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ABSTRACT 

Analyses of Chassigny, Nakhla, and ALH84001 reveal, in addition to a Xe 

component from the martian atmosphere, a second component loosely attributed to the 

martian "interior."  This appears to be a mixture of solar- and fission- (244Pu) derived 

xenon components.  The proportions are consistent in each meteorite but vary from 

meteorite to meteorite.  The working hypothesis is that this variation reflects different 

contributions of solar (mantle-derived) and fission (crustal-derived) xenon to each parent 

melt. 

This study focused on mineral separates from two basaltic shergottites, Shergotty 

and EETA79001 Lithology-B (EETA), chosen to reflect, as far as possible, the extremes 

of crustal assimilation in the parent melt.  Xenon analysis was performed revealing 

martian interior and atmospheric components.  Of the mineral separates examined, the 

opaque phases in both meteorites have higher atmospheric gas concentrations than 

maskelynite and pyroxene separates.  This is attributed to the adsorption of atmospheric 

gas on the grains and then shock implantation.  The opaques, the smallest mineral phases 

in the meteorites, provided the most surface area and thus resulted in higher gas 

concentration.   

The interior component is best defined in the pyroxene separates of both 

meteorites.  This interior component is attributed to ambient xenon trapped upon 

crystallization of the mineral.  The 129Xe excess (129Xe/132Xe ~ 1.2) in the interior 

component of Shergotty is described as admixture of martian atmosphere to the melt, 
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while this component is absent for EETA.  The fission-derived xenon of the two 

meteorites varies in that Shergotty has a higher 136Xe* concentration than that observed 

in EETA.  

A model was constructed to reflect the isotopic evolution of xenon in the martian 

mantle, crust, and atmosphere during planetary differentiation, outgassing and 

atmospheric loss.  An atmosphere is produced with elevated 129Xexs/130Xe and low 

radiogenic xenon to excess xenon ratio (136Xe*/129Xexs), along with two interior 

reservoirs, one consisting of solar xenon with little or no radiogenic xenon and one with a 

high ratio of fissiogenic 136Xe*/130Xe and a low 129Xexs/136Xe* ratio.  These latter ratios 

are qualitatively similar to those required to produce the interior components of the 

shergottites. 
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CHAPTER I 

INTRODUCTION  

Martian Meteorites 

The meteorites historically referred as SNC’s (Shergotty, Nakhla, Chassigny), are 

petrologically diverse yet share a common parent body.  The most compelling evidence 

for this is that the meteorites define a unique oxygen-isotope fractionation line that is 

displaced from the terrestrial mass fractionation line (Clayton and Mayeda, 1983; Franchi 

et al., 1999).  Chemical fingerprints indicative of a common body, such as ratios of 

Fe/Mn, K/La, Co/(MgO + FeO) and Ni/Mg, are also consistent with this view (Dreibus 

and Wanke, 1985).  These elements tend not to fractionate from each other during 

igneous processes; therefore, their ratios remain constant even though their absolute 

element abundances may change.  The meteorites are a grouping of diverse igneous 

rocks: shergottites (basalts, gabbros and lherzolites), nakhlites (clinopyroxenites-

wehrlites), Chassigny (dunite), and ALH84001 (orthopyroxenite).   

The original suggestion that the SNC meteorites originated from Mars was based 

on their late crystallization ages and the difficulty of accounting for igneous activity on 

an asteroid-size body so late in solar system history (McSween, 1984 and references 

therein).  This argument is based on the insulating capacity of large bodies, which could 

have retained heat from the decay of long-lived radioisotopes.  Thus, crystallization ages 

of 1.3 Ga (nakhlites and chassignites) to 180 Ma (the suggested age for Shergotty) for 
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most SNC meteorites argue that the meteorites formed on a large parent body (but not 

specifically Mars).  ALH84001 has a crystallization age of 4.5 Ga, and thus may 

represent an ancient sample of the parent body (Nyquist et al., 2001).   

More definitive evidence matching the SNC meteorites to Mars was provided by 

the agreement between the isotopic and elemental compositions of gases trapped in 

shock-melted glass in the EETA79001 shergottite and the Viking measurements of the 

martian atmosphere (Becker and Pepin, 1984; Bogard and Johnson, 1983).  Additional 

studies on the trapped component demonstrated that the molecular/atomic abundances 

and isotopic compositions of 20Ne, 84Kr, 36Ar, 40Ar, 132Xe, N2, and CO2 accurately (to 

within the precision afforded by the Viking measurements) matched the martian 

atmosphere (Bogard et al., 2001 and references therein).  Subsequently, shock 

experiments have demonstrated that ambient gases can be implanted during impact 

without elemental or isotopic fractionation (Bogard et al., 1986; Wiens and Pepin, 1988).   

With the belief that these meteorites are martian rocks, we are provided with the 

possibility of extracting geologic information and history of this planet.  Table I-1 lists 

the four distinct petrologic groups (shergottites, nakhlites, Chassigny, and ALH84001) 

and associated martian meteorites currently identified.  Recent studies in the 

understanding of martian xenon components in Chassigny, nakhlites and ALH84001 

have identified xenon components previously not described.  The aim of this work is to 

determine and understand better the location of these martian xenon components, derived 

from the atmosphere and various "internal" sources (mantle and/or crustal), present in the  
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Table I-1.  The SNC meteorites and respective petrologic grouping. 

Shergottites 

Basaltic Lherzolitic 
Nakhlites Chassignites ALH84001 

Shergotty Allan Hills 
77005 Nakhla Chassigny Allan Hills 

84001 

Zagami Lewis Cliff 
88516 Lafayette 

  

Los Angeles 001, 
002 Yamato 793605 Governador 

Valadares 

  

Queen Alexandra 
Range 94201 

Grove 
Mountains 

99027 

Yamato 
000593, 
000749 

  

Elephant Moraine 
79001 Yamato 1075 Northwest 

Africa 998   

Dar al Gani 476, 
489, 735, 670, 876  Northwest 

Africa 817   

Sayh al Uhaymir 
005, 008, 051, 094, 

060, 090 
    

Dhofar 019     

Dhofar 378     

Northwest Africa 
480     

Northwest Africa 
856     

Northwest Africa 
1068, 1110     

Northwest Africa 
1195     
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shergottites.  Furthermore, I will attempt to account for how these components came to be 

trapped, in the context of accepted models of crystallization and subsequent history for 

martian meteorites. 

Basaltic Shergottites 

The largest grouping of martian meteorites is the shergottites, which are 

subdivided into two lithologies:  basalts and lherzolites.  The basaltic shergottites are the 

focus of this study. 

Basaltic shergottites are relatively fine-grained and predominantly consist of the 

clinopyroxenes pigeonite and augite (prisms up to 1 cm long) with lath-like and 

interstitial vitreous maskelynite, which was transformed from plagioclase by shock 

(Duke, 1968).  Lesser amounts of titanomagnetite, ilmenite, pyrrhotite, whitlockite, and 

accessory apatite, quartz, baddeleyite, fayalite and mesostasis make up the rest of the 

meteorite (Smith and Hervig, 1979; Stöffler et al., 1986; Stolper and McSween, 1979).  

Most exhibit a foliated texture produced by preferential orientation of pyroxene prisms 

and maskelynite grains (Duke, 1968; Mikouchi et al., 2001; Stolper and McSween, 

1979).  The suggested crystallization history started with crystallization of homogeneous, 

Mg-rich pigeonite and augite grains.  Next, the crystallization of Fe-rich pyroxene rims 

onto the magnesian pigeonite and augite cores occurred along with the interstitial, zoned 

plagioclase.  The remaining trapped melt continued to crystallize, forming accessory 

phases and mesostasis (McSween, 1994). 
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Whole-rock Rb-Sr, U-Th-Pb and Hf-W data for shergottites suggest that martian 

global differentiation, including core formation, occurred near 4.5 Ga. and was, for the 

most part, concurrent with the completion of accretion (e.g. Halliday et al., 2001).  This is 

consistent with planetary accretion models having time scales on the order of 100 Ma 

(Wetherill, 1986).  The Rb-Sr, Pb-Pb and U-Pb systematics reflect a two-step evolution 

of the martian meteorite reservoir, the first being the ~4.5 Ga differentiation and the 

second a magmatic event that only slightly changed the Rb/Sr (Jagoutz, 1991).  This 

necessitates a radioactive element-enriched crust (Breuer et al., 1993) and depleted 

mantle.  Unlike the Earth where convective mixing has homogenized the mantle, 

variations of light rare Earth element (LREE) depletions observed in the martian 

meteorites indicate that Mars mantle source regions preserved ancient heterogeneities 

(Jagoutz et al., 1994).   

The crystallization ages of the shergottites lie in the range of ~165-475 Myr 

(Nyquist et al., 2001).  These young crystallization ages for meteorites were one of the 

first lines of evidence of their origin from a planetary sized body (McSween and Stolper, 

1979; Nyquist et al., 1979a; Wasson and Wetherill, 1979).  Unfortunately, earlier results 

showed discordant ages and showed considerable scatter about the best-fit isochron, 

leaving speculation about ~165 Myr age interpretation.  The ambiguous Rb-Sr and 39Ar-

40Ar ages were initially argued to be the result of resetting events such as thermal or 

shock metamorphism (Bogard et al., 1979; Nyquist et al., 1979b).  However, it has been 

established that neither post-shock metamorphism nor shock transformation of mineral 

phases are adequate to reset these isotopic systems (Nyquist et al., 2001).  Shih et al. 
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(1982) plotted several different shergottite whole-rock Sm-Nd data and interpreted the 

relation as an apparent isochron age of ~1.3 Gyr that agreed with the ages of the nakhlites 

(Shih et al., 1982).   

However, a more favorable scenario suggests the relationship of the shergottites 

may represent a mixing between different mantle and/or crustal reservoirs on Mars 

(Jones, 1989; Longhi, 1991).  The isotopic mixing model interprets the linear alignment 

of the Nd data as due to mixing more radiogenic Nd from the martian mantle with less 

radiogenic Nd from the martian crust and that the 1.3 Gyr is a coincidence (Jones, 1989; 

Longhi, 1991).  Further results for the Nd isotopic compositions and other REE 

abundances in the shergottites also suggests a mixture between two sources – one 

component identified with the depleted martian mantle and one, relatively enriched in 

LIL elements, tentatively associated with the martian crust (Borg et al., 1997; Jones, 

1986; Norman, 1999).  The redox state of the meteorites additionally suggests a two-

source mixture (Herd et al., 2001; Wadhwa, 2001).  In each case Shergotty exhibits a 

higher contribution from the crustal component as seen in Figure I-1 (Herd and Papike, 

2000).  Shergotty has higher oxygen fugacity (close to the quartz-fayalite-magnetite 

oxygen buffer curve reflecting an evolved component) and lower epsilon neodymium 

(εNd ~ -7, Jones, 1986) compared to QUE94201, which has oxygen fugacity close to iron-

wüstite buffer (Herd and Papike, 2000) and εNd of 0.92 ± 0.11 (Borg et al., 1997).  The 

goal of this study is to seek evidence of such mixing in the xenon isotopic systematics of 

these meteorites. 
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Figure I-1.  The relationship of oxygen fugacity to epsilon neodymium for some 
of the known basaltic shergottites.  Isotopic variations of neodymium and the 
redox state of the meteorites suggest a mixture between two sources – one 
component identified with the depleted Martian mantle and one, relatively 
enriched in LIL elements, tentatively associated with the Martian crust (Borg et 
al., 1997; Jones, 1986).  This has lead researchers to believe that Shergotty 
crystallized from magma source that has more crustal contamination than that 
observed in QUE94201. 
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Noble Gases in SNC Meteorites and the Evolution of Martian Atmosphere 

Noble gases are highly useful because of their low concentration in terrestrial and 

extraterrestrial rocks and their consequent susceptibility to isotopic modification through 

nucleogenic effects.  Noble gas research is one of the most important means of 

determining the age of the atmosphere, the degree of degassing of the mantle and the 

sources and timing of fluid flows responsible for the secondary alteration of rocks here on 

Earth.  Noble gases have already played a major role in the recognition of Mars as the 

parent body of the SNC meteorites.  By analyzing the martian meteorites, similar 

advances in understanding the preserved record of interactions between atmosphere, 

hydrosphere and lithosphere on Mars, including the origin of the atmosphere and the 

timing of its collapse, may be achieved (Pepin, 1994). 

Several groups have reported krypton and xenon measurements for the SNC 

meteorites (refer to figure text for references).  Unique patterns of the trapped noble gases 

found in the SNC meteorites show that the gas concentrations as well as elemental 

abundance ratios differ from meteorite to meteorite (e.g. Ott, 1988).  As previously 

discussed, a component found trapped in shocked glass of shergottite EET79001 is 

elementally and isotopically identical to the present-day martian atmosphere, as measured 

by Viking.  Because better analytical precision is possible in the laboratory, this trapped 

component is now used to define the martian atmospheric signature (Becker and Pepin, 

1984; Bogard and Johnson, 1983; Swindle et al., 1986).  A second component is found in 

the dunite Chassigny and is thought to represent the martian interior (Ott, 1988).  This 
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component has the isotopic signature of solar xenon and its presence in a mantle rock has 

led to its association with the martian interior (mantle).  This, in part, mirrors terrestrial 

findings of noble gases that have shown a preservation of near-solar isotopic signatures 

(Dixon et al., 2000; Honda et al., 1993), although a solar xenon component has yet to be 

identified in the Earth’s interior.  The 36Ar/132Xe (~5) and 84Kr/132Xe (~1.1) elemental 

ratios measured in this mantle component represent a heavily elementally fractionated 

solar system reservoir (Mathew and Marti, 2001). 

Martian heavy noble gas components are illustrated in Figure I-2, which plots 129Xe/132Xe 

ratios versus 84Kr/132Xe ratios.  The martian atmospheric signature of EET79001 shock 

glass has elevated 129Xe/132Xe and 84Kr/132Xe compared to solar.  The mantle component 

identified in the dunite meteorite Chassigny has a solar 129Xe/132Xe ratio accompanied by 

an 84Kr/132Xe ratio of ~1.  This is noteworthy since it shows that drastic elemental 

fractionation has occurred with no detectable effect on the isotopic signature, possibly 

due to an equilibrium process.  Shergottite bulk compositions, except for one analysis of 

Zagami (Ott et al., 1988), define an array that is broadly consistent with a mixing 

between the martian atmosphere and a interior/mantle endmember (e.g. Ott, 1988).  

Nakhlites and analyzed samples of ALH84001 broadly define a second mixing line 

between an interior/mantle component and an elementally fractionated martian 

atmosphere, krypton being depleted relative to xenon (Ott et al., 1988).  The nakhlites 

differ from ALH84001 by a lower 84Kr/132Xe ratio.   
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Figure I-2.  84Kr/132Xe vs. 129Xe/132Xe for some SNC meteorites.  Most 
shergottites define a mixing between Martian interior (Chassigny) and Martian 
atmosphere (EET79001-Glass) as seen in this graph.  Falling off this mixing line 
are the nakhlites and ALH84001 due to mass fractionation or the possible 
existence of a third high 129Xe/132Xe reservoir (see text for further discussion).  
Impact glass shows a mixing of a component identified in crushed samples that 
yield a low 129Xe/132Xe ratio (Ott, 1988).  Data is from literature (Bart et al., 
2001; Becker and Pepin, 1984; Bogard and Garrison, 1998b; Bogard et al., 
1984; Drake et al., 1994; Garrison and Bogard, 2000; Miura et al., 1995; 
Mohapatra and Ott, 2000; Murty and Mohapatra, 1997; Ott, 1988; Ott and Lohr, 
1992; Ott et al., 1988; Owen et al., 1977; Ozima and Pososek, 1983; Swindle et 
al., 1986; Swindle et al., 1995; Swindle et al., 1989; Swindle et al., 2000; 
Terribilini, 2000; Wiens, 1988). 
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There are several models to account for the origin of this elementally fractionated 

component.  Direct incorporation of atmospheric gases into martian weathering products 

with fractionation controlled by water solubility has been suggested (Bogard and 

Garrison, 1998a; Drake et al., 1994), though this is now demonstrably false since this 

component is not dominated by gas associated with weathering products in either Nakhla 

or ALH84001 (Gilmour et al., 1998b; Gilmour et al., 1999).  Gilmour et al. (1998) 

suggested a mechanism involving adsorption of atmospheric gases onto mineral surfaces 

followed by shock implantation to account for the component in ALH84001, and adopted 

to account for that in the nakhlites (Gilmour et al., 2001; Swindle et al., 2000).  A third 

interpretation implies the variation is not a result of fractionation before or in the process 

of incorporation into the rock.  Instead the variation reflects actual differences in the 

Kr/Xe ratio of the martian atmosphere at the time of the incorporation of the meteorites 

and that the varying elemental composition of the martian atmosphere results from 

temperature-controlled variations in partitioning of the global atmospheric into carbon 

dioxide clathrates in the polar caps of Mars (Musselwhite and Swindle, 2001).  As of yet, 

no such clathrates have been identified, so this model remains speculative. 

The nature of the martian atmosphere component in the martian meteorites has 

provided invaluable constraints on models of the evolution of the martian atmosphere.  

These generally require partial loss of the planetary atmosphere either very early in Mars’ 

history or over extended geological time.  Most models (Jakosky and Jones, 1997; Pepin, 

1991, 1994) attribute the mass-dependent isotopic fractionation of xenon observed in the 

present-day martian atmosphere to hydrodynamic escape prior to 4.0 Ga ago.  This 
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process also resulted in the complete loss of all noble gases lighter than xenon.  The light 

noble gases in the atmosphere today then represent subsequent outgassing from the crust 

or mantle and/or were produced by decay of radiogenic elements.  ALH84001, which in 

contrast to the other young martian meteorites is a sample of the ancient martian crust, is 

believed to contain a sample of the ancient martian atmosphere.  This xenon component 

has a lower 129Xe/132Xe ratio than the present-day martian atmosphere, suggesting that 

outgassing of 129Xe from 129I decay from the crust to the atmosphere was incomplete 

when the component was trapped.  More controversially, Mathew and Marti (2001) argue 

that this xenon component is isotopically unfractionated, suggesting that the 

hydrodynamic escape that ‘set’ the fractionation of xenon isotopes in the modern 

atmosphere had yet to occur.  The observations clearly restrict models of the ancient 

atmosphere of Mars (Gilmour et al., 1998b; Mathew et al., 1998; Murty and Mohapatra, 

1997).  The 129Xe/132Xe ratio of the trapped component is lower than that of the present-

day martian atmosphere, thus suggesting the trapped gas sampled the atmosphere, at least 

4 Ga before the xenon isotopic ratios had evolved to their present values (Gilmour et al., 

1998a).  Further outgassing of the atmosphere is due to atmospheric erosion by impacts, 

sputtering, and photochemical escape to produce the present martian atmosphere 

(Jakosky and Jones, 1997; Pepin, 1991, 1994; Swindle and Jones, 1997).   

