutant is epistatic8 to the dun1 mutant. They also found that 

tup1 and ssn6 mutants are also epistatic to dun1 mutants. TUP1 and SSN6 encode general 

gene repressors that are recruited to a specific promoter by other proteins. These 

 

8 Generally epistasis refers to an interaction between genes in which an allele or mutation of the first gene 
(e.g. CRT1) masks a trait (e.g. inducibility of RNR3 gene) dependent on an allele or mutation of a second 
gene (e.g. DUN1).  In this case, crt1, tup1 or ssn6 mutations eliminates defect in RNR3 expression caused 
by the dun1 mutation. (i.e. mutation of the DUN1 gene causes a defect in RNR3 expression. However, this 
defect is masked by a mutation in CRT1, TUP1 or SSN6 genes).    
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observations indicates that CRT1, TUP1 and SSN6 act downstream of DUN1 in the 

pathway. ORF of CRT1 encodes a protein of 771 amino acid residues that is homologous 

to the mammalian RFX family of DNA binding proteins. The mutation of CRT1 rescues 

the lethality of the mec1 mutation and result in constitutive expression of RNR2, RNR3 

and RNR4 genes; over-expression of wild type Crt1 causes lethality presumably due to 

the suppression of RNR genes. The Crt1 protein binds to a conserved DNA sequence, the 

X-box, which is found in the promoter region of RNR and other genes. Crt1 also 

physically interacts with the general co-repressor protein complex of Tup1 and Ssn6. 

Furthermore, Crt1 is hyper-phosphorylated in a DUN1 dependent manner upon DNA 

damage induced by MMS and upon replication block induced by HU. In addition, in the 

presence of DNA damage and replication block, Crt1 dissociates from the X-box. Based 

on these observations, the following model has been proposed (Huang, Zhou et al. 1998): 

In unperturbed cells, Crt1 represses RNR gene transcription by binding to the X box in 

the promoter region of the RNR genes and recruiting the co-repressors Tup1 and Ssn6. 

Once the Dun1 kinase is activated during the DNA damage response, Crt1 is 

hyperphosphorylated, and dissociates from the X box resulting in expression of the RNR 

genes. Once the Dun1 kinase is activated in response to DNA damage, Crt1 is 

hyperphosphorylated, causing it to dissociate from the X box, inducing the expression of 

the RNR genes. While direct phoshorylation of Crt1 by Dun1 has not been demonstrated, 

it is likely that there is a substrate of the Dun1 kinase that causes hyperphosphorylation of 

Crt1. Dun1 also up-regulates RNR activity by the phosphorylation of the RNR inhibitor 

Sml1 leading to its removal (Zhao and Rothstein 2002). It is remarkable that Dun1 up-
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regulates RNR at transcriptional levels and post-translational levels through different 

pathways.  

Apart from its essential role in RNR regulation, Dun1 plays other important roles 

in DNA damage and replication block responses. The Mec1 / Rad53 / Dun1 pathway is 

also involved in G2/M cell cycle arrest in the presence of DNA damage caused by 

expression of HO endonuclease, the cdc13 mutation, or UV irradiation, while another 

parallel pathway dependent on Mec1, Chk1 and Pds1 contribute significantly to the 

G2/M cell cycle arrest (Pati, Keller et al. 1997; Gardner, Putnam et al. 1999; Sanchez, 

Bachant et al. 1999). On the other hand, Rad55, a double strand break repair protein of 

the recombination repair pathway, is specifically phosphorylated in a Mec1 / Rad53 / 

Dun1 dependent manner in the presence of DNA damage and Rad55 is likely to be a 

terminal target of the DNA repair pathway (Bashkirov, King et al. 2000). Furthermore, in 

response to replication blocks, Dun1 also down-regulates Rad5 mRNA levels through 

interaction with the Pan2/Pan3 protein complex leading to homologous recombination 

DNA repair (Hammet, Pike et al. 2002). These studies independently showed that Dun1 

is involved in G2/M cell cycle arrest and DNA repair in addition to up-regulation of RNR 

(Figure 2).  

 

Regulation of ribonucleotide reductase  

A sufficient and balanced level of cellular deoxynucleotide triphosphates (dNTPs) is 

essential for DNA repair and DNA replication (Reichard 1988; Jordan and Reichard 

1998). Insufficient or unbalanced levels of dNTP can lead to genome instability, growth 
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defects and hyper-sensitivity to DNA damage (Reichard 1988; Zhao, Muller et al. 1998; 

Ouspenski, Elledge et al. 1999), while unusually high levels of dNTPs can cause 

infidelity in DNA replication (Chabes, Georgieva et al. 2003). In addition, high levels of 

dNTP due to over-expression of the small subunit of RNR increases the malignancy of 

tumor cells by enhancing activation of the Ras/Raf1 pathway leading to expression of 

oncogenes (Fan, Villegas et al. 1996). Among enzymes responsible for synthesis of 

dNTPs, ribonucleotide reductase (RNR) is particularly important. RNR catalyzes the 

conversion of all four nucleotide diphosphates (NDPs: ADP, GDP, CDP and UDP) to 

deoxynucleotide diphosphates (dNDPs), and this is the rate-limiting step for the de novo 

synthesis of dNTPs (Thelander and Reichard 1979; Jordan and Reichard 1998). RNR 

plays the major role in controlling amount and balance of dNTPs, and therefore, 

regulation of RNR is critical for the cell.   

RNR is a multimeric enzyme consisting of the large subunit, a dimer of Rnr1, and 

the small subunit, which is in yeast a heterodimer of Rnr2/Rnr4. The large subunit 

constitutes the active site (where the catalysis takes place) and the allosteric regulation 

sites. The small subunit stores a stable radical. This radical is transferred to the large 

subunit upon substrate binding and plays an essential role in catalysis. Either of these 

subunits alone is not catalytically active, and the interaction of the large and small 

subunit is absolutely necessary for activity (Thelander 1973). In budding yeast, S. 

cerevisiae, the RNR1 gene encodes the large subunit, while the RNR2 and RNR4 genes 

encode the small subunit (Elledge and Davis 1987; Elledge and Davis 1990; Huang and 

Elledge 1997). Deletion of any of these genes is lethal. Rnr2 and Rnr4 form a hetero-
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dimer required for their function. Rnr2 contains the essential tyrosyl radical and di-iron 

co-factor that generates and maintains the radical (Nguyen, Ge et al. 1999; Chabes, 

Domkin et al. 2000). Although it lacks residues responsible for the generation of the 

tyrosyl radical and di-iron co-factor, Rnr4 is indispensable for loading the iron and 

stabilizing the radical in Rnr2 (Ge, Perlstein et al. 2001; Sommerhalter, Voegtli et al. 

2004). S. cerevisiae also has a homologous large subunit, Rnr3, although its biological 

role is unknown. Deletion of the RNR3 gene does not show an apparent phenotype even 

in the presence of DNA damage, and the specific activity of Rnr3 protein is less than 1% 

of that of Rnr1 (Domkin, Thelander et al. 2002). However, in the presence of DNA 

damage, the RNR3 gene expression increases 100 fold (Elledge and Davis 1990), and 

Rnr3 shows a significant activity when it is combined with Rnr1(Domkin, Thelander et 

al. 2002).   

Due to its essential role in DNA damage response and the cell cycle, RNR is 

tightly controlled in multiple fashions (Figure 3). Generally, RNR is up-regulated during 

the S-phase of the cell cycle and in the presence of DNA damage.   

First, the cellular level of RNR proteins is up-regulated in response to DNA 

damage (Desany, Alcasabas et al. 1998) and during S-phase (Eriksson, Graslund et al. 

1984; Chabes and Thelander 2000). In S. cerevisiae, DNA damage and replication blocks 

activate the Mec1 / Rad53 / Dun1 pathway leading to transcriptional up-regulation of all 

RNR genes (Zhou and Elledge 1993; Huang, Zhou et al. 1998). Similarly, in mammalian 

cells, mRNA levels of both the large (R1) and small (R2) subunits significantly increase 

during S phase and decline when cells progress to G2 and M phases  



 

Figure 3. Regulation of ribonucleotide reductase at multiple levels.  
Arrowheads represent activating events and perpendicular ends represent inhibitory 
events. Lines without arrowheads or perpendicular ends represent pathways that are not 
studied in depth. It is not known whether these pathways are operated by inhibitory or 
activating mechanism. 
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(Bjorklund, Skog et al. 1990). Furthermore, in mammalian cells, transcription of a special 

type of RNR small subunit, p53R2, is up-regulated by the tumor suppressor p53 in 

response to DNA damage (Tanaka, Arakawa et al. 2000). In mammalian cells, the half 

life of R2 protein is also increased during S phase and in response to DNA damage or 

replication blocks (Chabes and Thelander 2000).  

Secondly the RNR’s enzymatic activity is allosterically regulated by several 

nucleotide triphosphates (Jordan and Reichard 1998). Two binding sites of the nucleotide 

triphosphates, the activity site and the specificity site, are located on the large subunit of 

RNR. Binding of ATP to the activity site increases overall activity of the enzyme, while 

dATP binding to the same site reduces the overall activity. Binding of nucleotides to the 

specificity site controls the enzymatic activity toward specific substrates: A widely 

accepted model is that binding of ATP and dATP increases the reduction of pyrimidine 

nucleotide diphosphates (CDP and UDP), dTTP increases the GDP reductase activity and 

dGTP increases the ADP reductase activity (Jordan and Reichard 1998). Furthermore, a 

recent study indicates that murine ribonucleotide reductase possesses another binding site 

for ATP that controls activity of the enzyme by changing oligomeric state of the large 

subunit (Kashlan, Scott et al. 2002). A similar mode of regulation may exist in S. 

cerevisiae, since the oligomeric state of the yeast RNR large subunit (Rnr1) is also 

shifted from a monomer/dimer mixture to a dimer/tetramer mixture by binding of dTTP 

(Chabes, Domkin et al. 1999).  

Thirdly in eukaryotic systems, cellular RNR activity is also regulated by the sub-

cellular localization of the small subunit (Tanaka, Arakawa et al. 2000; Liu, Powell et al. 
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2003; Yao, Zhang et al. 2003). In the fission yeast (S. pombe) and budding yeast (S. 

cerevisiae), during interphase of the unperturbed cell cycle, the small subunit is mostly 

sequestered within the nucleus, but it is transferred to cytoplasm in response to DNA 

damage and before the S phase (Liu, Powell et al. 2003; Yao, Zhang et al. 2003). In S. 

pombe, it has been further demonstrated that the protein Spd1 binds to the RNR small 

subunit in the nucleus to block nuclear export of the small subunit. During S phase or 

after DNA damage, Spd1 is phosphorylated, which causes ubiquitination and proteasomal 

degradation of Spd1 leading to nuclear export of the small subunit (Liu, Powell et al. 

2003). On the other hand, in human cells, p53R2 is mostly localized in the cytosol during 

the unperturbed cell cycle, and it is sequestered to nucleus in the presence of DNA 

damage, where it is believed to perform its function (Tanaka, Arakawa et al. 2000). 

Finally specifically in S. cerevisiae, a novel protein, Sml1, binds to the large 

subunit (Rnr1) and inhibits its activity. The focus of this dissertation research is on Sml1, 

and a detailed background of Sml1 is given in the next section. 

 

Regulation of ribonucleotide reductase by Sml1 and the molecular nature of Sml1 

During screening of a recessive lethal mec1-1 mutant, Rothstein and co-workers (Zhao, 

Muller et al. 1998) isolated a mec1-1 homozygous strain that can still survive. The 

survival of this strain was due to mutation of another gene that suppresses lethality of the 

mec1 mutation, so the suppressor mutation was named sml1 (suppressor of mec1 

lethality). The SML1 gene was mapped on chromosome XIII at the YML058 ORF, which 

encodes a small protein of 104 amino acids (Zhao, Muller et al. 1998). 
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Rothstein and co-workers (Zhao, Muller et al. 1998) concluded that Sml1 is an 

inhibitor of ribonucleotide reductase based on the following evidence:  

1. A strain that carries two copies of SML1 gene shows a high degree of 

petite colony formation, which is caused by the insufficiency of 

deoxynucleotide triphosphates (dNTPs).  

2. sml1∆ alleviates the reduced levels of dNTPs in a dun1∆ strain after 

DNA damage.  

3. The cellular dNTP levels of the sml1 mutant are higher than those of the 

wild type strain.  

4. Sml1 and the large subunit of ribonucleotide reductase (Rnr1) 

physically interact in vivo.  

Interestingly, Sml1 also interacts with Rnr3 in vivo, although the biological significance 

of this interaction has not been investigated (Zhao, Georgieva et al. 2000). No interaction 

of Sml1 and the small subunit of ribonucleotide reductase (Rnr2/Rnr4) has been observed 

(Zhao, Georgieva et al. 2000). Later, Thelander and co-workers (Chabes, Domkin et al. 

1999) demonstrated that Sml1 inhibits ribonucleotide reductase activity in vitro. Based on 

surface plasmon resonance assay using immobilized Sml1 on a solid surface, they also 

demonstrated that Sml1 interacts with Rnr1 with a dissociation constant (Kd) of 0.25 to 

0.4±0.1µM. (the former value was determined by the kon= 153,000M-1S-1 and koff=0.04S-1 

measured by the assay, while the latter was determined by plotting the intensity of 

surface plasmon resonance to Rnr1 concentration during the assay. It is interesting to note 

that kon value of Sml1 binding to Rnr1 is ~10 fold less than rate of diffusion, possibly 
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suggesting that Sml1 undergoes structural change prior to binding to Rnr1. ) In this assay, 

the stoichiometry of the Sml1-Rnr1 interactions was estimated to be roughly one to one, 

based on the amount of Sml1 immobilized per mm2 of the surface and the amount of 

Rnr1 bound to it. The ribonucleotide reductase activity assay at various concentrations of 

the Rnr2/Rnr4 complex in the presence of Sml1 and the binding assay of Sml1-Rnr1 

interactions in the presence of Rnr2/Rnr4 complex showed no indication of competition 

between Sml1 and Rnr2/Rnr4 for binding to Rnr1. Interestingly, they also demonstrated 

that Sml1 can also bind to mouse and human ribonucleotide reductase large subunit (R1) 

and inhibit RNR activity. In these cases, Sml1 and the small subunits of mouse or human 

ribonucleotide reductase (R2) did compete for binding to R1. In addition, another study 

independently showed an interaction of Sml1 and Rnr1 in vivo based on co-

immunoprecipitation followed by mass spectrometric analysis (Ho, Gruhler et al. 2002).  

 So far only a few studies have characterized the structure of Sml1. One such study 

was conducted by scanning mutagenesis of Sml1 followed by a yeast two-hybrid screen 

(Zhao, Chabes et al. 2001). In this study, the authors recovered over ten point mutants of 

Sml1 that interact with Rnr1 very poorly. These mutations were located within the last C-

terminal 33 residues. Inhibition of ribonucleotide reductase by some of these mutants was 

also tested and showed results consistent with those of the two-hybrid screen. In addition, 

deletion of residues 2 to 39 or 28 to 50 did not affect the ability of Sml1 to inhibit 

ribonucleotide reductase, demonstrating that this region is not necessary for binding of 

Sml1 to Rnr1. Based on 15N relaxation and secondary Cα chemical shift monitored by 

NMR spectroscopy, this study also showed that three regions of Sml1 have a high degree 
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of backbone order(Zhao, Georgieva et al. 2000). These regions are residues 4 to 14, 20 to 

35, and 61 to 80, and residues 4 to 14 and 61 to 80 adopt an alpha helical backbone 

conformation9, while the rest of the molecule does not have a defined structure.  

The region of Rnr1 that is responsible for interaction with Sml1 has not been fully 

identified. A scanning mutagenesis study of Rnr1 showed that the W688G mutant has a 

higher affinity to Sml1 than wild type Rnr1, suggesting that the region containing W688 

may be responsible for the interaction (Georgieva, Zhao et al. 2000). 

Based on sedimentation equilibrium and gel filtration chromatography, Dealwis 

and co-workers (Gupta, Peterson et al. 2004) showed that Sml1 forms a dimer in solution. 

The presence of reducing agent made no significant difference regarding the oligomeric 

states of Sml110. Furthermore, the C14S mutant of Sml1, in which sole cysteine was 

replaced with serine, showed a similar profile in the experiment. In addition, 

sedimentation equilibrium showed that ∆8 Sml1 was a dimer while ∆20 Sml1 was a 

monomer. These data indicated that Sml1 exists as a dimer via non-covalent interactions 

through the region spanning residues 8 and 20. In this study, a computational model of 

Sml1 predicts that Sml1 has four alpha helices (residues 6 to18, 22 to 32, 59 to 76 and 88 

to 95). To date, only a few protein sequences from predicted ORFs in other species of 

yeast showed weak sequence homology to Sml1, and the structures of these putative 

proteins have not been investigated. Presumably, Sml1 has unique structural features not 

previously found in other proteins.  

 

9 Although authors reported that residues 20 to 35 have a high degree of backbone order, structure of this 
region has not been well characterized.  
10 This result was slightly different from observation in gel filtration chromatography study shown in 
Chapter 4.  
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Phosphorylation and degradation of Sml1  

The cellular level of Sml1 is regulated by the DNA damage response and the cell cycle 

(Zhao, Chabes et al. 2001). During the S-phase of the cell cycle, the Sml1 level decreases 

along with the appearance of phosphorylated Sml1. The removal of Sml1 during S phase 

requires MEC1 and RAD53, and the failure to remove Sml1 in mec1 and rad53 mutants11 

causes defective mitochondrial DNA propagation, reduced dNTP levels, and cell death. 

mec1 and rad53 mutants also show incomplete DNA replication possibly due to the 

failure to remove Sml1. The phosphorylation and removal of Sml1 occurs when the cells 

are exposed to DNA damaging and replication block inducing agents such as MMS, γ-

rays, UV, and HU. Phosphorylation and removal of Sml1 in response to these agents 

requires MEC1 and RAD53, but it is additionally dependent on other genes encoding 

components upstream of Mec1 or Rad53 in DNA damage response pathways.  

Rothstein and co-workers (Zhao and Rothstein 2002) demonstrated that the 

removal of Sml1 during S phase and in the presence of DNA damage is triggered through 

its phosphorylation by the Dun1 kinase. Evidence for this came from the following 

observations:  

1. Deletion of the SML1 gene suppresses several phenotypes of the DUN1 

null mutant, including its prolonged S-phase.  

2. In the null mutant of DUN1, both phosphorylation and degradation of 

Sml1 in response to DNA damage are significantly diminished.  
 

11 mec1 and rad53 mutations caused lethality. In this study, Rnr1 was over-expressed to maintain mec1 and 
rad53 mutants strains. 
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3. Sml1 and Dun1 physically interact in vivo.  

4. Sml1 is phosphorylated by Dun1 in vitro.  

These observations, combined with the previous observation that showed activation of 

the Dun1 kinase by Mec1 and Rad53, support the following model (Figure 4). In the 

presence of DNA damage or during S phase, Rad53 activates the Dun1 kinase, and the 

Dun1 kinase phosphorylates Sml1, leading to its degradation. Nevertheless, Dun1 may 

not be solely responsible for phosphorylation of Sml1 because Sml1 is weakly 

phosphorylated in the presence of DNA damage in Dun1∆ strain. It is possible that there 

are other kinases which have a partially redundant role with Dun1.  

In S. cerevisiae, Dun1 is a particularly important serine/threonine kinase in that it 

acts upstream of multiple pathways such as transcriptional activation of RNR genes 

(Zhou and Elledge 1993) and the cell cycle arrest at G2/M phase (Pati, Keller et al. 1997; 

Gardner, Putnam et al. 1999; Sanchez, Bachant et al. 1999). Furthermore, over 10 

different proteins physically interact with Dun1, suggesting that Dun1 may be involved in 

multiple pathways (Ho, Gruhler et al. 2002). Although the mechanism by which Dun1 

transmits signals to its down stream effectors during cell cycle checkpoints is not well 

understood, its kinase activity is crucial for its biological function. For instance, the 

kinase-deficient mutants D328A and K229R, unlike wild type Dun1, cannot respond to 

DNA damage and do not induce the expression of the RNR3 gene (Zhou and Elledge 

1993). In addition to the regulation of Sml1, the phosphorylation of cell cycle checkpoint 

proteins such as the Crt1 repressor (Huang and Elledge 1997) and the DNA repair protein 



 
Figure 4. Pathway in S.cerevisiae that activates RNR through Sml1 degradation 
upon DNA damage and replication block.  
A line with perpendicular end represents inhibition of the components or events. 
Arrowheads represent either activation or recognition that results in activation of 
downstream. The diagram shows removal of RNR inhibitor Sml1 after its 
phosphorylation by Dun1. Other pathways of RNR activation such as transcriptional 
activation by Crt1 and nuclear export of the RNR small subunit are omitted. 
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Rad55 (Bashkirov, King et al. 2000; Bashkirov, Bashkirova et al. 2003) depends on Dun1 

via the pathways independent of Sml1. Therefore, it is likely that there are other 

unidentified substrates of Dun1. So far, Sml1 is the only known natural substrate of the 

Dun1 kinase. Prior to this study, the sites of Sml1 phosphorylated by the Dun1 kinase 

were unknown.  By using an in vitro screen with a combinatorial library of 70 synthetic 

peptides that were known to be substrates of other serine/threonine kinases, Elledge and 

co-workers (Sanchez, Zhou et al. 1997) showed that Dun1 phosphopeptides have a basic 

residue at the –3 position from the phospho Ser/Thr site. Furthermore, they found that 

Dun1 phosphorylates the consensus cAPK recognition sequence, and that Dun1 and 

cAPK have similar substrate specificity. Nevertheless, in order to determine the Dun1 

recognition sequence, it is necessary to identify phosphorylation sites in a natural 

substrate of Dun1.   

 An intriguing question is how phosphorylation of Sml1 causes degradation of 

Sml1. To date, very little is known about the degradation mechanism of Sml1. During the 

unperturbed cell cycle, the half-life of Sml1 in the cell is approximately 16 minutes 

during G2/M phase, in which the cellular Sml1 level peaks (Zhao, Chabes et al. 2001). In 

unperturbed cells, over-expression of Rnr1 stabilizes Sml1 (Zhao, Chabes et al. 2001). 

This is due to interaction between Sml1 and Rnr1, since overexpression of Rnr1 does not 

affect the stability of Sml1 mutants which do not interact with Rnr1. These observations 

indicate that Sml1 is a short-lived protein and unbound Sml1 is more prone to 

degradation. A possible mechanism of Sml1 degradation upon its phosphorylation is that 

phosphorylation might dissociate Sml1 from Rnr1 making it more prone to degradation. 
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Generally, proteins that adopt a partially folded structure are prone to a rapid degradation 

in the cell (Wright and Dyson 1999; Goldberg 2003; Imai, Yashiroda et al. 2003). The 

short half-life of Sml1 in the cell is probably due to its loosely folded structure. Although 

it is not known, Sml1 may adopt more rigid structure when it is bound to Rnr1, and this 

may explain the stabilization of Sml1 by overexpression of Sml1 in vivo. Some proteins 

that are loosely folded adopt more rigid structure when they bind to other proteins 

(Kriwacki, Hengst et al. 1996; Kim, Kakalis et al. 2000; Dyson and Wright 2002). In 

addition, some proteins such as the cell cycle inhibitory protein p21Cip1 dissociate from 

other proteins when they are phosphorylated (Rossig, Jadidi et al. 2001). Another 

possible scenario of Sml1 degradation is that there are some cellular components for 

protein degradation that specifically recognize phosphorylated Sml1 as a target. For 

example, like Sml1, the G1/S cyclin-CDK inhibitor Sic1 is phosphorylated and degraded 

during the G1-S transition of the cell cycle (Feldman, Correll et al. 1997). In this process 

the F box protein of the SCF ubiquitin ligase Cdc4 specifically recognizes 

phosphorylated Sic1 for its ubiquitination (Nash, Tang et al. 2001). These two models are 

not completely exclusive and need to be further addressed.  

 

Impact of this dissertation research  

While many studies have revealed the pathways of the DNA damage and replication 

block responses, the biochemical events taking place in these pathway have not been 

studied in detail. This dissertation research is one of the few studies to unequivocally 

identify the phosphorylation sites of a protein involved in the DNA damage and 
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replication block responses. Although the Dun1 kinase is involved in several processes 

such as transcriptional regulation of RNR genes and regulation of G2/M cell cycle arrest, 

Sml1 is the only natural substrate of Dun1 identified to date. The major focus of this 

dissertation study is to identify the phosphorylation sites on Sml1 and to investigate the 

mechanism by which Dun1 phosphorylates Sml1. The data reported in this thesis provide 

an idea of the substrate specificity of the Dun1 kinase, which might be applied to study 

other substrates of the Dun1 kinase which are yet to be identified. In addition, knowledge 

of phosphorylation sites on Sml1 will be useful for further analyzing how Sml1 is 

regulated. For example, such knowledge can be used to generate antibodies specific to 

phospho-Sml1 to quantitatively analyze the relationship between phosphorylation and 

cellular levels of Sml1.  

 In the DNA damage and replication block responses, phosphorylation is a key for 

regulation of cellular processes. We have addressed the effect of Rnr1 on 

phosphorylation of Sml1. While many proteins that become phosphorylated in the cell 

interact with other non-kinase like proteins, there are relatively small numbers of studies 

that have shown whether such interaction influences phosphorylation of the target 

protein. We found that Rnr1 can reduce the degree of Sml1 phosphorylation in vitro. This 

finding indicates a possibility that protein-protein interactions can potentially influence 

rates of phosphorylation of proteins in general.    

 Finally, we addressed how phosphorylation of Sml1 affects the ability of Sml1 to 

inhibit RNR. The data suggest that phosphorylation of Sml1 weakens RNR inhibition by 

Sml1. However, further experiments are necessary to conclude the issue. In addition, it is 
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also important to test whether binding of Sml1 to Rnr1 is affected by phosphorylation. 

Although this issue was not addressed experimentally in depth, potential experiments to 

test binding of phosphorylated Sml1 to Rnr1 will be described in Chapter 6.   
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Chapter 2. Experimental design 

Introduction  

Overall experimental design of this research consists of two general types of experiments: 

1) characterization of Sml1 and its modifications by mass spectrometry and 2) 

measurement of the properties of Sml1, Rnr1 and Dun1 in solution by conventional 

biochemical techniques. Considering the limitation in the amount of proteins available for 

these studies, mass spectrometry was the best approach to probe chemical modification 

(e.g. phosphorylation) of Sml1. Mass spectrometry was also used to verify the protein 

species used in this research. After verification and characterization of proteins by mass 

spectrometry, the effects of the modifications on biochemical activity / properties of the 

proteins were investigated.  

In this chapter, the experimental design of this dissertation research will be 

discussed. First, protein expression and purification procedures will be described. It 

should be noted that all experiments in this research started with expression and 

purification of proteins, and the importance of these procedures cannot be underscored. 

Second, mass spectrometric techniques will be discussed. Mass spectrometry, specifically 

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), was the 

major technique indispensable for this research. The rationale and advantage of using 

FTICR-MS, as well as the basic principles of FTICR-MS and the experimental 

procedures involving FTICR-MS will be discussed. In addition, since Sml1 

phosphorylation is the major topic of this thesis, the background for mass spectrometric 

techniques used for studying protein phosphorylation is provided. Third, assays to 
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measure biochemical activity of RNR, Sml1 and the Dun1 kinase will be described along 

with the rationale behind these procedures. Fourth, a fluorescence based method to 

monitor the Sml1-Rnr1 interactions and gel filtration chromatography to estimate size of 

Sml1 oligomer will be described.  

The data interpretation procedures required for the RNR activity assay, the Dun1 

kinase assay, mass spectrometric identification of Sml1 phosphorylation site and the 

fluorescence based assay of the Sml1-Rnr1 interactions are described in the appendix of 

this thesis.  

 

Preparation of proteins 

Expression plasmid and yeast strain 

Wild type Sml1 expression plasmid (pWJ-750-2), Rnr1 expression (pWJ751-3) plasmid, 

GST-Dun1 expression plasmid (pWJ772-11)(Zhao and Rothstein 2002) and the 

S.cerevisiae strain U952-B (MATa, sml1∆::HIS3. RAD5 in W303) (Zhao, Muller et al. 

1998) were kindly provided by Dr. Rodney Rothstein at Columbia University (New 

York, NY). The Sml1-histag expression plasmid was constructed by inserting the Sml1 

ORF into pQE60 vector (Qiagene, Valencia, CA). Expression plasmids of Hisx6Rnr2 

(p(His)6-Y2) and Rnr4 (pY4J) (Ge, Perlstein et al. 2001) were kindly provided by Dr. 

JoAnne Stubbe at MIT (Boston, MA). For constructing the Sml1 mutants, the wild type 

Sml1 expression plasmid was used as a template to create various Sml1 mutants using the 

Quick Change Site-directed Mutagenesis Kit (Stratagene, La Jolla, CA). Detailed 

descrioption for construction of the Sml1 mutants can be found in (Dice 2003). 
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Preparation of Sml1 

Expression and purification of Sml1-histag 

E.coli M15 cell strain was transformed with the Sml1-histag expression plasmid. To 

express Sml1-histag, the cells were grown in 1L of TB media at 37°C to an optical 

density of 0.6 at 600nm, followed by induction with 1mM of isopropyl-1-thio-β-D-

galactopyranoside (IPTG) for 3 hours.  The bacterial cells then were harvested by 

centrifugation and the resulting cell pellet was stored at –20°C.  Each purification 

procedure was performed at 4°C.  Cells were re-suspended in 20mL of buffer A (50mM 

Tris pH 8.0, 300mM NaCl, 5mM imidazole, 5mM 2-mercaptoethanol and 1mM alpha-

toluenesulfonyl fluoride) and lysed by passage through a French Press. The cell lysate 

was centrifuged at 10,000 x g for 30 minutes and the supernatant was incubated with 1 to 

2ml of Ni/NTA agarose (Qiagen) for 3 hours on a gently moving orbital shaker. The resin 

was packed into a 0.5 x 2 cm column and washed with 15 bed volumes of the buffer A 

containing 20mM of imidazole. The protein was eluted from the resin using the buffer A 

with 1M imidazole added. The protein concentration in the eluate was determined by 

Bradford assay, using the Commassie® Plus Protein Assay Reagent Kit (PIERCE 

Rockford, IL).  The purity of the protein sample was examined with SDS-PAGE (15% 

polyacrylamide gel).  The bands on the gel were analyzed by an image acquisition and 

analysis software, Lab Works (UVP, Upland, CA).  The purity of Sml1-histag in the 

sample was calculated based on the image optical density (IOD) of all the bands in the 

lane of the gel.  The IOD of the band corresponding to Sml1-histag was plotted against 
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the amount of the total protein (3-20 µg) loaded in the lane.  The range from 3 to 15 µg of 

total protein loaded onto the gel gave a linear plot with R2 of 0.97, and was used to 

calculate the average percentage of the Sml1-histag protein in the sample.  To prepare the 

protein for either the enzymatic digestion or the mass spectrometry experiments, the 

protein sample was dialyzed with a membrane of MWCO 3500 (Fisher Scientific, 

Pittsburgh, PA) against 16 volumes of pure water five times.  No attempt was made to 

quantify the amount of protein recovered from the dialysis procedure; however, based on 

other dialysis experiments in our laboratory on a variety of proteins with similar 

molecular masses and amino acid sequences, we estimate a recovery of about 80-90% of 

the protein from the dialysis chamber.  In all cases, the amount of protein recovered was 

sufficient for the qualitative mass spectrometry experiments described in Chapter 3. 

 

 Expression and purification of wild type and mutant Sml1 

An overnight culture of E.coli BL21(DE3)pLys cells transformed with the Sml1 

expression plasmid was grown in Terrific Broth media (TB) containing 100 mg/liter of 

ampicillin and 34 mg/liter of chloramphenicol at 37ºC.  The culture was diluted 100-fold 

in fresh TB, and grown to an OD600 of 0.6. Expression of the protein was induced by the 

addition of IPTG to a final concentration of 0.5mM followed by three hours of incubation 

in the shaker at 37ºC. The cells were harvested by centrifugation and re-suspended in 

buffer B (50 mM Tris-HCl, 1 mM EDTA, 5 mM dithiothreitol (DTT), containing 

1tablet/50ml  COMPLETETM protease inhibitor cocktail (Roche Molecular Biochemicals, 

Mannheim, Germany) pH 7.4) and were frozen in liquid nitrogen.  
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 The following procedures were all carried out at 4°C.  After thawing the frozen 

cell suspension, the lysate was centrifuged at 150,000 x g for 1 hour. The protein in the 

supernatant fraction was precipitated by addition of ammonium sulfate to 25% saturation. 

The precipitate was harvested by centrifugation at 12,000 x g for 30 minutes and 

dissolved in buffer B before applying to a HiLoad 26/60 Superdex 75 gel filtration 

chromatography column (26 mm I.D. and 60 cm height. Amersham Biosciences, 

Uppsala, Sweden), which was pre-equilibrated with buffer B or buffer C (50mM Hepes-

KOH, 5mM MgCl2, 5% (v/v) glycerol, 5mM DTT pH 7.0) containing 100mM KCl12. The 

eluted fractions containing Sml1 were identified by SDS-PAGE using a 15% 

polyacrylamide gel followed by ESI-FTICR-MS as described below. These fractions 

were pooled and used for phosphorylation assays. The concentration of Sml1 was 

determined by Coomassie Protein Assay Kit (PIERCE, Rockford, IL) using bovine serum 

albumin (BSA) as a standard. 

 

Preparation of Rnr1 

Preparation of Rnr4 C terminus 9mer conjugation for Rnr1 purification 

Studies reported that peptides with the sequence consisting of C terminus sequence of the 

RNR small subunit can specifically binds to the RNR large subunit and inhibit RNR 

activity (Climent, Sjoberg et al. 1991; Filatov, Ingemarson et al. 1992; Davis, Thelander 

et al. 1994). Exploiting this property of such peptides as an advantage, Cooperman and 

                                                 

12 For analyzing oligomeric state by gel filtration (Chapter 4), buffer B was used. For studying Sml1 
phosphorylation, buffer C was used.  
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co-workers (Yang, Spanevello et al. 1990) reported that murine ribonucleotide reductase 

large subunit (R1) can be effectively purified by resin coupled to the peptide consisting of 

the C-terminal 9 amino acid residues of murine ribonucleotide small subunit (R2). In 

S.cerevisiae peptides consisting of the C-terminal 9 amino acid residues of Rnr2, Rnr4 

and Sml1 can inhibit RNR activity (Chabes, Domkin et al. 1999). Among these three, the 

peptide consisting of the Rnr4 sequence has higher efficacy than the peptides 

corresponding to the Rnr2 or Sml1 sequences (Chabes, Domkin et al. 1999).   

 Slightly modifying the procedure reported by Cooperman and co-workers (Yang, 

Spanevello et al. 1990), we utilized a resin coupled with a peptide consisting of C 

terminal residues of a small subunit of yeast ribonucleotide reductase to purify Rnr1.  

 

Expression and purification of Rnr1 

An overnight culture of E.coli BL21(DE3)pLys cells transformed with the Rnr1 

expression plasmid was grown in Terrific Broth media (TB) containing 100 mg/liter of 

ampicillin and 34 mg/liter of chloramphenicol at 37ºC.  The culture was diluted 100-fold 

in fresh TB, and grown to an OD600 of 0.6. After chilled on ice water for 15 minutes, 

expression of the protein was induced by the addition of IPTG to a final concentration of 

0.5mM followed by incubation for 16 to 20 hours with shaking at 15°C. The cells were 

harvested by centrifugation and stored at -80°C. 

 The following procedures were all carried out at 4°C.  After being thawed, 10g 

cells were re-suspended in buffer C containing 100mM KCl, 1mM phenylmethylsulfonyl 

fluoride (PMSF), 1tablet/50ml   COMPLETETM protease inhibitor cocktail, 2µM 
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pepstatin pH 7.0 and lysed by one passage through a French pressure cell (12,000 psi; 1 

psi = 6.89 kPa). Cell debris was removed by centrifugation (12,300 × g, 30 min). 

