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ABSTRACT 
 

Headwater areas in the southeastern U.S., as well as elsewhere, have received little 

attention from researchers, even though headwater catchments comprise over 70% of 

the land area in the southeastern highlands.  The small, low-order streams that drain 

these catchments are greatly affected by hillslope processes within their watersheds.  

As such, there exists a strong link between upland landscape history and a headwater 

stream’s condition, including its channel morphology, habitat, and water quality.  I 

employ this tight connection between landscape-scale attributes and reach-scale 

morphology in order to develop a headwater catchment classification system for 

Great Smoky Mountains National Park that describes the variation in stream channel 

morphology explicitly as a function of catchment characteristics.  When developing a 

classification system, I test two separate classification techniques.  First, I assess 

whether a ‘top-down’ statistical clustering approach, based exclusively on landscape-

scale attributes, will distinguish groups of catchments that have significantly distinct 

types of stream channel morphology.  In the second approach, the ‘bottom-up’ 

technique, I test whether catchments grouped by their respective distinct types of 

stream channels show any significant relationships between stream channel 

morphology and landscape-scale attributes. 

 

For the top-down technique, I use a geographic information system (GIS) and a 

digital elevation model (DEM) to delineate 862 headwater catchments in the study 

area; I then use a two-step clustering procedure to create six groups based on 

catchment area, circularity, resultant aspect, mean elevation, mean slope, and the 

percentages of burned area, pristine area, small-scale logging, extensive logging, 

settled areas, weak rocks, medium-strength rocks, strong rocks, and very strong rocks.  

Based on a stratified random sample, I use these groups to select 51 catchments for 

the collection of channel morphology information, which includes bankfull width, 

depth, and cross-sectional area, reach slope, median particle size, and the stored 
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sediment in a riffle.  These data are used to test the efficacy of the top-down 

technique in creating catchment groups with different types of stream channels based 

on an analysis of variance (ANOVA) procedure.  For the bottom-up classification, I 

use the stream channel morphology data in a principal components analysis (PCA) 

and a two-step cluster procedure to create five groups of catchments based on the 

similarity of stream channel morphology information.  I then use a multinomial 

logistic regression analysis to test how well the bottom-up classified catchment group 

membership is predicted when using the landscape-scale attributes as independent 

variables.  Finally, I test if either headwater classification technique creates catchment 

groups with significantly different stream water chemistry. 

 

The top-down classification creates groups of catchments with different combinations 

of landscape-scale attributes, but these groups do not have significantly different 

types of stream channels.  This is largely because the top-down approach is not a 

purely process-driven model; rather, it mathematically clusters groups according to a 

few dominant and shared landscape-scale attributes.  As a result, some catchments 

have one or more statistically important but trivial attributes that offset the 

geomorphic influence of the dominant attribute on stream channel morphology.  The 

top-down approach also does not account for convergence, where different 

combinations of attributes produce similar channel morphology.  In contrast, the 

bottom-up approach is driven by geomorphic process; specifically, the catchment 

groups represent transitional states in the expected response to anthropogenic 

hillslope disturbances (logging intensity and settlement) of stream channels that are 

either aggrading, degrading, or in dynamic equilibrium.  Bottom-up catchment group 

membership is predicted with better than 80% accuracy using the relationship 

between stream type and landscape-scale attributes.  This occurs even though several 

bottom-up catchment groups share a few important landscape-scale attributes.  Thus, 

various types of stream channels can form in similar catchments that differ only in 

disturbance intensity.  Stream water chemistry does not differ between the top-down 
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classified groups.  However, with respect to the bottom-up classification, a significant 

difference exists between catchment groups regarding total nitrogen; catchment 

groups with high percentages of pristine forest have correspondingly high total 

nitrogen values as a result of nitrogen saturation in those areas. 

 

Landscape sensitivity, the degree of change in discharge and sediment flux following 

disturbance, is also possibly captured by the bottom-up watershed classification 

technique.  As such, this more process-driven watershed classification serves as a 

metric in identifying the landscape-scale attributes that are most important in 

maintaining a particular type of stream channel morphology.  Therefore, this 

classification allows researchers and land managers to anticipate possible changes in 

stream channel habitat as a function of proposed land use changes.  It can also be 

used to identify areas that are particularly vulnerable to landscape change, as well as 

areas that might be somewhat resilient to various hillslope disturbance processes. 
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CHAPTER I  
INTRODUCTION 

 

Headwater areas exist in all watersheds, regardless of elevation or ecoregion.  Small 

streams can be found draining steep mountain slopes, low hills on the Coastal Plain, 

and the back yards of sprawling suburbs.  The small rivulets and ephemeral 

waterways that coalesce into perennial streams are not simply the hydrologic 

beginnings of larger rivers, but rather, they drain dynamic environments where 

hillslope processes are intimately linked with the biological integrity and habitat 

condition of the stream.  These low-order streams, being tightly coupled to their 

contributing areas, can undergo dramatic geomorphic and ecological modification 

from both natural and anthropogenic disturbance within their respective watersheds. 

 

Unlike larger, high-order rivers, the cause and consequence of disturbance in 

headwater contributing areas is often quite apparent in these small stream channels.  

The relatively short transport distances and generally steeper hillslopes in small 

watersheds can cause rapid delivery of water and sediment to the stream channel; 

however, the low actual discharge from small contributing areas may not be capable 

of quickly mobilizing the large amounts of accumulating sediment.  Hence, the size 

and shape of low-order stream channels are directly affected by disturbances in their 

watersheds, and these changes in channel morphology may persist long after the 

actual disturbance events.  In this manner, headwater stream channels act as long-

term records of past disturbance events on the landscape. 

 

Unfortunately, headwater streams have received little attention in past research 

(Meyer and Wallace 2001), with forested headwaters being the most neglected 

(Dunne 2001), even though the opportunities are greater for linking stream condition, 

including channel morphology, habitat, and water quality, to the upland landscape 

history in headwater contributing areas.  In fact, the tight connection between 
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hillslopes and streams in small watersheds may allow for fixing problems in stream 

channels through actual changes in management schemes within the headwater 

catchment.  In order for this to occur, it is necessary to develop a metric or 

classification that describes the relationship between hillslopes and stream channels 

as well as the relative impact of various disturbances on the condition of headwater 

streams.  The goal of this dissertation research was to develop such a classification 

procedure. 

 

Geomorphologists have long been fascinated with the connection between rivers and 

hillslopes.  Playfair, in 1802 (p. 19), noted that every river flows in a valley 

“proportional to its size,” implying that valleys are formed by their rivers.  Gilbert 

(1877) introduced the concept of the graded condition, in which sediment transport in 

a stream is in equilibrium with sediment supply from the hillslopes, and Davis (1899) 

described the evolution of drainage basins and landscapes as a function of denudation 

by flowing water over time.  The idea that rivers form their own channels was 

formalized by Leopold and Maddock (1953).  Finally, Schumm (1977) described the 

fluvial system as the area and processes that transfer water and sediment from 

drainage divides through stream channels, and ultimately to depositional areas such as 

coasts. 

 

More recently, fluvial geomorphologists and ecologists have focused on processes 

operating within the stream channel, although these researchers usually recognize that 

water and sediment are delivered to that particular reach as a function of broader-

scale watershed processes.  The driver for much of this research has been the 

emphasis placed by federal and state governments on stream and wetland restoration 

in areas affected by human activity (National Research Council 1992) and the high 

levels of funding that have followed (Giller 2005).  The cumulative impacts of 

development, agriculture, and industry caused decreased water quality, decreased 

water storage, loss of habitat for fish and wildlife, and a lowering of aesthetic value 
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(National Research Council 1992), with sedimentation and excess nutrients being 

cited as the most pervasive causes of stream degradation (USEPA 1997).  Although 

several organizations have argued that land use practices throughout a watershed will 

affect stream channel habitat (USEPA 1996, Federal Interagency Stream Restoration 

Working Group 2001), most stream restoration activities are limited to isolated 

reaches. 

 

Often, stream restoration efforts seek to control the form and function of a stream 

through the use of engineered bank stabilization and grade control (Niezgoda and 

Johnson 2005) or through more ecologically based solutions (Palmer et al. 2005).  In 

either case, workers normally attempt to ‘re-build’ a stream reach according to an a 

priori assumption of how that reach should function under ‘natural’ conditions.  

Often the reaches undergoing restoration are aggrading or degrading because of 

disturbances on the adjacent hillslopes or upstream in the watershed; if the sediment 

or discharge conditions originating from adjacent hillslopes and upvalley sites are not 

remediated, then the ‘restored’ reach will either revert to its pre-restoration condition 

or transfer the problem to another reach in the watershed.  In both cases, the problem 

will persist and require additional, and costly, remediation or, in the latter case, lead 

to legal action by the newly affected landowner.  A better understanding of how 

landscape-scale processes influence stream channel dynamics would better inform 

these types of restoration efforts. 

 

Even with the long history of research into the intimate association between hillslopes 

and stream channels, few studies specifically and quantitatively assess the 

relationship between landscape-scale watershed attributes and reach-scale stream 

channel morphology.  This type of research is important in several ways.  It seeks to 

identify the landscape-scale attributes that are most important in maintaining a 

particular type of stream channel morphology, and therefore, it allows researchers and 

land managers to anticipate possible changes in stream channel function and 
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morphology as a consequence of proposed land use changes.  This research also aids 

in identifying areas that are particularly vulnerable to landscape change as well as 

areas that might be somewhat resilient to catchment disturbances.  Finally, this type 

of effort permits the testing of hypotheses regarding the relationship between 

hillslope attributes and stream channel morphology. 

 

Incorporating the landscape-scale to reach-scale relationship into a watershed 

classification scheme may allow for prediction of stream channel habitat condition, as 

a function of landscape-scale attributes, in areas with similar types of watersheds.  

Such a classification could then provide a possible means for locating populations of 

rare flora and fauna, suggest areas for the re-introduction of extirpated species, and 

allow for monitoring adjustments in stream channel morphology following 

disturbance events. 

 

Anthropogenic alterations in land use and land cover over the last century have 

dramatically altered the flux of water and sediment to rivers in nearly all inhabited 

watersheds in the United States (Paul and Meyer 2001).  Meanwhile, dams, weirs, 

diversions, and channelization have disrupted the sediment transport regime and 

morphology of many streams in these same watersheds.  The result is a fragmented 

system of patchy landscapes, with a variety of land uses, in various stages of 

vegetation succession, where streams are adjusting to past or ongoing disturbances 

both within the stream channel and in their catchments. 

 

While terrestrial species can often migrate away from disturbed areas, aquatic species 

are confined to the stream network.  When channel habitat conditions become 

intolerable, aquatic species often cannot relocate because of instream impediments or 

unfavorable habitat conditions either upstream or downstream (Johnson et al. 1995).  

Species adapted to a headwater environment are the least able to migrate following 

habitat alteration, as they may not be able to withstand higher downstream 
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temperatures, they are often subject to increased predation downstream, and they 

have the longest distance to travel in order to find another suitable area of habitat—

even if they just travel to the headwaters in an adjacent drainage basin (Miller et al. 

1989, Rieman and McIntyre 1995).  

 

The extent of habitat fragmentation became particularly apparent with the advent of 

remote sensing techniques and landscape classification.  Both Omernik (1987) and 

Bailey (1976) used remotely sensed data and small-scale maps to classify, 

respectively, North American and U.S. landscapes into ecoregions with similar 

climates, soil types, landforms, and natural vegetation.  Research has shown that both 

water quality (Robertson and Saad 2003) and macro-invertebrate assemblages (Mykra 

et al. 2004) differ significantly across ecoregion boundaries.  This has led to increased 

interest in classifying landscapes at various scales.  In the late 1980s, the USEPA 

began the Environmental Monitoring and Assessment Program (EMAP) in order to 

“develop the tools necessary to monitor and assess the status and trends of national 

ecological resources” with a particular emphasis on monitoring aquatic ecosystems 

(USEPA 2005a).  Toward better understanding the linkage between watershed 

processes and stream channel habitats, in 2001, USEPA solicited proposals for the 

“development of watershed classification systems for diagnosis of biological 

impairment in watersheds and their receiving water bodies” (USEPA 2005b).  That 

request for proposals inspired this dissertation, as I recognized that a classification 

linking landscape-scale attributes with reach-scale stream channel morphology could 

appreciably enhance research efforts seeking to identify landscape processes that alter 

stream channel habitat; it could also support efforts to protect and sustain headwater 

species and help in predicting possible fluvial response to future development in a 

particular watershed. 
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Objectives 

 

The primary objective of this research was to develop a new classification system for 

watersheds of low-order streams that specifically links landscape-scale attributes and 

reach-scale stream channel morphology values.  This research used Great Smoky 

Mountains National Park (GSMNP) as a study area.  In GSMNP, and in other humid 

mountainous landscapes, land surfaces and stream channels are most closely 

connected in the watersheds of low-order streams (Sidle et al. 2000).  Headwater 

catchments comprise 70% to 80% of total catchment area in many steep regions 

(Meyer and Wallace 2001), and it is likely that they are equally important in GSMNP.  

These headwater systems play a key role in determining the flow, water chemistry, 

nutrients, sediment, and organic matter that reach downstream systems (Gomi et al. 

2002).  It is thus evident that an effective watershed classification system in such 

regions, and maybe all regions, should be based on characteristics of headwater 

catchments. 

 

This classification process also provided an opportunity for testing how successfully 

we can link processes across scale.  Using two primary techniques for classifying 

headwater catchments, I evaluated both a ‘top-down’ and a ‘bottom-up’ approach to 

catchment classification.  With the top-down approach, catchments are partitioned 

into a finite number of groups based on the similarity of their respective landscape-

scale attributes.  The advantage to this technique is that it can be done relatively 

quickly using available digital data, a geographical information system (GIS), and 

statistical software.  The disadvantage is that determining whether the stream channel 

morphology is truly different in each of the classified groups requires actually 

collecting channel morphology data for comparison. 

 

In the bottom-up approach, a sample of stream reaches is first classified into groups 

with similar stream channel morphologies.  By assessing the suite of landscape-scale 
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attributes associated with streams in each group, it is then possible to extrapolate the 

classification to all remaining catchments in the study area.  Using statistically 

developed clusters based on the initial sample of reaches assures that stream channel 

morphology will be different in each group of catchments.  However, it is time 

intensive to collect the stream channel morphology information.  Additionally, this 

approach assumes some consistent relationship between reach-scale channel 

morphology and landscape-scale attributes, although such a relationship can be 

determined and quantified with a GIS and statistical software. 

 

Working Hypotheses 

 

My development of the headwater catchment classification system was guided by two 

hypotheses: 

H1:  A statistical classification (clustering) based on landscape-scale attributes, 

a ‘top-down’ approach, will distinguish groups of catchments that have 

significantly distinct types of stream channel morphology. 

H2:  Catchments grouped by their respective distinct types of stream channels, 

a ‘bottom-up’ approach, will show significant relationships between stream 

channel morphology and landscape-scale attributes. 

 

I expected GSMNP to contain a limited number of catchment types, and I expected to 

represent and model the interaction between landscape-scale attributes and channel 

type based on individual variables and combinations of variables.  Being able to 

easily map process- and disturbance-related classes of catchments should facilitate 

efforts to target watersheds or stream channels for restoration, as well as promote 

efforts to explain the role of disturbance in patterns of the distribution of aquatic 

species or changes in water quality.  Statistically relating land and channel 

characteristics to reference and disturbed conditions should provide a new, objective 
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framework for documenting ways in which a given watershed differs from or is 

similar to others in the region. 

 

Background 

 

Research efforts in the past decade have yielded ways to classify streams at the level 

of reaches based on stream channel morphology alone (Rosgen 1994) and with 

additional information about the location of the reach within the watershed (Whiting 

and Bradley 1993, Montgomery and Buffington 1997).  At broad scales, remotely 

sensed data and geographic information systems have been used to classify reaches 

(Snelder and Biggs 2002) and watersheds (Lipscomb 1998, Jensen et al. 2001, 

Heinimann et al. 2005) by integrating information about their physical characteristics, 

and to visualize regional patterns of factors, such as land cover or road location, 

expected to affect aquatic habitat and water quality (Jones et al. 1997).  What remains 

lacking in watershed research is a process-oriented watershed classification that 

connects the physical characteristics and geomorphic/hydrologic processes of the land 

surface, including land surfaces modified by human activity, with those of the fluvial 

system (National Research Council, 1999). The next crucial step, which I take with 

this project, is to develop a classification that extends to a finer scale and accounts for 

the dynamic nature of landscapes. 

 

The recent wave of interest in headwater stream environments (e.g., Rice et al. 2001, 

Zimmerman and Church 2001, Gomi et al. 2002, Halwas and Church 2002) stems 

from the areal importance of headwater streams, the frequency with which endemic 

species are found in headwater streams, and the recognition that a high proportion of 

the flow, nutrients, and other chemical constituents of rivers originates in headwater 

regions.  Headwater catchments have a large cumulative impact on downstream 

aquatic resources.  The idea that low-order watersheds affect downstream habitat was 

formalized in the river continuum concept, in which a longitudinal gradient of aquatic 
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communities represents systematic changes in downstream conditions from the 

headwaters to the large floodplain of a river system (Vannote et al. 1980).  

Montgomery (1999) noted that the river continuum concept does not account for 

discreet local perturbations that may disrupt any gradient in a fluvial system.  The 

patchy nature of disturbance, introduced by Forman and Godron (1978), creates 

habitat patches of various size and persistence.  Montgomery’s (1999) process 

domain concept applied the spatially variable nature of disturbance to watersheds, 

arguing that the spatial variability of geomorphic processes controls spatial and 

temporal patterns of disturbances, which influence terrestrial and aquatic ecosystem 

structure and dynamics.  His examples illustrate the possibility of using process 

domains to identify different habitat-controlling disturbance regimes, and for 

comparing these across watersheds. 

 

Streams adjust constantly to material and energy inputs.  Hydrogeomorphic 

adjustment reflects annual, decadal, and millennial changes in sediment and peak 

discharge, and can involve alterations of width, depth, slope, and roughness of the 

channel (Leopold et al. 1964).  Aquatic environments can recover, or be successfully 

restored to pre-disturbance conditions, only if the catchment-scale hydrogeomorphic 

processes affecting the stream channel allow for fluvial adjustment to pre-disturbance 

conditions.  A fluvial system pushed beyond a threshold may never return to pre-

disturbance conditions (Coates and Vitek 1980).  In one Southern Appalachian 

example, a massively disturbed area in the Copper Basin, Tennessee, where both the 

A and B soil horizons were eroded, has not recovered hydrologically following 50 

years of reforestation (Harden and Mathews 2000).  This type of lag time to recovery 

is likely to exceed the generational life cycle of many species, which can lead to 

extirpation.  Headwaters are often areas of endemism (Gomi et al. 2002) and of small 

and threatened populations.  Terrestrial species may be able to migrate from a 

disturbed region, but aquatic species are confined to the fluvial system; if a 
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disturbance effectively decouples the headwaters from downstream refugia, the 

species will be extirpated. 

 

The typical stream classification technique is based on reach-level geomorphic data 

(Rosgen 1994, Montgomery and Buffington 1997); however, most watershed 

classification studies are not concerned with stream channel morphology.  Watershed 

classifications typically use remotely sensed landscape-scale data to place watersheds 

into relatively homogenous groups based on categories such as drainage area, land 

use, land cover, geology, and soil type.  The groupings can be classified manually, 

formed by statistical methods such as clustering, or distinguished using a correlation-

type procedure between landscape-scale and reach-scale data.  Almost without 

exception, the interest is less with the watershed itself than with a particular stream-

related parameter such as water quality (Momen and Zehr 1998, Robertson and Saad 

2003), aquatic biological condition (Wardrop et al. 2005), or discharge (Lipscomb 

1998, Detenbeck et al. 2005).  

 

The study objectives for each watershed classification effort tend to guide both the 

classification methodology as well as any attempts to verify the utility of the 

classification scheme.  Heinimann et al. (2005) created a GIS-based watershed 

classification focusing on the sensitivity of a particular watershed to soil erosion in 

the Lower Mekong Basin.  They manually assigned watersheds into one of five 

groups according to slope steepness and agricultural or forestry land use.  As they 

were only concerned with identifying sensitive watersheds, they did not incorporate 

any measures of sedimentation into their classification, nor did they test whether 

watersheds in the different groups actually had differing amounts of sediment flux 

from the hillslopes.  For watersheds in the Mid-Atlantic region of the U.S., Wardrop 

et al. (2005) used a hierarchical agglomerative clustering method to classify 

watersheds based on land use and watershed slope information.  Although the focus 

of this project was on aquatic ecosystems, no values of stream habitat were used in 
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the classification and the results were not evaluated using any type of aquatic 

parameter.  These studies are typical of watershed classifications that seek only to 

describe the landscape, which is a necessary first step in any classification scheme.  

However, these types of classifications do not specifically link hillslope processes to 

stream channel dynamics. 

 

An assumption in all watershed classification efforts is that the landscape-scale data 

will have some measurable influence on an environmental parameter in the stream 

channel.  In order to assess the efficacy of any classification, it is necessary to 

examine a stream parameter and to test whether it differs between the classified 

watersheds.  Lipscomb (1998) clustered sub-basins in central Idaho by stream order 

using climate, geology, and land cover and assessed the discharge for gauged streams 

in the study area.  Bar graphs show differences in both the annual and monthly 

discharge regimes between the classified watersheds.  However, no statistical test of 

significant differences between groups with respect to discharge is reported, which 

would have made this a more complete classification procedure.  Libscomb’s (1998) 

Central Idaho classification only tested for discharge; however, the methodology 

could be easily replicated to examine for differences in channel morphology or water 

quality. 

 

A contrasting method for creating groups of watersheds is to allow a stream variable 

to drive the classification.  This can be done using a priori classified watersheds that 

fall into natural groups or by allowing a regression-type model to select class 

membership.  Momen and Zehr (1998) used discriminant function analysis (Jennrich 

1977) to determine the lakewater chemical constituents that best classify watersheds 

into one of six previously determined lake types, which are believed to be 

representative of their watersheds.  Discriminant function analysis is used to 

determine which independent variables can discriminate between one or more 

naturally occurring or user-specified groups.  An issue with the technique, in this 
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instance, is that it assumes the original categories of watersheds are based on some 

process-driven criteria related to the water quality phenomena of interest.  The 

authors assumed that the chemical constituents measured in a lake represented 

hydrogeomorphic conditions in that lake’s watershed, although they did not actually 

assess any landscape-level characteristics. 

 

Detenbeck et al. (2005) used discriminant function analysis to show that several 

different combinations of streamflow metrics could discriminate between various 

watershed classes mapped from landscape-scale data.  The authors tested how well 32 

different flow metrics could delineate groups based on one of two hydrogeomorphic 

regions, mature or immature forest, a threshold for watershed storage (wetlands and 

lakes), and combinations of each landscape-level category.  Their technique produced 

classification error rates ranging from 17% to 55%; this was a satisfactory result as 

the study objective was to verify that thresholds, such as percent mature forest, 

affected certain flow metrics rather than to create a predictive watershed 

classification.  The results of discriminant function analysis are robust, and significant 

results can indicate a strong relationship between landscape-scale attributes and 

reach-scale data; however, the original groups must be carefully designed in order to 

achieve this successful relationship.  In addition, the technique requires nearly equal 

group sizes, which may be difficult to achieve in watershed and landscape studies. 

 

Another common objective of watershed classification is to predict an environmental 

parameter of stream condition for unknown areas based on sampled stream values; 

this is best accomplished using regression equations.  Robertson and Saad (2003) 

used a modified regression-tree analysis (Breiman et al. 1984) to classify watersheds 

according water quality parameters.  With this technique, a water quality parameter 

(e.g. total phosphorous) is a dependent variable and a suite of landscape attributes 

serve as independent variables.  The model creates two groups using the most highly 

significant independent variable and then splits each group again using the next most 
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significant variable.  This creates a tree-like structure based on regression equations, 

hence the term regression-tree analysis.  In the Robertson and Saad (2003) study, the 

authors classified watersheds into one of four groups based on landscape-scale 

thresholds.  For instance, with total phosphorous as the dependent variable, the first 

split created a group with greater than 30% forest cover and a group with less forest 

cover.  The forested group was subsequently divided into two additional groups with 

greater or less than 312 mm/year runoff; the less forested group was divided into 

groups with soil clay content above or below 26%.  This process was repeated for 

nitrogen and for sediment, leading to three different classifications according to the 

water quality parameter of interest. 

 

The regression-tree analysis successfully detects relationships between landscape-

scale and reach-scale attributes, and the thresholds identified can be used to classify 

watersheds with unknown stream value parameters.  However, regression trees have a 

tendency to create complex trees with more branches than can be justified by the 

causality of the data (Long et al. 1993), and some cutting points, such as 312 mm/year 

runoff, may seem arbitrary and may not represent actual physical processes on the 

landscape.  In addition, the trees can be difficult to interpret as slight changes in the 

branching values can lead to grouping changes that cascade through the tree and alter 

the resultant classification.  These issues can be remedied by using a sufficiently large 

dataset such that the model can be trained with a subset of data and validated using 

the remaining data.  Hence, regression trees generally perform best with at least 100 

cases in the model, while other regression-based classification techniques, such as 

logistic regression, perform better with smaller datasets (Perlich et al. 2003). 

