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ABSTRACT 

The dissertation summarizes a series of studies on the fatigue damage of both 

amorphous and crystalline engineering alloys. The attention focuses on the utilization of 

synchrotron x-ray scattering related techniques for advanced material characterizations. In 

the first part of the research, critical issues regarding the mechanical response and structural 

evolution of Bulk-Metallic Glasses (BMGs) in the elastic region are addressed. The effects 

of cyclic-loading on the microstructures of an amorphous alloy are investigated, aiming to 

provide better mechanistic understandings of fatigue damage in BMGs. The second part of 

the research focuses on the characterization method based on two-dimensional X-ray 

diffraction to better predict the fatigue life of Ni-based superalloys.  

Bulk-amorphous metallic alloys are a new class of materials that exhibit superior 

material properties. X-ray pair-distribution function (PDF) analysis is used to study the 

deformation of BMGs on the microscopic scale in the elastic region. The results show that 

the deformation behavior of BMGs is fundamentally visco-elastic. 

The effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based 

BMGs has been investigated. Fatigue experiments on the failed-by-fatigue samples 

indicate that the remnants generally have similar or longer fatigue life than the as-cast 

samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-

fatigue samples showed very small changes of local atomic structures. These observations 

suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the 

number of pre-existing crack-initiation sites in the sample 
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For the study of fatigue damage in Ni-based superalloys, the correlation between 

the microstructure, from the x-ray diffraction point of view, and fatigue life is established. 

The development of residual strain/stress, can be measured accurately by in-situ two-

dimensional (2D) x-ray diffraction. The size of the compressive strain zone ahead of a 

notch tip increases with fatigue life and is most sensitive during the initial cycles and final 

stage. However, the estimation of fatigue damage is qualitative, not quantitative. Finally, 

the strain variation possibly caused by the intergranuler stresses is large at the beginning 

of the fatigue life, but decrease with increasing fatigue cycles, which indicates more and 

more grains were plastically deformed. 
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1 CHAPTER I  

INTRODUCTION  

 

 Fatigue, defined as “progressive and localized structural damage that occur when a 

material is subjected to cyclic loading”, has long been recognized as one of the major 

causes for the catastrophic damage in components or even entire systems. It is estimated 

that 90% of all metallic failures are attributed to the metal fatigue. The first public record 

of fatigue failure can be traced back as early as 150 years ago. In 1843, Rankine wrote “... 

The unexpected fracture of originally good railway axles, after running for several years, 

without any appearance of unsoundness, must be caused by a gradual deterioration in the 

course of working….” Until today, despite the intensive research and studies for over a 

century, this problem still torment today’s scientists and engineers.  

 The progression of fatigue damage can be broadly classified into the following 

stages:[1] (a) sub-structural changes, which cause the nucleation of permanent damage, (b) 

the formation of microscopic cracks, (c) the growth and coalescence of microscopic flaws 

(short cracks) to form ‘dominant’ cracks, which may eventually lead to catastrophic failure, 

(d) stable propagation of the dominant macro-cracks, and (e) structural instability or 

complete fracture. Since Forsyth[2] first showed that the fatigue damage start with the slip-

induced surface roughening during cyclic loading, Wood[3] proposed mechanisms to 

describe the origin of fatigue cracks. He believed that the repeated cyclic straining of the 

material leaded to different amounts of net slip on different glide planes, and the 

irreversibility of shear displacements resulted in the ‘roughening’ of the material surface. 
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It is well known now that fatigue cracks initiate from the bands of localized deformation 

known as slip bands. 

There are numerous studies of the initiation and propagation of fatigue cracks in the 

past century. Well-developed fracture mechanics have been shown to be successful to 

predict the propagation of fatigue cracks. Recent studies had been focused on the initiation 

stage of fatigue process because of the complicated nature of the crack formation 

mechanisms. It is found that the formation of a crack is very sensitive to the micro-structure 

where it is nucleated. The optical microscopy (OM), scanning-electron microscopy (SEM), 

and transmission electron microscopy (TEM) techniques had been used to explore the 

microstructural evolution along the slip bands. More recently, techniques were developed, 

especially scanning tunneling microscopy (STM) and atomic force microscopy (AFM), to 

measure the surface displacement due to fatigue, on the order of 20 nm.[4-8] However, 

most of the techniques are destructive and require special specimen preparation procedure, 

and the information obtained are localized. In the current research, we aimed to develop a 

non-destructive characterization technique utilizing synchrotron X-ray to study the fatigue 

damage of both amorphous and crystalline alloys.  
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2 CHAPTER II  

LITERATURE REVIEW 

2.1 Bulk metallic glasses 

Bulk-metallic glasses (BMGs) are a revolutionary new class of engineering materials 

with potential applications ranging from automotive and aerospace structures to biomedical 

devices and sporting goods. Metallic glasses are materials with constituent atoms being 

packed together in a somewhat random fashion, similar to that of a liquid. Owing to the 

lack of long rang order crystal structures, BMGs exhibit many impressive properties 

different from their crystalline counterparts, including extremely high tensile yield 

strengths (~ 1 - 2 GPa typically, up to 5 GPa for newly developed Co-based BMGs [9]) 

which is twice those of stainless steels and titanium alloys, and large elastic deflections, ~ 

2% elastic strain [10], which is much higher than those of crystalline metallic alloys (less 

than 1%). Combined with low density (3 ~ 6 g/cm3) relative to traditional metallic alloys, 

they have high strength-to-weight ratios. These unique properties make BMGs having great 

potentials to replace some conventional crystalline materials used in the energy industry. 

 

2.1.1 Deformation behavior of BMGs 

Since BMGs are amorphous and lack of crystal defects, such as dislocations and 

grain boundaries, which are critical for the deformation of crystalline materials. The fatigue 

behavior of BMGs must be very different from traditional crystalline alloys. In order to 

study the deformation of BMGs under cyclic loading conditions, it is very important to first 
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understand how BMGs deformed plastically under monotonic stresses and the 

corresponding theory for the deformation.  

BMG can deform either inhomogeneous or homogeneous depending on the 

deformation conditions such as temperature and strain rate. The homogeneous deformation 

usually occurs at temperatures close to glass transition temperature (Tg), and the 

deformation of BMG can even exhibit super-plasticity in the super-cooled liquid region 

(Tg < T < Tx). The “homogeneous deformation” means the whole part of the sample 

participate in the deformation. The shape and size of the deforming sample change 

simultaneously, and the deformation is uniform at macroscopic scale. No shear localization 

can be observed. Since BMGs are meta-stable materials, most of the applications are in 

room temperature or lower. Therefore, current research only focuses on the deformation 

behavior at room temperature. A more detail discussion of the homogeneous deformation 

of BMGs at higher temperature can be found in Schuh et al. [11]. 

On the other hand, when the deformation of BMGs at temperatures way below its 

glass transition temperature, metallic glasses deformed in highly inhomogeneous manners 

[12, 13]. The deformation highly localized into shear bands, which initiate and propagate 

rapidly across the sample. Owing to its lack of the work-hardening ability, once the shear 

band initiates, it will move across the whole sample and result in the macroscopic fracture. 

Although large amount of plastic deformation occurred in shear bands, a band is 10 ~ 20 

nm in width, the overall plastic deformation of the sample is generally very low (0 ~ 2 %). 

The fracture surface shows a typical vein pattern (Figure 2-1 Fracture surface of Cu-based 

BMG fractured in compression. The vein pattern results from the lowered viscosity in the 
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band.). The vein pattern on the fracture surface of a failed compression sample is the same 

as that produced by pulling apart two glass slides with a thin layer of Vaseline between 

them. The same feature can also be found on the fracture surface of the specimens in the 

tension test [10, 14]. The viscosity of the material in the shear bands has dropped several 

orders of magnitudes. Few models had been proposed to explain the characteristic 

deformation behaviors, such as the formation of free volume [15, 16], the local adiabatic 

heating [17], shear-transformation-zone (STZ) theory [18] … etc. However, the well 

accepted mechanism for this viscosity drop is still not clear. 

 

 

Figure 2-1 Fracture surface of Cu-based BMG fractured in compression. The vein pattern 

results from the lowered viscosity in the band. 
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2.1.2 Deformation mechanism of BMGs 

Despite the great amount of efforts had been made to understand the mechanisms 

governing the deformation behavior of amorphous alloys, the theory in explaining the 

plastic deformation of metallic materials in a glassy state, like the dislocation theory in 

their crystalline counterparts, remains absence. The development of such theory is quite 

difficult because the atomic arrangement in amorphous alloys remains mysterious at 

present. Without the precise description of the atomic arrangement, the establishment of 

theory for deformation of amorphous alloys is far from certain. The most widely applied 

model used to explain the deformation of metallic glasses is the Free-Volume Model 

proposed by pioneers, M. Turnbull, M. Cohen, and F. Spaepen et. al. [16, 18-21], in early 

70s. The idea of free-volume goes back long time, and has been known that volume is a 

very good index for measurement of the viscosity of a liquid. The theory proposed that an 

atom is trapped in the “cage” of neighboring atoms, with a lot of small space (free volume) 

 , in-between the atoms. The probability distribution of such a free volume can be 

described by 

ሺ߭ሻ݌ ൌ
ఊ

జ೑
ሺെ݌ݔ݁

ఊ.జ

జ೑
ሻ  ( 2-1 ) 

where   is a geometrical constant, and f  is the total free-volume, which depends linearly 

on the temperature above the glass-transition temperature Tg [18]. Since an atom is 

confined in the “cage”, it cannot jump out of its original position unless the surrounding 

free volume, * , is large enough for it to make a successful jump. The magnitude of *  is 

about 80% of the atomic volume. Thus, the deformations of amorphous material can be 
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described by the redistribution of the free volumes. However, there are different thoughts 

[22] arguing that whether it can be used on the atomistic basis. 

 

2.1.3 Deformation study of BMGs by high energy synchrotron X-ray 

It is clear that all matters are made of atoms, and the properties of matter depend 

on which atoms are used and how they are bonded together. The structure of materials can 

be categorized as (1) atomic structure, which includes features that cannot be seen, such as 

the types of bonding between the atoms, and the way the atoms are arranged, (2) 

microstructure, which includes features that can be seen using a microscope, but seldom 

with the naked eye, and (3) macrostructure, which includes features that can be seen with 

the naked eye. The atomic structure primarily affects the physical, chemical, thermal, 

electrical, magnetic, and optical properties. The microstructure and macrostructure can also 

affect these properties but they generally have a larger effect on mechanical properties. 

Since the properties of a material are closely related to its structure, structure 

characterization is the fundamental steps for the study of the materials. 

The purpose of structural analysis is to find the correlation between the structure 

and the properties of a material, so that we can modify the properties by altering the 

structure. Since BMG have no structure periodicity, the first problem would be “How to 

describe the structure of a disordered system in a scientific and systematic way?” In 

material science, one way of describing the structure of a material is to describe the relative 

position of each atom with respect to each other in that material. In crystalline materials, 

since the structure is very well defined, it can be done conveniently by describing the 
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arrangement within the solid of a small representative group of atoms, called the “unit cell”. 

By multiplying identical unit cells in three directions, the location of all the particles in the 

crystal is determined. The translational order in a crystal leads to easy description of the 

structure, only a few positions are needed to specify the entire crystal structure. In liquids 

and glasses, atomic positions are dynamic. Particularly in liquids, the local environment of 

an atom changes rapidly as it diffuses. In glasses, different atoms of the same type are in 

different environments, but each atom’s environment is more or less static. In either liquid 

or glass, the structure is inherently statistical. Because of the lack of long range periodicity 

in glass, describing the structure by specifying all the atomic positions becomes not only 

impractical, but also useless. Even if one was able to find out the atomic coordinates of all 

the, we say, 6 x 1023 atoms in a specimen, we would not be able to comprehend and use 

such information. Therefore, a better way is required to describe the structure of an 

amorphous material. 

Clearly, the properties of a material are not determined by the absolute position of 

each atom, but by the relative positions of the atoms which are close enough to have some 

interaction. In other words, local atomic environment, the relative positions of the 

neighboring atoms, is what one has to know to understand the properties of the material. 

Therefore, a function is required to express the distance-atom density relationship. Here, a 

method, atomic pair-distribution function (PDF) analysis emerges as the solution for the 

structure characterization of amorphous alloys. PDF describes the distribution of distances 

between pairs of atoms contained within a given volume as illustrated in Figure 2-2. While 

traditional crystallographic analysis takes into account only the Bragg peaks, which are tall 
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and clearly visible in the diffraction pattern, the PDF method utilizes information buried 

in-between the Bragg peaks in the form of diffuse scattering, component. It allow both the 

Bragg and diffuse scattering to be analyzed together without bias, revealing the short and 

intermediate range order of the material regardless of the degree of disorder. Because all 

of the scattering signals are used, PDF analysis is also called “total scattering analysis”. 

PDF had been shown to be one of the very valuable techniques to study the amorphous or 

nano-crystalline materials[23, 24]. The theory and mathematical equations underlying PDF 

analysis as well as the experimental method will be described in Section 3.4. 

Many techniques have been used to study the deformation mechanisms of BMGs. 

Ex-situ uniaxial tests (under tension or compression) are usually performed to study the 

mechanical behaviors of BMGs under different loading modes. Rich information, such as 

the elastic limit, yield stress, plastic strain of BMG…etc., can be obtained from these tests. 

In the tests, many characterization techniques have been utilized to investigate the 

deformation mechanisms of BMGs. For example, the serrated flow was characterized from 

stress-strain curves and high-speed camera. The spatiotemporally of shear banding and the 

fracture mode was studied by scanning electron microscopy (SEM). The structure of shear 

bands was studied by transmission electron microscopy (TEM). In crystalline materials, 

the crystalline structure is usually determined by X-ray diffraction. The evolution of lattice 

strains during deformation can be determined directly by calculating the changes of lattice 

spacing using diffraction experiments. The source of the diffracting wave can be either x-

ray, electron or neutron. In amorphous alloys, which do not possess long range periodicity 

in the atomic structure, it is not so obvious if the same can be done or not. Poulsen et al. 
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[25] had been shown recently that the local strain in metallic glasses can be measured by 

high energy X-ray diffraction. By tracing the shifts in the first peak of the structure 

function, S(Q), or the oscillations in the atomic pair-density function (PDF), g(r), the strain 

can be estimated. Nevertheless, studying the response of atoms in metallic glasses under 

an applied external stress is very important for understanding the deformation mechanisms 

of BMGs. 

Combining the high brilliance and high energy resolution, the in-situ high energy 

X-ray diffraction experiments of BMG used mainly synchrotron radiation as x-ray light 

source. The x-rays used for these experiments were monochromatic hard x-rays with 

energies between 80 keV~ 100 keV. The direct information collected from diffraction of 

metallic glasses is the scattering intensity, I(Q), as a function of the scattering vector, Q, 

which is defined as 

4 sin
Q

 


    ( 2-2) 

where θ is half of the scattering angle, and λ is the wave length of the X-ray. The structure 

factor can be written as 

2

( )
( )

( )

I Q
S Q

N f Q
   ( 2-3) 

where N is the number of atoms, f(Q) is the atomic-scattering factor for x-rays, and the 

angular brackets indicate averaging over the composition of the materials [26]. The real 

space structural information is the PDF, g(r), in which r is the distance from an average 

atom located at the origin. It can be obtained through Fourier transformation of S(Q). The 
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radial distribution function (RDF), which is defined as 4πr2g(r), is also an important 

function related to PDF. By integrating the RDF spectrum over a suitably chosen range of 

r, the coordination number of a particular atomic shell can be obtained easily. 