Streptomycin sulfate (10% wt/vol) was added gradually to the extract to a final 

concentration of 1.5% wt/vol, and the DNA was removed by centrifugation (12,300 × g, 

30 min). Solid (NH4)2SO4 was added to the supernatant to 40% saturation (0.29 g/ml) 

over a period of 30 min, and precipitated proteins were collected by centrifugation 

(12,300 × g, 40 min). The pellet was dissolved in 2 to 2.5 ml of buffer C containing 1mM 

PMSF, 1tablet/50ml COMPLETETM protease inhibitor cocktail, 2µM pepstatin pH 7.0 

and desalted by passage through a PD10 column (Amersham Bioscience, Uppsala, 

Sweden) with buffer C as eluent. COMPLETETM protease inhibitor cocktail (1 tablet/ml 

stock) was added to the sample to a final concentration of 1tablet / 50ml. This solution 

was incubated with 2ml of Y4 9mer peptide coupled resin (described above) for one hour 

at 4°C on a gently moving rocker. After the incubation, the resin was packed in a column 

(1cm I.D. Econo-column: BioRad, Hercules, CA) and manually washed with 10ml of 

buffer C. Using a flow adapter (1cm plunger diameter: BioRad), the column was washed 

with 15ml of buffer C followed by KCl gradient from 100mM to 200mM in buffer C over 

60ml elution volume at a flow rate of 1ml/min. The bound protein was then eluted with 

20 to 30ml of 1M KCl in buffer C. Protein-containing fractions were pooled, 

concentrated by ultrafiltration with a YM30 membrane (Millipore, Bedford, MA) once 

and the KCl concentration was adjusted to 100mM by dilution in buffer C. The diluted 

sample was concentrated again to >5mg/ml and frozen in liquid nitrogen, and stored at 
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−80°C. Typically ~5–10 mg of Rnr1 with ~95% purity (based on densitometry analysis 

of Coomassie Blue stained SDS/PAGE gel) was obtained. 

 

Expression and purification of histag Rnr2/ Rnr4 

E. coli BL21 CodonPlus (DE3) RIL cells were co-transformed by the expression plasmid 

of Hisx6Rnr2 and Rnr4. The overnight culture was grown in Terrific Broth media (TB) 

containing 100 mg/liter of ampicillin and 25 mg/liter of Kanamycin at 37ºC. The culture 

was diluted 100-fold in fresh TB and grown to an OD600 of 0.6. After chilled on ice water 

for 15 minutes, expression of the protein was induced by the addition of IPTG to a final 

concentration of 0.5mM followed by 16 to 20 hours shaking at 15°C. The cells were 

harvested by centrifugation and stored in -80°C. 

Purification of Hisx6Rnr2/Rnr4 complex was carried out following the procedure 

described by Thelander and co-workers (Chabes, Domkin et al. 2000). Frozen bacterial 

cell paste obtained from 2L cell culture was re-suspended in approximately 4 wet cell 

volumes of buffer D (50 mM Hepes/5% glycerol/1.0 mM PMSF, 1x COMPLETETM 

protease inhibitor cocktail, pH 7.4 at 4°C). The cells were lysed by passage through a 

French pressure cell (15,000 psi; 1 psi = 6.89 kPa), and cell debris was removed by 

centrifugation at 19800 x g for 30 minutes at 4°C.  Fe(II) ammonium persulfate was 

added to the supernatant to a final concentration of 170 µM. The supernatant was then 

incubated with 1ml bed volume TALON cobalt affinity resin at 4˚C for 1 hour on a 

gently rotating shaker. The column was subsequently washed with 40 column volumes 

(CV) of buffer D containing 100 mM NaCl, followed by 16 CV of buffer D containing 10 
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mM imidazole. The protein was eluted first with 10 CV of buffer D containing 100 mM 

imidazole, then with 10 CV of buffer D containing 200 mM imidazole. Fractions 

containing Hisx6 Rnr2 and Rnr4 were identified by 12% SDS-PAGE, and they were 

combined. The imidazole concentration was reduced to less than 1mM by repeated 

ultrafiltration with a YM30 membrane (Millipore, Bedford, MA) or dialysis. Proteins 

were concentrated to >5 mg/ml, frozen in liquid nitrogen, and stored at −80°C. 

 

Expression of GST-Dun1 and preparation of GST-Dun1 bound resin 

Expression of GST-Dun1 was carried out as described by Rothstein and co-workers 

(Zhao and Rothstein 2002). Yeast cells (U952-B) transformed with the GST-Dun1 

expression plasmid (pWJ772-11) were grown in SC-URA raffinose, and the expression 

of Dun1 was induced at mid-log phase (5~6 x 106 cells /ml) by addition of solid galactose 

to a final concentration of 2% (w/v). After two to three doubling times (3 to 3.5 x 107 

cells /ml), the cells were harvested, washed with PBS, and stored at –80ºC. For the 

experiment involving induction of DNA damage response, methyl methane sulfonate 

(MMS) was added to a final concentration of 0.1% when cell density reached ~1.5 x 

107cells / ml, and cells were grown for two more hours. To compare the activity of GST-

Dun1 from the cells treated with and without MMS, a fraction of cells were set aside 

before addition of MMS, and these cells were grown without MMS for two more hours. 

The purification of GST-Dun1 was carried out as described by Zhao and Rothstein and 

Elledge and co-workers (Sanchez, Zhou et al. 1997; Zhao and Rothstein 2002). Cells 

were re-suspended in ice cold NP40 buffer (50 mM Tris-HCl,150 mM NaCl, 50 mM 
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KCl, 5 mM MgCl2, 1% (v/v) Igepal 630, 10% (v/v) glycerol, 10 mM Dithiothreitol, 0.1 

mM NaVO4, 30 mM NaF, 1 mM PMSF, 1x COMPLETETM protease inhibitor cocktail, 2 

µM pepstatin pH 8.0) to a cell density of approximately 3~4 x 109 cells /ml. An equal 

volume of glass beads (0.45~0.50mm particle size) was added to the cell suspension. The 

cells and glass beads are agitated by vigorously vortexing for 30 second and then placed 

on ice water for 30 second to cool. The cycles of agitation and cooling were repeated 

seven times, and the sample was centrifuged for 30 seconds. The soluble fraction was 

taken into another tube and set aside. The same volume of NP40 buffer was added to the 

mixture of cells and glass beads again and the cycles of agitation and cooling were 

repeated three times. After centrifuged for a 30 seconds, the soluble fraction was pooled. 

This procedure was repeated once more. The soluble fraction was further centrifuged at 

12,000 x g for 20 minutes at 4ºC. Total amount of protein in the supernatant was 

estimated based on concentration as determined by the Coomassie Plus Protein Assay. 

For every 1mg of total protein in the supernatant, 10µl of glutathione resins (Glutathione-

4 Sepharose Superflow: Amersham Bioscience, Piscataway, NJ) was added and allowed 

to incubate with the protein for one hour at 4ºC on a gently moving rocker. After 

incubation, the resin was packed into a column (1cm I.D. Econo-column: BioRad, 

Hercules, CA) and washed with 50 bed volumes of 50mM Tris-HCl, 500mM NaCl, 1mM 

EDTA, 1mM DTT pH 7.5. Then, the column was equilibrated with 50mM Hepes-KOH, 

10% glycerol, 5mM MgCl2, 5mM DTT pH 7.0. The resin was suspended in 3 bed 

volumes of the same buffer as 25% slurry and stored in –80ºC. Examination of the 

glutathione-beads by SDS-PAGE revealed pure GST-Dun1. 
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Mass spectrometry 

Rationale for using Fourier Transform Ion Cyclotron Resonance mass spectrometry 

(FTICR-MS) for the characterization of Sml1 

Mass spectrometry has become an indispensable technique useful for characterization of 

protein and peptides for biological research (Mann and Pandey 2001). When studying the 

biochemical properties of a protein, it is important to confirm the identity and purity of a 

protein species and ensure the integrity of the proteins in the sample. By combining 

specific proteolytic digestion and protein sequence database searches, mass spectrometry 

has become one of the best methods for protein identification for both purified proteins 

and mixtures of several proteins. Furthermore, mass spectrometry provides information 

concerning presence of protein variants and post-translational modifications.  

 Significant progress has made in both the instrumentation and application of 

several types of mass spectrometers for identification and characterization of biological 

macromolecules (Mann and Pandey 2001). Nonetheless, each mass spectrometer has its 

own strengths and weaknesses. FTICR-MS provides mass resolution (FWHM of 100,000 

to 150,000) far superior to other types of instruments and also provides high mass 

accuracy (1 to 10 ppm for molecules of 100 to 30,000Da) with proper calibration 

(Marshall, Hendrickson et al. 1998; Hendrickson and Emmett 1999). In addition, its 

ability to comprehensively measure a wide dynamic range (up to 105)13 minimizes the 

 

13 Dynamic range is difference in abundance of two or more species. It is defined as intensity ratio of the 
base peak (the peak of the most abundant species) to the smallest peak that is comprehensively detected.  
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requirement of extensive sample separation, making it possible to analyze relatively 

complex mixtures of peptides and proteins. Furthermore, FTICR-MS has capability of 

tandem mass spectrometry to probe ion fragmentation.  

The high performance that can be achieved only by FTICR-MS was particularly 

crucial for analyzing intact Sml1 and its modified forms. Because of multiple carbon 

atoms in the molecule, the molecular region of this protein exists as a population of 

numerous isotopic species. The mass of a protein is determined most accurately if 

different isotopic species are resolved. Even for a protein with the size of Sml1 (12kDa), 

FTICR-MS is only the instrument that can comprehensively resolve all of these isotopic 

species. Resolution of isotopic species is even more important when analyzing modified 

proteins. For example, as described in Chapter 3, Sml1 forms a disulfide-linked dimer in 

non-reducing conditions. The disulfide-linked dimer of Sml1 has mass 2.0156Da less 

than twice the mass of Sml1 due to loss of two hydrogen atoms. Such mass difference of 

intact proteins can be probed only when isotopic species are comprehensively resolved.  

Due to the relatively low complexity of the Sml1 sample, LC separation was not 

absolutely necessary for analyzing Sml1. Therefore, in every experiment, electrospray 

ionization (ESI) was carried out in direct infusion mode. Nevertheless, direct infusion 

ESI still provided high quality data and sufficient information content to achieve the goal 

of characterizing Sml1 and its phosphorylation.   

In the next three sections, the fundamental principles of FTICR-MS will be 

illustrated. A more detailed description of FTICR-MS can be found in (Marshall, 

Hendrickson et al. 1998; Hendrickson and Emmett 1999). 



 

Basic principles of FTICR 

Detection and mass determination of ions by FTICR-MS 

FTICR-MS relies on the cyclotron motion of ions in a magnetic field. When an ion 

moves at a velocity v in the presence of a spatially uniform magnetic field, B=B0k (B is a 

vector with amplitude B0 and a direction defined by k parallel to Z axis14), the ion is 

subjected to a force defined as 

Bqv
dt
dvmonaccerelatimassForce ×==•=   (Equation 1)  

In this equation, m and q are ionic mass and charge, respectively. Note that v and B are 

vectors, and their cross product is perpendicular to v and B (Figure 5). Equation 1 shows 

that an ion with velocity perpendicular to magnetic field experiences an inward directed 

force, which is called the Lorentz force. Due to the Lorentz force, if the ion maintains a 

constant speed, the ion path is bent into a circle (Figure 5). 

 Further development of Equation 1 allows expression of the angular velocity of 

the ion cyclotron motion about the z-axis in terms of mass, charge, and magnetic 

strength. For this conversion, consider only the magnitude of the force in Equation 1. Let 

22
yxxy vvv += denote the magnitude of the ion velocity in the x-y plane (plane of the 

paper in Figure 5), which is perpendicular to B. In this case, all the vector quantities in 

Equation 1 should be converted into scalar quantities. First, Bv × on the right side of  
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14 Z-axis is direction in which ion is injected into the mass analyzer, and it is parallel to the magnetic field, 
B.  Please see Figure 6B.  



  

Figure 5. Ion cyclotron motion.  
In this diagram, magnetic field B is perpendicular to plane of the paper. For an ion 
moving at a velocity v, it experiences a force perpendicular to v and B. Then motion of 
ion is bent into a circle. 
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Equation 1 should be converted into Bv × , and that is equal to product of vxy and B0. 

Second, dv/dt in equation 1 should be converted into  dvxy/dt  , and that is equal to vxy
2 / r 

where r is radius of the circular motion.15 Then the magnitude of the force defined in 

equation 1 is expressed as 

 

  Force   = mvxy
2 / r = qvxyB0  (Equation 2a) 

 

The angular velocity, ω (radian / sec) about z-axis is defined as  

 

   ω  = vxy / r (Equation 2b)   

 

In this particular case, ω is angular velocity of ion cyclotron and can be written as ωc. By 

replacing vxy with ωcr, Equation 2a can be expressed as 

 

mωc
2r = qB0ωcr (Equation 2c) 

 

Simplifying the expression in Equation 2a; 

 

ωc = qB0 / m   (Equation 3a) 
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15 Generally, acceleration (dv/dt) of a circular motion can be written as v2/r. In our case, we are concerned 
with only magnitude of acceleration, and v can be a scalar quantity.   
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Generally, the frequency of circular motion can be defined as f = ω/2π. Likewise, the ion 

cyclotron frequency, fc, is fc=ωc /2π. By replacing ωc with qB0 / m (as in Equation 3a), fc 

can be expressed in simplistic terms as below 

 

fc= ωc / 2π = qB0 / 2πm = B0 / 2π (m/q)   (Equation 3b) 

 

These equations show that the frequency of the ion cyclotron is unique to a particular 

mass/ charge, and it is inversely proportional to mass/charge of the ion. On the other 

hand, the frequency of the ion cyclotron is independent of ion velocity and proportional 

to magnetic field strength. The frequency of the ion cyclotron motion is the quantity 

measured by FTICR-MS, and from which mass/charge is determined.   

 As evident in Equation 1, the movement of ions in the x-y plane is restricted by 

the magnetic field B. However, ions are still free to escape from the mass analyzer along 

the z-axis. To confine the movement of ions along the z-axis, an electrostatic potential 

can be applied on two plates positioned perpendicular to the z-axis (“Trapping” in Figure 

6B). The application of an electrostatic potential on the trapping plates not only confines 

ions movement along the z-axis but also creates two additional motions of ions. The first 

type of motion, called trapping oscillation, is the oscillation of the ions along the z-axis. 

The second type of motion, called magnetron rotation, is a circular precession of ions in 

the x-y plane with much lower frequencies than ion cyclotron frequencies. However, the 

trapping oscillation and magnetron rotation are usually not detected due to their low 



 

Figure 6. Mass analyzer of FTICR-MS.  
(Images were taken from (Hendrickson and Emmett 1999)) 
(A) Ion acceleration and detection. In this picture, magnetic field, B0, is perpendicular to 
the plane of the paper. Picture on the left shows application of rf to positive ions in the 
magnetic field to excite ICR. The picture on the right shows detection of ICR image 
current by detection plate. (R: resistor C: capacitor).  
(B) A schematic diagram of FTICR-MS mass analyzer. The ion is injected through the 
small hole on the trapping plate and confined in the mass analyzer by an electric potential 
created between the trapping plates. Excitation, detection and trapping plates are 
orthogonal to each other. Excitation and detection is achieved as in (A).  
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frequencies, and these frequencies are also relatively independent of mass/charge. 

Because they do not have significant effect on excitation and detection of ions, trapping 

oscillation and magnetron rotation will be omitted from rest of the discussion.   

 

Excitation and detection of ions 

Ions trapped in a magnetic field generally have incoherent cyclotron motion (i.e. they are 

moving independent of each other). In this mode, it is impossible to detect their net 

motion. To force the ions to move coherently, an electric field at the appropriate 

frequencies oscillating along a direction perpendicular to the magnetic fields needs to be 

applied (Figure 6). For B=9.4 Tesla, these oscillating electric fields must be in the radio 

frequency (rf) range of 10 to 5000 kHz. If the rf frequencies matches the frequencies of 

the ion cyclotron motion, the ions continuously absorbs power, A(t), according to dot 

product 

 

A(t) = Force • velocity = qE(t) •  vxy  (Equation 4) 

(q: Charge of ion, E(t): the oscillating electric field, velocity of ion on x-y plane) 

 

While absorbing power, the ions are accelerated (Figure 6A left), and at the same time, 

all ions of the same mass/charge are forced to move in a phase coherent motion forming a 

packet of ions. The coherent ion cyclotron motion is called the ion cyclotron resonance 

(ICR). Note that as the ions are accelerated, the frequencies of the ICR do not change (as 

in equation 3), but the radius of ICR increases. On the other hand, if the frequencies of rf 
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and ion cyclotron are different, the ions will not absorb power. In FTICR-MS, a chirp 

pulse of rf that covers a wide range of ICR frequency is applied to the ions confined in a 

magnetic field, and the ions absorb power when the applied rf has the same frequency as 

their ion cyclotron.  

 After controlled acceleration of the ions, the application of the rf pulse is 

terminated, but the ICR continues for a period of time until collisions of ions with neutral 

molecules quench the coherent motion. In the mass analyzer of FTICR-MS, the detection 

plates are placed orthogonal to the magnetic field (Figure 6 and Figure 7). During ICR, as 

the positively-charged ion packet approaches the upper detection plate (Figure 7), it 

induces a negative charge on the upper detection plate. After a short period of time, the 

ion packet moves toward the lower detection plate in Figure 7 and induces a negative 

charge on the lower plate. In short, ICR creates a charge differential between the two 

detection plates according to 

 

∆Q = -2qy/d   (Equation 5) 

(∆Q: charge difference between the two detection plates, q: the net charge of the 

ion packet, y: position of the ion packet with respect to detection plates, d: the 

distance between the detection palates. [See Figure 7]) 

 

It should be noted that the charge differential between the detection plates constantly 

changes over the period of ICR due to the coherent ion motion. Thus, the ICR creates an 



  

Figure 7. Schematic diagram of FTICR-MS ion detection system.  
Y-axis is orthogonal to magnetic field, and the center of the mass analyzer is taken as the 
origin of y-axis. When the ion packet is at y=0, there is no charge difference between the 
detection plates. When the ion packet is closer to the upper detection plate, it crates 
negative charge to the upper detection plate. Thus, that creates a charge difference 
between upper and lower plate. Opposite charge different is created as the ion move 
toward the lower plate. Due to a circular motion of the ion packet during ICR, the image 
current of an ion packet resembles sine or cosine curve. 
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alternating current with ICR frequency on the detection plates, since electric current is 

defined as rate of change in charge difference over time (d∆Q/dt). This alternating current 

is usually called image current. The amplitude of the image current is proportional to the 

number of ions in the ion packet. 

If there are only ions of single mass/charge in the mass analyzer cell, the image 

current will resemble a pure sine wave, and this can be expressed in the time domain as a 

function of voltage amplitude with respect to time (Figure 8). By a mathematical 

operation called Fourier transformation, the time domain image current can be converted 

into the frequency domain, generating a function of amplitude with respect to ICR 

frequency (Figure 8). In the frequency domain, amplitude is also proportional to 

abundance of ions trapped in the analyzer cell. As in equation 3, ICR frequency and 

mass/charge have an inverse relation. In other words, the mass spectrum is a mirror 

image of the frequency domain.  

If there are ions with different (multiple) mass/charge, they create a complex 

waveform representing an addition of image currents from ion packets with different 

(multiple) mass/charge ratios (Figure 9). In order to Fourier transform this waveform, it 

needs to be expressed as a series of individual waveforms, called the Fourier series. In the 

Fourier series, the waveform is expressed as the sum of sine and cosine terms in which 

each sine or cosine term represents the image current from an individual ion packet. The 

image current expressed by the Fourier series is converted into the frequency domain, and 

the frequency domain is further converted to mass spectrum according to equation 3. 



 

Figure 8. A simplified summary of data processing in FTICR-MS. 
 ICR creates image current that represents a function of time in terms of ICR frequency 
and amplitude (abundance) of ion packet. The image current is converted to frequency 
domain spectrum by Fourier transformation. The frequency domain spectrum is the 
function of frequency in terms of ion abundance, and it is a mirror image of mass 
spectrum. The frequency domain spectrum is further converted into mass spectrum based 
on the relation 2πfc=ωc=B0/(m/q). 
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Figure 9. Image current and mass spectrum created by multiple ions of the protein 
ubiquitin (Mr=8565Da).  
(A) Image current. ICR of more than 50 different species in different charge states and 
isotope compositions created a waveform representing addition of alternating currents 
from individual ion packets. The waveform was synthesized into a periodic function of 
time, f(t). (B) Mass spectrum. The spectrum was created by Fourier transformation of f(t) 
into F(ω) followed by conversion of ω to m/z. The inset is the zoom of (M+7H)+7 charge 
state ions showing the different isotopic species.       
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Sustained off resonance irradiation (SORI) collisional activated dissociation  

Fragmentation of selected ions followed by detection of fragment ions is called tandem 

mass spectrometry and provides rich information for determining chemical structure of 

the ions (Dass 2001). A common method of ion fragmentation is to increase kinetic 

energy of ion by accelerating it and colliding it with an inert gas molecule; this method is 

called collisional activated dissociation (CAD). CAD is performed by a series of 

sequential operations (Figure 10). First, only ions of interest are isolated in the mass 

spectrometer, and all the other ions are ejected from the region where the collisions will 

take place (Figure 10-2). These selected the ions of interest are called parent ions. In 

many cases, before isolating the parent ions, mass spectra are acquired to obtain 

information regarding the presence and the abundance of the parent ions. Second, the 

parent ions are accelerated by application of an appropriate electric field in the presence 

of inert gas such as nitrogen or helium. During this process, the parent ions pick up 

kinetic energy and collide with the gas molecules (Figure 10-4). As a result of 

consecutive collisions, the kinetic energy is converted to internal energy in the parent 

ions. When the ion’s internal energy exceeds chemical bonding in the ions, fragmentation 

of ion occurs. Generally, the weaker bonds in the ion tend to be broken first. Third, the 

fragment ions are detected, and their mass/charge ratios are determined (Figure 10-6 and 

Figure 10-7). 

Among different types of CAD, the most popular method of CAD by FTICR-MS, 

termed sustained off resonance irradiation (SORI) CAD, was employed in this research 

due to its versatility. Like the more conventional CAD, SORI-CAD is performed in the  



 

Figure 10. Collisional activated dissociation in FTICR-MS.  
(1&2) Ion isolation. All the ions except the ions of interest are accelerated. The 
accelerated ions hit the wall of ICR cell, and they are neutralized. (3) Pre ion-gas 
collision. Inert gas (in this case, nitrogen) is injected to the ICR cell. (4) Ion-gas collision 
and ion fragmentation. Ions of interest (parent ions) are accelerated to collide into the 
inert gas. Kinetic energy is accumulated to the parent ions, and the ions are eventually 
broken into fragments. (5) Pre-ion detection. The inert gas and neutral fragments are 
ejected by the vacuum system, while the fragment ions are confined into ICR cell by the 
trapping electric potential and the magnetic field. (6&7) Ion detection. All the fragment 
ions are accelerated, and image current of fragment ions is acquired. 
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same sequence of ion isolation, ion-gas collision and ion detection (Gauthier, Trauman et 

al. 1991; Marshall, Hendrickson et al. 1998). 

The method of ion isolation in SORI-CAD is similar to the ion detection process 

described in the previous section. Any ion that is accelerated above a certain threshold 

will hit the wall of the analyzer and become a neutral molecule (this process is called 

annihilation). Such neutral molecules are no longer detected. In ion isolation, all the ions 

except the parent ions are accelerated above the threshold. As a result, only the parent ion 

remains to be detected. For this process, first, the instrument creates a theoretical 

frequency domain that does not include the frequency for the parent ions. Second, the 

frequency domain is reverse Fourier transformed into a time domain. Based on the time 

domain, the instrument designs an rf pulse that covers a range of ICR frequencies except 

that of parent ion. Third, the rf is applied to the mass analyzer, and all the ions except the 

parent ions are annihilated (Figure 10-2). Before the ion-gas collision process, a pulse of 

the inert gas is injected into the mass analyzer (Figure 10-3). 

In the ion-gas collision process, the parent ions are accelerated by application 

their cyclotron frequencies at well controlled amplitudes, so that they collide with the 

inert gas molecules under carefully controlled conditions. Thus, sustained off resonance 

irradiation (SORI) is a special type of CAD experiment. In this application, the rf 

frequency is slightly off from the ICR frequency of the parent ions so that the phase of 

ICR and rf differs slightly (~1 kHz). This partial phase matching is referred to as off-

resonance. Because of off-resonance between the ICR and the applied rf, the parent ions 

are accelerated only temporarily even though rf is continuously applied (Figure 11). If the  



  

Figure 11. Conceptual waveforms of on and off resonance ion accelerations.  
(In (A) and (C), blue line represents Rf and red line represents ICR.) (A) On-resonance 
acceleration. In this case, the frequencies of Rf and ICR are the same. (B) ICR in on-
resonance acceleration. Addition of Rf and ICR waveforms in A shows that the ions are 
intensely accelerated throughout the period of Rf application. (C) Off-resonance 
acceleration In this case, the frequency of Rf is slightly lower than that of ICR. (D) ICR 
in Off-resonance acceleration. Addition of waveforms in C shows that the ions are 
intensely accelerated only in fractions of the period of Rf application.     
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ions were accelerated continuously, they would keep moving outward and eventually hit 

the wall of the analyzer. However, since the ions are accelerated only temporally, their 

outward movement stops whenever the phase of the applied rf does not match the ICR 

motion. When the phase of the applied rf is 180˚ off from the phase of ICR, ions are 

decelerated. Furthermore, while not being accelerated, the ions experience collisions with 

the gas molecules, which can cause them to lose energy or fragment. As a result of the 

deceleraton and energy loss, their ICR radius decreases, and the ions relax back to the 

center of the analyzer cell. Generally, ions are more efficiently confined in the analyzer 

cell when they are close to the center. In this way, the application of slightly off 

resonance rf minimizes potential loss of unfragmented parent ions during the collision 

process. After the collision process, all the ions in the mass analyzer are re-accelerated 

for detection as described in the previous section.  

In summary, the ion acceleration processes takes place multiple times during 

SORI-CAD. The amplitudes and frequencies of rf in these accelerations are different, and 

they are designed for different processes namely ion isolation, ion-gas collision, and ion 

detection. 

  

Experimental procedure for mass spectrometric analysis of protein and peptides  

employed in this study 

ESI-FTICR-MS 

All samples were desalted with C18 reverse phase ZipTips (Millipore, Bedford, MA) 

prior to MS analysis. For positive ion analysis, samples were prepared in a 50:50 mixture 
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of water and acetonitrile containing 0.1%(v/v) acetic acid. For negative ion analysis 

samples were prepared in 40:60 water to acetonitrile mixture containing 20mM 

piperidine. All mass spectra were acquired with an IonSpec (Lake Forest, CA) 9.4-Tesla 

HiRes electrospray Fourier transform ion cyclotron resonance mass spectrometer (ESI-

FTICR-MS), as described previously for the Sml1-histag species (Uchiki, Hettich et al. 

2002). The MS experiment consisted of the four following steps: (1) ions are generated in 

the electrospray source, (2) the ions are accumulated in an external hexapole ion guide, 

(3) the ions are transferred into the high vacuum region with a quadrupole lens system, 

and (4) the ions are detected in the cylindrical analyzer cell of the mass spectrometer. To 

enhance ion trapping, nitrogen gas was pulsed into the mass analyzer to cool the ion 

packet prior to detection. Ions were measured under broadband conditions with 

resolutions ranging from 50,000 – 150,000 (FWHM). External calibration was 

accomplished using the various charge states of bovine ubiquitin. The high-resolution 

mass measurement enables isotopic resolution of multiply charged ions. Thus, the charge 

state of multiply-charged ions can be determined solely by its isotopic spacing (Horn, 

Zubarev et al. 2000). The deconvoluted molecular mass spectra were generated with the 

IonSpec software from the electrospray mass spectra by multiplying the masses of the 

electrospray ions by their respective charge, and then subtracting the masses of the 

protons added.  This "unfolds" the multiply charged ion mass spectrum into a more easily 

interpreted molecular mass spectrum.  Errors in the mass measurement for the multiply 

charged ions were scaled proportional to the charge in the calculation of the molecular 

masses in the deconvoluted mass spectra.  By calibrating on the calculated values of the 
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most abundant isotopic peaks of six different charge states (7+ to 12+) of bovine ubiquitin, 

the deconvoluted molecular mass spectrum yielded a measured molecular mass for 

ubiquitin that was within 0.030 Da of the calculated value. 

For the SORI-CAD experiments, a pulsed valve was used to admit the nitrogen 

collision gas into the high vacuum region to a maximum pressure of about 5 x 10-6 Torr 

during the ion excitation step.  A base pressure of about 1 x 10-9 Torr was re-established 

prior to ion detection. 

 

Analysis of protein phosphorylation by mass spectrometry 

In this section, the use of mass spectrometry for analysis of phosphoproteins or 

phosphopeptides will be discussed. Although several highly effective techniques for 

isolation, detection, and mass spectrometric fragmentation of phosphopeptide/protein 

have been developed in the field, the discussion will be limited to methodologies 

appropriate for FTICR-MS. 

The majority of protein phosphorylation in eukaryotes occurs on the hydroxyl of 

serine, threonine or tyrosine residues (Hunter 1991), and phosphorylation of these 

residues results in mass increase of 79.966Da (in monoisotopic mass). Most of the mass 

spectrometers used today can easily resolve the 80Da mass shift, and the 80Da mass shift 

is often the first observation of phospho-protein/peptide. However, peaks of proteins or 

peptides spaced by 80Da do not always indicate phosphorylation. For example, sulfation 

on the side chain hydroxyl groups of serine, threonine, and tyrosine has been observed 

(Moore 2003; Medzihradszky, Darula et al. 2004), and adds 79.9568 Da (in monoisotopic 
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mass) to these residues. It is also probable that two protein or peptide masses may differ 

by 80 Da. For these reasons, an instrument that can provide high mass resolution such as 

FTICR-MS is useful for distinguishing mass shifts due to phosphorylation and other 

causes. Sometimes, to unambiguously determine that the mass shift of 80 Da is due to 

phosphorylation, a sample containing the corresponding unphosphorylated peptide is 

compared to a sample containing the putative phosphorylated peptide. For example, the 

incubation of phosphoprotein with protein phosphatases such as alkaline phosphatase 

dephosphorylates the phosphoprotein. The direct comparison of two sets of putative 

phosphoprotein samples, one treated and one untreated with a protein phosphatase, is a 

common method for confirming the phosphorylation. This method is especially useful for 

the analysis of proteins phosphorylated in vivo. On the other hand, for in vitro 

phosphorylation analysis, confirmation of the phosphorylation can be accomplished by 

comparison of substrate proteins incubated with active kinase and catalytically inactive 

kinase (or without any kinase if the kinase sample is pure).  

 CAD of phosphopeptides usually generates unique fragment ions. The most 

common CAD fragmentation of phosphopeptides is neutral loss of phosphoric acid (- 

H3PO4 Mr:-98Da) (Figure 12A) from phosphoserine or phosphothreonine and neutral loss 

of phosphate (-HPO3 Mr:-80Da) from phosphotyrosine (Mann, Ong et al. 2002). In 

negative ion analysis, a phosphate ion (-PO3
- m/z:79) is also generated. These 

fragmentation patterns are a strong indication of protein/peptide phosphorylation. 

However, because these types of fragmentations are energetically favored, 



 

Figure 12. CAD of phosphoserine or phosphothreonine.  
(A) (Images were taken from (Syka, Coon et al. 2004).) CAD Fragmentation scheme for 
loss of phosphoric acid from a multiply protonated phosphopeptide. In CAD of peptides 
containing phosphoserine or phosphothreonine residues, loss of phosphoric acid is a 
preferred fragmentation over fragmentation at peptide backbone. (B) Beta elimination of 
phosphoserine or phosphothreonine followed by reaction with sulfhydryl group in 
solution. In the first step, R is hydrogen (H) for phosphor-serine, while R is methyl group 
(CH3) for phosphothreonine. In the presence of strong base such as LiOH, phosphor-
serine or phpsphothreonine undergoes β-elimination and is converted into dehydroalanine 
or dehydroaminobutyric acid. These derivatives react with sulfhydryl group (HS-) at 
acidic or neutral pH.    

 63



 64

fragmentations at the peptide backbone (which provides information for exact location of 

the phosphoacceptor residues) do not occur extensively on phosphopeptides. When 

analyzing phosphoserine or phosphothreonine residues, this problem can be solved by 

chemical derivatizations. For example, in the presence of a strong base such as LiOH, 

both phosphoserine and phosphothreonine undergo β elimination and are converted into 

dehydroalanine and dehydroamino-2-butyric acid (Figure 12B). The β carbon of these 

residues can react with the sulfhydryl group to form a covalent linkage. For example, 

ethanethiol has been used to convert phosphoserine to S-(2-mercaptoethyl) cysteine 

(Meyer, Hoffmann-Posorske et al. 1991). The side chain of S-(2-mercaptoethyl)cysteine 

is not easily fragmented in CAD, and fragmentation on the derivatized peptide mainly 

takes place at the peptide backbone, allowing identification of phosphoacceptor residues 

(Lapko, Jiang et al. 1997; Uchiki, Dice et al. 2004). Similar derivatizations using other 

compounds with sulfhydryl groups have been developed for biotinylation (Adamczyk, 

Gebler et al. 2001; Oda, Nagasu et al. 2001) or specific proteolysis (Knight, Schilling et 

al. 2003) specifically targeting phosphoserine or phosphothreonine. 

A challenge for phosphopeptide analysis is to detect the phosphopeptides from 

mixture of other unphosphorylated peptides. In some cases, only a small fraction of the 

target protein is phosphorylated, making the analysis more difficult. Therefore, prior 

enrichment or isolation of phosphopeptides is necessary in many cases. The most 

common strategy for enrichment of phosphopeptide is immobilized metal affinity 

chromatography (IMAC) using metal ions such as Fe(III), Ga(III) or Al(III). It has been 

reported that phosphate or phosphopeptide binds to these metal ions at low pH and 
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dissociates at high pH or in the presence of competing phosphate groups (Andersson and 

Porath 1986). On the other hand, most of unphosphorylated peptides do not interact with 

these ions, although the carboxylic acid of aspartate and glutamate also binds to these 

metal ions. Esterification of the carboxylic acid eliminates the its binding to IMAC and 

significantly increases purity of phosphopeptides (Ficarro, McCleland et al. 2002). 

 

Enzymatic digestion and Immobilized Metal Affinity Chromatography (IMAC) 

After phosphorylation reactions, the Sml1 sample was dialyzed against 100mM NaCl to 

reduce the ATP concentration to less than 1µM. For tryptic digestion, a sample 

containing approximately 10 µg (83 pmol) of Sml1 was incubated with 0.2 µg of 

sequencing grade trypsin (Promega, Madison, WI) at 37ºC for 10 hours. To quench the 

reaction, acetic acid was added to a final concentration of 0.1% (v/v). For cyanogen 

bromide (CNBr) digestion, a sample containing approximately 10 µg of Sml1 was dried 

using a speed vacuum apparatus. 10 µl of 10 mg/ml CNBr (SIGMA, St Louis, MO) in 

70% (v/v) formic acid was added to the sample and incubated for 24 hours. To quench 

the reaction, 50 µl of water was added, and the sample was dried using a speed vacuum 

apparatus. This step was repeated five times.     

 A 20 µl bed volume of Ga(III)IMAC column with Poros MC resin (PerSeptive 

Biosystems, Framingham, MA) was prepared as described in (Posewitz and Tempst 

1999). The CNBr digested samples were dissolved in 10µl of 10% (v/v) of acetic acid 

and manually loaded to the column pre-equilibrated with 1% (v/v) acetic acid. The 
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column was washed with six bed volumes of 1% (v/v) acetic acid, six bed volumes of a 

mixture consisting of water, acetonitrile, and acetic acid in a 70:30:1 respective ratio, 

followed by six bed volumes of 1% (v/v) acetic acid in water. The bound peptide was 

eluted with three bed volumes of 200 mM sodium phosphate (pH 8.5).    

 

Derivatization of phosphoserine 

The phosphopeptides enriched by Ga(III) IMAC were desalted once with C18 reverse 

phase ZipTip columns (Millipore, Bedford, MA), and the sample volume was reduced to 

less than 5 µl using a speed vacuum apparatus. The phosphoserine residues of the 

peptides were chemically modified to S-ethylcysteine by a β-elimination reaction in the 

presence of ethanethiol as described in (Meyer, Hoffmann-Posorske et al. 1991; Oda, 

Nagasu et al. 2001). Briefly, 50 µl of H2O/4M LiOH/ acetonitrile/ ethanol / ethanethiol 

mixed in a ratio of (5: 14: 5: 5: 2) were added to the sample and incubated in 37ºC for 

one hour. The reaction was quenched by addition of 25 µl of acetic acid. Since Sml1 

contains only one cysteine residue (Cys14), we omitted the oxidation step, which is 

normally employed prior to the derivatization.  

  

Quantitative assay for biochemical activity of Dun1, RNR and Sml1.    

