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Abstract    
   Two approaches to characterize global dynamics are developed in this 

dissertation. In particular, the concern is with nonlinear and chaotic time 

series obtained from physical systems. The objective is to identify the 

features that adequately characterize a time series, and can consequently be 

used for fault diagnosis and process monitoring, and for improved control. 

   This study has two parts. The first part is concerned with obtaining a 

skeletal description of the data using Cluster-linked principal curves (CLPC). 

A CLPC is a non-parametric hypercurve that passes through the center of 

the data cloud, and is obtained through the iterative Expectation-

Maximization (E-M) principle. The data points are then projected on the 

curve to yield a distribution of arc lengths along it. It is argued that if some 

conditions are met, the arc length distribution uniquely characterizes the 

dynamics. This is demonstrated by testing for stationarity and reversibility 

based on the arc length distributions. 

   The second part explores the use of mutual information vector to 

characterize a system. The mutual information vector formed via 

symbolization is reduced in dimensionality and subjected to K-means 

clustering algorithm in order to examine stationarity and to compare 

different processes. 

   The computations required to implement the techniques for online 

monitoring and fault diagnosis are reasonable enough to be carried out in real 

time. For illustration purposes time series measurements from a liquid-filled 

column with an electrified capillary and a fluidized bed are employed. 

Keywords: Chaos, clustering, fault diagnosis, information theory, monitoring, 

mutual information, nonlinear dynamics, principal curves, process control, 

symbolization 
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Prediction is very difficult, especially of the future 
-Niels Bohr 

 

 

Chapter 1 

 

Background and objective 
 

 

1.1. Introduction 
It has always been mankind’s quest to precisely predict the future 

outcomes of event(s) and evolution of varying or dynamic things. The 

sunspot activity, for example, was studied as early as 37 BC [Needham 

(1959)].  

There are two aspects to understanding dynamic processes. If a certain 

phenomenon is not too complex, one can learn how it normally behaves. This 

aspect of recognizing patterns or salient features was central to the survival 

of humankind. The shift from hunting and gathering to farming was brought 

about precisely because the ancient man recognized the regularity of seasons 

and exploited it to produce a reasonable harvest under many uncertainties. 

The uncertainties in their turn spawned a plethora of rituals, with the goal of 

accounting or compensating for the unaccountable or unknown. 

One the other hand, the ability to detect or predict a change or shift 

has also been very crucial for the survival of humankind. Considering the 

example further, the ancient man had to understand that the land had 
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become barren or arid and would not bear crops anymore. That is an 

example of detecting a change in the existing, regular, or normal behavior.  

The two concepts are related, for, if there is no normal behavior, or 

the normal behavior lasts only for short intervals (in which case it is not 

really normal), it becomes extremely difficult to make informed decisions. 

What happened to the ancient man under rapidly changing conditions 

around him is hard to say (the great ice ages come to mind whereupon man 

probably migrated to warmer climes), but the dinosaurs, for example, 

vanished from the face of the earth presumably because they could not adjust 

to the drastic changes in earth’s climate (it is quite likely they recognized the 

change after it had long since settled in, but were helpless to do something 

about it, although they had existed for millions of years).  

In earlier times, any kind of change that could not be explained was 

attributed to gods, dæmons, totems or spirits. The work of the ancient 

Greeks and then that of Newton promoted the powerful argument that the 

physical systems were indeed predictable, since they are governed by certain 

rational laws. Newton said that if god created the universe, it had to be 

beautiful, in keeping with the spirit of perfection that was the zeitgeist of the 

age of Enlightenment. It took several centuries before Heisenberg with his 

uncertainty principle cast serious doubts about a Newtonian Universe. 

 

In the Newtonian world (which is still the central paradigm for 

engineering science), all that one needs to understand a system or 

phenomenon are the deterministic equations or laws governing the dynamics 

of the system under study. Dynamics is typically concerned with change or 

movement taking place over time. 
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In order to have a better estimate of the change over time, some 

measurements need to be made on the system of interest. Thinking 

probabilistically, these measurements are random samplings from a finite set. 

The underlying assumption is that measurements are generated by and 

provide information about a generating process, which may or may not be 

visible. The generating process can be a physical, chemical or biological 

system, about which much or little may be known. Associated with a 

generating process is a conditional probability —which imposes certain 

restrictions on the sampling process —and hence the measured properties.  

In the quest to explain the structure present in the measurements, the 

simplest approach, of course, is to model a system with difference or 

differential equations that utilize our knowledge of the physics, chemistry or 

biology. However, in many cases the underlying theory is scant, and one is 

presented with not much more than the data itself. In such cases the goals 

are to recognize important features or patterns in the data set, and to have a 

way of approximating the behavior of the system. 

 

Many phenomena in our environment are studied using sequences of 

measurements or observations, made over time. These sequences of 

observations, called time series, often comprise an important part (and in 

some cases the only source) of the information available on the system being 

studied.  

 The analysis of time series has broad applicability over otherwise 

disparate fields of research. In the engineering community the term signal is 

used more often. However, the term time series is more generic, and applies 

to discrete or continuous measurements. Also, in some cases, the 

measurements are made not over time, but over some other variable, for 

example the length. This study pertains to the sequences where the 
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measurements are made over time —and hence the term time series is more 

appropriate. 

It is suitable here to introduce the basic notation. xt or x(t) is a 

measurement made at time instant t about the property that is represented 

by x. {xt} or {x(t)} is the set of the measurements and a shorthand notation 

for {x(t)|t=0, 1, 2,...}.  
 

 This study concerns itself with characterizing a system, and to detect 

a change in its dynamics or in the underlying generating process as soon as 

possible. The findings of this study and the methods expounded are very 

practical, and can be used profitably for monitoring, fault diagnosis and   

control. It is assumed that the data comprises multiple measurements made 

over time. Albeit it is preferable to exploit the understanding of the system 

to the largest possible extent, the results of this study apply even when the 

data is the only source of information.  

 

The layout of this dissertation is as follows. This chapter provides a 

short review of modeling concepts. Chapter 2 outlines basic concepts of 

nonlinear dynamics and chaos, and introduces the different approaches taken 

for characterizing them. Chapter 3 furnishes a brief description of the 

experiments which serve as data sources for this dissertation. Chapter 4 

develops, discusses and demonstrates the cluster-linked principal curve 

(CLPC) algorithm. Chapter 5 deals with the uses of Cluster-linked Principal 

Curves in testing for stationarity and reversibility, and in comparing different 

processes based on time-based return maps or delay space embeddings. 

Chapter 6 discusses some information theoretic measures of a time series. 

Chapter 7 concerns itself with examples of how information theoretic 

measures can be used to characterize a system and to compare different 
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processes. Chapter 8 contains the conclusions and suggestions for future 

directions of research.  

 

 

1.2  System modeling and identification  
   System Identification is the discipline of making mathematical models 

of systems from experimental data, measurements or observations. The goal 

of modeling or identification is to capture the essential features of the 

observed patterns in the system behavior and to increase our understanding 

of the generating process, or dynamics, of the observed system.  

For most natural processes, the measurements are influenced by some 

random mechanism no mathematical model can adequately describe. Even 

when an exact mathematical solution for a system exists, there are some 

unavoidable measurement errors, and these errors by their very nature, are 

random quantities. There are two kinds of models —deterministic and 

stochastic. The formal definitions for deterministic and stochastic models are 

presented now. 

  

1.2.1. Deterministic and stochastic models 

In some cases, it is possible to derive a model based on physical laws, 

and thus calculate some time-dependent quantity nearly exactly at any time. 

Such a model is completely deterministic. In that case, it is possible to write 

a mathematical equation such as: 

x(t)=f(t)        (1) 

 Where f is a function defined for all t such that f(t) is always finite.■ 
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However, unless there is a complete understanding of the theory 

describing the process, there will always be unknown factors at work. 

Besides, there are measurement errors associated with real processes. The 

uncertainty —caused by dynamic and white noise —may preclude a precise and 

exact deterministic model.  

Nevertheless, it is possible to predict that a future value should reside 

within a range. Such a model is called a probability model or a stochastic 

model. This could be represented as 

xi=f(xi-1, xi-2,..., xi-m)+ei                        (2) 

where ei is the ‘noise’ whose properties are unknown, and unknowable■ 

 

The basic difference is that the deterministic approach assumes there 

is a deterministic structure in the data that can be explained with 

appropriate equations1, whereas the statistical approach treats time series 

measurements as random values, and assumes no structure —but exploits the 

correlation to estimate the model parameters.  

It must be noted here that the dichotomy between deterministic and 

stochastic models is not rigid, since in many fields, especially in engineering, 

one often has a deterministic system with stochastic elements. The stochastic 

element may be present as white noise (in which the system parameters 

remain unchanged) or dynamic noise (in which the system parameters are 

influenced by stochastic fluctuations). It is the strength of the deterministic 

elements relative to the stochastic ones (Signal-to-Noise ratio in Electrical 

Engineering community), and the domain of the latter that dictates the 

preferred modeling approach. 

                                                 
1  It means that knowing the value of a variable at any one time (initial condition) allows one to 
calculate the value of that variable at any given instant of time 
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Modeling can be parametric, or non-parametric. Parametric does not 

mean the absence of parameters, but the absence of any assumptions about 

the distribution of observations. For example, consider the autoregressive 

model: 

xt=β1xt-1+β2xt-2+...+βmxt-m+et              (3) 

 

The coefficients {βi} in the equation can be estimated by Multiple 

Linear Regression (MLR), but in order to quantify the uncertainty in these 

parameters, MLR assumes that the residuals or the model errors (ei in 

equation 3) are normally and independently (meaning no correlation) 

distributed. Linear regression also assumes that the regressors (xt-1, xt-2, etc in 

equation 3) have no measurement errors. If the assumptions are invalid, the 

model may be a poor estimate of true dynamics despite there being a linear 

relationship as described in equation (3). In this study, no assumptions are 

made about the probability distribution of the observations. 

 

1.2.2. A definition of stationarity  

It was mentioned before that the generating process uniquely identifies 

the state of the system. The invariance of the generating process is called 

stationarity. Stationarity means the underlying process generating the 

measurements does not change over time. The invariance of the generating 

process can be formulated as the invariance of the joint probability 

distribution. 

 

A precise asymptotic definition exists [Diks (1999)], as shown below. 
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1 2{ , ,... }A bounded, infinitely long time series   

is considered to be stationary if the averages
nx x x

 1 -1
n 1

1= ( , ,..., )lim
n

k k k m
k

g g x x x
n + +

→∞ =
∑               (4) 

m exist for each  and each continuous function : R Rm g → ■ 

 

Under this condition, there exists an associated probability measure, 

called the reconstruction measure. Some functions that can be considered are 

the moments —viz., mean, variance, and higher level moments like kurtosis 

and skewness. 

 

Another definition given in Tong (1990) follows. 

1 2

1 2

A time series { , ,... } is said to be stationary if,

for any ,  ,  ..., , any , and 1,2,...
n

n

x x x

t t t Z k Z n∈ ∈ =
 

1 2 1 2, ,..., 1 , ,..., 1F ( ,... ) = F ( ,... )
t t t t k t k t kn nx x x n x x x nx x x x

+ + +              (5) 

where F denotes the (joint) probability distribution function of the set 

of random variables that appear as suffixes. ■ 

 

It must be recalled here that comparing probability distributions is 

quite subjective, if one chooses to forego rigid assumptions about them. 

Bootstrapping methods, while very useful, are hard to implement with time 

series data because of the temporal correlation present in the latter. One 

cannot randomly generate sub-samples without losing much useful 

information in the time series. 
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1.2.3.  Linear systems theory 

1.2.3.1. The correlation approach 

 

Generally, the observations at time instant t are correlated with those 

at t-2, t-1, t+1, t+2, etc. Such a property of a time series is called its 

autocorrelation. A definition of autocorrelation is given below. 

 

2

( ) ( )
( )

( )

x t x t r
r

x t
ρ

+
= ∑

∑               (6) 

where ρ(r) is the autocorrelation of series {xt} for lag r.  The index t 

covers all the records in the time series.■ 

 

Statistical linear methods like ARIMA (Auto-Regressive Integrated 

Moving Average) models exploit the temporal autocorrelation to provide a 

parametric model for a given time series. Linear Model Building attempts to 

fit a model to a time series with a minimum number of parameters, so that 

the residuals or the model errors have an I.I.D. (independently identically 

distributed) probability distribution2. 

 

If the observations (to be predicted) are not stationary, then the linear 

systems theory is not relevant. One can attempt to monotonically transform 

the variable to achieve normality. Such methods include, among others, Box-

Cox transformation and taking logarithms. 

                                                 
2 Requirements of I.I.D. process amounts to null autocorrelations and a normal running PDF for any 
lag. 
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The Auto-regressive (AR), Moving Average (MA), and Auto-

regressive Moving Average (ARMA) equations can also be written as 

difference equations, and can represent the input-output relationship as a Z-

transform. That approach is often preferred in the engineering community. 

 

1.2.3.2. The spectral approach 

Another way to look at linear models is by considering Fourier 

analysis, in which the time series is modeled by a weighted sum of 

orthonormal sinusoids, thus establishing a one-to-one mapping between 

frequency- and time- domains. A definition of discrete Fourier transform 

(DFT) is given here. There are many definitions, but the one provided has 

the advantage of having similar-looking expressions for DFT and Inverse 

DFT (IDFT). 

 

The Fourier transform of a time series {xt} can be defined as: 

-

0

1h( )=
2

j t
t

t
x e ωω

π =
∑               (7) 

The inverse Fourier transform is defined as 

1 h( )
2

j t
tx e ω

ω
ω

π
= ∑                       (8) 

The power spectral density (PSD) is defined as 

2( ) || h( ) ||P ω ω=                (9) 

 

Note that the discrete Fourier transform is a complex number, but the 

power spectral density is a real number.■ 
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Replacing the summation by an integral yields the expression for their 

continuous counterparts. 

It is interesting to note here that under the condition that the 

autocorrelations exist and are finite, the autocorrelation function uniquely 

determines the Fourier transform. An equation similar to equations (7) and 

(8) can be written to relate the Fourier transform to the autocorrelations ρ(r) 

instead of the time series measurements {xt.} Theoretical details can be found 

in Priestley (1981). 

 

Based on the discussion above, it is clear that the different approaches 

taken in linear systems analysis are essentially the same and they make 

certain consistent assumptions about the data. Any apparent differences are 

due to the different ways the topic has been approached by researchers in 

various fields.  

The time series that can be modeled as an Auto-Regressive Integrated 

Moving Average (ARIMA) processes, Z-transforms or Fourier series must 

possess two properties, namely those of stationarity and reversibility. The 

concept of stationarity has already been reviewed. Reversibility means that 

the joint probability distributions of the time-forward and time-reverse 

versions of the time series are virtually indistinguishable. In other words, the 

essential properties of the time series and its time-reversed version are the 

same, and there is no arrow of time or entropy-maximization at work.  

 

A key objective of this study is to find ways to characterize a time 

series, and to determine if a time series is stationary and reversible. Standard 

time series analysis and prediction tools are useful in their own right for 

stationary and reversible time series, but not otherwise. Hence the results of 

this study are relevant even for linear processes.  
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Chapter 2 introduces some basic concepts of nonlinear dynamics and 

chaos and shows why linear methods outlined in this chapter cannot be 

effectively used for nonlinear systems. 
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Wo das Chaos auf die Ordnung trifft, gewinnt meist das Chaos,  

weil es besser organisiert ist. 
   -Friedrich Nietzsche 

 

We adore chaos because we love to produce order. 
-M. C. Escher 

 

 

Chapter 2 

 

Nonlinear dynamics and chaos 
Physical systems can be described by equations governing their 

evolution. Dynamics is the study of such equations. A linear system is a 

system whose time evolution equations are linear, that is, the state equations 

describing the system can be written as a linear combination of the variables 

describing system properties. The state equations of nonlinear systems do not 

permit linear decomposition, which is why they are inherently more difficult 

to analyze. The systems whose state equations contain coefficients that do 

not depend on time are called time-invariant. Linear Time Invariant systems 

have been studied in great detail, and their theory stands perfected with 

mathematical simplicity and elegance.  

Mathematically, linear systems must meet the constraints of 

superposition principle. What that means is essentially the whole is the sum 

of the parts, and which can be written as: 

f(αx1+βx2)=αf(x1)+βf(x2)              (10) 

where x1 and x2 are variables and α and β  are constants. ■ 
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2.1. An example: the logistic map 
A simple example of a nonlinear system is the logistic map, described 

by the simple equation  

 

xn+1=Axn(1-xn) where xi∈[0,1].                                   (11) 

The subscript refers to the time index. A (0<A<4) is a parameter■ 

 

The logistic map is a simple model for the evolution of a biological 

population size x of some species from generation to generation. When the 

population is low, the relative abundance of resources results in fast 

population growth. However, the increased population causes more 

competition for the available resources, or their exhaustion that leads to a 

reduction in population. The model, admittedly a very simple one, has very 

interesting behavior unexpected from such an innocuous equation. More 

information can be found in an influential article [May (1976)] published in 

Nature. 

Figure 2.1 shows the time series for A=3.9 and starting values x0 of 

0.7499 (dashed line) and 0.7500 (solid line). Note the high sensitivity to 

initial conditions in Figure 2.1. The evolution of the time series with nearly 

the same origin tracks each other only for a few iterations, and after that the 

time series exhibit no relationship to each other. 

 

2.2. Terminology 
It will be useful to introduce some terminology here.  Consider that the 

vector xi completely and unique describes the system at any time instant i. 
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           Figure 2.1. Two time series obtained from the logistic map.  

The solid time series corresponds to A=3.9 and x0 =0.7500, whereas the dashed 

line corresponds to A=3.9 and x0 =0.7499. The series track each other for about 
12 iterations, and then begin to diverge visibly. The Lyapunov exponent for the 
logistic map at A=3.9 is roughly 0.63. The Lyapunov exponent is a measure of 

how the natural logarithm of the distance between two trajectories with very 

similar initial conditions diverges. In this case, the distance between the 

trajectories started off from x0 =0.7499 and x0 =0.7500 grows by a factor of e0.63 

or 1.878 after every iteration. See equation (11) for the time-evolution of logistic 
map. 

 
 

 

xi 
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Assume that the vector is made up of individual measurements or 

observations {x1i, x2i, x3i,…,xmi}, where the arabic numerals index the 

measurements. If a vector unequivocally characterizes a system, it is called 

the state vector. The space mR where the state vectors reside is called the 

state space. Normally the dimension of a state space is the minimum number 

of variables needed to uniquely characterize the system, or its degrees of 

freedom.  

Consider a two-dimensional state space. In that state space, the 

sequential set {(x1, y1), (x2, y2),…, (xn, yn)} or {x1, x2, ..., xn} describes the 

path traversed by the system from time instants 1 through n. That path is 

called a trajectory. The extension to higher dimensions is straightforward. 

Sometimes the term phase space is used interchangeably with state space. 

However, the term phase space was introduced by Gibbs in relation to 

thermodynamics, and is much more restrictive. The phrase state space is 

used in this dissertation. The term pseudo state space pertains to a state 

space that does not necessarily relate to the physical properties of the 

system. For the sequential set described in this paragraph, replacing yi with 

xi+1 furnishes an example of pseudo state vector and pseudo state space. 

All these trajectories can be thought of as a mapping. That is to say 

that x1 maps to x2, and the mapping function is, say, f(x). It is not necessary 

for f to have a closed mathematical expression. All that is required is that the 

mapping be unique: invertibility is not necessary. 

Stable linear systems are stable in the BIBO (Bounded Input Bounded 

Output) sense. It means that nearby trajectories remain close in the state 

space at all times. This is not true of nonlinear systems. Chaotic systems are 
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the extreme example of nonlinear systems and are characterized by 

exponential divergence of nearby trajectories. 

