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ABSTRACT 
 
 
Engineering problems are often ill-posed, i.e. cannot be solved by conventional 

data-driven methods such as parametric linear and nonlinear regression or neural 
networks. A method of regularization that is used for the solution of ill-posed problems 
requires an a priori choice of the regularization parameter. Several regularization 
parameter selection methods have been proposed in the literature, yet, none is resistant to 
model misspecification. Since almost all models are incorrectly or approximately 
specified, misspecification resistance is a valuable option for engineering applications. 

Each data-driven method is based on a statistical procedure which can perform 
well on one data set and can fail on other. Therefore, another useful feature of a data-
driven method is robustness. This dissertation proposes a methodology of developing 
misspecification-resistant and robust regularization parameter selection methods through 
the use of the information complexity approach. 

The original contribution of the dissertation to the field of ill-posed inverse 
problems in engineering is a new robust regularization parameter selection method. This 
method is misspecification-resistant, i.e. it works consistently when the model is 
misspecified. The method also improves upon the information-based regularization 
parameter selection methods by correcting inadequate penalization of estimation 
inaccuracy through the use of the information complexity framework. Such an 
improvement makes the proposed regularization parameter selection method robust and 
reduces the risk of obtaining grossly underregularized solutions. 

A method of misspecification detection is proposed based on the discrepancy 
between the proposed regularization parameter selection method and its correctly 
specified version. A detected misspecification indicates that the model may be inadequate 
for the particular problem and should be revised. 

The superior performance of the proposed regularization parameter selection 
method is demonstrated by practical examples. Data for the examples are from Carolina 
Power & Light's Crystal River Nuclear Power Plant and a TVA fossil power plant. The 
results of applying the proposed regularization parameter selection method to the data 
demonstrate that the method is robust, i.e. does not produce grossly underregularized 
solutions, and performs well when the model is misspecified. This enables one to 
implement the proposed regularization parameter selection method in autonomous 
diagnostic and monitoring systems. 
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CHAPTER 1 

INTRODUCTION 

This dissertation is about data-driven modeling methods used for diagnostics, 

monitoring, and fault detection in industrial applications. The methodology developed in 

this dissertation falls into the field of statistical learning from data. The practical 

application of the methodology is for the solution of ill-posed inverse problems in 

engineering. This work was motivated by the lack of robust and resistant to model 

misspecification Regularization Parameter Selection Methods (abbreviated RPSM's) for 

the solution of ill-posed problems. This lack has limited the applicability of data-driven 

methods in the industry and indicated a necessity for developing robust and 

misspecification-resistant RPSM's which are more suitable for autonomous diagnostic 

and control systems. In this dissertation we develop a systematic way of construc ting 

robust and misspecification-resistant RPSM's and demonstrate their superior 

performance. 

1.1 Motivation 

Data-driven modeling is widely used in industrial diagnostics and control. Based 

on results of modeling, the personnel make operational and safety-related decisions. 

Therefore, a modeling method that leaves the personnel to wonder whether the method 

produced a reasonable result or not is of no practical use. The majority of the latest data-

driven methods used in diagnostics and surveillance are so complicated that only very 

few people, including the developers and specialists in the area, are aware of all the 

crucial conditions and assumptions under which the methods perform reliably or know 
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the meaning of the parameters to be tuned and their influence on the methods' 

performance. The users of the methods may have no knowledge of the fundamental 

limitations and theory behind the development and have no tools for assessing how 

reasonable the produced result is, unless, of course, it is so inappropriate that does not 

make common sense. 

From the practical point of view, a method should provide the user with a result 

that can be taken without further analysis and used in decision-making. Since many 

decisions are not only operational but also safety related, the y must be conservative. This 

means that a method should provide a result that is guaranteed to be either correct or 

conservative. There is no statistical method that can guarantee a correct result in an 

arbitrary situation. This is the downside of any statistical procedure. A statistical 

procedure can perform perfectly on one data set and fail miserably on another data set. 

Since data-driven methods employ statistical procedures, one must be very careful in 

implementing them. 

Despite the downside of statistical procedures, the need for data-driven methods is 

beyond argument. They are of great value. In many situations, data-driven methods are 

the only option available. Therefore, the main focus in developing a data-driven method 

is to make sure that the statistical procedures it employs give either correct or 

conservative results. After all, the users may have no knowledge of the smoothing 

properties of the learning operator, and may not know that learning from data is possible 

only if the underlying relationship is smooth. They only design a model of an engineering 

system and want to use the model to make a correct decision. Users want automatically-

tuned methods that choose the parameters they need, provide safe results, and can be 

manually tuned further to maximize economical benefits or to meet some specific goals. 

Any data-driven modeling method that is going to be implemented in an industrial 

application should be resistant to any kind of violation of the assumptions and should 
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provide users with a safe result. It is well known that many methods use unrealistic 

assumptions that rarely occur in real life. Therefore, the main challenge is to develop 

methods that are resistant to violations of the assumptions and provide users with 

reasonable results. A "smart" method that gives users no result if the assumptions are 

violated and indicates that it does not work under the present conditions is of little value 

because the decision that was supposed to be made on the basis of the anticipated result 

still needs to be made. Moreover, some, if not all, modeling assumptions are usually 

violated to some degree; and thus smart methods would never work. 

Resistance to assumption-violation as a valuable option is well recognized in such 

fields as econometrics in which one can rarely claim that a model is correctly specified. 

Incorrectly specified models are also common in engineering. After all, a model by 

definition gives an approximate description of the data-generating process under 

consideration. Since the actual data-generating process is usually unknown, the model 

can be easily misspecified. Misspecification means that the model cannot be tuned to 

describe the data-generating process exactly even when the process is known. The 

problem is to obtain a method that works properly and provides best possible 

approximations under model-misspecification. An example of usual assumptions is a 

well-conditioned data set with white Gaussian noise in the response. Not all real data sets 

can satisfy this assumption. Therefore, to be practically useful, any method derived under 

that assumption, because of the mathematical simplicity of the analysis, must be resistant 

to the violation of the assumption. 

For example, a linear regression model provides the best (in the least squares 

sense) linear approximation to the nonlinear relationship. When the data set is ill-

conditioned, ridge regression with a properly chosen regularization parameter value 

should be used to obtain a regularized (stable) solution. If the RPSM we use was derived 

assuming correct model specification, will it provide a proper regularization parameter 
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Model 
(parameters) Input Output 

Physical process 

Direct Problem: Input, Model->Output 
Inverse Problem: Input, Output->Model 
   Model, Output->Input 

 
Figure 1.1.  Direct and inverse problems in modeling. 

value when the model is incorrect? Will we able to get a stable approximation in this 

case? These are practical questions that need to be answered. Therefore, a practically 

valuable method must behave properly under violation of the assumptions and 

consistently provide the best possible approximations when the model is misspecified. 

In this dissertation we address the issue of developing a RPSM that is resistant to 

assumption-violation and that consistently provides reasonable and safe results. This 

method is an important part of any autonomous diagnostic and surveillance system that 

operates under real conditions and provides results that can be safely used for decision-

making. 

1.2 Modeling as an Ill-Posed Problem 

Many problems solved in applied science and engineering are inverse problems. 

An inverse problem consists of finding unknown causes of known consequences. In 

contrast, solving a direct problem is finding unknown consequences of known causes. In 

terms of mathematical models of physical processes, the inverse problem illustrated in 

Figure 1.1 is to determine the model parameters, given the observed input and output. 

This problem is also known as the identification problem. The direct problem is to find 

the output of the model, given the input and the model parameters. 
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We name some examples of inverse problems and fields in which inverse 

problems are found: 

• Nuclear transport 

• Heat and mass transfer 

• Fluid and solid mechanics 

• Acoustics 

• Electromagnetism 

• Geophysics 

• Vibrations and structural dynamics 

• Inverse design 

• Optimum experimental design 

• System identification 

• Sensor validation 

• Restoration or deconvolution of signals in signal processing 

• Signal deconvolution 

• Evaluation of derivatives of a noisy signal 

• Property estimation 

• Imaging 

• Image deblurring in astronomy 

• Computed tomography 

• Tomography and inverse scattering 

• Statistical learning from data 

• Artificial intelligence techniques 

• Backward prior specification in Bayesian inference 

• Retrospective reasoning in history 

• Evolution theories. 
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Many inverse problems are ill-posed. Hadamard (1902) first introduced the notion 

of well- and ill-posed problems. A problem is well-posed if the following conditions are 

satisfied: 

1. A solution of the problem exists; 

2. The solution is unique; 

3. The solution is stable. 

If a problem is ill-posed, its solution has no practical use. For example, solution 

(model parameter) instability implies that any insignificant change in the input and 

output, due to noise or possible outliers, would result in a completely different solution 

that produces significantly different predictions. This is a situation which no engineer 

would like to see, especially when crucial decisions based on the model output are to be 

made. In engineering applications, the data may not contain the information required to 

solve the problem. We usually assume that a solution exists because we use only 

approximate models of physical processes, although the true solution may not be among 

the approximate ones under consideration. Moreover, model parameters may not have a 

physical interpretation at all, i.e. they may be unobservable. 

Inverse problems may violate all the above conditions. Usually the solution is not 

stable. If a direct problem is smoothing, its corresponding inverse problem is roughening 

and, as a result, has a highly unstable solution. The roughening mapping tends to amplify 

noise in the observed output and produces very unstable solutions. This effect is most 

pronounced when the output is known only approximately due to noise corruption, 

modeling error, or discretization error. 



 7

1.3 A Method of Regularization 

Ill-posed problems can be solved by using a Method of Regularization 

(abbreviated MOR). MOR is a method of finding approximate solutions to ill-posed 

problems, which are stable under small perturbations of the data. Basically, instead of 

solving an ill-posed problem we solve a set of well-posed problems that approximate the 

original ill-posed problem. Though ill-posed problems were encountered by Hadamard as 

early as 1902, a systematic way of solving them was not developed until 1963 when 

Tikhonov introduced the method of regularization. The method provides approximate 

solutions to ill-posed problems which are stable under small perturbations of the data. 

Getting stable solutions is extremely important in engineering applications because stable 

solutions provide a reliable source of information for decision-making. Stability also 

corresponds to the repeatability of the results, which is an important requirement for the 

result to be scientifically valid. 

Ill-posed problems can be continuous and discrete. In the continuous case the 

solution of the problem is a continuous function of some variables. We are most 

interested in cases, when the solution is discrete, because the estimation of parameters of 

parametric models falls into this case, and data are usually collected and stored in the 

digitized form and are processed with numerical methods on computers. In the discrete 

case, we estimate a finite number of parameters from a finite amount of data (or 

observations). 

Many discrete ill-posed problems can be reduced to the solution of a simple linear 

equation 

 ε+= XbY , (1.1) 

where Y  is an 1×n  vector of noisy output signals of a system or process under 

consideration called the response, X  is an mn×  matrix representing n  observations or 
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measurements of m  independent variables called the predictors, b  is a vector of m  

parameters called the regression coefficients, and ε  is an unknown noise vector that 

represents the measurement error, the modeling error, and the true stochastic noise. 

The problem (1.1) is ill-posed when the matrix of second moments of X  is 

singular or near singular. It becomes singular or near singular because of the inclusion of 

linearly related variables as in the case of prediction from correlated sensor values. As a 

result, the estimate nXX T /  of the matrix of second moments becomes ill-conditioned, 

or has a very large condition number. The main implication is a highly unstable least 

squares solution which becomes very sensitive to particular noise realizations in the 

observed response. The Ordinary Least Squares (abbreviated OLS) solution is given by 

 ( ) YXXXb TT
OLS

1−
= . (1.2) 

Because XX T  is ill-conditioned, its inverse drastically amplifies the noise 

component in the response and makes the solution hypersensitive to particular 

realizations of that noise component. In applications, we desire the opposite. We want a 

solution be insensitive to noise in the response, because the noise is a noninformative 

component that contributes nothing to the problem solution. Any influence of noise on 

the solution is highly undesirable. 

We can also write the OLS solution in terms of a Singular Value Decomposition 

(abbreviated SVD) of matrix X  given by 

 ( ) T
i VsUX diag= , (1.3) 

where U  is an mn×  column-orthogonal matrix, V  is an mm ×  orthogonal matrix, and 

s  is an m -vector of positive or zero elements called the singular values, as 

 ∑
=

=







=

m

i
i

i

iT

i
OLS v

s
YU

s
Vb

1

1
diagˆ ρ

. (1.4) 

It is usually true that the last few components are noise components in the data. These 

noise components, multiplied by ii s/ρ , contribute to the solution. Even if the cross-
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correlation YuT
ii =ρ  between the i -th noise component and the response is fairly small, 

a very small singular value makes the noise component contribute noticeably to the 

solution, making the solution unstable and hyper sensitive to the noise component in the 

data. 

The method of regularization suggests using a regularization operator ( )λ,YR  to 

obtain a regularized solution 

 ( )λλ ,YRb = , (1.5) 

where λ  is the regularization parameter, which determines the proper degree of 

regularization depending on the amount of noise in the response. An important property 

of that operator is that it gives the exact solution of (1.1) when the amount of noise in the 

response goes to zero. The form of the regularization operator depends on the specifics of 

the particular problem. It is usually chosen so that the corresponding regularized 

solutions are physically plausible. For problem (1.1), a regularization operator that 

produces solutions with small variance is reasonable because it is the large variance of 

the OLS solution that makes it useless and very sensitive to the noise component. 

The most common choice of the regularization operator for problem (1.1) is  

 ( ) ( ) YXXXYR TTT 12,
−

ΩΩ+≡ λλ  (1.6) 

which, for mI≡Ω , produces the well-known ridge regression (Hoerl, 1970) coefficients. 