The Dun1 kinase assay 

A 15µl bed volume of the resin-bound GST-Dun1 was mixed with 30µl of the kinase 

reaction mixture (50mM Tris-HCl, 10mM MgCl2, 1mM DTT, 60 to 250µM ATP, 0.06 

µCi/µl (1Ci=37GBq) of [γ-32P]ATP (4500mCi/mmol: MP Biochemicals, Costa Mesa, 
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CA), 0.1 µg/µl (8.3µM monomer) Sml1, pH 7.5) and incubated in 30ºC water bath for 

thirty minutes to two hours. Phosphorylated Sml1 for mass spectrometric analysis was 

prepared in the same method except that [γ-32P] ATP was omitted from the reaction 

mixture. Upon the completion of the reaction, 10µl of 400 to 900mM of cold ATP 

dissolved in the kinase reaction buffer was added and the reaction tubes were placed on 

ice to stop the reaction16. After a brief centrifugation, 30µl of the supernatant was placed 

on 1.7cm2 P81 phosphocellulose filter (Whatman, Maidstone, England), and the filter 

was incubated at room temperature for 5 minutes. Then, the filter was washed with 300ml 

of 10mM phosphoric acid twice for 5 minutes each and then with 15ml of 95% (v/v) 

ethanol for three minutes. Through its basic amino acid residues, Sml1 is bound to the 

phosphocellulose filter, while [γ-32P]ATP is washed off. The radioactivity (count per 

minutes (cpm) in energy channel for P32) that remains on the filter represents 32P 

covalently attached to Sml1, and this was measured by a liquid scintillation counter 

(LS3801: Beckman, Fullerton, CA).  

To determine the molar concentration of radioactivity, 1µl of reaction mixture 

was diluted to 1/100 prior to the reaction and, the radioactivity of 2, 4 and 8µl of the 

diluted reaction mixture was measured. Similarly, total concentration of ATP in the 

reaction mixture was measured based on absorbance at 259nm using an extinction 

coefficient of ε259=14500cm-1M-1. Based on these measurements, radioactivity (cpm) 

 

16 In this method, phosphorylation still takes place after addition of cold ATP. However, incorporation of 
32P to Sml1 is significantly slowed down. Over 30 minutes on ice after addition of 500mM ATP, increase 
of 32P incorporation to Sml1 was indistinguishable from fluctuation of background radioactivity, which is 
100-500cpm.    



 68

                                                

given by 1µl of the reaction mixture and total moles of ATP in 1µl were obtained. The 

ratio of radioactivity (cpm/µl) and moles of ATP (moles/µl) represents specific activity of 

ATP or phosphate (how much radioactivity corresponds to a mole of γ-phosphate, which 

is expressed as cpm/pmol). Similarly, the total amount (moles) of Sml1 in reaction 

mixture applied to phosphocellulose paper was determined based on the initial 

concentration of Sml1 in the reaction mixture and a 30/44.4 dilution17 due to mixing with 

the resin.   

For autoradiography, 10 to 20 µl of the supernatant was mixed with SDS-PAGE 

gel loading buffer (62.5mM Tris-HCl pH 6.8, 2 % SDS, 10 % (v/v) glycerol, 5 % (v/v) β-

mercaptoethanol and 0.025 bromophenol blue), was separated on a 15 % polyacrylamide 

gel, and the gel was dried on cellophane membranes. Cerenkov radiation on the gel was 

detected by an electric autoradiography imager (Instant Imager: A Packard Bioscience 

Company, Ontario, Canada) and exposure of a scientific imaging film (BioMax Light 

film: Kodak, Rochester, NY) to the gel for 10 to 24 hours. 

 

Ribonucleotide reductase (RNR) activity assay and inhibition of RNR by Sml1 

The velocity of CDP reductase activity in steady state kinetics was determined following 

the methods described by Stubbe and co-workers (Ge, J., D. L. Perlstein, et al. 2001) 

except that DTT was used as the reducing agent of RNR. First, 1µM of Rnr1 dimer and 

 

17 According to manufacturer of the glutathione resin (Amersham Biosciences), approximately 96% of the 
bed volume of the resin is occupied with liquid by which the resin is equilibrated. 15µl of resin contains 
14.4µl of buffer C. Mixing 30µl of the reaction mixture causes 30/44.4 dilution of components in the 
reaction mixture.  
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2.5-5µM of Histag Rnr2/Rnr4 dimer were prepared in 50mM Hepes-KOH pH 7.4, 

200mM potassium-acetate, 20mM magnesium-acetate, 20µM FeCl3, 3mM ATP, 20mM 

DTT, and the mixture was incubated in a 30ºC water bath for 3 minutes. In this mixture, 

ATP is an activator of ribonucleotide reductase. 14C labeled CDP (Specific activity = 

2000 to 3000cpm/nmol) was added to a final concentration of 1mM18. Immediately after 

addition of CDP, a 50µl aliquot was taken from the reaction mixture and placed in a 

boiling water bath to quench the reaction. Time point at the first quenching taken as time 

zero. The reaction was continued in the 30ºC water bath, and 50µl aliquots were taken 

every 3 or 4 minutes. A total of 4 to 5 aliquots were taken over 12 to 20 minutes. After 

boiling, the aliquots were centrifuged to sediment precipitated materials. 950µl of 

10.5u/ml Alkaline phosphatase and 400µM deoxycytidine (as carrier), 50mM Tris-HCl 

pH 9.0, 0.1mM Zn-acetate was added to each aliquot, and was incubated at 37ºC for 3 

hours. Alkaline phosphatase digests the reaction product, dCDP, into deoxycytidine, and 

this process is necessary to prevent binding of dCDP to the borate column via its 

phosphate groups. The samples digested by alkaline phosphatase were loaded onto the 

borate column (0.6cm I.D. x 8cm L =2.3cm3). The cis-diol of cytidine binds to a borate 

 

18 Km of CDP reduction by S.cerevisiae RNR has not been determined. Km of CDP reduction by R. typhi 
(murine) RNR is 2µM Kashlan, O. B. and B. S. Cooperman (2003). "Comprehensive model for allosteric 
regulation of mammalian ribonucleotide reductase: refinements and consequences." Biochemistry 42(6): 
1696-706.. Assuming that Km of S.cerevisiae and R. typhi enzyme is similar, 1mM of CDP concentration 
was chosen to be saturating concentration of yeast RNR. Although this is not ideal method to choose CDP 
concentration, this concentration has been chosen by two groups (JoAnn Stubbe’s and Lars Thelanders’ 
groups) that have reported S.cerevisiae RNR activity (Nguyen, H. H., J. Ge, et al. (1999). "Purification of 
ribonucleotide reductase subunits Y1, Y2, Y3, and Y4 from yeast: Y4 plays a key role in diiron cluster 
assembly." Proc Natl Acad Sci U S A 96(22): 12339-44, Chabes, A., V. Domkin, et al. (2000). "Yeast 
ribonucleotide reductase has a heterodimeric iron-radical-containing subunit." Proc Natl Acad Sci U S A 
97(6): 2474-9. 
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ion forming a cyclic ester (Kim, Faull et al. 2004). Therefore, un-reacted substrate 

derivatives are retained on the column. On the other hand, the product derivative, 

deoxycytidine, does not interact with borate and passes through the column freely. The 

column was washed with an additional 8ml of deionized water. All the flow-through 

during loading and washing was collected in a tube. After the flow-through was mixed 

thoroughly, 3 ml of this was taken into 15ml of an aqueous scintillation cocktail and 

radioactivity of the sample (counts per minutes (cpm) in energy channel of 110-610) was 

measured by liquid scintillation counter (LS3801: Beckman, Fullerton, CA). Moles of 

deoxycytidine present in the sample were determined based on the radioactivity. A plot of 

time (min) as independent variable and amount of dCDP (nmol) as dependent variable 

was made, and linear regression was performed. The slope of the curve represents 

velocity of the reaction (nmol dCDP formed/min), which is defined as activity. Based on 

the amount of Rnr1 present in each aliquot (10µg), specific activity (nmol dCDP/min/mg 

Rnr1) was also determined. (See appendix for a sample calculation). 

 The ability of Sml1 to inhibit RNR was measured by performing the RNR activity 

assay in the presence of 1.3 to 17µM Sml1 monomer. At the same time (using the same 

batch of RNR), an RNR activity assay was performed without Sml1. The ratio of RNR 

activity in the presence and in the absence of Sml1 was taken as the relative degree of 

RNR inhibition.  
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Preparation of materials for RNR activity assay 

Preparation of borate column 

200ml of anion exchange beads (AG-X8 50-100 mesh: BioRad, Hercules, CA) was 

packed in a column (2.5cm I.D. x 75cm L), and 10 column volumes of 1N NaOH was 

passed through the column to replace Cl- on the beads to OH-. After washing with 10 

column volumes of deionized water, the beads were equilibrated with saturated potassium 

tetraborate (~0.6M) and incubated at room temperature overnight to load the borate ion. 

After a final wash with 10 column volumes of deionized water, the beads were stored in 

20% (v/v) ethanol. To make the column for the activity assay of ribonucleotide reductase, 

bottom of a Pasteur pipette (0.6cm I.D.) was plugged with a small piece of glass wool, 

and then approximately 2.3ml of the borate resin was packed by gravity.   

 

Preparation of CDP stock 

100µl of 0.05µCi/µl of 14C labeled CDP (50mCi/mmol. Shipped as 0.05µCi/µl in 50% 

ethanol: Moravek Biochemicals, Brea, CA) was lypholized to complete dryness as it is 

shipped in 50% ethanol. Approximately 30mM of non-radio labeled CDP (Sigma-

Aldrich, St Louis, MO) was prepared in 20mM Hepes-KOH pH 7.0. 123 to 185µl of the 

non-radioactive CDP solution was added to the dried 14C labeled CDP and mixed 

thoroughly. 2000 to 3000cpm / nmol of specific activity was expected from this volume 

ratio of the radioactive to the non-radioactive CDP. To accurately determine 

concentration and radioactivity of CDP in the CDP stock, the following procedures were 
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taken. After mixing thoroughly, 1/1000 dilution of the CDP stock was made in 20mM 

Hepes-KOH pH7.0. From the diluted solution, the concentration (mM) of CDP was 

determined based on absorbance at 270nm with an extinction coefficient of 9000 M-1 cm-

1. Similarly, a 1/100 dilution of the CDP solution was made in Hepes-KOH pH 7.0. 2, 4, 

10µl of the diluted CDP stock (1/100 dilution) was mixed with aqueous scintillation 

cocktail and their radioactivity was measured. A plot of the volume as independent 

variable and cpm as dependent variable was created, and linear regression was performed 

on the plot. The slope of the curve represented concentration of radioactivity (cpm /µl) of 

the diluted CDP stock. This value was multiplied by 100 to obtain concentration of 

radioactivity in the undiluted CDP stock. Based on concentrations of CDP and 

radioactivity determined by the procedures above, specific activity (cpm/nmol) of the 

CDP stock was determined. (See appendix for sample calculation). 

 

Other techniques 

Fluorescence based method to monitor the Sml1-Rnr1 interactions 

Conjugation of IANBD fluorescence probe to Sml1 

Sml1 or its variants were prepared in the method described above except that PBS was 

used as running buffer for Superdex75 gel filtration chromatography. Sml1 concentration 

was determined using the Coomassie Plus Protein Assay kit (PIERCE, Rockford, IL) 

using a BSA standard supplied with the assay kit. The Sml1 concentration was kept at 

about 0.1 to 0.2mg/ml (8.3~16.6µM monomer) before conjugating the fluorescence 

probe. Throughout the procedures involving N,N'-dimethyl-N-(iodoacetyl)-N'-(7-
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nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD-amide: Molecular Probe, 

Eugene, OR), exposure of the sample to light was minimized by wrapping the sample 

with aluminum foil and working under red light. IANBD-amide was dissolved in 

dimethyl sulfoxide (DMSO) to a final concentration of 5 to 15mM and centrifuged for 10 

minutes at 20,000g at room temperature. A small amount of the solution was diluted by 

1/10000 in methanol, and the concentration of IANBD-amide was determined from the 

diluted sample based on absorbance at 478nm and the extinction coefficient of IANBD-

amide (ε478=25000cm-1M-1). IANBD-amide dissolved in DMSO was added to the Sml1 

solution to at 10 to 15 molar excess of Sml1. Then, 1M Tris(2-carboxyethyl) phosphine 

hydrochloride (TCEP) (pH ~7.0) was added to the mixture of Sml1 and IANBD at 10 

molar excess of IANBD-amide. The mixture of Sml1, IANBD-amide and TCEP was kept 

in the dark and incubated at 4ºC for 12 to 16 hours. After incubation, β-mercaptoethanol 

was added at 15 molar excess of IANBD-amide. In this step the remaining IANBD-amide 

reacts with β-mercaptoethanol. This solution was incubated at 4ºC in the dark for an 

additional 12 to 16 hours. The solution was concentrated to a final volume of 2 to 5 ml by 

using a Centriprep unltrafiltration vessel with YM10 (Millipore Bedford, MA) membrane 

and then applied to Superdex75G gel filtration chromatography using 50mM Hepes-

KOH, 100mM KOH, 5mM MgCl2, 5mM DTT, 5%(v/v) glycerol pH7.0 as the running 

buffer. IANBD conjugated with Sml1 and β-mercaptoethanol was separated on the 

column. Fractions containing Sml1 were further concentrated to 1~3mg/ml by Centriprep 

with a YM10 membrane, divided into aliquots and frozen in liquid nitrogen. The sample 

was wrapped with aluminum foil and kept in –80ºC until they were used. Concentration 
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of IANBD probe in the sample was determined based on absorbance at 478nm with the 

extinction coefficient of 25,000M-1cm-1. The concentration of Sml1 was determined by 

Coomassie Plus Protein Assay kit as described above. The molar ratio of IANBD to Sml1 

was >0.9 demonstrating that over 90% of Sml1 was conjugated with the fluorescence 

probe.  

 IANBD used as a negative control was prepared by incubating 1mM IANBD-

amide in DMSO and 10mM β-mercaptoethanol (BME) in 4°C for 24 hours in the dark. 

After the incubation, the solution was centrifuged at 20,000x g for 10 minutes to 

sediment precipitated materials. The concentration of IANBD conjugated with BME was 

determined based on absorbance at 478nm and the extinction co-efficient of IANBD-

amide (ε478=25000cm-1M-1). This solution was further diluted in 50mM Hepes-KOH, 

100mM KOH, 5mM MgCl2, 5mM DTT, 5%(v/v) glycerol (pH7.0) and stored in -20°C. 

The sample aliquots were wrapped with aluminum foil until being used. (The negative 

control IANBD will be called IANBD-BME in the following section).  

Fluorescence spectroscopy to monitor the Sml1-Rnr1 interactions 

5µM of Wild type or C14S/S60C Sml1 monomer conjugated with IANBD-amide 

(IANBD-Sml1 or IANBD-S60C Sml1) was prepared in 50mM Hepes-KOH, 100mM 

KOH, 5mM MgCl2, 5mM DTT, 5%(v/v) glycerol (pH7.0). In a separate aliquot, a 

mixture of 5µM IANBD-S60C Sml1 and 30µM wild type Rnr1 monomer was prepared. 

100µl of 5µM IANBD-S60C Sml1 was placed in a quartz cuvette (3 x 3 x 20mm) and 

emission scan was performed for 1 second/nm at an excitation wavelength of 478nm. The 

slit width was adjusted to give an emission intensity of 150 to 200 (arbitrary units). 50µl 
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of Rnr1/IANBD-Sml1 mixture (30µM wild type Rnr1 monomer, 5µM IANBD-Sml1 

monomer) or Rnr1/IANBD-S60C Sml1 mixture (30µM wild type Rnr1 monomer, 5µM 

IANBD-S60C Sml1 monomer) were added to the cuvette. After mixing the solution 

thoroughly by pipette, the same emission scan was performed without changing the slit 

width. 

Quantitative measurement of Sml1-Rnr1 interactions by fluorescence spectroscopy 

5µM of C14S/S60C Sml1 monomer conjugated with IANBD-amide (IANBD-S60C 

Sml1) was prepared in 50mM Hepes-KOH, 100mM KOH, 5mM MgCl2, 5mM DTT, 

5%(v/v) glycerol (pH7.0). In a separate aliquot, a mixture of 5µM IANBD-S60C Sml1 

monomer and 30µM wild type Rnr1 monomer was prepared in the same buffer (Sml1 / 

Rnr1 mixture). 100µl of 5µM IANBD-S60C Sml1 monomer was placed in a quartz 

cuvette (3 x 3 x 20mm) and its fluorescent intensity was measured for 1 second at an 

excitation wavelength of 478nm and an emission wavelength of 541nm using the 

fluorometer (LS50B: Perkin Elmer, Wellesley, MA). The slit width was adjusted to 

obtain an emission intensity of 150 to 200 (arbitrary units). Then, the sample was titrated 

with the Sml1 / Rnr1 mixture at 3µl increments. After each addition of the Sml1 / Rnr1 

mixture, the solution in the cuvette was mixed by aspirating and dispensing the solution 

by a pipette. As a negative control, the same procedure was performed with 5µM 

IANBD-BME and a mixture of 5µM IANBD-BME and 30µM Rnr1 monomer. Each 

measurement was repeated three times. The fluorescent intensity at each titration point 

was manually recorded and analyzed by GraphPad Prism software (GraphPad, San 



Diego, CA). First, the average intensity of the negative controls at each titration point 

was calculated. Second, the average of the negative control was subtracted from the 

intensities given by the corresponding titration points in IANBD-C14S/S60C Sml1. (This 

value will be called delta F in the following description). Third, the total concentration of 

Rnr1 as the independent variable was plotted against delta F as the dependent variable. 

Fourth, by non-linear least square regression, the data were fitted to the equation below 

that expresses one-to-one binding model of the Sml1-Rnr1 interactions:  

 

]1[2
]1][1[4)]1[]1([]1[]1[

max
2

Sml
RnrSmlkRnrSmlKRnrSml

DeltaFDeltaF dd −++−++
=  

(Delta Fmax : Delta F where Sml1 is saturated with Rnr1. Kd: dissociation constant of the 

Sml1-Rnr1 interactions. [Sml1]: total concentration of Sml1. [Rnr1]: total concentration 

of Rnr1).  

 

The model equation is based on these assumptions:  

1. The stoichiometry of Sml1 and Rnr1 in the complex is one to one  

2. The change in the fluorescence intensity is proportional to the fraction of Sml1 

bound to Rnr1.  

 

Estimation of size of proteins by gel filtration chromatography  
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Fractions corresponding to 24 - 30 kDa (corresponding to intact Sml1) were pooled and 

concentrated to 2 mg/ml by stirred ultrafiltration with a membrane of MWCO 10,000 

(Millipore, Bedford, MA). The protein concentration was determined by A595 of the 
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protein sample reacted with Commassie® Plus Protein Assay Reagent (Rockford, IL) 

using bovine serum albumin (BSA) as a standard.  Based on image optical density (IOD) 

of an SDS-PAGE gel, we estimated that more than 85% of protein in the sample was 

intact Sml1.  A total of 500µl (3mg) of the protein sample was applied to a gel filtration 

column, Superose 12 (HR10-30; Amersham Biosciences, Uppsala, Sweden) on a 

Pharmacia fast protein liquid chromatograph.  Elution was accomplished with 50mM 

Tris-HCl pH 8.0, 100mM NaCl, 1mM EDTA and 5mM DTT (or in the absence of DTT)  

at a flow rate of 1ml/min. To estimate the apparent molecular mass of Sml1, BSA (66 

kDa), Ovalbumin (43 kDa), Carbonic anhydrase (29 kDa) and Ribonuclease A (13.7 

kDa) were used as molecular weight standards, and blue dextran was used to determine 

void volume. Based on elution volume of the standards, Kav [= (elution volume –void 

volume) / (bed volume – void volume) ] was determined. A standard curve was created 

by plotting log10[Molecular weight] as the independent variable on the x-axis against Kav 

as dependent variable on the y axis and performing a least square linear regression. The 

chromatography run was repeated three times for both the molecular weight standards 

and Sml1. The standard deviation of the retention times for both Sml1 and the protein 

standards were less than one second.      
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Chapter 3. Characterization of Sml1-histag protein by ESI-

FTICR-MS (Uchiki, Gupta et al. 2002) 

Introduction 

The major goal of study presented in this chapter was to investigate integrity and 

homogeneity of Sml1-histag protein expressed and purified for crystallization. A 

recombinant Sml1 which is conjugated with 6xHis tag at its C-terminus (Sml1-histag) 

was characterized by mass spectrometry. Although several trials of crystallization were 

not successful, the mass spectrometric analysis of Sml1-histag revealed some interesting 

properties of this protein. The methods described in this chapter were mainly taken from 

the Results and Discussion section of the article we published in 2002 (Uchiki, Gupta et 

al. 2002), which describes the disulfide-mediated dimer and Na+/K+ adducts of Sml1-

histag. (Experimental procedures used in this study are described in Chapter 2.) 

 

Results and discussion 

Determination of the molecular mass for the Sml1-histag monomer 

The predicted amino acid sequence of the recombinant Sml1-histag protein, based on the 

DNA construct used in the E. coli expression vector, is illustrated in Figure 13.  This 

protein would have an average molecular mass of 13,376.87 Da.   This protein is identical 

to the wild type Sml1, except that this histag version has 4 extra amino acids at the N-

terminus and 10 extra amino acids at the C-terminus (as noted by the bold, underlined 

regions in Figure 13) that come from the bacterial expression vector.  SDS-PAGE was 

conducted under reducing conditions (i.e. beta-mercaptoethanol present) on the purified  
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1     10      20    30 
MGGSMQNSQDYFYAQNRCQQQQAPSTLRTV 
31   40    50    60 
TMAEFRRVPLPPMAEVPMLSTQNSMGSSAS 
61   70    80    90  
ASASSLEMWEKDLEERLNSIDHDMNNNKFG 
91   100   110  118 
SGELKSMFNQGKVEEMDFGSRSHHHHHH  
 
Mr = 13376.87 Da 
 
Figure 13. Predicted sequence of recombinant Sml1-histag  
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Sml1-histag protein, and verified that it had the expected molecular mass of about 14kDa, 

as shown in lane 2 of Figure 14.  The histag purification procedure was successful in 

isolating this protein to a purity of about 80% (based on the IOD calculation described in 

Chapter 2).  Although other faint bands were noted on the gel, no attempt was made to 

determine the identities of these minor species in the sample. 

The positive ion ESI-FTICR mass spectrum of the Sml1-histag protein sample 

(i.e. the same sample that was used to generate the data in Lane 2 of Figure 14) is shown 

in Figure 15A, and reveals multiply-charged molecular ions ranging from nominal m/z 

889 (15+ ions) to nominal m/z 1333 (10+ ions).  Because the mass measurement 

resolution (FWHM) in Figure 15A is about 50,000, it is possible to resolve not only 

different protein species, but also the natural isotopic distributions within individual 

species.  By measuring the spacing between adjacent isotopic peaks, it is possible to 

determine directly the charge state of any given ion.  Figure 15A reveals the presence of 

several protein species in this sample, as indicated by the multitude of ions present at 

each charge state.  This is illustrated in the inset of Figure 15A for the 13+ molecular ions 

in the expanded m/z 1015-1040 region. 

 Deconvolution of the multiply-charged electrospray mass spectra of Figure 15A 

can be used to present the data in a more easily interpreted molecular mass spectrum, as 

shown in Figure 15B.  Evident in this figure are several protein species with average 

molecular masses ranging from 13,266 to 13,391 Da (the presence of naturally-occurring 

isotopes such as 13C provides an envelope for each molecular species).  The appearance 

of multiple peaks differing by a few tens of Da around the molecular mass region  



 

Figure 14. SDS-PAGE of recombinant Sml1-histag protein after purification, as 
analyzed with reducing and non-reducing 15% polyacylamide gels.  

15 µg of protein was loaded onto lanes 2 and 3.  Lane 1- Molecular weight marker (kDa),  
Lane 2 –Ni column eluate prepared with 35mM β-meracaptoethanol,  Lane 3- Ni column 
eluate prepared without β-meracaptoethanol. 
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Figure 15. Positive ion ESI-FTICR mass spectrum of purified Sml1-histag.  
(A) electrospray mass spectrum revealing multiply-charged molecular ions, with inset 
showing the multiple components at a single charge state. (B) Deconvoluted molecular 
mass spectrum illustrating the presence of several distinct species in this sample. 
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suggests the possibility of salt contamination (i.e. sodium and/or potassium adduction)  

in the protein sample; however, note that most of these species are lower in mass than 

what would be expected for alkali metal ion attachment to the protein expected from 

Figure 13.  There is virtually no ion signal detected at the expected molecular mass of 

13,377 Da.  The two most abundant species in Figure 15B were measured at average Mr 

= 13292 Da and Mr = 13321 Da.   The appearance of multiple components with similar 

molecular masses in this “purified” sample suggests that the recombinant Sml1-histag 

protein may have sequence variants, chemical modifications (such as alkali metal 

adduction), or post-translational modifications, although the latter is less likely as this 

protein was expressed in the cytoplasm of a bacterial system.  These multiple species are 

too close in mass to be resolved on the SDS-PAGE shown in Figure 14, which shows 

primarily one band at approximately the expected molecular mass.  This illustrates the 

power of mass spectrometry to provide high-resolution mass measurement and 

differentiation of proteins and their variants in mixtures.  The nature of the molecular 

mass discrepancy measured in Figure 15B relative to the expected value from Figure 13 

was further investigated by proteolytic digestions combined with mass spectrometry as 

well as collisional dissociation experiments to resolve the identity(s) of the expressed 

Sml1-histag protein. 

 

Verification of the sequence for the Sml1-histag monomer 

Proteolytic digestions produce a variety of characteristic peptides for a protein and can be 

used to determine its amino acid sequence.  To further investigate the purified 
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recombinant Sml1-histag, the same sample used to generate Figure 15 was subjected to 

digestion employing either trypsin or Glu-C proteases.  Trypsin digestion of the Sml1-

histag protein sample yielded a variety of peptides with molecular masses in the range of 

700-4500 Da, as summarized in Table 2.  The masses of these tryptic peptides can be 

used to search protein databases of sequenced organisms to verify protein identity with 

no further structural information.  For example, the ten peptides listed in Table 2 whose 

masses were measured with ESI-FTICR-MS were used to search the NCBI database for 

proteins of eukaryotes, bacteria and virus19.  For this search, the peptide monoisotopic 

masses (with a tolerance of 0.05 Da) and a maximum of two missed cuts by the trypsin 

protease were the specified inputs.  The most probable protein “identified” with a rank=1, 

a probability of 1.0, and sequence coverage of 71% was the 11.8 kDa Sml1 protein from 

saccharomyces cerevisiae (yeast).  For this search, 7 of the 10 peptides corresponded to 

within 0.05 Da to peptides expected from the trypsin digest of wild-type Sml1.  The other 

three peptides (Mr = 1865, 1068, and 1861 Da) did not match any expected tryptic 

peptides from the wild-type Sml1, as might be expected since these three peptides are 

from the N-terminal and C-terminal regions of the recombinant protein that are known to 

be different from the wild type species.  Note that the protein database search correctly 

(and with high confidence) indicated that the recombinant protein was closely related to 

the wild-type Sml1 species.  The second protein “hit” from the database search was lectin 

– furze with a molecular mass of 3.72 kDa, which had a probability well below 0.01 and  

 

19 Typtic peptides were used to search the NCBi database with the ProFound program available at 
http://prowl1.rockefeller.edu. NCBI database records proteins from total 23 species representing from 
eukaryotes, bacteria and virus.  
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Table 2. Peptides generated by trypsin digest of Sml1-histag protein 

             
Measured  mass (Da)    Residues        Calculated mass** (Da)  Mass Diff. (Da) Sequence Tag*** 
1864.780     1-16  1864.779  0.001  NSQDYFY 

1260 (by MALDI-MS)    17-27 1258.608  1.392 

953.463     28-35 953.464  0.001 

3705.765     36-70 3705.749  0.016 

4347.999     36-75 4348.046  0.047  STQNSMG 

1413.646     76-87 1413.630  0.016 

736.383     88-94 736.375  0.008  ELK 

2132.007     76-94 2131.995  0.012  MNNN 

810.373     95-101 810.369  0.004 

1068.468     102-110 1068.454  0.014 

1860.809     95-110 1860.813  0.004             VEEMDFGSR       

(927) – not observed    111-117 927.396        
*  Monoisotopic masses. 
** Expected tryptic peptides based on Sml1-histag sequence shown in Figure 13. 
(without the N-terminus methionine) 
*** Sequence tags identified from MS/MS of the selected peptides. 
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matched only 3 of the 10 peptides.  By including only the six most abundant tryptic 

peptides from Table 2 (nominal m/z 953, 3706, 1414, 2132, 810, and 1068) to the 

database search, the highest rank protein still found was Sml1 (rank = 1, probability of 

1.0).  In this case, 5 of the 6 peptides matched exactly. 

Collisional dissociation methods were employed to examine the fragmentation of 

many of the digest peptides from Table 2, and provided amino acid sequence tags in 

several cases that could be used to confirm the identity of the original protein, as well as 

to orient the peptide fragment into the correct position from the original protein.  The use 

of sequence tags to identify proteins was pioneered by (Mann and Wilm 1994) as an 

alternative to using only the tryptic peptide masses, and can be used for peptides as well 

as intact proteins (Mortz, O'Connor et al. 1996). The collisional dissociation experiments 

yield detailed sequence information, which is particularly important for the unmatched 

peptides that are not assignable directly from the database.  For example, the “undefined” 

Sml1 peptide at nominal Mr = 1865 Da (i.e. m/z 9332+ in the electrospray mass spectrum) 

was fragmented selectively with collisional dissociation.  This experiment, which was 

conducted entirely inside the analyzer cell of the FTICR instrument, generated abundant 

y-type fragment ions (cleavage of amide bond between two amino acids, with the charge 

retained on C-terminus (Roepstorff and Fohlman 1984; Biemann 1988), and less 

abundant b-type fragment ions (charge retained on N-terminus) from this peptide.  

Inspection of the mass differences between adjacent y-type ions yielded an amino acid 

sequence tag of NSQDYFY, as illustrated in Figure 16.  Because these fragment ions 

could be measured so precisely, it was possible to identify the amino acids of the  



 

Figure 16. Positive ion collisional dissociation (SORI-CAD) ESI-FTICR mass 
spectrum of the Mr = 1865 Da (i.e. m/z 9332+) tryptic peptide.  
The abundant y-type fragment ions reveal an amino acid sequence tag of NSQDYFY in 
this peptide. 
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 sequence tag to high resolution as well (i.e. less than 2 millimass units), as illustrated in 

Table 3.  This allowed unambiguous identification and differentiation of not only 

asparagine (N) from aspartic acid (D), but also resolution of glutamine (Q) from lysine 

(K), which differ by only 0.0364 Da.  Thus, the high-resolution ESI-FTICR-MS 

measurement unambiguously revealed that the third amino acid in this sequence tag was 

glutamine (Q), and not lysine (K). 

Searching the NCBI protein database against all taxa with this NSQDYFY 

sequence tag revealed only one known possibility for this sequence; the 11.8 kDa Sml1 

protein from Saccharomyces cerevisiae.  This sequence tag occurs in the N-terminal 

region (residues 3-9) of the wild type protein.  The collisional dissociation data and the 

sequence tag identification from the protein database indicated that this 1865 Da peptide 

was located at the N-terminus of the Sml1-histag protein, and would correspond to 

residues 1-16.  Accurate mass measurement and collisional dissociation data verified that 

the expected N-terminal methionine residue was absent from the Sml1-histag protein.  

Likewise, collisional dissociation of the nominal Mr = 4348 Da peptide (i.e. m/z 10884+) 

revealed a sequence tag of STQNSMG.  Searching the protein database with this 

sequence tag verified that this peptide also corresponded only to the yeast Sml1 protein, 

and was located in the interior region (residues 36-70).  By identifying the peptide 

fragments and orienting them in the correct order, more than 94% of the sequence of the 

Sml1-histag protein could be verified. The small C-terminal fragment peptide (residues 

111-117) was not observed, and may have been lost in the sample clean-up step.  The 

peptide fragment corresponding to residues 17-27 was also absent from the ESI-FTICR 
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Table 3. Fragment ions from SORI-CAD of m/z 9332+ (1865 Da) peptide from 
trypsin digest 

             
Measured Fragment   Calculated Mass  Sequence 
Mass (Da) Identity     Mass (Da) Diff. (Da) Identity            (∆ m/z between y ions)   
488.2505     y4  488.2501 0.0004  (AQNR)a 

 
651.3134     y5 651.3134 0.000b  m/z 488 + Y (163.0629 Da meas.) 
         (163.0633 Da calc.) 
 
798.3816     y6 798.3817 0.0001  m/z 651 + F (147.0682 Da meas.) 
         (147.0684 Da calc.) 
 
961.4440     y7 961.4449 0.0009  m/z 798 + Y (163.0624 Da meas.) 
         (163.0633 Da calc.) 
 
1076.4715     y8 1076.4718 0.0003  m/z 961 + D (115.0275 Da meas.) 
         (115.0269 Da calc.) 
 
1204.5279     y9 1204.5304 0.0025  m/z 1076 + Q (128.0564 Da meas.) 
         (128.0586 Da calc.) 
 
1291.5624     y10 1291.5624 0.000b  m/z 1205 + S (87.0345 Da meas.) 
         (87.0320 Da calc.) 
 
1405.6034     y11 1405.6052 0.0018  m/z 1292 + N (114.0410 Da meas.) 
         (114.0429 Da calc.) 

  
 Sequence Tag Identified NSQDYFY 

             

a  Only total mass rather than the sequence is determined for this peptide. 
b  These ions were used as internal calibrants for this mass spectrum. 
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mass spectrum, but was identified in a MALDI-TOF experiment on the same digest 

sample.  Table 2 reveals that the masses of the tryptic digest peptides measured in the 

mass spectra correspond within a few millimass units of the expected calculated values 

(as determined from the proposed Sml1-histag sequence of Figure 13, minus the N-

terminal methionine).  Inspection of this table reveals that the digestion was not carried 

out to completion, as evidenced by the appearance of the larger peptides corresponding to 

one or two missed trypsin cuts.  By employing both accurate mass measurements and 

collisional dissociation experiments, it was possible to obtain unambiguous information 

about protein sequence, including several informative sequence tags, even with 

incomplete digestion.  More importantly, this data provided unambiguous information 

about the regions in the Sml1-histag protein that had been modified relative to the wild 

type species. 

The Sml1-histag protein was digested with Glu-C to attempt to resolve the 

ambiguity with the C-terminal end from the trypsin data.  This Glu-C digest also revealed 

a variety of peptide fragments, as listed in Table 4, whose measured masses agreed very 

well with the calculated values.  In this case the N-terminal peptide was not observed, but 

the C-terminal fragment was present.  Thus, the typsin and Glu-C data are 

complementary, and unambiguously resolve the complete sequence of the Sml1-histag 

protein, which corresponds to the sequence proposed in Figure 13 without the N-terminal 

methionine. The absence of the N-terminal methionine residue was not unexpected, even 

though the DNA construct should have generated the sml1-histag protein with this 

residue included.  Many proteins expressed in bacteria have their N-terminal methionines 
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Table 4. Peptides generated by glu-C digest of Sml1-histag protein 
           

Measured Mass*(Da)  Residues Calculated Mass* (Da)   Mass Diff. 
Not observed in ESI-MS 1-33  3737.660  

3434.608   34-66  3434.662  0.054  

949.417   67-73  949.421  0.004 

1078.468   67-74  1078.464  0.004 

3107.374   67-92  3107.370  0.004 

4498.064   67-104  4498.061  0.003 

2661.239   70-92  2661.208  0.031 

2175.941   74-92  2175.959  0.018 

2046.936   75-92  2046.917  0.019 

1408.711   93-104  1408.701  0.010 

1620.708   105-117 1620.686             0.022 

*  Monoisotopic masses 
** Expected Glu-C peptides based on Sml1-histag sequence shown in Figure 13. 
(without the N-terminus methionine) 
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removed, as this is the most common post-translational modification in E. coli (Gonzales 

and Robert-Baudouy 1996).  The sequence tags obtained from the collisional dissociation 

experiments verify that this is a protein related closely to the wild-type yeast Sml1.  

There are seventeen basic amino acids (K,R,H) in this protein.  The electrospray 

mass spectra (Figure 15B) reveal that 10–15 protons are added to this protein, indicating 

that almost all of the basic residues (and the N-terminus amino acid glycine) are 

protonated.  The wild type sml1-p protein is known to have two alpha-helical regions, 

which would correspond to residues 8-18 and 65-84 in the Sml1-histag protein sequence 

shown in Figure 13.  In general, NMR results suggest that the three-dimensional structure 

of Sml1-WT is best characterized as a loosely-folded tertiary structure in which the two 

main alpha helices are oriented in an antiparallel fashion (Zhao, Muller et al. 1998).  This 

loosely-folded, relatively open structure may be reflected in the observation of 

protonation of almost every basic amino acid residue of the protein in the ESI-MS 

experiment. 

