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                                    Abstract 

Bordetella bronchiseptica colonizes the upper respiratory tract of a wide variety 

of mammals and is involved in diseases such as kennel cough in dogs, atrophic 

rhinitis in pigs and upper respiratory tract infections of laboratory animals. Studies 

were focused on developing a heterologous antigen expression system in B. 

bronchiseptica and to evaluate the potential of this organism as a candidate mucosal 

vaccine vector. Since the role of Bordetella bronchiseptica and Pasteurella multocida 

toxin (PMT) in the disease atrophic rhinitis of pigs was well documented, this 

research was focused in the possibility of developing a refined vaccine to control this 

disease. A promoter region related to heat shock protein genes was identified using a 

green fluorescent protein reporter system. This promoter drove high- level expression 

of GFP compared to a tac promoter or B. bronchiseptica fim N gene promoter. A non-

toxic protective P. multocida toxin fragment and GFP were expressed in B. 

bronchiseptica in a broad-host-range plasmid vector PBBR1MCS2 under the control 

of the promoter region identified. Colonization kinetics, plasmid stability, and 

immune responses generated following intranasal inoculation of recombinant B. 

bronchiseptica were evaluated. While wild type and recombinant B. bronchiseptica 

colonized the mouse respiratory tract effectively, the plasmid was completely lost 

from the organism after 72 hours post- inoculation. After a single intranasal 

inoculation, B. bronchiseptica specific IgM, IgA and IgG responses were detected in 

serum and respiratory lavage. However, PMT-specific antibodies were not detected. 

Four intranasal inoculations with  B. bronchiseptica expressing green fluorescent 

protein (GFP) induced a GFP-specific systemic and mucosal immune response, while 
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similar inoculations with B. bronchiseptica expressing PMT fragment did not induce 

a PMT-specific immune response.  

This study also evaluated the immune response to a chimeric protein generated 

by combining a gene fragment encoding neutralizing epitopes of Mannheimia  

haemolytica leukotoxin and a fimbrial protein gene (fim N) from B. bronchiseptica. 

Immunization of mice with the recombinant chimeric protein elicited a significantly 

stronger anti- leukotoxin antibody response than comparable immunizations with 

fusion proteins lacking FIM N. The chimeric protein exhibited more stability. 

Leukotoxin is an important virulence factor in shipping fever pneumonia in feedlot 

cattle and is a critical protective antigen. This chimeric protein may be a candidate for 

inclusion in new generation vaccines against shipping fever pneumonia. The results 

of these studies strongly support the potential for developing B. bronchiseptica as a 

candidate mucosal vaccine vector and FIM N as a carrier protein for heterologous 

antigens. 
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 Introduction 

      Bordetella bronchiseptica is an upper respiratory tract pathogen, which infects a wide 

variety of host species including domestic, laboratory and wild animals and may also 

opportunistically infect human beings [33, 60]. B. bronchiseptica is involved in diseases 

such as kennel cough in dogs, and atrophic rhinitis in swine [60]. This organism is an 

adept colonizer of the upper respiratory tract of mammals and colonization is 

characterized by attachment to the ciliated epithelium [6, 7, 8, 9]. The attachment is 

achieved by the expression of adhesins such as fimbriae, filamentous haemagglutinin and 

pertactin [33, 81, 147].  

Atrophic rhinitis is an upper respiratory tract disease of pigs characterized by 

degeneration and atrophy of nasal turbinate bones in market weight hogs, leading to 

visible distortion and shortening of the snout [20, 60, 67, 165, 169]. The infection with B. 

bronchiseptica leads to a mild reversible form of atrophic rhinitis, whereas, infection with 

Pasteurella multocida leads to a severe progressive form of atrophic rhinitis [1, 113, 165 

166].  Toxins produced by B. bronchiseptica and Pasteurella multocida are involved in 

this disease condition [36, 37, 48, 49, 50, 91, 92, 93]. Dermonecrotic toxin produced by 

virulent strains of B. bronchiseptica can induce impaired osteoblastic differentiation and 

atrophic rhinitis in pigs, rabbits and mice [104, 113].  

Pasteurella multocida is an important veterinary pathogen involved in diseases such 

as atrophic rhinitis in swine, fowl cholera in birds, hemorrhagic septicemia in cattle and 

other respiratory diseases in lab animals [20, 21]. Pasteurella multocida toxin (PMT) 

produced by capsular type D or type A strains of P. multocida is a major virulence factor 

in atrophic rhinitis [40, 148, 149, 184]. This toxin is a potent, intracellular, heat labile, 
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146kD protein that induces bone resorbtion through increased osteoclastic and impaired 

osteoblastic activity [66, 91, 92, 93, 98, 115, 116, 146, 151, 166]. It also causes 

degeneration and necrosis of liver, pneumonia, spleenic atrophy, orchitis and 

proliferation of bladder epithelium in experimental animals [48, 49]. PMT triggers a 

number of signal transuduction pathways leading to cytoskeletal rearrangement [182, 

195]. The role played by P. multocida and B. bronchiseptica in atrophic rhinitis is well 

documented [34, 36, 37].  A mutualistic disease-causing relationship exists between these 

two organisms [34, 36, 37].  Colonization with B. bronchiseptica predisposes animals to 

infection with P. multocida, which may lead to a severe atrophic rhinitis and financia l 

losses in the swine industry [1, 20]. PMT, itself, can also lead to a severe form of atrophic 

rhinitis when inoculated into experimental animals [48, 49].  

      Atrophic rhinitis vaccines initially consisted of different preparations of killed or live 

avirulent B. bronchiseptica. After elucidating the role of PMT in atrophic rhinitis, the use 

of PMT toxoid or non-toxic recombinant derivatives provided a significant degree of 

protection from PMT induced atrophic rhinitis and now most vaccines consist of B. 

bronchiseptica bacterin/ live attenuated vaccines and P. multocida bacterin and toxoid  

[12, 48, 49, 89, 142, 184].  

Considering the synergistic role of B. bronchiseptica and P. multocida in atrophic 

rhinitis, further development of combined vaccines seems to be a rational approach to 

control this disease. A mucosal immune response to B. bronchiseptica will lead to 

immunological elimination of B. bronchiseptica thus preventing colonization with P. 

multocida and other respiratory pathogens. Anti-PMT-antibodies will reduce the 

incidence of PMT-induced atrophic rhinits. 
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The mucosal surfaces are the portals of entry of many pathogens and they constitute 

the first lines of defense against pathogens [118, 119]. Attachment properties of B. 

bronchiseptica could be effectively utilized to deliver heterologous antigens to the 

respiratory tract for the purpose of inducing protective mucosal immune responses 

against respiratory pathogens. 

      The major goal of this study was to explore the possibility of B. bronchiseptica as a 

candidate mucosal vaccine vector.  

Specific aims of this study were: 

1. To identify and isolate a constitutive promoter from B. bronchiseptica    

using a green fluorescent protein reporter system. 

              2.    To clone and express a non-toxic P. multocida toxin fragment under the   

control of a suitable promoter. 

        3.    To study colonization, plasmid stability and antibody response following 

intranasal inoculation with B. bronchiseptica expressing the PMT 

fragment. 

4.   To evaluate the efficacy of Fim N protein of B. bronchiseptica as a 

carrier protein for heterologous antigens. 

The Genus Bordetella 

      Bordetellae are small, gram negative, aerobic, non-acid fast, non-spore forming 

coccobacilli [81, 147, 150]. All species of Bordetella are asaccharolytic [81, 147, 150]. 

They utilize amino acids and other organic acids as sources of energy [81, 147, 150]. 

Their optimum temperature for growth is 35-37oC. The members of this genus are B. 

pertusiss, B. parapertussis, B. bronchiseptica, B. avium, B. hinzi, B. holmesii,  
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B. trematum and B. petrii [33, 81, 147, 150].  All the members of this genus are catalase 

positive.  B. pertussis is the most fastidious species within the genus, and does not grow 

on simple media [81, 147, 150]. Other Bordetella species are less fastidious except B. 

parapertussis and B. holmeseii, which are relatively slow growing [81, 147, 150].  Nitrate 

reduction, urease, oxidase and motility tests can be utilized to differentiate species [81, 

147, 150]. The members of this genus are closely related, genetically, and their DNAs 

have a G+C content of 60.2 -70% [147].  

      B. pertussis is strictly a human pathogen responsible for whooping cough in 

children,and pertussis in adolescents and elderly humans [33, 147, 188]. This is an acute, 

highly contagious disease in children characterized by characteristic paroxysmal 

coughing.  B. parapertussis is also a human adapted pathogen and causes pertussis- like 

syndrome  in humans [81, 147, 150]. It has also been isolated from cases of chronic non-

progressive pneumonia in sheep [33, 147]. Bordetella avium is responsible for a 

condition known as coryza or rhinotracheitis in turkey poults and chickens [81, 147, 150].  

This disease condition is highly contagious and predisposes birds to secondary infections 

[87].  Bordetella bronchiseptica has been associated with acute tracheobronchitis or 

kennel cough in dogs and atrophic rhinitis in swine [6, 7, 8, 9, 60]. This organism can 

also cause upper respiratory tract infection of a wide variety of mammals such as mice, 

rabbits, guinea pigs, cats, and horses [60].  

      B. hinzii, has been isolated from the respiratory tract of  immunocompromised human 

beings, healthy turkeys, and chickens [81, 147, 150].  B. holmesii, has been isolated from 

human beings with respiratory tract infection and septicemia [81, 147, 150].  B. trematum 

has been  isolated from human beings with wound infections and otitis media [33, 81, 
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147, 150]. B. petrii, the new member of this genus, was isolated from an anaerobic 

bioreactor [191]; however, there is very little information available on this species. 

      The population structure of the Bordetella genus has been subjected to extensive 

evolutionary studies. The close phylogenetic relationship of Bordetella with Alcaligenes 

and other environmental bacteria suggests that the ancestral Bordetellae were free- living 

and evolved to infect warm-blooded animals [156]. The 16S ribosomal RNA analysis 

placed B. bronchiseptica as the nearest relative to bacterial endosymbionts in protozoa 

[156]. Musser et al. obtained an estimate of genetic relatedness of 60 strains of 

mammalian Bordetellae from worldwide sources by utilizing multilocus enzyme 

electrophoresis of 15 metabolic enzymes [137]. Van der Zee et al. also attempted to 

differentiate members of this genus by comparing the electrophoretic mobilities of 

metabolic enzymes [190]. Multilocus sequence typing based on sequencing of a portion 

of house keeping genes and insertion sequences were also utilized to compare the 

evolutionary relationship of members of the genus [61, 156, 190].  These studies 

concluded that B. pertussis, B. parapertussis and B. bronchiseptica are subtypes of a 

single genomic species. B. avium, B. holmesii, and B. hinzii each form true genomic 

species [190]. It was proposed that B. bronchiseptica may be the evolutionary progenitor 

and other species may be considered as host adapted lineages of B. bronchiseptica [61, 

156, 190]. The sequence comparison of genes encoding fimbrial subunits, adenylate 

cyclase toxin, pertactin, pertussis toxin and BvgAS, confirmed the close relationship 

between B. bronchiseptica and B. parapertussis and a more distant relationship between 

these species and B. pertussis [33, 190]. Also, human and sheep isolates of B. 

parapertussis comprise genetically distinct population [33, 190] 
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Gene regulation in Bordetella 

      Virulence gene expression in Bordetella spp is controlled by a two-component signal 

transduction system encoded by the Bordetella virulence gene (bvg) locus [187, 196, 

197]. Some of the virulence factors controlled by this system include fimbriae, 

filamentous haemagglutinin, pertactin, pertussis toxin, adenylate cyclase toxin and 

dermonecrotic toxin. The BvgAS system is a two component signal transduction system 

controlled by proteins, BvgS (a sensory transmembrane protein) and a transcriptional 

activator   BvgA (a cytoplasmic DNA binding protein) [33, 196, 197]. This locus is 

activated by temperatures above 37oC, and low sulfate or nicotinic acid concentrations 

resulting in expression of virulence factors [33, 196, 197].  

      A second set of genes is activated when the locus is shut down by low temperature 

(less than 30oC) or in the presence of increased sulfate or nicotinic acid concentration. 

Genes involved in flagella synthesis and urease expression [121, 131, 198] in B. 

bronchiseptica are negatively regulated by the bvg locus. However, in human isolates of 

B. parapertussis urease is repressed by bvg locus whereas in sheep isolates of B. 

parapertussis it is not under the control of bvg locus [33]. In some strains of 

B. bronchiseptica, genes involved in alcaligin biosynthesis are negatively regulated by 

the bvg locus [58]. In B. pertussis, five genes (vrg6, vrg18, vrg24, vrg53, vrg73) which 

involve a second intermediate regulatory locus, bvgR (a transcriptional repressor) were 

discovered [101, 126]. 

      Phenotypic modulation was described in earlier literature as the reversible loss of 

virulence-associated phenotypes that happens in response to changes in environmental 

conditions [196, 197]. Many of the earlier descriptions of the phases (phase I to phase IV) 
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were based on colony morphotypes. The virulence phase was called X mode (now known 

as bvg positive). X mode is seen at 37oC and in the presence of certain chemical ions such 

as sodium, potassium, halides, formate, and nitrate [33, 196, 197]. The avirulent phase, 

called C mode (now known as bvg negative) was seen at low temperatures and in the 

presence of ions such as sulfate and nicotinic acid [33, 196, 197]. Phase variation is the 

irreversible loss of virulent phenotype due to mutations occurring in the bvg-locus [33, 

196, 197]. In B. bronchiseptica, positively regulated traits (Bvg+) were required for 

respiratory infection. Whereas, negatively regulated traits (Bvg-) were required for 

surviving nutrient limitation [30].  

      A recent study described another phase called bvg intermediate phase (Bvgi), when B. 

bronchiseptica was grown in semi-modulating conditions [31]. This phase was 

characterized by the presence of one subset of bvg+ factors with the absence of other 

bvg+ factors and the presence of factors, which are exclusively expressed in this phase 

[31]. Isolates with Bvgi phenotypes displayed reduced virulence in a rat model of 

respiratory tract infection and increased ability to survive nutrient deprivation [31]. 

Stockbauer et al. described a protein called BipA, and its gene, which was exclusively 

expressed, in the Bvg intermediate phase [183]. A second two-component sensory 

transduction system called "ris"  has been described in B. bronchiseptica. This system had 

similarities to the bvg system and was up regulated at 37oC and down regulated at lower 

temperatures or in the presence of magnesium ions [90]. 

Bordetella virulence factors 

      Colonization of Bordetella in the upper respiratory tract of the host is mediated 

through strong attachment to the ciliated epithelium. A number of adhesins such as 



 9 

fimbriae, filamentous haemagglutinin, and pertactin have been recognized. Heavy 

colonization with production of toxins like dermonecrotic toxin, adenylate cyclase, 

tracheal cytotoxin, pertussis toxin, and endotoxin will lead to inflammatory responses in 

the respiratory tract that may produce significant clinical disease [33, 147, 150]. Major 

virulence factors produced by members of the genus Bordetella are discussed below. 

      B. pertussis is known to produce pertussis toxin, which is the important virulence 

factor in whooping cough in children [141]. B. bronchiseptica and B. parapertussis also 

contain the pertussis toxin gene, but do not express pertussis toxin [2, 73]. This is due to 

the differences in sequences in the promoter region, which make the toxin inactive [73]. 

Replacement of the pertussis toxin promoter region in B. bronchiseptica and B. 

parapertussis with tha t of B. pertussis resulted in expression of active toxin [73]   

      Adenylate cyclase toxin (ACT) is a member of the RTX (repeat in toxin) family of 

bacterial toxins [59, 63]. RTX toxins are a family of pore-forming proteins of Gram- 

negative bacteria, which contain glycine-aspartic acid rich repeats [52]. This toxin has 

bifunctional activity as a hemolysin and adenylate cyclase toxin. Adenylate cyclase and 

hemolytic activity are separable [157]. ACT can enter eukaryotic cells through pore 

formation and become activated by calmodulin, which leads to the production of 

unregulated cyclic AMP levels [59, 63, 75, 114, 157]. ACT is a 216 kD secreted protein 

and is produced by all members of the Bordetella genus except B. avium [33, 147, 157]. 

The major differences in amino acid sequence of adenylate cyclase toxin between B. 

bronchiseptica and B. pertussis were located on the carboxy terminal repeat region of the 

molecule [10]. Harvill et al. studied wild-type and mutants of B. bronchiseptica with 

alterations in adenylate cyclase toxin and concluded that phagocytic cells are the primary 
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targets of this toxin [71]. ACT is unique among the RTX toxins; in that it has enzymatic 

activity as well as the capacity to form an ion-permeable pore in target cell membranes. 

The latter causes lysis of erythrocytes, which is a colony, associated phenotype that can 

be easily seen on Bordet-Gengou agar containing horse or sheep blood cells [75, 157]. 

ACT mutants were defective in colonization [71]. The protective nature of ACT 

antibodies against infection suggests that this toxin is required for initial colonization [59, 

97]. ACT down regulates the phagocytic activity of neutrophils and macrophages and can 

induce apoptosis in macrophages [10, 71]. The antigenic and protective properties of 

adenylate cyclase toxin of B. bronchiseptica are different from that of B. pertussis [10, 

75].  

      Dermonecrotic toxin (DNT) is a 162 kD, intracellular, dermonecrotic, thermolabile 

and mitogenic cytotoxin produced by Bordetella spp. [138, 154, 194]. DNT can impair 

osteoblastic differentiation and is an important virulence factor in atrophic rhinitis in 

pigs, rabbits and mice [104, 113, 162]. DNT is cytotoxic for Vero cells, embryonic 

bovine lung cells and bovine turbinate cells [83, 178]. It induces morphological changes 

in cultured fibroblasts, including the assembly of actin, stress fiber formation, focal 

adhesion assembly, multinucleation and is a potent mitogen [83, 104, 178]. DNT 

deamidates the Gln 63 residue of small G proteins like Rho, Rac and Cdc42 leading to 

their constitutive activation and polymerization of actin [83, 95, 178]. DNT shows 

structural and functional homology to Cytotoxic Necrotizing Factor I of E. coli and 

deamidation activity of both these toxins are mapped to their C- terminus [110]. 

      Tracheal cytotoxin (TCT) is a muramyl peptide released by Bordetellae, [74, 112] 

and is responsible for specific epithelial pathology in whooping cough. TCT stimulated 
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production of IL1 and formation of large amounts of nitric oxide result in damage to 

ciliated epithelial cells [33, 74, 112]. It has been suggested that TCT may also be 

involved loss of ciliary activity and colonization of the organism in the respiratory tract 

[9, 29]. 

      Pertactin (PRN) is an outer membrane protein, and a nonfimbrial adhesin that belongs 

to the family of autoexporters [22, 42, 109, 111]. Autoexporter/ autotransporters are 

proteins, which have the ability to export themselves to the outer membrane, cleave 

themselves via protease activity and release fina l product into the medium [70]. Pertactin 

was initially identified in B. bronchiseptica as a 68kD protein  [132]. It is a 69kDa 

protein in B. pertussis and a 70kD protein in B. parapertussis [22, 132]. Pertactin 

contains one RGD (arginine-glycine-aspartic acid) motif and several proline rich as well 

as leucine rich repeats involved in eukaryotic cell binding [33, 109]. Pertactin is also a 

protective antigen that is included in acellular pertussis vaccines. Although pertactin can 

function as a nonfimbrial adhesin and can induce a protective antibody response against 

Bordetella, its role in pathogenesis is unknown [33]. Recently genetic and phenotypic 

heterogeneity has been reported in strains of B. bronchiseptica and B. pertussis [135, 

158]. This variation, which occurs in the repeat sequence motifs, is believed to be due to 

antigenic drift occurring in immunized populations. 