This regularized solution is also known as a minimum energy solution (Hansen, 1998) 

because large values of the regression coefficients are being penalized. Notice that the 

introduction of ΩΩT2λ  causes matrix ΩΩ+ TT XX 2λ  become well-conditioned. As a 

result, the regularized solution has smaller variance and becomes much more stable to the 

noise component in the response. 

In terms of the SVD of X , the regularized solution is written as 

 ∑
= +

=








+
=

m

i
ii

i

iT

i

i v
s

s
YU

s

s
Vb

1
2222

diagˆ ρ
λλλ . (1.7) 
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The value of λ  which is larger than the singular values corresponding to the noise 

components prevents these noise components from contributing to the solution because 

the correlation coefficients are no longer divided by very small singular values as in the 

OLS case. 

Ω  in (1.6) is usually called a penalty operator because it is used to penalize 

undesirable properties of the solution. We also note that making the regularization 

parameter a function of the noise level in the response, which becomes zero when the 

noise level goes to zero, would guarantee that the regularization operator would give the 

exact solution to the problem (1.1) when the noise level is zero. 

There are other useful choices of the penalty operator. If it is a matrix that 

approximates the first derivative operator, the regularized solution is a maximum flatness 

solution (Hansen, 1998). If it approximates the second derivative operator, the 

regularized solution is a smooth solution. Since the method of regularization was 

developed to solve operator equations in which the desired solution is a smooth function, 

it originally used the second derivative operator as the penalty operator to produce 

smooth regularized solutions. 

The only obstacle to applying these methods is the selection of a proper 

regularization parameter value. As mentioned already, setting it to zero produces an OLS 

solution which is unstable, and setting it nonzero produces a regularized solution which 

has smaller amplitude, greater flatness, or smoothness depending on the penalty operator. 

The regularization parameter must be a function of the true noise level to guarantee the 

convergence property of the regularization method. Since the true noise level is almost 

always unknown in real applications, selection of a proper value of the regularization 

operator is a very important and challenging problem in itself. 

A number of methods for choosing an optimal regularization parameter are 

proposed in the literature. However, none of them has the desirable properties needed in 
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engineering practice. They perform poorly with colored noise and in the important case 

of model misspecification. From this standpoint, the search for new, more powerful 

regularization parameter selection methods that are data-driven and misspecification-

resistant is well justified from both theoretical and practical points of view. 

1.4 Originality of the Proposed Work 

The main original contribution of the proposed work is a new information 

complexity-based RPSM and a new method for detection of possible model-

misspecification. The information complexity-based RPSM is used for the solution of ill-

posed inverse engineering problems. The misspecification-detection method is based on a 

discrepancy between two versions of the proposed RPSM: one is misspecification-

resistant and the other is not. 

Unlike the existing methods, the proposed RPSM works consistently for 

misspecified models, i.e. it is misspecification-resistant, and reduces the risk of obtaining 

grossly underregularized solutions, i.e. reduces variability of the chosen regularization 

parameter. Misspecification-resistance makes solutions that use the proposed RPSM 

robust to modeling errors while the reduced variability of the chosen regularization 

parameter makes the system robust to peculiarities in the noise components of the 

response. None of the existing methods combines both of these features. As a result, the 

existing RPSM's can perform well only in certain situations when the crucial assumptions 

under which the methods were derived are satisfied. The proposed RPSM is resistant to 

violation of the assumptions and performs well in the very important case of a small 

number of observations. Misspecification-resistance and robustness are of great value in 

building reliable autonomous diagnostic and monitoring systems. 
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The superior performance of the proposed RPSM is demonstrated using various 

examples starting from building an inferential system for venturi meter drift detection, 

through building a sensor validation system and solving integral equations to image 

restoration and prior distribution specification in Bayesian inference. 

1.5 Dissertation Organization 

The rest of the dissertation is organized as follows. CHAPTER 2 is a literature 

survey of current methods for choosing the regularization parameter value. CHAPTER 3 

describes the information approach in the context of maximum penalized likelihood 

estimation, which is used for the solution of ill-posed problems in the stochastic setting. It 

also presents a new extension of the information approach in the context of penalized 

estimation and develops a new RPSM which is misspecification-resistant and more 

robust in real world applications than information-based RPSM's because of an extra 

penalization of estimation inaccuracy. CHAPTER 4 contains a number of examples that 

cover a wide spectrum of practical applications from sensor validation using data from a 

nuclear power plant to image restoration and learning from data. In the last chapter we 

draw conclusions and mark possible future work and further improvements. 
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CHAPTER 2 

PREVIOUS WORK ON REGULARIZATION 

PARAMETER SELECTION 

There are two major approaches to regularization parameter selection: 

deterministic and stochastic. The stochastic approach exploits the statistical nature of the 

noise component in the response whereas the deterministic approach completely ignores 

it. In either approach there are methods that require different types of input information 

for producing a proper value of the regularization parameter for a particular problem. 

Figure 2.1 demonstrates a possible classification of the RPSM's. The "Heuristic" and 

"Error Free" methods do not require an estimate of the noise level in the response; the 

others do. 

 

A Priori

 ~ (delta/rho)^(2/2mu+1)

A Posteriori

Morozov's DP

Heuristic

The L-curve

Deterministic Rules

Error Free

GCV

Correct Models

CL

Misspecification-resistant

RIC, ICP
ICOMP

With Noise Estimate Bayesian

Stochastic Rules

Regularization parameter selection rules

 
Figure 2.1.  Regularization parameter selection method clas sification. 
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2.1 Deterministic RPSM's 

A priori RPSM's require, as their name implies, a priori information about the true 

solution and the true noise level in the response. Since neither is available in practical 

applications, especially when parameters have no physical interpretation at all, these 

methods are of little interest for practical implementations. They are important from the 

theoretical point of view because they establish optimal convergence rates. A particular 

regularization method is convergent when the error between the regularized solution 

obtained using this method and the true solution goes to zero as the noise in the response 

goes to zero. The convergence rates are useful in the theoretical analysis of the 

regularization methods and in comparing different RPSM's. RPSM's with faster 

convergence would provide more accurate solutions for a given noise level and, thus, are 

preferable. 

2.1.1 A priori RPSM's 

When the noise level, denoted as δ , is known and, for some 0>µ , 

( ) wXXb T µ
= , where υ≤w , i.e. b  has a source representation, the regularization 

method is of optimal order with the following a priori RPSM (Engle, 2000), 

 
12

2

~
+







 µ

υ
δ

λ . (2.1) 

This result is for the deterministic setting. The source representation can be seen as a 

condition on the decay rate of the correlation coefficients iρ  between Y  and iu . For 

problem (1.1) to have a regularized solution, the correlation coefficients iρ  arranged in 

decreasing order of the singular values must decay faster then the singular values of 

nXX T / . For larger µ , this condition becomes more severe. Namely, the correlation 

coefficients must decay faster than the singular values raised to the µ42 +  power. If this 



 15

is fulfilled for larger µ , the convergence of the regularized solution to the true one will 

be faster. 

For most real-world applications neither µ  nor υ  is known, and, as a result, it is 

impossible to construct an a priori RPSM of optimal order. Therefore, a number of a 

posteriori RPSM's that depend on the data have been proposed. 

2.1.2 A posteriori RPSM's 

The a posteriori RPSM that is most widely used is Morozov's (1984) Discrepancy 

Principle (abbreviated MDP). The regularization parameter value is chosen as a solution 

of the following equation 

 δλ ≤− YXb . (2.2) 

The regularization parameter λ  is chosen such that the corresponding residual 

(left hand side of (2.2)) is less than or equal to the a priori specified bound (right hand 

side) for the noise level in the response. Since a smaller λ  corresponds to less stable 

solutions, the λ  for which the residual equals the specified noise level is chosen. There is 

no reason to expect a residual less than the noise level. In modeling from data, a residual 

less then the noise level in the response corresponds to overfitting, which is a term for 

learning noise in the training data. The regularization method with λ  chosen according to 

the discrepancy principle (2.2) is convergent and of optimal order (Morozov 1984; Engle, 

2000). 

To apply MDP, we must have a priori knowledge about the noise level in the 

response. Since the noise level is usually unknown, we use an estimate of the noise level. 

Unfortunately, MDP is very sensitive to an underestimation of the noise level. This limits 

its application to cases in which the noise level can be estimated with high fidelity 

(Hansen, 1998). An improved a posteriori method (Engle, 2000; Raus, 1984) outperforms 

MDP in that it is of optimal order for a wider range of µ  than MDP. 
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A posteriori RPSM's require the noise level to be either known or reliably 

estimated. Such a noise level can be hard to obtain. An alternative approach to 

regularization parameter selection uses noise-level- free RPSM's. Noise-level- free 

RPSM's are also referred to as heuristic RPSM's. Heuristic RPSM's provide a 

regularization parameter value without knowledge of the noise level. However, due to the 

result of Bakushinskii (1984), a noise-level- free RPSM cannot provide a convergent 

regularization method. Therefore, heuristic RPSM's are nonconvergent. Despite that, in 

practical applications, heuristic RPSM's may demonstrate very good performance in 

reconstructing the solution of ill-posed problems (e.g. Hanke, 1993). 

2.1.3 The L-curve method 

The most widely-used heuristic method is the L-curve method (Hansen, 1998). In 

this method, the residual norm is plotted versus the regularized solution norm and the 

regularization parameter value corresponding to the corner of the L-shape curve is 

chosen. The corner occurs where the curve has its maximum curvature. The L-curve 

method has been shown to be nonconvergent (Vogel, 1996; Leonov, 1997). For some 

problems, it is extremely difficult to locate the corner; for others, the L-curve may have 

several corners. The L-curve method can be also used in the stochastic setting. 

2.2 Stochastic RPSM's 

In a stochastic setting, a distributional model of the noise component ε  in the 

response is specified. Usua lly, white Gaussian noise is assumed, i.e. the noise component 

has a multivariate normal distribution denoted as ( )nn IN 2,0~ σε , where ε  is a random 

noise n -vector whose components are independent and normally distributed with zero 

mean and common variance 2σ . nI  denotes the nn×  identity matrix. A RPSM is 
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obtained so that it minimizes the mean predictive error estimated from the data. 

Therefore, all RPSM's in the stochastic setting use an estimator of the mean predictive 

error and select the regularization parameter value that minimizes the corresponding 

estimator. 

2.2.1 Generalized Cross Validation 

Probably the most widely used noise- level- free RPSM is Generalized Cross 

Validation (abbreviated GCV) (Wahba, 1990). According to this method, the 

regularization parameter is chosen such that it minimizes the GCV function given by 

 ( )
( )( )2

2

/

/

nHItrace

nYXb
GCV

λ

λλ
−

−
= , (2.3) 

where ( ) TT XIXXXH
1−

+= λλ  is called the hat or projection matrix. GCV does not 

require prior knowledge of the noise level and works with the white Gaussian noise 

model for the noise component. GCV occasionally fails, presumably due to the presence 

of correlated noise (Wahba, 1990). GCV can also produce grossly underregularized 

solutions (Wahba, 1993). 

2.2.2 Mallows' CL method 

Other widely used RPSM's are Mallows' (1973) CL and the Unbiased Risk 

Estimator (abbreviated URE) (Eubank, 1988), which is similar to CL. CL is derived as an 

estimator of the mean predictive error, in which the noise level is treated as a nuisance 

parameter and components iε  of the noise vector are assumed to be normally distributed 

with zero mean and common variance 2σ . CL is given by 

 ( ) ( ) 2
22

2
σ

σ
λ λ

λ −+
−

= Htrace
nn

YXb
CL . (2.4) 

CL can be considered as an information criterion as shown in Section 3.3. 
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CL must be accompanied by either an a priori noise level as in the deterministic 

setting or by a reliable estimate of the noise leve l. CL is very sensitive to an 

underestimation of the noise level and may fail to provide a regularization parameter 

value corresponding to an admissible regularized solution. CL was derived for the white 

Gaussian noise case and, hence, may not work reliably if that assumption is violated. 

2.2.3 Information Criteria 

GCV and CL methods are defined for uncorrelated Gaussian noise case and 

cannot be easily extended to more realistic cases. In real applications, the distribution of 

noise can be non-Gaussian with non-zero values of skewness (be asymmetric) and excess 

(be narrower or wider than Gaussian). Data can contain outliers and can be generated by 

a mixture of distributions. The level or variance of the noise may not be stationary but 

can vary. The noise may also be correlated. Finally, the statistical model of the noise can 

be misspecified, and the results obtained without taking this fact into account can be 

invalid. None of the above methods can be generalized to any of these conditions. 

To be able to deal with noise and model-misspecification and to construct 

misspecification-resistant RPSM's, we should consider the information approach which 

became widely-used in statistical model selection due to the works of Akaike (1973), 

Takeuchi (1976), Bozdogan (1987-2001), Murata (1994), and others. Unfortunately, 

information-based criteria such as the Regularization Information Criterion (abbreviated 

RIC) proposed by Shibata (1989) and the Information Criterion for Penalized models 

(abbreviated ICP) proposed by Konishi and Kitagawa (1996) have not been widely used 

as RPSM's for the solution of ill-posed problems. The RPSM's derived using the 

information approach are described in CHAPTER 3. 

The main advantage of the information approach is that it accounts for possible 

functional and distributional misspecifications of the models in a very natural way. While 
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misspecification may not be an issue when solving integral equations, it plays a crucial 

role in engineering applications based on black-box and data-driven techniques where the 

very notion of a true model is arguable and usually not discussed though the existence of 

one is silently assumed. A similar situation arises with econometric models in which, in 

contrast to engineering, misspecification-detection and misspecification-resistant 

estimation have been extensively used. For a detailed treatment of misspecification in 

modeling and further references on misspecification testing we refer to the works of 

White (1981-1994). In these situations, methods that are consistent under possible 

misspecifications are valuable because they automatically guard against the unrealistic 

assumption of correct model specification. 

