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Abstract 
 

 

This thesis considers a differential-algebraic approach to estimating the speed and 

rotor time constant of an induction motor using only the measured terminal 

voltages and currents. It is shown that the induction motor speed satisfies both a 

second-order and a third-order polynomial equation whose coefficients depend on 

the stator voltages, stator currents, and their derivatives. Further, it is shown that 

as long as the stator electrical frequency is nonzero, the speed is uniquely 

determined by these polynomials. The speed so determined is then used to 

stabilize a dynamic (Luenberger type) observer to obtain a smoothed speed 

estimate. With full knowledge of the machine parameters and filtering of the 

sensor noise, simulations and experiments indicate that this estimator has the 

potential to provide low speed (including zero speed) control of an induction 

motor under full load.  A differential-algebraic approach is also used to obtain an 

estimate of the rotor time constant of an induction motor, again using only the 

measured stator voltages and currents. Experimental results are presented to 

demonstrate the practical use of the identification method. 
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Chapter 1

Introduction

Electric machines play an important role in industry as well as in our day-to-day

lives. They are used in power plants to generate electrical power and in industry to

provide mechanical work, such as in steel mills, textile mills, and paper mills. They

start our automobiles and operate many of our household appliances; an average

home in North America uses a dozen or more electric motors daily [2].

The electric machine age can be traced to Faraday’s discovery of electromagnetic

induction in 1831. Electric machines remained largely a laboratory and demonstra-

tion curiosity until the 1870s when Thomas Edison began commercial development

of the DC generator to support electrical power distribution. A major milestone in

the history of the electric machine was the patent of the three phase induction motor

and the concept of alternating currents by Nikola Tesla in 1888. Charles Steinmetz

advanced Tesla’s concept of alternating current over the next decade so that by 1900

reliable wound-core transformers were available, opening the way for long-distance

power transmission to power induction motors. The electrification of the United
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States was well under way although the process would take another 30 years to com-

plete with the final rural electric power distribution not being completed until the

1930s. The proliferation of electric machine applications closely tracked the expansion

of the electric utility grids.

Electric machines come in forms such as Direct Current (DC) machines, Induc-

tion machines, Synchronous machines and some special machines including stepper

motors, switched reluctance machines, and brushless DC motors. Electric machines

are used in manufacturing facilities, and many electric machines are integrated into

appliances, vehicles, and service machines.

In the past, DC machines were used extensively in areas requiring variable-speed

operation because the field flux and torque of DC machines can be easily controlled

by the field and armature current, respectively. In particular, separately excited

DC machines were used mainly for applications where there was a requirement of

fast response and four-quadrant operation with high performance. However, DC

machines have certain disadvantages due to the existence of the commutator and the

brushes, which require periodic maintenance. They cannot be used in explosive or

corrosive environments; the commutator limits their capability for high-speed, high-

voltage operation. Alternating-current (AC) machines do not have these problems.

AC machines have a simple and rugged structure, high maintainability and economy;

they are also robust and more immune to heavy overloading.

Variable-speed AC machines have been used in the past to perform important

roles in applications which preclude the use of DC machines, either because of the

working environment or commutator limits. The low cost of AC machines is a decisive
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economic factor in multi-motor systems and among the various AC drive systems.

Induction machines have a particular cost advantage.

1.1 Induction machines

The induction motor is the most common type of AC motor. It is relatively

inexpensive to build, is very rugged, and requires little maintenance. Furthermore,

in contrast to the DC machine commutators that corrode and produce small arcs, it

can also be used in volatile environments. Single-phase induction motors are used for

residential and commercial applications, but industry relies on the three-phase motor

for its smoother operation and higher efficiency.

The induction machine can operate both as a motor and as a generator. However,

it is seldom used as a generator supplying electrical power to a load (windmills being

an exception). The performance characteristics as a generator are not satisfactory for

most applications. Thus, the induction machine is extensively used as a motor.

1.2 Control of the induction machine

Much attention has been given to induction motor control for starting, braking,

speed reversal and speed change. Open-loop control of the machine with variable

frequency may provide a satisfactory variable speed drive if the motor is to operate at

constant torque without stringent requirements on speed regulation. When the drive

requirements include fast dynamic response and accurate speed or torque control,

open-loop control is unsatisfactory. Hence it is necessary to operate the motor in a

closed-loop mode, when the dynamic operation of the induction machine drive system

3



has an important effect on the overall performance of the system. The induction motor

torque is dependent both on the air-gap flux and the speed, but neither the torque

versus flux nor the torque versus speed relationship is linear, which complicates the

design of the control system for induction machines.

Several techniques of controlling the induction motor are proposed in literature.

These schemes can be classified into two main categories.

1. Scalar control: (a) Voltage/frequency (or V/f) control. (b) Stator current and

slip frequency control

2. Vector control: (a) Field oriented control (FOC) [3] [4]. (b) Direct torque and

stator flux vector control [5] [6], and [7].

1.2.1 Voltage/frequency (or V/f) control

The V/f control principle adjusts a constant V/Hz ratio of the stator voltage

by feedforward control. It serves to maintain the magnetic flux in the machine at a

desired level. However, it satisfies only moderate dynamic requirements.

1.2.2 Stator current and slip frequency control

In the current-regulated technique, the three-phase sinusoidal reference currents

are compared with the instantaneous values of motor currents. The error is input to

the controllers and pulse-width modulated (PWM) logic unit. The amplitude of the

current reference is obtained from the function generator block. The stator frequency

is obtained from an encoder and the slip frequency signal. The slip frequency is de-

rived either from the output of the speed controller or from an efficiency-optimized

4



slip table as in the case of torque controlled drives. The controllers and PWMGenera-

tion block can be either hysteresis controllers or proportional-integral (PI) controllers

with PWM.

1.2.3 Vector control

Vector control techniques have made possible the application of induction ma-

chines for high-performance applications. The vector control scheme enables the

control of the induction machine in the same way as a separately excited DC mo-

tor. The key idea of FOC is to transfer to another coordinate system or state variable

representation, in which the model resembles that of a separately excited DCmachine.

FOC was proposed by Hasse [8] and Blaschke [9]. They showed that, similar to

the expression of the electromagnetic torque of a separately excited DC machine, the

instantaneous electromagnetic torque of an induction motor can be expressed as the

product of a flux-producing current and a torque-producing current. This is done by

expressing the dynamic equations in the flux-oriented (field-oriented) reference frame.

In this case, the stator current components (which are expressed in the stationary

reference frame) are transformed into a rotating reference frame, which rotates with

a selected flux-linkage (space) vector. There are in general three possibilities for the

selection of the flux-linkage space vector, so that the chosen vector can be either

the stator-flux-linkage vector, rotor-flux-linkage vector, or magnetizing-flux-linkage

vector.

There is a strong interest by drive manufacturers to replace V/f drives by FOC

drives, because FOC has better performance, the technology is becoming mature,

and there is only minimal extra cost. The basic difference between the two solutions
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from the hardware point of view is the number of sensors (currents and speed) that

are necessary. There is also a strong interest to implement FOC without any shaft

sensor for lower cost and reduced complexity. This thesis concentrates on the topic of

speed estimation in induction machines without the use of a speed sensor. The speed

estimator is needed for flux estimation in field-oriented drives.

1.3 Sensorless control of induction machine

AC drives based on full digital control have reached the status of a mature tech-

nology in a wide range of applications from low-cost to high performance systems. In

the last several years, a great effort has been made to speed and/or shaft position-

sensorless torque-controlled (vector- and direct-torque-controlled) drives. These drives

are usually referred to as “sensorless” drives, although the terminology “sensorless”

refers to only the speed sensor.

The ongoing research has been concentrated on the elimination of the speed sensor

at the machine shaft without reducing the dynamic performance of the drive control

system [10]. Speed estimation is an issue of particular interest with induction motor

drives where the mechanical speed of the rotor is generally different from the speed

of the revolving magnetic field.

The advantages of speed-sensorless induction motor drives are reduced hardware

complexity and lower cost, reduced size of the drive machine, elimination of the sensor

cable, better noise immunity, increased reliability, and less maintenance requirements.

Most hostile environments require motor operation without a speed sensor [11].
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1.4 Goals of the research

Recently, induction motors are used throughout industry in pumps, fans, manu-

facturing machinery, conveyor belts drives, etc., and there are many situations where

a sensorless field-oriented controller would be a distinct advantage. For example,

a conveyor belt in a mine that brings out coal in buckets is typically powered by

induction motors running in open-loop from a 60 Hz voltage source. When power

is lost, the coal buckets must all be emptied to reduce the load so that the motors

can bring the conveyor belt system back up to speed. The availability of a sensorless

field-oriented controller capable of performing a start up under full load would greatly

reduce the down-time. Such reliable sensorless control algorithms would reveal many

more industrial applications. Even if a shaft sensor is to be used, one can foresee the

need for a control algorithm that is capable of tolerating the failure of the sensor. For

example, it would be highly desirable to let an electric vehicle proceed to a garage

for service after the shaft sensor has failed.

As mentioned before, a disadvantage of existing, high-performance control algo-

rithms for induction motors is that they require a shaft sensor to estimate the (unmea-

sured) rotor flux linkages for the “vector control” algorithm. Multiple techniques have

been proposed to estimate the speed of an induction motor without a shaft sensor,

but none has emerged as being completely satisfactory. This area has a rather large

literature, and the reader is referred to [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]

for an exposition of many of the existing approaches. In most cases, at low speeds

there are speed estimation concerns which are responsible for poor drive performance

in that speed range.
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Traditional approaches to speed sensorless vector control use the method of flux

and slip estimation using stator currents and voltages [20] [21], but this has a large

error in speed estimation, particularly in the low-speed range. Model reference adap-

tive system (MRAS) techniques are also used to estimate the speed of an induction

motor [22]. In [22], the open integration is needed which causes the accuracy and

drift problems.

The differential-algebraic approach presented in this work is most closely related

to the ideas described in [23] [24] [25] [26] [27]. In [23] [24] [25] [26], observability

is characterized as being able to reconstruct the unknown state variables as rational

functions of the inputs, outputs, and their derivatives (See [24] [25] [26] for a more

precise definition). This work obtains an algebraic (polynomial) expression for the

rotor speed in terms of the machine inputs, machine outputs, and their derivatives.

In the systems theoretic approach considered in [27], the authors have shown that

there are indistinguishable trajectories of the induction motor, i.e., pairs of different

state trajectories with the same input/output behavior. That is, it is not possible

to estimate the speed based on stator measurements for arbitrary trajectories [27].

A similar circumstance is shown here due to the fact that the "coefficients" of the

algebraic expression for the speed all happen to be zero for some trajectories. This

work characterizes a class of trajectories (or, modes of operation) from which the

speed of the machine can be estimated from the stator currents and voltages. It is

then shown how this speed estimate can be used in a field-oriented controller with

the machine operating at low (including zero) speed under full load.

Implementation of a field-oriented controller requires knowledge of motor para-

meters, in particular, the rotor time constant TR to estimate the (unmeasured) rotor
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fluxes. However, the value of TR changes due to ohmic heating. The work presented

here gives a methodology for identifying the rotor time constant TR without a shaft

sensor.

Chapter 2 is a summary of existing technology of sensorless control of the induction

motor.

Chapter 3 explains the differential-algebraic approach to speed estimation of the

induction motor.

Chapter 4 shows the experimental results of the differential-algebraic approach to

speed estimation of an induction motor.

Chapter 5 explains the differential-algebraic approach to estimation of the rotor

time constant TR of the induction motor, and the open-loop experimental result is

presented.

Chapter 6 provides conclusions and future work.
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Chapter 2

Background and Literature Survey

In recent years, multiple techniques have been proposed to estimate the speed

of an induction motor based exclusively on measured terminal voltages and currents

[10] [20] [22] [28] [29] [30] [31] [32] [33]. Open-loop and closed-loop observers differ

with respect to accuracy, robustness, and limits of applicability. In this section, a

review of some existing methods is presented.

2.1 Mathematical model

Most (but not all) of the speed estimation techniques are based on a nonlinear

differential equation model of the motor. A brief summary of the model is now

presented. To begin, the construction of a simplistic model of a two-phase induction

motor is described (see Chapter 5 of [1]).

Figure 2.1(a) shows a half-cylindrical-shaped loop, which is wound around a

cylindrical-shaped iron core, and denoted as loop a. A second identical loop, de-

noted as loop b, is then wound 90 degrees from loop a as shown in Figure 2.1(b). The

10



Rotor loop a

side a'

Side a

(a)

Rotor loop a

Rotor loop b

a

a'

b b'

(b)

Rotor iron
core

2l

1l

Rai Rai

Rbi

Figure 2.1: Rotor of an induction motor. Ref. [1].

currents in loops a and b are denoted as iRa and iRb, respectively. The two loops are

electrically isolated.

In Figure 2.1, the notation ¯ means that if i > 0, the current is coming out of

the page while ⊗ means that if i > 0, then the current is going into the page.
The stator is constructed similarly. Figure 2.2(a) shows stator loop a which has a

half-cylindrical shape and is wound on the inside surface of the stator iron. However,

as shown in Figure 2.2(a), it also has a voltage source. Similarly, Figure 2.2(b) shows

that stator loop b is identical in form to stator loop a, but is wound 90 degrees from

loop a. The applied voltages are denoted as uSa, uSb and the corresponding currents

are denoted as iSa, iSb, respectively. These two loops are electrically isolated.

Combining Figures 2.1 and 2.2, a simple two-phase induction motor is illustrated

in Figure 2.3. The position of the rotor is located by a line perpendicular to rotor

loop a as shown in Figure 2.3. The flux linkages in the stator and rotor phases in

11



(b)

b'b

Sbi
Sbu

Stator loop a

Side a'

Side a

Sau+
_

(a)

Sai

Stator iron core

Rotor iron core

+_

Figure 2.2: Induction motor stator. (a) Stator loop a. (b) Stator loop b. Ref. [1].

Rθ

Rotor loop b

Rotor loop a

a

a'

b

a'

b'

a b'

b

Figure 2.3: Cross-sectional view of a simple two-phase induction motor. Ref. [1].
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terms of the currents and rotor position are

λSa (iRa, iRb, iSa, iSb, θR) = LSiSa +M(iRa cos (θR)− iRb sin (θR))

λSb (iRa, iRb, iSa, iSb, θR) = LSiSb +M(iRa sin (θR) + iRb cos (θR))

λRa (iRa, iRb, iSa, iSb, θR) = LRiRa +M(iSa cos (θR) + iSb sin (θR))

λRb (iRa, iRb, iSa, iSb, θR) = LRiRb +M(−iSa sin (θR) + iSb cos (θR)) (2.1)

where M is the mutual inductance, LS and LR are the stator and rotor inductances,

respectively.

By Faraday’s and Ohm’s laws, the equations describing the electrical dynamics of

this system are

−dλSa
dt
−RSiSa + uSa = 0

−dλSb
dt
−RSiSb + uSb = 0

−dλRa
dt
−RRiRa = 0

−dλRb
dt
−RRiRb = 0.

where RS and RR are the stator and rotor resistances. Explicitly, this is

LS
d

dt
iSa +M

d

dt
(iRa cos (θR)− iRb sin (θR)) +RSiSa = uSa

LS
d

dt
iSb +M

d

dt
(iRa sin (θR) + iRb cos (θR)) +RSiSb = uSb

LR
d

dt
iRa +M

d

dt
(iSa cos (θR) + iSb sin (θR)) +RRiRa = 0

LR
d

dt
iRb +M

d

dt
(−iSa sin (θR) + iSb cos (θR)) +RRiRb = 0.
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A conservation of energy argument can be used to show that the torque produced

by this machine is given by

τR = M (−iRa (t) iSa (t) sin (θR) + iRa (t) iSa (t) cos (θR)

−iRb (t) iSa (t) cos (θR)− iRb (t) iSb (t) sin (θR))

so that the mechanical equation is

J
dω

dt
= τR − τL.

For a machine with np pole-pairs, the model is modified by replacing θR by npθ in all

the equations and M by npM in the torque equation only.

