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ABSTRACT 
 
 Auditory closure (AC) is an aspect of auditory processing that is crucial for 

understanding speech in background noise.   It is a set of abilities that allows listeners to 

understand speech in the absence of important information, both spectral and temporal. 

AC is evaluated using monaural low-redundancy speech tasks: low-pass filtered words 

(LPFW), time-compressed words (TCW), and words-in-noise (WiN).  Although not 

previously used, phonemic restoration with words (PhRW) is also a speech task that has 

been proposed as a measure of AC.  In the present study, four tasks of AC, that are listed 

above, were used to evaluate AC skills in 50 adult females with normal hearing.  Using 

pair-wise correlations, there were no significant relationships among LPFW, TCW, and 

WiN. As a result, these three tasks were considered to be independent components of AC 

that represented the AC abilities of spectral reconstruction, temporal resolution, and 

auditory induction, respectively.   Multiple linear regression analysis with LFPW, TCW, 

and WiN as variables revealed that PhRW is accomplished using temporal resolution. 

The findings of this study show that no single task of AC is representative of the entire 

process and that further research is warranted to more completely define the skills that 

make AC possible.   
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I.  INTRODUCTION  

Auditory closure (AC) is the perceptual process by which partial auditory 

information is integrated into a whole (Nicolos, Harryman, & Kresheck, 1989; Stach, 

1997; Mendel, Danhaurer, & Singh, 1999; Bellis, 2003).   This ability is demonstrated 

when there is understanding of a degraded speech message.  Because of the less than 

ideal listening situations that usually occur in daily conversation, AC is considered a 

crucial component for understanding speech (Bellis, 2003.)   Investigators of central 

auditory processing or auditory processing consider it to be one component of a group of 

auditory processing abilities (ASHA, 1995; Bellis, 2003).   

   Though some investigators have considered AC as a central auditory processing 

function, equal discussion has been given to the fact that AC also depends on the 

acoustical characteristics of the speech signal that are believed to be analyzed lower in 

the auditory system.  Bellis (2003) has stated that AC depends on both the redundant 

intrinsic and extrinsic properties of the speech message.  Intrinsic properties refer to the 

neurological characteristics of the ascending auditory pathway and the manner in which 

information in the speech signal is replicated many times through its progression to the 

auditory cortex.  Extrinsic properties refer to the redundant properties inherent to the 

speech signal itself and the manner in which a listener uses linguistic knowledge to 

anticipate or expect portions of the speech signal based on linguistic rules.  Mendel et al. 

(1999) have related this process to inductive and deductive reasoning skills of the listener 

through use of lexical knowledge in combination with the contextual information present 

in the speech signal.  These two views suggest that AC is not entirely a central process, 

but rather that it is due to an interaction of peripheral and central functions. 
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 When assessing AC, or auditory processing in general, cognitive processes are 

involved that influence the results.  It has been shown that when listening groups are 

matched for cognitive processing, results that were attributed to diminished auditory 

processing may disappear in populations that have been diagnosed with auditory 

processing deficits (Humes & Christopherson, 1991).  Based on these data, it is evident 

that cognitive factors will always play a role in the assessment of auditory processing.  

Therefore, whenever AC is evaluated, cognitive abilities need to be taken into account.  

Otherwise, interpreting individual results and diagnosing auditory processing ability 

based on comparisons may lead to inaccurate conclusions. 

 Bellis (2003) examined tasks that she felt should be included as tests of AC.  The 

characteristics of these tests were that they contain speech signals of limited redundancy 

that require only monaural processing.  She considered three types of tasks to be included 

in the AC classification.  The tasks each required the understanding of speech under 

special conditions of degradation: low-pass filtered speech, time-compressed speech, and  

speech-in-noise.   In personal communication, Bellis, (2005), has expressed the opinion 

that phonemic restoration (PhR) could be included with these three other tasks.  PhR is 

the ability to perceptually restore masked or deleted segments of speech through the use 

of an extraneous sound (Warren 1970).   Successful completion of each of these tasks 

depends on specific auditory abilities: AC with reduced spectral content, AC with 

background noise, AC with temporal compression, and AC with deleted phonemes.  

Literature addressing these abilities of normal processes in young adults with normal 

hearing is reviewed below. 
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Auditory Closure with Reduced Spectral Content  
 

AC with reduced spectral information represents the ability of the listener to 

understand the speech signal in the absence of frequencies important for speech 

understanding.  It is a spectral reconstruction.  French and Steinberg (1947) conducted 

early studies on high-pass and low-pass filtered speech in normal hearing listeners.  More 

recently, investigators have examined these effects in populations with peripheral and 

central deficits (Vickers, Moore, & Baer, 2001; Farrer, & Keith, 1981; van Bezooijen, & 

Boves, 1986).  The influence of specific frequency bands on speech understanding has 

also long been investigated and the importance of these frequency bands, along with their 

contribution to intelligibility, is demonstrated in the Articulation Index (Beranek, 1947; 

Fletcher & Galt, 1950; Kryter, 1962; Steeneken, & Houtgast, 1980).   

For individuals with normal peripheral auditory function, reduced spectral content 

tasks are used to determine auditory processing ability.  Bornstein, Wilson, & Cambron 

(1994) used high-pass and low-pass filtered word recognition tests to study speech 

perception in adults with normal auditory function.  They found that speech perception 

depends on both the frequency cut-off and the rejection rate of the filter.   

For the purpose of assessing AC, only low-pass filtered speech is used and 

therefore, only those results will be reported.  In Figures 1 and 2, the results are shown 

for Bornstein et al. (1994) for low-pass filtered speech.  The participants were young 

adults with normal hearing.  In Figure 1, the data demonstrate the effect of different cut-

off frequencies for low-pass conditions at a presentation level of 70 dB SPL.  Optimal 

performance of 88% correct word recognition was obtained with a low-pass cut-off of 

1700 Hz.  Performance decreased systematically to 30% correct word recognition as  
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Figure 1:  Mean percent correct word recognition for NU No-6 lists presented at 70 dB 
SPL as a function of cut-off frequency (Bornstein et al., 1994). 
 