 

In only one previous paper of watershed classification was stream channel 

morphology addressed.  Jensen et al. (2001) used Rosgen stream types in a canonical 

correspondence analysis (ter Braak 1986); this direct gradient analysis ordination 

technique seeks to determine the optimum set of predictor variables that best explain 
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variation in the canonical variable.  Like multiple regression, the model assumes a 

linear correlation between some combination of predictor values and the canonical 

variable.  The authors used topographic maps to classify stream reaches into level I 

Rosgen stream types (Rosgen 1994) for 500 sub-basins of the Interior Columbia 

River Basin.  Using the Rosgen stream types as a canonical variable, they identified 

15 (out of a possible 54) significant “direct biophysical environment variables,” 

including watershed slope, average daily precipitation for summer months, and 

average daily air temperature for July (Jensen et al. 2001, p 1160).  Again, using 

Rosgen stream types as the canonical variable, they separately selected 19 (out of a 

possible 99) significant “indirect biophysical environment variables,” including 

forestlands, loess, and lake sediments.  Arguing that both sets of data were 

significantly related to Rosgen stream type distribution, the authors then clustered all 

7,462 sub-basins into in the study area into 84 groups using the more easily mapped 

19 indirect biophysical variables. 

 

A critique of canonical correspondence analysis is that, like multiple regression, 

increasing the number of independent variables will increase the significance of the 

model, as noisy or irrelevant variables will contribute some explanation of variance to 

the model (McClune 1997).  In addition, the response of the dependent variable must 

be unimodal (ter Braak 1986).  In the Jensen et al. (2001) example, it may not be true 

that a particular Rosgen type stream will be found in only one specific type of 

landscape or that one suite of landscape-scale variables will produce only one type of 

stream channel.  In a response to the Jensen et al. paper, Caratti et al. (2004) showed 

that a random assemblage of many environmental variables could also significantly 

explain variation in Rosgen stream types within the Interior Columbia River Basin.  

This indicates that canonical correspondent analysis may not be suited for classifying 

watersheds at this scale; however, it may also indicate that Rosgen stream types do 

not correlate well with landscape-scale watershed process attributes. 
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Although each of these classification techniques showed some success at delineating 

groups of watersheds with relatively homogenous distributions of landscape-scale 

attributes, several remaining issues that need to be addressed in order to construct an 

efficient process-oriented watershed classification.  First, a classification using 

hierarchical clustering must assess whether any difference exists between the 

classified groups with respect to a reach-scale environmental variable.  Second, any 

watershed classification intended for predictive modeling must demonstrate a 

significant causal relationship between the selected landscape-scale attributes and the 

measured reach-scale values.  Third, a watershed classification that is focused on 

aquatic habitat must incorporate actual physical measurements from a representative 

sample of all aquatic habitats within the study area.  The classification undertaken in 

this dissertation addresses these issues and is one of the few studies, for any region, to 

bridge scales from the site-specific to the regional and to specifically correlate field-

collected stream habitat data, including channel geometry, sediment size, and water 

quality, with landscape characteristics and disturbance history to classify watersheds 

into meaningful habitat types. 

 

Study Location 

 

In order to assess the impact of landscape characteristics and disturbance history on 

headwater streams, it is necessary to examine the channel morphology and water 

quality of streams that have undergone natural and anthropogenic disturbance at 

various scales, frequencies, and magnitudes.  Because of its location, diversity of 

landscapes, availability of data, and long history of being studied, Great Smoky 

Mountains National Park provides an excellent natural laboratory for measuring the 

impacts of disturbance and the influence of landscapes on stream channel 

morphology and habitat condition. 
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The main unit of the national park is just over 2000 km2 in size and lies almost 

equally in eastern Tennessee and western North Carolina (Figure 1).  The park itself 

is located on the western edge of the Blue Ridge physiographic province within the 

southern portion of Appalachian Highlands geologic province (Fenneman and 

Johnson, 1946).  Local relief is considerable and ranges from 260 m just outside the 

far western boundary of the park to 2025 m on Clingman’s Dome, the second highest 

point in the Eastern United States.  Slopes can be quite steep and river valleys are 

deeply incised.  However, extensive areas throughout the range are relatively flat.  

Average annual precipitation varies from 1600 mm at the lower elevations to 2160 

mm above 1800 m in elevation (National Park Service 2005).  Temperatures are 

typically 10 Cº cooler on Mt. LeConte (elevation 1950 m) compared with the park 

headquarters (elevation 488 m) (Gaffin et al. 2002).  This produces a humid 

subtropical climate with mild winters, hot summers, and moisture in all seasons at 

lower elevations, and a humid continental climate at higher elevations where winters 

can be severe, summers are cool, and the area receives ample moisture in all seasons 

(Köppen and Geiger 1936). 

 

The Great Smoky Mountains are an area of transition from the younger and relatively 

unaltered Paleozoic sedimentary rocks of the Appalachian Valley in the northwest 

and Pre-Cambrian metamorphic and granitic rocks to the southeast in the Blue Ridge 

(King et al. 1968, Hatcher, 1978).  The present day structure of the mountains was 

constructed during the late Carboniferous and into the Permian during the 

Alleghanian orogeny (Hatcher et al. 1986).  The collision of North America with 

Africa pushed the Blue Ridge-Piedmont thrust sheet northwest along the Appalachian 

fold-thrust belt exposing Pre-Cambrian metamorphic rocks and sending faults 

throughout the older sedimentary layers (Hatcher et al. 1986).  Based on crosscut 

relationships, many of the folds in this region pre-date the Alleghanian orogen, which 

leads to a complex arrangement of terranes and surface ages in this section of the 

Southern Appalachians (Hatcher et al. 1986). 
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Figure 1.  Location of Great Smoky Mountains National Park.  The park is 
plotted with reference to physiographic provinces defined for the surrounding 
region by Fenneman and Johnson (1946). 
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The bedrock units in the Great Smoky Mountains have been folded, faulted, and 

eroded to varying degrees, exposing three primary units (Hatcher 1978).  The oldest 

of these, the Basement Complex, is the highly altered crystalline foundation of the 

entire region, which dates to the Pre-Cambrian.  It has only limited surface exposure 

in the far southeastern section of the national park.  Within the Basement Complex 

are the most resistant rock types, including gneisses and schists of both sedimentary 

and igneous origin (King et al. 1968).  The next oldest group of rock units, the Ocoee 

Series, is the most prominent of the bedrock types in the park and represents the true 

transitional unit from old to young and complexly folded to relatively unaltered rock 

units.  Formations in the Ocoee Series are composed of late Pre-Cambrian 

sedimentary rocks ranging from phyllitic layers and fine-grained sandstones, near its 

contact with the Basement Complex, to coarse-grained sandstones and pebbly 

conglomerates near the upper position of this series.  However, several silty and 

argillaceous rock units are interbedded throughout the Ocoee Series; most notable of 

these is the dark, silty Anakeesta Formation, which is particularly prone to mass 

wasting (Henderson 1997) where it intertongues with the ubiquitous coarse-grained 

Thunderhead Sandstone. 

 

During the Alleghanian uplift, rocks of the Ocoee Series were superposed onto the 

younger Paleozoic rocks along the regional Great Smoky fault complex (Hatcher et 

al. 1986).  Subsequent faulting in the northwest portion of the park created long 

parallel ridges with resistant quartzite outcrops that form the present boundary 

between the high-relief topography of the park and the low-relief adjacent 

Appalachian Valley (King et al. 1968).  Erosion of the overthrust Ocoee rocks has 

created ‘windows’ that expose the younger, underlying limestones and shales, which 

constitute the cove landscapes in the park.  These relatively flat and fertile areas were 

actively farmed and settled by both Native Americans and then by European settlers 

until the time of park establishment in 1934 (Pyle 1988). 
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Soils in the park are quite varied due to the heterogeneity of vegetation, aspect, 

elevation, and rock types in this region.  Detailed soil mapping of the park began in 

1998 and is expected to be concluded in 2007; however, some preliminary summary 

information was provided by Anthony Khiel (NRCS, Sevierville, TN, personal 

communication).  In the northern section of the park, moderately deep to shallow 

upland soils and rock outcrops cover most of the area, with small patches of thin 

colluvial soils.  These soils are low in nutrients and morphology is greatly affected by 

aspect.  Soils on the Anakeesta formation are very low in plant nutrients and tend to 

be unstable as a function of steep slopes and highly weathered conditions.  Cades 

Cove has the only mapped alluvial soils in the northern portion of the park, although 

alluvial conditions do occur elsewhere.  Soil morphology in the southern portion of 

the park is less affected by differences in aspect, but nutrients are also relatively low.  

Upland soils and rock outcrops also comprise much of the soil landscape, but overall 

the soils tend to be somewhat thicker than soils in the northern section of the park.  

Alluvial soils near Smokemont and along the Oconaluftee River are much better 

drained and deeper than the alluvial soils around Cades Cove.  

 

Land cover in the park is currently over 90% forested (National Park Service 2005), 

although nearly 60% of the park had been logged prior to the establishment of the 

national park (Lambert 1958).  After colonization by European settlers, GSMNP had 

been actively logged, farmed, and inhabited for 100 years prior to achieving protected 

status (Pyle 1988).  Disturbance patterns in the park are better documented than those 

in the surrounding region.  Historic natural disturbances in the park include fire 

(Harmon 1981), insect outbreak (Allen and Kupfer 2001), and large mass wasting 

events (Henderson 1997).  In the last few decades of the 1800s, the principal form of 

anthropogenic disturbance was small-scale logging by farmers who cut and sold a few 

trees each year, and commercial cutting of selected trees over small areas (Lambert 

1958).  This scale of disturbance stands in sharp contrast to the intensive, mechanized 

logging that began at the turn of the 20th century when ‘corporate’ logging companies 



20 

purchased large tracts of land at higher elevations in Tennessee and throughout North 

Carolina, and removed all trees on the hillslopes (Pyle 1988).  Several intense fires 

were caused by logging activities, and after removal of the trees, many of these areas 

were purposely burned (Harmon 1981). 

 

Before park establishment, many smaller fires were either set by humans to clear land 

and open travel routes through the dense tree canopy (Harmon 1981) or by lightning 

strikes.  After park establishment, fire has occurred less frequently, with the larger 

fires happening along the park’s boundary adjacent to settled areas and roads.  The 

most extensive disturbance event has been the near elimination of all chestnut trees 

since the 1930s because of a chestnut blight (Arends 1981).  The chestnut had been a 

prominent tree in nearly every forest type of the park (Miller 1938); hence, its decline 

has dramatically affected forest structure throughout the park. 

 

Along with the wealth of information concerning vegetation disturbance history in the 

park, research has been ongoing in several other scientific fronts.  Numerous 

researchers have been inventorying and monitoring the occurrence and ecological 

significance of as many species as has been practical as part of the All Taxa 

Biodiversity Inventory (ATBI).  This effort, in addition to attempting to catalog every 

species in the park, provides a fertile setting for researchers from diverse backgrounds 

to study the flora, fauna, soils, geology, air quality, and water quality of the region.  

Some fluvial geomorphology research has been conducted in the park (Hart 2002), 

but most stream research has focused on losses in native fish populations (Strange 

and Habera 1998) and water quality (Robinson et al. 2002).  The water chemistry of 

park streams is actually much better known than that of streams in the surrounding 

region.  Water quality samples have been collected and analyzed in the park since 

1993.  Biannual synoptic sampling of 367 streams from 1993-1995 was changed to 

monthly sampling of 160 streams and later to quarterly sampling of 90 streams 
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(Robinson et al. 2002).  In sum, GSMNP is a data-rich environment with a high 

diversity of both species and landscapes. 

 

Organization of This Dissertation 

 

Beginning in chapter II of this dissertation, I describe, in more detail, the type of 

landscape-scale data that I used in designing both my top-down and bottom-up 

catchment classifications.  In addition, I describe the hydrologic modeling necessary 

to delineate the headwater catchments and extract the specific landscape-scale data 

for each catchment.  In chapter III, I present the methodology and results for the top-

down classification, which is based entirely on landscape-scale data.  In contrast with 

the top-down approach is the bottom-up approach, which is driven by reach-scale 

data and presented in chapter IV. 

 

Having presented both classification techniques, I proceed, in chapter V, to test the 

efficacy of each classification in creating groups with significantly different stream 

channel types that are also significantly related to landscape-scale processes.  With 

chapter VI, I discuss the merits and limitations of each classification and place the 

results in context of existing geomorphic theory.  In addition, I propose that this 

approach could transcend the park boundaries, suggest possible applications for this 

work, and finally, propose the direction in which this, and possibly other, watershed 

classifications should proceed. 
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CHAPTER II  
DIGITAL DATA ACQUISITION AND PROCESSING 

 

Watershed classification efforts normally seek to discover and document patterns on 

the landscape that may influence stream channels and water quality.  This exercise 

requires spatially-explicit landscape-scale data that are of good quality and represent 

phenomena that are likely to influence discharge and sediment flux to stream 

channels.  A growing cache of digital spatial information is available for research and 

analysis of watershed processes.  Broad-scale digital elevation models (DEMs) have 

been created for most of the continental United States; in addition, many state and 

federal agencies have created extensive digital datasets of land use, land cover, 

geology, soils, vegetation, and transportation.  With this array of data, it is possible to 

assess both the spatial correlation of various landscape attributes and the relationship 

between landscape-scale attributes and stream channel morphology. 

 

In this chapter, I describe the methods used to collect and process the landscape-scale 

digital data used to create and validate each watershed classification procedure.  I 

begin by describing the digital watershed-scale data available for this study area and 

the processing steps necessary to get these datasets into a usable format.  I then 

discuss the modeling steps I used to extract hydrologic patterns from the GSMNP 10-

m DEM.  Using the DEM-derived watersheds, I present the method for determining 

the landscape-scale attributes for each watershed. 

 

Landscape-Scale Attributes 

 

Great Smoky Mountains National Park has an unusually extensive amount of digital 

spatial data.  The GIS consultant for the park, Michael Kunze, has assembled and 

digitized several different GIS layers, including park boundaries, roads and trails, 

vegetation disturbance history, fire history and frequency, and bedrock geology.  The 
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boundaries and transportation layers were digitized from 1:24,000 USGS topographic 

maps and corrected with GPS measurements.  The vegetation disturbance history 

layer is an approximately 1:24,000 dataset that has been digitized from the Pyle 

(1988) study on anthropogenic vegetation disturbance in the park from European 

settlement through the 1940s; the fire history and fire frequency layers are of a similar 

scale and are based on documented fires in the park from the 1940s through the 1970s 

(Harmon, 1981).  The geology layer is a digitized version of a 1:125,000 USGS 

geologic map of the park (King et al. 1968).  For the elevation, slope, and aspect data, 

I used the 7.5’ USGS level 2 DEMs with 10-m resolution.  With this suite of digital 

data, I constructed six GIS layers−land use, burned areas, rock strength, elevation, 

slope, and aspect−for further watershed analysis. 

 

Land Use 

The vegetation disturbance history of Great Smoky Mountains National Park prior to 

park establishment in 1934 was mapped using existing maps, photos, and archival 

reports by Pyle (1985) in a special report for the National Park Service.  The objective 

of this report was to map human-induced disturbance that happened in the park prior 

to park establishment and to speculate about the resulting changes in vegetation 

dynamics.  The digital version of this report, with amendments from Pyle (1988), 

maps into five categories: settlement, heavily disturbed, lightly disturbed, selective 

cutting, and undisturbed.  Based on Pyle’s original report and the needs of this study, 

I renamed categories and reclassified some of the polygons to reflect the working 

hypotheses of hillslope and stream channel interactions. 

 

Polygons mapped as settled in the digital disturbance map represent areas of 

concentrated settlement.  These include cleared fields for farming, homesteads, the 

small pre-park towns, such as Elkmont and Cataloochee, and roads.  This category is 

the smallest in terms or mapped area, but it represents the greatest magnitude and 

most extensive duration of human disturbance.  In addition, these areas are nearly 
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always adjacent to streams.  The heavily cut polygons are regions where corporate 

logging occurred.  This logging involved large tracts of land and the use of 

mechanized equipment and skidding, where cut logs were dragged across the ground 

with winches and cables.  The extent of logging varied, but always included cutting 

along the creeks and in the riparian area; large fires often followed logging when 

entire hillslopes were cut (Pyle, 1985).  By the time of park establishment in 1934, 

over half the park area had been heavily logged.  In the new land use layer that I 

created, I maintained these category names and their mapped boundaries. 

 

Lightly disturbed polygons are areas of diffuse disturbance associated with 

settlement; these disturbance activities included cutting for home building and 

firewood, setting small fires, and grazing.  I maintain both Pyle’s (1988) name and 

boundaries for this category.  The selectively cut mapped polygons represent areas 

with big trees and diffuse human activity.  Two small tracts classified as selectively 

cut.  The first is the area around Cataloochee Valley.  This area was not logged by 

corporate logging because of the numerous small home sites surrounding the valley.  

The farmers could not remove many of the larger trees but did some logging for 

building and firewood; I reclassified this area as lightly disturbed.  The second region 

is in the western area of the park that was formerly dominated by chestnuts, which 

were decimated by a chestnut blight, but was never logged.  This area was digitized 

as selectively cut because it was “lacking in a wholly undisturbed appearance” (Pyle 

1985, p.11).  However, the area is only slightly affected by anthropogenic 

disturbance; thus, I reclassified this area as pristine.  The undisturbed category was 

described by Pyle as being “high in virgin forest attributes” (1985, p. 21), although 

she recognized that the vegetation in these areas had likely been affected by human 

activity.  I renamed this category as ‘pristine’ to reflect the limited anthropogenic as 

well as natural disturbance in these areas, and I kept the mapped boundaries (Figure 

2). 
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Figure 2.  Land use in GSMNP. 
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Burned Area 

The fire history layer maps the most recent fire for a particular area in the park as 

determined by Harmon (1981), and the fire frequency layer denotes the number of 

fires at a particular location since the 1940s.  Most studies indicate that the effect of 

fire on streams does not persist longer than 15 years (Gresswell 1999, Minshall 

2003).  As it had already been longer than 15 years since the burned areas were 

digitized, I collapsed all burned-area information into one layer with the single binary 

attribute of burned (Figure 3).  Most fires in the park since 1940 have occurred along 

the periphery of the park near areas of current settlement. 

 

Rock Strength 

The geology of the park was mapped by King et al. (1968) with the exception of the 

Hazel Creek area in the southwest portion of the park.  This map was subsequently 

digitized to represent the 25 distinct types of bedrock geology that occur in the park.  

Given that geologic names are often type localities rather than descriptions of spatial 

processes, I reclassified each geologic unit into one of five classes (Table 1) based on 

rock strength and cohesiveness as very weak, weak, medium-strength, strong, and 

very strong, as suggested by Attewell and Farmer (1976).  Their classification is 

based on reported values for unconfined fracture strength of rocks as measured in 

megapascals (MPa).  I used this measurement of cohesiveness as an indicator of a 

rock unit’s resistance to both physical and chemical weathering.  With my watershed 

classification, I was interested in the production of sediment on hillslopes, as well as 

the delivery of material directly to a stream channel via mass wasting processes.  As 

such, a rock unit was classified as relatively strong if it was either resistant to 

weathering or unlikely to produce high magnitude mass wasting events, such as 

debris flows or avalanches.  In contrast, rock units were classified as relatively weak 

if they were prone to extensive weathering (e.g., chemical weathering of carbonates), 

or if inclined to generate periodic, high magnitude mass wasting events.  Thus, this 
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Figure 3.  Burned area in and near GSMNP. 
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Table 1.  Classification of rock strength and resistance to erosion.  Strength 
ranges and descriptions are from Attewell and Farmer (1976). 

Rock Strength 
Classification 

Class 
Description 

Range of Strength 
Failure (MPa) 

Rock Types 

1 Very weak 5-20 Weathered and weakly-
compacted sedimentary rocks 

2 Weak 20-40 Weakly-cemented 
sedimentary rocks; schists 

3 Medium 40-80 Competent sedimentary 
rocks; some low density, 
coarse igneous rocks 

4 Strong 80-160 Competent igneous, 
metamorphic rocks and some 
fine-grained sandstones 

5 Very strong 160-320 Quartzites; dense fine-grained 
igneous rocks 
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rock strength classification served as a proxy for a combined set of hillslope 

geomorphic processes related to the flux of sediment to a stream channel. 

 

I used the descriptions in King et al. (1968) to classify each rock unit into one of the 

five rock strength classifications (Table 2).  For instance, the Anakeesta formation is 

described as “consist(ing) mainly of dark silty and argillaceous rocks altered to slate, 

phyllite, or schist,” (King et al. 1968) and is thus classified as weak.  Even though the 

Anakeesta formation is found in some of the highest and steepest portions of the park, 

this rock unit is classified as weak, because it has produced several high magnitude 

mass wasting events (Henderson 1997).  The stronger and cohesive Roaring Fork 

Sandstone is reclassified as strong based on its fine-grained, strongly cemented 

sandstone matrix.  The most common geologic unit is the Thunderhead Sandstone, 

which covers nearly half the study area; it is classified as having medium rock 

strength because it is coarse-grained and is intertongued throughout its distribution 

with layers of the Anakeesta formation.  Several of the resistant bedrock outcrops in 

the park are composed of Thunderhead Sandstone, yet, the coarse-grained 

sedimentary composition, combined with the interbedded silty and argillaceous layers 

found in this formation, produce a net classification of a medium level of resistance to 

erosion. 

 

Largely because of the ubiquitous presence of Thunderhead Sandstone, medium-

strength rocks are the most common rock types in the park, followed by strong, fine-

grained sandstones (Figure 4).  Relatively small units of limestone in Cades Cove are 

classified as weak, as is the somewhat extensive unit of Metcalf Phyllite.  The 

remaining geologic units in the park are small and discontinuous, with classifications 

ranging from weak unclassified formations of sedimentary rock to the very strong 

Longarm Quartzite.  No rock units in the park are classified as being very weak.  The 

Great Smoky Group is not classified because it is a general term for the Hazel Creek 
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Table 2.  Rock strength classification for each type of geology in the study area.  
Also reported is the percent of the original geology unit in the park. 

Geologic Unit Percent of Study Area Rock Strength Class 
Anakeesta Formation 7.8 Weak 
Basement Complex 1.9 Weak 
Blockhouse Shale 0.0 Weak 
Cades Sandstone 5.9 Medium 
Cochoran Formation 0.1 Very Strong 
Elkmont Sandstone 9.3 Strong 
Great Smoky Group - NA 
Hesse Quartzite 0.1 Very Strong 
Lenoir Limestone < 0.1 Weak 
Limestone/Dolomite 0.8 Weak 
Longarm Quartzite 2.7 Very Strong 
Metadiorite < 0.1 Very Strong 
Metcalf Phyllite 3.2 Weak 
Murray Shale < 0.1 Weak 
Nebo Quartzite 0.1 Very Strong 
Nichols Shale 0.1 Weak 
Pigeon Siltstone 3.3 Weak 
Rich Butt Sandstone 1.8 Medium 
Roaring Fork Sandstone 8.6 Strong 
Shields Formation < 0.1 Strong 
Thunderhead Sandstone 48.7 Medium 
Unnamed Sandstone 0.6 Medium 
Wading Branch Formation 0.2 Weak 
Wilhite Formation Coarse 3.0 Medium 
Wilhite Formation 1.9 Weak 
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Figure 4.  Rock strength classes in GSMNP.  Missing area in southwest portion 
has no geologic data. 
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area in the southwestern portion of the park for which no descriptive geologic 

information is available. 

 
Elevation 

The elevation attribute layer was created using USGS 7.5 minute level 2 DEMs.  

USGS created the original raster datasets, which cover the same area as a standard 

USGS 7.5 minute quadrangle; the elevation information is recorded along a regularly 

spaced profile, which is a 10-m interval for these DEMs.  The level 2 DEMs have 

been edited by USGS to remove systematic errors, and to increase the accuracy of the 

linear interpolation procedure by incorporating hypsographic and hydrographic data.  

The resulting level 2 DEMs for GSMNP have a maximum vertical error of 6 m 

(USGS 1993). 

 

In order to create a seamless elevation layer, I mosaicked  the individual DEM files 

together using ArcGIS version 8.3 software (ESRI 2003).  The level 2 files have 

much better accuracy along their edges than the original level 1 DEMs; hence, the 

edges of each paired DEM fit well together.  However, some areas still had no data 

either along an edge or within each individual DEM layer.  For each pixel lacking an 

elevation value, I assigned the mean of the surrounding eight pixels; this is the 3x3 

cell neighborhood window in raster analysis (Franke 1982).  I then buffered a 

boundary layer of the park by 1 km to produce a shape that is slightly larger than the 

actual park boundary.  I clipped the seamless DEM to produce the elevation layer for 

the park with values ranging from 265-2028 m (Figure 5) with a mean value of 1147 

m. 

 

Slope and Aspect 

The slope and aspect layers were both created using the Spatial Analyst extension for 

ArcGIS 8.3.  Conceptually, the algorithm fits a plane to the values of the 3x3 cell 

neighborhood around the pixel of interest; the average maximum vertical change 
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Figure 5.  Elevation in GSMNP grouped into elevation classes. 
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across this plane, divided by the distance and multiplied by 100, is used to calculate 

the percent slope of the center pixel (Burrough 1986).  The direction this plane faces 

is the aspect of the center pixel.  This method can produce anomalous results at the 

edges of DEMs or where data are missing.  However, I had already corrected for 

missing data values, and I had eliminated edge effects by extending the seamless 

DEM 1 km past the boundary of the study area. 

 

By applying this method, I determined that most slope values in the study area range 

from 0% to 165%, with just a few pixels having much higher values on overhanging 

cliff faces; the mean slope value is 83%.  Most flat areas with 0% slope occur on 

Fontana Lake in the southwest portion of the park and on the flooded creeks that 

drain into other impoundments just beyond the park boundary.  Aspect values range 

from 0 to 359 degrees.  In flat areas, all eight-neighborhood aspect pixels have the 

same value, resulting in no true aspect; in these areas, the pixel was coded with a 

value of negative one, and excluded from the analysis.  