This model can be simplified by a change of variables. To do so, define an equiv-

alent set of rotor flux linkages as

 ψRa

ψRb

 =
 cos (npθ) − sin (npθ)
sin (npθ) cos (npθ)


 λRa

λRb
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so that the dynamic model of the induction motor in terms of the state variables ω,

ψRa, ψRb, iSa, and iSb is then [34]:

dω

dt
=

npM

JLR
(iSbψRa − iSaψRb)−

τL
J

(2.2)

uSa = RSiSa + σLSdiSa/dt+
M

LR

dψRa

dt
(2.3)

uSb = RSiSb + σLSdiSb/dt+
M

LR

dψRb

dt
(2.4)

dψRa

dt
= − 1

TR
ψRa − npωψRb +

M

TR
iSa (2.5)

dψRb

dt
= − 1

TR
ψRb + npωψRa +

M

TR
iSb (2.6)

where θ is the position of the rotor, ω = dθ/dt, np is the number of pole pairs, iSa,

iSb are the (two phase equivalent) stator currents and ψRa, ψRb are the (two phase

equivalent) rotor flux linkages, TR =
LR

RR
is the rotor time constant, σ = 1− M2

LSLR
is

called the total leakage factor, J is the moment of inertia of the rotor and τL is the

load torque.

The mathematical model can also be written in state-space form as (see [35] [36])

dω

dt
=

npM

JLR
(iSbψRa − iSaψRb)−

τL
J

(2.7)

dψRa

dt
= − 1

TR
ψRa − npωψRb +

M

TR
iSa (2.8)

dψRb

dt
= − 1

TR
ψRb + npωψRa +

M

TR
iSb (2.9)

diSa
dt

=
β

TR
ψRa + βnpωψRb − γiSa +

1

σLS
uSa (2.10)

diSb
dt

=
β

TR
ψRb − βnpωψRa − γiSb +

1

σLS
uSb. (2.11)
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The symbols β =
M

σLSLR
and γ =

RS

σLS
+

1

σLS

1

TR

M2

LR
have been used to simplify the

expressions.

2.2 Speed estimators

The system of equations (2.7)− (2.11) (or (2.2)− (2.6)) is the starting point for
the model based approaches to speed estimation.

Several techniques [20] [28] [37] estimate the fluxes by pure (unstable) integration.

That is, rewriting the equations (2.3) and (2.4) as

ψ̇Ra =
LR

M
(uSa −RSiSa − σLSdiSa/dt) (2.12)

ψ̇Rb =
LR

M
(uSb −RSiSb − σLSdiSb/dt) , (2.13)

the fluxes ψRa and ψRb can be obtained by integrating equations (2.12) and (2.13) .

The angle φ of the rotor flux vector is defined as

φ , tan−1
µ
ψRb

ψRa

¶
(2.14)

and its derivative is
dφ

dt
=

ψ̇RbψRa − ψ̇RaψRb

ψ2Ra + ψ2Rb
(2.15)

Replace ψ̇Ra by (2.5) and ψ̇Rb by (2.6) to obtain

dφ

dt
= npω +

M

TR

ψRaiSb − ψRbiSa

ψ2Ra + ψ2Rb
. (2.16)
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Substituting (2.15) into (2.16) and rearranging, the motor speed can be obtained from

ω =
1

np

Ã
ψ̇RbψRa − ψ̇RaψRb

ψ2Ra + ψ2Rb
− M

TR

ψRaiSb − ψRbiSa

ψ2Ra + ψ2Rb

!
. (2.17)

In (2.17) , ψ̇Ra and ψ̇Rb are obtained by (2.12) and (2.13) , which are functions of

measured voltages and currents. This result indicates that the instantaneous rotor

speed can be obtained from the measured voltages and currents.

This method requires knowledge of motor parameters. Calculating ψRa and ψRb

based on equations (2.12) and (2.13) requires the pure integration of sensed variables.

This is an unstable estimation and leads to problems with initial conditions and drift.

2.3 Extended Kalman filter techniques

The Kalman filter algorithm [38] has been used for the estimation of parameters

of an induction motor [39] [40] [41], and for the speed estimation problem [42] [43].

Kalman filter techniques are based on the complete machine model. The dynamic

model for an induction motor in the state space, choosing iSa, iSb, ψRa, and ψRb as

the state variables, is given by equations (2.8) , (2.9) , (2.10) , and (2.11) . In the dy-

namic model of an induction motor, if the dimension of the state vector is increased

by introducing the mechanical speed as an additional state variable, the state model

becomes nonlinear (otherwise, the angular speed of the rotor is considered as a para-

meter). The extended Kalman filter is used if speed estimation is desired using the

nonlinear model. The extended Kalman filter is based on linearizing the nonlinear

model about its current operating point. The linearization is performed by assuming

the motor speed is constant during the sample time. The corrective inputs to the
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dynamic models of the stator, the rotor, and the mechanical subsystems are derived

based on minimizing a quadratic error function. The error function is evaluated on

the basis of predicted state variables, and the noise in the measured signals and in

the model parameter deviations should be taken into account.

This approach reduces the error sensitivity and also permits the use of models

of lower order than the machine. Experimental verification of this method using

machine models of fourth and third order is reported in [43]. This relaxes the extensive

computation requirements to some extent; the implementation requires floating-point

signal processor hardware [44].

Section 3.8 will discuss speed estimation using extended Kalman filter methods in

detail.

2.4 Least-squares method

The least-squares method treats the speed ω as an unknown constant (slowly

varying compared to the electrical variables) parameter and finds the estimated speed

ω̂ that best fits the measured/calculated data (i.e., uSa, uSb, iSa, iSb, diSa/dt, diSb/dt)

to the “steady-state” equations of the motor (i.e., dω/dt = 0) [12] [18] [45]. For this

approach, it is convenient to use the mathematical model of the induction motor in

the state-space form (2.8) , (2.9) , (2.10) , and (2.11) . The least-squares approach is

used to find the value of estimated speed ω̂ that best fits the equations (2.8) , (2.9) ,

(2.10) , and (2.11) . However, as the fluxes are not available measurements, the first

step is to eliminate the flux linkages ψRa, ψRb and their derivatives dψRa/dt, dψRb/dt.

The four equations (2.8) , (2.9) , (2.10) , and (2.11) can be used to solve for ψRa, ψRb,

dψRa/dt, dψRb/dt, but one is left without another set of independent equation to set
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up a speed estimator. A new set of independent equations is found by differentiating

(2.10) and (2.11) (assuming motor speed ω is constant), respectively, to obtain

d2iSa
dt

=
β

TR

dψRa

dt
+ βnpω

dψRb

dt
− γ

diSa
dt

+
1

σLS

duSa
dt

(2.18)

d2iSb
dt

=
β

TR

dψRb

dt
− βnpω

dψRa

dt
− γ

diSb
dt

+
1

σLS

duSb
dt

. (2.19)

Substituting dψRa/dt, dψRb/dt, which are in terms of uSa, uSb, iSa, iSb, diSa/dt, and

diSb/dt into equations (2.18) and (2.19) results in the least-squares regressor equation

given by

σLS
d2

dt

 iSa

iSb

+µRS +
LS

TR

¶
d

dt

 iSa

iSb

+ RS

TR

 iSa

iSb

− d

dt

 uSa

uSb

− 1

TR

 uSa

uSb


= npω

σLS
d

dt

 −iSb
iSa

+RS

 −iSb
iSa

−
 −uSb

uSa


 . (2.20)

The system of equations (2.20) is now in terms of the measured/calculated quantities

uSa, uSb, iSa, iSb, diSa/dt, diSb/dt, d
2iSa/dt, d

2iSb/dt, the known motor parameters,

and the unknown speed ω.

The least-squares approach requires that one measure uSa, uSb, iSa, iSb, compute

diSa/dt, diSb/dt, d
2iSa/dt, d

2iSb/dt over a short time interval where the speed is ap-

proximately constant, and take the speed estimate ω̂ that best fits (2.20) for the

present and past values of time. This approach assumes that the parameters are

known, fixed in time, and the speed is constant.
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Figure 2.4: MRAS block diagram.

2.5 Model reference adaptive system (MRAS)

The schemes included in this group consider the motor speed as an unknown

"constant" parameter and use the techniques of adaptive control to estimate this

parameter [10] [22] [31] [32]. This method is based on the comparison between the

outputs of two estimators. The estimator that does not involve the quantity to

be estimated (the rotor speed ω) is considered as the induction machine reference

model given by equations (2.3) , (2.4), and the other estimator, may be regarded as

the adjustable model represented by equations (2.5), (2.6). The error between the

estimated quantities obtained by the two models is used to drive a suitable adaptation

mechanism which generates the estimated rotor speed ω̂. Figure 2.4 shows a general

block diagram for this approach. Some schemes compare the rotor fluxes to generate

the error signal which is used to estimate the rotor speed.
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In general, ω is a variable, and the models are linear time-varying systems. How-

ever, for the purpose of deriving an adaptation mechanism, it is valid to initially treat

ω as a constant parameter of the reference model.

An estimator for ψRa and ψRb is defined through

dψ̂Ra

dt
= − 1

TR
ψ̂Ra − npω̂ψ̂Rb +

M

TR
iSa (2.21)

dψ̂Rb

dt
= − 1

TR
ψ̂Rb + npω̂ψ̂Ra +

M

TR
iSb. (2.22)

With a = ψRa − ψ̂Ra, b = ψRb − ψ̂Rb, the error dynamics are found by subtracting

(2.21) and (2.22) from equations (2.5) and (2.6) to obtain

d

dt

 a

b

 =
 − 1

TR
−npω̂

npω̂ − 1
TR


 a

b

+ np (ω − ω̂)

 −ψ̂Rb

ψ̂Ra

 (2.23)

where ψRa, ψRb are computed from equations (2.3) and (2.4).

As ω̂ is a function of the state error, these equations describe a nonlinear-feedback

system. Choosing

ω̂ = Kp

³
ψRbψ̂Ra − ψRaψ̂Rb

´
+KI

tZ
0

³
ψRbψ̂Ra − ψRaψ̂Rb

´
dt.

The stability of the system is discussed in [37]. Important issues with this algorithm

are the sensitivity to parameter variation, the ability to work under full load torque,

and the unstable estimation of ψRa, ψRb. The method requires knowledge of RS, σLS,

M, and TR.
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Peng and Fukao [32] modified the approach of [37] so that it does not require pure

integration of the flux equations. To do so, one defines

vma , (M/LR)dψRa/dt = −RSiSa − σLSdiSa/dt+ uSa

vmb , (M/LR)dψRb/dt = −RSiSb − σLSdiSb/dt+ uSb. (2.24)

where vma and vmb are measured/calculated quantities. Multiplying equations (2.5)

and (2.6) by M/LR, and differentiating them with respect to time, one can obtain:

dvma/dt = − 1

TR
vma − npωvmb +

1

TR
(M2/LR)diSa/dt

dvmb/dt = − 1

TR
vmb + npωvma +

1

TR
(M2/LR)diSb/dt.

An estimator for vma and vmb is defined through

dv̂ma/dt = − 1

TR
v̂ma − npω̂v̂mb +

1

TR
(M2/LR)diSa/dt

dv̂mb/dt = − 1

TR
v̂mb + npω̂v̂ma +

1

TR
(M2/LR)diSb/dt. (2.25)

Then ω̂ is chosen as

ω̂ = Kp (vmav̂mb − vmbv̂ma) +KI

tZ
0

(vmav̂mb − vmbv̂ma) dt. (2.26)

Kp and KI are adjusted by the designer.

In summary, this method consists in computing vma, vmb from (2.24), v̂ma, v̂mb

from (2.25) , and then using equation (2.26) to obtain the speed estimate ω̂. This
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method avoids the integration of rotor flux. Peng and Fukao [32] also modified the

approach to make it insensitive to the stator resistance RS.

2.6 Rotor slot ripple

The schemes included in this group are based on the fact that the rotor speed

is obtained by the ripple generated in the stator voltages and currents, due to the

reluctance modulation generated by the presence of rotor slots [46] [47]. The rotor

slots presence can be taken into account considering the air gap length variable while

modelling the induction machine. The air gap modulation is responsible for two

harmonic components in the stator voltages and in the stator currents. The speed

detection can be performed by measuring the rotor slots harmonics frequency either

from the stator currents or from the stator voltages.

The stator currents and voltages are pre-filtered by means of band-pass filters

where the center frequency can be tuned on the rotor slots’ harmonic. Once the

frequency of such harmonic is detected, the rotor speed can be derived. In some

schemes, a spectral analysis of one phase current is performed using a Fast Fourier

Transform (FFT) method to detect the rotor slots’ harmonic frequency, and the pre-

filtering stage is performed digitally.

In other schemes the stator voltages are used, and the pre-filtering is performed

by means of Switched Capacitor Filter (SCF) in which the center frequency is tuned

using the synchronous frequency and the rotor slots’ frequency is detected by a Phase-

Locked Loop (PLL) [47] or by a frequency-to-voltage converter (FVC) [48].

If a suitable analog electronic detection circuitry is available, the rotor slots ripple

method has a behavior which is very close to methods using the measured speed.
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However, the rotor slots ripple method has a steady state error of about 1%, inde-

pendent of the speed, under any load conditions [49]. It also has a dead zone at very

low speed (below 50 rpm) due to the limits of the FVC used. It can not properly

operate at zero speed.

2.7 Summary

A large variety of sensorless controlled AC drive schemes are used in indus-

trial applications. Open-loop control systems establish the desired machine flux by

maintaining the stator voltage-to-frequency ratio at a predetermined level. They are

particularly robust at very low and very high speed. However, they satisfy only low

or moderate dynamic requirements. Small load-dependent speed deviations can be

compensated for by incorporating a speed or rotor frequency estimator.

High-performance vector control schemes require a flux vector estimator to iden-

tify the spatial location of the magnetic field. Field-oriented control stabilizes the

tendency of induction motors to oscillate during transients, which enables fast con-

trol of torque and speed. The robustness of a sensorless drive can be improved by

adequate control structures and by parameter identification techniques.

Speed estimators and the MRAS method are based on equations (2.3) and (2.4).

The accuracy and drift concerns of an open integration at low frequency exist [28] [37].

These problems can be avoided by using a first-order delay element instead of an

integrator, which eliminates an accumulation of the drift error. However, this entails

a severe loss of gain in ψr at low stator frequency, while the estimated field angle lags

considerably behind the actual position of the rotor field. It also makes the integration
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ineffective in the frequency range around and below the corner frequency of the first-

order delay element. If the drive is operated close to zero stator frequency for long

periods of time, the estimated flux goes astray, and speed estimation is lost [44]. The

modified MRAS method [32] does not require the pure integration, but the slowly

changing speed compared to the electrical variables is assumed.

Least-Square methods [12] [18] [45] and the extended Kalman filter method [42]

[43] treat the speed ω as an unknown constant (slowly varying compared to the elec-

trical variables) parameter. The convergence of the extended Kalman filter method

is not reported in [42].

Other methods such as [50] [51] are very sensitive to the parameters.
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Chapter 3

Speed Sensorless Control of the

Induction Motor Using

Differential-Algebraic Speed

Estimator

3.1 Observers

The results in this thesis are a combination of the rather new development of

differential-algebraic methods and the classical Luenberger observer methodologies.

A brief summary of the Luenberger observer is given and illustrated by estimating

the speed in a permanent magnet DC motor. The permanent magnet DC motor is

also used to illustrate the differential-algebraic approach to speed estimation.
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The theory of state estimation from measured data dates back to the early 1960s.

Luenberger considered the problem of estimating (a linear function of) the state in

multi-input and multi-output linear systems. The Luenberger observer [52] provides

solution for linear systems where a constant system matrix and fixed parameters are

assumed.

Luenberger observer

Consider a linear time-invariant system given in state-space form as

dx (t)

dt
= Ax (t) +Bu (t) (3.1)

y (t) = Cx (t) (3.2)

where x is n×1 state vector, u is r×1 input vector, A is an n×n system matrix, and

B is an n× r distribution matrix, y is m× 1 output vector, and C is m× n output

matrix.

Assume that only the input vector u (t) and the output vector y (t) can be mea-

sured.

Define a state estimator system by

dx̂ (t)

dt
= Ax̂ (t) +Bu (t) + L (y (t)− ŷ (t)) (3.3)

ŷ (t) = Cx̂ (t) . (3.4)
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Subtract equation (3.3) from (3.1) , and (3.4) from (3.2) to obtain the estimation error

system given by

ė (t) = (A− LC) e (t)

where e (t) = x (t)− x̂ (t) . This implies that the error approaches zero asymptotically

as t→∞ provided that eigenvalues of gain matrix A−LC are located in the left-hand
side of the complex plane.

