

University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange

Doctoral Dissertations

Graduate School

8-2004

Group Differences in Safety Climate Among Workers in the Nuclear Decommissioning and Demolition Industry in the United States

Michael Everett Findley University of Tennessee - Knoxville

Recommended Citation

Findley, Michael Everett, "Group Differences in Safety Climate Among Workers in the Nuclear Decommissioning and Demolition Industry in the United States." PhD diss., University of Tennessee, 2004. https://trace.tennessee.edu/utk_graddiss/2224

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a dissertation written by Michael Everett Findley entitled "Group Differences in Safety Climate Among Workers in the Nuclear Decommissioning and Demolition Industry in the United States." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Human Ecology.

Susan M. Smith, Major Professor

We have read this dissertation and recommend its acceptance:

Paula Carney, Tyler Kress, Robert Kirk, Gregory Petty

Accepted for the Council: <u>Dixie L. Thompson</u>

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Michael Everett Findley entitled "Group Differences in Safety Climate Among Workers in the Nuclear Decommissioning and Demolition Industry in the United States." We have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with major in Human Ecology.

Susan M. Smith Major Professor

We have read this dissertation and recommend its acceptance:

Paula Carney

Tyler Kress

Robert Kirk

Gregory Petty____

Accepted for the council:

Anne Mayhew Vice Chancellor and Dean of Graduate Studies

(Original signatures on file with official student records.)

GROUP DIFFERENCES IN SAFETY CLIMATE AMONG WORKERS IN THE NUCLEAR DECOMMISSIONING AND DEMOLITION INDUSTRY IN THE UNITED STATES

A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville

> Michael Everett Findley August 2004

Copyright © 2004 by Michael Everett Findley

All rights reserved

DEDICATION

This dissertation is dedicated to the memory of Albert Crumpton Findley, Jr., son of Albert and Katherine, father of Robbie and Jeremy, and my big brother. Born in Castleberry, Alabama on October 14, 1947, Al lived life to the fullest until September 28, 2003. He retired as a chemical operator from Monsanto in Pensacola, Florida, and then took up a career driving tour buses cross-country. He loved to be with people and the room filled-up when he walked in. He drove his own Ford Mustang racecar and was a volunteer fireman for over thirty years. Al is sorely missed but his spirit has joined our grand parents Sonny and Mary Bell, and our Great Uncles John and George on our family farm.

ACKNOWLEDGEMENTS

To say that this study was a culmination of the efforts of many fails to convey the true nature of the many contributions. First, I wish to acknowledge the mentorship provided by my major Professor, Susan M. Smith. Dr. Smith's enthusiasm and constant pursuit of knowledge was an inspiration. The assistance of my committee members, including Paula Carney, Robert Kirk, Tyler Kress, and Gregory Petty, was key to the success of this study. Mike O'Neil with the UT Statistics Department artfully guided me through the SPSS work.

This study would not have been possible without the support of my employer and the willingness of the workers to honestly and frankly express their opinions. It is my sincere hope that the study findings and conclusions will serve as tool to build on the significant progress made to date in protecting workers in the nuclear decommissioning and demolition industry.

Finally, I wish to acknowledge the support of my friends and family. My friends at work, including Paula, Julie, James, Dave, Tom and Jon, patiently listened to my many treatises on the importance of worker safety attitudes and perceptions. My offspring, including Paige, Colleen, Katie, Matt and Mary, forgave my bowing out of many family outings and for the most part cheerfully yielded the family computer upon request. My youngest daughter, Mary, skillfully proofed the document for format and style. And lastly, my gratitude goes out to my better half who encourages me to fulfill my dreams. I love you, Melissa. Abstract

This study investigated group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States. The study population representative of workers in a high reliability industry included employees and subcontractors who worked at one of 10 locations in the United States managed by a multi-national corporation performing nuclear D&D operations. Safety climate was measured with a self-reported questionnaire, the Health and Safety Executive's Health and Safety Climate Survey Tool (CST). The voluntary and anonymous responses totaled 1,587 out of an available population of 3,296 for an overall response rate of 48.1 percent. Significant differences (p<0.001) were found by location, job position, on-the-job injuries and illnesses, and safety oriented behavior. Differences in self-reported safety climate among locations in high reliability industries were attributed to elements other than safety management systems. Differences in the selfreported safety climate among job positions in high reliability industries adduced evidence of two safety cultures in high reliability industries characterized by a negative relationship between hands-on work and safety climate. Differences in self-reported safety climate by self-reporting of on-the-job injuries or illness attested that worker safety attitudes and perceptions in high reliability industries degrade with the occurrence of onthe-job injuries and illnesses. Differences in self-reported safety climate by self-reported participation in safety oriented behavior bespoke the positive effect that participation in the safety program has on worker safety attitudes and perceptions. Recommended safety improvement strategies included 1) addressing the contributions of elements other than safety management systems such as social, political and human factors to the safety

climate across locations; 2) attending to the self reported safety climate of the workers performing hands-on work; 3) implementing immediate and long term follow up with workers experiencing on-the-job injuries or illnesses; and 4) ensuring management support of worker participation in safety oriented behavior. Based on the study findings and conclusions, further research into group differences in safety climate in high reliability industries is recommended to better enable management teams to focus safety process improvements.

TABLE OF CONTENTS

I.	FORMUALTION AND DEFINITION OF THE PROBLEM	1
	Introduction	1
	Purpose of the Study	3
	Research Questions	3
	Need for the study	4
	Assumptions	5
	Delimitation	5
	Limitations	6
	Definition of Terms	6
	Summary	8
II.	REVIEW OF RELATED LITERATURE	9
	Introduction	9
	Literature and Research Related in Content	9
	Literature and Research Related in Methodology	22
	Literature and Research Related in Content and Methodology	33
	Chapter Summation	41
III.	METHODS AND PROCEDURES	43
	Introduction	43
	Study Population	43
	Selection Process	45
	Instrumentation	45

	Data Collection	56
	Statistical Analysis	57
	Summary	60
IV.	ANALYSIS OF DATA	61
	Introduction	61
	Survey Response	61
	Demographic Analysis	63
	Factor Reliability	74
	Statistical Analysis	77
	Summary	108
V.	SUMMARY, FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS	112
	Summary	112
	General Findings	113
	Findings Related to the Research Questions	113
	Conclusions	117
	Recommendations	119
	Recommendations for Further Research	121
	Summary	121
VI.	THE STUDY IN RETROSPECT	123
	Introduction	123
	Strengths	123
	Weaknesses	125
	Other Issues Affecting Safety Climate	126
	viii	

	Conclu	uding Remarks	126
REFEF	REFERENCES		
APPENDICES			139
		dix A: Certificate of Institutional Review Board otion, Study Information Sheet and Questionnaire	140
	Appen	dix B: Data Sets	159
	B.1	Correlation of factor scores with overall safety climate score	160
	B.2	Mean difference in safety climate scores by locations	161
	B.3	Mean safety climate factor scores by location	164
	B.4	Mean differences in factor scores by locations	167
	B.5	Mean difference in safety climate scores by job position(b)	194
	B.6	Mean safety climate factor scores by job position	196
	B.7	Mean differences in factor scores by job position(c)	198
	B.8	Mean differences in safety climate scores by first aid injury or illness	209
	B.9	Mean safety climate factor scores by reported first aid injury/illness in the previous 12 months	210
	B.10	Mean differences in factor scores by first aid injury	211
	B.11	Mean differences in safety climate score by medical treatment injury or illness	212
	B.12	Mean safety climate factor scores by reported medical treatment injury/illness in the previous 12 months	213
	B.13	Mean differences in factor scores by medical treatment injury or illness	214
	B.14	Mean difference in safety climate score by lost/restricted injury or illness	215

	B.15	Mean safety climate factor scores by reported lost time/restricted injury/illness in the previous 12 months	216
	B .16	Mean difference in factor scores by lost time/restricted injury	217
	B.17	Mean differences in safety climate score by introductory behavior-based safety training in the past 12 months	218
	B.18	Mean safety climate factor scores by reported introductory behavior-based safety training in the previous 12 months	219
	B.19	Mean differences in factor scores by introductory behavior-based safety training in the past 12 months	220
	B.20	Mean differences in safety climate score by behavior-based safety observation training	222
	B.21	Mean safety climate factor scores by reported behavior-based safety observation training in the previous 12 months	223
	B.22	Mean differences in factor scores by behavior-based safety observation training	224
	B.23	Mean differences in safety climate scores by behavior-based safety observation	225
	B.24	Mean safety climate factor scores by reported behavior-based safety observation in the previous month	226
	B.25	Mean differences in factor scores by behavior-based safety observations	227
VITA			228

х

LIST OF TABLES

TABLE		PAGE
3.1	Number of parent company and subcontractor workers by location	44
3.2	CST safety climate factors and items	47
3.3	Demographic variables and corresponding instrument items	55
4.1	Study population and responses by location	62
4.2	Company or subcontractor affiliation of respondents	64
4.3	Gender of respondents	64
4.4	Age range of respondents	65
4.5	Race of respondents	65
4.6	Hispanic or Latino ethnic origin of respondents	66
4.7	Employment classification of respondents	68
4.8	Respondents' membership in a union	68
4.9	Union affiliation of respondents who reported membership in a labor union	69
4.10	Reported years in current profession of respondents regardless of location	70
4.11	Reported years at current location of respondents	70
4.12	Job position of respondents at current location	72
4.13	Work shift of respondents	72
4.14	Factor reliability based on internal consistency	76
4.15	Group differences in mean safety climate scores among locations	79
4.16	Group differences in mean factor scores among locations	81

4.17	Group differences in mean safety climate scores among job positions	84
4.18	Group differences in mean factor scores among job positions	86
4.19	Group differences (p<0.05) in item scores among job positions	87
4.20	Group differences in mean safety climate score between respondents who reported a first aid injury/illness in previous 12 months and those who reported none	91
4.21	Group differences in mean factor scores between respondents who reported a first aid injury/illness in the previous 12 months and those who reported none	92
4.22	Group differences in mean safety climate score between respondents who reported medical treatment injury/illness in the previous 12 months and those who reported none	94
4.23	Group differences in mean safety factor scores between respondents who reported medical treatment injury/illness in the previous 12 months and those who reported none	95
4.24	Group differences in mean safety climate scores between respondents who reported lost time/restricted injury/illness in the previous 12 months and those who reported none	97
4.25	Group differences in mean safety climate factor scores between respondents who reported a lost time/restricted injury/illness in the previous 12 months and those who reported none	98
4.26	Group differences in mean safety climate scores between respondents who reported behavior-based safety training in the previous 12 months and those who reported none	101
4.27	Group differences in mean safety climate factor scores between respondents who reported behavior-based safety training in the previous 12 months and those who reported none	103
4.28	Group differences in mean safety climate scores between respondents who reported behavior-based safety observation training in the previous 12 months and those who reported none	104

4.29	Group differences in mean safety climate factor scores between respondents who reported behavior-based safety observation training in the previous 12 months and those who reported none	106
4.30	Group differences in mean safety climate scores between respondents who reported behavior-based safety observation in the previous month and those who reported none	107
4.31	Group differences in mean safety climate factor scores between respondents who reported behavior-based safety observation in the previous month and those who reported none	109

LIST OF FIGURES

FIGURE		PAGE
1.	Number of Self-Reported On-The-Job Injuries and Illness by Classification	73
2.	Safety-Oriented Behavior by Type	75
3.	Mean Safety Climate by Location	78
4.	Mean Safety Climate by Job Position	83
5.	Mean Safety Climate by On-The-Job Injury or Illness	90
6.	Mean Safety Climate by Safety-Oriented Behavior	100

Chapter I

FORMULATION AND DEFINITION OF THE PROBLEM

Introduction

Healthy social systems share prominence with robust technical safeguards as essential ingredients in the achievement of safety goals in high reliability industries (Mearns, Whitaker, Flin; 2003). Human factors are the primary causative agent in 60 to 80% of accidents (Flin, 2003). Organizations with complex socio-technical systems pay considerable attention to safety assessments as a tool to monitor significant hazards, even though significant system failures are rarely experienced (Sorenson, 2002). Increasingly these safety assessments rely less on lagging indicators such as injury rates in favor of a greater focus on leading indicators such as the measurement of safety climate (Flin, Mearns, O'Conner, and Bryden; 2000). Examination of the health of social-technical systems through measurement of safety climate holds the promise of predicting weaknesses before system failure (Flin, 1998).

Despite the increasing dependability of technical systems, high reliability industry failures such as the Piper Alpha oil platform in the North Sea (Cullen, 1990), Chernobyl (OECD, 1987), and the Space Shuttle Challenger (Vaugh; 1996) share a common thread of weaknesses in human reliability (Cheyne, Oliver, Tomas, and Cox, 2002). Concern for technical failures has been replaced by human factors as prime causes of system failures in high reliability industries (Weick, Sutcliff, and Obstfeld, 1999) and is evident in the recognition by the nuclear power industry of the importance and need to assess organizational culture (IAEA, 1997). Attention to human reliability and organizational culture must be commensurate with technical concerns within the complex sociotechnical systems present in high reliability industries (Reason, 1997).

Fueled by recognition of the importance of human factors to the reliability of complex socio-technical systems, empirical research in the last two decades has resulted in a proliferation of instruments developed to measure safety climate (Flin et al, 2000). Based on an extensive body of organizational culture and climate research, safety culture has come to be recognized as embodied values, beliefs, and underlying assumptions while safety climate is viewed as a descriptive measure of the workforce's safety attitudes and perceptions (Gonzalez-Roma, Peiro, Lloret, and Zornoza; 1999). Notwithstanding the ongoing debates as to supremacy of safety culture versus safety climate (Flin et al, 2000), safety climate has emerged as the preferred measurement tool (Cox and Flin, 1998). Safety climate instruments share a common methodology, selfreport questionnaires administered as large scale surveys, but lack a unifying theoretical model (Guldenmund, 2000; Williamson, Feyer, Cairns, and Biancotti, 1997). While safety climate instruments have been designed based on safety research themes and often share common safety dimensions or factors, the instruments are typically customized to the needs of the sponsoring organization and thus, differ significantly in content, style, statistical analysis, sample size, sample composition, industry, and country of origin (Flin et al, 2000).

Purpose of the Study

The purpose of this study was to investigate group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States.

Research Questions

In addressing the purpose of the study the following research questions were developed:

- Are there significant differences in safety climate among self-reported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system?
- 2. Are there significant differences in safety climate among self-reported job positions among workers of a nuclear D&D employer located in the United States?
- 3. Are there significant differences in safety climate between those who selfreported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States?
- 4. Are there significant differences between self-reported safety climate and safetyoriented behavior, as measured by self-reported participation in a behavior-based safety process, among workers of a nuclear D&D employer located in the United States?

Need for the Study

The measurement of safety climate has gained prominence as a safety management tool but little consensus exists on its concepts as evidenced by a scarcity of scientifically based research pointing to the presence of an accepted theoretical model (Flin et al, 2000). The concept remains in its developmental stage with most research efforts not progressing beyond face validity to address the more important forms including predictive and construct validity (Guldenmund, 2000). These instruments share the basic assumption that safety culture and safety climate can be described by a finite number of dimensions or factors (Guldenmund, 2000) and reviews of numerous safety climate instruments suggest that a basic set of factors is emerging (Dedobbeleer and Beland, 1998; Guldenmund, 2000; Flin et al, 2000). Definitions of safety culture and safety climate include the premise that workers share a common set of safety values and beliefs (Cheyne, Oliver, Tomas & Cox, 2002). However, differences in safety culture among groups have been identified (Lee, 1998; Mearns, Flin, Gordon, and Fleming, 1998; Geldon and Litherland, 2001; Harvey, Bolam and Gregory, 1999; McDonald, Corrigan, Day, and Cromie, 2000; HSE, 2002; Guldenmund, 2000; Flin, Mearns, O'Connor, and Bryden, 2000). The absence of a cohesive safety cultures raises questions over the effectiveness of interventions without a concomitant understanding of group differences (Pidgeon, 1998). Safety climate measures that fail to recognize the contribution of subcultures do not identify the competing agendas among different groups in an organization (Health & Safety Laboratory, 2002).

The operationalization of safety climate remains a significant challenge (Guldenmund, 2000). Despite an emerging consensus on the factors that comprise safety

4

climate, the existence of subcultures calls for safety climate practitioners to evaluate group differences in safety attitudes and perceptions. Better understanding of these group differences can facilitate the implementation of effective culture change programs (Zohar 2000). Based upon the above information and other factors it is concluded that the specific need for conducting this study is to better understand the role of group differences in safety climate among workers in the nuclear D&D industry

Assumptions

The basic assumptions made regarding this study were as follows:

- The Health and Safety Executive (HSE) Health and Safety Climate Survey Tool (CST) was a valid and reliable instrument for measuring safety climate levels among workers in the nuclear decommissioning and demolition industry in the United States.
- 2. Those workers who were asked to complete the survey instrument were willing.
- 3. Those workers who completed the survey answered questions honestly and accurately.
- 4. The fact that the survey instrument was specifically developed through application in the nuclear industry excludes the need for development of a theoretical model for safety climate across multiple industries.

Delimitation

The research study included the following delimitation:

 This study was delimited to workers at locations of one employer in the nuclear D&D industry in the United States.

Limitations

The study was limited in the following ways:

- 1. The study was limited to self-reported data.
- 2. There was no control over the number of workers who completed the survey.

Definition of Terms

The following terms were operationally defined for purposes of this study:

- 1. <u>High reliability industries</u>: are industries that employ complex defense in depth safety systems due to the potential for extreme hazards to workers, the public and/or the environment. The defense in depth safety systems include an integrated set of engineered barriers and administrative controls arranged to provide multiple and redundant protection from system failures. High reliability industries such as the nuclear and chemical process industries typically have achieved low accident rates when compared to other industry sectors but catastrophic system failures are a real and ongoing threat to safe operations.
- 2. <u>Nuclear decommissioning and demolition</u>: is a highly controlled and regulated deconstruction process that encompasses the systematic shutdown of obsolete and/or unsafe nuclear facilities and the dismantlement of nuclear equipment and facilities. The process rigorously follows a decommissioning and demolition (D&D) plan designed to ensure protection of workers, the public and the environment. The D&D plan is developed with input from multiple subject matter experts and includes system redundancy to reduce the risk of accidents and

the uncontrolled release of hazardous materials. Nuclear D&D work is extremely hazardous in that severe industrial safety, chemical, and nuclear hazards may be present and the D&D process necessarily requires the removal of systems originally installed to protect from these hazards.

- 3. <u>Safety climate</u>: is a descriptive measure at one point in time of individual and group safety attitudes and perceptions based on responses to questions related to a set of factors associated with high safety performance. Safety climate refers to surface features of safety culture and the relationship between safety climate and safety culture is analogous to the relationship between temperature readings with a thermometer and the weather.
- 4. <u>Safety culture</u>: is the embodiment of an organization or group's shared values, beliefs and underlying assumptions that reflects their perceptions of the organizational atmosphere and the status of the safety program. Safety culture provides insight into the way that an organization or group views safety risks and is part of the overall culture of an organization or group.
- 5. <u>Safety climate factor</u>: refers to a set of safety themes that when combined provide a basis for the measurement of safety culture and climate. Safety climate instrument design typically features a number of questions or items that are grouped into sets of safety climate factors. Individual safety climate factor scores are computed based on an averaging of the item scores that comprise each factor. The overall safety climate score is calculated based on an averaging of the individual safety climate factor scores. Five common safety climate factors

emerging from the research literature include (1) management; (2) risk; (3) safety arrangements; (4) work pressure; and (5) competence and procedures.

6. <u>Workers</u>: refers to those persons employed by the parent company or subcontractors working for the parent company at the 10 locations For purposes of this study workers included the following job positions: senior manager, manager, supervisor, foremen, workfoce/craft, technical support, and administrative.

Summary

This chapter has presented an introduction to the research problem, which was to investigate the group differences in safety climate among workers in the nuclear D&D industry in the United States. For purposes of the study it was assumed the selected safety climate tool was valid and reliable, workers would be willing to complete the survey, the study participants would answer questions honestly and accurately, and the fact that the instrument was developed specifically through application in the nuclear industry excluded the need for a theoretical model for safety climate across industries. The study was delimited to one nuclear D&D employer in the United States. Study limitations included self-reported data and the fact that there was no control over whether a worker completed the survey. Operational definitions were developed for high reliability industries, nuclear decommissioning and demolition, safety climate, safety culture, safety climate factors, and workers. The organization of the study includes this introduction and chapters that address the review of the literature, methodology, analysis, findings, and the study in retrospect.

CHAPTER II

REVIEW OF RELATED LITERATURE

Introduction

The purpose of this study was to investigate the group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States. The purpose for this chapter was to present a comprehensive review of literature and research related to the problem to be researched. This chapter will address the literature and research in three categories. They are as follows:

- 1. Literature and research related in content.
- 2. Literature and research related in content and methodology.
- 3. Literature and research related in methodology.

Literature and Research Related in Content

Organizational Culture and Climate

Interest in the role of organizational culture in program effectiveness arose with the work of Elton Mayo and W. Lloyd Warner who reported on the social, technical, and ideological relations of the workers in the Hawthorne plant in the late 1920's and 1930's (Roethlisberger & Dickson, 1946). In the late 1940's and 1950's a number of researchers theorized that values and attitudes influence organizational performance (Selznick, 1949; Gouldner, 1954; Blau, 1955; & Dalton, 1959). The 1980's saw the concept of culture gain an increased role in studies of organizational performance (Peters & Waterman, 1982; Ouchi, 1981; Shein, 1984). The link between an organization's culture and performance resides at the heart of the debate over the existence of organizational culture. Deal and Kennedy (1983) found that the organizational structure alone does not explain performance and suggested culture as an important influence. Peters and Waterman's (1982) review of a series of leading companies identified numerous similarities among organizations and industries that were necessary for superior organizational performance. However, ten years later, Denison (1990) observed that many of the companies examined by Peters and Waterman (1982) were no longer industry leaders and thus, argued that no evidence supports the link between organizational culture and performance.

Multiple levels of organizational culture are most commonly proposed (Van Mannen & Barley, 1985; Schien, 1990). Schein's (1990) model of organizational culture includes three levels: 1) artifacts, 2) espoused values, and 3) basic underlying assumptions. Artifacts are environmental and physical characteristics that are the more superficial manifestations of culture. Espoused values are the leaders' articulation of the beliefs and values of the organization that may or may not be accurately portrayed. Basic underlying assumptions are the unconscious bias of organization that validates organizational practices. Van Mannen and Barley (1985) identified four levels or domains for organizational culture. The first domain, the ecological context, includes physical space as well as the larger social context of the organization. The second domain consists of the differential interactions that form the network of exchanges that link members. The third domain is made up of the collective understandings of the organizational members and may be compared to Schien's underlying assumptions. The

fourth domain addresses the reproductive and adaptive capacity that is necessary to sustain an organization's culture.

Interest in organizational climate began in the 1930's (Lewin, Lippitt, & White, 1939). Climate has been defined in terms of formal policies and worker needs, values, and personalities (Argyris, 1958). More recently Reichers and Schneider (1990) described climate as the shared perceptions regarding both formal and informal organizational policies, practices, and procedures.

The relationships between climate and culture have been a common area of discussion among organizational researchers (Schneider, 1990; Schein, 1990; Denison, 1990). Cox and Cox (1996) compared culture to personality and climate to transient mood states. Climate and culture researchers both examine connections between beliefs and assumptions and the organization's behaviors and practices. The interdependent and reciprocal relationships between systems and individuals present difficulty to both concepts. Both concepts struggle with the objective definition of the psychological characteristics of an organization.

Safety Culture and Safety Climate

The study of the link between organizational performance and culture was extended to the field of safety management in the 1980's (Zohar, 1980) amid the growing realization that human factors rather than technical failures are the root causes of accidents in high reliability industries (Weick, Sutcliffe, and Obstfeld, 1999). Major events such as the Chernobyl accident propelled interest in safety culture and climate to the forefront (IAEA, 1986). High reliability industries such as the nuclear power industries now recommend that facilities routinely assess safety culture and climate (ACSNI, 1993; IAEA, 1991, 1997).

The longstanding debate between proponents of organizational culture and climate has become common among safety researchers (Flin, Mearns, O'Connor and Bryden, 2000). Advocates of both safety culture and safety climate rely on the extensive body of organizational research where culture is seen as the embodied values, beliefs, and underlying assumptions and safety climate is a descriptive measure of individual and group perceptions and attitudes (Gozalez-Roma, Peiro, Lloret, and Zornoza, 1999). Cox and Flin (1998) concluded that when the operationalization of the construct into a practical tool was the foremost concern, safety climate was preferred over safety culture. Out of the discourse between safety culture and climate proponents safety climate has emerged as a measure of the surface features of safety culture based on worker attitudes and perceptions at one point in time (Schnieder and Gunnarson, 1991; Cox and Flin, 1998; HSE, 1999). Safety climate has been compared to a snapshot that serves as an indicator of the underlying safety culture (Flin, Mearns, O'Connor and Bryden, 2000).

Safety Climate

The study of safety climate arose from the work of organizational researchers and was influenced by findings that companies with low accident rates possessed common organizational features (Cohen, Smith, & Cohen, 1975; Shafai-Sharai, 1971). Beginning in the 1980's, safety climate has come to the forefront as a proposed indicator of safety program effectiveness. Interest in organizational factors linked to successful safety programs (Shafai-Sharai, 1971; Cohen, Smith & Cohen, 1975; Cohen, 1977; Cleveland,

Cohen, Smith & Cohen, 1978) led Zohar (1980) to assert that workers share common perceptions regarding safety and that the sum of these perceptions is the organization's safety climate. Zohar proposed that safety climate varied among organizations and this variance relates to safety performance. Building on the work of Zohar (1980) other researchers identified dimensions or factors believed to provide a measure of safety climate and correlate with safety performance (Brown and Holmes, 1986; Dedobbeleer and Beland, 1991; Seppala, 1992; Donald, Cantaer and Chalk, 1991; Cox and Cox, 1991; Niskanen, 1994; Williamson, Feyer, Carns & Biancotti, 1997; Carroll, 1998; Harvey, Bolam, Gregory & Erdos, 2001). Despite a lack of consensus by these researchers on safety climate factors, general agreement exists on the concept of safety climate and its relationship to safety performance (Lee, 1998; Sorenson, 2002).

Zohar (1980) first applied organizational theory to the measurement of safety climate. Utilizing the literature on organizational characteristics of low accident plants, Zohar identified the following seven organizational factors found to be related to safety performance.

- 1. Importance of safety training
- 2. Management attitude towards safety
- 3. Level of risk at workplace
- 4. Effects of workplace on safety
- 5. Status of the safety officer
- 6. Effects of safe conduct on social status
- 7. Status of safety committees

Building on Zohar's work (1980), Brown and Holmes (1986) proposed three factors including 1) perceived risk, 2) perceived level of management concern, and 3) perceived level of management action. Lower safety climate scores were reported for workers who had experienced an on the job injury compared to those workers who had no injuries. Replicating the work of Brown and Holmes (1986), Dedobbeleer and Beland (1991) recommended a two factor model of safety climate that included 1) management commitment to safety, and 2) worker involvement in safety. They identified a relationship between safety climate and safety performance. Hofmann and Stetzer (1996) employed the Dedobbeleer and Beland (1991) safety climate measure to examine safety performance. Lee (1998) developed a safety climate questionnaire based on the reported safety beliefs and attitudes of workers gathered through focus groups and confirmed a positive relationship between safety climate and safety performance.

Amid the widespread proliferation of safety instruments, a set of core features has emerged (Flin, Mearns, O'Connor, and Bryden, 2000; Guldenmund, 2000). In a review of 18 safety climate instruments, Flin, Mearns, O'Connor, and Bryden (2000) concluded that three factors are core features of safety climate. They found that these safety climate instruments shared a common design approach. Each of the safety climate instruments measured factors or themes derived from a review of the safety literature that were often customized based on interviews and focus groups. Three factors were found to appear in two thirds of the reviewed safety climate instruments and included management, safety systems, and risk. Two factors, competence and work pressure, were prevalent in one third of the reviewed instruments. In a review of 15 safety climate studies, Guldenmund (2000) identified the most frequently employed factors to include management, risk, safety arrangements, procedures, training, and work pressure.

Despite a significant amount of safety climate research, the proliferation of safety climate instruments and the emergence of a set of core factors, an accepted model of the relationship of safety climate with safety performance is lacking (Guldenmund, 2000; Sorenson, 2002). In a review of the literature and research on safety culture and safety climate, Guldenmund (2000) concluded that the constructs had not progressed beyond the developmental stages that rely on the assumption that safety climate be measured through a limited number of factors. These factors are revealed through organization-wide questionnaires that include individual items linked to the selected themes. Guldenmund (2000) argued that most safety climate efforts have not progressed beyond face validity and thus, the evidence for safety climate as an alternative safety performance indicator is wanting.

Sorenson (2002) in his review of the safety culture and climate reported that the body of literature, albeit voluminous, was fragmented. Sorenson (2002) pointed to the lack of agreement on the concept of safety culture and climate. Too often studies were found to focus on a small set of management and organizational attributes and the differences in attributes chosen between one study and another makes comparisons difficult. Sorenson (2002) observed that while it is possible to correlate management and organizational factors with safety performance in certain industries that have sufficiently high numbers of unwanted events, the low accident rates characteristic of high reliability industries such as the nuclear industry present no basis for comparison of organizations.

System Failures in High Reliability Industries

Human factors are an important element in system failures among high reliability industries (Reason, 1998). In the 1930's Henrich's domino theory was based on the premise that a social environment conducive to accidents was the first domino to fall (Ostram, Wilhelmsen & Kaplan, 1993). Major safety disasters among high reliability industries such as the escape of deadly gas at Bhopal in India share similar root causes. Despite comprehensive engineering and technical safeguards, failure occurred due to human error. The incident investigations concluded that the causes were "malpractices that corrupted the large parts of the socio-technical system." (Lee, 1998, p. 217). In Clarke's study (1996) of hazard reporting by train operators, responses to serious but routine hazards had been trivialized and thus, were a key factor in a number of train accidents. Regulatory or technical solutions fail to address the rapidly changing sociotechnical systems where precedents become redundant and regulations do not affect the way work is done. (Lee, 1998).

Root causes of serious accidents in high reliability industries are present long before an obvious accident sequence can be identified (Reason, 1997). The interaction of latent conditions with local triggering events results in organizational accidents. Disaster preconditions are a by-product of the normal operation of managerial and socio-technical systems (Turner, 1994). Pidgeon (1998) warned that basing risk management strategies on anticipation of all possible hazards presents serious problems when unanticipated hazards occur. These strategies contribute to organizational pre-conditions to major system failures. Reason (1998) points to unsafe culture where the role of unsatisfactory resolution of production over safety is a major contributor to organizational accidents rather than individual accidents. Pidgeon (1998) identified organizational preconditions to major system failures and suggested that safety climate acts as a precondition for both safe operations and system failures among high reliability industries.

Worker attitudes and perceptions are recognized as a key factor in organizational performance of high reliability industries. Thompson (1996) found that customer satisfaction, absenteeism, labor grievances, profit, and safety were strongly related to organizational performance. Clarke's (1996) study of train engineers found a correlation between the behavioral response of the engineers and risk perception, and that shared perceptions among managers and staff was a key feature of a healthy safety culture. McLain (1995) proposed that worker perceptions of risk impact a number of culture and climate factors including job satisfaction, satisfaction with work conditions, work stress, and distraction from task performance. In Zohar's study (1980) of 20 industrial organizations, worker's perceptions of the relative importance of safety shaped their behavior. According to Geller (1994) sustained improvement in safety performance depends on the incorporation of safety into the organization's beliefs and attitudes.

Group Differences in Safety Climate

A number of studies have identified group differences in safety climate (HSE, 2002) that suggests groups do not share an overall view of safety (Collinson, 1999). In a review of safety culture and climate research since 1998, the Health and Safety Laboratory (2002) found that despite the prevailing definitions of safety culture and climate that propose a cohesive set of safety values and beliefs, many of the recent studies point to the existence of subcultures that often do not share common safety

attitudes and perceptions. These dissimilarities in safety attitudes and perceptions among different groups within an organization were attributed to divergent management styles and levels of concern for safety issues. While the differences were not viewed as necessarily undesirable, it was argued that neglect of these differences could result in failure to identify competing agendas and disparate risk perceptions.

Harvey, Bolam, and Gregory (1999) demonstrated evidence of group differences in safety climate among high reliability industries in their study of safety climate within the nuclear industry. They found two distinct safety subcultures including a management subculture comprised of management, professional, and technical staff and an industrial worker subculture. Differences between managers and workers were presupposed to cause multiple safety issues related to communications and risk taking behavior.

McDonald, Corrigan, Daly and Cromie (2000) identified two safety subcultures across four separate aircraft maintenance organizations that differentiated between management and technicians. They entitled one a 'professional subculture' comprised of technicians who maintained that they were responsible for the safety of the aircraft and fulfilled this responsibility by exercising professional skill and knowledge. On the other hand management believed that technicians were to perform their work by closely following the written procedures. McDonald et al (2000) suggested this difference in job perception represented a weakness in the organizations' safety program.

Cheyne, Oliver, Tomas, and Cox (2002) reported evidence of an industry wide safety culture in their study of the safety climate within a two manufacturing organizations. Differences between the two organizations were attributed to dissimilar organizational and environmental influences. Cheyne et al (2002) postulated that the

18

similarities between the two organizations were indicative of a shared cultural structure within an industry while the differences reflected an organization specific safety climate.

Flin's review (2003) of research into managerial behavior and leadership styles in relation to safety cited evidence of differing safety climates among supervisors, site managers, and senior managers. Flin recommended that organizations regularly monitor how effectively management commitment to safety is transmitted through the management chain by using safety climate surveys.

Glendon and Litherland (2001) reported differences in safety climate between construction and maintenance job categories within the road construction industry. Construction crews' higher score on 'relationships' was attributed to their greater contact with supervisors. Glendon and Litherland believed that more contact with supervisors beneficially contributed to healthier safety perceptions. Higher safety climate scores for maintenance crews on 'safety rules' were ascribed to maintenance personnel's more favorable opinion of safety rules as they have fewer to follow.

Prussia, Brown and Willis (2003) examined a model for predicting safe work behaviors and its relationship to shared safety attitudes and perceptions between managers and workers. They reported differences in safety perceptions linked to overall safety climate scores. Group variation in perceptions of safety responsibility widened as safety climate scores degraded. Prussia, Brown and Willis (2003) suggested that improvements in safety climate scores required closer agreement between managers and workers over safety responsibility.

Zohar's (2000) test of a group-level model of safety climate identified withingroup homogeneity and between-group variation. Different perceptions of written

19

procedures versus supervisory practices were reported among groups. Zohar (2000) reported that workers within distinct groups share perceptions concerning supervisory safety practices and that the resultant dissimilar safety climate scores among groups predicted safety performance. Zohar concluded that the results of his study (2000) provided three validation criteria for safety climate as a group level construct. First, within group homogeneity was supported by worker development of similar perceptions regarding supervisors. Second, between groups variance was evident through variations in perceptions between groups. Third, the demonstrated link between group level safety climate and injury rates supported a relationship between group level safety climate and performance.