 

Identification of multiple molecular species for the Sml1-histag monomer 

The Sml1-histag protein sequence determined from the digest data yielded an average 

molecular mass of 13245.7 Da.  This value is lower than any of the molecular values 

measured in Figure 15B.  The digestion information in Tables 2 and 4 revealed the 

detailed sequence of the Sml1-histag protein, and indicated that, with the exception of the 

missing N-terminal methionine, no other amino acid variants relative to Figure 13 were 

observed.  Collisional dissociation experiments provide a means of directly analyzing the 
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intact protein, and will be discussed below to resolve the discrepancy of the Sml1-histag 

protein mass suggested by the digestion experiments and the intact molecular mass 

measured by the ESI-MS experiment in Figure 15. 

The gas phase fragmentation of the Sml1-histag protein was examined with 

collisional dissociation in the hexapole ion guide.  This experiment was conducted by 

trapping all of the protein ions in the hexapole ion guide for 3100 msec. to induce 

fragmentation.  The ESI-mass spectra generated under these conditions revealed 

substantial fragmentation, as evidenced by the appearance of additional ions with lower 

charge states than the intact molecular ions observed in Figure 15A.  Deconvolution of 

the multiply-charged fragment ions, shown in Figure 17, revealed that these species 

correspond to characteristic y-type ions, some of which are identified on the scheme 

shown in the inset of this figure.  Although the fragmentation of this intact protein does 

not reveal the complete amino acid sequence under these experimental conditions, all of 

the most abundant fragment ions observed are completely consistent with the protein 

sequence suggested by the digestion experiments (shown in Figure 17, inset).  In fact, the 

average masses of these fragment ions corresponded to within 0.075 Da of the calculated 

fragment ion masses expected from the proposed sequence.  Note that this collisional 

dissociation technique did not provide for isolation and fragmentation of a single protein 

species, but rather fragmented all of the protein forms present in Figure 15 

simultaneously.  It is interesting that even though a variety of molecular species are 

observed in the Mr = 13,200 – 13,500 Da region of Figure 15B, all the fragment ions 

observed in Figure 17 are consistent with the 



 
 

Figure 17. Positive ion collisional dissociation (extended hexapole accumulation) 
ESI-FTICR mass spectrum of Sml1-histag protein sample.  
Even though all the distinct molecular species observed in Figure 15(B) were dissociated 
simultaneously in this experiment, the deconvoluted mass spectrum reveals fragment ions 
that are all consistent with the sequence determined by the proteolytic digestion 
experiments (inset reveals the identities of representative y-type fragment ions, based on 
the sequence obtained from the digestion).  The bold, underlined regions in the sequence 
highlight the two alpha-helix regions of Sml1 identified by NMR (Zhao, Georgieva et al. 
2000). 
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sequence obtained from the proteolytic digest data.  This lends further support to the 

digestion data that the various protein species observed in Figure 15B are not sequence 

variants, but rather represent closely-related protein species that are slightly altered in 

total molecular mass.   

Collisional dissociation experiments on the intact Sml1-histag proteins were also 

conducted by isolating specific molecular ions inside the FTICR-MS analyzer cell, and 

then inducing collisions with argon as a target gas.  This provided a means of 

interrogating the dissociation of selective parent molecular ions one at a time, rather than 

the all-at-once hexapole CAD experiment.  In general, the fragment ions observed for the 

dissociation of the two most abundant (13+) ions at m/z 1024 (Mr = 13,292 Da) and 1027 

(Mr = 13,321 Da) were similar to those observed for the hexapole dissociation shown in 

Figure 17.  Even though the fragmentation in this case also was not very extensive, every 

fragment ion observed correlated with a y-type ion identified in the inset of Figure 17.  

This provided additional support for the overall proposed sequence. 

The information obtained from the digestion and CAD experiments, along with 

high-resolution mass measurement of the intact molecular species in Figure 15B, suggest 

that the Sml1-histag protein species all consist of the amino acid sequence illustrated in 

the inset of Figure 17, but contain different levels of alkali metal (sodium, potassium) 

adducts.  For example, even though some variation in the relative abundances of the 

molecular species were observed depending on purification and sample handling 

procedures, in general the most abundant molecular species was observed at average 

Mr=13,321 Da, corresponding to (Sml1-histag + 2K – 2H).  The identity of the species at 
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average Mr= 13292 Da is slightly more difficult to determine unambiguously.  This ion 

may correspond primarily to a fragment ion of the Mr = 13,321 Da species (loss of CO), 

although is it not possible to rule out some contribution from sodium-bound sml1-histag 

(Sml1-histag + 2Na – 2H).  The other ions observed in Figure 15B would correspond to 

the molecular Sml1-histag protein with different combinations of sodium and/or 

potassium attached.  The presence of salt in this histag protein is not unexpected, as the 

protein purification step involved the use of 300 mM sodium chloride.  Likewise, the 

potassium may originate in the bacterial expression system, from contaminants in the 

sodium sample, or may be due to sample handling conditions.  It appears that the Sml1-

histag protein binds alkali metals quite strongly.  For example, attempts to desalt this 

protein sample by dialysis against pure water were unsuccessful (i.e. the sodiated and 

potassiated versions were still observed), verifying the strong alkali metal-ion binding 

affinity of this species.  None of the fragment ions, including the abundant y90 fragment 

ion at 10156 Da (which still contains the histidine “tail”) observed in Figure 17, contain 

the alkali metals, indicating that the metal ions are eliminated once the protein 

fragments.20  It is possible that the folded, intact Sml1-histag protein monomer has one or 

more strong metal-binding sites that disappear upon fragmentation of the protein into 

smaller peptides. 

 

20 Mass/charge range monitored in all the mass spectrometric experiments was from 300 to 2500, which 
was well above possible mass/charge of sodium or potassium ion. Therefore, these metal ions could not be 
observed.  
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Evidence for a disulfide-bonded Sml1-histag dimer 

When the expressed Sml1-histag protein sample was analyzed with non-reducing SDS-

PAGE, a band corresponding to about 27 kDa was observed (see lane 3 of Figure 14).  

Because this is approximately twice the molecular mass for the Sml1-histag monomer, it 

was suspected that this protein forms a covalent dimer under non-reducing condition, 

possibly via an intermolecular disulfide bond.  ESI-MS was used to determine the 

identity of this dimeric species. For this particular experiment, Sml1-histag was purified 

in the absence of reducing agent.   

The ESI-FTICR-MS of this dimeric species is shown in Figure 18, revealing 

abundant ions ranging from nominal m/z 1105 (24+) to nominal m/z 914 (29+).  Even 

though these ions appear in the same region of the mass spectrum as the ions of the 

monomer (Figure 15A), the high-resolution capability of the ESI-FTICR-MS is sufficient 

to verify the higher charge states of the ions from the dimeric species.  The amount of 

protonation observed in Figure 18 is approximately twice that observed for the monomer, 

suggesting that this dimer probably does not have a tightly bound higher order structure, 

but rather provides relatively open accessibility for protonation of the basic amino acid 

residues.  The deconvoluted molecular mass spectrum, shown in the inset of Figure 18, 

reveals the presence of an abundant protein at average Mr=26,488 Da, which would 

correspond to the dimer of the expected monomer (Mr = 13245.6 Da) with concomitant 

loss of H2.  The appearance of an abundant Sml1-histag dimer without the ubiquitous 

metal ion adduction observed for the monomer may suggest that the metal ion binding 



 
 

Figure 18. Positive ion ESI-FTICR mass spectrum of recombinant Sml1-histag 
protein purified under non-reducing conditions.  
Multiply-charged molecular ions corresponding to dimeric Sml1-histag are shown.  Inset 
shows deconvoluted molecular mass spectrum illustrating the presence of abundant 
dimeric species in this sample. 
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sites prevalent in the monomer are not retained in the dimer.  No attempt was made to 

comprehensively examine this issue, as the monomer and dimer were purified under 

different experimental conditions.  Based on the metal ion binding in the monomeric 

Sml1-histag, the species at Mr=26,586 Da in Figure 18 inset most likely corresponds to 

addition of multiple alkali metals (i.e. dimer + 2K + Na – 3H).  These results suggest the 

presence of a single disulfide bond in the Sml1-histag dimer.  Since the Sml1-histag 

protein monomer contains one cysteine residue at position 17 (see Figure 17, inset), it is 

likely that a disulfide bond might have formed between the cysteines of two monomers 

and produced a stable dimeric species.  The application of more energetic electrospray 

ionization conditions (i.e. higher voltages in the ES source) and the addition of a higher 

amount of organic solvent (75% methanol: 25% water) did not diminish the amount of 

dimeric protein species observed, verifying that the dimers were strongly bound (as 

would be the case for a covalently-linked disulfide-bonded species). 

Collisional dissociation of this dimer was undertaken to probe the fragmentation 

products in order to further verify the suspected structure of this species.  This 

experiment was accomplished by trapping the dimer molecular ions in the hexapole 

accumulation region for times ranging from 1 sec. to 2.5 sec. (longer accumulation times 

result in more extensive fragmentation).  Trapping the electrosprayed ions in the 

hexapole ion guide for times less than 700 msec. did not generate any appreciable 

fragmentation, but rather revealed mass spectra that were very similar to that shown in 

Figure 18.  Increasing the hexapole accumulation time to 1 sec. revealed not only the 

molecular species observed in Figure 18, but also an abundant fragment ion at m/z 8130.   
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This is a y72 fragment ion, generated by cleaving the protein between residues 45 (valine) 

and 46 (proline), and corresponds to a peptide consisting of residues 46-117 of the 

original protein (see Figure 19, inset).  Extensive fragmentation of the dimeric Sml1-

histag protein was observed with a hexapole accumulation time of 1.9 sec.  These 

fragment ions have a wide range of charge states, and thus require high-resolution mass 

measurement to identify and resolve unambiguously their identities.  The deconvoluted 

mass spectrum (Figure 19) reveals a variety of characteristic fragment ions that range 

from y72 at m/z 8130 to y11 at m/z 1375 (refer to Figure 19 for identities).   Closer 

inspection of the m/z 6400 – 7000 region reveals fragment ions that identify an amino 

acid sequence tag of ASASAS, as illustrated in the inset of Figure 19, which corresponds 

to residues 58-63 from the sequence proposed in Figure 17.  In general, the fragmentation 

of the dimeric Sml1-histag protein reveals abundant y-type fragment ions from the C-

terminal regions of the dimer, with virtually no fragment ions originating from the N-

terminal section.  While the presence of the disulfide bond at position 17 clearly reduces 

fragmentation in this region, the absence of dissociation on the N-terminal side of this 

bond suggests that there may be higher order structure (such as an interaction between the 

two suspected alpha-helices at residues 7-17 in each monomer) in this dimer which 

reduces fragmentation in the N-terminal region.  The two C-terminal “tails” of the dimer 

may have a relatively open structure, as evidenced by the ease of fragmenting this region. 

Trypsin digestion under non-reducing conditions of the Sm1lp-histag dimer was 

undertaken to confirm the presence of the disulfide bond.  ESI-MS of this digest reveals 

similar peptide fragments as those observed for the monomeric species.   Accurate mass 



 
Figure 19. Positive ion collisional dissociation (extended hexapole accumulation) 
ESI-FTICR mass spectrum of Sml1-histag protein sample from Figure 18.  
This decovoluted mass spectrum reveals fragment ions which are consistent with the 
protein sequence shown in Figure 17.  Expansion of the m/z 6400-8400 region illustrates 
an amino acid sequence tag of ASASAS obtained from these y-type fragment ions. 
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measurement of the peptide fragments from the dimeric Sml1-histag yielded values that 

were each within 5 millimass units of the calculated values.  One particular peptide 

fragment, m/z 839.43+ (Mr = 2515.207 Da), was present in the digest of this Sml1-histag 

dimer that was absent in the digest of the monomer, and was of special interest, because it 

would correspond to the fragment containing the disulfide bond, as shown in Figure 20 

(calculated Mr = 2515.216 Da).  Collisional dissociation of this species revealed 

fragmentation supporting a partial amino acid sequence of QQQAPSTLR, 

corresponding to the expected region of residues 19-27 of the original Sml1-histag 

protein proposed in Figure 17, and verified that this was a disulfide-bonded dimer of 

tryptic fragment 17-27.  Reduction of the Sml1-histag dimer protein with DTT prior to 

tryptic digestion, generated identical fragment peptides with the exception that the Mr = 

2515 Da was absent in this case (data not shown). 

The molecular mass measurements, along with the collisional dissociation and 

digestion data, verify that this Sml1-histag dimer consists of two Sml1-histag monomers 

joined by a single disulfide involving the cysteine residues present at position 17 in each 

monomer.  The ease of forming this dimeric species suggests that it is important to keep 

the protein in a reducing environment when purifying the Sml1-histag proteins to avoid 

undesirable formation of the dimeric species. 

 



 

Figure 20. Sml1 peptide containing disulfide bond 
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Summary 

This study demonstrates that recombinant proteins can be characterized at the molecular 

level with mass spectrometry, in particular ESI-FTICR-MS.  The accurate mass 

measurement and ion interrogation capabilities of this technique were used to verify the 

sequence of a recombinant Sml1 protein and verified that the N-terminal methionine had 

been removed from the expressed protein.  Strong alkali metal binding affinity for the 

Sml1 protein was determined from the collisional dissociation data and the molecular 

mass measurements.  The ease of forming disulfide-linked dimeric Sml1 protein species 

under non-reducing conditions also was verified by ESI-FTICR-MS, confirming the C-14 

as the site of disulfide bond attachment between two monomers.  MS results were 

compared with gel electrophoresis data, and revealed the ability of MS to provide high-

resolution identification and characterization of proteins and their variants. 

 

  

 
 

 

 

 

 

 

 

 



 105

Chapter 4: Characterization of Sml1’s oligomerization state 

Introduction 

Based on SDS-PAGE and mass spectrometry, we have previously observed that Sml1-

histag readily forms a homodimer via a disulfide bond between the lone cysteine groups 

of each monomer (Uchiki, Hettich et al. 2002). To further investigate the effect of the 

disulfide linkage on oligomerization of Sml1, a site-directed mutagenesis was performed 

to express a mutant Sml1 protein (C14S Sml1) in which the lone cysteine involved in 

intermolecular disulfide bond (Cys 14) was replaced into serine. 

Previous studies have demonstrated that the site directed mutagenesis of residues 

involved in intermolecular interaction can affect both the oligomeric state and the activity 

of proteins (Cutler, Pielak et al. 1987; Amatayakul-Chantler, Qian et al. 1994; Olsen, 

Ludvigsen et al. 1996; Nickerson and Wong 1997). For example, in cytochrome P450cam, 

substitution of cysteine 334, which forms an intermolecular disulfide bond, to alanine 

eliminates the presence of dimeric species and increases the overall activity of the protein 

(Nickerson and Wong 1997). Similarly site directed mutagenesis of the four glutamic 

acid involved in monomer-monomer interaction in insulin abolishes the dimer and 

hexamer species, resulting the mutant protein suitable for determination of 3D structure 

by NMR.  

A critical component for site directed mutagenesis is the confirmation of the 

mutation, which is usually achieved by DNA sequencing. However, even a recombinant 

protein expressed in a bacterial host such as E. coli can be different from the one 

predicted from the DNA sequence due to N-terminus methione cleavage (Tchelet, Vogel 
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et al. 1997; Ge, Lawhorn et al. 2002; Uchiki, Hettich et al. 2002), formylation and 

acetylation (Bradshaw 1998) and other posttranslational modifications (Krishna and 

Wold 1993; Yan, Caldwell et al. 1999; Yan, Caldwell et al. 1999). In addition, due to 

sequencing errors and automated prediction of open reading frames, one needs to be 

cautious when analyzing protein sequences derived from the DNA sequence (Mann and 

Pandey 2001; Ge, Lawhorn et al. 2002). Therefore, examination of the protein rather than 

DNA sequence is more informative. We analyzed intact molecular masses of wild type 

and C14S Sml1, as well as masses of their tryptic peptides, by ESI-FTICR to verify their 

protein sequence. The high resolution achieved by ESI-FTICR unequivocally verified 

Cys to Ser mutation and also presence of disulfide linked dimer in wild type Sml1. 

Furthermore, we identified a truncated C14S Sml1 obtained during purification of full 

length C14S Sml1.  

The goal of this study was to investigate the types of interactions and regions of 

Sml1 that are responsible for oligomerization. Measuring the size of a protein complex is 

a common approach to determine the stoichiometry of proteins in the complex. For this 

purpose, gel filtration chromatography can be used to determine the size of a protein 

complex with relative ease (Stevens 1989; Raffen and Stevens 1999). In this study, we 

analyzed oligomeric states of wild type and C14S Sml1 in solution by gel filtration 

chromatography. Our results showed that Sml1 forms an oligomer through non-covalent 

interaction. (Experimental procedures used in this study are described in Chapter 2.) 
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Results  

Verification of Sml1 wild type and variant protein identities 

When analyzed by SDS-PAGE under reducing conditions (i.e. DTT present), both wild 

type and C14S Sml1 showed apparent molecular masses of about 14 kDa. However, 

when examined under non-reducing SDS-PAGE conditions, wild type Sml1 migrated 

slower, with an apparent molecular mass of about 24 kDa, as shown in Figure 21.  On the 

other hand, C14S Sml1 did not exhibit an altered shift in migration.  These results 

suggest that wild type Sml1 forms a covalently-linked dimer under non-reducing 

conditions (most likely due to a disulfide bond), while C14S Sml1 exists as monomer in 

both reducing and non-reducing conditions. 

Mass spectrometry was used to measure the molecular masses of these proteins 

with high-resolution to verify their molecular identities. When purified in the presence of 

DTT, wild type Sml1 showed only a monomeric species (Figure 22A). On the other hand, 

in the absence of DTT, primarily dimeric species of wild type Sml1 was observed (Figure 

22B). As expected, C14S Sml1 consistently showed only monomeric species regardless 

of the presence or absence of DTT (Figure 22C).  Not surprisingly, mass of both wild 

type and C14S Sml1 indicated that N-terminal methionine of these proteins was removed. 

It has been reported that N-terminal methionine elimination is the most common form of 

bacterial post-translational processing (Gonzales and Robert-Baudouy 1996). Table 5 

illustrates that the measured molecular masses of the wild-type and C14S Sml1 

correspond to within ~10 ppm of these adjusted molecular masses (i.e. with methionine 

truncation).  
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Table 5. Intact molecular masses of wild type and variant Sml1 
            
    Observed mass* Expected mass* Accuracy (ppm)  
 
Wild type Sml1 11977.653  11977.496  13 
Monomer 
 
Wild  type Sml1 23954.036  23953.979  2 
Disulfide dimer  
 
C14S Sml1  11961.625  11961.519  9       
* Most abundant isotopic mass of protein (including loss N-terminus methionine) 



 

Figure 21. SDS-PAGE of Sml1 proteins conducted in reducing and non-reducing 
conditions.  
Covalent dimer was observed in wild type Sml1 in non-reducing condition, while only 
monomer was observed in C14S Sml1. 
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Figure 22. Deconvoluted mass spectrum of wild type and C14S Sml1.  
(A) Wild type Sml1 purified in presence of DTT. Mainly monomer was observed in this 
sample. High resolution spectrum (inset) showed five to six envelopes of isomers, which 
corresponds to Na+/ K+ adduct and loss of CO2 / H2O. (B) Wild type Sml1 purified in 
absence of DTT. Mainly disulfide-linked dimer was observed in this sample. Like the 
monomer, five to six envelopes of isomers were observed in high-resolution spectrum 
(inset). 
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Figure 22 Continued 
(C) C14S Sml1. Only monomer was observed in the samples purified in presence and 
absence (data not shown) of DTT. As was seen in wild type, isomers were also observed 
in C14S Sml1 (inset). A low abundant peak of 8147 is truncation product at C terminus 
end of residue 71E. 
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Closer inspection of mass spectra of intact proteins (Figure 22) reveals that, in addition to 

the species corresponding to Sml1 sequences, there are clusters of other species with 

close molecular masses.  Most of these species correspond to addition of sodium, 

potassium, or both to the intact proteins. Although we could not assign some of these 

clusters, they are likely isomeric species of Sml1 that arose from addition or loss of 

chemical group during sample preparation. 

SORI-CAD of the wild type and C14S Sml1 proteins generated y- and b-type 

fragment ions characteristic to these proteins (Figure 23). In both proteins, there was 

extensive fragmentation in the region from residue 42 to 5521 under a wide range of 

collision energies (and different charge states).  In wild type Sml1, the N-terminus end of 

the protein also fragmented extensively and several y or b type ions were observed. On 

the other hand, only two y type ions were identified from N-terminus end of C14S Sml1. 

For both proteins, the fragmentation was entirely consistent with the expected sequences. 

Unlike intact Sml1, no fragments corresponding to Na+ or K+ adduct were observed. The 

disulfide linked wild type Sml1 dimer was also examined by SORI-CAD. Over 20 

fragment ions ranging from 6000 to 9000 Da were observed.  Two abundant fragment 

ions at 6541 and 6920 Da were detected in all experiments conducted on the dimer.  

However, we could not identify these fragments. Overall, we could assign only two 

fragments of 5928 and 8722Da could as y53 and y78 (Data not shown). 

 

 

21 From Chpter 4 to Appendix, residues of Sml1 are numbered based on Sml1 ORF. Three residues, Met-
Gly-Ser, are added to the N-terminus of the protein by the expression plasmid. These three residues (Met, 
Gly and Ser) are numbered –3, -2 and –1 respectively. 



 

 
 

Figure 23. SORI-CAD fragmentation patterns of intact Sml1  

(A) Wild type Sml1. (B) C14S Sml1. Fragment was assigned based on calculated mass of 
b and y type ions. The line across the sequence represents sites of fragmentation. 
Underline represents regions reported to have a high degree of backbone order (Zhao, 
Georgieva et al. 2000). Residues are numbered based on Sml1 ORF. Two residues added 
to the N-terminus (Gly-Ser) are numbered –2 and –1 respectively 
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To further verify the protein species, the wild type and C14S Sml1 were digested 

with trypsin and the tryptic peptides were analyzed by ESI-FTICR-MS.  In both wild type 

and C14S Sml1, we observed tryptic fragments that covered the entire sequence of these 

proteins, as summarized in Table 6.  In the analysis of both wild type and C14S Sml1, 

mass accuracies for the most of peptides were less than 3 ppm.   

 Inspection of tryptic peptide sample reveals that all the peptides for the wild-type 

and C14S Sml1 are identical (Figure 24), with the lone exception of the fragment 2 

(residues 14-24).  This is expected, since this is the only peptide that should have the 

amino acid substitution, and can be used for confirmation of the mutation. Residue 14 of 

the wild type Sml1 is cysteine, while that of C14S Sml1 is serine, and they differ in mass 

by 15.994 Da.  We conducted CAD experiments of this particular peptide to further 

localize the site of the mutation. In both C14S and wild type Sml1, doubly charged ions 

of this peptide were subjected to SORI-CAD. The tryptic fragment of wild type and C14S 

Sml1 generated similar y type or b type ions. From y5, y6, y7 and y8 ions, a short 

sequence QQA was identified (Figure 25 A and B). 

 A species with monoisotopic mass 2515Da was observed in the wild type Sml1 

digest, but completely absent from the C14S Sml1 digest.  With a mass accuracy of 9.54 

ppm, this species was identified as disulfide liked dimer of tryptic peptide from residue 

14 to 24 (Table 6 bottom row). This disulfide linked peptide was also subjected to SORI-

CAD. We chose ion of 8403+ as parent ion. 11 fragments were observed and five of them 

were identified as b or y type ion (Figure 25C). No fragmentation occurred at residues 

close to N-terminus end of the peptide, where disulfide bond is formed.   
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Table 6. Peptides generated by tryptic digestion of wild type Sml1 and C14S Sml1. 
                            

Residues* 
Wild-type Sml1 
measured mass (Da) 

C14S Sml1 measured 
mass (Da) Expected mass (Da) 

85-91 736.377** 736.380** 736.375** 
99-104 768.302 768.302 768.300 
92-98 810.370 810.372 810.369 
25-32 953.466 953.462 953.464 
14-24 -- 1242.631 1242.631 
14-24 1258.609 -- 1258.608 
73-84 1413.631 1413.641 1413.630 
92-104 1560.663 1560.664 1560.658 
-2-13 1807.759 1807.773 1807.758 
73-92 2132.000 2132.006 2131.990 
34-67 3549.652 3549.656 3549.648 
33-67 3705.744 3705.781 3705.749 
34-72 4193.946** 4193.938** 4193.952** 
33-72 4350.089 4350.041 4350.053 
33-92 6466.043 6466.045 6466.042 
14-24 S-S 2515.177 -- 2515.201 
 
* Residues are numbered based on ORF of Sml1. Two residues added to the N-terminus 
(Gly-Ser) are numbered –2 and –1 respectively 
**For peptides of mass below 4000 Da, monoisotopic masses are listed. For peptides of 
mass above 4000 Da, the masses of the most abundant isotopic species are listed. 



 
Figure 24. Tryptic digest fragments of wild type and C14S Sml1 observed by ESI-
FTICR.  
Double headed arrows below the amino acid sequence represents the region covered by 
each tryptic fragment. The numbers below the arrow are the nominal mass of the 
fragments. 
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Figure 25. SORI-CAD fragmentation patterns of tryptic fragment spanning from 
residue 14 to 24.  
(A) Wild type Sml1. (B) C14S Sml1. (C) wild type Sml1 in non-reducing condition. 
Fragment was assigned based on calculated mass of b and y type ions. The line across the 
sequence represents sites of fragmentation. 
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Identification of truncation products of C14S Sml1 

In addition to intact protein species, we observed some minor species with mass ranging 

from 500-11,000 Da, and suspected that some of these were truncated products of Sml1. 

Particularly in C14S Sml1, a species of 8147 Da was consistently detected in several 

samples prepared independently. During purification of C14S Sml1 by gel filtration 

chromatography (Superdex 75), we noticed presence of a shoulder on the right side of the 

peak corresponding to C14S Sml1 (Figure 26A). SDS-PAGE analysis showed that this 

shoulder contains a protein species slightly smaller than C14S Sml1, as well as intact 

C14S Sml1. This shoulder was also analyzed by ESI-FTICR and, in this case the relative 

abundance of the species of 8147Da was higher (Figure 26B). Like intact C14S Sml1, 

this species also showed multiple envelopes of isomers corresponding to loss of CO or 

addition of alkali metals. We suspected this species to be a proteolytic fragment of C14S 

Sml1 generated by cleavage at C-terminus of residue 71 Glu. The calculated mass of this 

truncated species is 8146.781 Da (the most abundant isotopic mass), which agreed with 

the observed mass at 8146.923 Da (17 ppm error). 

 To further investigate the identity of this species, we conducted a SORI-CAD 

experiment. The parent molecular ion at m/z 1359 (M+6H)6+ was isolated and 

fragmented with a range of collisional energies. A series of fragments corresponding to 

masses from 7600 to 8120 Da were generated. Most of these fragments were a, a*, b, b* 

or y” type ion derived from fragmentation at C-terminus of the C14S Sml1 truncation 

product.  Through the CAD experiment, a sequence from the C-terminus of this species, 

EKDLE was identified (Figure 26C).  



 

 

 
Figure 26. Fragment of C14S by cleavage at C-terminus of E71 
(A) Chromatogram of C14S Sml1 purification. On SDS-PAGE gel, two bands were 
observed from the fractions that contained C14S Sml1. Fast migrating band was abundant 
in early fractions, while slowly migrating bands was abundant in later fractions 
(B) Deconvoluted mass spectrum obtained from late fractions of Superdex 75 eluent (last 
five lanes on SDS-PAGE gel of (A)). Species with 8147Da showed higher abundance 
than intact C14S Sml1. The molecular mass, 8147Da, corresponds to cleavage at C-
terminus end of E71. This species also showed multiple envelopes corresponding to 
chemical isomers (inset).  
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Figure 26 continued 
(C) Deconvoluted mass spectrum of CAD fragments generated from the species of 
8147Da (m/z 13596+). Extensive fragmentation at N terminus of the truncation product 
produced, a, a*, b, b* and y” ions. A sequence tag EKDLE was identified. 
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Oligomeric state of wild type and C14S Sml1 

To analyze the oligomeric states of the proteins in solution, the wild type and C14S Sml1 

proteins were subjected to gel filtration chromatography (using Superose 12 HR10-30).  

In the presence of DTT, both wild type and C14S Sml1 showed peaks at the elution 

volume corresponding to 32kDa (Table 7).  In non-reducing conditions, the major peaks 

of wild type and C14S Sml1 also showed the same retention time corresponding to 

32kDa. However, in non-reducing condition a shoulder corresponding to ~50kDa was 

also observed in wild type Sml1 (Figure 27), while peak profile of C14S Sml1 was 

essentially identical in non-reducing and reducing conditions.  

 

Discussion 

Integrities of recombinant Sml1 wild type and variant proteins 

The point mutation that replaces residue Cys14 of wild type Sml1 with serine was 

confirmed based on intact proteins and tryptic fragments determined by ESI-FTICR-MS.  

The observed mass of wild type and C14S Sml1 proteins differs by 16.028 Da, closely 

corresponding to the calculated mass difference between cysteine and serine, which is 

15.977 Da. Similarly, when the tryptic fragments were analyzed, the mass difference 

between the peptides of wild type and C14S Sml1 spanning residues 14 to 24 was 15.978 

Da, demonstrating excellent agreement with the calculated mass difference. A SORI-

CAD experiment of the tryptic peptides of residue 14 to 24 also confirmed the mutation 

(data not shown).  
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Table 7. Gel filtration chromatography elution profiles of wild type and C14S Sml1 
            
   Retention time (min) Estimated molecular weight (kDa)  
Reducing condition 
Wild type Sml1  13.7±0.0  32.5±0.2 
C14S Sml1   13.7±0.0  32.7±0.3 
 
Non-reducing condition 
Wild type Sml1   14.1±0.1   32.0±1.1 
Wild type Sml1 shoulder 12.6±0.1   49.9±0.9 
C14S Sml1   14.1±0.1   32.0±0.1    



 
 

Figure 27. Gel filtration chromatography (Superose 12 molecular sieving column) of 
WT-Sml1 and C14S Sml1.   
Samples were prepared at ~2 mg/ml in pure water.  Four experimental conditions were 
examined. (A) WT-Sml1 under reducing conditions (DTT present) (B) WT-Sml1 under 
non-reducing conditions (DTT absent) (C) C14S Sml1 under reducing conditions (DTT 
present), and (D) C14S-Sml1 under non-reducing conditions (DTT absent).  Note that the 
appearance of C14S-Smlp is unaltered in either condition, whereas WT-Sml1 reveals a 
higher molecular mass “shoulder” under non-reducing conditions, implying the formation 
of a larger oligomeric species. 
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The methionine at N-terminus of both wild type and C14S Sml1 was absent in the 

purified proteins. The masses of the intact wild type and C14S Sml1 were 131Da 

(130.885 for wild type and 130.936 for C14S) less than calculated mass based on their 

gene sequence. This mass difference corresponds to the loss of N-terminus methionine 

(calculated loss is 131.42Da). In the tryptic digest, a peptide of 1807.7Da in both wild 

type and C14S Sml1 sample corresponds to the mass of peptide spanning residues 1 to 14 

(Table 6), verifying the loss of methionine at the N-terminus.  

SORI-CAD fragmentation patterns of the intact wild type and C14S Sml1 can 

possibly reflect their higher order structure. In both proteins, the region from residue 42 

to 55 fragmented extensively, and almost the same b type and y type ions were identified 

from the two proteins (Figure 23). This extensive fragmentation is probably due to the 

higher order structure of Sml1. Based on the report from Rothstein and co-workers 

(Zhao, Georgieva et al. 2000), this region does not have rigid structure. It has been 

reported that SORI-CAD fragmentation pattern reflects higher order structure of protein 

(Wu, Van Orden et al. 1995).  

The molecular mass measurement and SORI-CAD fragmentation data indicated 

that the species of 8147 Da was a truncation product generated by cleavage at the C-

terminus end of residue 71 glutamic acid. This species possibly corresponds to a minor 

species migrating slightly faster than C14S Sml1 on SDS-PAGE gel (data not shown). 

The same minor species was observed when whole cell lysate was subjected to an SDS-

PAGE analysis (Data not shown). Heterogeneity of recombinant protein due to 

proteolytic cleavage has been reported (Frimpong, Darnay et al. 1993; Hejazi, Piotukh et 
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al. 2002). This minor species were likely to be produced by proteolytic cleavage of C14S 

Sml1. We also observed similar minor protein species in the sample of wild type Sml1, 

although we could not determine whether this species was fragment of wild type Sml1.  

 

Anomalous species of wild type and C14S Sml1 

In mass spectrometric analysis of intact proteins, wild type and C14S Sml1 are associated 

minor species possibly due to alkali metal adducts. The most intense peaks of wild type 

and C14S Sml1 in mass spectrometry matched expected molecular mass of each protein. 

However, high resolution spectrum of these proteins showed five to six envelopes of 

minor species whose molecular mass differ from the expected molecular mass in 15 to 

100Da (Figure 22A and B, inset). Similar envelopes were also observed in a disulfide-

linked dimer of wild type Sml1 (Figure 22C, inset). Some of these species were 

consistently found in different samples, while some were observed in only particular 

samples. Although we resolved isotopic peaks of these species, determining the average 

mass of these species were difficult because envelopes of these species are closely spaced 

and the sizes of the envelopes were relatively small. However, based on previous 

observation from Sml1 histag (Uchiki, Hettich et al. 2002), we believe that these species 

were possibly due to combination of Na+ / K+ adduct and the loss of some groups such as 

water, ammonia, and carbon monoxide. In addition, once proteins were fragmented by 

tryptic digestion or SORI-CAD, most of these minor species disappeared, indicating that 

these minor species are due to non-covalently bound adducts.   
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 It should be noted such anomalous peaks were not observed in both tryptic 

fragments and fragments generated by CAD experiments. It is possible that a binding 

pocket of the alkali metal exists in the intact proteins. Once proteins are digested into 

peptide, they might lose the property to create such a binding pocket. We also tried to 

dissociate only the metal ion from the protein without breaking the peptide bond by 

SORI-CAD and in source decay in the hexapole ion guide. However, our attempt with 

lower energy in SORI-CAD or longer accumulation time in the hexapole ion guide of the 

ion inlet system did not yield intact Sml1 without the anomalous species.  

 

Covalent dimer formation in wild type Sml1 

A disulfide linked dimer of intact wild type Sml1 was observed by mass spectrometry. 

When purified in the absence of reducing agents, the mass of major species in wild type 

Sml1 was 23954Da, corresponding to its disulfide linked dimer (11978 Da x 2- 2H). On 

the other hand, only monomer was observed in C14S Sml1, whether it was prepared in 

the absence or presence of reducing agents. The same observation was made in SDS-

PAGE under non-reducing condition. A similar observation was made when DTT was 

removed from wild type Sml1 sample originally purified with DTT and left in 4°C over a 

few days. Since the intracellular milieu is a reducing environment, the disulfide linkage 

between Sml1 monomer was unlikely to be formed when the protein is in the cell. 

Nevertheless, the formation of the disulfide linkage in a relatively short period of time 

suggests that Cys 14 of two Sml1 molecules are located in a proximity in solution. This 
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was further supported by our recent study (Gupta, Peterson et al. 2004) which shows that 

Sml1 dimerization occurs within a region spanning residues 8 to 20.  

 Disulfide linked peptides spanning residues 14 to 24 were also observed. When a 

tryptic peptide sample of wild type Sml1 was left for a few days in 4°C, a species with 

nominal mass of 2515Da appeared in mass spectrum (Table 6 bottom row). On the other 

hand, this species was not observed in tryptic peptides of C14S Sml1. This species was 

possibly due to a disulfide-linked dimer of peptide corresponding to residue 14 to 24. In 

this case, the disulfide bond was probably formed after digestion because purification and 

digestion was carried out in presence of 5mM DTT.  It is possible that DTT was oxidized 

after digestion, and the non-reducing conditions allowed formation of the disulfide 

linkage. Similarly, the same disulfide linked species appeared in the peptides desalted by 

Zip Tip and kept in 50% acetonitrile in 4°C for a few days.  

Tandem mass spectrometry (SORI-CAD) was also conducted with this disulfide 

linked peptide, and it showed fragmentation unique to the disulfide linked peptide. 

