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ABSTRACT

The basis of thiswork was to evaluate both parametric and non-parametric empirical
modeling strategies applied to signal validation or on-line monitoring tasks. On-line
monitoring methods assess signal channel performance to aid in making instrument
calibration decisions, enabling the use of condition-based calibration schedules. The
three non-linear empirical modeling strategies studied were: artificial neural networks
(ANN), neural network partial least squares (NNPLS), and local polynomial regression
(LPR). These three types are the most common nonlinear models for applications to
signal validation tasks. Of the class of local polynomials (for LPR), two were studied in
thiswork: zero-order (kernel regression), and first-order (local linear regression).

The evaluation of the empirical modeling strategies includes the presentation and
derivation of prediction intervals for each of three different model types studied so that
estimations could be made with an associated prediction interval. An estimate and its
corresponding prediction interval contain the measurements with a specified certainty,
usually 95%. The prediction interval estimates were compared to results obtained from

bootstrapping via Monte Carlo resampling, to validate their expected accuracy.

The estimation of prediction intervals applied to on-line monitoring systemsis essential if
widespread use of these empirical based systemsisto be attained. In response to the
topical report "On-Line Monitoring of Instrument Channel Performance,” published by
the Electric Power Research Institute [Davis 1998], the NRC issued a safety evaluation
report that identified the need to evaluate the associated uncertainty of empirical model
estimations from all contributing sources. This need forms the basis for the research

completed and reported in this dissertation.

The focus of thiswork, and basis of its original contributions, were to provide an accurate
prediction interval estimation method for each of the mentioned empirical modeling
techniques, and to verify the results via bootstrap simulation studies. Properly

determined prediction interval estimates were obtained that consistently captured the
Vi



uncertainty of the given model such that the level of certainty of the intervals closely
matched the observed level of coverage of the prediction intervals over the measured
values. In most cases the expected level of coverage of the measured values withi n the
prediction intervals was 95%, such that the probability that an estimate and its associated
prediction interval contain the corresponding measured observation was 95%. The
results al'so indicate that instrument channel drifts are identifiable through the use of the
developed prediction intervals by observing the drop in the level of coverage of the
prediction intervalsto relatively low values, e.g. 30%.

While all empirical models exhibit optimal performance for a given set of specifications,
the identification of this optimal set may be difficult to attain. The developed methods of
prediction interval estimation were shown to perform as expected over a wide range of
model specifications, including misspecification. Model misspecification occurs through
different mechanisms dependent on the type of empirical model. The main mechanisms
under which model misspecification occur for each empirical model studied are: ANN —
through architecture selection, NNPL S — through latent variable selection, L PR —through
bandwidth selection. In addition, al of the above empirical models are susceptible to
misspecification due to inadequate data and the presence of erroneous predictor variables
in the set of predictors. A study was completed to verify that the presence of erroneous
variables, i.e. unrelated to the desired response or random noise components, resulted in
increases in the prediction interval magnitudes while maintaining the appropriate level of
coverage for the response measurements.

In addition to considering the resultant prediction intervals and coverage values, a
comparative evaluation of the different empirical models was performed. The evaluation
considers the average estimation errors and the stability of the models under repeated
Monte Carlo resampling. The results indicate the large uncertainty of ANN models
applied to collinear data, and the utility of the NNPLS model for the same purpose.
While the results from the LPR models remained consistent for data with or without
collinearity, assuming proper regularization was applied.
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The quantification of the uncertainty of an empirical model's estimationsis a necessary
task for promoting the use of on-line monitoring systems in the nuclear power industry.
All of the methods studied herein were applied to a simulated data set for an initial
evauation of the methods, and data from two different U.S. nuclear power plants for the
purposes of signal validation for on-line monitoring tasks.
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1.0 INTRODUCTION

The motivation behind empirical model based signal validation isto provide a means of
indicating the calibration status of the corresponding measurement instruments. This can
be carried out either continuously, or on atime-delayed batch mode schedule.
Continuous validation ortline will provide the most expedient status identification. As
stated in EPRI's On-line Monitoring of Instrument Channel Performance [Davis 1998]:
On-line monitoring is the assessment of channel performance and calibration while the
channel is operating. The term channel refersto a sensor, the isolator, and intervening
components. Isolators are a design requirement for safety related instrument loops of a
nuclear power plant, thus considering these parameters, on-line monitoring starts at the
output of an isolator. The sensor typically exhibits the greatest variability, and thusitisa
common practice to associate observed drift with the sensor, though the true source can

only be confirmed through additional investigation.

Ontline monitoring differs from channel calibration in that the channel is not adjusted by
the process of on-line monitoring. Instead, on-line monitoring compares channel
measurements to empirical model estimations to determine if achannel calibration is
necessary. Thus, online monitoring presents an alternate approach to time-directed
periodic calibration, required by anuclear power plant's technical specifications, which
will provide calibration maintenance capabilities that are equivalent to the traditiona
periodic calibration schedules. On-line monitoring allows for the use of condition-based
calibration schedules, since the calibration status of the monitored channelsis
continuously verified to be within tolerable limits. Condition based calibration schedules
present several advantages, including: reduced labor costs, reduced personnel radiation
exposure, and increased instrument availability. Condition based calibration activities
may also increase the usable life of an instrument through reducing the risks of

instrument damage incurred during adjustments.

Empirical signal validation models are often constructed using sets of highly correlated

predictor variables. Variable matrices characterized by strong linear dependencies



between columns are said to be collinear and present an ill-posed problem to empirical
modeling tasks [Naes 2001, Wold 1984, Hadamard 1923]. This causes anincreasein
estimation noise levels and causes unstable and unrepeatable results. The problem arises
due to the numerical complexities of inverting collinear matrices, which can also be
described asill-conditioned matrices. The data sets are often highly correlated due to the
number of redundant and related sensors used to monitor large-scale processes, such asa
nuclear power plant or other types of electrical generation facilities. These sensors are
located throughout the system to monitor parameters that are physically related and thus,
their measurements are also related. The use of redundant sensors to monitor safety
critical parameters exacerbates the problem by increasing the average correlations of the
data set.

The modeling strategies applied to signal validation tasks in thiswork were: artificial
neura networks (ANN), neural network partial least squares (NNPLS), and local
polynomial regression (LPR). These 3 modeling paradigms have been the most
commonly reported for applications to signal validation tasks in on-line monitoring
applications. To provide abasis for parametric modeling, discussions and a theoretical
basis are provided for ordinary least squares (OLS), principal component analysis (PCA),
and partial least squares (PLS). Prediction interval estimation expressions are presented
for these methods and later extended to the more complex non-linear models: ANN,
NNPLS, and LPR.

The prediction interval estimation methods explored in this work were based on standard
nonlinear regression theory, for the ANN and NNPL S models, and based on
nonparametric regression theory for the LPR models. The focus of thiswork was to
provide point-wise prediction intervals which contain the measured responses to a
specified significance level, namely 95%. Signal validation models of the 3 types under
study have been reported to be appropriate for use in on-line monitoring systems and
commercially available software utilize these models or derivatives thereof. One of the
functions of an on-line monitoring system is to report when an empirical model's



estimations are significantly deviating from the measured values of the monitored
process. While the ability to detect these significant deviations has been proven, the
guantification of the uncertainty associated with the empirical model estimatesisrarely
addressed. To verify that the observed deviations are significant, in that they exceed all
observed effects of modeling uncertainty, prediction interval techniques need to be
developed, proven, and incorporated into existing and future software for on-line

monitoring applications.

11 ORIGINAL CONTRIBUTIONS

Signal validation using empirical models which are fundamentally different are
consistently reported in engineering literature. In thiswork, quantitative comparisons
were drawn based on a measure of prediction error, stability of the resultant solutions, the
magnitude of the prediction intervals associated with each empirical model, and the
consistency with which the computed prediction intervals contain the observed signal

values, i.e. coverage.

The following original contributions are made in this dissertation:

A comparative evaluation of the non-linear empirical modeling approaches:
ANNSs, NNPLS, and LPR, with respect to their estimation errors, applied to
nuclear power plant data.

A comparative evaluation of the uncertainty, through prediction interval
computations, of the empirical models: ANNs, NNPLS, and LPR.

The validity of the established prediction interval estimation methodologies was
confirmed by comparing the results to bootstrap prediction intervals for each
empirical model studied.

The application of prediction intervals to the empirical model estimates within the
framework of on-line monitoring systems.

The development and evaluation of prediction interval estimation methods over a

wide range of model specifications, including model misspecification.



12 ORGANIZATION OF DOCUMENT

A condensed summary of the most relevant literature reviewed in preparing this
dissertation is presented in chapter 2. Chapter 3 provides the theoretical foundations of
the linear and nontlinear empirical modeling strategies. 1ssues related to the
implementation of the different models are also discussed in chapter 3. The methods of
prediction interval estimation are presented in chapter 4. Also included in chapter 4 area
section defining prediction intervals and a section discussing the sources of uncertainty
that influence the prediction interval computations. Chapter 4 ends with a summary of
the equations required for prediction interval estimation of each empirical model under
study, and a summary of the assumptions inherent to the empirical modeling techniques
as well as the assumptions made in the prediction interval computations. In chapter 5 the
specifics related to the methods in which results were obtained are presented and concise
definitions for the performance metrics used for comparisons are given. The structure
and contents of the results are also described. The results from each of the three data sets
are then presented and discussed in individual sections, followed by a summary section of
all results. The conclusions of this dissertation are drawn and presented in chapter 6
along with recommendations for future work. Thelist of references, appendix, and vita
follow the concluding chapter. The appendix contains the MATLAB [Mathworks 2003]
functions written to construct the empirical models and compute the described prediction

intervals.



20 LITERATURE REVIEW

This chapter presents, in condensed form, a summary of the most relevant prior research
in the areas of prediction interval estimation for linear and nonlinear empirical models.
Other related research describing empirical modeling issues is also discussed. In the

appropriate sections, the reviewed works are expanded and discussed in more detail.

OLSisone of the simplest and most common empirical modeling techniques. In
addition, the derivation of the OL S solution is straight forward, and easily highlights the
resultant complications in solving for the model parameters under conditions of collinear
data. A collinear data matrix exhibits near or exact linear dependence between its
columns. When constructing empirical models with data (X) that exhibit collinear
behavior, the resulting variance-covariance matrix (X' X) will be ill-conditioned, leading
to unreliable model parameters [Baffi 2002, Naes 2001, Naes 1998, Sundberg 2000, Wold
1984, Woodward 1996]. A similar situation arises with non-linear regression
methodologies, including artificial neural networks [Qin 1997]. In these cases, the
optimization algorithms generally tend to become unstable or converge towards non
optimal solutions in the presence of variable correlations [Qin 1993]. The arguments
regarding the complications related to empirical modeling with collinear data have also
been extended to Kramer's [1992] autoassociative artificial neural network (AANN)
architecture, which has been used extensively at the University of Tennessee [Hines
1997a, Hines 1997b, Upadhyaya 1992, Xu 1999, Xu 2000], and by other researchers
[Fantoni 1996, 1998, 2002], for signal validation tasks.

Multivariate calibration is a general technique which models the relation between a
dependent variable and a set of measured predictor variables. Common approaches to
multivariate calibration include OLS, PCA, and PLS. Each of these techniques has had
extensive coverage in the literature: OLS [Draper 1966], PCA [Jolliffe 2002], PLS
[Martens 1989]. The model parameters are obtained in the form of aregression vector,

which are used to estimate the dependent variable. It isdesirable to not only provide a



point estimate for the dependent variable, but also an interval estimate for future
predictions.

Faber and Kowalski [1997] presented expressions for prediction intervals, regression
vector variances, and regression vector bias measuresfor OLS, principal component
regression (PCR), and PLS. Previous reports have established these expressions, though
the presentation by Faber and Kowalski [1997] was found to be the most thorough and
concise. Though their work carries the evaluation through to include measurement errors
in the independent variables, only consideration of the measurement errorsin the
dependent variables is given herein. Due to the large scope of thiswork, covering 3
fundamentally different empirical modeling paradigms, the decision was made to
maintain the assumption of noise-free predictor variables in the basic derivations and to

incorporate modifications that would account for the presence of noise in the predictors.

The statistical derivation of confidence intervals for parameters estimated by nonlinear
least squares models is based upon the assumption that the model residuals are normal,
independent, and identically distributed (i.i.d). Under these assumptions, the approach to
calculating confidence intervals can be extended to neural networks since they can be
regarded as a non-linear least squares modeling problem [Shao 1997]. Chryssolouris €t.
al. [1996] derived atechnique to quantify the confidence intervals for the prediction of
neural network models by adopting a variant of the linearization methodology. In
addition to the assumption that the residuals are i.i.d., prediction interval estimation
methods also assume that the neural networks are trained to convergence [de V eaux
1998], and that their architecture is predetermined. The confidence interval estimations
methods are asymptotically valid when the number of training vectors becomes infinite
[Hwang 1997]. The linearization method presented by Chryssolouris et. al. [1996] is
based solely on the Jacobian matrix, which they deemed more favorable than other
variants based on the use of the full Hessian matrix because the use of the Jacobian

requires less computation, is more computationally stable, and at least as accurate.



A later analysisincorporated the influence of the distribution of the training data [ Shao
1997], i.e. the distribution of the residuals. This approach incorporated the influence of
the training data density via a wavelet-based density estimator. Using the wavel et-based
density esti mator provides a coefficient which is then applied to the standard confidence
intervals as derived through the non-linear least squares modeling problem. The
coefficient decreases for new observations which occur in regions where the training data
is sparse, and the coefficient increases for new observations occurring in regions where
the training datais more dense. Thisisdirectly related to the distribution of the model
residuals, assuming the neural network has been trained to convergence, because the
residual distribution will accordingly follow the relative density of the training data.

The work of Hwang and Ding [1997] provides a method anal ogous to that proposed by
Chryssolouris et. a. [1996] regarding the construction of prediction intervals. In
addition, they proved that the estimator is asymptotically valid when the number of
training points goes to infinity, i.e. P(y,1 ¥, +c)® (1- a) where c isthe prediction
interval magnitude and 1- a isthe significance level of theinterval. Their derivation
provides a more rigorous body of proofs and lemmas to confirm the asymptotic
properties of the prediction intervals. They also reported that the computation of
prediction interval s via del ete-one jack-knifing could be used to estimate the number of
hidden neurons in a single hidden layer feedforward architecture. The delete-one-jack-
knifing approach omits an observation from the training set and finds a neura network
solution based on this reduced set of training observations. The prediction intervals are
then computed over al training samples, including the omitted sample. Thisis repeated
n timesfor each of the n observationsin the training set. The coverage probability is
then obtained by counting the number of times the computed interval contains the
omitted response. The optimal number of neurons is such that the prediction interval
estimation of the delete-one jack-knifing provides the maximum coverage (predicted

points within the confidence interval).



DeVeaux et. a. [1998] showed that the proposed methods for interval estimation work
well when the training set is large; however, when the training set is small and the
network is trained to convergence the estimates become numerically unstable due to the
near singularity of F'F matrix, where F isthe Jacobian matrix. It was also noted that
stopping the neural network training prior to convergence reduces the effective number of
parameters and can lead to confidence intervals that are too wide. They proposed
training via the weight decay method to prevent overfitting. The weight decay objective
function contains an additional term other than the usual squared error. The additional
term sums the squared weights of the neural network, thus the weight decay method
simultaneously minimizes the residual error and the magnitude of the neural network
weights. The weight decay approach to neural network training provides an available
number of free parameters to achieve appropriate interval estimates and overfitting is
avoided because unnecessary weights are forced to zero viathe objective function of the

training algorithm.

Yang et. a. have evaluated the confidence bound methodologies on a 10 dimensional
function, as well as some simpler functions[2000]. In their analysisthey focused on the
percentage of targets which fell within the confidence bounds. They referred to this
guantity as coverage. Though they found that the estimated confidence intervals were not
always exact, they did report that with alarge number of training points the confidence

intervals normally reflect the distribution of the training data.

Wansink and Y ang [2001] followed the work of Yang et. al. [2000] to provide similar
results for a porosity estimation problem [De Groot 1996] which was evaluated in all of

the above referenced works regarding confidence bound estimation for ANNS.

Leonard et. al. [1992] determined the prediction confidence intervals for radial basis
function networks. Their validity index network (VI-net) also computes the density of
the training data, and an indicator to show when the network is extrapolating from the

training data. These comp utations are implemented as extra neural network units



associated with the original network. Note that the density estimation implemented by
Leonard et. al. [1992] is performing a similar task to the wavelet-based density estimator
of Shao et. al. [1997].

Additional applications of prediction interval estimation for neural networks have aso
been reported [Carney 1999, DaSilva 2000, Edwards 2002, Ho 2001, Papadopoul os 2001,
Y e 2000, Tibshirani 1996, Dybowski 1997, and Derks 1998].

PLS has many attractive features making it an important model to consider for signa
validation purposes. The creation of orthogonal bases from which univariate regression
models can be derived, eliminates the numerical problems associated with collinearity.
An additional feature is the inherent regularization of the method, which provides
reproducible, stable solutions. PLSisaclass of techniques for modeling the associations
between blocks of observed variables by means of latent variables. These latent variables
are created through a supervised transformation, whereby an orthogonal basis of latent
variables results. The inner relationships, between latent variable pairs, of the standard
PL S agorithm are constructed using univariate regressions on the latent vectors. In
attempts to enhance the technique, quadratic functions have been introduced into the
inner relationship [Baffi 1999a, Ni 1995, Wold 1989, Wold 1992]. However, quadratics
are still linear in their parameters and do not guarantee a proper solution [Bro 1995]. The
use of single hidden layer feedforward neural networks has been suggested [Gemperline
1991], and applied in the field of chemical engineering [Baffi 1999b, Holcomb 1992,
Malthouse 1997, Qin 1992, Qin 1996]. Radia basis function networks have also been
applied [Wilson 1997a, Wilson 1997b]. Additional work has provided a non-linear
dynamic version incorporating polynomials, radial basis functions networks, or
feedforward neural networks [Baffi 2000].

The method incorporating feedforward ANNs into PL S has been under study at the
University of Tennessee, for the purposes of signal validation in large-scale processes,
beginning in 1999 [Hines 2000c, Hines 2001, Rasmussen 2002, 2000a, 2000b]. The



method used herein uses fully connected feedforward neural networks in the inner
relationships and maintains the linear orthogonalization in the outer relationships. This
method will be referred to as neural network partial least squares (NNPLS), to avoid
confusion with the various nonlinear methods utilizi ng quadratics, radial basis functions,

and splines.

In arecent work, Baffi et. a. [2002] extended the work of Chryssolouris et. a. [1996]
regarding the construction of prediction intervals for feedforward neural networks to the
NIPALS-based (nor+linear iterative partial least squares) linear and nontlinear PLS.
Prediction intervals are computed using afirst order Taylor series expansion and the
Jacobian matrix of the functional mapping provided by the PLS algorithm. The
derivation of the Jacobian provided by Baffi et. al. [2002] was based on a single response
variable (PLS-1); however, it was noted that it can be extended to the case of more than
one response variable (PLS-2) by applying the same procedure to each output variable.
This method of prediction interval estimation for NNPLS will be analyzed in detail,
though other methods based on empirical estimations, analytical methods, bootstrapping,
and jack-knife estimation have been reported [Berger 1997, De Vries 1995, Denham
1997, Faber 1996, 2000a, 2000b, Hay 1998, Martens 2000a, Martens 2000b, Morsing
1998, Phatak 1993, Wehrens 1997].

The final technique under evaluation is that of nonparametric regression, more
specifically Local Polynomial Regression (LPR). A good review of the general class of
lazy learning methods is presented by Atkeson et. al. [1996]. The thorough treatment of
LPR by Fan and Gijbels[1996] is an indispensable resource. A lazy learning toolbox is
available on-line with a corresponding manual. This toolbox has been developed and
made available by Mauro Birattari and Gianluca Bontempi [1999], and is available at

http://www.iridia.ulb.ac.be/~lazy/. The toolbox will provide local polynomial fits up to

apolynomial degree of 2, i.e. local quadratic.
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Nonparametric regression comprises a set of methods in which data processing is
deferred until a prediction at a query point needs to be made. These methods are also
referred to as memory based methods due to the approach of storing the training data, and
recalling relevant training data when a query is made. Local, nonparametric models

attempt to fit the data in a region surrounding the query point.

Nonparametric models are susceptible to estimation problems near the boundaries of the
observation intervals. Consider a predictor variable x and aresponse variabley . Atthe
boundary of the observation interval, the local averaging process becomes asymmetric
because half of the weights are undefined and outside the boundary creating a bias related
to the tangential behavior at the boundary. Boundary effects in nonparametric regression
have been addressed by Héardle [1990], Wand and Jones [1995], and others. These
boundary effects were reported to be of reduced influence for local linear models [Fan
1993]. Aninteresting perspective presented by Ruppert and Wand [1994], further
considers this boundary effect, and explainsthat it is not simply due to the asymmetric

data distribution near the boundary.

A general set of local regression estimatorsisthe class of LPR estimators. LPR
estimators obtain an estimate for a given query point by fitting a d " degree polynomial
using weighted least squares. The training points are weighted based on their distance
from the query point using a kernel function centered at the query point. The kernel's
influence can be adjusted via the kernel bandwidth. For various values of the degree of
the polynomial (d) different terminology has evolved. The process of fitting constants
(d =0) using alocally weighted training criterion is known as Kernel Regression (KR)
[Ait-Sahalia 2001, Cai 2001, Kauermann 1998, Liero 1992, Pawlak 1997, Wu 1994,
Ziegler 2002]. An excellent text reference for KR is Applied Nonparametric Regression
by W. Hardle [1990]. Wand and Jones [1995] provide another text resource with a
thorough evaluation of the asymptotic properties of KR estimators. Local Linear (LL)
regression is equivalent to LPR using d =1 [Fan 1992a, Fan 1992b, Fan 1993], and local
guadratic regression is equivalent to LPR usingd = 2. Additional works covering LPR

11



techniques are available [Atkeson 1996, Cleveland 1979, Cleveland 1988, Fan 1995a,
Fan 1995b, Ruppert 1994].

The memory based nature of nonparametric regression has strong similarities to the
associative memories of neural networks. Kernel regression can be analogously
presented as a generalized regression neural network (GRNN) [Specht 1991, Schigler
1992]. The GRNN isaspecia extension of the radial basis function network (RBFN)
[Park 1991, 1993], and is closely related to Specht’ s probabilistic neural network (PNN)
[1990]. RBF networks were originally proposed by Broomhead and Lowe [1990]. The
main difference between GRNNs and RBFs are that the GRNN output layer performs a
weighted average while the RBF performs a weighted sum [Heimes 1998]. The basic
GRNN has similarities with the methods of Moody and Darken [1989], RBFs [Park 1991,
1993], the cerebellar model articulation controller [Kolcz 1999], and nonparametric
kernel based techniques stemming from the work of Nadaraya [1964] and Watson [1964].
Procedures for a neural network-type architecture with a memory of training vectors
which computed estimates based on a neighborhood of pointslocal to the query point
were first presented by Steinbuch [1963] and Taylor [1959, 1960]. The original schemes
were based on awinner takes all approach where the winning node was determined based

on a distance metric between the query point and the stored training vectors.

Since kernel regression is based on established statistical principles and converges with
an increasing number of samples asymptotically to the optimal regression surface, the
same claim can be made for a GRNN [Tomandl 2001]. A further modification to the
standard GRNN, modified GRNN (MGRNN), adds the abilities to deal with data vectors
of unequal length thus allowing for the use of data structures such as data trees, and the
ability to compute the gradient of the regression surface directly without the need for
numerical approximations [Tomandl 2001]. The MGRNN utilizes a different kernel
bandwidth for each training vector, similar to the adaptive GRNN presented by Specht
and Romsdahl [1994] and later by Masters[1995]. Earlier GRNN versions utilized a
single kernel bandwidth for the whole network [Specht 1991]. All of the GRNN models
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are consistent in their use of spherical kernel functions. Training of GRNNs usually
consists of optimizing the bandwidth parameters based on the M SE of the training
vectors. Additional work using GRNNSs has been reported by Kolcz and Allinson [1996]
under the alternate architecture of an N-tuple regression network, or N-tuple neural
network (NTNN). They site an increased capacity for training vector storage and faster
computation.

Prediction interval estimation for nonparametric regression has been studied by Hardle et.
al. [1988, 1990, 1991]. The basis of Hardle's work was the derivation of confidence
intervals for nonparametric regression estimators via bootstrapping [Efron 1982]. Early
work on confidence bound estimation with respect to kernel estimators was completed by
Bickel and Rosenblatt [1973], and later extended by Johnston [1982]. The confidence
intervals derived from this early work require a bandwidth selection that resultsin
minimal bias. Due to the bias-variance trade off thisleadsto arelatively high variance
estimator. Aswill be discussed in chapter 3, the bandwidth of a kernel regression model
controls the complexity of the model. Lower bandwidth models exhibit higher
complexity while higher bandwidth models exhibit lower complexity. The bias/variance
trade-off is that for low-bandwidth high-complexity models the varianceis at its
maximum while the biasis at its minimum. As the bandwidth increases, the complexity
of the model decreases. The variance decreases with complexity, while the bias increases
due to the over-regularization (over-smoothing) of the model. Thisisthe bias-variance
trade-off. A later work by Eubank and Speckman [1993] resulted in a bias-corrected
confidence band that allows the bandwidth selection to remain data driven to avoid the
constraint of minimum bias causing high variance estimators. Other methods have been
derived for confidence interval estimation [Knafl 1984, Knafl 1985, Nychka 1988,
Nychka 1990, Wahba 1983], though all seem to not be applicable to awide array of
problems. The variance and bias properties of LPR modelsiswell known, though direct
use of these properties for prediction interval estimation is prohibited due to their
dependence on unknown quantities such as the derivatives of the function being modeled.
Fan and Gijbels [1996] present an approach based on asymptotic approximations to the
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variance and bias of the LPR model, and other work has been based on asimilar

approach [Gribok 2003]. The method used in this dissertation considers both the
variance and the biasin computing prediction interval estimates. The variance estimator
utilized iswell known and has been presented in various sources [Wand 1995, Fan 1996,
Ruppert 1994]. This variance estimator has also been applied [Gribok 2003] to the
Multivariate State Estimation Technique (MSET) [Gross 1998, Singer 1996]. MSET is
an empirical model in the class of honparametric estimation techniques. A method of
bias estimation has been incorporated into the methods used in this dissertation so that the
effects of the bias/variance trade-off appropriately influence the resultant prediction
intervals.

The bootstrap is a method of Monte Carlo simulation whereby no assumptions are made
about the population from which arandom sample was obtained. The random sampleis
taken to be an estimate of the population, and each value within the random sample has
an identical probability of occurrence. For each random sample, an estimate of a specific
population parameter can be obtained. Repetitive sampling and consequent estimations
provide adistribution for the parameter of interest. In the case of regression estimation,
the parameter of interest is the estimate of the response, and its distribution can be used to
construct prediction intervals around the estimate. Full coverage of the bootstrap
technique is provided by several sources[Efron 1993, Hall 1992, Efron 1982]. The use
of bootstrap techniques for constructing prediction intervals for nonlinear regression
models has been documented by Derks and Buydens [1998] who assessed bootstrap
resampling methods and the delta method for estimating prediction intervals for multi-
layer feedforward neural networks. Similar efforts have been reported by Tibshirani
[1996] and Dybowski [1997]. The utility of the bootstrap is best prescribed in the
following statement by Dybowski [1997]: "The bootstrap is a computer-based method for
assigning measures of accuracy to statistical estimates, and it will provide a

nonparametric confidence interval for any population parameter whatsoever."
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The approach to obtaining prediction intervals for neural networks via bootstrapping has
been studied by various researchers, with the general consensus being that the bootstrap
prediction intervals are more robust than their analytically derived counterparts.
Bootstrapping methodol ogies have also been applied to neural network ensembles
[Carney 1999]. A neura network ensembleis a set of neura networks each trained using
adifferent bootstrap sample for the training set. Estimates from all of the trained
networks are combined to provide generalization performance superior to that of asingle

neural network as well as reduced prediction intervals for the estimates.

The presented summary contains the most relevant information that was reviewed in
preparing this dissertation. While some of the works were presented to provide
references to related studies, many of the brief discussions presented in this chapter will
be expanded in the appropriate sections of chapters 3 and 4.
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3.0 DESCRIPTION OF M ODELING STRATEGIES

In this chapter, prior to diving in to the advanced empirical models under study, a
theoretical basisis presented for the more basic empirical regression models of OLS,
PCR, and PLS. The discussion of these modelsis relevant to understanding not only the
basis of the models under study, but also the treatment of prediction intervals for the
basic models provides significant insight into the development of the prediction interval
estimation methodol ogies for the advanced regression models that are the subject of this

work.

The simplest type of regression model that is an indispensable member of the set of
empirical modelsisOLS. A brief description of the mathematical mechanisms of OLS
regression isinitially provided. The extremely important consideration of collinearity is
discussed thereafter. PCA and PCR are also covered briefly, followed by a dlightly more
rigorous development of PLS. In the same section, the NNPLS model is developed as an
extension of the base PLS design. A general basis for ANNsis given, leaving the more
detailed mathematics to the section in the next chapter regarding ANN prediction
intervalsto avoid repetitious presentations. Both NNPLS and ANNSs can be represented
within the framework of nonlinear regression, from which the analytical prediction
interval estimation methodologies are derived. Thus, the overall nonlinear regression
methods are described. The training algorithm used to train the neural networks for this
work was the Levenberg-Marquardt algorithm, which is briefly discussed in its
appropriate section. The last of the 3 empirical modeling approaches falls into the more
general category of nonparametric regression; thus an overview of nonparametric
regression is provided. Thisisfollowed by in depth discussions of LPR, and its
derivative models of KR and LL. To close, two brief discussions are presented to
highlight the similarities and differences between LPR and ANNSs, and to present some of
the discussion surrounding the differences between parametric and nonparametric
approaches.
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3.1  ORDINARY LEAST SQUARES

To begin a study of advanced empirical modeling techniquesit isrelevant to at first
consider the more basic models, because the issues related to the simpler models are also
issues for the advanced models. Here, keeping discussions to a minimum are presented
the mathematical bases for OLS. In matrix notation the OL S equations can be presented

as:
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y X b e
éy,u 6l X; X, x X X X0 ée,u
é,u é 0 4.~ & U
&Yz gl- Xa Xp XXX X4 éby U ez
exi ex x  x x0 gh o €x
eu € x X x U é xu €U
é”a é Uz, €u
éxll=zex x X xu.éxu+éxu
é u é a X - é.u
A - AX X X X - X A -
e*u é a g 3 8*(
e xu gx X X xg éxl] exu
eaé Ug g €
exu é 0 &t exa
g H & Xu X, X x x x,H &t
(nx1) (nxp) (px1) (nx1)

y isthe response variable vector
X isthe matrix of predictor variables
b isthe vector of regression coefficients

e isthe vector of error terms

The assumptions of the linear regression model are:
- themodel islinear
- thepredictor variables (X ) are noise free

- al required predictor variables are available
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- the predictor variables are independent

- g =e,=xXx=g =X _,Ii.e constant variance errors (homoscedasticity)

- theerror terms are normally distributed and independent

The least squares solution is found by minimizing the sum of squares of the residuals,
with respect to the regression coefficient vector b :
minje| = min § e
i=1
The e,'s are assumed independent, normally distributed random variables with a mean of

zero, and a constant variance.

el =(y- Xb)T(y - Xb)

ﬂEl:—ZXTy+2XTXb
To

Setting equal to zero and solving for b results in the normal equations:

X"™Xb=X"Y

The solution requiring the solution of p normal equationswith p unknownsisthus:
b=(X"X)'X"Y

Confirmation that the solution isaminimum is obtained by computing the second

derivative, and recognizing that the second derivative is a positive semi -definite matrix.

Tle]

b2

=2XTX

Prediction for future independent observations is then obtained through:
Ji =% (X"X)"XTY

X, isal” p observation vector, and Y, isthe corresponding scalar response estimate.

3.2 COLLINEARITY AND ITSEFFECTSON EMPIRICAL MODELS

A matrix X issaid to be collinear if the columnsin X are approximately or exactly

linearly dependent. Collinearity means that the matrix X will have some dominating
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types of variability that carry most of the available information [Martens 1989]. A square
matrix is said to be singular if there is at least one linear dependency among the rows (or
columns) of the matrix. For the case of a singular matrix the determinant is zero:

| X|=0. Therank of amatrix is defined as the maximum number of linearly independent
columns (or rows). Based on this, matrices containing linearly dependent columns are
said to be rank-deficient, or ill-conditioned. In relation to empirical modeling, the matrix
of concernis X' X . Any linear dependence that existsin amatrix X will be preserved
in the new matrix X' X . When the determinant of a matrix is zero itsinverse does not
exist, and when it is near zero, its inverse contains values of extremely large magnitude.
Thus, situations where the determinant of X' X isnear zero lead to unstable estimates of
the regression coefficients, OL S, which may be unreasonably large or have the wrong

sign [Massart 1988]. This can be easily seen by viewing the matrix equation for the

variance of the regression coefficients: var(b) =s (X"X)*, where s * = var(e) .

Collinearity in a data set leads to an ill-posed problem that causes inconsistent results
when data based models such as OL S or neura networks are used [Gil 1998]. Hadamard
[1923] defined awell-posed problem as a problem which satisfies the following 3

conditions:

1. The solution for the problem exists.
2. The solution is unique.
3. The solution is stable or smooth under small perturbationsin the data, i.e.

small perturbations in the data produce small perturbations in the solution.
If any of these conditions are not met the problem is referred to as an ill-posed problem

and special considerations must be taken to ensure areliable solution.

Data sets from large-scale processes, such as an electrical generating facility, are often
plagued with collinearity. Thus, OLS is not a suitable method of empirical modeling for
these situations, due to the required matrix inversion to obtain the solution. The use of
autoassociative artificial neural networks (AANN), used extensively for signal validation
[Fantoni 1998, Hines 1997b, Upadhyaya 1992, Xu 1999], is aso inhibited by collinearity
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for ssimilar reasons [Qin 1997]. Some type of regularization method should be utilized
when dealing with collinear data and ill-posed problems. A simple description of
regularization is the introduction of prior information into a problem for the purposes
reducing the set of possible solutions, stabilizing the result. Regularization can be
integrated into neural network devel opment through the use of cross validation training
and robust training techniques however; these methods are time consuming and require
significant oversight and knowledge [Xu 2000]. Other methods of regularization include
truncated singular value decomposition (TSVD), and ridge regression (RR) [Hoerl 1970,
Hines 2000b]. The utility of the PLS algorithm in eliminating the problems associated
with collinearity is an indispensable feature of the method. Though this feature is also
available in PCR, the orthogonal projectionsto latent structuresin PCR is unsupervised
with regard to the response variables, focusing only on the variability contained in the
predictor variable set. PLS on the other hand is supervised in that its orthogonal
projections are performed to capture the maximum covariance between the predictor
variables and the desired response, in its latent variables. Thefirst latent variable
contains the maximum covariance in a given direction and subsequent latent variables
contain the maximum covariance remaining, in adirection orthogonal to all of the
previous latent variables.

3.3 PRINCIPAL COMPONENT ANALYSISAND PRINCIPAL COMPONENT REGRESSION

Karl Pearson introduced component analysis in 1901 [Pearson 1901] by defining the
closest plane to a system of pointsin space such that the sum of squares of the
perpendicular residuals onto that plane was the least. Hotelling [1933] solved the
problem of finding the linear combination of variables that had maximum variance,
which is the same as finding the direction cosines of the major axis of the concentration
ellipsoids of amultinormal distribution. This problem can be extended to finding the
hyper-plane containing greatest variance, which is clearly the same as the hyper-plane
with the least perpendicular sum of squares. The scores (dimensions the same asarow or
observation) give the coordinates of the projection of the i observation onto the fitted
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plane. The linear coefficients that project the data onto the fitted plane are the direction
cosines defining the principal axes of the concentration ellipsoids and equivalently define
the space contained by Pearson's plane of best fit. These coefficients are commonly
called loadings.

A comprehensive treatment of principal component analysis (PCA) was compiled by I.T.
Jolliffe [2002]. The following description has been extracted from Hodouin, et. a.
[1993]. PCA isamethod for explaining the variance of the input variable matrix in terms
of anumber of new latent variables called principal components (PCs). Inthe p-
dimensional input variable space, the first loading vector a, defines the direction of
greatest variability, and the score vector z, represents the projection of each observation
vector (input variable pattern or sample) onto a,. Alternatively, a, and z, arethefirst
eigenvectorsof XX and XX, respectively. The second PC isthat linear combination
of the input variables explaining the next greatest amount of variability subject to the
condition that it is orthogonal to the first PC, that is z, = E,a,, where E, = X - z,a; is
the residual matrix left after removing the predictions of the first PC.

This process can be repeated until p PCsare obtained. Considering all of the PCs, the

dimensionality of the input variables has not been reduced, but the axes of the input
variable matrix have been rotated to a new orthogonal basis. With large data sets of
correlated variables, after defining A PCs, where A << p, most of the variation in the
input variable matrix (X ) can be explained by thefirst A PCs. Thisleadsto a

dimensionality reductionfrom p to A.

The input variable matrix can be reconstructed via:

— T T T
X=za +z,8, +..+z,a,+tE,

A
where: E,=X-azal
i=1
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Ideally, E, should represent random error or noise.

The scores can be considered linear combinations of the original variables and the
loadings are the weights of the original variables used to form these new linear

combinations.
3.3.1 Solution by LaGrange Multipliers

Computation of PCs reduces to the solution of an eigenval ue-eigenvector problem for a
positive-semidefinite symmetric matrix. Below is an iterative procedure, which is not the

most efficient method of computing PCs; however, it provides insight into the details of
the method [Jolliffe 2002]. The method begins by looking for alinear function a; X

which has maximum variance, where:

S

Ty — —

a; X =X, +a,X, +xdkayX, =q a;X;
=1

X isan nxp matrix and a, isa pxl vector.

The next step in PCA isto look for alinear function a X with maximum variance and

subject to the constraint that it is uncorrelated to a; X . This process continues until a

maximum of p linear functions are obtained which are uncorrelated with one another.
The column vector a, isthe k™ largest eigenvector of the covariance matrix of X , and
the corresponding k" largest eigenvalueis | . Additionally, the PC scores z, can be
defined as: z; =a; X", where z, isan nxl vector of PC scores. If the eigenvectors, a, ,

are scaled to unit length, then var(z,) =1 .

The first PC maximizes the variance of the first PC score, i.e. var(z,) = a; Sa,, where S
is the covariance matrix of X . This maximum will not be achieved for finite a,, so a
normalization constraint is applied, aja, =1. Using the technique of LaGrange

multipliers, maximize a; Sa, - | (a;a, - 1) by taking the derivative with respect to a,,
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and set equal to zero. Thisresultsinthefollowing: Sa, - | a, =(S- 11 ))a, =0, where
|, istheidentity matrix of size pxp. Thus, | isaneigenvalueof S, and a, the
corresponding eigenvector. To determine which of the eigenvectors results in the desired
maximization, consider the quantity to be maximized: a;Sa, =a;la, =la/a, =1 ,so |
must be as large as possible; thus, a, is the eigenvector corresponding to the largest

eigenvalue | ;.

The second PC maximizes a] Sa, , under the additional constraint that a, is uncorrelated
with a,, i.e. aja, =0. Again, using the method of LaGrange multipliers, where | and
f are LaGrange multipliers, and assigning the normalization constraint aja, =1. The
function to maximize is then:

a;Sa,- | (aja, - 1)-f (aja,)

Differentiation with respect to a, yields:

Sa,-la,-fa, =0

Multiplication by a; yields:

a,Sa,-laja,-faja, =0

This then reduces due to the constraints of normalization and uncorrel ation:

f =0

Substituting this result into the differentiated equation yields the eigenval ue-eigenvector

problem:
Sa,-la,=(S-11,)a,=0
Similar to before, a, isan eigenvector, and | aneigenvalueof S. Additionaly,

a,;Sa, =1 ; therefore, | isthelargest eigenvalue | ,, and a, the corresponding

eigenvector. This process continues until all principal components are obtained or the
maximum number of principal components desired is obtained. One method to
determine the importance of consecutive principal componentsis based on the relative

magnitude of the corresponding eigenvalues. Consider the eigenvalue matrix:
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The standard eigenvalue problem in matrix form can then be represented by:
SA=LA
Thetotal variance of the datais given by:

—
1]
> M> D> D> D> D> D> D> D

o
X
x O x O

0
xOl:J
0

X

trace(L) = 5 | . = total variance of the data.

i=1
A measure of the importance of each PC expressed as percent variance explained is given
by:

_L 100%
trace(L)

By looking at consecutive importance values one can determine the number of relevant
principal components using asimple heuristic. A simple heuristic isto choose the
number of principal components that provides a given percentage of the total variance,
e.g. 95%.

3.3.2 Principal Component Regression

The application of PCA techniquesto regression is referred to as PCR. PCR uses the PC

scores (Z) in place of the predictor variables in the standard OL S model.

Z = XA =the n" a reduced matrix of the PC scores, where the full matrix X isn” p,
p>a.

Due to the orthogonality of A , this can be also be expressed as:

X=zZAT

Beginning with the standard OL S equation:

y= Xb+e
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Substituting in the PCA equivalent for X :

y=ZATb+e

Define ¢ = ATb, such that:

y=ZCc+e

¢ = the regression coefficients estimated vialeast squares

e=theresidua produced viathe estimation

Calculation of the regression coefficients ¢ for PCR is not susceptible to collinearity
issues, asis OLS, due to the orthogonality of Z (Z'Z =S?), where S* =Var(X),
assuming X ismean-centered. The elimination of the effects of collinearity is enabled by
the reduction of the variance in the matrix of PC scores Z , with respect to the original
data X . Thusit isassumed that the matrix Z iswell-conditioned, which is areasonable
assumption if infact a << p, i.e. only the most important (importance being defined as
variance) principal components are retained. The regression coefficients C are computed
via

c=(2'2)'z2'y=S7%Z"y

Thus leading to the estimation of the response:

A

y = XAC
3.4  PARTIAL LEAST SQUARES (LINEAR AND NONLINEAR M ETHODS)

First introduced by H. Wold in the field of econometrics [Wold 1966], PL S has become
an important technique in many areas, including psychology, economics, chemical
engineering, medicine, pharmaceutical science, and process modeling. PLSis aclass of
techniques for modeling the associations between blocks of observed variables by means
of latent variables [Wegelin 2000]. These latent variables are created through a
supervised transformation, whereby an orthogonal basis results.
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The PLS algorithm used in thiswork is a special case of the standard technique, where
the Y block consists of asingle column or response variable. This case of PLS modeling
isreferred to as PLS-1 [Gil 1998] and is employed here due to its regularization
properties, putting it in the same class as the methods of RR and PCR [Wegelin 2000].
Extensive discussions of PL S methods for the general case of more than one response
variable are available in the literature [ Geladi 1986, HOoskul dsson 1988, Hoskuldsson
1995, Martens 1989]. All discussions presented here refer to the PLS-1 technique. The
PLS-1 technique is an inferential modeling method. The inferential structure provides
the additional benefit of eliminating the ability for perturbations in a specific variable to
directly propagate to the prediction of that variable. Thisis due to the architecture of
inferential models, in which avariable s response is inferred through the use of other
variables correlated with it.

PLS-1 isan inferential modeling technique of the class of regularization techniques. It
has been directly compared to RR and TSVD in asignal validation study [Hines 1999], as
well asto RR and PCR in achemical application [Wold 1984]. In both cases, favorable
results were reported for the PL S algorithm comparisons, and stable solutions were
obtained. The chemical application resulted in a PLS model exhibiting a solution which
was stabilized in comparison to the OL S solution, and comparable in prediction error to
RR. The signal validation study was based on a predictor variable block plagued with
collinearity, and reported a highly stable PL S solution in comparison to un-regul arized
neural networks, and OLS solutions. This stability results from the orthogonalization of
the predictor variable block, and the reduced variance of the estimates due to the
elimination of higher ordered latent variable pairs. These higher ordered latent variable
pairs contain the least amount of variation related to the response variable, and are
generally considered to be noise.

The inner relationships of the standard PL S algorithm are constructed using univariate
regressions on the latent vectors. In attempts to enhance the technique, quadratic
functions have been introduced into the inner relationship [Baffi 1999a, Ni 1995, Wold
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1989, Wold 1992]. However, quadratics are still linear in their parameters and do not
guarantee a proper solution [Bro 1995]. The use of single hidden layer feedforward
neural networks (NN) has been suggested [Gemperline 1991], and applied in the field of
chemical engineering [Baffi 1999b, Holcomb 1992, Mathouse 1997, Qin 1992, Qin
1996]. These methods have been under study at the University of Tennessee, for the
purposes of signal validation in large-scale processes, beginning in late 1999 [ Rasmussen
2000b]. The method used herein, uses fully connected feedforward neural networksin
the inner relationships and maintains the linear orthogonalization in the outer
relationships. This method will be referred to as neural network partial least squares
(NNPLS), to avoid confusion with the various nonlinear methods utilizing quadratics or
radial basis functions [Wilson 1997a, Wilson 1997b]. A NNPLS signal validation system
has been implemented, on atrial basis, at the 9" unit of Tennessee Valley Authority’s
Kingston fossil plant, in Harriman, Tennessee, USA [Hines 2000c, Hines 2001,
Rasmussen 2000a, Rasmussen 2000b].

Two features of the PLS algorithm provide extensive benefits for designing empirical
models for signal validation tasks. Thefirst isits elimination of numerical problems
associated with collinearity. The second beneficial feature of PLSisits elimination of
the higher ordered latent vectors from passing through to the inner relationships of the
model. These higher order latent variables contain decreasing amounts of variance
related to the response variable block Y . Thisinherent regularization, via supervised
dimensionality reduction, provides reproducible and stable solutions. The benefits
associated with regularization, to stabilize the solutions of ill-posed problems, are making

its incorporation into the design of signal validation systems essential [Dayal 1997].

There are two sets of relationships involved in the PLS technique, the outer relationships
and the inner relationships. Consider an n” p block of predictor variables, X , and an
p”~ 1responsevariable, Y . Note that the restriction of the response variable matrix to a

single variable isthe case for PLS-1. The outer relationships are linear relationships
between the predictor variables, X , and the latent variables for the same block. The
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creation of latent variable pairsis an iterative process. The diagram of the mapping
performed by a single iteration of the PLS-1 algorithm provides further illustration

(Figure 3.4.1).

Following the creation of alatent variable pair, the predictor variables are successively
deflated by the information extracted by the current latent variable pair. For this reason,
the observed variable block is often referred to as aresidual matrix, and herein will be
referred to as the input residual matrix. Similarly, there is an output residual matrix
created by the deflation of the response variable matrix at the end of each iteration. The
deflation operations are not an essential step in the PL S algorithm [HAskuldsson 1996];
however, the residual matrices provide information regarding the amount of variance
contained in each successive set of latent variable pairs. The outer relationships for the
predictor variables and the subsequent deflation of the input residual matrix are given

below.

Define: E = input residua matrix
f =  output residual matrix

w=  predictor variable transformation weights

t = input latent variable
b= regression coefficient
p=  inputloading vector

a=1,...,R (iteration index)

j =1,...,n (column index)

The outer relationship can be explicitly written as:
— -1 -1 -1
U =EiyWaa * ECaWea * - F Ein Wi
The deflation of the input residual matrix is given by:

Ea =zE&!.- ta(pa)T
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Notethat E° = X, subscripts indicate the matrix indices, and superscripts indicate the
iteration index. The number of iterations of the outer relationship, a, dictates the number
of pairs of latent variables, and constitutes selection of the model. The number of latent
variable pairs computed is the rank of the PLS model, R, and is often determined viaa
cross validation technique [Hines 1999]. The PLS-1 algorithm does not require the
transformation of the response variable, sinceit isarank one matrix. Hence, thereis no
corresponding outer relationship for the response variable. The optional task of deflation
of the output residual vector may still be carried out if desired, to provide a quantification
of the variability explained by each consecutive input latent variable. The deflation of
the output residual is given by:

fa=f*- 1%

Notethat f° =y, and b? isthe coefficient from the univariate regression of t* onto f2.
All of the discussions regarding the input outer relationships of the PLS algorithm also
apply to the NNPLS agorithm. Differences between the methods occur in the inner
relationships, and dlightly modify the equation for the deflation of the output residual.

The inner relationships of the PLS-1 algorithm are a set of univariate regressions between
each latent variable pair up to the rank of the model. Substituting these univariate
regressions with feedforward neural networks provides the algorithm with nonlinear
mapping capabilities, and will often produce a more parsimonious model [Malthouse
1997]. Following the method of S.J. Qin and T.J. McAvoy, each latent variable pair is
mapped with a single input single output (SISO) neura network [Qin 1992]. The use of
very simple neural networks circumvents the over-parameterized problem of the direct
neural network approach. The combination of the PLS-1 linear outer relationships and
the neural network inner relationships will be referred to as NNPLS-1.

3.4.1 Presentation of NNPLS-1 Algorithm

The neural networks used in the inner relation contain a single hidden layer of neurons

containing hyperbolic tangent activation functions, and a single output neuron with a
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linear activation function. The neural networks were trained with the Levenberg-
Marquardt (LM) training algorithm [Levenberg 1944, Marquardt 1963]. Cross validation
training was used for early stopping of the LM algorithm. Initialization of the neural
network weight and bias values can be based on the univariate regression solution. This
method of initialization will decrease the time required to train the neural networks, and
due to the training algorithm finding the nearest local minimum from the initial point, the
solution will be better than theinitial linear model [Qin 1992].

Each latent variable pair requires a SISO neural network. The neural network weights
and biases for each set of score vectors are determined during the current iteration and the
explained variation is subtracted from the output residual via network simulation. The
full NNPLS-1 algorithm is given below, where the 1 indicates that it is an inferential

design (asingle response variable):

1. a=1 Initialize iteration index
2. E,=X Input residual matrix
3. fo=y Output residual vector
4, w,=E] f. . Calculation of transformation weights
5. w, =w,/|w, || Normalization
6. t,=E_,w, Calculation of input scores
7. p.=tlE_ . /tlt, Calculation of input loadings
8. TRAIN{N,(t,.f, )} Neural network training
9. f,=1,_,- N(t,) Calculation of output residual variable
10. E,=E_,-t.p! Calculation of input residual matrix
11. if a<R Update iteration index if less then rank
a=a+l
goto 4
else
end
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The rank of the model, R, isthe number of latent variable pars computed. Itisdifficult
to determine the optimal rank or dimension of the model without some measure of the
model's performance at each dimension. A common performance measure is the sum
squared error (SSE), and is computed with respect to an independent set of data that was
not used during model development. The optimal dimension is then defined as the
dimension at which the SSE was at its minimum. Data should be scaled to zero mean and

unit variance prior to using the NNPLS-1 algorithm.

35 ARTIFICIAL NEURAL NETWORKS

Artificial neural network (ANN) models, inspired by biological neurons, contain layers of
simple computing nodes that operate as nonlinear summing devices. These nodes are
highly interconnected with weighted connection lines, and these weights are adjusted
when training data are presented to the ANN during the training process. In a broad
sense, thisis an emulation of the learning process of the highly interconnected set of
neurons of the human brain. Though, the magnitude and conplexity of the human system
is unattai nable through computational methods, it isamodel by which complex problems
can be solved in limited form. Additionally, the training process often identifies
underlying relationships between environmental variables that were previously unknown.
Successfully trained ANNSs can perform a variety of tasks, the most common of which
are: prediction of an output value, classification, function approximation, and pattern

recognition.

Neural networks are currently being used in many fields including military target
recognition, financial decision support, detection of manufacturing defects, robotics,
control systems, medical diagnostics, image processing, instrument monitoring, and
medical decision support [Dayhoff 2001]. Additional applications have been presented
for signal validation in the power industry [Fantoni 1996, Hines 1997a, Xu 2000].
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The first computational, trainable neural networks were developed in 1962 [Rosenbl att
1962, Widrow 1985]. This network, labeled the perceptron, contained two layers of
computational nodes and asingle layer of interconnections. To clarify the terminology,
only layers of aneural network that have an associated set of connection weights will be
recognized as legitimate processing layers. The input layer of a neural network is not a
true processing layer because it does not have an associated set of weights. The output
layer on the other hand does have a set of associated weights. Thus, the most efficient
terminology for describing the number of layersin aneural network is through the use of
the term, hidden layer. A hidden layer is alegitimate layer exclusive of the output layer.
Thus, the perceptron can be described as having zero hidden layers, only an output layer.
The perceptron was limited to the solution of linearly-separable problems. The
expansion to solve nonlinear problems, discrimination and function approximation, was
made available in 1974 [Werbos 1974], and referred to as the multilayered perceptron
(MLP). MLPswere trained with a gradient-descent method referred to as back-error
propagation. The basic MLP consists of a single hidden layer and an output layer,
though additional hidden layers can be included (Figure 3.5.1). Note that MLPs have at
least one additional processing layer than the perceptron. Most MLPs are fully connected
in that each processing unit of each layer is connected to all processing units of the next

layer.

The computational capabilities of ML Ps were proven by Hecht-Nielson [1989], Hornik
[1989] and Cybenko [1989] in the general function approximation theorem which states
that a neural network could approximate an arbitrary nonlinear function. Additional
references for the universal approximation theorem of neural networks are Hornik [1990,
1993], and White [1989]. The result that artificial neural networks with a single hidden
layer can approximate any nonlinear function combined with the neural network’s
abilities to create the functional form and the fitting function simultaneously, provide a
decided advantage over traditional statistical multivariate regression techniques where a
fitisforced to a prechosen function [Dayhoff 2001]. Artificial neural networks are
multifactorial mathematic models that have been applied successfully in the prediction,
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classification, function estimation, pattern recognition, and pattern completion problems
in many disciplines. Because all of these problems can be formulated as function
estimation problems, and because there is theoretic evidence that neural networks can
approximate any nonlinear function with any degree of accuracy, neural networks have

the potentia to be highly effective in practically any discipline [Dayhoff 2001].

The neural network training process begins with the initialization of its weights to small
random numbers. The network is then presented with the training data which consists of
a set of input vectors and corresponding desired outputs, often referred to astargets. The
neural network training processis an iterative adjustment of the internal weightsto bring
the network’ s outputs closer to the desired values, given a specified set of input vector /
target pairs. Weights are adjusted to increase the likelihood that the network will
compute the desired output. The training process attempts to minimize the mean squared
error (MSE) between the network’ s output values and the desired output values. While
minimization of the MSE function is by far the most common approach, other error
functions are available. The error surface often contains a variety of local minima aong
with aglobal minimum. Local minima can be problematic during network training
because of the use of the gradient descent methods for weight adjustment. The presence
of many local minima, along with the random initialization methods of neural networks
leads to the variety of solutions obtained when training the same neural network
repeatedly, using the same training set. It should also be recognized that the resultant
trained neural network is dependent on the data used to train the network. Changing the
training set will most likely lead to an alternate solution, even if the same initial random
values are selected for the connection weights. Because the neural network has
undergone generalized learning rather than memorization, it is, in aliteral mathematical
sense, interpolating or extrapolating for new incoming cases. An extremely important
consideration in training neural networks s that the training data must provide examples
of all conditions for which accurate predictions will be queried. That is not to say that all
possible conditions must exist in the training data, but that the training data should
provide adequate coverage of these conditions. Neural networks will provide
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interpolative predictions, but the training data must provide adequate coverage above and
below the interpolation site for this prediction to be sufficiently accurate. Accurate
extrapolation, i.e. providing estimations for data that resides outside of the training of the
training data, is not possible for neural networks due to the shape of the nonlinear

functions utilized in the processing units of the hidden layers of the neural network.

