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ABSTRACT 

 

This dissertation intends to address the following two issues: 1) Persistence of the bias in 

analysts' earnings forecasts; 2) Investors’ response to such bias. It extends the understanding of 

information economics in earnings studies, and is expected to improve asset pricing models, 

suggest better model specifications for earnings studies, provide regulatory policy implications, 

and facilitate discussions on investor rationality. 

Using two look-back portfolio formation methods that capture salient features of analysts' 

past forecasting behavior, I form quintile portfolios that describe the range of analysts' forecasting 

behavior. The optimistic portfolios refer to the portfolios containing firm-quarters whose 

contemporaneous forecast errors are likely to be negative, while the pessimistic portfolios refer to 

the portfolios containing firm-quarters whose contemporaneous forecast errors are likely to be 

positive. Evidence that the two formation methods have significant predictive power for the 

contemporaneous forecast errors is found and this suggests that there is persistent bias in analysts’ 

earnings forecasts. 

Investors’ response to the persistent bias is characterized by two hypotheses. The naïve 

expectations hypothesis (NEH) predicts that investors naively follow analysts’ past forecasting 

behavior, while the rational expectations hypothesis (REH) predicts that investors fully adjust for 

analysts’ past forecasting behavior when investors form their own expectations about 

contemporaneous earnings.  

Major findings are reported regarding behaviors of two market participants − financial 

analysts and investors − in forming their expectations in quarterly earnings. The first set of 

findings provides strong evidence of persistent bias in analysts' forecasts. The second set of 

findings suggests that investors’ reaction to analysts’ forecasting behavior is complex. The data 

does not strongly reject the NEH in favor of the REH. It is speculated that investors sometimes 

seem neither naïve nor rational. Rather, they seem to possess another type of quasi-rational 

behavior other than naïve. As a result, the simple framework (NEH versus REH) used in this 

dissertation has a limit. The examination of a full range of investor behavior is encouraged for 

future research.  
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Chapter 1 
 

Introduction 

 

1.1 Overview 

 

Behavioral finance is no longer as controversial a subject as it once was. 
As financial economists become accustomed to thinking about the role of 
human behavior in driving stock prices, people will look back at the 
articles published in the past 15 years and wonder what the fuss was about. 
I predict that in the not-too-distant future, the term "behavioral finance" 
will be correctly viewed as a redundant phrase. What other kind of finance 
is there? In their enlightenment, economists will routinely incorporate as 
much "behavior" into their models as they observe in the real world. After 
all, to do otherwise would be irrational [Thaler (1999; p. 16)].  
 

In the real world, two groups of market participants − rational and quasi-rational − 

coexist.1  If the quasi-rational participants dominate the rational ones in the market 

decision-making process, rational market equilibrium is unlikely to be achieved. For 

example, if analysts behave quasi-rationally due to certain economic incentives or non-

economic behavior when they forecast earnings, then their earnings forecasts are likely to 

show systematic patterns − overreaction, underreaction, optimism, or pessimism − as 

reported in a wealth of finance and accounting literature.  

Currently, there are two basic alternative explanations for analysts' earnings 

forecasting behavior − one based on response to economic incentives and the other based 

on non-economic  behavior. Some argue that economic incentives may influence 

                                                           
1 Thaler (1986) defines quasi-rational behavior as behavior that is "purposeful, regular, and yet 
systematically different from the axioms of economic theory" (p. S280).  Thus, he argues that "someone 
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analysts' earnings forecasts because of analysts' underwriting relationships with 

companies whose earnings they are forecasting, career (reputation) concerns, or earnings 

management by companies being analyzed [Scharfstein and Stein (1990); Dechow, 

Hutton, and Sloan (1998); Michaely and Womack (1999); Degeorge, Patel, and 

Zeckhauser (1999); Lim (2000)].  

The second group of explanations draws from behavioral scientists and financial 

economists to suggest that individuals do not tend to follow the statistical theory of 

prediction.2 Rather, individuals use their own subjective probability of an event (e.g., 

unexpected earnings information) to determine their response to the event [Kahneman 

and Tversky (1972, 1973); Tversky and Kahneman (1973); Einhorn and Hogarth 

(1985)].3 A wealth of behavioral finance literature has reported that there exist behavioral 

tendencies in both analysts' and investors' reactions to unexpected earnings information. 

In the context of reactions to earnings information, such behavioral tendencies of analysts 

and/or investors have been characterized as overreaction, underreaction, or optimism [De 

                                                           
who systematically overreacts to new information in violation of Bayes' rule is predictable yet only quasi-
rational" (p. S281).  In this paper, the market participants of interest are financial analysts and investors. 
2 The statistical theory of prediction refers to the normative (Bayesian) approach in which probability can 
be operationally defined via choices among events. If two events provide identical payoffs but one is 
preferred to the other, it follows that the probability of winning is greater for the chosen alternative. 
According to Kahneman and Tversky (1973), the statistical theory of prediction involves three types of 
information: prior information, specific evidence concerning the individual case, and the expected accuracy 
of prediction. 
3 As in Kahneman and Tversky (1972; p. 431), as opposed to the Bayesian probability (or objective 
probability) of an event, "subjective probability of an event" is defined as any estimate of the probability of 
an event that is provided by a subject, or represented by his or her behavior. Unlike the statistical theory of 
prediction (the Bayesian probability), the subjective probability relies not on prior probability but on a 
judgmental heuristic called representativeness [Kahneman and Tversky (1972, 1973)]. This approach 
predicts that a person, in many cases, judges that an event is more probable than another whenever the 
former appears to represent both the population proportion and the randomness of the process. For 
example, when a group of subjects are given the sequence of coin tosses, more subjects document that 
HTTHTH is more probable than either HHHHTH or HHHTTT, although all three sequences have the same 
prior probabilities [Tversky and Kahneman (1973); also see Einhorn and Hogarth (1985) for a similar 
example].  
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Bondt and Thaler (1985, 1987, 1990); Bernard and Thomas (1990); Abarbanell (1991); 

Abarbanell and Bernard (1992); Easterwood and Nutt (1999)]. 

Few studies, however, investigate the relationship between behavioral tendencies 

in analysts' earnings forecasts and investors' reactions to such tendencies [Abarbanell and 

Bernard (1992); Dechow and Sloan (1997); Ackert and Athanassakos (1997)]. This 

research issue is important because it may enhance our understanding of the persistent 

post-announcement date stock return anomalies, the validity of model specifications in 

previous earnings studies, regulatory incentives in securities markets, and investors' 

rationality in response to analysts' forecasting behavior. In addition, the empirical 

findings of the current research may improve various asset pricing models, just as other 

behavioral finance literature has.4 

A large body of literature documents that analysts' forecasts provide the best 

proxy for investors' earnings expectations, and tend to outperform the time-series models 

[Brown and Rozeff (1978); Fried and Givoly (1982); Givoly and Lakonishok (1984); 

Conroy and Harris (1987); Brown et al. (1987); O'Brien (1988); Kross, Ro, Schroeder 

(1990)]. The recent studies about systematic behavioral tendencies in analysts' forecasts 

and investors' expectations utilize analysts’ forecast errors based on analysts' forecasts 

compiled from a variety of sources [Abarbanell and Bernard (1992); Ali, Klein, and 

Rosenfeld (1992); Elliott, Philbrick, and Wiedman (1995); La Porta (1996); Ackert and 

Athanassakos (1997); Clement (1999); Easterwood and Nutt (1999)]. In line with these 

                                                           
4 Traditional asset pricing models (e.g., CAPM and APT) assume market efficiency. These models imply 
that abnormal returns cannot exist in equilibrium taking necessary factors (e.g., market portfolio returns, 
interest rates, size effect, and so forth) into consideration. They do not consider investors' quasi-rational 
behavior as a necessary factor.  
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studies, the Institutional Brokers Estimate System (I/B/E/S) quarterly consensus earnings 

forecasts are used for this dissertation. 

There is a wealth of literature studying stock price reaction to analysts' forecasts 

errors or revisions [Givoly and Lakonishok (1979a, 1979b); Hughes and Ricks (1987); 

Cornell and Landsman (1989); Teets (1992); Alexander, Jr. (1992); Abarbanell and 

Bernard (1992)]. These studies explicitly or implicitly assume that investors' reaction to 

earnings information is a function of analysts' forecasts, as if investors’ earnings 

expectations equal analysts’ forecasts. A common functional form that shows this 

relationship is:  

)( itit FEfCAR =                 (1-1) 

where  

itCAR  =  the cumulative abnormal return for the event period around the  

 earnings announcement t for firm i (e.g., 1-year holding period, from  

 –2 to 0 relative to the announcement date, or 1-month abnormal return 

 in the month including the announcement date, and so forth.);5 

itFE  =  analysts’ earnings forecast errors at the earnings announcement t for  

 firm i (= FA − ); itit

itA  =  actual earnings at the earnings announcement t for firm i; and 

itF   =  analysts' consensus forecasts for . itA

                                                           
5 In this research, CARit indicates the market-model adjusted 3-day [-2:0] cumulative abnormal returns at 
the quarterly earnings announcement t for firm i.    
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Analysts and investors are different types of market participants and may possess 

different information sets as well as different behavioral characteristics.6 Analysts' 

forecasts, then, may not be an appropriate proxy for investors' expectations. For example, 

suppose analysts' forecasts are biased, but investors can estimate the bias and adjust 

accordingly. If so, the previous studies about information content of contemporaneous 

unexpected earnings (i.e., forecast errors) may have provided spurious results.  

Because analysts’ forecasts may not be the same as investors’ earnings 

expectations, the conclusions of prior research using functional forms similar to Equation 

(1-1) may involve invalid inferences about the relationship between unexpected earnings 

information and investors' reaction to it. In short, the empirical framework for displaying 

the relationship between stock price movement and unexpected earnings information may 

have been misspecified in prior studies.  

To illustrate, first suppose that analysts' forecasts are, indeed, the best proxy for 

investors' expectations about future earnings. Then, investors' expectations can be 

expressed as follows: 

Investors' Expectations ( ) = Analysts' Forecasts ( ) =         (1-2) tE tF ),( analystt Bf θ

where  

tθ   = information sets of analysts at the quarterly earnings announcement t; 

analystB   = analysts' behavioral tendencies at t; and 

tF   = analysts' earnings forecasts at t. 

For convenience, firm subscripts are dropped hereafter.  

                                                           
6 Recall that I use the term "behavior" to indicate non-economic behavior based on the subjective 
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I refer to the assumption that investors' expectations equal analysts' forecasts as 

the naïve expectations hypothesis (NEH). The conclusions of previous studies that use 

analysts’ forecasts as the proxy for investors' expectations should then be qualified by the 

NEH. The NEH predicts that investors naively follow analysts' forecasts when they form 

their expectations about contemporaneous earnings. Note that naïve reaction is a type of 

quasi-rational behavior. 

There is, however, growing evidence that analysts' forecasts may exhibit 

systematic patterns, which may be used to classify analysts' behavior (e.g., optimistic, 

pessimistic, or rational). If investors incorporate their knowledge of such systematic 

patterns in analysts’ forecasts rather than naively accepting the forecasts at face value, 

then the NEH is invalid. 

My research postulates that the NEH is a questionable approach because investors 

may adjust for analysts’ forecasting behavior, and/or display behavioral tendencies 

themselves. For example, suppose analysts issue biased forecasts, and investors know the 

direction of the bias. That is, investors' expectations are conditioned on investors' 

information sets and the behavioral tendencies of both investors and analysts:7  

Investors' Expectations =       (1-3) ),( Investort Bf φ

where  

tφ  = information sets of investors, which include knowledge of systematic  

                                                           
probability of a subject.  
7 Although the two information sets intersect, they are assumed to be different because the financial 
analysts are likely to have information advantages over investors due to analysts' superior expertise and 
better position for information collection. Investors’ information sets may also include knowledge of 
analysts’ behavior. Because of the passage of Regulation FD, the gap between the two may be narrowed. 
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 behavioral tendencies of analysts, , and their recent earnings analystB

 forecasts; and 

investorB  =  non-economic behavioral tendencies of investors.8                        

If analysts' forecasts and investors' expectations are significantly different, 

investors' reactions to unexpected earnings information calculated by using analysts' 

forecasts (i.e., analysts’ forecast errors; ) may not be viewed as valid indicators of 

investors' reactions to their own expectation errors. If investors' earnings expectations are 

not equal to analysts' forecasts, analysts' forecast errors are not the real unexpected 

earnings information. It is thus necessary to distinguish between investors' expectation 

errors and analysts’ forecast errors. 

FEs

A more general approach proposed herein decomposes investors' reaction to the 

earnings announcement based on analysts’ forecasts into two components: self-collected 

information that contains analysts’ behavior and forecasts ( ), and investors' own 

behavioral tendencies in earnings expectations  ( ) as shown in Equation (1-3). The 

first component can be seen as a combination of analysts’ forecasting behavior and 

residual self-collected information. The NEH implies that investors ignore analysts’ past 

forecasting behavior.  

tφ

investorB

On the other hand, investors may rationally take analysts’ forecasting behavior 

into account and adjust for it when they form their own earnings expectations. In this 

case, analysts’ forecasting behavior is a significant determinant of investors’  

                                                           
8 Note again that non-economic behavioral tendencies are defined as a type of quasi-rational behavior 
[Thaler (1986)]. 
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expectations, and investors’ reaction to earnings surprises (analysts' forecast errors) is 

unlikely to reflect systematic underestimation or overestimation. Based on this argument, 

an alternative hypothesis to the NEH is defined as the hypothesis that investors rationally 

adjust for observed analysts' forecasting behavior, and will be called rational expectations 

hypothesis (REH).9 

Under the REH the market reaction to the earnings announcement for an 

optimistic stock will be significantly different from that for a pessimistic stock.10 The 

rational investors fully adjust for analysts' optimism by discounting analysts' optimistic 

forecasts or fully account for analysts' pessimism by placing a premium on analysts' 

pessimistic forecasts. They will not, as a result, take at face value the unexpected 

earnings information (i.e., analysts' forecast errors) at the earnings announcement.  

The NEH and the REH are not exhaustive hypotheses of investor behavior. The 

NEH demonstrates the most simplistic type of quasi-rational investor behavior (naïve 

following of analysts' forecasts), while the REH presumes fully rational investor behavior 

(full adjustment of analysts' forecast bias). Alternative hypotheses involve what might be 

collectively termed variations of quasi-rationality.11 For example, what if investors 

amplify or over-adjust for analysts' optimism or pessimism in earnings forecasts? If this 

is the case, analysts' optimism will be reinforced or overly discounted in the investors’ 

reaction to earnings surprises, while analysts' pessimism will be reinforced or given too 

                                                           
9 Note that while analysts’ earnings forecasts are observable, investors’ earnings expectations are not. In 
this research, investors’ earnings expectations can be indirectly inferred by examining the two proposed 
hypotheses: NEH and REH. 
10 A(n) pessimistic (optimistic) stock indicates a stock that has been characterized by analysts' pessimism 
(optimism) in quarterly earnings forecasts. 
11 Consistent with Thaler (1986), the quasi-rational behavior here is defined as behavior that is "purposeful, 
regular, and yet systematically different from the axioms of economic theory (p. S280).  
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much premium. That is, investors are neither naïve nor fully rational. Alternative 

hypotheses vary with investors’ behavioral tendencies (other than naïve) in earnings 

expectations, they might be termed the behavioral expectations hypothesis (BEH) 

collectively. Although the BEH is an important aspect of research, I will suppress its 

discussion for the purpose of parsimony.12  

 

1.2 Motivations 

 

1.2.1 Need for New Perspective: A Valid Specification 

 

As noted in the previous section, few studies have evaluated investors' reaction to 

analysts' forecasting behavior. Most existing studies have largely ignored the "behavior" 

element of analysts' forecasts as a determinant of investors’ expectations in future 

earnings, implicitly assuming that investors take analysts' forecasts at face value. The 

literature has by-and-large implicitly assumed that investors' reaction to earnings 

information is characterized by the NEH. However, my approach incorporates analysts' 

forecasting behavior into the model in which investors' reaction to earnings 

announcements is examined. 

If investors' expectations significantly differ from analysts' forecasts, this 

functional form is misspecified, since investors' reaction is based on additional 

                                                           
12 If I discuss the BEH along with the NEH and the REH, I may end up producing many speculations about 
investors' reaction to analysts' forecasting behavior as opposed to showing economically meaningful 
empirical findings. I will briefly discuss the BEH in Chapter 7 and give some speculation about the market 
reaction to analysts' forecasting behavior under the BEH.  
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information about analysts' forecasting behavior which is known to them, and which may 

cause investors to view analysts' forecasts as biased. Thus, Equation (1-1) should 

incorporate investors' expectations ( ) into the function instead of analysts' forecasts 

( ). The functional form I propose is:  

tE

tF

               (1-4) ( )t tCAR g TE=

 where  

 = investors' expectation errors = ; and tTE tA E− t

)t

 other terms are as defined before.  

It is now obvious that the traditional functional form, , should be 

modified if investors' expectations are believed to be different from analysts' forecasts. If 

analysts' forecasts ( ) are not, in fact, unbiased estimates of investors' expectations ( ), 

then the parameter estimate of analysts' forecast errors ( ) is a biased measure of the 

market sensitivity to investors' expectation errors to the extent of the systematic 

difference between  and . 

(tCAR f FE=

tF

tE

tE

tFE

tF

Research for the relation between analysts' forecasting behavior and investors' 

expectations in future earnings remains largely an uncharted area. Such research enables 

a more thorough investigation on the relevance of earnings information flows from firms 

to analysts to investors.  

The empirical findings would have important implications for investments and 

regulatory policies. For instance, in this case the naïve investors take analysts' forecasts 

as unbiased the naïve investors' forecast errors are equal to analysts' forecast errors. By 
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definition, these investors will experience misperceived earnings surprise with the result 

that the stocks will be mispriced during the announcement period. However, notice that 

this does not take into account a multi-period view. One interesting research question 

would be whether and how the mispricing corrects itself, and if so, when it happens.   

If it can be shown that the underpricing is systematically associated with analysts’ 

forecasting behavior, regulators may have incentives to ensure that investors have the 

information necessary to better assess analysts' earnings forecasts. The Securities and 

Exchange Commission's Regulation FD (Fair Disclosure) became effective on October 

23, 2000, and may be a consequence of such incentives.13 

 

1.2.2 Defining Optimism and Pessimism as Behaviors 

 

A shortcoming of the extant studies about analysts' forecasts and investors' 

reaction to the earnings announcement is that, taken collectively, they do not provide 

readers with clear definitions of such concepts as overreaction, underreaction, optimism, 

or pessimism.14 Some studies define overreaction as overweight on current unexpected  

 

                                                           
13 "Regulation FD (Fair Disclosure) is a new issuer disclosure rule that addresses selective disclosure. The 
regulation provides that when an issuer, or person acting on its behalf, discloses material nonpublic 
information to certain enumerated persons (in general, securities market professionals and holders of the 
issuer's securities who may well trade on the basis of the information), it must make public disclosure of 
that information" [Federal Register: August 24, 2000 (Volume 65, Number 165, pp. 51715-51740)]. The 
Regulation FD was passed on August 10, 2000, appears in Federal Register, and took effect on October 23, 
2000.  
14 Unless qualified, overreaction, underreaction, optimism, and pessimism indicate both analysts' and 
investors’ perspectives. For example, optimism implies either analysts' or investors' optimism, while 
analysts' optimism means only optimistic behavioral tendencies in analysts' forecasts.   

 11 



earnings information (i.e., analysts' forecast errors) resulting in either overvaluation or  

undervaluation, and underreaction as underweight on current unexpected earnings 

information (resulting in either undervaluation or overvaluation).15 There is, however, no 

universal agreement among existing studies on how the terms describing behavioral 

phenomena are defined.  