      Other Bordetella proteins with predicted autoexport properties include Tracheal 

Colonization Factor [47] BrkA [45, 163] and Vag8 [46]. These proteins share amino acid 

sequence homology at their C terminus, contain RGD motifs and are detected only in B. 

pertussis. 
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      Filamentous haemagglutinin (FHA) is a high molecular weight, secreted outer 

membrane protein reported in B. bronchiseptica, B. pertussis, B. parapertussis [33, 86, 

145]. FHA is a major attachment factor and protective antigen in Bordetella [108]. There 

are important domains in FHA, including a RGD motif, a carbohydrate-binding site and a 

heparin-binding site [68, 153, 159, 160], which are involved in eukaryotic cell binding.  

The RGD sequence of FHA binds to the integrin, CR3, of macrophages, which may 

promote phagocytosis. Attachment of FHA to ciliated cells is mediated through the 

carbohydrate-binding domain [153, 159, 160]. The heparin-binding domains of FHA may 

help in low affinity binding of the bacteria to the extracellular matrix of the upper 

respiratory tract [68, 122]. FHA is highly immunogenic and antibodies to FHA prevent 

attachment of B. pertussis and B. bronchiseptica [86, 96]. FHA is also a good mucosal 

immunogen as evidenced by high levels of anti-FHA antibodies in infected individuals 

[33, 86, 96, 108, 152]. In one study, FHA enhanced the mucosal immunogenicity of 

liposome delivered antigen administered via intranasal route [152] 

      Cotter et al. suggested that, FHA mediated attachment to tracheal epithelium allowed 

Bordetella to overcome constitutive mucociliary mechanisms in the trachea [32]. FHA 

appears to be secreted in lower amount in B. bronchiseptica compared to B. pertussis [86, 

88, 108]. It was postulated that the different levels of FHA expression in these species 

might be due to differences in protein production, differences in cell envelope 

composition and structures that affect export from cells or degradation [88]. 

      Fimbriae produced by B. bronchiseptica species are important virulence factors 

which help in adherence and colonization of the bacteria to host tissues [99]. Fimbriae are 

heteropolymeric filamentous appendages that are involved in attachment of many Gram-
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negative bacteria. They are highly immunogenic, antigenically stable proteins that are 

included as components of many acellular vaccines [89]. Major fimbrial subunit genes of 

B. bronchiseptica are fim2, fim3, fimX, fimA and fimN [13, 17, 94, 133, 134, 172, 199, 

200]. The fimbrial proteins of B. bronchiseptica and B. pertussis are serologically cross-

reactive. Fimbrial biogenesis is a complex process involving a cluster of genes called 

fimABCD [85, 99]. These are located in the FHA operon immediately downstream to 

fhaB, the structural gene for filamentous haemagglutinin. A mutation in FimB can abolish 

the expression of fimbriae [117]. Major fimbrial subunit genes are located elsewhere in 

the chromosome [99]. Fim A encodes a major structural subunit that is nonfunctional in 

B. pertussis but is expressed in B. bronchiseptica [13]. Fim D, a minor fimbrial subunit 

produced by B. pertussis, is a putative adhesin and tip protein [57]. The sequence of fimD 

in B. bronchiseptica differs by only one base pair from that in  B. pertussis. Mutation in 

fimD blocks the expression of major fimbrial subunits suggesting that it may have 

chaperone like activity [57]. The propensity for frequent deletion or addition of bases in a 

cytosine-rich sequence within the Bordetella fimbrial promoter region is a proposed 

mechanism for fimbrial type-switching, a phenomenon which enables Bordetella to 

express one type, two types or no fimbriae at a given point of time [200]. This may be 

attributed to selective pressure driven by the host's immune response or there may be 

differences in host receptors that induce the expression of a particular fimbrial gene. 

Receptors for fimbriae contain sulfated sugars like heparin sulfate, which are ubiquitous 

in the respiratory tract [55, 56]. Sequences similar to the heparin-binding region of 

fibronectin have been evaluated in fim2 and fim3 subunits of B. pertussis [55, 56]. Studies 

on expression of B. pertussis fimbriae in E. coli revealed that a recombinant subunit 
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protein was immunonologically and antigenically distinct from the native fimbriae and 

exhibited limited cross reactivity [192, 193]. Quaternary structure generated by subunit 

interaction of the fimbrial protein may be necessary for its incorporation as a protective 

immunogen in vaccines. Fimbriae are required for establishment of persistent 

colonization of the trachea in mice and may play a role in the development of a humoral 

immune response to Bordetella infection [117]. 

      The products of Type III secretion systems are other newly identified factors involved 

in B. bronchiseptica virulence [206, 207]. Type III secretion allows Gram-negative 

bacteria to translocate molecules into the cytoplasm of eukaryotic cells [202]. These 

products interact with a variety of eukaryotic signal transduction pathways to promote 

bacterial-host interactions [202]. In B. bronchiseptica the type III secretion products are 

specially transcribed under Bvg+ conditions [206]. These products are highly 

immunogenic in rabbits and are required for in vitro cytotoxicity [33, 206, 207]. These 

products may also be expressed by B. pertussis and sheep isolates of B. parapertussis 

[33]. Yuk et al. investigated the functions of the type III secretion system in B. 

bronchiseptica by comparing the wild-type bacteria with two strains that were defective 

in type III secretion system [206, 207]. The mutants were defective in long-term 

colonization of the trachea in immunocompetent mice. Also, mutants induced high titers 

of anti-bordetella antibodies compared to wild-type. The authors suggested that type III 

secretion products interacted with components of innate and adaptive immune systems of 

the host and that these products were required for inducing apoptosis in macrophages in 

vitro and increasing the influx of inflammatory cells in vivo. This modulation of immune 

response may be achieved through inactivating NF-kB, a transcription factor for 
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regulation of genes involved in immune response [206]. Winstanley et al. investigated 

and confirmed the presence of a type III secretion system in animal isolates of B. 

bronchiseptica [201].  

      The lipopolysaccharide (LPS) molecules of members of the Bordetella genus differ in 

their structure [33].  B. pertussis contains a complex trisaccharide with no O antigen. 

Therefore, it is generally referred as lipo-oligosaccharide.  B. bronchiseptica has a 

trisaccharide plus an O- antigen repeat and B. parapertussis has an altered trisaccharide 

plus O-antigen-like repeat [72]. The wlb gene cluster, composed of 12 genes, is required 

for biosynthesis and addition of the trisaccharide in B. pertussis and B. bronchiseptica 

and O-antigen- like repeat in B. bronchiseptica and B. parapertussis [72]. Harvil et al. 

investigated the effect of mutation of wlb locus on colonization of B. bronchiseptica in 

the respiratory tracts of mice. They observed that biosynthesis of full length LPS, by 

these three Bordetellae are essential for virulence in mice [72]. However, LPS molecules 

of these species play different roles in infection [72]. Changes in LPS expression in B. 

bronchiseptica is controlled by BvgAS system [189]. When resistance profiles of B. 

bronchiseptica and B. pertussis to various antimicrobial peptides were tested, [4] B. 

bronchiseptica exhibited significantly higher resistance to antimicrobial peptides 

compared to B. pertussis.  The resistance in B. bronchiseptica was presumably due to the 

highly charged O-specific sugar side chains in its LPS [4]. It was suggested that antigenic 

polymorphism in the lipopolysaccharides from human and animal isolates of B. 

bronchiseptica may be due to differences in receptors of human and animal respiratory 

tracts [107].  
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      Urease, a bvg repressed phenotype in B. bronchiseptica, has been another suggested 

virulence factor which may be involved in intracellular survival of this bacterium [120]. 

However, urease expression did not have any effect on the ability of B. bronchiseptica to 

colonize and persist in the mouse respiratory tract [121, 131]. 

Intracellular survival  

      Although B. bronchiseptica has been considered an extracellular pathogen, there have 

been a number of reports that demonstrate the intracellular survival of this organism. 

Guzman et al. demonstrated intracellular survival of B. bronchiseptica in mouse dendritic 

cells, in vitro and speculated that intracellular survival in natural infections caused by this 

organism, may lead to the chronicity of infection [62]. Intracellular invasion of B. 

pertussis was dependent on Bvg + phenotype and induction of apoptosis in macrophages 

was attributed to the adenylate cyclase toxin [5].  B. bronchiseptica induced macrophage 

killing by bvg -regulated factors [5]. Also, Bvg mutants of B. bronchiseptica showed 

significant survival advantage over wild type strains [5]. A study by Brockmeier and 

Register on intracellular survival and cytotoxicity of B. bronchiseptica in swine alveolar 

macrophages indicated that another temperature dependent regulatory mechanism, in 

addition to Bvg, may play a role in adhesion and intracellular survival of this organism 

[14]. However, cytotoxicity for swine alveolar macrophages was observed only in 

infection with virulent bvg+ strains [14]. The differential survival of B. pertussis and B. 

bronchiseptica in macrophages has been attributed to their differences in acid tolerance 

[179]. In contrast to B. pertussis, B. bronchiseptica is insensitive to an acidic PH as low 

as 4.5. The acidic environment of the phagolysosome contributes to increased 

intracellular survival of this organism. A significant TH1 response observed after 
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intranasal inoculation with B. bronchiseptica indicates that, there may be relevant 

intracellular phases of this bacterium during the infection cycle [64]. Chhatwal et al. 

suggested that, the expression of a temperature regulated acid phosphatase in B. 

bronchiseptica played a role in intracellular survival [25]. Forde et al. characterized the 

uptake and persistence of B. bronchiseptica in murine phagocytes using a 

bioluminescence-based reporter system [51]. In this study, B. bronchiseptica was 

mutagenized with a suicide vector carrying lux genes from Photorhabdus luminescens on 

a mini-Tn 5 derivative [51]. B. bronchiseptica was internalized by professional 

phagocytes in a dose-dependent manner and the bacterium survived intracelluarly for 

four days when a critical population size (>500:1 multiplicity of infection) was present 

[51]. This study also suggested that B. bronchiseptica may have an intracellular phase 

during the infection cycle.  

Diseases caused by B. bronchiseptica 

      B. bronchiseptica had been considered a respiratory pathogen of mammals since its 

identification in 1910 [60]. The involvement of this organism has long been recognized in 

diseases such as acute infectious tracheobronchitis in dogs, atrophic rhinitis in swine, and 

respiratory infections of laboratory animals [60]. These diseases are mostly self- limiting, 

but can be chronic and some times complicated by secondary invaders [6, 7, 60]. The 

hallmark of infection by this organism is prolonged, efficient colonization of ciliated 

epithelium of the respiratory tract [9].  The ability to interfere with ciliary function is an 

important factor in pathogenesis of B. bronchiseptica infections [9]. 

      Canine infectious tracheobronchitis, or kennel cough, is a highly contagious 

respiratory tract disease, affecting dogs, that is characterized by acute onset of cough [6, 
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7, 8, 9, 188]. Studies on experimental and natural infections of B. bronchiseptica in 

canines proved that this organism could be considered as a primary etiological agent in 

infectious tracheobronchitis [8]. The infection leads to moist, hacking, productive cough 

[7, 8, 9, 188]. Microscopic lesions were limited to the ciliated epithelial mucosa with 

influx of polymorphonuclear cells being a prominent feature [9]. Bacterial colonization in 

experimental studies reaches its maximum at seven days after aerosol exposure and slow 

progressive clearance occurs thereafter [8]. Many infected animals can remain 

asymptomatic and the disease is usually self- limiting [9, 33]. 

      Atrophic rhinitis is an upper respiratory tract disease of pigs characterized by 

degeneration and atrophy of nasal turbinate bones leading to visible distortion, and 

shortening of the snout [60, 169]. B. bronchiseptica can cause moderately severe 

reversible turbinate atrophy [48, 49, 162]. Dermonecrotic toxin production by B. 

bronchiseptica is correlated with turbinate atrophy [113,162, 165]. Experimental 

infections in gnotobiotic pigs implicated that the colonization with phase I cytotoxic 

strains of B. bronchiseptica damages the nasal mucosa and predisposes to colonization 

by toxigenic P. multocida that can lead to a more severe form of the disease [162, 165]. 

Two recent studies on co- infection with B. bronchiseptica and porcine reproductive and 

respiratory syndrome virus (PRRS) strengthen the hypothesis that, B . bronchiseptica 

infection can adversely affect the respiratory tract defense mechanism leaving animals 

vulnerable to infection with secondary agents like P. multocida [15, 16].  

      There has been increased documentation of B. bronchiseptica respiratory tract 

infections of cats [181]. Clinical and experimental studies have proved that B. 

bronchiseptica can also be a primary respiratory pathogen in cats [84]. Laboratory 
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animals, especially guinea pigs, rabbits and rats get respiratory tract infections with B. 

bronchiseptica [60]. Infections can be insidious in such populations; seventy five 

percent of the rabbits in a commercial rabbitry were infected naturally with B. 

bronchiseptica without showing any disease [35]. B. bronchiseptica has also been 

associated with respiratory tract infections in horses [26, 76 ]. Rats and mice have been 

used as experimental animal models to study B. bronchiseptica pathogenesis [32, 33, 72, 

117]. Intranasal infection with a subletha l dose of B. bronchiseptica leads to prolonged 

asymptomatic colonization in mice and rats [117].     

      There are well-documented cases of B. bronchiseptica infection in human beings 

[204]. They are usually associated with immunocompromised patients.  In an extensive 

review, Woolfrey and Moody concluded that the agents might be occasionally 

encountered as a commensal of the respiratory tract and rarely as a pathogen in severely 

immunocompromised patients [204]. Animal contact may or not be a recognizable risk 

factor and nosocomial human to human transmission has been reported [176]. Infections 

in immunocompetent children are also reported [177] 

Immunity to B. bronchiseptica infections 

      Most naturally occurring B. bronchiseptica infections are localized to the respiratory 

tract [6, 60]. Recovery from infection in dogs resulted in resistance to re- infection that 

lasted for 6 months [6, 60]. Vaccination with formalin killed bacteria produced high titers 

of serum agglutinins but did not prevent infection [7]. The dogs that recovered from 

experimental infection and were maintained in isolation were resistant to a subsequent 

aerosol challenge seven months after recovery. B. bronchiseptica specific sIgA in the 

respiratory tract has been correlated with protection [11]. Killed, parenterally, inoculated 
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whole-cell vaccines of B. bronchiseptica were successfully used to prevent death, 

bronchopneumonia and carrier state in lab animals [60] and to protect swine from B. 

bronchiseptica induced-atrophic rhinitis [60, 102]. A subcellular B. bronchiseptica 

vaccine containing concentrated cell wall fractions provided greater protection in swine 

than the whole cell vaccines [60]. A local immune response to Bordetella infection was 

achieved by a live, avirulent intranasal vaccine, which induced early protection against 

disease in swine and dogs. Intranasal immunization with live avirulent bacteria may 

reduce clinical disease and duration of shedding and may induce some degree of 

colonization resistance [7, 60]. Although some parenteral vaccines induced high levels of 

agglutinating antibodies, they did not provide protection from diseases [60]. An acellular 

extracted antigen vaccine protected dogs from disease and reduced shedding of B. 

bronchiseptica [41]. In dogs, parenteral or intranasal B. bronchiseptica vaccines may 

provide substantial protection from clinical signs of respiratory tract diseases, 

administration of both types of vaccines, in sequence, provided greatest degree of 

protection against the disease [41].  

      Gueirard et al. noted that colonization of lungs in BALB/c mice inoculated with a 

live, virulent strain of B. bronchiseptica, increased during the first 10 days and decreased 

thereafter [64]. A non-virulent strain in similarly inoculated mice, was cleared from lungs 

by 6 days. In this study, a human isolate lacking adenylate cyclase was unable to induce 

progressive infection of the respiratory tract of mice.  Infection was also associated with 

an influx of leukocytes into the respiratory tract. B. bronchiseptica-reactive serum IgG 

and IgM were observed soon after infection, levels gradually increased for 14 days and 

remained constant for 117 days. Much of the IgM production that was produced was not 
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specific for B. bronchiseptica [64] perhaps due to triggering mechanisms unrelated to 

specific epitope recognition. B. bronchiseptica specific IgA in serum was induced soon 

after infection (14 days post-infection) and increased during the 117 days observation 

period. A cellular immune response was demonstrated to B. bronchiseptica and adenylate 

cyclase. High levels of IFNγ and IL 1-α detected in antigen- induced proliferation assays 

indicated that a Th1 type of immune response was produced during B. bronchiseptica 

infections. B. bronchiseptica infections were not accompanied by immunosuppression of 

cellular response to mitogens [64]. 

      Mattoo et al. established a correlation between presence of fimbriae and effective 

tracheal colonization of B. bronchiseptica in mice and rats [117].  They demonstrated that 

the majority of serum IgM generated following B. bronchiseptica infection in rats was 

against fimbriae [117] and suggested that fimbriae might be involved in modulation of 

the humoral immune response [117]. Neither serum nor mucosal IgA response was 

detected in rats infected with B. bronchiseptica. It was postulated that absence of an IgA 

response might have been due to antagonistic effect of toxins produced by the type III 

secretion system [117]. This suggestion was supported by another study in which, mice 

infected with type III secretion mutants, had higher titers of anti-bordetella antibodies 

than mice infected with wild-type organisms [207]. 

Heterologous antigen expression in Bordetella spp. 

      Although there are several studies on expression of Bordetella antigens in E. coli, 

very little is known about heterologous antigen expression in Bordetella species. Suarez 

et al. expressed pertussis toxin gene from B. pertussis in B. bronchiseptica [185]. Since 

pertussis toxin is an essential component of acellular vaccines against whooping cough, 
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the aim of their study was to overcome the problems associated with slow growth and 

poor yields of pertussis toxin in B. pertussis, to facilitate improved industrial production, 

and to avoid bio-safety concerns of handling a human pathogen like B. pertussis. They 

constructed a chromosomal integrate of the pertussis toxin operon in B. bronchiseptica, 

that would allow inducible production of pertussis toxin from a promoter responsive to an 

aromatic inducer.  

      The first study on expression of a foreign protective antigen in Bordetella spp was 

published by Renauld-Mongenie in 1996 [161].  This study explored the possibility of 

using B. pertussis as a live mucosal vaccine vector for a protective antigen of 

Schistosoma mansoni. A S. mansoni, glutathione S-transferase gene was fused to the 

filamentous haemagglutinin gene of B. pertussis and the corresponding protein was 

expressed on the cell surface of B. pertussis. A single intranasal inoculation of the 

recombinant strain induced mucosal antibody to Schistosoma antigen (Sm28GST). This 

was the first study to demonstrate the utility of recombinant respiratory pathogens for the 

delivery of heterologous protective antigens. Later, in 1998, the same group of scientists 

created an attenuated derivative of B. pertussis and showed that attenuation of pertussis 

toxin resulted in an improved immune response to filamentous haemagglutinin and 

Sm28GST [128, 129]. A single intranasal inoculation of this strain induced protection 

against the parasite and protection against B. pertussis in mice. The ability of pertussis 

toxin-deficient and wild-type Bordetella to induce antibody response at a distal mucosal 

site was examined by Mielcarek et al. [128]. They observed that intranasal infection with 

B. pertussis produced detectable antibodies in the genital tract. Although pertussis toxin 

has been reported to have adjuvant properties, this study did not find any 



 23 

immunomodulating effect of pertussis toxin in inducing local antibody response [128]. 