The particular interest in this proposed work is the relationship between 

136Xe/132Xe ratios and 129Xe/132Xe ratios as shown in Figure I-3.  This graph shows the 

processes that evolve solar xenon to the present-day accepted xenon signature of the 

martian atmosphere identified in the glass phase of EET79001 (Becker and Pepin, 1984; 
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Podosek and Huneke, 1971).  These processes include the decay of 129I (16 Ma half-life) 

to 129Xe, fission of 244Pu and 238U producing 136Xe, and mass fractionation resulting from 

dissolution, crystallization, and other physical processes.  This proposed work builds on 

more recent data in an attempt to decipher the evolution of the martian xenon 

components.  

Martian Evolution of Xe Components 

Several models that have been suggested to describe the isotopic evolution of 

martian xenon components (Pepin, 1994; Swindle and Jones, 1997; Swindle and Kring, 

1997).  Swindle and Jones (1997) utilized solar wind xenon as the primordial martian Xe 

and demonstrated an atmospheric evolution model that considered martian geochemical 

evolution and degassing history.  This model showed that the martian atmosphere could 

be derived from mass fractionated solar xenon with an addition of fission Xe from 244Pu 

and 238U and 129Xe from 129I decay.  Although 129I decays with a half life of 16 Ma, 

contrasting with 244Pu half life of 82 Ma, elemental fractionation during the formation of 

the crust and control of atmospheric evolution by rates of degassing of crustal reservoirs 

means that the order of the processes – isotopic fractionation, outgassing of iodine, and 

outgassing of fission products – is not well constrained.  The ancient atmospheric 

signature identified in ALH84001 is enriched in 129Xe from iodine decay but isotopically 

unfractionated and has little or no 244Pu fission xenon (Mathew and Marti, 2001).  This 

reflects the build up of 129Xe before ~4.0 Ga ago when ALH84001 was shocked on the 

surface of Mars.  The development of interior xenon evolving to atmospheric xenon 

includes three processes:  1) chemical fractionation--the differentiation of Pu and I into  
 13



Figure I-3.  The 136Xe/132Xe ratio vs. 129Xe/132Xe ratio for some SNC 
meteorites.  SPB (Swindle, 1986) represents the Martian atmosphere component 
while Chassigny represents the Martian mantle component because of its 
similarity to solar xenon (Podosek et al., 1971).  The arrows show the processes 
that evolve solar xenon, mass fraction (M. F.), 129I decay plus escape and 244Pu 
and 235U fission plus escape.  Data is from literature (Becker and Pepin, 1984; 
Gilmour, 2000b; Murty and Mohapatra, 1997; Ott, 1988; Swindle et al., 1986; 
Swindle et al., 1995; Terribilini, 2000). 
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the crust, 2) in situ decay--129I half-life = 16 Ma, 244Pu half-life = 80.8 Ma and 238U half-

life = 4.47 Ga, and 3) outgassing of the crust to the atmosphere--possibly released by 

impacts or another mechanism to regenerate the surface.  Using published isotopic data, 

possible evolution path(s) of the martian atmosphere is illustrated in Figure I-4. 

In trying to understand martian evolution, researchers are trying to understand the 

possible different xenon reservoirs.  The solar component is suggested to originate from 

the mantle while geochemistry suggests Pu and I were concentrated in the crust.  But how 

the different reservoirs and parent isotope half-lives interacted to produce the atmosphere 

is unclear.  While investigating the early evolution of martian volatiles, Mathew and 

Marti (2001) described a new component in Chassigny.  This component, Chass-E, has a 

similar 129Xe/132Xe ratio as the accepted martian interior component; however, its 

136Xe/132Xe ratio reflects an addition of 244Pu fission Xe.  This defines an evolved 

uniform trapped signature and implies that the fission Xe component was well mixed 

with the solar Xe component, ruling out in situ decay of 244Pu (Mathew and Marti, 2001).  

Chass-E xenon suggests a late entrapment and also different carriers than the solar-

derived component.  The estimated interior xenon components of ALH84001 and Nakhla 

also indicate various proportions of fission xenon mixed with solar xenon as shown in 

Figure I-4 (Mathew, 2000).  It appears that the bulk analysis of the shergottites reflects a 

mixture between some solar (mantle?) plus fission (crustal?) interior components and 

modern martian atmosphere, but this interior component in the shergottites is not yet well 

characterized. 
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Figure I-4.  Possible evolutions of solar xenon to the present day martian 
atmosphere, SPB. Unfractionated solar xenon found in ALH84001 is 
symbolized by Old Atm (Mathew and Marti, 2001).  From this point, addition of 
various 129Xe that escaped from the crust, 136Xe from 244Pu and escaped and 
mass fractionation occur (order unknown) to evolve the present day Martian 
atmosphere.  The interior xenon components thus far identified for ALH84001, 
Chass-E, and Nakhla are shown as solar with various proportions of 244Pu 
(Gilmour, 2000a; Mathew and Marti, 2001).  Currently, the interior xenon 
component is poorly defined for the shergottites; published "bulk" samples of 
the shergottites are shown for comparison (Becker and Pepin, 1984; Ott, 1988; 
Swindle et al., 1986; Terribilini, 2000). 
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Present Work 

The research here identifies the presence and sites of the xenon components in the 

basaltic shergottites.   

With the laser probe and analyses of mineral and glass separates, a search for 

identifiably distinct martian components and location of these martian Xe component(s) 

was performed.  The goal was to answer several questions: 

 What are the host phases of the martian interior and atmospheric xenon?   

 Does the interior xenon component identified support the model of a solar-

derived "mantle" reservoir or "crustal" reservoir? 

 Do the components appear as pure components or are they "mixed" and to 

what extent in individual host phases?   

 How can the existence of the xenon component within its host phase be 

explained (trapped upon crystallization, assimilation, absorption, shock 

implanted, etc.)? 

 What is the extent of fission contribution to the martian interior component in 

the shergottites?  Is it consistent with ideas about a crustal contribution to the 

shergottite parent melt? 
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CHAPTER II 

PRINCIPLES OF RESONANCE IONIZATION AND 

EXPERIMENTAL PROCEDURE  

Principles and Operation of Resonance Ionization 

Resonance ionization utilizes lasers tuned to specific atomic energy levels of a 

selected element and produces only ions of that element.  Ionization is achieved by 

exciting the target species through one or more energy levels with laser light tuned to the 

transition frequencies, the final step being to the continuum directly or through an auto-

ionizing state.  Above a certain laser intensity, the ionization efficiency of the selected 

element becomes unity for atoms in the laser beam.  Thus resonance ionization is 

potentially much more efficient than conventional methods such as electron 

bombardment, thermal ionization, or sputtering.  In addition, as ionization depends on the 

presence of the resonant step or steps, interfering ions from the other major sample 

constituents are severely reduced or eliminated.  This leads to significant improvements 

in the detection limits of minute quantities of a particular element in the presence of an 

overwhelmingly larger background (Payne et al., 1994).  Utilizing a cryogenic sample 

concentrator, a static noble gas resonance ionization spectroscopy time-of-flight mass 

spectrometer (RIS-TOF) has demonstrated a detection limit of ~ 100 85Kr atoms 

(Thonnard et al., 1992).  This results in an extremely fast analyzer, ~ 3 min. detection 

half-life versus ~ 60 min. for conventional systems.  The short analysis time reduces the 
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effect of build up from out gassing in the mass spectrometer, which is one of the most 

important performance-limiting parameters for a static mass spectrometer. 

This project employs the Refrigerator Enhanced Laser Analyzer for Xenon 

(RELAX) housed at the University of Manchester (Gilmour et al., 1994).  This system, 

similar to and based on the RIS-TOF system originally housed at Atom Sciences and now 

under renewed development at the University of Tennessee (Appendix A), employs a 

laser tuned to a specific atomic energy level of xenon, thus producing only ions of xenon.  

This involves a two-photon excitation at 249.6 nm of the 2P3/26p[1/2]0(j1l coupling) level 

of the xenon atom followed by a one-photon ionization at the same wavelength.  The 

light at 249.6 nm is produced by a commercial system, Spectron Laser Systems SL803, 

based on a pulsed Nd:YAG laser.  The fundamental light of the Nd:YAG (1064 nm) is 

frequency doubled (532 nm) to pump a dye laser (an oscillator and two amplifier cells 

using DCM) thus producing light in the 650 nm region.  This light is then frequency 

doubled, and then mixed in a deuterated di-hydrogen phosphate crystal with residual light 

at the fundamental Nd:YAG wavelength to generate light in the 250 nm region.  Varying 

the dye laser wavelength allows tuning to the precise wavelength needed for the xenon 

transition. 

A 25 cm focal length lens (~22cm at 249.6 nm due to wavelength dependence of 

the refractive index) focuses the ionizing light into the ion source region of the time-of-

flight mass spectrometer.  To enhance the sensitivity of the spectrometer, a cryogenic 

sample concentrator, an idea conceived at Oak Ridge National Laboratory (Hurst et al., 

1984), and refined on the system in Tennessee (Thonnard et al., 1984), creates a localized 
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cold spot in the source region of the mass spectrometer onto which the sample condenses.  

Immediately before the ionization laser is fired another laser pulse is directed onto the 

cold spot, heating it and releasing the sample into the ionization region of the 

spectrometer.  This is provided by a small Q-switched Nd:YAG laser of 5 ns pulse 

duration and 3 mJ pulse energy, heating the cold spot.  The delay between the two lasers 

is adjusted to optimize the concentration of sample in the ionization region at the arrival 

of the ionization laser in the spectrometer.  After passing through the ion source, the 

ionizing laser pulse is detected by a photodiode that triggers the data acquisition system. 

An einzel lens focuses the ions from the ion source region down a 65 cm flight 

tube onto a chevron-mounted microchannel plate detector.  The output signal from the 

detector is passed through an x10 pulse amplifier and recorded on a digital oscilloscope 

sampling at 400 MHz.  Flight times between 8.8 and 9.8 µs, the xenon region of the time 

spectrum, are monitored and signals from a sequence of laser shots are transferred to a 

personal computer and stored on disc. 

Sample Preparation and Xenon Extraction 

Sample Preparation 

Untreated milligram-size samples that had not been exposed to water were 

requested for this work.  Shergotty was received from the Natural History Museum, 

London, England, and EETA79001 Lithology-B was supplied from the meteorite group 

at Johnson Space Center, Houston, Texas.  The main sample preparation needed was to 

physically divide identifiable mineral separates for individual xenon analysis.  This was 
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accomplished in two ways: (1) creating major-element composition maps from thick 

sections of the sample that were then physically separated, and (2) using distinctive 

optical traits under reflective light to separate mineral grains micro to millimeter in size.   

Thick sections (~100 µm) were prepared from portions of the samples taking care 

to use a dissolvable adhesive for mounting to glass slides.  The thick sections were 

analyzed using the fully automated CAMECA SX-50 electron microscope at the 

University of Tennessee, which employs an accelerating voltage of 15 kV, a beam 

current of 20-30 nA and full ZAF (PAP) correction.  Analysis provided major-element 

compositions (Ca, Al, Mg and Fe) maps through the use of backscatter images and EDS 

analysis.  These provided confirmation of the different minerals present in the thick 

sections and determine where the thick section could be cut with a 100 µm-thick diamond 

saw to isolate individual minerals.  After removing the carbon coating needed for electron 

microscope analysis by washing the sample with acetone, the thick section was removed 

from the glass slide.  The sections were then cut and physically separated into "bulk" 

pyroxene, augite, pigeonite, and maskelynite.   

Portions of the samples were crushed into millimeter size grains.  The grains were 

then physically separated by hand picking the grains that were visually identified as 

dominantly consisting of pyroxene (yellow to light brown), maskelynite (clear glass) and 

opaques phases (black and with magnetite responding to a weak magnet).  The 

categorization of the individual minerals grains was based on the dominant mineral phase 

present.  A bulk sample from each meteorite sample was also separated for analysis.   
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Samples of maskelynite and pyroxene were further divided into subsamples and 

washed with 1% HCl for at least 19.5 hours to remove phosphates that could not be 

removed physically by hand.  The acid solution removed from the grains was analyzed by 

ion chromatography to determine the weight percent of phosphate removed from the 

subsamples. 

Xenon Extraction 

Samples were loaded into the sample chamber of RELAX where laser stepped 

heating was performed.  The chamber was evacuated and baked at ~200°C for at least 12 

hours to remove terrestrial contamination.  Upon cooling, the pressure in the sample 

chamber was allowed to reach the low 10-9 Torr regime before opening to the rest of the 

extraction line on RELAX.   

The sample gas was extracted by use of a continuous wave Nd:YAG laser at its 

fundamental wavelength (1064 nm).  The sample was illuminated for two minutes at 

constant power with an unfocused beam whose cross-section is larger than the sample 

diameter.  Laser step heating temperatures can be estimated by assuming that radiated 

power was equal to the laser power (Gilmour et al., 1998b).  During the laser heating of 

the sample, the sample chamber was exposed to a getter to remove evolved active gases.  

After an additional minute of gettering, the sample gas was admitted to the mass 

spectrometer and xenon isotopic analysis quickly followed.  Upon removal of each 

sample, it was seen to have melted and flowed, so peak temperatures in excess of the 
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melting point of the mineral analyzed must have been achieved.  Any samples not fully 

melted were returned to the sample chamber for further laser step heating.  

Data Acquisition and Reduction 

RELAX is a time-of-flight mass spectrometer.  Data acquisition is triggered by 

the ionization laser pulse and proceeds for five minutes.  Data acquired over 10 seconds 

(100 individual complete spectra) are summed to produce a composite spectrum.  Thus, 

by summing 100 individual spectra, 30 consecutive summed spectra are generated in 

each five minutes of analysis.  However, during the analysis, the measured 129Xe/132Xe 

ratio declines due to the build-up of the terrestrial atmosphere derived xenon in the 

isolated spectrometer.  The isotopic signature and rate of build-up are measured during 

separate “spectrometer blank” analyses that intersperse sample data acquisition, and are 

used for data corrections.  The data is transferred to a personal computer for calculation 

of abundances. 

Data reduction is performed with a custom application (Gilmour et al., 1994) and 

is only briefly described here.  Each summed spectrum is recorded and a sequence of 

peaks is fitted.  These are spaced according to the masses of the xenon isotopes and the 

theoretical time-of-flight mass relationship; peak widths are assumed to vary with mass 

as predicted by the same theory.  Amplitudes are free parameters of the fit, which 

accordingly produces a separate amplitude for each xenon isotope from each summed 

spectrum.  These amplitudes are converted to relative abundances by ratioing to the 

abundance of a nominated reference isotope, which was 132Xe in this project.  The blank-
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corrected evolution of these ratios with time (in the sequence of summed spectra) is used 

to determine the final analytical ratio for each analysis.  The reference isotope is 

converted to an absolute gas amount by comparison with intervening analyses of a 

sample of air xenon, which is also used to correct for instrumental discrimination, 

including systematic variations due to changes in the laser pulse energy over the course 

of an analysis.  The absolute peak height of the reference isotope is fitted with a simple 

decay curve and extrapolated to time zero.  Errors in the isotope ratios are calculated 

from the distribution of the ratios of the summed spectra around the best-fit line from 

which the final ratio is determined.  The error on the reference isotope is calculated 

assuming proportionality of error to the square root of abundance, and the errors in the 

remaining isotopic abundance are corrected accordingly. 
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CHAPTER III 

MARTIAN XENON COMPONENTS IN SHERGOTTY MINERAL 

SEPARATES:  LOCATION, SOURCES, AND TRAPPING 

MECHANISMS 

This chapter is a modified version of a paper by the same name to be submitted to the 

journal Meteoritics and Planetary Science by Katherine D. Ocker and Jamie D. Gilmour. 

 

My contributions to this paper include (1) the physical hand-picking of the sample, (2) 

the electron microprobe analysis, (3) the acid washing of sample grains, (4) the xenon 

data analysis and (5) most of the writing. 

Abstract 

Isotopic signatures and concentrations of xenon have been measured in Shergotty 

mineral separates by laser step heating.  Martian atmosphere and ‘martian interior’ xenon 

are present, as is a spallation component.  Martian atmospheric xenon is 5-10x more 

concentrated in opaque minerals (magnetite, ilmenite and pyrrhotite) and maskelynite 

than in pyroxenes perhaps reflecting grain size variation.  This is shown to be consistent 

with shock incorporation.  A component consisting of solar xenon with a fission 

contribution, similar to components previously identified in martian meteorites and 

associated with the martian interior, is best defined in the pyroxene-dominate separates.  

This component exhibits a consistent 129Xe excess (129Xe/132Xe ~ 1.2).  We suggest that 
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gas present in the melt, perhaps a mixture of interior xenon and martian atmosphere, was 

incorporated into the pyroxenes in Shergotty as the minerals crystallized. 

Introduction 

The basaltic shergottites exhibit correlated variations in rare earth element 

fractionation and isotopic systematics of neodymium and strontium suggesting a mixture 

between two sources; one component identified with the depleted martian mantle and 

one, relatively enriched in large ion lithophile elements, tentatively associated with the 

martian crust (Borg et al., 1997; Jones, 1986).  The redox state of the meteorites also 

suggests a two-source mixture.  In each case, Shergotty is a representative of the highest 

contribution from a crustal component.  Shergotty has the highest oxygen fugacity (close 

to the quartz-fayalite-magnetite oxygen buffer curve reflecting an evolved component) 

and lowest epsilon neodymium (εNd ~ -7, Jones, 1986) in contrast to QUE94201, the 

meteorite with the lowest crustal component, which has oxygen fugacity close to iron-

wüstite buffer (Herd and Papike, 2000) and εNd of 0.92 ± 0.11 (Borg et al., 1997).  Our 

work is the first stage to seek evidence of such mixing in the xenon isotopic systematics 

of these meteorites. 