Although optimism and pessimism are the concepts that are closely associated 

with both underreaction and overreaction, the former have attracted less attention than the 

latter, and have not been discussed in depth until recently. La Porta (1996) implies that 

analysts' optimism is equal to the difference between the actual values of earnings and 

analysts' forecasts where analysts' forecasts are greater than the actual earnings. Thus, he 

argues that if analysts' forecast errors, , are consistently negative it means analysts 

are, on average, optimistic. Because most existing studies either explicitly or implicitly 

assume that analysts' forecasts are an appropriate proxy for investors' expectations (i.e., 

they assume the NEH), the same notions of optimism in analysts' forecasts have been 

applied to investors' expectations.  

tA F− t

                                                          

Easterwood and Nutt (1999) provide a different definition of analysts' optimism, 

arguing that in an optimistic framework analysts tend to underreact to negative 

information and overreact to positive information.16 As shown in their paper, analysts’ 

optimism is not mutually exclusive of either overreaction or underreaction, but 

 
15 That is, overweighting positive earnings news results in overvaluation while overweighting negative 
earnings news leads to undervaluation. Most of existing studies haven't explicitly taken the types of news 
(i.e., good or bad) into consideration.   
16 From the optimism definition, I can induce the definition of pessimism: overreaction to bad news and 
underreaction to good news. These definitions of optimism and pessimism are inconsistent with the existing 
definitions of optimism and pessimism in overreaction and underreaction studies.  
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interdependent. Analysts’ overreaction to bad news is actually a pessimistic reaction, as is 

underreaction to good news. On the other hand, analysts’ underreaction to bad news 

indicates an optimistic behavior, as does overreaction to good news. Certain patterns of 

over- and underreaction lead to optimism, and other patterns, to pessimism, but clearly 

the simple over- and underreaction dichotomy is not equivalent to the optimism and 

pessimism dichotomy. It should, however, be noted that the operational definitions of 

analysts' optimism and pessimism, whatever the underlying cause, are still negative 

forecast errors and positive forecast errors, respectively. 

 

1.3 Concluding Remarks 

 

Investors have access to information about prior forecast errors. Therefore, one 

way of discovering analysts' behavior is to analyze historical data.17 This is why 

"persistence", if it exists, is an important empirical trait. If analysts' optimism or 

pessimism is, indeed, persistent, then another important question arises: How is analysts' 

optimism or pessimism incorporated into investors' expectations about future earnings? 

Testing the NEH against the REH will provide an empirical answer to this question. 

I use portfolios of stocks to test the proposed hypotheses, and these portfolios are 

formed on the basis of the historical record of analysts' forecasting behavior prior to the 

earnings announcement. To capture analysts' forecasting behavior, the quarterly 

consensus earnings forecasts and actual earnings compiled from I/B/E/S are used. It 

                                                           
17 Other methods are conceivable, but impractical (e.g., give each analyst a battery of psychological tests 
just prior to every forecast). 
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should be noted that tests of the NEH versus the REH using the formed portfolios are 

based on the following presumptions:  

(a) Historical data can be used to determine the range of analysts' forecasting 

behavior. 

(b) Analysts' forecasting behavior is a significant determinant of investors' 

earnings expectations.18  

(c) Investors' behaviors are dichotomized into naïve and rational. 

In summary, this research intends to answer the following two questions: 1) 

Whether the bias in analysts' earnings forecasts is persistent and therefore knowable; 2) If 

it is indeed, how investors respond to such bias. The empirical findings would improve 

asset pricing models, suggest better model specifications in related studies, provide 

regulatory policy implications, and facilitate discussions on investor rationality.  

The dissertation is presented in the following order. In the next chapter, the 

existing literature is reviewed. Chapter 3 sets forth the hypotheses to be tested and 

addresses the empirical models to test the hypotheses. In Chapter 4, two portfolio 

formation methods that measure analysts' forecasting behavior are introduced, and 5 

portfolios of observations (firm-quarters) revealing the range of such behavior are 

formed. Chapter 5 introduces the sample and describes the abnormal return measures. 

Chapter 6 presents and discusses the empirical findings, and also suggests their 

implications. Chapter 7 summarizes and concludes my dissertation.  

                                                           
18 It is implicitly required to have persistent analysts' forecast errors (or bias) over a certain period of time 
so that investors are really exposed to systematic patterns in analysts' forecasts.   
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Chapter 2 

Literature Review 

 

2.1 Overview 

 

Since the De Bondt and Thaler's seminal work (1985), a great deal of research on 

inefficiency in analysts forecasts and investors reaction to the earnings announcement has 

constituted a literature of earnings studies. The existing literature regarding analysts' 

and/or investors' reaction to earnings information can be divided into three categories: 

Overreaction and underreaction from investors’ perspectives, overreaction and 

underreaction from analysts’ perspectives, and optimism and pessimism from analysts’ 

perspectives.19 Some studies are supportive of the rational hypothesis that analysts and/or 

investors fully utilize all available information and produce unbiased expectations about 

future earnings, while the others support the quasi-rational hypothesis that expectations 

about future earnings tend to show systematic bias. The latter studies are collectively 

called behavioral finance. In the following sections major studies in behavioral finance 

are contrasted with rationality-based literature.  

 

 

 

                                                           
19 Recall that most existing studies do not investigate analysts' forecast bias and investors' reaction to the 
earnings announcement sequentially or simultaneously, although they seem highly correlated events. In 
other words, the existing studies tend to separate investors' earnings reaction behavior from analysts' 
forecasting behavior. As a result the former type of studies take into consideration investors' point of view 
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2.2 Overreaction and Underreaction: Investors’ Perspectives   

 

Many studies in this category of literature investigate the autocorrelation structure 

of analysts' forecast errors, the post-earnings-announcement drift, or the mean reversion 

of stock returns following the earnings announcement. To show the autocorrelation 

structure in analysts' forecast errors, a handful of studies use distributed-lag models 

similar to the following regression model [Bernard and Thomas (1990); Mendenhall 

(1991)]:  

0 1 1 ....t f t t k t kCAR FE FE FEγ γ γ γ− −= + + + + + tε

                                                          

       (2-1) 

where   

fγ  = the intercept term; 

kγ  = the earnings response coefficient for the forecast error,   t kFE −

 [k = 0, …, K(=an integer)]; 

tε  = a random error term assumed independently and identically  

 distributed; and 

other terms are as defined earlier.   

Note that by assuming that stock returns are a function of analysts' forecast errors, 

studies using this type of model implicitly adopt the NEH. Some studies use lagged 

abnormal returns as regressors while others use both lagged forecast errors and abnormal 

returns, and the number of lags, , is usually less than or equal to 4. Positive (negative) k

 
(perspective) on the earnings information, seemingly independent of analysts' point of view (perspective) 
on the same information.     
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slope coefficients in a declining pattern in absolute values during a forecasting period 

would indicate systematic underreaction (overreaction) of investors to the earnings 

announcement. 

Another popular technique to investigate investors’ underreaction or overreaction 

is to look at the movements of post-announcement abnormal returns relative to pre-

announcement abnormal returns or pre-announcement performance (i.e., portfolios based 

on pre-announcement stock performance, such as winner and loser portfolios) [Bernard 

and Thomas (1989); Chan, Jegadeesh, and Lakonishok (1996); La Porta (1996)]. To 

determine whether abnormal stock returns are permanent or not, post-announcement 

abnormal returns are plotted against post-announcement time period (e.g., month, quarter, 

or year).20 If the abnormal returns show increasing or decreasing patterns in the same 

(opposite) direction as pre-announcement returns, it is taken as evidence of underreaction 

(overreaction). Other researchers compare winner and loser portfolios instead of 

comparing pre- and post-announcement abnormal returns.  

 

2.2.1 Overreaction 

 

De Bondt and Thaler (1985) conclude that investors tend to place too much 

weight on recent earnings information instead of long-term earnings power, and suggest 

that corrections of such overreactions explain the long-term reversals of extreme prior 

stock price changes. They cite behavioral research to support the overreaction hypothesis  

                                                           
20 The maximum period is usually 5 years.  
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under which overreaction to recent information characterizes the securities markets.  

Behavioral researchers such as Kahneman and Tversky (1982) argue that individuals are 

apt to overreact to unexpected news events, and thus Bayes' rule does not characterize 

behavior of individuals.  

De Bondt and Thaler (1987) reevaluate the behavioral hypothesis of investor 

overreaction found in their 1985 paper by discussing some unresolved issues (e.g., the 

effects of size and time-varying risk premia) related to the winner-loser anomaly. They 

confirm the winner-loser effect they found in their 1985 paper, and in addition they 

suggest that the size effect and difference in risk are not responsible for the winner-loser 

effect. They show that risk disparity between the loser and winner portfolios is 

insufficient to account for the return gap between the two portfolios. For example, for 

annual returns, the CAPM beta for the loser portfolio in up markets is 1.388 and the beta 

in down markets is 0.875. On the other hand, the beta for the winner portfolio in up 

markets is 0.993 and the beta in down market is 1.198. They argue that it is not 

reasonable to say that a portfolio with betas of 1.388 and 0.875 in up and down markets 

respectively is riskier than one with betas of 0.993 and 1.198 in up and down markets.21 

Thus, the risk effect is rejected. Furthermore, De Bondt and Thaler find that the small 

firm effect is not observed in their data.  

Chopra, Lakonishok, and Ritter (CLR; 1992) and Lakonishok, Shleifer, and 

Vishny (LSV; 1994) provide additional evidence of the overreaction effect even after 

controlling for fundamental risks. CLR use an OLS multiple regression model 

                                                           
21 De Bondt and Thaler (1987, p. 568) 
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incorporating both size and risk measured as the portfolio rank, and test the overreaction 

effect. CLR form 20 portfolios by continuously ranking stocks each year on the basis of  

their 5-year buy-and-hold returns. Portfolio 1 consists of stocks with the lowest ranking-

period returns, and Portfolio 20 consists of stocks with the highest ranking-period returns. 

They obtain evidence that extreme losers (stocks in Portfolio 1) outperform extreme 

winners (stocks in Portfolio 20) by 5 percent per year, even after controlling for size, 

prior returns, and betas. This evidence is much stronger for smaller firms than for larger 

firms. For example, among small firms the abnormal return spread between extreme 

losers and winners increases to 10 percent per year. CLR argue that, considering that 

individuals are predominant shareholders of small firms while institutional investors 

predominantly hold large firms, this is a reasonable result.  

LSV also provide evidence that contrarian strategies yield significant abnormal 

returns by exploiting the suboptimal behavior of the typical investors. Like many others, 

LSV form value and glamour portfolios. But, unlike the others, they use four different 

measures: B/M (book-to-market), C/P (cash flow to market value of equity), E/P 

(earnings-to-price), and GS (growth rate of sales). LSV contend that value stocks are no 

riskier than glamour stocks.22 

La Porta (1996) examines systematic errors in analysts’ forecasts, extrapolation, 

and contrarian strategies, and reports that analysts' forecasts about earnings growth are 

too extreme and contrarian strategies do earn abnormal returns. Consistent with his 

                                                           
22 Note that there are also studies against investors' overreaction. For example, Chen and Sauer (1997) 
reexamine the overreaction hypothesis by testing the contrarian investment strategy and find that the 
existence of overreaction depends on the sample periods studied. They argue that the contrarian strategy 
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expectation, the average raw returns of low-growth firms are 20.9 percentage higher than 

those of high-growth firms. He argues that these results are robust even after controlling 

for both size and book-to-market ratios, and that a particular time period does not seem to 

drive the superior performance of low-growth firms. Notice that La Porta implicitly 

assumes investors' naïve reaction to extreme analysts' forecast about earnings growth.23 

Rozeff and Zaman (1998) provide another evidence on investor overreaction. 

They create deciles of stocks based on a ratio of cash flow to market value of equity each 

year for each firm, and as a result value stocks (i.e., highest-decile stocks) and growth 

stocks (i.e., lowest-decile stocks) are obtained. Then, Rozeff and Zaman examine the 

direction of insider trades along the growth/value spectrum, and find that insider buying 

increases as stocks increasingly become value stocks, and insiders tend to sell the stocks 

that experienced high returns. This implies that growth stocks are overvalued and value 

stocks are undervalued by the outside investors. This is consistent with the predictions of 

the overreaction hypothesis. Seyhun (1990) also investigates insider trades in response to 

the 1987 Market Crash. To see whether investors reveal their overreacting behavior in the 

Crash, Seyhun examines the relation between stock returns before and after the Crash, 

insider trading activity, and pre-Crash market risk in a multiple regression framework. He 

finds similar results to Rozeff and Zaman (1998). That is, insiders' buying jumps right 

after the Crash and the stocks bought by insiders experience larger positive returns.  

                                                           
earns abnormal profits only for specific time periods such as pre-war or pre-energy crisis while the winner-
loser portfolio relationship becomes ambiguous during post-war period (i.e., 1940-1950s). 
23 If it turns out that investors are, in fact, somewhat rational, we may not attribute the observed abnormal 
returns from contrarian strategies to extreme analysts' forecasts in earnings growth. 
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Testing both the uncertain information hypothesis and the overreaction 

hypothesis, while controlling for size effect, changes in market volatility, and event 

direction (positive or negative), Ketcher and Jordan (1994) document short-term market 

overreaction. They report that positive (negative) events are followed by negative 

(positive) abnormal returns. Zarowin (1989) also identifies the short-run overreaction 

effect by examining winner and loser portfolios. Zarowin finds that losers outperform 

winners in the subsequent month  following extreme performance month.  

Controlling for risk changes in addition to other influential components such as 

bid-ask spreads, infrequent trading, and firm size, Dissanaike (1997) reexamines the 

overreaction hypothesis. He finds supporting evidence for the overreaction hypothesis 

that contrarian portfolios (winners – losers), in general, earn negative abnormal returns 

during the periods: 12, 18, 24, 30, 36, 42, and 48 months.24   

Observing the index futures market in the US and Hong Kong, Fung, Mok, and 

Lam (2000) investigate whether intraday price reversals occur in this market. Rejecting 

the effects of bid-ask spread and investor panic at market opening, they show that futures 

price reversals following large changes in futures price do occur in both the S&P 500 

futures and the Hang Seng Index Futures (HSIF) in Hong Kong. Taking contrarian 

trading strategies considering transaction costs and execution time lag, Fung et al. show 

that the contrarian strategies are associated with positive abnormal returns with a 

maximum annual return of 26 percent for the HSIF.  

 

                                                           
24 Dissanaike (1997, p. 44-45) also finds some evidence of underreaction when shorter rank periods (24 or 
36 months) are used.   
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2.2.2 Underreaction 

 

In sharp contrast to the overreaction studies, Abarbanell (1991), Abarbanell and 

Bernard (1992), Elliot, Philbrick, and Wiedman (1995), Lys and Sohn (1990), and 

Mendenhall (1991) report that investors underreact (underweight) to new information 

such as interim earnings announcements or changes in stock prices. 

Abarbanell and Bernard (1992) confirm the underreaction hypothesis that 

investors underreact to earnings announcements and the subsequent completion of the 

reaction results in a post-earnings-announcement drift. Abarbanell and Bernard show that 

investors appear to underreact to the earnings announcement to an even greater degree 

than analysts.  

Suggesting less noisy measures of the information content of analysts’ forecasts 

called updated measures of earnings information content, Stickel (1991) documents that 

the market tends to underreact to analysts' forecast revisions. The underreaction results in 

price drift in the direction of a revision for about six months after the revisions. 

According to Stickel, forecast revisions influence stock prices, but stock prices do not 

fully and immediately incorporate the unexpected earnings information. Especially, the 

market reaction to forecast revisions is greater for the top or bottom 5 percent of the 

distribution of all forecast revisions, and he finds that the spread between the abnormal 

returns of confounding revisions (i.e., preceded by earnings, dividend, and stock-split 

announcements) and those of non-confounding revisions is not significantly different 
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from zero. The abnormal market reaction continues to drift in the direction of the 

revisions at least for 6 months.  

Bernard and Thomas (1989) investigate two competing explanations for post-

earnings-announcement drift: delayed price response and risk premium. They examine 

various forms of CAPM misspecification – misestimation of beta, exclusion of risk 

factors other than systematic market risk, and taxes – as alternative explanations for post-

earnings-announcement drift, but find no evidence that these factors sufficiently explain 

the post-announcement drift. Instead, Bernard and Thomas argue that a delayed response 

to earnings information results in the post-announcement drift, and suggest that 

transaction costs and failure to full recognize the implications of current earnings for 

future earnings are possible reasons for this phenomenon. 

Relating the relative magnitudes of market reactions to the autocorrelation 

structure of forecast errors, Bernard and Thomas (1990) find a negative relation between 

forecast errors at quarter t (or t-4) and abnormal returns around the quarterly earnings 

announcement at t+4 (or t), and positive but declining relations between adjacent forecast 

errors at quarters t+1, t+2, and t+3 (or t-1, t-2, and t-3) and abnormal returns around the 

quarterly announcements for quarter t+4 (or t). The latter relations are consistent with the 

underreaction effect, and the former relation indicates overemphasis on the earnings of 

the same quarter of the prior year.  

Chan, Jegadeesh, and Lakonishok (1996) investigate both price and earnings 

momentum strategies across decile portfolios. The decile portfolios are formed by 

ranking stocks on the basis of either prior six-month returns or a measure of earnings 
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news.25 They find that both momentum strategies produce economically meaningful price 

drift that lasts for at least 6 months. For example, portfolios formed by prior six-month 

returns of stocks yield mean return spreads of 8.8 percent over the following six months 

while those sorted by a moving average of past consensus forecast revisions create mean 

return spreads of 7.7 percent over the subsequent six months.26 

 

2.2.3 Evidence of Rationality 

 

In this section, I contrast the overreaction studies with the underreaction ones. The 

main presumption of both types of studies is that investors are not perfectly rational, 

rather they are quasi-rational. Recall that "quasi-rational" market participants including 

investors are defined as the ones who possess behavioral tendencies in reaction to stock 

price information. For instance, "naïve" investors mean the ones who naively take 

analysts' earnings forecasts as unbiased even when they can observe that analysts' 

forecasts are persistently biased. Thus, the naïve reaction of investors to such bias is a 

type of quasi-rational behavior [Thaler (1986)].    

There is also, however, a large amount of research that is consistent with the 

rational hypothesis − i.e., investors behave on the basis of economic incentives (i.e., 

rational as opposed to quasi-rational). Among others, Chan (1988), Ball and Kothari 

                                                           
25 A stock's past compound return is used as the ranking variable for the price momentum strategy, while 
three measures of earnings news [standardized unexpected earnings (SUE), the cumulative abnormal 
returns around the earnings announcement, and analysts' forecast revisions] are used as the ranking variable 
for the earnings momentum strategy.  
26 Comparing price drift of dividend initiation with dividend omission, Michaely, Thaler, and Womack 
(1995) document significant price drifts for both initiation and omission announcements over the next three 
years.  
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(1989), and Akhigbe, Gosnell, and Harikumar (1998) report findings in favor of the 

rational hypothesis. 

Chan (1988) and Ball and Kothari (1989) contend that variation in risks plays a 

main role to induce losers’ outperformance and negative autocorrelation in returns. Chan 

finds that the contrarian strategy yields only small abnormal returns for losers after 

controlling for risk changes. Ball and Kothari come to a similar conclusion. They suggest 

that negative serial correlation is attributed almost entirely to changes in relative risks. 

These results are sharply inconsistent with the overreaction hypothesis. Akhigbe, 

Gosnell, and Harikumar (1998) test for market efficiency controlling for bid-ask spread, 

and report weak winner-loser effect (i.e., a contrarian strategy fails to exploit significant 

abnormal returns).  

