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Abstract

The purpose of this study was to assess and redesign an existing 83-site synoptic

water quality monitoring network in the Great Smoky Mountains National Park.  The

study involved a spatial analysis of water quality data (pH, ANC, conductivity,

chloride, nitrate, sulfate, sodium, and potassium), watershed characteristics (geology,

morphology, and vegetation), and collocated site information to determine which sites

were redundant and a temporal analysis to determine the effectiveness of the current

sampling frequency to detect long-term trends.  The spatial analysis employed a

simulated annealing algorithm using the variable costs of the network and the results of

multivariate data techniques to identify an optimized subset of the existing sampling

sites based on a maximization of benefits.  A second simulated annealing algorithm was

created to identify optimum user-defined monitoring networks of n sites and to validate

the results of the first simulated annealing program.  The first simulated annealing

program identified an optimized network consisting of 67 of the existing 83 sampling

sites.  The second simulated annealing algorithm bracketed the same 67 sites and also

provided a basis for an ordered discontinuation of sampling sites by identifying the best

ten-site monitoring network through the best 70-site monitoring network. 

The temporal analysis employed the “effective” sample method, Sen's slope

estimator, Mann-Kendall test for trend, and a boxplot analysis to determine the

effectiveness and the power of the current sampling frequency to detect long-term

trends.  The results showed that the current sampling frequency of four samples per year

presents a low statistical power for short historical records.  However, increasing the
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sampling frequency to more than 12 samples per year creates serial dependence

between samples.   

By combining the results of the spatial and temporal analyses a new network is

proposed by dividing the network into primary, secondary, and tertiary sites with

sampling frequencies of six and 12 samples per year.  Seventeen new sites are also

proposed to collect additional data above 3000 feet MSL because the existing number

of sampling sites is not proportional to park area in certain elevation ranges. 
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Executive Summary

Introduction

This study was performed to assess and redesign the synoptic water quality

monitoring network in the Great Smoky Mountains National Park.  The process used

for conducting this study focuses on improving and preserving the long-term trend

monitoring capabilities so that the future of natural resources can be effectively

managed.  The data used for the spatial analyses were the means of water quality

variables (pH, ANC, conductivity, chloride, nitrate, sulfate, sodium, and potassium),

watershed characteristics (geology, morphology, and vegetation), and collocated

sampling site information.  The sampling frequency analyses were conducted using

high frequency sampling data from the Noland Divide, southwestern stream.   

Spatial Analyses

The current network includes 83 stream sampling sites and seven high elevation

springs for a total of 90 sites that costs approximately $139,575 per year to operate.

The total cost of the network can be divided into approximate fixed and variable costs

of  $70,410 and $69,165, respectively.  The variable cost of $69,165 can be broken

down further to $50,000 for laboratory costs and database management, and $19,200 for

collecting the samples.  The variable costs are based on the current sampling frequency

of four samples per year for each site.  Benefits are assigned to the network based on a

20 percent return of the variable costs (multiplier of 1.2 applied to the variable costs), or

$60,000 for laboratory costs and database management, and $23,040 for the collection
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of samples.   

The 83 stream sampling sites were the focus of this study; however,

recommendations were also made as to the future of the high elevation springs.  The

existing stream sampling sites were assessed using the multivariate statistical

techniques of principal components analysis (PCA), cluster analysis (CA), and

discriminant analysis (DA) to determine the degree of data-redundancy among the

sampling sites.  Some redundancy in the data is needed; however, too much may require

costs that result in only a very small increase in information.  The money from

excessive data-redundant sites might be better spent on increasing the sampling

frequency or adding new sampling sites to the existing network.  The collocated site

information and the centroid distances from the cluster analyses of the water quality

variables and the watershed characteristics were used for apportioning the variable cost

of $83,040 to each sampling site.  After benefit and cost assignments have been made

the network is optimized using simulated annealing by maximizing the net benefits

(benefits – costs).  

The spatial analyses resulted in a priority ranking of sites into primary,

secondary, and tertiary groups.  The primary group consists of the following sampling

sites:  4, 13, 14, 20, 23, 24, 30, 34, 47, 49, 66, 71, 73, 74, 114, 137, 142, 143, 144, 147,

148, 149, 173, 174, 191, 193, 194, 233, 234, 237, 251, 252, 253, 266, 268, 291, 293,

488, 489, 492, and 493 .  The primary group is made up mainly of the 40 best sites from

the simulated annealing analysis.  Representation from each water quality cluster,

elevation class, and watershed characteristic cluster is maintained in the primary group
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of sampling sites.  

The secondary group consists of sampling sites:  115, 156, 184, 192, 221, 310,

311, 337, 472, 473, 479, 480, 481, 482, 483, 484, and 485 .  These sites are needed to

guarantee that at least three sampling sites from each cluster and elevation class are

represented in the redesigned network (if each cluster or class contained three or more

sites originally). 

The tertiary group consists of sampling sites:  50, 52, 150, 186, 190, 209, 210,

213, 214, 215, 474, and 475 .  The addition of these sites would complete the optimal

network formed by the initial simulated annealing that produces the maximized net

benefit.  At this point these sites are recommended for discontinuation.

It is recommended that 17 additional new sites be added to the network.  The

elevation range from 3000 feet MSL and above is not well represented in the

monitoring network in terms of the proportion of sampling sites to park area in this

elevation range.  The addition of these sites would correct the proportionality.  

Sites definitely recommended for discontinuation because of their ranking in the

simulated annealing include:  1, 3, 43, 45, 46, 103, 104, 106, 107, 127, 138, 200, and

336.  However, the NPS will need to make the final decision on which sites are to be

discontinued.  A detailed view of all these sites are shown in Figures 40 and 41.    

Frequency Analyses

The study also assessed the sampling frequency using the “effective” sampling

method, Sen's slope estimation method, Mann-Kendall test for trend, and a boxplot
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analysis of the Noland Divide, southwestern stream data, to determine the effectiveness

of the current sampling frequency to detect long-term trends.  The “effective” sample

method was used to determine the maximum number of independent samples that could

be collected each year.  The remaining methods were used to determine the adequacy of

larger sampling frequencies to identify trends that were found in the original weekly

sampling data.   

An increase in the sampling frequency may increase the effectiveness of trend

detection to a point, but a sampling frequency that results in the collection of dependent

samples produces no additional information.  An increase in the sampling frequency up

to the collection of the maximum number of independent samples in a a given year will

nevertheless decrease the amount of time required to reliably detect trends with a

specified statistical confidence and power. 

The “effective” sample method revealed that the maximum number of

independent samples per year ranged from a low of eight for potassium to a high of 23

for sulfate.  Disregarding potassium, since potassium is not regarded as a robust

measure of stream health, the range is between ten and 23 samples per year with the

most of the variables being between 10 and 13 samples per year.  This would seem to

indicate that the frequency of sampling should be at least six samples per year but not

more than 12 samples per year.  For a sampling record of 15 years with a specified

statistical confidence and power of 95 and 90 percent, respectively, the detectable trend

level would be approximately 1.4 for a sampling frequency of four samples per year.  If

the sampling frequency were increased to 12 samples per year the detectable trend level

xix



would decrease to approximately 0.8.  In other words an increase in sampling frequency

from four to 12 samples per year would allow the detection of a trend slope, with the

same confidence and power, that is 43 percent less.  

Sen's slope estimation method, Mann-Kendall test for trend, and the boxplot

analyses showed that on average a sampling interval of bimonthly to monthly can detect

the trends that are evident in the weekly sampling data at Noland Divide.  There are

some exceptions to this but remember that a sampling frequency greater than 12

samples per year will result in samples that are serially dependent.  

Recommendations    

The following recommendations and costs are presented based on the results of

the spatial and frequency analyses:

● Sample the primary sites [4, 13, 14, 20, 23, 24, 30, 34, 49, 66, 71, 73, 74, 144, 147,

148, 149, 173, 174, 193, 194, 233, 237, 251, 252, 253, 266, 268, 291, 293, 488, and

489] using a sampling frequency of 12 samples per year. (+ $73,728 variable cost)

● Sample the primary sites [47, 114, 137, 142, 143, 191, 234, 492, and 493 ] using a

sampling frequency of 6 samples per year.  (+ $10,368 variable cost)

● Sample the secondary sites [115, 156, 184, 192, 221, 310, 311, 337, 472, 473, 479,

480, 481, 482, 483, 484, and 485] using a sampling frequency of six samples per

year.  (+ $19,584 variable costs) 

● Add 17 new sites above elevation 3000 feet MSL with a sampling frequency of six

samples per year.  (+ $19,584 variable cost)
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● Tertiary sites  [50, 52, 150, 186, 190, 209, 210, 213, 214, 215, 474, and 475] could

be considered on a site-by-site basis with a sampling frequency of six samples per

year.  (+ $1154 per site per year if included) (+ $13,848 variable cost if all are

included)  

● Discontinue sites: 1, 3, 43, 45, 46, 103, 104, 106, 107, 127, 138, 200, and 336 .

(- $9,984 savings from existing network if all are discontinued and based on current

sampling frequency of four samples per year)

● Discontinue the sampling of high-elevation springs. (- $5,384 savings from the

existing network if all are discontinued and based on current sampling frequency of

four samples per year)

● Cost summary based on the recommendations above:

Existing monitoring network (fixed and variable) $139,575

Redesigned monitoring network

Primary sites (variable costs) $84,096

Secondary sites (variable costs) $19,584

New sites (variable costs) $19,584

Fixed costs $70,410

TOTAL redesigned monitoring network $193,674

Net increase from existing to redesigned 
monitoring network $54,099
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Chapter 1 INTRODUCTION

1.1  Purpose of this Study 

The purpose of this study is to statistically assess the existing synoptic stream

sampling network of the Great Smoky Mountains National Park (GRSM), make

recommendations on which of these sites could be discontinued without a significant

loss of data, and to determine if the sampling frequency is adequate to detect long-term

trends in water quality variables.  Since 1988, the number of sampling sites has been

reduced from 300 to 90; eighty-three samples are taken from streams and seven are

taken from high-elevation springs.  The National Park Service (NPS) is now faced with

further reductions in sampling locations because funding has not kept pace with

inflation and existing funds.  To assist the NPS in this decision-making process,

multivariate statistical procedures will be applied to the current network to determine

the redundancy of data that is being produced between sampling sites across the

monitoring network.  Time series techniques were applied to the weekly sampling data

from Noland Divide to determine an optimal sampling frequency.  These measures will

ensure the effectiveness of the network while maximizing the benefits and minimizing

the costs.  

1.2  Objectives of this Study

Six objectives were integral to the purpose of this study and include both the

spatial and temporal analyses of the data.  These objectives are as follows:

• Determine the degree of data-redundancy of water quality variables between the

1



sampling sites using Principal Components Analysis (PCA), Clustering Analysis

(CA), and Discriminant Analysis (DA).

• Assess the similarities of the sampling sites based on the morphology, vegetation,

and geology of the watersheds in which the sampling sites are located using PCA,

CA, and DA.

• Assign benefits to collocated sampling sites where auxiliary information on fish and

benthic organisms are collected.

• Develop a simulated annealing (SA) optimization algorithm that will integrate the

results of the above analyses to maximize the benefits and minimize the costs of the

network by identifying sites that could be discontinued without a significant loss of

information.

• Evaluate the current sampling frequency using Sen’s slope method, Mann-Kendall

test for trend, “effective” sample method, and box-plot comparison. 

• Compile the spatial and temporal findings and make final recommendations to the

NPS.  

1.3  Justification for this Study

The history of this network has been a reduction in the number of sampling sites

and this study is needed to assess its current state before further changes are made.  If a

sampling network is facing a reduction in the number of sampling sites, analyses should

be performed to ensure that the effectiveness of the network is not placed in jeopardy.

Historical records also show that sampling for this network has been conducted at

2



irregular intervals in the past, especially in the early years.  An assessment of the

current monitoring network will assist the NPS in making confident decisions on which

sampling sites to discontinue and if the current sampling frequency is adequate to detect

trend.  Also under consideration will be the cost effectiveness of collecting data and the

auxiliary needs at each sampling site.    
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Chapter 2 REVIEW OF LITERATURE

The literature review for this study has focused on five key areas:

• Design issues of a new monitoring network 

• Considerations for redesign of an existing monitoring network

• Historical perspectives of network design

• Review of proposed statistical methods

• Network optimization using heuristic methods

The literature review for this project began by searching the following electronic

databases:  

• Applied Science and Technology Index 

• Chemical Abstracts 

• GeoRef 

• Web of Science  

Keyword phrases used in the search included:  “principal component analysis,” “water

quality network,” “sampling network,” “network design,” “water sampling,”

“hydrologic network,” “water quality monitoring,” “network optimization,” “stream

sampling,” and “redundancy.”  There were other keyword phrases used but these, or a

combination of these, led to most of the literature used in this study.  Approximately 80

percent of the references are from refereed journals while the remaining 20 percent are

from books, publications, and technical reports.  
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2.1  Introduction

This study involves the redesign of an existing monitoring network.  However,

knowledge of the requirements for building a new monitoring network remains very

important because of the goals or objectives that are formed during the design process.

In the case of the network considered in this study, the primary goal is to be able to

detect long-term trend.  This is not to ignore the fact that this sampling network must

also provide an understanding of the drivers of water quality, the suitability of water

quality for aquatic life, and assistance to the NPS for managing resources.  The

following literature review presents a synopsis of the major works used to support the

concepts of this study.  It also examines some of the methods used in the past to

accomplish some of these same objectives.  

2.2  Design Issues of a New Monitoring Network 

Monitoring of environmental variables provides a strong basis for being able to

make decisions about natural resources and conservation, and for monitoring changes of

these variables (Moss, Lettenmaier, et al. 1978).  It is perhaps the only way that these

issues can be addressed directly.  The main purpose of the monitoring network must be

realized early in the planning process so that goals or objectives can be determined

properly.  However, the importance of the main purpose and clearly defined objectives

is often overlooked during the planning process (Palmer and Mackenzie 1985).  There

is no single approach to designing a monitoring network (Palmer and Mackenzie 1985)

and for good reason.  The physical systems are very diverse and produce innumerable

responses from various inputs (Lettenmaier 1979).  However, in recent years more
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attention has been focused on network design (Reinelt, Horner, et al. 1988).  Sampling

networks have been established to monitor water quality for a number of purposes.

Moss (1979) and Whitfield (1988) list some goals of monitoring networks.  These are:

• Determination of trends

• Compliance with regulations or stated objectives

• Estimation of mass transport

• Assessment of environmental impacts

• General surveillance

It is easy to see that each one of these goals requires a different sampling

scheme.  For example, determination of trends would probably require a lower sampling

frequency but over a much longer period of time than a network where compliance with

regulations is the main goal.  This may require sampling at a high frequency over a

short period of time.  The spatial pattern of sampling is also likely to be very different.

Long-term trend sampling may require a broad network over a large area while

compliance sampling may require a high density network over a small area.  These

issues and the primary goal of the network are a prelude to determining the number and

location of sampling sites, the type of data needed, the length of recordation required,

and the sampling frequency (Moss, Lettenmaier, et al. 1978; Reinelt, Horner, et al.

1988; Ward 1989).  Furthermore, quantitative answers to these issues guided by the goal

of the network will help to guarantee the success of the network by providing

information that is understandable and usable (Moss, Lettenmaier, et al. 1978; Ward

1989).   
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The process of designing a monitoring network is very complicated and requires

many resources.  All these issues point to a planning process that requires knowledge

from different fields of expertise including chemistry, biology, hydrology, and statistics.

It is also very important for the decision makers to be included and to fully understand

the goals of the network, its limits, and the information that it will produce early in the

design process (Messer 1989).   

Another issue that needs to be known early in the design process is the available

funding.  The cost of the monitoring will be affected by a number of issues including:

• Number and location sampling sites

• Sampling frequency

• Water quality variables measured

Lettenmaier (1978) suggested that sites should be located to minimize travel and

collection time.  It should be noted, however, that he puts this statement at the end of a

list of issues to stress its lack of importance when compared to other issues.  Some of

the considerations for station selection stated by Smith and McBride (1990) are:

• Accessibility

• Transport time from the field to the lab

• Ease and safety of sampling

In the absence of data to use for spatial analysis, much of the literature infers that

station location for a new network is somewhat subjective and should be guided by the

goals of the network.  If no prior water quality data are available at the location of the

proposed network, the preliminary design locations may be chosen using a method
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proposed by Sharp (1970; 1971).  He suggested that stream order could be viewed as a

degree of uncertainty and, therefore, can be used to locate sampling sites.  Once data are

collected, the monitoring sites can then be analyzed for redundancy (Langbein 1979;

Whitfield 1988) to determine if sites can be discontinued.  If the data between sites are

not redundant, this may indicate that there is a shortage of sampling sites.  Lettenmaier

(1978) suggests a number of factors to consider for locating long-term trend detection

sampling sites.  Of those factors, the most important for this project are:

• Sites should be located to monitor as much of the watershed as possible

• Sites should be selected based on the length and quality of data already recorded at

that particular site (if historical data exists)

• Sites should be located so that travel and collection time is minimized

The first factor is to make certain that as much of the watershed as possible is

monitored.  An objective of this study is to ensure that selected watersheds are sampled

from the upper elevations to the lower elevations resulting in a stream profile of the

measurement variables.  Liebetrau (1979) suggests that a stratified sampling scheme

with respect to physiographic or topographic attributes be used.  Harwell’s (2001)

findings of different trends at different elevation classes provides a good basis for this

scheme.  The second factor pertains to length and quality of data.  The record lengths

for the sites in this study are the same for the most part and the quality of the data is

currently very good.  However, a cursory review of record lengths and data quality from

the early years is still recommended and may play a role in whether or not a sampling

site is discontinued.  The third factor is cost.  Funding cutbacks and/or redirection of
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existing funds are resulting in downsizing of existing networks.  Methods are needed to

guarantee that the goals of the sampling network are not compromised.  

Sampling frequency should be long enough to minimize costs yet short enough

to capture the natural variability in the data (Whitfield 1988; Biswas 1997).  Whitfield

suggests that initially a high sampling frequency should be used.  After a “reasonable”

amount of data is gathered, an analysis can be performed to determine if adjustments

can be made to the sampling frequency.  In the case of a new network where no

historical data are available, it may be possible to find a nearby site with similar

morphological characteristics that is being sampled.  These data can then be used to

estimate an initial sampling frequency.  This method was used by Lachance, Bobée, et

al. (1989) to determine the sampling frequency on a previously unsampled lake in

Québec.  Lettenmaier (1978) recommends a method based on the serial correlations of

an AR(1) model to calculate the “effective” independent sample size.  This method will

be discussed in greater detail in Section 4.4. 

As data are collected, the network can be assessed to determine if the number of

sampling sites or the sampling frequency need to be adjusted (Langbein 1979; Whitfield

1988). As mentioned earlier, both of these factors are very important, especially from an

economic standpoint.   From an operational standpoint, it may be that some sites are

redundant and can be discontinued.  On the other hand, there may be a need for

additional sites.  Sampling frequency may also need to be adjusted because of changes

in trend magnitude, seasonality, or variability.  
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2.3  Considerations for Assessment of an Existing Monitoring
Network

Assessment of an existing monitoring network is usually easier than designing a

new network because of the data available.  Recalling some of the issues raised

previously regarding sampling locations and frequency, one can see how collected data

can make these determinations less subjective and mainly quantitative.  Langbein

(1979) uses the term “audit” to define redesigning or assessing an existing monitoring

network.  He suggests the following outline for auditing a monitoring network:

• Describe the purpose of the network, all associated costs, and funding resources

• Define the objectives of the network and how they may have evolved over time

• Identify sources of error (measurement, model, recordation, sampling, etc.)

• Analyze results, efficiency, and redundancy

• Study the implications of the results of the network

Some of these issues, especially those that are operational in nature, should probably be

evaluated after one year of operation while others may require a large amount of data

from the field.  This would allow for a full understanding of their behavior and ability to

make sound judgments.  It should be noted that such an assessment with limited data

(only one year) should not include a determination of whether or not the number or

location of sites should be adjusted.  In addition, the sampling frequency should not be

changed unless there is strong evidence to do so.  Smith and McBride (1990) assessed

the nationwide monitoring network in New Zealand one year after operation began.

This network consisted of 77 river sampling sites and 30 lake sampling sites sampled

monthly and bimonthly, respectively.  Their work focuses on the state of staff training,
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accuracy, laboratory and field operations, QA/QC procedures, and data management.

These all involve the reduction and minimization of error in the laboratory and field,

which is listed as the third outline point above by Langbein.  

The issues of costs and funding in the first outline point above are part of the

main focus of this study.  The second point involves assessing the stated objectives and

determining if they have evolved as the sampling has progressed.  The main objective

of this project is clear and has remained so.  However, there have been redirections of

some of the secondary objectives from time to time because of other water quality needs

such as collocated studies.  The fifth and final point is being addressed in ongoing work

at the University of Tennessee. 

Costs of operating monitoring networks are constantly under the scrutiny of

decision makers who control the funding; therefore, it is of utmost importance that the

information gained from the network be efficient and cost-effective.  Cost-effectiveness

has not been a major focus of many monitoring network designs (Sanders and Adrian

1978; Lettenmaier, Anderson, et al. 1984; Mackenzie, Palmer, et al. 1987).  Ward (1996)

recognizes that the decision-makers, as well as the informed taxpayer want to know

what they are getting for their money.  This statement should not cause one to

immediately think that monitoring must be held to a bare minimum.  What it should

imply is that a monitoring system must be accountable for producing high quality

information in a cost-effective manner.  The definition of high quality in this case would

be that the goals of the system are continuously being satisfied.  Periodic assessment of

the monitoring system is needed to stay on-track with the system goals.  It must be
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noted that the system should not be assessed so often that there is a possibility of data

fragmentation (Lettenmaier, Conquest, et al. 1982).  A good example of an assessment

and consolidation of an existing network is where Lettenmaier, Anderson, et al. (1984)

worked with the City of Seattle to reduce their sampling sites from 81 to 47.  He

combined a scoring system that included information about salmon habitat, recreation,

fecal coliform counts, years of record, and basin information with an optimization

routine that maximizes scores for sampling sites divided into primary basins that

discharge into Puget Sound.  This ensured that all primary basins would be assigned at

least one sampling site.  The total cost savings was approximately $87,000 per year,

which allowed the City of Seattle to conduct needed short-term, intensive monitoring at

other locations.  

It is clear that probably the most significant and direct impact to the cost of a

monitoring network is the location and number of sampling sites and the sampling

frequency.  The locations of the sites are normally controlled by those constraints

mentioned in the previous section.  The number of sampling sites and the sampling

frequency, however, can now be explored further using the available data.  It is

worthwhile to once again mention assessment of the operational aspects of the network

at the end of the first year to make certain that the data used to assess the number of

sampling sites and the sampling frequency at some point will be reliable information. 

2.3.1 Statistical Methods

Many types of statistical tests have been utilized over the years in monitoring

programs to study water quality data and to determine if trends exist.  Monitoring
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programs range in size from small municipal projects, seeking to meet the requirements

of the EPA’s NPDES Phase I and II storm water mandates, to nationwide programs such

as the U.S. Geological Survey’s NAWQA (National Water-Quality Assessment)

network.  Many of the smaller programs are just beginning because of the more recent

EPA requirements, while the NAWQA program began in 1991 with 137 surface water

networks, and a planned addition of 21 new networks by 2009 (Mueller, Lapham, et al.

2002).  The marked increase in monitoring programs demonstrates the concern placed

on the nation’s water quality.  Reliable techniques are needed to insure that the most

cost-effective data are obtained in these programs.   

Statistical methods have been used to treat a variety of data from univariate to

multivariate cases.  However, it seems that the majority of the focus found in the

historical literature has been placed on univariate and bivariate data.  Ideally, users of

statistical methods find the greatest ease when the water quality data are linear, normal,

independent and identically distributed with no outliers.  However, this is almost never

the case.  Over the past several decades, many water quality researchers have developed

new approaches for dealing with problems such as non-normal data, non-linearity,

seasonality, outliers, dependence, irregular spaced intervals, missing data, and serial

correlation (Lettenmaier 1976; Lettenmaier 1978; Lettenmaier 1979; Liebetrau 1979;

Moss 1979; Hirsch, Slack, et al. 1982; McLeod, Hipel, et al. 1983; Whitfield 1983;

Hirsch and Slack 1984; Ward and Loftis 1986; Berryman, Bobée ,et al. 1988; Hirsch

1988; Whitfield 1988; Hirsch, Alexander, et al. 1991; Somerville and Evans 1995; Thas,

Van Vooren, et al. 1998; Urquhart, Paulsen, et al. 1998).  One important facet of almost

every new approach is the need to determine the statistical power of the test performed,
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and the sensitivity of the statistic to changes in the variable of interest.  Many of the

previously mentioned authors have addressed this concern.  The methods by the

aforementioned authors are mainly evolutions of earlier statistical techniques and by

now have become quite commonplace.  Therefore, to focus more on the main objectives

of this study, a detailed review will not be presented here but the reader is urged to

consult the prior credited sources if more information is desired.

2.3.2 Long-term Trend Monitoring

Since long-term trend detection is the primary focus of the monitoring network

of the Great Smoky Mountains National Park, it is necessary to examine some of the

research that focuses on this aspect.  Trends of water quality variables are often

determined using a linear approach or a step approach.  The linear approach, of course,

almost always involves a regression analysis.  The step approach involves determining

the change in the mean of a water quality variable from one time period to another.

Time periods can range from seasonal to multi-year periods.  Lettenmaier (1978)

indicates that determining a step change in mean levels from one year to the next may

provide more insight than determining a linear trend because biochemical processes

tend to seek an equilibrium.  The known point of equilibrium is, however, affected by

exogenous variables.  The desired knowledge of a trend, whether linear, step, or both,

would seem to depend on the timescale of interest.  In either case, a more important

aspect would be the reliability or the statistical power of the trend detection.  Increased

statistical power is obtained by increasing the length of record and by having a

relatively higher trend magnitude (Lettenmaier 1978; Somerville and Evans 1995;
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Urquhart, Paulsen, et al. 1998).  The latter is, of course, uncontrollable.  The former is

ensured by installing a sampling frequency that obtains 80 to 90 percent of the

maximum number of independent samples for a given sampling site (Lettenmaier 1978;

Lachance, Bobée, et al. 1989).  Sampling beyond this number yields little added value

and statistical adjustments must be made to account for serial dependency (Lettenmaier

1976; Lettenmaier 1978; Sanders, Ward, et al. 1983; Hirsch and Slack 1984; Lachance,

Bobée, et al. 1989).   Seasonality in the data is often another concern in time series

analysis.  Many traditional non-parametric tests, such as the Mann-Kendall test for

trend, have been adapted to deal with seasonal trends.  This is usually performed by

dividing the data into n seasons and calculating n trends (Helsel and Hirsch 1992).  If

seasonal variation in trends is not as important as simply understanding the long-term

trend, then decomposition, smoothing, or seasonal differencing could be used to remove

seasonality from the data before performing trend tests.                            

2.4  Historical Perspectives of Network Design 

This section will explore some of the historical methods used for network

design, redesign, and trend detection.  A review of past network design techniques is

necessary for knowing the pitfalls and successes that have occurred and may also lie

ahead.  Many techniques were developed with no particular method that is applicable to

all situations.  This is understandable because of the seemingly infinite number of

conditions that are possible in the field.  As mentioned in the previous section, the

number and location of sampling sites and the frequency at which those sites are

sampled more directly influences the costs associated with a monitoring network.  Each
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of these aspects is designed according to the goals of the network.  In the GRSM

monitoring network the primary goal is long-term trend detection.  The cursory review

of past techniques to follow will focus on these same aspects as they relate to long-term

trend detection.  A more in-depth review of these plus some of the lesser-known

techniques will follow in the dissertation.      

In the past, approaches to network design have included both statistical and non-

statistical methods (Lettenmaier 1978; Hughes and Lettenmaier 1981; Ward and Loftis

1986; Husain 1989; Lachance, Bobée, et al. 1989; Harmancioglu and Alpaslan 1992).

These methods focus on either sampling number and location or frequency, while others

focus on both.    

One statistical approach where prior data are needed is the entropy-based

method.   Harmancioglu, Fistikoglu, et al. (1999) defines entropy as ‘a measure of the

degree of uncertainty of random hydrological processes.’  Using this method, the

amount of transinformation between sampling sites is determined based on the degree

of uncertainty (Husain 1989; Harmancioglu and Alpaslan 1992; Harmancioglu,

Fistikoglu, et al. 1999).  Two or more sampling sites that are thought to produce serially

independent data may actually produce data that are dependent.  Serial dependence

between sampling sites results in reduced entropy, or uncertainty, between the sampling

sites (uncertainty and entropy can be used interchangeably).  If over time the serial

dependence is consistent, one or more of the sampling sites may be discontinued with a

minimal loss of information.  In simple terms, one sampling site is producing the same

information as another sampling site.  So the question must be asked – why are both
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sites needed?  Although not specifically a parametric approach, the knowledge of the

type of probability distribution is needed for a univariate case.  The data must be normal

or lognormal for the multivariate case.  The entropy-based approach does not handle

other skewed distributions with multivariate data very well (Harmancioglu and Alpaslan

1992; Yang and Burn 1994).  The following is a brief description of how the entropy

technique is applied by Harmancioglu and Alpaslan (1992) and Harmancioglu,

Fistikoglu, et al. (1999).   For a multivariate case and assuming a multivariate normal

probability in the data, the joint entropy of X is defined by 

 
where X = vector of M-variables

|C| = determinant of the covariance matrix
∆x = class interval size for the M-variables

This equation results in a single value that expresses the joint entropy over the whole

network for M variables.  Marginal entropy for each sampling site is computed using

the same equation but letting M = 1, adding the subscript m to X to represent each

sampling station, and substituting the variance (σ2) for |C|.  Calculations must now be

performed one variable at a time.  The station with the largest degree of uncertainty

yields the largest marginal entropy.  The information from this unique site is then

compared with every other site, one by one, and the conditional entropy is calculated

until the pair with the greatest conditional entropy is found.  The pair are then joined

with the remaining sites, one by one, until the set of three with the greatest conditional

entropy is found.  This process continues until the last site is joined.  The procedure

ultimately provides a ranking of the sites from highest to lowest degree of entropy.
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After repeating the entire process for each variable the sites can be evaluated for

discontinuance starting at those stations with the lowest degrees of entropy.  

The entropy method can also be used to assess sampling frequencies

(Harmancioglu and Alpaslan 1992; Harmancioglu, Fistikoglu, et al. 1999).  The same

equation shown above can be used to calculate the marginal entropies in the temporal

dimension using different time lags.  The change in entropy from the initial time to the

kth lag is calculated.  A point where the change in entropy becomes negligible indicates

a time window where the sampling frequency may be adjusted.  The entropy method

has been applied to multivariate data but only one variate is analyzed at a time.  True

handling of multivariate data should be conducted simultaneously rather than

sequentially. 

Husain (1989) used the entropy concept to identify the most crucial rain gaging

stations in the Sleeper River Research Watershed in Beltsville, Vermont.  Use of this

method would prevent decision-makers from unknowingly removing the most

important gaging stations should a reduction in network size become necessary.  It also

identifies areas where additional gages may need to be installed because the information

between adjacent sampling stations had a high degree of uncertainty.  This is a good

example of where economic decisions and information quality can be coordinated to

preserve the goals of the network.  Harmancioglu, Fistikoglu, et al. (1992) used the

entropy concept to assess the station locations and the sampling frequency of an

existing network using historical monthly records for conductivity, dissolved oxygen

and chloride on the Porsuk River in Turkey.  They found that conductivity requires

18



more frequent sampling than dissolved oxygen or chloride but failed to state exactly

what the recommended frequency should be. Their spatial study revealed that the six

stations in operation were slightly more than needed to explain 90 and 95 percent of the

uncertainty for chloride and dissolved oxygen, respectively; however, the six stations

explained only 35 percent of the uncertainty for conductivity meaning that additional

sampling sites are needed.     

Another approach that has seen a considerable amount of use in this and other

fields is kriging, which is a technique used to interpolate spatial information (Hughes

and Lettenmaier 1981).  This technique is an optimization (non-statistical) approach and

has been more widely used in the fields of groundwater and mining; however, many

researchers (Hughes and Lettenmaier 1981; Eynon 1988; Venkatram 1988; Jager, Sale,

et al. 1990; Ben-Jemaa, Marino, et al. 1995; Christensen, Phoomiphakdeephan, et al.

1997; Huang and Yang 1998) have adapted its use to surface water quality, precipitation

networks, precipitation chemistry, and stream flow.  In a very basic sense, the point

estimate at one location is determined using a linear combination of all other

observations, expressed as

and 

where              Ŷ0 = point estimate of Y0

λj = weighting factor for the jth location
Yj = known observation at the jth location
N = total number of sampling locations
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The weighting factors must be obtained using a constrained optimization technique that

utilizes Lagrange multipliers to minimize the error variance (Ŷ0 - Y0) while working

within the specified constraints, one of which is shown above.  The accuracy of these

equations is highly dependent on the generalized covariances (Hughes and Lettenmaier

1981).  This ultimately results in a system of N equations that must be solved using

matrix algebra to determine the weighting factors.  If locations where the variables are

known can be predicted with a high degree of accuracy using the other sites, then the

intermediate site may be discontinued.  If intermediate locations cannot be predicted, it

may be an indication that additional sampling sites are needed.  Kriging has evolved

into cokriging and universal cokriging, which can handle multiple variables and time

trends (Isaaks and Srivastava 1989).  The method is data-dependent because it has no

advantage over other techniques when the number of observations is small (Hughes and

Lettenmaier 1981). This method is classified as a redesign tool since prior data is

needed to determine if a sampling location can be successfully predicted using the data

from the remaining sites.  For the case of trend detection, Lettenmaier (1979) indicates

that kriging may be well suited for network design where changes in trend are expected

to occur slowly.

Sanders and Adrian (1978) developed the following equation for determining

the sampling frequency at a single sampling site where multiple water quality variables

are measured.  This technique could be useful at a site such as Noland Divide.  Equation

2.4 provides “a sampling frequency such that the average 95 percent confidence
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where              n = number of samples required per year
k = number of water quality variables considered
σ = sample standard deviation
µ = sample mean

interval width about the means will be equal to one-half of the average of the means.”

In short, this equation is calculating an average sampling frequency using all variables,

and is weighted toward the variable with the greatest variability. One issue with this

simple approach may be a scaling problem depending on the magnitudes of the

variances and measurement scales of the data. However, if the issue can be resolved,

the equation would perform correctly by assigning more importance to the variable with

the greatest variability. Another problem with this equation is that it assumes that all

observations are serially independent. Closely spaced water quality data rarely adhere

to such an assumption (Lettenmaier 1976). When serial correlation is a concern,

Sanders and Adrian (1978) offer another technique that was developed by Lettenmaier

(1976). Using this method, sampling frequencies using the Noland Divide data will be

analyzed. A more comprehensive review of this particular technique will be presented

in the Section 4.3.  Reviews of other methods used in the analyses of this study will also

be included.

2.5  Multivariate Statistical Methods

Multivariate statistical analysis, as the name implies, involves the study of more

than one variable in a concerted effort.  This section of the literature review focuses on
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the multivariate methods that have seen the most use in studies similar to the one

presented here and provides some of the background necessary for their understanding.