Figure III-1 uses literature data to illustrate the variations in bulk xenon isotope 

signatures of the basaltic shergottites (Mathew and Marti, 2001; Ott, 1988; Swindle et al., 

1986; Terribilini, 2000).  Xenon isotope systematics of martian meteorites typically 

reveal mixing between a martian atmospheric signature (Shergottite Parent Body; 

Swindle et al., 1986) and one or more interior components.  The xenon isotopic  
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Figure III-1.  The 136Xe/132Xe ratio vs. 129Xe/132Xe ratio for some basaltic 
shergottites.  The xenon composition of the basaltic shergottites has been 
described as a mixture of a Martian atmosphere component, noted as SPB for 
Shergottite Parent Body (Swindle et al., 1986) and Martian mantle-like solar 
component found in Chassigny (Chass-S) (Ott, 1988).  However, all the 
presented data lie above this simple two-component mixing line, suggesting 
three-component mixing or modification of the mantle-like component (see 
text).  Published values of Shergotty are represented to show the agreement with 
our whole rock data (Mathew and Marti, 2001; Ott, 1988; Swindle et al., 1986; 
Terribilini, 2000).   
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signature of the martian atmosphere, identified in shergottite melt glass and in Nakhla, is 

distinguished by an elevated 129Xe/132Xe ratio of 2.40 ± 0.02.  A pure solar xenon 

(129Xe/132Xe ≅ 1) has been observed in the dunite Chassigny and is denoted here by 

Chass-S (Ott, 1988).  Its presence in a dunite led to its association with the martian 

interior.  Building on this identification, further components dominated by solar xenon 

but with varying proportions of fission xenon, are also identified with the martian 

interior.  The fission source has been identified as 244Pu (Mathew and Marti, 2001).  

There is some variation in the relative proportions of fission xenon and solar xenon in 

these components.  One such component, also detected in Chassigny (Mathew and Marti, 

2001) and denoted as Chass-E (Figure III-1) has similar 129Xe/132Xe ratio to Chass-S, the 

pure solar interior component.  Chass-E is a well-defined component implying that 

fission and solar xenon were well mixed before incorporation into the meteorite, ruling 

out in situ decay (Mathew and Marti, 2001).  The estimated interior component of 

ALH84001 and Nakhla analyses also indicate mixtures of fission and solar xenon 

(Mathew, 2000), albeit in distinctly different proportions from each other and from 

Chass-E.  In these cases the components are constrained to lie on mixing lines between 

solar, 244Pu source and the 129Xe/132Xe ratio in the interior component is not accurately 

known.  In Figure III-1, literature data from bulk analyses of shergottites suggest the 

presence of an interior component containing some fission xenon as well as modern 

martian atmosphere.  However, the proportions of fission and solar xenon in the interior 

component in the shergottites are not well constrained.   
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Xenon isotopic analyses of mineral separates from ALH84001 and Nakhla have 

been reported (Gilmour et al., 2001 and references therein).  In these meteorites, the 

atmosphere-derived xenon component is associated with a lower Kr/Xe ratio than that of 

the martian atmosphere (as determined in the shergottite melt glass), an elemental 

fractionation most readily associated with the trapping mechanism.  It was determined 

that the majority of trapped martian atmosphere xenon measured in ALH84001 was 

located in the orthopyroxenes and believed to have been incorporated into the surface of 

the grains by shock (Gilmour et al., 1998b).  This component is isotopically distinct from 

the modern martian atmosphere leading to its identification with an ancient atmosphere 

trapped 4 Ga ago.  In Nakhla, the highest concentration of martian atmospheric xenon is 

associated with the feldspathic mesostasis, though mass balance suggests pyroxene is an 

equally significant host in the bulk meteorite (Gilmour et al., 1999).  Alteration products 

have also been shown to host martian atmospheric xenon in the nakhlite Lafayette, 

though they do not contribute significantly to the overall budget (Swindle et al., 2000).  

This distribution has been interpreted as a grain size effect consistent with shock 

incorporation of martian atmospheric noble gases adsorbed onto mineral surfaces, a 

process that seems capable of accounting for both the observed elemental fractionation 

and the distribution among host phases.   

Studies on the basaltic shergottites to date have been limited to bulk analysis 

(Figure III-1).  The data are consistent with a mixture of modern martian atmospheric 

xenon with a martian interior component consisting of fission xenon intimately mixed 

with solar xenon.  Here we present a xenon isotopic study of mineral separates from 

 29



Shergotty to complement these bulk analyses.  Our aim was to determine the location of 

the martian xenon components derived from the atmosphere and interior, and to 

characterize the proportions of fission and solar xenon present in the interior component.  

In the light of our results, we discuss how these components came to be incorporated into 

Shergotty in the context of accepted models of its crystallization and subsequent history.  

We also discuss wider implications for the noble gas geochemistry of Mars.  

Experimental Procedure 

A 50 mg sample of Shergotty (sample number: #1985, MFH) was prepared for 

analysis by the methods described in Chapter 2 under the section titled Sample 

Preparations with Figure II-2 showing a backscatter image of a thick section of Shergotty.  

Shergotty was divided into three dominant mineral separates of pyroxene, maskelynite 

and opaque phases. Base on the mineral mode of Stopler and McSween (1979), the 

pyroxene-dominate separates are composed of augite and pigeonite of equal proportions, 

and may contain possible trace amounts of fayalite.  Maskelynite-dominate separates are 

composed of the diaplectic glass and may contain trace amounts of whitlockite that was 

removed in the acid-wash treated separate.  The opaque-dominate separates compose of 

titanomagnetite, ilmenite and pyrrhotite. The summaries of the samples generated are 

summarized in Table III-1. 

Samples were loaded into the laser port of the RELAX mass spectrometer 

(Gilmour et al., 1994) for laser step-heating as described in Chapter 2 under the section 

title Xenon Extraction.    
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Figure III- 2.  Inverted backscatter image of a thick section of Shergotty 
meteorite showing large pyroxene crystals separated by grey lathes of 
maskelynite.  

Table III-1.  Summary of Shergotty samples generated for xenon isotope study. 

Sample Mass Preparation Treatment 

WR-01 4.19 mg Plucked from crushed grains 

PYX-01 7.54 mg Plucked from crushed grains 

PYX-02 6.25 mg Plucked from crushed grains 

PYX-03 2.45 mg Cut from thick section 

AUG 1.55 mg Cut from thick section 

PIG 1.51 mg Cut from thick section 

MSK-01 7.28 mg Plucked from crushed grains 

MSK-02 1.58 mg Plucked from crushed grains 

MSK-HCl 1.33 mg Acid washed 

OPQ-01 1.06 mg Plucked from crushed grains 
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Results 

All xenon data acquired from the analyses are presented in Table III-2.  Figure 

III-3A shows the laser step-heating data from the whole rock plotted with 129Xe and 124Xe 

normalized to 132Xe.  Elevated 129Xe ratios are diagnostic of the martian atmosphere, 

while increased 124Xe/132Xe ratios are a result of spallation by cosmic rays during 

Shergotty’s transit from Mars to Earth.  Thus 124Xe/132Xe trace the presence of spallation 

target elements (Barium, light rare earth elements) in the mineral being degassed and 

allow releases from their major component minerals of Shergotty to be identified.  The 

whole-rock data reveal a correlation between elevated 129Xe/132Xe and elevated 

124Xe/132Xe, showing that the host phase of the martian atmosphere is relatively rich in 

Ba and LREEs.  

In Figure III-3B we present data from mineral separates on the same plot of 

129Xe/132Xe ratio versus 124Xe/132Xe ratio for comparison with the whole-rock releases of 

Figure 3A.  Three regions are defined by the three different mineral separates.  The 

pyroxene data show on average low 124Xe/132Xe ratio indicative of the absence of 

spallation target elements.  The correlation between spallation and 129Xexs for the opaques 

and maskelynite grains show a positive slope.  The steeper slope of the opaque data is 

due to concentration of the martian atmospheric xenon in the opaque grains (Table III-3).  

For comparison, the whole rock trend line from Figure III-3A has also been plotted and 

shows that the maskelynite signature dominates the whole rock data that have a high 

129Xe/132Xe ratio.  
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Table III-2.  Data from Shergotty samples.  132Xe in 10-12 cm3 STP g-1, Ratios to 
132Xe = 100. 

 132Xe 
124Xe 
132Xe 

126Xe 
132Xe 

128Xe 
132Xe 

129Xe  
132Xe 

130Xe 
132Xe 

131Xe 
132Xe 

134Xe 
132Xe 

136Xe 
132Xe 

WR, bulk sample, 4.19 mg. 
 1 0.189 ± 

0.007 0.83± 0.54 1.34 ± 0.54 8.25 ± 0.74 117.01 ± 3.54 13.85 ± 0.92 81.31 ± 2.72 38.24 ± 1.65 34.89 ± 1.53

 2 0.524 ± 
0.010 1.22 ± 0.18 1.74 ± 0.19 9.40 ± 0.37 110.70 ± 1.71 15.50 ± 0.48 80.83 ± 1.35 38.29 ± 0.82 33.17 ± 0.74

 3 0.216 ± 
0.008 1.93 ± 0.51 3.50 ± 0.53 11.49 ± 0.80 117.17 ± 3.49 16.43 ± 0.96 85.05 ± 2.75 39.61 ± 1.64 32.86 ± 1.46

 4 0.309 ± 
0.011 4.08 ± 0.51 7.15 ± 0.59 14.22 ± 0.92 148.86 ± 4.72 17.92 ± 1.12 92.07 ± 3.33 39.36 ± 1.91 33.52 ± 1.72

 5 0.422 ± 
0.012 1.33 ± 0.31 1.51 ± 0.31 8.82 ± 0.53 109.47 ± 2.49 16.15 ± 0.71 80.49 ± 2.00 38.69 ± 1.22 33.31 ± 1.11

 6 0.206 ± 
0.008 1.94 ±  0.48 3.63 ± 0.50 11.08 ± 0.80 123.55 ± 3.79 16.07 ± 0.99 82.85 ± 2.84 38.81 ± 1.70 31.36 ± 1.49

 7 0.628 ± 
0.011 0.58 ± 0.14 1.01 ± 0.14 7.63 ± 0.30 104.21 ± 1.47 14.69 ± 0.42 78.76 ± 1.20 38.79 ± 0.74 33.15 ± 0.66

Total: 2.494 ± 
0.026  1.48 ± 0.12 2.39 ± 0.12 9.61 ± 0.21 115.16 ± 0.98 15.68 ± 0.27 82.05 ± 0.76 38.76 ± 0.46 33.18 ± 0.42

MSK-01, maskelynite-dominate mineral separates, 7.28 mg. 
 1 1.117 ± 

0.011 0.36 ± 0.05 0.36 ± 0.05 7.76 ± 0.16 99.42 ± 0.77 14.60 ± 0.22 78.79 ± 0.64 39.27 ± 0.40 33.51 ± 0.36

 2 0.191 ± 
0.005 0.28 ± 0.29 0.26 ± 0.29 9.71 ± 0.51 103.49 ± 2.23 15.09 ± 0.64 80.48 ± 1.85 40.32 ± 1.15 34.00 ± 1.02

 3 0.166 ± 
0.006 0.06 ± 0.51 0.27 ± 0.51 9.67 ± 0.75 99.12 ± 3.17 14.44 ± 0.92 76.36 ± 2.62 38.27 ± 1.64 33.40 ± 1.50

 4 0.374 ± 
0.009 0.33 ± 0.26 0.60 ± 0.26 9.24 ± 0.46 105.17 ± 2.07 15.19 ± 0.59 79.37 ± 1.68 39.61 ± 1.05 34.08 ± 0.95

 5 0.212 ± 
0.005 0.38 ± 0.27 0.66 ± 0.27 7.53 ± 0.44 109.37 ± 2.20 14.80 ± 0.60 81.22 ± 1.76 40.03 ± 1.08 33.60 ± 0.97

 6 0.774 ± 
0.009 0.82 ± 0.08 1.15 ± 0.08 8.47 ± 0.20 110.06 ± 0.99 15.51 ± 0.28 80.17 ± 0.78 38.94 ± 0.48 33.52 ± 0.43

 7 0.089 ± 
0.004 0.54 ± 0.70 0.84 ± 0.70 8.74 ± 0.92 105.63 ± 4.16 14.41 ± 1.16 80.44 ± 3.41 37.81 ± 2.06 33.42 ± 1.88

 8 0.147 ± 
0.005 0.87 ± 0.46 1.54 ± 0.46 9.05 ± 0.69 111.41 ± 3.11 15.38 ± 0.87 82.76 ± 2.51 40.11 ± 1.52 33.00 ± 1.36

 9 0.734 ± 
0.008 1.43 ± 0.09 1.93 ± 0.10 9.33 ± 0.21 115.35 ± 1.02 16.05 ± 0.28 81.81 ± 0.79 39.09 ± 0.47 33.23 ± 0.42

 10 0.189 ± 
0.004 1.36 ± 0.26 2.50 ± 0.28 10.04 ± 0.47 115.99 ± 2.20 16.33 ± 0.60 82.93 ± 1.71 39.42 ± 1.03 33.75 ± 0.92

 11 0.170 ± 
0.004 2.65 ± 0.32 3.49 ± 0.34 12.25 ± 0.57 122.06 ± 2.55 16.82 ± 0.68 83.65 ± 1.92 39.51 ± 1.15 34.03 ± 1.04

 12 0.288 ± 
0.006 2.96 ± 0.29 4.05 ± 0.31 12.33 ± 0.50 130.40 ± 2.34 17.38 ± 0.61 85.06 ± 1.71 38.99 ± 1.01 33.33 ± 0.91

 13 0.379 ± 
0.011 1.80 ± 0.38 2.49 ± 0.39 12.48 ± 0.65 123.29 ± 2.91 17.01 ± 0.78 84.43 ± 2.21 38.72 ± 1.30 32.36 ± 1.16

Total: 4.831 ± 
0.025 1.00 ± 0.06 1.40 ± 0.06 9.33 ± 0.11 110.45 ± 0.48 15.58 ± 0.13 80.95 ± 0.38 39.21 ± 0.23 33.45 ± 0.21

MSK-02, maskelynite-dominate mineral separates, 1.59 mg. 
 1 0.478 ± 

0.015 0.11 ± 0.45 -0.20 ± 0.45 6.81 ± 0.61 97.07 ± 2.72 14.84 ± 0.81 78.47 ± 2.32 38.60 ± 1.42 32.51 ± 1.29

 2 0.701 ± 
0.021 1.73 ± 0.42 3.00 ± 0.44 11.44 ± 0.69 147.11 ± 3.49 16.83 ± 0.82 82.19 ± 2.28 39.77 ± 1.38 32.28 ± 1.23

 3 0.664 ± 
0.022 4.55 ± 0.52 5.38 ± 0.55 15.02 ± 0.84 161.52 ± 4.10 18.73 ± 0.94 88.07 ± 2.61 39.26 ± 1.51 33.68 ± 1.38

 4 0.414 ± 
0.015 7.09 ± 0.81 12.74 ± 0.97 25.22 ± 1.40 180.65 ± 6.02 26.29 ± 1.46 99.10 ± 3.80  35.50 ± 1.98 32.54 ± 1.85

Total: 2.257 ± 
0.037 3.15 ± 0.26 4.71  ± 0.28 13.90 ± 0.42 146.43 ± 1.97 18.60 ± 0.48 86.07 ± 1.33 38.63 ± 0.78 32.79 ± 0.71

 33



Table III-2 continue.  Data from Shergotty samples.   
 132Xe 

124Xe 
132Xe 

126Xe 
132Xe 

128Xe 
132Xe 

129Xe  
132Xe 

130Xe 
132Xe 

131Xe 
132Xe 

134Xe 
132Xe 

136Xe 
132Xe 

MSK-HCL, acid washed maskelynite-dominate mineral separates, 1.33 mg. 
 1 0.225 ± 

0.014 0.58 ± 1.38 0.48 ± 1.38 7.59 ± 1.54 104.23 ± 6.67 15.53 ± 1.94 79.17 ± 5.50 42.79 ± 3.52 33.51 ± 3.19

 2 0.222 ± 
0.013 0.34 ± 1.23 -0.14 ± 1.23 8.67 ± 1.44 103.55 ± 6.06 15.26 ± 1.76 77.98 ± 4.98 40.10 ± 3.13 31.76 ± 2.85

 3 0.171 ± 
0.015 0.08 ± 1.91 0.58 ± 1.91 7.03 ± 2.11 104.34 ± 9.31 17.13 ± 2.69 77.24 ± 7.55 38.72 ± 4.79 34.50 ± 4.45

 4 0.263 ± 
0.016 0.47 ± 1.30 0.41 ± 1.30 7.38 ± 1.46 104.16 ± 6.18 16.78 ± 1.84 75.07 ± 4.97 37.58 ± 3.12 32.17 ± 2.91

 5 0.387 ± 
0.015 1.29 ± 0.63 1.31 ± 0.63 8.00 ± 0.81 111.37 ± 3.63 16.15 ± 1.02 82.25 ± 2.93 39.90 ± 1.79 34.20 ± 1.64

 6 0.547 ± 
0.016 1.54 ± 0.37 1.70 ± 0.37 9.86 ± 0.59 110.70 ± 2.67 16.48 ± 0.76 82.78 ± 2.15 39.26 ± 1.29 34.98 ± 1.20

 7 0.308 ± 
0.019 3.62 ± 1.41 5.31 ± 1.43 19.28 ± 1.96 140.99 ± 7.78 19.02 ± 2.03 93.74 ± 5.77 37.24 ± 3.25 32.05 ± 3.00

 8 0.554 ± 
0.025 6.08 ± 0.96 8.92 ± 1.05 18.89 ± 1.42 139.91 ± 5.61 23.30 ± 1.60 96.26 ± 4.24 37.38 ± 2.32 30.70 ± 2.10

Total: 2.676 ± 
0.048 2.27 ± 0.35 3.04 ± 0.36 11.72 ± 0.46 117.84 ± 1.91 17.95 ± 0.55 84.84 ± 1.51 38.92 ± 0.90 33.00 ± 0.83

OPQ-01, opaque-dominate mineral separates, 1.06 mg.  
 1 2.032 ± 

0.036 0.37 ± 0.16 0.38 ± 0.16 7.07 ± 0.33 99.92 ± 1.47 14.83 ± 0.43 79.93 ± 1.24 39.27 ± 0.76 34.55 ± 0.70

 2 0.617 
±0.023 0.12 ± 0.54 0.32 ± 0.54 5.71 ± 0.79 104.54 ± 3.38 14.05 ± 0.95 80.14 ± 2.77 40.54 ± 1.73 33.76 ± 1.54

 3 0.550 ± 
0.020 0.33 ± 0.50 0.20 ± 0.50 6.51 ± 0.76 107.67 ± 3.31 13.67 ± 0.90 79.23 ± 2.64 39.66 ± 1.63 33.53 ± 1.47

 4 0.865 ± 
0.026 0.69 ± 0.37 0.66 ± 0.37 7.20 ± 0.62 110.42 ± 2.73 14.39 ± 0.75 81.11 ± 2.17 41.00 ± 1.35 33.50 ± 1.19

 5 1.750 ± 
0.035 1.22 ± 0.20 1.43 ± 0.20 8.64 ± 0.41 124.68 ± 1.96 15.24 ± 0.50 80.53 ± 1.42 39.59 ± 0.87 34.48 ± 0.79