 

Hydrologic Modeling 

 

Traditionally, watershed delineation and stream network mapping have been 

accomplished by tracing polygons and lines directly from a topographic map.  With 

the expanded coverage of DEMs and the development of raster modeling tools in GIS 

software, the process of mapping hydrologic features can be automated.  This permits 

more rapid watershed and stream mapping and allows the researcher to conduct 

analyses on larger areas.  With changes in software and user interface design 

following the advent of GIS, the precise steps involved in delineating hydrologic 

features have evolved through many forms.  However, the concept behind watershed 

derivation has remained the same: a DEM is pre-processed, and several new grids are 

created in an iterative fashion that leads to the partitioning of the landscape into 

internally-drained hydrologic units based on a user defined scale. 
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The gridded matrix of a DEM provides a useful mechanism for modeling surface 

drainage flow paths with a modification of the raster 3x3 neighborhood analysis, the 

D-8 model (Fairfield and Leymarie 1991).  With this model, the ‘downhill’ direction 

from a particular cell, and hence, its flow direction due to gravity, can be determined 

as the software looks at each of the eight cells that surround the selected cell and 

models the flow to the cell that has the lowest elevation.  This method has difficulties 

in flat areas where each of the eight cells has the same value, in regions of karst 

terrain where sinkholes interrupt the drainage network, and where sampling during 

DEM creation produces slightly higher elevation pixels that block or divert drainage.  

Each of these scenarios must be assessed and solved by pre-processing the DEM 

before proceeding with the hydrological extraction techniques. 

 

Three tasks must be accomplished when pre-processing a DEM for watershed 

modeling.  The first and second tasks are to check for obvious elevation value errors 

and then to assign values through linear interpolation to missing data cells, which I 

did while creating the elevation GIS layer.  The third task is to create a new grid with 

all or some of the ‘sinks’ filled in.  A sink is an area on the grid with internal drainage 

or no outlet, meaning each of the surrounding cells in the D-8 model has a higher 

elevation value than the sink cell.  Sinks most often occur because of errors in the 

creation of the DEM through interpolation.  However, in karst landscapes, these 

internally draining areas could be real geomorphic features such as sinkholes and 

karst valleys.  Each of these scenarios was evaluated by identifying true sinks that 

impact stream flow and then creating a new grid with the anomalous sinks filled in 

using a fill sinks command; this process raises the elevation value of a sink cell until it 

drains into another cell.  The user can set a threshold for the size of a sink that will be 

filled based on the difference between adjacent elevation values; this allows the user 

to accept some large sinks that may be sinkholes. 
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I found several small sinks in the GSMNP DEM.  I determined through analysis of 

topographic maps that only one sink, near Cades Cove, drains an area large enough to 

produce a perennial channelized flow into the sink.  Hence, I filled all other sinks 

such that they are part of a larger catchment for modeling purposes.  To achieve this, I 

instructed the fill sinks process to fill any sink except those deeper than 20 m.   

Following this step, the resulting DEM was ready for watershed delineation and 

stream channel extraction. 

 

The first step in extracting hydrologic features from a processed DEM is to determine 

the flow direction and flow accumulation area for the grid.  Using the filled sinks 

grid, I created a new grid that shows the flow direction for all cells on the grid.  This 

was done, again, using the D-8 model.  Then, a flow accumulation grid was created 

from the flow direction grid; the flow accumulation grid stores, for each cell, the 

number of cells that drain into it.  At this point the user selects the scale of watershed 

size that is of interest to the model.  It is important to note that there exists a 

minimum size of watershed that can be delineated based on the original DEM data; 

for instance, a DEM cannot model a real feature that is the same size as the resolution 

of the DEM.  A general rule for hydrology is to model features that are a minimum of 

one order of magnitude larger than the resolution of the original DEM (Garbrecht and 

Martz 1994).  Based on this rule, and on my observations of the minimum watershed 

size needed to produce perennial channelized flow in GSMNP, I set the minimum 

threshold for watershed size at 0.5 km2. 

 

I next created a new grid that identified each cell in the flow accumulation grid 

meeting the minimum threshold for flow—it drained an area at least 0.5 km2; this grid 

represented the likely location of streams on the modeled landscape.  Once a pixel 

had been identified as draining the minimum area specified, it was labeled as a stream 

pixel.  The stream then built downstream until it encountered another pixel that 

drained an area of at least 0.5 km2.  Where these two pixels met became a stream 
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junction, a point that drained two separate headwater areas.  The model continued 

building a stream network downstream to the edge of the DEM.  This stream grid was 

then converted into a vector layer and used for further network analysis of stream 

functions (Figure 6).  As a pixel is not defined as being a ‘stream’ pixel until it meets 

the minimum drainage area, streams in my modeled network do not extend as close to 

the divide as streams on most USGS 7.5’ topographic maps for this area.  However, 

being that most valleys are rather narrow, the actual location of each stream was quite 

close to the USGS mapped location.  Finally, I created a watershed grid from the 

stream grid (Figure 6); this assured that each streamline (now a reach) would have an 

associated catchment.  These watersheds were converted into vector polygons for 

overlay analysis; however, I retained the watershed grid so that larger watersheds 

could be modeled from the nested features that I created. 

 

In this project, I was only concerned with evaluating headwater catchments, as these 

are the areas hypothesized to show the strongest relationship between hillslope 

processes and stream channel morphology.  Therefore, the next step was to select 

only headwater drainage areas, defined as the catchments draining all first-order 

modeled streams.  To obtain this group of watersheds, I assigned the Strahler stream 

order to all the model streams.  I then created a new watershed grid based on the 

stream order grid; in this manner, I had first-order, second-order, third-order, etc. 

catchments.  From this grid I selected only the first-order catchments for further 

analysis.  In addition, I removed the watersheds in the Hazel Creek area because that 

region lacked geologic information; finally, I eliminated any of the watersheds that 

drained large areas outside of the park boundary because the land use data did not 

extend beyond the park border.  The final headwater catchment layer consisted of 862 

individual first-order catchments that ranged in size from 0.5 to 6.0 km2 with a mean 

of 1.2 km2 (Figure 7); this was the data set used for all future stream channel 

sampling and modeling.
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Figure 6.  Delineated watersheds and the extracted stream network in GSMNP.  
The minimum drainage area is 0.5 km2. 
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Figure 7.  All first-order catchments used in this study and the 51 catchments 
that were sampled for stream channel morphology. 
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Landscape-Scale Attributes by Catchment 

 

Having extracted 862 headwater catchments with a GIS-based hydrologic model, I 

then overlaid this catchment layer on each of the landscape-scale attribute GIS layers 

to determine the mean elevation, mean slope, resultant aspect (equivalent of mean 

aspect), and circularity for each catchment as well as the percent coverage of each 

different land use type, rock strength classification, and burned area.  Each of these 

processes was done using ArcGIS, version 8.3, and the information was exported to 

tabular format in order to calculate summary statistics and to conduct statistical 

classification procedures. 

 

Zonal Statistics 

In the GIS environment, zonal statistics are the summary statistics for any given layer 

within a specified zone.  I used the headwater catchments as the zonal layer to 

determine mean elevation, mean slope, and resultant aspect by catchment.  

Determining mean elevation and mean slope is a one-step process.  I simply extracted 

the summary statistics for each catchment in tabular form, which was saved as a table 

in the GIS database.  Mean catchment elevations ranged from 388 m to 1741 m, with 

the average elevation of all catchment means being 1103 m.  The highest mean slope 

value for a catchment was 84%, and the lowest mean value was 10%; the average 

slope value for all catchments was 48%.  Typically, catchments with high mean 

elevations had correspondingly high mean slope values, and the opposite was also 

true.  I noted that this correlation was more pronounced with smaller catchments, 

those less than 1.5 km2, than with larger catchments. 

 

Calculating the resultant aspect of each catchment was a more involved process.  The 

resultant aspect is the sum of all vectors within a given set.  It is necessary to use 

vector addition to determine an average, instead of a typical mean calculation, 

because aspect is not a linear dataset.  For instance, the ‘average’ aspect of 359° and 
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1°, which are both nearly true north is (359 + 1) / 2 = 180°, which is true south, a 

completely illogical result.  The solution to this example can be determined by 

making a scaled drawing of the vectors, with equal magnitudes, and using the ‘head 

to tail’ method to get a value of 360° as a resultant vector.  However, this method is 

computationally difficult with many vectors, and the smallest catchment in this study 

had over 500,000 pixels, with an equal number of aspect vectors to draw. 

 

In order to more quickly compute the resultant vector, I calculated the arctangent of 

the sum of the sine values divided by the sum of the cosine values within each 

catchment (Curray 1956).  The value of the resultant vector will fall between the 

range of  -180° and 180°.  Positive values represent the resultant vector in the range 

of 0° through 180°; negative values represent the resultant vector in the range of 181° 

through 359°, as the sine of these values is negative.  I determined the resultant vector 

for each catchment by first creating two new grids, the sine and cosine of each aspect 

pixel respectively.  I then extracted the summary statistics from the sine and cosine 

grids, for each catchment, and calculated the resultant vectors using a spreadsheet.  A 

northern resultant aspect was the most common, occurring in 285 of the 862 

catchments.  An eastern resultant aspect was the least common, 168 catchments; 219 

catchments had a western resultant aspect, and 190 catchments showed a resultant 

southern exposure. 

 

Along with the summary statistics by zone, I extracted the area of each catchment for 

later analysis and the perimeter for calculating circularity.  Circularity is a basin shape 

measurement, which is determined through dividing the area of a catchment by the 

area of a circle having the same perimeter as the catchment (Miller 1953, p. 51).  

Values approaching one are more circular catchments, which tend to have a more 

peaked flood hydrograph.  Catchments with values approaching zero are either 

irregular in shape or are oblong; in either case runoff following storm events is spread 

over a longer period of time than with a similar sized circular watershed, resulting in 
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relatively lower peak discharge values.  Catchment circularity values ranged from 

0.13 to 0.55 with an overall mean of 0.35. 

 

Categorical Attributes by Area 

For the landscape-scale categorical attributes of land use, rock strength, and burned 

area, I determined the percentage of each value by catchment.  This is similar to a 

zonal statistics function; however, it was accomplished using the tabulate area 

command.  This process returns a table with the same number of columns as 

attributes in the GIS layer; for instance, tabulating the area of land use with catchment 

as the zone layer returns a table with the percent of each type of land use within each 

catchment.  Most catchments had only one or two of the possible classes for each 

categorical attribute, and the remaining values were 0%.  Descriptive statistics are not 

informative for this type of data as the minimum summary value by attribute will 

always be 0% because at least one catchment will not bound that particular attribute 

(e.g. no pristine forest); likewise, the maximum summary value will always be 100%, 

where at least one catchment is entirely composed of a particular landscape-scale 

categorical attribute (e.g., entirely underlain by medium-strength rocks). 

 

Having delineated and selected all of the headwater catchments in my study area, 

determined the area, circularity, mean elevation, mean slope, and resultant aspect for 

each catchment, extracted the percentage of each catchment that was burned, pristine 

forest, lightly cut, heavily cut, or settled, as well as the percentage that was composed 

of weak, medium-strength, strong, or very strong rocks, I was prepared to begin the 

top-down classification procedure.  In this chapter, I emphasized the care and detail 

that was necessary in order to construct GIS layers and statistical tables of good 

quality as all future tests and conclusions would be based on this landscape-scale 

dataset.  In the following chapter, I first describe the methodology for conducting the 

top-down watershed classification procedure, which is based entirely on this 

landscape-scale data, and then I present the results of that exercise.  With these two 
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chapters, I take the initial step toward assessing my first hypothesis, which states that 

a statistical classification based on landscape-scale attributes, the ‘top-down’ 

approach, will distinguish groups of catchments that have significantly distinct types 

of stream channel morphology.  In subsequent chapters, I test this hypothesis. 
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CHAPTER III  
CATCHMENT CLASSIFICATION USING 

LANDSCAPE-SCALE DATA 
 

By far, the most common method of classifying watersheds is to use manual or 

statistical techniques in grouping watersheds with similar landscape-scale attributes.  

This approach assumes that watersheds sharing a related suite of characteristics are 

likely to have similar types of stream channel habitat conditions.  In this chapter, I 

describe the methods I used to classify headwater catchments in Great Smoky 

Mountains National Park according to my first hypotheses, which states that a ‘top-

down’ statistical classification based on landscape-scale attributes will distinguish 

groups of catchments that have significantly distinct types of stream channel 

morphology.  This type of classification is an iterative effort; I first describe the 

method for the entire procedure, and I then present results from each iteration.  

Finally, I show a map displaying the completed top-down classification for GSMNP 

and describe the landscape-scale attributes that contributed most heavily toward 

delineating the study area into discrete groups of watersheds.  In subsequent chapters, 

I evaluate the effectiveness of this effort. 

 

Top-Down Classification Procedure 

 

Statistical clustering is a relatively objective means of creating groups with similar 

attributes.  Unlike manual methods, in which the user places entities into groups 

based on a particular criterion, statistical clustering employs a user-specified 

similarity metric to create groups with similar attributes in an unsupervised manner.  

Mathematical clustering using statistical software also allows for rapid classification 

of data sets that have a large number of samples, several different attributes, or both.  

Watershed classification is well suited to statistical clustering as a particular region 

will have many watersheds that can be clustered based on a variety of different 

landscape-scale parameters.  The technique can create watershed groups with similar 
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geology (Lipscomb 1998) or similar land use (Wardrop et al. 2005), and, with the 

technique presented in this chapter, with both geology and land use, as well as with 

additional parameters. 

 

Landscape-scale attributes have historically tended to be descriptive, and rarely have 

the groupings been tested to determine whether different groups correlate with 

different watershed processes.  In the previous chapter, I described the process that I 

used to transform the categorical landscape-scale attribute information, such as 

geology, into classes that may influence hillslope processes, such as rock strength.  

This, hopefully, will more effectively produce clustered groups that reflect watershed 

processes, and possibly show variation in stream channel morphology values.  To 

create groups of catchments in my top-down approach, I used hierarchical cluster 

analysis (Tryon 1939) followed by a non-agglomerative clustering technique, k-

means clustering (Hartigan 1975), in a two-step procedure that formed groups of 

watersheds with similar landscape-scale attributes. 

 

Hierarchical Cluster Analysis 

Hierarchical cluster analysis, like any clustering algorithm, seeks to create groups of 

similar cases such that the variance within groups is minimized and the between-

group variance is maximized (Tryon 1939).  Hierarchical clustering begins with n 

clusters (with n being the number of cases); two clusters are merged (individual cases 

in the first round of clustering), and then either a third case is added or two additional 

cases are joined.  This process is repeated until only one large cluster contains all 

cases.  Once a case has been put into a cluster it cannot be moved to another cluster; 

hence, this is an agglomerative technique.  I clustered all 862 headwater catchments, 

based on their standardized attribute values (z scores) for circularity, mean elevation, 

mean slope, resultant aspect, and the percent coverage for each type of land use and 

rock strength class, using the statistical software SPSS (version 13.0).  I did not use 

the attribute catchment area, because percent land use and rock strength were 
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normalized by total catchment area; if I had included area as an attribute, it is likely 

that the clustering algorithm would have generated redundant groups that were 

different in size but otherwise similar in terms of attribute distribution.  

 

As I had several different attributes (columns of data) and I wished to minimize 

within-group variation, I used Ward’s minimum variance method for linking clusters 

(Ward 1963) with squared Euclidian distance as the distance measurement.  This 

method uses an ANOVA (Fisher 1954) type technique for combining clusters, such 

that at each stage of clustering, this method adds one cluster to whichever existing 

cluster will have the lowest resulting within-group sum of squares or scatter around 

the group centroid. 

 

Each step of hierarchical clustering produces fewer clusters, and the variance within 

those clusters increases.  Choosing where to stop the clustering procedure involved 

analyzing the cluster dendrogram and the agglomeration schedule table.  The 

dendrogram is a tree-like diagram that displays the linkages between groups from the 

initial cases to the final all-inclusive cluster; along one axis is the list of cases, and 

along the other axis is the scaled distance between cluster centroids (Figure 8).  As 

the clustering proceeds, the number of groups decreases and the distance between 

group centroids increases.  Generally, a stage is reached at which the distances 

between clusters become large, which means further joining of groups would result in 

relatively large within-group variance; this is a logical stage at which to stop the 

clustering process.  It is also helpful to analyze the agglomeration schedule table to 

determine a stopping point for clustering.  This table shows the clusters being 

combined at each stage and the resulting within-group sum of squares from that join.  

By locating large changes in the sum of squares value, one can determine stages that 

are also likely stopping points for clustering.
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Figure 8.  Example of a dendrogram from a hierarchical clustering procedure 
with five cases.  The optimum cluster solution here is three groups. 
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Refining Clusters 

A disadvantage to hierarchical clustering is that once a case has been assigned to a 

cluster, it cannot be removed and reassigned to a different cluster.  This means that 

near the final cluster solution some cases may be quite different than the means of 

their respective clusters.  The solution given by hierarchical clustering can be refined 

using a k-means clustering technique (Hartigan 1975).  The technique requires an a 

priori decision as to the number of groups in the model.  Beginning with k number of 

groups, the data are partitioned with k centroids, and each observation is grouped with 

its most similar centroid point based on having the lowest calculated sum of squares.  

New centroids are calculated and observations are re-assigned if they are more similar 

to another group.  In an iterative fashion, the algorithm continues, moving cases from 

one group to another until no further improvement in the sum of squares within each 

cluster can be achieved. 

 

To refine the clusters of headwater catchments, I selected the number of groups based 

on the result from the hierarchical clustering.  In addition, I used the cluster centroids 

from the hierarchical clustering solution as ‘seed points’ for the k-means clustering 

process.  In this manner, cases that were misclassified in the hierarchical procedure 

were re-assigned to groups with more similar attributes.  The k-means clustering 

procedure produces an ANOVA-type output comparing the attribute data distribution 

within each cluster; the F statistics should all be large and significant, because the 

clustering procedure is attempting to reduce within-group sum of squares.  The 

magnitude of any given F statistic can be used to assess the relative importance of a 

particular attribute in creating a cluster.  Finally, I examined the cases in each cluster 

to note any general patterns with respect to landscape-scale data, and, using the 

respective F statistics, I described the composition of each cluster. 
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Top-Down Classification Results 

 

I used hierarchical cluster analysis to cluster all 862 catchments based on their 

standardized attribute values for circularity, mean elevation, mean slope, resultant 

aspect, and percent coverage for each type of land use and rock strength class.  Based 

on the dendrogram and the agglomeration schedule table (Table 3), I found several 

possible stopping points for the clustering procedure.  The first relatively large gap in 

cluster distances occurs at stage 849, which would be a 13-cluster solution.  The 

distances between clusters increase at each successive stage, but get substantially 

larger at stage 855, a seven-cluster solution; the largest distance occurs where the 

final clusters join.  Any stopping point at stage 855 or above would be a suitable 

stopping point, based on the occurrence of relatively large gaps in cluster distances.  I 

stopped the clustering at stage 856, a six-cluster solution.  Group sizes do not change 

dramatically between stage 855 and stage 856; however, stage 857 joins two very 

large groups that should likely remain separate. 

 

The k-means cluster procedure produced an ANOVA-type table showing that the 

attributes used for clustering had significantly different means in each group (Table 

4).  This is expected because the groups were created to maximize attribute 

differences between groups.  The magnitude of the F statistic indicates the importance 

of a particular attribute in the clustering procedure.  Rock strength was the most 

important attribute in the clustering process; in particular, the percentages of very 

strong rocks and strong rocks were essential for creating groups.  The percentage of 

burned area was also a significant attribute for clustering followed by medium and 

weak rock strength.  The lightly disturbed land use designation and mean elevation of 

the catchment were the remaining important attributes in this process.  Mean aspect 

appeared to contribute significantly to group assignment, but it was the least valuable 

attribute in this clustering process.
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Table 3.  Final 20 stages of clustering in the hierarchical cluster analysis of all 
862 catchments.  The distance column is the distance between cluster centers; 
the bold row, stage 856, is the stopping point chosen in this analysis. 

 Clusters Combined  Stage Cluster First 
Appears 

 

Stage Cluster 1 Cluster 2 Distance Cluster 1 Cluster 2 Next 
Stage 

842 90 712 3435 830 769 851 
843 2 4 3525 839 832 853 
844 7 84 3615 808 825 854 
845 12 324 3709 831 822 847 
846 130 137 3812 826 833 852 
847 12 244 3950 845 841 854 
848 71 129 4092 824 816 852 
849 1 5 4244 837 836 856 
850 542 549 4398 838 819 857 
851 90 93 4619 842 820 857 
852 71 130 4854 848 846 859 
853 2 123 5134 843 834 856 
854 7 12 5415 844 847 855 
855 7 242 5902 854 827 860 
856 1 2 6468 849 853 858 
857 90 542 7046 851 850 859 
858 1 95 7822 856 840 861 
859 71 90 8611 852 857 860 
860 7 71 9672 855 859 861 
861 1 7 11193 858 860 0 
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Table 4.  ANOVA table from top-down k-means cluster procedure.  The results 
show that attribute means differ between the six groups.  The magnitude of the F 
statistic indicates the importance of that attribute in the clustering procedure. 

Cluster Error 

 
Mean 
Square df 

Mean 
Square df F Sig. 

Circularity 16.4 5 0.91 856 18.1 0.00 
Resultant Aspect 2.9 5 0.99 856 3.0 0.01 
Mean Elevation 66.5 5 0.62 856 107.7 0.00 
Mean Slope 39.6 5 0.78 856 51.1 0.00 
Burned Area 129.6 5 0.25 856 520.3 0.00 
Lightly Disturbed 90.1 5 0.48 856 187.9 0.00 
Heavily Disturbed 7.4 5 0.96 856 7.6 0.00 
Pristine 54.5 5 0.69 856 79.3 0.00 
Settled Area 46.2 5 0.74 856 62.9 0.00 
Weak Rocks 78.7 5 0.55 856 144.3 0.00 
Medium Rocks 112.3 5 0.35 856 320.8 0.00 
Strong Rocks 144.9 5 0.16 856 909.5 0.00 
Very Strong Rocks 151.8 5 0.12 856 1273.8 0.00 
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The six groups created by the k-means clustering procedure had a fairly unequal 

number of cases in each group (Table 5).  By observing the final cluster centers and 

examining the attribute values in each case, I described the typical suite of variables 

for each group.  Catchments in the top-down classification group three (TD-3) were 

mostly found in pristine areas at high elevations and had medium-strength rocks.  

This was the largest of all groups, accounting for nearly half of all cases.  The 

classified groups TD-5 and TD-6 each had 152 cases.  TD-5 catchments had strong 

rocks, a low mean elevation, and low mean slopes; catchments that were lightly 

disturbed with high percentages of medium-strength rocks were likely to be classified 

into TD-6.  The next most frequently occurring catchments were in group TD-1 and 

are found in areas with weaker rocks at low elevation, with high percentages of 

settled land.  TD-2 and TD-4 had the fewest catchments in this study area.  TD-2 

catchments have very strong rocks, theoretically the most important attribute in the 

clustering procedure, light disturbance, and a low mean slope.  TD-4 is essentially 

composed of the catchments with a high percentage of burned area. 

 

The distribution of catchments across the study area reflects the importance of a few 

attributes in classifying each of the cases (Figure 9).  The two most striking spatial 

patterns can be seen with the location of catchments in TD-5 and TD-3.  The geologic 

variable ‘strong rock strength’ was clearly driving the classification of catchments 

into TD-5 (refer to Figure 4, Chapter II).  Most TD-5 catchments lay on the east side 

of the northeast/southwest trending Greenbrier Fault that separates strong rocks from 

weak and medium-strength rocks.  TD-4, the largest group, created two large 

contiguous clusters around each of the contiguous pristine areas in the park.  Geology 

and land use are also important in creating TD-1; notably, this group captured many 

of the catchments in Cades Cove, which had large areas of limestone and experienced 

a high degree of settlement.  TD-2 was heavily influenced by the infrequent 

occurrence of very strong rocks, resulting in few catchments being classified into this 

group.  The burned areas in the park were small and discontinuous; however, the few
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Table 5.  Number of cases in each top-down classified group and the prominent 
attributes in each group. 

Top-down 
Group 

Count Important Attributes # Sampled 

TD-1 94 Weak rocks, low elevation, high settlement 6 
TD-2 28 Very strong rocks, light disturbance, low 

mean slope 
5 

TD-3 419 Pristine, high elevation, medium-strength 
rocks 

15 

TD-4 17 Burned area 5 
TD-5 152 Strong rocks, low elevation, low mean slope 10 
TD-6 152 Light disturbance, medium-strength rocks 10 
Total 862  51 
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Figure 9.  Results from the top-down classification procedure. 
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relatively large patches, found mostly near the park boundary, dominated the TD-4 

classification. 

 

The top-down classification technique created groups with distinct spatial patterns.  

This indicated that the clustering algorithm worked well at delineating groups that 

had at least one dominant landscape-scale attribute in common.  It was also reassuring 

to note that the salient grouping attributes were geology and land use, which were 

likely to represent different types and magnitudes of watershed processes.  For 

instance, it is a logical step to presume that TD-3 catchments, which consist of 

predominantly pristine areas, should have lower sediment loadings than more 

disturbed catchments.  Additionally, TD-2 and TD-5 were composed of catchments 

with low mean slopes; I anticipated that streams in these catchments should have 

wider channels because of increased meandering and more stored sediment. 

 

Most watershed classification schemes stop at this juncture and predict that stream 

channels will be different in each of the classified catchments.  In this study, I 

collected channel morphology data from a sample of catchments; thus, I could 

directly test how much variation in stream channel morphology existed between these 

classified groups as well as evaluate other techniques of watershed classification.  