Multivariate statistics have had a wide-range of applications including: trend

tests for water quality variables (Lettenmaier 1988); trend tests for pharmaceutical trials

(Dietz and Killeen 1981); grouping of homogenous precipitation stations (Morin,

Fortin, et al. 1979); identification of outliers and variability in air quality and

meteorological data (Smeyers-Verbeke, Denhartog, et al. 1984; Smeyers-Verbeke,

Denhartog, et al. 1984); the study of shell measurement changes over time of bivalve

mollusks (Symons and Ringele 1976); industrial process monitoring at Tennessee

Eastman for six process variables of chemical reactors (Chen and Liu 1999); separation

of long-term trends and periodic variation for water quality variables using a functional

principal components analysis (Champley and Doledec 1997); identification of

correlation patterns between physical and chemical variables in urban and agricultural

soils (Salman and Abu Ruka'h 1999); the interaction between pore water in peat moss

with groundwater and selected chemical constituents (Reeve, Siegel, et al. 1996);

correlations between trace metals and their origins from three different geologic types

(Weissberg and Singers 1982); correlations between physical and chemical properties of

carbonate-rock aquifers in Pennsylvania (Rauch and White 1970; Brown 1998);

correlation between topography and extreme precipitation events on the island of Tahiti

(Wotling, Bouvier, et al. 2000); correlations between streamflow in the western United

States with El Nińo patterns (Piechota, Dracup, et al. 1997); shape and magnitude

classification of hydrographs resulting from glacial runoff (Hannah, Smith, et al. 2000);

evaluation of regional water quality data patterns for the state of Nebraska (Crisp 1989);
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evaluation of a water quality monitoring network in Queensland, Australia (McNeil,

McNeil, et al. 1989); correlations between chemical parameters and volcanic lakes

(Varekamp, Pasternack, et al. 2000).  As mentioned, the examples listed cover a wide-

range of applications but many of them have one important concept in common with

this study:  principal components analysis and cluster analysis are used together.  

The following sections will address in more detail the use of principal

components analysis (PCA), cluster analysis (CA), and discriminant analysis (DA) and

their application in this study.  

2.5.1 Principal Components Analysis (PCA)

 Harold Hotelling introduced PCA in 1933.  Since that time the procedure has

seen many uses but the main purposes include data interpretation, pattern recognition,

dimensional analysis, and multicollinearity detection.  PCA is a data technique rather

than a statistical technique meaning that many of the commonly applied statistical

inference tests are not directly applicable (Hintze 2001).  PCA transforms a set of

correlated variables into a smaller set of uncorrelated variables called principal

components (Flury 1988; Flury and Riedwyl 1988; Dunteman 1989; Everitt and Dunn

1991; Jackson 1991; Jobson 1992; Johnson 1998; Jolliffe 2000).  If the variables of

interest do not have significant correlations then nothing is gained by the use of PCA

because each variable has a significant portion of the total variance that only it can

explain.  When variables are correlated, PCA can be used to find linear combinations of

the correlated variables that explain a significant amount of the total variability.  The

user must ultimately decide how much of the variability is needed in their analysis
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using the results of the eigenanalysis on the variance-covariance matrix (∑) or the

correlation matrix (R) of the data.  Kaiser (1960) suggested that principal components

with eigenvalues less than one should be ignored.  Jolliffe (1972; 2000) felt that this

could cause the removal of still important principal components and suggested that all

principal components with an eigenvalue greater than 0.7 be retained when performing

the analysis on the correlation matrix.  A more subjective approach to the eigenanalysis

was suggested by Cattell (1966) and Cattell and Jaspers (1967).  Their idea was to

decide which principal components to retain for further analysis based on a scree plot of

the percent of variability explained.  Eigenvalues for each of the principal components

are represented by bars denoting percent of variability explained.  Eigenvalues are

retained to a point where the bars level off and variability explained by additional

principal components is minimal.      

A PCA is performed using either ∑ or R from the original data.  For the purpose

of this study, the PCA is performed using the R matrix because the scales of

measurement are different for the variables and the variances are quite different.

Because a correlation matrix is always symmetric and nonnegative, the eigenvalues (λp)

will be positive real numbers, where p is the number of variables (or the number of

principal components).  It is important to note that 

where 
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because the variability explained by each principal component is computed by 

where λ1 is the variance explained by the first principal component.  The first principal

component always explains the greatest amount of variability in the data followed by

second principal component and so on.  Maximum variance in the first principal

component is gained by calculating its linear combination based on the largest

normalized eigenvector vector through the ellipsoid of concentration of the data.  The

next linear combination of the variables is chosen based on the second largest

normalized eigenvector, which is orthogonal to the first eigenvector.  Principal

component scores (yrj) can then be calculated from the eigenvectors of the principal

components by the equation

where j = 1 to p, r = 1 to N (number of observations), â is the eigenvector for the jth

principal component, x is the observed value for the rth observation, û is the sample

mean.  The scores represent distances of the observations from the jth principal

component axis and are the first step in identifying sites which are similar based on

multivariate distances. 

Multivariate variable selection and multiple regression in the NCSS software

package are sometimes used to determine the principal original variables (of all possible

variables) that formulate the principal components.  In some cases a reduced set of the

original variables may produce better clusters than all the variables combined.  The
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principal variables are the source of most of the variability in the principal components

and can often be analyzed as a subset without losing any significant information.  NCSS

uses McHenry’s algorithm (McHenry 1978) for multivariate variable selection by

minimizing Wilks' lambda to find the best combination of variables (Hintze 2001).

Wilks' lambda is a goodness-of-fit measure similar to a correlation measure except that

it is used for the multivariate case. 

Multiple regression can be used by regressing the original variables from the

multivariate variable selection against the principal component scores.  If the residuals

of the regression are normally distributed the significance of each independent original

variable as a predictor can be determined.  If the residuals are not normally distributed,

the significance cannot be determined accurately.  However, the goodness-of-fit

measures (R2 and press-R2) resulting from the regression can be used to determine how

well the subset of original variables predicts the dependent variable (principal

component scores).  To calculate press-R2, observations are removed one at a time and a

new regression model is created without that observation.  The new regression model is

then used to predict the removed observation. The procedure is performed n times, once

for each observation removed.  Press-R2 is then the summation of the squared

differences of the predicted value from the N regression equations and the value

predicted using the full model.  Even if the residuals are not normally distributed, the

goodness-of-fit measures alone give an indication of how well the subset of principal

variables predicts the principal component scores.
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2.5.2 Cluster Analysis (CA)

Cluster analysis (CA) is an exploratory data technique used to group similar

observations into clusters based on distances where the within-cluster variance is

minimized and the between-cluster variance is maximized (Peck, Fisher, et al. 1989;

Jobson 1992; Johnson 1998).  In earlier years, the validity of clustering techniques were

questioned because of the lack of inferential tests offered by many other statistical

techniques (Baker and Hubert 1975; Wong 1982).  However, additional tests such as

estimation of the bootstrap confidence intervals (Peck, Fisher, et al. 1989), performing a

discriminant analysis on the final clusters (Jobson 1992), or combining hierarchical and

non-hierarchical clustering techniques (Jobson 1992) can provide validation for the

chosen clusters.  Additionally, statistical software such as SAS and NCSS has the ability

to approximate statistical inference tests within clustering algorithms. 

Observations can be clustered using one of several techniques that generally fall

into one of three categories: (1) hierarchical, (2) non-hierarchical, and (3) fuzzy.  

Hierarchical methods most commonly use agglomerative techniques where each

observation starts in a cluster by itself (n observations = n clusters).  As the algorithm

progresses, observations are joined based on a proximity measure until there is only one

cluster composed of all the observations (n clusters = 1).   Different variations of

proximity measures are used for each technique.  One such proximity measure, for

example, is Equation 2.8 for Euclidean distance. 
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A benefit of using these hierarchical methods is the generation of the dendrogram,

which can be very useful in locating outliers and visualizing “good” cluster partition

points based on dissimilarity measures.  Agglomerative hierarchical methods do not

provide a single solution (Jobson 1992) and for this reason are somewhat subjective.

However, there are tools to assist the user in choosing the best clustering method and an

optimum number of clusters.  The most common methods of hierarchical clustering are:

• Single-linkage
• Complete-linkage
• Simple-average
• Group-average
• Median
• Centroid
• Ward’s minimum variance

For each of these methods a cophenetic correlation measure (Hintze 2001) and a delta

(Mather 1976) can be calculated.  The cophenetic correlation is simply a correlation

measure between the original distances between the observations and the final distances

after clustering.  Hintze (2001) recommends that the clustering techniques with

cophenetic correlation measures of 0.75 and greater would indicate that the technique is

acceptable.  The delta that Mather (1976) suggests is based on the degree of distortion

and is given by 

where d and d* are the original distance and the distance after clustering, respectively.

A is assigned 0.5 or 1.  ∆A values closest to zero are desired.  Once the best method of
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clustering is chosen, the question of the number of clusters must be addressed.  Jobson

(1992) suggests graphing the proximity measures for each number of clusters and

picking the number of clusters prior to a noticeable increase in the proximity measure.

This point identifies a large increase in proximity distance that is needed to join

additional observations.

Most of the hierarchical methods listed above are very susceptible to the effects

of outliers and extreme observations; some are more susceptible than others.  Another

drawback of using the hierarchical methods alone is that once an observation is

assigned to a cluster, it cannot be reassigned to another cluster (Jobson 1992).  The non-

hierarchical methods do allow an observation to be reassigned. 

The non-parametric density estimation technique in SAS (called MODECLUS

METHOD = 6) was developed by Koontz and Fukunaga (1972a; 1972b) and is the type

of hierarchical clustering mainly used in this study (SAS Institute 1999).  The

nonparametric density estimation technique is inherently hierarchical and agglomerative

because of the process used to form the clusters.   The nearest-neighbor form of the

non-parametric density estimation technique constructs an optimum solution of n

clusters by iteratively joining the total number of observations until the estimated

density of n cluster seeds is not less than any of the neighbors in the cluster.  This

particular technique is more robust to outliers and scale differences than other types of

hierarchical methods.

As mentioned earlier, a two-step process using hierarchical and non-hierarchical

methods can be used to assist in validating the clusters.  Most of the analyses in this

study will be conducted using this procedure.  Non-hierarchical methods, such as k-
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means, require initial seeds to be generated automatically by the software, or to be input

by the user.  The initial seeds may be obtained from a previous clustering method

(Jobson 1992). If seeds are generated by the software the final clusters formed can be

influenced by the order in which the data are read into the program (Johnson 1998).

Seeding from a hierarchical method provides the non-hierarchical method with an initial

partition but does not force the non-hierarchical method to strictly match the

hierarchical results.  Seeding merely provides a rational starting point that increases

confidence in the final results and decreases the time that the non-hierarchical method

takes to arrive at an optimum solution.   

The non-hierarchical clustering methods used are the k-means (called

FASTCLUS in SAS) and the medoid partitioning method.  K-means clustering is a

partitioning method based on the Euclidean distance where the optimum cluster

centroids are obtained in an iterative fashion by minimizing the sum of squared

distances between the cluster means and the cluster members.  Although convergence is

not required for an optimum solution, cluster means and cluster centroids are equal

when convergence is achieved.  The FASTCLUS algorithm in SAS uses adaptive

training during cluster formulation by allowing the centroids to be updated each time a

reassignment is made (SAS Institute 1999).  This method was developed by Anderberg

(1973) based on previous work by MacQueen (1967) and Hartigan (1975).  The k-

means clustering algorithm uses the initial seeds and clusters from the non-hierarchical

results and reassigns observations until all observations are located in the cluster with

the nearest centroid.  FASTCLUS is also an effective method for locating outlying

observations by placing outliers in clusters of single memberships.  
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Medoid clustering is similar to k-means in the sense that it is a non-hierarchical

partitioning method.  NCSS software uses two methods developed by Spath (1985) and

(Kaufman and Rousseeuw 1990) to estimate the cluster memberships. Medoid

partitioning finds a representative observation (called the medoid) for each cluster

where the dissimilarity measure of each observation in that cluster is minimized with

respect to the representative observation (Hintze 2001).  Spath’s (1985) algorithm

reaches an optimal solution by using multiple random starting points so as to minimize

the objective function where the objective function is the summation of the minimized

Euclidean distances between all of the observations and their representative

observations.  The method by Spath overcomes local optima by using numerous random

starting configurations.  The algorithm developed by Kaufman and Rousseeuw (1990)

first finds a representative set of observations then proceeds iteratively through the set

of unselected observations in an overall effort to minimize the distance objective

function.  

Fuzzy clustering is similar to k-means and medoid partitioning with one major

difference.  In fuzzy clustering all observations are allowed to be a member of more

than one cluster (Hintze 2001).  Each observation has a membership value of one and

can have partial memberships as long as the sum of the membership value is one.  The

membership value is actually the probability that the observation belongs to a certain

cluster.  Fuzzy clustering was developed in the NCSS software based on the algorithm

by Kaufman and Rousseeuw (1990).  Fuzzy clustering can be used initially to assist in

determining the optimum number of clusters for each set of variables being analyzed.

This is helpful to validate the results of other clustering methods.  An objective function
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measure similar to the medoid partitioning method is used in fuzzy clustering to

determine membership probabilities.  The disadvantage of fuzzy clustering is that there

is more information to interpret in the final results (Hintze 2001).   

2.5.3 Discriminant Analysis (DA)

Discriminant analysis (DA) is a multivariate statistical method that is somewhat

similar to CA except for one major difference.  In DA the groups are already known and

the user is testing the ability of a set of variables to discriminate between the various

groups.  DA has been developed for parametric (Rao 1973) and nonparametric

(Rosenblatt 1956; Parzen 1962) cases.  The nonparametric form is also known as the k-

nearest-neighbor form and can be executed in the SAS software under the DISCRIM

procedure.  This procedure is appropriate when the data are not multivariate normal.

DA can be used as a validation measure to test the discriminating ability of the clusters

from a previous CA.  The nearest-neighbor DA is based on the Mahalanobis distance

measure

where an observation is classified into a cluster based on the Mahalanobis distance from

a cluster mean.  The cluster means are recalculated in the DA based on the cluster

assignments from the CA.  The DA in SAS uses two discriminating procedures:

resubstitution and cross-validation.  In resubstitution, DA develops a discriminate rule

based on the Mahalanobis distances using the full set of cluster assignments from the

CA, and then tests whether each observation can be assigned to the same cluster as in

the CA.  The method's one drawback is that it tends to overestimate the number of
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correct classifications (Johnson 1998).  Cross-validation, on the other hand, removes

one observation at a time and each time a new discriminant rule is developed.  The

observation removed is then tested against the new discriminant rule to determine

whether it can be classified in the same cluster as the CA.  This method is more robust

than the resubstitution method because the observation is being tested against a

discriminant rule that is constructed without the information of the removed

observation.  A high misclassification rate usually means that the CA has problems, and

therefore focus is shifted back to the CA.  DA can be performed twice--the first time

using the principal component scores and the second using the raw data.  By using the

raw data, a “full-circle” validation is provided because the raw data are the source of the

principal components.   

2.6  Network Optimization using Heuristic Methods

Heuristic methods are often used to solve problems where an exact solution is

almost impossible to obtain because of the seemingly infinite number of possible

solutions.  Heuristic methods employ techniques that generally use trial and error or

systematic elimination approaches to find optimal solutions without having to perform

an exhaustive search of all possible solutions.  Some of the most common heuristic

methods used are local search, gradient methods, neural networks, linear programming,

greedy algorithms, dynamic programming, branch and bound, genetic algorithms, fuzzy

algorithms, and hill-climbing techniques.  All of these techniques usually have three

basic components in common that form the algorithm: (1) definition of the objective,

(2) an evaluation function, and (3) a scheme for searching possible solutions.  The listed
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components can range from very simple to highly complex depending on what the

constraints of the model are.  

The type of optimization sought in this study is one of finding a combination of

water quality sampling sites that forms an optimum monitoring network from an

existing sampling network of 83 sampling sites.  The definition of an “optimum”

solution for this problem is described in detail in later sections.  For now it is just

important to remember that the focus is to find an optimized subset of the 83 sampling

sites.  Problems of this type are commonly called “combinatorial optimization”

problems where an optimum vector of sites is searched for instead of an optimum scalar

quantity. 

Combinatorial optimization problems can be solved using most of the heuristic

algorithms previously mentioned above, but some are more efficient and simpler than

others.  At each end of the spectrum, from very complex to relatively simple, are

genetic algorithms and simulated annealing.  Both of these methods were given early

consideration as possible solutions to the monitoring network optimization in this study.

Sections 2.6.1 and 2.6.2 will review genetic algorithms and simulated annealing.

Section 2.6.3 will present some examples of simulated annealing.   

2.6.1 Genetic Algorithms (GA)

One of the most popular techniques of combinatorial optimization currently

used is genetic algorithms (GA).  Mitchell (2001) lists the following applications of

GA:  (1) combinatorial optimization, (2) automatic programming, (3) machine learning,

(4) economics, (5) immune systems, (6) ecology, (7) population genetics, (8) evolution
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and learning, and (9) social systems.  This list reveals that GA have almost unlimited

applications.  The technique can be quite complicated and for this reason are often a

good choice when the constraints of the model are very complex.  GA require a

sophisticated system of encoding the problem and then decoding for a final solution

(Holland 2001; Mitchell 2001).  Therefore, the algorithm formulation is more

susceptible to human error than simpler methods.  

GA are based on the theory of evolution and natural selection (Goldberg 1989)

and uses many of the biological terms such as chromosomes, alleles, reproduction,

mutation, and crossover to describe the operations of the GA (Holland 1995; Holland

2001).  The simplest GA model contains the elements of populations of chromosomes, a

fitness function, and a crossover and mutation operator to generate new offspring (new

solutions) (Mitchell 2001).  In general terms each chromosome represents a point in the

set of candidate solutions.  The fitness function is the equation that is being optimized

(minimized or maximized).  It is used to decide if a new solution should replace a

current solution.  Riola (1992) described a simple example of a fitness function as

maximizing

where candidate solutions are denoted by y.  The values for x in this problem are the

binary equivalent of the y-values.  Candidate solutions (y) are encoded to binary values

(x), then after reproduction, the binary values are decoded to real values to be evaluated

by the fitness function (Equation 2.11).  Crossover and mutation combine to make up

the reproduction scheme where new solutions are generated and then evaluated by the
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fitness function.  One potential problem that must be overcome in any optimization is

escaping a local optima solution.  GA does this by using the mutation operator where

random solutions are introduced to the solution set.  This presents the algorithm with a

solution that might produce a better fitness function evaluation than what would have

been discovered through the normal scheme.   Finally, the algorithm terminates when a

better solution cannot be found.  Actual termination procedures for a GA can be very

simple to very complex as well.    

The use of the GA has covered a wide range of disciplines over the last few

decades but probably none more than in computer science.  Knuth (1973) documented

the efforts of well-known computer scientists from 1962 to 1973 that focused on the

development of sorting algorithms to sort elements into specified lists, groups, etc.  In

the years following their works, there was much criticism about how efficient the

sorting algorithms actually were.  Hillis (1990; 1992) decided to approach this problem

using a GA.  His first results were disappointing because the GA could not perform as

well as the earlier non-GA sorting algorithms.   Only after increasing the level of

sophistication and by adding a “predator-prey” co-evolution constraint to the GA, did

he finally get results that were better and more efficient than the earlier sorters.  The

high level of complexity to which GA can be applied is obvious from this example.  In

this type of problem, the population of solutions is infinite because the sorter must be

able to operate efficiently on any list when called.  The question now is the outcome

when the possible set of solutions, albeit very large, is well-defined.  If the population

of all possible solutions is well-defined, GA can be outperformed using simpler

techniques (Mitchell 2001).  This would naturally indicate that the complexity of the
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problem should drive the selection criteria of the method.  

The complexity of the GA shows its ability to handle very simple to highly

sophisticated problems.  However, it was mentioned by one author that other methods

may be more robust when the population is very well-defined.  In this study where the

population consists of 83 sampling sites and with five categories defining each

sampling site there was ample argument for use of a different technique other than GA.

The literature mentioned time and time again the usefulness and robustness of the

simulated annealing method in combinatorial optimization problems.  After searching, it

was believed that simulated annealing would be an effective solution because of its

relative simplicity and its ability to escape local optima using a “cooling schedule”

(Michalewicz and Fogel 2002).     

2.6.2 Simulated Annealing (SA)

Simulated annealing (SA) comes from a family of combinatorial optimization

approaches that searches for a globally optimum solution from a seemingly infinite

number of permutations.  Annealing is most commonly known as a metallurgical

process where metal is treated to a high temperature and then gradually decreased so

that the atoms can arrange themselves in a minimal energy state or ground state (Aarts

and Korst 1989).  If the temperature is started sufficiently high and reduced slowly

enough, the ground state can be achieved.  In terms of the SA algorithm, this is called

the annealing schedule, or “statistical cooling” (Vidal 1993), and is analogous to

allowing a system to obtain a globally optimum solution.  If the initial temperature is

not high enough or if the rate of temperature decrease is too great, ground state cannot
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be achieved and a less desirable, locally optimum solution is achieved.  This procedure

is governed by the Boltzmann probability equation and the Metropolis (1953)

algorithm, and is described in greater detail in the following section. 

Simulated annealing (SA) is mainly based on the use of the Boltzmann

probability equation.  The Boltzmann probability equation, developed by J. Willard

Gibbs (1839-1903) and Ludwig Boltzmann (1844-1906), is part of their contributions to

statistical mechanics (Halliday and Resnick 1981).  The Boltzmann distribution can be

written as

where              E = energy state of the system
 Z(T) = normalization factor

T = temperature
 kb = Boltzmann constant

The Boltzmann distribution in Equation 2.12 is used to calculate the probability that a

system has reached an energy state such that the system is at a point of thermal

equilibrium for a given temperature T (Kirkpatrick, Gelatt, et al. 1983; Laarhoven and

Aarts 1987).  In SA, Equation 2.12 is often written without the normalization factor as

shown in Equation 2.13.  Here, the energy is a metaphor for some variable describing  

where ∆E = change in energy between two permutations
kb = Boltzmann constant
T = temperature

the system such as benefit or cost.  Equation 2.13 is known as the Metropolis criterion

38

(2.12){ } ( )
1Pr e B

E
k TE

Z T

⎛ ⎞
−⎜ ⎟

⎝ ⎠= = ×E

(2.13)Pr E =e

− E
k b T





and is used as the perturbation mechanism to introduce new solutions into the system

that might not be introduced on the basis of energy alone.  The main tenet in SA is to

hold the system at a constant temperature long enough to allow the system to reach a

state of thermal equilibrium.  At this point, the molecules arrange themselves in a state

of minimum energy.  Metropolis (1953) showed that the generation of numerous

instances of a state in a system would follow the Boltzmann probability distribution

(Rodrigues and Anjo 1993) and ultimately reach a state of thermal equilibrium, or in the

case of SA, a global optimum solution.  He further developed what is called the

Metropolis algorithm which consists of two mechanisms:  the first being the

perturbation mechanism in Equation 2.13 and the second being an acceptance

mechanism based on the energy of the system (Aarts and Korst 1989).  The perturbation

mechanism of Equation 2.13 allows the algorithm to accept almost any change in

energy at very high temperatures and reject change when the temperature is low.  Thus,

at high temperatures, random perturbations are introduced into the system with

progressively fewer perturbations as the temperature cools so that a global optimum

solution can be discovered.  The second mechanism compares the new energy in the

system to the current energy in the system.  Depending on whether the objective

function is to be minimized or maximized, the new energy, or solution, will be accepted

or rejected.  The program flow in a typical SA problem usually involves testing the new

solution against the acceptance criterion first.  If the acceptance criterion rejects the new

solution then it is tested for acceptance again using the perturbation mechanism.  In the

SA algorithm presented here acceptance of new permutations based on the net benefit of

sampling sites are determined using the Metropolis algorithm.
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2.6.3 Examples of Using SA

The SA algorithm has been used to solve the traditional Traveling Salesman

Problem (TSP).  The TSP is considered a traditional problem because it is often used as

a benchmark test to compare the results of different combinatorial algorithms, and

because it is simple to understand (Kirkpatrick, Gelatt, et al. 1983).  The TSP problem

involves finding a route where the traveling salesman would depart from a beginning

city and travel to each city in the dataset once while minimizing the total distance that is

traveled, and finally return to the city of origin.  The objective function in the TSP is a

simple minimization of total distance traveled.  In the past, the TSP has been adjusted to

make it more complicated by using additional constraints.  Press, Teukolsky, et al.

(1992) added the placement of a river through the dataset of cities in the TSP.  A new

constraint was added by specifying that the traveler was afraid to cross the river so the

number of times crossed while visiting all of the cities had to be minimized also.  The

consideration of the constraint became part of the objective function.  Both total

distance and number of times the river was crossed had to be minimized.  The above

example is indicative of a traditional problem where the constraints can be very simple

to increasingly complex if the user desires.  The objective function of the problem

presented in this study is similar in the sense that the distance is somewhat minimized.

However, the main priority is to maximize the net benefit of the monitoring network

while taking distance into consideration. 

In the field of hydrology, SA has recently been used to optimize a rainfall gaging

network (Pardo-Iguzquiza 1998) and a collection of river sampling sites (Dixon, Smyth,

et al. 1999).  Pardo-Iguzquiza’s (1998) main goal was to design a rainfall gaging
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network in such a way that the best estimation of mean areal precipitation amounts

could be determined while minimizing the estimation variance.  The objective function

for minimizing the estimation variance was a function of the number of sites, locations,

and cost.  The variance was calculated using a variogram for subareas in which gages

were required.  SA estimated the optimal location within each subarea for a rain gage.

He then constructed a graphical curve of variance versus number of gages. The graph

shows that as the number of gaging stations increase past seven or eight, the decrease in

variance is minimal.  Another graph was presented showing how cost increased with

smaller variances.  Together these graphs and information could be used to optimize a

rainfall gaging network that minimizes the variance and maintains a reasonable cost.    

Dixon, Smythe, et al. (1999) used SA for the evaluation of existing flow and

water quality measuring sites on Logan River and Albert River in Queensland,

Australia.  Their work was based on previous studies by Sharp (1970; 1971) where

stream order was the basis for selection of potential sampling sites on stream reaches.

The authors identified eight of 12 existing sampling sites that would minimize cost yet

provide an optimal detection network for pollutant sources.

Skaggs, Mays, et al. (2001) used an enhanced version of SA with directional

search and memory capabilities to design optimal groundwater remediation techniques.

Their example involved determining optimal pumping rates so that desired contaminant

levels could be achieved within selected timeframes at a minimal cost.  The objective

function of total cost was a function of extraction, injection, installation cost, and a

penalty function for not being able to achieve the targeted contaminant level in a given

timeframe.  
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Chapter 3 ASSESSMENT OF SPATIAL VARIABILITY AMONG
SAMPLING SITES

3.1  Synoptic Sampling Data

The data from the synoptic sampling network for determining data-redundancy

are quarterly samples from January 1996 to November 2001 and include the following

eight measurements:  pH, ANC (acid neutralizing capability), conductivity, nitrate,

sulfate, chloride, sodium and potassium.  Water quality data within this period of time

were chosen because of the consistency in sampling frequency and locations, whereas

the earlier years seemed to lack consistency in sampling frequency and location.  These

samples were collected by volunteers and by staff and students from the University of

Tennessee.  Collected samples are returned to the Science and Engineering Research

Building at the University of Tennessee where they undergo a collection of water

quality tests including the eight measurements listed previously.  Dr. Bruce Robinson of

the Civil and Environmental Engineering Department oversees these tests including a

rigorous quality assurance program. 

The mean values of each chemical constituent were calculated for individual

sampling sites for the period from 1996 through 2001.  Computations were performed

using macros and filters in the Microsoft Access database where the data are stored.

Mean values were calculated over the full six-year period rather than 3 two-year periods

(as was originally proposed) because the number of observations was low.  Using the

full six-year period, the results are based on 24 observations; whereas, a two-year

period is based on eight observations.  Means calculated using only eight observations
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would have high standard deviations and wide confidence intervals.  The water quality

means data for the chemical constituents of each site are listed in Appendix B.  At this

point it should be mentioned that the 83 sites sampled from streams are considered in

this study.  The high-elevation springs are not considered here because of the natural

differences in chemical characteristics compared to surface waters.  

A series of descriptive tests are presented on the water quality data.  Such tests

include univariate and multivariate normality, identification of outliers, correlations,

scatterplots, and boxplots.  The descriptive statistics were performed using the NCSS

software and are necessary for two main reasons.  First, the descriptive tests establish

fundamental knowledge of the data that are needed to make good decisions about which

methods can be used in the cluster and discriminant analysis.  Some of the methods

should only be used for multivariate normal data while others can be used for non-

normal data.  Second, knowledge of which sampling sites are outliers and which

sampling sites cause non-normality can aid in the interpretation of the final results.

3.2  Geology, Morphology, Vegetation and Collocated Studies of the
Monitoring Network

The similarities between the sampling sites are also analyzed with respect to the

watershed characteristics that include geology, morphology, and vegetation.  Watershed

characteristics are analyzed using multivariate statistical techniques and are necessary

to ensure that uniqueness, based on these characteristics, is not overlooked.  Most of the

information for the watershed characteristics were compiled by Harwell (2001).  The

terminology “watershed characteristics” will be used throughout the remainder of this
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study and whenever encountered is meant to represent geology, morphology, and

vegetation data.  Table 1 shown below shows the components of each of the watershed

characteristics that are included in the cluster analysis.

Many of the water quality sampling sites are collocated with fish and benthic

ecological studies that are performed by the NPS.  It is necessary to identify such

collocated sampling sites and attribute a higher benefit score into the optimization

routine so that the collocated sampling sites will receive an overall higher benefit than

those sampling sites that are not collocated with other studies.  Since much of the

information gathered in the monitoring network is used to assist in the interpretation of

the fish and benthic studies, extra consideration should be given before discontinuing

collocated sampling sites.

3.3  Costs and Benefits of Sampling

Two primary considerations in this study are the costs of collecting samples and

determining the benefit of sampling at each water quality sampling site in the

monitoring network.  Costs and benefits are reflected on a monetary scale so that all

sampling sites are based on an equivalent measure.  Costs are calculated based on

access distances, average sampling time at each site, laboratory analysis, data

interpretation, project administration, and overhead.  The monetary benefits are a

combined function of the estimated total current benefits of sampling the entire network

and the results of the multivariate analyses of the water quality and watershed

characteristics data.

 Most of the information for determining the costs of sampling was obtained
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Table 1. Watershed characteristics analyzed.

Geology Morphology Vegetation
Thunderhead sandstone Site elevation Spruce-fir

Limestone Mean basin elevation Northern hardwood
Cades Cove sandstone Stream order Cove hardwood

Anakeesta Maximum channel length Mesic Oak
Elkmont sandstone Basin length Mixed-mesic oak

Basement group Basin area Tulip poplar
Great Smoky group Stream density Pine

Mean basin slope Heath bald
Channel slope Xeric oak
Basin width Pine-oak
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through discussions with Dr. Bruce Robinson and with staff and graduate students that

work very closely with the project.  Distances between sampling sites were measured

from topographic maps of the GRSM using Wildflower Productions’ TOPO! software

for North Georgia, Great Smoky Mountains, and Atlanta (1999).  Using the trail and

road distance information from the aforementioned source and average speeds for

various modes of transportation, an equivalent man-hour (MH) calculation was

developed for accessing each sampling site in the network.  The MH equation

standardizes the distances so that all sampling sites can be compared on an equal basis.

The man-hours (MH) were calculated using Equation 3.1 below. 

                                                                   
where MH = man-hours determined by average hiking speed

M1 = automobile miles (45mph average automobile speed)
M2 = hiking miles (1.5mph average hiking speed)
M3 = all-terrain vehicle miles (3.5mph average all-terrain speed)
SST = time spent onsite to collect sample (hours)

Average time spent conducting sampling at each sampling site (SST) is assumed to be

10 minutes.     

Determination of the access and onsite collection costs required a separation of

the variable cost from the total costs for sampling the present 90 site network (83 stream

sites and seven high-elevation springs).  It was decided in this study to only include the

variable costs in the optimization because these costs are directly associated with the

number of sampling sites in the network.  The total variable annual cost of

approximately $69,165 was determined from the balance sheet presented in Appendix
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A.  There it can be seen that the total cost of the monitoring project administered by the

University of Tennessee is approximately $199,600.  Approximately 70 percent, or

$139,575, of this amount is spent on the synoptic monitoring network focused on in this

study.  Of the $139,575, approximately $69,165 are variable costs and $70,410 are fixed

costs.   The fixed costs of $70,410 are incurred whether the number of sampling sites

are 10 or 100 and include project administration, data analysis, reporting, presentations,

equipment replacement, etc.  Based on access calculations mentioned earlier in this

section and assuming that two people are present for all sample collections, it takes

approximately 640 man-hours each year to access and sample the 83-site stream

sampling network.  At a nominal cost of $30 per man-hour this calculates to $19,200

each year for the access and collection costs for 83 sampling sites.  The prorated costs

for sampling all 90 sites, including the high elevation springs, would equal $20,820 and

the total costs of these 90 sites for lab analysis and database management would equal

$48,345 or $538 per site each year.  Based on the battery of tests conducted, this amount

seems quite reasonable.  For the purpose of the analysis in this dissertation the cost used

in the optimization associated with access and sampling time was $19,200 and the cost

associated with laboratory analysis and database management was $50,000 for 83

stream sampling sites.  This is a total of $69,200 which is approximately equal to the

variable costs of the synoptic monitoring network.  Note that 55 percent of the costs are

cost-shared of are in-kind contributions.  

In order to assign an overall benefit dollar value to the current sampling

network, a multiplier of 1.2 was assumed and applied to the total of the variable costs

for the network, i.e. a total benefit value of 1.2 times $69,200 equals $83,040.  The
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multiplier is a reasonable assumption based on the notion that the information and

benefit gained by sampling outweighs the associated costs.  Additionally, a 20 percent

return on an investment is a modest expectation.  The total network benefit value can

then be apportioned over the sampling network based on the total benefit score for each

sampling site, where the individual sampling site benefit score is calculated using the

collocation identification and clustering scores of the water quality data and watershed

characteristics (geology, morphology, and vegetation).  The cost and benefit equations

used in the optimization are described in detail in sections 3.5.1 and 3.5.2.  

3.4  Multivariate Statistical Methods and Composite Benefits

Water quality variables and watershed characteristics for the 83 site sampling

network are analyzed using the following three multivariate statistical methods that

were explored in the literature review:  

• Principal component analysis (PCA)

• Hierarchical/non-hierarchical and fuzzy cluster analysis (CA)

• Discriminant analysis (DA)

The flowchart shown in Figure 1 provides a conceptual view of how these three

methods are linked together to analyze the data and validate the results.  The process is

routinely followed in most cases.  SAS software and NCSS software are used for these

analyses.

The process in Figure 1 begins by taking the raw data and performing

descriptive statistics.  Information obtained in this phase will aid in the interpretation of

subsequent analyses.  If significant correlations exist between variables then a PCA is 
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Figure 1. Conceptual flowchart of analyses for examination of water quality data.



performed to reduce the dimensionality and to identify the underlying structure of the

dataset for further analyses.  Principal component scores, according to the eigenanalysis

of the PCA, are then selected for the cluster analysis.  A two-step CA is performed using

hierarchical and non-hierarchical methods which will produce the number of clusters,

cluster memberships, and the distance of each member from its respective cluster

centroid. Sampling sites with the greatest distance from their cluster centroid are

indicative of sampling sites within that cluster that explain a greater amount of

variability, therefore, being of the greatest benefit in terms of information gained.

Finally, DA will be used to test the discriminating ability of the clusters formed in the

previous step using the principal component scores and the original data.  By using the 

original data, a “full-circle” validation is provided because the raw data are the source

of the principal components.  If the DA produces poor discriminating results, the

methods used for the CA will be revisited. 

The culmination of the above multivariate analyses will result in the formulation

of a composite benefit score for each sampling site to be used in the network

optimization algorithm later in this study.  The composite benefit score is the factor by

which the dollar amount of benefit is apportioned to each sampling site, and is the

foundation of choosing which sites could be discontinued and which sites should be

retained.  The equation used to calculate the composite benefit score is the summation

of the water quality clustering results, the watershed characteristics clustering results,

and the collocation component.  This equation has the form 
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where Ψi = composite benefit score for the i-th sampling site
Wi = clustering results from the water quality data component 

 Mi = clustering results from watershed morphology component
Gi = clustering results from the watershed geology component

 Vi = clustering results from watershed vegetation component
Ci = collocation component
ω = weight assigned to each component score

Weights may be applied to each component benefit score to accentuate the importance

of a certain factor.  Weights could also be applied to equalize the importance of a subset

of variables or all of the variables.   

Using Equation 3.2, the clustering results for water quality and watershed

characteristics are converted into a score.   Each member (sampling site) of a cluster has

a calculated distance from the centroid of the cluster.  The site with the greatest distance

from the centroid explains more of the variability within the cluster than a site that is

located near the centroid of the cluster.  Therefore, a site with the greatest distance from

its respective cluster centroid is more beneficial to sample than a site that is near the

centroid.  In the water quality data or watershed characteristics there are a number of

clusters for the 83 site network.  For example, in the water quality data (Wi) clustering,

suppose that the 83 site network divides into eight clusters and the largest of these

clusters contains 20 of the sampling sites.  Likewise, the geology data for each sampling

site may divide the network into 10 clusters with the largest cluster membership of 30

sampling sites.  Therefore, the water quality data and geology data each define a unique

set of clusters.  