 6 1.899 ± 
0.039 1.98 ± 0.24 3.01 ± 0.26 10.33 ± 0.46 143.10 ± 2.26 15.88 ± 0.53 84.76 ± 1.52 39.83 ± 0.91 34.26 ± 0.82

 7 2.439 ± 
0.048 1.39 ± 0.19 2.25 ± 0.21 9.79 ± 0.41 161.22 ± 2.33 15.84 ± 0.50 82.52 ± 1.41 39.71 ± 0.85 33.94 ± 0.77

Total: 10.510 ± 
0.089 1.07 ± 0.09 1.51 ± 0.10 8.50 ± 0.18 128.41 ± 0.89 15.18 ± 0.22 81.62 ± 0.63 39.78 ± 0.38 34.14 ± 0.35

PYX-01, pyroxene-dominate mineral separates, 7.84 mg. 
 1 0.103 ± 

0.003 0.15 ± 0.36 0.76 ± 0.36 12.45 ± 0.68 115.06 ± 2.84 14.26 ± 0.74 76.55 ± 2.11 40.05 ± 1.35 35.27 ± 1.24

 2 0.165 ± 
0.005 0.27 ± 0.39 0.45 ± 0.39 8.56 ± 0.61 122.05 ± 2.94 14.20 ± 0.76 78.96 ± 2.16 40.90 ± 1.36 34.07 ± 1.22

 3 0.188 ± 
0.004 0.50 ± 0.22 0.66 ± 0.22 7.45 ± 0.40 116.19 ± 2.06 14.72 ± 0.55 80.67 ±1.58 41.11 ± 0.99 34.16 ± 0.88

 4 0.045 ± 
0.002 0.37 ± 0.81 0.51 ± 0.81 5.88 ± 1.01 112.83 ± 4.92 13.34 ± 1.32 79.81 ± 3.86 39.98 ± 2.40 33.52 ± 2.15

 5 0.552 ± 
0.008 1.07 ± 0.09 1.40 ± 0.10 8.79 ± 0.24 118.76 ± 1.25 15.88 ± 0.33 81.26 ± 0.94 39.30 ± 0.58 33.54 ± 0.52

 6 0.094 ± 
0.008 0.94 ± 0.33 1.51 ± 0.33 9.31 ± 0.56 113.53 ± 2.61 15.72 ± 0.72 81.33 ± 2.04 41.05 ± 1.27 32.87 ± 1.11

 7 0.159 ± 
0.005 0.59 ± 0.38 1.12 ± 0.38 9.11 ± 0.62 117.14 ± 2.92 16.33 ± 0.81 80.24 ± 2.23 38.50 ± 1.35 33.58 ± 1.24

 8 0.432 ± 
0.008 0.90 ± 0.13 1.18 ± 0.14 9.16 ± 0.33 117.39 ± 1.62 15.31 ± 0.43 79.87 ± 1.21 39.77 ± 0.75 33.26 ± 0.67

Total: 1.738 ± 
0.016 0.78 ± 0.08 1.11 ± 0.08 8.92 ± 0.15 117.49 ± 0.76 15.35 ± 0.20 80.27 ± 0.57 39.86 ± 0.35 33.63 ± 0.32
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Table III-2 continue.  Data from Shergotty samples.   
 132Xe 

124Xe 
132Xe 

126Xe 
132Xe 

128Xe 
132Xe 

129Xe  
132Xe 

130Xe 
132Xe 

131Xe 
132Xe 

134Xe 
132Xe 

136Xe 
132Xe 

PYX-02, pyroxene-dominate mineral separates, 6.25 mg. 
 1 0.573 ± 

0.009 0.27 ± 0.13 1.35 ± 0.14 52.39 ± 0.82 101.35 ± 1.35 16.18 ± 0.41 76.41 ± 1.10 37.87 ± 0.68 30.96 ± 0.60

 2 0.099 ± 
0.004 0.11 ± 0.74 0.79 ± 0.74 7.25 ± 1.09 129.08 ± 4.93 12.69 ± 1.18 79.96 ± 3.50 39.82 ± 2.17 34.79 ± 1.98

 3 0.122 ± 
0.004 0.53 ± 0.44 1.00 ± 0.45 7.79 ± 0.73 122.88 ± 3.31 14.73 ± 0.85 81.21 ± 2.45 39.67 ± 1.50 34.31 ± 1.36

 4 0.102 ± 
0.004 0.97 ± 0.50 2.37 ± 0.50 7.70 ± 0.79 124.06 ± 3.60 14.26 ± 0.91 81.77 ± 2.66 39.74 ± 1.62 34.33 ± 1.47

 5 0.193 ± 
0.005 0.97 ± 0.32 1.61 ± 0.32 7.39 ± 0.55 120.63 ± 2.61 14.14 ± 0.66 82.00 ± 1.97 40.15 ± 1.20 33.65 ± 1.08

 6 0.263 ± 
0.006 1.23 ± 0.26 1.44 ± 0.26 7.95 ± 0.48 126.35 ± 2.35 15.50 ± 0.60 81.04 ± 1.69 40.52 ± 1.05 34.68 ± 0.95

 7 0.111 ± 
0.005 0.52 ± 0.69 0.53 ± 0.69 6.96 ± 0.97 116.58 ± 4.16 13.83 ± 1.10 77.94 ± 3.12 40.93 ± 1.98 33.36 ± 1.76

 8 0.266 ± 
0.008 0.57 ± 0.45 1.08 ± 0.45 6.29 ± 0.67 123.74 ± 3.11 14.83 ± 0.81 81.26 ± 2.30 41.24 ± 1.43 34.74 ± 1.28

Total: 1.730 ± 
0.017 0.60 ± 0.12 1.30 ± 0.12 22.33 ± 0.31 116.07 ± 0.94 15.07 ± 0.25 79.41 ± 0.71 39.58 ± 0.44 33.20 ± 0.39

PYX-03, pyroxene-dominate mineral separates, 2.45 mg. 
 1 0.081 ± 

0.006 0.06 ± 1.74 -0.32 ± 1.74 7.05 ± 1.92 122.09 ± 8.46 11.86 ± 2.15 77.97 ± 6.25 39.76 ± 3.91 35.62 ± 3.62

 2 0.321 ± 
0.012 0.39 ± 0.51 0.24 ± 0.51 0.97 ± 0.84 116.89 ± 3.66 12.96 ± 0.95 81.64 ± 2.83 39.59 ± 1.73 36.12 ± 1.60

 3 0.498 ± 
0.020 1.01 ± 0.40 1.48 ± 0.40 8.60 ± 0.78 117.54 ± 3.92 14.13 ±1.01 82.07 ± 3.04 39.39 ± 1.86 33.48 ± 1.68

 4 0.214 ± 
0.011 0.89 ± 0.85 0.42 ± 0.85 7.58 ± 1.13 116.20 ± 5.57 14.72 ± 1.47 80.71 ± 4.30 40.52 ± 2.70 33.12 ± 2.40

 5 0.278 ± 
0.012 0.34 ± 0.70 0.20 ± 0.70 7.22 ± 0.96 128.64 ± 5.01 15.16 ± 1.24 80.90 ± 3.63 38.87 ± 2.23 35.09 ± 2.05

Total: 1.392 ± 
0.029 0.65 ± 0.29 0.64 ± 0.29 6.21 ± 0.44 119.62 ± 2.14 14.01 ± 0.55 81.25 ± 1.63 39.55 ± 1.01 34.51 ± 0.92

AUG, augite-dominate mineral separates, 1.55 mg. 
 1 0.065 ± 

0.009 2.05 ± 2.37 2.56 ± 2.37 14.58 ± 2.81 126.71 ± 
11.58 12.36 ± 2.90 81.45 ± 8.50 42.08 ± 5.36 35.57 ± 4.81

 2 0.396 ± 
0.017 1.41 ± 0.83 1.97 ± 0.83 8.68 ± 1.04 124.98 ± 5.06 15.88 ± 1.31 81.76 ± 3.76 37.82 ± 2.26 32.52 ± 2.03

 3 0.244 ± 
0.012 0.66 ±1.02 2.77 ± 1.02 10.59 ± 1.31 129.23 ± 6.07 15.76 ± 1.53 80.79 ± 4.39 38.90 ± 2.69 33.77 ± 2.42

 4 0.197 ± 
0.011 0.28 ± 1.13 1.17 ± 1.13 7.83 ± 1.32 137.20 ± 6.87 12.31 ± 1.54 79.95 ± 4.74 38.83 ± 2.92 34.77 ± 2.66

Total: 0.902 ± 
0.026 1.05 ± 0.57 2.07 ± 0.57 9.72 ± 0.70 128.95 ± 3.30 14.63 ± 0.82 81.07 ± 2.39 38.85 ± 1.46 33.71 ± 1.32

PIG, pigeonite-dominate mineral separates, 1.51 mg. 
 1 0.260 ± 

0.016 0.35 ± 1.23 1.26 ± 1.23 8.36 ± 2.05 124.06 ± 6.71 17.45 ± 1.92 78.45 ± 4.87 43.51 ± 3.20 35.64 ± 2.78

 2 0.263 ± 
0.011 1.31 ± 0.77 1.50 ± 0.77 8.34 ± 0.95 125.41 ± 4.32 15.04 ± 1.10 84.05 ± 3.21 38.06 ± 1.92 33.96 ± 1.75

 3 0.237 ± 
0.011 1.37 ± 0.94 2.14 ± 0.94 10.29 ± 1.17 120.36 ± 4.79 17.18 ± 1.34 81.20 ± 3.60 36.82 ± 2.17 33.44 ± 1.99

 4 0.279 ± 
0.013 1.36 ± 0.87 1.55 ± 0.88 8.53 ± 1.21 118.76 ± 4.89 16.61 ± 1.35 83.93 ± 3.80 40.07 ± 2.30 33.10 ± 2.06

 5 0.303 ± 
0.014 1.19 ± 0.89 2.10 ± 0.90 7.80 ± 1.20 127.32 ± 5.20 16.03 ± 1.36 83.74 ± 3.84 38.39 ± 2.28 32.16 ± 2.07

 6 0.241 ± 
0.013 0.20 ± 1.04 3.24 ± 1.07 9.45 ± 1.43 142.46 ± 6.36 13.10 ± 1.44 81.11 ± 4.26 40.76 ± 2.65 32.69 ± 2.36

Total: 1.583 ± 
0.032 0.98 ± 0.39 1.97 ±  0.39 8.76 ± 0.55 126.42 ± 2.19 15.86 ± 0.58 82.22 ± 1.61 39.55 ± 0.99 33.44 ± 0.88
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Figure III- 3.  129Xe/132Xe ratio versus 124Xe/132Xe ratio plot of published whole 
rock data (Ott, 1988; Terribilini, 2000).  The whole rock observed in this 
experiment defines a trend line that is illustrated in both plots (A and B).  In plot 
B, the pyroxene-dominate separates reflect a low 124Xe/132Xe ratio due to the 
lack of target elements for spallation.  The opaque-dominate separates show a 
steep, positive correlation between spallation and excess 129Xe/132Xe 
representing a concentration of atmospheric xenon in the opaque grains.  The 
maskelynite correlation illustrates that maskelynite grains define the whole rock 
trend. 
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Table III-3.  Spallation Corrected Xenon Components in Shergotty.  Concentrations in 
10-12 cm3 STP g-1 

 132Xetotal 129Xe/132Xe 129Xexs 132Xeinterior 

WR  
(bulk sample, 4.19 mg.) 

2.494 ± 
0.026 

1.153 ± 
0.011 

0.311 ± 
0.007 

2.291 ± 
0.213 

MSK-01 
(maskelynite-dominate mineral separates, 

7.28 mg.) 
4.831 ± 
0.025 

1.105 ± 
0.007 

0.353 ± 
0.007 

4.405 ± 
0.203 

MSK-02 
(maskelynite-dominate mineral separates, 

1.59 mg.) 
2.257 ± 
0.037 

1.473 ± 
0.021 

0.931 ± 
0.024 

1.421 ± 
0.291 

MSK-HCL 
(acid washed maskelynite-dominate 

mineral separates, 1.33 mg.) 

2.676 ± 
0.048 

1.180 ± 
0.020 

0.393 ± 
0.012 

2.309 ± 
0.494 

OPQ-01 
(opaque-dominate mineral separates, 1.06 

mg.) 

10.150 ± 
0.089 

1.285 
±0.010 

2.617 ± 
0.056 

8.315 ± 
0.712 

PYX-01 
(pyroxene-dominate mineral separates, 

7.84 mg.) 

1.738 ± 
0.016 

1.175 ± 
0.008 

0.269 ± 
0.005 

1.650 ± 
0.111 

PYX-02 
(pyroxene-dominate mineral separates, 

6.25 mg.) 

1.730 ± 
0.017 

1.161 ± 
0.009 

0.231 ± 
0.005 

1.584 ± 
0.133 

PYX-03 
(pyroxene-dominate mineral separates, 

2.45 mg.) 

1.393 ± 
0.029 

1.196 ± 
0.021 

0.219 ± 
0.006 

1.153 ± 
0.261 

AUG 
(augite-dominate mineral separates, 1.55 

mg.) 

0.902 ± 
0.026 

1.290 ± 
0.033 

0.252 ± 
0.009 

0.783 ± 
0.313 

PIG 
(pigeonite-dominate mineral separates, 

1.51 mg.) 

1.583 ± 
0.032 

1.264 ± 
0.022 

0.385 ± 
0.011 

1.358 ± 
0.347 
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The evolutions of the 129Xe/132Xe ratio with cumulative 132Xe release for the 

individual mineral separates are plotted in Figure III-4.  Both the opaque (Figure III-4A) 

and maskelynite-dominate separates (Figure III-4B) show increasing 129Xexs with 

increasing release steps, with the opaque-dominate separates being more gas-rich.  The 

variation in 129Xexs with release steps could be accounted for if the different minerals 

present (magnetite, ilmenite and pyrrhotite) have different xenon isotopic signatures and 

released gas at different temperatures.  However, no such explanation can account for the 

similar evolution observed during analysis of the maskelynite-dominate separates since 

even removal of phosphate by the acid treatment (Msk-HCl), showed no affect on the 

data.  The pyroxene-dominate separates show a consistent low 129Xe/132Xe ratio of ~1.2 

over all temperature steps (Figure III-4C) except for the first steps in which a ratio close 

to that of the Earth’s atmosphere is observed that we attributed to a release of adsorbed 

xenon.  Further division of the pyroxenes into augite and pigeonite show no 

distinguishable differences in this ratio.   
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The consistently low 129Xexs in the pyroxene data indicate that the xenon 

component is not dominated by the martian atmospheric component as in the opaque and 

maskelynite-dominate separates.  To further understand this component the data were 

corrected for a spallation contribution so that they could be compared to predicted 

isotopic variations if the elevated 136Xe/132Xe ratio is due to fractionation of addition of 

fission xenon.  Using the 124Xe/132Xe ratio from each release, 132Xe was partitioned 

between a spallation component with 124Xe/132Xe = 0.664 ± 0.023 (calculated from the 

proportion of Ba and light rare Earth elements expected for Shergotty (Lodders, 1998)  
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Figure III- 4.  The evolution of the 129Xe/132Xe ratio with temperature for the individual mineral separates: opaques (A), 
maskelynite (B) and pyroxene (C).  The opaques and maskelynite show an increase in excess 129Xe/132Xe (opaques more 
gas-rich) while the pyroxene show a consistent 129Xe/132Xe ∼1.2.  See text for further details. 
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and using the spallation components (Hohenberg et al., 1981)) and a trapped component 

with 124Xe/132Xe = 0.0043 ± 0.0005 (the value and errors being chosen to encompass both 

solar and martian atmospheric values of this ratio).  129Xe and 136Xe were then corrected 

in proportion to the calculated concentration of spallation 132Xe and summed over the 

high temperature steps.  The near absence of spallation in the pyroxene analyses rendered 

all corrections minor. 

The comparison with spallation-corrected data is made in Figure III-5.  The trend 

obtained by adding fission-xenon to Chassigny solar xenon is illustrated as well as the 

average of spallation corrected pyroxene data.  Fractionation of the interior xenon gives a 

ratio similar to atmospheric xenon as shown in the two-component mixing line of martian 

interior (Chassigny solar xenon) to martian atmosphere (SPB), with further fractionation 

resulting in Earth’s atmosphere.  A mass fractionation of the pyroxene data confirms that 

the interior component identified in the pyroxene is of martian origin and not of terrestrial 

contamination.   

Discussion 

By analyzing mineral separates we have been able to identify two martian 

components that can be associated with identifiable mineral hosts.   

The martian atmosphere component is more concentrated in the opaque-dominate 

mineral separates than in the maskelynite-dominate separates, and more concentrated in 

both than in the pyroxene-dominate separates.  This is in turn consistent with the model 
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Figure III- 5.  128Xe/136Xe versus 130Xe/136Xe graph of the average of spallation-
corrected pyroxene data.  The interior component defined by the pyroxene 
mineral separates lies on the line illustrating the addition of fission-xenon to 
solar xenon, as measured in Chassigny.  Also drawn is the mixing line between 
Martian interior and Martian atmosphere.  The location of the pyroxene data 
point illustrates that the interior component is product of solar with a fission 
contribution and is of Martian origin. 
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of shock incorporation of adsorbed atmospheric gas invoked for the nakhlites and for 

ALH84001 (Gilmour et al., 1998b).  The smaller the grain size, the more surface area per 

unit mass and higher the concentration of xenon after shock incorporation.  From our 

mineral separates, the smallest grain sizes are the opaques (<400 µm) followed by the 

maskelynite (~1 mm) and then pyroxenes (>3 mm).  This broadly corresponds to the 

trend in atmospheric concentration observed in the mineral separates such that the 

opaque-dominate separates have a higher gas concentration followed by maskelynite-

dominate separates and lastly the pyroxene-dominate separates.  The combination of 

absorbed atmospheric gas that is shock implanted seems to be the most viable 

explanation of the observed gas concentration in the mineral separates.  Consideration of 

shock implantation as the only mechanism would lead to the speculation that 

maskelynite, diaplectic glass formed from plagioclase that has experienced shock, would 

have higher emplacement of gases than the opaques. 

The process that led to the incorporation of xenon from the martian atmosphere is 

also implicated in the elemental fractionation that decreased the Kr/Xe ratio observed in 

the martian meteorites.  Reports (Drake et al., 1994; Musselwhite and Swindle, 2001) 

suggest that the shergottites define an array that is broadly consistent with mixing 

between a martian atmosphere-like component and a martian mantle-like component.  