 

2.2.4 Summary 

 

The findings on the issue of investors' over- and underreaction are mixed. The 

point, however, is that few studies make clear how investors perceive and react to 

analysts' forecasts about future earnings. For instance, it is barely known whether 

analysts' forecast bias is persistent, how investors respond to the persistent bias in 

analysts' earnings forecasts, and what factors make investors overreact or underreact to 

earnings information. This dissertation provides direct suggestions for the first two 

questions and indirect implications for the third.  
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2.3 Overreaction and Underreaction: Analysts’ Perspectives   

 

2.3.1 Overreaction 

 

In 1990, De Bondt and Thaler find that analysts systematically overreact to new 

earnings information. They estimate a simple linear model that regresses actual changes 

in earnings per share (EPS) on forecasted changes in EPS. They observe a negative 

constant term and a positive slope coefficient less than one. The negative constant term 

indicates that analysts' forecasts are optimistic (i.e., analysts' forecasts in EPS should 

exceed the actual EPS to offset the negative constant). The positive slope less than one 

suggests that actual earnings change by less than the change in analysts' forecasts. For 

example, from their first model a slope coefficient of 0.648 is estimated. This means that 

actual earnings change ( ), on average, account for only 64.8 percent of forecasted 

earnings forecast ( ). They also contend that the market-to-book value (MV/BV) and 

the past growth rate of earnings are significantly associated with analysts' forecast errors. 

That is, high MV/BV and high past earnings growth rate are significantly related to 

optimism, and low MV/BV and low growth rate leads to pessimism.

tAEC

tFEC

27 

La Porta (1996) tests how analysts revise the expected rates of low-growth and 

high-growth stocks from year t to t+1, and documents that the expected rate of low-

                                                           
27 Also, there are studies in contrast to the overreaction hypothesis for analysts. For instance, testing a linear 
model regressing contemporaneous forecast errors on prior change in actual earnings, Hussain (1996) 
provides evidence against the overreaction effect. For the regression model, a negative (positive) slope 
coefficient indicates that analysts overreact (underreact) to the previous change in earnings. Except for 
large firms, the slope coefficients are not significantly different from zero, and this suggests that there is no 
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growth stocks is revised upward from 3.1 percent to 4.1 percent while that of high-growth 

stocks fall from 21.7 percent to 18.4 percent. That is, there occurs a mean reversion of 

analysts' earnings growth forecasts − an indication of analysts' overreaction to new 

earnings information. 

 

2.3.2 Underreaction 

 

Mendenhall (1991) examines the relationship between consecutive earnings 

forecast errors to test a hypothesis that consecutive forecast errors of analysts are 

positively associated if analysts underweight the current unexpected earnings 

information, and supports the hypothesis. Investigating the information content of 

analysts' forecast revisions, Lys and Sohn (1990) report analysts' underestimation of new 

earnings information between consecutive forecasts. In other words, analysts do not fully 

capture new earnings information that becomes available to investors between 

consecutive forecasts. Abarbanell (1991) conducts similar research. By employing a 

randomization test on signed analysts’ forecast revisions (errors) and signed prior returns, 

Abarbanell documents a positive relation between analysts' forecast revisions and prior 

returns as do Lys and Sohn (1990).28 This indicates that analysts fail to fully incorporate 

                                                           
evidence of analysts’ overreaction. Even in case of large firms, the overreaction effect is diminished after 
removing influential observations.   
28 The randomization test rejects the null hypothesis of independence between the signs of analysts’ 
forecast revisions and the signs of prior returns, and between the signs of analysts’ forecast errors  and prior 
returns. Note that forecast errors are measured by subtracting actual earnings from analysts’ forecasts 
(different from usual calculation). Two return measures are used: raw returns and cumulative abnormal 
returns (CARs). Raw returns are the average daily returns for a firm between earnings forecasts while CARs 
are cumulative abnormal returns (daily) divided by the number of days between forecasts.  

 27 



prior price changes, and implies that analysts underweight new information. In other 

words, analysts do not collect and interpret publicly available signals efficiently.  

Using the same autoregressive model of analysts' forecast errors as Mendenhall's 

(1991), Abarbanell and Bernard (1992) document the similar results that Mendenhall 

reports. Abarbanell and Bernard examine autocorrelations in Value Line analysts' 

forecast errors, and report positive and monotonically declining autocorrelations at lags 1, 

2, and 3 for firm-specific estimates. But, they find no strong evidence of a significant 

negative autocorrelation at lag 4 indicating that analysts’ forecasts do not seem to follow 

the seasonal random walk model. Such findings are consistent with the underreaction 

hypothesis that analysts underreact (underweight) to recent earnings information.  

Applying Hogarth and Einhorn’s (1992) belief-adjustment model to analyst 

forecasting framework, Elliot, Philbrick, and Wiedman (1995) examine whether analysts’ 

revisions are, on average, sufficient to reflect unexpected earnings information, and 

document that consensus forecast revisions of analysts tend to underweight unexpected 

earnings information. They attribute their findings to analysts’ conservatism in forecast 

revisions where individuals make adjustments based Bayesian expectation, but these 

adjustments are insufficient in amount.  

Testing serial correlation and bias in analysts’ forecast errors, Ali, Klein, and 

Rosenfeld (1992) report similar results to Elliot, Philbrick, and Wiedman’s. Regressing 

the current forecast error on the past (one-period back) forecast error and the past stock 

return, they find significant positive relations between the current forecast error and the 

past forecast error, and between the current forecast error and the past stock return. The 
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latter results are also found by Beaver et al (1979). This indicates that analysts do not 

fully incorporate the last year’s earnings information and stock returns when they form 

expectations of future earnings. They extend their research by adding a dummy variable 

for the persistence of previous earnings (proxied by E/P ratios) and a dummy variable for 

the previous negative earnings, and find that the tendency to omit the earnings 

information is greater for firms with permanent earnings than for firms with temporary 

(mean-reverting) earnings. Ali, Klein, and Rosenfeld affirm that their findings in annual 

forecasting framework are also observed in monthly forecasting framework.    

 

2.3.3 Summary 

 

This category of research focuses on the relation between contemporaneous and 

previous analysts' earnings forecast errors, or the relation between actual earnings 

changes ( ) and forecasted earnings changes ( ) to investigate analysts' 

behavioral tendencies in earnings forecasts.  is defined as , and  is 

defined as , where  ( ) is actual earnings at time t (t-1) and  ( ) is 

analysts' forecasts for actual earnings at time t (t-1). General models for analysis are as 

follows:  

tAEC

tF −

tFEC

tAEC 1t tA A −− tFEC

1tF −1tF − tA 1tA − tF

0 1 1 2 2 ...t t t k tFE FE FE FE eρ ρ ρ ρ− − −= + + + + +

0 1t t tAEC FEC eδ δ ′= + +

k t        (2-2)       

          (2-3) 

where all terms are as previously defined.  
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In Equation (2-2),  is usually less than or equal to four. If the slope coefficients 

in the equation are positive in declining pattern, then the underreaction hypothesis holds. 

If they are negative, the overreaction hypothesis holds. For Equation (2-3), the standard 

definition of unbiased forecasts would require that =0 and =1 [De Bondt and Thaler 

(1990)]. If forecasted earnings changes ( ) are extreme, then  will be less than 

one. In addition, the intercept, , is an indicator of bias in the forecast. If analysts’ 

forecasts were upward (downward) biased,  would be negative (positive).  

k

0δ 1δ

FECs

0δ

1δ

0δ

As in Section 2.2, the studies about analysts' underreaction and overreaction have 

documented mixed and controversial findings. This implies that neither underreaction nor 

overreaction is a representative behavioral phenomenon in analysts' earnings forecasts. 

These results provide evidence that analysts' forecasting behavior may be classified in 

spectrum so that I can form portfolios with salient features of their forecasting behavior. 

Note that I later use the terms, optimism and pessimism, rather than overreaction and 

underreaction because I suspect that the former better capture the range of analysts' 

forecasting behavior and overreaction and underreaction are not mutually exclusive 

[Easterwood and Nutt (1999)].  

 

2.4 Optimism and Pessimism: Analysts’ Perspectives  

 

Another stream of research on earnings forecasts focuses on optimism and 

pessimism in analysts’ forecasts. This category of study has not been investigated in 

depth until recently. Many underreaction and overreaction studies incorporate the 
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concepts of optimism and pessimism into underreaction and overreaction discussions 

[Abarbanell (1991); Francis and Philbrick (1993); La Porta (1996); Dissanaike (1997)]. 

In such studies, optimism and pessimism are mechanically defined as negative forecast 

errors (i.e., ) and as positive forecast errors, respectively.  0t tA F− <

Abarbanell (1991) reports that the mean of analysts' forecast errors from 1981 to 

1984 is positive (0.04) and the number of overestimated (positive; optimistic) forecast 

errors exceeds the number of underestimated ones in each of the four years.29 La Porta 

(1996) also reports that the actual earnings tend to be lower than corresponding analysts’ 

forecasts for almost all portfolios formed on the basis of growth forecasts − i.e., analysts’ 

forecast errors ( ) are negative for most portfolios. tA F− t

                                                          

Some studies in this category investigate an association between analysts’ 

optimism and such factors as forecasting accuracy, uncertainty, and stock 

recommendations [Ackert and Athanassakos (1997); Butler and Lang (1991)]. Ackert and 

Athanassakos (1997) look at the role of uncertainty in analysts’ optimism and document 

that a strong positive relationship between optimism and uncertainty exists. The more 

uncertain firms are, the more optimistic analysts are. Butler and Lang (1991) study 

individual analysts’ behavior and find that analysts are persistently optimistic or 

pessimistic relative to consensus forecasts. They report that analysts’ average optimism 

(pessimism) is associated with lower (higher) average forecast accuracy. 

 
29 Note that forecast errors here are calculated by subtracting actual earnings from analysts’ forecasts: Fit – 
Ait. Abarbanell contends that deflating forecast errors by stock price does not make qualitative differences 
in the results he finds. Notice that his forecast error measure is inconsistent with the definition of forecast 
errors throughout this dissertation: Ait − Fit.    
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Little research has been done on analysts’ pessimism probably because pessimism 

is not acknowledged to be underlying feature of analysts' earnings forecasts [Brown 

(1996)]. By looking at the percentage of positive, negative, and zero forecast errors per 

quarter from 1991 to 1995, Brown (1996) reports evidence that 12 of 18 quarters 

considered have higher percentage of positive forecast errors (i.e., actual earnings are 

greater than I/B/E/S analysts’ forecasts) than that of negative forecast errors. He interprets 

this as a pessimistic tendency of analysts during the period. 

Easterwood and Nutt (1999) examine systematic optimism in analysts’ forecasts 

by incorporating types of news, and by making an effort to link overreaction and 

underreaction concepts to optimism. Simultaneously investigating overreaction and 

underreaction in analysts’ forecasts, they reject the overreaction and underreaction 

hypotheses and document that analysts underreact to negative information (bad news) 

and overreact to positive information (good news). This implies that there exists 

systematic optimism in analysts’ forecasts.  

 

2.5 Chapter Summary 

 

Both the overreaction hypothesis and the underreaction hypothesis have 

contributed to development of research on behavior of analysts and investors. Although 

they seem to argue against each other, they also seem to coexist. Although Michaely, 

Thaler, and Womack (1995) provide additional evidence for the underreaction effect, 
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they also acknowledge that “the market appears to overreact in some circumstances and 

to underreact in others (p. 606)”.30  

Although analysts' earnings forecasts and investors' expectations about future 

earnings are not mutually independent issues, few studies have tried to integrate them. 

Rather, the existing studies investigate such issues as if they are de facto independent. 

This study is therefore warranted in order to bridge the gap in existing studies. 

The findings in the literature are mixed. The contradictions can be attributed to 

different methodologies, samples, periods, measurements, assumptions, specifications, 

and so forth. For instance, the results from using Value Line analysts’ forecasts may 

differ those from employing I/B/E/S forecasts; assuming that investors naively follow 

analysts’ forecasts at face value may be inappropriate; results may be attributed mainly to 

additional risk factors such as firm size and/or market-to-book ratio, not to overreaction 

or underreaction; it may be that the overreaction effect is a phenomenon for pre-war 

periods or for the expansion periods; the error terms of OLS models may not satisfy the 

traditional assumptions; necessary explanatory variables are omitted. Taking these 

possibilities into consideration is worthwhile, since it surely improves the validity and 

reliability of research. Therefore, it is important for a researcher to keep these in mind 

when performing an empirical study regarding analysts’ forecasting behavior and 

investors' expectations about future earnings. 

It should be noted again that most existing literature implicitly assumes investors 

naively follow analysts' forecasts − NEH. The NEH is questionable given the fact that 

                                                           
30 Also see Fama (1998). 
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investors can observe the historical record of analysts' forecasting behavior, since they 

might fully adjust for such behavior if they are rational. 
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Chapter 3 

Hypotheses Development and Empirical Models 

 

3.1 Hypotheses Development 

 

As discussed in the previous chapters, investors’ reaction to analysts' forecasting 

behavior has not been a theme.31 In this dissertation, I endeavor to fill a gap by examining 

analysts’ forecasting behavior from investors’ perspectives. This is a new approach 

because extant studies have not placed much emphasis on the formation of investors’ 

expectations in response to analysts’ forecasting behavior in earnings forecasts. In the 

following discussion, I will develop testable hypotheses − the naïve expectations 

hypothesis (NEH) and the rational expectations hypothesis (REH) − along with 

qualifications. 

As introduced earlier, for previous studies about investors’ reaction to the 

earnings announcement a common functional form is:32 

  CAR = ,            (3-1) ) t tFEα β ε′ ′= + +( tt FEf ′

                                                          

 where all terms are as defined earlier.  

 

 
31 Notice that I here use the term “forecasting behavior” instead of “forecast bias.” I use “forecasting 
behavior” to emphasize that analysts’ forecast bias is persistent. That is, I implicitly assume that analysts 
persistently issue biased forecasts in either optimistic or pessimistic direction. Recall that whether analysts’ 
forecast bias is persistent is one of the two main research questions to be addressed in my dissertation. I 
perform a few persistence tests on analysts’ forecast bias in Chapter 6, since the persistent bias in analysts’ 
earnings forecasts is a necessary condition for testing the NEH versus the REH.  
32 Note again that firm subscripts are suppressed. 
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Also, recall that due to the potential persistent bias in analysts' forecasts I develop  

a modified functional form incorporating investors' expectations:  

                    (3-2) tttt TETEgCAR εβα ′′+′′+′′== )(

 where all variables are as previously defined. 

Recall that most research studying the market reaction to the earnings 

announcement assumes that analysts' forecasts are not biased − i.e., takes the NEH for 

granted. Equation (3-2), however, suggests that the earnings response coefficient  ( ) in 

Equation (3-1) may not measure the real information content of the earnings 

announcement (i.e., rational investors' expectation errors) when analysts tend to issue 

biased earnings forecasts, and that  may be different from . Recall that TE  

represents investors' expectation errors and is equivalent to the difference between actual 

earnings and investors' expectations (i.e., ).

β ′

β ′ β ′′ t

tA E− t

H

|  = )

                                                          

33 

The NEH predicts that investors take biased analysts' forecasts at face value and 

the naïve investors' earnings expectations are equal to analysts' forecasts: . 

Investors' expectation errors are, as a result, the same as analysts' forecast errors: 

= = .  

|t NEH tE F=

|t t NEA E− t tA F− tFE

Therefore, under the NEH Equations (3-1) and (3-2) are equivalent. In other 

words, investors' reaction to the earnings announcement given analysts' optimistic 

behavior is equivalent with that given analysts' pessimistic behavior:  

OPT
NEHtCAR  = CAR CAR( tf FE PESS

NEHt | = NEHt |  

 
33 Et is ex ante investors' earnings expectations. Et can be either rational or naïve investors' earnings 
expectations. At is ex post actual earnings. 
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where  

OPT
NEHtCAR |  = the naïve investors' reaction to analysts' optimism in earnings  

   forecasts manifested in the 3-day [−2:0] CAR; and  

PESS
NEHtCAR |  = the naïve investors' reaction to analysts' pessimism in earnings  

   forecasts manifested in the 3-day [−2:0] CAR.34 

On the other hand, rational investors, as opposed to naïve investors, would expect 

that analysts' forecasts ( ) exceed the actual earnings ( ) when they believe that 

analysts are optimistic. Thus, when rational investors form their own earnings 

expectations, they discount analysts' optimistic forecasts and their expectations ( ) 

are ex ante smaller than analysts' forecasts ( ) or naïve investors’ earnings expectations 

( :  <  = .

tF tA

tA −

|OPT
t REHE

H

tF

NEHtE | )

A

tA tF

|OPT
t REHE

tF

tt EA −

tF

NEH

NEHtE |

tA

OPT
REHt |

t |

35 It follows that for given actual earnings, rational 

investors' expectation errors ( − ) are algebraically larger than analysts' forecast 

errors ( − ) or naïve investors’ expectation errors ( ): −  > 

−  =  [Figure 1-(a)].

|OPT
t REHE

NEH

t NEHtE | tA |OPT
t REE

| 36 Hence, rational investors' reaction to a given 

analysts' forecast error (CAR ) is algebraically larger than naïve investors’ reaction 

to the same forecast error (CAR ) as in Figure 1-(b).  

                                                           
34 In chapter 4, I discuss two portfolio formation methods that describe the range of analysts' forecast bias 
(or forecasting behavior) based on the 5-year period prior to the earnings announcements. The portfolios ex 
post consist of three optimistic and two pessimistic ones.  
35 Note that  indicates rational investors' earnings expectations given analysts' optimism in earnings 

forecasts, while  means rational investors' earnings expectations given analysts' pessimism. Also 
note that these expectations are unobservable and can be indirectly inferred by testing the proposed 
hypotheses. 

OPT
REHE

E PESS
REH

36 Figure 1 is located in the Appendix. 
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The same argument may be applied to the case of analysts' pessimism. The 

rational investors, who have classified certain analysts as pessimistic, know that analysts' 

forecasts have been underestimated. Given persistence in analysts' forecasting behavior, 

investors accordingly expect that the contemporaneous analysts' forecasts display 

analysts' pessimism in earnings forecasts (i.e., positive ). It is, then, predicted that 

rational investors' earnings expectations in reaction to analysts' pessimism ( ) are 

algebraically larger than analysts' forecasts ( ) or naïve investors’ earnings expectations 

( :  >  = . This results in rational investors' expectation errors 

given analyst's pessimism ( − ) algebraically smaller than analysts' forecast 

errors ( − ) or naïve investors’ expectation errors ( ): −  < 

−  = .  

FEs

tA −

|PESS
t REHE

|PESS
t REH

tF

NEHtE | )

A

tA tF

|PESS
t REHE

tF

tt EA |−

tF NEHtE |

tA E |PESS
t REH

t NEHtE | tA E

NEH

For a given forecast error, provided that −  > −  =  in 

case of analysts' optimism in earnings forecasts and −  < −  =  

in case of analysts' pessimism, −  should be algebraically larger than 

. In consequence, the market reaction to any given analysts' forecast error 

conditional on persistent analysts' optimism should be algebraically larger than that 

conditional on analysts' pessimism:   >   CAR .  

tA |OPT
t REHE

tA E

NEHtCAR

tA

SS
EH

|  >

tF

tA

t

NEHtt EA |−

tF tt EA −

PESS
REH

|PE
t R NEH|

tA |OPT
t REHE

tCAR |

|PESS
t t REA E− H

OPT
REH |

Notice that I do not discuss investors' earnings expectations and reaction to the 

earnings announcement conditional on analysts' rational forecasts (i.e., no bias) − ones 
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that show neither analysts' optimism nor pessimism.37 Given analysts' unbiased (rational) 

forecasts, both naïve and rational investors' expectations (  and ) about 

contemporaneous earnings are predicted to equal analysts’ earnings forecasts: 

. Consequently, investigating investors' reaction to analysts' rational 

behavior is not useful to test the NEH against the REH because the reaction would be the 

same under both the NEH and the REH [Table 1].

|RAT
t NEHE |RAT

t REHE

| |RAT RAT
t NEH t REH tE E= = F

                                                          

38 Since the objective of the dissertation 

is to investigate how investors respond to persistent bias in analysts’ forecasts, I do not 

endeavor to scrutinize investors' reaction to analysts' rational behavior. 

In sum, for any given analysts' forecast error −  ( ), the rational market 

reaction should be algebraically smaller (larger) in response to analysts' pessimism 

(optimism) in earnings forecasts than in response to analysts' optimism. The naïve market 

reaction to a given forecast error, otherwise, should be the same whatever analysts' 

forecasting behavior is preceded. 

tA tF tFE

The above discussions lead to the following testable null hypothesis − NEH:  

NEH: If investors take analysts’ persistent forecast bias at face value, there should be 

neither a discount for the optimistic bias nor a premium for the pessimistic bias. 