Consider again the hypothetical clustering case mentioned above for the water

quality data where the largest cluster contained a membership of 20 sampling sites.

Instead of using the cluster distances directly as a measure of benefit, the sites were
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ranked from one to 20 with one and 20 representing the sites with the closest and the

farthest distances from the centroid, respectively.  Therefore, the site with the highest

ranking (farthest from the centroid) receives the highest benefit.  The same scale (one to

20) was used to rank the other seven clusters of the water quality clusters.  Based on

this scale, a cluster that had only three members would have its sites ranked as 20, 19,

and 18.  The process accomplishes two goals.  First, it places all clusters on an equal

scale.  Second, it helps to insure that smaller clusters are not removed during

optimization.  The original number of clusters should survive the optimization so that

each cluster will still be represented in the future monitoring network.  In clusters with a

very small number of members, or sampling sites, it may be necessary to not remove

any of the sites since some redundancy is needed.  The same approach is used for the

geology, morphology, and vegetation clusters.  In cases where there are ties, the rank of

the tied sampling sites is calculated by averaging the range of ranks over the sampling

sites that are tied.

The composite benefit scores should not used solely to indicate whether a site

should or should not be discontinued because of other factors relating to cost.  As

mentioned earlier, the scores are used to determine a dollar amount of benefit for a

single site.  A very low composite benefit score would indicate at least one and probably

more of the following:

• Explanation of variability within its respective cluster is relatively low

• A sampling site is very similar to other sites in terms of watershed  characteristics

• A sampling site is very costly to sample because of distance
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• A sampling site is not collocated with another NPS study

Conversely, a high score would indicate a very unique sampling site that should not be

discontinued. 

3.5  Monitoring Network Optimization using Simulated Annealing

The SA algorithm formulated in this study uses two different approaches and is

written and run in the Matlab programming environment.  The first approach takes an

initial set of sampling sites, selected by the user, and then progresses until an optimum

solution is reached.  In the second approach, the user specifies the number of sites (n)

desired in the final network and the program searches to find an optimum solution of

the n best sites.  The initial selection of sampling sites in the second approach is

generated randomly by the computer.   Discussions thus far have identified SA as a

minimization technique; however, in the problem presented here SA will be used to

maximize the monetary benefits of the sampling network.  Maximization is achieved by

changing the sign of ∆E in Equation 2.13 (Michalewicz and Fogel 2002).  Confirmation

of this approach can be verified graphically by plotting the objective function and this

will be presented in Section 3.6.9. 

The SA algorithm begins with the initial set of sampling sites that is chosen by

the user or generated by the computer depending on which approach is used.  The term

“energy” can now be replaced by “monetary benefits.”  The initial set becomes what is

commonly known in SA as the “current solution”, and then the monetary benefit is

evaluated for the current solution.   The monetary benefit for a subsequent (new) set of

sampling sites, generated randomly by the computer, is calculated and compared to the
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current solution. The latter set of sampling sites is commonly referred to as the “new

solution.”   If the new solution has a higher monetary benefit than the current solution,

the new solution replaces the current solution.  If the monetary benefit of the new

solution is lower than the current solution, it may still replace the current solution by the

Boltzmann probability P(∆E), i.e. if P(∆E) is greater than a random uniformly

distributed number [0,1).  This is known as the Metropolis algorithm or in statistics the

Monte-Carlo method and was discussed in Section 2.6.2 of the Literature Review.  As

the temperature decreases the probability that a new solution will replace the current

solution based solely on the Boltzmann probability becomes less and less.  It can be

seen that if the initial temperature in Equation 2.13 is very high, the probability of

replacement will be close to one and even a poor solution can replace a better solution.

Perturbations are introduced to the system when a better solution is replaced by a poor

solution thereby escaping local maxima.  The annealing schedule (initial temperature

and rate of decrease) must therefore be chosen carefully based on the range of monetary

benefits from the data used in the algorithm (Aarts and Korst 1989).  It is suggested that

the initial temperature be no greater than the temperature corresponding to the largest

difference in monetary benefits of two permutations of sampling sites (Press, Teukolsky,

et al. 1992).  Initial temperatures higher than this result in no improvement of accuracy

and a significant increase in computational time.  The initial temperature must

ultimately be estimated through trial-and-error.  The decay of the temperature must be

slow enough so that a globally optimum solution can be found.  Suggestions for

determining the rate of decrease are given by Press, Teukolsky, et al. (1992), and will be

discussed further in Section 3.5.4.  A termination condition is reached after the decrease
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in energy is negligible indicating that the maximum monetary benefit has been

identified, or when a user-specified maximum number of iterations have been exceeded.

3.5.1 Calculating the Cost of Sampling a Site in Matlab 

The goal of this section is to describe how the cost of sampling a network of

sites is determined by the Matlab algorithm.  Section 3.3 described how the costs and

benefits were calculated.  Remember that costs are based on the components of

distance, sample collection time, and laboratory and associated costs.  Cost breakdown

is similar to the one used by MacKenzie, Palmer, et al. (1987) where they were also

minimizing the cost of a monitoring network while maximizing the statistical power of

trend detection.  The equation in Matlab terms used in the SA algorithm to represent

this is shown in Equation 3.3.  

where              COSTp = total cost for p sampling sites
                        LABCOSTp = laboratory and associated costs for p sampling sites 

ACCESSp = costs for accessing p sampling site 

ACCESS is determined from by the number of man-hours required to reach p sampling

sites where p is the permutation of sampling sites being considered.  ACCESS is

calculated in the objective function subroutine.  Figure 2 shows the tree diagram of how

all the sites were assembled.  The illustration is based on the most likely route of

accessing the sites following roads and trails that connect the array of sites.  Site 30

(Sugarlands Visitor Center) is assumed to be the starting point of collection.  From here

the tree branches into three major directions of US Highway 321 towards Cosby, State 
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Figure 2. Tree diagram of the 83-site sampling network.
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Highway 73 towards Cades Cove, and US Highway 441 to Cherokee.  When a

permutation of sites is chosen, a linkage from the furthest sites back to site 30 is

assembled to calculate the cost using the man-hours needed to access all sampling sites.

A separate function in the subroutine is used to calculate the man-hours through the

intersections to insure that man-hours through branches are not counted twice.   Finally,

LABCOST calculates the costs of collecting the sample once arriving at the site and

performing the laboratory analyses and all other associated costs based on the number

of sites in the current permutation.

The incremental cost of sampling a particular site can change through the

iterations of the algorithm as sites go in and out of network.  It is at this point that the

algorithm is most useful.  For example, in Figure 3, assume that the current permutation

of a sampling network includes site 30 and site 3.  A new permutation of sampling sites

includes not only sites 30 and 3, but also adds site 2.  Because the current permutation

would already include the access cost from site 30 to site 3, there would be no

additional access cost to sample site 2.  The costs of laboratory and associated tasks for

site 2 would be added to the total costs.   If site 3 was removed and site 2 was added, a

new access cost with a shorter distance to the end of the branch at site 2 would need to

be calculated.  

3.5.2 Calculating the Benefit of Sampling a Site in Matlab 

The following section describes how the benefit of sampling a network of sites

is determined by the Matlab algorithm.  Equation 3.2 determines the composite benefit

score for each sampling site based on the multivariate statistics and the collocation
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Figure 3. Diagram example of determining site access cost.
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information.  Additionally, Section 3.3 describes the monetary value of the benefits.

The results are combined in Matlab to form the benefit portion of the objective function.

Equation 3.4 shows how the benefit for a sampling site is calculated based on access

costs, laboratory costs, overhead, interpretation, etc.  It can be seen in this equation that

the benefit is a 

where BENEFITi = benefit in terms of dollars for the ith site
Ψi = composite benefit score for the ith site (described in Section 3.3)
Ψtotal = total of composite benefit scores for all 83 sites
LABCOSTn = total laboratory and associated costs for 83 sites
ACCESSi = cost of accessing and sampling the ith site

ratio of the site composite score to the sum of all composite scores plus the benefit of

accessing the ith site.  Use of this equation allows the site with the highest clustering

scores and collocation scores to receive the greater benefits.  The BENEFITi  for each

site is calculated in an Excel spreadsheet beforehand and exported to a Matlab file.  The

benefits remain constant because they are a product of the multivariate analysis

performed initially on the current network and are retrieved by the objective function

subroutine of the SA algorithm when the particular site is included in the current

permutation.  

There are also benefits that are a function of site access and sampling time.

These benefits are variable and are based on the access route and number of sampling

sites in a permutation of sites being tested by the SA algorithm.  The benefits for access

and sampling time are simply 1.2 times the access cost for a permutation of sites being
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tested and are calculated during execution of the SA algorithm.   

3.5.3 Objective Function of the SA Algorithm

The aim of the algorithm is to maximize the objective function which is the sum

of the benefits (+) and costs (-) for a permutation of sampling sites.  The equation for

the objective function is shown below in Equation 3.5.

where NETBENEFITp =  total benefit for permutation of p sites
ΣBENEFIT = sum of the monetary benefits for the permutation of p sites
ΣCOST = sum of the monetary costs for the permutation of p sites

3.5.4 Annealing Schedule

The annealing schedule is perhaps the most important part of the SA algorithm

because it controls the loops in the program and the rate at which the temperature is

changed (Michalewicz and Fogel 2002).  Press, Teukolsky, et al. (1992) suggests that

finding the best annealing schedule is often a trial-and-error process.  The process

followed in this study was the one used by Press, Teukolsky, et al. (1992) in a traveling

salesman problem and is as follows:

1. At various high temperature values T, generate random permutations of sampling

networks and evaluate the object function for each permutation.  This is achieved by

simply writing the objective function evaluation to a file and then requesting the

maximum and minimum evaluation.  At each value of T, the difference between the

maximum and minimum evaluation is the largest ∆E for that T.  
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2. A starting value of T corresponding to the largest ∆E is chosen for the initial T in the

SA algorithm.

3. T should be decreased at steps no greater than 10 percent.  T should not be changed

until 100N (where N = 83 sites) permutations are made or until 10N permutations are

accepted by the objective function criteria, whichever is first.

4. The algorithm is terminated at the end of the annealing schedule or when ∆E cannot

be improved upon after a specified number of successive iterations.

After several trials through this procedure, optimal operating values were found.

However, because this problem is different from a traveling salesman problem, the

annealing schedule proved to be somewhat simpler.  The initial temperature T was set at

200 based on the procedure in Step 1.  Step 2 generally required the temperature T to be

decreased at a rate no greater than 10 percent.  After numerous trials it was found that 3

to 5 percent decreases were better.  Steps greater than 5 percent resulted in unstable

effects by generating significantly different solutions for different runs.  Step 3 specified

100N as an initial number of permutation trials for a given T, but it was found that 10N

was sufficient and the computation time was reduced from approximately 3.5 hours to

approximately 30 minutes.  

3.5.5 Optimum Solution Search for the Full Network

This version of the algorithm assesses all of the sites and searches until an

optimum solution is found.  A user-specified set of sites is initially marked to be in the

network and this becomes the current solution.  The main program then calls a

subroutine function program to calculate the objective function for the current solution.
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The initial configuration can simply be a random selection of sites and can be as large

or small as wanted.  In order to overcome a possible division-by-zero error in the first

step,  at least two sites must be selected initially.  Other than this, there are no

requirements for the initial set of sites.    

There are two main controls in the Matlab SA program.  The first control or

“outer” loop is the annealing schedule that controls the number of temperature steps

allowed by the program and the rate at which the temperature is decreased.   The

“outer” loop terminates when the temperature step counter reaches the number of

temperature steps allowed by the program.  The second control loop is interior to the

first control or the “outer” loop.  The second control loop contains the Metropolis

algorithm and creates the random permutations of sampling sites.  The second control

also sums the number of successful acceptances of sampling network permutations.

The second control or “inner” loop is terminated when the number of successful

permutations reaches 10 times the number of sites considered, i.e. 830 successes.

When program execution reaches the “inner” loop, the program randomly selects a site

from the 83 site network.  If that site is already in the current network, the program tests

that site for removal from the current network using the objective function and the

Metropolis algorithm.  Conversely, if the site is not in the current network the site is

tested using the objective function and the Metropolis algorithm to determine if it

should be added to the current network.  In either case, the test is that a new objective

function is calculated and compared to the objective function of the current network.  If

the objective function of the new network is greater than that of the current network,

then the new network configuration replaces the current network configuration.  The
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process is known as the local or “nearest-neighbor” search.  If the objective function is

less it can still be accepted using the Boltzmann probability rule, allowing the optimum

solution to be searched for outside of the nearest-neighbor area, thereby permitting the

program to find a globally optimum solution rather than a local solution.  If this solution

is not accepted with either rule, the new configuration is discarded and the current

configuration continues with the program beginning a new iteration.

3.5.6 Optimum Solution Search for a User-specified Number of Sites 

The user-specific method of the SA algorithm is mechanically very similar to

the method above with a few exceptions.  At the beginning of the program execution,

the user specifies n, the number of sites desired in the final network.  The program then

generates a random selection of n sampling sites for the current network.  The

remaining sampling sites (83-n) are placed into a second set of sites that are not in the

current network.  For example, the user specifies a desired network size of 10 sampling

sites.  The current network is formed by random selection from the pool of 83 sites to

form the current network of 10 sampling sites.  The remaining 73 sampling sites form a

set of sites that are not in the current network.  The objective function is then called and

the current network is evaluated.  The new network is generated by randomly switching

a single site from the current network with a single site from the second set of 73 sites

not in the network.  The objective function is then calculated for the new configuration

and compared to the current network.  The rules for acceptance of the new network as

the current network are the same as those in the previous section.  If the new

configuration cannot be accepted as the current configuration, the sites are switched
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back to their original position and the process starts over.  The annealing schedule is

also the same as mentioned in the previous section.

3.6  Results of the Analyses

The results of the analyses are divided into eight sections that present the outcomes

of the methods used to optimize the water quality monitoring network and provide

recommendations for discontinuance of selected sampling sites.  The sections are as

follows:

1. Data Screening of the water quality data

2. Analysis of water quality data

3. Analysis of geology

4. Analysis of morphology

5. Analysis of vegetation

6. Identification of sites in overlapping regions of clusters

7. Collocated sampling sites

8. Compilation of data for network optimization

9. Network optimization using simulated annealing (SA)

It should be mentioned beforehand that data screening of the watershed characteristics

was not performed to the extent of the water quality data.  Much of the watershed

characteristics database has entries of zero because they are based on percentages of a

certain characteristic in the watershed; analysis of these data in the data screening

section would lend minimal interpretation to the final results.  The watershed

characteristics are also considered as constants because changes occur over relatively
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large timescales, especially when compared to the highly variable nature of the water

quality data. 

A variety of multivariate statistical methods have been used in the analysis of

the various types of data presented.  There is no single stepwise recipe for the

application of the statistical methods presented.  Rather, logical steps from one method

to another are used in searching for the one method or combination of methods that

produce the best results in the DA.  

3.6.1 Data Screening of the Water Quality Data

Basic univariate and multivariate data screening results are presented in this

section for the water quality data.  The data screening results are an integral part of the

interpretation of the final results and recommendations presented.  The water quality

variables analyzed here include hydrogen ion, ANC, conductivity, chloride, nitrate,

sulfate, sodium, and potassium.  Obvious abbreviations for these variables may be used

in some of the graphs and tables that follow to meet margin restrictions.  Appendix B

contains the means of the water quality variables and Appendix C contains the results of

data screening that are mentioned but not shown in this section.  References to the

information presented in Appendix C will be made in the remainder of this section.

Boxplots were constructed for each water quality variable listed in the preceding

paragraph and are shown in Appendix C.  Table 2 presents the outliers identified by the

boxplots for the water quality variables.  The most notable feature in these boxplots is

the identification of mild and severe outliers for the univariate case.  Sampling sites

156, 174, 237, 251, 252, 253, and 489 appear as outliers numerous times for different 
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Table 2. Mild and severe outliers of the water quality data.

Water Quality Variable Sampling Sites identified as outliers
Hydrogen ion NONE (103, 156, 174, 237, 489 as pH)

ANC 156, 173, 174, 489
Conductivity 174, 256, 251, 252, 489

Chloride 156, 174, 251, 252, 253, 489
Nitrate NONE
Sulfate 15, 74, 233, 251, 252
Sodium 148

Potassium 106
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water quality variables.  At this point it is important to remember the observations that

are identified as outliers as this will be very worthwhile later in the study.  It also worth

noting that nitrate contained no outliers, while sampling site 148 was an outlier only in

the sodium variable and sampling site 106 was an outlier only in the potassium variable.

 Univariate normality tests were performed using the D́Agostino Omnibus method.  The

method combines tests for skewness and kurtosis which are typically 0 and 3,

respectively, for normal data.  The D́Agostino Omnibus method calculates whether the

actual skewness and kurtosis of the water quality data are significantly different from 0

and 3.   If skewness and kurtosis are significantly different, then the data are believed to

be non-normal.  According to the D́Agostino Omnibus method using an α-level of 0.05,

the data are not normally distributed with the exception of potassium.  The Shapiro-

Wilk method was also used to test normality.  The Shapiro-Wilk test agreed with the

D́Agostino Omnibus test in every case except one.  The Shapiro-Wilk test suggested

acceptance of normality for the sodium data while D́Agostino Omnibus rejected

normality.  The p values for the normality tests of the water quality variables are shown

below in Table 3.  The overwhelming amount of non-normal data is a powerful

indicator that the water quality variables will not be multivariate normal.

A multivariate outlier test for the water quality variables was also performed.

The test is run using the NCSS software and is based on the Mahalanobis distance from

the variable means and the relationship between the t2-distribution and the F-

distribution.  The outlier test was conducted using an α-level of 0.10.  Sampling sites

identified as outliers were:  106, 148, 156, 174, 234, 237, 251, 252, 253, and 489.  It is

interesting to recall the outlying observations that were identified by the univariate tests
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Table 3. p values of the normality tests for the water quality variables.

Normality Test Name
WQ Variable D́Agostino Omnibus Shapiro-Wilk
Hydrogen ion 0.0023 0.0001

ANC 0.0000 0.0000
Conductivity 0.0000 0.0000

Chloride 0.0000 0.0000
Nitrate 0.0000 0.0000
Sulfate 0.0000 0.0000
Sodium 0.0156 0.0546

Potassium 0.5794 0.2406
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above.  Many of the same sampling sites identified as outliers in the multivariate case

are also univariate outliers.  The test results may help to pinpoint the variables that are

producing most of the multivariate outliers.  

Multivariate normality of the water quality data was checked by visual

observation of a multivariate normality plot.  The multivariate normality plot was

generated using the SAS software and is shown in Figure 4.  The plots are essentially

interpreted the same way as a univariate normality plot.  Normal scores are plotted

along a 45-degree line from the origin.  If there is significant departure from the line or

if the normal scores plot to only one side of the line or the other, the data are assumed

non-normal.  At this point multivariate non-normality is almost guaranteed because the

majority of the water quality data are univariate non-normal.  The 45-degree line is

represented by the line of X’s from the origin and the normal scores by the O’s.  The

differences in the scales of the axes make the line appear to be less than 45-degrees.

Outliers are those points at the upper-right part of the plot that are major departures

from the 45-degree line.  Although data can be inherently non-normally distributed,

outlying points alone can cause non-normality in otherwise normally distributed data.

The points that show major departures at the upper tail do coincide with those that were

identified as univariate and multivariate outliers in the previous tests.   

One essential data requirement for applying principal components analysis

(PCA) is that correlation exists between some of the variables. Correlation is the next

analysis applied to the water quality data to verify that PCA is a viable choice for

analyzing the water quality data.  Table 4 below shows a high number of correlations

with p values less than 0.05 based on Pearson’s correlation.  The information reinforces 
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Figure 4. Multivariate normality plot of the water quality data.
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Table 4. Pearson’s correlations for the water quality data.

71

Hydrogen
ion ANC Con Chl Nit Sul Sod

Hydrogen
ion 1.000

p-value
ANC -0.192 1.000

p-value 0.0827
Conduct. -0.032 0.933 1.000
p-value 0.773 <.0001

Chloride -0.101 0.572 0.694 1.000
p-value 0.366 <.0001 <.0001
Nitrate -0.373 -0.241 0.052 0.302 1.000
p-value 0.010 0.028 0.641 0.006
Sulfate 0.280 -0.043 0.297 0.355 0.566 1.000
p-value 0.001 0.700 0.006 0.001 <.0001
Sodium -0.417 0.463 0.336 0.255 -0.434 -0.177 1.000
p-value <.0001 <.0001 0.002 0.020 <.0001 0.109

Potassium -0.383 0.443 0.304 0.155 -0.380 -0.272 0.700
p-value <0.001 <.0001 0.005 0.161 0.000 0.013 <.0001



the validity of using PCA in the analyses to follow.  The correlation tables for the

watershed characteristics are shown in Appendix C and also exhibit correlations worthy

of being analyzed using PCA.  A scatterplot matrix for the water quality variables is

shown in Appendix C to complement the results of the correlation analysis.  The plots

are a useful tool for visually observing the bivariate relationships and the correlations

between the variables.  Pearson’s correlation measures the linear association between

two variables.  It is noteworthy to mention that based on the scatterplots of the water

quality data, there does appear to be some relationships that might be more suited to a

correlation measure for monotone nonlinear associations such as Spearman’s

correlations.  Although in most of these cases the apparent nonlinear associations seem

to be reinforced by outlying observations as can be seen in the relationship between

hydrogen ion and ANC.  Four observations appear to be highly influential to this

association and mask the correlation of the majority of the data for hydrogen ion and

ANC.  When these four observations (sampling sites 156, 174, 237, and 489) are

removed, the Pearson correlation increases from -0.192 to -0.699.  Another relationship

that is hard to overlook in the scatterplots is the one between conductivity and ANC.

The relationship is a good example of where correlation and multicollinearity is induced

because of three influential observations (sampling sites 156, 174, and 489).  The

Pearson correlation for conductivity and ANC is 0.935, the highest of all the

correlations.  The Pearson correlation is insignificant at 0.011 when these three

observations are removed.  The strong influence of sampling sites 156, 174, 237, and

489 will need to be dealt with in the analyses to follow.   

Because an essential requirement of performing PCA is that correlations exist in
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the data, correlations for geology, morphology, and vegetation are also calculated.  The

correlation matrices for geology, morphology, and vegetation are shown in Appendix C.

It can be seen in these tables that significant correlations do exist meaning that PCA can

be used to analyze their data.    

3.6.2 Analysis of the Water Quality Data

 The results of the PCA, CA, and DA are presented below in a summary list and

in a step-by-step format for the sampling sites and their water quality data (hydrogen

ion, ANC, conductivity, chloride, nitrate, sulfate, and sodium+potassium).  It should be

mentioned that sodium and potassium have been added together for this analysis.  These

two variables are generally not revered as being robust measures of stream health.

Rather, potassium and sodium may act as surrogate variables for calcium and

magnesium or other water quality measures, which of course are not included in this

study.  Since these variables are positively correlated, addition should not induce a

canceling effect on their contribution.  The step-by-step format provides more of the

detailed information that is omitted in the summary.  These analyses were performed

using the NCSS software and the SAS software package.

SUMMARY

• Robust PCA was performed in NCSS to confirm the results of the data screening that
sampling sites 156, 174, 237, and 489 should be classified as outliers.  After
discovering low down-weights (0.06, 0.01, 0.07, and 0.02, respectively) in the robust
PCA, it was decided to remove these four sampling sites from further analyses.
Down-weights are applied to outlying observations by the robust PCA to reduce
their effect on the total analysis.  PCA, CA, and DA with these sites included
produced undesirable positive classification rates. 

• PCA was performed on the remaining 79 sites.  The first three principal components,
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explaining 86.4 percent of the variability in the water quality variables, were
selected for the cluster analysis.

• Fuzzy clustering results showed that the optimum number of clusters for the 79
sampling sites was between eight and 10. 

• MODELCLUS and FASTCLUS clustering were performed in SAS.  This resulted in
the formation of nine clusters using the first three principal components derived from
all of the water quality variables.  A total of 11 clusters actually exist with sampling
site 237 being in cluster 10 alone and sampling sites 156, 174, and 489 being in
cluster 11.

• The DA positively classified 90 percent and 95 percent of the sampling sites into the
correct cluster using the principal component scores and the original water quality
variables, respectively.

STEP 1

The initial concern was the effect of sampling sites 156, 174, 237, and 489

(physical locations are listed in Table 5 below) on the analyses.  The sampling sites

were analyzed to determine if they should be removed from further analyses because of

their influence.  Data screening showed that these sampling sites had a profound effect

on correlations between certain water quality variables that does not exist between the

remaining sampling sites.  A robust PCA showed that sampling sites 156, 174, 237, and

489 were assigned small down-weights of 0.06, 0.01, 0.07, and 0.02, respectively.

Robust PCA assigns down-weights to outliers to mitigate their influence on the

analysis.  Initial CA placed site 237 in a cluster alone and sites 147, 156, and 489 were

placed in a cluster together.  Multiple DA trials usually agreed with the clusters

identified by the CA, but the effect of the outlying sampling sites caused the DA

classification results for the remaining sampling sites to be very poor.  The positive

classification results in the DA were between 69 percent and 85 percent when the 
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Table 5. Physical location of sampling sites 156, 174, 237, and 489.

Sampling Site Physical Location
156 Abrams Creek above Abrams Creek Ranger Station
174 Abrams Creek below Cades Cove
237 Walker Camp Prong on US 441 west of Newfound Gap
489 Abrams Creek 300m below trailhead bridge in Cades Cove
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outlying sampling sites were included.  The resulting conclusion was to remove these

sampling sites from further analyses. 

STEP 2

Step 2 describes the process of selecting the principal components to be used in

the cluster analysis.  PCA was performed using the remaining 79 sampling sites with

sites with all water quality variables.  The first three principal components were

selected  to explain 86.4 percent of the variability in the water quality variables.  The

eigenvalues of the principal components and the variability explained by each are

shown in Table 6 below.  The eigenvectors for the principal components are shown in

Table 7.  Some authors recommend that an eigenvalue cut-off be set at one because a

principal component with an eigenvalue below one explains less variability than is

contained in a single variable.  However, Jolliffe (1972; 2000) believed that this was too

restrictive and recommended that a cut-off be set at 0.7.  It was decided to add the third

principal component because of the increase in the variability explained and the fact

that the eigenvalue is near 0.7.  The eigenvectors can often be used to provide some

interpretation as to the makeup of the principal components based on the original

variables.  Table 7 shows that the first principal component is mainly a factor of all the

water quality variables since the eigenvectors are relatively equal.  The difference in

signs is important as noticed in the first principal component where the relationship

between pH and the variables easily influenced by pH (ANC, nitrate, and sulfate) are

contrasted.  The second principal component is still influenced by most of the water

quality variables with the exception of hydrogen ion and nitrate.  Principal component

three exhibits a strong influence by chloride with an eigenvector of -0.793.   
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Table 6. Eigenanalysis in STEP 2 for water quality variables.

Principal
Component Eigenvalue Proportion of

Variability Explained

Cumulative
Variability
Explained

1 3.536 50.51 50.51
2 1.847 26.39 76.90
3 0.668 9.54 86.44
4 0.498 7.12 93.56
5 0.239 3.41 96.96
6 0.207 2.95 99.92
7 0.006 0.08 100.00

Table 7. Eigenvectors in STEP 2 for water quality variables.

Water Quality Variables 1 2 3
Hydrogen ion 0.413 -0.238 0.230

ANC -0.382 0.455 0.109
Conductivity 0.339 0.521 0.315

Chloride 0.281 0.380 -0.793
Sulfate 0.476 -0.007 -0.208
Nitrate 0.424 0.307 0.404

Sodium+Potassium -0.291 0.475 0.035
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STEP 3

            The principal component scores of the first two principal components for 79

sampling sites in STEP 5 were passed to the MODECLUS procedure in SAS.  The

MODECLUS procedure is a hierarchical, non-parametric clustering algorithm that uses

the nearest-neighbor method.  MODECLUS provides an initial starting point for

subsequent non-hierarchical clustering algorithms that increases cluster accuracy and

reduces computation time.  A k value of three, representing the three nearest-neighbors,

was used.  Nearest-neighbor k values can range from two to N.  Trial and error using

different k values proved that a k value of three yielded DA results with the highest

positive classification ratios. (It can be mentioned at this point that a k value of three

also produced the best results for the remaining analyses.)  When clusters are being

formed, the membership of an observation will be determined by the membership of the

three nearest-neighbors in the hyper-dimensionality of the data.  The result was 12

initial clusters. 

STEP 4

The principal component means of the 12 clusters from STEP 6 were passed to

the FASTCLUS k-means clustering algorithm in SAS.  One advantage to the

FASTCLUS procedure is that it allows memberships to be re-assigned during the

process.  In MODECLUS, once a membership has been assigned it cannot be changed.

The maxclusters parameter was set at 20 initially to give the FASTCLUS procedure the

latitude to increase, as well as decrease, the number of final clusters.  Subsequent trial

and error runs of FASTCLUS using different numbers of maxclusters were applied to

find the best results based on the DA positive classification results.  NCSS fuzzy
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clustering was used to gain some idea of how many clusters existed for the 79 water

quality sampling sites.  Fuzzy clustering showed that the maximized and minimized

Dunn and Kaufman partition coefficients would support there being between eight and

10 clusters.  Table 8 presents the FASTCLUS results of nine clusters that are best in

terms of the DA, which will be explained in the following step.  Table 9 presents the

means of the water quality variables for each cluster.  A plot of the principal component

scores by cluster is shown in Figure 5.  Several of the clusters do exhibit overlapping;

this will be discussed in the next section.  

STEP 5

The final part of the analysis of the water quality variables was performed to test

the discriminating ability of the clusters that were formed in the FASTCLUS analysis.

The nine clusters and the principal component scores for the first three principal

components were passed to the DISCRIM procedure in SAS.  A non-parametric

nearest-neighbor form of the discriminant analysis is used to cross-validate the cluster

memberships.  Cross-validation involves removing one observation at a time and

forming discriminant rules using n-1 sites.  The rules are then applied to the observation

that was removed to determine if that observation can be classified into the cluster that

it was originally assigned (Johnson 1988).  A resubstitution method of validation is also

available but this method usually overestimates the correctness of the cluster

memberships (Johnson 1988).  The cross-validation procedure using the first three

principal components from STEP 2 misclassified only eight of the 79 sampling sites for

a positive classification ratio of 90 percent.  The clusters were also cross-validated

using the original means of all the water quality variables.  The test more rigorously 
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Table 8. Cluster memberships of sampling sites for water quality variables.

Cluster Number
1 2 3 4 5 6 7 8 9
30 24 23 3 114 43 1 251 47
74 148 34 4 184 45 49 252 191
253 173 52 13 200 46 50 192

293 127 14 291 66 71 213
142 20 337 73 115
144 147 103 143
186 149 104 190
193 150 106 194
215 266 107 209
268 310 137 210
311 479 138 214
336 480 233 221
475 481 234 472
484 482 473 474
488 483 492

485
493

Table 9. Means of the water quality variables by cluster membership.

Cluster Hydrogen
ion ANC Con Chl Nit Sul Sod+Pot

1 3.88 70.94 23.07 22.18 37.89 65.23 47.43
2 2.46 128.99 18.89 18.63 7.71 28.53 70.88
3 4.01 57.88 12.67 18.57 11.28 25.62 50.14
4 3.23 81.82 14.30 16.24 6.09 26.23 58.20
5 6.77 33.43 13.57 20.63 30.38 27.66 48.93
6 15.19 18.11 17.86 17.95 37.87 63.64 37.53
7 5.80 41.03 13.16 17.05 16.87 35.17 44.56
8 14.35 21.08 33.88 23.30 46.71 199.56 59.23
9 9.91 20.02 11.47 16.40 19.73 33.87 36.07
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Figure 5. Principal component score plot of the water quality clusters. 
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determined the discriminating ability of the clusters because the clusters were formed

from the first three principal components, which, as an analogy, could be considered a

“distilled” version of the original water quality variables.  The positive classification

ratio using the original variables was 95 percent with five observations misclassified.

Table 10 and Table 11 show how the misclassifications were distributed using the

principal components and the water quality variables, respectively.  Table 12 lists the

misclassifications by sampling site ID.  Figure 6 presents a plot of the final clusters

within the NPS boundary.

Although the DA results were very high, there was some concern about how

several of the clusters exhibited overlapping in Figure 5.  Overlapping is most prevalent

in clusters three, four, five, and seven.  These clusters are the source of most of the

misclassifications in the DA.  Individual misclassified sampling sites were subjectively

compared to the means of their respective cluster and the means of the cluster that they

were assigned to by the DA.  There are no compelling reasons why any of the cluster

memberships should be manually changed.  Supplementary FASTCLUS procedures

were performed by constraining the number of formed clusters to eight, seven, six, and

five to forcibly reduce the number of clusters.  A new DA was performed at each level

to determine if forcible joining would produce better clusters.  The results showed that

in no case could the reduced number of clusters out perform the nine clusters originally

formed. 
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Table 10. Cross-validation misclassifications using principal components.

Cluster Frequency Number Misclassified Classified to Cluster
3 15 3 4, 5, 7
6 15 1 7
7 14 3 6, 9
8 2 1 1

Table 11. Cross-validation misclassifications using original water quality variables. 

Cluster Frequency Number Misclassified Classified to Cluster
2 4 1 4
3 15 1 7
6 15 1 9
7 14 2 5, 9

   

Table 12. Misclassifications by site ID for the water quality variables. 

Site ID CA Assignment DA Assignment*
43 6 9
71 7 6
115 7 6, 5
221 7 9 **
251 8 1
268 3 4
293 2 4
475 3 5
484 3 7 **
492 6 7

* If two clusters are listed, the first is the misclassification in the DA of the principal
components and the second is the misclassification in the DA of the original variables
** Classifications and misclassifications were the same for the principal components
and the original variables
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Figure 6. Plot of the water quality clusters within the NPS boundary.
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3.6.3 Analysis of the Geology

The analysis of the geology data for the sampling site watersheds are presented

in this section using the same format as the water quality variables.  The geology data

are measured by the percentage of each formation in the watershed upstream of the

sampling site and includes Thunderhead sandstone, limestone, Cades Cove sandstone,

Anakeesta formation, Elkmont sandstone, Basement complex, and Great Smoky group.

This information was compiled by Harwell (2001) from previous work by King,

Neuman, et al. (1968) and is shown in tabular form in Appendix D.  As in the previous

section, a stepwise format will be presented.

SUMMARY

• The initial PCA using all geology variables resulted in five significant principal
components with eigenvalues greater than 0.7.  

• Fuzzy clustering in NCSS identified the optimum number of clusters being between
eight and 10.

• Because there were five significant principal components multivariate variable
selection and multiple regression were used to further explore the data in hopes of
reducing the dimensionality.  Multivariate variable selection resulted in Great Smoky
group being removed from the analysis to prevent a singularity problem.  With five
significant principal components in the initial PCA it was decided to proceed to the
multiple regression using all of the vegetation variables except for Great Smoky
group.

• The multiple regression results produced perfect R2 and almost perfect press-R2

values using Thunderhead sandstone, limestone, Cades Cove sandstone, Anakeesta
formation, Elkmont sandstone, and Basement complex.  Multicollinearity problems
were apparent when Great Smoky group was introduced to the analysis.

• A second PCA was performed using Thunderhead sandstone, limestone, Cades Cove
sandstone, Anakeesta formation, Elkmont sandstone, and Basement complex because
of the significant correlations that remained between these variables.  This resulted
in four principal components with eigenvalues greater than 0.7.
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• The scores of principal components one through four were passed to the
MODECLUS procedure in SAS where 12 initial clusters were formed.  The seeds of
these clusters were passed to FASTCLUS in SAS.

• The FASTCLUS procedure also produced 12 clusters.  Maxclusters was also set at
11, 10, nine and eight because of the results of the fuzzy analysis saying that the
optimum number of clusters should be between eight and 10.  Ten clusters ultimately
provided the best results in the DA.