A trained neural network does not provide a unique solution because the final set of
neural network weights depends on severa factors, including: the initial random weight
values, the division of the datainto the training, validation, and verification sets, and the
neural network training algorithm. Methods of evaluating the effects of these different
factors are usually based on repeated trials. For example, to evaluate the effects of the
random weight initialization repeated results are obtained using the same data sets with
different initial weights. The effect of data set division can be evaluated through
bootstrap sampling (random sampling with replacement).

Important considerations when applying neural networks are: methods of data collection,
data types and data-scaling, data division and validation schemes, and quantification of
confidence intervals for the predictions. Neura network development requires three non
overlapping sets of data: training set, validation set, and test or verification set. Often the
data are divided at random into these three sets; however, some oversight should be
incorporated to ensure that the data in the training set adequately represents the
conditions present in the validation and verification sets. Thetraining set is used to guide
the adjustment of the connection weights during the training process. The validation set
is used to prevent overtraining. Overtraining occurs when a network begins to learn the
unigue characteristics of the training set that are not characteristic of the validation and
verification sets. Thisoften is stated as: "the network learns the noise in the training set.”
To prevent overtraining, the connection weights are adjusted to minimize the MSE
between the training set predictions and the desired outputs, then using these weights,
output values are computed for the validation set along with the corresponding validation
MSE. This processis aternately repeated and results in the training and validation M SEs
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decreasing during the early stages of the training process. Eventually, the MSE of the
validation set will reach a minimum and then begin to increase. At this point, the weights
of the neural network are being fine-tuned to memorize the conditions present in the
training set whch are unique; the network is learning the noise in the training set.
Because these unique details are not consistent in the validation set, its M SE begins to
increase. The optimal solution for the network occurs when the validation MSE is @t its
minimum, and network training is stopped at this point. Once a network has been
trained, it is presented with the verification set for which it produces output values. The
performance on the verification set is reported and used in determining the validity of the
neural network solution. The verification set is independent of the training and validation
sets, and the neural network results on the verification set can be considered atrue
(unbiased) estimation of the neural network performance on new data. The performance
on the verification set provides a proper benchmark evaluation metric for the
performance of the neural network as a predictor or classifier when deployed for actual

use.

While neural networks provide powerful nonparametric function approxi mation tools, it
should be noted that in many situations, the neural network architecture and training can
be shown to be analogous to standard statistical modeling paradigms which often have a
stronger theoretical foundation regarding the properties of the estimators. Many
applications employ neural networks as a black box modeling approach with no
considerations of the statistical properties of the resultant neural network solution to a
given situation. In many cases, the learning algorithms applied to neural network training
are slow to converge and are inefficient with respect to standard optimization algorithms
such as those used for nonlinear regression. Neura network algorithms are inefficient
because they are intended to be implemented on parallel computers, but are most often
implemented on standard PCs performing serial computations. Most MLPs are
equivalent to nonlinear regression or nonlinear discriminant models and nonlinear
regression optimization agorithms can perform an equivalent fit to the data orders of
magnitude faster than the standard neural network algorithms [Sarle 1994].
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The standard perceptron (one layer of trainable weights) has been shown to be equivalent
to linear regression, logistic regression, and alinear discriminant function utilizing the
linear [Weisberg 1985, Myers 1986], logistic [Hosmer 1989], and threshold activation
functions respectively [Hand 1981, McLachlan 1992, Weiss 1991]. MLPs have aso been
shown to be analogous to standard statistical procedures depending on the complexity
(number of hidden neurons and hidden layers). An MLP with one hidden layer is
essentially the same as the projection pursuit regression model except that the MLP uses
a predetermined functional form for the hidden layer activation functions, whereas
projection pursuit uses a flexible nonlinear smoother [Sarle 1994]. If the number of
hidden neurons is allowed to increase with sample size, an MLP becomes a
nonparametric sieve [White 1992]. Sarle [1994] indicates that nonparametric sieves are a

useful alternative to kernel regression and smoothing splines.

ML Ps have some attractive features such as the ability to vary complexity by adding or
removing neurons or layers. They are easy to extend to multiple inputs and multiple
outputs without an exponential increase in the number of parameters. The discussion
regarding the relationships between neural networks and more standard statistical
methods intends only to illuminate the fact that there is no black box approach to
statistical modeling and estimation. Even asimple linear regression requires considerable
knowledge of the method itself as well as the positive and negative influences on
regression models due to the data and its distributions. The knowledge required increases
for nonlinear regression. Thisis not to say that a neural network model, of sufficient
accuracy, cannot be easily constructed and deployed using one of the many available
software packages; however, without oversight and considerable knowledge the apparent
accuracy cannot be guaranteed and the limitations of the model are relatively unknown.
The full mathematical details of the ANNSs used during this work are provided in the

appropriate section

38



3.6 NONLINEAR REGRESSION

Both the ANN model and the NNPLS model can be represented within the framework of
nonlinear regression. It isthe linearization of the nonlinear regression model, also
referred to as the delta method that provides the basis for the analytical prediction
intervals used in thiswork; thus, it is arelevant endeavor to first study the generd
nonlinear regression model as presented by Draper and Smith [1966]:

A generd linear model isgiven by :

Y=b,+b,Z +b,Z,+x%b .7 , +e

Z, can represent any functions of the basic predictor variables X, X,,..., X, .

Any model that is not of the form as above is considered a nonlinear model, i.e. nonlinear
in the parameters. In the following discussions when referring to a nonlinear model, it is
assumed that the model isintrinsically nonlinear, such that it isimpossible to convert the
model into aform linear in the parameters. The well established notations for nonlinear
least squares provide alternate symbols for the predictor variables and the model
parameters. In thiswork, the only change that is adopted is the use of the parameter
notation of q =[a, g, »x q_], rather than thelinear notation B=[b, b, > b_].
Thus a genera nonlinear model can be written as:

Y, = f(x,q) +e

where: x; =[X;; X,

. o Xl i=1..,n

p is the number of predictor variables

e=[e e »xg]

The assumptions of normality and independence are e ~ N(0,Is ?).

The sum of squares error isthen:
- d -2
s@)=a{y,- f(x.9)
i=1

Avaueof § which minimizes S(q) is denoted q
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If the assumptions of normality and independence are valid, the least squares estimator of

q , isalso the maximum likelihood estimate of q . Consider the likelihood function for

S(a)

this problem: ¢(q,s %) =(2ps ?) 2e 2’

If s 2 isknown, maximizing the likelihood function with respect to q is equivalent to
minimizing S(q) with respect to q . To obtain the least squares estimator, the derivative

of the sum of squares error with respect to q , is set to zero, resulting in the p normal

equations:

3 2] éTf(x,,q)u B .
ajyY. - f(x.q9)p————3 Where k =1,..., p, thetotal number of parametersin
i=1 e 19, C{]—:q:

the model.

Solving the p normal equations for q provides the least squares estimate.
The solution of the normal equations can be very difficult to obtain and iterative methods

must be used in amost al cases and multiple solutions may exist.

Three common methods of obtaining the parameter estimates are: linearization, steepest
descent, and Marquardt's compromise. Each of these is discussed in the following 3

sections.

3.6.1 ThelLinearization Approach totheLeast Squares Solution for Nonlinear

Regression

Qo =[0, d,, ** q,,] aretheinitial values of the parameters.

A Taylor series expansion (to the first order) of f(x,,q) about q, isgiven by:

. b 5
f(x,a)=f(x nqo)"'a.?éMQ (qk' Qk,o)y

k1§ € 9, Gi=q, b

Define:
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- é%f (x.,g)u
in:f(Xw o) bl? ZQk'QI?’and Zi(,)kzémﬂ
& Ta, Gi=q

=Ao

The nonlinear model near g, can now be approximated by the linear form:

Y, = f(x.d) =0+ biZ0 +e

k=1
Define:
4—0 0 0B
gzn Ly, X XX Zl,pg
0 0 0
6421 Zz,z X X X Zz,pu
€ x x x xx xU é’u
é U X
& x X X XX Xy gbzﬂ
€ x x x xx xU o é xu g .
Z,=¢ u =é U,an Y, =Y-f"=
<=0 0 0 o o—¢ Y 0
€y Zip, x X x Zi é*a
€ x x x x x xU € xu
e u é u
& x X X X X xU Qggg
é a
X X X X X -
é x X a
A0 0 0 1
Szn,l Zn2 X X X Zn,pH

Then the least squares estimate of the model parametersis given by:
b, :(ZEZO)'IZEyO,Where b, istheestimate of 3, :[bf b? x x x

Which minimizes the sum of squared errors of the linearized model:

2

8 L8 G

S@)=aiY-fxa)-a bFZf?kg
k=1

i=1 1

The scalar values of the estimated parameter vector, b, represent b =q,, - g, ,, and

theq,, (k =1,..., p) can be thought of asthe revised estimates of q.

Ve 0\
ng_fllfl
gy, - o
e’ 2 2 U
é e u
é a
é X U
¢ x U
e OU
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e u
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X X
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This process is repeated by placing the current estimate in the role of the initial estimate
and following the same procedure. Convergence is defined as:

H Qi j+1 ™ Ok j } / qk,j‘<d

whered, =@1,; d,; * X x d §,and g, =0, +b,

For models which are linear in their parameters, the surface contoursof S(q) , inthe p
dimensional space, are ellipsoid having a single minimum height. Where the height is
relative to the magnitude of S(q) . Irregular contours result from nonlinear models, often
having several local and global minima. A global minimum is the minimum height of the
S(q) contour inthe p dimensional space. There may be morethan one q wherethe

minimum height is attained. The local minima are points where low heightsin the error
contours occur, but do not necessarily correspond to a global minimum. When the shape

of the error surface contours near the |east squares estimator, q , are elongated such that

many different values of q: produce sufficiently similar results, the problem is said to be
ill-conditioned. 1ll-conditioning may indicate overparameterization, or inadequate data
for the specified model. A simple measure of 1l1-conditioning can be obtained from the
ratio of the largest to the smallest eigenvalues of (Z 1z, ) . This quantity is often referred
to as the condition number. Reasonable values are less than 100, and for data sets with a

high degree of collinearity, asin many signal validation applications, the condition

numbers may be >10°.

In general, when alinearized form of a nonlinear model is used, al of the usual formulae
and analyses of linear regression theory can be applied. Any results obtained are valid
only to the extent that the linearized approximation provides a good approxi mation to the

true value. There are some exceptions to this generalization when the model is nonlinear.

Assuming e ~ N(0,1s ?), q: isno longer normally distributed, s?>=S(q)/(n- p) isno
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longer an unbiased estimate of s ?, and there is no variance-covariance matrix of the

form (XTX)'s 2.

3.6.2 TheGradient Descent Approach to the Least Squares Solution for Nonlinear

Regression

An alternate approach to finding q: which minimizes S(q) is the gradient descent

approach. The basic process of gradient descent isto start from an initial point q,, and

é ] 1 1)U
move along the vector with components. & 1S(@) - 1S(@) X X X - ma.
g Ta, f9, fla, g

To avoid evaluating the derivatives, the vector slope components at various places on the
surface S(q) can be fit with planar approximations. A number of locations on the

surface are used and defined by the selected levelsof q,,,,...,q,. A linear model can

then be formed using the evaluated S(q) values as the dependent variable, and the

combinations of levels as the predictor variable observations:

Observed S(@) = b, + & b, - /1, +e

k=1

g =a9., /m,and |, isascaling factor chosen so that g [(qkyr -q,)/1 k]2 = congtant.

r=1 r=1
r istherunindex, or the number of selected locations at which the surface function
isevauated, r =1,...,m.

The negative of the coefficients obtained from the least squares minimization of the
observed S(q) indicate the direction of steepest descent. Aslong asthe linear
approximation is reasonable, the maximum decreasein S(q) will be obtained by moving
aong the line which contains points such that: (g, - q,)/1 , 1 - b, . Defininga

proportionality factor this can be written as (q, - 9,)/1, =-r *,,for r >0. A number
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of values for the proportionality factor are selected, and the path of steepest descent is

followed aslong as S(q) decreases. Repeated applications using different

proportionality factors can be used to obtain the minimum S(d ). Thisbrief overview of

gradient descent follows the presentation in Draper and Smith [1966], and full details are
provided in Box and Draper [1987].

In general, the steepest descent method progresses rapidly during the initial steps but

slows considerably when the surface S(q) is from anonlinear model, especially under

circumstances of ill-conditioning. The steepest descent method rapidly approaches the

region of the surface where the maximum likelihood estimator, q: , resides; however; near

the location of a minimum in the surface linearization tends to work better.

3.6.3 Marquardt's Compromisefor Finding the Least Squares Solution for

Nonlinear Regression

Marquardt [1963] devel oped a method that combines the rapid initial convergence of
gradient descent with the superior performance of the linearization technique when
approaching aminimum. This combined method has proven to work well for avariety of
nonlinear problems and while no method is optimal for al problems, in the absence of
apriori knowledge, it is the best choice. The compromise provides a method to
interpolate between the two vector directions provided by gradient descent and
linearization, as well as a method for obtaining a suitable step size. Interested readers are
referred to Seber and Wild [1989].

3.7 LEVENBERG-MARQUARDT TRAINING ALGORITHM

The application of Marquardt's compromise to ANNSs is referred to as the Levenberg-
Marguardt (LM) algorithm [Marquardt 1963, Levenberg 1944]. The LM training
algorithm was used exclusively in thiswork. Its benefits regarding rapid convergence to
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the region of the error minimum and optimal performance near the minimum, due to the
continuous adjustment of a scaling factor, were shown to provide sufficient training
resultsfor avariety of test cases studied. The basics of the algorithm are provided below
presented, in modified form, from Fine [1999].

Consider the sum of squares error functionS(w) :%é (y.- ¥)?,wherei=1,.,nand n
i=1

is the number of response valuesin thetraining set. Define € =(y. - V), andasetof p
neural network parameters W =[w, w, »x w; »x w ]. The (p” n) Jacobian with

respect to the network parametersisgiven by J, each element of which can be specified

from: J, ; ‘ITq . The p dimensional gradient for the quadratic error function is given
W.
J

by: g(w) =Jxe, where e isthe (n” 1) vector of error terms.

The Hessian can similarly be defined:

MS@)_13 ¢ _g¢€ ¢  fa ol _g¢ 1%
= =— = NS
w, Tw, 2i:1 w,Tw, ggqﬂwjﬂwk w w2 & w0

Defining D = § e?N%? , allows the above to be rewritten as:

i=1

H(W)=JJ" +D

Levenberg-Marquardt algorithms replace the matrix of second derivatives (D) with a

positively scaled unit matrix el , resulting in the following approximation:

HW)=JJ" +el

The neura network weights are updated via: W,,, =W, - at[I:I W,)] *g(W,) . Thelearning

rate, a, isdetermined through aline search, and the scaling term e actsasa

regularization parameter. Proper choice of the scaling term ensures that the matrix
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inversion operates on awell conditioned matrix. Thus, the update mechanism of the
Levenberg-Marquardt training algorithm uses the following:

W, =W, - a,[JI" +el] *Je,

When the scaling factor is zero, this weight update is the same as Newton's method, also
referred to as the linearization approach, with an approximate Hessian. When the scaling
factor islarge, this weight update operates as a gradient descent method. Newton's
method performs better near an error minimum, and gradient descent performs better
when far from aminimum. Thus, the compromise of the Levenberg-Marquardt weight
updates isto begin with alarger scaling factor to exploit the rapid convergence properties
of gradient descent when far from an error minimum. With each improvement in the
error term, the scaling factor is gradually reduced to slow the rapid convergence and to

begin moving towards Newton's method as the training nears an error minimum.

3.7.1 Neural Network Initialization Methods

One of the considerations for the implementation of ANNSs is the choice of initialization
method for the weight and bias values. Figure 3.7.1 shows a 3 hidden layer inferential
ANN. Referring to this architecture, there are 13 parameters which much be initialized.
In this dissertation, when a set of predictor variables had largely differing magnitudes
from one variable to the next, the predictor variable matrix was scaled. Scaling was
performed such that the scaled variables had a mean of zero, and a standard deviation of
1. If scaling was similarly performed for the response variable, than the estimate from
the ANN would be a scaled version of the response rather than the actual estimated value.
Thus, post scaling would need to be performed. In addition, the computation of
prediction intervals for the output would require asimilar scaling. To avoid the required
post-scaling operations at the output of an ANN, the response variable was not altered.
Thisisasuitable scenario for an ANN with alinear output neuron, since the linear output

neuron has no bounded output.
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Figure 3.7.1: Schematic of 3 hidden neuron inferential ANN.
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Two different methods of initialization were used in producing ANNS for this
dissertation:

1. Random Initialization

2. Mean-Standard Initialization
The first method is the standard approach of initializing al weight and bias values to
small random numbers. While this approach works fine in most cases, if the response
variable magnitude is significantly different than the magnitudes of the predictor
variables training will be slow. In addition, the slow training often produces sub-optimal
solutions at local minima due to the great distance through the error surface the training
algorithm must travel when starting from small random numbers. This argument is based

on response variables of large magnitude >1000, with respect to the zero mean predictors.

Due to the noted difficulties in using an un-scaled response, a second method of ANN
initialization was adopted. An assumption made is that random initialization to small
random numbers will produce an output with a near zero mean, and a standard deviation
near one. While thisis never exactly true, it is a gross approximation that can be used to
initialize the weight and bias values to at least begin training in aregion of appropriate
magnitude with respect to the response. Since an approximate mean value and standard
deviation of the response is known from the training data the output layer weights and
bias value can beinitialized to simulate a post-scaling operation. This processis

described below, referring to figure 3.7.1.

The MeanStandard initialization method requires (refer to figure 3.7.1):
1. Random Initialization of all weight and bias values in the hidden layer

3 =y
Where s, isan estimate of the standard deviation of the response based on the training

data and ? is an estimate of the mean of the response based on the training data.
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For amore general inferential single hidden layer ANN architecture, the same procedure
applies, except that the 3 in step 2 is replaced by the appropriate number of hidden
neurons. This approach to initialization resulted in much faster training procedures, and
produced more consistent solutions. This of course is due to the mild bias inserted
through the procedure. The MeanStandard initialization was applied to the training of
ANN for the ANN models as well as the NNPLS models, though for the latter, the
variables x and y were replaced with their corresponding latent vectors. For both of the
nuclear power plant data sets, this initialization method was applied. For the simulated
data set, random initialization performed adequately.

3.8 GENERAL NONPARAMETRIC M ODEL

While ANN models and NNPL S models can be represented within the framework of
nonlinear regression, the third empirical strategy, local polynomial regression, falls under
the general framework of nonparametric regression. A nonparametric regression model

can be of either fixed design, or random design. In the univariate case, the fixed design
consstsof x;,..., X, which are ordered non-random numbers. For the fixed design case
the response variables are assumed to satisfy:
Y =m(x) +Vv'?(x)e;, i =1,..,Nn

where e,,...,e, areindependent random variables for which:

E(e))=0and Var(e)) =1
m istheregression function, where E(Y;) =m(x;), and Vv isthe variance function, where
Var(Y,) =v(x). If v(x,) =s ? foral i, the model is homoscedastic otherwiseit is

heteroscedastic.

The random design regression model arises when bivariate samples of random pairs are

observed. i.e. (X,,Y;),....(X,,Y,) , such that the model can be written as:

Y =m(X,)+Vv'*(X,)e;,  i=L..n
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Here, the e, are independent random variables with zero mean and unit variance
conditional on X,,..., X,,. Theregression and variance functions are thus:

m(x) = E(Y | X =Xx) and v(x) =Var(Y | X =X)

Most regression estimators are linear in there response, and are thus referred to as linear
smoothers [Fan 1992b]. The general form of these estimatorsis given by:

aw (6 X, 0 XY,

i
i=1

The use of alinear smoother that applies constant approximations to the mean regression
function is generally referred to as kernel regression, whereas the use of alinear smoother
that applies linear approximations to the mean regression function is generally referred to
aslocal linear regression. There is some ambiguity in the terminology regarding non
parametric techniques since both of these methods are referred to as kernel-type methods.
In thiswork the term kernel regression will be reserved for non-parametric techniques
which apply constant approximations to the regression function.

3.8.1 Local Polynomial Regression Methods

Local polynomial regression (LPR) models are often referred to as lazy learning methods.
Lazy learning comprises a set of methods in which data processing is deferred until a
prediction at a query point needs to be made. These methods are also referred to as
memory based methods due to the approach of storing the training data, and recalling
relevant training data when a query is made. A good review of lazy learning methods,
focusing on locally weighted regression, is presented by Atkeson et. al. [1996]. A
training data set is comprised of a set of input vectors, and a corresponding set of output
values. A query point isan input vector for which an output isto be determined. The
guery point input vector may or may not be in the training set. Relevant dataisidentified
by the use of a distance function where maximum relevance occurs when a query point

matches a point in the training set, relevance diminishes from this maximum as the
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distance between a query point and the training points increases. Nonparametric
regression using datain a neighborhood of the present query point is generaly referred to
asalocal model. Local models attempt to fit the data in a region surrounding the query

point with a polynomial.

Early work in local fitting, via polynomials, was applied to equally spaced pointsin time
by Macaulay [1931]. Local fitting in the context of regression analysis was introduced
by Watson [1964], Stone [1977], and Cleveland [1979]. Cleveland and Devlin [1988]
expanded Cleveland' s method and evaluated its mathematical properties. Local
likelihood procedures were evaluated by Hastie [1986]. The general local modeling
approach isLPR. LPRisaso called KR when the degree of the fitted polynomialsis O,
and is called LL regression when the degree of the fitted polynomialsis 1.

The following sections cover the methods of KR, LL, and LPR. The derivation of the
specific computations for KR and LL are developed from the general LPR model.
Finally, two relevant discussions are presented: the relationship between ANNs and LPR,

and a comparison of parametric and nonparametric regression.
3.8.2 Kernel Regression

The process of fitting constants using alocally weighted training criterion is known as
kernel regression [Atkeson 1996]. The basis of kernel regression is to estimate a
response using a weighted average of points, in atraining set, which are local to the query
point. The most comprehensive presentation of kernel regression is that of Wand and
Jones [1995]. The kernel regression estimator is alinear smoother and thus, has the
form: § w (X X,,..., X,)Y,
i=1
To formally define the general terms of alinear smoother for the kernel regression

application, let (X,Y) beabivariate random variable, and let (X,,Y;),....(X,,Y,) bea
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random sample, of size n, from the population (X,Y). The kernel regression model is
then:
Y =m(X,)+Vv'*(X,)e;,,  i=L..n

Here, the e, are independent random variables with zero mean and unit variance
conditional on X,,..., X,,. Theregression and variance functions are thus:

m(x) = E(Y | X =x) and v(x) =Var (Y | X =)

The weights for the kernel regression application can be defined by:

W = Ki (Xi - %)

a K. (X - %

i=1

Where K, isthe, bandwidth dependent, scaled kernel function: K, (u) = % K 8__ A
2

typical kernel isthe normal or Gaussian kernel: K(u) :%aoe_z . The bandwidth

parameter isgiven by h, and controls the range of influence which may affect the
estimate. Considering the Gaussian kernel function it can be seen that the bandwidth
parameter is analogous to the more commonly used variance parameter.

The requirements of aweighting or kernel function K(u) are that the maximum value

should occur when u =0, and should decrease smoothly as the distance u increases.

The kernel function should be continuous, since discontinuities in the kernel function will
lead to discontinuities in the predictions. The kernel function should always be positive.
In addition, a kernel function should be a bounded and symmetric real function K that
integratesto 1. (K (u)du =1.

The kernel regression estimator can now be formed based on the above definitions and

the general form of the linear smoother as:
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n
[¢]

a [Kh(xi - X)Y|]
() =,
é Kh(xi - X)

[LLY

Thisformisreferred to as the Nadaraya [1964]-Watson [1964] estimator. Note that the
subscript h on the estimate indicates the dependence of the estimator on the kernel
bandwidth. The larger the bandwidth, the more data used to determine the estimate at a
given point. Figure 3.8.1 shows the Gaussian kernel function for a variety of bandwidths.

In applying the kernel regression estimator, the term training data is often used to
describe the set of data (X,,Y;),....(X,,Y,) . Thisterm isambiguous in the context of
kernel regression, considering that there is no training process involved; however, the
term training data is maintained to identify the set of data which is used to represent the
model under consideration. Finally, when applying the estimator to a point not included
inthe training data, the new point is referred to as the query point, often denoted by x,,

though in this work the query point will beidentified as x,. Thuswhen applying the

a [K,(X; - %)Y]
estimator in practice, it takes the form: i, (x,) =2

g}

Kn(Xi - %)

Qo

i=1

3.8.3 Multivariate Kernel Regression

The multivariate KR estimator is a direct extension of the univariate case. Consider a d-

variate random sample X, ,..., X, having density f . The componentsof X, are denoted

by X, =(X,;,... X,)", and ageneric vector xI A will be denoted as x = (X,,..., X,) " .
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Figure 3.8.1: Gaussian kernel function for various bandwidth parameters.



Defining the vector u to replace the scalar u for the univariate case resultsin

u=[u u, »x u,]. Themultivariate Gaussian kernel can be formed from a product of

d univariate kernels:

Wyé 1 w0 é 1wy
K(u) = OK(u) e 2Pe——=e 2 (pog——e 2
@VZP 6evep 6 evap 9!

.d
&l o é

_ 1 u
W =g mrs &P 2 Yy

The bandwidth dependent multivariate kernel is then:
Ky (U) =/ H [ K(H ")

where H isasymmetric positive definite d” d bandwidth matrix.
The multivariate KR estimator is then:

n
[¢]

a [KH (xi - Xo)Yi]
i, (xo) = 2
a KH(Xi - Xo)

i=1

Restricting H to adiagonal matrix simplifies the computations, and resultsin the

following kernel estimator:

| X01 Xid_XOdd
K, (X, - % _ |< IS B L Ry
h( 0) |1hlﬂ i=1 (: hl hd (]

Further restricting to a single value for the bandwidth results in:

1¢
K(X, - %) =58 K{(X, - x) /1)

3.84 Local Linear Regression

Thelocal linear regression assumes the same model as described in the kernel regression

discussion of the previous section, namely:
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Y =m(X,)+v'*(X))e,,  i=1..,n

Thelocal linear regression curve at agiven point x is obtained by applying the standard
linear regression technique to a set of datalocal to the point x. Thelocal regression
model, with the local region defined by h, isgiven by:

Y =a(X)+b(X)X +e for X, T x+h

a(x) and b(x) arethe parameters of aliner fit in the neighborhood of x, specified by
h. Thelocal model parameters are thus dependent on the points, X, , inthe
neighborhood of x. The set of observations (X,,Y;),....(X,,,Y,) , are independent and
identically distributed.

The standard least squares problem of the linear model is:
ALy, -a®+bX]’
i=1

where n isthe number of points satisfying X, T x+h.

Thus, n isafunctionof x and h.

A weighting scheme can aso be incorporated to allow local points to influence the model
in amanner relative to their distance from the given point x. Using the kernel function

as described in the previous section: K{(X, - X)/h}. The weighted least squares

problem is then:

Kh(xi - X)(Y| - bo - bl(xi - X))Z

Qo5

i=1

Note that if the weighting method is applied, the neighborhood parameters are inherently
defined by the bandwidth.
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If Bo(x) and Bl(x) are found through the minimization of the weighted least squares

problem, then the local linear regression estimator is; M(x) = 60. The explanation for

thisresult is presented in the following section on locally weighted regression. The local

linear regression estimator at apoint, X, can also be written as:
g {S,(x)- SOY(X; - XKy (X - XY,

0= T 08 (015007

§(0 =8 (X - 9" Ky(X; - X)

i=1

When the bandwidth is small, the local linear estimator interpolates the data points and
over-parameterizes the unknown function resulting in noisy estimates [Fan 1996]. When
the bandwidth is large the local linear estimator reduces to the standard parametric linear
regression estimate, which, with the exception of the cases where the model is correctly

specified, under-parameterizes the regression function resulting in a large modeling bias.

This approach can easily be generalized to local models of higher order, as will be done
in the next section. Multivariate extensions of the local linear model will aso be

developed in the next section.
3.8.5 Local Polynomial Regression

A general set of kernel estimatorsis the class of local polynomial kernel estimators.
Local polynomia kernel estimators obtain an estimate for a given query point by fitting a
d ™ degree polynomial using weighted least squares. The training points are weighted
based on their distance from the query point using a kernel function centered at the query
point. The kernel's influence can be adjusted via the kernel bandwidth.

For agenera local polynomial model of order p, if one chooses h =¥ , the resultant
nonparametric model reduces to the equivalent parametric model of order p. Smaller

bandwidths result in lower bias for the local estimator, but since there are only afew
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points in a neighborhood defined by a small bandwidth the variance of the parameters of
the local model (4(x) and 6(x)) will belarge. Conversely, large bandwidths result in

lower variance but higher modeling bias. This alludes to the bias-variance tradeoff that is
paramount in the selection of the optimal bandwidth for local modeling applications.
While avariety of theoretical approaches for optimal bandwidth selection are available,
they are not covered in thiswork. The reason for thisis that these theoretical approaches
depend on unknown quantities. In thiswork, an empirical approach to bandwidth
optimization is used which attempts to minimize the overall contributions of bias and
variance based on data-driven estimates of these quantities.

Note that local averaging smoothers, i.e. kernel smoothers and local polynomial
smoothers, can be highly influenced by outliersin the response variable. Cleveland
[1979] proposed a method of robust locally weighted regression to reduce these
influences. The basic approach performs a LPR, residuals are then computed and each
residual is assigned aweight (large residuals receive lesser weighting and vice versa).
LPR is then repeated using weights defined by the product of the weights from the initial
LPR fit and the weights assigned to the residuals. Thus, large residuals are
downweighted. This procedure can be iteratively repeated to enhance its effects. An
example of this procedure was provided by Fan and Gijbels[1996].

Thorough studies of local polynomial regression have been presented by Stone [1977
1980 1982], Cleveland [1979], Fan [1992a 1993], Fan and Gijbels[1992b], and Ruppert
and Wand [1994]. Their bases all stem from a Taylor series expansion of the local

regression function. The procedure that followsis attributed to Fan and Gijbels [1996].

For the case of a univariate nonparametric regression model, consider the bivariate data:

(X4, Y1) (X,,Y,) , which form ani.i.d. sample from the entire population (X,Y). The
local polynomial regression procedure attempts to estimate the regression function

m(x,) = E(Y | X =x,), and its derivatives m'(x,),m" (X, ),....m™ (x,) . Thepoint x, is
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often referred to as the query point, and the set of bivariate data is often referred to as the
training data. The data-generating moddl is:

Y =m(X)+n*?(X)e, where E(e) =0, Var(e) =1, X and e areindependent,

v(x) =Var(Y | X =x),and m(x) = E(Y | X =X).

If p isthe order of thelocal polynomial, then suppose that the (p +1) " derivative of
m(x) at X, exists. A Taylor expansion for X inaneighborhood of X, isgiven by:

m"(X,)

m(X) » M(X,) + M (X,)(X- X,) +T(X_ X)? + ot m<p)(lx0)

(X' Xo) P

The weighted least squares problem which should be minimized is:

n

A0 -8, (X - %) 12K (X - %)

j=0

i

A

Bj (j =0,..., p) isthe solution to the above least squares problem. If 6j :gﬁo,...,bpgi

S
the minimizer of the weighted least squares problem, than an estimator of the regression
functionis: m(x) = 60 , and an estimator of itsfirst derivativeis: m'(x) = 61. In genera
the set of estimators of the function and its p derivatives are given by: f¥(x) =k!b, ,
where k =0,..., p. Itisclear from this discussion, that to obtain an estimate for the
regression function at apoint x, one must first compute the minimizer of the weighted

least squares problem, Bj = 8560,..., Bpg. From these p parameters, the only one required
for the estimation of the regression functionat X is 60 , regardless of the degree of the
local polynomial. The remaining parameter estimates, 61,..., Bp provide estimates of the

derivatives of the regression function via: M(x) =k! Bk. Thus, local polynomial

regression provides an efficient way to estimate the regression function and its

derivatives.
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Alternatively, in matrix notation the weighted least squares problem can be written as:
(y - Xxb)TW(y_ Xxb)

Where b = (bo,...,bp)T, and b = (60,...,k3p)T is the solution to the above least squares
problem obtained from:

b = (XITWX) X Wy

Defining the terms for the matrix version of the weighted least squares problem:

€ (X- %) X x x (X;-X%)"u év;u
gx X X 3 gxg
XX:§>< X X U y=éxu
é G éxu
ax X X 4 &%

{

(X,- %) x x x (X, - %)"H
W =diag{ K,(X; - X,)}

('m»

=}

The local polynomial regression estimator at point X, isthus:

i(X,) = by (%)

The determination of the order of the polynomial to use for a given model is guided by
the trend of a general increase in variance as the order of the local polynomial is
increased; however, when moving from an even order polynomial to an odd order
polynomial there is no associated variance increase. Conversely, when moving from an
odd order polynomial to the consecutive even ordered polynomial there is an associated
variance increase. For these reasons, even-order fits are not recommended and it is
suggested that the lowest odd-order should be used for most applications, i.e. p=k+1
and occasionally p=k+3. For adetailed explanation of this effect, the reader is

referred to Fan and Gijbels [1996]. The main points can be summarized by noting that an

odd ordered fit 2g+1, introduces an extra parameter in comparison with its closest even
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ordered fit, 2q. This extraparameter allows for areduction in bias, while not increasing

the variance. Further elaboration on thisis given in section 4.8.

It is apparent that the general model for local polynomial regression can be reduced to a
local linear model by specifying the order of the local polynomial as p=1. Similarly,
kernel regression resultsif the order is specified as p=0. The next 2 sections provide
the results that LPR with p =0 reduces to the Nadaraya-Watson kernel estimator, and

with p =1 reducesto the LL regression estimator.

3.8.6 From Local Polynomial Regression to Kernel Regression

This procedure is detailed for the univariate case; however, direct extensions to the
multivariate case are straightforward. From the matrix definitions of the local

polynomial regression model, using p =0, the following are obtained:

=

élu p N R

élu gwl 0O x x X OH &Y, 0

é™u g0 w, 0 x x xg &xy

éxu A 2 e u

_ 3" ex 0 x 0 x xU X _
X, =& 0 W, =a g y=¢éxu e =1

) gx x 0 x 0 x4 &Y

&xt éx x x 0o x ou &4

e u é u .

el.o g0 x x x 0 wqf

Note that the above definition of e, applies only for kernel regression.

The solution to the regression equation occurs for:

M= e (W, X)X, W,y
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~ X X X 7
eO w, O 7
. éx 0 x 0 x xu
XIW, =[1 1 x x x]“]xgx x 0 x 0 a=[w, w, x x x w]
é a
€x x x 0 x o0uU
é U
eo0 x x x 0 wp
élu
.0
el
T exu_g
XWX =[w w, x x x whe a=q w
eXu =
éxu
e
ehg
évy,u
&xU
. e u iy
XIWy =[w o, x x x w8 xU=g wY
exu i=1
é’a
i

QJO:
=
=<

NIN

M= (XWX) X, W,y

5 Qo
=

Using the weight function w, = K, (X, - %,), it can be seen that the Nadaraya-Watson

estimator results:

8 1K,(X, - %)¥]
r’m(xo): |:1g
a Kh(xi - Xo)

i=1




3.8.7 From Local Polynomial Regression to Local Linear Regression

This procedure is detailed for the univariate case; however, direct extensions to the
multivariate case are straightforward. From the matrix definitions of the local

polynomial regression model, using p =1, the following are obtained:

The vector of observations surrounding the query point X, isgiven by:

é]- (Xl' Xo)l;j

i e 0 x x x 0u &Y, u

gl (X, - Xo)u go w, 0 x x XH éxl]
_ & x U é€x 0 x 0 x xU _&ou _€lu
Xo=e o 0w =e o YU eTey
¢ G oex x 0 x 0 x5 - & &%

ex x U €x x x 0 x ou %{E

e u é a
el (X, %) 80 x x x 0 wpg "

Note that the above definition of e, applies only for univariate local linear regression, for

multivariate local linear regressionitisa (d +1)" 1 vector of zeros having one in the first

entry.

The solution to the regression equation occurs for:

M= e (W, X)X W,y

d (X-x)u éw 0 x x x 0f
g‘- (Xz' XO)H go W, 0 X X XH
. éx x 0 éx 0 x 0 x xu
XXWX:%X « U, 0O x O u
é ua é a
éx x U0 éx x x 0 x 00
¢ u e v
g (X,-x)g 80 x x x 0 wpjg
w € W W, X x X W, u
Wa=ex . X, - x x x (X_ - u
X - %)W (X, - X)W, (Xy - X)W,
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Recall the notation from the local linear section:
§00= & (X - %K, (X, %)= agW(X-x)H
- ,
The last matrix product can now be rewritten as:
¢ 8 3 0
2 & €z _ 2 w2_aza U
XWX, =60 Tpandthus (xjwx,) =e¥ 5 5 8%
eSS Su é § §
§8-55 &5 91
é S S u
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§5- & S - &5, §5,- &
- g SWY - §w (X - %)Y
m(><0)=aSz i[A (Az %]

i=1 $S; -

Substituting in the weight function w, = K, (X, - X;) resultsin the form provided in the

previous section on local linear regression.

81800 5004 - 9IK 0K - XY
00 = T 08 09- (800

3.8.8 Theredationship between Neural Networks and L ocal Polynomial Regression

The relationship between the associative memory of neural networks and the memory
based estimation of lazy learning techniques is easily identified. The discussion below
explains some of these relationships, and is provided so that the similarities between the

different empirical methodol ogies can be illustrated.

Kernel regression can be analogously represented as a generalized regression neural
network (GRNN) [Specht 1991, Schigler 1992]. The GRNN is a special extension of the
radial basis function network (RBFN) [Park 1991, 1993], and is closely related to
Specht’ s probabilistic neura network (PNN) [1990]. RBF networks were originally
proposed by Broomhead and Lowe [1990]. The main difference between GRNNs and
RBFsisthat the GRNN output layer performs a weighted average while the RBF
performs aweighted sum [Heimes 1998]. In addition, GRNN are non-parametric
models, whereas RBF are parametric or semi -parametric models. The basic GRNN has
similarities with the methods of Moody and Darken [1989], RBFs [Park 1991, 1993], the
cerebellar model articulation controller [Kolcz 1999], and nonparametric kernel based
techniques stemming from the work of Nadaraya [1964] and Watson [1964]. Procedures
for aneural network-type architecture with amemory of training vectors which computed
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estimates based on a neighborhood of pointslocal to the query point were first presented
by Steinbuch [1963] and Taylor [1959, 1960]. The original schemes were based on a
winner takes all approach where the winning node was determi ned based on a distance
metric between the query point and the stored training vectors. Thiswork was extended

by Atkeson [1995] to incorporate the use of local polynomials.

Almost al activation functions can be classified asradial basis functions. A radial basis
function is of the form [Scarselli 1998]:

g(x.ab) =kZ 22
e b g
a is the center of the radial basis function
b is the smoothing factor of the radial basis function

k is assumed to beintegrableon R? and Q. k(Jydx* 0

A common radial basis function isthe Gaussian: g(x,a,b) = exp[-|x- a]’ /b].

From thisit can be seen that the radial basis activation functions are similar to the kernel
functions of kernel regression [Sarle 1994]. If the hidden layer outputs of a RBFN are
normalized to sum to 1, each observation vector is taken as an RBF center, and the
weights are taken to be the target values, the outputs are simply weighted averages of the
target values and the network isidentical to the Nadaraya-Watson kernel regression
estimator [Sarle 1994]. This approach was carried out by Heimes and van Heuveln
[1998] in their presentation of the new Normalized RBF (NRBF). Their derivations are
equivaent to the Nadaraya-Watson kernel estimator under two assumptions: assuming
the GRNN output weights are taken to be the target values, and a hidden unit is centered
for each available target vector. Since kernel regression is based on established statistical
principles and converges with an increasing number of samples asymptotically to the
optimal regression surface, the same claim can be made for a GRNN [Tomandl 2001].
All of the GRNN models are consistent in their use of spherical kernel functions.
Training of GRNNs usually consists of optimizing the bandwidth parameters based on

the MSE of the training vectors. Additional work using GRNNSs has been reported by
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Kolcz and Allinson [1996] under the aternate architecture of an N-tuple regression
network, or N-tuple neural network (NTNN). They site an increased capacity for training

vector storage and faster computation.

3.9 PARAMETRIC VSNONPARAMETRIC

A parametric model can be specified by afinite number of parameters. Whileit is easy to
seethat an OLS, PCR, or PLS model is a parametric model, it is not as clear for models
such asNNPLS. Obvioudly, asmall ANN can be considered to be parametric; however,
they are often referred to as being nonparametric, or semi -parametric. During this work,
the only true nonparametric model considered were the local polynomial regression
models; though, even these models can approach a parametric model. Cases where a
local polynomial regression in fact becomes a parametric model are for extremely large
bandwidth parameters, or for an extremely small set of data for model representation.
Nonparametric modeling theories present some advantages for the present applications;
however, one must be sure to provide the necessary freedom to the nonparametric model
so that it in fact is nonparametric. Keeping these thoughts in mind, the key distinguishing
points in the parametric vs. nonparametric discussion are presented below.

In some cases parametric models may be too rigid due to the imposed limit on the
number of parameters. For example alinear model requiring 2 parameters, intercept and
slope, would be too rigid for modeling a quadratic function. By eliminating the
restriction that the model belongs to a parametric family, thisrigidity condition can be
overcome. A tacit assumption of the parametric approach is that the curve can be
represented in terms of the parametric model or that, at least, it is believed that the
approximation bias of the best parametric fit is negligible [Hardle 1990]. Nonparametric
models do not impose the restrictions of a parametric model, and have a greater tendency
to let the data define the model. The term nonparametric thus refers to the flexible

functional form of the regression curve. When the data are in fact linear, a nonparametric
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model will suggest a simple parametric model, such that parametric and nonparamteric

models are not mutually exclusive.

While parametric models are susceptible to large model bias under conditions of model
misspecification, nonparametric models may result in more variable estimates, especially
for the case of asmall sample size. For parametric models, the error in prediction

1/2

typically decreasesin proportionto n"~“ [Sarle 1994], where n isthe sample size. For

kernel regression estimators, the error in prediction typically decreasesin proportion to

n PP ‘where p isthe number of derivatives of the regression function, and d isthe
number of inputs [Hérdle 1990]. Thus, when applying nonparametric models one must be
cautious to ensure appropriate numbers of samples since nonparametric methods tend to

require larger sample sizes than parametric models.

The boundary between parametric and nonparametric models is defined by the bandwidth
of the nonparametric model. If the bandwidth is maximized, h =% , the two models are
the same. In parametric modeling different families of parametric models are often used
to determine the best result. The parametric modeling approach inherently assumes that
all of the data are useful for the estimation of a point at any location in the variable space.
In addition parametric modeling assumes that a single parametric model describes the
dataover their entire range. Nonparametric models relax some of the restrictions of
standard parametric modeling. The common approach of choosing different bandwidths
for alocal model and computing estimates of the variance and bias of the model for each
bandwidth value sheds light on two interesting points. Thefirst is that most parametric
models applied to signal validation tasks are of low order. Along these lines, for alow
order local polynomial estimator with alarge bandwidth the bias estimate of the model
will tend towards unreasonably large values. Thisindicates that the equivalent
parametric model (of the same order) is strongly biased. Thus, the parametric model for
this case would be the incorrect choice. If however, an increase in bias was not exhibited
as the bandwidth was increased then one could propose that the parametric model was a

suitable choice for the given application. The nonparametric approach combines the
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flexibility of localization with the ability to act globally, all with the adjustment of the
bandwidth. The other point isthat in complex processes there are often different
relationships between system variables at different points of operation throughout the
variable'sranges. The benefits are clear for this purpose since the appropriate bandwidth
choice would ensure that the estimator was dependent on the appropriate data. An
additional flexibility of the local modeling approach is the ease with which different

ordered polynomia models can be combined when necessary.
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4.0 ANALYSISOF PREDICTIONINTERVALS

Before stepping into the details of the construction of prediction intervals, adiscussion is
presented regarding the definition of a prediction interval, and the relationship between
confidence intervals and prediction intervals. The sources of uncertainty that contribute
to the prediction intervals are presented aswell. The focus of this chapter isto cover the
development of prediction interval estimation methods for all of the empirical models
discussed in the previous chapter. Beginning with atreatment of prediction intervals for
the OLS, PCR, and PLS techniques. There are two components of a prediction interval:
variance and bias. These two components are often discussed and quantified separately.
The prediction interval estimation methods for ANNs and NNPL S result directly from the
delta method (linearization method) of nonlinear regression. Thus, before proceeding to
the prediction intervals for ANNs and NNPL S a general procedure is provided for
nonlinear regression models. The details of the required mathematical equations are
presented for ANNs and NNPL S in their appropriate sections. The treatment of LPR
concludes the development of analytical approaches to prediction interval estimation. As
will be discussed, there are some sources of error that elude the analytical approach to
prediction interval estimation; thus, a bootstrap approach based on Monte Carlo
resampling is presented. The basic idea behind the bootstrap technique is that repeated
applications of the same empirical model to different samples from the population of the
datawill result in adistribution of predicted values from which a prediction interval can

be computed directly.
4.1  PREDICTION INTERVALSDEFINED

To provide a measure of the confidence in amodel’ s estimations, there are two

components to consider. Assume a set of input values x , and a corresponding set of
desired responses or targets t(x) . Therelationshipis: t(x) = f(x) +e(x). Thefirst
component is the accuracy of the estimate of the true relationship of the data, i.e. the

distribution of the quantity f(x) - f (x). Thiscomponent is quantified as a confidence
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interval. The second component is concerned with the estimate of confidence in the
prediction of the targets (desired response values) themselves, i.e. the distribution of the

quantity t(x) - f (x). Thiscomponent is quantified as a prediction interval. Viewing the

direct result: t(x)- f(x) =[f(x)- f(x)]+e(x), it can be seen that confidence intervals
are enclosed within the prediction intervals [Carney 1999]. Prediction intervals are of
more practical use because they provide the accuracy with which we can predict the
desired response, not just the accuracy of the model itself.

Theinterval for anew measurement will be wider than the confidence interval for the
value of the regression function. Theseintervals are called prediction intervals rather
than confidence intervals because the latter are for parameters, and a new measurement is
arandom variable, not a parameter. Confidence intervals are more narrow than the
corresponding prediction intervals, since the prediction intervals must also include

variation due to noise in the responsg, (i.e. e(x) ) while the confidence interval does not.

4.2 SOURCESOF UNCERTAINTY

There are several sources of uncertainty associated with empirical models and there
estimations. In this section we will examine the selection of training data, model

misspecification, and noise in both the predictor variables and the response variable.

The selection of atraining set is prone to sampling variation because there is variability
in the random sampling from the entire population of data. This variability will be
consistent in signal validation applications because the data sets used to produce
predictive models are required to contain a representative set of data from the entire
population, where the entire population would contain observations from all possible
plant operational conditions. In addition, for a given observation there is arandom
fluctuation in the value of the response. Thus, a given set of training datais only one of a
possibly infinite set of choices. Since each possible training set will produce a different
model, there is a distribution of predictions for a given observation. The bootstrap
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approach inherently incorporates this distribution into its standard error of prediction
estimates, while the analytical delta method does not. The delta method approach is thus
improved when the standard error calculation is based on the predictions of more than
one model. Theissues relative to fluctuations in the response for a given observation are
reduced as the training data set size increases, i.e. more training data lowers the
uncertainty of the estimates, assuming the data are representative of the process or

function being modeled.

Model misspecification occurs when a given model isincorrect, and a biasis introduced
due to the improper nodel, e.g. fitting nontlinear datato alinear model will result in a
biased model. Model misspecification may occur for the ANN models and the NNPLS
models if their complexity does not meet that of the data to be modeled, though given the
proper number of free parameters both techniques are proven to perform adequately, i.e.
with minimal bias. While misspecification cannot technically occur for alocal
polynomia model, due to the absence of the specification of amodel, there may be a bias
due to the selection of the bandwidth parameter, as this controls the complexity of the
local regression model. Small bandwidth models may be under-regularized and overfit
the data causing an increased variance. The analog to this for a neural network model is
too many free parameters. Both cases present situations of overly complex models for
the given task. On the other hand, uncertainty is also influenced by alevel of complexity
that istoo low for the given task. For the case of neura networks, this occurs for network
architectures with too few free parameters to adequately perform the desired mapping,
while for nonparametric models this occurs for large bandwidth values resulting in over-
smoothed solutions. Proper selection of the model architecture optimally matches the
complexity of the model to that of the data and correspondingly minimizes the model
uncertainty. Models of complexity different from the optimal level for the given task will
have an increased uncertainty for both cases of lower than ideal complexity (increased
bias) and higher than ideal complexity (increased variance). Model misspecification may

also occur if the underlying assumptions of amodel are not met.
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Aside from the misspecification due to architecture or bandwidth selection, 2 other types
of misspecification can occur. Thefirst is due to an incorrect set of predictor variables.
Either the predictor variable set may not contain the necessary information to accurately
model the desired response (resulting in amodel bias) or the predictor variable set may
contain variables that are unrelated to the desired response (resulting in an increased
solution variance). Both of these conditions result in model misspecification. The
second type of misspecification is due to an inadequate distribution of training data. If
the training data do not provide an adequate representation of the underlying relationships
between the predictor variables and the response variable the model is also considered to
be misspecified, though it is not necessarily the model in this case but the data.

Noise in both the input and output data is a consistent source of uncertainty for all
empirical models applied to real, non-simulated data. All of the analytical approachesto
prediction interval estimation presented herein consider only the noise in the dependent,
or response, variable. Alternate theories based on the error-in-variables model are
available for including the noise in the predictor variables in devel oping prediction
intervals; however, they require knowledge of the noise level present, which is generally
unknown. Due to the large scope of this work, covering 3 fundamentally different
empirical modeling paradigms, the decision was made to maintain the assumption of
noise-free predictor variables in the basic derivations and to incorporate modifications
that would account for the presence of noise in the predictors. These modifications are
summarized in section 4.12, and discussed in the appropriate sections of this chapter. In
addition, the use of the bootstrap approach to prediction interval estimation includes the
influence of the predictor variable noise to alimited extent. Thus, comparisons to the
computed intervals with respect to the bootstrap intervals can be drawn to verify that
noise in the predictor variablesis sufficiently accounted for via the implemented
modifications. If the modifications properly account for the predictor variable noise than
the prediction intervals will provide the expected coverage. Noisein the predictors will
be discussed in the recommendations for future work. In addition, the predictor variable
noise is known to be helpful in neural network training. The presence of noise in the
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predictor variables provides improved generalization for neural network models, by
reducing the possibility of overfitting, assuming cross-validation training is used.

Additional sources of uncertainty with respect to the neural network parameters are the
presence of local minimain the error surface, and early termination of training at a sub-
optimal solution. For the NNPLS models there is also uncertainty regarding the number
of selected latent variables.

4.3  EVALUATION OF THE VARIANCE OF THE REGRESSION COEFFICIENTSAND THE
PREDICTION INTERVALSFOR ORDINARY LEAST SQUARES (OL S)

This section draws on the basis for OL S that was provided in section 3.1. The stability of

the OLS solution can be related to the variances of the regression coefficients, b, which

aregiven by: var(b) =s 2(X"X)™*

The standard error of the estimates of the regression coefficientsis given by:

std error, =s,4/(X"X)*
én e’
where: s? = ‘n=1 0 can be used to approximate the variance of the error.

The 100(1- a )% confidence intervals for the regression coefficients are thus:

b ita /2,n- pSe V(XTX) '

In viewing the required computations of the OL S solution, and the variance of the
regression coefficients, it is obvious that collinear data will result in unstable and highly

variable estimates for the regression coefficients. The variance of the coefficients
depends on the estimate of error variance s, , the number of data points, n, and the

collinearity of the predictor variable matrix. Although there are other sources of
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uncertainty which may be present, when the OL S model assumptions are met these other
sources do not exist. Large magnitude regression coefficients may lead to models which
exhibit a greater variance at the output than that which was present at the input. Thisisan
obvious result, since excessively large magnitude regression coefficients will force large

changes at the output when only slight changes are presented at the input.

In addition to constructing confidence intervals on the regression coefficients, the
estimates of the response variable can aso be bounded by confidence intervals. There
are two different approaches to constructing these intervals. The first approach provides
a confidence interval on the mean of the response at a given observation vector:

X=X, =€l Xy X X X X X . Thesecond approach gives probabilistic bounds on

anew observation at fixed conditions of the predictor variables. The first approach
provides confidence boundson E(y |Xx = X, ), whereas the second approach providesthe

prediction interval on a new observation. Prediction and the corresponding standard error

and confidence limits apply to observations where interpolation or extrapolation were

necessary.

The 100(1- a )% confidence boundson E(y | X = X, ), assuming normal errors are given

by [Draper 1966]: Y(Xo) £, /20 pSyXg (XTX) X,

The 100(1- a)% prediction interval on a new observation is given by [Draper 1966]:

y(xo) ita/z,n- ps\/1+ X-(I)— (XTX)_:LXO

4.4 EXTENDING REGRESSION VECTOR VARIANCE, BIASCALCULATIONS AND
PREDICTION INTERVAL ESTIMATION TO PCR AND PLS

This section detail s the computations for prediction interval estimation of the base models

of OLS, PCR and PLS, to complement the later treatment of the advanced empirical
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modeling strategies which are the focus of thiswork. Thisbrief presentation summarizes

the work detailed by Faber and Kowalski [1997].

Estimating the regression by Ordinary Least Squares (OLYS):

Ros =(X™X)*XTy X isN K,andyisN"1

The covariance of the OL S regression coefficientsis given by:

V(Ro.s) =5 oy (XTX)* s 2, isthe variance of the measurement errors

Estimating the regression by Principal Component Regression (PCR):
~ A s
Becr = %é I e;lVaV; ngy
8a:1 a
|, isthe a" eigenvalueof S=X"X
v, isthe a" column of the eigenvector matrix V

V isthe K~ K eigenvector matrix of S=X"X
A isthe dimension of the PCA model

The eigenvectors, v, are obtained from:

P
X™X=VLVT =31 v, V!

a=1
L isthe K” K eigenvaue matrix, and
P istherank of X

The covariance of the PCR regression coefficientsis given by:

A s

P a2 g 70
V(BPCR) =S Dyga l a Vava -
€a=1 (%]

Estimating the regression vector by PLS:

Bevs = K A(KIXTXK ) 'K X Ty

Wherethe (K~ A) Krylov matrix is given by:
K , =[5,S8,...,S*13] % XTy.

