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ABSTRACT 
 

 A multi-cycle nuclear fuel cycle optimization code, BWROPT (Boiling Water Reactor 

OPTimization), has been developed.  BWROPT uses the Parallel Simulated Annealing (PSA) 

algorithm to solve the coupled out-of-core and in-core optimization problems.  There are two 

depletion methods used for the in-core optimization: the Haling depletion and a Control Rod 

Pattern (CRP) search. The result of this optimization is the optimum new fuel inventory and the 

core loading pattern for the first cycle considered in the optimization. Several changes were 

made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes 

that use PSA. Instead of using constant sampling probabilities for the solution perturbation types 

throughout the optimization, as is usually done, the sampling probabilities can be varied to get a 

better solution and/or decrease runtime. Also, the new fuel types available for use can be sorted 

into an array based on any parameter so that each parameter can be incremented or decremented.  

In addition several evaluations were performed to test the CRP search option.    

 Using the variable sampling probabilities was found to produce slightly better results in 

less time than the standard method of having constant sampling probabilities.  Performing 

ordered and random sampling of the new fuel types using the new fuel type array was found to 

yield slightly better solutions on average than random sampling alone, but with a somewhat 

higher runtime.   Using variable length Markov chains for optimizations in which a CRP search 

is performed for the first cycle and the Haling depletion is used for the remaining cycles was 

found to increase CPU utilization by 33%.  Starting the CRP search with the CRP determined for 

the previous solution was found to be better than starting the CRP search with all of the rods 

fully withdrawn.  Using the CRP search in an optimization was slow and produced inferior 

results compared to using the Haling depletion, indicating the need for more work in this area.     
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Chapter 1 Introduction 

 

The efficient and safe operation of nuclear power reactors has been a high priority ever 

since the first reactor was built.  This concern has led to much effort being exhausted optimizing 

the fuel cycles of nuclear reactors.  Traditionally, the task of fuel cycle optimization has been 

split into two parts, out-of-core and in-core.  In the out-of-core step the size and approximate 

enrichment of the new fuel batches are determined so that the cycle energy demand can be met 

for many (typically 5 or more) additional cycles.  Out-of-core optimization also includes the 

selection of previously exposed fuel assemblies to be used in the next cycle.  In-core 

optimization determines the design of the new fuel batches, the location of each fuel bundle, and 

the operating strategy, which for Boiling Water Reactors (BWRs) entails the determination of 

control rod positions, rod sequence exchanges (blade selection and duration of sequence), and 

core flow during each sequence.  [1, 2] 

Though the out-of-core and in-core optimizations are generally done separately they are 

inherently coupled and in recent years there have been efforts to combine the out-of-core and in-

core optimizations, particularly for Pressurized Water Reactors (PWRs).  The coupled 

optimization takes all of the variables and constraints into account at the same time and, thus, 

should be able to produce better results than the individual “decoupled” optimizations.  

However, because the out-of-core optimization is multi-cycle in nature the coupled optimization 

requires solving the in-core optimization for several cycles at the same time.  If a high fidelity 

core simulator is used this requirement makes the coupled optimization very computationally 

intensive necessitating the use of parallel programming and computer architectures.  [2] 
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 In this work the development of a new computer code, BWROPT (Boiling Water 

Reactor OPTimization), is described.  BWROPT uses the popular Parallel Simulated Annealing 

(PSA) algorithm [3] to solve the combined out-of-core and in-core fuel cycle optimization 

problem.   

In Chapter 2 a literature review of existing fuel cycle optimization codes is presented.  

The information gathered in the literature was used as the starting point for the development of a 

new BWR fuel cycle optimization code described in Chapter 3.  Chapter 4 describes the model 

and test cases used to evaluate BWROPT, and in Chapter 5 the results of these evaluations are 

given.  In the final chapter conclusions and future work applicable to this research are discussed.     
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Chapter 2 Literature Review 

 

Many computer codes have been developed to improve the efficiency and safety of 

nuclear power reactors.  In the next section the features of several well-known and respected 

BWR fuel cycle optimization codes are discussed.  This is followed by discussions of multi-

cycle fuel cycle optimization codes and control rod pattern search algorithms.   

 

2.1 BWR Fuel Cycle Optimization Codes 

2.1.1 FORMOSA-B 

FORMOSA-B, a code developed at North Carolina State University (NCSU), was an 

early BWR in-core fuel cycle optimization code that originally used the Simulated Annealing 

(SA) [4] optimization algorithm [5].  The initial version optimized the fuel assembly Loading 

Pattern (LP) for a single cycle using the following constraints:  Linear Heat Generation Rate 

(LHGR), Average Planar LHGR (APLHGR), Critical Power Ratio (CPR), Cold ShutDown 

Margin (CSDM), octant power tilt, node discharge burnup, assembly discharge burnup, region 

average discharge burnup, region/batch power sharing, and End Of Cycle (EOC) keff.  One 

interesting feature of the alogirthm was the use of adaptive penalty functions for constraint 

violations that increase the weighting of the the constraints as the algorithm approaches 

convergnce.  Later the ability to perform Control Rod Pattern (CRP) optimization using heuristic 

rules (experience-based constraints that are applied to reduce the runtime of the optimization or 

improve solution quality) was added to the code.  When combined CRP-LP optimization is 

performed the CRP is updated after a user-specified number of LP samples have occurred.  The 
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number of iterations allowed for the CRP optimization to find a new CRP is limited so that the 

code does not spend too long looking for an acceptable CRP when one may not exist. [5, 6]  

FORMOSA-B was recently updated to use PSA with OpenMP parallel communication, which 

significantly reduced runtime while producing results comparable to the nonparallel version [7].   

 

2.1.2 ePrometheus 

The ePrometheus code, developed at Global Nuclear Fuel (GNF), is another in-core 

optimization code for BWRs.  The decision variables used in ePrometheus are:  exposed fuel 

loading pattern, fresh bundle design, control blade placements, core flow, and control blade 

sequence exchange times.  The constraints considered and their units and dimensions used in the 

Objective Function (OF) calculation are listed in Table 2.1.  A Tabu search [8] based algorithm 

is used to perform the optimization and cases are run on a computational server in parallel.  The 

first step in the algorithm is generating a response surface from perturbation calculations of each 

variable in the current solution.  This response surface is then used to estimate the OF of all 

solutions in the neighborhood of the current solution (reachable by changing any single variable 

in the current solution) that are not tabu (require a variable change that has been used within a 

user specified number of iterations).  The solutions with the highest estimated OFs are then 

evaluated with a core simulator to determine the actual best solution.  The process of finding new 

best solutions via estimation of OFs with the response surface and core simulator evaluations is 

repeated for a user specified number of iterations or until no new solution is found at which point 

the response surface is updated and the optimization continues.  The stopping criterion for the 

algorithm is a user specified number of response surface updates.  [9, 10] 
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Table 2.1 List of constraints available in the GNF ePrometheus optimization code [9].  

 

 

2.1.3 OCOTH 

OCOTH, created by Ortiz et al. [11], also solves the in-core optimization problem for 

BWRs.  The code uses an iterative process reminiscent of that used in FORMOSA-B.  A flow 

chart of OCOTH is provided in Figure 2.1 below.  OCOTH starts by using RENOR, a recurrent 

neural network, to determine an initial optimized LP based on Haling’s principle, which states:  

the minimum power peaking achievable for any given EOC state is attainable only by having a 

constant power profile throughout the cycle [12].  The neural network is an empirical model 

created by fitting LP data from other cycles [13].  After the initial LP is created an optimum CRP 
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is calculated for this LP using Azcatl-CRP [14], an ant colony code [15], which performs a 

heuristic search in which good solutions are reinforced and bad solutions are forgotten.  Another 

LP generation code, RECOPIA, uses a genetic algorithm to determine an optimum LP based on 

the CRP generated in the previous step.  Genetic algorithms like the ant colony algorithm 

reinforce good changes while discarding bad changes but use an evolution like algorithm [16]. 

The process of finding optimum CRPs and LPs is iterated until a stopping criterion is met.  The 

CRP generation and LP design with RECOPIA have their own OF which each use some of the 

following constraints:  Beginning Of Cycle (BOC) Cold ShutDown Margin, keff, axial power 

distribution, CPR, LHGR, power density, and hot excess reactivity. [11]   

 

 
Figure 2.1 – OCOTH flow chart [11].  

   

 
 

2.2 Multi-cycle Fuel Cycle Optimization Codes 

Several multi-cycle fuel cycle optimization codes have been developed for PWRs but the 

author knows of none for BWRs.  One early example of a PWR multi-cycle code was developed 
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by Yamamoto et al. [17] to solve the in-core optimization for two successive cycles using SA 

and a simplified core simulator to reduce runtime.  The OCEON-P code, developed at NCSU, 

solves the out-of-core problem for multiple cycles using the PSA algorithm and SIMULATE 3 

core simulator.  OCEON-P also has some in-core optimization elements such as LP selection 

from multiple user specified LPs.  One interesting feature of OCEON-P is that after each cycle 

simulation is run the code estimates the OF, and if it appears unlikely the solution will be 

accepted rejects it avoiding the simulation of the remaining cycles.  [18, 19, 20]  Studsvik’s 

multi-cycle PWR fuel cycle optimization code, COPERNICUS, solves both the out-of-core and 

in-core problems simultaneously.  Like OCEON-P, COPERNICUS uses the PSA algorithm and 

SIMULATE-3 core simulator. [2]   

 

2.3 Control Rod Pattern Search Algorithms 

The Control Rods (CRs) in a BWR are used to control the reactivity and power shape of 

the reactor.  A CRP defines the position/movement of each CR at every point in a cycle.  Actual 

CRPs used in operating reactors are still created by engineers with years of experience; however, 

there have been many studies of developing long-term CRPs with computer programs.  Long-

term CRPs are much coarser than actual CRPs and consist of the CR positions at BOC, EOC, 

and at user specified depletion steps.  For example, an 11 GWD/MTU cycle with a user input 

depletion step of 2 GWD/MTU would entail CRPs be generated at the following depletions:  0, 

2, 4, 6, 8, 10, and 11 GWD/MTU.  The purpose of long-term CRPs is to serve as an aid in 

developing an actual CRP and/or to determine the feasibility of a LP by determining the 

feasibility of generating a CRP that would eliminate constraint violations for the LP.    
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There are two main strategies for control rod movement in BWR operation:  

ConVentional Core (CVC) and Control Cell Core (CCC).  In CVC operation the Control Rods 

(CRs) in the core are divided into two groups A and B which are divided into subgroups 1 and 2.  

This creates a total of four groups which are arranged in the reactor core according to the pattern 

shown in Figure 2.2.   During normal reactor operation only one of these groups is used at a time 

and they are generally alternated throughout the cycle in the following order:  A1, B2, A2, B1, 

A1, … (starting group can vary).  In CCC operation a single CR group is selected and used for 

reactivity control throughout the entire cycle.  [21, 6] 

 

 
Figure 2.2 - Arrangement of CVC Control Rod Groups in a Quarter Reactor Core (Each CR Box 

Covers a 2x2 Grid of Assemblies) [21]. 

 

 

Typical computer programs that generate long-term CRPs rely on heuristic rules.  These 

programs can be divided into two categories:  indirect, which try to find a CRP that approximates 
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a target power distribution, and direct, which try to eliminate constraint violations and maximize 

core life without fitting a target power distribution.  Often the target power distribution used for 

indirect CRP searches is the Haling Power Distribution (HPD), the power distribution obtained 

using Haling’s principle, or a modified version of the HPD. [22]  Direct CRP search algorithms 

often consider the power shape through constraints summary statistics such as thermal limits or 

power peaking or by attempting to maximize the cycle length.  Because only about a quarter of 

the CRs are used at once it is common to define a Region Of Influence (ROI) for each CR as 

shown in Figure 2.3.  Control rods in BWRs are referred to as “cruciform” because their radial 

cross section is shaped like a plus sign and they are inserted between fuel bundles so their 

“blades” directly border four assemblies.  These neighboring assemblies are the most affected by 

the CR, followed by the assemblies face adjacent to these, and the least affected are the corner 

adjacent assemblies.  This definition of the ROI allows each of the four CVC groups to cover the 

entire core with the exception of some of the edge assemblies which typically do not require CR 

insertions during normal operation.  This, however, does not guarantee that constraint violation 

can be eliminated everywhere in the core with only one CVC group. [21, 6]  

 

 
Figure 2.3 – Location of Regions of Influence for a CR [6].    
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Chapter 3 Optimization Algorithm 

In this chapter the optimization algorithm for BWROPT; a new, multi-cycle, out-of-core 

and in-core, BWR fuel cycle optimization code; is described.  BWROPT is written in 

FORTRAN and the parallel communication is done with MPI enabling the code to run on large 

clusters which reduce runtimes and/or allow for more exhaustive searches.   In BWROPT the 

new fuel inventory (including total new assemblies, batch size, and batch design), LP, and CRP 

are varied simultaneously to find a near optimum new fuel inventory, and corresponding LP and 

CRP combination(s).  The optimization algorithm used is PSA which is described in detail in the 

next section.  This is followed by a description of the depletion methods used for evaluating LPs 

including CRP search and some new features not found in similar optimizations.   

 

3.1 Parallel Simulated Annealing 

3.1.1 Introduction 

Parallel simulated annealing is a generic term used to described multi-process versions of 

the SA algorithm developed by Kirkpatrick et al [4] which itself is based on the Metropolis 

algorithm [23].   The name simulated annealing is an analogy to annealing in metallurgy, in 

which metal is heated to a very high temperature and then cooled slowly.  The heating breaks 

down the initial structure of the metal and the slow cooling allows for defects in the metal to be 

corrected producing a low energy state final product.  In SA an effective temperature variable is 

used to control the speed of convergence of the algorithm.  The PSA implementation used in this 

research is PSA by mixing of states developed by Chu et al [3] as described by Kropaczek [24] 

with some variations.  A flow chart of the algorithm is included below as Figure 3.1.   
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Figure 3.1 – Flow chart of PSA by mixing of states algorithm as implemented in BWROPT.   
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3.1.2 Initialization 

The PSA algorithm starts by running an initialization to determine the standard deviation 

of the OF.  The initialization consists of generating a series of solutions (a “solution” constitutes 

all the information necessary to generate the input file(s) for each cycle being optimized) by 

randomly changing the previous solution, analyzing the new solutions with a core simulator (the 

computer code, NESTLE, [25] developed at NCSU and currently maintained by UTK and 

ORNL is herein used), and calculating the OF of each solution.  This series of solutions 

constitutes a Markov chain because each solution depends only on the previous solution and 

random numbers.  The methods for changing the solution are described latter in section 3.1.3.   

The objective function, defined as C in Equation 3.1 below, is based on the Fuel Cycle 

Cost (FCC) and constraint violations for each cycle in the optimization.   

 

 

 

 

3.1 

where,  

  = number of cycles considered in optimization 

  = number of constraints considered in optimization 

  = fuel cycle cost for cycle n 

  = discount factor used to weight cycle n FCC in levelized FCC calculation 

  = FCC weight for cycle n  

  = weight for constraint i in cycle n 

 = optional weight used to increase the effective constraint weights as T decreases 

(  1), default=1 (weigthting is not temperature dependent) 

 = Current simulated annealing temperature 

 = Initial simulated annealing temperature 
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Once all of the solutions for the initialization have been evaluated the standard deviation of the 

solutions’ OFs is used to calculate the initial temperature of the search algorithm using Equation 

3.2.  The user input value of  is one of two variables used to control the thoroughness of the 

optimization with larger values giving a higher initial temperature and, thus, a more thorough 

search.  It should be noted that the “temperature” variable herein discussed characterizes the state 

of the simulated annealing algorithm and has no connection to actual operational temperatures.   

 

  3.2 

where,  

  = initialization parameter ( ) 

  = standard deviation of C for the initialization.   

 

3.1.3 Fuel Cycle Cost Calculation 

 

In BWROPT the cost of each new fuel assembly type can either be specified or the user 

can supply the necessary data and the cost will be calculated using the simple compound interest 

formula in Equation 3.3.  The five fuel cost components used in the cost calculation are uranium 

ore, ore conversion, enrichment, fabrication, and burnable poison.  The amount of uranium ore 

that needs to be purchased and converted depends on the enrichment of the individual fuel pins 

in the assembly.  There are also losses in during the fabrication and conversion processes which 

affect the amount of ore required.  Therefore, the user must specify the distribution of 

enrichment for the pins in each lattice of the assemblies and the losses for each step of the 

production process.  The enrichment cost is determined by the number of Separative Work Units 

(SWUs) required to produce the desired enrichment from natural uranium.  The fabrication cost 

is calculated as a fixed cost per assembly independent of the assembly design.  If an assembly 
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contains burnable poisons (typically gadolinium for BWRs) the user must specify the amount 

with the enrichment data so the cost of the burnable poisons can be calculated based on the mass 

present in the assembly.     

 

  3.3 

where,  

  = annual interest rate 

 = cost of fuel component i  

 = time in months before start of cycle that fuel component i must be paid for    

 

3.1.4 Constraints 

In Table 3.1 each of the constraints available in BWROPT are described including when 

in the cycle they are evaluated.  The constraints currently available are:  keff, 2D and 3D Relative 

Power Fraction (RPF), node exposure, and Assembly Average Exposure (AAE).  These 

constraints were selected because of their importance for safe operation and regulatory 

compliance and/or ease of calculation.  BWROPT uses the NESTLE [25, 26] reactor core 

simulator to determine the values of the constraints for each solution generated.  Other 

constraints, whose values the NESTLE code can calculate and write to the output file, can be 

added to the OF calculation relatively easily.    
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Table 3.1 – Table of constraint descriptions, limit directions, and exposure points for which the 

limits are evaluated.     

Constraint Description Limit 

Direction 

Exposure 

Points 

Min/Max 

keff 

keff measures the neutron multiplication factor 

(criticality) of the reactor.  In order for the reactor to 

maintain power and operate at steady state it is 

necessary for keff to be very close to 1 at all times.   

<,> All 

Max RPF 

(2D and 

3D) 

Relative power fraction is a parameter easy to 

calculate which measures the extent to which the flux 

is peaked.  At full power a highly peaked flux is likely 

to violate thermal margins and thus RPF can be used 

as an approximate thermal limit.   

