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Abstract 

 

Silica and carbon monolithic columns were synthesized and modified for liquid 

chromatography applications. Column configurations and cladding techniques were 

investigated in detail. Three novel approaches have been developed for the synthesis of 

bimodal porous rods. Out of these three methods, gel-casting was adopted for the 

synthesis of silica monoliths with ordered mesopores and uniform macropores; the use of 

colloidal templates and dual phase separation has been successfully implemented for the 

synthesis of carbon monoliths with well-controlled meso- and macro- porosities. The 

formation of mesopores in carbon materials has been further studied in the microphase 

separation of block copolymers. Electrochemical modification of carbon monoliths was 

discovered to be an efficient method for converting covalently bonded functionalities to 

carbon monoliths. N,N’-diethylaminobenzene has been attached to carbon surface for the 

separation of proteins and protein digests. The performances of carbon-based monolithic 

columns were studied intensely through frontal analysis and Van Deemter plot. 

Temperature and pressure effects were also investigated in carbon-based columns. The 

density of bonding on the modified carbon monoliths was characterized by 

thermogravimetric analysis. 
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Chapter 1:  Introduction 

1.1 The background of chromatography 

A ultimate goal of modern analytical chemistry is to obtain precise chemical 

information concerning mixtures. However, no chemical analysis method is truly specific. 

Consequently, a vital step for most analytical procedures is the separation of analytes. 

Traditional chemical separations such as distillation, precipitation, crystallization, and 

extraction have very limited applications to more complicated mixtures such as 

biochemical mixtures. As a result of the development and maturation of chromatography 

since the middle of the twentieth century, most complex mixtures can now be easily 

analyzed via this technique. Chromatography has become a routine method of analytical 

separation for both academic research and industry.  

At the beginning of the twentieth century, the Russian botanist Mikhail Tswett 

invented and named chromatography. He separated plant pigments by passing solution 

mixtures through a glass column packed with fine particles of calcium carbonate. The 

separation of those pigments appeared as colored bands on the column. Tswett named his 

separation method for the two Greek words “chroma” and “graphein,” which mean 

“color” and “to write,” respectively.1  In the past six decades, chromatography has been 

extensively applied to all branches of science. The 1952 Nobel Prize in chemistry was 

awarded to A. J. P. Martin and R. L. M. Synge for their contributions to chromatographic 

separations, which tremendously impacted chemistry-related sciences. More impressively, 
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between 1937 and 1972, a total of 12 Nobel Prizes were based on work in which 

chromatography was a key tool.  

In all chromatographic separations, the sample is carried by the mobile phase, 

which may be a gas, a liquid, or a supercritical fluid. The mobile phase is then percolated 

through an immiscible stationary phase that is fixed on a solid substrate. When the 

sample passes through the stationary phase, species are retained to varying degrees as a 

result of the physicochemical interaction between the sample species and the stationary 

phase. The separation of species appears in the form of bands or zones resulting from 

various retentions. Chemical information can thus be analyzed qualitatively and/or 

quantitatively on the basis of these separated zones.  

Based on the physical means by which the stationary phase and mobile phase are 

brought into contact, chromatography can be classified as planar or column.2 In planar 

chromatography the stationary phase is supported on a flat plate or a piece of paper, while 

the mobile phase is usually driven by capillary force, gravity, or an electric field. In a few 

cases, the mobile phase is forced under pressure, for example, in overpressure planar 

chromatography. When a tube holds the stationary phase, the chromatographic method is 

referred to as column chromatography. In column chromatography, the mobile phase is 

driven by pressure, gravity, or an electric field.  

Because of its astonishing separation power, column chromatography has become 

the most frequently practiced means of analytical separation. Three types of mobile 

phases are used in column chromatography: liquids, gases, and supercritical fluids. 
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Among these three types, liquids are the most frequently used. Therefore, liquid 

chromatography is the predominant technique used in modern analytical separations.  

Early liquid chromatography was operated in glass columns, and the mobile phase 

was driven by gravity. To ensure a reasonable flow rate, the column was packed with 

large particles in the 150 to 200 µm range. Such packing yielded poor results with long 

separation times, often several hours. Beginning in the late 1960s, small particles were 

packed in a steel tube, which was subjected to high pressure. Such a system dramatically 

improved the separation power of column chromatography; in the early years, “HPLC” 

stood for “high pressure liquid chromatography”. With the use of pressure, particles as 

small as 3 to 10 µm are commonly used as stationary phases. Separation can thus be done 

in a high-performance mode, which means high resolution and short analysis time. 

Therefore, these newer procedures are termed “high-performance liquid 

chromatography” to distinguish them from the earliest methods. By and large, liquid 

chromatography is currently performed as high-performance liquid chromatography.  

1.2 Components of an HPLC system  

An HPLC system consists of five key components: a pumping system, an 

injection system, a column system, detectors, and data acquisition and system-controlling 

software.  

The function of the pumping system is to drive the mobile phase through the 

column by overcoming the hydraulic resistance of the fine-particle-packed stationary 

phase. The basic requirements for the HPLC pumping system are (1) the generation of 
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pressures up to 1200 bar, (2) steady output, (3) adjustable flow rates in the range of 0.1 to 

10 mL/min, (4) high reproducibility in flow rates, and (5) corrosion resistance. 

The injection system is the inlet for samples. The way in which the sample is 

introduced into the column greatly affects the precision and reproducibility of the entire 

HPLC system. The most widely used injection system is based on sampling loops. The 

sampling size is predetermined by the loop fixed in the injection valve. Most 

chromatographic systems are equipped with a set of interchangeable loops by which a 

sample size in the range of 5 to 500 µl can be injected.  

The detector provides the chemical information regarding separated bands. The 

signal from the detector provides the fundamental information for the quantitative and/or 

qualitative analysis of the sample. Traditional analytical techniques such as UV/Vis, IR, 

and MS have been widely utilized as detecting systems.  

The column is the heart of HPLC. Innovations in HPLC are most often boosted by 

the development of new column technologies. All the diversities of the HPLC system are 

based on either the chemistry or the morphology of the packing materials. A detailed 

introduction of column technology is given in the next section. 

The software offers automatic operation of the HPLC system, including the 

control of the pumping system, the data acquired by the detector, and basic analysis of 

the data. The computerization of the HPLC systems provides robotic operations and 

reliable data analysis. Its ease of operation accounts for the broad adoption of HPLC as a 

daily tool in various branches of science. 
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1.3 The history of particulate columns 

The history of HPLC is actually the history of column innovation. From the slow 

early process to the sophisticated mature fast high-resolution separation, the ever-

growing needs of various branches of science are the driving force in the development of 

columns. These needs are the following: (1) gains in productivity, (2) improvement in 

quality, (3) lowered cost of analysis, and (4) biological analysis. First, in the early years 

of HPLC, separations were believed to be a very slow and insensitive process. A routine 

HPLC separation could take several hours. In order to achieve high productivity, short, 

fast columns have been developed. Second, reproducible columns have been developed 

to improve reproducibility of separations. Efforts have been made to improve the 

recovery of the sample for the analysis of biological compounds. Third, durable columns 

have been embraced by the industry for the purpose of cost reduction. Narrow-bore and 

capillary columns have been developed to reduce the use of solvents. Fourth, the huge 

demand for separations has been boosted by the rapid development of biological analysis, 

which requires the analysis of complex samples, large molecules, and unstable 

compounds. Wide-pore, rugged, and biocompatible packing materials have been 

developed to meet the requirements of bioseparation.  

The trend in particle-packed columns is toward the use of more uniform sized and 

finer particles to pack shorter columns. Shown in Figure 1 is the history of particle-

packed columns.3 In the 1950s and earlier, the column was packed with irregular-shaped 

nonporous particles. In 1967, spherical glass beads were first used as regular-shaped 

packing material. The late 1960s and early 1970s saw the emergence of HPLC, which  



 

 

Figure 1. The history of packed columns.3
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uses high-pressure pumps to drive the liquid phases through the column. These pumps 

made it possible to use fine particle-packed columns. Subsequently, the major 

development of packed columns has focused on decreasing the particle sizes. Small 

particles and short columns have dramatically improved the efficiency of HPLC 

separation. High throughput, high resolution, and fast columns have been developed to 

maximize the performance of the packed columns.  

Though particle-packed columns dominate the major applications, the hydraulic 

resistance resulting from particulate morphology is deemed to be the limit for the use of 

particles smaller than 1 microns. The monolithic column, which overcomes the limits of 

traditional columns imposed by the backpressure, is considered to be the new generation 

of HPLC columns.4  

1.4 The nature of monolithic columns 

The monolithic column is also referred in the literature as a rod column, a 

continuous-bed column, continuous packing, or double porous packing materials.5 A 

monolithic column consists of a single piece of porous material without interparticle 

voids. The mobile phase passes through the macroporous channels within the continuous 

porous bed. The mass transfer is thus greatly accelerated via the hierarchically porous 

structure, which is a combination of macropores and mesopores. Figure 2 schematically 

compares the morphologies of particulate and monolithic columns.6  

The HPLC column has two kinds of porosity: external and internal. The external 

porosity of particulate columns is controlled solely by particle size, which is  



 

Figure 2. Comparison of particulate and monolithic columns.6

an important factor for column efficiency. Column efficiency is related to particle size: 

the smaller the particle, the higher the column efficiency and backpressure. Thus, 

improvement in column efficiency is achieved at the price of high pressure. The 

monolithic column succeeds in controlling external porosity. The efficiency of the 

monolithic column is determined by domain size, which is the sum of the skeleton and 

the channel. External porosity can be tuned without affecting the column efficiency by 

changing the channel size. Therefore, the external porosity can be optimized to produce 

better hydrodynamics. To maintain the same column efficiency, the monolithic column 

can be optimized to a much lower backpressure than the particulate column. With the 

hydrodynamic advantage, the monolithic column can be used for fast, high-resolution, 
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and high-throughput separations. As mentioned in the above section, the monolithic 

structure meets the criteria of column improvement.  

1.5 Development of monolithic columns 

The attempt to produce monolithic stationary phases was initiated in the late 

1960s and early 1970s.5, 7 Extremely swollen polymers and open-pore polyurethane 

foams have been synthesized for separation purposes. Ross and Jefferson reported the 

first research on the monolithic column for gas chromatography.8 This idea was extended 

to liquid chromatography by Hansen and Sievers in 1974.7 These research efforts were 

not successful for various reasons. Fifteen years later, Hjerten and his coworkers 

reinvented the concept.9 Polyacrylamide gel was compressed into a rod-shape column for 

HPLC separation of proteins. Since then research has flourished. Kumakura et al.10 and 

Svec’s group11 made polymer rods by in situ polymerization. The research into silica-

based monolithic columns began in 1979, when Pretorius and his coworkers reported on 

methods for the preparation of silica foam by emulsion and blowing.12 The successful 

preparation of silica rods was accomplished by Nakanishi and Soga in 1991.13 Porous 

rods have been prepared in a mold via a sol-gel process. The silica surface has been 

modified as a reverse-phase chromatographic column. Twenty years of research in the 

area of monolithic columns has led to the development of various commercial products, 

some of which are listed in Table 1.  
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Table 1. Current commercial monolithic stationary phases for HPLC separations. 

Product Shape  Producer Chemistry  Separation mode 

CIM disk Disc BIA 

Separations 

 

Modified 

polymethacrylate 

or polystyrene 

copolymers 

Ion exchange, 

hydrophobic interaction, 

reverse phase, 

bioaffinity 

CB silica plate Disc Conchrom Modified silica Reverse phase, normal 

phase 

SepraSorb Disc Sepragen Modified cellulose Ion exchange 

CIM tube Tube BIA 

Separations 

Modified 

polymethacrylate 

Ion exchange 

UNO Cylinder BioRad Polyacrylamide-

based copolymers 

Ion exchange 

Swift Cylinder ISCO Modified 

polymethacrylate 

or polystyrene 

copolymers 

Ion exchange, reverse 

phase 

Chromolith Cylinder Merck Modified silica Reverse phase 

Monoliths Cylinder LC 

Packings 

Polystyrene 

copolymer 

Reverse phase 
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1.6 The classification of monolithic HPLC columns  

Based on function, monolithic HPLC columns can be classified as separating, 

guard, capillary and microbore, fast, and preparative columns. The separating column is 

the main type used to carry out various separation tasks. Column properties are 

determined by the chemistry of the column material and the surface functionalities. The 

separating column is the essence of HPLC columns, and most research on monolithic 

columns is focused on separating columns. The guard column serves as a protective 

column to prolong the lifetime and usefulness of the separation column. The basic 

functions of the guard column are (1) to block the entrance of particles that may clog the 

separation column, (2) to remove interferences that cause baseline drift, and (3) to 

prevent the precipitation of compounds in the separation column. The guard column is 

usually sacrificed to prolong the lifetime of the separating column. Capillary and 

microbore columns are designed for the separation of small-volume analysis. Capillary 

columns have a diameter ranging in size from several microns to several hundreds of 

microns. Microbore and small-bore columns have diameters of 1 to 2 mm. The use of 

capillary and microbore columns decreases the use of solvents, which is cost-efficient. 

However, these columns require the miniaturization of other parts of the HPLC system, 

such as the injection, connecting tubing, and the detection. Because the decreased column 

size reduces column load capacity, the injection of the sample is decreased to match 

column capacity. The connecting tubing should be reduced to minimize extracolumn 

volume. The miniaturization of the detection is most challenging. The traditional UV/Vis 

cell has to decrease in size to nanoliter range; however, the small detection cell 
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compromises the sensitivity of UV/Vis. The emergence of the MS detector can solve the 

problem but adds the cost of instrumentation. Fast columns are columns of very short 

length. The monolithic structure makes it possible for a high flow rate to be applied to the 

system without a significant loss of column efficiency. The primary reason to use the fast 

column is to improve the output of the instrument (evaluated by the amount of analysis 

per unit instrument time). Preparatory columns are used for the massive separation or 

purification of some compounds that are difficult or impossible to purify by traditional 

methods such as distillation, crystallization, and extraction. Large column diameters are 

required to achieve a reasonable column capacity for production-scale separation.   

Based on the separation mechanism, monolithic columns have been produced as 

reverse phase, normal phase, affinity, chiral, and ion-exchange chromatography columns. 

Because of the relatively short history of monolithic columns compared to that of 

particle-packed columns, the monolithic column has not yet been developed for all 

branches of HPLC. The plain silica monolithic rod had been reported preliminarily as a 

normal phase column.14 The polymer-based and C18-grafted columns are usually used as 

reverse-phase chromatography columns.14-17 The surface modification of the monolithic 

materials can convert various functionalities to the column surface. Affinity,18 chiral,19-21 

and ion-exchange20 columns have been reported.  

Based on the nature of column materials, silica, polymer, and carbon monolithic 

columns have been developed. The first polymer-based monolithic HPLC columns were 

reported by Hansen and Seivers in the 1970s.7 After 20 years of work by many groups, 

the first commercial product emerged in 1990.11 Although the monolithic structure offers 
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advantages, polymer monolithic columns are restricted by the lack of mesopores. Thus 

the surface area is much lower than that of porous-particle-packed columns. Moreover, 

the micropores inherent in the polymer monolith dramatically limit the application of 

polymer monoliths. The real success of the monolithic column has been realized by 

Nakanishi and his associates. Bimodal porous silica rods have been made via a sol-gel 

process. Silica rods have been encapsulated by using heat-shrinkable polymer. Merck 

commercialized the PEEK-tubing-encased silica columns under the trademark 

Chromolith. The carbon monolithic column was not reported by this group until last 

year.22 The synthesis and applications of carbon monolithic columns are a part of this 

thesis. Carbon monolithic columns are designed to solve the separation problems that are 

difficult to resolve via silica and polymer columns. For example, a carbon column can 

separate polar compounds and structural isomers that cannot be resolved by polymer or 

C18 columns. The rigid carbon monolith is inert to any solvent, acid, or base, which 

enables the column to operate under any condition that the instrument can withstand. The 

conductivity of the carbon monolith opens the door to potential applications in 

electrochemically modulated liquid chromatography (EMLC).22   

Based on the modulation of separation, monolithic columns can be operated under 

the traditional HPLC concept, which controls separations by changing the mobile phase, 

or under the EMLC condition,23-26 which uses an external electric field to modulate the 

adsorption/desorption properties of the stationary phase. The early EMLC concept has 

been demonstrated on carbon-particle-packed columns. However, the low electric 

conductivity of the particle-packed column results in an unreasonably slow response time 



of the EMLC column to changes in the electric field. Consequently, electrical 

homogeneity over the separation bed cannot be reached during an acceptable time period. 

The electrical heterogeneity is a significant weakness of the EMLC. The complexity of 

the particle-packed column is another factor accounting for the limited EMLC research. 

Highly conductive carbonaceous monoliths not only simplify the EMLC column 

configuration, but also offer swift electric response to the alternating external electric 

field.  The research into carbon monolithic columns is therefore of strategic importance in 

EMLC. 

Based on the configuration of the column, monolithic columns have been made 

into discs, tubes, and cylinders.4 The convertive interaction media (CIM) disc columns 

are presented in Figure 3. The color of the disc ring represent the chemistry of the column. 

The thin disc column has a lower pressure drop than the rod columns. Ultrafast separation 

has been performed with these discs; however, their are relatively lower than that of 

traditional columns. Preparative monolithic columns have been made up to a capacity of  

 

 

Figure 3. CIM disc columns. The discs are a few mm thick. 
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8 L in tubularcolumn configurations. Figure 4 shows the CIM tube made by BIA 

separations. The separation is carried by the radial flow from the outside of the tube 

toward the center.  

The most common configuration of monolithic columns is rod shaped. The Merck 

Chromolith and ISCO Swift columns have been made into a cylindrical shape via molded 

fabrication or in situ polymerization.  Rod columns are encased by glass, stainless steel 

(Figure 5, left), and PEEK tubing (Figure 5, right). 

1.7 Goals of this work 

Guiochon recently claimed, “The invention and development of monolithic 

columns is a major technological change in column technology, indeed the first original 

breakthrough to have occurred in this area ever since Tswett invented chromatography, a 

century ago.”27 This new generation of HPLC column, the monolithic column, has a 

briefer history than that of traditional columns; as a consequence, there are far fewer 

varieties of monolithic columns than particulate columns. The fluid profile and 

hydrodynamics of monolithic columns are fairly well understood. However, the studies 

of column materials, column configuration, and surface modification are inadequate to 

support new developments in monolithic columns. The study of monolithic columns has 

the potential to lead to a breakthrough for the ever-growing needs of high-throughput 

separation. However, current research is  



 

Figure 4. CIM tube preparative columns. 

 

 

Figure 5. Rod columns (left is polymer columns from Isco, right is silica columns 

from Merck). 
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still insufficient to meet these needs. In light of this knowledge, we have planned and 

conducted this research into the synthesis and applications of monolithic columns to 

promote understanding of the fundamentals of monolithic columns. We have learned 

from the body of research that the use of an appropriate column configuration is the only 

way to ensure the implementation of this research in a laboratory with limited mechanical 

processing capabilities. Therefore, in Chapter 2, configurations of monolithic columns 

are introduced in detail. Such configurations have great importance for the completion of 

this study, even though these designs incorporate more principles of engineering than 

chemistry. Subsequent chapters detail the synthetic methods and applications of 

monolithic columns made by gel-casting of silica (Chapter 3), colloidal template 

synthesis of hierarchically porous carbon monoliths (Chapter 4), and phase separation in 

the synthesis of carbon columns (Chapter 5). For a more complete presentation of the 

merits of monolithic columns, the following aspects of research have also been explored: 

the fine adjustment of mesopores (Chapter 6), and a novel approach for column 

modification (Chapter 7). The characterization of the carbon-based columns is discussed 

in Chapter 8. Chapter 9 describes the conclusions of this study.   
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Chapter 2:  Configurations of monolithic columns 

2.1 New challenges associated with monolithic columns 

Because the monolithic column uses a continuous rod as the separation media, the 

column does not require any frits. However, the new technique requires a special 

encasing method to convert the monolithic media into a column.28 The shrinking of the 

monolithic media during condensing of the column precursors is an unavoidable 

phenomenon for most polymerization reactions. The shrinkage causes a gap between the 

column wall and the porous rod, dramatically reducing column performance because the 

mobile phase leaks from the gap instead of flowing through the porous media.5 In the 

early development stage of the monolithic column, the shrinking of the porous rod 

created problems for the column chemist and delayed the emergence of the practicable 

monolithic column for many years. In order to overcome the problem, extra efforts must 

be taken in suppressing the shrinkage or by using a shrinkable material to encapsulate the 

media.15, 17 These efforts have resulted in new column configurations. Although the 

configuration of monolithic columns is beyond the research scope of a column chemist, 

the fabrication of a successful column inevitably involves such issues. One cannot 

conduct HPLC evaluation of monolithic material without appropriate encasing methods. 

Thus, in this thesis, the configuration of the monolithic column is singled out as the first 

problem to be solved. 

Based on cladding material, the column configuration can be classified into three 

types. The first type is the column encapsulated in the heat-shrinkable material. 
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Presynthesized porous rods are encased by shrinking chemically inert materials onto the 

rod surface. Such materials should not be swollen by common HPLC solvents. PTFE is 

the first heat-shrinkable tubing reported to be an encasing material.29 However, because 

PTFE is a soft material, it is not able to withstand the high pressure utilized in the HPLC 

system.30 A Z-model (Waters Corporation, Milford MA) was used as the external 

pressurizing device to offset the hydraulic pressure difference between the inner and 

outer sides of the tubing. Using the Z-model adds to the complexity of the HPLC system. 

There is an extra cost for the purchase and operation of the pressurizing device; moreover, 

Waters Corporation cut off the supply of the Z-model devices several years ago. 

Therefore, using the pressurizing device is not a feasible option for most column chemists. 

Merck introduced the breakthrough of the heat-shrinkable-material-clad column made by 

via the use of the shrink-on PEEK tubing, which led to the commercial success of its 

Chromolith column.  The PEEK tubing can be shrunk only in a very narrow temperature 

window, usually ±1 ºC. The shrink temperature depends greatly on the production 

process for the PEEK tubing, which varies from batch to batch. It is not easy to apply the 

PEEK tubing to the monolithic rod in a chemistry lab. Besides the numerous technical 

difficulties, a commercial source of heat-shrinkable PEEK tubing is not available to most 

column chemists. A few polymer companies take customized orders, but prices are rarely 

affordable. Moreover, most research labs have very limited mechanical processing 

capabilities. Although the need for practicable design of column configuration for a 

research lab is not recognized by the industry, it is nevertheless very important in 

carrying out preliminary research. In order to evaluate HPLC performance of novel 



monolithic materials, four prototype column configurations have been designed and 

implemented in our research.  

2.2 Polymer-lined stainless steel-tubing encasing 

This encasing method uses hard polymer glue, such as epoxy, to fill the gap 

between the porous rod and the stainless steel tubing.  In order to prevent the glue from 

penetrating into the porous rod, a piece of heat-shrinkable tube was applied to the rod 

before it was glued into the stainless steel tubing Stainless steel tubing enforces the  

strength of the column. Figure 6A provides a schematic configuration of the monolithic 

column. The center is the porous rod. The layers surrounding it are composed of heat-

shrinkable tubing, polymer glue, and stainless steel tubing. Figure 6 B shows silica rods 

and finalized columns. 

 

Figure 6. Column configuration of polymer-lined stainless steel tubing-encased 

columns.22
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2.2.1 Materials for column fabrication 

The materials used for the fabrication of the polymer-lined stainless steel-encased 

monolithic column are ¼ in. 403 stainless steel tubing (purchased from Alltech Inc.), ¼ 

and 1/16 in. reduce unions (obtained from Supeco Inc.), PTFE and PTFE/FEP heat-

shrinkable ¼ and 1/8 in. tubing of ID with shrink ratio of 2 to 1 (from Zeus Co.), and 

two-component epoxy glue (Miller-Stephenson Chemical Co.).  

2.2.2 General procedure for column encasing 

A piece of porous rod slightly longer than the targeted column length was thoroughly 

dried in a vacuum oven at 150 ºC. If, for example, the designed column length is 10 cm, 

the starting rod should be at least 11 cm long. The rod OD varies from 1 to 3 mm 

depending on the preparative procedure used. A piece of heat-shrinkable tubing was 

shrunk onto the porous rod using heat guns, according to the setup in Figure 7, or by 

using a furnace preheated to 360 ºC. The polymer tubing shrank during the cooling of the 

tube and encapsulated the rod after the temperature dropped back to room temperature. 

The two components of the epoxy glue were mixed and degassed under vacuum 

conditions. The encapsulated rod was then slid into a precut stainless steel tube. The 

stainless steel tubing was wrapped by a piece of aluminum foil, leaving one end open. 

The void in the stainless steel tube was then filled with the glue mixture and permitted to 

settle for 2 days to allow the hardening of the glue. All materials outside the stainless 

steel tube were scratched off after the glue cured. A razor saw was used to cut off the 

encapsulated rod ends that protruded from the stainless steel tube. The cut ends were 

polished with sandpaper, first with 200 mesh, then 600 mesh, and finished with 1200  
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Figure 7. Setup for the heat shrinking of PTFE tubing onto the porous rod. 

 

mesh. Two reducing unions were screwed onto the stainless steel tubing ends and then 

connected to a pump. Solvent was pumped at a high rate of flow through the rod from 

one end to wash the rod debris off the opposite end of the tube. The flow direction was 

then reversed to clean the other end of the rod. The column was then ready for use or on-

line modification.  

2.2.3 Discussion of the preparation procedure 

The heat shrinking of the polymer tube onto the porous rod is the critical step in 

the successful preparation of a monolithic column. The PTFE heat-shrinkable tube 

shrinks at a temperature higher than 360 ºC. At this temperature, the organic/inorganic 

hybrid and the organic polymer decompose or react with the oxygen; thus, only silica and 
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carbon rods can be encased using this procedure. The rods should be dried thoroughly; if 

there is any moisture inside the rod, the heating of one end of the rod will vaporize and 

drive the moisture along the rod. The moisture is then condensed into water drops at the 

unheated part of the rod. When the heat source is moved along the rod, the condensed 

water drops will not evaporate fast enough to provide room for the shrinking tube; 

consequently, some drops of water are encapsulated between the rod and polymer tube. 

These water drops result in bubbles inside the column. A dramatic decrease in column 

efficiency was always observed when the encased rod was not sufficiently dry before 

encasing.  

The dual-shrinking PTFE/PFE tubing offers better encasing than the PTFE tubing. 

The dual-shrinking PTFE/PFE tubing consists of two layers. The outer layer, the PTFE 

tubing, shrinks at temperatures above 360 ºC. The inner layer, the PFE tubing, melts at 

the PTFE shrinking temperature. The molten PFE coats onto porous rod and forms a tight 

binding layer between the shrunken PTFE tubing and the monolith. The PFE layer also 

fills in defects on the porous rod surface. The voids from the defects are then eliminated.  

Using the dual-shrinking tubing ensures a tight and void-free cover layer. However, there 

is some concern about the penetration of the molten PFE layer into the porous rod, which 

may go too far into the rod and block the channels inside the rod. To avoid this possibility, 

the heat-shrinking process should be accomplished in a short period of time. Thus, oven 

heating is not a suitable process for the shrinking of the dual-shrinking tubing. The thin-

walled, low-shrink-ratio (2 to 1) tubing has a thinner layer of PFE than does the thick-

walled, high-shrink-ratio (4 to 1) tubing.  
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The glue selection is based on the following factors: (1) it should offer tight 

sealing between the stainless steel tubing and the heat-shrinkable tubing, and the curing 

of the glue should solvent free and without any shrinkage; (2) after curing, the glue 

should be mechanically strong enough to sustain the system pressure that was produced 

during the use of the column; (3) it should have chemical resistance to the common 

HPLC solvents because the ends of the column are exposed to HPLC solvent, and the 

glue should be sufficiently tough to prevent damage to the column ends caused by the 

solvents. Slow-curing epoxy glue meets the above requirements. The mixing of two 

components of the glue produces numerous air bubbles so, in order to avoid any possible 

weak contact points between the cured glue and the polymer tubing, the air bubbles were 

driven away under vacuum.   