The nakhlites and shergottites noble gas data in fact are consistent with the atmosphere’s 

elemental composition (Musselwhite and Swindle, 2001).  On the other hand, nakhlites 

and ALH84001 have a lower 84Kr/132Xe ratio for their high 129Xe/132Xe ratio to be 

consistent with the same simple mixing array as the shergottites in Figure I-2.  Studies of 
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the nakhlites and ALH84001 suggest that the Kr/Xe ratio observed is due to an elemental 

fractionation of the atmospheric reservoir during the adsorption of atmospheric gases 

onto mineral surfaces, followed by shock implantation (Gilmour et al., 2001).  

Adsorption of xenon on mineral surfaces is significant at the temperatures characteristic 

of the martian surface – calculations (Fanale et al., 1978) suggest that, in these 

conditions, adsorbed xenon dominates ambient xenon when surfaces are separated by less 

than ~30 µm.  This implies that some degree of elemental fractionation enhancing Xe in 

the trapped component is to be expected and re-emphasizes that trapping without 

fractionation is the exception rather than the rule.  It is interesting to note that the 

measurement of Lithology C of EETA79001 (Becker and Pepin, 1984; Bogard and 

Johnson, 1983; Bogard et al., 1984) and later calculated as SPB (Swindle et al., 1986) is 

at one extreme of the proposed mixing array that represent the shergottites while whole 

rock analysis are at the other, making definitive comments about the Kr/Xe ratio difficult.  

It is accepted that shergottite glass acquired its budget of martian atmospheric gases as a 

result of shock trapping and that shock can result in the trapping of ambient gases without 

elemental fractionation (Bogard et al., 1986; Wiens and Pepin, 1986).  We propose that 

the signature seen in Shergotty resulted from shock incorporation of martian atmosphere 

that had been adsorbed on grain surfaces (and hence elementally fractionated) as 

explained in the fractionated components of ALH84001 (Gilmour et al., 1998b), Nakhla 

(Gilmour et al., 1999; Gilmour et al., 2001), and in iddingsite from Lafayette (Swindle et 

al., 2000).   
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The consistent 129Xe/132Xe ratio observed in the pyroxene-dominate separates 

across all temperature steps suggest that it is our best choice to define the interior 

component.  The 136Xe/132Xe ratio is found to be similar to the other documented martian 

interior components that contain fission xenon in that it is consists of a mixture of solar 

xenon and fission xenon, possibly from 244Pu as in ALH84001 and Chass-E (Mathew and 

Marti, 2001).  The uniformity of the mixture in the pyroxene-dominate separates suggests 

that this is the signature of the ambient xenon present in the magma from which they 

crystallized, and notably that this had an elevated 129Xe/132Xe ratio.  It remains unclear 

whether the elevated 129Xe/132Xe ratio observed in this component is evidence of an 

admixture of martian atmosphere to the melt perhaps consistent with a high assimilated 

crustal contribution, or if the elevated 129Xe/132Xe is preserved in the source region of the 

interior component such as a fission anomaly from 244Pu. 

However, the preservation of a fission anomaly from 244Pu in the young 

meteorites suggests degassing that ceased early in martian history.  This allowed xenon 

components with elevated 136Xe/132Xe ratios to form as 244Pu decayed and subsequently 

to conserve these components.  In the extreme, Marty and Marti (2002) have argued that 

data from the nakhlites, where the interior component is preserved in the mesostasis 

(Gilmour et al., 1999) and hence correlates with large ion lithophiles, demonstrate that 

xenon behaves as an incompatible element in a closed system during nakhlites 

crystallization and interprets the relatively low ratio of 136Xe*/Pu as evidence of 

degassing of the source region for the first 170 Ma to 330 Ma of formation and 

subsequent closure. 
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This interpretation, however, highlights in an extreme form an outstanding 

problem in the identification of anomalies due to 244Pu decay in martian meteorites: the 

absence of identifiable excess of parentless 40Ar from 40K decay.  A source region with 

substantial fission anomalies from 244Pu decay must have closed to xenon loss within 500 

Ma of the origin of the solar system, suggesting that 40Ar should have accumulated over 

~2.7 Ga before the formation event of the nakhlites.  Nakhla has a well defined 40Ar-39Ar 

age of 1.33 ± 0.03 Ga and a bulk K-Ar age of 1.36 ± 0.03 Ga (Podosek, 1973).  These are 

both identical to the accepted crystallization age of Nakhla, and indicate that the parent 

melt was substantially degassed on formation.  Preservation of 136Xe fission anomalies in 

the nakhlites and other young martian meteorites thus requires partition of xenon away 

from argon at some point during or shortly before formation of the meteorite, a process 

that we feel is unlikely to have preserved total fission xenon contents in a way that allows 

136Xe/Pu ratios to be interpreted chronologically as closure ages of the source region. 

Another suggestion for the anomalous fission 136Xe is to consider the assimilation 

of a crustal component in Shergotty’s melt.  Because of their comparable ionic radii, Pu 

can behave similarly to the LREE in igneous fractionation process (Shukolyukov and 

Begemann, 1996).  Thus Pu could reside in a more evolved component such as the 

martian crusts, and become assimilated into the parent melt before crystallization.  This 

follows the similar indications of epsilon Nd and the oxygen fugacity and that Shergotty 

reflects a high mixing of a crustal component in its parent melt. 
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Summary 

Maskelynite-, opaque-, and pyroxene-dominate mineral separates that were 

physically divided from Shergotty contain uniquely identified martian atmospheric and 

interior xenon components.  Martian atmospheric xenon (129Xe excess over 

129Xe/132Xe=1) is 5-10x more concentrated in opaque-dominate minerals separates and 

maskelynite-dominate separates than in pyroxene-dominate separates.  Gas 

concentrations are argued to be related to the grain size in that the smallest grains present 

greater surface area for adsorption before shock incorporation of martian atmospheric 

xenon.  This is the same mechanism said to account for the incorporation of martian 

atmospheric xenon in Nakhla.  Thus the measured bulk Kr/Xe ratio in the shergottites 

may be the same elemental fractionations between EETA79001 melt glass and nakhlites 

and not a simple mixing of martian mantle and martian atmosphere. 

The interior component consists of solar xenon with a fission contribution similar 

to that suggested by Chass-E, but with a higher fission contribution (Mathew and Marti, 

2001).  Though present in all minerals analyzed, it is best defined in pyroxene-dominate 

separates.  The pyroxene-dominate separates exhibit a consistent 129Xexs (129Xe/132Xe ~ 

1.2) that contrasts with the maskelynite- and opaque-dominate minerals separates where 

129Xe/132Xe increased with increasing release temperature.  This interior component in the 

pyroxene-dominate separate is thought to be ambient xenon, which is a mixture of solar, 

fission and atmospheric components, present in the magma in which the pyroxenes 

formed before incorporation.  The fission contribution in the interior component is 

evidence of either an admixture of martian atmosphere to the melt with a high crustal 
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contribution, or a preservation of a fission anomaly from 244Pu in the source region of the 

interior component.  Further investigation of the interior component in other basaltic 

shergottites may help in understanding the fission contribution and its origin.   
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CHAPTER IV 

MARTIAN XENON COMPONENTS IN EETA79001 LITHOLOGY B 

MINERAL SEPARATES 

This chapter is a paper by the same name to be submitted to the journal Earth and 

Planetary Science Letters by Katherine D. Ocker and Jamie D. Gilmour. 

 

My contributions to this paper include (1) physical hand-picking of the sample, (2) xenon 

data analysis, (3) most of the development of the model and (5) the writing. 

 

Abstract 

The isotopic signature and concentration of xenon in mineral separates of 

EETA79001 Lithology B have been measured.  Martian atmospheric xenon, as in 

Shergotty, is more concentrated in opaque minerals (magnetite, ilmenite and pyrrhotite) 

than in maskelynite and pyroxene.  We have previously suggested this reflects grain size 

variation. 

The interior component consists of solar xenon with a fission contribution and is 

thus similar to that observed in Chassigny, ALH84001, and Nakhla (Mathew and Marti, 

2001).  As in Shergotty (Ocker and Gilmour, 2001), it is best defined in pyroxene-

dominate separates but in contrast to Shergotty, the interior component in EETA79001 

Lithology B exhibits no excess 129Xe (129Xe/132Xe = 1.02 ± 0.004) and a lower fission 
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contribution.  This may be a consequence of EETA79001 Lithology B parent magma 

having had a lesser contribution from a crustal component than Shergotty, as has been 

suggested to account for differences in isotopic systematics, LREE fractionation and 

redox state between these two meteorites and among the basaltic shergottites in general.A 

simple model is constructed of the isotopic evolution of xenon in the martian mantle, 

crust, and atmosphere investigating the circumstances of rate of differentiation, duration 

and rate of crustal degassing, and extent of atmospheric loss of Mars to evolve to the 

required xenon isotopic signatures to serve as the endmembers that then mix together to 

explain the isotopic systematics of the meteorites.  The atmosphere is required to have 

elevated iodine-derived xenon (129Xe*/130Xe) and low fission-derived to iodine-derived 

xenon ratio (136Xe*/129Xe*), along with two interior reservoirs, one consisting of solar 

xenon with little or no radiogenic xenon and one with a high fissiogenic ratio 

(136Xe*/130Xe) and a high 136Xe*/129Xe* ratio.  These latter are qualitatively similar to 

those required to produce the interior components of the shergottites.  

Introduction 

Literature data suggest some variations in the bulk xenon isotope signatures of the 

basaltic shergottites (e.g. Mathew and Marti, 2001).  Most studies are consistent with a 

mixture of modern martian atmospheric xenon (SPB) with a martian interior component 

consisting of fission xenon intimately mixed with solar xenon (refer to figure text in 

Chapter I and III for references).  Presented here is a xenon isotopic study of mineral 

separates from EETA79001 Lithology-B (hereafter EETA) to complement previous bulk 

analyses and a mineral separates study of Shergotty (Ocker and Gilmour, 2001).  This 
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study will determine the number and location of the martian xenon components, 

characterize the proportions of fission and solar xenon present in the interior component, 

and discuss how these components came to be incorporated into EETA in the context of 

accepted models of its petrogenisis.   

Analyses of mineral separates of Shergotty have previously been presented in 

Chapter III.  The interior component was identified in the pyroxene-dominate separate 

that had significant excesses of 129Xe and fission isotopes over solar xenon.  It was 

speculated that this component’s radiogenic character resulted from the admixture of a 

‘crustal’ component to the parent melt of Shergotty.  Such a component has been invoked 

to explain variations in oxygen fugacity and epsilon neodymium (Borg et al., 1997; Herd 

and Papike, 2000; Jones, 1986).  It is not clear whether the 129Xexs (129Xe/132Xe over 

1.03) is a radiogenic component developed in this reservoir or a product of atmospheric 

contamination, while fission isotopes are clearly not associated with atmospheric 

contamination.  The aim here is to test this hypothesis through analysis of EETA, for 

which a smaller crustal contribution is required by other geochemical indicators. 

Xenon isotopic signatures might also serve as a tracer of planetary processes.  

Relative proportions of radiogenic xenon isotopes, especially those produced from extinct 

radionuclides, and stable xenon isotopes can be used to constrain the history of a planet.  

Terrestrial interior and atmospheric xenon has varying proportions of xenon from the 

decay of 129I and fission (of 244Pu or 238U or both), and this has been used to estimate the 

time of Earth’s formation and to constrain the degassing history of the planet (Ozima and 

Pososek, 1983; Porcelli and Wasserburg, 1995).  Based on xenon isotope signatures 
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identified in the martian meteorites, several models of volatile evolution on Mars have 

been proposed (Bogard et al., 2001 and references therein).  To explain the differences 

observed in the identifiable interior component of Shergotty and EETA, a simple model 

was designed to track xenon isotopically through differentiation, outgassing and 

atmospheric loss of Mars.  This allows us to test under what circumstances the proposed 

crustal and mantle reservoirs would evolve xenon with isotopic signatures today similar 

to those required to explain the meteorite interior components by mixing.  Requirements 

for this model include an atmosphere with excess 129Xe (129Xe*/130Xe > 6.3) and low 

fissiogenic xenon to iodine-derived ratio (136Xe*/129Xe*); in addition, we attempt to 

produce two interior reservoirs, one consisting of solar xenon with no radiogenic xenon 

and one with a high 136Xe*/130Xe ratio and a low 129Xe*/136Xe* ratio to account for the 

variable interior components.  

Experimental Procedure 

A portion of a 90 mg chip of EETA79001 Lithology B was prepared for analysis 

by the methods described in Chapter 2 under the section titled Sample Preparations.  

EETA was separated into three main mineral separates; pyroxene-dominate, maskelynite-

dominate and opaque-dominate phases. Utilizing the published mineral modes (McSween 

and Jarosewich, 1983), the pyroxene-dominate separates are identified as being 

composed mostly of pigeonite with lesser proportions of augite.  Maskelynite-dominate 

separates are composed of the diaplectic glass with the possibility of whitlockite and 

mesostasis, which are found in trace amounts in EETA79001 Lithology-B.  
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Titanomagnetite, ilmenite, and pyrrhotite make up the opaque-dominate mineral 

separates.  The summaries of the samples generated are summarized in Table III-1. 

Samples were loaded into the laser port of the RELAX mass spectrometer 

(Gilmour et al., 1994) for laser step-heating as described in Chapter 2 under the section 

title Xenon Extraction.   

Results 

All xenon data acquired from the analyses are presented in Table IV-2.  The evolutions of 

the 129Xe/132Xe ratio with cumulative 132Xe release for the individual mineral separates 

are plotted in Figure IV-1.  The pyroxene-dominate separates show a consistent low 

129Xe/132Xe ratio of ~1.0 over all temperature steps (Figure IV-1A and B).  Both the 

maskelynite- (Figure IV-1C) and opaque-dominate separates (Figure IV-1D) have 

increasing excess xenon (129Xexs) with increasing release steps, with the opaque-dominate 

separates reaching as high as 1.381x 10-13 ccSTPg-1 of 129Xexs.  The variation in 129Xexs 

with the opaque release steps could be accounted for if the different minerals present 

(magnetite, ilmenite and pyrrhotite) have different xenon isotopic signatures and released 

gas at different temperatures.  However, no definitive explanation can account for the 

similar evolution observed during analysis of the maskelynite-dominate separates.  One 

hypothesis is that maskelynite adsorbs air easily, explaining why it managed to trap a lot 

of martian atmosphere and why at low temperature it releases a lot of terrestrial 

atmosphere. 
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Table IV- 1.  EETA79001 Lithology-B samples for xenon isotope study. 

Sample Mass Preparation Treatment 

PYX-01 4.76 mg Plucked from crushed grains 

PYX-02 5.87 mg Plucked from crushed grains 

MSK-01 5.52 mg Plucked from crushed grains 

OPQ-01 0.38 mg Plucked from crushed grains 
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Table IV- 2.  Data from EETA79001 Lithology-B. 
 132Xe 