 
 

 
 
Figure 2:  Mean percent correct word recognition for NU-6 lists at low-pass (1500 Hz) 
and high-pass (2100 Hz) filter conditions as a function of presentation level (Bornstein et 
al., 1994). 



 5 

 
low-pass cut-off was decreased to 800 Hz.  With the cut-off frequency at 1500 Hz, 

performance improves over the range of 35 – 70 dB SPL but remains stable over the 

range from 70 – 80 dB SPL.  These data indicate the effect of high frequency spectral 

deletion and loudness on word recognition as they relate to young adults with normal 

hearing.   

Auditory Closure with Background Noise  
 

Another form of speech degradation is speech presented with background noise.  

Speech degraded in this manner represents the listeners’ ability to understand speech in 

the presence of competing background noise.  Speech-in-noise tasks can be composed of 

single words or sentences.  In sentence tasks, the correct identification of a key word is 

used to score the task.  Examples of sentence speech-in-noise tasks are the Speech 

Perception in Noise (SPIN) Test (Kalikow, Stevens, & Elliott, 1977) or SPIN-Revised 

(SPIN-R) (Bilger, 1984), the Selective Auditory Attention Test developed by Cherry 

(1983), the Auditory Figure Ground subtest of the SCAN, -A and -C (Keith, 1986; 1994; 

2000), the Ipsilateral Competing Message portion of the Synthetic Sentence Identification 

Test by Jerger and Jerger (1974), and Hirsh’s CID Auditory Test W-22 (Hirsh et al., 

1952) with ipsilateral competing speech spectrum noise (Katz & Fletcher, 1997). 

The CID W-22 word lists, which are found on the Central Test Battery CD (Katz 

& Fletcher, 1997) are a speech-in-noise test that is conducted monaurally with ipsilateral 

competing speech spectrum noise.  The test has normative data for right and left ears in 

children and adults with a +5 dB signal to noise ratio (SNR).  
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Auditory Closure with Temporal Compression   
 

Temporal compression is the reduction in length of a speech signal.  Compression 

of a speech signal taxes the listeners’ ability to understand speech by reducing duration 

and omitting temporal information.   One manner in which speech can be time-

compressed is by systematically deleting small temporal segments through out the entire 

message.  The segments that remain are fused to reduce the duration of the speech 

message without altering the frequency spectral characteristics.  Listeners are able to 

understand speech that has been degraded in such a manner through temporal resolution, 

which has been defined as the ability to “…resolve fast temporal changes over time” 

(Roberts & Lister, 2004).   

Wilson, Preece, Salamon, Sperry, & Bornstein (1994) studied the effects of time 

compression with single words (NU-6 word lists) for young adult listeners with normal 

hearing.  Compression was varied from 45% (55% of the original signal duration) to 75% 

(25% of the original signal duration) with a presentation level of 70 dB SPL.  In Figure 3, 

the results indicate that mean word recognition was approximately 90% for the 45%-

compression condition and that it decreased systematically to approximately 25% for the 

75 % - compression condition.  The data indicate that as compression rates exceed 45%,  

young normal hearing adults begin to decrease in performance with very poor accuracy at 

the 75% - compression rate. 
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Figure 3:  Mean percent correct recognition for the NU-6 lists as a function of 
compression (Wilson et al., 1994). 
 
 

Auditory Closure with Deleted Segments of Speech   
 
In PhR tasks, a segment of speech is deleted and replaced with a noise. If the noise has 

greater amplitude and a broader frequency spectrum than the sound that it replaced, the 

speech message will be perceived as intact (Warren, 1996; Samuel, 1981a).  The 

restoration is accomplished by a process referred to as auditory induction.   A model of 

auditory induction as it leads to PhR based on the literature can be seen in Figure 4.   The 

model illustrates how auditory induction can occur across “space”, which is contralateral 

induction in a dichotic task, or within “time”, which is temporal induction and can be a 

monaural or binaural task.     

 

 



 8 

 

 

Auditory Induction 

 
Contralateral Induction  Temporal Induction 

 
 
 

             Homophonic  Heterophonic  Contextual    Homophonic  Heterophonic Contextual 
              Induction       Continuity      Catenation      Induction        Continuity   Catenation 
 
 
 
 
           Phonemic           Tonal 
                                Restoration    Extrapolation 
 
Figure 4:  A model of auditory induction as it leads to PhR based on information in the 
literature (Warren, 1996). 

 

Samuel (1981a) investigated the dependence of PhR on the acoustic and linguistic 

information present in the speech signal.  He concluded that PhR is dependent on both 

“bottom-up” information, which is the acoustic properties of the speech message, and 

“top-down” information, which is the listener’s lexical knowledge.  His conclusions 

support the idea that PhR, which is very similar to AC, relies on both peripheral and 

central processes. 

 Madix, Thelin, Plyler, & Hedrick (2005) studied the dependence of PhR on 

amount of context in the speech message.  There were three speech context conditions: 

word, phrase, and sentence.  In this study, speech signals were presented in the sound-

field; however, PhR studies have been conducted using monaural presentations as well.  

There were two measures of performance: (1) “PhR”, which was defined as the perceived 
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intactness of the speech message without regard for accuracy and (2) “accuracy of PhR”, 

which was defined as the accuracy of identification of the replaced phoneme without 

regard for the perceived intactness.   The results showed that accuracy of PhR always 

exceeded PhR.  For the purposes of understanding AC, the most important aspect of 

performance is that the message was understood correctly (accuracy of PhR) and not 

whether the illusion of PhR occurred.    In Figure 5, accuracy of PhR is shown for the 

three context conditions in 20 young adult female participants with normal hearing.  The 

results indicated that mean accuracy improved as the amount of context increased – from 

74% for the word condition to 97% for the sentence condition. 
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Figure 5:  Mean percent correct PhR (and SD) are shown for three context conditions 
(Madix, Thelin, Plyler, Hedrick, & Malone, 2005). 
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Rationale 
 
 AC is a term used to describe abilities that are believed to be related to each other. 

AC performance is determined by the use of special skills that allow for the integration of 

partial auditory information.  AC depends on these special skills – and also on general 

cognitive abilities.  AC abilities have been related by the agreement of investigators and 

not by demonstration of functional similarity or dissimilarity.   At present, there is no 

empirical evidence to indicate that the results of any single test define or completely 

represent the different abilities included in the concept of AC.   As a result, investigators 

of auditory processes have developed specific tasks to measure the different AC abilities.   