Polishing the tube ends yields reproducible results. Column efficiency is also 

greatly affected by the smoothness of the column ends. The final polish with 1200 mesh 

sandpaper yields a coarseness close to the porous nature of the rod. Therefore, the ends of 

the column are relatively “flattened.” Polishing with sandpaper with mesh greater than 

1200, or with alumina polishing powder, yields the same results as the 1200 mesh 

sandpaper. Thus, it is not necessary to use a finer polisher than 1200 mesh sandpaper.  

2.3 Glass-shrinking encapsulation 

In some cases, when strong solvents such as toluene, dichloromethane, and THF 

are used for the elution from the carbonaceous stationary phase, the heat-shrinkable 

tubing can become swollen. In such cases, glass tubing offers better resistance to organic 

solvents than heat-shrinkable tubing. The glass-shrinking encapsulation is designed for 
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columns using strong organic solvents. In other cases, the use of a glass-encased column 

allows the researchers to visualize the column. Thus, the separation can be studied in situ 

by actually seeing the separation process along the column. The visualized column is 

invaluable for modeling the separation process.  

2.3.1 Setup and shrinking procedure for glass tubing  

Technically, the heat shrinking of the glass tube is more difficult than shrinking 

the polytubing due to the higher process temperature and the need for an additional 

vacuum line or compression apparatus. Here, a vacuum line is used to force the glass 

shrinking onto the rod at the soft temperature of the glass tubing. Shown in Figure 8 is the 

setup used in our experiments. A Pyrex glass tube contained the porous rod and was then 

connected to a vacuum line. If the rod were carbon, which can be oxidized by the heated 

air, the tube would be purged with nitrogen three times to drive the oxygen away.  The 

vacuum line was maintained at 200 micron Hg during the shrinking of the glass tube. A 

vertical tubular furnace was preheated to 500 ºC. The glass tube was then inserted into 

the vertical furnace from the upper inlet and was moved down toward the bottom of the 

vertical furnace when the glass tube started to shrink. The movement of the glass tube 

was maintained at a constant speed as the glass shrank continuously from the bottom end 

up the length of the porous rod. After the shrinking, the glass-tube-encapsulated rod was 

allowed to cool to room temperature. The remainder of the fabrication steps for the 

monolithic column was the same as those for the polymer-lined stainless steel tubing-

encased column.  



 

Figure 8. Setup of glass shrinking. 

2.3.2 Key points for glass shrinking 

The advantages of glass encapsulation over those of the heat-shrinkable polymer 

tubing are its transparency and its insensitivity to solvents. Thus, this configuration is 

used only for special cases such those using as strong organic solvents or in visualization 

studies. When using glass encapsulation, the following points should be taken into 

account: (1) due to the high temperature required by the shrinking of the glass tube, this 

configuration can be applied only to the thermally stable stationary phase; (2) the 

modification of column chemistry can be done only after the encapsulation; (3) the 

column cannot be used at the basic mobile phase with pH higher than 10 because of the 

reaction of the glass with the base. Moreover, because the glass is fragile, care should be 

taken in all fabrication steps to avoid breaking the glass tube. 
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2.4 Polymerization encapsulation (polymer coating) 

Because of the thermal decomposition of the organic compound, the heat-

shrinking encapsulation is not applicable to polymer and hybrid rods. When the rod has 

been modified before the encapsulation, the heat treatment can also damage the organic 

functionalities that play an important role in the variation of the column chemistry. The 

damage to the organic parts of the column raw materials can be avoided by using a 

polymer coating. This idea is inspired by the dual-shrinkable tubing, which has a 

meltable PFE layer acting as polymer coating during the shrinking process. Two 

configurations have been designed for the polymer-coating columns. One configuration is 

similar to the polymer-lined stainless steel tubing-encased column. The only difference is 

that the heat-shrinkable tube is replaced by a polymer coating. The other configuration is 

pure polymer-encased columns, which use two polymeric layers acting as a coating layer 

and a pressure-sustaining layer, respectively.  Figure 9 is a photo of the polymer-coated 

carbon monolithic column. 

2.4.1 Materials for polymer coating 

The coating polymer was a 5-minute curing epoxy purchased from ITW Devcon 

Inc. The encasing polymer was a slow-curing epoxy polymer purchased from Miller-

Stephenson Chemical Co. The end-fitting nuts were unscrewed from a used Chromolith 

column.  



 

Figure 9. A polymer-coated monolithic column. 

 

2.4.2 General procedure for fabrication of polymer-coated monolithic columns 

A monolithic rod was coated with premixed 5-minute curing epoxy glue. The 

coating was then cured at 80 ºC for 5 minutes. The coated rod was put into a mold with a 

slow-curing epoxy glue and cured at room temperature for 48 hours. After the removal of 

the mold, the ends of the polymer-encased rod were polished by the same procedure used 

in section 2.2.2. Afterward, the ends were manually tapped to M 8 fine threads. Two end 

fittings from a Merck Chromolith column were screwed onto the ends for the conduction 

of the mobile phase stream. 
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2.4.3 Discussion of the polymer-coated column configuration 

The advantage of polymer coating is in avoiding heat treatment that may damage 

the chemical modification of the porous rod. The polymer coating configuration makes it 

possible to modify the rod before encasing. The disadvantage of this configuration is that 

the coating polymer more or less penetrates into pores inside the rod. The penetration of 

coating decreases the permeability of the monolithic column. Using fast-curing viscous 

epoxy can minimize penetration. Because this fast-curing epoxy has limited mechanical 

strength, a second layer of slow-curing epoxy was used to enforce the mechanical 

strength of the coated rod.  

Fast-curing epoxy has only moderate chemical resistance to HPLC solvents. 

Therefore, the polymer-coating configuration can be used only for selected solvents such 

as water, acetonitrile, and methanol. The penetrated polymer also causes a wall effect that 

decreases overall column efficiency.  

2.5 Multicapillary-array configuration for microbore monolithic columns  

The commercial success of the silica-based monolithic column is represented by 

two series of products. One is the standard 4.6 mm ID column and the other is the 

capillary column. However, there are no microbore columns, which are the product series 

between the standard-sized column and the capillary column. The multicapillary-array 

configuration is designed as a replacement for microbore monolithic columns. 

The 4.6 mm ID column is made through the encapsulation of a presynthesized rod 

by using heat-shrinkable PEEK tubing. The capillary column is made by in situ gelation 

of the silica precursor mixture, which has the same chemical composition as the standard 
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monolithic column. Due to the tiny size of the capillary, the gelated silica monolith sticks 

to the capillary wall without an obvious gap. For instance, if the capillary size is 20 µm, 

the shrinkage ratio of the gelation is 10%. Therefore, the absolute shrinkage of the 

gelated silica is only 2 µm, which is less than the pore size of the silica monolith, and no 

obvious gap forms inside the monolithic capillary column. Microbore columns have an 

ID in the range from 100 µm to 1 mm. Because the monolithic rod is fragile, it is very 

difficult to make a rod sized from 100 µm to 1 mm. It is not possible to gel the silica 

monolith in situ without creating a gap between the column wall and the monolith. For 

example, if the column ID is 0.5 mm and the shrinkage ratio is 10%, the absolute 

shrinkage is 50 µm, which is obviously larger than the pore size. Consequently, a gap 

will form between the column wall and the monolith.  

For the purpose of making the microbore columns, we use the capillary-array rod as a 

column-encasing material. The gelation of the silica precursor is performed inside each 

individual capillary with an ID of 10 µm. As shown in Figure 10, the variance of the 

capillary size is tightly controlled within 2%. All 4000 capillaries are parallel to one 

another without entanglement. This configuration offers the advantages of the capillary 

monolithic column without creating gaps between the monolith and column wall. The 

high column pressure can be handled by the capillary configuration, so no enhancement 

of the mechanic strength is required. Because of the large number of capillaries, the 10-

µm-ID capillary-array column is equal to a microbore column with an ID of 0.632 mm. 



 

Figure 10. Capillary array. 
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Chapter 3: Preparation of monolithic silica columns via gel-casting 

3.1 Silica monolithic columns with ordered mesopores and tunable macrochannels 

Gel-casting of silica particles is a method developed in our lab for the preparation 

of silica monolithic columns with a hierarchically porous structure of ordered mesopores 

and tunable macrochannels.31, 32 To the best of our knowledge, this is the first report of 

the synthesis of the ordered mesoporous silica monolithic column. 

Research in ordered mesoporous silica flourished in 1992 when researchers at 

Mobile Research and Development Corporation published a breakthrough report on the 

synthesis of surfactant-templated ordered mesoporous silica.33  During a decade of 

intensive research in synthetic methods by many research groups all over the world, a 

variety of mesoporous silica with uniform pore sizes have been synthesized through a 

sophisticated selection of surfactants and reaction conditions. This versatile surfactant 

template methodology initiated an era of investigations of mesoporous materials in 

various branches of science. A number of silica materials, such as M41S,33 FSM-16,34, 35 

HMS,36, 37 MSU-x,38 and SBA-x,39, 40 have been successfully used as supports for catalyst 

and separation, as well as template hosts for the synthesis of nano-scale particles, wires 

and ordered nonsiliceous porous materials.  

Although ordered mesoporous materials have also been used in the HPLC 

stationary phase, for a variety of reasons the earlier applications of these mesoporous 

materials in HPLC were not attractive. The critical problem associated with the HPLC 

applications of the mesoporous materials is the limited mechanical strength of the very 
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thin wall structures, which makes it difficult for them to sustain the high pressures 

involved in HPLC systems.41 Some thick-walled ordered mesoporous silica have been 

made since the birth of SBA series silica; however, their irregular shape makes them non-

attracting for HPLC packing. Recently, several successful applications have been 

reported when such porous materials are prepared with a spherical morphology of narrow 

size distribution. Unger et al. prepared spherical MCM-41, MCM-48, and HMS type 

particles by a modified Stober synthesis.42, 43 Acid-prepared mesoporous spheres (APMS) 

and their HPLC applications were first reported by Landry et al.44 Zhao and Stucky and 

their associates synthesized SBA-15 spheres, using cetyltrimethylammonium bromide 

(CTAB) as a cosolvent,45, 46 while Boissiere et al. developed a two-step procedure to 

control the particle size of the MSU-1 spheres by simply adjusting the ratio of the 

fluoride catalyst to silica.47 All these applications demonstrated that uniform mesoporous 

silicas are superior HPLC supports. 

In spite of these successes achieved in preparing spherical mesoporous beads for 

HPLC packing, the efficiency of the particle-packed HPLC column is limited by a 

necessary compromise between particle size and pressure drop. Due to the high hydraulic 

resistance of the fine-particles packed column, the silica beads are required to have a 

significant mechanical strength. However, because of they are highly porous, mesoporous 

silica spheres are usually not strong enough for fine-particle packing. Hence, the HPLC 

application of mesoporous silica sphere is still limited. The latest studies in HPLC 

columns showed that a monolithic column could overcome the pressure drop of particle 

packed columns. Knox first recognized the intriguing advantage of monolithic columns 
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early in 1972.48 Monolithic columns could provide efficiency nearly equal to 

conventional particle-packed columns with hydraulic resistance an order of magnitude 

lower. Recently, our group proposed a theoretical model of the structure of monolithic 

stationary phases that allows the derivation of relationships between the characteristics of 

the mass transfer kinetics inside the networks of macro- and mesopores and the first two 

moments of low concentration bands obtained with monolithic columns.49 Silica-based 

monolithic columns were first reported by Nakanishi and Soga in 199113, 50 and then 

commercialized by Merck KGaA. Monolithic silica columns have a bimodal pore 

structure, including networks of macropores and mesopores. The properties of  

mesopores are critical for achieving separations. There is as yet no reported development 

of specific mesopore morphologies for monolithic silica columns.  

Generally, mesoporous silica is obtained as a precipitate from a mixture of 

surfactant and silicon-source solutions. The resulting product is in the form of fine 

particles. Although several groups of researchers have attempted to produce monolithic 

mesoporous silica,51, 52 the synthesis of large size crack-free mesoporous silica monoliths 

with ordered structure is still a challenge. Moreover, mesoporous silica of solely 

mesoporous structure is not suitable for HPLC.  An additional macropore or channel 

network is required for allowing a stream of mobile phase to percolate with low hydraulic 

resistance.  Monolithic silica columns with a bimodal pore structure (i.e., mesopores and 

macropores) demonstrated that a hierarchical porous structure is effective in resolving 

problems involving pore size and mass transfer kinetics. Though the phase-separation 

method developed by Nakanishi et al.13, 50 can synthesize bimodal monolithic columns 
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with narrow size distributions of mesopores, this method is not suitable for the synthesis 

of monolithic columns with well-defined mesopore structure, such as those of hexagonal-

structured MCM-41 and SBA-15 and cubic-structured MCM-48 and SBA-16. 

Gel-casting is a ceramic fabrication method developed at Oak Ridge National 

Laboratory in the 1990s. It has recently been used to create hierarchical zeolite structures 

with designed shape.31 We found that gel-casting is a suitable technique for the 

conversion of particulate mesoporous silica materials into large dimensional pre-designed 

objects without losing the mesoporous structure of the silica.32 In order to combine the 

excellent homogeneity of ordered mesoporous silica with the super hydraulic dynamics 

of a monolithic structure, we converted the ordered porous silica particles into monolithic 

columns via gel-casting.  

3.2 The fabrication of silica monolithic columns 

3.2.1 Materials and instruments  

Materials: acrylamide, N,N’-methylene-bisacrylamide, ammonium persulfate 

(NH4)2S2O8, pyridine, phenol, toluene, acetonitrile, and HPLC water were purchased 

from Aldrich. Pluronic surfactant P123 was donated by BASF Corp. Tetraethoxylsilane 

(TEOS), octadecyldimethylchlorosilane, and trimethylchlorosilane were purchased from 

Gelest. All chemicals were used as received. Materials for the fabrication of the 

monolithic column are described in section 2.2.2. 

Instruments: Philip XL-30 field emission scanning electron microscopy was used 

for the structure characterization of the monolith. HD 2000 scanning and transmission 

electron microscopy was employed for imaging the mesoporous silica particles. A BET 
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system from Micrometrics Co was used for the measurement of the mesopores’ size 

distribution and surface area. The HPLC test was performed by a HP 1100 system 

(Agilent Technologies, Palo Alto, CA).  

3.2.2 The synthesis of mesoporous silica particles 

The mesoporous silica was synthesized by a method slightly modified from the 

original report.39 5 g of Pluronic P123 was dissolved in 200ml 1.6M HCl solution and 

stirred at 35 ºC. 10.6 g of TEOS was then added into the surfactant solution and stirred at 

35 ºC.  The silica started to precipitate out after 30 minutes. After the reaction was kept at 

35 ºC for 20 hours, the temperature of the flask was then gradually raised to 80 ºC and 

was kept at this temperature overnight. The silica particles were recovered by filtration. 

The raw particles were washed with DI water and dried in a vacuum oven at 80 ºC. The 

dried particles were calcined in a furnace with a temperature ramp from room 

temperature to 500 ºC at the rate 2 ºC/min. The temperature was kept at 500 ºC for 10 hrs 

to ensure the complete removal of surfactant.  

3.2.3 Gel-casting of silica particles into a monolithic rod 

The calcined silica powder was ground and sieved into 10 µm particles. These 

particles were suspended in a solution of monomer acrylamide, cross-linker N,N’-

methylene-bisacrylamide, and the initiator, ammonium persulfate (NH4)2S2O8. The 

weight ratio of monomer, cross-linker, initiator and water was 5: 0.5: 0.05: 100. The 

suspension was sonicated for 10 minutes to ensure a homogeneous mixture. A 4.0 mm ID 

glass tube containing the suspension was centrifuged at 1000 to 2000 rpm for 5 minutes. 

The centrifugal force packed the silica particles at the bottom of the tube and left a clear 
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binder solution in the upper layer. Replacing the upper layer of solution with the 

suspension and repeating the centrifugation several times easily achieved a column of 

desired length. The silica-packed glass tube was then capped, put into an oven, and cured 

at 50°C for 1 hour. The monomer and cross-linker were polymerized into an elastic 

hydrogel. The hydrogel was hardened by removing the cap from the tube and retaining 

the tube overnight in the oven at 50°C. The cylindrical rod was dried thoroughly in a 

vacuum oven at 60°C for 2 days. The dry rod was removed from the glass tube and 

sintered at 700°C for 10 hours. After sintering, the silica particles formed a hard rod with 

an OD of 3.8 mm.  

The polymer network was totally burned up during the sintering procedure. The 

monolithic column was chemically bonded by refluxing in a toluene solution of 

octadecyldimethylchlorosilane and equivalent pyridine for 10 hours. Afterward, the 

bonded-phase column was end-capped by adding 1 ml of trimethylchlorosilane to the 

toluene solution for 2 hours of additional reflux. The modified rod was washed 

thoroughly with copious ethanol and dried overnight in a vacuum oven at 60°C. 

3.2.4 Fabrication and surface modification of silica columns 

A complete column was made by encapsulating the silica rod with a piece of heat 

shrinkable tubing, using the configuration of polymer-lined stainless steel tubing 

encasing. A general procedure was described in section 2.2.2. A monolithic column with 

3.8 mm ID and a length of 50 mm was tested as a fast HPLC column. 
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3.2.5 HPLC application 

A Hewlett-Packard (Palo Alto, CA, USA) HP 1100 LC system was used to 

evaluate column performance. This system has a binary pump, an online degasser, an 

autosampler, a variable wavelength UV detector, a column thermostat, a data station, and 

a HP PC workstation with a Windows NT operating system. The instrument control and 

data acquisition were performed using Chemstation software (Rev A 05.03). The column 

temperature was maintained at 25 °C by the column thermostat. The mobile phase is a 

mixture of acetonitrile and water. Pure solvents were mixed and delivered through the 

binary pump. The ratio of these solvents was adjusted by Chemstation software.  

The column was washed by first pumping pure water and then pure acetonitrile through 

until a stable baseline of the detector was achieved. A 10 µl phenol and toluene mixture 

was injected as probe to evaluate the column. The mobile phase was the 30/70 mixture of 

water/acetonitrile. The column was tested at three flow rates of 0.5, 1.0, and 5.0 ml/min.  

3.3 Results and discussion 

The calcined silica has a hexagonal porous structure. Shown in Figure 11 are 

TEM images of the SBA-15 mesoporous silica. The left image reveals a highly ordered 

honeycomb structure of the ends of the cylindrical pores. In the right image the 

cylindrical pores are parallel to each other.  



 

Figure 11. TEM images of mesoporuos silica particles. 

 

All organic binders have been burned off during the sintering of the silica 

particles. The sintering of silica particles causes the interparticular dehydration that 

eventually binds the silica particles into a monolith. The sintering of the porous particles 

usually destroys the pore structure to some degree. In this study we minimized the sinter 

effect on the pore structure by using a temperature of 700 ºC, which is the low threshold 

of the sintering process of these particles.   

The BET nitrogen adsorption/desorption test showed that the mesopore diameter 

undergoes only slight shrinkage, from 8.1nm to 7.5 nm, after the gel-casting treatment. 

The initial adsorption volume decreased by a factor of two, and the surface area 

significantly dropped from 831 m2/g to 535 m2/g. The decrease of the initial adsorption 

volume indicates that the micropore volume shrunk during the sintering process.  

No significant change has been found after the particles have been sintered into a 

monolithic column, according to the comparison of the TEM images taken before and 
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after sintering. This observation confirms that the slight shrinking of the mesopore has 

not changed the meso structure of the silica.  Recalling the surface area change measured 

by BET, one can conclude that the decrease of surface area is mainly attributed to the 

diminishing of micropores.  

Several studies claimed that the wall of SBA-15 is microporous. The formation of the 

micropore is believed to be due to the thermal decomposition of the surfactant, which is 

embedded in the silicate wall. The existence of micropores is usually a serious problem 

for HPLC application because of the peak tailing caused by micropores. Because 

sintering eliminated the micropores, the HPLC test on this sintered column showed 

symmetric peaks without obvious peak tailing.  

The texture of the sintered silica column was examined by SEM. The sintered rod 

has a rope-shaped grain texture, as shown in Figure 12. The rope shaped grains have an 

average diameter of 200 nm and a length of 10 µm.  

The overall porosity of the silica monolith is estimated by the injection of an 

irretentive compound. The injection uracil shows the column to have a porosity of 80.7%, 

which is attributed to its combination of macropores and mesopores. The size and 

porosity of the mesopores are controlled by the synthetic method of the silica particles. 

So far, silica particles with mesopore sizes ranging from 2 nm to 30 nm have been 

reported. These particles offer a large number of variations in the synthesis of monolithic 

silica column with various mesoporosity.  

 



 

Figure 12. Sintered silica monolith. 

 

Macroporous channels are formed by interparticle voids. The average size of the 

macropores can be adjusted by using silica particles of different sizes. Typically, 

sintering of 10 µm SBA-15 particles results in a monolithic column with an average 

macrochannel size of 5 µm.  

This column showed good resolution with extremely low hydraulic resistance and also 

afforded rapid separations. Figure 13 shows an application for the separation of 

phenol/toluene at flow rates of 0.5, 1.0, and 5.0 ml/min. When the column  was operated 

at a flow rate of 5 ml/min with a mobile phase of acetonitrile/ water (7:3), phenol and 

toluene were completely resolved within 0.4 minute. The pressure drop corresponding to 

the flow rate of 5 ml/min was only 87 bars. 
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Figure 13. The fast separation of phenol and toluene. 

 

 Obviously, the high porosity (80.7% measured by chromatography) of the 

column contributes to its low hydraulic resistance. The hydraulic resistances of the 

monolithic columns were related to the sizes of the silica colloid precursors and to their 

macropore structure. With large macropores, the column can have a low hydraulic 

resistance that allows a fast stream of mobile phase to carry the analytes through the 

column. So, fast separation can be achieved by sintering large particles into monolith 

column. But the gain of fast separation always sacrifices column resolution due to the 

large domain size of the sintered monolithic column that uses large particles as starting 

material.  
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3.4 Conclusion 

In conclusion, we report here a general procedure for the synthesis of monolithic 

silica columns with a bimodal pore structure. Both the macropore and the mesopore 

modes are adjustable. Monolith columns with a large diversity of mesopore morphology 

were readily prepared using various silica precursors. The total porosity and hydraulic 

resistance of the column were easily tailored by gel-casting silica colloids of various sizes. 

Our procedure also demonstrated that gel-casting is a convenient method for the synthesis 

of hierarchically structured silica with designed shape. Gel-casting of various silica 

precursors made it possible to fine-tune the design of monolithic silica columns. 
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Chapter 4: Carbon monolithic columns made by colloidal templates 

4.1 The background of carbon columns 

The major obstacle to a wider use of silica-based rod columns is their limited 

resistance to hydrolysis, which restricts their operation to a relatively narrow pH range.53 

Although polymer columns could overcome this limitation, the swelling of polymer beds 

in the presence of organic solvents results in poor hydraulic performance. As an 

alternative to beds made of silica gel and organic polymers, carbon-based adsorbents 

offer the advantage of being free from both hydrolysis instability and swelling problems. 

Carbon adsorbents were suggested in the past as packing materials able to solve these two 

problems.22  

In 1976, Colin and Guiochon recognized the intriguing properties of graphitized 

carbon and began a systematic investigation of its use in liquid chromatography.54-58 

Later, several groups made significant contributions to this area.59-66 However, early 

results obtained with the most popular carbon materials, e.g. carbon blacks, active 

carbons, glassy carbons, and various cokes, were not encouraging due to the combination 

of weak mechanical strength, poor control of the pore-size distribution, an irregular 

particle shape, and an important surface concentration of mineral and oxygen 

impurities.54, 59, 65, 67-72 In 1979 Knox and Gilbert patented a method of control of the size 

and shape of graphitized carbon particles.72 They impregnated porous silica beads with a 

phenolic resin, pyrolyzed the resin in an inert atmosphere, and dissolved the silica with an 

alkali, obtaining spherical porous particles of glassy carbon. Unfortunately, this carbon 



material has micropores and exhibits poor LC performance with compounds having an 

alkyl chain of more than two carbon atoms. Better chromatographic performance was 

obtained by graphitizing porous glassy carbon.60, 69 This product is still commercially 

available from Thermo Electron Corp.  

4.1.1 Retention mechanism on carbon 

Transmission electron microscopy shows that porous graphitized carbon (PGC) 

consists of interwoven ribbons of carbon. The ribbon consists of graphene sheets 3.4 

angstrom apart. A comparison of the C18 silica phase and the PGC phase is shown in 

Figure 14. As opposed to the C18 silica phase, the carbon phase has a flat planar surface 

without any surface group. The retention of analytes on PGC carbon depends on a 

combination of dispersive and charge-induced interactions.60

 

Figure 14. The C18 bonded silica phase and the porous graphitize carbon phase 

(courtesy of Thermo Electron Co.). 
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Dispersive interactions occur in all stationary phases. Compared to the flexible 

C18 chain, the carbon surface is very stiff. Thus the strength of the dispersive interactions 

of analytes on graphitized carbon is largely dependent on the molecular area in contact 

with the carbon surface and the orientation of functional groups of the analyte. Figure 15 

schematically represents the contact of planar and non-planar molecules on the carbon 

surface. 

The charge-induced interaction is unique to the carbon stationary. As shown in 

Figure 16, the mechanism is quite straightforward. When a polar molecule with a 

permanent dipole approaches the carbon surface, the charge induces the dipole of the 

graphite by distorting the electron distribution of the graphite surface. Thus a negative 

image of the polar molecule will reflect on the other side of the graphene (Figure 17).60, 64  

 

 

Figure 15. Scheme of the contact area of planar and non-planar compounds on 

graphite surface (courtesy of Thermo Electron Co.). 
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Figure 16. Representation of the interaction of the charged species approaching the 

carbon surface.64

 

Figure 17. The images of charge and polar molecule reflected by the graphene.60
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The induced negative charge image interacts with the real molecule through the 

electrostatic force. The adsorption energy contributed by charge-induced interactions is 

given the equation 4.1. 
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Where, qi and qj are the charge of the polar groups and their “electric images”; rij is the 

distance between two interacted charge centers; ε0 is the dielectric constant, which is a 

property of the solvent. Thus, the charge-induced interaction is determined by both the 

charge profile of the molecule and the dielectric constant of the mobile phase. 

The combined effect of the dispersive interactions and charge-induced 

interactions gives rise to a unique retention pattern of the graphitized carbon. By the 

virtue of this retention pattern, the carbon can easily differentiate between the closely 

related structures of compounds that are very difficult to resolve by C18 stationary phases. 

This is shown in Figure 18.61

 

Figure 18. Comparison of methyl and methylene group selectivity on carbon and 

C18-silica. 
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4.1.2 Methods for the preparation of carbon stationary phases 

The use of carbon stationary phase in liquid chromatography has historically 

proven to be the most difficult stationary phase to prepare. Since 1976 when Colin and 

Guiochon made the first attempt at packing a carbon column, many groups devoted their 

efforts to preparing carbon stationary phase in over two decades.54-56 Several methods 

have been reported for the synthesis of successful chromatographic carbon materials. 

These methods were reviewed in several comprehensive reviews.60, 62, 64

4.1.2.1 The Guiochon method 

The Guichon method is the first method that has been reported for liquid 

chromatographic utilization of the carbon black stationary phase. Before being used in 

liquid chromatography, carbon black has been successfully utilized in gas 

chromatography by DiCorcia and Liberti and has been marketed by Supelco Ltd under 

the trade name of Carbopack.60 Carbon black consists of graphitic nanocrystalline and 

amorphous carbon. The fragile nature of this material makes it unsuitable for the HPLC 

system. Colin and Guiochon deposited pyrolytical carbon onto carbon black agglomerate 

to make large particles with sufficient surface area and mechanical strength for HPLC 

applications.54-58 The deposition of pyrolytical carbon was carried out at 1200K using 

benzene as precursor. The mechanical strength and surface area depends on the amount 

of deposited carbon. During long deposition time a thick layer of carbon was deposited. 