According to my first hypothesis, this top-down statistical classification, based 

entirely on landscape-scale attributes, will have distinguished groups of headwater 

catchments that have significantly distinct types of stream channel morphology.  

After presenting an alternative classification procedure in the next chapter, the 

bottom-up approach, I use the channel morphology data that I collected to test the 

top-down hypothesis. 
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CHAPTER IV 
CATCHMENT CLASSIFICATION BASED 

ON REACH-SCALE DATA 
 

The process of classifying watersheds typically involves grouping catchments 

exclusively on the basis of a suite of landscape-scale attributes.  However, because I 

wished to create groups with distinctly different types of channel morphology, it 

seemed reasonable to first sort the streams into groups of similar channel types and 

then to assess whether group membership could be predicted by the landscape-scale 

information associated with each group.  This alternative technique for catchment 

classification is based on my second working hypothesis, that catchments grouped by 

their respective distinct types of stream channels, a ‘bottom-up’ approach, will show 

significant relationships between stream channel morphology and landscape-scale 

attributes.  In this chapter, I describe the procedure for classifying a sample of stream 

channels based on reach-scale channel morphology values and discuss the role of 

fluvial processes in guiding group membership.  

 

Reach-Scale Data 

 

In order to compare the relationships between landscape-scale attributes and reach-

scale data, it was necessary to collect channel measurements and water quality 

samples in the field.  I used the dataset of 862 classified headwater catchments, 

generated by the top-down classification procedure (Chapter III, Figure 9), to select 

51 catchments for the collection of channel morphology information.  The catchments 

were chosen in a stratified random manner such that each classified group was 

represented by a minimum of five sample catchments (Chapter III, Table 5).  Using 

the top-down classification, which created groups with differing combinations of 

landscape-scale attributes, to select the 51 sample catchments, ensured a broad 

representation of the study area (Chapter III, Figure 7). 
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I followed modified guidelines for the establishment of a reference reach (Harrelson 

et al. 1994; Bunte and Abt 2001) and the collection of water samples (Tennessee 

Department of Environmental Quality protocols) in collecting channel morphology 

information and water quality samples.  I measured and recorded bankfull width and 

depth, the reach water surface slope, the median particle size of the bed, the stored 

fines in a riffle, and collected a water sample for the analysis of water chemistry.  I 

photo-documented the reach and installed a local datum with a 90-cm (three-foot) 

section of rebar; I marked the monument with a brass tag stamped with the study and 

reach numbers.  At or near the monument, I recorded a GPS point, to be differentially 

corrected using Pathfinder software, version 2.90.  Unfortunately, when plotting these 

GPS points, I determined that four sample reaches were not actually located in one of 

the 862 headwater catchments; therefore, I removed them from any subsequent 

analyses, leaving 47 sampled reaches (Table 6). 

 

Channel Morphology 

In the field, I visited each catchment during low flow conditions and chose a 

representative reach approximately 100 m upstream from the mouth; if necessary, I 

traveled farther upstream in order to get above any geomorphic influence from the 

trunk stream.  This reference reach extended upstream for a distance of at least 20 

times the active channel width.  With a stadia rod and a rotating laser level that 

provided a level datum, I mapped five to seven channel-cross-sections along the 

reach.  Based on these data and my observations, I selected an additional cross-

section that I felt best represented the channel conditions for the reach.  I established 

the monument near this location, being careful to place it outside of the active 

floodplain. 

 

Using standard survey techniques for small wadeble streams (Harrelson et al. 1994), I 

mapped the channel cross- section at 0.1 m intervals or where I found a channel 

morphological feature of interest, including the bankfull positions, the water surface, 
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Table 6.  The 51 sample catchments used to collect channel morphology 
information.  The coordinates mark the monumented piece rebar adjacent to the 
surveyed channel cross-section.  Asterisks mark catchments surveyed but not 
used for further analysis because of problems with sampling.   

Reach # Stream Name Latitude (N*) Longitude (W)*
1 Rush Branch 35.667070 83.717412
2 Laurel Cove Creek 35.609103 83.736351
3 Cooper Branch 35.587997 83.812853
4 Dry Branch  35.744071 83.198369
5 Trib. of Cosby Creek 35.758137 83.207816
6 Leatherwood Branch 35.756639 83.105076
7 Indian Camp Branch 35.708354 83.470890
8 Little Brier Branch* 35.680936 83.642704
9 Trib. of Bradley Fork 35.565567 83.308709
10 Smith Branch 35.587158 83.359275
11 Bunches Creek* 35.553969 83.164887
12 Janey Whank Branch 35.465639 83.434528
13 Bearpen Hollow* 35.636958 83.462208
14 Road Prong 35.610916 83.459849
15 Tulip Branch 35.646233 83.582536
16 Copperhead Branch 35.730864 83.271448
17 Wilson Branch 35.610056 83.877747
18 Long Branch 35.689935 83.395265
19 Palmer Branch 35.621083 83.089352
20 Baxter Creek 35.742169 83.113938
21 Trib. of Mingus Creek 35.518201 83.319884
22 Laurel Creek 35.608708 83.748038
23 Big Holler 35.624242 83.682632
24 Beech Flats Prong 35.601166 83.409331
25 Trib. Of Little Cataloochee Creek 35.673510 83.077286
26 Ball Branch 35.718694 83.090492
27 Carolina Prong 35.775671 83.130716
28 Bird Branch 35.712571 83.381761
29 Trib. of Cataloochee Creek 35.662875 83.072235
30 Shop Creek 35.531410 83.982642
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Table 6.  Continued. 

Reach # Stream Name Latitude (N*) Longitude (W*)
31 Blacksmith Branch 35.531843 83.983789
32 Arrowhead Branch 35.646370 83.554838
33 Ledge Creek 35.628907 83.193308
34 Trib. of Ledge Creek 35.628914 83.194012
35 Baumgardner Branch 35.493324 83.425899
36 Mill Branch 35.615165 83.906766
37 Enloe Creek* 35.614109 83.270578
38 Jack Bradley Branch 35.595472 83.386174
39 Poplar Branch 35.669125 83.624395
40 Deep Creek 35.589928 83.428027
41 Parsons Branch 35.506777 83.925479
42 Trib. of Abrahms Creek 35.593877 83.845312
43 Cosby Creek 35.744168 83.197721
44 Davidson Creek 35.639785 83.120473
45 Tobes Creek 35.776880 83.131464
46 Left Fork Anthony Creek 35.579104 83.758637
47 Arbutus Branch 35.597171 83.859102
48 Cades Branch 35.590859 83.825702
49 Trillium Branch 35.674195 83.415359
50 Twomile Branch 35.691683 83.531579
51 Kingfisher Creek 35.630259 83.914070

*Positional error is less than 2 meters. 
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and the thalweg position (Figure 10).  While surveying each cross-section along the 

reach, I used leveling techniques, with the rotating laser, to determine the water 

surface slope along the reach.  I always began and ended this longitudinal survey with 

the water surface elevation on similar channel features such as a riffle or a pool. 

 

I used the Wolman (1954) pebble count method to determine the median particle size 

(D50) of the bed material.  At each cross-section surveyed along the reach, I walked 

heel-to-toe across the reach, picking up the first particle I touched just in front of my 

toe; using a gravelometer capable of determining 18 size classes ranging from 2 mm 

to 362 mm, I recoded the b-axis size class of the each randomly selected particle.  I 

did this across the entire cross-section and made sure to measure a minimum of 100 

particles for the entire reach.  I then calculated the median particle size in a 

spreadsheet using linear interpolation (Bunte and Abt 2001). 

 

I estimated the amount of stored fines in a riffle by directly sampling the bed using 

the ‘quorer’ method (NIWA 2005, Quinn and Cooper 1997).  This method assumes 

that much of the near-surface fines stored in a riffle are mobilized as suspended 

sediment during flood conditions; hence, this technique attempts to replicate sampling 

suspended sediment concentrations during bankfull conditions.  I began by taking a 

background sample of the flowing water near the edge of a riffle.  Then, I pushed a 15 

cm (6 inch) diameter PVC coupling into the bed sediments until I felt the sediment 

size get abruptly larger.  I recorded the depth of the water inside the coupling at five 

scattered locations.  Then, using a piece of rebar, I stirred the sediment and water 

inside the tube for one minute and collected a sample of the slurry.  I re-stirred the 

sediment and measured the depth of disturbed sediment at five scattered locations in 

the cylinder.  Back in the lab, I determined the suspended sediment concentration of 

the slurry sample and the background sample using a hand-operated vacuum pump, 

which filters the sediment from the slurry sample (ASTM 2002).  I subtracted the 
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Figure 10.  Surveying a monumented cross section. 
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background concentration from the slurry concentration, multiplied this value by the 

water depth in the cylinder, and divided that value by the depth of stirred sediment to 

arrive at an estimate of stored fines for that location (NIWA 2005).  This result tends 

to overestimate the probable suspended sediment concentration during bankfull 

discharge, but it is an effective technique for comparing the accumulation of fines 

between different streams.  Finally, the stored sediment value was reported as g/m3, 

which is directly equivalent to mg/l, in order to follow the convention established by 

Quinn and Cooper (1997). 

 

During the field-survey process, I measured the bankfull width and depth for five to 

seven cross-sections along each reach.  I used this information to assist in choosing a 

representative reach for the establishment of a monumented cross-sectional survey.  

Choosing a representative reach is a rather subjective procedure.  Therefore, I 

compared the mean values from all of the surveyed cross-sections in a reach to the 

width and depth values from the monumented reach.  In five instances (reaches 3, 5, 

17, 39, and 43), the monumented reach values differed by more than two standard 

deviations from the mean value for that reach.  Each of these cases was also an outlier 

for width and depth.  Therefore, in each of those cases, I used the mean reach values 

for width and depth calculations rather than the monumented reach values. 

 

The largest channel used in this analysis, reach 17, had a bankfull cross-sectional area 

of 1.82 m2; this reach also had the widest channel, measuring 6.13 m, and quite nearly 

the deepest at 0.30 m (Table 7).  Reach 48 had the smallest channel, 0.14 m2 in cross-

section, and was both narrow and shallow.  Otherwise stream channels tended to be 

wide and shallow or narrow and deep; the mean bankfull width of all surveyed 

channels was 3.19 m and the mean bankfull depth was 0.23 m (Table 7).  The average 

reach slope for the surveyed reaches that I used for further analysis was 8.4%, with 

reach 21 being the steepest (19%) and reach 42 having the most shallow slope (<1%).  

Median particle sizes range from fine gravel in reach 42 (4.0 mm), where sand and
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Table 7.  Results of channel morphology measurements from the 51 sampled 
reaches.  Reaches marked with an asterisk were not used for further analysis 
because of problems with sampling. 

Reach # Width 
(m) 

Depth 
(m) 

Cross-
sectional 
Area (m2) 

Reach 
Slope %

Median 
Particle Size 

(mm) 

Stored 
Sediment 

(g/m3)
1* 3.50 0.21 0.73 6 30.4 12,347
2* 2.80 0.16 0.46 10* 30.0 75,902
3* 2.92 0.19 0.54 5 21.9 6,137
4* 1.80 0.14 0.25 17* 33.7 13,954
5* 4.88 0.16 0.76 6 12.5 8,138
6* 2.10 0.13 0.27 4 10.1 27,722
7* 4.00 0.13 0.53 9 15.1 16,024
8* 3.70 0.21 0.79 3 13.2 35,669
9* 2.30 0.16 0.37 12* 23.7 11,816
10* 3.40 0.19 0.63 6 8.4 20,085
11* 2.25 0.13 0.30 10* 6.9 30,604
12* 2.30 0.19 0.44 11* 15.3 26,677
13* 3.60 0.33 1.17 26* 42.8 16,612
14* 4.20 0.17 0.71 6 21.0 6,405
15* 3.00 0.20 0.60 11* 8.1 28,254
16* 3.40 0.24 0.83 18* 18.5 4,029
17* 6.13 0.30 1.82 9 8.9 3,585
18* 3.30 0.26 0.87 7 11.6 25,591
19* 2.20 0.24 0.52 3 6.4 52,215
20* 3.30 0.28 0.93 14* 22.1 6,307
21* 2.30 0.18 0.41 19* 9.3 11,476
22* 3.25 0.27 0.87 2 10.9 33,372
23* 3.60 0.19 0.67 7 21.9 45,393
24* 3.85 0.20 0.76 6 20.2 12,275
25* 1.90 0.21 0.39 13* 12.9 5,524
26* 2.55 0.20 0.52 10* 13.1 1,195
27* 2.50 0.08 0.20 7 14.0 62,339
28* 3.45 0.15 0.52 3 10.3 16,395
29* 2.60 0.14 0.37 18* 23.1 138,532
30* 3.15 0.30 0.93 7 10.5 11,806
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Table 7.  Continued. 

Reach # Width 
(m) 

Depth 
(m) 

Cross-
sectional 
Area (m2) 

Reach 
Slope %

Median 
Particle Size 

(mm) 

Stored 
Sediment 

(g/m3)
31* 3.75 0.23 0.85 3 12.5 3,410
32* 2.45 0.26 0.63 13* 9.4 16,537
33* 2.10 0.20 0.41 7 11.1 39,359
34* 1.80 0.11 0.19 10* 9.7 43,709
35* 3.35 0.19 0.63 6 10.1 16,907
36* 2.33 0.22 0.53 7 17.4 6,292
37* 5.35 0.39 2.11 6 31.1 13,146
38* 3.05 0.31 0.94 7 18.1 24,774
39* 3.19 0.39 1.25 15* 34.8 14,493
40* 3.85 0.21 0.79 5 32.9 21,327
41* 2.90 0.24 0.69 4 27.2 25,866
42* 1.30 0.18 0.24 0 4.0 79,779
43* 4.30 0.32 1.36 13* 37.3 3,996
44* 3.50 0.20 0.70 5 14.7 108,713
45* 3.70 0.19 0.72 9 15.1 74,389
46* 3.75 0.33 1.23 15* 34.1 6,710
47* 4.05 0.34 1.37 5 6.2 14,486
48* 1.10 0.13 0.14 1 7.0 4,921
49* 3.60 0.36 1.30 10* 38.4 4,540
50* 3.25 0.26 0.84 6 11.7 44,081
51* 3.10 0.23 0.71 8 19.9 25,434

Means 3.19 0.23 0.80 8.4 17.4 26,876
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silt were prevalent, to coarse gravel in streams with numerous boulders such as reach 

49 (42.8 mm); the mean size of 17.35 mm falls between the medium and coarse 

gravel size classes.  The mean value for stored fines is 26,876 g/m3; however, more 

than an order of magnitude difference occurs between the minimum of 1,195 g/m3 in 

reach 26 and the maximum in reach 29 of 138,532 g/m3.  Note that the quorer method 

tends to overestimate suspended sediment during bankfull discharge but acts as a 

good comparative value between sites.  

 

Stream Water Chemistry 

Several water monitoring stations in GSMNP are used in ongoing studies of water 

chemistry in the park.  However, few of these stations are located on the small 

streams that I sampled in this project.  Therefore, I collected water samples for 

analysis by the EPA-certified Tennessee Department of Environmental Quality 

laboratory in Knoxville.  In an attempt to control for different flows and seasonal 

effects, I collected all water quality samples during a two-week period of low flow 

conditions in early December 2003.  As I only collected one sample from each 

stream, these single samples cannot represent any temporal or seasonal trend, and it is 

not possible to determine whether the results fall within the typical values for each 

stream.  However, the results could possibly be used to compare the general 

differences in stream water chemistry between all catchments because the samples 

were taken within a few days of each other. 

 

At 40 of the 47 streams, I recorded temperature and pH, and then collected two liters 

of stream water using the grab method.  The samples were transported, in ice, to the 

Tennessee Department of Environment and Conservation Water Quality laboratory in 

Knoxville, TN within 24 hours.  Following EPA guidelines, each sample was 

analyzed for total dissolved solids (TDS), which is the sum of the major ions calcium 

(Ca+2), potassium (K+), chloride (Cl-), and sulfate (SO4-2), and for the indices of 
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biological productivity total nitrogen (TN), total phosphorous (TP), and total organic 

carbon (TOC). 

 

Stream temperatures, which were only successfully recorded at 30 streams, were 

quite low, as would be expected for December, with a relatively large difference 

between the minimum of 3.0° C in reach 14 and the maximum temperature of 9.7° C 

in reach 41 (Table 8).  I found little difference between pH values; however, total 

dissolved solids showed a large amount of variation, ranging from 2.34 mg/l in reach 

32 to 11.96 mg/l in reach 31; this was largely due to different levels of calcium and 

sulfate ions in the sampled streams.  Nutrient levels were low; several streams had no 

detectable levels of total nitrogen, and only five streams actually had any detectable 

levels of total phosphorous.  Total organic carbon was generally low, averaging 2.11 

mg/l, and showed very little variation between the sampled streams. 

 

Classification of Stream Reaches 

 

At this point, my GIS database contained a suite of landscape-scale attribute 

information layers, including elevation, slope, aspect, land use, and rock strength for 

the study area, delineated headwater catchments, an extracted digital stream network, 

tables of landscape-scale data within each catchment, channel morphology 

information for 47 different reaches, and stream water chemistry data for 40 different 

streams.  Thus, I could proceed with the second classification procedure, the bottom-

up approach.   

 

Watershed classification is normally done by grouping catchments with similar 

landscape-scale attributes and then comparing discharge, water chemistry, or more 

infrequently, channel types in order to evaluate the success of the classification 

procedure (e.g., Jones et al. 1997, Lipscomb 1998).  Given that it is the actual channel 

habitat that is often of interest in these classification schemes, I developed a method 
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Table 8.  Stream water chemistry results from the sampled catchments.  The 
hyphen (-) indicates that no sample was collected for that stream. 

Reach # Temperature 
(Celsius) pH 

Total 
Dissolved 

Solids 
(mg/l) 

Total 
Nitrogen 

(µg/l) 

Total 
Phosphorous 

(µg/l) 

Total 
Organic 
Carbon 
(mg/l) 

1 6.0 6.98 7.53 110 5 2.11 
2 - 6.87 5.82 130 0 1.63 
3 6.7 6.92 5.91     0 0 1.82 
4 7.8 6.81 7.29 370 0 1.50 
5 - 6.93 5.97 450 0 1.52 
6 - 6.96 7.20 140 0 1.49 
7 - 7.08 4.82     0 0 1.59 
8 - - - 170 0 - 
9 8.5 6.95 6.18   70 0 2.06 
10 - 7.07 4.13 - - 1.75 
11 - - - 580 0 - 
12 - - - 310 0 - 
13 - - - 670 0 - 
14 3.0 6.37 4.69   50 6 1.82 
15 6.4 6.65 4.76 310 0 1.96 
16 - 6.01 6.07 - - 1.63 
17 5.1 6.54 7.21 660 0 2.53 
18 7.9 6.70 5.79   80 0 1.50 
19 - - -     0 0 - 
20 - 6.58 5.83 340 14* 1.47 
21 8.4 6.74 4.53 550 38* 1.61 
22 6.2 6.65 7.30 - - 1.84 
23 6.5 6.73 5.15 - - 1.69 
24 5.2 6.51 10.13 300 0 1.59 
25 - - -   60 0 - 
26 - - - - . - 
27 - 7.03 6.07     0 0 1.48 
28 7.1 7.13 5.95     0 0 1.46 
29 - - -   70 0 - 
30 7.1 6.70 10.56   80 0 2.03 
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Table 8.  Continued. 

Reach # Temperature 
(Celsius) pH 

Total 
Dissolved 

Solids 
(mg/l) 

Total 
Nitrogen 

(µg/l) 

Total 
Phosphorous 

(µg/l) 

Total 
Organic 
Carbon 
(mg/l) 

31 7.9 6.79 11.96 290 0 1.81 
32 7.5 6.96 2.34 - - 1.84 
33 - 6.94 5.41     0 0 1.61 
34 - 6.75 5.38 110 0 2.02 
35 - - -   70 0 - 
36 7.1 6.89 7.16 360 0 1.94 
37 - - - 230 0 - 
38 6.2 6.97 4.35   90 0 1.70 
39 7.7 6.85 4.46 490 0 1.85 
40 8.0 6.83 5.08 - - 1.87 
41 9.7 7.60 9.52   90 0 1.92 
42 5.9 7.52 8.42 450 0 2.55 
43 7.7 7.44 5.66     0 0 1.46 
44 - - -   20 0 - 
45 9.5 7.10 5.77 410 0 1.61 
46 4.0 7.01 5.49 170 24* 1.65 
47 4.9 6.97 6.23     0 0 2.46 
48 6.7 6.99 5.87 110 5 1.70 
49 5.0 6.66 4.60 130 0 1.54 
50 9.1 7.03 8.43     0 0 2.20 
51 5.9 6.90 7.32 370 0 1.77 

Means 6.9 6.9 6.3 207 2 1.8 
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for classifying the 862 catchments in this study based directly on the variability in 

stream channel morphology.  This bottom-up approach involved first reducing the 

channel morphology data using principal components analysis (PCA) (ter Braak 

1987).  I then clustered the PCA scores using the same two-step approach as 

described for the top-down approach for catchment classification. 

 

Principal Components Analysis 

Channel morphology values are often highly auto-correlated with each other.  For 

instance, channel width and depth both tend to increase with increasing catchment 

size; in addition, reach slope angle and median particle size both tend to decrease 

with decreasing average slope in a drainage basin.  Therefore, it is helpful to account 

for this auto-correlation by reducing the number of attributes before attempting to 

classify the stream channels into distinct groups.  Principal Components Analysis 

(PCA) is well suited to this data reduction task.  PCA is also used to identify 

underlying factors or processes that may explain the variance in a large data matrix.  

The analysis seeks to collect the common variance among many variables into one 

factor.  The process helps to identify independent variables with common variance, 

which is likely measuring the same phenomenon, in order to combine those variables 

into uncorrelated new variables.  This indirect gradient analysis creates groupings, 

called principal components, by maximizing the variance among the variables 

(columns of data); in this manner, it differs from the cluster analysis process, which 

creates groups of cases (rows of data). 

 

The PCA process is similar to regression in that PCA attempts to capture the 

variability in a dataset.  The first principal component is considered a new variable 

that explains as much linear variation in all of the original variables as is possible; the 

second component explains as much of the remaining variation as is possible, and so 

on.  The model will calculate as many principal components as the number of 

columns in the dataset; however, normally only the first few components explain any 
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significant amount of variation in the original data.  The eigenvalue refers to the 

magnitude of the component vector; larger eigenvalues explain more variation.  In 

general, eigenvalues should be at least greater than 1.0 because the principle 

component should be at least as important to the model as the original variable (ter 

Braak 1987).  With PCA, I could calculate the percentage of variation that each 

component explains in the model as well as determine which axis best explained 

certain variables based on the component ‘loadings,’ values that indicate the strength 

of correlation between an original variable and a principal component. 

 

I conducted PCA on the channel morphology data in order to collapse highly 

correlated variables into the same principal component.  When constructing the 

components, I used a varimax rotation in order to make each component orthogonal 

and thus, not correlated with the other components.  In addition, I saved the 

component scores, which can be thought of as the coordinates of each original 

channel morphology value in principal component space, using the Anderson-Rubin 

method (Anderson and Rubin 1956), a technique that standardizes the component 

scores to a mean of zero with a standard deviation of one. 

 

Using the component loadings and the component scores, I described each principal 

component and graphed the location of each stream channel relative to the component 

axes.  Based on the spatial distribution of each measured stream channel in principal 

component space, I was able to detect underlying physical processes represented by 

the principal components that aided in explaining the distribution of channel 

morphology values. 

 

Stream Channel Clustering 

In order to organize the stream channels into groups with similar channel 

morphology, I ran a two-step clustering procedure similar to that used in the 

catchment clustering process.  I used Ward’s method for hierarchical cluster analysis 
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(Ward 1963) to group the 47 reaches based on the standardized PCA scores rather 

than the raw channel morphology values.  I selected the stopping point for clustering 

using the dendrogram and by finding large gaps in the distance measurement of the 

agglomeration schedule table.  I then refined the group assignments using k-means 

clustering (Hartigan 1975). 

 

Bottom-Up Classification Results 

 

Prior to running to running the PCA, I tested whether the sample distribution of 

stream channel morphology was similar to a normal distribution.  I evaluated the 

Shaprio-Wilk test statistic (Shapiro et al. 1968), which is used when sample sizes are 

relatively small.  If the statistic is not significant, at the 0.05 level, then no difference 

between the sample distribution and a normal distribution is detected.  I also 

examined a histogram of the sample data to evaluate the shape of the distribution, a 

boxplot to note any outliers, and a normal probability plot to check for a linear pattern 

as predicted by normally distributed data.  If a category did not fit a normal 

distribution, I log-transformed the data and re-tested for normality. 

 

Bankfull width and depth were the only channel morphology values that appeared to 

follow a normal distribution, as their Shaprio-Wilk statistics were not significant 

(Table 9).  However, an examination of the box plots for both width and depth 

showed several outliers from the distribution.  In fact, each variable had several 

outliers that were much larger than the mean.  This indicated that a log transformation 

of the variables would better approximate a normal distribution, as log transforming 

tends to reduce the impact of extremely large values. 

 

I log-transformed all of the variables and evaluated the Shaprio-Wilk statistic for 

normality (Table 10).  All of the log-transformed variables followed a normal 

distribution, except for the log of reach slope.  By examining the histograms, I 
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Table 9.  Test for normality of stream channel morphology variables.  
Significant Shaprio-Wilk statistics indicate the distribution is different from a 
normal distribution. 