Differences in group safety attitudes and perceptions can lead to misunderstandings conflict (Health Laboratory, and and Safety 2002). Misunderstandings and conflict between the day and night shifts of the Piper Alpha offshore platform in the North Sea is believed to have contributed greatly to its catastrophic failure (Mearns, Flin, Gordon, and Fleming, 2001). Differences in wages and benefits between contract workers who comprise the bulk of the crews working on off shore oil and gas installations and company workers were cited by Collinson (1999) as contributing to the contract workers being distance from the organization's safety culture and resulting in greater frequency of accidents among contract workers.

Group differences in safety climate suggests an absence of a cohesive safety culture (Health and Safety Laboratory, 2002) and brings into question the effectiveness of safety culture intervention programs that do not take into account these group differences

20

(Pidgeon, 1998). Safety climate studies that omit the contribution of different groups fail to identify competing agendas (Health and Safety Laboratory, 2002).

Summary

The extensive body of organizational culture and climate research that supports the correlation of organizational culture and climate with organizational performance provides a theoretical basis for the link between safety culture and climate and safety performance. Although safety culture and climate research dates back little more than 20 years, safety researchers have benefited from the work by organizational researchers. Safety researchers have taken up the longstanding debate between proponents of organizational culture versus climate. Based on the practicality of the measurement tool safety climate has emerged as the preferred approach. A core set of safety climate factors has emerged over the last 20 years of safety climate research. Despite the significant amount of safety climate research resulting in the development of many safety climate tools an accepted model of the relationship between safety climate and safety performance is lacking. However, evidence supports the important role of human factors in the safety performance of high reliability industries. The importance of group differences in safety climate has come to the forefront of research and has implications for the effective implementation of safety climate interventions.

Based on this review of literature and research related in content, the following is observed regarding the proposed study. A theoretical basis for safety climate research is provided by the extensive organizational culture and climate research. While no accepted model for the relationship between safety climate and safety performance has been agreed upon, evidence of the role of human factors in accident causation among high reliability industries favors the evaluation of safety attitudes and perceptions through safety climate surveys. Recent safety climate research has brought to light the existence of group differences and the impact these differences may have on the effectiveness of safety program interventions. Finally, this review of literature and research related in content to the proposed study underscores the value of the investigation of group differences in safety climate among workers in high reliability industries.

Literature and Research Related in Methodology

Measurement of Organizational Culture and Climate

Organizational researchers apply dissimilar methodology to investigate organizational culture and climate based on the differences in the two constructs (Schein, 1984; Denison, 1990). Culture research employs largely qualitative methods due to the unconscious and highly subjective content of culture (Schein, 1984). Schein argues that the study of organizational culture requires the skilled probing and interviewing skills of clinicians. In Schein's view, standardized instruments fail to accurately measure culture because an organization's culture is unique to itself.

Climate research utilizes more quantitative methods to measure artifacts, or surface level characteristics of an organization (Denison, 1990; Reichers & Schnieder, 1990; Schein, 1990). Individual perceptions of organizational practices and interactions that represent underlying values are measured with surveys. Denison (1990) likened the measurement of climate to the use of a thermometer that provides information on the current state of the weather while culture research is similar to the use of barometer that permits patterns of change.

Climate measurements can be made at the individual level, the work group level, or the organizational level (Dansereau & Alutto, 1990) but some climate researchers maintain that the work group is the lowest level of division as climate requires the aggregation of the perceptions of multiple individuals (Drexler, 1977; Glick, 1985). Rousseau (1985) asserted that the critical aggregation issue in combining individual perceptions into work group or organizational climate levels was to provide the respondents the right frame of reference. Culture researchers support analysis at the organizational level (Peters & Waterman, 1982; Ouchi, 1981) and at multiple levels (Martin, 1991).

Based on a review of organizational culture research methodologies, Martin (1991) identified two perspectives. The etic perspective looks at differences between cultures. The emic perspective examines only the universal elements common to all cultures. As with climate research, the etic perspective lends itself better to quantitative measurement than does the emic perspective.

Dansereau and Alutto (1990) identified two approaches to studying climate. The dominant climate theory, the wholes perspective, addresses the differences among and the commonness within groups. Standardized instruments have been developed to quantify differences among the units of analysis at a given level. The less common theory, the parts perspective, holds that each unit of analysis demonstrates the similar differences within the unit as with the other units. In the parts perspective, inability to

23

conduct comparative analysis among groups diminishes the strength of comparisons among different organizations.

Developmental Stages in the Measurement of Safety Climate

Zohar (1980) developed the first safety climate questionnaire based on a review of safety literature on the characteristics of low accident plants and validated the instrument through application in a stratified sample of 20 industrial organizations in Israel. Organizational characteristics that differentiated between high versus low accident-rate companies formed the basis of Zohar's (1980) safety climate tool. Most safety climate researchers that have followed employed Zohar's (1980) use of a literature review as the theoretical basis for identification of safety climate dimensions (Brown and Holmes, 1986; Dedobbeleer and Beland, 1991; Hoffman and Stetzer, 1996) although focus groups have also been used to customize the individual items to the study population (Lee, 1998).

Zohar's (1980) initial questionnaire included seven climate factors represented by seven short statements with a 5-point Likert scale to signify level of agreement. The questionnaire's 49 items were phrased positively so that full agreement resulted in a higher numerical score. A pilot administration of the initial survey was conducted at 4 plants by a team of three interviewers who read the items aloud to workers and recorded their level of agreement on the 5-point scale. Factor analysis of the safety climate factors was performed using a principal-components factor analysis with varimax rotation. Zohar confirmed the validity of questionnaire by demonstrating that the resultant 8 safety climate factors largely overlapped the original 7. Zohar's deletion of nine items not

found to be related to the eight safety climate factors resulted in a 40-item safety climate questionnaire phrased positively with a 5-point Likert-style agreement scale.

Brown and Holmes (1986) tested the validity of Zohar's (1980) safety climate questionnaire through the measurement of the safety climate of 425 American production workers. Based on confirmatory factor analysis, the resultant unsatisfactory performance of the questionnaire was attributed to the development of the Zohar questionnaire for a different population. Cautioning against the blind acceptance of a measurement model without indication of the instruments reliability and validity for the study population, Brown and Holmes (1986) used an exploratory factor analytic approach to modify the Zohar (1980) questionnaire. The three factors retained included worker perceptions of 1) how concerned management was about worker well being, 2) how active management was in responding to a concern, and 3) how they perceived physical risk. The reliability and validity of the Brown and Holmes modified three-factor safety climate questionnaire was confirmed by factorial invariance tests that yielded a maximum likelihood indicating the climate structures did not differ between workers who had experienced an accident and those who had not.

Dedobbeleer and Beland (1991) tested the Brown and Holmes (1986) modified questionnaire on construction workers. Using linear structural relations procedures that included the maximum likelihood used by Brown and Holmes (1986) and weighted least squares, a good fit of the model was reported. However, Dedobbeleer and Beland's use of the weighted least square procedure led to revision of the instrument from three to two factors that included 1) management commitment to safety and 2) worker involvement in safety. Hoffman and Stetzers' (1996) applied the Dedobbeleer and Beland (1991) questionnaire to measure the safety climate of 222 workers of a chemical processing plant in the Midwest. Using a cross-level research strategy, three group-level factors including 1) group processes, 2) safety climate, and 3) intentions to approach other members engaged in unsafe acts, and one individual-level factor, perceptions of role overload, were found to influence the frequency of reported unsafe behaviors. Hoffman and Stetzer concluded that development of safety climate instruments must focus on organization diagnosis and not individual safety attitudes and perceptions.

Current State of the Safety Climate Research

Safety climate has gained prominence as an alternative safety performance indicator in high reliability industries where safety effectiveness can not be accurately measured by traditional safety indicators (Guldenmund, 2000) and is most often investigated through site wide administration of questionnaires aimed at identifying worker perceptions and attitudes toward selected safety dimensions or features (Flin, Mearns, O'Connor and Bryden, 2000). A plethora of instruments have been developed in response to the growing interest in the measurement of safety climate (Flin, Mearns, O'Connor and Bryden, 2000). In Flin et al's (2000) review of 18 safety climate instruments, the questionnaires differed in content, style, statistical analysis, sample size, sample composition, industry, and country of origin. High reliability industries led the field of industry types who incorporated safety climate surveys as part of their safety management systems as evidenced by 9 of the 18 the reviewed studies coming from the energy/petrochemical sector. The number of items found in the 18 instruments ranged

from 11 to 300. Flin et al (2000) identified 100 safety factors and then reclassified these into 35 themes. Their analysis revealed that the five most common relabeled themes in order of greatest to least frequency were (1) management; (2) safety systems; (3) risk; (4) competence; and (5) work pressure. Instrument validation was reported in 10 of the 18 safety climate questionnaires reviewed by Flin et al (2000). The validation method most often used in the 10 studies was a comparison of safety climate scores with retrospective accident data. The analysis and interpretations of the results of safety climate surveys has largely focused on the factors associated with safety performance (Flin, Mearns, O'Connor and Bryden, 2000). A more detailed discussion of safety climate research following this review by Flin et al (2000) follows.

Cheyne, Oliver, Tomas, and Cox (2002) conducted a safety climate survey at eight United Kingdom manufacturing sites operated by one multinational company. The questionnaire originally developed by Cheyne, Tomas, Cox and Oliver (1998) included 30 statements grouped into five safety factors using a five-point Liker-type scale. The five safety climate factors included: (1) safety management; (2) communication; (3) individual responsibility; (4) safety standards and goals; and (5) personal involvement. A total of 708 questionnaires were completed that resulted in a 66 percent response rate. Instrument reliability was examined through computation of Cronbach alphas for the five safety climate factors. All but one factor, individual responsibility, had Cronbach alphas of variance (MANOVA) and one-way analysis of variance (ANOVA) to investigate mean differences in safety climate factors and the overall safety climate score. Statistically significant differences (p < 0.001) were reported for each of the five safety

climate factors across sites and post-hoc comparisons with Scheffe tests identified significant differences (p < 0.01) between one site and the other four for all five factors. Cheyne et al (2002) concluded that evidence existed for a sector wide safety culture and differences in safety climate among sites was attributed to organizational and environmental influences.

Gillen, Baltz, Gassel, Kirsch and Vaccaro (2002) examined the safety perceptions of 255 construction workers in the western United States who had sustained non-fatal falls. The wording of the safety climate instrument developed by Dedobbler and Beland (1991) was modified slightly based on the results of a pilot survey by telephone. Instrument reliability was confirmed by a Cronbach's alpha of 0.78. Chi-square tests were employed to compare responses between union and non-union workers and ANOVA was used to analyze multilevel groupings. The safety climate of injured union and non-union workers differed significantly (p < 0.05) with union workers viewing the safety climate more favorably.

Glendon and Litherland's (2001) studied the safety climate of 192 road construction and maintenance workers from two locals in Australia. An adapted version of a 40-item safety climate instrument developed by Glendon, Stanton and Harrison (1994) was utilized. The instrument's 6 safety climate factors included: (1) communication and support; (2) adequacy of procedures; (3) work pressure; (4) personal protective equipment; (5) relationships: and (6) safety rules. Instrument reliability was established through calculation of a Cronbach's alphas for the instrument (0.96) and the six safety dimensions (0.72 – 0.93). Significant differences (p < 0.05) in safety climate between construction and maintenance job categories were identified through MANOVA.

Mearns, Whitaker and Flin (2001) conducted a longitudinal study of the safety climate of nine offshore oil installations in the United Kingdom with a safety climate instrument previously developed and validated by Mearns et al. (1998) to address the specific characteristics of offshore work environments. The instrument included 24 items grouped into six safety climate factors that included: (1) satisfaction with safety activities; (2) perceived supervisor competence; (3) perceived management commitment to safety; (4) willingness to report incidents; (5) unsafe behavior/general; and (6) unsafe behavior/incentives. Completed questionnaires totaled 521 and 624 in year one and year two, respectively. Cronbach's alphas for all six factors exceeded 0.60. Greater mean safety climate score variations (p < 0.05) were noted among installations in year one than year two. Mann-Whitney tests identified improvement in safety climate scores from year Discriminant function analysis was applied and management one to year two. commitment to safety and willingness to report accidents were found to predict personnel accident involvement. A relationship between changes in management commitment and changes in safety behavior was found.

Mearns, Whitaker and Flin (2003) reported the results of longitudinal safety climate study, similar to their previous research (2001), in which 682 and 806 completed questionnaires were received from nine offshore oil installations. Differences in safety climate by group were analyzed by ANOVA. Supervisors were found to have significantly more favorable (p < 0.001) safety climate on eight of 11 safety climate factors examined in year one and all ten factors investigated in year two. No significant differences (p < 0.01) in groups characterized by years of service were reported in year one for all factors except involvement in health and safety. Analysis of this difference

with Tukey's HSD indicated that workers with less than one year of service reported less involvement in health and safety. Statistically significant differences (p < 0.05) in safety climate scores by years of service were reported in year two for (1) perceived confidence in the Offshore Installation Manager; (2) willingness to report/rules satisfaction; and (3) communication about health and safety. Analysis by Tukey's HSD identified workers with one to five years experience as having more favorable perceptions of their Offshore Installation Manager and more favorable scores on communication about safety and health.

Mohamed (2002) investigated the safety climate of construction workers in Australia with 68 questionnaires completed across six construction sites. Satisfactory item reliability was demonstrated with Chronbach's alphas greater than 0.60. Composite reliability was confirmed by Chronbach's alphas greater than 0.60 for each factor. Discriminant validity or the degree to which safety climate factors differed from one another was demonstrated by comparing the average variance extracted for each factor to the variance shared with other factors. The research hypotheses were tested with structural equation modeling (SEM) that permitted examination of relationships within a theoretical model. Mohamed concluded that management, safety systems, and risk systems influenced safety climate and a relationship existed between safety climate and safe behavior.

Oliver, Cheyne, Tomas, and Cox (2002) investigated the safety climate of 525 workers in Spain who were undergoing annual medical tests at the government managed occupational medical clinic. The safety climate instrument was previously developed and validated by Cheyne et al (1998) and included (1) demographic information; (2)

30

information on occupational accidents; (3) 5-point Likert-type items comprising organizational involvement; and (4) 5-point Likert-type items concerned with quality of working conditions and environmental variables. Oliver et al (2002) proposed seven variations of a model that described the effects of organizational variable and individual-centered variables on occupational accidents. Internal consistency of the safety dimensions were confirmed through verification of Chronbach's alphas greater than 0.60. The relationships between the variable in the model were tested with SEM. All variables were found to have an effect on occupational accidents and general health and safe behavior mediated the effects of organizational involvement and physical work environment.

Prussia, Brown, and Willis (2003) examined the relationship between the safety climate of managers and workers in a steel plant in the southeastern United States. The 672 respondents included 121 managers and 551 workers. Significant differences (p < 0.05) between managers and workers on four of the safety climate factors were revealed by *t* tests. Managers perceived the safety climate stronger, believed workers were more likely to react to pressure and expressed less confidence than workers in their ability to work safely. Workers estimated that the frequency of safe behavior was greater than that estimated by managers.

Zohar (2000) tested a group level safety climate model through administration of a questionnaire to 534 production workers, categorized into 54 work group, in a metalprocessing plant in Israel. The questionnaire was developed based on 73 interviews with individual production workers who were not affiliated with the final study groups. The interviewed workers recollections of their safety interactions with supervisors were used to devise a 23-item 5-point Likert-type scale questionnaire. Principal components analysis (PCA) resulted in two factors: (1) supervisory action and (2) supervisory expectation. Alpha reliability coefficients for the two factors were 0.93 and 0.91. Analysis with ordinary least squares (OLS) supported the two following hypothesis: (1) safety climate factors predicted injury rates in individual work groups and (2) group-level safety climate predicted group injury rates.

Summary

This section provided a review of literature related in methodology to the proposed study. An overview of the extensive body of research on the measurement of organizational culture and climate was provided. The developmental stages of the measurement of safety climate were described and its reliance on organizational culture and climate methodologies was noted. The current methodologies used to measure safety climate were described through a review of selected safety climate research published since the year 2000.

Based on this review of literature and research related in methodology, the following is observed regarding the proposed study. Safety climate methodologies have benefited from the extensive research into the measurement of organizational culture and climate and over the last five years has become more defined and standardized. Despite the absence of an accepted model and concerns over instrument validation, the measurement of safety climate through administration of self reported questionnaires comprised of organization specific safety climate factors linked to multiple items with Likert responses has come to be an accepted methodology in the field of safety climate

research. Use of this accepted methodology is deemed adequate to define the safety climate of organizations and groups within the study population.

Literature and Research Related in Content and Methodology

Relationship Between Safety Culture and Performance in High Reliability Industries

While a good deal of literature and research is available that correlates the safety culture and climate of mid to high accident organizations, a paucity of empirical studies exists that relate management and organizational factors with safety performance in high reliability industries such as the nuclear industry (Sorenson, 2002). Concern has been voiced over the extrapolation of safety culture and climate studies from one industry to another (Hale, Kirwan, and Guldenmund, 1999) and thus, the direct relationship between safety culture and safety climate, and safety performance in high reliability industries is weak (Sorenson, 2002).

Sorenson (2002) believes that the demonstration of the link between safety culture and climate, and operational safety depends on the demonstration of two components. First, a relationship must be established between the attributes of safety culture and climate, and the safety of operations. In Sorenson's model of this relationship, safety culture attributes must be formulated based on the organization's characteristics and the definition of safety culture. Next, evaluation techniques are designed and data is collected, analyzed, and correlated with external safety metrics. Significant safety attributes are identified. The second component of Sorenson's (2002) model deals with the use of the significant safety attributes to identify performance indicators. These performance indicators are used to modify risk assessment tools that account for and predict human error and thus, permit calculation of risk.

Studies Comparing Safety Culture and Performance in High Reliability Industries

In a review of safety culture studies within high reliability industries, Sorenson (2002) found no studies that addressed all the components necessary to demonstrate a direct relationship between safety culture and safety performance. Sorenson reported that the available studies in the chemical industry provided empirical evidence of the positive relationship between safety climate and safety performance but these same studies failed to yield performance indicators that predict the probability of human error. At the same time, Sorenson (2002) found that studies in the nuclear industry lacked the extensive safety performance data common to the studies in the chemical industry.

The chemical industry

Safety audits and personnel surveys have constituted the principal means that safety researchers have linked safety culture and safety performance in the chemical industry (Sorenson, 2002). Sorenson points out that the researchers in the chemical process industry have benefited from the sufficient frequency of industry specific accidents that provide statistically valid safety measures.

Donald and Canter's (1994) study of ten chemical plants operated by one company is representative of the research that examines the relationship between safety climate and safety performance in the chemical process industry. Using the literature on the characteristics of low accident plants, Donald and Canter (1994) identified six factors they believed to be associated with high safety performance. These six factors included:

(a) management commitment; (b) safety training; (c) open communication; (d) environmental control and management; (e) stable workforce; and (f) positive safety promotion policy. These six factors were coupled with other factors found by Donald and Canter to discriminate among the ten locations and then used by the researchers to propose three facets of safety attitude including people, attitude behavior and activity. Donald and Canter (1994) developed a questionnaire based on these three facets that was administered at each location and the results demonstrated a strong relationship between safety climate and safety performance. Notwithstanding Donald and Canter's (1994) confirmation of a strong link between safety climate and safety performance, Sorenson (2002) pointed out that this study failed to identify performance indicators that quantify the level of risk represented by the attributes of safety climate.

The nuclear industry

Sorenson (2002) reported that safety culture and climate studies in the nuclear industry focused on management and organizational factors assumed to be important to safety performance but lacked empirical data found in the safety culture studies in the chemical industry and thus, the safety culture studies in the nuclear industry failed to establish the empirical link between safety climate and safety performance. One important exception is Lee's 1998 study of the safety climate in the nuclear reprocessing industry that can be considered as belonging both to the chemical and nuclear industry (Sorenson, 2002).

Lee (1998) conducted an assessment of safety climate at a large nuclear reprocessing facility in the United Kingdom. Lee used focus groups to formulate the safety climate survey questionnaire. A draft survey questionnaire was developed based on the focus groups' feelings, attitudes and beliefs about safety management and then administered to the focus group participants. A follow up meeting was held to elicit feedback from the focus group members. Following a pilot administration of the revised survey to 161 randomly selected workers at the facility, the resultant instrument was a 172-item questionnaire with Likert-type responses on a seven-point scale. The 172 items were divided into nine 'domains' that included 19 attitudes toward safety.

Lee's 172-item safety climate questionnaire (1998) was administered at a large nuclear reprocessing facility in the United Kingdom. The questionnaires were selfcompleted by mangers, staff, and workers during monthly team meetings. Participants viewed a 12-minute video with a persuasive introduction by the Site Director and summary of the aims and methods of the survey prior to completing the survey questionnaire. Completed questionnaires were placed in seal-able envelopes preaddressed to the researcher. A total of 5,296 workers or 80% of the workforce completed the survey.

Lee's validation of the survey instrument focused on whether the results could be applied as a predictor of behavior. Mean factor scores were computed for two groups: 1) those who reported an accident resulting in a day away injury of 3 days or more and 2) those who did not report a day away injury. Eighteen of the 19 factors were in the expected direction. Based on *t*-tests 15 of the 19 factors significantly discriminated (p < 0.05) between the two assigned groups. A discriminant function analysis was used to determine the relative effectiveness of each of the 19 attitudes in predicting whether the worker had a day away injury. Biographical and work-related worker attributes as well as worker safety attitudes were found to be predictive with the rank order of correlation with discriminant function identical for all variables and attitudes only. Principal criterion analysis resulted in 17 of the 19 factors with Eigen values > 1.0 that were predictive of a day away injury (p < 0.05).

In order to reduce the length of the instrument, a cut-off of a maximum of nine items per factor was used and resulted in the questionnaire being reduced from 172 to 81 items. The best 15 of the nineteen factors were selected and found to discriminate significantly (p < 0.05) between those who had a day away injury and those who did not using a two-tailed *t*-test.

Lee (1998) found significant differences in safety climate scores by organizational level. Lee's analysis of the safety attitudes of workers at differing organizational levels confirmed variations by job title for several attitudes to safety. Safety related specialists were markedly less confident in safety than any other job type. Craft and process workers expressed more negative attitudes toward personal caution over risks than supervisors and managers. Perceived level of risk by senior managers was more positive than the attitudes of other managers, supervisors, and craft. Managers, especially senior managers, expressed greater trust in the workforce than craft or process workers.

The nuclear reprocessing organization studied by Lee (1998) has used a number of different tools over the decade of the 1990's to measure and characterize safety climate (Rycraft, 2002). Reviewing the results of their earlier safety culture surveys, company management concluded that the improvements realized did not match the effort to collect and analyze the data (Rycraft, 2002). The analysis proved difficult to prioritize. The following barriers for the data's effectiveness were identified:

1. Too long between survey/data collection and results/analysis feedback.

2. Lack of understanding of managers as to what the results mean in a practical or behavioral sense.

3. Lack of ownership of the results.

4. Inability to prioritize and identify those factors that would improve or develop the safety culture by the greatest amount.

This nuclear reprocessing organization employs over 7,000 at one of its United Kingdom facilities. This large facility has achieved safety improvements over the years as evidenced by low accident rates (Rycraft, 2002). However, the occurrence of unwanted safety events prompted the Health and Safety Executive's (HSE) United Kingdom (UK) Nuclear Installation Inspectorate, the UK counterpart to the US Occupational Safety and Health Administration, to raise questions over the safety climate at the site. A proposal was made by the company to the HSE to measure and benchmark the site's safety climate using the HSE Health and Safety Climate Survey Tool (CST). The perceived advantages of the CST included:

1. The survey is relatively simple but covered the main areas of safety culture factors.

2. Strengths in culture could also be revealed alongside improvement areas.

3. Experience in using the tool had been gained in local areas on site and in the rest of the organization.

4. The HSE offered a benchmarking service against other organizations.

5. The computer software package automatically collates and immediately presents the results in graphical form.

The CST was administered at the UK site in June of 2000 and then again as a follow-up in November of 2001. Both surveys achieved a greater than 70% return rate. According to a company Environment, Health, Safety and Quality Manager, application of the CST "has been successful in measuring the safety climate of the workforce on the UK site and has provided a good baseline and information on which to develop the safety culture." (Rycraft, 2002).

The Health and Safety Climate Survey Tool (CST)

The Health and Safety Executive (HSE), the government agency charged with regulating occupational health and safety in the United Kingdom, developed the CST to measure safety climate (Health and Safety Executive, 1997a). This survey questionnaire includes 71 items and has been applied across 40 sites for over 10,000 workers.

An evaluation of the effectiveness of the CST based on interviews of users was reported in 2002 (Keil Centre, 2002). This evaluation included an analysis of 213 CST user responses to a telephone interview, follow-up interview of 25 CST users, three case studies on how the CST was used. Ninety one percent of those interviewed initially by phone indicated their expectations of using the CST had been met. Twenty-five CST users interviewed as part of the follow-up and the three case studies reported they had taken at least one action to improve health and safety as a result of using the CST. Those who reported the most success also reported they followed the process guidelines that accompany the CST.

The CST includes by two supportive texts. The <u>Process Guidelines</u> (HSE, 1997a) provides introductory information on the use and benefits of the questionnaire, questions

to answer when considering using a climate survey tool, a step-by-step guide to preparing, administering and analyzing the survey, and finally suggestions follow-up actions including communicating the survey results, identifying issues, and implementing improvement plans. The <u>Software Manual</u> (HSE, 1997b) describes the software program that supports analysis of the survey results.

The CST was administered in the year 2000 at locations managed by the employer selected for this study. In a field study it was observed that some workers had difficulty completing the survey on-line. When workers were not provided a comfortable location to sit and complete the survey, the number of returned and complete surveys decreased. Based on the findings of this field study, the survey instrument was offered in both on-line and hard copy format, and meeting rooms with ample tables and chairs were provided for the workers to complete the survey (M. E. Findley, personal communication, June 25, 2004).

Summary

This section provided a review of literature and research related in content and methodology to the proposed study. The relationship between safety culture and safety performance among high reliability industries was summarized. An overview of studies comparing the safety culture and safety performance in high reliability industries including the chemical process industry and the nuclear industry was provided. Finally, the development, evaluation and pilot testing of the instrument selected for the proposed study, the health and Safety Executive's Heath and Safety Climate Survey Tool (CST) was reviewed.

Based on this review of literature related in content and methodology, the following is observed regarding the proposed study. The existence of a relationship between safety climate and safety performance among high reliability industries is not as well established as in other industries where the larger frequency of accidents provides greater empirical data for comparison. Efforts to correlate safety climate and safety performance within the chemical process industry has benefited from the larger number of unwanted events than found in the nuclear industry. However, Lee's (1998) study of the safety climate in the nuclear reprocessing industry is directly related to the content and methodology related to the proposed study. Further, Lee's results confirmed the presence of differences in safety climate among groups, a central tenant of the proposed study. The proposed study instrument, the CST, was based on Lee's (1998) development of the safety climate instrument administered at the UK nuclear reprocessing facility. The facility in Lee's study is similar in scope and processes to those found in the population in this proposed study. Finally, the field testing of the instrument revealed that the some workers had difficulty completing an on-line survey and the number of returned and complete surveys increased when a comfortable environment was provided for workers to complete the survey.

Chapter Summation

The purpose for this chapter was to review literature and research related to the problem to be researched. Based on this review the following is observed regarding the proposed study. First, the literature and research related in content provides a theoretical framework for the study of safety climate based on the extensive body of literature on organizational culture and climate. Second, notwithstanding the fact that safety climate methodologies date back only to the 1980's and questions over the validation of instruments remain, an accepted approach to the measurement of safety climate has emerged in the last 5 years. Third, although the measurement of safety climate in high reliability industries has only partially confirmed the correlation of safety climate with safety performance within chemical process industries, one study of safety climate within the nuclear reprocessing industry has demonstrated this relationship. Fourth, this study of the safety climate within the nuclear industry has identified group differences in safety climate that are directly related to the proposed study problems. Fifth, the proposed study instruments development within an industry sector similar to the proposed study population supports the assumption of its reliability and validity.

Chapter III

METHODS AND PROCEDURES

Introduction

The purpose for this chapter was to describe the methods and procedures used in this study to investigate group differences in safety climate among workers in the nuclear D&D industry in the United States. This chapter includes sections that address the study population, administration of the instrument, statistical design of the study and analysis of the data.

Study Population

The target population for the study was persons who worked at locations managed by a nuclear D&D employer located in the United States. Selection of the study population was based its being representative of a high reliability industry. The employer performs high risk decommissioning and demolition in nuclear environments that contain both radiological and chemical hazards as well as severe industrial safety concerns.

The potential study participants included all persons working at one of ten locations managed by a nuclear D&D employer located in the United States. Table 3.1 shows the total number of workers and subcontractor workers at each of the ten locations. Those asked to voluntarily participate included senior managers, managers, supervisors, foreman, technical support personnel, administrative personnel, and craft labor.

Table 3.1.

Location	Number of parent company workers	Number of subcontractor workers	Total number of workers
1	1,129	194	1,323
2	655	3	658
3	40	0	40
4	966	39	1,005
5	12	0	12
6	37	0	37
7	28	0	28
8	7	25	32
9	115	4	119
10	33	9	42
Total	3,022	274	3,296

Number of parent company and subcontractor workers by location

Selection Process

With a target population of 3,296 working at one of the ten locations, the entire population of workers and subcontractor workers was requested to voluntarily and anonymously participate. It was desired to provide each member of the target population an opportunity to express views on the safety climate. Sampling of the study population would have excluded some who chose to participate. In addition, inclusion of the entire target population increased the likelihood of all available groups being represented.

Instrumentation

Instrument selection.

The instrument selection process began with the development of an operational definition of safety climate level based on a consensus of the literature on safety climate surveys as applicable to the study population. From this operational definition for safety climate the need was identified for an instrument that measured at one point in time the safety attitudes and perceptions of individuals and groups based on their responses to instrument items associated with organizations with high safety performance. The literature and research on safety climate surveys was reviewed with special emphasis on instruments used to measure safety climate level of groups working in high reliability industries. These instruments were compared and contrasted based on comprehensiveness, length, scope, and instrument reliability and validity. The desired features of an instrument for use with the study population examined as part of the instrument selection process included the instruments underlying concepts, variables,

items, usability, practicality, and acceptability by the study population's management, supervisors, technical support personnel, and skilled craft.

The instrument selected for use in this study was the Health and Safety Climate Survey Tool (CST) published by the Health and Safety Executive, the United Kingdom's government agency counterpart of the United States Department of Labor's Occupational Safety and Health Administration (OSHA). The CST was judged by the researcher to meet the requirements of the operational definition of safety climate and possessed the desired features for measuring safety climate level of the study population. In addition, the instrument's selection was favored as the target population was familiar with the CST based on a January 2002 administration by the nuclear D&D employer.

The CST includes 71 items that survey respondents' record their views on safety and health issues. The 71 randomly ordered items comprise 11 safety climate factors. These factors included: (1) organizational commitment and communication; (2) line management commitment; (3) supervisor's role; (4) personal role; (5) coworker's influence; (6) competence; (7) risk taking behavior; (8) obstacles to safe behavior; (9) permit-to-work; (10) reporting of accidents and near misses and (11) general job satisfaction. See Table 3.2 for a listing of the items that fall within each factor. Respondents indicate their level of agreement with each of the 71 items based on a fivepoint Likert scale. The safety climate score is calculated by averaging the 71 item numerical scores. Some of the 71 items are negatively worded and thus, the numerical scoring is reversed to permit a score of 5 to reflect the most positive safety climate. Safety factor scores are computed for each of the eleven safety factors by averaging the numerical score for items that make up the safety factor. Table 3.2.

=

CST safety climate factors and items

Safety climate factors	Items	
1. Organizational commitment and	5, 9, 10, 14, 16, 17, 18, 19, 20, 24, 31, 39,	
communication.	43, 46, 51, 54, 58	
2. Line management commitment.	49, 57, 62, 66	
3. Supervisors' role.	3, 8, 30, 65	
4. Personal role.	1, 13, 33, 50, 55, 63	
5. Coworkers' influence.	68, 69, 70, 71	
6. Competence.	15, 29, 38, 44, 64	
7. Risk taking behavior.	2, 21, 23, 28, 32, 35, 37, 40, 48	
8. Obstacles to safe behavior.	7, 12, 25, 26, 36, 41, 42, 45, 47	
9. Permit to work.	22, 27, 61	
10. Reporting of accidents and near misses.	6, 11	
11. General job satisfaction.	4, 52	

CST Safety Climate Factors

Factor 1. Organizational Commitment and Communication

Participants were asked to respond to 17 items pertaining to organizational commitment and communication. These items sought participants' views on senior management's interest in safety, the provision of resources for safety, the relative status of the safety program, worker involvement and communication. The 17 items included the following:

#5. There are good communications here about health and safety issues.

#9. Accident investigations are mainly used to identify who is to blame.

#10. Suggestions to improve health and safety are seldom acted upon.

#14. I feel involved when health and safety procedures, instructions, or rules are developed or reviewed.

#16. Productivity is usually seen as more important than health and safety.

#17. Management sometimes turns a blind eye to health and safety issues.

#18. Management always acts quickly over health and safety concerns.

#19. I am always informed of the outcome of meetings which address health and safty.

#20. Management only bothers to look at health and safety after there has been an accident.

#24. Senior management takes health and safety seriously.

#31. The company encourages suggestions on how to improve health and safety.

#39. Management would expect me to break health and safety procedures, instructions, or rules to get the job done.

#43. The company really cares about the health and safety of the people who work here.

#46. The health and safety committee makes an important contribution to health and safety here.

#51. Management places a low priority on health and safety training.

#54. Sufficient resources are available for health and safety here.

#58. The company shows interest in my views on health and safety.

Factor 2. Line Management Commitment

Four items addressed line management commitment to safety. These items explored the extent to which workers perceived that their immediate boss promoted safety and reacted to safety issues. The four items included the following:

#49. My immediate boss often talks to me about health and safety.

#57. My immediate boss would be very helpful if I asked for advice on health and safety matters.

#62. My immediate boss is receptive to ideas on how to improve health and safety.

#66. I don't think my immediate boss does enough to ensure health and safety.

Factor 3. Supervisor's Role

Four items addressing supervisors' role were included in the instrument. These items sought participants' views on supervisors' contribution to safety and the effectiveness of the supervisors. The four items included the following:

#3. Supervisors are good at detecting unsafe behavior.

#8. Supervisors here are not very effective at ensuring health and safety.

#30. Supervisors seldom check that people here are working safely.

65. Supervisors devote sufficient effort to health and safety here.

Factor 4. Personal Role

Six items were included to assess the personal role dimension. These items explored the participants' views of their own contribution to safety and the relative importance they placed on safety. The six items included the following:

#1. Some health and safety procedures, or instructions do not need to be followed to get the job done safely.

#13. There is little advantage to keeping strictly to the health and safety procedures, instructions and rules.

#33. There is nothing I can do to further improve health and safety here.

#50. There are to many safety procedures, instructions and rules given the real risks associated with the jobs for which I am responsible.

#55. Health and safety briefings are a waste of my time.

#63. I sometimes turn a blind eye to less important health and safety procedures, instructions and rules.

Factor 5. Coworkers' Influence

Four items addressed the dimension of coworkers' influence. These items sought the participants' views on the importance that their coworkers gave to safety. The four items included the following:

#68. My coworkers would react strongly against people who break health and safety procedures, instructions, and rules.

#69. All the people who work here are fully committed to health and safety.

#70. It is important for me to work safely if I am to keep the respect of the others in my team.

#71. I trust my coworkers with my health and safety.