• DA was performed on the 10 clusters formed by FASTCLUS.  This led to only one
misclassification out of 83 sampling sites for a positive classification ratio of 98.8
percent using the principal components and all of the geology variables.

STEP 1  

            An initial PCA was performed in SAS using the percentages of each formation

in the watersheds.  The results are shown in Table 13.  Based on the eigenanalysis and a

cutoff eigenvalue of 0.7, the first five principal components would be needed to analyze

the geology data.  The eigenvectors of the first five principal components are shown in

Table 14.  Based on the eigenvectors, principal component one is a measure of the

sandstone formation and limestone because of their higher eigenvectors.  Principal

component two is comprised mainly by Thunderhead sandstone and somewhat by

Anakeesta and Great Smoky group.  Principal component three is a contrast between

Anakeesta and Great Smoky group.  Principal component four is strongly influenced by

Basement group and principal component five is mainly explained by Elkmont

sandstone.  Although not shown, the seventh principal component was zero meaning

that multicollinearity exists between some of the variables.  

STEP 2

Fuzzy clustering in NCSS was performed on the geology variables for all the

sampling sites to approximate the optimum number of clusters.  NCSS reported that the

86



Table 13. Eigenanalysis in STEP 1 for the geology variables.

Principal
Component Eigenvalue Proportion of

Variability Explained

Cumulative
Variability
Explained

1 2.201 31.44 31.44
2 1.420 20.28 51.73
3 1.352 19.32 71.04
4 0.913 13.04 84.08
5 0.765 10.93 95.02
6 0.349 4.98 100.00
7 0.000 0.00 100.00

Table 14. Eigenvectors in STEP 1 for the geology variables.

Geology Variables 1 2 3 4 5
Thunderhead sandstone -0.413 0.629 0.017 -0.194 0.189

Limestone 0.508 0.227 -0.089 0.179 0.474
Cades Cove sandstone 0.544 0.232 -0.099 0.129 0.255

Anakeesta -0.129 -0.441 -0.647 0.357 0.069
Elkmont sandstone 0.458 0.166 -0.122 -0.160 -0.765

Basement group -0.127 0.237 0.328 0.870 -0.251
Great Smoky group 0.180 -0.469 0.664 -0.064 0.147
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optimum number of clusters was between eight and 10.  The Dunn partition coefficients

ranged from 0.9904 to 0.9925 while the Kaufmann partition coefficients ranged from

0.0003 to 0.0054. 

STEP 3

    Multivariate variable selection was performed in NCSS using principal

component scores one through five as the dependent variables and the geology variables

as the independent variables to determine if the dimensions of the data could be reduced

before clustering.  The procedure helped to identify the variable causing the

multicollinearity problem discovered in the initial PCA by notification of a singularity

problem in the independent variables.  Through trial-and-error Great Smoky group had

to be removed from the process in order to finalize the multivariate variable selection

results.  All of the geology variables, with the exception of Great Smoky group, were

found to be needed to minimize Wilks' lambda to near zero.  

STEP 4 

Multiple regression was performed in NCSS to determine the R2 and press-R2

values between each of the principal components and the set of geology variables.

Initially, all geology variables were included in the analysis and this, of course, resulted

in perfect correlation between the independent variable (principal component) and the

geology variables.  However, this exercise did identify Great Smoky group as the

source of the multicollinearity problem by producing high condition numbers and

variance inflation factors.  When Great Smoky group was removed the correlations

were still perfect, i.e. equal to one.  Forthcoming analysis will conclude that even fewer

geology variables are actually needed to explain the geologic variability among the
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watersheds.  However, because five principal components had eigenvalues greater than

0.7 for only seven variables, it was decided to leave all variables in the analysis with the

exception of Great Smoky group.  

STEP 5

A second PCA was performed using Thunderhead sandstone, limestone, Cades

Cove sandstone, Anakeesta formation, Elkmont sandstone, and Basement complex.  The

results of the eigenanalysis are shown in Table 15.  The first four principal components

should be retained based on an eigenvalue cutoff of 0.7.  The eigenvectors of the first

four principal components are shown in Table 16.  The eigenvectors of the first

principal component show the large influence of Cades Cove sandstone, limestone, and

Elkmont sandstone.  The second principal component is displays the contrast between

Anakeesta and Thunderhead sandstone.  The third principal component is strongly

influenced by Basement complex and the fourth principal component is a contrast

between Elkmont sandstone and limestone.  

STEP 6

The first four principal components were passed to MODECLUS in SAS.  The

MODECLUS analysis resulted in the initial formation of 12 clusters.  The cluster means

of the principal components were passed to FASTCLUS for k-means clustering.

STEP 7

FASTCLUS k-means clustering was performed next using SAS.  With

maxclusters set equal to 20 there were 12 clusters formed.  Because the NCSS fuzzy

clustering results suggested that the actual number of clusters was between eight and 11,

maxclusters was set to 11, 10, nine, and eight on successive attempts.  Ten clusters 
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Table 15. Eigenanalysis in STEP 5 for the geology variables.

Principal
Component Eigenvalue Proportion of

Variability Explained

Cumulative
Variability
Explained

1 2.168 36.13 36.13
2 1.398 23.29 59.42
3 0.917 15.28 74.70
4 0.791 13.18 87.89
5 0.379 6.32 94.21
6 0.347 5.79 100.00

Table 16. Eigenvectors in STEP 5 for the geology variables.

Geology Variables 1 2 3 4
Thunderhead sandstone -0.368 0.542 -0.264 0.317

Elkmont sandstone 0.484 0.062 -0.142 -0.676
Limestone 0.528 0.135 0.131 0.508

Cades Cove sandstone 0.567 0.133 0.091 0.305
Anakeesta -0.101 -0.724 0.296 0.229

Basement group -0.134 0.376 0.893 -0.195
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produced the lowest misclassification rates in the DA, which will be presented in the

step that follows this section.  The cluster memberships for the sampling sites based on

the geology data are shown in Table 17 and the cluster means are shown in Table 18.

Figure 7 shows the principal components plot by cluster for principal components one

and two.  Although additional principal components were used in the clustering,

principal components one and two account for almost 60 percent of the variability in the

geology data and the plot shown is presented for displaying the segregation of the

clusters. 

STEP 8

DA was performed on the cluster results from the FASTCLUS procedure.  The

positive classification ratios were extremely high at 98.8 percent.  In both DA cases

using the principal components and the original geology data for all 83 sampling sites

only one misclassification occurred for the cross-validation tests.  The single

misclassification occurred in cluster two where one member was incorrectly classified

into cluster five.  Figure 8 shows a map of the geologic clusters within the NPS

boundary.   

3.6.4 Analysis of the Morphology

The morphology of the watersheds was analyzed using the same process as the

previous cases.  This approach provided the best results; however, the exact number of

clusters was more difficult to determine compared with previous analyses. The variables

included in the morphology analysis were: stream elevation, mean basin elevation,

stream order, maximum channel length, basin length, basin area, stream density, mean 
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Table 17. Cluster memberships of sampling sites for geology variables.

Cluster Number
1 2 3 4 5 6 7 8 9 10
1 13 45 142 3 46 30 147 156 24
4 23 74 144 14 73 43 149 174 173
47 49 215 266 20 192 66 150 489 184
103 148 233 268 34 252 190 493 186
104 191 234 50 253 193 200
106 221 237 52 473 194 488
107 310 71 251
114 311 209 472
115 479 210
127 480 213
137 481 293
138 482 474
143 483 475
214 484
291 485
336
337
492
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Table 18. Percentage means of geology data by cluster (rounded to nearest tenth).
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3 2.0 0 0 96.6 0 0 1.4
4 69.8 0 0 9.3 0 4.4 16.4
5 69.1 0 0.1 16.1 4.1 0 10.6
6 19.6 0 0 75.1 0 0 5.4
7 44.5 0 0 44.6 0.7 0 10.2
8 66.1 0 0 0 0 1.3 32.7
9 0.4 13.2 20.1 0 42.5 0 23.6
10 7.0 0.5 4.3 0 75.8 0 12.4
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Figure 7. Principal component score plot of the geology clusters.
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Figure 8. Plot of the geology clusters within the NPS boundary.
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basin slope, channel slope, and basin width.  The units of measurement are metric

except for stream order which is an ordinal variable.  The data were also compiled by

Harwell (2001).  The morphology data are included in Appendix D.  The process for

clustering the morphology data are recorded in a summary and step-by-step format

similar to previous analyses.

SUMMARY

• An initial PCA was performed using all of the morphology variables.  The first three
principal components with eigenvalues greater than 0.7 explained 84.7 percent of the
variability in the morphology variables.  

• Multivariate variable selection was performed using the first three principal
components and the morphology variables.  Stream elevation, stream order, basin
area, stream density, mean basin slope, and channel slope were identified as the main
components of the first three principal components.  The remaining variables caused
singularity problems in the analysis.

• Multiple regression was performed using the first three principal components as
dependent variables and stream elevation, stream order, basin area, stream density,
mean basin slope, and channel slope as independent variables.  R2 and press-R2

values ranged from 0.90 to 0.99 meaning that these variables were good predictors
of the principal components.  Multicollinearity was a problem when additional
variables were introduced to the analysis.  
  

• Fuzzy clustering was performed using all of the morphology variables.  The results
were rather vague with the number of possible clusters ranging from three to 15.

• A second PCA was performed in SAS using stream elevation, stream order, basin
area, stream density, mean basin slope, and channel slope because of significant
correlations that remained between these variables.  The first three principal
components had eigenvalues greater than 0.7 and explained 85.3 percent of the
variability in the morphology variables.

• MODECLUS analysis was performed using the first three principal components
from the second PCA.  Eleven initial clusters were formed by this procedure.

• A FASTCLUS analysis was performed using the cluster seeds from the
MODECLUS analysis. Nine clusters were initially formed.  Smaller numbers of
clusters were tried by iteratively changing maxclusters from nine to three and
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observing the DA results. Five clusters ultimately provided the best positive
classification results in the DA.

• DA was performed using the cluster results from the FASTCLUS procedure.  The
positive classification result using the principal components was 98 percent while
the positive classification results using the original variables was 90.   

STEP 1

PCA was performed on the morphology data using all of the sampling sites.  The

eigenvalues are shown in Table 19 with the proportional and cumulative variability

explained.  The first three principal components, with eigenvalues greater than 0.7,

explain 84.7 percent of the variability in the data.  The eigenvectors of the first three

principal components are shown in Table 20.  Based on the eigenvectors in Table 20, the

first principal component is a contrast between elevation, slope and the remaining

variables.  In general, as slope and elevation increase, values for the remaining variables

decrease.  The first principal component is a general measure of all the morphology

variables because the majority of the eigenvectors are fairly equal in magnitude.

However, the magnitudes of the eigenvectors for principal components two and three

are different.  Principal component two is mainly explained by the contributions of

elevation and stream density.  Once again the difference in signs gives additional

interpretation that stream density decreases as elevation increases.  Principal component

three is strongly influenced by mean basin slope.

STEP 2   

            Multivariate variable selection was performed in NCSS to determine which of

the morphology variables are most important for the explanation of the first three 
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Table 19. Eigenanalysis in STEP 1 for the morphology variables.

Principal
Component Eigenvalue Proportion of

Variability Explained

Cumulative
Variability
Explained

1 6.153 61.53 61.53
2 1.258 12.58 74.11
3 1.058 10.58 84.69
4 0.570 5.70 90.40
5 0.493 4.93 95.33
6 0.235 2.35 97.68
7 0.144 1.44 99.12
8 0.042 0.42 99.55
9 0.031 0.31 99.86
10 0.014 0.14 100.00

Table 20. Eigenvectors in STEP 1 for the morphology variables.

Morphology Variables 1 2 3
Stream elevation 0.335 0.405 -0.030

Mean basin elevation 0.277 0.428 0.326
Stream order -0.358 -0.022 0.174

Max. channel length -0.373 0.172 0.099
Basin length -0.385 0.124 0.094
Basin area -0.363 0.229 0.138

Stream density -0.175 -0.602 -0.157
Mean basin slope 0.096 -0.315 0.856

Channel slope 0.296 -0.225 0.195
Basin width -0.367 0.204 0.170
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principal components.  Using the principal components as the dependent variables and

the morphology variables as the independent variables, stream elevation, stream order,

basin area, stream density, mean basin slope, and channel slope were identified to

minimize Wilks' lambda to zero.  

STEP 3  

Multiple regression was performed using NCSS.  The principal components

were once again used for the dependent variables and the morphology variables

identified in STEP 2 were used for the independent variables.  Stream order is an

ordinal variable that ranges from one to five.  In multiple regression ordinal variables

must be converted to a set of n-1 dummy variables where n = 5 for the number of

stream orders.  The stream order of three was used as the baseline order and four

dummy variables were created for stream orders one, two, four, and five.  The R2 and

press-R2 results showed that stream elevation, stream order, basin area, stream density,

mean basin slope, and channel slope are in fact all good predictors of the first three

principal components.  R2 and press-R2 values ranged from 0.90 to 0.99.  Variables

omitted were added to the regression procedure only to verify that multicollinearity

existed when they were included, which turned out to be the case.  

STEP 4   

Fuzzy clustering was performed in NCSS using the morphology variables.  The

results were not as definite as in the previous analyses.  The optimum number of

clusters fell in a wide range from three to 15, all with high Dunn partition coefficients

and low Kaufman partition coefficients.  
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STEP 5   

A new PCA was performed in SAS using stream elevation, stream order, basin

area, stream density, mean basin slope, and channel slope.  Significant correlations exist

between some of these variables meaning that PCA remains to be a valid tool for

analysis. The first three principal components had eigenvalues greater than 0.7.  The

eigenvalues for the first three principal components are shown in Table 21 and the

corresponding eigenvectors are shown in Table 22.  The first three principal components

explain 85.3 percent of the variability in the morphology variables listed.  Principal

component one can be interpreted in the same way as the PCA in STEP 1.  Principal

components two and three are mainly explained by mean basin slope and stream

density, respectively.

STEP 6

The principal component scores for the first three principal components were

passed to the MODECLUS procedure in SAS.  Eleven clusters were formed by

MODECLUS.  The principal component cluster seeds were passed to the FASTCLUS

procedure.

STEP 7

            The FASTCLUS k-means clustering procedure was performed using the seeds

from the MODECLUS procedure.  Initially, nine clusters were formed with the

maxclusters parameter set to 20.  The cross-validation DA produced a low positive

classification rate at 72 percent.  The maxclusters parameter was then iteratively

decreased from nine to three while the DA results were observed.  A cluster number of
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Table 21. Eigenanalysis in STEP 5 for the morphology variables.

Principal
Component Eigenvalue Percentage of

Variability Explained

Cumulative
Variability
Explained

1 3.160 52.67 52.67
2 1.144 19.07 71.74
3 0.811 13.52 85.25
4 0.416 6.94 92.19
5 0.298 4.97 97.17
6 0.170 2.83 100.00

Table 22. Eigenvectors in STEP 5 for the morphology variables.

Morphology Variable 1 2 3
Stream elevation -0.475 -0.291 0.024

Stream order 0.512 0.093 0.239
Basin area 0.468 -0.107 0.262

Stream density 0.293 0.395 -0.793
Mean basin slope -0.135 0.792 0.473

Channel slope -0.434 0.334 -0.144
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five produced the best positive classification results, which will be explained in the

following step.  The final clusters memberships for the sampling sites are shown in

Table 23 and the morphology cluster means are shown in Table 24.

STEP 8

DA was performed on the FASTCLUS cluster results in SAS using the principal

components and all of the original morphology variables.  The positive classification

rate using the principal components was 98 percent.  One observation from cluster one

was classified into cluster three and one observation from cluster four was classified

into cluster one.  The positive classification rate using the original morphology

variables was 90 percent.  The misclassifications using the morphology variables are

shown in Table 25.  The principal components plot for principal components one and

two by cluster is shown in Figure 9.  A plot of the clusters within the boundary of the

NPS is shown in Figure 10.

3.6.5 Analysis of the Vegetation

The vegetation variables are analyzed in this section of the study.  The

vegetation data for the GRSM were compiled by MacKenzie (1993) and divided into

the percentages of each type of vegetation in the sampling site watersheds by Harwell

(2001).  The vegetation types used in this analysis include the following:  northern

hardwood, spruce-fir, cove hardwood, mesic oak, mixed mesic oak, tulip poplar, pine,

heath bald, xeric oak, and pine-oak.  Other vegetation types were identified by

MacKenzie (1993) but their contribution on a percentage basis was very small.

According to his findings, the vegetation types listed above account for approximately
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Table 23. Cluster memberships of sampling sites for morphology variables.

Cluster Number
1 2 3 4 5

1, 43, 49, 66,
73, 127, 144,
148, 186, 190,
193, 210, 293,
310, 472, 473,
475, 480, 484,
488, 493 

103, 115, 234,
252, 253, 291

3, 13, 14, 20,
23, 24, 30, 34,
50, 52, 147,
149, 150, 156,
173, 174, 194,
266, 268, 311,
474, 479, 489

71, 74, 142,
143, 184, 191,
200, 213, 214,
215, 221, 233,
237, 251, 336,
337, 482, 483,
485, 492

4, 45, 46, 47,
104, 106, 107,
114, 137, 138,
192, 481

Table 24. Means of the morphology variables by cluster membership.

Morphology Variable 1 2 3 4 5
Stream elevation (m) 762 1416 535 1056 914

Mean basin elevation (m) 1250 1566 1070 1345 1332
Stream order 3 1 4 2 2

Max. channel length (km) 8.9 0.9 20.0 4.2 3.4
Basin length (km) 6.7 0.7 12.8 3.2 2.9

Basin area (ha) 2429 43 10403 459 369
Stream density (km/km2) 1.5 0.4 1.7 1.4 1.8

Mean basin slope (%) 48 45 43 44 55
Channel slope (%) 9.3 27.3 4.8 12.5 23.4
Basin width (km) 3.5 0.5 7.9 1.3 1.2

Table 25. Cross-validation misclassifications using the morphology variables.

Cluster Frequency Number Misclassified Classified to Cluster
1 21 1 4
3 23 2 1
4 21 2 1
5 12 3 4
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Figure 9. Principal component score plot of the morphology clusters.
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Figure 10. Plot of the morphology clusters within the NPS boundary.
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98 percent of the vegetation in the GRSM.  The vegetation variables are similar to the

geology variables in the sense that the measurements are based on the percentages of

each type of vegetation in the watersheds of the sampling sites.  Summary and step-by-

step formats of the clustering procedure are presented below.

The methods used in this section of the study are somewhat different from the

previous sections.  In short, the results of the clustering using the PCA components did

not form distinct clusters.  Although the clusters did perform well in the DA, the

principal components plot showed that four of nine clusters have severe overlapping

problems.  However, PCA was used to help determine if a smaller number of variables

can be used for clustering.  

SUMMARY

• An initial PCA was performed on all of the vegetation variables.  This resulted in the
identification of four principal components with eigenvalues greater than 0.7 and
82.5 percent of the variability explained. 

• Multivariate variable selection was performed using the first four principal
components and all of the vegetation variables.  This resulted in a four-variable
model composed of spruce-fir, northern hardwood, mesic oak, and heath bald, and a
five-variable model composed of spruce-fir, northern hardwood, mesic oak, pine,
and heath bald.  

• Multiple regression was performed using the four and five-variable models from the
multivariate variable selection step.  Principal components one through four were
used as the dependent variables.  Both models performed very well with R2 and
press-R2 values ranging from 0.91 to 0.99.  Multicollinearity problems were
identified when mixed-mesic oak was introduced.  At this point neither model
seemed superior to the other.

• Fuzzy clustering failed to produce any concrete results as to the number of clusters
in the vegetation variables.  The group-average hierarchical method and k-means
non-hierarchical method were used in NCSS to gain some foreknowledge as to the
number of clusters in the vegetation variables. Using joining distances in the group-
average hierarchical method nine clusters were identified as optimal.  The k-means
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method identified either nine or 10 clusters as optimum based on the sum of the
minimized within cluster sum of squares.

• K-means clustering was then applied to the four and five-variable models identified
in the multivariate variables selection process.  The five-variable model of spruce-fir,
northern hardwood, mesic oak, pine, and heath bald for nine clusters outperformed
the four-variable model in the DA.

• DA was performed in SAS using the clusters of the k-means analysis in NCSS.
Using all of the original variables, the positive classification rate was 95 percent.

STEP 1

An initial PCA was performed using all of the vegetation variables.  The

eigenvalues of the PCA are shown in Table 26.  Four principal components can be

identified with eigenvalues greater than 0.7 and with 82.5 percent of the variability in

the vegetation variables explained.  The eigenvectors of the first four principal

components are listed in Table 27.  It can be seen that principal component one does not

have a clear interpretation in terms of one or two of the vegetation variables because

most of the eigenvectors are fairly equal.  However, xeric oak and pine-oak do have

somewhat higher eigenvectors meaning that these vegetation variables contribute most

to the explanation of principal component one.  Principal component two has relatively

higher eigenvectors for mesic oak, cove hardwood, and spruce-fir.  Principal component

three is mainly explained by the contributions of tulip poplar, mesic oak, and heath

bald.  The main contributing vegetation variables for principal component four are

spruce-fir, northern hardwood, and heath bald. 

STEP 2

Multivariate variable selection was performed with the first four principal

components and the vegetation variables.  Wilks' lambda was minimized to zero to form
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Table 26. Eigenanalysis in STEP 1 for the vegetation variables.

Principal
Component Eigenvalue Percentage of

Variability Explained

Cumulative
Variability
Explained

1 3.981 39.81 39.81
2 1.914 19.14 58.95
3 1.615 16.15 75.09
4 0.737 7.37 82.46
5 0.660 6.60 89.06
6 0.417 4.17 93.22
7 0.324 3.24 96.46
8 0.242 2.42 98.88
9 0.107 1.07 99.95
10 0.005 0.05 100.00

Table 27. Eigenvectors  in STEP 1 for the vegetation variables.

Vegetation Variable 1 2 3 4
Spruce-fir 0.282 -0.490 0.058 -0.563

Northern hardwood 0.322 -0.344 -0.138 0.423
Cove Hardwood 0.272 0.508 0.188 0.139

Mesic oak 0.074 0.498 -0.444 -0.040
Mixed mesic hardwood 0.392 0.112 -0.276 -0.234

Tulip poplar 0.184 0.105 0.634 0.151
Pine 0.388 -0.162 0.251 0.319

Heath bald -0.160 0.267 0.419 -0.513
Xeric oak 0.459 -0.079 0.131 -0.000
Pine-oak 0.440 -0.089 -0.106 -0.202
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a five-variable model comprised of spruce-fir, northern hardwood, mesic oak, pine, and

heath bald.  

STEP 3  

Multiple regression was performed using the five-variable model identified in

STEP 2.  The five-variable performed very well with high R2 and press-R2 values that

ranged from 0.91 to 0.99 for all four principal components as dependent variables.

Other variables were added to the regression model to determine their predictive

capabilities.  The models did not provide a marked increase in predictive ability

compared to the five-variable model identified by the multivariate variable selection

technique.  The models did verify a multicollinearity problem when mixed mesic

hardwood was introduced as an independent variable by generating high condition

numbers and variance inflation factors.  

STEP 4

Fuzzy clustering was performed to determine an optimum number of clusters for

the vegetation variables.  The method failed to provide optimized Dunn and Kaufman

partition coefficients for cluster sizes from two through 15.  Two alternative methods

were used to gain some understanding as to the number of clusters that should be

expected from the vegetation variables.  

The first method was the group-average hierarchical method of clustering.

Remember that hierarchical clustering begins with all observations in different clusters

and eventually joins the observations to form one cluster using distance measures.

Observations are joined to form a smaller number of clusters by selecting observations

with the smallest distance to a particular cluster.  There usually comes a point where the
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addition of other observations to a cluster requires a large increase in distance to allow

the next closest observation to join.   The number of clusters prior to the largest increase

in joining distance has been identified as a possible solution for the optimum number of

clusters (Jobson 1992).  The iterative joining report generated by NCSS allows the

identification of this point.  The largest incremental increase in cluster joining distance

for the vegetation variables occurred when decreasing from nine clusters to eight

clusters.  Two goodness-of-fit measures are used to assess the results.  The first is the

cophenetic correlation measure, which was 0.865 for this analysis.   The cophenetic

correlation measures the correlation between the original distances and the distances

created by the clustering.  The second goodness-of-fit measure in NCSS is the deltas.

Delta (0.5) and delta (0.1) were 0.171 and 0.211, respectively.  The deltas measure the

degree of distortion in the formed clusters (Hintze 2001) and ideally should be very

close to zero.  Hence, the optimum number of clusters identified by the group-average

hierarchical method in NCSS is nine.  

The second method for determining the number of clusters was performed using

a k-means cluster analysis for a range of clusters.  The range of the number of clusters

for the vegetation variables was set from two to 15.  The minimum iteration section of

the k-means cluster analysis gives the summation of the within-cluster sum of squares

for all the clusters in a solution.  The number of clusters where the summation of the

within-cluster sum of squares reaches a point of diminishing return is often noted as the

optimum number of clusters (Hintze 2001).   This point occurred at nine and 10

clusters.  Based on the k-means cluster analysis, the optimum number of clusters is

thought to be between nine and 10.
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STEP 5

K-means clustering was performed using FASTCLUS in SAS for the five-

variable model from STEP 2.  Nine clusters were formed to give the best results in

terms of positive classification percentage in the DA.  The positive classification ratio

for the five-variable model of spruce-fir, northern hardwood, mesic oak, pine, and heath

bald was 95 percent (four misclassifications out of 83 sampling sites).  Other cluster

sizes were tested but none could outperform the nine cluster model in the DA.  The DA

was tested against all 10 of the vegetation variables, which means that the reduced

model outperforms the cluster results of the full 10 variable model.  The cluster

memberships are shown in Table 28 and the cluster means are shown in Table 29.  A

plot of the clusters within the NPS boundary is shown in Figure 11.

3.6.6 Identification of Sites in Overlapping Regions of Clusters

Sampling sites in the overlapped regions of clusters have questionable

memberships because some of their properties may be characterized by the elements of

two or more clusters.  These sites are unique and should probably be retained in

redesigned network because their watershed characteristics are unusual when compared

to the majority of the sites. The sites in the overlapped regions of clusters can easily be

identified in the DA by noting those sites that are misclassified in the cross-validation.

Sites in overlapping clusters were identified on the basis of combined watershed

characteristics and the water quality variables.  PCA, CA, and DA were performed on

the sampling sites after combining the geology, morphology, and vegetation variables

into one data file.  This three step method is very similar to the one that has been used
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Table 28. Cluster memberships of sampling sites for the vegetation variables.

Cluster Number
1 2 3 4 5 6 7 8 9
47 148 3 20 184 233 66 24
114 480 13 30 221 234 71 156
190 481 14 34 336 237 73 173
191 482 23 43 291 74 174
192 483 186 45 103 489
193 488 46 104
213 49 106
214 50 107
215 52 252
475 194 253
492 209 473

210
472
474

1, 4, 115,
127, 137,
138, 142,
143, 144,
147, 149,
150, 200,
251, 266,
268, 293,
310, 311,
337, 479,
484, 485,

493

Table 29. Means of the vegetation variables by cluster membership.

Vegetation
variable 1 2 3 4 5 6 7 8 9

Spruce-Fir 1.9 0.02 0.8 8.5 0.8 46.8 22.4 0 2.3
Northern
hardwood 22.5 0.3 11.9 11.2 61.4 30.0 30.8 4.9 17.8

Cove hardwood 51.9 20.3 38.6 54.0 26.2 21.1 41.4 18.3 51.2
Mesic oak 10.5 18.3 5.3 5.0 5.3 0.6 0.7 2.9 12.9

Mixed mesic
hardwood 4.0 41.0 15.8 7.9 5.3 0.1 1.0 17.1 11.7

Tulip Poplar 2.0 0.7 6.0 5.5 0.6 0.2 0.5 4.5 0.5
Pine 0.2 3.0 11.2 2.0 0.2 0.1 0.1 23.1 1.0

Heath Bald 4.7 0 1.1 2.2 0 0.6 1.4 0.1 0.4
Xeric oak 2.2 13.7 8.0 3.3 0 0 0.03 20.6 1.4
Pine-oak 0.03 2.7 1.0 0.2 0 0 0.05 2.0 0.3
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Figure 11. Plot of the vegetation clusters within the NPS boundary.
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thus far.  Therefore, only a brief summary of the results will be presented.  The sites in

the overlapped regions of the water quality clusters were determined from the analysis

in Section 3.6.2 and are also listed in this section.  

The PCA was performed using the combined total of 28 variables in the

watershed characteristics.  Nine principal components with eigenvalues greater than 0.7

explained 87.6 percent of the total variability in the 28 variables.  The CA resulted in

the formulation of 10 clusters.  The DA resulted in positive classification rates of 88

percent and 89 percent using the principal components and the original variables,

respectively.    The misclassified sites were:  49, 50, 52, 71, 74, 127, 147, 149, 150, 191,

192, 210, 221, and 474.  The sites in the overlapped regions of the water quality clusters

of Section 3.6.2 were 43, 71, 115, 221, 251, 268, 293, 475, 484, and 492.  Combining

these two sets of sites gives a total of 22 sites that are considered to be in overlapping

regions of clusters. 

3.6.7 Collocated Sampling Sites

The information for the collocated sampling sites was compiled using ESRI

ArcView GIS software.  The collocated site information was obtained directly from the

GRSM NPS.  (In order to differentiate between water quality sampling sites and the

sites obtained from the NPS, the water quality sampling sites will simply be referred to

as “sampling sites” and the sites obtained from the NPS will be referred to as

“ecological sites” in this section)  The coordinates of the ecological sites were

downloaded as a database table to an existing ArcView project of the GRSM that

contained the sampling sites.   A query was performed in ArcView to find the sampling
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sites which had ecological sites located within a radius of 100 meters.  The number of

ecological sites inside this radius for each sampling site was also counted.  A sampling

site with one ecological site within 100 meters received a collocation benefit score of 20

and a sampling site with two ecological sites received a collocation benefit score of 30.

These collocation benefit scores were chosen because they were similar in magnitude to

the clustering benefit scores.   Sampling sites with no ecological sites located within the

100 meter radius received a collocation benefit score of zero, even if ecological sites

were located upstream or downstream outside of the 100 meter radius.  The assigned

collocation benefit scores are listed in Appendix E.      

3.6.8 Compilation of Data for Optimization

The collocation information and the clustering results of the water quality data

and the watershed characteristics were compiled to generate a total benefit score for

each sampling site to be used in the SA algorithm.  The information is shown in tabular

form in Appendix E.  The total benefit score was calculated according to Equation 3.7

and all weights were assigned a value of one except for water quality which was

assigned a weight of two.  Additional analyses will be conducted in the sensitivity

analysis to explore the use of weights assigned to each category of water quality,

geology, morphology, vegetation, and collocation.  Appendix E presents a table of the

one-way distances between sites, sampling time spent at each site, and the total dollars

spent each year based on four samples per year at $30 per man-hour.  The distances are

based on the scheme presented in Figure 2.    
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3.6.9 Sampling Site Selection Optimization using SA

This section presents the results of performing SA using the benefits and the

costs of the GRSM water quality monitoring network using the clustering results,

collocation information, and the costs of the present sampling scheme.  The

computational runs are performed using the current sampling scheme of four samples

per sampling site location per year.  However, recommendations may be submitted at

the end of this study that change the location and frequency of sampling.  The

combination of possible sampling frequency changes and selection of which sites can

be discontinued will be very important in saving money and more importantly, ensuring

that a monitoring network is in place that will have the ability to detect long-term trends

on a site-by-site basis and on an overall network basis.

Recall from earlier discussions that the SA algorithm was written to perform the

retaining or discarding of sampling sites for two different problems.  The first was

where the user would input an arbitrary selection of sites and the algorithm would

evaluate the network as a whole and maximize the objective function for a global

solution that would recommend sampling sites to be retained and sampling sites to be

discarded.  The second form of the algorithm begins with a user-specified number of

sites, n, (the initial network of sites are chosen randomly by the algorithm) for the final

monitoring network to consist of, and then seek to find the best subset of n sampling

sites with a maximum objective function for the final monitoring network.  The results

of both of these analyses will be presented here and some inference will be given as to

how their relationship complements each other.  Results of sensitivity analyses will also

be presented to assess the algorithm’s reaction to minor changes in certain aspects of the
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program that may seem somewhat arbitrary to the reader.  Summary and scenario

sections are presented for each of the two SA program types.  From this point forward,

SA1 will be used to reference the first form of the SA program where the full network is

optimized, and SA2 will be used to reference the second form of the SA program where

the best subset of n sampling sites are selected.  The Matlab code for SA1 and SA2 is

listed in Appendix F.

It was mentioned earlier in the study that weights could be assigned to the water

quality clusters, watershed characteristics clusters (geology, morphology, and

vegetation), or the collocation data.  For the purpose of the initial analysis, the water

quality clusters have been assigned a weight of two and the watershed characteristics

clusters have been assigned a weight of one.  The sampling sites that are collocated with

other NPS projects have been assigned a value of 20 if they have one NPS site located

within a 100 meter radius and 30 if they have two NPS sites located within the same

radius.  All other sites were assigned a zero collocation benefit.  Values were arbitrarily

chosen because they were similar in magnitude to the water quality cluster benefits and

the watershed characteristics benefits.

Summary of Scenario 1 – SA1 analysis for full network optimization

• The objective function was maximized at a value of 15,280 with 124,500 iterations
and a runtime of 47.6 minutes.  

• A total of 67 sampling sites were retained and 12 sampling sites were discarded at
the maximized objective function.  

• Results of a sensitivity analysis on the benefit values of water quality, geology,
morphology, vegetation, and collocation show that vegetation and collocation are
more sensitive than the other variables when the benefit multiplier is increased to
2.0. 
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Scenario 1 – SA1 analysis for full network optimization

The first SA1 program run was initialized with a user-selection of 39 sampling

sites in the initial monitoring network:  1, 4, 14, 24, 34, 45, 47, 50, 52, 71, 73, 114, 115,

127, 137, 138, 143, 148, 150, 174, 200, 210, 215, 221, 237, 253, 266, 268, 293, 311,

336, 337, 473, 475, 480, 482, 483, 488, and 489.  The runtime for the algorithm was

47.6 minutes and the maximum objective function (maximized net benefit) achieved

was 15,280.  The algorithm produced 124,500 monitoring network permutations with

9,403 of those permutations being accepted by either the objective function rule or by

the Boltzmann probability distribution, together known as the Metropolis algorithm.

The retained and the discarded sampling sites are shown in Table 30 below.  

Figure 12 shows a sampling site diagram with the sites that were discarded

identified by the gray highlight.  Figure 13 presents the objective function improvement

of the SA1 algorithm by iterations and by temperature step decreases.  The top graph in

Figure 13 shows how the algorithm begins with a low objective function (poor solution)

and gradually finds a better solution iteration by iteration.  At a point, there is a

noticeable “ceiling” value at which the objective function cannot be improved upon.  At

a later point, around 100,000 iterations, the algorithm flat lines because a better solution

cannot be found.  The lower graph shows vertical bars at each temperature step that

represent the range from the lowest to the highest objective function evaluation.  Notice

that the bars generally become shorter and closer together as the temperature decreases

toward the termination point.  Again notice that the maximum objective function value

is identified by a “ceiling” value.  At a point near the termination point, the bar height is

infinitesimally small indicating once again that the objective function cannot be
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Table 30. SA1 results.

Sampling Sites Retained Sampling Sites Discarded
4, 13, 14, 20, 23, 24, 30, 34, 47, 49, 50,
52, 66, 71, 73, 74, 114, 137, 142, 143,

144, 147, 148, 149, 150, 156, 173, 174,
186, 190, 191, 192, 193, 194, 209, 210,
213, 214, 215, 221, 233, 234, 237, 251,
252, 253, 266, 268, 291, 293, 310, 311,
472, 473, 474, 475, 479, 480, 481, 482,

483, 484, 485, 488, 489, 492, 493

1, 3, 43, 45, 46, 103, 104, 106, 107, 115,
127, 138, 184, 200, 336, 337

Figure 12. Sampling site diagram of the SA1 solution.
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Figure 13. Objective function tracking through the SA1 solution.
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improved upon.  These graphs were created in Matlab as part of the SA algorithm and

are standard output each time a SA program run is executed. 