The mechanical strength was thus greatly enhanced, but the surface area decreased with 

the increased thickness of pyrolytical carbon. The alkanes were found to be better 

precursors for the deposition of carbon than benzene. With carefully chosen experimental 
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conditions, they can make carbon particles with moderate surface areas and mechanically 

strong enough to sustain the system pressure under the HPLC operation.  The surface 

impurity has been removed either by hydrogenation at 1300K or thermal treatment at 

3000 to 3300K. The removal of surface impurities on the particles slightly improved their 

chromatographic performance.   

4.1.2.2 The Unger method 

Unger et al. used coke and active carbon as raw materials for the production of 

liquid chromatographic packing materials.65, 66 Hard particles can be made of coke and 

active carbon, but coke and active carbon have significantly greater amounts of 

impurities than carbon black. The impurities form heterogeneous and polar surfaces of 

coke and active carbon. These heterogeneous surfaces are not suitable for separation 

unless the impurities have been removed by boiling in HCl solution for 12 hours, 

followed by heat treatment at 3027 K. After the removal of impurities, the particle size 

and shape were retained, but the surface area was dropped significantly to a few square 

meters per gram. These particles were still micropore. Due to the small surface area and 

micropores, the chromatographic performance of these particles was not attractive.  

4.1.2.3 The Knox method 

In 1979 Knox and Gilbert invented porous glassy carbon by impregnating a 

porous silica particle with phenolic resin, followed by the carbonization and removal of 

the silica.59 The resulting hard carbon particles are of spherical shape and highly porous. 

Unfortunately, these particles are microporous, so the chromatographic performance was 

poor. However, by heating these particles at over 2000 ºC, micropores were eliminated 
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due to the graphitization of the carbon matrix. These particles then demonstrated good 

chromatographic behavior, which was similar to the material made by Colin and 

Guiochon.60  

The Knox method is reproducible and easily scaled-up. It has been 

commercialized and marketed under the trade name of Hypercarb. This carbon still is the 

only pure carbon packing material currently on the market. 

4.1.3 The birth of carbon monolithic column for HPLC 

The birth of carbon monolithic column is boosted by the success of silica and 

polymer monolithic columns. Historically, the difficulty of producing carbon stationary 

phase lies largely on the synthesis of spherical carbon particles with mesopores. 

Particulate columns now give way to the monolithic ones. The hurdles encountered in the 

production of spherical carbon particles are no longer a problem for carbon monolithic 

columns.  

In this work, we report on the preparation of the first monolithic carbon-based 

column.22 This column was prepared by pyrolyzing a rod made of a copolymer of a 

resorcinol/iron (III) complex and formaldehyde (Figure 19) in the presence of silica 

beads. A bimodal pore structure was developed within the column, involving macropores 

and mesopores. The macropores were tailored by the silica beads, which were sacrificed 

and turned into flow-through pores upon dissolving these beads in hydrofluoric acid. The 

mesopores were formed in situ as a result of the catalytic pyrolysis of the phenolic 

resin/iron complex. A full characterization of this rod’s pore structure, porosity, and 

surface area was done by using scanning electron microscopy (SEM), transmission  



 

Figure 19. Structure of the carbon precursor. 

electron microscopy (TEM), and BET nitrogen adsorption/desorption. The carbon 

synthesized has a high graphite index, as checked by both X-ray diffraction (XRD) and 

Raman spectrum. Later, this carbon rod was encased by polymer lined stainless steel 

tubing as a monolithic column for HPLC and checked with a series of alkylbenzene 

compounds.  The resulting column possessed the typical properties of monolithic 

columns, i.e., high efficiency and low hydraulic resistance. The synthetic method 

described here is a versatile procedure for the production of tailored, bimodal, porous 

carbon monoliths. 

 52



 53

4.2 The synthesis and chromatographic evaluation of carbon monolithic columns 

Chemicals: Resorcinol (99.9+%), formaldehyde (37% wt aqueous solution), iron 

trichloride (99.8%), toluene (99.9%), ethylbenzene (99.9+%), propylbenzene (99.9%), 

butylbenzene (99.9%), and amylbenzene (99.9%) were obtained from Aldrich (St.Louis, 

MO). Ethyl alcohol and HPLC solvents were purchased from VWR (West Chester, PA). 

10 µm Kromasil silica beads were obtained from Eka Nobel (Bohus, Sweden). Deionized 

water was homemade. All chemicals were used as received from the manufacturers. 

Preparation of the precursor rod: 6 g of silica beads were dispersed in 5 g of an 

aqueous solution of ethanol (80% ethanol) by ultrasonication. 1.08 g FeCl3 was then 

dissolved into the suspension, followed with 2.2 g of resorcinol, dissolved by shaking by 

hand. The colloid solution turned dark immediately after the addition of resorcinol, 

indicating the formation of a resorcinol/Fe(III) complex. 2.4 g of an ice-cooled, 37% 

formaldehyde solution in water was introduced into this mixture, in one step, and shaken 

again. The mixture was kept in an ice and water bath for 10 minutes and stirred 

magnetically. After removal from the bath, the mixture was slowly transferred into 5 mm 

ID glass tubes that were capped when filled. These tubes were then placed in a 70°C hot 

water bath. The mixture was soon polymerized into a solid rod inside the glass tube. The 

rod detached from the tube wall because of the shrinking caused by polymerization. The 

polymer rod aged in the glass tube as it was kept in the hot-water bath overnight. The 

crack-free phenolic resin/silica rods were removed from the glass tubes by shaking each 

tube toward its open end. The wet rod was put into the hood for three days in order to 

evaporate the solvent and, finally, it was thoroughly dried overnight in a vacuum oven at 
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80 °C. The dried rods were further cured at 135 °C for 4 hours to ensure complete 

polymerization. 

Carbonization and removal of the silica beads and the catalyst: The precursor 

rods were placed into a cylindrical furnace, purged with N2 (45 ml/min). A programmed 

temperature cycle was applied to the furnace. The temperature was first ramped from 135 

to 800 °C at 2.5 °C/min, and then kept at 800 °C for 2 hours to ensure complete 

carbonization. A second temperature ramp took place from 800 to 1250 °Cat 10 °C/min. 

The temperature was kept at a constant 1250 °C for 1 hour. Afterward, the furnace was 

allowed to cool naturally to ambient temperature. The silica beads and the iron catalyst 

were removed by concentrated hydrofluoric acid, washed away with copious amounts of 

distilled water. The porous carbon rod obtained was thoroughly dried under vacuum at 80 

°C. 

Imaging of the pores and the carbon texture: The surface morphology was 

examined with a Philip XL30FEG scanning electron microscopy (SEM) at an 

accelerating voltage of 10 KV. Further examination of the pore morphology and the wall 

texture was performed with a Hitachi HD-2000 scanning transmission electron 

microscopy (STEM), with an accelerating voltage of 200 KV and a current of 30 µA. 

STEM samples were prepared by grinding the carbon monolith in an agate mortar and 

loading the powder on normal carbon film TEM grids.  

Raman microscopy study: Raman spectra were recorded with a Renishaw 2000 

Raman microscope equipped with a CCD detector, using an Argon ion laser (514.5 nm 

excitation wavelength, 5 mW). An objective lens with a magnification of 50 X was used, 
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both to focus the laser beam and to collect the backscattering radiation. All spectra were 

recorded with an exposure time of 10 seconds. Each spectrum was the accumulation of 

three scans. A non-linear, least-square routine provided by the commercial data process 

software Origin 6.0 (Originlab Corporation) was used to curve-fit the Raman spectra to a 

Lorentzian function. Values of the band position and the band intensity were derived 

from the result of this curve-fitting exercise.  

X-ray diffraction: X-ray diffraction patterns were measured with a Siemens 

D5005 X-ray diffractometer with copper Kα line (0.1541 nm) as the incident beam. A 

Gobel mirror was employed as a monochromator. Powder samples were prepared by 

grinding the monolith with an agate mortar. The sample powder was loaded to a plastic 

holder and leveled with a glass slide before being mounted on the sample chamber. 

Because no peaks emerged at angles larger than 2θ = 60°, the specimens were scanned 

between 5 and 60°.  The scan step-width was set to 0.001° and the scan rate to 0.001°/s. 

The d002 peak was curve-fitted with Origin 6.0 to a Lorentzian function. The peak 

position and half-maximum peak width were derived from the curve fitting. 

BET measurement: Nitrogen absorption/desorption measurements were 

performed with a Micromeritics Gemini 128. Typically, a piece of 0.05 g carbon 

monolith was loaded into the apparatus for the measurement. The values of the pore size 

distribution and the surface area of the sample were derived from the BET isotherm by 

using the supporting software of the instrument. 

Cladding of the rod column and HPLC test: The rod column was clad according 

to the configuration described in Section 2.2.2. Briefly, the carbon rod was clad in an 
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oven at 340°C with a section of heat-shrinkable Teflon tubing. The encapsulated carbon 

rod was then glued into a precut 4.6 mm I.D. stainless steel tube with epoxy glue. The 

configuration of the column cross-section is illustrated in Fig 6. The column is then ready 

to be connected to the HPLC system using reduction unions (1/4” to 1/16”). Each 

monolith column contained a piece of carbon rod of 3.4 mm diameter and 80 mm length. 

The weight of the carbon rod was 0.164 g.  

All chromatography tests were performed with a Hewlett-Packard (Palo Alto, CA, 

USA) HP 1100 LC system. The whole system consists of a binary pump, an online 

degasser, an autosampler, a variable wavelength UV detector, a column thermostat, a data 

station, and a HP PC workstation with a Windows NT operating system. The instrument 

control and data acquisition were performed using Chemstation software (Rev A 05.03). 

The column temperature was maintained at 25 °C. For the analysis, pure methanol and 

dichloromethane were delivered through the binary pump. The ratio of these solvents was 

adjusted by Chemstation software.  

The freshly made columns were washed by flushing them with pure solvents, at 1 

ml/min, in the following order: water (5 hours), methanol (2 hours), hexane (2 hours), 

and dichloromethane (2 hours). The probe compounds were toluene, ethylbenzene, 

propylbenzene, butylbenzene, and amylbenzene. Each solution contained 0.5 mg of 

analyte in 1ml of hexane and the injection volume was 10 µl. Hydraulic resistance was 

evaluated with pure hexane. The system pressure drop was read out and recorded with 

Chemstation software. The pressure drop caused by the system tubing was measured by 

eliminating the column and directly connecting could the inlet and outlet tubings. The net 
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pressure drop over the column was calculated by subtracting the system tubing pressure 

drop from the total recorded pressure drop. 

4.3 Results and discussion 

Preparation of a porous carbon rod with a bimodal pore distribution: The 

preparation of carbon monolith involves two major issues:(1) the prevention of cracks 

and (2) the development of the mesopore structure. The formation of cracks is the most 

pervasive problem in the preparation of monolithic materials. The drying procedure is 

most important in the production of large pieces of crack-free, porous monoliths by wet 

chemistry. Careful attention was paid to all three steps of the synthesis protocol, which 

could all induce the cracking of the rod.  Each step has the potential to cause internal 

stress leading to the cracking of the rod. 

The first step is the aging and drying of the silica/phenolic resin wet rod.  After 

the phenolic resin has been formed and the silica beads are agglomerated within a rod in a 

glass tube, this rod is aged overnight at 70 °C. During this process, internal stress 

develops, caused by solvent molecules leaving the resin.  This stress tends to crack the 

wet gel. Aging allows the phenolic resin to form a substantially cross-linked bulk 

polymer strong enough to overcome this stress. The aging temperature is set below the 

boiling point of ethanol to avoid the formation of bubbles inside the rod. Hydrogen bonds 

between silanol groups on the silica surface and hydroxyl groups in the polymer matrix 

provide strong adhesion of the silica beads to the phenolic resin, making the whole rod 

hard and strong. The aged wet rod was then dried slowly, at room temperature, inside a 

hood.  These mild drying conditions prevent cracking on the precursor rod. 
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The second challenge is in the carbonization of the dry precursor rod. The 

carbonization of phenolic resin generates large amounts of water vapor, carbon 

monoxide, and hydrogen. These gases must be evacuated to avoid the stress that their 

expansion causes within the rod. When the rate of increase of the temperature is 

controlled and kept below 2.5°C/min, the formation of gas is slow enough to ensure that 

the gases escape from the polymer matrix without cracking the rod. Two other important 

potential sources of cracking, shrinking and thermal expanding, are inoperative here. As 

is illustrated in Figure 20, the silica templates are closely packed in the dry precursor rod. 

The resin is located in the voids between silica beads. Consequently, the shrinking, which 

is caused by carbonization, is localized within the voids among silica beads. This is the 

reason why no significant overall shrinking is observed during carbonization of the silica 

embedded precursor rod. The localized shrinking has two positive effects on the 

preparation of the porous carbon matrix: (1) It provides space for the thermal expansion 

of the pyrolyzed carbon (note that the linear thermal expansion coefficient of fused silica 

is 0.36 × 10-6 K-1 at 1000K and of graphite 30 × 10-6 K-1);73 and (2) it enlarges the 

connecting windows among the silica beads.  The second effect contributes significant 

connectivity to the macropores, which result from the removal of the silica beads. More 

details are given in the discussion Porosities of the rod. 

The last challenge is the cladding operation. The carbon rod was wrapped in a 

piece of heat-shrinkable PTFE tubing. The PTFE tube shrank over the carbon rod when 

the temperature of the heated tube dropped. A slow cooling of the hot PTFE tube 

prevents cracking the rod.  



 

Figure 20. Schematic representation of the fabrication of column monolithic 

columns. 

 

Porosities of the Rod: As was demonstrated by Nakanishi and his colleagues,13, 50 

a good monolith for chromatography has a bimodal porous structure. The intriguing 

properties of monolithic columns are due mainly to this pore combination.  The 

macropore network affords a low hydraulic resistance of the column. The flow-through 

channels within the monolith offer a more regular shape than those around the particles of 

a conventional bed; thus, the band dispersion is reduced in monolith columns. To build 

up regular flow-through channels within the carbon monolith, we used narrow size 

distribution silica beads. Figure 20 illustrates the basic procedure used for making our 

porous monolithic columns. 

 59



 60

The role and properties of the mesopores in the skeleton of the monolith are the 

same as those of the mesopores in the particles of conventional beds.  They provide a 

sufficient surface area to ensure retention and separation. However, the glassy carbon that 

is obtained by pyrolysis of phenolic resins is microporous, which was proven by earlier 

researchers to be inappropriate for a stationary phase. Knox and his associates eliminated 

most of the micropores in glassy carbon through graphitization.69, 72 Graphitization must 

be carried out at very high temperatures, about 2400 °C or higher. Such high 

temperatures are not easy to achieve in a laboratory. Moreover, a temperature treatment 

this high will drastically diminish the mesoporosity of the glassy carbon; the graphitized 

carbon rod may no longer have a large enough surface area to achieve separations. To 

produce mesoporous carbon, catalytic graphitization is often used. It has the potential to 

yield a product with a high graphite index at a relatively low temperature.  

The mesoporosity in the carbon monolith was developed by in situ catalytic 

graphitization. The polymer prepared was a complex of iron, resulting from the 

polycondensation of the resorcinol/iron complex. The iron ions were reduced to iron 

atoms during the carbonization. These atoms of iron catalyze the crystallization of glassy 

carbon. This crystallization of the microporous glassy carbon forms graphite strips in the 

carbon matrix. These graphite strips are plainly evident in transmission electron 

microscopy. Figure 21 suggests that the graphite strips are woven in the carbon mass. The 

inset in Figure 21 clearly reveals the crystalline structure of the graphite strips. During 

graphitization, the micropores are eliminated, merging gradually into mesopores between 

the graphite strips. The glassy carbon turns into graphite strips and becomes denser,  
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Figure 21. TEM image of the carbon matrix made with STEM in the 

ultrahigh resolution mode. 
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Figure 22 (A). SEM image of the macropore morphology. (B). STEM high 

resolution SEM image of the mesopores in the carbon skeleton. 

causing an increase in the mesoporous volume. Figure 22 shows images of the mesopores 

and macropores. Figure 22A is a SEM image of the macropores that appears to have 

diameters between 5 and 10 µm. Figure 22B is a high resolution SEM image of 

mesopores on a macropore wall, taken by the STEM instrument. 

The mesoporosity of the carbon monolith was further examined by measuring the 

BET nitrogen adsorption/desorption isotherm. Figure 23 shows the isotherm, which does 

not have the sharp condensation step that characterizes a narrow pore size distribution. 

The mesopores in the rod have a wide size distribution with irregular pore shapes (Figure 

22B). Because the voids between graphite strips cannot be controlled, the pores between 

graphite strips can have any shape and size. The volume of micropores and mesopores 

derived from the BET isotherm were 0.0218 ml/g and 0.5229 ml/g respectively. The 

specific surface area attributed to the micropores and mesopores were 42.33 and 162.94 

m2/g, respectively.  
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Figure 23. The nitrogen adsorption/desorption isotherm of the carbon monolith. 

While the graphitization of the glassy carbon resulted in a significant shrinking of 

the material, there was no shrinking after carbonization of the precursor rod. In a control 

experiment, a polymer rod made without imbedded silica beads shrank after 

carbonization. The incorporation of silica beads seems to prevent shrinking. Assuming 

densities of 1.8 and 1.0 g/cm3 for the silica beads and the phenolic resin respectively, the 

approximate volume ratio of silica to polymer was about 1.3, meaning that the silica 

beads occupied a large fraction of the space in the rod. As suggested in Figure 20, the 

phenolic resin occupies the voids between the closely packed silica particles. During 

carbonization, the carbon formed remains in these spaces and shrinking is confinined to 
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them, possibly causing the holes between macropores to open up more. The close-packed 

structure of the silica beads controls the overall dimension of the rod which is unaffected 

by the shrinking due to carbonization. Figure 22A shows that the macropores in the 

carbon monolith are a reproduction of the close-packed silica beads.  

Carbon texture characterized by Raman spectra and X-Ray diffraction: Figure 21 

reproduces a TEM image that suggests that the carbon monolith is woven by graphite 

strips. TEM can only reflect local information on the small areas viewed under 

microscopy. In order to obtain overall information on the carbon monolith, the carbon 

texture was studied by Raman spectroscopy and X-Ray diffraction.  These methods 

average the signal coming from the whole carbon rod.  Figure 24 compares the Raman 

spectra of the carbon monolith, of glassy carbon, and of commercial graphite. There are, 

in principle, two vibration modes in the plane of the hexagonal sheets of graphite that are 

active in Raman: the shear and the stretching modes. The shear mode is difficult to 

observe due to the broadening of its band caused by the lack of stacking order in graphite. 

The stretching mode exhibits a useful peak at ca.1548 cm-1, which informs on the 

order of a carbon sample. This peak is called the G-line. In disordered carbon, the G-line 

is broadened and shifted to 1600 cm-1. The action of broadening and shifting depends on 

the degree of disorder of a carbon sample. Another line, the D-line at ca.1354 cm-1, is 

also present in the spectrum of disordered carbon. This line is attributed to the A1g mode, 

active in Raman due to the imperfection of the graphite. The ratio of intensities of G- and 

D-lines varies systematically with the orderliness of the graphite structure. As shown in 

Figure 24, the intensity ratio of the G- and D-lines is higher in commercial graphite than 



 

Figure 24. Raman spectra of the carbon monolith, glassy carbon, and commercial 

graphite. 
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in monolithic carbon and higher in monolithic carbon than in glassy carbon. The 

coherence length La can be derived from the intensity ratio of these two lines according to 

the Tuinstra--Koenig relationship.74 The La value of the monolith is 16.5 nm, smaller than 

the value for commercial graphite, 31.7 nm. As mentioned above, the information 

conveyed by Raman spectrum is the average of the signals coming from the carbon 

illuminated by the laser beam. The carbon monolith is only partially graphitized, so the 

value derived for La is the average for the graphite strips and the glassy carbon grains. 

The X-ray diffraction patterns of grounded samples of both commercial graphite 

and the carbon monolith are shown in Figure 25. The commercial graphite exhibits peaks 

corresponding to the planes (002), (100), and (004), located at 26.34, 43.01, and 53.86°, 

respectively. The carbon monolith has a few more peaks, which are attributed to residual 

metal iron and iron carbide. The (002) peak of the carbon monolith is noticeably broader 

and lower than that of commercial graphite. Moreover, its position in the carbon monolith 

is shifted slightly, to 26.05°, indicating that the interplanar d spacing of the carbon 

monolith is larger than that of commercial graphite. According to Bragg’s law, the 

interplanar spacing is given by d002 = λ/sinθ, where λ is the wavelength of the incident X-

ray beam. The copper Kα line is 1.541Å. The calculated interplanar d spacing is 3.418 Å 

for the monolith and 3.382 Å for commercial graphite. The graphitization index is used to 

characterize the quantifiable degree of similarity between a carbon material and a perfect 

single crystal of graphite. The graphitization index is derived from the average 

interplanar spacing between two successive graphite layers, according to the equation: 

354.3440.3
440.3 002

−
−

=
dg p                                                                     4.2 
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Figure 25. Powder X-ray diffraction patterns of the carbon monolith and of 

commercial graphite. 

 

 67



 68

Using the d002 values reported above, the graphite indices for the carbon rod and for 

commercial graphite are 0.244 and 0.674, respectively. The low graphite index indicates 

that the structure of the carbon monolith is far more disorderly than that of commercial 

graphite.  

In addition to its angle position, the width of the (002) peak provides information 

useful in estimating the average graphite grain size.  Based on this peak width, the 

coherence lengths Lc and La can be estimated with the Debye-Sherrer equations: 

 Lc = k λ/β cosθ                                                                        4.3 

La = 1.84 k λ/β cosθ                                                                 4.4 

where k is the shape coefficient, λ is the wavelength of the incident beam, θ is the Bragg 

angle, and β the full width at the half maximum (FWHM). Usually, k is set to 1. The Lc 

and La values calculated for the carbon monolith were 10.3 and 19.0 nm, respectively. 

Note that the La value calculated by X-ray diffraction is slightly higher than the La value 

given by Raman. This minor difference arises from a systematic error between these two 

methods. With a shape coefficient of k = 0.9, the La would be 17.1 nm, quite close to the 

Raman value (16.5 nm). On the other hand, Raman microcopy examines only a small 

superficial area, 2 µm in diameter, which is illuminated by the laser beam, while X-ray 

diffraction averages the structural information over the whole bulk of the sample.   

Chromatographic evaluation: Due to the strong adsorption of analytes on 

graphite, their elution on carbon columns is achieved with strong solvents. Usually, 

solvents such as methanol and acetonitrile are weak on graphite; dichloromethane is used 

most frequently .8 The carbon monolithic columns prepared as described above were 
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tested with pure dichloromethane as the mobile phase. As shown in Figure 26, the elution 

peak exhibits severe tailing and column efficiency is poor. The possible causes of band 

broadening and tailing on graphite are micropores, minerals, and halogen-, oxygen- and 

nitrogen-impurities located on the surface or at the edges of the graphite strips. Heating 

the carbon rod up to 1600 °C under a hydrogen stream could reduce the halogen-, 

oxygen-, nitrogen- containing groups on the graphite surface or edges. However, such a 

treatment did not improve the column performance, ruled out that source of the problem. 

Iron metal or its compounds may have an effect. Several minor peaks in the X-ray 

diffraction pattern indicate that the monolithic carbon rod has a small amount of residual 

iron particles and iron carbide. Since the residual iron particles are embedded in the 

graphite strips, they do not cause band broadening of the chromatographic peaks. 

However, the superficial iron carbide cannot be removed by acid washing and may 

remain on the graphite surface, causing the tailing of chromatographic peaks. Further 

investigations are planned to evaluate the possible effects of iron carbide on column 

performance.  

A small amount of n-hexane in the mobile phase significantly improves column 

performance.75, 76 Figure 26 compares the peaks of toluene eluted with dichloromethane, 

with and without 1% of n-hexane. Nearly the same result is obtained with as little as 

0.5% of n-hexane. A typical chromatogram for the separation of n-alkylbenzene mixture 

is shown in Figure 27. The mobile phase was a mixture of 30% methanol, 69% 

dichloromethane, and 1% n-hexane. The simple explanation is that the carbon rod still 

contains micropores, due to a partial leaching of iron metal and an incomplete 
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Figure 26. Elution of toluene in dichloromethane with and without 1% of n-hexane. 
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Figure 27. Chromatogram of five alkylbenzenes in a mobile phase made of methanol 

(30%), Dichloromethane (69%), and n-hexane (1%). The elution order is (1) toluene 

(k’, 0.10), (2) ethylbenzene (k’, 0.35), (3) propylbenzene (k’ 0.72), (4) butylbenzene 

(k’ 1.29), (5) amylbenzene.(k’ 2.41). 
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crystallization of the carbon. Indeed, the BET nitrogen absorption/desorption 

demonstrated that the carbon monolith has a micropore volume of 0.0218 ml/g and a 

micropore specific surface area of 42.33 m2/g. Column performance is improved by 

adding n-hexane because the micropores are completely filled, or nearly so, with the 

alkane.   

Figure 28 shows a plot of the column HETP for toluene in dichloromethane v. the 

mobile phase velocity. The experimental data were fitted to a simple Van Deemter 

equation.  The best numerical values for A, B, and C were 70.17, 1.69, and 0.73 (length 

unit, 1µm). The column had a minimum HEPT of 73.5 µm. The A term, which is the 

multipath term, is large because the macropore size is large. It is 5 times higher than for 

the Chromolith Performance (E.M. Merck, Darmstadt, Germany) silica column, a 

commercial rod column.5 The B term is within normal range. The C term is small, a 

benefit of the monolithic packing. Because the pore structure of monolithic columns 

provides a better communication between their networks of mesopores and macropores 

than that in conventional packed columns, mass transfer kinetics tends to be faster in 

monolithic columns than in particle columns. This may explain the small size of the C 

term. Thus, column efficiency decreases markedly less with increasing mobile phase 

velocity in rods than in particle beds, and consequently, monolith columns give better 

separations at high mobile velocity than particle beds. 