The exponential divergence of nearby trajectories has been 

immortalized by the picturesque butterfly effect, attributed to Lorenz. He 

had developed a simple model to describe the atmosphere, and his equations 

demonstrated sensitive dependence on initial conditions or exponential 

divergence of nearby trajectories. Lorenz had in fact used a seagull as the 

metaphor to verbalize the finding that the flapping of a seagull’s (or 

butterfly’s) wings could render long-term prediction of weather useless.  

The sensitive dependence on initial conditions rules out long-term 

prediction, since even a small error in a measurement or even prediction (due 

to limited storage for a computed value), grows exponentially over time so 

much so that after some period of time, the predictions would be utterly 

inaccurate. For chaotic systems, prediction can only be done for short term. 

However, that is not necessarily a liability.  

The chaotic systems considered so far had a set of differential or 

difference equations that described their evolution. In other words, the 

systems were deterministic in the sense that one knows how the system will 

behave given some information about how it behaved in recent past. The 

term chaos has been used in various contexts, most of whom stem from 

mythology. What is meant by chaos here is deterministic chaos, i.e., the 

complex behavior of systems that otherwise follow physical laws, and are not 

random. 

 

The term fixed point is used to describe the solution of the governing 

equation (for maps3), or the point where all derivatives (recall the mapping 

function f) are zero (for flows3).  It may be stable, unstable, or a saddle 
                                                 
3 If the governing equation is a difference equation, it is called a map. And if it is a differential 
equation, it is called a flow. 
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point, in short, a point whither the trajectories are repelled or attracted. For 

a stable fixed point, the trajectory terminates upon reaching it. An unstable 

fixed point, unlike the fixed point, repels any trajectory reaching it. For a 

saddle point, there are some directions along which the trajectories are 

attracted, and some directions along which they are repelled. A trajectory 

cannot stay at the saddle point for long: it is soon repelled from it along the 

repelling directions.  

An attractor is a set of such attracting points, and can be a point, a 

line, a curve, or a surface; it is an attracting set all trajectories starting in the 

basin of attraction eventually reach (given enough time). Note that this 

study is concerned primarily with dissipative systems, i.e., systems that are 

characterized by a shrinking volume in the state space or negative 

divergence. Most physical systems have only finite energy, which is slow lost 

or dissipated due to friction or other such effects. This study focuses on 

dissipative systems. 

  Dissipative chaotic systems are characterized by strange attractors 

having fine, layered, fractal structure produced by folding and unfolding, or 

kneading and stretching of a map. For such systems, given enough time, any 

trajectory, winding through the state space, though infinitely long, occupies 

zero volume. For illustration, please refer to figure 2.5 that shows the pseudo 

state space for Rössler equation.  

 

 

2.3.  Poincaré sections and return maps 
The divergence of nearby trajectories has been known for over a 

century. French mathematician Henri Poincaré was the first to remark at the 

basic concepts of nonlinear dynamics and chaos. He noticed the phenomenon 

in his research on the behavior of several planets interacting with each other.  
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Return Maps are very instructive in understanding nonlinear structure 

in the data. In Return Maps, the measurements at any time {xt+q} are 

plotted against their lagged counterparts {xt}. Figure 2.2 shows the return 

map for the logistic map time series with A=3.9 and x0=0.75.  

The dots are data points, and the diagonal is the 45-degree line on 

which the fixed point resides. The asymmetric distribution of the points 

about the diagonal reveals that the behavior of the logistic map is not 

symmetric in time. Such time-asymmetry is in fact a characteristic of most 

nonlinear systems. 

 

 

 
 

 

 

 

 

 

 

 

 

 

     

   

Figure 2.2. Return map for the logistic map time series (delay =1). 

 See equation (11) for the logistic map equation. For this figure A=3.9 
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Figure 2.3 shows the return map of the same time series, but with 

delay of 10. The clear pattern in figure 2.1 is lost, and the data points are 

apparently random. In short, one has short prediction horizons, which is 

another hallmark of chaos. 

Poincaré also introduced a simple but useful concept. Imagine a plane 

across the state space. Poincaré sections are the points on that plane where 

the trajectory pierces the plane in any one chosen direction (transverse 

crossings only need be considered). Let us call the point where the trajectory 

cuts the plane zi. Note that one has to define the direction of crossing (to 

differentiate between the trajectories going from left to right and right to 

left). The procedure will provide a sequence of such numbers. If one has the 

equations for the system, it is theoretically possible to find a function that 

could predict the next crossing given the current crossing. For example, a  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Return map for logistic map time series (delay=10) 

See equation (11) for the logistic map equation. For this figure A=3.9 
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two-dimensional pseudo state space could be constructed, and the ordered 

sequential set {(z1, z2),(z2, z3),…,(zn, zn+1)}. The resulting plot is called 

Poincaré map. Poincaré maps could also be constructed of measurements 

recorded at fixed time intervals. 

Poincaré maps serve to reduce the dimension of the state space by 

unity. An approach used by Nguyen et al (1996), considers the time intervals 

between successive piercings of the plane (while obtaining its Poincaré 

sections), in plotting return maps. A return map based on the mean crossings 

is called time-based return map. Figure 2.4 shows the time-based return map 

of the logistic map time series.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Time-based return map for the logistic map time series 

       For this figure A=3.9 
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Without additional information, a sensible choice for the cutting plane 

is the mean of the time series. In plotting figure 2.4, the mean of the time 

series was used as the cutting line in order to obtain the mean crossings.  

Figures 2.2 through 2.4 use the same data. One can observe how, for 

most part, the mean is crossed every 2 to 4 time periods in figure 2.4. 

Sometimes, though, the time series stays above or below the mean for longer 

periods. By changing the level for determining crossings, more information 

can be had about the time series at hand. 

The logistic map data is not a good candidate for time-based return 

maps. Time-based return maps are quite useful about the physical systems 

that result in time series with some sort of periodicity. They are not much 

useful for a discrete equation like the logistic map equation. From this point 

on, time-based return maps are referred to as return maps. Return map in its 

original definition is called delay space. 

 

 

2.4.  Embedding and pseudo state space 
It was shown by Sauer et al (1983), that a system can be adequately 

represented by its embedding vectors. Embedding vectors are formed by 

treating time-lagged measurements as co-ordinates in the reconstructed 

delay-space or pseudo state-space. They found that even for a system with 

many degrees of freedom (or measurable variables), information on only one 

variable, if collected sufficiently well, is enough to reproduce the geometry of 

the attractor.  

Assume that all values in one time series, {xi} are drawn from a 

probability space. Let this probability space be X0, which is the collection of 

all possible values in the time series. The embedding vector can be defined as 

follows 
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where 

xi  = Embedding Vector 
xi   = Individual measurements.  

m  = Embedding Dimension 

 τ   = Embedding Delay ■ 

 

Considering X as the m-times Cartesian product of X0 with itself, it is 

the probability space where the embedding vectors reside. Thus xi⊂X and 

xi∈Rm. Abusing the terminology a little, let us denote by X the probability 

space as well as the process that generates it.  

 There are two parameters involved in formation of embedding vectors 

—m and τ. However, what is important is the time interval in the window —

i.e., (m-1)τ. This time interval must be large enough to resolve the dynamics. 

Too small an interval covers only a small part of the entire state space; too 

large a window of course, adds no information for systems characterized by 

short-term memory. 

Takens (1980) established the upper limit for the embedding 

dimension for reconstruction of attractor geometry. If D is the dimension of 
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the true state-space, then the maximum embedding dimension m0 required for 

a faithful representation of system geometry is m0=2D+1. The logic behind 

establishing the correct embedding dimension is that by increasing the 

pseudo state-space dimension, the self-crossings of the orbit, caused by the 

projection of state space to a too low a dimension will be eliminated.  

Let us consider the Rössler system described by the following 

equations. For details, see Rössler (1976).  

( )

dx y z
dt
dy x ay
dt
dz b z x c
dt

= − −

= +

= + −

              (13)

    

Figure 2.5 shows the embedding of the x-component of the Rössler 

equations. We used a=b=0.2 and c=4.7 —which is a well-studied case for 

these equations. The time series was obtained by prescribing random initial 

conditions and integrating with a fourth-order Runge-Kutta method. The 

first 10 seconds were discarded, and the following data was used. It can be 

seen that the apparent self-crossings in the 2-D plot (figure 2.5 (a)) are not 

reflected in the 3-D plot (figure 2.5 (b)). The dimension of Rössler attractor 

is between 2 and 3 —which means that the embedding dimension has to be 

greater than 2 to eliminate the self-intersection of trajectories.  

Takens’ theorem provides only an upper bound for the correct 

embedding dimension. It is possible to reconstruct the geometry with smaller 

embedding dimension. As seen in the figure 2.5, the reconstruction was quite 

good for m=3 (cf. m0=2.5*2+1=7). Discussion regarding the smallest  
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Figure 2.5. Rössler time series in embedding space 

 

 

sufficient embedding dimension can be found in Kennel et al (1992). The 

issue of ascertaining the dimension of an attractor is taken up in section 2.5.  

Henceforth embedding vector signifies the embedding vectors formed 

from a single, scalar time series. In case of multiple time series or a vector 

time series, the embedding vector can be formed considering all the 

components simultaneously. For example, the embedding vectors formed by 

individual time series can be concatenated to form a composite embedding 

vector. However, one should take care to consider the same time window in 

the entire embedding vector. All the results and comments about the 

embedding vectors that follow apply equally well to embedding vectors 

formed from multiple time series. 

x(t+30) 
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2.5. Characterizing nonlinear dynamics and chaos 
In this section, the measures that define a nonlinear system are 

considered. Recalling the discussion in Chapter 1, the unique way of 

characterizing a system is by its joint probability distribution function. 

However, it may not be possible to measure all the system properties. In that 

case, one relies on embedding vectors to provide a good estimate. Therefore, 

the discussion is based on embedding vectors. 

 

2.5.1. Geometrical measures 

A simple way of quantifying the distribution of a set of state space 

points system is the correlation sum introduced by Grassberger and Poccacia 

(1983). The definition of correlation sum is now introduced. 

 

Correlation sum Cm(X,X,ε) is defined as follows: 

N N

i j iN

1
m

1 1

1
C (X,X, ) ( || ||)

2

ε ε
−

= = +
= Θ − −     

∑ ∑ i jx x           (14) 

where the superscript m refers to the (embedding) dimension of xi and 

xj. xi, xj∈Rm and xi, xj⊂X. Θ is a kernel function usually taken as the 

heaviside step function or a radial basis function. ε is a parameter 

related to the partition of the space. Two points less than ε apart are 

considered ‘un-different’.■ 

 

The search for the nearest neighbors is carried out in a hypersphere of 

radius ε. The more pairs closer than ε, the higher the correlation sum. Note 

that the choice of ε is not arbitrary, since too small an ε will result in very 
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low correlation sum, whereas too large an ε yields a correlation sum near 

unity. 

Because most time series are heavily correlated, one must be careful to 

avoid a biased sample. To deal with this, Theiler (1986) suggested excluding 

measurements less that T time intervals apart from the computation of 

correlation sum. They argue that temporally close vectors are highly likely to 

be spatially and dynamically close and hence add no new information. 

Schreiber and Kantz (1997) have suggested that the measurements that are 

dynamically too close also be excluded from consideration while computing 

the correlation sum. Theiler’s method, though, is easier to implement.  

   

 Correlation sum with Theiler correction is defined as follows: 

Θ
N T N

i j i TN Tε εm

1

1C (X,X, ) ( || ||)1

2

−

= = +
= − −− +     

∑ ∑ i jx x           (15) 

where T≤1 is the Theiler correction■ 

 

The correlation sum depends on embedding parameters, i.e., 

embedding dimension m, embedding interval τ, and the radius of the 

neighborhood ε, as well as the kernel function Θ. The norm ||.|| can be taken 

as a Euclidean or the sup norm. If the sup norm is chosen, the hypersphere 

essentially becomes a hyperprismoid. With T=1, equation (15) reduces to 

equation (14). 

Similarly, the cross-correlation sum Cm(X,Y,ε) can be defined as 

Θ
N N

i jN N
ε

1 2
m

1 2 1 1

2
C (X,Y, ) ( || ||)ε

= =
= − −∑∑ i jx y                 (16) 

mwhere , R  and X, Y∈ ⊂ ⊂i j i jx y x y ■ 
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Note that in equation (16), the vectors xi and yj are formed from 

different measurements (X and Y respectively). The divergence of Cm(X,Y,ε) 

with increasing partition can be quantified as the correlation dimension. 

Correlation sum is also related to Shannon Entropy and Renyi Entropies in 

Grassberger et al (1991). 

 

For sufficiently large samples, the correlation sum scales as: 

Cm(ε)=ε-De-mHτ               (17) 

where D and H are the corresponding dimension and the entropy,  

respectively ■ 

 

Other generalizations of correlation sum account for the non-uniform 

density of points in the state-space. Definition of generalized correlation sum 

is given in Pawelzik and Schuster (1987) as: 

1 2

1
-1 -1

m
q

1 2 1 1

2C (X,Y, )= ( -|| - ||)
qN N q

i jN N
ε ε

= =

      Θ         
∑ ∑ i jx y          (18) 

where -∞≤q≤∞■ 

 

q=2 gives rise to the normal correlation sum introduced in equation 

(14). For q=1, the correlation sum yields information dimension and 

information entropy. A spectrum of dimensions is produced4 over q. Another 

way to deal with the non-uniformity of data points is to scale them using a 

                                                 
4 If the dimension depends on q, the attractor is a polyfractal, otherwise it is a monofractal. 
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static transform. However, one may have to decide upon the appropriate 

transform(s) for a given data set. 

  

2.5.2. Information-theoretical measures 

Correlation sums are closely related to information-theoretic quantities 

like redundancies and entropies. The joint entropy of two processes (time 

series) X and Y is defined in equation (19). 

 

Entropies are defined as: 

1 2

,
1 1

1H (X,Y, )= (X,Y)
- 1

n n
q

q i j
i j

ln p
q = =

Θ ∑∑            (19) 

where pi,j(X,Y) is the probability of a X-vector being in bin i, and a Y-

vector being in bin j. n1 and n2 respectively the bins in X- and Y-

spaces. The symbol Θ emphasizes the fact that these quantities 

depend on the embedding parameters Θ■ 

 

Before the expression in equation (19) may be computed, the 

corresponding Y-vector has to be defined. If the pairs are chosen so that xi 

and yj are such that:  

 

 ;     
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then the expression in equation (19) is an estimate of the entropy in the joint 

probability distribution of X and Y. If the joint probability distribution is 

random (knowing xi doesn’t tell us anything about yi or yi+θ), the entropy 

will be very high. However, any relationship between X and Y reduces the 

entropy, since there is more order in the joint probability distribution. The 

joint entropy is an estimate of general independence between processes X and 

Y. For X lagging Y by θ, it is also an estimate of how well one can predict yi 

vectors if xi-θ is known. 

 

Of course, if xi=yi+θ, equation (19) is an estimate of the generalized 

autocorrelation in the time series X at lag θ. 

 

for q=1, Using L’hôpital’s rule, equation (19) reduces to 

1 2

1 , ,
1 1

H (X,Y, )= - (X,Y)ln  (X,Y)
n n

i j i j
i j

p p
= =

Θ ∑∑                  (21) 

Which is the expression for Shannon Entropy. ■ 

 

If the distributions of X and Y are completely independent, then the 

joint entropy can be represented as the sum of individual entropies. The 

amount of reduction caused by considering the joint probability distribution 

as compared to individual entropies is an estimate of the information X adds 

about Y. Such additional information is called redundancy. 

 

The Simplest form of redundancy —viz. mutual information can be 

defined as: 

 Ii(X;Y,Θ)=Hi(X,X,Θ)+ Hi(Y,Y,Θ)- Hi(X,Y,Θ)■                (22) 
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The generalization to higher dimensions is straightforward. For details 

see Fraser and Swinney (1986). Mutual information is the information added 

by X about Y, and vice versa. The redundancies can be considered a general 

cross-correlation, since a high value of redundancy implies relationship 

between X and Y. If Y is a time-lagged version of X, then it is an estimate of 

the general autocorrelation in the time series X. 

 

This definition of mutual information is non-directional, because the 

definition of Entropy is symmetric with respect to X and Y. At times, the 

symbol Θ is dropped for brevity. It must be borne in mind though, that the 

quantities depend on the choice of embedding parameters. In other words 

 

Hi(Y,X)= Hi(X,Y)                         (23) 

and, therefore 

Ii(X,Y)=Ii(Y,X)             (24) 

 

There is another related concept that relates to directional entropy. 

Kullback-Leibler Information quantity is a general concept that is used to 

discriminate between two different probability densities. For example, for two 

probability densities F(X|Θ∗) and F(Y|Θ), the K-L information can be 

defined as follows. 

F(X| *)
I(F(X| *);F(Y| ))= F(X| *)log

F(Y| )
ΘΘ Θ Θ
Θ∑ ■                (25) 

 

The expression in equation (24) is not symmetric. It is an estimate of 

the distance between the two distributions; it can also be used as a measure 

of distance between two dynamical systems that produced those distribution 

functions. 



   32

According to the definition, it is possible to compare two different 

probability density functions formed with different embedding parameters. If 

the K-L information of many series is computed against some benchmark 

series, a series can be characterized by these distances. It is not trivial to 

choose the benchmark time series, however. They must otherwise meet some 

constraints —preferably the same as faced by all the time series, so that the 

K-L information only characterizes the difference in distributions and not, 

let’s say, departure from normality. See Schreiber (2000) for an extension of 

K-L information to time series data.  
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Chapter 3 
 
 
Experimental setup and sources of data 
 

This section briefly describes the experimental setup of the systems 

whose output is used in this study. The systems are a bubble column with an 

electrified capillary, and a fluidized bed.  

 

3.1. The bubble column 

The bubble column apparatus is concerned specifically with the formation 

and behavior of gas bubbles in a liquid, when the gas is injected into a liquid-

filled vertical column through a single gas injector nozzle at the bottom. 

Henceforth this column is referred to as bubble column. This section is 

paraphrased from Menako (2001). In all experiments the liquid was glycerin 

and the gas was pure nitrogen.  Four nozzles were used. The first one 

(constructed of brass in the shape of a button —called button nozzle in this 

dissertation) had a diameter of 0.75 mm, and three other threaded capillaries 

with diameters of 0.02, 0.03 and 0.04 inches. These nozzles are referred to as 

nozzles A, B, C and D respectively. The flow rates ranged from 0 cc/min to 

440 cc/min, and the range of electrostatic potential applied was from 0V 

through 20000V in increments of 1000V. The corresponding gas-phase 

Reynolds number in the nozzle ranged from 0 to a little over 100. The 

process variable recorded to characterize the dynamics was the differential 
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pressure across the nozzle. This study only utilizes the data collected on 

nozzle A which had an internal diameter of 0.75 mm, and looked like a 

button in the top view. 

    

   Figure 3.1 illustrates typical behavior of bubbles formed from a submerged 

nozzle with no electrostatic potential across it. The corresponding pressure 

trace (as measured by a transducer in-line) illustrates how this variable 

changes through the various stages of growth and detachment. The key 

forces are surface tension and buoyancy. The former resists the release of 

bubble from the nozzle and the latter pulls the bubble off the nozzle. When 

the buoyancy force exceeds the surface tension, the bubble is released. The 

movement of the bubble up the column is also influenced by the liquid 

viscosity which dampens its movement. With the application of electrostatic 

potential across the nozzle, the electric forces come into play and ‘pinch’ the 

bubbles in order to minimize the interfacial surface area. As the electrostatic 

potential applied across the nozzle increases, the bubble formation becomes 

more rapid and more complex. 