124Xe 
132Xe 

126Xe 
132Xe 

128Xe 
132Xe 

129Xe  
132Xe 

130Xe 
132Xe 

131Xe 
132Xe 

134Xe 
132Xe 

136Xe 
132Xe 

PYX-01, pyroxene-dominate mineral separates, 4.758 mg. 
1 1.059± 

0.013 
0.26± 
0.09 

0.65± 
0.09 

8.03± 
0.23 

99.45± 
1.03 

14.84± 
0.30 

79.02± 
0.87 

39.61± 
0.54 

33.58± 
0.49 

2 0.200± 
0.005 

0.16± 
0.38 

0.06± 
0.38 

7.00± 
0.53 

99.88± 
2.43 

14.95± 
0.72 

79.14± 
2.05 

39.14± 
1.27 

33.54± 
1.15 

3 0.033± 
0.003 

0.19± 
2.50 

1.81± 
2.50 

10.80± 
2.72 

107.37± 
10.11 

12.55± 
2.82 

80.16± 
8.23 

38.79± 
5.12 

35.11± 
4.77 

4 0.031± 
0.003 

0.19± 
2.13 

0.28± 
2.13 

6.51± 
2.23 

107.47± 
8.87 

13.16± 
2.48 

78.22± 
7.12 

35.31± 
4.33 

33.77± 
4.12 

5 0.067± 
0.003 

0.04± 
1.12 

0.04± 
1.12 

7.00± 
1.23 

116.03± 
5.60 

14.16± 
1.49 

75.75± 
4.18 

40.29± 
2.72 

33.14± 
2.43 

6 0.161± 
0.005 

0.35± 
0.48 

0.86± 
0.48 

7.85± 
0.63 

106.03± 
2.87 

14.77± 
0.81 

77.97± 
2.30 

39.44± 
1.45 

33.46v 
1.31 

7 0.225± 
0.006 

0.25± 
0.36 

0.10± 
0.36 

7.20± 
0.51 

102.93± 
2.37 

14.39± 
0.67 

78.47± 
1.94 

38.41± 
1.20 

32.46± 
1.09 

8 0.318± 
0.007 

0.21± 
0.27 

0.17± 
0.27 

7.25± 
0.42 

105.21± 
2.04 

14.55± 
0.57 

78.86± 
1.65 

39.58± 
1.04 

33.76± 
0.94 

9 0.763± 
0.011 

0.31± 
0.11 

0.37± 
0.11 

7.37± 
0.24 

104.59± 
1.20 

14.58± 
0.34 

79.02± 
0.98 

39.18± 
0.61 

33.68± 
0.55 

10 0.007± 
0.002 

1.12± 
6.81 

3.88± 
6.86 

29.27± 
8.68 

114.47± 
25.64 

11.11± 
7.25 

73.74± 
19.39 

39.99± 
12.74 

30.89± 
11.34 

11 0.048± 
0.003 

0.22± 
1.58 

1.47± 
1.58 

9.73± 
1.77 

104.52± 
6.84 

13.81± 
1.95 

78.17± 
5.58 

41.35± 
3.60 

33.05± 
3.19 

Total: 2.912± 
0.022 

0.26± 
0.09 

0.48± 
0.09 

7.74± 
0.15 

102.75± 
0.66 

14.62± 
0.19 

78.80± 
0.54 

39.35± 
0.34 

33.51± 
0.31 

PYX-02, pyroxene-dominate mineral separates, 5.866 mg. 
1 0.795± 

0.009 
0.29± 
0.08 

0.07± 
0.08 

7.41± 
0.21 

99.77± 
1.01 

14.94± 
0.30 

79.16± 
0.85 

38.92± 
0.52 

33.17± 
0.47 

2 0.589± 
0.010 

0.06± 
0.16 

-0.07± 
-0.16 

7.43± 
0.32 

97.36± 
1.47 

14.48± 
0.44 

78.39± 
1.25 

39.78± 
0.79 

32.92± 
0.70 

3 0.298± 
0.006 

0.41± 
0.20 

0.45± 
0.21 

6.91± 
0.36 

99.36± 
1.67 

14.41± 
0.49 

78.73± 
1.40 

39.62± 
0.88 

33.18± 
0.78 

4 0.129± 
0.004 

0.46± 
0.46 

0.18± 
0.46 

7.32± 
0.65 

101.33± 
2.78 

14.53± 
0.81 

79.79± 
2.33 

39.48± 
1.45 

33.37± 
1.31 

5 0.147± 
0.004 

0.48± 
0.41 

0.67± 
0.41 

8.42± 
0.62 

104.77± 
2.64 

14.43± 
0.75 

78.57± 
2.14 

39.42± 
1.34 

33.92± 
1.22 

6 0.375± 
0.007 

0.39± 
0.18 

0.46± 
0.18 

7.69± 
0.34 

104.06± 
1.58 

14.64± 
0.45 

79.39± 
1.29 

39.34± 
0.80 

33.81± 
0.72 

7 0.167± 
0.005 

0.41± 
0.40 

0.33± 
0.40 

7.03± 
0.65 

105.09± 
2.67 

14.02± 
0.75 

79.88± 
2.17 

39.11± 
1.35 

33.84± 
1.23 

8 0.679± 
0.009 

0.31± 
0.10 

0.37± 
0.10 

7.07± 
0.25 

99.23± 
1.15 

14.73± 
0.34 

79.35± 
0.97 

39.67± 
0.60 

33.70± 
0.54 

9 0.298± 
0.007 

0.22± 
0.24 

0.35± 
0.25 

9.26± 
0.48 

98.47± 
1.85 

14.75± 
0.55 

80.15± 
1.58 

39.21± 
0.97 

34.02± 
0.89 

10 0.333± 
0.007 

0.30± 
0.22 

0.67± 
0.22 

8.78± 
0.45 

101.53± 
1.81 

14.60± 
0.52 

78.62± 
1.49 

39.31± 
0.93 

33.54± 
0.84 

11 0.419± 
0.007 

0.26± 
0.15 

0.44± 
0.15 

7.55± 
0.31 

104.72± 
1.48 

14.89± 
0.42 

78.82± 
1.20 

39.76± 
0.75 

33.70± 
0.68 

12 0.090± 
0.004 

-0.07± 
-0.72 

0.36± 
0.72 

7.31± 
0.94 

112.07± 
4.07 

13.71± 
1.10 

77.16± 
3.14 

40.66± 
2.03 

33.41± 
1.82 

13 0.013± 
0.002 

-2.77± 
-5.87 

5.43± 
5.92 

21.96± 
7.49 

129.67± 
25.16 

13.78± 
6.65 

87.60± 
19.21 

48.36± 
12.43 

23.93± 
9.86 

14 0.029± 
0.003 

-1.00± 
-2.80 

1.42± 
2.80 

9.88± 
3.26 

124.88± 
12.68 

13.72± 
3.32 

74.67± 
9.09 

41.48± 
6.01 

32.91± 
5.40 

Total: 4.361± 
0.024 

0.27± 
0.06 

0.32± 
0.06 

7.67± 
0.11 

101.19± 
0.48 

14.64± 
0.14 

79.06± 
0.40 

39.48± 
0.25 

33.45± 
0.22 
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Table IV-1 continue.  Data from EETA79001 Lithology-B 
 132Xe 

124Xe 
132Xe 

126Xe 
132Xe 

128Xe 
132Xe 

129Xe  
132Xe 

130Xe 
132Xe 

131Xe 
132Xe 

134Xe 
132Xe 

136Xe 
132Xe 

MSK-01, maskelynite-dominate mineral separates, 5.519 mg. 
1 0.295± 

0.007 
0.06± 
0.28 

0.47± 
0.28 

7.66± 
0.44 

97.82± 
1.96 

14.89± 
0.59 

77.93± 
1.66 

40.10± 
1.05 

32.79± 
0.93 

2 0.119± 
0.005 

0.31± 
0.83 

0.93± 
0.83 

8.90± 
1.00 

102.23± 
4.07 

15.31± 
1.21 

78.28± 
3.36 

42.39± 
2.20 

32.04± 
1.88 

3 0.084± 
0.003 

0.40± 
0.78 

-0.14± 
-0.78 

6.76± 
0.86 

102.71± 
3.59 

15.15± 
1.11 

79.96± 
3.00 

39.57± 
1.86 

33.24± 
1.68 

4 0.046± 
0.003 

0.15± 
1.52 

-0.23± 
-1.52 

8.59± 
1.60 

111.83± 
6.02 

14.58± 
1.79 

79.13± 
4.75 

40.01± 
2.99 

32.02± 
2.66 

5 0.272± 
0.006 

0.45± 
0.28 

0.35± 
0.28 

8.35± 
0.44 

112.61± 
2.06 

14.32± 
0.56 

78.81± 
1.59 

39.71± 
1.00 

33.46± 
0.89 

6 0.143± 
0.005 

0.27± 
0.53 

0.43± 
0.53 

7.38± 
0.70 

126.42± 
3.36 

14.77± 
0.86 

79.94± 
2.42 

39.29± 
1.50 

34.37± 
1.37 

7 0.221± 
0.006 

0.33± 
0.40 

0.66± 
0.40 

7.61± 
0.57 

137.40± 
2.99 

14.88± 
0.72 

81.11± 
2.03 

40.52± 
1.27 

35.17± 
1.15 

8 0.020± 
0.002 

0.58± 
3.59 

-0.78± 
-3.59 

6.86± 
3.71 

146.57± 
15.32 

10.59± 
3.78 

78.43± 
10.08 

35.46± 
6.20 

33.02± 
5.86 

9 0.103± 
0.005 

0.69± 
1.01 

0.56± 
1.01 

7.07± 
1.17 

143.65± 
5.56 

15.94± 
1.39 

79.30± 
3.66 

39.03± 
2.29 

32.70± 
2.07 

Total 1.303± 
0.015 

0.32± 
0.19 

0.42± 
0.19 

7.79± 
0.25 

116.51± 
1.11 

14.79± 
0.30 

79.21± 
0.84 

39.98± 
0.53 

33.45± 
0.48 

OPQ-01, opaque-dominate mineral separates, 0.379 mg.  
1 1.145± 

0.098 
0.18± 
1.86 

0.15± 
1.86 

10.44± 
2.35 

102.53± 
10.14 

13.87± 
2.89 

82.72± 
8.62 

42.96± 
5.36 

33.94± 
4.75 

2 0.234± 
0.026 

-1.30± 
-2.72 

-1.98± 
-2.72 

1.30± 
2.85 

117.10± 
12.27 

10.41± 
3.17 

75.50± 
9.18 

34.01± 
5.67 

31.04± 
5.18 

3 1.134± 
0.039 

0.02± 
0.54 

0.79± 
0.54 

8.22± 
0.76 

150.42± 
4.16 

13.72± 
0.90 

78.73± 
2.60 

38.40± 
1.61 

35.46± 
1.50 

4 0.416± 
0.025 

-0.81± 
-1.14 

0.53± 
1.14 

8.90± 
1.42 

137.04± 
6.67 

13.07± 
1.56 

82.08± 
4.65 

41.76± 
2.94 

33.78± 
2.57 

5 0.268± 
0.039 

-0.58± 
-3.83 

-0.32± 
-3.83 

10.19± 
4.98 

163.83± 
26.24 

16.79± 
5.80 

80.84± 
16.33 

35.38± 
9.85 

28.34± 
8.84 

6 0.408± 
0.039 

0.59± 
2.01 

-0.54± 
-2.01 

7.90± 
2.55 

115.11± 
11.13 

15.87± 
3.07 

70.81± 
8.20 

36.41± 
5.29 

32.56± 
4.88 

 Total 
3.604± 
0.124 

-0.17± 
-0.61 

0.20± 
0.61 

8.39± 
0.77 

132.53± 
3.75 

13.79± 
0.91 

79.25± 
2.66 

39.26± 
1.65 

33.79± 
1.50 
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Figure IV-1.  The evolutions of the 129Xe/132Xe ratio with temperature for the 
individual mineral separates: pyroxene- (A and B), maskelynite- (C) and 
opaque-dominate separates(D).  The opaques- and maskelynite-dominate 
separates show an increase in excess 129Xe/132Xe (opaques more gas-rich) while 
the pyroxene-dominate separates show a consistent 129Xe/132Xe ∼1.2.  See text 
for further details. 
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The consistently low 129Xexs in the pyroxene data indicate that the xenon martian 

atmospheric component is absent, unlike the component in the opaque- and maskelynite-

dominate separates (Figure IV-2).  There are two candidate components that could 

account for this low ratio:  martian interior xenon (solar plus fission) or terrestrial xenon 

(related to solar xenon by mass fractionation).  To determine which endmember is 

present, in Figure IV-3, the trends obtained by adding fission-xenon to solar xenon and 

mass-fractionated solar xenon are compared with the average of spallation-corrected 

pyroxene data.  Using the 124Xe/132Xe ratio from each release, 132Xe was partitioned 

between a spallation component with 124Xe/132Xe = 17.933 ± 3.638, calculated from the 

proportion of Ba and LREE expected for EETA79001 (Lodders, 1998) and using the 

spallation components of Hohenberg et al. (1981) and a trapped component with 

124Xe/132Xe = 0.0043 ± 0.0005 (the value and errors being chosen to encompass both 

solar and martian atmospheric values of this ratio).  129Xe and 136Xe were then corrected 

in proportion to the calculated concentration of spallation 132Xe and summed over the 

high-temperature steps.  The near absence of spallation in all the sample analyses 

rendered all corrections minor.  In Figure IV-3, the pyroxene data are consistent with a 

mixture of solar xenon and fission xenon rather than mass fractionation of solar xenon.  

We conclude that the component is of martian origin and not terrestrial contamination.   

Table IV-3 shows the spallation-corrected concentrations from the mineral 

separates from both meteorite samples.  As seen in Shergotty (Ocker and Gilmour, 2001), 

there is a trend of the smallest minerals, opaques in both meteorites, exhibiting the 

highest gas concentration.  The pyroxene-dominate separates are identified as the interior  
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Figure IV-2.  The xenon composition of the mineral separates of EETA79001 
Lithology-B.  The opaques are measured with a higher 129Xexs as well as higher 
fission xenon contribution than that observed in the other mineral separates.  
SPB (Shergottite Parent Body), and martian mantle-like components (Chass-S 
and Chass-E) are shown for comparison (Mathew et al., 1998; Ott, 1988; 
Swindle et al., 1986). 
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Figure IV-3.  128Xe/136Xe versus 130Xe/136Xe graph of the average of spallation 
corrected pyroxene data.  The interior component defined by the pyroxene-
dominate separates lie on the line illustrating the addition of fission-xenon to 
solar xenon, as measured in Chassigny.  Also drawn is the mixing line between 
Martian interior and Martian atmosphere.  The location of the pyroxene data 
illustrates that the interior component is a product of solar with a fission 
contribution and is of Martian origin. 

 59



Table IV- 3.  Spallation Corrected Xenon Components in EETA79001 Lithology-B 
and Shergotty. 

  132Xetotal
a 129Xexs

a 132Xeinterior
a 129Xe/136Xe 129Xexs/136Xe* 

EETA79001-Litholgy B Pyroxene (observed grain size: 1-2 mm) 
3.636 ---b 3.608 3.07519 --- 

± 0.016 ± 0.148 ± 0.02300
Shergotty Pyroxene (observed grain size: 3-4.5 mm) 

1.469 0.271 1.305 3.63230 5.28253 
± 0.011 ± 0.004 ± 0.112 ± 0.04069 ± 2.40556

EETA79001-Litholgy B Maskelynite (observed grain size: up to 0.6 mm) 
1.303 0.182 1.196 3.51927 4.73176 

± 0.015 ± 0.004 ± 0.134 ± 0.05268 ± 0.15655
Shergotty Maskelynite (observed grain size: up to about 1.0 mm) 

3.248 1.257 6.823 3.49569 17.26850 
± 0.022 ± 0.024 ± 0.434 ± 0.05519 ± 3.48732

EETA79001-Litholgy B Opaques (observed grain size: ~0.2 mm) 
3.604 1.132 2.977 3.96436 9.21741 

± 0.124 ± 0.048 ± 1.316 ± 0.18704 ± 0.65556
Shergotty Opaques (observed grain size: ~0.4 mm) 

10.150 2.616 8.355 3.79273 7.01919 
± 0.089 ± 0.054 ± 0.662 ± 0.05295 ± 7.02154

aConcentrations in 10-12 cm3 STP g-1.  bNo 129Xexs measured. 
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xenon component exhibiting little to no atmospheric xenon in EETA.  Figure IV-4 

compares the observed xenon component in the pyroxene of the two meteorites.  The two 

unique signatures show the possibility that the interior component may reflect a mixture 

of a mantle (solar) component with a crustal component (fission xenon with, in this case, 

little or no 129Xexs). 

 Discussion 

Xenon Components in EETA79001 Lithology B 

As observed in Shergotty, mineral separates of EETA have two identifiable 

martian components that can be associated with particular mineral hosts.  

The martian atmosphere component is more concentrated in the opaque-dominate 

separates than in the maskelynite-dominate separates, and more concentrated in both than 

in the pyroxene.  This mimics the results of Shergotty mineral separates and is consistent 

with the model of shock incorporation of adsorbed atmospheric gas.  The smaller the 

grain size, the more surface area per unit mass and higher the concentration of xenon 

after shock incorporation (Gilmour et al., 1998b).  From EETA mineral separates, the 

smallest grain sizes are the opaques (less than ~ 200 µm) followed by maskelynite (up to 

about ~ 600 µm) and then pyroxenes (1-2 mm).  This broadly corresponds to the trend 

perceived in Shergotty, with the atmospheric component sited in the mineral separates 

such that the opaque-dominate separates have a higher gas concentration followed by 

maskelynite-dominate separates and lastly the pyroxene-dominate separates.  Adsorption 

 61



0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

129Xe/132Xe

13
6 X

e/
13

2 X
e

EETA Pyroxene

Shergotty Pyroxene

SPB

Earth

129Xe excess

Fission

Chass-E

Chass-S

Crustal Assimilation

Figure IV-4.  Comparison of interior components of Shergotty and EETA79001 
Lithology-B.  Shergotty has a higher fission component as well as a mixture 
from the martian atmosphere compared to EETA79001 Lithology-B.  This 
relationship may reflect isotopic systematics seen in neodymium and strontium, 
rare Earth fractionation and oxygen fugacity in that Shergotty assimilated more 
crust in its parent melt than EETA79001 Lithology-B.  The endmember 
components are the same as in Figure IV-2. 
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of xenon onto mineral surfaces is not independent of the chemical composition of the 

surface, so a perfect correlation is not to be expected.  The combination of absorbed 

atmospheric gas that is shock implanted seems to be the best explanation presented to 

date of the observed gas concentration in the mineral separates.  Consideration of shock 

implantation as the only mechanism (i.e. without including the effect of adsorption) 

would lead to the speculation that maskelynite, a diaplectic glass formed from plagioclase 

that has experienced shock, should have a higher concentration of gases than the opaques.  

The data illustrate that this is not the case. 

It is important to note that the process that led to the incorporation of xenon from 

the martian atmosphere is also implicated in the elemental fractionation that decreased 

the Kr/Xe ratio observed in the martian meteorites.  Nakhlites and ALH84001 have a 

lower 84Kr/132Xe ratio for their high 129Xe/132Xe ratio and thus are not consistent with the 

same simple mixing array of a martian atmosphere-like component and a martian interior 

component as the shergottites.  The signature seen in EETA, as well as Shergotty, is 

proposed to be the result from shock incorporation of martian atmosphere that had been 

adsorbed on grain surfaces and hence was elementally fractionated.  Adsorption of xenon 

on mineral surfaces is significant at the temperatures characteristic of the martian surface, 

and calculations of Fanale et al. (1978) illustrated that adsorbed xenon dominates 

ambient xenon, implying that some degree of elemental fractionation enhancing Xe in the 

trapped component is to be expected.  

As found in Shergotty, the consistent 129Xe/132Xe ratio observed in the pyroxene-

dominate separates across all temperature steps suggests that it is the best choice to define 
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the interior component for EETA.  The 136Xe/132Xe ratio contains xenon that consists of a 

mixture of solar xenon and fission xenon, possibly from 244Pu, and is found to be similar 

to the other documented martian interior components in ALH84001 and Chass-E 

(Mathew and Marti, 2001).  The uniformity of the mixture in pyroxene-dominate 

separates suggests that this is the signature of the ambient xenon present in the magma 

from which EETA crystallized.  129Xexs is notably absent from EETA while present in 

Shergotty.  The elevated 129Xe/132Xe ratio observed in Shergotty’s interior component 

could be evidence of an admixture of martian atmosphere to the melt perhaps, consistent 

with the higher crustal contribution seen in Shergotty (Borg et al., 1997; Herd and 

Papike, 2000; Herd et al., 2001; Jones, 1986).   

Both basaltic meteorites have interior xenon that is a mixture of two components:  

solar (“unradiogenic”) and radiogenic.  The differences observed in the interior 

component can be attributed to unique source regions for the meteorites: Shergotty, with 

an elevated 129Xe/132Xe ratio and high 136Xe/132Xe ratio preserved in its source region, 

while EETA’s source region, the 129Xe/132Xe ratio is absent and has a lower 136Xe/132Xe 

ratio.  These possible scenarios are addressed in the xenon model discussed below.  

However, instead of suggesting two unique source regions from which these meteorites 

formed, a model was constructed to explain the interior xenon as reflecting a different 

mixture of mantle (solar, unradiogenic) and crust (radiogenic) components. 

Modeling of Interior Xenon in the Basaltic Shergottites 

From the same starting material, two reservoirs (crust and mantle) separated early 

in geological time by differentiation and each may experience some degassing.  The 
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model uses a simple rate equation approach to trace the passage of xenon and its parent 

radiogenic isotopes 129I (t1/2 = 16 Myr), 244Pu (t1/2 = 82 Myr), and 238U (t1/2 = 4.47 Gyr) 

between the reservoirs and radioactive decay.  It is assumed that Mars accreted from 

material having initial ratios of 129I/127I (1 x 10-4) and 244Pu/238U (6.8 x 10-3), and total 

abundance of I (1.97x10-14 moles/gram), U (1.05x10-10 moles/gram), and Xe (5.38x10-13 

moles/gram), based on given chemical compositions of Mars (Dreibus and Wanke, 1987) 

but adjusted to the mass of the entire planet.  The degassing from these two reservoirs 

creates a third reservoir, the atmosphere.  This provides an exterior constraint on the 

model in that the atmosphere created must be somewhat like Mar’s.  Atmospheric loss is 

then included into the model as suggested by atmosphere evolution models (Pepin, 1991, 

1994; Swindle and Jones, 1997). 