Column Porosity: One remarkable property of monolithic columns is their high 

permeability, which allows their operation at high mobile phase velocity and the 

achievement of fast analyses. The porosity and permeability of carbon monolith columns  
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Figure 28. Van Deemter plot of the column HETP versus the linear velocity of the 

mobile phase. The data were obtained from the elution bands of toluene in 99% 

dichloromethane and 1% n-hexane (additive). The data were fitted to a simple Van 

Deemter equation, with A with A = 70.17, B = 1.69, and C = 0.73. 



are high, even compared to those of silica monoliths. The lack of a non-retained 

compound makes it difficult to measure the total porosity directly;  however, it can be 

estimated with reasonable accuracy. The internal porosity of the monolith carbon column 

has been measured by BET. The micropore and the mesopore volumes are 0.0218 and 

0.5229 ml/g, respectively. The density of graphite of  ca.2.2 g/cm3 produces an internal 

porosity of ca. 0.545. Adjusting the quantity of silica beads in the initial rod can control 

the external porosity. A typical 80 x 3.4 mm rod weighs approximately 0.164 g. The total 

porosity derived from these figures is 0.897, leading to a value of about 0.325 for the 

external porosity. Merck Chromolith Performance columns have an internal porosity of 

ca. 0.631, an external porosity of ca. 0.229, and a total porosity of ca. 0.81.5

Column Permeability: The permeability of a column is given by the equation: 

L
pKu

η
∆

= 0                                                                            4.5 
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where u is the mobile phase flow velocity, K0 the permeability of the column, ∆p the 

pressure drop, η the viscosity of the mobile phase (0.33×10-2 Poise for pure hexane at 

25°C), and L the column length. Figure 29 plots the pressure drop v. mobile phase linear 

velocity, proportional to Fv. Fitting the data to eq. 4.5 gives the value of 1.588×10-8 cm2 

for the specific permeability. The average permeability of six Chromolith Performance 

columns, measured with three different water/methanol mixtures, was 7.7 x 10-10 cm2, or 

twenty times less.  This means that the same flow rate could be obtained with the two 

types of rod columns, at the same head pressure, but with a mobile phase 20 times more 

viscous on the carbon rod than on the silica monolith. This is an important advantage 

because the elution of most analytes on graphitized carbon requires mobile phases that  
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Figure 29. Plot of the pressure drop versus the mobile phase velocity (pure hexane 

as the mobile phase) 

are more strongly polarized and have a higher molecular weight than the conventional 

eluents used in RPLC.70  

The bunch-of-capillary model allows a simple comparison of the permeabilities of 

monolithic and packed columns. This model assumes that the network of channels in 

packed-bed, or rod columns, is analogous to a bundle of parallel capillary tubes as long as  

the column. The number and diameter of capillaries in the bundle are specified by the 

conditions that the column and the bundle have the same void volume and that they 

deliver the same flow rate under the same inlet pressure. The application of the model 



requires some further simplification due to the substantial differences in the constriction 

and tortuosity of the flow-through channels in the two types of columns.  We assume that 

the constriction and tortuosity of the channels in the rod column are equal to unity.  In the 

packed column, these factors will be taken into account by using the Darcy definition of 

permeability in porous media, proportional to the square of the packing particles.75 

Because the length of the column and of each capillary is equal, the equality 

between the volumes of the bundle and of the column requires the number of capillaries 

to be given by 

crod rrn 22 /•= ε                                                           4.6 

where ε is the external porosity of the rod column, and rrod and rc are the radius of the 

carbon rod and the capillary, respectively. The flow rate through a capillary tube is given 

by the Hagen-Poiseuille equation: 

η
π

L
prF c

v 8

4∆
=                                                                4.7 

Hence, the total flow rate through the bundle of capillaries equivalent to the column is  

η
επ

L
rprF rodc

v 8

22∆
=                                                          4.8 

From equation 4.8, we derive the average linear flow velocity of the mobile phase in the 

bundle of capillaries,  

η
ε

π L
pr

r
Fu c

rod

v

8

2

2

∆
==                                                        4.9 

Combining eqs. 4.5 and 4.9 identifies a simple relationship between column permeability 

and channel size: 
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K0  = ε rc
2/8                                                                  4.10 

Column permeability is proportional to its porosity and the square of the average 

macropore radius. Using the previous values of porosity and permeability for these 

columns, this equation furnishes values of 1.7 and 7.53 µm for the channel diameters of 

the Chromolith Performance silica monolithic column and for our carbon monolithic 

columns, respectively. Thus, the ratio of the column permeability of the carbon monolith 

to that of the silica monolith is about 20:1. The calculated channel size of the carbon rod 

is smaller than 10 µm, which is the diameter of the silica beads used as the templates for 

the macropores. This difference is due to a “bottleneck” effect caused by the small pore 

openings. After the silica beads are removed, the resulting spherical voids are connected 

through small windows that are enlarged during graphitization but remain narrower than 

the beads. The channel size derived from eq. 4.10 is a weighed average of the 

contributions of the spherical macropores and the connecting windows. 

The A term in the Van Deemter equation keynotes the plate height of the column. 

Similarly to the particle columns, the A term of the monolithic columns is proportional to 

the channel size. The Chromolith Performance silica monolithic columns have an average 

channel size of 1.7 µm and their average A term is about 7.5 µm. Therefore, the ratio of 

A term to channel size is ca. 4.4. The same calculation has been done for the carbon 

monolithic columns; the ratio is ca. 9.3, which is 2 times greater than that of the silica 

monolithic columns. Due to the “bottleneck” effect, the channel irregularity of the carbon 

monolithic columns is larger that of the silica monolithic columns. Consequently, the 

ratio of minimum HETP to channel size of carbon monolithic columns is larger than that 



of silica ones by a factor of 2. The regularity of the channels in carbon monolithic 

columns can be improved either by packing the silica templates closely to enlarge the 

connecting windows among the spherical voids, or by using uniform silica beads as 

templates.  

To compare a monolith and a conventional packed column, Kele and Guiochon5 

derived a simple equation relating the capillary diameter and the equivalent particle size: 

pc dkr 08=                                                                        4.11 

where k0 is the permeability coefficient (k0 = 0.001). For a channel diameter of 7.53 µm, 

the equivalent particle size would be about 41.8 µm. This explains why the carbon rod 

column has such an extremely low pressure drop (see Figure 29). 

4.4 Conclusion 
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We were able to prepare a carbon monolithic column that exhibits useful 

chromatographic properties. This column is made of a partially graphitized, pyrolyzed 

phenolic resin. It has a bimodal porous structure. The flow-through channels consist of 

macropores approximately 10 µm in diameter connected through narrower, but quite 

significant, windows. The result is a column with high permeability, equivalent to that of 

a bundle of 7.5 µm capillary tubes. The pyrolyzed carbon has a total surface area of 205 

m2/g, ensuring significant retention in spite of high column porosity. Mesopores and 

micropores contribute to the surface area. The mesopores have a broad size distribution. 

The small quantity of micropores causes serious band broadening in pure 

dichloromethane, but the addition of a low concentration of n-hexane to the mobile phase 

considerably reduces the effect. Good separations of n-alkylbenzenes were achieved with 
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dichloromethane and methanol as the mobile phase, with 1% n-hexane as an additive. 

Column efficiency is moderate, with a minimum plate height of 73.5 µm, consistent with 

the large average size of the flow-through pores. However, the HETP increases slowly 

with increasing mobile phase velocity, indicating rapid mass transfer kinetics in the 

mesopores.  

These results confirm that the procedure described is promising. The preparation 

of efficient graphitized carbon columns has been a goal tantalizing several research 

groups for some time because this adsorbent would effectively complement the stationary 

phases available in HPLC. The major obstacles were those encountered in this work: the 

formation of micropores and the preparation of highly efficient columns. Several obvious 

approaches could be followed to improve on our results. TEM analyses showed graphite 

strips that result from in situ catalytic graphitization of the pyrolyzed resin. The graphite 

index, however, is only 0.244, indicating partial graphitization. This explains the 

excessive amount of micropores, which could be reduced by increasing the yield of this 

last step in preparing of the columns. Using smaller beads would allow the preparation of 

more efficient, but less permeable, columns. 

Finally, recent important advances have been made in electrochemically 

modulated liquid chromatography. It was proved that various separations can be 

modulated with the aid of electrochemistry.23-26 Modifications of the surface of the 

stationary phase in the column can be made online. A carbon monolithic column would 

provide a surface possessing more homogeneous electric properties than those of a 

packed column. 
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4.5 Problems to be solved 

Though using silica particles can produce carbon monolithic columns with 

tunable porosities of both macropores and mesopores, the removal of silica particles is an 

inefficient process; it will be more expensive to manufacture carbon monolithic than 

particulate columns. Moreover, the bottleneck effect of spherical macropores is a serious 

obstacle for connectivity of the macropores. In next chapter, we describe a new method to 

address these two problems with the fabrication of carbon monolith via phase separation. 
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Chapter 5: Phase separation for the synthesis of carbon monolithic 

column with hierarchical structure 

A method to produce porous carbon rods by using silica microspheres as 

templates was described in the previous chapter. The use of silica particles as templates 

in the synthetic method has an obvious advantage in that the pore sizes of the macropores 

are predetermined by the selection of the templates. The porosity of the rod is easy to 

control in this way. However, the removal of the templates is wasteful. The possible 

residue of templates seriously affects the properties and the reproducibility of the column. 

As pointed out in the previous chapter, the “bottleneck” effect of the spherical voids 

weakens the hydrodynamics of the monolithic column. These problems do not occur in 

silica columns prepared by a different synthetic approach, i.e., phase separation. In this 

chapter, we explore the utilization of phase separation in the synthesis of hierarchically 

structured porous carbon rods. The carbon rods synthesized in this process are made from 

porous polymer rod precursors; the phase separation happens during the preparation of 

the polymer rod. 

5.1 Background of phase separation 

Phase separation is a well-established method for the synthesis of macroporous 

polymers with pore size and distribution in the low µm-range.77 To induce phase 

separation in the polymer system, two basic methods have been developed. One is 
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thermally induced phase separation (TIPS), and the other is chemically induced phase 

separation (CIPS). 

Thermally induced phase separation is carried out in a polymer solution in which 

the phase diagram exhibits an upper critical solution temperature. The polymer forms a 

homogeneous solution when it has been heated to the upper critical solution temperature. 

The homogeneous solution can be induced to phase separation by thermal quench to fall 

into the binodal or spinodal line, thus resulting in a two-phase morphology. Depending 

on the quench rate and the composition, phase separation occurs either through 

nucleation and growth, or via spinodal decomposition. Complete knowledge of the phase 

diagram, kinetics, and thermodynamics is required for control of the phase separation 

system. A good example of the thermally induced phase separation is the synthesis of 

polystyrene foam.78 The solution of polystyrene in cyclohexane was heated to above the 

upper critical solution temperature and then thermally quenched to produce polystyrene 

foam with a density as low as 0.02 g/cm3.78, 79 Due to the limits of thermal exchange, 

thermal induced phase separation is only suitable for the preparation of thin films, where 

a fast thermal transfer from the heated solution to the environment can be achieved. 

 Chemically induced phase separation is also called polymerization induced phase 

separation.80-84 To carry out the chemically induced phase separation, the reactive 

precursor(s) is mixed with the non-reactive low molecular weight or oligomeric 

solvent(s). The selection of the solvent or mixture of solvents is very crucial, as a 

moderate solvent is required for the reactive precursors to give a homogeneous solution 

in the initial stage and be an immiscible solvent for the polymerized reactive precursors 



to obtain a phase separated final morphology. Unlike the thermally induced phase 

separation that develops in a very rapid thermal quenching process, chemically induced 

phase separation is a relatively slow process in which the phase separation develops 

progressively during the polymerization of the precursor. The growth or cross-linking of 

the polymer chains results in the immiscibility of the cured polymer and the non-reactive 

solvents. Consequently, the initial solvent becomes a non-solvent in liquid droplets to 

form a secondary phase, which eventually forms voids for the cured porous polymer. A 

general strategy is shown in Figure 30.77 The secondary phase should be volatile, 

extractable, or decomposable to form the voids. The polymer phase should be rigid to 

hold the pores after the removal of the secondary phase. When the polymer is used as a 

precursor for the monolithic carbon column, neither the collapse of the pores nor the 

cracking of the entire bulk material should occur.  

The chemically induced phase separation is less understood than thermally 

induced phase separation due to the theoretical complexity of this method. Nonetheless, 

chemically induced phase separation has been widely utilized in the preparation of porous 

polymers in forms from of thin films to large chunks.  

 

Figure 30. General strategy for chemically induced phase separation. 
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5.2 Theory of phase separation 

The theory of phase separation is based on the thermodynamics of the mixing 

system. These theoretical guidelines considerably simplify the practice of phase 

separation. In the following sections, these guidelines are summarized.   

5.2.1 Thermodynamics of phase separation and Flory-Huggins theory85

Thermodynamically, phase separation results from a change in the free energy of 

the mixing system, ∆G. Any mixing system falls into one of three types of free energy 

(∆G) v. composition (Φ) curves.  These three types of free energy curves are presented 

schematically in Figure 31 as lines a, b, and c.  

 

 

Figure 31. Schematic representation of free energy curves. 
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When two components are completely miscible, the free energy is negative in the 

entire composition range, which is indicated by line a. No phase separation occurs in the 

miscible system. When the components are totally immiscible at any composition ratio, 

the free energy curve is represented by line c, in which free energy is always positive. In 

this case the two components always exist in two separated phases. When the free energy 

curve is between lines a and c, the free energy change has two minima and one maximum 

and inflection points as shown in line b. 

The two inflection points are given by the vanishing of the second derivative of 

free energy change with respect to the composition ratio as indicated by equation 5.1. 

02

2

=
∂
∆∂
φ

G                                                                         5.1 

When the composition is between the two inflection points, the homogeneous 

system spontaneously decomposes into two phases (denoted as phase I and II). The two 

components decompose in two individual phases through up-hill diffusion against the 

concentration gradient. This decomposition is known as spinodal decomposition. 

At the point of equilibrium, the chemical potentials of each component should be 

equal at both phases. For example, the potential chemical equilibrium of a 

polymer/solvent system can be expressed by equations 5.2 and 5.3. 

II
pol

I
pol uu =                                                                       5.2 

II
sol

I
sol uu =                                                                        5.3 

When the two points of the free energy curve have a common tangent, the 

thermodynamic conditions of these two points are equal. The polymer enriched and the 
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solvent enriched phases can coexist in the system. The portion of the free energy curve 

between these two points is called the binodal line. 

 The free energy change is expressed by the Gibbs equation: 

STHG ∆−∆=∆                                                                 5.4 

Any change in enthalpy or entropy will result in a change in free energy. The 

changes in enthalpy and entropy in a polymer/solvent system have been calculated 

independently by Flory and Huggins, using the lattice model.85-89 According to the lattice 

model, the entropic change of polymer/solvent mixing is given by equation 5.5. 

( )solsolpolpol nnRs φφ lnln ⋅+⋅−=∆                                               5.5 

where R is the gas constant, npol and npol are the molar numbers of polymer and solvent, 

and Φpol and Φsol are the volume fraction of the polymer and the solvent. The change in 

enthalpy is expressed by equation 5.6 

polsolnRTH φχ ⋅⋅⋅=∆                                                               5.6 

where χ is the interaction parameter, which indicates interactions between the polymer 

and the solvent molecules. The Flory-Huggins equation 5.7 is the combination of 

equations 5.5 and 5.6 

( )polsolsolsolpolpol nnnRTG φχφφ ⋅⋅+⋅+⋅=∆ lnln                                     5.7 

According to the Flory-Huggins equation, the free energy change in the 

polymer/solvent mixing system is dependent on the temperature, composition and 

interaction between the polymer and solvent.90, 91 Using the Flory-Huggins equation, 

one can reconstruct the phase diagram to represent the phase separation process.  
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5.2.2 Thermally induced phase separation89

Thermally induced phase separation is based on the fact that the interaction 

parameter χ depends on the temperature T. Within a certain temperature range, χ is 

proportional to the inverse of T (equation 5.8). 

T
ba +=χ                                                                        5.8 

where a and b are two parameters that depend on the nature of the polymer and the 

solvent. When b is positive, the mixing system has an upper critical solution temperature 

(UCST). When b is negative, the mixing system is characterized by a lower critical 

solution temperature (LCST). These two types of phase separation systems are 

schematically represented in Figures 32 A and B.92

Both systems are widely used in the preparation of porous polymer films. Since 

the phase separation behavior of these systems depends on the temperature, the thermal 

exchange rate is crucial for the final morphology. In practice, since it is impossible to  

 

Figure 32. Phase diagrams of (A) UCST system and (B) LCST system. 
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achieve thermal homogeneity in bulk materials with a fast thermal quench rate, thermally 

induced phase separation is not suitable for the preparation of large chunk materials. 

5.2.3 Chemically induced phase separation93-102

The theoretical treatment of the chemically induced phase separation is much 

more complex than the thermally induced phase separation. In chemically induced phase 

separation, entropy decreases when the monomers start to polymerize. Consequently, the 

molar fraction of the polymer decreases rapidly with the growth of the molecular weight. 

Hence, entropy changes progressively with the growth of the polymer chain length. The 

phase separation is induced when the free energy curve becomes a line b type.  

The theoretical treatment of chemically induced phase separation is also based on 

the lattice model, where the volume change has been taken into account. The total 

volume of the mixing system is denoted as VT, which is provided by equation 5.9, the 

sum of the volume of polymer and solution. 

solsolpolpolT VnVnV ⋅+⋅=                                                             5.9 

Then the volume fractions of the polymer and solution are: 

T

polpol
pol V
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=φ                                                                          5.10 

T

solsol
sol V

Vn ⋅
=φ                                                                           5.11 

Combining equation 5.5 and 5.9 to 5.11 results in entropy change per unit volume 

∆SV. 
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In the lattice model, the molar volume of the precursor V0 is used as the reference 

volume to rationalize the lattice model. By definition,  

00 n

npol

M
M

V
V

=                                                             5.13 

where, nM  and 0nM  are the average molecular weight of the polymer and monomer. For 

bifunctional cross-linking systems, the molecular weight is related to the conversion q of 

the polymerization by equation 5.14. 

qM
M
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0 −
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Combining equation 5.12, 5.13, and 5.14 gives, 
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After the same treatment in enthalpy, the volume free energy change can be 

expressed by equation 5.16. 
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Thus, the free energy change is a function of the conversion of the polymerization 

q, the temperature T, the composition Φ, and the interaction parameter χ.  

The interaction parameter χ depends on the conversion q and the solubility 

parameter δ. The solubility parameter is contributed by the polar δp, hydrogen bond δh, 

and the dispersive force δd. The difference between the solubility parameter of the 

polymer and the solvent can then be expressed as, 
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When the polymerization occurs, the solubility parameter difference d  is a 

function of conversion q, which is denoted as ( )qd . ( )qd  can be formulated as, 
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Assuming the change in the solubility parameter of the polymer is linear with the 

conversion q, the interaction parameter χ can be expressed as a function of the conversion 

q: 
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2
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Substituting the χ in equation 5.16 by equation 5.19 gives 
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The free energy change is a function of temperature T, conversion q, and 

composition Φ.  Equation 5.20 is the fundamental equation of the chemically induced 

phase separation. In the same way as the thermally induced phase separation, the phase 

diagram of the phase separation can be reconstructed by using equation 5.20. Shown in 

Figure 33 is a reconstructed phase diagram of chemically induced phase separation as a 

function of conversion and composition. 
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Figure 33. Reconstructed phase diagram of chemically induced phase separation as 

a function of conversion and composition.77

Alhough in an actual synthetic case the morphology is also affected by the 

viscosity and the kinetics of the system, the schematically shown phase diagram of the 

chemically induced phase separation is of particular importance for guiding the 

morphologic synthesis of porous polymers. Figure 34 shows various strategies of 

synthesizing different morphologies based on the phase diagram. Spherical particles, co-

continuous and isolated pores can be synthesized based on the ratio of the starting 

materials. 

5.3 The dual phase separation in the ternary mixing system 

The ternary mixing system is far more complicated than the binary system. 

Fortunately, the principles of the binary system can be applied to the phase separation of  
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Figure 34. Morphologies corresponding to different phase diagram zones.77

 

 any two components of the ternary system. Thus the phase separation in the ternary 

system can be simplified as two consecutive binary phase separations. By careful 

selection of the components, two tandem phase separation processes can occur in a 

ternary system. A complicated hierarchically porous structure can be constructed by 

using the ternary system. The schematic representation of the dual phase separation in a 

ternary system is shown in the Figure 35.  

5.4 Experimental  

Chemicals: Ethylene glycol, diethylene glycol, triethylene glycol, p-toluene 

sulfonic acid, and furfural alcohol were purchased from Aldrich; Triblock polymer with 

the commercial name of P123, and P127 were gifts from BASF Corp. Ethanol was 

purchased from ORNL storage. DI water was obtained from the lab pipeline. 
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Figure 35. Schematic representation of the dual separation in a ternary system. FA 

is the furfural alcohol; PFA is the poly(furfural alcohol); TBP is the triblock 

polymer, which contains three blocks of polymer chains; and G is a glycol solvent. 
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Instruments: A homemade water bath was employed for the control of the curing 

temperature of the polymer. The water bath consisted of a water circulator, a water jacket 

chamber, a heating unit, and a programmable temperature control unit. To achieve 

precise control of the temperature, the thermometer was calibrated before use, and the 

sensitivity of the temperature probe was set to 0.1ºC. The heating rates were controlled in 

the range of 0 to 30 ºC/hour by a programmable temperature control unit. A Philip 

XL30FEG scanning electron microscopy (SEM) was used for the characterization of the 

macroporous morphology. An HD 2000 thin film evaluation system was used for 

imaging the mesopores. The porosity and surface area was measured by a Micromeritics 

Gemini 128 system.  

The synthesis of polymer rods: The ternary system consists of three main 

components and a catalyst: furfural alcohol was the reactive monomer; a triblock polymer 

was used as the secondary phase separation agent; glycol solvent was used as the primary 

phase separation agent; and p-toluene sulfonic acid was the catalyst. Since the 

morphologies depend on the composition of the starting mixture, a general procedure for 

the preparation of the polymer rods is specified here. The details of the recipes and their 

corresponding morphologies are presented in the results and discussion section. In a 

typical synthesis, 5 g furfural alcohol was mixed with 5 g P123 by magnetic stirring; 0.8 

g p-toluene sulfonic acid was dissolved in 10 g diethylene glycol.  The p-toluene sulfonic 

acid diethylene glycol solution was then added to the furfural alcohol/P123 mixture in 

three portions. The mixture was then stored overnight at room temperature. The pale 

yellow color of the starting mixture turned to deep dark brown. The mixture was cast into 
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a cylindrical tube and was degassed by connecting to the lab vacuum line, which is 

approximately 30 mmHg. After degassing, the tube was capped and settled in the water 

bath chamber. The heating was programmed as a heating ramp at 10 ºC/hour to 70 ºC and 

then resting at 70 ºC for 10 hours. The cured polymer was removed from the tube by 

opening both ends of the tube and blowing the polymer rod out of the tube via a 

compressed air line. The polymer rods were washed with DI water and then dried in a 

vacuum oven at 100 ºC.   

Carbonization: the polymer rods were placed into a tubular furnace and purged 

with N2 (30 ml/min).  Each polymer rod was contained in a quartz tube, which is only 

slightly larger than the rod. The quartz tube prevents the polymer rod from bending 

during the carbonization. The temperature was ramped to 850 °C at 2°C/min and then 

kept at 850 °C for 2 hours to ensure complete carbonization. Afterward, the furnace was 

allowed to cool naturally to ambient temperature. The carbon rods were graphitized in a 

high temperature furnace at 2800 °C. Unfortunately, graphitization causes serious 

bending of carbon rods; bent graphitized carbon rods cannot be encased under the 

conditions of our experiment.  

Characterization: SEM images were taken with the Philip XL 30 at 15 kv 

electron accelerating voltage. A piece of carbon rod was mounted on the SEM sample 

and held by with a carbon tape. No additional conductive coating was applied to the 

carbon sample. The STEM images of the mesopores were taken by an HD 2000 thin film 

evaluation system. A piece of crashed carbon sample was dispersed in acetone solution 

using an ultrasonic stir. A drop of the suspension was applied to a TEM grid. The grid 
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was dried in the vacuum oven at 100 ºC to completely remove the solvent. The grid was 

loaded into the HD 2000 system and observed at an electron accelerating voltage of 200 

kv. The BET measurement was carried out in a Micromeritics Gemini 128 system. A 

piece of weighed carbon rod was loaded into a sample tube and N2 adsorption/desorption 

at liquid nitrogen temperature was then performed. The software that comes with the 

instrument calculated the pore size distribution and the surface area.   

Clading: The carbon rods were clad into HPLC columns using the polymer lined 

stainless steel tube encasing or polymer coating. See Chapters 2 and 4 for the cladding 

procedure.  

HPLC testing is detailed in Chapter 7. 

5.5 Results and discussion 

5.5.1 The composition of the ternary system 

In a ternary system, if one or two components are polymerizable, the 

polymerization induced phase separation occurs under certain conditions. The phase 

separation occurs in three types depending on the number of reactive components and the 

interaction between each component. The three types of phase separation are: (1) one 

component separated from the homogeneous mixture of the other two components; (2) 

these three components separated from each other consecutively; (3) the three 

components separated from each other simultaneously. Type 1 phase can be treated as a 

binary system. Phase behavior can be predicted by the Flory-Huggins theory. Type 2 

phase separation results in hierarchical morphologies in two discrete length scales. A 

bimodal porous morphology can be achieved using type 2 phase separation at suitable 
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conditions. Type 3 phase separation produces complicated morphologies in a broad size 

distribution. A broad pore size distribution is not favorable in the HPLC column. 

Therefore, type 3 phase separation should be avoided in the synthesis of the porous 

materials.  

If two reactive components co-exist in the ternary system, phase separation is 

determined by the reaction rates of each component, the interactions between the two 

polymerized components, and the interaction between the resulting polymer and solvent. 

The morphologies of the resulting polymer are highly sensitive to the initial composition 

and the reactivity of the two reactive components. The control of the final morphology is 

empirical. If there is only one reactive component in the ternary system, the 

polymerization situation is simpler than the two reactive components system. Although 

phase separation still occurs in the above three forms, the final morphology of one 

reactive component system is less sensitive to the reactivity of the reactive component 

than that of the two reactive components system.  

To simplify the ternary system, we use one reactive component to induce the type 

2 phase separation in a ternary system. The selection of the components is based on three 

rules. First, the initial mixture is homogeneous solution. Second, the resulting polymeric 

structure can be carbonized with carbon yield greater than 30%; although many 

hierarchically polymeric structures can be produced by phase separation, only a few of 

them can be carbonized. Third, according to equation 5.16, during the polymerization of 

the reactive monomer, the component with a small interaction parameter χ separates from 

the system before the component with a large χ. Consecutive phase separation can only 
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occur in a system where the interaction parameters of the non-reactive components are 

significantly different. Fourth, the interaction between the two non-reactive components 

should be as small as possible to avoid cross interference between the two consecutive 

phase separations. Fifth, the non-reactive components should be extractable or thermally 

decomposable.  

In this research, furfural alcohol was chosen as the reactive monomer. The 

poly(furfural alcohol) is a good carbon precursor, retaining the porous structure after the 

carbonization. The two non-reactive components are glycolic solvents and triblock 

polymers in the form of PEOx-PPOy-PEOx. The glycolic solvents are immiscible with the 

PEO-PPO-PEO triblock polymers. Thus, the cross interference between the two phase 

separations is minimized. A homogeneous solution can be achieved by adding the 

furfural alcohol to the mixture of the glycolic solvents and the triblock polymer. The 

polymerization is catalyzed by p-toluene sulfonic acid; p-toluene sulfonic acid is miscible 

with all three components in the ternary system. The composition and the resulting 

morphologies are presented in Table 2. 

