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Abstract 
Residual stresses are known to have a significant effect on fatigue crack 

propagation and thus fatigue life.  These effects have generally been 

quantified through an empirical approach, lending little help in the 

quantitative prediction of such effects.  The weight function method has 

been used as a quantitative predictor, but its use neglects residual stress 

redistribution, treating the residual stress as a constant during crack growth.  

At least three different behaviors contribute to the redistribution of residual 

stress.  First, the residual stress behind the crack tip is reduced to a 

negligible level as soon as the crack tip passes.  Second, the residual stress 

tends to redistribute away from the crack tip with crack growth, and third, 

crack growth results in an overall relaxation of residual stress.   

 An alternative method for predicting the effect of a residual stress 

distribution on fatigue crack growth is herein developed.  The stress 

intensity factor due to residual stress, Kres, is characterized as the change in 

crack driving force due to the presence of the residual stress.  This crack 

driving force, being the derivative of a potential, is found through 

superposition of an applied stress and a residual stress, and subsequent 

manipulation of finite element strain energy and nodal displacement results.   

 Finite element modeling is carried out using a spatial distribution of 

non-uniform thermal expansion coefficients and a unit temperature load to 

simulate the desired residual stress.  Crack growth is then achieved through 

use of a node release algorithm which sequentially removes nodal 

displacement constraint.  The complete stress distribution, nodal 

displacements and internal strain energy are captured for each increment of 
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crack growth, and from this information, knowledge of the stress intensity 

factor as a function of crack length is derived.   

 Results of the Kres calculations are used in a fatigue crack growth 

model to predict fatigue lives.  The fatigue life model involves step by step 

analysis of crack growth increment based on knowledge of stress intensity 

factors resulting from applied and residual stress.  The qualitative effects of 

residual stress predicted by this model agree with documented empirical 

results which show that compressive residual stress increases fatigue life, 

while tensile residual stress decreases fatigue life. 

 Two solutions for Kres are possible, depending on the choice of load-

control or displacement-control modeling.  Use of displacement-control, or 

fixed displacement loading, minimizes redistribution of residual stress and, 

under net tensile loading, tends to lead to more conservative fatigue life 

predictions.  Load-control modeling, not having the same displacement 

constraint, allows more relaxation of the residual stress and tends to provide 

the more non-conservative life estimates.   

 Three residual stress patterns, two due to welding and one to shot 

peening, are also investigated.  Kres solutions for each residual stress are 

developed, and fatigue life predictions made.  Regression analyses on the 

parameters defining the residual stress patterns indicate that, within the 

range specified for these parameters, the residual stress half-width plays a 

significant role in fatigue life, while the initial stress amplitude may be of 

less importance.   

 The conclusions reached in this research are as follows:  The effect of 

residual stress on fatigue life can be quantified by the energy methods 

detailed herein.  Weight function methods for predicting fatigue lives fail to 
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account for residual stress redistribution, which can have a significant effect.  

Knowledge of Kres allows subsequent predictions of fatigue life via a simple 

superposition of applied and residual stress intensity factors, and enables 

further investigation of relevant residual stress parameters and their effects.  

The ability to analytically vary residual stress parameters and quantify their 

effects on fatigue life could prove to be a significant design aid.  Based on 

these conclusions, it is recommended that further development of the energy 

methods, as presented here, be pursued.   
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Chapter 1 

Introduction 
The discipline of fracture mechanics has been born of an economic as well 

as public safety need.  An economic study by Duga et al. [1] estimated the 

cost of fracture in the United States for the year 1978 to be 119 billion 

(adjusted for inflation to 1982 dollars), or 4% of that year’s gross national 

product.  More importantly, the human cost of failed structures has been 

documented throughout history by incidents ranging from airline disasters to 

catastrophic bridge and building collapse.  Bannerman and Young [2] point 

out that fracture mechanics as a unique and serious scientific discipline 

however, was essentially non-existent prior to the Liberty ship failures of 

World War II.  Since World War II, the body of information comprising 

fracture mechanics has grown to include the established fundamentals of 

linear elastic fracture involving the stress intensity factor ( K ), crack tip 

plasticity corrections for mildly nonlinear behavior, nonlinear parameter 

development for large-scale plasticity including J-integral and CTOD (crack 

tip opening displacement), and application to practical areas of engineering 

concern such as fatigue crack growth and component life prediction.  The 

focus of this proposed research, as will be further detailed, is confined to the 

later.  

 The classic stress-based and strain-based engineering approaches to 

fatigue have been formulated to provide a prediction of the time (or number 

of cycles) until an observable (or measurable) flaw appears.  These 

approaches have the disadvantage of considering only the time to initiation 

of a flaw as the useful life of the given component.  Classic stress-based and 
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strain-based approaches both suffer from this shortcoming since, in many 

cases, the majority of the useful life of a component or structure consists of 

the growth stage of the initial flaw to its final or critical state.  The fracture 

mechanics approach, on the other hand, considers only that part of the 

component life after the initiation of a defect or flaw.   

 In the 1960’s, Paris [3, 4] demonstrated the usefulness of linear elastic 

fracture mechanics (LEFM) in characterizing fatigue crack growth.  Paris 

determined that a relationship existed between the crack extension per load 

cycle and the range of the applied stress intensity factor, K∆ .  The form of 

this relationship is a power law form and is today widely known as the Paris 

Law.  In theory, application of this law to a fatigue crack growth problem 

can be performed, given enough information, to approximately predict the 

number of cycles until a critical flaw size is reached.  The Paris Law served 

as a basis for the construction of more complicated laws which have 

attempted to account for threshold, crack closure, stress ratio and other 

effects.  A typical (schematic) fatigue crack growth curve is shown in figure 

1.1.  This curve indicates the three regions of fatigue crack growth.  Region I 

is the region in which little or no crack growth occurs due to the low value 

of stress intensity factor range.  Region II indicates a power law relationship 

of the Paris Law type.  Region III is a region of rapid crack propagation and 

imminent fracture.   

 While the above-mentioned fatigue crack growth (FCG) models have 

proven extremely useful for general and rough life estimates, there are 

situations in which their application is not straight-forward, and possibly not 

appropriate.  History effects can violate some of the basic assumptions 

underlying these models, thus invalidating their predictions.  More complex  
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models are required to account for a non-constant K∆ , such as in random 

loading, and for effects such as residual stress fields induced by overloading, 

welding, heat treatment or other thermal and/or mechanical processes.  It is 

precisely these residual stress fields and their interaction with a fatigue crack 

which serve as motivation for the current research.   

 In the following chapters, the fundamentals of LEFM are discussed.  

The idea of stress intensity factor, K , is developed from a basic knowledge 

of stress concentrations.  The mathematical foundations for linear elastic 

fracture are explained, and alternate solution methodologies for finding K , 

including finite element methods, are presented.  The classic as well as 

fracture mechanics approaches to fatigue life estimation are described in an 

effort to build an understanding of current methods of fatigue life prediction. 

Shortcomings of the current fracture mechanics based fatigue models are 

explained, and the general problem of a fatigue crack growing through a 

residual stress field is detailed.  Previous research efforts surrounding the 

effects of residual stress on K , although somewhat limited, are summarized, 

and a detailed explanation of recently conducted new research is presented.  

The focus of this new research is on using finite element modeling to 

develop quantitative models which more accurately describe the fatigue 

crack/residual stress field interaction.   
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Chapter 2 

Linear Elastic Fracture Mechanics 
In this chapter, the fundamentals of linear elastic fracture mechanics are 

reviewed.  The fracture mechanics triangle is first explained, and the concept 

of stress concentrations is introduced.  Formulation of the stress intensity 

factor ( K ) is then presented along with methods for obtaining solutions in 

closed form.  A brief overview of classic finite element methods is also 

presented with an emphasis on derivation of the fundamental matrix 

statement.  The energy approach to determining fracture mechanics 

parameters is then briefed, and finally, the limitations of LEFM are 

reviewed.   

 

2.1  Fracture Mechanics Triangle 
The classic approach to structural design and material selection typically 

involves stress analysis, with yield or tensile strength of the material being 

the limiting criteria.  If the anticipated service stresses on the structure are 

less than the strength of the material, the material is assumed to be adequate.  

This approach assumes a homogeneous and defect-free material and its only 

protection against brittle fracture is based upon implementation of a safety 

factor on stress and/or ductility requirements on the material.  The fracture 

mechanics approach, however, as illustrated by Anderson [5], relies on 

quantification of three critical variables:  applied stress, fracture toughness 

and flaw size.  These three critical variables comprise what is commonly 

referred to as the fracture mechanics triangle.  Figure 2.1 provides a  
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comparison of the classic and fracture mechanics approaches to structural 

design.   

 

2.2 Stress Concentrations 
One of the first quantitative analyses of the effect of stress concentration at a 

flaw was produced by Inglis [6].  Inglis’ analysis was on elliptic holes in flat 

plates.  With applied stress perpendicular to the major axis, as in figure 2.2, 

Inglis assumed that the hole itself was not influenced by the plate boundary.  

Considering the local stress at point ‘A’ of figure 2.2, Inglis found it 

convenient to express this stress as  

 1 2A

aσ σ
ρ

 
= + 

 
 (2.1) 

where  

 
2b

a
ρ =  (2.2) 

Inglis’ results predict an infinite stress at the tip of a sharp crack, where 

0ρ → .  This result led to serious concerns as to the validity of the findings 

since no material is capable of withstanding even an infinitesimal applied 

stress if it contains a sharp crack.  Today, it is understood that a “sharp” 

crack is a mathematical abstraction since the minimum possible radius of a 

crack is on the order of the material’s atomic radius.  Furthermore, it is well 

established that initially sharp cracks tend to blunt themselves in a 

redistribution of stress caused by plastic flow in the immediate region of the 

crack tip.  While equation (2.1) is not completely accurate in predicting 

realistic stress levels around sharp cracks, it does suggest one of the later,    
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Figure 2.2:  Elliptic Hole in a Flat Plate 
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well-established, characteristics of crack-tip stress fields.  That important 

characteristic is the r/1  crack-tip singularity, which is discussed in the 

next section. 

 

2.3  Stress Intensity Factors 

The concept of K  as a stress intensity factor forms the basis of linear elastic 

fracture mechanics.  Forthcoming formulations of K  provide a 

mathematical description of the distribution of stresses near the tip of a 

crack, and give insight into the physical meaning of K .  The following 

development shows how K  is actually the amplitude of the crack tip stress 

singularity, and that if K  is known, the complete distribution of stress near 

the crack tip can be found.  

 

2.3.1  Closed Forms 
If linear elastic, isotropic material behavior is assumed, closed-form 

solutions for the stresses in a cracked body are possible.  One of the earliest 

published solutions was by Westergaard [7].  Westergaard treated a limited 

class of problems by introducing a complex stress function, )(zZ , where 

iyxz += , and 1−=i .  Given the Airy stress function, defined as the 

function, ),( yxΦ , which has the following properties 

 
2 2 2

2 2
2 2, , , 0x y xyy x x y

τ∂ Φ ∂ Φ ∂ Φ
Φ = Φ = = ∇ ∇ Φ =

∂ ∂ ∂ ∂
 (2.3) 

Westergaard’s complex stress function was defined as 

 Re ImZ y ZΦ = +  (2.4)                     
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where Re and Im denote real and imaginary parts of )(zZ , and the 

overbars represent integrations with respect to ‘z’ such that   

 
d ZZ
dz

= , etc. (2.5) 

The Westergaard approach leads to the expected r/1  singularity, and 

complete analysis on a through-thickness crack in an infinite plate in biaxial 

tension yields 

 

3cos 1 sin sin
2 2 22

3cos 1 sin sin
2 2 22

3cos sin cos
2 2 22

I
xx

I
yy

I
xy

K
r

K
r

K
r

θ θ θσ
π

θ θ θσ
π

θ θ θτ
π

      = −            
      = +            

     =      
     

 (2.6)                  

Independent research by Irwin [8] and Sneddon [9] also produced closed-

form results which showed the same general singularity characteristic.  In 

general, if a polar coordinate system is defined with the origin at the crack 

tip, as in figure 2.3, it has been shown that the crack tip stress field in any 

elastic body with  is given by 

 ( ) ( )2

1

( )
m

m
ij ij m ij

m

k f A r g
r

σ θ θ
∞

=

 = + 
 

∑  (2.7)         

where ijσ  is the stress tensor, r  and θ  are defined in figure 2.3, k  is a 

constant and ijf  is a dimensionless function of θ .  The terms in the 

summation depend on geometry, but all the terms vanish as 0→r .  The 

lead term, however, contains the r/1  singularity and thus approaches  
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infinity in the limiting case where 0→r .  It is apparent, therefore, that the 

stress distribution near the crack tip varies with r/1  regardless of the 

geometry of the cracked body.   