When an external macroscopic stress is applied to a metallic glass, the atoms will 

rearrange their position, and these changes can be observed in S(Q) and g(r) accordingly. 

For a uniaxial loading (compression or tension), the changes in the real space is easy to 

expect. The compressive stress will tend to move atoms closer in the loading direction, 

and, thus, a peak in g(r) for that direction will move to smaller values of r for a tensile 

stress, the opposite should happen. In the reciprocal space, Q is expected to shift toward 

higher values in the case of the compressive stress and lower values when the sample is 

tensioned. By analogy to the definition of engineering strain, the strain of BMG for an 

applied stress, σ, can be written as 

( ,0) ( , )
( , )

( , )
i i

i i
i

Q Q

Q

    
 


   ( 2-4) 

which is polar-angle-dependent. In the transverse direction, a strain of the opposite sign 

can be expected due to the Poisson’s effect. A typical diffraction image of a metallic-glass 

sample is shown in Figure 2-3. The diffraction from amorphous structure is board and has 

the first and strongest peak around Q = 2.8 ~ 3.2 Å-1. There will be no sharp and clear ring 

from crystalline phases. The I(Q) can be integrated upon the polar coordinates (, φ). The 

integration can be done by dividing the entire circle into sections based on the divided 

angle. For example, the entire circle can be divided into 36 sections of 10º each. The 

integration of 2D image was performed by FIT2D software [27].  Since only elastic 
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scattering is interested, the integration of the intensity curves need to be corrected for the 

background, polarization, and inelastic Compton scattering. The structure factor, S(Q), can 

be calculated based on the equation with the help of the PDFgetX2 software package. Once 

the load is applied, the round concentric halos from Figure 2-3 become elliptical, and the 

asymmetry increases as the load increases. The angular variation of the strain can be fitted 

with the following equation 

2 2
11 12 22( , ) sin sin sin cos             ( 2-5) 

The strain tensor including the axial, ε11, tangential, ε22, and in-plane shear component, 

ε12, can then be determined. In Figure 2-3, φ = 90º corresponds to the axial stress, and φ = 

0º corresponds to the tangential stress. Components not in the plane perpendicular to the 

incoming beam can be determined by rotating the specimen around an axis perpendicular 

to the incoming beam. The similar analysis works in the real space. However, Dmowski 

and Egami [ref] pointed out that due to the presence of the structural anisotropy, PDF 

should be expanded into a spherical harmonics, otherwise systematic errors may occur 

especially in the first neighborhood. 

Stoica et al. [28] studied the strain distribution of a Zr64.13Cu15.75Ni10.12Al10 BMG 

by in-situ tensile experiment using high energy synchrotron X-ray. They found that when 

a load was applied to the sample, the diffraction rings became elliptical. To describe such 

changes more quantitatively, the authors constructed a set of symmetrized intensity 

distributions, as described previously and traced the change in the first peak position as a 

function of the azimuth angle, φ, and tensile stress, σ. The experimental scatter of the 

measured strain values at each different stress level is shown in Figure 2-4 and Figure 
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2-5[28]. From Figure 2-4, it is proved that the asymmetry of the first diffuse maximum 

increases with increasing the load. The decrease in the peak position with increasing the 

tensile stress reflects the fact that atoms move apart along the tensile direction. An opposite 

behavior is observed in the transverse direction. Figure 2-5 shows the angular variation of 

the strain at a given stress, σ, as calculated from the relative change in the position of the 

first peak using Equation 2-5. The fit of the experimental data to Equation 2-5 gives the 

axial and tangential components of the strain tensor, ε11 and ε22, respectively. The stress-

strain curves for different strain-tensor components are shown in Figure 2-6. The curves 

all present a linear behavior within the experimental error, which indicates the elastic 

deformation for the investigated specimens. The maximum axial strain (ε11) is 1.50 ± 

0.01%. The elastic modulus determined in the tensile mode is E11 = 94 ± 1 GPa, and the 

experimentally-determined Poisson’s ratio, ν = - ε22 / ε11, is 0.325 ± 0.01. 

Mattern et. al [29] studied the structure behavior of CuxZr100-x metallic glass by 

PDF analysis. They determined the partial pair correlation functions of different CuxZr100-

x alloys by assuming the atom to stay unchanged and only the weight factors were changed. 

The results showed that the structure of CuxZr100-x can be well described by a solid solution-

like replacement of Cu and Zr atoms in the whole composition range. No indications are 

observed that would support the existence of special structure or the presence of phase 

separation in the glassy state of rapidly quenched CuxZr100-x alloys. 

Wang et. al. [30] investigated the tensile behavior of Zr-based and La-based BMG 

by in-situ high energy x-ray diffraction. They claimed that the tensile elastic modulus and 

Poisson’s ratio can be determined accurately by x-ray diffraction. No excess free volume 
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appears in the fractured region. In La-based BMG, the atomic-level strains as a function of 

atom-to-atom distances along tensile direction is larger than that in Zr-based BMG, but no 

explanation was offered. 

Nevertheless, high energy X-ray diffraction had been shown to be an effective 

technique to study the structure of BMG. The PDF analysis can reveal the response of 

atomic structure under an applied external stress. The Young’s modulus, and Poisson’s 

ratio from X-ray method are similar to those by other techniques such as ultrasonic 

measurement. 
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Figure 2-2 Distribution functions describing the atom-atom distance. 
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Figure 2-3 High-energy synchrotron X-ray scattering image recorded by a 2D detector. 

  



 

 

15

 

Figure 2-4 Shifting of first board peak as a function of applied tensile load, measured in 

tensile, and transversal direction for Zr64.13Cu15.75Ni10.12Al10  BMG [28]. 
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Figure 2-5 Angular dependence of the strain determined at various stages of tensile 

deformation of Zr64.13Cu15.75Ni10.12Al10  BMG, as calculated from the relative change in the 

position of the first peak using equation 1.5 [28]. 
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Figure 2-6 Stress-strain curves for different strain tensor components measured for 

Zr64.13Cu15.75Ni10.12Al10 BMG. The straight lines represent a linear fitting of the 

experimental data, starting from the origin of the coordinate system [28]. 

  



 

 

18

2.1.4 Fatigue behavior of BMGs 

BMGs will undergo mechanical fatigue even when the applied cyclic stress is far 

below their yielding stresses, ys. The stress-strain curve indicates that the deformation of 

the specimen at such stress levels should be elastic, i.e., the material returns to its original 

state after the applied load is removed. Several researchers [31-39] have shown that the 

fatigue behavior of the Zr-based BMGs shares many similarities with the crystalline 

materials. For example, the stress versus the number of fatigue-life cycles (S-N) curve of 

the BMG resembles its crystalline counterparts, where the fatigue life is inversely 

proportional to the applied stress and possesses a threshold, defined as the fatigue-

endurance limit (typically refers to the stress or stress range at 107 cycles). In the present 

article, we use the stress range, = |max.-min.|, to calculate fatigue limit for our own 

results and other researchers’ data, where min. and max. are applied minimum and 

maximum stresses, respectively. When the cyclic stress imposed on the sample is lower 

than this limit, the sample will not fail. A more rigorous description is that the failure of 

the sample will not occur within the testing time frame, 107 cycles in general. 

The crack-propagation behavior in the BMG is similar to ductile crystalline alloys 

[32, 40]. The crack-growth rate depends on the applied stress range, and striations can be 

observed on the fracture surface [31]. The fatigue-failure process of the BMG can be 

categorized into three stages, crack initiation, stable crack propagation, and fast fracture, 

as in crystalline alloys. The fatigue-endurance limits of the Zr-based BMGs vary 

significantly, ranging from 0.05 ~ 0.5 ys, depending on the test geometry (experiments 

under tension-tension, compression-compression, or bending), test materials, 



 

 

19

environments… etc. Gilbert et al. [31, 40] first reported the fatigue behavior of the Zr-

based BMG (Vitreloy-1). They conducted four-point-bending tests on beam specimens and 

found that the fatigue limit was ~ 8% of the ultimate tensile strength (UTS). Menzel et al. 

[39] later reported similar results using the same material. Yokoyama et al. [41] conducted 

rotating-beam fatigue tests to examine the Wohler curve of the Zr-based BMGs. The 

fatigue limit of the specimen in their experiments was ~ 57% of the ultimate tensile 

strength. Nakai et al. [42] studied the fatigue-crack initiation and small crack-propagation 

behavior of Zr-based BMGs under tensile stresses. They reported a fatigue limit of 52% of 

the ultimate tensile stress. Subsequent compression-compression fatigue studies of the 

same material showed a slightly-lowered fatigue limit of ~ 20% of the yield stress [43]. 

Launey et al. [44] examined the bending-fatigue behavior of Zr-based BMGs from two 

different manufacturers. They found that fatigue limits are strongly affected by the free 

volume in the material. The differences in fatigue limits can be as large as 22% of UTS 

(40% UTS for the BMG system with less free volumes and 18% UTS for the system with 

more free volumes [44]). Wang et al. [32, 33, 38, 45] and Peter et al. [36, 37] performed 

tension-tension fatigue tests on notched Zr-based BMG samples. These tests showed that 

the fatigue limit is 30 ~ 50% of the ultimate tensile strength [46]. Wang et al. [47] suggested 

that several factors could affect fatigue limits, such as composition, mean stress, quality of 

the specimen, specimen geometry, testing environment, cyclic frequency, surface 

condition, etc.   

 Wang et al. [47] further summarized the fatigue–failure process of BMGs under a 

tensile-stress state and as illustrated in Figure 2-7. At the first step, the shear band(s) will 



 

 

20

form when a BMG is cyclically deformed as shown in Figure 2-7(a). Consequently, in the 

shear band, voids can develop during deformation due to the free-volume coalescence 

[Figure 2-7 (b)]. The growth and linkage of voids will be assisted by a tensile-stress state, 

perhaps leading to a large stress concentration near these voids. Then, followed by the 

initiation of fatigue crack from these voids. The crack-initiation is attributed to the resultant 

stress concentration [Figure 2-7 (c)]. If the sample continues undergoing a cyclic-tensile 

load, the fatigue crack will open and grow. A small plastic zone will form at the crack tip, 

and this plastic zone can blunt the main crack tip. Meanwhile, multiple shear bands or crack 

branches could and will develop near the crack tip [Figure 2-7 (d)]. This crack-branching 

phenomenon was observed by Flores et al. [48] when they studied the crack-growth 

behavior of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 BMG. Hence, the fatigue crack will propagate 

along another favorable direction, as illustrated in Figure 2-7 (e). The process of blunting 

and resharpening of the crack tip will form the striated crack-propagation region when the 

fatigue experiments of BMG samples are conducted under a tensile-stress state [Figure 2-7 

(f)]. In case that BMGs include inclusions and porosities, a crack will initiate from these 

casting defects easily. The fatigue crack will propagate following the process of blunting 

and re-sharpening. 

As for the fatigue process under compression–compression, Wang et al. [47] 

suggest the fatigue-fracture surface is similar to that observed in the monotonic 

compression test, which forms by the unstable fracture along a primary shear band [49]. 

There are no fatigue striations observed on the fractured surface after the compression–

compression fatigue according to the studies in [49, 50]. This trend implies that the 
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mechanism of the fatigue facture under the compression–compression stress seems to be 

similar to that under a compression-stress state. The free volume in a shear band is expected 

to increase during the deformation of BMGs. Any free volume created in a shear band 

during the deformation is highly unstable and tends to form nanometer-scale voids [51]. 

Since a compressive stress will retard the void growth and linkage, the fatigue crack is 

difficult to originate under a compressive-stress state. However, the formation of voids will 

decrease the density of the material and its resistance to deformation in the shear band. 

After several compression-compression fatigue cycles, one primary shear band gradually 

becomes weak and cannot sustain the compressive stress. Finally, the BMG sample fails 

along one primary shear band, which forms a shear-fracture angle with respect to the stress 

axis. This fact could also explain why the fatigue lifetime under a compression-

compression cyclic loading was longer than that under a tension-tension cyclic loading. 

With a tensile-stress state, the growth of voids would be promoted by the tensile stress 

while a compressive stress state would retard the void growth. 
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Figure 2-7 Proposed mechanisms of fatigue-crack initiation and propagation under a 

tension stress state.[47] 
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2.2 Ni-based superalloys 

2.2.1 Fatigue damage mechanisms in crystalline materials  

A general way of categorize the fatigue life of a crystalline material can be given 

as 

்ܰ ൌ ௜ܰ ൅ ௣ܰ ( 2-6 ) 

where ௜ܰ is the number of cycles to 'initiation' of a crack-like defect and ௣ܰ is the number 

of cycles of propagation to critical dimension[52]. Classically, ௣ܰ can be described nicely 

using linear-elastic fracture mechanics (LEFM). The initiation life ௜ܰ is estimated using 

various approaches ranging from local stress-life approaches for high-cycle fatigue (HCF) 

to the Coffin-Manson equation for low-cycle fatigue (LCF), or combined approaches, such 

as the local strain-life equation, which combine these two over the full range of lives. The 

number of cycles to crack initiation typically relates to the formation of small cracks on 

the order of 0.5 mm to 2 mm in length. Such flaws are detectable. The label 'initiation life' 

is somewhat misleading since it includes processes of nucleation as well as the propagation 

of small cracks, alternatively termed as microcracks. In design for damage tolerance, the 

presence of an initial defect is assumed, and inspection intervals are set according to the 

application of propagation mechanics. Crack initiation mechanics do not provide much 

help in predicting the crack. This is a viable approach in structures where flaws can be 

monitored in critical locations, and where crack growth conforms to a well-established 

propagation law. In contrast, the initiation and growth of small cracks in reciprocating or 

rotary machinery subjected to HCF loading conditions may not be evident for the great 
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majority of total life, and in many cases the ௜ܰ term is dominant. The propagation behavior 

of small cracks during the 'initiation' phase is unfortunately not as well-characterized as 

that of long cracks. 

 A characteristic feature of HCF is the high degree of heterogeneity of local cyclic 

slip processes[53]. Microcrack distribution is also highly heterogeneous in homogenous 

macroscopic cyclic deformation states, the cyclic plastic slip processes are highly 

heterogeneously distributed among grains and surface crack density is sparse. There may 

also be an early transition to Stage II behavior, characterized by propagation normal to the 

direction of the maximum principal stress range. Persistent slip band (PSB) spacing and 

spacing of nucleated small cracks decreases with increasing strain amplitude. Typically, 

only a single dominant flaw ultimately propagates to failure in HCF and the crack density 

is relatively low in smooth specimens compared to the LCF case. There is a corresponding 

increase of scatter of fatigue strength under HCF conditions linked to this increasing 

heterogeneity. 

Fatigue crack nucleation and growth occurs along a progression of length scales 

ranging from the order of 1 ݉ߤ to the scale of individual grains, to long crack behavior 

where the scale of individual grains (50 ݉ߤ 100- ݉ߤ) is small compared to the crack length 

and the characteristic length scale for crack tip damage or the cyclic plastic zone, as 

illustrated in Figure 2-8. Each of these three scales corresponds to distinct mechanics 

treatments. Although implicitly embedded in the classical categorization of fatigue life, the 

identification of appropriate mechanics approaches for the lower scales and modeling of 

the transition from one dominant scale to the next are still not clear. 
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Stage I crystallographic (shear-dominated) microcrack growth is typically observed 

to transition to the Stage II growth regime for crack lengths on the order of 1 to 4 grain 

diameters. Figure 2-9[54] shows typical crack paths and crack length relative to grain size 

for uniaxial loading. High slip mobility on numerous systems promotes shear decohesion 

on conjugate slip planes at the crack tip, limiting Stage I coplanar growth and facilitating 

Stage II growth[54]. This transition depends on stress amplitude and stress state, and its 

conditions are not yet fully quantified. Propagation of long cracks in initially isotropic 

poly-crystals almost always exhibits Stage II growth, corresponding to mode I dominance. 