The purpose of the present study was to determine if there are relationships among these 

abilities as demonstrated by performance on tests of AC using words.  

               In the present study, AC abilities in young adults with normal peripheral hearing 

and no indications of altered auditory or cognitive processing will be tested using 

linguistic stimuli of minimal length (words with one or two syllables).  Since only normal 

hearing young adults were selected as listeners, only tasks that had normative data for 

that population were selected.   The results of these tests were correlated with each other 

to determine the strength of relationships among measures of AC ability.  Specifically, 

the following abilities were compared using the following tasks:  

1. AC with spectral degradation (low-pass filtering) 
2. AC with altered temporal resolution (time-compression),  
3. AC with speech in background noise (competing speech spectrum noise), and  
4. AC in a PhR paradigm. 
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II. REVIEW OF LITERATURE 

Abilities Related to Central Auditory Processing 
 Central auditory processing has been defined by the ASHA Task Force on central 

auditory processing (1995) as “the auditory system mechanisms and processes 

responsible for behavioral phenomena such as sound localization and lateralization, 

auditory discrimination, auditory pattern recognition, temporal aspects of audition, and 

auditory performance decrements with competing and degraded acoustic signals”.  In 

recent literature, the term auditory processing has replaced central auditory processing.  

These process-based functions are divided into major categories that include binaural 

interaction, temporal patterning, binaural separation, binaural integration, and auditory 

closure, (Bellis, 2003).  Specific auditory behavioral tasks have been developed that test 

each these functions.  

 Binaural interaction, also referred to as binaural integration, is the ability of the 

listener to use both ears in order to fuse auditory information into a meaningful signal.  It 

consists of auditory functions that include localization and lateralization, binaural release 

of masking, detection of signals in noise, and binaural fusion in time and frequency 

(Bellis, 2003).  The hallmarks of binaural interaction are sound localization and the 

ability to detect speech in background noise, which is the first step of understanding 

speech in noise.   

Temporal patterning is the ability to recognize acoustic contours of speech (Bellis, 

2003) but is accomplished with the help of other auditory processes such as 

discrimination of differences in auditory stimuli, auditory stimuli sequencing, gestalt 
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pattern perception and trace memory (Musiek & Chermak, 1995; Musiek, Pinheiro, & 

Wilson, 1980). Temporal patterning enables a listener to detect and use the characteristics 

of speech that deal with prosody, for instance rhythm, stress, and intonation.   

Binaural separation and integration are distinct auditory processes that are related 

(Bellis, 2003).  Separation is the listeners’ ability to process auditory stimuli in one ear 

while simultaneously ignoring a contrasting stimulus in the opposite ear.  Integration is 

the listeners’ ability to process different information reaching the ears simultaneously.  

Binaural separation and integration allow the listener to focus on important speech while 

ignoring competing speech. 

 Auditory closure (AC) is the ability to use the redundant intrinsic and extrinsic 

qualities of speech in order to fill in missing or degraded segments so that the complete 

message can be understood (Bellis, 2003).  Extrinsic information refers to the abundance 

of information present in the speech signal, whereas intrinsic information refers to the 

abundance of information and the repetition of that information present in the central 

auditory system due to the capacity inherent in its richly innervated pathways (Bellis, 

2003; Stach, 1997).  AC is a crucial component of auditory processing that allows the 

listener to engage in understandable discourse in the presence of less than ideal listening 

situations.   

 The focus of the present study is on the abilities that are believed to be related to 

and responsible for AC.  AC ability is measured behaviorally through the use of 

monaural low redundancy speech tasks (Bellis, 2003).  AC tasks are developed in a 

manner that reduces the redundancy of the speech (linguistic information) and are 

administered monaurally in an effort to detect differences between ears that would 
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indicate a breakdown of interhemishpheric sharing of auditory information.   The tasks 

associated with AC ability degrade speech by removing frequencies that are important for 

speech intelligibility, by introducing background noise that masks portions of the speech 

signal, and by eliminating the normal temporal characteristics of speech without altering 

the frequency characteristics.  Although it has not been used, deleting segments of speech 

may be used as a test of AC ability.  In personal communication with Bellis (2005), she 

indicated that PhR could be included with these tasks.  Specific tasks that are thought to 

measure AC ability are low-pass filtered speech, speech in noise, time-compressed 

speech, and PhR (Bellis, 2003, 2005).     

Low-Pass Filtered Speech  
Low-pass filtered speech (LPFS) tests are word recognition measures that consist 

of monosyllabic words that have been band-pass filtered above approximately 800 Hz 

(Stach 1997).  These tests degrade auditory information and test AC by removing spectral 

content that aids in intelligibility.  The amount of degradation is dependant on the cut-off 

frequency and the rejection rate of the filter (Bornstein et al., 1994).  Bornstein and 

colleagues identify two general rules that apply to LPFS: (1) the lower the cut-off 

frequency, the poorer the word recognition score and (2) the steeper the rejection rate of 

the filter, the poorer the word recognition score.   

According to Stecker (1992) and Bellis (2003), the first use of LPFS was by 

Bocca and colleagues (1954) to identify temporal lobe lesions.   Since that time, the use 

of LPFS tasks in the clinical setting has occurred for many different types of patients 

having neurological deficits (Linden, 1964; Kurdziel, Noffsinger, & Olsen, 1976; 

Rintelmann, & Lynn, 1983; Mueller, Beck, & Sedge, 1987).  Today, LPFS is used more 
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commonly as a test of auditory processing ability.  Examples of such measures are the 

Ivey filtered speech test of the Willeford central test battery (Willeford, 1977), the 

SCAN, -A and -C (Keith, 1986; 1994; 2000) Filtered Words subtest and the low-pass 

filtered versions of the Northwestern University No. 6 (NU-6) word lists (female speaker) 

(Wilson & Mueller, 1984).     