 Shaprio-Wilk 
  Statistic df Sig. 
Width 0.09 48 0.23* 
Depth 0.16 48 0.25* 
X-Area 0.22 48 0.01* 
Reach Slope 0.14 48 0.10* 
d50 0.17 48 0.01* 
SS 0.23 48 0.01* 

*Significant at 0.05 level 
 

Table 10.  Test for normality of log-transformed stream channel morphology 
variables.  Significant Shaprio-Wilk statistics indicate the distribution is 
different from a normal distribution. 

 Shaprio-Wilk 
  Statistic df Sig. 
Log Width 0.12 47 0.06* 
Log Depth 0.11 47 0.63* 
Log X-Area 0.11 47 0.20* 
Log Reach Slope 0.14 47 0.01* 
Log d50 0.07 47 0.40* 
Log SS 0.08 47 0.86* 

*Significant at 0.05 level 
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determined that the original reach slope values more closely approximated a normal 

distribution.  Thus, I used the log-transformed values for all channel morphology 

variables, except for reach slope, in all further analyses. 

 

Having run the principal components analysis using the logs of bankfull width, depth, 

and cross-sectional area, reach slope, and the logs of median particle size and stored 

sediment, I retained the first two principal components (PC1 and PC2) as these were 

the only components with eigenvalues greater than 1.0 (Table 11).  The first 

component captured 46.1% of the variation in the original data, and the second 

component accounted for 21.7% for a cumulative total of 67.8% variation explained 

with this model.  The third component added another 14.5% explained variation to 

the model but had an eigenvalue less than 1.0, so was not retained. 

 

The rotated component matrix table is helpful for explaining the meaning of a 

particular component.  The table shows how each variable ‘loads’ on each 

component.  Higher absolute values indicate that more variation is captured by that 

component; the sign of the loading indicates the direct or inverse relationship between 

the component and the variable.  For instance, the logs of bankfull width, depth, and 

cross-sectional area all loaded highly on PC1, and the sign of each loading was 

positive (Table 12).  This means that PC1 explained the combined variation of these 

three variables, and that higher component scores were related to relatively wider, 

deeper, and larger stream channels.  PC2 captured the variation in reach slope and the 

log of median particle size; it was also a direct relationship, meaning that streams 

with high PC2 scores were likely to have steep water surface slopes and large 

particles in the bed material.  The log of stored sediment had split loadings between 

both components.  It is likely that this variable would load on a third component; 

however, it is not useful to have a component that explains only one variable.  This 

variable was negatively loaded on each component, indicating that low PC1 or PC2 

scores may be indicative of streams with high amounts of stored sediment. 
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Table 11.  Eigenvalues for the six principal components extracted from the 
channel morphology variables. 

Component Eigenvalues 

  Total 
% of 

Variance
Cumulative 

% 
1 2.76 46.07 46.07 
2 1.30 21.74 67.81 
3 0.87 14.51 82.32 
4 0.61 10.24 92.56 
5 0.45 7.44 100.00 
6 <0.01 <0.01 100.00 

 

 

Table 12.  Rotated component matrix for the two principal components used in 
the analysis.  Higher absolute values indicate to what degree each variable is 
explained by a particular component.  

  Component 1 Component 2 
Log Width 0.83 0.09 
Log Depth 0.83 0.08 
Log X-area 0.99 0.10 
Reach Slope -0.06 0.87 
Log d50 0.23 0.78 
Log SS -0.39 -0.34 
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I used the standardized component scores for each of the 47 reaches to group streams 

using the aforementioned two-step classification procedure.  In the first step, Ward’s 

method for hierarchical clustering (Ward 1963), I found five distinct groups of stream 

channels based on the dendrogram and the agglomeration schedule (Table 13).  The 

first large gap in cluster distances occurred at stage 39, which would be an eight-

cluster solution.  However, by moving only a little distance to the right in the 

dendrogram, I encountered a large gap beginning with the five-cluster solution.  A 

pronounced change in the agglomeration schedule occurred at stage 43, a four-cluster 

solution; yet, that stage combined two large groups creating a new group that 

contained over half the reaches.  Thus, I selected the five-cluster solution as being 

most likely to represent small within-group variation and high between-group 

differences of means. 

 

For the second step of the reach clustering procedure, I used the cluster centroids 

from the hierarchically clustered groups as the beginning point for k-means clustering 

into five groups.  Only two cases changed group membership in the k-means 

procedure.  The ANOVA result from the k-means clustering (Table 14) showed that 

each of the components made a significant contribution to the model.  In addition, 

Table 15 also showed that the actual channel morphology values differed 

significantly between the groups, with the exception of stored sediment.  

 

Table 16 shows the case count and description of each bottom-up classified group 

(BU-1 through BU-5) based on the range of channel morphology values in each 

group.  In order to aid in describing the type of channel morphology of each group as 

well as to explain any underlying processes captured by the PCA procedure, it was 

helpful to plot the catchments into principal component space (Figure 11).  The 

largest group of catchments, with 16 cases, was BU-5, which had mid-range values 

for all the channel morphology measurements; all of the component scores are near 

zero.  Relative to this group, the 13 reaches in BU-2 had roughly the same size
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Table 13.  Agglomeration schedule for hierarchical clustering of stream reaches 
based on channel morphology variables. 

Stage Clusters Combined Coefficients Stage Cluster First 
Appears Next Stage 

  Cluster 1 Cluster 
2  Cluster 

1 Cluster 2  

1 29 30 0.003 0 0 27 
2 27 28 0.006 0 0 22 
3 19 23 0.012 0 0 13 
4 20 21 0.020 0 0 9 
5 36 37 0.029 0 0 35 
6 3 5 0.038 0 0 14 
7 8 10 0.054 0 0 18 
8 15 17 0.070 0 0 10 
9 16 20 0.088 0 4 16 

10 15 18 0.106 8 0 17 
11 40 43 0.126 0 0 19 
12 6 9 0.152 0 0 21 
13 19 22 0.177 3 0 23 
14 3 7 0.204 6 0 20 
15 11 12 0.235 0 0 26 
16 16 24 0.277 9 0 25 
17 13 15 0.342 0 10 26 
18 4 8 0.408 0 7 21 
19 40 41 0.480 11 0 28 
20 2 3 0.581 0 14 33 
21 4 6 0.705 18 12 37 
22 25 27 0.839 0 2 32 
23 19 26 0.984 13 0 31 
24 39 42 1.133 0 0 34 
25 14 16 1.287 0 16 36 
26 11 13 1.454 15 17 31 
27 29 31 1.663 1 0 32 
28 38 40 1.887 0 19 34 
29 34 35 2.127 0 0 39 
30 1 44 2.474 0 0 37 
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Table 13.  Continued. 

Stage Clusters Combined Coefficients Stage Cluster First 
Appears 

Next 
Stage 

  Cluster 1 Cluste
r 2  Cluster 1 Cluster 2  

31 11 19 2.982 26 23 36 
32 25 29 3.684 22 27 40 
33 2 47 4.387 20 0 42 
34 38 39 5.107 28 24 45 
35 33 36 5.862 0 5 39 
36 11 14 6.815 31 25 43 
37 1 4 8.000 30 21 38 
38 1 45 9.557 37 0 42 
39 33 34 11.150 35 29 41 
40 25 32 13.148 32 0 44 
41 33 46 16.025 39 0 44 
42 1 2 19.051 38 33 43 
43 1 11 27.566 42 36 45 
44 25 33 41.065 40 41 46 
45 1 38 59.574 43 34 46 
46 1 25 92.000 45 44 0 
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Table 14.  ANOVA table from the stream channel k-means cluster procedure.  
The results show that each component made a significant contribution to the 
model.  The magnitude of the F statistic indicates the importance of that 
attribute in the clustering procedure.  

 Cluster Error 

  Mean Square df 
Mean 
Square df F Sig. 

PC1 9.106 4 .228 42 39.934 0.00 
PC2 9.164 4 .222 42 41.187 0.00 

 

 

Table 15.  ANOVA results showing that channel morphology values differ 
between the five catchment groups. 

 
Sum of 
Squares df 

Mean 
Square F Sig. 

Log Width Between Groups 0.53 4 0.13 14.70 0.00 
 Within Groups 0.37 42 0.01    
 Total 0.90 46     
Log Depth Between Groups 0.55 4 0.14 16.08 0.00 
 Within Groups 0.36 42 0.01    
 Total 0.92 46     
Log X-area Between Groups 2.08 4 0.52 40.95 0.00 
 Within Groups 0.53 42 0.01    
 Total 2.62 46     
Reach Slope Between Groups 0.06 4 0.01 21.28 0.00 
 Within Groups 0.03 42 0.01    
 Total 0.09 46     
Log D50 Between Groups 1.42 4 0.35 13.49 0.00 
 Within Groups 1.10 42 0.02    
 Total 2.52 46     
Log Stored Between Groups 1.70 4 0.42 2.33 0.07 
 Sediment Within Groups 7.67 42 0.18    
 Total 9.38 46     
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Table 16.  Number of cases in each reach cluster and cluster descriptions. 

Bottom
-up 

Groups 
Count Description 

BU-1 5 Narrow, shallow, small channel, low slope, small particle size, 
and high stored sediment 

BU-2 13 Relatively wide, relatively deep, relatively deep channel, 
relatively low slope, relatively small particle size, and mid-range 
of stored sediment 

BU-3 7 Relatively narrow, relatively shallow, relatively small channel, 
relatively large particle size, relatively high stored sediment 

BU-4 6 Wide, deep, large channel, relatively steep, large particle size, low 
stored sediment 

BU-5 16 Mid-sized width, depth, and channel, moderate slope, relatively 
low stored sediment 

Total 47  



80 

 

3210-1-2-3
PC1

3

2

1

0

-1

-2

-3

PC
2

BU-5
BU-4
BU-3
BU-2
BU-1

Figure 11.  Bottom-up catchment groups plotted by first and second principal 
component score.  (SS, stored sediment) 
 

Steep Slope 
Big D50 

Low Slope 
Small D50 

Low SS 
Large Channel 

High SS 
Small Channel 



81 

channels but had shallower slopes, smaller median particle sizes and higher amounts 

stored sediment.  Reaches in BU-1 and BU-4 were mirror opposites.  BU-1 had the 

smallest stream channels, high levels of stored sediment, and low reach slopes while 

BU-4 reaches had the largest channels, low stored sediment, and steep slopes.  

Finally, BU-3 reaches were relatively small and steep, but had both large median 

particle sizes and large amounts of stored sediment. 

 

Each of the five groups had good clustering in principal component space.  In fact, no 

single case overlapped spatially on any one component with more than two other 

groups.  Hence, only one group dominated each quadrant of the graph.  For instance, 

with respect to PC2, reaches in BU-3 and BU-4 had values similar to each other but 

did not overlap with reach values in either BU-1 or BU-2.  However, BU-3 and BU-4 

were quite different from each other with respect to scores on PC1.  Reaches in BU-5 

had moderate values for both components, while each of the other groups had 

relatively high values on at least one component.  This was convenient for modeling 

each stream channel, as BU-5 reaches could serve as a reference group for comparing 

each of the other types of stream channels. 

 

Using the component loadings with respect to the original channel morphology data, I 

detected two drivers in fluvial processes, discharge and sediment flux, represented by 

each of the principal components.  Channels get larger with increasing PC1 scores, 

indicating a likely increase in discharge along this axis.  This is also supported by the 

fact that stored sediment decreases with increasing PC1 scores, indicating increased 

possible scour and capacity in the larger channels.  High PC2 scores represented 

steeper channels with larger median particle sizes, which can be interpreted as 

decreased transport of fines and possible degradation.  Low PC2 scores likely 

represent streams that are aggrading, because they have lower slopes, smaller median 

particle sizes, and high levels of stored sediment. 
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Classifying each catchment based on its respective stream channel’s grouping 

completed the bottom-up catchment classification procedure.  In view of the fact that 

the groupings are based on stream channel morphology, I expected that the ANOVA 

analysis, which tests the difference of mean channel morphology values between 

catchments, would be highly significant, as the clustering process is based on 

minimizing within-group variation while maximizing between group variation.  This 

does not mean that this second approach is better at delineating catchments with 

different channel morphologies, because I had really only classified the sampled 

reaches themselves at this point.  In order to test the efficacy of this bottom-up 

catchment classification procedure, I needed to, first, determine whether any 

relationship was evident between the reach-scale channel morphology data and the 

landscape-scale data, and, second, assess the success of predicting group membership 

based solely on the landscape-scale attribute data within each catchment. 
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CHAPTER V 
ASSESSING THE CLASSIFICATION TECHNIQUES 

 

The top-down classification of catchments using landscape-scale attributes resulted in 

six groups with distinctly different combinations of landscape attributes; however, 

whether each of these groups has significantly different stream channel morphology 

remains to be seen.  In other words, can the top-down procedure create combinations 

of landscape-scale attributes that actually represent watershed-scale processes, and 

will differences between groups be reflected by different stream channel 

characteristics?   The bottom-up approach to catchment classification organized 

reaches into five groups with distinctly different types of stream channels.  These 

groups appeared to reflect various magnitudes of discharge and sediment flux, 

resulting in different types of stream channels; but whether this variability is directly 

related to any watershed-scale processes has not been shown.  Hence, the question 

remains, can landscape-scale attributes, in any way, predict stream channel habitat? 

 

It is important to test the efficacy of each classification and especially to quantify the 

relationships between landscape-scale attributes and reach-scale values in order to 

link landscape processes to stream channel morphology.  In this chapter, I explore the 

relationship between landscape-scale attributes and stream channel morphology; then, 

I test the effectiveness of each classification method for linking these two scales of 

data with the goal of accurately predicting reach-scale channel morphology values 

throughout all headwater systems in Great Smoky Mountains National Park. 

 

Relationship Between Landscape and Reach-Scale Data 

 

In order to achieve a successful top-down or bottom-up catchment classification, a 

causal relationship between the landscape-scale information and reach-scale data 

must exist.  In other words, I wished to determine if any of the landscape-scale 
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attributes and channel morphology values co-varied in a linear fashion.  To assess this 

covariance, I used bivariate correlation analysis (Sokal and Rohlf 1995), which pairs 

each variable with every other variable in a p x p matrix (where p is an independent 

predictor variable).  The standardized extent to which the two variables are 

proportionate to each other in a linear fashion, that is to which they co-vary either 

directly or inversely, is described by the correlation coefficient; these coefficient 

values range from –1.00 (perfect inverse correlation) to 1.00 (perfect direct 

correlation), with a value near zero indicating no relationship between the two 

variables. 

 

Given that the landscape-scale attributes have several 0% values in the land use and 

rock strength categories, these variables do not follow a normal distribution as is 

required when calculating the Pearson’s R correlation coefficient (Sokal and Rohlf 

1995).  Therefore, I calculated the nonparametric Spearman’s rho (rs) as the rank 

correlation coefficient (Siegel and Castellan 1988).  Spearman’s rho is less sensitive 

than Pearson’s R; however, the interpretation of the coefficient and its significance 

level is the same. 

 

An evaluation of the Spearman’s rho correlation coefficients (Table 17) showed that 

the log of catchment area was highly correlated with the logs of bankfull width, 

depth, and cross-sectional area, as would be expected based on the established 

relationship between watershed size and bankfull stream channel dimensions (Dunne 

and Leopold 1978).  Circularity of a catchment’s shape was directly related to the log 

of median particle size, which suggests the higher peak flows in circular watersheds 

led to relatively higher bedload transport capacities.  The mean elevation and mean 

slope of a catchment were positively correlated with reach slope; hence, high 

elevation, steeply inclined reaches had steep longitudinal profiles.  Mean catchment 

slope was also positively related to the median particle size in a streambed,  
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Table 17.  Correlation coefficients between stream channel morphology values 
and landscape-scale attributes. 

    Log 
Width

Log 
Depth

Log X-
area

Reach 
Slope Log d50 Log 

SS
Log Area rho 0.58* 0.43* 0.62* -0.25 0.09 -0.08
 Sig. 0.00 0.00 0.00 0.09 0.54 0.60
Circularity rho 0.22 0.19 0.20 0.08 0.30* -0.02
 Sig. 0.15 0.21 0.18 0.57 0.04 0.88
Resultant Aspect rho -0.01 -0.02 0.00 0.21 0.05 -0.22
 Sig. 0.96 0.91 0.99 0.15 0.74 0.15
Mean Elevation rho 0.09 -0.02 0.02 0.38* 0.29 -0.04
 Sig. 0.56 0.90 0.90 0.01 0.05 0.78
Mean Slope rho 0.13 -0.08 0.03 0.32* 0.42* -0.27
 Sig. 0.40 0.59 0.86 0.03 0.00 0.07
Burned Area rho -0.07 0.05 0.02 0.24 0.14 -0.13
 Sig. 0.62 0.76 0.87 0.11 0.34 0.39
Lightly Disturbed  rho -0.14 -0.18 -0.19 -0.09 -0.29 0.06
 Sig. 0.36 0.22 0.19 0.56 0.05 0.69
Heavily Disturbed rho -0.25 -0.05 -0.12 0.25 0.05 .31*
 Sig. 0.09 0.74 0.41 0.09 0.73 0.03
Pristine rho 0.32* 0.21 0.28 -0.09 0.24 -0.28
 Sig. 0.03 0.16 0.06 0.55 0.11 0.06
Settled Area rho 0.03 -0.11 0.00 -0.43* -0.36* 0.17
 Sig. 0.83 0.45 0.99 0.00 0.01 0.27
Weak Rocks rho 0.14 -0.18 0.00 -0.43* -0.01 -0.09
 Sig. 0.36 0.22 0.99 0.00 0.93 0.55
Medium Rocks rho 0.07 0.22 0.21 0.18 -0.07 -.29*
 Sig. 0.66 0.14 0.16 0.22 0.65 0.05
Strong Rocks rho -0.15 -0.11 -0.18 -0.07 -0.07 0.27
 Sig. 0.33 0.48 0.22 0.63 0.65 0.07
Very Strong Rocks rho -.32* -0.11 -0.28 0.15 -0.07 0.23
 Sig. 0.03 0.48 0.06 0.32 0.62 0.13
*Correlation is significant at the 0.05 level, n = 47. 
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confirming that reaches with low slopes are more likely to store fine sediments 

(Schumm 1977). 

 

The land use categories of burned area and light disturbance did not show a 

significant relationship with any of the channel morphology values; however, the 

other land use categories did show strong correlations.  Catchments with high 

percentages of heavily disturbed areas had high values for stored sediment indicating 

storage of eroded material.  The settled area attribute was inversely related to reach 

slope; this may be a function of aggradation in the stream channel, but is more likely 

related to people building settlements in less steep places.  Catchments that were 

largely pristine tended to have wider stream channels; this is consistent with other 

findings both in the park (Hart 2002) and in other temperate regions (Davies-Colley 

1997), which demonstrated that old-growth forests contribute coarse woody debris to 

streams leading to channel scour and widening.  

 

The rock strength category produced both expected and counterintuitive correlation 

results with stream channel morphology.  The percent coverage of weak rocks was 

inversely correlated with reach slope, indicating that the more easily weathered 

material was efficiently transported to stream channels possibly leading to an 

accumulation of fines.  However, the medium-strength rocks category was inversely 

related to median particle size, which suggests catchments with these relatively easily 

weathered rocks were not delivering abundant fines to the stream channels.  Matmon 

et al. (2003) found that deep soils in Southern Appalachian mountains restricted rates 

of bedrock erosion; hence, it may be that soils happen to be thicker in the sampled 

catchments with medium strength rocks, which would restrict the transport of fines 

from the hillslopes. 

 

With respect to rock strength, it may also be true that catchments with weak rocks 

have generally lower slopes throughout the catchment; thus, the correlation between 
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weak rocks and reach slope would be a function of drainage basin evolution rather 

than an indication of sediment accumulating in the stream channels.  The very strong 

rocks category was inversely correlated with channel width, meaning catchments with 

this type of geology tended to have narrow stream channels; this, also, is consistent 

with observations showing that more resistant rock inhibits lateral erosion of the 

stream channel (Duval et al. 2004). 

 

Based on these relationships, ten landscape-scale attributes—catchment area and 

circularity, mean slope and elevation, pristine, heavily disturbed, and settled land 

uses, weak, medium, and very strong rocks—appeared to be good candidates for use 

in further modeling of the relationship between landscape processes and stream 

channel morphology.  Having established this set of significant relationships, I 

proceeded to test the effectiveness of each classification technique in creating distinct 

groupings that reflected these significant relationships between landscapes and stream 

channels. 

 

Assessment of the Top-Down Approach 

 
Using a top-down approach, I had classified all 862 catchments into a discrete 

number of groups based on landscape-scale attribute information (Chapter III).  To 

determine whether these groups differed from each other with respect to channel 

morphology, I used analysis of variance (ANOVA) (Fisher 1954) and analysis of 

covariance (ANCOVA) (Sokal and Rohlf 1995) to test for significant differences in 

bankfull width, depth, and cross-sectional area, reach slope, median particle size, and 

stored sediment between the various groups of classified catchments.  I first assessed 

any difference between groups based on un-weighted data, and then I assessed for 

differences between the groups while controlling for the size of each catchment. 
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Comparison of Group Means 

I used ANOVA to test for the equality of group means in channel morphology 

between the six top-down classified groups.  This test actually compares the variation 

within each group to the variation between all of the other groups.  If the variation 

between the groups is large relative to the within-group variation of a particular 

group, then the groups are considered to be quite different.  This test requires that 

observations in each category be normally distributed and that population variances 

be equal or homoscedastic (Sokal and Rohlf 1995).  To assess homoscedasticity, I 

applied Levene’s (1960) test; if the Levene statistic is not significant, at the 0.05 

level, then homogeneity of variance can be assumed.  Although it is optimal to have 

homoscedasticity, the ANOVA technique is still quite robust if this assumption is not 

met. 

 

Having already log-transformed the channel morphology data in order to achieve a 

normal distribution, I ran an ANOVA test to determine whether channel morphology 

values differed significantly with each classified group.  If I found a significant 

difference between the groups for any particular category, I assessed the results of a 

post hoc test to determine which groups were significantly different from any of the 

others.  I used the Bonferroni post hoc test (Sokal and Rohlf 1995) to compare groups 

that had equal variance (they do not have a significant Levene’s test statistic); this 

Bonferroni method computes a t statistic for each combination of the groups, but the 

significance levels are adjusted based on the total number of groups.  For groups with 

unequal variance, I used Tamhane’s T2 post hoc test, which also compares groups 

based on a t statistic (Sokal and Rohlf 1995). 

 

Comparison of Group Means Controlling for Area 

In humid temperate regions, it is often the case that stream channels get larger as the 

drainage area of the catchment increases (Dunne and Leopold 1978).  Therefore, it 

may be necessary to account for the size of a catchment when comparing channel 
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morphology values.  I used catchment area as a covariate in an ANCOVA procedure 

to compare differences between mean channel morphology values for each group 

while controlling for differences in drainage area.  ANCOVA is a technique for 

reducing within-group variability when a covariate is related to a dependent variable 

the same way in each group (Sokal and Rohlf 1995).  With ANCOVA, a regression of 

the dependent variable on the covariate is done for each group, and the residuals are 

used for an analysis of variance procedure.  Like ANOVA, if the within-group 

variation around the mean, which in this case is a regression line, is less than the 

between-group variation, then at least some of the groups differ significantly from the 

others. 

 

This test requires that the dependent variable be normally distributed, that the 

relationship between the dependent variable and the covariate is linear, and that the 

slope of the within-group regression is the same across all groups.  Having previously 

determined that the dependent variables follow a normal distribution, and 

transforming variables as necessary, I regressed each channel morphology value on 

catchment area looking for a linear relationship.  To evaluate homogeneity of slopes 

across groups, I ran the ANCOVA procedure using the dependent variable, the 

covariate, and the interaction between the two variables.  If the interaction term is not 

significant in this model, then the slopes are considered to be equal in each group.  

Having checked the assumptions of the ANCOVA model, I proceeded to test for any 

significant difference in channel morphology values between the classified groups 

while controlling for catchment size. 

 

Top-Down Assessment: Results and Further Tests 

I proceeded to conduct an ANOVA, with post hoc tests, to assess for any difference 

in channel morphology values between the classified catchments.  Two variables, 

reach slope and the log of stored sediment, showed significant differences between 

the catchment groups.  The log of bankfull width was the only variable that did not 
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show homogeneity of variance across all groups; however, its F statistic was not 

significant, so it was not necessary to examine the post hoc test for this variable 

(Table 18).  Nor was it necessary to look for group differences based on the log of 

depth, log of cross-sectional area, or the log median particle size.  Although reach 

slope had a significant ANOVA result, TD-1 and TD-3 were the only catchment 

groups that were significantly different from each other according to the post hoc test.  

With respect to the log of stored sediment, TD-5 was significantly different from both 

TD-3 and TD-4; however, TD-3 and TD-4 were not different from each other.  For all 

other variables and all other cases, I found no significant difference in channel 

morphology values between the top-down classified catchment groups. 

 

The first step in the ANCOVA analysis was to determine if a linear relationship 

existed between catchment size and each of the channel morphology variables.  I used 

the log of catchment area in this analysis because the relationship between drainage 

area and bankfull dimensions has been shown to have a log-linear relationship 

(Dunne and Leopold 1978).  The logs of bankfull width, depth, cross-sectional area 

and the un-transformed reach slope values showed a significant linear relationship 

with the log of catchment area (Table 19 and Figures 12-17).  However, values for the 

log of median particle size and the log of stored sediment were not affected by 

catchment size, so I did not run an ANCOVA analysis for these two variables. 

 

The next step in the ANCOVA process was to test for homogeneity of slopes between 

the groups.  I ran the ANCOVA and evaluated the interaction between catchment area 

and each channel morphology variable; a significant interaction would indicate that 

the slopes were different in some groups.  The interaction term, Groups*Log area, 

was not significant for any of the four variables tested (Table 20); therefore, the 

slopes were considered to be similar in each catchment group. 
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Table 18.  Results of ANOVA testing for differences in channel morphology 
between the six top-down classified catchments. 