   

   A schematic of the bubble column apparatus is given in Figure 3.2. The 

apparatus consisted of a square glass column attached to a base of Plexiglas; 

this is referred to as the bubble column. The gas pressure was regulated at 

the cylinder head, and again at the bench top pressure regulator prior to use. 

The nitrogen gas flow was controlled and metered via an arrangement of a 

control valve and a mass flow meter. A MAXTEK® model MV-112 

piezoelectric valve was used for gas flow control. A special throttling valve 

was employed, a Swagelok® NUPRO® type needle valve that followed the 

mass flow meter.   
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Figure 3.1: Typical pressure trace and bubble formation 

Photograph of high-speed images of slow bubble formation. (1) Surface tension forces are 

larger than the pressure in the nozzle, preventing bubble growth; (2) Pressure in nozzle 

equals surface tension forces; (3) Bubble growth occurs, and (4) Buoyancy and inertial 

forces overcome surface tension, causing bubble detachment. 
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Figure 3.2 - A schematic of the bubble column apparatus. 

 (a) electrode  (positive) polarity - 2 mm submerged into liquid (b) bubble column (c) 

Bertan® - high voltage power supply (d) electrode (positive) polarity connected to nozzle (e) 

column drain (f) knock-out drain (g) block valve - ball (h) Endevco® — pressure transducer 

(i) NUPRO® type needle valve (j) National Instruments® SC-2043-SG signal conditioner (k) 

signal conditioner (l) signal conditioner (m) signal conditioner (n) Cole-Parmer® - mass flow 

meter (o) MAXTEK® - piezoelectric control valve (p) pressure indicator (q) data acquisition 

system - Dell Pentium III, OptiPlex® computer (r) pressure reducer (s) high pressure 

regulator (t) N2 supply tank. Taken from Menako (2001). 
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A Cole-Parmer® product, model # 32915-14 mass flow meter monitored 

the flow rate. The throttling valve was selected to minimize fluctuations in 

the gas flow-rate upstream of the pressure transducer and to stabilize the 

mass flow meter measurements. An Endevco® pressure transducer, model 

8510B-1 was utilized to measure the differential pressure. 

On the gas inlet line an interconnection to copper wire connected a high 

voltage power supply and the submerged nozzle. The high voltage power 

supply used was a Bertan® Series 225. The Series 225 is a precision regulated 

linear power supply with a rated output voltage up to 50 kV. The Series 225 

was remotely controlled via a signal conditioner. A National Instruments® 

SC-2043-SG signal conditioner interfaced the data acquisition system. This 

signal conditioner interface enabled process data acquisition and control of 

system variables.  

The time-interval between successive bubbles is employed to characterize 

the bubbling behavior, according to the methodology used in Nguyen et al 

(1996). The bubble rate is also used to characterize bubbling. The bubble 

rate is a frequency. For example, if 10 bubbles are formed in a minute, the 

corresponding frequency is 0.1667 Hz. 

At lower gas flow rates the bubble formation is regular and almost 

periodic, and therefore the bubble rate remains more or less constant at a 

given flow rate. As the gas flow rate increases, the bubbling changes to 

period-2 behavior, i.e., the time-interval between bubbles alternates between 

a high and a low value. These low and high values do not vary much for a 

given flow rate. As the gas flow rate is increased more, bubble behavior 

changes to period-4, then to period-8, and finally becomes chaotic. A 

bifurcation diagram in this context is the plot of bubble rate against the gas 

flow rate or against the gas phase Reynolds number in the nozzle. Similarly a 

bifurcation diagram can be drawn for the bubble rate against the 
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electrostatic potential. Such diagrams demonstrate how electrostatic potential 

causes period-bifurcation and alters the bubbling dynamics. For a more 

detailed treatment of the bubble column apparatus, see Menako (2001). 

The bubble column is a low dimensional chaotic system that undergoes 

period bifurcation route to chaos. The control parameters that induce 

bifurcations are gas flow rate and the electrostatic potential across the nozzle. 

The dimension of the bubble column is between 2 and 3, but a three-

dimensional embedding was found to be sufficient to faithfully reproduce the 

attractor geometry and to eliminate self-crossings of the trajectories. 

Figure 3.3 shows the differential pressure time series for four different 

operating conditions —namely electrostatic potentials of 0, 12, 15 and 19 kV. 

The gas flow rate was 170 cc/min in all cases. All series contain 1500 records. 

The period-2 behavior at 0 V potential yields to a period-4 behavior at 12 kV 

potential, and to a possible period-8 behavior at 15 kV. Chaotic behavior is 

observed for the potential of 19 kV. 

Figure 3.4 shows the overlaid time-based return maps for the button 

nozzle. The flow rate was held constant at 170 cc/min. The legend on the 

right refers to the electrostatic potential across the nozzle. Clearly, increasing 

the potential causes the period-2 behavior to give way to period-4 behavior 

and finally leads to chaos. With increasing potential, the bubble rate 

increases (the inter-bubble interval falls) but the complexity of dynamics 

grows from a relatively clean and simple period-2 behavior to full-fledged 

chaos. This behavior was typical of all nozzles.  
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Figure 3.3.  Differential pressure time series from the bubble column 

  From top to bottom, the series correspond to electrostatic potentials of 0, 

12, 15 and 19 kV respectively. The gas flow rate was 170 cc/min for all 

four examples. The abscissa units are differential pressure in mm water. 
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Figure 3.4: Return maps for a bubble column time series 

The gas flow rate was 170 cc/min for all cases. The electrostatic potentials (shown in 

the legend at right) ranged from 0 through 19000 V. As the electrostatic potential 

was increased, the bubble rate increased or the time-interval between the successive 

bubbles decreased. However, note that the bubbling is faster but more complex since 

many more inter-bubble intervals are possible. The units for the ordinate and 

abscissa are milliseconds. A bifurcation diagram in this context is the projection of 

all these points to a 135 degree line. 

t(i+1) 

t(i) 
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3.2. The fluidized bed 

A fluidized bed typically consists of a vertically oriented chamber, a 

bed of particulate solids, and a fluid flow distributor at the bottom of the 

chamber. The fluid flows upward through the particles, creating a drag force 

that counteracts gravity. With sufficiently high flow, the solids are levitated 

and move in complex, turbulent patterns (hence the name “fluidized”). This 

turbulence promotes heat and mass transfer as well as chemical reactions 

between the fluid and the solids. As the fluid flow rate is increased, the small 

amplitude highly complex behavior gives rise to large-amplitude 

approximately periodic behavior. With further increase in the gas flow rate, 

the approximately periodic behavior is interrupted by “stutters”, and finally 

yields to turbulence.  

This section and the fluidized bed data used in this study are taken from 

Daw et al (1995). The fluidized bed in Daw et al (1995) was a cylindrical 

vessel 10.2 cm in diameter, and the settled bed height was 23.5 cm. The 

particles used in the experiments described here are uniform 4.5 mm 

diameters steel spheres. Room temperature air was metered at constant flow 

into the plenum chamber below the gas distributor. Figure 3.5 shows a 

schematic of the fluidized bed setup. 

The measurements made on bed dynamics were pressure differentials 

between flush, wall-mounted taps located 10 and 23 cm above the air 

distributor, respectively. Analog signal form the pressure transducers were 

bandpass filtered (0.1-40 Hz) to remove DC bias, prevent aliasing, and 

remove any contamination with 60 Hz noise associated with nearby AC 

equipment. The particles were classified as Geldart type D according to the 

fluidized bed literature. Twenty time series were collected for various gas  
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Figure 3.5. Experimental fluidized bed setup. 

             Redrawn from Daw et al (1995) 

 

 

flow rates and the behavior captured in them ranged from approximate 

periodicity to turbulence. 

Figure 3.6 shows four time series from the fluidized bed. All segments 

contain 2000 records and correspond to a time window of 20 seconds. Figure 

3.7 shows the power spectral densities for the time series shown in figure 3.6. 

A 8192-point FFT was calculated (windowed with done with a symmetric 

4096-point Hanning window). The spectral density was calculated for 6 non-

overlapping time series segments, each 8192 records long. For the process, 

every segment represented the time window of 81.92 seconds. The solid lines 

depict the average power, and the dashed lines depict 95% confidence 

intervals for the power. Note that the 95% confidence intervals are very wide 

at the peaks, and that as the bed becomes more turbulent, the distinct peaks 

in the spectral power disappear.  
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Figure 3.6. Differential pressure time series from the fluidized bed 

From top to bottom (a) low-amplitude complex behavior (b) approximately periodic 

behavior (c) approximately periodic behavior interrupted by “stutters” (d) nearly 

turbulent conditions. Every subplot contains 2000 records and covers a time window 

of 20 seconds. The abscissa for every subplot is differential pressure. See text for 

details. 
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Figure 3.7. Spectral densities for fluidized bed time series.  

The subplots (a) through (d) correspond to the time series shown in figure 3.6 (a) 

through (d). The abscissas for all subplots are the spectral power density for the 

windowed FFT referred to in the text. In all cases, the confidence limits were 

computed by considering six non-overlapping 8192-point time series segments, and 

assuming that the mean power at each frequency was distributed as Student’s t-

statistic. 
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  Everything should be made as simple as possible, but not simpler. 

-Albert Einstein 

 

 

Chapter 4 
 
 

Cluster-linked principal curves 
 

 

4.1. Introduction 
This chapter is discusses characterizing a time series by the 

probability distribution either of the measurements themselves or of the time-

based return maps extracted from them. The concepts of cluster-linked 

principal curves and interpolating splines are introduced, discussed and 

developed. The next chapter exploits principal curves to compare the 

dynamics of two different time series and to test for stationarity and 

reversibility. 

A distribution of data points can be defined in many ways. A linear 

gaussian random process (LGRP), for example, is defined completely by its 

mean and variance-covariance matrix. Another way to characterize a time 

series is by modeling it. In the usual statistical setting, the variables are 

neatly divided as independent and dependent variables. Linear regression 

techniques can then find a linear arrangement of the independent variables 

that explains the variation in the dependent variable. Linear regression can 

also be used when the functional relationship between the independent and 

dependent variables is nonlinear as long as the function has finite 
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discontinuities. The term linear in that case signifies that the regression 

coefficients enter the regression equation linearly. The trick is to transform 

the independent or predictor variables into the pre-defined functions and to 

treat the transformed variables as independent variables. Obviously, this 

approach depends heavily on picking the appropriate transforms. If there is 

no strong evidence for a particular form or expression, or if many redundant 

transformations are introduced, the model converges poorly or not at all, and 

often is very unstable to be of any practical use. 

 

Often one is faced with multivariate data sets and the dichotomy 

between dependent and independent variables is not apparent. The goal in 

that case is provide a summary of the data, while preserving most of the 

information present in the measurements. In that case, minimizing a model 

error is not an issue. 

 

4.2. Principal component analysis  
  Principal Component Analysis (PCA) is probably the most well 

known and widely used multivariate statistical technique. The relationship 

between two different, random variables is quantified by cross-correlation. 

PCA exploits the cross-correlation to find the linear combinations of these 

variables, or directions that are associated with high variation. These 

directions are called the principal components (PCs), and are mutually 

orthonormal. Each of these directions has a corresponding eigenvalue that is 

a measure of variability along it. The eigenvectors or principal components 

are so ordered that the first eigenvector pertains to the largest eigenvalue, 

the second eigenvector to the second largest eigenvalue, and so on. This 

provides a hierarchical and orthonormal basis for the data space, with each 

Principal component explaining the maximum remaining variance.  
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If C is the variance-covariance or correlation coefficient matrix of the 

measurements, then it can be written as5 

C=UΣU’               (26) 

where U contains the eigenvectors (or singular vectors) of C, and Σ is 

a diagonal matrix with the corresponding eigenvalues along the 

diagonal. ■ 

 

If u1 is the first column of U, or the first Principal Component (PC), 

then p1=x’u1 is the first Principal Score (PS), p2=x’u2 is the second PS, and 

so on.  

 

PCA can be used for several ends. It reduces the dimensionality of the 

data and facilitates visualization. It can also be used to remove the noise by 

setting the principal scores corresponding to small eigenvalues as zero and 

projecting the principal scores back to the original basis of the data space. 

Note that U is an orthonormal matrix and UTU=I. However, if the 

relationship between the measurements constituting the multivariate vector 

is not linear, cross-correlation is not a suitable representation of the 

relationship between the variables, and PCA may not be appropriate. 

 

There have been many extensions of PCA. An early example can be 

found in Gnanadesikan (1964) where generalized PCA is suggested. 

Gnanadesikan suggests transforming the variables such that the transformed 

vector contains cross-products and higher order polynomials of individual 

                                                 
5 This decomposition is true only for symmetric matrices. Covariance matrices are symmetric by 
definition. 
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variables. The argument is that the resulting space contains only linear cross-

correlations and PCA will be applicable.  

 

Recently, there has been a great interest in local6 PCA where the data 

space is divided in some zones, each of whom can then be summarized or 

reduced in dimension with a localized PCA. Many researchers have posed 

localized PCA as an optimization problem or a neural learning problem. 

Local PCA has been also posed as a mixture-model problem. However, local 

PCA depends on the partition of the data space, and though useful in solving 

complex pattern recognition problems, the end-product is not a smooth curve 

summary of the data.  

Local PCA has also been studied in the context of nonlinear dynamics 

and chaos. Several researchers have suggested using localized PCA on the 

wavelet transforms to remove noise in chaotic time series. Kostelich and 

Yorke (1988) discuss localized PCA for smoothing trajectories in context of 

nonlinear dynamics. Locally weighted regression has also been an active area 

of statistical research. For a good review, see Atkeson, Moore and Schaal 

(1996). 

 

However, most local PCA or local learning methods are useful but this 

dissertation is concerned with providing a smooth, continuous summary 

curve of the data, which is not achieved by these methods do not achieve. 

The following section discusses how to get a global summary of data as a 

polygonal line. 

 

                                                 
6 Equation (25) is an example of global PCA where all data points are considered. Local PCA relies 
on using the data in some pockets and performing PCA on the smaller pockets. 
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4.3. Principal curves 
A Principal Curve is a hyper-curve that locally approximates the data 

points [Hastie and Stuetzle (1989)]. The curve is data-driven and non-

parametric; and can bend to the local density of the distribution. Henceforth 

Hastie and Stuetzle’s Principal Curve is simply referred to as HSPC. 

 

Figure 4.1 is a graphic depicting the central idea of principal curves. 

Least Squares Regression (LSR) attempts to minimize the ‘error’ in the 

predicted variable. PCA on the other hand minimizes the sum of squared 

(orthogonal) distances (SSD) of points from a straight line. Principal Curves, 

it can be seen in the figure, minimize the SSD of points from a curve. 

 

In the definition of Hastie and Stuetzle, a HSPC is self-consistent, i.e., 

any point on the curve is the expected value of the distribution at that point. 

It is a generalization of PCA, but the straight line is replaced by a ‘curve’ 

that attempts to explain a large part of the variability present in the data. 

One would like to impose such conditions on such a curve. It should: 

 

1. Pass through the center of the data cloud; 

2. Be continuous; 

3. Change considerably only in a region geometrically close to the region 

where some points are added or removed (local, not global); 

4. Be determinable in a non-parametric way, i.e., not involving any 

restrictions about the distribution. 
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Figure 4.1: Graphic to demonstrate principal curves  

(a)Regression line  minimizes SSD in the dependent variable (ordinate) (b)PCA minimizes 

SSD in all variables (ordinate as well as abscissa)  (c)A smooth regression curve minimizes 

SSD in the response variable, subject to smoothness conditions (d)The Principal Curve 

minimizes SSD in all variables, subject to smoothness constraints 

Reproduced from Hastie and Stuetzle (1989) 
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4.3.1.   History of principal curves 

  The original definition of Principal Curves by Hastie and Stuetzle is 

as follows. 

Denote by x a random vector in Rp with density h and finite second 

moments. Without any loss of generality assume E(x)=0. Let f denote 

a smooth (C∞) curve in Rp parameterized over Λ⊆R1, a closed 

(possibly infinite interval), that does not intersect itself 

1 2 1 2( ) ( )f fλ λ λ λ≠ ⇒ ≠ and has finite length inside any finite ball in Rp. 

The projection index is defined as λf: Rp R1 as 

 

( ) sup{ :|| ( ) || inf || ( ) ||}f x f f
µλ

λ λ λ µ= − = −x x           (27) 

 

The projection index λf(x) of x is the value of λ for which f(λ) is 

closest to x. If there are several such values, the largest one is picked. 

For proof about the existence and measurability of λf(x), see Hastie 

and Stuetzle (1989).■ 

 

The projection index is called the arc length. Hastie and Stuetzle 

essentially define their principal curve as a curve parameterized by λ, which 

is the length of the curve from its beginning point to the point on the curve 

where x projects —or the arc length. The question here is to reduce a 

multivariate7 vector x to a certain λ value. The HSPC algorithm is as 

follows: 

 

                                                 
7 Hastie and Stuetzle focus their attention on smoothing two dimensional scatterplots. Hastie and 
Tibshirani (1990) discuss a general class of models called Linear Additive Models. The application of 
HSPC algorithm to data with dimensions larger than two is discussed later in this chapter. 
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Initialization: Set the principal curve as the first PC of the 

distribution so that it passes through the center of the data. 

Over iteration counter j, repeat 
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Until 2 ( ) 2 ( 1) 2 ( 1)| ( , ) ( , ) | / | ( , ) |j j jD h D h D h− −−f f f  is less than a prescribed 

threshold.■ 

 

The algorithm involves an Expectation-Maximization (E-M) 

procedure. After every iteration the arc lengths are reset so that the 

minimum arc length is zero. Hastie and Stuetzle do not provide a proof for 

existence or convergence of principal curves, but state that their 

implementation usually works.  

The algorithm consists of two steps, namely those of projection and 

smoothing. In the projection step, all data points are projected on the 

principal curve and a corresponding arc length (line integral from the 

beginning of the curve to the point where a data point projects on it). The 

second step redefines the curve based on the arc lengths of data points. The 

data points are so arranged that their arc lengths are increasing. This step 

defines a polygon which is formed by connecting the points ordered by their 

arc length. The curve is then evaluated for self-consistency, by projecting the 

data points on the redefined curve. When the curve is self-consistent, the 

algorithm is assumed to have converged. 

The existence of principal curves for non-trivial distributions has been 

studied by Duchamp and Stuetzle (1996A) who studied principal curves in a 

plane. They found the solutions to differential equations for uniform densities 
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on rectangles and annuli, and discovered oscillating principal curves in 

addition to straight line and circular ones. Their work showed that principal 

curves are not unique. The HSPC algorithm converges to a local minimum of 

the distance function, and may or may not provide a meaningful solution in 

general. Duchamp and Stuetzle (1996B) showed that all principal curves are 

saddle points of the distance function —which is tantamount to their being a 

local minimum and not a global one. 

Several papers published after the seminal paper of Hastie and 

Stuetzle approach the problem from different viewpoints, mainly to more 

rigorously gauge the existence, and convergence and bias of principal curves —

the issues noted in the original paper by Hastie and Stuetzle. The approach 

taken by Tibshirani (1992) is semi-parametric, and involves maximizing the 

likelihood ratio based on the ref. Dempster, Laird and Rubin (1977). Kégl 

(2000) treats Principal Curves as an unsupervised learning scheme, and 

introduces principal curves of a fixed length. Delicado (2001) proposed 

another definition based on a property of the first principal components of 

multivariate normal distributions.  He introduced the concept of Principal 

curves of oriented points (PCOP) where any point on the curve is the mean 

of the points in a hyperplane to which the curve is orthogonal or normal. 