Wilson and Mueller (1984) have obtained normative data on young adults for 

low-pass filtered words (see Figures 1 & 2).  There are two, 50 word lists that have a 

frequency cut-off of 1500 Hz and a rejection rate of 115 dB/octave.  The cut-off 

frequency and rejection rate were selected in order to achieve a 70 to 80 percent correct 

word recognition performance at a comfortable listening level in young, normal hearing 

listeners (Bornstein et al., 1994).  The compact disk trials (Bornstein et al., 1994) of the 

low-pass condition indicate that a maximum score of approximately 66% is achieved at 

presentation levels of 45 dB HL and above (Table 1). 

 
Table 1:  Percent correct word recognition (and SD) for low-pass filtered words as a 
functional of presentation level during compact disc trials for 20 listeners (Bornstein et 
al., 1994). Results at (65 dB HL) were obtained on 40 listeners. 
 

 
                            Presentation Level (dB HL) 

    15 25 35 45 55 65 (65) 
 
 
Low-Pass Filtered 
Mean    11.8 32.0 56.4 65.2 67.0 66.6 (66.5) 
Standard Deviation  11.1 9.8 10.8 10.5 8.9 11.3 (8.5) 
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Speech-in-Noise 
 Speech-in-noise tests have been the most commonly used tasks when evaluating 

auditory closure ability and have been an interest among cognitive psychologists 

(Altmann & Shilcock, 1993; Clifton, Frazier, & Rayner, 1994) in examining the effects 

of noise on speech understanding.   The popularity of using speech-in-noise tests comes 

from the fact that processing speech in background noise is one of the most common 

complaints of individuals who have problems with auditory processing.  The degradation 

of speech in these tasks is achieved by adding background noise at various levels that 

mask certain portions of the speech signal.  For the purpose of this study, speech will be 

limited to words in order to limit the redundancy of the speech signal.   

Examples of speech-in-noise tests using single words that have normative data are 

the Auditory Figure Ground subtest of the SCAN,-A and -C (Keith, 1986; 1994; 2000) 

and the CID W-22 word lists with competing speech spectrum noise (Katz & Fletcher, 

1997).  The Auditory Figure Ground test is a subtest of the SCAN-A – a test of central 

auditory function designed for adolescents and adults.  The subtest is used to evaluate the 

listener’s ability to understand words in the presence of multi-talker speech babble noise 

at a +4 dB SNR.  The stimuli consist of a 20 word test list.  The Katz Central Test Battery 

uses CID W-22 word lists presented with a speech spectrum noise at a +5 dB SNR and 

consists of four lists of 25 words.  Results obtained with the CID W-22 word lists, as 

used in the Katz Central Test Battery, can be seen in Table 2.  The results indicate that 

word recognition in noise gradually improves up to adulthood with a reduction in inter-

subject variability. 
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Table 2:  Percent correct word recognition (and SD) for the Central Test Battery-CD 
Word Recognition Tests in Noise (Katz & Fletecher, 1997) 
 
 
Age  Noise-R  Noise-L  
Group  % Correct (SD) % Correct (SD) 
 
 
5  81.0 (8.6)  78.7 (10.1) 
6  81.0 (8.6)  78.7 (10.1) 
7  81.8 (6.5)  81.4 (8.5) 
8  81.8 (6.5)  81.4 (8.5) 
9  81.8 (6.5)  81.9 (8.0) 
10  84.4 (6.5)  81.9 (8.0) 
11  84.4 (6.5)  82.3 (7.5) 
Adult  88.7 (6.8)  87.7 (6.7) 
 

 

Time-Compressed Speech 
 Time-compressed speech tasks evaluate AC ability by systematically deleting 

temporal segments without altering the frequency spectrum.  They are tasks of temporal 

processing, but more specifically temporal resolution.  Temporal resolution may be 

defined as the ability to hear sounds when masked by a fluctuating noise signal or resolve 

fast temporal changes over time (Roberts & Lister, 2004).  In time-compressed speech 

tasks, speech can be accelerated by having the speaker increase their rate of talking or by 

altering the rate of playback in reference to the original recording (Calearo & Lazzaroni, 

1957; Bergman, 1980).  Another method used to compress speech, is to electronically 

eliminate segments of the waveform and move the remaining waveforms together to 

shorten the sample of speech (Fairbanks & Kodman, 1957).  This transformation 

preserves the power spectrum of the speech while compressing the temporal pattern.   
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Tasks of temporal processing are distinctly different from tasks of temporal 

resolution.  Temporal processing tasks traditionally use non-speech stimuli, such as noise, 

and the listener is tasked with identifying gaps or breaks in the noise.  These tasks are 

referred to as gap detection measures.  Past experiments have shown associations 

between temporal processing using gap detection measures and the ability to understand 

speech that has been acoustically degraded (Gordon-Salant & Fitzgibbons, 1993; Irwin & 

McAuley, 1987; Snell, Mapes, Hickman, & Frisna, 2002; Tyler, Summerfield, Wood, & 

Fernandes, 1982).   

Tasks of temporal resolution can use speech as stimuli and correct identification 

of the speech as the measure.  Temporal resolution tasks may use sentences and words 

with varied compression rates.  Generally speaking, as compression rates increase, speech 

intelligibility decreases.  In normal hearing adults, difficulty begins to occur when 

compression rates exceed 45%.   

 Time-compressed speech tasks can be in the form of sentences (Keith, 2002) or 

words (Wilson et al. 1994).   The present experiment used words as the stimuli.  The 

effects of time compression on the intelligibility of NU-6 (female speaker) have been 

described in normal hearing adults and the final form of the compressed words are on the 

Tonal and Speech Material for Auditory Perceptual Assessment, Disc 2.0 (Wilson & 

Strouse, 1998).  The words are divided into two, fifty word lists, with each compressed at 

rates of 45% and 65%.  Data representing the effects of the different compression rates 

and presentation levels for normal hearing adults are shown in Table 3.  It can be seen 

that the understanding of time-compressed speech depends on both the amount of 

compression and presentation level. 
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Table 3:  Percent correct word recognition (and SD) for two compression rates and six 
presentation levels for 20 listeners (Wilson et al., 1994).  Results at (65 dB HL) were 
obtained on 40 listeners. 
 