Specifically, investors' reaction to the earnings announcement is equivalent across the 

 
37 Note again that in Chapter 4 I ex post form 5 portfolios consisting of the most optimistic to the most 
pessimistic portfolios in order.  
38 All tables are located in the Appendix. 
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range of analysts' forecasting behavior − from optimism to pessimism. This can be 

summarized as follows: CAR  = .OPT
NEHt |  = ) | =

H

H

|   >

                                                          

( tf FE PESS
NEHtCAR NEHtCAR | 39    

One alternative hypothesis to the NEH is the rational expectations hypothesis 

(REH). If investors fully adjust for the analysts' persistent bias in earnings forecasts, there 

should be information premiums for the case of analysts' optimism and information 

discounts for the case of analysts' pessimism because  >  > 

. In other words, for any given forecast error the rational investors' reaction to 

analysts' optimistic behavior is expected to be algebraically larger than their reaction to 

analysts' pessimistic behavior: CAR   CAR  

|OPT
t t REA E−

NEH|  > tCAR

t tA F−

| .

|PESS
t t REA E−

OPT
REHt t

PESS
REH

40  

 

3.2 Empirical Models 

 

The empirical test of the NEH against the REH exhibits the range of investors’ 

reaction to analysts’ forecasting behavior. As discussed in the following chapter, to 

implement the empirical test I classify firm-quarter observations into one of the quintile 

portfolios, ranging from the most optimistic [Portfolio 1 (P1)] to the most pessimistic 

[Portfolio 5 (P5)]. Investors' reaction to idiosyncratic analysts’ forecasting behavior is, 

then, investigated in three versions of multiple regression models:  

 
39 By using the right hand side of Equation (3-1), this equality can be restated as follows: 

 =  where  and  are intercept terms and  and 

 are the slope coefficients for the optimism and the pessimism cases respectively.  

OPT OPT
tFEα β+

PESSβ

PESS PESS
tFEα β+ OPTα PESSα OPTβ

40 Similar to footnote 39, this inequality can be expressed as follows:  > 

 where terms are as defined earlier. 

OPT OPT
tFEα β+

PESS PESS
tFEα β+
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tCAR  = α α      (3-3) 1 1 2 2 3 3 4 4 5 5 1 2tP P P P P diffSize diffBtoM uα α α β β+ + + + + + +t t

tCAR  = 1 1 2 2 3 3 4 4 5 5 1
t

t

FEa P a P a P a P b
STD

+ + + + +a P  

              (3-4) 2 3tb diffSize b diffBtoM υ+ + t t+

tCAR  = 1 2 2 3 3 4 4 5 5 1 2 2 3
t tFE FE FEa P a P a P a P b b P b P

STD STD STD
′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + 3

ta   

 4 4 5 5 6 7
t t

t t
t t

FE FEb P b P b diffSize b diffBtoM
STD STD

ω′ ′ ′ ′+ + + + t+

                                                          

          (3-5) 

where 

tCAR  = the 3-day [−2: 0] abnormal stock returns for a quarterly earnings 

    announcement  

Pp = a dummy variable that equals one if an observation belongs to  

    portfolio p and zero otherwise, p = 1, …, 5; 

tFE  = analysts’ earnings forecast errors at quarter t, = ,  tFE t tA F−

         where  is the actual quarterly earnings at quarter t and  is the tA tF

         most recent analysts’ consensus forecasts for ; tA

tSTD  = the standard deviation of analysts' consensus forecasts at quarter t;41 

MVEt  = Pt × Shrt  where  is the closing stock price at the third month of tP

    quarter t and  is the number of common shares used to calculate  tShr

 
41 Abarbanell and Bernard (1992) use stock price ten days prior to forecast date to deflate forecast errors. In 
this way, the stock price is unlikely to reflect the information effects of forecasts and earnings 
announcements. Instead of following this convention, I use the standard deviation of analysts’ consensus 
forecasts as the forecast error deflator to adjust for forecast volatility, which seems to affect CARs [Panels 
C and F of Table 3].  
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    earnings per share (EPS) at quarter t; 

tdiffSize  = the difference between log( ) and the grand mean of     tMVE

    log( ) where  is the logarithm of MVEtMVE log( )tMVE t; 

tdiffBtoM  = the difference between  and the grand mean of   tBtoM tBtoM

    where = tBtoM t

t

BVE
MVE

 and  = common equity (total)  tBVE

    at quarter t; and 

tu , ,  = identically and independently distributed random error terms. tυ tω

Note that , , and  are extracted from COMPUSTAT and firm 

subscripts are omitted. Also note that I use  and  instead of the 

logarithm of MVE

tP tShr

diffB

tBVE

t

tdiffSize tdiffBtoM

t  and  to adjust for size and book-to-market effects. Notice that 

average  and  are zero. The portfolio dummies and slopes in each 

model indicate average fixed and marginal market impacts of the quarterly earnings 

announcement for each portfolio given average firm size and book-to-market equal zero. 

This transformation allows direct comparison of the fixed and/or marginal market effects 

of a portfolio with those of another so that the NEH can be tested against the REH within 

each model.  

tBtoM

toMtdiffSize

All models perform the market reaction comparisons among portfolios in different 

empirical formats. In Equation (3-3), the average forecast error (AFE) for each portfolio 

is reflected in the coefficients of Pps that measure average total market effects of 

portfolios as if they are fixed, controlling for the size and the book-to-market effects. 
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Since the forecast error term is not included as an explanatory variable, the magnitudes of 

,…,  will reflect different mean forecast errors for respective portfolios.  1α 5α

Equation (3-4) distinguishes the marginal (slope) market effects from the fixed 

(intercept) market effects across portfolios, assuming the marginal effects are constant 

across portfolios. Equation (3-5) relaxes this assumption by permitting the marginal 

effects to vary across portfolios.42 

Table 1 summarizes the relationships between analysts’ earnings forecasts and 

investors’ earnings expectations and CARs for the optimistic portfolios (e.g., P1) and 

CARs for the pessimistic portfolios (e.g., P5) under either the NEH or the REH.43 Under 

the NEH, investors’ reaction to their own expectation errors (i.e., TE ) is the same as that 

to analysts' forecast errors (i.e., ) across portfolios, since naïve investors’ earnings 

expectations are equal to analysts’ earnings forecasts: CAR  = 

= . Specifically, the coefficients of the portfolio dummy variables in 

Equations (3-3), (3-4), and (3-5) as well as the portfolio slopes in Equation (3-5) are 

predicted to be statistically the same.  

t

|  =

tFE

OPT
NEHt ( tf FE )

|   > |  >

                                                          

PESS
NEHtCAR | NEHtCAR |

As discussed earlier, the REH proposes that at any given forecast errors CARs for 

the optimistic portfolios should be greater than those for the pessimistic portfolios: 

  CAR .  Specifically, the coefficients (slope and/or OPT
REHtCAR NEHtCAR PESS

REHt |

 
42 Note that Equations (3-3) and (3-4) do not include the intercept term to make pair-wise comparisons 
easy, while Equation (3-5) includes the intercept term using the most optimistic portfolio (P1) as the 
reference group. Main results are not affected by the choice of either intercept or no-intercept models. 
43 Recall that I do not try to form a rational portfolio because it does not test the NEH versus the REH in my 
empirical framework – i.e., for the rational portfolio, if formed, there is no informational distinction 
between rational expectation errors under the NEH and those under the REH. 
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intercept) for the optimism case are predicted to be larger than those for the pessimism. 

The same argument should hold between the more optimistic and the less optimistic 

portfolios and between the less pessimistic and the more pessimistic portfolios.  
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Chapter 4 

Portfolio Selection 

 

4.1 Overview 

 

Since investors’ perception of the bias in analysts’ consensus forecasts is not 

directly observable, I must estimate the direction and degree of bias that investors impute 

to a given forecast. I do this by using historical data to create portfolios, which are likely 

to differ systematically in terms of perceived bias.  

To classify observations (firm-quarters) into the portfolios based on analysts' past 

forecasting behavior, I use two portfolio formation methods: Mean-Frequency Forecast 

Error (MFFE) and Mean-Frequency Time-Series (MFTS).44 The MFFE method considers 

both the mean and frequency of negative analysts' forecast errors (FEs).45 The MFTS 

method extends the MFFE by adding time-series characteristics of analysts' earnings 

forecasts to the MFFE and utilizes a time-series regression model developed by De Bondt 

and Thaler (DBT, 1990). Note that the MFTS can reduce the likelihood of incorrectly 

assigning an observation to a portfolio (i.e., Type II error) at the expense of the sample 

                                                           
44 A firm-quarter has information about variables of interest (e.g., analysts' forecasts, actual earnings, the 
market value of equity, the book value of equity, etc.) for a firm at the quarterly earnings announcement. 
Recall that the term “forecasting behavior” is used instead of “forecast bias" to emphasize analysts’ forecast 
bias is persistent.  
45 The forecast errors (FEs) are defined as follows: FEt = (At  − Ft) where At = actual earnings at 
announcement t and  Ft = analysts' forecasts for the time t. In the literature, FEs are usually standardized by 
the stock price prior to the earnings announcement: SFEt = FEt/Pt-1. where SFEt = standardized forecast 
error and Pt-1 = stock price one period (herein, it is 10 days) prior to the quarterly earnings announcement. 
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size.46 Serious Type II error may invalidate the test results from the MFFE, while Type I 

error (i.e., the error of falsely excluding an observation from a portfolio when the 

observation in fact belongs to the portfolio) does not.  

Both methods use 5 years of analysts' quarterly earnings forecasts and actual 

earnings prior to the contemporaneous earnings announcement to get necessary statistics: 

mean and frequency of negative FEs, and the parameter estimates of the DBT model. The 

first two are used to form quintile portfolios for the MFFE, while all three statistics are 

employed for the MFTS method. Each portfolio is supposed to represent a different 

degree of analysts’ optimism or pessimism in earnings forecasts.  

It should be noted that the portfolio formation methods are built on the premise 

that analysts’ forecasting behavior is persistent and thus historical performance allows 

meaningful inferences about current analysts’ behavior. Given that the test of the NEH 

versus the REH is most powerful when comparing extreme portfolios because they more 

likely contain observations that reflect real optimism or pessimism of analysts relative to 

in-between portfolios, the hypothesis test using the MFTS method and the extreme 

portfolios would provide an effective robustness test by alleviating Type II error.  

Since the validity of the classification methods is critical for the meaningful 

empirical analysis, I carefully develop the portfolio formation methods. Sections 4.1 and 

4.2 demonstrate the MFFE and the MFTS methods respectively.   

 

 

                                                           
46 Due to an additional restriction employed, the sample size for the MFTS is reduced to ¼ level of that for 
the MFFE.  
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4.2 Mean-Frequency Forecast Error (MFFE) Method 

 

The forecast errors used for the MFFE method are consistent with the definitions 

of analysts' optimism and pessimism made in Chapter 1.47 That is, if analysts tend to be 

optimistic (e.g., overreact to good news and underreact to bad news) over the past 5 

years, then their mean forecasts are, on average, more likely to be algebraically larger 

than the mean of actual earnings. It would be also reasonable to predict that the number 

of negative forecast errors will exceed the number of positive forecast errors.  

Similarly, analysts' pessimism is reflected in higher mean forecast errors and 

higher percentage of positive forecast errors. In sum, the higher mean and frequency of 

negative forecast errors indicate the higher tendency of analysts toward optimistic 

forecasts, and vice versa. The following two sections describe the step-by-step process of 

the MFFE method. 

 

4.2.1 Mean Quarterly Forecast Error (MQFE) and Frequency of Negative 

Forecast Errors 

 

The mean-frequency forecast error (MFFE) method is the main portfolio 

formation method used to classify observations (firm-quarters) into quintile portfolios 

indicating a spectrum of analysts' forecasting behavior. The first step of the mean-

                                                           
47 Recall that negative forecast errors represent optimistic forecasts, while positive forecast errors indicate 
pessimistic forecasts.  
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frequency method is to calculate the mean of quarterly earnings forecast errors over the 

past 20 quarters prior to the earnings announcement. At each quarterly earnings 

announcement, I look back 20 calendar quarters and calculate the mean quarterly forecast 

error ( ):  20,tMQFE

  ∑
= −−

−− −
=

20

1 1
20, 20

1
q qt

qtqt
t P

FA
MQFE ,       (4-1) 

where 

q   = 1 through 20 quarters prior to the quarterly announcement at time t; 

qtA −  = the reported (actual) EPS for the quarter t-q; 

qtF −  = the recent forecasted EPS for the quarter t-q; and 

1−−qtP  = the stock price 10 days prior to the quarter t-q. 

The negative MQFEs imply that analysts' optimism in earnings forecasts has 

dominated analysts' pessimism at least in terms of the magnitude of the past negative 

forecast errors, but not necessarily in terms of the frequency of those. So, forming 

portfolios based only on MQFEs may lead to a misclassification problem. For example, 

suppose that a firm at quarter t has one large negative forecast error 20 quarters before 

and 19 small positive forecast errors since then, and the magnitude of one negative 

forecast error outweighs the sum of 19 small positive forecast errors. The firm is likely to 

be assigned to the optimistic portfolio if the MQFE is used as the only formation method. 

Arguably, it would be more appropriate that the firm be classified into the pessimistic 

portfolio in this case, considering analysts' dominant tendency toward pessimistic 

forecasts.  
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The frequency of negative earnings forecast errors means the number of negative 

forecast errors for 20 quarters prior to the earnings announcement, and the maximum 

frequency is accordingly 20. The higher frequency indicates the higher likelihood that 

analysts on average generate optimistic contemporaneous earnings forecasts, resulting in 

negative contemporaneous forecast errors. Using the frequency measure as an 

independent portfolio formation method is not free of the misclassification problem. For 

instance, suppose that a firm at quarter t has an even distribution of negative and positive 

forecast errors over 20 quarters prior to the quarter t − that is, 10 negative and 10 positive 

forecast errors. Also assume that the magnitudes of the 10 negative forecast errors far 

outweigh those of the 10 positive. If the frequency measure is strictly applied, the firm 

will be classified into a rational portfolio meaning that analysts' forecasts have been 

unbiased. This classification is, however, problematic. The fact that when analysts 

overestimate the actual earnings they persistently do it by a greater amount than when 

they underestimate the actual earnings is itself a form of analysts' forecast bias more 

leaning toward optimistic forecasts.     

The above discussions naturally suggest that a portfolio formation method 

combining the two measures (MQFE and frequency) will do a better job on forming 

portfolios that proxy analysts' forecasting behavior prior to the quarterly earnings 

announcement. Panels A and B of Table 2 present a summary of the MFFE method. 
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4.2.2 Portfolio Formation 

 

I first pool all observations (firm-quarters) and then rank them on the basis of the 

two measures:  and the frequencies of negative forecast errors. The ranking 

process using each measure produces the quintile groups of firm-quarters where the 

quintiles of each measure represents the variability of analysts' forecasting behavior from 

the most optimistic to the most pessimistic group in the ranking order. In Panel A of Table 

2, for both the MQFE and frequency measures Quintile 1 (Q1) indicates the quintile group 

containing the most optimistic firm-quarters, while Quintile 5 (Q5) indicates the quintile 

group including the most pessimistic firm-quarters.  

20,tMQFE

When I combine the two measures, I end up having a contingency table containing 

25 subsets − all possible combinations of the MQFE-based and the frequency-based 

rankings. The firm-quarters in the cell (Q1, Q1) are observations that are expected to have 

the most optimistic contemporaneous forecast errors, while the cell (Q5, Q5) contains 

firm-quarters that are expected to be followed by the most pessimistic contemporaneous 

forecast errors [Panels A and B of Table 2]. The numbers in parentheses indicate firm-

quarters and number of firms, respectively.  

Given the possible combinations as in Panel A of Table 2, I assign firm-quarters 

into 5 portfolios on the basis of both the magnitude and the frequency of the past 5-year 

forecast errors. P1 (P5) indicates the most optimistic (pessimistic) portfolio that consists of 

firm-quarters with larger negative (positive) MQFEs and higher (lower) frequencies of 
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negative forecast errors over the 20-quarter period prior to the earnings announcement. 

Whether these are useful depends upon whether they have predictive power for the 

contemporaneous forecast errors. As we shall see later, from the statistical point of view, 

P1 is an optimistic portfolio and P5 is a pessimistic portfolio. Labels of P2, P3, and P4 are, 

however, less obvious than those of P1 and P5, since inferences from the MQFE measure 

and the frequency measure are more controversial in case of the former portfolios than the 

latter. I, hence, put more emphasis on P1 and P5 than the rest in testing the proposed 

hypotheses. The notations P1-P5 have consistent meanings hereafter. P1 means the most 

optimistic portfolio and P5 is defined as the most pessimistic portfolio no matter what kind 

of portfolio formation method is used.  

 

4.3 Mean-Frequency Time-Series (MFTS) Method 

 

As noted earlier in this chapter, the MFFE method might face serious Type II error 

problem resulting from misclassification. Investors may consider other factors when 

imputing bias to analysts’ forecasts, so that the MFFE may not adequately capture 

analysts’ forecast bias that investors perceive. In the following sections I introduce a time-

series regression model used by De Bondt and Thaler (1990; DBT hereafter) and develop 

another classification method by combining the DBT model with the MFFE method to 

reduce Type II error.   
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4.3.1 Estimation of De Bondt and Thaler (DBT) Model 

 

The following DBT model is the restatement of Equation (2-3):  

1 0 1 1( )t t t tA A F A eδ δ− − ′− = + − + t

t

1

        (4-2) 

0 1t tAEC FEC eδ δ ′⇔ = + +             (4-3) 

where 

tAEC  = the actual earnings change from quarter t-1 to quarter t;  

tFEC  = the analyst-forecasted earnings change from quarter t-1 to quarter t; and 

Other terms are as defined earlier.  

For each firm-quarter observation, the De Bondt and Thaler (DBT) model is 

estimated over the 20 quarters prior to the contemporaneous earnings announcement. 

Negative intercepts ( ), in general, indicate optimistic analysts' forecasts during the 

period, holding the slope coefficient ( ) constant, say "1" for simplicity. Holding  

constant, say "0", slope coefficients ( ) less than one and greater than zero also suggest 

that analysts have been optimistic. Together with the condition of , larger 

negative  mean that analysts have produced overly optimistic forecasts. As a result, 

firm-quarters with negative  and positive but less-than-one  are assigned to 

optimistic portfolios. More specifically, I rank  and  in quintiles respectively and 

obtain a table that has possible combinations (25 subsets) of  and  quintiles [Panel C 

of Table 2]. Lower  quintiles are likely to have negative  implying analysts' 
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optimism. Similarly, lower  quintiles are expected to contain  smaller than one and 

larger than zero, again indicating analysts' optimism. 

1δ

δ

1sδ

Conversely, positive  and greater-than-one  are indications of analysts' 

pessimism during the past 5 years prior to the earnings announcement. Higher  and  

quintiles, therefore, are likely to capture analysts' pessimism. Based on the newly formed 

subsets, I create quintile portfolios over the 5-year formation period. Again, portfolios P1 

through P5 represent the range of analysts’ forecasting behavior from the most optimistic 

to the most pessimistic.   