Within the framework of PLS, this can be written as:
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A I

py _ 0 T (0] T

Bos = 8a rara =Xy
a=1 9

r, isthe a" column of the K” A matrix of PLSweights R ,

The vectors r, can be obtained from the orthogonal score matrix: 'T'A = XR A

The use of the Krylov matrix is generally avoided due to numerical problems.

Contrary to the expressions derived for the covariance of the regression coefficients for
OLS and PCR, thereisno is exact equation for PLS. The PLS estimator of the regression
vector is not linear, and thus approximate expressions must be employed. Phatak et. al.
[1993] linearized the PLS estimator viaa Taylor series expansion (truncating after a
single term), such that an approximation of the covariance of the regression vector can be
obtained. The resultant expression was verified through a Monte Carlo study, and is
shown below:

V,(Bps) =5 23,d]

J, isthe (k" n) Jacobian matrix of first order derivatives of each component of 13, ¢

with respect to y . The subscript 1 indicatesthat it is afirst order approximation.

J, =§es;A +3 BaS“%XT
7}

B, =[K 0.8" +5'K ,0,1]Ggp

q, isthe a" columnof Q' =(K1SK ,)*,and G, =1 - R,P}. Dueto the numerical

instability of the Krylov matrix, Phatak et al. [1993] have introduced the following

substitutions: replace K , by the weight matrix R ,, and g, by m_, the a™ column of

(M), where M =P, K ,.

An aternate approximation proposed by Hoskuldsson [1988] is based on the observation

that S, is an approximate covariance matrix. Thus, neglecting the second term in the

Jacobian equation leads to the approximation:

A
o w20 —a2 8 T
VO(BPLS) =S DySA =S Q/a rara

a=1
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The zero subscript indicates a zero™ order approximation. The relative size of the term
omitted to obtain this approximation depends greatly on the dimensionality of the model.
The sum has terms that decrease with increasing dimensionality (e.g. S**), aswell as
terms that increase (e.g. G - ). Both approaches should be evaluated, to ensure that the
simpler approximation is adequate for the given data.

The variance of the prediction, y,, can be obtained from:

S 2 - A
~ PV ®x,

N isthe number of observationsin X

V(9,)=

Note that, V (B) stands for V(R,,<) , V (Rocg) , OF V(Rsys).

This equation holds for OLS and PCR due to the linear property of the estimators;
however, for PLS the following replacement must be made:
s 2 .

Dy = éei + 195 :

eN g

N
A prediction interval for the estimate y, can be constructed as [Faber 1997]:
PréY.- S|S0k, 0V (5502 0=1- a
4.4.1 Summary of prediction interval computationsfor OLS, PCR, and PLS
The general equation for the variance of an estimate Y, , given an observation x, is:

s? R
V(¥,) =WW+XIV(B)XU

This equation holds for OLS and PCR due to the linear property of the estimators;

however, for PLS the following replacement must be made:

WeN

V(®) standsfor V(Rys), V(Boc) . o V(Res)
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V(Bos) =5 2 (XTX)*

V(o) =52, B 1 vy e
€a=1 4]

A
P e 2cC —_~2 X8 T
VO(BPLS ) =S DySA =S Dya Fala

a=1

V,(B..) =s 23,9,

The subscripts for the PLS equations refer to the order of approximation for the

derivatives of the PLS weights with respect to the regression coefficients.

The general equation for the prediction intervalsis:

PréY.- S|S0k, 0V (5502 0=1- a

This can be interpreted as, the probability that the following holds trueis 1- a :

9u - S’\Dytvy,aIZ’\[(\/(S\/u)s Di £ yu £ 9u +SADytvy,a/2‘\[(V(9u)S Df

A more compact form for an estimate and its corresponding prediction interval is given
by:

9u iSADytvy,a/Z \' (V(yu)s Di

Substituting in the appropriate variance equations, the following prediction intervals can
be obtained:

OLS: §,£s,t,

1 .
o PR,

. A ~ 1 TéOA o1 TU
PCR: Y S Dytny;a/Z\/ﬁ-'-Xu éa l a VaVa L:]Xu
u

€a=1
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* . A ~ 1 T éOA -1 TU
PLS: Yo £S Dytr1ya/2\/ﬁ+l+xu éa I a ldla l:]xu
u

Ga=1

* - Based on zero order approximations
45  PREDICTION INTERVALSFOR NONLINEAR REGRESSION M ODELS

From the discussion on nonlinear regression, we've established the following:
y, =f (de) te

where: x; =[X;; X,

. o Xl i=1..,n

p isthe number of predictor variables

e=[e e xxe]

The assumptions of normality and independence are e ~ N(Q,Is ?).

The sum of squares error isthen:
- 3 12
s@)=af{y.- f(x.a)}
i=1

A vaueof q which minimizes S(cf ) isdenoted q:

A Taylor series expansion (to the first order) of f(x.,q) about q: isgiven by:

- oo gterrx, )~ \H
(i) » 0 d)+A L e (G- q,))
até W G b

Which can be rewritten as;
f(x;q)» f(x,q)+f; fq -q]

_BI(x0:a7) MM (X:a7) T (x:97) 2

where: fo =
ﬂql 1-[q 2 ﬂq p 7]

The subscript 0 denotes an observation other than those used for least squares estimation

of g ,i.e anindependent observation for which an estimate is desired. Thusit follows

that the variance of f (x;; cf ) isgiven by [Dybowski 1997]:
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Var gf (xi;q:)g=foTSf0

The variance covariance matrix can be estimated in a variety of ways.
S =s?H "' [Dybowski 1997]

S=s"H'gF  FgH " [Tibshirani 1996]

S=¢° [FTF]'l [Chryssolouris 1996]

2

s® isan estimate of the noise variance s ?
14 2 e
== - f(x;q)¥ [Tibshirani 1996]
n,ée g
§* = nié‘ gyI f(x,,q)u [Chryssolouris 1996]

F isthe n” p Jacobian matrix of first order partial derivatives with respect to the

Tlf (X|'q)
1q,

The number of observations used to develop the model (training data) is given by

parameters determined from the least squares minimization of S(q), i.e. F;

i =1,...,n and the number of parametersin the model is j =1,...,p.

H isthe p° p Hessian matrix of second order partial derivativesof S(q), evaluated at

T S(q)
‘Hq ﬂqk

qA:q:,i.e.Hj] ,where j=1..,pad k=1...,p.

Results from a Monte Carlo study of the above methods of covariance matrix estimation
[Hogg 1987] indicated that the method based solely on the Jacobian matrix gave the best

results with the least amount of effort.

Consider the nonlinear regression model for an observation X, :

Yo = f(X50) +e,

The estimate of the response for this observation is given by:
Vo= f (Xo;d)
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Yo- % =f(xaa)+e - f(X:q)

Using the Taylor series expansion:

fx;a)» f(x.q)+f5 g -q]

Yo- Y% » f(xo;d)'l'eo' gf (Xi’d) +foT >{d' a]g:eo' foT >{d' (ﬂ

~

Since e, and (f are independent:
Varly, - %] »Varle,]+Var § 4q - 414

e, ~N(0s2.),and [q - 4] ~N(0,S)

varly, - y,] »s > +f; Sf,

The Student's t-distribution is then:

[, ~ Yo %A o Yo=Y
WVarly, - ol - \/s? +£] Sf,

Where the variance is replaced by its estimate: s* »s 2

The estimation with its associated prediction interval is then:
g, 2tm P JITS +5?
Using the variance estimate: S =s° [FT F]' ", this becomes:

o £ xs\[1+f] (FTF) *f,

4.6 PREDICTION INTERVALSFOR ARTIFICIAL NEURAL NETWORKS

Theinferential, single hidden layer, ANN is used as the base architecture for evaluation
in thiswork. Extensions to multivariate outputs can be drawn; however, the
mathematical treatment presented hereis limited to the inferential design. It isworth
mentioning that some alternate approaches to prediction interval estimation other than the
one described in the previous section are available. One of which relies on the
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construction of a second ANN to model the variance of the predictions. The approach is
asfollows [Dybowski 1997]:

If f(xq) approximates E[y|x], when q: Is obtained from training an ANN with the

standard error function S(q) = é_{yi - f(xi;qd)}2 ,then f(x;0) approximates Var|y |x]

i=1
when U is obtained from training an ANN with the error function: .

N

bérix f(x.;
%@ X:q) [ (XIU)]I\;

QJO:

S(u) =

i=1

Consider the expression ef(x q) yla since f(x,q) approximates E[y |X], thiscan

be rewritten as [E[y| X] -y, ]2, which is the squared deviation of the i ™ response

observation from its mean. Thus, if S(q) isconsidered the sum of squared errors
between the observations and predictions, S(u) is considered the sum of the squared

errors between the observed variance of y and its prediction s‘j = f(x;;0) »Var[y | X].

Prediction intervals can then be prepared from the estimates of both ANNs at point y,:

Bt Plogs = T (X5 0) * Zygenf T (%;01)
Pl e 1sthe 95% prediction interval and z, ., isthe critical point of the standard normal

distribution.

The approach based on linearization as described in the previous section on nonlinear

regression is the one that is followed here. This approach assumesthat q iscloseto the

true value of the set of parameters, q , verified through observing sufficient prediction of
the system behavior. This approach requires the computation of the following
derivatives:

Hf (Xo;q*) 1t (Xo;q*) 1t (Xo;q*)g

T —

fTa, = Ta; Ta, 5
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The subscript O denotes an observation other than those used for least squares estimation

of q: , I.e. an independent observation for which an estimate is desired. The Jacobian

matrix F><(qA) has the form:

é A A ~\ OU
o2, 04,0) gﬂfl(x},q)g < % x gﬂfl({l,q)m

¢ o, & 19, o & Ta, o

&, (x,,9) 9 y A, (x,,9) K

-1 (x.9) g fo. & & a4, I
F{g)=————=¢a X X X X G
ﬂq @ X X X X l':J

e u

§ X X X X u

€ A AL ~ .U

?fn(xyq)g &, e o, Ahx.a) %

=2 Ta, 5 Ta. o & Ta,

The dimensions of the Jacobian are (N~ p), where n isthe number of samples used to

obtain q: and p isthe number of parameters q . which compose q. Toprovidean
overall mathematical perspective on the required computations of a standard inferential
ANN, refer to figure 4.6.1. Each section (input stage, hidden layer, and output layer) of
the Inferential ANN (IANN) is described in detail:

Input Stage:

The input section of the IANN is referred to as the input stage to reserve the term layer
for atrue computational layer, which consists of a set of weights, biases, and activation
functions. To emphasize this, each input location is denoted by a dashed circle rather than
acompleted circle. A dashed circle does not contain an activation function whereas a
completed circle does contain an activation function. Input values to the ANN are

represented by an (n” n,) matrix X . The number of samples or observationsin X isn,
and the number of predictor variablesin X is n,. To smplify theillustration, the inputs
are presented to the IANN as scalar quantities x; ; which represent the i ™ observation for
the j ™ predictor variablein X , wherei =1,2,..n and | =12,...,n,. The number of input

locationsis nj,.



Input Stage Hidden Layer (Layer 1) Output Layer (Layer 2)

Figure 4.6.1: Schematic of an inferential ANN
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Hidden Layer (Layer 1):

The hidden layer is the main computing layer of the IANN architecture. Each neuron in
the hidden layer has an associated weight, bias, and activation function. Each weight in
the hidden layer has 3 unique identifying descriptors, two subscripts and a superscript.

The general form of ahidden layer weight is: *w; . The superscript 1 indicates that the
weight belongsto layer 1, the hidden layer. Thefirst subscript, j, refersto an input
location, j =12...,n,, and n, isthe number of locationsin the input stage. The second

subscript, k, refersto aneuron in the hidden layer, k =1,2,...,n,, and n, isthe number of
neurons in the hidden layer. The first subscript indicates the origin of the connection (in
the previous layer), and the second subscript indicates the destination of the connection
(in the current layer specified by the superscript). For example: ‘w,, - isthe hidden layer
weight which acts upon values originating from the first input location and destined for
the 3" neuron in layer one. Each bias value in the hidden layer has 2 unique identifiers.
The general form of ahidden layer biasis: 'b,. Again the superscript 1 indicatesthat it is
ahidden layer bias. The subscript, k, indicates the specific neuron with which the biasis

associated. For example b, - isthe bias associated with the k ™ neuron in layer 1.

Output Layer (Layer 2):

The output layer performs aweighted sum of the output values fromthe hidden layer, and

adds ascalar bias. The weightsin the output layer are identified by 3 unique indices,

similar to the hidden layer weights. The general form of the output layer weight is: *w, ;.

The superscript 2 indicates that the weight belongsto layer 2, the output layer. The first
subscript, k, refersto the origin of the connection in the hidden layer. The second
subscript refers to the neuron in the output layer, which can only be 1 in the lANN

architecture. For example: *w,, - isthe output layer weight which acts upon values

being output from the 3 hidden neuron and destined for the output neuron. Because
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thereisonly 1 output neuron in the IANN structure there is only one bias value in the
output layer, denoted as: *b,. The superscript identifies that the biasis located in the
output layer, and the subscript of 1, though not necessary here because of the IANN

architecture, is maintained to follow the conventions described herein. The output neuron

activation function is alinear function.

The IANN computations and the construction of the Jacobian matrix are now described
in detail. To construct the Jacobian matrix of first order partial derivatives of the IANN
function approximation with respect to the network parameters, first the set of

parameters, q , must be defined:

qA:gil qu x x X quB’Where p=nn, +2n +1

N 1 1 1

.'.[ Wip "W, X% TW o X TW o XX

T w Lw o W oK W XXX

I Way 22 2k 20
ot Tw Iw o Ty ok Ty XXX
q=i No.1 ny,2 gk Mo, My

Iy 1 1 1

| b1 b2 XXX bk XXX br11 XXX

I 2 2
T Wip

2 1 2
i Wy, X W, XX Wnl, XXX b1]

L

To construct the Jacobian matrix, the partial derivatives of . with respect to each of the

weight and bias parameters of the ANN must be obtained. Accordingly, there will be p
partial derivatives for each observation i . Before determining the partial derivatives, the
activation functions must be chosen. The output neuron activation function is linear, and
the hidden neuron activation functions will be either the hyperbolic tangent function, or
the sigmoidal activation function. It is easiest to first determine the partial derivatives

with respect to the parametersin the output layer. Figure 4.6.2 provides a schematic of
the output layer neuron of the TANN.
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lOi,l 2W1,1

Figure 4.6.2: IANN output layer neuron
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The quantities coming into the neuron are the products of the outputs of the previous

1

layer (hidden layer) and the output layer weights, e.g. O isthe output of the kith
neuron in layer 1 (indicated by the superscript). Since there are ™ hidden neurons, there

will be ™ products of output layer weights and hidden neuron outputs. In addition, the
output neuron bias enters at this point and the overall input to the output linear neuron is

2
identified as ha , the sum of the products of the previous layers outputs and the current

layer's weights and the output neuron bias. The activation function of the output layer

neuron operates on this input with its linear function: (Y =U  n keeping with the

2 2
defined variable conventions, thisiswritten as fl( Ii'l): lia . The resultant quantity

shown on the right side of figure 4.6.2 is the final IANN output for observation P

2~ _ &
117 Y The required partial derivativesfor the output layer parameters are:

% ﬂ( J_ o) 1)

ﬂ(zbJ a,) W)~ T0,) W, )

W _ W (o, w _1(o.) 1(4,)

ﬂ(zwk,l) ) ﬂ(zoi,l)'ﬂ(zwk,l) ﬂ(zoi,l) ﬂ(zli,l) ' ﬂ(zwk,l)

:1Oi K

These results can be verified by evaluating the derivatives separately:

2Oi,1:2f1(2|i,1) 9i:20i,1’ and T Ey' =1
i1
2fl(zlll):zlll zlllziénl.lolkzwklt\;-"zbl
k=1
f(°0.,) M)y g T01)

Moving to the hidden layer parameters, consider figure 4.6.3.
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1
Xi,l Wl,k

Figure 4.6.3: IANN hidden layer neuron
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The quantities coming into the neuron are the products of the outputs of the previous
layer (input stage), X ;, and the hidden layer weights, w;, . Sincethereare n, locations
in the input stage, there will be n, products of hidden layer weights and input values. In

addition, a bias enters at this point and the overall input to the k ™ hidden layer neuron is

identified as *I, ,, the sum of the products of the input stage values and the hidden layer's

weights and the k ™ hidden neuron bias. The activation functions of the hidden layer
neurons operate on this input with a nonlinear function. Two common choices are the
é

2
&_'_e—Zu

hyperbolic tangent function f (u) = tanh(u) »

- lugand the logarithmic sigmoid

transfer function f(u) = % Depending on the choice of activation function, and
€

expressing in the defined terms, the output of the hidden neuronsis given by:

- for hyperbolic tangent:

15 (1 — 1 é 2 _ g
if £, (11, )= tanh( '“k)»guexp(- am) 15
1N =l (1 é 2 - u

o) reat )

d ﬂ(lohk) =1- [ll i,k]z'

)

- for logarithmic sigmoid:

If lfk(1| i,k) 1+ exp(:} (1|i,k))'

1
1repl (M1,

then 1Oi’kzlfk(ll i,k):

and ﬂﬁ((%%=(1li,kll- (4, ).
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Hyperbolic tangent activation functions will be used in deriving the partial derivatives for

the hidden layer parameters:

1w _ 19 JC0u) 101, 1(o.) 101 _ o o T
ﬂ(lyq)‘ﬂ(%u)'ﬂ(%) TCnk o cvRUAARSA RN

Bl bl

. __w Jlo,) (1) sto,) 1) ;
TR NI G e O e e RAR ]

v,

m:(zwk,l)(l' [”i,k]ZXK,;)

These results can be verified by evaluating the derivatives separately. From the previous
results of the output layer neuron:

ﬂyi =1 End TI(Zoi,l)

1(°0,) fa,) "t

| g i
From the input section of the output neuron: 21, ={ § 1Oi,k2Wk,1g+2b1|
[ k=

=~

thus: ﬁﬂ((lzcl)—:i)) =1.

From the previous results for the hyperbolic tangent activation function:

ﬂ(lo.k)

: : g u
From the input section of the output neuron: *I; , = ax,'w, ‘kfle
iz
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(')

T _
.W—l and m—xm.

This completes the derivations of the full complement of partial derivatives required for

construction of the Jacobian matrix. The (1° p) vector of partial derivatives for the i ™

observation is defined as:

Y, Y Y 1Y

XXX XXX XXX

€
gﬂ(lwu) ﬂ(lWLZ) l lWLk ﬂ(lWLnl)

W B W

T(w,,) 1(tw,,) lw,, ) M(w,, ) o
W w % W
: ﬂ(ano 1) ﬂ(1Wn0,2) ﬂ(anO, ) ﬂ(lwno,nl)

Pwooow, W, 1

IOV RC R CY BTN

1Y LV, | . T, u

i '”(ZWM) '”(sz,l) m ﬁ mg

Substituting the derived forms of the partia derivatives resultsin:

Tq

Thefull (n” p) Jacobian matrix can then be constructed from the n,

v, _ ( )( ) (o [1F ) o= (Wkl)( [P l) o (o B )
(W.lel [' ] X’ﬂ 2"\&,1*1' [1Ii,2]2XXi,rb) o (ZWkl)(l' [lli,k]ZXXi,no) ,111 1Ii,q]
( )( [' ]) ( )( [l ]2) (zwkl)(l_ [lli,k]z) o (Zwm,l)(l' [llm]z) o

lo 10, » 0, »x Q, 1

Xl' [1|i,1]2)()§,1) (2W21X1' [l'i,z]ZXm) o Wkl)(l [' ])()91 o W Xl ll mz)()ﬂl

v
To

Vectors as

follows:
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éty, u

Eqq U

g0 U

R ~ elyau
Fod) = =eqq ¢
Ta &,

e u

&1y,
eé-~u
eflqu

To construct prediction intervals for a new observation x,, the vector of partial

derivativesof f(x,;q*) must also be constructed for each new observation.

r o8 () Weia)) M (x0397) 9
0 * ’ P AR * -
é ﬂql ﬂqz ﬂq p ﬂ
This vector can be constructed using the form provided by jTyl , with the simple
q

substitution of O for i, and noting that while i =1,...,n, the O subscript refersto asingle

observation. The relationship is given by:
7=

fig

The overall approach is to calculate the full Jacobian matrix based on the training data
and the resultant IANN weight and bias parameters. An estimate of the variance of the
error term due to model limitations is then obtained based on the training data, and the

following equation:

é (yi - Y )2
=12 [Tibshirani 1996]
n

For each new observation, x,, compute the IANN estimate y, = f (xo;d ), the vector of

partial derivatives, f, , and the (100- a)” 100% prediction interval from:

g, 110 xs\[1+f] (FTF) *f,
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4.7 PREDICTION INTERVALSFOR NEURAL NETWORK PARTIAL L EAST SQUARES

To begin, abrief description of the approach analogous to the model used by
Chryssolouris et. al. [1996] is presented. After providing the basics, a detailed
description and derivation of the partial derivative equations ensues. Consider the
nonlinear functional mapping of a set of input variables, as presented by Baffi et. al.
[2002] X to an output variable y , where the predicted output variable y can be written

as:

y = f(X.a)

A

where q denotes the vector of model parameters q = &, q, »x g, »x dNH where

c=1...,N,and N isthetota number of parameters of the NNPLS model.

The Jacobian matrix for this caseis thus:

1f (X,q)U
e c u

The functional mapping for PLS-1 can be written as:

Y= fas(X,R 61 Q)
Where R denotes the weight matrix that maps the input variables X onto the input |atent

variables T, and q isthe vector of coefficients for the outer mapping between U and y .

The parameter vector q: is obtained from the least squares minimization of the error

between the input and output latent variables (T and U , respectively),

s@q) = é’l{uj - f(tj;of)}z,where j=1..,m and m isthe number of latent variablesin
j=1

the NNPLS model. The Jacobian matrix for this case can be written in expanded form as:

2 A A A
F=[F.F.F.1= ps Wps Weis =
[FefeFol ETR 19 99 &

Simplifying further for each dimension of the PLS model into the product of the

appropriate partial derivatives, i.e. for each pair of input/output latent variables t; /u; :
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eﬂPLSu eﬂfPLS ﬂuj ﬂt U

.
“&1R, 4 S, T, TR, 8

a and | denote theindices for the input variables and latent variables respectively.

Thus, R, ; istheweighting coefficient between the a™input variable (a=1...,p, p is

the number of input variables) and the j ™ latent variable, t,.

gﬂfPLS u— éﬂfPLS ﬂu 3
670, 5 gfu, fa,g

F. =
q
q ; Isthe set of inner model coefficients for the | " pair of input/output |atent variables.

éqf U
Fo = sy
e fa; g
q; isthe output loading for the j " latent variable.

Rewriting the PLS model as:

&
y :a uj >QJ
j=1
ul = f(tj ’ql)
:5 Xi ><Ra,j

a=1

Notethat F isthe Jacobian matrix computed using the training data, and f, isthe
Jacobian computed for a new observation x, used for computing prediction irtervals for

the corresponding prediction Y, .

Assuming the data are normally distributed, the (1- a)*100% confidence interval can be
estimated by:

¥+t p,l_a,z>s><\/(1+fg XFT ) 1of,)
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Now that the overall procedure has been outlined the details of the model and the
computation of the required partial derivatives are described. The derivations which
follow are based on the nonlinear iterative partial least squares algorithm (NIPALS),

which is presented below, with a modification noted for the inner relationship models:

10.

11.
12.

13.
14.

Mean center and scale X and Y

Set the output scores u equal toacolumnof Y .

.
Computeinput weight w by regressing X onu ~ w' = UTX
uu
Normalize Bw to unit length w = ”W—”
w
Calculate the input scores t t= XTW
w'w
: : t'y
Compute output loadings ¢ by regressing Y ont q' = T
Normalize g to unit length g :”q—”
q
Yq
Calculate new output scores u u= g
Check convergenceon u: if yesgoto 10, elsegoto 3
: : : t"X
Compute input loadings p by regressing X ont  p' = T
Compute inner model * (neural network) u= f(t)
Calculate input residual matrix E=X-tp"
Calculate output residual matrix F=Y- f(t)q"

If additional dimensions necessary replace X and Y by E and F respectively,

and repeat steps 2-13.

A projection matrix R is also defined as R = W(P" W) ', which can be used to compute

the scores directly from theinput data X via: T =XR
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Partial least squares approaches are often described in two parts, the inner relationships,
and the outer relationships. The outer relationships consist of a set of transformations,
from the input space to the orthogonal latent variable space and from the output space to
aset of output score vectors. For the inferential design, the output space is a vector, and
thus the output transformation weights are smply ones. To follow convention, the output
weights are maintained as variables in the following discussions. Figure 4.7.1 provides a
schematic of the outer relationships of the inferential NNPLS design. Note that in the
diagram, a single observation vector is mapped to a scalar response. Extensions to matrix

notation are straightforward.

Regarding figure NNPL S1, the observation vector can be represented as:

X=[x X, »x x,  »x x],andthecorresponding vector of latent valuesis given
by: t=[t t, »xt, >t ]. Notetha the parametersdisplayedinfigure4.7.1are

determined by the NNPLS1 algorithm, and there is no direct iterative training required to
determine these parameters. However, these parameters are affected by the results of the
training of the inner relationship models. The number of input variablesis p, and the
number of latent variablesis m, where the usual conditionis m < p. The solid
connection lines between the observation vector and the latent values have their
corresponding transformation weights shown ( r 's), whereas the dotted lines do not have
their weights shown. The dotted lines are maintained to show the overall structure. The
first transformation weight subscript identifies the feature of the observation that is acted
upon, and the second subscript indicates the destination latent variable for the product.
The orthogonal transformation can also be written as:

—_ — T
tj —x><rj,whererj —[rl,j fpj XX Iy, XX rp’j] )

y
The subscripts on the output score values and the output transformation weights indicate
the corresponding latent variable.
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Figure 4.7.1: Schematic of the outer relationships

of an inferential NNPLS model.
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m
The output transformation can be written as. y = 601 U, >q; , or in vector notation:
=1

§=l>q, where =@, G, »x ( »x G gandq=gy ¢ »x q % qf .
The vertically oriented rectangle (figure 4.7.1) represents the inner relationship mapping

between the input and output latent variable pairs. The details of this relationship are
presented in figure 4.7.2.

The notation of figure 4.7.2 is based on asingle input latent variable vector

t=[t t, >t > t],anditscorresponding output latent variable vector
estimate 0=gl, U, »x (0, »x 0 . Thesetwo vectorsare obtained from asingle
observation vector X =[x, X, & X, > x| anditscorresponding estimated
response y via: t; =x>;,and y=0>. Theoverall inner relationship model consists

of asetof | singleinput single output neural networks. Each of these neural networks

contains a single hidden layer of hyperbolic tangent activation functions, and asingle
linear output neuron. The input stage presents the latent observation vector to the hidden
layer. The hidden layer independently maps each element of the input latent variable

vector to aset of neurons. The corresponding weights and biases are indicated in the
figure4.7.2. Consider element | of thelatent vector t;. The associated hidden layer
weights are defined as: 0, , =[€y,, {5, Cyaj = €, 4;], andtheassociated
biasesare b, ;) =[b;y; by; »x B ,; < b ,;]. Thenumber of neuronsin the

j ™ neural network is given by n;,andtheindex k; isdefined as k; =1,...,n;. The
number of hidden neurons each of the | neural networksis not required to be the same.

Moving to the output layer, still following the path of t; , the corresponding output layer

weightsare ., =[l1,; l,n;, 25 ¥ L, ,;], andtheoutput biasis by , ;.

n;.2,j
Each weight and bias value has 3 subscripts identifying its location in the overall inner

relationship model. The first subscript identifies the appropriate neuron, the second
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Figure 4.7.2: Schematic of the inner relationships of the NNPLS-1 model
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subscript identifies the appropriate layer, and the third subscript identifies the appropriate

latent variable.

Based on the above descriptions of the NNPL S inner and outer relationships, the

unknown parameter vector can be explicitly defined, where the number of parametersin
each set isindicated on the right:

Ql>
1

o N2
!

r r

pl  'p2
¢ 111 ¢ 211
¢ 112 ¢ 212

11j 62,1, j

E 11m f 2,1,m

—— ) — ) m— o — ) — — —

gl,l r2,1 X ra,l X rp,1

X[, X[,

XXX ra,j
XXX )
rP, J

o €k1,1,1

< { Ky, 1,2

XXX gkm

XXX ékm’lm

XXX [ XxX
a,m

X
XX gnl,l,l

X énzylzxxx
XXX énj,LJX"X

XX f
Ny, Lm

b1,1,1 bz,l,l o bcl,l,l o bnl,l,l

i b, b, > bkz,l,z e bn2,1,2>°°(
T bl,l,j bZ,l,j X bki,l,j laae bnj,l,j X
i

1 l:a.,l,m bZ,l,m o hg,,,lm o br}n,l,m
i

i Cigy Lopy X £k1,2,1 o gnl,Z,l
1015y Lopy XX Ly 5y XX L, %
|

'|'£l,2,j Ez,z,j XXX Ekj,Z,j XXX Enj,z,jm
i

-I- él,z,m 52,2,m XX ék,wz,m XX g%’z’m

—_—— —r —

G %

)00<qj

b1,2,1 b1,2,2 o bl,2,j o b1,2,m
XXX qﬂa

# of parameters

The total number of parameters for the NNPLS model is given as the sum of the values

specified for each set of parameters in the column above (n; isthe number of hidden

neurons used in the mapping between t; and U, ):
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N=m(2+ p)+36°1 n; . For each observation in the training data, i =1,...,n, there will
j=1
1Y with dimensions 1" N . Thefull Jacobian isthen

~

fig

constructed from all of these vectors and its overall dimensionsare n” N ..

be avector of partial derivatives

To compute the prediction intervals, the Jacobian matrix must be obtained; thus, the

derivatives with respect to all of the parametersin the set q: , must be determined.
Beginning with the output side of the model:

1Y
i 2.

g . W o_4
y=al,q, ,thuswehave: - =0, and —
Ja:l I ﬂq, : ﬂuj

Note that for the inferential version of the NNPLS modd!, q; =1, for j=1,..,m.

To determine the derivatives of the output layer parameters, consider figure 4.7.3, which

is amagnified diagram of the j™ output neuron of the model.

Theinput quantitiesto the j™ output neuron are the hidden layer outputs, from the ™

neural network, multiplied by the corresponding output layer weights, and the j™ neural

network hidden layer bias. These quantities are summed at the input of the output neuron

tocalculate 1, ,; asshownin figure 4.7.3 and the output of the neuron is determined by
2 f ; » which is the output neuron activation function. The output layer activation

. F . _ . . h
functions, *f,, for j =1..,m aregivenby *f,(x) = x. Thefinal output of the j'
output neuron is the corresponding output score, U ;» Which isthe estimate of the input

SCOI'etJ-.
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L™ N2,

Figure 4.7.3: NNPLS output layer neuron
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The partial derivatives with respect to the output neuron parameters are given by:
ﬂyi - ﬂy. o ﬂl]j yﬂol,Z,j yﬂl 1,2,
ﬂbLZ,j ﬂljj ﬂOl,z,j il 1,2, ﬂb],z,j

W W, 00 JO. W,
kai,Z,j ﬂa] 10, i, kai,z,j

The intermediate derivatives can be determined from the equations shown in figure 4.7.3.

. R fq,

Since U; =0, ,;, then =1.
1,2,j

. 10,

since Oy, =1, (11,,) = 1., then —=2-=1.
- ’ ’ 1“1,21

1 —l 3 P 1“1,2,1 _ 1“J.z,j _

Since 1,5 =1 A Oy ik 2y 0z, then =Ly 20 o =1, and
Tk=1 b ﬂOkj L] b,

1“1,2,] — N

ij 2] it
Therefore:

Wi =g axa=1

.,

19,
—— =0, A0, ;.
o o
Recal that qg; isonefor theinferentiadl NNPLS model, j =1...,m (m isthe number of
latent variables), k; =1,...,n; (n; isthe number of hidden neurons used in the mapping
between t; and U;). To determine the derivatives of the hidden layer parameters,

consider figure 4.7.4, which is a magnified diagram of hidden neuron k; . To determine

the location of this neuron in the overall scheme of the model, refer to figure 4.7.2.
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ki1,
t][kj,l,j it

Figure 4.7.4: NNPLS hidden layer neuron K; .
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The input quantity is the sum of the product of the input score and the corresponding
hidden layer weight, and the associated hidden layer bias. The output from the hidden
layer neuron depends on the choice of activation function. The hidden layer activation
functions are denoted by a prior superscript of 1, denoting layer 1 (the hidden layer). The
first subscript identifies which input score vector model the neuron belongs to, and the
second subscript identifies the specific hidden neuron within the specified score vector
model. Inthiswork all of the hidden layer activation functions are hyperbolic tangent
functions; thus, the function notation can be smplified by utilizing a single prior

superscript of 1, indicating the it is a hidden layer function, i.e.:

' (2) =tanh( z), and 111—::1+ z°

For the other common choice of alogarithmic sigmoid activation function, see section

4.6 for the function and its derivative.

The partial derivatives with respect to the hidden neuron parameters are given by:

ﬂ)?i _ ﬂy, « ﬂa] yﬂol,z,j « T" 12,j yﬂokj L yﬂl ki .Lj
Moo, 10 10, Moy 10 s oy,

W 1 0 TOu My JOas M,

To ., 76, 10, ., 10, M. T,

The first four arguments of the partial derivatives for the hidden layer parameters were
defined previously during the determination of the partial derivatives with respect to the

output layer neurons. The remaining arguments are defined below:

Since Oy ,; = (l k;vlj): tanh(l Ky L ) then jﬂOﬁ - (1+[tanh (I kj L] )]2)
K L,j

Mo, My ai M
KL — Ekjl’j ' ka 1j =1 and % :t] .
ft b, ., Tt

Since Ikivlvi :tjg k1] + h(; 2,1 then
Therefore:
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ﬂs‘/l _ . 2 5 _ <
T >§+ Ganh (1, ) =0, >§+ Ganh (1, ., )H
jL

19,
e kL

0
i}

—_— 5 O = O
_qj><1>§L><ekj’2’j>§+gtanh(lkl_,lj)3Ej =2 % >?+etanh klj)HB

The final remaining partia derivatives to be evaluated are with respect to the

transformation weights, r, ;

ﬂ9| ﬂy‘ pLa ﬂ ﬂOl'ZI yﬂllzl yﬂokj'l'j vﬂlki'l'j vﬂtJ
Tra, ﬂu ﬂOLZJ PPy ﬂOk 2 | K L fit, Ty

From the previous discussions following figure 4.7.1, the following can be obtained:

b = X0y + Xl X0 X I+ X0 X T

1it;
- = X
..,
Therefore:

ﬂyi _ 0] _ A 20
fr.. =0 A, 5 ’§i+etanh( K, 11) B%kj,l,jxxa =X % 1 % 2, )gi"'gtanh(lk.,l,j)ﬂ p

To summarize, al of the partial derivatives are givenin table 4.7.1.

Definethe (1° N) vector of partial derivatives, where N = m(2 + p) +3é n, , forthe i th

j=1

observation/response as.

WS W w W wm wml
== a
g &M Tou T Tz Tha fog
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Table 4.7.1: Definition of First Order Partial Derivatives for the NNPLS model based on
X, > X ] anditsscalar response y, .

an observation vector x, =[x,

X2 XXX

Partial Derivative Subscript Total number of
Definition values per derivative
W, . 25| a=1..,p mop
_I:Xaxgkj,l,jxékj,Z,j +Qtanh( klj)u*
Tr.., @ € Ug i=1..m
w 26 j=1..,m m
ﬂg k 2,] X, >§‘+etanh K; 1])8 - a I’]J
kj.Li 2 kj =1..,n, =
W, 20 j=1..m g
' :Ekjyzy.>§+etanh o |02 an,
‘"bkplii ] ( ])u 2 kj =1..,n, = J
v ]=1..m g
" _ij,l,j an,
Kj2,] kj ::I.,...,I’]j =
ﬂyi -1 J =1...m m
b,
W_s j=1..m m
Ta, '

The two derivative quantities required for the prediction interval computation are f, (O

denotes derivatives based on afuture observation) and F (based on the set of training

observations).

eﬂyl
é U
aflg a
éfy, a

_Ty _&=xa
F— A—eﬂquandfT

@ xxUl p[[o]

9

alli ¢

e1q
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T

y=[y, ¥, »x ¥y, »x y ] representsthefull setof training responses. The

derivative vector overal dimensionsare: f,® (N" 1),and F® (n" N).

The overall approach is to calculate the full Jacobian matrix based on the training data
and the resultant NNPL S model weight and bias parameters. An estimate of the variance
of the error term due to model limitationsis then obtained based on the training data, and
the following equation:

(Yi - 9i)2

Qs

.ﬂ

2

s = [Tibshirani 1996]

n

For each new observation, x,, compute the NNPLS estimate y, = f (xo;cf ), the vector of

partial derivatives, f, , and the (100- a)” 100% prediction interval from:

§o £10xs\[1+f] (FTF)
4.8 VARIANCE AND BIASOF L ocAL POLYNOMIAL REGRESSION

The derivation of the bias and variance properties of the local polynomial regression
estimators provides the general results from which the properties can be obtained for the
cases of kernel regression, and local linear regression, as well as higher order
polynomials. Direct computation of the bias and variance is not possible because of the
dependence on unknown quantities; however, asymptotic approximations are available
that can be exploited to construct prediction intervals. Here, abrief presentation is
provided for the general case. In the following section a detailed account of the bias and
variance of the kernel regression estimator is provided, followed by an extension to local

linear and local polynomial estimators.

(X,Y) isageneric member of the set of observations (X,,Y;),....(X,,,Y,) whose
conditional mean and conditional variance are:
m(x) = E(Y | X =x) andn(x) =Var(Y | X =x)
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The general assumed mode is:

Y =m(X,)+Vv"*(X))e,, i=1,.,n.

Where v(x) isfinite and the e are mutually independent and identically distributed
random variables with zero mean and unit variance. The e,'s are also independent of the

X,'s.

The performance of an estimator is conventionally assessed viaits mean squared error
(MSE):
MSE(x) = Efi(x) - m(x)}? | X], where X = (X;.,... X,) .

The bias-variance decomposition of the M SE can also be written:

MSE(x) = [E{(x) | X} - m(x)]* +Var{rh(x) | X}

The first term is the squared bias while the second term is the variance. The derivation of
the computations for the squared bias and variance are presented below:

Recall from section 3.8.5:

b = (XTWX)*XIWy isthe solution of the weighted |east squares problem:

(y - X, B)"W(y - X R) which was derived from the Taylor series expansion of the
conditional mean of the LPR estimator.

m"(X,)

m(x) » M(X,) +mM'(X,)(X- X,) +T(X - Xg)? + 00ek

m (Xo) (X- XO) A
p!

Using therelation m*(x) =k!b, , where m‘(x) isthe k™ derivative of m(x), this can be

written as: m(x) » b, + b, (x- Xo)+%(x' X0)2+>ooe+%(x- X,)"
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Thus the sol ution to the weighted least squares problem resultsin estimates of ™(X) and
its P derivatives at the point Xo " Bj = [60,..., Bp]. For the purpose of obtaining the
expected valueat x,, m(X,), the following approximation is used:

m(x) = 60. Defining e, asavector of zeros containing alinitsfirst element, the
following is obtained:

(X) = b, =e(XIW, X ) *XIW,y

For the univariate case the terms are defined as;

gl (Xi- %) X x X (Xl-Xo)pg év;u
e _u

ex X X a éxL'J
X, =€x X x U y=éxu
; G e

gX X X l.,J é l;]

B (X,-%) x x x (X,-%)"H Y. H

W = diag{ K, (X, - %)}

The length of the vector e, depends on the order of the local polynomial used in the

weighted least squares regression, and the number of predictor variables for the

multivariate case.

To derive the bias of the estimator, first consider its expected value:
E(M(x)|X)=¢€e] (XWX ) *'X Wm

where m ={m(X,),....m(X,)}".

A Taylor series expansion provides.

&ém(x) l;I'*'lQm(X) +R_ (X)

X gDm(x)H 2
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D,, isthe vector of first-order partial derivatives.. Q,, contains the second order terms
based on the Hessian matrix H_,, and R, isthe vector of Taylor series remainder terms.

To show the expansion in detail, consider the case for local linear regression, i.e. p=1.

d (X~ )i 80X, 9T H,L (X, )
& U x u
€ em(x) u 1e u
Moy = €X ats x U+ R (X)
e, u &b, (x)u 2e u
: : " !
g‘ (Xﬂ - X)H e(Xn - X)T Hm(X)(Xn - X)H

For p=1,D,isd 1, H isd d,and Q,, R, aen” 1.

The computation of m thus depends on the order of the local polynomial. Returning to
the expected value computation:

E(f(x) | X) = el (XIW X ) *XTW, X em(x)”

Xen (ol +2Qu(0 + R, (X)u

X) U é m(X) u
Usmge(XWX)XWXXe() rémx) ¢

e, ()8~ % &, (i~ ")

él u
8o Qn(x) + Rm(X)B
Theresulting scalar e7 (X W, X ,) "X W, R, (x),notethat R, (x) isan” 1 vector,

E(M(x) | X) =m(x)+e (X;W,X,) X W,

is negligible compared to the terms arising from Q,(x) .

Thus, the bias estimate can be written as;

E{m(x|X)- m(x)} = E(M(x)|X)- m(x)— e (XTW X ) *XTW Q. (X)

where Q, = &X,- X)"H, (x)(X,- X) »x (X,- x)"H_ (x)(X,- x)[?:]T isan n” 1 vector.

This equation is not directly computable due to the unknown quantity Q,,(x) which

requires the second derivatives of the function itself.
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The variance term of the M SE can be written as
Var (M| X) = (XZW,X ) H(XISX ) (XTW, X )

where S=diag{K (X, - x)N(X)}.

From the above bias and variance equations, first-order asymptotic approximations can
be derived. The derivations for the case of LPR are available in Fan & Gijbels[1996].

Assumethat f(x,)>0,andthat f(3¥, m®™® (¥, and n(y arecontinuousina

neighborhood of X,. Assumethat h® 0 and Nh® ¥ .

kfn(x) , e 1 ¢
f(x)nh*%* " &nht*%

Var{m (%) |X} =€..S 'S*S'e,.,
For p- k odd:

Blas{rnK (XO) | X} ek+1S C p+1)(xo)hp+1 k +0, (hp+1 k)

P (p+1)! 1)-

For p- k even, provided that f'(§ and m®*? (¥ are continuousin aneighborhood of x,

and Nh®°® ¥ :

Biadm (x,) | X} =€[,SC,

k! | p+2 p+1 (Xo) p+2-Kk p+2- k
(o)L m®? (x,) + (p +2)m' )(Xo)f( )E\;h +0, (")

f(x,) isthe common density of the predictor variables X, k identifies the estimate
(i.e., k=0 to estimate m(x,), k=1 to estimate m'(x,), p isthe order of the local

polynomial. Also:

el = (0,...,0,1,0,...,0)" , where the 1 isin the (k +1)" position.
Cp = (Mpugsee M) €, = (M My ,)T
S= (mj+l)0£j,l£p S = (Vj+l)0£j,l£p

= 'K*(u)du m, = 'K (u)du
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The additional term in the bias for odd order polynomial fitsillustrates the bias reduction
when moving from an even ordered polynomial to the subsequent odd ordered
polynomial. This phenomenon has been presented by various researchers as evidence of
the superiority of odd-ordered polynomials, however, it isimportant to consider the
specific function at hand, and depending on the values in the additional term it is possible
for an even ordered polynomial to outperform an odd ordered polynomial, though in most

cases the opposite will be true.

The asymptotic bias and variance expressions for the estimator 1m,(x,) = 60 are provided

intable 4.8.1 for the casesof p=0 (Nadaraya-Watson) and p =1 (local linear).

Constant-approximation type nonparametric models are susceptible to estimation
problems near the boundaries of the observation intervals. Consider a predictor variable
x and aresponse variable y . At the boundary of the observation interval, the local
averaging process becomes asymmetric because half of the weights are undefined and
outside the boundary creating a bias related to the tangential behavior at the boundary. In
addition, the minimum and maximum points of a nonparametric regression curve will be
reduced to some extent due to the averaging process of the local neighborhood of points
[Hérdle 1990]. This argument regarding the boundary effects of kernel regression was
also stated by Fan and Gijbels[1992b]. Ruppert and Wand [1994] provide aword of
caution for this argument, stating that, near the boundary, the parameters of the local
model are no longer asymptotically orthogonal asthey arein the interior. They continue
to mention that for finite samplesif the curvature, f '(0), issmall relative to the variance,

n(0), then for x near the boundary the Nadaraya-Watson estimate could be considerably

more accurate than the local linear estimate.

Note that the Nadaraya-Watson estimator is not the only approach for local constant
approximation, though it is the most widely used. Other versions of local constant

estimators such as the Gasser-MUller [Gasser and Mller 1979] are available which have
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Table 4.8.1: Pointwise asymptotic bias and variance of kernel regression estimators at
interior points of the support of the design density [Fan 1992a]

Method Bias Variance
Nadaraya-Watson m'(x) f'(X) 6, , « nx
—m"(X) + —L 2 T2 A V, =———— 3K*(u)d
Local Linear = 5 " n(x) >
= m*(x) 2h? u?K (u)du V, == OK*(u)du
g O f(nh 9
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improved asymptotic bias and variance properties, but not as improved as that obtained
vialocal linear estimators. The slope parameter of the local linear estimator allows for

the bias reduction with respect to the Nadaraya-Watson estimator.

The Nadaraya-Watson estimator has zero minimax efficiency. The Nadaraya-Watson
estimator may exhibit high bias at the boundaries of the support and while methods are
available for corrections near the boundary, they are not as efficient as the automatic
boundary correction of the local linear model. In general, local polynomial regression
does not share the boundary effects of the Nadaraya-Watson estimator and the bias at the
boundary stays automatically of the same order asin the interior. Cheng, Fan, and
Marron [1993] provide that the local linear estimator is efficient in correcting boundary
bias in an asymptotic minimax sense. Additional work on the minimax efficiency of
local linear estimators was completed by Fan [1992a, 1993] and extended to the general
case of local polynomial estimators Fan et. al. [1995b]. The result of the studies on the
asymptotic minimax efficiencies of the various smoothers provide that local polynomial
estimators are nearly best linear estimators, and the efficiency of the local linear fit may
be as high as 100% relative to that of O for the Nadaraya-\Watson estimator.

49 VARIANCE AND BIASESTIMATION IN KERNEL REGRESSION

In this section a detailed derivation is provided for the asymptotic approximations of the

bias and variance terms of the MSE for KR. The kernel estimator is given by:

ooy =+ § k& X0
i-1 € h (4]

A common substitution can be made;

f(x;h):%é K, (x- X, ), where Kh(u):%K?;hg
i=1

The mean squared error between the estimator d and the target parameter g isgiven by:
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~ Lo~ 2
MSE(q)=Egq-a)y

Decomposing into variance and squared bias:

MSE(q) = Vaf(GI)+(E U- q)*

Since the estimator is (i = f(x; h), we have:

MSE{ f ()} =Var §F (xh)i+(EEF (xh)d- f (x))’

Analyzing the terms separately beginning with the bias term provides:

E&T (ch)i= E[K,(x- X)] = Ky (x- y) f(y)dy

Using the cornvolution notation (f * g)(x) = Of (x- y)g(y)dy alows:

EEF (x;h)U=(K,* f)(x)

Such that the squared bias term becomes:
(EEFOch)E- )7 =[(K,* 1)) - F (0]

Consider the variance term:

var{f (x )} = lgE[fAz(x; h)]- (E[f(x; h)])2

var{f (x )} = 1eE[K (x- X,)]- (E[f(x h)])
~ 14
Var{f(x, E

Var{f(x; h) :%[(Khz* £)x)- (K, * f)z(x)]

Thus the MSE can be rewritten:
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(o} = 2l * 109~ (<, [k, = D09 - 10T

The mean squared error is derived at apoint x, to evaluate the error between f (x;h) and

f(x). Toevauate the error globally consider the integrated squared error (1SE)

criterion to quantify the error between f (xh) and f .

<={f omf = ¢ff ey - £ o) ox

The |SE criterion considers the data set at hand. To account for other possible data sets
fromthedensity f itismore appropriate to evaluate the expected value of the |1SE, the

mean integrated squared error (MISE) :

MISEF (xh)] = E[lSE{f (>,<h)}]: E(‘[f (xh)- f(x)]zdx:(‘ E[f (xh)- f(x)]zdx: ¢MSH F (x: Fx
Substituting the expression for MSE yields:

MISE{f(xh)}:%‘(Kﬁ*f)(x) (K, * £ ) (<l + J(<, * £)(x)- * (x)]cix

Manipulation of the above expression yields:
M|SE{f(>,<h)} o) (x)dx+$’i- =K * F)2(x)dx- 2gdK, * £ )(x)f (x)dx+ f (x)* dx

This expression depends on the bandwidth in a complicated way. To simplify, consider
asymptotic approximations (large sample approximations) for the MSE.

Asymptotic approximations are based on the following assumptions:

1 f " iscontinuous, square integrable, and ultimately monotone (i.e. one that is
monotone over both (- ¥,- M) & (M ,¥) for M >0).
2. The bandwidth h dependson n and is a non-random sequence of positive

numbers. This dependence is suppressed in the asymptotic approximation
derivations. Itisassumedthat h® 0 as n® ¥ , though the rate of decrease for

h lags the rate of increase for n.
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limgy () =0 and  limg, (nh) =¥
3. K isabounded probability density function having a finite 4" moment and is

symmetric about the origin.

The asymptotic approximations are derived for the MSE expression beginning with the
bias term:

A (ol — e OX- YO

E&f (x;h)U= —=f(y)d

&f (x;H d<8 " b(y)y
Using z=(x- y)/h, wecan rewrite as.

EEf (x;h)U= K(2 f(x- hz)dz

Using the Taylor seriesabout x of f(x- hz) = f(x) - hzf'(x)+%h222f"(x)+o(h2),
we can rewrite as:

ngA(X;h)gz d<(z)§f (X)- hzf *(x) +%h222f "(x)+o(h2)gdz

ng(x;h)gz OK(2)f (x)dz- K (2)hz '(x)dz+ d((z)%hzzzf "(x)dz+o(h?)

Assumption 3 provides that:
K(Ddz=1, (gK(2)dz=0,and y’K(z)dz <¥

Thus, we can rewrite as:

E&f (xh)U- f(x) :%hzf "(x) (72K (2)dz +o(h?)

Using m,(K) = OZZK(Z)dZ, we can rewrite as.

Af (v I _1 2 " 2
E&f (x;h)U- f(x)—Eh m(K) f "() +o(h?)
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Thisisthe expression that will be used in the asymptotic approximation. Due to the

dependence on the second derivative, the biasislargewhen | f''(x) | islarge, which

occursin regions of high curvature. Thus, the estimator f (x;h) hasatendency to

smooth out the "peaks" and "valleys' resulting in an increased biasin these regions.

Consider the variance term:

var{f (o =2 3¢ (x- w1 way- (Elfoon]

Using the change in variables as above:

var{f ()} = —%a?aa( & Y £ (- —(E[f och)f
Var{f (x: h)}: n—lth(z))2 f(x- hz)dz- %(E[f (x; h)])2

Var{f(x; h)} = n—lh K (2))? f (x- hz)dz- %gf (X) + %hzf "(x)(‘)zzK(z)dzg +0o(h?)

Again using the third assumption, the variance expression can be reduced to:

Var{f(x; h)} = n—lh f (%) K (2))dz+ 08519

Using R(K) = oK ?(2)dz, we can rewrite the variance expression as:

Var{f(x; h)} =— R(K) f(x)+ 08519

Since the varianceis of order 1/ nh, assumption 2 provides that the variance converges to

zero. The asymptotic approximation for MSE can now be written as:

SE{‘?(’Ch)}:n—lhR(K)f(X)+%h4mz(K) fr'(x)? +o|gei§+h“§

121



The MISE isthen:

) . . e
YE=k (>,<h)}=mR(K) +Zh4mz(K)2R(f")+oiEé~aemg+ h“g

From this we can define the Asymptotic MISE ( AMISE) which provides a useful large
sample approximation to the MISE.

AMIE(f (st} =L R(K) + Zh'm, ()* (1)

Viewing the AMISE expression, the bias variance trade-off becomes evident. The
leading term depends on 1/ nh, whereas the bias term dependson h*. For very small
bandwidth values, the bias of the estimator is near zero; however, the variance is
relatively high. This condition would result in an estimator with avery "spiky" profile,
and repeated sampling would alter the location of these spikes. On the other hand, large
bandwidth values result in an estimator with a smooth profile, exhibiting very littleto
zero variance. This condition is oversmoothed due to the excessive introduction of bias,

and the data are essentially ignored.

Differentiating the AMISE expression, and setting equal to zero, resultsin a closed form

expression for the optimal bandwidth:

) _(fl R(K) L)1/5
AMISE T Em, (K)2R(F)n

Thefunction R(f'") measuresthetotal curvatureof f ,thusfor densities of little
curvature, alarge optimal bandwidth is called for, and for high curvature, a small optimal
bandwidth is appropriate. R(f'') cannot be computed directly in practical situations,
though several rules for selecting the bandwidth based on estimates of this function are

available.
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Substituting the optimal bandwidth into the AMISE equation yields an expression for the
minimum AMISE for estimation of f with kernel K:

inf .o AMISE{f (xh)} :FSMS{rnZ(K)ZR(K)“ R(F)}°

Thus, the optimal rate of convergence for the kernel estimator is n™*'>.

Keep in mind that the AMISE is only alarge sample approximation, and if one wants to
analyze the exact finite sample performance of the estimator for agiven f and K, then

one would compute the MISE. Exact MISE calculations can be achieved for the normal

kernel aswell aslinear combinations of normal densities, i.e. normal mixture densities.
This section provided a detailed examination of the derivation of the asymptotic
approximations for computing the MSE of the KR estimator. These ideas are extended to
LL and LPR in the following section.

4.9.1 ExtensionstoLocal Linear and Local Polynomial Regression

Consider the random design:

Y =m(X,)+Vv'%(X,)e;,  i=L..n
Assumptions:
1. m" and n are both continuouson [0,1]

2. K issymmetric about zero and is supported on [-1,1

3. Thebandwidth h = h_ isasequence satisfyingthat h® 0 and nh® ¥ as
n® ¥ .
4. Thepoint x at which the estimation istaking place satisfies h< x <1- h for all

n3 n, where n, isfixed.