5.5.2 Primary phase separation and the control of macropore properties 

The macropores occur during the primary phase separation. In the initial stage, the glycol 

solvents are immiscible with the triblock polymers. The monomer is a good solvent to 

both the glycol solvents and the triblock polymers. As presented in Figure 35, the furfural 

alcohol dissolves the glycol solvent and the triblock polymer at the beginning of the 

phase separation. In the ternary system, the component with the smallest 

 



Table 2 The micro-structure of carbon samples as a function of composition 

Sample 

# 
EG    DEG TEG P103 P108 L121 P123 P127

p-

TSA 
FA 

Mac 

size 

Mes 

size 
Morphology 

PS1            5.0 - - - - - - - 0.4 5.0 - - Spherical particles ~1.5µm

PS2             - 5.0 - - - - - - 0.4 5.0 - - Spherical particles ~1.8µm

PS3             - - 5.0 - - - - - 0.4 5.0 0.5 - Co-continuous

PS4            2.5 2.5 - - - - - - 0.4 5.0 5.0 - Coarse co-cotinuous

PS5             - 2.5 2.5 - - - - - 0.4 5.0 3.0 - Co-continuous

PS6           5.0 - - 2.5 - - - - 0.4 2.5 5.0 0.007 Co-continuous, hierarchical

PS7           5.0 - - - 2.5 - - - 0.4 2.5 - 0.011 Spherical particles ~1.0µm

PS8           5.0 - - - - 2.5 - - 0.4 2.5 1.2 0.008 Co-continuous, hierarchical

PS9 

5.0 -         - - - - 2.5 - 0.4 2.5 2.5 0.010 

Co-continuous, hierarchical 

structure with spherical 

grains, homogeneous grains 

~ 2µm 
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Table 2 Continued 

PS10           5.0 - - - - - - 2.5 0.4 2.5 - 0.021 Spherical particles ~ 1.5 µm

PS11            - 5.0 - 2.5 - - - - 0.4 2.5 1.5 0.007 Co-continuous, hierarchical

PS12            - 5.0 - - 2.5 - - - 0.4 2.5 - 0.010 Spherical particles ~1.5 µm

PS13            - 5.0 - - - 2.5 - - 0.4 2.5 5.0 0.009 Co-continuous, hierarchical

PS14            - 5.0 - - - - 2.5 - 0.4 2.5 3.0 0.012 Co-continuous, hierarchical

PS15            - 5.0 - - - - - 2.5 0.4 2.5 5.0 0.015 Co-continuous, hierarchical

PS16            - - 5.0 2.5 - - - - 0.4 2.5 2.0 0.006 Co-continuous, hierarchical

PS17           - - 5.0 - 2.5 - - - 0.4 2.5 18.5 0.011 Co-continuous, hierarchical

PS18            - - 5.0 - - 2.5 - - 0.4 2.5 2.5 0.009 Co-continuous, hierarchical

PS19            - - 5.0 - - - 2.5 - 0.4 2.5 3.5 0.011 Co-continuous, hierarchical

PS20           - - 5.0 - - - - 2.5 0.4 2.5 10.0 -

Co-continuous, hierarchical, 

fine particle grains with 

average size of ~0.8 µm 

PS21              - - - 5.0 - - - - 0.4 5 - - Fine particles ~0.5 µm
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Table 2 Continued 

PS22             - - - - 5.0 - - - 0.4 5.0 - - Fine particles ~0.7 µm

PS23            - - - - - 5.0 - - 0.4 5.0 0.1 -
Co-continuous fine porous 

structure 

PS24            - - - - - - 5.0 - 0.4 5.0 0.1 -
Co-continuous fine porous 

structure 

PS25             - - - - - - - 5.0 0.4 5.0 - - Fine particles ~0.5 µm

PS26            - 5.5 - - - - 2.0 - 0.4 2.5 3.5 0.021 Co-continuous, hierarchical

PS27            - 5.5 - - - - 2.2 - 0.4 2.3 3.5 0.010 Co-continuous, hierarchical

PS28            - 6.0 - - - - 1.5 - 0.4 2.5 - -
Fail to gel into solid 

polymer 

PS29            - 4.5 - - - - 3.0 - 0.4 2.5 2.8 0.030 Co-continuous, hierarchical

PS30             - 4.0 - - - - 3.5 - 0.4 2.5 - - The gel is too soft to handle

PS31            - 5.0 - - - - 2.0 - 0.4 3.0 1.5 0.009 Co-continuous, hierarchical

PS32             - 5.0 - - - - 1.5 - 0.4 3.5 0.8 - Co-continuous
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Table 2 Continued 

PS33 - 4.5 - - - - 3.5 - 0.4 2.5 - - The gel is too soft to handle

PS34            - 4.0 - - - - 3.0 - 0.4 3.0 2.5 0.015 Co-continuous, hierarchical

PS35            - 4.0 - - - - 2.5 - 0.4 3.5 1.8 0.007 Co-continuous, hierarchical

PS36            - 5.0 - - - - 2.5 - 0.8 2.5 3.0 0.012 Co-continuous, hierarchical

PS37            - 5.0 - - - - 2.5 - 0.2 2.5 3.0 0.012 Co-continuous, hierarchical

PS38            - 5.0 - - - - 2.5 - 0.1 2.5 
Fail to gel into solid 

polymer 

Notes: 1) EG: ethylene glycol; DEG: diethylene glycol; TEG: triethylene glycol 

2) Triblock polymers have a general formula of PEOx-PPOy-PEOx. P103: x=17, y=56; P108: x=129, y=56; L121: x=5, 

y=70; P123: x=20, y=70; P127: x=106, y=70. 

3) p-TSA: p-toluene sulfuric acid. FA: furfural alcohol 

4) The composition is in grams. 

5) Mac size: the average macropore size determined by SEM; Mes size: the average mesopore size measured by STEM. 

All pore sizes are presented in the unit of µm. 

 



 103

 interaction parameter χ to the polymerizing component is the first separating phase that 

turns as the primary phase separation. The primary phase separation dominated the entire 

phase separation in the ternary system. The macropore and average domain size are 

predetermined by the volume fraction of the primary phase separated component. 

The interaction parameter χ is an empirical parameter that can be measured 

experimentally by light or neutron scattering and osmometry for high dilutions, or inverse 

gas chromatography near the polymer melt.91, 96, 98 In the current mixture, we estimate the 

interaction parameter by the domain size of spinodal decomposition in the binary system. 

Samples PS1 to PS3 are the spinodal decomposition of the binary system furfural alcohol 

in glycol solvent. Samples PS21 to PS25 are the spinodal decomposition of the binary 

mixture of the furfural alcohol and triblock polymers. The domain sizes in samples PS1 

to PS3 are obviously larger than those in samples PS21 to PS25. Therefore, the 

interaction parameter χ has a larger value in the block polymer mixture than in the glycol 

solvents. It is evident that the primary phase separation is the glycol solvent separating 

from the polymer mixture.  

The separation process in this ternary system can be described as two consecutive 

phase separations. The primary phase separation occurs when the conversion q of the 

furfural alcohol reaches a certain value such that the poly(furfural alcohol) still forms a 

homogeneous solution with the triblock polymer, but the glycol solvent is no more 

miscible with the polymers. As a result of the primary phase separation, the ternary 

system separates into a glycol solvent enriched phase and a polymer mixture rich phase. 

Afterwards, the poly(furfural alcohol) molecular weight grows with the further 
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conversion of the furfural alcohol monomer. Consequently, the polymer enriched phase 

starts to separate into a poly(furfural alcohol) phase and a triblock polymer phase.  

Shown in Figure 36 are the morphologies of macropores from various 

compositions. Macropore sizes from 0.8 to 18 µm can be tailored by a careful selection of 

the glycol solvents.  

5.5.2.1 The selection of glycol solvents 

In this study we used three glycol solvents: ethylene glycol, diethylene glycol, and 

triethylene glycol. Ethylene glycol has the lowest viscosity and smallest interaction 

parameter with the poly(furfural alcohol). Thus, the primary phase separation of the 

ethylene glycol from the ternary system has spherical morphologies. The spherical 

morphologies are most likely to precipitate out of the system through a nucleation and 

growth mechanism. Although, in a few cases, a co-continuous morphology forms (sample 

PS9 shown in Figure 36), the skeleton is still composed of spherical grains. Triethylene 

glycol has the highest viscosity and greatest interaction parameter with the final polymer. 

Co-continuous morphologies are always present in the triethylene glycol system. 

However, due to the relatively high viscosity, the triethylene system usually forms large 

domains, for example, sample PS17. The interaction parameter and the viscosity of 

diethylene glycol falls between those of ethylene glycol and triethlylene glycol; thus, the 

morphology in the diethylene glycol system is easer to control than in the other two 

glycol solvent systems. 

 

 



 

Figure 36. Macropore morphologies and pore sizes. 1) PS32, 2) PSPS11, 3) PS16, 4) 

PS14, 5)PS15, 6) PS9,7)PS20, 8)PS17. 
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5.5.2.2 Temperature effect 

Temperature also controls the polymerization of the furfural alcohol. When the 

temperature of the mixture is less than 50 ºC, the polymer cannot grow to sufficient size 

to form a solid polymeric matrix. This is why, after the mixing and degassing, the 

mixture must be heated to a sufficient temperature to cure the polymer. In this research, 

we found that when the curing temperature is higher than 70 ºC, the final curing 

temperature does not affect the morphologies. However, the morphologies are affected by 

the heating rate. Since the spinodal decomposition line moves as the temperature changes, 

the final structure results from the dynamic changing of the whole system. In the 

diethylene glycol system, we found that when the heating rate is slower than 10 ºC/hour, 

the final morphologies are always isolated spherical macropores, and when the heating 

rate is higher than 30 ºC/hour, the final morphologies are co-continuous channels.  A 

radial heterogeneity was found in the sample processed at a heating rate above 40 ºC/hour. 

This radial heterogeneity may be due to the thermal heterogeneity in sample heating. 

When the heating ramp is too fast to allow thermal equilibrium across the mixture, a 

temperature gradient may exist in the mixture. This temperature gradient could produce 

heterogeneous morphologies.  

5.5.2.3 Catalyst effect and rate 

The catalyst has the least affect on the morphology. When the catalyst 

concentration is in the range of 2% to 10%, the resulting morphologies are independent 

of the catalyst concentration. The polymerization rates are proportional to the catalyst 

concentration. When using high catalyst concentration, the initial exotherm 



polymerization reaction may produce too much heat to accelerate the reaction rate 

beyond control. It is dangerous to use a catalyst concentration higher than 10% due to the 

uncontrollable exotherm reaction.  

5.5.3 Secondary phase separation and mesoporosity 

Secondary phase separation occurs in the polymer-enriched phase when the 

conversion of the monomer is high enough to trigger separation of the triblock polymer 

from the poly(furfural alcohol). Secondary phase separation produces mainly mesopores 

in the skeleton. These mesopores have a wide size distribution. Shown in Figure 37A is 

the morphology resulting from the secondary phase separation in the polymer phase, 

while Figure 37B shows the mesopores. 

The BET measurement of the carbon rods shows the carbon is microporous 

(Figure 38). The initial adsorption volume at a relative pressure of 0.1 is 96.6 ml/g, while 

the final adsorption volume is 127.2 ml/g, indicating that the micropores are the primary 

contributors to pore volume. No steep adsorption step was found in the isotherm, which 

suggests that the pore size of the mesopores has a wide size distribution. 

 

Figure 37. The secondary phase separation and the mesopores (sample PS14). 
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Figure 38. N2 adsorption /desorption isotherm of sample PS14. 

5.5.4 The relationship between primary phase separation and secondary phase separation 

Primary phase separation and secondary phase separation in the ternary system 

are two related processes that influence each other. The final structure results from a 

combination of the two phase separations. For example, comparison of the samples PS26, 

PS14, and PS29 shows that decreasing the diethylene glycol fraction results in a decrease 

in macropore size and an increase in mesopore size.     

5.5.5 Degassing and the elimination of defects 
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Defects in the material are mainly due to air bubbles and impurities such as dust 

particles from the air or container. The mixing of solvents produces air bubbles in the 

viscous solution. These air bubbles should be removed before the polymeric rod has been 

cured. The polymerization of the monomer may also produce air bubbles due to the 
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decreased air solubility in the polymerization. Therefore, degassing the system before 

polymerization is crucial for the synthesis of defect free rods. When the reaction mixture 

was degassed at room temperature in a 30 mmHg vacuum for 30 minutes, the final rods 

were free of air bubbles. Dust particles are hard to prevent under ordinary laboratory 

conditions. The amount of dust can be greatly reduced by using particle-free starting 

chemicals and washing the containers with particle-free water.    

5.6 Conclusion 

In this research we demonstrated that phase separation is a versatile method for 

the synthesis of macroporous carbon rods. By using a ternary system, two phase 

separation processes can be induced to occur consecutively. Hierarchically porous 

structures are developed by a primary phase separation that produces the macropores 

followed by a secondary phase separation that mainly produces the mesoporosity of the 

carbon rods. The porosity and pores sizes of the macropores can be adjusted by using 

suitable glycol solvents in the concentration range of phase separation. Mesopores result 

from the secondary phase separation of the triblock polymer from the cured poly(furfural 

alcohol). The wash-off, or thermal decomposition, of the triblock polymer produces  

mesopores in the skeleton of the carbon rods. Using triblock polymers in different 

molecular weights can adjust the mesoporosity of the carbon rod.  

According to the pore-forming process, one can conclude that the glycol solvents 

and triblock polymers act as the porogen of macropores and mesopores, respectively. The 

ease of removal of the porogen gives this method tremendous advantage in terms of cost-
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efficiency and ease of handling. Since all starting materials are hydrocarbons, the carbon 

in the resulting rods is especially pure.  

These carbon rods were carbonized at a relatively low temperature, forming 

unmistakable micropores. Because the microporous properties of these carbon rods made 

them unsuitable for the separation of small molecules, future work in this area should 

include the elimination of the micropores. Traditionally, a high temperature treatment at 

over 2300 K can significantly reduce the micropores by partially graphitizing the carbon 

matrix. Surface modification is an alternative method for elimination of the micropores. 

Since the carbon rods are conductive, electrochemical methods can perform grafting of 

dense organic ligands. The surface modification of carbon rods is detailed in Chapter 7. 

Since the mesopore range is the threshold of spinodal decomposition, the 

mesoporosity of the resulting carbon is fairly adjustable.  The homogeneity of the 

mesoporosity is also quite a problem. In order to gain further control of mesoporosity, 

especially the uniformity of the mesopores, new methods should be adopted for the 

synthesis of carbon materials. The recently developed microphase separation has proven 

to be a viable method for the tailored synthesis of nanoscale features. In the next chapter, 

the author describes the fine adjustment of mesopores through microphase separation of 

block copolymers. 
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Chapter 6:  Synthesis of mesoporus carbon via self-assembly of block 

copolymers 

6.1 Introduction of the synthesis of mesoporous carbon 

In any chromatographic separation, the interaction between the stationary phase 

and analyte plays a key role in separation. The strength of the interaction depends not 

only on the nature of the ligands, but also on the surface area of the stationary phase. In 

most situations the surface area is the critical parameter, accounting for column capacity 

and efficiency. In this chapter we describe a novel method for the fabrication of 

mesoporous carbon. The carbon can be coated to substrates for provide the high surface 

area required by HPLC applications. 

The external surface and internal surface contribute to the surface area. The 

external surface is the surface provided by the macropore channel in the monolithic 

column, or the surface of the micropheres in traditional particulate columns. The external 

surface in any kind of column is very small. The value of the external surface is usually 

in the range of a few square meters per gram. The major contribution of the surface area 

is derived from the mesopores. Mass transportation to and from the mesopores is a 

diffusion predominating process, so the surface attributed to the mesopores is called the 

internal surface. By definition, the mesopore region is the pores in the size range between 

1.8 and 50 nm. HPLC columns possess mesopores in the range of 5 to 30 nm. The 

mesopores contribute an internal surface area of 200 to 600 m2/g. The internal surface 



 112

provides the contact of the analyte with the surface ligand in molecular level. Hence, the 

mesopore is very important in the stationary phases.  

The synthesis of mesoporous carbon pales by comparison with the synthesis of 

mesoporous silica, titania and zirconia. Most carbon materials are microporous material, 

unsuitable for HPLC separation. The activation of carbon materials can enlarge the pore 

size to the lower mesopore range. Even after enlargement, the pores of the active carbon 

are still too small to be used in liquid chromatographic columns. Synthetic carbon from 

the resorcinol/formaldehyde resin (RFR) has been recently reported as mesoporous 

material.103-106 The synthesis of these mesoporous carbon materials requires special 

drying techniques such as super critical drying and freeze drying.104-106 These drying 

techniques are neither easy to handle, nor energy efficient. Also, the scale-up of the 

synthesis of these mesoporous carbon materials presents numerous problems. In practice, 

neither the activated carbon, nor the RFR carbon have well-controlled mesopores. The 

tailoring of the mesopore in carbon is realized by using the template method developed 

more than thirty years ago.72 Even now, the only commercially available liquid 

chromatographic carbon is synthesized using the template method. 

In the last decade the synthesis of ordered mesopores silica has been intensely 

studied. A variety of ordered mesoporous silica has been synthesized with tailored pore 

sizes.33, 34, 37, 39, 40 The birth of these silica materials made it possible to make ordered 

mesoporous carbon by replicating ordered mesoporuos silica.107-112 The ordered porous 

carbon materials provide homogeneity to the carbon adsorbent. These ordered porous 

carbon materials are considered promising materials of separation.112  
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So far the synthetic method of ordered mesoporous carbon still inherits the 

concept of the template method. As mentioned at the end of Chapter 4 and the beginning 

of Chapter 5, the use of solid template in the synthesis of carbon materials raises a 

number of problems.  Cost and environmental concerns are the main problems associated 

with the template method.103 To solve these problems, the author proposes here a novel 

synthetic method for ordered mesoporous carbon. This novel synthetic method uses block 

copolymers (BCPs) as templates for the spatial arrangement of carbon precursors in a 

well-defined structure. Upon carbonization, the BCPs thermally decompose and are 

sacrificed as the pores in the resulting carbon. The removal of the solid templates is thus 

avoided. The absence of template dissolving solved all problems associated with the 

replicating method. To demonstrate the proposed synthetic method, the author prepared 

mesoporous carbon film on various substrates. This concept can also be extended to the 

synthesis of monolithic carbon columns by applying the carbon coating to macroporous 

monoliths.  

The essential element of this proposed synthetic method is the self-assembly of the 

BCPs. The self-assembly of BCPs has proven to be a versatile approach to the selective 

organization and nanoscale regulation of the concentration distribution of target 

molecular species for the fabrication of nanoporous materials.113, 114 The mechanism for 

such organization involves hydrogen bonding,115 ion pairing,116 and/or dative 

interactions117 between supramolecular assemblies of BCPs and target molecular species. 

The resulting composites can give rise to various nanostructures according to the 

structural and phase behaviors of BCPs. The target molecular species are spatially 
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concentrated in selected microdomains and can eventually serve as nanostructured 

catalysts,118 spacers,119 or precursors120 for the further fabrication of ordered 

nanostructures. Highly ordered nanoporous materials, such as polymer,120 silica,40, 121 and 

organic–inorganic hybrid materials,122, 123 have been created through polymerization in 

the presence of the self-assembled BCPs. 

Although BCPs contain high atomic carbon concentrations, ordered nanoporous 

carbon films have not been successfully fabricated through the direct pyrolysis of self-

assembled BCPs.124 This inability is because structured BCP compounds with linear 

structures have very poor carbon yields in carbonization reactions. Furthermore, the 

survival of the nanostructures during high-temperature pyrolysis (>800ºC) is extremely 

challenging for the self-assembled BCP structures. This deficiency is associated with the 

structured BCPs, which melt before carbonization reactions. The cross-linking of BCPs 

can significantly stabilize the self-assembled nanostructures. However, it is still difficult 

for limited cross-linkage to preserve the pre-organized nanostructures because of the 

massive loss of carbon via volatile carbon-containing species during pyrolysis.   

Highly cross-linked resorcinol formaldehyde resin (RFR) is a well-known 

carbonization source.22, 125  This rigid polymeric carbon precursor can retain preorganized 

structures during pyrolysis. However, the low solubility of the highly cross-linked RFR in 

solvents makes it impossible to directly blend RFR with BCPs for the formation of 

nanostructured RFR. To overcome this limitation, we have developed a stepwise 

assembly approach to fabricate well-ordered nanoporous carbon films. The essence of 

this methodology is first to preorganize the resorcinol monomers into a well-ordered 
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nanostructured film with the assistance of polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) 

self-assembly and solvent-induced structural annealing, which is followed by the in situ 

polymerization of the resorcinol monomers with formaldehyde vapor to form ordered 

nanostructured RFR. Upon carbonization, the nanostructured RFR is transformed into a 

highly ordered nanoporous carbon film with the concomitant decomposition of the PS-

P4VP template to gaseous species. 

6.2 Experimental  

Chemicals: PS-P4VP was purchased from Polymer Source. Resorcinol, 

formaldehyde (37 wt% aqueous solution), and all solvents were purchased from Aldrich.   

Instruments: The infrared spectra were taken by using the FTS 3000 (BIO-RAD 

Inc.). A TGA 2950 system was employed for the thermogravitic analysis (TGA). All 

TGA measurements were carried out at the temperature ramp of 20 ºC/min under N2. The 

imaging of the mesopores has been done with a Hitachi HD-2000 scanning transmission 

electron microscopy (STEM), which was operated at an accelerating voltage of 200 KV 

and a current of 30 µA. X-ray diffraction patterns were measured with a Siemens D5005 

X-ray diffractometer with copper Kα line (0.1541 nm) as the incident beam. Raman 

spectra were recorded with a Renishaw 2000 Raman microscope equipped with a CCD 

detector, using an Argon ion laser (514.5 nm excitation wavelength, 5 mW). The 

carbonization was performed in a tubular furnace that was purged with 100ml/min argon. 

Method: 0.1 g of PS-P4VP -- with number average molecular masses (Mn) of PS 

11,800g/mol for PS and 11,500g/mol for P4VP, and Mw/Mn of 1.04 for both blocks and 

0.0512 g of resorcinol were dissolved in 2 g of DMF. This solution is heated at 100 ºC for 
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4 hours to ensure the formation of hydrogen bonds. After the solution is cooled to room 

temperature, a drop of solution is cast into a film on a silica plate by spin-coating at 1000 

rpm for 2 minutes. The film is afterwards dried in a hood. The dry film, along with two 

small vials containing DMF and benzene, respectively, are then put into a preheated 

chamber at 80 ºC. The film remains in the sealed chamber for 24 hours to allow the 

completion of microphase separation via a slow evaporation of the solvents. The 

microphase separated film is sequentially cured through exposure to formaldehyde gas at 

100 ºC for 4 hours. The cured film is finally carbonized in nitrogen gas through a 

temperature ramp of 1 ºC/min to 800 ºC. 

6.3 Results and discussion 

The synthesis protocol involves four basic steps: (1) monomer-BCP film casting, 

(2) structure refining via solvent annealing, (3) polymerization of carbon precursor, and 

(4) carbonization. Figure 39 schematically illustrates the procedure for the fabrication of 

ordered porous carbon films. 

In step 1, the precursor films can be cast with a solution containing a mixture of 

PS-P4VP and resorcinol on silica, silicon, glassy carbon, or copper, which is able to 

withstand the high temperature required by the final carbonization step. Both N,N’-

dimethylformamide (DMF) and cyclohexanol are good solvents for PS-P4VP and can be 

used to cast the precursor films. The concentration of PS-P4VP is in the range of 0.5-10 

wt%. The final film structures are not dependent on the casting methods (dip coating and 

spin coating). The BCP template used in the synthesis has equal lengths of PS and P4VP  



 

Figure 39. Schematic representation of the synthesis protocol used to prepare well 

defined carbon nanostructure. Step 1 film casting of PS-P4VP/ resorcinol 

supramolecular assembly. Step 2, Completion of microphase separation by solvent 

annealing at 80 ºC in DMF/ benzene mixed vapor. The resorcinol is organized in the 

well defined P4VP domain. Step 3 in situ polymerization of resorcinol and 

formaldehyde by exposing the film to formaldehyde gas. Highly cross-linked RFR is 

formed within the P4VP domain. Step 4 Pyrolysis of the polymeric film in N2. 

Hexagonal carbon channel array is form by sacrificing the block copolymer. 
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blocks. The bulk material of this PS-P4VP copolymer has a lamellar structure.113 The 

self-assembly of PS-P4VP/resorcinol mixture is essentially driven by the hydrogen bond 

interaction between resorcinol and P4VP block.119, 126  This strong hydrogen bond 

association between the basic P4VP blocks and the acidic resorcinol monomers 

selectively enriches the resorcinol molecules in the P4VP domain. Accordingly, the 

volume fraction of the P4VP domain is significantly increased relative to that of the PS 

domain, resulting in a hexagonal structure.113, 119 The PS block in the PS-P4VP/resorcinol 

complex is the minor component, which forms cylindrical microdomains in the self-

assembled film.  Figure 40 compares the Fourier transform infrared (FTIR) spectra of PS-

P4VP and PS-P4VP/resorcinol mixture (molar ratio of pyridine groups to resorcinol 1:1). 

As seen in Figure 40, the characteristic stretching modes of the P4VP block at 993, 1415, 

and 1597 cm-1 shift to 1007, 1419, and 1602 cm-1, respectively, for the PS-

P4VP/resorcinol mixture. These vibrational frequency shifts are consistent with the 

interaction between the pyridine groups and the resorcinol molecules via hydrogen 

bonding.126

The second step involves solvent annealing,119, 127 which is the key to the 

formation of highly ordered and well-oriented nanostructures. Russell and his coworkers 

have reported an efficient method based on solvent annealing for refining self-assembled 

block copolymer nanostructures.127 The controlled evaporation of the solvent results in 

highly ordered nanostructures oriented normally to substrates. When the as-cast film is 

annealed in DMF/benzene vapour at 80 ºC through a slow evaporation of solvents in a 

period of 24 hours, the final carbon film has a highly ordered hexagonal structure with all  



 

Figure 40. FTIR spectrum of PS-P4VP and PS-P4VP/resorcinol complex in the 

region from 900 to 1650 cm-1. The characteristic peaks of pyridine ring in PS-

P4PVP at 993, 1415 and 1597 cm-1 shift to 1007, 1419, and 1602 cm-1 due to the 

formation of hydrogen bond with resorcinol. 
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pores oriented perpendicular to the substrate. DMF is a highly miscible solvent for both 

the PS block and P4VP block. When the film has swollen in DMF vapor, both blocks 

have particularly good mobility. With this mobility, the swollen PS and P4VP blocks 

repel one another and tend to organize into a well-defined structure.127 However, the 

repulsion of these two blocks is damped by DMF, which is highly miscible with both 

blocks. We found that the addition of benzene vapour intensely accelerates the self-

assembly process and significantly enhances the order of the film.127 Because benzene is 

a good solvent only for the PS block, the absorbed benzene vapour is most likely 

enriched in the PS block domain. Therefore, the repulsion between the PS and P4VP 

domains is enhanced by benzene. A fast microphase separation is thus achieved in the 

DMF and benzene mixed vapor. 

In step 3, the solvent-annealed nanostructured film above was exposed to 

formaldehyde vapor to cross-link the resorcinol molecules into a highly cross-linked 

phenolic resin located in the P4VP domain. The cross-linking was carried out via 

vapor/solid reactions with minimum perturbation of the self-assembled nanostructures. 

The reaction rate can be readily controlled by the vapor pressure of formaldehyde.  

The final step involves the decomposition of the BCP template to generate 

ordered nanopores and the carbonization of the nanostructured RFR to form the carbon 

pore walls. This pyrolysis process was studied using a thermogravimetric analysis (TGA) 

to continuously measure the mass loss upon heating from room temperature to 800 ºC 

under argon at 20 ºC/min. Shown in Figure 41 are the thermograms (TGs) and the 

derivative thermograms (dTGs) of four samples: (1) PS-P4VP, (2) PS-P4VP and  



 

Figure 41. TGA and dTG curves for A) PS-b-P4VP, B) PS-b-P4VP and resorcinol 

mixture (molar ratio of pyridine groups to resorcinol 1:1), C) resorcinol 

formaldehyde resin (RFR), and D) PS-b-P4VP and RFR. The top and right axes are 

the temperature and wt% for the thermogram (TG). The left and bottom axes 

shows the weight loss rate and time for the derived thermogram (dTG). 
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resorcinol mixture, (3) RFR, and (4) PS-b-P4VP and RFR. The pure PS-P4VP sample 

starts to decompose at 328 ºC and ends at 430 ºC, with only negligible 0.7 wt% residue. 

Both the decomposition temperature and the reaction rate of the PS and P4VP blocks are 

too close to resolve in the TG and dTG curves. Therefore, the pyrolysis of PS-P4VP 

exhibits only one peak in the dTG curve of the pure PS-P4VP sample. The TG curve of 

the PS-P4VP and resorcinol mixture has two weight-loss stages with corresponding dTG 

peaks at 195 and 392 ºC. The weight loss for the first stage starts at 120 ºC, which is only 

10 ºC above the melt point of resorcinol. The first weight-loss stage ends at 284 ºC with 

the loss of ~34 wt%. The mixture of PS-P4VP and resorcinol has 33.87 wt% of resorcinol. 