Among eleven fragments, five of them were identified as y type or b type ions of the 

disulfide linked peptides. For example, the fragment of 2341Da corresponds to b type ion 

generated by fragmentation at residue 23 on one peptide tail (Figure 25). Similarly, the 

fragment of 1943Da corresponds to b-type ion generated by fragmentation at residue 19 

on one peptide tail. The fragment of 1371Da corresponded to b-type generated by 

fragmentation at residue 19 two peptide tails. These observations showed that 

fragmentation of disulfide-linker peptides occurs on either one or both of the peptide tail.  
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Non- covalent oligomer formation of wild type and variant Sml1 

Analysis of purified wild type and C14S Sml1 by gel filtration chromatography (using 

Superose 12 HR10-30) showed oligomers with apparent size of 32kDa. These species 

were possibly dimers (12 kDa x 2 = 24 kDa) or trimers (12 kDa x 3 = 36 kDa) of Sml1. 

In addition, the symmetric peak of these proteins observed in reducing conditions 

indicates the presence of a single oligomeric species. In many cases, the symmetric peak 

of a protein complex in gel filtration chromatography indicates that the rate for the 

complex to dissociate into smaller subunits is slow and the dissociation does not occur 

during the chromatographic run (Raffen and Stevens 1999). Furthermore, the retention 

volumes of wild type and C14S Sml1 were essentially the same in non-reducing 

conditions. On the other hand, wild type Sml1 appears as disulfide-linked dimer in mass 

spectrometry, while C14S Sml1 cannot form disulfide linkage. These data indicate that 

C14S Sml1 can form an oligomer in solution through non-covalent interactions. It is 

unlikely that the monomer (12kDa) of C14S Sml1 and disulfide-linked dimer of wild 

type Sml1 (24kDa) elute at the same retention volume. These results are also consistent 

with our recent studies by sedimentation equilibrium (Gupta, Peterson et al. 2004) which 

showed that Sml1 can form non-covalent dimers. On the other hand, the shoulder of wild 

type Sml1 form a larger oligomer. Possibly, disulfide bonding of wild type Sml1 

contributes to the formation of the larger oligomer. 

Further information regarding Sml1 oligomerization was obtained by a 

combination of mass spectrometric identification of the truncated C14S Sml1 and 
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retention of the truncated C14S Sml1 on gel filtration chromatography. In addition to 

analysis of the purified proteins by Superose 12 column, we estimated the molecular 

mass of proteins eluted from Superdex G75 column during purification of C14S Sml1. As 

described above, a minor species of 8147Da was identified as a truncated C14S Sml1 

spanning residues 1 to 71 by mass spectrometry. On the chromatogram of C14S Sml1 on 

Superdex G75 column, this truncated C14S Sml1 appeared as a small peak overlapping 

with the major peak of intact C14S Sml1 (Figure 26A). Based on its retention volume on 

Superdex G75 column, the size of the truncated C14S Sml1 in solution was estimated to 

be 14 to 16kDa, corresponding to its dimeric form (its expected size is 16294Da). In 

addition, no protein was detected from the fraction corresponding to 8 to 9kD. This 

indicates that the region responsible for oligomerization of C14S Sml1 may reside within 

residues 1 and 71, and C terminus end may not be involved in the dimerization. This is 

consistent with our recent studies with sedimentation equilibrium (Gupta, Peterson et al. 

2004) that demonstrated that a region lying between residues 8 to 20 is responsible for 

dimerization of Sml1.  

 

Summary 

This study demonstrates the characterization of wild type and C14S Sml1 at molecular 

level by mass spectrometry at high-resolution and high mass accuracy (ESI-FTICR-MS). 

First, analysis of intact protein and tryptic peptide confirmed that the purified proteins 

were wild type and C14S Sml1. Mass spectrometric analysis of the intact protein also 

showed anomalous Sml1 variants that is possibly generated by alkali metal adduct on the 
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protein. By a combination of mass spectrometry and gel filtration chromatography, we 

showed that Sml1 can form dimers through both disulfide linkage and non-covalent 

interaction. Furthermore, a C14S Sml1 fragment truncated at residue 71 was identified. 

The retention profile of the truncated C14S Sml1 in gel filtration chromatography 

indicated that the non-covalent interaction occur in a region between residue 1 to 71.  
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Chapter 5. Identification of phosphorylation sites on Sml1 

(Uchiki, Dice et al. 2004) 

Introduction 

As discussed in Chapter 1, the knowledge of specific phosphorylation sites on Sml1 

provides clues for specificity of the Dun1 kinase, and such information is also useful 

when studying other substrates of Dun1. Ideally, phosphorylation of Sml1 in vivo22 is 

biologically more relevant than phosphorylation in vitro. However, our initial trial of 

Sml1 purification indicated that it would be difficult to prepare a sufficient amount of 

Sml1 expressed in S.cerevisiae for identifying the phosphorylation sites. Additionally, 

because Sml1 is degraded in vivo after its phosphorylation, it was suspected that it would 

be even more challenging to obtain Sml1 phosphorylated in vivo. Therefore, we focused 

on an in vitro analysis. Descriptions in this chapter was mainly taken from Results and 

Discussion section of the article we published in March 2004 (Uchiki, Dice et al. 2004).  

Some new data and additional discussion have been included. (Experimental procedures 

used in this study are described in Chapter 2.) 

 

Results  

Results from the in vitro phosphorylation of Sml1 by Dun1 where 32P is incorporated are 

shown in Figure 28. Sml1 is specifically phosphorylated by Dun1 with 32P-incorporation 

 

22 In vivo Sml1 phosphorylation sites has not been identified to date. White and co-worker Ficarro, S. B., 
M. L. McCleland, et al. (2002). "Phosphoproteome analysis by mass spectrometry and its application to 
Saccharomyces cerevisiae." Nat Biotechnol 20(3): 301-5. identified 216 phospho-peptide sequence of 
S.cerevisiae proteins expressed in logalismic growth phase. However, no phospho-peptide of Sml1 was 
identified.  



 

 
 

Figure 28. In vitro phosphorylation of Sml1 in the presence of γ[32P]ATP.  
(A) Autoradiography: Lane 1: E. coli expressed Sml1 in the reaction buffer containing 
250µM ATP (cold) and 1µCi/µl γ[32P]ATP was incubated for two hours with the 
glutathione beads pre-incubated with yeast lysate containing GST-Dun1 (see 
Experimental procedures). 10µl of supernatant was subjected to 15% (w/v) acrylamide 
SDS-PAGE.  Lane 2: Sml1 was incubated with glutathione beads pre-incubated with the 
lysate of untransformed yeast cells (U952-B). Lane 3: BSA was incubated with the GST-
Dun1 bound glutathione beads. Lane 4: The GST-Dun1 bound glutathione beads alone 
were incubated in the reaction buffer. Lane 5: Only Sml1 was incubated in the reaction 
buffer. (B) Coomassie Blue staining of the gel presented on panel A. Lane 1: Molecular 
weight standard of 97.4 Da, 66.2 Da, 45.0 Da, 31.0 Da, 21.5Da and 14.4Da (from top to 
bottom), Lanes 2-6: the same samples in lane 1 to 5 on panel A 
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Figure 28 continued 
(C) Radioactivity from 20µl of the same samples as in (A) measured by a liquid 
scintillation counter. Subtraction of average radioactivity of all the control samples from 
that of the experimental sample (Sml1 + Dun1 beads) was corresponds to phosphate 
incorporation (moles phosphate / moles protein) of 0.31. (Number of replicates measured 
was four. The error bars represent standard error of the mean.) 
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at 40 to 50 times greater than that of the negative control samples (Figure 28). These 

results show that in vitro phosphorylation of Sml1 observed in this experiment is solely 

due to GST-Dun1 and that the in vitro kinase activity of GST-Dun1 is specific to Sml1. 

The number of phosphoryl groups attached to Sml1 was determined by a combination of 

MS and site-directed mutagenesis. In order to estimate the minimum number of 

phosphorylation sites, intact molecules of Sml1 were first analyzed by ESI-FTICR. The 

attachment of a phosphate to a hydroxyl group of serine, threonine or tyrosine results in 

mass increases of the proteins or peptides by 79.966 Da in monoisotopic mass, and it was 

possible to estimate the number of phosphates on a protein by analyzing the mass shift. 

We observed monophosphorylated, di-phosphorylated, tri-phosphorylated, and 

unphosphorylated Sml1. These observations indicated that at least three sites of Sml1 

could be phosphorylated (Figure 29).  

In order to find the region of Sml1 containing the phosphorylation sites, the 

protein was digested by trypsin or CNBr, and then analyzed by ESI-FTICR. In the 

positive ion analysis of the tryptic digest, we detected peptides that covered 75% of the 

Sml1 sequence spanning residues 1 to 67 and 73 to 84. In the negative ion analysis, we 

detected peptides constituting 89% of the Sml1 sequence, which almost covered the 

entire Sml1 sequence with the exception of residues 16 to 26 (Figure 30A).  In both 

positive and negative ion analysis, the spectrum for the samples taken from the in vitro 

Dun1 phosphorylation assays showed that peptides spanning residues 33-67 

(M=3549.720 Da) and 34-67 (M=3705.857 Da) are associated with their singly 

phosphorylated forms of M=3629.695 Da and M=3785.829 Da, respectively (Figure 31).  



 

 
Figure 29. Positive ion analysis of intact phosphorylated Sml1.  
(A) Deconvoluted mass spectrum of the negative control in which Sml1 was incubated in 
the presence of 250µM ATP without GST-Dun1 for two hours. The spectrum shows only 
unphosphorylated species. No peaks corresponding to the mass of phosphorylated Sml1 
was observed.  (B) Deconvoluted mass spectrum of Sml1 incubated with GST-Dun1 and 
250µM ATP for two hours. In this particular spectrum, an internal calibration was 
accomplished with the known peaks of unphosphorylated Sml1. Values above each peak 
are the observed mass of the most abundant isotopic species. Note that the observed mass 
differences between different phosphorylation states closely correspond to the calculated 
monoisotopic mass of HPO3 which is 79.966 Da.  
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Figure 30. Sequence coverage of Sml1 obtained from (A) tryptic digest and (B) 
CNBr digest.  
The peptides observed in ESI-FTICR-MS are underlined. Peptide sequences that contain 
phosphorylation sites are shown in blue.    
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Figure 31. Positive ion analysis of Sml1 Tryptic digest.  
(A) Tryptic digest of the negative control in which Sml1 was incubated in the presence of 
250µM ATP without GST-Dun1. As expected, no phosphorylated species were identified 
(see inset). (B) Tryptic digest of the experimental sample in which Sml1 was incubated 
with GST-Dun1 in the presence of 250µM ATP. Monophosphorylated peptides spanning 
residues 35-69 and 36-69 were detected.  
* The value above each peak is the observed monoisotopic mass based on the external 
calibration.  

 

 137



 138

In the positive ion analysis of CNBr digests, we detected four peptides that cover 34% of 

the Sml1 sequence spanning residues 29 to 39 and 81 to 104. However, none of these 

peptides were phosphorylated. In the negative ion analysis of CNBr digests, 7 to 8 

peptides that cover 71% of Sml1 sequence (residue 31-106) were observed (Figure 30B). 

These results showed that the peptide spanning residues 52-64 consisting of 

GSSASASASSLEM (M=1153.539 Da) was associated with its singly phosphorylated 

form (Figure 32A & B). The phosphopeptides of Sml1 identified by both CNBr and 

tryptic digest are entirely consistent. The combined data generated from the CNBr and 

tryptic digest gave us 100% sequence coverage of Sml1.  

To enrich phosphopeptides, CNBr digest samples were subjected to Ga(III) 

IMAC chromatography and analyzed in the negative ion mode. Singly, doubly, and triply 

phosphorylated forms of residues 52-64 were observed (Figure 32C and Table 8), which 

were absent in the negative control which contained CNBr peptides generated from only 

unphosphorylated Sml1. In most of the samples, peak intensities of doubly or triply 

phosphorylated species were stronger than the singly phosphorylated species. Singly 

phosphorylated species could only be observed prior to IMAC chromatography. To 

confirm that the observed mass shift was due to phosphorylation, an ion of doubly 

phosphorylated species (M-H=1294.452 Da) was subjected to collisional activated 

dissociation (CAD). In this experiment, the species of interest was isolated in the 

analyzer region of the mass spectrometer, accelerated with a RF voltage and bombarded 

into nitrogen gas. Depending on RF voltage used to accelerate the ion, we observed 

fragment ions of 1196.489 and 1098.466 that corresponded to the loss of one or two 
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Table 8. Monoisotopic mass of peptides generated by CNBr digestion corresponding 
to residue 52-64 

             
     Observed mass(Da )          Calculated mass(Da)     Mass difference(Da) 
Unphosphorylated    1135.525  1135.400  0.125 
 
Unphosphorylated C-hSer*  1153.557  1153.411  0.146 
 
Singly phosphorylated  1215.444  1215.366  0.078 
 
Singly phosphorylated C-hSer 1233.477  1233.377  0.100 
 
Doubly phosphorylated  1295.428  1295.332  0.096 
 
Doubly phosphorylated C-hSer 1313.454  1313.343  0.111 
 
Triply phosphorylated   1375.361  1375.299  0.062 
 
Triply phosphorylated C-hSer 1393.405  1393.309  0.096 
*C-hSer: Species in which C terminus homolactone is converted to homoserine. 



 

 
 

Figure 32. Negative ion analysis of Sml1 CNBr digest.  
(A) The deconvoluted mass spectrum of the negative control of the kinase reaction 
subjected to CNBr digestion in which Sml1 was incubated in the presence of 250µM 
ATP without GST-Dun1. As expected, no phosphorylated species were identified (see 
inset). In general, residues at the C-terminus of peptides generated by CNBr digestion are 
homolactones, which can be further converted to homoserine by intra-molecular 
hydrolysis. In this spectrum, residues at the C-terminus of most of the peptides were 
homoserine. (B) The deconvoluted mass spectrum of phosphorylated Sml1 subjected to 
CNBr digestion in which Sml1 was incubated with GST-Dun1 in the presence of 250µM 
ATP. The peak (M=1233.535) corresponds to a singly phosphorylated peptide consisting 
of residues 52-64 (see inset). In this spectrum, residues at the C-terminus of the majority 
of the peptides were homoserine. 
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Figure 32 continued 
(C) Phospho-peptides enriched by Ga(III) IMAC shows singly, doubly, and triply 
phosphorylated species. In this spectrum, residues at the C-terminus of these peptides 
were either homolactone or homoserine (denoted as C-term-homoserine). 
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Figure 32 continued 
(D) SORI-CAD fragmentation of a doubly phosphorylated peptide consisting of residues 
52-56. Ions corresponding to the doubly phosphorylated peptide were isolated in the 
analyzer cell by an arbitrary waveform (top) and subjected to SORI-CAD fragmentation 
with MS burst voltages of 3.5V(middle) and 4.5V(bottom). The mass of two fragment 
ions corresponds to neutral loss of one phosphoric acid (-H3PO4= -97.977) and two 
phosphoric acids (-H3PO4x2=-195.954).  
*The value above or beside each peak is the observed monoisotopic mass based on the 
external calibration. 
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phosphoric acids (Figure 32D). We could not obtain a reasonable signal in the CAD 

experiment for singly and triply phosphorylated species, which was possibly due to the 

low abundance of the parent ions.  To further confirm our findings, we repeated the same 

experiment with the C14S mutant form of Sml1 and its proteolytic fragment. During 

purification of C14S Sml1 by gel filtration chromatography, the intact molecule was 

separated from a smaller degraded C14S Sml1 fragment corresponding to a mass of 

8147.073Da.  Mass spectrometric analysis of the latter revealed that the degraded peptide 

was an N-terminal fragment of C14S Sml1 consisting of residue 1 to 71 (Uchiki, Gupta et 

al. 2002), which we denoted as FRAG71. We conducted the kinase reaction using both 

the intact and FRAG71 of the C14S mutant. Both intact C14S Sml1 and FRAG 71 were 

singly, doubly, and triply phosphorylated (Figure 33A & B). Although this experiment 

was conducted with a mutant form of Sml1, it strongly suggests that three sites of Sml1 

can be phosphorylated and that all three sites reside within the N-terminal 71 residues. In 

addition, triple phosphorylation of FRAG71 C14S strongly suggested that the C-terminal 

33 residues, which is the minimal Rnr1 binding domain of Sml1(Zhao, Georgieva et al. 

2000), were not required for its phosphorylation.   

The data above indicated that a peptide of Sml1 consisting of residues 52-64 

(GSSASASASSLEM) produced by CNBr digestion includes all the three 

phosphorylation sites. It should be noted that the above sequence does not contain any 

threonine residues, suggesting that only serine residues in Sml1 are phosphorylated by 

Dun1.  However, as reported in other studies (Zhang, Herring et al. 1998; Stensballe, 

Jensen et al. 2000), we too were unable to obtain sequence specific fragmentation of the 



 

 
 

Figure 33. Positive ion analysis of intact phosphorylated C14S Sml1 and 
FRAG71C14S.  

(A) The negative control in which Sml1 was incubated in the presence of 250µM ATP 
without GST-Dun1 for two hours showed only unphosphorylated species. (B) The 
deconvoluted mass spectrum of the phosphorylated C14S Sml1 and FRAG71 C14S 
shows singly, doubly, and triply phosphorylated species (denoted as 1P, 2P and 3P 
respectively).  
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doubly phosphorylated peptide by CAD as the predominant fragmentation was the 

neutral loss of phosphoric acid.  In addition to this, the identification of phosphorylated 

residues from a tandem cluster of serine residues (GSSASASASSLEM) by MS is 

challenging. In order to simplify the identification of phosphoserine residues by CAD, we 

converted the phosphoserine residues to S- ethylcysteine by β–elimination in the 

presence of ethanethiol. This reaction specifically replaces phosphoryl group on serine or 

threonine with ethanethionyl giving a 44.008 Da mass shift from normal serine or 

threonine (Meyer, Hoffmann-Posorske et al. 1991; Lapko, Jiang et al. 1997; Adamczyk, 

Gebler et al. 2001; Oda, Nagasu et al. 2001). Unlike phosphoryl groups, ethanethionyl 

groups were more resistant to fragmentation by CAD so that fragmentation of the peptide 

mainly takes place at the peptide backbone (Meyer, Hoffmann-Posorske et al. 1991; 

Lapko, Jiang et al. 1997). In positive ion mode, we have observed peaks which 

correspond to modification of doubly and triply phosphorylated species, respectively 

(Figure 34A). First we conducted CAD with doubly modified species that was 

fragmented into a series of y and b type ions, from which two sites of phosphorylation 

were unambiguously determined (Figure 34B and Table 9). b*8, b*9, and b*10 ions can 

be produced only when phosphoryl groups are attached to Ser58 and Ser60. Similarly, 

only two possible combinations, Ser58/Ser60 or Ser58/Ser61, can produce observed 

values for y6, y7, and y8. Overall, more than 74% (20/27) of the peaks in the MS/MS 

spectrum could be assigned as fragment ions of a peptide in which ethanethionyl groups 

(that replaces phosphoryl groups) are attached to Ser58 and Ser60. The unassigned peaks 

do not match the possible fragments of peptides with other combinations of ethanethionyl 
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Table 9. Ions observed in CAD fragmentation of species corresponding to the 
doubly phosphorylated peptide of Sml1  

             
Ion type  Observed m/z   Calculated m/z  m/z difference   
Parent   1242.551  1242.428  0.123 
b9   794.327  794.320    0.007 
b11    994.454  994.436    0.018 
b12    1123.506  1123.479  0.027 
b13    1224.560  1224.480  0.080 
b*8    645.270  645.272  0.002 
b*9   776.316  776.313  0.003 
b*10   863.354  863.345  0.009 
b*11   976.442  976.429  0.013 
b*12   1105.492  1105.472  0.020 
b*13   1206.550  1206.420  0.130 
b**8   627.260  627.261  0.001 
b**9   758.304  758.302  0.002 
b**11   958.430  958.418  0.012 
b**12   1087.481  1087.161  0.320 
y10   1011.467  1011.346  0.121 
y9   940.431  940.305    0.126 
y8    853.391  853.273    0.118 
y7    782.352  782.236    0.116 
y6   651.307  651.196   0.111 
y*7   764.342  764.229  0.113 
y*6   633.296  633.185   0.111    
This peptide consists of residues 52-64 in which phosphoserine residues are derivatized 
by ethanethiol. 
C terminus of the parent ion is homoserine. 
b*: ions produced by neutral loss of one H2O from b ions.  
b**: ions produced by neutral loss of two H2O from b ions 
y*: ions produced by neutral loss of H2O from y ions 



 
 

Figure 34. Positive ion SORI-CAD fragmentation of species corresponding to the 
peptide of Sml1 consisting of residues 52-64 in which phosphoserine residues are 
derivatized by ethanethiol. Ser56, Ser58, and Ser60 are identified as residues with 
phosphoryl attachment.  
(A) The ions of derivatized peptides corresponding the doubly and triply phosphorylated. 
These ions are isolated as parent ions and fragmented as in (B) and (C). 
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Figure 34 continued 
(B) CAD fragmentation of ions corresponding to the doubly phosphorylated peptide. 
Over 70% of the observed peaks could be assigned when Ser58 and Ser60 were 
considered to be the phosphorylation sites. b* and b** ions are produced by the neutral 
loss of one or two H2O from b ions. Likewise, y* ions are produced by the neutral loss of 
one H2O from y ions. (C) CAD fragmentation of ion corresponding to the triply 
phosphorylated peptide. Over 70% of observed peaks could be assigned when Ser56, 
Ser58, and Ser60 were considered to be the phosphorylation sites.  
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attachment. This indicated that residues other than Ser58 and Ser60 are less likely to be 

the phospho-acceptors on this peptide. CAD experiment with the triply modified species 

also provided a series of y and b type ions corresponding to ethanethionyl attachment at 

specific serine residues (Figure 34C and Table 10). Y9, y8, y7, and y8 can be produced 

only when phosphate groups are attached to Ser56, Ser58, and either Ser60 or Ser61. 

Likewise, b*10, b*9, and b*8 can be generated only when Ser60, Ser58 and either Ser56, 

Ser54, or Ser53 are phosphorylated. Combining these data together, it is most likely that 

Ser56, Ser58, and Ser60 are phosphorylated. Over 70% of observed peaks (19/26) could 

be assigned as fragment ions of a peptide in which ethanethionyl groups (that replaced 

phosphate groups) are attached to Ser56, Ser58, and Ser60.  

In order to determine primary phosphorylation sites of Sml1, we individually 

replaced Ser56, Ser58, and Ser60 with Ala and compared the degree of phosphorylation 

by a kinase assay based on incorporation of 32P (Figure 35A & B). As compared to wild 

type Sml1, S60A Sml1 showed more than a 90% decrease in the amount of phosphate 

incorporation, while S58A Sml1 showed approximately a 25% decrease. No significant 

difference was observed between S56A and wild type Sml1. From autoradiography 

studies we observed that the phosphorylated form of these mutants appeared to migrate 

slightly faster than the wild type (in an order of S60A>S58A>S56A>Wild type Sml1). 

These results are in agreement with the results from mass spectrometry analysis. 

Although according to the MS results Ser56, Ser58 and Ser60 can be all phosphorylated, 

only the mutation at Ser60 showed a dramatic decrease in phosphate incorporation. 
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Table 10. Ions observed in CAD fragmentation of species corresponding to the triply 
phosphorylated peptide of Sml1  

             
Ion type  Observed m/z   Calculated m/z  m/z difference   
Parent   1286.536  1286.436  0.100 
b9             838.332  838.329  0.003 
b10                       925.364  925.361  0.003 
b11                    1038.451  1038.445  0.006 
b12                    1167.497  1167.487  0.010 
b13   1268.547  1268.44  0.107 
b*8   689.28   689.281  0.001 
b*9   820.32   820.321  0.001 
b*10   907.355  907.353  0.002 
b*11   1020.44  1020.437  0.003 
b*12   1149.486  1149.48  0.006 
b**8                     671.268  671.27   0.002 
b**12                   1131.474  1131.469  0.005 
y9                      984.429  984.314  0.115 
y8                       853.386  853.273  0.887 
y7                      782.348  782.236  0.112 
y6   651.306  651.196  0.110 
y*7                     764.339  764.226  0.113 
y*6   633.296  633.185  0.111    
This peptide consists of residues 52-64 in which phosphoserine residues are derivatized 
by ethanethiol 
C terminus of the parent ion is homoserine 
b*: ions produced by neutral loss of one H2O from b ions 
b**: ions produced by neutral loss of two H2O from b ions 
y*: ions produced by neutral loss of one H2O from y ions



 
Figure 35. Quantitative analysis of phosphate incorporation in wild type, S56A, 
S58A, and S60A Sml1.  

(A) Autoradiography. (Left) 30µl of 0.1µg/µl of E. coli expressed wild type (Lane 1), 
S56A (Lane 2), S58A (Lane 3) or S60A Sml1 (Lane 4) was incubated with GST-Dun1 
bound glutathione beads in the presence of 0.06µCi/µl γ[32P]ATP and 60µM ATP (cold) 
for two hours. After the reaction, 10µl of each sample was subjected to 15% (w/v) 
acrylamide SDS-PAGE, and the SDS-PAGE gel was exposed to X-ray film. (Middle) In 
the same manner the Dun1 kinase assay was conducted with the single mutants S60D 
(Lane2) and E63Q Sml1 (Lane 4) along with wild type (Lane 1) and S60A Sml1 (Lane 
3). (Right) In the same manner the Dun1 kinase assay was conducted with the 
S56A/S58A/S60A triple mutant (Lane 3) and S56A/S58A/S60A/S61A quadruple mutant 
(Lane 4) along with wild type (Lane 1) and S60A Sml1 (Lane 2).
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Figure 35 continued 
 (B) Phospho-cellulose filter assay. 20µl of the supernatant from the same samples as in 
(A) was taken, and their radioactivity (cpm) was measured. In a similar manner, the assay 
was performed with 8.3µM of ADR1 G233 peptide (LKKLTRRASFSGQ) for 30 
minutes along with the same concentration of wild type Sml1 as a positive control. The 
inlet shows noticeable phosphorylation of the same peptide as compared to wild type 
Sml1 at a concentration of 67µΜ. Radioactivity given by incorporation of phosphate was 
determined by subtracting the values from samples in which only substrate proteins were 
incubated in the presence of 0.06µCi/µl γ[32P]ATP and 60µM ATP (cold).  The data was 
represented as a fraction of the radioactivity obtained for wild type Sml1. (Number of 
replicates was three. The error bar represents standard error of the mean.) 

 152



 153

Moreover, due to its close proximity to Ser56, Ser58 and Ser60, we constructed the S61A 

mutant and tested it for phosphate incorporation. The S61A mutant had 48% phosphate 

incorporation (p=0.0001) as compared to wild type Sml1 (see Figure 35B). However, 

Ser61 was not identified as a potential phosphorylation site by MS analysis. To further 

test if Ser61 was a potential phosphorylation site we tested the triple mutant 

S56A/S58A/S60A for phosphate incorporation. Our results show that the triple mutant 

did not show any phosphate incorporation (see Figure 35A & B) strongly suggesting that 

it is Ser56, Ser58 and Ser60 that are the sole phosphorylation sites of Sml1 in vitro.  

Moreover, to test for cooperativity between the phosphorylation sites, we replaced Ser60 

with an aspartic acid (S60D Sml1) which mimics the negative charge resulting from 

phosphorylation. On average the percentage incorporation of phosphate in S60D Sml1 

was 17% of wild type Sml1 (Figure 35B). Nonetheless, this is a 2.5-fold increase in 

phosphate incorporation as compared to S60A Sml1 (p=0.01) (Figure 35B). To test if  an 

acidic group (Glu63) located at the +3 position which is C-terminal of the three 

phosphorylation site acts as a recognition site for the Dun1 kinase we tested the E63Q 

Sml1 mutant for phosphate incorporation. Phosphate incorporation in E63Q Sml1 was 

52% that of wild type Sml1 showing a significant decrease (p=0.00006). We also 

compared the Dun1 kinase activity for wild type Sml1 with respect to a synthetic peptide 

(named ADR1 G233) previously reported to be phosphorylated by Dun1 (Sanchez, Zhou 

et al. 1997). Using the substrate concentration of 8.3µM. no significant kinase activity 

above background was detected for ADR1 G233 peptide. In contrast, a significant 

amount phosphorylation was detected with Sml1 as the substrate. Next, to be consistent 
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with the experiment previously reported (Sanchez, Zhou et al. 1997), the kinase assay 

was conducted at a substrate concentration of 67µM. In this case, the average phosphate 

incorporation of ADR1 G233 was 11% of that in wild type Sml1 (Figure 35B, inset), 

suggesting that Sml1 is a far superior substrate for Dun1 as compared to the peptide. 

We also exposed the yeast cells to the DNA alkylating reagent methyl methane 

sulfonate (MMS) during expression of GST-Dun1 for 2 hours. After addition of MMS, 

we noticed that cells stopped growing, while cells in media without MMS grew two fold 

during a 2 hours time period. The apparent kinase activity of GST-Dun1 purified from 

the cells exposed to MMS was lower than that of GST-Dun1 from the regularly grown 

cells (Data not shown). However, we could not conclude whether or not specific activity 

of these two sets of the Dun1 kinase are significantly different since the amount of Dun1 

bound to the glutathione resin was not quantified. On the other hand, when the 

phosphorylated Sml1 was resolved by SDS-PAGE, we observed a slight difference in 

migration of Sml1 phosphorylated by GST-Dun1 from the cells exposed to MMS and the 

regularly grown cells; the former migrated lower than the latter (Figure 36A). A repeated 

experiment also showed similar migration patterns. The same experiment was conducted 

by using the S56A/S58A/S60A triple mutant Sml1 as substrates. Like regularly expressed 

GST-Dun1 kinase, we did not observe any level of phosphorylation on S56A/S58A/S60A 

Sml1 by GST-Dun1 from the cells exposed to MMS (Figure 36B).   



 
Figure 36. Phosphorylation of Sml1 by GST-Dun1 purified from S.cerevisiae cells 
grown in the presence of in the absence of methyl methane sulfonate (MMS).  

(A). Phosphorylation of wild type Sml1. Lanes 1-3. 8.3µM of wild type Sml1 was 
incubated with 60µM ATP and 0.06µCi/µl γ[32P]ATP and glutathione resin bound to 
GST-Dun1 purified from cells grown in the absence of MMS. Lane 4. Negative control in 
which 60µM wild type Sml1, 60µM ATP, and 0.06µCi/µl γ[32P]ATP were incubated. 
Lanes 5-7. 60µM wild type Sml1, 60µM ATP, and 0.06µCi/µl γ[32P]ATP and glutathione 
resin bound to GST-Dun1 purified from cells grown in the presence of MMS. (B) 
Phosphorylation of wild type, S56A / S58A / S60A triple mutant (denoted as T). Lanes 1-
4. 16.6µM of wild type (lane 1), S56A / S58A / S60A triple mutant (lane 2), Sml1 and 
buffer without Sml1 (lane 3) was incubated with 60µM ATP and 0.1µCi/µl γ[32P]ATP 
and glutathione resin bound to GST-Dun1 purified from cells grown in the absence of 
MMS. Lanes 5-8. 16.6µM of wild type (lane 5), S56A / S58A / S60A triple mutant (lane 
6), and buffer without Sml1 (lane 7) was incubated with 60µM ATP and 0.1µCi/µl 
γ[32P]ATP and glutathione resin bound to GST-Dun1 purified from cells grown in the 
presence of MMS. 
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Discussion  

In this study, we have identified the phosphorylation sites of Sml1, the only biological 

substrate of Dun1 identified to date. First, we analyzed the intact phosphorylated Sml1 by 

ESI-FTMS to estimate the number of phosphate groups attached to Sml1. We observed a 

mixture of singly, doubly, and triply phosphorylated Sml1 as well as unphosphorylated 

species. This indicated that at least three sites of Sml1 could be phosphorylated. Next, in 

order to determine regions of phosphorylation, we digested phosphorylated Sml1 with 

trypsin or CNBr and analyzed the proteolytic fragments. In both the trypsin and CNBr 

digests, we observed singly phosphorylated peptides spanning residues 34 to 67 or 52 to 

64. Repeated analysis of CNBr fragments enriched by Ga(III) IMAC column showed two 

to three phosphate attachment within residues 52-64. These data are consistent with the 

molecular weight of the intact phosphoSml1 with three phosphate attachments. 

Moreover, in order to determine the specific residues of phosphoryl attachment, we 

conducted further experiments on the fragment consisting of residues 52-64. Although 

initial CAD experiments showed fragmentation of phosphate groups, we could not 

observe fragmentation at the peptide backbone. Furthermore, residues 52-64 

(GSSASASASSLEM) contain a cluster of six serine residues making it difficult to 

identify the specific phosphoserines. Therefore, the phosphoserine residues were 

converted into S-ethylcysteine by a β-elimination reaction in the presence of ethanethiol, 

which made the peptide amenable to fragment at its backbone. CAD fragmentation of the 

ions corresponding to doubly and triply phosphorylated peptides showed that Ser56, 

Ser58, and Ser60 were phosphorylated. 
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 Under our experimental conditions, we did not observed a significant increase of 

Dun1 activity when the yeast cells were exposed to the DNA alkylating agent MMS. This 

was different from a previous report by Elledge and co-workers (Sanchez, Zhou et al. 

1997) showing that the Dun1 kinase activity toward a synthetic peptide, ADR G233, 

increased 20 fold when the yeast cells were exposed to MMS. Although we did not 

quantify the specific activity of the Dun1 kinase, it is unlikely that the activity of our 

GST-Dun1 toward Sml1 increases 20 fold because the apparent band intensity (although 

it was very weak) on an SDS-PAGE gel stained with Coomassie Blue was not 

significantly different. This is similar to another report by Heyer and coworkers 

(Bashkirov, Bashkirova et al. 2003) that there is no significant change in 

autophosphorylation activity of GST-Dun1 when cells were exposed to MMS. However, 

we cannot exclude the possibility that specific activity of the Dun1 kinase toward Sml1 

increases to a certain extent during DNA damage response. 

 On the other hand, we have observed a mobility shift on SDS-PAGE of Sml1 

phosphorylated by GST-Dun1 prepared from the cells exposed to MMS. Although the 

difference in the migration is relatively small, similar mobility shift was repeatedly 

observed. A possible explanation for the different migration rate of Sml1 is that the 

number of phosphorylation sites on these two sets of Sml1 is different. For example, 

hyper-phosphorylated form of the Dun1 kinase migrate slower than its 

hypophosphorylated form (Zhou and Elledge 1993). However, like regularly expressed 

GST-Dun1, GST-Dun1 expressed in the presence of MMS did not phosphorylate 

S56A/S58A/S60A Sml1. This indicates that residues other than Ser56, Ser58 and Ser60 
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cannot be phosphorylated by GST-Dun1 regardless of the presence or the absence of 

DNA damage induced by MMS. Given the fact that the majority of Sml1 phosphorylated 

by regularly expressed GST-Dun1 appears to be a singly phosphorylated form on mass 

spectrometry, it is possible that GST-Dun1 expressed in the presence of MMS produce 

more doubly and triply phosphorylated Sml1. This hypothesis should be further tested in 

the future, possibly, by a systematic mass spectrometric analysis.  

Our studies indicate that Ser56 might be phosphorylated after Ser58 and Ser60 

due to the following: we observed phosphorylation of all three residues in the triply 

phosphorylated peptide, while only the phosphorylation of Ser58 and Ser60 were 

observed in the doubly phosphorylated peptides. Some serine/threonine kinases such as 

casein kinase II (Flotow and Roach 1989) and glycogen synthase kinase 3 (Fiol, Wang et 

al. 1990) phosphorylate multiple sites of their substrates by a “hierarchal phosphorylation 

mechanism” (Flotow and Roach 1989) in which prior phosphorylation of one site is a 

prerequisite for phosphorylation of other sites. We constructed several site-directed 

mutants to investigate if Sml1 phosphorylation by Dun1 follows hierarchal 

phosphorylation and also to identify the primary phosphorylation sites. Mutation of Ser60 

to Ala eliminates phosphorylation by greater than 90%. On the other hand, mutating 

Ser58 to Ala only had a small reduction in phosphorylation, and no significant difference 

between S56A and wild type Sml1 was observed. These results suggest that Ser60 is the 

first primary site of phosphorylation, while Ser56 and Ser58 are minor sites of 

phosphorylation. Moreover, while the mutation of Ser60 to Asp also showed a 

significantly lower level of phosphate incorporation than wild type Sml1, it was 
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significantly higher than S60A Sml1. This shows that a negative charge at residue 60 

enhances phosphate incorporation at Ser 56 and Ser58 suggesting that there is positive 

cooperativity between the primary phosphorylation site Ser60 and the minor sites Ser56 

and Ser58. Although Ser61 was not identified as a potential phosphorylation site by MS 

analysis, the S61A mutant showed 48% phosphate incorporation as compared to wild 

type Sml1, suggesting that Ser61 could possibly be phosphorylated or it is necessary for 

recognition by the Dun1 kinase. However, the S56A/S58A/S60A triple mutant showed 

no phosphate incorporation strongly corroborating the MS result and unambiguously 

identifying Ser56, Ser58 and Ser60 to be the sole Sml1 sites of phosphorylation by the 

Dun1 kinase. Based on these results, we interpret the role of Ser61 to be involved in 

substrate recognition by Dun1.  