5. f'iscontinuous
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The results for the large sample approximations for the linear case are shown below. The

derivations are covered in Wand and Jones [1995]:

The conditiona biasis given by:

E{M(6 p=1h)- m(x) | Xy X, } :thm“(xm(Kwop (h?)

The variance is given by:
Var{i(x p=1h) | X;,..., X,.} ={(nh) *RK)/ £ () + 0, {(nh) )

Extending these results to the general polynomial case, we rely on assumptions 1-4
above, and additionally require that m®*? (x) is continuous. Define the following
notation: N isthe (p+1)" (p+1) matrix whose (i, j) entry is m,, ,(K), where

1
— ~_J . . .
m(K) = gz K(9dz. M (u) isthesameas N , but with the first column replaced by

\ S(U)[f
i N

order kernel when p isodd, and a (p +2) order kernel when p iseven, sinceit can be

(Lu,...,u”)". Thekernd for the general caseis; K o (U) = K(u) isa(p+l)

shownthat K =K, foreven p.

p+l

The conditional bias for the general case is given by:

Forodd p:
E{(x; p;h) - m(x) | Xy, X, } = (pil)! PP (x)my,, (K,) +0p(hP)
Foreven p:
p+2I 1 f(X) p+2 p+2
E{T0x pih) - M| X,.... X} =h T(IO+1)! 05 T ()gw+2(K)+%(h )
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The varianceis given by:

Var{m(x p;h) | Xy,..., X} ={(nh) *R(K ) )/ F () +0p{(nh) 2}

For the general case, the degree of the polynomia determines the order of the bias of

m(x; p; h) . Note that the bias expression for odd p isasimpler expression, especially in
its dependence on m(x; p;h) . Wand and Jones show that for sufficiently smooth
regression functions, the asymptotic performance of m(; p;h) improves for higher values
of p; however, the variance of the estimator becomes large for these higher degree

polynomials. Including the considerations that odd degree polynomials have attractive

bias and boundary properties, Wand and Jones suggest the use of either p=1or p=3.

Extending to the multivariate case leads to the notational changes for the random design

caseof X, to X,, andthedensity, f,now being d -variate. To simplify, consider only

the casefor p =1. Thefitted polynomial is of the form: b, + R x, where b, isthe

scaar intercept and 3, = (bll,...,bld)T. H is an appropriate bandwidth matrix, and K is

amultivariate kernel function satisfying:

K isabounded, compactly supported d -variate kernel satisfying: (K (z)dz =1,

(gK(z)dz =0, and , where m,(K) = ¢yz’K (2)dz = m,(K)I .

The multivariate local linear kernel estimator is given by:

M p =1L H) = e (X, W, X,) "X W, Y

4 (X;-x'u
éx . a
e 4
where: X, = & x 0,and W, =diag{K, (X, - X),... K., (X, - x)}
é U
e x
8]' (xn - X)TH
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Assume that H satisfies:

-1/2

H =H, isasequence of bandwidth matrices such that n"*|H| " and all entriesof H

approach zeroas N® ¥ . Additionally, the ratio of the largest and smallest eigenvalues
of H isbounded for all n.

Assumethat f(x), v(x), and all entries of the Hessian matrix H (x) are continuous.

The conditional bias, and variance are then:

V2 R(K)v(x)+3[ 1§

T T TR

A 1 °
Var{og p=1H) X, X} == |H

4.9.2 Applied Prediction Intervalsfor Local Polynomial Regression Estimators

The previous 2 sections provided detailed information regarding the derivation of
asymptotic approximations of the bias and variance of LPR estimators. The variance of
the local polynomial regression estimator is given by:

Var{riy(%,) | X} = €] (XJW,X,) (X, SX,)(X W, X,) ey

Where: S=diag{KZ(X, - x)n(X,)}, and the vector e is defined based on the order of
the local approximation: for p=0, e/ =1,for p=1,e =[1 0 »x 0,] the

[1” (d +1)] vector. d isthe number of variablesin X

Using the following relation:
S=W, VW, , where V =diag{n (X,),....n(X,)},and v(X,) =var(Y | X = X,).

The variance can be rewritten as:

Var{y(xo) | X} =€) (X,W,X,) " XW VW X, (XWX, ) e
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This equation can be used directly based on estimations of the conditional variances of
theresponse, Y .

The bias of the estimator is given by (from section 4.8):
o _1 T 1y T
E{m(xo)' m(xo)lxl""’xn} _Eel (XxWXXx) XXW me(XO)

For the case of alocal linear model:
Qm(X) =[(Xl - X)T Hm(x)(xl - X) """ (Xn - X)T Hm(x)(xn - X)]T dimensions (n, 1)
H,(x) isthe d” d Hessian matrix of m(x), where d isthe dimension of the input

gpace. The difficulty in the bias approximation is that it requires the computation of the
Hessian matrix of the unknown function m(x). Thus, approximations for the bias term
arerequired. An approximation for the bias term can be computed based on a set of data
sampled independent of the data in the training matrix, but from the same distribution.
An additional assumption isthat the data provide a true representation of the function
being modeled, m(x) .

In this work, the contribution of the bias to the uncertainty was computed based on the
training data as well as an independent set of validation data:

Bias :%ér {m(x,)- M(x,)}*, where x, representsthe i " observation of the combined

i=1
set of training and validation data, i =1,...,r (r isthetotal number of training and
validation observations). The bias estimate is based on both the training and validation
data so that an adequate estimate of bias can still be obtained for bandwidth values that
are too small, resulting in an overfit model. An overfit model will report aminimal bias
estimate for the training data, while the same estimate on an independent set of validation
error will be respectively much larger. Because the intent isto apply the prediction
interval methodologies to independent sets of data, it isimperative that an adequate bias
estimate is obtained that represents the expected results for all representative data, not
just the training data. The use of this bias approximation is based on the assumption that
the measured responses are the true responses.
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A 95% prediction interval estimate can be constructed from the variance and bias as

follows: M(x,) 2" \Var{fi(x,)} +Bias’

4.9.3 Summary of Previous Research into Prediction Interval Estimation for

Nonparametric Regression

Previous research at the University of Tennessee provided a basis for the prediction
interval estimation techniques applied for the nonparametric techniques [Gribok 2002].
The methods that were studied and developed are presented here, and the relationships
between the previously derived uncertainty estimates and the prediction interval

estimation methods derived herein are explained.

The most general approach to the analysis of uncertainty in statistically based techniques
is bias-variance deconmposition of the mean squared error (M SE), which can be written
as:

Ep [f (x) - m(x)]?

where Ep is the expectation over the ensemble of possible data sets D of fixed sample
sizeN and my(X) isan estimate of the true function m(x) . The MSE is anatural
measure of the effectiveness of the predictor my, (x) because it measures how close the

estimate is to the true function, on the average. The MSE can be decomposed in the

following manner:

Ep|h(¥) - m(X)|* =Ep|fh (9 - Ep(fh(¥)+Ep(fh(¥)- m(x)]* =

Ep|(Fh(¥ - Ep(fh()F +Ep(fh(¥)- mX)? +2* (fh(X) - Ep(Th(¥)) Ep(Th(X)- n(x))]=
Ep|(fh(¥)- Ep(Fh())F +ED[(ED<ﬁh(x))- n(x))2]+2* Epl(fh(X)- Ep(fh(¥))* (Ep(th(¥)- m(x)) =
Ep|(fh(¥) - Ep(fh())F|+[(Ep(fh(¥)- mx))*=Var + Biaé
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To arrive at the final formula, the following considerations were used:
2% Ep[(fh (¥) - Ep (T (X)) * (Ep (i (X)) - m(x))] =0

Ep [(fin(X) - Ep (fn(X)] = Ep (i (X)) - Ep(Ep (n (X)) = Ep (T (X)) - Ep (n(x)) =0

The last passage is made because Ep (Ep (M, (X))) = (Ep (M4 (X)), as the mathematical

expectation of a mathematical expectation, isjust a mathematical expectation. For the

Same reason:

Ep|(Ep (P () - m(x))2]= [Ep (i (x) - mOx).

This last expression is the squared bias as it reflects the deviation of the mathematical
expectation of the estimate from the true function. Bias represents a systematic error due
to the error of modeling. Bias also reflects the limited explanatory power of an estimate.
One of the mgjor and nontrivial results of Statistical Learning Theory [Vapnik 1998] is
that biasis necessary in order to perform consistent learning from data. In other words,
unbiased systems (systems with an infinite or very large Vapnik-Chervonenkis (V C)
dimension) fit all the peculiarities of a particular data set, thus losing generalization
capabilities. Generalization isthe ability of amodel to properly predict samplesnot in
the training set.

The problem of “bias design” is of utmost importance in statistical learning from data.
The bias/variance dilemma shows that one can eliminate a substantial part of the variance
by purposefully introducing bias;, however, one must ensure that the biasisin fact
harmless for the problem at hand. One of the most well-known and widely used biasesin
statistical learning from data is the smoothness bias [Tikhonov 1997], which favors
functions with bounded derivatives over other functions. A measure of function
smoothness can also be an integral operator of the following type:
f.2 o2
e
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Physically the smoothness bias assumes that the system reacts smoothly to small
perturbations, i.e. small changes in the input cause small changes in the output. The
smoothness biasis very appropriate for most technologically generated data, for example,
nuclear power plants are designed to be “smooth”. Other biases which are frequently
used in industrial applications are: the linearity of the underlying function, alimited
domain of the function, and invariance of the sought mapping under certain groups of
transformations. The most well known bias in science is a bias towards simplicity or
simple models, which is more commonly known as Occam’ srazor. Notice, the biasterm
in involves the true function, which is generally unknown. However, the theoretical
results on the comparison of biases of different competing estimators are very important
as they show how quickly an estimator approaches its target as the sample size grows.
Obvioudly, the faster the rate of convergence the better the estimator. Unfortunately,
many theoretical results show that the convergence rates are prohibitively slow for all
kinds of non-parametric estimators, especialy in high dimensions. This brought many
scholars to the conclusion that generalization based on pure datais practically impossible
and all data driven methods have to be assisted by first principles models and strong prior

information.

Variance, on the other hand, represents the uncertainty of an estimate due to a particular
noise realization. The variance term measures the deviation of a given estimate obtained
on a particular data set from the average estimate, which could be obtained by averaging
over all the data sets of size N. The variance term does not depend on the true
dependency (model) and is easier to estimate, although it requires an estimation of the

noise variance in the response variable.

The result of the original research provided that a 95% prediction interval for akernel

regression estimator could be produced from:

+2 Nar{m(x) [ X}

The general assumed mode is:
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Y, =m(X,) +Vv"*(X))e,, i=1,..,n.

Where v(x) isfinite and the e, are mutually independent and identically distributed
random variables with zero mean and unit variance. The e,'s are also independent of the
X,'s.

Var (1] X) = (XTW,X,) (X ISX,)(XTW,X,)

S=diag{K: (X, - x)N(X)}

The assumption is made that the bias term is negligible in the prediction interval
computation if the bandwidth of the kernel function is properly chosen. The basisfor this
is provided below. The conclusions drawn were based on the use of the Multivariate
State Estimation Technique (MSET). Consider the typical bias/ variance relationship of
the M SE decomposition (figure 4.9.1).

As the bandwidth increases, the bias increases and the variance falls accordingly. The
sum of squared bias and variance represents the mean integrated squared error (M1SE);
the minimum of which delivers the minimum uncertainty to the overall estimate. An
important observation is that at the point of minimum uncertainty, the variance
contribution to MISE dominates the bias contribution making it possible to ignore biasin

practical uncertainty estimations.

One of the goals of this dissertation was to develop a prediction interval methodol ogy
that could be applied to nonparanetric regression techniques regardless of the bandwidth
chosen. If thetraining data fully represents the system being modeled, there will be
bandwidth values for which biasis negligible. However, as the bandwidth increases the
bias will no longer be negligible. Thus, omitting considerations of model bias may be
appropriate for a select set of bandwidths but will not be appropriate to compute
prediction intervals over awide range of bandwidths. For these purposes a method of
bias estimation was adopted and implemented in this dissertation. Another reason for

including an estimate of biasisthat in practical situations with data from measurement

131



Mean Integrated Squared Error, MISE, Bias?, Var

1.5

— Bias Squared
Var
— MISE

Point of minimum uncertainty

MISE,Bias,Var

0.5 -
Variance contribution /

Bias contribution

i

log(h)

Figure 4.9.1: Nonparametric regression bias/ variance trade-off.
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instruments of a process, collecting a training data set the adequately represents the entire
range of avariableisadifficult task. The problem isworsened by the presence of noise
inthe data. If the selected training data do not provide adequate representation, the

variance estimate will be lower than the true variance.

It isimportant to keep in mind that the bias and variance computations derived do not
treat the presence of noise in the predictor variables. Thisisacommon assumption of
empirical modelsin general. The bias estimation developed in this dissertation also
considers the noise in the predictor variables through the utilization of validation data
observationsin the bias estimate. The bias of the training data set in the large majority of
cases will be lower, sometimes significantly lower depending on the noise level in the
data, than that for the validation data. 1ncluding the estimations on the independent
validation data set into the bias estimate attempts to compensate for the noise in the
predictor variables.

Thus, the difference between the prior research at the University of Tennessee and what
has been developed for this dissertation is that the form of the prediction interval estimate

is:

+2,Var{f(x) | X} + Bias{M(x) | X}?

The presence of anegligible bias at certain bandwidths was evidenced during this work.
For these cases, the chosen method of bias estimation provided validation of the original
assumptions drawn. Including the bias estimate for cases of negligible bias will have no
influence on the resultant prediction intervals and the inclusion of its estimateis
maintained in all cases studied. The benefit of the inclusion of the bias estimate in the
prediction interval computation is that over-regularized models, due to large bandwidth
selection, will result in prediction intervals that reflect this. In other words, poor

bandwidth choices result in large prediction intervals.
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4.10 PREDICTION INTERVAL ESTIMATION VIA THE BOOTSTRAP

The bootstrap is a method of Monte Carlo simulation whereby no assumptions are made
about the population from which a random sample was obtained. The random sample is
taken to be an estimate of the population, and each value within the random sample has
an identical probability of occurrence. For each random sample, an estimate of a specific
population parameter can be obtained. Repetitive sampling and consequent estimations
provide a distribution for the parameter of interest. In the case of regression estimation,
the parameter of interest is the estimate of the response, and its distribution can be used to
construct confidence intervals around the estimate. Full coverage of the bootstrap
technique is provided by several sources [Efron and Tibshirani 1993, Hall 1992, Efron
1982]. The use of bootstrap techniques, for constructing prediction intervals in nonlinear
regression models, has been documented by various researchers. Derks and Buydens
[1998] assess bootstrap resampling methods and the delta method for estimating
prediction intervals for multi-layer feedforward neural networks. The utility of the
bootstrap is prescribed in the following statement by Dybowski [1997]: "The bootstrap is
a computer-based method for assigning measures of accuracy to statistical estimates, and
it will provide a nonparametric confidence interval for any population parameter

whatsoever."

Tibshirani [1996] presented a comparison of methods for estimating the standard error of
prediction for MLPs. The three methods discussed were the delta method (incorporating
the Hessian matrix), the sandwich estimator, and bootstrap estimators. The sandwich
method augments the Hessian based delta method to produce estimates that may be
improved under model misspecification. Thelr findings were that the bootstrap approach
was the optimal technique, partly because it captures the variability due to the random
initialization of the neural network weights. Neither the delta method, or the sandwich
method capture the variability due to the random initialization of the neural network
weights. A final observation is that the bootstrap approach, while computationally
intensive, does not require the existence of derivatives or suffer from matrix inversion
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problems. The delta method for estimating the standard error of prediction was also
employed for NNs by Derks et. al. [1998], and is of the same form as that reported by

Chryssolouris [1996], though the Hessian matrix was replaced by the Jacobian matrix in
the latter.

The delta method is so named because it is based on the Taylor series approximation.
The delta method, also known as the Taylor series method, has been reported to be less
reliable than the bootstrap, with an occasional tendency to badly underestimate the true
standard error [Efron 1992]. Bootstrap resampling estimation of prediction intervals
should contain all sources of variation, including variation due to re-initialization and re-
training [Derks 1998].

There are two general approaches to bootstrapping in regression settings. bootstrap pairs,
and bootstrap residuals. A presentation of the two approaches was provided by
Tibshirani [1996], and is repeated here:

The bootstrap pairs algorithm:

1. Generate B samples (typically intherange 20 £ B £ 200), each one of size n

drawn with replacement from the n training observations

{(X,¥,), (X5, ¥5),..(X,,, ¥,)} . Denote the b sample by

(G HEPRYAD B SR TAD) B

2. For each bootstrap sample b =1,..., B, minimize § [y,® - y(x';q)]? to obtain
i=1

~p

q™. y® arethetargets or outputs of the b ™ bootstrap data set, y(x;°;q) arethe
estimates of the targets, and ci "* jsthe set of parameters for the b ™ model.

3. Estimate the standard error of the i " predicted value using:
i1 8 . 2*b . 2Ul/2 . S )
[g—=alyx:a’)- y(x;3]1°y ,where y(x;;3=a y(x;;q ")/B.

1B-13 b

b=1
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The bootstrap residuals agorithm:

1 Estimate qA from thetraining dataand let r, =y, - y(X, ;qA),for i=1..,n.
2. Generate B bootstrap samples, each one of size n drawn with replacement

from r,,r,,...,r,. Denotethe b™ sampleby r,®,r,°,...,r’® andlet
y;" = y(x;a) +r

3. For each bootstrap sample b =1,..., B, minimize § [y.® - y(x,;q)]? to obtain
i=1

A

q
4. Estimate the standard error of the i " predicted value using:

*b

1/2

[Y0G") - YOAITYwhere Y9 =8 V(X ") /B,

Qow

N
Ve
A

1
B-1;

1

Standard errors and confidence intervals produced via the resampling pairs approach will
be asymptotically valid in the presence of heteroscedasticity or other forms of
nonhomogeneity [Carroll 1995]. The drawbacks associated with this approach involve
the fact that in this way estimations are obtained for unconditional sampling distributions,
rather than conditional sampling distributions. Efron and Tibshirani [1993] indicate that
conditional and unconditional standard errors are often nearly equal. Also, unconditional

variances are generally larger, and thus more conservative, than conditional variances.

Consider the two components of uncertainty, the squared bias and the variance. While
the use of the bootstrap standard error to construct prediction intervals has been reported
by various researchers [Derks 1998, Tibshirani 1996], a better estimator is proposed
which adds to the variance an estimate of the bias. Thus, this adjusted standard error

calculation includes both a contribution from the variance, and the squared bias.

The bootstrap prediction intervals are computed via:
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9ji2'\/§1

The bootstrap variance computation is shown below:

~ _ 1 OB é"*b :02
Var(yj) _E—?—léyj - yj G

Axp

v =1 (xj;d*b) is the estimate of the response 9’;“ for the observation x; based on the

- & .
model parameters g °, and ¥, ==a ¥,”.

The traditional standard error computation is given as.

SE, = Var(y,)

It was found to be desirable to add an estimate of bias into this computation due to the
ease with which nonlinear regression models can be misspecified due to
overparameterization or underparameterization. In either case there will be significant
bias contributions that need to be accounted for. For the purpose of devel oping robust
prediction intervals which are not susceptible to underestimating the uncertainty for

conditions of misspecified models, an empirical method of bias estimation was adopted.

The bootstrap bias estimate will be based on the pool of data used to develop the models.
It will therefore be a single value that attempts to quantify the model misspecification.
The pool of development data represents all available data, excluding the defined set of
test data. The reason for computing bias estimates based on the data pool, rather than the
training data is that the training data bias estimate for overfit modelsislower than abias
estimate obtained on an i ndependent set of data. For the ANN and NNPL S methods,
overfit models result from overtraining, and overparameterization. For LPR models (e.g.
KR, LL), overfit models result when the bandwidth parameter istoo small. In attempting
to develop a prediction interval methodology that can provide the expected coverage

regardless of the model fit, one must ensure that the prediction intervals reflect that a
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model is overfit. To simplify, overfit models should have larger prediction intervals than
aproperly fit model. Thisincrease in prediction interval magnitude can be realized by
ensuring that the estimate of bias includes not only the training data, too which the model
has overfit and will report arelatively small bias, but also an independent set of data, for
which the reported bias will be higher. By computing the bias on all of the datain the
development pool, the resultant value provides a sufficient estimate of the overall bias of
the mode.

Define the pool of data from which all bootstrap samples are drawn as: y™-. The
number of observation / response pairsin y™° is K, and y;°> will be defined asthe

k ™ responsein the pool, where k =1,...,K . In addition, to differentiate between the
estimated responses from the B different models defined by their corresponding

parameter sets q"°, the notation §F°°"° will be used. §7°°*® specifies the estimation
of the response y, fromthe b ™ model.

1(%1
gLt
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2 POOL*b _ &,POOL*
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§PooLTd = f (% POk *b) is the estimate of the response §7°°™ for x;°°" based on the
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model parameters q*°, and

During the course of thiswork it was noted that the above bootstrap bias estimator did
not adequately quantify the observed bias. For this reason, a second method of bias
estimation was devel oped:

"POOL b_ ,POOL*b 2
8Yi H

- Y

The Bias estimate isreferred to as the average deviation bias estimate, and the Bias,

estimate is referred to as the average squared error bias estimate.
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To provide prediction intervals for the estimations based on the pool of development
data, as well as independent sets of test data, the following computational method was
adopted:

y£2 \/Var()?j ) +Bias; g =1 or g =2 corresponds to the appropriate bias estimate

above.

This proposed estimator of the prediction interval is more robust to model
misspecification due to the inclusion of the bias estimation into the calculation. If the
model is correctly specified then the bias term will be correspondingly negligible. 1f on
the other hand there is a high degree of misspecification, thiswill be reflected in the
computation.

Whileit is apparent that the method of bootstrapping prediction intervalsis a robust and
exhaustive approach, one must consider the practical applications of this technique. It
was noted that if the average of 3 neural networks are used as the prediction, the standard
error of prediction decreases [Tibshirani 1996]. For relatively small model dimensions,
the use of the bootstrap approach to direct prediction interval estimation should be
realizable; though, there will be an upper limit on the size of model for which this
technique can be applied in real time.

411 SUMMARY OF PREDICTION INTERVAL COMPUTATIONS

The information presented in this chapter relative to the model specific methods of
prediction interval computation is summarized below. The equations below exactly
describe the computational methods applied to obtain the results presented in the next
chapter.

For ANN and NNPLS, the general nonlinear regression model is:
Yi = f(xiyd)"'ei
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wherer x; =[X;; X;, »x X; ],i=1.,n
p isthe number of predictor variables
e=[e e, »xx g]
The assumptions of normality and independence are e ~ N(Q,Is ?).
The general prediction interval computation is given by:
§o £ 2 51+ 1] (FTF)

To simplify, the significance-level dependent interval was modified to the following form

which represents a 95% prediction interval.

o £ 256\ [1+f] (FTF)

szz%ég - f(xl,q)u [Tibshirani 1996]
i=1
1-['\ T
ZF y isthe vector of training responses
q
fq = jTyf Yo = f(xo;ci) is the estimate of the response for the new
q

observation x,. Theassumptionthat t;,} » 2 (a =0.05) isvalid for n- p3 60, for
greater degrees of freedom the assumption resultsin a slight over-estimation, the limit of
thisvalueas n® ¥ is1.96 (for a =0.05). All training data sets used in this dissertation

provide anumber of degrees of freedom where n- p3 60.

The specific parameter vectors qA for the ANN model and NNPLS model are giveniin
sections 4.6 and 4.7, respectively. In the early stages of thiswork, it was noted that the
fractional coverage values of the prediction intervals based on an s° estimate computed
for the training data were lower than the expected 0.95, especially for cases where the
neura networks were allowed to overtrain or the models were overparameterized for the
given problem. Investigation led to the observation that in many cases, the s* estimate
based on an independent set of data drawn from the same population of data as the
training set was higher than that computed based solely on the training data. Because the
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focus of thiswork was to provide a prediction interval estimation method that would
provide the expected coverage on sets of data that were independent, this observation led

to a modification of the s* estimate of Tibshirani [1996]. It should be noted that the
same estimator based on training data was also reported in Chryssolouris [1996], with the
exception that the denominator was reduced by the degrees of freedom of the model. The
modification is to compute the s* estimate based on a combined set of data consisting of
the training data and an independent set of validation data. Both the training and
validation sets are drawn from the same population or pool of data. This estimation
method proved to be much more stable for all model architectures rather than only
performing as expected when the ideal model was used. The stability referred to hereis
with respect to consistent coverage of the measured values by the estimate and its point-

wise prediction interval, to the expected level of 95%.

The overall approach for ANNs and NNPLS is:
1. Calculate the full n” p Jacobian matrix (F) based on the full matrix of

training data.

2. Estimate s°, based on the combined set of training and validation data.

3. For each new observation (test data), x,, compute the estimate Y, = f (xo;ci ),
the vector of partial derivatives, f, , and the corresponding 95% prediction

interval.

For the LPR models (KR and L L), the random design nonparametric regression model

can be written as;

Y =m(X,)+Vv'*(X))e,, i=1..,n
The e, are independent random variables with zero mean and unit variance conditional
on X,,...,X,,i.e. E(e,) =0 and Var(e;) =1. Theregression and variance functions are

thus:
m(x) = E(Y | X =x) and v(x) =Var(Y | X =X)
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The variance of the estimator based on a new observation x, isgiven by:
Var{my,(x,) | X} = elT(XIWXXx)'lXIWXVWXXX(XXTWXXX)'lel
To obtain an estimate for the bias of agiven KR or LL model, the following computation

was employed:
Bias’ =2 4 (m(x) - )’
i=1

X; representsthe i ™ observation of the combined set of training and validation data,

i =1,...,r (r isthetotal number of training and validation observations). The bias
estimate is based on both the training and validation data so that an adequate estimate of
bias can still be obtained for bandwidth values that are too small, resulting in an overfit
model. The argument for thisis similar to that of the previous paragraph regarding neural
network overfitting. An overfit model will report aminimal bias estimate for the training

data, while the same estimate on an independent set of validation error will be

respectively much larger.

The 95% predictioninterval estimates for KR and LL were constructed from the

variance and bias as follows:

(xo) £ 2" yVar{m(x,)} + Bias’

The overall approach for KR and LL regression modelsis:
1. Obtain an estimate for the variance of the response v(x,) =Var(Y | X = %),

assumethat v(x,) =s * for al i, i.e. the model is homoscedastic.

2. Obtain abias estimate for the current model based on a combined set consisting of
the training data and an independent validation data set.
3. For each new observation x, (test data) compute the variance estimate based on

the new observation, and the corresponding 95% prediction interval.
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For all models, the bootstrap prediction interval estimates were obtained in the same way,
based on 100 different resampled data sets. The bootstrap prediction intervals were
computed based on the following form:

+2° \/Var(yo) + Bias;

g =1 or g =2 corresponds to the appropriate bias estimate (section 4.10).

._181¢ ¢POOL*b _ &POOL*
Blasl__a Ea yk yk g

18 18 .cpooLsb  ,POOL#
—a—a &% - Yk H
Kz Bba

1 Ak <2
—_— A€y u
Var (o) =5~ 191 S0 - Yol

The bootstrap approach for all models was to obtain the estimations for B different
models based on B different sets of training and validation data. All training and
validation data samples were drawn from the same data pool. Descriptions of the
variablesin the bootstrap prediction interval equations were provided in section 4.10.

412 SUMMARY OF ASSUMPTIONSOF MODELSAND PREDICTION INTERVAL
COMPUTATIONS

In this section, the assumptions inherent to the empirical models are summarized. In
addition, various assumptions were required for the derivation of the prediction interval
computations. These assumptions are also described. In cases where the assumptions are
not valid a description is provided as to how the proposed prediction interval
computations account for this. All of the studied empirical models fall within two

general categories: nonlinear regression models (NNPLS and ANN) and nonparametric
regression models (KR and LL). Each category is discussed separately. All of the
equations in this section were presented in greater detail in the appropriate sections of this

dissertation.

Beginning with nonlinear regression, the general model is:
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Yi= f(xiyd)"'ei

where: x; =[X;; X,

2 X X 1, i=L..,n

p isthe number of predictor variables

e=[e e xxe]

The assumptions of normality and independence are e ~ N(Q,Is ?).

Other assumptions are:

- the predictor variables are noise free

- all required predictor variables are available
- the predictor variables are independent

- € = e, =Xx=g =x0g_, i.e constant variance errors (homoscedasticity)

- the error terms are normally distributed and independent

The general prediction interval computation is given by:

¥, £10xs\[1+f] (FTF) ',

To simplify, the significance-level dependent interval was modified to the following form

which represents a 95% prediction interval. The effect of this modification isto produce

more conservative prediction interval values since the limiting value of the Student's t

distribution for large n is~1.96, at the significance level Of 95%.

§, £ 256\ /1+f] (FTF)

7

2 _l s e, _ o l‘JZ . . .
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fo = 1% Yo = f(xo;cf) is the estimate of the response for the new

observation X, .

The prediction interval computations assume that the first order Taylor approximation

shown below isvalid:

- L @ teff(x.aq)u - f
() » 10, G+ |l (g -q,))
k2§ € a, Uy=q, b

The validity of the use of the first order Taylor series expansion depends on q: (the

estimated set of parameters) being close to the true set of parameters q .

The prediction intervals computations also rely on the assumption that the variance
covariance matrix can be estimated via:

S=5° [FTF]'l [Chryssolouris 1996]

2

s® isan estimate of the noise variance s 2.

Results from a Monte Carlo study of the above methods of covariance matrix estimation
[Hogg 1987] indicated that this method based solely on the Jacobian matrix gave the best
results with the least amount of effort.

It was also assumed that the variance of the noise can be estimated via:

148 & S
== % - f(x:q)Y [Tibshirani 1996
LA gy f(xia)y [Tibshirani 1996
This assumption carries with it the inherent assumption that the model is correct, such

that:

Y- fxqq) =e,

Model correctness relies on the proper selection of predictor variables, training
observations, and model architecture. The variance of the noise estimate above was
defined with respect to the response observations and corresponding estimates of the
model training data. Because in this work the proposed methodology strays from the
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assumption that the model is correct, this computation was modified to include a larger
sampling of data than provided by the training data. The proposed larger set of data over
which the above computation was extended consists in part of training data, which
defines the adjustments to the model parameters during training. The remainder of the
data over which this computation has been extended consists of a set of datathat is
independent of the training data, though still sampled from the same data population. the
entire set of data over which the noise variance computation has been extended is herein
referred to as the datapool. By doing this, the constraints of the assumption that the
model is correct can be relaxed. For models that are in fact correct, increasesin the
resultant calculation will be negligible, and in cases where the model is not correct the

increase in the computed value will suitably reflect the degree of model misspecification.

The above prediction interval computation has also been reported to provide prediction
intervals that are too wide when training via early stopping is applied [deVeaux 1998].
While thisis a consideration, the fact that the error is on the side of being more
conservative implies that the measured observations are still contained in the prediction
intervals. Because the purpose of the proposed intervalsin this dissertation wasto
produce intervals that contain the measured observations to the expected level, the
possible increase in prediction intervals incurred through the implementation of cross-
validation training (early-stopping) is an acceptable result. The task at hand should still

be achieved, to contain the measured observations in the proposed prediction intervals.

The proposed interval estimate has aso been reported to produce unreliable results when
the number of observations in the training data set is small relative to the size of the
network [de Veaux 1998]. With alarge number of training observations however, the
prediction intervals have been shown to reflect the distribution of the training data
[Wansink 2001]. The asymptotic properties of the prediction interval estimator have
been investigated by Hwang and Ding [1997], who confirm that the intervals are valid for
large training data sets.

146



A final assumption isthat of noise-free predictor variables. Accommodations for
relaxing this assumption are aso inherently included in extending the estimated noise
variance calculation to cover the entire data pool. This assumes that the noise in the
predictors will be reflected in the estimated response and it will produce a higher noise
variance estimate for the data pool. Additional comments on this assumption are provide
in the recommendations for future work (section 6.1).

Considering the general univariate nonparametric regression model, the bivariate data:
(X1, Y1) (X,)Y,) , formani.i.d. sample from the entire population (X,Y).
Multivariate extensions of this model are straightforward. The local polynomial
regression procedure attempts to estimate the regression function m(x,) = E(Y | X = X,),
and its derivatives m'(x,),m"(x,),...m™ (x,) . Thepoint x, isoften referred to asthe

guery point, and the set of bivariate datais often referred to asthe training data. The
data-generating moddl is:

Y =m(X)+n"*(X)e,
where: E(e) =0, Var(e) =1, X and e areindependent, € isi.i.d.,
and v(x)=Var(Y|X =x),and m(x) = E(Y | X =X).

If p istheorder of thelocal polynomial, then suppose that the (p +1) " derivative of

m(x) at x, exists. A Taylor expansion for X inaneighborhood of X, isgiven by:

M(X) » M(X,) + M (X,)(X- Xp) + 2

The validity of the resultant nonparametric model depends on the validity of the Taylor
series approximation at the query point x,. Note that the validity of thisassumption is
also dependent on the bandwidth value which factors into the kernel function in the

weighted least squares problem below. The weighted least squares problem which
should be minimized is:

147



bj(xi - Xo)j}th(xi - Xo)

Qo,
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j=0

b, (j=0.., p) isthesolution to the above least squares problem. If b :8bo,...,pr is
the minimizer of the weighted least squares problem, than an estimator of the regression
functionis: m(x) = 60 . The remaining regression parameters represent estimates of the

derivatives of the regression function (i*(x) = k! Bk , where k =0,..., p).

The exact expressions for the conditional mean and variance of m(x) are shown below

[Ruppert 1994]:

Var{ () |X} =e] (X W, X,) X LW, VW X (XWX ) ey

E{m(x 1X) - MO0} = 2] (XIW, X)X TW,{Qq () + R, (0}

Both of these expressions rely onunknown quantities. In the case of the variance
equation the unknown quantity is V =diag{v(Y | X = X,),...,\(Y | X = X)}. This
variance can be estimated however, and the additional assumption of homoscedasticity
can be applied resulting in:

si=w(Y|X=X)=v(Y|X=X,)=vY|X=X,)

Obtaining an estimate for this quantity isfairly straightforward given a sufficient amount

of training data. Regarding the bias expression, the unknown quantity is the Hessian
matrix which is embedded in

Qu =X, - X HL00(X, - ) % (X, = X) Hp(x)(X, - ¥ . Note that the quartity

R,(x) isavector of Taylor series remainder terms and is generally neglected.

The 95% prediction interval estimate for the general nonparametric regression is of the

form
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g+ 2xVar {(x [X)} + Bias{i(x |X)}  where Bias{m(x|X)} = E{m(x|X)- m(x)}

Asymptotic expressions for both the bias and variance are avail able; however, both
maintain their reliance on unknown parameters. While these expressions are valid, their
numerical evaluation remains to be a difficult task and the resultant estimates are strongly
dependent on the methods of approximation used. Rather than utilize the asymptotic
results, the variance component was estimated using the exact variance expression above.
Of course the variance computation is not exact due to the required estimate of the
conditional variance of the response. The bias component cannot be estimated from the
exact expression without significantly greater efforts due to its reliance on the second

derivatives of the function m(x) , which are required for computation of the Hessian
matrix H, (X). Attempts to estimate the bias term based on the derivative estimates from

the weighted |east squares problem have been presented [Fan 1996]; however, these
methods rely on the validity of the Taylor series approximation at the query point and the
optimization of a bandwidth parameter for proper estimation of the derivatives. Rather
than rely on the model directly for the bias estimate, in this dissertation a bias was

estimated from the empirical model estimates, of the form:

Bias(x;) :\/}é‘ {m(x,)- Mm(x,)}*, where x; representsthe i " observation of the
r .-

i=1
combined set of training and validation data, i =1,...,r (r isthetotal number of training

and validation observations).

This estimate relies on the assumption that the measured responses are the true values of
the function m(x) , and any deviations from this are due to model bias. An additional
assumption is that the estimates are not overly influenced by unrelated variation, i.e. that
the estimates appropriately reflect the model and not fluctuations due to noise in the
predictor variables. For the ideal case where all assumptions are met, the bias

computation simply quantifies the error between the true measured values and the
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smooth, and proper, model estimates. These deviations in the absence of variable noise
would be due only to model bias. In applying this estimate of bias, as was done for the
nonlinear regression case, the data over which the estimate was evaluated was the
expanded to include an independent set of validation data as well as the usual set of
training data. This avoidsimproper bias estimates based solely on the training data, e.g.
for avery small bandwidth value, the bias estimate for the training data a one would be
relatively negligible indicating little to no bias. If the model is correctly specified and all
of the required information was included in the training data than this would be
appropriate; however, for data from process measurements, the idea of atraining data set
that fully represents the entire set of relationships being modeled is not achievable,
especially due to the presence of measurement noise in both the predictor variables and
the response variable. Computing the bias estimate on a data set which contains the
training observations as well as arelatively adequately sized set of independent
observations from the same data population is a more robust estimator of bias. The
assumption that the measured values are correct is maintained; however, the assumption
of afully representative set of training data (model correctness) isrelaxed. Thisresultsin
bias estimates at low bandwidth that are not blind to poor training data set construction,
i.e. if the training data set presents an inadequate representation, then the bias estimate
would reflect this due to the contributions in the bias computation from the observations

in the data which were independent from those in the training data.

The assumption of noise-free predictors also pertains to the standard nonparametric
model and its asymptotic variance estimator. In thiswork the asymptotic variance
estimator was not used, rather the exact computationwas employed based on an estimate
of the conditional variance of the response. The use of the stated method for bias
estimation for the nonparametric model prediction interval computation inherently
includes variation due to the predictor variables noise. Thus, aswas the case for the
modified noise variance estimate for the nonlinear regression model prediction intervals,
the predictor variable noise is inherently accounted for through the empirically observed
estimates from the nonparametric model, quantified in the computation of the bias

150



component for the nonparametric case. A final comment on the presence of noise in the
predictor variablesisthat if properly accounted for in the prediction interval
computations, it can be helpful in providing stable and robust empirical models. The
presence of predictor variable noise reduces the opportunity for overfitting in neural
network training; thus, enhancing the network generalization properties. In fact, the
purposeful introduction of noise into predictor variables while maintaining the same
response variable is a commonly employed practice for regularizing neural networks,
training with jitter [Reed 1998]. For the case of nonparamteric regression, the same
properties of regularization also apply through an averaging effect whereby the added
random noise provides a smoother regression function, assuming an appropriately large
set of training data. Though, for the case of nonparametric regression it should be noted
that avery small bandwidth model will still overfit the predictor variable data.

In summary, for the both the nonlinear regression models and the nonparametric models,
the assumption of normally distributed residualsis made. In addition it is assumed that
the variance of these residuals is homoscedastic. While this assumption may be violated
in some cases it is an inherent modeling assumption that can not be avoided without
significant efforts through the use of empirically derived densities and suitably modifying
the model equations. Considering the task of applying these techniques for the purposes
of signal validation in nuclear power plants, due to their steady state operation, the
assumption of normally distributed residuals is usually appropriate.

While early stopping of neural network training may lead to increased prediction interval
magnitudes, the error is on the conservative side and is an accepted consequence of the
proposed methods. To ensure the asymptotic validity of the intervals the number of
training samples used was high relative to the size of the neural networks being trained.

The validity of the resultant nonparametric model depends on the validity of the Taylor
series approximation at the query point x,, and the bandwidth dependent kernel function.

151



The assumptions of model correctness and noise free predictors for the nonlinear
regression prediction intervalsis compensated for in the modified noise variance
computation, whereby the computation is carried out with respect to alarge data pool
which includes the training data observations as well as a suitably sized set of
observations independent of the training data. Thus, model misspecification will be
reflected in this computation. A similar argument can be presented for the nonparametric
prediction interval computations, though for this case the effects of the predictor variable
noise are accounted for in the bias computation, for which there is no explicit

representation in the case of nonlinear regression model prediction interval techniques.

The idea of model correctness implies that the model is unbiased. For the case of
nonparametric regression, the bias component is explicitly included in the prediction
interval computation whereas for the case of nonlinear regression it isimplicitly included
in the modified noise variance estimate. Considering this further, it can be seen that the
residual variance estimate for the nonlinear regression prediction interval computation is
equivalent to the bias estimate of the nonparametric prediction interval computation. The
inherent assumption for the nonlinear regression case is that the model is correct, there
are two inherent assumptions for the implemented nonparametric regression case: that the
model is correct, and that the estimates do not reflect noise, i.e. produce a smooth

estimator for the response.
The prediction interval techniques described in this section were applied to one simulated

data set and two real data sets from operational U.S. nuclear power plants. In the next

chapter, the results from the application of these techniques are provided.
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5.0 RESULTS

In this chapter the methods used to compile the results from the different empirical
modelsis explained. The computation of the performance measures are explained in
detail and the method by which the results were presented is described. Each of the three
data setsis described in detail in the appropriate sections. Thefirst data set wasa
simulated data set. The benefits of using a simulated data set are complete and accurate
knowledge of the predictor variables and the response variable. In addition, noise and
erroneous variables can be inserted into a simulated data set and since the exact value of
the response is known, the direct effects of the inserted noise and erroneous variables can
be observed and quantified. The last two data sets were from operating U.S. nuclear
power plants. In both of these the response variable contains a known drift. The drifting
channels were selected as the desired responses so that the application of the developed
prediction interval methodologies could be studied with respect to their abilitiesto

identify out-of-calibration instrument channels.

51 DESCRIPTION OF APPROACH TO REPEATED SAMPLING, MODELING

CONSTRUCTION, AND PREDICTION INTERVAL COMPUTATION

In this section the steps carried out to construct and evaluate 4 different model types are
provided in abrief list. The 4 different modelsinclude: NNPLS, ANN, KR, and LL. The
last two types both fall under the more general heading of LPR models. Because one of
the goals of the proposed prediction interval methodol ogies was to produce intervals of
sufficient coverage (coverage is defined later in this section) over a wide range of model
specifications, for each model avariety of different architectures were evaluated. For
example an ANN model with 1 hidden neuron was evaluated then hidden neurons were
increased up to some maximum. Each architecture, defined by the number of neurons,
was evaluated. The purpose was to produce architectures that were under-parameterized
aswell asover-parameterized. The prediction intervals were expected to provide
sufficient coverage for all model architectures. A similar range of architectures were

evaluated for the other model types aswell. For the LPR models, low bandwidths
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represent under-regul arized models, while high bandwidth models represent over-
regularized models. In addition, for the bootstrap prediction interval computations,
repeated resampling was performed to produce 100 different training / validation data
sets. For each of the 100 resampled sets all model types and architectures were
evaluated. Due to the evaluation of arange of architectures for each of 4 models on 100
different data sets, the volume of the results produced was extremely large. Thus, to
provide a clear and concise description of the methods in which these results were
produced and compiled isimportant. To thisend, an initial set of 6 stepsis provided
which detail the steps required to produce the results, followed by alist and description of
the results produced after the 6 steps have been completed for a given dataset. The

performance measures are then described in detail in the following section.

For each of the empirica modeling techniques the approach used to compile the resultsis
presented below. For each set of data discussed the same procedure applies:

1. The available data were first divided into devel opment data, and test data.
The development data consists of alarge pool of data from which training and
validation samples can be drawn. The test data set is fixed.

2. The confidence levels for the prediction intervals were set at 95% in all cases.
Specific to the type of empirical model are the following settings:

Artificial Neural Network (ANN):
- Theinitialization method for the weight and bias values.
- The minimum and maximum number of hidden neurons to consider.
Neural Network Partial Least Squares (NNPLS):
- Theinitialization method for the weight and bias values.
- While the number of hidden neurons to use for a given latent variable
model can be defined, a method of cross-validation was adopted here.
- The maximum number of possible latent variables for a given model was
specified.
Local Polynomia Regression (LPR):
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- A minimum and maximum bandwidth value was specified aswell asa
set of values in between. Models were developed for all specified
bandwidths. The conditional variance of the response variable was
specified for the computation of prediction intervals.
3. 100 iterations were completed, for which atraining set was constructed by
random selection of observations from the data pool. The validation set was
also constructed via random sampling from the data pool. Sampling was done

with replacement. The number of samplesin the training set was specified as
n, , and for the validation set n,. The number of samplesin the test data set
was specified as n.

4, For each of the 100 iterations, for all possible model definitions given by the
settings discussed in step 2, an ANN was trained and an NNPLS model was
trained. The entire data pool and the test data were evaluated with each of the
trained ANN and NNPLS model, as well asa KR model and aLL model.

5. The appropriate analytical prediction intervals were calculated for all models
on both the data pool and the test data for each iteration.

6. After all 100 iterations are complete, the bootstrap prediction intervals were
obtained for all models under evaluation for the data pool and the test data.

After the above procedure is completed, the following data sets, prediction intervals and
coverage values were available for all possible specified architectures of each model.
The data sets resulted from the iterative resampling. The analytic and bootstrap
prediction intervals result from the prediction interval computations as discussed in
section 4.11.

Data Sets and Estimations

100 training data sets: (X°,,Y®,), of dimensions (n, " p), and (n, " 1)
respectively.

100 corresponding estimation sets for the training data ()25 ,\?R) of dimensions

(n," p),and (n, " 1) respectively.
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100 validation data sets (X®,,Y",) of dimensions (n,” p) and (n,” 1)
respectively.

100 corresponding estimation sets for the validation data ()25 ,\?R) of dimensions
(n,” p) and (n,” 1) respectively.

1test dataset (X,,Y,)of dimensions (n,” p) and (n," 1) respectively.

100 estimation sets for the test data (X®,Y"%)of dimensions (n,” p) and (n,” 1)
respectively.
1 data pool (X

Y ) Of dimensions (n,, ~ p) and (n,,, ~ 1) respectively.

pool ! pool

100 estimation sets for the data pool ()A(’:)Ool ,\A(t;ool) of dimensions (n,, ~ p) and

(n., 1) respectively.

pool

Analytic Prediction Intervals

100 sets of point-wise prediction interval values for the data pool API :joo,
(b=1,..,100) each having dimensions (n,,, " 1).
100 sets of point-wise prediction interval values for the test data API

(b=1,...,200) each having dimensions (n," 1).

Bootstrap Prediction Intervals

A single bootstrap bias value computed as the overall MSE for all 100 iterations
based on the data pool.

A set of bootstrap prediction intervals for the data pool BPI ,,, of dimensions

(npool ’ 1) .

A set of bootstrap prediction intervals for the test data BPI , of dimensions

(N 1.
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Analytic Prediction Interval Coverage

100 coverage values for the analytic prediction intervals Cg corresponding to

ool !

the 100 estimation sets for the data pool obtained from the fraction of the n,,

response observations satisfying 9 o + APID G E Yo oo £ Y0 oo T AP oot

fori=1,.., Noooi -
100 coverage values for the analytic prediction intervals C?, corresponding to the

100 estimations sets for the test data obtained from the fraction of the n, response

observationssatisfying 9+ APl (£ o £ Vi T AP, fOr i =10,
Bootstrap Prediction Interval Coverage
100 coverage values for the bootstrap prediction intervals BCEOOI , corresponding

to the 100 estimations sets for the data pool obtained from the fraction of the n

response observati ons satisfying: 9(?)’@, +BPl ) o0 £ Y 000 £ 9(‘1)1 oot + BPl i) oo 5

for i =1, Ny -

100 coverage values for the bootstrap prediction intervals BC?, corresponding to

the 100 estimations sets for the test data obtained from the fraction of the ng

response observations satisfying: 9 .+ BPl £V £ V(s + BPl e, fOr

(i)ts !

i=1,..n

ts *

Note that in the case of the coverage values for the bootstrap prediction intervals, the

same set of prediction intervals was applied to al estimations, whereas in the case of the

coverage values for the analytic prediction intervals the b " set of prediction intervals

was applied to the b ™ set of estimations. Thisis because the analytic prediction intervals

were based on the specific set of training and validation data of the current iteration,

157



while the bootstrap prediction intervals were based on the overall results from the 100
iterations.

5.2  DEFINITIONSAND COMPUTATIONSOF TERMSUSED TO QUANTIFY RESULTS

This section defines the terms used to quantify and compare the performances of the
different models and prediction interval estimation techniques. While thisis the general
format that was used throughout; in some cases modifications were made. These cases

are noted as they appear in the results section.

Table 5.2.1 is an excerpt from atable of results which isincluded here so that the
methods adopted to compare the results can be better illustrated. The performance
parameters utilized to quantify the results are: coverage, Pl magnitude, MSE, and MAE,
which are defined below. The discussions below provide examples based on a data pool
(X

Y ) Of dimensions (n,, ~ p) and (n,,, " 1) respectively, and the corresponding

pool ! pool

100 estimation sets for the data pool ()A(’:)Ool ,\A(t;ool) of dimensions (n,, ~ p) and

(n.., 1) respectively.

pool

PI Magnitude (prediction interval magnitude): All estimates are of the form: y+PI,
where y isthe scalar estimate and Pl isthe corresponding 95% prediction interval. The
term Pl magnitude refers to the scalar value Pl . To distill all of the computations into a
single number for plotting and quantification, the approach used was as follows. For
bootstrap prediction intervals, a single Pl Magnitude was presented for each model and
architecture. It is computed as the average Pl for the n observations of the respective
prediction interval set, e.g. BPI

representsthe (n ., 1) vector of point-wise

pool pool

prediction interval values: gopi(D) oy  bPI(2), 2% bPi(N ) wo B fOr the data pool.

pool)

A single Pl magnitude value for this example is computed as BPI pool = 1 g bpi (i)

pool =1

pool *
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Table 5.2.1; Sample Results Table'

M odel Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1 14.88 1.03 16.85 5.38 0.97 0.004 0.98 0.003 5.40 64.7
NNPLS 2 14.44 1.60 16.09 5.46 0.97 0.005 0.98 0.003 491 57.3
ANN 2 30.06 62.14 78.99 44.82 0.96 0.008 0.99 0.028 7.12 1069.1
ANN 3 39.74 83.68 82.89 47.15 0.97 0.011 0.99 0.026 7.48 1174.0
KR 0.005 454 0.13 6.83 1.74 0.88 0.007 0.97 0.005 1.20 6.0
KR 0.025 4.62 0.12 6.95 5.53 0.86 0.008 0.96 0.006 2.08 8.0
LL 0.005 6.34 0.34 13.82 6.55 0.81 0.012 0.98 0.006 2.82 25.6
LL 0.025 5.65 0.68 21.27 89.94 0.90 0.009 0.99 0.004 1.77 12.9

* Modéd type has a different meaning depending on the model, for NNPLS model type

refers to the number of latent variables used, for ANN models, type refers to the number

of hidden neurons, for KR and LL models type refers to the value of the global

bandwidth. The following definitions are explained below: APl —analytic prediction

interval, BPl — bootstrap prediction interval, AC — analytic coverage, BC — bootstrap

coverage, MAE — mean absolute error, M SE — mean squared error.
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To complement this mean value, the standard deviation over the n,,, valueswas also

provided. Referring to table 5.2.1, these results are presented in the columns labeled BPI

mands .

The computation for the analytical prediction intervalsis dlightly different because rather

than a single vector of prediction interval values there were 100 vectors, API god

(b=1,...,100). First, 100 average values were computed via:

AP =—2— & api(i)°,, , then asingle value was obtained via
pool =1

100

APl pool = % é_ m?m . The corresponding standard deviation of the 100 mt;od

b=1
values was also provided in each case. Referring to table 5.2.1, these results are

presented in the columns labeled APl mand s .

Coverage: This quantity is defined as the fraction of observations that are bounded by the
estimate and its corresponding prediction interval. For each model and architecture
specified there will be 100 coverage values; thus, the results presented regarding a
coverage value for a given architecture are average values over the 100 iterations. Result
reporting based on mean values is always complemented with a set of error bars showing
the corresponding standard deviation. For the bootstrap coverage computations, the 100

coverage values are computed based on a single set of prediction intervals, BPI for

pool ?
the given model and architecture, and the 100 estimation sets \?t:)od . The averages and

standard deviations of these 100 coverage values were reported in the results tablesin the

columns labeled (seetable 5.2.1): BC mand s . For the analytic coverage values, each

of the 100 iterations resulted in a different set of prediction intervals, API®

corresponding to the current set of estimations \?t:)od . Consequently, 100 individual

coverage values were again obtained. The averages and standard deviations of these 100
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coverage values were reported in the results tables in the columns labeled (see table
52.1):ACmands .

MAE: Thisisan error quantity, the mean absolute error. The usefulness of this error
term is due to the ease of interpretation since the units of error directly correspond to the

units of measurement. The b™ MAE value is computed as:

. wherethe b™ set of estimations for

1 8 :
MAE, =——8 |Y(1) pi - Y(0)}un

p00| i=1

Ypool = éy(l) pool y(Z) pool X y(npool )pool H are glven by

QSOOI = 89(1) lF))ool 9(2) I:;)ool X 9( n pool )I;))ool H '

For each model and architecture, 100 MAE values were computed corresponding to the
100 iterations. Result reporting for this quantity uses the mean value of the 100
individual MAE values. Thus, the values reported in the results tables were computed
via

1 100

MAE =—§ MAE,
100

b=1
These overall mean values were reported in the results tables in the column labeled MAE
(seetable5.2.1).

MSE: Thisisthe standard error quantity of empirical models. The b™ MSE valueis

computed as:
1 %, 82

a gy(l)pool - y(l)t:)ool H

pool =l

MSE, =

100

The 100 values were then combined for result reporting viaa MSE = ﬁ é_ MSE, . The

b=1
overall MSE values were reported in the results tables in the column labeled M SE (see
table 5.2.1).
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53 CASCADE DATA SET

The cascade data set was chosen as the ssimulated data set to evaluate due to the simple
nortlinear relationships between the predictors and the response. 1n addition, the use of a
simulated data set alows for complete knowledge of the true response values. While
noise was inserted into the response variable, the true value is still known. 1n addition,
the use of asimulated data set allows for the study of the effects of erroneous predictors

in the predictor variable set on the prediction interval computations.

In this section, the data set isinitially described followed by the parameter settings that
were used (settings described in 5.1). A standard evaluation of the resultsis then
presented including the evaluation of 2 different bootstrap prediction interval estimators
(see section 4.10). The results of thisinitial evaluation indicate that one of the proposed
bootstrap estimators consistently failed to produce the desired coverage; thus its
evaluation is not carried out for the remaining 2 data setsin sections 5.4 and 5.5. After
the standard evaluation is completed, a study of the effects of erroneous predictors (noise
variables) was completed. The existence of erroneous predictors represents a case of
model misspecification, where in this case the misspecification is due to the set of
predictor variables. At the end of this section, a summary of the results for the cascade
data set is presented.

The cascade data set contains 4 predictor variables A B,C,D and asingleresponse y.