Accordingly, this weight loss in the TG curve indicates that all resorcinol molecules 

evaporated before the temperature reached 284 ºC. The second weight-loss stage of the 

PS-P4VP/resorcinol mixture starts at 328 ºC and ends at 430 ºC. This part of the weight 

loss is attributed to the decomposition of the PS-P4VP copolymer. The TGA curve of the 

RFR sample exhibits a continuous weight loss from 200 to 750 ºC. The carbonization 

yield for pyrolysis of RFR is 57.59 wt%. The TGA curve of the PS-b-P4VP and RFR 

sample prepared by cross-linking the PS-P4VP/resorcinol sample via formaldehyde vapor 

shows a complex pyrolysis behavior. A significant weight loss was found in the range of 

200 to 750 ºC. The major weight loss occurs from 320 to 430 ºC, which is attributed to 

the decomposition of the PS-P4VP copolymer. The two dTG peaks emerge in this zone, 

indicating two different decomposition behaviors. Comparing these peaks with the dTG 

peak of the pure PS-P4VP, it appears that the RFR affects the pyrolysis of the PS-P4VP. 

Because the RFR is localized in the P4VP domain, the decomposition of the PS domain is 
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the least affected. The P4VP chain is tangled with the RFR; as a result, the decomposition 

rate of P4VP may be retarded by RFR due to the interaction between RFR and P4VP. 

Therefore, the P4VP block may decompose after the PS block. The pyrolysis of the PS-

P4VP/RFR mixture yields 22.16% carbon at 800 ºC. Taking into account the weight gain 

in the polymerization with formaldehyde, the weight percentage of the RFR in the PS-

P4VP/RFR rises from the 33.87% (resorcinol wt% in PS-P4VP/resorcinol mixture) to 

37.34%. Assuming RFR in the P4VP domain has the same carbon yields as the pure RFR 

(57.59%), the PS-P4VP part only accounts for 1.05 wt% carbon in the final product. 

Obviously, the RFR is the predominant carbon source of the porous carbon film and the 

BCP is sacrificed as pores. 

A crack-free nanoporous carbon film with thickness of from several tens of 

nanometers up to ~1 µm and size up to 6 cm2 can be obtained. The nanoporous carbon 

film strongly adheres to substrates and is homogeneous in thickness. As seen from 

Figures 42A and D, the nanopores are oriented perpendicular to the film surface. An 

enlarged Z-contrast image of the carbon film is shown in Figure 42B. The Fourier 

transform of this Z-contrast image of the film shows a pattern of multiple reflections, 

which confirms that the film has a highly ordered hexagonal pore array. Based on Figure 

42C, the pore diameter is 33.7 ± 2.5 nm and the wall thickness is 9.0 ± 1.1 nm. The 

volume fraction of the straight channels is ~0.565 (see Figure 43 for details). The pore 

diameter and thickness can be controlled by the volume fractions of PS in BCP and 

carbon-forming resin, respectively. The cross section of the film scratched from a film 

substrate is shown in Figure 42D.  



 

Figure 42. Electron microscopy images of the carbon film. A) A Z contrast image of 

the large scale homogeneous carbon film in a 4×3 µm area. The scale bar is 1 µm. B) 

A Z contrast image shows the details of the highly ordered carbon structure. In the 

inset, a  Fourier transform (FT) of the image shows a pattern with multiple 

reflections, which are characteristic of a highly ordered hexagonal array. C) A high 

resolution SEM image shows the surface of the carbon film with uniform hexagonal 

pore array. The pore size is 33.7 ± 2.5 nm and wall thickness is 9.0 ± 1.1 nm. D) A 

SEM image shows the film cross section, exhibiting all parallel straight channels 

perpendicular to the film surface. The inset shows the Fourier transform of the 

cross section image. The FT pattern shows the reflections of the periodic parallel 

channels. 
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Figure 43. The calculation of volume fraction of the mesopores. The volume fraction 

of the channel equals to the ratio of cycle area to the total film area. Take an 

equilateral hexagon unit into account, the total area of the equilateral hexagon 

(Stotal), the cycle (Scycle), and the volume fraction of the channel (fvolume) are 

calculated by equation 1, 2 and 3 respectively. With r = 16.85 nm (the radius of the 

channel) and h = 21.35 nm (the half center to center distance), fvolume=0.56. 
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All straight channels are across the whole film. The inset in the right lower corner is the 

Fourier transform of the high-resolution SEM image of the film cross section, which 

reflects parallel periodical channels.  

No graphitic structure was found in the high-resolution TEM (HRTEM) mode, 

suggesting that the wall is amorphous carbon. Wide-angle X-ray diffraction (WAXD) 

shows broad peaks at 23.6, 43.76, and 80.24 degrees, which are characteristic of 

amorphous carbon. Raman spectrum shows a broad D band at 1333 cm-1, which overlaps 

with the G band at 1600 cm-1. Such a broad D band is reminiscent of the glassy carbon 

texture. The HRTEM image, WAXD pattern, and Raman spectrum are shown in Figure 

44 to 46. 

 

Figure 44. High resolution transmission electron microscopy image of the carbon 

wall. 
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Figure 45. Wide angle X-ray diffraction pattern. 
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Figure 46. The Raman spectrum of the carbon film. 
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6.4 Conclusion 

In conclusion, a facile methodology based on stepwise self-assembly has been 

successfully developed to prepare highly ordered and well-oriented mesoporous carbon 

films through carbonization of the nanostructured phenolic resin and BCP composite. The 

BCPs play two important roles in the synthesis: (1) directing the formation of phenolic 

resin nanostructure, and (2) serving as templates for nanopores. The orientation of the 

ordered carbon nanopores was successfully aligned normal to substrates through a 

solvent annealing process. The unique structural feature of this oriented nanoporous 

carbon film highlights opportunities in areas such as separation membranes, chemical 

sensors, and catalysts. 

6.5 Future research work 

The current methods demonstrated that mesoporous carbon can be coated onto 

various substrates. Nevertheless, this coating can be applied to various inorganic 

macroporous monoliths for the purpose of HPLC application. This carbon film may also 

find applications in membrane separation and membrane chromatography. The large 

scale carbon coating on silica plates is also a promising thin layer chromatographic media.  
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Chapter 7: Surface Modified Monolithic Carbon Columns 

7.1 The background of the surface modification on carbon phases  

The mature silica chemistry continuously fertilizes the modification of the silica 

phases. Hundreds of various silica columns have been made via surface modification. 

These columns cover all branches of liquid chromatography. What is impressive is that 

the surfaced modified silica columns occupy over 75% of the column market.128 The ease 

of chemical modification on the silica surface is indeed the major reason why the silica 

phase is so widely used. If the carbon phase cannot be modified, one cannot imagine that 

the carbon phase can compete with the silica phase in a wide range of applications. To 

broaden the applicable range of the carbon phases, it is crucial to develop a well-

established protocol for the modification of carbon surface.  

The carbon columns provide a promising stationary phase alternative the silica 

columns, which have poor stability. Ironically, chemical inertness makes the carbon 

surface very difficult to modify. The pioneer works on the modification of carbon phase 

are mainly focused on physically adsorbed modifiers.129-131 However, the ligand that is 

physically adsorbed on the carbon surface suffers numerous problems of bleaching, 

reproducibility, and stability.130, 131 To develop the covalent bonded phase on the carbon 

surface is the ultimate goal for the modification of carbon phases. Carr et al. at Pittcon 

first reported the covalent modification of the carbon phase in 2001. The ligands were 

bonded to the carbon surface via chemical reduction of the diazonium salts. This method 

can only convert sub-monolayer ligands onto the carbon surface. The modification occurs 
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at the edge of the graphene. Thus the modified surface is heterogeneous with alternative 

surfaces of alky chains and the graphite sheets.132 Porter and his associates improved the 

surface coverage of the ligands. They converted a monolayer of ligands to the carbon 

surface via electrochemical reduction of diazonium salts in the EMLC system.133  

Porter’s work demonstrates the feasibility of covalent bonding monolayer ligands on 

carbon surface. However, the implementation of the EMLC needs a special configuration 

of columns and additional work on instrumentation. In fact, EMLC has not been  

well-accepted by chromatographers due to its intrinsic instability. Moreover, the poor 

conductivity of the fine particle packed column results in a very slow surface 

modification process.133 Obviously, the electrochemical modification of carbon particles 

in the micron range cannot be scaled up in industry.  

Compared to fine carbon particles, the carbon monolith is highly conductive. 

Therefore, the electrochemical modification of a carbon monolith is more feasible than 

that of carbon microspheres. In this chapter, the author investigates the electrochemical 

modification of monolithic carbon columns. Tertiary amine ligands were covalently 

bonded to the carbon surface via electrochemical reduction of diazonium salts.134 The 

modified column has been tested as a weak anion exchange chromatographic column for 

the separation of proteins and protein digests using aqueous mobile phases. 

7.2 Electrochemical modification of carbon surface 

Compared to silica chemistry, electrochemically assisted covalent modification of 

carbon surfaces is a relatively recently developement. The first report of carbon surface 

modification via electrochemically generated radicals was made by Pinson and his 



colleagues in 1990.135 They oxidized a diamine to produce an amine radical that is able to 

bond covalently to the carbon surface. Since then, a few systems have been developed for 

the electrochemical modification of carbon surfaces. These systems are summarized 

below. 

7.2.1 Electrochemical oxidation of amines 

The electrochemical oxidation of amines on carbon surfaces was reported by 

Pinson and his colleagues in 1990.135  The oxidation of primary amines generates solution 

radicals that couple to the carbon surface through covalent bonds (see Figure 47). Alkyl 

chains were bonded to the carbon surface through the imine group. With an appropriate 

functional group, an approximate monolayer can be achieved with the functionalities 

standing perpendicular to the glassy carbon surface. Porter et al. also examined secondary 

and tertiary amines.136 They found that although all amines were oxidized on the glassy 

carbon surface, tertiary amines did not couple to the carbon surface, and secondary 

amines formed a loose layer with low surface coverage.136 Porter’s research confirmed 

that the attaching of an amine to the carbon surface depends on the loss of hydrogen. 

Tertiary amines have no associated hydrogen. Thus, tertiary amines cannot couple to the 

carbon surface. Due to the spatial hindrance of the substituted groups, secondary amines  

 

Figure 47. Electrochemical coupling primary amine on carbon surface. 
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have limited access to the carbon surface. Therefore, the oxidation of secondary amines 

only forms a loose layer of functionalities. The surface coverage of the alkylamines on 

the carbon surface depends on the length of the alkyl chain: the longer the alkyl chain, the 

lower the surface coverage.137 Diamines have also been investigated for the purpose of 

obtaining a dense coverage of functionalites.134 Due to polymerization, the oxidation of 

ethylene diamine forms more than a monolayer on the carbon surface. Figure 48 shows 

the possible forms of ethylene diamine attachment on the carbon surface via 

electrochemical oxidation.134

The attachment of functionalities to the carbon surface depends appreciably on 

the surface properties of the carbon material. Porter et al. found that the oxidation of 

primary amines forms a denser layer on a glassy carbon surface than on a graphite 

surface.136 The attachment of functionalities to the graphite surface occurred only on the 

edge or at the defects of the graphene.  

 

Figure 48. Possible forms of electrochemically attached ethylene diamine on carbon 

surface: a) single strand; b) ring; c) polymer. 
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7.2.2 Electrochemical oxidation of alcohols 

The oxidation of alkyl alcohols at a high positive potential over 2 V versus SCE 

forms a self-limiting layer on the carbon surface similar to the oxidation of amines on a 

glassy carbon surface. The attachment of functionalities was through an ether link.138-140 

Ohmori and his associates suggested a mechanism through which the oxidation of the 

carbon forms an aromatic radical, which was attacked by the alcohol via the nucleophilic 

reaction.  

As with the oxidation of amines, the oxidation of alcohols can graft a dense layer 

only on the glassy carbon. The modification of functionalities on the graphite is 

heterogeneous and occurs at the edge of the graphene sheet.  

7.2.3 Kolbe reaction 

The oxidation of arylacetates on both glassy carbon and graphite was investigated 

by Saveant in an acetonitrile solution.141 A covalently bonded aromatic layer can be 

grafted to the carbon surface at low potential. The surface coverage on the glassy carbon 

is three times greater than that on the graphite surface. The modification undergoes a 

Kolbe reaction generated radical that couples to the carbon surface.  

7.2.4 Electrochemical reduction of diazonium salts  

The electrochemical reduction of diazonium salts on carbon surface is by far the 

most investigated method for the electrochemically-assisted modification of carbon 

surfaces. The modification results in a dense layer of functionalities on both glassy 

carbon and graphite surfaces. The diazonium salts undergo a one-electron reduction on 

carbon surface and yield radicals that couple to the carbon surface. The coupling 



efficiency of the radical depends on the life span and stability of the radical. The aryl 

diazonium cation yields a more stable aromatic radical than alkyl groups. Therefore the 

coupling efficiency of the aryl diazonium cation is much higher than the alkyl diazonium 

cation. Shown in Figure 49 is the coupling mechanism of the aryl diazonium on the 

carbon surface that was proposed by Pinson et. al.142

The coupling of the aryl group on the carbon surface was favored by both 

adsorption of the diazonium salts on the carbon surface and by the relatively positive 

reducing potential of the diazonium that prevents simultaneous reduction of the aryl 

radical. The coupling of aryl group to the carbon surface occurs on both the glassy carbon 

surface and the graphite surface. The grafting rate at the edge is faster than that at the 

basal plane of the graphite sheet. Pinson and Saveant found that not all the radicals 

coupled to the carbon surface.143 The electrochemically generated radical is partially 

leaked into the solution. According to their research, 84% of the electrochemically 

generated radical coupled to the glassy carbon, and only 56% of the electrochemically 

generated radical coupled to the basal plane of the highly ordered pyrolytic graphite 

(HOPG). Therefore, the modification begins at the edges and mores across the basal  

 

Figure 49. Coupling mechanism of the aryl diazonium on the carbon surface 
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plane until all surfaces are covered by the ligand. A monolayer of coverage can be 

achieved with a prolonged deposition time.  

7.3 Electrochemical modification of carbon monolith 

As we concluded in the previous chapters, the pyrolytic carbon materials are 

microporous. For most applications in which small pharmaceutical molecules are 

separated, the presence of micropores in the stationary phase matrix dramatically 

broadens the bands. Consequently, the column efficiency of the microporous glassy 

carbon packed column is unsatisfactory. To eliminate the micropores, one can either treat 

the carbon thermally at temperatures above 2100 ºC to graphitize the carbon, or block the 

micropores through surface modification.  

The surface modification of carbon surface has at lease two benefits: one is the 

modification allowing the variation of the adsorption/desorption properties of the carbon 

surface. Depending on the functionalities, the carbon stationary phase is able to 

incorporate all the advantages of the silica columns without suffering the pH limitation. 

The other benefit of surface modification is the elimination of the effect of micropores. 

The pyrolytic carbon has micropores less than 1 nm that can be blocked by two benzene 

rings. Numerous researchers in electrochemistry have demonstrated that the covalent 

coupling of the electrochemically generated radical to the carbon surface starts at the 

edge of the graphene and at the defects of the carbon matrix. In glassy carbon the defects 

are micropores that are less than 1nm. At the beginning of the electrochemical 

modification, the micropores are blocked by the radicals due to their high reactivity. Thus, 
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the electrochemical modification of the carbon surface can efficiently eliminate the effect 

of micropores.  

To demonstrate this concept, we modified a tertiary amine to the carbon monolith 

electrochemically. After the modification, the column was tested as a weak anion 

exchange column. The separation tests were performed in an aqueous mobile phase by 

varying the salt concentration of the mobile phase. A protein mixture and a protein-digest 

tested the column.  

7.4 Experimental 

Materials: Monolithic carbon rods were prepared by using the method described 

in Chapter 6. Tris(hydroxymethyl)aminomethane (99.9%), sodium chloride (99.99%), 4-

diethylaminobenzenediazonium tetrafluoroborate (99%), tetrabutylaimnium 

tetrafluoroborate (97%), acetonitrile, calcium hydride and hydrochloride acid (37%) were 

purchased from Aldrich. Aprotinin bovine lung and Ovalbumin were purchased from 

Sigma. Cytochrome c digest was a contributed by Dr. Guiochon’s group. The DI water 

was obtained from the lab pipeline and purified before use by a Millipore lab water 

system. All chemicals except solvents were used as received. Solvents were dried 

thoroughly using calcium hydride. 

The electrochemical modification of carbon monolith: The electrochemical 

modification of the carbon surface was carried out using a CH 604 B electroanalysis 

system (CH Instrument Inc.). Two carbon rods were used as electrodes. One was used as 

the working electrode and was the target for the modification. The other carbon rod was 

used as both counter electrode and reference. The electrochemical reaction was 
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conducted in an anhydrous acetonitrile solution. 4-diethylaminobenzenediazonium 

tetrafluoroborate and tetrabutylaimnium tetrafluoroborate were employed as electrolytes. 

In a typical run, 30 ml acetonitrile solution containing 0.2 g of tetrabutylaimnium 

tetrafluoroborate and 0.6 g of 4-diethylaminobenzenediazonium tetrafluoroborate was 

placed in a long tube was fixed with two separated carbon rods. The solution covered 12 

cm of the lower ends of the carbon rods. The upper ends of the carbon rods were hooked 

to the electrochemical system. The electrochemical reduction was carried at -0.8 V for a 

period of 20 hours.  

The fabrication of the HPLC column: The working electrode was washed 

thoroughly with acetonitrile after the electrochemical modification. The rod was then 

dried in a vacuum oven at 80 ºC. A column was fabricated by using the polymer lined 

stainless steel tube encasing configuration. The details of the cladding procedure are 

described in Chapter 2.  

The chromatographic test of the modified column: The chromatography tests were 

performed with a Hewlett-Packard (Palo Alto, CA, USA) HP 1100 LC system. The 

system consisted of a binary pump, an online degasser, an autosampler, a diode array 

detector, a column thermostat, a data station, and an HP PC workstation with a Windows 

NT operating system. The instrument control and data acquisition were performed using 

Chemstation software (Rev A 05.03). The column temperature was maintained at 25 °C. 

The mobile phases used were: A, 0.01M Tris buffer (pH 7.4), and B, 1M sodium chloride 

in A. The online degasser degassed the mobile phases before mixing in the binary pump. 



The gradient was controlled through the Chemstation. The flow rate was maintained at 1 

ml/min. The data was collected at 230 nm using the diode array detector.  

7.5 Results and discussion 

7.5.1 The structure of the monolithic columns 

Shown in Figure 50 is a reconstructed 3-D image of the carbon monolith after 

electrochemical modification. The skeleton size of the carbon monolithic was estimated 

by the SEM images. The main skeleton size is about 500nm and the size of the knot is 

about 1000nm. The pore size is about 2 micron. The pores are well interconnected 

through smooth transitions. Such a pore structure accounts for the extremely low 

hydraulic resistance of the carbon monolithic column.  

 

Figure 50. A reconstructed 3-D image of the carbon monolith. The image was 

composed by a series of SEM images, which were taken from sequential depths of 

carbon sample in the range of 0 to 1000nm.  
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7.5.2 The electrochemical modification of monolithic columns 

The electrochemical reaction is represented in Figure 51. The electrochemical 

reduction of the diazonium in anhydrous acetonitrile produces aryl radicals on the 

electrode surface. When the carbon monolith was employed as the working electrode, the 

electrochemically generated radicals coupled to the carbon surface through covalent 

bonding.  

Since the carbon monoliths were prepared through a relatively low temperature 

carbonization procedure, the carbon matrix is microporous glassy carbon. The micropore 

size is less than 1 nm. All pores are homogeneously distributed over the entire piece of 

carbon. It is worth noting that the edges of the micropores are carbon atoms with sp3 

hybridization. As demonstrated by many recent researchers, the edge atoms are more 

electrochemically reactive than the basal plane atoms. Therefore, the chemical 

modification of the carbon monoliths starts from the edge of the micropores.  
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Figure 51. Electrochemical modification of carbon surface. 
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Shown in Figure 52 are the front, side, and top views of the chemical structure of the 

electrochemically grafted ligand. The ligand is 7.875Ǻ high, 5.621Ǻ long, and 4.398 Ǻ 

wide. Thus, the grafting of this ligand at the edge of the micropores can efficiently block 

the openings of the micropores. Therefore, the chemical modification can eliminate the 

micropores believed to be the main cause of peak broadening in the glassy carbon 

columns. Indeed, when the unmodified carbon column was injected with 10 µl sample of 

toluene in acetonitrile (10mg/L) no peak was eluted through the column due to the 

extreme adsorption of the analytes to the micropores. After modification, the 

chromatographic performance is reasonably effective.  

The micropores were blocked in the early stage of modification. A column 

modified for 30 min at -0.8 V is able to achieve moderate chromatographic performance 

with relatively broad peak compared to a column after a long period of electrochemical 

modification. Columns that have been electrochemically modified 20 hours or longer 

exhibit no difference in the chromatographic performances.Therefore, we conclude that 

20 hours is long enough to ensure the completion of the surface modification for the 

glassy carbon rods.  

Theoretically, the glassy carbon surface is reactively heterogeneous. The edge of 

the micropores and the defects in the basal plane are believed to be more reactive than the 

basal plane carbon. These relatively active sites are favored at the beginning of the 

reaction. After the coupling of the ligands to these relatively reactive sites, these sites 

become nonconductive. Thus, further growth of the modification layer is limited by the 

poor electric conductivity of the modifier. After the ligands cover the more reactive edge  



 

Figure 52. The front, side, and top views of the ligand. This ligand is 7.875Ǻ 

high, 5.621Ǻ long, and 4.398 Ǻ wide. 

 

and defects sites, the coupling on the less reactive basal plane carbon begins to dominate 

the surface modification process. The electrochemical reaction does not cease until the 

last electro-conductive site is coupled by the electrochemically generated radical. 

Consequently, the entire carbon surface is covered by the ligand at the end of the 

electrochemical modification. Since the modification is limited by the conductivity of the 

surface, the thickness of the surface modifier is limited by its poor conductivity. Thus, a 

homogeneous monolayer is achieved by modifying nonconductive ligands onto the 

carbon surface.   

7.5.3 The HPLC performance of the electrochemically modified columns. 

Although aryldiazonium salt has been demonstrated to be a universal modifier for 

carbon surfaces, the lack of appropriate commercially available diazonium salts is the 
 142
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major obstacle in carbon surface modification. In this study, we found that the 4-

diethylaminobenzenediazonium tetrafluoroborate is a relatively cheap diazonium salt 

available from stable commercial sources. This diazonium salt converts a tertiary amine 

to the carbon surface. This tertiary amine is terminated with two ethyl groups. The diethyl 

tertiary amine has been used as a weak anion exchanger (WAX) in the practice of many 

silica or polymer based columns.129, 144-146 Therefore, we expected the modified column 

to perform ion exchange chromatography.  

In order to probe the ion exchange properties of the modified column, two bio-

molecule mixtures of different molecular weights were tested using the modified carbon 

monolithic columns. The first mixture was the aprotinin bovine lung and ovalbumin. 

These two compounds are proteins having molecular weights over 65000 Dalton. The 

molecular sizes of these two compounds are beyond the mesopore range. Therefore, the 

retention of these two compounds is governed by the external surface of the monolithic 

column. Shown in Figure 53 is the chromatogram of aprotinin bovine lung, and 

ovalbumin. The mobile phases were 0.01 M Tris buffer (pH 7.3) and 1 M sodium 

chloride in 0.01 M Tris buffer. The aprotinin bovine lung is less charged than the 

ovalbumin, so it had less retention on the ion exchanger surface.  

The second mixture was the cytochrome c digests. The cytochrome c digests are a 

mixture of peptides and amino acids with molecular weights in the range of several  
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Figure 53. Chromatogram of the mixture of 1 aprotinin bovine lung, and 2 

ovalbumin. Mobile phase: A, 0.01 M Tris buffer (pH 7.3); B, 1 M NaCl in A. 

Injection volume: 10 ul solution that contains 10mg/L of each compound. Gradient: 

0-100% B in 10 min. Flow rate: 1ml/min. Column presure: 20 bar. Detector: UV 230 

nm. 
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hundreds to a few thousands Dalton.(Figure 54) The digests have molecular sizes that are 

small enough to penetrate into the mesopores. Thus, the retentions of these small 

molecules are attributed to the interaction of both the internal and external surface of the 

carbon monolithic column. Only seven peaks appeared in the chromatogram, which 

indicates that the mixture was not totally resolved under experimental conditions. In the 

separation of the protein digest, a steeper gradient was required to achieve a good peak 

shape for the strongly retained compounds. In addition, the peak widths of the protein 

digest were broader than those of the large protein mixture. The mesopore distribution of 

the column was measure by BET with N2 at liquid nitrogen temperature. The BET results 

indicated a very broad distribution of mesopores. The center of the mesopore size 

distribution is about 5 nm. This pore size is slightly smaller than those of most 

commercial columns. Such a mesopore size distribution is not favored in the separation 

of small molecules. As discussed in Chapter 6, it is necessary to develop a method to 

produce mesoporous carbon with tunable and more uniform pore size. 

The modified column has very low hydraulic resistance. When a column of 10cm 

long and 2.9mm ID was operated at the linear flow rate of 1mm/s of aqueous mobile 

phase, the back pressure is only 14 bars. This superior hydrodynamic property is 

attributed to two facts: 1) the well wetting of the carbon surface after grafting of the 

amine ligand, and 2) the monolithic structure, which consists of highly connected 

channels.A control column was made by using an unmodified carbon rod. The control 

column was connected to the HPLC system and tested using the protein mixture and 

protein digests. Both probe solutions are firmly retained on the control column. None of  
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Figure 54. The separation of the cytochrome c digests. Buffer: 0.01 M Tris buffer 

( pH 7.4). Mobile phase: A, 0.01M Tris buffer; B, 1M NaCl in A. Gradient: 0% B 

increases to 100% in the first 4 minutes then keep 100% B for 6 minutes. Column 

ID: 2.9mm. Column length 10cm. Flow rate: 1ml/min. 
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the compounds are able to elute by using the salt solution in the Tris buffer. The back 

pressure of the control column is higher than the modified column by a factor of ~1.5 

when the aqueous solution was used as the mobile phase. This phenomenon confirms that 

the modified carbon surface is more hydrophilic than virgin carbon. 

7.6 Conclusion 

This research proves the concept that the carbon surface can be uniformly 

modified by electrochemical means. The self-limiting nature of the electrochemical 

reaction ensures the carbon surface will be completely covered with no more than a 

monolayer of ligand. The properties of the carbon surface were changed after the 

modification with the ligand. The hydrophobic carbon surface can be converted to 

hydrophilic surface by electrochemically grafting tertiary amine ligands. The modified 

carbon surface has the ability to conduct ion exchange chromatography using aqueous 

mobile phases. The micropores that are inherent in the low temperature glassy carbon can 

be blocked by the grafted ligands. The blockage of the micropores demonstrates that the 

electro-modification of carbon surface is an efficient method to convert the glassy carbon 

into a useful stationary phase material as an alternative to the well-known graphitization 

method. Indeed, this research demonstrates that the graphitization of carbon is not the 

only method for the elimination of the micropores in the carbon matrix. 

This research also demonstrates that the chromatographic properties of carbon are 

determined by the properties of the surface modifier. In this research the para- position of 

the aryldiazonium is tertiary amine. Thus, the chromatographic properties of the carbon 

monolith are of ion exchange type.  Since the para-position of the aryldiazonium can be 
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substituted by various functional groups that can cover all branches of chromatography, it 

is safe to predict that the chromatographic properties of the modified carbon surface are 

not limited to ionic exchange. It is possible to use the carbon monolith as a substitute for 

silica with the advantage of chemical and physical inertness.  

Although theoretically the carbon surface can be converted to meet the requirements of 

any type of chromatography, the implementation of the conversion is limited by the 

commercial availability of diazonium salts. Further research efforts are needed to produce 

a variety of diazonium salts for the purpose of offering more options for carbon surface 

modification.  
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Chapter 8: Chromatographic characterization of carbon based columns 

The motif of this chapter is the study of the isotherms of a set of compounds that 

have various chemical properties. The surface properties of the as-synthesized glassy 

carbon, graphitized carbon, and electrochemically modified carbon have been closely 

examined by comparing the experimental data with several theoretic isotherm models 

such as langmuir, bilangmuir, antilangmuir, and quadratic isotherm.147, 148 Each isotherm 

model is based on a specific physicochemical hypothesis. The qualities of the fitting of 

the isotherm models to the experimental data have been examined by the error level of 

the fitted parameters. The best fitting model of each isotherm reveals interactions 

between the adsorbate and adsorbent.147 By using a set of probing compounds, the 

surface properties of the adsorbent can be summarized from those isotherms. 