Although our data support a hierachical mechanism of Sml1 phosphorylation, 

intramolecular phosphoryl transfer from Ser60 to Ser58 and from Ser58 to Ser56 cannot 

be completely excluded. The side chains of these residues may be close enough to each 

other on the polypeptide chain that the phosphate groups can be transferred from one to 

the other without enzymatic catalysis. In addition, S56A and S58A mutations have a little 

effect on the degree of Sml1 phosophorylation indicating that Ser56 and Ser58 are not the 

major phosphorylation sites. However, Ser56 and Ser58 are likely to be phosphorylated 

by Dun1 kinase because S60A and S60D mutant Sml1 are still phosphorylated. 

Moreover, if Ser56 and Ser58 are phosphorylated solely by intramolecular phosphoryl 

transfer, rather than the enzymatic catalysis, there must be a doubly phosphorylated 

species in which phosphates are attached on Ser56 and Ser58. CAD analysis of the 
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peptide corresponding to doubly phosphorylated species showed that Ser58 and Ser60 are 

mainly phosphorylated on the doubly phosphorylated species. Nevertheless, we cannot 

exclude this possibility.  

The amino acid sequence of the Sml1 phosphorylation sites 

(GSSASASASSLEM) identified in our study is completely different from that identified 

by the synthetic peptide substrates by Sanchez et al. (Sanchez, Zhou et al. 1997). This 

study demonstrated that synthetic peptides containing a consensus cAPK recognition 

sequence (RRXS/TY; X, small residues; Y, residues having large hydrophobic group) 

can be phosphorylated by Dun1, and replacement of the –3 Arg to Ala abolishes 

phosphorylation. Although Sml1 does not contain the cAPK consensus sequence, 

flanking regions of a few serine residues have some similarity to it. For example, Ser75 

has an Arg at the –3 position and an Ile, which is a relatively large hydrophobic group, at 

+1 position (RLNSI). Similarly, Ser87 has a Lys (as a basic residue) at the –3 position 

and a Gly (as a small residue) at the –1 position (KFGS). However, analysis of the wild 

type Sml1 by CNBr digest as well as the tryptic digest and FRAG71 of the C14S mutant 

indicated that Ser75 and Ser87 are unlikely to be phosphorylated. On the contrary, the 

flanking regions of the phosphorylation sites identified by our study did not show any 

similarity to the cAPK consensus sequence. Furthermore, we demonstrated that a 

synthetic peptide used by Sanchez et al. (1997) can be phosphorylated by Dun1 only at a 

high concentration, and the relative level of its phosphorylation is only about 11% of 

Sml1. These findings show that the Dun1 recognition motif is different from the cAPK 
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recognition motif as Sml1 is a better substrate of Dun1 as compared to the cAPK-based 

peptide.  

We investigated if the Sml1 phosphopeptide (GSSASASASSLEM) is similar to 

phosphorylation motifs found in other proteins.  A Phi-BLAST search as well as simple 

BLAST searches in the NCBI protein sequence database showed that very few proteins 

have similar sequences to the Sml1 phosphorylation sites, and that none of these proteins 

seems to be involved in cell cycle checkpoint pathways. However, we cannot rule out the 

possibility of other unidentified substrates of Dun1 that may have different 

phosphorylation motifs as compared to that of Sml1. To further compare the specificity 

of phosphorylation by Dun1, we have conducted a database search for possible 

phosphorylation sites of Sml1 by several unknown serine/threonine kinase using the web-

based server PhosBase (http://www.cbs.dtu.dk/databases/PhosphoBase/). In this search, 

each serine and threonine residue of Sml1 was scored based on sequence comparisons of 

Sml1 and substrates for several known serine/threonine kinases. Ser61, Ser58 and Ser56 

were the first, second and third most probable phosphorylation sites with scores of 0.991, 

0.939 and 0.845, respectively. The recognition motif of 10 known serine/threonine 

kinases were also searched, and Ser60 was predicted to be a potential phosphorylation 

site for only Casein kinase II. The consensus specificity motif for Casein kinase II is 

XS*/T*XXE/DX (Hanks and Quinn 1991). If Ser60 is considered to be the site of 

phosphorylation then the XS*/T*XXE/DX consensus is satisfied by the ASSLEM stretch 

of the Sml1 phosphopeptide sequence where Glu63 is the +3 site. Our results show that 

mutation of Glu63 to glutamine decreases phosphate incorporation down to 52% of wild 
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type Sml1, and therefore it is involved in recognition by Dun1. Nevertheless, the 

phosphorylation sites Ser56 and Ser58 of Sml1 cannot be accommodated within the 

Casein kinase II recognition motif XS*/T*XXE/DX, suggesting that the Dun1 kinase has 

a unique phospho-recognition motif. 

A prerequisite for phosphorylation requires that the potential site to be freely 

accessible to the kinase of interest. Previously, in the absence of a three-dimensional 

structure, we constructed a molecular model of Sml1 based on ab initio Rosetta 

algorithms (Gupta, Peterson et al. 2004), which was in close agreement with CD and 

NMR data (Zhao, Georgieva et al. 2000). In this model, Ser56, Ser58, and Ser60 are 

located at a flexible region adjacent to a C-terminal alpha helix (Figure 37). Side chain 

solvent accessibilities of Ser56, Ser58, and Ser60 in our model were 30.6Å2, 49.6 Å2, and 

61.6 Å2,  respectively. The accessibilities tabulated for Ser56, Ser58, and Ser60 reflect 

40%, 64%, and 80% of side chain accessible area for serine in a random coil flanked by 

two Gly residues on either side (Fraczkiewicz and Braun 1998). These results suggest 

that Ser56, Ser58, and Ser60 are sites relatively accessible to the Dun1 kinase for 

phosphorylation. 

The biological consequence of Sml1 phosphorylation is to dramatically reduce the 

cellular pools of Sml1 resulting in the elevation of RNR activity (Zhao and Rothstein 

2002). At present the mechanism involving Sml1 down-regulation after its 

phosphorylation by Dun1 is not known. However, phosphorylation followed by  



 
 

Figure 37. Phosphorylation sites mapped on a molecular model of Sml1.  
A molecular model of Sml1 was constructed by a template-based program Rosetta/I-sites 
(Gupta, Peterson et al. 2004). The model shows that the phosphorylated residues Ser56, 
Ser58, and Ser60 are exposed to solvent indicating that these residues are easily 
accessible to Dun1. 
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degradation of proteinaceous inhibitors has been observed in the regulation of several 

biological processes. In S. cerevisiae, Cdc4 is a part of the SCF ubiquitin ligase complex 

that is responsible for recruiting several target proteins such as CDK inhibitor Sic1 

(Verma, Annan et al. 1997) and p25rum1(Benito, Martin-Castellanos et al. 1998) which are 

phosphorylated at the end of G1 phase. Based on binding of Cdc4 to its natural targets 

and synthetic peptides, a consensus phosphopeptide motif for Cdc4 was identified, and it 

was designated as the Cdc4 phospho-degron (CPD) motif (L/I-L/I/P-pT-P<RK> (Nash, 

Tang et al. 2001). However, Sml1phosphorylation sites did not show any indication of a 

CPD motif. Possibly degradation of Sml1 is mediated by an unidentified ubiquitin ligase 

that recognizes multiple phosphorylated residues. Future work will involve the 

identification of the pathway responsible for Sml1 degradation. 

 

Summary  

In this study, we characterized the phosphorylation of Sml1 at the molecular level. Initial 

mass spectrometric analysis of intact phosphorylated Sml1 showed that Sml1 can be 

singly, doubly and triply phosphorylated. Further mass spectrometric analysis of Sml1 

phospho-peptides generated by trypsin and CNBr digestion identified phospho-acceptors 

of Sml1 to be Ser56, Ser58 and Ser60. To further investigate Sml1 phosphorylation, we 

constructed the single mutants S56A, S58A, S60A and the triple mutant 

S56A/S58A/S60A and compared their degrees of phosphorylation to that of wild type 

Sml1 based on 32P incorporation. There was no observed phosphate incorporation in the 

triple mutant, supporting that Ser56, Ser58 and Ser60 in Sml1 are the sole 
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phosphorylation sites. We observed a drastic decrease in the relative degree of 

phosphorylation of S60A as compared to that of wild type, while S56A and S58A 

mutants showed only a little or no decrease. This result indicates that Ser60 is the primary 

phosphorylation site on Sml1. We also compared the degree of phosphorylation in S60A 

Sml1 and a phospho-mimic mutant, S60D Sml1. S60D Sml1 showed a 2.5 fold higher 

level of phosphorylation than S60A Sml1. Combining results in the mass spectrometric 

mutagenesis studies, we hypothesize that phosphorylation of Sml1 follows a hierarchical 

phosphorylation mechanism in which Ser60 is the primary phosphorylation site and 

phosphorylation at Ser60 enhances phosphorylation of Ser56 and Ser58. Site directed 

mutagenesis to replace Ser61 and Glu63 with alanine also indicates that these residues 

are important for recognition of Sml1 by the Dun1 kinase. Taken together, this study 

revealed the in vitro phosphorylation sites of Sml1 by the Dun1 kinase, the mechanism of 

Sml1 phosphorylation and substrate specificity of the Dun1 kinase.  
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Chapter 6 Relation between the Sml1-Rnr1 interactions and 

phosphorylation of Sml1 by the Dun1 kinase 

 

Introduction 

Protein phosphorylation is the most ubiquitous mode of protein regulation in Eukaryotes. 

Nearly 30% of all proteins in Eukaryotes are thought to be phosphorylated at any given 

time (Zolnierowicz and Bollen 2000). The importance of protein phosphorylation is 

underscored by the fact that the protein kinases are the largest family of proteins in 

eukaryotes, comprising 1.5 to 2.5% of their genome (Hunter 1994; Manning, Plowman et 

al. 2002). Furthermore, all major kinase families are found among eukaryotes indicating, 

that similar modes of regulation are conserved through evolution. Protein 

phosphorylation is an effective way to switch biochemical properties of proteins. 

Negative charge introduced by phosphorylation cause significant effects on target 

proteins, either by inducing a conformational change or by changing their ability to 

interact with other macromolecules. Moreover, protein phophorylation can be quickly 

reversed by removal of phosphate (de-phosphorylation) by protein phosphatase. By a 

combination of phosphorylation and de-phosphorylation, cells can switch properties of 

proteins from one state to another rapidly. As a consequence of this, phosphorylation can 

be used to quickly change the biochemical environment in the cell without synthesizing 

new proteins. Indeed, protein phosphorylation plays a key role in several complex 

cellular functions (Manning, Plowman et al. 2002) such as neuronal development, 

morphogenesis, inflammatory response, stress responses, and cell cycle control. As 
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discussed in chapter 1, DNA damage response and replication blocks are also largely 

regulated through protein phosphorylation.  

 A majority of proteins are found in multi-protein complexes within the cell 

(Kumar and Snyder 2002; Janin and Seraphin 2003). For example, a large scale affinity 

purification of 589 S.cerevisiae proteins followed by mass spectrometric analysis23 of 

proteins co-purified with the 589 yeast proteins revealed that at least 78% of these 

proteins form stable complexes (Gavin, Bosche et al. 2002). These proteins are involved 

in almost all types of fundamental biological processes, such as energy metabolism, 

synthesis and turnover of macromolecules (such as protein, nucleic acid and lipid), cell 

cycle, maintenance of cell polarity and structure, and gene expression. In the yeast 

proteome consisting of over 6000 proteins, approximately 30,000 protein-protein 

interactions are thought to occur (Kumar and Snyder 2002). These numbers reflect the 

fact that biochemical activities of proteins are largely regulated by protein-protein 

interactions. A subset of these interactions must occur during chemical modifications of 

molecules that require protein-protein interactions. Not surprisingly, protein-protein 

interaction plays essential roles in DNA damage response and replication blocks. For 

example, based on co-immunoprecipitation followed by mass spectrometric analysis of 

the immunoprecipitated proteins, Tyer and co-workers (Ho, Gruhler et al. 2002) 

identified proteins interacting with the 86 S.cerevisiae proteins implicated in DNA 

 

23 In this analysis, a cassette of a tandem affinity tag comprising of calmodulin binding protein and protein 
A was fused to 1739 ORFs. Of the 1739 proteins, 589 of them were successfully purified. The co-purified 
proteins associated with the 589 proteins were separated on SDS-PAGE gel, and they were identified by 
tryptic digestion followed by MALDI-TOF mass spectrometry. Of the 589 proteins 22% could not be 
identified due to technical problems such as detection limit or stability issues. However, this result does not 
exclude the possibility of complex formation by these 22% of proteins. 
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damage response. Their result revealed a complex network of protein-protein interactions 

involving majority of these proteins.    

It is quite common for phosphorylated proteins to interact with proteins besides 

the kinases or phosphatases responsible for their phosphorylation or dephosphorylation. 

Cdk2 is an example that has been studied intensely. Cdk2 is inhibited by inactivating 

Tyr-15 and Thr-14 phosphorylation by Wee 1 (Gu, Rosenblatt et al. 1992; Chow, Siu et 

al. 2003; Coulonval, Bockstaele et al. 2003), and by the interaction with a Cdk inhibitor, 

p21cip1 (Sherr and Roberts 1999). On the other hand, Cdk2 is activated by the 

phosphorylation of Thr=160 by the Cdk activating kinases (Kaldis 1999; Coulonval, 

Bockstaele et al. 2003),  the dephosphorylation of Tyr-15 and Thr-14 by Cdc25 

phosphatase (Gabrielli, Lee et al. 1992; Hoffmann, Draetta et al. 1994), and physical 

interactions with cyclins E and A (Murray 2004). Furthermore, p21 is phosphorylated by 

Akt kinase (Rossig, Jadidi et al. 2001; Zhou and Hung 2002), while cyclin E is 

phosphorylated by glycogen synthase kinase and Cdk2 (Welcker, Singer et al. 2003). 

This example illustrates a complexity of protein regulation by phosphorylation and 

protein-protein interactions.  

Protein phosphorylation reinforces protein-protein interaction. For example, F box 

proteins of SCF E3 ubiquitin ligases specifically bind to phosphorylated forms of their 

target proteins, bringing the target to a proximity of the ubiquitin ligase catalytic 

components (Skowyra, Craig et al. 1997). S. pombe Rad24 specifically binds to a 

phosphorylated form of Cdc25, tethering Cdc25 to the cytoplasm and blocking its access 

to Cdc2/cyclin B (Zeng and Piwnica-Worms 1999). As discussed in chapter 1, in DNA 
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damage response and replication blocks, Rad53 and Dun1 are activated upon their 

interaction with phosphorylated proteins (Gilbert, Green et al. 2001; Bashkirov, 

Bashkirova et al. 2003). It should be noted that recognition of phosphoproteins is often 

mediated by distinct domains or proteins, such as Src-homology domain 2, WD40 

repeats24, Folk Head Associated domain (FHA domain), and 14-3-3 proteins that 

specifically recognize particular phosphoproteins25 (Yaffe and Elia 2001; Pawson 2004). 

On the other hand, phosphorylation can also weaken protein-protein interaction in some 

cases. For example, during the G1-phase of the cell cycle, cell cycle inhibitory protein 

p21cip1 forms a stable complex with Cdk2 and inhibits activity of Cdk2/E-cyclin. It also 

interacts with proliferating cell nuclear antigen (PCNA) and inhibits activity of PCNA to 

recruit DNA polymerase to the origin of replication. Before mitosis, p21cip1 is specifically 

phosphorylated by Akt kinase, and the phosphorylation causes dissociation of p21cip1 

from Cdk2 and PCNA (Rossig, Jadidi et al. 2001). Consequently, Cdk2 and PCNA 

become active after the phosphorylation of p21, leading to initiation of the S phase of the 

cell cycle. 

A noteworthy question in biology is how protein-protein interaction (other than 

interaction with kinases or phosphatases) affects protein phosphorylation. Sometimes 

such interactions may block phosphorylation by causing the phosphor-accepting residue 

to be inaccessible to the kinase. For example, eIF4E is a component of 5’ mRNA cap 

binding complex, which is involved in translation initiation of Eukaryotic mRNA. In 

 

24 A protein-binding motif containing 7 repeated regions of about 40 amino acids containing conserved Trp 
and Asp.  
25 Some 14-3-3 and WD40 recognize proteins that are not phosphorylated.  
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response to certain chemical stresses, eIF4E is phosphorylated by Mnk kinase, and the 

phosphorylation of eIF4E stimulates the initiation of mRNA translation. On the other 

hand, 100-KDa adenovirus protein, L4 100K, competitively binds to eIF4E and blocks its 

phosphorylation by Mnk kinase (Cuesta, Xi et al. 2004). Interestingly, Mnk kinase and 

L4 100K share a basic amino acid rich sequence, which is responsible for their binding to 

eIF4E. On the other hand protein-protein interaction may do the opposite by exposing the 

phosphorylation site on the proteins enhancing phosphorylation. Such an enhancement of 

protein phosphorylation has been artificially demonstrated. The dominant negative 

mutant of phage Mu immunity repressor, Vir, interacts with the wild type repressor, Rep, 

forming a heterodimer of Vir and Rep within bacterial cells. Nakai and co-workers 

(Marshall-Batty and Nakai 2003) attached cAMP-dependent kinase (PKA) motif to the 

C-terminus of Rep. The dimerization of Vir and Rep induces a conformational change on 

Rep and causes exposure of the PKA motif on Rep. Consequently, interaction between 

Vir and Rep increases the rate of Rep phosphorylation by PKA in vitro. These studies 

show that protein-protein interactions can affect protein phosphorylation both positively 

and negatively by changing accessibility of phosphorylation sites to protein kinases.   

The work described in this chapter involves the investigation of the relationship 

between phosphorylation of Sml1 by Dun1 and interaction of Sml1 with Rnr1. Sml1 

interacts with both Dun1 and Rnr1 as demonstrated by several studies (Zhao, Muller et al. 

1998; Zhao, Georgieva et al. 2000; Ho, Gruhler et al. 2002). An interaction of Sml1 with 

Dun1 is responsible for phosphorylation of Sml1 by the Dun1 kinase, leading to the 

removal of Sml1. On the other hand, Sml1 inhibits RNR activity by interacting with 
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Rnr1. The first question to address was whether the Sml1-Rnr1 interactions influenced 

the degree of Sml1 phosphorylation by the Dun1 kinase. The data show not only the 

effect of Rnr1 on Sml1 phosphorylation but also possible structural insights of the Sml1-

Rnr1 interactions concerning whether the phosphorylation sites of Sml1 are on the 

interface of the Sml1-Rnr1 complex. The second question involved using a phospho-

mimic Sml1 mutant to address whether phosphorylation of Sml1 had a significant effect 

on its ability to inhibit RNR. The data suggests that Sml1 phosphorylation has a negative 

effect on RNR inhibition by Sml1. Due to time constraints, the question of whether 

phosphor-Sml1 could directly interact with Rnr1 was not addressed. In the end of this 

chapter, further experiments to address this issue will be proposed. (The experimental 

procedures employed here are described in Chapter 2.) 

 

Results 

Before performing the experiments to address the major issues, the activities of Sml1 and 

Rnr1 used for this study were measured to ensure that these proteins used for this study 

were biologically active. Figure 38 shows the activity of RNR defined as the velocity of 

the steady state kinetics. In this particular case, specific activity of Rnr1 was 

103nmol/min/mg, which is similar to values previously reported by other groups 

(Nguyen, Ge et al. 1999; Chabes, Domkin et al. 2000). In repeated experiments, 40 to 

110nmol/min/mg of Rnr1 specific activities were obtained.  

 Next, the RNR assay was performed in the presence of Sml1 ranging from 0 to 

16.6µM following the procedure described by Thelander and co-workers  
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Figure 38. RNR activity in steady state kinetics.  

RNR activity assay was performed with 1µM Rnr1 dimer and 5µM Rnr2/Rnr4 
heterodimer. 50µl of reaction mixture was taken and boiled at 0, 4, 8, 12 minutes over 
time course of the reaction. Based on radioactivity given by dCDP in each aliquot, the 
amount of dCDP produced up to each time point was determined. The slope of the curve 
represents the velocity of the reaction, which is defined as activity. Based on the amount 
of Rnr1 in each aliquot (10µg or 100pmol), the specific activity was determined. In this 
case, the activity is 1.06nmol/min and specific activity is 106nmol/min. Triplication of 
the same experiment gave specific activity of 103±3nmol/min/mg 
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(Chabes, Domkin et al. 1999). A gradual decrease of RNR activity was observed as 

concentration of Sml1 increased in the reaction mixture (Figure 39). A molar ratio of 1:1 

between Sml1 and Rnr1 monomer (2µM Sml1 and 2µM Rnr1) gave approximately 50% 

inhibition, similar to the extent of inhibition reported by Thelander and co-workers 

(Chabes, Domkin et al. 1999).  

To test if the phosphorylation of Sml1 can be affected by interaction between 

Sml1 and Rnr1, a Dun1 kinase assay was performed with 3µM of Sml1 in the presence of 

Rnr1 at various concentrations. A gradual decrease of phosphorylation was observed at 

higher concentration of Rnr1 (Figure 40A & B). At 20 to 30µM of Rnr1 monomer, the 

curve appeared to plateau at lower levels of phosphate incorporation. It should be noted 

that even at this plateau, the radioactivity was well above the background level, 

indicating that a small amount of Sml1 is still phosphorylated.  

As a negative control, the same experiment was conducted using the mutant 

E71A/R72A Sml1. Previously Rothstein and co-workers (Zhao, Georgieva et al. 2000) 

reported that R72G Sml1 did not show interaction with Rnr1 in vivo. Similarly, in vitro 

inhibition of RNR was significantly impaired by the R72A mutation (Zhao, Georgieva et 

al. 2000). We also observe that the ability of E71A/R72A Sml1 to inhibit RNR is 

significantly less than that of wild type Sml1 (Figure 39B). As expected, we did not 

observe significant change in phosphorylation of E71A/R72A Sml1 in the presence of 

Rnr1, supporting that the decrease of wild type Sml1 phosphorylation in the presence of 

Rnr1 is due to the Sml1-Rnr1 interactions. Although the data of E71A/R72A Sml1 had 

some fluctuations, statistical analysis showed that there is no significant correlation  



 
Figure 39. Inhibition of RNR by Sml1.  

(A) RNR inhibition by wild type Sml1. An RNR activity assay was performed with 2µM 
Rnr1 monomer, 2.5µM Rnr2/Rnr4 heterodimer in the presence of 0, 2.1, 4.2, 8.3 or 
16.6µM of Sml1 monomer. Each data point represents average and standard deviation of 
duplicates. The data was normalized by taking the specific activity in the absence of 
Sml1 as 100%. (B) Comparison of RNR inhibition by wild type and E71A/R72A Sml1. 
RNR activity assay was performed with 1µM Rnr1 dimer and 2.5µM Rnr2/Rnr4 in the 
absence or presence of 4.2µM of wild type or E71A/R72A Sml1 monomer. Each data 
point represents average and standard deviation of duplicates. The data was normalized 
by taking the specific activity in the absence of Sml1 as 100%.
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Figure 40. Phosphorylation of Sml1 in the presence of Rnr1.  

30µl of 250mM ATP, 0.06µCi/ul γ[32P]ATP, 3µM wild type or E71A/R72A Sml1 
monomer and Rnr1 monomer ranging from 0 to 30µM were incubated with 15µl bed 
volume of GST-Dun1 bound to glutathione resin in 30ºC for 30 minutes. (A) P81-
cellulose filter assay. After the reaction, 20µl of the supernatant was applied to P81 
phospho-cellulose filter and the radioactivity of 32P covalently attached to Sml1 was 
measured by liquid scintillation counter. Amount of radioactivity from the protein (delta 
cpm = cpm of protein sample – cpm of background) was determined first. The data was 
normalized by taking the delta cpm in the absence of Rnr1 as 100%. (B) Autoradiography 
in the experiment with wild type Sml1. 10µl of the supernatant was applied to SDS-
PAGE gel and the phosphorylated Sml1 was visualized. 
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Figure 40 continued 
(C) Phosphorylation of wild type Sml1 and E71A/R72A Sml1 was performed on the 
same day under the same circumstances. Using GST-Dun1 from the same batch of 
preparation, phosphorylation of wild type and E71A/R72A Sml1 in the absence of Rnr1 
was simultaneously measured as in (A).   
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between phosphorylation of E71A/R72A Sml1 and the concentration of Rnr1 (p=0.259). 

On the other hand, there is a significant correlation between phosphorylation of wild type 

Sml1 and the concentration of Rnr1 (p<0.001).  Autoradiography showed consistent 

results. The experiments with wild type Sml1 and E71A/R72A Sml1 were performed on 

different days, and the overall level of phosphorylation in E71A/R72A was higher than 

that in wild type Sml1. However, when phosphorylation of wild type and E71A/R72A 

Sml1 were performed on the same day under the same circumstances, they are 

phosphorylated in the same extent (Figure 40C).    

Next, to test whether the decrease of Sml1 phosphorylation in the presence of 

Rnr1 is due to the reduced accessibility caused by the Sml1-Rnr1 interactions, the 

following experiments were performed. A fluorescence probe, N,N'-dimethyl-N-

(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD amide), was 

covalently conjugated to residue 14 of wild type Sml1 (IANBD-wt Sml1) and residue 60 

of  the C14S/S60C Sml1 (IANBD-S60C Sml1), respectively. A characteristic of IANBD 

amide is that its emission intensity increases when the probe moves to a less solvent 

accessible environment. Fluorescence from respective proteins was monitored before and 

after addition of Rnr1. 

Only a small increase of fluorescence intensity was observed when Rnr1 was 

added to IANBD-wt Sml1 (Figure 41A). On the other hand, more than a three-fold 

increase of fluorescence intensity was observed in the same experiment with IANBD-

S60C Sml1 (Figure 41B). Previously, we identified residue 60 as the primary 



 

 
 

Figure 41. Fluorescence based assay of the Sml1-Rnr1 interaction.  
(A) Fluorescence emission scan of wild type Sml1 conjugated with IANBD amide at 
residue 14 (IANBD-Sml1). Emission scan was performed on 5µM of IANBD-Sml1 
monomer first (lower spectrum shown in red). Next, Rnr1 was added to a final 
concentration of 16µM, while maintaining Sml1 concentration at 5µM. Then, emission 
scan was performed on the Sml1 / Rnr1 mixture. (B) Emission scan of C14S / S60C Sml1 
conjugate with IANBD (IANBD-S60C Sml1) at residue 60 before and after addition of 
Rnr1 performed as in (A). (C) Titration of IANBD- S60C Sml1 with Rnr1 (detailed 
procedure is described in Chapter 2). Each data point represents average and the standard. 
(D) RNR inhibition by IANBD-S60C Sml1. RNR activity assay was performed with 
1µM Rnr1 dimer and 2.5µM Rnr2/Rnr4 heterodimer in the absence or presence of 4.2µM 
of wild type and IANBD-S60C Sml1 monomer. Each data point represents average and 
standard deviation of triplicates (No Sml1 and wt Sml1) or duplicates (IANBD S60C 
Sml1). 

 178



 179

phosphorylation site of Sml1 (Uchiki et al., 2004). Therefore, our data indicates that the 

phosphorylation sites of Sml1 become less solvent accessible when Sml1 binds to Rnr1. 

As a negative control, IANBD-amide was conjugated with beta-mercaptoethanol, and it 

was mixed with Rnr1 in the same manner. No significant change of fluorescence intensity 

was observed, demonstrating that increased fluorescence intensity was not due to non-

specific interaction between IANBD and Rnr1 or causes other than the Sml1-Rnr1 

interactions. 

To quantify the Sml1-Rnr1 interactions, IANBD-S60C Sml1 was titrated with 

Rnr1 and the emission intensities after each titration were recorded (Figure 41C). In a 

buffer used for the preparation of Rnr1 and the phosphorylation of Sml1, we obtained a 

dissociation constant (Kd) of 1.07±0.48µM, which is within the range of the value 

(0.4±0.1µM) reported by Thelander and co-workers (Chabes, Domkin et al. 1999). 

However, comparison of RNR activity in the presence of IANBD-S60C Sml1 and wild 

type Sml1 shows that IANBD-S60C Sml1 has slightly less ability to inhibit RNR (Figure 

41D). This indicates that IANBD-S60C Sml1 has less affinity than wild type Sml1.  

 To test the effects of Sml1 phosphorylation on inhibiting RNR, an RNR activity 

assay was performed in the presence of S60D phospho-mimic Sml1 as well as wild type 

Sml1 (Figure 42). S60D Sml1 showed a decreased level of RNR inhibition than wild type 

Sml1, although it still inhibits RNR significantly.  
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Figure 42. Inhibition of RNR by S60D Sml1.  

RNR activity assay was performed with 1µM Rnr1 dimer and 2.5µM Rnr2/Rnr4 
heterodimer in the absence or presence of 4.2µM of wild type or S60D Sml1 monomer. 
Each data point represents average and standard deviation of triplicates. 
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Discussion 

Our study demonstrated that Rnr1 could significantly reduce phosphorylation of Sml1 by 

the Dun1 kinase through its interaction with Sml1. On the other hand, it still remains 

uncertain whether or not Sml1 bound to Rnr1 can be phosphorylated. The data presented 

above indicate that Rnr1 cannot completely compete out Dun1. Sml1 was still weakly 

phosphorylated in the presence of Rnr1 at the concentration (30µM Rnr1 monomer in 

Figure 40A) where the descending curve of Sml1 phosphorylation appears to reach a 

plateau. In addition, if we take the dissociation constant (Kd) for the Sml1-Rnr1 

interactions to be approximately 1.1µM (as shown in Figure 41C), approximately 0.1µM 

of unbound Sml1 must be present at 3µM of Sm1 and 30µM Rnr126. Dun1 kinase assay 

with various concentrations of Sml1, no phosphorylation of Sml1 was detected at 

~0.1µM of Sml1 (data not shown). These observations suggest that Sml1 may be 

phosphorylated weakly when it is bound to Rnr1. However, more observations of Sml1 

phosphorylation at higher concentration of Rnr1 will be needed to conclude this issue.  

Our study also suggests that unbound Sml1 is largely phosphorylated by Dun1.  

As shown in Figure 40A, the extent of Sml1 phosphorylation can be dependent on the 

concentration of Rnr1. In addition to the data shown above, when we initially conducted 

 

26 Assuming that stoichiometry of Sml1 and Rnr1 in the complex is 1 to 1, Kd of the Sml1-Rnr1 interaction 
is expressed as a quadratic equation of the concentration of the Sml1-Rnr1 complex in terms of total 
concentration of Sml1 and Rnr1: 
 Kd=([Sml1total]-[Complex]) x ([Rnr1total] – [Complex]) / [Complex] 

Where [Sml1total}=Total concentration of Sml1, [Rnr1total]=Total concentration of Rnr1. and 
[Complex}=Concentration of the Sml1-Rnr1 complex.  

For example, when Kd is 1.1µM and total concentration of Sml1 and Rnr1 is 3µM and 30µM respectively, 
2.88µM of the Sml1-Rnr1 concentration is obtained by solving the above equation. Therefore, the 
concentration of unbound Sml1 in this condition is 0.12µM ([Sml1total]-[Complex]=3µM-
2.88µM=0.12µM). 
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phosphorylation of Sml1 at 8µM (>2.5 times higher than the concentration in Figure 40A 

& B), no significant reduction of Sml1 phosphorylation was observed in the presence of 

Rnr1 at low concentrations (2 or 5µM). This was probably because the concentration of 

free Sml1 was well above the Km of Sml1 for its phosphorylation by the Dun1 kinase, 

and the Dun1 kinase was saturated with Sml1 at these conditions. Generally in Michaelis-

Menten kinetics, at a range of substrate concentrations well above Km of the reaction, 

change in substrate concentration has only a small effect on the velocity of the reaction. 

When the total concentration of Sml1 is 8µM and that of Rnr1 is 2 to 5µM, the 

concentration of unbound Sml1 is estimated to be 4 to 7µM26. Km of Sml1 for its 

phosphorylation is possibly well below 4 to 7µM. Although it is difficult to accurately 

determine Km of Sml1 phosphorylation by Dun1 in our current experimental scheme, in 

the future, it will be important to, at least roughly, estimate the Km of the reaction. 

 The experiment involving fluorescence spectroscopy showed that the primary 

phosphorylation site of Sml1 becomes less solvent accessible when Sml1 is bound to 

Rnr1. This explains our first observation that Rnr1 reduces Sml1 phosphorylation. 

Accessibility of substrate residues to protein kinases is an important factor that affects 

phosphorylation. Recent statistical analysis of the specificity of protein kinases show that 

65-70% of phosphorylated residues are located on the surface of the protein, while the 

probability of Ser/Thr/Tyr residues occurring in the interior of a protein is almost equal to 

its occurrence in the exterior of a protein (Kreegipuu, Blom et al. 1998; Weckwerth and 

Selbig 2003). Our data show that the accessibility of phosphorylation sites is a major 

factor for protein phosphorylation. 
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An important issue is whether phosphorylation of Sml1 in vivo is significantly 

reduced by its interaction with Rnr1. Rothstein and co-workers (Zhao, Chabes et al. 

2001) reported that there is no significant difference between the degradation profiles of 

wild type versus the  I76T and S87P Sml1 mutants27 in the presence of DNA damage and 

replication blocks. Based on a yeast two hybrid assay, binding of I76T and S87P Sml1 to 

Rnr1 was found to be significantly impaired (Zhao, Georgieva et al. 2000). These studies 

concluded that the degradation of Sml1 in vivo is triggered by phosphorylation of Sml1 

(Zhao, Chabes et al. 2001; Zhao and Rothstein 2002) and that the Sml1-Rn1 interaction 

has no significant effect on Sml1 degradation in vivo (Zhao, Chabes et al. 2001). Based 

on these findings, one can possibly conclude that the Sml1-Rnr1 interactions are not a 

significant determinant of phosphorylation of Sml1 in vivo. However, the data presented 

here shows that in vitro phosphorylation of Sml1 is significantly reduced by the Sml1-

Rnr1 interactions. A possible explanation for the discrepancy between their in vivo study 

and our in vitro study is that the population of free Sml1 in vivo may be much larger than 

that of Sml1 bound to Rnr1, and the mutation to disrupt the Sml1-Rnr1 interactions may 

not cause significant change in the overall concentration of free Sml1. However, since the 

comparison of the levels of in vivo phosphorylation in wild type versus the I76T and 

S87P Sml1 mutants has not been investigated, we cannot exclude the possibility that the 

Sml1-Rnr1 interactions may still affect Sml1 phosphorylation in vivo to an extent.  

Finally, we addressed whether the phosphorylation of Sml1 potentially affects the 

ability of Sml1 to inhibit RNR. S60D phospho-mimic Sml1 showed reduced levels of 

 

27 These mutations were induced in the chromosomal copy of SML1 gene.  
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RNR inhibition28, suggesting that the phosphorylation of Sml1 may also impair activity 

of Sml1. However, from our current data, we cannot conclude whether the reduced RNR 

inhibition by S60D Sml1 is due to weaker affinity of S60D Sml1 or any other unknown 

cause. Further experiments need to be performed to unequivocally address this issue.  

 

Further experiments 

This section proposes the experiments that should be done to address issues that could not 

be fully addressed in Chapter 6. These issues are: 

1. Whether phosphorylation of Sml1 by the Dun1 kinase partially takes place 

when Sml1 is bound to Rnr1, 

2. Whether  phosphorylation of Sml1 affects binding of Sml1 to Rnr1, 

3. Whether phosphorylation of Sml1 affects its ability to inhibit RNR.  

Although these issues have been addressed to a certain extent, further experiments are 

necessary. For each issue, problems associated with our current experimental scheme will 

be pointed out first. Then, possible solutions and alternative strategies will be discussed.  