 
                           Presentation Level (dB HL) 

    5 15 25 35 45 55 (55) 
 
 
45% Compression 
Mean    1.1 24.8 63.6 85.4 91.2 93.4 (94.9) 
Standard Deviation  2.8 20.4 13.5 9.6 7.8 6.7 (4.2) 
 
65% Compression 
Mean    0.9 14.5 43.0 63.4 75.0 75.0 (75.9 
Standard Deviation  2.4 11.1 19.1 19.2 19.3 21.8 (10.2) 
 
 

Phonemic Restoration 
Phonemic restoration (PhR) is the perceptual process by which a listener restores 

deleted or masked portions of speech through the use of an extraneous sound (Warren, 

1970; Warren & Warren, 1970).  It is a form of auditory induction, which is a synthesis 

whereby a sound that has been removed or masked in a signal is perceptually restored 

(Warren, 1996).  It is an illusory perception.  A model for the types of auditory induction 

is shown in Figure 4 based on a compilation of data from the literature on auditory 

induction.  There are two types of auditory induction, contralateral (Warren, 1996, 1984; 

Eagan, 1948; Thurlow & Elfner, 1959; Butler & Naunton, 1962, 1964) and temporal 

induction (Warren, 1970, 1984, 1996; Miller & Licklider, 1950; Warren, Obusek, & 

Ackroff, 1972; Sasaki, 1980; DeWitt & Samuel, 1990).  PhR is considered a form of 

temporal induction, specifically contextual catenation.  In PhR, a speech segment is 

removed and replaced with a broad spectrum noise that serves as a bridge or template to  
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Figure 6:  A visual analog of phonemic restoration (Bregman, 1981). (a) Fragments of 
multiple instances of the letter "B". (b) The same fragments of (a) together with an 
irregularly shaped occluding pattern. 
 
 
 
enable restoration.  A visual analog of this process is shown in Figure 6.  In this figure, a 

black matrix serves as the visual equivalent of noise that enables the letters “B” to be 

recognized. 

 PhR is the form of contextual catenation that involves speech (Warren, 1970, 

1976, 1984; Warren & Obusek, 1971; Warren & Sherman, 1974).  Warren  (1970) 

proposed that PhR is a critical process used in everyday communication to restore 

portions of masked speech.  Since Warren’s original study, investigators have examined 

the circumstances in which PhR optimally occurs (Layton, 1975; Samuel, 1981a; Warren, 

1970; Warren & Obusek, 1971).  Schematic models of PhR have also been developed 

which attempt to demonstrate the PhR process (Srinivasan & Wang, 2004; Masuda-

Katsuse & Kawahare, 1999; Cooke & Brown, 1993).  An example of the model proposed  
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Figure 7:  A block diagram of the proposed PhR model by Srinivasan and Wang (2005). 
 
 

by Srinivasan & Wang (2004) is shown in Figure 7.   This model illustrates the perceptual 

process of replacing the masked phoneme, through feature extraction and use of a word 

template, in order to synthesize a complete speech signal. 

PhR and the accuracy of PhR have been examined as a function of contextual 

length and age (Madix, Thelin, Plyler, & Hedrick, 2005).  Their study used sentences, 

phrases and words to observe the occurrences of PhR and the accuracy of those 

restorations in adult listeners.  Their results demonstrated that as context decreased, so 

did accuracy of PhR.  Of the contextual conditions examined, single, multi-syllable 

words were the most difficult achieving accuracy scores that averaged 85% correct for 

normal hearing young adult females.  Although it has not been used specifically as a test 

of AC, accuracy of PhR appears to be a task of AC ability (Bellis, 2005).    
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III. METHODS 

Participants 
Listeners were 50 students in audiology and speech language pathology and in 

psychology at the University of Tennessee, Knoxville who had standard American 

English as a native language.  Listeners in this group had a mean age of 21.9 years (SD = 

2.4 years) and had audiometric thresholds that were <15 dB HL in the right ear for the 

octave frequencies 0.5 through 8 kHz.  All listeners were asked a series of four questions 

that addressed conditions associated with auditory processing disorders.  Each of the 

listeners indicated that she did not have any of the following conditions: (1) auditory 

processing disorder, (2) attention deficit disorder (ADD), (3) attention deficit 

hyperactivity disorder (ADHD), (4) dyslexia, or (5) learning disability.  Extra-credit for 

coursework was awarded to the listeners for their participation.  Listeners were recruited 

through advertisements for participating in hearing experiments in the two academic 

departments.  

Experimental Apparatus 
 Participants were tested individually in a sound treated booth with background 

noise levels meeting ANSI criteria (ANSI S3.1, 1999).  Hearing screenings for each 

participant were conducted with a two-channel clinical audiometer (Madsen, Orbiter 922) 

meeting ANSI criteria (ANSI S3.6, 1996) using a supra-aural earphone (Telephonics 

TDH-39).  Experimental tests were recorded on digital compact disks and were delivered 

from a RCA compact disk player through the clinical audiometer. 
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Experimental Test Materials 
For each of the four experimental tests, the word lists were presented monaurally 

to the right ear at 65 dB HL.  Each test was composed of 50 items and performance was 

scored in terms of percent correct word recognition.  For each test, the signal parameters 

were selected so that mean performance was less than perfect but greater than 50%.  

 

Words-in-Noise Task.    The words-in-noise (WiN) were Lists 4-D (1) & 4-D (2), taken 

from the Katz Central Test Battery CD (Katz & Fletcher, 1997). The speech spectrum 

noise was presented at 5 dB below the level of the words.  The word lists and test 

instructions are provided in APPENDIX A.    

 

Time-Compressed Word Task.  The time-compressed words (TCW) were List 8-A, taken 

from the Veterans Administration recording of test materials, Tonal and Speech 

Materials for Auditory Perceptual Assessment, Disc 2.0 (Wilson & Strouse, 1998).  The 

word list was a NU-6 list with a time compression rate of 65% with female talker (Wilson 

et al., 1994).   For these conditions, Wilson et al. (1994) found mean word recognition to 

be approximately 75%.  The word lists and test instructions are provided in  

APPENDIX B.     

 

Low-pass Filtered Word Task.  The low-pass filtered words (LPFW) were NU-6, List 3C 

(female speaker) with a low-pass cutoff frequency of 1500 Hz and 115 dB/octave roll off.  