 Making the substitution for stress intensity factor, π2kK = , into 

equation (2.7), the stress field near the tip of the crack can be written as 

 ( )( ) ( )

0
lim

2
I II

ij ijr

K f
r

σ θ
π→

=  (2.8)                     

where the ‘I’ notation denotes mode I loading.  Thus, it is evident that the 

single parameter completely defining crack tip conditions is the stress 

intensity factor, K .   

 While useful calculation and inquiry can be performed with equations 

of the type obtained in closed form, it must be noted that the Westergaard 

approach assumes a semi-infinite body relative to the crack size, and this is 

often not the practical case.  In order to find practical use in K , one must be 

able to determine, with some respectable accuracy, a good estimate of its 

value.  In order to do this, the effects of finite size must be considered. 

 

2.3.2  Finite Size Effects 
As the flaw size becomes significant relative to the dimensions of the body, 

the outer boundaries of the body begin to have an influence on the crack tip.  

The net effect of finite geometry is a higher stress intensity surrounding the 

crack tip.  Although there are limited closed-form solutions for such finite 

geometry problems, the most common and often most practical method for 

obtaining solutions is through numerical methods.  Tada et al. [10] have 

published a wide range of both numerical and closed-form solutions in 



 13 

handbook form.  A primary tool for their numerical solutions is finite 

element methods.  A brief overview of finite element methods will be 

presented in the next section as a prelude to the more specific and detailed 

discussions given later regarding specific techniques to be used in the 

current research. 

 

2.3.3  Finite Element Method 
The most common numerical method in use today for structural mechanics 

problems is the finite element method.  Since the scope of the current 

research includes application of finite element methods to the direct problem 

of finding SIF solutions, as well as to understanding stress distributions and 

redistributions in the presence of a growing crack, inclusion of its basic 

principles is warranted within this discussion. 

 The benchmark two-dimensional structural mechanics problem comes 

from plate theory.  This particular problem serves well the purpose of 

illustrating finite element basic principles.  The applicable partial differential 

equation statement (for static load), as given by Baker [11], is Newton’s law  

 0ij
i

j

B
x
σ∂

+ =
∂

 (2.9)   

where ijσ  is the stress tensor and iB  is the body force.  Formulation of a 

Galerkin Weak Statement (GWS) on the above partial differential equation 

produces a matrix statement suitable for solution by common iterative 

techniques.  Rewriting the above PDE in matrix form we have 

 [ ] { } { } { }σ 0T b+ =D  (2.10)                     

where   
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 [ ]

0

0

x

D
y

y x

 ∂
 
∂ 

 ∂
=  ∂ 

 ∂ ∂
 ∂ ∂ 

 (2.11) 

Substituting { } [ ]{ }εσ E= , and { } [ ]{ }uD=ε , where { }








=
v
u

u  is the 

displacement vector, we obtain the final matrix differential form for 

Newton’s law as 

 [ ] [ ][ ]{ } { } { }0TD E D u b+ =  (2.12)                     

Formation of the Weak Statement on the above matrix equation for any 

approximation defined as *u  results in 

 [ ] [ ][ ]{ } { }( )* ( ) * 0TWS x D E D u b dα τ
Ω

≡ Ψ + ≡∫  (2.13)                  

for all )(xαΨ , where )(xαΨ  is the trial space function set to be used in the 

approximation,  

 ( ) *( ) ( )
N

u x u x x Qα α
α

≈ ≡ Ψ∑  (2.14)   

and αQ  are unknown expansion coefficients.  Applying the Green-Gauss 

divergence theorem, as detailed by Baker [11], results in 
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[ ] [ ][ ]{ } { }

[ ]{ }[ ][ ]{ }
^

* ( ) * ( )

( ) *

T

T

WS D x E D u d x b d

x D n E D u d

α α

α

τ τ

σ

Ω Ω

∂Ω

= Ψ − Ψ

− Ψ •

∫ ∫

∫
 (2.15)                    

It must be noted that the functions )(xαΨ  and )(* xu  are functions of the 

vector { }








=
2

1

x
x

x , and not of the scalar value x .  Equation (2.15) is the 

general weak statement form of the original partial differential equation 

(Newton’s law).  Further manipulation is required to form the weak 

statement on a single element, which is specific to element type.  The 

assembly of all such elements then forms the global system of equations 

which must be solved for the displacements, { }*u .   

 A second, and possibly less cumbersome, formulation can be 

constructed from the principles of virtual work.  The derivation is based 

upon the integral form of potential energy.  It is sufficient to say here that 

the variational virtual work formulation and the Galerkin Weak Statement 

written on the original PDE exactly reproduce one another.  Thus, the 

general form of the resulting system of equations by either formulation is 

 [ ]{ } { }K U R=  (2.16)   

where [ ]K  is the stiffness matrix, { }U  is the displacement field and { }R  is 

the residual containing all known data such as boundary conditions, etc.   

      When singularities are present within the domain of interest, special 

care must be taken to insure that the solution generated by the finite element 

method will accurately represent the steep gradients present near the 
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singularity.  In the case of a sharp crack, special elements have been 

developed which are convenient for this purpose.  Figure 2.4 shows one such 

element which exhibits a r/1  singularity.  Here the triangular element is a 

collapsed quadrilateral element which is placed with the collapsed end at the 

crack tip.     

 In certain situations, however, the stress field near the crack tip may 

not be as important to the analyst as simply determining a fracture 

mechanics parameter such as the stress intensity factor.  When this is the 

case, more convenient and easily implemented methods can be used.  The 

following section develops the fundamentals of the energy approach to 

determination of fracture mechanics parameters.   

 

2.3.4  The Energy Approach 
Often, it is convenient to express the concept of a growing crack in terms of 

an energy release rate.  Irwin [12] proposed that the energy release per unit 

increase in crack surface area was simply the change in potential energy of 

the body, expressed as 

 
dG
dA
Π

= −  (2.17)   

where Π  is the potential energy of the body, and G  is the energy release 

per unit area.  With this definition of the energy release rate concept, it can 

be shown that the linear elastic stress intensity factor, K , is related to G  as 

follows: 
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Figure 2.4:  Collapsed 2-Dimensional Quadrilateral Element 
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2

'
KG
E

=  (2.18)   

where 

 'E E= , for plane stress (2.19)            

and  

 2'
1

EE
υ

=
−

, for plane strain (2.20) 

Moreover, the energy release rate can be related to total strain energy, U , as 

 
1( 1)n dUG
B da

 = −  
 

 (2.21)                     

where U  is the strain energy stored in the body, B  is the specimen 

thickness, and n=1 for displacement control and n=2 for load control.  Given 

the relationship between energy release rate and the fracture mechanics 

parameter of stress intensity, it is possible to evaluate the parameter if one 

can determine the change in the potential energy of a body with crack 

extension.  The analogous expression for nonlinear materials is given by                         

 
dJ
dA
Π

= −  (2.22)   

Rice [13] showed that this energy release rate is equivalent to a path 

independent contour integral given by 

 i
i

i

uJ wdy T ds
xΓ

∂ = − ∂ ∫  (2.23)      

where the strain energy density, w , is defined as follows:   

 
0

ij

ij ijw
ε

σ ε≡ ∂∫  (2.24) 



 19 

The components, iT , constitute the traction vector, iu  are the displacement 

vector components, and ds  is the differential element of the contour path Γ .    

The traction, iT , is the stress normal to the contour such that              

 i ij jT nσ=  (2.25)     

Figure 2.5 illustrates the domain integral concept.  Equating (2.18) and 

(2.22), we can see that for the special case of linear elastic material, 

 
2

'
KJ G
E

= =  (2.26) 

 Implementation of (2.23) into a finite element approach requires 

careful consideration of situations which may result in path dependence.  

These situations include initial strains, thermal strains and the presence of 

plastic deformation.  In spite of these difficulties, the energy domain 

approach can be modified to include such capabilities as the handling of 

initial strains (residual stress fields), etc.  These modifications allow the 

exploitation of the domain integral approach to determine stress intensity 

solutions in a broad range of situations.  The details of this modification and 

its implementation are not presented, however, as this approach is not 

optimum for the problem at hand.  J-contour integrals allow the evaluation 

of stress intensity parameters for a single crack length, with a single 

analysis, but require tedious detail in the construction of proper domains.  

This work will take the simpler approach of potential energy changes with 

crack extension as in equations (2.17-2.21).  Specific procedures and 

methodologies will be detailed in Chapter 6.   
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Figure 2.5:  Illustration of Domain Integral Concept 
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2.4  Limitations of LEFM 
The American Society for Testing and Materials (ASTM) standard for IcK  

testing [14] requires specimen size to be limited by the following for a valid 

IcK  test. 

 

2

, ,( ) 2.5 I

ys

Ka B W a
σ

 
− ≥   

 
 (2.27)   

Here, a  is crack length, B  is specimen thickness and W  is specimen width.  

The thickness requirement is meant to ensure plane strain conditions while 

the restriction on the in-plane dimensions ensures the crack tip behavior is 

linear elastic, and that K  does, indeed, characterize the crack-tip conditions.  

The in-plane dimension requirement can be better understood by noting that 

a first order estimate of the plastic zone size at a crack tip is 

 

2
1

2
I

y
ys

Kr
π σ

 
=   

 
, plane stress (2.28) 

and 

 

2
1

6
I

y
ys

Kr
π σ

 
=   

 
, plane strain (2.29) 

Elastic stress analysis becomes increasingly inaccurate as the size of this 

plastic zone increases.  Several researchers have derived simple corrections 

for mild crack tip plasticity applicable to linear elastic fracture.  Irwin [15] 

derived a correction based on an effective crack length, yeff raa += , 

which, for a through crack in an infinite plate in plane stress results in   
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2

eff

ys

aK σ π

σ
σ

=
 

−   
 

 (2.30)   

Dugdale [16] and Barenblatt [17] proposed the strip yield model, which 

resulted in the correction 

 sec
2eff

ys

K a πσσ π
σ

 
=   

 
 (2.31)   

This form for effK  was later modified by Burdekin and Stone [18] to reflect 

more realistic values of effa .  Their resulting form was 

 

1
2

2

8 lnsec
2eff ys

ys

K a πσσ π
π σ

  
=       

 (2.32) 

      Thus it is clear that while linear elastic fracture mechanics predicts a 

linear relationship between stress intensity factor and stress, plasticity 

corrections will deviate from linearity, resulting in higher effective stress 

intensities as the applied stress approaches yield stress.  These limitations, 

then, demand special consideration when applying LEFM concepts.  If 

excessive plasticity is a possibility, another parameter, which incorporates 

large scale plasticity, should be used.   
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Chapter 3 

Fatigue 
In this chapter, the classic stress-based and strain-based approaches to 

fatigue are reviewed.  Fatigue crack growth is then examined in terms of 

power law type models.  Various effects on fatigue crack growth are 

examined, and finally, the concepts of crack closure and overloading are 

presented.   

 

3.1  Classic Approaches 
The traditional approach to fatigue is based on the analysis of the average or 

nominal stress in an area of the structure or component being analyzed.  This 

stress is typically adjusted in the presence of stress raisers and the resistance 

to this adjusted stress, under cyclic loading, determined.  This is known as 

the stress-based approach to fatigue.  A more general approach involves 

more detailed analysis of the local yielding which can occur at stress raisers 

during cyclic loading.  This approach is known as strain-based. 