Factor 6. Competence

Five items addressing the dimension of competence were included in the instrument. These items explored the participants' understanding of their safety responsibilities, the risks associated with their work, and the safety instructions, rules and procedures in place. The five items included the following:

#15. I fully understand the health and safety associated with the work for which I am responsible.

#29. I am clear about my responsibilities for health and safety.

#38. The training I had covered all the health and safety risks associated with the work for which I am responsible.

#44. Sometimes I am uncertain what to do to ensure the health and safety in the work for which I am responsible.

#64. I fully understand the health and safety procedures, instructions and rules associated with my job.

Factor 7. Risk-Taking Behavior

Fifteen items were included to address the risk taking behavior dimension. These items sought participants' views on the extent to which others take risks or perform work unsafely, and reasons why risk-taking behavior occurs. The 15 items included the following:

#2. People who work here often take risks when they are at work.

#21. People here do not remember much of the health and safety training which applies to their job.

#23. People here always work safely when they are being supervised.

#28. People here think health and safety isn't their problem – it's up to management and others.

#32. Some of the workforce pays little attention to health and safety.

#34. People here always wear their health and safety protective equipment when they are supposed to.

#35. Action is seldom taken against people who break health and safety procedures, instructions and rules.

#37. People who cause accidents here are not held sufficiently accountable for their actions.

#40. Not all of the health and safety procedures, instructions and rules are strictly followed here.

#48. I can trust people who I work wit to work safely.

#53. People here are sometimes pressured to work unsafely by their colleagues.

#56. Some people here have a poor understanding of the risks associated with their work.

#59. People who work here sometimes take risks at work which I would not take myself.

#60. People who work here are not recognized for working safely.

#67. Supervisors sometimes turn a blind eye to people who are not working to the health and safety procedures, instructions, and rules.

Factor 8. Obstacles to Safe Behavior

Nine items addressed the dimension of obstacles to safe behavior. The items explored the relevance and practicality of safety instructions, rules, and procedures as

well as the people's ability and willingness to comply. The nine items included the following:

#7. Some jobs here are difficult to do safely.

#12. Some health and safety procedures, instructions, and rules are not really practical.

#25. Some health and safety procedures, instructions, and rules do not reflect how the job is now done.

#26. Some health and safety procedures, instructions, and rules are difficult to follow.

#36. Some health and safety procedures, instructions, and rules are only here to protect management.

#41. People can always get the equipment that is needed to work to the health and safety procedures, instructions, and rules.

#42. There are always enough people available to get the job done according to the health and safety procedures, instructions and rules.

#45. Sometimes it is necessary to take risks to get the job done.

#47. Sometimes physical conditions at the workplace restrict people's ability to work safely.

Factor 9. Permit to Work

Three items addressing the dimension of permit to work were included in the instrument. These items examined participants' views on the relevance and ease of use of the safety permit system. The three items included the following:

#22. The permit-to-work system is always strictly applied and followed.

#27. The permit-to-work system is 'over the top' given the real risks of some of the jobs it is used for.

#61. The permit-to-work system causes unnecessary delays in getting the job done.

Factor 10. Reporting of Accidents and Near Misses

Participants were asked to respond to two items pertaining to the reporting of accidents and near misses. These items sought participants' views on the willingness of people to report accidents and near misses. The two items included the following:

#6. Accidents which happen here are always reported.

#11. Near misses are always reported.

Factor 11. General Job Satisfaction

Two items explored issues of general job satisfaction. The items addressed the participants' views on job security and the degree to which they perceived their jobs as boring and repetitive. The two items included the following:

#4. My job is boring and repetitive.

#52. I am worried about my job security.

Demographic Variables

Participants were asked to self-report their own status related to several demographic variables aimed at categorizing the participants into various groups. The researcher revised the demographic items to align them with the characteristics of the study population as well as facilitate the combining of participants' response into groups. These demographic variables permitted grouping of responses by participants' organizational level, assigned employer unit, length of employment and experience, participation in safety oriented behavior, and personal injury experience. See Table 3.3 for a listing of groupings and the items that pertain to these groups.

Table 3.3.

Demographic variables and corresponding instrument items

Demographic variables	Items
1. Age, gender, race and ethnicity.	87, 88, 89, 90
2. Location and employer.	72, 73
3. Employment classification and job position.	77, 83
4. Work shift.	80
5. Length of employment and years of experience.	81, 82
6. Union membership.	78, 79
7. Behavior-based safety participation.	74, 75, 76
8. On-the-job injury/illness experience.	84, 85, 86

i.

Study Approval and Confidentiality

The Institutional Review Board (IRB) at the University of Tennessee approved Form A and provided permission to proceed as the study did not include sensitive materials or vulnerable study groups. A certificate for exemption from IRB Review involving human subjects is on file in the Department of Health and Exercise Science at the University of Tennessee, Knoxville and is contained in Appendix A.

Participants were assured in the study information sheet accompanying the questionnaire that participation was strictly voluntary and anonymous. A completed returned questionnaire served as consent to participate in the study. Permission to conduct the study was also obtained from the senior management of the nuclear D&D employer. The study information sheet and questionnaire are contained in Appendix A.

Data Collection

Safety meetings were held including workers at each of the company designated locations to introduce and distribute the survey. A two-week interval of time was selected for distribution, completion and submission of the survey in order to accommodate the 7-day a week and 24 hours of operation in place at some study sites and the absence of project workers on personal leave. The study packet distributed to all potential participants included a study information sheet, a form for recording comments and suggestions, the survey and an envelope. Study participants choosing to complete the survey were instructed to place the completed survey into the envelop, seal the envelope and then place the sealed envelope into one of several drop boxes placed throughout the study sites. Respondents were instructed not to place any personal

identifier on the survey or the envelope. It was estimated that the survey would take no more than 20 minutes to complete. Persons designated by the researcher monitored and collected sealed survey packets from participants the security of the drop boxes. To ensure the anonymity of participant responses, the designated survey monitors were instructed to direct study participants to place the completed surveys in the envelope and then place the sealed envelope with the completed survey into one of the sealed boxes and not to open any survey packets collected. The completed surveys placed in the boxes were collected by monitors and stored in secured files until the completed surveys were transmitted to the company selected by the researcher to perform electronic scanning.

Statistical Analysis

Introduction

The preparation of the survey data for statistical analysis included electronic scanning of the completed survey forms and the transfer of the scanned data into a data file for subsequent analysis. An independent company selected by the researcher performed electronic scanning of the completed surveys and then input the data into an EXCEL spreadsheet. The researcher transferred the EXCEL data file into a Statistical Package for Social Sciences (SPSS), version 12.0, data file to run statistical analysis. Items stated in reverse order were coded to result in a higher score for each item being consistent with a more favorable safety attitude or perception. Factor scores were computed by averaging the Likert responses for the items making up the factor. Safety climate scores were computed by averaging the 72 item scores. Frequencies and

measures of central tendency were computed for all demographic variables. An alpha level of 0.05 was used for all statistical tests.

Reliability analysis was performed to identify the factors and respective items that demonstrated adequate internal consistency. Pearson correlation coefficients were computed to evaluate the correlation between the safety climate score and factor scores. Factors were deemed unreliable and excluded when a correlation coefficient was less than 0.40 and or a significance level was greater than 0.05. Cronbach's Alpha reliability coefficients were computed for each factor. Factors were deemed unreliable and excluded or amended if the alpha was less than 0.60.

Group differences in factor scores and safety climate item scores were analyzed by analysis of variance (ANOVA) and multiple analysis of variance (MANOVA). Significant differences (p<0.05) among variables were identified when the F ratio indicated a larger variance among variables than within variables. Post hoc comparisons were performed to determine the specific groups that yielded the significant differences.

Statistical Analysis of Research Questions

In addressing the purpose of the study the data associated with each of the research questions were analyzed by the statistical procedure described below:

1. Are there significant differences in safety climate among self-reported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system? Factor scores and overall safety climate scores were computed for each work location. Differences between factor scores and safety climate scores by location were analyzed by MANOVA and ANOVA. Post hoc comparisons were performed with Tukey's HSD to determine the specific locations that yielded the significant differences.

- 2. Are there significant differences in safety climate among self-reported job positions among workers of a nuclear D&D employer located in the United States? Factor scores and safety climate scores were computed by for each job position including (a) senior manager; (b) manager; (c) supervisor; (d) foreman; (e) workforce/craft; (f) technical support personnel; and (g) administrative support personnel. Differences between factor scores and safety climate scores by job position were analyzed by MANOVA and ANOVA. Post hoc comparisons were performed with Tukey's HSD to determine the specific job positions that yielded the significant differences.
- 3. Are there significant differences in safety climate between those who self-reported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States? Factor scores and safety climate scores were computed for respondents reporting an injury in the last year. The categories of reported injuries in the previous year included (a) an injury requiring first aid treatment; (b) an injury requiring medical treatment; and (c) an injury resulting in on-the-job restrictions or time away from work. Differences between factor scores and safety climate scores by injury experience were analyzed by MANOVA and ANOVA. Post hoc comparisons were performed with Tukey's HSD to determine the specific groups that yielded the significant differences.

4. Are there significant differences between self-reported safety climate and safety-oriented behavior, as measured by self-reported participation in a behavior-based safety process, among workers of a nuclear D&D employer located in the United States? Factor scores and safety climate scores were computed for respondents who reported safety oriented behavior including (a) completion of behavior based safety training; (b) completion of behavior based safety observer training; and (c) completion of at least one behavior based safety observation during the previous month. Differences between factor scores and safety climate scores by respondents reporting safety oriented behavior were analyzed by MANOVA and ANOVA. Post hoc comparisons were performed with Tukey's HSD to determine the specific groups that yielded the significant differences.

Summary

This chapter on the methods and procedures describes the design of the study methodology including the study population, sampling technique, instrumentation, data collection and statistical analysis of the study results. The study population was selected based on its being representative of a high reliability nuclear industry and includes 10 locations managed by a nuclear D&D employer in the United States. The sampling technique employed in the study requested voluntary and anonymous participation by all members of the study population. The study instrument, the CST, was selected based on its previous development and validation in an industry sector similar to the study population. A summary of the statistical techniques used to analyze each of the research was provided.

Chapter IV

ANALYSIS OF DATA

Introduction

This chapter presents the results of the analysis of the survey data. The survey response rate is discussed and descriptive data is presented for the dependent variables including location, company/subcontractor, gender, age, race, ethnicity, employment classification, union membership, years in current profession and at location, job position, work shift, on-the-job injury/illness experience, and behavior-based safety training and participation. The reliability of safety climate factors is examined. Statistical analysis is presented that addresses the research questions and includes group differences in safety climate score and factor scores by location, job position, injury/illness experience, and safety-oriented behavior.

Survey Response

Survey responses totaled 1,587 out of an available population of 3,296 for an overall response rate of 48.1 percent. See Table 4.1. The response rate by location ranged from 13.8 to 78.6 percent. The location designated as number 2 had the lowest response rate. The second lowest rate was for the location designated as number 4 with 40.6 percent. The highest response rate was obtained from the location designated as number 7 with 78.6 percent. Ninety one respondents (5.7%) did not provide a location and 125 respondents (7.9%) indicated their location as 'other.'

Table 4.1.

Location		Population	Frequency of response	Percent of	Response
		A	A	responses	rate
Valid	1	1,323	693	43.7	52.4
	2	658	91	5.7	13.8
	3	40	28	1.8	70.0
	4	1,005	408	25.7	40.6
	5	12	9	.6	75.0
	6	37	28	1.8	75.7
	7	28	22	1.4	78.6
	8	32	15	.9	46.9
	9	119	56	3.5	47.1
	10	42	21	1.3	50.0
	Other	NA	125	7.9	NA
	Total	3,296	1496	94.3	45.4
Missing	System	NA	91	5.7	NA
Total		3,296	1587	100.0	48.1

Study population and responses by location

Demographic Analysis

Location, Company, Age, Race, and Ethnicity

Demographic information on respondent location, company, age, race and ethnicity were self-reported. The 1,587 respondents were from 11 work locations and the numbers of respondents per location ranged from 9 to 693. The greatest number of respondents, 1,101 (69.4%), reported working at locations designated as number 1 or 4. See Table 4.1. The respondents reported company affiliation included the nuclear D&D employer (company #1), a subsidiary of the nuclear D&D employer (company #2) and 4 subcontractors working for the D&D employer with the largest number of respondents (1,006 or 66.7%) employed by company number 1. Company affiliation was not reported by 251 (15.8%) respondents. See Table 4.2. The respondents included those selfreported as 1,062 males (66.9%) and 312 (19.7%) females. Gender was not reported by 213 (13.4%) respondents. See Table 4.3. The majority of respondents (54.7%) selfreported ranging in age from 36 to 55 years of age. The respondents self-reported their race as being 1,182 whites (74.5%), 105 blacks (6.6%), 14 Asians (0.9%), and 51 other (3.2%). See Tables 4.4 and 4.5, respectively. Race was not reported by 235 (14.8%) respondents. Hispanic or Latino ethnic origin was self-reported by 25 respondents (1.6%). See Table 4.6.

Employment status

The respondents self-reported employment status included employment classification, union membership and affiliation, years in profession, years at location,

Table 4.2.

Compan	y or Subcontractor	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Parent Company	1006	63.4	66.7	66.7
	Subsidiary Company	46	2.9	3.1	69.8
	Subcontractor #1	167	10.5	11.1	80.8
	Subcontractor #2	13	.8	.9	81.7
	Subcontractor #3	6	.4	.4	82.1
	Subcontractor #4	19	1.2	1.3	83.4
	Other	251	15.8	16.6	100.0
	Total	1508	95.0	100.0	
Missing	System	79	5.0		
Total		1587	100.0		

Company or subcontractor affiliation of respondents

Table 4.3.

<u>Gender</u>	of respondents

.

Gender		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	1062	66.9	77.3	77.3
	Female	312	19.7	22.7	100.0
	Total	1374	86.6	100.0	
Missing	System	213	13.4		
Total		1587	100.0		

Table 4.4.

Age	range	of respo	ondents
<u></u>	101120	0110000	2110101100

Years o	fage	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	18 - 25	117	7.4	8.6	8.6
	26 - 30	102	6.4	7.5	16.1
	31 - 35	110	6.9	8.1	24.2
	36 - 40	191	12.0	14.0	38.2
	41 - 45	239	15.1	17.5	55.7
	46 - 50	223	14.1	16.4	72.1
	51 - 55	215	13.5	15.8	87.9
	56 - 60	109	6.9	8.0	95.9
	61 - 65	43	2.7	3.2	99.0
	66 plus	13	.8	1.0	100.0
	Total	1362	85.8	100.0	
Missing	System	225	14.2		
Total		1587	100.0		

Table 4.5.

Race of respondents

Race		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	White	1182	74.5	87.4	87.4
	Black	105	6.6	7.8	95.2
	Asian	14	.9	1.0	96.2
	Other	51	3.2	3.8	100.0
	Total	1352	85.2	100.0	
Missing	System	235	14.8		
Total		1587	100.0		

Table 4.6.

Ethnic or	igin	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Yes	25	1.6	2.1	2.1
	No	1184	74.6	97.9	100.0
	Total	1209	76.2	100.0	
Missing	System	378	23.8		
Total		1587	100.0		

Hispanic or Latino ethnic origin of respondents

.

job position, and work shift. Respondents reporting their employment classification as exempt (salary) numbered 445 (28.0%) and 1,032 (65.0%) indicated their employment classification was non-exempt (hourly). Employment classification was not reported by 110 respondents (6.9%). See Table 4.7. Self-reported union membership was by 466 respondents (29.4%). Of the remaining respondents 924 (58.2%) self-reported they were not a member of a union and 197 (12.4%) did not provide information on union membership. See Table 4.8. Union affiliation or the specific union that a respondent was a member was self-reported by 475 (29.9%) respondents. It is noted that the respondents could self-report that they were not a member of a union at the same that they selfreported union affiliation and thus, this explains the difference between those selfreporting union membership (445) and those self-reporting union affiliation (475). The most frequent self-reported union affiliation was laborer with 216 (13.6%). The second most frequent reported union affiliation was operating engineer with 73 (4.6%). See Table 4.9. The respondents' self-reported years in their current profession regardless of location or employer are presented in Table 4.10. The most frequent self-reported range of years in their current profession was zero to five years (477 or 30.1%) followed by 20 or more years (390 or 24.6%). The most frequent self-reported range of years at a location was five or more years (487 or 30.7%) followed by less than one year (347 or 21.9%). One hundred ninety eight (12.5%) did not report the years in their current profession. See Table 4.11. The most frequently reported job position was workforce/craft with 667 (42.0%). The second most frequently reported job position was technical support with 321 (20.2%). Seventeen senior managers (1.1%), 103 managers (6.5%), 72 supervisors (4.5%), 63 foreman (4.0%), and 114 administrative personnel

Table 4.7.

Classific	ation	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Exempt (a)	445	28.0	30.1	30.1
	Non- exempt (b)	1032	65.0	69.9	100.0
	Total	1477	93.1	100.0	
Missing	System	110	6.9		
Total		1587	100.0		

Employment classification of respondents

a. Exempt employment classification describes workers who are salaried and do not receive overtime compensation.

b. Non-exempt employment classification describes hourly workers who do receive overtime compensation.

Table 4.8.

Respondents' membership in a union

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Yes	466	29.4	33.5	33.5
	No	924	58.2	66.5	100.0
	Total	1390	87.6	100.0	
Missing	System	197	12.4		
Total		1587	100.0		

Table 4.9.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Laborer	216	13.6	45.5	45.5
	Boilermaker	25	1.6	5.3	50.7
	Pipe fitter	28	1.8	5.9	56.6
	Electrician	25	1.6	5.3	61.9
	Carpenter	1	.1	.2	62.1
	Sheet metal	5	.3	1.1	63.2
	Teamster	2	.1	.4	63.6
	Painter	3	.2	.6	64.2
	Iron worker	18	1.1	3.8	68.0
	Operating Engineer	73	4.6	15.4	83.4
	Survey technician	25	1.6	5.3	88.6
	Sprinkler fitter	3	.2	.6	89.3
	Mill-wright	9	.6	1.9	91.2
	Brick mason	3	.2	.6	91.8
	Other	39	2.5	8.2	100.0
	Total	475	29.9	100.0	
Missing	System	1112	70.1		
Гotal		1587	100.0		

Union affiliation of respondents who reported membership in a labor union

Table 4.10.

Years		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0 - 5	477	30.1	34.1	34.1
	6 - 10	129	8.1	9.2	43.3
	11 - 15	220	13.9	15.7	59.1
	16 - 20	182	11.5	13.0	72.1
	20 plus	390	24.6	27.9	100.0
	Total	1398	88.1	100.0	
Missing	System	189	11.9		
Total		1587	100.0		

Reported years in curren	t profession of res	spondents regardless of location

Table 4.11.

Reported years at current location of respondents

.

Years		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Less than 1	347	21.9	25.0	25.0
	1 - 2	295	18.6	21.2	46.2
	3 - 4	260	16.4	18.7	64.9
	5 plus	487	30.7	35.1	100.0
	Total	1389	87.5	100.0	
Missing	System	198	12.5		
Total		1587	100.0		

(7.2%) were also reported. Job position was not reported by 230 (14.5%) respondents. See Table 4.12. The self-reported work-shift included 1,177 on weekdays (74.2%), 175 working weekday nights (11%), and 155 working weekends (9.8%). Eighty respondents (5.0%) did report their work-shift. See Table 4.13.

On-The-Job Injury and Illnesses

Respondents' self-reported on-the-job injuries and illnesses in the previous 12 months included having experienced an injury or illness that resulted in first aid treatment, medical treatment, or lost time/on-the-job restriction. A total of 126 (7.9%) reported having experienced an on-the-job injury requiring first aid treatment during the last 12 months. Those who reported an on-the-job injury or illness resulting in medical treatment numbered 62 (3.9%). A total of 56 (3.5%) reported experiencing an on-the-job injury or illness that resulted in lost time or on-the-job restrictions. See Figure 1.

Safety-Oriented Behavior

Safety-oriented behavior was measured by respondents self-reported participation in behavior-based safety processes and included having received behavior-based safety training or behavior-based safety observer training in the previous 12 months, or having conducted a behavior-based safety observation in the previous month. Behavior-based safety observation training is an eight-hour training course on conducting behavior-based safety observations in work areas. Behavior-based safety observations, conducted by those completing both the introductory training and the observer training, are one-on-one

Table 4.12.

Job Posit	ion	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Senior manager	17	1.1	1.3	1.3
	Manager	103	6.5	7.6	8.8
	Supervisor	72	4.5	5.3	14.1
	Foreman		4.0	4.6	18.8
	Workforce/craft	667	42.0	49.2	67.9
	Technical support	321	20.2	23.7	91.6
	Administrative	114	7.2	8.4	100.0
	Total	1357	85.5	100.0	
Missing	System	230	14.5		
Total		1587	100.0		

Job position of respondents at current location

Table 4.13.

Work shift of respondents

Work Shift		Frequency	Percent	Valid Percent	Cumulative Percent
Weekdays	No	410	25.8	25.8	25.8
	Yes	1177	74.2	74.2	100.0
	Total	1587	100.0	100.0	
Weekday nights	No	1412	89.0	89.0	89.0
-	Yes	175	11.0	11.0	100.0
	Total	1587	100.0	100.0	
Week end (day or night)	No	1432	90.2	90.2	90.2
	Yes	155	9.8	9.8	100.0
	Total	1587	100.0	100.0	

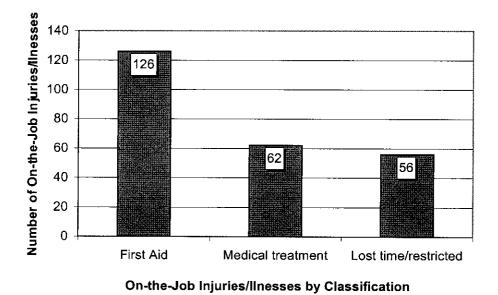


Figure 1. Number of Self-Reported On-The-Job Injuries and Illnesses by Classification

interactions between a behavior-based safety observer and one or more other workers where the safety aspects of the work are openly discussed and positive reinforcement is provided for safe work behavior. Completion of behavior-based safety training in the last 12 months was reported by 1,046 (65.9%). Respondents who reported having completed behavior-based safety observer in the last 12 months numbered 686 (43.2%). A total of 413 (26.0%) reported having conducted a behavior-based safety observation in the last 12 months. See Figure 2.

Factor Reliability

A factor was considered to have acceptable reliability if the Cronbach's alpha was 0.60 or greater. Nine of 11 factors had Cronbach's alphas equal to or greater than 0.60. See Table 4.14. The Cronbach's alpha for factor 9, permit to work, was 0.484 but improved to 0.657 when item 22 was deleted from the calculation of the factor score. Factor 11, job satisfaction, had a Cronbach's alpha of 0.198. Factor reliability was also evaluated by calculating the correlation of the mean factor scores with the mean safety climate score. The factors were considered to be reliable if the Pearson's correlation coefficient was 0.50 or greater and the significance level was < 0.05. Ten of 11 factors had significant (p<0.01) correlation coefficients of 0.50 or greater. Factor 11, job satisfaction, was poorly correlated with safety climate item score as evidenced by a correlation coefficient of -0.344. See data set B.1 in Appendix B. Based on these results item 22 was not included in the computation of the mean factor scores for factor permit to

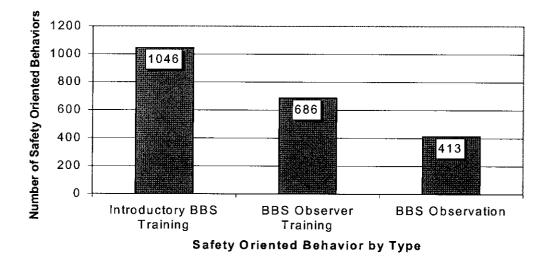


Figure 2. Safety-Oriented Behavior by Type

.

Table 4.14.

Factor reliability based on internal consistency

	N of items	Cronbach's
Factor number and name		Alpha
Factor 1 - Organizational commitment and communication	17	0.927
Factor 2 - Line management commitment	4	0.824
Factor 3 - Supervisors' role	4	0.775
Factor 4 – Personal role	6	0.700
Factor 5 – Work-mates' influence	4	0.768
Factor 6 - Competence	5	0.739
Factor 7 – Risk taking behavior	15	0.897
Factor 8 – Obstacles to safe behavior	9	0.797
Factor 9 – Permit to work	3	0.484
Factor 9 – Permit to work (Q22 deleted)	2	0.657
Factor 10 – Reporting of accidents and near misses	2	0.654
Factor 11 - Job satisfaction	2	0.198

.

work but the item was included in the generation of safety climate scores. Factor 11, job satisfaction, was not recognized as a factor but the two items, 4 and 52, were included in computations of the safety climate score.

Statistical Analysis

The purpose of this study was to investigate group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States. The following analysis were employed: analysis of variance (ANOVA), multiple analysis of variance (MANOVA) and Tukey's post hoc analysis, when appropriate to interpret group differences. The results of the statistical analysis of group differences in safety climate as related to the research questions follows:

1. Are there significant differences in safety climate among self-reported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system?

Significant differences (p<0.05) in mean safety climate scores were found among locations. The mean safety climate scores by reported location ranged from 3.180 to 4.148. See Figure 3. Analysis of variance of mean safety climate scores by location resulted in an F statistic of 22.088 (p<0.05). See Table 4.15. Post hoc analysis of the differences in safety climate scores by location were significantly different (p<0.05):

- 1. Location one differed from locations 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11.
- 2. Location two differed from locations 1, 5, 6, 7, and 8.
- 3. Location three differed from locations 1 and 5.
- 4. Location four differed from locations 1, 5, 6, and 8.

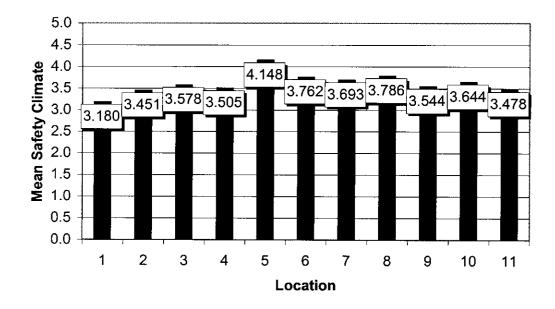


Figure 3. Mean Safety Climate by Location

Table 4.15

	Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
Contrast	53.643	10	5.364	22.088	.000	220.881	1.000
Error	360.646	1485	.243				

Group differences in mean safety climate scores among locations

The F tests the effect of location. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

- 5. Location five differed from locations 1, 2, 3, 4, 6, 7, 8, 9, 10, and 11.
- 6. Location six differed from locations 1, 2, 4, and 5.
- 7. Location seven differed from locations 1, 2, and 5.
- 8. Location eight differed from locations 1, 2, 4, and 11.
- 9. Location nine differed from locations 1 and 5.
- 10. Location ten differed from locations 1 and 5.
- 11. Location eleven differed from locations 1, 5, 6, and 8.

The results of post hoc analysis of the differences in safety climate score by locations is shown in data set B.2 in Appendix B.

The number of respondents who did not report a work location totaled 91 (5.7%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting a work location and those who did not indicate a work location.

Significant differences (p<0.05) in factor scores were found among locations. The mean factor scores by location are shown in data set B.3 in Appendix B. Multiple analysis revealed significant differences (p<0.001) in each of the factor scores, except for factor number 4 (personal role). See Table 4.16. Post hoc analysis of the differences in factor scores by locations is shown in data set B.4 in Appendix B.

The mean item scores were reviewed to identify differences in scores by location. For purposes of this review, items were examined when the mean item scores ranged from 2.95 to 3.75 or greater. There were no items that met the stated criteria for examination.

Table 4.16

Factor score		Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
1	Contrast	83.330	10	8.333	18.72 3	.000	187.235	1.000
	Error	653.786	1469	.445				
2	Contrast	54.866	10	5.487	9.555	.000	95.550	1.000
	Error	843.513	1469	.574				
3	Contrast	82.516	10	8.252	14.81 9	.000	148.187	1.000
	Error	817.990	1469	.557				
4	Contrast	5.133	10	.513	1.433	.160	14.334	.733
	Error	526.050	1469	.358				
5	Contrast	33.311	10	3.331	6.464	.000	64.637	1.000
	Error	757.070	1469	.515				
6	Contrast	38.165	10	3.816	10.25 7	.000	102.574	1.000
	Error	546.569	1469	.372				
7	Contrast	110.937	10	11.094	29.66 3	.000	296.625	1.000
	Error	549.401	1469	.374				
8	Contrast	46.820	10	4.682	12.28 1	.000	122.809	1.000
	Error	560.043	1469	.381				
9	Contrast	52.224	10	5.222	6.822	.000	68.219	1.000
	Error	1124.557	1469	.766				
10	Contrast	93.092	10	9.309	12.03 4	.000	120.343	1.000
	Error	1136.353	1469	.774	-			

Group differences in mean factor scores among locations

The F tests the effect of location. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05.

i.

2. Are there significant differences in safety climate among self-reported job positions among workers of a nuclear D&D employer located in the United States?

Significant differences (p<0.05) in mean safety climate scores were found among job positions. The mean safety climate scores by job position as shown in Figure 4 ranged from 3.155 to 3.729. Respondents reporting their job position as foreman had the lowest mean safety climate score. The order of job positions based on the lowest to highest mean safety climate score was as follows: foreman, workforce/craft, technical support, supervisor, administrative staff, senior manager, and manager. Analysis of variance of mean safety climate scores as related to job position resulted in an F statistic of 25.249 (p<0.05). See Table 4.17. Post analysis of the differences in safety climate item scores by location revealed the following significant differences (p<0.05):

- 1. Senior managers differed from foremen and workforce/craft.
- 2. Managers differed from supervisors, foremen, workforce/craft, technical support, and administrative.
- 3. Supervisors differed from managers and foremen.
- 4. Foremen differed from senior managers, managers, supervisors, workforce/craft, technical support, and administrative.
- 5. Workforce/craft differed from senior managers, managers, supervisors, technical support, and administrative.
- 6. Technical support differed from managers, workforce/craft, and administrative.
- 7. Administrative differed from managers, foremen, workforce/craft, and technical support.

82

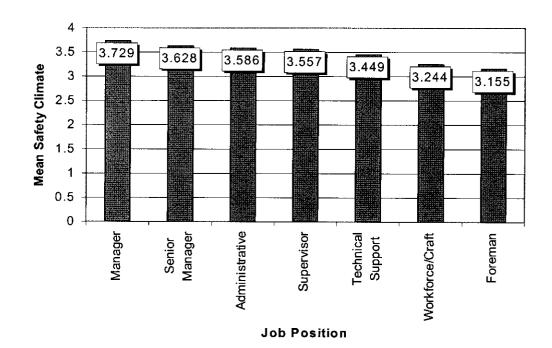


Figure 4. Mean Safety Climate by Job Position

Table 4.17

~	differences	•	C .	1.				• . •
(roun	dittoroncoc	11 10 000	antoty	olimata	COOTOG	among	106	nontiono
VIIIUUU			SAICLY	CHIMALE	SUULES	annenty		DOSTIONS

	Sum of		Mean		<u>.</u>	Noncent.	Observed	
	Squares	df	Square	F	Sig.	Parameter	Power(a)	
Contrast	37.871	6	6.312	25.249	.000	151.491	1.000	
Error	337.485	1350	.250					

The F tests the effect of job position. This test is based on the linearly independent pairwise comparisons among the estimated marginal means. a Computed using alpha = .05

i.

The results of post analysis of differences in mean safety climate scores by job positions are shown in data set B.5 in Appendix B.

The number of respondents who did not report a job position totaled 230 (14.5%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting a job location and those who did not indicate a job position.

Significant differences (p<0.05) in mean factor scores were found among job positions. The mean factor scores by job position are shown in data set B.6 in Appendix B. Multivariate analysis of mean factor scores as related to job position resulted in significant F statistics (<0.001) except for factor 9 (permit to work). See Table 4.18. Post hoc analysis of the differences in mean factor scores by job positions are shown in data set B.7 in Appendix B.

The mean item scores were reviewed to identify differences in scores by job position. For purposes of this review, items were examined when the mean item scores ranged from 2.95 to 3.75 or greater. Eight of 71 (11.3%) items were found that met the examination criteria and are presented in Table 4.19. Multivariate analysis was performed to identify significant differences in the eight mean item scores. Each of the eight items differed significantly (p<0.05) in mean item scores by job position. Managers reported that people often do not take risks while foremen more often reported people do take risks at work. Senior managers, managers, supervisors, and administrative scored high on the belief that there was good communications about health and safety while foremen scored low. Senior managers reported that accidents are always reported at the same time that foremen believed they were not. Senior managers and managers self-

Table 4.18

Factor		Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
1	Contrast	73.677	6	12.280	27.769	.000	166.615	1.000
	Error	588.130	1330	.442				
2	Contrast	33.596	6	5.599	9.608	.000	57.646	1.000
	Error	775.128	1330	.583				
3	Contrast	54.296	6	9.049	16.208	.000	97.248	1.000
	Error	742.571	1330	.558				
4	Contrast	12.947	6	2.158	6.189	.000	37.134	.999
	Error	463.711	1330	.349				
5	Contrast	35.738	6	5.956	11.762	.000	70.572	1.000
	Error	673.506	1330	.506				
6	Contrast	23.641	6	3.940	10.412	.000	62.474	1.000
	Error	503.291	1330	.378				
7	Contrast	44.791	6	7.465	18.264	.000	109.586	1.000
	Error	543.609	1330	.409				
8	Contrast	33.679	6	5.613	14.441	.000	86.646	1.000
	Error	516.970	1330	.389				
9	Contrast	3.253	6	.542	.677	.668	4.065	.273
	Error	1064.432	1330	.800				
10	Contrast	39.498	6	6.583	8.314	.000	49.882	1.000
	Error	1053.130	1330	.792				

Group differences in mean factor scores among job positions

The F tests the effect of job position. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

Table 4.19

Group differences (p<0.05) in item scores among job positions

Item	Senior manager	Manager	Super- visor	Fore- men	Work- force	Tech- support	Admin
2. People who work her often take risks when they are at work.		+		-			
5. There are good communications here about health and safety issues.	+	+	+	-			+
6. Accidents which happen are always reported.	+			-			
16. Productivity is usually seen as more important than health and safety.	+	+		-	_		
17.Manangement sometimes turns a blind eye to health and safety procedures/instructions/rules being broken.	÷	+		-			
19. I am always informed of the outcome of meetings which address health and safety.	+			-	_		
53. People here are sometimes pressured to work unsafely by their co-workers.	+	+		-		u	
69. All the people who work in my organization are fully committed to health and safety.		+		-			

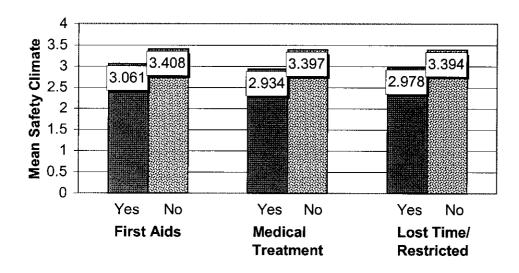
+ indicates mean item score was 3.75 of higher. - indicates mean item score was 2.95 or lower.

reported the belief that productivity is not more important than safety while foremen and the workforce reported the opposite. Foremen self-reported that management sometimes turns a blind eye to the breaking of health and safety rules but senior managers and managers did not. Senior managers reported they were always informed of the outcome of meetings that address health and safety at the same time foremen and the workforce felt they were not always informed. Foremen self-reported that people are sometimes pressured to work unsafely by co-workers while senior managers and managers did not. Finally, managers self-reported that all people in their organization were fully committed to health and safety while foremen reported that all in their organization were not fully committed.