The test recording was obtained from the Veterans Administration CD of test materials, 

Tonal and Speech Materials for Auditory Perceptual Assessment, Disc 2.0 
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 (Wilson & Strouse, 1998).   For these filtering conditions, young adult listeners with 

normal hearing were found to have a mean word recognition score of 66.5% (Bornstein, 

et al. 1994).  The word lists and test instructions are provided in APPENDIX C. 

 

PhR Word Task.  PhR for words (PhRW) task was created for this study.  It was 

constructed using words that contained enough lexical and morphological information 

that allowed for deletion of a sound segment.  Monosyllable words do not contain enough 

lexical or morphological information to allow for PhR with the deletion of a sound 

segment.  As a result 50 two-syllable words (spondees) were selected for this task.   

The spondees were taken from the Auditec recording of CID W-1 words.  Each 

spondee contained a deleted phoneme that was replaced by a 200 ms cough that filled the 

void (Figure 8).   The location of the deleted phoneme was selected by observing the 

speech waveform and listening to the word.  The location of the deletion was 

manipulated to minimize coarticulatory effects.  The manipulation of words was 

conducted with Cool Edit-Pro v.2® using the procedure recommended by Samuel (2004) 

for deleting and replacing phonemes.    Selection of test words was based on the results of 

pilot data obtained before the present study.  For speech presented at 65 dB HL, four 

young adult listeners with normal hearing had a mean score of 62% for the PhRW task.  

The word lists and test instructions are shown in APPENDIX D. 
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Figure 8:  The word "airplane" after phoneme substitution.  Between the yellow lines is 
the position of the 200 ms cough following the deletion of the “pl”. 

 

Experimental Procedure 
 Each experimental session lasted about 30 minutes.  The informed consent 

(APPENDIX E) was read aloud to each participant and signed.  All testing was done in 

the sound treated audiometric room.   Listeners answered the four questions that 

addressed conditions associated with auditory processing disorders.  Of the 60 listeners 

recruited, 50 met the criteria for inclusion in the study.  The order of presentation of the 

four experimental tests was randomized for each listener.  Each experimental test 

required about 6 minutes to complete with 2 –3 minute breaks given between each test if 

needed.  
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IV. RESULTS  

The individual results for each listener are shown in APPENDIX F.  The mean 

results for all listeners on the four AC tasks are shown in Table 4.   The mean scores 

ranged from 66.8% to 79.4 % correct indicating that each of the tasks was moderately 

difficult.  The extreme scores for the four tasks were 44% and 94% correct indicating that 

there were no end effects.  The standard deviations (SD) ranged from 7.8% to 10.6% 

indicating that the variability was substantial among adult listeners with normal hearing 

and no evidence of auditory processing problems.   

The main analyses of the present study were correlations among the four AC tasks.  

Prior to these analyses, a root arcsine transformation was performed on the percentage 

correct scores for the four tasks.  The results of the correlational analyses are shown in 

Table 5.  The criterion for significance was p < .05.  There were only two significant 

correlations: (1) the correlation between PhRW and TCW was highly significant, and (2) 

the correlation between PhRW and WiN was significant. 

 

Table 4:  AC task results for all listeners in percent correct word recognition. 
 
    

                       LPFW  TCW  PhRW  WiN 
 

   
Mean   66.8%  79.2%  76.2%  74.7% 
SD   10.6%    7.8%    8.3%    8.5% 
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Table 5:  Correlations among the transformed results for the four AC tasks.  N = 50 for 
each correlation. 
 
       
                                                                                TCW  WiN  LPFW 
 
 
PhRW   Pearson-Correlation  .500  .351  .208 
   Sig (2-tailed)   .000**  .013*  .147 
    
 
TCW   Pearson-Correlation    .226  -.094 
   Sig (2-tailed)     .114  .515 
    
 
WiN   Pearson-Correlation      .131 
   Sig (2-tailed)       .363 
    
 * = Significance at the .05 level of confidence 
** = Significance at the .01 level of confidence 
 
 
The correlation between TCW and WiN was not significant.  LPFW was not correlated to 

any of the other three AC tasks. 

 The pair-wise correlational analyses indicated that there were no significant 

relationships between the results for LPFW, TCW, and WiN– the three AC tasks 

identified by Bellis (2003).  However, PhR was significantly related to both TCW and 

WiN.  A more complete analysis was made in the attempt to predict PhR using multiple 

linear regression with the data from all three tasks.  The overall ability to predict PhR 

using these three tasks was highly significant [F (3, 49) = 8.548, p = .000].  The partial 

correlations indicate the contribution of each factor above all others.  The partial 

correlations revealed that only TCW [t= 3.863, p = .000] contributed significantly to the 

prediction.  When WiN was considered in the pair-wise comparisons, it’s correlation with 
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PhR was significant.  However, in the multiple linear regression analysis, its contribution 

above all others was not significant [t = 1.745, p = .088].  As with the pair-wise 

correlation, the results of the multiple linear regression analysis for LPFW did not 

contribute significantly to the prediction of PhR [t = 1.867, p = .068].    

 

 



 28 

V. DISCUSSION 

The purpose of the present study was to determine the empirical relationships 

among tasks considered to measure AC.  The results for the three tasks considered a part 

of AC (LPFW, TCW, and WiN) were not significantly correlated.  These findings 

provide evidence that there are at least three components of AC that are independent of 

each other.   The abilities associated with these tasks have been described as spectral 

reconstruction (LPFW), temporal resolution (TCW) and auditory induction (WiN).  The 

terms used to describe these abilities represent a preliminary effort at labeling.  They may 

be revised in the future, and other abilities may be included in the concept of AC.  Since 

these abilities have been identified as independent of each other, no one task associated 

with these abilities can comprehensively be used to measure AC.  Rather, these tasks 

represent the distinct abilities that compose the concept of AC, and each contributes to its 

occurrence in a distinct way.   

Although not previously thought of as an AC task, PhR has been considered as an 

appropriate measure of AC (Bellis 2005).  Warren’s original view was that PhR with 

sentence-length stimuli is an auditory induction task.  However, the results of the present 

investigation using multiple linear regression analysis provide evidence that, in the 

minimum context PhRW task, AC is accomplished primarily through temporal 

resolution.  Further investigation will be needed to determine if all PhR is best 

characterized as requiring temporal resolution or auditory induction abilities. 