> All 

Max Node 

Exposure 

Exposure to a high neutron flux and high temperature 

environment degrades many materials including 

nuclear fuel.  This limit tries to ensure the most 

exposed part of the fuel does not challenge thermal 

mechanical limits due to localized overexposure 

within a harsh environment.   

> EOC 

Max AAE Assembly average exposure is another exposure limit 

which also tries to ensure thermal mechanical limits 

are not challenged due to overexposure.    

> EOC 

 

 

3.1.5 Solution Change Types 

The core LP is determined by a LP operator (see Figure 3.2) which specifies the locations 

of the old and new fuel assemblies, with positive or negative numbers, respectively.  The LP 

operator also specifies the rank of the old fuel locations, which is used to assign old assemblies 

to locations.  The new fuel assemblies are also ranked (-1 through the number of new 

assemblies) but these rankings are not used in the generation of the actual LP.  In Figure 3.2 the 

new fuel ranks have been replaced with the fuel type because the fuel type specifies the new fuel 

LP, this is true because each new fuel bundle in a fresh batch is identical at BOC.  The ranking 

for the old assemblies is performed after each cycle is analyzed for use in the next cycle.  The 

user can rank the fuel based on EOC assembly reactivity (kinf) or AAE.  If kinf is selected the 

ranking is descending and if AAE is used the ranking is ascending.  If change types requiring the 
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new fuel ranking are selected the new fuel is also sorted after each cycle evaluation but the 

rankings are used for the same cycle.  The new fuel sorting uses the same parameter as the old 

fuel sorting but the assemblies are ranked in the opposite direction.   

 

 
Figure 3.2 – Plot of a LP operator based on exposure for a quarter core symmetric BWR.    

 

 

There are currently 10 solution change types available in BWROPT for the user to select 

from.  All of the change types act by changing the LP operator and/or the fuel type map if the 

new fuel LP is being changed.  Some of the change types perform similar functions but use 

different methods; for these the user can select the one or more they think will work best for their 

optimization.  The only limitations placed on the exchanges are that the user can specify certain 

core locations as old fuel only and the maximum number of new fuel types.  The available 

change types are listed below along with a description of each.  Examples of the change types are 

included after the list.   
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1. Exchange 2 old assemblies – The ranks of two old fuel locations are exchanged (fuel 

type is not tracked for old locations). 

2. Exchange an old and new assembly – The ranks and types of an old and new location 

are exchanged (the old location is sampled from only the locations allowed to be new 

locations). 

3. Exchange 2 new assemblies – The ranks and types of two new fuel locations are 

exchanged (the types must be different). 

4. Change region size I – The region size (number of new fuel assemblies) is increased 

or decreased by one (50 % chance of each) by randomly selecting the locations to 

alter.   

5. Change region size II – The region size is increased or decreased by one (50 % 

chance of each) by changing the rank 1 old assembly to the rank -1 new assembly or 

vice versa, respectively.  (This should on average be the region size change with the 

highest probability of acceptance) 

6. Change new assembly type I – The type of a new fuel assembly is changed to another 

randomly selected type if no batch of this fuel type exists one is created. 

7. Change new assembly type II – The type of a new fuel assembly is changed to one of 

the adjacent types in the new fuel array by incrementing or decrementing the index of 

one of the dimensions in the array if no batch of the selected type exists one is 

created.  (Selecting the new type from the adjacent new types will have a higher 

average acceptance probability than random sampling if the fuel type array is 

constructed appropriately) 

8. Change batch fuel type I – The fuel type of all the assemblies in a batch (all new fuel 

assemblies of a given type) is changed to another randomly selected fuel type.   

9. Change batch fuel type II – The fuel type of all the assemblies in a batch is changed 

to another fuel type selected by incrementing or decrementing the index of one of the 

dimensions in the new fuel type array.   

10. Change the number of batches – The new type of half of the assemblies in a batch is 

changed to another new type (a new batch is created if necessary) or all of the 

assemblies in a batch are changed to a different type.   

 

 

For simplicity a 4 by 4 LP operator was used to demonstrate the different solution change 

types.  Fuel shuffling (change types 1, 2, and 3) is demonstrated in Figure 3.3, 3.4, and Figure 

3.5, respectively.   In Figure 3.6 change type 4 is demonstrated by showing both an increase and 

decrease in the number of new fuel assemblies.  Change type 5 is not demonstrated because it is 

the same as change type 4 except the selection of the location to be changed is different. 

Assembly new fuel type sampling (change type 6) is demonstrated in Figure 3.7; because change 
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type 7 is the same except for the new type selection it is not shown.  Batch type selection (change 

type 8) is shown in Figure 3.8.  Since change type 9 is very similar to change type 8 it is not 

shown.  New fuel batch splitting and combining (change type 10) is shown in Figure 3.9.    

 

  

  

Figure 3.3 – Example of solution change type 1.  (1,2) exchanged with (3,3).   

 

 

 

 

  

Figure 3.4 – Example of solution change type 2.  (2,3) exchanged with (2,4).   

 

 

 

 

  

Figure 3.5 – Example of solution change type 3.  (1,3) exchanged with (2,2).  
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(a) 

 

(b) 

 

Figure 3.6 – Example of solution change type 4.  (a) new fuel increased (b) new fuel decreases.   

 

   

 

 

  

Figure 3.7 – Example of solution change type 6.  New type of location (2,2) changed.   

 

 

 

 

  

Figure 3.8 – Example of solution change type 8.  The type 4 new fuel was replaced with type 2.   
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(a) 

 

 

(b) 

 

Figure 3.9 – Example of solution change type 10.  (a) batches in original solution are combined 

(b) combined batch is split.   

 

 

 

3.1.6 New Fuel Type Array 

The new fuel types the code samples from are input into a new fuel type array of user-

defined dimensionality (up to 4D).  If the user selects only change types with random type 

sampling the structure of the array is irrelevant.  However, if the user selects change types that 

use the new fuel type array the array should be set up so that each dimension represents a 

different variable in the fuel design.  For instance, a 2D array with variable average enrichment 

from one column to another and variable Burnable Poison (BP) loading from one row to another 

as shown in Table 3.2.  Each fuel design in the array is given a fuel type number which is used 

for random sampling.  The ordered sampling is performed by first sampling a dimension to 

change and then sampling whether to increment or decrement the index of that dimension.  The 

new type array works best if there are no empty locations but if an empty location is encountered 

during the sampling the code continues to change the index until a filled location is found.  The 
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new fuel type array is intended to be used with fuel types that are ordered with respect to the 

design variable for each dimension, however, if ordering the fuel types for a dimension is not 

possible that dimension can be set to random sampling.  If, for instance, the 2D array in 

Table 3.2 was changed to be a 3D array with the third dimension being assembly design, which 

is not readily ranked; this new dimension could be randomly sampled.   

 

 

Table 3.2 – Example 2D new fuel type array with fuel type numbers for each assembly present.    

BP Loading Average Enrichment (percent U
235

 by weight) 

 2 2.5 3 3.5 4 

0 1 4 6 9 12 

2 2 - 7 10 13 

4 3 5 8 11 14 

 

 

3.1.7 Sampling Probabilities 

The user can set the initial probability of sampling each change type or use the default of 

equal sampling probabilities.  Also the user can select to have constant or variable sampling 

probabilities for the change types.  Two types of variable sampling probabilities are currently 

available in BWROPT.  The first is individual change type convergence, for which, after a 

change type goes a set number of cooling steps without a solution being accepted the sampling 

probability for that change type is linearly decreased to zero over a set number of cooling steps 

and the other sampling probabilities are increased to compensate.  This leads to the phasing out 

of large changes late in the optimization because they are less likely to be accepted and increases 

the frequency with which small changes are sampled at the same time.  The second method, 

which is still being developed, is called fully variable.  In this method the sampling probabilities 

vary throughout the optimization based on a function of the fraction of accepted solutions for 
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each change type and the average magnitude of the OF change for each change type.  This 

method has the same goal as the first but starts earlier and is more gradual.  This method could 

also be used to skew the sampling toward larger changes early in the optimization to better 

explore the solution space early and then refine the good solutions once the large change types 

are phased out.   

 

3.1.8 Temperature Adjustment and Solution Acceptance 

 After the initial temperature is calculated the optimization begins by creating a random 

starting solution for each process.  Each process then starts a Markov chain in which the process 

of generating and evaluating new solutions (described in the initialization) is carried until an end 

criterion is met.  The major difference being that the new solutions are not automatically 

accepted, instead their OF is used in Equation 3.4 to calculate an acceptance probability.  If the 

new solution OF is greater than the old solution OF a random number from a uniform [0, 1] 

distribution is used to determine if the new solution is accepted.  As can be seen from the 

equation solutions of equal or greater quality (lower OF) are always accepted but there is also 

some chance of accepting worse solutions.  This helps avoid getting stuck in a local minimum.  

If the new solution is accepted the new solution becomes the old solution and is changed in the 

next iteration, otherwise the current old solution is changed again in the next iteration.  The 

Markov chain end criterion is either a user defined number of solution evaluations per process or 

a total number of solution evaluations over all processes.  The set of Markov chains on all the 

processes is referred to as a Cooling Step (CS).   
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3.4 

Where,  

  = the OF of the new solution 

  = the OF of the old solution (last accepted solution) 

 

 

At the end of each cooling step statistics about all the solutions evaluated on each process 

are gathered on the master process.  The gathered data is used to generate statistics that are 

printed to the screen to inform the user of the code’s progress and is also used to calculate the 

standard deviation of the OFs of the accepted solutions and the solution acceptance ratio.  This 

data is then used in the Lam adaptive cooling schedule (Equations 3.5 and 3.6) [27, 28], which is 

specified in the PSA by mixing of states algorithm, to update the algorithm’s temperature.  Two 

methods of adjusting the standard deviation were implemented to help the code deal with 

calculations that do not have enough solution evaluations per CS to consistently produce good 

statistics.  The first is limiting the fractional decrease allowed for each CS and the second is 

using a weighted moving average.   

 

 
 3.5 

   

 
 3.6 

Where,  

 

  = standard deviation of the accepted solutions for cooling step k 

  = acceptance ratio for cooling step k   

  = quality factor ( , smaller values  more thorough optimization)  
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3.1.9 Mixing of States 

A new cooling step is started by using the new temperature in the mixing of states 

calculation which determines which solutions will be used in the next cooling step.  There are 

four methods for determining the solutions to be sampled from.  The default is to sample from 

the current solution on each process.  The other methods are soft restarts because they select 

solutions from the archive of each process or the combined archive.  The most basic of these is to 

sample from the best solution on each process at user specified CS intervals.  The third method is 

to select all solutions from the combined archive with OF within a user specified percentage of 

the minimum OF solution (up to two times the number of Markov Chains).  The final method 

samples solutions from the best new fuel loadings in the combined archive.  In this method the 

best solution with each new fuel loading and a user specified number of randomly selected 

solutions are chosen for each new fuel loading (up to the number of Markov chains).  The last 

two selection methods can be set to always on, on after the acceptance ratio falls below a user 

defined threshold, or on after the OF increase ratio falls below a user defined threshold.   

The formula for the sampling probability of each solution is given in Equation 3.7.  This 

equation preferentially samples the best solutions but all solutions have nonzero sampling 

probabilities.  This leads to a more global search which results in more diverse and, on average, 

better near-optimum solutions.  Once the new solutions have been chosen they are sent to the 

selected processes and the next set of Markov chains is started.   
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 3.7 

 

Where,  

 = probability of sampling the solution on process s for the beginning of cooling step 

k 

 = objective function of the current solution on process s at the end of cooling step 

k-1 

 

 

3.1.10 Algorithm Convergence 

The five user specifiable convergence criteria in BWROPT are summarized in Table 3.3.  

The main convergence criterion is a user specified number of cooling steps completed with a 

solution acceptance ratio below a user-defined threshold.  Typically the acceptance ratio 

threshold is set to 0 so the algorithm converges when no solutions have been accepted for the 

desired number of cooling steps.  The second convergence criterion is a user defined number of 

cooling steps completed since the last decrease in the OF of the best solution.  This convergence 

criterion is helpful if the optimization space has very large flat areas, which can happen if all of 

the constraints can be met for many solutions with the same new fuel loading.  The third 

convergence criterion ends the calculation after a specified number of CSs in which only fuel 

shuffles (change types 1-3) are accepted.  This convergence criterion can be used if the user is 

only interested in the new fuel inventory and plans on performing his/her own LP optimization.  

There is also a variation of this convergence criterion for optimizations using variable sampling 

probabilities which terminates the calculation if all change types except shuffles have zero 

sampling probability.  The final convergence criterion is simply a user defined maximum number 

of CS, which is mostly useful for debugging but can also be used as an upper bound for 

calculation runtime.   
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Table 3.3 – Summary of convergence criteria in BWROPT 

Convergence 

Criterion 
Description 

1 Number of CS with acceptance ratio below threshold 

2 Number of CS without new best solution 

3a 
Number of CS without a non-shuffle change type  

(1, 2, or 3) acceptance 

3b 
Only shuffle change types being considered (variable 

sampling probability cases only) 

4 Maximum number of CS 

 

3.2 Depletion Methods and Control Rod Pattern Search 

There are three depletion methods available in BWROPT for evaluating LPs.  The first 

depletion method uses the depletion steps and CRP specified in the initial guess NESTLE input 

deck, the second method uses the Haling depletion [12] (described in detail in the next section), 

and the last method generates a customized long term CRP at user specified depletion intervals 

for each new LP.   A depletion method must be specified for each cycle being optimized.   

 

3.2.1 Haling Depletion 

A typical BWR depletion is divided into many depletion steps with each potentially 

having a different CRP, core power distribution, and/or flow.  The depletion begins by 

calculating the RPF at BOC and thereafter using Equation 3.8 to determine the RPF used for 

depletion.  The Haling depletion option relies on the Haling principle which, as stated 

previously, assumes that the minimum power peaking achievable for any given EOC state is 

attainable only by having a constant power profile throughout the cycle.  Thus, the Haling 

depletion option uses a single depletion step with a constant power profile (the Haling Power 
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Distribution (HPD)) to deplete the fuel for each cycle [12].  The Haling power distribution is 

calculated using Equation 3.9 with an initial guess of the previous depletion point RPF or the 

NESTLE default (for a single step calculation) [29].  The ability to perform a Haling depletion 

was added to NESTLE as part of this work.  The EOC state used for the Haling depletion in 

BWROPT is All Rods Out (ARO) because this produces the highest EOC reactivity and is 

generally the desired EOC state.   

 

 

 
 

3.8 

   

  3.9 

 

Where,  

  = weight used to optimize convergence (0.5 is used in BWROPT).   

 

The Haling depletion has many advantages which have led to its use in a number of fuel 

cycle optimization codes. [13, 30, 31]  The biggest advantage is that it is much faster than 

performing a standard depletion.  Another advantage is that the Haling depletion is CRP 

independent when the EOC condition is ARO.  CRP independence allows for LPs to be 

evaluated without using a fixed CRP, which is very restrictive, or having to generate customized 

CRPs for each LP which, as described in the next section, is very computationally intensive.  

There are also several drawbacks to using the Haling depletion.  The biggest drawback is that the 

constraint values calculated using the Haling depletion are not generally achievable with BWRs 

because of the limitation imposed by using the CRs to shape the core power distribution.  

Another drawback is that BWRs typically use the spectral shift operation strategy which is more 
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efficient than the Haling depletion (yields more power from the same LP) [11].  Spectral shift 

operation maintains a bottom skewed power profile relative to the HPD throughout most of the 

cycle, which increases the production of Pu-239 (from U-238) in the upper region of the core due 

to a harder neutron energy spectrum caused by the higher voiding in that region of a BWR, and 

at the end of the cycle the power distribution switches to being top skewed and takes advantage 

of the extra fissile plutonium created.  In BWROPT the Haling depletion is intended mainly for 

use testing the code’s functionality and features, and for analyzing cycles beyond the first for 

which an approximate solution can be acceptable since only the first cycle is actually used. 

 

3.2.2 Control Rod Pattern Search Algorithm 

Because of the coupled nature of the in-core fuel cycle parameters, the only way to truly 

optimize the LP (including the new fuel inventory) is to perform a CRP search for each LP.  The 

methodology used in BWROPT for CRP determination is similar to that used in FORMOSA-B.  

In both a long-term CRP is generated for the current solution at regular intervals but in 

FORMOSA-B the interval is user defined whereas in BWROPT a customized CRP is generated 

for every solution [6].  This is done because holding the CRP (or any other major parameter) 

constant even for a few iterations limits the variation in the LP which in turn limits the variation 

in the optimum CRP, effectively making the optimization less global.   

The major problem FORMOSA-B found with performing CRP updates frequently, which 

is also a problem in BWROPT, is that a CRP update takes much longer than simply running a 

cycle with a set CRP.  However, the better the initial guess the less time CRP optimization takes. 

[6]  Updating the CRP for every solution provides excellent initial guesses because the initial 

guess CRP (from the previous solution) was generated for an LP separated from the current LP 
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by only one LP change.  Since updating the CRP for every new LP provides the best initial guess 

it should result in the lowest per update runtime.   

There are two long-term CRP search algorithms in BWROPT both of which use the same 

ROI as FORMOSA-B.  The first algorithm is simple and relatively fast and, consequently, has 

minimal position refinement and conflict resolution.  The basic premise of this algorithm is to 

insert the CR with the largest weighted constraint violation if keff is greater than the upper limit 

or withdraw the CR with the largest weighted constraint margin if keff is less than the lower limit.  

The second CRP search algorithm is more thorough that the first method.  In this algorithm the 

sum of the distance weighted constraint violation/margin is used, instead of only using the 

largest violation/margin, to decide which CR to move.  Also, in the second method all moves are 

checked and refined to produce a more optimal CRP.  However, refining a CR position takes 

several iterations and was determined to be unfeasible for use in a full multi-cycle optimization; 

thus, the first method is currently used for CRP searches in BWROPT.  However, even using the 

simple CRP search the runtime for a single cycle is on average more than an order of magnitude 

greater than the runtime for the Haling depletion.  To try to minimize the effect of this increase 

in runtime two new features were added to BWROPT:  variable length Markov chains and the 

ability to restart calculations that fail due to cluster issues.  These features are described in the 

following subsections.   