Criteria such as CL, RIC, and ICP evaluate the generalization (or prediction) error 

using the training error and an additional term. This additional term penalizes the 

inaccuracy of parameter estimation and can be interpreted as the effective number of 

parameters of correctly specified models (for CL) or incorrectly specified models (for 

RIC and ICP). 

With a limited number of observations, penalization of the number of parameters 

alone becomes inadequate. This additional term cannot be computed exactly because of 

the dependence on the unknown true distribution and should be estimated from the same 

data set. As a result, the selected regularization parameter value is often underestimated 

and produces grossly underregularized or inadmissible solutions. An additional 

penalization of the parameter estimation inaccuracy, taking into account the 

interdependencies between the parameter estimates as in the Information Complexity 

RPSM (abbreviated ICOMPRPS) proposed in Urmanov and et. al. (2002) can drastically 

reduce the risk of regularization parameter value underestimation and make such a choice 

more suitable for black-box modeling. Such an "overestimation", or more precisely 

correction, of the inadequate penalization of inaccuracy is beneficial for engineering 
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applications in which the regularization parameter value should be chosen automatically 

during model building, and there is no means for assessing the proper amount of 

regularization. 

In CHAPTER 3, a systematic way of deriving information-based RPSM's, which 

are misspecification-resistant, is presented. The problem of obtaining grossly 

underregularized solutions because of large variability of the chosen regularization 

parameter is discussed. A method of reducing the risk of obtaining grossly 

underregularized solutions, using information complexity-based RPSM's is proposed. A 

method of misspecification detection is proposed. 
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CHAPTER 3 

REGULARIZATION PARAMETER SELECTION: 

AN INFORMATION APPROACH 

3.1 Introduction 

We introduce the information approach to regularization parameter selection in 

the linear case, though the approach is not limited to this case and is very general. 

Consider linear models of the form 

 i
T
ii ubXY += , ni ...1= , (3.1) 

where iY  is a dependent variable (or response), iX  is an independent m -vector variable 

(or predictors), b  is an unknown m -vector of regression coefficients or parameters to be 

estimated from observed data, and iu 's are random (noise) variables with the following 

properties 

 ( ) 0=iuE , ( ) 22
uiuE σ= , and ( ) 0=iiuXE . (3.2) 

There are two potential problems with such model specifications: (3.1)-(3.2). If 

the true relationship ( ) { }xXYExm ii =≡ |  between iY  and iX , also referred to as the 

true model, is not linear, or some relevant predictors are missing, we have functional 

misspecification. In this case the error term ( ) i
T
iii bXXmu ε+−≡  includes both the error 

of approximation, ( ) bXXm T
ii − , and the true stochastic error iε . This means that iX  

and iu  are no longer independent. For example, the usual covariance matrix of the ridge 

regression coefficients is obtain as 
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and can be estimated as 

 ( ) ( ) 112ˆˆ −−
++=Σ λλσ nXXXXnXX TTT . (3.4) 

It becomes inconsistent for misspecified models (White 1980). This inconsistency may 

make RPSM's such as Mallows' CL and URE, which implicitly use this covariance 

matrix estimator, inconsistent as well. In the maximum likelihood or Ordinary Least 

Squares (abbreviated OLS) framework, one can use an improved covariance matrix 

estimator, which is consistent under functional misspecification (White, 1980). In the 

ridge regression framework, a modified covariance matrix estimator can also be used to 

cope with possible functional misspecifications. 

The second problem is that the distributional assumption on the stochastic error 

(usually normality with zero mean and constant variance) is not fulfilled. Luckily, this 

type of model misspecification does not affect estimation of the regression coefficients 

b . However, the covariance matrix estimator again becomes inconsistent. This may 

destroy the  performance of a RPSM that uses the estimator (3.4). In the OLS framework, 

one can use an estimator which is consistent under distributional misspecifications, as in 

White (1982), and in the ridge framework we can also use a modified estimator that 

accounts for possible distributional misspecifications. 

Perhaps a third and more serious problem with model (3.1-3.2) is the assumption 

of independent observations or uncorrelated noise. If the true noise happens to be 

correlated, a RPSM that uses the uncorrelated noise assumption will most probably fail to 

select a plausible value of the regularization parameter. To cope with correlated noise, 
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one can consider an autoregressive noise model and work out an information criterion in 

a similar manner. 

To solve the problem (3.1) for the regression coefficients b , we assume that we 

have n  observations ( )ii YX ,  and rewrite the model in a matrix form 

 uXbY += , (3.5) 

where Y  is an 1×n  vector, X  is an mn×  matrix, and u  is an 1×n  vector of random 

errors in the response. The OLS solution minimizes the Sum of Squared Residuals 

(abbreviated SSR)  

 ( ) min2

1

2
→−=−≡ ∑

=
XbYbXYSSR

n

i

T
ii  (3.6) 

and is given by 

 ( ) YXXXb TT
OLS

1−
= . (3.7) 

When the data matrix X  is ill-conditioned (due to collinear predictor variables), 

the OLS solution is unstable (or statistically insignificant) and has no practical use. To 

obtain a stable solution, one can proceed with using a Method Of Regularization 

(abbreviated MOR). The common choice is Tikhonov (1963) regularization, which uses 

universal prior information of smoothness to obtain plausible solutions. In particular, a 

penalty term is added to the sum of squared residuals that assesses the physical 

plausibility of solutions. The resulting regularized solution is given as a solution of the 

minimization problem 

 min
22

→Ω+− bYXb λ  (3.8) 

which is minimized for 

 ( ) YXXXb TTT 1−
ΩΩ+= λλ , (3.9) 

where Ω  is a penalty operator (matrix), and λ  is the regularization parameter that 

controls the amount of penalty. When mI=Ω , minimum energy solutions are preferred 

(Hansen, 1998). These solutions correspond to the well known ridge regression (Hoerl, 
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1970) solution. When matrix Ω  is an approximation to the second derivative operator, 

smooth solutions are obtained. The regularized solution (3.9) is biased. This means that 

the expected value of the regularized regression coefficients is not equal to the true value 

of the regression coefficients if such value exists. When regression coefficients have no 

physical interpretation and the main goal is to predict future observations, the bias cannot 

be considered as a drawback as long as it results in improved prediction accuracy. 

Though biased, the regularized solution (3.9) for a suitably chosen λ  is useful and 

reduces the mean estimation error by significantly reducing the variance of the 

regularized solution as compared to the OLS solution (Hoerl, 1970). 

As already mentioned, the proper choice of the regularization parameter value is 

critical for obtaining a useful regularized solution, and many different RPSM's have been 

proposed. The rest of the chapter is dedicated to describing an information approach that 

can naturally account for possible model misspecification. RPSM's based on that 

approach are shown to be robust against such misspecifications. In addition, we argue 

that for a limited number of observations, a slight "overestimation" of the regularization 

parameter value is beneficial from the practical point of view, and that a RPSM derived 

in the information complexity framework provides such a refinement. 

The information approach uses the Maximum Penalized Likelihood (abbreviated 

MPL) estimation framework and properties of the MPL Estimators (abbreviated MPLE). 

Therefore, we briefly review the maximum penalized likelihood method in the context of 

ridge regression. For a more in depth description of the maximum penalized likelihood 

method, see Good and Gaskins (1971), Silverman (1985), Green (1987) and for 

asymptotic analysis of the MPL method, see Cox (1990). 
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3.2 Maximum Penalized Likelihood Method 

It is well known that the only way to overcome a lack of information is to bring 

some. When the amount of information contained in an observed data set is not sufficient 

for obtaining a useful solution additional information must be brought from outside the 

observed data. This is naturally implemented in the Bayesian approach by combining 

prior information with data to make an inference. An alternative approach is to use a 

penalized likelihood that also exploits prior information but in a narrower way than the 

Bayesian approach. Specifically, maximum penalized likelihood estimation corresponds 

to a maximum a posteriori procedure in Bayesian analysis (Leonard, 1978). 

When solving an ill-conditioned problem as in (3.1) we often obtain inadmissible 

results by using the Maximum Likelihood (abbreviated ML) method because of 

violations of the assumptions under which the ML method is valid. In the ill-conditioned 

case, the collinearity makes the solution underdetermined, and additional information 

must be used to further constrain the solution. This additional constraint is in the form of 

a penalization operator. The use of the penalization operator reduces undesirable 

properties of the solution. The idea of using smoothness as additional information, 

proposed by Tikhonov (1963), is a good example of prior information that works 

successfully in numerous engineering and scientific problems. 

We will now consider a more general model than (3.1). Assume that there exists 

an unknown true joint cumulative distribution function (abbreviated c.d.f.) of iX , which 

is a random m -vector, and iY , which is a random variable dependent on iX , 

 ( )ii YXG ,  with density ( )yxg
ii YX ,, . (3.10) 

The problem of modeling an observed data set ( ){ }n
iii YXD 1, ==  is comprised of 

specifying a parametric family of approximating distributions called the model 

 ( )bYXF ii ;,  with density ( ) ( ) ( )bxyfxfbyxf
iiiii XYXYX ;|;, |, =  (3.11) 
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and estimating the parameter vector b  from the observed data set D . 

The model (3.11) is said to be correctly specified if there exists 0b  such that 

( ) ( )iiii YXGbYXF ,;, 0 = ; otherwise, the model is said to be misspecified. Several forms 

of misspecification are possible. Functional misspecification occurs when the conditional 

mean of iY  is misspecified, i.e. ( ) ( ) bxxXYExm T
ii ≠=≡ |  for any mRb ∈ . 

Distributional misspecification occurs when the true distribution (3.10) does not belong 

to the specified family of approximating distributions (3.11). A detail discussion of 

misspecification in statistical modeling can be found in White (1994). 

To estimate b  from the observed data D , the maximum likelihood method is 

used. For a given sample of n  independent identically distributed (abbreviated i.i.d.) 

observations, the likelihood is defined as 

 ( ) ( )∏ =
≡

n

i ii bYXfbDL
1

;,| . (3.12) 

The likelihood represents the joint probability of the observations, regarded as a function 

of an unknown parameter. The log likelihood function of an observation is defined as 

 ( ) ( )bXYfbYXLL iiii ;|log|, ≡ . (3.13) 

The log likelihood function is given by ( ) ( ) ( )bXYfXfYXf iiiii ;|loglog,log += . 

However, since the first term does not depend on b , it will not affect the estimation of b . 

Therefore, in the following we refer to (3.13) as the log likelihood function of an 

observation. The log likelihood is defined as 

 ( ) ( )∑ =
=≡

n

i ii bYXLLbDLbDLL
1

|,|log)|( . (3.14) 

The value of b  that maximizes the log likelihood (3.14) is called the Maximum 

Likelihood Estimator (abbreviated MLE) of b  and denoted as b̂ . The use of the 

maximum likelihood estimation method was first suggested by Fisher (1921) and has 

become one of the most extensively-used tools in statistical analysis. 
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However, when the maximum likelihood method is applied to ill-posed problems, 

it does not produce a valuable result. The ML method can be modified, for example by 

introducing a penalty and "converting" it into a maximum penalized likelihood method. 

The penalized log likelihood function of an observation is defined as 

 ( ) ( ) ( )bpbYXLLbYXPLL iiii λ−= |,|, , (3.15) 

where ( )bp  is a penalty, and λ  is the regularization parameter as in (3.8). In the 

statistical literature, the penalized likelihood method was first proposed by Good and 

Gaskins (1971). Different penalties are discussed in Green (1987). In particular, consider 

the quadratic penalty in the form 

 ( ) ( ) 2

2
1

2
1

22
bbbbp T Ω=ΩΩ≡

σσ
, (3.16) 

where Ω  is a penalty operator (an ( )mm ×  matrix) with mI=Ω  corresponding to ridge 

regression. Given a sample of n  observations ( )ii YX , , the Maximum Penalized 

Likelihood Estimator (abbreviated MPLE) of b  is obtained as a solution of the following 

problem: 
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When we specify a normal distribution for the dependent variable 
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and a quadratic penalty of form (3.16), the maximum penalized likelihood estimator 

(3.17) is exactly a ridge estimator (in matrix notation) (Hoerl, 1970): 

 ( ) YXInXXb T
m

T 1ˆ −
+= λλ . (3.19) 

Two results concerning the asymptotic properties of the MPLE defined in (3.17) 

are stated below without proof and will be used later for deriving misspecification-

resistant RPSM's. These results can be proved following the same steps as in White 
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(1981). For more information on asymptotic properties of penalized likelihood estimators 

in the case of correctly-specified model, see Cox (1990) and  Knight (1998), and on 

asymptotic properties of maximum likelihood estimators under model misspecification, 

see White (1980). 

R.1  λb̂  is a consistent estimator of *
λb  which is the unique solution of 

 ( ) 0|,, =








∂
∂

bZWPLL
b

E ZW . (3.20) 

R.2  With a large enough n , λb̂  is approximately normally distributed, 

( ) ( )11* ,0~ˆ −−− IJJNbbn mλλ , where matrices J  and I  are defined as 
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W  and Z  are random variables that have the same joint distribution as iX  and iY  and 

are independent from iX  and iY . E  in (3.20) and (3.21) stands for the expectation 

operator with expectation is taken with respect to the true joint distribution of W  and Z . 

In the maximum likelihood case, when 0=λ , the matrices (3.21) are called Fisher 

information matrices in the Hessian (outer product) and inner product form respectively. 