It is well known that a gain matrix L can be found that arbitrarily places the

eigenvalues of A− LC if and only if the pair (C,A) is observable [53], i.e.,

rank



C

CA

...

CAn−1


= n. (3.5)

Example 1 Consider the following model of a permanent magnet DC motor given

by

d

dt


θ

ω

τL/J

 =

0 1 0

0 −f/J −1
0 0 0




θ

ω

τL/J

+


0

KT/J

0

u (t) (3.6)

y (t) =

·
1 0 0

¸
θ

ω

τL/J

 (3.7)
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where the load torque τL is modelled as an unknown constant parameter. The state

of the system is defined as

z ,


θ

ω

τL/J

 .
With the obvious definitions for A, B, and C, the system equations can be written as

dz

dt
= Az +Bu (t) . (3.8)

The output is

y (t) = Cz. (3.9)

Define a speed and load-torque (Luenberger) observer by

dẑ

dt
= Aẑ +Bu (t) + (y (t)− ŷ (t)) (3.10)

ŷ (t) = Cẑ (3.11)

where

,


1

2

3

 .
Define the estimation error state to be

e ,


e1

e2

e3

 =


θ − θ̂

ω − ω̂

τL/J − τ̂L/J

 .
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Subtract the system (3.10) from the system (3.8) and (3.11) from (3.9) to obtain the

system of equations describing the error dynamics as

de

dt
= Ae− (y (t)− ŷ (t))

= (A− C) e

where

A− C =


− 1 1 0

− 2 −f/J −1
− 3 0 0

 . (3.12)

The rank of the observability matrix is

rank


C

CA

CA2

 = rank


1 0 0

0 1 0

0 −f/J −1

 = 3.

This system is observable. A gain matrix can be found that places the eigenvalues

of A− C in the left-hand side of the complex plane [53].

3.2 Differential-algebraic state estimation

The idea of the differential-algebraic approach to state estimation is to find an

algebraic equation that the unknown state variable must satisfy. That is, a polynomial

equation in the unknown state variable whose coefficients are in term of the inputs,

outputs, and a finite number of their derivatives. The following examples are used to

illustrate the approach.
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Example 2 Consider the system [23]

ẋ1 = x22

ẋ2 = u

y = x1

which is in state-space form. Suppose an input-output description, i.e., a description

directly relating u and y is desired. The original set of equations is equivalent to

y − x1 = 0, ẏ − x22 = 0, ẋ2 − u = 0. (3.13)

It is now possible to eliminate the derivative of x2 by forming

p =
d

dt

¡
ẏ − x22

¢
+ 2x2 (ẋ2 − u) = ÿ − 2x2u. (3.14)

From this construction it follows that p = 0 whenever the equations of (3.13) are

satisfied. The last equation of (3.14) can be replaced by p = 0 to get the system

description

y − x1 = 0, ẏ − x22 = 0, ÿ − 2x2u = 0. (3.15)

From (3.14) it follows that every solution of (3.13) also solves (3.15) . If, moreover,

it is known that x2 6= 0, then the converse is also true and (3.13) and (3.15) are

equivalent. It is now possible to form

x2 ( ÿ − 2x2u)− 2u
¡
ẏ − x22

¢
= x2ÿ − 2uẏ, (3.16)
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and it readily follows that

y − x1 = 0, ÿ − 2x2u = 0, x2ÿ − 2uẏ = 0 (3.17)

is equivalent to (3.15) if also u 6= 0. Finally form

ÿ (ÿ − 2x2u) + 2u (x2ÿ − 2uẏ) = ÿ2 − 4u2ẏ, (3.18)

to conclude that, provided ux2 6= 0, (3.13) is equivalent to the following system de-

scription

ÿ2 − 4u2ẏ = 0, y − x1 = 0, ÿ − 2x2u = 0. (3.19)

The left-most equation of (3.19) is an input-output relation, while the middle and

right equations show x1 and x2 can be computed from the input and output. Further,

the unmeasured state variable x2 can be estimated by x2 = ÿ/2u.

Example 3 A standard mathematical model of a permanent magnet DC motor is

given by

L
di

dt
= −Ri−Kbω + v (3.20)

J
dω

dt
= KT i− fω − τL (3.21)

where R, L represent the resistance and inductance, respectively, of the armature, Kb

is the back emf constant, KT = Kb is the torque constant, J, f are the rotor moment

of inertia and the viscous friction coefficients, respectively. τL is load torque and v is
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supply voltage. The load torque is assumed to be constant so that it satisfies

dτL
dt

= 0. (3.22)

Simply solving (3.20) for ω gives a differential algebraic estimator for the speed as

ω =
V − Ldi/dt−Ri

Kb
. (3.23)

This differential algebraic estimator has no stability issues associated with it, but it

is noisy as the derivative of the current is required. In this example, a Luenberger

type observer is combined with a differential-algebraic observer to obtain a smoother

estimate compared to that of the previous example. Proceeding, consider an observer

defined by

J
dω̂

dt
= KT i− fω̂ − τ̂L + 1 (ω − ω̂) (3.24)

dτ̂L
dt

= 2 (ω − ω̂) (3.25)

where ω in (3.24) and (3.25) is obtained from (3.23). Subtracting (3.24) from (3.21)

and (3.25) from (3.22), the error system is given by

d

dt

 e1

e2

 =
 −f+ 1

J
− 1

J

− 2 0


 e1

e2

 (3.26)

where e1 , ω − ω̂ and e2 , τL − τ̂L. The gains 1 and 2 can be chosen to make the

system stable so that e1 = ω − ω̂ −→ 0, with ω̂ being a smoother estimate than ω.
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It is now shown that the differential-algebraic approach does not work for a per-

manent magnet synchronous motor.

Example 4 A mathematical model of a permanent magnet synchronous motor is

given by [13]

Ls
diSa
dt

= −RSiSa +Kmω sin (npθ) + uSa (3.27)

Ls
diSb
dt

= −RSiSb −Kmω cos (npθ) + uSb (3.28)

J
dω

dt
= Km (−iSa sin (npθ) + iSb cos (npθ))− fω − τL (3.29)

where θ is the position of the rotor, ω = dθ/dt, np is the number of pole pairs, LS

is the stator phase self-inductance, RS is the resistance, J is the moment of inertia,

Km is the torque/back-emf constant, f is the coefficient of viscous friction and τL is

the load torque.

At zero speed, i.e., ω = 0, the two current equations (3.27) and (3.28) do not

contain any information about the rotor angle θ. However, the rotor angle is required

to control the motor torque as equation (3.29) shows, and consequently the method is

not applicable to the permanent magnet synchronous motor at zero speed.

3.3 Speed estimation in an induction motor

The contribution of this thesis is the development of a new algorithm to estimate

the speed of an induction motor [54]. This new approach is now presented.

The starting point for the speed sensorless design proposed in this thesis is a

(two-phase equivalent) state-space mathematical model of the induction motor given
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in the space vector form [13]. Specifically, let iS = iSa + jiSb, ψR
= ψRa + jψRb, and

uS = uSa+ juSb. The induction motor model given in (2.7)− (2.11) may be rewritten
as

d

dt
iS =

β

TR
(1− jnPωTR)ψR

− γiS +
1

σLS
uS (3.30)

d

dt
ψ
R
= − 1

TR
(1− jnPωTR)ψR

+
M

TR
iS (3.31)

dω

dt
=

npM

JLR
Im{iSψ∗R}−

τL
J

(3.32)

where θ is the position of the rotor, ω = dθ/dt, np is the number of pole pairs, iSa,

iSb are the (two phase equivalent) stator currents and ψRa, ψRb are the (two phase

equivalent) rotor flux linkages, RS and RR are the stator and rotor resistances, M

is the mutual inductance, LS and LR are the stator and rotor inductances, J is the

moment of inertia of the rotor, and τL is the load torque. The symbols

TR =
LR

RR
σ = 1− M2

LSLR

β =
M

σLSLR
γ =

RS

σLS
+

1

σLS

1

TR

M2

LR

have been used to simplify the expressions. TR is referred to as the rotor time constant

while σ is called the total leakage factor.
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3.4 Algebraic speed observer

To develop an algebraic speed estimation, the rotor fluxes and their derivatives

must be eliminated from the system equations as they are not measurable. Proceed-

ing, differentiate (3.30) to obtain

d2

dt2
iS =

β

TR
(1− jnPωTR)

d

dt
ψ
R
− jnPβψR

dω

dt
− γ

d

dt
iS +

1

σLS

d

dt
uS. (3.33)

Using the complex-valued equations (3.30) and (3.31), one can eliminate ψ
R
and

d

dt
ψ
R

from (3.33) to obtain

d2

dt2
iS =−

1

TR
(1− jnPωTR)

µ
d

dt
iS + γiS −

1

σLS
uS

¶
+

βM

T 2R
(1− jnPωTR) iS

− γ
d

dt
iS +

1

σLS

d

dt
uS −

jnPTR
1− jnPωTR

µ
d

dt
iS + γiS −

1

σLS
uS

¶
dω

dt
. (3.34)

Note from (3.30) that

d

dt
iS + γiS −

1

σLS
uS =

β

TR
(1− jnPωTR)ψR

and this is zero if and only if
¯̄̄
ψ
R

¯̄̄
= 0. Solving (3.34) for dω/dt gives

dω

dt
=− (1− jnPωTR)

2

jnPT 2R
+
1− jnPωTR

jnPTR
×

βM

T 2R
(1− jnPωTR) iS − γ

d

dt
iS +

1

σLS

d

dt
uS −

d2

dt2
iS

d

dt
iS + γiS −

1

σLS
uS

. (3.35)
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If the signals are measured exactly and the motor satisfies its dynamic model, the

right-hand side must be real.

Breaking down the right-hand side of (3.35) into its real and imaginary parts, the

real part has the form

dω

dt
= a2 (uSa, uSb, iSa, iSb)ω

2 + a1 (uSa, uSb, iSa, iSb)ω + a0 (uSa, uSb, iSa, iSb) . (3.36)

The expressions for a2 (uSa, uSb, iSa, iSb) , a1 (uSa, uSb, iSa, iSb) , and a0 (uSa, uSb, iSa, iSb)

are given in section 3.7.1. Their steady-state expressions are derived in section 3.7.2.

If one considers a speed observer designed by

dω̂

dt
= a2ω̂

2 + a1ω̂ + a0, (3.37)

then its stability must be ascertained, that is, if ω̂ (t0) 6= ω (t0) , will ω̂ (t) −→ ω (t)?

It is shown in section 3.7.5 that (3.36) [equivalently, (3.37)] is never stable in steady

state. Consequently, equation (3.37) cannot be used as an observer unless it is stabi-

lized.

On the other hand, the imaginary part of (3.35) must be identically zero leading

to a second degree polynomial equation in ω of the form

q(ω, t) , q2(uSa, uSb, iSa, iSb)ω
2 + q1(uSa, uSb, iSa, iSb)ω + q0(uSa, uSb, iSa, iSb) = 0.

(3.38)

The expressions for q2(uSa, uSb, iSa, iSb), q1 (uSa, uSb, iSa, iSb) , and q0 (uSa, uSb, iSa, iSb)

are given in section 3.7.3, and their steady-state expressions are derived in section
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3.7.4. There are two solutions to equation (3.38) , and at least one of these two solu-

tions must track the motor speed. This equation does not have any stability issues,

but a procedure is required to determine which of the two solutions is correct. Fur-

ther, there are situations when the speed cannot be determined from (3.38). For

example, if uSa = constant and uSb = 0, it turns out that q2 = q1 = q0 ≡ 0 and ω is

not determinable from (3.38) (see section 3.7.6 where this is shown in detail). On the

other hand, if the machine is operated at zero speed (ω ≡ 0) with a load on it, then
q2 ≡ 0 and q1 6= 0, and a unique solution is specified by (3.38) (see section 3.7.4 where
this is proved in steady state). In fact, for low speed trajectories, consider equation

(3.38) written in the form

(q2ω + q1)ω + q0 = 0. (3.39)

At low speeds, defined by |q2ω| ¿ |q1| , equation (3.39) reduces

q1ω + q0 = 0

and ω is uniquely determined by ω = −q0/q1. Section 3.7.7 shows that, in steady
state, |q2ω| ¿ |q1| if (TRnpω)2 ¿ 1.

If q2 6= 0, the correct solution of (3.38) can be determined as follows: Differentiate
equation (3.38) to obtain a new independent equation given by

(2q2ω + q1)
dω

dt
+ q̇2ω

2 + q̇1ω + q̇0 ≡ 0. (3.40)
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Next, dω/dt is replaced by the right-hand side of equation (3.36) to obtain a polyno-

mial equation in ω given by

g(ω) , 2q2a2ω3 + (2q2a1 + q1a2 + q̇2)ω
2 + (2q2a0 + q1a1 + q̇1)ω + q1a0 + q̇0. (3.41)

g(ω) is a third-order polynomial equation in ω for which the speed of the motor is

one of its zeros. Dividing∗ g(ω) by q(ω) from (3.38), g(ω) may be rewritten in the

form

g(ω) ≡ (2q2a2ω + 2q2a1 − q2q1a2 + q̇2) q(ω, t) +r1 (uSa, uSb, iSa, iSb)ω

+r0 (uSa, uSb, iSa, iSb) . (3.42)

where

r1 (uSa, uSb, iSa, iSb) , 2q22a0 − q2q1a1 + q2q̇1 − 2q2q0a2 + q21a2 − q1q̇2 (3.43)

and

r0 (uSa, uSb, iSa, iSb) , q2q1a0 + q2q̇0 − 2q2q0a1 + q0q1a2 − q0q̇2. (3.44)

If ω is equal to the speed of the motor, then both g(ω) = 0 and q(ω) = 0, and one

obtains

r1 (uSa, uSb, iSa, iSb)ω + r0 (uSa, uSb, iSa, iSb) ≡ 0. (3.45)

∗Given the polynomials g(ω), q(ω) in ω with deg{g(ω)} = ng,deg{q(ω)} = nq, the Euclidean
division algorithm ensures that there are polynomials γ(ω), r(ω) such that g(ω) = γ(ω)q(ω) + r(ω)
and deg{r(ω)} ≤ deg{q(ω)}− 1 = nq − 1. Consequently, if ω0 is a zero of both g(ω) and q(ω), then
it must also be a zero of r(ω).
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This is now a first-order polynomial equation in ω with a unique solution as long as

r1 (uSa, uSb, iSa, iSb) (the coefficient of ω) is nonzero (It is shown in section 3.7.8 that

r1 6= 0 in steady state if q2 6= 0). A purely algebraic estimation for the speed is then
given by

ω ,

 −q0/q1 if q2 = 0 See (3.38)

−r0/r1 if q2 6= 0 See (3.45) .

3.5 Stable dynamic speed observer

The coefficients of r1 and r0 contain third-order derivatives of the stator currents

and second-order derivatives of the stator voltages and, therefore, noise is a concern.

Rather than use this purely algebraic estimator, it is now shown that it can be

combined with the dynamic model to obtain a smoother (yet stable) speed estimator.

Dividing the right side of the differential equation model (3.36) by q(ω, t) (q2 6= 0) ,
one obtains

a2ω
2 + a1ω + a0 =

a2
q2
q(ω, t) + αω + β (3.46)

where

α , a1 − a2q1/q2 (3.47)

and

β , a0 − a2q0/q2. (3.48)

Then, as q(ω, t) ≡ 0, equation (3.36) may be rewritten as

dω

dt
= α(t)ω + β(t), (3.49)
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which is a linear first-order time-varying system. With

Φ(t, t0) , e
t
t0
α(τ)dτ

the fundamental solution of (3.49), the full solution is given by (see [55])

ω(t) = Φ(t, t0)ω(0) +

Z t

t0

Φ(t, τ)β(τ)dτ.

Consequently, a sufficient condition for stability is that α(t) ≤ −κ < 0 for some

κ > 0. It is shown in section 3.7.5 that α > 0 in steady state, so the system is never

stable in steady state.

For the case that q2 6= 0, consider (3.49) to be the induction motor “model” and
the solution ω of algebraic estimator (3.45) to be the “measurement”. Then, let an

observer be defined by

dω̂

dt
= α(t)ω̂ + β(t) + (ω − ω̂) . (3.50)

If −α(t) > κ > 0 for all t, then the estimator (3.50) is stable with a rate of decay of

the error no less than κ. As this estimator is the result of integrating the signals α(t),

β(t), and ω from (3.45), it is a smoother estimate than the purely algebraic estimate

of equation (3.45).