 AC has been considered to be an important ability in everyday life.  Listeners who 

receive partial auditory information are able to understand an entire message.  AC ability 

may also be used in conjunction with visual ability.  In the present study, AC was 
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examined to obtain normative data using very specific tasks and listeners.  For each task, 

speech context was kept to a minimum.  The attempt was made to avoid cognitive 

differences by using listeners who were college students with no reported learning or 

processing problems.  Age differences and gender differences were not studied.  Most 

importantly, listeners with AC problems were not studied.  Further research is needed to 

determine how the independent components of AC are related in populations with 

auditory processing disorders, and how normal and disordered populations are related in 

regard to these concepts. 

Despite the fact that AC was only studied using normal hearing listeners and 

stimuli of minimal context, the results add description to the understanding of the concept 

of AC in a general sense.  The description is the identification of three distinct 

components that were not related in terms of performance.  To understand AC capability, 

it appears that no single test provides comprehensive assessment of the auditory functions 

that enable AC to occur.  Thus, comprehensive assessment of AC requires the 

measurement of several abilities.  The present research opens a line of investigation by 

providing an initial empirical identification of independent components believed 

responsible for AC and a method for identifying the contributions of components. 
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APPENDIX A.  Instructions and Word Lists for the WiN 
 
Read aloud to each participant:   
 
You will hear a series of 50 words in the presence of background noise.  I want you to 
listen to each word carefully and repeat it.  Listen carefully because I will not be able to 
repeat any of the words. 
 
List 4-D (1)     List 4-D (2) 
 
  1.  they    .    1.  at 
  2.  yes        2.  dust 
  3.  leave          3.  our 
  4.  pale        4.  in 
  5.  bread        5.  tea 
  6.  eyes        6.  will 
  7.  toy        7.  art 
  8.  yet         8.  cook 
  9.  near        9.  his 
10.  save      10.  go 
11.  clothes      11.  stiff 
12.  few      12.  where 
13.  all       13.  chin 
14.  my      14.  who 
15.  so       15.  net 
16.  am       16.  hang 
17.  tin       17.  aid 
18.  shoe      18.  nuts 
19.  can      19.  arm 
20.  darn      20.  why 
21.  men      21.  than 
22.  ear       22.  of 
23.  through      23.  jump 
24.  ought      24.  dolls 
25.  wood      25.  bee 
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APPENDIX B.  Instructions and Word List for the TCW 
 
Read aloud to each participant:   
 
You will hear a series of 50 words that have been compressed in time.  I want you to 
listen carefully and repeat each word as you hear it.  If you do not understand a word, 
make a guess.  I will not be able to repeat any of the words. 
 
Each word was preceded by the carrier phrase “Say the word”. 
 
 1.  pool    26.  puff 
 2.  knock    27.  peg 
 3.  ditch    28.  bone 
 4.  road-rode    29.  thumb 
 5.  chat    30.  keg 
 6.  page    31.  yes 
 7.  wag    32.  third 
 8.  hole-whole   33.  long 
 9.  love    34.  should 
10. jar     35.  gaze 
11. chalk    36.  check 
12. nag     37.  lid 
13. red     38.  beg 
14. ring    39.  tough 
15. sheep    40.  wife 
16. pad     41.  shawl 
17. jail     42.  rag 
18. burn    43.  fail 
19. base    44.  sell 
20. half    45.  king 
21. read-reed    46.  rot 
22. perch    47.  hit 
23. choice    48.  boat 
24. tip     49.  tool 
25. lose    50.  keep 
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APPENDIX C.  Instructions and Word List for the LPFW 
 
 
Read aloud to each participant: 
 
You will hear a series of 50 words that have been reduced in the pitch of their sound.  I 
want you to listen carefully and repeat each word as you hear it.  If you do not 
understand a word, make a guess.  I will not be able to repeat any of the words. 
 
 1.  youth    26.  wire 
 2.  mouse    27.  cool 
 3.  lid     28.  ditch 
 4.  pole    29.  bar 
 5.  beg     30.  mess 
 6.  hire    31.  dodge 
 7.  pearl    32.  cheek 
 8.  when    33.  five 
 9.  soup    34.  team 
10. pain    35.  search 
11. shall    36.  seize 
12. cab     37.  gun 
13. tell     38.  cause 
14. note    39.  good 
15. germ    40.  void 
16. base    41.  phone 
17. talk    42.  half 
18. walk    43.  date 
19. luck    44.  mop 
20. road-rode    45.  jug 
21. name    46.  late 
22. sheep    47.  ring 
23. rush    48.  life 
24. chat    49.  rat 
25. thin    50.  hit 
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APPENDIX D.  Instructions and Word List for the PhRW 
 
 
Read aloud to each participant: 
 
You will hear a series of 50 words that have an inserted cough.  I want you to listen 
carefully to each word and repeat it (without the cough) as you hear it.  If you are not 
sure what was said, take a guess.  Listen carefully because I cannot repeat any item. 
 
  1. blackboard    26. meatball 
  2. sunshine    27. jacknife 
  3. playpen    28. iceburg 
  4. greyhound    29. hotdog 
  5. downtown    30. football 
  6. northwest    31. ashtray 
  7. necktie     32. scarecrow 
  8. drawbridge    33. hothouse 
  9. grandson    34. baseball 
10. bedroom    35. armchair 
11. hopscotch    36. doorstep 
12. duckpond    37. stairway 
13. drugstore    38. jumprope 
14. workshop    39. hairbrush 
15. sunset     40. farewell 
16. mousetrap    41. cupcake 
17. schoolroom    42. rainbow 
18. railroad    43. pancake 
19. highchair    44. headlight 
20. footstool    45. doorbell 
21. airplane    46. birthday 
22. toothbrush    47. bathtub 
23. playground    48. playmate 
24. outside     49. icecream 
25. mushrom    50. oatmeal 
 
Red letters indicate the deleted phonemic segment that was replaced with a 200ms cough. 
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APPENDIX E.  Informed Consent 
 