 

3.1.1  Stress-Based Approach to Fatigue 
The stress-based approach to fatigue typically involves the experimental 

determination of stress versus life (S-N) curves.  A schematic S-N curve is 

shown in figure 3.1.  Note here that aS  is the net section nominal or average 

stress amplitude, and must be adjusted by a stress concentration factor, tk , 

for point stresses near geometric stress raisers such as holes, corners or 

cracks.   
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      Figure 3.1:  Schematic S-N Curve 
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 Figure 3.2 illustrates the concept of the cyclic nominal stress 

amplitude, aS , and the mean nominal stress, mS .    Note that typical S-N 

curves plot fN , number of cycles to failure, on a log scale and stress on a 

linear or log scale.  When a log-linear plot is used, and if the data appear to 

approximately fit a straight line, the data can be represented as 

 log( )a fS C D N= +  (3.1)   

where C  and D  are fitting constants.  If a log-log plot is used, and the data 

appear to fit a straight line, then the fitted form is 

  B
a fS AN=  (3.2)  

Dowling [19] notes that for some materials, there appears to be a stress level 

below which fatigue failure does not occur.  This limiting stress level is 

typically referred to as the fatigue limit or endurance limit.  For materials 

exhibiting this behavior, the stress level at which the endurance limit occurs 

is considered to be a material property.  For materials which do not exhibit 

the behavior, arbitrary life values are typically used to assign an endurance 

limit.  Fatigue strength, on the other hand, refers to the stress amplitude 

corresponding to any specified life.  Figure 3.3 illustrates the concepts of 

fatigue limit and fatigue strength. 

 In general, the stress-based approach to fatigue is useful for longer 

lives (>104 cycles).  Stress-based fatigue is most practical in situations 

involving low stress levels (high cycle) relative to yield stress.  In the low 

cycle range, where yielding effects can dominate the behavior, a strain-based 

approach may be more appropriate.  This strain-based approach to fatigue is 

the subject of the following section. 
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Figure 3.2:  Cyclic Nominal Stress: (a) constant amplitude and zero mean 
stress, and (b) constant amplitude and nonzero mean stress. 
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Figure 3.3:  Illustration of Fatigue Limit and Fatigue Strength 
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3.1.2  Strain-Based Approach to Fatigue 
The strain-based approach to fatigue considers localized regions of plasticity 

and the stresses and strains that occur in those regions.  The regions of 

concern typically contain stress raisers or other high-stress geometric 

features where fatigue cracks may originate.  The most distinguishing 

feature of a strain-based approach is the concern with a local, as opposed to 

a nominal, or average, stress.   

  Employment of a cyclic stress-strain curve is a key feature of the 

strain-based approach and leads directly to the development of a strain-life 

curve.  A cyclic stress-strain curve is shown in figure 3.4.  The curve is 

described mathematically by  

 

1
'

'
na a

a e p E H
σ σε ε ε  

 
 

= + = +  (3.3) 

where 'H  and 'n  are curve fitting constants derived from fitting a strain 

hardening form of the stress-strain relationship 

 n
pHσ ε=  (3.4) 

and where eε  and pε  are the elastic and plastic strains, respectively.  

Equation (3.3) is known as the Ramberg-Osgood Relationship.  Using this 

relationship, the elastic and plastic strain amplitudes can be plotted 

separately on a log-log scale versus the number of cycles to failure and fit to 

the following forms; 

 
'

(2 )f ba
e fN

E E
σσε = =  (3.5)   

 ( )' 2
c

p f fNε ε=  (3.6)  



 29 

 

 

 

        

               
                          

 

 

 

 

 

 

 

 

 

σ 

ε 

Figure 3.4:  Cyclic Stress-Strain Curve (schematic) 

∆σ 

∆ε 

σa=∆σ/2 
εa=∆ε/2 



 30 

where the fitting parameters obtained are considered material properties.  

This form of strain life relationship is known as the Coffin-Manson 

relationship.  Figure 3.5 illustrates how the fitting parameters of equations 

(3.5) and (3.6) are obtained.   In general, long lives are dominated by the 

first term of equation (3.3), the elastic strain.  In that case, the cyclic stress-

strain curve would appear thin since very little (if any) plastic deformation 

would be present.  However, shorter lives, where significant plastic 

deformation is occurring, are dominated by the second term of equation 

(3.3), the plastic strain.  At the intersection of the elastic and plastic curves 

of figure 3.5, a transition fatigue life, tN , is defined.  Equating equations 

(3.5) and (3.6) results in 

 

1

'1
2 '

c b
f

t
f

N
E

σ
ε

− 
=   

 
 (3.7)   

This transition fatigue life is obviously material specific and provides a 

defined point for consideration of the separation of low-cycle and high-cycle 

fatigue.  Lives near or less than the transition life may need the plasticity 

considerations provided by a strain-based approach, while longer lives can 

be safely analyzed with the simple stress-based approach.  Neither approach, 

however, attempts to deal with the question of a pre-existing defect, nor its 

quantitative effect on fatigue life.  To address such questions, a discussion of 

the fracture mechanics approach to fatigue must be opened.  
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Figure 3.5:  Definition of Strain-Life Parameters 
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3.2  Fatigue Crack Growth 
Assuming a situation in which the cyclic plastic zone formed at a crack tip is 

sufficiently small as to remain embedded within the elastic singularity zone, 

such that the stress intensity factor, K , uniquely characterize the crack-tip 

conditions, the fatigue crack growth rate can, in general, be written as 

 ( ),da f K R
dN

= ∆  (3.8)   

where 
dN
da

 is the crack growth per cycle, 

 max minK K K∆ ≡ −  (3.9)   

and  

 min

ma x

KR
K

≡  (3.10)            

This simple form assumes no history effects and can be integrated to get an 

estimated life as follows 

 
( )

0
,

fa

a

daN
f K R

=
∆∫  (3.11)         

      If history effects are important, such as in overloading or non-constant 

load ratios, the above estimates may be in significant error, and more 

complicated methods may be required.  In many cases, however, 

relationships such as equation (3.8) provide reasonable and conservative 

estimates for fatigue life, since effects such as those of infrequent 

overloading tend to lengthen fatigue life.  This section details various 

relationships of the form of equation (3.8), beginning with the Paris Law, 

and discusses the factors affecting fatigue crack growth which have been 
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incorporated into more complicated relationships.  These factors include 

load ratio, overloading, crack closure and the threshold stress intensity 

range. 

 

3.2.1  Paris Law 
Paris and Erdogan [4] proposed the power law relationship 

 ( )mda C K
dN

= ∆  (3.12)   

where C and m are constants determined from fitting experimental data.  

This law applies only to the linear region of the fatigue crack growth curve 

(figure 1.1, region II).  Their proposal initially involved an exponent of 

4=m , but subsequent studies have shown that m  can vary from 2 to 7, 

depending on the material.  While this equation has some utility in 

calculating life estimates under certain conditions, it does not account for 

many of the important factors that can affect fatigue crack growth.  These 

factors are discussed next. 

 

3.2.2  Load Ratio Effects 
As previously noted in equation (3.10), the load ratio, R, is the ratio of 

minimum stress intensity to maximum stress intensity during the cycle.  In 

general, an increase in this ratio causes the rate of crack growth to increase.  

This effect is more pronounced for more brittle materials, and for more 

ductile materials, the effect is sometimes negligible in region II of the 

fatigue crack growth curve.  Several researchers have proposed fatigue crack 

growth laws that account for the load ratio.  Forman [20] proposed that 
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( ) max1 ( )

m

c

da C K
dN R K K

∆
=

− −
 (3.13)                

represented a viable relationship for predicting behavior in regions II and III 

of the fatigue crack growth curve, where cK  represents the value of stress 

intensity factor at failure.  A second relationship is based on the Walker [21] 

relationship relating mean stress and load ratio as 

 ( )max 1S S R γ∆ = −  (3.14)               

where S∆  is an equivalent zero to tension ( 0=R ) stress range, and γ  is 

an adjustable parameter.  Carrying this idea over to the stress intensity factor 

results in 

 ( )max 1K K R γ∆ = −  (3.15)   

This relationship, after further manipulation and substitution, results in 

 
( )

( )

1

1

1
(1 )1

m

m

C Kda
dN R γ−

∆
=

−
 (3.16)   

where 1C  and 1m  are the appropriate constants for the 0=R  case.  Here it 

is clear that the intercept, C , is a function of R , but the slope, m , is 

unaffected by R .   In the most common analyses, however, where the 

primary concern is in region II of the fatigue crack growth curve, the effect 

of R  is essentially ignored, and fatigue life calculations are based on K∆  

alone.  While the effect of R  is sometimes negligible in certain materials for 

region II fatigue crack growth, the same cannot be said for region I where 

the growth rates are significantly lower.  The following section describes the 
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threshold value of the stress intensity factor range, thK∆ , and the effects of 

R -ratio on this value. 

 

3.2.3  ∆Kth and Crack Closure 
As shown in figure 1.1, the threshold stress intensity factor range is defined 

as the value of stress intensity range below which there is essentially no 

crack growth.  Klesnil and Lukas [22] proposed a modification to the Paris 

equation (3.12), which took the form 

 ( )m m
th

da C K K
dN

= ∆ − ∆  (3.17)                   

to account for the effect of threshold on fatigue crack growth.  McEvily [23] 

developed an equation which attempted to account for the entire fatigue 

crack growth curve which has the following form: 

 ( )2

max

1th
crit

da KC K K
dN K K

 ∆
= ∆ − ∆ + − 

 (3.18)                   

 One notable problem with these equations is that the threshold value 

typically depends on the R -ratio.  Elber [24] proposed an explanation for 

both the fatigue threshold and the R -ratio effects.  He noticed that at low 

loads, the fatigue specimen compliance was very close to that of an un-

cracked body, while at higher loads, the compliance shifted considerably.  

Elber proposed that this change in stiffness was due to crack face contact, or 

crack closure.  Figure 3.6 schematically illustrates the change in compliance 

attributed to crack closure.  Elber further explained that crack closure 

reduced the effective stress intensity range, thus decreasing fatigue crack  
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Figure 3.6:  Load-Displacement Curve Illustrating Crack Closure 
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growth rates.  To do this, he proposed the concept of opK , the stress 

intensity below which the crack faces remain in contact.  Thus the part of a 

stress cycle below opK  should not contribute to any crack growth.  Elber 

defined the effective stress intensity range as 

 maxeff opK K K∆ = −  (3.19)            

This value of effK∆  can then be used in the Paris equation (3.12) to give 

 m
eff

da C K
dN

= ∆  (3.20)                   

Figure 3.7 illustrates the concept of opK  and effK∆ .   

     Later research has shown that crack closure does indeed occur during 

fatigue crack growth.  Suresh and Ritchie [25] identified multiple modes of 

crack closure, including closure produced by plastic stretching of the crack 

faces.  The discoveries of crack closure have thus provided a physical model 

to explain the phenomenon of threshold stress intensity range.  

 The model developed by Elber provides an explanation of threshold 

stress intensity, but leaves the question of its dependence on R -ratio open.  

With the following relationship defined, 

 effK
U

K
∆

≡
∆

 (3.21)   

various researchers [26-28] have shown that empirical relationships of the 

form  

 U a bR= +  (3.22)   
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Figure 3.7:  Definition of Effective Stress Intensity Factor Range 
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where a  and b  are fitting constants, can be used to describe the dependence 

of effective stress intensity on R -ratio.  Shih [29] has since disputed this 

simplified approach and has claimed a dependence of U  on other factors, 

namely maxK .  Apparently, no single relationship developed thus far is 

sufficient for describing the phenomenon of crack closure in all three regions 

of the fatigue crack growth curve.   