Rates of differentiation, degassing and atmospheric loss can be varied as free 

parameters to investigate under what circumstances the isotopic signatures of the 

reservoirs are qualitatively similar to those necessary to explain martian meteorite xenon 

components.  Mantle evolution is governed by a set of coupled differential equations 

  d/dt(132Xe) = 132Xeo(1 - α - β) (1) 

  d/dt(129I) = 129Io(1 - α - λ129) (2) 

  d/dt(244Pu) = 244Puo(1 - α - y1λ244) (3) 

  d/dt(238U) = 238Uo(1 - α - y2λ238) (4) 

  d/dt(129Xe) = 129Xeo(1 - α - β) + 129Ioλ129 (5) 
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  d/dt(136Xe) = 136Xeo(1- α - β) + 244Puo y1λ244 + 238Uo y2λ238 (6) 

The mantle is assumed to lose constituents by the transport coefficient α during 

differentiation.  After differentiation, the model allows gaseous species to be lost from 

the mantle to the atmosphere, not to the crust, with degassing coefficient β.  λ129, λ244, 

and λ238 are the decay constants of 129I (4.08x10-2 Myr-1), 244Pu (8.45x10-3 Myr-1), and 

238U (1.55x10-4 Myr-1), respectively, and y1 and y2 is the fraction of 136Xe produced by the 

decay of 244Pu (7.05x10-5) and 238U (3.50x10-8), respectively.  For the proposed 

shergottite relationship, the mantle retains high Xe/(Pu+U) and Xe/I ratios so that xenon 

ratios do not evolve away from solar.  This xenon ratio decreases if the mantle degasses, 

but only affects xenon ratios if Pu, U and I are still alive at the time of degassing.  This 

ratio can only increase if xenon is more compatible than the other elements. 

Crustal evolution is governed by 

  d/dt(132Xe) = 132Xec(1 - χ) + 132Xeoα (7) 

  d/dt(129I) = 129Ic(1 - λ129) + 129Ioα (8) 

  d/dt(244Pu) = 244Puc(1 – y1λ244) + 244Puoα (9) 

  d/dt(238U) = 238Uc(1 – y2λ238) + 238Uoα (10) 

  d/dt(129Xe) = 129Xec(1 - χ) + 129Icλ129 + 129Xeoα (11) 

  d/dt(136Xe) = 136Xec(1- χ) + 244Puc y1λ244 + 238Uc y2λ238 + 136Xeoα (12) 
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The crust accumulates constituents from the mantle and loses gaseous species to the 

atmosphere with the degassing coefficient χ.  For application to the crustal/mantle model 

of the shergottites, the resultant 136Xe*/130Xe crustal ratio should be greatly elevated 

above the mantle reservoir. 

Atmospheric evolution is then governed by 

  d/dt(132Xe) = 132XeA(1 - µ) + 132Xeoβ + 132Xecχ (7) 

  d/dt(129Xe) = 129XeA(1 - µ) + 129Xeoβ + 129Xecχ (11) 

  d/dt(136Xe) = 136XeA(1- µ) + 136Xeoβ + 136Xecχ (12) 

The atmosphere is derived by the influx of gases species from the mantle β, after 

differentiation, and from the crust χ.  The atmosphere is also affected from gas loss 

events µ such as hydrodynamic escape, sputtering and impact erosion.  The 129Xe*/130Xe 

is expected to be elevated above the mantle reservoir to apply to the atmospheric model 

of the shergottites. 

The model traces the martian mantle, crust, and atmospheric reservoirs through 

five stages that represent identifiable processes which Mars has experienced throughout 

geological history.   

1.  The period of accretion and differentiation of Mars from planetesimals.  The 

duration, 0<t<20 Myr, is based on consideration of 182Hf-182W isotopic systematics (Lee 

and Halliday, 1997) and not varied as a free parameter.  Any Xe produced by decay of 

129I, 244Pu and 238U before t = 0 is assumed to have been lost.  Data from the nakhlites, 
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where the interior component is preserved in the mesostasis (Gilmour et al., 1999) and 

hence correlates with large ion lithophiles, demonstrate that xenon behaves as an 

incompatible element in a closed system during nakhlites crystallization (except that it 

can partition into a gas phase) (Marty and Marti, 2002).  Based on the study of Angra dos 

Reis mineral separates, plutonium was shown to behave geochemically in a way similar 

to the LREE (Lugmair and Marti, 1977).  This coherence of Pu and LREE is the result of 

the similarity of their ionic radii and valences (+3).  From studies of solubility of iodine 

(Musselwhite and Drake, 2000; Musselwhite et al., 1991), it has been proposed that the 

high 129Xe/132Xe ratio of the martian atmosphere is the result of transfer of iodine early to 

the martian crust.  Therefore, for this model, all constituents are assumed to have behaved 

as incompatible elements during differentiation and to have been transported to the crust 

at the same rate.  Figure IV-5 illustrates the evolution of the radiogenic ratios through two 

scenarios for the mantle: evolution with only transport affecting the loss of constituents, 

and evolution with transport affecting the loss of constituents during differentiation and 

then degassing of the mantle after the period of differentiation.  Note that even initial 

concentration ratios preserve some evolution of xenon isotopes occurrence, implying 

either xenon is more compatible (retained better during differentiation) or the initial 

Xe/(Pu+U) and Xe/I was higher. 

2.  Continual early atmosphere formation beyond differentiation by degassing 

fractions of the primordial xenon, 129Xe produced by 129I decay, and Pu+U-derived 136Xe.  

The requirement to produce a crust with elevated 136Xe/130Xe and low 129Xe/130Xe, and 

with significant concentrations of 136Xe*, imposes quite stringent constraints on its  
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Figure IV- 5.  Comparison of mantle evolution with and without degassing.  
Note that even initial concentration ratios preserve some evolution of xenon 
isotopes occurrence, implying either xenon is more compatible (retained better 
during differentiation) or the initial Xe/(Pu+U) and Xe/I was higher. 
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degassing history.  Early major loss of 130Xe is required to allow the 136Xe/130Xe ratio to 

evolve upwards subsequently.  This loss must have continued on timescales long 

compared to that characteristic of 129I decay (>~100Ma) to allow high 136Xe*/129Xe* 

ratios.   

3.  Atmospheric loss by hydrodynamic escape and erosion (Pepin, 1991, 1994) at 

a time 100 Myr after accretion.  The gas is depleted from the early atmosphere and xenon 

isotopic compositions are set by the hydrodynamic escape and thereafter preserved 

(Pepin, 1991, 1994). 

4.  Continual degassing, releasing fractions of gas that either remain in the crust 

after the atmospheric loss or are produced by decay.  The preservation of a fission 

anomaly from 244Pu in the young meteorites suggests this degassing rate must have 

declined drastically on timescales short compared to that characteristic of 244Pu decay 

(<~800 Ma), thus allowing xenon components with elevated 136Xe/132Xe ratios to form as 

244Pu decayed and subsequently conserve these components.   

5.  Late erosion of the atmosphere.  Based on observations of impact erosion and 

fluvial features on the martian surface, a profound change in the atmospheric state is 

suggested (Pepin, 1994 and references within).   

Table IV-4 summarizes a variety of solutions, with Figures 6-9 illustrating the 

xenon ratios evolution observed for some of the various parameters.  In most of the 

models, α is chosen to move at least 50% of the constituents into the crust where it is 

available to participate in outgassing from the crust, the believed major source of 
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atmospheric gas.  Note that the mantle reservoir slightly evolves to become radiogenic as 

a result of the transport coefficient being chosen to partition Xe and I from the mantle at 

the same rate.  The ratio is the result in the build-up of radiogenic xenon in the mantle 

over time from the decay of 238U isotopes remaining in the mantle.  Figures 6 and 7 

illustrate two different differentiation rates, 3.4x10-8 yr-1, which moves ~50% of the 

constituents into the crust, and 1.0x10-7 yr-1, which moves roughly 90% of the 

constituents into the crust.  The concentration of the component is affected by the 

differing differentiation rates, but not the ratios of interest.  

Degassing of the mantle, β, is chosen to be zero during the period of 

differentiation as transport to the crust is assumed to dominate the loss.  After 

differentiation, any degassing from the mantle affects only the concentration of 

constituents but not the resulting ratios of interest.   

Degassing of the crust, χ, is the most restrictive parameter as discussed above.  

For the models illustrated, χ is assumed to change after ~400 Myr and close ~2.0 Gyr.  

Listed in Table IV-4 are the various degassing rates before 400Myr (χearly) and the 

various late degassing rates (χlate).  Comparison of Figure 6 and Figure 8 (and 

consequently Figure 9; however, χlate and µ also differ between the two models) shows 

how the requirement of an early major loss of 130Xe is needed, thus allowing the 

136Xe*/130Xe ratio to consequently evolve upwards.  This early loss allows high 

136Xe*/130Xe ratio for the crust and a high 129Xe*/130Xe ratio for the atmosphere.  For 

degassing rates slower than 1.0x10-8 yr-1, the atmospheric reservoir does not obtain the 

characteristically high 129Xe*/130Xe ratio that defines the martian atmosphere.  The time 
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Table IV- 4.  Workable models of martian xenon evolution. 

 
α 

(yr-1) 

χEarly 

(yr-1) 

χLate 

(yr-1) 

µEscape 

(yr-1) 

µErosion 

(yr-1) 

*Xe
 *Xe

129

136

 

Mantle 

*Xe
 *Xe

129

136

 

Crust 

*Xe
 *Xe

129

136

 

Atmosphere

1) 1.0x10-7 1.0x10-7 1.0x10-8 5.0x10-7 1.0x10-9 2.63x10-3 3.76x10+9 8.43x10-2 

2) 6.7x10-8 1.0x10-7 1.0x10-8 5.0x10-7 1.0x10-9 2.63x10-3 3.75x10+9 8.41x10-2 

3) 3.4x10-8 1.0x10-7 1.0x10-8 5.0x10-7 1.0x10-9 2.63x10-3 3.74x10+9 8.40x10-2 

4) 3.4x10-8 1.0x10-7 1.0x10-8 5.0x10-7 1.0x10-8 2.63x10-3 3.74x10+9 2.65x10+1

5) 3.4x10-8 1.0x10-7 1.0x10-8 1.0x10-6 1.0x10-8 2.63x10-3 3.74x10+9 2.77x10+1

6) 3.4x10-8 1.0x10-7 5.0x10-9 1.0x10-6 1.0x10-8 2.63x10-3 1.37x10+6 2.90x10+1

7) 3.4x10-8 5.0x10-8 1.0x10-8 5.0x10-7 1.0x10-8 2.63x10-3 1.33x10+9 1.12x10+1

8) 3.4x10-8 5.0x10-8 1.0x10-8 1.0x10-6 1.0x10-8 2.63x10-3 1.33x10+9 1.16x10+1

9) 3.4x10-8 5.0x10-8 5.0x10-9 1.0x10-6 1.0x10-8 2.63x10-3 4.57x10+5 1.22x10+1

10) 3.4x10-8 1.0x10-8 5.0x10-9 1.0x10-6 1.0x10-8 2.63x10-3 6.19x100 2.28x10-1 
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Figure IV-6.  Graphical illustration of model 4 in Table IV-4.  The workable 
model seems capable of producing 136Xe*/129Xexs ratios low in the atmosphere 
and high in the crust and a source of gas close to solar in the mantle, as required 
by the present understanding of the martian components.   
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Figure IV-7.  Graphical illustration of model 1 in Table IV-4.  Similar to Figure 
IV-5 this model seems to meet the requirements of the present understanding of 
the martian components.  Differentiation rate (α) differ between the two models 
in that more constituents are moved to the crust with this model. 
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Figure IV- 8.  Graphical illustration of model 7 in Table IV-4.  Similar to 
Figure IV-5 this model seems to meet the requirements, however 129Xexs/130Xe 
ratio in the atmosphere is orders of magnitude smaller, and the 136Xe*/130Xe 
ratio in the crust is several orders of magnitude smaller.  This exemplifies the 
requirement of a major early degassing event.  
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Figure IV- 9.  Graphical illustration of model 10 in Table IV-4.  Represented 
here is the worse-case scenario; too slow of early degassing, as well as extreme 
atmospheric loss during hydrodynamic escape.   
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in which the degassing rate changes is slightly arbitrary, with the one restriction that the 

major degassing lasts more than 100 Ma after accretion, based on the decay of 129I, to 

allow a high 136Xe*/129Xe* ratio to evolve in the crust.  The closure of the crust was 

chosen to allow the possible contribution of 136Xe to the atmosphere reservoir, if the 

closure of crustal degassing is before 1.42 Ga, the model shows Pu-derived xenon as the 

dominant fission xenon in the atmosphere.   

For hydrodynamic escape, µ is chosen for the maximum depletion of the early 

atmosphere in most models, while the late erosion rate is at most two orders of magnitude 

lower than that observed during hydrodynamic escape.  The degree of early atmospheric 

loss has a limited range to provide suitable ratios for the atmosphere.  If the rate is too 

high, all traces of 129Xe* are lost; on the other hand, if the rate is too low, 129Xe is 

replenished from the decay of 129I and thus the 129Xe*/130Xe ratio is limited by the 

amount of iodine initially in the system.  In either case, the resultant 129Xe*/130Xe ratio is 

indistinguishable from the mantle, opposing the requirement of a high ratio in the martian 

atmosphere.   

The workable models seems capable of producing 136Xe*/129Xe* ratios low in the 

atmosphere and high in the crust and a source of gas close to solar in the mantle, as 

required by the present understanding of the martian components.  For the shergottite 

relationship, this model supports Shergotty’s parent magma as a mixture of mantle and 

crustal reservoirs as well as a contribution from the atmosphere reservoir.  EETA’s parent 

magma reflects a mantle reservoir mixed with lesser extent of crustal reservoir.  This 
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supports the argument for crustal assimilation for the observed variations in the basaltic 

shergottites. 

Extending the model to the other major radiogenic rare gas component has 

presented some problems.  For the same properties that lead to elevated 136Xe* in the 

crust, lead to elevated 40Ar* excesses.  This highlights an extreme form of an outstanding 

problem in the identification of anomalies due to 244Pu decay in martian meteorites; the 

absence of identifiable excess of parentless 40Ar from 40K decay.  A source region with 

substantial fission anomalies from 244Pu decay must have closed to xenon loss within 500 

Ma of the origin of the solar system, suggesting that 40Ar should have accumulated over 

~2.7 Ga before the formation event of the nakhlites.  Nakhla has a well defined 40Ar-39Ar 

age of 1.33 ± 0.03 Ga and a bulk K-Ar age of 1.36 ± 0.03 Ga (Podosek, 1973).  These are 

both identical to the accepted crystallization age of Nakhla, and indicate that the parent 

melt was substantially degassed on formation.  Preservation of 136Xe fission anomalies in 

the nakhlites and other young martian meteorites thus requires partition of xenon away 

from argon at some point during or shortly before formation, a process that is unlikely to 

have preserved total fission xenon contents in a way that allows 136Xe/Pu ratios to be 

interpreted chronologically as closure ages of the source region. 

Summary 

Similar to the observations in Shergotty, maskelynite-dominate, opaque-dominate 

phases, and pyroxene-dominate separates contain uniquely identified martian 

atmospheric and interior xenon components.  The opaques, the smallest grains, show 

martian atmospheric xenon (129Xe excess over 129Xe/132Xe=1) that is 5 times more 
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concentrated than observed in maskelynite and absent in pyroxene.  This further supports 

the argument of gas concentrations related to grain size, in that the smallest grains present 

greater surface area for adsorption before shock incorporation of martian atmospheric 

xenon.  Thus, the measured bulk Kr/Xe ratio in the shergottites may be the same 

elemental fractionations between EETA79001 melt glass and nakhlites, instead of a 

simple mixing of martian interior and atmosphere components. 

The interior component consists of solar xenon with a fission contribution similar 

to that suggested by Chass-E (Mathew and Marti, 2001).  The fission contribution is 

measured to be higher than Chass-E, but lower than that observed in Shergotty.  The 

pyroxene-dominate separate best defines the interior component though it is present in all 

minerals analyzed.  Pyroxene exhibits a consistent 129Xexs (129Xe/132Xe ~ 1.03) that 

contrasts with the maskelynite and opaque minerals where 129Xe/132Xe increased with 

increasing release temperature.  This interior component in pyroxene is thought to be 

ambient xenon, which is a mixture of solar and fission components, present in the magma 

in which the pyroxenes formed before incorporation.  The fission contribution in the 

interior component is evidence of a crustal contribution to the melt, but not to the extent 

documented in Shergotty, or a preservation of a fission anomaly from 244Pu in the source 

region of the interior component.   

To address the different fission contributions in EETA79001 Lithology B and 

Shergotty, a model was devised to trace the course of xenon and its parent radiogenic 

isotopes 129I, 244Pu, and 238U between the martian mantle, crust and atmospheric 

reservoirs and radioactive decay.  The model produces 136Xe*/129Xe* ratios low in the 
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atmosphere and high in the crust and a source of gas close to solar in the mantle, as 

required by our present understanding of the martian xenon components.   

The identification of a pure solar component in Chassigny argues that, if anything, 

the model underestimates the initial xenon to iodine/plutonium ratio chosen.  Since 

degassing of the source region rich in plutonium is crucial to the model’s success (decay 

of Pu can only increase 136Xe/130Xe once the original complement of solar xenon has 

been effectively removed), should the interpretation withstand further tests constraints are 

imposed on the location of this reservoir.  Although labeled ‘crustal’, its identification 

with the martian crust remains controversial – a mantle reservoir rich in incompatible 

elements is also a candidate source region.  However, the requirement for the source 

region to be degassed argues in favor of a location close to the surface, in effect 

strengthening the case for identification with the crust itself.  The measurement of fission 

xenon in Shergotty and lesser extents in EETA79001 Lithology B supports the argument 

for crustal assimilation. 

 80



CHAPTER V 

CONCLUSIONS 

Xenon analyses of two basaltic shergottites have been presented.  This research 

examined identifiable mineral separates to determine the presence and sites of the martian 

xenon components.  Maskelynite-, opaque-, and pyroxene-dominate mineral separates 

from Shergotty and EETA79001 Lithology-B contain martian atmospheric and interior 

xenon components.   

The opaques in both meteorites, which are the smallest grains in each meteorite, 

show martian atmospheric xenon (129Xe excess over 129Xe/132Xe=1).  For Shergotty, this 

concentration is 5-10 times more concentrated in opaque minerals than in maskelynite 

and pyroxene (on the assumption that excess 129Xe in pyroxene was incorporated through 

the same mechanism).  For EETA79001 Lithology-B it is 5 times more concentrated in 

the opaques than observed in maskelynite and absent in pyroxene.  Atmospheric gas 

concentrations are argued to relate to grain size, in that the smallest grains present greater 

surface area for adsorption before shock incorporation of martian atmospheric xenon.  