 

3.2.4 PSA Restart  

Even though the computational resources available for this research are excellent and 

currently include a Beowulf cluster with up to 397 modern CPUs, the long runtime of the CRP 

search means that optimizations utilizing the CRP search can take weeks or months instead of 
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days for equivalent optimizations using the Haling depletion.  This poses problems on a cluster 

without backup power or which occasionally has software/hardware issues (this describes the 

University of Tennessee Knoxville Nuclear Engineering Department’s Beowulf Cluster which 

BWROPT was tested on).  Both the likelihood of a calculation being affected by these problems 

and the amount of computational effort lost if the calculation fails increase with the duration of 

the calculation.  To limit the loss if a calculation fails an option was added to write restart files at 

the end of CSs at user specified intervals.  Along with the restart file a new BWROPT input file 

is written which is the same as the original input file but has a line added to specify it is a restart 

case and give the location of the restart file.  This input file can be used to restart the calculation 

from the last completed CS.  In a restart run the BWROPT and NESTLE input files are parsed 

just like a standard case, but instead of running the PSA initialization the restart file is read to 

determine the state of the PSA calculation.  The calculation then proceeds as normal and the 

archive will be identical to what it would have been without a restart.   

 

3.2.3 Variable Length Markov Chains 

The long runtime of the CRP search led to the decision to use it only for the first cycle 

being optimized and to use Haling depletions for the remaining cycles.  For a three cycle 

optimization this reduces the average runtime of evaluating a solution by about 66%, but it also 

introduces a large amount of variability in the runtime of each Markov chain, because the cycle 

changed is randomly selected and the runtime is almost exclusively controlled by the number of 

times the first cycle (CRP search) is selected.  This variation in runtime causes much of the 

processing power allocated to the run to be wasted waiting on the longest Markov chain to 

complete.  To limit the variability in the runtime of the Markov chains it was decided to allow 
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the number of solutions evaluated in each Markov chain to vary within user specified limits.  

This idea had been previously suggested by Kropaczek [32] as an improvement in the PSA 

algorithm but was not used because the results of a variable length Markov chain calculation are 

not repeatable, which adds additional uncertainty when comparing calculation options/methods.  

Also, there is very little benefit if the variability in the runtime of the Markov chains is small.  

One exception to this would be running a PSA calculation that normally has small runtime 

variation Markov chains on a nonhomogeneous cluster.  The variable length Markov chain 

implementation required effectively removing one process from the calculation (one solution is 

evaluated on it each CS) to be used as very low latency data storage.  

 

3.2.5 Output Plotting 

The automatic generation of several plot types using gnuplot [33] has been programed 

into the code to allow the user to visualize important distributions and aid further development.  

These include the LP operator plot shown above as well as 2D plots of the following:  RPF, kinf, 

assembly exposure, CRP, and any other general distributions available in the code.  Sample plots 

of all of these distributions are included below in Figure 3.10- Figure 3.13. Also, multiplots, 

pictures with more than one plot in them, can be generated with 2 to 6 plots.  A sample multiplot 

used to aid the development of the CRP development is included in Figure 3.14.   
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Figure 3.10 – BOC assembly RPF distribution.    

 

 

 

 

 
Figure 3.11 – BOC assembly kinf distribution.   
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Figure 3.12 – BOC assembly exposure distribution (in GWD/MTHM).   

 

 

 

 

 
Figure 3.13 – Plot of CR positions for a CVC CR group (one notch = 1 inch).   
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Figure 3.14 – Example multiplot used for developing the CRP determination algorithm.    
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Chapter 4 NESTLE 

As stated previously the NESTLE core simulator [25] , which was originally developed at 

NCSU, is used for analyzing solutions generated by BWROPT.  As far as BWROPT is 

concerned NESTLE is a black box that evaluates the constraints in the OF so only a brief 

description of the code will be given.  Nuclear reactor core simulators, including NESTLE, solve 

the coupled neutronic and thermal hydraulic problems to determine the steady state conditions in 

the reactor core.  The version of NESTLE used with BWROPT has undergone significant 

modifications from version 5.2.1 [34] which is available from RSICC.  The modifications to 

create the new version of NESTLE have been performed in collaboration between ORNL and 

several students from UTK.  The major improvements during this collaboration were:  the 

conversion of the input from a fixed format style to a keyword style input using the SCALE 

input processing routines, adding a two-phase thermal hydraulics solver so BWRs can be 

accurately modeled, and implementing generalized isotope tracking/depletion. [35, 36, 37]  

Improvements to NESTLE are ongoing at UTK and several of the improvements implemented in 

conjunction with this work are described later in this chapter.  In the next section a description of 

the basic equations NESTLE solves and the methods used to solve them is given.   

 

4.1 NESTLE Algorithm 

4.1.1 Neutronics 

NESTLE, like most nuclear reactor core simulators, solves the multi-group neutron 

diffusion equation, which models the production, loss, and flow of neutrons.  The general form 

of this equation with the spatial dependence suppressed (all quantities are node dependent) is 
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given in Equation 4.1.  This equation is solved for each node and energy group in the reactor 

with the gradient/diffusion term modeling the flow between nodes.  The left hand side of the 

equation represents losses of neutrons (except for within group scattering) and the right hand side 

of the equation represents gains.  The simple matrix expression for used for solving the diffusion 

equation is given in Equation 4.2.  NESTLE uses the Nodal Expansion Method (NEM) to solve 

the diffusion equation. [34]  

  4.1 

  4.2 

Where,  

 

= diffusion coefficient of group g 

= neutron flux in group g 

= total macroscopic cross section 

= macroscopic scattering cross section from group g’ to g 

= fraction of fission neutrons with initial energy in group g 

= multiplication factor (eigenvalue) 

= average number of neutrons produced from a fission in group g 

= macroscopic fission cross section for group g 

 

A typical full core BWR calculation has ~20000 nodes including the reflector and 2 

energy groups are usually considered.  This results in a very large A matrix which is time 

consuming to invert and, consequently, NESTLE uses iterative methods to solve Equation 4.2.  

To further complicate the problem the cross sections and other parameters in Equation 4.1 

typically depend on the solution.  This creates a nonlinear feedback and actually requires multi-

level nested outer iterations around the solution to the matrix problem in which the parameters 

the cross sections depend on (node thermal hydraulics parameters and burnup), the cross sections 

themselves, the nodal expansion method coefficients, and k are updated.   
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To facilitate updating the cross sections for each set of conditions encountered in the 

NESTLE calculation the cross sections are precalculated by a lattice physics code for a number 

of values covering the expected range of each parameter.  Lattice physics codes model detailed 

assembly lattices, such as the BWR lattice shown in Figure 4.1, using transport theory.  The 

detailed nature of the transport solution and the necessity of evaluating many state points cause 

the runtime for a lattice evaluation to be much greater than the NESTLE calculation runtime, 

which is the primary reason for precalculating cross sections.  The detailed solution generated 

using transport theory is then used by the lattice physics code to generate homogenized cross 

sections representative of the lattice for use in diffusion theory calculations.  TRITON is 

typically used to calculate the lattice cross sections and a post processor T2N (TRITON to 

NESTLE) is used to convert the Triton output to a format useable by NESTLE [35, 38].  Typical 

cross section parameters for BWRs include:  burnup, control rod in/out, fuel temperature, and 

void fraction (moderator density). [34]    

 

 
Figure 4.1 – Example BWR lattice generated by TRITON.    
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4.1.2 Thermal Hydraulics 

The primary purpose of thermal hydraulic models in reactor core simulators for steady 

state calculations is to determine the fuel temperature and moderator density to update the cross 

sections.  There are three thermal hydraulic options in NESTLE:  no thermal feedback, the 

Homogeneous Equilibrium Mixture (HEM) Model, and the drift flux model.  The first option is 

not capable of modeling power reactors because it uses the same conditions everywhere.  The 

HEM model can model single phase flow well and works well for PWRs but is not capable of 

accurately modeling the two phase flow which occurs in BWRs.  This led to the recent addition 

of the drift flux model to NESTLE by Jack Galloway, a former student of the University of 

Tennessee, Knoxville.  Both the HEM and drift flux models solve the three conservation 

equations:  mass, momentum, and energy; but the HEM model assumes that the steam and water 

move at the same velocity and the drift flux model accounts for slip.  [34, 37] 

 

4.2 NESTLE Improvements 

Three major improvements were made to NESTLE as part of this work as well as 

numerous smaller improvements such as the Haling depletion option and several bug fixes.   

4.2.1 Assembly Input 

The first improvement was modifying the lattice input map read routine to handle 

assemblies (see example input below).  The original input required the user to specify a radial 

lattice map for each unique axial plane (17x17 matrix in the example).  For reactors that have a 

large number of unique lattice arrays this input was tedious to write and highly error prone.  For 

instance the test case used for this research has seven unique axial arrays, but with the assembly 
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input only a single array has to be specified along with the three assemblies and reflector and the 

code will expand the assemblies to create the lattice maps.    

 

assem_ara=0 fill  6  1  2  3  4  5  7 end fill 

assem=1     fill  1  1  1  1  1  1  1 end fill 

assem=2     fill  1  5  7  8  8  7  2 end fill 

assem=3     fill  1  4  4  4  4  4  2 end fill 

assem=4     fill  1  3  6  6  3  3  2 end fill 

 

ara=0 nux=17 nuy=17 fill 

  2 2 3 3 2 2 3 3 2 2 3 3 4 3 4 1 1 

  2 2 3 4 2 2 4 3 2 2 3 3 4 3 4 1 1 

  2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 1 1 

  2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 1 1 

  2 2 3 3 2 2 3 3 2 2 3 3 3 3 4 1 1 

  2 2 3 4 2 2 3 3 2 2 3 3 4 3 4 1 1 

  2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 1 1 

  2 2 2 2 2 2 2 2 2 2 4 4 4 4 1 1 0 

  2 2 3 3 2 2 3 3 2 4 3 3 4 1 1 0 0 

  2 2 3 3 2 2 3 3 4 3 3 4 4 1 1 0 0 

  2 2 2 2 2 2 2 4 4 4 4 1 1 1 0 0 0 

  4 2 2 2 4 2 4 3 4 4 1 1 0 0 0 0 0 

  4 4 3 3 4 4 3 3 4 4 1 1 0 0 0 0 0 

  4 4 4 4 4 4 4 4 1 1 1 0 0 0 0 0 0 

  4 4 4 4 4 4 4 1 1 0 0 0 0 0 0 0 0 

  1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 end fill 

 

 

4.2.2 New Output Format and Summary Distributions 

The second major improvement was updating the output format used for writing 

distributions to the output file and adding the ability to specify summary distributions to output.  

NESTLE allows the user to select from a number of distributions to be written to an output file 

for each depletion step.  The old style NESTLE output only allowed full 3D distributions and 

wrote the distributions six columns of data at a time in order to keep the output file less than 80 

characters wide. Appendix A illustrates a comparison between the old and new output styles, 
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where it is noted that the old approach allowed the output to fit on a single page without being 

wrapped, but it also made the distributions take up 2-5 times as many lines, which makes it 

harder to visualize.  The new output prints these distributions a half-core at a time, which means 

for full-core geometry the distributions are split in two and for half-core and quarter-core they 

are not split at all.  In addition to this change, the ability to request 2D, 1D, and 0D summary 

distributions of the min, max, and average of the 3D distributions was also added.  Often times 

these distributions contain the information desired by user in a much more condensed format 

which is helpful when viewing the output directly because the full 3D distributions typically 

contain thousands of values.   

 

4.2.3 Distribution Plotting 

The ability to generate 2D plots of the axial planes of a 3D distribution or of one of the 

2D summary distributions was also added to NESTLE.  Constraint violation plots can also 

generated by specifying a target value selecting one of four difference operators:  positive 

difference (dist - target), negative difference (target - dist), positive relative difference (dist - 

target) / target, or negative relative difference (target - dist) / target.  The plotting routine is based 

on the plotting routine developed for BWROPT but without multiplot capability.  As in 

BWROPT the code writes and executes gnuplot scripts to generate the plots.   The plots can be 

customized in a number of ways including specification of the color scheme and whether or not 

numbers are printed for each node.  Two sample plots are included of the assembly maximum 

PREL (3D RPF).  The first (Figure 4.2) is at BOC and shows the actual distribution.  The second 

(Figure 4.3) is early in the cycle and shows a constraint violation plot with a target value of 1.6.   
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Another feature that was added is the ability to write an input file for 3D visualization 

software such as VISIT.  The files are written in vtu format which is an XML version of the 

VTK format for use with unstructured grids.  These files can also be opened with other 3D 

visualization software such as Paraview.  The grid can be specified as having no gaps between 

the nodes or gaps can be specified for any of the x, y, and, z directions.  Three sample plots of 

the 3D RPF of a BWR are included below to demonstrate the different plots that can be 

generated.  The first plot (Figure 4.2) shows a visualization with no gaps, which is not 

particularly insightful though operations can be performed on this within the visualization 

software to extract more information.  Figure 4.5 shows a visualization with gaps in the x and y 

directions which simulates assemblies and by rotating this plot the RPF distribution along the xz 

and yz planes can be seen.  In Figure 4.6 a visualization of a different reactor model with gaps in 

z direction almost the full width of the node shows the distribution along the xy plane for several 

z values at once.   
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Figure 4.2 – Sample Plot of Maximum 3D RPF Generated by NESTLE.   



43 

 

 
Figure 4.3 - Sample Plot of Maximum 3D RPF Constraint Violation Generated by NESTLE.   
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Figure 4.4 – Sample VISIT visualization of 3D RPF with no gaps.    
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Figure 4.5 – Sample VISIT visualization of 3D RPF with gaps in the x and y directions to simulate assemblies.    
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Figure 4.6 – Sample VISIT visualization of 3D RPF with gaps in the z direction so the radial power profile can be seen.   
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Chapter 5 Application of the Optimization Algorithm to 

Several Test Cases 
 

 

The functionality and effectiveness of BWROPT were evaluated using several test cases.  

These test cases were based on the initial cycle of the Peach Bottom 2 (PB2) BWR.  The PB2 

reactor and the modifications made to the original cycle for the test cases are described in the 

next section.  The first test was to ensure the code is capable of minimizing the OF, all of the 

sampling types work, and to determine appropriate values for the constraint weights.  Once the 

basic function of the code was verified several additional test cases were ran with the same 

parameters.  Three sets of test cases were evaluated to test the effectiveness of using variable 

sampling probabilities and the new fuel type array.  Finally, the CRP search functionality was 

tested.  The cases used for these tests are described in detail after the description of the PB2 

reactor.   

 

5.1 Description of the Peach Bottom 2 BWR 

5.1.1 Original Cycle 1 

 The PB2 reactor is located in Southeast Pennsylvania and began operating in 1974.  The 

first two cycles of the reactor were thoroughly documented in an EPRI report [39] to provide 

data for benchmarking reactor analysis tools.  Jack Galloway used this data to benchmark the 

two-phase flow model he implemented in NESTLE [37].  His work, in particular the input file 

used for the benchmark, was used as the starting point for developing the test cases for testing 

BWROPT with a model of a real (though vintage) BWR.  Due to the highly competitive and 



48 

 

proprietary nature of nuclear reactor core and fuel assembly design, multiple attempts to obtain 

core design and operational data for a more modern or contemporary BWR unfortunately failed. 

 The original NESTLE BWR benchmark used a full core model of the PB2 reactor with 

the operating parameters specified in Table 5.1.  The LP for the original benchmark model is 

shown in Figure 5.1.  As can be seen from the figure three assembly types are used in the model 

and unlike modern LPs the LP used in this cycle is not symmetric.  Assembly type 1 has an 

average enrichment of 1.1% while assembly types 2 and 3 have an average enrichment of 2.5%.  

Also, assembly types 2 and 3 have Gd2O3, a Burnable Poison (BP), loaded into some of the fuel 

rods (4 for type 2 and 5 for type 3) [37].  These low enrichments are characteristic of initial 

cores, whereby the low reactivity fuel is used to mimic spent assemblies to help shape a flatter 

power distribution than otherwise.   

 

Table 5.1 – Peach Bottom 2 Cycle 1 Operating Parameters for the Original Full Core Model [39]. 

Parameter Value 

Thermal Power 3293 MW 

Core Flow 102.5 Mlbm/hr 

Energy 1772 GWD 

Burnup  11133 MWD/MTU 

Fuel Assemblies 764 

Control Rods 185 
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Figure 5.1 - Peach Bottom 2 Cycle 1 Loading Pattern for the Original Full Core Model [37].   

 
 

5.1.2 Modified Cycle 1 

Many changes were made to the benchmark case to fully test BWROPT and also to 

reduce the runtime of the NESTLE calculations.  The most significant change to the model was 

switching to a quarter core symmetric core.  This change significantly reduces the runtime of the 



50 

 

model but also requires changes to most of the model parameters.  The new model parameters, 

given in Table 5.2, as might be expected are generally about a quarter of the parameters for the 

full core model.  The burnup is listed as variable because it is calculated based on the mass of 

fuel in the core and the energy production requirement for each cycle.  The mass of fuel in the 

core is determined by summing the original (undepleted) fuel mass for each assembly and is 

usually expressed with unit of Metric Tons of Uranium (MTU) or Metric Tons of Heavy Metal 

(MTHM) if non-uranium isotopes are used as fuel.  The cycle energy requirement is a user input 

and for the test cases was 402.0 GWD (roughly one quarter of the original PB2 cycle 1).   

 

Table 5.2 – Peach Bottom 2 Operating Parameters for the Quarter Core Model. 

Parameter Value 

Thermal Power 823.75 MW 

Core Flow 25.625 Mlbm/hr 

Burnup  variable 

Fuel Assemblies 191 

Control Rods 54 

 

 

 The fuel assemblies used in the new model were created by linearly modifying the pin 

enrichments in assembly types 1 and 2 from the original PB2 cycle 1 core.  Nine new assemblies 

were generated with enrichments ranging from 1.1 to 5 percent and 0 or 4 BP rods.  Table 5.3 

shows these assemblies sorted into the 2D new fuel type array used in the BWROPT test cases.  

The 2 dimensions are average enrichment which has 5 roughly evenly spaced values and number 

of BP containing fuel rods (really whether or not there are fuel rods that contain BPs since there 

are only 2 values).    The new NESTLE input file used for the base case in all of the optimization 

runs is included in Appendix A.   
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Table 5.3 – New fuel assemblies used for test cases sorted into a new fuel type array.    