Administration of purified FHA by the intranasal or intravagina l route could boost the 

immune response generated at these sites. In another study by Mielcarek et al., priming 

with recombinant B. pertussis expressing Sm28GST and subsequent intranasal boosting 

with the foreign protein (Sm28GST) induced a systemic antibody response against the 

foreign antigen [130].  

      The bioluminescence gene from P. luminescence has been expressed in B. 

bronchiseptica and used to study the uptake and persistence of B. bronchiseptica in 

murine phagocytes [51]. A mini-Tn-5 promoter probe carrying the intact lux operon from 

P. luminescence was introduced into B. bronchiseptica and was used to create a pool of 

bioluminescent fusion strains of B. bronchiseptica. This allowed measurement of light 

output from the recombinant organisms without the addition of exogenous substrate.  

      Purified recombinant, detoxified adenylate cyclase of B. pertussis has also been used 

to deliver multiple epitopes from lymphocytic choriomenigitis virus and human 

immunodeficiency virus to induce a cytotoxic T cell-mediated immune response in mice 

[44]. The cell invasiveness and availability of permissible insertion sites are features of 

adenylate cyclase that may be useful for induction of protective cell-mediated immune 

responses against pathogens [44]. 

Advantages of mucosal immunization 

      The mucosal surfaces of the gastrointestinal, respiratory, and urogenital tracts 

represent the major port of entry for several human and animal pathogens [118, 119]. 

Mucosal exposure to foreign antigens during infection often results in development of an 

immune response. Therefore, mucosal immunization with specific vaccine antigens may 
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be more effective for immunization against infections acquired through mucosal surfaces 

[118, 119]. Mucosal immunizations offer several advantages compared to parenteral 

immunizations [24, 118, 119, 143]. They can induce mucosal as well as systemic immune 

responses and because of reduced direct contact with vaccine components in the systemic 

circulation can increase vaccine safety [24, 143]. Easy administration of multiple 

vaccines and reduced requirement for trained personnel make mucosal immunization 

strategies attractive [24, 143].  

Mucosal immune system 

      There are many non-specific defense mechanisms that play important roles at 

mucosal surface. Mucus, acid, enzymes, bile, lysozyme, and lactoferrin secreted at the 

mucosal surface can inhibit microbes [118, 119]. Peristaltic contraction of smooth 

muscles, ciliary action of the epithelium, and tight junctions of the mucosal epithelium 

can exclude microorganisms from the mucosal surfaces and prevent invasion into deeper 

body tissues [103, 105, 118, 119]. Mucosal surfaces of gastrointestinal, respiratory and 

urogenital tracts are covered by a single layer of epithelial cells, which face an 

environment rich in pathogens. Some pathogens have developed effective mechanisms to 

colonize and invade these surfaces and, in defense, mucosal tissues are heavily populated 

with cells of the immune system [80, 103, 105, 118, 119]. The specialized sites where the 

induction of mucosal immunity begins consists of organized mucosa-associated lymphoid 

tissue called O-MALT and wide spread diffused mucosa-associated lymphoid tissue 

called D-MALT [103, 105, 118, 119]. O- MALT occurs in tonsils, respiratory tract and in 

gastrointestinal tract [103, 105, 118, 119]. Dendritic cells or specialized epithelial M cells 

capture and sample antigens at the mucosal surface [103, 105, 118, 119]. Antigen 
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sampling across the stratified epithelia of the oral cavity, vagina, and epithelium of the 

upper airways is carried out by migratory dendritic cells, which carry antigens to local O-

MALT or to distal lymphoid tissue. Antigen sampling across the intestinal and bronchial 

epithelia is carried out by M-cells that deliver antigen to local O-MALT [103, 140]. In 

the airway epithelium, dendritic cells form a network with up to 700 dendritic cells /mm2 

[103, 105, 118, 119]. They represent major histocomatibility complex class II bearing, 

antigen-presenting cells of the airways and constitute the first line of defense against 

inhaled antigens. In the bronchi and in the gastrointestinal tract, M cells transport 

macromolecules, particles and microorganisms to the mucosal lymphoid follicles and 

initiate a secretory immune response [103, 105, 118, 119]. Although uptake and sampling 

of microorganisms by M cells lead to an immune response and eliminate mucosal 

infections, some viruses and bacteria exploit M cells for gaining entry into the host [103, 

105, 118, 119].  

      Both humoral and cellular immune responses are generated at mucosal surfaces [103, 

105, 118, 119]. IgA is the major antibody seen at mucosal surfaces [105]. The surface 

area occupied by mucosal epithelium in the body is enormous due to many macroscopic 

and microscopic foldings; as a result it may not be too surprising that IgA is estimated to 

be the most abundant immunoglobulin class found in the body (>50mg/kg 

bodyweight)[105]. IgA blocks the attachment of infectious agents to mucosal epithelia 

and provides an immune exclusion barrier in secretions against microbial pathogens, 

toxins, and other antigens [105, 139]. IgA can bind to lectin- like bacterial adhesins 

through its carbohydrate moieties and may, in this fashion, also block bacterial adhesion 

to receptors on epithelial cells. IgA also neutralizes viruses within the epithelial cells, 
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excretes antigens from sub-epithelial compartments across the epithelium into secretions, 

and activates complement through the alternate pathway [105]. 

      IgA is secreted from plasma cells as dimers that bind to polymeric immunoglobulin 

receptors (pIgR) on the basolateral surface of epithelial cells that line the mucous 

membrane [105]. At the apical surface, proteolytic cleavage splits the external domain of 

pIGR (secretory component) and releases the dimeric IgA-secretory component complex 

(secretory IgA) into the mucosal secretions. In the secretions, IgA binds to antigens and 

prevent them from attaching to or penetrating the mucosal surfaces [105, 139, 140]. 

      Like IgA, pentameric IgM also plays a role in preventing mucosal infections. IgM 

binds to the pIgR with less affinity than IgA [105]. IgG, the principle class of systemic 

antibody, is also seen in mucosal secretions and may enter the mucosal surface through 

diffusion. IgE also is considered to be a significant mucosal immunoglobulin [105]. 

Antibodies passively administered or actively induced at mucosal surfaces can protect 

mucosal surfaces from infection and invasion of pathogens. The success of oral 

vaccination for poliomyelitis and the abundant knowledge about mucosal immunity has 

created great interest in mucosal vaccination against infections that gain entry through the 

mucosal surfaces [105, 118]. 

      Protein antigens applied to a mucosal surface can stimulate a mucosal immune 

response with secretory IgA production, a systemic immune response with IgG or IgM or 

development of mucosal tolerance with systemic unresponsiveness [103, 105, 143]. 

Tolerance is defined as loss of systemic immune responsiveness to that antigen following 

mucosal exposure [143]. Tolerance may be due to direct inactivation of antigen-

sensitized lymphocytes via clonal deletion or anergy [143]. Other factors such as 
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interaction between regulatory and effector T cells, Th1 versus Th2 and γ/δ T cell 

receptors, bystander suppression, and tolerogenic proteins may also be involved in the 

induction of tolerance [143]. 

Vaccination strategies to induce mucosal immune response 

      Mucosal surfaces of the body are colonized with commensal bacteria, which may not 

cause any harmful effect to the host, and the maintenance of this microflora is based on a 

balanced immune response, which avoids an excessive overgrowth [78]. Even in 

individuals that are fully immunocompetent, bacterial infections of the gastrointestinal, 

respiratory and urogenital mucosa are among the leading problems in man and animals 

[78]. Parenteral vaccines are generally not very effective for inducing an immune 

response that prevents mucosal infections and they do not induce immune responses at 

mucosal sites [78]. They are usually active against invasive systemic diseases [205]. As 

already mentioned, stimulation of one mucosal site can lead to immune responses at 

distal mucosal sites [205].   

      Stimulation of a mucosal immune response requires efficient delivery of vaccine 

antigens to mucosal inductive sites. Often, enhancement of the immune response requires  

co-administration of adjuvants [24]. In development of vaccines against mucosal 

infections, it is important to define the nature of immune response that is required for 

protection [118, 119].  

      Oral delivery of vaccines has been most widely studied because of the convenience of 

vaccination through this route [173, 174]. Intranasal immunization will be advantageous 

for the control of pathogens whose route of entry is the respiratory tract because the 

magnitude of immune response produced will be maximum at this site [205]. Intranasal 
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delivery of vaccines is more effective in inducing systemic and mucosal immune 

response compared to other routes [205]. Mucosal immunizations with live organisms 

that colonize the nasal cavity may induce strong, long lasting immunity after a single 

inoculation [205]. Compared to oral vaccination, intranasal vaccination may have the 

advantages of lower dose requirement, greater stability, and less competition from 

colonizers [205]. Antigen will be taken up by the antigen presenting cells at the nasal 

mucosa (mainly dendritic cells) and will be presented to underlying nasal associated 

lymphoid tissue (NALT), where they induce a secretory IgA response [205], or the 

trapped antigen will be carried to local draining lymph node to initiate a systemic IgG 

response [105, 118, 205]. Recirculation and homing of memory immune cells through a 

common mucosal system can induce antibody response at distant mucosal sites [205]. For 

example, intranasal immunization with B. pertussis resulted in an antibody response at 

the genital surface [129]. Compartmentalization of the common mucosal immune system 

establishes a theoretic base for considering the best route to deliver mucosal vaccine 

[205]. 

      Delivery of antigens by the mucosal route is associated with major problems like poor 

immunogenicity and susceptibility to degradation [123]. To overcome these problems, 

strategies such as entrapment into biodegradable microspheres, liposomes, their 

production by attenuated viral/ bacterial carriers or transgenic plants, or their 

administration with mucosal adjuvants are being used [123]. 

      A number of adjuvants enhance the immunogenicity of antigens when delivered by 

parenteral route. Only a few molecules such as cholera toxin produced by Vibrio cholerae 

and heat labile toxin produced by Escherichia coli have been reported to act as mucosal 
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adjuvants [39, 79]. The potential side effects of these toxins limit their use in vaccinations 

[180]. Co-administration of cytokines and bacterial DNA containing unmethylated CpG 

dinucleotide motifs have been shown to be effective as vaccine adjuvants [100, 123]. 

Non-living Antigen delivery systems  

      Controlled delivery systems of microparticles consisting of polyesters, polylactides 

and glycolides are primary candidates for development of microencapsulated vaccines 

[123, 127]. Vaccine antigens are incorporated either adsorbed or chemically bound to the 

matrix [123, 127]. Incorporation of antigens into such microparticles protects the antigens 

from degradation and facilitates uptake of antigen and antigen presentation that leads to 

more efficient systemic and mucosal immune responses [123, 127]. The most important 

limitations of using vaccine antigens in microparticles are: stability of the antigens, the 

particle uptake, technical difficulties in delivery and associated toxicological issues [123, 

127]. Liposomes are lipid vesicles formed when phospholipids are exposed to an aqueous 

environment and can act as immunoadjuvants, protect antigens, and are considered safe 

immunoadjuvants [123, 127]. Immunostimulating complexes (ISCOMS) are complexes 

built up by cholesterol, lipid, immunogen, and saponin. Administration of ISCOMS 

through parentral or mucosal routes can induce antigen specific immune responses [123, 

127]. 

Live viral vectors 

      The natural ability of the viruses to infect target cells via specific entry mechanisms 

can be utilized to deliver antigens to specific cell types for antigen presentation and 

immunization [69]. The two types of basic live viral vectors used are attenuated viruses 

and replication defective or host range restricted viruses [69]. Several viruses such as 
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poxviruses and adenoviruses have served as vectors to deliver heterologous antigens. 

Vaccinia virus is the most studied viral vaccine vector [69]. Attenuated strains of 

Vaccinia virus expressing rabies virus glycoprotein have been used in field 

immunizations to protect wild animals from rabies [69]. Administration of these vectors 

to wild animal populations via polyurethane baits led to development of high neutralizing 

antibody titers against rabies virus [69]. Another commercially licensed virus vaccine 

vector in United States is fowl poxvirus that expresses glycoproteins of Newcastle 

disease virus. This vector can protect poultry from fowl pox and Newcastle disease [69]. 

      Adenovirus vectors that can be administered orally are receiving attention. A number 

of antigens such as vesicular stomatitis virus glycoprotein, hepatitis B virus surface 

antigens, herpes simplex surface antigens have been successfully expressed in adenovirus 

vectors [69]. Herpes simplex virus, varicella zoster virus, poliovirus, simian 

immunodeficiency virus are the other viral vectors under study [69]. Replication 

defective mutants of poxvirus, adenovirus, and herpes simplex virus are now available 

and are considered to be good vaccine vector candidates because of their increased safety 

over wild-type and attenuated vaccine vectors [69]  

Live bacterial vectors  

      Live multivalent vaccines using attenuated recombinant bacterial vectors have several 

advantages. Many proposed live vectors are administered by the oral or respiratory routes 

[124, 173, 174]. They are inexpensive to manufacture and, the live nature of the delivery 

system and the danger signals provided might make weak tolerogenic antigens more 

immunogenic [124, 173, 174]. Depending on the type of pathogenic mechanisms 

employed by a live bacterial vaccine vector, an immune response could be generated 
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through TH1 or TH2 pathways [124]. The specificity of different vectors to colonize 

different mucosal surfaces can be utilized to target an immune response at desired sites. 

Live antigens that express foreign protective antigens in host tissues may result in longer 

antigen presentation than non- living or parenterally administered preparations. Live 

attenuated bacterial vectors expressing heterologous protective antigens hold several 

attractive features compared to contemporary vaccines [124, 173, 175]. They are; 

1) Unlimited cloning capacity 

2) Effectiveness after single-dose vaccination  

3) No requirement for addition of adjuvant  

4) Non-invasive and easy administration procedure  

5) Potential for producing multivalent vaccines 

6) Low reactogenicity and low cost of production.  

      Additionally, antibiotic susceptibility allows an extra measure of safety to bacterial     

vectors, which is an advantage over live viral vectors [124, 173, 174, 203]. Both 

attenuated and commensal organisms have been successfully used as live vaccine 

vectors and some of them are discussed below. 

      Salmonella are intracellular pathogens involved in many important diseases of 

humans and animals. Following ingestion, salmonellae replicate in peyer's patches and 

disseminate via the MALT to the systemic tissues. Such infection will lead to either 

disease or broad-based immune responses that include systemic, mucosal, humoral and 

cell-mediated immunity [173, 174]. Mutants deficient in synthetic pathways involved in 

aromatic amino acid, purine, adenylate cyclase, and PhoP/PhoQ systems are well 

characterized and are efficient carriers for antigens [173, 174]. A vast number of 
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heterologous antigens have been expressed in attenuated salmonella including, bacterial, 

viral and parasitic antigens, eukaryotic proteins and cytokines [43, 173, 174]. Functional 

immune responses to these heterologous antigens have been demonstrated. 

Chromosomal integration of the genes encoding an antigen leads to stable, low level 

expression of the antigen. Plasmid mediated expression leads to high level expression 

but can result in instability of the plasmid and toxicity to the bacterial host [43, 173, 

174]. Nakayama et al. introduced balanced lethal vector systems in salmonella that were 

characterized by the maintenance of multiple copies without the requirement of 

antibiotic selection [53, 54, 186]. In these systems, a plasmid that carries a vital 

metabolic gene which is deleted in the host bacterial strain will lead to positive selection 

of the plasmid bearing strain. Genes for heterologous antigens can be incorporated on 

the rescue plasmid. In addition, sub-cellular location [167], gene transcription, and 

timing of expression in eukaryotic cells [77] may influence immunogenicity of the 

antigen. Rapid advances in understanding of the molecular basis of pathogenesis of 

salmonella species have resulted in development of several candidate vaccine vector 

strains [23, 173, 174]. Recombinant Salmonella typhimurium strains evoked local as 

well as systemic immune response to heterologous antigens by oral, nasal, rectal and 

vaginal routes of immunization [82].  

      BCG (Bacillus Calmette Guerin), an avirulent derivative of Mycobacterium bovis, is 

widely used as a vaccine against tuberculosis in human beings [144]. While the slow 

growth rate of Mycobacterium species has impeded research, there have been 

tremendous developments like the discovery of shuttle plasmids (plasmids that can 

replicate in Mycobacterium and E. coli), gene replacement technology based on 
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homologous recombination with M. smegmatis, and antigen secretion systems [144]. 

Augmentation of immune responses by the well-known adjuvant activity of BCG is also 

an advantage. BCG has been engineered to express a variety of heterologous antigens. 

They include proteins from human immunodeficiency virus, tetanus toxin, 

pneumococcal surface protein, pertussis toxin and parasite antigens like schistosoma, 

leishmania, or plasmodium antigens [144]. BCG that secretes immunostimulatory 

cytokines have been made and tested as anti-tumor agents [144]. Since a large 

proportion of human beings are already immunized with BCG, the use of BCG that 

expresses heterologous protective antigens for control of tuberculosis and other common 

diseases may be realized soon. 

      Vibrio cholerae is a Gram-negative organism responsible for the disease, cholera. 

This is a non- invasive organism that induces potent long- lasting mucosal and systemic 

immune responses [69, 171]. The ability of this organism to adhere to the M cells has 

been utilized for vaccine antigen delivery to the gastrointestinal tract [69]. Attenuated 

strains that lack cholera toxin have been used to induce mucosal and systemic antibody 

responses to heterologous antigens [69, 171].  

      B. pertussis has been studied as a mucosal vaccine vector directed to the respiratory 

tract. The glutathione transferase gene from Schistosoma mansoni was integrated into the 

filamentous hemagglutinin gene of B. pertussis and was expressed [161]. A single 

intranasal immunization with the recombinant B. pertussis lead to immune responses to 

the Schistosoma antigen as well as to B. pertussis [161]. Brucella spp have also been 

considered as possible vectors for intracellular delivery of antigens [28]. 
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      Mucosal inoculation with recombinant Gram-positive bacteria such as Streptococcus 

gordonii and certain strains of Lactobacillus, which are among the endogenous 

microflora, have also been used to deliver heterologous antigens [155, 168]. 

Streptococcus gordonii, originally isolated from the oral cavity of humans, is capable of 

colonizing the oral cavity and vagina of mice. A number of antigens have been expressed 

in S. gordonii by replacing the sequences encoding the surface exposed domains of the 

M6 protein with foreign genes of interest [155] The secretion signal and cell wall 

anchoring domain of the M6 protein served to direct the export of the antigen to the 

surface. The foreign proteins expressed in S. gordonii were integrated into the 

chromosome by homologous recombination so that genes were stably maintained in the 

chromosome in vivo without any antibiotic selection.  

      Nonpathogenic staphylococcal species such as S. xylosus, and S. carnosus, which are 

widely used in meat fermentation processes, have been developed as live bacterial 

vectors [175]. High copy number shuttle vectors were advantageous in that they 

provided multiple copies of the foreign gene per cell. In these systems, the promoter, 

signal sequence and propeptide sequence from the S. hyicus lipase gene were utilized to 

achieve translocation through the cell membrane. However, large number of 

immunizations and surface display of heterologous antigens were necessary for 

induction of an immune response [175]. 