Because of the distinction of the various length scales and associated mechanics 

approaches that are necessary, it is essential to define small or short cracks relative to long 

cracks. The behavior of long cracks may be predicted fairly well using conventional LEFM 

in most cases, whereas different approaches must be applied to sufficiently small or short 

cracks. Physically small cracks are those less than 1-2 mm in length. Below this, the notion 

of 'smallness' is governed by the ratio of crack size to microstructure (crack length < grain 

size). The microstructurally small or short cracks can be considered as the crack length is 

on the order of periodic microstructure, typically grain size. In some cases, colonies or 

packets of second phase in dual phase microstructures may define this length scale; in dual 

phase microstructures, influence of microstructure may persist up to crack lengths an order 

of magnitude longer than the characteristic grain sizes or mean second phase spacing. As 

distinguished from short cracks, microstructurally small cracks are those in which the crack 

length is on the order of microstructure in all dimensions. Microstructurally short cracks 

are those for which one dimension is on a scale much larger than the repeating 
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microstructure, but with length on the order of microstructure in the propagation direction. 

In both cases there is ample evidence to suggest that crack-microstructure interactions 

influence crack growth significantly, with stress state and amplitude also affecting such 

interactions. Mechanically small cracks are those which are physically small but no longer 

exhibit significant dependence on microstructure; the crack length for this transition to 

relative insensitivity is often on the order of 3-10 grain diameters. Mechanically small 

cracks may be correlated with long crack data using conventional fracture mechanics 

parameters that account for bulk plasticity and crack closure effects. [53] 

 To understand the behavior of small cracks in fatigue, one must consider the 

microstructure at grain level. A microstructure-sensitive fatigue model is required to 

predict the fatigue crack behavior at early stage of fatigue life. Dunne et al.[55, 56] studied 

low-cycle fatigue of polycrystalline Ni-based superalloy and confirmed that fatigue crack 

initiation is closely related to the cumulative plastic strain in the material. Grain 

morphology and orientation of their specimen were determined using EBSD, and 

polycrystal plasticity analyses carried out for the characterized microstructure with, in 

principle, identical conditions to the experiments. At the length scale of individual grains, 

fatigue crack nucleation and growth depends crucially on microstructure features such as 

grain boundaries, triple points, crystallographic orientation, and inclusions. It was found 

that crack nucleation occurred at free surface locations where localized slip banding was 

predicted to develop by the crystal plasticity analyses. Work by Manonukul and Dunne 

[56] on a similar polycrystalline material also adopted the accumulated plastic strain as key 
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fatigue damage parameter and their model captured the sites for fatigue crack formation in 

both HCF and LCF regimes as illustrated in Figure 2-10. 

In their test[56], the free surface of the bend test sample was subject to a state of 

plane stress. The accumulated plastic strain distribution under these circumstances was also 

modeled and the results and comparisons with experimentally observed cracking are shown 

in Figure 2-10. The model test sample was subjected, in principle, to loading conditions 

identical to those in the experiments. The resulting free-surface cracking observed in the 

experiment is shown in Figure 2-10 (a), and the predicted distribution of accumulated 

plastic strain after one cycle of cyclic plasticity is shown in Figure 2-10 (b). Bands of 

intense slip are predicted to develop, emanating from the sample free surface at three 

particular locations. 

 Grain boundary regions seem to correlate with the development of the highest 

levels of plastic slip. Comparison of the simulated bands of slip localization with the 

experimentally observed sites of crack nucleation in Figure 2-10(b) on the free surface 

shows that the cracks which are observed to nucleate and grow lie within the predicted 

bands. The orientations of the propagating cracks also match those of the predicted slip 

patterns. However, crack formation was not observed experimentally in the left-most 

predicted slip band. Overall, the results indicate the importance of slip localization as 

reflected by a continuum measure of cumulative plastic strain on fatigue crack formation. 
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Figure 2-8 Progression of length scales in fatigue: (a) nucleation at PSBs or pre-existing 

defects, (b) crack length on the order of microstructure, and (c) long crack behavior.[53] 
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Figure 2-9 Stage I (shear) and Stage II (tensile) transition for uniaxial cyclic loading [54]. 
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Figure 2-10 (a) Experimentally observed crack formation and early and growth under plane 

stress conditions and (b) the predicted site of fatigue crack formation and orientation based 

on the accumulated plastic strain. [56] 
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2.2.2 Fatigue-crack initiation behavior 

It is generally agreed that the persistent slip bands (PSBs) are major nucleation sites 

for cracks in metals and alloys of high purity. The PSBs are thin lamellae where the plastic 

deformation is mainly concentrated during fatigue cycling. The plastic strain in the PSB 

lamellae is at least an order of magnitude higher than that in the matrix [57]. The cracks 

tend to form at the deep narrow intrusion, and the interface between the PSB and matrix, 

which is a plane of discontinuity and across which there are steep gradients in the density 

and distribution of dislocations. As schematically shown in Figure 2-11[58], the formation 

of PSBs leads to surface roughening, which is manifested as microscopic hills and valleys, 

commonly referred to as extrusions and intrusions. The intrusions function as 

micronotches, and the effect of the stress concentration at the root of the intrusions 

promotes the additional slip and fatigue-crack nucleation. 

There is a wealth of experimental evidences indicating that the test environment 

plays important roles in fatigue-crack initiation. Gough et al. [59] and Wadsworth et 

al.[60], demonstrated that the fatigue life was markedly improved in dry, oxygen-free 

environment, as compared to the moist laboratory air. A well-accepted model is illustrated 

in Figure 2-12. When slip steps form during the tensile portion of a fatigue cycle in the 

laboratory air (or other chemically aggressivemedia), the oxygen (or other species) is 

absorbed on the freshly created slip steps to form an oxide layer (or other reaction 

products). Part of the oxide layer is drawn into the body of the crystal in the compression 

part of the cycle. This process is repeated, and more oxides are pushed into the matrix along 

the slip band, weakening the PSBs of the crystal and eventually leading to cracking. Cracks 
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can also be initiated at grain boundaries in embrittling environments (which preferentially 

attack grain boundaries or the particles on them) and at high temperatures (at which grain-

boundary cavitation and sliding could occur). 

The crack initiation in crystalline engineering alloys is very complicated. It could 

happen at voids, slag or gas entrapments, inclusions, dents, scratches, forging laps and 

folds, macroscopic stress concentrations, as well as regions of microstructural and chemical 

non-uniformities. In metals and alloys of high purity, cracks usually initiate at the free 

surface. In commercial alloys, it is common to see fatigue cracks nucleate at both near-

surface and interior locations. The exact initiation sites are often specific to the alloy system 

considered. In high-strength Ni-base superalloys, for example, cracks have been found to 

initiate near the large defects, either pores or nonmetallic inclusions [61]. At ambient 

temperature, the fatigue cracks initiate at defects near the surface for both the low and high 

strain ranges applied. At high temperatures, cracks nucleate at the interior of the specimen 

when low-strain ranges are applied. However, when the high-strain ranges are applied, 

surface-crack nucleation is dominant. One of the objectives of this study is to correlate the 

microstructural changes to the fatigue life at the fatigue-crack-initiation stage by 

synchrotron X-ray scattering related techniques. 
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Figure 2-11 Schematic shows the roughening of surfaces due to the formation of persistent 

slip bands (PSBs).[58] 
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Figure 2-12 A model for fatigue crack initiation near a free surface by the synergistic effect 

of single slip and environmental interactions.[60] 
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2.3 Scientific issues and objectives 

For the studies of fatigue behavior of BMGs, most research focus on the stress-life 

behavior of the material, and the actual structure changes in atomic scale due to cyclic 

loading are not fully addressed. Thorough the literature survey, the scientific issues are 

identified as follow. 

1. Due to the structural features in BMGs (lack of grain-boundaries and dislocations), 

how does the atomic structure of BMGs change under mechanical deformation? 

2. How does cyclic loading affect the structure of BMGs on an atomic scale? 

3. Does cyclic loading cause the globalized fatigue damage to BMGs or is the fatigue 

damage localized? Can the fatigue-endurance limit of BMGs be improved? 

4. Is there a fatigue-damage parameter present in the Ni-based superalloy that can be 

probed by nondestructive techniques? 

The present research will focus on using experimental methods to address those issues. The 

overall objective of the research is to study the fatigue damage of both amorphous and 

crystalline alloys at the “initiation” stage of fatigue life by x-ray scattering techniques as 

illustrated in Figure 2-13. The results will provide a mechanistic understanding of fatigue 

damage in BMGs, and find a fatigue-damage parameters to better predict the fatigue life 

of Ni-based alloys. 

A wide range of issues regarding fatigue crack initiation, fatigue damage 

mechanism in amorphous and polycrystalline engineering alloys, and how these fatigue-

induced structural changes can be assessed by x-ray scattering techniques will also be 

addressed in the later chapters. That will include (1) Providing mechanistic understanding 
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of the elastic deformation in amorphous metallic materials at atomic scale, (2) Studying 

the effect of cyclic loading on the structure of BMGs. (3) Understanding the fatigue failure 

mechanism of BMGs. (4) Understanding of the grain-level stress/strain distribution around 

fatigue-crack initiation sites of an engineering alloy. (5) Developing an advanced, non-

destructive characterization method to evaluate the fatigue damage of an in-service alloy.  
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Figure 2-13 Illustration of the overview of the present research. 
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3 CHAPTER III 

MATERIALS AND EXPERIMETNAL PROCEDURES 

 

3.1 Fabrication of BMGs 

There are many ways as shown in Figure 3-1 to make glassy alloys. From gaseous 

phase, one could use vapor deposition methods to make amorphous thin film. From liquid 

phase, rapid solidification techniques are the major way to fabricate amorphous alloy. Even 

when an alloy is crystallized in solid form, one can still use techniques like ion-

implantation and mechanical alloying to turn it into amorphous alloy. Nevertheless, ion-

implantation, mechanical alloying, vapor deposition can only make amorphous alloy in the 

forms of ribbon, thin film or powders. The only way to fabricate bulk metallic glasses today 

is rapid solidification of molten liquid.   

BMGs are multicomponent alloy which could freeze without crystallization during 

solidification. Since it is in metastable state, the fabrication of BMGs has imposed a barrier 

to broad commercial adoption, particularly where the processing requirements of these 

alloys conflict with conventional metal processing methods. The fabrication of BMGs 

requires extra care. 

The first thing to be considered in making BMGs is the cooling rate. In order to 

facilitate sluggish crystallization kinetics of an alloy during processing from the melt, a 

condition that enables the retention of the amorphous (liquid) structure, the molten alloy 

must be quenched relatively quickly, otherwise crystallization will occur when the cooling 
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or heating path intersects with the crystallization curve of the Time-Temperature-

Transformation (TTT) diagram (Figure 3-2). In Figure 3-2, Blue curves represent the start-

crystalline-transformation of conventional crystalline alloy, conventional metallic glass, 

and bulk metallic glasses. Olive green curve represents the complete-crystalline-

transformation. These curves tell the volume fraction transformed if held at a particular 

temperature. The solid arrow (path-1) and dash arrow (path-2) show the different cooling 

rate. The majority of alloys will crystallize upon solidification. Conventional metallic glass 

can be made with extremely high cooling rate, but in the form of ribbons. A special 

combination of metallic elements, we called BMG formers, can have their TTT curve 

moved rightward, and open the possibility of making them into large-size metallic glass 

(mm to cm in its smallest dimension). In order to obtain amorphous alloy, the cooling path 

of the molten liquid should follow the path-1 indicated in Figure 3-2 to be lowered below 

Tg. The required cooling rate is typically larger than 102 K/Sec.  

The second is the environment of the processing chamber. Impurities, especially 

oxygen, have detrimental effect on the glass forming ability of BMG former. A few 

hundred a-ppm of oxygen is found to destabilize the amorphous structure and cause 

decalescence during cooling from the molten liquid state [62]. 

Direct casting, and thermal-plastic forming are two common ways in practice to 

fabricate BMGs. Direct casting methods such as die casting, suction casting have been used 

as BMG net-shape fabrication. The formation of amorphous structure and the forming of 

the alloy into its final shape are made in a single step. It is usually done by pouring the 

molten alloy directly into the cooled mold, which is made by materials, usually metal, with 
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good thermal conductivity. While in thermal-plastic forming method, the forming and 

cooling to render the amorphous state during solidification are decoupled. Due to the 

simplicity of the processing procedure, equipment and the cost consideration, direct casting 

method was selected to fabricate BMG in this thesis. 

Because of the complexity of the fabrication process, and the variety of chemical 

systems, mass production of BMG has not been commercialized yet. In the current study, 

all of the specimens were made in laboratory by a machine that composed of an 

environmental controlled arc-melting chamber and a suction casting apparatus. The 

machine has the ability to make the ingot, and cast the BMG in one step (without venting 

the chamber) and quickly change the mold to make specimen with various dimensions. A 

more detailed description of the machine can be found elsewhere [63]. The master ingot of 

the alloy was prepared by arc-melting the mixture of high-purity transition metals, Zr (> 

99.95 % mass fraction), Cu (99.99 %), Ni (99.995 %), Al (99.9995 %), and Ti (99.995 %), 

in a water-cooled copper crucible under an argon atmosphere. The ingot was re-melted 

several times (> 4) before being ejected into a water-cooled copper mold to produce the 

desired shape. The as-cast ingot is shown in Figure 3-3(a). A mirror-like surface is a good 

indication of high quality glass. If the chamber contains high level of unwanted elements, 

such as oxygen or nitrogen, the ingot will be colored (turn yellow and gold for excess 

nitrogen, turn gray, black, blue, or green for excess oxygen), and the specimen made by 

these kind of ingot will not be in pure amorphous form.  

6 mm in diameter rods, and 50 mm x 15 mm x 2 mm plates are made using the same 

procedure. Plate samples (2mm thick) with composition of Zr52.5Cu17.9Ni14.6Al10Ti5 were 
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used to study the deformation behavior of BMG under monotonic tensile stress. Rod 

samples (6mm in diamter) with composiiton of (Zr55Cu30Ni5Al10)98Er2 were used to study 

the effect of fatigue on the sturcutre and mechanical properties of BMG.  