In the case where q2 = 0, the right side of equation (3.36) can be divided by

q1ω + q0 = 0 to obtain
dω̂

dt
= c(t) + (ω − ω̂) . (3.51)
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If > κ > 0 for all t, then equation (3.51) is stable with a rate of decay of the error

no less than κ.

Collecting this together, the estimate of speed proposed here is defined as the

solution to the observer

dω̂

dt
, a2ω̂

2 + a1ω̂ + a0 + (ω − ω̂) (3.52)

where

ω ,

 −q0/q1 if q2 = 0 See (3.38)

−r0/r1 if q2 6= 0 See (3.45) .

In section 3.7.4 it is shown that in steady state q1 6= 0 if q2 = 0, while in section 3.7.8
it is shown that in steady state r1 6= 0 if q2 6= 0.

3.6 Simulation results

As a first look at the viability of the proposed speed sensorless observer, simu-

lations are carried out. Figure 3.1 shows a block diagram of the sensorless control

system. In this system, a current command field-oriented controller is used [13] with

the induction motor model being equations (3.30) , (3.31) , and (3.32) . The speed

observer (3.52) is used with the estimated speed ω̂ fed back to the current command

field-oriented controller.
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Figure 3.1: Sensorless speed control system.

Here a three-phase (two-phase equivalent) induction motor model is simulated

using the machine parameter values

np = 2, RS = 5.12 ohms, RR = 2.23 ohms, LS = LR = 0.2919 H, M = 0.2768 H,

J = 0.0021 k-gm2, τL_rated = 2.0337 N-m, Imax = 2.77 A, Vmax = 230 V.

Figure 3.2 shows the simulation results of the motor speed and speed estimator

under full load. From t = 0 to t = 0.4 seconds, a constant uSa is applied to the motor

to build up the flux and the motor is considered to be held with a brake so that

ω ≡ 0. At t = 0.4 seconds the brake is released, and the machine is running on a low
speed trajectory (ωmax = 5 rad/s) with full load at the start. The estimated speed ω̂

is used in the field-oriented controller as shown in Figure 3.1. In this simulation, the

observer gain in equation (3.52) was chosen to be 1000.

Figure 3.3 shows the simulation results of the motor speed and stabilized speed

estimator under full load for a zero speed trajectory. From t = 0 to t = 0.4 seconds, a
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Figure 3.2: Actual speed ω and estimated speed ω̂ (using differential-algebraic
method) with the motor tracking a low speed trajectory (ωmax = 5 rad/s) with full
load at the start.
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Figure 3.3: Actual speed ω and estimated speed ω̂ (using differential-algebraic
method) with the motor tracking a zero speed trajectory (ω ≡ 0) with full load at
the start.
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constant uSa is applied to the motor to build up the flux and the motor is considered

to be held with a brake so that ω ≡ 0. At t = 0.4 seconds, the brake is released, and
the machine is controlled to a zero speed trajectory (ω ≡ 0) with full load at the start.
ω̂ is used in the field-oriented controller as shown in Figure 3.1. In this simulation,

the observer gain in equation (3.52) is chosen to be 1000.

Figure 3.4 shows the whole trajectory chosen to have a maximum speed of 5

rad/sec, to do a speed reversal, and to have zero speed at the end.

To consider the effect of noise in the simulation, a 20 kHz PWM inverter is in-

cluded. Low-pass analog filters (third-order, 100 Hz cutoff) are used (simulated)

before the voltages and currents are sampled. Such a filter limits the applicability

to speeds where the electrical frequency is below the filter cutoff. The sample period

was 1 µs, which is not possible using the standard processor technology in commercial

electric drives. However, such a step size is found to be necessary in order to use (sim-

ulate) a PWM inverter and then compute third-order derivatives of the currents and

second-order derivatives of the voltages to estimate the speed for feedback control.

The interest here is in low-speed sensorless control of the machine with full load.

The trajectory is chosen to have a maximum speed of 5 rad/sec, to do a speed reversal,

and to have zero speed at the end as shown in Figure 3.5. The induction motor model

for the simulation is based on equations (3.30), (3.31), and (3.32). Along with the

stator currents, the estimated speed ω̂ is fed back to a current command field-oriented

controller [13] [1]. Figure 3.5 shows the simulation results of the motor speed and

the stabilized speed estimator under full load. The full load is on the motor from

t = 0.4 sec to t = 16 sec, that is, even during the zero speed part of the trajectory.

From t = 0 to t = 0.4 seconds, a constant uSa is applied to the motor to build up the
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Figure 3.4: Actual speed ω and estimated speed ω̂ (using differential-algebraic
method) with full load on the motor.
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method) with full load on the motor drived by PWM inverter.
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flux, and the motor is considered to be held with a (mechanical) brake so that ω ≡ 0.
Figure 3.5 shows at t = 0.4 seconds the brake is released and the machine is running

on a low speed trajectory (ωmax = 5 rad/s) with full load. In this simulation, the

observer gain in equation (3.52) is chosen to be 1000.

Figures 3.6 and 3.7 shows the voltage uSb and current iSb corresponding to the

trajectory in Figure 3.5.
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3.7 Dynamic and steady-state coefficients of speed

estimator and speed estimation proofs in steady

state

3.7.1 The dynamic expressions for a2 (uSa, uSb, iSa, iSb) , a1(uSa,

uSb, iSa, iSb) and a0 (uSa, uSb, iSa, iSb)

The dynamic expressions for a2, a1 and a0 are given here.

Let

A1 , iSb
d2iSa
dt
− iSa

d2iSb
dt

, A2 , iSb
diSa
dt
− iSa

diSb
dt

,

A3 , d (i2Sa + i2Sb)

dt
, A4 , i2Sa + i2Sb,

A5 , uSbiSa − uSaiSb, A6 , iSa
duSb
dt
− iSb

duSa
dt

,

A7 , iSa
d2iSa
dt

+ iSb
d2iSb
dt

, A8 , uSaiSa + uSbiSb,

A9 , iSa
duSa
dt

+ iSb
duSb
dt

, A10 , u2Sa + u2Sb. (3.53)

such that

a2(uSa, uSb, iSa, iSb) ,
−n2pβM

³
1

σLS
A4A5 +A4A2

´
nPTR

µ³
1
2
A3 + γA4 − 1

σLS
A8
´2
+
³

1
σLS

A5 +A2
´2¶ (3.54)
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a1 (uSa, uSb, iSa, iSb) , nP

nPTR

µ³
1
2
A3 + γA4 − 1

σLS
A8
´2
+
³

1
σLS

A5 +A2
´2¶

×
µ
1

4
(TRγ + 2)A

2
3 +

µ
1

4
TRγ

2 − βM

2TR
+ γ

¶
dA24
dt

+(γTR + 2)A
2
2 +

1

2
TRA7A3 + 2γ

µ
γ − βM

TR

¶
A24

+γTRA7A4 +
1

2
TR

dA22
dt

+
1

σLS
(γTR + 4)A2A5

− 1

σLS

µ
2 +

1

2
TRγ

¶
A3A8 +

2

σ2L2S
A4A10

+
2

σLS

µ
βM

TR
− 2γ

¶
A4A8 − 1

σLS
TRA7A8 − TR

σLS

1

2
A9A3

− TR
σLS

γA9A4 +
TR
σLS

1

σLS
A9A8 +

TR
σLS

1

σLS
A6A5

+
TR
σLS

A6A2 +
TR
σLS

dA2
dt

A5

¶
(3.55)

a0(uSa, uSb, iSa, iSb) , 1

nPTR

µ³
1
2
A3 + γA4 − 1

σLS
A8
´2
+
³

1
σLS

A5 +A2
´2¶

×
µµ

βM

T 2R
+ γ2

¶
A2A4 −A7A2 +

1

2
A1A3 + γA1A4

+
1

σLS

βM

T 2R
A4A5 − 1

σLS

1

2
γA3A5 − 1

σLS
γA2A8

− 1

σLS
A7A5 +

1

2

1

σLS
A6A3 + γ

1

σLS
A6A4 − 1

σ2L2S
A6A8

+
1

σ2L2S
A9A5 +

1

σLS
A9A2 − 1

σLS
A1A8

¶
. (3.56)
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3.7.2 The steady-state expressions for a2 (uSa, uSb, iSa, iSb) , a1(

uSa,uSb, iSa,iSb) and a0 (uSa, uSb, iSa, iSb)

The steady-state expressions for a2(uSa, uSb, iSa, iSb), a1(uSa, uSb, iSa,iSb) and

a0(uSa, uSb, iSa, iSb) are now derived.

In steady state, let (see [13])

uSa + juSb = USe
jωSt

iSa + jiSb = ISe
jωSt.

The complex phasors US and IS are related by

IS =
US

RS + jωSLS

·
1+j S

Sp

1+j S
σSp

¸ .

Here Sp , RR

σωSLR
= 1

σωSTR
so that

IS =
US

RS + jωSLS

h
1+jSσωSTR
1+jSωSTR

i
=

US³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
+ j

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R

USI
∗
S = |US|2

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
+ j

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

.
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The real power is equal to

P , uSaiSa + uSbiSb

= Re (USI
∗
S)

=
|US|2

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

. (3.57)

The reactive power is equal to

Q , uSbiSa − uSaiSb

= Im (USI
∗
S)

=
|US|2

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

. (3.58)

In steady state

i2Sa + i2Sb = |IS|2

u2Sa + u2Sb = |US|2

d (i2Sa + i2Sb)

dt
= 0.
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Let

den , npTR

Ãµ
1

2
A3 + γA4 − 1

σLS
A8

¶2
+

µ
1

σLS
A5 +A2

¶2!

= npTR |U¯S|
4

³
(1−σ)
σTR

1+S2ω2ST
2
R−Sω2ST 2R

1+S2ω2ST
2
R

´2
+
³
(1−σ)
σ

ωS
1+S2ω2ST

2
R

´2
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 . (3.59)

Remark Recall that it was pointed out following equation (3.35) that den = 0 if

and only if
¯̄̄
ψ
R

¯̄̄
≡ 0.

The steady-state expression for a2(uSa, uSb, iSa, iSb)

As a result, in steady state the two terms of a2(uSa, uSb, iSa, iSb) are

− 1

den
n2pβM

1

σLS
A4A5 = − 1

den
n2pβM

1

σLS

¡
i2Sa + i2Sb

¢
(uSbiSa − uSaiSb)

=
−n2pβM 1

σLS
|US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2

− 1

den
n2pβMA4A2 = − 1

den
n2pβM

¡
i2Sa + i2Sb

¢µ
iSb

diSa
dt
− iSa

diSb
dt

¶
= − 1

den
n2pβM |IS|2

¡−ωS |IS|2
¢

=
n2pβMωS |US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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Adding these two steady-state expressions to get

a2(uSa, uSb, iSa, iSb) =
−n2p |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
× ωS (1− σ)2

σ2 (1 + S2ω2ST
2
R)
× 1

den
.

(3.60)

The steady-state expression for a1(uSa, uSb, iSa, iSb)

In steady state, the first, second, fourth, seventh, ninth, thirteenth, and eigh-

teenth terms of a1(uSa, uSb, iSa, iSb) are all zeros, i.e.

1

4

np
den

(TRγ + 2)A
2
3 =

1

4

np
den

(TRγ + 2)

µ
d (i2Sa + i2Sb)

dt

¶2
= 0

np
den

µ
1

4
TRγ

2 − βM

2TR
+ γ

¶
dA24
dt

=
np
den

µ
1

4
TRγ

2 − βM

2TR
+ γ

¶
d (i2Sa + i2Sb)

2

dt
= 0

1

2

np
den

TRA7A3 =
1

2

np
den

TR

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
d (i2Sa + i2Sb)

dt
= 0

1

2

np
den

TR
dA22
dt

=
1

2

np
den

TR
d
¡
iSb

diSa
dt
− iSa

diSb
dt

¢2
dt

=
1

2

np
den

TR
d
¡−ωS |IS|2

¢2
dt

= 0

− np
den

1

σLS

µ
2 +

1

2
TRγ

¶
A3A8 = − np

den

¡
2 + 1

2
TRγ

¢
σLS

d (i2Sa + i2Sb)

dt
(uSaiSa + uSbiSb)

= 0

54



−1
2

np
den

TR
σLS

A9A3 = −1
2

np
den

TR
σLS

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
d (i2Sa + i2Sb)

dt
= 0

np
den

TR
σLS

dA2
dt

A5 =
np
den

TR
σLS

d
¡
iSb

diSa
dt
− iSa

diSb
dt

¢
dt

(uSbiSa − uSaiSb) = 0.

The third term of a1(uSa, uSb, iSa, iSb) is

np
den

(γTR + 2)A
2
2 =

np
den

(γTR + 2)

µ
iSb

diSa
dt
− iSa

diSb
dt

¶2
=

np
den

(γTR + 2)ω
2
S |IS|4

=
np (γTR + 2)ω

2
S |US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The fifth term of a1(uSa, uSb, iSa, iSb) is

1

den
2npγ

µ
γ − βM

TR

¶
A24 =

1

den
2npγ

µ
γ − βM

TR

¶¡
i2Sa + i2Sb

¢2
=

1

den
2npγ

µ
γ − βM

TR

¶
|IS|4

=
2npγ

³
γ − βM

TR

´
|US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The sixth term of a1(uSa, uSb, iSa, iSb) is

1

den
npγTRA7A4 =

1

den
npγTR

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶¡
i2Sa + i2Sb

¢
= − 1

den
npγTRω

2
S |IS|4

=
−npγTRω2S |US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The eighth term of a1(uSa, uSb, iSa, iSb) is

1

den

1

σLS
np (γTR + 4)A2A5 =

1

den

γTR + 4

σLS
np

µ
iSb

diSa
dt
− iSa

diSb
dt

¶
(uSbiSa − uSaiSb)

=
1

den

1

σLS
np (γTR + 4)

¡−ωS |IS|2
¢
(uSbiSa − uSaiSb)

=
− 1

σLS
np (γTR + 4)ωS |US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The tenth term of a1(uSa, uSb, iSa, iSb) is

1

den

2np
σ2L2S

A4A10 =
1

den

2np
σ2L2S

¡
i2Sa + i2Sb

¢ ¡
u2Sa + u2Sb

¢
=

1

den

2np
σ2L2S

|IS|2 |US|2

=

2np
σ2L2S

|US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

¶ .

The eleventh term of a1(uSa, uSb, iSa, iSb) is

1

den

2np
σLS

µ
βM

TR
− 2γ

¶
A4A8 =

1

den

2np
σLS

µ
βM

TR
− 2γ

¶¡
i2Sa + i2Sb

¢
(uSaiSa + uSbiSb)

=

2np
σLS

³
βM
TR
− 2γ

´
|US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The twelfth term of a1(uSa, uSb, iSa, iSb) is

− 1

den

np
σLS

TRA7A8 = − 1

den

npTR
σLS

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
(uSaiSa + uSbiSb)

= − 1

den

npTR
σLS

¡−ω2S |IS|2¢ (uSaiSa + uSbiSb)

=

np
σLS

TRω
2
S |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The fourteenth term of a1(uSa, uSb, iSa, iSb) is

− 1

den

npTR
σLS

γA9A4 = − 1

den

npTR
σLS

γ

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶¡
i2Sa + i2Sb

¢
=

1

den

npTR
σLS

γωS (uSbiSa − uSaiSb) |IS|2

=

npTR
σLS

γωS |US|4
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The fifteenth term of a1(uSa, uSb, iSa, iSb) is

1

den

npTR
σ2L2S

A9A8 = − 1

den

npTR
σ2L2S

ωS (uSbiSa − uSaiSb) (uSaiSa + uSbiSb)

= −
npTR
σ2L2S

ωS |US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
ωSLS(1+σS2ω2ST2R)

1+S2ω2ST
2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The sixteenth term of a1(uSa, uSb, iSa, iSb) is

1

den

npTR
σ2L2S

A6A5 =
1

den

npTR
σ2L2S

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
(uSbiSa − uSaiSb)

=
1

den

npTR
σ2L2S

ωS (uSaiSa + uSbiSb) (uSbiSa − uSaiSb)

=

npTR
σ2L2S

ωS |US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The seventeenth term of a1(uSa, uSb, iSa, iSb) is

1

den

npTR
σLS

A6A2 =
1

den

npTR
σLS

µ
iSa

duSb
dt
− iSb

duSa
dt

¶µ
iSb

diSa
dt
− iSa

diSb
dt

¶
= − 1

den

npTR
σLS

ω2S (uSaiSa + uSbiSb) |IS|2

=
−npTR

σLS
ω2S |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

Finally, substituting these steady-state expressions into the expression for a1 (uSa, uSb,

iSa, iSb) , one obtains

a1(uSa, uSb, iSa, iSb) =
np |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2
×2ω

2
S (1− σ)2 (1− S)

σ2 (1 + S2ω2ST
2
R)

× 1

den
.