      Lactococcus lactis a Gram-positive bacterium used in industry is non- invasive, non-

pathogenic and does not colonize the mucosal surface. Researchers have exploited the 

microparticle nature of this bacterium in heterologous antigen delivery [19]. Several 

antigens have been expressed in Lactococcus using an inducible T7 RNA polymerase 
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system or the pTREX series of constitutive expression plasmid. When applied via a 

mucosal route, mucosal as well as systemic immune responses were noticed in mice. 

      Lactobacillus, a Gram-positive bacterium that is prominent in human indigenous 

gastrointestinal flora, has been used to express heterologous antigens from plasmid 

vectors and following chromosomal integration [168]. The potential for induction of 

immunological tolerance to foreign antigens has to be considered when utilizing 

commensal bacteria as vaccine delivery vehicles. At present, the relationship between 

normal flora and the host immune system is very unclear [168]. Listeria monocytogenes, 

a facultative intracellular Gram-positive pathogen, is a promising vaccine carrier for 

evoking a cellular immunity [65] 

      There are potential problems associated with the use of live bacterial vectors. 

Reversion to virulence is one of the major concerns associated with live bacterial vectors.  

Stability of attenuated phenotypes should be ensured by careful inactivation of target 

genes; single gene inactivation is less desirable [18, 53, 124]. Due to preexisting 

immunity, the vaccine dose required to trigger immune responses in endemic areas and 

nonendemic areas may differ. Medina et al. suggested that presentation of the vaccine in 

different formulations according to geographic area might solve this problem [53, 124]. 

The use of plasmids for expression of foreign genes may lead to plasmid instability and 

loss of antigen expression [18, 53, 124]. The presence of additional genes such as 

antibiotic markers used for positive selection is not desirable [124]. The use of low copy 

number plasmid vectors containing killing systems, partition function and non-antibiotic 

selection markers are advisable. Integration of a foreign gene into the chromosome of the 

host strain may lead to low level expression from a single copy gene and be insufficient 
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to generate an effective immune response [18, 53, 124]. Another strategy, which may be 

effective, is the use of in-vivo activated promoters [124]. The expression of particular 

vaccine antigens by non-pathogenic commensal or environmental organism may enhance 

their virulence in human or animal populations, and increase the environmental risk. 

Also, horizontal gene transfer from vaccine strains to mucosal flora or environmental 

organisms may pose a threat [124]. This can be prevented by incorporating conditional 

lethal systems [38, 136]. Prior exposure to the antigen carrier can compromise the 

efficacy of a vaccine candidate. As reported in salmonella, [3] utilization of different 

carrier strains or bacterial serotypes for preparation of vaccines or allowing an established 

optimal window for readministration of vaccine may eliminate this risk [124]. Host 

genetic factors may also modulate the type of immune response [124]. Diversity in MHC 

genes, and presence or absence of some genes associated with immune system can lead to 

differences in the type of immune responses generated [124]. It is also important to have 

proper balance between attenuation and immunogenicity. The dissemination of live 

attenuated microorganisms in the field may pose a risk of disease, especially in 

immunocompromised individuals and require stricter safety guidelines [69]. Vectors that 

are highly susceptible to antimicrobial agents are most desirable.  

Conclusion 

      Vaccination constitutes the most cost effective tool for the prophylaxis of infectious 

diseases. Most pathogens gain entry into the body through the mucosal surfaces. So 

administration of immunogens through the mucosal route and induction of immune 

responses at these sites are essential. Delivery of vaccine antigens by bacterial carriers 

has resulted in effective humoral and cell mediated immune responses. The potential 
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value of live bacterial vectors for vaccination purposes was recognized by the World 

Health Organization (190). B. bronchiseptica, effectively colonizes the respiratory tract 

of mammals, and is an ideal candidate as a mucosal vaccine vector. Application of this 

system in the disease, atrophic rhinitis, is a rational approach to refining existing vaccines 

and could be expanded to control other diseases in animals. 
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Abstract 

       Bordetella bronchiseptica, an adept colonizer of the upper respiratory tracts  

of mammals, may be selectively utilized as a live bacterial vector to deliver protective 

antigens to the respiratory tract. Promoters and conditions for optimal expression of 

foreign antigens in B. bronchiseptica have not been determined. In this study, a B. 

bronchiseptica promoter region (P9) related to heat shock protein genes was identified 

using a green fluorescent protein (GFP) reporter system. The region identified has 98% 

homology to the cpn10/60 gene of Bordetella pertussis. The efficiency of this promoter 

to drive GFP expression was analyzed and compared in four B. bronchiseptica strains 

using flow cytometry. GFP expression from the P9 promoter was also compared to that 

of a B. bronchiseptica fimbrial gene (fim N) promoter and Escherichia coli derived tac 

promoter. The P9 promoter had the highest level of activity in all B. bronchiseptica 

strains tested under normal laboratory incubation conditions using common media. The 

tac promoter was more active in E. coli than in B. bronchiseptica. The fim N promoter 

had low level activity, detectable only in bvg positive strains of Bordetella 

bronchiseptica. The P9 promoter may be a good candidate for expression of 

heterologous antigens in this species. In addition, B. bronchiseptica constructs with 

strong constitutive expression of GFP may be useful to characterize the adherence and 

colonization of this bacterium. 
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Introduction 

      Bordetella bronchiseptica is a respiratory pathogen, which infects a wide variety of 

host species including domestic, laboratory and wild animals and may opportunistically 

infect humans [4, 14]. B. bronchiseptica can express a battery of adhesins, like fimbriae, 

filamentous haemagglutinin, adenylate cyclase and pertactin that enable it to colonize the 

upper respiratory tract of various host species [10]. The ability of this organism to 

efficiently colonize the respiratory tract may be utilized to deliver protective antigens 

from other pathogens to the respiratory tract. Intranasal inoculation with B. 

bronchiseptica has been shown to induce long lasting humoral and cellular antibody 

responses in mice [15]. Mucosal application of vaccines induces immune responses at 

systemic and mucosal sites [24, 28]. A single intranasal inoculation of mice with B. 

pertussis expressing a Schistosoma antigen was able to induce mucosal antibody 

responses in the respiratory tract as well as at other mucosal sites [25, 26, 32]. Compared 

to the oral route of immunization, intranasal vaccine application may have the advantage 

of low dose requirement, greater stability and less competition from colonizers [42]. Live 

bacterial vectors, which can colonize the respiratory tract, are attractive candidates for 

this purpose [28]. 

      Many virulence genes in the genus Bordetella are controlled by a two-component 

signal transduction system encoded by the bvg locus. The proteins produced by this 

locus, BvgA and BvgS, are responsible for phenotypic modulation in response to 

environmental signals like temperature and certain chemicals [10] and, the promoter 

region of this operon contains a cytosine repeat region that is subject to frequent 

mutations [3]. The significance of the bvg locus in infection and the effect of in vivo 
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conditions on its expression are not completely understood. Therefore, to study 

heterologous antigen expression, a strong promoter was sought that could drive 

constitutive expression of genes in B. bronchiseptica 

      In this study, a B. bronchiseptica promoter region (P9) related to heat shock protein 

genes was identified utilizing a promoter-probe vector carrying a promoter- less green 

fluorescent protein gene. This promoter induced high level expression of GFP in four 

different strains of B. bronchiseptica and was compared to GFP expression from the 

Escherichia coli derived tac promoter and a bvg regulated fim N gene promoter [17] 

under common laboratory conditions. B. bronchiseptica expressing GFP from P9 

promoter was utilized to study in vitro adherence to Vero cells and colonization of mouse 

respiratory tract. 

Materials and methods 

Plasmids, bacterial strains, and enzymes  

      The origin of B. bronchiseptica strains has been previously described [6]. Strain 55 is 

a live attenuated B. bronchiseptica (ATCC 31437) vaccine strain. The INVF', (Invitrogen 

Inc., San Diego, CA) is a lac represser gene deficient Escherichia coli strain. All bacteria 

were grown in Luria Bertani (LB) agar or broth with appropriate antibiotic selection at 

37oC unless otherwise indicated. Restriction enzymes and Taq polymerase were products 

of PANVERA, Madison, WI. Wizard plus SV miniprep kit (Promega, Madison, WI) was 

used for plasmid isolation.  The plasmid, pBBR1MCS2, (kindly provided by Michael E. 

Kovach) was used for all cloning purposes [20]. The plasmid pBBR1-KGFP (kindly 

provided by Stephan Kohler) was used to obtain the gfpmut3 gene [9, 19]. 
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DNA manipulation 

      All polymerase chain reactions were performed in a Gene Amp PCR system 9600 

(Perkin Elmer, Narcross, GA).  A 30-cycle program consisted of denaturing at 95oC for 

1.5 minutes, annealing at 50oC for 30 seconds, and extension at 72oC followed by a last 

cycle of 5 min extension at 72oC. All primers used for PCR amplification were designed 

to contain restriction enzyme sites (underlined). 

      Promoterless gfpmut3 gene was amplified from pBBR1-KGFP by PCR using forward 

primer 5'-CGGGATCCGATGAGTAAAGGAGAAGAA-3'and reverse primer  

5'-CGGAATTCTTATTTGTACAATTCATCC-3' and cloned into the BamHI and EcoRI 

sites of pBBR1MCS2. The resulting plasmid was designated as pBBRGFP. 

Chromosomal DNA was isolated from B. bronchiseptica strain 110H using Easy DNA 

kit (Invitrogen Inc., San Diego, CA). It was digested with Sau3A1 and electrophoresed 

on an 8% agarose gel. DNA fragments ranging from 0.25-3kb were purified from agarose 

gel using Quiagen gel purification kit (Quiagen Inc., Valencia, CA) and ligated to BamHI 

digested, calf intestinal alkaline phosphatase (New England Biolabs., Beverly, MA) 

treated pBBRGFP. The ligation mixture was electroporated into B. bronchiseptica strain 

110NH (Bvg-, avirulent phase) using a CELL-PORATOR Electroporation System 

(GIBCO-BRL., Gaithersburg, MD) following the manufacturer’s instructions. This strain 

was used to avoid the selection of bvg-regulated promoters. The electroporants were 

isolated on LB agar containing kanamycin (100µg/ml). After 3 days of incubation at 

37oC, cell suspensions from individual colonies were examined with a fluorescence 

microscope (Nikon FLUOPHOT, Garden City, New York) equipped with blue 

wavelength (375-490 nm) excitation filter and a 510nm barrier filter. The tac promoter 
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was amplified from pGEX-5X-1 (GST gene fusion expression vector from Pharmacia 

Biotech. Piscataway, NJ), using forward primer 5'-GGTCTAGACTGCACGGTGCACC-

3' and reverse primer 5'-CGGGATCCTGTTTCCTGTGTGA-3' and cloned in to XbaI 

and BamHI sites of pBBRGFP. The resulting plasmid was designated as pBBRTACGFP. 

      To construct a plasmid expressing GFP under the control of fim N promoter, the GFP 

gene was amplified with the same forward primer used for constructing pBBRGFP and 

the reverse primer, 5'-CGGGATCCTTATTTGTACAATTCATCC-3' and cloned into a 

unique BamH I site in the fim N gene in PCR2-FIM (11). This construct was amplified by 

a primer specific to the 5' region of fim N (5'-

GGAAGCTTGCCATCACCAACTTATGTG-3') and the same GFP reverse primer used 

for cloning pBBRGFP and cloned into the Hind III and EcoR I sites of the pBBR1MCS2 

to obtain plasmid pBBRFIMGFP. All recombinant plasmids were electroporated into B. 

bronchiseptica strains 110H, 110NH, R5 and Strain 55. 

Growth curve  

      Bacterial growth curves were determined for each strain in LB broth, Brucella broth 

and Stainer Scholte broth (SS broth) [35]. Each medium (10ml) was inoculated with 

0.5ml of overnight culture of the B. bronchiseptica strains carrying recombinant plasmids 

at 1:20 dilutions and incubated at 37oC in a rotary shaker (220rpm). At selected time 

points 200µl of the culture was transferred to duplicate wells of 96-well microtiter plates. 

The plates were read at an optical density of 592nm on an ELX800 ELISA reader (BIO-

TEK instruments Inc., Winooski, VT). 
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Flow cytometric analysis 

      Bacteria containing the recombinant plasmids were grown in LB broth, Brucella broth 

or SS broth to late log phase at 37οC and 220 rpm. One ml of the culture was pelleted by 

centrifugation at 14,000 rpm for 1minute. The pellet was washed 2 times in phosphate 

buffered saline (PBS) and suspended in PBS to an approximate OD590 of 0.2. Bacterial 

suspensions were analyzed in a FACSVantage SE (Becton &Dickinson, San Jose, CA) 

equipped with argon laser exciting at 488nm and emitting at 540nm. Forward versus side 

light scatter was used to gate the bacteria and the data was collected using logarithmic 

amplifiers. A total of 10,000 events were acquired for each sample. The mean 

fluorescence intensity for each sample was determined by using CELLQUEST analysis 

software(Becton &Dickinson, San Jose, CA). B. bronchiseptica strains harboring plasmid 

pBBRGFP were used as negative controls. 

Adherence assays  

      Bacterial adherence to Vero cells was evaluated as previously described (17) with 

modifications. B. bronchiseptica strain 110H (Bvg + virulent phase) and 110NH ( Bvg- 

avirulent phase) were compared. Individual colonies from a 48 hr culture on LB agar 

were suspended in PBS to obtain an OD590 of 0.1 (2.5x10 8 CFU/ml). One ml of this 

suspension was mixed with a one ml suspension of Vero cells containing 1x10 6 cells/ml. 

This mixture was incubated for one hour at 37οC with gentle mixing. The suspension was 

centrifuged at 1000x g for 10 minutes to remove non-adherent bacteria. The resulting 

pellet was washed twice in Hanks Balanced Salt (HBS) solution and suspended in 1ml 

HBS. Adherence of recombinant B. bronchiseptica to Vero cells was measured by flow 

cytometric analysis as described above. 
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In vivo plasmid stability 

      BALB/C mice (4-6 weeks old) were purchased from Harlan Laboratories 

(Indianapolis, IN) and were maintained by routine procedures in an AALAC accredited 

laboratory animal facility. Mice were inoculated with 50µl of bacterial suspension in 

PBS containing approximately 1x10 5 CFU of B. bronchiseptica 110H harboring 

PBBRP9GFP. Mice were anaesthetized with Isoflurane (Abbot Laboratories, North 

Chicago, IL) and 25µl of the bacterial suspension was instilled into each nostril. Mice 

were sacrificed at 3, 6, 12, and 24 hours after inoculation. The lungs and trachea were 

collected and fixed in 4% paraformaldehyde for 2hrs. The slow freezing protocol as 

described previously [34] was followed. Briefly, after fixation, the tissues were washed 

in PBS, embedded in Tissue-Tek O.C.T. (Miles Inc, Elkhart, IN) and stored at 4oC for 

24 hours. The tissues were transferred to a slow freezing container with isopropyl 

alcohol and allowed to freeze to -70oC. Sections were cut on a cryomicrotome 

(Minatome- Damon /IEC division, Needham Heights, MA), mounted in PBS and 

examined in a Leica SP2 laser scanning confocal microscope using 488nm argon laser 

line for excitation and a spectral setup for GFP to collect emission.  

 Results 

Identification and characterization of promoter 

      A library of clones containing fusions with the gfp gene and chromosomal DNA of 

B. bronchiseptica 110H was constructed.  A Bvg- avirulent phase B. bronchiseptica, 

strain 110 NH, was used for promoter selection to avoid selection of bvg-regulated 

promoters. From 2500 clones examined by fluorescence microscopy, one was identified 
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which expressed GFP. The bacteria expressing GFP were bright green, when examined 

by fluorescence microscope (Figure 1, appendix). Upon restriction digestion of that 

clone, it was determined that the chromosomal DNA upstream to the gfp gene was 

approximately 3kb. Restriction analysis was performed using enzyme sites within the 

multiple cloning sites of pBBR1MCS2, flanking the gfp gene, to further reduce the size 

of the insert. The gfp gene with the cloned upstream promoter region was digested with 

EcoRV and EcoRI and the resulting 1.25 kb fragment was subcloned into the respective 

sites of pBBR1MCS2 to obtain pBBRP9GFP. This plasmid was used in all downstream 

experiments and the promoter region was designated as P9.  

      DNA sequencing (University of Tennessee, DNA sequencing facility) was 

performed in the region immediately upstream of the gfp gene. A BLAST search of 

~250 bp of the sequence, identified this region as having 98% identity to the 

cpn10/cpn60 gene of B. pertussis [13]. There was a four base pair difference in the 

region immediately upstream to the -35 sequences. The gene fragment upstream to the 

gfp gene was an in frame fusion of sequence encoding the first 36 amino acids of the 

cpn10 homolog gene, along with its corresponding regulatory sequences. The predicted 

fusion protein contained a 4kd fragment of CPN 10 protein and intact GFP. As observed 

previously in B. pertussis, this region contains sites for σ 32 and σ 70 as well as a CIRCE 

 (Controlling inverted repeats of chaperonin expression) element [13]. 

      The plasmids pBBRP9GFP,  pBBRFIMGFP, and pBBRTACGFP were 

electroporated into B. bronchiseptica strains 110H, 110NH, R5, Strain 55 and to E. coli 

strain INVF'. All strains of B. bronchiseptica with pBBRP9GFP showed strong green 

fluorescence when examined by fluorescence microscopy; whereas, the fluorescence 
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intensity was much lower in E. coli that harbored this plasmid. E. coli organisms 

carrying PBBRTACGFP were brighter than all B. bronchiseptica strains with the same 

plasmid. B. bronchiseptica strains carrying pBBRFIMGFP had the lowest fluorescence. 

Neither the B. bronchiseptica strain, 110NH, nor E. coli harboring this plasmid had any 

detectable green fluorescence.  

      The efficiency of P9, fim N and tac promoters to drive GFP expression was 

quantitated using flow cytometric analysis. LB broth, Brucella broth and SS broth were 

used for growing bacteria. A histogram showing flow cytometric profiles of fluorescence 

intensity from different promoters in B. bronchiseptica strain 110H is shown in Figure 2. 

All B. bronchiseptica strains consistently expressed very high levels of GFP from P9 

promoter. There was no significant difference in expression of GFP between these 

strains; however, the activity of this promoter was 40-50 fold lower in E. coli than in B. 

bronchiseptica (Figure 3). In E. coli, tac promoter driven fluorescence (X=20) was 2-5 

fold higher than in B. bronchiseptica strains (X=2.5-10) harboring the same plasmid. The 

fim N promoter had low level activity in B. bronchiseptica strains110H (X=2.5), R5 

(X=2.5) and Strain 55 (X= 4.23). However, unlike the P9 and tac promoters, the fim N 

promoter was not active in strain 110NH (X= 1.6) and in E. coli (X=1.9).  The intensity 

of fluorescence measured by FACS analysis of B. bronchiseptica and E. coli cultures 

expressing GFP under the P9 and TAC promoters was the same with each growth 

medium tested. However, when cultivated in SS broth, B. bronchiseptica strains 110H 

(X= 6.3 vs 2.5), R5 (X=5.3 vs 2.5) and Strain 55 (X= 6 vs 4.23) had increased levels of 

GFP expression from the fim N promoter when compared to GFP expression in LB broth. 
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There was no increase in GFP expression from fim N promoter in strain 110NH when 

grown in SS broth. 