All of the specimens used in the experiments were examined by high-energy X-ray 

diffraction (XRD) in transmission geometry and differential-scanning calorimetry (DSC) 

prior to any tests to ensure that the specimens were in a fully amorphous state. All 

specimens showed a lack of sharp diffraction peaks by XRD and a distinct, reproducible 

glass transition point by DSC. 
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Figure 3-1 Techniques used to make amorphous alloys. 
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Figure 3-2 Schematic Illustration of a TTT diagram. Blue curves represent the start-

transformation of conventional crystalline alloy, conventional metallic glass, and bulk 

metallic glasses. Olive green curve represents the completed transformation. These curves 

tell the volume fraction transformed if held at a particular temperature. The solid arrow 

(path-1) and dash arrow (path-2) show the different cooling rate. The majority of alloys 

will crystallize upon solidification. Conventional metallic glass can be made with 

extremely high cooling rate, but in the form of ribbons. A special combination of metallic 

elements can have their TTT curve moved rightward, and open the possibility of making 

them into glass, and making them in bulk form (mm to cm in its smallest dimension). 
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Figure 3-3 (a) the as-cast ingot of Zr55Cu30Ni5Al10. The mirror-like surface suggests it’s in 

amorphous form. [Courtesy of Dr. Lu Huang] (b) An as-cast 5mm in diameter, cylindrical 

rod. The composition is Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit-105), one of the best glass formers.
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3.2 Fatigue experiments of BMGs 

A computer-controlled material test system (MTS, Model-810) was used for fatigue 

studies. Samples were tested under a load-control mode at a fixed stress range of 720 MPa, 

a load ratio [R, the minimum stress (min.) divided by the maximum stress (max.)] equal to 

10 (i.e., R = 10, max. = - 80 MPa, and min. = - 800 MPa), and a frequency of 2 Hz using a 

sinusoidal waveform. The stress level was selected, based on the regular fatigue test of the 

same material with the same diameter under similar testing conditions (10 Hz, a fixed L/D 

ratio of 1.67, where L is the length of the specimen, and D is the diameter of the specimen). 

At this stress range, the fatigue life is around ~ 8 x 105 cycles. During fatigue experiments, 

peak and valley load values for individual cycles were intermittently recorded for 

verification. The test was ended when the sample was fractured. Then the sample was 

collected for visual inspections. The fractured part was cut by EDM for detailed surface 

characterization. The fracture-surface morphology was examined by a Leo-2010F high-

resolution scanning-electron microscope (SEM). The undamaged part after cutting out the 

fracture surface was preserved for the 2nd-round fatigue experiment using the same testing 

conditions. The sample for the 2nd-run fatigue has smaller L/D ratios since the length is 

shorter. The same procedure was repeated until the L/D ratio of the left-over was less than 

0.8.  

The fatigue tests of each run were recorded for analyses. The schematic diagram of 

the above experimental plan is shown in Figure 3-4. Note that cutting of the damaged parts 

was purely determined by visual inspection. It is possible that there are hidden cracks inside 

the sample. These pre-existing cracks will certainly have a strong impact on the fatigue life 
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during the 2nd test. Two out of six samples failed within few cycles of the second tests. 

These samples were excluded from our analysis, since they most likely had pre-existing 

cracks from the first test. 

The schematic diagram of the experiment is shown in Figure 3-4. The experiment is 

a series of constant-load compression-compression fatigue tests. For the first run, denoted 

as the 1st run, an as-cast BMG specimen is used. The repeated loading/unloading fatigue 

process continues until the specimen fails. Then, the broken/damaged region is removed, 

as illustrated in the figure, and the left-over is used for the 2nd-run test. The experimental 

condition of the 2nd-run is identical to the 1st-run test, except that the sample is shorter, 

since the fractured region was removed. The series of tests was continued until the L/D 

ratio of the left-over was less than 0.8. Jiang et al. [64] studied the effect of sample 

geometry on the deformation behavior of Zr-based BMGs under compression tests. They 

confirmed that as long as the L/D ratio is larger than 0.75, it will not affect the fracture 

mode and mechanism of BMGs under compression. Therefore, we only used samples with 

L/D larger than 0.8 for continuing the fatigue experiments. 

Comparing the fatigue life of each run helps clarifying mechanisms of fatigue 

damage of BMGs.  If the fatigue life of the 2nd-run test is longer than the 1st-run test, then 

the fatigue test produces only localized damage to the specimen. Once the crack is initiated, 

the damage is mainly accumulated around the existing crack, while the remaining part of 

the sample still undergoes elastic deformation. After the damaged region is removed, the 

rest of the sample is just like the as-cast sample but with fewer defects, since the weakest 

point of defects in the specimen has been screened out by the 1st-run fatigue test. Hence, 
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the next fatigue test will show a longer fatigue life than the first one. On the other hand, if 

the 1st-run test had the longer fatigue life than the 2nd-run test, cyclic loading produces 

globalized damage to the specimen. The crack will initiate more easily on the fatigued 

specimen. Therefore, the fatigue life will be shorter. In the present study, we found that the 

2nd-run test has a similar or longer fatigue life than the 1nd-run test. Thus, the fatigue life of 

a large diameter specimen under a compressive stress could be controlled by the number 

of pre-existing crack-initiation sites (defects) in the specimen. 
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Figure 3-4 A schematic diagram of the experimental design. The as-cast sample undergoes 

compression-compression fatigue until it fails. Then, the damaged part is cut off, and the 

left-over is used for the next fatigue test as long as the rest part has an L/D ratio greater 

than 0.8. 
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3.3 Surface and Fracture Morphology 

Surface and fracture morphology of the samples were examined first by optic 

microscopy (OM) and were examined by a LEO 1526 scanning electron microscopy 

(SEM) with the energy-dispersive spectroscopy (EDS). The specimens were ultrasonic-

cleaned in acetone for 5 mins and air-dried before the examination.  

 

3.4 Pair-Distribution-Function (PDF) analysis 

3.4.1 Theory 

The atomic PDF, ( )G r , is defined as 

0( ) 4 [ ( ) ]G r r r     ( 3-1 ) 

where r is the radial distance, 0  is the average atomic number density, and ( )r  is the 

atomic pair-density function (PDF), defined as, 

0 2

1
( ) ( ) ( )

4
r g r r r

Nr 
 

  


     ( 3-2 ) 

where   is a Dirac delta function. The function ( )g r  is called the atomic pair distribution 

function (PDF). The function ( )G r gives information about the number of atoms in a 

spherical shell of unit thickness at a distance r from a reference atom. It shows peaks at 

characteristic distances, r r r    , separating pairs of atoms (th and th atoms). The 

sums are taken over all the atoms in the sample, and the resulting curve is a histogram of 

all the atom-atom distances in the solid. In practice, there are so many atoms in the material 
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that ( )r becomes a quasi-continuous distribution function. Figure 3-5 shows a typical 

PDF of an amorphous metallic alloy. The composition of the BMG is (LaCe)65Co25Al10. 

The atomic pair density function, ( )r , of the specimen was measured by high energy X-

ray scattering at ID-11-C, Advanced Photon Source, Argonne National Laboratory. It 

shows the generic behavior of an amorphous material. At low-r, the data diminish to zero 

below a certain value because two atoms cannot come too close to each other. At high-r, 

PDF curve oscillate around 0 0.038  (1/Å-3) and gradually converge to 0 in which 

equivalent to g(r) = 1. In between the PDF oscillates showing atomic correlations 

(deviations from the average number density). There is a large peak at the average atomic 

separation of 3.6 Å, representing the nearest neighbors, followed by oscillations due to 

short-range-order. These oscillations, which is referred to as “correlations”, show useful 

local structural information regarding the local environment of atoms, such as how many 

neighbors there are and how far away they are. Although the PDF is only the one-

dimensional projection of the three-dimensional atomic structure, it is possible to recreate 

the three-dimensional structure with a relatively high degree of confidence by creating a 

three-dimensional model who’s PDF agrees with the experimental PDF. 

Now we have the PDF function, but how can we obtain this function through 

experiment? It happened that the microscopic real-space density of a material is simply 

given by a Fourier transform of the scattering amplitude, ( )Q . Similarly, the Fourier 

transform of the scattered intensity, in the form of the structure function ( )S Q , yields the 

atomic pair distribution function, g(r), defined by Equation 0( ) 4 [ ( ) ]G r r r     ( 3-1 ). 
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0 0
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The structure function is related to the coherent part of the total diffracted intensity 

of the material. 
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where ( )cohI Q is the measured scattering intensity from a powder sample that has been 

properly corrected for background and other experimental effects and normalized by the 

flux and number of atoms in the sample. Here, ic  and if  are the atomic concentration and 

X-ray atomic form factor, respectively, for the atomic species of type i . This relation is 

extremely useful and important because that ( )S Q is a directly measurable quantity and 

g(r) is a quantity of profound physical importance; the crystal structure can be determined 

from it. Since 0 ( )g r  is a representation of the microscopic atomic pair density, this 

relationship allows us to directly measure the relative positions of atoms in a solid. A 

straightforward numerical Fourier transform of our measured scattering intensity, ( )S Q , 

can be carried out in a computer according to Equation 2.7 to yield g(r), the pair-

distribution function. 

In single crystal scattering studies, the Bragg peak intensities are sometimes Fourier 

transformed. This results in a periodic real-space pair-correlation function known as the 

“crystallographic Patterson function” [65]. The PDF is related to the Patterson function. 

Usually, only the Bragg peaks are used in calculating the Patterson function which 



 

 

52

therefore has the periodicity of the lattice. Both the Bragg peaks and diffuse intensity are 

included in obtaining the PDF. Thus the PDF does not necessarily have the lattice 

periodicity, and will be able to describe the deviations from lattice periodicity. One may 

also say that the PDF defined by Equation 2.7 is a spherically averaged generalized 

Patterson function. 

The inverse transformation of Equation 3-1 can be defined and it yields the structure 

function S(Q) in terms of G(r). 

0

1
( ) 1 ( ) ( )S Q G r Sin Qr dr

Q


    ( 3-5 ) 

The experiments to obtain S(Q) and further PDF are straightforward X-ray and 

neutron powder diffraction measurements. They are typically carried out at synchrotron X-

ray sources and pulsed neutron sources, rather than on laboratory sources, because it is 

important to measure data over a wide range of momentum transfer, Q, for high accuracy 

and adequate real-space resolution of the PDF peaks. Since Q is equal to 4 sin /    (for 

elastic scattering), and the Q range of > 25 Å-1 are desirable, this suggest that short-

wavelength, high energy, X-rays or neutrons are required. Based on the requirement (Q > 

25 Å-1), the X-ray energy of > 25 keV (= 0.496 Å) is required, but considering the 

geometry of the experimental setup and the X-ray penetration power, energies of 70 keV 

(= 0.177 Å) to 120 keV (= 0.103 Å) are typically used. Data from laboratory sources 

with Mo as target can give acceptable results, but working at a synchrotron or spallation 

neutron source is always to be preferred for the highest resolution measurements. 
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Figure 3-5 The atomic pair density function, ( )r , of a bulk metallic glass 

(LaCe)65Co25Al10 measured by high energy X-ray scattering at ID-11-C, Advanced Photon 

Source, Argonne National Laboratory. It shows the generic behavior of an amorphous 

material. The data diminish to zero at low-r and to 0 0.038  (1/Å-3) at high-r equivalent 

to g(r) = 1. In between the PDF oscillates showing atomic correlations (deviations from the 

average number density). For example, a greater probability of finding an atom at the hard-

sphere separation distance of 3.6 Å, followed by a less than average probability of finding 

a neighbor between the first and second neighbor shell at 6 Å. 
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3.4.2 Ex-situ high-energy synchrotron X-ray scattering experiments 

The structures of the as-cast and fatigued specimens were characterized by the 

HEXRD [Figure 3-6(a)]. The experiment was conducted at the 1-ID-C beam-line of the 

Advanced Photon Source (APS), Argonne National Laboratory. The samples were cut into 

a 1-mm-thick plate with the plane normal to the loading direction, as shown in Figure 3-6 

(b), and were examined using 100 keV (with a wavelength, avg = 0.12398 Å) radiation in 

a transmission geometry. The intensity of the scattered X-rays was collected by a MAR345 

image plate. The experimental geometry is illustrated in Figure 3-6 (a). The final beam size 

was 0.025 x 0.1 mm. The data were processed and converted into tables of the scattering 

intensity versus scattering angle, employing the FIT2D software [27]. 

To further examine the effect of cyclic loading on the short-range atomic structure, 

the pair-distribution function (PDF) analysis was performed. The measured scattering 

intensity, I(Q), was integrated over the azimuthal direction, and corrected for the 

polarization effect, fluorescence background, absorption, inelastic scattering, and the 

scattering from the air and container using the methods described in [66] to obtain the 

structure function, S(Q). The corresponding pair-distribution function, G(r), was obtained 

by the Fourier transformation of the S(Q), where S(Q) is the structure factor. 

The failed specimen was sliced vertically along the loading axis, as shown in Figure 

3-6 (c), and the structure characterization was performed along the loading direction. This 

geometry allows us to characterize the anisotropy term of the specimen under cyclic 

compression. In addition, the microstructures of the regions near and away from the 

fracture plane can be compared.  
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Figure 3-6 . (a) A schematic diagram of the high-energy synchrotron X-ray experiment at 

the 1-ID-C beam line of the Advanced Photon Source (APS), Argonne National 

Laboratory. The energy of the incident beam is 100 keV with a beam size of 0.025 x 0.1 

mm2. (b) Sample geometry-1 for HEXRD measurements. A 1-mm-thin plate is sliced from 

the rod with the plate normal parallel to the loading direction. (Red arrows indicate the 

loading direction.) (c) Sample geometry-2 for HEXRD measurements. The specimen was 

sliced into a 0.5-mm-thick plate. The scattering intensity is collected in a transmission 

mode. Note that the beam size in the vertical direction is only 0.025 mm.  
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3.4.3 In-situ high-energy synchrotron X-ray scattering experiments 

The in-situ x-ray diffraction measurements were carried out at the 1-ID/XOR beam 

line of the Advanced Photon Source, Argonne National Laboratory. The incident energy 

was tuned to 120 keV ( = 0.10332 Å). The beam size was 0.2 mm x 0.2 mm. The MAR345 

area detector was placed 40 cm behind the sample to collect the diffracted x rays. The 

maximum Q value that can be probed for this setup is 24.6 Å-1. The samples used were Vit-

105 metallic glasses with the composition of Zr52.5Cu17.9Ni14.6Al10Ti5. Samples were 

prepared by suction casting method with an arc-melter described in Section 2.1. The 

samples were cut by electric discharge machining (EDM) into dog-bone shapes, with the 

gauge area being 9.5 mm long as shown in Figure 3-7.  The samples were polished to the 

final thickness of 0.67 mm and the width of 2 mm. The sample was placed in a tensile grip 

in a MTS load frame Model 858. Sample grips were encircled in an infrared heater with a 

front opening of ±30 degrees. The design of the heater permitted unobstructed scattering 

from the sample. The external stress was varied from 0 to 1.2 GPa with a 0.2 step. After 

reaching 1.2 GPa the temperature was increased to 300 °C and held for 30 min to induce 

creep deformation. After 30 min the sample reached the steady state rate. Then the sample 

was cooled and after reaching room temperature the external load was removed. The detail 

loading and heating procedure is shown in Figure 3-8. The elongation after reaching room 

temperature was 2%. At each step x-ray scattering was collected for approximately 1 h. 

For each measurement step frames were summed and the background due to dark current 

was subtracted. Data were then normalized by the incident beam monitor, and the 

expansion into spherical harmonics The g(r) were obtained by Fourier-transforming S(Q) 
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where 0 is the number density of atoms, with Q either parallel or perpendicular to the 

stress axis. 