Consent Form to Participate in the Following Project: 
“A Comparison of Auditory Closure Tests and the Accuracy of a Phonemic Restoration Task in 

Young Adult Normal Hearing Listeners: Examining the Relationship between Auditory Closure and 
Accuracy of Phonemic Restoration” 

 
You are being asked to participate in a study of speech perception.  The goal of this study is to determine 
how individuals with normal hearing perceive speech. 
Procedures 
If you take part in this study, you will listen to a series of word lists that have been altered. The words will 
be presented at loudness levels that represent comfortable conversational speech through one earphone in a 
sound-treated booth.  You will be asked to repeat words that you hear.  Completion of this experiment will 
take approximately one hour. 
Potential risks or discomfort 
There are no risks associated with participation in this study. 
Benefits 
The purpose of this research is to gain a better understanding of speech perception and auditory processing.  
You may receive extra-credit for course work for your participation in this study. 
Assurance of confidentiality 
Information learned about you will be kept confidential.  When referring to data collected from you in 
presentations or publications, we will use a code number and will not use your name. 
Alternatives 
You do not have to take part in this study if you do not want to.  Your participation or non-participation in 
this project will in no way affect your academic standing in the Department of Audiology and Speech 
Pathology or Psychology.  This form will be stored in a locked file cabinet in 544 South Stadium Hall at the 
University of Tennessee, Knoxville for three years. 
Right to withdraw 
You can stop taking part in the study at any time, even after you sign this agreement.  If you want to stop 
taking part in the study, simply tell us.  There is no penalty for quitting.   
Right to inquire 
If you have any questions about this study, you can write or call the researchers listed at the bottom of this 
form. 
Authorization 
I have read this form in its entirety and feel I understand the possible risks, discomforts, and benefits of this 
study.  I agree to participate in this study.  I acknowledge that I have received a copy of this consent form. 
 
_____________________________________      ___________ 
Participant’s signature                                              Date 
Investigator’s assurance 
The individuals whose names appear below are responsible for carrying out this research program.  They 
will assure that all questions about this research program are answered to the best of their abilities.  They 
will assure that you are informed of any changes in the procedures or the risks and benefits if any should 
occur during or after the course of this study.  They will assure that all information remains confidential. 
Steven Madix, M.A. and James W. Thelin, PhD. 
Department of Audiology and Speech Pathology 
The University of Tennessee 
578 South Stadium Hall 
Knoxville, TN  37996-0740 
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APPENDIX F.  Listener Responses in Percent Correct (Root Arcsine Transformation 
Units of Percent Correct Scores) 

Participant          Age       LPFW           TCW            WiN          PhRW 
1  22 70 (99)       86 (119)       84 (116)        90 (125) 
2  21 62 (91)       86 (119)       64 (93)          72 (101) 
3  22 68 (97)          82 (113)      84 (116)        86 (119) 
4  23 50 (79)          82 (113)      74 (104)        76 (106) 
5  21 90 (125)        56 (85)        56 (85)          52 (81) 
6  22 72 (101)        68 (97)        72 (101)        64 (93) 
7  22           60 (89)          84 (116)      84 (116)        88 (122) 
8  21 68 (97)          72 (101)      72 (101)        82 (113) 
9  21 74 (104)       78 (108)       78 (108)    88 (122) 
10  28 76 (106)       86 (119)       80 (111)        80 (111) 
11  20 68 (97)          80 (111)      74 (104)        78 (108) 
12  31 86 (119)        78 (108)      76 (106)        94 (132) 
13  22 70 (99)          84 (116)      76 (106)        84 (116) 
14  22 88 (122)        80 (111)      74 (104)        66 (95) 
15  20 82 (113)        82 (113)      86 (119)        72 (101) 
17  20 66 (95)          86 (119)      66 (95)          82 (113) 
18  22 90 (125)        90 (125)      84 (116)        86 (119) 
19  24 54 (83)          78 (108)      76 (106)        68 (97) 
20  21 78 (108)        80 (111)      78 (108)        90 (125) 
21  21 76 (106)        72 (101)      80 (111)        74 (104) 
23  24 66 (95)          92 (128)      70 (99)          86 (119) 
25  20 72 (101)        74 (104)      78 (108)        74 (104) 
27  23 70 (99)          74 (104)      66 (95)          72 (101) 
28  21 72 (101)        78 (108)      82 (113)        70 (99) 
29  21 60 (89)          76 (106)      90 (125)        72 (101) 
30  19 68 (97)          68 (97)        74 (104)        72 (101) 
31  22 66 (95)          90 (125)      84 (116)        90 (125) 
32  30 66 (95)          88 (122)      80 (111)        76 (106) 
34  20 76 (106)        72 (101)      76 (106)        74 (104) 
35  22 64 (93)          88 (122)      72 (101)        82 (113) 
36  22 64 (93)          76 (106)      78 (108)        72 (101) 
37  20 62 (91)          78 (108)      74 (104)        74 (104) 
38  22 56 (85)          86 (119)      72 (101)        78 (108) 
39  21 70 (99)          80 (111)      80 (111)        74 (104) 
40  18 64 (93)          76 (106)      88 (122)        72 (101) 
41  22 72 (101)        84 (116)      66 (95)          86 (119) 
42  24 72 (101)        84 (116)      74 (104)        74 (104) 
43  22 72 (101)        88 (122)      66 (95)          78 (108) 
44  19 48 (77)          62 (91)        70 (99)          64 (93) 
45  20 58 (87)          82 (113)      70 (99)          72 (101) 
46  21 70 (99)          74 (104)      70 (99)          76 (106) 
47  24 64 (93)          80 (111)      78 (108)        78 (108) 
48  20 54 (83)          82 (113)      82 (113)        78 (108) 
49  23 62 (91)          72 (101)      82 (113)        74 (104) 
50  22 62 (91)          58 (87)        62 (91)          76 (106) 
51  22 54 (83)          88 (122)      70 (99)          70 (99) 
52  24 46 (75)          86 (119)      84 (116)        72 (101) 
53  21 44 (73)          80 (111)      44 (73)          64 (93) 
54  21 54 (83)          82 (113)      70 (99)          66 (95) 
55  21 62 (91)          74 (104)      66 (95)          70 (99) 
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