0s 1sδ

0δ 1δ

 

4.3.2 Portfolio Formation 

 

After applying the MFFE and the DBT methods, I end up with ten portfolios: 5 

from the former and 5 from the latter. I draw another contingency table having 25 subsets 

of the two portfolio formation methods as shown in Panel D of Table 2. To make sure that 

the new portfolios minimize possible misclassification problems from applying either the 

MFFE or the DBT model, I select the 5 diagonal subsets to form 5 new portfolios. The 

new P1 includes the firm-quarters that were classified as P1 by both the MFFE method 

and the DBT model. Similarly, the firm-quarters, ranked as P5 in both the MFFE and the 

DBT model, are placed into the new P5. Although this new method (MFTS) decreases the 

sample size, it is useful to perform a robustness test for the main portfolio formation 

method − the MFFE method.   
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Chapter 5 

Data and Abnormal Return Measures 

 

5.1 Data 

 

The sample used in this research includes quarterly analysts’ consensus earnings 

forecasts and reported (or actual) earnings per share (EPS), as well as price and return 

data. Quarterly analysts’ consensus earnings forecasts and reported EPS are taken from 

the Institutional Brokers Estimate System (I/B/E/S). Assuming that firms announce their 

quarterly earnings before the beginning of the next quarter, I collect the most recent 

quarterly consensus earnings forecasts that are available on the I/B/E/S Summary tape. 

Analysts’ earnings forecast errors are calculated using reported earnings from the I/B/E/S 

Actual tape.  Stock price and return information are extracted from the Center for 

Research in Security Prices (CRSP) daily database. COMPUSTAT is also used to collect 

the market value and the book value of common equity.   

As noted by some studies, I/B/E/S has a reporting lag problem. According to 

O’Brien (1988), average reporting lag between analysts’ forecast dates and I/B/E/S 

reporting dates is 34 trading days, and it has a standard deviation of 44.5 trading days. 

She argues that the reporting lag may induce a measurement error in analysts' forecasts. 

Abarbanell and Bernard (1992) contend that such measurement error might cause a 

downward bias on the coefficient of analysts' forecast changes used in De Bondt and 

Thaler (1990), and this might induce overreaction results. Although Cornell and 
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Landsman (1989) report that the average reporting lag of I/B/E/S is improved to 10 days, 

it would be appropriate for researchers to endeavor to minimize the lag problem when 

they collect earnings forecast information from I/B/E/S. To make sure that earnings 

forecasts for the contemporaneous quarter reflects recent earnings information, the 

I/B/E/S consensus forecasts closest to the earnings announcement dates are used. 

Alleviating the reporting lag problem results in better measurement of unexpected new 

earnings information by decreasing the expected portion of new earnings information.  

To be included in the final sample, each firm should have at least 21 consecutive 

quarters of data for actual and forecasted EPS on I/B/E/S. This ensures that firm-quarters 

are properly classified into portfolios on the basis of either the MFFE or the MFTS 

method. In addition, for every firm in the sample, 250 days of CRSP return data prior to 

the quarterly earnings announcement is needed for the calculation of market-model 

adjusted 3-day cumulative abnormal returns (CARs).48 The initial number of observations 

is 137,065 firm-quarters (7447 firms) that are available on both I/B/E/S and CRSP. Due to 

the look-back portfolio formation process, 20 firm-quarters of data are removed from 

each firm and this reduces the sample to 47,118 firms-quarters (2284 firms). After 

removing observations with missing values, the sample size is further reduced to 39,249 

firm-quarters (2002 firms).  

My sample selection procedures and the use of I/B/E/S / CRSP / COMPUSTAT 

intersected data may introduce survivorship bias, but related literature has shown that 

                                                           
48 The 3-day CARs are computed by adding market-model adjusted daily abnormal returns from -2 (2 days 
prior to the earnings announcement) to 0 (the earnings announcement) [see Section 5.2].  
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survivorship bias has little effect on tests for stock price performance [Bernard and 

Thomas (1989); Ball and Kothari (1989)].   

COMPUSTAT is used to extract firm-quarters’ equity information: the book value 

of equity (BVE) and the market value of equity (MVE). The firms included in the final 

sample are, as a result, the ones listed on the I/B/E/S tape for at least 21 quarters, and on 

the CRSP daily return tape for at least 250 days prior to the earnings announcement. They 

should also have BVE and MVE available on COMPUSTAT. After intersecting the sample 

of 39,249 firm-quarters from I/B/E/S and CRSP with the quarterly COMPUSTAT data, 

quite a few observations are further removed, and the final sample size for the MFFE 

method is 34,605 firm-quarters (1882 firms).49 The sample covers a 12-year period from 

1990 to 2001. One enhancement over other studies [Cornell and Landsman (1989); 

Moses (1991)] is that I do not restrict the sample to firms listed on the NYSE, AMEX, and 

NASDAQ with December fiscal-year ends.  

Given the above argument, the sample includes quarterly analysts' earnings 

forecasts, quarterly actual earnings, daily stock returns, the market value of equity 

(MVE), the book-to-market ratio, and other necessary variables subject to the following 

criteria: 

1) The final sample firms are required to be covered on CRSP, COMPUSTAT, 

and I/B/E/S. 

                                                           
49 The final sample for the MFTS method is formed by intersecting the sample [27,635 firm-quarters (2009 
firms)] from the DBT model with the sample [34,605 firm-quarters (1882 firms)] from the MFFE. As 
shown on the diagonal in Panel D of Table 2, the final sample for the MFTS consists of 8997 firm-quarters. 
Note that the MFFE sample size in Panel A of Table 6 is 34,339 because 266 observations in 1989 are 
excluded from analysis. Similarly, the MFTS sample size in Panel B of Table 6 equals 8995, since 2 
observations in 1989 are dropped.  
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2) Quarterly analysts' consensus earnings forecasts and actual earnings are 

available from I/B/E/S summary forecast and actual earnings data tapes. Each 

firm-quarter observation is preceded by at least 20 consecutive quarterly 

earnings observations.  

3) Daily security returns and value-weighted market returns are available from 

CRSP for 250 trading days prior to the earnings announcement.  

Items 2 and 3 ensure that portfolios can be formed on the basis of analysts’ 

forecasting behavior and that necessary return information is available. They also make it 

possible to estimate the market-model parameters (i.e., alpha and beta) and calculate the 

market-model adjusted abnormal returns. As in most earnings announcements literature, 3-

day [−2:0] CARs are used as the measure of the announcement-period abnormal returns 

[Chopra, Lakonishok, and Ritter (1992); La Porta (1996)].  

  

5.2 Market-Adjusted Abnormal Returns and Market-Model Adjusted Abnormal 

Returns 

 

The market-adjusted and market-model adjusted daily abnormal returns for the 

common stock of firm i on day t are defined as: 

mtit
MA
it RRAR −= ,         (5-1) 

( ˆˆMM
it it it it mtAR R Rα β= − + ) ,        (5-2) 

where  

MA
itAR  = the market-adjusted abnormal returns of firm i on day t (= -2, -1, 0); 
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MM
itAR  = the market-model adjusted abnormal returns of firm i on day t; 

itR  = the rate of return for the common stock of firm i on day t; and 

mtR  = the rate of return on the CRSP value-weighted market index on day t.  

For the market-model adjusted abnormal returns, the coefficients  and  are 

ordinary least squares estimates of firm i’s market model parameters estimated over 240 

days from 250 days to 10 days prior to the earnings announcement. For each quarterly 

earnings announcement in a firm,  and  are calculated.  

itα̂ tiβ̂

MA
itAR MM

itAR

I compute 3-day [−2: 0] cumulative abnormal returns for the contemporaneous 

earnings announcement for firm i (CARit) as follows:50  

∑
=

=
3

1t
itit ARCAR         (5-3) 

where  

itAR  =  or . MA
itAR MM

itAR

The 3-day announcement-period CARs are, then, used as the dependent variable for the 
empirical models introduced in Chapter 3.51 

                                                           
50 The use of 3-day [−2: 0] CAR is the norm in earnings studies. It is used to measure the announcement-
period market reaction to analysts' forecast errors.  
51 I run the empirical models by using both market adjusted and market-model adjusted CARs as the 
dependent variable. I later report the empirical results from the models using the market-model adjusted 
CARs, since main results are not affected by different measures of abnormal returns. In addition, the choice 
of announcement windows {e.g., 2-day [-1:0] or 1-day [0] CARs} does not affect the main results. 
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Chapter 6 

Empirical Tests 

 

6.1 Descriptive Statistics 

 

Table 3 summarizes descriptive statistics of 3-day cumulative abnormal returns 

(CARs), mean quarterly forecast errors (MQFEs), contemporaneous forecast errors (FEs), 

the market value of equity (MVE or Size), the logarithm of MVE (logSize), and book-to-

market ratios (BtoM), and other variables over time and across the 5 portfolios – P1, P2, 

P3, P4, and P5. As demonstrated in Chapter 4, these 5 portfolios are formed by either the 

MFFE or MFTS methods. In either formation method, P1, P2, P3 represent the optimistic 

portfolios, while P4 and P5 are the pessimistic portfolios. P1 and P5 are two extreme 

portfolios that indicate the most optimistic and the most pessimistic portfolios 

respectively. The classification of P2 and P3 into the optimistic portfolios is somewhat 

arbitrary (discussed below). 

Panel A of Table 3 reports overall descriptive statistics of major variables. 

Consistent with common findings in existing earnings literature, the grand means of 

MQFE and FE are significantly negative – i.e., analysts are, on average, optimistic and 

analysts' optimism persists. Recall that the forecast error is defined as . Negative 

MQFEs and FEs imply historical and contemporaneous optimistic analysts' forecasts, 

respectively. Notice that the mean CAR is significantly positive, while the mean FE is 

significantly negative. This has an important implication regarding the test of the NEH 

tA F− t
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versus the REH. If investors are naïve in reaction to analysts’ forecasting behavior, the 

negative FE should lead to negative market reaction – i.e., negative CAR. The negative 

FE is, instead, associated with the positive CAR. This suggests that investors have 

discounted analysts’ optimism and the NEH does not receive support. This is the first 

evidence in favor of the REH.   

Although (–) MQFEs outnumbers (+) MQFEs, the number of (–) FEs is less than 

that of (+) FEs.52 This suggests that analysts tend to issue pessimistic forecasts more 

frequently, while the absolute magnitudes of optimistic forecast errors are larger than 

those of pessimistic ones. Given this observation about frequency versus magnitude, it is 

not obvious whether analysts' earnings forecast bias is characterized by optimism. 

Therefore, either MQFEs or the frequency of (–) FEs alone may not be sufficient to 

characterize analysts' forecasting behavior. Also notice that 4247 FEs – about 12% of 

total observations – are zero. Non-trivial number of analysts’ forecasts accurately hit the 

actual earnings. In what circumstances are unbiased forecasts issued? Is this an indication 

of earnings management? Individual characteristics of analysts might be the main reason, 

or certain firm characteristics may play a key role in producing unbiased forecasts. 

Investigating these issues warrants future research.  

Panel B of Table 3 shows that absolute values of average MQFE (AMQFET) and 

average FE (AFET) tend to decrease over time, indicating that analysts' optimistic 

forecast bias has been mitigated.53 Kendall's Tau’s between AMQFET and time (i.e., 

                                                           
52 Note that I use the notation (-) for "negative" and the notation (+) for "positive". 
53 Notice I use a subscript "T" with the variable names to indicate that variables are time-wise, not 
portfolio-wise. I use a subscript "P" to indicate portfolio-wise variables. For example, AMQFET indicates 
average MQFE for a specific year "T", while AMQFEP means average MQFE for a portfolio "P". 
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years) and AFET and time are −0.91 and −0.64 significant at the conventional significance 

levels. Although average logSize (AlogSizeT) exhibit some extent of decreasing patterns 

over time (Kendall's Tau is −0.42 significant at the 10% level), there seems to be no 

significant trend for either average CAR (ACART). Similarly, average BtoM (ABtoMT) 

have no significant trend.  

 On the other hand, Panel C of Table 3 documents that portfolios possess some 

distinct characteristics in terms of the firm size and the book-to-market ratio. The average 

CAR (ACARP)  and average BtoM (ABtoMP) tend to be larger for the optimistic portfolios 

than for the pessimistic ones. The average firm size (AlogSizeP) monotonically increases 

as the portfolios change from P1 to P2 to P3 to P4 to P5. In sum, ACARP is negatively 

associated with AlogSizeP and positively with ABtoMP. The former relation indicates the 

size effect, while the latter implies the profitability of the value-firm investments [Fama 

and French (1993, 1995)]. Panels D, E, F of Table 3 contain descriptive statistics using 

the MFTS method and show very consistent results with ones using the MFFE.  

 

6.2 Validity of Portfolio Formation Methods 

 

Developing a valid portfolio formation method is critical to examine the two main 

behavioral issues in this study: 1) Persistent bias; 2) Investors' reaction to analysts' 

forecasting behavior. The validity of the two formation methods – MFFE and MFTS – 

depends on their predictive power for the contemporaneous average forecast errors 

(AFEP) and the percentage of the negative contemporaneous FEs [%(–FE)]. For instance, 

 61 



the most optimistic portfolio (P1) should have the largest negative mean of 

contemporaneous FEs and the highest %(–FE) for my portfolio formation methods 

(MFFE and MFTS) to be valid. Panel C of Table 3 shows that for P1, the mean 

contemporaneous FE is indeed significantly negative, and is the most negative. %(–FE) 

is also highest. The binomial tests in Table 4 indicate that the portfolio P1's %(–FE) is 

53% for the MFFE and 55% for the MFTS and both are significantly greater than 50%. 

Therefore, P1 is indeed an optimistic portfolio consistent with the predictions of both the 

MFFE and the MFTS methods. It should be noted that examining the validity of the 

portfolio formation methods is a joint test of bias and persistence in analysts' earnings 

forecasts in the sense that the MFFE and the MFTS are based on historical analysts' 

forecast bias that continues into the current period.   

As predicted by the MFFE and the MFTS, P4 and P5 have significantly positive 

AFEP  and the percentage of positive FEs [%(+FE)] outweighs that of %(–FE). The 

magnitudes of AFEP and %(+FE) for P5 are greater than those for P4. These results are 

exactly what was intended by the MFFE and the MFTS methods. The results in Panels C 

and F of Table 3, therefore, suggest that the MFFE and the MFTS methods are valid in 

the sense of providing statistically reliable predictions of contemporaneous forecast 

errors, at least for portfolios P1, P4, and P5. More importantly, this implies that the 

persistent bias presumption manifested in the MFFE and the MFTS methods receives 

support.   

For P2 and P3, the predictability of the two methods is not as clear as the other 

portfolios. For both the MFFE and the MFTS methods, %(–FE) is not consistent with the 
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predictions of the two methods. Actually, it is contradictory. While AFEP for P2 and P3 

have predicted signs (i.e., negative), %(–FE) is smaller than or not significantly different 

from %(+FE). According to Panels C and F of Table 3, %(–FE)'s for P2 and P3 are 48% 

and 46% for the MFFE and 49% and 45% for the MFTS. The binomial tests in Table 4 

indicate that those %(–FE)'s are significantly less than 50% except for %(–FE) for P2 

formed by the MFTS, which is not significantly different from 50%. P2 and P3 are, thus, 

not as convincing as the others in terms of predictive power. 

I classify P2 into an optimistic portfolio because its AFEP’s (–0.00057 for the 

MFFE and –0.00054 for the MFTS) are significantly negative [and more negative than 

the grand mean of forecast errors (–0.00048)] and the difference between %(–FE) and 

%(+FE) is not so wide. As pointed out earlier, Panel B of Table 4 shows that P2's %(–

FE) is not significantly different from %(+FE).  

Although P3 has significantly negative AFEP, it is smaller than the grand mean (–

0.00048) in terms of absolute value, and %(–FE) is significantly smaller than %(+FE) for 

both the MFFE and the MFTS methods [Panels C and F of Table 3 and Panels A and B of 

Table 4]. It is, thus, difficult to assign P3 into either an optimistic or a pessimistic 

portfolio. I arbitrarily assign P3 into an optimistic portfolio, since it has significantly 

negative AFEP whose definition is consistent with the definition of analysts' optimism in 

this study.54 It would be, however, also possible for one to argue that P3 may be 

classified into a rational portfolio. But, it does not receive any statistical support. 

                                                           
54 As a result, there is no rational portfolio in the 5 portfolios (at least from the statistical point of view).  
This, however, should not be a problem because the main objective of the dissertation is to find the relation 
of investors’ reaction to analysts’ biased forecasting behavior, not to unbiased forecasting behavior. 
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The persistent bias in analysts’ forecasts is an important and necessary condition 

to examine investor rationality in response to analysts’ forecast errors. Evidence that the 

MFFE and the MFTS methods are valid measures of predicting the contemporaneous 

forecast errors suggests that analysts’ forecast bias is persistent. Given that analysts tend 

to make persistent upward (optimistic) or downward (pessimistic) bias in their forecasts, 

investors’ reaction to analysts’ forecast errors is expected to reveal investor rationality in 

forming conditional earnings expectations of their own.  

At least for the extreme portfolios P1 and P5, the predictability of the two 

portfolio formation methods is obvious. P4 is also as predictable in terms of both mean 

and frequency of FEs. When it comes to the interpretation of empirical results from the 

multiple regression models used to test the NEH against the REH, I place more weight on 

the "extreme" portfolios – the portfolio P1 and the portfolio P5 – to avoid possible 

debates over the validity of the formation methods especially in case of P2 and P3.  

To further examine the persistence in analysts’ earnings forecasts, I perform both 

parametric and non-parametric autocorrelation tests. Panels A and B of Table 5 report 

results from a nonparametric Chi-square test of autocorrelation between  and 

.

1−tFE

tFE 55 If analysts’ earnings forecasts do not display any persistent bias, the observed 

frequencies should equal the theoretical ones. If there are no significant differences 

between the observed and theoretical frequencies, the Chi-square test fails to reject the 

null hypothesis that the observed frequencies are equal to the theoretical. But, the data 

                                                           
55 Gujarati (1988; pp. 373-375). 
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shows that the Chi-square statistic is significant at the 1% level, and suggests that the 

signs of FEs tend to stay in the same direction between quarter t-1 and quarter t.  

I also perform a simple parametric test in Panels C and D of Table 5. The test 

consists of the estimation of the first-order autoregressive model [i.e., AR (1)], both on 

the pooled sample and each portfolio, to see whether an autocorrelation structure exists 

between  and . I found that the autocorrelation between the consecutive FEs 

was positive and highly significant, indicating the signs of FEs do not change rapidly. 

These results confirm that analysts’ forecast bias is persistent. 

1−tFE tFE

To see whether there is clustering within portfolios or across portfolios on various 

factors that might influence analysts’ forecast bias, I compute three Herfindahl indexes: 

1) Time Herfindahl; 2) Industry Herfindahl; 3) Stock Exchange Herfindahl [Table 6]. 

Time Herfindahl index measures the relative concentration of a portfolio over the 12-year 

study period. Industry Herfindahl index calibrates the relative concentration of an 

industry sector across portfolios, while Stock Exchange Herfindahl gauges the relative 

concentration of a stock exchange across portfolios. The three Herfindahl indexes are 

calculated as follows: 
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where  

PH  = the Herfindahl index for a portfolio P where P = P1, …, P5; 

INDH  = the Herfindahl index for  an industry IND where IND = 1, …, 11; 

  = the Herfindahl index for a stock exchange EX where EX = NYSE,  EXH

   AMEX, NASDAQ; 

PtFREQ ,  = the marginal frequency of a portfolio P in year t; and 

INDpFREQ ,  = the marginal frequency of  an industry IND for a portfolio p; 

EXpFREQ ,  = the marginal frequency of a stock exchange EX  for a portfolio p; 

PsumFREQ ,  = the aggregate frequency of portfolio p over the 12-year period; 

INDsumFREQ , = the aggregate frequency of an industry IND across portfolios; and 

EXsumFREQ ,  = the aggregate frequency of an exchange EX across portfolios.  

For Time Herfindahl index, portfolios for which all observations fall in a specific 

year will have a Herfindahl index of 1. Portfolios, which have observations spread evenly 

through time, will have a Herfindahl index of 0.0833. To illustrate, suppose that all 

observations in P1 are clustered in 1990 so that no observations in P1 can be found in any 

other years. The marginal frequency of P1 in 1990 ( ) equals the aggregate 

frequency of P1 over the 12-year period ( ), while the marginal frequencies of 

P1 for any other years are zero. Then, the Time-Herfindahl index for P1 ( ) equals 

one. If all observations in P1 are evenly spread across years,  becomes 

1990, 1PFREQ

1P

PH

,sumFREQ

1PH

1
1

12
 (=0.0833). 