Number of Burnable 

Poison Containing Rods 

Average Enrichment 

1.1 2.0 3.0 4.0 5.0 

0 1 2 4 6 8 

4 - 3 5 7 9 

 

 

5.2 Algorithm Evaluations 

5.2.1 Parallel Simulated Annealing Algorithm Evaluation 

 To evaluate the PSA implementation and functionality of the code three cycles (2-4) of 

the PB2 reactor were optimized using the Haling depletion option.  All 10 sampling types were 

used to generate optimal LPs.  The input file for this case, which includes a description of all of 

the inputs, is given in Appendix B.  Many iterations of this input file were tested to determine 

FCC and constraint limits/weights that ensure all components of the OF impact the optimization 

as much as possible while also trying to maintain realistic constraint values.  The constraint 

limits and weights selected for use in the test cases are given in Table 5.4 (the same values were 

used for all 3 cycles).   

 

Table 5.4 – Constraint limits and weights used for test cases.   

Constraint Units Limit Weight 

FCC ($/kwh) - 10. 

Min keff - 1.000 100. 

Max keff - 1.005 100. 

Max Assembly RPF - 1.5 1. 

Max Node RPF - 2.0 1. 

Max Assembly EXP  (GWD/MTHM) 35.0 10. 

Max Node EXP  (GWD/MTHM) 45.0 10. 
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In addition to the selection of the constraint limits and weights the initial test case was 

used to determine appropriate values for the PSA parameters.  It was decided to run the 

calculations with 40 Markov chains, because the most common node type on the Beowulf cluster 

can run 8 processes per node and the queue time for a 40 process calculation is generally short.  

Chu et al. found the optimum number of solutions evaluations per Markov chain to be 50% to 

60% of the number of processes [3].  Thus, a value of 20 was selected for the Markov chain 

length.  The temperature initialization parameter, , was set to 2.0 which is the largest typical 

value according to Kropaczek [2].  The quality factor, , was set to .25 to produce a reasonably 

thorough optimization.  The convergence criteria used for this calculation are given in Table 5.5.   

 

Table 5.5 – Convergence criteria used for test cases. 

Convergence 

Criterion 

Value 

1 2 CSs without any solution acceptances 

2 200 CSs without a best solution change 

3a 
10 CS without a change type other than a shuffle (1-3) 

being accepted 

3b Not used 

4 Not used 

 

 

 

Once the function of the PSA algorithm was verified three additional test cases were run 

with different random numbers used for sampling and a different initial guess.  The initial guess 

for the additional cases was generated by modifying the previous cases initial guess by adding 

additional new fuel assemblies and randomly changing the LP using sampling types 1-3.  The 

2
nd

, 3
rd

 and 4
th

 initial solutions had 5, 10, and 15 additional new fuel assemblies, respectively; 

and after the new fuel assemblies were added they were shuffled 10000, 20000, and 30000 times, 

respectively.    
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5.2.2 New Fuel Type Array and Variable Sampling Probability Evaluations 

 After the functionality of BWROPT was verified and the PSA and SA comparison was 

complete the new fuel type array and variable sampling probabilities were evaluated.  The same 

PSA parameters and constraint limits/weights that were used in the PSA evaluation were used for 

these tests.  The same three cycles (2-4) were optimized and the Haling depletion was also used 

for these cases.  To evaluate the new fuel type array three different sampling type sets were used 

in optimizations with four different starting solutions and random number vectors (the same two 

used in the PSA/SA comparison).  The three sampling type sets were:  random new fuel 

sampling (all sampling types except 7 and 9), ordered new fuel sampling (all sampling types 

except 6 and 8), and all sampling types.  The cases using all sampling types were the same as the 

four cases used to evaluate the PSA implementation.  All of the cases for the new fuel type array 

evaluation were evaluated using equal and constant sampling probabilities.  To evaluate the 

variable sampling probability function a second set of the all sampling type cases was run using 

individual change type convergence with 5 CSs required for convergence and a phase out period 

of 5 CSs.  Convergence criteria 3b was enabled for the variable sampling probability test cases.   

 

5.2.3 Control Rod Pattern Search Evaluation 

Several additional test cases were run using the CRP search for depletion to test both the 

function of the CRP search and the optimization capability of the code when using the CRP 

search.  The main focus of these tests was to analyze the ability of the CRP search algorithm to 

eliminate constraint violations and also a comparison of the CRP search case results with the 

Haling depletion case results.  It was also desired to know the benefit of using the CRP found for 

the previous solution as the initial guess in the CRP search.  To test this two cases were run with 
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the same parameters except one used ARO as the initial guess and the other used the CRP from 

the previous solution as the initial guess.  Both of these test cases used a constant Markov chain 

length of 10.  Two test cases using the variable Markov chain length option with average values 

of 10 and 20 iterations per Markov chain were run to evaluate the effectiveness of the variable 

Markov chain option.  Because of the long runtime of the CRP search compared to the Haling 

depletion it was decide to run all of the CRP search test cases with a temperature initialization 

parameter, , of 1.0.  The quality factor, , was set to .1 for the constant calculations with a 

Markov chain length of 10 and .5 for the calculation with an average Markov chain length of 20.  

The depletion step size (CRP evaluation interval) was set to 2000 MWD/MTU for all of these 

cases.  The CRP test cases were run with all of the sampling types enabled and all of the other 

calculation parameters were the same as for the other test cases.  Individual change type 

convergence was used for the case with an average Markov chain length of 20 with 5 CS to 

converge and 5 CS phase out.  Also because of the long runtime of these cases the calculation 

restart option was enabled and used as necessary.   

 

5.2.4 Fuel Cost Data Used for Test Cases 

For the test cases the actual cost of the fuel is not very important.  However, it is 

important that the relative assembly costs be reasonable so the code can differentiate between the 

assemblies. The data used to calculate the cost of the assemblies used in the test cases is included 

in Table 5.6.  The uranium ore and conversion prices were obtained from the Ux Consulting 

Company website [40].  This website also has SWU cost but the SWU cost used is believed to be 

the result of a typographical error based on the data from the website because 10 $/SWU is much 

too low.  The assembly cost was set to an even 100000 $ per assembly and the burnable poison 
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cost was set to 10000 $ per kg to make the assemblies with burnable poisons somewhat more 

expensive than those without burnable poisons.  Losses during the fabrication and conversion 

steps were set to half a percent each and an interest rate of 15 % was used.   

 

 

Table 5.6 – Fuel cost parameters used for test cases.   

Component Time (months) Cost 

Uranium Ore 15 42.25 $/lb U3O8 [40] 

Ore Conversion 12 10.5 $/kg UF6 [40] 

Enrichment 9 10.0 $/SWU 

Fabrication 3 100000 $/assembly 

Burnable Poison 3 10000 $/kg 
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Chapter 6 Results and Discussion 

6.1 Starting Solutions for Test Cases 

The OFs for each of the starting solutions used in the test cases are given in Table 6.1.  

The constraint values and FCC for the first cycle as well as the new fuel inventory for all cycles 

are also included.  From the table it can be seen that the OF for initial solution 1 is about 7 while 

the OFs for initial solutions 2-4 are all approximately 2.5 (roughly one third).  This is due to the 

LP operator used in initial solution 1 which can be seen in Figure 6.1.  This LP is used in all of 

the cycles and as can be seen the new fuel is much too clumped together for a practical 

implementation.  Oddly enough, this does not impact the first cycle much due to the reactivity 

distribution of the old fuel but causes high power peaking in the latter cycles being considered.  

Loading pattern operator plots for initial solutions 2-4 are also included in Figure 6.2 through 

Figure 6.4, respectively.  From the plots it can be seen that the new fuel is distributed much more 

evenly in these solutions, which is due to the large number of random changes (10k, 20k, and 

30k, respectively) used to create them.   

 

Table 6.1 – Starting parameters for each test case.   
Constraint Limit Initial 1 Initial 2 Initial 3 Initial 4 Average 

New Fuel 

Inventory 
 

4 – Type 1 

20 – Type 2 

40 – Type 6 

Total = 64 

9 – Type 1 

20 – Type 2 

40 – Type 6 

Total = 69 

14 – Type 1 

20 – Type 2 

40 – Type 6 

Total = 74 

19 – Type 1 

20 – Type 2 

40 – Type 6 

Total = 79 

 

OF - 6.96 2.66 2.35 2.70 3.67 

Fuel Cost 

($/kWh) 
- 4.23*10

-3 
4.47*10

-3
 4.71*10

-3
 4.96*10

-3
 4.59*10

-3
 

EOC keff 1.0 .953 .957 .953 .954 .954 

Max 2D RPF 1.5 1.55 1.56 1.42 1.44 1.49 

Max 3D RPF 2.0 1.92 1.91 1.75 1.76 1.84 

Max 2D EXP 

(GWD/MTU) 
35.0 26.8 25.5 25.7 25.1 25.8 

Max 3D EXP 

(GWD/MTU) 
45.0 32.7 31.2 31.4 30.6 31.5 
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Figure 6.1 – Initial loading pattern for test case 1.   

 

 

 

 
Figure 6.2 – Initial loading pattern for test case 2.   
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Figure 6.3 – Initial loading pattern for test case 3.   

 

 

 

 
Figure 6.4 – Initial loading pattern for test case 4.   
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6.2 PSA Implementation Evaluation Results 

 The results of the PSA implementation evaluation are presented in Table 6.2, which 

includes:  the number of cooling steps, convergence criteria met, new fuel inventory for the first 

cycle of the best solution, OF of the best solution, and the constraint values for the first cycle of 

the best solution (data for all cycles is available in Appendix D).  The number of CSs is used as a 

substitute for runtime because of the heterogeneity of the Beowulf cluster. The Haling depletion 

optimizations generally took between 2 and 3 days to complete.  Calling the solutions presented 

the best is a bit of a misnomer because there were often multiple solutions with the minimum OF 

and the same new fuel inventory in the first cycle.  If there were multiple solutions with the 

minimum OF the first solution in the archive is presented as the best.  Comparing the OF values 

for the test cases given in this table to the initial values given in Table 6.1 shows a substantial 

improvement in the OF for all of the test cases with a reduction of approximately 98 percent for 

the first test case and 94 percent for test cases 2, 3, and 4.  The constraint values shown in the 

table show the optimization was also able to remove all of the constraint violations for these test 

cases.   

The new fuel inventory for the first cycle of the best solution is very different for all of 

the test cases.  The total number of new assemblies varies from 79 for test case 1 to 93 for test 

case 2 with test cases 3 and 4 having 82 and 90 new assemblies, respectively.  The variation in 

the number of new fuel assemblies is somewhat offset by the average enrichment of the new fuel 

assemblies being lower for the cases with more new fuel but the FCC still increases with the 

number of new fuel assemblies.  All of the new fuel types except 4, 5, and 9 were used in the 

solutions.  Fuel type 7 which has an enrichment of 3% and contains burnable poison rods makes 

up a large portion of the new fuel in every test case.  The remainder of the new fuel is mostly 
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types 6 and 2 (2% enrichment with and without burnable poisons, respectively) with a moderate 

number of type 1 in test case 1.   

 

Table 6.2 - Summary of results for the all sampling type test cases (All Values except Cooling 

Steps and OF are for the First Cycle).    
Constraint Limit All 1 All 2 All 3 All 4 Average 

Cooling Steps - 275 274 231 246 256.5 

Convergence 

Criteria Met 
- 3a 3a 3a 3a  

New Fuel 

Inventory 
- 

10 – Type 1 

1 – Type 2 

2 – Type 3 

1 – Type 6 

64 – Type 7 

1 – Type 8 

Total = 79 

4 – Type 2 

2 – Type 3 

44 – Type 6 

42 – Type 7 

1 – Type 8 

Total = 93 

23 – Type 2 

3 – Type 3 

56 – Type 7 

Total = 82 

43 – Type 2  

2 – Type3 

2 – Type 6 

43 – Type7 

Total = 90 

86 

OF - .1461 .1547 .1493 .1587 .1522 

Fuel Cost 

($/kWh) 
- 6.48*10

-3
 7.16*10

-3
 6.69*10

-3
 6.95*10

-3
 6.82*10

-3
 

EOC keff 1.0 1.001 1.001 1.004 1.005 1.003 

Max 2D RPF 1.5 1.48 1.50 1.50 1.50 1.50 

Max 3D RPF 2.0 1.87 1.89 1.88 1.88 1.88 

Max 2D EXP 

(GWD/MTU) 
35.0 24.8 23.5 24.4 24.0 24.2 

Max 3D EXP 

(GWD/MTU) 
45.0 30.6 29.2 30.1 29.8 29.9 

 

 

Plots of the LP for the first cycle of the best solution found in test cases 1 through 4 using 

all of the sampling types are included in Figure 6.5 through Figure 6.8, respectively (LP plots for 

cycles 2 and 3 are included in Appendix E).  The new fuel in these plots is somewhat more 

grouped than would be expected especially for test cases 2 and 4.  Test case 2 looks much more 

grouped that test case 4 because the new fuel in test case 2 is mostly types 6 and 7 (dark blue) 

whereas there is a large fraction of type 2 (light blue) in test case 4.  The increased fuel grouping 

is mostly the result of the large number of new fuel assemblies used in these LPs (roughly half 

new fuel for test case 2 and 4).  Generally, around a third of the core is replaced with new fuel 

during reloading for equilibrium cycles, which for the test cases would be 64 assemblies.  
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However, this is only the second cycle of operation for the reactor modeled in the test cases so 

the fuel cycle has not reached equilibrium.  The number of new fuel assemblies decreases for all 

of the test cases in the following two cycles.   

Having the new fuel as grouped as it is in these LPs would generally cause the power to 

be highly peaked especially at BOC, which would violate the constraints.  The LPs determined 

by the optimization are only possible because a significant portion of the new fuel used contains 

burnable poisons which significantly reduce the reactivity of the assemblies at low burnup.  Also, 

as mentioned previously the peaking calculated with the Haling depletion is supposed to be best 

case and is not necessarily achievable.   

 
 

 

 
 

 
Figure 6.5 – Initial cycle LP for the best solution for test case 1 using all sampling types.   
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Figure 6.6 – Initial cycle LP for the best solution for test case 2 using all sampling types.   

 

 

 

 
Figure 6.7 - Initial cycle LP for the best solution for test case 3 using all sampling types.   
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Figure 6.8 – Initial cycle LP for the best solution for test case 4 using all sampling types.   

 

 

The convergence behavior of test case 1 using all sampling types is shown in Figure 6.9 

and Figure 6.10.  Figure 6.9 shows the general trend of the OF throughout the optimization is a 

negative exponential but there are several bumps were the OF increases somewhat potentially 

avoiding a local minima.  In Figure 6.10 the acceptance ratio of each change type at each CS is 

shown.  This plot shows that the larger change types 6, 8 (single assembly and batch random new 

fuel type sampling, respectively), and 10 (batch split and combine) generally have the lowest 

acceptance ratio early in the optimization.  Latter in the optimization change types 8 and 10 are 

still among the lowest acceptance ratio change type 6 has a relatively high acceptance ratio and 

types 4 and 5 (random and ordered number of new fuel assemblies, respectively) have low 

acceptance ratios.  Change type 9 (ordered batch type change) also drops below change type 6 at 

the end of the optimization.   Change types 6 and 7 (ordered assembly type change) are the last to 
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be regularly accepted except for change types 1-3 which shuffle the fuel in the LP. Of the shuffle 

change types 1 (exchanging 2 old assemblies) is the most likely to be accepted with types 2 

(exchanging an old and new assembly) and 3 (exchanging 2 new assemblies) tied.  This 

convergence order mirrors the magnitude of the changes and was the inspiration for 

implementing variable sampling probabilities.   

 

 

 

 
Figure 6.9 – Average OF vs. cooling step for test case 1 using all sampling types.  
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Figure 6.10 – Change type acceptance ratio versus cooling step for test case 1 using all sampling types.
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 When selecting the constraint values and weights the fraction of the OF made up by each 

component of the OF was used to find appropriate values.  To illustrate this, the average fraction 

of the OF made up by each component for the solutions in each CS is plotted in Figure 6.11.  The 

plot shows that all of the constraints except for the assembly and node exposure contribute 

significantly to the OF.  The burnup limits were set to mimic real world reactor operations where 

fuel assemblies can typically stay in the core for 3 cycles without violating the burnup limits.   

Coupled with the decision to use cycles 2 through 4 for the test cases this made the impact of the 

burnup limits minimal.  In Figure 6.12 the same fractional OF data is plotted for accepted 

solutions only.  This plot show that at the end of the optimization all accepted solutions have no 

constraint violations and, consequently, their OF is entirely dependent on their FCC.  In Figure 

6.14 the fractional OF data for accepted solutions is converted to OF data to show that the FCC 

is fairly constant throughout the optimization but the constraints start large and then decrease.   

 

 

 
Figure 6.11 – Average fraction of the OF contributed by each component for all solutions as a 

function of the cooling step.  
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Figure 6.12 – Average fraction of the OF contributed by each component for accepted solutions 

as a function of the cooling step.  
 

 

 
Figure 6.13 – Average OF of the individual OF components for accepted solutions as a function 

of the cooling step.  
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6.4 New Fuel Type Array Evaluation Results 
 

 The new fuel type array evaluation consists of comparing the results of the ordered only 

and random only new fuel type sampling test cases with each other and the all sampling type 

cases used to test the PSA implementation.  The results of the ordered and random test cases are 

presented in Table 6.3 and Table 6.4, respectively, with more data and LP plots included in 

Appendices D and E, respectively.  Random sampling produced lower OF solutions than ordered 

sampling in every test case except the 3
rd 

and required more CSs to converge for all of the test 

cases.  This is the result of ordered sampling only being able to change the fuel types 

incrementally, which makes significant change slower and causes the optimization to be more 

likely to get stuck in a local minimum.  This limitation is evidenced by the ordered cases best 

new fuel inventory being much closer to the initial new fuel inventory of the test cases (large 

number of type 2 assemblies) than the best new fuel inventory in the random cases.  Because of 

this limitation random only sampling will generally produce better results than ordered only, 

with the possible exception of using the code to try to improve on a very good initial guess.   