 

Unequivocally determine if Sml1 bound to Rnr1 can be weakly phosphorylated  

The data presented above certainly showed that the Sml1-Rnr1 interactions reduce 

phosphorylation of Sml1 in vitro. However, it remains uncertain if Sml1 is partially 

 

28 Thelander and co-workers also performed RNR activity assay in the presence of S60D, S58D/S60D, and 
S56D/S58D/S58D Sml1. Their result showed that all these mutants are less active than wild type Sml1 and 
the more acidic residues are introduced at the phosphorylation sites, the less activity of Sml1 was observed. 
(Unpublished information obtained through personal communications.)   
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phosphorylated when it is bound to Rnr1. Sml1 phosphorylation was still observed in the 

presence of Rnr1 at the concentration where the descending curve of Sml1 

phosphorylation appears to reach a plateau. However, more observations of Sml1 

phosphorylation should be made at higher concentration of Rnr1 to conclude that Sml1 is 

still phosphorylated when it is saturated with Rnr1.  

Using the experimental scheme presented in this study, it is still possible to 

conclude that the phosphorylation of Sml1 takes place when Sml1 is bound to Rnr1 

provided we can demonstrate the following:  

A. Sml1 is phosphorylated in the presence of Rnr1 at a concentration of Sml1 

and Rnr1 where a majority of Sml1 is bound to Rnr1. 

B. At a concentration equivalent to the concentration of unbound Sml1 in A (in 

the absence of Rnr1), Sml1 is phosphorylated to a significantly lesser extent 

than A. 

One difficulty in demonstrating these points is the inability to accurately estimate the 

unbound Sml1 concentration in the presence of Rnr1. Unbound Sml1 concentration is 

calculated based on the dissociation constant of the Sml1-Rnr1 interactions. Currently, 

error associated with dissociation constant (Kd) of the Sml1-Rnr1 interactions is 

relatively high (Kd=1.07±0.47µM), when the Kd is determined by the fluorescent based 

binding assay (problems associated with this assay are further discussed in the 

Appendix). In addition, comparison of RNR activity in the presence of IANBD-S60C 

Sml1 and wild type Sml1 shows that IANBD-S60C Sml1 has slightly less ability to 

inhibit RNR (Figure 41D). This indicates that IANBD-S60C Sml1 has less affinity than 
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wild type Sml1. Currently, IANBD-S60C Sml1 is used for the binding assay and wild 

type Sml1 is used for the Dun1 kinase assay. Therefore, the concentration of unbound 

Sml1 in the kinase assay (in the presence of Rnr1) may be underestimated.  

An alternative strategy is to covalently tether Sml1 to Rnr1. If Sml1 and Rnr1 can 

be successfully tethered, it should be possible to specifically observe phosphorylation of 

Sml1 tethered to Rnr1 by autoradiography, because molecular weights of Sml1 and Rnr1 

are 12 kDa and 100 kDa respectively. This experiment is rather qualitative, and the 

inaccuracy of the protein concentration in the reaction mixture would not be a serious 

problem. The difficult step for this strategy will be to find an appropriate method of 

cross-linking. Moreover, it will be necessary to ensure that Sml1 conjugated to a cross 

linker (but not Rnr1) is phosphorylated in the same extent as un-conjugated Sml1. It will 

be necessary to find sites on Sml1 that is distant from the phosphorylation site that can be 

used for cross-linking. A strategy to find such sites is to introduce a cysteine within a 

region spanning between residues 72-104 on C14S Sml1 and conjugate cross linkers that 

react with cysteine at one end. In the mass spectrometric analysis presented in chapter 5, 

we have demonstrated that Sml1 can be phosphorylated without residues 72 to 104. So, it 

is unlikely that the conjugation of the cross-linker within these residues interferes with 

the phosphorylation of Sm1l. On the other hand, such conjugations would potentially 

interfere with binding of Sml1 to Rnr1, and screening several residues may be necessary. 

The type and length of cross-linker reagents may be another consideration for 

successfully tethering the two proteins and not interfering with phosphorylation due to 

the conjugation of the reagent to Sml1.  
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Test if phosphorylation of Sml1 affects binding of Sml1 to Rnr1.   

Our current fluorescence based assay to monitor the Sml1-Rnr1interactions requires 

conjugation of the fluorescence probe to residue 60 of Sml1, which is the primary 

phosphorylation site. Therefore, this method cannot be used to monitor binding of either 

phospho-mimic Sml1 or phosphorylated Sml1 to Rnr1. In order to do so, the site of the 

fluorescence probe attachment needs to be moved to another location of Sml1 distant 

from the phosphorylation sites.  

 An alternative strategy is to use different techniques for monitoring the Sml1-

Rnr1 interactions. For example, measuring fluorescence anisotropy might be one such 

choice. Since the Sml1 dimer is 24 kDa and Rnr1 dimer is 200 kDa, the tumbling rate of 

Sml1 molecule may be significantly reduced upon binding of Sml1 to Rnr1. When using 

conjugated Sml1 with a fluorescence probe, fluorescence polarization within a certain 

time window (fluorescence anisotropy) might be significantly increased upon the binding 

event. An advantage of this method is that it may be appropriate to conjugate the 

fluorescence tag away from the region involved in the Sml1-Rnr1 interactions and from 

the phosphorylation sites. For example, Cys14 on wild type Sml1 may be a candidate site 

for the conjugation. In this way, the potential problem of interfering with the Sml1-Rnr1 

interactions or with phosphorylation may be possibly avoided.  

   Nevertheless, it will be still difficult to test the binding of phosphorylated Sml1 to 

Rnr1 (but not the phospho-mimic Sml1 mutant). Fluorescence based assays described 

above may require significant amounts of Sml1 separated from unphosphorylated Sml1. 
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However, it may be possible to monitor binding of phospho-Sml1 to Rnr1 in a more 

qualitative method as described below.    

GST-pull down assays using GST fusion Rnr1 (GST-Rnr1) may be such a 

possible qualitative method. We have obtained a yeast expression plasmid for GST-Rnr1 

from Dr. Rodney Rothstein as a personal gift. This plasmid was previously used to 

demonstrate the Sml1-Rnr1 interactions in vivo (Zhao, Muller et al. 1998). First, by 

applying 32P labeled phospho-Sml1 to GST-Rnr1 bound to the glutathione resin, it may 

be possible to determine whether or not phospho-Sml1 binds to Rnr1. Second, it may be 

possible to determine the relative affinity of phosphorylated and unphosphorylated Sml1 

by measuring the relative ratio of phosphorylated and unphosphorylated Sml1 in the 

following samples; (1) A mixture of phosphorylated and unphosphorylated Sml1 before 

being applied to GST-Rnr1, (2) Sml1 bound to GST-Rnr1, and (3) Sml1 in the flow-

through from the GST-Rnr1 column. Recently, we found that the phosphorylated Sml1 

can be separated from the unphosphorylated form on SDS-PAGE29. It is also possible to 

analyze the relative amount of Sml1 by quantitative immunoblotting using an antibody 

against Sml1. Although we have not tested the antibody against phosphorylated Sml1, we 

have successfully performed immunoblots to detect free Sml1. (This antibody is a 

personal gift from Dr. Rodney Rothstein.) In these GST pull-down assays, it will be also 

 

29 SDS-PAGE gel used for autoradiography shown in Figure 38B was stained with Coomassie Blue. Two 
bands were observed; the slowly migrating band corresponding to migration of phosphorylated Sml1 and 
fast migrating band corresponding to the unphosphorylated Sml1. The slowly migrating band was observed 
in only the sample containing phospho-Sml1 while another band was present in all the samples including 
the negative control which does not contain phospho-Sml1 (data not shown). 
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important to use proper negative controls to take account for non-specific binding of 

proteins to glutathione resin or GST.  

 

Test if phosphorylation of Sml1 affects inhibition of RNR 

The bottleneck for measuring activity of phospho-Sml1 is to produce a sufficient amount 

of phospho-Sml1. In our current method to phosphorylate Sml1 in vitro, at best, about 

40% of 8µM Sml1 can be phosphorylated in about 500µl, which may provide the amount 

of Sml1 required for measuring inhibition of RNR by Sml1. The total amount of 

phospho-Sml1 produced in this method depends on the amount of GST-Dun130. Our data 

have shown that 50% inhibition of RNR activity can be seen with approximately 2µM of 

Sml1 (Figure 39), and the difference between inhibition of RNR at 2µM and 4µM of 

Sml1 can be clearly observed. Therefore, if the ability of phosphorylated Sml1 to inhibit 

RNR is largely different from that of the unphosphorylated form, we may be able to 

qualitatively observe the difference in inhibition of RNR between the sample containing 

only unphosphorylated Sm1l versus the sample in which a fraction (30 to 40%) Sml1 is 

phosphorylated.   

Another strategy to produce a large quantity of phospho-Sml1 is to use other kinases that 
can be produced in bulk. As discussed in chapter 5, Ser60 is mainly phosphorylated by 
the Dun1 kinase, and it is also a potential phosphorylation site for Casein Kinase II 
(CKII). We tested this possibility by performing in vitro  

 

30 In our current experimental scheme, in vitro phosphorylation of Sml1 levels off approximately one hour 
after the reaction is started even thorugh Sml1 and ATP are not depeleted. The reason for the decrease of 
GST-Dun1 activtiy is currently unknown. Even though GST-Dun1 is supposed to be catalytic in the 
reaction, yield of phospho-Sml1 depends on amount of GST-Dun1 in the reaction mixture.   
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phosphorylation of wild type and S60A Sml1 by CKII (Figure 43). Although the activity 

of CKII towards Sml1 was more than 10-fold weaker than its activity towards a synthetic 

peptide (RRREEETEEE), our result clearly shows that CKII phosphorylates Ser60. CKII 

(purchased from CALBIOCHEM) used for this study is expressed in E.coli. As compared 

to the Dun1 kinase expressed in S.cerevisiae, it will be easier to prepare CKII expressed 

in bacteria. Several groups have shown in vitro kinase activity of non-commercial CKII 

expressed in bacteria (Antonelli, Daniotti et al. 1996; Benetti, Kim et al. 1998). 

Separation of phosphorylated and unphosphorylated Sml1 may be necessary to 

quantitatively compare their ability to inhibit RNR or binding to Rnr1. As described 

above, we have observed separation of phosphorylated and unphosphorylated Sml1 on 

SDS-PAGE gel. Although SDS-PAGE is not a choice for preparative separation of 

proteins, this suggests that phosphorylated and unphosphorylated Sml1 have significantly 

different physical properties. Methods based on charge differences of proteins such as 

preparative electrophoresis or ion exchange chromatography may be used to purify 

phosphorylated Sml1. 

 



 

 

Figure 43. Phosphorylation of Sml1 by Casein kinase II (CKII).  

In vitro phosphorylation of Sml1 was performed by incubating 17µM wild type or S60A 
Sml1, 25U/ml CKII, 60µM ATP and 0.1µCi/ul [γ-32P]ATP in 30°C for 30min. The 
sample was resolved on 15% polyacrylamide SDS-PAGE gel. The gel was exposed to X-
ray film for 24 hours. Lane 1-3. Wild type Sml1 incubated with CKII. Lane 5-7. S60A 
Sml1 incubated with CKII. Lane 9. A negative control in which Sml1 was omitted from 
the reaction mixture.   
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Summary 

Phosphorylation of wild type Sml1 in the presence of increased concentrations of Rnr1 

shows that Rnr1 reduces phosphorylation of Sml1 in vitro. The same experiment using 

E71A/R72A Sml1, which does not interact with Rnr1, further supports that reduced 

phosphorylation of wild type Sml1 in the presence of Rnr1 was due to interaction 

between Sml1 and Rnr1. A fluorescence study conjugating a solvent-accessibility-

sensitive probe (IANBD-amide) to the primary phosphorylation site of Sml1 (Ser60) 

showed that the phosphorylation site becomes less accessible when Sml1 is bound to 

Rnr1. This indicates that the decreased phosphorylation of Sml1 in the presence of Rnr1 

is due to reduced accessibility of Sml1’s phosphorylation sites. Our data also suggests a 

possibility that Sml1 is phosphorylated to a lesser extent when it is bound to Rnr1, 

although our current data is not sufficiently precise to quantitatively conclude this issue. 

Experiments to further address this issue were discussed.  

The RNR activity assay with S60D phospho-mimic Sml1 exhibited reduced level 

of RNR inhibition, suggesting that the inhibitory activity of Sml1 is likely to be reduced 

by phosphorylation of Ser60. Experiments to further address the effects of 

phosphorylation on activity of Sml1 and the Sml1-Rnr1 interactions were also discussed. 
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Chapter 7. Conclusions 

Biological impact and technical advance made by this dissertation research 

The overall goal of this dissertation research was to elucidate the structure-function and 

regulation of Sml1. More specifically, this work addressed the following three aims: (1) 

the biochemical characterization of recombinant Sml1, (2) the elucidation of Sml1 

phosphorylation, and (3) the investigation of the effects of Rnr1 on Sml1 

phosphorylation. The work in this thesis provides structural insights towards the 

oligomerization and phosphorylation of Sml1. Furthermore, this study addresses the 

broader issue of DNA damage and replication blocks with respect to the specificity of the 

Dun1 kinase and the effects of protein-protein interactions on protein phosphorylation.  

The first aim was to characterize the molecular nature of Sml1. Our initial goal 

was to use mass spectrometry and gel filtration chromatography to analyze the histag, 

wild type, and C14S Sml11 for crystallization. These analytical techniques are commonly 

to identify crystallization problems such as proteolytic degradation and non-specific 

oligomerization of proteins, which deter crystallization. At the commencement of this 

work, only a few publications were available describing some level of biochemical 

characterization of Sml1 (Zhao, Muller et al. 1998; Chabes, Domkin et al. 1999).  The 

following biochemical aspects of Sml1 were demonstrated:  

1. Sml1 can form an intermolecular disulfide linked dimer through Cys 14 

2. Sml1 carries Na+/K+ adducts, which are most prominent in Sml1-histag 

3. Sml1 can also form an oligomer through a non-covalent interaction. 
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Furthermore, a truncated form of C14S Sml1 was identified, and this was later used to 

gather important information regarding Sml1 phosphorylation. Further work by other 

members of our group concluded that Sml1 forms dimer through non-covalent 

interactions involving the region spanning residues 8 to 20 (Gupta, Peterson et al. 2004).  

The second aim of this research was to elucidate the regulation of Sml1 through 

phosphorylation. Rothstein and co-workers (Zhao, Georgieva et al. 2000; Zhao, Chabes 

et al. 2001) reported that Sml1 is phosphorylated by the Dun1 kinase, and the 

phosphorylation possibly triggers degradation of Sml1 during DNA damage / replication 

block responses. Following these studies, phosphorylation sites of Sml1 was identified by 

mass spectrometry and confirmed by site-directed mutagenesis. Based on conventional 

biochemical techniques, substrate specificity of the Dun1 kinase was also characterized. 

The work led to the following conclusions: 

1. Ser 56, Ser58 and Ser60 are phosphorylated by the Dun1 kinase, among which 

Ser60 is the primary phosphorylation site 

2. Phosphorylation of Ser60 possibly enhances phosphorylation of other residues 

3. Phosphorylation patterns of doubly and triply phosphorylated Sml1 as well as 

the cooperativity between phosphorylation sites suggests that phosphorylation 

of Sml1 follows a hierarchical phosphorylation mechanism 

4. Unlike a previous report (Sanchez, Zhou et al. 1997), substrate specificity of 

the the Dun1 kinase is not similar to cAMP dependent kinase.  

5. Instead, the requirement of Glu at the  +3 position of the phospho-acceptor 

(Ser60) on Sml1 for phosphorylation by the Dun1 kinase as well as the in 
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vitro phosphorylation of Ser60 by Casein kinase II indicates that substrate 

specificity of the Dun1 kinase may be similar to that of Casein kinase II.  

This was the first biochemical characterization of the Dun1 kinase using one of its natural 

substrates. The phosphorylation motif SASASSLE is a unique motif not previously 

observed. The data provided show not only the phosphorylation sites on Sml1, but also 

some details of the mechanism of how Dun1 phosphorylates Sml1. These results will also 

provide a basis for studying the degradation of Sml1. Although Sml1 is the only natural 

substrate of Dun1 identified to date, it is likely that there are other substrates of Dun1 

involved in RNR transcriptional regulation, G2/M cell cycle arrest, and DNA repair. 

Information obtained in this research will be applicable to studying phosphorylation of 

other substrates of Dun1.  

 The third aim of this research was to investigate the relationship of the Rnr1-

dependent phosphorylation of Sml1. First, it was important to know whether the Sml1-

Rnr1 interactions affect phosphorylation of Sml1. Second, whether or not 

phosphorylation of Sml1 affects Sml1’s ability to inhibit RNR activity. Here is a 

summary of the results obtained from the above experiments: 

1. Phosphorylation of Sml1 by the Dun1 kinase is reduced by the Sml1-Rnr1 

interactions.  

2. The phosphorylation site (Ser60) of Sml1 becomes less accessible when Sml1 

is bound to Rnr1. 
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3. The phospho-mimic S60D Sml1 has less ability to inhibit RNR activity than 

wild type Sml1, suggesting that the phosphorylation of Sml1 also reduces 

RNR inhibition by Sml1. 

Combining these observations with the previously reported results by Rothstein and co-

workers (Zhao, Chabes et al. 2001), our study implies that unbound Sml1 is mainly 

phosphorylated in vivo. However, the possibility that Sml1 bound to Rnr1 can be partially 

phosphorylated by the Dun1 kinase cannot be completely ruled out. However, the effect 

of Sml1 phosphorylation on Sml1’s ability to inhibit RNR requires further investigation. 

Based on this dissertation research combined with previous reports by other 

groups (Zhao, Muller et al. 1998; Chabes, Domkin et al. 1999; Zhao, Chabes et al. 2001; 

Zhao and Rothstein 2002), a model for phosphorylation and regulation of Sml1 is 

proposed as follows (Figure 44): (1) Upon DNA damage or replication blocks, free Sml1 

is phosphorylated by the Dun1 kinase at Ser60 (2) Phosphorylation of Sml1 at Ser60 

enhances phosphorylation at Ser56 and Ser58, (3) Phosphorylation of Sml1 weakens its 

ability to inhibit RNR  and (4) Phosphorylation of Sml1 leads to its degradation. Based 

on personal communication with Dr. Rodney Rothstein at Columbia University, 

degradation of S56A/S58A/S60A/S61A Sml1 takes place significantly slower than that of 

wild type Sml1. On the other hand, degradation profiles of S60A and wild type Sml1 do 

not differ significantly. These observations indicate that phosphorylation of all phospho-

acceptors Ser56, Ser58 and Ser60 are possibly important for degradation of Sml1. While 

our data showed that Ser61 is not likely to be phosphorylated in vitro, in vivo 

phosphorylation of Ser61 has not been fully tested. In addition, our observation in RNR  



  
Figure 44. A new model for phosphorylation and regulation of Sml1.  
This model is proposed based on this dissertation research and previous reports from 
other groups (Zhao, Muller et al. 1998; Chabes, Domkin et al. 1999; Zhao, Chabes et al. 
2001; Zhao and Rothstein 2002). 
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inhibition by S60D Sml1 indicates that phosphorylation of Sml1 weakens its ability to 

inhibit RNR. Most likely that is because the Sml1-Rnr1 interactions are weakened by 

Sml1 phosphorylation. On the other hand, the Sml1-Rnr1 interactions potentially stabilize 

Sml1 in vivo (Zhao, Chabes et al. 2001). Therefore, it is possible that Sml1 

phosphorylation causes dissociation of Sml1 from Rnr1 and the dissociation makes Sml1 

more prone to degradation. 

Our recent study (Gupta, Peterson et al. 2004) also showed that Sml1 forms a 

dimer through a region spanning residues 8 to 20. Previously Rothstein and co-workers 

reported that this region is not involved in binding of Sml1 to Rnr1 (Zhao, Georgieva et 

al. 2000). However, dimerization of Sml1 may have consequences in Sml1’s biological 

function which has not been fully investigated. For example, dimerization of Sml1 may 

increase the effective concentration of Sml1 to interact with Rnr1. It is likely that the 

dimer of Sml1 interacts with the dimer of Rnr1, because the active form of the RNR large 

subunit is generally a dimer or a larger oligomer (Jordan and Reichard 1998) and the 

stoichiometry of Sml1 and Rnr1 in their complex is roughly one to one (Chabes, Domkin 

et al. 1999). Although RNR inhibition by ∆38 and ∆50 Sml1 has been shown, the 

concentration dependence of RNR inhibition by these mutants has not been fully 

investigated. In addition, the dimerization domain of Sml1 might have a biological 

function other than RNR inhibition such as interactions with other proteins or is involved 

in subcellular localization of Sml1.  

Another important aspect of this research is the establishment of experimental schemes 

within our group. Although some of the techniques used in this study have been  
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developed elsewhere, the research enabled the group to employ more advanced 

techniques and handle more complex biological systems.  

 Here is a brief summary of the new techniques developed during this dissertation. 

These techniques will be employed by the Dealwis and Hettich groups: (1) basic 

experimental schemes to analyze proteins by ESI-FTICR mass spectrometry (FTICR-

MS), (2) peptide fingerprinting and SORI-CAD of the peptides to unequivocally verify 

protein species, and (3) using intact proteins to analyze by FTICR-MS with high 

resolution and high mass accuracy. These techniques enable the identification of 

chemical and posttranslational modifications such as disulfide bonds, metal adducts and 

phosphorylation sites as demonstrated with Sml1.  

Moreover, the method for conducting the RNR activity assay was learned during 

a visit to the Stubbe laboratory at MIT. These assays were then used to demonstrate that 

the Rnr1 and Sml1 prepared in our laboratory were biologically active. Based on 

fluorescence spectroscopy using a solvent-accessibility sensitive probe (IANBD), a 

preliminary method to determine the dissociation constant of the Sml1-Rnr1 interactions 

has been developed. This work has led to the design of several new biochemical 

experiments involving RNR. 

 

Future directions 

This project has reached a stage to address problems with more biological significance 

and more challenging technicalities. The following biological problems should be 

addressed as an extension of this research.    
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First, the in vivo phosphorylation of Sml1 needs to be studied in depth. So far, 

Rodney Rothstein’s group at Columbia University has studied the degradation profile of 

Sml1 mutants in which putative phosphorylation sites of Sml1 was mutated (unpublished 

information obtained through personal communications). Nevertheless, mass 

spectrometry is a more direct approach to unequivocally identify in vivo phosphorylation 

sites of Sml1. A challenge for the mass spectrometric approach will be to prepare 

phosphorylated Sml1 that can be applied to mass spectrometry (i.e. in sufficient quantity 

and purity31). In addition, in vivo Sml1 phosphorylation can be quantitatively analyzed by 

conventional biochemical methods, such as P32 labeling, which is more reliable than 

methods used by other groups (Zhao, Georgieva et al. 2000; Zhao, Chabes et al. 2001).  

Second, degradation of Sml1 needs to be studied in detail. For example, it is 

currently unknown whether Sml1 is degraded by a proteasomal dependent pathway or a 

vacuolar pathway. There has been no study addressing ubiquitination of Sml1. The link 

between phosphorylation and degradation of Sml1 also needs to be addressed further. As 

discussed in Chapter 1, there are at least two possible mechanisms for how 

phosphorylation of Sml1 can cause its degradation. They are: 

1. Phosphorylation of Sml1 causes the dissociation of Sml1 from Rnr1 making it 

more prone to degradation.  

2. There are components of the degradation machinery, such as F box proteins of 

ubiquitin ligases, which specifically recognize phosphorylated forms of Sml1. 

 

31 “Purity” here concerns not only presence of other proteins but also presence of small molecules such as 
salt, buffer and detergent.    
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Although it is technically challenging, these hypothesis should be tested. It should be 

noted that these two possible mechanims are not exclusive to each other.  

Third, phosphorylation of Sml1 by the Dun1 kinase needs to be further 

characterized. Chapter 5 illustrated the difference in the migration on a SDS-PAGE gel 

between Sml1 phosphorylated by the Dun1 kinase expressed in the presence and absence 

of DNA damage. One possible explanation for this result is that the relative abundance of 

singly, doubly, and triply phosphorylated Sml1 may be different when Dun1 expressed 

during or in the absence of DNA damage phosphorylates Sml1. In addition, unlike the 

study by Elledge and co-workers (Sanchez et al., 1997), no significant difference in the 

overall rate of Sml1 phosphorylation by the Dun1 kinase was observed, when Dun1 is 

expressed in the presence and absence of DNA damage. Further experiments that address 

this discrepancy might provide insights into the activation and substrate specificity of 

Dun1. Furthermore, it is worth investigating the effects of DNA replication blocks (e.g. 

exposure of cells to HU) or other types of DNA damage (e.g. exposure of cells to γ-rays) 

on the activity and specificity of Dun1.    

 Fourth, as discussed in Chapter 6, the relationship between phosphorylation of 

Sml1 and the Sml1-Rnr1 interactions need to be further addressed. Researching this issue 

will provide biochemical aspects of Sml1 phosphorylation such as: (1) can phospho-Sml1 

inhibit Rnr1, (2) can Sml1 complexed to Rnr1 be phosphorylated by Dun1, and (3) will 

the complexed Sm1 dissociate from Rnr1 upon phosphorylation. 
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Appendix 

Experimental procedures used in this research are described in Chapter 2. However, 

calculation and data interpretation involved in some of these experiments are not 

straightforward. In this Chapter, methods of calculation and data interpretation performed 

for these experiments will be illustrated. Numbers actually obtained in these experiments 

will be taken as sample data, and calculation and data interpretation will be conducted on 

these data. Specifically, experiments discussed in this chapter are:  

1. Determination of Rnr1 specific activity 

2. P81 phospho-cellulose based assay of Sml1 phosphorylation by the Dun1 

kinase 

3. Identification of Sml1 phosphorylation sites based on mass spectrometric 

fragmentation (SORI-CAD) of phospho-peptide derivatives.  

4. Fluorescence based assay to determine dissociation constant of the Sml1-Rnr1 

interactions. 

 

Determination of Rnr1 specific activity 

Preparation of CDP stock 

CDP used as the substrate of ribonucleotide reductase is mixture of non-ratio-labeled 

(cold) and C14 labeled (hot) compounds. The radioactivity (cpm) given by unit quantity 

(nmol in this case) of CDP is generally called specific activity.32 The goal of this protocol 

 

32 In this case, specific activity refers to radioactivity per unit amount of the compound. It is different from 
specific activity of the enzyme.  
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is to prepare a desired concentration of CDP with a desired specific activity. In this 

protocol, specific activity is given by cpm/nmol. An important assumption is that 

radioactive and non-radioactive CDP are chemically identical. In addition, it should be 

noted that the molar quantity of non-radioactive CDP is much more (≥1000 x) than the 

radioactive form. Thus, we can assume that the total amount of CDP is almost the same 

as the total amount of cold CDP.  

 This protocol consists of four steps:  

1. Deciding required CDP concentration and specific activity of the stock 

solution.  

2. Preparing non-radioactive CDP solution and determining total concentration 

of cold CDP.  

3. Preparing radioactive CDP.   

4. Mixing radioactive and non-radioactive CDP and determining specific 

activity.  

 To make CDP stock, first it is important to decide how much total amount 

(concentration and volume) and specific activity of CDP stock will be required. 

Generally, higher specific activity correlates to the better sensitivity. However, due to 

cost, health and environmental concern, the specific activity should be limited to a 

reasonable level. In most cases, 1500 to 2000 cpm/nmol of specific activity is sufficient 

to measure wild type ribonucleotide reductase activity. However, when activity is 

expected to be lower due to the presence of inhibitors or mutation of RNR subunits, it is 
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reasonable to have 2500 to 4000 cpm/nmol of specific activity. The example illustrated 

here aimed specific activity of 2000 cpm/nmol in 75µl of 30mM CDP. 

 The second step is to make non-radioactive CDP solution. Normally, we weigh 

di-sodium salt of CDP and dissolve it in 20mM Hepes-KOH pH 7.0. Although pH does 

not usually change as 1 to 100mM of CDP solution is added to the buffer, it is better to 

check the pH. At pH other than ~7, a small amount of HCl or KOH should be added to 

adjust the pH. In this example, we tried to make 30mM CDP. However, it is important to 

actually check the concentration based on absorbance at 270nm and extinction coefficient 

of CDP at 270nm (ε270=9.000mM-1cm-1), because concentration aimed by weight of CDP 

is often not accurate. Table 11 shows CDP concentrations determined based on three 

measurements of absorbance at 270nm.  

 The third step is to decide appropriate volume of hot and cold CDP solution 

needed to obtain the desired specific activity. On the supplier’s product information or 

package of hot CDP, the concentration of radioactivity is indicated. In this example, 

when it is supplied, a total radioactivity of 10µCi is present in a volume of 200µl of hot 

CDP. Therefore the concentration of radioactivity is 0.05µCi/µl. Unit of radioactivity 

should be converted from µCi to cpm. The conversion is achieved based on the 

conversion factor: 

 

 1µCi=2.22 x 106 dpm 
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Table 11. Determination of CDP concentration.  

 
A270 of 1/1000 dilution 
Reading 1 0.2707 
Reading 2 0.2813 
Reading 3 0.2825 
Average 0.2782 
Concentration (mM) 30.57 
 
A 1/1000 dilution of CDP stock was made in three independent aliquots. Absorbance at 
270nm (A270) for each aliquot was measured  (reading 1, 2, and 3 on the table), and the 
average of the three readings was calculated (0.2782). The concentration (mM) of CDP, 
30.57mM, was determined based on the average A270, dilution factor and the extinction 
coefficient (Average A270 x dilution factor / extinction coefficient =0.2782 x 1000 / 9.000 
(mM-1)= 30.57mM). 
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Thus far, we have assumed that the dpm is approximately or slightly more than cpm33. 

Based on this assumption, 0.05µCi/µl is converted into 1.11 x 105 cpm/µl. We are aiming 

2000cpm/nmol in 75µl. 75µl of 30.57mM cold CDP contains total 2293nmol CDP 

[(30.57 x 10-3) mol/L x (75 x 10-6) L]. To have 2000cpm/nmol, total 4585500cpm of 

radioactivity is required (2000cpm/nmol x 2293nmol = 4585500cpm). 41.3µl of the hot 

CDP is required to have total 4585500cpm (4585500cpm / 1.11 x 105 cpm /µl=41.3µl). 

Therefore, in this case, 41µl of hot CDP was taken into an Ependorf tube. Since hot CDP 

is supplied in 50% ethanol, it was completely dried in a lypholizer. Then, 75µl of the cold 

CDP was added to the tube and mixed thoroughly.  

 Due to high error of the radioactivity concentration originally given by the 

supplier, it is important to actually check radioactivity concentration in the newly made 

CDP stock. In this example, 1/100 dilution of the stock was made first. Then, 4, 6, and 

10µl of the diluted stock was mixed with scintillation cocktail, and their radioactivity was 

measured. Table 12 shows the radioactivity of the diluted stock. The volume of the 

diluted CDP stock (µl) was plotted with radioactivity (cpm) as shown in Figure 45.   

A liner regression of these data point gave a curve, Y = 612.28X – 305.79 (Y: 

radioactivity (cpm). X: volume of the diluted CDP stock (µl)). The slope of the curve  

 

33 This assumption is not exactly correct. Strictly, dpm should be converted to cpm based on: 
dpm = (cpm indicated – cpm background)/detector efficiency 

We have not determined detector efficiency. Background cpm is less than 100, and it is negligible in our 
case. However, it is not practical to convert dpm to cpm in a strict manner, because error of radioactivity 
concentration given by the supplier is relatively high. When CDP stocks were made from different batch of 
hot CDP, we obtained both higher and lower specific activity than expected value.  
 



Table 12. Radioactivity of CDP stock diluted 1/100 times.  
 
Volume (µl) cpm 
4 2197.37 
6 3286.79 
10 5844.00 

 

 

y = 612.28x - 305.79
R2 = 0.9985
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Figure 45. Plot of cpm vs. volume of CDP stock.   
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(612.28) is radioactivity (cpm) given by 1/100 µl of the CDP stock. Therefore, in this 

example, 61228cpm is given by 1µl of the CDP stock (i.e. 61228 cpm/µl). On the other 

hand, 1µl of the CDP stock contains 30.57nmol of CDP (30.57 x 10-3 mol/L x 10-6L x 109 

nmol/mol=30.57nmol, assuming that total amount of CDP = total amount of cold CDP34). 

From the total amount of radioactivity (61228cpm/µl) and total amount of CDP 

(30.57nmol/µl) per µl of the stock, the specific activity of the CDP stock is given as 

2003cpm/nmol [(61228 cpm/µl / (30.57nmol/µl) = 2003cpm/nmol]. 

 

RNR activity assay  

The details of the assay procedure are described in Chapter 2. In the following example, 

the concentration of Rnr1 and H6Rnr2/Rnr4 was 0.2mg/ml (1µM dimer) and 0.4mg/ml 

(5µM heterodimer) respectively. CDP stock from the previously described section was 

used (specific activity of 2003cpm/nmol). During the reaction, 50µl of aliquot was taken 

every four minutes (0, 4, 8 and 12 minutes in time course of the reaction), and was 

immediately boiled to quench the reaction. After sedimentation of precipitated materials 

by centrifugation, 950µl of solution containing alkaline phosphatase and deoxycytidine 

was added to each aliquot. The aliquots were incubated on 30°C water bath for 3 hours. 

From each aliquot, 950µl was applied to a borate column, and the column was washed 

with 8ml of water. All flow-through from the column (with total volume of 8.95ml) was 

collected in a tube. After mixing thoroughly, 3ml of the flow-through was taken and 
 

34 We tested if this assumption is correct, and there was no significant contribution of hot CDP to total 
amount of CDP in this procedure. However, it is also possible to determine exact concentration of CDP 
after mixing cold and hot CDP instead of determining it before mixing them together.  
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mixed with >15ml of scintillation cocktail. Radioactivity (cpm) of each aliquot was given 

as shown in Table 13.  

Based on radioactivity and the specific activity, amount of dCDP in each 3ml of 

the flow-through was calculated [Amount of dCDP (nmol) = radioactivity (cpm) / 

specific activity of CDP stock (2003 cpm/nmol in this example)] (shown in the third 

column of Table 13). The amount of dCDP in the 50µl aliquot taken during quenching 

was calculated by multiplying these values (values in the third column of Table 13) by 

dilution factor [(8.95/3) x (1/0.95) = 3.14].  

 The rate of the reaction (nmol CDP produced per minutes) was obtained by 

plotting the quenching time (first column of Table 13) and nmol of dCDP produced 

(fourth column of Table 13). Figure 46 represents the x-axis as the quenching time and y-

axis as nmol dCDP produced. By linear regression of data points on the plot, a curve, Y = 

1.0639X + 0.8071, was obtained. The slope of the curve represents the rate of the 

reaction, which is 1.064 nmol/min. The rate of the reaction in this case represents the 

amount of dCDP produced in 50µl of the reaction mixture in every minute. The rate of 

reaction is defined as “activity”.  

Activity can vary depending on the amount of enzyme in the reaction mixture. To 

normalize the activity, it needs to be expressed in terms of unit amount of the enzyme. 

The normalized activity is called “specific activity”. By convention, amount of enzyme 

needed to express specific activity is given by mg unit of enzyme, rather than mol of  



Table 13. Radioactivity of reaction mixture quenched over the time course 
 
Quenching 
time (min) cpm nmol dCDP in 3ml used for counting nmol dCDP in 50µl aliquot 
0 493.80 0.2465 0.774 
4 3320.33 1.6577 5.206 
8 5824.00 2.9076 9.131 
12 8706.96 4.3469 13.651 
 

y = 1.0639x + 0.8071
R2 = 0.9993
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Figure 46. Plot of quenching time vs. nmol dCDP produced in 50µl of the reaction 
mixture.  
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enzyme. In this example, total 0.01mg of Rnr135 is present in 0.05ml of aliquot taken to 

quench reaction (Rnr1 concentration x volume of aliquots taken for quenching = 

0.2mg/ml x 0.05ml = 0.01mg). By dividing activity by the amount of Rnr1, specific 

activity of 106.4nmol/min/mg was obtained [specific activity = activity / mg Rnr1 = 

1.064 (nmol/min) / 0.01mg = 106.4 nmol/min/mg].  

 In order to obtain better statistics, the experiment is normally replicated in 

duplicate or triplicate. In replicated experiment, the same calculation was performed for 

each dataset, and average of specific activity was calculated36.  

 

P81 phospho-cellulose based assay of Sml1 phosphorylation  

“Activity” of the Dun1 kinase in our current experimental scheme is the amount of 

phosphate incorporated into Sml1 over 30min or 2 hours. Currently, we are simply 

comparing relative degree of phosphate incorporation between different forms of Sml1 or 

in the presence and absence of Rnr1.  

 The following is an example of kinase assay performed by the method described 

in Chapter 2. In this example, phosphate incorporation was conducted over 30 minutes. 