The adsorption properties of the graphitized carbon surface have been further 

investigated by changing the temperature and pressure.149-160 The temperature effect was 

examined by single compound adsorption of toluene and resorcinol at 30, 40, 50, 60 °C. 

The pressure effect was found in the brush type C18 silica columns. The alkyl chain 

densities of the adsorbents greatly affect the pressure effects. The adsorption on the 

graphitized carbon surface is assumed to occur on the basal plane of the graphitic surface. 

Investigation of the pressure effect on flat graphene surface is of great theoretical 

importance in the fundermental understanding of the question of whether or not the 

pressure effect occurs on solid surface. In this research, the influence of pressure on the 

retention facts of Cyclohexanol and o-xylene has been studied with pure acetonitrile 



mobile phase at 303 K. A linear relationship between lnk’ and average column pressure 

has been derived from the experimental data. 

The reproducibility of the synthesis method has been evaluated by using 6 

columns from 2 batches of synthesis.161-166 Each batch has 3 columns. Column-to-column 

and batch-to-batch reproducibility have been closely evaluated by the retention factor k 

and the HETP. 

8.1 Isotherm models 

 In most cases, the quality of the fitting of isotherm models with the experimental 

data indicates how close the practical adsorption case fits theoretic hypothesis.75, 147, 148, 

167, 168  In this study, four isotherm models have been considered and fitted with 

experimental data. 

8.1.1 The langmuir model (L): 

The langmuir model assumes a homogeneous surface with uniform adsorption 

energy. If the isotherm fits the langmuir model well, the retention of the adsorbate is 

uniformly adsorbed on the stationary phase. The ideal adsorption of the langmuir model 

is forming a monolayer of adsorbate on the adsorbent surface when the saturation of the 

adsorption is reached. 

The formula of the langmuir model is written as: 

KC
KCq

q s

+
=

1
                                                                     8.1 

where qs is the specific saturation capacity of the adsorbent and K the equilibrium or 

binding constant of the compound considered in the phase system studied. 
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The langmuire model has two parameters, so the fitting equation is written as: 

xP
xPP

y
2

21

1+
=                                                                     8.2 

where P1 and P2 stand for qs and K respectively.  

8.1.2 The antilangmuir model (AL): 

 The antilangmuir model assumes a strong adsorbate to adsorbate interaction, 

which reveals the interaction of adsorbate to adsorbent is weaker than the interaction of 

adsorbate to adsorbate. The adsorption starts from several relatively high energy sites, 

and then these sites seed the further adsorption. Thus, the adsorption of the adsorbate on 

the stationary phase surface is heterogeneous. The antilangmuir model fits the concave 

type isotherms. The formula is similar to the langmuir isotherm with a difference only in 

the sign of equilibrium constant. 

KC
KCq

q s

−
=

1
                                                              8.3 

The fitting equation is written as: 

xP
xPP

y
2

21

1−
=                                                               8.4 

Similar to the langmuir model, P1 and P2 stand for qs and K respectively. In the 

antilangmuir model the qs and K do not have the same physical meanings as they do in 

the langmuir model. 
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8.1.3 The bilangmuir model (BL): 

The bilangmuir model assumes a heterogeneous surface of the adsorbent with at 

least two types of adsorption sites: the strong sites dominate the adsorption; however, the 

weak sites contribute significantly to the total adsorption.  

The bilangmuir model is the sum of two langmuir equations: 

CK
CKq

CK
CKq

q ss

2

22,

1

11,

11 +
+

+
=                                                        8.5 

where qs,1 and qs,2 are specific saturation capacities of the two types of adsorption 

sites and K1 and K2 are corresponding equilibrium constants. 

The bilangmuir model is a four parameter equation, written as: 

xP
xPP
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=                                                            8.6 

8.1.4 The quadratic model (Q): 

The quadratic model is an empirical formula for complex adsorption/desorption 

cases. Usually, a number of adsorption sites of various energies contribute to the 

adsorption. The biliangmuir model is a special case of quadratic model. 

The quadratic equation is written as: 

2
21

2
21

1
2

CaCa
CaCaqq s ++

+
=                                                         8.7 

This three-parameter equation is fitted with the equation below: 
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8.2 Experimental  

8.2.1 Column preparation 

The monolithic columns were prepared as the procedure described in the 

previously chapters. The graphitized carbon rods were bent after the glassy carbon rods 

had been graphitized at 2800 °C. No monolithic graphitized carbon column has been 

made because of the technical difficulty of cladding the bentrods. The particulate 

columns of glassy carbon, graphitized carbon, and modified carbon were prepared by 

particles of these materials in the range of 10 to 25 µm. The particles were prepared by 

first grinding 5 pieces of 12cm long rods of these materials and then wet sieving the 

particles through a 25 µm sieve in ethanol. The collected particles were dispersed in 

100ml ethanol with the aid of sonication. Afterwards, the suspension were poured into 1L   

30:70 chloroform/ethanol mixture and allowed to settle for 1.5 hour to allow the 

precipitation of the particles. The small particles were sorted by discarding the 

suspension. The collected precipitation repeated the dispersion/ precipitation cycle for 3 

more times. The final collection of the precipitation was dispersed in 30 ml 1:1 

chloroform/isopropanol solvent for slurry packing. All particulate columns were slurry-

packed at 6000 psi by using a 1:1 mixture of chloroform and isopropanol.75, 167  

8.2.2 Column performance 

Column performance measurements were conducted at analytic conditions by the 

injection of various compounds with a typical injection volume of 10 µL. The column 

performance was evaluated by peak symmetry, retention factor, and column efficiency.168 

The peak symmetries of glassy carbon column, graphitized carbon column, and 



electrochemically modified column were compared at identical HPLC condition with a 

set of probing compounds. A constant flow rate of 1ml/min was used for the evaluation 

of peak symmetry. The elution of toluene was carried out by 20:80 

chloroform/acetonitrile, and resorcinol and tetradecylresorcinol were by 85:15 

methanol/water.  The retention factor was recorded at the maximum peak position. The 

Van Deemter plot was measured at various flow rates on the graphitized carbon and 

modified carbon columns. The linear flow rate tested on the particulate graphitized 

carbon column was from 0.125 to 2 mm/s, and on the monolithic modified carbon 

column the rate was from 0.3 to 12 mm/s. 

8.2.3 Frontal analysis (FA)169

The adsorption isotherms were determined by using frontal analysis. One pump of 

the HPLC instrument was used for delivering the solution of adsorbate and the other 

pump for delivering the pure mobile phase. A set of sample concentrations was achieved 

by varying the mixing ratios of solutions delivered by the two pumps. The Chemstation 

software controlled the mixing ratio and time. At a certain point in time, the column was 

equilibrated with a solution of concentration Ci;,a plateau was recorded corresponding to 

the equilibrium at the concentration Ci. Then the steam was abruptly replaced by another 

one with concentration Cb, which is higher than Ci. A breakthrough curve that resulted 

from the concentration change was then recorded. The concentration change in the 

stationary phase ∆q can be calculated from the equation: 

( )( )
s

ibr

V
CCVV

q
−−

=∆ 0

                                              8.9 
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where, Vr is the retention volume, V0 is the dead volume of the system, and Vs is the 

volume of the stationary phase.  

The isotherm is determined by measuring a number of successive points, 

corresponding to various concentration steps. The probing chemicals are 4 alkylbenzenes, 

which include toluene, amylbenzene, octylbenzene, and tetradecylbenzene, resorcinol, 

tetradecylresorcinol, naphthalene, and aniline. The selection of mobile phases depends on 

the compound and the chemistry of the column. All isotherm measurements on the 

modified carbon were carried out with 15:85 water/methanol. The elution of 

alkylbenzene on graphitzed carbon was conducted by 20:80 chloroform/acetonitrile. The 

isotherm of naphthalene was done with pure chloroform.   

The temperature was controlled by the thermostat that comes with the Agilent 

1100 HPLC system. Isotherms of toluene and resorcinol on the graphitized column were 

measured at 30, 40, 50, and 60 ºC. Other isotherms were measured at 30 ºC. 

The system tubing volume was measured when the column was replaced with a 

zero dead volume union. 

8.2.4 Surface area and porosity measurements 

The surface area measurements were conducted with N2 at liquid nitrogen 

temperature by using a Micromertic 2750 system. A BET model was employed for the 

calculation of surface area. The porosity of micropore and mesopore was given by the 

software that comes with the system. The porosity of micropore and mesopore was used 

as the internal porosity εI of the adsorbent. 



The total porosity εT was measured by column dead volume; εT of each column 

was measured individually by the injection of non-retained compounds. The 

measurements of dead volumes of carbon columns were obtained by the injection of a10 

µL water. The modified columns were measured by the injection of 10 µL acetone. 

The external porosity εE is attributed to the ratio of the macropore volume to the 

overall column volume. The external porosity of the particulate column depends on the 

packing density and the average particle size. The external porosity of the monolithic 

column is generally higher than that of the particulate columns. The macropores or the so 

called go-through pores are the main source of external porosity. It is easier to calculate 

the external porosity εE by subtracting the internal porosity from the total porosity than 

the directly measure the εE. The calculation is based on equation 8.10. 

I

IT
E ε

εεε
−
−

=
1

                                                            8.10 

8.2.5 The measurement of the bonding density of the electrochemically modified carbon 

column 

The bonding density of the electrochemically modified carbon was measured by 

thermogravimetric analysis-mass spectrometry (TGA-MS). The measurement was done 

with a TA instrument Q-50 system. The heating rate is set at 10 °C/min. The sample was 

heated in nitrogen environment from room temperature to 600 °C. A fraction of the 

debris that comes from the pyrolysis of the bonded ligand was monitored by the mass 

spectrograph.  
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8.2.6 Pressure effect on graphitized carbon column 

The pressure effect on the graphitized carbon column was investigated by the 

elution of the o-xylene and cyclohexanol at various average column pressures. Pure 

acetonitrile was used as mobile phase. Concentrations of analytes are 10mg/ml of o-

xylene and 15mg/ml of cyclohexanol. The injection volume is 10 µL. Flow rate was kept 

constant at 1ml/min. The average column pressures were adjusted by adding a piece of 

PEEK tubing to the outlet of the detector.149, 152 The retention factors were recorded at 

average column pressures of 186, 217, 242, 297, and 321 bars. Each data point of 

retention factor was averaged over five repeated measurements. 

8.2.7 Reproducibility of columns 

The reproducibility of the columns was evaluated by retention factors and column 

efficiencies. The measurements were based on the elution of toluene by 85:15 

methanol/water mixture at 1ml/min. The injection volume is 10 µL. Each measurement 

was repeated five times. Six monolithic columns from two batches were compared by 

retention factors and HETPs.  

8.3 Results and discussion  

8.3.1 Column physical parameters 

Nine columns were made from the monolithic carbon rods for the evaluation of the 

chromatographic use of the hierarchically porous carbon material that has been 

synthesized via the method described in Chapter 5. These columns have three types of 

chemistry: the glassy carbon, the graphitized carbon, and the electrochemically modified 

carbon. Eight monolithic columns were made from two batches of carbon rods, which 
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were synthesized using identical conditions. Six of the eight monolithic columns were 

electrochemically modified with diethylbenzene group. The details of the electrochemical 

modification were discussed in Chapter 7. The remaining 2 monolithic columns are made 

of as-synthesized glassy carbon.  

The glassy carbon rods have been graphitized in helium environment at 2800 ºC. 

Unfortunately, the graphitized carbon rods were seriously bent after the high temperature 

treatment. Although the bent monolith can be clad into a monolithic column by some 

industrial means, we encountered technical difficulties in encapsulatinag bent rods with 

any column configuration described in Chapter 2. For the purpose of evaluating the 

graphitized carbon, the bent rods have been ground into fine particles sized in the range 

of 10 to 25 microns. The graphitized porous rod was then evaluated in the form of a 

particulate column. The physical parameters of these columns are tabulated in Table 3.  

8.3.2 Column performance 

Column performance is tested on three types of columns: the glassy carbon 

column (column C-50-M-1), the electrochemically modified carbon (column C-50-M-1-

DEA), and the graphitized carbon column (column G-50-P). Figures 55 to 57 show 

chromatograms of the columns with injections of toluene, resorcinol, and 2-

tetradecylresorcinol. 

The elution of all three compounds on glassy carbon has very broad peaks with 

only a few tens theoretic plates. Obviously, the glassy carbon is not a suitable material for 

column adsorbent. The modified carbon column and the graphitized carbon column have 

good chromatographic performances. The size distribution of macropores, or the content 
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Table 3. Physical parameters of carbon based columns that synthesized by using the 

monolithic technique described in Chapters 5 and 7. 

Column 
I.D. 

(mm) *

Length 

(mm) 
εT εI εE Specification 

C-50-M-1-

DEA 
3.0 100.2 0.84 0.82 

C-50-M-2-

DEA 
3.0 98.1 0.81 0.79 

C-50-M-3-

DEA 
3.0 99.5 0.82 

0.11 

0.80 

1. carbon monolithic 

columns made from carbon 

rods batch 1 

2. all rods were made from 

50% of polymer 

3. all rods have been 

electrochemically modified 

with diethylamine group 

C-50-M-4-

DEA 
3.0 101.4 0.82 0.80 

C-50-M-5-

DEA 
3.0 97.9 0.81 0.79 

C-50-M-6-

DEA 
3.0 100.6 0.82 

0.12 

0.80 

carbon monolithic columns 

made from carbon rods 

batch 2, which were made 

by identical synthetic 

conditions of batch 1 

C-50-M-1 3.0 103.5 0.82 0.15 0.80 carbon rod from batch 1 

C-50-M-2 3.0 101.2 0.81 0.15 0.78 carbon rod from batch 2 

G-50-P** 4.6 79.6 0.68 0.11 0.63 

a packed column by using 

ground graphitized carbon 

rods  

Note: * I.D. stands for the column internal diameter. 

** The column was packed in a piece of manually cut stainless steel tubing. The 

ends of the tube were polished by using 1200 mesh sandpaper. 
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Figure 55. Toluene eluted by chloroform and acetonitrile 20/80 at flow rate 1ml/min. 

k' is 1.2 on glassy carbon, 0.75 on graphitized carbon, and 0.51 on modified carbon.  
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Figure 56. Resorcinol eluted by methanol and water 85/15 at flow rate 1ml/min. k' is 

2.2 on glassy carbon, 1.57 on graphitized carbon, and 3.02 on modified carbon. 
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Figure 57. 2-tetradecylresorcinol eluted by methanol and water 85/15 at flow rate 

1ml/min. k' is 12.5 on glassy carbon, 5.2 on graphitized carbon, and 6.7 on modified 

carbon. 
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of micropores, or both may affect the column performance of the monolithic column. The 

carbon materials used in this study are from the some source. Since the electrochemical 

modification of the carbon surface only converts a monolayer of functionalities to the 

carbon surface, the size distribution of the macropores of the electrochemically modified 

carbon column is almost identical to that of the glassy carbon column. The influence of 

macropore size distribution on the column performance can be ruled out. The differences 

between the modified carbon column and glassy carbon column are located in two 

aspects. The first aspect is that the volume of micropores in the glassy carbon has been 

greatly reduced after the modification. The internal porosity of the modified carbon 

column is 0.148, which is higher than 0.118 the internal porosity value of the modified 

carbon. The change of surface area gives further evidence of the blockage of micropores 

after the modification of glassy carbon. The surface area of the glassy carbon column is 

215.1 m2/g. When the surface of the glassy carbon has been covered by the modified 

ligand, the surface area dramatically dropped to 35.2 m2/g. Thus, micropores contribute 

most of the surface area of glassy carbon. The second aspect is that the surface chemistry 

of glassy carbon is very different from that of modified carbon. Because of the difference 

in the surface chemistry, the retention of compounds on glassy carbon differs from that 

on modified carbon. The surface chemistry of the modified carbon is discussed in depth 

in Chapter 7. The bonding density of the modified carbon is discussed in Section 8.3.4.  

The performance of graphitized carbon column is surprisingly good, though the 

graphitized carbon column is a packed column. As discussed regarding the modified 

carbon column, the elimination of micropores may be the major reason for the 
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improvements of the column performance. The high temperature treatment of glassy 

carbon causes significant change in the surface area and the volume of micopores. 

Deriving from the BET measurement, graphitized carbon has a surface area of only 15.7 

m2/g. The internal porosity of the graphitized carbon column is 0.11, which is lower than 

that of the modified carbon. The drawback of the packed graphitized carbon column is 

the unusually high back pressure. The SEM images of the macropores show that the 

average macropore size of the graphitized carbon is about 20% less than the glassy 

carbon. However, the backpressure of the particle column is higher than the monolithic 

column by a factor of 8. Such a high back pressure is probably due to the irregular 

particle shape and wide distribution of particle size.  

Peak symmetry is also improved by the elimination of micropores. Shown inTable 

4 is the peak symmetry data derived from chromatograms in Figures 55 to 57. By 

definition, the peak symmetry factor is the ratio of the left side peak width to that of the 

right side at 10% of the peak height. Peak symmetry establishes clear evidence for the 

surface homogeneity of the carbon materials.168 The peak symmetry of graphitized 

carbon is better than that of the modified carbon, and the modified carbon is better than 

the glassy carbon.   

The retention factors on glassy carbon are always higher than those on graphitized 

carbon and modified carbon, whereas the relative value of retention factors of the 

compounds on modified carbon and graphitized carbon depends on the properties of the 

elutes. For example, k’ of resorcinol is higher on modified carbon than on graphitized  
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Table 4. Peak symmetry of columns tested by toluene, resorcinol, and 2-

tetradecylresorcinol. 

Peak symmetry of columns 
Compound 

Glassy carbon Modified carbon Graphitized carbon 

toluene 0.23 0.84 0.91 

resorcinol 0.42 0.48 100.3 

2-tetradecylresorcinol 0.25 0.43 0.65 

 

 

column, however, the k’ of toluene is higher on the graphitized carbon than on the 

modified carbon. The surface area of glassy carbon is significantly higher than those of 

graphitized and modified carbons. In addition to that, the surface area of glassy carbon is 

mainly contributed by micropores, which firmly hold the adsorbate during elution. 

Therefore, all three compounds have stronger retention on glassy carbon. The surface 

areas of the graphitized and modified carbons are comparable, so that retention factors of 

the compounds on these two columns depend on interactions between compounds and 

column surface chemistries.  

The influence of flow rates on the efficiencies of the graphitized carbon column and 

modified carbon column are tested by toluene, resorcinol, and 2-tertradecylresorcinol. 

The flow rate on the monolithic column is from 0.3 to 12 mm/s. Because of the high 

backpressure of the packed graphitized carbon column, the flow rate  

 



on the graphitized carbon column is only from 0.125 to 2 mm/s.  Figures 58 to 60 are the 

Van Deemter plots of toluene, resorcinol and 2-tertradecylresorcinol. 

The Van Deemter equation has three terms that given by the equation: 

ucubaH ⋅++= /                                               8.11 

The fitting of the experimental data gives values of these three parameters, which are 

tabulated in Table 5. The Van Deemter plots show that the overall column performance 

of the graphitized carbon column is better than that of the modified carbon column. 

Because the graphitized carbon column is tested in the form of a particulate column with 

the particles sized in a wide range from 10 to 25 microns, a larger a term is expected of 

the graphitized carbon column than the a term in the monolithic modified carbon column. 

However, it is surprising that the a term of the graphitized carbon column is significantly 

smaller than that of the modified carbon column. This result has two possible causes. 

Table 5. Fitted Van Deemter equation parameters 

Parameters 
compound column 

a B c 

graphitized 33.24±0.87 2.58±0.14 4.55±0.56 
toluene 

modified 55.95±0.23 2.31±0.12 0.92±0.03 

graphitized 43.27±3.07 3.07±0.51 8.88±1.97 
resorcinol 

modified 101.97±0.48 3.80±0.24 0.65±0.06 

graphitized 70.67±1.47 1.73±0.24 1.55±0.95 
C14-resorcinol 

modified 101.97±1.51 15.51±1.65 1.08±0.23 
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Figure 58. Van deemter plot of toluene on graphite and modified carbon columns 

eluted by 20: 80 chloroform and acetonitrile. k’ is 0.75 on graphitized carbon, and 

0.51 on modified carbon. 
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Figure 59. Van Deemter plot of resorcinol eluted by 15:85 water and methanol. 

k’=1.57 on graphitized carbon, and 3.02 on modified carbon. 
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Figure 60. Van Deemter plot of 2-tetradecylresorcinol eluted by 15:85 water and 

methanol. k’ is 5.2 on graphitized carbon, and 6.7 on modified carbon. 
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One is that the transportation pores in the graphitized carbon column are smaller than 

those in the monolithic column. The macropores in the graphitized carbon column are 

acting as transportation pores even though the column is in a packed form. The SEM 

measurement shows that the average size of macroproes in graphitized carbon rods 

shrunk by 20% from the average size of macropores in their original glassy carbon rods. 

Therefore, the decreased term in the graphitized carbon column is the result of the 

decreased size of the macropore. The other possibility is that the porosity of monolithic 

column is radial heterogeneous. Since the macropores are of irregular shape, the average 

pore size can only be estimated by the SEM images. The pore size measured by SEM has 

large error, about 10%. There maybe a kind of radial heterogeneity within 10% that is not 

detectable by SEM, but 10% of the radial heterogeneity can significantly affect the 

performance of the monolithic column. The grinding and remixing graphitized carbon 

particles offsets the radial heterogeneity. Hence, the graphitized carbon has a smaller a 

term than the modified carbon column. Unfortunately, there is no further evidence to 

confirm the radial heterogeneity of the monolithic column. A monolithic column of 

graphitized carbon is very desirable for the testimony of radial heterogeneity.  The c term 

of the modified carbon column is smaller than that of the graphitized carbon column. The 

c term is a mass transfer coefficient. Usually the c term of the monolithic column is 

smaller than that of the particulate column. For accelerated separations, the monolithic 

column has less efficiency loss than the particulate column at high velocities of mobile 

phase.    
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8.3.3 The properties of adsorbents obtained through isotherms  

Isotherms on graphitized carbon and modified carbon were measured using 

frontal analysis. A typical staircase type of breakthrough curve is shown in Figure 61. 

The study of isotherms with a set of compounds on the adsorbent reveals interactions 

between the adsorbent and adsorbates. Therefore, the surface properties of the adsorbent 

can be deducted from the isotherm model and the chemistry of probing compounds. In 

this section, isotherms of alkylbenzenes, naphthalene, resorcinol, and 2-

tetradecylresorcinol on the graphitized carbon column have been closely examined and 

fitted with several models. The isotherms on the modified carbon column were tested by 

toluene, resorcinol, and aniline. The temperature effect on the graphitized carbon column 

was carried out with toluene and resorcinol. 

8.3.3.1 Isotherms on graphitized carbon column 

The isotherm of toluene on graphitized carbon column is upwardly concave. This 

kind of isotherm is called an antilangmuir type isotherm. Plots in Figure 62 are isotherms 

of toluene at different temperatures. The best fitting model of these isotherms is the 

antilangmuir (AL) model using the fitting equation 8.2. The quadratic equation (Q) can 

also give good fitting with errors only slightly larger than the antilangmuir model. The 

fitted parameters and errors are listed in Table 6. Isotherms of alkybenzenes that possess 

long alkyl chains are S-type isotherm (see Figure 63). The best fitting for this type of 

isotherm is the quadractic isotherm. The lower part of alkylbenezenes isotherms are 

concave and the upper part are convex. Figure 64 shows the isotherm of amylbenzene. 

The two insets in Figure 64 are the plot of the lower and upper parts of the isotherm. 
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Figure 61. A typical breakthrough curve. Toluene is eluted on graphitized carbon 

column at 30 ºC by 20:80 chloroform and acetonitrile. k’is 0.75. The time interval of 

each concentration is 10 minutes. 
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Figure 62. Isotherms of toluene on graphitized carbon eluted by 

chloroform/acetonitrile 20:80. 
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Figure 63. Isotherms of alkylbenzenes on graphitized carbon column at 30 ºC eluted 

by chloroform/acetonitrile 20:80. 
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Table 6. Fitted parameters of isotherms at 30 ºC on graphitized carbon column 

Parameters Compound 

 

Isotherm

model P1 P2 P3 

AL 8.56±0.39 0.025±0.001  
toluene  

Q 9.74±1.82 0.02031±0.004 0.0009±0.0003 

Amylbenzene Q 8.37±0.44 0.063±0.006 0.021±0.003 

Octylbenzene Q 13.75±0.51 0.081±0.005 0.023±0.002 

tetradecylbenzene Q 20.46±1.40 0.15±0.005 0.030±0.005 

AL 2.88±0.024 0.10±0.004  
Naphthalene 

Q 32.35±6.03 0.08±0.01 0.013±0.004 

L 22.22±0.55 0.02±0.001  
resorcinol 30 

Q 14.76±321.71 0.030±0.64 0.0001±0.01 

L 50.14±3.24 0.20±0.02  
C-14 resorcinol 

Q 1195±7432 0.008±0.05 -0.0004±0.003 
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Figure 64. Isotherm of amylbenzene on graphitized carbon column at 30 ºC eluted 

by 20: 80 chloroform/acetonitrile. 
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Each S–type isotherm has an inflection point. The isotherm of amylbenzene inflects at a 

concentration of 2.95 g/L, octylbenzene at 2.66 g/L, and tetradecylbenzene at 1.60 g/L. 

The data indicates the concentration of the inflection point is related to the length of the 

alkyl chain. The longer the alkyl chain is, the lower the concentration of inflection point. 

The concentration of inflection points are summarized in Table 7. 

Isotherms of alkylbenzenes on graphitized carbon are speculated as heterogeneous 

adsorption. The antilangmuir fitting of toluene and lower parts alkylbenzenes shows that 

at diluted concentrations the first several layers of adsorbates have significant adsorbate 

to adsorbate interaction. At high concentrations isotherms of long chain alkylbenzenes 

are upwardly convex, which are langumir types of isotherm. The convex curvatures of 

the upper part of isotherms indicate that the interactions among the adsorbates are not 

significant at high concentration. The origin of the S-type isotherms is hypothesized from 

the molecular structures of the adsorbate. Alkylbenzenes have a flat benzene ring head 

and a zigzag alkyl chain tail. When the alkylbenzene adsorbed on the graphite surface, 

the benzene ring lies flat on the graphene basal plane, whereas alkyl chains are randomly 

adsorbed on the carbon surface or positioned to the solution. The alkyl chains of the 

adsorbates tangled together and contribute strong adsorbate-to-adsorbate interaction. For 

the first layer that is adsorbed at low concentration, the adsorbed benzene heads interact 

with the benzene ring of adsorbates in the solution via π-π interaction. Heterogeneous 

adsorption thus occurs at the graphite surface. When the adsorbed layers increase to a  
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Table 7. The concentrations of inflection points of isotherms on graphitized carbon 

column at 30 ºC. The isotherms are measured with amylbenzene, octylbenzene, 

tetradecylbenzene. 

Compound amylbenzene octylbenzene tetradecylbenzene 

Concentration of 

inflection point 
2.95 g/L 2.66 g/L 1.60 g/L 

 

certain thickness, the randomly distributed alkyl chains hinder the access of the 

adsorbates in the solution to the carbon surface. Consequently, the adsorbate-to-adsorbate 

interaction does not significantly contribute to the adsorption. Therefore, the upper part of 

the isotherm is upwardly concave with finite adsorption capacity. This point is confirmed 

by the phenomena that concentrations of inflection points of alkylbenzenes’ isotherms 

depend on the lengths of the alkyl chain. Obviously, the longer the alkyl chain is, the 

more significant the hindering effect is. The isotherm of toluene is an exception.  Because 

the alkyl chain tail of toluene is only one methyl group, the hindering effect is not 

observable.  