Comparing the cases that used both random and ordered sampling (all sampling types) to 

the random sampling only cases is a little less clear cut.  The OF found using all sampling types 

was better for 3 of the test cases, but the number of CSs required for convergence was also 

higher using all of the sampling types for 3 test cases.  On average the optimizations using all 

sampling types produced slightly better results but required 5.6 % more cooling steps.  Since the 

calculations only took a few days to complete and nuclear reactors are only refueled every 1-2 

years the runtime increase is not very significant.  Therefore, the lower average OF obtained 

using all sampling types makes this the better option.   
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Table 6.3 - Summary of results for the ordered sampling test cases (All Values except Cooling 

Steps and OF are for the First Cycle).    
Constraint Limit Ordered 1 Ordered 2 Ordered 3 Ordered 4 Average 

Cooling Steps - 279 308 240 259 272 

Convergence 

Criteria Met 
- 3a 3a 3a 3a  

New Fuel 

Inventory 
- 

32 – Type 2 

1 – Type 3 

1 – Type 6 

48 – Type 7 

Total = 82 

38 – Type 2 

6 – Type 3 

3 – Types 6 

38 – Type 7 

Total = 85 

18 – Type 2 

1 – Type 6 

60 – Type 7 

1 – Type 8 

Total = 80 

1 – Type 1 

81 – Type 2 

16 – Type 3 

4 – Type 6 

Total = 102 

87 

OF - .1520 .1524 .1538 .1650 .1558 

Fuel Cost 

($/kWh) 
- 6.49*10

-3
 6.60*10

-3
 6.61*10

-3
 7.18*10

-3
 6.72*10

-3
 

EOC keff 1.0 1.000 1.000 1.003 1.001 1.001 

Max 2D RPF 1.5 1.50 1.49 1.48 1.49 1.49 

Max 3D RPF 2.0 1.87 1.87 1.86 1.85 1.86 

Max 2D EXP 

(GWD/MTU) 
35.0 24.6 24.2 24.0 23.2 24.0 

Max 3D EXP 

(GWD/MTU) 
45.0 30.4 30.1 30.0 28.8 29.8 

 

 

 

 

Table 6.4 - Summary of results for the random sampling test cases (All Values except Cooling 

Steps and OF are for the First Cycle).    
Constraint Limit Random 1 Random 2 Random 3 Random 4 Average 

Cooling Steps - 266 235 239 232 243 

Convergence 

Criteria Met 
- 3a 3a 3a 3a  

New Fuel 

Inventory 
 

6 – Type 2 

16 – Type 6 

59 – Type 7 

Total = 81 

4 – Type 1 

2 – Type 2 

1 – Type 6 

69 – Type 7 

Total = 76 

1 – Type 1 

16 – Type 2 

5 – Type3 

2 – Type 6 

54 – Type 7 

 Total = 78 

1 – Type 1 

34 – Type 2 

1 – Type 3 

1 – Type 6 

46 – Type 7 

Total = 83 

80 

OF - .1494 .1472 .1554 .1594 .1529 

Fuel Cost 

($/kWh) 
- 6.61*10

-3
 6.40*10

-3
 6.40*10

-3
 6.50*10

-3
 6.48*10

-3
 

EOC keff 1.0 1.000 1.002 1.002 1.000 1.001 

Max 2D RPF 1.5 1.49 1.49 1.49 1.49 1.49 

Max 3D RPF 2.0 1.93 1.90 1.87 1.88 1.90 

Max 2D EXP 

(GWD/MTU) 
35.0 24.9 24.7 24.2 24.4 24.6 

Max 3D EXP 

(GWD/MTU) 
45.0 31.0 30.5 30.3 30.3 30.5 
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6.5 Variable Sampling Probability Evaluation Results 

The results of the variable sampling probability test cases are presented in Table 6.5 

while constraint values for additional cycles and LP plots are included in Appendices D and E, 

respectively.  The new fuel inventory in the first cycle is the same as the non-variable sampling 

probability calculations for test cases 1 and 2 with only slightly different LPs.  The new fuel 

inventory for the variable and non-variable cases in the 2
nd

 and 3
rd

 cycles optimized is slightly 

different, but overall the results are very similar.  The major difference in the variable and non-

variable sampling probability optimizations is the run time; the variable cases took ~8 % fewer 

CSs to converge.  The OF of the best solution found for each of the test cases was also 

marginally better for the variable sampling probability optimizations than the non-variable 

optimizations.  This shows that using variable sampling probabilities is clearly better than using 

constant sampling probabilities.   

 

Table 6.5 - Summary of results for the random and ordered sampling with variable sampling 

probability test cases (All Values except Cooling Steps and OF are for the First Cycle).    
Constraint Limit Variable 1 Variable 2 Variable 3 Variable 4 Average 

Cooling Steps - 253 249 240 222 241 

Convergence 

Criteria Met 
- 3b 3b 3b 3b  

New Fuel 

Inventory 
 

10 – Type 1 

1 – Type 2 

2 – Type 3 

1 – Type 6 

64 – Type 7 

1 – Type 8 

Total = 79 

4 – Type 2 

2 – Type 3 

44 – Type 6 

42 – Type 7 

1 – Type 8 

Total = 93 

23 – Type 2 

3 – Type 3 

56 – Type 7 

Total = 82 

43 – Type 2 

2 – Type 3 

2 – Type 6 

43 – Type 7 

Total = 90 

86 

OF - .1456 .1539 .1494 .1586 .1519 

Fuel Cost 

($/kWh) 
- 6.48*10

-3
 7.16*10

-3
 6.69*10

-3
 6.95*10

-3
 6.82*10

-3
 

EOC keff 1.0 1.001 1.001 1.004 1.005 1.003 

Max 2D RPF 1.5 1.48 1.50 1.50 1.50 1.50 

Max 3D RPF 2.0 1.87 1.90 1.88 1.88 1.88 

Max 2D EXP 

(GWD/MTU) 
35.0 24.8 23.5 24.4 24.0 24.2 

Max 3D EXP 

(GWD/MTU) 
45.0 30.6 29.2 30.1 29.9 30.0 
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6.6 Control Rod Pattern Search Evaluation Results 

There was an error in the depletion of the CRP test cases with a Markov chain length of 

10 (fixed and variable) so these calculations cannot be compared to the Haling depletion test 

cases.  However, these cases can be used to compare variable length Markov chains with fixed 

length Markov chains and using the previous solutions CRP as the initial guess with starting the 

CRP search at ARO.  The comparison with the Haling depletion optimizations was done using 

the variable length Markov chain case with an average length of 20.    

 

6.6.1 Variable Length Markov Chain Evaluation Results 

The node utilization for the fixed and variable length Markov chain calculations are 

shown in Ganglia plots in Figure 6.14 and Figure 6.15, respectively.  These plots both represent 

one day of calculations for nodes with similar specifications.  The red on these plots (denoted as 

system on the legend) represents a process being idle while waiting at a synchronization point 

and the user (blue) represents a process performing calculations.  From looking at the plots it is 

clear that the variable length Markov chain calculation has much higher process utilization.  The 

average user values given on the figures, 62.9% for fixed and 83.8% for variable, show that the 

variable length case had 33% higher utilization than the fixed length case.  This higher utilization 

allowed the variable length case to complete an additional CS (the end of a CS is denoted by the 

large inverted red peaks) over the course of the day even though there are slightly more solutions 

evaluated in each CS for the variable length case.   
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Figure 6.14 - Fixed length Markov chain node utilization produced by Ganglia.   

 

 

 

 

 
Figure 6.15 - Variable length markov chain node utilization plot produced by Ganglia.    
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6.6.2 Starting CRP ARO vs Previous Solution Evaluation Results 

The average number of iterations necessary for the CRP search at each depletion step for 

both of the test cases is shown in Figure 6.16.  Based on this figure starting the CRP search with 

the previous solution will on average require fewer iterations than starting ARO.  The constraint 

elimination ratio for both cases is shown in Figure 6.17, which also shows clear benefits for 

starting with the previous solution.   It should be noted that neither the ARO nor the previous 

solution CRP search optimizations converged so the data used for this comparison is cumulative 

up to CS 607 (the last CS both completed, ~97000 CRP searches).  This may not be the best way 

to compare the methods because the CRP search success rate should increase as the optimization 

nears convergence and the solution acceptance fraction for CS 607 was 13.3% for the previous 

solution case and 7.0% for the ARO case.  However, since this favors starting the CRP search 

with the previous solution and the data presented in Figure 6.16 and Figure 6.17 also favors 

starting the CRP search with the previous solution the comparison should be accurate.   

 

 
Figure 6.16 – Average number of iterations used to find CRP for ARO and previous start.   
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Figure 6.17 – CRP search success ratio for the ARO and previous start cases.   

 

 

 

6.6.3 CRP Search Comparison with Haling Depletion 

The CRP search test case intended to be compared to the Haling depletion test case 1 

using all sampling types and variable sampling probabilities did not complete.  The current best 

solution from the calculation after 30 days of running is presented in Table 6.6 with data for 

additional cycles available in Appendix D and LP operator plots in Appendix E.  The OF for this 

case is much higher than the minimum OF found in the Haling depletion test case.  There are 
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Table 6.6 - Summary of results for the CRP search test case (All Values except Cooling Steps 

and OF are for the First Cycle).    
Constraint Limit Case 1 

Cooling Steps - 212 

Convergence 

Criteria Met 
- none 

New Fuel 

Inventory 
 

1 – Type 6 

83 – Type 7 

Total = 84 

OF - 4.460 

Fuel Cost 

($/kWh) 
- 7.29*10

-3
 

EOC keff 1.0 1.001 

Max 2D RPF 1.5 1.57 

Max 3D RPF 2.0 2.06 

Max 2D EXP 

(GWD/MTU) 
35.0 24.5 

Max 3D EXP 

(GWD/MTU) 
45.0 29.4 
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Chapter 7 Conclusions and Future Work 

BWROPT a BWR fuel cycle optimization code using the PSA algorithm was developed 

and shown to be capable of performing multi-cycle BWR fuel cycle optimization.  The code 

eliminated all of the constraints and significantly reduced the OF in 16 test cases that used the 

Haling depletion option.  Several of the improvements on past work in BWR fuel cycle 

optimization that were developed and implemented in BWROPT were successful.  The use of 

variable sampling probabilities decreased the runtime and improved average solution quality 

compared to the standard approach of using constant sampling probabilities.  Using random and 

ordered new fuel sampling improved the average solution quality but also increased the average 

runtime compared to using random sampling only.  This presents a bit of a tradeoff but since fuel 

cycle optimization only has to be done every 18-24 months and the runtime increase was only a 

few hours using random and ordered sampling is probably the better option.  Variable length 

Markov chains were shown to improve process utilization and reduce CS runtime for cases using 

the CRP search for only the first cycle.  This result should be applicable to other cases which 

have a large variation in runtime for solution evaluations or cases with consistent runtimes 

evaluated on nonhomogeneous cluster nodes.  Also starting the CRP search with the previous 

solution’s CRP was shown to be modestly better than starting ARO.  The CRP search test case 

that was to be compared with an equivalent Haling depletion test case did not converge in 30 

days of running, but the acceptance ratio was less than 5% indicating the case is nearly 

converged.  The results of the CRP search test case compared poorly with the results of the 

Haling depletion test case.  The CRP search was also very slow compared to the Haling 

depletion test cases even though the quality factor, , used for the CRP search case was twice the 

value used in the Haling depletion cases.  The greater quality factor used for the CRP search case 
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which was used to try to reduce the runtime may have contributed to the poorer results by 

causing the optimization to be more like simulated quenching than simulated annealing.   

 The most significant future work related to this research would be improving NESTLE 

by decreasing runtime and/or adding  thermal limit calculations so more appropriate constraints 

can be considered in BWROPT.  One method of improving the runtime would be to add an 

octant symmetry option to NESTLE which would roughly half the complexity of the test cases 

used in this research.  Alternatively, BWROPT could be modified to work with a more advanced 

core simulator that already has these features.  If the solution evaluation time was reduced 

through one of these improvements then performing optimizations with the CRP search would be 

much more feasible and the CRP search could maybe even be made more thorough without 

having excessive runtimes.    
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Appendix A – Comparison of Old and New NESTLE Output Formats 

 

A.1 - Old Output Format 

        (( POINTWISE KINF  EDIT )) 

 

                            PLANE #  4 

 

 

 AVERAGE BURNUP :      0.00 MWD/MTM 

 

 Y/X       3           4           5           6           7           8 

 

   3 

   4 

   5                                                              0.11322E+01 

   6                                                              0.11316E+01 

   7                                                  0.11316E+01 0.10332E+01 

   8                          0.11321E+01 0.11314E+01 0.11309E+01 0.11307E+01 

   9                          0.11315E+01 0.11309E+01 0.11305E+01 0.11304E+01 

  10              0.11319E+01 0.10332E+01 0.11305E+01 0.11302E+01 0.10328E+01 

  11  0.11323E+01 0.11317E+01 0.10331E+01 0.11304E+01 0.11378E+01 0.10324E+01 

  12  0.11322E+01 0.11317E+01 0.11313E+01 0.11306E+01 0.11379E+01 0.11379E+01 

  13  0.11322E+01 0.11318E+01 0.87583E+00 0.87670E+00 0.11385E+01 0.11381E+01 

  14  0.11322E+01 0.11320E+01 0.77617E+00 0.87645E+00 0.11384E+01 0.10330E+01 

  15  0.11322E+01 0.11318E+01 0.10334E+01 0.11312E+01 0.11383E+01 0.10326E+01 

  16  0.11322E+01 0.11317E+01 0.11316E+01 0.11309E+01 0.11383E+01 0.11381E+01 

  17  0.11322E+01 0.11318E+01 0.87563E+00 0.87634E+00 0.11387E+01 0.11383E+01 

  18  0.11322E+01 0.11320E+01 0.77619E+00 0.87630E+00 0.11385E+01 0.10330E+01 

  19  0.11322E+01 0.11318E+01 0.10334E+01 0.11312E+01 0.11384E+01 0.10327E+01 

  20  0.11322E+01 0.11318E+01 0.11316E+01 0.11309E+01 0.11383E+01 0.11381E+01 

  21  0.11322E+01 0.11318E+01 0.87568E+00 0.87643E+00 0.11387E+01 0.11382E+01 

  22  0.11322E+01 0.11320E+01 0.77614E+00 0.87657E+00 0.11383E+01 0.10329E+01 

  23  0.11322E+01 0.11317E+01 0.10332E+01 0.11309E+01 0.11381E+01 0.10325E+01 

  24  0.11323E+01 0.11316E+01 0.11310E+01 0.11304E+01 0.11378E+01 0.11378E+01 

  25              0.11319E+01 0.11312E+01 0.11305E+01 0.11302E+01 0.11380E+01 

  26                          0.11316E+01 0.10330E+01 0.11306E+01 0.10330E+01 

  27                          0.11322E+01 0.11316E+01 0.11312E+01 0.10330E+01 

  28                                                  0.11316E+01 0.11311E+01 

  29                                                              0.11315E+01 

  30                                                              0.11321E+01 

  31 

  32 

 

 

        (( POINTWISE KINF  EDIT )) 

 

                            PLANE #  4 

 

 

 AVERAGE BURNUP :      0.00 MWD/MTM 

 

 Y/X       9          10          11          12          13          14 
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   3                          0.11324E+01 0.11324E+01 0.11324E+01 0.11324E+01 

   4              0.11320E+01 0.11318E+01 0.10338E+01 0.10340E+01 0.11321E+01 

   5  0.11317E+01 0.11313E+01 0.11312E+01 0.11314E+01 0.87543E+00 0.87515E+00 

   6  0.10332E+01 0.11307E+01 0.11306E+01 0.10333E+01 0.77600E+00 0.87593E+00 

   7  0.10328E+01 0.11303E+01 0.11380E+01 0.10327E+01 0.10329E+01 0.11388E+01 

   8  0.11308E+01 0.11380E+01 0.11379E+01 0.11380E+01 0.11386E+01 0.11383E+01 

   9  0.88992E+00 0.88983E+00 0.11383E+01 0.11380E+01 0.88990E+00 0.88995E+00 

  10  0.77558E+00 0.88982E+00 0.11378E+01 0.10328E+01 0.77558E+00 0.88991E+00 

  11  0.10324E+01 0.11382E+01 0.11377E+01 0.10323E+01 0.10324E+01 0.11383E+01 

  12  0.11383E+01 0.11377E+01 0.11376E+01 0.11377E+01 0.11382E+01 0.11378E+01 

  13  0.88983E+00 0.88975E+00 0.11382E+01 0.11378E+01 0.88976E+00 0.88976E+00 

  14  0.77563E+00 0.88983E+00 0.11378E+01 0.10328E+01 0.77555E+00 0.88982E+00 

  15  0.10326E+01 0.11383E+01 0.11378E+01 0.10324E+01 0.10324E+01 0.11382E+01 

  16  0.11385E+01 0.11379E+01 0.11377E+01 0.11377E+01 0.11383E+01 0.11378E+01 

  17  0.88994E+00 0.88984E+00 0.11382E+01 0.11379E+01 0.88978E+00 0.88976E+00 

  18  0.77567E+00 0.88989E+00 0.11379E+01 0.10328E+01 0.77555E+00 0.88981E+00 

  19  0.10326E+01 0.11383E+01 0.11378E+01 0.10324E+01 0.10324E+01 0.11382E+01 

  20  0.11385E+01 0.11379E+01 0.11377E+01 0.11377E+01 0.11383E+01 0.11378E+01 

  21  0.88989E+00 0.88979E+00 0.11382E+01 0.11378E+01 0.88976E+00 0.88975E+00 

  22  0.77560E+00 0.88981E+00 0.11378E+01 0.10327E+01 0.77553E+00 0.88980E+00 

  23  0.10325E+01 0.11382E+01 0.11377E+01 0.10323E+01 0.10324E+01 0.11382E+01 

  24  0.11383E+01 0.11377E+01 0.11376E+01 0.11377E+01 0.11382E+01 0.11378E+01 

  25  0.88984E+00 0.88976E+00 0.11382E+01 0.11378E+01 0.88977E+00 0.88978E+00 

  26  0.77567E+00 0.88986E+00 0.11379E+01 0.10328E+01 0.77560E+00 0.88991E+00 

  27  0.10327E+01 0.11384E+01 0.11379E+01 0.10325E+01 0.10326E+01 0.11385E+01 

  28  0.11306E+01 0.11302E+01 0.11378E+01 0.11380E+01 0.11386E+01 0.11383E+01 

  29  0.10331E+01 0.11305E+01 0.11304E+01 0.11306E+01 0.87672E+00 0.87656E+00 

  30  0.11315E+01 0.11311E+01 0.11309E+01 0.10334E+01 0.77613E+00 0.87564E+00 

  31              0.11318E+01 0.11317E+01 0.11317E+01 0.11318E+01 0.11320E+01 

  32                          0.11323E+01 0.11322E+01 0.11322E+01 0.11322E+01 

 