      Since heat shock proteins are induced during periods of stress, the effect of stress 

stimuli on GFP expression from the P9 promoter was examined. Heat shock experiments 

were performed as described previously [38]. For all strains, the GFP expression at 25o C 

was 4-5 times lower than at 37o C. However, increasing the temperature from 25oC to 

37oC and 25oC to 42oC for 20 minutes did not have any effect on GFP expression. Also, 

addition of hydrogen peroxide at a final concentration of 0.005 % did not have any effect 

on GFP expression.  

Adherence assay 

      Adherence assays were characterized based on GFP expression from the P9 promoter. 

Vero cells with adherent bacteria were examined by fluorescence microscopy and flow 

cytometry. Consistent with our previous observation [17], using a conventional adherence 

assay, the Bvg +, virulent phase strain, 110H, adhered well to Vero cells (Figure 4) but 

Bvg-, avirulent phase, strain 110NH did not. Quantitation of the mean intensity of 

fluorescence by FACS analysis showed that strain110H adhered 7-13 times more than the 

avirulent phase, strain 110NH (Figure 5).  

Plasmid stability and growth rate 

      The expression of GFP in overnight LB broth culture was examined with and with out 

antibiotic selection. All strains of B. bronchiseptica expressed equivalent levels of GFP 

from the P9 promoter under selective and non-selective conditions. In vitro stability of 

pBBRP9GFP was tested by continuous passage of the bacteria in non-selective medium 

(Tryptic Soy Agar). When bacteria were examined by fluorescence microscopy, all four 
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strains of B. bronchiseptica failed to sustain the fluorescence after five passages at 48-

hour intervals (~10days) in non-selective medium. This loss of GFP expression was 

associated with plasmid loss, since the recombinant organism could not be recovered in 

antibiotic selection media.  The plasmid was very stable in E. coli, showing green 

fluorescence even after 10 repeated passages on non-selective agar medium. There was 

no difference in growth rate of B. bronchiseptica strains expressing GFP compared to the 

wild-type organisms (Figure 6) indicating that GFP expression did not have any adverse 

effects on bacterial growth. The growth curves were similar for 110H, 110NH and R5; 

whereas a longer lag phase was observed for Strain 55. All strains also had a longer lag 

phase in SS broth than in LB broth or Brucella broth. At 3 hrs post inoculation, GFP 

expressing bacteria were visualized in cryosections of the lung and trachea by confocal 

microscopy. Green fluorescent bacteria were adherent to the ciliated epithelium of the 

trachea and bronchioles (Figure 7). In alveolar spaces bacteria were associated with cells, 

probably macrophages, but were not seen free in the lumen. At subsequent time periods 

after 3hr, fluorescent bacteria were not detected in respiratory tracts of mice that had been 

inoculated with B. bronchiseptica 110H harboring pBBRP9GFP.  

Discussion  

      This report describes the identification and characterization of a promoter useful for 

heterologous antigen expression in B. bronchiseptica utilizing a green fluorescent protein 

reporter system. GFP has been successfully utilized as a reporter gene in several species 

of bacteria [19, 29, 36, 37, 38]. GFP expression in prokaryotes is becoming a widely used 

and easy tool to study various aspects of development, metabolism, gene expression and 

pathogenesis [36, 37]. This is the first report of utilizing this system in B. bronchiseptica. 
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In the related species, B. pertussis, GFP expression for the study of phagocytosis was 

more efficient than tagging the organism with FITC [40]. 

      Bacterial heat shock proteins are abundantly produced throughout the life cycle of 

most bacteria and their synthesis is often increased during periods of stress [21]. In B. 

pertussis the CPN 60 protein exhibits immunological and structural similarities to GroEL 

protein of E. coli, which functions as a molecular chaperone [5, 7]. Complete cloning and 

inactivation of the cpn10/60 homolog gene has to be done to understand the exact 

function of this protein in B. bronchiseptica. However, this study demonstrates the utility 

of this promoter region in heterologous antigen expression. Under normal laboratory 

incubation cond itions, using common media, there was high level expression of GFP 

from the P9 promoter. Stimuli required for P9 promoter activity have not been identified. 

As reported in E. coli [1], it is possible that heterologous protein expression may itself act 

as a stimulus for promoter function. Recent studies indicated a role of CIRCE element as 

a negative regulator involved in inducing stress response [27, 44]. As suggested by Weiss 

et al. [13], one speculation about the presence of binding sites for both σ 70 and σ 32 

subunits is that organisms may switch these promoter regions under stress and non-stress 

conditions. HSP promoters have been useful in heterologous antigen expression and 

immunogenicity studies with a number of bacteria [3, 38]. In spite of the concern that use 

of HSP as a vaccine component might lead to the generation of an autoimmune response 

due to the highly conserved nature of HSP's among eukaryotes and prokaryotes, 

microbial HSP's have been successfully employed as carrier molecules for peptide 

immunization [43]. The binding affinity of HSP's for peptides and their involvement in 

antigen processing may enhance specific immune responses [43]. The mucosal immune 
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response to heterologous antigens expressed in B. bronchiseptica from the P9 promoter 

and the effect of the remaining 4kD CPN peptide in the P9 promoter-GFP fusion awaits 

further study. 

      The E. coli based promoter tac is widely used in E. coli expression systems. In this 

study, GFP was expressed constitutively from this promoter since the E. coli strain we 

used, and B. bronchiseptica do not possess a lac repressor gene. The tac promoter has 

previously been utilized in B. bronchiseptica to study the expression of adenylate cyclase 

toxin [22]. Although, the level of expression of GFP from the tac promoter in B. 

bronchiseptica was much lower than that from the P9 promoter, heterologous antigen 

expression from tac may have value in inducing an in vivo immune response. It was 

observed in a Vibrio cholerae based heterologous antigen expression system that, the tac 

promoter was better suited for generation of an in vivo immune response than both a HSP 

promoter and an iron regulated promoter [16]. 

      This study is the first to demonstrate functional activity of the fim N promoter in  

B. bronchiseptica. This newly reported fimbrial gene sequence variant has serologic cross 

reactivity with serotype 2 fimbriae of B. pertussis [17]. The reason for low-level 

expression of GFP from fim N promoter is currently unknown. The length of cytosine 

residues (C-stretch) in the promoter region plays a role in optimal transcription of bvg-

regulated genes [34, 41]. The fim N gene cloned in E. coli has two less cytosine residues 

than its chromosomal counterpart [17]. Manipulation of the C-stretch may be another 

strategy to improve the expression of proteins from this promoter. Surface expression of 

heterologous antigens may have great advantage in improving antigen presentation and 

immune responses. Live bacterial vectors and their adhesins are attractive candidates for 
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improving mucosal vaccination strategies [28]. Among B. bronchiseptica adhesins, 

fimbriae are shown to have immunomodulatory effects following intranasal inoculations 

in mice [23]. The molecular chimerization of fim N with a Mannheimia haemolytica 

leukotoxin fragment induced enhanced leukotoxin neutralizing antibody response in mice 

immunized with this recombinant protein [30]. A recent report described the advantage of 

over expression of a protective antigen as a novel approach to improve vaccine efficacy 

[38]. The P9 promoter could be utilized to express fusion proteins of FIM N with other 

protective antigens. Since fimbrial proteins are abundantly produced on bacterial 

surfaces, chimeric fimbriae expressing epitopes from different pathogens seem to be an 

attractive strategy for vaccine delivery. Host species specificity of fimbriae could be 

selectively utilized to deliver antigens to a target species [6]. Two recent studies show the 

effectiveness of B. pertussis fimbriae as a carrier protein for conjugate vaccines [11, 31].  

      There was an increase in expression of GFP from the fim N promoter, when cultivated 

in SS broth, a commonly used medium for vaccine preparation [35]. A similar increase in 

expression of filamentous haemagglutinin when cultivated in SS broth was recently 

reported [18]. The potassium, sodium and chloride ion content of this mineral salts 

medium may be upregulating the Bvg-controlled fim N promoter [10]. 

      The original pBBR1, a broad host range cryptic plasmid isolated from B. 

bronchiseptica [2], was stable without continuous antibiotic selection in Brucella species 

in vitro for >10 days and in vivo in mice for >4weeks [8, 12]. In this study, GFP 

expression from P9 promoter was used as an indicator of in vitro plasmid stability. The 

pBBRP9GFP plasmid was maintained at high to moderate levels for only 4-5 passages 

(10 days) in all the strains tested in the absence of antibiotic selection. Although PBBR1 
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was originally isolated from B. bronchiseptica, the genetic modifications made on the 

pBBR1MCS2 from the original plasmid or hetrologous antigen expression, itself, may 

affect plasmid stability. It is noteworthy that there was no difference in GFP expression 

from these recombinant strains over a period of 24 hours at 37oC under selective and 

nonselective in vitro conditions as measured by FACS analysis.  

      GFP expressing bacteria were not seen in cryosections of the lung and trachea after 3 

hours post inoculation. This might be the result of in vivo plasmid instability or 

repression of the promoter function. The manipulation and processing involved in 

preparing the tissue might have affected the sensitivity of the assay. A modified 

construct, which can stably express GFP, could be utilized for pathogenesis studies 

including the possible long term intracellular survival of this organism. In a subsequent 

study with recombinant B. bronchiseptica that expressed another heterologous antigen 

from the P9 promoter in pBBR1MCS2, only 6.5 % of the total bacteria recovered from 

lungs and trachea of mice retained resistance to the selective antibiotic marker, 

kanamycin, at 24 hours post inoculation, while colonization of plasmid-cured B. 

bronchiseptica continued as long as 56 days post inoculation. Thus, improved plasmid 

stability or construction of chromosomal co-integrates may be required to generate an 

effective immune response to heterologous antigens. 

      The adherence assay utilizing FACS analysis of GFP expression from the P9 

promoter is a more rapid and convenient way of quantitating adherence as compared to 

conventional techniques. Since the adherence of B. bronchiseptica is an important 

virulence property, this assay could be effectively utilized to compare the virulence of 

different strains or to evaluate immune responses to vaccine preparations by attachment 
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inhibition assay. In conclusion, the promoters characterized in this study, may be useful 

for expression of different protective microbial antigens in B. bronchiseptica. The 

potential for utilizing B. bronchiseptica as a mucosal vaccine vector is currently under 

investigation. 
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Figure 1 

B. bronchiseptica strain 110NH expressing GFP from P9 promoter. Visualized by 

fluorescence microscopy. Magnification X1000. 
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Figure 2 

Flow cytometric profiles of GFP expression in B. bronchiseptica strain 110H harboring 

different recombinant plasmids. (A) pBBRGFP (promoter-less), (B) pBBRP9GFP (P9 

promoter), (C) pBBRFIMGFP (fim N promoter), (D) pBBRTACGFP (tac promoter). 

Intensity of the fluorescence on the x-axis indicates the level of GFP expression. X = 

Mean fluorescence intensity.  
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Figure 3 

Comparison of GFP expression from P9 promoter in four different strains of  

B. bronchiseptica and E. coli. The cultures were grown in LB broth and processed as 

explained in materials and methods for flow cytometry. The intensity of GFP expression 

from each strain is represented by mean fluorescence intensity as calculated by 

CELLQUEST Software. B.bronchiseptica strains harboring pBBRGFP were used as 

negative control 
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Figure 4 

Fluorescence microscopic image of Vero cells with adherent bacteria.   

Vero cells were treated with B. bronchiseptica 110H   harboring pBBRP9GFP and 

visualized by fluorescence microscopy.  Magnification X1000. 
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Figure 5 

Bar graph showing the level of adherence of B. bronchiseptica strain 110H and 110NH 

harboring pBBRP9GFP to Vero cells. The values on y- axis indicate mean fluorescence 

intensity as measured by flow cytometry analysis of Vero cell suspensions treated with 

bacteria. Untreated Vero cells similarly incubated were used as negative controls 
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Figure 6 

Comparison of growth curves for wild type and recombinant B. bronchiseptica.   

Overnight cultures of   B. bronchiseptica 110H with pBBRP9GFP and pBBRGFP were 

inocula ted into LB broth containing kanamycin. Wild-type 110H was similarly 

inoculated into LB broth without kanamycin. At designated time points A590 was 

measured and recorded. 
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Figure 7 

In vivo GFP expression in B. bronchiseptica. (A) Bright field image of 8µm cryosection 

of trachea of mouse 3 hours post inoculation with B. bronchiseptica 110H harboring 

pBBRP9GFP. (B) Corresponding confocal scanning image of section seen in A with GFP 

expressing bacteria attached to the ciliated epithelium. Magnification X630 
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                                                       PART 3 

Mouse inoculation studies, Immunization of mice with 

recombinant Bordetella bronchiseptica expressing Pasteurella 

multocida toxin fragment or green fluorescent protein
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Abstract 

      Bordetella bronchiseptica colonizes ciliated epithelium of the upper respiratory tract 

of a wide variety of mammals. The role of Bordetella bronchiseptica and  

Pasteurella multocida toxin in the disease, atrophic rhinitis, of pigs is well documented. 

In this study, a non-toxic, protective P. multocida toxin fragment (PMTCE) and green 

fluorescent protein (GFP) were expressed in B. bronchiseptica from genes cloned into a 

broad-host-range plasmid vector, PBBR1MCS2, and placed under the control of a 

promoter region isolated from B. bronchiseptica that appears to be a member of the heat 

shock protein gene family. While wild-type and recombinant B. bronchiseptica colonized 

the mouse respiratory tract effectively, the plasmid was no longer detected from the 

organism after 72 hours post- inoculation. After a single intranasal inoculation, IgM, IgA 

and IgG responses to B. bronchiseptica were detected in serum and broncheoalveolar 

lavage samples. PMTCE specific antibodies were not detected. Four intranasal 

inoculations with   B. bronchiseptica expressing green fluorescent protein induced 

systemic and mucosal immune responses to GFP; however, similar inoculations with B. 

bronchiseptica expressing the PMTCE fragment did not induce detectable PMTCE 

specific immune responses.  
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Introduction 

      Atrophic rhinitis (AR) is an upper respiratory tract disease of pigs characterized by 

degeneration and atrophy of nasal turbinate bones leading to visible distortion and 

shortening of the snout [9, 28]. This disease is of major economic importance to pig 

breeders all over the world. Bacterial etiologies identified in this condition are toxigenic 

strains of Pasteurella multocida and virulent strains of Bordetella bronchiseptica, alone, 

or combined with environmental factors like dust, ammonia and other physical or 

chemical irritants [2, 6, 10, 26, 29]. Pasteurella multocida is an important veterinary 

pathogen involved in diseases such as atrophic rhinitis in swine, fowl cholera in birds, 

hemorrhagic septicemia in cattle and other respiratory diseases in lab animals [2]. Many 

capsular type D and occasional type A strains of   P. multocida produce a potent, 

intracellular, heat- labile, 146Kd, mitogenic toxin (PMT), which is a major virulence 

factor in atrophic rhinitis [5, 6, 11]. The role played by P. multocida and B. 

bronchiseptica in AR is documented in a number of experimental studies [3, 4, 19, 27]. 

B. bronchiseptica, is widely distributed in swine herds with  and without atrophic rhinitis. 

The infection with B. bronchiseptica can lead to mild non-progressive forms of atrophic 

rhinitis that do not affect growth rate [6].  Toxigenic type D P. multocida is the most 

common isolate in severe, progressive, growth retarding atrophic rhinitis [6]. 

Experimental inoculation of pigs with cell- free extracts of P. multocida or purified toxin 

can also lead to severe, progressive atrophic rhinitis [11]. Experimental infections in 

gnotobiotic pigs implicate that colonization with virulent strains of B. bronchiseptica 

damages the nasal mucosa and predisposes animals to colonization by toxigenic P. 
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multocida [3, 4]. By itself, P. multocida does not readily colonize the nasal mucosa. 

Vaccination and good management practices are the main approaches used to control this 

condition [6]  

      Considering the proposed synergistic role of B. bronchiseptica and P. multocida in 

AR, and the common usage of live-attenuated B. bronchiseptica vaccines and P. 

multocida toxoid/ bacterins to control AR, further refinements of combined vaccines are 

warranted. In this study, a non-toxic protective fragment of PMT and green fluorescent 

protein (GFP) were expressed in B. bronchiseptica. Colonization kinetics, plasmid 

stability and immune responses generated to B. bronchiseptica, PMT, and GFP were 

evaluated in mice. 

Materials and methods 

Plasmids, bacterial strains, and enzymes  

      Origin of the B. bronchiseptica strains used in this study has been previously 

described [1]. Strain 55 is a live attenuated B. bronchiseptica (ATCC 31437) vaccine 

strain. Luria Bertani (LB) agar or broth with appropriate antibiotic selection at 37oC were 

the conditions employed to grow all bacteria unless otherwise indicated. Smith 

Baskerville medium was used for isolation of B. bronchiseptica from mouse respiratory 

tract samples [23]. Restriction enzymes and LA Taq polymerase were products of 

PANVERA, Madison WI. Wizard plus SV miniprep kit (Promega, Madison WI) was 

used for plasmid isolation. The plasmid, pBBR1MCS2, (kindly provided by Kovach, M. 

E) [12] was used for cloning and expression of the GFP gene and the PMT gene 

fragment. A promoter region (P9) with homology to heat shock gene promoter region of 

B. pertussis was isolated from B. bronchiseptica using a green fluorescent protein 
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reporter system. This promoter was previously used to drive high- level expression of 

GFP in four different strains of B. bronchiseptica [S. Rajeev, Dissertation, Part 2]. The 

PMT gene fragment (PMTCE) consisted of base pairs 1999-4055 encoding the C-

terminal 685 amino acids of PMT. This fragment was amplified from genomic DNA of 

P. multocida (NCTC 12178) using LA Taq polymerase and primers 5'-

CGGGATCCCGTTATTGGAAAGCCTATTGGA-3' (forward) and 5'-

GGGGATCCGTTATAGTGCTCTTGTTAAGCG-3'(reverse). The PMTCE fragment 

was cloned into BamHI digested and calf intestinal alkaline phosphatase treated   

pBBRP9. The ligation mixture was transformed into E. coli and transformants were 

selected on LB plates containing kanamycin (100µg/ml). The correct insertion of the 

sequence was verified by restriction digestion with enzymes that cut within the PMTCE 

fragment. Expression of PMTCE was detected on western blots of whole cell lysates 

using PMT specific monoclonal antibody, Mab CRL1965, obtained from ATCC [13]. 

The resulting plasmid construct with PMTCE- promoter fusion was electroporated into B. 

bronchiseptica strains 110H, 110NH, R5, strain 55 using a CELL-PORATOR 

Electroporation system (GIBCO-BRL, Gaithersburg, MD) following manufacturer's 

instructions.  Electroporants were selected on kanamycin plates and tested for the 

expression of PMTCE by Western blotting. 

SDS-PAGE and Western blots 

      SDS-PAGE was performed using 10 % polyacrylamide gels (Ready Gels, Bio-Rad, 

Hercules, CA) according to standard procedures. An overnight culture of each  

B.bronchiseptica strain containing the recombinant plasmid, PBBRP9PMTCE, was 

adjusted to an optical density (A590) of 0.5. One hundred µl of this suspension was 
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centrifuged at 5000 rpm for one minute. The pellet was suspended in 100µl of 1x sample 

buffer (Sigma Chemical Company, St. Louis, MO) and boiled for 10 minutes. Aliquots of 

5µl were loaded to 10% polyacrylamide gels. The gels were electrotransferred to 

nitrocellulose membranes. The membranes were blocked with 5% nonfat dry milk 

solution in phosphate buffered saline with 0.05%Tween 20(PBS-T) for 30 minutes and 

then reacted with a 1µg/ ml solution PMT specific monoclonal antibody, CRL 1965, in 

1% nonfat dry milk in PBS-T for one hour. The membranes were washed four times in 

PBST for 30 minutes and incubated with 1/10,000 dilution of peroxidase-conjugated anti-

mouse IgG (Sigma Chemical Company). After washing four times in PBS-T for 30 

minutes, the membranes were developed with chemiluminescent substrate  

(SuperSignal R West Pico Substrate Pierce, Rockford, IL)  and the membranes were 

exposed to CL-XposureTM Film (Pierce, Rockford, IL) following the manufacturer's 

guidelines. 