Examples from these above-mentioned approaches perform roughly as well as 

the HSPC algorithm, but are computationally much more intensive. The 

approach of Hastie and Stuetzle is pursued in the further discussion, since 

theirs is the most basic and intuitive approach that yields satisfactory 

results. Besides, the other approaches have not been shown to yield superior 

results in comparison to HSPC algorithm. 

The most serious practical issue with the HSPC algorithm (and all 

other algorithms proposed for principal curves) is that the conditional 

expectation is not defined well for very low probabilities. In step 2 of HSPC 
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algorithm, a point on the curve corresponding to an arc length of λ is the 

average of all other points that have the same arc length. In most cases, 

there is only one point (and most often none) at an arc length. To deal with 

this, Hastie and Stuetzle suggest using locally weighted running lines 

smoother as described in Cleveland (1979) or cubic smoothing splines 

according to Silverman (1985).  Smoothing splines are defined as connected 

piecewise polynomials that satisfy some smoothness conditions and minimize 

the cost function of the form: 

 
2

2

1 1

1G( )= | - ( )| + | ( )|
n n

i i
i in

λ µ λ
= =

′′∑ ∑if x f f                    (28) 

The cost function essays to reach a compromise between fit and 

smoothness. It is very difficult to use splines for a distribution with 

dimension greater than two. For that reason, smoothing splines are not 

considered the general discussion of principal curves. 

The former method [Cleveland (1979)] is similar to iterated weighted 

least squares (IWLS), and using it in the HSPC algorithm replaces a point on 

the principal curve by the IWLS estimate for a cluster of points in its 

neighborhood. One has to decide upon a parameter, called span that decides 

how close two points are. The principal curve is a nc-tuple 

{(λ1, f(λ1)),(λ2, f(λ2),...,(λnc, f(λnc))} connected by straight lines. The curve can 

alternatively be written as an assortment of line segments {s1, s2,…, snc-1}. 

HSPC is essentially a polygonal line, of which each vertex is practically a 

weighted cluster center.  

 
4.4. Cluster-linked principal curves 

Obviously, in the HSPC algorithm one has to specify nc or the number 

of cluster centers to define the polygonal line. HSPC algorithm computes the 
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IWLS estimate for every point, thus rendering nc=n. The span has to be 

specified also for defining the weight function or kernel.  

In absence of extreme outliers, the IWLS estimate will be quite close 

to the cluster center, and the cluster mean can be used as a convenient and 

reasonably accurate substitute for the points on the principal curve. This 

obviates the need for IWLS and reduces computational cost. For n data 

points, the complexity of kernel-type smoother is O(n2), which reduces to 

O(n) when the mean is used. The complexity of projection also decreases to 

O(n*nc) from O(n2) which is the case for HSPC algorithm. 

Using the mean of the cluster offers huge reduction in computational 

cost. Hastie and Stuetzle note that their algorithm has a bias with respect to 

the true principal curve, but that the bias reduces as the density of data 

points increases. The data (real or experimental) encountered in practice 

contain noise though, and a small bias shouldn’t hamper the success of the 

principal curve in describing the data. By bias a local bias is meant and not a 

global one. If the principal curve has a global bias compared to the 

distribution of data points, the curve is not self-consistent. Using fewer 

vertices may not be able to exactly reproduce the local gradient, but the bias 

would be local, and perhaps will cancel out. Later the issue of bias and mean 

of residuals is discussed in more detail. 

It is proposed to have considerably fewer vertices or cluster centers in 

the polygonal line principal curve than the number of data points. The 

resulting curve is called Cluster-Linked Principal Curve (CLPC) since it 

essentially involves formation of clusters based the principal curve 

parameterization and redefining principal curves based on these clusters.  
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There are significant differences between CLPC algorithm and the 

HSPC algorithm. The reduction in computational cost has already been 

discussed. The salient difference is that HSPC algorithm smoothes each 

dimension separately, which is not exactly in keeping with the intuitive 

appeal of the Expectation-Maximization principle. For example, a data point 

may have a different corresponding arc length in X-Y plane than it would in 

say X-Z plane. This makes it impossible to define an arc length for every 

data point. Moreover, it is not desirable to make the choice of dependent and 

independent variables that one cannot avoid when smoothing has to be 

performed. Smoothing every dimension separately involves fitting a principal 

curve to two dimensions, and ignores the additional information present in 

other dimensions. The CLPC algorithm has only one hyper parameter, which 

is the number of vertices in the polygonal line, whereas HSPC algorithm 

required adjusting the spans of the kernel smoother (for all the dimensions).  

One could argue that CLPC may suffer from imprecision in 

approximating the density of data points. However, Hastie and Stuetzle 

suggest using a span large enough to cover 70% of the data range at first, 

which has much more of a smoothing effect than that obtainable by localized 

clustering based on the arc lengths. On the other hand, using a large span 

oversmooths the scatterplot and may even remove finer structure. The 

accuracy of the principal curve can be enhanced by either increasing the 

number of clusters or by having more data. The algorithm is now outlined. 

 

4.4.1. CLPC algorithm 

Initialization: Set the principal curve as the first PC of the distribution so 

that it passes through the center of the data. 
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The principal curves are not well defined near the extremities, and the 

reason is the familiar issue of extrapolation to which no satisfactory answer 

can be given. In our implementation, the vertices at the extremities of the 

CLPC are formed by assigning them only half as many points as other 

cluster centers. Another way to deal with this issue is to loop the principal 

curve by closing the polygonal line by joining the last cluster center to the 

first. A principal curve defined that way will be able to approximate even 

closed structures. However, one should not try to fit closed polygonal line 

CLPC if the data are approximately monotonic as it may lead to convergence 

problems for obvious reasons. 

 

Another important point is the orthogonal projection on the line 

segments. Although not very likely, it is possible that a data point is not 

orthogonal to any of the line segments. It is also possible that a point is 

orthogonal to a line segment but outside its endpoints. Figure 4.2 shows an 

example of the latter. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Projecting a point on the principal curve. 

For a detailed treatment, see appendix A. 
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Any point that lies in the zone between the two dash-dot lines will not 

be orthogonal to the line segments in such a way that its projection lies 

within the endpoints of that line segment. There are two ways to deal with 

it. The point can be projected to the closest vertex of the polygonal line and 

assigned an arc length corresponding to that vertex. The more jagged the 

polygonal line, the more problems will arise due to this approach. The second 

way is to accept the new arc length obtained by extrapolating the line 

segment to which the point is closest, and thereby accept a small amount of 

error in the estimation of arc lengths. The second approach is followed in our 

implementation. By increasing the number of cluster centers the curve can be 

made smoother and the likelihood of the possibility delineated in figure 4.2 

reduced. 

If the first principal curve does not explain enough variation in the 

data set, another principal curve can be fitted to the residuals. In our 

implementation, variability is approximated by generalized variance, or the 

sum of the eigenvalues of the covariance matrix of the residuals or that of the 

data. Section 4.4.2 concerns itself with residual analysis. 

 

Figure 4.3 shows how principal curves can approximate a noisy 

parabola. The parabola was defined as y=4x(1-x)+ei for 0≤x≤1 where ei 

≈N(0,0.152) is random Gaussian noise with mean of zero and standard 

deviation of 0.15. The data were then scaled to have zero mean and unit 

variance, or scaled to Z-scores. The arc begins at the bottom left of the figure 

and ends at bottom right. 17 cluster centers were used for the approximation. 

The fit doesn’t seem to have a noticeable bias and is quite smooth. It also 

passes through the center of the data cloud. 
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Figure 4.3. Principal curve for a noisy parabola 

 

   Figure 4.4 shows the residuals obtained after fitting the principal curve. 

The residuals appear to be randomly distributed. Most of the residuals are 

contained within a square with a side of 0.3 whereas the data fitted rested 

within a square with a side of 4 units. The area occupied by the residuals is 

therefore around more than 150 times smaller than that occupied by the 

original data. Based on the fit seen in figure 4.3 and the residuals seen in 

figure 4.4, it seems that the principal curve described the variability in the 

data set quite well and the residuals are white noise. Now the issue of 

residual analysis is taken up. 
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Figure 4.4. Residuals of the fit in figure 4.3 

 

4.4.2. Analysis of residuals 

After arriving at the residuals, there are three things that are desirable 

and that need to be examined. They are as follows: 

 

1. The mean of the residuals should be zero, or nearly zero 

2. The variability remaining in the residuals should be much smaller 

than that contained in the data set 

3. The residuals should be independent of each other 

These issues are now addressed. Note that no confirmatory analysis is 

performed, but some measures are suggested that quantify the departure 

ey 

ex 
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from the desired conditions developed. First let us introduce some 

terminology. 

Let ˆix  be the projection of a point xi on the principal curve. In 

mathematical notation, i iˆ ˆ=E( | ( )= ( ))λ λx x x x . The previous expression means 

that ˆ ix  is the mean of all the points having the same arc length as itself. Let 

the residuals be defined as ˆi i ie = x - x , and the covariance matrix of residuals 

as Cov( )= iE e , and the mean of residuals as µe=E(ei). At the same time 

assume that the covariance matrix of data is C=Cov(xi) and the mean of the 

data is µ=E(xi). 

 

4.4.2.1.  Zero mean 

The fact of the mean being zero can be checked by Hotelling’s T2 

statistic. The relevant statistic to be computed is T2= µe
TC-1 µe and it is 

distribution is related to the F-statistic. This computed value is also known 

as Mahalanobis distance. A test is not encouraged but it is suggested to just 

look at the mean of the residuals and the Mahalanobis distance. In almost all 

our simulations the mean was nearly zero, and the issue of bias in the 

residuals is not deemed crucial for the CLPC algorithm. To conduct a test, 

the interested reader is referred to any standard text on multivariate 

analysis. 

 

4.4.2.2.  Remaining variability 

A good estimate of the variability remaining in the residuals is the 

sum of eigenvalues of E, or the trace of E. It is desirable that the ratio of 

traces of E and C or trace(E)/trace(C) be small. The ratio also indicates the 

fraction of variability remaining in the residuals or the variability not 



   63

explained by the principal curve. This concept is very similar to that of 

generalized variance and is used frequently in multivariate analysis. 

 

4.4.2.3.  Independence of residuals 

Ideally, if the residuals are completely independent, E is a diagonal 

matrix. A measure can be suggested to ascertain that. The determinant of a 

diagonal matrix is equal to the product of its diagonal elements (or 

eigenvalues for that matter). The closer the determinant is to the product of 

its diagonal elements, the higher is the likelihood of the residuals being 

independent. Of course, it is not stated as a rigorous fact since it is possible 

that the determinant of a non-diagonal matrix is equal to the product of its 

diagonal elements. It is indeed possible, though not very likely, and it is only 

suggested that this measure be used in tandem with the previous two 

measures (Mahalanobis distance and fraction of generalized variance 

remaining). There are many tests in statistical literature to test for sphericity 

and diagonality, to which the interested reader may refer. The 

measure
i=n

ii
j=1

det( )/ E∏E , which is the ratio of the determinant of E to the 

product of its diagonal elements, can be computed. The closer is this ratio to 

one, the more unrelated the residuals are. 

Now let us compute the three measures defined above for the residuals 

from the fit in figure 4.3. The residuals themselves are plotted in figure 4.4. 

Mean of residuals (µe) is [0.0042 0.0038]T, the Mahalanobis distance  (µeTC-

1µe) is 0.0000321, and the remaining variability, which is (trace(E)/trace(C)), 

is 0.0782. Thus the mean of the residuals is almost zero, the Mahalanobis 

distance is very small, and only 7.82% of generalized variance remains in the 

residuals. The ratio of the determinant of E to the product of its diagonal 
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elements 
1

det( )/
i n

ii
j

E
=

=
∏E  is 0.9988, which is very close to one. The off-

diagonal elements of E are 80 times smaller than those on the diagonal, and 

the matrix is quite diagonal. Thus it appears that the residuals do not 

contain any pattern  

 

4.4.3.   Choosing the number of clusters  

It was observed above that using a larger number of cluster centers 

reduces the bias in the fitted principal curve. Figure 4.5 shows the fitted 

principal curves using 7, 13, and 27 cluster centers. It is clear that using too 

few cluster centers impairs the ability of the algorithm to bend to the density 

of the data. On the other hand, using too many cluster centers results in the 

curve attempting to fit even the noise by attempting to visit each point very 

closely. The goal is to find the number of cluster centers so that the curve 

explains a large fraction of the variability in the data, but is also smooth. 

The number of cluster centers can be set so that the criterion described in 

equation (28) is minimized. Alternatively, informational complexity measures 

such as Akaike’s Information Criterion (AIC) can be used to compare various 

principal curves obtained. AIC is made of two penalty terms that penalize 

badness of fit and excess parameters. The curve having the minimum 

corresponding AIC should be chosen as the most parsimonious and efficient 

model. Schemes like cross-validation can be used, but they are 

computationally very expensive. Another disadvantage to using cross-

validation is that it is not very effective if there is not enough data. A CLPC 

is not a global minimum of the distance function, but a saddle point instead, 

which makes it difficult to compare the bootstrap estimates. However, the 

mean squared error for the training data and the test data can be compared 

to see if the curve is robust. There is however, no statistical test to validate  
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the model by comparing mean squared errors of training and test data unless 

one invokes the F-distribution. Variable selection methods can be invoked 

but they also rely on a partial F-test and are parametric whereas the CLPC 

is a non-parametric curve. Another way is to create a sort of SCREE8 plot, 

and choose the number of clusters based on the ‘knee’ in the SCREE plot. 

 However, it must be stated that although it is desirable to know the 

optimum number of cluster centers, it is not essential. The aim of a CLPC is 

to provide a summary of data, and even if the number of clusters used is 20% 

more than optimal, it is not a major problem. Admittedly, the training time 

increases as the number of clusters is increased and the projection step 

becomes costlier. However the addition in cost is linear, and can be tolerated 

well. Nonetheless, using too many clusters may cause convergence problems 

since the curve may attempt to learn peculiarities of the data set in question. 

To explore all possible principal curves of a distribution is still an active area 

of research, and is beyond the scope of this study. 

The best way to decide upon the optimum number of cluster centers is 

by visualizing the shape of the curve, since the human eye is adept at making 

trade-offs between smoothness and accuracy. However, that luxury is not 

possible if the dimension of the data is more than three. In that case, 

separate scatterplots can be used. Our experience indicates that the optimum 

number of cluster centers depends on the density of data points and the 

shape of the distribution. Using one cluster center for 10 to 20 points usually 

yields good results.  

                                                 
8 A SCREE plot in this context is a plot of percentage of variability remaining versus the number of 
clusters. SCREE plots are used in Principal Component Analysis (PCA) to obtain the optimum 
number of Principal Components to be retained –which is taken to be the number that corresponds to 
the ‘knee’ of the plot, i. e., a point where the slope changes to a much smaller value. The principal 
components explaining little variation (to the right of the knee) are considered small, and not very 
important, like scree and not boulders. 
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Figure 4.6 shows how a closed or looped principal curve can 

approximate a noisy circle. The circle was formed by defining 

1

2

esin(t)x
= +

ecos(t)y
   
   

     
where 0≤t≤2π and 2(0,0.15 )1 2e ,e ~N . It appears that 

there is no significant bias in the fit. The residuals from the fit in figure 4.6 

are plotted in figure 4.7.  

Once again, the residuals appear to be randomly distributed. The area 

occupied by the residuals is 40 times smaller than that occupied by the data 

set (contained in squares of size 2 and 0.3 respectively). The mean of the 

residuals was [0.0020    —0.0018] T, the Mahalanobis distance was of the order 

of 10-5, the fraction of generalized variance remaining was 0.79% and the 

ratio of determinant of E to the product of its diagonal elements was 0.999. 

The diagonal elements of E were roughly eighty times larger than the off-

diagonal ones. Based on these measures, it appears that the residuals have no 

pattern and little variability compared to the original data set. 

 

 

 

 

 

 

 

 

 

 

 

 
                    Figure 4.6. Principal curve fit to a noisy circle           
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                     Figure 4.7. Residuals of the fit in figure 4.6 

 

 

4.5. Characterizing an attractor from return maps 
We will now show how principal curves can approximate the return 

map obtained from a bubble column9 time series. Figure 4.8 shows the return 

map for the bubble column operating under chaotic conditions (see figure 

3.3(d) for the time series). A principal curve was fitted to this data with 15 

cluster centers. The result is shown in figure 4.9. It is apparent that the 

curve describes the distribution quite well. The residuals (not shown) do not 

exhibit any particular pattern, and it seems that the fit is good based on the 

three measures defined in section 4.4.2. Note that the inter-bubble interval 

t(i+1) is plotted versus t(i) in figures 4.8 and 4.9. 

 

                                                 
9 The bubble column is described in section 3.1 of this dissertation 
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Figure 4.8. Return map for a bubble column time series 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Principal curve fitted to the data in figure 4.8 
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To estimate the inter-bubble interval, the difference between successive 

upward crossings was used to obtain a more robust estimate. The units for 

ordinate and abscissa in figures 4.8 and 4.9 are milliseconds. 

 

4.5.1.   Interpolating splines and principal curves 
In the special case of two-dimensional distributions, the principal 

curve can be smoothed additionally by way of splines. The CLPC is formed 

by connecting the cluster centers with straight lines. Using polynomials 

instead of straight lines can enhance the interpolation.  

 

Splines are piecewise polynomials that have to fulfill certain conditions 

—namely those of continuity and differentiability. In this study third-degree 

polynomials are used, but the methodology can be extended to higher order 

polynomials. One has to be careful when using high degree polynomials owing 

to their sensitivity to a small change in the points they are supposed to fit. 

Information about fitting splines can be found in appendix B. Figure 4.10 

shows the results of fitting an interpolating spline to the principal curve 

obtained on the return map from a bubble column time series (cf. figure 4.9).  

A great advantage with using splines is that the situation outlined in 

figure 4.2 becomes much less likely since splines are smooth and continuous 

and their slope at the knots is continuous unlike that of a polygonal line at 

the cluster centers. However, using splines limits the algorithm to only two 

dimensions, which is a handicap. Splines can be used for each dimension 

separately but that approach is not in keeping with the concept of principal 

curves as passing through the center of the data cloud. The reason is that it 

is quite possible to have a point that is orthogonal to the splines fitted to X-

Y and X-Z planes, at different values on the X-axis. For such a point, it is 

impossible to define the corresponding arc length. 
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Figure 4.10. Interpolating spline for the fitted principal curve. 

 The units for ordinate and abscissa are milliseconds. 

 

Spline surfaces can be used but they are computationally very intensive and 

do not reduce the dimensionality of the data, which is the primary concern of 

this study. 
 Many lower-dimensional chaotic systems can be adequately described 

in 2-D or 3-D return maps. Employing an interpolating spline after fitting a 

CLPC to the return map can help identify the fixed point of the systems as 

well as its stable and unstable manifolds. 

 

Let us treat the spline in figure 4.10 as a reference. It is known that 

the fixed point lies on the diagonal. It is also known that the absolute slope 

of the spline at the point where it crosses the diagonal must be greater than 

one, since the system is chaotic. Thanks to the spline segment near the 

t(i+1) 

t(i) 
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diagonal, a simple mapping of the form x(i+1)=f(x(i)) develops. This map 

can be solved algebraically (third-order polynomials are being used here) or 

numerically. For example, the spline segment that approximates the region 

near the fixed point, is  

 

t’(i+1)=-0.0116t’(i)3+0.3688t’(i)2-1.9822t’(i)+3.1732         (28) 

where t’(i)=t(i)-88.939 and 88.939≤t(i) ≤ 90.2314 

 

Equation (28) allows one to find the fixed point and the approximate 

mapping near it, which can be profitably used to implement OGY or similar 

control schemes based on the return maps. 