 

        (( POINTWISE KINF  EDIT )) 

 

                            PLANE #  4 

 

 

 AVERAGE BURNUP :      0.00 MWD/MTM 

 

 Y/X      15          16          17          18          19          20 

 

   3  0.11324E+01 0.11324E+01 0.11324E+01 0.11324E+01 0.11323E+01 0.11323E+01 

   4  0.11320E+01 0.10339E+01 0.10340E+01 0.11321E+01 0.11320E+01 0.11320E+01 

   5  0.11319E+01 0.11317E+01 0.87518E+00 0.87512E+00 0.11318E+01 0.11317E+01 

   6  0.11313E+01 0.10335E+01 0.77610E+00 0.87582E+00 0.11313E+01 0.10335E+01 

   7  0.11385E+01 0.10330E+01 0.10331E+01 0.11389E+01 0.11386E+01 0.10330E+01 

   8  0.11382E+01 0.11383E+01 0.11388E+01 0.11384E+01 0.11383E+01 0.11383E+01 

   9  0.11385E+01 0.11382E+01 0.89004E+00 0.89003E+00 0.11386E+01 0.11382E+01 

  10  0.11380E+01 0.10329E+01 0.77566E+00 0.88998E+00 0.11381E+01 0.10329E+01 

  11  0.11379E+01 0.10325E+01 0.10325E+01 0.11384E+01 0.11379E+01 0.10325E+01 

  12  0.11377E+01 0.11378E+01 0.11384E+01 0.11379E+01 0.11378E+01 0.11378E+01 

  13  0.11382E+01 0.11379E+01 0.88982E+00 0.88980E+00 0.11383E+01 0.11379E+01 

  14  0.11379E+01 0.10328E+01 0.77557E+00 0.88984E+00 0.11379E+01 0.10328E+01 

  15  0.11378E+01 0.10324E+01 0.10325E+01 0.11383E+01 0.11378E+01 0.10324E+01 

  16  0.11377E+01 0.11378E+01 0.11383E+01 0.11378E+01 0.11377E+01 0.11378E+01 

  17  0.11382E+01 0.11379E+01 0.88979E+00 0.88978E+00 0.11382E+01 0.11379E+01 
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  18  0.11378E+01 0.10328E+01 0.77556E+00 0.88983E+00 0.11379E+01 0.10328E+01 

  19  0.11378E+01 0.10324E+01 0.10324E+01 0.11382E+01 0.11378E+01 0.10324E+01 

  20  0.11377E+01 0.11377E+01 0.11383E+01 0.11378E+01 0.11377E+01 0.11377E+01 

  21  0.11382E+01 0.11378E+01 0.88977E+00 0.88976E+00 0.11382E+01 0.11378E+01 

  22  0.11378E+01 0.10328E+01 0.77555E+00 0.88981E+00 0.11378E+01 0.10328E+01 

  23  0.11377E+01 0.10324E+01 0.10324E+01 0.11382E+01 0.11378E+01 0.10324E+01 

  24  0.11377E+01 0.11378E+01 0.11383E+01 0.11378E+01 0.11377E+01 0.11377E+01 

  25  0.11383E+01 0.11379E+01 0.88985E+00 0.88982E+00 0.11383E+01 0.11379E+01 

  26  0.11380E+01 0.10329E+01 0.77567E+00 0.88996E+00 0.11381E+01 0.10329E+01 

  27  0.11381E+01 0.10327E+01 0.10327E+01 0.11386E+01 0.11381E+01 0.10326E+01 

  28  0.11383E+01 0.11383E+01 0.11388E+01 0.11384E+01 0.11383E+01 0.11383E+01 

  29  0.11312E+01 0.11310E+01 0.87640E+00 0.87645E+00 0.11312E+01 0.11309E+01 

  30  0.11314E+01 0.10336E+01 0.77618E+00 0.87560E+00 0.11314E+01 0.10336E+01 

  31  0.11318E+01 0.11318E+01 0.11318E+01 0.11320E+01 0.11317E+01 0.11317E+01 

  32  0.11322E+01 0.11322E+01 0.11322E+01 0.11322E+01 0.11322E+01 0.11322E+01 

 

 

        (( POINTWISE KINF  EDIT )) 

 

                            PLANE #  4 

 

 

 AVERAGE BURNUP :      0.00 MWD/MTM 

 

 Y/X      21          22          23          24          25          26 

 

   3  0.11323E+01 0.11324E+01 0.11323E+01 0.11324E+01 

   4  0.10340E+01 0.11320E+01 0.11319E+01 0.11319E+01 0.11320E+01 

   5  0.87532E+00 0.87531E+00 0.11316E+01 0.11313E+01 0.11315E+01 0.11318E+01 

   6  0.77606E+00 0.87609E+00 0.11310E+01 0.10330E+01 0.10331E+01 0.11313E+01 

   7  0.10330E+01 0.11388E+01 0.11383E+01 0.10327E+01 0.10328E+01 0.11309E+01 

   8  0.11387E+01 0.11382E+01 0.11381E+01 0.11381E+01 0.11387E+01 0.11308E+01 

   9  0.89000E+00 0.88996E+00 0.11384E+01 0.11381E+01 0.89000E+00 0.89011E+00 

  10  0.77565E+00 0.88992E+00 0.11380E+01 0.10329E+01 0.77567E+00 0.89005E+00 

  11  0.10325E+01 0.11383E+01 0.11379E+01 0.10325E+01 0.10326E+01 0.11385E+01 

  12  0.11383E+01 0.11379E+01 0.11378E+01 0.11378E+01 0.11384E+01 0.11381E+01 

  13  0.88982E+00 0.88980E+00 0.11383E+01 0.11380E+01 0.88989E+00 0.88995E+00 

  14  0.77558E+00 0.88986E+00 0.11379E+01 0.10328E+01 0.77566E+00 0.89004E+00 

  15  0.10325E+01 0.11383E+01 0.11379E+01 0.10325E+01 0.10326E+01 0.11386E+01 

  16  0.11383E+01 0.11379E+01 0.11378E+01 0.11379E+01 0.11385E+01 0.11382E+01 

  17  0.88981E+00 0.88980E+00 0.11383E+01 0.11380E+01 0.88994E+00 0.89003E+00 

  18  0.77557E+00 0.88985E+00 0.11379E+01 0.10329E+01 0.77567E+00 0.89008E+00 

  19  0.10325E+01 0.11383E+01 0.11378E+01 0.10325E+01 0.10326E+01 0.11386E+01 

  20  0.11383E+01 0.11378E+01 0.11377E+01 0.11378E+01 0.11384E+01 0.11381E+01 

  21  0.88978E+00 0.88976E+00 0.11382E+01 0.11379E+01 0.88986E+00 0.88995E+00 

  22  0.77554E+00 0.88980E+00 0.11378E+01 0.10328E+01 0.77558E+00 0.88995E+00 

  23  0.10324E+01 0.11382E+01 0.11377E+01 0.10323E+01 0.10324E+01 0.11383E+01 

  24  0.11382E+01 0.11377E+01 0.11376E+01 0.11377E+01 0.11383E+01 0.11379E+01 

  25  0.88980E+00 0.88974E+00 0.11382E+01 0.11378E+01 0.88977E+00 0.88982E+00 

  26  0.77562E+00 0.88985E+00 0.11378E+01 0.10328E+01 0.77558E+00 0.88995E+00 

  27  0.10326E+01 0.11384E+01 0.11379E+01 0.10324E+01 0.10325E+01 0.11308E+01 

  28  0.11387E+01 0.11382E+01 0.11380E+01 0.11378E+01 0.11302E+01 0.11304E+01 

  29  0.87653E+00 0.87679E+00 0.11309E+01 0.11304E+01 0.11305E+01 0.11309E+01 

  30  0.77616E+00 0.87582E+00 0.11311E+01 0.10331E+01 0.10332E+01 0.11315E+01 

  31  0.11318E+01 0.11320E+01 0.11317E+01 0.11317E+01 0.11319E+01 

  32  0.11322E+01 0.11322E+01 0.11322E+01 0.11323E+01 
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        (( POINTWISE KINF  EDIT )) 

 

                            PLANE #  4 

 

 

 AVERAGE BURNUP :      0.00 MWD/MTM 

 

 Y/X      27          28          29          30          31          32 

 

   3 

   4 

   5  0.11323E+01 

   6  0.11317E+01 

   7  0.10333E+01 0.11318E+01 

   8  0.11310E+01 0.10334E+01 0.11318E+01 0.11323E+01 

   9  0.11311E+01 0.11309E+01 0.11313E+01 0.11318E+01 

  10  0.11383E+01 0.10328E+01 0.10331E+01 0.11315E+01 0.11321E+01 

  11  0.11381E+01 0.10327E+01 0.10330E+01 0.11314E+01 0.11318E+01 0.11324E+01 

  12  0.11381E+01 0.11384E+01 0.11313E+01 0.11315E+01 0.11319E+01 0.11323E+01 

  13  0.11386E+01 0.11385E+01 0.87623E+00 0.87534E+00 0.11322E+01 0.11323E+01 

  14  0.11384E+01 0.10332E+01 0.77609E+00 0.87510E+00 0.10339E+01 0.11324E+01 

  15  0.11383E+01 0.10330E+01 0.10333E+01 0.11319E+01 0.11320E+01 0.11323E+01 

  16  0.11383E+01 0.11386E+01 0.11315E+01 0.11317E+01 0.11320E+01 0.11323E+01 

  17  0.11388E+01 0.11387E+01 0.87599E+00 0.87514E+00 0.11322E+01 0.11324E+01 

  18  0.11384E+01 0.10333E+01 0.77612E+00 0.87498E+00 0.10339E+01 0.11324E+01 

  19  0.11384E+01 0.10330E+01 0.10333E+01 0.11319E+01 0.10339E+01 0.11324E+01 

  20  0.11383E+01 0.11385E+01 0.11315E+01 0.11317E+01 0.11320E+01 0.11324E+01 

  21  0.11386E+01 0.11386E+01 0.87614E+00 0.87518E+00 0.11322E+01 0.11324E+01 

  22  0.11382E+01 0.10331E+01 0.77601E+00 0.87519E+00 0.10339E+01 0.11324E+01 

  23  0.11380E+01 0.10327E+01 0.10330E+01 0.11316E+01 0.10338E+01 0.11324E+01 

  24  0.11379E+01 0.11380E+01 0.11307E+01 0.11312E+01 0.11319E+01 0.11324E+01 

  25  0.11384E+01 0.11303E+01 0.11307E+01 0.11313E+01 0.11320E+01 

  26  0.11304E+01 0.10328E+01 0.10331E+01 0.11316E+01 

  27  0.11307E+01 0.10331E+01 0.11316E+01 0.11322E+01 

  28  0.11310E+01 0.11315E+01 

  29  0.11314E+01 

  30  0.11321E+01 

  31 

  32 
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A.2 - New Output Format 

KINF  at Axial Node  4, Average Burnup =      0.00 

Y/X   1      2      3      4      5      6      7      8      9     10     11     12     13     14     15 

 1                                                         1.1324 1.1324 1.1324 1.1324 1.1324 1.1324 1.1324 

 2                                                  1.1320 1.1318 1.0338 1.0340 1.1321 1.1320 1.0339 1.0340 

 3                                    1.1322 1.1317 1.1313 1.1312 1.1314 0.8754 0.8751 1.1319 1.1317 0.8752 

 4                                    1.1316 1.0332 1.1307 1.1306 1.0333 0.7760 0.8759 1.1313 1.0335 0.7761 

 5                             1.1316 1.0332 1.0328 1.1303 1.1380 1.0327 1.0329 1.1388 1.1385 1.0330 1.0331 

 6               1.1321 1.1314 1.1309 1.1307 1.1308 1.1380 1.1379 1.1380 1.1386 1.1383 1.1382 1.1383 1.1388 

 7               1.1315 1.1309 1.1305 1.1304 0.8899 0.8898 1.1383 1.1380 0.8899 0.8899 1.1385 1.1382 0.8900 

 8        1.1319 1.0332 1.1305 1.1302 1.0328 0.7756 0.8898 1.1378 1.0328 0.7756 0.8899 1.1380 1.0329 0.7757 

 9 1.1323 1.1317 1.0331 1.1304 1.1378 1.0324 1.0324 1.1382 1.1377 1.0323 1.0324 1.1383 1.1379 1.0325 1.0325 

10 1.1322 1.1317 1.1313 1.1306 1.1379 1.1379 1.1383 1.1377 1.1376 1.1377 1.1382 1.1378 1.1377 1.1378 1.1384 

11 1.1322 1.1318 0.8758 0.8767 1.1385 1.1381 0.8898 0.8898 1.1382 1.1378 0.8898 0.8898 1.1382 1.1379 0.8898 

12 1.1322 1.1320 0.7762 0.8764 1.1384 1.0330 0.7756 0.8898 1.1378 1.0328 0.7755 0.8898 1.1379 1.0328 0.7756 

13 1.1322 1.1318 1.0334 1.1312 1.1383 1.0326 1.0326 1.1383 1.1378 1.0324 1.0324 1.1382 1.1378 1.0324 1.0325 

14 1.1322 1.1317 1.1316 1.1309 1.1383 1.1381 1.1385 1.1379 1.1377 1.1377 1.1383 1.1378 1.1377 1.1378 1.1383 

15 1.1322 1.1318 0.8756 0.8763 1.1387 1.1383 0.8899 0.8898 1.1382 1.1379 0.8898 0.8898 1.1382 1.1379 0.8898 

16 1.1322 1.1320 0.7762 0.8763 1.1385 1.0330 0.7757 0.8899 1.1379 1.0328 0.7756 0.8898 1.1378 1.0328 0.7756 

17 1.1322 1.1318 1.0334 1.1312 1.1384 1.0327 1.0326 1.1383 1.1378 1.0324 1.0324 1.1382 1.1378 1.0324 1.0324 

18 1.1322 1.1318 1.1316 1.1309 1.1383 1.1381 1.1385 1.1379 1.1377 1.1377 1.1383 1.1378 1.1377 1.1377 1.1383 

19 1.1322 1.1318 0.8757 0.8764 1.1387 1.1382 0.8899 0.8898 1.1382 1.1378 0.8898 0.8897 1.1382 1.1378 0.8898 

20 1.1322 1.1320 0.7761 0.8766 1.1383 1.0329 0.7756 0.8898 1.1378 1.0327 0.7755 0.8898 1.1378 1.0328 0.7756 

21 1.1322 1.1317 1.0332 1.1309 1.1381 1.0325 1.0325 1.1382 1.1377 1.0323 1.0324 1.1382 1.1377 1.0324 1.0324 

22 1.1323 1.1316 1.1310 1.1304 1.1378 1.1378 1.1383 1.1377 1.1376 1.1377 1.1382 1.1378 1.1377 1.1378 1.1383 

23        1.1319 1.1312 1.1305 1.1302 1.1380 0.8898 0.8898 1.1382 1.1378 0.8898 0.8898 1.1383 1.1379 0.8899 

24               1.1316 1.0330 1.1306 1.0330 0.7757 0.8899 1.1379 1.0328 0.7756 0.8899 1.1380 1.0329 0.7757 

25               1.1322 1.1316 1.1312 1.0330 1.0327 1.1384 1.1379 1.0325 1.0326 1.1385 1.1381 1.0327 1.0327 

26                             1.1316 1.1311 1.1306 1.1302 1.1378 1.1380 1.1386 1.1383 1.1383 1.1383 1.1388 

27                                    1.1315 1.0331 1.1305 1.1304 1.1306 0.8767 0.8766 1.1312 1.1310 0.8764 

28                                    1.1321 1.1315 1.1311 1.1309 1.0334 0.7761 0.8756 1.1314 1.0336 0.7762 

29                                                  1.1318 1.1317 1.1317 1.1318 1.1320 1.1318 1.1318 1.1318 

30                                                         1.1323 1.1322 1.1322 1.1322 1.1322 1.1322 1.1322 

Y/X  16     17     18     19     20     21     22     23     24     25     26     27     28     29     30 

 1 1.1324 1.1323 1.1323 1.1323 1.1324 1.1323 1.1324 

 2 1.1321 1.1320 1.1320 1.0340 1.1320 1.1319 1.1319 1.1320 

 3 0.8751 1.1318 1.1317 0.8753 0.8753 1.1316 1.1313 1.1315 1.1318 1.1323 

 4 0.8758 1.1313 1.0335 0.7761 0.8761 1.1310 1.0330 1.0331 1.1313 1.1317 
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 5 1.1389 1.1386 1.0330 1.0330 1.1388 1.1383 1.0327 1.0328 1.1309 1.0333 1.1318 

 6 1.1384 1.1383 1.1383 1.1387 1.1382 1.1381 1.1381 1.1387 1.1308 1.1310 1.0334 1.1318 1.1323 

 7 0.8900 1.1386 1.1382 0.8900 0.8900 1.1384 1.1381 0.8900 0.8901 1.1311 1.1309 1.1313 1.1318 

 8 0.8900 1.1381 1.0329 0.7756 0.8899 1.1380 1.0329 0.7757 0.8900 1.1383 1.0328 1.0331 1.1315 1.1321 

 9 1.1384 1.1379 1.0325 1.0325 1.1383 1.1379 1.0325 1.0326 1.1385 1.1381 1.0327 1.0330 1.1314 1.1318 1.1324 

10 1.1379 1.1378 1.1378 1.1383 1.1379 1.1378 1.1378 1.1384 1.1381 1.1381 1.1384 1.1313 1.1315 1.1319 1.1323 

11 0.8898 1.1383 1.1379 0.8898 0.8898 1.1383 1.1380 0.8899 0.8900 1.1386 1.1385 0.8762 0.8753 1.1322 1.1323 

12 0.8898 1.1379 1.0328 0.7756 0.8899 1.1379 1.0328 0.7757 0.8900 1.1384 1.0332 0.7761 0.8751 1.0339 1.1324 

13 1.1383 1.1378 1.0324 1.0325 1.1383 1.1379 1.0325 1.0326 1.1386 1.1383 1.0330 1.0333 1.1319 1.1320 1.1323 