However, the above equation is only valid for when the material is isotropic. For 

anisotropy bodies, such as BMG under an applied stress, the structure function as well as 

PDF need to expand by the spherical harmonics, ( )m
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which are connect through spherical Bessel transformation 
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where J(x) is the spherical Bessel function. Note that only for the isotropic component (

0l  ), 0

sin
( )

x
J x

x
  and Eq 2.10 is recovered. For axial symmetry, 1,3,5,...l  and 0m 

terms become zero, only the terms with 2,4,6,...l   and 0m    have to be evaluated. The 

following normalization condition is used for the spherical harmonics 

'
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where sind d d    , and  are standard polar angles. For axial symmetry, m=0 and 

 defines angle between Q and the stress axis.  If only the =2 term is considered, the 
S(Q) can be expressed as  

0 0 0 0
0 0 2 2

0 2 0
0 2

( , ) ( , ) ( ) ( , ) ( )
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S Q Y S Q Y S Q

S Q S Q
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Since 0
0 1Y   and 0 2

2

5
(3cos 1)

4
Y   . The  0

2g r  is then obtained by the transformation 

of the  0
2S Q  where 

2 2 2

3 sin 3cos
( ) ( 1)

x x
J x

x x x
    ( 3-12 ) 

and x Q r  . Because of symmetry all terms of  mS Q  with  = odd are zero. 
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Figure 3-7 Sample dimension for the in-situ tension experiment. 
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Figure 3-8 Schematic diagram of the experimental procedure. 
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3.5 Ni-based superalloy 

The material used in the present study is a Ni-based superalloy developed by GE. It 

was developed to be more damage tolerant than Rene’ 95. Hence the designation, while 

offering improved creep strength and fatigue crack growth resistance. The chemical 

composition of the material is listed in Table 3-1. The production allov is always processed 

through the powder metallurgy route. The Standard heat treatment consists of: a-super-

solvus solution of 1.0 hr at 1150°C , followed bv a delayed oil quench, and aging for 8.0 

hr at 760°C. Its main structural characteristics are thus a fine grain size, achieved through 

PM consolidation, and a duplex distribution of γ’, the coarser forming on cooling from the 

super solvus solution, the finer predominantly on aging. The material is used in disk 

applications in advanced General Electric (GE) engines. The microstructure is mainly 

composed of the γ matrix phase (disordered face-centered cubic of Ni-based solid solution) 

and Ni3Al-type γ΄ precipitates (ordered L12 structure which is also a cubic). The cubic 

lattice parameters of  and ΄ are very similar and the X-ray diffraction measurement 

described in this report cannot separate the lattice strain contribution from each phase. As 

the elastic moduli of γ and γ΄ were reported to have very similar values, this treatment 

should not cause concerns. 
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Table 3-1 Composition of Ni-based superalloy (in mass percent). 

Element Ni Co Cr Mo W Al Ti Nb C B Zr Fe 

Mass% balance 13 16 4 4 2.1 3.7 0.7 0.03 0.015 0.03 
Max 

0.5 
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3.6 Fatigue experiment of Ni-based superalloy 

The material used in the present study is a polycrystalline Ni-based superalloy 

developed by GE. The specimens were prepared by electro-discharge-machining (EDM) 

of a plate with a thickness of ¼” to the double-notched dog-bone like plates. The gauge 

area has a dimension of 1” x 0.4” x 0.05” with four notches. The detail geometry is shown 

in Figure 3-9. The EDM was used to minimize the damage in the sample preparation 

process. The raw material has an estimated grain size of 20~50 m and a random initial 

texture. Prior to the fatigue tests, the samples were mechanically polished and cleaned. The 

fatigue tests were performed in atmosphere at elevated temperature, ~400 ˚C, by a 

computer-controlled material testing system (MTS). The tests are in tension-tension mode 

and have a fixed stress range of 1995 lbf, an R-ratio (ߪ௠௜௡/ߪ௠௔௫.ሻ equal to 0.05 (i.e., max. 

= 2100 lb., and min. = 105 lb.), and a frequency of 0.5 Hz using a triangle waveform. Three 

specimens were tests until fail to obtain the expected-fatigue-life of the material at current 

experimental condition. Based on the expected-fatigue-lift, a series of samples were pre-

fatigued to 1%, 10%, 50%, 75% and 100% (broken) of its expected-fatigue-life under the 

same testing condition, and these samples were used for the present study. All of the pre-

fatigued specimens, from 1% to 75% of the expected life, were still intact and had no visible 

macro cracks even under the maximum tensile load (2100 lb). 
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Figure 3-9 (a) Geometry of the double-notched specimen. (b) The picture of a specimen 

after the fatigue test and prior to the X-ray experiment. The specimen remains intact after 

pre-fatigue test. 
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3.7 In-situ lattice strain mapping by high energy synchrotron X-ray 

The X-ray diffraction experiments were performed at 1-ID-C beamline of the 

Advanced Photon Source, Argonne National Laboratory. A high energy monochromatic 

X-ray beam of 70 keV was prepared by monochromator and a series of focusing optics and 

slits.  The beam size on the specimen was 50 x 50 μm, positioned between two notches as 

shown in Figure 3-10. The measurement was in transmission mode, which means that the 

incident beam transmits through the sample and produces Debye rings in the forward 

direction, as illustrated in Figure 3-11. The diffraction pattern was recorded by a 2D 

detector (GE amorphous-Si, with 2048 x 2048 pixels and 0.2 mm pixel-to-pixel distance), 

located 880 mm from the sample. A 15 kN MTS servo-hydraulic load-frame was used to 

provide a peak load force up to 2200 lbf. The sample temperature of 400 ºC was maintained 

by a quartz-lamp IR furnace. For each sample, 2D diffraction patterns were taken as a 

function of load, from 0 lbf to 2100 lbf, with 100 lbf interval and 0.5 second data collection 

time. There were two types of measuring modes (line-scan, and map-scan) utilized in this 

study which cover different region of interests on the specimen. A line-scan, which consists 

of 18 points as shown in green dot in Figure 3-12(a), was used to monitor the evolution of 

lattice strain along notch-notch line. Two map-scans were used to collect the information 

around the notch with coarse-mapping (575 points) covers the entire notch area, and fine-

mapping (316 points) focus only on the notch tip (plastic zone). The grid for coarse and 

fine-mapping were shown in blue and red dots in Figure 3-12 (a), respectively. All of the 

three modes have the measuring grid denser close to the notch, and looser away from the 

notch. The selection of the measuring positions provide the highest spatial resolution while 
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minimizing the data collecting time at different stress level.  The line-scans were performed 

at each load level (100lb in step), and the mapping-scan were conducted at zero (5 lb.), half 

(1050 lb.), and maximum load (2100 lb.). The complete measuring scheme is illustrated in 

Figure 3-12 (b) and (c). A picture of the setup is shown in Figure 3-13. 

The 2D diffraction pattern, as shown in Figure 3-14, consists of multiple diffraction 

rings with different hkl.  The azimuthal angle, is defined as 0° in the transverse direction, 

and as 90° along the loading direction. When the specimen is under a tensile load, the 

lattice spacing along the loading direction will expand, and in the transverse direction will 

contract. As a result, the diffraction ring will undergo an elliptical distortion, and such a 

distortion is the basis for further strain analysis. To facilitate the analysis, the diffraction 

rings were divided along the azimuthal direction into 360 slices (one degree each), and 

each slice can be considered as a 1D diffraction pattern. 

Such 1D patterns were analyzed by Matlab® programs to obtain diffraction peak 

positions by fitting peaks with Voigt function. The lattice spacing for each hkl plane can 

be calculated from Bragg Law, 2݀ sin ߠ ൌ  Figure 3-15, for example, shows the variation .ߣ

of lattice spacing of (3 1 1) as a function of azimuthal angle under three different loads, 0 

lbf, 1000 lbf, and 2100 lbf.  Under zero load, the d-spacing remains constant vs. azimuthal 

angle. With increasing load, the lattice spacing increases along the loading direction ( 

=90° and 270°), but decreases in the transverse direction according to the Poisson’s ratio.  

The lattice strain as a function of  is calculated according to ߝ௛௞௟
థ ൌ

ௗ೓ೖ೗ିௗబ
೓ೖ೗

ௗబ
೓ೖ೗ , where d0

hkl 

can be determined from data collected under zero load. 
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The general formula for calculating –dependent lattice strain using 2D detector is 

given by He 

ଵ݂ଵߝଵଵ ൅ ଵ݂ଶߝଵଶ ൅ ଶ݂ଶߝଶଶ ൅ ଵ݂ଷߝଵଷ ൅ ଶ݂ଷߝଶଷ ൅ ଷ݂ଷߝଷଷ ൌ ௛௞௟ߝ
థ  ( 3-13 ) 

where ߝ௜௝  are strain tensor components, and ௜݂௝  are diffraction geometry related 

coefficients.  As the specimen was under a uniaxial load, we assume a bi-strain model, 

which means 11 = 33, 12 = 23, and 13=0 (see Figure 3-11).  Under the bi-strain model, 

equation 3-13 can be simplified as: 

௛௞௟ߝ
థ ൌ ሺ ଵ݂ଵ ൅ ଷ݂ଷሻߝଵଵ ൅ ሺ ଵ݂ଶ ൅ ଶ݂ଷሻߝଵଶ ൅ ଶ݂ଶߝଶଶ ( 3-14 ) 

where 

 ଵ݂ଵ ൌ sinଶ ߶ cosଶ           ߠ

 ଵ݂ଶ ൌ െsin 2߶ cosଶ           ߠ

 ଶ݂ଶ ൌ cosଶ ߶ cosଶ           ߠ

 ଶ݂ଷ ൌ െ cos߶ sin           ߠ2

 ଷ݂ଷ ൌ sinଶ            ߠ

 is the diffraction peak position at azimuthal angle .   For high-energy diffraction,  is 

small and sin   0 and cos  1, equation (3-14) can be further simplified as: 

௛௞௟ߝ
థ ൎ sinଶ ߶ ଵଵߝ െ sin 2߶ ଵଶߝ ൅ cosଶ ߶  ଶଶ ( 3-15 )ߝ

When 12 is zero (or very small), the observed strain is dominated by the first and 

the third terms, which gives arise the double sinuous curve with minima at  = 90 and 

270 respectively (Figure 3-15).  When the shear strain 12 is not negligible, the sinuous 
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strain curve will be shifted from 90 and 270. In the current experiment, as the local stress 

is along the loading direction, 12 is zero. 

As the material has relatively large grains (20-50 m) and beam size on the sample 

is small (50 x 50 m), the number of grains within the probing volume (0.05 x 0.05 x 1.6 

mm) satisfying the Bragg condition is limited. This is apparent from the “spottiness” of the 

diffraction rings shown in Figure 3-14. The implication to strain analysis is that at a 

particular azimuthal angle, the diffraction peak could be from a single or a few grains, and 

their strains could be skewed locally by inter-granular stress. To rectify the possible local 

deviation from inter-granular stress, the strain values, 11, 22 and 12, were obtained by 

fitting all data points between 0° and 360° in  with a sinuous curve defined by the bi-strain 

model (as shown in Figure 3-16)  

Due to the fact that lattice strains along transverse direction (11) come from 

different sets of grains, other than the diffracted grains along axial direction, the measured 

11 lattice strains for different hkl orientation versus stress were scattered. 
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Figure 3-10 Notched flat-plate specimen used in X-ray diffraction measurement. The plate 

thickness is 0.065” (1.6 mm). The X-ray beam, 0.05 x 0.05 mm in size, was positioned 

between notches, as designated by the red square. The coordinate system for strain 

components is illustrated on the right, in which 22 is along the loading direction. 
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Figure 3-11 Illustration of the synchrotron high-energy X-ray diffraction experiment in 

transmission mode. A high-energy X-ray beam of 70 keV transmits the specimen and 

produces diffraction rings recorded by a 2D detector. 
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Figure 3-12 Illustration of the measuring grid around notch. The origin (0,0) is at the center 

of the notch labeled by point-1. The blue, red and green dots represent three different 

measurement mode, coarse-mapping, fine-mapping, and line scan. The lower cross-circle 

is the center of the whole specimen.  (b) The sequence of the diffraction measurement. 

Each specimen was pulled gradually from 0 to the maximum of 2100 lb. At every 100lb 

from zero to maximum load, line scan was conducted, and at 5lb, 1050lb, 2100lb, both 

coarse-mapping and fine-mapping were measured. (c) A table showing number of 

exposures at each measuring mode. Line-scan was measured along the two notches from 

notch tip to the vertical center line. Two map-scans cover the area near notch with coarse-

mapping covering the entire notch, and fine-mapping covering the plastic zone. In all three 

modes, the grid is denser close to the notch, and looser away from the notch.  
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Figure 3-13 The experimental setup at 1-ID-C beamline. The specimen (invisible) is inside 

the IR lamp furnace, where the heat is provided by 12 halogen lamps.  The MTS load fame 

is mounted on motorized stages for adjusting sample positions with respect to the incident 

beam. 
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Figure 3-14 A typical 2D diffraction pattern collected away from notch on the pre-fatigued 

sample at zero load. The corresponding (hkl) peaks are labeled. The tensile loads were 

applied in the y-direction (vertical direction, also denoted as loading direction), and the 

azimuthal angle is defined as 90˚ in y-axis, and 0˚ in x-axis. 
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Figure 3-15 An example of (3 1 1) lattice spacing vs. azimuthal angle under three loading 

conditions, 0 lbf, 1000 lbf, and 2100lbf.  
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Figure 3-16 An example of least-square fitting of lattice strain vs. azimuthal angle. The 

observed strains from one or a few grains are in blue, and the fitted curve is in red. The 

fitting rectifies local strain variation due to inter-granular stress 
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4 CHAPTER IV  

RESULTS 

 

4.1 Deformation of BMG 

The intensity vs. Q curve, I(Q), of the sample in loading direction under various 

uniaxial tensile stress is shown in Figure 4-1. The curves were obtained by integrating 5 

degrees in azimuthal angles from the 2D-diffraction image. The inset is the local 

magnification of the top part of the first peaks, showing that the peak positions change with 

stress in the tensile directions. The figure clearly show that the increasing tensile stress 

causes the peaks in I(Q) to move to smaller q values in the loading direction and while to 

higher q values in the transverse, indicating the enlargement of distance between atoms in 

the loading direction and contraction in the transverse simultaneously. The shift of peak 

position in I(Q) under tensile stress is nearly linear. The corresponding structure function, 

S(Q), for each stress level were obtained using PDFgetX2 software. The 0l   term and 

2l  of S(Q) were calculated through equation 2.12. In Figure 4-2, the isotropic ( 0l  ) 

component of S(Q), 0
0 ( )S Q , shows little changes with the applied stress, but, the elliptical 

( 2l  ) component, 0
2 ( )S Q , shows significant changes as a function of applied stress. The 

amplitude of 0
2 ( )S Q is roughly proportional to the stress, whereas the shape is almost 

independent of the stress. The elliptical ( 2l  ) component of the PDF, 0
2 ( )g r , was 

obtained by the spherical Bessel transformation, Eq.2.13, and is shown in Figure 4-3. The 
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0
2, ( )obsg r is roughly proportional to the stress in amplitude, while the shape remains almost 

unchanged, as expected from the behavior of 0
2 ( )S Q . 

It can be shown that for axial elongation along loading direction, the elliptical PDF 

due to affine deformation, 0
2, ( )affg r , can be expressed in terms of the derivative of the 

isotropic PDF[67, 68], 0
0 ( )g r  

       
1

2
0 0 0
2, , 2, , 0

2 11

5 3aff zz aff aff zz aff

d
g r g r r g r

dr


 

     
 

  ( 4-1 ) 

where  is the Poisson’s ratio. Indeed the experimentally observed 0
2, ( )obsrg r  is close to the 

derivative as shown in Figure 4-4, particularly at large distances. The amplitude of the 

apparent elastic strain, app , was estimated by matching the experimental 0
2, ( )obsrg r to

0
2, ( )affrg r  over the range of r between 6.6 and 25 Å, using the experimental value of 

 app aff  over this range. The apparent Young’s modulus, / app  , is 94.5 GPa, 

close to the value determined by ultrasound resonance method, 89 GPa [69]. The effective 

Young’s modulus determined by diffraction experiments and published by others [28] are 

close to, but slightly higher than those determined by ultrasound measurements. 