In the maximum likelihood case, these matrices are equal ( IJ = )  when the model is 

correctly specified, and they are different ( IJ ≠ ) when the model is misspecified 

(White, 1980). This property is extensively used for misspecification detection of 

econometric models. 

In the Gaussian case with quadratic penalty (3.16), (3.20) is minimized for 

 { }( ) { } { }( ) { } *1
,

1* bWWEIWWEWZEIWWEb T
Wm

T
WZWm

T
W

−−
+=+= λλλ  (3.22) 

which is the limiting value of the MPLE λb̂  as ∞→n . *b  is the solution of 

 ( ) 0|,, =
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E ZW  (3.23) 
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or the limiting value of the maximum likelihood estimator. In the case of correct model 

specification 0
* bb =  (White, 1980). When the matrix { }T

W WWE  of second moments of 

W  is near singular, its estimator nXX T /  will be ill-conditioned and, as a result, the 

maximum likelihood estimator given by 

 ( ) YXXXb TT 1ˆ −
=  (3.24) 

will have a very large variance and no practical value. 

Since matrices J  and I  depend on the unknown true distribution (3.10) they are 

not computable and should be estimated in practice. Estimation is done by substituting 

the empirical distribution in (3.21). This results in the following estimators for the 

matrices 

 ( )∑
= ∂∂

∂
−=

n

i
iiT bYXPLL

bbn
J

1

2
ˆ|,

1ˆ
λ  and (3.25) 

  ( ) ( )∑
= ∂

∂
⋅

∂
∂

=
n

i
iiTii bYXPLL

b
bYXPLL

bn
I

1

ˆ|,ˆ|,
1ˆ

λλ .  (3.26) 

These matrices are used to estimate the asymptotic covariance matrix of the MPLE λb̂  as 

 ( ) 11 ˆˆˆˆˆ −−=Σ JIJbλ . (3.27) 

In analogy with the ML case, this covariance matrix estimator can be shown to be 

consistent under model misspecification. 

In the following section, an information approach is developed for evaluating 

different competing models whose parameters are estimated by the described maximum 

penalized likelihood method. The information criterion can also be used to choose the 

regularization parameter value that minimizes this criterion. Optimal selection of 

penalized models can be performed in two steps. For each competing model the 

regularization parameter that minimizes the informa tion criterion is chosen and then the 

minimized values of the criterion are compared to select the best model. The chosen 
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model is the one that is closest to the true one in the sense of minimum of the Kullback-

Leibler (1951) distance, which will be discussed in the next section. 

3.3 Information Approach to Regularization Parameter Selection 

When the parameters of a specified model ( )bYXf ii ;,  are estimated by the MPL 

method, each particular choice of the penalty operator and regularization parameter yields 

some approximating density ( )λλ bYXff ii
ˆ;,ˆ ≡ . The closeness of this approximating 

density λf̂  to the unknown true density ( )ii YXg , , assuming such exists, can be evaluated 

by the Kullback-Leibler (1951) (abbreviated KL) information (or distance) that measures 

the divergence between the densities 

 ( ) ( )
( ) ( ) dzdwdwdwzwg

bzwf

zwg

f

g
EgfKL mZW …… 21, ,ˆ;,

,
logˆlog;ˆ ⋅=













≡ ∫ ∫
λλ

λ . (3.28) 

The regularization parameter can be selected to minimize the mean KL distance. 

The mean KL distance is the KL distance averaged over all possible data sets ( D ) which 

can be used to obtain the approximating density λf̂  
 ( ){ }gfKLEDKL ;ˆminargˆ

λ
λ

λ = . (3.29) 

Such a choice guarantees that, on the average, the corresponding approximating density 

will be closest among those considered in the sense of the minimum KL distance. We can 

decompose the mean KL distance into a "systematic error" and a "random error": 

 

( )

444 3444 214444 34444 21
ErrorRandom

ZWD

ErrorSystematic

ZWZW

ZWD

ZWDD

f

f
EE

f
f

E
f
g

E

f

f
f
f

f
g

EE

f

g
EEgfKLE













++=













=













=

λ

λ

λ

λ

λ

λ

λ

λ

ˆ
logloglog

ˆ
log

ˆ
log;ˆ

*

,*

*

,*,

*

*

*

*,

,

 (3.30) 
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where ( )** ;, bZWff ≡  and *b  is a solution of 

 ( ) 0|,, =








∂
∂

bZWLL
b

E ZW   

or the limiting value of the ML estimator; ( )** ;, λλ bZWff ≡  and *
λb  is a solution of 

 ( ) 0|,, =








∂
∂

bZWPLL
b

E ZW   

or the limiting value of the MPL estimator. 

The systematic error, which can be also termed as the bias, consists of two terms. 

The first term represents the error of modeling and vanishes when the model is correctly 

specified. The second term represents the error due to using a penalization and vanishes 

when the maximum likelihood method of estimation is used. The random error, also 

called the variance, arises due to inaccuracy of the model's parameter estimation because 

of a limited number of observations. When the model is correctly specified and the ML 

method is used, only the variance term contributes to the mean KL distance. However, as 

we know, the variance in a case of ill-conditioned data sets can be very large and make 

the approximating density useless. Although penalization introduces a bias, it also 

drastically reduces the variance, allowing for a tradeoff which may reduce the mean KL 

distance. This means that, on the average, with a properly chosen regularization 

parameter the penalized model can be closer to the true model. 

From the definition of the KL distance, it can be seen that, since { }gEE ZWD log,  

does not depend on the model λf̂ , minimization of the mean KL distance is equivalent to 

maximization of the Mean Expected Log Likelihood (abbreviated MELL) which is 

defined as  

 ( ) { }λλ fEEMELL ZWD
ˆlog,≡ , (3.31) 

where, as before, W  and Z  have the same joint distribution as iX  and iY  and are 

independent of them. That is why the mean expected log likelihood is extensively used in 

statistical model selection as a powerful tool for evaluating the model performance and 
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for choosing one model from the competing models. In a pioneering work, Akaike (1973) 

introduced the MELL as a model selection method and justified the use of ML for 

parameter estimation. 

In the Gaussian case (when WZ |  is normally distributed) and with a correctly 

specified model, maximization of the mean expected log likelihood is equivalent to 

minimization of the Mean Predictive Error (abbreviated MPE). As with MPE, the mean 

expected log likelihood is not computable because of the unknown true distribution but it 

can be estimated by plugging the empirical distribution into (3.31). By this means, the so-

called Average Log Likelihood (abbreviated ALL) is obtained: 

 ( ) ( )∑
=

=
n

i
ii bXYf

n
bALL

1

ˆ;|log
1ˆ

λλ . (3.32) 

Despite the fact that ( ) ( )bELLbALL →  as ∞→n , due to the law of large 

numbers, the ALL, evaluated at MPLE λb̂ , is a biased estimator of the MELL of the 

MPL model i.e. ( ) ( )λλ MELLbALLED ≠ˆ . This bias should be corrected when we use 

MELL as a RPSM. In the next section, one of the methods for bias correction is 

presented. This method is usually used for deriving information model selection criteria 

as in Akaike (1973), Sakamoto (1986), Bozdogan (1987-2001), Konishi (1996), and 

Shibata (1989). 

3.3.1 Maximum mean expected log likelihood parameter choice 

An information-based RPSM is given as the maximization of the mean expected 

log likelihood (3.31) of maximum penalized likelihood models 
 ( ){ }λλ

λ
MELLMELL maxargˆ = . (3.33) 

As already mentioned, the MELL is not computable and can be estimated by the ALL 

(3.32). The ALL, evaluated at the MPLE, is a biased estimator of MELL. To quantify the 
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bias of ALL in estimating the MELL we first define the Expected Penalized Log 

Likelihood (abbreviated EPLL) as  

 ( ) ( )bZWPLLEbEPLL ZW |,,≡  (3.34) 

and expand it in a Taylor series at λb̂  around *
λb , which is the limiting value of the 

MPLE λb̂  as ∞→n  
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where 

 ( )*
2

λbEPLL
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J T∂∂

∂
−≡ .  

Next, we expand the Average Penalized Log Likelihood (abbreviated APLL) 

defined as 

 ( ) ( ) ( )bpbYXLL
n

bAPLL
n

i
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=1
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1
 (3.36) 

in a Taylor series at *
λb  around λb̂  
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We used the fact that 

 ( ) 0ˆ =
∂
∂

λbAPLL
b

  

and that, by the law of large numbers, as ∞→n  
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and, since *ˆ
λλ bb →  as ∞→n  due to (R.1), we have 
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Using ( ) ( )**
λλ bAPLLEbEPLLE DD =  and combining (3.35) and (3.37) we obtain 
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and since 

  ( ) ( ) ( )λλλ λ bpEbELLEbEPLLE DDD
ˆˆˆ −=  and ( ) ( ) ( )λλλ λ bpEbALLEbAPLLE DDD
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  (3.39) 

where we use the asymptotic normality of the maximum penalized likelihood estimator 

(R.2), and the trace result from Appendix A.1 

 ( ) ( ) ( )1** 1ˆˆ −=






 −− IJtrace

n
bbJbbE

T
D λλλλ . (3.40) 

Therefore, an unbiased estimator of the mean expected log likelihood is defined 

as 

 ( ) ( ) ( )1ˆˆ1ˆˆ −−≡ JItrace
n

bALLbTMELL λλ , (3.41) 

where 
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and 

 ( )∑
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n

i
iiT bYXPLL

bbn
J
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ˆ|,

1ˆ
λ , (3.43) 

and the corresponding RPSM is 
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λ . (3.44) 

A number of RPSM's can follow from this. When the model is Gaussian and 

correctly specified, and X  is fixed, the well-known Mallows' (1973) CL method is 

obtained: 
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. (3.45) 

When the model is Gaussian and 2σ  is treated as a nuisance parameter and J and 

I are estimated as 
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Shibata's (1989) Regularization Information Criterion (abbreviated RIC) is obtained and 

the corresponding RPSM is 
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where ( ) T
m

T XInXXXH
1−

+= λ  and bXYr T
iiiols

ˆ−= . 

When λb̂  is an M-estimator (Huber, 1981), Konishi and Kitagawa (1996) propose 

an information criterion for choosing the regularization parameter which is similar to RIC 

(3.47). 

We also suggest a RPSM that uses Bozdogan's (1996) informational complexity 

framework to account for interdependencies between parameter estimates when 

evaluating the bias of ALL in estimating the MELL. The resulting method, by means of a 

more severe penalization of the inaccuracy of estimation, produces slightly overestimated 

regularization parameter values as compared to that given by CL or RIC. Overestimation, 

however, is in a safe direction and is shown to be beneficial in situations with a limited 

number of observations. We give a brief description of the informational complexity 

RPSM in Section 3.4. 
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Despite its simplicity, the Gaussian correctly-specified case is very important, 

especially for the numerical solution of integral equations with a method of 

regularization, because X  is fixed and there is no functional misspecification. In the 

Gaussian correctly-specified case, the information RPSM (3.44) becomes similar to CL. 

3.3.2 Gaussian, correctly specified case 

The MELL RPSM (3.44) reduces to Mallows' (1973) CL under the following 

conditions: the approximating distribution (model) belongs to the Gaussian family, i.e. 

 ( )ANW m ,~ µ  and ( )( )2,~| σWmNWZ  (3.48) 

and the model is correctly specified, meaning that there exists 0b , referred to as the true 

regression coefficients (or the true solution), such that 

 ( ) ( )ZWgbZWf ,;, 0 = , (3.49) 

where ( )ZWg ,  is the actual (true) data generating distribution, and when 2σ , the 

conditional variance of the output (or noise variance), is treated as a nuisance parameter. 

In particular, correct specification implies that 

 { } 0*
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TTT
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The log likelihood in this case is 
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Its derivatives with respect to b  are 
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and 
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Using the quadratic penalty (3.16), matrix J  becomes 
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and can be estimated as 
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Matrix I  becomes 
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and, for a large n , it can be estimated as 
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The trace term becomes 
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where the hat matrix is defined as ( ) T
m

T XInXXXH
1−

+≡ λ . 
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The RPSM becomes 
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or 
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This is exactly CL. Therefore, CL can be viewed as an information RPSM when the 

model is correctly specified and is Gaussian with fixed X . 

3.3.3 Gaussian, misspecified case 

Dropping the assumption of correct model specification and using the Gaussian 

approximating distribution as in the previous case, a similar expression for J  is obtained 
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and estimated as 
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Matrix I  becomes 
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and is estimated as 
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The RPSM becomes 
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This RPSM uses the Gaussian model but does not assume that the conditional mean is 

correctly specified. That means the choice of the regularization parameter value remains 

consistent even if a functional misspecification is present, i.e. when 

( ) { } bxxXYExm T
ii ≠=≡ |  for any parameter mRb ∈ . 

3.3.4 Distributional misspecification 

As mentioned already, distributional misspecification does not affect the 

estimation of the location parameter b . However, whenever an estimate of the covariance 

matrix of the MLE or MPLE is needed, an estimator that is consistent under distributional 

misspecification must be used because the usual covariance matrix estimators (3.3) are 

not consistent under distributional misspecification. To account for possible distributional 

misspecifications, the estimation of 2σ , treated so far as a nuisance parameter, must be 

considered. This allows one to account for a nonzero skewness and kurtosis in the 

response variable WZ | . 

3.4 Information Complexity RPSM 

With a limited number of observations, the inaccuracy penalization in (3.44) 

becomes inadequate and further refinement is needed. Starting from (3.44) and using 

Bozdogan’s (1996) refinement argument, we obtain an Information Complexity 

Regularization Parameter Selection method (abbreviated ICOMPRPS) that behaves 

favorably for a limited number of observations. 