(3.61)
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The steady-state expression for a0(uSa, uSb, iSa, iSb)

Similar to above analysis, in steady state, the third, fourth, sixth, ninth, and

fourteenth terms of a0(uSa, uSb, iSa, iSb) are all zeros, i.e.

1

2

1

den
A1A3 =

1

2

1

den

µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶
d (i2Sa + i2Sb)

dt
= 0

1

den
γA1A4 =

1

den
γ

µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶¡
i2Sa + i2Sb

¢
= 0

− 1

den

1

σLS

1

2
γA3A5 = − 1

den

1

σLS

1

2
γ
d (i2Sa + i2Sb)

dt
(uSbiSa − uSaiSb) = 0

1

2

1

den

1

σLS
A6A3 =

1

2

1

den

1

σLS

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
d (i2Sa + i2Sb)

dt
= 0

− 1

den

1

σLS
A1A8 = − 1

den

1

σLS

µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶
(uSaiSa + uSbiSb) = 0.

The first term of a0(uSa, uSb, iSa, iSb) is

1

den

µ
βM

T 2R
+ γ2

¶
A2A4 =

1

den

µ
βM

T 2R
+ γ2

¶µ
iSb

diSa
dt
− iSa

diSb
dt

¶¡
i2Sa + i2Sb

¢
= − 1

den

µ
βM

T 2R
+ γ2

¶
ωS |IS|4

=
−
³
βM
T2R
+ γ2

´
ωS |US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The second term of a0(uSa, uSb, iSa, iSb) is

− 1

den
A7A2 = − 1

den

µ
Sa
d2iSa
dt

+ iSb
d2iSb
dt

¶µ
iSb

diSa
dt
− iSa

diSb
dt

¶
= − 1

den
ω3S |IS|4

=
−ω3S |US|4

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The fifth term of a0(uSa, uSb, iSa, iSb) is

1

den

1

σLS

βM

T 2R
A4A5 =

1

den

1

σLS

βM

T 2R

¡
i2Sa + i2Sb

¢
(uSbiSa − uSaiSb)

=
1

den

1

σLS

βM

T 2R
|IS|2 (uSbiSa − uSaiSb)

=

1
σLS

βM
T 2R
|US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The seventh term of a0(uSa, uSb, iSa, iSb) is

− 1

den

1

σLS
γA2A8 = − 1

den

1

σLS
γ

µ
iSb

diSa
dt
− iSa

diSb
dt

¶
(uSaiSa + uSbiSb)

=
1

den

1

σLS
γωS |IS|2 (uSaiSa + uSbiSb)

=

1
σLS

γωS |US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The 8th term of a0(uSa, uSb, iSa, iSb) is

− 1

den

1

σLS
A7A5 = − 1

den

1

σLS

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
(uSbiSa − uSaiSb)

=
1

den

1

σLS
ω2S |IS|2 (uSbiSa − uSaiSb)

=

1
σLS

ω2S |US|4
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The 10th term of a0(uSa, uSb, iSa, iSb) is

1

den
γ
1

σLS
A6A4 =

1

den
γ
1

σLS

µ
iSa

duSb
dt
− iSb

duSa
dt

¶¡
i2Sa + i2Sb

¢
=

1

den
γ
1

σLS
|IS|2 ωS (uSaiSa + uSbiSb)

=

1
σLS

γωS |US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The 11th term of a0(uSa, uSb, iSa, iSb) is

− 1

den

1

σ2L2S
A6A8 = − 1

den

1

σ2L2S

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
(uSaiSa + uSbiSb)

= − 1

den

1

σ2L2S
ωS (uSaiSa + uSbiSb)

2

=
− 1

σ2L2S
ωS |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
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µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The twelfth term of a0(uSa, uSb, iSa, iSb) is

1

den

1

σ2L2S
A9A5 =

1

den

1

σ2L2S

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
(uSbiSa − uSaiSb)

= − 1

den

1

σ2L2S
ωS (uSbiSa − uSaiSb)

2

=

− 1
σ2L2S

ωS |US|4
µ

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R
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µ³
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(1−σ)Sω2SLSTR
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2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The thirteenth term of a0(uSa, uSb, iSa, iSb) is

1

den

1

σLS
A9A2 =

1

den

1

σLS

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶µ
iSb

diSa
dt
− iSa

diSb
dt

¶
=

1

den

1

σLS
ω2S |IS|2 (uSbiSa − uSaiSb)

=

1
σLS

ω2S |US|4
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
R

den

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

Finally, substituting these steady-state expressions into the expression for a0 (uSa, uSb,

iSa, iSb) , one obtains

a0(uSa, uSb, iSa, iSb) =
− |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2
× ω3S (1− σ)2 (1− S)2

σ2 (1 + S2ω2ST
2
R)

× 1

den
.

(3.62)
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3.7.3 The dynamic expressions for q2 (uSa, uSb, iSa, iSb) , q1(uSa,

uSb, iSa, iSb) and q0 (uSa, uSb, iSa, iSb)

The dynamic expressions for q2, q1 and q0 are give here.

q2(uSa, uSb, iSa, iSb) , n2p ×
µ
1

4
σLST

2
RA

2
3 − T 2RA3A8 +

T 2R
σLS

A4A10

+

µ
−βM

TR
+ 2γ

¶
1

4
σLST

2
R

dA24
dt

+ σLST
2
RA

2
2 + 2T

2
RA2A5

+

µ
−βM

TR
+ γ

¶
σLSγT

2
RA

2
4 +

µ
βM

TR
− 2γ

¶
T 2RA4A8

¶
(3.63)

q1(uSa, uSb, iSa, iSb) ,np ×
µ
−T 2R

1

2
γA3A5 − T 2R

1

σLS
A6A8 +

1

2
T 2RA3A6

+ γT 2RA4A6 +
1

2
σLST

2
R

dA2
dt

A3 + σLSγT
2
R

dA2
dt

A4

+ TRσLS

µ
2
βM

TR
+ TRγ

2

¶
A2A4 − T 2RγA2A8

− σLST
2
RA2A7 − T 2RA5A7 + 2βMA4A5

−T 2R
dA2
dt

A8 + T 2RA2A9 +
T 2R
σLS

A5A9

¶
(3.64)
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q0(uSa, uSb, iSa, iSb) ,− 1
2
σLSTRA3A7 − σLSTRγA4A7 + TRA7A8 − 1

σLS
A4A10

+
1

2
TRA3A9 + TRγA4A9 − 1

σLS
TRA8A9 +

µ
−βM

TR
+ 2γ

¶
A4A8

− (TRγ + 1) 1
4
σLSA

2
3 +

µ
1

2
TRγ + 1

¶
A3A8

+

µ
βM

TR
− 2γ − TRγ

2

¶
1

4
σLS

dA24
dt

+

µ
βM

TR
− γ

¶
σLSγA

2
4

− (TRγ + 1)σLSA
2
2 − (γTR + 2)A2A5 − σLSTRA1A2

− TRA1A5 − TRA2A6 − TR
σLS

A5A6. (3.65)

where A1 to A10 are expressed in (3.53) .

3.7.4 The steady-state expressions for q2 (uSa, uSb, iSa, iSb) , q1(

uSa, uSb, iSa, iSb) and q0 (uSa, uSb, iSa, iSb)

The steady-state expressions for q2(uSa, uSb, iSa, iSb), q1(uSa, uSb, iSa, iSb), and

q0(uSa, uSb, iSa, iSb) are now derived. These expressions are then used to show that

q2 > 0 for ω 6= 0, q2 ≡ 0 for ω = 0, and q1 6= 0 if q2 ≡ 0.

Steady-state expression for q2(uSa, uSb, iSa, iSb)

In steady state, the first, second and fourth terms of q2(uSa, uSb, iSa, iSb) are all

zeros, i.e.,
1

4
n2pσLST

2
RA

2
3 =

1

4
n2pσLST

2
R

µ
d (i2Sa + i2Sb)

dt

¶2
= 0

−n2pT 2RA3A8 = −n2pT 2R
d (i2Sa + i2Sb)

dt
(uSaiSa + uSbiSb) = 0
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n2p

µ
−βM

TR
+ 2γ

¶
1

4
σLST

2
R

dA24
dt

= n2p

µ
−βM

TR
+ 2γ

¶
1

4
σLST

2
R

d (i2Sa + i2Sb)
2

dt
= 0.

The third term of q2(uSa, uSb, iSa, iSb) is

n2pT
2
R

σLS
A4A10 =

n2pT
2
R

σLS

¡
i2Sa + i2Sb

¢ ¡
u2Sa + u2Sb

¢
=

n2pT
2
R

σLS
|IS|2 |US|2

=
n2pT

2
R

σLS

|US|4³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST2R)
2

.

The fifth term of q2(uSa, uSb, iSa, iSb) is

n2pσLST
2
RA

2
2 = n2pσLST

2
R

µ
iSb

diSa
dt
− iSa

diSb
dt

¶2
= n2pσLST

2
R

¡−ωS |IS|2
¢2

=
n2pσLST

2
Rω

2
S |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The sixth term of q2(uSa, uSb, iSa, iSb) is

2n2pT
2
RA2A5 = 2n

2
pT

2
R

µ
iSb

diSa
dt
− iSa

diSb
dt

¶
(uSbiSa − uSaiSb)

=
−2n2pT 2RωS |US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The seventh term of q2(uSa, uSb, iSa, iSb) is

n2p

µ
−βM

TR
+ γ

¶
σLSγT

2
RA

2
4 = n2p

µ
−βM

TR
+ γ

¶
σLSγT

2
R

¡
i2Sa + i2Sb

¢2
=

n2p

³
R2s
σLs

+ (1−σ)Rs

σTR

´
T 2R |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The eighth term of q2(uSa, uSb, iSa, iSb) is

n2p

µ
βM

TR
− 2γ

¶
T 2RA4A8 = n2p

µ
βM

TR
− 2γ

¶
T 2R
¡
i2Sa + i2Sb

¢
(uSaiSa + uSbiSb)

=
−n2p

³
2Rs

σLs
+ 1−σ

σTR

´
T 2R |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

¶2
×
µ
RS +

(1− σ)Sω2SLSTR
1 + S2ω2ST

2
R

¶
.

Finally, substituting these steady-state expressions into the expression for q2 (uSa, uSb,

iSa, iSb) , one obtains

q2(uSa, uSb, iSa, iSb) =
n2pT

2
R |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×ω2SLS (1− σ)2 (1− S)

1 + S2ω2ST
2
R

. (3.66)

With ω 6= 0, it is seen that q2 > 0, and q2 = 0 if and only if S = 1 (which is equivalent
to ω = 0).
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Steady-state expression for q1(uSa, uSb, iSa, iSb)

Similar to the above analysis, in steady state, the first, third, fifth, sixth, and

twelfth terms of q1(uSa, uSb, iSa, iSb) are all zeros, i.e.,

−1
2
γnpT

2
RA3A5 = −

1

2
γnpT

2
R

d (i2Sa + i2Sb)

dt
(uSbiSa − uSaiSb) = 0

1

2
npT

2
RA3A6 =

1

2
npT

2
R

d (i2Sa + i2Sb)

dt

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
= 0

1

2
npσLST

2
R

dA2
dt

A3 =
1

2
npσLST

2
R

µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶
d (i2Sa + i2Sb)

dt
= 0

npσLSγT
2
R

dA2
dt

A4 = npσLSγT
2
R

µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶¡
i2Sa + i2Sb

¢
= npσLSγT

2
R

d
¡−ωS |IS|2

¢
dt

¡
i2Sa + i2Sb

¢
= 0

−npT 2R
dA2
dt

A8 = −npT 2R
µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶
(uSaiSa + uSbiSb)

= −npT 2R
d
¡−ωS |IS|2

¢
dt

(uSaiSa + uSbiSb)

= 0.
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The second term of q1(uSa, uSb, iSa, iSb) is

−npT
2
R

σLS
A6A8 = −npT

2
R

σLS

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
(uSaiSa + uSbiSb)

= −npωST
2
R

σLS
(uSaiSa + uSbiSb)

2

=
−npωST

2
R |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
σLS

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The fourth term of q1(uSa, uSb, iSa, iSb) is

npγT
2
RA4A6 = npγT

2
R

¡
i2Sa + i2Sb

¢µ
iSa

duSb
dt
− iSb

duSa
dt

¶
= npγT

2
RωS |IS|2 (uSaiSa + uSbiSb)

=
npγT

2
RωS |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The seventh term of q1(uSa, uSb, iSa, iSb) is

npTRσLS

µ
2
βM

TR
+ TRγ

2

¶
A2A4

= npTRσLS

µ
2
βM

TR
+ TRγ

2

¶µ
iSb

diSa
dt
− iSa

diSb
dt

¶¡
i2Sa + i2Sb

¢
=

−npωSTRσLS

³
2βM
TR
+ TRγ

2
´
|US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .
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The eighth term of q1(uSa, uSb, iSa, iSb) is

−npT 2RγA2A8 = −npT 2Rγ
µ
iSb

diSa
dt
− iSa

diSb
dt

¶
(uSaiSa + uSbiSb)

= npT
2
RγωS |IS|2 (uSaiSa + uSbiSb)

=
npT

2
RγωS |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The ninth term of q1(uSa, uSb, iSa, iSb) is

−npσLST
2
RA2A7 = −npσLST

2
R

µ
iSb

diSa
dt
− iSa

diSb
dt

¶µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
= −npσLST

2
RωS |IS|2 ω2S |IS|2

=
−npω3SσLST

2
R |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The tenth term of q1(uSa, uSb, iSa, iSb) is

−npT 2RA5A7 = −npT 2R (uSbiSa − uSaiSb)

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶

=
npT

2
Rω

2
S |US|4

ωSLS(1+σS2ω2ST2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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The eleventh term of q1(uSa, uSb, iSa, iSb) is

2npβMA4A5 = 2npβM
¡
i2Sa + i2Sb

¢
(uSbiSa − uSaiSb)

=
2np

1−σ
σ
|US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The thirteenth term of q1(uSa, uSb, iSa, iSb) is

npT
2
RA2A9 = npT

2
R

µ
iSb

diSa
dt
− iSa

diSb
dt

¶µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
= npT

2
R

¡−ωS |IS|2
¢
(−ωS (uSbiSa − uSaiSb))

=
npT

2
Rω

2
S |US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The fourteenth term of q1(uSa, uSb, iSa, iSb) is

npT
2
R

σLS
A5A9 =

npT
2
R

σLS
(uSbiSa − uSaiSb)

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶

=

−npωST
2
R |US|4

µ
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
R

¶2
σLS

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .
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Finally, substituting these steady-state expressions into the expression for q1 (uSa, uSb,

iSa, iSb) , one obtains

q1(uSa, uSb, iSa, iSb) =
npωS |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×LS (1− σ)2

¡
1− ω2ST

2
R (1− S)2

¢
1 + S2ω2ST

2
R

. (3.67)

If ω = 0, then S = 1 and q1(uSa, uSb, iSa, iSb) 6= 0.