 Intranasal inoculation of mice  

       Four to six week-old female BALB/c mice were obtained from Harlan Laboratories 

(Indianapolis, IN) and maintained by routine procedures in an AALAC accredited animal 

facility. Groups of 3-4 mice were inoculated with ~ 1x10 5 CFU of either wild-type B. 

bronchiseptica 110H or recombinant B. bronchiseptica 110H harboring pBBRP9PMTCE 

or pBBRP9GFP. Mice were anaesthetized by Isoflurane (Abbott Laboratories, North 

Chicago, IL) and 50µl of the inoculum was instilled into the nostrils. Mice were also 

similarly immunized with B. bronchiseptica expressing GFP from the same promoter. In 

a second experiment, mice, inoculated once by the intranasal route with 1x10 5 CFU were 
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boosted three times at biweekly intervals via the intranasal route with 1x107   CFU of each 

respective strain of B. bronchiseptica expressing GFP or PMTCE. An additional group of 

mice primed with B. bronchiseptica expressing GFP were given a single intranasal 

inoculation with 50 µg of purified recombinant GFP in PBS. 

Colonization kinetics and in vivo plasmid stability 

      Mice were sacrificed at designated time points and the entire lungs and trachea 

 were collected  aseptically. The tissue was homogenized and serial dilutions were plated 

onto Smith Baskerville media with and without kanamycin. The plates were incubated for 

48 hours at 37 oC and colony counts were performed. The percentage of kanamycin 

resistant B. bronchiseptica colonies compared to the total number of colonies recovered 

on non-selective media was calculated. The colonization studies were continued until the 

colony counts reached minimum detectable levels (56 days). 

Antibody response 

      Mice were bled from the retro-orbital sinus on 14, 28, 42 and 56 days post- 

inoculation. Nasal and broncheoalveolar lavage (NBAL) were collected at the same time 

points using a 24-gauge teflon catheter by flushing the lung, trachea and nasal cavity with 

2 ml of PBS. Pooled samples were centrifuged at 3000 rpm to remove particulate matter. 

Lavage samples and sera were stored at -70oC until further evaluation. Lavage samples 

that were visibly contaminated with blood were discarded. 

       A kinetic enzyme linked immunosorbent assay (KELISA) was performed to evaluate 

the antibody response to B. bronchiseptica and PMTCE. In brief, 96-well plates 

(Immulon 2HB, Dynex) were coated overnight either with a suspension of B. 
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bronchiseptica (strain 110H grown on TSA and adjusted to optical density, A590, of 0.1 

in PBS), purified recombinant PMTCE (10µg/ ml in PBS) or purified recombinant GFP  

(10 µg/ml). Plates were washed four times in PBS-T and blocked for 30 minutes with 

PBS-T. One hundred µl of serum (1/40 dilution) or undiluted NBAL was added to plates 

and incubated for 2 hrs at 37oC. Plates were washed four times with PBS-T and incubated 

with peroxidase-conjugated secondary antibodies, anti-mouse IgG (1/2000), IgM 

(1/1000), and IgA (1/1000) in PBS-T. Plates were washed four times with PBS-T and 

developed with 100µl of substrate solution, 2,2'-azino diethylbenzothiazoline-6-sulphonic 

acid (ABTS, Sigma Chemical Company, St Louis MO) and hydrogen peroxide. The 

plates were read kinetically at A405 using ELx800 ELISA reader (BIO-TEK instruments 

Inc., Winooski, VT). The plates were read 7 times at one-minute intervals, the maximum 

slope (KELISA slope is directly proportional to the amount of antibody bound) was 

calculated using KCjunior software (BIO-TEK instruments Inc, Winooski, VT) 

 Statistical analyses 

          The significance of differences between groups was determined by Student’s t-tests. 

The data are expressed as mean +/- standard error of mean. P values < 0.05 were 

considered significant. 

Results 

Cloning and expression of PMTCE in B. bronchiseptica 

      Initial attempts to express a previous ly reported 125kD, non-toxic, N-terminal 

deletion mutant of PMT [21, 22] were unsuccessful. The recombinant 
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 B. bronchiseptica harboring this plasmid exhibited marked reduction in growth in vitro 

and did not show any expression of this protein on immunoblots. We have identified N- 

terminal and C-terminal recombinant PMT protein fragments which can protect mice 

from lethal challenge with PMT [20]. Intraperitoneal immunization with these proteins in 

Freund's incomplete adjuvant elicited high level of anti-PMT antibodies and protected 

mice from intraperitoneal challenge with P. multocida toxin [20]. The C-terminal 

protective fragment (PMTCE) was utilized for expression in B. bronchiseptica.  

A schematic representation of the expression plasmid is given in Figure 1(appendix). A 

PMT specific monoclonal antibody, CRL-1965, was used for detection of expression of 

this protein in B. bronchiseptica [13]. PMTCE expression was initially detected in 

electroporants of all strains of B. bronchiseptica and in E. coli. After storage at -70oC, 

repropagation and examination, B. bronchiseptica strain 55 no longer produced a reactive 

protein band on western blot. The expected protein band of 80kD (76kD PMTCE+ 4kD 

from the promoter region) was seen on Western blot with chemiluminiscent substrate 

(Figure 2). However, the bands were not visible in Western blots developed with 

colorimetric substrate, indicating that the amount of protein produced was low. The 

amount of protein in each band was quantitated on Western blots by un-SCAN-IT TM 

(Silk Scientific Corporation).  B. bronchiseptica strains 110H, 110NH,  and R5 expressed 

6.4µg/0.5OD/ml , 6.2µg/0.5OD/ml, and 74µg/0.5OD/ml, respectively. Each strain that 

expressed PMTCE and affinity purified PMTCE had a second immunoreactive band that 

is presumed to be a degradative fragment. Such fragments have been previously reported 

in purified native and recombinant PMT [20]. A third non-specific band was observed in 

all samples including the negative controls indicating possible cross reactivity of the 
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monoclonal antibody with some component in B. bronchiseptica. Expression of PMTCE 

in B. bronchiseptica did not affect the growth in vitro (Figure 3). 

Plasmid stability and colonization kinetics 

      The proportion of plasmid bearing recombinant B. bronchiseptica in lungs and 

trachea of mice was determined by comparing the number of B. bronchiseptica CFU 

obtained on Smith Baskerville medium with kanamycin selection to the number of B. 

bronchiseptica CFU obtained on Smith Baskerville without kanamycin selection.  B. 

bronchiseptica was not isolated from any of the uninfected mice. The percentage of 

kanamycin resistant colonies recovered from mice is shown in figure 4. Forty five percent 

of the colonies harbored recombinant plasmid at 1hr post- inoculation. This frequency 

gradually decreased to 0.007% at 72 hours post- inoculation. Recombinant and wild type 

B. bronchiseptica colonized the respiratory tract of mice (Figure 5). The number of 

organisms recovered increased until 7 days post- inoculation and gradually decreased 

thereafter. By day 56, the number of organisms recovered was close to the minimum 

detectable levels. There was no significant difference (p<0.05) in the total number of 

organisms recovered at any time point from mice inoculated with wild-type or 

recombinant B. bronchiseptica.  However, colonization of wild-type and recombinant 

B. bronchiseptica can not be compared because of the rapid loss of the plasmid.  

Antibody response in mice 

      Antibody responses generated against B. bronchiseptica and the heterologous 

antigens, PMTCE and GFP after intranasal inoculation with live B. bronchiseptica were 

evaluated by KELISA [15, 30, 31]. KELISA measures the rate of color development 

during the initial period of reaction, and is represented by the maximum slope, which is 
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directly, proportional to the amount of secondary antibody conjugate bound. KELISA 

performed using a single serum dilution was reported to be as sensitive and specific as 

determining the endpoint titer [30]. IgG, IgA and IgM levels were measured in individual 

serum samples and pooled NBAL samples. A single intranasal inoculation with wild-type 

and recombinant B. bronchiseptica induced marked B. bronchiseptica specific antibodies 

in the serum and NBAL (Figure 6) 

       B. bronchiseptica-specific serum IgM levels  were detected at 14 day post 

inoculation and  remained stable throughout the period analyzed. Serum IgG levels 

increased gradually in wild-type and recombinant B. bronchiseptica inoculated mice. The 

serum IgG, levels to B. bronchiseptica were significantly higher (p= >0.05) in groups 

inoculated with wild-type organisms compared to B. bronchiseptica expressing PMTCE. 

An increase in B. bronchiseptica specific serum IgA levels was also detected in the 

serum. In the NBAL an initial increase in IgM levels were followed by stable levels.  

B. bronchiseptica specific IgG  and IgA were also observed in NBAL. The PBS 

inoculated controls did not produce any antibody response to B. bronchiseptica. 

      A single intranasal inoculation with recombinant B. bronchiseptica either expressing 

GFP or PMTCE did not induce detectable antibody responses to the respective proteins.  

In a second experiment, mice were first inoculated with 1x105 CFU of B. bronchiseptica 

virulent strain, 110H or avirulent strain, 110NH expressing GFP or PMTCE by the 

intranasal route followed by three intranasal booster inoculations with 1x107 organism at 

14 day intervals. 

      After initial inoculation, 110H (Bvg+) infected mice became sick (characterized by 

raised hairs and lethargy) and recovered by third day. However, mice inoculated with 
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110NH (Bvg -) were normal. Even though inoculation with 1x105 B. bronchiseptica 

110H produced transient illness in mice, mice initially inoculated with 1x105 B. 

bronchiseptica 110H did not suffer any ill effects following intranasal exposure to 1x108 

organisms 14 days later. Mice that had not received the initial exposure to 1x105 

organisms died within 72 hours after intranasal exposure to 1x107 CFU of B. 

bronchiseptica strain 110H. Multiple inoculations with higher number of organisms were 

done to provide increased exposure to the heterologous antigens. 

      A PMT-specific immune response was not observed after exposure to the increased 

number of organisms. However, a GFP-specific antibodies were obtained in NBAL and 

serum after boosting with the increased dose of B. bronchiseptica 110H expressing GFP 

(Figure 7). Serum GFP antibodies were predominantly of IgG subclass and NBAL GFP 

antibodies were a mixture of IgA and IgG. Mice inoculated with avirulent 110NH and 

boosted similarly did not produce detectable serum antibodies to GFP. There was a slight 

increase in GFP-specific IgA in NBAL.  When mice inoculated with recombinant B. 

bronchiseptica strain 110H expressing GFP were boosted with 50µg of purified 

recombinant GFP, high levels of GFP antibodies were observed in serum (Figure 8). 

GFP-specific response was predominantly IgG. A similar increase in GFP-specific 

response was not noticed in NBAL.  

Discussion 

      Atrophic rhinitis is a disease of significant economic importance to US agriculture. 

Vaccines against atrophic rhinitis consist of killed or live preparations of B. 

bronchiseptica along with P. multocida bacterins or toxoid. Development of a safe and 

bivalent live vaccine with avirulent B. bronchiseptica that expresses protective epitopes 
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of PMT would represent a novel approach to control this disease. This is the first study to 

demonstrate expression of a foreign protective antigen in B. bronchiseptica and the utility 

of B. bronchiseptica as a mucosal vaccine vector directed to the respiratory tract. 

A single intranasal inoculation with recombinant and wild-type B. bronchiseptica   

induced both systemic and mucosal immune responses to B. bronchiseptica. While IgG 

was the predominant antibody in the serum, IgA predominated in NBAL. In a recent 

report, mucosal IgA antibodies against B. bronchiseptica were observed after intranasal 

inoculation of mice with B. bronchiseptica and authors of this paper hypothesized that 

this lack of mucosal IgA response was due to the toxins secreted by the type III secretion 

machinery [14] 

      Plasmid instability leading to insufficient antigen exposure may have been the most 

important factor responsible for our initial inability to detect an antibody response to 

PMTCE and GFP after a single intranasal inoculation with recombinant B. bronchiseptica 

expressing these proteins. It was hypothesized that booster inoculations with increased 

numbers of organisms will provide increased exposure to the preformed fo reign antigens 

contained in the inoculum. An antibody response was observed for GFP but not PMTCE.  

The inability to detect antibodies to PMTCE compared to GFP after booster inoculations 

might be attributed to the comparative low-level expression of PMTCE, plasmid 

instability or antigenic differences of PMTCE expressed in B. bronchiseptica. The yield 

of PMTCE in the E. coli expression system was also very low [20]. Therefore, production 

and purification of large quantities of PMTCE is difficult and identifying stable 

protective fragments of PMT for expression in B. bronchiseptica is worthwhile to pursue. 

Recently, we have shown that the molecular chimerization of Fim N protein of  
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B. bronchiseptica with an unstable protective fragment of leukotoxin of Mannheimia 

haemolytica augmented neutralizing antibody response to leukotoxin [24]. Stabilization 

of a PMT fragment by combining it with FIM N may also enhance the immune response 

to PMT. An intranasal dose of 1x105 CFU could be given to mice without causing any 

deleterious effects. Increasing the number of organisms in unprimed animal's lead to 

100% mortality. We could inoculate with a 100 times greater dose of 

B. bronchiseptica in previously exposed mice, without any deleterious effects. A 

protective immune response in mice against B. bronchiseptica was probably generated as 

early as 14 days. Four inoculations with B. bronchiseptica 110H expressing GFP induced 

significantly greater GFP-specific antibody responses in the serum and NBAL than 

110NH expressing GFP. B. bronchiseptica 110H is a Bvg+ strain which effectively 

colonizes the respiratory tract where as Bvg- strains, like 110NH, do not have the 

capability to colonize. The difference in immune responses to GFP in 110H and 110NH 

infected mice suggests that, colonization played an important role in the generation of 

immune response against GFP. In addition to simply influencing the level of antigen that 

the immune system was exposed to, it is also possible, as previously suggested [14], that 

adhesins and other virulence factors produced by B. bronchiseptica colonization may 

have produced immunomodulating effects. 

      A second intranasal inoculation with recombinant GFP, after initial inoculation with 

B. bronchiseptica 110H expressing GFP induced systemic GFP-specific antibodies; 

whereas, control animals inoculated with GFP in PBS did not. This increase in response 

indicates that there was a priming effect after inoculation with B. bronchiseptica 110H 

expressing GFP, but not with 110NH that expressed GFP. Intranasal priming with 
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recombinant B. pertussis and subsequent intranasal boosting with the foreign antigen 

resulted in an effective systemic response against the foreign antigen [16]. Our 

experiment gave similar results and suggests that this mode of immunization could be 

utilized to generate systemic humoral immune responses against specific protective 

antigens.  

      Virulent B. bronchiseptica is unsuitable for field vaccination purposes. The creation 

of selected mutations in virulence genes like adenylate cyclase toxin and dermonecrotic 

toxin, along with chromosomal integration of the genes encoding the foreign antigen may 

be ideal. In B. pertussis, chromosomal integration was utilized for expression of a 

heterologous antigen  [17, 25]. Improving the stability of the plasmid vector by 

construction of balanced lethal vectors as described in Salmonella [7] or by incorporating 

a post-segregational killing function without manipulation of the live host can be done 

[18]. While chromosomal integration may stabilize expression, it usually leads to low 

level expression, which can result in sub-optimum immune responses. Stable multicopy 

plasmid vectors can overcome this by the overexpression of antigen needed to generate 

an effective immune response [8]. 

      Identification of essential protective antigens and improved delivery of vaccine 

components is essential for future vaccine development. Live-attenuated B. 

bronchiseptica vaccines are widely accepted in animals and molecular methods to 

genetically inactivate unwanted traits are available; therefore, construction of a live B. 

bronchiseptica that expresses protective PMT antigens is desirable from the standpoint of 

both safety and efficacy. Further manipulations of host strain, improvements in plasmid 
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stability and stabilization of heterologous antigen expression are essential to make this 

system effective. 
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Figure 1 

Schematic representation of recombinant plasmid vector pBBR1MCS2 expressing  

P. multocida toxin fragment (PMTCE). Restriction sites used to clone in the fragment are 

indicated. P9 is a constitutive promoter cloned upstream to PMTCE in frame to drive the 

expression of the PMTCE.               
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Figure 2 

Expression of PMTCE in B. bronchiseptica.  

Whole cells harboring the recombinant plasmid were subjected to SDS PAGE on a 

10%polyacrylamide gel and electro- transferred to nitrocellulose membrane. Membranes 

were probed with PMT specific monoclonal antibody, CRL-1965 and developed with 

chemiluminescent substrate. Numbers on the left indicate the approximate positions of 

prestained molecular weight markers in kilo Daltons. Lanes 1,3, 5, and 7 are lysates of  

B. bronchiseptica strains 110H, 110NH, R5, and 55 harboring pBBRP9 without PMTCE 

insert respectively. Lanes 2, 4, 6, and 8 contains lysates of B. bronchiseptica strains 

110H, 110NH, R5, and 55 harboring pBBRP9PMTCE. Lane 9 contains 50ng of affinity-

purified recombinant PMTCE.
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Figure 3 

Comparison of growth curves 

Overnight cultures of the recombinant B. bronchiseptica strain 110H harboring pBBRP9 

and pBBRP9PMTCE were inoculated into LB broth containing kanamycin. Wild-type 

 B. bronchiseptica was also similarly inoculated into LB broth without kanamycin. 

 At designated time points optical densities at A590 were measured and recorded. 
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Figure 4 

In vivo stability of the recombinant plasmid in B. bronchiseptica. 

 Mice were inoculated with 1x105 B. bronchiseptica in PBS via the intranasal route. At 

designated time points lungs and trachea were aseptically collected and homogenized, 

serial dilutions were plated on to Smith Baskerville media with and without kanamycin. 

The percentage of kanamycin resistant colonies in relation to the total number of colonies 

recovered is reported.
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Figure 5 

Colonization kinetics of B. bronchiseptica in mice.  

Mice were inoculated with 1x105 B. bronchiseptica in PBS via the intranasal route. At 

designated time points lungs and trachea were aseptically collected and homogenized, 

serial dilutions were plated on to Smith Baskerville media. Total CFU recovered at 

designated time points is reported.
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Figure 6 

Antibody response to B. bronchiseptica in mice. 

Mice were inoculated via the intranasal route with a suspension in PBS containing 1x105 

wild-type or recombinant B. bronchiseptica110H expressing PMTCE. NBAL and serum 

were collected at designated time points.  IgG, IgM, and IgA responses were measured by 

KELISA and reported as KELISA slope. The day at which the samples were collected is 

given on x-axis. The control animals were inoculated with PBS  

 (A) Serum antibody response to B. bronchiseptica strain 110H in mice inoculated 

with recombinant 110H expressing PMTCE.  

(B) Serum antibody response to B. bronchiseptica strain 110H in mice inoculated 

with wild-type.  

(C) Mucosal antibody response to B. bronchiseptica strain 110H in mice inoculated 

with recombinant 110H expressing PMTCE. 