Notice that the term ( )1−IJtrace  in (3.44) can be interpreted as the effective 

number of parameters of a possibly misspecified model. ICOMPRPS also penalizes the 

interdependency between the parameter estimates. ICOMPRPS imposes a more severe 
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penalization of estimation inaccuracy caused by the fact that the data-generating 

distribution is unknown. 

For the MPLE method, the ICOMPRPS has the form (Urmanov and et. al., 2002) 

 ( ) ( ) ( ) ( )1
1

1 ˆ1ˆˆ1ˆ −− −−≡ JC
n

JItrace
n

bALLICOMPRPS λλ  (3.67) 

and the corresponding RPSM is 
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where 1C  is the maximal covariance complexity index proposed by Emden (1971) to 

measure the degree of interdependency between parameter estimates. 1C  is a function of 

a covariance matrix and is computed as in (3.69) using the eigenvalues of the covariance 

matrix. Notice that the more ill-conditioned the data matrix X , the more dependent the 

parameter estimates become; therefore, the covariance complexity can be used to 

quantify ill-conditioning.  

Under the assumption that the vector of parameter estimates λb̂  is approximately 

normally distributed, the maximal covariance complexity reduces to 
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j?  are the eigenvalues of 1ˆ−J . 

In the Gaussian case, ICOMPRPS for Correctly specified Models (abbreviated 

ICOMPRPS-CM) becomes 
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and the corresponding RPSM is 
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3.5 Minimum Mean Predictive Error RPSM 

There is a strong bond between the RPSM's based on maximizing the mean 

expected log likelihood and minimizing the mean predictive error. Namely, if the 

parametric family of approximating distributions (the model) is Gaussian, 

 ( ) ( )2,;| σbXNbXYf T
iii ≡ , (3.72) 

then maximizing the MELL is equivalent to minimizing the MPE. This fact allows us to 

write an MPE analog of the information criterion (3.41). Indeed, using the Gaussian 

model, the ALL can be written as the sum of the training error (abbreviated TE) and a 

constant term 
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where the training error is defined as 

 ( ) ( )∑
=
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T
ii bXY

n
bTE

1

2ˆ1ˆ
λλ . (3.74) 

The expected log likelihood for the Gaussian model is 
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where the predictive error is defined as 

 ( ) ( )( ) ( )( )
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Plugging these representations into (3.41) an MPE analog of the information RPSM is 

obtained. The mean predictive error is approximated as 
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Therefore, an unbiased estimator of the MPE is given by 
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and the corresponding RPSM is 
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Therefore, when the Gaussian model is used, the MELL and MPE have the same 

minimizer. When the model is correctly specified, ( ) ( )HtraceJItrace =−1ˆˆ , and the CL 

method follows 

 ( ) ( ) ( ) 2
22ˆ σ

σ
λ λ −+= Htrace

n
bTECL  (3.80) 

with the corresponding RPSM: 
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3.6 Variability of Chosen Parameter 

In the previous sections we chose the regula rization parameter to maximize the 

MELL or minimize the MPE. It is important to realize that such a regularization 

parameter value maximizes the estimate of the MELL, not the MELL itself. As a result, 

for a given data set there is no guarantee that the chosen regularization parameter value 

will produce an admissible solution for the problem. A chosen regularization parameter 

value is an estimate of the 'true' parameter value that maximizes the MELL. The 

variability of that estimate may be large and diminish its usefulness. If the variability is 

too large, it questions any use of such a method for a practical application in which the 

true solution is unknown. In this case, there is no way to evaluate the validity of the 

regularized solution corresponding to the chosen regularization parameter value. 

A big problem with RPSM's is underestimation. The chosen parameter value is 

often too small, presumably due to inadequate penalization of estimation inaccuracy for 

small data sets when correcting the bias of ALL in estimation of the MELL, and the 

corresponding solution is not 'smooth' enough and is still unstable. This makes it 

reasonable to consider other RPSM's that can provide estimates with smaller variance. 

It seems a gain in precision can come only at the expense of introducing a bias. 

This is not a problem as long as the method remains convergent though it can lose its 

optimality in some sense. Besides, as with any regularized solution, the probability that a 

regularization parameter chosen with some RPSM will hit in a certain vicinity of the 'true' 

regularization parameter value may be larger with a RPSM that produces a biased 

regularization parameter estimate. In light of underestimation, a bias in a safe direction of 
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Figure 3.1.  The trace part of the RPSM. 
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Figure 3.2.  The SSR part of the RPSM's. 
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lager values can help reduce the risk of obtaining an underregularized solution. This is 

particularly important when the solution has no physical interpretation as in many data-

driven black-box techniques and it would be extremely difficult to assess a proper degree 

of regularization. 

A valuable advantage of ICOMPRPS as a RPSM is the additional penalty that 

significantly reduces the risk of obtaining grossly underregularization solutions. ( )1
1

ˆ−JC  

is a monotonically decreasing function of the regularization parameter λ . In addition, it 

decreases faster than ( )1ˆˆ −JItrace , so for small values of λ , the correction is significant, 

while for larger λ , the correction is negligible. This is reasonable, since for small values 

of λ , the corresponding regularized solution is close to the OLS solution which has large 

variance, and penalization of that inaccuracy with only the trace term is inadequate. With 

decreasing λ , the effective number of parameters approaches the number of estimated 

parameters in the model or, equivalently, the number of observations per effective 

parameter is reduced so that the asymptotic results used in the derivations of the RPSM's 

become less applicable. That is why for ill-conditioned problems with limited number of 

observations, a much stronger penalization of estimation inaccuracy is beneficial in many 

respects. The following example demonstrates such an extra penalization of estimation 

inaccuracy. 

Figure 3.1 shows the effect of introducing 1C  on the choice of the regularization 

parameter value. Since for fixed X , the trace term shown in Figure 3.1 does not depend 

on a particular realization of the noise vector in the response variable, it does not 

contribute to the variability of the regularization parameter estimate λ̂ . The only 

contribution comes from the sum of squared residuals term shown in Figure 3.2. 1C  

corrects the trace part only for small values of λ  and reduces the variability of the chosen 

regularization parameter, reducing the chance of selecting smaller values as shown in 

Figure 3.3 and Figure 3.4. 
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Figure 3.3.  CL vs. regularization parameter for 10 realizations of noise. 
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Figure 3.4.  ICOMPRPS vs. regularization parameter for 10 realizations of noise. 
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For 10 realizations of the noise component in the response, CL shown in Figure 

3.3 and ICOMPRPS shown in Figure 3.4 were computed as functions of the 

regularization parameter. The crosses mark the regularization parameter values at which 

the minimum of CL and ICOMPRPS occurs for each noise realization. For CL, the 

chosen values are spread from zero to 210− . For ICOMPRPS, all 10 chosen values are 

concentrated around 210− . This demonstrates the much lower variability of the 

ICOMPRPS-chosen regularization parameter value compared with that chosen by CL. 

The lower variability drastically reduces the risk of underregularization, though some 

optimal properties of such methods as CL may not be shared. 

3.7 Regularization Parameter Selection For Misspecified Models 

In this section we show that the choice of the regularization parameter using CL 

or ICOMPRPS-CM becomes inconsistent whenever the model is misspecified while the 

choice using misspecification-resistant methods such as RIC and ICOMPRPS remains 

consistent and produces the closest approximating model. 

Given the simple data-generating process 

 tttt xxy ε++= 2  (3.82) 

we assume that x  is measured with 3 redundant sensors with some measurement errors 

so that the data set 

 ( ){ }n
ttttttt xxxxxxX

1
2
3

2
2

2
1321 ,,,,,

=
= , (3.83) 

where 321 ,, xxx  are noisy copies of x , is ill-conditioned due to highly collinear variables. 

A simple reason for keeping all the redundant variables in the data set is to increase 

robustness or to make more reliable predictions when one or more sensors fails. 

Due to the presence of collinearity, the OLS solution is highly oscillatory and will 

not produce stable predictions on future observations, especially in situations when the 
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collinearity pattern changes due to a failing sensor. To avoid such instability and 

hypersensitivity, regularization (ridge regression) is used to obtain "low-energy" 

regression coefficients that produce very stable predictions. As usual, to obtain a good 

regularized solution (regression coefficients) a proper regularization parameter value 

must be chosen. 

Two cases of choosing the regularization parameter value for correctly and 

incorrectly specified models using CL, ICOMPRPS-CM, RIC, and ICOMPRPS are 

examined. The two competing models are: 

 ttttt xxxy ηααα +++= 332211 ,  (3.84) 

 tttttttt xxxxxxy εβββααα ++++++= 2
33

2
22

2
11332211 . (3.85) 

Model (3.84) is misspecified while model (3.85) is correctly specified. The misspecified 

model (referred to as linear) lacks quadratic terms and can only give a linear 

approximation to the true relationship. The error term of this model includes the true 

stochastic noise and the modeling error as well. The correct model (referred to as 

quadratic) has no functional misspecification and can suffer only from the collinearity. 

The error term of this model includes only the random error in the response. 

If least squares is used to solve for the coefficients for both models and these OLS 

solutions are used to produce predictions on future observations, very unstable results are 

obtained as expected. Figure 3.5 demonstrates the OLS predictions by the misspecified 

model. Figure 3.6 demons trates the OLS predictions by the correct model. The generated 

data set is mildly ill-conditioned with a condition number of 410 . In Figure 3.5, the OLS 

predictions for the training data (the dash-dot line) are quite good and give a fairly good 

linear approximation to the true quadratic relationship (the solid line). However, 

predictions for new, unseen data (the noisy dashed line) are very unstable as a result of 

highly oscillatory solutions. 
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Figure 3.5.  OLS predictions by the misspecified model. 
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Figure 3.6.  OLS predictions by the correct model. 
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The OLS regression coefficient estimates for both models are given below. 

Linear  609 283 -884 

Quadratic  87 -507 420 7.9 16.6 -23.6. 

In Figure 3.6, the OLS predictions (the dash-dot line) of the correct model are very good 

for the train data; however, for the new data, predictions (the dashed line) are still very 

noisy. Regardless of correct specification, the OLS predictions are not stable and are of 

little practical value. 

To improve the situation and get more stable predictions we use ridge regression 

and select the regularization parameter value using Mallows’ CL, ICOMPRPS-CM, RIC, 

and ICOMPRPS. The behavior of these RPSM’s for the misspecified model is shown in 

Figure 3.7. For the misspecified model, CL and RIC are very different and have different 

minimizers. ICOMPRPS-CM and ICOMPRPS are different as well. For the correct 

model, CL and RIC, shown in Figure 3.8, are almost identical and have the same 

minimizer. ICOMPRPS-CM and ICOMPRPS are also identical for the correct model. 

Since CL and ICOMPRPS-CM are not misspecification-resistant, their choice of 

the regularization parameter is no longer valid for the misspecified model. For the correct 

model, CL and RIC are almost identical. This fact could be used for detection of possible 

model misspecification. Basically, an identical behavior of CL and RIC can indicate that 

the model (the functional relationship between the predictors and the response) is correct; 

otherwise, the model might be misspecified. For example, some relevant variables might 

be missing. The ICOMPRPS-CM and ICOMPRPS pair can be used for misspecification 

detection as well. 

As a noise level, we use an estimated noise variance ( 4.3ˆ 2 =NOISEσ ) from the 

response which is much less than the OLS estimate ( 132ˆ 2 =OLSσ ) using the linear model, 

because the OLS estimate with linear model also includes the modeling error. 
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Figure 3.7.  Behavior of the RPSM’s for the misspecified model. 
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Figure 3.8.  Behavior of the RPSM’s for the correct model. 
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Table 1.  Simulation results for the misspecified model. 

RPSM CL RIC ICOMPRPS-CM ICOMPRPS 
 
Chosen λ 
 

 
0.002 

 

 
2.4 

 

 
0.002 

 

 
4.4 

 
 
 
Solution 

 
575 
273 
-840 

 

 
2.8 
2.8 
2.8 

 

 
575 
273 
-840 

 

 
2.8 
2.8 
2.8 

 
 
Prediction MSE 

 
227 

 

 
111 

 

 
227 

 

 
111 

 

 

 

Table 2.  Simulation results for the correct model. 

RPSM CL RIC ICOMPRPS-CM ICOMPRPS 
 
Chosen λ 

 
0.25 

 

 
0.25 

 

 
13 
 

 
13 
 

 
Solution 

 
0.4 
-0.2 
0.5 
2.6 
-3.8 
1.6 

 

 
0.4 
-0.2 
0.5 
2.6 
-3.8 
1.6 

 

 
0.21 
0.21 
0.21 
0.35 
0.35 
0.35 

 

 
0.21 
0.21 
0.21 
0.35 
0.35 
0.35 

 
 
Prediction MSE 

 
0.29 

 

 
0.29 

 

 
0.16 

 

 
0.16 
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Since RIC and ICOMPRPS were derived under possible model misspecification, 

they can detect the discrepancy between the supplied noise level and the one estimated 

using the current model (which is done implicitly in RIC and ICOMPRPS), and use this 

discrepancy to their advantage. 

As a result of model misspecification, in this particular example, CL and 

ICOMPRPS-CM consistently failed to choose a reasonable regularization parameter 

value while RIC and ICOMPRPS performed well and delivered the regularization 

parameter values that produce good linear approximations (the dashed line in Figure 3.9) 

to the true relationship. The predictions corresponding to the values chosen by CL (the 

dash-dot line) and ICOMPRPS-CM are almost as bad as OLS predictions. The 

regularization parameter values chosen by the RPSM’s, the corresponding regularized 

regression coefficients, and the mean square error on the test data for the misspecified 

model are shown in Table 1. 