3. Are there significant differences in safety climate between those who self-reported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States?

Significant differences (p<0.05) in mean safety climate score and mean factor scores were found between those reporting an on-the-job injury or illness resulting in first aid treatment, medical treatment or lost/restricted time and those who reported no injury or illness. The mean item scores were reviewed to identify differences in scores by onthe-job injury or illness. For purposes of this review, items were examined when the mean item scores ranged from 2.95 to 3.75 or greater. There were no items that met the stated criteria for examination.

First Aid Treatment Injury or Illness Past 12 Months


Respondents who self-reported an on-the-job injury or illness in the previous 12 months resulting in first aid treatment (n = 126) had a mean safety climate item score of 3.061 compared to those who reported no on-the-job injury or illness (n = 1272) that had a mean safety climate item average of 3.408. See Figure 5. Analysis of variance of mean safety climate score as related to first aid injury or illness resulted in an F statistic of 51.785 (p<0.05). See Table 4.20. The negative mean difference (-0.347) in safety mean climate score indicates that those who reported a first aid injury scored lower on safety climate. See data set B.8 in Appendix B for the results of post hoc analysis.

The number of respondents who did not report whether or not they experienced a first aid injury totaled 189 (11.9%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they experienced a first aid injury and those who did not report.

Multiple analysis of mean factor scores as related to first aid injury or illnesses resulted in significant F statistics (p<0.002) except for factor number 9 (permit to work). See Table 4.21. The mean factor scores by first aid injury or illness is shown in data set B.9 in Appendix B. Post hoc analysis of the differences in mean factor scores by first aid injury or illness revealed significant difference (p<0.05) for all factors except number 9, permit to work. See data set B.10 in Appendix B.

Medical Treatment Injury or Illness Past 12 Months

Respondents who self-reported an on-the-job injury or illness in the previous 12 months resulting in medical treatment (n = 62) had a mean safety climate score of 2.934

On-the-Job Injuries/Illnesses by Classification

Figure 5. Mean Safety Climate by On-The-Job Injury or Illness.

Table 4.20

Group differences in mean safety climate score between respondents who

reported a first aid injury/illness in previous 12 months and those who reported none

						Noncent.		
			Mean			Paramete	Observed	
	Sum of Squares	df	Square	F	Sig.	r	Power(a)	
Contrast	13.785	1	13.785	51.785	.000	51.785	1.000	
Error	371.612	1396	.266					

The F tests the effect of having reported a first aid injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

Group differences in mean factor scores between respondents who reported a

		Sum of		Mean			Noncent.	Observed
Factor		Squares	df	Square	F	Sig.	Parameter	Power(a)
1	Contrast	22.294	1	22.294	46.524	.000	46.524	1.000
	Error	657.456	1372	.479				
2	Contrast	12.975	1	12.975	22.048	.000	22.048	.997
	Error	807.413	1372	.588				
3	Contrast	26.152	1	26.152	44.904	.000	44.904	1.000
	Error	799.046	1372	.582				
4	Contrast	6.880	1	6.880	19.450	.000	19.450	.993
	Error	485.334	1372	.354				
5	Contrast	11.476	1	11.476	21.964	.000	21.964	.997
	Error	716.831	1372	.522				
6	Contrast	3.898	1	3.898	10.024	.002	10.024	.886
	Error	533.571	1372	.389				
7	Contrast	20.125	1	20.125	47.248	.000	47.248	1.000
	Error	584.393	1372	.426				
8	Contrast	10.667	1	10.667	26.284	.000	26.284	.999
	Error	556.791	1372	.406				
9	Contrast	1.174	1	1.174	1.468	.226	1.468	.228
	Error	1097.27	1372	.800				
		3	1372	.800				
10	Contrast	11.187	1	11.187	13.748	.000	13.748	.960
	Error	1116.41 1	1372	.814				

|--|

The F tests the effect of having reported a first aid injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

compared to those who reported noon-the-job injury or illness (n = 1337) that had a mean safety climate score of 3.397. See Figure 5. Analysis of variance of mean safety climate score as related to first aid injury or illness resulted in an F statistic of 47.766 (p<0.05). See Table 4.22. The negative mean difference (-0.464) in safety climate item score indicates that those who reported a medical treatment injury or illness scored lower on safety climate item. See data set B.11 in Appendix B for the results of post hoc analysis. The number of respondents who did not report whether or not they experienced a medical treatment injury totaled 188 (11.8%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they experienced a medical treatment injury and those who did not report.

Multiple analysis of mean factor scores as related to medical treatment injury or illnesses resulted in significant F statistics (p<0.009) except for factor number 9 (permit to work). See Table 4.23. The mean factor scores by medical treatment injury or illness are shown in data set B.12 in Appendix B. Post hoc analysis of the differences in mean factor scores by medical treatment injury or illness revealed significant difference (p<0.05) for all factors except number 9, permit to work. See data set B.13 in Appendix B.

Lost Time or Restricted Injury or Illness in Past 12 Months

Respondents who self-reported an on-the-job injury or illness in the previous 12 months resulting in lost time or restricted time (n = 56) had a mean safety climate score of 2.978 compared to those who reported no on-the-job injury or illness (n = 1338) that had a mean safety climate score of 3.394. See Figure 5. Analysis of variance of mean

Group differences in mean safety climate score between respondents who

reported medical treatment injury/illness in the previous 12 months and those who

reported none

	Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
Contrast	12.747	1	12.747	47.766	.000	47.766	1.000
Error	372.804	1397	.267				

The F tests the effect of having reported a medical treatment injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05.

.

Group differences in mean safety factor scores between respondents who

reported medical treatment injury/illness in the previous 12 months and those who

reported none

		Sum of		Mean			Noncent.	Observed
Factor		Squares	df	Square	F	Sig.	Parameter	Power(a)
1	Contrast	18.721	1	18.721	38.896	.000	38.896	1.000
	Error	660.831	1373	.481				
2	Contrast	17.010	1	17.010	28.773	.000	28.773	1.000
	Error	811.689	1373	.591				
3	Contrast	20.129	1	20.129	34.192	.000	34.192	1.000
	Error	808.310	1373	.589				
4	Contrast	8.631	1	8.631	24.450	.000	24.450	.999
	Error	484.670	1373	.353				
5	Contrast	9.309	1	9.309	17.791	.000	17.791	.988
	Error	718.445	1373	.523				
6	Contrast	11.203	1	11.203	29.254	.000	29.254	1.000
	Error	525.797	1373	.383				
7	Contrast	13.829	1	13.829	32.102	.000	32.102	1.000
	Error	591.441	1373	.431				
8	Contrast	8.714	1	8.714	21.400	.000	21.400	.996
	Error	559.080	1373	.407				
9	Contrast	.000	1	.000	.001	.982	.001	.050
	Error	1101.373	1373	.802				
10	Contrast	5.675	1	5.675	6.934	.009	6.934	.749
	Error	1123.613	1373	.818				

The F tests the effect of reported medical treatment injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

safety climate score as related to first aid injury or illness resulted in an F statistic of 34.726 (p<0.05). See Table 4.24. The negative mean difference (-0.416) in safety climate item score indicates that those who reported a lost time or restricted injury or illness scored lower on safety climate item. See data set B.14 in Appendix B for the results of post hoc analysis.

The number of respondents who did not report whether or not they experienced a lost time or restricted injury totaled 193 (12.2%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they experienced a lost time or restricted injury and those who did not report.

Multiple analysis of variance of factor scores as related to a lost time or restricted injury or illnesses resulted in significant F statistics (p<0.05) except for factor number 9 (permit to work). See Table 4.25. The mean factor scores by lost time or restricted injury or illness are shown in data set B.15 in Appendix B. Post hoc analysis of the differences in mean factor scores by lost time or restricted injury or illness revealed significant difference (p<0.05) for all factors except number 9, permit to work. See data set B.16 in Appendix B.

4. Are there significant differences between self-reported safety climate and safetyoriented behavior, as measured by self-reported participation in a behavior-based safety process, among workers of a nuclear D&D employer located in the United States?

Significant differences (p<0.05) in mean safety climate score and mean factor scores were found between those self-reporting participation in safety-oriented behavior and those who self-reported no safety-oriented behavior that included 1) attending a 2-

Group differences in mean safety climate scores between respondents who

reported a lost time/restricted injury/illnesses in the previous 12 months and those who

reported none

	Sum of		Mean			Noncent.	Observed
	Squares	df	Square	F	Sig.	Parameter	Power(a)
Contrast	9.302	1	9.302	34.726	.000	34.726	1.000
Error	372.873	1392	.268				

The F tests the effect of having reported a lost time/restricted injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

Group differences in mean safety climate factor scores between respondents

who reported a lost time/restricted injury/illness in the previous 12 months and those who

reported none

		Sum of		Mean			Noncent.	Observed
Factor		Squares	df	Square	F	Sig.	Parameter	Power(a)
1	Contrast	11.481	1	11.481	23.759	.000	23.759	.998
	Error	661.528	1369	.483				
2	Contrast	13.090	1	13.090	22.034	.000	22.034	.997
	Error	813.313	1369	.594				
3	Contrast	16.398	1	16.398	27.870	.000	27.870	1.000
	Error	805.506	1369	.588				
4	Contrast	4.269	1	4.269	12.051	.001	12.051	.934
	Error	484.930	1369	.354				
5	Contrast	7.758	1	7.758	14.844	.000	14.844	.971
	Error	715.484	1369	.523				
6	Contrast	5.919	1	5.919	15.315	.000	15.315	.974
	Error	529.119	1369	.387				
7	Contrast	11.044	1	11.044	25.560	.000	25.560	.999
	Error	591.545	1369	.432				
8	Contrast	5.337	1	5.337	13.058	.000	13.058	.951
	Error	559.548	1369	.409				
9	Contrast	.052	1	.052	.065	.799	.065	.057
	Error	1097.933	1369	.802				
10	Contrast	10.552	1	10.552	13.021	.000	13.021	.950
	Error	1109.391	1369	.810				

The F tests the effect of a reported lost time/restricted injury/illness in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

hour introductory behavior-based safety training, 2) attending an 8-hour behavior-based safety observation training in the previous 12 months, and 3) conducting behavior-based safety observations in the previous month. The mean item scores were reviewed to identify differences in scores by safety-oriented behavior. For purposes of this review, items were examined when the mean item scores ranged from 2.95 to 3.75 or greater. There were no items that met the stated criteria for examination.

Introductory Behavior-Based Safety Training in Past 12 Months

Respondents who reported attending introductory behavior-based safety training in the previous 12 months (n = 1,046) had a mean safety climate score of 3.420 compared to those who reported no attendance at the introductory training (n = 471) that had a mean safety climate score of 3.255. See Figure 6. Analysis of variance of mean safety climate score as related to introductory behavior-based safety training resulted in an F statistic of 32.781 (p<0.05). See Table 4.26. The positive mean difference (0.165) in safety climate score indicates that those who reported having completed an introductory behavior-based safety training class in the previous 12 months scored higher on safety climate item. See data set B.17 in Appendix B for the results of post hoc analysis.

The number of respondents who did not report whether or not they attended introductory behavior-based safety training in the past 12 months totaled 70 (4.4%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they attended introductory behavior-based safety training and those who did not report.

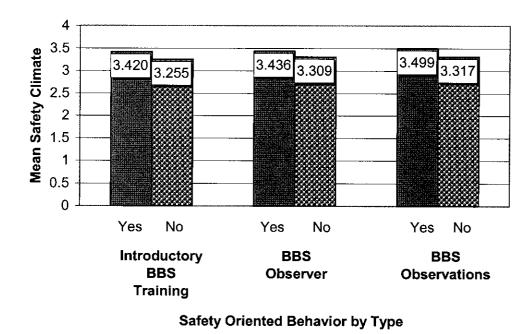


Figure 6. Mean Safety Climate by Safety-Oriented Behavior

.

Group differences in mean safety climate scores between respondents who

reported behavior-based safety training in the previous 12 months and those who reported

<u>none</u>

	Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
Contrast	8.838	1	8.838	32.781	.000	32.781	1.000
Error	408.467	1515	.270				

The F tests the effect of reported BBS training in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

Multi-variant analysis of mean factor scores as related to training attendance resulted in significant F statistics (p<0.05) except for factor numbers 8 (obstacles to safe behavior) and 10 (reporting of accidents and near misses). See Table 4.27. The mean factor scores for reported attendance at introductory behavior-based safety training are shown in data set B.18 in Appendix B. Post hoc analysis of the differences in mean factor scores by introductory behavior-based safety training revealed significant difference (p<0.05) for all factors except number 8, obstacles to safe behavior and number 10, reporting of accidents and near misses. See data set B.19 in Appendix B.

Behavior-Based Safety Observer Training Past 12 Months

Respondents who reported attending an 8-hour behavior-based safety observation training course in the previous 12 months (n = 686) had a mean safety climate score of 3.436 compared to those who reported no observer training (n = 810) that had a mean safety climate item average of 3.309. See Figure 6. Analysis of variance of mean safety climate score as related to behavior-based safety observation training resulted in an F statistic of 22.117 (p<0.05). See Table 4.28. The positive mean difference (0.127) in safety climate item score indicates that those who reported having completed the behavior-based safety observer training class in the previous 12 months score higher on safety climate item. See data set B.20 in Appendix B for the results of post hoc analysis. The number of respondents who did not report whether or not they attended behavior-based safety observer training in the past 12 months totaled 91 (5.7%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they attended behavior-based safety observer training in the past 12 months totaled 91 (between those reporting whether or not they attended behavior-based safety observer training and those who did

Group differences in mean safety climate factor scores between respondents

who reported behavior-based safety training in the previous 12 months and those who

reported none

		Sum of		Mean			Noncent.	Observed
Factor		Squares	df	Square	F	Sig.	Parameter	Power(a)
1	Contrast	17.803	1	17.803	36.419	.000	36.419	1.000
	Error	733.733	150 1	.489				
2	Contrast	26.539	1	26.539	45.107	.000	45.107	1.000
	Error	883.106	150 1	.588				
3	Contrast	15.967	1	15.967	26.681	.000	26.681	.999
	Error	898.290	150 1	.598				
4	Contrast	1.720	1	1.720	4.820	.028	4.820	.593
	Error	535.640	150 1	.357				
5	Contrast	9.139	1	9.139	17.438	.000	17.438	.987
	Error	786.662	150 1	.524				
6	Contrast	11.231	1	11.231	29.106	.000	29.106	1.000
	Error	579.166	150 1	.386				
7	Contrast	11.242	1	11.242	25.755	.000	25.755	.999
	Error	655.182	150 1	.436				
8	Contrast	1.557	1	1.557	3.802	.051	3.802	.495
	Error	614.603	150 1	.409				
9	Contrast	6.471	1	6.471	8.119	.004	8.119	.813
	Error	1196.366	150 1	.797				
10	Contrast	2.796	1	2.796	3.381	.066	3.381	.451
	Error	1241.150	150 1	.827				

The F tests the effect of reported behavior-based safety training in the previous 12 months. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Group differences in mean safety climate scores between respondents who reported

behavior-based safety observation training in the previous 12 months and those who

reported none

	Sum of Squares df		Mean Square	F	Sig.	Noncent. Observed g. Parameter Power(a)		
Contrast	5.990	1	5.990	22.117	.000	22.117	.997	
Error	404.628	1494	.271					

The F tests the effect of behavior-based safety observation training. This test is based on the linearly independent pairwise comparisons among the estimated marginal means. a Computed using alpha = .05

not report.

Multiple analysis of variance of mean factor scores as related to behavior-based safety observation training resulted in significant F statistics (p<0.05) except for factor numbers 4 (personal role), 8 (obstacles to safe behavior and 10 (reporting of accidents and near misses). See Table 4.29. The mean factor scores by attendance at behavior-based safety observation training are shown in data set B.21 in Appendix B. Post hoc analysis of the differences in mean factor scores by introductory behavior-based safety training revealed significant difference (p<0.05) for all factors except number 4, personal role; number 8, obstacles to safe behavior; and number 10, reporting of accidents and near misses. See data set B.22 in Appendix B.

Behavior-Based Safety Observation in the Past Month

Respondents who reported conducting a behavior-based safety observation in the previous month (n = 413) had a mean safety climate score of 3.499 compared to those who reported no observations (n = 1084) and that had a mean safety climate score of 3.317. See Figure 6. Analysis of variance of mean safety climate scores as related to behavior-based safety observations resulted in an F statistic of 36.974 (p<0.05). See Table 4.30. The positive mean difference (0.182) in mean safety climate score indicates that those who reported having completed a behavior-based safety observation in the previous month scored higher on safety climate. See data set B.23 in Appendix B for the results of post hoc analysis.

Group differences in mean safety climate factor scores between respondents

who reported behavior-based safety observation training in the previous 12 months and

Factor		Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
1	Contrast	17.167	1	17.167	35.273	.000	35.273	1.000
1	Error	720.320	1480	.487	55.215	.000	55.215	1.000
2	Contrast	15.286	1	15.286	25.571	.000	25.571	.999
-	Error	884.726	1480	.598				
3	Contrast	8.800	1	8.800	14.603	.000	14.603	.968
	Error	891.939	1480	.603				
4	Contrast	.388	1	.388	1.073	.300	1.073	.179
	Error	535.347	1480	.362				
5	Contrast	5.007	1	5.007	9.518	.002	9.518	.869
	Error	778.561	1480	.526				
6	Contrast	4.658	1	4.658	11.871	.001	11.871	.931
	Error	580.770	1480	.392				
7	Contrast	7.427	1	7.427	16.914	.000	16.914	.984
	Error	649.859	1480	.439				
8	Contrast	1.501	1	1.501	3.676	.055	3.676	.483
	Error	604.239	1480	.408				
9	Contrast	9.658	1	9.658	12.101	.001	12.101	.935
	Error	1181.219	1480	.798				
10	Contrast	.453	1	.453	.549	.459	.549	.115
	Error	1221.044	1480	.825				

those who reported none

The F tests the effect of reported behavior-based safety observation training`. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

.

Group differences in mean safety climate scores between respondents who reported

behavior-based safety observation in the previous month and those who reported none

	Sum of Squares	df	Mean Square	F	Sig.	Noncent. Parameter	Observed Power(a)
Contrast	9.898	1	9.898	36.974	.000	36.974	1.000
Error	400.200	1495	.268				

The F tests the effect of reported behavior-based safety observation in the previous month. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a Computed using alpha = .05

The number of respondents who did not report whether or not they conducted a behavior-based safety observation in the past month totaled 90 (5.7%). There was no significant difference (p<0.05) in mean safety climate scores between those reporting whether or not they conducted a behavior-based safety observation and those who did not.

Multiple analysis of variance of mean factor scores as related to behavior-based safety observations resulted in significant F statistics (p<0.05) except for factor numbers 4 (personal role) and 10 (reporting of accidents and near misses). See Table 4.31. The mean factor scores by a reported behavior-based safety observation having been completed in the previous month are shown in data set B.24 in Appendix B. Post hoc analysis of the differences in mean factor scores by introductory behavior-based safety training revealed significant difference (p<0.05) for all factors except number 4, personal role and number 10, reporting of accidents and near misses. See data set B.25 in Appendix B.

Summary

The overall survey response rate of 48.1 percent was sufficiently high to assume the responses were representative of the study population. However, a low response rate of 13.8 percent at the location designated number 2 raises concern over the survey results for that location. The remaining locations had response rates ranging from 40.6 to 78.6 percent and thus, the survey data is assumed to be representative of the study population at these locations.

Group differences in mean safety climate factor scores between respondents

who reported behavior-based safety observation in the previous month and those who

reported none

Part		Sum of	10	Mean		~ .	Noncent.	Observed
Factor		Squares	df	Square	F	Sig.	Parameter	Power(a)
1	Contrast	25.890	1	25.890	54.153	.000	54.153	1.000
	Error	708.525	1482	.478				
2	Contrast	21.723	1	21.723	37.035	.000	37.035	1.000
	Error	869.259	1482	.587				
3	Contrast	18.519	1	18.519	31.250	.000	31.250	1.000
	Error	878.240	1482	.593				
4	Contrast	.933	1	.933	2.592	.108	2.592	.363
	Error	533.284	1482	.360				
5	Contrast	7.968	1	7.968	15.191	.000	15.191	.974
	Error	777.339	1482	.525				
6	Contrast	8.396	1	8.396	21.635	.000	21.635	.996
	Error	575.149	1482	.388				
7	Contrast	12.510	1	12.510	28.696	.000	28.696	1.000
	Error	646.069	1482	.436				
8	Contrast	2.853	1	2.853	6.991	.008	6.991	.753
	Error	604.832	1482	.408				.,
9	Contrast	9.160	1	9.160	11.543	.001	11.543	.924
	Error	1176.118	1482	.794				
10	Contrast	1.432	1	1.432	1.741	.187	1.741	.261
	Error	1219.449	1482	.823				.201

The F tests the effect of reported behavior-based safety observation in the previous month. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Computed using alpha = .05

Based on the results of the self-reported survey the respondents can be characterized as largely employed by one company (66.7%), male (66.9%), white (74.5%) and ranged in age from 36 to 55 years (54.7%). Twenty eight percent of the respondents were exempt (salaried) workers and 65% were non-exempt (hourly). A total of 466 respondents (29.4%) self-reported membership in a union with Laborers (13.6%) being the most frequent union affiliation. The years in current profession and years at their current location were evenly spread across the available ranges. The frequency of reported job positions included: workforce/craft – 667 (42.0%); technical support – 321 (20.2%); not reported 230 (14.5%), 114 (7.2%) administrative; 103 (6.5%) managers; 72 (4.5%) supervisors; 63 (4.0%) foremen; and 17 (1.1%) senior managers. The reported work-shift included 1,177 (74.2%) weekdays, 175 (11%) weekday nights; and 155 (9.8%) weekends.

Respondents' reported on-the-job injury and illness experiences in the previous 12 months included 126 (7.9%) first aids, 62 (3.9%) medical treatments, and 56 (3.5%) lost/restricted.

The respondents' reported participation in safety-oriented behavior included 1,046 (65.9%) who completed introductory behavior-based safety training in the previous 12 months; 686 (43.2%) who completed behavior-based safety observer training in the previous 12 months; and 413 (26.0%) who conducted a behavior-based safety observation in the previous month.

Reliability analysis demonstrated that all factors except for number 9, permit to work and number 11, general worker satisfaction, possessed acceptable internal consistency. Further analysis of factor number 9 revealed that deleting item number 22,

110

(The work permit/work package/procedure system is always strictly applied and followed.) raised the internal consistency of factor 9 to an acceptable level. Item 22 was deleted from all calculations of factor 9 but was retained in the calculation of the safety climate score. Factor 11 was deleted from the subsequent statistical analysis that addressed the research questions but again the items contained in the factor were included in the calculation of safety climate score.

Significant differences (p<0.05) were identified among groups for all four research questions. Mean safety climate scores and mean factor scores differed by location (p<0.05), job position (p<0.05), on-the-job injury illness (p<0.05), and behavior-based safety participation (p<0.05). Foreman had the lowest mean safety climate score of all reported job positions. On average those who reported an on-the-job injury or illness scored lower on safety climate while those who reported participation in safety-oriented behavior scored higher on safety climate. Eight (11.3%) mean item scores ranged from 2.95 to 3.75 or greater by job position and these differences among mean item scores on these eight items while the higher mean item scores were for senior managers and/or managers.

Chapter V

SUMMARY, FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

Summary

The purpose of this study was to evaluate group differences in safety climate among workers in the nuclear decommissioning and demolition (D&D) industry in the United States. Respondents numbering 1,587 out of a total of 3,296 (48.1%) voluntarily and anonymously completed a safety climate survey. The survey instrument, the Climate Survey Tool (CST), was selected based on its appropriateness as a measure of safety climate among workers in high reliability industries. The CST included 71 five point Likert items that elicited respondents' attitudes and perceptions about 11 factors deemed key to a healthy safety climate. The CST also included nineteen demographic questions. The survey was prepared in a tri-fold front and back page format and scored electronically. The scanned survey data was transferred from an EXCEL file into a Statistical Program for Social Sciences (SPSS) database for analysis.

Descriptive and inferential statistical analysis was performed. Factor reliability was established by computation of Cronbach's alphas. Group differences in mean safety climate scores, mean factor scores and mean item scores were identified through analysis of variance (ANOVA) and multiple analysis of variance (MANOVA). Specific differences in safety climate among groups was characterized by post hoc analysis with Tukey's HSD.

General Findings

- 1. The overall survey response rate of 48.1 percent is sufficient to assume that the survey respondents are representative of the study population.
- 2. The overall reliability of factors proved acceptable and was strengthened by the deletion of factor 11, general worker satisfaction, and item number 22 from factor number 9, permit to work.
- Significant group differences (p<0.05) in mean safety climate scores and mean factor scores were detected by location, job position, on-the-job injury and illness, and safety-oriented behavior.
- Significant differences (p<0.05) were found for all factors when grouped by location, job position, on-the-job injury or illness, and safety-oriented behavior except for the following:

a. The location group means for factor # 4, personal role.

b. The job position group means for factor #9, permit to work.

c. The on-the-job injury group means including first aids, medical treatments, and lost time or restricted for factor #9, permit to work.

d. The safety-oriented behavior group means for factors #4, personal role; #8, obstacles to safe behavior; and #10, reporting of accidents and near misses.

Findings Related to the Research Questions

Research question #1: Are there significant differences in safety climate among selfreported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system?

- Significant differences (p<0.05) in mean safety climate scores and mean factor scores were identified among locations.
- 2. The mean difference in safety climate score between the lowest scoring location and the highest scoring location was -0.968.
- 3. Post hoc analysis revealed that the mean safety climate score for each of the 11 locations significantly differed (p<0.05) from at least one other location.

Research question # 2: Are there significant differences in safety climate among selfreported job positions among workers of a nuclear D&D employer located in the United States?

- Significant differences (p<0.05) in mean safety climate score and mean factor scores were identified among job positions.
- Foremen and workforce/craft had the lowest mean safety climate scores (3.155 and 3.244, respectively) and these mean scores were significantly different (p<0.05) than senior managers, managers, supervisors, technical support, and administrative.
- Managers had the highest mean safety climate score (3.729) and this group's mean score was significantly different (p<0.05) than the mean safety climate score for supervisors, foremen, workforce/craft, technical support and administrative.
- 4. Significant differences (p<0.05) in mean item scores by job position were identified for eight items. For purposes of this study items were examined if the mean item scores ranged from 2.95 to 3.75 or greater. Foremen consistently had

mean item scores of 2.95 or lower on all eight items while the mean item scores for senior managers and/or managers were 3.75 or higher.

Research Question #3: Are there significant differences in safety climate between those who self-reported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States?

- Significant differences (p<0.05) in mean safety climate scores and mean factor scores were found between those who reported an on-the-job first aid injury or illness in the previous 12 months and those who did not.
- 2. The significant difference (p<0.05) in mean safety climate score between those who reported an on-the-job first aid injury or illness in the previous 12 months and those who did not was -0.448 and indicates that the mean safety climate is lower for those who reported a first aid injury or illness in the previous 12 months.</p>
- 3. Significant differences (p<0.05) in mean safety climate score and mean factor score were found between those who reported an on-the-job medical treatment injury or illness in the previous 12 months and those who did not.</p>
- 4. The significant difference (p<0.05) in mean safety climate scores between those who reported an on-the-job medical treatment injury or illness in the previous 12 months and those who did not was −0.464 and indicates that the mean safety climate is lower for those who reported a medical treatment injury or illness in the previous 12 months.</p>

- 5. Significant differences (p<0.05) in mean safety climate scores and mean factor scores were found between those who reported an on-the-job lost-time/restricted injury or illness in the previous 12 months and those who did not.</p>
- 6. The significant difference (p<0.05) in mean safety climate score between those who reported an on-the-job lost-time/restricted injury or illness in the previous 12 months and those who did not was -0.464 and indicates that the mean safety climate is lower for those who reported a lost-time/restricted injury or illness in the previous 12 months.</p>

Research question #4: Are there significant differences between self-reported safety climate and safety-oriented behavior, as measured by self-reported participation in a behavior-based safety process, among workers of a nuclear D&D employer located in the United States?

- Significant differences (p<0.05) in mean safety climate scores and mean factor scores were found between those who reported attending an introductory behavior-based safety training course in the previous 12 months and those who reported none.
- 2. The significant difference (p<0.05) in mean safety climate scores between those who reported attending an introductory behavior-based safety course in the previous 12 months and those who did not was 0.165 and indicates that the mean safety climate is higher for those who reported attending an introductory behavior-based safety training course.</p>

- Significant differences (p<0.05) in mean safety climate scores and mean factor scores were found between those who reported attending a behavior-based safety observation training course in the previous 12 months and those who did not.
- 4. The significant difference (p<0.05) in mean safety climate scores between those who reported attending the behavior-based safety observation training in the previous 12 months and those who did not was 0.127 and indicates that the mean safety climate is higher for those who reported attending the behavior-based safety observation training in the previous 12 months.
- 5. Significant differences (p<0.05) in mean safety climate scores and mean factor scores were found between those who reported conducting a behavior-based safety observation in the previous month and those who did not.
- 6. The significant difference (p<0.05) in mean safety climate scores between those who reported conducting a behavior-based safety observation in the previous month and those who did not was 0.182 and indicates that the mean safety climate is higher for those who reported conducting a behavior-based safety observation in the previous 12 months.</p>

Conclusions

Within the limitations of this study, analysis of the data, and the findings presented in the previous section, the following conclusions can be drawn.

Research question #1: Are there significant differences in safety climate among selfreported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system? Workers at different geographic locations may not have the same self reported attitudes and perceptions about safety (safety climate) even though the safety management systems are the same. Therefore, factors other than the safety management system must be responsible.

Research question # 2: Are there significant differences in safety climate among selfreported job positions among workers of a nuclear D&D employer located in the United States?

The self-reported safety attitudes and perceptions of the majority of managers/support staff in the nuclear D&D industry in the United States supports a strong safety climate while the self-reported safety attitudes and perceptions of the majority of the foremen/workforce do not reflect this same strong safety climate.

Research Question #3: Are there significant differences in safety climate between those who self-reported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States?

The self-reported safety attitudes and perceptions of the majority of workers in the nuclear D&D industry in the United States who self-reported no on-the-job injury or illness supports a strong safety climate while the self-reported safety attitudes and perceptions of the majority of workers who self-reported an on-the-job injury or illness do not reflect this same strong safety climate.

Research question #4: Are there significant differences between self-reported safety climate and safety-oriented behavior, as measured by self-reported participation in a

behavior-based safety process, among workers of a nuclear D&D employer located in the United States?

The self-reported safety attitudes and perceptions of the majority of workers in the nuclear D&D industry in the United States who self-reported participation in safetyoriented behavior support a strong safety climate while the self-reported safety attitudes and perceptions of the majority of workers who self-reported no participation in safetyoriented behavior do reflect the same strong safety climate.

Recommendations

The following recommendations are based upon the findings and the conclusions of this study as they relate to the four research questions:

Research question #1: Are there significant differences in safety climate among selfreported geographic work locations among workers of a nuclear D&D employer located in the United States who use the same safety management system?

Based on the conclusion that differences in self-reported safety climate among geographic locations in the nuclear D&D industry in the United States who use common safety management systems are attributable to factors other than the safety management system, safety process improvements should address social, political and human factors. *Research question # 2: Are there significant differences in safety climate among self-reported job positions among workers of a nuclear D&D employer located in the United States?*

Given the evidence for the existence of two safety cultures in the nuclear D&D industry in the United States characterized by a strong safety climate among

managers/support staff and negative relationship between hands-on work and safety climate, efforts to improve safety climate should focus on workers performing hands-on work.

Research Question #3: Are there significant differences in safety climate between those who self-reported an on-the-job injury during the previous 12 months and those who reported no injury among workers of a nuclear D&D employer located in the United States?

Based on the conclusion that worker safety attitudes and perceptions in high reliability industries degrade with the occurrence of on-the-job injuries and illnesses, immediate and long term follow up with workers in high reliability industries who experience on-the-job injuries or illnesses should extend beyond their physical well-being to include social, political, and human factors that bear on the health of their safety attitudes and perceptions.

Research question #4: Are there significant differences between self-reported safety climate and safety-oriented behavior, as measured by self-reported participation in a behavior-based safety process, among workers of a nuclear D&D employer located in the United States?

Based on the conclusion that a the positive effect that participation in the safety program has on worker safety attitudes and perceptions, the participation of workers in high reliability industries in safety-oriented behavior should be fostered by all levels of management.

Recommendations for Further Research

The significant differences in safety climate this research found among locations, job positions, on-the-job injury and illness experience, and safety-oriented behavior suggests that other group differences in safety climate such as age, work shift, length of employment, and years of experience should be explored in future safety climate research. Additional findings of group differences in safety climate can better enable management teams to focus safety process improvements. Group differences in safety climate to be investigated in future research may include:

- 1. Age, gender, and ethnicity.
- 2. Length of employment and years of experience.
- 3. Work shift.
- 4. Union membership.

Summary

This study demonstrated the existence of significant group differences in self-reported safety climate among workers in the nuclear D&D industry in the United States. The study findings included significant differences in safety climate among locations, job positions, on-the-job injury and illness experiences, and safety-oriented behavior. Differences in self-reported safety climate among locations in high reliability industries are attributable to elements other than safety management systems. Differences in the self-reported safety climate among job positions in high reliability industries adduce evidence of two safety cultures in high reliability industries characterized by a negative relationship between hands-on work and safety climate. Differences in self-reported

safety climate by self-reporting of on-the-job injuries or illness attests that worker safety attitudes and perceptions in high reliability industries degrade with the occurrence of onthe-job injuries and illnesses. Differences in self-reported safety climate by self-reported participation in safety-oriented behavior bespeaks the positive effect that participation in the safety program has on worker safety attitudes and perceptions. Recommended safety improvement strategies include 1) addressing the contributions of elements other than safety management systems such as social, political and human factors to the safety climate across locations; 2) attending to the self reported safety climate of the workers performing hands-on work; 3) implementing immediate and long term follow up with workers experiencing on-the-job injuries or illnesses; and 4) ensuring management support of worker participation in safety-oriented behavior. Based on the study findings and conclusions, further research into group differences in safety climate in high reliability industries is recommended to better enable management teams to focus safety process improvements.

Chapter VI

THE STUDY IN RETROSPECT

Introduction

This chapter presents a retrospective review of the study covering the strengths, weaknesses, and other issues that did not lead themselves to analysis but may have been reflected in the outcomes of the investigation. The purpose of this study was to evaluate group differences in safety climate among workers in the nuclear D&D industry in the United States.

Strengths

The strengths of the study are many and included the following.

1. The nuclear D&D employer was fully committed to undertaking a safety climate survey at all their locations in the United States and freely provided personnel and financial resources, including support staff, freeing up time for workers to attend the safety meetings and complete the surveys, the hiring of a specialty contractor to develop the survey format and electronically score the surveys and providing permission for the researcher who was employed by the nuclear D&D employer to conduct the survey. In addition, conducting the research in affiliation with the University of Tennessee resulted in the creation and implementation of study control measures to ensure human subjects research guidelines were closely followed. While these control measures resulted in additional effort over and above that the nuclear D&D employer would have expended on its own, the nuclear D&D employer cooperated fully.