 

3.2.4  Overload Effects 
Consider a fatigue loading history where a constant amplitude series is 

interrupted by a single tensile overload, followed by a return to the previous 

constant amplitude loading.  In this situation, it has been well documented 

that a retardation effect is observed which results in a decreased fatigue 

crack growth rate.  The overloading results in compressive residual stresses 

in the region surrounding the crack tip, which account for the decreased 

crack growth rate.  Once the crack grows through the overload plastic zone, 

the crack growth rate returns to its previous value.   

      Wheeler [30] proposed a model which considers the size of the 

overload plastic zone in relation to the size of the current plastic zone.  The 

overload plastic zone is given by 

 

2

01
y

ys

Kr
απ σ

 
=   

 
 (3.23)   

where 0K  is the stress intensity at the peak of the overload cycle, and 

2=α  for plane stress and 6=α  for plane strain.  The current plastic zone 

size, corresponding to maxK , is given by 



 40 

 

2

max1
C

ys

Kr
απ σ

 
=   

 
 (3.24)             

In his model, Wheeler assumed that the retardation effect of the overload 

plastic zone lasts as long as the current plastic zone is contained within the 

overload zone boundaries.  As soon as the current plastic zone touches the 

boundary of the overload plastic zone, Wheeler suggested that the 

retardation effect stops.  Wheeler also defined a retardation factor, Rφ , 

which is a function of the two plastic zone sizes, and the total crack 

increment since overload.  The retardation factor he proposed also employed 

a fitting parameter which requires experimental determination for each 

separate material and stress spectrum, thus limiting its practical use.   

      Other models, which attempt to account for the retardation effect of an 

overload, deal primarily with the plastic wake left behind the growing crack.  

This plastic wake is a function of load history and as such, provides a 

method of including crack closure effects.  The effects of the plastic wake on 

crack closure have been documented by Suresh and Ritchie [25], and these 

effects result in a lower effective stress intensity factor range, effK∆ , as 

discussed earlier.  Newman [31] developed a crack closure model based on 

such plastic wake effects which can be used to make predictions of fatigue 

life under variable amplitude loading.   

      While the substance of the current research is not necessarily 

concerned with overload effects, per se, it is profoundly dependent on the 

questions surrounding general residual stresses and their effects on fatigue 

crack growth.  As such, the inclusion of this brief discussion of overload 
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effects has given some insight into current thoughts directly related to the 

more general problem of residual stress effects.   
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Chapter 4 

Residual Stress Overview  
The formation of residual stresses can, in general, be classified into two 

types:  mechanical and thermal or transformational.  In the practical sense, a 

growing crack does not discern the type of residual stress, for the end result 

on the growing crack is identical, regardless of type.  From this viewpoint, a 

residual stress can be described quantitatively as resulting from an 

incompatible strain field.  This quantitative approach is discussed further in 

a later chapter pertaining to the current research.  A more qualitative 

description is, however, possible considering the physical phenomena which 

produce residual stress fields.  An introduction to these phenomena is the 

purpose of this chapter.   

 

4.1  Mechanically Induced Residual Stresses 
Consider a beam loaded in bending as shown in figure 4.1(a).  The nonlinear 

distribution of stress represents a yielding condition where the stresses at the 

upper and lower surfaces have both exceeded the yield strength of the 

material, one in tension, the other in compression.  Upon unloading, the 

material at a distance from either surface, not having plastically deformed, 

attempts to recover its original, zero strain, condition, but is resisted by the 

yielded material closer to the surface.  The result on the tension side of the 

beam, upon self-equilibration of internal stresses, is a compressive residual 

stress field near the surface, which transitions to a tensile residual stress at 

some distance away from the surface.  The result on the compressive side of  
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Figure 4.1:  Plastic Loading of a Beam: (a) beyond yield, and then (b) 
unloading 
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the beam is mirrored along the plane perpendicular to the stress as in figure 

4.1(b).  While this example is a gross simplification of what can be a 

somewhat complicated process, it serves the purpose of illustrating the 

general concept of mechanically induced residual stresses.   

 

4.2  Phase Transformation-Induced Residual 
 Stress 

 
Just as mechanical loading can cause a yielding condition within a structure 

or component, so too can a thermal load.  Consider, for example, a thin steel 

rod, under an intense thermal load such that only the layers closest to the 

surface are initially heated. As the surface of the steel rod heats up it 

undergoes a phase transformation from the body-centered cubic ferrite to 

face-centered cubic austenite, and a contraction in the material takes place, 

which is resisted by the ferritic inner layers of material.  At this point, the 

surface layer is in tension, and the center in compression.  Due to the lower 

yield strength of the austenitic phase, and due to its relatively small cross-

sectional area, the surface can plastically deform under the tensile stress, 

thus temporarily relieving all internal stress.  When the thermal load is 

removed, and the surface begins to cool, a phase transformation from 

austenite to other products begins and the surface attempts to expand, but is 

restrained by the ferritic center.  This leaves the surface layers in a state of 

compressive residual stress.  This sequence of events is illustrated 

schematically in figure 4.2.  Again, the example is a simplified one for 

purposes of illustrating fundamental concepts.  In reality, the situation 

involving residual stress formation due to phase transformations and thermal  
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Figure 4.2:  Transformation-Induced Residual Stress Distribution: (a) 
after surface thermal load produces austenitic phase transformation but 
before plastic deformation takes place, and (b) after subsequent cooling 
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loading can be extremely complex.  Volumetric expansion and contraction 

of the different possible austenitic decomposition products is complicated by 

normal thermal expansion as well as the uncertainty of which products will 

indeed form via the transformation.  The actual composition of the 

decomposed austenite depends largely on the cooling rate from the austenitic 

temperature range, which obviously varies through the cross section.  Thus it 

is quite possible to have a range of microstructures form from a single 

thermal event, each having a different magnitude of expansion or 

contraction.  As one can easily see in a case such as this, accurate prediction 

of the actual residual stress distribution is near impossible.  In most practical 

cases, predictions of residual stress distributions are based on empirical data 

derived from destructive methods such as cutting or drilling the samples and 

recording variable data from attached strain gages.  For the current research, 

certain simplified residual stress distributions are documented and their 

descriptions are given in terms of the physical situation from which they 

may originate.   

 

4.3  Measurement of Residual Stresses 
Residual stress measurement techniques can be broken down into two 

general categories, quantitative methods and qualitative methods.  The 

qualitative methods, such as photo stress coatings, while providing valuable 

information under certain circumstances, are becoming secondary tools used 

only in rough screening processes.  Walker [32] suggests that strain gages 

and diffraction techniques, which comprise the majority of the more 

advanced quantitative methods have, in the last several years, become the 
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most widely preferred analysis tools in residual stress quantification.  For 

this reason, discussion of residual stress measurement methods will be 

limited to these, more common, quantitative methods. 

 

4.3.1  Strain Gage Methods 
Probably the most common of all the quantitative methods of residual stress 

measurement involves the use of strain gages to measure changes in strain 

upon destruction of the body’s equilibrium state.  The equilibrium state is 

changed by removing material from the structure or component of interest.  

During this removal of material, the strain tensor at any given point in the 

body will change as equilibrium is re-established.  These changes in strain 

are typically measured by strain rosettes, strategically mounted on the body, 

which take three linearly independent strain measures (for plane strain).  

Figures 4.3 and 4.4 illustrate the concept of the strain gage rosette.  The 

transformation of strains with respect to {X,Y,Z} coordinates is performed 

with the following:                 

 

'

'

' '

( ) ( )
cos2 sin 2

2 2
( ) ( )

cos2 sin 2
2 2

sin 2 cos2
2

x y x y
xyx

x y x y
xyy

x y
xyx y

ε ε ε ε
ε θ ε θ

ε ε ε ε
ε θ ε θ

ε ε
ε θ ε θ

+ −
= + +

+ −
= − −

−
= − +

 (4.1)  

Substitution of α , β , γ , aε , bε , and cε  into equations (4.1), results in a 

system of three equations with three unknowns.  The solution for these three 

unknowns represents the three strain components of plane strain.                                         
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Figure 4.3:  Example of a Strain Rosette Configuration 

 

                 
Figure 4.4:  Coordinate Axes Definitions for Strain Transformation 
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Many configurations of strain gages are possible, and many alternate 

methods of destructive evaluation involving measurement of strain changes 

have been developed over the years.  Hill [33] provides a detailed analysis of 

the more common strain gage methods.   

 

4.3.2  Diffraction Methods 
Two common diffraction methods for determination of residual stresses are 

prevalent in modern research.  The first, used predominantly for measuring 

surface residual stresses (8-20µm below surface), is the X-ray diffraction 

method.  The second, used to measure residual stresses at much greater 

depths (up to 152 mm in aluminum, 38 mm in steel), is neutron diffraction.  

Both methods are based on the physical principles of the interaction of 

electromagnetic radiation and matter.  The fundamental mathematical 

description of diffraction is given by Bragg’s Law,    

 2 sinn dλ θ=  (4.2)                     

where n  is an integral multiple of the wavelength, λ , d  is the distance 

between adjacent planes of atoms in the material being examined, and θ  is 

the angle of incident radiation.  Bragg’s Law is easily derived by referring to 

figure 4.5.  The two incident and refracted beams, while having the same 

incident and refracted angles respectively, travel different distances.  The 

lower beam travels an additional distance of AB BC+ .  Since AB BC= , 

and since the difference in distance traveled between the two beams must be 

an integer multiple (n ) of the characteristic wavelength, λ , it is clear that 

2n ABλ = .  Noting the geometry of the incident angle and its relationship 

to the distance, AB , reveals the complete form of Bragg’s Law.  To  
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Figure 4.5:  Derivation of Bragg’s Law 
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understand how an eigenstrain, or residual strain, would affect such a 

relationship, one need only realize that these residual strains will change the 

distance between adjacent layers of atoms, and thus shift the diffraction 

peaks away from their characteristic θ -values.     
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Chapter 5 

Previous Research 
This chapter consists of a literature review concerning two key areas 

specifically related to the current research.  First, the critical question of 

modeling residual stress in a finite element environment is addressed.  The 

concept of eigenstrain modeling is introduced as a promising method for 

simulating residual stress fields in a finite element model.  Second, the 

effects of residual stress on fatigue crack growth are reviewed including the 

redistribution of residual stress with crack growth, and weight function 

methods for approximating residual stress effects on stress intensity 

parameters.   

 

5.1  Finite Element Modeling of Residual Stresses 
Several commonly accepted methods exist for the introduction of residual 

stresses into a finite element model.  The more straight forward method of 

simulated mechanical loading provides a means of introducing a plastic 

deformation within a model, which, when unloaded, results in a residual 

stress field.  Figure 4.1 provided an illustration of the basic concept of 

mechanically induced residual stress.  Pavier et al. [34] used such a method 

to introduce residual stresses into aluminum sheet material through 

simulation of a cold-working procedure.  In his model, a rivet was pulled 

through an aluminum sheet in such a way as to force a radial expansion of 

the hole edge, followed by a contraction.  While this method can be fairly 

straight forward, it does present some difficulty in the sense that it is 

extremely difficult to know, with reasonable accuracy, the residual stress 
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distribution one will obtain given a specified mechanical overload on a given 

structure.  A second difficulty arises from the computational effort required 

when doing elastic-plastic analyses.  For example, if the analyst is merely 

interested in a linear elastic fracture parameter of a given geometry with a 

given residual stress field, he/she may first be required to execute repeated 

elastic-plastic analyses on the model, each of which require many iterations 

due to the nonlinearity involved, to introduce the required residual stress.    

      An alternative method for introducing residual stresses into a finite 

element model is through imposition of proper initial conditions.  O’Dowd 

et al. [35] illustrated how initial stresses could be imposed on a finite 

element model as a non-unique initial condition.  The non-uniqueness arises 

from the fact that a given stress distribution can result from a number of 

different loading histories.  O’Dowd also pointed out that the introduction of 

an initial stress field is not always a straight forward method in practice.  