For the correct model, all the methods give regularization parameter values, 

which correspond to stable predictions shown in Figure 3.10 that are almost identical to 

the true relationship. The regularization parameter values chosen by the RPSM’s, the 

corresponding regularized regression coefficients, and the mean square error on the test 

data for the correct model are shown in Table 2. 

This result, though on artificial data, demonstrates the superior performance of the 

information-based RPSM's, which are much more reliable than CL and perform well in 

more realistic situa tions in which models are rarely correctly specified. Also, in many 

engineering applications correctly-specified models are extremely unusual; therefore, 

misspecification-resistant RPSM's are of great value. They consistently deliver proper 

regularization parameter values regardless of misspecification and produce good fits 

when the model is correct or good approximations when the model is not correct. 
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Figure 3.9.  Regularized predictions by the misspecified model. 
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Figure 3.10.  Regularized predictions by the correct model. 
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CHAPTER 4 

PRACTICAL APPLICATIONS 

We present several examples of practical applications using the proposed 

ICOMPRPS method and comparing it aga inst CL and other RPSM's. The examples are 

1. Venturi Meter Drift Prediction 

2. Sensor Validation System 

3. Statistical Learning from Data (Radial Basis Function Neural Network) 

4. Numerical Solution of an Integral Equation 

5. Image Reconstruction 

6. Specification of Prior Distribution in Bayesian Inference. 

The first example is a construction of an inferential system for venturi meter drift 

prediction. The data are from Carolina Power & Light's Crystal River Nuclear Power 

Plant. Because the data set is composed of correlated sensor measurements, the OLS 

solution is very unstable. Regularization is required to build a reliable inferential system 

that uses measurements of other sensors to infer the value of the venturi meter. A linear 

regression model used in this example may be misspecified due to missing variables or 

possible nonlinear relationships between sensors. 

The second example is a construction of a sensor validation system. 

Measurements of 83 sensors from a TVA fossil power plant are available. The sensors 

represent different plant variables. The problem is to build an inferential model that uses 

82 sensors as predictors to infer the value of the remaining sensor and see if the predicted 

values are significantly different from the actual measured values. The main problem in 

building such a model is the hypersensitivity of the solution to noise in the data because 
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of ill-conditioning. As a result, if one of the sensors fails, the inference about the sensor 

being monitored becomes invalid. Regularization is required to obtain a stable solution. A 

proper value of the regularization parameter must be found. 

The third example is statistical learning from data. Building a parametric or non-

parametric model is an inverse problem. In many situations, it is also an ill-posed 

problem. This example demonstrates a use of nonparametric technique such as a radial 

basis function neural network, which will be described, to fit an unknown underlying 

relationship using only the observed data. The OLS solution, the network's weights, in 

this case is inadmissible because, due to the nature of the technique, the OLS solution 

only minimizes the SSR and overfits the data. As a result, the solution is highly unstable 

and produces useless predictions. On the other hand, regularization produces very stable 

solutions which, for a suitably chosen regularization parameter value, are very close to 

the true relationship. 

The fourth example is the numerical solution of an integral equation that arises in 

many practical applications such as image restoration, heat-transfer calculations, and 

others. The RPSM's are tested for different noise levels in the response and for the case of 

noise level underestimation. The ICOMPRPS choice method is shown to be superior in 

the case of noise level underestimation. The example also demonstrates that CL becomes 

inconsistent when the model is misspecified while the ICOMPRPS method produces 

regularization parameter values corresponding to admissible solutions. 

The fifth example is a test image-deblurring problem provided by Dr. Vogel of 

Montana State University. The OLS image reconstruction does not produce anything 

even remotely resembling the original image. Regularization produces admissible 

solutions which can be recognized visually as similar to the original image. 

The sixth example is the specification of prior distribution in Bayesian inference. 

One of the major components of Bayesian analysis is the prior distribution of the 
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parameters which, combined with the likelihood, is used to produce the posterior 

distribution of the parameters and then the predictive distribution of the output. In some 

applications, parameters are unobservable and have no physical interpretation. In this 

case, it is difficult to assign, a priori, any prior distribution to the parameters and justify 

that choice. However, the output is observable and information about it is available prior 

to modeling. This information can be used for assigning the prior distribution to the 

unobserved parameters by solving an inverse ill-posed problem. 

4.1 Venturi Meter Drift Prediction 

The majority of Pressurized Water Reactors (abbreviated PWR) utilize venturi 

meters to measure feedwater flow rate, which is used to estimate reactor thermal power. 

However, venturi meters are susceptible to measurement-drift due to corrosion products 

building up near the meter's orifice. This fouling increases the measured pressure drop 

across the meter, which in turn results in an over-estimation of the flow rate. 

Consequently, reactor thermal power is also overestimated. To stay within regulatory 

limits, reactor operators have to derate their plants or justify a compensating process. On 

average, the amount of derating varies from insignificant to 3% of full power. For 

example, a derating of 2% in an 800 MWe unit will cost the utility ~$20,000 per day. 

To overcome this problem, an inferential sensing system has been developed at 

the University of Tennessee to infer the true Feedwater Flow Rate (abbreviated FFR) 

(Upadhyaya, 1994; Gribok, 2001). Twenty-four (24) plant variables have been selected as 

predictor variables based on engineering judgment and their high correlation with 

feedwater flow rate, and a linear regression model has been chosen as a predictive tool. 

The predicted value of feedwater flow rate is not affected by fouling because the linear 

regression model is built on the data corresponding to the initial operation time period 
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before fouling starts. The difference between the predicted value and the actual 

measurement defines a drift due to fouling. 

The data set contains 24 plant variables highly correlated with FFR. The 

description of the variables is given in Appendix A.2. Before modeling, the data shown in 

Figure 4.1 were preprocessed (median filtered, centered and range-scaled). The first 601 

data points represent 12 days of operation starting with a new fuel cycle; the first 8640 

data points represent 6 months of operation. FFR is shown in Figure 4.2. The first 601 

data points are used to build an inferential model. Although fouling can occur as soon as 

on the 3rd day of operation, these 12-day measurements are assumed to be free of fouling. 

After an inferential model was build using Procedure 1, the model was used to 

predict (infer) future values of FFR and compare them with actually measured ones. At 

some point, the predicted FFR begins to deviate from the measured FFR, indicating the 

beginning of fouling. The difference between the predicted and measured FFR, averaged 

over a range of 100 data points to eliminate the random component and pick up only the 

systematic deviation, defines the drift value. The reported drift is estimated in the range 

8601-8700; which is about 6 months into the fuel cycle. 

Without using any regularization, the solution is very unstable and produces drift 

values ranging from negative as shown in Figure 4.3 to positive as shown in Figure 4.4, 

and no drift as shown in Figure 4.5. Such unstable drift predictions are obtained because 

the data matrix is composed of measurements of correlated sensors is ill-conditioned, and 

the resulting OLS predictions are hyper sensitive to the number of training points and to 

the filter window width. Using a regularization method, stable feedwater flow rate 

estimation can be achieved, which is stable with respect to the number of training points 

and filter window width. 
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Figure 4.1.  24 preprocessed predictor variables. 
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Figure 4.2.  FFR filtered measurements. 
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Figure 4.3.  Drift prediction by the OLS method. (Negative drift of 31 klb/hr). 
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Figure 4.4.  Drift prediction by the OLS method (Positive drift of 69 klb/hr). 
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Figure 4.5.  Drift prediction by the OLS method (Zero drift). 

In Figure 4.6, estimated probability densities are shown for the unstable and 

stabilized feedwater flow rate estimation. The densities are obtained using the bootstrap 

method in which we resample N times a certain number of observations from the same 

data set, obtain N drift values, and estimate the drift's probability density using these N 

values. The standard deviation of the OLS (unstable) drift prediction is 20 times standard 

deviation of the ridge (stabilized using ridge regression) drift prediction. The ridge 

prediction is extremely stable, however it seems biased from the OLS prediction. 

However, according to the ridge theorem (Hoerl, 1970), the prediction error using ridge 

regression coefficients with a suitably chosen ridge parameter is less than the prediction 

error using OLS regression coefficients. This means that the ridge drift prediction lies 

closer to the true drift than OLS drift prediction. 

Although the drift prediction has been stabilized, there is still some uncertainty 

involved regarding the proper variable subset to be used for predictions. Different 

variable subsets used as predictors can produce different regularized drift values. Each 

variable subset should be evaluated by some criterion that estimates the prediction error. 

The subset with the lowest value of the criterion is chosen to be the best in the sense of 
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Figure 4.6.  Unstable and stabilized predictions of the venturi meter drift. 

having minimum prediction error or minimum prediction risk. Since the considered 

criteria such as CL, RIC, and ICOMPRPS compare MPL models, i.e. stabilized models, 

the value of the ridge parameter should be chosen for each subset individually by using 

one of the available ridge parameter selection methods. 

It is not unusual to encounter a situation in which several models are equally good 

according to a chosen model selection criterion. For example, several models can have 

approximately the same estimated prediction risk. If we are interested in selecting the 

best prediction model we cannot prefer one model to the others. In this situation one can 

use model averaging procedures. A most common averaging procedure is Bayesian 

model averaging (Leamer, 1978) in which each model's prediction is weighted according 

to its posterior distribution. A naïve approach one can entertain when using non-Bayesian 

model selection is to weight them according to the criterion value. However, since we 

have to average models with approximately the same prediction risk (abbreviated PR) 

value, which can be computed as the mean predictive error, we give them the same 

weight and take the average prediction over all models as our final prediction of the drift: 
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 ∑ =
=

24

1
1

i inf pp . (4.1) 

Since there is some uncertainty iσ  associated with each individual prediction, the 

uncertainty in the final prediction will be 

 ∑ =
=

m

i imf 1
21 σσ . (4.2) 

The model (variable subset) selection procedure employed here is summarized as 

follows: 

Procedure 1 

§ For each number of predictor variables j=1…24 

o For each subset of j variables  

§ Find the optimal value of the ridge parameter λ , 

§ Assign the corresponding estimated PR value to that subset, 

§ Update the best (with lowest PR) model of j variables. 

o End  

o Save the best model with j variables 

§ End. 

§ Choose the best model (with lowest PR) as the best predictive model. 

§ If several models have approximately the same PR, perform averaging. 

In performing model selection with this technique, no information is used other 

than that extracted from the available data by various statistical methods. This approach 

is oriented to a situation in which there is no method to obtain additional information 

about the process under consideration. It is possible that a successful inferential system 

may be built using additional information about the specific operating environment. 

The potential predictor variables must be preselected based on their physical 

relevance to FFR and on other factors, as partially is done in the following example; it 

might be necessary to consider a compensating effect of the control system on the plant 
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variables and take that into account. If such information is available, it can be 

successfully incorporated into the inferential system by means of Bayesian approaches. 

For example, if it is known from historical operation that the venturi meter drift lies in the 

range 1-3%, this can be used to dispose of the models that predict drift outside that range. 

A prior distribution of the parameters could also be specified to incorporate other 

available information into the estimation. One can argue that since the parameters are 

usually unobservable, it would be difficult to justify any choice of the prior distribution. 

However, the information about the possible drift range can be transferred to the prior 

distribution of parameters by using the backward prior specification method proposed by 

Gribok et. al. (2002). This could also reduce uncertainty in the predictions. 

After applying Procedure 1 to model-building, we obtain the following results 

summarized in Table 3. In the table, [ ] shows variables excluded from the subset, and ( ) 

shows a different variable chosen by CL. The drift uncertainty shown in the table 

accounts only for the uncertainty due to inaccurate estimation of parameters. 

Each subset in the j-th row represents the best subset of j variables. All possible 

subsets of j variables form a model group; inside each group ICOMPRPS and CL vary 

significantly. For example, for 3-variable subsets ICOMPRPS varies from 6226.6 to 

6204.0, making subset selection inside the group meaningful (or significant). We found 

that the best models from all 24 groups have approximately the same value of 

ICOMPRPS equal to 6204 and CL equal to 6200. The exceptions are the two extremes, 

1- and 24-variable subsets, which have significantly different ICOMPRPS and CL values. 

The one-variable case should be disregarded because the predicted drift value is negative, 

which is impossible. 
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Table 3.  Variable subsets evaluation results. 