 However, Figure 4-4 shows small but significant differences between the observed 

0
2 ( )g r  and 0

2, ( )affg r below 6.6 Å. These differences could be caused by the anelastic events. 

Earlier studies found that the apparent strain determined by the PDF analysis was not 

homogeneous, but was dependent on the atomic distance, r [25, 26, 28]. This has been 

suggested to be the effect of anelasticity [28]. However, in the earlier studies the elastic 
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and anelastic contributions have not been quantitatively separated. An additional technical 

complication is that in most papers the strain was assessed from the isotropic PDF. The 

anisotropic PDF analysis should be utilized for the in-situ tensile test. 
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Figure 4-1 The intensity vs. Q curve, I(Q), of the sample in loading direction under various 

uniaxial tensile stress. The curves were obtained by integrating 5 degrees in azimuthal 

angles of the 2D-diffraction image in loading direction (90° and 270°) 
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Figure 4-2 The isotropic part of the structure function, 0
0 ( )S Q (above), and the change in the 

2l  component of the structure factor, 0
2 ( )S Q (below). For clarity only three stress levels 

are shown. The changes appear linear with the stress. The 0
2 ( )S Q  is also shown up to 5 Å 

in the inset with a stress step of 0.2, from 0.2 to 1.2 GPa[70]. 
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Figure 4-3 The isotropic part of the PDF, 0
0 ( )g r (above). And the 2l  , component of PDF, 

0
2 ( )g r (below), For clarity only three stress levels are shown. The amplitude of the 

anisotropic term is roughly proportional to the stress, whereas the shape remains largely 

unchanged[70]. 
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Figure 4-4 The 2l  , component of PDF, 0
2 ( )g r , at the applied stress of 1.2 GPa (red), 

compared to the PDF for affine deformation(black). Here, the 0
2 ( )rg r is shown to 

emphasize oscillations at large r. The fit is very good beyond 6.6Å, but obvious deviations 

are found in the first atomic shell up to 4Å[70].  



 

 

83

4.2 Fatigue life under compression-compression loading 

Figure 4-5 shows the S-N curve (S: the stress range of the test, and N: the number of 

cycles to failure) of the as-cast (Zr55Cu30Ni5Al10)98Er2 alloy, and the results of the series of 

fatigue tests from the current study. The open circle is the fatigue life of the studied material 

with a fixed L/D ratio of 1.67, and a testing frequency of 10 Hz at various stress ranges 

(typical fatigue tests). The colored symbols are the data from this study (a larger L/D ratio). 

The red color denotes the first-cycle tests (as-cast samples), and the blue color represents 

the proceeding tests using the left-over from the first fatigue test. The cycles-to-failure of 

each test was counted individually, the fatigue-life of 2nd-run and 3rd-run tests excluded the 

prior fatigue history. The first-cycle tests of the specimens show similar fatigue life (Figure 

4 and Table I). For the second-cycle tests (open circle), it is seen that the fatigue life is 

comparable or longer when compared with the 1st-cycle test (as-cast). To clearly show 

these results, we plot the fatigue data separately in Figure 4-6(a), and the detailed data are 

summarized in Table 4-1. 

Many factors, such as the frequency of the test and the geometry of the specimen, 

will affect the fatigue behavior of BMGs [47]. Since the same sample is used for several 

runs of the tests, the sample will inevitably become progressively smaller. The changes of 

L/D ratios might affect the fatigue life of a specimen. We plot the fatigue life of each test 

as a function of L/D ratio in Figure 4-6(b). The results do not show strong correlation 

between the L/D ratio and the fatigue life within the range from approximately 0.8 to 4. 

Therefore, the dominant factor that affects the fatigue life of a specimen in this experiment 

could be related to cyclic loading.  
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Table 4-1 The table of fatigue data in Figure 4-6.  
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Figure 4-5 The stress-range versus number of cycles to failure (S-N curve) data of 

(Zr55Cu30Ni5 Al10)98Er2 BMGs. The open circle is the fatigue life of the same material with 

a fixed L/D ratio (L/D = 1.67), and a frequency of 10 Hz at various stress ranges. The 

colored symbols are the data from this study. 
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Figure 4-6 (a) The fatigue life of samples, A, B, and C. The 1st-run (in the as-cast condition) 

data is shown in red, and the 2nd run data is presented in blue. The number of cycles-to-

failure of the 2nd-run test starts from zero, and does not include the cycles made in the 1st-

(a) 

(b) 

(Zr55Cu30Ni5Al10)98Er2 

(Zr55Cu30Ni5Al10)98Er2 
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run test. The fatigue life of the “pre-fatigued” sample (left-over) is equal or longer, 

compared to the as-cast sample. The results suggest that the fatigue damage in the specimen 

is mainly localized, and the cyclic loading has no globalized effect on the sample. When 

the fractured part is removed, the rest of the material acts just like an as-cast material. (b) 

The number of cycles to failure as a function of the L/D ratio of the specimen. The results 

showed no correlation between the L/D ratio and the fatigue life. 
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4.3 Fracture surface of fatigued BMGs 

To further identify the failure mechanism of the fatigue tests, we examine the fracture 

surface by scanning-electron-microscopy (SEM). Figure 4-7 presents the surface 

morphology of the fracture specimen. A characteristic vein-like pattern, as shown in Figure 

4-7 (a) and the left side of Figure 4-7 (c), is observed on fracture surfaces. This pattern is 

commonly found on the fracture surface of BMGs under tension or compression tests [38, 

40]. These features are believed to be formed during the final stage (fast fracture) of the 

fatigue fracture, when the stress on the remaining load-carrying cross-section of the sample 

reaches the load limit of the material, and the spread of fracture becomes catastrophic.  

Then the material on the shearing plane becomes melted due to the heat generated during 

the fracture process at the fast fracture stage. Striations, as shown in Figure 4-7 (b) and (c), 

could be found only on a small portion of the fracture surface. Figure 4-7 (b) is the enlarged 

view of the rectangle in Figure 4-7 (c). A molten droplet covers part of the striation. The 

striation spacing is ~ 190 nm. It is surprising to observe striations during the fatigue failure 

of BMGs under cyclic compression-compression loadings. These are commonly seen on 

the fatigue tests under bending conditions. The striations have not been reported before for 

Zr-based BMGs under cyclic compression- compression fatigue (although previous studies 

usually used samples with smaller diameters (< 3 mm in diameter). We could not locate 

the crack-initiation sites on the fracture surface, since they were destroyed by the surface 

melting due to severe shearing at the final stage of the fatigue failure. 
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Figure 4-7 SEM pictures of the fracture surface. (a) A vein pattern can be found on the 

fracture surface. The feature is the same as the one typically found on the fracture surface 

of the sample under monotonic compression. [38, 40] (b) Striations were found on the 

fracture surface. It is believed to be in the slow, crack-propagation region. The striation 

spacing is 190 nm. (c) The possible crack-initiation site was destroyed by the surface 

melting due to the severe shearing at the finual stage (fast fracture) of the fatigue fracture. 

The sample broke into several pieces at the end, the crack initiation sites cannot be found. 

  

(a) (b) 

(c) 
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4.4 PDF analyses of fatigued BMGs 

Figure 4-8 is the high-energy X-ray scattering spectrum of the as-cast, and two 

fatigued (2nd run) (Zr55Cu30Ni5Al10)98Er2 alloys. The intensity, I(Q), versus Q (a wave 

vector) of three samples show identical features without the sign of crystalline phases. This 

result indicates that the specimens before and after the fatigue tests are in an amorphous 

state, without any major structure changes (phase transformations). We obtained the PDF 

shown in Figure 4-9 by the Fourier transformation of the structure function, S(Q), to study 

the local atomic structure of the amorphous samples. We compare the G(r) of an as-cast 

sample to that of the fatigued samples. The differences between as-cast and fatigued 

samples are very small (We only show G(r) of sample B in Figure 4-9 for comparison). 

The results suggest that there is no significant changes on the atomic structure of the BMG 

in the medium-range (>10 Å) region, but only small differences in the short-range (< 5 Å) 

region. Since the changes in the short-range region are rather small (less than ~ 0.6%), we 

used a standard statistical tool, the two-way analysis of variance; to test whether this 

differences is significant. We tested the G(r) (in Figure 4-9) and the first derivative of 

G(r) of the same sample measured at different instruments. The statistical analysis 

showed that the differences are not significant. 

We compared I(Q) between the center region and the near-fracture-surface section 

of the sample. No significant differences can be observed in both I(Q) and G(r). With the 

measurement geometry used in Figure 3-6(c), we could compare the diffraction anisotropy 

of the samples after fatigue tests. To reveal the diffraction anisotropy, we subtract the I(Q) 

in the horizontal direction (transverse direction) from the I(Q) in the vertical direction 
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(loading direction). The result in Figure 4-10 showed that the diffraction anisotropy can 

only be observed near the fracture-surface region, and the magnitude is small (< 0.6%); 

while in the bulk region, the structure of the sample is still isotropic. This anisotropic 

behavior is likely caused by severe shearing in the fast-fracture stage, the last stage of the 

fatigue failure of the BMG, not the cyclic loading itself. 
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Figure 4-8 The high-energy synchrotron X-ray scattering of the as-cast, fatigued (2nd run) 

(Zr55Cu30Ni5Al10)98Er2 alloys. The I(Q) shows identical features without the sign of 

crystalline phases. The specimens before and after the fatigue test are all in an amorphous 

state. 
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Figure 4-9 Reduced pair-distribution functions of the as-cast and fatigued samples. No 

significant changes between the as-cast and fatigued samples were found, but we do 

observe small differences in the short-range-order part (within 8 Å).  
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Figure 4-10 A very small but notable diffraction anisotropy, found at the fracture-surface 

region. It might result from severe plastic deformation inside the shearing plane at the final 

stage of the failure (fast cracking). 
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4.5 Determination of single crystal elastic constants by HE-XRD 

Single crystal elastic constants are intrinsic material properties correlated with 

material response to applied load. Also, they are key input parameters for a variety of 

simulations on both single crystal and polycrystalline materials’ deformation behavior, in 

particular when grain level stress-strain response is considered. Determination of single 

crystal elastic constants for a polycrystalline material is nontrivial, because of the 

difficulties in fabricating single crystals with exactly the same composition as 

polycrystalline material, necessary size, purity, microstructure, and shape, for elastic 

constant measurements by either ultrasonic methods or tensile tests. In fact, single crystal 

elastic constants are usually not available for many multicomponent alloy systems. The 

available single crystal elastic constants at elevated temperatures are even rare. 

4.5.1 deWit’s method 

An alternative approach to obtain single crystal elastic constants by high-energy X-

ray diffraction of polycrystalline materials is described below. This approach is to measure 

lattice spacing of a set of reflections (hkls) as a function of load, which can be performed 

in-situ at elevated temperatures at a synchrotron source. The use of high-energy X-rays 

(say 70keV) allows collecting diffraction data in transmission mode from bulk specimen 

of a few mm in thickness. By using a large area detector, multiple reflection rings can be 

recorded simultaneously, and lattice strains along and perpendicular to the loading 

direction can be determined from a single measurement. Like typical powder diffraction 

measurement, only those grains within the probing volume satisfying Bragg condition will 

diffract. 
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The diffraction elastic constants S1(hkl) and S2(hkl) for different hkl orientation, can 

be experimentally determined in the elastic deformation regime as  

)/()(1 hklhkl EhklS                                                                        ( 4-2 ) 

  hklhkl EhklS /1)(
2

1
2                                                                 ( 4-3 ) 

where hkl are Miller indices, Ehkl and νhkl are the hkl dependent Young’s modulus and 

Poisson’s ratio from experiment, respectively.  Ehkl and νhkl are calculated from the linear 

response of hkl lattice strain in the loading and transverse directions with respect to the 

macroscopic stress under uniaxial tensile test. Continuum mechanics theories have been 

developed to derive single crystal elastic constants from the measured diffraction elastic 

constants of polycrystalline materials. Most models are extended from Kröner model which 

is based on Eshelby’s theory of spherical elastic inclusion in isotropic media. These models 

consider the elastic anisotropy (the hkl dependent Young’s modulus) and inter-granular 

strain caused by elastic anisotropy, and thus calculate different stress field for individual 

grain.  

In deWit’s method, single crystal elastic stiffness (C11, C12, and C44) for cubic 

symmetry are related to isotropic bulk modulus, K, and isotropic shear modulus, G, as  

1211 23 CCK                                                                           ( 4-4 ) 

023   GGG                                                              ( 4-5 ) 

where α, β, γ are coefficients as a function of C11, C12, C44, and elastic anisotropy factor 

Ahkl as 



 

 

97

   44121144
1211

441211 3
5

1

2
342

8

3
CCCC

CC
ACCC hkl 






















 


   ( 4-6 ) 

 

       12114412114412111211

44
1211

44
1211

10232
40

3

2
3

4

2

CCCCCCCCCC

C
CC

AC
CC

hkl

















 







 ( 4-7 ) 

   
8

2 1211441211 CCCCC 
  ( 4-8 ) 

 222

222222

klh

lhklkh
Ahkl 


  ( 4-9 ) 

Diffraction elastic constants can be calculated from K and G as 
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Based on deWit’s method, Thomas et al. [1] proposed the least square fitting approach to 

derive C11, C12, and C44 from S1(hkl) and S2(hkl) by minimizing the difference between 

measured and calculated diffraction elastic constants as 
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where 







measurehklS )(
2

1
2  and  measurehklS )(1  are standard errors for diffraction elastic 

constants obtained from experiment.  

 

4.5.2 X-ray elastic constant of the specimen 

Based on de-Wit’s method and least square fitting approach[71], diffraction elastic 

constants are calculated with the initial input of single crystal stiffness. The calculated 

values are fitted to the measured values using least-square refinement described from Eq. 

(4-4) to (4-12), which generates refined values of single crystal stiffness. The method 

applies to materials with cubic crystal symmetry and assumes that the polycrystalline 

material is texture free, which indeed is the case for our samples. However, similar theory 

has been extended to incorporate texture and accommodate other crystal symmetry into the 

calculation [72, 73]. The accuracy of results depends on the number of grains detected in 

the volume of X-ray beam and number of independent hkl orientations. The fitting includes 

5 independent hkl orientations ranging from the most compliant orientation (2 0 0) to the 

stiffest orientation (1 1 1). Therefore, the results provide a good estimation of single crystal 

elastic constants. It has been found that the final fitting results are not sensitive to the initial 

input value of single crystal stiffness. 

Figure 4-11 shows reciprocal of hkl dependent Young’s modulus derived from the 

diffraction measurement of polycrystalline specimen as a function of elastic anisotropy 

factor Ahkl. In single crystal with cubic crystal symmetry, the Young’s modulus is governed 

by hkl crystal orientation as 
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The elastic anisotropy factors for different hkl planes are listed in Table 4-2. In 

Figure 4-12, a good linear trend is evident for both first cycle and fatigue 75% samples, 

which is an additional support for the appropriateness of using DeWit’s methodology to 

derive single crystal elastic constants. 

 The calculated and measured Ehkl for (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (3 3 1) 

orientations are listed in Table 4-2, which compare favorably. The fitted single crystal 

stiffness for the material is presented in Table 4-3. Literature values of single crystal 

stiffness for other Ni-based superalloy [74, 75] are plotted together for comparison. The 

results for both samples are similar to each other, and show agreement with the published 

values of other Ni-based superalloys detected through ultrasonic methods or tensile tests. 