This is the same mechanism thought to account for the incorporation of martian 

atmospheric xenon in Nakhla.  Thus the measured bulk Kr/Xe ratio in the shergottites 

may be the same elemental fractionations between shock melt glass in the SNCs and not 

a simple mixing of martian mantle and martian atmosphere.   

The interior component found in both meteorites consists of solar xenon with a 

fission contribution and is similar to that observed in Chassigny (Chass-E of (Mathew 
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and Marti, 2001).  Though present in all minerals analyzed, it is best defined in the 

pyroxene-dominate separates.  Pyroxenes from Shergotty and EETA79001 Lithology-B 

exhibit a consistent 129Xe/132Xe ratio (1.2 for Shergotty and 1.03 for EETA79001 

Lithology-B) that contrasts with the maskelynite and opaque minerals, where 129Xe/132Xe 

increased with increasing release temperature.  The fission contribution for both 

meteorites is higher than Chass-E, but EETA79001 Lithology-B fission contribution is 

lower than that observed in Shergotty.  This interior component in the pyroxenes of both 

meteorites is thought to be ambient xenon, which is a mixture of solar, fission and 

atmosphere (for Shergotty) components, present in the magma in which the pyroxenes 

formed before incorporation.  The fission contribution in the interior component is 

attributed to an assimilated crustal component to the melt.  The extent of this crustal 

contribution differs for the two meteorites in that Shergotty exhibits a greater extent than 

that in EETA79001 Lithology-B.   

To explain the different fission contributions in EETA79001 Lithology B and 

Shergotty, a model was constructed to trace the course of xenon and its parent radiogenic 

isotopes 129I, 244Pu, and 238U between the martian mantle, crust and atmospheric 

reservoirs and radioactive decay.  The model produced 136Xe*/129Xexs ratios that are low 

in the atmosphere and high in the crust and a source of gas close to solar in the mantle, as 

required by our present understanding of the martian xenon components.  Degassing of 

the source region rich in plutonium is crucial to the model’s success, as decay of Pu can 

only increase 136Xe/130Xe once the original complement of solar xenon has been 

effectively removed.  This constrains the location of this reservoir; the requirement for 

the source region to be degassed argues in favor of a location close to the surface, in 
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effect strengthening the case for identification with the martian crust rather than a mantle 

reservoir rich in incompatible elements as a candidate source region.   

Further work on other basaltic shergottites is needed to establish whether the 

variation between Shergotty and EET79001 Lithology-B represents part of a wider trend.  

Work has already begun on the basaltic shergottite Dar al Gani 489.  This meteorite is 

reported as having an even lesser extent of crustal contribution to its melt (Herd and 

Papike, 2000).  If the trend holds true, DaG489 will have even a lesser extent of fission 

contribution in its interior component. 
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APPENDIX A 

THE STATUS OF KRYPTON ANALYSES AT THE 

INSTITUTE FOR RARE ISOTOPE MEASUREMENTS  

The original dissertation research was to modify the resonance ionization 

spectroscopy system at the University of Tennessee’s Institute for Rare Isotope 

Measurements (IRIM) for krypton isotope analysis from minute extraterrestrial samples.  

Previously the system had only been utilized for measurements of the rare 81Kr and 85Kr 

isotopes in environmental applications.  As little work had been done with krypton in the 

planetary sciences, this project would compliment the pioneering work on xenon by the 

Manchester group with their ultra-sensitive resonance ionization mass spectrometer, 

RELAX.  Because of delays due to technical difficulties in getting the IRIM system into 

full operation, and taking advantage of the presence of Dr. Gilmour from Manchester at 

IRIM during his sabbatical, it was decided to shift the dissertation to xenon research 

using the Manchester facilities.  But, as considerable practical experience in resonance 

ionization and noble gas spectrometry applicable to xenon work was gained, progress on 

the krypton system is described below. 

Completed work focused on upgrading and building the laser-microprobe 

resonance ionization spectroscopy time-of-flight mass spectrometry (LM RIS-TOF) 

system for the analysis of krypton isotopes.  This work included: the purchase and 

installation of a new resonance ionization laser system; upgrade of the existing vacuum 
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system; the design and employment of a new sample chamber; design and employment of 

a new gas standard calibration system; and the design and installation of the laser 

microprobe.  The complete LM RIS-TOF system is shown in Figure A-1.  The main 

sections are (1) the time-of-flight mass spectrometer, (2) the resonance ionization 

spectroscopy laser system, (3) the vacuum system, (4) the sample chamber, and (5) the 

microprobe laser.   

Mass Spectrometer 

Noble gases are released into the static time-of-flight (TOF) mass spectrometry by 

the laser microprobe.  The TOF has a unique feature called an “atom buncher,” to 

concentrate the noble gas atoms in the region of space probed by the resonance ionization 

spectroscopy (RIS) lasers.  This consists of a cold finger, which collects the atoms in the 

chamber, coupled to a pulsed laser fired a few microseconds before the RIS lasers, that 

heats the cold finger, causing the condensed atoms to desorb in synchronism with the RIS 

lasers (see Figure A-2). 

The TOF employs second-order time focusing to achieve a resolution M/∆M of 

greater than 1200.  Data is collected with a transiet digitizer having 0.5 ns time 

resolution, while a real-time computer system allows simultaneous collection of all noble 

gas isotopes.  For krypton at optimal tuning, in 10 minutes, typically more than 90% of 

the krypton atoms in the mass spectrometer have been counted.  The entire system is 

contained in an all-metal ultra-high vacuum housing that is evacuated by ion pumps to 

pressures below 1x10-10 Torr when the system is not processing a sample.  The vacuum is  
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Figure A-1.  The laser microprobe resonance ionization spectroscopy time-of-
flight mass spectrometer (LM RIS-TOF) as housed at the Institute for Rare 
Isotope Measurements (IRIM).  The numbers (1-5) correspond to the main 
sections as described in the text. 

Figure A-2.  Schematic of the time-of-flight mass spectrometer illustrating 
relative positions of the cold finger, heating laser, and the RIS lasers.  The 
ionized atoms are accelerated and sent down the TOF drift tube to a 
microchannel plate detector.  The resulting signal is digitized and processed by a 
dedicated computer. 
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monitored by the ion pump controller, as well as an additional ionization gauge attached 

to the TOF tube.  Furthermore, the system can be heated to about 250°C for additional 

cleaning and low background maintenance.  Modifications to the mass spectrometer 

included the addition of all metal bakeable values to the new sample chamber, and a new 

gas standard inlet system. 

The gas standard inlet system, designed and added to the RIS-TOF system, 

utilizes a series of calculated and measured expansion ratios to introduce as few as 104 to 

105 noble gas atoms.  This new gas standard inlet system eliminated uncertainties due to 

the scattering that was noted from the previous 1:105 Kr:Ar mixture calibration 

technique. This calibration system allows detail studies, thus determining the 

reproducibility and stability of the overall system necessary for accurate isotope ratio 

measurements and for reliable background subtraction. 

Resonance Ionization Spectroscopy Laser System 

The RIS-TOF system utilizes lasers tuned to specific atomic energy levels of the 

analyte element, thus producing only ions of the chosen element, which currently is 

krypton.  The system includes two Continuum ND-6000 tunable dye lasers and one 

custom-built dye laser, all pumped by a Continuum PL-8010 Nd-YAG laser operating at 

10 Hz repetition rate.  Non-linear doubling and mixing crystals convert the dye laser 

output to the wavelength required for RIS.  Purchase of the new more powerful 

Continuum lasers, combined with careful design, layout and alignment of the optics 

guiding the eight required wavelengths, provides simultaneous arrival of the photons at 
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the correct location within the mass spectrometer resulting in stable resonance ionization 

spectroscopy. 

Resonance ionization of krypton and generation of the shortest wavelength is 

shown in Figure A-3.  The first excitation step of the krypton RIS scheme requires a 

photon at 116.5 nm, and is achieved by a non-linear process known as four-wave mixing 

in a Xe/Ar gas mixture.  This allows a single resonance transition of high oscillator 

strength, not only reducing the power required by many orders of magnitude, but greatly 

increases the element selectivity in the ionization process by elimination multiphoton 

nonresonant ionization of impurities.  Two 252.5 nm photons excite xenon to the 6p state.  

Using a slightly higher energy than the energy difference to the 7s state, a third photon at 

1507.3 nm is added which stimulates a transition to the ground state and emission of the 

116.5 nm photon.  Once excited to the 5s state, krypton is excited to the 6p state with a 

558.1 nm photon and finally into the ionization continuum using a 1064.0 nm photon.  

Vacuum Pumping System 

In addition to the ion pumps attached to the TOF, an auxiliary pumping system is 

provided to evacuate the sample chambers after sample loading, and maintains a high 

vacuum (x 10-9 Torr) within the portions of the system that are not on line to the mass 

spectrometer.  A wide-range turbo molecular vacuum pump has been installed to reduce 

the base pressure and permit baking of the ion pumps.  A rotary pump backs this pump, 

with a molecular sieve trap in between to prevent any oil vapor back-flow from the rotary  

pump.  In an attempt to further reduce background, copper gaskets were replaced with 
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Figure A-3.  Schematic of the resonance ionization spectroscopy (RIS) laser 
system.  The Nd:YAG laser, operating at 1064 nm, pumps 3 dye lasers to 
generate the specific wavelengths required for the ionization of krypton.  See 
text for further details of ionization sequence. 
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silver plated gaskets to maintain tighter seals.  Likewise, much of the system’s plumbing 

is configured to enable baking of the entire system at 250° to 300°C.  To protect the 

vacuum during power failures, pneumatic values were installed to close and isolate 

various parts of the system. 

Sample Chamber 

The sample chamber is constructed from two stainless steel vacuum flanges.  The 

chamber is mounted to the mechanical stage via a flexible welded bellows attached 

beneath the bottom flange, permitting ± 0.5 inch movement of the sample chamber in 

three orthogonal directions under the laser-probe microscope.  The bellows is connected 

to a rigid cube that allows gas flow to the TOF and/or to the vacuum system through 

respective valves.  The top flange of the chamber has an optical window, through which 

the sample can be viewed.  The optical window is constructed of sapphire, which results 

in less krypton trapping than quartz and permits essentially all the laser’s energy to pass 

without any absorption.  The bottom flange is customized to hold optically thick samples, 

or small separated grains, depending on sample used.  To prevent damage to the 

underside of the sapphire window, a thin sapphire cover slip is placed over the sample.  

The cover slip acts as a shield, becoming coated with material that would otherwise cover 

the window and is replaced each time the sample is changed.  Direct lighting is provided 

by a light source that is reflected onto the sample by a pellicle beam splitter mounted in 

the laser microprobe viewing system.  Diffuse light is from a series of miniature 
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incandescent bulbs mounted at the periphery of the sapphire window.  These light sources 

can be adjusted independently to optimize the visibility of sample morphology. 

Laser Microprobe 

The microscope has been custom-built to accommodate the laser, a video camera, 

and the sample vacuum chamber.  The video camera permits optical viewing of the 

sample before and after laser-desorption.  An X-Y-Z translation stage permits proper 

focusing, alignment and rastering of the sample with the laser beam. 

The 1064 nm wavelength beam of an Nd:YAG laser is doubled twice by 

nonlinear crystals to generate ultraviolet light at 266 nm for probing the sample.  The 

collimated 266 nm beam is reflected by a dichroic beamsplitter set at 45° and focused 

onto the sample with a 40 mm focal length objective optimized for high-power UV laser 

pulses.  Visible light from the sample surface passes through the dichroic beamsplitter to 

the video camera through a three position custom optical turret that provides overall field 

of views of 40 mm, 4.0 mm and 0.4 mm (See Appendix B). 
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APPENDIX B 

VERSATILE SAMPLE VIEWING SYSTEM WITH LARGE 

MAGNIFICATION RANGE 

This chapter is a slightly modified revision of a paper by the same name published in the 

journal Review of Scientific Instruments in 2000 by Katherine Ocker, Norbert Thonnard 

and Charles Joyner: 

 

K. D. Ocker, N. Thonnard, and C. F. Joyner, Versatile sample viewing with large 

magnification range. Review of Scientific Instruments 71(2), 581-582, (2002). 

 

My contributions to the work reported in this paper include (1) detailed design of the 

viewing system, (2) assembly of the viewing system, (3) testing of the viewing system 

and laser microprobing gas extraction system, and (4) most of the writing. 

Abstract 

A sample viewing system has been designed and constructed to assist in the in 

situ analysis of terrestrial and extraterrestrial samples by laser microprobe gas extraction.  

The system provides sample-viewing fields of 36 mm, 3.3 mm and 370 µm, and 

combines and focuses the microprobing UV laser beam onto the sample being studied. 
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With the increased desire to obtain isotopic data from extremely small regions, or 

even from micron-sized single interstellar grains, an in situ gas extraction system 



utilizing UV laser microprobing has been coupled to a resonance ionization spectroscopy 

time-of-flight (RIS-TOF) mass spectrometer system.  The RIS-TOF mass spectrometer is 

an extremely fast analyzer having demonstrated a detection limit of ~100 85Kr atoms 

(Thonnard, 1995; Thonnard et al., 1992).  This laser microprobing system consists of 

three components: 1) a sample viewing system (described here), 2) a Nd-YAG laser and 

associated optics, and 3) a noble gas extraction chamber. 

The selection of a viewing system presents a considerable challenge, as it is 

desirable to see the entire 36 mm diameter sample region, while still having the option of 

zeroing in on few micron-sized interstellar grains.  The system has to introduce, as well 

as focus, the UV microprobing beam collinearly with the viewing beam.  And finally, it 

has to maintain a sufficient working distance (>35 mm) so that the separation between the 

vacuum window and the sample surface is sufficient to prevent damage to the window. 

The adopted design, shown in Figure B-1, consists of three regions, all with lenses 

set at infinite conjugate ratio, which minimizes spherical aberration when using off-the-

shelf achromatic lenses (Smith, 1997).  In region I, the UV microprobing beam is 

combined with the visible viewing beam using a dichroic beam splitter reflecting 266 nm 

radiation.  For the high (A) and medium (B) power modes, the beam is focused onto the 

sample surface with a 40 mm focal length (5X) triplet microscope objective optimized for 

diffraction limited performance (3 µm spot) at 266 nm.  The microscope objective also 

serves as the first element of the viewing system.  Region II contains three sets of relay 

lenses providing sample-viewing fields of 36 mm, 3.3 mm and 370 µm.  The different 
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Figure B-1. Schematic of the viewing system and microprobing laser beam 
delivery system for in situ laser gas extraction at micron-sized scales showing 
high-power (A), medium-power (B) and low-power (C) viewing optics.  The 
mechanical arrangement (D) consists of a central shaft that rotates two disks 
onto which the magnification changing optics of region II are mounted, 
permitting changing the viewing field by turning a single knob. 
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magnifications provide viewing of the entire sample chamber, Figure B-2 (A), thus 

allowing proper identification and location on the sample, down to details less than 2 µm, 

as shown in Figure B-2 (C inset).  Region III focuses the collimated beam exiting region 

II onto a 1/3" format (4.8 x 3.6 mm) single-board, high resolution (768 x 494 pixels), 

monochrome CCD sensor with an F1.8, 50 mm f.l. camera lens. 

The transfer of the image from regions I to II, and from II to III by collimated 

beams, results in significant flexibility in design and placement of the optics.  In Figure 

B-1 (A), for example, the distance between the 40 mm objective in region I and the 250 

mm lens in region II can be changed arbitrarily (except for vignetting problems) to 

accommodate other optics, such as the 266 nm beam splitter, without changing the 

magnification or having to adjust the focus of the lenses.  Similarly, the distance between 

the upper relay lens of region II to the 50 mm camera lens in region III is also arbitrary.  

This permits selection of the magnification (set by the product of the focal length ratios 

of the lens pairs) to meet the viewing needs using stock, commercially available, two-

element achromats.  For the wide-field view, Figure B-1 (C), the image is relayed to the 

CCD camera by a single 375 mm f.l. achromat. 

A simplified side-view of the viewing system is shown in Figure B-1 (D).  The 

relay lenses of region II are mounted on two co-rotating disks.  The shaft that operates the 

disks also operates a cam that swings the 40 mm objective that is mounted on an arm out 

of the optical path in the wide-field of view setting.  The sample is illuminated by a 

combination of miniature incandescent lamps surrounding the optical axis at the bottom
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Figure B-2.  Images captured by a digital frame grabber of krypton-implanted 
silicon samples used to test the laser microprobing gas extraction system.  Due 
to alteration of the silicon structure, the implanted areas appear lighter.  At the 
lowest magnification, the entire sample chamber showing three silicon samples 
is visible (A).  At medium (B) and high (C) magnification, we zero in on a 
specific region of the sample.  The string of craters in (C), separated by 30 µm, 
is due to single UV laser pulses.  Their diameter depends on the pulse energy.  
To show details as small as 2 µm can be resolved, a portion of (C) has been 
enlarged by a factor of five, inset. 
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mounting plate, and a collimated beam from a 5 W quartz-iodide incandescent bulb that 

enters the system through a pellicle beam splitter. 

The ablating laser beam is generated by a quadrupled Q-switched Nd-YAG laser, 

delivering up to 5 mJ per pulse at 266 nm.  Although only 10-20 µJ pulse energy is 

sufficient in the microprobing mode (~10 µm typical crater size), the higher pulse energy 

is useful for extracting gas from larger areas (up to 200 µm diameter) with a single laser 

pulse.  The beam passes through a continuously variable attenuator to adjust the laser 

pulse energy delivered to the sample, a spatial filter to smooth out the intensity 

distribution of the laser beam, and a beam expander to match the entrance aperture of the 

focusing lens.  The beam expander can also be adjusted to increase the size of the beam 

spot on the sample when desired.   

The viewing system and microprobing laser system beams are fixed relative to the 

mass spectrometer.  Instead, the noble gas sample extraction chamber, which is sealed 

with a sapphire window and is connected to the mass spectrometer through a welded 

bellows, can be position to within 1 µm with a three-axis manipulator having 25 mm 

travel in each axis. 

Tests of the laser microprobing gas extraction system and sample viewing system 

were performed using silicon wafers that had previously been ion implanted with known 

amounts of krypton (Ocker and Thonnard, 1999).  The wide magnification range made it 

easy to identify both the general location and precise position of the region being 
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investigated.  Once the lenses in region II were properly collimated, the registration of the 

images was excellent when switching from one magnification to the next.  Overall, the 

system has been extremely useful in developing the in situ microsampling gas extraction 

protocols by providing instant feedback on the results of specific laser microprobe 

operating parameters. 

This research was supported in part by a grant from the NASA Office of Space 

Sciences under Grant NAG5-3464. 
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