 
Sum of 

Squares df
Mean 

Square F Sig.
Log Width Between Groups 0.13 5 0.03 1.36 0.26*
  Within Groups 0.78 41 0.02    
  Total 0.91 46      
Log Depth Between Groups 0.12 5 0.02 1.05 0.40*
  Within Groups 0.82 41 0.02    
  Total 0.92 46      
Log X-area Between Groups 0.44 5 0.09 1.65 0.17*
  Within Groups 2.18 41 0.05    
  Total 2.62 46      
Reach Slope Between Groups 0.02 5 0.01 2.50 0.04*
  Within Groups 0.08 41 0.01    
  Total 0.09 46      
Log D50 Between Groups 0.46 5 0.09 1.80 0.13*
  Within Groups 2.07 41 0.05    
  Total 2.52 46      
Log SS Between Groups 3.031 5 0.61 3.91 0.01*
  Within Groups 6.351 41 0.16    
  Total 9.383 46      
*The mean difference is significant at the 0.05 level 
 

 

Table 19.  Regression results from testing the linear relationship between the log 
of catchment area and each of the channel morphology variables. 

Log Area & R Square 
Std. Error of 
the Estimate Sig. 

Log Width 0.30 0.11 0.00* 
Log Depth 0.12 0.13 0.01* 
Log X-area 0.30 0.19 0.00* 
Reach Slope 0.07 0.04 0.04* 
Log d50 -0.01 0.23 0.53 
Log SS -0.01 0.45 0.47 
*Significant at the 0.05 level 
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Figure 12.  Scatter plot showing the linear relationship between the log of 
catchment area and the log of bankfull width. 
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Figure 13.  Scatter plot showing the linear relationship between the log of 
catchment area and the log of bankfull depth. 

R2 = 0.30 
y = 0.33x + 0.44 

R2 = 0.13 
y = 0.22x - 0.07 
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Figure 14.  Scatter plot showing the linear relationship between the log of 
catchment area and the log of bankfull cross-sectional area. 
 

6.86.66.46.26.05.85.6
Log of Catchment Area

0.2

0.2

0.1

0.0

0.0

R
ea

ch
 S

lo
pe

 

Figure 15.  Scatter plot showing the somewhat linear relationship between the 
log of catchment area and reach slope. 

R2 = 0.30 
y = 0.55x + 0.37 

R2 = 0.07 
y = -058.x + 0.44 
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Figure 16.  Scatter plot showing no linear relationship between the log of 
catchment area and the log of median particle size. 
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Figure 17.  Scatter plot showing no linear relationship between the log of 
catchment area and the log of stored sediment. 

R2 = -0.01 
y = 0.09x + 0.62 

R2 = -0.01 
y = -0.20x + 5.44 
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Table 20.  ANCOVA analysis run with the classified groups and catchment area 
set as an interaction term (in bold) in order to assess the homogeneity of slopes. 

Source 
Dependent 
Variable 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig.
Corrected Model Log width 0.39 11 0.04 2.43 0.02
  Log depth 0.29 11 0.03 1.47 0.19
  Log x-area 1.17 11 0.11 2.55 0.02
  Reach Slope 0.04 11 0.00 2.05 0.05
Intercept Log width 0.00 1 0.00 0.14 0.71
  Log depth 0.00 1 0.00 0.12 0.73
  Log x-area 0.01 1 0.01 0.21 0.65
  Reach Slope 0.01 1 0.01 3.98 0.05
Groups Log width 0.04 5 0.01 0.54 0.75
  Log depth 0.05 5 0.01 0.58 0.72
  Log x-area 0.02 5 0.00 0.09 0.99
  Reach Slope 0.00 5 0.00 0.30 0.91
Log of Catchment Log width 0.11 1 0.11 7.14 0.01
 Area Log depth 0.04 1 0.04 2.00 0.17
  Log x-area 0.27 1 0.27 6.37 0.02
  Reach Slope 0.01 1 0.01 3.01 0.09
Groups*Log area Log width 0.04 5 0.01 0.56 0.73
  Log depth 0.05 5 0.01 0.57 0.72
  Log x-area 0.02 5 0.00 0.10 0.99
  Reach Slope 0.00 5 0.00 0.30 0.91
Error Log width 0.52 35 0.02    
  Log depth 0.63 35 0.02    
  Log x-area 1.45 35 0.04    
  Reach Slope 0.06 35 0.00    
Total Log width 287.40 47      
  Log depth 82.00 47      
  Log x-area 675.00 47      
  Reach Slope 0.43 47      
Corrected Total Log width 0.91 46      
  Log depth 0.92 46      
  Log x-area 2.62 46      
  Reach Slope 0.10 46      
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I then re-ran the ANCOVA without the interaction term in the model to evaluate any 

differences between the groups while controlling for the effect of the covariate, 

catchment size.  The group variable, in Table 21, showed the effect of interest; I 

evaluated the significance of the F statistic for each stream channel morphology 

dependent variable to determine if the top-down groups were significantly different 

for that variable while controlling for the log of catchment area.  The group factor 

was only significant for the reach slope variable, which was similar to the ANOVA 

results (Table 18).  This indicated that the classified groups successfully 

discriminated between some groups with respect to reach slope and that the 

differences were not simply a function of catchment size.  However, this is not the 

case for bankfull width, depth, or cross-sectional area.  In fact, the addition of top-

down group information detracted from the ability of catchment size to explain 

variation in channel width, depth, and cross-sectional area.  For instance, the 

catchment area to channel width model was stronger when using just catchment area 

(r2 = 0.31, Table 19) then the model with the added group factor (r2 = 0.29, Table 21, 

see ‘Corrected Model’). 

 

Top-Down Assessment: Discussion 

The intent of the top-down classification was to create groups of headwater 

catchments that had significantly different types of stream channels.  In the previous 

section, I showed that several landscape-scale attributes were correlated with stream 

channel morphology values and that these relationships were consistent with results 

from other geomorphic studies.  However, the groups created in the top-down 

classification procedure showed few differences between each other with respect to 

reach-scale values.  The technique had some success, which is worth discussing 

further as it reinforces the influence of hillslopes on stream channel processes.  Yet, 

ultimately, the top-down approach did not fulfill the requirements necessary to 

support my first hypothesis. 
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Table 21.  ANCOVA analysis run with the classified groups as the contributing 
factor of interest (in bold) and catchment area as a covariate. 

Source 
Dependent 
Variable 

Type III Sum 
of Squares df 

Mean 
Square     F Sig. 

Corrected Model Log width 0.35(a) 6 0.06 4.21 0.00*
  Log depth 0.24(b) 6 0.04 2.35 0.05*
  Log x-area 1.15(c) 6 0.19 5.18 0.00*
  Reach Slope 0.04(d) 6 0.01 3.84 0.00*
Intercept Log width 0.00 1 0.00 0.07 0.79*
  Log depth 0.01 1 0.01 0.59 0.45*
  Log x-area 0.01 1 0.01 0.13 0.72*
  Reach Slope 0.02 1 0.02 10.90 0.00*
Log of Catchment Log width 0.22 1 0.22 16.02 0.00*
 Area Log depth 0.14 1 0.14 7.92 0.01*
  Log x-area 0.71 1 0.71 19.15 0.00*
  Reach Slope 0.01 1 0.01 8.30 0.01*
Groups Log width 0.06 5 0.01 0.86 0.52*
  Log depth 0.11 5 0.02 1.23 0.32*
  Log x-area 0.32 5 0.06 1.73 0.15*
  Reach Slope 0.03 5 0.01 3.46 0.01*
Error Log width 0.56 40 0.01    
  Log depth 0.68 40 0.02    
  Log x-area 1.47 40 0.04    
  Reach Slope 0.06 40 0.00    
Total Log width 287.40 47     
  Log depth 82.00 47     
  Log x-area 675.00 47     
  Reach Slope 0.43 47     
Corrected Total Log width 0.91 46     
  Log depth 0.92 46     
  Log x-area 2.62 46     
  Reach Slope 0.10 46     

(a) overall r2 = 0.29; (b) overall r2 = 0.15; (c) overall r2 = 0.35; (d) overall r2 = 
0.27 

*Significant at the 0.05 level 
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The top-down catchment group TD-5 had the highest mean stored sediment value, 

and this group was significantly different, according to ANOVA, from groups TD-3 

and TD-4, which both had low mean stored sediment values.  Headwater catchments 

classified as TD-5 were found at low elevations and had low mean slope angles 

(Chapter, III, Table 5); these low energy environments would encourage the 

accumulation of fines leading to high stored sediment values.  In contrast, TD-3 

catchments were located at high elevations and had pristine forests.  The low levels of 

disturbance in these catchments would have minimized sediment generation, and the 

high potential energy in these catchments could easily mobilize sediment that had 

been transported to the stream channel.  Catchments in group TD-4 also had low 

amounts of stored sediment in their stream channels, which was interesting, as this 

group was distinguished by having large percentages of burned areas.  As it has been 

more than two decades since a fire occurred in these catchments, this result appears to 

support other research indicating the impacts from sediment delivery following fire 

do not persist in stream channels longer than 10-15 years (Gresswell 1999, Minshall 

2003), although the increased runoff from fire likely impacted these stream channels 

in other ways that was not captured by the top-down classification. 

 

With respect to the reach longitudinal profile, the catchments in TD-1, which had 

weak rocks, high percentages of settled areas, and low mean elevations, had 

significantly lower reach slope values than catchments in TD-3 (high elevation, 

pristine catchments).  According to my correlation analysis (Table 17), as mean 

catchment elevation increased, the reach slope also increased.  Thus, the top-down 

classification successfully distinguished these two groups, with respect to reach slope, 

by creating a low elevation catchment group and a high elevation catchment group.  

The low elevation catchments in TD-1 also had high percentages of settled areas and 

weak rocks, both of which were inversely correlated with reach slope.  It is likely that 

the weak rocks and heavy disturbance due to settlement led to aggradation in TD-1 

stream channels and subsequent decreases in reach slope.  Thus, the top-down 
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classification did a good job of identifying catchments likely to have the lowest reach 

slope values.  Unfortunately, the technique could only predict low reach slope values; 

it was not effective at distinguishing groups with moderately sloped stream channels 

even though the correlation analysis showed a strong positive relationship between 

catchment mean slope angle and the slope of a stream channel.  Hence, several other 

landscape-scale processes likely confound the ability of the top-down classification 

procedure to distinguish catchments with varying reach slope angles. 

 

The area of a catchment had a significant linear relationship with the size and slope of 

a stream channel.  However, controlling for catchment size with ANCOVA did not 

lead to significant differences between the top-down catchment groups with respect to 

channel dimensions.  This effort did identify catchment group TD-1 as having the 

lowest reach slopes, as had the ANOVA analysis.  This reinforced the effectiveness 

of the top-down classification in identifying landscape-scale attributes that 

contributed to the development of low reach slope values, regardless of the size of the 

contributing area.  However, the ANCOVA also showed that the top-down approach 

could not enhance the ability to predict channel width or depth above and beyond the 

existing relationship between catchment area and channel size.  In addition, median 

particle size and stored sediment did not co-vary with catchment size.  Thus, unlike 

the ANOVA, the ANCOVA did not detect a difference between catchment group TD-

5 and both catchment groups TD-3 and TD-4 in terms of stored sediment.  This 

further supported that catchment size is not an important variable for predicting stored 

sediment in small headwater catchments; in other words, differing sources of 

sediment from land uses, and the potential energy in systems at higher elevations, 

likely drive the amount of sediment stored in these stream channels. 

 

Given that larger watersheds can generate higher discharge, the size of a stream 

channel should increase with increasing basin area.  That assumed relationship is 

supported with my research findings, which showed a significant direct linear 
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relationship between catchment area and channel size.  It follows that watershed 

attributes affecting the timing of runoff should also have an impact on the size of a 

stream channel.  My correlation analysis (Table 17) showed that channel width 

increased in catchments with high percentages of pristine area, likely due to the 

influence of coarse woody debris, and that stream channels were narrower in 

catchments with highly resistant strata.  Therefore, I would anticipate that stream 

channel width should not only increase with increasing catchment area, but that it 

should increase in size more rapidly in pristine catchments and less rapidly in 

catchments with very strong rocks.  However, these channel traits were not detected 

by the ANCOVA procedure even though catchment groups TD-2 and TD-3 had high 

percentages of very strong rocks and pristine areas, respectively.  This example 

highlights the most serious limitation of the top-down classification approach: 

hierarchical clustering is not process-driven. 

 

The top-down approach could not take advantage of correlations between landscape-

scale attributes and stream channel dimensions because it is primarily an exercise in 

mathematical clustering rather than a process-oriented approach.  By design, the top-

down approach has no information on stream channel morphology, or habitat, prior to 

conducting the clustering procedure that creates catchment groups.  It was not my 

intention to create a model that would be unsuccessful at delineating headwater 

catchments into discrete groups with significantly different channel morphology.  

Quite to the contrary, I was careful to use only the landscape-scale datasets that, 

according to the literature, seemed most likely to represent hillslope processes; for 

instance, I re-classified the descriptive geology layer into rock strength classes that 

might represent resistance to erosion.  Ultimately, however, the top-down approach 

could only create clusters that had, at most, a few similar landscape-scale attributes. 

In a few instances, the top-down clustering led to significant results, including TD-1 

having significantly lower reach slopes.  Yet, many of the groups included 

catchments that had attributes with competing hillslope processes.  For instance, all of 
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the catchments in TD-3 have high percentages of pristine area, which should lead to 

significantly wider stream channels than should be found in catchments of similar 

size in other groups.  However, this is not always the case; for instance, the steep 

slopes in the catchment for Dry Branch (reach # 4) cause high stream velocity and 

incision, which causes this channel to have one of the most narrow cross-sections that 

I surveyed, even though its drainage basin is 99% pristine, leading it to be classified 

as a TD-3 catchment.  In fact, several of the stream channels in TD-3 are narrow as a 

result of steep slopes, as many pristine areas are found at high elevations in GSMNP.  

Thus, the hierarchical clustering of the top-down approach, which selects a few 

important and dominant attributes, cannot anticipate the influence of other, 

confounding or even complementary, landscape-scale attributes on stream channel 

morphology. 

 

An examination of the top-down clusters reveals a problem with the commonly 

invoked assumption that different landscape-scale attributes should create different 

types of stream channels.  This is an interesting limitation because it criticizes the 

basic tenet of watershed classification and hypothesis one, which both state that 

different combinations of landscape-scale data will produce different types of stream 

habitat.  The problem with this assumption is in not recognizing the concept of 

convergence in geomorphology (Schumm 1991).  Convergence refers to the situation 

where different processes can lead to similar landforms.  This problem was best 

exemplified, again, by stream width in this study.  Most stream channels in catchment 

group TD-3 were significantly wider than channels in other groups.  This is reflected 

by the direct correlation between pristine area and channel width.  However, stream 

channels can also be relatively wide in other groups as a function of different 

landscape-scale processes.  In fact, the second widest stream channel surveyed was a 

tributary of Cosby Creek (reach # 5).  The catchment for this reach was top-down 

classified as TD-1 because it contained a high percentage of weak rocks and settled 

areas.  Thus, in this study, stream channels were relatively wide in both pristine areas 



102 

and in settled areas, though for different reasons; stream channels widen in pristine 

areas because of bank scour around coarse woody debris, and stream channels widen 

in settled areas because of channel aggradation leading to meandering and bank 

erosion. 

 

A final issue with the top-down approach relates to scale.  Each catchment group was 

distinguished based on a few dominant landscape-scale attributes, based on the 

assumption that these attributes would have the greatest cumulative impact on stream 

channel habitat.  Yet, in some instances, the more localized attributes exhibited 

greater control on channel morphology.  Two catchments, in particular, highlight this 

issue of scale.  Cades Branch (reach # 48) and Oliver Branch (reach # 3) are both 

tributaries of Abrahms Creek in the Cades Cove area of the national park.  Each 

catchment was approximately the same size, had a similar mean elevation and slope, 

was lightly disturbed, and was composed of roughly half strong rocks and half weak 

rocks; this led to a top-down catchment classification of TD-1 for both catchments.  

However, while Oliver Branch had an average stream width for the study area (2.92 

m), Cades Branch had the narrowest stream channel surveyed (1.10 m).  Both reaches 

were surveyed at a location of weak rock; the Oliver Branch reach was located in a 

forested area on the fringe of Cades Cove, and the Cades Branch reach was surveyed 

in a pasture/meadow within Cades Cove.  As has been noted (Davies-Colley 1997), 

streams tend to be wider in forests than in meadows.  Hence, even though Cades 

Branch only flows through a meadow on its final few hundred meters before joining 

with Abrahams Creek, the local control of meadow vegetation reduced its channel 

size much more than would be expected based on the dominant land use and rock 

strength of its top-down classification. 

 

It is unfortunate that the top-down catchment classification was not more successful 

at distinguishing groups with significantly different channel morphology, as this has 

been the most common approach for watershed classification to date.  It would 
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certainly be possible to refine the landscape-scale attributes in order to create a more 

process-driven model.  However, this option exists only because I took the time to 

gather reach-scale data from the study area.  Most watershed classification efforts that 

use some variation of the top-down approach are not validated in this manner.  

Therefore, it is highly likely that other watershed classification schemes suffer from 

similar issues as my top-down approach, that their clustered groups do not truly 

reflect hillslope processes, that different processes can create similar landforms 

(convergence), and that local controls may be more influential in dictating channel 

morphology than any dominant landscape-scale attribute. 

 

My first working hypothesis stated that a statistical classification (clustering) based 

on landscape-scale attributes, the top-down approach, would distinguish groups of 

catchments that had significantly distinct types of stream channel morphology.  Based 

on the ANOVA and ANCOVA results presented in this section, I reject this 

hypothesis, as only minimal differences existed between the six catchment groups 

classified using the top-down classification method.  The reach slopes were 

significantly different in catchment group TD-1, but otherwise, channel morphology 

showed no significant variation between any other groups.  I found significant 

correlations between several landscape-scale attributes and reach-scale values, but my 

top-down classification did not create groups that took advantage of those 

relationships, even though the landscape-scale attributes were different in each top-

down classified catchment group.  This implied either that the top-down classification 

selected the wrong combinations of landscape-scale attributes during the clustering 

procedure, or possibly that stream channel response to landscape influences was more 

complex than could be modeled with this technique.
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Assessment of the Bottom-Up Approach 

 

I expected to find a significant difference in channel morphology values between the 

catchments classified by stream type (the bottom-up approach), because the 

classification is based on stream channel morphology measurements.  Therefore, I 

could not use ANOVA or ANCOVA to test for significant differences in stream 

channel morphology between the groups, as was down with the top-down assessment.  

Rather, I evaluated the utility of the reach-scale bottom-up classification by testing 

how well group membership was predicted based on each group’s suite of landscape-

scale attribute information using a multinomial logistic regression analysis (Agresti 

1996).  In this manner, I could assess to what degree, if any, landscape-scale 

attributes varied among the bottom-up classified groups.  With this information, I 

could evaluate how successfully the bottom-up method, which is based on the 

sampled catchments, could be extrapolated to all remaining catchments in my study 

area. 

 

Multinomial Logistic Regression 

In simple linear regression, the dependent variable is always continuous.  Thus, a one-

unit change in a predictor variable results in a predicted change in the dependent 

variable according to the linear regression equation.  However, I wished to examine 

whether a suite of independent variables could predict membership in a classified 

group, so I used multinomial logistic regression.  This process differs from ordinary 

least-squares linear regression in that the response variable, group membership, is 

categorical; however, the objective is still to predict the value of a dependent variable 

based on a linear combination of independent variables.  The multinomial logit model 

is an extension of the standard logit model, which predicts the probability of a binary 

outcome based on the independent variables (Agresti 1996).  In the multinomial logit 

model, each case is assigned a probability, calculated as the log odds, that it is a 

member of a particular category.  The case is then assigned to the category with the 
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highest calculated probability of membership.  The independent variables can be 

either continuous or categorical, although all of my landscape-scale attributes were 

continuous.  Logistic regression works well for small sample sizes (30-100 cases), 

and it is preferred over discriminant analysis where group sizes have unequal 

membership (Long et al. 1993), as was the case in this project. 

 

Two calculations are helpful for interpreting the goodness-of-fit for a multinomial 

logistic regression model, a likelihood ratio test and a pseudo r2 statistic.  The 

likelihood ratio test calculates a Chi-square statistic, which is the difference between 

the final model and a null model in which all of the independent variables are set to 

zero (Agresti 1996).  A significant Chi-square statistic suggests the independent 

variables are likely to perform better than a model using only the intercept in a 

regression equation.  The multinomial logistic regression cannot produce an r2 value 

similar to that of ordinary regression.  However, it is possible to calculate the 

Nagelkerke pseudo r2, which can be interpreted in much the same way as a traditional 

r2 value (Nagelkerke 1991). 

 

The most useful output from the multinomial logistic regression model is a summary 

table of observed and predicted frequencies by category, the percent correct 

classification by group, and the overall success of the model by percentage.  This 

table related the effectiveness of each model in predicting bottom-up classified group 

membership based on the landscape-scale attributes.  With the statistical software 

SPSS, version 13.0, I conducted the multinomial logistic regression analysis, using a 

manual, backward elimination procedure, and assessed the significance of each 

independent variable in the final model. 

 

Bottom-Up Assessment: Results and Further Tests 

I used the ten landscape-scale attributes that I had previously identified as being 

significantly related to stream channel morphology as independent variables, and 
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group membership as a categorical dependent variable in building a multinomial 

logistic regression model.  The ten independent predictors were: log of catchment 

area, catchment shape circularity, mean elevation and mean slope of each catchment, 

the percent pristine, heavily disturbed, and settled area, and the percent weak, 

medium-strength, and very strong rocks within each catchment.  First, I ran the model 

with all ten independent variables entered, and then, I iteratively eliminated one 

variable to evaluate the impact that removal had on successive model runs.  If I noted 

a decrease in the  pseudo r2 or the predictive ability of the model, I added that 

attribute back to the model and continued with the analysis. 

 

With all ten landscape-scale attributes entered in the model, the Chi-square goodness-

of-fit statistic was significant and large, at 85.6, indicating that this model performed 

well (Table 22).  This model also had a pseudo r2 value of 0.88, which indicated that 

the independent variables were likely capturing approximately 88% of the variation in 

the dependent classification variable; this pseudo r2 was also higher than of any of the 

subsequent backward-elimination models.  By removing circularity from the model, 

the pseudo r2 only dropped to 0.87, and the Chi-square statistic remained significant.  

Each iterative removal of a variable resulted in a model that was significantly better 

than the null model (intercept only), and most models had only slight decreases in 

variance explained.  The removal of either the log of catchment area (pseudo r2 = 

0.80), the mean catchment slope (pseudo r2 = 0.81), or weak rocks (pseudo r2 = 0.82), 

had the largest impact on goodness-of-fit, which indicated that these variables likely 

were the more important attributes in the overall model. 

 

The overall predictive success rate for the model with all ten variables was 81%, 

meaning that these landscape-scale attributes could successfully predict bottom-up 

group membership in slightly better than eight out of ten instances (Table 23).  This 

model also had good predictive success within each classification group, as the 

success rate was over 80% for each group except for BU-1 (Table 23).  In the 
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Table 22.  Goodness-of-fit results from each multinomial logistic regression 
model. 

 Model 
-2 Log 

Likelihood

Likelihood 
Ratio Chi-

square df Sig. 
Pseudo 

r2 
All Ten Variables Intercept  141.7     
 Full Model 56.0 85.6 40 0.01 0.88 
After removing:      
Circularity Intercept  141.7     
 Full Model 58.2 83.5 36 0.01 0.87 
Very Strong Rocks Intercept  141.7     
 Full Model 58.3 83.4 36 0.01 0.87 
Mean Elevation Intercept  141.7     
 Full Model 58.8 82.9 36 0.01 0.87 
Heavily Disturbed Intercept  141.7     
 Full Model 62.0 79.6 36 0.01 0.86 
Medium Rocks Intercept  141.7     
 Full Model 62.6 79.1 36 0.01 0.86 
Pristine Intercept  141.7     
 Full Model 63.0 78.6 36 0.01 0.85 
Settled Areas Intercept  141.7     
 Full Model 63.6 78.1 36 0.01 0.85 
Weak Rocks Intercept  141.7     
 Full Model 70.8 70.9 36 0.01 0.82 
Mean Slope Intercept  141.7     
 Full Model 72.4 69.3 36 0.01 0.81 
Log of Area Intercept  141.7     
 Full Model 74.2 67.5 36 0.01 0.80 
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Table 23.  Classification success for each multivariate logistic regression model 
both within each catchment group and overall. 

 BU-1 BU-2 BU-3 BU-4 BU-5 Overall 
All Ten Variables 60% 85% 86% 83% 81% 81% 
After removing       
Circularity 40% 85% 86% 100% 88% 83% 
Mean Slope 60% 77% 71% 83% 88% 79% 
Very Strong Rocks 40% 77% 86% 83% 81% 77% 
Pristine 20% 85% 57% 83% 88% 74% 
Heavily Disturbed 40% 77% 71% 83% 81% 74% 
Weak Rocks 40% 92% 71% 67% 75% 74% 
Medium Rocks 60% 85% 71% 83% 69% 74% 
Mean Elevation 40% 77% 71% 83% 75% 72% 
Log of Area 40% 77% 57% 83% 81% 72% 
Settled Areas 40% 69% 57% 100% 69% 68% 
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bottom-up classification procedure, BU-5 was the largest group, having 16 of the 47 

classified reaches (Chapter IV, Table 14); hence, there exists a one in three chance 

that any particular catchment could be classified as BU-5.  Any multinomial logistic 

regression model run that could not predict a particular group membership better than 

34% of the time was thus functioning worse than chance alone and was considered a 

poor model.  The removal of circularity actually increased the overall success rate of 

the model (83%), but it decreased the predictive ability for BU-1 to 40%.  This is only 

slightly better than classification by chance.  Each other model performed worse 

overall than the model with all ten variables, and most of the models were particularly 

ill-suited for classifying BU-1 catchments.  As with the goodness-of-fit tests (Table 

22), removal of log of catchment area had the greatest negative impact on the model. 