This similarity between two samples may be expected as fatigue induced deformation 

should not change the elastic response of the material to external load. C12 of the specimen 

is slightly higher than other Ni-based superalloys and C44 is slightly lower. 

 The calculated stress-lattice strain responses from the fitted C11, C12, and C44 along 

with measured values are plotted in Figure 4-12 for the first cycle and fatigue 75% samples.  

The measured data lie perfectly on the calculated linear lines, demonstrating the reliability 

of the results.  The 95% confidence intervals for the fitted C11, C12, and C44 are (192, 263), 

(125, 197), (98, 114), respectively.  
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Table 4-2 Values of hkl-specific Poisson’s Ratio for pure Ni (extracted from Ref.[76]) and 

elastic anisotropy factor Ahkl for measured hkl orientations. Measured and fitted Ehkl are 

also listed for the 75%-fatigued sample, in the unit of GPa. 

 
(111) (200) (220) (311) (331) 

νhkl 0.28 0.40 0.33 0.36 0.32 

Ahkl 0.333 0.000 0.250 0.157 0.274 

Measured Ehkl, fatigue 75% 
sample 

205 141 198 175 220 

Fitted Ehkl, fatigue 75% sample 227 137 200.0 175 208 
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Table 4-3 Calculated single crystal elastic constants from first cycle and fatigue 75% 

samples at 752°F, compared with elastic constants of other Ni-based superalloys measured 

by ultrasonic techniques at the same temperature [74, 75]. All elastic moduli are given in 

units of GPa. 

Elastic Constants
Present work: 

As-cast 

Present work: 

75%-fatigued 

CMSX-3 

[74] 
TMS-26 [75]

C11 241 233 230 238 

C12 169 167 150 152 

C44 105 111 115 120 
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Figure 4-11 The measured reciprocal of hkl dependent Young’s modulus in the 

polycrystalline sample as a function of elastic anisotropy factor Ahkl. 
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(a) 

 
(b) 

Figure 4-12 Measured lattice strain (scatters) as a function of local axial stress ε22 (FEM 

simulated), plotted together with stress-lattice strain response (lines) calculated from fitted 

C11, C12, and C44, for (a) first cycle sample and (b) fatigue 75% sample. 
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4.6 Evolution of lattice strain during loading and unloading 

We first examine the lattice strains near and away from the notch of a heavily 

fatigued specimen. Before the load is applied, the evolution of lattice strain as a function 

of applied tensile loading for heavily fatigued specimen is shown in Figure 4-13. The 

corresponding nominal stress along the notch-notch line for the loading of 2100lbf is 1.16 

GPa, which is slightly below the yield stress of the studied material at 400˚C. Since the 

deformation is in elastic range, at center of the specimen [position-18 as indicated in Figure 

3-12(a)], the lattice strain increases linearly with increasing the load as shown in Figure 

4-13 (a). The force-strain curve of the same specimen near the notch is presented in Figure 

4-13 (b). A substantial compressive residual stress is developed after cyclic loading. The 

compressive residual stress is believed to be closely related the plastic zone ahead of notch 

tip. Due to the higher stress intensity factor near notch, the material in these area subjected 

to a stress that is over the yielding stress of the material although the nominal stress is still 

below the yield point. Therefore, the plastic deformation is expected to occur, and when 

the load is removed, a compressive residual stress will be developed. This creates a 

significant crack closure ahead of notch tip. An easy way to quantify this compressive 

stress is to use Figure 4-13. The intersection of the force-strain curve in loading direction 

and in transverse direction gives the residual stress at the measured region. In the case of 

75%-fatigued sample, at 0.5 mm ahead of notch [position 2 in Figure 3-12(a)], ~ 700lbf is 

required to overcome this compressive residual stress. By using this intersection method, 

and defined the force as recovery force, one can plot the recovery force as a function of 

distances to notch tip as shown in Figure 4-14. Figure 4-14 shows the comparison of the 
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samples at different stage of fatigue life, and as a function of distances to notch tip. The 

“recovery force” within ±200 lbf, labeled in red band, can be considered as unaffected (0 

lbf), since it’s within the error bar of our calculation. The distributions of recovery force 

clearly mark the zone of compressive residual stress, this zone extends ~0.7 mm ahead of 

notch tip. However, the extension of the zone along the notch line cannot differentiate the 

age of the specimen. 

 Figure 4-15 is the lattice strain of (311) along notch for samples with different 

fatigue history at various applied forces. The figure compares (a) 1-cycle sample, (b) 1%-

fatigued sample, (c) 10%-fatigued sample, and (d) 75%-fatigued sample. A significant 

residual strain is developed even after 1-cycle of loading-unloading. The residual strain 

maximize its value at ~0.25 mm ahead of notch tip. The maximum residual strain for 1-

cycle, 1%, 10%, and 75%-fatigued sample are ~2.1x10-3, 2.9x10-3, 2.85x10-3, and 3.2x10-

3, respectively. The residual strain builds up rapidly at the beginning of the fatigue process, 

and keeps stable for the majority of the sample’s life before it speed up again at the end of 

fatigue life. 
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Figure 4-13 The changes of (311) lattice strain as a function of applied force. (a) at the 

center (3.17 mm ahead of notch tip) and (b) at notch (0.08 mm ahead of notch tip). The 

lattice strain increase linearly with increasing the load. Because of the compressive residual 

stress at notch area, the ߝଶଶ strain at notch without the load is negative (compressive stress). 

The slope of force-strain curve at notch is smaller than that at the center because the actual 

stress at notch is higher. 
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Figure 4-14 The recovery force of (311) as a function of distances to notch tip for samples 

at different age of its fatigue-life. The “recovery force” within ±200 lbf, labeled in red 

band, can be considered as unaffected (0 lbf), since it’s within the error bar of our 

calculation. The distributions of recovery force clearly mark the zone of compressive 

residual stress, this zone extends ~0.7 mm ahead of notch tip. However, the extension of 

the zone along the notch line cannot differentiate the age of the specimen. 
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Figure 4-15 Lattice strain of (311) along notch for samples with different fatigue history at 

various applied forces. (a) 1-cycle sample. (b) 1%-fatigued sample. (c) 10%-fatigued 

sample. (d) 75%-fatigued sample. A significant residual strain is developed even after 1-

cycle of loading-unloading. The residual strain maximize its value at ~0.25 mm ahead of 

notch tip. The maximum residual strain for 1-cycle, 1%, 10%, and 75%-fatigued sample 

are ~2.1x10-3, 2.9x10-3, 2.85x10-3, and 3.2x10-3, respectively. The residual strain builds up 

rapidly at the beginning of the fatigue process, and keeps stable for the majority of the 

sample’s life before it speed up again at the end of fatigue life. 
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4.7 Strain mapping around notch tip 

Previous section shows only the strain evolution alone the notch line, if the whole 

area around notch is measured, a two-dimensional strain map can be obtained as shown in 

Figure 4-6. With this 2D strain map, the effect of fatigue can be observed more clearly. 

Figure 4-6 presents the (311), ߳ଶଶ lattice strain maps around notch for virgin (left) and 

75%-fatigued (right) samples. Note that ߳ଶଶ	in the present study is the strain component 

parallel to the loading direction. The map clearly shows that significant compressive 

stress/strain is developed after cyclic loading. On the left hand side, where sample has no 

prior loading history, it shows a flat, featureless map. While on the right hand side, after 

cyclic-loading for 75% of its life, it shows a compressive strain near notch, and tensile 

strain a little bit away from tip. The features are consistent with the prediction by finite-

element simulation (FEM) analysis.  

To further quantify the compressive zone size, we defined a criteria, -0.15% in this 

case, and calculate the size of the area by a Matlab program. It is found that the size of the 

compressive zone is small, 0.026 mm2, for sample with only one cycle of loading, but 

becomes large, 0.374 mm2, when it was cyclic-loaded to 75% of the expected life (Figure 

4-17). The compressive residual strain ahead of notch tip will grow in terms of size and 

quantity as fatigue-cycle increases. The comparison of the self-defined zone size at 

different stages of fatigue life is shown in Figure 4-18. In this figure, the areas are 

normalized to the size of notch, and it shows the residual stress will build up significantly 

at the beginning of the fatigue-life, and stabilize before it speed up again at the end of 

fatigue life. It follows fast-slow-fast pattern similar to da/dN vs dK in crack propagation 
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experiment. The observation implies that the size of compressive-strain zone can be used 

as an index to show the remaining life of a specimen. Although the sensitivity may not be 

very high when the remaining life of a specimen is between 20%~80% of fatigue life.  
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Figure 4-16 (311), ߳ଶଶ lattice strain maps around notch for virgin (left) and 75%-fatigued 

(right) samples. Note that ߳ଶଶ	in the present study is the strain component parallel to the 

loading direction. 
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Figure 4-17 The comparison of (311) strain map near notch between (a) 1-cycle-fatigued 

sample and (b) 75%-fatigued samples. The compressive residual strain ahead of notch tip 

will grow in terms of size and quantity as fatigue-cycle increases. A criteria of -0.15% is 

used to illustrate the growth of residual-stress-zone as a function of fatigue life. 
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Figure 4-18 The evolution of residual stress zone ahead of notch tip as a function of fatigue 

life. The areas are normalized to the size of notch. The residual stress will build up 

significantly at the beginning of the fatigue-life, and stabilize before it speed up again at 

the end of fatigue life. It follows fast-slow-fast pattern similar to da/dN vs dK in crack 

propagation experiment. 
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5 CHAPTER V  

DISCUSSION 

5.1 Deformation of BMG in macroscopic scale 

When a stress is applied to a viscoelastic material, the strain response can be expressed 

as 

exp /

exp 0
( ) ( )[1 ]el anel e d      

     ( 5-1 ) 

where el is the elastic strain, exp is the experimental time scale, for instance the inverse of 

the strain rate,  is the relaxation time and anel()dis the anelastic strain with the 

relaxation between  and dt. By approximating the exponential function by a step 

function we obtain 

exp

exp 0
( ) ( )el anel d


         ( 5-2 ) 

Thus all the viscoelastic responses with the response time shorter than the experimental 

time scale are included in the apparent elastic strain. In order to evaluate the anisotropic 

PDF due to the anelastic strain, the sample which was creep deformed as described above, 

at the stress of 1.2 GPa and T = 573 K for 30 min., to obtain the  = 2 PDF, 0
2, ( )anelg r . In 

Figure 5-1, 0
2, ( )anelg r is similar to 0

2, ( )affg r
 
at large distances. By comparing 0

2, ( )anelg r  to 

0
2, ( )affg r  at large distances, the anelastic creep strain for the particular experiment, creep , 

and obtained 0
2, ( )anelg r , was determined by normalizing 0

2, ( )anelg r to the anelastic creep 
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strain of unity. The results showed that the deviations of the anelastic PDF, 0
2, ( )anelg r  from 

the affine PDF, 0
2, ( )affg r , are very similar to those for the tensile strain experiment after 

appropriate scaling. This similarity indicates that the local structural changes due to 

anelastic strain induced by the apparently elastic deformation are very similar to those due 

to the anelastic creep deformation, in spite of the differences in time scale and temperature. 

As discussed previously, the  = 2 PDF which is due to the anelastic effect is independent 

of the stress level except for the amplitude, and when normalized by the strain results in 

the identical
0

2, ( )anelg r . Therefore, the total PDF should be fit by 

0 00
2, , ,2, 2,( ) ( ) ( ) ( )total zz anel app zz anelanel affg r g r g r      ( 5-3 ) 

where ,zz anel  is the anelastic strain, and , ,zz aff app zz anel    is the affine (elastic) strain. 

Figure 5-2 compares the observed 0
2, ( )obsg r  with 0

2, ( )totalg r  at 1.2 GPa. Except 

for small differences which are most likely due to the mismatch of resolution and noise. 

The excellent agreement confirms that the strain in this metallic glass includes both the 

anelastic as well as affine components. The fraction of the affine strain to the total strain, 

, /zz aff app   , is plotted as a function of the applied stress,  , in Figure 5-3. The value of 

 is nearly constant over this range of stress, and in average 24% of the total strain is 

anelastic. This result is in excellent agreement with the simulation that suggested that about 

20% of the apparent elastic strain is actually an anelastic strain [67]. Many theories, such 

as the free-volume theory, assume that the defect level is of the order of 1% [21], whereas 

the defect density suggested by the present results is higher by an order of magnitude. On 
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the other hand this value agrees very well with the fraction of the frozen liquid-like atoms, 

24.3%, in the theory of the glass transition in metallic glasses[77]. 

 The above analysis suggests that the applied load is supported by only 76% of the 

body, and the rest, the anelastic sites, offer no resistance to load at the time scale of the 

experiment. Thus, the true elastic constant of the elastic portion can be evaluated as 

Eel=zz,aff = 124 GPa. It has been known that the value of the shear modulus of a metallic 

glass is lower by 20%–30% than calculated for affine deformation [67] and the values for 

crystalline solids of the same composition. The difference has been attributed to the non-

collinear effect [78] and anelasticity [67]. Because the Young’s modulus, E, is closely 

related to the shear modulus, G, 

9

3 /
E G

G B



 ( 5-4 ) 

where B is the bulk modulus, result from current study confirms that the apparent softening 

of the shear modulus occurs because about a quarter in volume fraction of a metallic glass 

is anelastic, and does not offer shear rigidity at the experimental time scale. 

 The results from the in-situ tensile experiment show that about a quarter of the 

volume of a metallic glass is occupied by anelastic sites, which are soft and bear no static 

shear load. Consequently, the shear modulus of a metallic glass is lowered by a quarter 

compared to the instantaneous value. Just as other glasses, metallic glasses are 

fundamentally viscoelastic, and the volume fraction of the viscous sites is as much as a 

quarter, not of the order of 1% as in many theories. 
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Figure 5-1 The  = 2 component of the PDF, 0
2 ( )g r , after creep at 574 K for 30 min with 

the applied load of 1.2 GPa. The dashed line shows the PDF expected for affine (elastic) 

deformation, which is fitted to the data at large distances. The anelastic strain determined 

by the fit is 0.4%, whereas the total creep strain is 2%. The difference, 1.6%, is the plastic 

creep strain.[70] 
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Figure 5-2 The  = 2 component of the PDF, 0
2 ( )g r , at 1.2 GPa, fitted to the combined PDF 

for affine (elastic) and creep (anelastic) deformation, Eq. 4.4. The fit shows marked 

improvement over the one in Figure 4-4[70].  
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Figure 5-3 The fraction of elastic strain compared to the total apparent strain. It appears 

constant of applied external stress up to 1 GPa, and on average it is about 76%. The rest, 

24%, is the anelastic strain.[70] 
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5.2 Fatigue fracture of large-diameter BMGs in compression-

compression tests 

Similar to the samples with smaller diameters, fracture of larger-diameter samples 

under cyclic compression mostly occurred in a pure shear mode. The major fracture plane 

formed an angle of ~ 42o with respect to the loading axis [79, 80]. However, unlike the 

smaller samples in which the major shear plane passes through the whole specimen and 

separates the specimen into two pieces with a relatively flat shear plane, these larger 

samples usually broke into two or more pieces, with a convex-shaped major shear plane. 