(D) Mucosal antibody response to B. bronchiseptica strain 110H in mice inoculated 

with wild-type.  
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Figure 7 

Antibody response to GFP 

Mice were inoculated with 1x105 recombinant B. bronchiseptica 110H expressing GFP, 

110NH expressing GFP, 110H expressing PMTCE or PBS via the intranasal route. The 

mice were boosted with 1x107 organisms three times at 14 day intervals.  NBAL and 

serum was collected on the 9th day after final boosting. GFP specific IgG, IgM, and IgA 

response was measured by KELISA and reported as KELISA slope. (A) Serum antibody 

response. (B) Mucosal antibody response 
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Figure 8 

Antibody response to GFP after boosting with recombinant GFP 

Mice were inoculated with 1x105 recombinant B. bronchiseptica 110H, recombinant 

110NH expressing GFP, wild-type 110H, wild-type 110NH or PBS via the intranasal 

route. On the 14th day post- inoculation the mice were given 50µg of GFP in PBS via the 

intranasal route.  NBAL and serum were collected on the 9th day after inoculation with 

GFP. GFP-specific IgG, IgM, and IgA antibodies were measured by KELISA and 

reported as KELISA slope. A) Serum antibody response. B) Mucosal antibody response 

X-axis labels, 1-strain 110H followed by GFP, 2-110NH followed by GFP, 3- 110H 

expressing GFP followed by GFP, 4-110NH expressing GFP followed by GFP, 5- PBS 

followed by GFP, 6- PBS alone.
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                 Abstract  

      Leukotoxin produced by Mannheimia (Pasteurella) haemolytica is an important 

virulence factor in shipping fever pneumonia in feedlot cattle and is a critical protective 

antigen. In this study, the immune response to a chimeric protein generated by combining 

a gene fragment encoding neutralizing epitopes of M. haemolytica leukotoxin and a 

fimbrial protein gene (fim N) from Bordetella bronchiseptica was evaluated. The 

recombinant gene was cloned in a bacterial expression vector under the control of the tac 

promoter and expressed as a fusion protein with glutathione-S-transferase (GST) in 

Escherichia coli. Immunization of mice with the recombinant protein, GST-LTXFIM 

elicited a significantly stronger anti- leukotoxin antibody response than comparable 

immunizations with GST-LTX fusion proteins lacking FIM N. The GST-LTXFIM was 

also more stable than GST-LTX during storage at -80oC, thus alleviating a stability 

problem inherent to leukotoxin. This chimeric protein may be a candidate for inclusion in 

new generation vaccines against shipping fever pneumonia.  
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Introduction 

       Shipping fever pneumonia in feedlot cattle is a multifactorial disease that results in 

great economic loss in the United States cattle industry. Mannheimia (Pasteurella) 

haemolytica is the primary bacterium associated with this condition. Leukotoxin secreted 

by M. haemolytica is a ruminant leukocyte-specific, pore-forming cytotoxin of the RTX 

(repeat in toxin) family of toxins, and is an important virulence factor of this organism (3, 

6, 8, 29, 31). Protection of cattle from shipping fever pneumonia has been correlated with 

the presence of leukotoxin-neutralizing antibodies (19, 20, 21, 25, 26, 27, 28). However, 

leukotoxin-neutralizing antibody responses induced by current vaccines are highly 

variable, and this disease remains an important health problem in feedlot cattle (28). 

Instability of native leukotoxin has led to difficulty in its purification and limited the 

inclusion of this antigen in vaccine preparations (7). The toxicity of native, biologically 

active leukotoxin may also be a concern for vaccine safety. 

      The gene encoding leukotoxin has been fully sequenced (12) and a number of 

leukotoxin- neutralizing monoclonal antibodies against linear and conformational 

epitopes have been mapped to peptides derived from the carboxy-terminal region of 

leukotoxin (10, 16). A minimal leukotoxin A gene fragment encoding carboxy-terminal 

aminoacids 713-939 was previously characterized and the truncated non-cytolytic 

recombinant protein (LTX) was recognized by three leukotoxin-neutralizing monoclonal 

antibodies (18). Immunization with this recombinant protein in Freund’s complete 

adjuvant (CFA) elicited considerable leukotoxin neutralizing-antibody response in 

rabbits; however, the protein was unstable on storage at -80 oC (18).  
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       Fimbriae are important virulence factors involved in attachment of many Gram- 

negative bacteria to host tissues (15). Fimbrial antigens are highly immunogenic and 

generally abundant on bacterial surfaces. We recently cloned and characterized a novel 

fimbrial gene, fim N, from Bordetella bronchiseptica (14), an upper respiratory tract 

pathogen that affects a wide variety of host animals (4, 11). Adhesins that serve 

colonizing functions in Bordetella spp. may be useful in delivering heterologous antigens 

and several B. pertussis antigens, including pertussis toxin (1, 2), adenylate cyclase toxin 

(23), tracheal colonization factor (5) and filamentous haemagglutinin (22) have been 

expressed as heterologous recombinant proteins. Fimbrial protein from Escherichia coli 

has been documented as effective carriers of heterologous antigens (15).  In the course of 

studying the suitability of FIM N as a heterologous antigen carrier, we observed that a 

LTX-FIM N recombinant fusion protein enhanced the immunogenicity of LTX beyond 

that which had been observed with other LTX recombinant proteins. This report 

describes the construction and immunologic evaluation of a LTX-FIM N recombinant 

fusion protein. 

Materials and methods 

Plasmids, bacterial strains, chemicals and enzymes  

      Plasmids used in this study are described in Table 1. Escherichia coli strains, 

Top10F’ (Invitrogen Inc., San Diego, CA) and BL21-Gold (Stratagene, La Jolla, CA) 

were used for cloning and protein expression, respectively. Restriction enzymes were 

products of Gibco/BRL (Gaithersburg, MD) and New England Biolabs (Beverly, MA). 

Taq polymerase was obtained from PANVERA Corporation (Madison WI). DNAse, 3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and isopropyl β-D- 
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thiogalactopyranoside (IPTG) were purchased from Sigma Chemical Company (St. 

Louis, MO). 

Construction of expression plasmids  

      Polymerase Chain Reaction (PCR) was performed in a Gene Amp PCR system 9600 

(Perkin Elmer, Narcross, GA). The fim N gene (without putative signal sequence) was 

amplified from PCR2-FIM by PCR using primers ECOFWD (5’-

GGGAATTCACGATCGTGATCACCGGCA -3’) and XHOREV (5’-

GGCTCGAGGATTATCCTTATCAAGCC -3’) with engineered restriction sites 

(underlined). The product was digested with XhoI and EcoRI, gel purified (Gel 

Extraction kit, Quiagen, Valencia, CA) and cloned into pGEX-5X-1 that had been pre-

digested with XhoI and EcoRI. The resulting plasmid was named pGEX-FIM. A 663 bp 

fragment of M. haemolytica leukotoxin A gene, encoding amino acids 719- 939, was 

amplified from pGEX-LT FUSION by PCR with primers LTBAMF (5’-

GGGGATCCATAACGATATCTTTAAAGG-3’) and LTECOR (5’-

GGGAATTCCATTGAAGTTGGAGCCAC-3’). Engineered BamHI and EcoRI 

restriction sites are underlined. The PCR product was cloned into BamHI and EcoRI sites 

of pGEX-5X-1 to form plasmid pGEX-LTBE. To construct the plasmid pGEX-LTFIM, 

the EcoRI and XhoI digested fimN fragment from pGEX-FIM was ligated to the EcoRI 

and XhoI sites of pGEX-LTBE. The GST gene was amplified from pGEX-5X-1 vector 

using primers 5’-TATTGGAAAATTAAGGGCCTCGAGCAA -3’and 5’-

TATATACTCGAGGGATTTCAAGTACTT -3’, and cloned into the XhoI site of pGEX-

LT FUSION downstream to leukotoxin fragment. This plasmid was called pGEX-

LTGST. The 5’ and 3’ ends of all constructs were sequenced at the University of 
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Tennessee DNA sequencing facility on an Applied Biosystems 373 automated sequencer. 

All recombinant plasmids were introduced into E.coli BL21-Gold by transformation (16). 

Expression and purification of the recombinant proteins  

       E. coli BL21-Gold cells harboring the expression plasmids were inoculated into one 

liter of LB broth containing ampicillin (100 µg/ml) and incubated at 37oC, with rotary 

shaking (220 rpm), to an optical density (A600)  of 0.6-0.8. Plasmid gene expression was 

induced with IPTG (final concentration, 0.2 mM) and after two hours of further 

incubation, bacteria were harvested by centrifugation at 5000 x g for 10 minutes. The 

pellet was used immediately for protein purification or stored at -80oC until further use. 

GST-LTX was initially purified under non-denaturing conditions according to the 

manufacturer’s (GST Gene Fusion System, Pharmacia, Piscataway, NJ) protocol. 

Subsequent purification of this protein and all other recombinant proteins was performed 

by a modification of the procedure reported by Frangioni and Neil (9). Briefly, cells were 

suspended in 100ml of STE buffer (10 mM Tris-HCl, pH 8.0; 150 mM NaCl; 1 mM 

EDTA) with 100 µg /ml of lysozyme. Dithiotreitol (DTT) was added to a final 

concentration of 5 mM, and the cell suspension was incubated on ice for 30 minutes. 

SarkosylTM (N-lauroylsarcosine) was added to a final concentration of 1.5%, and the 

suspension was sonicated for one minute to reduce the viscosity. DNAase (1200U) and 

Triton X-100 (final concentration 1%) were added, and the mixture was incubated on ice 

with intermittent shaking for one hour. After centrifugation  (14,000 x g for 20 minutes), 

the supernatant was mixed with a one ml slurry of 50% GST sepharose (Pharmacia, 

Piscataway, NJ) and incubated at room temperature with gentle shaking for 4 h. The GST 

sepharose was washed four times with PBS (phosphate buffered saline), and bound 
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proteins were eluted with 6 M guanidium chloride in PBS. The eluted fraction was 

dialyzed overnight in PBS. Protein concentrations were determined using the 

Bicinchoninic Acid Assay (Sigma Chemical Company, St Louis, MO). Samples were 

adjusted to contain 1 mg protein /ml in PBS and stored at -80oC until further use. The 

preparations were examined by SDS-PAGE and immunoblotting with leukotoxin and 

fimbriae specific antibodies. 

Animals and Immunizations  

      Four-week old New Zealand White rabbits and 4-6 week old female BALB/c mice 

(Harlan Laboratories, Indianapolis, IN) were maintained by routine procedures in an 

AALAC accredited laboratory animal facility. Rabbits were inoculated with 500 µg of 

recombinant protein (1mg/ml), GST-FIM, GST-LTX or GST-LTXFIM, emulsified in an 

equal volume of Freund’s incomplete adjuvant (IFA). Intramuscular injections were 

given to each rabbit on days 0, 14, 28, and 42, respectively. Blood was collected from 

rabbits on days 0 and 51.  

      Groups of 5-7 mice were immunized with recombinant proteins by intraperitoneal 

injection. Each animal received three 100 µl doses containing 50 µg of antigen. Antigens 

used for the first injections were given with an equal volume of CFA, IFA or PBS. 

Booster injections given on day 14, were in IFA or PBS, and final injections on day 35 

were given in PBS. A control group received CFA + PBS as the first injection, followed 

by IFA+PBS as second injection and PBS as third injection. Four groups of 5-7 mice 

were inoculated with 25µg, 50µg, 75µg, or 100µg of GST-LTXFIM in IFA. Booster 

injections were given as described above. All mice were bled from the retro-orbital sinus 
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nine days after the final immunization. After serum separation, all samples were stored at 

-80oC.  

Evaluation of antibody response 

      A capture ELISA using mouse monoclonal antibody MAb Ltx35 (10) was performed 

to determine anti- leukotoxin antibody titers in rabbits. In brief, 96-well plates (Immulon 

2HB, Dynex Technologies Inc, Chantilly, VA) were coated with MAb Ltx35 in PBS 

(10µg/ml), washed four times with PBS-0.05% Tween 20 (PBS-T) and blocked for 30 

minutes at 37oC in PBS-T. Native leukotoxin was prepared from culture supernatant of 

M. haemolytica as previously described (24), and was added to the wells at a previously 

determined optimum dilution of 1:100 and incubated for one hour at 37oC. After washing 

four times with PBS-T, plates were incubated for 2 h at 37oC with two-fold serial 

dilutions of serum from immunized animals. All serum dilutions were made in PBS-T. 

Plates were washed four times in PBS-T, incubated with secondary antibody (peroxidase 

conjugated goat anti-Rabbit IgG) for 1 h and developed by adding 100 µl of substrate 

solution containing 2,2’-azino di-ethylbenzothiazoline-6-sulfonic acid (ABTS, Sigma 

Chemical Company, St Louis, MO) and hydrogen peroxide. The A405 was measured in an 

EIA reader (BIO-TEK Instruments, Winooski, VT). The titers were determined as the 

reciprocal of the highest dilution of serum that gave an absorbance reading three times 

the conjugate control. For measuring antibodies in mice, leukotoxin was captured with 

ammonium sulfate precipitated rabbit polyclonal anti- leukotoxin serum (1/2000 dilution) 

and peroxidase conjugated rabbit anti-mouse IgG was used as the secondary antibody. 

Anti-FIM N antibodies were measured by ELISA as previously described (14).  
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Leukotoxin Neutralization Assays  

          Leukotoxin neutralization activity of serum was analyzed by a colorimetric 

cytotoxicity assay using tetrazolium dye (MTT) and BL-3 cells as previous ly described 

(27, 29).  Initially, native leukotoxin, prepared from culture supernatant of M. 

haemolytica was titrated using BL-3 cells to determine the toxin potency. One toxin unit 

was defined as the dilution of leukotoxin that killed 50% of the target cells. Heat 

inactivated (56oC for 30 minutes) serum samples diluted in RPMI-1640 were mixed with 

15 units of leukotoxin (optimal concentration was determined by titration) for 30 minutes 

at 4oC in triplicate wells of a 96 well plate. BL-3 cells (6.25 x104 /well) were added to the 

plates and incubated for 45 minutes at 37oC with 5% CO2. MTT (10mg/ml in RPMI 

1640) was added and incubated for 4 hours. The optical density (A562) was measured 

after lysing the cells with acid alcohol (0.4N HCl in isopropanol). The percentage of 

leukotoxin neutralization in each sample was calculated as described by Vega et al. (30) 

by using the formula:  

   {1-[(OD of the serum treated cells - OD of leukotoxin plus serum treated cells) / (OD of 

untreated cell control - OD of leukotoxin treated cells)]} x100. A cut-off value of 50% 

neutralization was considered positive for end point determination. Neutralization titers 

were determined for rabbit sera using two-fold serial dilutions. All mouse sera were 

analyzed at single dilutions of 1:60, 1:200 and 1:600. Like dilutions from each individual 

mouse were tested on a single day with same batch of cells and leukotoxin. 

  Statistical analyses 

        Statistical analyses were done using Statistical Analysis Software (SAS version 8) by 

the General Linear Model (GLM) procedure. The significance of differences between 
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groups for ELISA titers and leukotoxin neutralization activity was determined by 

Student’s t-tests. The data are expressed as mean +/- standard error of mean.  P values < 

0.05 were considered significant. 

Results 

Plasmid construction, recombinant protein expression and purification  

        The plasmids, pGEX-LTBE, pGEX-LTFIM, pGEX-FIM and pGEX-LTGST, were 

constructed in this study (Table 1, Appendix). Each plasmid encoded the GST gene 

downstream of a tac promoter and also had either a gene fragment (nucleotides 2673-

3336) encoding the carboxy-terminal portion of leukotoxin A, the 534 bp fragment 

(nucleotides 90-624) of the fim N gene, or both. Plasmid, pGEX-LTGST, had a second 

copy of a truncated GST gene cloned downstream from the leukotoxin fragment. All the 

genes were inserted in the correct reading frame as determined by DNA sequence 

analysis.  

        Each of the plasmids expressed recombinant protein in E. coli BL21-Gold after IPTG 

induction as determined by SDS PAGE and Western blots (Figure 1, Appendix). The 

stained polyacrylamide gels of whole-cell lysates showed prominent bands corresponding 

to the predicted molecular weights of the expected recombinant proteins (48.7 kD for 

GST-FIM, 53.5 kD for GST-LTX, 73.2 kD for GST-LTXFIM and 74.5 kD for GST-

LTXGST). Recombinant proteins, GST-LTX, GST-LTXFIM and GST-LTXGST, were 

recognized in Western blots by leukotoxin-neutralizing monoclonal antibodies MAb 

Ltx35, MAb Ltx4 and MAb Ltx2 (10). Monoclonal antibodies, BPA10, BPA5, and 

BPH2, specific for serotypes 2 fimbrial monomers of B.  pertussis (kindly provided by M 

Brennan, FDA ), reacted in Western blots with GST-FIM and GST-LTXFIM  
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      The majority of GST-LTXFIM and GST-FIM proteins were isolated from insoluble 

cell lysate fractions and required purification under denaturing condition. GST-LTX was 

recovered from soluble cell lysate fractions and was initially purified in non-denaturing 

conditions. However, all protein preparations used for immunization were purified under 

denaturing conditions by the same procedure. Upon dialysis, GST-FIM and GST-

LTXFIM formed precipitates; whereas, GST-LTX did not. Purified recombinant fusion 

proteins migrated to their predicted molecular weights in SDS-PAGE gels (Fig 2). The 

SDS-PAGE banding pattern of GST-LTXFIM was unchanged, showing no signs of 

degradation after storage at -80oC for up to one year. On Western blots, the stored GST-

LTXFIM retained its reactivity to MAb Ltx35; whereas, GST-LTX did not (Figure 3). 

GST-LTX produced varying patterns of low molecular weight banding, suggestive of 

protein degradation, in different preparations  

Antibody responses in Rabbits 

      Groups of two or three rabbits were immunized with chimeric proteins, GST-

LTXFIM, GST-LTX, and GST-FIM. Native leukotoxin and HTFIM were used as ELISA 

antigens. HTFIM was used instead of the homologous antigen in ELISA to avoid 

reactivity with anti-GST antibodies. Pre-immune sera had no detectable anti- leukotoxin 

or anti- HTFIM antibodies. Rabbits (n=3) immunized with GST-LTXFIM had higher 

average ELISA titers (70,300 +/- 17, 100) against native leukotoxin than rabbits (n=3) 

immunized with GST-LTX (38,900  +/- 500). However, anti-HTFIM titers were lower in 

rabbits immunized with GST-LTXFIM  (4200 +/- 1000) than those of rabbits (n=2) 

immunized with GST-FIM alone (23, 000 +/-1400). Rabbits immunized with GST-FIM 

did not produce detectable antibodies reactive with native leukotoxin and rabbits 
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immunized with GST-LTX did not produce detectable HTFIM reactive antibodies. 

Leukotoxin neutralization titers in the BL-3 cytotoxicity assay were higher in rabbits 

immunized with GST-LTXFIM (340+/-130) compared to those immunized with GST-

LTX (120 +/-15). The differences observed in ELISA and leukotoxin neutralization titers 

were not statistically analyzed due to the low sample size. Rather, the rabbit study 

provided preliminary data for a mouse study performed with larger groups of animals. 