Because the SA1 algorithm requires that the user specify an initial selection of

sampling sites in the network, a second analysis was performed by reducing the number

of sites in the initial monitoring network.  The previous paragraph describes the

situation in which 22 sampling sites out of 83 sampling sites were initially selected for

discontinuation.  The sites were not chosen for any specific reason; they were arbitrarily

marked to be included in the initial monitoring network.  One additional program run

was performed with only sampling sites 480 and 489 in the initial configuration.  The

outcome was the same as the previous case in which there were 22 sampling sites

selected for discontinuation in the initial network.  

A sensitivity analysis was performed on the SA1 algorithm by multiplying the

water quality, geology, morphology, vegetation, and collocation benefit values by

factors of 0.8, 1.0, 1.5, and 2.0.  The analysis was performed on one set of benefit

values at a time while holding the other benefits at their original values.  The SA1

program sensitivity analysis results are shown in Tables 31 through 35.  Each table

presents the results for a set of sensitivity analyses corresponding to each data group

(water quality, geology, morphology, vegetation, and collocated sites).  The first column

of each table shows the multipliers that were applied to the individual benefit values of

the data group.  The second column gives the maximized net benefit obtained in the

SA1 program.  The third column presents the changes in the retained sampling sites for

each analysis.  The second row of each table, with a multiplier of 1.0, gives the

sensitivity analysis results of the data with their original values, i.e. all benefits are
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Table 31. Sensitivity analysis results of water quality benefits.

Multiplier Net Benefit Retained sampling site changes from base
0.8 15915 No change 
1.0 15752 BASE
1.5 15470 -43, +52, +156
2 15282 -43, +52, -107, +336, +337

Table 32. Sensitivity analysis results of geology benefits.  

Multiplier Net Benefit Retained sampling site changes from base

0.8 17172
-43, -221, -310, -311, -479, -480, -481, -482, -483,

-484, -485
1.0 15752 BASE
1.5 15713 +3, +45, +46, +127, +156
2.0 15840 +3, +45, +46, -107, +127, +156,  

Table 33. Sensitivity analysis results of morphology benefits.

Multiplier Net Benefit Retained sampling site changes from base
0.8 15811 156
1.0 15752 BASE

1.5 16736
-43, -221, -310, -311, -479, -480, -481, -482, -483,

-484, -485
2.0 15792 -43, +45, +46, +103, +104, +106

Table 34. Sensitivity analysis results of vegetation benefits.

Multiplier Net Benefit Retained sampling site changes from base
0.8 15765 -43
1.0 15752 BASE
1.5 15785 -52, -156
2.0 15826 -52, -156
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Table 35. Sensitivity analysis results of collocation benefits.

Multiplier Net Benefit  Retained sampling site changes from base
0.8 15496 +45, +46, +156
1.0 15752 BASE
1.5 16421 No change
2.0 17036 -209
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multiplied by a factor of 1.0.  This is referred to as the “base” in the third column.  For

example, row four of Table 31 for the water quality variables is based on a multiplier of

2.0.  The multiplier was applied to all the water quality benefit values, and then the SA1

program was executed.  The third column lists the sampling sites that were added (+) or

removed (-) from the retained sampling sites list relative to the base row with multiplier

of 1.0.  It is apparent from Tables 31 through 35 that the SA program is reasonably

stable considering the magnitude of the multipliers applied to the benefit values.  It can

be inferred that in most cases the program is more dependent on the results of the

cluster analyses than it is on the magnitude of the benefit values.  In other words, if the

clusters for the data are reasonable the results of the SA should be very accurate.   It can

be noticed that geology and morphology are more sensitive to multiplier changes than

water quality, vegetation, or collocation.  Water quality, vegetation, and collocation

exhibit only a small number of changes compared to the base.  It is interesting to note at

this time that none of the sensitive sites listed in Tables 31 through 35 will be included

in the retained networks of n = 10 through n = 40 of SA2 presented later in this section.

The sensitive sites should be termed as “pivotal” because their benefits are neither very

high or very low.

A sensitivity analysis was also performed by changing the benefit multiplier that

was used to apportion the dollar amount of benefit to each sampling site.  Recall that a

factor of 1.2 was multiplied by the costs of laboratory expenses, overhead,

interpretation, etc.  The costs remain fixed and equal for each site and do not include the

variable cost of accessing each sampling site.  Costs are multiplied by the factor 1.2,

then summed up for the entire network, and apportioned out according to the benefit
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values for each sampling site.  The factor of 1.2 is the focus of this part of the sensitivity

analysis.  Table 36 shows the results of using multipliers 1.0, 1.2, 1.5, and 2.0.  This

table uses the same format as the previous sensitivity analyses.  The changes in this

table are much more dramatic than those of the previous sensitivity analyses.   The SA1

algorithm is very sensitive to the changes in the cost-based multiplier.  The dramatic

changes do, however, make logical sense.  When the benefit dollar amount is decreased

for a sampling site the access and lab costs will exceed the benefit, making that site less

beneficial on a cost basis.  Conversely, when the benefits are increased to a sampling

site the benefit cannot be exceeded by the access and lab costs. 

 One final sensitivity analysis was performed by removing the collocation

benefit from the analysis since the collocation benefit was an assumed value of the

same magnitude as the cluster benefits.  By removing the collocation benefit, dollars

were  reapportioned to other sites.  It should be mentioned that only collocated site 107

was discarded in SA1.  When the collocated benefits were removed site 107 was still

the only collocated site discarded.  This indicates that even without the collocation

benefit the collocated sampling sites are very beneficial.   

Summary of Scenario 2 – SA2 analysis for determination of   n   best sampling sites   

• The SA2 algorithm was configured to select a user-specified number of the n best
sampling sites to be retained in the final monitoring network.

• The SA2 algorithm was run with the n best sampling sites set equal to 10, 20, 30,
40,50, 60, and 70.  The SA2 algorithm was executed once for each set of n sites.

• It was determined that a monitoring network with a globally optimum objective
function value was between n sites equal to 40 and 70.  The maximized objective
function for these configurations were fairly equal meaning the redesigned network
does have some latitude and is not limited to one specified group of sampling sites.
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Table 36. Sensitivity analysis of the cost-based multiplier.

Multiplier Net Benefit  Retained sampling site changes from base

1.0 7677

-50, -52, -150, -156, -186, -190, -191, -192, -209,
-210, -213, -214, -215, -221, -310, -311, -472,
-473, -474, -475, -479, -480, -481, -482, -483,

-484, -484
1.2 7744 BASE

1.5 34742 +1, +3, +43, +45, +46, +103, +104, +106, +107,
+115, +127, +138, +336, +337   

2.0 69152 All sites retained     
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• Graphical comparison of the results from the SA1 network optimization and the SA2
optimization shows that both forms of the SA algorithm generally agree with one
another, although the SA1 algorithm is better able to maximize the objective
function.  Figure 14 displays the objective function values versus the number of sites
for both SA optimizations. 

Scenario 2 – SA2 analysis for determination of   n   best sampling sites  

The SA2 algorithm, where the user specifies then n best sampling sites to be

retained in an n site sampling network, was performed with n set equal to 10, 20, 30, 40,

50, 60, and 70.  As mentioned previously, this algorithm does not require the user to

pre-select the sampling sites for the initial network configuration.  The user only

specifies the number of sampling sites desired in the final monitoring network and then

the algorithm randomly selects the initial configuration.  Table 37 shows the results of

the SA2 algorithm for the n best sampling sites for the sampling network.  At each

increment of 10 sites it is very insightful to note when individual sampling sites join the

sampling network.  The row in Table 37 labeled “Metropolis Accepted” displays the

number of permutations of sampling sites out of the number of iterations that were

accepted by either the Boltzmann probability distribution rule or by the objective

function rule.  The results of the SA1 program run in Table 30, that produced the best

monitoring network based on the maximized objective function value, can be compared

with the SA2 program results for n equal to 60 and 70 sampling sites in Table 37.  It is

evident that the retained sampling sites in Table 30 are listed in either column for n

equal to 60 and 70 sampling sites of Table 37.   Figure 14 displays a graph of the n best

sampling sites and their respective maximized objective function values.  It is very

interesting to note how the maximized objective function for the n best sites in the SA2
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Figure 14. Comparison of SA1 and SA2 solutions.
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Table 37. SA2 results.

n sites 10 20 30 40 50 60 70
Iterations 124500 124500 124500 124500 124500 124500 124500
Runtime

(minutes)
33 35.1 37.9 40.8 47.1 46.7 49.6

Metropolis

Accepted
2658 3550 3578 3662 5046 5820 5468

Net Benefit 5404 9653 13009 15038 13684 14734 15250

Retained
Sites

4
71
73
74
114
137
233
237
252
253

4
23
71
73
74
114
137
142
143
149
173
174
233
237
252
253
293
488
489
493

4
13
23
24
66
71
73
74
114
137
142
143
144
147
148
149
173
174
233
234
237
251
252
253
268
293
488
489
492
493

4
13
14
20
23
24
30
34
47
49
66
71
73
74
114
137
142
143
144
147
148
149
173
174
193
194
233
234
237
251
252
253
266
268
291
293
488
489
492
493

4, 13
23, 24
30, 34
47, 49
66, 71
73, 74

114, 137
142, 143
144, 147
148, 149
173, 174
191, 192
193, 194
221, 233
234, 237
251, 252
253, 266
268, 291
293, 310
311, 472
479, 480
481, 483
484, 485
488, 489
492, 493

4, 13
14, 20
23, 24
30, 34
47, 49
50, 66
71, 73
74, 114

137, 142
143, 144
147, 148
149, 173
174, 191
192, 193
194, 210
213, 214
215, 221
233, 234
237, 251
252, 253
266, 268
291, 293
310, 311
472, 474
475, 479
480, 481
482, 483
484, 485
488, 489
492, 493

4, 13
14, 20
23, 24
30, 34
45, 46
47, 49
50, 52
66, 71
73, 74

114, 137
142, 143
144, 147
148, 149
150, 156
173, 174
186, 190
191, 192
193, 194
210, 213
214, 215
221, 233
234, 237
251, 252
253, 266
268, 291
293, 310
311, 472
473, 474
475, 479
480, 481
482, 483
484, 485
488, 489
492, 493
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algorithm forms a parabolic shape.  The single small square shown on the graph is the

result of the SA1 algorithm.  The location of the SA1 point and the peak of the SA2

curve are very close to one another, thus providing a cross-validation of the SA process.

Probably the most notable feature of Figure 14 is that the maximized objective function

is fairly stable for networks from the 40 best sites to the 70 best sites.  

Figure 15 shows a graphical representation of the results for the n best sites

equal to 70.  The top two graphs have the same interpretation as those described in

Figure 13.  The bottom graphs were created to show the number of monitoring network

solutions accepted by the objective function rule and by the Boltzmann probability

distribution rule.  As expected, the number decreases for both cases as the temperature

decreases.  The bottom left graph shows that as the temperature decreases the

acceptance of new monitoring networks by the objection function rule decreases

because a better solution is more difficult to find.  The bottom right graph shows the

same trend because as the temperature decreases the Boltzmann probability of accepting

a new monitoring network becomes less.  Both of the bottom graphs have a steep linear

trend with fluctuations from a temperature of 150 to around 50.  The lines flatten

somewhat with very small fluctuations at temperatures lower than 50.

3.7  Considering Water Quality Clusters and Elevation Classes

 It was mentioned earlier that the redesigned monitoring network should also

consider being able to sample at various elevations in order to measure an “elevation

profile” of the water quality.  Harwell (2001) found that pH exhibited significant trends

at some elevation classes but not at others.  His findings dictate that not only do all of
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Figure 15. Objective function tracking through SA2 for n = 70
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the original clusters of sampling sites need to be represented in the redesigned

monitoring network, but that the elevation classes should also be considered in the

redesign.  Harwell (2001) tabulated columns one, two, and three for the elevation

classes shown in Table 38.  Columns four and five were added to compare the

percentage of NPS area to the percentage of existing sampling sites in certain elevations

ranges as shown.  It can easily be seen that sampling above 3000 feet MSL is

underrepresented in terms of the percentage of NPS area.  If 83 sampling sites were

redistributed according to the percentages of NPS area the new distribution would be:  

• 36 sampling sites from the lowest elevation up to 3000 feet MSL

• 23 sampling sites between 3000 and 4000 feet MSL

• 18 sampling sites between 4000 and 5000 feet MSL

• 8 sampling sites above 5000 feet MSL 

It should be mentioned that elevation classes could have been considered in the

multivariate analysis of the water quality data, but it was desired to include elevation in

the morphology analysis instead.  Also, it was preferred to analyze the water quality

data on the basis of the constituent measurements alone so that clustering would be

based purely on water quality variability.   Final recommendations of which sampling

sites to retain and which ones to discontinue will be based upon the findings of this

chapter and the elevation classes of Table 38.  This will be presented in Chapter 5.

3.8  Extendibility of the Spatial Analysis

The methods used thus far in Chapter 3 are widely applicable to the assessment

and redesign of other water quality monitoring networks and should therefore be  
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Table 38. Elevation classes.

Elevation
class

Range of elevation
(ft) MSL

Number of
sampling sites

Percent of
NPS area*

Percent of
sampling

sites

1 < 1000 0
2 1000 - 1500 7
3 1500 - 2000 13
4 2000 - 2500 16
5 2500 - 3000 18

43.3 65.0

6 3000 - 3500 13
7 3500 - 4000 4

27.4 20.5

8 4000 - 4500 5
9 4500 - 5000 5

21.2 12.1

10 5000 - 5500 1
11 > 5500 1

8.1 2.4

*Approximate percentages based on planimetering contour map
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viewed as a template for similar studies.  In cases where water quality data are available

the methods can be directly applied if watershed information and site access data have

been compiled.  In the case of a new network where water quality data are not available

the watershed characteristics and hypothetical sampling sites could be used.  The

hypothetical sites would be needed to assign access costs and to gather characteristics

data about the upstream watershed.  The results would provide a tool for assessing the

costs and benefits of different network designs and choosing the optimum sampling

sites based on watershed characteristics for the the initial network.  After the network

has been designed and data collected, the model could be used to evaluate the

effectiveness of the monitoring network.  

3.9  Summary of Findings 

This section presents a summary of the results of the spatial analyses that will be

the focus of the final discussion and recommendations in Chapter 5.  The following list

contains summary results of each sub-section in this chapter, some key points that

should be taken into consideration in the redesigned network, and notable findings.  The

summary is as follows:

• The analysis of the water quality variables resulted in the formulation of nine

clusters.  Two additional clusters were formed from outliers.  Cluster 10 has the

membership of sites 156, 174, and 489 because of the high influence of limestone in

their geology which probably causes the extremely high values of ANC.  Cluster 11

has the membership of a single site (site 237) because of its extremely low ANC

values probably caused by the Anakeesta geologic formation.  The DA correctly
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classified 90 and 95 percent of the sites into their assigned clusters using the

principal components and the original water quality data, respectively. 

• The analysis of the geology variables resulted in the identification of 10 clusters.

Cluster nine did contain sites 156, 174, and 489 listed above as being outliers in the

water quality variables because of their high limestone content.  The cluster (cluster

three) containing site 237 had the highest percentage of Anakeesta formation. Cluster

1 contained sites with very high percentages (mean of the cluster = 97.6 percent) of

Thunderhead sandstone.  Cluster 2 contained sites with very high percentages (mean

of the cluster = 80.8 percent) of Great Smoky group.  The DA correctly classified

98.8 percent of the sites into their assigned clusters using the principal components

and the original geology variables.

• The analysis of the morphology variables resulted in the formulation of five clusters.

Cluster three was probably the most notable cluster with a basin area mean of 10,403

hectares.  Stream elevation, stream order, and channel slope were also notable in

terms of discriminating ability.  The DA correctly classified 98 and 90 percent of the

sites into their assigned clusters using the principal components and the original

morphology data, respectively.

• The analysis of the vegetation variables identified nine clusters.  It is interesting to

note that sites 156, 174, and 489 were classified into a small cluster (cluster 8) in

addition to sites 24 and 173.  Cluster three had the highest percentage of pine.

Cluster nine was the largest cluster with 24 members and was formed by high

percentages of hardwoods.
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• Collocated sampling sites were identified if other ongoing biological studies by the

NPS were located within 100 meters of the sampling sites. 

• An additional cluster analysis was performed by grouping the geology, morphology,

and vegetation variables into one dataset.  The analysis allowed the identification of

sampling sites in overlapping regions of clusters.  Sites in the overlapping regions of

clusters have unusual combinations of characteristics compared to the majority of the

sampling sites.   These sites are:  49, 50, 52, 71, 74, 127, 147, 149, 150, 191, 192,

210, 221, and 474. 

• Sampling sites in overlapping regions of the water quality clusters were also

identified.  These sites are: 43, 71, 115, 221, 251, 268, 293, 475, 484, and 492. 

• Table 30 presents the results of the first simulated annealing algorithm (SA1) that

was used to select an optimum network based on maximization of the net benefits.

This resulted in 67 sites being retained and 16 sites being discontinued. 

• A sensitivity analysis was performed in SA1 on the collocation benefits.  The

analysis showed that even without the collocation benefit the collocated sites are

very beneficial.  Only site 472 moved to the discarded site list when the collocation

benefit was removed.

• SA2 produced the results in Table 37 that identifies the n best number of sites

specified by the user.  Table 37 is most useful for determining the order by which

sampling sites were added to the network based on their benefit contribution.  The

table also shows that the maximized objective function is fairly equal between the 40

best sites and the 70 best sites. 
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• Table 38 shows the elevation classes, the number of sites in each elevation classes,

and the proportion of sampling sites in certain elevation ranges.  Elevations above

3000 feet MSL are underrepresented according to the percentage of park area from

3000 feet MSL and above.  Each elevation class should be represented in the

redesigned network and additional sampling sites may need to be added so that the

percentage of sampling sites is proportional to the percentage of park area in each

elevation class. 

• Each water quality cluster and the clusters of the watershed characteristics should be

represented in the redesigned network.

• Redesign of the network using primary, secondary, and tertiary sites based on their

uniqueness in overlapping areas of clusters and the order in which the sampling sites

were retained (Table 37) should be strongly considered.

• Subjective decisions by the NPS about additional sites to be retained or discontinued

should consider the order of the n best sampling sites in Table 37. 

• NPS should consider the discontinuance of high-elevation spring sampling.  It has

already been mentioned that this study did not address the seven high elevation

springs that are included in the synoptic sampling network.  An initial

recommendation would be that the NPS review the information from these sites and

make a determination on the need for these data.  
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Chapter 4 ASSESSMENT OF SAMPLING FREQUENCY 

4.1  Noland Divide Data

Weekly stream sampling data from the southwestern stream at the Noland

Divide watershed sampling site near Clingman’s Dome were used to determine the

sampling frequency needed to detect trends in the water quality data.  Laboratory

analysis of samples taken at this location includes tests for the following water quality

variables:  pH, conductivity, ANC, chloride, nitrate, sulfate, sodium, and potassium.

The study period for these variables extends over a period from July 19, 1991 to

January 1, 2002, or 550 weeks.  These data are essential to this part of the study because

of the high frequency at which the samples were taken.  High-frequency sampling at

this site will allow a gradual “thinning” of the data to test lower sampling frequencies.  

4.2  Data Preprocessing

The water quality data from the Noland Divide site used in this portion of the

study do require pre-processing before the frequency analysis begins.  There were a

total of 17 water quality measurements missing from weeks when samples had been

collected but only partial results were reported.  There were also a total of 67 weeks

where no data were reported.  (Many of these “missing observations” are actually the

result of a change from a one-week sampling interval to a two-week sampling interval

in the later years.)  The missing data for these observations are estimated using a cubic

spline interpolation and are needed because use of the autocorrelation function and time

series decomposition require data that are evenly spaced in time.  The autocorrelation
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functions indicate serial correlation in the data.  The autoregressive pattern  of the data

provides a basis for using cubic spline interpolation because most adjacent data

measurements are fairly close in magnitude and are not highly erratic.   Descriptive

statistics are used to determine if the spline interpolation had an adverse effect on the

data.

It is assumed for this part of the study that the data are normally distributed or

near normally distributed.  By the strictest definition of normality this has certainly not

been the case thus far for the water quality data.   However, most of the methods used

here do not make strong normality assumptions.  The results of normality tests will be

presented in the results section of this chapter.  

4.3  Methods of Analyses

Four methods are utilized to analyze different sampling frequencies using the

original time series from the Nolan Divide, southwestern stream data.  The first method

will determine a maximum number of samples to be collected each year so that

independency is maintained in the data.  The maximum number will be used as an

approximate upper limit of a proposed sampling frequency.  The second and third

methods will compare a number of different sampling frequencies using a resampling

window scheme and proven methods of nonparametric trend determination.  The fourth

method is a graphical technique that will be used to compare the boxplot of different

sampling frequencies of the data with the boxplot of the original data.  The four

methods and their abbreviations are enumerated below. 

• “Effective” sample method (ES)
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• Sen’s slope estimation for trend (SE)

• Mann-Kendall test for trend (MK)  

• Boxplot analysis (BP)

Figure 16 shows a general flowchart of these analyses.  The SE and MK

methods will require the construction of new time series from the original time series to

represent the sampling frequencies being considered.  The “moving window” approach

will be used to generate the new time series by specifying a sampling interval by which

data are selected from the original dataset at a constant interval or frequency.  The

“moving window” also includes an offset feature so that the starting observation of the

new time series can be altered.  Subsequent observations in the new times series will be

offset by the same amount.  The approach is very similar to the one recommended by

Sherwani and Moreau (1975).  The boxplot comparison method will compare the

median, interquartile range, and outer fences of other sampling frequencies with those

of the original time series.

4.3.1 “Effective” Sample Method

The “effective” sample method (ES) is used to aid in determining the maximum

number of statistically independent samples that can be collected annually and then to

estimate the length of record needed to reliably detect trends at specified confidence

levels and test powers.  The results are then compared to the results of the other

methods used in this chapter. Closely spaced sampling data are usually autocorrelated

(Lettenmaier 1976) and this is certainly the case with the Noland Divide data.

Autocorrelated (or serially dependent) means that the data are temporally dependent.
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Figure 16. Flowchart for analysis of sampling frequency.
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Independent data contain more information about the population than dependent data

and are needed to insure that the occurrence or nonoccurrence of a single event does not

affect the probability of another event.  Therefore, it is desired to sample in such a way

that the maximum number of  independent samples are collected so that accurate long-

term trend detection is achievable in as short amount of time as possible.  Using

dependent observations for calculation of confidence intervals will underestimate

confidence interval width.  Since Noland Divide data are autocorrelated the number of

samples must be corrected before using in statistical calculations such as confidence

intervals to prevent underestimation of confidence interval width.  The “effective”

sample method determines a sampling frequency beyond which there is little gained by

taking additional samples because of dependence among the data. 

  In the context of this discussion, the word “effective” is defined as the

maximum number of samples that can be collected on an annual basis and maintain

independence among the data.  Lachance, Bobée, et al. (1989) used ES to determine the

“effective” sampling frequency of water quality measurements in Lake Laflamme in

Québec.   They determined that the number of independent samples that could be

collected annually was 10.6 and 8.4 for pH and sulfate, respectively.  

The basis for the “effective” sample method (ES) was developed by Bayley and

Hammersley (1946) and was later expanded upon by Lettenmaier (1976) and Sanders

and Adrian (1978).  It is first necessary to discuss the autocorrelation function (ACF) to

gain some understanding of the basis of this method.  The equation for the ACF is given

as
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where ACFk =  the autocorrelation coefficient for the kth time lag   
n = the number of observations
Yt  =  the observation at time t  

The ACFk provides a measure of correlation between the variable Y at time t, and the

variable Y at time t-k.  The ACFk  correlation measurements are considered statistically

significant if |ACFk | > meaning that the variable Y at time t, and the variable Y

at time t-k  are dependent to some degree, thus, samples collected for that specific time

interval would indicate a degree of dependency between those samples.  

Autocorrelation between measurements at different time lags is the basis for

calculating the required sampling frequency to obtain roughly independent samples.

The equation developed by Bayley and Hammersley (1946) for determining the number

of “effective” samples from a dependent time series is given by

where k = lag number (or time steps) between samples
n = number of samples taken per year based on a proposed sampling 
      frequency
n* = “effective” number of samples taken per year based on a proposed 
         sampling frequency
ACFk = autocorrelation coefficient for lag k

Lettenmaier (1976) used Equation 4.2 to correct for dependent samples.  The number of

“effective” samples for a given sampling frequency is calculated using the above

equation by inserting the ACF coefficients (ACFk) into the equation for the sampling
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frequency being used.  Note that in Equation 4.2 that if ACFk = 0, then n* = n and if

ACFk = 1, then n* = 1 as expected.  Since the Noland Divide data are on a weekly

sampling interval the annual sampling frequency would be 52.  An “effective” sample

size per year can then be determined for each of the water quality variables.  The

autocorrelation coefficients for use in Equation 4.2 must be generated from a stationary

time series, which is accomplished by removing trend and seasonality (LaChance,

Bobée, et al. 1989).  The ES method, which was used by Lettenmaier (1976) and

LaChance, Bobée, et al. (1989), does make the general assumption that the data are

normally distributed.  However, both of these authors did accept some non-normality in

their data.  Using Equation 4.2 and the Noland Divide data, different values of n* are

generated from the autocorrelation function for weekly, monthly, bimonthly, and

quarterly sampling intervals.  

Lettenmaier (1976) and Lachance, Bobée, et al. (1989) furthered the application

of the “effective” sample method using the standard error and trend magnitude of a time

series to determine the length of record needed to reliably determine trend magnitudes

at  a specified statistical significance.  Naturally, the linear trend of a time series with a

low magnitude of change and a high standard deviation would be much more difficult to

accurately determine than one with a high magnitude of change and a low standard

deviation.  Lettenmaier (1976) presents Equation 4.3, developed by Brieman (1973) for

the power function of a classical t-test as
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where 1-β = probability of not accepting the presence of a trend when a trend
                                  is, in fact, not present 

Fg = cumulative distribution function of a standard normal probability
                                distribution

Nt = measure of trend magnitude 
Z(1-α/2) = quantile of the standard normal distribution at probability (1-α/2)

and Equation 4.4 for the measure of the trend magnitude,  

where Tr = absolute value of the change in beginning and ending predicted
                                values along a regression line for a period of study

σε = standard deviation of the residuals (standard error)
n = total number of independent samples needed for a period of study

Combining Equations 4.3 and 4.4 and setting (1-β) = 0.90 yields Equation 4.5 where

N* = n from Equation 4.4.  

Equation 4.5, used by Berryman, Bobée, et al. (1988) and Lachance, Bobée, et al.

(1989), is a relationship between trend detection level Tr/σε , and the total number of

independent samples needed N*, with the power of the test fixed at 90 percent.

Equation 4.5 can be adjusted for other powers.   The term Tr/σε in Equation 4.5 is a ratio

defining the level of trend detection desired by the user.  The standard error σε , can be

viewed as an “average residual error” from a least-squares regression line for a time

series.  Therefore, it is desired to reliably detect a trend that is at least as large as the

standard error, which would equate to a Tr/σε value of 1.0.  Values less than 1.0 would

be more desirable but this comes at the cost of requiring a longer record for the same
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power of the test.  In many cases the designer of a new monitoring network must

presuppose a desired level of trend detection.  In the redesign of a monitoring network,

data are available so that the the trend magnitude and the standard error can be be

determined.  N* (total samples) from Equation 4.5 can be divided by n* (samples per

year) from Equation 4.2 to determine the number of sampling years needed to reliably

detect the existing trend with 95 percent confidence and 90 percent power.  The values

used in this study for Tr/σε are presented in Section 4.4.2 and correspond to the trend

levels that are present in the Noland Divide data.  Environment Canada required that a

trend level of detection be set at 1.0 for acid lakes in Québec (Berryman, Bobée, et al.

1988) meaning that it was desired to detect a trend equal to or greater than the standard

error of the time series.  

Power of the test is not to be confused with the confidence level as these two are

inversely related.  Ideally, the power of any statistical test should be known before

accepting a null hypothesis (Mendenhall and Beaver 1991).  Power of the test (1-β) is

defined as the probability of not accepting the null hypothesis when the null hypothesis

is incorrect.  The power of the statistical test for trend is affected by the number of years

of sampling and the magnitude of the trend (Lettenmaier 1978; Somerville and Evans

1995; Urquhart, Paulsen, et al. 1998).  Longer records and greater trend magnitudes

yield higher power.  Increasing the sampling frequency will not necessarily yield a

higher power (Lettenmaier 1978).  Although, Somerville and Evans (1995) did find that

the sampling frequency affected power when the length of record was between five and

15 years in length.   
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4.3.2 Sen’s Slope Estimation

Sen’s slope estimation (SE) is a nonparametric, unbiased estimator of the slope

of a trend line through a set of data (Sen 1968).  It allows the calculation of a two-sided

confidence interval for the trend slope, which will provide a means of testing the trend

slopes of different sampling intervals against the original time series.  Hirsch,

Alexander, et al. (1991) showed that Sen’s method was more accurate at detecting

monotonic trends than regression when the data were slightly non-normal.  In the SE

method, the trend of the time series is determined to be the median slope of all forward

pairwise combinations of observations.  Therefore, for a dataset of m observations, there

are n = m(m-1)/2 slopes  calculated.  The general equation used to calculate each

pairwise slope is

where          Sij = Sen slope for one pair of observations at ti and tj  for all ti > tj 
xi = water quality measurement at ti

xj = water quality measurement at tj

ti = time when water quality measurement xi  is taken
tj = time when water quality measurement xj   is taken

An algorithm has been prepared in Matlab format to calculate Sen's slope.  For each

alternate sampling frequency a new time series will be generated from the original time

series using the resampling window approach mentioned earlier.  A confidence interval

for Sen's slope will then be calculated for each new time series, which, of course,

represents an alternate sampling frequency.  The confidence interval of each of the

alternate sampling frequencies, mentioned prior, will then be compared with the
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confidence interval of the original time series.  It can be deduced that if the confidence

interval of an alternate sampling frequency does not identify a trend slope similar to that

of the confidence interval of the original time series, then that alternate sampling

frequency is not an accurate estimator of the original trend.  The converse is true if the

slope of the alternate sampling frequency is identified similarly to the slope of the

original time series.  

4.3.3 Mann-Kendall Test for Trend

The Mann-Kendall (MK) test for trend is a nonparametric test used to determine

if there is a negative trend, positive trend, or no trend in the data.  The MK test does not

specify the magnitude of the trend.  The MK test was developed through a combination

of efforts by Mann (1945) and Kendall (1975).   The trend test that Mann developed is a

special case of Kendall's test.  Mann did not consider ties in the data while Kendall did

take ties into consideration.  Mann and Kendall also showed that by using a correction

for continuity (MK test statistic, SMK ± 1 depending on the sign of SMK as shown in

Equations 4.8 and 4.10 below) the test will approximate the normal distribution for

sample sizes greater than or equal to 10.  Later literature agrees that when the sample

size is greater than 10 the MK test performs quite well using an approximation to the

normal distribution (Hirsch, Slack, et al. 1982; EPA 1998).  The MK test statistic, SMK, is

the sum of the number of negative and positive slopes given by

SMK is then used to calculate a Z-score using the continuity correction criteria 
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The null hypothesis that no trend is present is tested against the alternate hypothesis that

a trend does exist and is upward or downward.  The standard normal Z-variate used for

this test is ±1.96 corresponding to the two-tailed 95 percent confidence level.   If the Z-

score from Equation 4.8 or Equation 4.10 is greater than 1.96 or less than -1.96 the

alternative hypothesis that a trend is present is accepted.  Matlab code has been written

to perform this operation.  The standard deviation σs is calculated by 

or by

if ties occur, where n is the number of observations; g is the number of tied groups; and

wp is the number of observations in the pth group.

The MK test for trend is very similar to the SE method in that the positive and

negative slopes of all forward pairwise combinations are enumerated.  Some problems

may be encountered if serial dependence or seasonality exists in the data.  Serial

correlation can cause inaccurate p values (Helsel and Hirsch 1992).  Plotting the
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autocorrelation function for the time series in the “effective” sample method will permit

easy detection of serial correlation in the data.  If serial dependence is a problem, then a

modification to the MK test can be made according to Hirsch and Slack (1984).  If

seasonality is a major concern then the seasonal Kendall test may be substituted

(Hirsch, Slack, et al. 1982; Hirsch and Slack 1984; Helsel and Hirsch 1992).

The results of the MK test will be compared with the results of the SE and the

BP analyses.  The MK test will compare the trend detection of alternative sampling

frequencies to that of the original time series.  The comparison will be accomplished by

extracting a subset of the original data in accordance with the proposed sampling

frequency.   Extraction of the data subset will be performed using the moving window

approach that was mentioned earlier in the chapter.  The MK test will then be performed

on the subset of data for the proposed sampling frequency and compared to the MK test

results of the original data.  Departure of the trend detection of the proposed sampling

frequency data subset from that of the original data would indicate that the proposed

sampling frequency may not be an accurate estimator of the trend compared to the trend

that is identified in the original data.

4.3.4 Boxplot Analysis

Boxplots (BP) will be used to visually compare the distribution of alternative

time series with the original time series.  Tukey (1977) introduced the boxplot as a

univariate graphical analysis tool to visually display the interquartile range (IQR),

median, and outliers of a set of data.  This particular application of analyzing different

sampling frequencies was introduced by Mueller (1989).  By comparing the boxplots of
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data from different sampling intervals to the original time series, inference can be made

about the ability of a particular sampling interval to detect the same trend pattern that

exists in the parent time series.  

4.4  Results of the Analyses

The results of the “effective” sample method, Sen’s slope method, Mann-

Kendall trend test, and the boxplot analysis are presented below.  Missing data

estimation, deseasonalization, and trend removal techniques were applied to these data,

as described above.  NCSS, SAS and Excel were used to perform the “effective” sample

method.  Matlab was used to perform Sen’s slope method and Mann-Kendall test for

trend.  It should be remembered that the water quality data studied here are for one

sampling site in the GRSM (Noland Divide, southwestern stream) which may not

reflect the hydrologic characteristics of all 83 sampling sites.   Again, the data from this

site are studied because of their high sampling frequency.  

4.4.1 Pre-processing and Descriptive Statistics

As mentioned earlier in this section, missing data were replaced using a cubic

spline interpolation.  The procedure was performed using the spline toolbox in Matlab.

A value estimated by the cubic spline interpolation method is determined by the pattern

of existing data before and after the missing value being estimated.  Therefore, the

original values are not recalculated, but remain unchanged.  The results of the cubic

spline imputation were validated using three methods.  First, the normality of the entire

data was checked before and after the spline interpolation was performed to ensure that
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the normality status of data had not changed.  Second, descriptive statistics of mean,

variance, and IQR of the water quality data before and after the spline interpolation

were compared.  Third, the autocorrelation functions for approximately the first five

years of the original data were compared to the complete dataset after the spline

imputation was performed.  The first five years of the original data were used because

the amount of missing data was minimal compared to the latter years.  

The results of the descriptive statistics before and after spline interpolation are

shown in Tables 39 through 42.  Table 39 and Table 40 compare the mean, variance, and

IQR for all the years of data.  Tables 41 and 42 compare the same for the last three years

of the data because most of the data imputation was performed within these years.  In

general, there is very little change in mean, variance, or IQR of the parameters.

Scatterplots of the water quality variables after the spline interpolations were applied

are shown in Figures 17 through 24.  A least-squares line has been plotted through each

of the scatterplots to show the general trend of the data.  However, the least-squares

lines may not be statistically significant.  Outliers are most noticeable for conductivity,

chloride, and potassium, and may be the cause of non-normality in these data.  The

normality results are not shown because the water quality variables both before and

after the spline interpolation reported non-normality using the Shapiro-Wilk test and the

D́Agostino Omnibus test.  This may present a problem for the “effective” sample

method because it does generally require that the data be normally distributed.

However, examination of the histogram density trace overlaid with the normal

distribution curve shows that a normality assumption might not be too unreasonable for

pH, ANC, conductivity, and sodium.  The normality assumption is more unreasonable 
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Table 39. Descriptive statistics before spline interpolation for all years.