The data in Panels A and B of Table 6 suggests that all portfolios are well spread over the 
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sample time period and implies that the persistent bias in analysts' forecasts is not 

dominated by a specific year. 

Industry Herfindahl and Stock Exchange Herfindahl indexes provide similar 

evidence. Panels C~F reflect that industries and exchanges seem to be well scattered 

across portfolios, since Industry Herfindahl and Stock Exchange Herfindahl indexes are, 

in most cases, close to 0.2.56 In other words, industry and stock exchange factors are not 

significant determinants of the persistent bias in analysts' forecasts. 

It is reasonable to say that past forecasting behavior, measured by the MFFE or 

the MFTS, has predictive ability with respect to contemporaneous analysts’ earnings 

forecasts. Note again that I use "forecasting behavior" as a synonym of persistent bias in 

analysts’ forecasts. Recognizing the existence of persistent bias in analysts’ earnings 

forecasts, I turn to the issue of how investors are expected to react to analysts’ forecasting 

behavior.  

 

6.3 Empirical Tests of NEH versus REH 

 

As discussed in Chapter 3, three multiple regression models are estimated to test 

the NEH versus the REH. The following are the restatements of the three models 

described in Chapter 3 [i.e., Equations (3-3), (3-4), and (3-5)]:57 

                                                           
56 The Herfindahl index for an industry or an exchange will be "0.2" if observations in the same industry or 
exchange are equally distributed across portfolios, while it will be "1" if observations in the same industry 
or exchange are clustered in a specific portfolio.  
57 I reexamined the three models with time dummies for quarters and the inclusion of time dummies does 
not alter the main findings of the models without dummies. The models including time dummies are 
econometrically more appropriate since by doing so the error terms have zero means every quarter. I also 
performed autocorrelation test on the error terms for the three models (with time dummies) and found no 
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         (6-6) 

Terms are as defined earlier, and firm subscripts are omitted for convenience. 

Panel A of Table 7 shows results from the estimation of Equation (6-4). The NEH 

predicts that naïve investors naïvely follow analysts' optimism and their reaction to such 

optimism (i.e., negative forecast errors=bad news) on average leads to negative CARs, 

while naïve investors' reaction to analysts' pessimism (i.e., positive forecast errors=good 

news) results in positive CARs.58 Under the NEH, therefore, the market reaction to the 

earnings announcement would be negative for optimistic portfolios (e.g., P1) and positive 

for pessimistic portfolios (e.g., P5). Specifically, the NEH expects that  is greater than 

. The REH, however, hypothesizes that rational investors do not perceive analysts' 

optimism or pessimism as bad news or good news, since they fully adjust for analysts' 

forecasting behavior (i.e., optimism or pessimism) so that the contemporaneous negative  

5α

1α

 
significant autocorrelation structure. For the MFFE method, the correlations between the contemporaneous 
error term and the lagged error term were 0.044, -0.015, and 0.096 respectively for the three models and 
they are all insignificant. Similar results were found for the MFTS method. Durban-Watson statistics also 
suggest that there is no first-order autocorrelation.   
58 Recall that the average forecast error for P1 (the most optimistic portfolio) is significantly negative, 
while the average forecast error for P5 (the most pessimistic) is significantly positive.  
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or positive forecast errors do not have an impact on rational investors' reaction to the 

earnings announcement. As a consequence, under the REH, the average market reaction 

(i.e., ) for P1 should not be significantly different from . 1α 5α

The regression results in Panel A of Table 7 indicate that no pair-wise comparison 

between portfolio abnormal returns is significant; the NEH that investors are naïve 

followers of analysts' forecasts is rejected. I also perform Scheffe's multiple comparison 

method to test all possible contrasts at the same time. Considering that the portfolio 

sample sizes are unequal, Scheffe's method may be preferred to other pair-wise 

comparisons (e.g., F-tests or Tukey's method). The results from Scheffe's method also 

display no significantly different pairs. Also recall that the negative mean FE is 

associated with the positive mean CAR (Panel A of Table 3). Therefore, the NEH is 

rejected in favor of the REH. 

Panel B of Table 7 documents the regression results from estimating Equation (6-

5). According to the MFFE the estimate of the dummy variable P1 (i.e., fixed or intercept 

market effect for P1) is significantly larger than that of P5 – i.e.,  > a . For both the 

MFFE and the MFTS,  (0.00359 and 0.00427) is greater than  (0.00178 and 

0.00214), and the F-test for the MFFE rejects the null hypothesis (Ho: ) at the 5% 

level. These are in compliance with the predictions of the REH. But, the F-test for the 

MFTS fails to reject Ho:  with p-value of 0.1848. In addition, the results from 

Scheffe’s multiple comparisons disclose that all pairs of the portfolio dummy estimates 

are not significantly different from each other − i.e., . Therefore, 

1a

5a

3 =

5

1a

4 =

1a

5a=

5a

51 aa =

21 aaaa ==
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the data does not strongly reject the NEH. These results are, however, based on the 

assumption that the marginal market effects [slopes in Equation (6-5)] of all portfolios 

are the same. 

Equation (6-6) releases the assumption of equal portfolio slopes and uses P1 as 

the reference portfolio (I do not display all possible regression results based on different 

reference portfolios because the focus is on the extreme portfolios). Panels C-1 and C-2 

of Table 7 indicate that for the MFFE  (0.00359) is significantly greater than  

(0.00199) with p-value of 0.0671. They also show that the slope (marginal) market effect 

of P1 (i.e., b =0.0021) is not significantly different from that of P5 (i.e., b =0.00179) 

with p-value of 0.1234. However, the MFTS does not fully conform the MFFE’s results 

by failing to reject Ho: = a . Moreover, Scheffe’s multiple comparisons show no 

significant pairs of portfolio intercepts. Similar to the findings in Panel B, the data does 

not strongly reject the NEH.  

1a′ 1 5a a′ ′+

5′1′ 1 b′ +

1a′ 1 a′ + 5′

In summary, regressions provide mixed evidence. One model [Equation (6-4)] 

rejects the NEH and supports the REH. The other two models, on the other hand, do not 

strongly reject the NEH.  
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Chapter 7 

Conclusions 

 

Prior studies have reported that analysts’ earnings forecasts are upward or 

downward biased, and economic and non-economic incentives have been provided to 

explain such observed bias. Management access and career (reputation) concerns are, 

among others, the examples of economic incentives for analysts to issue biased earnings 

forecasts.  Michaely and Womack (1999) and Dechow, Hutton, and Sloan (2000) 

document that financial analysts of brokerage firms tend to issue more favorable 

recommendations or earnings growth forecasts due to the underwriting relationships with 

the company they follow. Scharfstein and Stein (1990) contend that analysts deliberately 

report earnings forecasts that are closer to or further from the consensus because of career 

concerns.  

Another group of explanations draws from the behavioral finance literature to 

suggest that analysts suffer from cognitive failures. While De Bondt and Thaler (1990) 

argue that analysts tend to overreact to new earnings information and their forecasts are 

thus extreme, Abarbanell and Bernard (1992) and Mendenhall  (1991), among others, 

conjecture that analysts appear to underreact to new earnings information. As discussed 

earlier, Easterwood and Nutt (1999) reconcile the overreaction and the underreaction 

views by demonstrating that analysts, in fact, overreact to good news and underreact to 

bad news. Such systematic overreaction and underreaction results in analysts’ optimism 

in earnings forecasts.  
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This dissertation explores whether analysts' forecast bias is persistent (i.e., 

whether the historical record of analysts’ forecasting behavior has predictive ability with 

respect to subsequent forecast errors), and then proposes two competing hypotheses – the 

NEH and the REH – to examine how investors respond to the persistent bias in analysts’ 

earnings forecasts, if they are indeed persistent. The NEH surmises that investors take 

analysts’ forecasts as unbiased and these naïve investors’ earnings expectations are 

identical to analysts’ earnings forecasts. Empirically, this prediction leads to the 

conclusion that naïve investors’ reaction to a given analyst forecast error (holding other 

factors constant) does not vary with the observed persistent bias in analysts’ earnings 

forecasts – optimistic or pessimistic. Recall that I use the term “analysts’ forecasting 

behavior” as a synonym of “the observed persistent bias in analysts’ earnings forecasts”.     

The REH, in contrast, presumes that investors discount or place a premium on the 

persistent bias, and thus, these rational investors’ earnings expectations are different from 

analysts’ earnings forecasts. Specifically, under the REH investors’ reaction to a given 

analyst forecast error varies systematically with analysts’ forecasting behavior.  

The descriptive statistics in Table 3 convey important implications regarding 

analysts’ forecast bias and predictive power of the two portfolio formation methods used 

in the dissertation. The overall descriptive statistics in Panel A of Table 3 suggest that 

investors, on average, tend to discount analysts’ optimism in earnings forecasts that 

characterizes average analysts’ forecasting behavior. Although the trend is not 

monotonic, Panels B and E exhibit that average analysts’ optimism tends to be attenuated 

over time. Non-trivial number of zero forecast errors, on the other hand, gives credence 
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to earnings management. In addition, Panels C and F reveal systematic size and book-to-

market association with forecast errors.  

Panels C and F of Table 3 show that the portfolio formation methods (MFFE and 

METS) successfully create an optimistic portfolio (P1) and a pessimistic one (P5) 

consistent with the predictions of both formation methods. For P1, the mean of 

contemporaneous forecast errors (AFE) is indeed significantly negative (actually most 

negative), and the percentage of negative forecast errors is highest, as predicted by both 

methods. The similar results are found for P5; AFE is significantly positive and the 

percentage of positive forecast errors outweighs that of negative ones. The binomial test 

of the hypothesis that the probability of getting positive forecast errors equals 0.5 

confirms the validity of the formation methods by rejecting the hypothesis for both 

portfolios. Note again that the validity test of the formation methods is a joint test of 

analysts’ forecast bias and its persistence, in the sense that the formation methods are 

based on the premise that historical analysts’ forecast bias persists into the current period.  

The persistence in analysts’ earnings forecasts is further examined using various 

parametric and non-parametric tests. The non-parametric Chi-square tests and the first-

order autoregressive models suggest that there is a significant autocorrelation between 

 and . The three Herfindahl indexes provide evidence that each portfolio is well 

spread over time and across industries and stock exchanges. This reflects that the 

persistent bias in analysts’ earnings forecasts is not characterized by such factors as time, 

industry, or stock exchanges.  

1−tFE tFE
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Multiple regression methodology is used to determine whether investors respond 

differently based on evidence of prior persistent bias in analysts’ forecasts. The 

regressions are intended to contrast naïve investors' reaction to analysts' forecast bias 

with rational investors' reaction to such bias. Equation (6-4) investigates the average 

market reactions of optimistic and pessimistic portfolios controlling for size and book-to-

market ratio. Unlike Equations (6-5) and (6-6), Equation (6-4) incorporates the impact of 

the average forecast errors in portfolios into the intercept effect. So, the average FEs in 

respective portfolios are reflected in the magnitudes of the dummy variable coefficients 

( ,…, ). The NEH predicts that the coefficient for P1 ( ) should be smaller than that 

for P5 ( ), since naïve investors' reaction to analysts' optimism (pessimism) will, on 

average, be negative (positive).

1α 5α

5α

1α

59  

The REH, on the other hand, conjectures that  and  will be statistically 

indistinguishable, since rational investors do not perceive analysts' optimism or 

pessimism as bad news or good news. In other words, rational investors fully discount 

analysts' contemporaneous optimistic forecasts or place a fully-adjusted premium on 

analysts' contemporaneous pessimistic forecasts, so that the corresponding negative 

(optimistic) or positive (pessimistic) forecast errors do not influence rational investors' 

reaction. The regression results support the REH. This is consistent with the implication 

of the negative relationship between the grand mean of analysts’ forecast errors and the 

grand mean of the 3-day cumulative abnormal returns (CARs).  

1α 5α

                                                           
59 Note that analysts' optimism (negative forecast errors) indicates bad news, while analysts' pessimism 
(positive forecast errors) conveys good news. 
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Equations (6-5) and (6-6) enhance Equation (6-4) by including the 

contemporaneous forecast errors as an explanatory variable. As shown in Table 1, given a 

forecast error (FE), naïve and rational investors' reactions to prior bias in analysts' 

forecasts can be contrasted. Under the NEH, given an FE, investors' reaction to analysts' 

optimism should equal that to analysts' pessimism: CAR = |CAR . Under the 

REH, given an FE, investors will adjust for analysts' optimism or pessimism. As a result, 

given an FE, rational investors' reaction to analysts' optimism (pessimism) should be 

larger (smaller) than naïve investors' reaction to analysts' forecast bias: CAR  > 

 > . The estimated parameters and pair-wise comparisons of 

Equations (6-5) and (6-6) do not strongly reject the NEH. While the MFFE results reject 

the NEH in favor of the REH, the MFTS results do not confirm it. With evidence of the 

persistent bias in analysts' earnings forecasts, the regression results suggest that the 

functional form [CAR ] commonly used in earnings literature may not 

appropriately capture the effect of real unexpected earnings information (i.e., investors' 

expectation errors as opposed to analysts' forecast errors) on stock returns.  

|OPT
t NEH

PESS
t NEH

|OPT
t REH

|t NEHCAR |PESS
t REHCAR

( )t f FE= t

For the non-extreme portfolios (P2, P3, and P4) the data does not yet provide a 

clear cut-off for either the NEH or the REH. Actually, it shows results that are not 

predicted by either the NEH or the REH. Having known that the extreme-portfolio case 

does not strongly reject the NEH, I speculate that investors will show some type of quasi-

rational response to less extreme analysts’ forecasting behavior. If investors had 

perceived less extreme behavior as unbiased, the market reaction for P1 should have been 

equal to that for P3. If investors had fully adjusted for the persistent bias of analysts’ 
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forecasts, the market reaction for P1 should have dominated that for the P3. The data in 

Panel C of Table 7 shows that the market reaction for P3 actually dominates that for P1. 

For instance, P3 has greater market reaction than P1 with respect to both fixed (  versus 

) and marginal effects (b  versus ). Although  and  are not 

statistically different,  and b  are significantly different for both the MFFE and 

MFTS methods at the 5% level. This implies that for positive forecast errors the market 

reaction for P3 dominates that for P1, and this result is not consistent with either the NEH 

or the REH. Therefore, the simple dichotomous framework I employed (NEH versus 

REH) has a limit to thoroughly examine investors' reaction to analysts' forecasting 

behavior.  

1a′

1a a′ + 3′ 3′ 3′

3′

1′

1′ +

1b b′ + 1a′ 1a a′ +

1b′ b

The limit of my dissertation, however, provides promising opportunities for future 

research. One may argue that there exist unidentified (or unidentifiable) risk factors 

beyond the dimensions where current risk factors − size, book-to-market ratio, and 

momentum effects − are identified. Time periods, industry concentration, or exchange 

listings may be potential candidates that drive the differences in the market reaction 

across portfolios although it turns out that they are not significant factors to explain 

idiosyncratic market reactions. It would be interesting to investigate whether (and/or 

how) the characteristics (e.g., experience, brokerage relationship, age, reputation, etc.) of 

individual analysts are associated with portfolios formed on the basis of analysts' bias in 

consensus earnings forecasts.   
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Figure 1. Investors’ Earnings Expectations and Reaction to Analysts’ 
Optimism Under the Rational Expectations Hypothesis (REH) 
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Table 1. Analysts’ Earnings Forecasts versus Investors’ Earnings Expectations and 
Predicted Cumulative Abnormal Returns (CARs) 
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Portfolio Naïve Expectations Hypothesis 
(NEH) 

Rational Expectations Hypothesis 
(REH) 

Optimistic Portfolio 

         =  OPT
NEHtE | tF

   −  = −  tA OPT
NEHtE | tA tF

      = CAR  OPT
NEHtCAR | NEHt |

         <  OPT
REHtE | tF

   −  > −  tA OPT
REHtE | tA tF

   CAR    >  OPT
REHt | NEHtCAR |

Rational Portfolio 

         =  RAT
NEHtE | tF

   −  = −  tA RAT
NEHtE | tA tF

      = CAR  RAT
NEHtCAR | NEHt |

         =  RAT
REHtE | tF

   −  = −  tA RAT
REHtE | tA tF

   CAR    =  RAT
REHt | NEHtCAR |

Pessimistic Portfolio 

        =  PESS
NEHtE | tF

   − = −  tA PESS
NEHtE | tA tF

     =  PESS
NEHtCAR | NEHtCAR |

         >  PESS
REHtE | tF

   −  < −  tA PESS
REHtE | tA tF

   CAR    <  PESS
REHt | NEHtCAR |

Note that firm subscripts are omitted. 
 
Definitions of variables are as follows:  

BIAS
HYPtE |  = naïve or rational (HYP) investors’ earnings expectations for quarter t in response  

  to analysts’ BIAS [=optimism (OPT), rational forecasts (RAT), or pessimism  
  (PESS)] in consensus earnings forecasts under HYP (=NEH or REH); 

tF   = analysts’ consensus earnings forecasts for quarter t; 

tA −  = investors’ expectation errors for quarter t under HYP in response to  BIAS
HYPtE |

 analysts’ BIAS; 
tA −   = analysts’ forecast errors for quarter t (FEtF t); 

NEHtCAR |  = naïve investors’ reaction to analysts’ forecast errors manifested in 3-day 
 [-2: 0] cumulative abnormal returns (CARs) for quarter t; and  

BIAS
HYPtCAR |  = naïve or rational (HYP) investors’ reaction to analysts’ BIAS in consensus  

 earnings forecasts. 
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Table 2. Portfolio Formation: Mean-Frequency Forecast Error (MFFE) versus Mean-
Frequency Time-Series (MFTS) Methods 
 
I use two statistical methods to form the desired portfolios on the basis of analysts’ forecasting 
behavior over the past 20 quarters (i.e., 5 years). Panel A summarizes the MFFE method using 
the mean and frequency of analysts’ forecast errors over 5 years prior to the quarterly earnings 
announcement. Each firm quarter is assigned into one of the quintile portfolios at each earnings 
announcement based on the past 5-year mean and frequency. The mean of quarterly forecast 
errors (MQFEs) over the 5-year period is calculated as follows:    

∑
= −−

−− −
=

20

1 1
20, 20

1
q qt

qtqt
t P

FA
MQFE  

 where  
  = 1 through 20 quarters prior to the quarterly announcement at time t; q
  = the actual EPS for the quarter t-q; qtA −

  = the forecasted EPS at one month prior to the quarter t-q; and qtF −

  = the stock price 25 days prior to the quarter t-q. t qP−

The frequency of quarterly forecast errors indicates the number of negative forecast errors over 
the 5-year period. The larger the number is the more optimistic the contemporaneous forecast 
error would be. Both measures − i.e., MQFE and the frequency − rank firm-quarters into quintiles 
resulting in 25 subsets when a contingency table is constructed. Then, the subsets are redefined 
into 5 portfolios as in Panel A.  

 
Panel B presents portfolio formation using the time-series regression model developed by De 
Bondt and Thaler (DBT; 1990): 
     ttttt eAFAA ′+−+=− −− )( 1101 δδ

ttt eFECAEC ′++=⇔ )(10 δδ  
 where  
  = the contemporaneous reported earnings at quarter t; tA
   = the analysts’ consensus earnings forecast for quarter t; tF
   = the reported earnings one quarter prior to quarter t; 1−tA

1−−= ttt AAAEC  = actual earnings change; and 

1−−= ttt AFFEC   = forecasted earnings change; 
Recall that the firm subscript is omitted. 

Note that both methods form 5 portfolios on the basis of analysts’ past forecasting behavior.  
The Mean-Frequency Time-Series (MFTS) method is a combination of the MFFE and the DBT. 
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Table 2. Continued. 
 