Originally, we had 212µM of Sml1, 10mM of ATP (cold ATP) and 7.86µCi/µl of 

 

35 RNR consists of Rnr1 homodimer and Rnr2/Rnr4 heterodimer. As described in Chapter 2, the 
components in which the activity is not measured should have excess molar ratio. In this case, we are 
measuring activity of Rnr1, and H6Rnr2/Rnr4 has 5 molar excess of Rnr1 homodimer. So, Rnr1 is the 
limiting factor in the reaction. (i.e. Rnr2/Rnr4 is saturating Rnr1, and rate of the reaction must be 
proportional to amount of Rnr1 present in the reaction mixture, but small error in Rnr2/Rnr4 should not 
affect the activity.) 
36 It is not appropriate to calculate average radioactivity at each quenching time when the reaction is 
replicated. The 0 min of the quenching time is not necessary to be the same for different replicates. We are 
concerned with rate of the reaction (i.e. slope of the curve) rather than overall radioactivity at each 
quenching point. 
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γ[32P]ATP (hot ATP) as stock solutions. The concentration of Sml1 stock was determined 

using Coomassie Plus Assay Kit (PIERCE). The concentration of cold ATP stock was 

determined based on absorbance at 259nm and the extinction coefficient of ATP at 

259nm, ε259=14500M-1cm-1. The concentration of hot ATP stock is estimated based on 

the label of the original stock (250µCi in 25µl = 10µCi/µl) and the radioactivity decay 

estimated based on number of dates after it is produced. From these stock solutions, 

12µM Sml1, 370µM cold ATP and 1µCi/ul of γ[32P]ATP was prepared. 

 Next, specific activity of ATP in this mixture was determined. To determine the 

concentration of radioactivity (cpm) in this mixture, 1/100 dilution of the mixture was 

made. 2, 4, and 8µl of 1/100 dilution was taken and mixed with the scintillation cocktail. 

Table 14 shows their radioactivity determined by the scintillation counter. The volume of 

the 1/100 dilution was plotted with radioactivity (cpm) as shown in Figure 47. A liner 

regression of the data points on the plot gave a curve, Y=1660.3X-545.46, (X: volume 

(µl) of the diluted mixture. Y: radioactivity (cpm)). The slope of the curve (1660.3) is 

radioactivity (cpm) given by 1/100 µl of the undiluted mixture. Therefore, in this 

example, 1µl of the mixture gives 166030cpm (i.e. 166030cpm/µl). Assuming that this 

mixture contains mostly cold ATP, 1µl of the mixture contains 370pmol ATP (370 x 10-6 

mol/L x 10-6L x 1012 pmol/mol=370pmol). Therefore, the specific activity of ATP in this 

mixture is 448.7cpm/pmol [(166030cpm/µl) / (370pmol/µl)].  

 The assay was performed as follows. 30µl of Sml1 /ATP / γ[32P]ATP mixture was 

mixed with 15µl bed volume of GST-Dun1 bound glutathione resin, and it is incubated 

on 30˚C water bath for 30min. To take background radioactivity into consideration,  



Table 14.Volume of Sml1 /ATP / γ[32P]ATP mixture diluted 1/100 times and their 
corresponding radioactivity.       

 
µl mixture cpm 
2 2849.33 
4 5984.45 
8 12774.04 
 
 

y = 1660.3x - 545.46
R2 = 0.9996
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Figure 47. Plot of cpm vs. volume of reaction mixture 
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negative control was performed. 30µl of Sml1 /ATP / γ[32P]ATP mixture was incubated 

with glutathione resin without GST-Dun137.  

Note that when mixed with the resins, Sml1 and ATP are diluted with the buffer 

contained in the glutathione resin. Throughout this thesis, the concentrations of Sm1 and 

ATP (and Rnr1 in Chapter 6) are stated based on the dilution factor determined as 

described below. According to the manufacturer (Amersham Bioscience), approximately 

96% bed volume of the resin is occupied with liquid by which the resin is equilibrated. 

Therefore, 15µl bed volume of the resin contains approximately 14.4µl (15µl x 

0.96=14.4µl) of the buffer. When 30µl of the solution containing 12µM Sml1 and 370µM 

ATP was mixed with 15µl be volume of the resin, the concentration of Sml1 and ATP 

should be reduced to 8µl and 250µM respectively.  

  The reaction was stopped38 by addition of 10µl of 400mM cold ATP and placing 

the reaction mixture on ice. The reaction vessel was briefly centrifuged, and 30µl of the 

supernatant was placed on 3cm3 of P81 phospho-cellulose filter. Supposedly, 198.5pmol 

of Sml1 was applied to the filter (Sml1 concentration in the sample applied to the filter 

was 8µM x 44.4µl/(10µl+44.4µl)=6.6µM. 30µl of this solution contains 6.6 x 10-6 mol/L 

x 30 x 10-6 mol/L x 1012 pmol/mol = 198.5pmol of Sml1). Table 15 shows radioactivity  

 

37 Ideally, it is better to use GST- D328A Dun1 (kinase dead mutant) as a negative control. Nevertheless, as 
shown in Chapter 5, we have performed negative control experiments with glutathione resin pre-incubated 
with lysate of yeast cells that is not transformed with GST-DUN1 plasmid. At the same time, another 
negative control experiment was performed with glutathione resin that is simply equilibrated with reaction 
mixture. No significant difference was observed between these two. Since then, we have been using 
glutathione resin simply equilibrated with reaction mixture as negative control. 
38 In this method, phosphorylation still takes place after addition of cold ATP. However, incorporation of 
32P to Sml1 is significantly slowed down. Over 30minutes on ice after addition of 500mM ATP, increase of 
32P incorporation to Sml1 was indistinguishable from fluctuation of background radioactivity, which is 100-
500cpm.    
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Table 15. Radioactivity of P32 that remains on P81 filters with Sml1.  

 
 cpm ∆ cpm pmol PO4 mol PO4 / mol Sml1 
Sample 1 28780.0 28431.5 63.36 0.32 
Sample 2 25192.5 24844.0 55.37 0.28 
Sample 3 23466.7 23118.2 51.52 0.26 
Sample 4 22466.7 22118.2 49.29 0.25 
     
Negative control 1 347.8    
Negative control 2 349.2    
Negative control average 348.5    
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(cpm) counted from the filter after it was washed. Assumption here is that most of Sml1 

applied to the filter remains on the filter after it was washed.  

 To determine the radioactivity associated with Sml1 by phosphorylation, 

background radioactivity needs to be subtracted. The average cpm of the negative control 

was calculated as shown in bottom row of the second column in Table 15. The result was 

then subtracted from the cpm of each sample (shown in the third column of Table 15). 

This value, termed ∆cpm, represents the radioactivity covalently attached to Sml1. By 

dividing ∆cpm by the specific activity of ATP determined as above (448.7cpm/pmol), 

∆cpm is converted into pmol of phosphate attached to Sml1 (the fourth column of Table 

15). By further dividing this value by total moles of Sml1 on the filter (198.5pmol), the 

molar ratio of phosphate and Sml1 was determined (the fifth column of Table 15).      

 

Identification of Sml1 phosphorylation sites based on mass spectrometric 

fragmentation (SORI-CAD) of phospho-peptide derivatives. 

Based on mass spectrometric analysis of peptides generated by CNBr digestion of 

phosphorylated Sml1, we found that a CNBr peptide spanning residues 52 to 64 

(GSSASASASSLEM) contains three phosphorylation sites (discussed in Chapter 5). By 

SORI-CAD, we identified phosphorylation sites of doubly and triply phosphorylaed 

species. In this section, identification of the phosphorylation sites on triply 

phosphorylated species will be illustrated based on its SORI-CAD data. Although it will 

be not shown, identification of phosphorylation sites on doubly phosphorylated species 

was achieved in the same manner.    
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It is important to know what kind of modification was made on the Sml1 

phospho-peptide spanning residues 52 to 64 during the experiment. Identification of Sml1 

phosphorylation sites were achieved by following steps: 

1. CNBr digestion of phosphorylated Sml1. 

2. Ga(III)IMAC enrichment of Sml1 phospho-peptide.  

3. Conversion of phospho-serine on Sml1 phospho-peptide into S-ethycysteine. 

4. SORI-CAD of Sml1 peptide in which phospho-serine is converted into S-

ethylcysteine.  

Sml1 phospho-peptide was chemically modified in step 1 and 3 of the procedure above. 

First, after CNBr digestion of Sml1, C-terminus methionine of the peptide was converted 

into homolactone. We have observed that C-terminus homolactone of the CNBr peptide 

is often converted further into homoserine by intramolecular hydrolysis. C-terminus 

homolactone is 30.08736Da (in monoisotopic mass) less than C-terminus methionine. 

The CNBr peptide used for SORI-CAD had homolactone at its C-terminus. Second, in 

the third step above, phospho-serine was converted into S-ethylcysteine. Mass of S-

ethylcysteine is 44.00846Da (in monoisotopic mass) more than seine. In this example, the 

peptide of interest was originally phosphorylated at three serine residues. 

 Based on the knowledge of the chemical modification described above as well as 

previous data showing the triply phosphorylated CNBr peptide, we expected to find a 

peptide spanning residues 52 to 64 of Sml1 (GSSASASASSLEM) with: 

1. Loss of 30.08736Da at C terminus due to CNBr digestion.  
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2. Gain of 44.00846Da at three serine residues due to conversion of serine into 

S-ethylcysteine. (Note: total gain is 44.00846Da x 3 = 132.2538Da.) 

The mass of such peptide is 1285.441Da. An ion of 1285.528Da (1286.536+1) was found. 

This was one of a few ions found in this sample, and no other ion close to 1286.436Da 

was observed. Assuming this ion is the peptide of interest, it was isolated in the mass 

spectrometer and used as parent ion in SORI-CAD.   

 The peptide of interest had six serine residues (S53, S54, S56, S58, S60 and S61), 

three of them converted into S-ethylcysteine. Our objective is to find which three of the 

six serine residues were converted into S-ethylcysteine. In the SORI-CAD of this peptide 

(the ion with mass/charge of 1286.536), over 20 peaks were observed. Mass/charge of 

these fragment ions were compared with calculated mass/charge based on possible 

locations of S-ethylcysteine (possible choice of three of the six serine residues) on the 

peptide and fragmentation pattern generally observed in CAD of peptides.  

In general, CAD fragmentation of peptides most frequently takes place at the 

amide bond of the peptide backbone. If a charge is retained on N-terminus side from the 

amide bond where the fragmentation takes place, the fragment ion is classified as b-type 

ion. If the charge is retained on C-terminus side from the amide bond where the 

fragmentation takes place, the fragment ion is classified as y-type ion. b-type or y-type 

ions are most likely to be observed in CAD of peptides. Figure 48 illustrate b-type and y-

type ion possibly produced from the peptide spanning residues 53 to 64 of Sml1.   

Given the peptide sequence (GSSASASASSLEM), mass/charge of a singly 

charged fragment ion (M + H) was calculated by a web-based server, PROWL  



 
 
Figure 48. b-type and y-type ions that can be generated from the peptide spanning 
residues 52 to 64 of Sml1. 
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(http://prowl.rockefeller.edu/prowl-cgi/sequence.exe). PROWL also allows modifications 

on particular residues on the peptide in terms of gain or loss of mass associated with the 

modifications. In this case, the loss of 30.08736Da at the C-terminus and gain of 

44.00846Da on three serine residues were included in the calculation. In addition, neutral 

loss of NH3, H2O and CO occurs frequently on b or y type ions resulting loss of 

17,02655, 18.0156 or 27.99491Da respectively, and this was taken into consideration. 

 The observed mass/charge was compared with calculated mass/charge for the 

given peptide. It should be noted that there are 20 possible ways to replace the six serine 

residues with S-ethylcysteine. Therefore, there are 20 possibilities to add 44.00846Da on 

three serine residues on the peptide. Out of the 20 possibilities, the most reasonable 

match between observed and calculated mass/charge was found when Ser56, Ser58 and 

Ser60 were replaced with S-ethylcysteine. The following discussion explains why Ser56 

Ser58 and Ser60 are the sites of phosphorylation (S-ethylcysteine) and why other 

possibilities can be excluded.  

 Table 16 is the list of calculated mass/charge for b-type ions along with observed 

mass/charge that match the calculated value. In this case, residue 56, 58 and 60 are 

considered to be S-ehtylcysteine. Some observed mass/charge matched calculated 

mass/charge of b type ion which have undergone neutral loss of one or two H2O (loss of 

18.0156 or 36.312), and they are denoted as b* or b** ions. Although the data on Table 

16 covers only a part of the peptide, it does indicate that S61 is not a phosphorylation site 

and S60 is a phosphorylation site. Some of b-type ions are unique to the location of S-

ethylcysteine, and existence of such ions excludes some possibilities. 
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Table 16. List of calculated and observed mass/charge of b-type ions generated from 
the peptide spanning residues 52 to 64 of Sml1. 

 
  Calculated  Observed Calculated Observed Calculated Observed 

Residue 
Ion 
number b  b*  b**  

G53 1 58.032  40.016  22.001  
S53 2 145.064  127.048  109.033  
S54 3 232.096  214.080  196.065  
A55 4 303.133  285.118  267.102  
S56 +Mod 5 434.174  416.158  398.142  
A57 6 505.211  487.195  469.179  
S58 +Mod 7 636.251  618.235  600.220  
A59 8 707.288  689.273 689.280 671.257 671.268 
S60 +Mod 9 838.329 838.332 820.313 820.320 802.297  
S61 10 925.361 925.368 907.345 907.355 889.329  
L62 11 1038.445 1038.451 1020.429 1020.440 1002.413  
E63 12 1167.487 1167.497 1149.472 1149.486 1131.456 1131.474 
M64 HomoSer 13       
 
Residue 64 is homoserine (denoted as HomoSer) and residues 56, 58 and 60 are S-
ethylcysteine(Denoted as +Mod). b* and b** ions are b type ion that lost one or two H2O 
respectively. 
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Observation of b9 and b*9 (red bold letters on Table 16) shows that S61 is not a 

phosphorylation site. If S61 was a phosphorylation site, the mass/charge of b9 and b*9 

would be 794.320 and 776.305  respectively (44.00846Da less than the values on Table 

16). These values did not match any of observed ions. In addition, if S61 was a 

phosphorylation site, b1 to b9 ions and their neutral loss derivatives have mass/charge 

44.00846Da less than values on Table 16. No such ions were observed.  

 Observation of b*8 and b**8 (blue bold letters on Table 16) shows that S60 is a 

phosphorylation site. If Ser60 is not a phosphorylation site (but three residues out of S53, 

S54, S56 and S58 are the sites), b*8 and b**8 would have a mass/charge of 733.281 and 

715.265 respectively (44.00846Da more than the values on Table 16). These values did 

not match any of the observed ions. In addition, if S60 was not a phosphorylation site, b1 

to b8 ions and their neutral loss derivatives would have a mass/charge 44.00846Da higher 

than the values on Table 16. No such ions were observed   

 Y-type ions provided the information that S53 and S54 are not phosphorylation 

sites but S56 and S58 are phosphorylation sites. Table 17 is the list of calculated 

mass/charge for y-type ions along with observed mass/charge that match the calculated 

values. Like Table 16, residue 56, 58 and 60 are considered to be S-ehtylcysteine. Two 

observed mass/charge matched calculated values of y type ion which have undergone 

neutral loss of one H2O (loss of 18.0156), and it is denoted as y* ions. Only 6 y-type ions 

covering four residues were observed. However, observations of these y-type ions 

provided important clues.  
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Table 17. List of calculated and observed mass/charge of y-type ions generated from 
the peptide spanning residues 52 to 64 of Sml1.  

 
  Calculated Observed Calculated Observed 

Residue  
Ion 
number y  y*  

G52 13     
S53 12 1229.4187  1211.4031  
S54 11 1142.3867  1124.3711  
A55 10 1055.3547  1037.3391  
S56 +Mod 9 984.3177 984.429 966.3021  
A57 8 853.2772 853.386 835.2616  
S58 +Mod 7 782.2401 782.348 764.2245 764.339 
A59 6 651.1997 651.306 633.1841 633.296 
S60 +Mod 5 580.1626  562.147  
S61 4 449.1222  431.1066  
L62 3 362.0901  344.0745  
E63 2 249.0062  230.9906  
M64 HomoSer 1 119.9636  101.948  
 



 236

Observation of y9 (red bold letters on Table 17) excludes the possibility that S53 

or S54 is a phosphorylation site. If either S53 or S54 was a phosphorylation site, the 

mass/charge of y9 ion would be 940.309 (44.00846Da less than the value on Table 17). 

This value did not match any of observed ions. Similarly, if both S53 and S54 are 

phosphorylation sites, mass/charge of y9 ion would be 896.301. This value did not 

matched the observed values.  

  Observation of y8, y7 and y*7 (blue bold letters on Table 17) shows that S56 is a 

phosphorylation site. If S56 is not a phosphorylation site (but S56, S58 S61 are the sites), 

mass/charge of y8, y7 and y*7 would be 897.286, 826.249 and 808.233 respectively 

(44.00846Da more than the values on Table 17). These values did not match any of 

observed ions. In addition, if S56 is not a phosphorylation site, y1 to y8 ions and their 

neutral loss derivatives have mass/charge 44.00846Da more than the values on Table 17. 

None of such ions were observed.   

 Observation of y6 and y*6 (green bold letters on Table 17) shows that S58 is a 

phosphorylation site. If S58 was not a phosphorylation site the mass/charge of y6 and y*6 

would be 695.208 and 677.193 respectively (44.00846Da more than the values on Table 

17).  These values did not match any of observed ions. In addition, if S58 is not a 

phosphorylation site, y1 to y6 ions and their neutral loss derivatives have mass/charge 

44.00846Da more than values on Table 17. None of such ions were observed. 

 Although the data above show that S56, S58 and S60 are phosphorylation site, we 

cannot completely exclude minor possibility that S53, S54 or S61 is a phosphorylation 

site. In mass spectrometry, due to a weak signal or suppression of the signal by more  
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Residue 64 is homoserine (denoted as HomoSer) and residues 56, 58 and 60 are S-

ethylcysteine(Denoted as +Mod). y* is y-type ion that lost one H2O. 

abundant ions, the less abundant ions are sometimes not detected. Therefore, even though 

ions corresponding to phosphorylation of these sites are not observed, that does not mean 

that these sites are not phosphorylated. If any of b1 to b4 ions on Table 16 or their neutral 

loss derivatives were observed, we could exclude the possibility that S53 or S54 is a 

phosphorylation site. Similarly, if any of y1 to y4 ions on Table 17 or their neutral loss 

derivatives were observed, we could exclude the possibility that S61 is a phosphorylation 

site. However, we did not make such observation.  

In addition, we observed two ions that suggest a possibility of S53 or S54 to be a 

phosphorylation site. Table 18 shows mass/charge of y7 and y8 ions that can be 

generated from the peptide in which two of residues 53, 54 or 56 are S-ethylcysteine. 

These calculated mass/charge values matched two observed ions. This observation leaves 

the possibility that S54 and S53 are minor phosphorylation sites. On the other hand, in 

the analysis of doubly phosphorylated peptide, we did not observe any ions that indicate 

phosphorylation at S54 or S53. Furthermore, the Dun1 kinase assay based on P32 

incorporation into S56A / S58A / S60A showed complete loss of phosphorylation. 

Therefore, at most, S54 and S53 are possibly a minor phosphorylation sites.  
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Table 18. Mass/charge of y7 and y8 ions generated from the peptide in which two of 
residues 53, 54 or 56 are S-ethylcysteine. 

 
 Calculated Observed 
y8 809.26874 809.3786 
y7 738.23164 738.3418 
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Fluorescence based assay to determine dissociation constant of the Sml1-Rnr1 

interactions. 

As described in Chapter 2, the binding constant of the Sml1-Rnr1 interactions was 

determined based on an increase of fluorescence intensity from IANBD-S60C Sml139 

when it was titrated with Rnr1. In this section, the detailed method and data analysis 

procedure of a recent trial will be described. The problem associated with our current 

experimental scheme and possible solutions will be also discussed.  

IANBD-S60C Sml1 and Rnr1 stored in –80ºC were used for this experiment. β-

mercaptoethanol conjugated with IANBD amide (IANBD-BME) stored in –20ºC was 

used as the negative control. The first step was to determine the concentration of protein 

and IANBD-BME. Protein concentrations are measured based on Coomassie Plus Assay 

Kit (PIERCE) using BSA standard supplied with the kit. IANBD-BME concentration was 

measured based on absorbance at 478nm of IANBD-BME diluted in methanol and 

extinction coefficient of IANBD at 478nm (25,000cm-1M-1). By diluting these samples in 

50mM Hepes-KOH pH7.0 100mM KCl, 5% Glycerol, 5mM MgCl2, 5mM DTT, four 

types of solutions40 were prepared:  

1. 5µM IANBD-S60C Sml1 monomer.  

2. 5µM IANBD-S60C Sml1 monomer, 30µM Rnr1 monomer. 

3. 5µM IANBD-BME. 

 

39 IANBD-S60C Sml1 is C14S / S60C Sml1 mutant conjugated with IANBD amide at residue 60. 
Fluorescence intensity of IANBD amide increases when it moves to a less solvent accessible environment. 
(See Chapter 2 “Fluorescence based assay of the Sml1-Rnr1 interaction”.) 
40 250µM ATP was included in every solution for the data shown in Chapter 6 to be consistent with the 
kinase assay.  
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4. 5µM IANBD-BME monomer, 30µM Rnr1 monomer. 

100µl of 5µM IANBD-S60C Sml1 monomer (solution 1) was placed in a quartz cuvette 

(3x3x20mm), and fluorescent intensity was measured for one second at excitation 

wavelength of 478nm and emission wavelength of 541nm using the fluorometer (LS50B: 

Perkin Elmer, Wellesley, MA). The slit width was adjusted to obtain emission intensity 

of 150 to 200 in arbitrary unit. Then, the sample was titrated with the Sml1/Rnr1 mixture 

(solution 2) at 3µl increments using pipette. After each addition of the Sml1/Rnr1 

mixture, the solution in the cuvette was mixed by aspirating and dispensing the solution 

by pipette. As a negative control, the same procedure was performed with 5µM IANBD-

BME (solution 3) and a mixture of 5µM IANBD-BME and 30µM Rnr1 monomer 

(solution 4). The fluorescence intensity after each titration was manually recorded. These 

titration procedures were repeated three times.  

 Table 19 shows fluorescence intensities for these series of titration. Concentration 

of Rnr1 after each titration was calculated based on the dilution factor obtained from 

volumes and Rnr1 concentrations of the solution in the cuvette and solution added to the 

cuvette. Concentration of IANBD-S60C Sml1 and IANBD-BME were assumed to be 

5µM throughout the procedure. Average intensities of the negative control series was 

calculated first (Shown in the 8th column on Table 19 labeled as “NC average”).  

Then, average intensities of negative control was subtracted from the series of 

intensity obtained by titration of IANBD-S60C Sml1 with Rnr1 (i.e. The values in 8th 

column of Table 19 were subtracted from the values in the 2nd, 3rd and 4th columns on 

Table 19.) These values are now called corrected fluorescence intensity or Delta F  
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Table 19. Fluorescence emission intensity in titration of IANBD-S60C Sml1 and 
IANBD-BME with Rnr1. 

 
 Experimental series Negative control series  
[Rnr1] (µM) Run1 Run2 Run3 Run1 Run2 Run3 NC average 
0.00 183.40 179.00 182.50 180.40 184.60 183.30 182.77 
0.87 247.30 244.00 245.90 177.90 184.40 180.30 180.87 
1.70 328.80 297.60 296.60 178.20 183.40 180.80 180.80 
2.48 368.90 333.10 338.50 179.00 185.00 180.50 181.50 
3.21 398.20 380.50 371.80 178.70 186.30 181.70 182.23 
3.91 427.90 407.70 392.70 179.30 186.80 181.20 182.43 
4.58 450.70 420.90 413.50 178.80 185.20 182.10 182.03 
5.21 462.70 433.60 427.90 179.60 186.10 181.60 182.43 
5.81 474.70 441.40 443.10 179.80 185.90 183.20 182.97 
6.38 483.50 445.30 447.80 179.30 187.30 181.40 182.67 
6.92 492.10 456.20 459.60 181.40 184.50 182.60 182.83 
7.44 500.90 461.40 460.40 181.60 185.60 182.40 183.20 
7.94 502.50 459.90 466.40 180.90 186.10 183.90 183.63 
8.42 509.50 469.30 468.50 179.60 185.20 183.00 182.60 
8.87 511.90 472.20 471.70 178.80 184.40 183.80 182.33 
9.31 517.20 477.30 472.10 180.60 185.90 182.50 183.00 
9.73 520.60 483.70 477.30 179.10 184.90 183.40 182.47 
10.13 520.60 483.80 480.70 178.80 186.30 184.10 183.07 
10.52 520.70 483.80 481.70 179.30 185.90 183.90 183.03 
 



(Shown in Table 20). Three series of delta F as dependent variables (the 2nd, 3rd and 4th 

column on Table 20) and corresponding Rnr1 concentrations (the first column on Table 

20) as dependent valuables were inputted to GraphPad Prism software (GraphPad, San 

Diego, CA). By nonlinear regression, the series of data were analyzed by fitting them to 

equation below (Derivation of this equation is described in the next section): 

 

]1[2
]1][1[4)]1[]1([]1[]1[

max
2

Sml
RnrSmlKdRnrSmlKdRnrSml

DeltaFDeltaF
−++−++

=  

          (Equation 1) 

(Delta Fmax : Delta F when Sml1 is saturated with Rnr1. Kd: dissociation constant of the 

Sml1-Rnr1 interactions. [Sml1]: total concentration of IANBD-S60C Sml1. [Rnr1]: total 

concentration of Rnr1). 

 

The analysis was performed in two slightly different methods. In the first method, 

in Equation 1, Kd and Delta Fmax were considered to be unknown valuables (i.e. they were 

not fixed). In this case, concentration of Sml1 monomer was specified to be 5µM41 (i.e. 

Sml1 concentration was fixed at 5µM). 300 and 0.4µM42 were chosen as initial values of 

Delta Fmax and Kd respectively. In the second method, in the equation above, Kd, Delta  

                                                 

41 In this case, Equation 1 was written as Y=Bmax * (1/5) *0.5*((5+X+Kd)-((5+X+Kd)^2-4*5*X)^0.5 on 
GraphPad software. In this equation X is Rnr1 concentration as independent valuable, Y is Delta F as 
dependent valuable and Bmax is Delta F when Sml1 is saturated with Rnr1. 

 242
42 Based on Chabes et al., 1999 
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Table 20. Delta F during titration of IANBD-S60C Sml1 with Rnr1 
 
[Rnr1] (µM) Delta F-1 Delta F -2 Delta F -3
0.00 0.63 -3.77 -0.27 
0.87 66.43 63.13 65.03 
1.70 148.00 116.80 115.80 
2.48 187.40 151.60 157.00 
3.21 215.97 198.27 189.57 
3.91 245.47 225.27 210.27 
4.58 268.67 238.87 231.47 
5.21 280.27 251.17 245.47 
5.81 291.73 258.43 260.13 
6.38 300.83 262.63 265.13 
6.92 309.27 273.37 276.77 
7.44 317.70 278.20 277.20 
7.94 318.87 276.27 282.77 
8.42 326.90 286.70 285.90 
8.87 329.57 289.87 289.37 
9.31 334.20 294.30 289.10 
9.73 338.13 301.23 294.83 
10.13 337.53 300.73 297.63 
10.52 337.67 300.77 298.67 
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Fmax and [Sml1] were considered to be unknown valuables43. 300, 0.4µM and 5µM were 

chosen as initial values of Delta Fmax, Kd and [Sml1] respectively.  The results of these 

analyses are shown in Table 21 and Figure 49.  

Two method of analysis gave a different result regarding how well the model fit 

to the data points. In the first method, when Sml1 monomer concentration is specified to 

be 5µM, a systematic deviation of data point from the model was observed (see Figure 

49B). In the second method, when Sml1 concentration is not specified, deviation of the 

data point from the model was randomized (see Figure 49D) as P value44 in the first 

method was 0.67 and that for the second method was 0.99 (see Runs Test on Table 21). 

In addition, the overall deviation of data point from the model was reduced in the second 

method (see Figure 49B and Goodness of fit on Table 21). Therefore, model given by the 

second method was likely to be closer to what was actually happening. Kd±Std error 

given by the model in the second method (1.07±0.47µM) was chosen. 

However, the second method still had a problem associated with concentration of 

IANBD-S60C Sml1. IANBD-S60C Sml1 monomer concentration for the best fitting 

equation in the second method was 3.25±0.65µM, while 5µM was aimed in the 

experiment. A possible explanation of this discrepancy may be that actual Sml1 

concentration in the cuvette was less than the concentration we aimed. Especially in a 

sample with lower concentration of protein, protein concentration is significantly  

 

43 In this case, Equation 1 was written as Y=Bmax * (1/S) *0.5*((S+X+Kd)-((S+X+Kd)^2-4*S*X)^0.5 on 
GraphPad software. In this equation S is unspecified Sml1 concentration.   
44 P-value is probability that systematic deviation of the data point from the model occurs by random 
chance. The greater P-value it is less likely that there is a systematic deviation of the data point from the 
model.  
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Table 21. Result of data fitting  
 
 [Sml1]=5µM [Sml1] not specified 
Best-fit values   
     BMAX 326.1 356.4 
     KD 0.2828 1.072 
     S  3.248 
Std. Error   
     BMAX 10.51 19.77 
     KD 0.1139 0.4793 
     S  0.6528 
95% Confidence Intervals   
     BMAX 305.0 to 347.1 316.8 to 396.1 
     KD 0.05450 to 0.5112 0.1101 to 2.033 
     S  1.938 to 4.558 
Goodness of Fit   
     Degrees of Freedom 55 54 
     R² 0.9558 0.9669 
     Absolute Sum of Squares 20060 15010 
     Sy.x 19.1 16.67 
Runs test   
     Points above curve 28 18 
     Points below curve 29 39 
     Number of runs 30 36 
     P value (runs test) 0.607 0.9999 
     Deviation from Model Not Significant Not Significant 



 
 

Figure 49. Plot of Rnr1 concentration and Delta F fitted to the one-to-one binding 
model.  

(A) Fitting when Sml1 concentration was specified to be 5µM. (B) Residual plot of (A). 
(C) Fitting when Sml1 concentration was not specified. (D) Residual plot of (C).   
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reduced whenever the sample is transferred from vessel to vessel. This is mainly due to 

adsorption of protein on the wall of vessel and pipette tip. In case of Rnr1, effect of 

sample loss over its concentration might be relatively small, because Rnr1 was more 

concentrated (30µM of Rnr1 monomer concentration was aimed in the solution added to 

the cuvette). In addition, Kd±Std error for the best-fit equation given by the second 

method was 1.07±0.47µM, while that given by the first method was 0.28±0.11µM. The 

error associated with Kd given by the second method (±0.47µM) was higher than error 

given by the first method (±0.11µM). Possibly, the unspecified Sml1 concentration in the 

second method allows more error for Kd during the fitting procedure. In fact, when Sml1 

concentration is specified to be 3.25µM (i.e. fixed at 3.25µM), Kd±Std error for the best-

fit equation was 1.07±0.18µM, exactly the same average of Kd with significantly smaller 

error. However, given the fact that there is uncertainty in the concentration of IANBD-

S60C Sml1, this model was not chosen. 

Another possible explanation for the discrepancy between IANBD-S60C Sml1 

concentration given by the data fitting procedure (3.25±0.65µM) and the concentration 

we aimed (5µM) is that Rnr1 concentration may be underestimated. For example, if we 

assume that actual Rnr1 concentration in the cuvette is 1.55 times more than we aimed, 

the same data fitting procedure (the second method, not specifying Sml1 concentration) 

gives 5.03±1.03µM of IANBD-S60C Sml1 concentration, which is close to the 

concentration of IANBD-S60C Sml1 we initially aimed to have in the cuvette (5µM). In 

this case, Kd±Std error for the best-fit equation was 1.66±0.74µM. However, this model 

may not be correct because it is unlikely that actual concentration of Rnr1 in the cuvette 
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is considerably higher (0.55 times more) than the concentration we aimed at (although the 

opposite situation can happen).    

To improve accuracy of our model, it is important to have accurate concentration 

of proteins in the cuvette. A strategy to obtain accurate concentration of IANBD-S60C 

Sml1 is to measure IANBD-S60C Sml1 concentration when it is in the cuvette. For 

example, it may be possible to measure concentration of IANBD-S60C Sml1 in the 

cuvette based on absorbance at 280nm or 478nm45. In this way, potential loss of IANBD-

S60C Sml1 during sample transfer would be taken into consideration. Another strategy 

may be to include carrier proteins such as BSA in the sample to minimize loss of 

IANBD-Sml1 as well as Rnr1 due to adsorption of these proteins to wall of the vessel and 

pipette tips, which occurs during sample transfer. In addition, it is important to more 

accurately measure concentration of proteins in the beginning. Our current method to 

measure protein concentration using Coomassie Protein Assay Kit may not provide 

accurate values for concentration of Sml1 or Rnr1 (or both). Using more accurate method 

of protein concentration measurement may be necessary in the future.   

 Providing dissociation constant of the Sml1-Rnr1 interactions reported by 

Thelander and co-workers (0.4±0.1µM), the dissociation constant we obtained 

(1.07±0.47µM) is probably within the range of (or fairly close to) actual dissociation 

constant. However, current method needs improvement to obtain more accurate value of 

dissociation constant.  

 

 

45 Absorbance maximum of IANBD is 478nm.  



Derivation of the equation for one to one binding model  

The assumptions taken in the derivation of Equation 1 are: 

1. Molar ratio of Sml1 and Rnr1 in the complex is one to one. 

2. The fluorescence intensity is proportional to fraction of Sml1 that is bound to 

Rnr1. 

Based on the first assumption, concentration of Sml1 bound to Rnr1 is regarded as:  

 

[Sml1 bound] = [Complex]   (Equation 2) 

  

([Sml1 bound]: Concentration of IANBD-S60C Sml1 bound to Rnr1. [Complex]: 

Concentration of IANBD S60C Sml1-Rnr1 complex.) 

 

Based on the second assumption and Equation 2, relation between fluorescence intensity 

and total concentration of Sml1 can be written as: 

 

]1[
][

]1[
]1[

max Sml
Complex

Sml
boundSml

DeltaF
DeltaF

==   (Equation 3) 

 

(Delta F max: Delta F when IANBD-S60C Sml1 is saturated with Rnr1. [Sml1]: Total 

concentration of IANBD-S60C Sml1.)  

 

On the other hand, Kd can be written as: 
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Complex
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−−

==  (Equation 4-1) 

([Sml1free]: Concentration of free Sml1. [Rnr1free]: Concentration of free Rnr1.  [Sml1]: 

Total concentration of IANBD-S60C Sml1. [Rnr1]: Total concentration of Rnr1) 

 

Equation 3 can be rearranged as a quadratic equation of concentration of Sml1-Rnr1 

complex ([Complex]): 

 

[Complex]2 - ([Sml1]+[Rnr1]+Kd)[Complex] + [Sml1][Rnr1] = 0 (Equation 4-2) 

  

The solutions of this equation are: 

 

2
]1][1[4)]1[]1([)]1[]1([

][
2 RnrSmlKRnrSmlKRnrSml

Complex dd −++±++
=  

(Equation 4-3) 

 

One solution   

2
]1][1[4)]1[]1([)]1[]1([

][
2 RnrSmlKRnrSmlKRnrSml

Complex dd −+++++
=  

is wrong. If this solution is correct, it leads to a premise: 

 

[Complex] > ([Sml1] + [Rnr1])/2 

(Note: [Sml1] and [Rnr1] are total concentration of Sml1 and Rnr1 respectively.)   
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This premise is wrong because; concentration of the Sml1-Rnr1 complex is written as:  

 

[Complex] = ([Sml1bound][Rnr1bound])/2.  

([Sml1bound]: Concentration of Sml1 in the complex. [Rnr1bound]: Concentration of 

Rnr1 in the complex).  

 

And 

 [Sml1bound] < [Sml1]  

[Rnr1bound] < [Rnr1] 

(Note: [Sml1] and [Rnr1] are total concentration of Sml1 and Rnr1 respectively.)   

Therefore  

[Complex] < ([Sml1][Rnr1])/2. 

Assuming that another solution is correct, concentration of the Sml1-Rnr1 complex 

([Complex]) can be written as: 

 

2
]1][1[4)]1[]1([)]1[]1([

][
2 RnrSmlKRnrSmlKRnrSml

Complex dd −++−++
=  

         (Equation 5) 

 

Replacing concentration of the Sml1-Rnr1 complex in Equation 3 ([Complex]) with the 

terms on the right side of Equation 5, Equation 3 can be written as: 
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         (Equation 6) 

 

Rearrangement of Equation 6 yields Equation 1: 
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