Water Quality
Variable Mean Variance IQR

pH 5.83 0.04 0.27
Conductivity 13.20 6.96 1.92

ANC 11.21 39.46 7.53
Chloride 16.28 122.14 7.59
Nitrate 42.40 39.92 6.79
Sulfate 29.41 29.30 6.82
Sodium 25.65 17.91 4.24

Potassium 8.73 29.85 2.77

Table 40. Descriptive statistics after spline interpolation for all years.

Water Quality
Variable Mean Variance IQR

pH 5.82 0.04 0.27
Conductivity 13.22 6.95 1.99

ANC 10.84 39.65 7.45
Chloride 16.60 122.35 7.75
Nitrate 42.23 40.01 6.76
Sulfate 29.38 28.94 6.71
Sodium 25.57 18.49 4.27

Potassium 8.73 29.21 2.73

Table 41. Descriptive statistics before spline interpolation for last three years.

Water Quality
Variable Mean Variance IQR

pH 5.79 0.03 0.21
Conductivity 12.38 2.86 2.29

ANC 8.14 19.92 6.33
Chloride 19.2 50.92 10.56
Nitrate 40.63 21.59 5.41
Sulfate 28.75 21.05 6.46
Sodium 25.69 13.79 4.25

Potassium 9.95 31.88 4.36
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Table 42. Descriptive statistics after spline interpolation for last three years.

Water Quality
Variable Mean Variance IQR

pH 5.79 0.03 0.21
Conductivity 12.4 2.57 2.19

ANC 8.18 19.02 6.5
Chloride 19.04 51.93 10.59
Nitrate 40.48 22.13 5.56
Sulfate 28.56 19.69 6.37
Sodium 25.71 15.66 4.23

Potassium 9.75 33.39 3.82
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Figure 17. Time series scatterplot of pH.

Figure 18. Time series scatterplot of ANC.
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Figure 19. Time series scatterplot of conductivity.

Figure 20. Time series scatterplot of chloride.
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Figure 21. Time series scatterplot of nitrate.

Figure 22. Time series scatterplot of sulfate.
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Figure 23. Time series scatterplot of sodium.

Figure 24. Time series scatterplot of potassium.
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for chloride, sulfate, and potassium. Lachance, Bobée, et al. (1989) applied the normal

density trace to histograms of alkalinity and calcium + magnesium data from acid lakes

in Québec to justify using data that did not follow strict definitions of normality for the

“effective” sample method.  Therefore, this method is performed on the original data

here and then compared to the results of Sen’s slope estimation, Mann-Kendall test for

trend, and the boxplot analysis.  The latter methods do not require that the data be

normally distributed.  

Autocorrelation functions were plotted before and after missing data estimation.

The changes were very minor and almost unnoticeable for many of the water quality

variables.  In fact, many of the water quality variables required a very close side-by-side

inspection to identify changes.

4.4.2 Results of the “Effective” Sample Method

The “effective” sample method first required the calculation of the

autocorrelation functions of the detrended, deseasonalized time series data for each of

the water quality variables.  The calculation was accomplished using time series

decomposition, linear regression and the autocorrelation function in NCSS.

Decomposition allows the identification and separation of a time series’ seasonal

component.  After the seasonal component is removed linear regression can be used to

remove the trend component of the time series.  Figure 25 shows how pH at time t0 is

correlated with pH at time tk before detrending and deseasonalization.  Notice the

seasonal nature of the ACF as the correlations begin with a positive correlation, then

gradually fall to a negative correlation at mid-year, and then rise back to a positive 
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Figure 25. ACF of pH before detrending and deseasonalization
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correlation at the end of the year.  This same pattern is common to all of the water

quality variables.  Figure 26 shows the ACF of the detrended, deseasonalized time

series of pH which is now absent of the seasonal variation.   

Applying the “effective” sample method to the autocorrelation functions from

the detrended, deseasonalized data produces the results in Table 43.  The values in this

table have been rounded up to the next whole number since it is impossible to obtain a

fraction of a sample.  This table shows the estimated maximum number of independent

samples collected each year when based on the current weekly sampling interval.  As an

example, Table 43 shows that if pH were sampled 52 times per year the maximum

number of independent samples would at most be 10.  By taking dependent samples, the

“effective” n used in statistical calculations, such as confidence intervals, would need to

be reduced to 10.  Obviously, a weekly sampling frequency is too high because at least

42 of the 52 samples are dependent.  A more reasonable sampling frequency  would be

monthly where 10 of 12 samples would be independent.  More frequent sampling does

have the advantage of allowing separation of the data into subsets so that trends could

be analyzed on more than one time series.  For example, if pH were  sampled 40 times

per year, the data could be divided into four subsets of evenly spaced data and trends

could then be determined on each subset.  The four subsets could then be compared.

The data could also be divided into seasonal subsets to determine seasonal trends,

which may remove dependence. 

The trend levels (Tr/σε) calculated from the Noland Divide, southwestern stream

data are shown in column two of Table 44.  Remember that the trend level is the trend

magnitude over the period of record divided by the standard error of the residuals. 
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Figure 26. ACF of pH after detrending and deseasonalization.

Table 43. Maximum number of independent samples (n*) per year.

Water Quality Variable Samples (n*)
pH 10

ANC 11
Conductivity 13

Chloride 11
Nitrate 10
Sulfate 23
Sodium 12

Potassium 8
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Table 44. Current trend detection levels and sampling requirements for Noland Divide
(southwestern stream).

Water Quality Current Trend Independent Sampling Years

pH 0.438 10 69.9

ANC 1.145 11 9.0

Conductivity 0.337 13 86.1

Chloride 0.949 11 13.3

Nitrate 1.273 10 8.1

Sulfate 0.395 23 35.9

Sodium 0.523 12 39.1

Potassium 0.422 8 99.8
*Based on 95% confidence and 90% power
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Using these trend detection levels to calculate N* from Equation 4.3 and then dividing

by the n* values in Table 43, the number of years of sampling required to reliably detect

trends of a magnitude equal to the standard error at a 95 percent confidence level and

with 90 percent power can be calculated.  The values are shown in column four of

Table 44 and are comparable to those calculated by Lettenmaier (1979) and Lachance,

Bobée, et al. (1989) for water quality variables at locations specified in their studies.  If

the standard error and the slope of the trend remain constant in future years, the trend

detection level (Tr/σε) increases, thus causing a decrease in the total number of samples

required.  Therefore, Table 44 is a “snapshot” in time.  Figure 27 shows an example of

this using pH and assuming a linear trend of 0.01 pH units per year with a standard

error of 0.2.  The confidence level and the power level are fixed at 95 percent and 90

percent, respectively.  Notice that if the trend remains constant the number of samples

required for trend detection, at the confidence and power specified, decreases

exponentially as the length of record increases.  

 Figures 28, 29, and 30 represent sampling records of 15, 10, and five years in

length, respectively, and assuming independence among the data.  In each graph there

are five curves representing five different power levels of detection from 50 percent to

99 percent.  Remember that the power level is the probability of not making a Type II

error, which is more serious than a Type I error (α-level).  The Type II error in this case

would be rejecting the presence of a trend when in reality one does exist.  The y-axis

represents different trend levels and the x-axis gives the number of samples that are

collected each year for the record length of 15, 10, or five years.  The main purpose of

these plots is to show that from sampling frequencies of two samples per year to
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Figure 27. Total samples required given number of years of sampling for pH (α = 0.05, β = 0.10).
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Figure 28. Power curves for 15-year sampling period (α = 0.05).  
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Figure 29. Power curves for 10-year sampling period (α = 0.05). 
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Figure 30. Power curves for 5-year sampling period (α = 0.05). 
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approximately 10 samples per year the power levels decrease rather rapidly.  Beyond 10

samples per year the power levels are almost constant and decrease at a much smaller

rate leading to the conclusion that trend detection is greatly improved when the

sampling frequency is increased from two to 10 samples per year.  However, greater

sampling frequencies provide very little additional increase in the ability to reliably

detect trends.  Figures 28 through 30 also show that trend detection is most reliably

obtained by increasing the length of record and not necessarily by increasing the

sampling frequency.  Suppose in a hypothetical situation that a total of 50 samples were

to be collected from a site and two sampling schemes were proposed.  The required

power of the test was proposed to be 90 percent.  In the first scheme, 50 samples would

be collected at a frequency of five samples per year for 10 years.  The second sampling

scheme proposes to collect 10 samples per year for five years.  Clearly the annual cost

of the second sampling scheme would be twice that of the first scheme.  However,

according to Figures 29 and 30, the higher sampling frequency has no better trend

detection level than the lower sampling frequency.  Since this is a long-term trend

monitoring site it would be unlikely that high-powered trend detection levels would be

required in five years.  Therefore, the annual cost savings from using a lower sampling

frequency with a longer record would probably be more desirable than a high frequency

sampling site.  

Based on the trend level of detection being set at a modest value of 1.0, the

power of the test is relatively high for a sampling period of 10 years and a sampling

interval of four to eight weeks.  Lettenmaier (1979) did a study similar to this using data

from the Noorsack River near Ferndale, Washington.  His study focused on step trends
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rather than linear trends and he found that the sampling interval should be at least

monthly but not more often than biweekly.  His results are similar to those produced in

this study; however, inherent differences in the water quality and the resulting

autocorrelation functions will affect the recommended sampling frequencies.  

4.4.3 Results of Sen’s Slope Estimation and the Mann-Kendall Test for Trend

The main purpose in this section was to compare larger sampling intervals with

the one-week sampling interval of the original time series for each variable using Sen's

slope estimation and the Mann-Kendall test for trend.  The results of these techniques

are reported together because they are very similar.  Both methods are performed using

the Matlab programs listed in Appendix F.  The sampling intervals tested are two, four,

eight, and 12 weeks.  Thirteen datasets are constructed for each sampling interval tested

using different starting points in the original data.  This ensures that a number of

different subsets are generated so that the results are not based on a single trial.  The

process is also redundant to some degree because the offset data will overlap a previous

dataset at some point.  The percentage of trends identified at each new sampling interval

is then compared to the percentage identified in the original weekly sampling interval.

In the case of Sen's slope estimation a dataset is considered a match with the original

dataset if the confidence intervals are similar and bracket the original trend slope.  In

the case of the Mann-Kendall test for trend a dataset is considered a match with the

original dataset if the Z-scores have the same significance as the original dataset.  It can

be inferred that a sampling interval whose percentage of recognized trends is less than

the percentage in the original weekly data may not be an accurate detector of trends. 
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Table 45 presents the results of Sen’s slope estimation method and the Mann-

Kendall test for trend.  The numbers in the table represent the percentage of the 13

datasets that identify a trend.  The percentage identified in the original weekly data is

shown in column two.  For example, all 13 datasets (100 percent) in the original one-

week and two-week sampling intervals identified a trend for pH using Sen's slope

estimation method and the Mann-Kendall test for trend.  Eighty-five percent of the13

datasets identified trends when the sampling interval was increased to four weeks.  The

percentage of trends identified for pH continues to drop when the sampling interval is

increased to eight weeks and to 12 weeks.  Recall that pH, conductivity, and sulfate had

very small trend levels identified in the “effective” sampling method.  Evidence of this

is shown in Table 45, as the percentage of identified trends falls rapidly, compared to

the other variables, when the sampling interval is increased.  The information presented

in Table 45 is in agreement with the results of the “effective” sampling method from the

standpoint that variables with lower trend levels require more samples compared to

higher trend levels.  The “effective” sample method determined that an increase in

sampling frequency in the range of two to 10 samples per year provides the greatest

benefit from the standpoint of sampling frequency; however, a sampling frequency

greater than 10 per year provides very little increase in benefit due to data dependency.

Serial dependence could be affecting some of the results in Table 45 for one-week and

two-week sampling intervals.  Not considering sulfate or conductivity, it would seem

that a sampling interval of approximately monthly or bimonthly would be acceptable.

Based on the results of MK and SE, sulfate and conductivity would need to be sampled

weekly, which would be rather costly for a large sampling network. 
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Table 45. Percentage of 13 datasets identifying the same trend as the original sampling
interval of one week. 

 
Water Quality

Variable 

Sampling Interval (weeks)

1 2 4 8 12

PH (SE)* 100 100 85 54 38
PH (MK)** 100 100 85 46 38

Conductivity (SE) 100 31 8 8 8
Conductivity (MK) 100 38 8 8 8

ANC (SE) 100 100 100 100 92
ANC (MK) 100 100 100 100 92

Chloride (SE) 100 100 100 100 100
Chloride (MK) 100 100 100 100 100

Nitrate (SE) 100 100 100 100 85
Nitrate (MK) 100 100 100 100 85
Sulfate (SE) 100 0 0 15 8
Sulfate (MK) 100 0 0 8 8
Sodium (SE) 100 100 69 46 31
Sodium (MK) 100 100 77 46 31

Potassium (SE) 100 69 46 31 8
Potassium (MK) 100 54 46 31 8
*SE - Sen's slope estimation method
**MK – Mann-Kendall method 
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4.4.4 Boxplot Analysis

Boxplot analyses were performed on the water quality variables by selecting

observations based on the alternative sampling frequencies.  A family of boxplots for

each water quality variable is shown in Figures 31 through 38.  Each figure contains

seven boxplots that represent weekly (X1), monthly (X4), bimonthly (X8), quarterly

(X12), 16 week (X16), 20 week (X20), and 24 week (X24) sampling intervals.  The

boxplot method was performed to determine if visually detectable changes were

apparent when the data were thinned to lower sampling frequencies.  Each family of

boxplots should be used by comparing the weekly (X1) boxplot to the remainder of the

boxplots.  The X1 boxplot represents a plot of all the original data.  Subsequent

boxplots are constructed from thinned data based on the sampling interval shown.

Boxplots that exhibit noticeable differences from the X1 boxplot signify a change in the

structure of the data as it relates to median, IQR, and observations in the outer fences.

The IQR is the difference between the 25th and the 75th percentiles; these points are

often called hinges.  The 25th percentile is demarcated at the lower edge of the gray box

in the boxplots and the 75th percentile by the upper edge.  The upper and lower fence

levels are calculated by the hinge values ±1.5 times IQR.  The line near the midpoint of

the gray box is the median.  

In general, the changes were not as noticeable as one might imagine.  However,

there are subtle changes that signify some importance in sampling intervals.  Overall,

the boxplots of a monthly and bimonthly sampling interval compare best to the boxplots

of the original data (X1).  When the sampling interval is greater than bimonthly the

degradation of similarities to X1 is more noticeable.  It should be mentioned that each
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Figure 31. Sampling frequency boxplots for pH. 
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Figure 32. Sampling frequency boxplots for conductivity. 
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Figure 33. Sampling frequency boxplots for ANC.

0.0

30.0

X1 X4 X8 X12 X16 X20 X24
Sampling Frequency

Figure 34. Sampling frequency boxplots for chloride.
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Figure 35. Sampling frequency boxplots for nitrate.
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Figure 36. Sampling frequency boxplots for sulfate.
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Figure 37. Sampling frequency boxplots for sodium.
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Figure 38. Sampling frequency boxplots for potassium. 
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boxplot is for one sampling of data, whereas earlier tests (Sen’s slope estimator and

Mann-Kendall test for trend) using a moving window scheme tested up to 13 different

samplings of the data.  Each additional sampling would produce the same number of

graphs shown in Figures 31 through 38.  Because one sampling is used, resulting

boxplots may not represent a true picture of the population and may take on the form

shown by sheer “luck of the draw.”  The following paragraphs provide some

interpretation and comparison of the boxplots.     

Figure 31 for pH shows that the boxplots for monthly (X4) and bimonthly (X8)

sampling intervals more closely resemble the X1 boxplot than sampling intervals

greater than eight weeks.  There is a small shift in the median and the IQR but they

remain fairly even.  Boxplots at X12 and X20 appear to be very close comparing the

median and IQR but the outer fences are quite different.  

Figure 32 for conductivity shows a gradual decreasing in the range between the

outer fences.  This would lead one to believe that the sampling interval closest to X1 is

probably the most desirable if there is a proposed change from weekly sampling.

However, the median and IQR of X8 more closely resemble X1. 

ANC shown in Figure 33 displays a lower fence limit that is nearly equal and an

upper fence that is highly variable.  The result may indicate periods of high variability

possibly caused by seasonal variation.  Small sampling intervals in the boxplots may

mask variability because the data are lumped together, while larger sampling

frequencies may isolate some of the periods when the data are highly variable.  The

outer fences of X16 and X20 are closer to those of X1.  However, the IQRs have

increased approximately 25 to 30 percent.  X4 is probably the closest comparison in

178



terms of the outer fences, but X8 is the closest in terms of the interquartile range. 

Chloride, shown in Figure 34, is perhaps one of the easiest to compare to X1.

X4 is much closer to X1 than any other boxplot.  When the sampling frequency is

increased beyond monthly, the outer fences and the IQRs become highly variable,

although the median appears to remain fairly consistent. 

Figure 35 for nitrate shows that X4 and X8 are very similar and compare very

well with X1 except for the lower fence.  X1 shows a far greater range in the lower

fence.  The upper fences appear to be equal.  When the sampling interval is increased to

quarterly and greater, the outer fences and the IQRs become highly variable.

Sulfate, in Figure 36, exhibits little difference in the fence ranges among X4,

X8, X16, and X20.   Overall, X4 does seem to compare better with X1 than the other

boxplots.  However, X4 does have a noticeable increase in the median and the IQR.

Figure 37 for sodium exhibits small differences among X1, X4, and X8.

Sampling intervals greater than bimonthly exhibit more variation compared to X1.  X8

appears to be more similar to X1 than X4 because of similarities in the median and the

fence range.

Figure 38 for potassium shows a gradual decrease in the fence range from X1 to

X12.  After X12 the fence range, IQR, and the median are more variable.  Again, X4

and X8 are similar to X1.  The fence range and IQR of X4 are closer to X1, but the

median in X8 appears to be slightly closer to X1 than X4.
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4.4.5 Comparison of Sampling Frequency Methods 

This section has been included to compare the results of all those methods used

above to study the sampling frequency requirements.  It should first be restated that the

basis of the frequency analysis was to determine an optimum sampling frequency for

trend detection.  The current sampling frequency of the monitoring network should not

be termed as the “wrong” sampling frequency because it does produce mostly

independent samples according to the “effective” sampling method.  Additionally, the

data are viable and represent a historic record that is quite capable of detecting trend.

The main question to be asked is what level of accuracy is needed in identifying long-

term trends.  The frequency of sampling and length of record provide the answer.       

The current trend levels of Table 44 are in agreement with the results of Sen’s

method and the Mann-Kendall test for trend.  Lower trend levels require greater

sampling frequencies.  However, the “effective” sampling method determined that

increasing the sampling frequency is very beneficial to a certain point.  The benefits are

greatly outweighed by the costs when the sampling frequency is increased beyond this

point (10 or 12 samples per year).   The “effective” sample method also determined that,

on average, a sampling frequency greater than about 10 samples per year would

produce some serially dependent data.  The boxplot analyses, in general, seemed to

support sampling frequency of six to 12 samples per year.  Sampling frequencies less

than 12 samples per year usually resulted in boxplots that, from a visual standpoint,

appeared significantly different or highly variable compared to the existing data.       

Since sodium and potassium are not robust measures of stream health, their

findings should be considered secondary.  Conductivity and sulfate required the most
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frequent sampling (weekly), but this is unreasonable for an 83 site monitoring network,

and the observations would be dependent to some degree.  On the positive side, these

two variables are highly correlated with other variables that do not require high

sampling frequencies.  

Based on the findings thus far a recommended sampling frequency would fall

between six and 12 samples per year.  Further discussion of this will be in Section 4.6.

4.5  Trend Detection Improvement using Multiple Sampling Sites 

Most of Chapter 4 has addressed the sampling frequency needed in the

monitoring network to detect long-term trends based on data from the southwestern

stream at the Noland Divide monitoring site.  It has already been stated that the one

drawback of using these data is that it measures the water quality at only one location

and this study is focusing on an 83 site synoptic network.  Again, the Noland Divide

data was used because of its high frequency sampling which allows a gradual thinning

of the data to test lower sampling frequencies.  However, some consideration should be

given to the fact that whether the redesigned sampling network remains to be 83 sites or

some subset of that number, the data obtained from multiple sampling locations should

increase the trend detection accuracy beyond the use of only one sampling location.  In

statistical calculations the old saying that “there are strength in numbers” is certainly

not without merit.  The increase in the number of observations affects almost all

statistical calculations by improving their accuracy and power.  In the monitoring

network studied here this should not be an exception.  An example of this is presented

below for sampling sites in elevation class four (between 2000' and 2500' MSL).  
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Elevation class four contains a total of 16 sampling sites from the monitoring

network.  Robinson (2003) used 15 of these sampling sites to study the change in the

width of confidence intervals of the trend coefficient as the number of sites used in the

calculation of the confidence intervals was decreased from 15 to one.  Sampling sites

were dropped from the calculation of the confidence intervals in the order of their

sampling site identification number.  The trend regression equation developed by

Harwell (2000) for normalized H+ in elevation class four is given by   

   

where θ = 2π*(fraction of a year)
t = cumulative Julian days beginning at January 1, 1991

Figure 39 displays the graphical results by Robinson (2003) for determining the

confidence intervals and coefficients of the trend of the sampling sites in elevation class

four.  Each set of points lined up vertically from the horizontal axis represents one

regression analysis.  The horizontal axis shows how the sampling sites were removed in

numerical order from one regression analysis to the next.  The first analysis contains all

15 sampling sites.  The next set of points represents the regression analysis for all

sampling sites except site one, and so on.  It can be seen that the confidence intervals

are fairly uniform in width until five sites (sampling sites IDs less than 148) have been

removed from the analysis.  As additional sites are removed the confidence intervals

widen at a uniform but small rate until 10 sites (sampling sites IDs less than 311) have

been removed from the analysis.  At this point, only five sampling sites are being used 
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Figure 39. Confidence intervals for trend in elevation class 4 sampling sites.
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in the regression analysis and the confidence intervals are still somewhat reasonable

compared to the analysis with all sampling sites.  However, when additional sites are

removed the confidence interval widths and the coefficient of the trend component are

affected drastically.  For this data it seems that 10 of 15 sites provide a good comparison

to that of using all 15 sampling sites; five of 15 sites still provide a good comparison but

with a noticeable increase in confidence interval width; and four sites or less provides

unreasonable changes in the confidence interval width and in the trend coefficient. 

 These results have two implications.  The first issue is that of including a

number of sampling sites from each elevation class in the redesigned monitoring

network.  The issue was briefly addressed in Section 3.7 and will be addressed further

in Section 4.6.  The second issue is the confidence of the detected trend.  The

confidence interval width using only one sampling site is more than twice the

confidence interval width using five sampling sites.  This very simply displays the

increase in confidence of having multiple sites for trend detection.  The elevation

classes of Table 38 should be used in the final network redesign to ensure that some

minimal degree of redundancy is kept that will increase the confidence in the trend

identification.

Urquhart, Paulsen, et al. (1998) proposed a method to determine regional trends

that may be applicable in the GRSM.  Their method was rather simple and involved

performing time series regression on the means of multiple sampling sites to determine

a regional trend.  They calculated the means among the sites for each time period and

then performed time series regression using the means.  It is easy to understand that this

method requires a relatively high number of sites to be accurate.  The method could also
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be easily influenced by outliers in the data.  In this case the medians could be used.

This method could possibly be applied to all the sampling sites in the GRSM.  The

sampling sites could be divided into elevation classes or into the clusters that were

formulated in this study.  Another issue that has not been touched on is the possibility of

spatial dependency, which could definitely be a factor when using this method or any

other method that uses multiple sites to determine trends.     

4.6  Summary of Findings 

This section presents a summary of the findings from the frequency analyses for

determining the adequacy of the current sampling frequency to detect long-term trends.

The following list contains summary results of each sub-section in this chapter, some

key points that should be taken into consideration in the redesigned network, and

notable findings.  A final discussion and recommendations will be presented in Chapter

5.  The summary is as follows:  

• The “effective” sampling method determined that, on average, a sampling frequency

greater than approximately 10 samples per year may result in serial dependence

among the data.  It was also determined that length of record is much more beneficial

than increasing the sampling frequency, especially when the data becomes

dependent.  At the point where dependency is a factor, increasing data collection

results in very little improvement of statistical power.

• Sen's slope estimator and the Mann-Kendall test for trend both showed that sampling

intervals of monthly and bimonthly were still relatively accurate in detecting the

trends of the weekly data.  However, it must be remembered that the weekly data is
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serially dependent which could also affect the actual trend in the data.  

• The boxplot analysis revealed that for most water quality variables a monthly or

bimonthly sampling interval compares well with the weekly boxplots.  Sampling

intervals greater than bimonthly exhibit much more noticeable changes in the

medians, IQRs, and outer fences.

• The use of multiple sites decreases the width of confidence intervals for determining

the trend.  Regression analysis for trends in elevation class four showed that seven

sampling sites produced confidence intervals that were only slightly larger than if 15

sites were used.  When fewer than seven sites were used the confidence interval

width increased rapidly.  Since some water quality variables have produced different

trends at different elevation classes it would be prudent to preserve elevation classes

in the final design so that multiple sights might be used to decrease confidence

interval widths of trend estimates or to possibly decrease the time required to reliably

detect trends.  Multiple sites for trend detection improvement should however be

checked for spatial dependence. 
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Chapter 5 Final Discussion and Recommendations

5.1  Spatial Analyses

The spatial analyses were performed by deriving monetary benefit scores using

multivariate statistical methods and then optimizing the monitoring network using a

simulated annealing algorithm that considered the monetary benefit scores. In general,

those sampling sites that explained the greatest amount of variability within their

respective cluster received the highest benefit while those sites that explained the least

amount of variability in their cluster the lowest benefit.  The costs of obtaining the

samples from the field were also considered. 

The first simulated annealing optimization (SA1) resulted in the

recommendation that 16 of 83 sampling sites be discontinued.  The list of sites to be

retained and discontinued are shown in Table 30.  The list of sites retained in Table 30 is

the optimized network based on maximized net benefit.  However, there are some other

considerations to take into account based on the Summary of Findings in Section 3.8.

If the sampling sites in overlapping regions of clusters, that were discontinued in

SA1, were moved to the retained group this would result in a redesigned network of 70

sampling sites.  Although these results are probably the most beneficial they do not

represent a significant change from the original network.  Perhaps a better way of

approaching the selection would be to combine the information about sites in

overlapping clusters, cluster memberships, elevation classes, and the simulated

annealing method of finding the n best sites (SA2) in Table 37.   This can lead to the

identification of primary, secondary, and tertiary sampling sites as follows (the addition
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of sites to the following lists are determined by the order in which they are added to the

network in Table 37 to ensure that the most beneficial sites are chosen):

1. Primary Sites – [4, 13, 14, 20, 23, 24, 30, 34, 47, 49, 66, 71, 73, 74, 114, 137, 142,

143, 144, 147, 148, 149, 173, 174, 191, 193, 194, 233, 234, 237, 251, 252, 253, 266,

268, 291, 293, 488, 489, 492, and 493]  This list of sites is the set of the n = 40 best

sites.  These sites are considered primary because their maximized objective function

in SA2 is not much different from the objective function of the optimum network in

SA1.  This group of sites includes 10 of 22 sites in the overlapping regions of

clusters based on water quality and watershed characteristics and 17 of 24 collocated

sites.  All clusters and elevation classes are represented in the set of primary sites.

2. Secondary Sites – [115, 156, 184, 192, 221, 310, 311, 337, 472, 473, 479, 480, 481,

482, 483, 484, and 485]  Adding the secondary sites to the primary sites would

guarantee that all elevation classes, water quality clusters, and clusters of the

watershed characteristics are represented by at least three membership sites.  In

elevation classes or clusters where there are less than three sites the remaining

sampling sites from those classes or clusters are added.  The n = 50 best sites would

be included in this list.  The secondary sites also add three more of the collocated

sites for a total of 20 out of 24 and four more sites in overlapped areas of clusters for

a total of 14 out of 22.  

3. Tertiary Sites -  [50, 52, 150, 186, 190, 209, 210, 213, 214, 215, 474, and 475]  The

addition of the tertiary sites would include all the sites from the SA1 optimization.

Secondary sites include the addition of three more collocated sites for a total of 23

out of 24 and five more sites in overlapping areas of clusters for a total of 19 out of
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22. 

4. Assuming that primary and secondary sites are included in the redesigned network

for a total of 58 sampling sites, new sites should be added to the network in the

elevation ranges of 3000-4000 feet MSL, 4000-5000 feet MSL, and above 5000 feet

MSL to distribute the network proportionally according to the park areas at these

elevations.  The redesigned network would include eight new sites between 3000 and

4000 feet MSL, six new sites between 4000 and 5000 feet MSL, and three new sites

above 5000 feet MSL.  This would bring the redesigned network to a total of 75

sampling sites.

5. Sites recommended for discontinuance – [1, 3, 43, 45, 46, 103, 104, 106, 107, 127,

138, 200, and 336]  These sites represent the balance of the sites not included in the

primary, secondary, or tertiary lists and are recommended for discontinuance.  All of

these sites were all discarded by the SA1 optimization.  An evaluation may be

furthered by the NPS to determine if any sites are needed from this list for other

purposes not mentioned in this study. 

The sampling sites listed in No. 5 should not be viewed as the only sites that can be

discontinued.  These sites are simply the ones that remained after the selection of the

primary, secondary, and tertiary sites.  Discontinuation of additional sites should be

contemplated but it is recommended that their priority (primary, secondary, or tertiary)

and order of being retained (Table 37) be considered as guidelines.  The primary,

secondary,  tertiary, and remaining sites are shown in the tree diagram of Figure 40 and

on the plot of the GRSM in Figure 41.  

This study did not address the seven sampling sites that are taken from high-

189



 

Figure 40. Identification of primary, secondary, and tertiary sampling sites. 
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Figure 41. Plot of primary, secondary, and tertiary sampling sites. 
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elevation springs.  However, these sites are sampled at the same time samples are

collected for the 83 sites focused on by this study.  On average, the seven high-elevation

springs are probably higher in access cost because they are located near the North

Carolina-Tennessee border.  It has already been mentioned that the chemistry is usually

different for springs compared to surface water and the same difference would be

expected here.  It is suggested that the NPS review the high-elevation springs and

consider discontinuance so that funds can be redirected to additional surface sites or to

the existing surface sites.  

A final recommendation for a redesigned network that incorporates sampling

frequency will be given in Section 5.3 after stating the conclusions of the frequency

analyses in Section 5.2. 

5.2  Frequency Analyses

The frequency analyses employed the “effective” sample method, Sen's slope

estimator, Mann-Kendall test for trend, and boxplots to study the effectiveness of

smaller sampling frequencies relative to the weekly sampling data from the Noland

Divide, southwestern stream.  The sampling frequency does need to be increased if the

time for determining a trend with a specified confidence and statistical power is to be

reduced.  However, the frequency should not be increased to a point where serial

dependency becomes a problem.  Based on the findings of Chapter 4 it is recommended

that the sampling frequency be increased from four samples per year to 6-12 samples

per year.  If long-term trend detection is the only focus then six samples per year may

be adequate.  As mentioned earlier, this study has not focused on the detection of
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seasonality.   If it is desired to also capture seasonal trends then 12 samples per year

may be better.   After review of past literature and observing the results of the frequency

analyses the word “optimum” may be difficult to define, however, because the answer

depends on the length of record and the desired level of statistical power.  A general

opinion from the literature review has revealed that in most cases a sampling frequency

of 12 samples per year is recommended, especially when there is no data available to

base a sampling frequency.  

It is also realized that any increase in sampling frequency is subject to the

feasibility of the current operating budget.  The variable cost breakdown has shown that

the laboratory costs, data interpretation, overhead, and other miscellaneous expenses are

more expensive than the costs associated with retrieving the sample.  The cost of one

sample on average for retrieval is approximately $58 while the costs for laboratory

work, data interpretation, overhead, and miscellaneous expenses for one sample is

approximately $134.  These costs combined with the recommendations of a redesigned

network and an increase in sampling frequency will be discussed in Section 5.3.    

5.3  Combining the Analyses

This section combines the discussions of the spatial and frequency analyses into

the final recommendation for a redesigned monitoring network.  First, from a spatial

perspective it would seem prudent to include all of the primary sites in a new network.

These sites are the most important from the standpoints of benefit and uniqueness.  

Second, from a temporal perspective primary stations could be divided into monthly

and a bimonthly sampling intervals.  The monthly sampling sites would consist of:  4,
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13, 14, 20, 23, 24, 30, 34, 49, 66, 71, 73, 74, 144, 147, 148, 149, 173, 174, 193, 194,

233, 237, 251, 252, 253, 266, 268, 291, 293, 488, and 489.  These are primary sites that

are located next to roads so vehicle access could mainly be used.  The balance of the

primary sites (47, 114, 137, 142, 143, 191, 234, 492, and 493) would be sampled

bimonthly.  Based on an average access cost of $58 per sample and $134 for laboratory

expenses, etc., the total annual variable cost would be $84,096.   

It is also recommended that the secondary sites (115, 156, 184, 192, 221, 310,

311, 337, 472, 473, 479, 480, 481, 482, 483, 484, and 485) be sampled six times per

year because these sites guarantee that there is representation from all clusters and all

elevation classes in the new network. The total annual variable cost for the secondary

sites would be $19,584.  A combined total for primary and secondary sites would be

$103,680.  If new sites were added to correct the proportionality to park area within all

elevation ranges this would add an additional 17 sites that could be sampled bimonthly

for an additional variable cost of $19,584.  The new network would consist of 75

sampling sites for a total variable cost of $123,264.  If tertiary sites were added to the

network the recommended sampling frequency would be six samples per year.  Each

site added would cost an additional $1,152 per year.  The addition of the 12 tertiary sites

would equal an increase of $13,824.  Again it should be made clear that these costs are

the variable costs and do not include the fixed costs for the sampling program.  The

redesigned network including fixed costs for primary, secondary, and new sampling

sites would be $193,674.  This represents a net increase of $54,099 from the existing

network. 

There are other considerations that must be taken into account.  Much of the
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sampling is performed by volunteers.  Their willingness and personal schedules may be

strained by the increased frequency.  Organization could be even more complicated

depending on how the bimonthly schedule is arranged around holiday seasons.

Additionally, accessing sampling sites in higher elevations during the winter months

can be treacherous because of snow and ice.  An increase in sampling frequency will

also increase the exposure of sample collectors during the wintry months.
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A.  Summary of Total Program Costs

FIXED costs of the synpotic

network
$70,410.00

VARIABLE costs of the

synoptic network
$69,165.00

TOTAL SYNOPTIC NETWORK

COSTS
$139,575.00

TOTAL COST of NOLAND DIVIDE $60,025.00

TOTAL MONITORING NETWORK

COSTS (This includes the synoptic

network and the Noland Divide project)

 $199,600.00
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B.  Breakdown of synoptic network costs

SUBTOTAL TOTAL
NPS Costs

1 Direct costs from NPS (70%
of total NPS program cost) $55,300.00

2 Indirect costs @ 15% $8,300.00

TOTAL COSTS TO NPS
(1,2) $63,600.00

Cost share by UT

3 Uncompensated time of
RBR including FB $19,300.00

4 Uncompensated time of grad
students $4,500.00

5
Misc (CEE instrument use,
secretarial, CEE lab
technician)

$1,500.00

SUBTOTAL DIRECT
COST SHARING BY UT
(3,4,5)

$25,300.00

6 Indirect costs @ 45% of
direct cost share $11,385.00

7
Cost sharing of indirect
costs for NPS contract
((0.3*$55,300)

$16,590.00

SUBTOTAL (6,7) $27,975.00

TOTAL COST SHARING BY UT
(3,4,5,6,7) $53,275.00
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B.  Continued

SUBTOTAL TOTAL
Steve Moore, vehicle, and
Trout Unlimited

8 Steve Moore (NPS in-kind
contribution for CY 2003) $11,300.00

9 Vehicle $4,200.00

10 Trout Unlimited (4*60
hrs*$30/hr) $7,200.00

TOTAL (8,9,10) $22,700.00

TOTAL COSTS $139,575.00

C.  Separation of variable synoptic network costs for use in optimization

SUBTOTAL TOTAL

11 Technician $22,050.00

12
Grad student: 70% of
[0.5($5,000 tuition +
1.5*$15000)]

$9,625.00

13 Hourly $3,500.00
14 Supplies $2,800.00
15 Instrumental use cost share $560.00
16 Vehicle $4,200.00

SUBTOTAL $42,735.00
17 overhead @ 45% of $42,735 $19,230.00
18 Trout Unlimited $7,200.00

SUBTOTAL $26,430.00

TOTAL VARIABLE
COSTS $69,165.00

211



APPENDIX B. Water Quality Data Means

212



Table 46. Means of water quality variables for period from 1996-2001.