 

It is obvious that the coefficient of the cubic term is very small and 

can be ignored, whereupon the mapping reduces to a quadratic function of a 

form not very dissimilar to the logistic map. Fitting a cluster-linked principal 

curve and later an interpolating spline is not very time-consuming and can be 

done online. That allows one to apply adaptive control schemes as well.  

 

The spline fitted to the principal curve can be used to iteratively 

generate a return map. Figure 4.11 shows the return map generated by 

iterating the interpolating spline for the fitted cluster-linked principal curve. 

The data in the figure is the same as that in figure 4.1, and corresponds to 

the mean crossings of a bubble column time series that exhibits a period-4 or 

a noisy period-4 behavior 
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Figure 4.11. Return map obtained by iterating a spline.  

  The spline is shown in figure 4.10. 

 

Figure 4.12 shows an overlaid return map where the blue dots are the 

data points in figure 4.11 and the red dots are the data points for the actual 

time series. It is clear that the return map obtained by iterating the spline 

preserves the general period-4 structure very well, and the iterated return 

map lies in the center of pockets of blue dots. Note that 2% noise10 was 

added in generating figures 4.11 and 4.12. The effects of adding noise to the 

iterative map are explored below. 

Figure 4.13 shows the results of iterating a spline fitted to the CLPC 

cluster centers (cf. figure 4.10). The series is studied in more detail in section 

5.1 and figure 5.3. The red dots are the data points obtained by iterating the  

                                                 
10 By 2% noise we mean that the standard deviation of the random noise added to the data was 2% of 
that of the data. The noise was added in the form t(i+1)=f(t(i))+ei where ei~N(0,(0.02σ)2) where σ is 

the standard deviation of the measurements {t(i)} 

t(i+1) 

t(i) 



   74

84 86 88 90 92 94

84

86

88

90

92

94

105 110 115 120

104

106

108

110

112

114

116

118

120

122

  
 

Figure 4.12. Overlaid return maps for a period-4 time series 

           The spline is shown in figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.13. Return map for a chaotic time series with fitted spline 
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spline (no noise added in this case), and the blue dots denote the return map 

of the series.  The return map obtained by iterating the spline, it can be seen, 

lies in the center of the true return map. 

 
4.5.2.   Effect of noise on spline-based return maps 

The spline-based return map is simply a collection of connected 

polynomials, and all iterations fall on that piecewise polynomial or spline. 

Adding some noise to the iteration step may result in more realistic-looking 

return maps that approximate the scatter of the points in addition to 

describing their general shape. Figure 4.14 explores how adding noise to the 

iterative step can change the shape of the return map thus obtained. The 

return maps contain 400 iterations each. Note that the return maps seen in 

figure 4.14 do not depend on the starting point, if enough iterations are used. 

Even when the starting point was placed on the diagonal, the iterations 

spiral out of the zone near the diagonal and settle in the bands seen in figure 

4.14(a). 

      Clearly the scatter of the data points increases considerably as more 

noise is added to the iterative step. Figures 4.14(b) and (c) approach the 

general pattern of points on the return map in figure 4.9. Adding too much 

noise however may destabilize the mapping because splines are not very 

accurate for extrapolation. Hints of the mapping becoming unstable can be 

seen in figure 4.14(d) where quite a few points fall far from the general 

spread of the points. Further research on fitting splines to a return map is 

underway. 

As noted before, the approximation achieved by CLPC at any point is 

dependent on the local density at that point. In the above example, there are 

not a lot of data points near the diagonal line, and the approximation may 

not be accurate. It is up to the researcher to determine that sufficient data is  
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Figure 4.14. Iterated return maps for various amounts of noise 

Clockwise from top left: Noise added to the iterative step 1% (a) , 5% (b), 10%(c) 

and 20% (d) noise respectively. The noise was added in the form t(i+1)=f(t(i))+ei 

where ei~N(0,(cσ)2) where σ is the standard deviation of the measurements {t(i)}, 

and c is the noise level (0.01, 0.05, 0.10 and 0.15 in (a) through (d)) 
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present for fitting a CLPC. Of course, if there is only a limited amount of 

data, the number of cluster centers can be increased to improve the fit, but 

that cannot deal with the problem posed by severely non-uniform 

distribution. This aspect about CLPC was discussed earlier, and any 

algorithm based on conditional expectation will suffer from this weakness. In 

general, though, it is doubtful that any algorithm can attempt to explain the 

structure given no data! 

 

4.6. Cluster-linked principal curves in delay space 
Principal curves can be used to approximate the reconstructed 

geometry of the attractor. Figure 4.15 shows the embedding space 

constructed from a chaotic bubble column time series. See figure 3.3(d) for 

the time series from which the embedding was produced. Since the data is 

very clean, 5% white noise11 was added to it for robustness of estimation. The 

simulation used 45 cluster centers. An embedding dimension of 3 and an 

embedding delay of 15 were chosen to resolve its geometry or to ‘open up’ 

the attractor. The data points appear as dots and the principal curve as the 

solid line. It is clear that the principal curve approximates the geometry 

excellently. The curve is non-intersecting when seen in any two dimensions.  

The first two dimensions of the residuals are shown in figure 4.16. The 

fraction of generalized variance remaining in the residuals is less than 0.07%. 

The mean of the residuals is very close to zero, and the measure suggested 

for independence of residuals is 1.041. Figure 4.16 clearly shows how random-

like the residuals are.  

 

                                                 
11 The noise was added in the form t(i+1)=f(t(i))+ei where ei~N(0,(0.05σ)2) where σ is the standard 

deviation of the measurements {t(i)}. 
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Figure 4.15. Principal curve fitted to embedding space 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Residuals from the fit in figure 4.15 (first two dimensions) 

x(t+30) 

x(t) 

x(t+15) 

ex(t+15) 



   79

This example shows that principal curves can be used to model the general 

shape of the state space trajectories in the embedding space. The smallest 

embedding dimension required for this data set is three, but since the fit 

produced white noise residuals, the three dimensions can be simply 

represented by the arc length along the principal curve. 

   To expand on this point further, observe figure 4.17, which displays the arc 

lengths for the embedding vectors formed so that the time interval between 

every record (or embedding vector) is the same. Every arc length is the 

projection of a 3-dimensional embedding containing a time window of 30 

records on the fitted CLPC.  

   It was noted earlier how the differential pressure between the nozzle and 

the gas intake pressure builds up slowly but sharply declines when the bubble 

is released. This pattern is present in the time series as well. The temporal 

properties of the time series are preserved remarkably well. The sharp 

increase and decline in the arc length is representative of the same pattern in 

the time series. This projection of the embedding on the CLPC clearly 

contains more information that the original time series, and can be employed 

for visual examination or subjected to standard Statistical Process Control 

(SPC) techniques. 

It must be noted that the principal curve approximated very well in 

the higher- and lower- density regions. This delay space corresponded to a 

chaotic state where the trajectories were contained in a band. It is not 

expected that CLPC or such methods can approximate the complex, fractal 

nature of strange attractors. Instead the intent is to demonstrate that this 

method can be used to approximate the general distribution or a skeleton of 

data points.  

The next chapter concerns itself with the applications of Cluster-

linked Principal Curves. The distribution of arc lengths obtained from return  
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        Figure 4.17. Arc lengths for the data in figure 4.15 

         The CLPC used to obtain these arc lengths is shown in figure 4.15 

 

maps or embedded times series is used to test for reversibility and 

stationarity. The extension of this methodology to process monitoring and 

fault diagnosis is outlined. The extension to prediction is also briefly 

discussed. 

 

4.7. Remarks about cluster-linked principal curves 
Some remarks are in order about the algorithm presented and the 

examples presented. First of all, the principal curves are weak approximators 

at their extremities. The tails of the arc length distribution produced by 

projecting on a principal curve are not very reliable. Using finer 

approximation at their extremities leads the danger of the CLPC being too 
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sensitive to even small statistical fluctuations near its endpoints. This high 

sensitivity may also be passed to the neighboring areas and mar the fit of the 

entire principal curve. 

 

The second remark has to do with the validity of a principal curve 

when it is faced with sparse data. If the data being approximated is sparse, 

and a large part of the principal curve has no data points near it —and is 

simply a product of connecting one cluster of data points to another, then 

one must ask oneself if the probability of points in that region is very small 

or zero. Bayesian analysis, for example, doesn’t assume any probability is 

zero, but expects some finite, however small, probability even in the regions 

where there is no data. It has already been observed that the conditional 

probability is not well defined for very low probabilities. In some cases, it 

may be an artifact of the data that a considerable region in the data space 

contains no data points. For engineering systems, e.g., it is possible if the 

system is operated, at two different steady states, in such a way that the 

transition is almost instantaneous in relation to the sampling frequency. 

If the data contain two compact clusters far apart, and the user is 

aware of it, the CLPC algorithm should not be considered reliable in its 

interpolation. For such cases, other methods can be used.  

That also brings us to the problem of determining how accurate the 

probability distribution of arc lengths really is. Kernel smoothers may be 

used to better estimate the probability of observing a certain arc length. 

However, their use cannot hide the fact that there are regions in the data 

where there are no observations. 

 

No simple answer can be given to these questions. If, after binning the 

arc lengths to produce their probability distribution function, a large number 
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of congruent bins are empty, a note shall be made of it. The user can 

determine for himself or herself whether the result is reasonable or not. The 

CLPC algorithm does produce some principal curves that intersect 

themselves —and may give rise to a curve which finds no observations for a 

considerably large part of its traverse. The range of arc lengths resulting from 

such a CLPC will be larger. A rough idea of the range of the arc lengths can 

be obtained from the variance of the data. If the range of curve arc lengths is 

10 times the generalized standard deviation, further inquiry must be made 

into the shape of the fitted curve. 

This dissertation is concerned with demonstrating how the CLPC 

algorithm can be put to various uses. We wish to state here that we are 

aware of some questions, mostly statistical in nature, which are beyond the 

scope of this study. At the same time, most of the questions posed above are 

not endemic to the CLPC algorithm, but are universal when analyzing data 

from an unknown source. 

 

 



   83

Half of this game is ninety percent mental- 

Yogi Berra 

 

Chapter 5 

 

Applications of cluster-linked principal curves  
 

This chapter shows how cluster-linked principal curves can be used to 

test for stationarity and reversibility in a time series. Chapter 4 

demonstrated how principal curves can approximate the distribution of data 

points in return maps as well as in embedding space. This chapter shows 

some additional results with the arc length distributions along the CLPC. 

 

5.1 Comparing two distributions 
A simple way to test for stationarity in univariate data sets is the F-

test, which tests if two samples have unequal variances. The test is based on 

the assumption that the two samples whose variances are being compared are 

random variables. It can be applied to a time series or a one-dimensional 

distribution as Goldfeld-Quandt (G-Q) test to confirm heteroscedasticity 

(unequal variances).  G-Q test requires computing the variances of the first 

and last one-third of the data. The idea is to produce two equal-sized non-

overlapping segments that are considerable removed from each other. Using 

the first and last one-thirds appears to be a popular choice. If the 

measurements are normally distributed, the ratio of variances follows a F-

statistic.  
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If there are n samples overall, then the ratio of the variances of the 

first and last one-third follows the F statistic with n/3 degrees of freedom for 

numerator as well as denominator. A simple F-test can then determine if the 

variances are significantly different. If they are, the time series is considered 

non-stationary. Note that the F-test is parametric and assumes that the 

measurements are independent, which is not the case for most time series. 

However, a static probability density function may be sufficient to 

characterize a time series if enough measurements are collected so that the 

density estimated from the sample is representative of the probability density 

function of the generating process. 

 

Principal curves can also be used in the same fashion to test for 

stationarity. A principal curve can be fitted to the first one-third of the data 

and yields a distribution of the arc lengths for it. Then the arc lengths for the 

last one-third of the data can be found by projecting it on the principal curve 

fitted to the first one-third of the data. Then one has two distributions of arc 

lengths and comparing them is tantamount to evaluating the goodness of fit. 

The Kolmogorov-Smirnov12 (K-S) test is the standard non-parametric test to 

compare two distributions if they are continuous function of one parameter13. 

However, the K-S test is not powerful for distributions with long and weak 

tails since the difference between the density functions being compared will 

be small and not appear to be of much importance14. The K-S test statistic is 

                                                 
12 The Kolmogorov-Smirnov test does not make any assumptions about the distribution. It compares 
two cumulative distribution functions that are constructed from the data and not according to the 
quantiles of a parametric distribution. 
 
13 Strictly speaking, the distribution of arc lengths is not continuous due to finite sample size. 
 
14 The K-S test uses the infinite norm of the difference between two cumulative distribution functions 
as a test statistic. It is much more sensitive near the center of the distribution than it is far from it. 
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the infinite norm of the difference between two cumulative distribution 

functions FR(X) and FS(X) where the subscripts index the distribution 

functions. Note that X must be a continuous variable for the K-S test to be 

valid.  

The χ2 test on the other hand, accumulates the differences in the 

densities into one statistic. Nevertheless, using the χ2 test requires one to 

specify the number of bins in which the densities are binned. There are ways 

to decide on the optimum number of bins by using informational complexity 

measures, which is beyond the scope of this study. We arbitrarily used n/20 

bins where n is the number of observations in each sample15. However, no 

less than 30 bins are used when n is less than 600. The goal of this study is 

to show how the distributions of arc lengths along the CLPC can be used to 

characterize a time series and the results are only illustrative. It is not 

advocated to blindly set an α-value and to accept or reject hypothesis based 

on the fixed cutoff. The associated p -value from the comparison of the 

densities should only be used as an aid. For comparison, the results of the 

Kolmogorov-Smirnov (K-S) test are provided. For details on these two 

goodness of fit texts, see Press et al (1993), or any standard Statistics text. 

 

This approach presents a more efficient way to test for stationarity if 

the principal curve explained most of the variation in the data set and if the 

residuals produced by it were white noise. The argument is that the principal 

curve extracted most of the information present in the distribution and thus 

                                                 
15 If there is no natural choice for the number of bins, we suggest that the chi-square test be carried out 
for various value of NB. If the difference is significant, the test will reject the null for all values of NB. 
It must be borne in mind though that using too few bins may ignore a difference between the 
distributions. Results obtained with too few bins should not be given much weight. 
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the segments of the time series can be compared in one dimension instead of 

their original, higher dimension. It is also true that comparing higher 

dimensional probability distributions is a cumbersome task and is still a 

subject of ongoing research. The chi-square test is defined as follows: 

 

Suppose R and S are two binned probability distributions, and Ri and 

Si are the number of samples in their ith bin respectively. If both distributions 

are determined experimentally, then the appropriate chi-square statistic to 

test for the distributions being significantly different is  

2
2

1

( - )
( )

BN
i i

i ii

R S
R S=

=
+∑χ               (30) 

where NB is the number of bins.■  

The statistic follows the chi-square distribution with NB-1 degrees of 

freedom16. The null hypothesis of Ri and Si being the same can be tested and 

if the χ2 value is larger than the critical χ2 value at a defined confidence level, 

the null can be rejected and it can be concluded that Ri and Si are 

significantly different and thus the time series or the dynamics are not 

stationary. As usual, the inability to reject the null hypothesis doesn’t prove 

that the time series is stationary.  

We now demonstrate the uses of arc length distributions by testing for 

stationarity and reversibility based on return maps and delay embedding. 

The time series used for illustration are taken from a liquid-filled column 

with electrified capillary (or a bubble column). A brief description the bubble 

column is given in section 3.1 of this dissertation. 

                                                 
16 Not that the degrees of freedom are NB-1 if the bins are considered to be independent. 



   87

5.2 Testing for stationarity 

Figure 5.1 shows the overlaid return maps formed from the first and 

last one-thirds of the time series. The blue dots correspond to the first one-

third of the series and the red dots to the last one-third of the series. It is 

clear that the distribution of points is different for the first and last one-

thirds of the data points. A CLPC with 16 cluster centers was fitted to the 

blue dots, and used to obtain the arc length distribution for the red dots.  

The overlaid binned probability distributions are shown in figure 5.2 

where the dashed and solid lines show respectively the distribution of arc 

lengths for the last and first one-thirds of data points. The distributions 

present some interesting features. The dashed density has four distinct peaks 

—thus attesting to the period-4 behavior of the red dots. The solid line has a 

distinctly different structure. Thirty bins were used to generate figure 5.2, 

and the null hypothesis was rejected at α<0.01 or greater than 99% 

confidence level. The corresponding p-value was 5x10-7. Using 50 bins, the 

corresponding p-value was 8x10-6. In other words, the probability that the 

two segments have the same distribution is less than 1% under the null. The 

p-value for the K-S test is 0.056, which is fairly small. It is thus quite likely 

that the time series is non-stationary. 

The distribution of arc lengths can also be used to find the periodicity 

in the data. For example, two clear peaks signify period-2 behavior, four 

sharp peaks signify period-4 behavior and a broad distribution signifies 

chaotic or random behavior. Note that while fitting the principal curve the 

return map data points were scaled to zero mean and unit variance, and that 

is why the arc lengths range from 0 to 4. 
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Figure 5.1. Overlaid return maps for a bubble column time series I 

First one-third of mean crossings are plotted in blue, and the last one-third are 

plotted in red. The time series was obtained from the bubble column with gas flow 

rate of 170 cc/min and the electrostatic potential across the electrified capillary was 

12000 V. The units for t(i) are milliseconds. 
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    Figure 5.2. Distributions of arc lengths for the data in figure 5.1 
 

We now show another, example based on a bubble column time series. 

Here the objective is to see if a chaotic time series is non-stationary. Figure 

5.3 shows the overlaid return maps from the first and last one-thirds of the 

time series. Once again, blue corresponds to the first one-third and red to the 

last one-third of data. Apparently the distributions are not very different. 

However, note that the distribution of the red dots is more uniform.  

This is quite noticeable at the top left and bottom right as well as 

near the diagonal. A principal curve was fitted with 15 cluster centers for the 

mean crossings of the first one-third of the time series. Then the mean 

crossings for the last one-third of the data were projected upon it to produce 

another distribution. Figure 5.4 shows the overlaid probability distributions 

of the arc lengths. 30 bins were used to produce figure 5.4. 
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    Figure 5.3. Overlaid return maps for a bubble column time series II  

First one-third of mean crossings are plotted in blue, and the last one-third are 

plotted in red. The time series was obtained from the bubble column with gas 

flow rate of 170 cc/min and electrostatic potential (across the electrified 

capillary) of 17000 V. The units for abscissa and ordinate are milliseconds. 
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    Figure 5.4.  Distribution of arc lengths for the data in figure 5.3 

 

The distributions look different but not very much so. However, the 

null was rejected at α<0.01 for 30 and 50 bins. The corresponding p-values 

were 0.0074 and 0.0017 respectively. This is a good illustration of the 

weakness of K-S test. The K-S test did not reject the null of stationarity, and 

the corresponding p-value was 0.49. It is easy to see in figure 5.4 that the 

cumulative distribution functions will not be very dissimilar. For comparison, 

see figure 5.5 which shows cumulative distribution functions for the first and 

last one-thirds of CLPC scores. 

   The cumulative distributions do not look very different, and that is why 

K-S test didn’t reject the null hypothesis of stationarity. The difference 

between the return maps 5.3 is not very obvious. However, it is likely that 

the series is not non-stationary and the K-S test gave the ‘correct’ result. 

This example also demonstrates the subjectivity of hypothesis testing. 
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Figure 5.5. Distribution functions for the distributions in figure 5.4. 

 

The next example shows how one can test for stationarity based on 

the delay embeddings. The time series used in this study was taken from a 

bubble column under chaotic operating conditions. The embedding dimension 

used was three, which is the minimum dimension to reproduce the geometry 

of the bubble column attractor and to observe no intersecting trajectories. 

Note that halfway through the experiment, the operating conditions were 

altered slightly. The system was allowed to settle before resuming 

measurements, and thus it is known that this time series is non-stationary.  