 

Each multinomial logistic regression model was significantly better than a null model, 

and each had good success in predicting bottom-up catchment classification group 

membership based on its particular combination of landscape-scale attributes.  This 

confirmed that these landscape attributes were highly correlated with reach-scale 

channel morphology values, and suggested that the bottom-up catchment groups 

could be accurately predicted using landscape-scale information.  Based on its 

goodness-of-fit, overall classification rate, and success rate at predicting membership 

within each catchment group, I used the combined model, with all ten landscape-scale 

attributes, for predicting group membership in all remaining headwater catchments in 

the study area. 

  

Similar to ordinary regression, multinomial logistic regression produces a set of 

parameter estimates (Table 24) with which I could extract regression equations for 

predicting the dependent variable of group membership.  The logit coefficients (‘B’ in 

Table 24) were the natural logs of the odds, or probability, that an event occurred as 

opposed to the reference event (Agresti 1996); the Wald statistic was a measure of the 

contribution each attribute made to the model, with higher values being more 
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Table 24.  Parameter estimates for the multinomial logistic regression model 
using all ten landscape-scale attributes. 

Catchment 
Group 

  
B Std. Error

Wald 
Statistic df Sig. 

BU-1 Intercept 96.3 51.0 3.6 1 0.06
 Circularity -19.9 22.6 0.8 1 0.38
 Mean Elevation 0.0 0.0 0.2 1 0.66
 Mean Slope 0.1 0.2 0.3 1 0.60
 Pristine -0.1 4.4 0.0 1 0.98
 Heavily disturbed -1.5 3.2 0.2 1 0.65
 Settled areas 16.2 8.6 3.6 1 0.06
 Weak rocks -11.4 6.5 3.0 1 0.08
 Medium rocks -1.4 2.4 0.3 1 0.56
 Very strong rocks -6.0 10.8 0.3 1 0.58
 Log of area -15.4 8.4 3.3 1 0.07

BU-2 Intercept -49.9 36.1 1.9 1 0.17
 Circularity 5.7 9.7 0.3 1 0.56
 Mean Elevation 0.0 0.0 1.0 1 0.32
 Mean Slope -0.3 0.2 2.9 1 0.09
 Pristine -5.1 3.7 1.9 1 0.16
 Heavily disturbed -21.6 19.3 1.2 1 0.26
 Settled areas 12.2 7.6 2.5 1 0.11
 Weak rocks 0.5 4.3 0.0 1 0.91
 Medium rocks 4.9 3.2 2.3 1 0.13
 Very strong rocks 5.3 6.2 0.7 1 0.39
 Log of area 8.9 6.1 2.1 1 0.14

BU-3 Intercept 106.7 61.1 3.0 1 0.08
 Circularity 2.4 23.1 0.0 1 0.92
 Mean Elevation 0.0 0.0 0.1 1 0.75
 Mean Slope 0.4 0.3 1.9 1 0.16
 Pristine -3.8 5.0 0.6 1 0.44
 Heavily disturbed -1.1 2.8 0.1 1 0.71
 Settled areas 16.9 9.6 3.1 1 0.08
 Weak rocks -10.0 7.9 1.6 1 0.21
 Medium rocks -2.3 3.4 0.4 1 0.50
 Very strong rocks 1.1 7.5 0.0 1 0.89
 Log of area -20.9 12.1 3.0 1 0.08
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Table 24.  Continued. 

Catchment 
Group 

  
B Std. Error

Wald 
Statistic df Sig. 

BU-4 Intercept -20.1 74.3 0.1 1 0.79
 Circularity 6.3 11.5 0.3 1 0.58
 Mean Elevation 0.0 0.0 1.1 1 0.30
 Mean Slope -0.2 0.3 0.4 1 0.54
 Pristine 4.4 3.8 1.3 1 0.25
 Heavily disturbed -1.5 5.0 0.1 1 0.76
 Settled areas -4.3 16.1 0.1 1 0.79
 Weak rocks -152.9 6494.1 0.0 1 0.98
 Medium rocks 5.9 4.4 1.8 1 0.18
 Very strong rocks -70.6 0.0 . 1 0.54
 Log of area 1.2 10.4 0.0 1 0.91

BU-5 Reference category - - - - - 
p (BU-1) = exp (a1 + b1x) / [1 + exp (a1 + b1x) + exp (a2 + b2x)…+ exp (an + bnx)] 
p (BU-2) = exp (a2 + b2x) / [1 + exp (a1 + b1x) + exp (a2 + b2x)…+ exp (an + bnx)] 
p (BU-3) = exp (a3 + b3x) / [1 + exp (a1 + b1x) + exp (a2 + b2x)…+ exp (an + bnx)] 
p (BU-4) = exp (a4 + b4x) / [1 + exp (a1 + b1x) + exp (a2 + b2x)…+ exp (an + bnx)] 
p (BU-5) = 1 / [1 + (a1 + b1x) + (a2 + b2x)…+ (an + bnx)] 
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important.  The resulting regression equations produced the probabilities that a 

catchment would be classified to a particular group (BU-1 through BU-4), based on 

the set of independent landscape-scale attributes, as opposed to having been classified 

to the reference category (BU-5).  As the logits were natural logs, it was necessary to 

take the exponent of each expression as suggested by Agresti (1996), in order to 

calculate a percentage probability that a catchment should be classified as BU-1 or 

BU-2, etc.  The equations are shown at the bottom of Table 24. 

 

I exported the landscape-scale attributes for all 862 catchments into a spreadsheet and 

calculated the probability of a catchment being classified as belonging to a particular 

group using the multinomial logistic regression logit coefficients and the above 

equations.  The number of cases for each group is given in Table 25 and is 

graphically shown in Figure 18; the assignment of catchments to each bottom-up 

classification group was more evenly distributed than for the top-down classification 

(Chapter III, Table 5).  The smallest group is BU-2 with 93 catchments and the 

largest group is BU-4 with 250 catchments.  The logit coefficients in Table 24 were 

also helpful for determining the importance of an independent variable in classifying 

catchments to a particular group.  The higher the log odds for an independent 

variable, the greater is its contribution toward classifying a catchment into that group 

rather than the reference group.  As the logits are natural logs, large positive values 

represented high probabilities of classification, while negative values and logits 

approaching a value of one indicated the variable was not important in distinguishing 

between that catchment group and the reference group. 

 

Based on the logits in Table 24, the 98 catchments in group BU-1 were distinguished 

from the reference group (BU-5) by the presence of settled areas and the mean slope 

in the catchments (Table 25).  The directional influence for an attribute, such as mean 

slope, was determined by comparing the mean values for a particular group to the 
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Table 25.  Number of catchments and descriptions for the extrapolated bottom-
up catchment classification in GSMNP. 

Bottom-up 
Group Count Important Attributes 

BU-1 98 Settled areas, low mean slopes 
BU-2 93 Settled areas, large catchment area, high circularity, 

absence of very strong rocks, medium rocks 
BU-3 194 Limited settled area, low circularity, very strong 

rocks  
BU-4 250 High circularity, medium rocks, pristine areas, log of 

area  
BU-5 227 High mean elevation, heavily disturbed, weak rocks 
Total 862  
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Figure 18.  Results of the bottom-up extrapolated catchment classification. 
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overall mean and by overlaying the bottom-up classified catchments (Figure 18) onto 

the landscape-scale attributes in a GIS.  For instance, in catchment group BU-1, low 

mean slopes were the distinguishing attribute.  The 93 catchments in BU-2 also had 

settled areas, as well as large catchment areas, high circularity, medium rocks, and an 

absence of very strong rocks.  A lack of settled areas was important to discriminating 

catchment groups in BU-3, as were low circularity and large coverage by very strong 

rocks.  Catchments in group BU-4 were all large, highly circular, mostly covered in 

pristine area, and composed of medium-strength rocks.  Lastly, BU-5, the reference 

category group, was distinguished by those attributes that did not otherwise contribute 

toward the first four groups; thus, the important attributes for BU-5 were high mean 

elevations, heavily disturbed areas, and weak rocks. 

 

Bottom-Up Assessment: Discussion 

The bottom-up classification procedure, which was based on different types of stream 

channels, was quite successful at creating catchments groups with strong correlations 

between landscape-scale attributes and reach-level values.  This was evident by the 

better than 80% group membership prediction rate using the landscape data. 

The combination of important landscape-scale attributes is different between the top-

down (Chapter III, Table 5) and bottom-up (Table 25) classifications; however, the 

variables themselves are quite similar.  Even though the top-down approach used 

several more attributes for its clustering procedure, the most important attributes were 

similar to the important attributes identified in the bottom-up procedure.  Unlike the 

top-down classified groups, many of the bottom-up catchment groups shared the same 

important landscape-scale attributes; this was true despite the fact that the channel 

morphology was significantly different in each of the bottom-up classified groups.  

This suggested that different types of stream channels could form in catchments with 

similar landscape-scale attributes; thus, it is likely that the combination of different 

landscape elements, as well as the intensity of disturbance in the watershed, is more 
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important to stream channel morphology than any one particular type of watershed 

attribute. 

 

The bottom-up classified reaches from Chapter IV (Figure 11) appeared to group 

according to expected fluvial response with reference to changes in discharge and 

sediment flux (Schumm 1977).  For instance, BU-4 catchments had the largest stream 

channels and low amounts of stored sediment.  This was likely a function of relatively 

high discharge as the important attributes of this group were high circularity, which 

can increase peak discharge, and having a large drainage basin, which increases 

overall discharge.  The BU-4 catchments also had high percentages of pristine area, 

which can lead to wider stream channels (Davies-Colley 1997).  This group is also 

strongly supported by the correlations between individual landscape-scale attributes 

and reach-scale values.  For instance, catchment area and pristine area are both 

directly correlated with stream width (Table 17). 

 

The BU-2 catchments also had some of the widest stream channels, but unlike the 

BU-4 catchments, they had relatively shallow reach slopes and small median particle 

sizes (Chapter IV, Figure 11).  This is probably related to increased sediment loads as 

these catchments have high percentages of settled areas (high disturbance) and low 

mean catchment slope angles, which results in decreased potential energy for the 

removal of fines.  The response of stream channel widening in both BU-2 and BU-4 

catchments is another example of convergence (Schumm 1991).  Stream channels 

will widen with increases in discharge; however, they will also widen with increases 

in sediment loading as the channel will aggrade, the reach slope will decrease, and the 

stream will meander, causing bank failure and channel widening (Schumm 1977).  

The primary difference between these two catchment groups was the land use, 

pristine for BU-4 and settled areas for BU-2.  Thus, these catchments both had 

relatively wide channels, but as a result of different processes, although each stream 

channel was adjusting according to expected fluvial response. 
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In figure 11, note that several BU-5 catchments plotted between BU-2 and BU-4 

catchments with respect to reach slope and median particle size (PC2) but had 

approximately the same size channels (they plotted on the same location with respect 

to PC1).  The BU-5 catchments are distinguished as having large areas that were 

heavily disturbed by mechanical logging.  The catchments that plotted closer to BU-4 

(pristine) were high elevation catchments that were logged and abandoned; the 

catchments that fell closer to BU-2 (settled areas) were areas that had a mix of 

logging and settlement and thus, experienced longer sustained disturbance.  

Therefore, with respect to reach slope and median particle size, these three bottom-up 

catchment groups represented a gradient of fluvial response to disturbance intensity 

within their respective watersheds from intensive disturbance, aggrading channels in 

settled areas, to channels in dynamic equilibrium with their environments in pristine 

areas.  It is interesting that the bottom-up procedure would detect this type of 

response; yet, it also points toward a drawback to this particular type of exercise in 

that this model represents a single point in time.  Hence, it is unclear if, for instance, 

the most intensively disturbed catchments, BU-2, are adjusting toward the BU-5 

catchments, or if they are still aggrading as a response to former disturbance regimes. 

 

The catchments in BU-1 also had large percentages of settled areas and low mean 

catchment slope angles, which led to lower reach slopes and relatively small median 

particle sizes as a function of aggradation and low energy in the fluvial system.  

However, this catchment group had the lowest success rate of prediction (60%, Table 

23) based on the landscape-scale attributes.  This low success rate is partially due to 

the low number of samples in this group.  However, an additional issue involves the 

role of local controls on stream channel morphology.  Of the five sampled catchments 

that were classified as BU-1, two catchments (a tributary of Abrahams Creek, reach # 

42; Cades Branch, reach # 48) were surveyed in meadow riparian conditions, which 

led to narrow and deep stream channels.  The other three catchments were even more 

problematic; each of these catchments had a perfect suite of landscape-scale attributes 
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for disrupting the fluvial system through hillslope disturbance.  In addition to having 

large amounts of settled areas and low catchment slope angles, these three catchments 

were relatively small and had large areas that had been mechanically logged.  Nearly 

half of each catchment had burned within the last 70 years, the bedrock was largely of 

medium strength or weak rocks, and these catchments had low circularity.  The 

combination of these attributes led to massive and sustained sediment generation in 

watersheds with both low competence and limited capacity.  As such these stream 

channels have been slow to adjust following historic disturbance. 

 

Because the catchments in BU-1 were so heavily disturbed, along with being quite 

vulnerable to disturbance, these stream channels exhibited a complex response with 

respect to the bottom-up classification.  Essentially, these catchments are currently 

incising into the stored alluvium in their stream channels in an attempt to re-establish 

dynamic equilibrium conditions.  Thus, the landscape-scale attributes that predict 

wide stream channels in other catchments, particularly settled areas, actually have 

produced relatively narrow channels in these catchments.  Again, this is only a 

temporary condition as these stream channels are still adjusting to past disturbance 

events.  An example will help to illustrate this point.  Leatherwood Branch (reach # 

6), a tributary of Cosby Creek, is currently degrading and incising into the alluvium 

that was deposited in its floodplain over the past in the early 20th century.  This area 

was logged and intensively settled until shortly after the creation of the park.  The 

current bed material matches the coarse sands and gravels in the pre-disturbance 

floodplain, which is overlain by one meter of accumulated silts and sand (Figure 19).  

The fine material accumulated as a result of the 20th century disturbance events; the 

vegetation at the top of the image represents the floodplain following the intensive 

disturbance.  At some point, the stream channel ceased aggrading and began to incise 

into the stored alluvium, leading to channel narrowing and deepening.  As such, this 

stream is currently disconnected from its historic floodplain.  Although it has 

probably finished degrading, based on the nature of the current bed material, this 
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Figure 19.  The floodplain sediments stored in the banks of Leatherwood 
Branch.  The pre-disturbance floodplain has been exposed as the stream incised 
into the stored alluvium. 
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stream will continue to erode its banks and mobilize stored sediment until it either re-

connects to its former floodplain or establishes a new floodplain within the current 

steam channel. 

 

Much like the gradient for reach slope and median particle size that was represented 

by the transitional catchments BU-2 to BU-5 to BU-4 (along PC2, Chapter IV, Figure 

11), a gradation in adjustment exists from BU-1 (narrow channels) to BU-2 (wide 

channels) along PC1 (Chapter IV, Figure 11).  This gradient is best detected by 

observing a catchment that was misclassified in the bottom-up approach.  Recall that 

the catchment group BU-1 had the poorest success with classification (60%).  This 

was partially a function of local controls on channel morphology but also a result of 

BU-1 catchments going through adjustment following massive disturbance.  The 

catchment for Carolina Prong (reach # 27), in the Cosby Creek drainage, was bottom-

up classified as BU-1 based on its stream channel being narrower than all stream 

channels in BU-2 catchments and having both low reach slopes and a small median 

particle size of bed material; however, it had the widest stream channel measurement 

of the all BU-1 catchments.  The Carolina Prong catchment had settled areas and 

relatively low mean catchment slopes, but it was also relatively circular and as large 

as most BU-2 catchments.  Hence, this catchment had sufficient discharge to mobilize 

the sediment generated from the massive disturbance associated with BU-1 

catchments.  As such, it has nearly established a new floodplain within its current 

channel; it seems unlikely, based on the height of the banks, that it will re-connect to 

its pre-disturbance floodplain in the foreseeable future.  However, if this channel were 

to be re-surveyed in the next few decades, it is likely that it would re-classify as a 

BU-2 catchment, according to this classification system, based on its widening stream 

channel.  This again emphasizes the ultimate limitation involved in bottom-up 

classification— stream channels will continue to change after they have been 

surveyed and classified, particularly in reaches that exhibit a complex or 

counterintuitive response to catchment classification.  Yet, this could also be an 
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advantage for long-term research, as it allows for monitoring the change from one 

type of catchment to another over time. 

 

The BU-3 catchments had small channels with steep slopes and large median particle 

sizes.  Most of these catchments were quite small, had relatively strong rocks, low 

circularity, and little disturbance.  Most appear to be smaller versions of BU-4 

catchments, with the exception that rock strength is somewhat higher.  One BU-3 

catchment, Ledge Creek in the Raven’s Fork drainage (reach # 33), was misclassified 

in the multinomial logistic regression procedure as a BU-2 catchment (settled areas).  

This catchment experienced intensive disturbance, but only near the ridge and not 

down by the mouth where I surveyed the cross-section.  The channel itself was 

relatively small, although it did have the highest stored sediment amounts for its 

group.  Hence, the disturbance may have contributed sediment down the stream 

system, but it either did not affect channel form, or the channel has adjusted to pre-

disturbance conditions. 

 

In analyzing the different bottom-up classified groups, it was also helpful to overly 

the top-down classification on the bottom-up classification and extract a table that 

compares the distribution of top-down classified catchments within each bottom-up 

category (Table 26).  I did not expect to find a perfect correlation between the groups, 

and in fact, each bottom-up catchment group contained several different top-down 

categories.  Yet, several interesting correlations did emerge.  For instance, the BU-1 

group contained at least one catchment from every top-down category; however, the 

TD-5 group occurred most frequently.  Recall that the BU-1 catchments tend to have 

large amounts of settled areas and low mean catchment slopes (Table 25); the TD-5 

catchments were also described as having low mean elevations and low mean slopes, 

although the dominant landscape-scale attribute forming the TD-5 group was the 

presence of strong rocks (Chapter III, Table 5).  Nevertheless, each of these groups 

seemed to have much in common with respect to their catchment characteristics. 
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Table 26.  Comparison of the frequency of top-down and bottom-up catchments 
with respect to each classification. 

 TD-1 TD-2 TD-3 TD-4 TD-5 TD-6 Total 
BU-1 8 1 16 4 51 18 98 
BU-2 27 13 5 1 16 31 93 
BU-3 15 9 77 5 30 58 194 
BU-4 0 0 206 1 16 27 250 
BU-5 44 5 115 6 39 18 227 
Total 94 28 419 17 152 152 862 
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Yet, no clear patterned emerged with catchment groups BU-2 and BU-3, as the 

distribution of top-down groups was relatively uniform across each of these 

categories.  Both BU-4 (medium-strength rocks, pristine) and BU-5 (high elevation, 

heavily disturbed, weak rocks) were most highly correlated with TD-3 catchments 

(pristine, high elevation, medium-strength rocks).  This again showed the limited 

ability of the top-down approach in handling competing landscape-scale attributes.  

As most pristine areas occurred at high elevations, the TD-3 group captured nearly all 

of the high elevation catchments, even though some heavily disturbed catchments 

could be found at high elevations.  However, the bottom-up classification split these 

catchments into two groups, disturbed and pristine, and allowed both to occur at high 

elevations. 

 

The bottom-up classification procedure was successful on two fronts.  First, the 

stream channels grouped into types that reflected variability in both discharge and 

sediment flux.  Second, the landscape-scale attributes were able to predict group 

membership in eight out of ten cases, which implies that these attributes are good 

indicators of hillslope processes and that those processes largely control stream 

channel morphology.  In addition, the bottom-up classification procedure identified 

gradients of stream channel adjustment to disturbance.  As such, it can act as a first 

step toward predicting how landscapes may respond to future disturbances, as well as 

give some indication of the time needed for recovery to disturbance.  However, this 

technique is limited in that it was only a snapshot of fluvial conditions at the time the 

stream channels were surveyed.  Many of these channels are in adjustment, and it is 

not necessarily clear whether they are aggrading or degrading.  The landscape-scale 

datasets are not well designed in a temporal sense.  For instance, settled areas were 

settled at one time, but it is not always clear how long a particular area was settled, 

how intensive the actual land use was, and when the settlement activity ended.  

Nevertheless, GSMNP achieved national park status in 1934 and has been protected 

from logging and most settlement activity since that time, which has allowed for the 
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establishment and of new vegetation and stabilization of soils.  This gives us a marker 

for time since most disturbance activities occurred and provides an excellent 

laboratory for detecting the impact of different intensities of disturbance on stream 

channel habitat.  Hence, in spite of the its limitations, the bottom-up approach was 

successful in creating a metric that reflects which combinations of landscape 

attributes had the greatest impact on stream channel morphology. 

 

The final model of the multinomial logistic regression predicted bottom-up group 

membership with better than 80% accuracy.  Hence, I do not reject my second 

hypothesis, which states that catchments grouped by their respective distinct types of 

stream channels, the ‘bottom-up’ approach, would show significant relationships 

between stream channel morphology and landscape-scale attributes.  As depicted in 

Figure 18, the bottom-up classified catchments in GSMNP did not show nearly as 

much of an influence from one dominant landscape-scale attribute as was seen with 

the top-down classification (Chapter III, Figure 9).  This suggests that processes 

operating within a headwater catchment may have a greater impact on stream channel 

morphology than could be detected with more regional-scale landscape attributes.  

Ultimately, the significant results from the bottom-up classification showed that 

hillslope processes had a considerable influence on variation in reach-scale values 

and that we can predict reach stream channel morphology based on this relationship 

in GSMNP. 

 

Assessment of Classifications Using Stream Water Chemistry Values 

 

Authors of several of the classification schemes I discussed in Chapter I were 

interested in creating watershed classifications that explained variation in stream 

water chemistry (Jones et al. 1997, Momen and Zehr 1998, Robertson and Saad 

2003).  In fact, most research into the relationship between landscape-scale attributes 

and stream channel habitat has focused on water quality (e.g., Baker et al. 2001, Gove 
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et al. 2001).  In these projects, researchers typically collect water quality samples at 

regular intervals throughout the year, in order to account for changes in discharge and 

seasonality when modeling the landscape influence on stream water quality.   I was 

only able to obtain one water quality analysis from my sample catchments, from grab 

samples collected within two weeks of each other, in early December, under similar 

flow conditions.  However, Robinson et al. (2002) have collected hundreds of water 

quality samples in GSMNP over the past decade and have found correlations between 

landscape attributes and water quality (Harwell 2001).  Hence, while my water 

quality data lacked statistical power, having only one sample per catchment, I could 

imply a stronger association if either of my classification techniques suggested a 

difference in water quality parameters, by catchment, which was consistent with 

established landscape to stream water quality relationships in GSMNP. 

 

For both the top-down and bottom-up classifications, I examined the distribution of 

stream water chemistry data (pH, total dissolved solids, total nitrogen, total 

phosphorous, and total organic carbon from my water quality samples) using box 

plots, which showed the maximum, minimum, and median values, as well as the 

upper and lower quartiles of water quality data within each catchment group.  I then 

transformed the data, where necessary to achieve a normal distribution, and tested for 

significant water quality differences between the catchments in both the top-down 

and bottom-up classifications using ANOVA. 

 

The box plots (Figure 20) showed little difference between the top-down catchment 

groups with respect to stream water chemistry.  TD-3 did show higher variation in 

both pH and total nitrogen, and its median value for total nitrogen was much larger 

than those of other groups. Catchments in TD-3 tend to have large amounts of pristine 

area and high mean elevations; the relatively high nitrogen levels in this group are 

consistent with results reported by Nodvin et al. (1995), who determined that soils 

located in old growth forests of the national park were nitrogen saturated, leading to 
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Figure 20.  Box plots of stream water chemistry for each top-down classified 
catchment group.  Circles denote outliers and stars are extreme values.  TDS, 
total dissolve solids in mg/l; TN, total nitrogen in (µg/l); TP, total phosphorous in 
(µg/l); TOC, total organic carbon in mg/l.
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high nitrogen loading in streams draining areas of pristine forest.  Harwell (2001) also 

reported that pH levels in streams decreased with increasing elevation.  Although 

some TD-3 catchments had high pH values, the median for that group was slightly 

lower than most of the other groups.  Total dissolved solids were slightly elevated in 

TD-4 catchments, which were distinguished by having large amounts of burned areas.  

Total organic carbon values were quite similar, and total phosphorous values were 

difficult to assess as only five streams had recorded levels of phosphorous. 

 

With respect to the bottom-up classified catchments, the box plots (Figure 21) 

suggested a large in difference total nitrogen for catchment group BU-4.  This group 

was composed of catchments with large amounts of pristine area, and, as such, is 

consistent with the proposed old-growth nitrogen saturation model (Nodvin et al. 

1995).  Total dissolved solids are highest in BU-2 catchments, which had settled areas 

and medium-strength rocks.  Unlike the case of catchment TD-4, no bottom-up group 

was distinguished by having burned areas.  The pH and total organic carbon values 

were relatively consistent between catchment groups, and again, total phosphorous 

differences were inconclusive because I had too few samples for comparison. 