SiteID pH ANC Conductivity Chloride Nitrate Sulfate Sodium Potassium
1 6.18 32.75 15.11 15.13 25.00 45.91 35.60 13.10
3 6.46 75.97 16.03 15.65 15.00 32.50 50.05 9.39
4 6.23 58.82 13.42 13.73 14.65 28.74 44.44 10.78
13 6.61 110.58 17.46 16.78 5.65 34.26 42.57 12.87
14 6.58 101.47 17.49 16.74 6.82 33.76 42.26 13.62
20 6.55 81.65 15.17 15.66 8.24 32.69 39.16 13.30
23 6.56 97.68 16.60 18.90 7.16 31.21 38.05 11.35
24 6.7 147.14 22.57 18.42 3.94 42.93 55.90 13.37
30 6.45 64.76 20.89 21.14 24.41 63.63 35.38 9.24
34 6.41 69.31 15.00 19.04 10.86 33.48 37.35 12.80
43 5.82 13.30 15.26 18.02 24.91 62.97 26.31 6.56
45 5.63 5.81 19.36 18.80 29.30 91.10 24.89 5.80
46 5.74 5.75 16.79 17.06 28.35 75.25 28.40 4.79
47 5.89 19.24 11.53 16.70 21.26 39.40 25.25 9.65
49 6.29 58.11 16.86 17.02 17.03 50.86 36.00 8.05
50 6.25 43.07 14.90 17.06 18.65 48.46 35.59 9.52
52 6.42 56.00 15.82 18.94 15.31 46.42 38.68 8.83
66 6.2 41.50 19.53 17.53 32.19 70.51 25.84 7.59
71 6.14 33.12 15.21 17.74 31.20 45.91 29.59 9.39
73 6.21 33.64 20.18 18.41 33.11 77.54 25.79 8.87
74 6.38 66.76 24.97 21.08 34.07 90.43 27.64 6.24
103 5.49 0.96 19.68 19.15 55.59 65.09 30.77 12.43
104 5.65 7.32 17.76 17.98 50.49 56.65 30.60 13.28
106 5.93 17.72 18.47 16.42 42.43 57.65 27.63 16.41
107 5.99 19.03 16.33 16.93 35.64 51.72 29.91 12.83
114 6.24 36.39 17.00 19.78 38.65 45.32 35.76 9.92
115 6.23 38.47 16.63 18.24 33.15 49.84 34.99 8.60
127 6.34 47.77 11.07 18.85 15.30 20.43 37.83 11.19
137 5.84 11.09 14.63 16.76 31.81 51.33 31.77 9.48
138 5.55 2.91 13.82 17.81 35.99 36.84 29.59 10.20
142 6.45 62.31 10.91 18.34 6.87 15.90 40.92 12.69
143 6.36 48.49 10.51 16.35 7.04 21.58 37.75 11.26
144 6.39 53.42 11.20 18.40 7.32 19.61 38.49 12.00
147 6.59 86.20 14.50 16.88 6.69 21.47 51.80 14.72
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Table 46.  Continued.

SiteID pH ANC Conductivity Chloride Nitrate Sulfate Sodium Potassium
148 6.66 125.11 16.83 16.66 4.21 19.90 71.54 15.89
149 6.53 81.10 13.94 16.90 7.76 21.89 51.38 14.72
150 6.49 80.49 13.84 16.35 8.98 21.03 49.32 13.71
156 7.14 434.04 51.15 23.03 3.72 41.69 52.42 16.24
173 6.59 158.06 20.05 19.91 5.48 26.61 44.54 12.11
174 7.37 1103.47 106.23 25.80 11.55 48.31 57.16 16.36
184 6.22 33.55 12.94 21.04 24.53 26.46 39.79 11.48
186 6.37 49.06 13.24 18.41 16.70 27.64 40.81 11.45
190 6.23 34.37 11.95 16.42 13.77 30.42 35.01 9.36
191 6.05 18.78 10.28 17.44 16.45 25.65 28.34 8.91
192 6.07 22.48 12.84 14.89 21.47 40.61 27.62 7.10
193 6.34 52.48 11.75 18.38 5.80 24.52 36.04 10.41
194 6.34 49.72 11.96 16.96 8.63 28.66 36.86 10.15
200 6.1 27.88 12.77 21.60 26.71 25.59 37.51 12.70
209 6.15 32.86 10.09 16.97 5.44 24.56 34.27 9.91
210 6.35 55.06 14.13 16.43 13.55 39.05 32.72 10.86
213 6.03 19.59 11.22 16.58 19.74 29.82 28.34 9.09
214 6.23 37.57 11.35 17.84 13.27 22.63 33.39 10.29
215 6.36 55.60 13.46 18.96 11.60 34.83 38.67 9.72
221 6.14 25.90 10.57 17.96 23.99 18.27 33.63 10.61
233 6.02 24.41 23.35 18.91 36.41 107.27 24.71 4.98
234 5.86 21.91 14.98 18.77 53.21 28.25 32.91 6.57
237 4.91 -11.39 19.49 15.94 32.51 72.57 18.81 4.23
251 6.08 22.81 29.42 23.26 39.37 156.98 43.15 11.35
252 5.69 19.35 38.35 23.34 54.05 242.15 51.77 12.00
253 6.41 81.29 23.35 24.33 55.18 41.62 54.72 9.07
266 6.45 74.78 13.61 17.57 7.06 26.16 46.62 13.23
268 6.43 66.03 13.56 17.56 13.48 32.52 42.25 11.45
291 6.07 27.81 12.79 20.95 35.92 24.03 37.00 11.34
293 6.51 85.66 16.10 19.53 17.19 24.67 56.61 13.55
310 6.49 75.68 12.63 15.94 3.96 21.79 41.79 10.23
311 6.44 68.22 12.12 19.00 4.48 18.42 42.67 11.35
336 6.39 51.19 11.23 18.76 24.49 10.79 40.84 13.46
337 6.24 41.50 12.37 19.79 26.11 16.89 37.98 11.17
472 6.18 32.58 11.85 17.15 14.09 32.96 32.60 8.86
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Table 46.  Continued.

SiteID pH ANC Conductivity Chloride Nitrate Sulfate Sodium Potassium
473 6.06 36.03 20.64 19.00 33.34 80.44 23.31 5.66
474 6.32 52.37 13.06 17.40 11.39 33.23 34.77 11.12
475 6.31 36.47 11.65 19.27 13.99 28.57 32.41 11.16
479 6.51 68.89 11.91 16.68 3.25 17.72 42.04 11.63
480 6.52 82.99 13.54 15.69 1.77 21.35 46.49 12.45
481 6.51 90.02 17.75 16.14 0.83 50.73 44.89 13.60
482 6.49 90.98 13.65 16.42 2.51 20.83 46.79 11.54
483 6.54 87.79 14.50 15.84 1.26 27.83 49.61 14.30
484 6.41 56.39 10.81 16.78 6.24 17.05 38.13 10.73
485 6.48 72.45 11.10 15.95 2.42 15.20 39.78 11.02
488 6.37 46.23 11.64 18.98 9.68 22.84 40.19 10.19
489 7.39 985.63 97.25 27.20 10.85 46.35 54.86 15.95
492 6.16 30.27 17.10 17.76 45.26 41.93 35.77 9.23
493 6.45 71.15 12.52 17.12 6.74 17.91 46.85 12.47
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APPENDIX C. Data Screening Results 
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Figure 42. Boxplots of water quality variables pH and ANC.
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Figure 43. Boxplots of water quality variables conductivity and chloride.
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Figure 44. Boxplots of water quality variables nitrate and sulfate.
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Figure 45. Boxplots of water quality variables sodium and potassium.
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Table 47. Correlation matrix for geology variables.
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Correlation Matrix for Geology Variables 
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1.0       Thunderhead 
sandstone        

-0.228 1.0      Limestone 
0.038       
-0.271 0.639 1.0     Cades Cove 

sandstone 0.013 0.000      
-0.346 -0.129 -0.155 1.0    Anakeesta 

Formation 0.001 0.245 0.162     
-0.354 0.310 0.414 -0.221 1.0   Elkmont 

Sandstone 0.001 0.004 0.000 0.045    
0.144 -0.053 -0.066 -0.130 -0.106 1.0  Basement 

complex 0.194 0.633 0.556 0.242 0.339   
-0.535 0.011 -0.003 -0.351 -0.115 0.007 1.0 Great Smoky 

group 0.000 0.919 0.979 0.001 0.300 0.947  
 

*correlations are in bold print 
** p-values are shown in italics, p-values shown as 0.000 are actually <0.0001 



Table 48. Correlation matrix for morphology variables.

Stream
elevation

Mean
basin

elevation

Stream
order

Max.
channel
length

Basin
length

Basin
area

Stream
density

Mean
basin
slope

Channel
slope

Basin
width

Stream
elevation

1.0

Mean basin
elevation

0.858 1.0
0.000

Stream order -0.757 -0.526 1.0
0.000 0.000

Max.
channel
length

-0.678 -0.499 0.752 1.0

0.000 0.000 0.000

Basin length -0.737 -0.540 0.834 0.956 1.0
0.000 0.000 0.000 0.000

Basin area -0.603 -0.454 0.737 0.940 0.915 1.0
0.000 0.000 0.000 0.000 0.000

Stream
density

-0.506 -0.458 0.360 0.286 0.317 0.245 1.0
0.000 0.000 0.001 0.009 0.004 0.026

Mean basin
slope

0.005 0.261 -0.063 -0.209 -0.200 -0.210 -0.037 1.0
0.967 0.017 0.573 0.058 0.069 0.057 0.739

Channel
slope

0.479 0.411 -0.660 -0.643 -0.686 -0.569 -0.204 0.339 1.0
0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.002

Basin width -0.630 -0.452 0.844 0.865 0.878 0.939 0.249 -0.164 -0.646 1.0
0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.138 0.000

*correlations are in bold print
** p-values are shown in italics, p-values shown as 0.000 are actually <0.0001
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Table 49. Correlation matrix for vegetation variables.

Spruce
-fir

Northern
hardwood

Cove
hardwood

Mesic
Oak

Mixed-
mesic

hardwood

Tulip
poplar Pine Heath

bald
Xeric
Oak Pine-oak

Spruce-fir 1.0

Northern
hardwood

0.295 1.0
0.007

Cove
hardwood

-0.230 -0.098 1.0
0.037 0.380

Mesic Oak -0.510 -0.311 0.163 1.0
0.000 0.004 0.140

Mixed-mesic
hardwood

-0.417 -0.581 -0.405 0.294 1.0
0.000 0.000 0.000 0.007

Tulip poplar -0.213 -0.396 0.086 -0.262 0.047 1.0
0.053 0.000 0.438 0.017 0.675

Pine -0.276 -0.406 -0.481 -0.184 0.349 0.429 1.0
0.012 0.000 0.000 0.097 0.001 0.000

Heath bald -0.005 -0.027 0.371 -0.036 -0.320 0.205 -0.230 1.0
0.961 0.806 0.001 0.744 0.003 0.063 0.037

Xeric oak -0.343 -0.519 -0.568 0.015 0.553 0.405 0.774 -0.171 1.0
0.002 0.000 0.000 0.890 0.000 0.000 0.000 0.121

Pine-oak -0.272 -0.472 -0.582 0.098 0.705 0.179 0.544 -0.289 0.798 1.0
0.013 0.000 0.000 0.377 0.000 0.105 0.000 0.008 0.000

*correlations are in bold print
** p-values are shown in italics, p-values shown as 0.000 are actually <0.0001
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Figure 46. Scatterplot matrix of water quality variables.
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APPENDIX D. Geology, Morphology, and Vegetation Data 
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Table 50. Geology characteristics of the sampling site watersheds.
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1 81.50 0.00 0.00 0.00 0.00 0.00 18.50
3 53.70 0.00 0.00 0.00 0.00 0.00 46.30
4 88.20 0.00 0.00 0.00 0.00 0.00 11.80
13 51.50 0.40 1.80 14.50 15.80 0.00 16.00
14 64.30 0.00 1.00 13.00 11.80 0.00 9.90
20 66.90 0.00 0.00 15.40 12.60 0.00 5.10
23 45.20 0.00 0.70 27.70 9.50 0.00 16.90
24 19.80 2.30 5.90 0.00 39.40 0.00 32.60
30 49.30 0.00 0.00 34.00 4.80 0.00 11.90
34 68.20 0.00 0.00 18.30 10.60 0.00 2.90
43 46.60 0.00 0.00 53.40 0.00 0.00 0.00
45 3.80 0.00 0.00 96.20 0.00 0.00 0.00
46 24.80 0.00 0.00 75.20 0.00 0.00 0.00
47 97.10 0.00 0.00 2.90 0.00 0.00 0.00
49 48.70 0.00 0.00 36.60 13.80 0.00 0.90
50 67.30 0.00 0.00 22.70 9.40 0.00 0.60
52 56.10 0.00 0.00 18.70 8.90 0.00 16.30
66 43.40 0.00 0.00 56.50 0.00 0.00 0.10
71 77.40 0.00 0.00 22.50 0.00 0.00 0.10
73 22.20 0.00 0.00 77.80 0.00 0.00 0.00
74 7.90 0.00 0.00 92.10 0.00 0.00 0.00
103 100.00 0.00 0.00 0.00 0.00 0.00 0.00
104 100.00 0.00 0.00 0.00 0.00 0.00 0.00
106 100.00 0.00 0.00 0.00 0.00 0.00 0.00
107 100.00 0.00 0.00 0.00 0.00 0.00 0.00
114 97.00 0.00 0.00 0.00 0.00 0.00 3.00
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Table 50.  Continued.
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115 100.00 0.00 0.00 0.00 0.00 0.00 0.00
127 98.30 0.00 0.00 0.00 0.00 0.00 1.70
137 99.70 0.00 0.00 0.00 0.00 0.00 0.30
138 100.00 0.00 0.00 0.00 0.00 0.00 0.00
142 53.80 0.00 0.00 0.00 0.00 6.30 39.90
143 98.30 0.00 0.00 0.00 0.00 0.00 1.70
144 74.60 0.00 0.00 0.00 0.00 3.30 22.10
147 60.30 0.00 0.00 0.00 0.00 1.30 38.40
148 14.30 0.00 0.00 0.00 0.00 0.40 85.30
149 63.20 0.00 0.00 0.00 0.00 1.30 35.50
150 67.90 0.00 0.00 0.00 0.00 0.70 31.40
156 0.20 6.90 33.20 0.00 34.40 0.00 25.30
173 0.00 0.90 17.50 0.00 67.80 0.00 13.80
174 0.70 21.00 13.50 0.00 38.50 0.00 26.30
184 0.00 0.00 0.00 0.00 93.40 0.00 6.60
186 3.30 0.00 0.00 0.00 92.10 0.00 4.60
190 58.40 0.00 0.00 39.10 0.00 0.00 2.50
191 0.00 0.00 0.00 6.40 0.00 0.00 93.60
192 0.00 0.00 0.00 67.50 0.00 0.00 32.50
193 43.30 0.00 0.00 40.00 0.00 0.00 16.70
194 46.90 0.00 0.00 35.70 0.70 0.00 16.70
200 18.90 0.00 0.00 0.00 71.80 0.00 9.30
209 76.00 0.00 0.00 24.00 0.00 0.00 0.00
210 81.70 0.00 0.00 15.50 0.00 0.00 2.80
213 83.10 0.00 0.00 15.30 0.00 0.00 1.60
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Table 50.  Continued.
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214 96.60 0.00 0.00 0.00 0.00 0.00 3.40
215 0.00 0.00 0.00 91.40 0.00 0.00 8.60
221 0.00 0.00 0.00 0.00 0.00 0.00 100.00
233 0.00 0.00 0.00 100.00 0.00 0.00 0.00
234 0.00 0.00 0.00 100.00 0.00 0.00 0.00
237 0.00 0.00 0.00 100.00 0.00 0.00 0.00
251 48.80 0.00 0.00 51.20 0.00 0.00 0.00
252 31.30 0.00 0.00 68.80 0.00 0.00 0.00
253 22.20 0.00 0.00 77.80 0.00 0.00 0.00
266 75.20 0.00 0.00 16.40 0.00 4.70 3.70
268 75.70 0.00 0.00 20.90 0.00 3.40 0.00
291 100.00 0.00 0.00 0.00 0.00 0.00 0.00
293 60.50 0.00 0.00 0.00 0.00 0.00 39.50
310 0.00 0.00 0.00 0.00 0.00 0.00 100.00
311 0.00 0.00 0.00 0.00 0.00 0.00 100.00
336 100.00 0.00 0.00 0.00 0.00 0.00 0.00
337 100.00 0.00 0.00 0.00 0.00 0.00 0.00
472 19.20 0.00 0.00 46.80 0.00 0.00 34.00
473 16.80 0.00 0.00 83.20 0.00 0.00 0.00
474 76.40 0.00 0.00 18.90 0.50 0.00 4.20
475 66.80 0.00 0.00 24.80 0.00 0.00 8.40
479 0.00 0.00 0.00 0.00 0.00 0.00 100.00
480 0.00 0.00 0.00 0.00 0.00 0.00 100.00
481 0.00 0.00 0.00 0.00 0.00 0.00 100.00
482 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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Table 50.  Continued.

Si
te

ID

T
hu

nd
er

he
ad

 sa
nd

st
on

e

L
im

es
to

ne

C
ad

es
 C

ov
e 

sa
nd

st
on

e

A
na

ke
es

ta
 fo

rm
at

io
n

E
lk

m
on

t s
an

ds
to

ne

B
as

em
en

t c
om

pl
ex

G
re

at
 S

m
ok

y 
gr

ou
p

483 0.00 0.00 0.00 0.00 0.00 0.00 100.00
484 0.00 0.00 0.00 0.00 0.00 0.00 100.00
485 0.00 0.00 0.00 0.00 0.00 0.00 100.00
488 0.00 0.00 2.30 0.00 90.40 0.00 7.30
489 0.40 11.70 13.60 0.00 54.60 0.00 19.70
492 100.00 0.00 0.00 0.00 0.00 0.00 0.00
493 72.80 0.00 0.00 0.00 0.00 1.90 25.30
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Table 51. Morphology characteristics of the sampling site watersheds.
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1 671 1314 3 6.54 5.20 866 1.5 49.1 18.3 1.7
3 511 1032 4 8.62 6.40 2664 2.4 43.3 10.5 4.1
4 634 1241 2 5.23 4.80 378 2.2 52.5 19.7 0.8
13 335 979 5 42.76 19.30 27528 1.8 42.0 1.9 14.3
14 347 1041 4 41.62 18.20 15592 1.8 41.7 2.0 8.6
20 518 1116 4 28.85 15.80 13154 1.7 42.2 2.6 8.3
23 351 1003 5 19.11 11.50 7152 1.6 43.7 4.8 6.2
24 351 748 4 14.02 9.80 4670 1.8 39.9 6.2 4.8
30 436 1221 4 21.17 14.10 6267 1.4 49.2 5.8 4.4
34 597 1176 4 22.54 12.40 11067 1.6 42.9 3.4 8.9
43 713 1306 4 7.19 5.60 2564 1.4 61.7 11.2 4.6
45 975 1366 2 3.38 2.80 377 1.3 72.1 16.5 1.4
46 838 1291 3 5.52 4.30 867 1.4 65.3 13.1 2.0
47 732 1329 2 4.89 4.50 506 1.4 54.1 22.4 1.1
49 509 1186 4 11.03 8.60 4664 1.4 55.1 8.7 5.4
50 507 1245 5 13.93 11.90 9717 1.4 50.3 11.1 8.2
52 411 1145 5 19.24 15.30 11778 2.0 49.0 8.4 7.7
66 817 1460 4 13.60 9.20 3770 1.3 53.5 5.7 4.1
71 1036 1515 3 6.06 5.40 893 1.3 45.4 13.9 1.7
73 1024 1505 3 10.36 6.90 2361 1.4 54.3 5.3 3.4
74 1164 1523 2 7.91 5.30 1069 1.3 51.4 6.3 2.0
103 1320 1614 1 1.70 1.50 131 0.7 52.2 31.2 0.9
104 1280 1578 1 1.62 1.40 54 2.1 50.5 35.7 0.4
106 1170 1555 3 2.35 2.00 233 1.9 54.4 33.6 1.1
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Table 51.  Continued.
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107 927 1458 3 3.90 3.20 642 1.6 53.0 25.5 2.0
114 765 1201 3 3.79 3.00 597 1.6 56.6 18.4 2.0
115 1170 1332 1 0.63 0.60 25 0.6 55.0 49.7 0.4
127 908 1386 3 6.46 5.30 1115 1.8 45.2 10.7 2.1
137 838 1320 2 3.35 3.20 320 2.1 58.0 26.3 1.0
138 1058 1435 2 2.34 2.30 155 2.0 46.8 30.4 0.7
142 1006 1351 3 6.92 5.40 1149 1.3 41.6 6.9 2.1
143 1000 1422 2 6.43 4.90 847 1.7 43.5 11.7 1.7
144 911 1359 3 8.58 6.60 2183 1.4 43.0 6.8 3.3
147 750 1214 4 19.26 12.00 12742 1.6 41.4 3.2 10.7
148 754 1152 4 7.44 5.80 2188 1.6 40.8 10.6 3.8
149 777 1227 4 16.44 11.50 12156 1.6 41.4 3.9 10.5
150 799 1245 4 14.03 10.80 11157 1.5 41.9 4.5 10.3
156 338 745 5 31.27 19.20 15775 1.8 33.6 1.4 8.2
173 523 918 4 11.04 7.90 4290 1.4 36.6 7.1 5.4
174 523 773 4 15.35 11.50 5056 1.9 31.2 3.7 4.4
184 863 1236 1 2.60 2.40 168 1.2 44.7 24.3 0.7
186 599 1076 3 6.66 5.80 1038 1.5 44.6 12.5 1.8
190 646 1160 3 6.66 5.40 1133 1.0 49.8 14.3 2.1
191 975 1299 2 2.99 2.40 288 1.6 44.9 16.8 1.2
192 975 1273 2 2.49 2.00 245 1.4 53.8 17.0 1.2
193 585 1140 4 7.69 6.00 2358 1.3 50.4 11.2 3.9
194 518 1109 5 11.79 7.50 5539 1.4 45.0 6.7 7.4
200 1012 1299 2 2.09 1.80 183 1.8 44.8 23.1 1.0
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Table 51.  Continued.
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209 823 1047 1 2.89 2.10 145 1.9 41.4 12.7 0.7
210 835 1350 3 8.78 7.00 3536 1.4 47.9 11.8 5.1
213 1018 1406 3 5.98 4.30 735 1.9 43.5 10.8 1.7
214 1049 1332 2 3.78 3.10 342 1.4 44.7 14.0 1.1
215 1030 1249 2 2.14 1.80 169 1.6 45.1 12.6 0.9
221 1219 1449 2 2.99 2.70 299 1.1 42.9 15.8 1.1
233 1297 1596 2 5.14 3.70 594 1.3 51.2 8.3 1.6
234 1524 1621 1 0.52 0.40 16 0.0 38.4 20.7 0.4
237 1378 1636 2 4.04 2.60 429 1.0 50.0 9.2 1.7
251 1222 1442 2 2.71 2.30 211 1.8 45.9 13.5 0.9
252 1426 1550 1 0.87 0.50 29 0.6 44.6 20.3 0.5
253 1451 1562 1 0.73 0.40 22 0.0 42.5 17.9 0.5
266 614 1150 5 22.02 15.30 13480 1.7 49.9 2.9 8.8
268 666 1205 5 16.74 11.30 10574 1.6 51.3 3.8 9.4
291 1603 1716 1 0.93 0.90 34 0.5 34.6 24.0 0.4
293 840 1231 3 10.62 7.50 2735 1.4 43.9 6.8 3.6
310 683 1093 3 10.52 8.00 3088 1.6 46.6 5.1 3.9
311 657 1129 4 16.57 13.70 10062 1.5 45.2 4.5 7.3
336 1451 1559 1 3.29 2.70 160 1.5 25.3 4.3 0.6
337 1445 1598 2 3.45 3.10 306 1.4 31.3 9.3 1.0
472 671 1165 3 6.52 5.00 1071 1.5 51.5 11.1 2.1
473 1106 1506 3 9.65 6.20 2152 1.4 54.7 5.5 3.4
474 732 1267 4 15.04 9.20 7930 1.6 46.0 4.9 8.6
475 899 1305 4 9.07 4.80 2737 1.7 45.6 7.4 5.7
479 530 1089 4 23.86 17.40 11556 1.6 44.9 3.5 6.6
480 666 970 3 7.59 6.40 1310 1.6 44.1 9.5 2.1
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Table 51.  Continued.
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481 774 942 1 1.70 1.80 59 2.5 42.9 22.1 0.3
482 774 937 2 2.12 1.20 212 1.5 43.6 9.7 1.7
483 707 903 2 3.78 2.80 430 1.5 43.2 12.6 1.5
484 754 1211 4 13.01 11.00 5281 1.5 44.8 5.5 4.8
485 872 1184 2 7.06 5.30 752 1.4 43.0 7.7 1.4
488 546 1034 3 7.95 6.80 1095 1.4 38.6 11.7 1.6
489 521 839 5 15.79 11.60 9356 1.7 33.6 3.6 8.1
492 832 1260 1 3.28 2.70 255 0.9 52.3 19.5 0.9
493 866 1332 4 10.14 7.70 3756 1.6 43.4 6.2 4.9
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Table 52. Vegetation characteristics of the sampling site watersheds.
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1 10.2 22.5 46.8 1.5 16.1 0.6 1.1 1.2 0.0 0.0
3 0.6 13.6 36.6 4.3 22.9 3.5 11.0 1.9 4.5 0.9
4 2.1 20.6 53.3 1.3 16.3 2.8 1.9 0.9 0.4 0.4
13 1.4 7.9 38.2 4.5 12.4 7.6 12.1 1.4 12.5 1.5
14 2.5 7.9 41.4 4.9 13.0 6.2 10.4 1.5 10.5 1.3
20 3.0 9.4 47.7 5.8 12.8 6.0 5.2 1.7 7.6 0.6
23 0.0 10.6 43.1 6.0 7.5 10.3 9.1 1.7 10.5 0.6
24 0.0 4.1 20.8 1.0 17.9 8.5 21.7 0.5 22.1 2.8
30 14.0 15.7 39.7 2.4 10.0 6.5 5.4 1.8 3.5 0.6
34 3.6 11.1 52.4 6.5 10.7 5.1 2.5 2.1 5.8 0.2
43 15.5 9.7 52.1 4.9 9.4 3.5 0.3 3.2 1.0 0.1
45 22.9 9.4 54.5 3.2 5.6 1.1 0.0 2.4 0.0 0.0
46 15.3 10.0 59.0 4.4 4.2 6.2 0.0 0.8 0.0 0.1
47 8.6 11.7 42.8 10.7 9.7 0.8 1.0 9.2 5.2 0.2
49 10.7 9.8 50.2 4.2 11.4 6.0 1.2 2.3 3.9 0.1
50 10.6 10.9 53.3 3.6 9.4 6.6 0.8 1.4 2.9 0.2
52 8.7 9.1 46.7 3.5 13.0 7.5 4.2 1.2 5.0 0.8
66 22.8 24.3 43.1 1.6 3.0 1.9 0.2 2.5 0.2 0.1
71 21.8 38.1 35.8 0.5 2.2 0.5 0.0 1.0 0.1 0.0
73 27.1 23.4 40.4 1.0 2.3 1.6 0.2 3.2 0.0 0.1
74 31.1 32.2 33.2 1.1 0.2 0.2 0.2 0.9 0.0 0.2
103 13.0 37.3 48.4 0.0 0.0 0.0 0.0 1.2 0.0 0.0
104 23.1 36.9 38.5 0.0 0.0 0.0 0.0 1.5 0.0 0.0
106 24.8 35.7 39.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
107 14.0 28.9 51.5 2.0 2.2 0.1 0.0 1.3 0.0 0.0
114 0.5 22.2 56.1 5.7 12.1 0.4 0.0 3.0 0.0 0.0
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Table 52.  Continued.
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115 0.0 23.3 60.0 13.3 3.3 0.0 0.0 0.0 0.0 0.0
127 2.0 7.0 68.4 14.3 6.8 0.1 0.1 0.3 0.9 0.0
137 2.5 22.6 60.4 1.5 9.9 1.5 0.0 1.0 0.5 0.0
138 3.1 28.0 57.5 8.8 1.0 0.0 0.0 1.6 0.0 0.0
142 0.4 22.3 57.2 18.4 1.2 0.0 0.0 0.4 0.2 0.0
143 2.9 11.8 60.3 20.2 3.5 0.4 0.0 0.9 0.0 0.0
144 1.4 16.3 57.2 19.1 4.3 0.3 0.3 0.5 0.5 0.0
147 1.0 9.4 45.1 9.9 27.3 0.5 4.4 0.2 1.2 0.2
148 0.1 0.7 31.4 29.7 33.3 0.2 3.9 0.0 0.6 0.1
149 1.1 9.8 46.0 10.0 26.2 0.5 4.2 0.2 1.1 0.1
150 1.2 10.6 46.7 10.6 24.7 0.4 3.7 0.2 1.1 0.2
156 0.0 3.7 12.8 2.2 14.9 3.2 28.7 0.0 26.5 2.4
173 0.0 5.6 25.1 5.9 20.9 4.2 20.1 0.0 15.4 1.3
174 0.0 5.1 12.8 1.5 14.4 3.0 23.7 0.0 21.3 2.0
184 0.0 44.6 37.6 0.0 15.5 1.9 0.5 0.0 0.0 0.0
186 0.0 18.8 35.7 4.7 19.6 5.0 10.4 0.2 4.4 0.9
190 0.0 23.0 47.7 8.6 2.0 5.0 0.0 4.4 9.0 0.0
191 0.0 35.3 53.3 7.8 0.0 0.0 0.0 3.3 0.0 0.0
192 0.0 28.1 42.4 24.5 0.0 0.0 0.0 5.0 0.0 0.0
193 0.0 19.4 49.0 8.5 4.3 5.8 1.3 3.4 7.8 0.1
194 0.0 13.7 52.7 7.7 5.7 8.4 1.7 2.2 7.5 0.1
200 0.0 36.6 52.9 4.8 2.2 0.9 0.0 0.4 0.0 0.0
209 0.0 0.0 73.2 4.5 6.1 5.0 4.5 2.8 3.9 0.0
210 9.5 15.1 61.4 3.8 1.7 5.4 0.0 2.7 0.2 0.0
213 7.4 26.8 54.9 2.4 1.0 2.5 0.0 4.7 0.1 0.0
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Table 52.  Continued.
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214 1.4 36.9 48.0 8.7 1.7 0.2 0.0 3.1 0.0 0.0
215 0.0 1.4 64.3 23.3 0.5 3.8 0.0 5.7 1.0 0.0
221 0.0 81.2 14.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0
233 41.2 29.3 24.6 1.4 0.3 0.3 0.3 1.4 0.0 0.0
234 45.0 50.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
237 49.7 26.7 20.0 0.8 0.2 0.4 0.2 1.1 0.0 0.0
251 6.2 27.3 54.6 6.9 0.0 0.4 0.0 0.0 0.0 0.0
252 18.8 28.1 43.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
253 22.2 29.6 40.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
266 2.9 13.6 45.6 16.5 13.2 0.4 0.8 0.2 1.2 1.3
268 3.7 17.1 51.0 15.6 9.8 0.5 0.4 0.3 0.8 0.5
291 51.2 14.0 34.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
293 2.3 10.7 37.4 8.3 34.9 0.6 3.0 0.3 1.2 0.3
310 0.0 10.4 40.8 21.6 17.0 0.8 0.4 0.4 8.2 0.4
311 0.0 16.0 42.7 18.1 15.4 0.6 0.7 0.2 5.9 0.4
336 2.5 58.5 27.0 11.0 0.5 0.0 0.0 0.0 0.0 0.0
337 10.2 28.1 47.1 13.6 0.8 0.0 0.0 0.0 0.0 0.3
472 0.0 18.5 53.4 9.5 6.2 4.6 1.7 2.8 3.1 0.1
473 27.2 23.9 40.6 1.0 1.5 1.5 0.2 3.3 0.0 0.1
474 5.0 14.8 59.3 6.2 5.0 4.6 0.3 2.7 1.7 0.1
475 2.2 22.6 55.4 8.6 3.2 2.8 0.1 4.0 1.2 0.0
479 0.0 14.0 39.7 16.6 18.3 0.5 2.3 0.2 6.6 1.8
480 0.0 0.8 24.8 18.6 36.8 1.1 2.5 0.0 13.7 1.7
481 0.0 0.0 8.5 15.5 43.7 0.0 4.2 0.0 25.4 2.8
482 0.0 0.0 21.3 16.0 42.2 0.8 2.3 0.0 12.5 4.9
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Table 52.  Continued.
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483 0.0 0.0 15.7 11.5 49.2 1.5 2.1 0.0 16.2 3.8
484 0.0 24.2 49.3 16.9 7.1 0.2 0.0 0.1 2.0 0.0
485 0.0 13.0 51.8 24.3 9.9 0.4 0.0 0.0 0.4 0.1
488 0.0 12.4 36.8 7.3 19.4 3.5 14.0 0.0 5.4 0.7
489 0.0 6.1 19.8 3.7 17.2 3.5 21.3 0.0 17.5 1.6
492 0.6 20.0 57.1 7.0 9.2 0.6 0.0 5.4 0.0 0.0
493 1.4 11.6 57.5 17.3 10.5 0.3 0.3 0.4 0.7 0.0
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APPENDIX E. Collocation Benefit Scores, Total Benefit Scores, and Sampling Site
Cost Allocations
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Table 53. Rank and Benefit Scores of the Clustering Results.
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1 13 1 13 4 0 44
3 5 18 2 7 0 37
4 17 2 16 15 30 97
13 14 8.5 1 8 20 65.5
14 12 6 13 12 0 55
20 3 10 21 15 0 52
23 17 11.5 20 16 0 81.5
24 15 14 12 17 0 73
30 15 12 9 5 0 56
34 3 16 22 15 0 59
43 4 16 3 12 0 39
45 14 18 13 9 0 68
46 7 16.5 14 10 0 54.5
47 15 3 21 8 20 82
49 12 10.5 4 18 0 56.5
50 7 17 5 14 0 50
52 10 7 6 11 0 44
66 11 14 8 15 0 59
71 16 13 17 17 20 99
73 10 17.5 15 9 20 81.5
74 16 13 12 12 20 89
103 17 8.5 21 10 0 73.5
104 5 8.5 15 18 0 51.5
106 3 8.5 22 13 0 49.5
107 8 8.5 23 11 20 78.5
114 17 18 19 12 20 103
115 17 8.5 18 12 0 72.5
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Table 53.  Continued.
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127 8 16.5 7 1 0 40.5
137 9 14 20 13 20 85
138 15 8.5 17 5 0 60.5
142 14 15 10 17 30 100
143 15 16.5 19 7 30 102.5
144 10 16 11 16 0 63
147 11 17 19 18 0 76
148 16 9.5 9 15 0 65.5
149 6 18 17 17 20 84
150 1 16 14 14 0 46
156 16 18 4 14 0 68
173 14 13 7 15 20 83
174 16 17 3 16 20 88
184 13 15 11 17 0 69
186 4 16 21 9 0 54
190 5 13 6 18 0 47
191 16 12.5 20 11 0 75.5
192 17 14.5 18 14 20 100.5
193 9 18 17 13 0 66
194 10 15 16 13 0 64
200 14 17 8 2 0 55
209 11 12 7 8 0 49
210 8 9 23 16 0 64
213 14 8 9 16 0 61
214 9 15 23 10 30 96
215 13 14 22 9 30 101
221 14 13.5 14 16 0 71.5
233 16 17 13 17 0 79
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Table 53.  Continued.
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234 12 17 20 15 0 76
237 17 17 6 18 0 75
251 16.5 17 15 10 0 75
252 16.5 13.5 23 14 0 83.5
253 17 17.5 22 16 0 89.5
266 10 18 11 8 0 57
268 14 17 10 18 0 73
291 15 8.5 19 16 0 73.5
293 17 14 16 13 0 77
310 9 13.5 22 6 0 59.5
311 14 13.5 18 6 0 65.5
336 15 8.5 3 18 0 59.5
337 16 8.5 4 3 0 47.5
472 4 11 19 11 20 69
473 6 15.5 12 8 0 47.5
474 6 15 15 17 20 79
475 12 11 20 17 0 72
479 13 13.5 23 10 0 72.5
480 4 13.5 18 17 0 56.5
481 15 13.5 12 14 0 69.5
482 2 13.5 18 18 0 53.5
483 7 13.5 16 16 0 59.5
484 15 13.5 10 14 0 67.5
485 16 13.5 21 11 20 97.5
488 15 18 5 4 20 77
489 16 16 8 18 20 94
492 13 8.5 5 15 20 74.5
493 8 15 14 9 20 74
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Table 54. Site access information.
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1 0.45 0.167 92.04
3 0.5 0.167 22.71
4 1.6 0.167 28.57
13 0.7 0.167 23.77
14 7.67 0.167 60.95
20 3.71 0.167 39.83
23 0.24 0.167 21.32
24 0.01 0.167 20.15
30 0 0.167 20.04
34 0.6 0.167 23.24
43 1.82 0.57 0.167 120.95
45 0.74 0.167 138.44
46 0.89 0.167 162.44
47 0.16 0.167 45.64
49 0.09 0.167 20.52
50 2.96 0.167 35.83
52 8.25 0.167 64.04
66 4.78 0.167 45.53
71 0.11 0.167 37.64
73 2.55 0.08 0.167 46.44
74 1.01 0.167 25.43
103 0.85 0.167 156.04
104 0.62 0.167 119.24
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Table 54.  Continued.