- 2. The study population provided a uniquely homogeneous set of locations and workers that lent its self to the evaluation of group differences in safety climate among workers in the nuclear D&D industry in the United States. Environment, health and safety in the nuclear D&D industry is closely regulated and the implementation of safety management systems is highly standardized. This standardization of programs served to control extraneous bias that could mask true group differences in safety climate attributable only to safety attitudes and perceptions.
- 3. The availability of a valid and reliable survey instrument that had been successfully employed in the nuclear industry in the United Kingdom and undergone extensive refinement as result of the evaluation of thousands of survey responses enabled the researcher to dedicate research resources principally to the study of group differences.
- 4. The overall response rate for the survey was excellent and provided sufficient sample sub sets to identify significant group differences in safety climate.
- 5. The large size of the available study population facilitated the evaluation of group differences that would not have been possible with a smaller study population.
- 6. The use a specialty contractor to develop the survey format and electronically score the surveys saved immeasurable time and contributed to the accuracy of the inputted data.

Weaknesses

While the weaknesses of the study were few and successfully managed, they nonetheless are important to the understanding of the study. The study weaknesses included the following.

- The study locations were geographically dispersed across the United States and thus, the onsite involvement of the researcher at all locations was impractical. With the exception of one location with significant numbers of workers the researcher relied on the support of personnel at each of the locations to properly implement the study procedures and control measures.
- 2. The length of the survey required up to 20 minutes to complete. Feedback from some participants was that the survey was overly lengthy and this contributed to the numbers of missing item responses.
- 3. The survey included a number of demographic questions to facilitate the current and future study of group differences. Despite the study controls in place to ensure confidentiality and anonymity, some participants voiced concern that answering certain questions could lead to the their identification.
- 4. Safety climate surveys measure safety attitudes and perceptions at one point in time. The association of safety climate with other safety performance indicators expressed over time is problematic. For purposes of this study, the timeframe for the interaction between safety climate and, injuries/illness and behavior-based safety training was set at 12 months, while the timeframe for safety climate interaction with behavior-based safety observations was set at one month.

Other Issues Affecting Safety Climate

Safety climate measurement tools are designed to elicit safety attitudes and perceptions. However, the responses to individual items are subject to other factors such as labor/management disputes, significant organizational changes, and reductions in force. For example, the expressed safety climate of study populations undergoing reduction in force may reflect fears and anxieties related to job security rather than safety attitudes and perceptions. At the same time it follows that concern over job security can contribute to a weakening of safety climate. In this study, one of the locations was undergoing a substantial reduction in force due to the completion of the project. It can be assumed that worker concerns with job security were reflected in lower safety climate scores. How much these fears contributed to erosion of safety climate cannot be quantified. Still it can be assumed that while fears over job security adversely affected safety attitudes and perceptions, safety climate scores were lowered for all groups.

Concluding Remarks

The undertaking of a safety climate survey is a significant endeavor that requires substantial management and labor support, technical expertise, and expenditure of resources. Safety climate surveys raise worker expectations and thus, employers must be committed to communicate and act on safety climate results. Group differences in safety climate indicate the existence of multiple safety cultures that can negate the effectiveness of safety programs and communication. In the end what the workforce thinks about management's commitment to safety is equally important as how management perceives their commitment. Additional research is needed to develop safety climate models, validate safety climate measurement tools and better understand the impact of group differences in safety climate.

REFERENCES

.

Advisory Committee on the Safety of Nuclear Installations (ACSNI), (1993). <u>Human Factors Study Group, Third Report.</u> Suffolk, UK: Health and Safety Executive Books.

Argyis, C. (1958). Some problems in conceptualizing organizational climate: A case study of a bank. <u>Administrative Science Quarterly</u>, 2, 501-520.

Blau, P. (1955). The Dynamics of Bureaucracy. New York, NY: John Wiley.

Brown, R. & Holmes, H. (1986). The use of factor-analytic procedure for assessing the validity of an worker safety climate model. <u>Accident Analysis and</u> <u>Prevention, 18</u>, 455-470.

Carroll, J. (1998). Safety culture as an ongoing process: Culture surveys as opportunities for inquiry and change. <u>Work & Stress, 12(3)</u>, 272-284.

Cheyne, A., Oliver, A., Tomas, J. and Cox, S. (2002). The architecture of employee attitudes to safety in the manufacturing sector. <u>Personnel Review, 31(6)</u>, 649-670.

Cheyne, A. Cox. S., Oliver, A. & Tomas, J. (1998). Modeling safety climate in the prediction of levels of safety activity. <u>Work and Stress</u>, 12(3), 255-271.

Clarke, S. (1996). The effect of habit as a behavioral response in risk reduction programmes. <u>Safety Science, 22(1-3)</u>, 163-175.

Cleveland, R., Cohen, H., Smith, M. & Cohen, A. (1978). Safety program practices in record-holding plants. Cincinnati, OH: National Institute for Occupational Safety and Health.

Cohen, A. (1977). Factors in successful occupational safety programs. Journal of Safety Research, 9, 168-178.

Cohen, A., Smith, M. & Cohen H. (1975). Safety program practices in high vs. low accident rate companies: An interim report (U. S. Department of Health, Education and Welfare Publication No. 75-185). Cincinnati, OH: National Institute for Occupational Safety and Health.

Collinson, D. (1999). Surviving the rigs: Safety and surveillance on North Sea oil installations. <u>Organization Studies</u>, 20(4), 579-600.

Cox, S. & Cox, T. (1996). <u>Safety Systems and People</u>. Oxford, UK: Butterworth-Heineman.

Cox, S. & Cox, T. (1991). The structure of employee attitudes to safety: A European example. <u>Work and Stress, 5(2)</u>, 93-106.

Cox, S & Flin, R. (1998). Safety Culture: Philosopher's stone or man of straw? Work and Stress, 12, 189-201.

Cullen, D. (1990). <u>The public inquiry into the piper alpha disaster.</u> London, U.K.: Department of Energy, Her Majesty's Stationary Office.

Dalton, M. (1959). Men who manage. New York, NY: John Wiley.

Dansereau, F. & Alutto, J. (1990). Level –of-analysis issues in climate and culture research. In Schneider, B (Ed.), <u>Organizational climate and culture (pp. 193-236)</u>. San Francisco, CA: Jossey-Bass.

Deal, T. & Kennedy, A. (1983). Culture: A new look through old lenses. Journal of Applied Behavioral Sciences, 19(4), 498-505.

Dedobbeleer, N. & Beland, F. (1998). Is risk perception one of the dimensions of safety climate? In Feyer, A. & Williamson, (Eds.), <u>Occupational Injury: Risk Prevention</u> and Intervention. London, U.K: Taylor & Francis, 73-81.

Dedobbeleer, N. & Beland, F. (1991). A safety climate measure for construction sites. Journal of Safety Research, 22, 97-103.

Denison, D. (1990). <u>Corporate culture and organizational effectiveness</u>. New York, NY: John Wiley.

Donald, I., Canter, D. & Chalk, J. (1991). Measuring safety culture and attitudes. In: Proceedings of the First International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, The Hague, November 11-14.

Donald, I. & Canter, D. (1994). Employee attitudes and safety in the chemical industry. Journal of Loss Prevention Process Industries,??(??), ??-??.

Drexler, J. (1977). Organizational climate: Its homogeneity within organizations. Journal of Applied Psychology, 62, 38-42.

Flin, R. (2003). Danger-Men at work: Management influence on safety. <u>Human</u> <u>Factors and Ergonomics in Manufacturing, 13</u>(4), 261-268.

Flin, R. (1998). Safety condition monitoring. Lessons from 'Man-made disasters. Journal of Contingencies and Crisis Management, 6, 88-92.

Flin, R. Mearns, K., O'Conner, P., & Bryden, R. (2000). Measuring safety climate: identifying the common features. <u>Safety Science</u>, <u>34</u>, 177-192.

Geller, S. (1994). Ten principles for achieving a total safety culture. <u>Professional</u> <u>Safety, 38</u>, 18-24.

Gillen, M., Baltz, D. Gassel, M. Kirsch, L. & Vaccaro, D. (2002). Perceived safety climate, job demands, and coworker support among union and nonunion injured construction workers. Journal of Safety Research, 33, 33-51.

Glendon, A. and Litherland, D. (2001). Safety climate factors, group differences and safety behavior in road construction. <u>Safety Science</u>, 39, 157-188.

Glendon, A, Stanton, N. & Harrison, D. (1994). Factor analyzing a performance shaping concepts questionnaire. In: Robertson, S. (Ed). <u>Contemporary Ergonomics 1994:</u> <u>Ergonomics for All.</u> London, UK: Taylor & Francis, 340-345.

Glick, W. (1985). Conceptualizing and measuring organizational and psychological pitfalls in multilevel research. <u>Academy of Management Review, 10</u>, 601-616.

Gonzalez-Roma, V, Peiro, J, Lloret, S & Zornoza (1999). The validity of collective climates. Journal of Occupational and Organizational Psychology, 72, 25-40.

Goulder, A. (1954). <u>Industrial relations and organization of management</u>. Dissertation: University of California, Berkely.

Guldenmund, F. (2000). The nature of safety culture: A review of theory and practice. <u>Safety Science</u>, 34, 215-257.

Hale, R., Kirwan, B. & Guldenmund, F. (1999). Capturing the river: multilevel modeling of safety management, Chapter 11. In: Misumi, J., Wilpert, B., & Miller, R.
(Eds.). <u>Nuclear Safety: A Human Factors Perspective.</u> London, UK: Taylor & Francis.

Harvey, J., Bolam, H., Gregory, D. & Erdos, G. (2001). The effectiveness of training to change safety culture and attitudes within a highly regulated environment. <u>Personnel Review, 30(6)</u>, 615-636.

Harvey, J., Bolam, H. & Gregory, D. (1999). How many safety cultures are there? <u>The Safety and Health Practitioner, 17(12)</u>, 9-12.

Health and Safety Executive (1997a). <u>Software Manual: Health and Safety</u> <u>Climate Survey Tool</u>. Colegate, Norwich: Author.

Health and Safety Executive (1997b). <u>Process Guidelines: Health and Safety</u> <u>Climate Survey Tool</u>. Colegate, Norwich: Author.

Health and Safety Executive (1999). <u>Reducing Error and Influencing Behavior</u>, HSG48, 2nd Edition. Suffolk, UK: Author.

Health and Safety Laboratory (2002). <u>Safety Culture: A Review of the Literature</u>, (HSL/2002/25). Sheffield, U.K.: Health & Safety Laboratory.

Hoffman, D. & Stetzer, A. (1996). A cross-level investigation of factors influencing unsafe behaviors and accidents. <u>Personnel Psychology</u>, 49, 307-339.

International Atomic Energy Authority (IAEA), (1997). <u>Examples of safety</u> <u>culture practices: Safety report series no. 1.</u> Vienna, Austria: IAEA.

International Atomic Energy Authority (IAEA), (1991). <u>Safety Culture: Safety</u> <u>Series 75-INSAG-4.</u> Vienna, Austria: IAEA.

International Atomic Energy Authority (IAEA), (1986). <u>Summary Report on the</u> <u>Post-Accident Review Meeting on the Chernobyl Accident: Safety Series 75-INSAG-1.</u> Vienna, Austria: IAEA.

Keil Centre (2002). Evaluating the effectiveness of the Health and Safety Executive's health and safety tool. Research Report No. 042. HSE Books, Edinburgh: United Kingdom.

Lee, T. R. (1998). Assessment of safety culture at a nuclear reprocessing plant. Work and Stress, 12(3), 217-237. Lewin, K., Lippit, R. & White, R. (1939). Patterns of aggressive behavior in experimentally created "social climate." Journal of Social Psychology, 10, 271-299.

Martin, J. (1991). <u>Culture in organizations: Three perspectives.</u> New York, NY: Oxford University Press.

McDonald, N. Corrigan, S. Day, C. & Cromie, S. (2000). Safety management systems and safety culture in aircraft maintenance organizations. <u>Safety Science</u>, <u>34</u>(1), 151-176.

McLain, D. (1995). Response to health and safety risk in the work environment. Academy of Management Journal, 38, 1726-1743.

Mearns, K., Flin, R., Gordon, & Fleming, M. (2001) Human and organizational factors in offshore safety. <u>Work and Stress, 15(2)</u>, 144-160.

Mearns, K., Flin, R. Gordon, R. & Fleming, M. (1998). Measuring safety climate on offshore installations. <u>Work and Stress, 12</u>, 238-254.

Mearns, K, Whitaker, S. & Flin, R. (2003). Safety climate, safety management practice and safety performance in offshore environments. <u>Safety Science, 41</u>, 641-680.

Mearns, K, Whitaker, S. & Flin, R. (2001). Benchmarking safety climate in hazardous environments: A longitudinal, inter-organizational approach. <u>Risk Analysis</u>, <u>21</u>(4), 771-786.

Mohamed, S. (2002). Safety climate in construction site environments. Journal of Construction Engineering and Management, September/October, 375-384.

Niskanen, T. (1994). Safety climate in the road administration. <u>Safety Science</u>, <u>17</u>, 237-255.

Oliver, A., Cheyne, A. Tomas, J. & Cox, S. (2002). The effects of organizational and individual factors on occupational accidents. Journal of Occupational and Organizational Psychology, 75, 473-488.

Organization for Economic Co-operation and Development (OECD) Nuclear Agency (1987). <u>Chernobyl and the safety of nuclear reactors on OECD countries.</u> Paris, France: OECD.

Ostram, L., Wilhelmsen, A., & Kaplan, B. (1993). Assessing safety culture. Nuclear Safety, 34(2).

Ouchi, W. (1981). <u>Theory Z: How American business can meet the Japanese</u> <u>challenge</u>. Reading, MA: Addison-Wesley.

Peters, T. & Waterman, R. (1982). <u>In search of excellence</u>. New York, NY: Harper & Row.

Pidgeon, N. (1998). Safety culture: key theoretical issues. <u>Work and Stress, 12(3)</u>, 202-216.

Prussia, G., Brown, K. & Willis, P. (2003). Mental models of safety: Do managers and workers see eye to eye? Journal of Safety Research, 34, 143-156.

Reason, J. (1998). Achieving a safe culture: Theory and practice. <u>Work and</u> <u>Stress, 12(3), 293-306</u>.

Reason, J. (1997). <u>Managing the risks of organizational accidents.</u> Aldershot: Ashgate.

Reichers, A. & Schneider, B. (1990). Climate and culture: An evolution of constructs. In B. Schneider (Ed.) <u>Organizational climate and culture</u> (pp. 5-39). San Francisco, CA: Jossey-Bass.

Roethlisberger, F. & Dickson, W. (1946). <u>Management and the worker</u>. Cambridge, MA: Harvard University Press.

Rousseau, D. (1985). Issues of level in organizational research: Multilevel and cross-level perspectives. In L. Cummings & B Staw (Eds.) <u>Research in organizational</u> <u>behavior</u> (pp. 1-38). Greenwich, CT: JAI Press.

Rycraft, H. (2002). Safety culture self-assessment: Making improvements from assessment results. Paper to be presented at the 2002 IAEA Conference. Rio de Jinero, Spain.

Seppala, A. (1992). Evaluation of safety measures, their importance and connections to occupational accidents. Cited in Niskanen, T. (1994). Safety climate in the road administration. <u>Safety Science, 17</u>, 237-255.

Schein, E. (1984). Coming to a new awareness of organizational culture. <u>Sloan</u> <u>Management Review, 25</u>, 3-16.

Schein, E. (1990). <u>Organizational culture and leadership: A dynamic view</u> (2nd ed.). San Francisco, CA: Jossey-Bass.

Schneider, B. (1990). The climate for service: An application of the climate construct. In Schneider (Ed.), <u>Organizational climate and culture</u> (pp. 383-412). San Francisco, CA: Jossey-Bass.

Schnieder, B. and Gunnarson, S. (1991). Organizational climate and culture: The psychology of the workplace. In Steffy, J. & Bray, D. (Eds.). <u>Applying Psychology in</u> <u>Business.</u> Lexington, MA. 542-551.

Selznick, P. (1949). <u>TVA and the Grassroots</u>. Berkley, CA: University of California Press.

Shafai-Sharai, Y. (1971). An inquiry into factors that might explain differences in occupational accident experience of similar size firms in the same industry. East Lansing, Michigan: Division of research, Graduate School of Business Administration, Michigan State University Press.

Sorensen, J. (2002). Safety culture: A survey of the state of the art. <u>Reliability</u> Engineering and System, 76, 189-204.

Thompson, J. W. (1996). Employee attitudes, organizational performance, and qualitative factors underlying success. <u>Journal of Business and Psychology, 11(2)</u>, 171-196.

Turner, B. A. (1994). Causes of disaster: sloppy management. <u>British Journal of</u> <u>Management, 5</u>, 215-219.

Van Mannen, J. & Barley, S. (1985). Cultural organization: Fragments of theory. In Frost, P., Moore, L., Louis, M., Lundberg, C. & Martin, J., (Eds.), <u>Organizational</u> <u>Culture</u>. London: Sage Publications.

Vaugh, D. (1996). <u>The Challenger launch decision: Risky technology, culture and</u> <u>deviance at NASA.</u> Chicago, IL: University of Chicago Press.

Weick, K, Sutcliff, K & Obstfeld, D. (1999). Organizing for reliability: process of collective mindfulness. <u>Research in Organizational Behavior, 21</u>, 81-123.

Williamson, A. M., Feyer, A. M., Cairns, D. & Biancotti, D. (1997). The development of a measure of safety climate: the role of safety perceptions and attitudes. <u>Safety Science, 25(1-3), 15-27</u>.

Zohar, D. (2000). A group-level model of safety climate: Testing the effect of group climate on micro-accidents in manufacturing jobs. Journal of Applied Psychology, <u>85</u>(4), 587-596.

Zohar, D. (1980). Safety culture in industrial organizations: Theoretical and applied implications. Journal of Applied Psychology, 65, 96-102.

APPENDICIES

APPENDIX A: CERTIFICATE OF INSTITUIONAL REVIEW BOARD EXEMPTION, STUDY INFORMATION SHEET AND QUESTIONNAIRE

.

THE UNIVERSITY OF TENNESSEE

Department of Health and Exercise Science 1914 Andy Holt Avenue Knoxville, TN 37996-2710 (865) 974-5041 FAX (865) 974-6439

November 10, 2003

HES IRB# 005-A

TITLE: An Evaluation of the Safety Climate at Projects of a Nuclear Decommissioning and Demolition Contractor in the United States

Michael Findley 203 Village Green Parkway Knoxville, TN 37922

Faculty Advisor: Dr. Susan Smith 367 HPER Dept of Health and Exercise Science

Your project listed above was reviewed and approved as exempt research.

This approval is for a period ending one year from the date of this letter. Please make timely submission of renewal or prompt notification of project termination.

Responsibilities of the investigator during data collection for this project include the following:

- To obtain prior approval from the Departmental Review Chair before instituting any changes in the project.
 To maintain records in a manner that will protect the privacy of those participating in the project.
 To submit a Form D to report changes in the project or to report termination at 12-month or less intervals.

Best wishes in your research endeavor. This office will send you a renewal notice (Form R) on the anniversary of your approval date.

Si. Dixie L Thompson, Ph.D.

Chair - Health and Exercise Science Departmental Review Committee

CC: Brenda Lawson, UT IRB Office Dr. Susan Smith

FORM A

IRB# 005-A

Certification for Exemption from IRB Review for Research Involving Human Subjects

A. PRINCIPAL INVESTIGATOR:

Michael Findley: C Susan Smith: F

Graduate Student Faculty Advisor and Committee Chair

B. DEPARTMENT:

Health and Exercise Science

C. COMPLETE MAILING ADDRESS AND PHONE NUMBERS OF PI AND CO-PI:

Michael Findley 203 Village Green Parkway Knoxville, TN 37922 865 966 6863 Susan Smith Department of Health & Exercise Science 1914 Andy Holt Avenue Knoxville, TN 37996-2710 865 974 1108 1

D. TITLE OF PROJECT:

An Evaluation of the Safety Climate At Projects of a Nuclear Decommissioning and Demolition Contractor in the United States

E. EXTERNAL FUNDING AGENCY AND ID NUMBER:

N/A

F. GRANT SUBMISSION DEADLINE:

N/A

G. STARTING DATE: (NO RESEARCH MAY BE INITIATED UNTIL CERTIFICATION IS GRANTED.)

Upon IRB approval.

H. ESTIMATED COMPLETION DATE:

August 31, 2004

.

I. RESEARCH PROJECT:

1. Objectives of Project:

The purpose of this research is to evaluate the safety climate at projects and/or offices of a nuclear D&D contractor in the United States. **The University** of Tennessee will participate in this survey in order to study the safety climate at nuclear projects in the United States. **The University** of Tennessee will participate in this survey in order to study the safety climate at nuclear projects in the United States. **The University** of Tennessee will participate in this survey in order to study the safety results to improve its safety and health program. The University of Tennessee will use the information to expand the body of knowledge about safety climate within the nuclear industry. Members of the study population will be invited to complete a survey addressing their safety attitudes and beliefs. Individual participation will be voluntary and responses will remain anonymous and confidential.

2. Subjects:

The research participants include persons employed at projects and offices of a nuclear decommissioning and demolition contractor in the United States. The study population was selected in order to obtain data on the safety climate within the nuclear decommissioning and demolition industry. All personnel at the study sites will be invited to participate. The participants' will attend a 30-minute safety meeting at which time the survey will be distributed. The survey is expected to take 20 minutes to complete. The study subjects include only persons 18 years of age or older due to work age requirements at nuclear facilities and thus, no study participant will be less than 18 years old.

3. Methods or Procedure:

A series of safety meetings will be held at each project and/or office participating in the study. The number and location of the safety meetings will be determined based on the number of employees and their assigned locations. The study information sheet described in the paragraph below and the survey will be distributed to all attending the safety meetings. The surveys will be distributed by persons designated by the researcher and include members of the Safety staff at the respective Project or office. These designated persons also called "Survey Monitors" will be instructed to:

(1) provide the participants the survey packet to include: (a) the study information sheet; (b) the survey; and (c) the envelope to place the survey;

(2) verbally instruct the participants not to write their names or any other personal identifiers on the survey form or envelope;

(3) verbally instruct the participants to (a) place the completed survey inside the envelope; (b) seal the envelop; and (c) then place the sealed envelope into one of the survey drop boxes; and

(4) not leave the drop boxes unattended to ensure no surveys are viewed or removed.

The survey to be used in the study is the Health and Safety Climate Survey Tool (CST) developed by the Health and Safety Executive in the United Kingdom. The Health and Safety Executive is the United Kingdom's counterpart to the Occupational Safety and Health Administration in the United States. The survey packet includes instructions for completing the survey and an envelope for placement of the survey following completion. Drop boxes with slots for placing the survey envelope will be provided at the safety meetings. The study participants will be instructed not to place their name or any personal identifier on the survey form or the envelope. The study participants will be instructed to place the survey form inside the envelope, seal the envelope, and then place the sealed envelope into the box. The designated Survey Monitors will not leave the drop boxes unattended to ensure no surveys are viewed or removed. Following completion of the survey the contents of the boxes will be placed inside a sealed shipping package and mailed to the researcher. The risk of disclosure of individual subject responses to the survey will be minimized by the procedures in place to ensure anonymity.

The researcher will assemble all surveys received from Projects and Offices and then ship the surveys to the company hired to perform optical scanning of the results. Completed surveys will be read by optical scanning, entered into a computerized database and coded with numeric codes so that analysis can be performed using the Statistical Program for Social Sciences (SPSS). Data will be stored securely and be made available only to those persons within and the University of Tennessee who are conducting the survey. No names of individuals, employee ID numbers, social security numbers or personal identifiers will be entered or utilized during the data analysis by **analysis** or the University of Tennessee. The University of Tennessee will transpose all names of companies, projects and unions into numeric codes. The University of Tennessee will use and report numeric codes only for any aggregate data at the company, project, office, or Union level and none of the groups will be identifiable. To further ensure confidentiality the analysis of data and generated report will focus only on aggregated and grouped data. Participation is voluntary and confidential. The voluntary completion of the anonymous questionnaire will serve as the individual participants' consent for participation in this research project. The consent of the contractor's Environment, Safety, Health & Quality Assurance Manager and General Manager for the University of Tennessee's participation are attached to this form. See attached letters from h and

A study information sheet will be distributed to all potential participants at the time of the survey. The information sheet will:

- (a) announce the survey;
- (b) invite all employees to voluntarily participate in the research;
- (c) list the procedures which will be employed in the study;
- (d) state the amount of time required of the participants and the total duration for the study;

- (e) a list of all foreseeable risks and the protective measures used to minimize these risks;
- (f) list the benefits of the study;
- (g) state the information in the study records will be kept confidential:
- (h) address the compensation to be received by participants;
- (i) provide a contact name, address and phone number for the researcher;
- (j) provide the name and phone number of the University of Tennessee's Office of Research, Research Compliance Services;
- (k) state participation is voluntary and the employees may decline to participate without penalty; and
- (1) state return of the completed survey constitutes consent to participate.
- The study information sheet is attached to this completed form.

4. CATEGORY(S) FOR EXEMPT RESEARCH PER 45 CFR 46:

This research is based on gathering information 45 CFR 46.101 (b) 2 & 4: from a self-reporting questionnaire. The data will be recorded in such a manner that no participant will be identifiable, directly or through identifiers linked to participants.

J. CERTIFICATION: The research described herein is in compliance with 45 CFR. 46.101(b) and presents subjects with no more than minimal risk as defined by applicable regulations.

Principal Investigator: Michael Findley Signature 2003 Student Advisor/: Susan Smith Committee Chair APPROVED: Thomas W. Dept Head:

Dept. Review Comm. Chair:

Rev. 01/97

Safety Climate at States Projects in the United States

L.

Introduction: Introduction is conducting a safety climate survey at our projects in the United States. In addition, the data will be used by the University of Tennessee to study the safety climate at nuclear projects in the United States. Intervention will use the survey results to improve our safety and health program. The University of Tennessee will use the information to expand the body of knowledge about safety climate within the nuclear industry. You are invited to voluntarily participate in the study. Your responses will be anonymous and confidential.

Your Involvement in the Study: A series of safety meetings will be held at which time the survey will be distributed. The survey used in the study is the Health and Safety Climate Survey Tool (CST) developed by the Health and Safety Executive in the United Kingdom. The Health and Safety Executive is the United Kingdom's counterpart to the Occupational Safety and Health Administration in the United States. The survey packet includes instructions for completing the survey and an envelope for placement of the survey following completion. Drop boxes with slots for placing the survey envelope will be provided at the safety meetings. You should not place your name or any personal identifier on the survey form or the envelope. Place the survey form inside the envelope, seal the envelope, and then place the sealed envelope into the drop box. Completion of the survey should take approximately 20 minutes. Persons designated by the researcher will not leave the drop boxes unattended to ensure no surveys are viewed or removed. Once the survey period is complete the surveys will be removed from the drop boxes for packaging and then be shipped to the researcher.

Risks: The risk of disclosure of any individual responses to the survey will be minimized by the procedures in place to ensure anonymity.

Benefits: Your participation in the study will benefit you, your employer and the nuclear industry by identifying important safety concerns, attitudes and beliefs important to your safety, the safety of co-workers and the safety of others who are employed in the nuclear industry.

Confidentiality: The information in the study records will be kept confidential. Data will be stored securely and be made available only to those persons within **Example**: and the University of Tennessee who are conducting the survey. No names of individuals, names of companies, names of Unions, employer or employee ID numbers or any other company, union or personal identifier will be entered or utilized during the data analysis. To further ensure confidentiality the analysis of data and generated report will focus only on aggregated and grouped data. No individual person will be able to be identified from the study.

Contact: If you have questions at any time about the study or the procedures, you may contact Michael Findley, at the study of the procedures of the study of the procedures of the study o

Participation: Your participation is voluntary; you may decline to participate without penalty. If you decide to participate, you may withdraw from the study at anytime without penalty and without loss of benefits to which you otherwise entitled. If you withdraw from the study before data collection is completed your data will be returned to you or destroyed. Return of the completed survey constitutes your consent to participate.

Safety Climate Survey

As part of the company's desire to continually improve our safety and health performance we wish to gather your views on some issues relating to our health and safety culture. To do so we propose to use this questionnaire. The survey has the endorsement of senior management who values your opinions. We would therefore appreciate your co-operation by completing the questionnaire. In addition, the data will be used as part of a Tennessee University research project whose purpose is to evaluate safety climate in the nuclear industry in the United States. The questionnaire is anonymous and the results will be analyzed for groups of people. It will not be possible for individuals to be identified. Do not write your name or any other personal identifier on the survey form or envelope.

Instructions for completing the survey. The first 71 questions (1-71) in the attached questionnaire give a series of statements. You are asked simply to indicate the extent to which you agree or disagree with each. The last 19 questions (72-90) ask a series of questions that permit placing your responses into various groups. Indicate your answer by filling in the bubble corresponding to your selection. If you do not understand the question then please leave it blank. Be sure to answer all questions including the ones on the back of the form.

In addition to answering questions 1 through 90, we welcome your views. Please give any suggestions that you feel would improve health and safety in the company. Completion of this section is optional. Please make your suggestions on the comment sheet.

Once you have completed the survey, place the survey form and the comment sheet into the attached envelope. Seal the envelope and then place the sealed envelope into one of the drop boxes. Your responses are confidential and should not be shared with others. Thank you for your participation. Feedback on the results of this survey will be shared at future safety meetings.

1 Some health and safety procedures/instructions/rules do not need to be followed to get the job done safely

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

2 People who work here often take risks when they are at work

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 3 Supervisors are good at detecting unsafe behaviors
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

4 My job is boring and repetitive

- 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 5 There are good communications here about health and safety issues
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 6 Accidents which happen here are always reported
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 7 Some jobs here are difficult to do safely
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

8	Supervisors here are not very e	ffective at ensu	ring health and safety
	 Strongly disagree Agree 5. Strongly ag 		3. Neither disagree or agree
9	Accident investigations are mai	inly used to ide	ntify who is to blame
	 Strongly disagree Agree 5. Strongly ag 	•	3. Neither disagree or agree
10	Suggestions to improve health	and safety are s	seldom acted upon
	 Strongly disagree Agree 5. Strongly ag 	2. Disagree gree	3. Neither disagree or agree
11	Near misses are always reported	d	
	 Strongly disagree Agree 5. Strongly ag 	-	3. Neither disagree or agree
12	Some health and safety procedu	ures/instruction	s/rules are not really practical
	 Strongly disagree Agree 5. Strongly ag 	•	3. Neither disagree or agree
13	There is little advantage for me procedures/instructions/rules	keeping strictl	y to the health and safety
	 Strongly disagree Agree 5. Strongly ag 	-	3. Neither disagree or agree
14	I feel involved when health and reviewed	l safety procedi	ures/instructions/rules are developed or
	. Strongly disagree 4. Agree 5. Strongly ag		3. Neither disagree or agree
15	I fully understand the health an responsible	d safety risks a	ssociated with the work for which I am
	 Strongly disagree Agree 5. Strongly ag 	2. Disagree gree	3. Neither disagree or agree
16	Productivity is usually seen as a	more important	t than health and safety
	1. Strongly disagree	2. Disagree	3. Neither disagree or agree

4. Agree 5. Stron	giy	agree
-------------------	-----	-------

- 17 Management sometimes turns a blind eye to health and safety procedures/instructions/rules being broken
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 18 Management always acts quickly over health and safety concerns
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 19 I am always informed of the outcome of meetings which address health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 20 Management only bothers to look at health and safety after there has been an accident
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 21 People here do not remember much of the health and safety training which applies to their job
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 22 The work permit / work package / procedure system is always strictly applied and followed
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 23 People here always work safely even when they are not being supervised
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 24 Senior management takes health and safety seriously
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 25 Some health and safety procedures/instructions/rules do not reflect how the job is now done
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 26 Some health and safety procedures/instructions/rules are difficult to follow
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 27 The work permit / work package / procedure system is "overkill" given the real risks of some of the jobs it is used for
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 28 People here think health and safety isn't their problem -it's up to management and others
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 29 I am clear about what my responsibilities are for health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 30 Supervisors seldom check that people here are working safely
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 31 The company encourages suggestions on how to improve health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 32 Some in the workforce pay little attention to health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 33 There is nothing I can do to further improve health and safety here
 - 1. Strongly disagree 2. Disagree 3. Neither disagree or agree

- 4. Agree 5. Strongly agree
- 34 People here always wear their health and safety protective equipment when they are supposed to
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 35 Action is seldom taken against people who break health and safety procedures/instructions/rules
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 36 Some health and safety procedures/instructions/rules are only there to protect management's back
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 37 People who cause accidents here are not held sufficiently accountable for their actions
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 38 The training I had covered all the health and safety risks associated with the work for which I am responsible
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 39 Management would expect me to break health and safety procedures/instructions/rules to get the job done
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 40 Not all the health and safety procedures/instructions/rules are strictly followed here
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 41 People can always get the equipment which is needed to work to the health and safety procedures/instructions/rules

1. Strongly disag	gree	2. Disagree	3. Neither disagree or agree
4. Agree	5. Strongly ag	gree	

42 There are always enough people available to get the job done according to the health and safety procedures/instructions/rules

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

43 The company really cares about the health and safety of the people who work here

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

44 Sometimes I am uncertain what to do to ensure the health and safety in the work for which I am responsible

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

45 Sometimes it is necessary to take risks to get the job done

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

46 The safety committee makes an important contribution to health and safety here

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

47 Sometimes physical conditions at the workplace restrict people's ability to work safely

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

48 I can trust most people who I work with to work safely

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

49 My immediate supervisor often talks to me about health and safety

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

50 There are too many health and safety procedures/instructions/rules given the real risks associated with the jobs for which I am responsible

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

51 Management places a low priority on health and safety training

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

52 I am worried about my job security

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

53 People here are sometimes pressured to work unsafely by their Co-workers

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 54 Sufficient resources are available for health and safety here
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 55 Health and safety meetings are a waste of my time

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

56 Some people here have a poor understanding of the risks associated with their work

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

57 My immediate supervisor would be very helpful if I asked for advice on health and safety issues

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 58 The company shows interest in my views on health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 59 People who work here sometimes take risks at work which I would not take myself
 1. Strongly disagree
 2. Disagree
 3. Neither disagree or agree
 4. Agree
 5. Strongly agree
- 60 People who work here are not recognized for working safely
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 61 The work permit / work package / procedure system causes unnecessary delays in getting the job done
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 62 My immediate supervisor is receptive to ideas on how to improve health and safety

1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree

- 63 I sometimes turn a blind eye to some less important health and safety procedures/instructions/rules
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 64 I fully understand the health and safety procedures/instructions/rules associated with my job
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 65 Supervisors devote sufficient effort to health and safety here
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 66 I don't think my immediate supervisor does enough to ensure health and safety
 - 1. Strongly disagree2. Disagree3. Neither disagree or agree4. Agree5. Strongly agree
- 67 Supervisors sometimes turn a blind eye to people who are not working to the health and safety procedures/instructions/rules

	 Strongly disag Agree 		-	3. Neither dis	agree or agree	
68	My Co-workers procedures/instru		ongly against p	eople who brea	k health and safety	
	 Strongly disag Agree 		-	3. Neither dis	agree or agree	
69	All the people who work in my organization are fully committed to health and safety					
	 Strongly disag Agree 		-	3. Neither dis	agree or agree	
70	It is important fo organization	r me to work s	afely if I am to	keep the respec	ct of the others in my	
	 Strongly disag Agree 		-	3. Neither dis	agree or agree	
71	I trust my Co-wo	orkers with my	health and safe	ty		
	 Strongly disag Agree 		-	3. Neither dis	agree or agree	
72	Select the Comp	any or subcont	ractor that you	work for:		
	1. Number 1 6. Number 6	2. Number 2 7. Other	3. Number 3	4. Number 4	5. Number 5	
73	Select the Projec	t or Office that	you work at:			
	1. Number 1 6. Number 6 11. Other	2. Number 2 7. Number 7				
74	Have you receiv 1. Yes	ed behavior-ba 2. No	sed safety (BBS	S) Training?		
75	Have you receiv 1. Yes	ed BBS Observ 2. No	ver Training?			
76	Have you condue 1. Yes	cted a BBS obs 2. No	servation during	g the last month	?	
77	What is your em	ployment statu	s?			