Panel A. Mean-Frequency Forecast Error (MFFE) Method 
 

MQFE Rank 

Frequency Rank 
( No of (-) FE) Q1 Q2 Q3 Q4 Q5 

Q1 P1 
(4980, 580) 

P1 
(3164, 499) 

P2 
(1264, 250) 

 
(84, 51) 

 
(165, 46) 

Q2 P1 
(2113, 506) 

P2 
(2573, 625) 

P3 
(2229, 522) 

 
(644, 241) 

 
(563, 157) 

Q3 P2 
(1266, 359) 

P3 
(2043, 554) 

P3 
(2807, 697) 

P4 
(1757, 524) 

P4 
(1573, 391) 

Q4  
(557, 181) 

 
(945, 316) 

 
(2008, 554) 

P4 
(2664, 617) 

P5 
(2510, 556) 

Q5  
(217, 67) 

 
(408, 133) 

 
(825, 281) 

P5 
(3984, 555) 

P5 
(4322, 630) 

Note that the numbers in parentheses indicate firm-quarters and firms respectively. 
 
For both measures (MQFE and Frequency), lower ranks (e.g., Q1) represent more optimism in 
analysts’ forecasts during the past 5-year period prior to the earnings announcement. Conversely, 
higher ranks (e.g., Q5) indicate less optimism or more pessimism in analysts’ forecasts. Based on 
the newly formed subsets, I create 5 portfolios ranging from the most optimistic (P1) to the most 
pessimistic (P5).  
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Table 2. Continued. 
 

Panel B. Portfolio Characteristics* 

Portfolio Expected Sign of AMQFE a and AFE b 
(firm-quarters, firms) Analysts’ Behavior 

Portfolio 1 (P1) Most Negative 
(8512, 909) Most Optimistic 

Portfolio 2 (P2) Negative 
(4482, 978) Optimistic ?c 

Portfolio 3 (P3) Negative 
(6441, 1051) Optimistic ?c 

Portfolio 4 (P4) Positive 
(5340, 907) Pessimistic 

Portfolio 5 (P5) More Positive 
(9830, 1053) Most pessimistic 

* Portfolio definitions are consistent throughout the dissertation. 
 
a AMQFE indicates average MQFE, which is the grand mean of MQFE for each portfolio: 

∑
=

=
N

n
nPP MQFE

N
AMQFE

1
,

1
 

where N = the number of observations (MQFEs) in the portfolio P (P=1,2,…,5). 
b AFE indicates average contemporaneous analysts' forecast errors. 
c As discussed in the text, the classification of these two portfolios may be controversial (They 
might be seen as either rational or pessimistic). 
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Table 2. Continued. 
 

Panel C. Time-Series Portfolio Formation Method (De Bondt & Thaler)* 
ttttt eAFAA ′+−+=− −− )( 1101 δδ  

Rank of  0δ
 

1 2 3 4 5 

1 P1 
(1586, 292) 

P1 
(1884, 427) 

P2 
(1784, 411) 

P3 
 (2090, 452) 

 
(1605, 327) 

2 P1  
(1711, 382) 

P2 
(1892, 516) 

P3 
(1904, 511) 

 
(1844, 528) 

 
(1598, 412) 

3 P2 
(1176, 336) 

P3 
(1624, 451) 

 
(2250, 522) 

 
(2027, 513) 

P4 
(1872, 434) 

4 P3 
(1921, 382) 

 
(1752, 464) 

 
(1682, 456) 

P4 
(1634, 477) 

P5 
(1960, 450) 

Rank of 
 1δ

5  
(2555, 383) 

 
(1797, 406) 

P4 
(1329, 373) 

P5 
(1354, 365) 

P5 
(1914, 337) 

* The time-series model is estimated over the last 5 years (i.e., 20 quarters) at each earnings announcement. 
Negative intercepts ( ) likely indicate more optimism in analysts' forecasts resulting in negative forecast 

errors, holding the slope coefficient ( ) constant. Holding  constant, slopes less than one and greater 

than zero more likely lead to analysts’ pessimism. The ranks of  and , thus, indicate the degree of 
either analysts’ optimism or pessimism. Specifically, I rank alphas and betas in quintiles and obtain the 
above table that has possible combinations of  and  quintiles. For both measures, lower ranks 
represent more optimism in analysts’ forecasts during the past 5-year period prior to the earnings 
announcement. Conversely, higher ranks indicate less optimism or more pessimism in analysts’ forecasts.

s0δ

1δ 0δ

0δ 1δ

s0δ s1δ

60 
Based on the newly formed subsets, I again create 5 portfolios (P1, …, P5).  
 

                                                           
60 Note that observations with negative slope coefficients ( ) are dropped for simplicity and clarification 
purposes. This should not affect the validity of the classification because  are, in most cases, greater 
than zero. 

s1δ
s1δ
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Table 2. Continued. 
 
Now, I have 5 portfolios from the MFFE method and 5 portfolios from the DBT model. The 
following MFTS method reconciles the two formation methods and forms another 5 portfolios. 
Each portfolio in the MFTS contains observations that are classified into the same portfolio by 
both the MFFE and the DBT methods. The following table summarizes the MFTS formation 
process: 
 

Panel D. Mean-Frequency Time-Series (MFTS) Method 

 MFFE 

DBT P1 P2 P3 P4 P5 

P1 P1 
(2965, 470) 

 
(721, 271) 

 
(286, 121) 

 
(10, 7) 

 
(10, 4) 

P2  
(1446, 420) 

P2 
(891, 373) 

 
(1022, 350) 

 
(210, 60) 

 
(56, 19) 

P3  
(1524, 388) 

 
(903, 357) 

P3 
(1510, 476) 

 
(758, 270) 

 
(776, 207) 

P4  
(9, 9) 

 
(62, 36) 

 
(493, 189) 

P4 
(996, 361) 

 
(1962, 489) 

P5  
(1, 1) 

 
(14, 11) 

 
(100, 55) 

 
(1030, 281) 

P5 
(2635, 492) 
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Table 3. Descriptive Statistics 
 
This table displays descriptive statistics, including mean, median, and frequency, of variables used 
for empirical tests. Definitions of variables are as follows: 

ACAR  = the average cumulative abnormal return 

 = 
1

1 N

n
n

CAR
N =
∑  where  is the 3-day [−2: 0] abnormal stock return  for a  CAR

 quarterly earnings announcement; 

AMQFE  = 
1

1 N

n
n

MQFE
N =
∑  (the average of MQFE) 

where ∑
= −−

−− −
=

20

1 1
20, 20

1
q qt

qtqt
t P

FA
MQFE ; 

AFE  = the average of analysts’ earnings forecast errors (FE);  
  = the average of market value of equity ( =Size) in millions Asize MVE

  = ∑  ,
1
( ) /

N

t n
n

P Shr N
=

×

 where  P is the closing stock price at the third month of quarter t, Shr is the  
  number of common shares used to calculate EPS at quarter t, and N  
  is the number of observations; 
  AlogSize = the average of the logarithm of ; MVE
  = the average of book-to-market ratio ABtoM

  =
1

/
N

n

n n

BVE N
MVE=

∑   where  = COMPUSTAT common equity (total); BVE

 # analysts = the average number of analysts for each portfolio; 
 (+)% FE = the percentage of positive analysts' forecast errors for each portfolio;  
 (−)% FE = the percentage of negative analysts' forecast errors for each portfolio; and 
 STD = the portfolio mean of the standard deviation of analysts' consensus  
   forecasts standardized by the mean consensus forecasts. 
 Other terms are as defined in text. Note that subscripts T and P are omitted. 

 93 



Table 3. Continued. 
 

Panel A. Mean-Frequency Forecast Error (MFFE) Method: 
Overall Mean, Median, Frequency of CAR, MQFE, FE, Size, logSize, and BtoM 

 N Mean Median (+) Frequency (−) Frequency zero Frequency 

CAR 34605 0.00334*** 0.00124    

MQFE 34605 -0.00138*** -0.00008 15544 (44.92%) 19061 (55.08%) 0 

FE 34605 -0.00048*** 0 17185 (49.66%) 13173 (38.07%) 4247 (12.27%) 

Size 34605 4443.773 909.951    

logSize 34605 6.887439 6.81339    

BtoM 34605 0.534931 0.47271    
*** significant at the 1% level. 
**   significant at the 5% level. 
*     significant at the 10% level.  
 
Panel B. MFFE: Means of CAR, MQFE, FE, Size, logSize, and BtoM over Time  

 N ACART AMQFET AFET AsizeT AlogSizeT ABtoMT 

1990 1686 -0.00068 -0.00208*** -0.00142*** 3103.00 6.9026 0.6648 

1991 2057 -0.00068 -0.00200*** -0.00102*** 2968.89 6.8302 0.6470 

1992 2480 0.00593*** -0.00201*** -0.00067*** 3001.85 6.7745 0.5902 

1993 2702 0.00245*** -0.00205*** -0.00059*** 3072.00 6.7831 0.5215 

1994 3084 0.00256*** -0.00193*** -0.00029*** 2927.98 6.7079 0.5187 

1995 3199 0.00114 -0.00189*** -0.00064*** 3245.01 6.7276 0.5137 

1996 3426 0.00429*** -0.00154*** -0.00055*** 3957.39 6.8688 0.5006 

1997 3589 0.00200*** -0.00116*** -0.00017** 4780.93 7.0425 0.4585 

1998 3650 0.00459*** -0.00069*** -0.00041*** 5588.20 7.0617 0.4650 

1999 3706 0.00849*** -0.00068*** -0.00007 5559.75 6.8851 0.5343 

2000 3389 0.00526*** -0.00065*** -0.00007 6899.85 6.9262 0.5877 

2001 1371 -0.00146 -0.00049*** -0.00063*** 8148.44 7.1466 0.5603 
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Table 3. Continued. 
 

Panel C. MFFE: Descriptive Statistics of CAR, MQFE, FE, # of Analysts, STD, Size, logSize, and 
BtoM across Portfolios  

 N ACARP AMQFEP AFEP median FE %(+FE) %(−FE) 

P1 8512 0.00352*** -0.00542*** -0.00171*** 0.00000 0.47 0.53 

P2 4482 0.00427*** -0.00203*** -0.00057*** 0.00000 0.52 0.48 

P3 6441 0.00395*** -0.00036*** -0.00037*** 0.00000 0.54 0.46 

P4 5340 0.00305***  0.00041*** 0.00014*** 0.00008 0.60 0.40 

P5 9830 0.00251***  0.00076*** 0.00023*** 0.00016 0.67 0.33 
 

 N # Analysts AsizeP AlogSizeP ABtoMP STD 

P1 8512 5.01 1315.58 5.9578 0.6905 0.32 

P2 4482 6.59 2375.62 6.5209 0.5913 0.22 

P3 6441 7.88 4230.72 7.0527 0.4903 0.12 

P4 5340 8.35 5794.30 7.3901 0.4672 0.11 

P5 9830 8.84 7501.46 7.4782 0.4406 0.09 
Note: P1 denotes the most optimistic portfolio; P2 denotes another optimistic portfolio – i.e., less optimistic 
than P1 and more optimistic than P3; P3 denotes the least optimistic portfolio – i.e., less optimistic than 
both P1 and P2; P4 denotes a less pessimistic portfolio than P5; P5 denotes the most pessimistic portfolio. 
 
Panel D. Mean-Frequency Time-Series (MFTS) Method: Overall Mean, Median, Frequency of CAR, 
MQFE, FE, Size, logSize, and BtoM 

 N Mean Median (+) Frequency (−) Frequency zero Frequency 

CAR 8997 0.00350*** 0.00150    

MQFE 8997 -0.00179*** -0.00021 3737 (41.54%) 5260 (58.46%) 0 

FE 8997 -0.00066*** 0.00003 4517 (50.2%) 3567 (39.65%) 913 (10.15%) 

Size 8997 3828.20 795.92    

logSize 8997 6.76892 6.6795    

BtoM 8997 0.56547 0.5655    
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Table 3. Continued. 
 
Panel E. MFTS: Means of CAR, MQFE, FE, Size, logSize, and BtoM over Time  

 N ACART AMQFET AFET AsizeT AlogSizeT ABtoMT 

1990 381 -0.00016 -0.00234*** -0.00208*** 2924.38 6.8192 0.6995 

1991 507 -0.00138 -0.00234*** -0.00117*** 2569.44 6.7475 0.6570 

1992 685 0.00791*** -0.00291*** -0.00069*** 2588.51 6.5850 0.6139 

1993 663 0.00318* -0.00315*** -0.00105*** 2788.11 6.5293 0.5567 

1994 760 0.00304* -0.00263*** -0.00062*** 2388.75 6.5802 0.5343 

1995 890 0.00298* -0.00247*** -0.00080*** 3992.58 6.7335 0.5273 

1996 944 0.00459*** -0.00195*** -0.00070*** 4274.88 6.8463 0.5135 

1997 964 0.00278* -0.00148***  -0.00012 3606.87 6.8125 0.4910 

1998 969 0.00333** -0.00081*** -0.00075*** 4597.63 6.9342 0.5161 

1999 954 0.00699*** -0.00085***  -0.00028 4559.57 6.8049 0.5850 

2000 886 0.00196 -0.00074***  -0.00018 5223.82 6.8960 0.6349 

2001 392 0.00282 -0.00069***  -0.00068* 5327.04 6.8483 0.6192 
 
Panel F. MFTS: Descriptive Statistics of CAR, MQFE, FE, # of Analysts, STD, Size, logSize, and 
BtoM across Portfolios  

 N ACARP AMQFEP AFEP median FE %(+FE) %(−FE) 

P1 2965 0.00381*** -0.00573*** -0.00207*** -0.00015 0.45 0.55 

P2 891 0.00398** -0.00161*** -0.00054** 0.00000 0.51 0.49 

P3 1510 0.00448*** -0.00034*** -0.00025** 0.00000 0.55 0.45 

P4 996 0.00184 0.00033*** 0.00013 0.00014 0.61 0.39 

P5 2635 0.00306*** 0.00094*** 0.00035*** 0.00033 0.69 0.31 
 

 N # Analysts AsizeP AlogSizeP ABtoMP STD 

P1 2965 4.34 1356.08 5.8541 0.6933 0.334 

P2 891 5.70 2151.47 6.2760 0.6049 0.204 

P3 1510 7.80 4690.14 7.1434 0.4709 0.096 

P4 996 8.48 4456.69 7.4315 0.4959 0.105 

P5 2635 9.28 6445.39 7.4999 0.4888 0.130 
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Table 4. Validity Test for MFFE and MFTS: Binomial Test 
 
This table summarizes a binomial test of the null hypothesis that the probability ( ) of getting 
positive forecast errors [(+) FEs] is 0.5 for all n trials – i.e., Ho: . Note that “n” is the 
total number of positive and negative FEs excluding zero FEs. Following Conover (1980; pp. 96-
99), I calculate the test statistic (T) and the corresponding critical regions at the 5% and 1% levels 
as follows: 

p
2/1=p

 T = the number of (+) FEs; 
t1_5% (lower limit at the 5% level) = )1(96.1 pnpnp −− ; 

 t2_5% (upper limit at the 5% level) = )1(96.1 pnpnp −+ ; 

t1_1% (lower limit at the 1% level) = )1(58.2 pnpnp −− ; 

 t2_1% (upper limit at the 1% level) = )1(58.2 pnpnp −+ .  
 
Panel A. MFFE 

 N # (+)FE # (−)FE n % (+)FE % (−)FE T t1_1% t2_1% t1_5% t2_5% 
P1*** 8512 3634 4134 7768 47 53 3634 3770 3998 3798 3970 
P2*** 4482 2108 1912 4020 52 48 2108 1928 2092 1948 2072 
P3*** 6441 3013 2549 5562 54 46 3013 2685 2877 2708 2854 
P4*** 5340 2831 1860 4691 60 40 2831 2257 2434 2278 2413 
P5*** 9830 5599 2718 8317 67 33 5599 4041 4276 4069 4248 
Total 34605           

 

Panel B. MFTS 
 Na # (+)FE # (−)FE Na % (+)FE % (−)FE T t1_1% t2_1% t1_5% t2_5% 

P1*** 2965 1209 1505 2714 45 55 1209 1290 1424 1306 1408 
 P2 891 409 397 806 51 49 409 366 440 375 431 
 P3** 1510 724 584 1308 55 45 724 607 701 619 689 
P4*** 996 549 344 893 61 39 549 408 485 417 476 
P5*** 2635 1626 737 2363 69 31 1626 1119 1244 1134 1229 
Total 8997           

a N includes the number of zero FEs, while n does not. 
*** significant at the 1% level. 
**   significant at the 5% level. 
*     significant at the 10% level.  
 
Note 1: N is the total number of observations in each portfolio; #(+)FE is the number of positive forecast 
errors; #(−)FE is the number of negative forecast errors; n is the number of #(+)FE plus #(−)FE. Other 
terms are as defined above.  
 
Note 2: P1 denotes the most optimistic portfolio; P2 denotes another optimistic portfolio – i.e., less 
optimistic than P1 and more optimistic than P3; P3 denotes the least optimistic portfolio – i.e., less 
optimistic than both P1 and P2; P4 denotes a less pessimistic portfolio than P5; P5 denotes the most 
pessimistic portfolio. 
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Table 5. Persistent Bias in Analysts’ Earnings Forecasts: Autocorrelation Test 
 
Panel A shows a nonparametric Chi-square test to test the null hypothesis that getting (+) FE at 
the contemporaneous quarter is equally likely as getting (−) FE. Each subset contains the number 
of FE sign transitions (including no sign transitions) that firms make from quarter t-1 to the 
contemporaneous quarter t. There are four subsets in this case because I compare 
contemporaneous FE (FEt) with FE one quarter prior to the contemporaneous one (FEt-1). The 
test statistic (Chi-square; ) and theoretical frequencies are calculated as follows:2χ 61 

∑
=

−
=

4

1

2
2 )(

d d

dd

T
TO

χ  with  )1)(1( −−= crdf

where  
dO  = the observed frequency of FE sign transitions for subset d where d = 1,…,4; 

dT   = the theoretical frequency of FE sign transitions for subset d under the null  
    hypothesis; 

df   = degree of freedom for the χ2 test; 
   = the number of rows in the contingency table (2 in this case); and r
   = the number of columns in the contingency table (2 in this case). c
 
Panel B summarizes the results from a parametric test of autocorrelation between FEt and FEt-1. 
The following are the specification of the first-order autoregressive [AR(1)] models used to test 
the autocorrelation structure of FEs: 

ttt SFESFE ϖλλ ++= −110  

0 1 1 2 1 3 1 4 1 5 12 3 4t t t t t tSFE SFE SFE D SFE D SFE D SFE Dλ λ λ λ λ λ− − − − −′ ′ ′ ′ ′ ′= + + + + + 5 tϖ ′+

                                                          

 
 where 
   = the analysts’ forecast errors ( ) standardized by the stock price 10 days  tSFE tFE

   prior to the earnings announcement at t; 
 = the lagged analysts’ forecast errors ( ) standardized by the stock price 10  1−tSFE 1−tFE

   days prior to the earnings announcement at t-1; 
  = a dummy variable that equals one if an observation belongs to P2 and zero  2D

      otherwise; 
  = a dummy variable that equals one if an observation belongs to P3 and zero  3D

      otherwise; 
  = a dummy variable that equals one if an observation belongs to P4 and zero  4D

      otherwise; 
  = a dummy variable that equals one if an observation belongs to P5 and zero  5D

      otherwise; and 
 ,  = independently and identically distributed random error terms. tϖ tϖ ′
 Again firm subscripts are omitted.  

 
61 Refer to Gujarati (1988; pp. 373-375). The theoretical frequency is computed by multiplying the 
marginal frequency of the contemporaneous forecast errors (i.e., # of (+) or (-) FE at t) by the ratio of the 
marginal frequency of the lagged forecast errors (i.e., # of (+) or (-) FE at t-1) over the total frequency 
(=27255). For example, the theoretical frequency of 8702 is calculated as follows: 15246 × (15557 ÷ 
27255). 
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Table 5. Continued. 
 