14 1.1378 1.1377 1.1378 1.1383 1.1379 1.1378 1.1379 1.1385 1.1382 1.1383 1.1386 1.1315 1.1317 1.1320 1.1323 

15 0.8898 1.1382 1.1379 0.8898 0.8898 1.1383 1.1380 0.8899 0.8900 1.1388 1.1387 0.8760 0.8751 1.1322 1.1324 

16 0.8898 1.1379 1.0328 0.7756 0.8899 1.1379 1.0329 0.7757 0.8901 1.1384 1.0333 0.7761 0.8750 1.0339 1.1324 

17 1.1382 1.1378 1.0324 1.0325 1.1383 1.1378 1.0325 1.0326 1.1386 1.1384 1.0330 1.0333 1.1319 1.0339 1.1324 

18 1.1378 1.1377 1.1377 1.1383 1.1378 1.1377 1.1378 1.1384 1.1381 1.1383 1.1385 1.1315 1.1317 1.1320 1.1324 

19 0.8898 1.1382 1.1378 0.8898 0.8898 1.1382 1.1379 0.8899 0.8899 1.1386 1.1386 0.8761 0.8752 1.1322 1.1324 

20 0.8898 1.1378 1.0328 0.7755 0.8898 1.1378 1.0328 0.7756 0.8899 1.1382 1.0331 0.7760 0.8752 1.0339 1.1324 

21 1.1382 1.1378 1.0324 1.0324 1.1382 1.1377 1.0323 1.0324 1.1383 1.1380 1.0327 1.0330 1.1316 1.0338 1.1324 

22 1.1378 1.1377 1.1377 1.1382 1.1377 1.1376 1.1377 1.1383 1.1379 1.1379 1.1380 1.1307 1.1312 1.1319 1.1324 

23 0.8898 1.1383 1.1379 0.8898 0.8897 1.1382 1.1378 0.8898 0.8898 1.1384 1.1303 1.1307 1.1313 1.1320 

24 0.8900 1.1381 1.0329 0.7756 0.8898 1.1378 1.0328 0.7756 0.8900 1.1304 1.0328 1.0331 1.1316 

25 1.1386 1.1381 1.0326 1.0326 1.1384 1.1379 1.0324 1.0325 1.1308 1.1307 1.0331 1.1316 1.1322 

26 1.1384 1.1383 1.1383 1.1387 1.1382 1.1380 1.1378 1.1302 1.1304 1.1310 1.1315 

27 0.8765 1.1312 1.1309 0.8765 0.8768 1.1309 1.1304 1.1305 1.1309 1.1314 

28 0.8756 1.1314 1.0336 0.7762 0.8758 1.1311 1.0331 1.0332 1.1315 1.1321 

29 1.1320 1.1317 1.1317 1.1318 1.1320 1.1317 1.1317 1.1319 

30 1.1322 1.1322 1.1322 1.1322 1.1322 1.1322 1.1323 
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Appendix B – NESTLE Input File Used for Initial Guess 

Peach Bottom Cycle 1 

read parameter 

  xsecfile=XSEC.TOTAL.MACRO_cr 

  thfeedback=yes 

  thsolver=twophase 

  quality=epri 

  void=z-f 

'  void=l-z 

  powerden=50.7379 

  t2n=yes 

  inputedit=no 

  longedit=yes 

'  depl_update=3 

  accel=cheby 

'  chebymax=1 

  diffusionmethod=nem 

  outers=250 

  demand_conv=yes 

  specshiftcorr=no 

  therms=1 

  printscreen=yes 

  deplete=yes 

  scalefact=no 

  thupdate=1 

  microdeplete=no 

  ratiohmfuel=0.881481 

'  origen_deplete=no 

 

  eps_pres=5E-5 

  eps_void=1e-5 

'  eps_void=1e-7 

  pinpower=no 

 

  sym=fourth 

 

  haling_accel=.5 

 

  eps_flow=.1 

 

  output_format=new 

  output_conv_data=no 

 

' Added by Nick to avoid NANs 

  coolant_molwgt= 18.0153 

  solu_abund=0.197714997 

  solu_atmwgt=10.811 

 

end parameter 

 

read edit 

  kinf 

  power 

  bu 
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end edit 

   

read heattransfer 

  mcore=25.625  

' total core flow rate Mlbm/hr 

  bypass=1.69475  

' total flow outside bundles and in water rods Mlbm/hr ? 

  flow=yes 

  mode=m 

  rhovsat=2.3299 

  tinlet=527.485 

  tinletmin=500 

  tinletmax=550 

  tsat=548.84 

  uvsat=1109.8 

   

  rho_vs_ufit 94.1993830099764 -0.186234454371061 0.000298594316762532 -

2.16530070901634e-07 end rho_vs_ufit 

  t_vs_ufit 322.415028930525 -0.645834205015149 0.00325028978652142 -

2.35946897099643e-06 end t_vs_ufit 

  u_vs_Tfit -3288.145523120940 18.550809182238 -0.031790750514 0.000019485777 

end u_vs_Tfit 

end heattransfer  

 

read fuelmech 

  wc=1.0 wp=0 fiss_frac=0.975 

  fuelden=643.994 

   

  heff_vs_t 0.78363116E-01 -0.19203380E-04 0.73696720E-08 end heff_vs_t 

  tavg_vs_lpd  530.2 99.429 0.0075 end tavg_vs_lpd 

'  heff_vs_t 2.0 end heff_vs_t 

  tsurf_vs_lpd  530.2 99.429 0.0075 end tsurf_vs_lpd 

  cp_vs_tfit 0.8110000193E-01 end cp_vs_tfit 

   

  fuelfrac    0.000000 0.253861 0.000000 0.242296 0.242090 0.242296 0.242090 

0.253861 0.253861 end fuelfrac 

  bunarea     0.250000 0.198500 0.250000 0.198500 0.198500 0.198500 0.198500 

0.198500 0.198500 end bunarea 

  eqdiam      0.500000 0.050830 0.500000 0.050830 0.050830 0.050830 0.050830 

0.050830 0.050830 end eqdiam 

  hydiam      0.063020 0.063020 0.063020 0.063020 0.063020 0.063020 0.063020 

0.063020 0.063020 end hydiam 

  fpinrad     0.000000 0.243500 0.000000 0.243500 0.243500 0.243500 0.243500 

0.243500 0.243500 end fpinrad 

  frodrad     0.000000 0.281500 0.000000 0.281500 0.281500 0.281500 0.281500 

0.281500 0.281500 end frodrad 

  numfrods        0       49        0       49       49       49       49       

49       49    end numfrods 

  wtfri       1.000000 0.573250 1.000000 0.573250 0.573250 0.573250 0.573250 

0.573250 0.573250 end wtfri 

  wtfro       1.000000 0.573250 1.000000 0.573250 0.573250 0.573250 0.573250 

0.573250 0.573250 end wtfro 

  lattice_ids     1       10        2       16       17       14       15       

13       11    end lattice_ids 

  losscoeffs 7r1.0 end losscoeffs 

  losscoeffs_loc 2.325 4.0 5.683 7.358 9.042 10.717 12.392 end losscoeffs_loc 

  orificecoeff 45.0 201.4 72.1 10. end orificecoeff 
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  orificecoeff_ids 1 2 3 4 end orificecoeff_ids 

end fuelmech  

 

read burndata 

  pres=1050 

'  burnup=0.0  sm=no xe=no crod_id=26 delbu=0.0 pctpwr=100 pctflow=100.0 

bypass=13.0 tinlet=526.0 end  

  burnup=0.0  sm=no xe=no crod_id=1 delbu=0.0 pctpwr=55.7 pctflow=103.3 

bypass=13.37 tinlet=530.17 end  

  burnup=11133 haling=yes sm=eq xe=eq crod_id=26 pctpwr=100.0  pctflow=100.0 

bypass=13.0  tinlet=526.0  end 

end burndata 

 

read geom 

'  inner=cyclic 

  inner=refl 

  outer=zero 

  up=zero 

  down=zero 

  orifice_id=117 

 

  bpitchx=6.0 

  bpitchy=6.0 

 

  deltax 17r6.0 end deltax 

  deltay 17r6.0 end deltay 

  bottomfuelnode=4 topfuelnode=27 

  deltaz 3r3.0 24r6.0 3r3.0 end deltaz 

  figure  3r6 2r1 6r2 4r3  2r4 6r5 4r1 3r7 end figure 

 

  rotation=217 

 

  crload=bottomup 

 

  crbank 1 17 

   30 144 114 144  12 144 114 144 

  144 144 144 144 144 144 144 144 

  114 144  12 144 114 144  24 144 

  144 144 144 144 144 144 144 144 

   12 144 114 144 114 144 144 

  144 144 144 144 144 144 

  114 144  24 144 144 

  144 144 144 144 

  end crbank 

 

  crbank   26  17 

  144.001 144.001 144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 144.001 

  144.001 144.001 144.001 144.001 

  end crbank 

 

end geom 
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read arrays 

assem_ara=00 fill   6   1   2   3   4   5   7 end fill 

assem=01     fill   1   1   1   1   1   1   1 end fill 

assem=02     fill   1  10  10  10  10  10   2 end fill 

assem=07     fill   1  16  17  17  16  16   2 end fill 

assem=06     fill   1  14  15  15  14  14   2 end fill 

assem=05     fill   1  13  13  13  13  13   2 end fill 

assem=03     fill   1  11  11  11  11  11   2 end fill 

 

ara=0 nux=17 nuy=17 fill 

  6  6  6  6  6  6  6  6  6  6  6  6  6  6  2  1  1 

  6  6  6  6  6  2  6  6  2  6  6  6  2  6  6  1  1 

  6  6  2  6  6  6  6  6  6  6  6  6  6  6  2  1  1 

  6  6  6  6  6  6  2  6  6  6  6  6  6  6  2  1  1 

  6  6  6  6  2  6  6  6  6  6  6  6  2  6  2  1  1 

  6  2  6  6  6  6  6  6  6  2  6  6  6  6  2  1  1 

  6  6  6  2  6  6  2  6  6  6  6  6  6  6  2  1  1 

  6  6  6  6  6  6  6  6  6  6  6  2  6  2  1  1  0 

  6  2  6  6  6  6  6  6  6  6  6  6  6  1  1  0  0 

  6  6  6  6  6  2  6  6  6  2  6  2  2  1  0  0  0 

  6  6  6  6  6  6  6  6  6  6  2  1  1  1  0  0  0 

  6  6  6  6  6  6  6  2  6  2  1  1  1  0  0  0  0 

  6  2  6  6  2  6  6  6  6  2  1  0  0  0  0  0  0 

  6  6  6  6  6  6  6  2  1  1  1  0  0  0  0  0  0 

  2  6  2  2  2  2  2  1  1  1  0  0  0  0  0  0  0 

  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0 

  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  end fill 

 

ara=17 nux=17 nuy=17 fill 

 1  2  2  3  3  4  4  5  5  6  6  7  7  8  8 0 0 

 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 0 0 

 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 0 0 

17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 0 0 

17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 0 0 

25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 0 0 

25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 0 0 

33 34 34 35 35 36 36 37 37 38 38 39 39  0  0 0 0 

33 34 34 35 35 36 36 37 37 38 38 39 39  0  0 0 0 

40 41 41 42 42 43 43 44 44 45 45  0  0  0  0 0 0 

40 41 41 42 42 43 43 44 44 45 45  0  0  0  0 0 0 

46 47 47 48 48 49 49 50 50  0  0  0  0  0  0 0 0 

46 47 47 48 48 49 49 50 50  0  0  0  0  0  0 0 0 

51 52 52 53 53 54 54  0  0  0  0  0  0  0  0 0 0 

51 52 52 53 53 54 54  0  0  0  0  0  0  0  0 0 0 

 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0 0 

 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0 0 end fill 

 

ara=117 nux=17 nuy=17 fill 

  1 1 3 3 1 1 3 3 1 1 3 3 1 3 2 4 4 

  1 1 3 3 1 1 3 3 1 1 3 3 1 3 2 4 4 

  1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 

  1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 

  1 1 3 3 1 1 3 3 1 1 3 3 1 3 2 4 4 

  1 1 3 3 1 1 3 3 1 1 3 3 1 3 2 4 4 

  1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 

  1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 0 
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  1 1 3 3 1 1 3 3 1 1 3 3 2 4 4 0 0 

  1 1 3 3 1 1 3 3 1 1 3 2 2 4 4 0 0 

  1 1 1 1 1 1 1 1 1 1 2 4 4 4 0 0 0 

  1 1 1 1 1 1 1 1 1 2 4 4 0 0 0 0 0 

  1 1 3 3 1 1 3 3 2 2 4 4 0 0 0 0 0 

  1 1 1 1 1 1 1 2 4 4 4 0 0 0 0 0 0 

  2 2 2 2 2 2 2 4 4 0 0 0 0 0 0 0 0 

  4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 

  4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 end fill 

 

ara=217 nux=17 nuy=17 fill 

  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 

  3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 0 0 

  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 

  3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 0 0 

  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 

  3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 0 0 

  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 

  3 2 3 2 3 2 3 2 3 2 3 2 3 0 0 0 0 

  0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 

  3 2 3 2 3 2 3 2 3 2 3 0 0 0 0 0 0 

  0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 

  3 2 3 2 3 2 3 2 3 0 0 0 0 0 0 0 0 

  0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

  3 2 3 2 3 2 3 0 0 0 0 0 0 0 0 0 0 

  0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 end fill 

end arrays 
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Appendix C – Sample BWROPT Input File with Input Descriptions 

'DEBUG' 1 1 0 0 1 2 / debug_sample_flag, debug_archive_flag, debug_OF_flag, 

debug_cost_flag, nes_iter_flag, crp_stat_flag 

'CR.OUT' 3 1 / cr_output_flag (0 = nothing, 1 = summary to screen, 2 = 

everything to screen, 3 = everything process output file), cr_plot_flag 

(1 = plot, 0 = don't plot) 

 

'RES.OUT' 1 3 / Number of CS between writing restart data file 

 

'REAC.TYP' 'BWR' 

'CYC' 3 1 0/ Cycle Data [# of cycles to optimize (n_cyc_opt), first cycle #, 

first_cyc_opt_flag (1 = yes, 0 = no)] 

 

'OPT' 'PSA' / Optimization Method [PSA (Parallel Simulated Annealing), SA 

(Simulated Annealing)] 

 

'DEP.CYC' 2 / Depletion option for optimized cycles (n_cyc_opt) [0 = use 

original depletion, 1 = CR optimization, 2 = Haling depletion]  

'EXP.STP' 2000. / Depletion step size for each cycle optimized if CR 

optimization used  

 

'NES.ITER' 70 / max_nes_iter (maximum number of iterations used for NESTLE 

calculations) 

 

'INP.EDT' 2 / Input edit flag (0 = none, 1 = just in summary file, 2 = all) 

'RES' 0 / Use restart files flag  for each cycle to be optimized (0 = don't 

use, 1 = use) 

 

'CHG'     1 2 3 4 5 6 7 8 9 10 / Change Types to Use [old shuffle, new old 

swap, # fresh change, new type (switch, change, add),CRP change] 

'CHG.GRP' 1 2 3 4 5 6 7 7 8 8/ Groups used for variable sample probabilities 

(if a change type converges the probability is distributed among the 

other change types in the group if there are any) 

 

'OF' 1 0 / OF_nan_flag, OF_mix_opt (0 = dont use initial solutions in ST_DEV 

calc, 1 = use initial solutions) 

 

'CON' 7 0 2.0/ # of constraints, constraint weight multiplier flag, target 

T=0 constraint weight multiplier 

     '$   '  0.0       10.0   / Constraints Parameters 

[constraint,limit,weight] constraints ($,A_EX,N_EX,RPF,K) CPR,TMOL,STAB 

     'K-  '  1.0       10.0   / 

     'K+  '  1.01      10.0   / 

     'A_EX'  35.0       1.0   / (GWD/MTU) 

     'N_EX'  45.0       1.0   / (GWD/MTU) 

     'RPF2'  1.5       10.0   / 

     'RPF3'  2.1       10.0   / 

 

'CYC.LEN' 30  / shutdown length (days) for each cycle being optimized 

'COST' .34 .15/ efficiency, carrying charge (annual interest rate) 

 

'NEW.TYP' 9 2 0/ [max # new types, cycle 1 new type, max assembly number for 

sampling new fuel from (0 = # of new types entered)] 
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'ENERGY' 402000. / Energy production for cycles to be optimized (MWD) (1 

number followed by '/' -> all cycles same, otherwise specify for each 

cycle) 

'POWER' 100.0 100.0 13.0 528.0 / Parameters used in cr optimization and 

haling depletion cases (pctpwr, pctflow, bypass, tinlet) 

 

'SORT' 'EXP' / Parameter to use for sort to generate original LP_oper ['KIN' 

or 'EXP'] 

 

'ARCHIVE' 'NEW' 20 20/ Archive method ('NEW' = new inventory), archive size 

(width, depth) 

 

'RAND' 1000 1000000 /# to add to all random seeds, number of random numbers 

to generate per process 

 

'SOL.INI' 0 0 / Initial Solution Parameters [# of fresh to add, number of 

changes to make to LP, # to add to all random seeds]  

 

'DIR' '/home/keith/BWR_OPT/' 'Model/' '/home/keith/BWR_OPT/Run_Files/' / 

[project dir, model dir, run cycle dir, process base run dir name] 

'INP' 'PB' 'PB_q_01_haling_new2.inp' 1 1/ [reactor name,Input File for Cycle 

N-1, assembly input (1 = yes), cr_input_flag] 

'NES.EXE' '/home/keith/scale_dev/build/src/nestle/' 'nestle' 1 18 / Path for 

Nestle Executable [original path, exe name, copy flag (0 = no copy, 1 = 

run path, 2 = path_proc),output_num_len] 

'OUT' 2 '/home/keith/BWR_OPT/Output/' 'scr_out' / [screen print option, base 

output file location, name, ] 

'SUMMARY' '/home/keith/BWR_OPT/Output/' 'Summary.out' 'Summary_full.out' 

'T_stats_out.m' 'hist_stats_out.m' 'archive.out' / [summary_path, 

summary file name] 

 

'PLOT.INFO' 1 'gnuplot' '/home/keith/BWR_OPT/plot_dir/' 'plot_script' 

'plot_data' 'arial,11' 'arial,9.5' 2 / [plot flag, gnuplot path, script 

base name, data file base name, font, mp_font, mp_update] 