A=sn(10x,)
B=x,

C =3n(5x;)

D= exp[si n(15x4)]

Xy, X5, X5, X, , Uniformly spaced on the interval [- 0.5, 0.5]

y = exp[2Asin(pD)] + sin(50BC)
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Thedatapool (X ;Y ) Of dimensions (n,, = p) and (n,,, ~ 1) was specified by the

pool

following: n ., =3000, and p=4. The observation vectors of the data pool were

pool

obtained by obtaining a generic n,,, ~ 1 vector x of uniformly spaced points on the
interval [-0.5,0.5]. Thisvector was then used to obtain the 4 simulated inputs, each of
dimensions n,, " 1, via A =sin(10" x), B=x, C=dn(5" x), and

D =exp[sn(15" x)]. Finaly, the full data pool was constructed via:

Xwa =[A B C D],and Y, =Y.

Thevector y hasasitsi™ element y, =exp[2A sin(pD,)] +sin(50BC,) + R, where R is
drawn froma n,,, " 1 vector of random noise drawn from anormal distribution

R~ N(0,0.4). The addition of noise intends to make the simulation more applicable to
the data sets to follow which come from real operating systems. Additive noise was not
inserted into the predictor variables to minimize the complexity of thisfirst analysis.
Thiswas purposefully implemented, and while the results are expected to provide larger
prediction intervals when noise exists in the predictors, the resultant computations on
noise-free predictors are still valid. The later evaluations of real data do contain
predictor variable noise, thusif those results significantly deviate from what was
observed here than a flaw in the described methods could be that predictor variable noise
is not properly accounted for. Fortunately, this was not the case, and the evaluations for
the real data sets were consistent with that described here. 1n addition, the study of the
effects of erroneous predictorsindirectly studies the effect of noise in the predictors since
the erroneous predictors were normal random variables. The cascade data set pool
response variable is shown in figure 5.3.1, and the predictor variables are shown in figure
5.3.2.

The datapool (X ;Y ) Of dimensions (n, = p) and (n,,, 1) respectively were

pool

specified by: n_, =3000, p=4. The 100 training data sets: (X°,,Y",), of dimensions

pool

(n,” p),and (n, 1) respectively were specified by: n, =500, p=4. The observations
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Figure 5.3.1: Cascade Data Pool Response Variable

Cascade Data Pool Predictor Variables
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Figure 5.3.2: Cascade Data Pool Predictor Variables
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were drawn at random, with replacement, from the datapool. Inal cases, b=1,...,B and
B =100 (note that thisis not the same B as used in the predictor variable definitions.
The 100 validation data sets (X®,,Y",) of dimensions (n,” p) and (n,” 1) respectively
were specified by: n, =250, p=4. The observations were drawn at random, with

replacement, from the data pool. Thetest dataset (X, Y,)of dimensions (n,” p) and

(n.” 1) respectively was specified by: n, =1500, p=4. Thetest datawere created in
the same way that the data pool was created.

The required model specifications used for the cascade data are provided below:
NNPLS:

Normal Random Initialization was applied. The maximum number of latent variables to
evaluate was set at the dimension of the predictor variable matrix, 4.

ANN:

Normal Random Initialization was applied. The minimum and maximum number of
hidden neurons evaluated were 1 and 10, respectively.

LPR:

The vector of bandwidths to be evaluated was:

[0.0025 0.005 0.01 0.0250.050.10.150.20.250.30.40.50.751 2]

The conditional variance of the response was known for this case, thus s j =0.16.

A full analysis was carried out for the cascade data as described. Following which, a
study of the effect of erroneous predictor variables on the magnitude and variance of the
point-wise prediction interval estimates was carried out. For this task, two normal
random variables with zero means and s * =0.1 were added to the predictor variable set.
Full results for the normal set of 4 predictor variables are provided, followed by a set of
comparisons between the results from the normal set of predictors and the augmented set

of predictors which includes the normal random erroneous variables.
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The overall results for the cascade data pool are presented in table 5.3.1, and for the test
dataintable 5.3.2. All of the following discussions for the cascade data set results refer
to the values in these two tables. Note that the bootstrap prediction intervals being
reported in these tables were based on the average squared error bias estimate ( Bias,). A

full set of resultsis not reported for the bootstrap prediction intervals based on the Bias

computation due to the insufficient coverage that results from itsuse. Thiswill become

clear throughout the discussions of this section.

The Pl magnitude results for the data pool are plotted in figure 5.3.3, and for the test data
in figure 5.3.4. The method of computation for the analytic, bootstrap 1, and bootstrap 2
intervals was as described in section 4.10. For all architectures of al of the models, the
bootstrap 1 Pl magnitudes (PIMs) were consistently lower than the analytic or bootstrap 2
PIMs. The bootstrap 1 PIMs for more complex ANN and NNPL S models for the most
part followed the trend of the bootstrap 2 PIMs; however, for the LPR models of
increasing bandwidth this was not the case and the bootstrap 1 PIMs were significantly
lower than the bootstrap 1 PIMs. Thisindicates that the bootstrap 1 approach for
prediction interval estimation of LPR modelsis not sufficient under conditions of
reasonable to large model bias. Thisis due to the reliance of the bootstrap 1 estimate on
a bias dependent on the deviation of the bias values over the 100 iterations, rather than
the squared error. The deviation of the bias valuesis not representative of the true model
bias because the influence of increasing bandwidth is to reduce the variability in the
estimates. This variance reduction has an associated bias increase that is not accounted
for in the bootstrap 1 prediction interval bias estimate. The variation in the PIMs for the
NNPLS models (figure 5.3.3.aand 5.3.4.9) isrelatively consistent over all architectures
for both the data pool and the test data. Anexception being that for the 1 latent variable
models, the PIMs variance was sightly lower in all cases. Thisisbecausethe 1 latent
variable model includes the highest level of regularization and the reduced variation in
the PIMsis aresult of thisregularization. The variation in the PIMs for the ANN models
tends to decrease as the number of hidden neuronsincreases. Thisis due to a better fit of
the models as the complexity increases. It should be noted that this trend is not
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Table 5.3.1: Tabul ated results for cascade data pool*.
(For full explanation of terms see section 5.2)

Model Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1 2.962 0.123 3.080 0.122 0.938 0.011 0.951 0.012 1.140 2.195
NNPLS 2 2.278 0.224 2.625 0.181 0.954 0.009 0.982 0.011 0.878 1.276
NNPLS 3 2.122 0.255 2.465 0.175 0.956 0.009 0.982 0.012 0.799 1.086
NNPLS 4 2.060 0.220 2.374 0.176 0.956 0.009 0.981 0.012 0.765 1.008
ANN 1 2.961 0.580 3.382 0.542 0.947 0.018 0.979 0.007 1.098 2.258
ANN 2 2.491 0.558 2.964 0.393 0.945 0.015 0.976 0.019 0.912 1.611
ANN 3 1.988 0.458 2.446 0.323 0.943 0.012 0.977 0.023 0.723 1.053
ANN 4 1.653 0.454 2.050 0.322 0.943 0.010 0.979 0.028 0.602 0.740
ANN 5 1.378 0.391 1.702 0.282 0.947 0.010 0.980 0.034 0.512 0.514
ANN 6 1.133 0.229 1.347 0.214 0.948 0.007 0.979 0.018 0.436 0.341
ANN 7 1.011 0.184 1.194 0.140 0.948 0.007 0.979 0.020 0.403 0.276
ANN 8 0.961 0.133 1.105 0.094 0.949 0.007 0.977 0.015 0.386 0.244
ANN 9 0.896 0.069 1.009 0.061 0.948 0.007 0.973 0.011 0.366 0.213
ANN 10 0.908 0.185 1.061 0.109 0.948 0.007 0.978 0.023 0.369 0.227
KR 0.0025 0.978 0.023 1.347 0.134 0.936 0.025 0.990 0.003 0.393 0.283
KR 0.005 0.968 0.022 1.281 0.106 0.930 0.010 0.987 0.003 0.392 0.273
KR 0.010 0.929 0.021 1.207 0.103 0.932 0.007 0.984 0.003 0.384 0.253
KR 0.025 0.858 0.019 1.059 0.082 0.937 0.007 0.979 0.004 0.363 0.216
KR 0.050 0.831 0.019 0.970 0.059 0.941 0.007 0.974 0.004 0.352 0.197
KR 0.100 0.877 0.022 0.976 0.055 0.944 0.007 0.968 0.005 0.366 0.211
KR 0.150 0.999 0.031 1.087 0.059 0.945 0.006 0.965 0.006 0.408 0.270
KR 0.200 1.167 0.042 1.249 0.057 0.945 0.007 0.962 0.007 0.468 0.364
KR 0.250 1.355 0.049 1.433 0.052 0.944 0.007 0.959 0.008 0.535 0.486
KR 0.300 1.547 0.054 1.622 0.047 0.942 0.007 0.956 0.008 0.604 0.629
KR 0.400 1.913 0.058 1.983 0.039 0.942 0.008 0.953 0.008 0.740 0.952
KR 0.500 2.241 0.061 2.306 0.032 0.943 0.008 0.953 0.007 0.872 1.299
KR 0.750 2.900 0.076 2.951 0.017 0.938 0.009 0.943 0.009 1.130 2.154
KR 1.000 3.319 0.087 3.357 0.007 0.932 0.007 0.934 0.005 1.278 2.802
KR 2.000 3.747 0.109 3.770 0.001 0.929 0.008 0.930 0.004 1.436 3.544
LL 0.0025 1.575 0.254 2.632 0.925 0.972 0.016 0.985 0.005 0.507 0.846
LL 0.005 2.512 0.885 4.432 1.587 0.987 0.010 0.985 0.006 0.669 2.846
LL 0.010 3.027 1.191 5.747 2.255 0.991 0.008 0.987 0.006 0.744 4.829
LL 0.025 2.303 1.482 4.697 2.210 0.985 0.011 0.990 0.006 0.591 3.442
LL 0.050 1.056 0.235 1.544 0.554 0.957 0.014 0.990 0.005 0.398 0.411
LL 0.100 0.848 0.033 0.966 0.085 0.947 0.007 0.974 0.004 0.350 0.196
LL 0.150 0.827 0.018 0.909 0.041 0.949 0.006 0.969 0.004 0.342 0.183
LL 0.200 0.838 0.018 0.905 0.036 0.950 0.007 0.966 0.004 0.346 0.187
LL 0.250 0.901 0.021 0.962 0.026 0.949 0.006 0.964 0.004 0.367 0.216
LL 0.300 1.000 0.025 1.060 0.028 0.951 0.006 0.964 0.004 0.400 0.266
LL 0.400 1.289 0.035 1.350 0.034 0.949 0.006 0.960 0.004 0.501 0.438
LL 0.500 1.547 0.043 1.609 0.037 0.950 0.006 0.959 0.003 0.588 0.627
LL 0.750 1.976 0.057 2.035 0.028 0.953 0.006 0.959 0.004 0.750 1.013
LL 1.000 2.204 0.061 2.260 0.024 0.956 0.006 0.961 0.004 0.851 1.253
LL 2.000 2.670 0.073 2.716 0.019 0.961 0.005 0.963 0.003 1.056 1.818

* APl — Analytic prediction intervals, BPl — Bootstrap prediction intervals, m - mean

result, s - standard deviation of results, MAE — Mean Absolute Error, MSE — Mean
Squared Error, Type for NNPLS refers to the number of latent variables, for ANNSs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR
—Kernel Regression, LL — Local Linear Regression.
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Table 5.3.2: Tabulated results for cascade test data*.
(for full explanation of terms see section 5.2)

Model Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1 2.962 0.123 3.080 0.122 0.939 0.010 0.951 0.011 1.134 2.164
NNPLS 2 2.278 0.224 2.625 0.181 0.955 0.010 0.982 0.011 0.869 1.262
NNPLS 3 2.122 0.255 2.465 0.175 0.956 0.009 0.982 0.013 0.790 1.073
NNPLS 4 2.060 0.220 2.374 0.176 0.956 0.009 0.981 0.013 0.756 0.996
ANN 1 2.962 0.580 3.382 0.543 0.947 0.018 0.979 0.009 1.103 2.267
ANN 2 2.491 0.558 2.965 0.393 0.946 0.017 0.976 0.017 0.916 1.629
ANN 3 1.988 0.458 2.446 0.323 0.943 0.014 0.975 0.023 0.729 1.073
ANN 4 1.653 0.454 2.051 0.322 0.942 0.011 0.977 0.029 0.607 0.757
ANN 5 1.378 0.391 1.703 0.282 0.946 0.010 0.979 0.035 0.514 0.525
ANN 6 1.133 0.229 1.347 0.214 0.946 0.007 0.978 0.019 0.437 0.349
ANN 7 1.011 0.184 1.194 0.140 0.946 0.008 0.978 0.020 0.402 0.280
ANN 8 0.961 0.133 1.105 0.094 0.946 0.008 0.975 0.016 0.385 0.247
ANN 9 0.896 0.069 1.009 0.062 0.947 0.007 0.970 0.012 0.365 0.216
ANN 10 0.908 0.185 1.061 0.109 0.947 0.008 0.976 0.024 0.368 0.230
KR 0.0025 0.985 0.026 1.347 0.131 0.928 0.029 0.982 0.004 0.454 0.328
KR 0.005 0.969 0.022 1.282 0.107 0.920 0.012 0.978 0.004 0.442 0.310
KR 0.010 0.929 0.021 1.207 0.103 0.923 0.008 0.977 0.004 0.419 0.282
KR 0.025 0.858 0.019 1.059 0.082 0.929 0.008 0.973 0.005 0.378 0.230
KR 0.050 0.831 0.019 0.970 0.059 0.938 0.007 0.969 0.005 0.355 0.202
KR 0.100 0.877 0.022 0.976 0.055 0.944 0.007 0.966 0.005 0.362 0.213
KR 0.150 0.999 0.031 1.087 0.059 0.943 0.008 0.964 0.007 0.405 0.270
KR 0.200 1.167 0.042 1.249 0.057 0.942 0.007 0.960 0.009 0.465 0.364
KR 0.250 1.355 0.049 1.433 0.052 0.941 0.007 0.957 0.009 0.533 0.487
KR 0.300 1.547 0.054 1.622 0.047 0.940 0.007 0.954 0.008 0.604 0.631
KR 0.400 1.913 0.058 1.983 0.039 0.941 0.008 0.953 0.008 0.743 0.955
KR 0.500 2.241 0.061 2.306 0.032 0.943 0.008 0.954 0.007 0.876 1.303
KR 0.750 2.900 0.076 2.951 0.017 0.942 0.009 0.947 0.009 1.138 2.161
KR 1.000 3.319 0.087 3.357 0.007 0.931 0.007 0.933 0.006 1.284 2.806
KR 2.000 3.747 0.109 3.770 0.001 0.928 0.008 0.929 0.004 1.440 3.541
LL 0.0025 1.546 0.221 2.628 0.843 0.968 0.019 0.984 0.005 0.576 0.911
LL 0.005 2.514 0.886 4.421 1.572 0.985 0.011 0.985 0.006 0.733 2.853
LL 0.010 3.029 1.192 5.756 2.250 0.990 0.009 0.987 0.006 0.802 4.893
LL 0.025 2.303 1.479 4.695 2.214 0.982 0.014 0.991 0.006 0.626 3.460
LL 0.050 1.057 0.237 1.546 0.580 0.952 0.015 0.989 0.005 0.414 0.436
LL 0.100 0.848 0.034 0.967 0.091 0.947 0.007 0.970 0.004 0.352 0.201
LL 0.150 0.827 0.018 0.909 0.044 0.948 0.006 0.966 0.004 0.340 0.186
LL 0.200 0.839 0.018 0.905 0.038 0.950 0.006 0.964 0.004 0.343 0.189
LL 0.250 0.901 0.021 0.962 0.026 0.947 0.006 0.962 0.005 0.364 0.219
LL 0.300 1.000 0.025 1.060 0.029 0.946 0.007 0.960 0.006 0.398 0.271
LL 0.400 1.289 0.035 1.350 0.034 0.944 0.006 0.955 0.004 0.499 0.444
LL 0.500 1.547 0.043 1.609 0.037 0.946 0.007 0.955 0.004 0.585 0.632
LL 0.750 1.976 0.057 2.035 0.028 0.949 0.006 0.955 0.003 0.748 1.020
LL 1.000 2.204 0.061 2.260 0.024 0.953 0.006 0.958 0.003 0.849 1.263
LL 2.000 2.670 0.073 2.716 0.019 0.964 0.005 0.967 0.003 1.055 1.824

* APl — Analytic prediction intervals, BPl — Bootstrap prediction intervals, m - mean

result, s - standard deviation of results, MAE — Mean Absolute Error, MSE — Mean
Squared Error, Type for NNPLS refers to the number of latent variables, for ANNSs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR
—Kernel Regression, LL — Local Linear Regression.
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Figure 5.3.3: Pl Magnitude Results for Cascade Data Pool.
The models used are specified along the x-axis. The bands represent the 1s variationin
the results over the 100 iterations. Bootstrap 1 refers to the bootstrap intervals based on
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the average deviation bias estimate; whereas Bootstrap 2 refers to the bootstrap intervals
based on the average squared error bias estimate (For more information, see section
4.10). NNPLS— Neural Network Partial Least Squares, ANN — Artificial Neural

Network, KR —Kernel Regression, LL — Local Linear Regression.
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Figure 5.3.4: Pl Magnitude Results for Cascade Test Data.

The models used are specified along the x-axis. The bands represent the 1s variationin
the results over the 100 iterations. Bootstrap 1 refers to the bootstrap intervals based on
the average deviation bias estimate; whereas Bootstrap 2 refers to the bootstrap intervals
based on the average squared error bias estimate (For more information, see section
4.10). NNPLS— Neural Network Partial Least Squares, ANN — Artificial Neural
Network, KR —Kernel Regression, LL — Local Linear Regression.
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continuous, there is alimit beyond which the variance of the PIMs will be constant or
increase with complexity as the ANNs become overparametrized. Evidence of thisis
seen when going from a 9 hidden neuron model to a 10 hidden neuron model (figure
5.3.3.band 5.3.4.b). For the KR models, the variance of the PIMs at first decreases with
bandwidth, reaches a minimum, and then beginsto slowly increase (figure 5.3.3.c and
5.3.4.c). Thisisdueto the influence of the variance component for small bandwidths,
and the influence of the bias for larger bandwidths in the prediction interval computation.
One inportant point is that for very small bandwidth values there are some observations
in both the data pool as well asin the test data for which estimates are unavailable. This
is because the bandwidth values are too small and some observations result in all kernel
weights being zero. Theresult of thisisadivision by zero in the kernel estimator and the
production of a NaN (not a number) estimation for the given observation. These
estimates are not included in the PIMs averages due to their obvious effects. For KR, as
the bandwidth increases the number of observations for which NaN estimates result goes
to zero. The maximum number of observations for which NaN estimates were obtained
with respect to bandwidth for both KR and LL regression were: h=0.0025, 6 in the data
pool, 4 in the test data | h=0.005, 3 in the data pool, 1 in the test data. Estimations were
obtained for all observations for bandwidth values > 0.01. Thetrend of variation in the
PIMsfor the LL models requires some additional interpretation (figure 5.3.3.d and
5.3.4.d). Thediscussion regarding NaN appliesto LL regression aswell. Before
explaining the observed trend for the LL PIMs, consider table 5.3.3.

Table 5.3.3 provides the average maximum and minimum values of the KR and LL
estimations over the 100 iterations for the cascade data pool. The minimum and
maximum estimates from KR are bounded by the minimum and maximum response
valuesin the training data set. Thisis not the case for LL regression. Recall that for
h=0.0025 there were 6 observations in the data pool for which NaN estimates were
obtained and for h=0.05 there were 3 estimates in the data pool for which NaN estimates
were obtained. These estimations are not included in the PIMs calculations, resulting in a
lower than expected variation in the PIMsresults. Considering table 5.3.3 and the results
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Table 5.3.3: Average minimum and maximum cascade data pool estimates for LPR

models over 100 iterations

Bandwidth KR Estimates LL Estimates
Average Minimum | Average Maximum | Average Minimum | Average Maximum
0.0025 -1.535 7.235 -9.320 13.762
0.005 -1.491 7.171 -19.236 23.776
0.010 -1.379 7.047 -28.700 26.238
0.025 -1.164 6.865 -18.428 15.491
0.050 -0.911 6.751 -3.730 8.423
0.100 -0.671 6.654 -1.075 7.112
0.150 -0.581 6.511 -0.900 7.076
0.200 -0.516 6.293 -0.814 6.850
0.250 -0.443 6.039 -0.717 6.868
0.300 -0.347 5.777 -0.702 6.908
0.400 -0.074 5.267 -0.689 7.042
0.500 0.259 4.752 -0.644 7.571
0.750 0.704 3.489 -0.653 8.722
1.000 0.946 2.689 -0.065 9.024
2.000 1.401 1.854 -0.516 7.604
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intable5.3.1, it is observed that the trend of the variation in the PIMs is analogous to the
trend of the ranges of the average minimum and maximum values with respect to
bandwidth. That is, initially (h=0.0025 and h=0.005) the range of estimationsis
moderate noting that the observations which would dominate this range are not being
included in the calculations at this point because of the NaN estimation results. For
h=0.01 and h=0.025, the range of the estimations increases because the observations
corresponding to the previous NaN estimates for smaller bandwidths are now being
complemented by real estimates. Thesereal estimates provide the maximum and
minimum values for the range of estimations. As the bandwidth increases further, more
and more training observations fall within the neighborhood of influence for the
corresponding responses and these effects are eventually reduced. For bandwidth values
of h>0.1, these effects are sufficiently muted. This phenomenon occurs for the cascade
test data set aswell (table 5.3.2, figure 5.3.4.d).

Consider the value of the PIMs for the different models and architecturesillustrated in
figures5.3.3 and 5.3.4. The NNPLS PIMs (figure 5.3.3aand 5.3.4.a) were minimized for
the 4 latent variable models. The cascade data set is not an ideal candidate data set for
the NNPL S architecture due to the minimal correlations between the predictor variables.
It has been reported that optimal performance of the NNPLS model for signal validation
tasks relies on strong correl ations between the predictor variables [Rasmussen 2000a,
Rasmussen 2000b]. The ANN PIMs (figure 5.3.3.b and 5.3.4.b) continually decreaseto a
minimum vaue for 9 hidden neurons, the more complex 10 hidden neuron models exhibit
an increase in the PIMs due to the addition of unnecessary parameters. The KR PIM
values (figure 5.3.3.c and 5.3.4.c) indicate atrend that is expected based on the known
tradeoff between bias and variance, this effect is mimicked for the LL models (figure
5.3.3.d and 5.3.4.d) with theinitial increase and subsequent decrease being accounted for
by the effects of the previous discussions regarding the variability of the LL estimates
with respect to the bandwidth parameter.

173



Comparing the results of the bootstrap 2 PIMs to those from the analytic PIMs, the
bootstrap 2 PIM S are consistently larger though in many cases the difference is marginal.
In addition the difference reaches its minimum in the vicinity of the proper architecture
for agiven model, e.g. the difference between the bootstrap 2 PIM and the analytic PIM
for the 9 hidden neuron ANN model for the cascade data pool (figure 5.3.3.b) is at its
minimum. It is noted that the differences between the bootstrap2 and analytic PIMs are
greater for the ANN and NNPL S models than for the KR and LL models. Because both
the bootstrap 2 and analytic prediction interval computations utilize avery similar bias
estimate for KR and LL, than it is observed that the bootstrap 2 variance estimate very
closely paralels that from the analytic variance estimate. For the ANN and NNPLS
models, the biasis not explicitly accounted for in the analytic prediction interval

computations, though indirectly some of the bias will be accounted for by the
incorporation of the validation data set into the variance estimate s* (see sections 4.6 and
4.7). Thus, the bootstrap intervals reflect this, and their magnitudes are consistently
higher.

The coverage of the prediction intervals for the cascade data pool and test data are
presented numerically in tables 5.3.1 and 5.3.2, and graphically in figure 5.3.5 and 5.3.6.
Quickly viewing the graphs it is obvious that the bootstrap 1 prediction intervals result in
insufficient coverage. The bootstrap 1 results will not be discussed further in this section,
and will not be implemented for the remaining data sets. Viewing all of the coverage
results over all architectures and models for both the data pool and the test data, it is
evident that the expected coverage is achieved. This statement is disregarding the results
from the bootstrap 1 prediction intervals and their corresponding coverage values. The
tabulated results of tables 5.3.1 and 5.3.2 provide the numerical values plotted in figure
5.3.5and 5.3.6. Whilethere are afew cases where the coverage is dightly below 0.95,
the deviation isminimal. It isalso noted that the variation in the coverage values from 1
iteration to the next is small, indicating that the prediction interval coverageis consistent.
Comparing the bootstrap 2 prediction interval coverage with the analytic prediction
interval coverage, for all models and architectures (figures 5.3.5 and 5.3.6), the bootstrap
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Figure 5.3.5: Coverage Results for Cascade Data Pool.

The models used are specified along the x-axis. The bands represent the 1s variationin
the results over the 100 iterations. Bootstrap 1 refers to the coverage of the bootstrap
intervals based on the average deviation bias estimate; whereas Bootstrap 2 refers to the
coverage of the bootstrap intervals based on the average squared error bias estimate (For
more information, see section 4.10). NNPLS— Neural Network Partial Least Squares,
ANN — Artificial Neural Network, KR —Kernel Regression, LL — Local Linear

Regression.
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Figure 5.3.6: Coverage Results for Cascade Test Data.

The models used are specified along the x-axis. The bands represent the 1s variationin

the results over the 100 iterations. Bootstrap 1 refers to the coverage of the bootstrap

intervals based on the average deviation bias estimate; whereas Bootstrap 2 refers to the

coverage of the bootstrap intervals based on the average squared error bias estimate (For
more information, see section 4.10). NNPLS — Neural Network Partial Least Squares,
ANN — Artificial Neural Network, KR —Kernel Regression, LL — Local Linear

Regression.
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coverage values are dlightly higher, though both methods result in sufficient coverage.
The lower values for the analytic coverage values for the KR and LL models at low
bandwidths indicate that the bootstrap bias estimate is a better estimate of the true bias of
the LPR models for these low bandwidths because it is less influenced by the overfit of
the model to the training data. While the analytic bias estimate does consider the
validation datain its bias estimate, the bootstrap bias estimate considers the entire data

pool.

The MAE and M SE results for the cascade data pool and test data are provided
numericaly in tables 5.3.1 and 5.3.2, and graphically in figures 5.3.7 and 5.3.8. The
results for both the data pool and test data exhibit similar trends, whereby the average
results are slightly higher for the test data with respect to the data pool, which is
expected. Also, the variation in the resultsis greatest for the ANN and LL models. Note
that the KR models would exhibit similar trends if the NaN estimates were included in
the computations. The ANN models exhibit more variation than the NNPL S models due
to the inherent regularization of the NNPLS for models where the number of latent
variables is less than the number of predictor variables. Eventually when the number of
hidden neurons in the ANN models was sufficient for an adequate fit to the data, the
variability in the ANN estimates was lower than that for the NNPLS models. Thus, the
bias inserted into the NNPLS models provides an initial stabilization, though its benefits
are eventually overcome when the ANN models are sufficiently complex for the task.
The large variation for the LL models was due to the under-regul arization of small
bandwidth models resulting in alarge range of possible estimates for a given observation.
For reasonable bandwidth values this effect is eliminated. The large variation does not
occur in the KR error results because of the elimination of the NaN estimates from the
calculations as previoudly discussed. The MSE values for al models are presented due to
the common use of this quantity to report model fit. The trends for the MSE values
follow those for the MAE values, though the effects noted for the MAE values are
exaggerated in the MSE plots.
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Average Absolute Ermor for Cascade Data Pool
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Figure 5.3.7: Error Results for Cascade Data Pool.

Plot (a) showsthe overall Mean Absolute Error, and plot (b) shows the overall Mean
Squared Error. The models used are specified along the x-axis. The bands represent the
Is variation in the results over the 100 iterations. NNPLS — Neural Network Partial
Least Squares, ANN — Artificial Neural Network, KR — Kernel Regression, LL — Local

Linear Regression.
178



Average Absolute Error for Cascade Test Data
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Figure 5.3.8: Error Results for Cascade Test Data.

Plot a shows the overall Mean Absolute Error, and plot b shows the overall Mean
Squared Error. The models used are specified along the x-axis. The bands represent the
1s variation in the results over the 100 iterations. NNPLS — Neural Network Partial
Least Squares, ANN — Artificial Neural Network, KR — Kernel Regression, LL — Local

Linear Regression.
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Considering al of the results for the cascade data presented thus far, the optimal NNPLS
architecture was determined to be the 4 latent variable architecture and the optimal ANN
architecture was that containing 9 hidden neurons. Selection of the optimal bandwidth
for the KR and LL modelsis based on the bias-variance trade-off of nonparametric
models. Figure 5.3.9a shows the average variance of the KR estimator based on the
training data along with the squared bias estimate based on the combined set of training
and validation data. Due to the incorporation of the validation data into the squared bias
estimate, the squared bias does not reach zero. The optimal bandwidth is located by
minimizing the sum of the squares of the variance and squared bias components. The
minimum for the KR models occurred for h=0.05. Analogous results are provided for the
LL models (figure 5.3.9.b). The optimal bandwidth for the LL models was h=0.15. An
important observation here is that the bias based on both the training and validation data
is higher for the LL models at lower bandwidth values than for the KR models, and lower
for the LL models at higher bandwidth values than for the KR models. This contradicts
the notion that theoretically aLL model isless biased than a KR model. Thisisdueto
the use of the validation datain the bias estimate. The smaller bias for KR with respect
to LL is observable at small bandwidth valuesif only the training data are considered. It
is assumed that the larger observed bias for the LL models at low bandwidths is due to
the inadequacy of the training data density for these low bandwidth models. The result of
thisisalarge variability in the LL estimates at low bandwidths leading to the larger bias
estimates. For all bandwidth values >0.1, the expected observation of smaller bias for
LL models with respect to KR models was exhibited.

Figure 5.3.10 provides the distribution of the coverage values of the analytic prediction
intervals for the optimally determined architectures and bandwidths for the cascade test
data set. Figure 5.3.11 shows analogous results for the bootstrap prediction intervals.
Viewing the results, it seems that the bootstrap prediction intervals result in coverage
values dlightly higher than the expected value of 0.95, while the distribution of the
analytic prediction interval coverage values are more centered at the expected value of
0.95. The noted exception was that for the KR models, where the coverage distribution
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Wariance Bias Trade-off for Cascade Data Set
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Figure 5.3.9: Biasand Variance plots for cascade data.

KR (a), and LL (b) asafunction of bandwidth. KR —Kernel Regression, LL — Local

Linear Regression.
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Figure 5.3.10: Analytic prediction interval coverage values for cascade test data set.

The plot shows the distributions of the coverage values for the analytic prediction interval
methods over 100 iterations. These coverage values are with respect to the Cascade Test
Data. NNPLS— Neural Network Partial Least Squares, ANN — Artificial Neural
Network, KR —Kernel Regression, LL —Local Linear Regression.
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Figure 5.3.11: Bootstrap prediction interval coverage values for cascade test data set.
The plot shows the distributions of the coverage values for the bootstrap prediction
intervals over 100 iterations. These coverage values are with respect to the Cascade Test
Data, and were based on the coverage of the bootstrap prediction intervals using the
sguared error bias estimate. NNPLS — Neural Network Partial Least Squares, ANN —
Artificial Neural Network, KR — Kernel Regression, LL — Loca Linear Regression.

183



was centered dlightly below the expected value of 0.95. Considering the results of tables
5.3.1and 5.3.2 it is observed that the average coverage for the KR models of the cascade
data set analytic prediction intervals were al dlightly below 0.95. Considering that even
in regions where the PIMs are much larger for the KR models than they are for the LL
model s the resultant coverage values are still lower for the KR models, the only result
that can be drawn is that the LL models provide a better fit to the data. The dightly lower
coverage values for the KR modelsin this case may be due to an inadequate bias estimate
in regions of proper bandwidth where the fit of the KR models is optimized, and for
higher bandwidths when the bias estimate is relatively large, the slightly reduced
coverage values are due to the over-regularized fit. While this minor underestimation for
the coverage of the KR analytic prediction intervals is noted here, further investigations

are warranted to obtain a better understanding of the root cause of the discrepancy.

To provideillustrative results for the cascade test data, 4 of the 100 models of each
optimal architecture were selected and their estimations plotted along with the analytic
prediction intervals. Figure 5.3.12 provides the random results for the NNPL S models,
figure 5.3.13 for the ANN models, figure 5.3.14 for the KR models, and figure 5.3.15 for
the LL models.

The random results are fairly similar for the most part, with the exceptions being the
results for the NNPLS models which in the case of the cascade data set were not able to
provide sufficiently certain fitsto the data. To better illustrate, a representative result for
each model at its optimal architecture, is provided in figures 5.3.16-5.3.19. The
representative result for each case was selected as the model of optimal architecture
among the 100 models for that architecture which exhibited the median MAE result for
the cascade test data.

To study the effects of erroneous predictor variables on the magnitude of the prediction
intervals, 2 additional predictor variables were inserted, while the response variable
remained unchanged. The purpose of this study was to evaluate the effects of atype of
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MMPLS Estimations for Cascade Test Data (4 Latent Variables)
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Figure 5.3.12: NNPL S cascade test data estimations and analytic prediction intervals.
Test estimations and their corresponding analytic prediction intervals. These 4 results
were selected at random from the 100 models. The coverage values for each are shown

along the x-axis. NNPLS — Neural Network Partial Least Squares.
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AMM Estirmations for Cascade Test Data (3 Latent Wariahles)
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Figure 5.3.13: ANN cascade test data estimations and analytic prediction intervals.
Test estimations and their corresponding analytic prediction intervals. These 4 results
were selected at random from the 100 models. The coverage values for each are shown
along the x-axis. ANN — Artificial Neural Network.
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kR Estimations for Cascade Test Data (Bandwidth=0.05)
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Figure 5.3.14: KR cascade test data estimations and analytic prediction intervals.
Test estimations and their corresponding analytic prediction intervals. These 4 results
were selected at random from the 100 models. The coverage values for each are shown

along the x-axis. KR —Kernel Regression.
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LL Estimations for Cascade Test Data (Bandwidth=1.15)
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Figure 5.3.15: LL cascade test estimations and analytic prediction intervals.
Test estimations and their corresponding analytic prediction intervals. These 4 results

were selected at random from the 100 models. The coverage values for each are shown

along the x-axis. LL —Loca Linear Regression.
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MMPLS - Cascade Test Data Estimations (4 Latent VWarizbles)
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Figure 5.3.16: NNPLS median result estimation and analytic prediction intervals.
Representative result for NNPLS 4 |atent variable model showing every 10" estimate and
the corresponding analytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the 4 latent variable models. NNPLS —
Neural Network Partial Least Squares.
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ANM - Cascade Test Data Estimations (2 Hidden Neurons)
8 T T

1000 1500
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Figure 5.3.17: ANN median result estimation and analytic prediction intervals

Representative result for ANN 9 hidden neuron model showing every 10" estimate and

the corresponding analytic prediction intervals. This model exhibited the median value

of the 100 Mean Absolute Error results for the 9 hidden neuron models. ANN —

Artificial Neural Network.
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kR - Cascade Test Data Estimations (Bandwidth =0.05)

Sample MNurmber

Figure 5.3.18: KR median result estimation and analytic prediction intervals
Representative result for KR model (Bandwidth = 0.05) showing every 10" estimate and
the corresponding analytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the Bandwidth=0.05 models. KR — Kernel

Regression.
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LL - Sascade Test Data Estimations (Bandwidth =0.15)

eff ' ]

Sample Mumber

Figure 5.3.19: LL median result estimationand analytic prediction intervals
Representative result for LL model (Bandwidth = 0.15) showing every 10" estimate and
the corresponding analytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the Bandwidth=0.15 models. LL — Loca

Linear Regression.
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model misspecification on the prediction interval computations and their resultant
coverage values. In this case the type of misspecification is due to the selection of
predictor variables. Recall the response variable was shown in figure 5.3.1, and the

original predictors were shown in figure 5.3.2. The new set of predictors contained two
noise signalsdrawn from N(0,+/0.1), i.e. the 2 additional erroneous inputs are normal

random variables with zero means, and s 2 =0.1. The augmented cascade predictor
variables are shown in figure 5.3.20. To be clear in the discussions, the normal set of
datawith 4 predictors will be referred to as cascadel, whereas the set of dataincluding
the 2 erroneous predictors will be referred to as cascade?.

Comparing the results for the cascade? data with respect to the results for the cascadel
data, the NNPLS PIMs for the analytic prediction intervals as well as for the bootstrap
intervals was consistently higher for all model architectures (figure 5.3.21.a8). Thiswas
the expected result indicating that the prediction intervals increase when nuisance
parameters are inserted into the predictor variable set. The larger deviation in the
analytic results as the number of latent variables increases is expected of the NNPLS
architecture, since for 1 latent variable the mgjority of influence of the erroneous
predictors is transferred to the higher latent variables. Asthe number of latert variables
increases, the influences of the erroneous predictors increases as more of their content is
included in the overall modd fit; and thus the deviation in the PIMs for the two data sets
increases. The ANN PIMsfor cascadel and cascade2 are shownin figure 5.3.21.b.
While the bootstrap intervals show a significant increase, especially with increasing
model complexity, the analytic intervals for both data sets are consistently ssimilar. The
KR and LL PIM results for the cascadel and cascade? data sets are shown in figures
5.3.21.c and 5.3.21.d. The bootstrap prediction interval magnitudes for both LPR models
exhibited significant increases, especially at lower bandwidth values. While, the analytic
prediction interval magnitudes also exhibited increases, they were not as drastic, and the
results for both the cascadel and cascade? data sets quickly converged as the bandwidth
increased.
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Cascacde Data Pool Predictor Variables with Moise Wariables
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Figure 5.3.20: Cascade Data Pool predictor variables with 2 additional noise variables.
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Figure 5.3.21: Comparison of Pl magnitude results for Cascade Test Data Pool for
normal set of predictors and the augmented set that included 2 normal random variables.
The models used are specified along the x-axis. The bands represent the 1s variationin
the results over the 100 iterations. The upper subplot of each plot contains the results
based on the analytic prediction interval methods, indicated by an (A) on the y-axis. The
lower subplot of each plot contains the results based on the bootstrap prediction intervals
utilizing the squared error bias estimate (For more information, see section 4.10), and is
indicated by a (B) on the y-axis. NNPLS— Neural Network Partial Least Squares, ANN
— Artificial Neural Network, KR — Kernel Regression, LL — Local Linear Regression.
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Considering the NNPLS coverage values for the cascade? test data (figure 5.3.224) it is
seen that all results for both prediction interval methods provide adequate coverage for all
architectures with at least 2 latent variables. The larger bootstrap PIM for the NNPLS
models result in higher than expected coverage values for both data sets. Asthe
bootstrap method intends to capture all possible sources of variation thisis not
unexpected, and is characteristic of the bootstrap intervals computed throughout this
work. The coverage values for the ANN models for the cascadel and cascade? data sets
are provided in figure 5.3.22.b. The average results are at the expected value of 0.95 for
both data sets, though it is noted that the variability increases sightly for the cascade2
data. Overall the ANN model's estimations and analytic prediction intervals did not
appear to be overly influenced by the erroneous inputs, though the bootstrap intervals
exhibited moderate increases, especially for increasingly complex ANN models. The KR
and LL model coverage values for the cascadel and cascade? data sets are shown in
figures 5.3.22.c and 5.3.22.d. In both cases the coverage values for the cascade? test data
for the bootstrap prediction intervals exceeded the expected value of 0.95. Considering
the significant increases in the PIMs for the bootstrap prediction intervals thiswas an
expected result. The LL analytic prediction interval coverage for cascade?2 at the
previously determined optimal bandwidth of h=0.15 is adequate, though for increasing
bandwidths, the fractional coverage falls short. For bandwidth values below the optimal,
the coverage of the LL analytical prediction intervals is adequate due to the influence of
the bias estimate. As previoudy discussed, for small bandwidths, LL models will exhibit
large prediction intervals due to the inadequacy of the training data density for the use of
such small bandwidth values. As the bandwidth increases beyond the h=0.15 optimum
for the LL case, adrop in coverage is observed as the estimations stabilize in aregion of
moderate bias. Here the bias is underestimated. With increasing bandwidth, the bias
estimate al so increases bringing the coverage closer to the expected value. A similar
discussion can be presented for the KR coverage results of the cascade? data, though the
effect of over-estimating bias for small bandwidths as occurs for LL models, was not
exhibited for the KR models.
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Figure 5.3.22: Comparison of coverage Results for Cascade Test Data Pool for normal
set of predictors and the augmented set that included 2 normal random variables.

The models used are specified along the x-axis. The bands represent the 1s variationin
the results over the 100 iterations. The upper subplot of each plot contains the coverage
results based on the analytic prediction interval methods, indicated by an (A) on the y-
axis. Thelower subplot of each plot contains the coverage results based on the bootstrap
prediction intervals utilizing the squared error bias estimate (For more information, see
section 4.10), and isindicated by a (B) on the y-axis. NNPLS— Neural Network Partial
Least Squares, ANN — Artificial Neural Network, KR — Kernel Regression, LL — Local

Linear Regression.
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Overdl, the study of the effects of erroneous predictors on the prediction interval
estimates and their corresponding coverage values revealed that for NNPLS and ANN
models, the analytic intervals consistently provide the expected coverage, on average,
though their variation over repeated iterations did increase dlightly for the ANN models.
With respect to the LPR models it was observed that the analytic prediction interval
methods did not maintain the expected level of coverage consistently over the entire

bandwidth range when erroneous predictors were included.

5.3.1 Cascade Data Set Summary of Results

Regarding the cascade data set, optimal performance, with respect to MAE and MSE,
was obtained with the LL models of bandwidth 0.15. The KR models of bandwidth 0.05
had very similar error values exhibiting only a marginal increase, followed by another
dlight increase for the 9 hidden neuron ANN models. The NNPLS model errors were
significantly larger for al evaluated architectures; thusits use for this data set was not
appropriate. The reason for thisis due to the strong norlinear relationshipsin the data.
Previous work using the NNPLS model architecture states that sufficient model
performance requires a high level of linearity in the predictor variables [Rasmussen
2002]. Thisfact isevidenced for the cascade data set. The performance of all empirical
models for the cascade data set was extremely consistent for the data pool as well asthe
test data. While thisis often the case when evauating simulated data, in practical
applications the test errors are generaly larger for the test data.

The average magnitudes of the analytic prediction intervals were minimized for the LL
models (h=0.15), followed closely by KR (h=0.05), and ANNSs (9 hidden neurons). The
NNPLS average anaytic intervals were greater than twice the average for the ANN
models. Thisisapositive result indicating that the computed intervals were properly
influenced by the inaccuracy of the NNPLS mode, for the given data set. Aswas
described for the error values, the results for both the data pool and the test data were
extremely similar. The average magnitudes of the corresponding bootstrap prediction
intervals were consistently larger, to arelatively small extent, than the analytic intervals.
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Thisresult is due to the use of various assumptions in deriving the computed prediction
intervals, whereas the bootstrap approach to prediction interval estimation has no
associated assumptions. In the regions where the empirical models performed at their
respective optimal levelsit is noted that the differences between the bootstrap and
analytic intervalsisminimized. Thus, it can be said that the analytic intervals do reflect a
reduction in performance, with respect to the bootstrap intervals, as the model
architecture changes from its optimal structure. While this effect was exhibited in the
results, it was also noted that the performance of the models, as they strayed from their
optimal architecture, with respect to their coverage values was not significantly degraded.
Thiswill be further discussed below.

Regarding the analytic coverage values for the cascade data set, al LL modelsresulted in
average coverage values greater than 95% for the data pool, while 7 out of 15 of the
different models for the test data had coverage values that were dlightly below, though
the lowest value was 94%. The bootstrap coverage values were al above the expected
value for both the data pool and the test data. In general, the bootstrap coverage values
for the cascade data were all above the 95% level with the exception of 3 over-
regularized KR models, though the lowest value of the 3 was 93%. The analytic
coverage values for the KR models were all >93%, for the NNPL S models >94%, and for
the ANN models >94%. Note that rounding to 2 digits is being performed, while the
tabulated resultsin section 5 provide 3 digits. For the optimal architectures of the
different models the lowest average analytic coverage value observed was for the KR
models, at 94%. It was also noted that the KR coverage values were consistently just
under the expected value of 95%. Asdiscussed in section 5, the KR models have upper
and lower limits on their range of estimations. None of the other empirical models have
thislimit. Thus, the bias estimates for the KR models are dso limited. It isinteresting to
note that the bootstrap intervals for the KR models exhibit the lowest average values
compared to the other empirical models. These minor deviations do not pose extremely
significant issues in applying the derived methodologies. The results indicate that the
computed analytic intervals indicate the optimal model structure, which in all cases for
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the cascade data occurred where the average error values were minimized, and for the
optimal model structure the lowest average coverage was 94%. Assuming that one would
perform some type of model optimization, the resultant prediction intervals for models

near the optimum resulted in sufficiently accurate prediction intervals.

The study of the effects of erroneous predictor variables on the computed prediction
intervals revealed that the interval s suitably increase under these conditions. While the
more significant increases were incurred for the bootstrap intervals, the analytic intervals
alsoincreased. For the KR models, the increases in the prediction intervals were not
significant enough to maintain the expected level of coverage at the optimally selected
bandwidth, though for larger bandwidth values the results improved. For the local linear
models a dlight reduction in the coverage values was also noted. For both the ANN and
NNPLS models, the prediction interval magnitudes increased appropriately, and the
coverage of the intervals was not degraded at all by the erroneous predictors. The dlight
reduction in coverage of the intervals for the cases of KR and LL modelsis not extremely
severe, and the coverage values were maintained at or above 87% for the KR models and
92% for the LL models.

54 FEEDWATER FLOW RATE DATA SET

In this section, asimilar analysis was completed as was performed for the cascade data
set. Aninitial description of the data and model parametersis given followed by
tabulated and plotted results. For this data set, the discussion of the resultsis done on a
model type basis, each model being discussed in a separate section. A summary at the
end (section 5.4.5) draws comparisons between the results from the different model
types. An additional evaluation was performed for the feedwater flow data which
investigated the effect of the conditional variance estimate of the LPR models on the
resultant prediction interval computations. The study intended to determine that the
coverage values of the computed prediction intervals were not overly influenced by the
conditional variance estimate, such that drift detection could be performed based on the
computed prediction intervals as long as the conditional variance estimate was
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reasonable. Quantification of the drift estimates of the different models was also
completed, and the average results along with the variation of these results are reported.

The feedwater flow rate data set was provided by a nuclear power plant, was recorded
with a 30 minute sampling rate, and has dimensions 17-input / 1-output. The number of
observations in the data pool was a 1440, al of which were selected from the first month
of data available (assumed to be fault free). The response data for the data pool are
shown infigure 5.4.1.

The feedwater flow venturi meter is susceptible to a fouling phenomenon that has been
the subject of considerable work at the University of Tennessee [Gribok 2001]. Itis
expected that the measurements from the venturi meter will drift from the true value of
the flow rate, and thus it is expected that the estimations for the feedwater flow rate will
deviate from the measured values as the fouling occurs. The test data for this case covers
aperiod of 900 samples spaced 300 minutes apart. The reason for the large sampling
increment was to reduce computational requirements, while still obtaining estimations
over along period of operation, and it is assumed that the results obtained would be
representative for a faster sampling rate, not to exceed that available in the training data.
The 900 test samples were further reduced to eliminate observations that would lead to
significant contributions to the uncertainty or errors of the resultant models. The final set
of test data consisted of 847 observations.

The datapool (X ;Y ) Of dimensions (n, ~ p) and (n,,, 1) respectively were

pool

specified by: n_, =1440, p =17. The observations in the data pool cover the first 30

pool
days following the onset of steady-state operations after a start-up. The 100 training data
sets: (X°,,Y®,), of dimensions (n,” p), and (n,” 1) respectively were specified by:

n, =900, p =17. Thetraining observations were drawn at random, with replacement,
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Figure 5.4.1: Feedwater flow rate data pool.
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from the datapool. Inall cases, b=1,...,B and B=100. The 100 validation data sets
(X",,Y",) of dimensions (n,” p) and (n,” 1) respectively were specified by: n, =600,
p =17. The validation observations were drawn at random, with replacement, from the
datapool. Thetest dataset (X, Y,)of dimensions (n,” p) and (n,” 1) respectively
was specified by: n, =847, p=17. Thetest data cover approximately 6 months of plant

operation (300 minutes between samples).

The set of predictor variables for the feedwater flow rate dataset is provided in table
5.4.1. Therequired model specifications used for the feedwater flow rate data are
provided below:

NNPLS:

M ean-standard initialization was applied. The maximum number of latent variables to
evaluate was set at 4.

ANN:

M ean-standard initialization was applied. The minimum and maximum numbers of
hidden neurons evaluated were 1 and 8, respectively.

LPR:

The vector of bandwidths to be evaluated was:

[0.005 0.025 0.05 0.06 0.07 0.08 0.09 0.1 0.125 0.15 0.2 0.25 0.5 0.75];

The conditional variance was estimated as s j =447 .