Figure 5.6 shows the overlaid reconstructed attractors in embedding 

space17. The blue and black dots correspond to the first and last one-thirds of 

the series respectively. Figure 5.7 shows the overlaid arc length distributions 

for the first and last one-thirds of the data set. The distributions are clearly  

                                                 
17 In figure 5.6, the mean of the embedding formed from the first one-third of the time series was 
subtracted from those formed from the first and last one-thirds of the time series.  
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Figure 5.6. Overlaid attractors in embedding space I 
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Figure 5.7. Overlaid PDFs for the data in figure 5.6 
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very different. For the distributions in figure 5.7, the null hypothesis that the 

two arc length distributions are generated from the same distribution 

function was strongly rejected. In fact the associated p-value was 4 x 10-68 for 

the K-S test and even less for the chi-square test, which leaves no doubt 

about the fact that these two distributions are very different and hence the 

time series is non-stationary when seen in the embedding space. 

    

   The final example of this section tests stationarity for another time series 

based on the reconstructed attractor. The operating conditions were 

unchanged during the period the time series was obtained. Figure 5.8 shows 

the embedding made from the first and last one-thirds of the series (blue and 

black dots respectively). There does not seem to be a systematic difference 

between the two reconstructed attractors, as is clear from the figure. 
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Figure 5.8. Overlaid attractors in embedding space II 
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 λ 

The principal curve fit to the first one-third of the time series is not 

shown, but it was quite similar to the one in figure 4.15. The principal curve 

began and ended in the high-density segment of the embedding space. The 

high-density and high-probability zone corresponds to the formation and 

expansion of the bubble, and the lower density zones correspond to the 

detaching of the bubble from the nozzle. The probability distributions are 

shown in figure 5.9 and almost lie atop each other. As is obvious, the null 

hypothesis of stationarity was not rejected by chi-square or K-S test at p-

value of even 0.25. Another stationarity test based on the return maps also 

upheld stationarity. Thus there is strong evidence that this time series is 

stationary. 
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     Figure 5.9. Overlaid PDFs for the data in figure 5.8 
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This section contained four examples of testing for stationarity using 

Principal Curves. These examples covered respectively, high, medium, high 

and little non-stationarity in the data. The first two examples used the 

return maps whilst the last two employed the embedding space directly. In 

the first example the return maps were different and it was accurately 

captured. In the second example, the difference was found to be significant 

by the chi-square test but the p-value from the K-S test was not low enough 

to reject the null of stationarity. However, the return maps were somewhat 

different, but not very much so. A ratio of the computed chi-square statistic 

to the critical chi-square value can be used as an indicator of stationarity 

along with the p-value from the K-S test. In the third example, there was a 

big difference between the distributions of the first and last one-thirds of the 

data, and the null hypothesis of stationarity was rejected very strongly by 

chi-square as well as K-S test. And, in the final example, there was little 

difference between the distributions of the first and last one-thirds of the 

data and neither test indicated a low enough p-value to suggest that the null 

may be unlikely. 

The preceding examples show that the approach outlined in this 

section is effective and doesn’t suffer from the problems of being too 

powerful or too weak. It must be borne in mind that the examples 

considered here didn’t have a lot of data, and the accuracy of the test will 

improve as more data becomes available to estimate the probability 

distributions of arc lengths. In particular the chi-square test becomes 

increasingly powerful with sample size. If there is enough data, it is 

preferred to have tests based on the cumulative distributions or normalized 

distributions. 
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This approach can also be used to compare two different processes. 

Obviously if the two processes have a different mean, one does not have to go 

through the trouble of fitting a principal curve when a t-Test or Hotelling’s 

T2 statistic can determine that the means are significantly different. The 

above approach can still be used to compare the structure of data points of 

two different data sets. Both time series can be normalized so that they have 

zero mean and unit variance. Then the scaled data points will occupy roughly 

the same region. A principal curve can then be fitted to one return map and 

the arc lengths on the resulting principal curve can be computed for another 

return map. For more examples see Rajput and Bruns (2001A). 

 

5.3. Testing for reversibility18 
Most nonlinear time series are irreversible. The knowledge of 

reversibility of a time series is very useful since some models can be ruled out 

for irreversible time series. The approach taken in the previous section can be 

modified slightly to test for reversibility in place of stationarity. Instead of 

comparing the first and last one-thirds of a time series, one can compare the 

time-forward and time-reverse versions of the series19.  

 

One can fit a principal curve to the return map formed from the 

forward version of the time series. Then the fitted principal curve can be 

used to find the arc length distributions for the return map formed from the 

time-reversed version of the time series. The two resulting distributions can 

                                                 
18 Note that one should only test for irreversibility if the time series is known to be stationary. Non-
stationary time series are by definition irreversible. 
 
19 The same methodology applies whether we compare a time series with its time-reversed version in 
the embedding space or compare the return map formed by mean crossing intervals to the return map 
formed by mean crossing intervals of its time-reversed version. 
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then be compared in the same fashion using either a chi-square test or a K-S 

test.  

Figure 5.10 shows the overlaid return maps from a bubble column 

time series. The same time series was used to test for stationarity in figure 

5.1. The return map of the time-reversed version appears as red dots and 

that of the time-forward version is shown in blue dots. Clearly the time series 

is not reversible since the red and blue dots do not overshadow each other in 

the figure 5.10. However, the irreversibility is not very strong, since the 

return maps of the time-forward and time-reversed time series overlap 

considerably. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Return maps for time-forward and time-reverse versions  

        of a time series  

         The units for abscissa and ordinate are milliseconds. 
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A principal curve was fitted to the time-forward version of the time 

series and the points in the return map of the time-reversed version were 

projected on it, and another probability distribution obtained. Figure 5.11 

shows the overlaid probability histograms for the forward and reversed 

versions of the time series. 

The differences seen in figure 5.10 are visible in figure 5.11 as well. 

The null hypothesis of the distributions not being significantly different was 

rejected very strongly. The corresponding p-values for 30 and 50 bins 

respectively were 4 x 10-8 and 4 x 10-5. The K-S test also rejected the null of 

reversibility with an associated p-value of 0.005. Therefore there is very 

strong statistical evidence that the time series is irreversible. This time series 

is thus non-stationary and irreversible, which comes as no surprise. However,  
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      Figure 5.11. Overlaid probability distributions for the data in figure 5.10 
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the very low p-values associated with these tests assure us that this 

methodology finds non-stationary time series irreversible. 

Figure 5.12 demonstrates how principal curves can be used to test for 

reversibility based on the delay embeddings. This example considers the same 

data that was used in figures 4.15 and 5.8 —that of a stationary time series 

from a bubble column operating under chaotic conditions. As before, a 

principal curve was fitted to the time-forward version of the time series and 

later the time-reversed version of the same time series was projected on the 

principal curve to obtain another probability distribution of arc lengths. 
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Figure 5.12. Overlaid probability distributions for the time-forward and  

        time-reverse versions of a bubble column time series 
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It is obvious that the two distributions are widely different. The null 

hypothesis of reversibility was rejected very powerfully. The chi-square test 

produced a p-value of 4x10-8 and 5x10-5 for 30 and 50 bins respectively. The 

K-S test also rejected the null since the associated p-value was less than 10-10.  

So it can be safely concluded that the time series is irreversible. It was 

expected though, because the time series was chaotic and chaotic systems are 

not time-reversible. 

 

 

5.4. Process monitoring and fault diagnosis 
 The methodology discussed in the last two sections can be applied to 

monitoring. There are two ways in which process monitoring can be 

approached, and they are suitable for different ends. The usual case is where 

the good operating condition is known and it is desired that the system 

remains near it. In that case, a principal curve can be fitted to the good data, 

and then used to project the data from a running window, to produce the 

distribution of the moving window. The distribution of the moving window 

can then be compared with that of the good data. A running ratio of the test 

statistic to the critical value of the statistic according to the null, and the 

probability value corresponding to the computed statistic can then be 

displayed and utilized for monitoring. As observed earlier, the distributional 

properties of the arc lengths should be explored before deciding whether to 

have a parametric test or a non-parametric one. It is preferred to have a non-

parametric test to make the monitoring more robust. 

If the system is complex, then one can follow another approach that in 

spirit is more like identification. Data can be collected for several operating 

modes or states, and a library of arc length distributions compiled. Later the 
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L1 or L2 measure of distance between the running distribution and the 

standard library distributions can be displayed to indicate which mode or 

state the system is currently in. This approach can be quite useful when 

there is not a lot of understanding about the process and there are lots of 

gray areas.  

The second approach can also be applied to fault diagnosis purposes 

when a library of system states or states with certain known faults has been 

assembled. A measure of similarity between the arc length distribution in the 

present time-window and those in the library can be computed online. When 

the dynamic, online measure of similarity indicates that the system is in or is 

moving towards a known fault, a warning is issued. The knowledge of the 

process can be used to make changes in the system parameters such as flow 

rates, and thus to better control it. The measure of similarity can be so 

defined that makes the methodology more conducive to preventive 

maintenance. That is achieved by issuing a warning for moderate drifts 

toward known faults. The warning is noted by the maintenance staff. The 

priorities of routine maintenance may then be optimized by focusing more on 

the machinery or systems for which repeated and ever-stronger warnings 

were issued consistently. Thus formulated, the distribution of arc lengths can 

reduce failures, shutdowns, and maintenance costs. 

 

The HSPC algorithm was extended by Dong and McAvoy (1996) to 

perform Nonlinear Principal Component Analysis (NLPCA). They followed 

the HSPC algorithm and trained an autoassociative neural network to learn 

the mapping from data space to the nonlinear principal component space. 

Their method fits one HSPC after another (on the residuals of the fit of 

previous HSPC) till a predefined fraction of total variability is explained. 

Their article provides examples of process monitoring based on NLPCA. 
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They follow the HSPC algorithm and fit a scatterplot smoother for every pair 

of dimensions. The problems with that were discussed in Chapter 4. 

The Cluster-linked Principal Curves (CLPC) algorithm is different 

from the HSPC algorithm or NLPCA approach. The algorithm does not 

include the cumbersome and black-box-like training of the neural network 

where there is little idea about the nature of the mapping performed by a 

neural network. Instead, the data points are projected on the fitted principal 

curve in real time. The complexity of projection, as noted before, is O(n*nc) 

where n is the number of data points and nc is the number of clusters. Our 

experience shows that the projection is done very quickly on a 500 MHz 

machine. Of course a lot has changed from the year 1996 to the year 2002 in 

terms of computing power, but the limitations of neural networks are 

numerous and they have been spectacularly abused and applied to situations 

where a simple statistical technique may have done much better for far less. 

 The extension of CLPC framework to process monitoring and fault 

diagnosis is beyond the scope of this study, but it is expected that the 

extension will be straightforward to implement.  

 

 

5.5. CLPC framework for prediction 
The CLPC framework detailed in this chapter for testing stationarity 

and reversibility can be extended for prediction. The CLPC reduces a point x 

in Rm to an arc length λ(x). Consider that y is the future value or the value 

to be predicted. For embedding x=[x(t) x(t-τ) ... x(t-(m-1)τ)]T and y=x(t+τ2). 

A CLPC can be fitted to the vectors {x}, and the arc lengths {λ(x)} can be 

computed for every x in Rm. Suppose that the goal is to predict yi given xi. 
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All the vectors in the neighborhood of xi in Rm are then found, i. e. {xj} such 

that their corresponding arc lengths {λ(xj)} are close to λ(xi). The 

corresponding {yj} values for all these neighbors of xi can be averaged or 

kernel-weighted to produce the predicted value. This approach involves 

searching for neighbors in R1 if the first principal curve explained most of the 

variation, which reduces the cost of neighbor search drastically. To be more 

meticulous, one could choose the {xj} such that in addition to having similar 

arc lengths, they are within a certain neighborhood of xi (in Rm), and use 

that set to predict the future value. Further research is underway on this 

subject, and is beyond the scope of this study. 

 

5.6. Closing remarks 
This chapter showed how the Cluster-linked Principal Curves can be 

used for various ends, and applied them to chaotic time series data in the 

embedding space. The CLPC fitted to the embedding space captures only the 

static probability density. Although embedding incorporates some 

information in the vectors, and the CLPC has a sense of direction (cf. figure 

4.16) and approximately remembers the ‘arrow of time’ (except at its 

beginning and end where a discontinuity is possible), the timescales that a 

CLPC can capture are fixed by the time-window in an embedding vector or 

the time (m-1)τ. A suitable embedding delay has to be found before 

subjecting the embedded vectors to CLPC in order to have a more 

meaningful skeleton of the attractor. If one desires to explore the timescales 

in the time series through the CLPC framework, one has to repeatedly fit a 

CLPC for different embeddings. Given some prior information, the researcher 

can focus more on the relevant time scales by choosing the appropriate 

embedding. The CLPC framework outlined in this dissertation proved useful 
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in characterizing the joint probability density of the embedded time series, 

and shows promise if employed for prediction, but a CLPC essentially 

captures the static distribution of data points. 

It is also very desirable to explore the timescales in the time series. 

Autocorrelation function is suitable for linear time series but not pertinent to 

nonlinear time series since it captures only linear temporal relationship. 

General autocorrelation or mutual information (cf. section 2.5) captures the 

patterns in the embedded time series. We suggest that using mutual 

information on symbolized time series (where the embedding vectors are 

coarse-grained to produce a code) can reveal temporal information. The 

mutual information function evaluated for various delays provides knowledge 

about the major time scales in the series, since the mutual information 

function has local peaks at τ when the knowledge of the measurements at 

time t adds information about the measurements at time t+τ. The mutual 

information function can be evaluated at the relevant timescales or delays, 

and the composite vector can be treated as the raw feature vector in a 

pattern classification problem. This approach is discussed in the next two 

chapters. 
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The fundamental problem of communication is that of reproducing at one 

point either exactly or approximately a message selected at another point. 

—Claude Shannon 

 

 

Chapter 6 

 

Information-theoretic quantities 
 
 This chapter discusses some measures of a time series in the realm of 

information theory. The most fundamental concept in information theory is 

that of information in a signal or channel, which is related in a 

straightforward fashion to the predictability and randomness in them. We 

will provide a short theoretical description of information theoretical tools 

that we intend to use, and briefly review how these various measures have 

been used in the past. The theory is followed by a discussion of symbolization 

and the effect of symbolization parameters on the computed information 

theoretical measures. The next chapter deals with applications of the 

measures discussed here. 

 

6.1. Randomness and entropy 

If {x(t)} or X is the set of measurements obtained on a channel, then 

the degree of randomness or lack of predictability of the signal can be 
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quantified as Shannon Entropy. For the original reference see Shannon 

(1948).  

If the measurements obtained from channel X are binned, the value 

1=

= −∑( ) ln
N

i i
i

H X p p is called the Shannon Entropy20. The subscript pi is the 

probability that a measurement falls in the ith bin. N is the number of bins, 

which are indexed by i (1≤i≤N). The logarithm is usually taken on base 2 

although that is not necessary. The function H(X) reaches its maximum 

value of ln (N) when all the pi values are equal, and that is when the signal is 

the most random, or, extending the deduction by making some assumptions, 

it translates to the fact that any value is equally likely to be observed. The 

function attains its minimum value of zero when the probability is zero for 

all bins except one which occurs when only one value is observed. The 

definition used in this study is the one similar in spirit to that defined by 

Tang and Tracy (1998) where 

N

i i
i=1

S

p  ln p
H (X)= -

ln N

∑
. The advantage of using 

this definition is that the maximum value of HS(X) is 1. A variation of this 

definition is used in Daw et al (1998) where N is replaced by the number of 

non-empty bins. The definition of Shannon entropy considered in this 

dissertation is in accordance with that of Daw et al (1998). 

  

                                                 
20 Strictly speaking, the entropy is defined only if x(t) is discrete. Examples include {Red Blue 
Black} for the experiment of drawing balls from an urn, or the set of alphabet letters (with the white 
space) if the experiment consists of transmitting a string of letters from one channel to another.  If x(t) 
is more or less continuous, most often some sort of binning is required to keep the total number of 
bins finite and manageable in computing the entropy. If too many bins are involved, the entropy may 
be artificially low, because of inadequate sampling. 
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These two extremes can be thought of as representing the endpoints of 

the predictability spectrum. Throwing a fair dice results in equal probability 

of rolling any one of the six numbers on its faces, and the process is most 

random. In contrast, when AgNO3 is titrated with KCl, one always observes 

the white precipitate of AgCl without fail. 

  

Shannon entropy attempts to quantify the randomness or 

predictability in the outcome of an experiment. However, in some cases, one 

is observing multiple quantities simultaneously and the probability must be 

defined in a higher dimensional space. An example of the latter is the 

analysis of embedded time series data for which each embedded point is 

represented as a vector.  

 

6.1.1.  Joint entropy 

Let us consider the case for two channels X and Y. In order to analyze 

the relationship between X and Y, one can compute pi,j(X,Y), which is the 

probability that a sample from X falls in the ith bin and the corresponding 

sample from Y falls in the jth bin, then the joint entropy is 

1 2

1 1
X, Y ln

N N

i j i j
i j

H p p
= =

= −∑∑ , ,( ) . The summation is carried over i (1≤i≤N1) and j 

(1≤j≤N2) that index the bins in X and Y. By definition H(X,Y)=H(Y,X). If 

the joint process (X,Y) is random, the joint entropy would be high, and if the 

joint process has some sort of structure, the joint entropy would be less. 
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6.2. Information-theoretic measures 

 

   6.2.1.  Mutual information and redundancies  

To estimate the additional information obtained about Y by 

knowledge of X, it is needed to correct for the information contained in X 

about Y. The additional information provided by the joint distribution of X 

and Y is the amount by which the sum of entropies of X and Y decreases 

upon its introduction.  

Mutual information measures exactly that by computing 

I(X;Y)=H(X)+H(Y)-H(X,Y)= 
1 2 1 2N N N N

i i j j i,j i,j
i=1 j=1 i=1 j=1

- p lnp - p lnp + p lnp∑ ∑ ∑∑ . See Fraser 

and Swinney (1986), and Fraser (1989) for details. 

 

If X and Y are independent, then pi,j=pipj, and it can be easily shown 

that I(X,Y) would be zero. The maximum value of mutual information occurs 

when H(X,Y) attains a value of zero which is only possible if only one bin in 

the XxY space has all the measurements. In any case, a small value of 

H(X,Y) which means X provides information about Y and vice-versa, leads 

to a higher mutual information value. The intuitive idea can be expressed 

mathematically as I(X;Y)=H(X)+H(Y)-H(X,Y). There is a related concept 

called conditional entropy which considers the conditional probability p(i|j) 

which is the probability that a measurement from Y is in bin j, given that 

the corresponding measurement from X is in the bin i. It is easy to see that 

pi=p(i|j)pj. The conditional entropy H(X|Y)=H(X)-I(X;Y)= H(Y)-H(X,Y) 

describes the reduction in the entropy of Y caused by knowing the joint 
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entropy of X and Y. A recent discussion of mutual information for time-series 

data is given in Schreiber (2000). 

 

6.2.2. Entropy and mutual information for a time series 

Shannon Entropy can be computed for a time series where Y is 

obtained from X through a delay operator. In that case, pi,j(τ) is the 

probability that x(t) falls in the ith bin and x(t+τ) falls in the jth bin. In that 

case, the Shannon entropy is the estimate of the predictability of time series 

on a time scale of τ. If the Shannon entropy is low for a certain value of τ, 

called lag, then knowing x(t) provides us with some information about 

x(t+τ). If knowing x(t) tells us nothing about x(t+τ), then the entropy is 

maximum. That is the case if x(t) occupies the ith bin but x(t+τ) can be in 

any bin with equal probability. 