Best subsets of j variables ICOMP
RPS 

CL α Drift +/- 
3σ 

1 21 6201.9 6201.9 0.01 -3.4 +/- 0.6 
2 15 21 6204.1 6199.8 0.14 20.9 +/- 0.9 
3 1 15 21 6204.0 6199.5 0.14 21.0 +/- 0.9 
4 1 4(12) 15 21 6204.1 6199.6 0.17 11.7 +/- 1.2 
5 1 3(7) 4 15 21 6204.1 6199.6 0.17 12.1 +/- 1.2 
6 1 3 4 7 15 21 6204.2 6199.7 0.17 12.6 +/- 1.2 
7 1 3 4 5 7 15 21 6204.2 6199.7 0.17 15.5 +/- 1.5 
8 1 3 4 5 7 10 15 21 6204.3 6199.8 0.18 14.4 +/- 1.2 
9 1 3(22) 4 5 7 10 12 15 21 6204.3 6199.8 0.18 13.2 +/- 1.2 
10 1 3(13) 4 5 7 9(22) 10 12 15 21 6204.4 6199.9 0.18 11.9 +/- 1.2 
11 1 3(22) 4 5 7 9 10 12 13 15 21 6204.4 6199.9 0.18 10.8 +/- 1.2 
12 1 3(22) 4 5 7 9 10 11 12 13 15 21 6204.5 6199.9 0.18 9.6 +/- 1.5 
13 1 3(8) 4 5 7 9 10 11 12 13 15 21 22 6204.6 6200.0 0.22 6.1 +/- 1.2 
14 1 3(17) 4 5 7 8 9 10 11 12 13 15 21 22 6204.6 6200.0 0.22 5.4 +/- 1.2 
15 1 3 4 5 7 8 9 10 11 12 13 15 17 21 22 6204.7 6200.1 0.22 5.7 +/- 1.2 
16 1 3 4 5 6(20) 7 8 9 10 11 12 13 15 17 21 22 6204.7 6200.2 0.22 6.2 +/- 1.2 
17 1 3 4 5 7 8 9 10 11 12 13 15 17 18(6) 19 21 6204.8 6200.2 0.24 17.4 +/- 1.5 
18 1 3 4 5 7 8 9 10 11 12 13 15 17 18(6) 19 20 21 22 6204.8 6200.3 0.24 17.3 +/- 1.5 
19 [2 6 16 18 23]  6204.9 6200.4 0.29 31.8 +/- 1.2 
20 [2 16 17 18] 6204.9 6200.4 0.32 28.3 +/- 1.2 
21 [2 16 18] 6205.0 6200.5 0.32 28.3 +/- 1.2 
22 [2 16] 6205.2 6200.7 0.32 32.8 +/- 1.5 
23 [2] 6205.6 6201.1 0.35 35.8 +/- 1.5 
24 All 6206.7 6202.1 0.35 39.9 +/- 1.5 
 Average excluding subsets 1 and 24    16.8 +/- 0.3 
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The negative drift value demonstrates that it is useful to incorporate available 

information in the inference either in the form of constrains or in the form of prior 

distributions, to automatically remove meaningless models from consideration. 

Approximately equal values of the criteria mean that all 22 models are equally good in 

prediction: they have the same estimated prediction error or prediction risk. One possible 

explanation is that the effective number of parameters (variables) for all 24 models is 

about 1, meaning that all models essentially contain the same amount of information 

extracted from the corresponding input variables. This means that they all have equal 

performance and should be averaged. 

After averaging, the resulting predicted drift value is 16.8 +/- 0.3 klb/hr. Notice 

that we obtain a stable and unique drift estimation, which is robust to the number of 

variables used in the model and the particular noise realization in the data. Such drift 

estimation corresponds to the predicted FFR values of 5369.5 klb/hr whereas the 

measured FFR is 5386.3. Notice that the detected drift value is less than the accuracy of 

the measurement instrument (the venturi meter), which is about 3%. This additional 

accuracy is possible because before modeling, the random component in FFR is partially 

filtered out with a median filter. The systematic component (the drift) is not affected by 

median filtering and is still present in the data. 

4.2 Sensor Validation 

A sensor validation system usually employs an inferential model that uses 

measurements of correlated sensors to predict the value of the sensor being monitored. To 

take into account all available information, it is necessary to include all available sensors 

that are correlated with the one being predicted. This results in an ill-conditioned data 

matrix of predictors, due to the inclusion of correlated predictors. A linear regression 
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Figure 4.7.  82 Sensors used as predictors. 
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Figure 4.8.  Sensor #53. 
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model is usually used. The OLS solution (or the OLS regression coefficients) in this case 

may be unstable and statistically insignificant. Predictions using the OLS solution are 

also unstable and unreliable. If one of the sensors fails, the entire system is destroyed and 

wrong results are produced that could lead to wrong conclusions. Regularization in the 

form of ridge regression produces more stable solutions and improves the reliability of 

the sensor validation system. 

The data set contains measurements of 83 sensors from a Fossil Power Plant. The 

sensors represent various plant variables and must be monitored to detect sensor failures. 

To simplify the problem, we consider monitoring of only 1 sensor, namely sensor number 

1, and use the other 82 sensors as predictors in a linear regression model whose 

coefficients are estimated using the ridge estimator. Figure 4.7 shows all 82 sensors. 

Sensor number 53 which failed at about the 3300th measurement is shown in 

Figure 4.8. The condition number of the data matrix is 547920. The problem is ill-

conditioned, and regularization is required to obtain a stable solution. The singular values 

of the data matrix are plotted in Figure 4.9. The singular value spectrum decays 

gradually. Therefore, it is difficult to decide on a cut-off number of principal components 

to be retained in the model. Instead, ridge regression is used, in which all the components 

are retained, but with different filter factors. For ridge regression, the proper value of the 

regularization parameter must be selected. The ridge parameter is chosen using four 

different estimators of the mean predictive error. Namely, CL, RIC, ICOMPRPS, and 

ICOMPRPS-CM are used. The noise variance of 0.1 used in the RPSM's was roughly 

estimated as the variance of sensor measurements during a short period of time. 

In Figure 4.10, the values of the CL, RIC, and ICOMPRPS are plotted versus the 

regularization parameter value. 
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Figure 4.9.  Singular values of the data matrix. 
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Figure 4.10.  Regularization parameter selection. 
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Table 4.  Results of regularization parameter selection using different methods. 

Method Regularization parameter, λ 
  
CL 0.6951 
RIC 1.1288 
ICOMPRPS 2.9764 
ICOMPRPS-CM 2.9764 
  

The values of the regularization parameter that correspond to the minimum of the 

criteria are chosen as proper regularization parameter values. These values are shown in 

Table 4. The ICOMPRPS-chosen value indicates that about the first 50 components were 

passed and the rest were dumped. RIC and CL passed many more components than 50. 

The corresponding solutions in Figure 4.11 show that the OLS solution is highly 

oscillatory. For such solutions, unstable predictions are expected. The CL and RIC 

solutions also have fairy large values, so predictions using these solutions are expected to 

be unstable as well. 

The sensor value to be monitored is shown in Figure 4.12. In Figure 4.13, 

predictions using the OLS solution are shown. As expected, predictions using the OLS 

solution are unstable and become irrelevant at the point where one of the sensors used as 

a predictor failed. This occurred because OLS does not use the available information 

optimally; instead, it overuses and underuses certain inputs. The failure of the 53rd sensor 

resulted in an invalid inference about the sensor being monitored. The prediction 

inaccuracy increased following the failing 53rd sensor. This happened because of large 

OLS regression coefficients that make predictions sensitive to minor changes of the input 

variables. Once the collinearity pattern was destroyed (one of the sensors went bad) 

predictions became irrelevant. If we had not known that the 53rd sensor had failed we 

would have drawn a wrong conclusion that the sensor being monitored had failed. 
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Figure 4.11.  Solutions without (the solid line) and with (the dotted lines) regularization. 
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Figure 4.12.  Sensor #1 to be predicted. 
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Figure 4.13.  Prediction of sensor #1 using the OLS solution.  

This was obviously not the case and shows the danger of using unstable solutions and 

ignoring the ill-posed nature of this problem. 

Using a regularization parameter chosen by CL and RIC, predictions shown in 

Figure 4.14 and Figure 4.15 are obtained. In Figure 4.14, predictions for CL are shown. 

As with the OLS solution, the regularized solution corresponding to the CL-chosen 

parameter is not stable enough and as a result, the predictions are invalid once the 53rd 

sensor fails. This is another example in which CL produces a solution that is too 

optimistic or underregularized. 

In Figure 4.15, predictions for RIC are shown. Despite the fact that RIC chose a 

larger value of the regularization parameter than CL, that value is still not enough to 

prevent failure of the predictive modeling when one of the sensors fails. The slight 

difference between CL and RIC indicate that the model might be misspecified. More 

likely, some relevant variables might be missing. Since in the case of sensor validation, 

the very notion of the true model does not exist, the difference simply indicates that there 

is probably not enough information in the sensors used as predictors to predict the sensor 

being monitored. 
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Figure 4.14.  Prediction of sensor #1 using the parameter chosen by CL. 
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Figure 4.15.  Prediction of sensor #1 using the parameter chosen by RIC. 
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Figure 4.16.  Prediction of sensor #1 using the parameter chosen by ICOMPRPS-CM (for 

correctly specified models). 
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Figure 4.17.  Prediction of sensor #1 using the parameter chosen ICOMPRPS. 
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Predictions made using the regularized solution corresponding to the 

ICOMPRPS-chosen parameter value are shown in Figure 4.16. The predictions in this 

case are much more stable and are not destroyed by the failed sensor. The regularization 

parameter chosen by ICOMPRPS is large enough to produce a regularized solution that is 

stable to at least one failing sensor. This is possible due to the extra penalization of the 

estimation inaccuracy. In many engineering applications, as in this example, it is 

beneficial to be more conservative because otherwise the solution is useless and cannot 

be used for building a reliable sensor validation system. 

4.3 Statistical Learning from Data 

A simple example of fitting a number of noisy observations demonstrates how 

difficult the solution of simple inverse problems can be. The true relationship between X 

and Y is  

 ( )XXY π2sin3.0+= . (4.3) 

In Figure 4.18, data points generated from the true relationship (4.3) and 

corrupted by noise are shown. The goal is to use these noisy observations to find (learn) 

the true relationship or best approximation to it. 

A Radial Basis Function (abbreviated RBF) neural network is used to fit the data. 

The RBF network computes its output according to the relationship 

 ( ) ( )∑
=

=
n

i
iiRBF XawXf

1

, (4.4) 

where the transfer function of the hidden units is given by 

 ( ) ( )221
cXr

r
Xa i −+= . (4.5) 
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Figure 4.18.  The true relationship (the solid line) and observed noisy data (the crosses). 

When the network has n  hidden nodes with the centers ic  equal to the input data 

points iX , an optimal set of the weights iw  can be found by minimizing the sum of 

square residuals given by 

 ( )( )∑
=

−=
n

i
iRBFiRBF XfYSSR

1

2 . (4.6) 

The weights that minimize (4.6) are called the OLS solution and are given by 

 YAwOLS
1−= , (4.7) 

where A  is a square matrix composed of ( )ji Xa , nji ...1, = . The relationship produced 

by the RBF network with the OLS weights (4.7) is called the OLS fit and is shown in 

Figure 4.19. Since the number of weights equals the number of the data points, the OLS 

fit achieves a zero SSR. The OLS fit is very oscillatory and passes through each data 

point, i.e. the RBF network learned the noise component in the data. 

It is obvious that the OLS fit is of no practical use because it is very different 

from the true relationship. Predictions based on the OLS fit are meaningless. 
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Figure 4.19.  The OLS fit to the data. 
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Figure 4.20.  The true relationship (the solid line) and the regularized fit (the dash-dot line) 

to the data. 
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The reason for such poor performance is ill-conditioning of matrix A . The 

method of regularization in the form of ridge regression can be used to solve this 

problem. The regularized solution is obtained as 

 ( ) YIAw n
1−+= λλ . (4.8) 

The regularized fit to the data using the regularization parameter λ  that 

minimizes the GCV function (2.3) is shown in Figure 4.20. The regularized fit is close to 

the true relationship. It is useful and can be successfully used for predictions. 

4.4 Numerical Solution of an Integral Equation 

In this example we apply the RPSM's to select the regularization parameter value 

for solution of the Fredholm integral equation of the first kind in the discretized form 

  ( ) ( ) ( ) ( ) ( )∫ ∑
=

=≈
b

a

n

i
iiin tftsKwsIdttftsK

1

,, . (4.9) 

In particular, the one-dimensional image restoration model studied by Shaw 

(1972) is considered from Hansen's (1994) Regularization Tools Matlab toolbox. This 

problem is severely ill-conditioned (the condition number is 1910  for n = 64) and is 

known to have a regularized solution for the penalty operator mI=Ω . The true solution 

and regularized solutions corresponding to regularization parameters chosen by different 

methods using the exact noise level as an noise level estimate are shown in Figure 4.21. 

The regularized solutions corresponding to the different methods are almost 

identical, which is the result of selecting almost the same regularization parameter value 

by all the methods. For the true noise level, the mean square error between the true and 

regularized solutions is summarized in Table 5. 
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Figure 4.21.  Solutions for the true noise level. 

 

0 10 20 30 40 50 60 70
-1

-0.5

0

0.5

1

1.5

2

2.5

i

f(x
i)

xTRUE
x

CL
x

ICOMPRPS
xRIC

 
Figure 4.22.  Solutions for the underestimated noise level. 

 

 

 



 80

Table 5.  Mean square error for the true noise level. 

RPSM Mean square error 
 
MDP 
CL 
ICOMPRPS 
RIC 
 

 
0.0033 
0.0028 
0.0026 
0.0029 

 
Table 6.  Mean square error for the underestimated noise level. 

RPSM Mean square error 
 
MDP 
CL 
ICOMPRPS 
RIC 
 

 
1.127088e+024 

0.0703 
0.0036 
0.0771 

 

The regularized solutions corresponding to regularization parameters chosen by 

the methods using the noise leve l artificially underestimated by 50% are shown in Figure 

4.22. CL and RIC choose small regularization parameter values that produce 

undersmoothed solutions. MDP, with noise level underestimation, produces an 

unreasonable solution. The ICOMPRPS-based choice is more robust to an 

underestimated noise level and produces a good solution. For the underestimated true 

noise level, the mean square error between the true and regularized solutions is 

summarized in Table 6. Underestimation of the noise level is not unusual in engineering 

applications, where it is commonly estimated with a fairly large uncertainty. 