The overall results for the feedwater flow rate data pool are presented in tables 5.4.2, and
for the test datain table 5.4.3. All of the following discussions for the feedwater flow
rate data set results refer to the values in these two tables. Note that the bootstrap
prediction intervals being reported in these tables were based on the average squared
error bias estimate ( Bias,). No results are reported for the bootstrap prediction intervals
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Table 5.4.1: Feedwater flow rate data set predictor variable descriptions

Variable # Description Range Units
1 Feedwater Pump Speed 0-7500 RPM
2 A OTSG Efic. High Level 0-100 %

3 Feedwater Pump A Speed 0-7500 RPM
4 Linear Power Channel NI-6 0-125 %

5 Heater 3A Inlet Cond. Temp 40-300 DEGF
6 Heater 3B Outlet Cond. Temp 40-300 DEGF
7 Steam Gen. A Level (OP) 0-100 %

8 Steam Gen. A Leve (Full) 40-640 Inches
9 Steam Gen. A Leve (Start-up) 0-250 Inches
10 Steam Gen. B Inlet FW Temp 0-500 DEGF
11 Steam Gen. B Level (Start-up) 0-250 Inches
12 Steam Gen. A Inlet FW Temp. 40-600 DEGF
13 Steam Gen. B Inlet FW Temp. 40-600 DEGF
14 Reheater A Cold Reheat Pressure | 0-200 PSIG
15 Reheater D Cold Reheat Pressure | 0-200 PSIG
16 Reheater C Cold Reheat Pressure | 0-200 PSIG
17 No. 2A Extr. LP Turbine Pressure | 0-20 PSIA
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Table 5.4.2: Tabulated results for feedwater flow rate data pool*.
(For full explanation of terms see section 5.2)

Model Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1] 14.882 | 1.032 16.851 5.379 0.968 0.004 0.981 0.003 5.401 64.670
NNPLS 2| 14.439 | 1.598 16.093 5.456 0.969 0.005 0.981 0.003 4.905 57.273
NNPLS 3| 14.389 | 3.897 15.637 5.866 0.969 0.006 0.985 0.004 4.648 51.737
NNPLS 4| 14574 | 7.195 14.926 5.953 0.970 0.006 0.987 0.005 4.410 46.348
ANN 1] 33,590 | 80.953 | 104.257 57.039 | 0.959 0.005 0.997 0.015 8.182 1830.357
ANN 2] 30.055 | 62.139 | 78.994 44.821 | 0.963 0.008 0.991 0.028 7.115 1069.085
ANN 3] 39.735 | 83.680 | 82.889 47.145 | 0.967 0.011 0.992 0.026 7.484 1173.977
ANN 4| 46502 | 77.855 | 86.260 48.449 | 0.970 0.012 0.992 0.024 8.333 1269.562
ANN 5] 44451 | 66.198 | 71.051 42.375 | 0.976 0.012 0.993 0.018 7.240 877.431
ANN 6| 48.974 | 78.335 | 64.152 36.988 | 0.979 0.012 0.994 0.020 6.961 703.174
ANN 7| 64.445 | 91.830 | 67.694 39.829 | 0.981 0.013 0.993 0.019 6.944 791.471
ANN 8| 76.425 | 119.33 | 70.026 39.383 | 0.983 0.012 0.992 0.021 7.662 830.449
KR 0.005 4.542 0.128 6.833 1.743 0.878 0.007 0.971 0.005 1.200 6.007
KR 0.025 4.622 0.117 6.945 5.528 0.864 0.008 0.961 0.006 2.078 7.980
KR 0.050 8.093 0.141 10.247 10.974 [ 0.924 0.006 0.954 0.005 3.474 18.311
KR 0.060 9.006 0.160 11.054 10.862 | 0.927 0.006 0.954 0.005 3.856 22.209
KR 0.070 10.089 | 0.179 12.061 10.717 [ 0.935 0.006 0.956 0.005 4.308 27.495
KR 0.080 11.352 | 0.191 13.427 12.362 [ 0.938 0.006 0.958 0.005 4.845 34.440
KR 0.090 12.686 | 0.196 14.707 12.184 [ 0.944 0.007 0.964 0.005 5.422 42.687
KR 0.100 13.971 | 0.202 15.935 12.016 [ 0.949 0.007 0.968 0.005 5.975 51.440
KR 0.125 16.679 | 0.224 18.854 12.942 [ 0.952 0.005 0.967 0.003 7.150 72.779
KR 0.150 18.669 | 0.262 20.755 12.648 | 0.955 0.006 0.968 0.004 8.002 90.686
KR 0.200 21.116 | 0.338 23.088 12.221 [ 0.958 0.004 0.967 0.003 9.053 115.465
KR 0.250 22,551 | 0.394 24.370 11.769 [ 0.958 0.004 0.966 0.003 9.652 130.746
KR 0.500 26.665 | 0.593 28.198 10.162 [ 0.945 0.005 0.955 0.006 11.240 | 181.491
KR 0.750 30.609 | 1.223 31.929 7.847 0.928 0.009 0.939 0.011 12.597 | 237.867
LL 0.005 6.335 0.340 13.822 6.550 0.813 0.012 0.977 0.006 2.815 25.558
LL 0.025 5.653 0.681 21.270 89.935 | 0.895 0.009 0.986 0.004 1.769 12.915
LL 0.050 6.187 1.263 35.605 178.90 [ 0.902 0.009 0.985 0.005 2.288 12.956
LL 0.060 6.494 0.907 34.358 177.39 [ 0.911 0.008 0.983 0.005 2.403 12.229
LL 0.070 6.684 0.839 32.659 171.66 [ 0.916 0.009 0.981 0.005 2.484 12.171
LL 0.080 6.772 0.809 31.050 167.75 [ 0.919 0.008 0.979 0.005 2.531 11.857
LL 0.090 6.932 0.818 33.441 194.50 | 0.922 0.007 0.977 0.005 2.575 11.857
LL 0.100 7.065 0.862 31.582 186.31 [ 0.924 0.008 0.976 0.005 2.611 11.994
LL 0.125 7.218 0.932 33.656 202.18 [ 0.927 0.007 0.973 0.005 2.669 12.251
LL 0.150 7.214 0.868 32.557 197.12 [ 0.929 0.007 0.970 0.005 2.691 12.045
LL 0.200 7.223 0.797 26.507 171.69 [ 0.931 0.007 0.965 0.004 2.706 11.722
LL 0.250 7.232 0.756 22413 151.32 [ 0.931 0.007 0.962 0.004 2.709 11.497
LL 0.500 6.944 0.566 10.505 47.963 | 0.935 0.007 0.957 0.004 2.725 11.242
LL 0.750 6.919 0.611 7.994 17.555 [ 0.937 0.006 0.956 0.004 2.749 11.315

* APl — Analytic prediction intervals, BPl — Bootstrap prediction intervals, m - mean

result, s - standard deviation of results, MAE — Mean Absolute Error, MSE —Mean
Squared Error, Type for NNPLS refers to the number of latent variables, for ANNs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR

—Kernel Regression, LL — Local Linear Regression.
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Table 5.4.3: Tabulated results for feedwater flow rate test data* .
(For full explanation of terms see section 5.2)

M odel Type API BPI AC BC MAE M SE

m S m S m S m S
NNPLS 1| 16.038 1.177 17.208 3.194 0.258 0.013 0.283 0.013 27.281 973.261
NNPLS 2 | 18.331 2.980 16.684 3.273 0.279 0.039 0.283 0.017 26.152 903.384
NNPLS 3 | 24.697 12.835 17.963 3.739 0.349 0.138 0.279 0.023 27.457 1017.975
NNPLS 4 | 29.283 14.525 17.424 3.814 0.424 0.156 0.286 0.028 27.974 1069.974
ANN 1| 20.614 20.941 98.338 35.798 0.452 0.240 0.996 0.016 21.277 1417.183
ANN 2| 31.728 61.605 133.64 90.015 0.447 0.225 0.987 0.045 22.772 5945.110
ANN 3 | 41.806 81.998 236.59 142.708 0.476 0.228 0.976 0.090 38.605 19658.063
ANN 4 | 47.217 66.301 256.74 157.283 0.533 0.251 0.967 0.112 47.530 24031.558
ANN 5 | 51.994 72.202 257.48 152.518 0.576 0.247 0.962 0.114 51.427 24400.742
ANN 6 | 58.143 73.612 187.57 107.359 0.646 0.245 0.960 0.104 44,912 12710.981
ANN 7 | 80.863 105.06 205.16 111.031 0.662 0.254 0.955 0.120 50.466 14181.608
ANN 8 | 102.02 123.49 229.60 126.444 0.742 0.240 0.963 0.108 54.625 18939.579
KR 0.005 4.529 0.147 7.907 3.632 0.743 0.008 0.814 0.006 8.236 129.741
KR 0.025 5.023 0.154 11.093 11.210 0.219 0.011 0.334 0.026 21.364 730.367
KR 0.050 8.188 0.141 14.061 18.323 0.248 0.011 0.309 0.016 20.005 600.388
KR 0.060 9.056 0.159 14.456 18.074 0.259 0.012 0.316 0.015 18.743 512.123
KR 0.070 10.116 0.178 15.135 17.776 0.290 0.016 0.347 0.017 17.257 421.476
KR 0.080 11.368 0.191 16.064 17.425 0.354 0.027 0.416 0.027 15.754 341.702
KR 0.090 12.697 0.196 17.134 17.042 0.459 0.039 0.528 0.037 14.372 278.868
KR 0.100 13.980 0.201 18.210 16.648 0.593 0.042 0.657 0.039 13.171 232.787
KR 0.125 16.686 0.224 20.581 15.677 0.853 0.023 0.899 0.020 10.991 169.970
KR 0.150 18.674 0.262 22.333 14.863 0.919 0.010 0.954 0.007 9.811 147.614
KR 0.200 21.120 0.338 24.464 13.718 0.938 0.007 0.967 0.006 9.041 143.629
KR 0.250 22.553 0.394 25.598 12.837 0.942 0.007 0.968 0.006 9.060 155.571
KR 0.500 26.664 0.593 28.684 8.989 0.937 0.003 0.951 0.004 10.600 312.042
KR 0.750 30.608 1.223 32.147 7.657 0.935 0.005 0.945 0.004 11.676 456.164
LL 0.005 5.765 0.398 16.704 6.811 0.698 0.006 0.761 0.003 65.008 8680.320
LL 0.025 57.284 13.627 107.10 132.064 0.679 0.063 0.801 0.052 98.556 39298.701
LL 0.050 20.913 2.295 74.847 218.438 0.411 0.095 0.561 0.098 40.530 8644.626
LL 0.060 15.643 1.488 64.660 210.334 0.329 0.066 0.450 0.078 36.891 6499.984
LL 0.070 13.132 1.225 59.736 208.593 0.302 0.044 0.399 0.056 33.742 4986.995
LL 0.080 11.793 1.175 54,598 202.675 0.296 0.029 0.376 0.041 31.211 4062.140
LL 0.090 10.899 1.163 50.776 196.243 0.296 0.022 0.369 0.032 28.764 3202.631
LL 0.100 10.268 1.125 46.576 185.336 0.297 0.019 0.365 0.027 26.789 2634.232
LL 0.125 9.419 1.108 43.270 191.025 0.300 0.018 0.363 0.023 22.938 1608.474
LL 0.150 9.050 1.072 37.239 168.109 0.303 0.018 0.360 0.022 20.398 1027.417
LL 0.200 8.466 0.731 27.104 129.771 0.306 0.020 0.355 0.022 17.843 556.750
LL 0.250 7.965 0.396 19.979 104.182 0.303 0.021 0.345 0.023 16.939 433.685
LL 0.500 7.407 0.275 9.923 11.651 0.291 0.020 0.327 0.023 16.136 374.035
LL 0.750 7.196 0.164 8.870 5.259 0.288 0.018 0.316 0.020 15.900 361.063

* APl — Analytic prediction intervals, BPl — Bootstrap prediction intervals, m - mean

result, s - standard deviation of results, MAE — Mean Absolute Error, MSE — Mean

Squared Error, Type for NNPLS refers to the number of latent variables, for ANNs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR

—Kernel Regression, LL — Local Linear Regression.
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based on the Bias computation, due to the insufficiency of the method to adequately

cover the response measurements, evidenced with respect to the cascade data set (section
5.3). A full analysiswas carried out for the feedwater flow rate data for each model type
in the following 4 sections.

5.4.1 Neural Network Partial Least Squares Models and Analyses

The Pl magnitude results for the data pool are plotted in figure 5.4.2.a and for the test
datain figure 5.4.2.b. The variation in the PIMs for the NNPLS models is consistent for
the bootstrap intervals over al architectures for both the data pool and the test data. The
only trend in the bootstrap PIMs variation is a slight increase with model dimension.
This is expected since the number of free parameters increases with model dimension. In
addition, the mean values of the bootstrap PIMs exhibit only a minor decrease with
model dimension. It isnoted that for the case of the test data, the intervals are larger,
though the difference is slight. Viewing the corresponding analytic PIMs shows that for
the data pool the mean values and variations are lower than for the bootstrap PIMs. Itis
noted that the increase in variation of the analytic PIMs with model dimension is much
more obvious than in the case of the bootstrap PIMs. The test data analytic PIMs show
that for 1 latent variable, the mean PIM value is lower than the bootstrap PIM value,
while for higher dimensions the oppositeistrue. The coverage values for the data pool
(figure 5.4.2.c) indicate that the expected level of 0.95 is achieved for both the analytic
and bootstrap prediction intervals. The dlightly higher value for the bootstrap resultsis
due to the larger corresponding prediction intervals. The coverage values for the test data
(figure 5.4.2.d) indicate that both interval estimation methods provide less than 30%
coverage for the test measurements (considering 1 and 2 latent variable models). Thisis

also expected since it is known that the test response signal contains a drift.

Based on the results for the feedwater data pool and the test data, the optima number of
latent variables was determined to be 2. While there are some improvementsin the
residual errors (figure 5.4.3) and Pl magnitudes for the data pool if more latent variables

are used, the increased variance that comes along with the additional latent variablesis
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Average Absolute Ermar for Feedwater Data Pool

S8+ B

56 B

52+ B

Errar
(1}
1

48¢- B

46} .

a4t ]

4zt .

a I I I I
0.5 1 2 3 4 45

NMNPLS - Mumber of Latent Yariables

a

Average Absolute Ermor for Feedwater Test Pool
35 T T

Errar
—a8——
=

251 -
20 1 1 1 1
0.5 1 2 3 4 45
NMNPLS - Mumber of Latent Yariables

Figure 5.4.3: Mean absolute error results for NNPLS models of feedwater flow rate data
pool (a) and test data (b).

The bands represent the 1s  variation in the results over the 100 iterations.
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detrimental. This effect can be seen in the results for the test data leading to higher PIMs.
The PIM reduction seen for the data pool as more latent variables are added is due to the
decreasing bias; however, the bias with respect to the test data will not decrease at the
same rate and the variance increase will eventually be the dominant contributor in the
PIM values. Viewing the test data coverage values and PIM values, it is apparent that a
single latent variable model is the optimal choice; however, in developing signal
validation models the test data is not readily available; thus, model architecture decisions
should be based on the data pool and not the test data. The average MAE values for the
feedwater test data are provided (figure 5.4.3.b) to show that the variability in the error
for the test data remains reasonable upon repeated trials. The increased magnitude is
expected since the test data contain a known drift. The decrease in the MAE values for
the data pool (figure 5.4.3.a) is due to the better fit to the training data as the model
dimension isincreased. Figure 5.4.4 presents the estimation results for 4 randomly
selected 2 latent variable NNPLS models from the available 100. The drift isidentifiable
for al cases presented. The random results are shown to provide a representative
illustration of the expected results from a 2 latent variable NNPLS model for the
feedwater flow rate data.

To provide amore clear illustration of the NNPL S estimates and analytic prediction
intervals, the median result (based on the model exhibiting the median MAE value with
respect to the data pool) is plotted in figure 5.4.5. The drifting measurement is clearly
identifiable and is not bounded by the prediction intervals. Therefore within the context

of asignal validation model, this drift can be reported with alevel of confidence of 95%.

Of course, each model will result in adlightly different value for the drift estimate.

Figure 5.4.6 shows the distribution of the drift estimate results for all 100 modelsin its
upper subplot, and only for models which provided 5% or less coverage of the test
measurements over the range from sample 700 to 847. The results of the two subplots for

the case of the NNPLS models are not significantly different; however, for other model
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NMPLS Estimations for Feedwater Test Data (2 Latent Varizbles)
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Figure 5.4.4: Test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available 2 latent variable NNPLS

models. The coverage value for each case is indicated on the x-axis.
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MMPLS - Feedwater Test Data Estimations (2 Latent “arizhles)
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Figure 5.4.5: NNPL S median result estimation and analytic prediction intervals.
Representative result for NNPLS 2 |atent variable model showing every 5" estimate and
the corresponding analytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the 2 latent variable models.
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NMMPELS Drift Estimates for Feedwater Flow Test Data
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Figure 5.4.6: Distribution of drift estimate for 2 latent variable NNPL S models.

Drift estimates obtained from the 100 NNPL S models via computing the MAE over test
samples 700 to 847. The upper subplot shows al results, while the lower subplot
excludes any results for which coverage was greater than 5%.
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types there will be significant differences and this plot will be used as a point of

comparison.

The NNPL S models and corresponding prediction intervals performed well for the case
of the feedwater flow data set. While the bootstrap prediction intervals indicate slightly
higher PIM values than the analytic PIMs, both approaches provide adequate coverage of
the measurements in the data pool. In addition, the PIM for the test datadid not
significantly increase over those obtained for the data pool, indicating that the data pool
provided an adequate representation of the system being modeled. Through the inherent
regularization of the NNPL S design, reducing the 17 predictor variablesto 2 |latent
variables, a stable model solution can be obtained and its repeatability has been provenin
this case, within a small margin of variation. In addition, the NNPLS models

successfully report the feedwater flow rate channel drift in al cases.

5.4.2 Artificial Neural Network Models and Analyses

The ANN models proved to be extremely variable for the feedwater flow data set. Figure
5.4.7aand 5.4.7.c indicate that the Pl magnitudes averaged over the 100 iterations are
excessively high for both the data pool and the test data. Thisis due to the collinearity of
the feedwater data set, resulting in highly unstable ANN parameter solutions. A reduced
set of models was obtained (see below), and the results computed again. The results from
the reduced set of ANN models are provided in figures 5.4.7.b and 5.4.7.d. Toadin
understanding the source of variation here, consider the empirical density of the analytic

PIMs from the 100 observations for the case of one hidden neuron (figure 5.4.8).

For the 1 hidden neuron case, 72 of the 100 iterations provided average Pl magnitudes
less than 20 KLB/HR, while the range for the remaining 28 results was from >20
KLB/HR to ~600 KLB/HR. The overall average for this case is 33.6 KLB/HR, whereas
the median of the 100 trialsis 9.2 KLB/HR.
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Figure 5.4.7: Pl magnitude results for ANN models of feedwater data pool and test data.

The bands represent the 1s  variation in the results over the 100 iterations. (a) and (c)
provide results for al 100 iterations and (b) and (d) provide results for a reduced set of
models as explained below.
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After eliminating the results from the ANNS that exhibited MAE values greater than a
specified threshold, a set of modified Pl Magnitudes were obtained (figures 5.4.7.b and
5.4.7.d). The threshold was specified as the mean plus 1 standard deviation of the MAE
values from the 100 iterations. These mean PIM results from the reduced set of models
are much lower than the original set indicating the extreme influence of afew poorly
trained ANNSs on the overall results. Note the extremely large change between the
bootstrap values with respect to the data pool in figure 5.4.7.aand those in figure 5.4.7.b.
For example the 2 hidden neuron result in figure 5.4.7.b for mean bootstrap PIM was
~20KLB/HR, whereas in figure 5.4.7.a the mean bootstrap PIM magnitude was
~80KLB/HR. The number of ANNSs eliminated to obtain the reduced sets were: for the 1
hidden neuron case, 3 ANNs were eliminated and for the 8 neuron case 14 ANNs were
eliminated. For al other cases the number of eliminated ANNs was between 3 and 14.

Analogous results were obtained for the test data (figure 5.4.7.c and 5.4.7.d). The
reduction in the PIMs for the test data follows what was observed for the case of the data
pool; however, the values are till excessively high. Note that the reduction for the
anaytic PIMsisnot as drastic for the test data as it was for the data pool when the poor
performing ANNs were eliminated. The interpretation of these results can be best
summarized by stating that the ANN models for the feedwater flow data set were under-
regularized. While the use of early stopping via cross-validation provides some
regularization, it is not enough. Thisis evidenced by the high average PIM vaues for the
data pool and their significant increases incurred when computed for the test data. The
bootstrap Pl values are strongly dependent on the distribution of the estimations from the
100 iterations, or fewer if poorly performing ANNs are eliminated. Thus, the results

show a greater variance for the test estimations with respect to those for the data pool.
The corresponding coverage values for the ANN models are shown for al modelsin

figures 5.4.9.a and 5.4.9.c, and for the reduced set of modelsin figures 5.4.9.b and
5.4.9.d.
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Figure 5.4.9: Coverage values for ANN models of feedwater data pool and test data.
The bands represent the 1s  variation in the results over the 100 iterations. (&) and (c)
provide resultsfor all 100 iterations and (b) and (d) provide results for a reduced set of
models as explained below.
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Upon reevaluation of the coverage values for the modified prediction intervals, after
removing the poor performing ANNS, it was found that there were no significant changes
(figure 5.4.9). Thisis because the eliminated ANNs had extremely high prediction

intervals, and thus their corresponding coverage values were very near or equal to 1.

The instability of the ANN solutions for the feedwater flow data is reflected in the large
prediction intervals. Consequently, on average the point-wise prediction intervals and
corresponding esti mations for the test data bound the majority of the test measurements.
In this case it is known that the test measurements are not accurate; thus, the coverage of
these measurements is not the desired result. The high coverage values point to the large
uncertainty involved in the ANN models for this highly collinear data set and indicate
that further regularization is required.

The MAE results for the feedwater flow rate data pool are provided in figure 5.4.10.a,
and for the test data in figure 5.4.10.b. Extremely large variation is seen in the results for
the full set of models with respect to both the data pool and the test data. The reduced set
of models reduces this variation to a moderate level; however, it is still relatively high.
Using 1 or 2 hidden neurons provided the most reasonable results for the ANN models,
though the resultant prediction intervals were significantly larger and more variable than
for the NNPLS models. As can be seen in tables 5.4.2 and 5.4.3, the ANN models
resulted in the largest prediction intervals overall.

Based on the evaluations, the 2 hidden neuron model was selected as the most
appropriate ANN architecture. To illustrate possible results for a 2 hidden neuron model,
4 models were selected at random from the 100 and their results plotted in figure 5.4.11.

While the lower 2 subplots (figure 5.4.11) provide the appropriate results for the test data,

the upper left plot shows a case where the ANN model was poorly trained. The

extremely large prediction intervals reflect this, and therefore drift detection is not
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Figure 5.4.10: Mean absolute error results for ANN models of feedwater flow rate data.
The bands represent the 1s  variation in the results. The upper subplots provide the
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ANN Estimations for Feedwater Test Data (2 Hidden Neurons)
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Figure 5.4.11: Test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available 2 hidden neuron ANN

models. The coverage value for each case is indicated on the x-axis.
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available from this model's solution. The right upper subplot shows another scenario
where the ANN training again produced a poor model. Consider the results produced by
the 2 hidden neuron model which exhibited the median value of MAE over al 100
models (figure 5.4.12). This median result shows that a decent ANN model is achievable
for the feedwater data set; however, the fluctuations in the solutions from one model to
the next produce highly variable results.

Figure 5.4.13 shows the large variation in the estimated drift from the 100 2 hidden
neuron ANN models. The lower subplot only includes drift estimates from models
whose coverage of the test measurements was 5% or less from test sample 700 to 847,
which for the 2 hidden neuron ANN models results in 78 models out of 100. Even after
removing 22 of the models with high variation, the distribution of the drift estimates was
still relatively wide.

Overall, the ANN models for the feedwater flow rate data resulted in large prediction
intervals that were highly variable. Both the bootstrap and analytic intervals were
extremely large in magnitude. The coverage of the computed intervals was consistently
at or above the expected level of 95% for the data pool. Thus, the prediction intervals
reflect the high uncertainty associated with ANNs when dealing with collinear data.
While, the ANN models are not the best choice for this data, the prediction interval

methods performed as expected.

54.3 Kerne Regression Models and Analyses

The analyses for the KR models will provide interpretations of the results, a description
of the optimal bandwidth determination, and an analysis of the effect of the conditional

variance of the response estimate on the magnitude of the prediction intervals.

The PIMs and coverage values for the KR models are provided in figure 5.4.14. The
coverage values corresponding to the smallest bandwidths require some interpretation

(figures 5.4.14.c and 5.4.14.d). Because the bandwidths are very small, there will be a
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Figure 5.4.12: ANN median result estimation and analytic prediction intervals.
Representative results for 2 hidden neuron ANN model showing every 5™ estimate and
the corresponding analytic prediction intervals. This model exhibited the median value

of the 100 Mean Absolute Error results for the 2 hidden neuron models.
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ARN Drift Estimates for Feedwater Flow Test Data

m;
B & -
=
Sant 1
i}
=
(=
@opl §
L

D 1 1 1 — pr——

00 D 100 200 200 400 500 A0

KLE/MR (MEAN=33 6832), (STD DEV/=62 3665

Frequency 7 78
S

&

| L |
15 20 25 20 35 40 45 = 1] 55 1] 55

KLBMR MEAN=2E.8141), (STD DEW=6.46)

Figure 5.4.13: Distribution of drift estimate for 2 hidden neuron ANN models.

Drift estimates obtained from the 100 ANN models via computing the MAE over test
samples 700 to 847. The upper subplot shows al results, while the lower subplot
excludes any results for which coverage was greater than 5%.
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Figure 5.4.14: Pl magnitude and coverage results for KR models of feedwater data pool.

The bands represent the 1s  variation in the results over the 100 iterations.
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number of observationsin both the data pool as well as the test data that will result in all
kernel weights being zero. In computing the estimates for points as described, the KR
computations will result in adivision by zero; hence, the estimate will be returned as
NaN. Similarly the PI Magnitude will be NaN. The result of thisisthat observations
with associated Pl magnitudes of NaN will be counted as covered in the determination of
the fractional coverage. These points can be removed of course; however, they were
retained because logically it makes sense that since the model cannot provide an estimate
for the current observation, the associated uncertainty for that observation is unbounded.
It is necessary that these values be removed to calculate the PIMss, otherwise the average
would also be returned as NaN. It isimportant to note that these numerical issues are
only relevant for the very small bandwidths that should not be used in practice. For

reasonable bandwidths values, estimates are available for al of the observations.

As the bandwidth values increase beyond approximately 0.1 for both the data pool and
the test data, the coverage values indicate that >90% of the measurements are bounded by
the prediction intervals. While in the case of the data pool, this seems reasonable, in the
case of the test datait isnot. I1n both cases for large bandwidths, the solution is over-
regularized. An over-regularized model produces a nearly constant estimation for the
response, and the larger values of the PIMs (figure 5.4.14) for the over-regularized
solution result in prediction intervals which bound all of the measurements. This
eliminates the model's ability to detect the drifting feedwater flow rate channel.

Considering the PIMs for the KR data pool and test data, it is obvious that the bootstrap
PIMs have a much greater variation than the analytic PIMs. Thisindicates that there are
sources of uncertainty that are not being properly accounted for in the analytic prediction
interval computations.

Investigating the source of variability in the bootstrap PIMs leads to an illustration of the
deviation of the 100 individual KR model estimations from the mean value of the 100
estimations (figure 5.4.15). The plot illustrates that the majority of the variability is
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Figure 5.4.15: Deviation of estimates from the 100 KR models of the feedwater flow data
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centers around the regions of the data pool where transients exist. Because the valuesin
figure 5.4.14 are based on overall averages, the results are strongly influenced by the
observations exhibiting the large variability in the response estimates. Due to the nature
of the process changes during transients the relationships of a static model may not be
consistent. Comparing figure 5.4.15 to figure 5.4.1 clearly indicates that the problematic
observations occur during transient operations. Incorporating time based information
into the empirical models, through the addition of time-delayed variables in the predictor

variable set, would provide better performance during the transient periods.

Recall that the bootstrap computations result in asingle set of prediction intervals for the
data pool, derived from all 100 estimations. The bootstrap prediction intervals for the
data pool are shown below in figure 5.4.16. The obvious correlation between figures
5.4.16 and 5.4.15 indicate that the bootstrap prediction intervals are extremely large for a
relatively small number of observations. Moreover, these observations occur in transient

regions with respect to the feedwater flow rate response.

A similar effect occurs for the analytic prediction interval computations (figure 5.4.17);
however, due to the limits on the variance component of the computation the variation is
much more reduced. For the observations where the bootstrap prediction intervals
exhibit excessively large values, the analytic intervals correspondingly are at their
maximum values. The maximum value for the analytic prediction intervals will be
discussed later in this section.

Figure 5.4.18 shows the original bootstrap average PIMs along with the PIMs from the
modified set of observations (modified set described below). The reduction in variability

isinherently obvious, while changes in the overall mean values were only dlight.

The overall averages for the original intervals are shown in the upper plot, and the

averages over the modified set of observations are shown in the lower plot. The modified

set was created by eliminating observations where the Pl magnitude was greater than 20
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Figure 5.4.18: Original and modified bootstrap prediction intervals for KR models of the
feedwater flow rate data pool.

230



KLB/HR (seetable 5.4.4). The bands represent the 1s variation in the results over the
100 iterations.

The number of excluded observations as a function of bandwidth is shown in table 5.4.4.
Note that results for bandwidths >0.15 were not computed due to the large bias
dominating the prediction interval computations, requiring a higher threshold for removal

of observations.

The increase in the number of observations resulting in largely varying estimatesis
because as the bandwidth increases, the range of influence of the training vectors
increases, e.g. avector causing large response variations can only affect 10 pointsfor a
small bandwidth value, but can affect 30 points with a correspondingly larger value.

Figure 5.4.19 shows the original bootstrap coverage values along with the values
resulting from the modified intervals. In both cases the expected coverage level is
achieved or exceed for al bandwidths. Thisindicates that the reduction in the bootstrap
intervals did not affect the ability of the computed intervals to adequately contain the

measurements of the data pool.

The question of how will this estimation variance affect the performance of these
intervalsin practical applications can be answered by considering that the coverage of the
analytic intervals remains consistent. The bootstrap intervals tend to overestimate the
variability in the estimates, and the observed effects exaggerate the prediction interval
magnitudes. In addition, in practical applications models are often specialized over a
specific range of the response. Limiting the range of data will reduce or eliminate the
observed effects. Because the analytic intervals performed properly, and the bootstrap
intervals excessive fluctuation were related to arelatively small number of observations,
it is stated that the analytic prediction intervals adequately cover the measurements and
compare sufficiently well to the bootstrap prediction intervals after accounting for the

few observations of large variance.
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Table 5.4.4: The number of observationsin the data pool for which the KR estimate's
bootstrap PIM was >20KLB/HR

Bandwidth 0.005 | 0.025 | 0.05 0.06 0.07 0.080 | 0.090 | 0.100 | 0.125 | 0.15
# Observations
Removed 0 22 36 37 38 39 40 39 48 53
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Figure 5.4.19: Original and modified bootstrap prediction interval coverage values for
KR models of feedwater flow rate data pool.

The overall averages for the original values are shown in the upper plot, and the averages
for the modified set of observations are shown in the lower plot. The modified set was
created by eliminating observations where the Pl magnitude was greater than 20 KLB/HR
(seetable 5.4.4). The bands represent the 1s variation in the results over the 100
iterations.
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Consider the MAE values for the KR models with respect to the data pool (figure
5.4.20.4) and the test data (figure 5.4.20.b). The lower errors at lower bandwidths for the
data pool are expected due to the smaller level of model bias. Asthe bandwidth
increases, the error increases. Regarding the test data, the opposite trend is noted. In this
case, the larger errors at lower bandwidths are correct due to the drift in the channel being
estimated. The test error decreases to a minimum as the bias influences the estimation.
Eventually the bias becomes excessively large and the error increases as the overall

response tends toward a constant value.

To determine the bandwidth, the usual method of optimizing the trade-off between
variance and bias can be followed. Figure 5.4.21 shows this relationship based on the
training data. The optimal bandwidth based solely on the training data would be ~0.02.
When considering only the training data, a bias value near zero is achievable for very
small bandwidths. As the bandwidth increases the bias increases. On the other hand, for
small bandwidths the variance is at its maximum because the KR model is mapping every
point in the training set exactly. The maximum variance is thus equal to the conditional

variance estimate of the response.

Note that the squared bias in figure 5.4.21 is simply the training MSE. While theory
provides that the M SE of the kernel regression estimator is equal to the sum of the
variance and squared bias of the estimator, in practice at small bandwidths thisisrarely
observed. Thisisdueto the use of alimited set of data that is assumed to adequately
describe the predictor variable space. Of course attempts are made to provide adequate
representation inthe training data, though this assumption can never be fulfilled entirely
using data recorded from process sensors. Other contributing factors to the cumulative
sum of squared bias and variance not being equivalent to the M SE are the existence of
noise in the predictor variables, and the estimation of the response variable noise.
Because in practice subtracting the variance from the MSE, at small bandwidths, would
result in negative values this approach is not used for bias estimation. Further, if this
approach were carried out, the decrease applied to the biasis negligible in most cases. To

234



Average Absolute Ermor for Feedwater Data Pool

14
121 B
m
10} B
o
=]
2 g =3 4
10|
o
=13 m b
o
=]
Jou]
- 7 B
=]
ol &2 | | | | | | |
0 01 0.z 0.3 0.4 0.2 0.6 0.7 0.8
KR Bandwidth
a
Average Absolute Ermor for Feedwater Test Data

24 T T T T T

22 —% B
20+ B
18} % E

04g i
14+ % B
12 @ B
10 @ m B
8 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8
KR Bandwidth

Figure 5.4.20: Mean absolute error results for KR models of feedwater flow rate data.
The bands represent the 1s  variation in the results over the 100 iterations. () — data
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Yariance and Bias for KR Training Data (Feedwater)
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Figure 5.4.21: Variance/ squared bias plot for KR models of feedwater flow rate training
data.
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illustrate this, consider Figure 5.4.22 which shows the difference between the M SE and
Variance for the training data and compares thisto the MSE itself. From thisfigureitis
apparent that using the M SE as the bias estimate will not overly influence the overall

prediction interval computation.

Another consideration is that the bias estimate for the training datawill be significantly
different than the bias estimate for another independent set of data randomly sampled
from the same data pool. Figure 5.4.23 shows this result by comparing the bias and
variance estimates obtained for the training data with those obtained for a validation data
Set.

Because the models devel oped will be used to provide estimations for data that is
independent from the training data, it isimportant that the bias estimate be applicable to
all data of the given datapool. To combine al of thisinformation to choose the optimal
bandwidth the bias estimate utilized is the overall mean of the training and validation data
MSE, and the variance estimate is that obtained for all of the datain the data pool. Figure
5.4.24 provides this information and points to an optimal bandwidth choice of 0.025.
Note that the computations of variance and bias for the bandwidth value of 0.005
eliminate a sufficient amount of NaN estimates, as discussed above; therefore, the true
variance for this bandwidth is much higher. For the next larger bandwidth of 0.025,

estimates are available for all observationsin the data pool.

Using the optimal global bandwidth value (0.025), the estimates for the test datafrom 4
different KR models are presented (figure 5.4.25). To provide arepresentative result in
larger detail, the estimations and prediction intervals from the model which exhibited the
median value of MAE, out of the 100 possible KR models with a bandwidth of 0.025, are
shown in figure 5.4.26. In addition, an over-regularized solution is presented to illustrate
the effect of alarge bandwidth and its associated biasing effect (figure 5.4.27).
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Squared Bims Estimate ws MSE for KR Trining Data (Feedwater)
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Figure 5.4.22: Comparison of feedwater flow rate data M SE and M SE-Variance.
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Yariance and Bias for KR Bandwidth Optimization (Feedwater)
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Figure 5.4.24. Combined variance of training and validation data vs. squared bias of data
pool for KR models of feedwater flow rate data.

KR Estimations for Feedwater Test Data (Bandwidth=0.025)
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Figure 5.4.25: Test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available KR models with

bandwidth 0.025. The coverage value for each case isindicated on the x-axis.
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KR - Feedwater Test Data Estimations (Bandwidth = 0.025)
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Figure 5.4.26: KR median result estimation and analytic prediction intervals.
Representative results for KR model of bandwidth=0.025 showing every 5™ estimate and
the corresponding analytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the KR models with a bandwidth of 0.025.

240



KR -Feedwater Test Data Estimations (Bandwidth =0.5)
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Figure 5.4.27: Example of an over-regularized fit of a KR model to the feedwater flow
rate test data (bandwidth=0.5).
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Asafinal study, the effect of the estimate of the conditional variance of the response with
respect to the prediction interval magnitudes was analyzed. A simplified representation

of the analytic prediction interval computation is: +2+/var+bias? . Setting the biasterm

to zero, and expanding the variance term by separating out the estimate of conditional
variance (assume homoscedasticity) of the response yields. +2, /s w, "w_, where w, is
avector of normalized kernel weights, and var =s *w,"w, . Due to the normalization of

the weights O£ wiw,, £1; therefore, O£ var£s? and 0£ 2\/s *w]w_£2s .

For the feedwater flow dataset s 2 =447, and 2s = 4.23. Consider figure 5.4.28. The
upper subplot shows the PIMs, for a KR model of bandwidth h=0.025, where s =1. The
plot shows that the PIMswhen bias=0, range from 0 to 2, confirming that O£ var £ 2s
(when bias=0). Adding in the bias component increases the magnitude noting that for
this case, the average squared biasis ~4.5[KLB/HR]% The middle subplot also shows the
PIMs with and without the bias component, but in this case the actual variance estimate is
inserted (s * = 4.47). Finally the lower subplot provides the same information for the
caseof 2s”=8.947. Theoveral trend is obvious, that the PIMs increase as the
conditional variance increases. The trend also exists when the bias component is
included in the PIM computations; however, the differences are less significant as the
variance estimate increases. For the problem at hand, both the middlie and lower subplots
provide prediction intervals that will indicate that the feedwater test response has drifted.
Thus, in this case the sensitivity of the PIMsto the conditional variance estimate is not
very significant. Thisisnot always the case and in situations where the conditional
variance is significantly lower than that used here the sensitivity to the estimate is much

more pronounced.

The discussions regarding the estimation of the variance of the response intend to ensure
that the results presented are stable and repeatable, and not dependent on the specific

response variance estimate. Proper implementation of prediction intervals requires
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Figure 5.4.28: Analytic prediction interval magnitudes, of feedwater test data KR models,
for various conditional variance estimates.

Each subplot contains the prediction intervals with and without the bias component for
the KR models. The model bandwidth for the case presented is 0.025. Each subplot
provides the results for a different value of the conditional variance estimate: upper — 1,
middle- s =447, and lower - 2s > =8.947 . Average squared bias value, for KR
models, of bandwidth 0.025 is ~4.5[K LB/HR]?
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sufficient consideration of the variance estimate, though as evidenced, the resultant PIMs
are not overly sensitive to the estimate.

The distribution of the drift estimates from the 100 KR models of optimal bandwidth
(0.025) are shown in the upper subplot (figure 5.4.29) and the distribution of those
models exhibiting coverage values of less than 5% in the rang of test sample 700 to 847

is shown in the lower subplot.

The analytic prediction intervals for bandwidth values at or near the optimal value were
the smallest on average of all the models applied to the feedwater flow estimation
problem. It was also observed that the analytic coverage values were slightly less than
the expected value for bandwidth values <0.1. Thisinfersthat the variance estimateis
under-valued since thisis the region of the bandwidth range where the variance
component exerts the mgority of its influence. The coverage values for the bootstrap
intervals were all at or above the expected level (0.95).

While theinitially computed bootstrap prediction intervals exhibited extremely large
variations over the set of observations of the response variable, it was shown that the
source of this variation was due to alimited number of observations. When the response
estimates due to these observations were eliminated from the computations, the modified
bootstrap prediction intervals were very similar to the analytic prediction intervalsin
mean and variance. In addition, the coverage values for the modified bootstrap
prediction intervals were consistently above the expected level of 0.95.

The study of the effect of the conditional response estimate on the computed prediction
intervals indicated slight changes for an estimate 2x greater than the original estimate,
though considering the resultant increase in prediction interval magnitude of ~1-
2KLB/HR with respect to the magnitude of the response signal estimates >5000KLB/HR,

thisis not considered to be a significant sensitivity.
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KR Drift Estimates for Feedwater Flow Test Data
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Figure 5.4.29: Distribution of drift estimate for KR models of bandwidth 0.025.
Drift estimates obtained from the 100 KR models via computing the MAE over test
samples 700 to 847. The upper subplot shows all results, while the lower subplot

excludes any results for which coverage was greater than 5%.
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The average drift estimate was similar to what was observed for the 2 latent variable
NNPLS models, though for the case of KR (bandwidth = 0.025), the variation in the
estimates was dlightly greater.

54.4 Local Linear Regression Models and Analyses

The analyses for the LL models provide interpretations of the results, and a description of
the optimal bandwidth determination. An evaluation of the effect of the conditional
variance estimate on the prediction interval computationsis also completed, as was done

for the KR models in the previous section.

The analytic and bootstrap prediction interval magnitudes for the data pool and test data
are provided in figures 5.4.30.a and 5.4.30.b. The corresponding coverage values are
provided in figures 5.4.30.c and 5.4.30.d. Similar to what was seen for the KR models,
the bootstrap intervals have excessively large variability with respect to the PIMs. Also
seen hereis alarge difference between the bootstrap PIM average values with respect to
the analytic PIM average values. The large differences between the average values are
due to the limited range of the estimations from the KR models vs. the essentially
unlimited range of the estimations for the LL models. The bootstrap computation
involves the squared deviation of the individual estimates from the mean value (over 100
estimates) and thus is more influenced by the differences in the estimates from one model
to the next. The analytic computation involves the average of the squared deviations
from the measured values over the entire sampling space for a data set, thud specific
influential points are averaged in and their overall effect is reduced\ with respect to the
influence in the bootstrap computation. The effect is great enough to notice an increase
in the variance of the analytic PIMs results with respect to the results obtained for the KR
models. Further explanation for the large differences between the bootstrap and analytic

average PIMs will be provided below.

The coverage results indicate typical results. For small bandwidths, the analytic coverage
values with respect to the data pool are dlightly lower thanthe expected value of 0.95
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because the nodel is under-regularized. As the bandwidths increase the coverage values
approach the expected value of 0.95. The bootstrap coverage values correspond to their
large average values and variation. The coverage values for the test data are too high for
the smallest bandwidths due to the large PIMs. When reasonable bandwidth values are
used, the coverage of the intervals for the test data falls to the appropriate levels for this
case of adrifted signal.

Figure 5.4.31 shows the set of bootstrap prediction intervals (bandwidth = 0.08) and
figure 5.4.32 shows the analytic prediction intervals for all 100 LL models
(bandwidth=0.08). The bootstrap intervals show behavior similar to what was seen for
the case of the KR models (figure 5.4.16); however, for the LL case the effect is much
more pronounced. The excessive prediction interval values can be understood if one
considers the range of estimates from a KR model with respect to the unlimited range of
estimates from aLL model.

Table 5.4.5 provides the empirically observed minimum and maximum estimates for the
data pool from both the KR models and the LLmodels. For the previous discussion on
KR recall that the estimates were bound by a minimum and maximum value based on the
set of observations which comprise the training set. For LL models thisis not the case.
The bootstrap prediction intervals for LL exhibit a much larger variation than those for
KR, and the analytic prediction intervals now exhibit behavior similar to the bootstrap
intervals. Thisis due to the additional flexibility of the LL approach. Consider the
minimum and maximum bounds for the estimations from KR vs. those from LL. The
minimum and maximum values of the KR estimator are the minimum and maximum
values of the response vector in the training set. For the LL regression estimator thereis

No Minimum or maximum.

In addition the resultant numerical valuesin tables 5.4.2 and 5.4.3 require some
interpretation. The bootstrap intervals standard deviations are computed as the standard
deviation of the bootstrap PIMs for the number of samplesin the data pool. Conversely,
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Figure 5.4.31: Bootstrap prediction intervals for LL models of feedwater flow rate data
pool, bandwidth = 0.08.
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Figure 5.4.32: Analytic prediction intervalsfor all 100 LL models of feedwater flow rate
data pool, bandwidth = 0.08.
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Table 5.4.5: Minimum and maximum response estimates for KR and LL models with
respect to the feedwater flow rate data pool.

Minimum (KLB/HR) Maximum (KLB/HR)
Training Response 3620.4 5411.3
KR estimator 3620.4 5411.3
LL estimator 253.3 5582.6
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the analytic prediction interval standard deviation is computed as the standard deviation
of the 100 separate averages over the number of samplesin the data pool. Thus, the
bootstrap interval standard deviations show much greater variability than the

corresponding analytic prediction intervals.

Again, the limited number of observations which result in these excessively large PIMs
can be removed and the computations repeated. The number of excluded observations as
afunction of bandwidth is shown in table 5.4.6.

Theinitial increase in the number of observations resulting in largely varying estimatesis
due to the bandwidth increase alowing influential training observations to affect a greater
number of estimates. Thistrend levels off beyond a certain bandwidth value where the
number of observations being included in the current estimation becomes large enough to
mute the effects of the influential training observation. The original and recomputed
bootstrap prediction intervals are provided in figure 5.4.33, and the corresponding
coverage values are provided in figure 5.4.34. The results indicate that the bootstrap
PIMs were significantly reduced, down to the level of the corresponding analytic PIMs.

In addition the excessive variability has been removed. The corresponding coverage
values indicate that the modified prediction intervals still contain the measurements to the

expected degree.

The MAE results for the LL models are shown in figure 5.4.35. Theincrease in the MAE
values for the data pool was also seen for the KR models and is due to the addition of
model bias resulting in alarger error value. For the test data, as the bandwidth increases,
the estimate stabilizes and the error becomes relatively constant with increasing
bandwidths. The large errors which occur at the smallest bandwidths, for the test data,

are due to under-regularization.

To determine the optimal bandwidth for the LL models, consider the variance and
squared bias of both the training data and the validation data (figure 5.4.36). Aswas seen
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Table 5.4.6: The number of observations in the data pool for which the LL estimate's
bootstrap PIM was >40KLB/HR

Bandwidth 0.005 | 0025 | 005 | 006 | 0O7 [ 008 | 009 | 01| 0125 | 015 | 02| 025 |05 | 075
#

Observetions | 17 52 7 79 72 63 63 61 | 54 44 36 | 30 10 | 4
Removed
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Figure 5.4.33: Original and modified bootstrap prediction intervals of the LL models the

for feedwater flow rate data pool.
The overall averages for the original intervals are shown in the upper plot, and the

averages over the modified set of observations are shown in the lower plot. The modified
set was created by eliminating observations where the Pl magnitude was greater than 40

KLB/HR (seetable 5.4.6). The bands represent the 1s variation in the results over the

100 iterations.
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Figure 5.4.34: Original and modified bootstrap prediction interval coverage valuesfor LL
models of feedwater flow rate data pool.

The overall averages for the original values are shown in the upper plot, and the averages
for the modified set of observations are shown in the lower plot. The modified set was
created by eliminating observations where the Pl magnitude was greater than 40 KLB/HR
(seetable 5.4.6). The bands represent the 1s variation in the results over the 100

iterations.
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Average Absolute Ermor for Feedwater Data Pool
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Figure 5.4.35: Mean absolute error results for LL models of feedwater flow rate data.

The bands represent the 1S variation in the results over the 100 iterations. (&) data pool,
(b) test data.
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“ariance and Bims for LL Validation Data (Feedwater)
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Figure 5.4.36: Variance / squared bias plots for LL models of feedwater flow rate training
dataand validation data.
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for the KR case, the validation data bias is extremely large at low bandwidth values,
whereas the training bias approaches zero. Thisis due to the under-regularized solution
which results from a bandwidth value that istoo small. The LL models for these small
bandwidths are fitting the training vectors almost exactly; however, their abilities to
generalize on new data, drawn from the same data pool, are poor. Combining all of the
information from both the training and validation data by looking at the combined
variance of the training and validation data and the bias of the data pool (figure 5.4.37) it
is seen that the optimal bandwidth for the LL modelsis 0.08.

Based on this optimal bandwidth (0.08) 4 models of the 100 available were chosen at
random and their estimations for the test data and corresponding analytic prediction
intervals are shown in figure 5.4.38. In cases depicted, the drift is clearly discernable.
To provide adetailed illustration of the prediction intervals, the median result based on
the median MAE value for all 100 LL models of bandwidth = 0.08 (figure 5.4.39).

A similar analysis to what was performed for the KR models regarding the effect of the
conditional variance estimate on the prediction interval computations and corresponding
coverage values was performed (figure 5.4.40). Asthe magnitude of the conditional
variance estimate increases, the most noticeable change occurs in the region beyond
sample number 500. The interval magnitudes begin to increase in this region due to the
variance dominating the analytic prediction interval computation at the bandwidth value
of 0.08 (evidenced in figure 5.4.37). Aswas the case for kernel regression, the sensitivity
of the analytic prediction intervals to the estimate of the conditional variance of the
responseisrelatively negligible for the determination of drift in the feedwater flow rate
test data. The use of avalid estimate is recommended to ensure optimal performance;
however, detailed noise analyses of the response channel are unnecessary for this

application.
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3 Variance and Bias for LL Data (Feedwater)
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Figure 5.4.37: Combined variance of training and validation data vs. squared bias of data
pool for LL models of feedwater flow rate data.
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LL Estimations for Feedwater Test Cata Bandwidth=0.05)
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Figure 5.4.38: Test estimations and their corresponding analytic prediction intervals.

These 4 results were selected at random from the 100 available LL models with

bandwidth 0.08. The coverage value for each case is indicated on the x-axis.
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LL - Feedwater Test Data Estimations (Bandwidth = 0.08)
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Figure 5.4.39: LL median result estimation and analytic prediction intervals.
Representative results for LL model of bandwidth=0.08 showing every 5" estimate and
the corresponding aralytic prediction intervals. This model exhibited the median value
of the 100 Mean Absolute Error results for the LL models with a bandwidth of 0.08
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Figure 5.4.40: Analytic prediction interval magnitudes, of feedwater test data LL models,
for various conditional variance estimates.

Each subplot contains the prediction intervals with and without the bias component for
the KR models. The model bandwidth for the case presented is 0.08. Each subplot
provides the results for a different value of the conditional variance estimate: upper — 1,
middle- s =447, and lower - 2s > =8.947. Average squared bias value for LL model
bandwidth 0.08 is ~7.3[KLB/HR] 2
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Considering the distribution of the drift estimates from the 100 LL models of bandwidth
0.08 (figure 5.4.41), 97 out of the 100 models indicated coverage of |ess than 5% over
test samples 700 — 847. Thiswas the highest level of confirmed drift for all empirical
models studied.

Overdl, the LL models for the feedwater flow data provided analytic prediction intervals
dightly higher than those observed for the KR models, though less than those observed
for the ANN and NNPLS models. The bootstrap prediction intervals exhibited extreme
variation due to the results from alimited number of response estimates. Again, if these
estimates are eliminated from the bootstrap computations, the resultant prediction
intervals would be reduced and similar to the corresponding analytic prediction intervals.
The analytic prediction intervals resulted in coverage values which were slightly lower
for all bandwidths evaluated. Thisisin part due to aless than adequate variance
estimate. It isexpected that an improved variance estimator, in the prediction interval
computation, would increase the resultant coverage values. The error values for the data
pool were relatively low with respect to the other models. The variation in the analytic
prediction intervals was larger than those observed for the KR models. Thisis mainly
due to the increased range of possible estimates for the LL models with respect to the KR

models.

The study of the effect of the conditional variance estimate on the prediction interval
magnitudes revealed that their sensitivity to this estimate is not extremely significant, and

areasonable estimate for the conditional variance estimate will suffice.
The drift estimates from the LL models provided the largest average drift result along

with arelatively large variation in the estimates, exceeded only by the ANN model

results.
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LL Drift Estimates for Feedwater Flow Test Data
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Figure 5.4.41: Distribution of drift estimate for LL models of bandwidth 0.08.
Drift estimates obtained from the 100 LL models via computing the MAE over test
samples 700 to 847. The upper subplot shows all results, while the lower subplot
excludes any results for which coverage was greater than 5%.
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54.5 Feedwater Flow Rate Data Set Summary of Results

Regarding the average errors with respect to the data pool from the optimal architecture
from each model: NNPLS — 2 |atent variables, ANN — 2 hidden neurons, KR — h=0.025,
LL —h=0.08, the minimum was observed for the KR models, then in increasing order,
LL, NNPLS, and ANN. Regarding the analytic prediction intervals from the optimal
architectures of each model, the order of minimum to maximum average value is the
same as above for the error values. The variation of the prediction interval magnitudes
follows an identical trend. Considering the bootstrap prediction intervals from the
optimal architecture models, the minimum average occurred for the KR models, while the
minimum variation occurred for the NNPLS models. The KR models average analytic
prediction interval magnitude was significantly lower (~7KLB/HR) with respect to the
NNPLS value (~16KLB/HR). The variation in the average results was for KR,
~5.53KLB/HR, and for NNPLS, ~5.46KLB/HR. The greater average value for the
NNPLS modelsis due to the greater bias resulting from the compression of the
information from 17 predictor variables into 2 resultant latent variables. The benefit of
this bias introduction is a reduced variability in the estimates, while the drawback isan
increased bias reflected in the larger error value for the NNPLS models
(MAE=4.9KLB/HR) with respect to the KR models (MAE=2.1KLB/HR). The average
bootstrap prediction intervals for the LL models were significantly greater (~31KLB/HR)
with a correspondingly large variation (~168KLB/HR). This excessive fluctuation results
from the unlimited estimate range of the LL models with respect to the bounded range of
the KR models, as discussed in sections 5.4.3 and 5.4.4. The source of this excessive
variation was traced back to alimited number of response estimates overall. Removal of
these response estimates from the cal culations reduced the bootstrap intervals for the LL
models with respect to the data pool to asimilar level as observed for the analytic
intervals, while maintaining the expected level of coverage (0.95). Of course, the ANN
bootstrap intervals were extremely high, due to the instability of the ANN modelsin lieu
of the highly collinear data set.
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Focusing on the test data results, the analytic prediction interval magnitudes for the
NNPLS and KR models exhibited mild increases in average value and variation, while
the increases for the LL and ANN models were more substantial. On the other hand, the
increases in average value and variation for the bootstrap intervals with respect to the test
data exhibited significant increases for all optimal model architectures, with the exception
of the NNPLS models for which the change was negligible. Again, thisinfers the utility
of the NNPLS model for collinear data sets, illustrated by the stability of the range of
estimates produced, quantified by the bootstrap prediction intervals.

The average coverage values for the data pool were al above the expected level of 95%
for the NNPLS models. This again was observed for the ANN models. While the
intervals for the ANN models were extremely large in magnitude and exhibited
tremendous variation, thisis appropriate for the resultant estimates obtained from the
ANN models. In other words, the excessive variation in the ANN estimators was
properly reflected in the prediction interval computations. For the KR and LL modelsit
was noted that the coverage values for smaller bandwidths were lower than they were at
higher bandwidth values. This pointsto alow variance estimate as the culprit, since
lower bandwidth regions are where variance provides its influence. At the optimal
bandwidths, the KR models (h=0.025) provided analytic intervals with an average
coverage of 86% and the LL models (h=0.08) provided analytic intervals with an average

coverage of 92%.

The coverage values of the analytic prediction intervals for the test data were consistently
small for the NNPLS models. For the ANN models, these values were moderately
increased, and as the complexity of the ANN models increased the ability to discern the
drift was reduced. Increased complexity resultsin increased variance in the estinmates,
thus this was an expected result. For the KR and LL models, the analytic prediction
interval coverage values at the smallest of bandwidths are influenced by numerical effects
as discussed in section 5.3. Beyond these small bandwidths, the results for the analytic
coverage values with respect to the test data were near expected levels (~30%) for the KR
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models near the optimal bandwidth. As the bandwidth increased, the bias introduction

led to significant increases in the prediction interval magnitudes, and consequently the
coverage valuesincreased. For the KR models where h>0.1, the drift was no longer
identifiable. For the LL models, the test data coverage values were consistently small for
bandwidths in the range of the optimal bandwidth (0.08). The rate of biasincrease for the
LL models was evidenced to be much slower than observed for the KR models.
Moreover, for the LL models the analytic prediction interval computations were
dominated by the variance component, even at the larger bandwidth values of the range
of bandwidths evaluated.

Overall, the analytic prediction intervals for the NNPL S models were sufficiently similar
to the bootstrap prediction intervals. Noted exceptions were for the 3 and 4 latent
variable models with respect to the test data, where the analytic intervals exceed the
bootstrap intervals by alarge margin. The coverage values for both the bootstrap and
anaytic intervals were consistently above the expected value of 0.95, and for the test data
consistently in the range of 0.3. Thus, the uncertainty of the NNPL S were sufficiently

accounted for in the prediction interval computations for the feedwater flow data set.

The ANN bootstrap prediction intervals were significantly greater than the analytic
intervalswith respect to the test data. Consequently the bootstrap intervals consistently
contained the majority of the response measurements for the test data. This was an
improper result considering the known drift. The coverage values for the analytic
intervals were lower, though did not consistently provide a situation where the drift in the
response was clearly discernable. It was noted that the average values for bootstrap
prediction intervals became more similar to the average values for the analytic intervals
as the model complexity increased. Thus, reflecting the increased contribution to the
analytic computations from the additional, unnecessary free parameters. Overal, the
ANN models produced poor estimations for the feedwater flow rate data. The instability
of the standard ANN design for collinear data sets was clearly demonstrated.
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Regarding the data pool, the KR analytic intervals were general lower in average
magnitude than the corresponding bootstrap prediction interval s across the range of
bandwidths. The coverage values for the analytic intervals remained dlightly below the
expected value of 0.95, though the deviation decreased at larger bandwidths. Because the
variance component decreases as the bandwidth increases, the effect of an insufficient
estimate of this variance would be reduced as the bandwidth increases. Thus, the slightly
lower than expected values for the coverage of the analytic prediction intervalsis
attributed to an insufficient variance estimate. Introducing a greater variance influence
into the analytic prediction interval computation should effectively compensate for the
observed differences between the interval estimates and produce coverage values at the

expected level.

The above discussions regarding the KR model results with respect to the data pool aso
appliesto the test dataresults. An additional observation was noted for the test data that
large bandwidth models are unable to identify the drift in the response. Overal, the KR
models for the feedwater flow rate data performed adequately, resulting in the minimum
average error with respect to the data pool when the optimal architecture was used
(h=0.025). The coverage of the analytic prediction intervals of the data pool
measurements at the optimal bandwidth was 86%. While, the discussed lower than
average coverage value results require that modifications be made to the variance
computation, the resultant models performed consistently. An implementation that may
improve the resultant coverage resultsis that of a density estimator. The KR models
were seen to be relatively unstable for estimations based on query observations with little
representation in the training data set. The implementation of an estimate of the density
of the training data at the current query point should reduce these effects. Query
observationsin regions of correspondingly high density regions of the training data set
should have corresponding estimates of higher certainty than estimates from observations
occurring in regions of the training data set where the density of observationsislow. In
addition, there were many observed estimates at or near the boundaries of the training set
response. The boundary effects of KR models have been well documented, and the
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inclusion of a measure of distance from the boundary may also produce more adequate
interval estimates.

Considering the results for the LL models with respect to the data pool, similar
observations as to those reported for the KR models are again seen. The bootstrap
intervals were consistently higher than the analytic prediction intervals. Asthe
bandwidth increased and the variance contribution decreased, the deviation between the
results from the analytic and bootstrap prediction intervals was reduced. Again, the
proposed assumption is that an improved estimate of the variance of the estimator will
lessen the noted deviations. The overall MAE values were consistently the lowest of all
models with respect to the data pool, with a couple of exceptions at small bandwidths.
The coverage values for the analytic intervals were slightly lower than the expected
value, and at the optimal bandwidth the analytic prediction interval coverage value was
92%. Asthe bandwidth increased, the coverage values moved closer to the expected

value.

One of the mgjor observed differences between the KR and LL mode resultsis that the
region of optimal bandwidth for KR is much more narrow than that for the LL models.
Thisisaresult of the much more rapid bias increase exhibited by the KR modelswith
respect to the LL models. Thisisalogical result considering that over-regularized KR
models fit a constant; whereas, over-regularized LL modelsfit aline. Assuming the
functional form is more complex than aline, of the two, the overregularized LL model
would be |ess biased.