The entropy of X, as shown before was H(X). The joint entropy is 

H(X,Y)=H(X,TX) where T is a delay operator. To simplify the notation let 

H(X,Y) be replaced with Hτ(X). If the time series has some structure or 

predictability, then the {pi,j(X,TX)} or {pi,j(τ)} should have less disorder than 

{pi}. This additional information can be formulated as Iτ(X)=H(X)+H(X)-

Hτ(X)=2H(X)-Hτ(X). This is called mutual information. Assume that {x(t)} 

is completely independent of {x(t+τ)}. In that case Hτ(X)=H(X)+H(X) and 

the mutual information is zero. If on the other hand, {pi,j(τ)} has more 

structure, then Hτ(X) is small and consequently Iτ(X) is large. Therefore the 

mutual information is zero only when a time series is completely random at a 

timescale τ, and a positive value of mutual information implies some 
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correlation between the measurement at time t and that at time t+τ. Also 

note that the mutual information is equal to Shannon entropy when τ=0. In 

Our implementation of the mutual information, it is normalized so that its 

maximum value is 1. This is not necessary, but it is convenient to see the 

residual entropy and mutual information plots when both of them are scaled 

to lie between 0 and 1. 

Note that mutual information is not directional. The way mutual 

information has been formulated, H(X,TX)=H(TX,X), and thus it exploits 

only the static distribution of the probabilities and is invariant under the 

time-reversal transformation. The mutual information of a time-reversed 

series is the same as that of the original time series, and thus cannot be used 

to gauge reversibility.  

 

6.3. Symbolization 
The entropies can be computed based on the slope of the correlation 

sum versus the radius of neighborhood (ε) plot. A straight-line approximation 

zone has to be found visually and its intercept yields the estimate of entropy. 

Correlation sums are very sensitive to noise and in many cases there may not 

be a straight-line part in the C(ε)-ε plot or the zone may be too small and 

elude detection. In addition, computing the correlation sum is tedious and 

computationally very intensive. 

Information theoretic measures motivated in the previous section can 

be used for computing entropies or other information theoretical measures 

without computing the correlation sums or finding straight line 

approximations in the C(ε)-ε plot. Calculation of entropies requires binned 

probability distribution. Thus one have to decide how finely to partition the 

data. There are some associated trade-offs in partitioning. Too fine a 



   112

partitioning scheme produces many bins, of whom most have a negligible 

probability; too coarse a partitioning scheme leads to loss of information 

because the large bins group even remotely similar points.  

We introduce here the concept of representing measurements by a 

numeric symbol —0, 1, 2 etc. Our treatment of the subject follows that of 

Tang and Tracy (1998) in spirit. Early treatment of symbolization was given 

by Crutchfield and Packard (1983). See Tang and Tracy (1998), Daw et al 

(2002) and the references therein for more information about symbolization.  

Suppose every measurement could be given one of the s values {0, 1, 

..., s-1}. Assume that the embedding vector is formed from m such symbols. 

The resulting vector is a s-base number. For ease of representation, it could 

be converted to a decimal number (called code), although it is not necessary. 

In this way one obtains a 1-D representation of the dynamics in terms of the 

code series. Each code thus obtained contains a short history of the evolution 

of the measurements or the system. Let S be the alphabet size or the set size 

(which is the cardinality of the set {0, 1, ..., s-1}), and m be the symbol 

sequence length, and by τ the symbolization interval21. Figure 6.1 illustrates 

symbolization.  

 

Of course, not all codes are independent. Of necessity, a code can give 

rise to only a few codes in the immediate future. A tree can be constructed 

for better visualization. Consider figure 6.1. The first code is 2121, which  

 
 

                                                 
21 The terminology here is very similar to that described in Chapter 2. The sequence length is plainly 
the embedding dimension and the symbolization interval the embedding delay. The only new concept 
here is that of the set size or alphabet size. 
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Figure 6.1: Illustrating symbolization 
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corresponds to a decimal number22 of 70. The next code has to be one of 

1210, 1211 or 1212. Thus only 3 out of 80 codes are possible for the next 

code. Because the set size is 4, the fourth next code will be statistically 

independent of the current code. The probability of generation of a code at 

any particular instant is not completely random. However, the lack of 

complete randomness is not important because the goal is not to treat the 

code series as another time series whose values are random samplings from s.  

Note that the coding23 step does not preserve the distance metric. 
 

6.4.   Choosing symbolization parameters 
As noted earlier, symbolization is affected by three parameters —set 

size or alphabet size, sequence length and symbolization interval. The second 

and third parameters can be determined in the same way as embedding 

parameters. The sequence length and symbolization interval should be so 

chosen that a time-window described by a sequence is neither too small nor 

too large with respect to the dynamics of the process. Deciding upon a 

suitable set size is not obvious, and depends on the complexity of the time 

series under study. If the process complexity is very high, finer partitions 

may be required to better capture the various patterns. On the other hand, if 

the patterns in the system are simple and few, a smaller set size should be 

adequate. It must also be borne in mind that increasing the set size increases 

                                                 
22 This is not the only way to generate a code. The arrangement shown in figure 5.1 assigns higher 
multiples to the older measurements. The assignment of multiples can be reversed, and the recent 
measurements given more weight. In that case the code for 2121 would be 50. Is 2122 closer to 2121 
than 1221 is? There is no definitive answer, but we assign more weight to slightly older measurements 
so that similar codes are more likely to share their common history.  
 
23 As a simple example, consider symbol sequences 1111 and 2000. They are neighbors in the code 
space but they are very dissimilar in the embedding space. Coding means converting the symbol 
sequence to a decimal code. Symbolization preserves the distance metric in an approximate way, but 
not exactly or mathematically. 
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the number of possible codes and sequences, thus rendering symbolization 

more computationally intensive. In many cases, after a certain parameter, the 

differential gain in contrast is not commensurate with the additional 

computations required, and a decision has to be made about this trade-off. 

 The researcher usually has to find the best symbolization parameters 

by the information about the system and some trial and error. Some methods 

about how to fine-tune the symbolization parameters can be found in Daw et 

al (1998). 

The method that usually works involves computing certain quantities 

for various symbolization parameters in an ordered way and viewing the 

sharpness of the computed measure. An ordered way means that the user can 

change the set size while keeping the sequence length constant, or change the 

sequence length while keeping the set size constant. Usually the level of 

autocorrelation in the time series hints at the suitable symbolization interval. 

It is preferable to choose a higher symbolization delay for a time series with 

high first-order correlation. 

 

6.4.1.   Examples 
 This section shows a few examples about choosing the optimal 

symbolization parameters, using a bubble column time series for illustration. 

The starting choice for symbolization delay should be 1 unless it is known 

that the time series is highly oversampled and must be decimated. The 

information about the process and its memory informs us as to the sequence 

length. Since the bubble data can be reconstructed faithfully in three 

dimensions (albeit with higher delays24), and a good choice for the sequence 

length would be 3. There are not very clear guidelines about choosing the set 

                                                 
24 In figure 4.15, the embedding delay used was 15. 
 



   116

size, but since the bubble column is a low-dimensional chaotic system, a set 

size of 2 or 3 may prove to be sufficient. 

 The effect of the symbolization parameters on the calculated Shannon 

entropy is now discussed.  Their effect on mutual information is very 

similar25. In order to explore the time scales in the time series, it is suggested 

to compute the Shannon entropy for a range of symbolization intervals and 

for not just the symbolization interval of 1. Let HS(s,m,τ) be the Shannon 

entropy for set size s, sequence length m and symbolization interval τ. For 

fixed symbol set size and sequence length, the plot of HS(s,m,τ) versus τ 

allows one to graphically see the randomness or lack of predictability 

associated with the time-scale τ. Note that HS(s,m,1) is 1. Higher value of 

Shannon entropy signifies higher unpredictability, and it is convenient to plot 

the residual Shannon entropy, i.e., H’S(s,m,τ) =1- HS(s,m,τ)  so that a peak 

in the residual Shannon entropy signifies a timescale with high predictability. 

H’S(s,m,τ) lies within [0, 1]. For example the residual Shannon entropy plot 

for a sine wave will have a peak for τ=T/4, T/2, 3T/4 and T where T is the 

period of the time series. Figure 6.2 shows the residual Shannon entropy plot 

for various symbolization parameters so that the sequence length is 3 and the 

set size ranges from 2 to 5. The time series used in figure 6.2 was collected on 

the bubble column and exhibited period-2 behavior; and was otherwise quite 

similar to that shown in figure 3.3 (a). 

 

 

                                                 
25 Recall that mutual information is just the difference of Shannon entropies, and responds the same 
way to symbolization parameters as the former does. 
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Figure 6.2. Residual Shannon entropy for various set sizes 

The sequence length is 3 for all cases. The symbolization set size is 2, 3, 4 and 5 

respectively for subplots (a), (b), (c) and (d). All subplots have the same scale. The 

time series appears in figure 3.3 (a). The series corresponded to gas flow rate of 170 

cc/min and 0 V electrostatic potential.  
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It can be seen that the more peaks arise in the residual Shannon 

entropy plot as the set size is increased. Using a set size of 2 with a sequence 

length of 3 recognizes but eight patterns and it is no surprise that the 

resulting plot is very smooth. However, using a set size of 5 produces a rather 

flat curve, in which the salient features are difficult to distinguish. Also note 

that the difference between the minimum and maximum values taken by the 

residual entropy for set size of 2 is 0.6, which steadily declines as the set size 

is increased.  

The reason that the residual entropy doesn’t reach zero for set sizes 

greater than 2 is that the finer partition results in many possible codes, and 

the Shannon entropy is less likely26 to be 1, and thus the residual entropy 

doesn’t reach the value of zero. In other words, finer partition is introducing 

some sort of ‘noise floor’ in this case. Increasing the set size figure 6.2 (a) 

through (d) does not produce clearer patterns, or does not add information 

about the time series being studied. 

The computational cost goes up exponentially upon increasing the set 

size, and that has to be borne in mind. The bubble column is a low-

dimensional chaotic system, and the additional details seen by increasing the 

set sizes are probably small and unimportant. Based on figure 7.2 it can be 

concluded that given the sequence length of 3, the best set size is perhaps 2.  

Figure 6.3 shows the entropy computed for the sequence lengths of 2 

through 5 and the set size is fixed at 2 (the optimum set size just found). 

Increasing the sequence length produces more but sharper peaks. In figure 7.3 

(a) through (d), there is no difference in the range of residual Shannon 

entropy values. However, the plots do appear sharp at the peaks and flat 

without for the sequence lengths of 4 and 5. A good choice for sequence 

length is perhaps 4 or 5 because for higher sequence lengths the gain in 
                                                 
26 The Shannon entropy becomes 1 when only one bin is observed and with more codes becoming 
possible, the chances of that happening reduce. 
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Figure 6.3. Residual Shannon entropy for various sequence lengths 

The set size is 2 for all subplots. The sequence lengths for (a), (b), (c) and (d) are 3, 

4, 5 and 6 respectively. The time series is shown in figure 3.3 (a). 
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contrast27 is small but the computational cost mounts considerably.  

 

   Recall that the bubble column has a dimension between two and three. 

Although a three-dimensional embedding faithfully reproduces the geometry, 

Takens’ limit is near 6 for the smallest embedding dimension that ensures 

faithful representation of the geometry. Information is obviously lost by 

symbolization, and hence the optimum sequence length is not 3 as one might 

expect because a three-dimensional embedding reproduces the geometry and 

eliminates self-crossings of the trajectories. 

   This chapter discussed entropy and mutual information, showed how they 

can be computed by way of symbolization, and provided a short review of the 

effect of symbolization parameters on the mutual information or Shannon 

entropy curves thus obtained. The next chapter considers the application of 

information theoretic measure for gauging stationarity and to compare 

different processes. The mutual information vector is treated as the raw 

feature vector for a pattern recognition problem. Note that the methodology 

outlined in the next chapter is applicable equally well to process monitoring 

and fault diagnosis. The relevant discussion can be found in section 5.6.

                                                 
 
27 By contrast, we mean that the plot is sharp at its peaks and is flat elsewhere 
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True genius resides in the capacity for evaluation of uncertain, hazardous and 

conflicting information 

—Winston Churchill 

 

 

Chapter 7 

 
Applications of information-theoretic measures 

 

The first minimum of mutual information is widely used to choose the 

embedding delay. It is also used to characterize the time series and gauge for 

the stationarity of the latter [Hively et al (2000)]. However, the first 

minimum of the mutual information contains the information about only the 

most dominant timescale. If several timescales are involved, merely the first 

minimum of mutual information may not be optimal. Chaotic time series for 

example often do not have a clear minimum and the measure cannot be 

defined for them. In contrast the computed mutual information function 

contains information about the general patterns, which makes it a useful 

feature vector for classification and identification.  

Schreiber (1997B,1997A) attempted to analyze stationarity and to 

compare or classify time series using non-linear measures that depend on the 

similarity of one time series to another —and not just on the time series in 

question. It was remarked in Schreiber (1997B) that it would be useful to 

obtain a feature vector from a time series that adequately describes its 

dynamics. We propose that the mutual information function to be just that —

a feature vector that uniquely and adequately characterizes a time series. 
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The goal of this chapter is to exploit the mutual information function 

to explore the stationarity of a time series and also to compare or classify 

different time series. The methods to reduce the dimension of the feature 

vector are introduced, followed by the description of an unsupervised learning 

technique called K-means algorithm. Finally, some examples are presented. 

 

7.1. Reduction of dimensionality 

Suppose a feature vector has dimension m. In most cases the number 

m is very large which leads to very high computational cost of pattern 

recognition, owing to the curse of dimensionality. Not all entries in the 

feature vector are useful for discrimination or characterization. Some entries 

may be very small, and some may be very similar for feature vectors 

pertaining to different classes. For all these reasons, it is a good idea to 

reduce the dimensionality of the raw feature vector before subjecting it to a 

classification algorithm. 

 There are many statistical methods for reducing the dimensionality of 

a multivariate vector. Some examples are PCA, Linear Discriminant Analysis 

(LDA), Canonical Correlation Analysis; and the standard (stepwise, forward 

and backward) variable selection methods. Of these, PCA is not optimal for 

class separation, and the variable selection methods assume certain 

distributional properties. 

 If the class of the feature vectors is known à priori, a simple 

information-based criterion may be used to choose the features. This method 

has the advantage over canonical analysis since it considers single dimensions 

and not whole set —and the reduced dimensionality in this fashion also 

eliminates some entries in the feature vectors, and obviates the need for 

computing them. The measure defined below, and used in this study, is taken 
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from Watanabe and Kaminuma (1998) and called modified Fisher’s 

information criterion.  

If k indexes the feature number, and i and j refer to two different 

classes, then a Discriminant power of each feature Jk(i,j) can be defined for 

every pair of classes as follows: 

 

 for 
2

, ,
2 2

, ,

|| - ||
( , ) ( , ) 1,2,..i k j k

k k
i k j k

J i j J j i k m= = =
+

µ µ
σ σ           (31) 

In the equation above, µi,k is the mean and σi,k is the standard 

deviation of the kth feature in the feature vectors corresponding to class i. 

The features with largest Jk(i,j) are chosen as the features that best 

distinguish class i and j. If there are more than two classes, the final set of 

features will be the grand union of the subsets selected pairwise. However, 

this method cannot be used for unsupervised cases, but that does not 

hamper one from using it for classification.  

 

7.2. K-means clustering algorithm 
Clustering algorithms attempt to group similar points in a cluster 

based on some measure of similarity. The measure of similarity is usually 

taken as the Euclidean distance. Other measures of distance like Mahalanobis 

distance, infinite norm, block distances, etc. are also tenable. A reference for 

clustering algorithms is Fukunaga (1990).  

K-means clustering algorithm minimizes the sum of squared distances 

of all data points in a cluster from their cluster center. The details for the K-
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means clustering algorithm are taken from Lou and Gonzalez (1974). A more 

comprehensive treatment of the algorithm is given in MacQueen (1967).  

  

Step 1: Choose K initial cluster centers z1(1), z2(1),...,zK(1). 

 Step 2: At the kth iterative step distribute the samples {x} among the

 K cluster domains, using the relation 

  x∈ Sj(k) if ||x-zj(k)||<||x-zi(k)|| for all i=1, 2, ..., K  

Where Sj(k) denotes the set of samples whose cluster center is zj(k). 

Ties may be resolved arbitrarily. 

 

Step 3: From the results of step 2, compute the new cluster centers 

zj(k+1), j=1, 2, ..., K, such that the sum of the squared distances from 

all points in Sj(k) to the new cluster center is minimized. In other 

words, the new cluster center zj(k+1) is computed so that the 

performance index 2
j

( )
= || - ( 1)|| , =1, 2, ...,K

j

j
S k

J k j
∈

+∑
x

x z  is minimized. 

The value of zj(k+1) which minimizes this performance index is simply 

the sample mean of Sj(k). Therefore the new cluster center is given by 

jS ( )
( 1

1)  , 1,  2,  ...,
j k

k j K
N ∈

+ = =∑j
x

z x  

where Nj is the cardinality of the set Sj(k). The name K-means is 

obviously derived from the manner in which cluster centers are 

sequentially undated. 
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Step 4: If zj(k+1)=zj(k) for j=1, 2, ..., K, the algorithm has converged 

and the procedure is terminated. Otherwise go back to Step 2. 

 

The behavior of the K-means algorithm is influenced by the number of 

cluster centers specified, the choice of initial cluster centers, the order in 

which the samples are presented, and, of course, the geometrical properties of 

the data. Although no general proof of convergence exists for this algorithm, 

it can be expected to yield acceptable results when the data exhibit 

characteristic pockets which are relatively far from each other. In most 

practical cases the application of this algorithm will require experimenting 

with various values of K as well as different choices of starting configuration. 

A good practice is to run the algorithm several times with the same K, and 

presenting the feature vectors to the algorithm in different, randomized 

order. If the algorithm converges to very similar results, then it can be 

assumed that the clustering is robust and not very sensitive. 

 In the K-means algorithm the probability that a point belongs to a 

certain cluster (or the membership of a point to any cluster) is binary, -a 

point either is in a cluster or not. However, the K-means algorithm can be 

fuzzified, i.e., any data point can have membership to any of the cluster 

centers in such a way that the sum of its memberships to all clusters is 

unity28. That algorithm, known as Fuzzy C-means clustering, is also quite 

popular. If desired, one could apply a hard cut-off in the final step of Fuzzy 

C-means clustering (winner-take-all strategy) so that the results of clustering 

algorithm are crisp and not soft or fuzzy. 

The advantage of using fuzzy clustering is that if there are errors in 

the algorithm, one can observe the membership of the feature vector wrongly 

                                                 
28 It is not necessary because fuzzy memberships are not probabilities. The practice though is common 
perhaps because it makes intuitive sense. 
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classified to various clusters to extract some information about the similarity 

of that vector to various clusters. Assume that a wrongly classified vector q 

came from class A but was assigned to cluster B, which is the cluster 

representing class B. If q had 49% membership to the cluster A, but the 

remaining 51% of the membership was to cluster B, it shows that there is a 

healthy amount of confusion in the clustering algorithm about the 

membership of q. If desired, one can then go back and scrutinize the time 

series segment that gave rise to q. On the other hand if q has only 2% of the 

membership to A, it means that something is seriously wrong with q. It 

certainly is not a representative vector of its class in the reduced dimension, 

and the time series segment that produced it must be re-examined. 

Fuzzy clustering is not used in this dissertation due to proverbial 

space limitation. At the time of writing, more research is underway on this 

subject.  