Steady-state expression for q0(uSa, uSb, iSa, iSb)

Similarly, in steady state, the first, fifth, ninth, tenth, eleventh, fifteenth and

sixteenth terms of q0(uSa, uSb, iSa, iSb) are all zero, i.e.,

−1
2
σLSTRA3A7 = −1

2
σLSTR

d (i2Sa + i2Sb)

dt

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
= 0

1

2
TRA3A9 =

1

2
TR

d (i2Sa + i2Sb)

dt

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
= 0

− (TRγ + 1) 1
4
σLSA

2
3 = − (TRγ + 1)

1

4
σLS

µ
d (i2Sa + i2Sb)

dt

¶2
= 0

µ
1

2
TRγ + 1

¶
A3A8 =

µ
1

2
TRγ + 1

¶
d (i2Sa + i2Sb)

dt
(uSaiSa + uSbiSb) = 0

µ
βM

TR
− 2γ − TRγ

2

¶
1

4
σLS

dA24
dt

=

µ
βM

TR
− 2γ − TRγ

2

¶
1

4
σLS

d (i2Sa + i2Sb)
2

dt
= 0

−1
2
σLSTR

dA22
dt

= −1
2
σLSTR

d
¡
iSb

diSa
dt
− iSa

diSb
dt

¢2
dt

= 0

−TRA1A5 = −TR
µ
iSb

d2iSa
dt
− iSa

d2iSb
dt

¶
(uSbiSa − uSaiSb) = 0.
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The second term of q0(uSa, uSb, iSa, iSb) is

−σLSTRγA4A7 = −σLSTRγ
¡
i2Sa + i2Sb

¢µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
= −σLSTRγ |IS|2

¡−ω2S |IS|2¢
=

σLSTRγω
2
S |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The third term of q0(uSa, uSb, iSa, iSb) is

TRA7A8 = TR

µ
iSa

d2iSa
dt

+ iSb
d2iSb
dt

¶
(uSaiSa + uSbiSb)

= −TRω2S |IS|2 (uSaiSa + uSbiSb)

=
−TRω2S |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The fourth term of q0(uSa, uSb, iSa, iSb) is

− 1

σLS
A4A10 = − 1

σLS

¡
i2Sa + i2Sb

¢ ¡
u2Sa + u2Sb

¢
= − 1

σLS
|IS|2 |US|2

= − 1

σLS

|US|4³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

.
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The sixth term of q0(uSa, uSb, iSa, iSb) is

TRγA4A9 = TRγ
¡
i2Sa + i2Sb

¢µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
= −TRγ |IS|2 ωS (uSbiSa − uSaiSb)

=
−TRγωS |US|4

ωSLS(1+σS2ω2ST2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The seventh term of q0(uSa, uSb, iSa, iSb) is

− 1

σLS
TRA8A9 = − 1

σLS
TR (uSaiSa + uSbiSb)

µ
iSa

duSa
dt

+ iSb
duSb
dt

¶
=

TRωS

σLS
(uSaiSa + uSbiSb) (uSbiSa − uSaiSb)

=
TRωS

σLS

|US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The eighth term of q0(uSa, uSb, iSa, iSb) is

µ
−βM

TR
+ 2γ

¶
A4A8 =

µ
−βM

TR
+ 2γ

¶¡
i2Sa + i2Sb

¢
(uSaiSa + uSbiSb)

=

µ
−βM

TR
+ 2γ

¶
|IS|2 (uSaiSa + uSbiSb)

=

³
−βM

TR
+ 2γ

´
|US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

73



The twelfth term of q0(uSa, uSb, iSa, iSb) is

µ
βM

TR
− γ

¶
σLSγA

2
4 =

µ
βM

TR
− γ

¶
σLSγ

¡
i2Sa + i2Sb

¢2
=

µ
βM

TR
− γ

¶
σLSγ |IS|2 |IS|2

=

³
βM
TR
− γ

´
σLSγ |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The thirteenth term of q0(uSa, uSb, iSa, iSb) is

− (TRγ + 1)σLSA
2
2 = − (TRγ + 1) σLS

µ
iSb

diSa
dt
− iSa

diSb
dt

¶2
= − (TRγ + 1) σLSω

2
S |IS|4

=
− (TRγ + 1) σLSω

2
S |US|4µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

The fourteenth term of q0(uSa, uSb, iSa, iSb) is

− (γTR + 2)A2A5 = − (γTR + 2)
µ
iSb

diSa
dt
− iSa

diSb
dt

¶
(uSbiSa − uSaiSb)

= (γTR + 2)ωS |IS|2 (uSbiSa − uSaiSb)

=
(γTR + 2)ωS |US|4

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST 2R)
2

¶2 .

74



The seventeenth term of q0(uSa, uSb, iSa, iSb) is

−TRA2A6 = −TR
µ
iSb

diSa
dt
− iSa

diSb
dt

¶µ
iSa

duSb
dt
− iSb

duSa
dt

¶
= TRω

2
S |IS|2 (uSaiSa + uSbiSb)

=
TRω

2
S |US|4

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2 .

The eighteenth term of q0(uSa, uSb, iSa, iSb) is

− TR
σLS

A5A6 = − TR
σLS

(uSbiSa − uSaiSb)

µ
iSa

duSb
dt
− iSb

duSa
dt

¶
= −TRωS

σLS
(uSbiSa − uSaiSb) (uSaiSa + uSbiSb)

= −TRωS

σLS

|US|4
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
ωSLS(1+σS2ω2ST 2R)

1+S2ω2ST
2
Rµ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2 .

Finally, substituting these steady-state expressions into the expression for q0(uSa, uSb,

iSa, iSb), one obtains

q0(uSa, uSb, iSa, iSb) =
− |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×ω2SLS (1− σ)2 (1− S)

1 + S2ω2ST
2
R

(3.68)

75



3.7.5 Steady-state value for α

The purpose of this section is to show that steady-state value for α is always

positive.

To compute the steady-state value of α, note that by (3.47)

α = a1 − a2q1/q2.

It is then easily seen that a1 > 0, a2q1 < 0, and q2 > 0, so that in steady state α > 0.

That is, the system (3.49) is never stable in steady state.

3.7.6 If uSa = constant and uSb = 0, ω is not determinable

from q2ω
2 + q1ω + q0 = 0

The purpose of this section is to show if uSa = constant and uSb = 0, it turns out

that q2 = q1 = q0 ≡ 0 and ω is not determinable from (3.38) . In this case,

A1 = iSb
d2iSa
dt
− iSa

d2iSb
dt

= 0, A2 = iSb
diSa
dt
− iSa

diSb
dt

= 0,

A3 =
d (i2Sa + i2Sb)

dt
= 0, A4 =

¡
i2Sa + i2Sb

¢
= i2Sa,

A5 = uSbiSa − uSaiSb = 0, A6 = iSa
duSb
dt
− iSb

duSa
dt

= 0,

A7 = iSa
d2iSa
dt

+ iSb
d2iSb
dt

= 0, A8 = uSaiSa + uSbiSb = uSaiSa,

A9 = iSa
duSa
dt

+ iSb
duSb
dt

= 0, A10 = u2Sa + u2Sb = u2Sa.
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q2 = n2p

µµ
−βM

TR
+ γ

¶
σLSγT

2
RA

2
4 +

T 2R
σLS

A4A10 +

µ
βM

TR
− 2γ

¶
T 2RA4A8

¶
= n2pT

2
Ri
4
Sa

µµ
−βM

TR
+ γ

¶
σLSγT

2
R +

T 2R
σLS

R2S +

µ
βM

TR
− 2γ

¶
T 2RRS

¶
≡ 0

q1 = np × 0 ≡ 0

q0 =

µ
−βM

TR
+ 2γ

¶
A4A8 − 1

σLS
A4A10 +

µ
βM

TR
− γ

¶
σLSγA

2
4

=

µ
−βM

TR
+ 2γ

¶
RSi

4
Sa −

R2S
σLS

i4Sa +

µ
βM

TR
− γ

¶
σLSγi

4
Sa

=

µ
RS

σLS
+ γ

¶
RSi

4
Sa −

R2S
σLS

i4Sa −
RS

σLS
σLSγi

4
Sa

≡ 0. (3.69)

Since q2 = q1 = q0 ≡ 0 in this case, ω is not determinable from (3.38).

3.7.7 (TRnpω)
2 ¿ 1 =⇒ |q2ω| ¿ |q1|

The purpose of this section is to show that in steady state, |q2ω| ¿ |q1| if
(TRnpω)

2 ¿ 1. That is |q2ω| ¿ |q1| at low speed.
In steady state,

|q2ω| = np |ωS|LS (1− σ)2 |US|4µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2
× (TRnpω)

2

σ (1 + S2ω2ST
2
R)
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and

|q1| = np |ωS|LS (1− σ)2 |US|4µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶2
×
¯̄¡
1− (TRnpω)2

¢¯̄
σ (1 + S2ω2ST

2
R)

.

Their ratio is then
|q2ω|
|q1| =

¯̄̄̄
¯ (TRnpω)

2

1− (TRnpω)2
¯̄̄̄
¯

which shows that (TRnpω)
2 ¿ 1 =⇒ |q2ω| ¿ |q1| .

3.7.8 The steady-state expressions for r1(uSa, uSb, iSa, iSb) and

r0 (uSa, uSb, iSa, iSb)

It is now shown that the steady-state value of r1 in (3.43) is nonzero.

Substituting the steady-state values of q2, q1, q0, a2, a1, and a0 (noting that q̇1 = 0

and q̇2 = 0 in steady state) into (3.43) gives

r1(uSa, uSb, iSa, iSb) =
− |US|12µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶6
×
µ

1

1 + S2ω2ST
2
R

¶3
× n4p (1− σ)6 ω3SL

2
S

σ4

× ¡1 + T 2Rω
2
S (1− S)2

¢2 × 1

den

where den is given by (3.59) in section 3.7.2. It is then seen that r1 6= 0 in steady
state.
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Substituting the steady-state values of q2, q1, q0, a2, a1, and a0 (noting that q̇0 = 0

and q̇2 = 0 in steady state) into (3.44) gives

r0(uSa, uSb, iSa, iSb) =
|U
¯S
|12µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶6
×
µ

1

1 + S2ω2ST
2
R

¶3 n3p (1− σ)6 ω4SL
2
S (1− S)

σ4

× ¡1 + ω2ST
2
R × (1− S)2

¢2 1

den

where den is given by (3.59) in section 3.7.2.

In steady state, according to (3.45) the motor speed ω can be found by

ω = −r0
r1
=

ωS (1− S)

np
.

3.7.9 Steady-state speed

Substituting the steady-state values of a2, a1, and a0, it is seen that a21−4a2a0 = 0,
so that the steady-state value of the right-hand side of (3.36) may be rewritten as

a2ω
2 + a1ω + a0 = a2 (ω + a1/(2a2))

2 = 0

where a2 is nonzero by (3.54). In steady state the motor speed can be solved by

ω = −a1/(2a2).
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On the other hand, the steady-state solutions of (3.38) are

ω1 ,
−q1 +

p
q21 − 4q2q0
2q2

= ω (3.70)

ω2 ,
−q1 −

p
q21 − 4q2q0
2q2

= −1/ ¡T 2Rn2pω¢ . (3.71)

That means in steady state motor speed can be uniquely determined and equal to ω1.

3.8 Speed estimation of induction motor using ex-

tended Kalman filter (EKF)

The Kalman filter algorithm has been used both for the parameter estimation

of the induction motor [39] [40] [41] and for speed estimation [42] [43]. Here, the

extended Kalman filter approach to speed estimation is presented to compare with

the differential-algebraic method.

3.8.1 Extended Kalman filter algorithm

The extended Kalman filter algorithm [38] is calculated using a microprocessor

so that a discrete-time model of the motor is needed. Equations (3.72) and (3.73)

represent the discrete-state model and output model respectively,

x (k + 1) = f [x (k) , u (k)] + w (k) (3.72)

and

z (k) = h [x (k)] + v (k) (3.73)
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where

w (t) = noise matrix of state model (system noise)

v (t) = noise matrix of output model (measurement noise).

The process noise w (k) is characterized by

E {w (k)} = 0

E{w (k)w (j)T} = Qδkj Q > 0.

The measurement noise v (k) is characterized by

E {v (k)} = 0

E{v (k) v (j)T} = Rδkj R > 0.

The initial state is characterized by

E{x (0)} = x̂0

E{(x (0)− x̂0) (x (0)− x̂0)
T} = P0.

where E (·) denotes the expected value and

δkj =

 1, j = k

0, j 6= k.

81



In this model f [x (k) , u (k)] is the state-space model of the motor. The extended

Kalman filter relinearizes the nonlinear-state model about each new estimate of the

state as it becomes available. From the above dynamic model, the rotor speed can

be estimated by the extended Kalman filter algorithm as follows

1. Prediction of State

x̂ (k + 1|k) = f [x̂ (k/k) , u (k)] (3.74)

2. Estimation of Error Covariance Matrix

P (k + 1|k) = Φ (k + 1, k)P (k|k)ΦT

(k + 1, k) +Q (3.75)

where

Φ (k + 1, k) = eF (k)TS (3.76)

TS = sampling time

F [k] =
∂f [x (k) , u (k)]

∂x
.

3. Computation of Kalman Filter Gain

K (k + 1) = P (k + 1|k)HT (k + 1)
£
H (k + 1)P (k + 1|k)HT (k + 1) +R (k + 1)

¤−1
(3.77)

where

H [k + 1] =
∂h [x (k)]

∂x
.
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4. Update of the Error Covariance Matrix

P (k + 1|k + 1) = [I −K (k + 1)H (k + 1)]P (k + 1|k) . (3.78)

5. State Estimation

x̂ (k + 1|k + 1) = x̂ (k + 1|k) +K (k + 1) (z (k + 1)− h [x̂ (k + 1|k) , k + 1]) . (3.79)

3.8.2 Dynamic model of an induction motor

A (two-phase equivalent) dynamic mathematical model of an induction motor is

given by equations (2.7)− (2.11) and repeated here

dω

dt
=

npM

JLR
(iSbψRa − iSaψRb)−

τL
J

diSa
dt

=
β

TR
ψRa + βnpωψRb − γiSa +

1

σLS
uSa

diSb
dt

=
β

TR
ψRb − βnpωψRa − γiSb +

1

σLS
uSb

dψRa

dt
= − 1

TR
ψRa − npωψRb +

M

TR
iSa

dψRb

dt
= − 1

TR
ψRb + npωψRa +

M

TR
iSb

The symbols

TR =
LR

RR
, σ = 1− M2

LSLR
, β =

M

σLSLR
, γ =

RS

σLS
+

1

σLS

1

TR

M2

LR

have been used to simplify the expressions.
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3.8.3 Rotor speed estimation by EKF

Here the extended Kalman filter is used to estimate the rotor speed of the in-

duction motor. Let the state variables be defined as follows

x (k) =



x1

x2

x3

x4

x5


=



iSa

iSb

ψRa

ψRb

ω


.

Then, the mathematical model of induction motor can be described as

x (k + 1) = f [x (k) , u (k)] + w (k) .

So the extended Kalman filter prediction equation is given by

x1 (k + 1) = (1− TSγ)x1 (k) + TS
β

TR
x3 (k) + TSnpβx4 (k)x5 (k) +

TS
σLs

uSa (k)

x2 (k + 1) = (1− TSγ)x2 (k)− TSnpβx3 (k)x5 (k) + TS
β

TR
x4 (k) +

TS
σLs

uSb (k)

x3 (k + 1) = TS
M

TR
x1 (k) +

µ
1− TS

TR

¶
x3 (k)− TSnpx4 (k)x5 (k)

x4 (k + 1) = TS
M

TR
x2 (k) + TSnpx3 (k)x5 (k) +

µ
1− TS

TR

¶
x4 (k)

x5 (k + 1) = x5 (k)

where TS is sampling time.
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In addition, the output matrix is as follows

z (k) = h [x (k)] + v (k)

where

z (k) =

 iSa

iSb



h [x (k)] =

 iSa (k)

iSb (k)

 .
This model is nonlinear. Therefore, the extended Kalman filter has to be used to

estimate the speed. In this case, the angular speed of the rotor is considered as an

unknown constant (slowly varying compared to the electrical variables) parameter.

The estimation of the error covariance matrix is given by

P (k + 1|k) = Φ (k + 1, k)P (k|k)ΦT

(k + 1, k) +Q

where

Φ (k + 1, k) = eF (k)TS
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F [k] =
∂f [x (k) , u (k)]

∂x

=



−γ 0 β
TR

βnpx5 (k) βx4 (k)

0 −γ −βnpx5 (k) β
TR

−βx3 (k)
M
TR

0 − 1
TR

−npx5 (k) −x4 (k)
0 M

TR
npx5 (k) − 1

TR
x3 (k)

0 0 0 0 0


. (3.80)

The Kalman gain K (k + 1) is given by

K (k + 1) = P (k + 1|k)HT (k + 1)
£
H (k + 1)P (k + 1|k)HT (k + 1) +R (k + 1)

¤−1
where H [k + 1] is:

H [k + 1] =
∂h [x (k)]

∂x

=

 1 0 0 0 0

0 1 0 0 0

 .
The updated covariance is given by

P (k + 1|k + 1) = [I −K (k + 1)H (k + 1)]P (k + 1|k) .