The reason for this difficulty is that imposed initial stresses are self-

equilibrated across the entire model in the first load step of an analysis, 

usually resulting in a stress distribution that differs significantly from the 

desired one.  Despite these difficulties, however, the initial stress method 

can be used with iterative methods to properly define an initial stress 

distribution.   

     Matos and Dodds [36] approached the problem of modeling residual 

stresses with what Mura [37] termed an eigenstrain and what Ueda [38] 

referred to as an inherent strain approach.  Eigenstrains refer to incompatible 

strain fields, denoted *
ijε .  The incompatibility is described by the six strain 

compatibility equations in Cartesian coordinates as 
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 *
,pq pkl qij ij klR e e ε=  (5.1)          

where repeated indices imply summation, the commas denote partial 

differentiation and pkle  denotes the third order alternating tensor, also 

termed by Malvern [39] as the permutation symbol.  When pqR  vanishes, no  

residual stress is required to maintain compatibility.  The total compatible 

strain tensor can be written as 

 *e
ij ij ijε ε ε= +  (5.2)   

where e
ijε  denotes the elastic strain tensor required to remove the 

incompatibility caused by the eigenstrain tensor, and from applied loading.  

The linear elastic stresses, therefore, must be given by 

 *( )ij ijkl kl klDσ ε ε= −  (5.3)     

Since the elastic stress is proportional to the difference between the total 

strain and the eigenstrain tensors, it is possible to model the eigenstrains 

simply as thermal strains.  In general, however, residual stress fields are 

highly anisotropic, and as such, require a spatial distribution of anisotropic 

thermal expansion coefficients for proper modeling.  Hill and Nelson [40] 

proposed a simple method whereby a unit temperature increase is imposed 

on the finite element model and a spatial distribution of anisotropic thermal 

expansion coefficients, ija , is defined such that ijija ε=  at each material 

point within the domain.  This approach has been exploited by Matos and 

Dodds [36] as a convenient method of modeling residual stresses.  While the 

method provides a convenient approach to the introduction of residual stress 

into a finite element model, its implementation is usually not straight 



 55 

forward.  The difficulties inherent in this approach are discussed in Chapter 

6, which deals with the specifics of this research.   

 

5.2  Residual Stress and Fatigue Crack Growth 
Fatigue crack growth in the presence of a residual stress field has been 

studied both experimentally and analytically for several decades.  Recent 

research has focused on the empirically-based characterizations of material-

specific fatigue crack growth behavior, and on predictive analytical models.   

The former, having had reasonable success, dominates the available 

literature on the subject, while the later has been somewhat limited to weight 

function type approaches.   

      Galatolo and Lanciotti [41] conducted fatigue crack growth tests on 

plasma welded 2219-T851 aluminum alloy compact tension specimens and 

compared the results with center cracked tension specimens with the residual 

stress distribution shown in figure 5.1.  Their results indicated that the 

presence of the tensile residual stress in the area of the initial crack increased 

the fatigue crack growth rate over that observed in the residual stress free 

compact tension specimen.  Galatolo and Lanciotti also recorded the stress 

near the crack tip as a function of crack length and the actual stress ratio, R , 

for each crack length.  This information is shown in figure 5.2.  It is clear 

from comparison of figures 5.1 and 5.2 that the residual stress is 

redistributing away from the crack tip in such a way as to create tensile 

residual stresses in areas where they previously did not exist.  By taking into 

account the load ratio via the Walker equation (3.16), a reasonable 

agreement was reached between the fatigue crack growth rates for the two  
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Figure 5.1:  Residual Stress Distribution Obtained by Galatolo [39] 

 

  
Figure 5.2:  Residual Stress and Stress Ratio [39] 
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specimen types. Fitzpatrick and Edwards [42] witnessed these same 

redistribution effects on quenched plates.  Their results indicated that the 

residual stress redistribution was enough to result in significant error in the 

life estimate if a weight function approach was used.  Some researchers [43-

45, 54] have simply ignored this redistribution on the assumption that weight 

function calculations, which are based on the original residual stress 

distribution, are sufficient.  Their approach has been to consider an effective 

stress intensity factor defined by 

 eff app resK K K= +  (5.4)   

where appK  is the stress intensity due to the applied loading and resK  is the 

stress intensity due to the residual stress field.  In this case, the fatigue crack 

growth rate is given by  

 ( )eff
da f K
dN

= ∆  (5.5)         

Thus the remaining requirement is an appropriate expression for resK .  The 

weight function approach provides a method for calculating the stress 

intensity factor for any loading, provided the weight function, which 

depends only upon the geometry of the body, is known.  Assuming the 

weight function is known, or can be determined, the stress intensity can be 

calculated as  

 ( ) ( , )
c

res resK x h x a dxσ
Γ

= ∫  (5.6)     

where )(xresσ  is the initial residual stress distribution, ( , )h x a  is the weight 

function for the specific geometry of interest, and cΓ  is the perimeter of the 

crack.   
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      Other researchers have considered the effects of the redistributing 

stress to be of prime importance.  Lee et al. [46], performed redistribution 

experiments on welded mild steel plates.  The plates were progressively cut 

and the change in residual stress measured by attached strain gages.  The 

distribution of the residual stress was based on one proposed by Masubuchi 

and Martin [47], which has the form 

 

22
2

0( ) 1 exp
x

b
r

xx
b

σ σ
 
 
 

  = −  
   

 (5.7)   

where b  is the half-width of the tensile region.  Figure 5.3 shows the results 

of this redistribution study.  From the figure it is evident that stress 

redistribution can create tensile residual stresses in areas of the specimen 

where compressive residual stresses had existed initially. This could 

possibly result in non-conservative estimates of fatigue life if redistribution 

effects are not considered.   

 Attempts have also been made at complete analytical methods for 

calculating the redistributed residual stress.  Fukuda [48] proposed computer 

algebra methods to handle the difficult integrations involved in his model of 

redistributing residual stress.  He proposed that the residual stress after 

redistribution was given by 

 ( )
0

( ) ( ) ( , , )
a

R i i
res res resa x W a x W a x dσ σ σ ξ φ ξ ξ< ≤ = < ≤ + ∫  (5.8)    

where a =crack length, W =specimen width, i
resσ  = initial residual stress, 

R
resσ  = redistributed residual stress, φ  is the function representing the stress 

at )( Wxzx ≤<  when a unit load is placed at )0( a≤≤ ξξ .  Although φ   
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Figure 5.3:  Redistribution of Residual Stress with Crack Propagation [46] 
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is, in practice, sometimes very difficult to obtain for finite bodies, it can be 

approximated with simple corrections to known solutions of infinite body 

problems.  Fukuda’s results indicated that for a freely redistributing residual 

stress (i.e., no constraints), this method may be quite useful, and indeed his 

results were in good agreement with experimental data.   
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Chapter 6 

Research Detail 
In this chapter, the details of an original research effort are outlined.  A 

concise problem statement is first given, explaining the interesting and 

unique problem at hand.  Methods and tools used in the research are then 

explained, and include finite element modeling methods, regression analysis 

and programming.   

 

6.1  Problem Statement 
The interaction of a growing fatigue crack with a residual stress field is not a 

well understood phenomenon.  This lack of understanding has sometimes 

lead to confusing and possibly inaccurate and/or non-conservative methods 

being employed in fatigue life prediction problems where residual stresses 

are present.  Redistribution of residual stress is known to occur as a result of 

this interaction, but its effects on the stress intensity factor, K , have yet to 

be quantified.  Moreover, a direct comparison of K  calculated via the 

appropriate weight function (which assumes no stress redistribution) with 

that of a calculation which includes redistribution sheds light on the nature 

of the error inherent in the weight function method.   Calculations of K  

which include the effects of redistributing stress are considered an 

improvement over existing methods.  Development of a physical model and 

corresponding quantitative methodology for determination of residual stress 

effects, including that of residual stress redistribution, on fatigue life are the 

primary objectives of this research.   
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6.2  Methods and Tools 
The methods and tools used in this research are, for the most part, well 

established and widely used in solid mechanics and other scientific research.  

Classic finite element methods are employed as the main analysis tool, with 

the detail of its use being outlined in following sections.  Standard regression 

analysis is also used as needed to provide functional relationships between 

variables.  Other standard analysis methods, such as numerical integration 

and/or common programming tasks involving C, C++, Matlab [49] and 

Mathematica [50] have also been utilized as required.   

 

6.2.1  Finite Element Analysis 
The finite element code used in this research is called Warp3D [51].  

Warp3D is a research code that was specifically developed for solving large-

scale, three-dimensional problems with static or dynamic loading.  While 

this code contains many attractive features, its use for this research is 

warranted by the following: 

• Facilities to model crack growth including node release algorithms 
• Ability to implement element-specific and/or anisotropic thermal 

expansion coefficients 
• Compatibility with Patran neutral geometry files 
• Intuitive command structure 
• PC compatibility 

 
 
6.2.1.1 Eigenstrain Implementation 

The concept of eigenstrain was presented in Chapter 5 as an incompatible 

strain component.  In this section, the practical implementation of this 

concept into a finite element model is explained.  As noted in Chapter 5, 
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defining a spatial distribution of anisotropic thermal expansion coefficients 

and imposing a unit temperature increase on the model will result in a self-

equilibrating internal stress which can be considered a residual stress.  While 

the concept is certainly simple, the implementation can be quite 

cumbersome, and sometimes unpredictable.  Consider the two connected 

elements depicted in figure 6.1.  Let each element have unit length sides and 

be of the same material with elastic modulus, .E   At the interface of the two 

elements, for example point 1, the strain field must be continuous and 

therefore the following holds: 

 21 12
1 2e E E

σ σδ δ δ= + = +  (6.1)                     

where eδ  is the equilibrium displacement of point 1, 1δ  and 2δ  are the 

displacements which the elements would undergo if unconstrained, 21σ  is 

the stress created by element 2 on element 1, and similarly for 12σ .  Since 

the forces exerted by these two elements upon each other are equal and 

opposite, the following holds; 

 12
1 2

2
E
σδ δ− =  (6.2)   

Solving equation (6.2) for 
E
12σ

 and substituting into (6.1) gives 

 ( )2 1 2
1
2eδ δ δ δ= + −  (6.3)   

If the elements have sides of unit length, a unit temperature increase will 

result in an unconstrained expansion equal to nα , the thermal expansion 

coefficient for element n .  We see then that 
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Figure 6.1:  Elements with Different Thermal Expansion Coefficients 
Causing Mutual Residual Stress 
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 ( ) ( )2 1 2 1 2
1 1
2 2eδ α α α α α= + − = +  (6.4)                  

which merely states that the equilibrium displacement of point 1 will be 

equal to the average of the thermal expansion coefficients of the two 

elements. From figure 6.1 it is also clear that element 1, being restrained 

from expanding to its full unconstrained equilibrium length, is under a 

compressive stress, while element 2 is under a tensile stress.  Although the 

matter may seem trivial in the limiting case of two elements, it quickly 

becomes an onerous task to add elements and/or dimensions to the problem.  

Moreover, the possible anisotropy of the thermal expansion coefficients can 

make it extremely difficult to have intuition on the possible distribution of 

stresses, given a multi-dimensional model.   

 For these reasons, the modeling of residual stresses via eigenstrain 

implementation is most easily accomplished through trial and error.  

Furthermore, since the purpose of this research is to understand the effects of 

residual stress and its redistribution on the stress intensity parameter, K , the 

initial distribution of residual stress is not a critical matter.  It is stated here 

with the aforementioned justification that the residual stress distributions to 

be modeled are for methodological illustration purposes only, but are 

modeled to be as close an approximation to real residual stress patterns as is 

possible within the constraints of time and of knowledge of the actual 

distribution. 