Antibody response in mice  

        The immunogenicity of LTX fusion proteins and adjuvant combinations were further 

evaluated in mice. The anti- leukotoxin IgG titers were determined for all individual mice 

(Figure 4A). All groups immunized with GST-LTXFIM produced significantly higher 

anti- leukotoxin antibody responses compared to groups similarly immunized with GST-

LTX (p< 0.01). The anti- leukotoxin ELISA titers of control mice were < 20. The group 

of mice immunized with GST-LTXFIM in CFA had the highest anti- leukotoxin ELISA 

titers and was significantly different from all other groups (P<0.01). The anti- leukotoxin 

ELISA titers of mice immunized with GST-LTXFIM in IFA was not significantly 

different from those similarly immunized with same antigen that had been stored at -80oC 

for six months (p>0.05). However, anti- leukotoxin ELISA titers of these two groups were 

significantly higher than GST-LTX in CFA (p<0.05). Anti- leukotoxin ELISA titers were 

significantly lower in groups immunized with GST-LTXGST in IFA than groups 

immunized with GST-LTXFIM either in IFA (p< 0.01) or CFA (p<0.001). The mice 

immunized with GST-LTX without adjuvant and stored GST-LTX had the lowest anti-

leukotoxin ELISA titers.  
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        The percentage of leukotoxin activity neutralized by each individual serum sample at 

a screening serum dilution of 1:60, 1:200 and 1:600 was determined. The mean 

leukotoxin neutralization activity of serum from individual groups of mice and the 

number of animals which had a neutralization activity greater than 50% are shown in 

Figure 4B. All the groups immunized with GST-LTXFIM induced significantly higher 

leukotoxin neutralization activity compared to groups similarly immunized with GST-

LTX.  At the 1:60 dilution, serum from 25 out of 27 mice immunized with GST-LTXFIM 

had leukotoxin neutralization activity greater than 50%, whereas, only 11out of 27 mice 

in GST-LTX groups had leukotoxin neutralization activity greater than 50%. Out of 27 

mice immunized with GST-LTXFIM, 11 were positive for neutralization activity at a 

serum dilution of 1:200 and six were positive at a serum dilution of 1:600 (data not 

shown). By contrast, in mice immunized with GST-LTX, 3 out of 27 mice at 1:200 serum 

dilution and none at 1:600 had leukotoxin neutralization activity greater than 50% (data 

not shown). None of the control animals had leukotoxin neutralization activity greater 

than 50%. Neutralization activity was statistically analyzed for each group at the 1:60 

serum dilution. There was no significant difference in neutralization activity of sera from 

mice immunized with freshly prepared GST-LTXFIM in CFA, IFA or PBS, and mice 

immunized with GST-LTXFIM that had been stored at -80oC for 6 months (p>0.05). 

Mice immunized with GST-LTX in CFA had the highest anti- leukotoxin antibody 

response among the GST-LTX groups. There was no significant difference in leukotoxin 

neutralization activity between groups immunized with GST-LTX in IFA, stored GST-

LTX in IFA and the control groups given CFA +PBS (p>0.05). The GST-LTX /CFA 

combination was the only GST-LTX preparation that was able to induce a leukotoxin-



 158 

neutralizing antibody response which was comparable to those produced by GST-

LTXFIM antigens. Leukotoxin neutralization activities of sera from mice immunized 

GST-LTXGST in IFA was also significantly lower than those of sera from mice 

immunized with GST-LTXFIM in CFA (p<0.01), IFA (p< 0.05) and PBS (p<0.05). 

However, leukotoxin-neutralizing activity of sera from mice immunized with GST-

LTXGST was not significantly higher than from those immunized with GST-LTX in 

CFA (p>0.8), IFA (p>0.05) or PBS (p>0.6). Strong correlation between anti- leukotoxin 

ELISA titers and leukotoxin neutralization activity was observed in groups immunized 

with GST-LTXFIM (r = 0.60818, P = 0 .0008, n=27) but not in groups immunized with 

GST-LTX (r = 0.35196, P = 0.0718, n=27). Groups of mice immunized with 25µg, 50µg, 

75µg and 100µg of GST-LTXFIM in IFA, did not have significant differences in anti-

leukotoxin IgG titers or leukotoxin neutralization activity (Figure 5). 

Discussion  

        Leukotoxin is a major virulence factor in M. haemolytica- induced pneumonia of 

feedlot cattle (3, 6, 8, 29, 31). There is a significant correlation between high levels of 

leukotoxin-neutralizing antibodies and a reduction in pneumonic lesion scores in 

naturally and experimentally infected cattle (19, 20, 21, 25, 26, 27, 28). However, the 

instability of leukotoxin and the resulting difficulty in its purification have limited its use 

as an additive component in vaccines (7). This report demonstrates that immunization 

with a fusion protein consisting of the carboxy-terminal peptide of leukotoxin and FIM N 

induced high levels of leukotoxin-neutralizing antibodies in laboratory animals. Unlike 

GST-LTX, the chimeric GST-LTXFIM antigen was stable on storage at -80o C and 
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induced high levels of leukotoxin-neutralizing antibody even without the use of 

adjuvants.  

        The leukotoxin neutralization assay is very sensitive; variations in leukotoxin potency 

and the sensitivity of target cells can greatly influence the outcome of the assay. It has 

been reported that the coefficient of variation of this assay, performed on separate days, 

ranged from 0-36% (30). In this study, the effects of day to day variations were 

minimized by testing the serum from each individual on a single day using a single vial 

of leukotoxin and the same batch of BL-3 cells. End points were determined for serial 

dilutions of rabbit sera. The minimal dilution at which each individual mouse sample 

could be compared was 1:60 and the assay at this dilution was performed twice on two 

different days.  Leukotoxin neutralization activity was also determined at 1:200 and 

1:600 serum dilutions. It was estimated that the leukotoxin neutralization titers of GST-

LTXFIM immunized mice were between 60 and 600. These levels were consistent with 

the titers seen in rabbits and were as high as reported leukotoxin neutralization titers in 

cattle (26, 27, 30). In GST-LTX groups, more than half of the individual serum samples 

may have titers less than 60. 

        Mice immunized with antigens containing GST-LTXFIM consistently produced 

higher levels of anti- leukotoxin antibodies than mice similarly immunized with LTX 

antigens lacking FIM N.  Inclusion of CFA in the GST-LTXFIM antigen significantly 

increased the leukotoxin antibody response as measured by ELISA with native 

leukotoxin as antigen, but did not significantly affect leukotoxin-neutralizing antibody 

response in the BL-3 cell cytotoxicity assay. Doses of GST-LTXFIM antigen ranging 

from 25µg - 100µg produced equivalent leukotoxin-neutralizing antibody responses. 
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These observations suggest that stringent immunization protocols (eg. high dose, and 

adjuvants) may not be required to elicit maximum leukotoxin-neutralizing antibody 

responses when the chimeric GST-LTXFIM protein is used. It was previously observed 

that a recombinant fusion of leukotoxin and interleukin-2 produced an enhanced 

lymphocyte proliferation response but did not enhance anti- leukotoxin antibody 

production (13).  

         It was observed that the LTX-FIM immunogen, regardless of the adjuvant used, 

consistently induced higher levels of leukotoxin- neutralizing activity in all groups and 

that serum samples from mice immunized with LTX-FIM immunogen neutralized at least 

50% of the cytotoxicity of 15 units of leukotoxin at dilutions where other LTX 

immunogens lacking FIM N lost this capacity. The active toxin concentration used was 

intentionally chosen to be several fold higher than normally used (15 vs 1-3 units) to 

eliminate variability in cytotoxicity. Possibly more significant, was a much closer 

statistical correlation between anti- leukotoxin ELISA titers and leukotoxin neutralizing 

activity in sera from LTX-FIM immunized mice than in the sera from mice immunized 

with LTX lacking FIM. The strong suggestion is that the FIM fusion enhances production 

of potentially protective (neutralizing) antibodies more so than fusions lacking FIM N.  A 

stable subunit fragment of leukotoxin, such as GST-LTXFIM might provide a basis for 

an ELISA with greater specificity for protective, neutralizing antibodies and would be of 

great aid to vaccine evaluation. 

       The mechanism of enhancement of anti- leukotoxin antibody production following 

fusion of FIM N to the carboxy-terminus of GST-LTX is unknown but may simply 

reflect protection of exposed LTX epitopes against degradation. In vitro and in vivo 
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degradation or instability of neutralizing epitopes at the carboxy-terminus of GST-LTX 

may explain the lower responses to GST-LTX antigen preparations. This hypothesis is 

supported by the observation that GST-LTX no longer reacted with MAb Ltx35, a 

leukotoxin-neutralizing monoclonal antibody, after storage at -80oC. The frequent 

appearance of multiple protein bands in GST-LTX preparations is also suggestive of 

product deterioration. It is possible that the purification process altered the protein’s 

conformation in a fashion that would hasten proteolytic degradation. However, fresh 

preparations of GST-LTX consistently reacted with MAb Ltx35. It is likely that 

degradation occurred at the time of processing or after thawing, since little physical or 

enzymatic activity would be expected during storage at -80oC. The difference in the 

number of epitopes in these antigens does not appear to be a significant factor in these 

observations, since the molar proportion of LTX epitopes was approximately one third in 

the GST-LTXFIM antigen compared to GST-LTX. Also, the fusion of GST, a peptide of 

similar size to FIM N, to the carboxy- terminus of GST-LTX, did not effectively enhance 

the anti- leukotoxin antibody response. Therefore, it is probable that secondary or tertiary 

protein structure interactions in GST-LTXFIM provided greater LTX epitope exposure. 

These interactions may have been absent in GST-LTX or GST-LTXGST. FIM N is 

highly immunogenic; its hydrophobic nature and T-cell epitopes might have aided in 

enhanced antigen presentation and antibody response. The general insolubility and 

resistance of fimbrial proteins to chemical and proteolytic degradation (15) might also 

have predictably contributed to the enhanced immune response. 

      Vaccines incorporating live M. haemolytica organisms or whole toxin may produce 

febrile reactions and result in a lower generalized immune response (7). A stable 
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leukotoxin subunit vaccine component would seem to hold great promise for improving 

bovine health. The immunogenicity of LTX- FIM N recombinant protein in cattle and 

role of FIM N as an immunomodulatory antigen merit further study. 
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    Figure 1 

 SDS-PAGE and Western blot of E. coli whole-cell lysates harboring recombinant 

plasmids. 

                    A. SDS-PAGE- Whole-cell lysates of E. coli (BL21-Gold) expressing the recombinant 

proteins were separated on a 10% polyacrylamide gel and stained with Pierce Gel 

Code Blue Stain reagent. Pre-stained molecular weight markers in kDa (Bio-Rad) 

(lane 1), Native leukotoxin (lane 2), GST-LTX (lane 3), GST-LTXFIM (lane 4), GST-

FIM (lane 5), GST-LTXGST (lane 6). Arrows indicate prominent bands corresponding 

to the predicted molecular weight of expected recombinant proteins. 

    B. Western blot- Proteins were electro-transferred on to a nitrocellulose membrane and 

probed with anti- leukotoxin monoclonal antibody, MAb Ltx35. 
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Figure 2  

   SDS-PAGE of recombinant proteins used for immunization. 

Recombinant proteins were purified by affinity chromatography. Approximately 15µg of 

each protein was electrophoresed on a 10% polyacrylamide gel and stained with Pierce 

Gel Code Blue Stain reagent. Pre-stained molecular weight markers in kDa (Bio-Rad) 

(lane 1), GST-LTXFIM (lane 2), GST-LTX (lane 3), GST-FIM (lane 4). 
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Figure 3 

SDS-PAGE and Western blot of recombinant GST-LTX and GST-LTXFIM stored at -

80oC for 1 year.  

A. SDS-PAGE -Approximately 15µg of each protein was electrophoresed on a 10% 

polyacrylamide gel and stained with Pierce Gel Code Blue Stain reagent. Pre-stained 

molecular weight markers in kDa (Bio-Rad) (lane 1) GST-LTX (lane 2) GST-LTXFIM 

(lane 3) 

B. Western blot. The proteins were electro-transferred to nitrocellulose and probed with 

anti- leukotoxin antibody MAb Ltx35.  
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    Figure 4 

               Antibody response of individual groups of mice immunized with recombinant proteins 

               Mice were immunized with three successive injections of antigens on days1, 14 and 35 

as described in text. (1). GST-LTXFIM in CFA, (2). GST-LTX in CFA, (3). GST-

LTXFIM in IFA, (4). GST-LTX in IFA, (5). GST-LTXFIM in PBS, (6). GST-LTX in 

PBS, (7). GST-LTXGST in IFA, (8). GST-LTXFIM in IFA (stored), (9). GST-LTX in 

IFA (stored), (10). Control (CFA+PBS). The composition of first immunization was as 

given above. The second dose of antigen had similar adjuvant composition but CFA was 

substituted with IFA, and antigen alone in PBS was used for third dose in each group. 

Dark bars represent LTX with  

               FIM N, while lighter bars represent LTX immunogens without FIM N. The significance 

of differences in responses from immunized groups was analyzed by Student’s t-test. A  

p-value <0.05 was considered significant. Presence of asterisk indicates the values are 

significantly different from control animals. (* = p< 0.001., ** = p< 0.01., *** = 

p<0.05). 

  A.  Mean anti- leukotoxin IgG ELISA titers +/- SEM is reported.  

    B.  Leukotoxin neutralization activity is expressed as the percentage of neutralization of 

15 units of leukotoxin by a 1:60 dilution of serum measured on two different days. 

The mean  +/-SEM is reported. The number shown above each bar is the number of 

mice that had greater than 50% leukotoxin neutralization activity out of the total 

number tested. 
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Figure 5 

 Effect of GST-LTXFIM antigen dose on anti- leukotoxin antibody response in mice. 

               Mice were inoculated I.P. on days 0, 14, and 35 with GST-LTXFIM. The first two doses 

were in IFA and last in PBS. The significance of differences in responses from 

immunized groups was analyzed by Student ’s t-test. A p-value <0.05 was considered 

significant. Presence of asterisk indicates the values are significantly different from 

control animals. (* = p< 0.001., ** = p< 0.01., *** = p<0.05). 

            A.  Mean anti- leukotoxin IgG titers +/- SEM.  

         B.  Leukotoxin neutralization activity is expressed as the percentage of neutralization of 

15 units of leukotoxin by a 1:60 dilution of serum. The mean +/- SEM is reported. 
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TABLE 1. Descriptions of plasmids used in this study 
Plasmid                               Description 

PCR 2.1                         TA Cloning vector (Invitrogen) Ampicillin resistance                                    

 
pGEX-5X-1                   GST gene fusion expression vector (Pharmacia). 
 
PCR2-FIM                     fim N gene with regulatory and coding                      

                                        sequence in EcoRI and HindIII  sites of  PCR 2.1 (14) 
  

pGEX-FIM                     fim N gene coding sequence without the putative signal sequence 

in   EcoRI and XhoI sites of pGEX-5X-1 (this study) (GST-

FIM)A 

                                       
pGEX-LT FUSION         Leukotoxin A gene nucleotides encoding carboxy-terminal   

amino acids  713-939 in  EcoRI and XhoI sites of  pGEX-4T-1 
(16) 

 
pGEX-LTBE                  Leukotoxin A gene nucleotides encoding carboxy-terminal  

aminoacids 719-939 from pGEX LT FUSION in BamH I and 
EcoRI sites of pGEX- 5X-1 (this study) (GST-LTX)A 

 
pGEX-LTFIM               Leukotoxin A gene fragment in BamHI and EcoRI sites and fim 

N gene in EcoRI and XhoI sites of pGEX-5x-1.(this study)  (GST-
LTXFIM )A 

                         
pGEX-LTGST              GST gene fragment cloned downstream to LTX in XhoI site of  
                                       pGEX-LT FUSION. (This study) (GST-LTXGST)A 

                   
pPROEXTM-HT-FIM    fim N gene without the signal sequence in  
                                        pPROEXTM HT (Gibco/BRL) (HTFIM)A  (14) 
 
 

 
 
Letters in the parenthesis with superscript A indicate the name of the protein expressed 
by the plasmids. 
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                                                  PART 5 
                              General Summary
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Summary 
      The first part of this research work was focused on identifying constitutive 

promoters suitable for heterologous antigen expression in B. bronchiseptica. This 

investigation resulted in isolation and characterization of a promoter region related to 

heat shock gene family. The promoter was active in vitro and was able to induce high-

level expression of GFP.  The taco promoter, which is an E. coli derived promoter, was 

also active inB. bronchiseptica. Low-level activity of Fim N promoter was detected in 

Bvg+ strains of B. bronchiseptica indicating that this promoter was Bvg-regulated. The 

low level activity of this promoter was enhanced by growth in a minimal salt media and 

may be further enhanced by manipulating the C-stretch region of the promoter. The 

promoter we identified belonged to the family of heat shock genes. These genes are 

usually induced under stress conditions. However this study did not identify any 

induction condition for this promoter region.  

      The plasmid used to express heterologous antigen in B. bronchiseptica was originally 

isolated from B. bronchiseptica. However, the reconstructed plasmid was not stable in 

vivo or in vitro under non-selective condition. The foreign DNA engineered into the 

plasmid and heterologous antigen expression may be the factors contributing to plasmid 

instability. Identification of moderately active promoters, construction of more stable 

plasmids, and chromosomal integration of the foreign gene can be pursued 

       In the second part of the study, we expressed a non-toxic protective P. multocida 

toxin fragment (PMTCE) in B. bronchiseptica under the control of the promoter we 

identified. However, the level of expression of this protein was very low. Intranasal 

inoculation with B. bronchiseptica expressing PMTCE did not induce a PMT-specific 
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antibody response. Mucosal and systemic antibody response was generated against B. 

bronchiseptica. However, four intranasal inoculations at 14 day intervals with B. 

bronchiseptica expressing GFP induced a mucosal and systemic immune response 

against GFP. Factors like differences in the antigenicity, low level expression and 

plasmid instability might have contributed to the difference in immune response to these 

two heterologous antigens expressed by B. bronchiseptica. Improvement in plasmid 

stability and antigen expression is required to improve the system. 

      The third part of this study evaluated the immune response to a chimeric protein 

created by fusing the FIM N protein of B. bronchiseptica and an unstable protective 

fragment of Mannheimia haemolytica leukotoxin. Immunization of mice with this 

chimeric protein elicited stronger anti- leukotoxin antibodies than similar immunization 

with protein, which lacks the FIM N. Also, the molecular chimerization improved the 

stability of the leukotoxin fragment. This protein may be an efficient vaccine candidate to 

prevent M. haemolytica-induced shipping fever in feedlot cattle. Adhesins are excellent 

targets for vaccine development and they have been explored as potential vehicles for 

delivery of heterologous antigens. FIM N protein may be an effective carrier for 

heterologous antigen delivery in B. bronchiseptica. However, the immunomodulatory 

property of FIM N needs further investigation.  

       Atrophic rhinitis is a disease of significant economic importance to US agriculture. 

The involvement of B. bronchiseptica and P. multocida in this disease condition is well 

documented.  This study provides basis for the development of an improved, single 

component vaccine against atrophic rhinitis. However, optimization of antigen expression 

to induce an effective immune response is required. Further genetic modification to 
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inactivate the important virulence factors of B. bronchiseptica has to be pursued. Since B. 

bronchiseptica can colonize the respiratory tract of wide variety of host species, potential 

for applying this model to other species and diseases is great. Utilizing the benign 

colonization of B. bronchiseptica to deliver a protective antigen will be a potent way to 

induce a mucosal immune response at the respiratory tract mucosa. 
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