Considering the LL results for the test data, the excessively large bootstrap prediction
intervals was traced back to alimited set of points within the response test data set.
Reducing the influence of these observations results in much more reasonabl e prediction
intervals. Thus, the bootstrap intervals are reflecting the huge variation that exists at a
select few points in the response data.
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The study of the effect of the conditional variance estimate on the computed prediction
interval magnitudes revealed that the interval computations were not overly sensitive to
this estimate. Whileit isimportant to produce afairly accurate estimate, the described

methods will not fail as long as a reasonable estimate is made.

The drift estimates for the feedwater flow test data are summarized below in table 5.4.7.
The results indicate that the most stable drift estimates were from the 2 latent variable
NNPLS models. Thisillustrates the utility of the NNPLS algorithm for highly collinear
datasets. Along the same lines, due to the collinear data, the ANN model drift estimates
were extremely variable. Due to the consistent coverage of the analytic prediction
intervals from the NNPL S models with respect to the data pool to the expected level, the
drift estimate produced is assumed to be the most certain estimate. Whilethe KR and LL
models produced higher estimates, the coverage of their corresponding prediction
intervals with respect to the data pool were slightly below the expected level, thus the
estimates from these models is assumed to be less certain than those from the NNPLS
models. Table 5.4.7 also includes average drift estimates from a reduced set of models,
where the reduction was performed by removing results corresponding to models where
the coverage value was >5%. Thiswas done to remove the influence of poor models for
the task at hand of estimating the drift. For the most part the changes in the average drift
were small. The only major change was incurred for the ANN models which in some

cases produced extremely high drift estimates.

5.5 TURBINE PRESSURE DATA SET

In this section, an initial description of the data and model parametersis given followed
by tabulated and plotted results. For this data set, the discussion of the results is done on
amodel type basis, each model being discussed in a separate section. A summary at the
end (section 5.5.5) draws comparisons between the results from the different model
types. Similar to the feedwater flow data set, the turbine pressure data set response
variable contained a known drift. Quantification of the drift estimates of the different
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Table 5.4.7: Summary of Feedwater Flow Rate Drift Estimation

Model All Estimates # of Resultswhere | Reduced # of Estimates

Type m (KLB/HR) | s (KLB/HR) | Coverage< 5% m (KLB/HR) | S (KLB/HR)
NNPLS(2) | 37.6 3.0 90 37.7 29

ANN (2) 337 62.4 78 289 6.5

KR (0.025) | 360 41 81 36.7 3.7

LL (0.08) 411 6.8 97 41.6 6.1

* Numbers in parentheses under model type indicate the number of latent variables
(NNPLS), the number of hidden neurons (ANN), or the bandwidth (KR and LL).
Coverage <5% based on test samples 700-847.
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models was also completed, and the average results along with the variation of these
results are reported.

The turbine pressure data set contains 5 predictor variables. 3 steam generator steam
pressures, aturbine first stage pressure, and the unit gross generation. The response
variable is also aturbine first stage pressure channel, though not the same channel as the
oneincluded in the predictor variable set. The datawas provided by the Electric Power
Research Ingtitute (EPRI) and is from an operating U.S nuclear power plant. One-minute
sampled data were available from 3/2001 to 1/2002. Similar to the feedwater flow data
set, the response variable contains a known drift. The data pool was constructed using
data drawn from the period of operation covering 3/2001 — 6/2001. Test data cover the
entire period from 3/2001-1/2002. The turbine pressure data pool with respect to the
response variable is shown in figure 5.5.1. When the turbine pressure channel is
mentioned throughout these discussions, it is the response turbine first stage pressure to
which is being referred and not the turbine first stage pressure channel of the predictor
variable set. A distinction will be made if referring to the turbine first stage pressure
channel of the predictor variable set.

The datapool (X ;Y ) Of dimensions (n, ~ p) and (n,,, 1) respectively were

pool pool

specified by: n,, =1675, p=5. The observationsin the data pool cover thefirst 4
months of the period from 3/2001 — 1/2002. The 100 training data sets: (X°,,Y",), of
dimensions (n,” p),and (n, " 1) respectively were specified by: n, =800, p=5. The
training observations were drawn at random, with replacement, from the data pool. In all
cases, b=1,..,B and B=100. The 100 vaidation data sets (X°,,Y",) of dimensions
(n,” p) and (n,” 1) respectively were specified by: n, =300, p=5. Thevalidation
observations were drawn at random, with replacement, from the datapool. The test data
set (X, Y,)of dimensions (n,” p) and (n.” 1) respectively was specified by:

n, =1432, p=5. Thetest data cover approximately 11 months of plant operation (300

minutes between samples).
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Figure 5.5.1: Turbine first stage pressure response data pool.
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The required model specifications used for the feedwater flow rate data are provided
below:

NNPLS:

M ean-standard initialization was applied. The maximum number of latent variablesto
evaluate was set at 5.

ANN:

M ean-standard initialization was applied. The minimum and maximum numbers of
hidden neurons evaluated were 1 and 4, respectively.

LPR:

The vector of bandwidths to be evaluated was:

[0.005 0.025 0.05 0.06 0.07 0.08 0.09 0.1 0.125 0.15 0.2 0.25 0.5 0.75];

The conditional variance was estimated as s y2 =4.32.

The overal results for the turbine pressure data pool are presented in table 5.5.1, and for
the test datain table 5.5.2. All of the following discussions for the turbine pressure data
set results refer to the values in these two tables. The 4 sections that follow present the

results for each model type and a summary at the end (section 5.5.5) draws comparisons

between the results for the different models.

5.5.1 Neural Network Partial Least Squares Model Results and Analyses

The prediction interval magnitudes and coverage values for the NNPLS models of the
turbine pressure data are provided in figure 5.5.2. The PIMsfor the data pool follow the
expected trends for both the bootstrap and the analytic approaches. The significant
increases in magnitude and variation for the NNPLS model's test data PIMs, for the 4 and
5 latent variable models (figure 5.5.2.b), are due to the increased complexity of the model
as the number of latent variablesincreases. The data pool coverage values also indicate
the expected behavior. The analytic coverage values, with respect to the test data, for the
1 latent variable model show extreme variation due to the PIMs being very close to the
drift level inthiscase. The average PIM for the 1 latent variable models for the test data

iIS~9PSIA, and the drift level in the test datais ~10PSIA. Thus, slight variability in the
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Table 5.5.1: Tabulated results for turbine pressure data pool*.
(For full explanation of terms see section 5.2)

M odel Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1 7.982 4.261 10.936 4.249 0.953 0.016 0.984 0.017 1.981 22.044
NNPLS 2 4.136 1.417 6.212 2.837 0.961 0.014 0.991 0.014 1.293 6.531
NNPLS 3 3.698 1.284 5.791 2.821 0.966 0.014 0.991 0.013 1.150 5.610
NNPLS 4 3.663 1.289 5.977 3.003 0.966 0.014 0.992 0.012 1.132 5.993
NNPLS 5 3.648 1.283 5.953 3.000 0.967 0.013 0.992 0.013 1.120 5.949
ANN 1 1.274 0.024 1.290 0.011 0.953 0.005 0.956 0.003 0.516 0.411
ANN 2 1.172 0.049 1.248 0.138 0.960 0.006 0.970 0.006 0.474 0.354
ANN 3 1.103 0.070 1.206 0.180 0.957 0.007 0.972 0.006 0.441 0.320
ANN 4 1.053 0.075 1.185 0.218 0.953 0.007 0.972 0.007 0.417 0.301
ANN 5 1.005 0.092 1.141 0.225 0.952 0.008 0.974 0.009 0.393 0.276
KR 0.005 3.871 0.021 0.905 0.233 1.000 0.000 0.989 0.003 0.186 0.104
KR 0.025 3.704 0.022 0.964 0.328 0.999 0.001 0.979 0.004 0.208 0.124
KR 0.050 3.153 0.023 0.905 0.432 0.996 0.002 0.975 0.005 0.212 0.114
KR 0.060 2.856 0.022 0.889 0.551 0.994 0.002 0.973 0.005 0.219 0.112
KR 0.070 2.561 0.019 0.887 0.687 0.993 0.002 0.969 0.005 0.227 0.112
KR 0.080 2.294 0.017 0.890 0.805 0.993 0.002 0.966 0.005 0.236 0.113
KR 0.090 2.066 0.014 0.891 0.859 0.991 0.002 0.963 0.006 0.246 0.117
KR 0.100 1.879 0.013 0.902 0.896 0.989 0.002 0.959 0.005 0.257 0.122
KR 0.125 1.565 0.013 0.951 0.992 0.983 0.003 0.955 0.006 0.287 0.142
KR 0.150 1.405 0.015 1.008 0.977 0.974 0.004 0.952 0.006 0.321 0.172
KR 0.200 1.327 0.022 1.169 0.957 0.954 0.005 0.948 0.006 0.395 0.255
KR 0.250 1.387 0.026 1.335 0.922 0.937 0.007 0.939 0.007 0.465 0.356
KR 0.500 1.764 0.046 1.819 0.856 0.919 0.008 0.926 0.004 0.669 0.732
KR 0.750 1.973 0.052 2.036 0.764 0.930 0.008 0.935 0.004 0.779 0.948
LL 0.005 8.052 0.405 20.486 1.364 0.678 0.015 0.998 0.001 5.893 78.654
LL 0.025 9.338 1.419 25.194 24.127 0.843 0.009 0.978 0.007 3.243 74.839
LL 0.050 6.974 0.543 13.979 32.561 0.954 0.005 0.988 0.004 0.865 12.681
LL 0.060 6.073 0.428 11.657 34,991 0.964 0.004 0.989 0.004 0.619 6.538
LL 0.070 5.394 0.402 9.983 41.860 0.971 0.004 0.989 0.004 0.431 2.245
LL 0.080 4.830 0.309 9.174 47.449 0.977 0.003 0.988 0.004 0.338 0.795
LL 0.090 4.382 0.264 8.331 48.449 0.981 0.003 0.985 0.004 0.292 0.338
LL 0.100 4.035 0.423 8.491 51.691 0.983 0.002 0.978 0.005 0.272 0.210
LL 0.125 3.360 0.440 8.028 53.157 0.986 0.002 0.967 0.006 0.262 0.148
LL 0.150 2.844 0.263 7.094 50.080 0.986 0.002 0.960 0.006 0.266 0.139
LL 0.200 2.260 0.159 5.872 45.625 0.983 0.003 0.951 0.005 0.282 0.142
LL 0.250 1.943 0.112 4.640 39.263 0.979 0.003 0.948 0.004 0.296 0.149
LL 0.500 1.513 0.803 2.093 22.750 0.966 0.004 0.942 0.004 0.339 0.180
LL 0.750 1.264 0.065 1.321 15.138 0.960 0.005 0.941 0.004 0.372 0.211

* APl — Analytic prediction intervals, BPI — Bootstrap prediction intervals, m - mean
result, s - standard deviation of results, MAE — Mean Absolute Error, MSE —Mean
Squared Error, Type for NNPLS refers to the number of latent variables, for ANNs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR

—Kernel Regression, LL — Local Linear Regression.
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Table 5.5.2: Tabulated results for turbine pressure test data.*
(For full explanation of terms see section 5.2)

M odel Type API BPI AC BC MAE M SE
m S m S m S m S
NNPLS 1 8.784 4.338 10.964 4.201 0.577 0.270 0.629 0.073 7.402 84.076
NNPLS 2 6.048 3.696 6.749 3.724 0.360 0.041 0.431 0.033 7.213 77.208
NNPLS 3 9.307 13.966 6.752 3.877 0.397 0.070 0.453 0.044 7.177 77.003
NNPLS 4 16.265 30.919 16.820 12.901 0.495 0.130 0.818 0.058 7.556 156.079
NNPLS 5 35.681 72.374 17.490 13.693 0.620 0.168 0.830 0.060 7.642 163.973
ANN 1 1.284 0.024 1.298 0.013 0.322 0.004 0.323 0.003 5.489 46.979
ANN 2 1.201 0.050 1.443 0.457 0.318 0.011 0.331 0.011 5.613 49514
ANN 3 1.193 0.106 1.421 0.424 0.321 0.010 0.333 0.009 5.630 50.281
ANN 4 1.193 0.097 1.595 0.521 0.321 0.012 0.340 0.011 5.754 52.675
ANN 5 1.200 0.117 1.549 0.496 0.323 0.012 0.344 0.012 5.720 52.305
KR 0.005 3.866 0.033 0.927 0.219 0.994 0.002 0.991 0.002 0.334 0.471
KR 0.025 3.760 0.062 1.036 0.469 0.392 0.006 0.392 0.003 6.347 61.160
KR 0.050 3.412 0.060 1.046 0.717 0.336 0.007 0.356 0.004 6.440 61.893
KR 0.060 3.250 0.061 1.357 1.871 0.329 0.005 0.347 0.008 6.460 62.216
KR 0.070 3.088 0.061 1.418 2.101 0.326 0.004 0.343 0.008 6.463 62.275
KR 0.080 2.928 0.063 1.426 2.143 0.324 0.004 0.341 0.008 6.463 62.282
KR 0.090 2.772 0.064 1.414 2.136 0.322 0.004 0.341 0.008 6.464 62.288
KR 0.100 2.621 0.066 1.415 2.145 0.321 0.004 0.340 0.008 6.466 62.295
KR 0.125 2.270 0.064 1.444 2.174 0.316 0.004 0.338 0.008 6.473 62.341
KR 0.150 1.978 0.056 1.480 2.168 0.312 0.003 0.336 0.008 6.483 62.402
KR 0.200 1.633 0.038 1.586 2.095 0.307 0.004 0.335 0.007 6.511 62.596
KR 0.250 1.546 0.032 1.719 2.015 0.304 0.005 0.333 0.007 6.546 62.912
KR 0.500 1.810 0.047 2.098 1.571 0.297 0.007 0.323 0.009 6.719 64.783
KR 0.750 1.985 0.053 2.180 1.030 0.295 0.004 0.305 0.007 6.864 66.524
LL 0.005 7.463 0.441 19.147 0.912 0.858 0.010 0.998 0.001 8.887 105.183
LL 0.025 8.777 3.050 41.330 22913 0.354 0.010 0.490 0.011 89.611 15527.01
LL 0.050 34,575 10.959 62.279 68.884 0.716 0.035 0.793 0.021 51.663 12154.75
LL 0.060 36.916 9.652 44.874 65.273 0.829 0.024 0.713 0.016 35.733 9445.950
LL 0.070 33.486 6.588 29.133 57.744 0.873 0.016 0.598 0.014 27.743 7676.229
LL 0.080 28.927 4.420 22.151 55.031 0.879 0.014 0.524 0.014 24.844 6933.865
LL 0.090 24.846 3.246 19.212 55.222 0.870 0.015 0.479 0.016 23.412 6435.847
LL 0.100 21.449 2.531 19.038 58.911 0.851 0.017 0.445 0.018 22.238 5875.719
LL 0.125 15.646 1.985 20.390 68.006 0.784 0.022 0.396 0.019 19.113 4376.451
LL 0.150 11.952 1.820 20.064 69.297 0.706 0.023 0.368 0.016 16.074 3067.412
LL 0.200 7.979 1.335 15.459 58.257 0.592 0.018 0.355 0.010 9.429 715.011
LL 0.250 6.143 0.918 8.291 38.624 0.519 0.016 0.352 0.007 6.106 68.741
LL 0.500 2.802 0.684 2.139 17.460 0.360 0.004 0.314 0.005 5.776 52.131
LL 0.750 1.894 0.146 0.997 0.311 0.346 0.003 0.304 0.002 5.694 50.373

* APl — Analytic prediction intervals, BPl — Bootstrap prediction intervals, m - mean

result, s - standard deviation of results, MAE —Mean Absolute Error, MSE —Mean
Squared Error, Type for NNPLS refers to the number of latent variables, for ANNSs refers
to the number of hidden neurons, and for KR and LL refers to the bandwidth parameter.
NNPLS — Neural Network Partial Least Squares, ANN — Artificial Neural Network, KR
—Kernel Regression, LL — Local Linear Regression.
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Figure 5.5.2: Pl magnitude and coverage results for NNPLS models of turbine pressure

datapool. The bands represent the 1s variation in the results over the 100 iterations.
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estimates will result in large changes in the coverage values. The large variation in the
analytic PIM for the 5 latent variable models was similar to what was observed for the
feedwater flow data. Increasesin model complexity that provide no benefits with respect
to model performance can only reduce the stability of the solution. The remainder of the
PIMs and coverage value results were consistent with what was observed for the previous
data sets.

The error values (figure 5.5.3) correspond well with the PIM results, and indicate that the
2 latent variable models provide the best fit over al architectures evaluated. A sampling
of estimations from randomly selected 2 latent variable modelsis provided in figure
5.5.4. The highly varying prediction intervals indicate that the NNPLS models of the
turbine pressure channel are highly unstable. The turbine pressure data is not well suited
for the NNPLS architecture because it does not exhibit high linear correlations between
the predictor variables and the response.

There are a significant number of cases for which the analytic PIMs become excessively
largein localized areas. Consider figure 5.5.5 which shows a 2 latent variable model
with excessively large prediction intervals over alocalized region. On the other hand,
figure 5.5.6 shows a better result where the prediction intervals are consistent over the

entire response variable.

Consider the distribution of the magnitude of the drift estimate over all 100 models
(figure 5.5.7), and for only those models which provided prediction intervals which
exhibited a coverage value of <5% over test samples 600 to 1430. The drift estimate was
fairly stable due to the use of the MAE as its estimator; however, the prediction intervals
indicate that the NNPL S architecture is not well suited for the turbine pressure data set.

Overall, the NNPLS prediction intervals reflect the high uncertainty associated with the
NNPLS models for the given data set. The coverage values for the computed prediction
intervals were consistently greater than or equal to the expected level for al model
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Figure 5.5.3: Mean absolute error results for NNPLS models of turbine pressure data.
The bands represent the 1s  variation in the results over the 100 iterations. (a) — data
pool, (b) —test data
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MMPLE Estimations for Turbine Pressure Test Data (2 Latent Variables)
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Figure 5.5.4: NNPL S test estimations and their corresponding analytic prediction
intervals.
These 4 results were selected at random from the 100 available 2 latent variable NNPLS

models. The coverage value for each case isindicated on the x-axis.
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Figure 5.5.5: NNPLS median result estimation and analytic prediction intervals.
Representative result of NNPLS 2 latent variable models. This model exhibited the

median vaue of the 100 Mean Absolute Error results for the 2 latent variable models.
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MMPLS - Turbine Pressure Test Data Estimations (2 Latent Variables)
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Figure 5.5.6: 2 latent variable NNPL S model with good behavior for turbine pressure test
data.
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MMPLE Crift Estimates for Turbine Fressure Test Data
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Figure 5.5.7: Distribution of drift estimate for 2 latent variable NNPLS models.
Drift estimates obtained from the 100 NNPL S models via computing the MAE over test
samples 600 to 1430. The upper subplot shows all results, while the lower subplot

excludes any results for which coverage was greater than 5%.
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architectures with respect to the data pool. Coverage values for the test data were higher
than expected considering the known drift, though accurately reflecting the uncertainty of
the NNPLS models for this data set.

5.5.2 Artificial Neural Network Mode Resultsand Analyses

The PIMs and coverage values for the ANN models of the turbine pressure data set are
shown in figure 5.5.8. Thefirst observation is that the magnitudes of the PIMs are much
lower than that from the NNPLS models. The dlightly higher magnitudes for the
bootstrap PIMs is similar to what has been seen for both of the previous data sets with
respect to ANN models. The average coverage values for the data pool are all above the
expected value of 0.95. The test data coverage values indicate the presence of drift in the

response data viatheir low values.

The MAE values (figure 5.5.9) show that the errors for the data pool were consistently
low, and the larger values for the test data are due to the deviation of the estimates from

the measurements which include the drift.

The 2 hidden neuron architecture was selected as optimal for this data set. Thisdecision
was based on the results with respect to the data pool only. Test data results should not
influence optimal model determination. Of the 100 2 hidden neuron models for the
turbine pressure data, 4 were selected at random and their estimations and analytic
prediction intervals were plotted (figure 5.5.10). In each of the 4 plots the drift is clearly
identifiable and the prediction intervals are consistent over the entire test response. A

representative result is shown in greater detail in figure 5.5.11.

Finally, the distribution of the resultant drift estimatesis shown in figure 5.5.12. In this

case, all models exhibited analytic prediction intervals that covered the response variable
measurements, between test samples 600 to 1430, to alevel of <5%. The drift estimation
distribution shows that the ANN models were able to consistently identify the drift in the

turbine pressure response, and the variability in the estimates was sufficiently small.
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Figure 5.5.8: Pl magnitude and coverage results for ANN models of turbine pressure data

pool. The bands represent the 1s variation in the results over the 100 iterations.
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Figure 5.5.9: Mean absolute error results for ANN models of turbine pressure data. The
bands represent the 1s variation in the results over the 100 iterations. (a) — data pool, (b)
—test data
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ANMN Estimations for Turbine Pressure Test Data (2 Hidden Meurans)
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Figure 5.5.10: ANN test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available 2 hidden neuron ANN

models. The coverage value for each case is indicated on the x-axis.
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Figure 5.5.11: ANN median result estimation and analytic prediction intervals.
Representative result of 2 hidden neuron ANN models. This model exhibited the median

value of the 100 Mean Absolute Error results for the 2 hidden neuron models.
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ARMRMN Drift Estimates for Turbine Pressure Flow Test Data
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Figure 5.5.12: Distribution of drift estimate from 2 hidden neuron ANN models.
Drift estimates obtained from the 100 ANN models via computing the MAE over test
samples 600 to 1430. All 100 models provided <5% coverage in the region of drift.
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Overal the ANN models for the turbine pressure data set were stable and consistent.

I ssues regarding collinearity that resulted in highly unstable modelsin the case of the
feedwater flow data set are not present here. 1n the absence of collinearity, the ANN
architecture produced consistent estimations and analytic prediction intervals that

covered the response observations to the expected level of 95%.

5.5.3 Kernel Regression Model Results and Analyses

The PIMs and coverage values for the KR models of the turbine pressure data are
provided in figure 5.5.13. Aswas seen for the KR models of the feedwater flow data set,
the bootstrap PIMs exhibit extremely large variation. This was due to alimited number
of points for which the estimations were highly variable. Elimination of those points
would reduce the variation to more usual levels. The higher values for the analytic PIMs
at small bandwidths were due to the large similarly indicate higher than expected
coverage. The coverage values for the data pool were consistently above the expected

level, and those of the test data consistently inferred a drift in the response.

The MAE results (figure 5.5.14) indicate the expected trend of increasing error with
bandwidth due to the influence of bias. The effect was incurred for both the data pool as
well asthetest data. To determine the optimal bandwidth, the usual analysis of bias and
variance was completed (figure 5.5.15). The combined results from the training and
validation are shown in figure 5.5.16. The optimal bandwidth was determined to be 0.2.

The plot of the estimations from 4 different KR models with bandwidth of 0.2 (figure
5.5.17) indicates that the results from the KR models are stable and consistent. In each
case the drift is clearly identifiable. A more detailed view of arepresentative result is
also provided (figure 5.5.18).

The drift estimate distribution from the KR models of bandwidth 0.2 are extremely
consistent and exhibit a minimal variation with respect to the results from the NNPLS
and ANN models (figure 5.5.19).

288



Turbine Pressure Data Pool
T T T

T L—
' 35 B
25 % i
o *
@ 2.5H %5,
2 o e :_»_-ji \§
& oo . R
= R Al s e
B I : 3 - I
E S 2 T :
i ® ® S 1504k tk‘-’"'ﬂlnﬁﬂ
C b o -
£ g Z ly
[ A T 4|
1 F: s
b
0.5
05 ol
4.5
] L | | L L L L 1 1 L L L
01 0.2 0.3 0.4 0.5 0.6 0.7 01 0.2 0.3 0.4 0.5 0.6 0.7
KR - Bandwidth KR - Bandwidth
Turbine Pressure Data Pool Turbine Pressure Test Data
T T T T T T T T T
DQQ% 0.35
0.98- %
% 034
0.87 & L i .-
%D 96 3, % %
-~ [ -
Zoesk %‘ R 2ol % -
=] S =] N
a a %
0.94f N R %«
. 031 -
= - T ’,,-""'-( 03- ’
sl B T L T
L L L L L L L L L L L
01 0.2 0.3 0.4 0.5 0.6 0.7 01 0.2 0.3 0.4 0.5 0.6 0.7
KR - Bandwidth KR - Bandwidth
O Analytic
A Bootstrap

Turbine Pressure Test Data

Figure 5.5.13: PI magnitude and coverage results for KR models of turbine pressure data

pool. The bands represent the 1s variation in the results over the 100 iterations.

289



Average Absolute Ermor for Turbine Pressure Data Pool

0.8+

07

Ermar

0.5+

il

D.sl- ﬁ | | | |

1 1
u] 0.1 0.z 0.3 0.4 0.5 0.6 07
KR - Bandwidth

a

Average Absolute Ermor for Turbine Pressure Test Data

6.9

6.8

Ermar
o
]

T

6.6

6.5

5.4 -
I I I

1 1
u] 0.1 0.z 0.3 0.4 0.5 0.6 07
KR - Bandwidth

b

Figure 5.5.14: Mean absolute error results for KR models of turbine pressure data. The

bands represent the 1s variation in the results over the 100 iterations.
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Yariance and Bims for KR Trining and Validation Cata (Turbine Pressune)
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Figure 5.5.15: Variance / squared bias plots for KR models of turbine pressure training
and validation data.
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Figure 5.5.16: Combined variance of training and validation data vs. squared bias of data
pool for KR models of turbine pressure data.
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KR Estimations for Turbine Pressure Test Data (Bandwidth=0.2)

0 500 1000 0 = 1] 1000

a 500 1000 u] 800 1000
Test Sampla Number (Coverage=0.30447) Test Sampla Nurmber (Cowvermge=0.3033E)

Figure 5.5.17: KR test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available 0.2 bandwidth KR

models. The coverage value for each case is indicated on the x-axis.

292



KR - Turbine Pressure Data Estimations (Bandwicth =0.2)
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Figure 5.5.18: KR median result estimation and analytic prediction intervals.

Representative result from KR model with optimal bandwidth of 0.2. This model

exhibited the median value of the 100 Mean Absolute Error results for the bandwidth=0.2

KR models.
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KR Drift Estimates for Turbine Pressure Test Data
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Figure 5.5.19: Distribution of drift estimate from KR models (bandwidth = 0.2).
Drift estimates obtained from the 100 KR models via computing the MAE over test
samples 600 to 1430. All 100 models provided <5% coverage in the region of drift.

294



Overdl, the KR models for the turbine pressure data produced consistent models and
corresponding prediction intervals. The coverage of the observations in the data pool was
at or above the expected value for all cases at or below the optimal bandwidth of 0.2.
Above the optimal bandwidth, the coverage values were dlightly lower than the expected
value, though marginally. The drift estimation was consistent and exhibited little
variation from one model to the next.

5.5.4 Local Linear Regression Results and Analyses

The PIMs and Coverage values for the LL models of the turbine pressure data are
provided in figure 5.5.20. Again the large deviation of the bootstrap prediction intervals
isseen. The odd behavior of the intervals and coverage values for small bandwidthsis
due to the presence of numerical effects associated with small bandwidths previously
discussed and are not relevant to the overall analysis. For all reasonable bandwidth
values, the coverage values are at or above the expected level for the data pool, and

consistently indicate a drift in the response for the test data.

The MAE results (figure 5.5.21) show the same trend as observed for the KR models,
though for the majority of bandwidths the overall averages are higher. This occurs
because the optimal bandwidth in this case is at the upper extreme of the bandwidth range
for the LL models, whereas it was well within the range for the KR models.

Viewing the individual bias and variance contributions for the training and validation
data (figure 5.5.22) as well as the combined contributions (figure 5.5.23), the optimal
bandwidth was determined to be 0.75.

Of the 100 LL models with a bandwidth of 0.75, the estimations and prediction intervals
from 4 random selected models are shown in figure 5.5.24. The resultsindicate a clearly
discernable drift in all cases, and fairly consistent prediction intervals over the entire
response. Some estimates resulted invery wide prediction intervals, but these events
were minimal and can be attributed to the additional flexibility of the LL models over the
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Figure 5.5.20: PI magnitude and coverage results for LL models of turbine pressure data

pool. The bands represent the 1s variation in the results over the 100 iterations.
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Average Absolute Error for Turbine Pressure Data Pool
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Figure 5.5.21: Mean absolute error results for LL models of turbine pressure data. The

bands represent the 1s variation in the results over the 100 iterations.
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Yariance and Bias for LL Training and Validation Data (Turbine Pressune)
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Figure 5.5.22: Variance / squared bias plots for LL models of turbine pressure training

and validation data.
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Wariance and Bims for LL Turbine Pressure Data
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Figure 5.5.23: Combined variance of training and validation data vs. squared bias of data

pool for LL models of turbine pressure data.
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Figure 5.5.24: LL test estimations and their corresponding analytic prediction intervals.
These 4 results were selected at random from the 100 available 0.75 bandwidth LL

models. The coverage value for each case is indicated on the x-axis.
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KR models as far as the range of their estimations. A more detailed view of a
representative result is provided in figure 5.5.25.

The distribution of the drift estimatesis shown in figure 5.5.26. The LL models
consistently estimate the drift magnitude with little variation.

Overall the LL models produced stable estimates and consistent prediction intervals with
the appropriate coverage values. The drift estimates are consistent and non-variable from

one mode to the next.

5.5.5 TurbinePressure Data Set Summary of Results

Referring to the results obtained based on the data pool, both the KR and LL models
provided MAE values of ~0.4PSIA at their optimal architectures which were h=0.2 and
h=0.75 respectively. The corresponding results for the 2 hidden neuron ANN models
was ~0.5PSIA, and for the 2 latent variable NNPLS model was ~1.3PSIA. Regarding the
analytic prediction interval magnitude averages, both KR and LL models provided
~1.3PSIA, the ANN models provided ~1.2PSIA, and the NNPLS models provided
~4.1PSIA. Thevariation in theinterval estimates did not vary much and for the most part
matched what would be expected considering the average values. The smallest deviation
was noted for the optimal KR models (~0.02PSIA), followed by the ANN models
(~0.5PSIA), the LL models (~0.07), and the NNPLS models (~1.4PSIA).

For the NNPL S models, the bootstrap prediction interval magnitudes were significantly
higher than their analytic counterparts, with respect to the data pool. While thiswas
noted, it was also seen that the coverage values for all of the NNPLS prediction intervals
were at or greater than the expected value. The bootstrap interval coverage values were
consistently near 1. Thus, it is proposed that the bootstrap estimates are slightly
overestimati ng the true uncertainty for the NNPLS modelsin this case, and that the
analytic prediction intervals perform as expected and provide sufficient coverage in all

cases.
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Figure 5.5.25: LL median result estimation and analytic prediction intervals.
Representative result from LL model with optimal bandwidth of 0.75. This model
exhibited the median value of the 100 Mean Absolute Error results for the bandwidth=
0.75 LL models.
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LL Drift Estimates for Turbine Pressure Test Data
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Figure 5.5.26: Distribution of drift estimate from LL models (bandwidth = 0.75).
Drift estimates obtained from the 100 KR models via computing the MAE over test
samples 600 to 1430. All 100 models provided <5% coverage in the region of drift.
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For the ANN models, the analytic and bootstrap intervals for the data pool were very
similar for all evaluated architectures. The coverage values for both approaches to

interval estimation remained at or above the expected level for all evaluated architectures.

The results with respect to the data pool for the KR modelsillustrated the usual trends of
high prediction intervals for low bandwidths, decreasing to a minimum, and then
increasing as bandwidth increases further due to the influence of the increasing bias. The
average bootstrap prediction interval magnitudes at bandwidths below h=0.2 were
consistently lower than the average analytic prediction interval magnitudes. Thiswas
found to be due to the large variance component of the analytic intervals for these lower
bandwidth value models. As this variance component subsides, the analytic and
bootstrap prediction interval magnitudes agree within asmall margin. The variation in
the bootstrap intervals was larger than that observed for the analytic intervals, this effect
can be traced to alimited number of observations and is not a substantial issue for the
implementation of the proposed interval estimation methodologies. The majority of the
coverage values were at or above the expected level. Noted exceptions were for large
bandwidths and occurred for both the analytic and bootstrap prediction interval coverage
values. Because this effect appears for both interval estimation methodologiesit is
proposed that the cause in this case is due to the increasing bias stabilizing the model
estimates near a constant value, without a correspondingly significant increase in the
prediction intervals. Recall that for extremely large bandwidths, the kernel estimator will
provide a constant response for all query observations. If in fact a constant estimator
results and the prediction intervals do not correspondingly increase, many of the response
observations will occur outside of the prediction intervals. Though the most extreme case
was described, it is the trend towards this condition that is being proposed as the cause of
the dlightly lower than expected coverage values for these large bandwidth models. The
observed deviation from the expected levels of coverage is relatively minor, the smallest

result being 92%.
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The LL models for the data pool were not evaluated for a wide enough range of
bandwidths to observe the full expected trend of larger prediction intervals reducing to a
minimum and then increasing again as the bandwidth of the models goes from smallest to
largest. Evidence that this trend would occur is present in the results and if larger
bandwidths were evaluated it is expected that a bias increase, exceeding the variance
contribution, would be observed (figure 5.5.23). The much larger bootstrap prediction
intervals with respect to the corresponding analytic prediction intervals result from the
influence of alimited number of observations of the response variable. This effect was
previously discussed and illustrated in section 5.4, and was a so responsible for the
observed variation of the bootstrap intervals. The coverage values of the prediction
intervals with respect to the data pool were at or above the expected value, with the
following exceptions noted: for the analytic intervals at small bandwidths and for the
bootstrap intervals at large bandwidths. The low coverage values for the analytic
intervals at small bandwidths indicate that the variance estimate may be slightly lower
than what was observed. While the deviation from the expected levels for the bootstrap

intervals may be do to the effects of over-regularization as discussed in the previous

paragraph.

Focusing on the results for the test data, the NNPLS models prediction intervals were
relatively large with respect to the other models. This reflects the uncertainty of the
NNPLS architecture for this data set. Correspondingly the coverage values of the
prediction intervals for the test data were consistently higher than expected considering
the known drift in the test response. At the optimal architecture of 2 latent variables the

coverage value was ~36%.

The ANN models were stable for the test data as they were for the data pool. No
significant increases in the prediction intervals were observed for the test data over that
observed for the data pool. The average coverage value for the optimal architecture (2

hidden neurons) was 32%.
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The KR models for the test data also produced prediction interval magnitudes similar to
what was observed for the data pool. At the optimal architecture (h=0.2) the coverage of

the analytic intervals with respect to the test data response measurements was ~31%.

The odd behavior at low bandwidths for the coverage values of the analytic intervals, for
the LL models, was due to the elimination of the NaN estimations from the computations.
When the bandwidth increases enough to produce estimations, these estimates strong
influence the overall results. As the bandwidth then increases further, the usual trends
can be seen. At the optimal bandwidth of those evaluated, the average coverage value for
the test datawas ~30%. Thus, the drift was clearly discernable.

The drift estimations from the optimal architecture of the evaluated models are
summarized in table 5.5.3. Contrary to the results for the feedwater flow rate drift
estimates, all optimal model architectures, with the exception of the NNPLS models,
clearly identified the drift 100% of the time to the level of certainty of 95%. Excluding
the NNPLS models, all optimal architecture models provided consistent drift estimates
with minor variation. Because two of the average results are near -9PSIA, it is assumed
that thisis closer to the true value of the drift. The computed averages for the reduced
number of estimatesis only relevant for the NNPLS models which in some cases
exhibited coverage values >5%, though the average based on the reduced number of
estimates varied negligibly from the original average estimate.

Overal, the NNPLS models performed poorly for this data set. Unlike the highly
collinear feedwater flow data set, the turbine pressure data set contained only mild
correlations. Previous work documents the need for high correlations in the predictor
variables for successful implementation of the NNPL S architecture [ Rasmussen 2002].
While, the NNPLS models were not appropriate for the given data, the resultant
prediction intervals reflected this fact and the coverage values were consistently at or
above the expected level. The coverage of the computed prediction intervals for the test
data was higher than incurred for any of the other model architectures (at their optimal
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Table 5.5.3: Summary of Turbine Pressure Drift Estimation

Model All Estimates # of Resultswhere | Reduced # of Estimates
Type m (PSIA) S (PSA) Coverage< 5% m (PSIA) S (PSA)
NNPLS(2) | -10.5 0.54 81 -10.5 0.44
ANN (2) -89 0.19 100 N/A N/A

KR (0.2) -10.1 0.08 100 N/A N/A

LL (0.75) -91 0.09 100 N/A N/A

* Numbers in parentheses under model type indicate the number of latent variables
(NNPLS), the number of hidden neurons (ANN), or the bandwidth (KR and LL).
Coverage <5% based on test samples 600-1430.
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architecture). Thisisalogical result considering the uncertainty of the NNPLS models
for this data set and the correspondingly large prediction intervals.

The ANN models for this data set on the performed sufficiently well. The prediction
intervals provided the appropriate coverage for the data pool, the average errors were
minimal, and the coverage of the intervals for the test data consistently inferred the drift

in the response variable.

Both the KR and LL models also performed well for this case. The prediction intervals
provided the appropriate coverage for the majority of different bandwidth models
evaluated. The errors with respect to the data pool were slightly lower than those
observed for the ANN models, and the drift in the test data response was clearly

identifiablein all cases.

5.6 SUMMARY OF RESULTS

This section provides a summary of the results based on the three data sets independently,
followed by an overall summary of the results and observations of this dissertation, and

conclusionsin section 6.0.

Regarding the cascade data set, optimal performance, with respect to MAE and MSE,
was obtained with the optimized LL models. The optimized KR models had very similar
error values exhibiting only a marginal increase, followed by another dlight increase for
the optimized ANN models. Thisisto be expected for non-linear data since the KR
models are known to be more biased than the LL models. The NNPLS model errors were
significantly larger for all evaluated architectures; thusits use for this data set was not
appropriate. The reason for thisis due to the strong nortlinear relationships in the data.
Previous work using the NNPLS model architecture states that sufficient model
performance requires a high level of linearity in the predictor variables [Rasmussen
2002]. The average prediction interval magnitude values for the cascade data followed
the same trend as described for the error values, assuming optimal model architecture.
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The average magnitudes of the corresponding bootstrap prediction intervals were
consistently larger, to arelatively small extent, than the analytic intervals. The minimum
average coverage value of the computed analytic prediction intervals for the optimal
architecture models was 94% for the optimized KR models. Thisvalueisjust below the
expected value of 95%. All of the analytic prediction interval coverage valuesfor the KR
models were between 93% and 95%. Although not exactly equal to 95%, there was
expected variability due to the sources of uncertainty, and the values were consistently
just below the expected level only to a marginal extent. The only other average coverage
value resulted for the over-regularized 1 latent variable NNPLS model, 94%. The
corresponding average coverage values for the bootstrap intervals of all model
architectures were above the expected level with the exception of large bandwidth KR
models, ~93-94%. The cascade data set results for the data pool and the test data were

very similar.

The study of the effect of erroneous predictor variables with respect to the cascade test
data provided that for both the ANN and NNPL S models, the prediction interval
magnitudes increased appropriately, and the coverage of the intervals was not degraded at
al by the erroneous predictors. A dlight reduction in coverage of the intervals for the
cases of the KR and LL models was observed. The minimum average coverage values
based on the predictor variable set with erroneous predictor variables were 87% for the
KR models and 92% for the LL models.

Regarding the feedwater flow rate data pool, based on the optimal architectures from

each model, the minimum average errors were observed for the KR models, than in
increasing order, LL, NNPLS, and ANN. In the case of the ANN models the error was
significantly greater. Again, these results were expected due to the highly linear
relationships between the predictor variables and the response. Regarding the analytic
prediction intervals from the optimal architectures of each model, the order of minimum
to maximum average value is the same as above for the error values. The variation of the
prediction interval magnitudes follows an identical trend. Both the average value and
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variation in the prediction intervals of the optimal ANN models were significantly greater
than those observed for the optimal architectures of the other models. This uncertainty
observed for the ANN models based on the highly collinear set of predictors was an
expected result. The large uncertainty for ANN models under these conditions is well
known. On the other hand, this data set was ideal for the NNPLS architecture. The
results for the NNPL S models were stable and consistent, though did not produce the
minimum error or prediction interval magnitudes. The bias inserted through the
reduction of the set of 17 predictorsto 2 latent variables remains a significant

contribution to the computed prediction intervals.

Considering the feedwater flow rate test data, the only major unexpected changesin the
analytic prediction intervals with respect to the observed results for the data pool
occurred for the LL models. For these models, the bootstrap prediction intervals
exhibited significant increases. This event was traced to a limited number of

observations in the data set severely influencing the resultant computations.

The coverage values of the computed prediction intervals for the feedwater flow data
pool were at or above the expected level for al architectures of the ANN and NNPLS
models. On the other hand deviations were observed for the KR and LL models. The
range of the average coverage values for the KR model analytic prediction intervals was
86-96%, where 8 of the 15 values were below 95%. For the LL models, all of the values
were below 95%, ranging from 81-94%. Part of the observed deviations for the LL
models was due to the limited number of observations where an extremely wide
distribution of response estimates were observed. Another factor wasinvolved in
producing the observed effects, since they were observed for both types of LPR models
for this data set as well as the cascade data set.

The drift estimates from the ANN models were unreliable and highly variable, whereas
for the remainder of the models the results were fairly consistent. For the optima model
architectures, the average coverage values of the analytic prediction intervals were
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between 28-38% overall, excluding the results from the ANN models. In the region of
the test data where the drift occurred, the coverage levels were generally <5%. This
result isinterpreted in the following statement: "The coverage of the intervalsis <5%,
thus the probability that the observed drift represents a true instrument channel drift is
>95%."

The results of a study of the effect of the conditional variance estimate for the LPR
models on the analytic prediction interval magnitudes revealed that the computations are
were not overly sensitive to this estimate. This ensures that the observed results are
extendable to other data sets as long as a reasonabl e estimate of the conditional variance

of the response is made.

The best performance for the feedwater flow data set was obtained for the KR and LL
models with respect to average errors, though with respect to consistent drift estimations,
the best performance was obtained for the NNPLS models.

Considering the turbine pressure data set, the NNPL S models performed poorly. Unlike
the highly collinear feedwater flow data set, the turbine pressure data set contained only
mild correlations. While, the NNPL S models were not appropriate for the given data, the
resultant prediction intervals reflected this fact and the coverage values were consistently
at or above the expected level. The ANN models for this data set performed sufficiently
well. The prediction intervals provided the appropriate coverage for the data pool, the
average errors were minimal, and the coverage of the intervals for the test data
consistently inferred the drift in the response variable. Both the KR and LL models also
performed well for this case. The prediction intervals provided the appropriate coverage
for the majority of different bandwidth models evaluated. The errors with respect to the
data pool were dightly lower than those observed for the ANN models, and the drift in

the test data response was clearly identifiable in all cases.

310



The best performance for the turbine data set was observed for the optimal bandwidth LL
models, followed by the KR models, and ANN models. The NNPLS architecture is not
appropriate for this data set. The most stable drift estimation was observed for the LL
models, followed by the KR models, and ANN models. In all cases of optima model
architecture the variation in the drift estimates was minimal (excluding NNPL S model
results).

Overall trendsin the results are identified and conclusions are drawn in chapter 6.

Section 6.1 contains recommendations for future work.
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6.0 CONCLUSIONS

One of the main trends observed in the computation of prediction interval estimates was
that, considering the nonlinear regression models (ANN and NNPLS), for models bel ow
that which were sufficiently complex for the given data set the interval magnitudes were
moderate in size. Asthe complexity of the models was increased, the prediction interval
magnitudes decreased to aminimum value. The architecture that exhibited the minimum
prediction interval magnitude was of optimal complexity. Further increasesin model size
resulted in increases in the average prediction intervals. A similar situation was
consistently observed for the KR and LL models though rather than model size, the
complexity is defined by the model bandwidth.

The analytic prediction interval estimation techniques presented in this dissertation were
shown to consistently provide the expected level of coverage for the nonlinear regression
models (ANN and NNPLS). For the nonparametric regression models (KR and LL) the
computed analytic prediction intervals were slightly lower than the expected value for a
fairly sufficient number of models, though the most reduced levels of coverage were
>80%, and for the most part were ~90-94%.

The presence of the dlightly lower than expected coverage values for the cascade data set
KR models eliminates the notion that these lower values are due to the presence of noise
in the predictor variables, since the predictors for the cascade data set were noise-free. In
addition, the influence of the conditional variance of the response was known exactly for
the cascade data set. Thus, the notion that this estimate is the source of the observed
discrepanciesis aso refuted by the results. In the recommendations (section 6.1) several
suggestions are provided for the improvement of the proposed prediction interval

estimation techniques.

Regarding the observed excessive variations in the bootstrap prediction intervals for the
LPR models, keeping in mind that these values are averages, the majority of the average

point-wise bootstrap intervals were similar to those from the analytic computations. The
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huge increases for the bootstrap intervals with respect to the analytic intervals on average,
appears excessive but all things considered is not extremely significant. Assuming
calibration decisions will be made based on estimates over a period of time, and not
instantaneoudly, the extremely variable behavior of the estimates and intervals at a select
few observations does not preclude the successful use of these techniques and
corresponding prediction interval computationsin practical applications.

Overall, the proposed prediction interval techniques were consistently proven to be
adequate for the ANN and NNPLS models. For the LPR models, the resultant coverage
values were slightly below the expected value though the deviations were generally
minimized in the range of optimal bandwidth. The trends in the average magnitudes of
the prediction intervals suitabl e reflect the complexity of the models, and were also
shown to be relatively consistent under conditions of model misspecification due to
erroneous predictor variables. The minor deficienciesin the coverage of the intervals for
the KR and LL models observed were dightly worsened for the mi sspecified model.
While the coverage values for the ANN and NNPL S models remained consistent under
the model misspecification. For both data sets where the response variable contained a
known drift, the resultant coverage values reflected the presence of the drift, indicating
that the proposed methods can provide a supporting 95% significance to predictions of

instrument channel drift.

6.1 RECOMMENDATIONS FOR FUTURE WORK

The instability of the ANN models when applied to collinear data sets can be sufficiently
reduced through the implementation of a weight decay term in the objective function.
The effect of the weight decay term is the effective elimination of unnecessary free
parameters. Investigations into prediction interval estimation for ANN models trained
with aweight decay term in the objective function have been reported [De Veaux 1998].
In addition this technique can be applied to the NNPLS architecture. Proposed benefits

of the weight decay objective function and the associated modified prediction intervals
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are to reduce the widening of prediction intervals which occurs when early-stopping is
used in neural network training.

Improvements in the nonparametric regression estimators have been reported when a
variable bandwidth isimplemented [Fan 1992a]. Consider the explanation provided by
Ruppert and Wand [1994]: if the true functionm(x) has a high amount of curvature near
X, then it will be important to have more information from nearby observations so one
would want the bandwidth to been to these nearby points and reduce the bias of the
estimator. However, if m(x) iscloser to being linear a x, then variance considerations
dictate that one woud want more data included in the fitting process and it would be

better to have alarger bandwidth.

In most cases, empirical models will be used to estimate values from within the regions
where the data used to devel op the models were collected. For predictions in which the
model is applied outside the trained region (extrapolation) the confidence intervals will
not suitably reflect the relatively large confidence intervals which should be imposed at
this point. Proper implementation of confidence interval estimation should include
accommodations for alowing the density of the training data in the region of the current
prediction to influence the level of confidence at the given point. To enable users without
expertise in empirical modeling to employ these models in various situations, indications
that confidence is low due to extrapolated predictions is necessary; even knowledgeable
persons may at times neglect to realize when extrapolation is occurring. Reports of a
wavelet based density estimator in the context of feedforward neural network prediction
intervals has been presented by Shao et. a. [1997], and Leonard et. al. [1992] have
investigated density estimation for radia basis function networks. It is recommended

that the use of a density estimator be investigated to further this research.

The presence of measurement noise in the predictor variablesis unavoidablein all
practical applications of empirical models for signal validation in industrial processes.
The effect of this predictor variable noise on the resultant prediction intervals should be
quantified. In thisdissertation it was shown that the computed prediction intervals
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provided the expected coverage for the cascade data set, where the predictors were noise-
free. It was aso shown that proper coverage resulted for the real data sets where the
predictor variables contained noise. Thus, the prediction intervals perform adequately in
both situations. As discussed in section 4.12, the presence of noiseis not necessarily
harmful for constructing empirical models. In fact, noise is often added to predictor
variables to provide alevel of regularization to neura network models. The added
random noise reduces the possibility of overfitting and providesimproved generalization
capabilities. A study of the change in the magnitudes of the computed prediction
intervals for noise containing vs. noise-free predictors would better quantify the effect,
and further studies may reveal a predictive relationship between the noise level in the

predictors and the magnitude increases in the prediction intervals.

Another study that would lead to further understanding the prediction interval techniques
isto begin with asmall training data set and to increase the number of observationsin the
training data set, evaluating the prediction intervals for each training sample. The
expected effect is that the uncertainty, reflected in the magnitudes of the computed
prediction intervals, should decrease as the size of the training set increases. Thiswould
beillustrative for practical purposesin forming a guideline by which training data size
can be evaluated for a given architecture and model type. It should be mentioned that for
small numbers of training observations the prediction interval methods for ANNs have
been reported to be unreliable [De Veaux 1998]. In addition, the prediction interval
computations for small training sample sizes will need to be modified to divide by the
appropriate degrees of freedom (n-p). Where n is the number of observationsand p isthe

number of parameters. In addition the critical values from thet distribution should be

used rather than the simplification of assuming t>*» 2 as n® ¥ . For small sample

sizes, the estimated variance components will be strongly affected by this modification.

A final recommendation proposes to improve the coverage values that were observed to
be marginally deficient with respect to the nonparametric models. The definitions of

variables in the equations presented below were provided in the appropriate sections of
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chapter 4. The standard error of the estimator for the case of the nonlinear regression
modelsis estimated by [Tibshirani 1996]:

*T ~ , _ -1/2
se'[ o] = o (FTF) ',
The variance of the nonlinear regression estimator is given by [Chryssolouris 1996:
var[§,] =s *; (FTF)'f,

The approximate 95% prediction interval for the nonlinear regression estimator is then:

2y/s 2+s ] (F'F)*f,
In the above equations, there are no explicit accommodations for model bias. It was
described in section 4.12 how to modify the noise variance estimate to account for bias

via extending the computation over a set of data which includes observations that were
omitted from the training data set.

Consider the simplified form of the 95% prediction interval estimate for nonparametric
regression:
2,/var(ih) + bias(h)?

Here there is an explicit representation for the model bias. The bias estimate for this case

is equivalent to the root mean square error, extended over a set of data which includes
observations independent from the data set. This allows for a better overall measure of
model bias. Note that thisis the same as the quantity used in the nonlinear regression
case to estimate the variance. The assumption is that by broadening the scope of the root
mean square error calculation, both the noise variance and model bias are accounted for.
The variance in the above equation can be written as [Ruppert 1994]:

Var (h) = eI (XIW X X)'1XIWXVWXX X(XXTWXX X)'1e1

Assuming the noise variance is homoscedastic, this can be rewritten as:

Var () =s %] (X]W, X,) X TW, W, X, (XTW, X, ) e,

Noting the similarity between this form and that of the variance for the nonlinear

estimator, suggests the following estimate for the 95% prediction interval:

205 2 +5 %] (XIW, X)X IW WX (XTW,X, ) e

316



_ 12
wheres » s= Ly-yI is computed over an extended set of dataincluding the training
n

data as well as an adequate sampling of independent data.

The motivation for the recommendation of modifying the prediction interval computation
for the nonparametric regression models is to reduce the observed occurrences of lower
than expected coverage values. These effects were noted throughout the results sections
of this dissertation. The suggested modified form of the prediction interval computation
is an analogous form to that used for the nonlinear regression models. Because the
coverage values for the prediction intervals computed for the nonlinear regression models
were consistently at or above the expected value of 0.95, it is suggested that an analogous

representation for the nonparametric regression models could produce the same results.

A final recommendation isto consider an alternate form for the estimate of bias. This
approach to bias estimation is based on the Fisher Information matrix, i.e. the expected
value of the Hessian matrix. The Fisher information matrix measures the average
accuracy that would be obtained from repeated samples of the same underlying
experiment. It also provides a measure of the information available in asampleto
estimate the parameters of amodel. These ideas are strongly based on information theory
to which interested readers are referred [Cover 1991], and a simple search on the internet
will also provide awealth of information regarding Fisher information and its

applications. The basic ideas are presented here. Given adensity function f(y|x), the
likelihood function can be defined as:

A
L F (Y2 Yoren Y 1) = O F(¥ %)
i=1
The loglikelihood function is then:
C=In(L) N[ f (3 Yo Y 16)] = & IN[ FC ] %)]
i=1

Two forms of the Fisher information matrix can be defined, the inner product form ( F)
and the outer product form ( R):
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The two forms of the Fisher information matrix will be equivalent for correctly specified

models, and different for misspecified models; thus, an estimate of bias can be defined as:

F=-E

Bias = ltrace( F 1@) , Wherethe - indicates that the matrices are estimated from the n
n

training observations, and trace performs a summation over the diagonal elements of a
matrix. This approach to bias estimation is based in information theory, and provides a

viable alternative to the more empirical based bias estimate used in this work.
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Themajority of the functionsimplemented for thiswork utilize the functions of the standard MATLAB software package. A few functionsfrom the
Neural Network Toolbox, and the Statistics toolbox were also used. All of the functions used in thiswork are attached here for the interested readers and
programmers. Efforts were made to document the code and eliminate unnecessary computations; however, these functions underwent constant
modification and the existence of remnants from previous versions may appear. The main purpose of including all of these functions is so that the exact
computations employed can be studied by those wishing to apply these techniques.