 

6.2.1.2 Crack Growth Procedure 

The method of crack growth simulation used in this research is known as 

node release.  Node release involves incremental crack extension along a 
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symmetry plane by removal of nodal displacement constraint.  When a node 

is released from its displacement constraint, the reaction force previously 

acting at the node vanishes.  The release of the displacement constraint at a 

node affects the equilibrium state in the element containing the node, and 

thereby affects the equilibrium state of surrounding elements.  As was 

shown in the previous section, adjacent elements with differing thermal 

expansion coefficients have a mutual impact, resulting in self-equilibrating 

residual stresses.  If, therefore, a nodal displacement constraint is removed 

from one of these elements, thus affecting the equilibrium state by removing 

that particular nodal reaction force, the equilibrium displacement, eδ , will 

change. The changing of equilibrium displacement results in a change in the 

residual stresses present within the two elements.  This effect, known as 

residual stress redistribution, is one of the main effects investigated in this 

research.   

 

6.2.1.3 Model Calibration 

Calibration of the finite element model consists of refining the mesh until 

the change in potential energy with crack extension closely approximates a 

known solution for stress intensity factor, K .  Since the change in potential 

energy with crack extension is approximated as an average change over a 

finite crack extension, a reasonably fine mesh is required to obtain accurate 

results.  This mesh, however, is much coarser than what would be required 

for crack tip stress analysis. 
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6.2.1.4 The FE Model and Analysis 

As previously mentioned, the finite element modeling and analysis was 

carried out using the Warp3d research code.  The geometry model consists 

of a simple SENT specimen geometry, modeled with a symmetry plane (the 

crack plane), and with uniform eight (8) node isoparametric brick elements 

over the entire model volume.  The model consists of a total of 5043 nodes  

and 3200 elements.  Figure 6.2 illustrates the integration points of the eight-

node elements, and table 6.1 provides the coordinates of these points, in 

terms of parametric coordinates.  Standard 2x2x2 Gauss quadrature is used 

in evaluating these eight-node isoparametric elements.  For all analyses 

reported in this research, stress and/or strain values are taken at the 

parametric center points of the elements, or (0, 0, 0) in parametric 

coordinates.  These center-point values represent the simple numerical 

average of the computed Gauss point values.   

 The material model utilized in this work consists of a simple linear 

elastic, isotropic material with elastic modulus, 30,000E =  ksi and 

Poisson ratio, 0.3υ = .  Choice of the linear elastic material model is 

essentially mandated by the following considerations.  Since one of the 

primary goals of this research is to formulate a method for quantifying the 

effects of residual stress on the stress intensity factor, K, it is required that 

large scale plasticity be omitted from consideration.  If plasticity were to be 

included, two major complicating factors would immediately arise.  First, it 

has been widely documented [52-57] that yielding effects can decrease the 

magnitude of an initial residual stress distribution, sometimes to the point of 

its complete annihilation.  In order to capture such a history dependent 

phenomenon, cycle by cycle finite element analysis would need to be carried 
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Figure 6.2:  Location of Integration Points in Parametric Coordinates: 8-
Node Brick Element [51] 

 

 

 

                         

Table 6.1:  Isoparametric Nodal Coordinates 

Node ξ η ζ
1 -1 -1 1
2 -1 -1 -1
3 -1 1 -1
4 -1 1 1
5 1 -1 1
6 1 -1 -1
7 1 1 -1
8 1 1 1  

 

 

 

 



 69 

out for each loading scenario considered.  This would, in essence, render the 

task infeasible, since it can sometimes require thousands of load cycles to 

significantly grow a crack, even under large strain loading conditions.  

Second is the numerical complication and theoretical uncertainty of going 

from a K-based description of fatigue to a J-based characterization.  

Dowling and Begley [58] have applied J-integral concepts to fatigue crack 

propagation under large scale yielding by fitting crack growth data to a 

power-law form of J∆ .  Despite their apparent success in developing an 

empirical relationship, the theoretical basis for such an approach would seem 

to violate the fundamental principle of similitude, since two structures, 

cyclically loaded at the same J∆ , will not exhibit the same crack growth 

rates unless both structures have undergone the same (plastic) loading 

history.  Furthermore, the deformation plasticity model (nonlinear elasticity), 

which constitutes the underpinnings of J integral theory, is violated for 

cyclic loading conditions, since the material, upon unloading, does not 

behave according to the model.   

 Model loading consists of two types; applied mechanical load and 

thermal load (to simulate residual stress).  Applied mechanical loading is 

modeled as both load control and displacement control.  As will be shown in 

Chapter 7, these two loading scenarios can result in different Kres solutions.  

Under load-controlled conditions, the residual stresses can redistribute in a 

more unrestrained fashion, since there is no nodal displacement constraint, 

other than the imposed plane strain conditions and symmetry plane 

constraints.  This, essentially free, redistribution of residual stresses 

generally results in a situation where the residual stress tends to redistribute 

away from the crack tip.  This effect can mean that a growing crack will 
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experience, for example, a tensile residual stress, even in a region where 

compressive residual stress initially existed.  Displacement-control loading 

is modeled in this research as well, because it may be more applicable in 

certain situations. For example, a structural member is typically not free to 

distort and/or warp to accommodate redistributing residual stresses because 

it is spatially constrained by adjoining members.  Under these conditions, the 

prediction of fatigue life may be more suitably conducted using the Kres 

values computed from displacement-controlled modeling.  The two 

modeling scenarios, load and displacement control, require a subtle 

difference in interpretation of the finite element output data.  Consider that 

the potential energy of an elastic body, Π , is given by                                                   

 U FΠ = −  (6.5) 

where U  is the stored strain energy and F  is the work done by external 

forces.  Under displacement control conditions, the situation is fairly 

straight-forward, since 0F = , and UΠ = .  The energy release rate can be 

easily calculated by equation (2.21).  Under load control however, the 

situation is more complex.  Under normal load-control conditions, without 

any residual stress being present, the work done by external loading is 

simply                                                   

 F P= ∆  (6.6)                     

where ∆  is the displacement associated with the external loading.  Since U  

in this case, is given by                                             

 
0

1
2 2

PU Pd
∆ ∆

= ∆ =∫  (6.7)    

the calculation of potential energy change is again straight-forward.                      
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Inclusion of residual stress however, means that as the crack grows, the body 

will experience displacement at the nodes where external loads are applied, 

not only due to the applied loading, but also because of the redistributing 

residual stress.  This complication means that knowledge of both internal 

strain energy and external work are required to calculate Kres via the load-

control method.  A precise method for calculating the work done by the 

external load due to residual stress redistribution is to evaluate the nodal 

displacements of those nodes where external loading is defined.  The net 

amount of work done by the external loads is then 

 i i
i

F P= ∆∑  (6.8)                     

where iP  are the nodal loads and i∆  are the corresponding nodal 

displacements.  It is required, then, that for each crack increment, a 

calculation of F  be carried out using equation (6.8).  Given numerical 

values for F , it is then possible to calculate the potential energy at each 

crack increment, thus enabling determination of Kres.   

 Thermal loads, as previously mentioned, are introduced via a spatial 

distribution of thermal expansion coefficients, such that they simulate 

residual stresses.  In order to isolate strain energy changes related 

specifically to the mode I stress intensity factor, KI, only thermal expansion 

coefficients in the loading direction, αyy, are used.   If thermal expansion 

coefficients other than those representing directions normal to the crack 

plane are used, the resulting calculation of stress intensity factor will be 

confounded by multiple mode effects.  As a final note concerning the model 

loading, it must be pointed out that the applied mechanical loading, for 

purposes of determining Kres, must be large enough to result in a total stress 
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distribution that is positive (tensile) at all points along the crack plane.  The 

reason for this requirement is that a compressive net stress will contribute to 

strain energy changes with crack growth the same as a tensile net stress, 

possibly resulting in the erroneous conclusion that even though the stress is 

compressive, there is a positive Kres associated with it.   

 The steps involved in the actual analysis procedure are broken down 

into two general categories; those performed only once, and those repeated 

for each residual stress pattern.  These steps are sequenced as follows: 

 

One-time Procedures 

• Run progressive mesh refinement on model with mechanical loading 

only until K-solutions are calibrated to known solution 

• Run crack growth analyses for mechanical loading only, obtaining 

appK  as a function of a/W. 

 

Procedures for each Residual Stress 

• Add thermal loading and run single step analysis to validate residual 

stress distribution 

• Run crack growth analyses for mechanical loading and thermal 

loading, obtaining totK  as a function of a/W 

• Calculate res tot appK K K= − , as a function of a/W 
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6.2.2  Regression Analysis 
On occasion, it has been necessary to perform regression analysis on 

numerical results in order to establish closed form approximations to those 

results.  This has been necessary, for example, when calculating the weight 

function solution for a modeled residual stress distribution.  The residual 

stress is known numerically at each element integration point, but the 

calculation of a weight function solution is sometimes more easily 

performed by direct integration of a closed form expression for the stress 

distribution, )(xσ .  In all cases of regression analysis, standard least 

squares methods are used, and the software utilized is Matlab.   

 

6.2.3  Fatigue Life Predictions 
Fatigue life calculations in this research have been carried out using a cycle 

by cycle procedure implemented with Matlab software.  A flow diagram for 

the cyclic procedure is given in figure 6.3.  The basis for the calculation of 

fatigue life is given by the Forman equation (3.13), given here again for 

convenience. 

 
( ) max1 ( )

m

crit

da C K
dN R K K

∆
=

− −
                

Input arguments for the program are the initial and final crack lengths, 

minimum applied stress intensity factor, load range, critical SIF, a column 

vector consisting of the coefficients of the polynomial fit of Kres, threshold 

SIF range (∆Kth) and the fatigue law material-specific parameters C  and m .  

This program first calculates the effective SIF range, ∆Keff, by superposition 

of Kres and Kapp.  The load ratio, R, is also calculated as                                      
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Figure 6.3:  Matlab Fatigue Algorithm Flowchart 
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 min_

max_

applied res

applied res

K K
R

K K
+

=
+

 (6.9)                     

Note the possibility of obtaining a negative value of R when a compressive 

residual stress field results in Kmin_applied + Kres < 0.  In this case, the value of 

R is set to zero, and the effect of Kres enters the calculation solely through its 

effect on Kmax in equation (3.13), where    

 max max_ applied resK K K= +  (6.10)                 

The possibility also exists for the denominator of equation (6.9) to be less 

than or equal to ∆Kth at some point during the crack growth, in which case 

the calculation terminates with crack arrest.  If neither of the two above 

cases presents itself, the calculation of crack extension proceeds via equation 

(3.13) with 1dN = , the crack length is updated, and the procedure reiterates 

until the final desired crack length, or the critical SIF, is reached.  Note that 

this choice of fatigue law, coupled with a cycle by cycle analysis, provides 

the opportunity to incorporate the effect of Kres through both R and Kmax.  

Moreover, this coupling accounts for the accelerated crack growth rates 

evident in Region III of the fatigue crack growth curve (figure 1), and allows 

for a threshold value lower limit on K∆ .  While other, empirically-derived, 

fatigue laws exist, some of which may be applicable in a modified form or 

when implemented in a cycle by cycle analysis, this particular choice is 

justified by the aforementioned advantages.   
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Chapter 7 

Results 
The results of this research will be presented as follows.  First, the FEM 

calibration is presented for both plane strain and plane stress states of the 

SENT specimen.  Following the FEM calibration results, a general 

comparison of weight function vs. energy methods is presented and a 

detailed explanation of the inherent differences is given.  Next are the 

analyses of individual residual stress patterns.  Individual residual stress 

patterns investigated in this research adhere to one of three general 

categories.  The categories include two resulting from welding and one from 

shot peening.  Each general category is described in subsequent sections, 

along with a presentation of its analysis results.   

 

7.1  Model Calibration 
Model calibration was conducted to establish the maximum mesh size that 

could be used while maintaining an acceptable level of accuracy.  