 

I then ran the ANOVA analysis to test if either catchment classification created 

groups with significantly different stream water chemistry values, having first log-

transformed the total dissolved solids data and square-root transformed the total 

nitrogen and total phosphorous data in order to better approximate a normal 

distribution.  I used the catchment classes as the factor variable and stream water 

chemistry values as the dependent variables.  The variables were not significant for 

Levene’s test, and thus showed homogeneity of variance.  In the top-down 

classification, none of the catchment groups were significantly different from each 

other based on water chemistry values (Table 27).  However, in the bottom-up 

classification, a significant difference existed between catchments groups regarding 

total nitrogen (Table 28).  A post hoc test showed that BU-4 and BU-2 had 
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Figure 21.  Box plots of stream water chemistry for each bottom-up classified 
catchment group.  Circles denote outliers and stars are extreme values.  TDS, 
total dissolved solids in mg/l; TN, total nitrogen in (µg/l); TP, total phosphorous 
in (µg/l); TOC, total organic carbon in mg/l
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Table 27.  ANOVA for the test of differences in stream water chemistry between 
the top-down classified groups. 

    Sum of Squares df Mean Square F Sig. 
pH Between Groups 0.55 5 0.11 1.40 0.25 
 Within Groups 2.66 34 0.08   
 Total 3.21 39    
TDS Between Groups 0.05 5 0.01 0.59 0.70 
 Within Groups 0.59 34 0.02   
 Total 0.64 39    
TN Between Groups 542.49 5 108.50 1.80 0.14 
 Within Groups 2053.19 34 60.39   
 Total 2595.68 39    
TP Between Groups 4.30 5 0.86 0.40 0.85 
 Within Groups 73.20 34 2.15   
 Total 77.50 39    
TOC Between Groups 0.11 5 0.02 0.23 0.95 
 Within Groups 3.09 34 0.09   
 Total 3.20 39    
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Table 28.  ANOVA for the test of differences in stream water chemistry between 
the bottom-up classified groups. 

   
Sum of 
Squares df 

Mean 
Square F Sig. 

pH Between Groups 0.25 4 0.06 0.74 0.57
 Within Groups 2.96 35 0.08   
 Total 3.21 39    
TDS Between Groups 0.08 4 0.02 1.24 0.31
 Within Groups 0.56 35 0.02   
 Total 0.64 39    
TN Between Groups 663.95 4 165.99 3.01 0.03*
 Within Groups 1931.73 35 55.19   
 Total 2595.68 39    
TP Between Groups 5.73 4 1.43 0.70 0.60
 Within Groups 71.77 35 2.05   
 Total 77.50 39    
TOC Between Groups 0.41 4 0.10 1.29 0.29
 Within Groups 2.79 35 0.08   
 Total 3.20 39    
*Significant at the 0.05 level 
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significantly different mean values of total nitrogen; BU-4 catchments (high in 

pristine areas) had the highest values, and BU-2 catchments (mostly settled area) had 

the lowest values.  This further suggested that catchments with large areas of pristine 

forest were nitrogen saturated.  The chances of finding large differences in water 

quality using only one sample per catchment were remote, which is why most 

research efforts use many samples collected over long periods of time.  Hence, 

finding a significant difference in total nitrogen between two catchment groups 

emphasized the potential effectiveness of the bottom-up classification technique.  

 

Based on the comparative results, I could assess how well each classification 

technique fared at supporting my hypotheses.  I concluded that hypothesis one, a 

statistical classification (clustering) based on landscape-scale attributes, a ‘top-down’ 

approach, will distinguish groups of catchments that have significantly distinct types 

of stream channel morphology, was not supported.  The top-down approach did create 

groups with distinctively different suites of landscape-scale attributes; however, 

stream channel morphology values showed little difference between the different 

groups.  In contrast, I concluded that hypothesis two, that catchments grouped by 

their respective distinct types of stream channels, a ‘bottom-up’ approach, will show 

significant relationships between stream channel morphology and landscape-scale 

attributes, was supported based on the goodness-of-fit and prediction success rate of 

the multinomial logistic regression procedure.  In addition, stream water chemistry 

values were not significantly different between the top-down catchments, although a 

correlation between pristine forest and high nitrogen levels was suggested.  However, 

nitrogen levels were significantly different between two of the bottom-up classified 

catchments, which both supports the premise that landscape-scale attributes are 

related to reach-level processes and partially validates the strength of the bottom-up 

classification procedure. 
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CHAPTER VI  
APPLICATIONS AND CONCLUSIONS 

 

My goal with this dissertation was to present a metric, in this case a watershed 

classification, which both described the relationship between hillslopes and stream 

channels and assessed the relative impact of various disturbances on the condition of 

headwater streams. Both of these goals were achieved with the bottom-up 

classification procedure.  This classification created five catchment groups that had 

significantly different types of channel morphology, as determined from variations in 

bankfull width, depth, cross-sectional area, reach slope, median particle size, and 

amount of stored sediment. A multinomial logistic regression analysis showed that 

membership of these catchment groups could be successfully predicted based on ten 

landscape-scale attributes: catchment area and circularity; mean slope and elevation; 

pristine, heavily disturbed, and settled land uses; and weak, medium, and very strong 

rocks, which represented hillslope processes.  Finally, I demonstrated that these 

groups were capable of identifying catchments that drained streams in various stages 

of adjustment to disturbance, from incision to dynamic equilibrium.   

 

The data set I created is rich in many aspects.  Park managers and scientists can use 

this database in order to find stream habitat in the park that was most affected by 

anthropogenic disturbance, locations that were more resilient, and catchments that 

might be negatively affected by future disturbance, including the disappearance of the 

eastern hemlock.  In addition, the technique itself, although not the exact 

classification, would be useful for locating highly impacted streams, monitoring 

stream restoration projects, and possibly modeling total maximum daily loads 

(TMDL) for sediment.  A particularly noteworthy aspect of this type of classification 

is that it allows for the prediction of probable change in stream channel function and 

morphology as a direct consequence of landuse change.  Toward elucidating the 

utility of this research, I conclude this dissertation by proposing a few applications of 
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that may be useful both within the park boundaries as well as in the greater Southern 

Appalachian region, and I discuss where this research fits within the broader scope of 

geomorphological inquiry. 

 

In this project, I determined that GSMNP contained a limited number of catchment 

types, and I was able to model the interaction between landscape-scale attributes and 

channel type based on both individual attributes and combinations of attributes.  I 

identified, for instance, that the bottom-up classified BU-1 catchments had sustained 

the greatest intensity of disturbance and that stream channels in these catchments 

were still incising into the stored alluvium that had been transported from hillslopes 

in the early 20th century.  In contrast, many catchments classified into the BU-5 

catchment group are likely adjusting back toward pre-disturbance conditions, which 

are represented by the BU-4 catchments.  The BU-5 catchments represent areas that 

should be targeted for restoration, as they appear to be adjusting toward a stable 

condition.   

 

Stream channels in the BU-5 catchments would likely respond most directly to 

enhancements in their catchments; at a minimum, no further disturbance, such as road 

building, should be permitted within these catchments as they represent the best 

chance for achieving pre-disturbance conditions.  These catchments are also the best 

choices for species re-introduction efforts.  Many BU-5 stream channels have likely 

stabilized in terms of stream width, although stored sediment will remain high for 

some time.  Nevertheless, these stream channels represent areas that are most like the 

pristine conditions found in the park, and barring any further human or natural 

catastrophic disturbance event, they are likely to remain that way.  For the re-

introduction of aquatic species, researchers should locate BU-5 catchments that differ 

only in past disturbance regimes from BU-4 catchments; these represent locations 

most likely to succeed with stream restoration, as the stream channel habitat should 

continue to adjust toward BU-4 conditions. 
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The highly disturbed BU-1 catchments are not good candidates for species re-

introduction or stream restoration activities.  Many of these stream channels will 

continue to incise for some time.  As such, these stream channels may become even 

narrower and deeper.  Hence, these stream channels will adjust away from pre-

disturbance conditions until such time as they re-connect to their former floodplain.  

Many streams in these catchments will likely re-establish a new floodplain within 

their current stream channels; therefore, these catchments will have a narrower 

riparian area.  Logging and settlement in these catchments removed trees that were 

adjacent to the stream channels.  Thus, it will take some time before these streams 

benefit from the addition of coarse woody debris, which assists in excavating bank 

material and widening the stream.  Short of excavating alluvium directly from the 

floodplain, these catchments will not benefit greatly from stream restoration 

activities.  Unfortunately, these catchments have low discharge, which is the only 

process capable of mobilizing the sediment stored in these channels.  In sum, 

restoration activities in BU-1 catchments would be expensive and would show poor 

success rates. 

 

It is worth noting that BU-5 catchments were the reference category in the 

multinomial logistic regression procedure.  This does not imply that these catchments 

have ‘reference’ streams (Harrelson et al. 1994).  A reference stream is a stream 

channel occurring in relatively undisturbed conditions; as such, the stream channel 

should be in dynamic equilibrium with inputs from its drainage basin, and the habitat 

should be representative of the native flora and fauna.  Reference streams can be 

determined for water quality (Hampson et al. 2000), fish or macro-invertebrate 

communities (Barbour et al. 1999), and even channel morphology (USEPA 2005a), 

although it is rarely done for morphology.  Based on the bottom-up classification, 

BU-4 and BU-3 catchments represent reference conditions, even though the stream 

channels in each of these catchment types are much different.  BU-4 streams are wide 

and shallow because they drain large circular catchments with relatively weak rocks; 
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BU-3 catchments are smaller, more oblong, and contain stronger rocks, which results 

in narrow, deep stream channels.  The stream channels in each of the other 

catchments are adjusting toward these types of channels.  Hence, no one type of 

catchment can be considered a reference catchment, and no one type of stream can be 

considered a reference stream in GSMNP.  Finally, it is also worth noting that the 

bottom-up classification system did not predict group membership with 100% 

accuracy.  Hence, some catchments will be misclassified with this system.  In fact, 

some catchments with streams that are in dynamic equilibrium could be mis-

construed as having streams in adjustment.  This, again, emphasizes the importance 

of visiting a stream and collecting field measurements prior to making any 

management decisions regarding land use change that might affect that stream. 

 

Given that landscape-scale attributes have been shown to be highly correlated with 

stream channel morphology and that GSMNP has a large diversity of landscapes, it is 

not unexpected that there should be more than one type of ‘reference’ stream in this 

study area.  Most programs that identify reference streams are aware of the diversity 

in stream types, and will choose at least one reference stream from each ecoregion in 

an area (see Arnwine et al. 2000 for an example of reference stream selection by sub-

ecoregion in Tennessee).  However, at least for GSMNP, the diversity in stream types 

exceeds the number of ecoregions (Griffith et al. 1997, Griffith et al. 2002); this is 

likely to be true for other areas as well.  Furthermore, with respect to stream channel 

morphology, the reference stream may be a flawed concept.  It is less important to 

classify a reach as being a particular type of stream channel than it is to determine if 

that reach is aggrading, degrading, or maintaining dynamic equilibrium.  This is best 

accomplished by surveying the stream channel repeatedly over several decades.  

However, in lieu of that effort, the bottom-up classification, as presented in this 

dissertation, maps catchments according to process- and disturbance-related classes 

by statistically relating land and channel characteristics to reference and disturbed 

catchment conditions.  From the resulting groups, I can identify whether the stream in 
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a given watershed differs from or is similar to others in its class, and whether it 

should be targeted for restoration efforts, given the likelihood of the stream channel 

adjusting toward equilibrium as a result of the restoration effort. 

 

In a final note concerning reference streams and reference catchments, recall that the 

BU-5 catchments, which had been heavily disturbed by corporate logging, served as 

the reference category in the multinomial logistic regression model.  This was an 

artifact of the clustering procedure, whereby this category had moderate values for all 

channel morphology variables.  Therefore, it served as the most utilitarian group, 

from a mathematical standpoint, for statistical modeling, as each other group had 

either higher or lower values than BU-5 for each channel morphology measurement.  

This may indicate that the typical, and possibly average, stream channel condition in 

the park is disturbed and adjusting back toward pre-disturbance equilibrium 

conditions.  However, this is also the second largest group and may contain several 

streams that are in dynamic equilibrium but have values slightly lower than the values 

for catchment groups BU-1 and BU-3.  Nevertheless, many of these streams would 

likely qualify as ‘reference’ streams according to the current selection criteria 

(Arnwine et al. 2000).  Yet, many of these stream channels are likely still in 

adjustment; therefore, stream biota and water quality are likely to change as the 

stream channel adjusts over time.  As such, the ‘reference’ condition would be a 

moving target, making it difficult to document whether relative change in a different 

stream, which was being monitored following restoration, actually represented 

positive or negative change.  This reinforces both the importance of documenting any 

land use changes that have occurred in a monitored watershed and determining 

whether the stream channel of interest is still adjusting to those changes. 

 

Although the bottom-up approach was more successful than the top-down approach 

in creating useful catchment groups in GSMNP, it is worth considering whether the 

top-down approach would perform better if the differences between landscape-scale 
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attributes were less subtle.  For instance, if I were to include the entire Little River 

watershed, from the headwaters, which are in GSMNP, to its confluence with the 

Tennessee River, differences in physiography, climate, vegetation, and land use 

would increase.  The Little River leaves the Blue Ridge physiographic province and 

flows through the Valley and Ridge as it approaches its confluence with the 

Tennessee River.  Relief decreases in the Valley and Ridge, resulting in headwaters 

with lower mean elevations and generally lower mean slopes, although the upper 

reaches of some catchments are still quite steep.  The less resistant Paleozoic 

limestones and shales on the valley floors could provide more sediment and would 

produce lower reach-slopes.  The vegetation is quite different, owing largely to 

human-induced land use changes.  In particular, the Little River flows through areas 

that continue to be settled, farmed, and logged, which is not the case in GSMNP; 

hence, disturbance regimes are more pervasive and persistent in headwaters draining 

into the lower reaches of the Little River and into other drainage basins outside of the 

park boundaries.  As disturbance was the most important landscape attribute in the 

bottom-up classification, I  would expect that increasing the heterogeneity in 

disturbance processes would actually increase the efficacy of this classification 

approach.  This likely would be the case even though the overall landscape character 

in GSMNP is somewhat distinctive from the rest of the southeastern U.S. 

 

Because of the more dramatic differences in landscape-scale attributes at broader 

scales, I would expect the top-down approach to create additional catchment classes 

across larger regions; yet, these additional classes may not increase the strength of 

correlations with stream channel morphology, as it is likely that convergence would 

still be an issue with the top-down approach.  Thus, several top-down catchment 

groups would have similar types of stream channels.  For instance, several different 

combinations of landscape-scale attributes would lead to highly disturbed catchments 

with highly impacted streams.  Once again, the duration and intensity of disturbance, 

combined with the sensitivity of the catchment to disturbance, would dictate the 



138 

degree of fluvial adjustment occurring in the stream channel.  What I learned from 

attempting the top-down approach in GSMNP is that I would need to refine the 

divisions of landscape-scale attributes into classes that better represent hillslope 

processes happening over time.  In other words, frequency and magnitude of 

disturbance need to be incorporated into the model.  This might not improve the top-

down approach in GSMNP, as it has been several decades since disturbance in all 

catchments; but increasing a temporal component would certainly increase the 

variability in types of disturbance outside the park. 

 

The top-down catchment classification in GSMNP suggested water quality 

differences between the catchments, and the bottom-up classification confirmed this 

variability.  Specifically, catchments with large percentages of pristine area had 

significantly higher levels of nitrogen, as old growth trees uptake less nitrogen than 

early-successional species.  As I used only one grab sample per catchment, the 

statistical power was quite low for measuring differences between catchments.  

However, a more intensive sampling scheme would likely reveal additional 

significant differences.  Yet, the next step in investigating the utility of catchment 

classification in the park, as well as in other regions, should be to assess for 

differences in aquatic fauna between the catchments.  Many state agencies use 

information regarding both fish and macro-invertebrate assemblages to determine the 

habitat quality of a particular stream (e.g., Arnwine and Denton 2001), as these 

biological indices act as reliable indicators of stream condition (Mykra et al. 2004).  

Therefore, it would be helpful to determine whether catchment types are correlated 

with aquatic species to better map disturbance-response processes happening in a 

particular watershed. 

 

Given that stream channel habitat includes geomorphic condition, in addition to water 

quality and the health of the aquatic flora and fauna, the true biological integrity of a 

stream must account for any adjustment processes happening in a stream channel as a 
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function of disturbance.  As this adjustment response is variable, being a function of 

disturbance frequency and magnitude as well as the resiliency of a particular 

catchment, a watershed classification based on stream channel geomorphic condition 

and its relationship to hillslope processes, such as the bottom-up approach, would 

benefit researchers and agencies attempting to assess the condition of any stream.  

This is not to say that we should stop collecting water chemistry and biological 

information; rather, we should include geomorphic measurements and assess 

correlations between all of these data and watershed processes, through the use of 

bottom-up classification techniques, in an effort to best map and monitor the 

biological integrity of any watershed. 

 

Toward that effort of including geomorphic data in stream surveys, I offer a brief 

assessment of the time needed to complete a bottom-up channel survey, as well as 

suggestions on the more important data that are needed.  I was able to survey two 

stream channels in one day with help from one field assistant, provided both reaches 

were relatively accessible.  More remote streams and channels with dense riparian 

vegetation took an entire day to survey.  This necessarily limits the number of stream 

reaches that can be surveyed.  With the bottom-up approach being predicated on 

actually having stream channel morphology data, the success of the model will 

always be driven by resources available for stream surveys.  It may be possible to 

conduct a more limited stream channel survey that achieves similar results to the 

model that I have presented.  For instance, a trained fluvial geomorphologist could 

select a representative reach rather quickly, rather than surveying seven cross-sections 

per reach before beginning the monumented cross-section.  In addition, stream width 

was a better indicator of fluvial condition than depth in this study; therefore, a rapid 

assessment could be done by simply measuring bankfull stream width.  The median 

particle size and reach slope were highly, positively correlated; therefore, a quick 

stream channel assessment, at least in GSMNP,  could forego the leveling techniques 

necessary to acquire the longitudinal profile, and simply document the median 
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particle size.  Stored sediment was not correlated with any other channel morphology 

measurement and was quite sensitive to land use; as such, it should be included in any 

channel survey regardless of the sampling effort.  Finally, I did not include any 

measurement for the presence of coarse woody debris (CWD) in this classification.  

However, while surveying streams in the park, I noted that CWD was an important 

contributor to the heterogeneity of stream channel habitat, and that it had a profound 

local influence on reach-scale channel morphology.  As such, some measurement of 

CWD should also be included in any stream channel sampling effort.  

 

That channel types should reflect hillslope disturbance processes is not surprising.  In 

fact, Montgomery (1999) proposed that one could map areas in a watershed 

characterized by the different geomorphic processes and disturbance regimes most 

important to stream channel morphology.  Theoretically, these process domains 

denote portions of a watershed where a dominant disturbance regime directly 

influences stream channel morphology.  In zero-order, colluvial hollows the most 

important disturbance processes would be fire, wind, and landslides.  Debris flows in 

steep canyons would have the greatest impact on ephemeral and small streams, while 

flooding would be the most important disturbance process in larger streams.  Finally, 

channel migration would drive channel morphology change in the largest alluvial 

channels.  In practice, these process domains could also be used to predict different 

types of stream channels (Montgomery and Buffington 1997). 

 

The concept of process domains heavily influenced my study design, as I sought to 

test to what degree hillslope processes in GSMNP could predict stream channel 

morphology.  Process domains change with increasing stream order and increases in 

valley width; hillslope processes are most important in headwaters, and alluvial 

processes dominate in the valley bottoms.  All of the catchments classified in this 

dissertation were headwater contributing areas with perennial flow.  As such, each 

surveyed reach was located near the transition between the debris-flow-dominated 
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and the flood-dominated process domains, and each should have been exposed to 

similar disturbance and geomorphic processes.  This was done purposefully, so that I 

could assess the relative importance of different landscape-scale attributes on stream 

channel morphology while, hopefully, controlling for the expected geomorphic 

influence.  In fact, my classified watersheds could all be mapped as either small, 

steep-sloped catchments dominated by debris flows (although debris flows are 

infrequent occurrences in this study area) or larger flood-dominated catchments.  The 

BU-3 group was typical of the former process domain, and the BU-4 group was 

typical of the latter.  However, most of my catchments did not classify into one of 

these two bottom-up catchment groups.  Hence, the additional variation in stream 

channel morphology that I found was a function of the severity of disturbance, which 

was largely human-induced, and the sensitivity of each catchment to that disturbance.   

 

In essence, my headwater classification identified three additional catchment classes, 

each of which represented a transitional catchment with the stream channel adjusting 

toward equilibrium conditions.  Most of the BU-2 catchments are heavily disturbed 

flood-dominated catchments that are moving toward the BU-4 group.  Some of the 

BU-1 catchments are also flood-dominated catchments moving toward the BU-2 

group and ultimately into the BU-4 group.  The remaining BU-1 catchments are 

small, disturbed headwaters that are transitioning toward the BU-3 group.  BU-5 

catchments have moderate reach-scale values, have experienced moderate 

disturbance, and have moderate sensitivity to disturbance; these catchments are 

adjusting toward either BU-3 or BU-4 depending on their size, geometry, and slope 

steepness.  These results indicate that, although the process domain concept is a valid 

framework for organizing the landscape according to geomorphic processes and 

disturbance regimes,  land-use history, surficial geology, and drainage basin geometry 

can be used to decrease the variability in prediction of stream channel habitat and to 

identify the state of adjustment for stream channels in disturbed catchments. 
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This headwater classification process provided an opportunity for testing how 

successfully we can link processes across scale.  Using two techniques for classifying 

headwater catchments, I evaluated both a top-down and a bottom-up approach to 

catchment classification.  The top-down approach partitioned catchments into six 

discrete groups based on the similarity of their respective landscape-scale attributes.  

This technique was easily done using GIS and statistical software; however, it did not 

create catchment groups that had significantly different stream channel morphology.  

Although I attempted to use landscape-scale attributes that represented hillslope 

processes, the model failed because it was not a true process-driven model.  The 

clustering procedure used in the top-down approach tends to choose one dominant 

attribute for clustering rather than a combination of attributes.  This results in some 

catchments having one or more statistically trivial attributes that may offset the 

geomorphic influence of the dominant attribute on stream channel morphology.  The 

top-down approach also could not account for convergence, where different 

combinations of attributes produce similar channel morphology.  Hence, top-down 

catchments could not effectively take advantage of the correlation between landscape-

scale and reach-scale information in order to discriminate among different types of 

stream channels. 

 

In contrast to the top-down approach, the bottom-up headwater classification 

technique better modeled the geomorphic processes related to stream channel 

adjustment.  With this approach, a sample of stream reaches was first classified into 

five types, based on similarities in stream channel morphology.  These five types 

represented transitional states in the expected response of stream channels that were 

either aggrading, degrading, or in dynamic equilibrium.  These stream types ranged 

from small to large, as a function of discharge, and had steep reach slopes with large 

median particle sizes or shallow slopes and small bed material as a function of 

sedimentation.  In the bottom-up classification procedure, I classified each catchment 

into one of five groups based on the type of stream that drained the catchment.  Using 
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a multinomial logistic regression model, I was able to predict catchment group 

membership, according to the relationship between stream type and landscape-scale 

attributes, with better than 80% accuracy.  I achieved this result even though several 

bottom-up catchment groups shared a few important landscape-scale attributes.  Thus, 

I found that different types of stream channels could form in similar catchments that 

differed only in disturbance intensity.  This supported my conclusion that land use 

history was a critical component of this, and possibly any, classification procedure. 

 

Neither my top-down nor my bottom-up analyses would be directly applicable in 

other physiographic regions, and each would likely require substantial modification in 

order to be used outside of the park boundaries.  Nevertheless, the process of relating 

landscape-scale attributes to stream channel function and morphology by analyzing 

relationships between variables at the two scales, particularly the bottom-up 

technique, is a generally applicable tool and potentially a powerful one.  A catchment 

whose characteristics have been analytically combined into a single metric provides a 

point of reference in time, such that future changes in stream condition can be 

documented and quantified as a function of changes in the catchment condition.  

Additionally, catchment analysis allows for the synthesis of disparate data types, 

which provides measurable and standardized dependent variables for modeling the 

multivariate influence of many independent variables.  It is true that all data reduction 

necessarily involves a loss of information when going from the original, sampled 

components to a single, combined metric.  However, if properly modeled, a 

catchment metric can actually enhance the descriptive power of the original data by 

representing gradients and emergent properties that would not normally be detected 

when modeling with only the individual components of the system. 

 

Although it is time-intensive to collect the stream channel morphology information, 

the ultimate advantage is in directly sampling the habitat of interest with regard to 

biological integrity.  The broader interest in classifying watersheds, and landscapes in 
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general, is likely to continue as we acquire more sophisticated and accurate remotely-

sensed data.  However, much as in the early days of remote sensing, it is imperative 

that we ‘ground-truth’ the data.  Thus, we must continue to directly collect stream 

channel habitat data and correlate these data with landscape-scale attributes in order 

to better understand how to model the hillslope processes that impact stream channel 

morphology.  My headwater classification effort is one step toward this progression 

of linking processes across scale and extrapolating those findings throughout 

landscapes to better predict and protect biological integrity of both streams and the 

hillslopes that drain to those streams.  The bottom-up catchment classification 

procedure may require more effort to produce than the typical top-down approach, 

but ultimately, it provides the best template for further research on physical-biological 

interactions both in the Great Smoky Mountains National Park and throughout the 

region. 
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