If the regularization parameter selection is repeated with different noise 

realizations in the response, the sampling density of the chosen regularization parameter 

value can be estimated for different methods and the parameter variability can be 

compared. Figure 4.23 shows the sampling distribution of the chosen parameters, which 

were obtained using the true noise value. 
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Figure 4.23.  Sampling distributions of the chosen regularization parameter (NSR=0.003). 
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Figure 4.24.  Sampling distributions of the chosen regularization parameter for the 

underestimated noise level by 50% (NSR=0.003). 
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Note that CL and RIC behave almost identically. This is reasonable because there 

is no functional misspecification in this example and accounting for possible 

misspecification has not resulted in any improvement. Despite the fact that most of the 

chosen values lie around 0.008, some very small values chosen for some noise 

realizations produce grossly underregularized solutions. This effect is more pronounced 

when the noise level is underestimated as shown in Figure 4.24. 

The number of small values are much larger, and, as a result, the probability of 

getting grossly underregularized solutions increases drastically. The ICOMPRPS method 

does not fail; the chosen values are still concentrated around 0.01. However, when the 

noise level is underestimated even more, ICOMPRPS eventually fails. As discussed 

above, such behavior is due to the introduction of an additional term that results in the 

decreased variability of the regularization parameter. 

Noise underestimation makes MDP and CL useless, whereas ICOMPRPS does a 

good job. This may serve as an illustration that the bias estimated solely by the number of 

parameters is grossly underestimated in situations with a small number of observations 

and should be refined. ICOMPRPS suggests one possible refinement by accounting for 

interdependencies between the parameter estimates. 

4.5 Image Reconstruction 

An original image, registered by a measuring device, is convolved with the point-

spread function of the measuring device. As a result, the registered image is a blurred 

version of the original. Notice that convolution is a smoothing process. When the inverse 

problem is solved, i.e. when the original image is reconstructed from its blurred version, 

deconvolution is used. Deconvolution is a roughening process and the solution 

(reconstructed original image) is unstable and must be regularized. 
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Figure 4.25.  Original image. 

The Matlab code for this example was provided by Dr. Curt Vogel of Montana 

State University in a personal communication. 

The original image is shown in Figure 4.25. The process of registering the image 

is modeled by its convolution with a point-spread function. The blurred image registered 

by the device is shown in Figure 4.26. 

If the ill-posedness of the problem is ignored, and the image is reconstructed by 

using standard deconvolution, the reconstructed image, shown in Figure 4.27, has nothing 

in common with the original image and has no practical value. 

If regularization is applied, the reconstructed images are similar to the original 

one. The reconstructed image for a small regularization parameter is shown in Figure 

4.28; for the ICOMPRPS regularization parameter in Figure 4.29; for the optimal 

regularization parameter in Figure 4.30; and for a large regularization parameter in Figure 

4.31. We see that the value of the regularization parameter plays an important role in the 

solution of the inverse problem; thus it is a necessity to be able to choose it properly. 
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Figure 4.26.  Observed blurred image. 
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Figure 4.27.  Reconstructed image without using any regularization (λ=1e-20). 
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Figure 4.28.  Reconstructed image with a too small regularization parameter value  

(λ=1.3e-6). 
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Figure 4.29.  Reconstructed image with the regularization parameter value chosen by 

ICOMPRPS (λ=0.000136). 
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Figure 4.30.  Reconstructed image with the optimal regularization parameter value 

(λ=0.000179). 
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Figure 4.31.  Reconstructed image with a too large regularization parameter value 

(λ=0.032). 
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Figure 4.32.  Regularization parameter selection methods. 
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Figure 4.33.  Using C1 to refine the estimation of the bias in estimating the prediction error. 
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In Figure 4.32 the results of several RPSM's are plotted. ICOMPRPS, derived in 

the information complexity framework, outperforms CL and GCV. ICOMPRPS chooses 

the value 0.0004, which is closer to the optimal value of 0.0007 than those chosen by 

GCV and CL. Figure 4.33 demonstrates how the complexity measure (C1) refines the 

bias estimation, imposing a more severe penalization of the estimation inaccuracy by 

means of a penalization of interdependencies among parameter estimates. 

4.6 Specification of Prior Distribution in Bayesian Inference 

In Bayesian analysis, we start with assigning a prior distribution ( )θπ  to the 

parameters θ  of a model. Given a data set X , we build the likelihood ( )θ|XL  and 

calculate the posterior distribution ( )X|θπ  of the parameters. The posterior distribution 

of the parameters in the proportional form is defined as 

  ( ) ( ) ( )θπθθπ || XLX ∝ . (4.10) 

Using the posterior distribution we can build the predictive distribution of the new data 

set Y  given the old data X  which was used for parameter estimation. The predictive 

distribution is defined as 

  ( ) ( ) ( )∫∝ θθπθ dXYLXYp ||| , (4.11) 

which is used to make an inference about future observations of Y . 

When there is no prior information, a common method is to use a non- informative 

prior to performing the analysis. This produces a tool to analyze the uncertainty in the 

predictions. However, it does not solve the problem. For example, performing a 

regression analysis of an ill-posed problem using a noninformative prior produces OLS 

coefficients which are useless. To be able to obtain a useful solution, an informative prior 

must be used which can help penalize undesirable properties of the solution. 
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If some information about the output is available, such as a range of its values, its 

sign, or a rough approximation to the predictive density, this information can be used to 

solve the above integral equation with the approximately known left hand side Yp~  for the 

prior  

  ( )∫∝ θπθ θ dYLpY |~  (4.12) 

This is a typical ill-posed inverse problem, which is also severely ill-conditioned 

in a discretized form. 

This approach can be demonstrated using a coin example. The goal is to infer the 

value of the parameter that describes the probability of getting the head when tossing a 

coin. We observe a sequence of heads and tails. In order to build a predictive distribution 

of the fraction of heads in the sequence, it is necessary to assign a prior distribution to the 

parameter, which in this particular case is known to be binomial. Since the parameter is 

unobservable (because we don’t know whether the coin is fair), we try to use some 

information about the observed output (the fraction of heads in the sequence) in the form 

of a rough predictive density. This is used in the left hand side of the integral equation to 

solve for the prior. The OLS solution (prior density of the parameter) is shown in Figure 

4.34. The OLS solution is very oscillatory. It is not a proper probability density because 

of the negative values and is useless. 

However, the regularized solutions shown in Figure 4.35 are very similar to the 

true probability density of the parameter (the solid line). The regularized solutions are not 

proper density functions because of the negative values in their tails. This can be 

corrected by using a different smoothing operator to produce only positive solutions. The 

regularized prior distribution of the parameter is obtained using only prior information 

about the observable output and the universal smoothness prior in regularization. This 

prior can be used to obtain the posterior distribution of the parameter and then, using the 

observed sequence, the predictive distribution of the output. 
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Figure 4.34.  OLS solution.  
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Figure 4.35.  Regularized solution. 
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Figure 4.36.  Regularization parameter selection. 
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Figure 4.37.  Variability of the regularization parameter value chosen by different RPSM's. 
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We now compare several RPSM's. A typical behavior of the RPSM's is shown in 

Figure 4.36. Since there is no model misspecification in this example, CL and RIC 

methods behave almost identically. However, both CL and RIC produce slightly 

underregularized solutions. 

The estimated sample densities of the regularization parameter chosen by 

different RPSM's is shown in Figure 4.37. The ICOMPRPS method produces a much 

more stable parameter estimate than CL and RIC. Due to the inadequate estimation 

inaccuracy penalization, CL and RIC very often choose smaller values of the 

regularization parameter. The corresponding solutions are undersmoothed and useless. 

ICOMPRPS always chooses parameter values that correspond to useful solutions. 

ICOMPRPS drastically reduces the risk of obtaining grossly underregularized solutions. 

The described approach for the prior specification may have a very wide range of 

applications varying from regression analysis to Bayesian regularization of neural 

networks. 
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CHAPTER 5 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

Many engineering problems are ill-posed. The failure to realize this fact can lead 

to unsuccessful attempts to build a data-driven method which is reliable and stable. An 

ill-posed problem is not solvable by conventional methods because the assumptions 

under which the methods were derived are violated. For example, it is impossible to build 

a stable sensor validation system using the OLS method. The OLS solution in the case of 

highly collinear predictors is extremely unstable and hypersensitive to small perturbations 

and particular realizations of the noise component. This is exactly the opposite property a 

data-driven method should possess to be of a practical value. 

Special techniques, such as regularization methods, must be employed to obtain 

stable solutions. The resulting regularized solution may be considered to be a solution of 

a well-posed problem that approximates the given ill-posed problem. Using a method of 

regularization alone does not automatically guarantee a good solution. Even if the 

penalization operator is properly chosen according to the physical interpretation of the 

solut ion (if such is possible), a proper regularization parameter must still be determined. 

The proper choice of the parameter is a difficult problem because it requires prior 

information about the sought solution and knowledge about the noise level in the 

response. In almost all practical situations, such information is unavailable. 

Several different RPSM's have been proposed in the literature. Yet none is 

misspecification-resistant. They assume that the specified model is correct and do not 

guarantee reliable solutions when the model is misspecified. For many applications, it is 

extremely difficult to find a basis for arguing that the model is correct. Most probably the 
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model will be misspecified. Misspecification can be functional, in which the functional 

relationship between the predictors and the response is not correct or some relevant 

variables are missing. Misspecification can also be distributional, in which the 

distributional model of the data is not correct. For example, instead of a normal 

distribution, the noise can have a skewed distribution and/or a distribution with heavy 

tails. There also may be outliers present in the data. Each of these is usual and is present 

in real data sets. 

In the dissertation we propose a misspecification-resistant RPSM that not only 

behaves consistently under possible model misspecification, but also has a significantly 

smaller risk of producing grossly underregularized solutions. Common rules such as CL 

or RIC, because of their statistical nature, can perform well on one data set and fail 

miserably on another. Stable, reliable methods are needed in autonomous applications. 

The ICOMPRPS method, due to the extra penalization of estimation inaccuracy, 

significantly reduces the risk of obtaining grossly underregularized solutions. This 

method can be reliably implemented in autonomous diagnostic and monitoring systems. 

The ICOMPRPS method combines two powerful theoretical approaches. One is 

the information approach to regularization parameter selection and the other is the 

information complexity approach. The information approach enables one to build an 

estimator of the mean expected log likelihood, which is consistent under model 

misspecification. This approach involves asymptotics, i.e. the results are guaranteed when 

the number of data points goes to infinity. For actual problems, this is impossible to 

fulfill. Small sample properties of the information methods require investigation. 

ICOMPRPS, by means of also using the information complexity approach, is able to 

compensate for the inadequate penalization of estimation inaccuracy in the information 

methods for a limited number of observations. This extra penalization is more severe for 

smaller data sets and for more ill-conditioned problems. As a result, the proposed RPSM 
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can handle possible model misspecification and significantly reduces the risk of obtaining 

grossly underregularized solutions. Both of these properties are of exceptional value for 

engineering applications. 

The superior performance of the ICOMPRPS method was demonstrated by 

several practical applications including a sensor validation system, an inferential drift 

prediction system and other examples. 

The topic of the dissertation and presented material have been peer-reviewed and 

published in several conference and journal papers. These papers are attached in 

Appendix A.3. The new method presented is an important contribution to the field of ill-

posed inverse problems in engineering. 

5.1 Future Work and Further Improvement 

Future work may include an extension of the information complexity approach to 

other modeling paradigms such as support vector machines, which also use regularization 

and require regularization parameter selection. 

Further improvements may include the generalization of the ICOMPRPS method 

to the correlated (colored) noise case. Although this case is very important, many existing 

RPSM's fail when the noise is colored. 
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A.1 

The Trace Result 

Consider a random m -vector b  normally distributed as ( )Σ,0~ Nbn . The 

expected value of ( )AbbT  is given by 

  ( ) ( )Σ= Atrace
n

AbbE T 1
. 

Indeed, the expected value can be calculated using the properties of the expectation 

operator as 

  

( ) ( )

( ) ( )Σ===











+++=
















































=

∑∑∑∑

∑∑∑

= == =

===

Atrace
n

a
n

bbEa

abbabbabbE

b

b

aa

aa
bbEAbbE

m

k

m

i
kiik

m

k

m

i
ikik

m

i
imim

m

i
ii

m

i
ii

mmmm

m

m
T

11

1 11 1

11
22

1
11

1

1

111

1

σ

…

M
L

MM
L

L

 

This proofs the result. 
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A.2 

Plant Variables for Example 1 

Table 7.  24 plant variables used as predictors to evaluate feedwater flow rate. 

Var. Num. Description Range Units 
    
1 FWP speed 0-7500 rpm 
2 'A' OTSG efic high level 0-100 percent 
3 Feedwater pump A speed 0-7500 rpm 
4 Linear power CH NI-6 0-125 percent 
5 Heater 3A inlet cond temp 40-300 degf 
6 Heater 3B outlet cond temp. 40-350 degf 
7 Dearator inlet cond temp 40-350 degf 
8 Heater 6A inlet FW temp 40-500 degf 
9 FWP A discharge temp  40-500 degf 

10 FWP A suction temp 40-500 degf 
11 Heater 5B outlet FW temp 40-500 degf 
12 Steam gen B inlet FW temp 40-600 degf 
13 Heater 6B outlet FW temp 40-600 degf 
14 Steam gen A level (op) 0-100 percent 
15 Steam gen A level (full) 40-640 inches 
16 Steam gen A level (start up) 0-250 inches 
17 Steam gen B inlet FW temp 0-500 degf 
18 Steam gen B level (start up) 0-250 inches 
19 Steam gen A inlet FW temp 40-600 degf 
20 Steam gen B inlet FW temp 40-600 degf 
21 Reheater A cold reheat press. 0-200 psig  
22 Reheater D cold reheat press. 0-200 psig  
23 Reheater C cold reheat press.  0-200 psig  
24 No. 2A extr LP turb pressure 0-20 psia 
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