	1. Exempt/salaried empl	loyee 2. N	onexempt/hourly employee
78	Are you a member of a1. Yes2. No	Union?	
79	If you answered yes to c	uestion 78, of what	Union are you a member?
	1. Laborer2. Boi6. Sheet-metal7. Tea10. Operating Eng.13. Millwrights14. Br	mster 8. Painter 11. Survey Tech	12. Sprinkler-fitters
80	What shift do you work 1. Weekday days		3. Weekends
81	Indicate the number of y	ears you have worke	ed in your current profession.
	1. 0 to 5 years 4. 16 to 20 years	 2. 6 to 10 years 5. 20 or more years 	3. 11 to 15 years
82	Indicate the number of y	ears you have worke	ed at the Project or office you are at now.
	 less than 1 year 3 to 4 years 	2. 1 to 2 yea 4. 5 or more years	ars
83	Indicate your job position 1. Senior Manager 4. Foreman 7. Administrative	2. Manager 3. St	upervisor 6. Technical support
84	Have you had a job relation last year? 1. Yes 2. No	ted injury or illness t	hat resulted in first aid treatment in the
85	Have you had a job relation first aid treatment in 1. Yes 2. No	•	hat resulted in medical treatment other
86	Have you had a job relative away from work in 1. Yes 2. No	• •	hat resulted in on the job restrictions or
87	Are you: 1. Male	2. Female	

88 What race are you?

1. White	2. Black, African American	3. Asian
4. other		

89. Are you Hispanic or Latino? 1. Yes 2. No

90.	What is your age?		
	1. 18 to 25 yrs	2. 26 to 30 yrs	3. 31 to 35 yrs
	4. 36 to 40 yrs	5. 41 to 45 yrs	6. 46 to 50 yrs
	7. 51 to 55 yrs	8. 56 to 60 yrs	9. 61 to 65 yrs 7. 66 yrs or older

Thank you for your participation in this study. You responses are strictly confidential and will remain anonymous. Return of the completed survey constitutes your consent to participate.

Place the completed survey and comment sheet inside the envelope, seal the envelope and then place the sealed envelope into one of the drop boxes. Please DO NOT write your name, badge number or any other personal identifier on this form or the envelope.

APPENDIX B: DATA SETS

Data Set B.1.

Correlation of factor scores with overall safety climate score

Factor	Ν	Pearson correlation
1. Organizational commitment and communication	1568	0.922**
2. Line management commitment	1543	0.707**
3. Supervisors' role	1569	0.804**
4. Personal role	1570	0.597**
5. Work-mates' influence	1532	0.732**
6. Competence	1554	0.646**
7. Risk taking behavior	1571	0.873**
8. Obstacles to safe behavior	1568	0.781**
9. Permit to work	1544	0.550**
10. Reporting of accidents and near misses	1564	0.598**
11. Job satisfaction	1568	-0.344**

** Correlation is significant at the 0.01 level (2-tailed).

Data Set B.2.

Mean difference	in safet	y climate	scores by	<i>locations</i>

		Mean		······································	95% Con Interva Differe	al for
		Difference	Std.	-	Lower	Upper
A	В	(A-B)	Error	Sig.(a)	Bound	Bound
1	2	271(*)	.055	.000	379	163
	3	398(*)	.095	.000	584	211
	4	325(*)	.031	.000	385	265
	5	968(*)	.165	.000	-1.292	643
	6	582(*)	.095	.000	768	396
	7	513(*)	.107	.000	723	304
	8	607(*)	.129	.000	859	354
	9	364(*)	.068	.000	498	230
	10	464(*)	.109	.000	678	250
	11	298(*)	.048	.000	392	204
2	1	.271(*)	.055	.000	.163	.379
	3	127	.107	.235	336	.082
	4	054	.057	.346	166	.058
	5	697(*)	.172	.000	-1.034	359
	6	311(*)	.107	.004	520	102
	7	242(*)	.117	.039	472	012
	8	335(*)	.137	.015	605	066
	9	093	.084	.266	257	.071
	10	193	.119	.106	427	.041
	11	027	.068	.689	160	.106
3	1	.398(*)	.095	.000	.211	.584
	2	.127	.107	.235	082	.336
	4	.073	.096	.450	116	.262
	5	570(*)	.189	.003	940	200
	6	184	.132	.162	443	.074
	7	115	.140	.411	391	.160
	8	209	.158	.186	518	.100
	9	.034	.114	.769	190	.257
	10	066	.142	.642	345	.213
	11	.099	.103	.335	103	.302
4	1	.325(*)	.031	.000	.265	.385
	2	.054	.057	.346	058	.166
	3	073	.096	.450	262	.116

	5	643(*)	.166	.000	969	317
	6	257(*)	.096	.008	446	068
	7	188	.108	.081	400	.023
	8	282(*)	.130	.030	536	028
	9	039	.070	.577	- .177	.099
	10	139	.110	.208	355	.077
	11	.027	.050	.597	072	.125
5	1	.968(*)	.165	.000	.643	1.292
	2	.697(*)	.172	.000	.359	1.034
	3	.570(*)	.189	.003	.200	.940
	4	.643(*)	.166	.000	.317	.969
	6	.386(*)	.189	.041	.015	.756
	7	.455(*)	.195	.020	.072	.837
	8	.361	.208	.082	046	.769
	9	.604(*)	.177	.001	.256	.951
	10	.504(*)	.196	.010	.119	.889
	11	.669(*)	.170	.000	.336	1.003
6	1	.582(*)	.095	.000	.396	.768
	2	.311(*)	.107	.004	.102	.520
	3	.184	.132	.162	074	.443
	4	.257(*)	.096	.008	.068	.446
	5	386(*)	.189	.041	756	015
	7	.069	.140	.624	207	.344
	8	025	.158	.876	334	.285
	9	.218	.114	.056	006	.442
	10	.118	.142	.406	161	.397
_	11	.284(*)	.103	.006	.082	.486
7	1	.513(*)	.107	.000	.304	.723
	2	.242(*)	.117	.039	.012	.472
	3	.115	.140	.411	160	.391
	4	.188	.108	.081	023	.400
	5	455(*)	.195	.020	837	072
	6	069	.140	.624	344	.207
	8	093	.165	.571	417	.230
	9	.149	.124	.230	094	.392
	10	.049	.150	.743	246	.344
0	11	.215	.114	.060	009	.438
8	1	.607(*)	.129	.000	.354	.859
	2 3	.335(*)	.137	.015	.066	.605
	3 4	.209 .282(*)	.158	.186	100	.518
	4 5	361	.130 .208	.030 .082	.028 769	.536
	2	301	.200	.004	/09	.046

.

	6	.025	.158	.876	285	.334
	7	.093	.165	.571	230	.417
	9	.242	.143	.091	039	.523
	10	.143	.167	.392	184	.470
	11	.308(*)	.135	.022	.044	.572
9	1	.364(*)	.068	.000	.230	.498
	2	.093	.084	.266	071	.257
	3	034	.114	.769	257	.190
	4	.039	.070	.577	099	.177
	5	604(*)	.177	.001	951	256
	6	218	.114	.056	442	.006
	7	149	.124	.230	392	.094
	8	242	.143	.091	523	.039
	10	100	.126	.429	347	.148
	11	.066	.079	.406	090	.221
10	1	.464(*)	.109	.000	.250	.678
	2	.193	.119	.106	041	.427
	3	.066	.142	.642	213	.345
	4	.139	.110	.208	077	.355
	5	504(*)	.196	.010	889	119
	6	118	.142	.406	397	.161
	7	049	.150	.743	344	.246
	8	143	.167	.392	470	.184
	9	.100	.126	.429	148	.347
	11	.165	.116	.155	062	.393
11	1	.298(*)	.048	.000	.204	.392
	2	.027	.068	.689	106	.160
	3	099	.103	.335	302	.103
	4	027	.050	.597	125	.072
	5	669(*)	.170	.000	-1.003	336
	6	284(*)	.103	.006	486	082
	7	215	.114	.060	438	.009
	8	308(*)	.135	.022	572	044
	9	066	.079	.406	221	.090
ъ ·	10	165	.116	.155	393	.062

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Data Set B.3

Factor	Location	Mean	Std. Error	95% Conf	idence Interval
		-		Lower Bound	Upper Bound
1	1	3.189	.025	3.139	3.239
	2	3.432	.070	3.294	3.569
	3	3.679	.128	3.427	3.931
	4	3.617	.033	3.552	3.682
	5	4.269	.252	3.774	4.764
	6	3.896	.126	3.649	4.143
	7	3.857	.142	3.578	4.136
	8	3.992	.172	3.654	4.330
	9	3.696	.091	3.518	3.874
	10	3.710	.146	3.425	3.996
	11	3.572	.060	3.454	3.689
2	1	3.438	.029	3.381	3.494
	2	3.566	.079	3.410	3.722
	3	3.639	.146	3.353	3.925
	4	3.858	.038	3.784	3.932
	5	4.000	.286	3.438	4.562
	6	3.708	.143	3.427	3.989
	7	3.682	.162	3.365	3.999
	8	3.950	.196	3.566	4.334
	9	3.738	.103	3.535	3.940
	10	3.893	.165	3.568	4.217
	11	3.792	.068	3.659	3.926
3	1	3.190	.028	3.134	3.246
	2	3.527	.078	3.374	3.681
	3	3.639	.144	3.357	3.921
	4	3.618	.037	3.546	3.691
	5	4.357	.282	3.804	4.910
	6	3.723	.141	3.447	4.000
	7	3.848	.159	3.536	4.161
	8	4.033	.193	3.655	4.411
	9	3.676	.102	3.477	3.875
	10	3.821	.163	3.502	4.141
	11	3.571	.067	3.439	3.702
4	1	3.758	.023	3.714	3.803

Mean safety climate factor scores by location

2	3.900	.063	3.777	4.023
3	3.753	.115	3.527	3.979
4	3.835	.030	3.777	3.894
5	4.190	.226	3.747	4.634
6	3.898	.113	3.676	4.119
7	3.941	.128	3.691	4.191
8	3.958	.155	3.655	4.261
9	3.819	.081	3.659	3.979
10	3.921	.131	3.664	4.177
11	3.828	.054	3.722	3.933
1	3.336	.027	3.282	3.390
2	3.629	.075	3.482	3.777
3	3.630	.138	3.359	3.901
4	3.599	.036	3.529	3.669
5	4.179	.271	3.646	4.711
6	3.768	.136	3.502	4.034
7	3.739	.153	3.438	4.039
8	3.783	.185	3.420	4.147
9	3.514	.098	3.322	3.706
10	3.714	.157	3.407	4.022
11	3.569	.064	3.442	3.695
1	3.597	.023	3.552	3.643
2	3.875	.064	3.749	4.000
3	3.767	.117	3.536	3.997
4	3.925	.030	3.865	3.984
5	4.343	.231	3.891	4.795
6	3.979	.115	3.752	4.205
7	3.882	.130	3.627	4.137
8	3.947	.157	3.638	4.256
9	3.844	.083	3.682	4.007
10	4.019	.133	3.758	4.280
11	3.870	.055	3.763	3.978
1	2.925	.023	2.880	2.971
2	3.387	.064	3.261	3.513
3	3.608	.118	3.378	3.839
4	3.402	.030	3.342	3.461
5	4.210	.231	3.757	4.664
6	3.817	.116	3.590	4.043
7	3.614	.130	3.359	3.870
8	3.707	.158	3.397	4.016
9	3.378	.083	3.215	3.542
10	3.578	.133	3.316	3.840

			a = =		
0	11	3.399	.055	3.291	3.507
8	1	3.001	.024	2.955	3.047
	2	3.205	.065	3.078	3.332
	3	3.499	.119	3.266	3.732
	4	3.187	.031	3.127	3.247
	5	4.000	.233	3.542	4.458
	6	3.802	.117	3.573	4.030
	7	3.646	.132	3.388	3.905
	8	3.607	.159	3.295	3.920
	9	3.301	.084	3.137	3.466
	10	3.333	.135	3.069	3.598
	11	3.186	.055	3.077	3.295
9	1	3.301	.033	3.236	3.367
	2	3.165	.092	2.985	3.345
	3	3.444	.168	3.114	3.775
	4	2.990	.044	2.905	3.075
	5	4.071	.331	3.423	4.720
	6	3.464	.165	3.140	3.789
	7	3.432	.187	3.066	3.798
	8	3.467	.226	3.024	3.910
	9	3.370	.119	3.137	3.604
	10	3.381	.191	3.006	3.755
	11	2.863	.079	2.709	3.017
10	1	2.623	.034	2.557	2.689
	2	3.165	.092	2.984	3.346
	3	3.185	.169	2.853	3.517
	4	2.902	.044	2.816	2.988
	5	4.000	.332	3.348	4.652
	6	3.518	.166	3.192	3.844
	7	3.227	.188	2.859	3.595
	8	3.500	.227	3.055	3.945
	9	3.176	.120	2.941	3.411
	10	3.381	.192	3.004	3.757
	11	2.968	.079	2.813	3.123
		· · ·			

_

Data Set B.4.

			Mean		_	95% Con Interva Differen	al for
			Difference	Std.		Lower	Upper
Factor	A	В	(A-B)	Error	Sig.(a)	Bound	Bound
1	1	2	242(*)	.074	.001	388	096
		3	490(*)	.131	.000	747	233
		4	428(*)	.042	.000	510	346
		5	-1.080(*)	.253	.000	-1.577	583
		6	707(*)	.129	.000	959	455
		7	668(*)	.144	.000	951	384
		8	803(*)	.174	.000	-1.145	462
		9	507(*)	.094	.000	692	322
		10	521(*)	.148	.000	811	231
		11	383(*)	.065	.000	510	255
	2	1	.242(*)	.074	.001	.096	.388
		3	247	.146	.091	534	.039
		4	185(*)	.077	.017	337	033
		5	837(*)	.262	.001	-1.351	324
		6	465(*)	.144	.001	747	182
		7	425(*)	.158	.007	736	115
		8	561(*)	.186	.003	925	196
		9	264(*)	.115	.021	489	039
		10	279	.162	.085	596	.038
		11	140	.092	.128	321	.040
	3	1	.490(*)	.131	.000	.233	.747
		2	.247	.146	.091	039	.534
		4	.062	.133	.640	198	.322
		5	590(*)	.283	.037	-1.145	035
		6	217	.180	.228	570	.136
		7	178	.192	.353	554	.198
		8	313	.215	.145	735	.108
		9	017	.157	.916	325	.292
		10	031	.194	.872	412	.349
		11	.107	.142	.450	171	.385
	4	1	.428(*)	.042	.000	.346	.510
		2	.185(*)	.077	.017	.033	.337
		3	062	.133	.640	322	.198

Mean differences in factor scores by locations

	5	652(*)	.254	.010	-1.151	153
	6	279(*)	.130	.032	535	024
	7	240	.146	.100	527	.046
	8	375(*)	.175	.033	719	031
	9	079	.097	.415	268	.111
	10	093	.149	.532	386	.199
	11	.045	.068	.511	089	.179
5	1	1.080(*)	.253	.000	.583	1.577
	2	.837(*)	.262	.001	.324	1.351
	3	.590(*)	.283	.037	.035	1.145
	4	.652(*)	.254	.010	.153	1.151
	6	.373	.282	.186	180	.926
	7	.412	.289	.155	156	.980
	8	.277	.305	.365	322	.876
	9	.573(*)	.268	.033	.048	1.099
	10	.559	.291	.055	012	1.130
	11	.697(*)	.259	.007	.189	1.205
6	1	.707(*)	.129	.000	.455	.959
	2	.465(*)	.144	.001	.182	.747
	3	.217	.180	.228	136	.570
	4	.279(*)	.130	.032	.024	.535
	5	373	.282	.186	926	.180
	7	.039	.190	.837	334	.412
	8	096	.213	.653	515	.323
	9	.201	.155	.197	104	.505
	10	.186	.193	.335	192	.564
	11	.324(*)	.140	.020	.050	.598
7	1	.668(*)	.144	.000	.384	.951
	2	.425(*)	.158	.007	.115	.736
	3	.178	.192	.353	198	.554
	4	.240	.146	.100	046	.527
	5	412	.289	.155	980	.156
	6	039	.190	.837	412	.334
	8	135	.223	.545	573	.303
	9	.161	.169	.339	170	.492
	10	.147	.204	.471	253	.546
	11	.285	.154	.065	018	.588
8	1	.803(*)	.174	.000	.462	1.145
	2	.561(*)	.186	.003	.196	.925
	3	.313	.215	.145	108	.735
	4	.375(*)	.175	.033	.031	.719
	5	277	.305	.365	876	.322

	6	006	212	(57	202	515
	0 7	.096 .135	.213	.653	323	.515
	9		.223	.545	303	.573
	10	.297 .282	.195	.128	085	.678
	10		.226	.212	160	.724
9	1	.420(*)	.182	.021	.063	.778
7	2	.507(*)	.094	.000	.322	.692
	2 3	.264(*)	.115	.021	.039	.489
	3 4	.017	.157	.916	292	.325
	4 5	.079 572(*)	.097	.415	111	.268
	5	573(*) 201	.268	.033	-1.099	048
	7		.155	.197	505	.104
	8	161	.169	.339	492	.170
	8 10	297	.195	.128	678	.085
	10	015	.172	.932	351	.322
10	1	.124	.109	.255	090	.337
10	2	.521(*)	.148	.000	.231	.811
	2 3	.279	.162	.085	038	.596
	3 4	.031	.194	.872	349	.412
		.093	.149	.532	199	.386
	5	559	.291	.055	-1.130	.012
	6	186	.193	.335	564	.192
	7 8	147	.204	.471	546	.253
	° 9	282	.226	.212	724	.160
		.015	.172	.932	322	.351
11	11	.138	.157	.379	170	.447
11	1 2	.383(*)	.065	.000	.255	.510
	23	.140	.092	.128	040	.321
		107	.142	.450	385	.171
	4	045	.068	.511	179	.089
	5	697(*)	.259	.007	-1.205	189
	6	324(*)	.140	.020	598	050
	7	285	.154	.065	588	.018
	8	420(*)	.182	.021	778	063
	9 10	124	.109	.255	337	.090
1	10	138	.157	.379	447	.170
1	2 3	128	.085	.129	294	.037
		201	.149	.176	493	.090
	4	420(*)	.048	.000	514	327
	5 6	562	.288	.051	-1.127	.002
	0 7	271	.146	.064	557	.016
	8	244	.164	.137	566	.078
	0	512(*)	.198	.010	900	125

	9	300(*)	.107	.005	510	090
	10	455(*)	.168	.007	785	126
	11	355(*)	.074	.000	500	210
2	1	.128	.085	.129	037	.294
	3	073	.166	.660	399	.253
	4	292(*)	.088	.001	464	- 119
	5	434	.297	.144	-1.017	.149
	6	142	.164	.385	464	.179
	7	116	.180	.520	469	.237
	8	384	.211	.069	798	.030
	9	172	.130	.187	427	.084
	10	327	.183	.075	687	.033
	11	226(*)	.105	.031	432	021
3	1	.201	.149	.176	090	.493
	2	.073	.166	.660	253	.399
	4	219	.151	.146	514	.076
	5	361	.321	.261	992	.269
	6	069	.204	.734	470	.331
	7	043	.218	.844	470	.384
	8	311	.244	.203	790	.168
	9	099	.179	.580	449	.252
	10	254	.220	.250	686	.179
	11	153	.161	.340	469	.162
4	1	.420(*)	.048	.000	.327	.514
	2	.292(*)	.088	.001	.119	.464
	3	.219	.151	.146	076	.514
	5	142	.289	.623	709	.425
	6	.150	.148	.313	141	.440
	7	.176	.166	.289	149	.501
	8	092	.199	.644	483	.299
	9	.120	.110	.274	095	.336
	10	035	.170	.837	368	.298
	11	.066	.078	.400	087	.218
5	1	.562	.288	.051	002	1.127
	2	.434	.297	.144	149	1.017
	3	.361	.321	.261	269	.992
	4	.142	.289	.623	425	.709
	6	.292	.320	.363	336	.920
	7	.318	.329	.333	327	.963
	8	.050	.347	.885	630	.730
	9	.262	.304	.389	335	.859
	10	.107	.331	.746	542	.756

.

	11	.208	.294	.481	370	.785
6	1	.271	.146	.064	016	.557
	2	.142	.164	.385	179	.464
	3	.069	.204	.734	331	.470
	4	150	.148	.313	440	.141
	5	292	.320	.363	920	.336
	7	.027	.216	.902	397	.450
	8	242	.242	.319	717	.234
	9	029	.176	.868	375	.317
	10	185	.219	.399	614	.245
	11	084	.159	.596	395	.227
7	1	.244	.164	.137	078	.566
	2	.116	.180	.520	237	.469
	3	.043	.218	.844	384	.470
	4	176	.166	.289	501	.149
	5	318	.329	.333	963	.327
	6	027	.216	.902	450	.397
	8	268	.254	.291	766	.230
	9	056	.192	.771	432	.320
	10	211	.231	.361	665	.242
	11	111	.175	.528	454	.233
8	1	.512(*)	.198	.010	.125	.900
	2	.384	.211	.069	030	.798
	3	.311	.244	.203	168	.790
	4	.092	.199	.644	299	.483
	5	050	.347	.885	730	.630
	6	.242	.242	.319	234	.717
	7	.268	.254	.291	230	.766
	9	.212	.221	.337	221	.646
	10	.057	.256	.824	445	.560
	11	.158	.207	.447	249	.564
9	1	.300(*)	.107	.005	.090	.510
	2	.172	.130	.187	084	.427
	3	.099	.179	.580	252	.449
	4	120	.110	.274	336	.095
	5	262	.304	.389	859	.335
	6	.029	.176	.868	317	.375
	7	.056	.192	.771	320	.432
	8	212	.221	.337	646	.221
	10	155	.195	.426	537	.227
	11	055	.124	.658	297	.188
10	1	.455(*)	.168	.007	.126	.785

	2	.327	.183	.075	033	.687
	3	.254	.220	.250	179	.686
	4	.035	.170	.837	298	.368
	5	107	.331	.746	756	.542
	6	.185	.219	.399	245	.614
	7	.211	.231	.361	242	.665
	8	057	.256	.824	560	.445
	9	.155	.195	.426	227	.537
	11	.101	.179	.574	250	.451
1	1 1	.355(*)	.074	.000	.210	.500
	2	.226(*)	.105	.031	.021	.432
	3	.153	.161	.340	162	.469
	4	066	.078	.400	218	.087
	5	208	.294	.481	785	.370
	6	.084	.159	.596	227	.395
	7	.111	.175	.528	233	.454
	8	158	.207	.447	564	.249
	9	.055	.124	.658	188	.297
	10	101	.179	.574	451	.250
1	1 2	337(*)	.083	.000	500	174
	3	449(*)	.146	.002	736	161
	4	428(*)	.047	.000	520	336
	5	-1.167(*)	.283	.000	-1.723	611
	6	533(*)	.144	.000	815	251
	7	658(*)	.162	.000	975	341
	8	843(*)	.195	.000	-1.225	461
	9	486(*)	.105	.000	692	279
	10	631(*)	.165	.000	955	307
	11	380(*)	.073	.000	523	237
-	2 1	.337(*)	.083	.000	.174	.500
	3	111	.164	.496	432	.209
	4	091	.087	.294	261	.079
	5	830(*)	.293	.005		256
	6	196	.161	.225	512	.121
	7	321	.177	.070	669	.027
	8	506(*)	.208	.015	914	098
	9	148	.128	.247	400	.103
	10	294	.181	.104	648	.060
	10	043	.101	.676	245	.159
~	3 1	.449(*)	.146	.070	.161	.736
-	2	.111	.140	.002	209	.432
	4	.020	.148	.890	270	.311
		.020		.070	,210	

	5	718(*)	.316	.023	-1.339	097
	6	084	.201	.675	479	.310
	7	210	.214	.328	630	.211
	8	394	.240	.101	866	.077
	9	037	.176	.833	382	.308
	10	183	.217	.401	608	.243
	11	.068	.158	.666	243	.379
4	1	.428(*)	.047	.000	.336	.520
	2	.091	.087	.294	079	.261
	3	020	.148	.890	311	.270
	5	739(*)	.284	.010	-1.297	181
	6	105	.146	.472	391	.181
	7	230	.163	.159	551	.090
	8	415(*)	.196	.035	800	030
	9	058	.108	.595	270	.155
	10	203	.167	.224	531	.125
	11	.048	.077	.532	102	.198
5	1	1.167(*)	.283	.000	.611	1.723
	2	.830(*)	.293	.005	.256	1.404
	3	.718(*)	.316	.023	.097	1.339
	4	.739(*)	.284	.010	.181	1.297
	6	.634(*)	.315	.045	.015	1.252
	7	.509	.324	.116	127	1.144
	8	.324	.342	.343	346	.994
	9	.681(*)	.300	.023	.093	1.269
	10	.536	.326	.100	103	1.175
~	11	.787(*)	.290	.007	.218	1.355
6	1	.533(*)	.144	.000	.251	.815
	2	.196	.161	.225	121	.512
	3	.084	.201	.675	310	.479
	4	.105	.146	.472	181	.391
	5	634(*)	.315	.045	-1.252	015
	7	125	.213	.556	542	.292
	8	310	.239	.194	778	.158
	9	.047	.174	.786	294	.388
	10	098	.215	.649	521	.324
7	11	.153	.156	.328	154	.459
7	1	.658(*)	.162	.000	.341	.975
	2 3	.321	.177	.070	027	.669
	3 4	.210	.214	.328	211	.630
	4 5	.230	.163	.159	090	.551
	J	509	.324	.116	-1.144	.127

	6	.125	.213	.556	292	.542
	8	185	.215	.460	675	.305
	9	.173	.189	.361	198	.543
	10	.027	.228	.905	420	.474
	11	.278	.173	.108	061	.617
8	1	.843(*)	.195	.000	.461	1.225
	2	.506(*)	.208	.015	.098	.914
	3	.394	.240	.101	077	.866
	4	.415(*)	.196	.035	.030	.800
	5	324	.342	.343	994	.346
	6	.310	.239	.194	158	.778
	7	.185	.250	.460	305	.675
	9	.357	.218	.101	070	.785
	10	.212	.252	.401	283	.707
	11	.463(*)	.204	.023	.063	.863
9	1	.486(*)	.105	.000	.279	.692
	2	.148	.128	.247	103	.400
	3	.037	.176	.833	308	.382
	4	.058	.108	.595	155	.270
	5	681(*)	.300	.023	-1.269	093
	6	047	.174	.786	388	.294
	7	173	.189	.361	543	.198
	8	357	.218	.101	785	.070
	10	146	.192	.448	522	.231
	11	.105	.122	.387	133	.344
10	1	.631(*)	.165	.000	.307	.955
	2	.294	.181	.104	060	.648
	3	.183	.217	.401	243	.608
	4	.203	.167	.224	125	.531
	5	536	.326	.100	-1.175	.103
	6	.098	.215	.649	324	.521
	7 8	027	.228	.905	474	.420
	8 9	212	.252	.401	707	.283
	9 11	.146	.192	.448	231	.522
11	1	.251	.176	.154	095	.596
11	2	.380(*)	.073	.000	.237	.523
	2 3	.043	.103	.676	159	.245
	4	068	.158	.666	379	.243
	5	048 787(*)	.077	.532	198	.102
	6	787(**) 153	.290	.007	-1.355	218
	7	133 278	.156 .173	.328 .108	459 617	.154
	ĩ	270	.170	.100	617	.061

	8	463(*)	.204	.023	863	063
	9	105	.122	.387	344	.133
	10	251	.176	.154	596	.095
1	2	141(*)	.067	.035	272	010
	3	.005	.117	.964	225	.236
	4	077(*)	.038	.040	151	003
	5	432	.227	.058	878	.014
	6	139	.115	.228	365	.087
	7	182	.130	.159	437	.072
	8	199	.156	.202	506	.107
	9	061	.085	.473	227	.105
	10	162	.133	.221	422	.098
	11	069	.058	.236	184	.045
2	1	.141(*)	.067	.035	.010	.272
	3	.147	.131	.264	111	.404
	4	.064	.069	.356	072	.200
	5	291	.235	.216	751	.170
	6	.002	.129	.988	252	.256
	7	041	.142	.772	320	.238
	8	058	.167	.727	385	.269
	9	.080	.103	.434	121	.282
	10	021	.145	.885	305	.263
	11	.072	.083	.384	090	.234
3	1	005	.117	.964	236	.225
	2	147	.131	.264	404	.111
	4	082	.119	.489	316	.151
	5	437	.254	.085	935	.060
	6	145	.161	.371	461	.172
	7	188	.172	.275	525	.149
	8	205	.193	.288	583	.173
	9	066	.141	.640	343	.211
	10	168	.174	.336	509	.174
	11	075	.127	.557	324	.175
4	1	.077(*)	.038	.040	.003	.151
	2	064	.069	.356	200	.072
	3	.082	.119	.489	151	.316
	5	355	.228	.120	802	.092
	6 7	062	.117	.595	292	.167
	8	105	.131	.421	362	.152
	8 9	122 .016	.157	.437	431	.186
	9 10	085	.087	.851	154	.186
	10	065	.134	.525	348	.178

_	11	.008	.061	.899	113	.128
5	1	.432	.227	.058	014	.878
	2	.291	.235	.216	170	.751
	3	.437	.254	.085	060	.935
	4	.355	.228	.120	092	.802
	6	.293	.253	.247	203	.789
	7	.250	.260	.337	260	.759
	8	.233	.274	.396	305	.770
	9	.371	.240	.123	100	.843
	10	.270	.261	.302	242	.782
	11	.363	.232	.119	093	.819
6	1	.139	.115	.228	087	.365
	2	002	.129	.988	256	.252
	3	.145	.161	.371	172	.461
	4	.062	.117	.595	167	.292
	5	293	.253	.247	789	.203
	7	043	.170	.800	378	.291
	8	060	.191	.753	436	.315
	9	.078	.139	.573	195	.352
	10	023	.173	.894	362	.316
	11	.070	.125	.577	176	.316
7	1	.182	.130	.159	072	.437
	2	.041	.142	.772	238	.320
	3	.188	.172	.275	149	.525
	4	.105	.131	.421	152	.362
	5	250	.260	.337	759	.260
	6	.043	.170	.800	291	.378
	8	017	.200	.933	410	.376
	9	.122	.151	.421	175	.419
	10	.020	.183	.912	338	.378
	11	.113	.138	.414	158	.385
8	1	.199	.156	.202	107	.506
	2	.058	.167	.727	269	.385
	3	.205	.193	.288	173	.583
	4	.122	.157	.437	186	.431
	5	233	.274	.396	770	.305
	6	.060	.191	.753	315	.436
	7	.017	.200	.933	376	.410
	9	.139	.175	.427	204	.481
	10	.037	.202	.854	360	.434
	11	.130	.164	.427	191	.451
9	1	.061	.085	.473	105	.227

	•	000	102	42.4	202	101
	2	080	.103	.434	282	.121
	3	.066	.141	.640	211	.343
	4	016	.087	.851	186	.154
	5	371	.240	.123	843	.100
	6	078	.139	.573	352	.195
	7	122	.151	.421	419	.175
	8	139	.175	.427	481	.204
	10	101	.154	.510	403	.200
	11	009	.098	.930	200	.183
10	1	.162	.133	.221	098	.422
	2	.021	.145	.885	263	.305
	3	.168	.174	.336	174	.509
	4	.085	.134	.525	178	.348
	5	270	.261	.302	782	.242
	6	.023	.173	.894	316	.362
	7	020	.183	.912	378	.338
	8	037	.202	.854	434	.360
	9	.101	.154	.510	200	.403
	11	.093	.141	.511	184	.370
11	1	.069	.058	.236	045	.184
	2	072	.083	.384	234	.090
	3	.075	.127	.557	175	.324
	4	008	.061	.899	128	.113
	5	363	.232	.119	819	.093
	6	070	.125	.577	316	.176
	7	113	.138	.414	385	.158
	8	130	.164	.427	451	.191
	9	.009	.098	.930	183	.200
	10	093	.141	.511	370	.184
1	2	293(*)	.080	.000	450	136
	3	294(*)	.141	.037	570	017
	4	263(*)	.045	.000	351	175
	5	843(*)	.273	.002	-1.378	308
	6	432(*)	.138	.002	703	160
	7	403(*)	.155	.010	708	098
	8	447(*)	.187	.017	815	080
	9	178	.101	.080	377	.021
	10	378(*)	.159	.018	690	066
	11	233(*)	.070	.001	370	095
2	1	.293(*)	.080	.000	.136	.450
	3	001	.157	.997	309	.308
	4	.030	.083	.716	133	.194

	_					
	5	549	.282	.051	-1.102	.003
	6	139	.155	.371	443	.166
	7	110	.171	.521	444	.225
	8	154	.200	.441	547	.238
	9	.115	.123	.350	127	.357
	10	085	.174	.624	426	.256
_	11	.061	.099	.541	134	.255
3	1	.294(*)	.141	.037	.017	.570
	2	.001	.157	.997	308	.309
	4	.031	.143	.829	249	.311
	5	549	.304	.072	-1.146	.048
	6	138	.194	.475	518	.242
	7	109	.206	.597	513	.295
	8	154	.231	.506	607	.300
	9	.116	.169	.494	216	.448
	10	085	.209	.685	494	.325
	11	.061	.152	.689	238	.360
4	1	.263(*)	.045	.000	.175	.351
	2	030	.083	.716	194	.133
	3	031	.143	.829	311	.249
	5	580(*)	.274	.034	-1.117	043
	6	169	.140	.228	444	.106
	7	140	.157	.374	448	.168
	8	185	.189	.328	555	.186
	9	.085	.104	.414	119	.289
	10	115	.161	.472	431	.200
	11	.030	.074	.681	114	.175
5	1	.843(*)	.273	.002	.308	1.378
	2	.549	.282	.051	003	1.102
	3	.549	.304	.072	048	1.146
	4	.580(*)	.274	.034	.043	1.117
	6	.411	.303	.176	184	1.006
	7	.440	.312	.158	171	1.051
	8	.395	.329	.229	249	1.040
	9	.665(*)	.288	.021	.099	1.230
	10	.464	.313	.139	150	1.079
	11	.610(*)	.279	.029	.063	1.157
6	1	.432(*)	.138	.002	.160	.703
	2	.139	.155	.371	166	.443
	3	.138	.194	.475	242	.518
	4	.169	.140	.228	106	.444
	5	411	.303	.176	-1.006	.184