Panel A. Non-Parametric Chi-square Test: MFFE 

 Observed  Theoretical 
 # of (+) FE at t # of (−) FE at t Total # of (+) FE at t # of (−) FE at t 

# of (+) FE at t-1 10627 4930 15557 8702 6855 
# of (−) FE at t-1 4619 7079 11698 6544 5154 

 15246 12009 27255 15246 12009 

      

  
2χ = 2251   

  df = 1   

  )1(2χ = 3.83 (5%) or 6.63 (1%)  
 
Panel B. Non-Parametric Chi-square Test: MFTS 

 Observed  Theoretical 
 # of (+) FE at t # of (−) FE at t Total # of (+) FE at t # of (−) FE at t 

# of (+) FE at t-1 2846 1331 4177 2297 1880 
# of (−) FE at t-1 1228 2005 3233 1777 1456 

 4074 3336 7410 4074 3336 
      

  2χ = 669   

  df = 1   

  )1(2χ = 3.83 (5%) or 6.63 (1%)  
 
 
Panel C. Parametric Test: First-Order Autoregressive Model [AR(1)] without Portfolio Dummies 

ttt SFESFE ϖλλ ++= −110  

 Mean-Frequency Forecast Error 
(MFFE) Method 

Mean-Frequency Time-Series 
(MFTS) Method 

Coefficient Estimate Pr > |t| Estimate Pr > |t| 

0λ  -0.00041 <.0001 -0.00054 <.0001 

1λ  0.08370 <.0001 0.09390 <.0001 

     
R-square 0.0229  0.0249  
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Table 5. Continued. 
 
Panel D. Parametric Test: AR(1) with Portfolio Dummies 

ttttttt DSFEDSFEDSFEDSFESFESFE ϖλλλλλλ +′+′+′+′+′+′= −−−−− 5432 15141312110  

 Mean-Frequency Forecast Error 
(MFFE) Method 

Mean-Frequency Time-Series 
(MFTS) Method 

Coefficient Estimate Pr > |t| Estimate Pr > |t| 

0λ′  -0.00046 <.0001 -0.00056 <.0001 

1λ′  0.0740 <.0001 0.0933 <.0001 

2λ′  -0.0492 <.0001 -0.0683 0.0024 

3λ′  0.1298 <.0001 0.1450 0.0028 

4λ′  0.1100 <.0001 0.1059 0.0900 

5λ′  0.1708 <.0001 0.0303 0.1705 

Marginal Effect     

1λ′  (P1) 0.0740 <.0001 0.0933 <.0001 

1λ′+  (P2) 2λ′ 0.0248 0.0022 0.0250 0.2438 

1λ′+  (P3) 3λ′ 0.2038 <.0001 0.2383 <.0001 

1λ′+  (P4) 4λ′ 0.1840 <.0001 0.1992 0.0013 

1λ′+  (P5) 5λ′ 0.2448 <.0001 0.1236 <.0001 

Pair-wise Comparison F-value Pr > |F| F-value Pr > |F| 

1λ′= +  1λ′ 2λ′ 31.59 <.0001 9.19 0.0024 

1λ′= +  1λ′ 3λ′ 39.78 <.0001 8.94 0.0028 

1λ′= +  1λ′ 4λ′ 56.87 <.0001 2.87 0.0900 

1λ′= +  1λ′ 5λ′ 155.63 <.0001 1.88 0.1705 

1λ′+ = +  2λ′ 1λ′ 3λ′ 67.06 <.0001 16.46 <.0001 

1λ′+ = +  2λ′ 1λ′ 4λ′ 94.99 <.0001 7.04 0.0080 

1λ′+ = +  2λ′ 1λ′ 5λ′ 200.48 <.0001 10.79 0.0010 

1λ′+ = +  3λ′ 1λ′ 4λ′ 0.64 0.4232 0.25 0.6177 

1λ′+ = +  3λ′ 1λ′ 5λ′ 2.85 0.0913 4.79 0.0287 

1λ′+ = +  4λ′ 1λ′ 5λ′ 9.86 0.0017 1.33 0.2480 

     
R-square 0.0311  0.0275  
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Table 6. Persistence Bias in Analysts’ Earnings Forecasts: Herfindahl Index 
 
This table shows portfolio-time frequencies, industry frequencies, stock exchange frequencies, and 
corresponding Herfindahl indexes – Time Herfindahl, Industry Herfindahl, and Stock Exchange 
Herfindahl. The portfolio-time frequencies are firm-quarters in each portfolio over time (12-year 
period), while the industry frequencies reflect firm-quarters in each portfolio across industry 
sectors. Herfindahl indexes in Panels A and B measure the relative concentration of a portfolio 
over the 12-year period and are calculated as follows: 

12
,

1 ,

t P
P

t sum P

FREQ
H

FREQ=

= ∑  

where  
PH   = the Herfindahl index for portfolio P where P = P1, …, P5; 

PtFREQ ,  = the marginal frequency of portfolio P in year t; and 

PsumFREQ ,  = the aggregate frequency of portfolio P over the 10-year period. 
Portfolios, which are observed in a specific year, will have a Herfindahl index of “1”. Portfolios, 
which are spread evenly over time, will have a Herfindahl index of "0.0833”. Herfindahl indexes 
in Panels C and D (E and F) indicate the relative concentration of an industry sector (an 
exchange) across portfolios and are computed as follows: 

∑
=

=
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p INDsum

INDp
IND FREQ

FREQ
H  

∑
=

=
5
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p EXsum

EXp
EX FREQ

FREQ
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where  
INDH   = the Herfindahl index for industry sector IND where IND = 1, …, 11; 

   = the Herfindahl index for an exchange EX where EX = NYSE,  EXH
      AMEX, NASDAQ; 

INDpFREQ ,  = the marginal frequency of  an industry IND for a portfolio p; 

EXpFREQ ,  = the marginal frequency of an exchange EX  for a portfolio p; 

INDsumFREQ ,  = the aggregate frequency of an industry IND across portfolios; and 

EXsumFREQ ,  = the aggregate frequency of an exchange EX across portfolios.  
If an industry sector (or an exchange) clusters in a specific portfolio, it will have a Herfindahl 
index of “1”. If an industry sector (or an exchange) is evenly spread across portfolios, it will have 
a Herfindahl index of "0.2”.  
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Table 6. Continued. 
 
Panel A. Time Herfindahl Index: MFFE 
 Portfolio Frequency over Time Herfindahl Index for Each Portfolio across Years 

Year P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
1990 551 267 392 250 226 0.0043 0.0036 0.0038 0.0022 0.0005 
1991 672 308 446 360 271 0.0063 0.0048 0.0049 0.0046 0.0008 
1992 808 420 520 387 345 0.0092 0.0089 0.0067 0.0053 0.0012 
1993 963 403 545 386 405 0.0130 0.0082 0.0073 0.0053 0.0017 
1994 1079 451 630 451 473 0.0164 0.0103 0.0098 0.0073 0.0023 
1995 968 450 610 547 624 0.0132 0.0103 0.0092 0.0107 0.0041 
1996 848 415 670 603 890 0.0101 0.0087 0.0111 0.0130 0.0083 
1997 800 381 598 624 1186 0.0090 0.0074 0.0088 0.0139 0.0147 
1998 632 409 566 586 1457 0.0056 0.0085 0.0079 0.0122 0.0221 
1999 548 418 605 530 1605 0.0042 0.0089 0.0090 0.0100 0.0269 
2000 430 395 549 418 1597 0.0026 0.0079 0.0074 0.0062 0.0266 
2001 139 123 242 153 714 0.0003 0.0008 0.0014 0.0008 0.0053 
Total/ 

PH  8438 4440 6373 5295 9793 0.0941 0.0883 0.0872 0.0916 0.1145 

 
Panel B. Time Herfindahl Index: MFTS 

 Portfolio Frequency over Time Herfindahl Index for Each Portfolio across Years 
Year P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
1990 155 50 87 44 45 0.0027 0.0031 0.0033 0.0020 0.0003 
1991 203 70 88 78 68 0.0047 0.0062 0.0034 0.0061 0.0007 
1992 277 98 137 81 92 0.0087 0.0121 0.0082 0.0066 0.0012 
1993 323 78 115 58 89 0.0119 0.0077 0.0058 0.0034 0.0011 
1994 349 77 144 74 116 0.0139 0.0075 0.0091 0.0055 0.0019 
1995 364 89 155 118 164 0.0151 0.0100 0.0106 0.0140 0.0039 
1996 335 75 174 117 243 0.0128 0.0071 0.0133 0.0138 0.0085 
1997 293 72 163 102 334 0.0098 0.0065 0.0117 0.0105 0.0161 
1998 233 99 153 101 383 0.0062 0.0123 0.0103 0.0103 0.0211 
1999 220 68 138 101 427 0.0055 0.0058 0.0084 0.0103 0.0263 
2000 153 85 110 84 454 0.0027 0.0091 0.0053 0.0071 0.0297 
2001 59 30 45 38 220 0.0004 0.0011 0.0009 0.0015 0.0070 
Total/ 

PH  2964 891 1509 996 2635 0.0943 0.0885 0.0902 0.0911 0.1177 

Note: P1 denotes the most optimistic portfolio; P2 denotes another optimistic portfolio – i.e., less optimistic 
than P1 and more optimistic than P3; P3 denotes the least optimistic portfolio – i.e., less optimistic than both 
P1 and P2; P4 denotes a less pessimistic portfolio than P5; P5 denotes the most pessimistic portfolio. 
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Table 6. Continued. 
 
Panel C. Industry Herfindahl Index: MFFE 

 Industry Frequency  

Industry* Aggregate P1 P2 P3 P4 P5 INDH  

1a 4017 622 461 726 667 1541 0.245 
2b 2514 498 249 555 377 835 0.231 
3c 3018 705 374 588 470 881 0.217 
4d 4452 971 611 1046 673 1151 0.211 
5e 2035 557 228 340 303 607 0.227 
6f 1787 541 240 238 293 475 0.225 
7g 1011 344 178 173 121 195 0.228 
8h 5829 1635 775 1082 806 1531 0.219 
9i 4399 1167 601 719 770 1142 0.214 

10j 4105 1111 542 691 552 1209 0.224 
11k 1429 361 220 283 305 260 0.205 

 
Panel D. Industry Herfindahl Index: MFTS 

 Industry Frequency  

Industry* Aggregate P1 P2 P3 P4 P5 INDH  

1a 921 186 116 232 104 283 0.227 
2b 581 189 40 151 41 160 0.259 
3c 753 306 82 121 104 140 0.256 
4d 1042 345 131 272 120 174 0.235 
5e 529 214 45 59 66 145 0.274 
6f 629 194 47 56 59 273 0.306 
7g 276 110 30 47 17 72 0.272 
8h 1511 564 139 225 155 428 0.261 
9i 1304 365 104 121 160 554 0.289 

10j 1087 407 103 141 94 342 0.272 
11k 362 85 54 85 74 64 0.206 

* The following superscripts indicate I/B/E/S industry sectors:  a Finance; b Health Care; c Consumer Non-
Durables; d Consumer Services; e Consumer Durables; f Energy; g Transportation; h Technology; i Basic 
Industries; j Capital Goods; k Public Utilities.  
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Table 6. Continued. 
 
Panel E. Stock Exchange Herfindahl Index: MFFE 

 Industry Frequency  

Industry Aggregate P1 P2 P3 P4 P5 EXH  

NYSE 24215 5549 3049 4482 3984 7151 0.217 
AMEX 678 329 91 106 70 82 0.303 

NASDAQ 9712 2634 1342 1853 1286 2597 0.218 
 
Panel F. Stock Exchange Herfindahl Index: MFTS 

 Industry Frequency  

Industry Aggregate P1 P2 P3 P4 P5 EXH  

NYSE 6287 1868 580 1032 810 1997 0.241 
AMEX 228 155 21 28 8 16 0.492 

NASDAQ 2482 942 290 450 178 622 0.259 
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Table 7. Multiple Regression Models 
 
This table reports the relationships between analysts’ earnings forecasts and investors’ earnings 
expectations and between the predicted CARs under the NEH and the REH, and the regression 
results from the following models:  

tCAR  =  1 1 2 2 3 3 4 4 5 5 1 2t tP P P P P diffSize diffBtoM uα α α α α β β+ + + + + + + t

tCAR  = 1 1 2 2 3 3 4 4 5 5 1 2 3
t

t t
t

FEa P a P a P a P a P b b diffSize b diffBtoM
STD

υ+ + + + + + + + t  

tCAR  = 1 2 2 3 3 4 4 5 5 1 2 2 3
t tFE FE FEa a P a P a P a P b b P b P

STD STD STD
′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + 3

t    

   4 4 5 5 6 7
t t

t t t
t t

FE FEb P b P b diffSize b diffBtoM
STD STD

ω′ ′ ′ ′+ + ++ +  

where 
tCAR  = the 3-day [−2: 0] abnormal stock returns for a quarterly earnings 

 announcement  
Pp = a dummy variables that equal one if an observation belongs to  

     portfolio p and zero otherwise, p = 1, …, 5; 
tFE  = analysts’ earnings forecast errors at quarter t;  

iA  = the actual quarterly earnings at quarter t;  

tF  = the most recent analysts’ consensus forecasts for ; iA

tSTD  = the standard deviation of analysts' consensus forecasts at quarter t; 
MVEt = Pt × Shrt; 

  = the closing stock price at the third month of quarter t; tP

  = the number of common shares used to calculate EPS at quarter t; tShr

tdiffSize  = the difference between log( ) and the grand mean of tMVE
      log( ) where l  = the logarithm of MVEtMVE og( )tMVE t; 

tBtoM  = 
t

t

MVE
BVE

 where  = common equity (total) at quarter t; tBVE

tdiffBtoM  = the difference between  and the grand mean of ; and tBtoM tBtoM

tu , ,  = identically and independently distributed random error terms. tυ tω
Note that , , and  are extracted from COMPUSTAT.  tP tShr tBVE
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Table 7. Continued. 
 
Panel A. 
Regression of CAR on Portfolio Dummies, diffSize, and diffBtoM without Interaction Terms 

tCAR  = α α  1 1 2 2 3 3 4 4 5 5 1 2t tP P P P P diffSize diffBtoM uα α α β β+ + + + + + + t

 
Mean-Frequency Forecast Error 

(MFFE) Method 
Mean-Frequency Time-Series  

(MFTS) Method 
Coefficient Estimate Pr > |t| Estimate Pr > |t| 

1α  0.00264 <.0001 0.00231 0.0400 

2α  0.00349 <.0001 0.00212 0.2880 

3α  0.00417 <.0001 0.00450 0.0027 

4α  0.00362 <.0001 0.00226 0.1926 

5α  0.00296 <.0001 0.00340 0.0016 

1b  -0.00084 0.0001 -0.00133 0.0021 

2b  0.00515 <.0001 0.00515 0.0153 

     
Pair-wise Comparison F-Value Pr > |F| F-Value Pr > |F| 

1α =  2α 0.67 0.4145 0.01 0.9336 

1α =  3α 2.59 0.1078 1.33 0.2491 

1α =  4α 0.95 0.3309 0.00 0.9821 

1α =  5α 0.14 0.7111 0.46 0.4967 

2α =  3α 0.39 0.5323 0.90 0.3420 

2α =  4α 0.01 0.9049 0.00 0.9572 

2α =  5α 0.27 0.6057 0.32 0.5740 

3α =  4α 0.28 0.5979 0.97 0.3256 

3α =  5α 1.83 0.1765 0.36 0.5466 

4α =  5α 0.49 0.4821 0.33 0.5676 

     
F-value 23.43  6.78  
Pr > F <.0001  <.0001  

R-square 0.0061  0.0068  
Adj R-sq 0.0059  0.0058  
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Table 7. Continued. 
 
Panel B. 
Regression of CAR on Portfolio Dummies, FE, diffSize, and diffBtoM without Interaction Terms 

tCAR  = 1 1 2 2 3 3 4 4 5 5 1 2 3
t

t t
t

FEP a P a P a P a P b b diffSize b diffBtoM
STD

υ+ + + + + + + + ta  

 Mean-Frequency Forecast Error 
(MFFE) Method 

Mean-Frequency Time-Series 
(MFTS) Method 

Coefficient Estimate Pr > |t| Estimate Pr > |t| 

1a  0.00359 <.0001 0.00427 0.0001 

2a  0.00368 <.0001 0.00275 0.1628 

3a  0.00424 <.0001 0.00426 0.0040 

4a  0.00293 0.0001 0.00148 0.3868 

5a  0.00178 0.0018 0.00214 0.0453 

1b  0.00208 <.0001 0.00183 <.0001 

2b  -0.00088 <.0001 -0.00125 0.0035 

3b  0.00623 <.0001 0.00540 0.0100 

     
Pair-wise Comparison F-Value Pr > |F| F-Value Pr > |F| 

1a =  2a 0.01 0.9307 0.46 0.4992 

1a =  3a 0.49 0.4860 0.00 0.9967 

1a =  4a 0.43 0.5119 1.78 0.1818 

1a =  5a 4.28 0.0385 1.76 0.1848 

2a = a  3 0.28 0.5993 0.37 0.5413 

2a = a  4 0.44 0.5069 0.23 0.6294 

2a = a  5 3.53 0.0602 0.07 0.7862 

3a = a  4 1.65 0.1984 1.53 0.2167 

3a = a  5 7.75 0.0054 1.39 0.2380 

4a = a  5 1.51 0.2187 0.11 0.7399 

     
F-value 108.02  27.99  
Pr > F <.0001  <.0001  

R-square 0.0277  0.0275  
Adj R-sq 0.0275  0.0265  
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Table 7. Continued. 
 
Panel C.  
Regression of CAR on Portfolio Dummies, FE, diffSize, diffBtoM with Interaction Terms 

tCAR  = 1 2 2 3 3 4 4 5 5 1 2 2 3
t tFE FE FEa a P a P a P a P b b P b P

STD STD STD
′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + 3

t  

4 4 5 5 6 7
t t

t t
t t

FE FEb P b P b diffSize b diffBtoM
STD STD

ω′ ′ ′ ′+ + + + t+  

Panel C-1. Parameter Estimation 

 Mean-Frequency Forecast Error 
(MFFE) Method 

Mean-Frequency Time-Series 
(MFTS) Method 

Coefficient Estimate Pr > |t| Estimate Pr > |t| 

1a′  0.00359 <.0001 0.00406 0.0004 

2a′  0.00012 0.9045 -0.00112 0.6209 

3a′  0.00066 0.4832 0.00005 0.9794 

4a′  -0.00056 0.5792 -0.00252 0.2286 

5a′  -0.00160 0.0671 -0.00175 0.2799 

1b′  0.00210 <.0001 0.00165 <.0001 

2b′  0.00031 0.2349 0.00075 0.1694 

3b′  0.00063 0.0235 0.00156 0.0062 

4b′  -0.00025 0.3378 0.00013 0.7826 

5b′  -0.00031 0.1234 -0.00003 0.9186 

6b′  -0.00089 <.0001 -0.00129 0.0025 

7b′  0.00629 <.0001 0.00538 0.0104 

     
F-value 70.20  18.71  
Pr > F <.0001  <.0001  

R-square 0.0283  0.0288  
Adj R-sq 0.0279  0.0273  
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Table 7. Continued. 
 
Panel C-2. Fixed and Marginal Effects 

 MFFE MFTS 
Fixed Effects Estimate Pr > |F| Estimate Pr > |F| 

1a′  0.00359 <.0001 0.00406 0.0004 

1 2a a′ ′+  0.00371 <.0001 0.00294 0.1371 

1 3a a′ ′+  0.00425 <.0001 0.00411 0.0056 

1 4a a′ ′+  0.00303 <.0001 0.00154 0.3731 

1 5a a′ ′+  0.00199 0.0006 0.00231 0.0315 

     
Marginal Effects Estimate Pr > |F| Estimate Pr > |F| 

1b′  0.00210 <.0001 0.00165 <.0001 

1 2b b′ ′+  0.00241 <.0001 0.00240 <.0001 

1 3b b′ ′+  0.00273 <.0001 0.00321 <.0001 

1 4b b′ ′+  0.00185 <.0001 0.00178 <.0001 

1 5b b′ ′+  0.00179 <.0001 0.00167 <.0001 
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