 

'DEL.FILE' 0 / Output file delete flag (1 = delete, 0 = keep) 

 

'PSA.STP' 10 10 0 0 / n_init_iter, n_iter, Cooling step length flag (0 = each 

process runs n trials, 1 = average of n trials run over all processes) 

[Cooling step 1, >1]   

'PSA.CONV' 1 0 100 10/ PSA convergence criteria [1 (# consecutive CS, # of 

accepts per CS), 2 (# of steps without OF decrease), 3 (maximum # 

cooling steps)] 

'PSA.TEMP' 2. 1.  .5   5  .3 .25 .2 .15 .1  / alpha, lambda, std_cutoff, 

n_std_avg, (std_weights if n_std_avg > 1) 

'PSA.INI' 1 -1 / init flag, dist flag [-1 = keep current solution, 0 = all 

procs get best, 1 = dist n_procs best solutions (duplicate if 

necessary)] 

'PSA.RES' 1000000 / n_step_res, # of iterations between restarts (sampling 

from best solutions instead of current solutions) 

'PSA.MIX' 0  1.05  .25 -1.  2 1 1/ [psa_mix_flag (0= standard, 1 = limits, 2 

= always), mix_percent_lim, mix_acc_lim, mix_inc_lim, n_archive_samp 

(array of # of solutions to select from each archive level) ] 

 

'SAMP.PR' 0 / sample prob flag [0 = use constant sample prob [sample 

probabilities for each change type (equal if not entered) will be 

weighted to sum to 1] 
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    1 = decrease prob as accept prob --> 0 (# cooling 

steps with 0 accepts for convergence, # step used to decrease prob to 0 

linearly), 

    2 = fully variable based on input parameters] 

 

'SAMP.CYC' 1. / Sample probabilty for each cycle being optimized (one number 

> all same) 

 

'TIME' 1 / time flag (0 = runtime for each iteration given, 1 = runtime since 

start of cooling step given) 

 

'N_ASSEM' 5 2 1 1  1 1 1 1  7/ assembly array size (#,#,#,#), sample flag for 

each direction (0=random, 1=ordered), # lattices in assembly 

 

'ASSEM' 1 1 1 1 -1.0     1  9  9  9  9  9  2 / 1.1w/o 

'ASSEM' 2 1 1 1 -1.0     1 10 10 10 10 10  2 / 2w/o 

'ASSEM' 3 1 1 1 -1.0     1 11 11 11 11 11  2 / 3w/o 

'ASSEM' 4 1 1 1 -1.0     1 12 12 12 12 12  2 / 4w/o 

'ASSEM' 5 1 1 1 -1.0     1 13 13 13 13 13  2 / 5w/o 

 

'ASSEM' 2 2 1 1 -1.0     1 14 15 15 14 14  2 / 2w/o 

'ASSEM' 3 2 1 1 -1.0     1 16 17 17 16 16  2 / 3w/o 

'ASSEM' 4 2 1 1 -1.0     1 18 19 19 18 18  2 / 4w/o 

'ASSEM' 5 2 1 1 -1.0     1 20 21 21 20 20  2 / 5w/o 

 

 

*'TYP.REP'     / specify types to replace and replacing type for future 

cycles (old type, new type) 

 

'FUEL.TIME' 15. 12. 9. 3.   15./ Time before cycle starts for expense 

(months) [ore, conv, enr, fab (and gad)]; carrying charge (%) 

'FUEL.COST' 42.25  10.50 10.0  100000. 10000.0/ ore cost ($/lb U3O8), 

conversion cost ($/kg UF6), SWU cost ($/SWU), fab cost ($/assembly), 

gad cost ($/kg) 

'FUEL.LOSS' 0.0 .5 0.0 .5 / Fuel losses (%) (mining, conversion, enrichment, 

fabrication 

'FUEL.ENR' .711 .25/ feed enrichment, tails enrichment 

 

'PLOT' 1 3 2 type 'oper' 'skip' 'opr2' 'EXP ' 'KIN ','RPF ' step 1 1 -1 -1 1 

1 

 

'NO.NEW'       /  

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 1 1   

 0 0 0 0 0 0 0 0 0 0 0 1 1     

 0 0 0 0 0 0 0 0 0 0 1 1 1     

 0 0 0 0 0 0 0 0 0 1 1         

 0 0 0 0 0 0 0 0 1 1           

 0 0 0 0 0 0 0 1 1 1           

 1 1 1 1 1 1 1 1               

 1 1 1 1 1 1 1       
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'LAT.DAT' 9  13   49 .253861 .1985 .05083 .06302 .2435 .2815 .57325 .57325 / 

id 

[min,max],numfrods,fuelfrac,bunarea,eqdiam,hydiam,fpinrad,frodrad,wtfri

,wtfro 

'LAT.DAT' 14 14   49 .242296 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 15 15   49 .242090 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 16 16   49 .242296 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 17 17   49 .242090 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 18 18   49 .242296 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 19 19   49 .242090 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 20 20   49 .242296 .1985 .05083 .06302 .2435 .2815 .57325 .57325  

'LAT.DAT' 21 21   49 .242090 .1985 .05083 .06302 .2435 .2815 .57325 .57325 / 

 

* New No BP Assembly Lattices 

'LAT.ENR'  9 2 18 0.71 0.0 31 1.33 0.0 / id,n_pin_type, pin_data for each pin 

type(# pins, enrichment, gad weight percent)  

'LAT.ENR' 10 2 18 1.61 0.0 31 2.23 0.0 / 

'LAT.ENR' 11 2 18 2.61 0.0 31 3.23 0.0 /  

'LAT.ENR' 12 2 18 3.61 0.0 31 4.23 0.0 / 

'LAT.ENR' 13 2 18 4.61 0.0 31 5.23 0.0 /  

 

* New BP Assembly Lattices 

'LAT.ENR' 14 5 27 2.43 0.0 12 1.44 0.0 6 1.19 0.0 1 0.83 0.0     3 2.43 3.0 / 

'LAT.ENR' 15 5 26 2.43 0.0 12 1.44 0.0 6 1.19 0.0 1 0.83 0.0     4 2.43 3.0 / 

 

'LAT.ENR' 16 5 27 3.43 0.0 12 2.44 0.0 6 2.19 0.0 1 1.83 0.0     3 3.43 3.0 / 

'LAT.ENR' 17 5 26 3.43 0.0 12 2.44 0.0 6 2.19 0.0 1 1.83 0.0     4 3.43 3.0 / 

 

'LAT.ENR' 18 5 27 4.43 0.0 12 3.44 0.0 6 3.19 0.0 1 2.83 0.0     3 4.43 3.0 / 

'LAT.ENR' 19 5 26 4.43 0.0 12 3.44 0.0 6 3.19 0.0 1 2.83 0.0     4 4.43 3.0 / 

 

'LAT.ENR' 20 5 27 5.43 0.0 12 4.44 0.0 6 4.19 0.0 1 3.83 0.0     3 5.43 3.0 / 

'LAT.ENR' 21 5 26 5.43 0.0 12 4.44 0.0 6 4.19 0.0 1 3.83 0.0     4 5.43 3.0 / 

 

 

'CR.ITER' 10 10 / max cr calc iter (initial, noninitial) 

'CR.KEFF' 1.0000 1.0010 1.0000 1.0010 

 

'CR.PARM' 2 3 / [cr_ini_flag (only 2), cr_manual_flag (1 = enter entire CRP 

every step, 2 = Change 1 CR at a time, 3 = check 'crd_flag' file each 

iteration for cr_manual_flag, 4 = 3 and prompt for cr_manual_flag if 

solution not found)] 

 

'CR.PREF' 7 8 8 8 / 

 

'CR.STEP' .02 .5 / (min, max) CR move size, fraction of range 

 

'CR.BND' .3333 .6667 / Fractional values for boundaries between shallow, 

intermediate, deep insertions 

 

'CR.RING' 1.0 1.0 1.0 / 

 

'CRD.CVC' 3.01020  2.01020  3.02020  2.03020  3.05020  2.05020  3.10100  

2.12100  

          4.01020  1.01020  4.02020  1.02020  4.05020  1.05100  4.09100  

1.09100 
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          3.03020  2.02020  3.04020  2.04020  3.07020  2.07020  3.11100  

2.13100 

          4.03020  1.03020  4.04020  1.04020  4.07020  1.07100  4.11100  

1.11100 

          3.06020  2.06020  3.08020  2.08020  3.09100  2.10100  3.14100     0  

          4.06020  1.06100  4.08020  1.08100  4.10100  1.13100     0        0  

          3.12100  2.09100  3.13100  2.11100  3.15100     0        0        0  

          4.12100  1.10100  4.13100  1.12100     0        0        0        0 

/ 

 

'END'    
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Appendix D – Constraint Data for all Cycles of the Test Cases 

D.1 – All Sampling Types with Constant Sampling Probabilities PSA Best Solutions 

Test Case 1 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4605E-01  2  6.4753E-03  1.0014E+00  1.4823E+00  1.8725E+00  2.4789E+01  3.0587E+01 -  10   1   2       1  64   1   

            3  5.5664E-03  1.0001E+00  1.4795E+00  1.8429E+00  2.9920E+01  3.7140E+01     4      11   1   3  47 

            4  5.5333E-03  1.0000E+00  1.5000E+00  1.8961E+00  3.4943E+01  4.2407E+01     2   8   1      12  46 
 

Test Case 2 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5468E-01  2  7.1617E-03  1.0009E+00  1.4992E+00  1.8937E+00  2.3517E+01  2.9181E+01 -       4   2      44  42   1 

            3  5.9501E-03  1.0009E+00  1.4849E+00  1.8793E+00  2.9729E+01  3.6891E+01     4   2   7      11  49 

            4  5.3297E-03  1.0001E+00  1.4982E+00  1.8821E+00  3.3925E+01  4.0246E+01        20   4      10  34 

Test Case 3 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4925E-01  2  6.6870E-03  1.0042E+00  1.4974E+00  1.8774E+00  2.4439E+01  3.0142E+01 -      23   3          56 

            3  5.4254E-03  1.0000E+00  1.4771E+00  1.8877E+00  2.9374E+01  3.6024E+01        24           1  43 

            4  5.8735E-03  1.0001E+00  1.4962E+00  1.8449E+00  3.4745E+01  4.2337E+01     1  49          13  19 

 

Test Case 4 
                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5872E-01  2  6.9479E-03  1.0048E+00  1.4963E+00  1.8759E+00  2.3993E+01  2.9849E+01 -      43   2       2  43 

            3  6.2191E-03  1.0000E+00  1.4808E+00  1.8619E+00  2.8924E+01  3.5054E+01     2  54   2       2  25 

            4  5.9395E-03  1.0000E+00  1.4993E+00  1.8921E+00  3.1279E+01  3.6718E+01     1  46  12      11   9   2 
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D.2 – Ordered Sampling with Constant Sampling Probabilities PSA Best Solutions 

Test Case 1 

                                                                                                 New Fuel Types 

    OF      CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5195E-01   2  6.4873E-03  1.0001E+00  1.4950E+00  1.8736E+00  2.4645E+01  3.0425E+01 -      32   1       1  48 

             3  5.8823E-03  1.0001E+00  1.4825E+00  1.8617E+00  2.9420E+01  3.6148E+01        30   5       3  37 

             4  6.0259E-03  1.0001E+00  1.4978E+00  1.8493E+00  3.3766E+01  3.9859E+01     1  63   5      18   1 
 

Test Case 2 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5235E-01  2  6.5961E-03  1.0003E+00  1.4911E+00  1.8668E+00  2.4221E+01  3.0078E+01 -      38   6       3  38 

            3  5.7742E-03  1.0001E+00  1.4929E+00  1.9029E+00  2.9722E+01  3.5963E+01     1  14   1       9  47 

            4  6.0550E-03  1.0001E+00  1.3764E+00  1.6581E+00  3.3523E+01  3.9911E+01        72          18 

Test Case 3 

                                                                                                 New Fuel Types 

    OF      CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5379E-01   2  6.6082E-03  1.0033E+00  1.4776E+00  1.8635E+00  2.4023E+01  2.9997E+01 -      18           1  60   1 

             3  6.1873E-03  1.0000E+00  1.4929E+00  1.8669E+00  2.9587E+01  3.6261E+01        88   2           1 

             4  5.7446E-03  1.0000E+00  1.4881E+00  1.8746E+00  3.2882E+01  3.9644E+01         3   4       6  55 

Test Case 4 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.6496E-01  2  7.1811E-03  1.0009E+00  1.4885E+00  1.8517E+00  2.3221E+01  2.8790E+01 -   1  81  16       4  

            3  6.9384E-03  1.0000E+00  1.4993E+00  1.8781E+00  2.5905E+01  3.0994E+01     2  69  11       4  11   

            4  5.6477E-03  1.0000E+00  1.4967E+00  1.8808E+00  3.0237E+01  3.6391E+01     2  14           9  46 
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D.3 – Random Sampling with Constant Sampling Probabilities PSA Best Solutions 

Test Case 1 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4941E-01  2  6.6131E-03  1.0002E+00  1.4850E+00  1.9265E+00  2.4921E+01  3.1010E+01 -       6          16  59 

            3  5.5215E-03  1.0001E+00  1.4964E+00  1.9042E+00  3.0532E+01  3.8333E+01     1  25           2  42 

            4  5.8917E-03  1.0000E+00  1.4993E+00  1.8942E+00  3.3362E+01  3.9533E+01     2  17          20  38 

 

Test Case 2 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4718E-01  2  6.4022E-03  1.0016E+00  1.4913E+00  1.8973E+00  2.4715E+01  3.0470E+01 -   4   2           1  69 

            3  5.8959E-03  1.0020E+00  1.4970E+00  1.8682E+00  3.0293E+01  3.6816E+01        43          11  26 

            4  5.4106E-03  1.0000E+00  1.4944E+00  1.9047E+00  3.4750E+01  4.1606E+01         4  16       5  39 

 

Test Case 3 

                                                                                                 New Fuel Types 

    OF      CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5543E-01   2  6.4011E-03  1.0016E+00  1.4923E+00  1.8693E+00  2.4158E+01  3.0305E+01 -   1  16   5       2  54 

             3  6.4084E-03  1.0000E+00  1.4959E+00  1.8405E+00  2.8547E+01  3.4576E+01        87       1   5       1 

             4  6.0393E-03  1.0001E+00  1.4948E+00  1.8697E+00  3.0987E+01  3.7937E+01     1  29           7  41 

Test Case 4 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5943E-01  2  6.4965E-03  1.0002E+00  1.4945E+00  1.8809E+00  2.4434E+01  3.0303E+01 -   1  34   1       1  46 

            3  6.5308E-03  1.0001E+00  1.4763E+00  1.8147E+00  2.9369E+01  3.5769E+01        61           5  24 

            4  6.3525E-03  1.0001E+00  1.4912E+00  1.8546E+00  2.9287E+01  3.5166E+01        74   3      11   3   1 

 



103 

 

D.4 – All Sampling Types with Variable Sampling Probabilities PSA Best Solutions 

Test Case 1 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4564E-01  2  6.4753E-03  1.0014E+00  1.4823E+00  1.8725E+00  2.4789E+01  3.0587E+01 -  10   1   2       1  64   1 

            3  5.5444E-03  1.0000E+00  1.4709E+00  1.8492E+00  2.9602E+01  3.6792E+01     4   1  11       2  48 

            4  5.4977E-03  1.0000E+00  1.4991E+00  1.8874E+00  3.4756E+01  4.1166E+01     1  13   5      11  39 
 

Test Case 2 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5385E-01  2  7.1617E-03  1.0008E+00  1.4989E+00  1.9044E+00  2.3522E+01  2.9188E+01 -       4   2      44  42   1 

            3  5.9149E-03  1.0001E+00  1.4854E+00  1.8544E+00  2.8869E+01  3.6337E+01     4  14   9       1  45 

            4  5.2461E-03  1.0000E+00  1.4902E+00  1.8959E+00  3.4555E+01  4.0660E+01        18   1      16  33 

 

Test Case 3 

                                                                                                 New Fuel Types 

    OF      CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.4937E-01   2  6.6870E-03  1.0042E+00  1.4974E+00  1.8778E+00  2.4443E+01  3.0148E+01 -      23   3          56 

             3  5.4254E-03  1.0000E+00  1.4754E+00  1.8907E+00  2.8903E+01  3.6103E+01        24           1  43 

             4  5.8920E-03  1.0000E+00  1.4915E+00  1.8794E+00  3.4498E+01  4.0999E+01     2  34          25  21 

Test Case 4 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

1.5862E-01  2  6.9479E-03  1.0048E+00  1.4965E+00  1.8754E+00  2.3995E+01  2.9851E+01 -      43   2       2  43 

            3  6.2201E-03  1.0000E+00  1.4818E+00  1.8696E+00  2.8881E+01  3.4999E+01     2  53   3       3  24 

            4  5.9239E-03  1.0000E+00  1.4995E+00  1.8716E+00  3.1750E+01  3.7212E+01     1  51  15       6   7   1 
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D.5– CRP Search Test Case  

Test Case 1 

                                                                                                New Fuel Types 

    OF     CYC    FCC       EOC KEFF    MAX(RPF2)   MAX(RPF3)   MAX(EXP2)   MAX(EXP3)     1   2   3   4   6   7   8 

4.4598E+00  2  7.2913E-03  1.0014E+00  1.5748E+00  2.0613E+00  2.4541E+01  2.9381E+01 -                   1  83 

            3  5.4792E-03  1.0001E+00  1.4922E+00  1.8892E+00  2.8874E+01  3.4871E+01    20  11       1      42 

            4  5.8899E-03  1.0001E+00  1.4972E+00  1.9058E+00  3.4961E+01  4.2633E+01         8          11  53  



105 

 

Appendix E – Loading Pattern Plots for Best Solutions not Presented in the 

Text 

E.1 – All Sampling Types with Constant Sampling Probabilities PSA Best Solutions 
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E.2 – Ordered Sampling with Constant Sampling Probabilities PSA Best Solutions 
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E.3 – Random Sampling with Constant Sampling Probabilities PSA Best Solutions 
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E.4 – All Sampling Types with Variable Sampling Probabilities PSA Best Solutions 
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E.5 – CRP Search, All Sampling Types with Variable Sampling Probabilities Best Solutions 

Test Case 1 
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