	7	.029	.205	.886	372	.430
	8	015	.205	.946	466	.435
	9	.254	.167	.129	074	.582
	10	.054	.207	.796	353	.460
	11	.199	.150	.185	095	.494
7	1	.403(*)	.155	.010	.098	.708
	2	.110	.171	.521	225	.444
	3	.109	.206	.597	295	.513
	4	.140	.157	.374	168	.448
	5	440	.312	.158	-1.051	.171
	6	029	.205	.886	430	.372
	8	045	.240	.853	516	.427
	9	.225	.182	.216	131	.581
	10	.024	.219	.911	405	.454
	11	.170	.166	.306	156	.496
8	1	.447(*)	.187	.017	.080	.815
	2	.154	.200	.441	238	.547
	3	.154	.231	.506	300	.607
	4	.185	.189	.328	186	.555
	5	395	.329	.229	-1.040	.249
	6	.015	.230	.946	435	.466
	7	.045	.240	.853	427	.516
	9	.269	.210	.199	142	.680
	10	.069	.243	.776	407	.545
	11	.215	.196	.274	170	.600
9	1	.178	.101	.080	021	.377
	2	115	.123	.350	357	.127
	3	116	.169	.494	448	.216
	4	085	.104	.414	289	.119
	5	665(*)	.288	.021	-1.230	099
	6	254	.167	.129	582	.074
	7	225	.182	.216	581	.131
	8	269	.210	.199	680	.142
	10	200	.185	.278	563	.162
10	11	055	.117	.641	284	.175
10	1	.378(*)	.159	.018	.066	.690
	2	.085	.174	.624	256	.426
	3 4	.085	.209	.685	325	.494
	4 5	.115	.161	.472	200	.431
	6	464	.313	.139	-1.079	.150
	7	054 024	.207	.796	460	.353
	1	024	.219	.911	454	.405

	8	069	.243	.776	545	.407
	9	.200	.185	.278	162	.563
	11	.146	.169	.390	187	.478
11	1	.233(*)	.070	.001	.095	.370
	2	061	.099	.541	255	.134
	3	061	.152	.689	360	.238
	4	030	.074	.681	- 175	.114
	5	610(*)	.279	.029	-1.157	063
	6	199	.150	.185	494	.095
	7	170	.166	.306	496	.156
	8	215	.196	.274	600	.170
	9	.055	.117	.641	175	.284
	10	146	.169	.390	478	.187
1	2	277(*)	.068	.000	411	144
	3	169	.120	.158	404	.066
	4	327(*)	.038	.000	402	252
	5	745(*)	.232	.001	-1.200	291
	6	381(*)	.118	.001	612	150
	7	284(*)	.132	.032	544	025
	8	349(*)	.159	.028	662	037
	9	247(*)	.086	.004	416	078
	10	422(*)	.135	.002	687	157
	11	273(*)	.060	.000	389	156
2	1	.277(*)	.068	.000	.144	.411
	3	.108	.134	.419	154	.370
	4	050	.071	.480	189	.089
	5	468	.239	.051	937	.001
	6	104	.132	.431	362	.155
	7	007	.145	.961	291	.277
	8	072	.170	.672	405	.261
	9	.030	.105	.773	175	.236
	10	144	.148	.329	434	.145
	11	.005	.084	.957	161	.170
3	1	.169	.120	.158	066	.404
	2	108	.134	.419	370	.154
	4	158	.121	.193	396	.080
	5	576(*)	.259	.026	-1.084	069
	6	212	.165	.198	535	.111
	7	115	.175	.511	459	.229
	8	180	.196	.360	565	.205
	9	078	.144	.589	360	.204
	10	252	.177	.155	601	.096

	11	103	.130	.424	358	.151
4	1	.327(*)	.038	.000	.252	.402
	2	.050	.071	.480	089	.189
	3	.158	.121	.193	080	.396
	5	418	.233	.072	874	.038
	6	054	.119	.652	288	.180
	7	.043	.134	.748	219	.305
	8	022	.160	.891	337	.293
	9	.080	.088	.364	093	.254
	10	094	.137	.490	362	.174
	11	.055	.063	.383	068	.177
5	1	.745(*)	.232	.001	.291	1.200
	2	.468	.239	.051	001	.937
	3	.576(*)	.259	.026	.069	1.084
	4	.418	.233	.072	038	.874
	6	.364	.258	.158	141	.870
	7	.461	.265	.082	058	.980
	8	.396	.279	.156	151	.944
	9	.498(*)	.245	.042	.018	.979
	10	.324	.266	.224	198	.846
	11	.473(*)	.237	.046	.008	.938
6	1	.381(*)	.118	.001	.150	.612
	2	.104	.132	.431	155	.362
	3	.212	.165	.198	111	.535
	4	.054	.119	.652	180	.288
	5	364	.258	.158	870	.141
	7	.097	.174	.578	244	.438
	8	.032	.195	.870	351	.415
	9	.134	.142	.345	145	.413
	10	040	.176	.818	386	.305
-	11	.108	.128	.396	142	.359
7	1	.284(*)	.132	.032	.025	.544
	2	.007	.145	.961	277	.291
	3	.115	.175	.511	229	.459
	4	043	.134	.748	305	.219
	5	461	.265	.082	980	.058
	6	097	.174	.578	438	.244
	8	065	.204	.751	465	.336
	9	.037	.154	.809	265	.340
	10	137	.186	.461	502	.228
0	11	.012	.141	.934	265	.288
8	1	.349(*)	.159	.028	.037	.662

		. = 4	1 = 0	(72)	261	105
	2	.072	.170	.672	261	.405
	3	.180	.196	.360	205	.565
	4	.022	.160	.891	293	.337
	5	396	.279	.156	944	.151
	6	032	.195	.870	415	.351
	7	.065	.204	.751	336	.465
	9	.102	.178	.566	247	.451
	10	072	.206	.726	477	.332
	11	.077	.167	.646	251	.404
9	1	.247(*)	.086	.004	.078	.416
	2	030	.105	.773	236	.175
	3	.078	.144	.589	204	.360
	4	080	.088	.364	254	.093
	5	498(*)	.245	.042	979	018
	6	134	.142	.345	413	.145
	7	037	.154	.809	340	.265
	8	102	.178	.566	451	.247
	10	175	.157	.266	482	.133
	11	026	.099	.796	221	.169
10	1	.422(*)	.135	.002	.157	.687
	2	.144	.148	.329	145	.434
	3	.252	.177	.155	096	.601
	4	.094	.137	.490	174	.362
	5	324	.266	.224	846	.198
	6	.040	.176	.818	305	.386
	7	.137	.186	.461	228	.502
	8	.072	.206	.726	332	.477
	9	.175	.157	.266	133	.482
	11	.149	.144	.301	133	.431
11	1	.273(*)	.060	.000	.156	.389
	2	005	.084	.957	170	.161
	3	.103	.130	.424	151	.358
	4	055	.063	.383	177	.068
	5	473(*)	.237	.046	938	008
	6	108	.128	.396	359	.142
	7	012	.141	.934	288	.265
	8	077	.167	.646	404	.251
	9	.026	.099	.796	169	.221
	10	149	.144	.301	431	.133
1	2	461(*)	.068	.000	595	328
	3	683(*)	.120	.000	918	448
	4	476(*)	.038	.000	551	401

	5	-1.285(*)	.232	.000	-1.741	829
	6	891(*)	.118	.000	-1.123	660
	7	689(*)	.132	.000	949	429
	8	781(*)	.160	.000	-1.094	468
	9	453(*)	.086	.000	622	283
	10	652(*)	.135	.000	918	387
	11	473(*)	.060	.000	591	356
2	1	.461(*)	.068	.000	.328	.595
	3	222	.134	.098	485	.041
	4	015	.071	.834	154	.124
	5	823(*)	.240	.001	-1.294	353
	6	430(*)	.132	.001	689	171
	7	227	.145	.118	512	.058
	8	320	.170	.061	654	.014
	9	.009	.105	.935	198	.215
	10	191	.148	.197	481	.099
	11	012	.084	.887	178	.154
3	1	.683(*)	.120	.000	.448	.918
	2	.222	.134	.098	041	.485
	4	.207	.122	.089	032	.445
	5	602(*)	.259	.020	-1.111	093
	6	208	.165	.207	532	.115
	7	006	.176	.974	350	.339
	8	098	.197	.618	485	.288
	9	.230	.144	.111	053	.513
	10	.031	.178	.863	318	.380
	11	.210	.130	.107	045	.464
4	1	.476(*)	.038	.000	.401	.551
	2	.015	.071	.834	124	.154
	3	207	.122	.089	445	.032
	5	809(*)	.233	.001	-1.266	351
	6	415(*)	.120	.001	649	181
	7	213	.134	.112	475	.050
	8	305	.161	.058	620	.010
	9	.023	.089	.792	150	.197
	10	176	.137	.198	445	.092
	11	.003	.063	.964	120	.126
5	1	1.285(*)	.232	.000	.829	1.741
	2	.823(*)	.240	.001	.353	1.294
	3	.602(*)	.259	.020	.093	1.111
	4	.809(*)	.233	.001	.351	1.266
	6	.394	.258	.128	113	.900

	7		0.05	005	075	1 110
	7	.596(*)	.265	.025	.075	1.116
	8	.504	.280	.072	046	1.053
	9	.832(*)	.246	.001	.350	1.314
	10	.632(*)	.267	.018	.109	1.156
6	11	.811(*)	.238	.001	.345	1.277
6	1	.891(*)	.118	.000	.660	1.123
	2	.430(*)	.132	.001	.171	.689
	3	.208	.165	.207	115	.532
	4	.415(*)	.120	.001	.181	.649
	5	394	.258	.128	900	.113
	7	.202	.174	.246	139	.544
	8	.110	.196	.574	274	.494
	9	.438(*)	.142	.002	.159	.718
	10	.239	.177	.176	107	.585
	11	.418(*)	.128	.001	.167	.669
7	1	.689(*)	.132	.000	.429	.949
	2	.227	.145	.118	058	.512
	3	.006	.176	.974	339	.350
	4	.213	.134	.112	050	.475
	5	596(*)	.265	.025	-1.116	075
	6	202	.174	.246	544	.139
	8	092	.205	.652	494	.309
	9	.236	.155	.127	067	.539
	10	.037	.187	.845	329	.402
	11	.215	.141	.128	062	.493
8	1	.781(*)	.160	.000	.468	1.094
	2	.320	.170	.061	014	.654
	3	.098	.197	.618	288	.485
	4	.305	.161	.058	010	.620
	5	504	.280	.072	-1.053	.046
	6	110	.196	.574	494	.274
	7	.092	.205	.652	309	.494
	9	.328	.178	.066	022	.678
	10	.129	.207	.533	277	.534
	11	.308	.167	.066	020	.636
9	1	.453(*)	.086	.000	.283	.622
	2	009	.105	.935	215	.198
	3	230	.144	.111	513	.053
	4	023	.089	.792	197	.150
	5	832(*)	.246	.001	-1.314	350
	6	438(*)	.142	.002	718	159
	7	236	.155	.127	539	.067

	8	328	.178	.066	678	.022
	10	199	.157	.205	508	.109
	11	021	.100	.837	216	.175
10	1	.652(*)	.135	.000	.387	.918
	2	.191	.148	.197	099	.481
	3	031	.178	.863	380	.318
	4	.176	.137	.198	092	.445
	5	632(*)	.267	.018	-1.156	109
	6	239	.177	.176	585	.107
	7	037	.187	.845	402	.329
	8	129	.207	.533	534	.277
	9	.199	.157	.205	109	.508
	11	.179	.144	.215	104	.462
11	1	.473(*)	.060	.000	.356	.591
	2	.012	.084	.887	154	.178
	3	210	.130	.107	464	.045
	4	003	.063	.964	126	.120
	5	811(*)	.238	.001	-1.277	345
	6	418(*)	.128	.001	669	167
	7	215	.141	.128	493	.062
	8	308	.167	.066	636	.020
	9	.021	.100	.837	175	.216
	10	179	.144	.215	462	.104
1	2	204(*)	.069	.003	339	069
	3	498(*)	.121	.000	736	260
	4	186(*)	.039	.000	262	110
	5	999(*)	.235	.000	-1.459	539
	6	801(*)	.119	.000	-1.034	567
	7	645(*)	.134	.000	908	383
	8	606(*)	.161	.000	922	290
	9	300(*)	.087	.001	472	129
	10	332(*)	.137	.015	601	064
	11	185(*)	.060	.002	303	067
2	1	.204(*)	.069	.003	.069	.339
	3	294(*)	.135	.030	560	029
	4	.018	.072	.805	123	.158
	5	795(*)	.242	.001	-1.270	320
	6	597(*)	.133	.000	859	335
	7	442(*)	.147	.003	730	154
	8	403(*)	.172	.019	740	065
	9	097	.106	.362	305	.111
	10	129	.149	.390	422	.165

	11	.019	.085	.826	148	.186
3	1	.498(*)	.121	.000	.260	.736
2	2	.294(*)	.135	.030	.029	.560
	4	.312(*)	.123	.011	.071	.553
	5	501	.262	.056	-1.015	.013
	6	303	.167	.069	629	.024
	7	147	.177	.406	495	.200
	8	108	.199	.586	498	.282
	9	.198	.146	.175	088	.483
	10	.166	.180	.357	187	.518
	11	.313(*)	.131	.017	.056	.570
4	1	.186(*)	.039	.000	.110	.262
	2	018	.072	.805	158	.123
	3	312(*)	.123	.011	553	071
	5	813(*)	.235	.001	-1.275	351
	6	615(*)	.121	.000	851	378
	7	460(*)	.135	.001	725	194
	8	420(*)	.162	.010	739	102
	9	114	.089	.201	290	.061
	10	146	.138	.290	417	.125
	11	.001	.063	.987	123	.125
5	1	.999(*)	.235	.000	.539	1.459
	2	.795(*)	.242	.001	.320	1.270
	3	.501	.262	.056	013	1.015
	4	.813(*)	.235	.001	.351	1.275
	6	.198	.261	.447	313	.710
	7	.354	.268	.187	172	.879
	8	.393	.283	.165	162	.947
	9	.699(*)	.248	.005	.212	1.185
	10	.667(*)	.269	.013	.138	1.195
	11	.814(*)	.240	.001	.344	1.285
6	1	.801(*)	.119	.000	.567	1.034
	2	.597(*)	.133	.000	.335	.859
	3	.303	.167	.069	024	.629
	4	.615(*)	.121	.000	.378	.851
	5	198	.261	.447	710	.313
	7	.155	.176	.378	190	.500
	8	.194	.198	.326	193	.582
	9	.500(*)	.144	.001	.218	.782
	10	.468(*)	.178	.009	.119	.818
_	11	.616(*)	.129	.000	.362	.869
7	1	.645(*)	.134	.000	.383	.908

				0.00	154	720
	2	.442(*)	.147	.003	.154	.730
	3	.147	.177	.406	200	.495
	4	.460(*)	.135	.001	.194	.725
	5	354	.268	.187	879	.172
	6	155	.176	.378	500	.190
	8	.039	.207	.850	366	.445
	9	.345(*)	.156	.027	.039	.651
	10	.313	.188	.097	056	.683
	11	.461(*)	.143	.001	.180	.741
8	1	.606(*)	.161	.000	.290	.922
	2	.403(*)	.172	.019	.065	.740
	3	.108	.199	.586	282	.498
	4	.420(*)	.162	.010	.102	.739
	5	393	.283	.165	947	.162
	6	194	.198	.326	582	.193
	7	039	.207	.850	445	.366
	9	.306	.180	.090	048	.659
	10	.274	.209	.189	135	.684
	11	.421(*)	.169	.013	.090	.753
9	1	.300(*)	.087	.001	.129	.472
	2	.097	.106	.362	111	.305
	3	198	.146	.175	483	.088
	4	.114	.089	.201	061	.290
	5	699(*)	.248	.005	-1.185	212
	6	500(*)	.144	.001	782	218
	7	345(*)	.156	.027	651	039
	8	306	.180	.090	659	.048
	10	032	.159	.841	343	.280
	11	.115	.101	.251	082	.313
10	1	.332(*)	.137	.015	.064	.601
	2	.129	.149	.390	165	.422
	3	166	.180	.357	518	.187
	4	.146	.138	.290	125	.417
	5	667(*)	.269	.013	-1.195	138
	6	468(*)	.178	.009	818	119
	7	313	.188	.097	683	.056
	8	274	.209	.189	684	.135
	9	.032	.159	.841	280	.343
	11	.147	.146	.312	138	.433
11	1	.185(*)	.060	.002	.067	.303
	2	019	.085	.826	186	.148
	3	313(*)	.131	.017	570	056

	4	001	.063	.987	125	.123
	5	814(*)	.240	.001	-1.285	344
	6	616(*)	.129	.000	869	362
	7	461(*)	.143	.001	741	180
	8	421(*)	.169	.013	753	090
	9	115	.101	.251	313	.082
	10	147	.146	.312	433	.138
1	2	.136	.098	.162	055	.328
	3	143	.172	.405	480	.194
	4	.311(*)	.055	.000	.204	.419
	5	770(*)	.332	.021	-1.422	118
	6	163	.169	.334	494	.168
	7	131	.190	.491	502	.241
	8	165	.228	.469	613	.283
	9	069	.124	.577	312	.174
	10	080	.194	.681	460	.301
	11	.438(*)	.085	.000	.271	.606
2	1	136	.098	.162	328	.055
	3	280	.192	.145	656	.097
	4	.175	.102	.085	024	.374
	5	907(*)	.343	.008	-1.580	233
	6	299	.189	.113	670	.071
	7	267	.208	.199	675	.141
	8	302	.244	.216	780	.176
	9	206	.150	.172	500	.089
	10	216	.212	.308	632	.199
	11	.302(*)	.121	.013	.065	.539
3	1	.143	.172	.405	194	.480
	2	.280	.192	.145	097	.656
	4	.454(*)	.174	.009	.113	.796
	5	627	.371	.091	-1.355	.101
	6	020	.236	.933	483	.443
	7	.013	.251	.960	480	.506
	8	022	.282	.937	575	.530
	9	.074	.206	.720	330	.479
	10	.063	.255	.803	436	.563
	11	.582(*)	.186	.002	.217	.946
4	1	311(*)	.055	.000	419	204
	2	175	.102	.085	374	.024
	3	454(*)	.174	.009	796	113
	5	-1.081(*)	.334	.001	-1.736	427
	6	474(*)	.171	.006	810	139

	7	442(*)	.192	.021	817	066
	8	477(*)	.230	.038	928	025
	9	380(*)	.127	.003	629	132
	10	391(*)	.196	.046	775	007
	11	.127	.090	.157	049	.303
5	1	.770(*)	.332	.021	.118	1.422
	2	.907(*)	.343	.008	.233	1.580
	3	.627	.371	.091	101	1.355
	4	1.081(*)	.334	.001	.427	1.736
	6	.607	.370	.101	118	1.332
	7	.640	.380	.092	105	1.384
	8	.605	.400	.131	181	1.390
	9	.701(*)	.351	.046	.012	1.391
	10	.690	.382	.071	059	1.440
	11	1.209(*)	.340	.000	.542	1.875
6	1	.163	.169	.334	168	.494
	2	.299	.189	.113	071	.670
	3	.020	.236	.933	443	.483
	4	.474(*)	.171	.006	.139	.810
	5	607	.370	.101	-1.332	.118
	7	.032	.249	.896	457	.521
	8	002	.280	.993	552	.547
	9	.094	.204	.645	306	.494
	10	.083	.253	.741	412	.579
	11	.601(*)	.183	.001	.242	.960
7	1	.131	.190	.491	241	.502
	2	.267	.208	.199	141	.675
	3	013	.251	.960	506	.480
	4	.442(*)	.192	.021	.066	.817
	5	640	.380	.092	-1.384	.105
	6	032	.249	.896	521	.457
	8	035	.293	.905	610	.540
	9	.061	.221	.781	373	.496
	10	.051	.267	.849	473	.574
	11	.569(*)	.202	.005	.172	.966
8	1	.165	.228	.469	283	.613
	2	.302	.244	.216	176	.780
	3	.022	.282	.937	530	.575
	4	.477(*)	.230	.038	.025	.928
	5	605	.400	.131	-1.390	.181
	6	.002	.280	.993	547	.552
	7	.035	.293	.905	540	.610

	9	.096	.255	.706	405	.597
	10	.090	.295	.772	494	.666
	11	.604(*)	.270	.012	.135	1.073
9	1	.069	.124	.577	174	.312
,	2	.206	.124	.172	089	.500
	3	074	.190	.720	479	.330
	4	.380(*)	.127	.003	.132	.629
	5	701(*)	.351	.005	-1.391	012
	6	094	.331	.645	-1.391 494	.306
	0 7	054 061	.204	.043	494 496	.300
	8	001 096	.221	.781	490 597	.373
	10	011	.235	.700	452	.403
	11	.507(*)	.143	.000	.228	.787
10	1	.080	.194	.681	301	.460
10	2	.216	.212	.308	199	.632
	3	063	.255	.803	563	.436
	4	.391(*)	.196	.046	.007	.775
	5	690	.382	.070	-1.440	.059
	6	083	.253	.741	579	.412
	7	051	.267	.849	574	.473
	8	086	.296	.772	666	.494
	9	.011	.225	.962	431	.452
	11	.518(*)	.206	.012	.113	.923
11	1	438(*)	.085	.000	606	271
	2	302(*)	.121	.013	539	065
	3	582(*)	.186	.002	946	217
	4	127	.090	.157	303	.049
	5	-1.209(*)	.340	.000	-1.875	542
	6	601(*)	.183	.001	960	242
	7	569(*)	.202	.005	966	172
	8	604(*)	.239	.012	-1.073	135
	9	507(*)	.143	.000	787	228
	10	518(*)	.206	.012	923	-,113
1	2	542(*)	.098	.000	734	349
	3	562(*)	.173	.001	901	224
	4	279(*)	.055	.000	387	171
	5	-1.377(*)	.334	.000	-2.032	722
	6	895(*)	.170	.000	-1.227	562
	7	604(*)		.002	978	231
	8	877(*)	.230	.000	-1.327	427
	9	553(*)	.124	.000	797	309
	10	758(*)	.195	.000	-1.140	376

	11	345(*)	.086	.000	513	176
2	1	.542(*)	.098	.000	.349	.734
	3	020	.193	.916	398	.358
	4	.263(*)	.102	.010	.062	.463
	5	835(*)	.345	.016	-1.512	158
	6	353	.190	.063	726	.020
	7	062	.209	.765	472	.347
	8	335	.245	.172	816	.146
	9	011	.151	.941	307	.285
	10	216	.213	.310	634	.202
	11	.197	.121	.105	041	.435
3	1	.562(*)	.173	.001	.224	.901
	2	.020	.193	.916	358	.398
	4	.283	.175	.106	060	.626
	5	815(*)	.373	.029	-1.547	083
	6	333	.237	.161	798	.133
	7	042	.253	.868	538	.453
	8	315	.283	.267	870	.241
	9	.009	.207	.964	397	.416
	10	196	.256	.444	698	.306
	11	.217	.187	.245	149	.584
4	1	.279(*)	.055	.000	.171	.387
	2	263(*)	.102	.010	463	062
	3	283	.175	.106	626	.060
	5	-1.098(*)	.335	.001	-1.755	-,440
	6	616(*)	.172	.000	953	278
	7	325	.193	.092	703	.053
	8	598(*)	.231	.010	-1.051	144
	9	274(*)	.127	.032	524	024
	10	479(*)	.197	.015	865	093
-	11	066	.090	.468	243	.112
5	1	1.377(*)	.334	.000	.722	2.032
	2	.835(*)	.345	.016	.158	1.512
	3	.815(*)	.373	.029	.083	1.547
	4	1.098(*)	.335	.001	.440	1.755
	6	.482	.372	.195	247	1.211
	7	.773(*)	.382	.043	.024	1.521
	8	.500	.403	.214	290	1.290
	9	.824(*)	.353	.020	.131	1.517
	10	.619	.384	.107	134	1.372
6	11	1.032(*)	.342	.003	.362	1.702
6	1	.895(*)	.170	.000	.562	1.227

			100	0.40	000	70(
	2	.353	.190	.063	020	.726
	3	.333	.237	.161	133	.798
	4	.616(*)	.172	.000	.278	.953
	5	482	.372	.195	-1.211	.247
	7	.291	.251	.246	201	.782
	8	.018	.281	.949	534	.570
	9	.342	.205	.095	060	.744
	10	.137	.254	.590	361	.635
	11	.550(*)	.184	.003	.189	.911
7	1	.604(*)	.190	.002	.231	.978
	2	.062	.209	.765	347	.472
	3	.042	.253	.868	453	.538
	4	.325	.193	.092	053	.703
	5	773(*)	.382	.043	-1.521	024
	6	291	.251	.246	782	.201
	8	273	.295	.355	850	.305
	9	.051	.222	.817	385	.488
	10	154	.268	.567	680	.373
	11	.260	.203	.202	140	.659
8	1	.877(*)	.230	.000	.427	1.327
	2	.335	.245	.172	146	.816
	3	.315	.283	.267	241	.870
	4	.598(*)	.231	.010	.144	1.051
	5	500	.403	.214	-1.290	.290
	6	018	.281	.949	570	.534
	7	.273	.295	.355	305	.850
	9	.324	.257	.207	179	.828
	10	.119	.297	.689	464	.702
	11	.532(*)	.240	.027	.061	1.004
9	1	.553(*)	.124	.000	.309	.797
	2	.011	.151	.941	285	.307
	3	009	.207	.964	416	.397
	4	.274(*)	.127	.032	.024	.524
	5	824(*)	.353	.020	-1.517	131
	6	342	.205	.095	744	.060
	7	051	.222	.817	488	.385
	8	324	.257	.207	828	.179
	10	205	.226	.365	649	.239
	11	.208	.143	.147	073	.489
10	1	.758(*)	.195	.000	.376	1.140
	2	.216	.213	.310	202	.634
	3	.196	.256	.444	306	.698

.

	4	.479(*)	.197	.015	.093	.865
	5	619	.384	.107	-1.372	.134
	6	137	.254	.590	635	.361
	7	.154	.268	.567	373	.680
	8	119	.297	.689	702	.464
	9	.205	.226	.365	239	.649
	11	.413(*)	.208	.047	.006	.820
11	1	.345(*)	.086	.000	.176	.513
	2	197	.121	.105	435	.041
	3	217	.187	.245	584	.149
	4	.066	.090	.468	112	.243
	5	-1.032(*)	.342	.003	-1.702	362
	6	550(*)	.184	.003	911	189
	7	260	.203	.202	659	.140
	8	532(*)	.240	.027	-1.004	061
	9	208	.143	.147	489	.073
	10	413(*)	.208	.047	820	006
	• •	• •				

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

Data Set B.5

					95% Con Interva Differe	al for
					Lower Bound	Upper Bound
	2	101	.131	.439	358	.155
	2 3	.071	.135	.598	193	.336
	4	.473(*)	.137	.001	.205	.741
	5	.384(*)	.123	.002	.143	.625
	6	.179	.124	.151	065	.423
	7	.040	.130	.756	215	.295
2	1	.101	.131	.439	155	.358
	3	.172(*)	.077	.025	.022	.323
	4	.574(*)	.080	.000	.417	.731
	5	.486(*)	.053	.000	.382	.589
	6	.280(*)	.057	.000	.169	.391
	7	.142(*)	.068	.037	.008	.275
3	1	071	.135	.598	336	.193
	2	172(*)	.077	.025	323	022
	4	.402(*)	.086	.000	.233	.571
	5	.313(*)	.062	.000	.192	.435
	6	.108	.065	.099	020	.236
	7	031	.075	.683	178	.117
4	1	473(*)	.137	.001	741	205
	2	574(*)	.080	.000	731	417
	3	402(*)	.086	.000	571	233
	5	089	.066	.179	218	.041
	6	294(*)	.069	.000	429	159
	7	433(*)	.078	.000	587	279
5	1	384(*)	.123	.002	625	143
	2	486(*)	.053	.000	589	382
	3	313(*)	.062	.000	435	192
	4	.089	.066	.179	041	.218
	6	206(*)	.034	.000	272	139
	7	344(*)	.051	.000	443	244
6	1	179	.124	.151	423	.065
	2	280(*)	.057	.000	391	169
	3	108	.065	.099	236	.020

Mean difference in safety climate scores by job position(b)

4	.294(*)	.069	.000	.159	.429
5	.206(*)	.034	.000	.139	.272
7	138(*)	.055	.011	245	031
1	040	.130	.756	295	.215
2	142(*)	.068	.037	275	008
3	.031	.075	.683	117	.178
4	.433(*)	.078	.000	.279	.587
5	.344(*)	.051	.000	.244	.443
6	.138(*)	.055	.011	.031	.245

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for job positions:

1. Senior manager

2. Manager

3. Supervisor

4. Foremen

5. Workforce/craft

6. Technical support

7. Administrative

Data Set B.6

Mean safety climate factor scores by job position

				95% Co Interval	nfidence
Factor	Job position	Mean	Std. Error	Lower Bound	Upper Bound
1. Organizational	Senior manager	3.798	.166	3.471	4.124
commitment and	Manager	3.965	.066	3.836	4.094
communication	Supervisor	3.711	.078	3.557	3.865
	Foreman	3.232	.084	3.067	3.398
	Workforce/craft	3.244	.026	3.193	3.295
	Technical support	3.534	.037	3.460	3.607
	Administrative	3.702	.063	3.578	3.825
2. Line management	Senior manager	3.734	.191	3.360	4.109
commitment	Manager	3.949	.076	3.801	4.098
	Supervisor	3.847	.090	3.671	4.024
	Foreman	3.532	.097	3.342	3.722
	Workforce/craft	3.500	.030	3.442	3.559
	Technical support	3.744	.043	3.660	3.829
	Administrative	3.821	.072	3.678	3.963
3. Supervisors' role	Senior manager	3.703	.187	3.337	4.070
-	Manager	3.816	.074	3.671	3.961
	Supervisor	3.817	.088	3.644	3.990
	Foreman	3.243	.095	3.057	3.429
	Workforce/craft	3.275	.029	3.218	3.332
	Technical support	3.505	.042	3.423	3.588
	Administrative	3.690	.071	3.551	3.829
4. Personal role	Senior manager	3.813	.148	3.523	4.102
	Manager	4.032	.058	3.918	4.147
	Supervisor	3.898	.070	3.762	4.035
	Foreman	3.755	.075	3.608	3.902
	Workforce/craft	3.722	.023	3.677	3.767
	Technical support	3.884	.033	3.819	3.949
	Administrative	3.866	.056	3.756	3.976
5. Coworkers' role	Senior manager	3.693	.178	3.344	4.042
	Manager	3.816	.070	3.678	3.954
	Supervisor	3.726	.084	3.561	3.890
	Foreman	3.238	.090	3.061	3.415
	Workforce/craft	3.367	.028	3.312	3.421
	Technical support	3.546	.040	3.468	3.624

6. Competence	Administrative Senior manager Manager	3.709 3.975	.068 .154	3.577 3.673	3.842 4.277
6. Competence		3.975	.154	3 673	1 277
	Manager			5.075	4.277
		4.030	.061	3.911	4.150
	Supervisor	3.906	.072	3.763	4.048
	Foreman	3.539	.078	3.385	3.692
	Workforce/craft	3.663	.024	3.616	3.710
	Technical support	3.863	.035	3.795	3.930
	Administrative	3.872	.058	3.757	3.986
7. Risk taking behavior	Senior manager	3.475	.160	3.161	3.789
	Manager	3.611	.063	3.487	3.736
	Supervisor	3.390	.075	3.242	3.538
	Foreman	2.807	.081	2.647	2.966
	Workforce/craft	3.102	.025	3.053	3.151
	Technical support	3.272	.036	3.201	3.342
	Administrative	3.441	.061	3.322	3.560
8. Obstacles to safe	Senior manager	3.276	.156	2.970	3.582
behavior	Manager	3.476	.062	3.355	3.597
	Supervisor	3.271	.073	3.127	3.416
	Foreman	2.891	.079	2.736	3.046
	Workforce/craft	3.024	.024	2.977	3.072
	Technical support	3.223	.035	3.155	3.292
	Administrative	3.369	.059	3.253	3.485
9. Permit to work	Senior manager	3.250	.224	2.811	3.689
	Manager	3.240	.089	3.066	3.414
	Supervisor	3.090	.105	2.883	3.297
	Foreman	3.194	.114	2.971	3.416
	Workforce/craft	3.157	.035	3.088	3.225
	Technical support	3.259	.050	3.160	3.357
	Administrative	3.194	.085	3.027	3.360
10. Reporting of	Senior manager	3.531	.222	3.095	3.968
accidents and near	Manager	3.103	.088	2.930	3.276
misses	Supervisor	2.896	.105	2.690	3.102
	Foreman	2.468	.113	2.246	2.689
	Workforce/craft	2.736	.035	2.668	2.804
	Technical support	2.885	.050	2.787	2.983
	Administrative	3.113	.084	2.947	3.278

Data Set B.7

Mean differences	in	factor scores	by	job	position(c))

			Mean			95% Con Interva Differe	al for
			Difference	Std.	_	Lower	Upper
Factor(b)	А	В	(A-B)	Error	Sig.(a)	Bound	Bound
1	1	2	168	.179	.349	518	.18
		3	.087	.184	.637	274	.44
		4	.565(*)	.186	.002	.199	.93
		5	.553(*)	.168	.001	.223	.88
		6	.264	.170	.122	070	.59
		7	.096	.178	.590	253	.44
	2	1	.168	.179	.349	183	.51
		3	.254(*)	.102	.013	.053	.45
		4	.733(*)	.107	.000	.523	.94
		5	.721(*)	.071	.000	.582	.86
		6	.431(*)	.076	.000	.283	.58
		7	.263(*)	.091	.004	.085	.44
	3	1	087	.184	.637	447	.27
		2	254(*)	.102	.013	455	05
		4	.478(*)	.115	.000	.252	.70
		5	.467(*)	.083	.000	.305	.62
		6	.177(*)	.087	.041	.007	.34
		7	.009	.101	.927	188	.20
	4	1	565(*)	.186	.002	931	19
		2	733(*)	.107	.000	943	52
		3	478(*)	.115	.000	705	25
		5	012	.088	.894	185	.16
		6	301(*)	.092	.001	482	12
		7	469(*)	.105	.000	676	26
	5	1	553(*)	.168	.001	883	22
		2	721(*)	.071	.000	860	58
		3	467(*)	.083	.000	629	30
		4	.012	.088	.894	162	.18
		6	290(*)	.045	.000	379	20
		7	457(*)	.068	.000	591	32
	6	1	264	.170	.122	598	.07
		2	431(*)	.076	.000	580	28
		3	177(*)	.087	.041	347	00