This phenomenon could be explained as follow. During the fatigue test, there are many 

possible shear planes for cracks to form; some of the possible shear planes do not cut 

through the whole specimen, but start from the end of the specimen as illustrated in Figure 

5-4(a). When a shear plane formed from the side surface to the end of the specimen, a small 

piece of the sample will be removed, as shown in Figure 5-4 (b). Because the sample is 

large, the stress on the load-carrying cross-section of the sample is still less than the 

strength of the material. As a result, the fatigue test is carried out on an irregularly-shaped 

specimen with higher stress levels. The odd shape of the sample creates a fairly complex 

stress state within the specimen, and further diversifies the final failure mode of the sample. 

This peculiar mode creates difficulty to identify the failure mechanism of large BMGs 

specimens under compression-compression fatigue tests, since crack-initiation sites and 

crack-propagation regions [as shown in Figure 4-7(c)], are destroyed by severe shearing 

during the final stage of the failure. 
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Figure 5-4 Possible failure mode of the large-diameter BMG under cyclic-compression 

stresses. (a) Some of the possible shear planes do not cut through the whole specimen, but 

start from the end of the specimen. (b) When a small piece of the sample was separated 

from the major part, the stress on the load-carrying cross-section of the sample is still less 

than the strength of the material. The situation became as if we were running a fatigue test 

using an irregularly-shaped specimen with higher stress levels. 
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5.3 Size-dependent fatigue behavior of BMGs 

In Figure 4-6(b), we have shown that the fatigue life does not strongly correlate with 

the L/D ratio of the specimen. However, the sample volume also changed between the 

fatigue tests and become progressively smaller. Then the size effect on the fatigue behavior 

of BMGs should be examined. In the following section, we use statistical analyses to 

examine the effect of sample size on the fatigue life. 

 

5.3.1 Model 

A statistical model is developed to predict the fatigue life of the BMG based on the 

defect volume. We hypothesize that the fatigue life can be characterized by the Weibull 

theory. The Weibull theory assumes that the fatigue failure is determined by the presence 

of a critical defect, and such defects occur randomly within a material [81]. As a 

consequence, specimens with larger volumes will have higher probability of finding a 

critical defect, and, therefore, have statistically shorter fatigue lives when compared with 

specimens with smaller volumes [82, 83].  

The two-parameter Weibull fatigue-life distribution has the following cumulative 

distribution function, 

( | , ) 1 exp
N

F N V


 


      
   

 ( 5-5 ) 

where N denotes the cycles to failure, and V is the volume of the test specimen. This model 

has two parameters, α and β. α is the characteristic fatigue life of a unit volume, and β is 
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the Weibull fatigue modulus [81, 83]. The probability density function of the Weibull 

fatigue-life distribution is 

1

( | , ) exp
N N

f N V V
  

  

          
     

 ( 5-6 ) 

Given the cycles to failure and the volumes of n test specimens, denoted by Ni and Vi, 

respectively, for i = 1,…, n, the unknown parameters, α and β, can be estimated by the 

maximum likelihood method [84]. The maximum likelihood estimates of α and β 

maximizes the likelihood function given by  

1

1 1
1

( , | , , , , , ) exp
n

i i
n n i i

i

N N
L N N V V V V

  
  





         
     

   ( 5-7 ) 

The Weibull theory implies a volume-scaling relation between the fatigue life and the 

specimen volume. Assuming equal failure probabilities, the volume effect on the fatigue-

life ratio for two specimens of volumes, VA and VB, is  

1/

A B

B A

N V

N V


 

  
 

 ( 5-8 ) 

where NA and NB are the respective fatigue lives. This volume scaling relation suggests a 

possible way to assess the goodness-of-fit of the Weibull fatigue-life model, given a small 

amount failure data, by scaling all the observed fatigue lives to a reference volume. If the 

Weibull model is an appropriate model to describe the variability in the data and the volume 

effect, the scaled fatigue lives at the reference volume should follow a Weibull distribution. 
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5.3.2 Statistical analysis 

Table 5-1 lists the volumes and the fatigue lives of ten specimens tested at a stress 

range of 720 MPa. The MATLAB Optimization Toolbox is used to maximize the 

likelihood function (4). The maximum likelihood estimates of the two-model parameters 

are 1.453  and 115.323   million cycles. 

Figure 5-5 shows the predicted median, 2.5 percentile, and 97.5 percentile lives. 

The 2.5 and 97.5 percentiles form a 95% predictive interval. This 95% predictive interval 

captures almost all the observations. Only one observation falls outside the predictive 

interval. To assess the goodness-of-fit of the Weibull fatigue-life model [81], all the 

observed cycles to failure are scaled to a reference volume of 700 mm3 according to 

Equation (5).  Table 5-2 lists the scaled fatigue lives. The Anderson-Darling goodness-of-

fit test is applied here to test the hypotheses, H0: the scaled fatigue lives follow the Weibull 

distribution vs. H1: the scaled fatigue lives do not follow the Weibull distribution. The 

Anderson-Darling goodness-of-fit test yields a P-value of 0.202, and fails to reject H0 at a 

significance level of 0.05 or 0.10.  

We used the Weibull theory to describe the fatigue behavior of this material from 

the statistical point-of-view. According to the analytical results, the Weibull fatigue-life 

model seems to be an appropriate model to describe the variability in the observed fatigue 

data and the volume effect. The fatigue behavior of this material, therefore, may be 

explained by the Weibull theory. Although statistical analysis implies the possible size-

dependent fatigue behavior (i.e., a smaller-volume sample tends to exhibit longer fatigue 
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life, Figure 5-5), more experimental and analytical work, however, need to be conducted 

to warrant the conclusions. 

 
 

Table 5-1 Volumes and fatigue lives of ten experimental specimens. 

Sample, i  Volume, Vi 

(mm3) 

Cycles to failure, Ni

(million cycles) 

1  282.7433  0.484017 

2  282.7433  0.552864 

3  707.4238  1.535442 

4  704.0309  0.304354 

5  704.0309  1.315717 

6  139.1097  1.26922 

7  268.0407  3.00371 

8  495.3663  1.70379 

9  240.8973  2.10075 

10  419.0256 4.63925
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Table 5-2 Scaled fatigue lives of the ten experimental specimens at the reference volume 

of 700 mm3. 

Sample, i  Scaled cycles to failure  

(million cycles) 

1  0.259366 

2  0.296259 

3  1.546630 

4  0.305559 

5  1.320926 

6  0.417446 

7  1.551494 

8  1.342976 

9  1.008221 

10  3.258950 
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Figure 5-5 Predicted percentile lives by the Weibull fatigue-life model 
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5.3.3 Size effect 

Recent studies of fatigue behavior of metallic-glass (MG) nanowires by computer 

molecular-dynamic simulations [85] showed that the MG will not fatigue. Shi et al. 

simulated the fatigue behavior of MG nanowires under strain-controlled compression-

compression tests and found that “irreversible deformation occurs during all fatigue 

simulations. However, the MG nanowire does not suffer from structural damage, and no 

softening occurs during cyclic loading” [85]. Jang, Greer, and Gross [86, 87] reported a 

significant strength increase and highly-localized-to-homogeneous deformation mode 

change, when the size of the MG nanowire decreases to a nano-meter scale. The strength 

of the MG pillar starts increasing with decreasing the diameter at a micro-meter scale, and 

reaches its maximum value of 2.6 GPa at a diameter of 800 nm, compared to the yield 

strength of 1.7 GPa in the bulk (millimeter) scale. Below a diameter of 800 nm, the yield 

strength of the MG nano-pillar remains unchanged. However, there is a change of the 

deformation mechanism from a highly-localized shear-deformation mode to homogeneous 

viscous flow at a diameter of 100 nm. Jang, Maa, and Greer [88] further studied the 

fatigue behavior of MG micron-sized pillars and found that the fatigue limit is generally 

very close to the yield strength of BMGs, i.e., MGs will not fatigue at submicron scales. 

The experimental results are consistent with Shi et al’s molecular-dynamic (MD) 

simulation [85]. These studies [85-87] showed that the size of the specimen does affect the 

fatigue behavior of amorphous alloys under compression-compression fatigue, i.e., 

smaller-size samples generally exhibit longer fatigue life. The results from the present 

study, Figure 5-5, do not show strong size-dependent behavior. The reason is likely due to 
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the fact that the sizes of the specimens used in the current study are on the millimeter scale. 

The size effect on the compression-compression fatigue could be pronounced at a micro-

meter scale or below [27-29, 31]. 

Wang et al. [46] studied the effect of specimen size on the fatigue behavior of Zr-based 

BMGs under 4-point bending tests. They reported that the smaller-sized sample (2 mm x 2 

mm x 25 mm) has shorter lifetime and lower fatigue-endurance limits than the large-sized 

sample (3 mm x 3 mm x 25 mm). Their results are different from what we observed in the 

present study. The inconsistency is most likely due to the different fatigue-fracture 

mechanisms between bending-fatigue and compression-compression fatigue tests. In 

bending fatigue, the small-sized BMG samples show the flexural and fracture failure, while 

the large-sized BMG samples only exhibit the fracture failure. Due to the improved bend 

ductility of the small-sized BMG sample, more multiple shear bands can form easily than 

the large-sized sample under cyclic loading. The cracks initiated from these shear bands. 

Thus, in the small-sized BMG sample during the bending test multiple shear bands act as 

weak spots initiating cracks, which shortens the fatigue life, relative to the large-sized 

sample [46]. On the other hand, in compression-compression-fatigue tests, crack initiation 

is associated with critical flaws (the weakest point) in the sample. The probability of having 

these flaws scales with the size (volume) of the sample. Therefore, smaller samples might 

have longer fatigue life under compression-compression fatigue. 
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5.4 Proposed fatigue-damage mechanisms 

From several research papers [36, 37, 45, 89-91], one can categorize the fatigue 

failure of BMGs into three stages. The first is the crack-initiation stage, where a crack is 

initiated at the weakest point of the material, followed by the crack-propagation stage, 

where the crack advances slowly under the repeated loading and unloading fatigue process; 

and finally, the fast propagating stage, which causes the final failure of the material. The 

crack-initiation stage is the key to determine the fatigue life of such materials with very 

little or no plasticity. The fatigue-crack initiation sites in BMGs could be further divided 

into two groups. One is an intrinsic defect, such as free volumes and/or shear bands, which 

is associated with the nature of amorphous alloys, and the other is related to the extrinsic 

defects, such as inclusions, micro-voids, and nano-crystalline particles formed during the 

fabrication process, which, theoretically, can be eliminated by better fabrication techniques 

and/or procedures.  

From this study, the fatigue-failure mechanism of the large (6-mm in-diameter) Zr-

based BMGs under cyclic compression-compression stresses is suggested, and illustrated 

in Figure 5-6. The crack initiates at the weakest points (extrinsic defect sites as defined 

above) in the sample. The crack propagates slowly at the beginning and leaves the striation 

on the crack surface. The crack continues to grow until the sample cannot sustain the stress 

and then the fast-shearing process starts, which causes the catastrophic failure. During the 

crack-propagation process, the fatigue damage is localized. When one crack starts to grow, 

the rest of the sample still undergoes elastic deformation; the microstructure away from the 

crack region generally remains unchanged. Therefore, after cutting off the damaged part, 
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the remaining part performs like an as-cast material. The above mechanism implies that 

the fatigue limit of BMGs under cyclic compression-compression stresses can be greatly 

improved by reducing the number of extrinsic defects (crack-initiation sites) in the 

material. 

  



 

 

132

 

Figure 5-6 Proposed fatigue-failure mechanisms of the large (6-mm in-diameter) 

(Zr55Cu30Ni5Al10)98Er2 BMGs. (a) The as-cast sample contains weak points (defect sites, 

such as microvoids or nanocrystalline particles formed during the fabrication process). (b) 

The crack initiates at the weakest point in the sample. The crack propagates slowly at the 

beginning and leaves the striation on the crack surface. (c) The crack continues to grow 

until the sample cannot sustain the stress and then starts the fast shearing of the sample 

(fast fracture). The fatigue damage is found to be localized. When one crack starts to grow, 

the rest of the sample still undergoes elastic deformation. The microstructure away from 

the crack region generally remains unchanged. (d) Therefore, after cutting off the damaged 

part, the remaining material performs like an as-cast material with less defects. 
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6 CHAPTER VI  

CONCLUSIONS 

 

(1) For the study of the effect of mechanical loading on the structure of BMG. The elastic 

formation of BMG in the macroscopic scale is not “elastic” in atomic scale. Through 

x-ray scattering and the anisotropic PDF analysis, it is shown that about a quarter of 

the volume of a metallic glass is occupied by anelastic sites, which are soft and bear 

no static shear load. Consequently the shear modulus of a metallic glass is lowered 

by a quarter compared to the instantaneous value. Just as other glasses, metallic 

glasses are fundamentally viscoelastic, and the volume fraction of the viscous sites is 

as much as a quarter, not of the order of 1% as in many theories. This point has to be 

fully taken into account in the application of metallic glasses, particularly as 

structural materials. 

(2) For the study of the effect of cyclic loading on the structure of bulk metallic glasses. 

The effect of “pre-fatigue” on the fatigue behavior and atomic structure of Zr-based 

BMGs had been studied, aiming to provide better mechanistic understanding of the 

fatigue process in BMGs. The complete compression-compression fatigue study was 

conducted on the as-cast, 6-mm in-diameter, Zr-based BMGs. The fatigue-endurance 

limit and the fatigue ratio of this material were 500 MPa and 0.27, respectively. 

Fatigue experiments on the pre-fatigue-to-failure samples indicated that these 

leftovers generally had similar or longer cycles-to-failure than the as-cast samples. 

The PDF analysis of the as-cast and post-fatigue samples, using the high-energy 



 

 

134

synchrotron X-ray scattering method, showed very small changes of local atomic 

structures. The results suggest that the fatigue life of the 6-mm in-diameter Zr-based 

BMG is dominated by the number of pre-existing crack-initiation sites in the sample. 

Once the crack initiates, the fatigue-induced damages are accumulated locally on 

these initiated sites, while the rest of the region deforms elastically. The statistical 

model predicts that the fatigue life of BMGs under compression-compression fatigue 

tests may be longer when the size of the sample decreases. The results from the 

present study imply that the fatigue failure of BMGs under compression-compression 

fatigue tests is a defect-controlled process. 

(3) For the study of the fatigue damage in Ni-based superalloys. The two-dimensional 

lattice-strain map of a double-notched specimen at different stage of its expected 

fatigue life under various loading conditions were obtained by in-situ x-ray 

diffraction measurement. The as-prepared samples are free of residual stress prior to 

the fatigue tests, but substantial residual stress is developed around the notch tip after 

only 1 cycle. The cyclic loading creates a compressive-residual stress zone around 

the notch tip. The maximum compressive stress measured by the lattice strain can be 

as high as 830±50 MPa at the beginning of the fatigue life (1% expected life), and 

gradually decreases as the fatigue test continues to ~700±50 MPa for samples at 75% 

of expected life. The size of the compressive-stress zone increases with fatigue cycles, 

following a fast, slow, and fast pattern, similar to the da/dN vs. ΔK curve in fatigue-

crack propagation experiments. Such compressive-stress zone increase rapidly in the 

first few cycles, and then transform into a slowly, and steady growing plateau, and 
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then speed up before failure. The fast-growing stage before failure is probably 

associated with the fatigue-induced failures. The size of the compressive-stress zone 

seems to be a good indication for the progressive fatigue damage during cyclic 

loading. However, the estimation of fatigue damage is qualitative, not quantitative. 

Finally, the strain variation possibly caused by the intergranuler stresses is large at 

the beginning of the fatigue life, but decrease with increasing fatigue cycles which 

indicates more and more grains were plastically deformed. 
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