In order to examine the above hypothesis of heterogeneous adsorption on 

graphitized carbon column, three sets of isotherms were measured, one with naphthalene 

that eluted by pure chloroform for further evidence to adsorbate-adsorbate interaction, 

resorcinol that eluted by 15:85 water and methanol mixture for the indirect evidence to 

adsorbate-adsorbate interaction, and 2-tetradecylresorcinol that eluted by 15:85 water and 



methanol mixture for the examine of alkyl chain effect. Naphthalene is a flat molecule 

with two fused benzene rings. Shown in Figure 65, the isotherm of naphthalene on 

graphitized carbon is concave upward, a typical antilangmuir type isotherm. Both the 

antilangmuir model (AL) and quadratic model (Q) give very good fitting to the 

experimental data (see parameters in Table 6). No inflection point has been found at the 

accessible concentration range. Adsorbate-to-adsorbate interaction significantly 

contributes to the adsorption of naphthanlene on graphitized carbon surface. This 

confirms the multilayer adsorption of flat aromatic compounds on graphitized carbon 

surface.  

By definition, the adsorption density is the number of adsorbed molecules per unit 

of surface area. The adsorption density is denoted as q’. The value of q’ is obtained from 

the isotherm. The q’ value can be calculated from the equation: 

wag MSD
qq

××
××

=
21002.6'                                                         8.12 

where the unit of q’ is number of molecules per nm2; the unit of q is g/L, Dg is the density 

of graphite with the value of 1.8 g/cm3; Sa is the surface area of the monolith column with 

the unit of m2/g; Mw is the molecular weight of the adsorbate. Shown in Figure 66, q’ of 

alkyl benzenes on graphitized column surface is plotted as a function of concentration C. 
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Figure 65. Isotherm of naphthalene on graphitized carbon column at 30 ºC eluted by 

chloroform. 
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Figure 66. Adsorption density (number of molecules/ nm2) of alkyl benzenes on 

graphite column as a function of concentration. 
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Assuming adsorbed molecules are lying flat on the graphite surface, the average 

surface coverage (Γ) can be estimated by sizes of molecules (Sm) according equation 8.13. 

wag

m

MSD
Sq

××
××

=Γ
02.6                                                8.13 

where the unit of Sm is Å2. See Table 8 for molecular size. Γ is dimensionless. If Γ is 

great than 1, the value indicates the average number of layers covered on the adsorbent 

surface. Shown in Figure 67 is the plot of surface coverage v. concentration. 

When isotherms are fitted with a quadratic model, a theoretic maximum of 

surface coverage (Γmax) can be predicted by the fitted qs. If Γmax is greater than 1, the 

adsorbate forms multilayer on graphite surface. If Γmax is less than 1, the adsoption occurs 

as two situations: when there is no adsorbate-adsorbate interaction, the isotherm is 

langmuir type; when there is an adsorbate-to-adsorbate interaction, the molecule forms 

islands on the adsorbent surface, and the isotherm is S-shaped.  

Resorcinol and 2-tetradecylresorcinol were selected as probing compounds to 

give indirect evidence to the adsorbate-to-adsorbate interaction. Resorcinol has two 

hydroxyl groups directly connected to the benzene ring. These hydroxyl groups are well 

solvated by the mixture of 15: 85 water/ methanol. The adsorption of resorcinol to the 

graphitized carbon surface is always accompanied by solvent molecules that interact with 

resorcinol through hydrogen bonds. The adsorbate-to-adsorbate interaction among 

resorcinol molecules is always weakened by the hindering of solvent molecules. Thus, a 

langmuir type of isotherm is expected. As plotted in Figure 68, isotherms of resorcinol on  
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Figure 67. Surface coverage of alkylbenzenes on graphite surface as a function of 

concentration. 
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Table 8. Maximum of surface coverage (Γmax) of adsorbates on graphitized carbon 

surface. Sizes of molecules are calculated by Chem Office 8.0. The alkyl benzenes 

are calculated as a flat head of 26.4 Å2 and flexible tails with projected areas that 

vary with the lengths of alkyl chains. 

compound qs Size of the 

molecule Sm (Å2) 

Molecular 

weight 

Γmax  

toluene 9.74 26.4 92 0.595 

amylbenzene 8.37 26.4 (head) 

13.1(tail) 

148 0.476 

octylbenzene 13.75 26.4 (head) 

19.5(tail) 

190 0.708 

tetradecylbenzene 20.46 26.4 (head) 

36.6(tail) 

274 1.000 

naphthalene 32.35 34.5 128 1.857 
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Figure 68. Isotherm of resorcinol on graphitized carbon column at 30 to 60 ºC 

eluted by 15:85 water/methanol. 
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 186

graphitized carbon are upwardly convex, with finite adsorption capacity. The langmuir 

model gives excellent fitting to the experimental data.  

According to the conclusion of the above discussion, the isotherm of toluene is 

anantilangmuir type and when the alkyl tail is long enough, the antilangmuir isotherm 

will become an S-type isotherm. In order to check whether or not the same phenomenon 

occurs in the resorcinol homologue, the isotherm of 2-tetradecylresorcinol was tested 

with the identical condition of resorcinol on graphitized carbon column. Figure 69 is the 

plot of isotherms of resorcinol and 2-tetradecylresorcinol on graphitized carbon column. 

Obviously, the isotherm of 2-tetradecylresorcinol is a langmuir type isotherm, which is 

upwardly convex. There is no inflection point in the isotherm curve. The best fitting 

model for 2-tetradecylresorcinol is still the langmuir model. Thus, the alkyl chain has no 

influence on the adsorption model of the resorcinol.  

The temperature effect on isotherms has been tested on the graphitized carbon 

column by using toluene, an antilangmuir type isotherms, and resorcinol, a langmuir type 

isotherm. The plot of isotherms of toluene at 30, 40, 50, and 60 ºC is shown in Figure 62. 

The temperature effect on the resorcinol isotherm is plotted in Figure 68. The fitted 

parameters were listed in Table 9. The data shows that the amount of the adsorbed 

analyte decreases with the increase of temperature. For the langmuir model, the 

parameter P1 is the specific saturation capacity qs, and the P2 is the equilibrium constant 

K. Langmuir isotherms of resorcinol on graphitized carbon column have a constant 

equilibrium constant K with the value of 0.020±0.0006 at various temperatures. The 

saturation capacity decreases with the increase of temperature. 
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Figure 69. Isotherm of 2-tetradecylresorcinol and resorcinol on graphitized carbon 

eluted by 85:15 methanol/water at 30 ºC. 
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Table 9. Fitted parameters of temperature effect on isotherms. 

Parameters Compound 

temperature 

 

Isotherm 

model P1 P2 P3 

AL 8.56±0.39 0.025±0.00096  
toluene 30 

Q 9.74±1.82 0.020±0.0035 0.00085±0.00025 

AL 4.85±0.14 0.036±0.00078  
Toluene 40 

Q 11.20±6.91 0.014±0.0079 0.00073±0.00063 

AL 3.14±0.15 0.046±0.0014  
Toluene 50 

Q 13.21±5.12 0.0086±0.0031 0.00064±0.00031 

AL 2.075±0.067 0.055±0.0011  
Toluene 60 

Q 21.27±56.27 0.0041±0.010 0.00037±0.0011 

L 22.22±0.55 0.020±0.0006  resorcinol 

30 Q 14.76±321.71 0.030±0.64 0.00013±0.012 

L 21.50±0.53 0.020±0.0006  resorcinol 

40 Q 14.22 ± 357.04 0.030 ± 0.74 0.00013 ± 0.014 

L 20.80±0.51 0.020±0.0006  resorcinol 

50 Q 13.76±346.06 0.030±0.75 0.00013±0.014 

L 20.13±0.50 0.020±0.0006  resorcinol 

60 Q 13.31±334.44 0.030±0.74 0.00013±0.014 
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8.3.3.2 The isotherms on modified carbon column 

Isotherms on modified carbon column were tested by resorcinol, toluene, and 

aniline at 30 ºC. Isotherms and best fittings are plotted in Figure 70. The fitted parameters 

are listed in Table 10.  

The isotherm of toluene on modified carbon surface is still an antilangmuir type 

isotherm. The best fitting of the experimental data is given by the antilangmuir equation. 

The adsorbate-to-adsorbate interaction significantly contributes to the total adsorption of 

toluene to the modified carbon surface.  

The isotherm of resorcinol on the modified carbon is fitted with langmuir, 

quadratic, and bilangmuir models. As shown in Figure 71, the best fitting of resorcinol on 

modified carbon surface is the bilangmuir model. The bilangmuir model assumes that the 

adsorption is dominated by 2 kinds of adsorption sites. Each type of site has 

corresponding qs and K. The bilangmuir fitting gives qs,1 is 25.58, K1 0.02 and qs,2 is 1.83, 

K2 0.97. This fitting result suggests that the modified carbon surface is heterogeneous. 

The heterogeneity may due to the insufficient coverage of the carbon surface or 

micropores that have not been totally blocked by the modified ligand.  

The isotherm of aniline on the modified carbon surface is less curved than the 

isotherm of resorcinol (Figure 72). The best fitting of this isotherm is the quadratic model. 

As indicated in the isotherm of resorcinol, the adsorption of aniline on the modified 

carbon surface may be contributed from more than two types of adsorption sites.   
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Figure 70. Isotherms of toluene, resorcinol, aniline on modified carbon column by 

85:15 methanol/water at 30 ºC. The surface modifiecation is N,N’-diethylbenzene. 
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Table 10. Fitted parameters of isotherms of toluene, resorcinol, and aniline on 

modified carbon. 

Parameters Compound 

 

Isotherm 

model P1 P2 P3 P4 

AL 6.74±0.21 0.037±0.001   
Toluene 

Q 45.77±44.69 0.0049±0.005 0.0002±0.0002  

L 9.82±0.46 0.15±0.01   

Q 6.39±34.04 0.24±1.28 0.007±0.2  
Resorcinol 

BL 25.58±8.82 
0.0218±0.010

3 
1.83±0.31 0.96±0.18 

L     

Q 7.91±0.64 0.046±0.003 0.004±0.0006  

AL 23.44±2.89 0.02±0.002   Aniline 

BL 
92.57±4718.

4 
0.048±0.49 -62.59±4753.65 0.066±0.63
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Figure 71. Curve fitting of the resorcinol isotherm on modified carbon at 30 ºC. 
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Figure 72. Curve fitting of the isotherm of aniline on modified carbon. 
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8.3.3.3 The comparison of isotherms between graphitized and modified columns 

Isotherms of resorcinol on graphitized carbon column and modified carbon 

column have been measured at identical conditions (Figure 73). These two isotherms 

provide the comparison of isotherms on these two types of adsorbents. The fitted 

parameters are provided in Table 11. According the foregoing discussion, the best 

isotherm model for resorcinol on graphitized carbon column is the langmuir model, and 

the best isotherm model for resorcinol on the modified carbon column is the bilangmuir 

model. The qs of resorcinol on graphitized carbon is 22.22, and the corresponding K is 

0.020. The qs,1 value of the bilangmuir fitting of resorcinol on modified carbon is 25.58, 

and the K1 is 0.02. The values of these two sets of parameters are very close. This factor 

suggests that the modified carbon surface has some adsorption sites that are similar to 

those on the graphitized carbon. The second langmuir term of the bilangmuir fitting of 

resorcinol on modified carbon has a small qs,2 of 1.83 with a larger equilibrium constant 

K2 of 0.96. The parameter values of the second langmuir term refers to a stronger 

adsorption site but with a small site population. It can be concluded that the modified 

carbon surface has two kind of adsorption sites, one kind of adsorption site is similar to 

the properties of graphitized carbon surface, the other kind of adsorption site has less 

population with much higher adsorption energy. The ligand that has been modified the 

carbon surface is a tertiary amine. Resorcinol is an acidic compound.Therefore, the 

strong adsorption sites can be assigned to the ligands that anchored on the carbon surface. 

According to the discussion in Chapter 6, the modification of the carbon surface starts 

from the edge or defects of the carbon material. 
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Figure 73. Comparison of isotherms of resorcinol on graphite and modified carbon 

eluted by methanol/water (85/15) at 30 ºC. 
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Table 11. Fitted parameters of resorcinol’s isotherms on graphitized carbon and 

modified carbon. 

Parameters Compound 

 

Isotherm 

model P1 P2 P3 P4 

L 22.22±0.55 0.02±0.0006   Resorcinol 

on 

graphite Q 14.76±321.71 0.03±0.64 0.0001±0.012  

L 9.82±0.46 0.15±0.012   

Q 6.39±34.04 0.24±1.28 0.0070±0.17  

Resorcinol 

on 

modified 

carbon BL 25.58±8.82 0.022±0.010 1.83±0.31 0.97±0.18 
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 The basal plane of the carbon surface is inerter than the edge of the graphene. It is 

possible that the modification of the carbon surface covered only the defect sites and the 

edge of the graphene.That is to say, the modification only occurs at the pore opening of 

micropores. The comparison of isotherms on graphitized and modified carbons provides a 

picture of the micropores on the glassy carbon surface that have been blocked by the 

modification that becomes the second langmuir type adsorption sites. The carbon surface 

has not been fully covered by the functionalities.  

8.3.4 Ligand density by TGA-MS 

The surface area of the glassy carbon before modification is 215.1 m2/g, and it 

drops to 35.2 m2/g after modification. The change in surface area indicates that the 

modification blocked micropores. However, there is no further information about surface 

coverage of the modification. From the discussion on the comparison of isotherms on 

graphitized and modified carbons, one can conclude that the carbon surface is not fully 

covered by the functionalities. In order to find out the lignad or bonding density of the 

modified carbon surface, the modified carbon has been analyzed by TGA-MS. Since the  

ligand is covalently bonded to the carbon surface, there is no efficient way to break the 

C-C bond other than pyrolysis.170 The pyrolysis of the modified carbon releases the 

bonded ligand. The weight loss gives quantitative result of the ligand density. The MS 

data monitored the debris of the ligand. Shown in Figure 74 is the TGA-MS plot of the 

modified carbon sample pyrolysized in nitrogen at 10 ºC/min. Since the pyrolysis 

involved the rearrangement of the ligand at elevated temperature, the MS data only 

provides a rough idea of what was emitted from the furnace. The weight loss, along with  
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Figure 74. TGA-MS plot of the modified carbon which is pyrolysized from room 

temperature to 600 ºC at N2 gas flow. The temperature ramp is 10 ºC/min. 
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the temperature information, provides the weight percentage of the ligand to the sample. 

Because the weight percentage of the ligand is very small, the weight loss of moisture 

should be deducted from the total weight loss. The moisture weight should also be  

subtracted from the total sample weight. The MS data shows the emission of organic 

moieties starts from 180 ºC. Therefore, the weight loss before 180 ºC is considered to be 

water vapor and should be deducted. The calculated weight loss is 2.43%. The surface 

area of the modified carbon is 35.2 m2/g according to the BET. The ligand density can be 

calculated by the formula: 

SaMw
WlDl •

×
=

01.0                                                            8.14 

where, Dl is ligand density mol/m2; Wl is relative weight loss percentage; Mw is 

molecular weight g/mol; Sa is surface area m2/g. Assuming the modification starts from 

the entrance of micropores, the modification of the ligand does not cover the interior of 

the micropores. The surface area of the modified carbon other than that of the glassy 

carbon was used in the calculation of ligand density. Therefore, the value of the Sa is 

35.2 m2/g. Mw is 124 g/mol. The calculated ligand density value Dl is 5.57 µmol/ m2.  

8.3.5 The reproducibility of monolithic columns 

The reproducibility of monolithic columns is an important factor evaluating how 

repeatable the synthesis method is. In this study, 6 columns made from two batches of 

carbon rods have been compared by the retention factor and the HETP. Each 

measurement was repeated five times; the final data is the average of the five runs. 

Shown in Table 12 are the k’ and HETP values that measured six modified columns. The 

data in Table 12 was presented as two plots in Figures 75 and 76.  The average k’ over  
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Figure 75. Plot of k' versus column. 
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Figure 76. Plot of HETP versus column. 
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Table 12. k’ and HETP measured on six modified carbon columns. 

Column ID k’ k’ error HETP HETP error 

C-50-M-1-DEA 0.51 0.02 58.6 5.6 

C-50-M-2-DEA 0.53 0.03 67.9 4.8 

C-50-M-3-DEA 0.67 0.02 89.3 5.4 

C-50-M-4-DEA 0.42 0.04 77.4 6.7 

C-50-M-5-DEA 0.56 0.02 69.7 4.2 

C-50-M-6-DEA 0.43 0.05 59.8 3.5 

 

the six columns is 0.52 with a standard deviation 0.09. The average HETP over the six 

columns is 70.45 microns with a standard deviation 11.52. 

The retention factor k’ and HETP of each batch is an average of the value of three 

columns in the same batch. The data of k’ and HETP of two batches are listed in Table 

13. The plot of k’ and HETP versus batch are presented in Figure 77 and 78. The 

standard deviation of k’ between batches is 0.07 and HETP is 2.1. These numbers prove 

that columns made via the synthesis approach described Chapters 5 and 7 are 

reproducible.   

8.3.6 The pressure effect on the graphitized carbon column 

Pressure is often assumed as a negligible factor for the retention of solute in liquid 

chromatography because of the small compressibility of the mobile and stationary 

phase.171 The molar volume change of molecules does not significantly affect the 

retention under moderate pressure of less than 400 bar. With the up-to-date development  



Table 13. k’ and HETP measured on 2 batches of modified carbon columns. 

Batch number k’ k’ error HETP HETP error 

1 0.57 0.087 71.93 15.74 

2 0.47 0.078 68.97 8.82 
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Figure 77. Average k' versus batch. 
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Figure 78. Average HETP versus batch. 

 204



of the HPLC technologies, the use of particles as small as 800nm is made possible by 

delivering mobile phases at ultrahigh pressures up to 1200 bar. Under ultrahigh pressure, 

the molar volume change may significantly influence the retention of solute. Several 

groups have theoretically and experimentally studied the pressure effect. Guiochon was 

the first to point out that at a constant temperature, the natural logarithm of retention 

factor k has a linear relationship with the applied pressure.153 Assuming the phase ratio is 

constant, the slope of the linear fitting of lnk versus pressure (P) is given the equation:153, 

157, 171

RT
V

P
k

T

∆−
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ ln                                                        8.15 

where the k is the retention factor, P is the average column pressure, ∆V is the molar 

volume change with the unit of cm3mol-1, R is the gas constant with the value of 83.14 

cm3mol-1K-1bar-1. T is the absolute temperature with the unit of K.   

The pressure effect was measured by the elution of o-xylene and cyclohexanol on 

graphitized carbon column with mobile phase of acetonitrile. The recorded retention 

factors are the average of five identical runs. Figure 79 shows the plot of k’ versus 

pressure of o-xylene and cyclohexanol at 303K. Since the ln k has linear relationship with 

pressure, the data in Figure 80 were plotted by ln k versus pressure. The linear fitting was 

done with the linear equation: 

PBAk ⋅+=ln                                                              8.16 

where A is the interception and B is the slope. If the phase ratio is fixed, A is supposed to 

be zero. B is given by153  
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Figure 79. Plot of k’ versus pressure of o-xylene and cyclohexanol eluted by 

acetonitrile at 303 K on graphitized carbon column.  
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Figure 80. Plot of lnk’ versus pressure of o-xylene and cyclohexanol eluted by 

acetonitrile at 303 K on graphitized carbon column. 
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Table 14. Fitted parameters and calculated molar volume change. 

compound A B ∆V (cm3mol-1) 

o-xylene 0.034±0.037 8.72E-4±1.44E-4 -21.97 

cyclohexanol -0.15±0.018 4.66E-4±7.11E-5 -11.75 

 

RT
VB ∆−

=                                                                  8.17 

Thus, 

BRTV =∆−                                                                  8.18 

The linear fitting parameters and the calculated molar volume change are tabulated in 

Table 14. The results show that obvious pressure effect can be observed on the 

graphitized carbon column. With the two probing compounds selected in this research, 

the calculated molar volume change of o-xylene at 303K on graphitized carbon column is 

-21.97cm3mol-1, and that of cyclohexanol is -11.75 m3mol-1. 

8.4 Conclusion 

Carbon based stationary phases have been closely examined by isotherm analysis. 

Graphitized carbon and electrochemically modified carbon are effective materials for 

HPLC applications. Glassy carbon is not a suitable candidate for stationary phase due to 

its microporosity. The micropores in glassy carbon can be blocked or eliminated by 

electrochemical modification or graphitization. The elimination of micropores confers 

superior chromatographic performance to the carbon material. Graphitized carbon has 

more homogeneous surface than electrochemically modified carbon. Although 
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electrochemical modification can efficiently block the micropores, the basal plane of the 

carbon cannot be fully covered by electrochemical modification. Thus, the modified 

carbon surface has two kinds of adsorption sites: the naked carbon and the covalently 

modified ligands. The population of the naked carbon is larger than the population of the 

ligands. In cases where the modified functionalities have strong adsorption to the 

adsorbate, for example, the modified amine ligand to the resorcinol, the minority ligands 

significantly affect to the isotherm. When the functionalities have only weak interaction 

with the adsorbate, the influence of the minority group is negligible, for example, the 

toluene eluted on the modified carbon.  

The reproducibility of columns is evaluated with two batches of columns. Each 

batch has three columns. The experimental data shows that the synthesis of the modified 

carbon column is very reproducible.  

The elevated pressure affects the retentions factor of adsorbate. The retention 

factor of o-xylene and cyclohexanol increases with the increase in column pressure.  

Several problems need to be solved. The first problem is that the graphitized 

carbon rods were seriously bent after the high temperature treatment. It is urgent to either 

find a suitable cladding method for the bent rods, or to prevent bending during 

graphitization. The surface coverage of the modified carbon surface is the second 

problem. The performance of the surface modified carbon column can be improved with 

more densely anchored ligands. The modification of graphitized carbon surface may be 

the future direction of investigation of carbon based monolithic columns.  



 210

 Chapter 9:  Conclusion 

As Guiochon recently claimed, “The invention and development of monolithic 

columns is a major technological change in column technology, indeed the first original 

breakthrough to have occurred in this area since Tswett invented chromatography, a 

century ago.” 27  The monolithic column has been recognized as the fourth-generation 

stationary phase and been well-accepted by both the industrial and academic research 

communities. Although the research into monolithic columns began in the 1970s, the real 

success has been achieved only in the last decade. As a result of this success, the Merck 

Chromolith rod was commercialized in 2000. Since that time, the first commercially 

available silica monolithic column has greatly expanded the applications of monolithic 

columns. With such a short history, research into monolithic columns is still in its infancy. 

Because of the worldwide interest in this research, frequent new achievements have been 

made in this area. All these achievements have led to intriguing new opportunities for 

research. Nevertheless, much remains to be done to extend the monolith technique to all 

areas of traditional particulate columns. To replace the particulate columns with 

monolithic ones is a long-term and methodical process, which requires the efforts of 

numerous researchers. The present study is designed to further such research. The main 

achievements of the research are summarized as follows:  

(1) Four novel column configurations have been designed for the purpose of 

evaluating the chromatographic performances of various monolithic materials. Each 

configuration is designed to solve problems associated with the encasing of the 
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monolithic materials. The first type of column configuration is the polymer-lined 

stainless steel encasing, which offers a versatile method for the evaluation of monolithic 

materials in a typical research laboratory of limited fabrication capabilities. The second 

type of column configuration is based on the glass-shrinking techniques that made it 

possible for researchers to visualize the HPLC column. The glass-encasing technique 

allows researchers to study the separation process by actually “seeing” the separation in a 

straightforward way. Due to time constraints and research conditions, we have not yet 

actually used the glass-encased column in a “real” separation. Nevertheless, this 

technique has paved the way for modeling the separation in monolithic columns. The 

third type of column configuration is the polymer encased column. The heat-sensitive 

materials can be converted to monolithic columns without the kind of heating process 

that is required by the popular heat-shrinking techniques. The last column configuration 

is the multicapillary-array monolithic column. This configuration fills the gap between 

standard-sized and capillary columns. For traditional columns, the microbore columns 

bridge the gap between standard-sized and capillary columns. Because of the shrinking 

and brittle nature of the monolithic column, it is impossible to make microbore silica 

monolithic columns. However, the multicapillary-array monolithic column has the 

potential to be the counterpart of the microbore particulate coluumn.  

(2) The gel-casting method has been introduced for the synthesis of silica 

monoliths. It is well known that the sizes of the mesopores and macropores are 

interrelated if the silica monolith has been made via the phase-separation procedure; that 

is, one cannot tailor the porosity of the mesopore without changing that of the 
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macropores, and vice versa. We have successfully separated the synthesis of the 

mesopore and the macropore into two independent procedures. Thus, the gel-casting 

method allows one to synthesize silica monoliths with independently tunable 

mesoporosity and macroporosity. Moreover, the silica monolith made by gel casting has 

more uniform pores than the one made by phase separation.  

(3) Graphitized carbon has superior chemical and physical stability compared 

with silica. In practice, graphitized carbon columns have been widely used to solve the 

separation problems that are difficult to achieve using columns made of silica or 

polymers. In this research, we pioneered the synthesis of monolithic carbon columns. The 

carbon monolith was tailored by using silica microspheres as templates for the 

macropores. The mesopores result from the removal of the graphitization catalysts that 

are in situ produced iron particles. The research into catalyzed graphitization of carbon 

monoliths has illustrated the methodology of using colloids as templates for monolithic 

columns.  

(4) The phase-separation method has been successfully applied to the synthesis of 

carbon monolithic columns. Based on the composition of the starting material, various 

pore sizes can be developed into the carbon monolith. The pore-forming agents are 

decomposable at the carbonization step. This method eliminates the removal of templates, 

which is regarded as a wasteful process. Carbon rods made by this method use 

inexpensive starting material and employ a simple process. Thus, the fabrication cost of 

the carbon monolith via phase separation is very low compared with that of carbon 

particulate columns. The mesopore is tailored using block copolymers as pore-forming 
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agents. Highly ordered uniform porous carbon materials are made via a solution-based 

procedure. The lengths of the chains contained in the block polymers strictly control the 

pore size. A solvent-annealing process further refines the regularity and uniformity. 

Herein, we developed the first methodology for the synthesis of ordered mesoporous 

carbon by using thermal-decomposable structure-directing agents. In this method, 

uniform carbon coating can be applied to any thermal-stable substrate. By coating the 

mesoporous carbon onto the carbon monolithic, we are able to control the macroporosity 

and mesoporosity on a case-specific basis. 

(5) Electrochemically assisted modification of carbon surfaces has been applied to 

the grafting of functionalities onto the carbon monolithic column. The advantage of 

electrochemical modification is the self-limiting nature of the electrochemical reaction. 

The self-limiting growth of the surface modifier ensures the creation of a monolayer. 

Various functionalities can be grafted onto the carbon surface by using the para-

substituted aryldiazonium salts. Theoretically, all kinds of functionalities can be grafted 

onto the carbon surface, creating the possibility of substituting carbon columns for silica 

columns in most applications by offering better hydrothermal and pH stabilities. The 

surface modification blocks the openings of the micropores on the glassy carbon surface, 

which ensures a good chromatographic performance of the monolithic column. 

Historically, because of the intrinsic micropores, glassy carbon has never been proven to 

be a good stationary phase. So far, graphitization is the only method that has been 

reported for the elimination of the micropores. In fact, graphitization is one of the major 

contributors to the high cost of the carbon stationary phase. Electrochemical modification 
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offers an alternative approach for the elimination of micropores and is much cheaper than 

graphitization. It is quite apparent that electrochemical-assisted surface modification of 

the carbon rod paves the way for using glassy carbon as a general material for monolithic 

columns.   

In a summary, this research is devoted to the development of monolithic columns, 

the fourth generation of chromatographic columns. Our studies suggest that it is only a 

matter of time before the monolithic technique will be extended to every separation 

application and becomes competitive with traditional means. 
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