 

7.3. Gauging stationarity 
In this section, we discuss how the mutual information function can be 

used to test for stationarity, and show some examples. First, the mutual 

information function is computed for the segments formed from the first and 

last one-third of the series. The mutual information function will be the raw 

feature vector, and the feature vectors pertaining to the first one-third of the 

data constitute class A and those corresponding to the last one-third of the 

data constitute class B. Fisher’s information criterion as defined in equation 

(36) is then used to reduce the dimensionality. Note that the reduced 

dimensional feature vector contains the mutual information function at 

certain lags, which makes this approach suitable for online application since 
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one needs to calculate mutual information for only certain values of lag, 

which can be easily done.  

The reduced feature vectors are then subjected to K-means clustering 

algorithm with the stipulation to find two clusters. Later an estimate of error 

is obtained in order to quantify the success of the algorithm. The 

classification error is the fraction of objects wrongly classified. If most of the 

objects in a cluster are from class A, it is assumed that the cluster is contains 

feature vectors or objects from class A. 

If the resulting error is 0%, the time series is clearly non-stationary. 

On the other hand, if the error is 50%, then the time series is very stationary 

because a feature vector from any part of the time series is equally likely to 

be in class A or class B. This method obviously does not lend itself to 

confirmatory analysis, but the classification error will give us a very good 

estimate of the extent of non-stationarity in the time series. The smaller the 

error rate, the more likely a time series is to be non-stationary. 

To obtain unbiased estimates of error, cross-validation techniques can 

be used, or the data can be partitioned into training and testing data (hold-

off). Whether one can afford the luxury of partitioning the data depends on 

the amount of data available relative to the time scales in the time series. 

The classification error reported in this chapter is unbiased, because a 

fraction of the feature vectors is held off for validation. Roughly 60% to 70% 

of the feature vectors were used for training or clustering, and the remaining 

30% to 40% constituted the hold out sample, on which the classification error 

was calculated. 

For the first illustration a bubble column time series is used. A 

segment of the time series appears in figure 3.3 (b). Based on the results in 

section 5.2, the time series is likely non-stationary. For illustration, figure 7.1 

shows two segments each from the first and last one-thirds of the time series.  



   128

0.4

0.6

0.8
(a)

0.4

0.6

0.8 (b)

0.4

0.6

0.8
(c)

0 500 1000 1500
0.4

0.6

0.8

Record No.
 

Figure 7.1. Four segments from a bubble column time series 

Segments (a) and (b) are from the first one-third and segments (c) and (d) are taken 

from the last one-third of the series. The flow rate for this data set was 170 cc/min 

and the corresponding electrostatic potential was 12 kV. The abscissas are the 

differential pressure measurements across the nozzle. 
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The difference between the first and last one-thirds is not very 

apparent. Recall that figure 5.2 showed the return maps for the first and last 

one-thirds of this time series. The return maps occupied roughly the same 

zone, but there were structural differences between the first and last one-

thirds.  

Mutual information was computed for seven segments each of the time 

series formed from the first and last one-thirds. Symbol set size of 2 and the 

sequence length of 5 was used29. Symbolization interval was taken to be 1. 

The mutual information function plots are presented in figure 7.2.  
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Figure 7.2. Mutual information plots for the time series in figure 7.1 

The dashed plots are for the last one-thirds of the series, and the solid plots are for 

the first one-thirds. 

                                                 
29 These parameters were found to be optimum in section 6.4 
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Modified Fisher’s Information criterion was used to find the most significant 

features30. Figure 7.3 illustrates the computed Fisher’s information criteria 

for the first and last one-thirds of the time series. The first two dimensions of 

the reduced dimensional feature vectors are shown in figure 7.4. Only five 

vectors for each class that were submitted to the clustering algorithm are 

shown in figure 7.4. 

Note that all but one of the filled squares corresponding to the last 

one-third of the time series are in the top right of figure 7.4, and it seems 

that a straight line can correctly classify all feature vectors even in two 

dimensions. With only five features, the two segments were correctly 
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Figure 7.3. Discriminatory power for the feature vectors in figure 7.2 

 

                                                 
30 In this chapter, ‘feature’ means the mutual information function for a certain delays (τ−values). 
Since every entry in the raw feature vector is the mutual information at a certain delay, the reduced-
dimensional feature vector contains only the mutual information at certain delays. 
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Figure 7.4. Reduced dimensional feature vectors (bubble column) 

The ordinate and the abscissa are mutual information at τ=228 and 229 respectively  

 

classified. Two feature vectors (out of 7) for each class were kept for 

validation. The K-means algorithm was run 10 times to average out the 

classification error (on the hold-out sample). With only 5 features selected, 

the classification error was 0%. Thus, if with only 5 feature vectors the 

clustering algorithm classified the feature vectors from the first and last one-

thirds of the data set without error, one should have strong suspicions about 

the stationarity of the time series. It was known however that this time series 

was not stationary, and the return map in figure 5.1 demonstrated that.  

The next illustration uses data from a laboratory fluidized bed. A brief 

description of the fluidized bed setup is provided in section 3.2. The time 

series used for illustration was known to be stationary, since no changes were 

made in the operating conditions while the data was collected. The time 

series is shown in figure 3.6 (b). Sequence length of 5 and set size of 3 was 
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used for symbolization. Symbolization interval used was 1. Nine feature 

vectors (or segments) were formed from each of the first and last one-thirds 

of the series. Of the 18 feature vectors available, 12 were used for training 

and 6 were used for validation. Modified Fisher’s Information criterion was 

used to select the features from the raw mutual information vectors. Figure 

7.5 shows first two dimensions of the reduced feature vectors. Using only 10 

features resulted in 41.67% error rate31.  

 

Increasing the number of features selected to 50 resulted in the same 

error rate. Based on that, one can be reasonably confident in saying that the 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Reduced dimensional feature vectors (fluidized bed) 

The circles and squares correspond to the feature vectors formed from the first 

and last one-thirds of the time series in figure 3.6(b). See text for detail. 

 

                                                 
31 Half of the runs produced 3 errors out of 6, and half produced 2 errors out 6. The average 
classification error is thus 41.67%.  
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time series is stationary. At any rate, the series is not non-stationary. It is 

clear that the feature vectors have considerable amount of overlap. 

Apparently this overlapping did not lessen in higher dimensions —thus the 

higher error of classification. 

 

In this section it was shown how the mutual information function can 

be used to gauge the stationarity of a time series. The first example was that 

of a non-stationary time series, and the non-stationarity was detected. The 

second example was of a time series that was deemed stationary, or not non-

stationary. The approach has been useful, but one still has to find the 

optimum parameters for symbolization. 

 

7.4. Comparing different processes 
The approach outlined in the previous section to gauge stationarity 

can be used to compare two different processes. It must however be assumed 

that the processes being compared are stationary. The feature vectors from 

one process can be assigned to class A, and those from the other process can 

be classified as class B. This method is not limited to two processes. Any 

number of different processes can be compared using the K-means algorithm.  

Figure 7.6 shows three time series from a fluidized bed. The gas flow 

rates corresponding to these time series are 1.49, 1.65 and 1.85 cc/s. The two 

nearest states differ in gas flow rate by roughly 11%. All the examples in this 

section were collected on a fluidized bed. A brief description of the 

experimental setup is provided in section 3.2. 

To compute the mutual information, symbol set size of 3, sequence 

length of 5, and symbolization interval of 1 was used. The dimension of these 

raw feature vectors was reduced according to the modified Fisher’s 

information criterion. Figure 7.7 shows the resulting feature vectors plotted  
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Figure 7.6. Three fluidized bed time series (9, 11 and 13) 

The abscissas contain the differential pressure as described in section 3.2. 
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Figure 7.7. Three dynamic states (9, 11 and 13) in reduced state space  

 The abscissas contain the differential pressure as described in section 3.2. 

 

in the first two dimensions. The three classes appear easily separable in only 

two dimensions. Even with 3 features selected, the clustering algorithm 

classified the holdout sample without error.  

It shows us that the mutual information function can classify and 

characterize the time series that are not very conspicuously different in their 

spectral densities. Figure 7.8 shows spectral densities for the series in figure 

7.6. The spectral densities were computed based on 8192-point FFT 

windowed with a 4096-point Hanning window. The density was computed on 

50,000 data points sampled at 100 Hz. First and last 5,000 data points in 

each time series were discarded to avoid any possible transients.  

The densities in 7.8 (a) and 7.8 (b) do not seem to be very different. A 

shift in power towards lower frequencies is visible in figure 7.8 (c). However, 

note that the confidence intervals are very wide. When the spectral density  
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Figure 7.8. Spectral densities for the series in figure 7.6 

 

Subplots (a), (b) and (c) correspond to the gas flow rates of 1.49, 1.65 and 1.85 cc/s, 

respectively. The solid line is the average power, and the dashed lines are the 95% 

confidence intervals. 
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vectors were subjected to the K-means algorithm for classification, the 

classification error was 25% when power at 20 frequencies (chosen according 

to Fisher’s modified information criterion) was used as the feature vector. 

Increasing the number of features didn’t reduce the classification error. This 

example demonstrates that the mutual information function is capable of 

distinguishing time series that can not be adequately characterized with 

power spectral density. 

The next example attempts to compare three classes that differ in the 

gas flow rate by only 6%. The corresponding flow rates were 1.49, 1.54 and 

1.65 cc/s. The time series are shown in figure 7.9. Same symbolization 

parameters as the previous example were employed. Figure 7.10 contains the 

reduced dimensional feature vectors in the first two dimensions. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9. Three fluidized bed time series (9, 10 and 11) 

    The abscissas contain the differential pressure as described in section 3.2. 
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Figure 7.10. Reduced dimensional feature vectors (9, 10 and 11) 

 

The time series are not very different, and indeed there power spectral 

densities were very similar. Spectral densities for two of these time series (9 

and 11) are shown in figure 7.8 (a) and (b) respectively. The classification 

error when 15 features were used was 9%. Increasing the features did not 

reduce the classification error, and if too many features were selected, the 

performance of the algorithm actually deteriorated. However, a classification 

error of 9% is much better than that of 45% obtained using the spectral 

density vectors. When we tried to distinguish the classes pair wise, the 

classification error reduced to zero with 15 features. 

We tested the limits of our algorithm by attempting to compare three 

very similar chaotic states in a fluidized bed at higher velocity. One must 

recall that the mutual information function for a chaotic time series usually 

reaches a plateau for small lags and there are not many features in the 

mutual information function of chaotic time series to differentiate two very 

similar chaotic states. The time series are shown in figure 7.11.  
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Figure 7.11. Three high-velocity fluidized bed time series (17, 18 and 19)    

        The abscissas contain the differential pressure as described in section 3.2. 
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The flow rates corresponding to these time series are 2.58, 2.84 and 

3.09 cc/s respectively. The feature vectors are shown in figure 7.12. 

 

It seems that there is very little difference between these time series. 

The classification algorithm did not correctly classify all three classes. The 

classification error when 15 features were used was 29%.  

 

This chapter showed how the mutual information function can be used 

to gauge the stationarity of a time series and to compare different processes. 

The extension to process monitoring is straightforward, and the relevant 

comments can be found in section 5.4. It was seen that the mutual 

information function could successfully distinguish even similar flow rates,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12. Reduced dimensional feature vectors (17, 18 and 19) 

The time series segments are shown in figure 7.11 
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but it was not very powerful when used to compare very similar high-velocity 

states. There is reason to believe that perhaps other clustering algorithms will 

perform better. The Max-Min algorithm was also used on the reduced feature 

vectors (the feature vectors that were input to the K-means algorithm), but 

it provided poor clustering performance. Further research on this subject is 

underway.  

With à priori information about the process, a library of system states 

or of known faults can be created. With the dimension-reduction technique 

used, the features retained are essentially the mutual information at some 

delays that can be quickly computed online. The feature vector thus formed 

from a time-window covering recent observations can be compared with the 

library of known faults or of system states. This allows one to detect if the 

system is moving towards a known fault and also to optimize maintenance 

costs. A measure of dissimilarity between the current feature and the cluster 

describing a desirable system state can be used for identification. The ability 

of the mutual information function to characterize the system and to detect 

changes has important implications for control. The comments in section 5.6 

are applicable to the feature vectors formed by mutual information. 

 

The next and final chapter briefly mentions the original work in this 

study and proposes relevant future directions. 
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One must be a god to be able to tell successes  

from failures without making a mistake. 
  -Anton Chekhov 

 

‘ “The time has come,” the Walrus said, 

“To talk of many things: … ’ 
-Lewis Carroll 

  

 

 

Chapter 8 

 

Conclusions and future directions 
 

 

8.1.  Conclusions 
This dissertation makes three major original contributions. 

 

1. It introduces and develops cluster-linked principal curve (CLPC) 

algorithm, which is computationally much less expensive than Hastie 

and Stuetzle’s Principal curve (HSPC) or other similar algorithms. 

The CLPC algorithm is truer in spirit to the Expectation-

Maximization (E-M) principle, because it treats all the dimensions 

together (without specifying dependent and independent variables) 

and not separately or pairwise like other Principal Curve algorithms 

do.  
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2. It demonstrates that the distributions of arc lengths along the CLPC 

characterize a time series based on their return maps and delay 

embeddings, by testing for stationarity and reversibility. It also 

outlines how this framework can be applied to monitoring and 

forecasting. 

 

3. It utilizes the mutual information function instead of the commonly 

used ‘first minimum’ of mutual information to characterize a time 

series. The discussion about choosing the best symbolization 

parameters provides an improvement over the popular methods for the 

same purpose by considering the information theoretic quantities for 

various symbolization intervals.  
 

8.2.  Practical applications 
The techniques developed in this dissertation are very suitable for 

process monitoring and fault diagnosis problems, as was discussed in 

section 5.4. The CLPC framework can also be extended to cover 

forecasting (cf. section 5.5). It was demonstrated how these methods can 

be used to detect changes in global dynamics, which is tantamount to 

process monitoring. It was also argued that with a given library of system 

states and/or known faults, the methods can perform, respectively, 

system identification and fault diagnosis. The ability to accurately detect 

change in dynamics definitely has important implications for control. 

The techniques are suitable for online applications as well, since the 

required online computations are reasonable. For example, calculating the 

mutual information for some delays or projecting the data points on a 

polygonal line is neither time-consuming nor iterative. 
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These methods were motivated by examples taken from nonlinear 

systems, but can be applied to linear systems as well. Even in presence of 

small amounts of nonlinearity, fault diagnosis and system identification 

systems that draw on the techniques introduced in this dissertation will 

achieve superior performance as compared to that possible with linear 

methods alone. 

 

8.3. Future directions 
For the future, it would be useful to more rigorously study the 

mathematics behind the CLPC algorithm, and to extend it so that it may 

capture the fractal structure of strange attractors better than the current 

algorithm. Extending the CLPC framework for prediction appears to hold 

promise as well. It may also be worthwhile to try out other clustering 

algorithms in attempts to compare time series based on their mutual 

information vector, or other information-theoretic measures characterizing 

the time series such as Kullback-Leibler Information. It is suggested that 

characterization requiring specification of some parameters (e.g. 

symbolization parameters), be formulated as an iterative optimization 

problem. 
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A. Projecting a point on the Principal Curve 

Let x be the data point to be projected on the polygonal line formed 

by connecting the cluster centers {f1, f2 ,..., fnc}. The line segment formed by 

joining fk and fk+1 is referred to as sk. Consider the case when it is desired to 

find the projection of x on the line segment formed by joining fk and fk+1. The 

cluster centers fk and fk+1 have corresponding arc lengths of f
(j)( )kλ and 

f
(j)( +1)kλ  respectively. 

 

 

 

 

              

f
(j)( )kλ  

 

 

p is the point on the line segment where x projects. Since the 

projection is orthogonal: 

= 0k+1 k(x - p).(f - f )                 (A1) 

Let k+1 k kf - f = ∆              (A2) 

kα αk k k+1 k k kp = f + (f - f ) = f + ∆                   (A3) 

Replacing equation A3 into equation A1, 

k k). = 0 =k kα α⇒ k k
k 2

k

(x - f ).(x - f -
|| ||

∆∆ ∆
∆          (A4) 

That leads to  

kkα
    

k k
k k k2

k

(x - f ).p = f + = f +
|| ||

∆∆ ∆
∆             (A5) 

fk+1   

αk 

x 

fk 

1−αk 

p 

d(x, sk) 

f
(j)( +1)kλ  
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and the resulting residual  

k
        

k k
k k 2

k

(x - f ).r(x, s ) = (x - p) = x - f -
|| ||

∆ ∆
∆                  (A6) 

The orthogonal distance from the line segment is then 

( )=|| ||d k kx, s r(x, s )              (A7) 

 

If the cth line segment is the closest to the point x, 

( ) min ( )
k

d d=c kx, s x, s                 (A8) 

The arc length corresponding to x is then 

f f f
(j) (j) (j)(j)

c( )= (c)+ ( (c+1)- (c))λ λ α λ λx              (A9) 

And the orthogonal distance from the principal curve is 

(j)
f ( )= ( )d d cx x, s             (A10) 

 

This derivation assumes that 0 1cα≤ ≤ . If that condition is not met, 

we choose the line segment k that has the minimum orthogonal distance from 

x such that the corresponding αk is from 0 to 1. At the extremities, there 

may be some points that will be orthogonal only to the extrapolated line 

segments. Our algorithm assigns those points to the line segment containing 

either the first or the last cluster center. It is possible (cf. figure 4.2) to have 

a point that is not orthogonal to any line segment. In that case, some error is 

tolerated by projecting it on the extrapolated line. 
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B. Interpolating Splines 

Given n ordered pairs of points 1 1 2 2{( , ),( , ),...,( , )}n nx y x y x y , an 

interpolating spline is a collection of polynomials of the form  

3 2

1

( ) ( - ) ( - ) ( - )  

 ,  1,..., - 1
i i i i i i i i

i i

S x a x x b x x c x x d

for x x x i n+

= + + +

< ≤ =                  (B1) 

where the superscript i refers to the ith polynomial in the spline.  

The number of unknowns thus is 4(n-1) —or four parameters for each of the 

n-1 segments. Clearly:  

( )  for 1,...,i i iS x y i n= =                    (B2) 

 

The smoothness requirements translate to the following conditions 

1 1 1[ ( )]=[ ( )] for 1,..., - 2i i i iS x S x i n+ + + =                   (B3) 

1 1 1[ ( )]'=[ ( )]' for 1,..., - 2i i i iS x S x i n+ + + =                   (B4) 

1 1 1[ ( )]''=[ ( )]'' for 1,..., - 2i i i iS x S x i n+ + + =                  (B5) 

 

Equations B2 through B5 provide n, (n-2), (n-2) and (n-2) degrees of 

freedom respectively. In order to find the parameters, 4(n-1)-(n-1)-3(n-2)=2 

more equations are required. 

There are several choices for obtaining the two degrees of freedom. 

The second derivative for the first and (n-1)th polynomials can be set to zero. 

This produces a spline called the natural spline. The not-a-knot spline makes 

the third derivatives equal at the first and (n-2)th node. The not-a-knot spline 
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is used in this dissertation, since there is no reason to believe that the spline 

should be linear at its endpoints. 

 

Equations B3 through B5, in turn, give rise to the following algebraic 

equations: 

3 2
1 1 1 1( - ) ( - ) ( - )i i i i i i i i i i ia x x b x x c x x d d+ + + ++ + + =        (B6) 

2
1 1 13 ( - ) 2 ( - )i i i i i i i ia x x b x x c c+ + ++ + =          (B7) 

1 16 ( - ) 2i i i i ia x x b b+ ++ =                     (B8) 

 

Equations B2, B6, B7 and B8 can be solved together with equation B9 

provided by the not-a-knot condition, to obtain the spline parameters. 

1 2 1 2 and n na a a a+ += =             (B9) 

 

It is easy to implement the code, but for convenience MATLAB 

program spline.m was used to find the parameters of the interpolating 

splines. 
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