Calculations of the SIF for the SENT geometry were made using the 

changes in potential energy as determined through FEA.  The FEA results 

were then compared to the non-dimensional master calibration for the SENT 

geometry.  A pre-determined accuracy of +/- 3% was established as the 

minimum requirement.  After several iterations of mesh refinement, it was 

determined that a mesh size of / 0.025h W∆ =  provided the desired 

accuracy, where h∆  is the actual mesh dimension in the crack growth 

direction.  Figure 7.1 shows the results of the calibration calculations.  As  



 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1:  Finite Element Model Calibration Results 

 

 

 

 

 

Energy Method Calibration
Non-dimensional SIF

0.00

5.00

10.00

15.00

20.00

25.00

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

a/W

F(
a/

W
)

Plane Strain

Plane Stress

Calibration

SENT specimen, ∆a=.05 in.
Max Plane Strain Error = 3%
Max Plane Stress Error = 2.7%

32 tan( )
2 0.752 2.02 0.37 1 sin( )

2cos( )
2

a
a aW

a W W
W

π
π

π
    + + −    

     

SENT Calibration:



 78 

can be seen from the graph, the model gives very accurate results at the 

chosen mesh size, and the results have a maximum error of 3 % for plane 

strain and 2.7 % for plane stress.  Note that this error is evaluated at discrete 

points and does not reflect the possible magnitude of error that may be 

encountered via an interpolation of these data.   

 

7.2  Energy vs. Weight Function Method 
One important goal in this research has been to evaluate the error potential 

of using weight function methods when dealing with residual stresses and 

fatigue crack growth.   Weight functions were briefly discussed in Chapter 5, 

and it was therein stated that, given a known residual stress distribution, the 

SIF for that residual stress could be calculated via equation (5.6).  ( , )h c a , 

known as the weight function, represents the SIF (per unit thickness)  at the 

crack tip due to a point load at position c  along the crack perimeter.  The 

weight function for a finite width, edge-cracked plate can be obtained from 

figure 7.2.  Note that the K-solution in the figure is the SIF for equal and 

opposite point loads on the crack face.  This solution, by definition, is the 

weight function, if the load is a unit load (P=1).  This weight function 

solution was used to calculate the SIF due to residual stress, and compared 

to the SIF obtained through energy methods, as described in this research.  

The residual stress chosen for this comparison is shown in figure 7.3.  This 

residual stress pattern, for purposes of illustration, can be assumed to be a 

realistic two-dimensional representation of residual stress which can arise 

via means previously discussed.  By expressing the residual stress in figure 

7.3 as a function of the parameter c, illustrated in figure 7.2, multiplying this 
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Figure 7.2:  Tada Weight Function Solution [10] 
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Figure 7.3:  Residual Stress Used in Weight Function Analysis 
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expression by the weight function given in figure 7.2, and integrating as 

 ( )
0

( ) ( , )
a

resK a c h c a dcσ= ∫  (6.11)                    

a closed form expression for Kres can be obtained.  Since this closed form 

solution can be very complicated and difficult to handle, even with advanced 

computing software such as Matlab and Mathematica, an alternate, 

numerical integration was employed.  To obtain a simpler representation of 

the solution to equation (7.1), the crack length ratio, a/W, was set at values 

ranging from 0.05 to 0.65, and numerical integration was then carried out 

over the variable ‘c’.  The result of this step-wise numerical integration, and 

subsequent polynomial regression, is provided in figure 7.4.  Comparison of 

figures 7.3 and 7.4 reveals a rather surprising result.  The residual stress 

becomes compressive somewhere around a/W=0.5, yet the weight function 

solution for Kres remains positive and, in fact, grows exponentially.  While a 

negative SIF has no real physical meaning, it is expected that, for the method 

of linear superposition of SIF’s, Kres must be negative in a compressive 

residual stress field.  The answer, as to why the weight function approach 

does not meet this basic requirement, lies in one of the method’s 

fundamental assumptions - that the loading scenario being evaluated does 

not change with crack growth.  From equation (7.1) and figure 7.2, it is clear 

that the weight function method requires that the stress on an uncracked 

member be replaced with an equivalent crack face loading, as the crack 

passes through the member.  Since any external loading, by the principle of 

superposition, can be equally represented with a traction applied directly to  
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Figure 7.4: Kres Calculated Via Weight Function Method 
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the crack face, the aforementioned assumption, when made in the case of 

external loading, seems quite reasonable.  Making this assumption, however, 

in the case of a residual stress, would appear to be troublesome for the 

following reason:  the residual stress does, in fact, change as the crack 

grows.  This is easily realized by noting that the stress acting on the crack 

plane before the crack passes must be zero after the crack tip has passed.  

The crack plane, now a free surface, must be free of any normal stress, 

absent an applied crack-face load.  With the weight function approach, 

however, the residual stress which once resided on the uncracked plane, but 

which has been annihilated by the growing crack, is still given weight as 

though it were acting on the crack face.  Moreover, the crack face loading is 

taken to be only that part of the residual stress which was acting on the 

current crack faces before the crack grew to its current size.  The remaining 

residual stress, acting on the uncracked ligament, is ignored.  Figure 7.5 

illustrates how the weight function gives weight to crack face loadings, even 

in their apparent absence.  Note that in this figure, 0 c a≤ < , where  c  is 

defined as in figure 7.2.  It can be seen in figure 7.5, for example, that for the 

SENT geometry, a unit load at 0c =  results in a SIF of approximately 3.3 at 

the crack tip.  This is to be expected since those loadings furthest away 

provide the largest bending stress at the crack tip.  Figure 7.5 also illustrates 

why the Kres solution, calculated via the weight function method, remains 

positive even in the presence of the compressive stress field.  The large 

“weight” given to the loading furthest from the crack tip, which happens to 

be tensile in this case, dominates any loading due to the compressive region, 

which is nearer.  It would appear that these characteristics of the weight 

function, giving weight to loadings based on the  
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Figure 7.5:  SENT Weight Function for a/W=0.5 

 

 

initial, uncracked stress distribution, and of considering only that part of the 

residual stress which is behind the crack tip, disqualify it as a plausible 

method of evaluating the SIF due to a residual stress in the presence of a 

growing crack.  Given the proposition that weight functions may be 

inappropriate in the evaluation of fatigue crack growth problems involving 

residual stress, it is interesting to consider what the potential impacts of their 

use could be.  To illustrate those possibilities, fatigue lives were calculated, 

using the aforementioned Matlab program, for multiple scenarios.  

Calculations were performed for both the weight function solution of Kres 

(Fig. 7.4) and the energy method solution of Kres under displacement control 

(Figure 7.6).  Table 7.1 contains the results of those calculations, where it is 

evident that fatigue life estimates based on weight function methods result in 

non-conservative life estimates.  For example, using a cyclic load of 5 ksi 

and an initial crack of 0.1 inches, the weight function predicts over a half 

million cycles required to grow the crack by 0.5 inches, while the energy  

K/P 
 

c 
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Figure 7.6: Kres Calculated via Energy Method 
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Table 7.1: Fatigue Life Comparison--Energy vs. Weight Function 
Fatigue Life Comparisons

∆P (ksi) a0 (in.) af (in.) Nf (Energy ) Nf (Weight Function)
5 0.1 0.4 131,340 545,340
10 0.1 0.4 28,850 88,380
15 0.1 0.4 10,359 28,068
5 0.1 0.6 148,580 588,030
10 0.1 0.6 31,516 94,830
15 0.1 0.6 10,869 29,705
5 0.1 0.8 156,009 598,186
3 0.5 1.5 failure 68,478  

 

solution predicts that less than 150,000 are required.  In the following 

section, which describes specific residual stress fields and their effects on 

K , the corresponding weight function solution is not given.  The sole intent 

of presenting the weight function solution for the above residual stress field 

is to illustrate the discrepancy between that method and that of the energy 

approach.  Given that discrepancy, and a firm understanding of its origins, 

subsequent discussion of weight functions is forgone.   

 

7.3 Analysis of Residual Stress Patterns 
7.3.1 Welding Residual Stress 
The first residual stress pattern to be investigated is one proposed by 

Masubuchi and Martin [47].  A mathematical representation of this residual 

stress is given by equation (5.7).  Masubuchi and Martin proposed that this 

pattern represented that typical of the longitudinal residual stress created 

along a direction perpendicular to a weld bead, as illustrated in figure 7.7.   
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Figure 7.7:  Masubuchi Residual Stress (schematic) 
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Finite element modeling of this residual stress produced the pattern in figure 

7.8.  Figure 7.9 shows the results of Kres calculations based on modeling both 

a load-control and a displacement-control scenario with this residual stress.  

It is clear from these results that Kres modeled via displacement control is 

generally larger in magnitude than Kres modeled via load control, when 

considering the entire range or values for a/W.  The physical explanation for 

this is found by investigation of the stress redistribution with crack growth 

for the two models.  Figure 7.10 shows the residual stress distributions after 

the crack has grown to a/W=0.175.  The residual stress for the load-control 

scenario has redistributed more than for the displacement-control.  The net 

result is that the crack tip stress under load-control is initially higher, 

resulting in a higher Kres.  Very quickly, however, the relaxation effect, more 

pronounced in load-control, begins to dominate.  This result is not surprising 

in the sense that residual stress redistribution is normally thought of as a 

“relaxation” of the overall stress pattern.  The suggestion that the 

redistribution can result in a higher-magnitude SIF than would be seen 

without redistribution, i.e., the conclusions of Lee et al. [46], would seem to 

be somewhat in agreement with these results.   Lee’s results also indicated 

that non-conservative predictions of fatigue life could result in certain cases 

where residual stress redistribution is not taken into account.  From the 

findings of this research, it appears that residual stress redistribution with 

crack growth has the net effect of reducing the magnitude of Kres, and, for 

the case of a tensile residual stress, extending the fatigue life.  To get an idea 

of the effect the redistribution may have, fatigue lives were estimated with 

both load and displacement control modeling with the Masubuchi residual  
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Figure 7.8:  Masubuchi Residual Stress (FEA Model) 
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Figure 7.9:  Comparison of Load-Control vs. Displacement-Control Kres 
Solutions for Masubuchi Residual Stress 
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Figure 7.10:  Masubuchi Residual Stress Redistribution With Crack Growth  
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stress and with parameters of 35rσ =  ksi and W
b =0.25.  The result was 

an approximate 7% difference in fatigue life, with the load-control model 

giving the longer predicted life.  An interesting and convenient feature of the 

Masubuchi residual stress pattern, as given by equation (5.7), is that two 

parameters, rσ  and b , uniquely determine the entire distribution.  From 

equation (5.7), it is clear that rσ  represents the stress amplitude and b  

represents the x-intercept, or point of zero residual stress, also called the 

field half-width.  By varying these parameters in the FE model, and making 

subsequent fatigue life predictions, it is possible to infer the trends with 

each.  To investigate these trends, additional models were constructed, and 

fatigue lives estimated from the Kres results.  The parameter settings for these 

models are given in table 7.2, along with the corresponding predicted fatigue 

lives.  These data were fitted to a log-linear regression model to gain an 

understanding of their trends.  The results of the regression are given in table 

7.3.  From these regression results, it appears that, within the range of the 

variables considered, fatigue life is significantly influenced by field half-

width, but is largely unaffected by stress field amplitude.  As a final 

comment concerning the Masubuchi residual stress pattern, the effect of 

each of the parameter settings can be compared directly to the value given in 

table 7.2 for 0
fN , the predicted fatigue life with no residual stress present.  

The comparison indicates that the residual stress used in these analyses can 

reduce the fatigue life by as much as 80%.   

A second residual stress pattern that is commonly encountered in 

welding processes, and which has been documented by Fukuda [48] and  
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Table 7.2:  Parameter Settings and Fatigue Life Predictions for Masubuchi 
Residual Stress Models (SENT Specimen) 

 

Material:  17-4 PH Steel ∆P=20 ksi
H1025 a0=0.1 in.