Y6%%60%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%0%0%0%0%0%0%6%6%6%600%0%0%0%0%6%6 %% Y60%0%0%0%0%6%6 %0 %0 Y0% 0% 0%0%0 %% %0 %0Y0% 0% 0%0% %% %Y %% %% 0% %% %
% UIANNboot2.m ISTHE MAIN FUNCTION FOR CREATING INFERENTIAL ANNS
96%%6%60%0%0%0%0%6%6%6%6%60%0%0%0%0%6%6%6%6%0%0%0%0%0%%6%6%0%60%0%0%0%0%0%6%0%6%0%0%0%0%0%0%0%%0%0%0%0%0%0%0%%0%0%60%0%0% 0% %%0%0%0%0%0% %% %% %

Y6%%0%0%0%0%0%0%6%6%%6%0%0%0%0%0%6%6%0%0%0%0%0%0%0%6%6%0%600%0%0%0%0%6%6 %% Y0%0%0%0%0 %% %% 0% % 0%0%0%6%6 %0 %0 60% 0% 0%0% %% %0 Y0 %% %% 0% %% %
% THISFUNCTION RETURNS ESTIMATIONS FOR THE THREE SETS OF DATA SUPPLIED AT THE INPUT
% THE POINT-WISE PREDICTION INTERVALS ARE ALSO RETURNED

function [TRAINU,VALU,TESTU,YHATTRAIN,YHATVAL,YHATTEST]=UIANNboot2(n1min,n1max,XT,XV,YT,YV X,Y im,pp,num_it);

% n1min isthe minimum number of hidden neuronsto evaluate

% nlmax is tyhe maximum number of hidden neurons to evaluate

% XT training predictors (nxd)

% YT training responses (nx1)

% XV validation predictors (pxd)

% YV validation responses (px1)

% X test predictors (mxd)

%Y test response (mxd)

% im isthe neural network initialization method (see iann4boot5.m)
%pp=probability, or significance level for prediction intervals (usually 95%)
%num_it=number of iterations to complete per number of hidden neurons

% define the number of possible architectures as nn=n1lmax-nlmin+1;

% YHATTRAIN isa(num_it x n x nn) matrix of estimates for the training responses

% YHATVAL isa(num_it x px nn) matrix of estimates for the validation responses

% YHATTEST isa(num_it X m x nn) matrix of estimates for the test responses

% TRAINU isa (num_it X n x nn) matrix of point -wise prediction intervalsfor the training response estimations
% VALU isa(num_it x p x nn) matrix of point -wise prediction intervals for the validation response estimations
% TESTU isa(num_it x m x nn) matrix of point -wise prediction intervals for the test response estimations

ntrain=size(XT,1);
n0=size(XT,2);

for n1=n1min:nlmax; % # OF HIDDEN NEURONS INDEX

for j=L:num_it; % ITERATION INDEX

% CALL MAIN SUBFUNCTION TO COMPUTE ESTIMATES AND PREDICTION INTERVALS

[yhatTRAIN(,:),yhat TEST(j,:),yhatVAL (j,:),trainunc(j,:),valunc(j,:),testunc(j,:)]=iann4boot5(X T,XV,Y T,Y V., X,Y ,n1,im,pp);
end;

% COMPILE DATA FOR OUTPUT
TRAINU(:,:,n1)=trainunc;
VALUC(:,:,n1)=vaunc;
TESTU(:,:,n1)=testunc;
YHATTRAINC(:,;,n1)=yhatTRAIN;
YHATVALC(:,:,;nl)=yhatVAL;
YHATTEST (;,:,n1)=yhaTEST;

% CLEAR UNNEEDED VARIABLES
clear W W2 b1 b2 trainunc valunc testunc TRAINCOVERAGE VALCOVERAGE TESTCOVERAGE yhaTRAIN yhatVAL yhatTEST;

end;

96%%6%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%0%6%6%0%0%0%0%6%6%0%6%6%0%0%0%0%0%6%0%60%6%0%0%0%0%0%6%0%60%60%0%0%0%%0%0%0%0%6% 0% 0% 0% %% %0 %0%0% %% %% %%

Y%%%YF/0%0%0%0%0%0%0%0%0%6%0%0%0%0%6%0%0%60%0%0%0%0%0%6%0%0%6%0%0%0%%0%%0%0%6%0%0%0%%0%0%0%0%0%0% 0% 0%0%6%0%0%60%0% 0% 0% %%0%0%0%0% %% 0% %% %
% SUBFUNCTION OF UIANNboot2.m FOR OBTAINING ANN ESTIMATES AND POINT-WISE PREDICTION INTERVALS
Y6%%60Y0%0%0%0%0%6%6%%60%0%0%0%0%0%6%6%%60%0%0%0%0%0%6%6%0%0Y0%0% 0% 0% %% %% Y60%0%0%0%0%6%6 %% Y0% % 0%0%0 %% %0 %0 60% %% 0% %% %Y %% %% 0% %% %

96%0%60%0%0%0%0%6%6%0%0%0%6%6%6%0 %0%0%6%6%0%0%6%0%0%0%0%0%6%0%0%6%0%0%0%0%0%6%6%0%6%0%0%0%6%0%6%0%0%0%0%0%0%0%%0%0%6%0%0%0%%%0%0%0%0%0% %% %% %
% THISFUNCTION ACCEPTS 3 DATA SETSAND PROVIDES ESTIMATIONS AND POINT-WISE PREDICTION INTERVALS\
% FOR THEUNIVARIATE RESPONSE OF ALL 3DATA SETS

function [yhatTRAIN,yhat TEST ,yhatV AL trainunc,valunc,testunc]=iann4boot5(NXT,NXV,YT,YV,NX,Y ,n1,im,pp);

% NXT training predictors (nxd)
% YT training responses (nx1)

% NXV validation predictors (pxd)
% YV validation responses (px1)
% NX test predictors (mxd)
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% Y test response (mxd)

% n1 specifies the number of hidden neurons

% imisthe ANN initialization method.

% the hidden layer weights and biases are dways randomly initialized.

% theim options refer to the output layer weights and biases

% im=0, random initidization for output layer parameters

% im=1, output layer weights set to (standard deviation(Y T) / n1), output bias set to mean(YT)

% im=2, output layer weightsand biasesinitialized to the OL S solution of the output of the hidden layer to the target output
% pp=probability, or significance level for prediction intervals (usually 95%)

% yhatTRAIN isa (1 x n) matrix of estimates for the training responses

% yhatVAL isa (1 x p) matrix of estimates for the validation responses

% yhatTEST isa (1 x m) matrix of estimates for the test responses

% trainuncisa (1 x n) matrix of point-wise prediction intervals for the training response estimations
% vauncisa (1 x p) matrix of point-wise prediction intervals for the validation response estimations
% testunc isa (1 x m) matrix of point-wise prediction intervalsfor the test response estimations

[m,n0]=size(NXT); % SETSm TO THE NUMBER OF TRAINING SAMPLESAND n0 TO THE NUMBER OF INPUTS
n2=1; % SETSNUMBER OF OUTPUT NEURONSTO 1

% SET ANN PARAMETERS

nx=[(min(NXT)’) (max(NXT))];

net=newff(nx,[n1 n2] {'tansig' 'purelin’} ,'trainim’);

net.trainParam.epochs=5000;

net.trai nParam.show=500;

% INITIALIZE ANN WEIGHTS AND BIASES
net=init(net);

[al,a2]=(size(net.IW{1,1}));

net.IW{ 1,1} =rands(al,a2);
[a1,82]=(size(net. LW{ 2,1}));

net.LW{ 2,1} =rands(al,a2);

[al,82]=(size(net.b{ 1}));

net.b{ 1} =rands(al,a2);

[al,82]=(size(net.b{ 2}));

net.b{ 2} =rands(al,a2);

% Initialization method
if im==0;
%ifprintf('Random Initialization\n\n")
dsaif im==1;
net.LW{ 2,1} =ones(1,n1)* (std(Y T)/n1);
net.b{ 2} =mean(YT);
%fprintf(Mean / Std Initidization\n\n’);
dsaif im==2;
%fprintf('OLS Initialization\n\n');
W=net.IW{ 1,1}
W2=net.LW{2,1}";
bl=net.b{1}";
b2=net.b{2};
for i=1:5ze(NXT,1);
X=NXT(i,);
for r=1:n1;
outnn(r,i)=tansig(x* W(:,r)+b1(r));
end;
end;
OUT=[ones(m,1) outnn’;
OLS b=inv(OUT*OUT)*(OUT*YT);
net.LW{2,1}=0OLS b(2:length(OLS _b))’;
net.b{2}=0OLS b(1);
end;

% SPECIFY VALIDATION DATA AND TRAIN NETWORK
VV.P=NXV'; VV.T=YV"
[net,tr]=train(net, NXT",YT",[1,[],VV);

% PRODUCE ESTIMATIONS AND ERRORS
yhatTRAIN=sim(net,NXT");
tranerr=YT-yhatTRAIN';
yhatTEST=sim(net,NX");

testerr=Y-yhatTEST";

yhatVAL=sm(net, NXV");
vaer=YV-yhatVAL',

% EXTRACT WEIGHTS AND BIASES FROM NET STRUCTURE
W=net.IW{1,1}";

W2=net.LW{2,1}";

bl=net.b{1}"

b2=net.b{2};
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% CALCULATE JACOBIAN MATRIX WITH TRAINING DATA

X=NXT;
fori=l:size(X,1);
12(i,:)=X(i,:)*W+b1;
EE1(i,:)=( 2 ./ (1+exp(-2*111(i,))) )-1;
B1(i,))=(1-(111(i,)."2))* diag(W2);
dydthet=[];

for j=1:(n0+1);
if j<=n0;
dydthet=[dydthet (X(i,j)*B1(i,))];

se
dydtheta(i,:)=[dydthet B1(i,:) EE1(i,:) 1;
end;

end;

end;

% CALCULATION OF JACOBIAN VECTORS FOR TEST DATA
PPINV=pinv(dydtheta* dydtheta);
fori=L:size(NX,1);
x=NX(i,);

for r=1:n1;
out(r)=tansig(x* W(:,r)+b1(r));

end;

fout(i)= (out* W2)+b2;
yl1=(x*W)+b1;
YE1=(2 / (1+exp(-2yl1)) )-1;
yB1=(1-(yl1./2))* diag(W2);
ydydthet=[];
for j=1:(n0+1);
if j<=n0;
o ydydthet=[ydydthet (x())*yB1)];
se
f(:,i)=[ydydthet yB1yE1 1]
end;

end;
Ff(i)=f(:,i)* PPINV*f(.,i);
end;

% OBTAIN ESTIMATE FOR STD DEVIATION OF ESTIMATES
N=(n0*n1)+(2*n1)+1; % TOTAL NUMBER OF ANN PARAMETERS
TV=tinv(pp,(Mm-N)); % CRITICAL VALUE FROM T DISTRIBUTION
s2=sgrt(mean([(trainerr.~2);(valerr.*2)]));

% COMPUTE PREDICTION INTERVALS FOR TEST DATA
testunc=TV* sort((s272) + ((s22)* Ff));

% CALCULATION OF JACOBIAN VECTORS FOR TRAINING DATA

for i=1:size(NXT,1);
XX=NXT(,:);

for r=1:n1;
tout(r)=tansig(xx* W(:,r)+b1(r));
end,
tyl1=(xx*W)+b1;
tyE1=(2 / (1+exp(-2*tyl1)) )-1;
tyB1=(1-(tyl1./2))* diag(W2);
tydydthet=[];
for j=1:(n0+1);
if j<=n0;
tydydthet=[tydydthet (xx(j)*tyB1)];
se

tf(:,i)=[tydydthet tyB1 tyE1 1]';
end; ,

tRF(i)= tH(:,i)* PPINV* (., i);

% COMPUTE PREDICTION INTERVALS FOR TRAINING DATA

trainunc=TV*sgrt((s2"2) + ((s2"2)* tFf));
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% CALCULATION OF JACOBIAN VECTORS FOR VALIDATION DATA
fori=1l:size(NXV,1);
XX=NXV(i,);
for r=1:n1;
tout(r)=tansig(xx* W(:,r)+b1(r));

end,
vyl 1=(xx*W)+b1;
VyEl=(2 ./ (1+exp(-2*vyl1)) )-1;
vyB1=(1-(vyl1./2))* diag(W2);
vydydthet=[];
for j=1:(n0+1);

if j<=n0;

vydydthet=[vydydthet (xx(j)*vyB1)];
else

Vi(:,i)=[vydydthet vyB1 vyE1 1]
end;
end,
VFF(i)= VE(:,i) * PPINV*VE(:,i);
% COMPUTE PREDICTION INTERVALSFOR VALIDATION DATA
vaunc=TV* sgrt((s22) + ((s2*2)* vF));

96%%6%0%0%0%0%0%6%6%6%6%6%0%6%0%0%6%6%0%6%6%0%6%6%0%6%6%0%60%6%0%6%0%0%0%6%0%60%6%0%0%0%%0%%0%60%6%0%0%0%%0%0%0%0%0% 0% 0% 0% %% %0 %0%0% %% %% %%

oY% Y0Y0%0Y6Y0%0Y6Y0%0%6Y0Y0%Y0Y0Y6Y0Y U Y0Y Y60V Y06V 0%0Y6Y0% 0%V 0% %YV Y60V %0V Y0V Y0V VY% Y0Y %YV VY0V YV Y%V %YV %e %Yo
% OPTIMIZED KERNEL REGRESSION PROGRAM

YoY%0%6Y0%0%6Y0Y0%Y0Y0%0%6Y0% %00V 0%0%6Y0% %YV %YoV 0%0Y0Y0%0Y0Y0%0Y6Y0%0%6Y0%0%6Y0% %60V % Y0V % Y0 Yo0%0%6Y0% 0% Y0% 0% Y0 0%6Y0Y %Y Y% %Yo
% This function is an optimized version of function LWR9999v2 to expedite computations

% for the case of p=0. Theincreased speed is due to the elimination of the matrix inversions

% of the standard matrix locally weighted regression estimator and variance equations.

function [TRAINVAR VALVAR,TESTVAR,YHATTRAIN,YHATVAL,YHATTEST bias]=KR(XT,YT,XV,YV ,X,Y ,h_KR\V sg);

% p isthe degree of thelocal polynomial (CAN ONLY BESET TOO, or 1)

% XT training predictors (nxd)

% YT training responses (nx1)

% XV validation predictors (pxd)

% YV validation responses (px1)

% X test predictors (mxd)

% Y test response (mxd)

% h_KR isa1xz vector of bandwidths. Only global bandwidths are applied

% inthis program, so for each bandwidth an estimation will be obtained for each query point.
% V isagloba conditiond variance, [Var(Y [x=x(i))]

% sigisused for display purposes only to indicate progress for the case of more than one signal

% TRAINVAR isthe (nxz) matrix of variance estimates corresponding to the training responses YT,
% the z columns correspond to the z different bandwidths

% VALVAR isthe (pxz) matrix of variance estimates corresponding to the validation responses YV,
% the z columns correspond to the z different bandwidths

% TESTVAR isthe (mxz) matrix of variance estimates corresponding to the test responses Y,

% the z columns correspond to the z different bandwidths

% YHATTRAIN isthe (nxz) matrix of estimates of the training responses YT.

% YHATVAL isthe (pxz) matrix of estimates of the validation responses YV.

% YHATTEST isthe (mxz) matrix of estimates of the test responses Y.

% biasisa(1xz) vector of bias estimates

[N, ni]=size(XT);

Y6%%0%0%0%0%0%0%6%6%6%60%0%0%0%0%0%6%6%6%0%0%0%0%0%0%0%0%6%0%0%60%0%0%0%0%6%6 %Y %6%0%0%0% %% %% Y0 %% %% 0% 0%6 %YV YUY 0%0%0% %% % %Y %
% OBTAIN RESPONSE ESTIMATES AND VARIANCE ESTIMATES FOR VALIDATION DATA

t_new=XV; % DEFINESTHE VALIDATION DATA ASTHE QUERY DATA

% INITIALIZEMATRICES
YHATVAL=zeros(length(t_new),length(h_KR));
VALVAR=zeros(length(t_new),length(h_KR));

for k=L:length(h_KR); % BANDWIDTH INDEX
fprintf(‘validation’);bandwidth=h_KR(k),sig=sig %DISPLAY PROGRESS
for n=L:length(t_new); %SAMPLE INDEX
x=t_new(n,:);
% SET UPTRAINING DATA MATRIX
XX=0nes(N,1);
TT=XT-(ones(N,1)*x);
% COMPUTE GAUSSIAN KERNEL WEIGHTS
KH=prod(((/h_KR(K))*exp((-5* (TT./h_KR(K)).*2))),2);
% OBTAIN VALIDATION DATA RESPONSE ESTIMATES
YHATC=KH'/sum(KH);
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YHATVAL(NK)=YHATC*YT;

% ESTIMATE VARIANCE FOR VALIDATION DATA
VALVAR(nK)=YHATC*YHATC*V(1,1);

end;
end;

% END VALIDATION DATA ESTIMATION STEP
Y6%%60%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%600%0%0%0% %% %0 %0Y0%0%0%0%0%6%6 %% Y60%0%0%0%0%6%6 %0 %0 0% 0% 0%0%0 %% %0 %0 60% 0% 0%0% %% %% %% % 0%0% %% %

96%%6%0%0%0%0%0%6%6%6%6%60%0%0%0%0%/6%6%0%6%6%0%6%6%0%6%6%6%6%6%0%0%0%%0%6%0%0%6%0%0%0%%0%6%0%0%0%0%0%0%%0%0%0%0%0% 0% 0% 0% %% %0 %0%0% 0% %% %% %
% OBTAIN RESPONSE ESTIMATES AND VARIANCE ESTIMATES FOR TRAINING DATA

t_new=XT; % DEFINESTHE TRAINING DATA ASTHE QUERY DATA
% INITIALIZE MATRICES
YHATTRAIN=zeros(length(t_new),length(h_KR));
TRAINVAR=zeros(length(t_new),length(h_KR));

for k=1:length(h_KR); % BANDWIDTH INDEX
fprintf(‘training’);bandwidth=h_KR(k),sig=sig %DISPLAY PROGRESS
for n=L:length(t_new); % SAMPLE INDEX
X=t_new(n,:);
% SET UPTRAINING DATA MATRIX
XX=0nes(N,1);
TT=XT-(ones(N,1)*x);
% COMPUTE GAUSSIAN KERNEL WEIGHTS
KH=prod(((h_KR(k))*exp((-5* (TT./h_KR(K))."2))),2);
% OBTAIN TRAINING DATA RESPONSE ESTIMATES
YHATC=KH'/sum(KH);
YHATTRAIN(nK)=YHATC*YT;
% ESTIMATE VARIANCE FOR TRAINING DATA
TRAINVAR(nK)=YHATC*YHATC*V(1,1);
end;
end;

% END TRAINING DATA ESTIMATION STEP
Y6%%6Y%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%600%0%0%0%0%6%6%0%0Y0%0%0%0%0%6%6 %% Y0% 0% 0% 0%0%6%6 %0 %0 Y0% % 0%0%0 %% %0 %0 60% 0% 0%0% %% % %0 %0% %% 0% %% %

Y6%%60%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%60%0%0%0%0%0%6%6%%60Y0%0%0%0%0%6%6 %% Y0%0%0%0%0 %% %% Y0% 0% 0%0% %% %0 %0Y0% %% 0% %% %Y %% %% 0% %% %
% OBTAIN RESPONSE ESTIMATES AND VARIANCE ESTIMATESFOR TEST DATA

t_new=X; % DEFINESTHE TEST DATA ASTHE QUERY DATA
% INITIALIZE MATRICES
YHATTEST=zeros(length(t_new),length(h_KR));
TESTVAR=zerog(length(t_new),length(h_KR));

for k=1:length(h_KR); % BANDWIDTH INDEX
fprintf(‘test’);bandwidth=h_KR(K),sig=sig % DISPLAY PROGRESS
for n=L:length(t_new); % SAMPLE INDEX
X=t_new(n,:);
% SET UPTRAINING DATA MATRIX
XX=0nes(N,1);
TT=XT-(ones(N,1)*x);
% COMPUTE GAUSSIAN KERNEL WEIGHTS
KH=prod(((/h_KR(Kk))*exp((-5* (TT./h_KR(K))."2))),2);
% OBTAIN TEST DATA RESPONSE ESTIMATES
YHATC=KH'/sum(KH);
YHATTEST(n,k)=YHATC*YT;
% ESTIMATE VARIANCE FOR TEST DATA
TESTVAR(nK)=YHATC*YHATC*V(1,1);
end;
end;

% END TEST DATA ESTIMATION STEP
96%%6%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%0%6%6%0%0%0%0%6%6%0%6%6%0%0%0%%0%6%0%60%6%0%0%0%%0%6%0%0%0%0%0%0%%0%%0%0%6%0% 0% 0% %% %0 %0%0% %% %% %%

% ESTIMATE BIASBASED ON TRAINING AND VALIDATION RESPONSE ESTIMATES
for k=1:length(h_KR);
bias(k)=mean([((YV-YHATVAL(;,k)).*2);((YT-YHATTRAIN(:,K)).*2)]);

end;
%0%%6%0%6%6%0%6%6%0%6%0%0%6%0%0%6%0%0%%0%0%6%0%0%%0%0%6%0%6%6%0%0%6%0%6%6%0%6%0%0%6%6% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %
%0%0%6%0%6%6%0%0%6%0%6%6%0%6%6%0%6%0%60%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6%6%0%6%0%0%6% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %Y 0% %% 0%6%e%0% %% %%
% L ocally weighted Regression Program for p=0, and p=1.
%0%%6%0%6%0%0%%0%6%0%0%6%6%0%6%0%0%%0%0%%0%0%6%0%6%0%0% %% 0% %% 8/0%6%0% 0% %% 0% %0%0%6%0%0%6%0%0%6%6%0%6%0%0 %% 0% %% 0% %% 0% %% 0% %% 0% %

function [TRAINVAR VALVAR,TESTVAR,YHATTRAIN,YHATVAL,YHATTEST bias| =L WR9999v2(p, X T,YT XV,YV X,Y ,h KR\V);
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% p isthe degree of thelocal polynomial (CAN ONLY BE SET TOO, or 1)

% XT training predictors (nxd)

% YT training responses (nx1)

% XV validation predictors (pxd)

% YV validation responses (px1)

% X test predictors (mxd)

% Y test response (mxd)

% h_KR isa1xz vector of bandwidths. Only global bandwidths are applied

% in this program, so for each bandwidth an estimation will be obtained for each query point.
% V isaglobd conditiond variance, [Var(Y [x=x(i))]

% TRAINVAR isthe (nxz) matrix of variance estimates corresponding to the training responses YT,
% the z columns correspond to the z different bandwidths

% VALVAR isthe (pxz) matrix of variance estimates corresponding to the validation responses YV,
% the z columns correspond to the z different bandwidths

% TESTVAR isthe (mxz) matrix of variance estimates corresponding to the test responses Y,

% thez columns correspond to the z different bandwidths

% YHATTRAIN isthe (nxz) matrix of estimates of the training responses YT.

% YHATVAL isthe (pxz) matrix of estimates of the validation responses YV.

% YHATTEST isthe (mxz) matrix of estimates of the test responsesY.

% biasisa(1xz) vector of bias estimates

if p>2;
error('Only set up for p=0, or p=1")
end;

[N,ni]=size(XT);

% Define E1 vector based on degree of local polynomial
if p==0;
pE1=1;
esaif p==1;
El=[zeros(ni+11)];
E1(1)=1;
end;

96%6%6%0%0%0%0%0%6%6%6%6%6%0%0%6%0%6%6%0%6%6%0%0%6%0%6%6%6%6%6%0%0%0%%6%6%0%60%6%0%6%0%%0%6%0%0%0%0%0%0%%0%0%0%0%6%0% 0% 0% %% %0 %0%0% 0% %% %% %

% OBTAIN RESPONSE ESTIMATES AND VARIANCE ESTIMATES FOR VALIDATION DATA

t_new=XV; % DEFINESTHE VALIDATION DATA ASTHE QUERY DATA

% INITIALIZE MATRICES
YHATVAL=zeros(length(t_new),length(h_KR));
VALVAR=zerog(length(t_new),length(h_KR));

for k=1:length(h_KR); % BANDWIDTH INDEX
fprintf(‘'validation’);bandwidth=h_KR(k),p=p % DISPLAY PROGRESS
for n=L:length(t_new); % SAMPLE INDEX
x=t_new(n,);
% SET UPTRAINING DATA MATRIX
XX=0ones(N,1);% DEFINES DEFAULT FOR p=0
if p==1;
for jj=L1:p;
XX (ni* (1j-1)+2):(ni*jj+1))=[(XT-(ones(N, 1)*x)).Njjl;
end;
end;
% COMPUTE GAUSSIAN KERNEL WEIGHTSAND FORM WEIGHT MATRIX
TT=XT-(ones(N,1)*x);
KH=prod(((1/h_KR(K))*exp((-.5*(TT./h_KR(K)).*2))),2);
WX=diag(KH);
% OBTAIN VALIDATION ESTIMATES
YHATC=EL*pinv(XX"*WX*XX)*XX"*WX;
YHATVAL(nK)=YHATC*YT;
% OBTAIN VARIANCE ESTIMATE
VALVAR(nK)=YHATC*YHATC*V(1,1);
end;
end;

% END VALIDATION DATA ESTIMATION STEP

Y6%%6%0%0%0%0%0%6%6%%6%0%0%0%0%0%6%6%%60Y0%0%0%0% %% %0 %0Y0%0%0%0%0%6%6 %% Y60%0%0%0%0%0%6 %% Y0% % 0%0%0 %% %0 %0 60% %% 0% %% %0 V0% %% %% %%

% OBTAIN RESPONSE ESTIMATES AND VARIANCE ESTIMATES FORTRAINING DATA
t_new=XT; % DEFINESTHE TRAINING DATA ASTHE QUERY DATA
% INITIALIZEMATRICES

YHATTRAIN=zeros(length(t_new),length(h_KR));
TRAINVAR=zeros(length(t_new),length(h_KR));
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for k=1:length(h_KR); % BANDWIDTH INDEX
fprintf(‘training);bandwidt h=h_KR(k), p=p % DISPLAY PROGRESS
for n=L:length(t_new); % SAMPLE INDEX
X=t_new(n,:);
% SET UPTRAINING DATA MATRIX
XX=ones(N,1);% DEFINES DEFAULT FOR p=0
if p==1;
for jj=L1:p;
XX (ni* (1j-1)+2):(ni*jj+1)=[(XT-(ones(N, 1)*x)).Njjl;
end;
end;
% COMPUTE GAUSSIAN KERNEL WEIGHTS AND FORM WEIGHT MATRIX
TT=XT-(ones(N,1)*x);
KH=prod(((1/h_KR(K))*exp((-.5* (TT./h_KR(K)).*2))),2);
WX=diag(KH);
% OBTAIN TRAINING ESTIMATES
YHATC=EL* pinv(XX"*WX* X X)* XX"*WX;
YHATTRAIN(nk)=YHATC*YT,;
% OBTAIN VARIANCE ESTIMATES
TRAINVAR(NK)=YHATC*YHATC*V(1,1);
end;
end;

% END TRAINING DATA ESTIMATION STEP
YoYY0%0%0%0%0%6%6%0Y%60%0%0%0%6%0%0%60Y0%0%0%0%6%6%0Y60%0%0%0%%6%6%6%0 Y% 0%0%6 %Y Y6%0%0%0%0%6%%0Y0%0% 0% 0% 0%6%6 %% Y0%0% %% %% %Y Y0 % %% %% %
% OBTAIN RESPONSE ESTIMATESAND VARIANCE ESTIMATESFOR TEST DATA

t_new=X; % DEFINESTHE TRAINING DATA ASTHE QUERY DATA

% INITIALIZEMATRICES
YHATTEST=zeros(length(t_new),length(h_KR));
TESTVAR=zeros(length(t_new),length(h_KR));

for k=L:length(h_KR); % BANDWIDTH INDEX
fprintf(‘test’);bandwidth=h_KR(Kk),p=p % DISPLAY PROGRESS
for n=L:length(t_new); % SAMPLE INDEX
x=t_new(n,:);
XX=0nes(N,1);% DEFINES DEFAULT FOR p=0
% SET UP TRAINING DATA MATRIX
if p==1;
for jj=1:p;
XX (o, (ni* (-1)+2):(ni*jj+1))=[ (X T-(ones(N, 1)*x)) Ajjl;
end;
end;
% COMPUTE GAUSSIAN KERNEL WEIGHTS AND FORM WEIGHT MATRIX
TT=XT-(ones(N,1)*x);
KH=prod(((/h_KR(k))*exp((-.5*(TT./h_KR(K)).*2))).2);
WX=diag(KH);
% OBTAIN TEST ESTIMATES
YHATC=EL* pinv(XX"*WX* X X)* XX"*WX;
YHATTEST(n,k)=YHATC*YT;
% OBTAIN VARIANCE ESTIMATES
TESTVAR(NK)=YHATC*YHATC*V(1,1);
end;
end;
% END TEST DATA ESTIMATION STEP
YoY% Y0Y0%0Y6Y0%0%6Y0%0%6Y0%0%6Y0Y0%6Y0Y %60V e% Y0V %0%6Y0%0%6Y0%0%6Y0%0%6Y0% 0%V %60V % Y0Y %YV 0% 0%6Y0% 0% Y0% 0% Y0Y %YV %6 Y0Y%%Y% %Yo
% ESTIMATE BIASBASED ON TRAINING AND VALIDATION RESPONSE ESTIMATES
for k=1:length(h_KR);
bias(k)=mean([((YV-YHATVAL(:,k)).*2);((YT-YHATTRAIN(:,k)).*2)]);

YoY% %0%0%0%0%0%6%6%%60%0%6%0%0%0%6%6%%60Y0%0%0%0% %% %0 %0Y0% 0% 0% 0% 0%6%6 %% Y60%0%0%0%0%6%6 %% Y0% % 0%0%0 %% %0 %0 0% %% 0% %A% %% 0% % 0%0% %% %

96%6%6%0%0%0%0%0%6%6%6%6%6%0%0%0%0%6%6%0%6%6%0%6%0%0%6%6%0%6%6%0%0%0%0%0%6%0%60%6%0%0%0%%0%6%0%0%6%0%0%0%%0%%0%0%0%0% 0% 0% %% %0 %0%0% 0% %% %% %
% NNPLS MAIN FUNCTION FOR RESPONSE VARIABLE ESTIMATION
9%6%6%6%6%60%0%0%0%0%6%6%6%6%0%6%6%0%0%0%0%0%6%6%6%60%6%0%0%6%0%6%6%6%0%0%6%0%0%6%6%0%60%6%0%0%0%0%6%0%60%6%0%0%0%%%0%0%6%0%0%0%%% %070 %0% %% %% %

function [YPT,YPV,YPTS TRAINU,VALU,TESTU,factor,num_hidden]=nnplsi_main77f(TRAIN,VALIDATE,TEST,num_it,im,maxfactor);

% TRAIN isan [nx(d+1)] matrix of training data, where the first n columns are the predictor variables,

% and the last column contains the corresponding responses.

% VALIDATE isan [px(d+1)] matrix of validation data, where thefirst n columns are the predictor variables,
% and the last column contains the corresponding responses.

% TEST is an [mx(d+1)] matrix of validation data, where the first n columns are the predictor variables,

% and the last column contains the corresponding responses.

% num_it is the number of iterations to carry out

% im is the neural network initialization method see plsnet8if.m function below
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% maxfactor is the maximum number of latent variables to evaluate

% YPT isa[n x maxfactor] matrix of the training response estimates

% YPV isa[p x maxfactor] matrix of the validation response estimates

% YPTSisa[m x maxfactor] matrix of the test response estimates

% TRAINU isa[n x maxfactor] matrix of the point -wise prediction interval estimatesfor YPT

% VALU isa[p x maxfactor] matrix of the point -wise prediction interval estimatesfor Y PV

% TESTU isa[m x maxfactor] matrix of the point -wise prediction interval estimatesfor YPTS

% factor is the maximum possible dimension of the NNPLS model

% num_hidden isa[1 x maxfactor] vector returning the number of hidden neurons used for each of the latent
% variables form 1 to maxfactor.

for it=1:num_it; % ITERATION INDEX

for h=size(TRAIN,2):size(TRAIN,2); % SETSTHE SIGNAL INDEX H TO [d+1], SO THAT ESTIMATES ARE OBTAINED FOR
% THE APPROPRIATE RESPONSE VARIABLE LOCATED IN THISCOLUMN

% The nnpls_create5f function is the primary function which creates the model,
% and returns the corresponding weights, etc.

[factor,p,w,wbs, T,num_hidden]=nnplsi_create5f(TRAIN,VALIDATE,maxfactor,h,im);

% The nnplsi_predictall function isthe primary function for obtaining estimates and
% point -wise prediction intervals

[ypt,ypv,ypts,trainunc,valunc,testunc] = nnplsi_predictall(TRAIN,VALIDATE,TEST,w,wbs,p,maxfactor);

end;

% PREPARE DATA FOR OUTPUT
YPT(:,.,it)=ypt;

YPV(:,.,it)=ypv;

YPTS(:,: it)=ypts;

VALUC(:,: it)=valunc;
TRAINUC(:,:,it)=trainunc;

TESTU(:,: it)=testunc;

end;
Yo%6Y0Y0%0%0%0%0%6%6%6Y0Y0%0%0%6%0%6%6%6Y0Y0%0% 0% 6% 0% 0%6%6Y0Y0%0% 0% 0% 6% 0%6%6Y0Y0%0% 0% 0% 6% 6% Y60V 0% 0% e% 0% 6% 6% Y6Y0Y0Y Y% 0% % Y6 Y6 Y0 Y0V Y% e% %% Y0

96%6%6%60%0%0%0%0%6%6%6%6%60%0%0%0%0%6%6%6%6%60%0%6%0%0%6%6%6%6%60%0%6%0%0%6%6%6%6%60%0%0%0%0%0%6%0%0%0%0%0%0%0%0%6%6%0%6%0%0%0%%%%%0%60%0% %% %% %
% SUBFUNCTION OF nnplsi_main77f.m FOR PRODUCING MODEL PARAMETERS
Y6%%60%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%60Y0%0%0%0%0%6%6%6%00% 0% 0% 0%0%6%6 %% Y0%0%0%0%0%6%6 %% Y0% % 0%0%0 %% %0 %0Y60% 0% 0%0% %% %0 %% 0%% %% %% %

function [factor,p,w,WBS,T,num_hidden]=nnplsi_create5f(train,validate,maxfactor,h,im);

% This function creates an NNPLS model for the hth signal in the data
% setstrain. It returnsthe input loadings, transformation weights,

% neural network weights and biases,it calls the function nnpls_outer
% to perform the transformations of the outer relationships

% train, and validate are the TRAIN and VALIDATE matricesinput to nnplsi_main77f.m

% maxfactor is the maximum number of factors (latent vectors), passed from nnplsi_main77f.m
% histhe signal index specifying which of the d signals to develop a model for.

% im isthe neural network initilalization method, see plsnet8if.m

% factor is the maximum possible dimension of the NNPLS model

% p = input score vectors

% w = input transformation weights

% WBS = the neural network weights and biases

% T are the input latent variables for the training data

% num_hidden isa[1 x maxfactor] vector returning the number of hidden neurons used for each of the latent
% variablesform 1 to maxfactor.

% Separate data into training inputs (tx), training output (ty),
% validation inputs(vx), and validation output (vy).
[tx,ty]=divide(train,h);

[vx,vy]=divide(validate h);

% This function creates the outer and inner relationship models
[p,w,WBS,T] = nnplsi_outer5f(tx,ty,vx,vy,maxfactor,im);

% Extract the number of hidden neurons for each latent variable from the neural network parameters matrix
for n=1:maxfactor;
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num_hidden(n)=WBS(1,1,n); % number of nodes per component
end;

% Set maximum possible NNPLS model dimension
factor=size(tx,2);

Y6%%%60%0%0%0%0%0%0%0%6%6%%0%0%0%0%0%0%0%0%6%6%0%0%0%0%0%0%0%6%6%0Y60%0%0%0%0 %% %0 Y0%0% 0% 0% 0%6%6 %0 %0 0% %% 0% %6 Y0 Y0 0% %% %% %Y %% 0%0% %% %

96%%6%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%0%6%6%0%0%0%0%6%6%0%6%6%0%0%0%%6%6%0%60%6%0%0%0%%0%6%0%0%0%0%0%0%%0%0%0%0%6% 0% 0% 0% %% %0 %0%0% 0% %% %% %
% SUBFUNCTION OF nnplsi_main77f.m FOR CONSTRUCTING NNPLS OUTER RELATIONSHIPS AND MAPPING INNER RELATIONHSIPS
6%%%6%0%0%0%0%0%0%0%6%6%6%6%6%0%0%0%0% 0% H/0%0%0%0%6%6%0%0%0% 0% 0% 0%0%6%6%0%0Y0%0%0%0%0%6%6%0%0Y0% % 0%0%0 %% %% 0% 0% 0%0% %% %% %% % 0%0% %% %

function [p,w,WBS] = nnplsi_outer5f(x,y,vx,vy,maxrank,im)

% Thisfunction carries out the NNPLS-1 algorithm.

% It returns the input loadings, transformation weights,

% and neural network weights and biases.

% It calls the function plsnet8if.m to initialize and train the neural networks
% for theinner relationships.

% x isthe matrix of predictor variables (inputs)

%y isthe response variable (output)

% vx isthe matrix of predictor variable vaidation data
% vy  istheresponse variable validation data

% maxrank isthelimit to the number of latent variables calculated

%

% * - vx and vy are used in cross-validation neura network training - *

% p isthe matrix of input score vectors
% w isthe matrix of weights
% whbs  isthe vector containing the neural network parameters

% t isthe matrix of input latent variables corresponding to (x,y)

% SET MAXIMUM NUMBER OF HIDDEN NEURONS PER LATENT VARIABLE
maxnhn=10;

% INITIALIZE NEURAL NETWORK PARAMETER MATRIX
WBS(:,:,1)=zeros(maxnhn+1,4);

for h = L:maxrank; % LATENT VARIABLE INDEX
u(;,h)=y; % INITIALIZE TRAINING OUTPUT VECTOR
W, h)=(X*y)/(sart((y* x)* (x*y))); % CALCULATE TRANSFORMATION WEIGHTS
t(:,h)=x*w(:,h); % CALCULATE INPUT LATENT VARIABLES FOR TRAINING DATA
p(h,:)=(t(:; h)*X)/(C,h)*1(:,h)); % CALCULATE INPUT SCORE VECTORS FOR TRAINING DATA
VE(:,h) = vx*w(;,h); % CALCULATE INPUT LATENT VARIABLES FOR VALIDATION DATA
vu(:,h) = vy; % INITIALIZE VALIDATION OUTPUT VECTOR
vp(h,)) = vt(,h)' * vx / (vi(;,h)' * vt(;,h)); % CALCULATE INPUT SCORES FOR VALIDATION DATA

% This calls the function plsnet8if.m to train asingle hidden layer network to map the

% hth inner relationship. The vt and vu vectors are used for cross-validationtraining.
% Adjustments to the training routine can be made within the plsnet8if.m function,
% such asthe training algorithm, number of hidden nodes, and stopping criterion.

[net]=plsnet8if(t(:,h),u(:,h),vt(:,h),vu(:,h),im,maxnhn);

% Extract the weight and bias vaues from the returned network structure "net".

% size(net.IW{ 1,1} ,1) returns the number of neuronsin the single hidden layer network
% The code iswritten to allow up to four hidden neurons, however | usually use 2

% The loop extracts the weightsinto the "wbs" matrix.

% From the whs matrix, the weight vectors are assigned as follows:

% w1 - input layer weights
%  bl-inputlayer bias

% w2 - output layer weights
% b2 - output layer bias
wl=net./W{1,1};

w2=net.LW{2,1};

bl=net.b{1};

b2=net.b{2};

nhn=length(w1);

% COMPILE NEURAL NETWORK PARAMETERS INTO WBS MATRIX
WBS(1,:,h)=ones(1,4)* nhn;
WBS(2:nhn+1,:,h)=[w1 w2' bl (ones(nhn,1)*b2)];

% The response variable (y) is deflated by the information contained in the hth neural network
% The validation data for the response variable is also deflated in asimilar way.

y = y- ((w2* (tansig(w1*t(:,h)'+(b1* ones(1,size(t,1)))))+b2));

vy = vy -((w2* (tansig(w1* vi(:,h)'+(b1* ones(1,size(vt,1))))) +b2)');
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% The predictor variables are a so deflated by the information in the hth component
X=X - (t¢:,h) * p(h,:));
Vx= VX - (vt(:,h) * vp(h,?));

end
9%0%0%6%0%0%6%0%%6%0%6%6%0%6%6%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%6% 0% %% 0% %% 0% %% 0% %% 0%6 %% 0% %6% 0% %% 0% %e%0% %% %%

96%%6%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%0%6%6%0%0%0%0%6%6%0%6%6%0%0%0%%6%6%0%60%6%0%0%0%%0%6%0%0%0%0%0%0%%0%0%0%0%6% 0% 0% 0% %% %0 %0%0% 0% %% %% %
% SUBFUNCTION OF nnplsi_create5f.m FOR ANN TRAINING OF THE INNER RELATIONSHIPS
Y6%%0%0%0%0%0%0%6%6%%6%0%0%0%0%0%6%6%0%0%0%0%0%0%0%6%6%0%600%0%0%0%0%6%6 %% Y0%0%0%0%0 %% %% 0% % 0%0%0%6%6 %0 %0 60% 0% 0%0% %% %0 Y0 %% %% 0% %% %
% THISFUNCTION RETURNSA TRAINED ANN ASNET BASED ON THE SPECIFIED INPUT TRAINING AND

% VALIDATION DATA

function [net] = plsnet8if(t,u,vt,vu,im,nhn);

%

% This function takes the inner relationship

% inaPLSmodel and fitsan ANN toiit.

%

%t istheinput training latent vector

%u isthe output training vector

% vt istheinput validation latent vectors

% vu istheoutput validation vector

% imisthe ANN initialization method.

o the hidden layer weights and biases are dways randomly initiaized.
o theim optionsrefer to the output layer weights and biases

% im=0, random initidization for output layer parameters

6 im=1, output layer weights set to (standard deviation(u) / n1), output bias set to mean(u)

SRR

% net isthe resulting network model

for nh=1:nhn; % HIDDEN NEURON INDEX

%INITIALIZE ANN PARAMETERS

net=newff(minmax(t),[nh 1] {'tansig','purelin’},trainim’);

net.trainParam.show=100;

net.trainParam.epochs=800;

net.trainParam.mu_max=1€20;

net.trainParam.max_fail=20;

[a1,82]=(size(net.IW{ 1,1}));

net.IW{ 1,1} =rands(al,a2);
[al,a2]=(size(net.LW{ 2,1}));

net.LW{ 2,1} =rands(al,a2);
[al,82]=(size(net.b{ 1}));

net.b{ 1} =rands(al,a2);

[al,82]=(size(net.b{ 2}));
net.b{ 2} =rands(al,a2);

if im==0;
%fprintf('Random Initialization\n\n")
dsaif im==1;
net.LW{ 2,1} =ones(1,nh)* (std(u)/nh);
net.b{ 2} =mean(u);
%fprintf(Mean / Std Initidization\n\n’);

end;
% SPECIFY VALIDATION DATA AND TRAIN ANN
VV.P=vt'VV.T=wU,
[net,tr]=train(net,t',u’[],[1,VV);
% EVALUATE ANN ON VALIDATION DATA
vp=sim(net,vt’)’;
er(nh)=mean((vu-vp).*2); % MSE OF VLIDATION DATA
% SAVE ANN IN TEMPORARY DIRECTORY
NNET (nh)=struct('N',net);
fname=['c:\temp\NNET" eval (‘'num2str(nh)")];
save(eval (‘fname),'net);
end;
% DETERMINE BEST ANN BASED ON MINIMUM VALIDATION ERROR
bestnh=find(er==min(er));
% RELOAD BEST ANN TO PASSBACK ASOUTPUT

bname=['c:\temp\WNET" eval (‘'num2str(bestnh)")];clear net;
load(eval (‘bname));

96%%6%0%0%0%0%0%6%6%0%6%6%0%0%0%0%6%0%0%6%6%0%0%0%0%6%6%6%0%0%0%0%0%6%6%0%6%0%0%0%0%0%6%6%0%60%6%0%0%0%0%6%6%0%60%6%0%0%0%% %% %0%60% %% %% %% %

Y6%%60%0%0%0%0%0%6%6%%60%0%0%0%0%0%6%6%6%60Y0%0%0%0%0%6%6%0%60Y0%0%0%0%0%6%6 %% Y60%0%0%0%0%6%6 %0 %0 Y0% % 0%0% %% %% 0% %% 0% %% %0 Y0 %0% % 0%0% %% %
% SUBFUNCTION OF nnplsi_main77f.m TO COMPUTE ESTIMATIONS AND POINT-WISE PREDICTION INTERVALS
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Y6%%0%0%0%0%0%0%6%6%6%6%0%0%0%0%0%6%6%%60%0%0%0%0%0%6%6%0%0Y0% 0% 0% 0% %% %% Y0%0%0%0%0%6%6 %% Y0% % 0%0%0 %% %% 0% %% 0% %% %Y %% %% 0% %% %

% THISFUNCTION COMPUTES THE ESTIMATES AND PREDICTION INTERVALS FOR THE SPECIFIED DATA SETS
% AND NNPLSMODEL

function [ypt,ypv,ypts,trainunc,valunc,testunc] = nnplsi_predictall (x,xx,xxx,w,wbs,p,fac);

% x isan [nx(d+1)] matrix of training data, where the first n columns are the predictor variables,

% and the last column contains the corresponding responses.

% xx isan [px(d+1)] matrix of vaidation data, where the first n columns are the predictor variables,
% and the last column contains the corresponding responses.

% xxx isan [mx(d+1)] matrix of validation data, where the first n columns are the predictor variables,
% and the last column contains the corresponding responses.

% w is the transofrmation weight matrix of the current NNPLS model

% whbs isthe matrix of ANN parameters for the NNPLS model inner relationships

% p istheinput score vector matrix

% fac is the maximum number of latent variables to evaluate

% ypt isa[nx fac] matrix of the training response estimates

% ypv isa[p x fac] matrix of the validation response estimates

% yptsisa[m x fac] matrix of the test response estimates

% trainunc isa[n x fac] matrix of the point -wise prediction interval estimatesfor YPT
% valuncisa[p x fac] matrix of the point -wise prediction interval estimates for YPV
% testunc isa[m x fac] matrix of the point -wise prediction interval estimatesfor YPTS

% INITIALIZE DIMENSIONS AND SEPARATE PREDICTORS FROM RESPONSES
N=size(X,1);N2=size(xx,1);N3=size(xxx,1);

NI=size(x,2);y=x(;,NI);x=x(:,L:(NI-1));
NI2=size(xx,2);yy=xx(:,NI2);xx=xx(:,1:(N12-1));
NI3=size(xxX,2);yyy=xxx(:,NI3);xxx=xxx(:,1:(N13-1));

NlI=size(x,2);

NI2=size(xx,2);

NI3=size(xxx,2);

OX=X;0X2=XX;0X3=XXX;

% INITIALIZE RESPONSE ESTIMATION MATRICESAND DERIVATIVE MATRICES
yp=zeros(size(x,1) fac);yp2=zeros(size(xx,1),fac);yp3=zeros(size(xxx,1),fac);
ALLFR=[[;ALLFT=[];ALLFR2=[];ALLFT2=[];ALLFR3=[];ALLFT3=]];

for h=1:fac; % LATENT VECTOR INDEX

% COMPUTE LATENT VECTORS
T(Gh)=x*w(,h);  T2(¢,h)=o¢Fw(;,h);  T3(,h)=o0¢w(:,h);

% Determine the number of hidden nodes used in the ANN for each component

% then extract the corresponding weight and bias values from the whs matrix
nnl=wbs(1,1,h);

wl=wbs(2:nn1+1,1,h);

w2=wbs(2:nn1+1,2,h)’;

bl=wbs(2:nn1+1,3h);

b2=wbs(2,4,h);

% COMPUTE DERIVATIVES

for k=1:wbs(1,1,h);
O(:,k,h)=tanh((w1(k)* T(:,h))+b1(k));
U1(:,k,h)=0C(:,k,h)*w2(k);
FT1(:k,h)=((w2(k)* (1+O(:,k,h).~2)).* T(:,h));
FT2(: k,h)=(w2(k)* (1+O(:,k,h).*2));
FR1(:,k,h)=(w1(k)* (1+O(:,k,h).~2)* w2(K));
FT3(:,k,h)=0(:,k,h);

end,

for k=1:wbs(1,1,h);
Ov(:,kh)=tanh((w1(k)* T2(;,h))+b1(k));
U1v(:,k,h)=0Ov(:; k,h)*w2(k);
FT1v(:,k,h)=((w2(k)* (1+Ov(:,k,h).~2)).* T2(;,h));
FT2v(: k,h)=(w2(k)* (1+Ov(:,k,h).*2));
FR1v(:,k,h)=(w1(k)* (1+Ov(: k,h).~2)*w2(k));
FT3v(:,k,h)=0v(:; k,h);

end;

for k=1:wbs(1,1,h);
Oz(:,k,h)=tanh((w1(k)* T3(:,h))+b1(k));
U1z(:,k,h)=0z(: k,h)*w2(k);
FT1z(: k,h)=((w2(k)* (1+Oz(:,k,h).~2)).* T3(:,h));
FT2z(: k,h)=(w2(k)* (1+Oz(:,k,h).~2));
FR1z(:,k,h)=(w1(k)* (1+Oz(:,k,h).~2)*w2(Kk));
FT3z(:,k,h)=0z(: k,h);
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end;

U(:,h)=(sum(U1(:,;,h))+b2)’;
U2(:,h)=(sum(U1v(:,;,h)")+b2)’;
U3(;,h)=(sum(U1z(:,:,h))+b2)";

FQ(:,h)=U(:,h); FQ2(:;,h)=U2(:,h); FQ3(:,h)=U3(:,h);
FT4=ones(N,1); FT4v=ones(N2,1); FT4z=ones(N3,1);
FR2(:,h)=sum(FR1(:,:,h)")";
FR2v(:,h)=sum(FR1v(:,;,h)")";
FR2z(:,h)=sum(FR1z(:,:,h)")";

% Update y by adding the Contribution from ANN h.

if h==1;
yp(:,h) = (w2* (tansig(w1* T(:,h)+(b1* ones(1,siz&(T,1)))))+b2)");
yp2(:,h) = (W2* (tansig(w1* T2(:,h)'+(b1* ones(1,si1ze(T2,1)))))+b2)");
yp3(:,h) = (w2* (tansig(w1* T3(:,h)'+(b1* ones(1,si1z&(T3,1)))))+b2)");
else
yp(:,h) = yp(:,h-1)+((w2* (tansig(w1* T(:,h)+(b1* ones(1,5z&(T,1)))))+b2)");
yp2(:,h) = yp2(:,h 1)+((w2* (tansig(w1* T2(:,h)'+(b1* ones(1,size(T2,1))))) +b2)");
yp3(:,h) = yp3(:,hr1)+((w2* (tansig(w1* T3(:,h)+(b1* ones(1,size(T3,1)))))+b2)");
end;

yptCh)=yp(:,h); - ypv(.h)=yp2(,h); - ypts(:,h)=yp3(:;,h);
% Input Residual Matrix Deflation
x=%-(T(,h) * p(h,?));  xx=xx-(T2(:,h) * p(h,:)); xxx=xxx-(T3(:,h) * p(h,:));

% COMPILE DERIVATIVESINTO MATRICES
for hh=1:NI;

ALLFR=[ALLFR (FR2(:,h).*ox(:,hh))];
end;
for hh=1:NI2;

ALLFR2=[ALLFR2 (FR2v(:,h).* ox2(:,hh))];
end;
for hh=1:NI3;
ALLFR3=[ALLFR3 (FR2z(:,h).* ox3(:,hh))];
end;

ALLFT=[ALLFT FT1(:,(Lwbs(1,1,h)),h) FT2(:,(Lwbs(1,1h),h) FT3(,(Lwbs(1,Lh)).h) FT4];
ALLFT2=[ALLFT2 FTIv(:,(L:wbs(1,1,h)),h) FT2v(;,(Lwbs(L,1,h),h) FT3v(:,(Lwbs(1,1,h)),h) FT4v];
ALLFT3=[ALLFT3 FT1z(:,(Lwbs(L,1h),h) FT22(:,(Lwbs(L,1,h),h) FT3z(:,(Lwbs(,1,h)),h) FT4z];
F=[ALLFRALLFT FQ]; F2=[ALLFR2ALLFT2FQ2]; F3=[ALLFR3ALLFT3FQ3];

9% ESTIMATE ESTIMATE STANDARD DEVIATION BASED ON TRAINING AND VALIDATION DATA
s(h)=sart(mean([((y -ypt(:.h))-"2);((yy-ypv(:.h) -2)]));

nump=size(F,2); % NUMBER OF PARAMETERS
dof=size(x,1)-nump; % DEGREES OF FREEDOM

% OBTAIN POINT-WISE PREDICTION INTERVAL VALUESFOR ALL DATA SETS
forii=1:N;

trainunc(ii,h)= tinv(0.95,dof)* s(h)* sgrt(1+(F(ii,:)* pinv(F* F)* F(ii,)"));
end;

forii=1:N2;
valunc(ii,h)= tinv(0.95,dof)* s(h)* sgrt(1+(F2(ii,:)* pinv(F* F)* F2(ii,:)));
end;

forii=1:N3;
testunc(ii,h)=tinv(0.95,dof)* s(h)* sqrt(1+(F3(ii,:)* pinv(F* F)* F3(ii,:)");
end;

end
%0%0%6%0%0%%0%0%6%6%0%6%6%0%0% %0%0%6%6%0%6%6%0%6%0%0%6%0%0%6%0%0%6%0%0%6%0%0%%0%0%%0% 0% %0% 0% %0% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% 0% %% %%

YoY% Y0Y0%0Y6Y0%0%6Y0%0%6Y0%0%6Y0%0%6Y0Y %60V e% Y0V 0%0Y6Y0%0%6Y0%0%6 0% 0% Y0% %60V 0% Y0V % Y0V % %6V 0%0%6Y0% 0% Y0% 0% Y0Y %60V % V0% %0 Y% %Yo
% SUBFUNCTION OF nnplsi_create5f.m FOR SEPARATING A SPECIFIED COLUMN FROM A FULL MATRIX

YUYV VY0V VY0V YY0Y VY0V VY0V VY0V Y0Y %YV 0%6Y0%0%6Y0 Y06V 0% 0Y6Y0%0Y6Y0%0Y6Y0%0Y6Y0% 0%V 0Y 0% 0Y Y0V Y VY%V %YV %Y Y% %Yo
function [x,y]=divide(data,npred);

%

% THISFUNCTION SEPARATES THE COLUMN SPECIFIED BY NPRED FROM THE MATRIX DATA.

%

% datais an nxp matrix which contains n sample vectorsfor p variables.

% npred isascalar corresponding to the column to be separated out from data

%

% x isthe [nx(p-1)] remainder of the original matrix

%y isthe (nx1) extracted column
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y=data(:,npred);

if npred==1;
x=data(:,2:size(data,2));
elseif npred==size(data,2);
x=data(:,1:(npred-1));
dse
x=[data(:,1:(npred-1)) data(:,(npred+1:size(data,2)))];
end;

Y6%%0%0%0%0%0%0%6%6%6%6Y0%0%0%0%0%6%6%%60Y0%0%0%0%0%6%6%0%0%0% 0% 0% 0%0%6%6 %0 %0Y60% 0% 0%0%0 %% %0 %0 Y0% 0% 0%0% %% %0 %0 0% %% 0% %% %Y %% %% 0% %% %
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