The state estimation is given by

x̂ (k + 1|k + 1) = x̂ (k + 1|k) +K (k + 1) (z (k + 1)− h [x̂ (k + 1|k) , k + 1]) .
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Figure 3.8: Sensorless speed control system using extended Kalman filter.

3.8.4 Simulation results of on-line speed estimation using

EKF

To verify the extended Kalman filter speed estimation method, simulations are

carried out. Here, a three-phase (two-phase equivalent) induction motor model is

simulated using the machine parameter values

np = 2, RS = 5.12 ohms, RR = 2.23 ohms, LS = LR = 0.2919 H,

M = 0.2738 H, J = 0.0021 k-gm2, τL_rated = 2.0337 N-m,

Imax = 2.77 A, Vmax = 230 V.

Figure 3.8 shows a block diagram of sensorless speed control system using an

extended Kalman filter. In this system, a current command field-oriented controller

is used [13] with the induction motor model being equations (3.30) , (3.31) , and (3.32) .
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Estimated speed ω̂ (using extended Kalman filter) is used here and fed back to the

current command field-oriented controller. The system noise w (k) , white noise with

covariance Q = 0.0001, is added to the input voltage uSa and uSb. The measurement

noise v (t) , white noise with covariance R = 0.0001, is added to the measurement iSa

and iSb. The initial value P0 is chosen to be 10I.

Figure 3.9 shows the simulation results of the motor speed and speed estimator

under full load. From t = 0 to t = 0.4 seconds, a constant uSa is applied to the motor

to build up the flux, and the motor is considered to be held with a brake so that

ω ≡ 0. At t = 0.4 seconds the brake is released and the machine is running on a low
speed trajectory (ωmax = 5 rad/s) with full load at the start. The estimated speed ω̂

is used in the field-oriented controller as shown in Figure 3.8.

Figure 3.10 shows the simulation results of the motor speed and stabilized speed

estimator under full load. From t = 0 to t = 0.4 seconds, a constant uSa is applied to

the motor to build up the flux and the motor is considered to be held with a brake so

that ω ≡ 0. At t = 0.4 seconds the brake is released and the machine is controlled to a
zero speed trajectory (ω ≡ 0) with full load at the start. ω̂ is used in the field-oriented
controller as shown in Figure 3.8.

Figure 3.11 shows the whole trajectory chosen to have a maximum speed of 5

rad/sec, to do a speed reversal, and to have zero speed at the end.

To consider the effect of PWM noise in the simulation, a 4 kHz PWM inverter is

included. Low-pass analog filters (third-order, 500 Hz cutoff) are used (simulated) be-

fore the voltages and currents are sampled. The interest here is in low-speed sensorless

control of the machine with full load. The trajectory is chosen to have a maximum

speed of 5 rad/sec, to do a speed reversal, and to have zero speed at the end as
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Figure 3.9: Actual speed ω and estimated speed ω̂ (using EKF) with the motor
tracking a low speed trajectory (ωmax = 5 rad/s) with full load at the start.
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Figure 3.10: Actual speed ω and estimated speed ω̂ (EKF) with the motor tracking
a zero speed trajectory (ω ≡ 0) with full load at the start.
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Figure 3.11: Actual speed ω and estimated speed ω̂ (using EKF) with full load on
the motor.
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shown in Figure 3.12. The full load is on the motor from t = 0.4 sec to t = 13 sec,

that is, even during the zero speed part of the trajectory. From t = 0 to t = 0.4

seconds, a constant uSa is applied to the motor to build up the flux, and the motor

is considered to be held with a (mechanical) brake so that ω ≡ 0. Figure 3.12 shows
at t = 0.4 seconds the brake is released and the machine is running on a low speed

trajectory (ωmax = 5 rad/s) with full load. The estimated speed ω̂ is fed back to a

current command field-oriented controller.

The extended Kalman filter also works in simulation on a low trajectory with full

load. However, the extended Kalman filter assumes the motor speed is "slowly vary-

ing" parameter compared to the electrical variables while the differential-algebraic

method does not make this assumption. Further, the design premise of the extended

Kalman filter assumes all noises are uncorrelated white noises, which is never true

in a induction motor drive system. The differential-algebraic method neglects the

noise. This is an issue with the method. The extended Kalman filter is also based

on linearizing a nonlinear mathematical model of the induction motor about its cur-

rent operation point. Thus there is an inherent assumption of "small" perturbations

and, as such, there is no guarantee that the extended Kalman filter converges. The

differential-algebraic method is a stable speed estimator.
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Figure 3.12: Actual speed ω and estimated speed ω̂ (using EKF) with full load on

the motor driven by PWM inverter.

3.9 Summary

This chapter introduces a new differential-algebraic approach to speed estima-

tion of an induction motor based on the measured stator voltages, currents, and their

derivatives. This method entails using an algebraic estimate of the motor speed to

stabilize a dynamic speed observer. It also shows that some trajectories are indis-

tinguishable because the “coefficients” of the algebraic expression for the speed all

happen to be zero. This new observer does not requires any sort of “slowly varying”

speed assumption and is stable. Simulation results show that this method has the

potential for speed estimation at low speeds under full load.
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Chapter 4

Experimental Results of

Differential-Algebraic Speed

Estimator

To verify the differential-algebraic method, experiments are carried out. A three-

phase, 0.5 hp, 1735 rpm (np = 2 pole-pair) induction motor is used for the experiment.

The parameters of the induction motor are

np = 2, RS = 5.12 ohms, RR = 2.23 ohms, LS = LR = 0.2919 H, M = 0.2768 H,

J = 0.0021 k-gm2, τL_rated = 2.0337 N-m, Imax = 2.77 A, Vmax = 230 V.
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4.1 Open-loop experiments with PWM inverter

4.1.1 Experimental setup

Figure 4.1 shows the experimental setup. An Allen-Bradley AB1305 PWM

inverter shown in Figure 4.2 is used to drive the induction motor shown in Figure

4.3, and a 4096 pulse/rev optical encoder in Figure 4.3 is attached to the motor for

position measurements. The sensor board shown in Figure 4.4 is used to measure the

stator voltages and the stator currents. This board provides 3 voltage and 3 current

measurements. The measurements are electrically isolated from the drive. The real-

time computing system RTLAB shown in Figure 4.5 from Opal-RT with a fully

integrated hardware and software system is used to collect data [56].

4.1.2 Open-loop experimental results without load

Simulation results show that the speed observer (3.52) requires small step sizes

(1 µs) to accommodate the derivatives of the measurement. The RTLAB could only

sample the data at 100 µs without computational overruns.

Two solutions of equation (3.38)

q(ω, t) , q2(uSa, uSb, iSa, iSb)ω
2 + q1(uSa, uSb, iSa, iSb)ω + q0(uSa, uSb, iSa, iSb) = 0.

are

ω1 =
−q1 +

p
q21 − 4q2q0
2q2

and ω2 =
−q1 −

p
q21 − 4q2q0
2q2

. (4.1)

Simulations show that if the induction motor runs open-loop without load on it,

ω = ω1 in equation (4.1) is the motor speed.
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Figure 4.1: Open-loop experimental setup.

Figure 4.2: Experimental setup of AB1305 inverter.
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Induction MachineEncoder

Figure 4.3: Experimental setups of induction machine and encoder.

Figure 4.4: Voltage and current sensor board.

96



Timer
Encoder, D/A and A/D

Figure 4.5: Experimental setup of RTLAB machine.
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Also, it is shown in section 3.7.9 that in steady state, ω1 is the correct solution.

ω1 contains only second-order derivatives of stator voltages and currents so it has less

noise.

In the observer
dω̂

dt
, a2ω̂

2 + a1ω̂ + a0 + (ω − ω̂) (4.2)

with large enough, (ω − ω̂) dominates. So equation (4.2) may be simplified to

dω̂

dt
, (ω − ω̂) .

Collecting this together, the estimate of speed used for the open-loop experiment

without load is defined as the solution to the observer

dω̂

dt
, (ω − ω̂) (4.3)

where

ω = ω1 =
−q1 +

p
q21 − 4q2q0
2q2

.

The stator voltages and currents along with the rotor position are sampled at 10

kHz (100µs). Filtered differentiation (using digital filters) is used for calculating the

motor speed and the derivatives of the stator voltages and currents.

Figure 4.6 shows the experimental result of motor speed and estimated speed when

the machine is driven by the inverter to the rated speed ωrate = 2π60/np = 188 rad/s.

Figure 4.7 shows the experimental result of the motor speed and the estimated

speed while the machine tracks a high speed trajectory. In this experiment, at ap-

proximately t = 0.5 sec, the inverter drives the induction motor from zero speed to
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Figure 4.6: Actual speed ω and estimated speed ω̂ when the motor tracks step speed
command open-loop.
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Figure 4.7: Actual speed ω and estimated speed ω̂ when the machine tracks the high
speed trajectory open-loop.
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rated speed. From t = 1 to 1.9 sec, the inverter maintains the motor at constant

rated speed, and then decelerates the machine to zero speed from t = 1.9 to 2.4 sec.

4.2 Closed-loop experiments with field-oriented con-

trol

4.2.1 Experimental setup

Figure 4.8 shows the experimental setup for field-oriented control. A 10 kHz

PWM inverter from SEMIKRON is used to drive the induction motor, and a PWM

generator board is designed and built to drive the inverter (shown in Figure 4.9). A

4096 pulse/rev optical encoder is attached to the motor for position measurements. A

0.5 hp BALDOR BC202 DC motor is coupled to the induction motor as a mechanical

load. This drive can vary the maximum motor torque as a function of the control

signal voltage. The real-time computing system RTLAB from Opal-RT with a fully

integrated hardware and software system is used to provide the control signal [56].

Figure 4.10 shows the connection between the induction motor and DC motor.

4.2.2 Closed-loop experiment with field-oriented control at

high speed trajectory

Figure 4.11 shows the experimental result of the motor speed and speed estimator

with the motor under full load. From t = 0 to t = 0.4 seconds, uSa = 10 V and

uSb = 0 is applied to the motor to build up the flux. At t = 0.4 seconds, the field-

oriented controller is used to control the machine running on a high-speed trajectory
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Figure 4.9: Experimental setups of PWM signal generator and inverter.
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Figure 4.10: Experimental setups of induction motor and DC motor.
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Figure 4.11: Motor speed ω and estimated speed ω̂ with the motor tracking a high
speed trajectory (ωmax = 94 rad/s) with full load at the start.
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(ωmax = 2π15 = 94 rad/s) with full load. In this experiment, the motor speed ω is fed

back to the field-oriented controller rather than ω̂. The stator voltages and currents

are collected and sampled at 120 µs.

During the period t ∈ [0.4 0.5], a third-order Butterworth filter with cutoff fre-
quency of 20 Hz is used to filter the measured stator voltages and currents, which

have a low frequency less than 2 Hz. The estimated speed ω̂ is calculated according

to equation (3.52) repeated here

dω̂

dt
, a2ω̂

2 + a1ω̂ + a0 + (ω − ω̂)

where

ω ,

 −q0/q1 if q2 = 0 See (3.38)

−r0/r1 if q2 6= 0 See (3.45) .

During the period t ∈ [0.5 1.9], a third-order Butterworth filter with cutoff fre-
quency of 60 Hz is used to filter the measured stator voltages and currents. The

estimated speed ω̂ is calculated by equation (4.3).

During the period t ∈ [1.9 2.0], a third-order Butterworth filter with cutoff fre-
quency of 20 Hz is used to filter the measured stator voltages and currents, which

have a low frequency less than 2 Hz. The estimated speed ω̂ is calculated by equation

(3.52) .

Simulation results show that when the machine runs with full load at the begin-

ning, there is a short time (0.05 sec) , the actual motor speed alternates between ω1

and ω2, which are defined by equation (4.1) . So between t = 0.4 and t = 0.5, a

speed observer (3.52) has to be used. However, this observer (3.52) does not track

a high speed trajectory because (3.52) requires a small step size (1µs) but the data
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are sampled at 120 µs. For high speed, the stator voltages and currents change much

faster than at low speed so the third-order derivatives of stator currents is too noisy

to be used to estimate the speed.

4.2.3 Closed-loop experiment with field-oriented control at

low and zero speed trajectory

Figure 4.12 shows the experimental results of the motor speed and speed esti-

mator with the motor under full load. From t = 0 to t = 0.4 seconds, uSa = 10 V

and uSb = 0 is applied to the motor to build up the flux. At t = 0.4 seconds, the

field-oriented controller is used to control the machine running on a low-speed tra-

jectory (ωmax = 5 rad/s) with full load. In this experiment, the motor speed ω is fed

back to the field-oriented controller rather than ω̂. The stator voltages and currents

are collected and sampled at 120 µs. A third-order Butterworth filter with cutoff fre-

quency of 30 Hz is used to filter the measured stator voltages and currents, which have

frequencies less than 2 Hz for this low speed trajectory. The speed observer (3.52) is

used to obtain the estimated speed ω̂. Simulations indicate a significant improvement

in tracking if faster sampling rates are possible.

Figure 4.13 shows the experimental results of the motor speed and speed estimator

with the motor under full load. From t = 0 to t = 0.4 seconds, uSa = 10 V and uSb = 0

is applied to the motor to build up the flux. At t = 0.4 seconds, the field-oriented

control is used to control the machine running at a zero speed trajectory (ω ≡ 0) with
full load. The motor speed ω is fed back to the field-oriented controller. The stator

voltages and currents along with the rotor position are collected and sampled at 120

µs. A third-order Butterworth filter with cutoff frequency of 30 Hz is used to filter
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Figure 4.12: Motor speed ω and estimated speed ω̂ with the motor tracking a low
speed trajectory (ωmax = 5 rad/s) with full load at the start.
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Figure 4.13: Motor speed ω and estimated speed ω̂ with the motor tracking a zero
speed trajectory (ω ≡ 0) with full load at the start.
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the measured stator voltages and currents, which have frequencies less than 2 Hz for

the zero speed trajectory. A speed observer (3.52) is used to obtain the estimated

speed ω̂. Simulations indicate a significant improvement in tracking if faster sampling

rates are possible.

4.3 Summary

In this chapter, experimental results are presented to verify the differential-

algebraic approach to speed estimation.

When the machine runs open-loop without load on it, the simplified speed observer

(4.3)

dω̂

dt
, (ω − ω̂)

where

ω = ω1 =
−q1 +

p
q21 − 4q2q0
2q2

can be used. This observer does not require a small step size. However, when the

induction machine runs with the load on it, this method does not work because the

motor speed is not always equal to ω1, it alternates between ω1 and ω2 which are

defined by equation (4.1) .

If the induction motor runs at the low speed trajectory with load on it, the speed

observer (3.52)
dω̂

dt
, a2ω̂

2 + a1ω̂ + a0 + (ω − ω̂)
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where

ω ,

 −q0/q1 if q2 = 0 See (3.38)

−r0/r1 if q2 6= 0 See (3.45)

has to be used. This observer requires small step size (1 µs) which is not possible

using the standard processor technology in commercial electric drives.
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Chapter 5

Differential-Algebraic Approach to

Speed Sensorless Estimation of TR

This chapter presents a differential-algebraic method to rotor time constant TR

estimation of an induction motor, using measured stator voltages and currents. That

is, this method does not require speed information. Experimental results are presented

to demonstrate the practical use of the identification method.

5.1 Introduction

The speed sensorless controller proposed in Chapter 3 requires the value of TR,

which can vary due to Ohmic heating. A method is now presented to estimate TR

without a speed sensor. Multiple techniques have been proposed to estimate TR

without a speed sensor. Refs. [17] [57] combine parameter identification and speed

estimation. A least-squares method is used to identify TR and ω simultaneously in [17]

and is based on the transfer function of the induction motor, which is only valid
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during constant speed operation. Ref. [57] also assumes constant speed operation.

The work presented here uses a differential-algebraic approach to identify the rotor

time constant TR without the motor speed information. It also shows that during

the steady state, TR is not identifiable, i.e., dω/dt 6= 0 is required to identify TR .