Nf
0=35,242

Model # σr (ksi) b/W Nf

1 29 0.35 6,904
2 45 0.125 10,301
3 35 0.25 7,631
4 31 0.225 8,103
5 28 0.15 11,499
6 54 0.15 9,701  

 

 

Table 7.3:  Results of Regression on Data from Table 7.2 

R2= 0.9

Term Estimate Std Error Prob>|t|
Intercept 9.81 0.23 <.0001
σr -0.01 0.01 0.29
b/W -2.49 0.51 0.02  
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Bose [59] is that shown schematically in figure 7.11.  This welding residual 

stress occurs along a plane through the centerline of the weld bead, and in 

the direction parallel to the weld path.  As can be seen in the figure, the 

crack tip starts in a narrow compressive field, transitioning into a broader, 

but less intense, tensile region.  This type residual stress pattern has also 

been documented by Bose as significantly increasing that part of fatigue life 

consisting of fatigue crack propagation.  Finite element modeling of this 

residual stress produced the pattern in figure 7.12.  Figure 7.13 shows the 

results of Kres calculations based on modeling both a load-control and a 

displacement-control scenario with this residual stress.  It is evident from 

figure 7.13 that the redistribution effect, more pronounced in the load-

control model, has resulted in a lower Kres result across almost the entire 

range of a/W values.  In this case, and similarly to the Masubuchi pattern 

already discussed, the magnitude of Kres is generally less for load control vs. 

displacement control.  Also in this case, the effect of Kres will initially be 

much greater for load control than for displacement control.  This result can 

be explained by referring to figure 7.14, which shows how the residual stress 

redistributes with crack growth.  From this figure, it can be seen that the 

residual stress is tending to redistribute away from the crack tip, resulting in 

a higher magnitude of crack tip stress vs. that of no redistribution.  This 

result agrees closely with that of Fukuda [48], concerning the redistribution 

behavior of this particular residual stress pattern in the presence of a 

growing crack.  To gain an appreciation of what this redistribution effect 

would mean in terms of fatigue life, predictions were made with the Matlab 

program using the same material properties as with the Masubuchi 

predictions.  The results of the fatigue life calculations  
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Figure 7.11:  Parabolic Welding Residual Stress Pattern 
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Figure 7.12:  Parabolic Welding Residual Stress (FEA Model) 
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Figure 7.13:  Comparison of Load-Control vs. Displacement-Control Kres 
Solutions for Parabolic Residual Stress 
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Figure 7.14:  Parabolic Residual Stress Redistribution With Crack Growth  
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for load vs. displacement control are given in table 7.4.  Again, the 

difference, in terms of fatigue life in this example, is approximately 7% and 

again, the load-control model gives the longer fatigue life.  Also note that the 

presence of the residual stress extends fatigue life to almost twice its life 

without the presence of residual stress. 
 

7.3.2 Shot Peening Residual Stress 
As previously discussed in the chapter on residual stress formation, plastic 

deformation will typically introduce a residual stress when material 

surrounding a yielded zone attempts to elastically recover.  One example of 

a residual stress induced by plastic deformation is that of shot peening 

residual stress.  The process of shot peening involves blasting the surface of 

a component with hard, spherical, steel or glass shot.  The impact of these 

objects with the surface creates small plastic deformation zones, which 

become somewhat compressed by the adjacent elastic material.  The net 

result of this process is a thin layer of compressive residual stress near the 

surface of the component.  These shot peening residual stress patterns have 

been documented by Zhuang [53], Gurova [60], Lu [61], Torres [62] and  

 

Table 7.4:  Fatigue Life Predictions for Parabolic Residual Stress Models 
(SENT Specimen) 
 

Material:  17-4 PH Steel ∆P=30 ksi
H1025 a0=0.1 in.

Nf
0=3,327

Nf (Load Control) Nf (Displacement Control)
6,438 5,943  
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others.  Figure 7.15 shows the results of finite element modeling of this 

residual stress pattern.  In general, introduction of this type of residual stress 

pattern through shot peening is intended to extend fatigue life via the delay 

of crack initiation.  It is interesting however, to consider what effect this 

pattern has on that part of the fatigue life remaining after the crack has 

initiated and begins to grow.  To investigate that question, Kres computations 

were made with both load and displacement-controlled models.  The results  

of those computations are presented in figure 7.16.  Again, while the two 

methods yield similar initial results, the solutions begin to diverge for 

greater crack lengths.  Fatigue life calculations are given in table 7.5 for the 

two modeling scenarios as well as the predicted life without residual stress.  

In this case, the difference between using load control vs. a displacement-

control model is approximately 3%, with the load-control model predicting 

the longer life.  It should also be noted that the residual stress of figure 7.15 

is predicted to extend the fatigue life, under these conditions, by almost 

22%.  

As with the Masubuchi residual stress pattern, the shot peening 

pattern can be completely characterized (in two dimensions) by two 

variables, the compressive field half-width, b
W , and the stress amplitude,  

σr.  In fact, for modeling purposes, the shot peening residual stress of figure 

7.15 can be generated by inverting the Masubuchi pattern in figure 7.8.  To 

investigate the effect of the above-mentioned variables on fatigue life 

prediction, the fatigue lives shown in table 7.6 were computed.  These data 

were then used to construct a log-linear model relating predicted fatigue life, 

fN , to the field half-width and stress amplitude.  The results of this  
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Figure 7.15:  Shot Peening Residual Stress (FEA model) 
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Figure 7.16:  Comparison of Load-Control vs. Displacement-Control Kres 
Solutions for Shot Peening Residual Stress 
 
 

Table 7.5:  Fatigue Life Predictions for Shot Peening Residual Stress Models 
(SENT Specimen) 
 

Material:  17-4 PH Steel ∆P=20 ksi
H1025 a0=0.1 in.

Nf
0=14,328

Nf (Load Control) Nf (Displacement Control)
17,154 16,647  
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Table 7.6:  Parameter Settings and Fatigue Life Predictions for Shot Peening 
Residual Stress Models (SENT Specimen) 
 

 

Material:  17-4 PH Steel ∆P=20 ksi
H1025 a0=0.1 in.

Nf
0=14,328

Model # σr (ksi) b/W Nf

1 -34 0.25 17,154
2 -30 0.225 16,184
3 -45 0.125 15,522
4 -27 0.15 14,913
5 -54 0.15 15,835
6 -28 0.35 17,854  
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regression are given in table 7.7.  Again, the regression indicates that, within 

the range of the variables considered, predicted fatigue life depends on field 

half-width, but is essentially independent of stress amplitude.  This would 

indicate that stress amplitude, while an important factor in delaying crack 

initiation, if not large enough to immediately arrest an initial crack, may 

have a much lesser effect on the remaining fatigue life.   
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Table 7.7:  Results of Regression on Data from Table 7.6 

R2= 0.91

Term Estimate Std Error Prob>|t|
Intercept 9.45 0.07 <.0001
σr 0.00 0.00 0.25
b/W 0.87 0.17 0.01  

 

 

 

 

 

 

 

 

 

 



 106 

Chapter 8 

Conclusions and Recommendations 
Chapters 6 and 7 have shown that a precise formulation of the stress 

intensity factor due to the presence of residual stress, Kres, is possible.  The 

formulation involves characterization of Kres as that part of the total stress 

intensity that is not due to applied loading, and which can be found through 

superposition of finite element results.  The relationship between G , the 

change in potential energy of a body with crack extension, sometimes 

referred to as the crack driving force, and K , the stress intensity factor, is 

exploited to eliminate the need for intricate crack tip mesh construction and 

for detailed crack tip stress analysis.   

 Comparison of this energy method for obtaining Kres with that of the 

weight function method has revealed a very significant discrepancy.  The 

weight function method, while seemingly appropriate for external loading, 

appears to require at least two inherent assumptions which do not apply to 

residual stresses.  The first of these assumptions is that the residual stress 

maintains its initial magnitude and distribution throughout the entire crack 

growth process.  This assumption has been shown to be an unfounded one.  

The residual stress redistributes in several ways which all affect the stress 

intensity factor.  Residual stresses essentially relax to zero behind the crack 

tip, and tend to redistribute ahead of the crack tip to maintain an equilibrium 

state.  Moreover, there is an overall relaxation of residual stress associated 

with crack growth which must be taken into account.  The second inherent 

assumption in the use of weight functions for residual stress is that it is 

sufficient to consider only that part of the residual stress that was acting on 
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the crack plane up to the current crack tip.  This assumption violates one of 

the fundamental principles which underlies weight function theory, and that 

is the principle of superposition.  For the weight function approach to be 

legitimate, the crack face loading used must be an equivalent crack face 

loading, providing the same total stress distribution as the loading it 

replaces.  To replace a complete residual stress distribution with only a part 

of that same distribution on the crack face does not meet the equivalence 

requirement.   

 Proceeding with the evaluations using energy methods through finite 

element analysis, it has been shown that there are at least two alternative 

modeling approaches which can give somewhat different solutions for Kres.  

One method, load control, involves superposition of a residual stress onto a 

constant-load model.  In this model, the redistribution of residual stress was 

shown to be more pronounced, since there are essentially no displacement 

constraints other than those imposed on the crack plane, and those for 

imposition of plane strain conditions.  This type of model was shown to 

require a subtle adjustment in the handling of strain energy results because 

the change in potential energy with crack extension is no longer equal to the 

change in internal strain energy, since the external loading does some 

additional work when the residual stress redistribution causes nodal 

displacement at externally loaded nodes.  The second modeling approach, 

displacement control, involves superposition of a residual stress onto a 

fixed-displacement model.  In this case, redistribution of residual stress was 

observably less, and determination of Kres more straight-forward.  The 

choice of which method to use should be made with a solid understanding of 

the physical situation being modeled.  Displacement control models may be 
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more appropriate, for example, when investigating components or structural 

members which are rigidly constrained, and which may not allow free 

redistribution of residual stress with crack growth.  For the examples 

investigated in this research, displacement control was also shown to give 

the more conservative life estimates.   

 Three residual stress patterns were investigated in order to gain some 

insight as to their behavior and their effects on fatigue life.  The Masubuchi 

residual stress, which arises under certain welding conditions, was shown to 

decrease predicted fatigue life for a crack originating in or near the weld 

zone and propagating perpendicular to the weldment.  By varying the 

parameters of the Masubuchi residual stress, it was also shown that the 

residual stress field half-width, as defined in equation (5.7), has a significant 

effect on predicted fatigue life, while the stress amplitude may play a lesser 

role.  Parabolic residual stress patterns, arising under previously described 

welding conditions, were shown to significantly increase fatigue life 

prediction due to the compressive stress field initially at the crack tip.  

Lastly, residual stresses arising from the process of shot peening were shown 

to increase predicted fatigue life, also due to the presence of a compressive 

field at the initial crack tip.  Similar to the Masubuchi residual stress, the 

shot peening residual stress parameters were varied, and trends with those 

parameters examined, indicating again that the field half-width is of primary 

importance, while the residual stress amplitude may be of less importance.   

 While the above-mentioned conclusions are significant, much remains 

to be investigated.  Of primary importance would be the extension of this 

method to three-dimensional residual stress problems.  For the case of 

constant through-thickness residual stress and a through-thickness crack, 
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calculation of potential energy changes with increase in crack surface area 

can be managed, albeit with significant effort.  To extend the problem in 

another dimension however, would add a level of complexity to the 

determination of, for example, incremental crack surface area.  Moreover, 

the stress intensity in the general three-dimensional problem would vary 

along the crack front and fatigue life calculations would become 

computationally intensive, having to account for non-uniform crack front 

growth.  While these complications may seem daunting, they are certainly 

manageable with the computing power of today’s average desktop computer.   

 A second interesting extension of the energy method presented in this 

research would be to model multiple mode fracture, encompassing modes II 

and III.  The ideas and methods presented thus far were applied only to 

mode I stress intensity calculations, but would be equally valid when applied 

to multiple mode situations.  Multiple mode modeling however, would 

require added levels of superposition to avoid the confounding of results.  

Also, this type analysis implies modeling of multi-dimensional residual 

stress, which has proven to be extremely tedious, and appears, for the 

present, to be best accomplished through trial and error.   

 Lastly, these results, of course, require validation through fatigue 

testing.  The general trends and residual stress effects presented in this 

research agree with those of previous research, and with intuition.  

Comparable empirical results however, have not been published.  It is 

important, therefore, that a rigorous validation program be completed if the 

methods presented in this research are to be further investigated.   
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