	4	.301(*)	.092	.001	.120	.482
	5	.290(*)	.045	.000	.200	.379
	7	168(*)	.073	.022	312	024
,	7 1	096	.178	.590	445	.253
	2	263(*)	.091	.004	442	085
	3	009	.101	.927	207	.188
	4	.469(*)	.105	.000	.262	.676
	5	.457(*)	.068	.000	.324	.591
	6	.168(*)	.073	.022	.024	.312
	1 2	215	.205	.295	618	.188
	3	113	.211	.593	527	.301
	4	.202	.214	.345	218	.622
	5	.234	.193	.226	145	.613
	6	010	.196	.959	394	.374
	7	086	.204	.673	487	.314
	2 1	.215	.205	.295	188	.618
	3	.102	.118	.385	128	.333
	4	.417(*)	.123	.001	.176	.658
	5	.449(*)	.081	.000	.290	.608
	6	.205(*)	.087	.019	.034	.375
	7	.129	.105	.219	077	.334
	3 1	.113	.211	.593	301	.527
	2	102	.118	.385	333	.128
	4	.315(*)	.132	.017	.055	.574
	5	.347(*)	.095	.000	.161	.533
	6	.103	.100	.303	093	.298
	7	.027	.116	.818	200	.253
	4 1	202	.214	.345	622	.218
	2	417(*)	.123	.001	658	176
	3	315(*)	.132	.017	574	055
	5	.032	.101	.753	167	.231
	6	212(*)	.106	.046	420	004
	7	288(*)	.121	.017	526	051
	5 1	234	.193	.226	613	.145
	2	449(*)	.081	.000	608	290
	3	347(*)	.095	.000	533	161
	4	032	.101	.753	231	.167
	6	244(*)	.052	.000	347	142
	7	320(*)	.078	.000	474	167
	6 1	.010	.196	.959	374	.394
	2	205(*)	.087	.019	375	034
	3	103	.100	.303	298	.093

	4	010(*)	107	046	004	.420
	4	.212(*)	.106	.046	.004	.420 .347
	5	.244(*)	.052	.000	.142	
-	7	076	.084	.366	241	.089
7	1	.086	.204	.673	314	.487
	2	129	.105	.219	334	.077
	3	027	.116	.818	253	.200
	4	.288(*)	.121	.017	.051	.526
	5	.320(*)	.078	.000	.167	.474
	6	.076	.084	.366	089	.241
1	2	113	.201	.574	507	.281
	3	114	.207	.581	519	.291
	4	.460(*)	.210	.028	.049	.871
	5	.428(*)	.189	.024	.057	.799
	6	.198	.191	.302	178	.573
	7	.013	.200	.947	379	.405
2	1	.113	.201	.574	281	.507
	3	001	.115	.993	227	.225
	4	.573(*)	.120	.000	.337	.809
	5	.541(*)	.080	.000	.385	.697
	6	.311(*)	.085	.000	.144	.478
	7	.126	.102	.218	075	.327
3	1	.114	.207	.581	291	.519
	2	.001	.115	.993	225	.227
	4	.574(*)	.129	.000	.320	.828
	5	.542(*)	.093	.000	.360	.724
	6	.312(*)	.098	.001	.121	.503
	7	.127	.113	.261	095	.349
4	1	460(*)	.210	.028	871	049
	2	573(*)	.120	.000	809	337
	3	574(*)	.129	.000	828	320
	5	032	.099	.748	227	.163
	6	262(*)	.104	.012	466	058
E	7	447(*)	.118	.000	679	214
5	1	428(*)	.189	.024	799	057
	2	541(*)	.080	.000	697	385
	3	542(*)	.093	.000	724	360
	4	.032	.099	.748	163	.227
	6	230(*)	.051	.000	330	130
r	7	415(*)	.077	.000	565	264
6	1 2	198 211(*)	.191	.302	573	.178
	2 3	311(*) 212(*)	.085	.000	478	144
	3	312(*)	.098	.001	503	121

	4	.262(*)	.104	.012	.058	.466
	5	.230(*)	.051	.000	.130	.330
	7	185(*)	.082	.025	346	023
7	1	013	.200	.947	405	.379
	2	126	.102	.218	327	.075
	3	127	.113	.261	349	.095
	4	.447(*)	.118	.000	.214	.679
	5	.415(*)	.077	.000	.264	.565
	6	.185(*)	.082	.025	.023	.346
1	2	220	.159	.166	531	.092
	3	086	.163	.600	406	.235
	4	.058	.166	.728	267	.382
	5	.091	.149	.545	203	.384
	6	071	.151	.638	368	.226
	7	053	.158	.736	363	.256
2	1	.220	.159	.166	092	.531
	3	.134	.091	.140	044	.313
	4	.278(*)	.095	.004	.091	.464
	5	.310(*)	.063	.000	.187	.434
	6	.149(*)	.067	.027	.017	.280
	7	.167(*)	.081	.040	.008	.325
3	1	.086	.163	.600	235	.406
	2	134	.091	.140	313	.044
	4	.143	.102	.161	057	.344
	5	.176(*)	.073	.016	.032	.320
	6	.014	.077	.852	137	.166
	7	.032	.089	.717	143	.208
4	1	058	.166	.728	382	.267
	2	278(*)	.095	.004	464	091
	3	143	.102	.161	344	.057
	5	.033	.078	.675	121	.187
	6	129	.082	.116	290	.032
	7	111	.094	.236	295	.073
5	1	091	.149	.545	384	.203
	2	310(*)	.063	.000	434	187
	3	176(*)	.073	.016	320	032
	4	033	.078	.675	187	.121
	6	162(*)	.040	.000	241	083
	7	144(*)	.061	.018	263	025
6	1	.071	.151	.638	226	.368
	2	149(*)	.067	.027	280	017
	3	014	.077	.852	166	.137

	4	.129	.082	.116	032	.290
	5	.162(*)	.040	.000	.083	.241
	7	.018	.065	.782	110	.146
7	1	.053	.158	.736	256	.363
,	2	167(*)	.081	.040	325	008
	23	032	.089	.717	208	.143
	4	.111	.094	.236	073	.295
	5	.144(*)	.061	.018	.025	.263
	6	018	.065	.782	146	.110
1	2	123	.191	.519	499	.252
	3	033	.197	.867	419	.353
	4	.455(*)	.200	.023	.063	.846
	5	.326	.180	.071	027	.679
	6	.147	.182	.421	211	.504
	7	017	.190	.930	390	.357
2	1	.123	.191	.519	252	.499
	3	.090	.110	.409	124	.305
	4	.578(*)	.115	.000	.353	.803
	5	.449(*)	.076	.000	.301	.598
	6	.270(*)	.081	.001	.111	.429
	7	.107	.098	.274	085	.298
3	1	.033	.197	.867	353	.419
	2	090	.110	.409	305	.124
	4	.488(*)	.123	.000	.246	.730
	5	.359(*)	.088	.000	.185	.532
	6	.180	.093	.053	003	.362
	7	.016	.108	.880	195	.227
4	1	455(*)	.200	.023	846	063
	2	578(*)	.115	.000	803	353
	3	488(*)	.123	.000	730	- 246
	5	129	.095	.173	315	.056
	6	308(*)	.099	.002	502	114
	7	472(*)	.113	.000	693	250
5	1	326	.180	.071	679	.027
	2	449(*)	.076	.000	598	301
	3	359(*)	.088	.000	532	185
	4	.129	.095	.173	056	.315
	6	179(*)	.049	.000	275 186	084
(7	343(*)	.073	.000	486 504	199
6	1	147	.182	.421 .001	504 429	.211 111
	2 3	270(*)	.081		429 362	.003
	3	180	.093	.053	302	.005

	4	.308(*)	.099	.002	.114	.502
	5	.179(*)	.049	.000	.084	.275
	7	163(*)	.078	.037	317	009
7	1	.017	.190	.930	357	.390
	2	107	.098	.274	298	.085
	3	016	.108	.880	227	.195
	4	.472(*)	.113	.000	.250	.693
	5	.343(*)	.073	.000	.199	.486
	6	.163(*)	.078	.037	.009	.317
1	2	055	.165	.738	380	.269
	3	.069	.170	.683	264	.403
	4	.436(*)	.172	.012	.098	.775
	5	.312(*)	.156	.045	.007	.618
	6	.112	.158	.476	197	.422
	7	.103	.164	.530	219	.426
2	1	.055	.165	.738	269	.380
	3	.125	.095	.188	061	.311
	4	.492(*)	.099	.000	.297	.686
	5	.368(*)	.065	.000	.239	.496
	6	.168(*)	.070	.017	.030	.305
	7	.159	.084	.060	007	.324
3	1	069	.170	.683	403	.264
	2	125	.095	.188	311	.061
	4	.367(*)	.107	.001	.158	.576
	5	.243(*)	.076	.002	.093	.393
	6	.043	.080	.593	115	.201
	7	.034	.093	.716	149	.217
4	1	436(*)	.172	.012	775	098
	2	492(*)	.099	.000	686	297
	3	367(*)	.107	.001	576	158
	5	124	.082	.130	284	.036
	6	324(*)	.085	.000	491	156
	7	333(*)	.098	.001	524	142
5	1	312(*)	.156	.045	618	007
5	2	368(*)	.065	.000	496	239
	3	243(*)	.076	.000	393	093
	4	.124	.082	.130	036	.284
	6	200(*)	.042	.000	282	117
	7	209(*)	.042	.000	333	085
6	1	112	.158	.476	422	.197
Ū	2	168(*)	.070	.017	305	030
	3	043	.070	.593	201	.115
	J	043	.060	.555	201	.115

	4	.324(*)	.085	.000	.156	.491
	4 5	.200(*)	.033	.000	.117	.282
	3 7	009	.068	.894	142	.124
7	1	103	.164	.530	426	.219
,	2	159	.084	.060	324	.007
	3	034	.093	.716	217	.149
	4	.333(*)	.098	.001	.142	.524
	5	.209(*)	.063	.001	.085	.333
	6	.009	.068	.894	124	.142
1	2	136	.172	.428	474	.201
1	3	.085	.177	.630	261	.432
	4	.668(*)	.179	.000	.317	1.020
	5	.373(*)	.162	.021	.056	.691
	6	.203	.164	.214	118	.525
	7	.034	.171	.843	302	.369
2	1	.136	.172	.428	201	.474
	3	.222(*)	.098	.024	.029	.415
	4	.805(*)	.103	.000	.603	1.007
	5	.510(*)	.068	.000	.376	.643
	6	.340(*)	.073	.000	.197	.483
	7	.170	.088	.052	002	.342
3	1	085	.177	.630	432	.261
	2	222(*)	.098	.024	415	029
	4	.583(*)	.111	.000	.366	.801
	5	.288(*)	.079	.000	.132	.444
	6	.118	.083	.157	045	.282
	7	051	.097	.595	241	.138
4	1	668(*)	.179	.000	-1.020	317
	2	805(*)	.103	.000	-1.007	603
	3	583(*)	.111	.000	801	366
	5	295(*)	.085	.001	462	- 128
	6	465(*)	.089	.000	639	291
	7	635(*)	.101	.000	833	436
5	1	373(*)	.162	.021	691	056
	2 3	510(*)	.068	.000	643	376
		288(*)	.079	.000	444	132
	4	.295(*)	.085	.001	.128	.462
	6	170(*)	.044	.000	256	084
	7	340(*)	.066	.000	468	211
6	1	203	.164	.214	525	.118
	2	340(*)	.073	.000	483	197
	3	118	.083	.157	282	.045

	4	.465(*)	.089	.000	.291	.639
	5	.170(*)	.044	.000	.084	.256
	7	170(*)	.071	.016	308	031
7	1	034	.171	.843	369	.302
	2	170	.088	.052	342	.002
	3	.051	.097	.595	138	.241
	4	.635(*)	.101	.000	.436	.833
	5	.340(*)	.066	.000	.211	.468
	6	.170(*)	.071	.016	.031	.308
1	2	200	.168	.233	529	.129
	3	.005	.172	.979	333	.343
	4	.385(*)	.175	.028	.042	.728
	5	.252	.158	.111	058	.561
	6	.053	.160	.742	261	.366
	7	093	.167	.576	420	.234
2	1	.200	.168	.233	129	.529
	3	.204(*)	.096	.033	.016	.393
	4	.585(*)	.100	.000	.388	.782
	5	.451(*)	.066	.000	.321	.582
	6	.252(*)	.071	.000	.113	.392
	7	.107	.086	.213	061	.274
3	1	005	.172	.979	343	.333
	2	204(*)	.096	.033	393	016
	4	.381(*)	.108	.000	.169	.592
	5	.247(*)	.077	.001	.095	.399
	6	.048	.081	.556	112	.208
	7	098	.094	.299	283	.087
4	1	385(*)	.175	.028	728	042
	2	585(*)	.100	.000	782	388
	3	381(*)	.108	.000	592	169
	5	134	.083	.107	296	.029
	6	333(*)	.087	.000	502	163
	7	478(*)	.099	.000	672	285
5	1	252	.158	.111	561	.058
	2	451(*)	.066	.000	582	321
	3	247(*)	.077	.001	399	095
	4	.134	.083	.107	029	.296
	6	199(*)	.043	.000	283	115
	7	345(*)	.064	.000	470	219
6	1	053	.160	.742	366	.261
	2	252(*)	.071	.000	392	113
	3	048	.081	.556	208	.112

	4	.333(*)	.087	.000	.163	.502
	5	.199(*)	.043	.000	.115	.283
	7	146(*)	.069	.034	281	011
7	1	.093	.167	.576	234	.420
	2	107	.086	.213	274	.061
	3	.098	.094	.299	087	.283
	4	.478(*)	.099	.000	.285	.672
	5	.345(*)	.064	.000	.219	.470
	6	.146(*)	.069	.034	.011	.281
1	2	.010	.241	.967	462	.482
	3	.160	.247	.518	325	.645
	4	.056	.251	.822	436	.549
	5	.093	.226	.681	351	.537
	6	009	.229	.970	458	.441
	7	.056	.239	.814	413	.526
2	1	010	.241	.967	482	.462
	3	.150	.138	.276	120	.420
	4	.047	.144	.746	236	.329
	5	.083	.095	.381	103	.270
	6	018	.102	.856	218	.181
	7	.047	.123	.705	194	.287
3	1	160	.247	.518	645	.325
	2	150	.138	.276	420	.120
	4	103	.155	.505	407	.201
	5	066	.111	.549	284	.151
	6	168	.117	.150	398	.061
	7	103	.135	.445	369	.162
4	1	056	.251	.822	549	.436
	2	047	.144	.746	329	.236
	3	.103	.155	.505	201	.407
	5	.037	.119	.757	196	.270
	6	065	.124	.600	309	.179
_	7	.000	.142	.999	278	.278
5	1	093	.226	.681	537	.351
	2	083	.095	.381	270	.103
	3	.066	.111	.549	151	.284
	4	037	.119	.757	270	.196
	6	102	.061	.096	222	.018
	7	037	.092	.688	217	.143
6	1	.009	.229	.970	441	.458
	2 3	.018	.102	.856	181	.218
	3	.168	.117	.150	061	.398

	4	.065	124	.600	170	200
	5	.102	.124 .061	.000	179 018	.309
	5 7	.065	.001	.090	129	.222 .259
7	1	056	.099	.814	129	.413
,	2	047	.123	.705	287	.194
	3	.103	.125	.445	162	.369
	4	.000	.133	.999	278	.278
	5	.037	.092	.688	143	.217
	6	065	.099	.510	259	.129
1	2	.428	.239	.074	041	.898
	3	.635(*)	.246	.010	.153	1.118
	4	1.064(*)	.250	.000	.574	1.553
	5	.795(*)	.225	.000	.354	1.237
	6	.646(*)	.228	.005	.199	1.094
	7	.419	.238	.079	048	.885
2	1	428	.239	.074	898	.041
	3	.207	.137	.131	062	.476
	4	.635(*)	.143	.000	.354	.916
	5	.367(*)	.095	.000	.181	.553
	6	.218(*)	.101	.032	.019	.417
	7	010	.122	.937	249	.230
3	1	635(*)	.246	.010	-1.118	153
	2	207	.137	.131	476	.062
	4	.428(*)	.154	.006	.126	.731
	5	.160	.110	.148	057	.377
	6	.011	.116	.925	217	.239
	7	217	.135	.108	481	.047
4	1	-1.064(*)	.250	.000	-1.553	574
	2	635(*)	.143	.000	916	354
	3	428(*)	.154	.006	731	126
	5	268(*)	.118	.023	500	036
	6	417(*)	.124	.001	660	175
5	7	645(*)	.141	.000	922	368
3	1 2	795(*)	.225	.000	-1.237	354
	2 3	367(*)	.095	.000	553	181
	3 4	160	.110	.148	377	.057
		.268(*)	.118	.023	.036	.500
	6 7	149(*) 277(*)	.061	.015	268	030
6	1	377(*) 646(*)	.091	.000	556	198
U	2	218(*)	.228 .101	.005 .032	-1.094 417	199
	3	011	.116	.032	417	019 217
	2	011	.110	.923	239	.217

	4	.417(*)	.124	.001	.175	.660
	5	.149(*)	.061	.015	.030	.268
	7	228(*)	.098	.020	420	035
7	1	419	.238	.079	885	.048
	2	.010	.122	.937	230	.249
	3	.217	.135	.108	047	.481
	4	.645(*)	.141	.000	.368	.922
	5	.377(*)	.091	.000	.198	.556
	6	.228(*)	.098	.020	.035	.420

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

- 2. Line management commitment.
- 3. Supervisor's role.
- 4. Personal role.
- 5. Coworkers' influence.
- 6. Competence.
- 7. Risk taking behavior.
- 8. Obstacles to safe behavior.
- 9. Permit to work.

10. Reporting of accidents and near misses.

c. Codes for job positions:

- 1. Senior manager
- 2. Manager
- 3. Supervisor
- 4. Foremen
- 5. Workforce/craft
- 6. Technical support
- 7. Administrative

		Mean		_	95% Confidence Interval for Difference(a)	
A	В	Difference (A-B)	Std. Error	Sig.(a)	Lower Bound	Upper Bound
	No	347(*)	.048	.000	441	252
No	Yes	.347(*)	.048	.000	.252	.441

Mean differences in safety climate scores by first aid injury or illness

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Mean safety climate factor scores by reported first aid injury/illness in the previous 12

<u>months</u>

Factor	First aid injury/illness	Mean	Std. Error	95% Con Interval	fidence
				Lower Bound	Upper Bound
1. Organizational commitment and communication	Yes	3.030	.063	2.907	3.153
	No	3.478	.020	3.440	3.516
2. Line management commitment	Yes	3.334	.069	3.198	3.470
	No	3.676	.022	3.633	3.718
3. Supervisors' role	Yes	3.000	.069	2.864	3.136
	No	3.485	.022	3.443	3.527
4. Personal role	Yes	3.584	.054	3.478	3.689
	No	3.832	.017	3.799	3.865
5. Coworkers' influence	Yes	3.203	.065	3.074	3.331
	No	3.524	.020	3.484	3.564
6. Competence	Yes	3.601	.056	3.490	3.712
	No	3.788	.018	3.754	3.823
 Risk taking behavior 	Yes	2.831	.059	2.715	2.947
	No	3.256	.018	3.220	3.292
 8. Obstacles to safe behavior 	Yes	2.865	.058	2.751	2.978
	No	3.174	.018	3.139	3.210
9. Permit to work	Yes	3.287	.081	3.128	3.446
	No	3.184	.025	3.135	3.234
10. Reporting of	Yes				
accidents and near misses		2.557	.082	2.397	2.718
	No	2.875	.025	2.825	2.925

Mean differences	in	factor	scores	by	first	aid	inju	ıry	7

						95% Con Interva	
						Differe	
			Mean Difference	Std.	-		
Factor(b) A	В	(A-B)	Error	Sig (a)	Lower Bound	Upper Bound
) A		· · · · · · · · · · · · · · · · · · ·		Sig.(a)		
1	2	2	448(*)	.066	.000	577	319
_	2	1	.448(*)	.066	.000	.319	.577
2	1	2	342(*)	.073	.000	484	199
	2	1	.342(*)	.073	.000	.199	.484
3	1	2	485(*)	.072	.000	627	343
	2	1	.485(*)	.072	.000	.343	.627
4	1	2	249(*)	.056	.000	359	138
	2	1	.249(*)	.056	.000	.138	.359
5	1	2	321(*)	.069	.000	456	187
	2	1	.321(*)	.069	.000	.187	.456
6	1	2	187(*)	.059	.002	303	071
	2	1	.187(*)	.059	.002	.071	.303
7	1	2	425(*)	.062	.000	547	304
	2	1	.425(*)	.062	.000	.304	.547
8	1	2	310(*)	.060	.000	428	191
	2	1	.310(*)	.060	.000	.191	.428
9	1	2	.103	.085	.226	064	.269
	2	1	103	.085	.226	269	.064
10	1	2	317(*)	.086	.000	485	149
-	2	- 1	.317(*)	.000	.000	.149	.485

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

		Mean			95% Confidence Interval for Difference(a)	
		Difference	Std.		Lower	Upper
Α	В	(A-B)	Error	Sig.(a)	Bound	Bound
	2	464(*)	.067	.000	595	332
2	1	.464(*)	.067	.000	.332	.595

Mean differences in safety climate score by medical treatment injury or illness

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. 1 = Yes; 2 = N

Mean safety climate factor scores by reported medical treatment injury/illness in the

				95% Con Interval	fidence
Factor	Medical treatment	Mean	Std. Error	Lower Bound	Upper Bound
1	Yes	2.877	.092	2.697	3.058
	No	3.463	.019	3.425	3.500
2	Yes	3.110	.102	2.910	3.309
	No	3.668	.021	3.626	3.709
3	Yes	2.858	.102	2.659	3.058
	No	3.465	.021	3.424	3.507
4	Yes	3.430	.079	3.275	3.584
	No	3.827	.016	3.795	3.859
5	Yes	3.101	.096	2.913	3.289
	No	3.514	.020	3.475	3.553
6	Yes	3.339	.082	3.178	3.499
	No	3.791	.017	3.758	3.825
7	Yes	2.735	.087	2.565	2.906
	No	3.238	.018	3.203	3.274
8	Yes	2.763	.085	2.598	2.929
	No	3.163	.018	3.128	3.197
9	Yes	3.193	.119	2.960	3.426
	No	3.196	.025	3.147	3.244
10	Yes	2.535	.120	2.300	2.770
	No	2.857	.025	2.808	2.906

previous 12 months

					-	95% Con Interva Differe	al for
			Mean	Std.		Lower	Upper
Factor(b) A	В	Difference	Error	Sig.(a)	Bound	Bound
1		2	585(*)	.094	.000	769	401
	2	1	.585(*)	.094	.000	.401	.769
2	1	2	558(*)	.104	.000	762	354
	2	1	.558(*)	.104	.000	.354	.762
3	1	2	607(*)	.104	.000	811	403
	2	1	.607(*)	.104	.000	.403	.811
4	1	2	397(*)	.080	.000	555	240
	2	1	.397(*)	.080	.000	.240	.555
5	1	2	413(*)	.098	.000	605	221
	2	1	.413(*)	.098	.000	.221	.605
6	1	2	453(*)	.084	.000	617	289
	2	1	.453(*)	.084	.000	.289	.617
7	1	2	503(*)	.089	.000	677	329
	2	1	.503(*)	.089	.000	.329	.677
8	1	2	399(*)	.086	.000	569	230
	2	1	.399(*)	.086	.000	.230	.569
9	1	2	003	.121	.982	240	.235
	2	1	.003	.121	.982	235	.240
10	1	2	322(*)	.122	.009	562	082
	2	1	.322(*)	.122	.009	.082	.562

Mean differences in factor scores by medical treatment injury or illness

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

Mean				_	95% Confidence Interval for Difference(a)	
A	В	Difference (A-B)	Std. Error	Sig.(a)	Lower Bound	Upper Bound
	2	416(*)	.071	.000	554	278
2	1	.416(*)	.071	.000	.278	.554

Mean difference in safety climate score by lost/restricted injury or illness

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. 1 = Yes; 2 = No

Mean safety climate factor scores by reported lost time/restricted injury/illness in the

previous 12 months

				95% Con Interval	fidence
Factor	Lost time/ restricted	Mean	Std. Error	Lower Bound	Upper Bound
1	Yes	2.974	.097	2.783	3.165
	No	3.458	.019	3.420	3.495
2	Yes	3.147	.108	2.935	3.359
	No	3.663	.021	3.622	3.705
3	Yes	2.886	.107	2.675	3.096
	No	3.464	.021	3.422	3.505
4	Yes	3.529	.083	3.366	3.693
	No	3.824	.016	3.792	3.856
5	Yes	3.113	.101	2.914	3.311
	No	3.510	.020	3.471	3.549
6	Yes	3.437	.087	3.266	3.608
	No	3.784	.017	3.751	3.818
7	Yes	2.761	.092	2.581	2.942
	No	3.236	.018	3.200	3.271
8	Yes	2.829	.090	2.653	3.004
	No	3.158	.018	3.124	3.193
9	Yes	3.167	.125	2.921	3.413
	No	3.199	.025	3.151	3.248
10	Yes	2.402	.126	2.155	2.649
	No	2.866	.025	2.817	2.914

			Mean		_	95% Con Interva Differe	al for
			Difference	Std.		Lower	Upper
Factor(b)	А	В	(A-B)	Error	Sig.(a)	Bound	Bound
1		2	484(*)	.099	.000	678	289
	2	1	.484(*)	.099	.000	.289	.678
2	1	2	516(*)	.110	.000	732	301
	2	1	.516(*)	.110	.000	.301	.732
3	1	2	578(*)	.109	.000	793	363
	2	1	.578(*)	.109	.000	.363	.793
4	1	2	295(*)	.085	.001	461	128
	2	1	.295(*)	.085	.001	.128	.461
5	1	2	397(*)	.103	.000	600	195
	2	1	.397(*)	.103	.000	.195	.600
6	1	2	347(*)	.089	.000	521	173
	2	1	.347(*)	.089	.000	.173	.521
7	1	2	474(*)	.094	.000	658	290
	2	1	.474(*)	.094	.000	.290	.658
8	1	2	330(*)	.091	.000	509	151
	2	1	.330(*)	.091	.000	.151	.509
9	1	2	033	.128	.799	283	.218
	2	1	.033	.128	.799	218	.283
10	1	2	464(*)	.128	.000	716	212
	2	1	.464(*)	.128	.000	.212	.716

Mean difference in factor scores by lost time/restricted injury

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

Mean differences in safety climate score by introductory behavior-based safety training

in the past 12 months

		Mean		_	95% Confidence Interval for Difference(a)		
А	в	Difference (A-B)	Std. Error	Sig.(a)	Lower Bound	Upper Bound	
		· · · · · · · · · · · · · · · · · · ·					
	2	.165(*)	.029	.000	.108	.221	
2	1	165(*)	.029	.000	221	108	

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. 1 = Yes; 2 = No

Mean safety climate factor scores by reported introductory behavior-based safety training

in the previous 12 months

				95% Con Interval	fidence
Factor	BBS training	Mean	Std. Error	Lower Bound	Upper Bound
1	Yes	3.496	.022	3.454	3.539
	No	3.261	.032	3.197	3.324
2	Yes	3.722	.024	3.675	3.769
	No	3.434	.036	3.365	3.504
3	Yes	3.499	.024	3.452	3.546
	No	3.276	.036	3.205	3.346
4	Yes	3.829	.019	3.793	3.866
	No	3.756	.028	3.702	3.811
5	Yes	3.537	.022	3.493	3.581
	No	3.368	.034	3.302	3.434
6	Yes	3.821	.019	3.783	3.859
	No	3.634	.029	3.577	3.690
7	Yes	3.264	.020	3.224	3.304
	No	3.077	.031	3.017	3.137
8	Yes	3.163	.020	3.124	3.202
	No	3.093	.030	3.035	3.152
9	Yes	3.142	.028	3.088	3.197
	No	3.284	.041	3.203	3.366
10	Yes	2.868	.028	2.813	2.923
	No	2.775	.042	2.692	2.858

Mean differences in factor scores by introductory behavior-based safety training in the

past 12 months

			Mean			95% Con Interva Differe	al for
			Difference	Std.		Lower	Upper
Factor(b)	А	В	(A-B)	Error	Sig (a)	Bound	Bound
1		2	.236(*)	.039	.000	.159	.312
	2	1	236(*)	.039	.000	312	159
2	1	2	.288(*)	.043	.000	.204	.372
	2	1	288(*)	.043	.000	372	204
3	1	2	.223(*)	.043	.000	.138	.308
	2	1	223(*)	.043	.000	308	138
4	1	2	.073(*)	.033	.028	.008	.139
	2	1	073(*)	.033	.028	139	008
5	1	2	.169(*)	.040	.000	.090	.248
	2	1	169(*)	.040	.000	248	090
6	1	2	.187(*)	.035	.000	.119	.255
	2	1	187(*)	.035	.000	255	119
7	1	2	.187(*)	.037	.000	.115	.260
	2	1	187(*)	.037	.000	260	115
8	1	2	.070	.036	.051	.000	.140
	2	1	070	.036	.051	140	.000
9	1	2	142(*)	.050	.004	240	044
	2	1	.142(*)	.050	.004	.044	.240
10	1	2	.093	.051	.066	006	.193
	2	1	093	.051	.066	193	.006

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

c. 1 = Yes; 2 = No

Mean differences in safety climate score by behavior-based safety observation

<u>training</u>

		Mean		_	95% Confidence Interval for Difference(a)		
A	В	Difference (A-B)	Std. Error	Sig.(a)	Lower Bound	Upper Bound	
	2	.127(*)	.027	.000	.074	.180	
2	1	127(*)	.027	.000	180	074	

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. 1 = Yes; 2 = No

Mean safety climate factor scores by reported behavior-based safety observation training

in the previous 12 months

	DDC			95% Con Interval	fidence
Factor	BBS Observer Training	Mean	Std. Error	Lower Bound	Upper Bound
1	Yes	3.538	.027	3.486	3.591
	No	3.322	.025	3.274	3.371
2	Yes	3.740	.030	3.682	3.798
	No	3.536	.027	3.483	3.590
3	Yes	3.513	.030	3.454	3.571
	No	3.358	.027	3.304	3.412
4	Yes	3.823	.023	3.777	3.868
	No	3.790	.021	3.749	3.832
5	Yes	3.549	.028	3.494	3.603
	No	3.432	.026	3.382	3.482
6	Yes	3.826	.024	3.779	3.873
	No	3.713	.022	3.670	3.757
7	Yes	3.281	.025	3.231	3.331
	No	3.139	.023	3.093	3.185
8	Yes	3.173	.025	3.125	3.221
	No	3.109	.023	3.064	3.153
9	Yes	3.095	.034	3.028	3.162
	No	3.257	.032	3.195	3.319
10	Yes	2.854	.035	2.785	2.922
	No	2.819	.032	2.756	2.881

						95% Confidence		
						Interva		
			Mean		_	Differe	nce(a)	
			Difference	Std.		Lower	Upper	
Factor(b) A	В	(A-B)	Error	Sig.(a)	Bound	Bound	
1		2	.216(*)	.036	.000	.145	.287	
	2	1	216(*)	.036	.000	287	145	
2	1	2	.204(*)	.040	.000	.125	.283	
	2	1	204(*)	.040	.000	283	125	
3	1	2	.155(*)	.040	.000	.075	.234	
	2	1	155(*)	.040	.000	234	075	
4	1	2	.032	.031	.300	029	.094	
	2	1	032	.031	.300	094	.029	
5	1	2	.117(*)	.038	.002	.042	.191	
	2	1	117(*)	.038	.002	191	042	
6	1	2	.113(*)	.033	.001	.048	.177	
	2	1	113(*)	.033	.001	177	048	
7	1	2	.142(*)	.035	.000	.074	.210	
	2	1	142(*)	.035	.000	210	074	
8	1	2	.064	.033	.055	001	.129	
	2	1	064	.033	.055	129	.001	
9	1	2	162(*)	.047	.001	253	071	
	2	1	.162(*)	.047	.001	.071	.253	
10	1	2	.035	.047	.459	058	.128	
	2	1	035	.047	.459	128	.058	

3.4 11.00	•	c .	1	1 1	•	1 1		1		
Mean differences	1n	factor scores	bv.	be	havior-	based	l safety	z ob	servation	training
		1000001 000100	~ /					1		

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

		Mean		_	95% Confidence Interval for Difference(a)		
		Difference	Std.		Lower	Upper	
Α	В	(A-B)	Error	Sig.(a)	Bound	Bound	
	2	.182(*)	.030	.000	.123	.241	
2	1	182(*)	.030	.000	241	123	

Mean differences in safety climate scores by behavior-based safety observation

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. 1 = Yes; 2 = No

Mean safety climate factor scores by reported behavior-based safety observation in the

	BBS		Std.				
Factor	observation	Mean	Error	95% Confidence Interval			
		=		Lower Bound	Upper Bound		
1	Yes	3.639	.034	3.572	3.706		
	No	3.343	.021	3.302	3.384		
2	Yes	3.829	.038	3.755	3.904		
	No	3.558	.023	3.513	3.604		
3	Yes	3.612	.038	3.537	3.686		
	No	3.362	.023	3.315	3.408		
4	Yes	3.847	.030	3.789	3.906		
	No	3.791	.018	3.755	3.827		
5	Yes	3.601	.036	3.531	3.672		
	No	3.437	.022	3.394	3.480		
6	Yes	3.886	.031	3.825	3.946		
	No	3.717	.019	3.680	3.755		
7	Yes	3.352	.033	3.288	3.416		
	No	3.146	.020	3.107	3.186		
8	Yes	3.210	.032	3.148	3.272		
	No	3.112	.019	3.073	3.150		
9	Yes	3.056	.044	2.970	3.143		
	No	3.232	.027	3.179	3.286		
10	Yes	2.886	.045	2.798	2.974		
	No	2.816	.028	2.762	2.871		

previous month

			Mean			95% Con Interva Differe	al for
			Difference	Std.		Lower	Upper
Factor(b)	А	В	(A-B)	Error	Sig.(a)	Bound	Bound
1		2	.296(*)	.040	.000	.217	.375
	2	1	296(*)	.040	.000	375	217
2	1	2	.271(*)	.045	.000	.184	.358
	2	1	271(*)	.045	.000	358	184
3	1	2	.250(*)	.045	.000	.162	.338
	2	1	250(*)	.045	.000	338	162
4	1	2	.056	.035	.108	012	.125
	2	1	056	.035	.108	125	.012
5	1	2	.164(*)	.042	.000	.082	.247
	2	1	164(*)	.042	.000	247	082
6	1	2	.168(*)	.036	.000	.097	.240
	2	1	168(*)	.036	.000	240	097
7	1	2	.206(*)	.038	.000	.130	.281
	2	1	206(*)	.038	.000	281	130
8	1	2	.098(*)	.037	.008	.025	.171
	2	1	098(*)	.037	.008	171	025
9	1	2	176(*)	.052	.001	278	074
	2	1	.176(*)	.052	.001	.074	.278
10	1	2	.070	.053	.187	034	.173
	2	1	070	.053	.187	173	.034

Mean differences in factor scores by behavior-based safety observations

Based on estimated marginal means

* The mean difference is significant at the .05 level.

a Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

b. Codes for factors:

1. Organizational commitment and communication.

2. Line management commitment.

3. Supervisor's role.

4. Personal role.

5. Coworkers' influence.

6. Competence.

7. Risk taking behavior.

8. Obstacles to safe behavior.

9. Permit to work.

10. Reporting of accidents and near misses.

VITA

Michael Everett Findley was born in Castleberry, Alabama on December 20, 1950. He attended Woodham High School in Pensacola, Florida, before earning a B.S. in Biology from the University of Montevallo in Montevallo, Alabama. He then earned an M.S.P.H. in Industrial Hygiene from the University of Alabama in Birmingham before completing his Ph.D. in Human Ecology at the University of Tennessee in Knoxville. He is a Certified Industrial Hygienist and Certified Safety Professional.

Michael is now employed in the nuclear decommissioning and demolition industry as a Health and Safety Manager.