Si
te

ID

(n
or

m
al

) 
  V

eh
ic

le
v(

m
ile

s)
*

V
eh

ic
le

 (C
C

) (
m

ile
s)

**

A
ll-

te
rr

ai
n 

(m
ile

s)
**

*

H
ik

in
g 

(m
ile

s)

  S
am

pl
in

g 
tim

e 
 a

t s
ite

 (1
0 

m
in

)

D
ol

la
rs

 p
er

 y
ea

r*
**

*

106 1.32 0.167 231.24
107 1.58 0.167 272.84
114 0.24 0.167 58.44
115 1.62 0.167 279.24
127 0.85  0.167 24.57
137 0.74 0.18 0.167 52.79
138 0.93 0.167 168.84
142 0.09 0.167 34.44
143 1.04 0.167 186.44
144 0.18 0.167 48.84
147 0.17 0.167 20.95
148 1.35 0.167 27.24
149 0.74 0.167 23.99
150 1.35 0.167 27.24
156 24.2 0.167 149.11
173 0.49 0.09 0.167 37.05
174 0.09 34.44
184 0.64 122.44
186 0.5 0.167 32.04
190 0.72 0.167 135.24
191 2.15 0.167 364.04
192 0.14 0.167 42.44
193 0.82 0.167 24.41
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Table 54.  Continued.
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194 4.23 0.167 42.6
200 1.27 0.167 223.24
209 2.19 0.167 370.44
210 0.26 0.167 61.64
213 0.2 0.167 52.04
214 0.42 0.167 87.24
215 1.9 0.167 324.04
221 5.62 6.38 0.167 1070.81
233 1.67 0.167 28.95
234 0.29 0.167 66.44
237 0.86 0.167 24.63
251 4.41 0.167 43.56
252 0.11 0.167 37.64
253 0.14 0.167 42.44
266 3 0.167 36.04
268 7.24 0.167 58.65
291 2.61 0.167 33.96
293 0.25 0.167 21.37
310 1.54 0.167 125.64
311 0.06 0.167 24.15
336 0.53 0.167 104.84
337 0.31 0.167 69.64
472 0.33 0.167 72.84
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Table 54.  Continued.
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473 0.63 0.167 23.4
474 2.28 1.49 0.167 273.48
475 1.21 0.167 213.64
479 4.17 0.167 305.98
480 0.7 0.167 68.04
481 0.02 0.167 21.41
482 0.86 0.167 79.01
483 0.48 0.167 52.95
484 2.34 0.167 180.5
485 3.55 0.167 588.04
488 0.75 0.08 0.167 36.84
489 0.09 0.167 34.44
492 0.42 0.167 87.24
493 2.38 0.167 32.73

* Normal is specified to mean all roads except those around Cades Cove.
** CC is specified to indicate those distances around Cades Cove.  The average vehicle

speed was reduced to 10 mph around Cades Cove.
***All-terrain miles denotes those trails on Hazel Creek where the NPS transports

personnel using an all-terrain vehicle.  
****Dollars per year are based on one person collecting 4 samples per year at a cost of
        $30 per man-hour.  Two people are assumed to be on each trip so this number
        would be double in the annealing algorithm.
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APPENDIX F. Matlab Program Listings
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SA1 Program listing 

%SA Algorithm for Optimization of GSMNP Monitoring Network Version 1
%MAIN PROGRAM
%Kenneth R. Odom      October 15, 2002
%
datafiles;         %site analysis data matrices
sampfreq = 4;      %number of times samples per year
labc = 602.40;     %lab, admin, interp costs for one sample
T = 200;           %initial temperature (200)
k = 0.97;          %temperature decay factor (0.95)
of = [ ];          %objective function array
shuffle = [ ];     %random site generation array
t = 0;             %iteration time
nsites = 83;       %number of sites
numBP = 0;         %number removed by Boltzmann probability rule in local search
numOF = 0;         %number removed by objective function rule in local search
tnumBP = 0;        %number removed by Boltzmann probability rule in global search
tnumOF = 0;        %number removed by objective function rule in global search
nint = 14;         %number of intersections
time = [ ];        %time storage
oftemp = [ ];      %objective function storage 
temp = [ ];        %temperature storage
ntemps = 0;        %number of temperature tries  
numit = [ ];       %number of iterations
count = 0;         %counter 
nlimit = 10 * nsites;    %limiting factor 1
nconfigs = 10 * nsites;  %limiting factor 2
nsucc = 0;         %number of successes       
iter = 0;          %number of iterations 
c1=fix(clock);     %Clock time at beginning of SA
discarded = [ ];   %matrix for sites discarded
retained = [ ];    %matrix for sites retained
ebcount = 0;       %counter
%
%     Begin Simulated Annealing 
%
To = T;
OFcur = objfcn_v1(nsites, nint, labc, AA, BB, CC, DD, EE);
while ntemps < 150 
    while count < nconfigs
        shuffle = randperm(nsites);
        siteselect = shuffle(1,1);
        x1 = find(AA(:,1) == siteselect);
        AAhold = AA;
        if AA(x1,3) == 1  
            AA(x1,3) = 0;
            OFnew = objfcn_v1(nsites, nint, labc, AA, BB, CC, DD, EE);
        else
            AA(x1,3) = 1;
            OFnew = objfcn_v1(nsites, nint, labc, AA, BB, CC, DD, EE);
        end
        if OFnew > OFcur   
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            OFcur = OFnew;
            numOF = numOF + 1;
        elseif  exp((OFnew-OFcur)/T) > rand(1)   % Boltzmann probability   
            OFcur = OFnew;
            numBP = numBP + 1;
        else   
            AA = AAhold;
        end 
        t = t + 1;
        of(t) = OFcur;
        time(t) = t;
        temp(t) = T;
        oftemp(t) = OFcur;
        count = count + 1;
        iter = iter +1;
        nsucc = numOF + numBP;
        if nsucc > nlimit 
            break
        end
    end
    tnumOF = tnumOF + numOF;
    tnumBP = tnumBP + numBP;
    numOF = 0;
    numBP = 0;
    count = 0;
    ntemps = ntemps + 1;
    T = T * k;
end
c2 = fix(clock);    
%
%%%%%%%%%%%%%%%%%% OUTPUT %%%%%%%%%%%%%%%%%%%%%%%
%
q = 0;
r = 0;
for i = 2 : nsites+1
    if AA(i,3) == 1
        q = q +1;  
        retained(q) = AA(i,2); 
    else
        r = r + 1;
        discarded(r) = AA(i,2)
    end    
end
rundate = date;
ret = retained';
dis = discarded';
maxof = max(of);
minof = min(of);
elapsed_time = etime(c2,c1)/60;                                          
fprintf('Simulated Annealing Report for Sampling Network Optimization \n\n');
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fprintf('SA Run Date:  %s\n' ,rundate);
fprintf('SA Run Begin Time:  %i:%i:%i\n' ,c1(1,4),c1(1,5),c1(1,6));
fprintf('SA Run End Time:  %i:%i:%i\n' ,c2(1,4),c2(1,5),c2(1,6));
fprintf('SA Run Elapsed Time (min):  %f\n\n' ,elapsed_time); 
fprintf('Total Number of Iterations:  %i\n' ,iter);
fprintf('Initial Temperature:  %f\n' ,To);
fprintf('Temperature Decay:  %f\n' ,k);
fprintf('Final Temperature:  %f\n' ,T);
fprintf('Number of Permutations accepted by Objective Function Rule:  %i\n' ,tnumOF);
fprintf('Number of Permutations accepted by Boltzmann Probability Rule:  %i\n' ,tnumBP);
fprintf('Minimum value of the Objective Function:  %f\n' ,minof);
fprintf('Maximum value of the Objective Function:  %f\n\n' ,maxof);
fprintf('Retained Sampling Site:  %i\n' ,ret);
fprintf('Discarded Sampling Site:  %i\n' ,dis);
%
%Plotting 
%
subplot(2,1,1); plot(time, of);
xlabel('Iteration');
ylabel('Objective Function');
subplot(2,1,2); plot(temp, oftemp);
xlabel('Temperature Steps');
ylabel('Objective Function');
set(gca,'XDir','reverse')

function OF = objfcn_v1(nsites, nint, labc, AA, BB, CC, DD, EE)
%Function for calculation of the objective function
%Kenneth R. Odom
%Dissertation Project  Version 11.30.02
%
A = [ ];
j = 0;
sitelist = [ ];
q = 0;
for i = 2 : nsites+1
    if AA(i,3) == 1
       j=j+1;
       A(j) = AA(i,2);
   end
end    
B = [ ];
[m n] = size(A);
B = (AA(:,2))';
for i = 1 : n
    z = find(BB(:,1) == A(i));
    B = cat(1,B,BB(z,:));
end    
Bsum = sum(B(2:end,2:end));
sumsdist = 0;
for i = 1 : nsites
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    if Bsum(1,i) >= 1
        sumsdist = sumsdist + CC(i,2);
        q = q +1;  
        sitelist(q) = CC(i,1);   
    end
end 
statbenefit = 0;
for i = 1 : n    
    c = find(CC(:,1) == A(i));  
    statbenefit = statbenefit  + CC(c,3); 
end
D = [ ];
D = (DD(1,:));
for i = 1 : n  
    z = find(DD(:,1) == A(i));  
    D = cat(1,D,DD(z,:));
end    
Dsum = sum(D(2:end, 2:end));
sumidist = 0;
for i = 1 : nint
    if Dsum(1,i) >= 1
        sumidist = sumidist + EE(i,2);
    end
end    
labcost = n * labc;
OF = statbenefit + 1.2*(sumsdist + sumidist) - labcost - sumsdist - sumidist;
return;
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%SA Algorithm for Optimization of GSMNP Monitoring Network Version 2
%Matlab Program for calculating best sites from a predefined number
%Kenneth R. Odom      October 15, 2002
%
fid=fopen('bestnets.m','w');
for numnet = 10:10:70
%
datafiles;              %site analysis data matrices
sampfreq = 4;           %number of times samples per year
labc = 602.40;          %lab, admin, interp costs for one sample
T = 200;                %initial temperature (200)
k = 0.97;               %temperature decay factor (0.95)
of = [ ];               %objective function array
shuffle = [ ];          %random site generation array
t = 0;                  %iteration time
nsites = 83;            %number of sites
numBP = 0;              %number removed by Boltzmann probability rule in local search
numOF = 0;              %number removed by objective function rule in local search
tnumBP = 0;             %number removed by Boltzmann probability rule in global search
tnumOF = 0;             %number removed by objective function rule in global search
nint = 14;              %number of intersections
time = [ ];             %time storage
oftemp = [ ];           %objective function storage 
temp = [ ];             %temperature storage
ntemps = 0;             %number of temperature tries  
numit = [ ];            %number of iterations
count = 0;              %counter 
nlimit = 10 * nsites;   %limiting factor 1
nconfigs = 10 * nsites; %limiting factor 2
nsucc = 0;              %number of sucesses counter
iter = 0;               %iteration counter
c1=fix(clock);          %Clock time at beginning of SA
discarded = [ ];        %matrix for sites discarded
retained = [ ];         %matrix for sites retained
ebcount = 0;            %counter
ofattemp = [ ];         %objective function array
bpattemp = [ ];         %Boltzmann probability array
temps = [ ];            %temperature array
bestsites = numnet;     %holder for best subset of sites
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Begin Simulated Annealing  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
shuffle = randperm(nsites);  % randomly choose n bestsites
inset = shuffle;
inset(bestsites+1:nsites) = [ ];
outset = shuffle;
outset(1:bestsites) = [ ];
[m,n] = size(inset);
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[r,s] = size(outset);
for i = 1:n
    XX(1,i) = i;
    XX(2,i) = inset(i);
end
for i = 1:s
    YY(1,i) = i;
    YY(2,i) = outset(i);
end  
XX = XX';
YY = YY';
To = T;
OFcur = objfcn_v2(bestsites,nsites, nint, labc, AA, BB, CC, DD, EE, XX);
while ntemps < 100 
    while count < nconfigs
        shuffle1 = randperm(bestsites);
        shuffle2 = randperm(nsites-bestsites);
        siteselect1 = shuffle1(1,1);
        siteselect2 = shuffle2(1,1);
        x1 = find(XX(:,1) == siteselect1);
        y1 = find(YY(:,1) == siteselect2);
        hold1 = XX(x1,2);
        XX(x1,2) = YY(y1,2);
        YY(y1,2) = hold1;
        OFnew = objfcn_v2(bestsites,nsites, nint, labc, AA, BB, CC, DD, EE, XX);
        if OFnew > OFcur   
            OFcur = OFnew;
            numOF = numOF + 1;
        elseif  exp((OFnew-OFcur)/T) > rand(1)   % Boltzmann probability   
            OFcur = OFnew;
            numBP = numBP + 1;
        else   
            hold1 = XX(x1,2);
            XX(x1,2) = YY(y1,2);
            YY(y1,2) = hold1;
        end 
        t = t + 1;
        of(t) = OFcur;
        time(t) = t;
        temp(t) = T;
        oftemp(t) = OFcur;
        count = count + 1;
        iter = iter +1;
        nsucc = numOF + numBP;
        if nsucc > nlimit 
            break
        end
    end
    tnumOF = tnumOF + numOF;
    tnumBP = tnumBP + numBP;
    ntemps = ntemps + 1;
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    ofattemp(ntemps) = numOF;
    bpattemp(ntemps) = numBP;
    temps(ntemps) = T;
    numOF = 0;
    numBP = 0;
    count = 0;
    T = T * k;
end
c2 = fix(clock);    %Clock time at end of SA
%
%%%%%%%%%%%%%%%%%% OUTPUT %%%%%%%%%%%%%%%%%%%%%%%
%

for i = 1 : bestsites
    x1 = find(AA(:,1) == XX(i,2));
    retained(i) = AA(x1,2); 
end
rundate = date;
ret = sort(retained);
%dis = discarded';
maxof = max(of);
minof = min(of);
elapsed_time = etime(c2,c1)/60;                                          
fprintf(fid,'\n\nSimulated Annealing Report for Sampling Network Optimization \n\n');
fprintf(fid,'SA Run Date:  %s\n' ,rundate);
fprintf(fid,'SA Run Begin Time:  %i:%i:%i\n' ,c1(1,4),c1(1,5),c1(1,6));
fprintf(fid,'SA Run End Time:  %i:%i:%i\n' ,c2(1,4),c2(1,5),c2(1,6));
fprintf(fid,'SA Run Elapsed Time (min):  %f\n\n' ,elapsed_time); 
fprintf(fid,'Total Number of Iterations:  %i\n' ,iter);
fprintf(fid,'Initial Temperature:  %f\n' ,To);
fprintf(fid,'Temperature Decay:  %f\n' ,k);
fprintf(fid,'Final Temperature:  %f\n' ,T);
fprintf(fid,'Number of Permutations accepted by Objective Function Rule:  %i\n' ,tnumOF);
fprintf(fid,'Number of Permutations accepted by Boltzmann Probability Rule:  %i\n' ,tnumBP);
fprintf(fid,'Minimum value of the Objective Function:  %f\n' ,minof);
fprintf(fid,'Maximum value of the Objective Function:  %f\n\n' ,maxof);
fprintf(fid,'Retained Sampling Sites:');
fprintf(fid,'%i, ' ,ret);
%
%Plotting: set plott=1 for plots and plot=2 to suppress
plott=1;
if plott == 1
    subplot(2,2,1); plot(time, of);
    xlabel('Iteration');
    ylabel('Total Benefit');
    subplot(2,2,2); plot(temp, oftemp);
    xlabel('Temperature');
    ylabel('Total Benefit');
    set(gca,'XDir','reverse');
    subplot(2,2,3); plot(temps, ofattemp);
    xlabel('Temperature');
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    ylabel('Objective Function Solutions');
    set(gca,'XDir','reverse');
    subplot(2,2,4); plot(temps, bpattemp);
    xlabel('Temperature');
    ylabel('Boltzmann Probability Soultions');
    set(gca,'XDir','reverse');
else
    fprintf(fid,'Plotting Suppressed');
end
end
fclose(fid);

function OF = objfcn_v2(bestsites,nsites, nint, labc, AA, BB, CC, DD, EE, XX)
%Function for calculation of the objective function
%Kenneth R. Odom
%Dissertation Project  Version 12.18.02
%
A = [ ];
j = 0;
sitelist = [ ];
q = 0;
for i = 1 : bestsites
    z = find(AA(:,1) == XX(i,2));
    A(i) = AA(z,2);
end    
B = [ ];
[m n] = size(A);
B = (AA(:,2))';
for i = 1 : n
    z = find(BB(:,1) == A(i));
    B = cat(1,B,BB(z,:));
end    
Bsum = sum(B(2:end,2:end));
sumsdist = 0;
for i = 1 : nsites
    if Bsum(1,i) >= 1
        sumsdist = sumsdist + CC(i,2);
        q = q +1;  
        sitelist(q) = CC(i,1);   
    end
end 
[r s] = size(sitelist);   
statbenefit = 0;
for i = 1 : n    
    c = find(CC(:,1) == A(i));  
    statbenefit = statbenefit  + 1*CC(c,3) ; 
end
D = [ ];
D = (DD(1,:));
for i = 1 : n  
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    z = find(DD(:,1) == A(i));  
    D = cat(1,D,DD(z,:));
end    
Dsum = sum(D(2:end, 2:end));
sumidist = 0;
for i = 1 : nint
    if Dsum(1,i) >= 1
        sumidist = sumidist + EE(i,2);
    end
end    
labcost = n * labc;
OF = statbenefit + 1.2*(sumsdist + sumidist) - labcost - sumsdist - sumidist;
return;
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%SA Algorithm for Optimization of GSMNP Monitoring Network Version 3
%Batch mode of version 1
%Kenneth R. Odom      October 15, 2002
%
% *************** USER RUN PREFERENCE *******************
% 
% NOTE: datafiles.m must be checked to ensure proper format
% enter batmode = 1 for batch mode 
% enter batmode = 2 for single run mode
batmode = 2;
fid=fopen('sensanaly.m','a');
% ******************* PLOT OFF/ON ***********************
plotoo = 1;  %1=off 2=on
% *************** BATCH FILE OPERATION ******************
nvars = 5;         %number of variables(water quality,geology,morphology,vegetation,collocation) 
nsampyr = 4;       %number of samples per year
labc = 150.60;     %lab, admin, interp. costs for one site/yr at one sample/yr
nsites = 83;       %number of sites
countiter = 0;     %count number of iterations in batch file operation 
datafiles;         %site analysis data matrices
%if batmode == 1
benfact = [1.2];  
weights = [2.0] ;  
[bx by] = size(benfact);
[wx wy] = size(weights);
for xx = 1:by
    totbfit = labc * nsampyr * nsites * benfact(xx);
    for yy = 1:wy
        for qq = 1:nvars
            scoreben = 0;
            datafiles; %site analysis data matrices
            JJ = CC;
            countiter = countiter + 1;
            CC(:,1) = JJ(:,1);
            CC(:,2) = JJ(:,2);
            if qq == 1
               CC(:,3)=weights(1,yy)*JJ(:,3)+JJ(:,4)+JJ(:,5)+JJ(:,6)+JJ(:,7);
            elseif qq == 2
               CC(:,3)=JJ(:,3)+weights(1,yy)*JJ(:,4)+JJ(:,5)+JJ(:,6)+JJ(:,7);
            elseif qq == 3    
               CC(:,3)=JJ(:,3)+JJ(:,4)+weights(1,yy)*JJ(:,5)+JJ(:,6)+JJ(:,7);
            elseif qq == 4    
               CC(:,3)=JJ(:,3)+JJ(:,4)+JJ(:,5)+weights(1,yy)*JJ(:,6)+JJ(:,7);    
            elseif qq == 5    
               CC(:,3)=JJ(:,3)+JJ(:,4)+JJ(:,5)+JJ(:,6)+weights(1,yy)*JJ(:,7);
            else
            end
            scoreben = sum(CC(:,3));
            CC(:,3) = (CC(:,3)/scoreben)*totbfit;
            
            %elseif batmode == 2
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     %proceed
     %else
     %proceed
     %end
%
% **************** Begin Simulated Annealing *****************
%
T = 200;           %initial temperature (200)
k = 0.97;          %temperature decay factor (0.95)
of = [ ];          %objective function array
shuffle = [ ];     %random site generation array
t = 0;             %iteration time
numBP = 0;         %number removed by Boltzmann probability rule in local search
numOF = 0;         %number removed by objective function rule in local search
tnumBP = 0;        %number removed by Boltzmann probability rule in global search
tnumOF = 0;        %number removed by objective function rule in global search
nint = 14;         %number of intersections
time = [ ];        %time storage
oftemp = [ ];      %objective function storage 
temp = [ ];        %temperature storage
ntemps = 0;        %number of temperature tries  
numit = [ ];       %number of iterations
count = 0;         %counter 
nlimit = 10 * nsites;    %limiting factor 1
nconfigs = 10 * nsites;  %limiting factor 2
nsucc = 0;         %number of successes       
iter = 0;          %number of iterations 
c1=fix(clock);     %Clock time at beginning of SA
discarded = [ ];   %matrix for sites discarded
retained = [ ];    %matrix for sites retained
                 
To = T;
OFcur = objfcn_v3(nsites, nint, labc, nsampyr, AA, BB, CC, DD, EE);
while ntemps < 150 
    while count < nconfigs
        shuffle = randperm(nsites);
        siteselect = shuffle(1,1);
        x1 = find(AA(:,1) == siteselect);
        AAhold = AA;
        if AA(x1,3) == 1  
            AA(x1,3) = 0;
            OFnew = objfcn_v3(nsites, nint, labc, nsampyr, AA, BB, CC, DD, EE);
        else
            AA(x1,3) = 1;
            OFnew = objfcn_v3(nsites, nint, labc, nsampyr, AA, BB, CC, DD, EE);
        end
        if OFnew > OFcur   
            OFcur = OFnew;
            numOF = numOF + 1;
        elseif  exp((OFnew-OFcur)/T) > rand(1)   % Boltzmann probability   
            OFcur = OFnew;
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           numBP = numBP + 1;
        else   
            AA = AAhold;
        end 
        t = t + 1;
        of(t) = OFcur;
        time(t) = t;
        temp(t) = T;
        oftemp(t) = OFcur;
        count = count + 1;
        iter = iter +1;
        nsucc = numOF + numBP;
        if nsucc > nlimit 
            break
        end
    end
    tnumOF = tnumOF + numOF;
    tnumBP = tnumBP + numBP;
    numOF = 0;
    numBP = 0;
    count = 0;
    ntemps = ntemps + 1;
    T = T * k;
end
c2 = fix(clock);    
%
%%%%%%%%%%%%%%%%%% OUTPUT %%%%%%%%%%%%%%%%%%%%%%%
%
q = 0;
r = 0;
for i = 2 : nsites+1
    if AA(i,3) == 1
        q = q +1;  
        retained(q) = AA(i,2); 
    else
        r = r + 1;
        discarded(r) = AA(i,2);
    end    
end
rundate = date;
maxof = max(of);
minof = min(of);
elapsed_time = etime(c2,c1)/60;                                          
fprintf(fid,'Simulated Annealing Report for Sampling Network Optimization \n\n');
fprintf(fid,'SA Run Date:  %s\n' ,rundate);
fprintf(fid,'SA Run Begin Time:  %i:%i:%i\n' ,c1(1,4),c1(1,5),c1(1,6));
fprintf(fid,'SA Run End Time:  %i:%i:%i\n' ,c2(1,4),c2(1,5),c2(1,6));
fprintf(fid,'SA Run Elapsed Time (min):  %f\n\n' ,elapsed_time); 
fprintf(fid,'Total Number of Iterations:  %i\n' ,iter);
fprintf(fid,'Initial Temperature:  %f\n' ,To);
fprintf(fid,'Temperature Decay:  %f\n' ,k);
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fprintf(fid,'Final Temperature:  %f\n' ,T);
fprintf(fid,'Number of Permutations accepted by Objective Function Rule:  %i\n' ,tnumOF);
fprintf(fid,'Number of Permutations accepted by Boltzmann Probability Rule:  %i\n' ,tnumBP);
fprintf(fid,'Minimum value of the Objective Function:  %f\n' ,minof);
fprintf(fid,'Maximum value of the Objective Function:  %f\n\n' ,maxof);
fprintf(fid,'Benefit Factor: %f\n', benfact(xx));
fprintf(fid,'Weight Factor: %f\t on Variable: %i\n', weights(yy),qq); 
fprintf(fid,'Retained Sampling Sites:');
fprintf(fid,'%i\n' ,retained);
fprintf(fid,'Discarded Sampling Sites:');
fprintf(fid,'%i\n' ,discarded);
%
%Plotting 
%
if plotoo == 2
    subplot(2,1,1); plot(time, of);
    xlabel('Iteration');
    ylabel('Objective Function');
    subplot(2,1,2); plot(temp, oftemp);
    xlabel('Temperature Steps');
    ylabel('Objective Function');
    set(gca,'XDir','reverse')
end    
countiter;

end
end
end
fclose(fid);

function OF = objfcn_v3(nsites, nint, labc, nsampyr, AA, BB, CC, DD, EE)
%Function for calculation of the objective function
%Kenneth R. Odom
%Dissertation Project  Version 11.30.02
%
A = [ ];
j = 0;
sitelist = [ ];
q = 0;
for i = 2 : nsites+1
    if AA(i,3) == 1
       j=j+1;
       A(j) = AA(i,2);
   end
end    
B = [ ];
[m n] = size(A);
B = (AA(:,2))';
for i = 1 : n
    z = find(BB(:,1) == A(i));
    B = cat(1,B,BB(z,:));
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end    
Bsum = sum(B(2:end,2:end));
sumsdist = 0;
for i = 1 : nsites
    if Bsum(1,i) >= 1
        sumsdist = sumsdist + CC(i,2);
        q = q +1;  
        sitelist(q) = CC(i,1);   
    end
end 
statbenefit = 0;
for i = 1 : n    
    c = find(CC(:,1) == A(i));  
    statbenefit = statbenefit  + CC(c,3); 
end
D = [ ];
D = (DD(1,:));
for i = 1 : n  
    z = find(DD(:,1) == A(i));  
    D = cat(1,D,DD(z,:));
end    
Dsum = sum(D(2:end, 2:end));
sumidist = 0;
for i = 1 : nint
    if Dsum(1,i) >= 1
        sumidist = sumidist + EE(i,2);
    end
end    
labcost = n * nsampyr * labc;
OF = statbenefit + 1.2*(sumsdist + sumidist) - labcost - sumsdist - sumidist;
return;
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% Sen's Slope Estimation for Time Trends
%   with resampling windows and data offsets
% Kenneth R. Odom  12/24/02

%Resampling window sequence
varspec = 9;    %pH=2, con=3, ANC=4, chl=5, nit=6, sul=7, sod=8, pot=9
ind = 0;        %set counter
sf = [ ];       %initialize array
zval = [ ];     %initialize array
offs = [ ];     %initialize array
offset = 0;     %offset sampling window by this number
icnt = 0;       %counter
jcnt = 0;       %counter
kcnt = 0;       %counter
[m n] = size(finalsw); %size of finalsw
numoffset = 12;   %user specified number of offsets
                %i.e. 4 equals 0 through 4 week offsets
sampfcount = 12; %user specified number of sampling frequencies in 1-week periods
                %i.e. 4 equals 1 through 4 week frequencies

for p = 1:sampfcount
    sampfreq = p;
for r = 0:numoffset
    offset = r;
    [m n] = size(finalsw);
    new2 = [ ];     %initialize array
    icnt = 0;       %counter
    jcnt = 0;       %counter
    kcnt = 0; 
for i = 1:sampfreq:m
    icnt = icnt + 1;
    kcnt = i + offset;
    if kcnt >= (m-numoffset), break, end;
    new2(icnt,1) = finalsw(kcnt,1);
    new2(icnt,2) = finalsw(kcnt,2);
    new2(icnt,3) = finalsw(kcnt,3);
    new2(icnt,4) = finalsw(kcnt,4);
    new2(icnt,5) = finalsw(kcnt,5);
    new2(icnt,6) = finalsw(kcnt,6);
    new2(icnt,7) = finalsw(kcnt,7);
    new2(icnt,8) = finalsw(kcnt,8);
    new2(icnt,9) = finalsw(kcnt,9);
end
     
numtie=0;
A=new2(:,varspec);        %variable array
T=new2(:,1);        %time array
% Get dimension for loop control
[m n] = size(A);
% Transpose A
B=A';
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slp = [ ];
% Calculate Sen's Slope
numslope = m*(m-1)/2;
ctr=0;
for j=1:m-1
    for k=j+1:m
        ctr=ctr+1;
        slp(ctr)=(A(k,1)-A(j,1))/(T(k,1)-T(j,1));
    end
end
    
medslope=median(slp);
% Calculate number of ties
numtie=0;
tie = [ ];
for i=1:m
    for j=i+1:m
        if A(j)==A(i)
            numtie=0;
            for k=i:m
                if A(k)==A(i)
                    numtie=numtie+1;       
                end
                tie(i)=numtie;
            end
        end
    end
end
for i=1:m
    for j=i+1:m
        if A(j)==A(i)
            tie(j)=0;
        end
    end
end

[m n] = size(tie);
tiemat = [ ];
tcnt = 0;
for i = 1:n
    if tie(i) > 0
        tcnt = tcnt + 1;
        tiemat(tcnt) = tie(i);
    end
end    
[m n] = size(tiemat);        
% Calculate Z-value for Mann-Kendall
sumties=0;
for i=1:n
    w(i) = tiemat(i) * (tiemat(i)-1) * (2*tiemat(i) + 5);
    sumties=sumties+w(i);
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end       

[g h] = size(new2);
vars = (1/18) * (g * (g-1) * (2*g + 5)- sumties);

% Calculate confidence limits
CC=1.645*sqrt(vars);
m1=(numslope-CC)/2;
m2=((numslope+CC)/2)+1;
C=sort(slp);

for i=1:numslope
    if i<=m1
        lcl=C(i);
    end
end
ucltrigger=0;
for i=1:numslope 
    if i>=m2
        ucl=C(i);
        ucltrigger=1;
        break
    end
end    
if ucltrigger==0
    ucl=C(numslope);
end
ind = ind + 1;
sf(ind) = p;
offs(ind) = r;
fprintf('\nFrequency=%i\t Offset=%i\t lcl=%f\t slp=%f\t ucl=%f',sampfreq,offset,lcl,medslope,ucl);
end
end
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Mann-Kendall program listing 

% Mann-Kendall procedure using Normal Approximation 
%   with resampling windows and data offsets
% Kenneth R. Odom  12/24/01

%Resampling window sequence
varspec = 9;    %pH=2, con=3, ANC=4, chl=5, nit=6, sul=7, sod=8, pot=9
ind = 0;
sf = [ ];
zval = [ ];
offs = [ ];
icnt = 0;       %counter
jcnt = 0;       %counter
kcnt = 0;       %counter
[m n] = size(finalsw); 
new2 = [ ];
numoffset = 12;     %user specified number of offsets
                    %i.e. 4 equals 0 through 4 week offsets
sampfcount = 12;    %user specified number of sampling frequencies in 1-week periods
                    %i.e. 4 equals 1 through 4 week frequencies

for p = 1:sampfcount
    sampfreq = p;
for r = 0:numoffset
    offset = r;
    [m n] = size(finalsw);
    new2 = [ ];
    icnt = 0;       %counter
    jcnt = 0;       %counter
    kcnt = 0; 
for i = 1:sampfreq:m
    icnt = icnt + 1;
    kcnt = i + offset;
    if kcnt >= (m-numoffset), break, end;
    new2(icnt,1) = finalsw(kcnt,1);
    new2(icnt,2) = finalsw(kcnt,2);
    new2(icnt,3) = finalsw(kcnt,3);
    new2(icnt,4) = finalsw(kcnt,4);
    new2(icnt,5) = finalsw(kcnt,5);
    new2(icnt,6) = finalsw(kcnt,6);
    new2(icnt,7) = finalsw(kcnt,7);
    new2(icnt,8) = finalsw(kcnt,8);
    new2(icnt,9) = finalsw(kcnt,9);
end
     

%Mann-Kendall sequence

numtie=0;
A=new2(:,varspec);
% Get dimension for loop control
[m n] = size(A);
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Mann-Kendall program listing continued

% Transpose A
B=A';

% Generate sign matrix
for j=1:m
    for i=1:m
        s(i,j)=(A(j,1)-B(1,i));
    end
end

% Total positives and negatives by row
countneg=0;
countpos=0;
for j=1:m
    for i=1:j
        if s(i,j)>0
            countpos=countpos+1;
        elseif s(i,j)<0
            countneg=countneg+1;
        end
    end
end

% Calculate Mann-Kendall S-statistic
S=countpos-countneg;

% Calculate number of ties
numtie=0;
tie = [ ];
for i=1:m
    for j=i+1:m
        if A(j)==A(i)
            numtie=0;
            for k=i:m
                if A(k)==A(i)
                    numtie=numtie+1;       
                end
                tie(i)=numtie;
            end
        end
    end
end
for i=1:m
    for j=i+1:m
        if A(j)==A(i)
            tie(j)=0;
        end
    end
end

[m n] = size(tie);
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Mann-Kendall program listing continued

tiemat = [ ];
tcnt = 0;
for i = 1:n
    if tie(i) > 0
        tcnt = tcnt + 1;
        tiemat(tcnt) = tie(i);
    end
end    
[m n] = size(tiemat);        
% Calculate Z-value for Mann-Kendall
sumties=0;
for i=1:n
    w(i) = tiemat(i) * (tiemat(i)-1) * (2*tiemat(i) + 5);
    sumties=sumties+w(i);
end
[g h] = size(new2);
vars = (1/18) * (g * (g-1) * (2*g + 5)- sumties);

if S < 0
    zvalue = (S+1)/sqrt(vars);
elseif S == 0
    zvalue = 0;
elseif S > 0 
    zvalue = (S-1)/sqrt(vars);
else
end
ind = ind + 1;
sf(ind) = p;
offs(ind) = r;
zval(ind) = zvalue;
fprintf('\nFrequency = %i  Offset = %i   Z-score = %f',sampfreq,offset,zvalue);
end
end
outmat = ([sf; offs; zval])';
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