5.2 Differential-algebraic approach to TR estima-

tion

The TR estimation is based on equations (3.38) and (3.45), which are repeated

in (5.1) and (5.2) below,

q(ω) , q2(uSa, uSb, iSa, iSb)ω
2+q1(uSa, uSb, iSa, iSb)ω+q0(uSa, uSb, iSa, iSb) = 0, (5.1)

r1 (uSa, uSb, iSa, iSb)ω + r0 (uSa, uSb, iSa, iSb) = 0, (5.2)

where

r1 (uSa, uSb, iSa, iSb) , 2q22a0 − q2q1a1 + q2q̇1 − 2q2q0a2 + q21a2 − q1q̇2 (5.3)

and

r0 (uSa, uSb, iSa, iSb) , q2q1a0 + q2q̇0 − 2q2q0a1 + q0q1a2 − q0q̇2. (5.4)

Equation (5.2) is a first-order polynomial equation in ω with a unique solution as

long as r1 (the coefficient of ω) is nonzero (It is shown in section 3.7.8 that r1 6= 0 in
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steady state if q2 6= 0). Solving ω from equation (5.2) to obtain

ω = −r0/r1. (5.5)

Replace ω in equation (5.1) by (5.5) to obtain

q2r
2
0 − q1r0r1 + q0r

2
1 = 0. (5.6)

This turns out to be a twelfth-order polynomial equation of TR, which can be rewritten

as
12X
i=0

Ci (uSa, uSb, iSa, iSb)T
i
R = 0. (5.7)

Solving equation (5.7) gives TR. The coefficients Ci (uSa, uSb, iSa, iSb) of (5.7) contain

third-order derivatives of the stator currents and second-order derivatives of the stator

voltages and, therefore, noise is a concern. For time intervals for which TR does not

vary, equation (5.7) must hold identically. In order to smooth out the noise in Ci,

(5.7) integrated the data collection for the interval [t1 t2] to obtain

12X
i=0

 1

t2 − t1

t2Z
t1

Ci (uSa, uSb, iSa, iSb)

T i
R = 0. (5.8)

There are 12 solutions satisfying equation (5.8) , but the simulation results show

that there are always 10 conjugate solutions. The other two solutions include the

correct value of TR, while the other one is either negative or close to zero. This will

be illustrated in the experimental section, section 5.4.
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5.3 TR is not identifiable in steady state

5.3.1 In steady state, TR is not identifiable by differential-

algebraic approach

In steady state, solving equation (5.2)

r1 (uSa, uSb, iSa, iSb)ω + r0 (uSa, uSb, iSa, iSb) ≡ 0

gives the motor speed

ω = −r0
r1
=

ωS (1− S)

np
(5.9)

as

r1(uSa, uSb, iSa, iSb) =
− |US|12µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶6
×
µ

1

1 + S2ω2ST
2
R

¶3
× n4p (1− σ)6 ω3SL

2
S

σ4

× ¡1 + T 2Rω
2
S (1− S)2

¢2 × 1

den

r0(uSa, uSb, iSa, iSb) =
|U
¯S
|12µ³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

¶6
×
µ

1

1 + S2ω2ST
2
R

¶3 n3p (1− σ)6 ω4SL
2
S (1− S)

σ4

× ¡1 + ω2ST
2
R × (1− S)2

¢2 × 1

den
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in steady state (see section 3.7.8). Replacing ω in equation (5.1)

q2(uSa, uSb, iSa, iSb)ω
2 + q1(uSa, uSb, iSa, iSb)ω + q0(uSa, uSb, iSa, iSb) = 0

by (5.9) to obtain

q2
ω2S (1− S)2

n2p
+ q1

ωS (1− S)

np
+ q0 = 0. (5.10)

The steady-state expressions of q2, q1, and q0 are given by equations (3.66), (3.67),

and (3.68) in section 3.7.4 and repeated below,

q2 =
n2pT

2
R |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×ω2SLS (1− σ)2 (1− S)

1 + S2ω2ST
2
R

q1 =
npωS |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×LS (1− σ)2

¡
1− ω2ST

2
R (1− S)2

¢
1 + S2ω2ST

2
R

q0 =
− |US|4

σ

µ³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

¶2
×ω2SLS (1− σ)2 (1− S)

1 + S2ω2ST
2
R

.
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Replacing q2, q1, and q0 in (5.10) by their steady-state expressions, one obtains

T 2R
¡
ω2S (1− S)2 − ω2S (1− S)2

¢
+ 1− 1 = 0

⇒ T 2R × 0 + 0 = 0

That is, in steady state (5.1) and (5.2) hold independent of the value of TR.

5.3.2 In steady state, TR is not identifiable by the least-

squares method

Vélez-Reyes [16] [17] [18] have used least-squares methods for simultaneous pa-

rameter and speed identification in induction machines. In this approach dω/dt is

taken to be zero. At constant speed, a linear (in the parameters) regressor model can

be found. Specifically, consider the mathematical model of the induction motor in

(3.34) repeated here

d2

dt2
iS =−

1

TR
(1− jnPωTR)

µ
d

dt
iS + γiS −

1

σLS
uS

¶
+

βM

T 2R
(1− jnPωTR) iS

− γ
d

dt
iS +

1

σLS

d

dt
uS −

jnPTR
1− jnPωTR

µ
d

dt
iS + γiS −

1

σLS
uS

¶
dω

dt
.

In steady state, dω/dt = 0 so that this equation reduces to

d2

dt2
iS =−

1

TR
(1− jnPωTR)

µ
d

dt
iS + γiS −

1

σLS
uS

¶
+

βM

T 2R
(1− jnPωTR) iS

− γ
d

dt
iS +

1

σLS

d

dt
uS (5.11)
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where iS = iSa+ jiSb and uS = uSa+ juSb. Decomposing equation (5.11) into its real

and imaginary parts gives

d2iSa
dt

=
1

TR

µ
−diSa

dt
− RS

σLS
iSa +

1

σLS
uSa

¶
+ npω

µ
−diSb

dt
− RS

σLS
iSb +

1

σLS
uSb

¶
− γ

diSa
dt

+
1

σLS

duSa
dt

(5.12)

and

d2iSb
dt

=
1

TR

µ
−diSb

dt
− RS

σLS
iSb +

1

σLS
uSb

¶
− npω

µ
−diSa

dt
− RS

σLS
iSa +

1

σLS
uSa

¶
− γ

diSb
dt

+
1

σLS

duSb
dt

(5.13)

where

γ =
RS

σLS
+

1

σLS

1

TR

M2

LR
=

RS

σLS
+
1− σ

σ

1

TR
.

The goal here is to estimate TR without knowledge of ω. So, it is now assumed the

motor parameters are all known except for TR. The set of equations (5.12) and (5.13)

may then be rewritten in regressor form as

y (t) =W (t)K. (5.14)
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Here K ∈ R2, W ∈ R2×2, and y ∈ R2 are given by

K ,

 1/TR
npω



W (t) ,

 LS
diSa
dt
− uSa +RSiSa σLS

diSb
dt
− uSb +RSiSb

LS
diSb
dt
− uSb +RSiSb −σLS

diSa
dt
+ uSa −RSiSa


and

y (t) ,

 duSa
dt
− σLS

d2iSa
dt
−RS

diSa
dt

duSb
dt
− σLS

d2iSb
dt
−RS

diSb
dt

 .
The regressor system (5.14) is linear in the parameters. The standard least-squares

approach is to collect data at times t = 0, T, 2T, · · · , NT and compute the solution

to

RWK = RYW (5.15)

where

RW ,
NX
n=1

W T (nT )W (nT )

RYW ,
NX
n=1

W T (nT )y (nT ) .

A unique solution to (5.15) requires RW to be invertible. However, RW is never

invertible in steady state! To show this, let

D (t) =

 iSb (t) −iSa (t)
iSa (t) iSb (t)

 .
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In steady state, the determinant of D (t) is

det (D (t)) = i2Sa (t) + i2Sb (t) = |I¯S|
2 .

and a simple computation shows

D (t)T D (t) = |I
¯S
|2 I2×2.

Multiply both sides of equation (5.14) on the left by D (t) to obtain

D (t) y (t) = D (t)W (t)K RSωS |I¯S|
2 − ωSP

σLSω
2
S |I¯S|

2 − ωSQ

 =

 −ωSLS |I¯S|
2 +Q RS |I¯S|

2 − P

RS |I¯S|
2 − P σLSωS |I¯S|

2 −Q

K
(5.16)

where P and Q are given by (3.58) and (3.58) in section 3.7.2 and repeated here

P , uSaiSa + uSbiSb

= Re (USI
∗
S)

=
|US|2

³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´
³
RS +

(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST 2R)

2

(1+S2ω2ST 2R)
2

(5.17)
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Q , uSbiSa − uSaiSb

= Im (USI
∗
S)

=
|US|2

ωSLS(1+σS2ω2ST 2R)
1+S2ω2ST

2
R³

RS +
(1−σ)Sω2SLSTR
1+S2ω2ST

2
R

´2
+

ω2SL
2
S(1+σS2ω2ST2R)

2

(1+S2ω2ST2R)
2

. (5.18)

Further, in steady state, it is also true that (see section 3.7.2)

iSb
diSa
dt
− iSa

diSb
dt

= −ωS |I¯S|
2

d (i2Sb + i2Sa)

dt
= 0

i2Sa + i2Sb = |I
¯S
|2 .

Use (5.17) and (5.18) to replace P and Q in (5.16) to obtain

D (t)W (t) = − |I¯S|
2 (1− σ)ωSLS

1 + S2ω2ST
2
R

 S2ω2ST
2
R SωSTR

SωSTR 1

 (5.19)

D (t) y (t) = −ωS
|I
¯S
|2 (1− σ)ωSLS

1 + S2ω2ST
2
R

 SωSTR

1

 (5.20)

That is, D (t)W (t) and D (t) y (t) are constant matrices.

Further, it is easily seen that the determinant of D (t)W (t) is zero, i.e.,

det (D (t)W (t)) ≡ 0.
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In steady state, D (t)W (t) is a constant matrix whose determinant equal to zero.

Also

RDW ,
NX
n=1

(D (nT )W (nT ))T (D (nT )W (nT )))

=
NX
n=1

W T (nT )DT (nT )D (nT )W (nT )

= |I
¯S
|2

NX
n=1

W T (nT )W (nT )

= |I
¯S
|2RW .

Because det(RDW ) = 0, it follows that det(RW ) = 0 showing that RW is never

invertible using steady-state data.

Also,

RDWY ,
NX
n=1

(D (nT )W (nT ))T (D (nT ) y (nT )))

=
NX
n=1

W T (nT )DT (nT )D (nT ) y (nT )

= |I
¯S
|2

NX
n=1

W T (nT )y (nT )

= |I
¯S
|2RYW .
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Further, it can be shown

RW = RDW/ |I
¯S
|2

= N (D (0)W (0))T (D (0)W (0)) / |I
¯S
|2

=
N |I
¯S
|2 (1− σ)2 ω2SL

2
S

1 + S2ω2ST
2
R

 S2ω2ST
2
R SωSTR

SωSTR 1

 ,
where D (0)W (0) is taken from (5.19).

Also,

RYW = RDWY / |I¯S|
2

= N (D (0)W (0))T (D (0) y (0))) / |I
¯S
|2

= ωS
N |I
¯S
|2 (1− σ)2 ω2SL

2
S

1 + S2ω2ST
2
R

 SωSTR

1

 .
where D (0)W (0) and D (0) y (0) are taken from (5.19) and (5.20).

By inspection, K = [0 ωS]
T is one solution to (5.15). The null space of RW is

generated by  −1/TR
SωS

 (5.21)

so that all possible solution are given by

 0

ωS

+ α

 −1/TR
SωS


for some α ∈ R.
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Remark 1 The Morse-Penrose (pseudo-inverse) solution [58] to (5.15)

RWK = RYW

is

K =
ωS

1 + S2ω2ST
2
R

 SωSTR

1

 . (5.22)

the solution K in (5.22) can be written in the form

 0

ωS

+ α

 −1/TR
SωS


for

α = − Sω2ST
2
R

1 + S2ω2ST
2
R

.

In summary, solving (5.15) using steady-state data leads to an infinite set of

solution and so TR is not identifiable by this method.

5.4 Experimental results

To demonstrate the viability of the TR estimator (5.8), experiments are carried

out. A three-phase, 0.5 hp, 1735 rpm (np = 2 pole-pair) induction motor model is

used for the experiment. An Allen-Bradley PWM inverter is used to drive the

induction motor. Given a speed command to the inverter, the inverter will produce

PWM voltage which drives the induction motor to track the speed trajectory. Here
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a step speed trajectory

ωref =

 0 t < 0

2π60/np = 188 rad/s t ≥ 0

is chosen. The stator currents and voltages are sampled at 10 kHz. The real-time

computing system RTLAB fromOpal-RT with a fully integrated hardware and soft-

ware system is used to collect data [56]. Filtered differentiation (using digital filters)

is used for the derivatives of the voltages and currents. Specifically, the signals are

filtered with a third-order Butterworth filter with cutoff frequency of 100 Hz. The

voltages and currents are put through a 3−2 transformation to obtain the two phase
equivalent voltages uSa, uSb which are plotted in Figures 5.1, and the corresponding

two phase equivalent currents iSa, iSb are plotted in Figure 5.2.

Using the data {uSa, uSb, iSa, iSb} collected between 0.84 sec to 0.91 sec, the quan-
tities duSa/dt, duSa/dt, diSa/dt, diSb/dt, d2iSa/dt2, d2iSb/dt2, d3iSa/dt3, d3iSb/dt3 are

calculated and used to evaluate the coefficients in equation (5.8) . Solving equation

(5.8) one obtains the 12 solutions

TR1 = 0.1064 TR2 = −0.0186
TR3 = −0.0576 + j0.0593 TR4 = −0.0576− j0.0593

TR5 = −0.0037 + j0.0166 TR6 = −0.0037− j0.0166

TR7 = −0.0072 + j0.0103 TR8 = −0.0072− j0.0103

TR9 = 0.0125 + j0.0077 TR10 = 0.0125− j0.0077

TR11 = 0.0065 + j0.0018 TR12 = 0.0065− j0.0018.
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Figure 5.1: Sampled two phase equivalent voltages uSa, uSb.
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Figure 5.2: Sampled two phase equivalent currents iSa, iSb.
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TR should be a real positive number, so TR = 0.1064 is the only possible choice. This

compares favorably with the value of TR = 0.11 obtained using the method developed

by Wang et al [59] where a speed sensor is also used.

To illustrate the identified TR, a simulation induction motor model is used with

the measured voltages as input. Then the simulation’s output (stator currents) are

used to compare with the measured (stator currents) outputs. Figure 5.3 shows the

sampled two phase equivalent current iSb and its simulated response iSb−sim. The

phase a current iSa is similar, but shifted by π/ (2np) . The resulting phase b current

iSb−sim from the simulation corresponds well with the actual measured current iSb.
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Figure 5.3: Phase b current iSb and its simulated response iSb−sim.
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5.5 Summary

This chapter presents a differential-algebraic approach to estimating the rotor

time constant without a speed sensor. The experimental results demonstrate the

practical use of this method. This method is not applicable in steady state. It is also

shown that a standard least-squares approach is not applicable in steady state.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research produced a differential-algebraic approach to speed and parameter

estimation of an induction motor. The speed estimator entails using an algebraic

estimate of the speed to stabilize a dynamic speed observer. This work presented a

characterization of the observability of the rotor speed of an induction motor based

on input and output measurements (stator voltages and currents). This was done

in terms of the speed being the solution to some polynomial equations whose coeffi-

cients were functions of the input/output measurements and their derivatives. The

singularities of these algebraic equations (i.e., whether or not the leading coefficient is

zero) were characterized under steady-state conditions. The algebraic estimate of the

speed was then used to stabilize a dynamic (Luenberger type) speed observer. The

new observer does not require any sort of “slowly varying” speed assumption and is

stable. This sensorless speed controller shows potential for speed estimation at low

speeds under full load.
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The speed observer requires the value of TR, which can vary due to Ohmic heating.

Differential-algebraic approach was also used in the rotor time constant TR estimation.

It shows the potential for the estimation of TR without motor speed information. This

parameter estimation method does not require any sort of “slowly varying” speed

assumption, but rather requires dω/dt 6= 0.

6.2 Future work

The differential-algebraic approach to speed and rotor time constant TR estima-

tion is computationally intense. Also, the algebraic speed observer and TR estimation

includes the third-order derivative of the stator current. Future possible work includes

• Finding a way to simplify the computation and reduce the order of the derivative
of the stator current.

• Studying on-line estimation of TR and using the estimated TR in the speed

estimator.

• Closed-loop experiment where the estimated speed is fed back to the field-
oriented controller.
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